1 /*******************************************************************************
2  *
3  * Intel Ethernet Controller XL710 Family Linux Driver
4  * Copyright(c) 2013 - 2017 Intel Corporation.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms and conditions of the GNU General Public License,
8  * version 2, as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along
16  * with this program.  If not, see <http://www.gnu.org/licenses/>.
17  *
18  * The full GNU General Public License is included in this distribution in
19  * the file called "COPYING".
20  *
21  * Contact Information:
22  * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
23  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
24  *
25  ******************************************************************************/
26 
27 #include <linux/etherdevice.h>
28 #include <linux/of_net.h>
29 #include <linux/pci.h>
30 #include <linux/bpf.h>
31 
32 /* Local includes */
33 #include "i40e.h"
34 #include "i40e_diag.h"
35 #include <net/udp_tunnel.h>
36 /* All i40e tracepoints are defined by the include below, which
37  * must be included exactly once across the whole kernel with
38  * CREATE_TRACE_POINTS defined
39  */
40 #define CREATE_TRACE_POINTS
41 #include "i40e_trace.h"
42 
43 const char i40e_driver_name[] = "i40e";
44 static const char i40e_driver_string[] =
45 			"Intel(R) Ethernet Connection XL710 Network Driver";
46 
47 #define DRV_KERN "-k"
48 
49 #define DRV_VERSION_MAJOR 2
50 #define DRV_VERSION_MINOR 1
51 #define DRV_VERSION_BUILD 14
52 #define DRV_VERSION __stringify(DRV_VERSION_MAJOR) "." \
53 	     __stringify(DRV_VERSION_MINOR) "." \
54 	     __stringify(DRV_VERSION_BUILD)    DRV_KERN
55 const char i40e_driver_version_str[] = DRV_VERSION;
56 static const char i40e_copyright[] = "Copyright (c) 2013 - 2014 Intel Corporation.";
57 
58 /* a bit of forward declarations */
59 static void i40e_vsi_reinit_locked(struct i40e_vsi *vsi);
60 static void i40e_handle_reset_warning(struct i40e_pf *pf, bool lock_acquired);
61 static int i40e_add_vsi(struct i40e_vsi *vsi);
62 static int i40e_add_veb(struct i40e_veb *veb, struct i40e_vsi *vsi);
63 static int i40e_setup_pf_switch(struct i40e_pf *pf, bool reinit);
64 static int i40e_setup_misc_vector(struct i40e_pf *pf);
65 static void i40e_determine_queue_usage(struct i40e_pf *pf);
66 static int i40e_setup_pf_filter_control(struct i40e_pf *pf);
67 static void i40e_prep_for_reset(struct i40e_pf *pf, bool lock_acquired);
68 static int i40e_reset(struct i40e_pf *pf);
69 static void i40e_rebuild(struct i40e_pf *pf, bool reinit, bool lock_acquired);
70 static void i40e_fdir_sb_setup(struct i40e_pf *pf);
71 static int i40e_veb_get_bw_info(struct i40e_veb *veb);
72 
73 /* i40e_pci_tbl - PCI Device ID Table
74  *
75  * Last entry must be all 0s
76  *
77  * { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
78  *   Class, Class Mask, private data (not used) }
79  */
80 static const struct pci_device_id i40e_pci_tbl[] = {
81 	{PCI_VDEVICE(INTEL, I40E_DEV_ID_SFP_XL710), 0},
82 	{PCI_VDEVICE(INTEL, I40E_DEV_ID_QEMU), 0},
83 	{PCI_VDEVICE(INTEL, I40E_DEV_ID_KX_B), 0},
84 	{PCI_VDEVICE(INTEL, I40E_DEV_ID_KX_C), 0},
85 	{PCI_VDEVICE(INTEL, I40E_DEV_ID_QSFP_A), 0},
86 	{PCI_VDEVICE(INTEL, I40E_DEV_ID_QSFP_B), 0},
87 	{PCI_VDEVICE(INTEL, I40E_DEV_ID_QSFP_C), 0},
88 	{PCI_VDEVICE(INTEL, I40E_DEV_ID_10G_BASE_T), 0},
89 	{PCI_VDEVICE(INTEL, I40E_DEV_ID_10G_BASE_T4), 0},
90 	{PCI_VDEVICE(INTEL, I40E_DEV_ID_KX_X722), 0},
91 	{PCI_VDEVICE(INTEL, I40E_DEV_ID_QSFP_X722), 0},
92 	{PCI_VDEVICE(INTEL, I40E_DEV_ID_SFP_X722), 0},
93 	{PCI_VDEVICE(INTEL, I40E_DEV_ID_1G_BASE_T_X722), 0},
94 	{PCI_VDEVICE(INTEL, I40E_DEV_ID_10G_BASE_T_X722), 0},
95 	{PCI_VDEVICE(INTEL, I40E_DEV_ID_SFP_I_X722), 0},
96 	{PCI_VDEVICE(INTEL, I40E_DEV_ID_20G_KR2), 0},
97 	{PCI_VDEVICE(INTEL, I40E_DEV_ID_20G_KR2_A), 0},
98 	{PCI_VDEVICE(INTEL, I40E_DEV_ID_25G_B), 0},
99 	{PCI_VDEVICE(INTEL, I40E_DEV_ID_25G_SFP28), 0},
100 	/* required last entry */
101 	{0, }
102 };
103 MODULE_DEVICE_TABLE(pci, i40e_pci_tbl);
104 
105 #define I40E_MAX_VF_COUNT 128
106 static int debug = -1;
107 module_param(debug, uint, 0);
108 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all), Debug mask (0x8XXXXXXX)");
109 
110 MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
111 MODULE_DESCRIPTION("Intel(R) Ethernet Connection XL710 Network Driver");
112 MODULE_LICENSE("GPL");
113 MODULE_VERSION(DRV_VERSION);
114 
115 static struct workqueue_struct *i40e_wq;
116 
117 /**
118  * i40e_allocate_dma_mem_d - OS specific memory alloc for shared code
119  * @hw:   pointer to the HW structure
120  * @mem:  ptr to mem struct to fill out
121  * @size: size of memory requested
122  * @alignment: what to align the allocation to
123  **/
124 int i40e_allocate_dma_mem_d(struct i40e_hw *hw, struct i40e_dma_mem *mem,
125 			    u64 size, u32 alignment)
126 {
127 	struct i40e_pf *pf = (struct i40e_pf *)hw->back;
128 
129 	mem->size = ALIGN(size, alignment);
130 	mem->va = dma_zalloc_coherent(&pf->pdev->dev, mem->size,
131 				      &mem->pa, GFP_KERNEL);
132 	if (!mem->va)
133 		return -ENOMEM;
134 
135 	return 0;
136 }
137 
138 /**
139  * i40e_free_dma_mem_d - OS specific memory free for shared code
140  * @hw:   pointer to the HW structure
141  * @mem:  ptr to mem struct to free
142  **/
143 int i40e_free_dma_mem_d(struct i40e_hw *hw, struct i40e_dma_mem *mem)
144 {
145 	struct i40e_pf *pf = (struct i40e_pf *)hw->back;
146 
147 	dma_free_coherent(&pf->pdev->dev, mem->size, mem->va, mem->pa);
148 	mem->va = NULL;
149 	mem->pa = 0;
150 	mem->size = 0;
151 
152 	return 0;
153 }
154 
155 /**
156  * i40e_allocate_virt_mem_d - OS specific memory alloc for shared code
157  * @hw:   pointer to the HW structure
158  * @mem:  ptr to mem struct to fill out
159  * @size: size of memory requested
160  **/
161 int i40e_allocate_virt_mem_d(struct i40e_hw *hw, struct i40e_virt_mem *mem,
162 			     u32 size)
163 {
164 	mem->size = size;
165 	mem->va = kzalloc(size, GFP_KERNEL);
166 
167 	if (!mem->va)
168 		return -ENOMEM;
169 
170 	return 0;
171 }
172 
173 /**
174  * i40e_free_virt_mem_d - OS specific memory free for shared code
175  * @hw:   pointer to the HW structure
176  * @mem:  ptr to mem struct to free
177  **/
178 int i40e_free_virt_mem_d(struct i40e_hw *hw, struct i40e_virt_mem *mem)
179 {
180 	/* it's ok to kfree a NULL pointer */
181 	kfree(mem->va);
182 	mem->va = NULL;
183 	mem->size = 0;
184 
185 	return 0;
186 }
187 
188 /**
189  * i40e_get_lump - find a lump of free generic resource
190  * @pf: board private structure
191  * @pile: the pile of resource to search
192  * @needed: the number of items needed
193  * @id: an owner id to stick on the items assigned
194  *
195  * Returns the base item index of the lump, or negative for error
196  *
197  * The search_hint trick and lack of advanced fit-finding only work
198  * because we're highly likely to have all the same size lump requests.
199  * Linear search time and any fragmentation should be minimal.
200  **/
201 static int i40e_get_lump(struct i40e_pf *pf, struct i40e_lump_tracking *pile,
202 			 u16 needed, u16 id)
203 {
204 	int ret = -ENOMEM;
205 	int i, j;
206 
207 	if (!pile || needed == 0 || id >= I40E_PILE_VALID_BIT) {
208 		dev_info(&pf->pdev->dev,
209 			 "param err: pile=%p needed=%d id=0x%04x\n",
210 			 pile, needed, id);
211 		return -EINVAL;
212 	}
213 
214 	/* start the linear search with an imperfect hint */
215 	i = pile->search_hint;
216 	while (i < pile->num_entries) {
217 		/* skip already allocated entries */
218 		if (pile->list[i] & I40E_PILE_VALID_BIT) {
219 			i++;
220 			continue;
221 		}
222 
223 		/* do we have enough in this lump? */
224 		for (j = 0; (j < needed) && ((i+j) < pile->num_entries); j++) {
225 			if (pile->list[i+j] & I40E_PILE_VALID_BIT)
226 				break;
227 		}
228 
229 		if (j == needed) {
230 			/* there was enough, so assign it to the requestor */
231 			for (j = 0; j < needed; j++)
232 				pile->list[i+j] = id | I40E_PILE_VALID_BIT;
233 			ret = i;
234 			pile->search_hint = i + j;
235 			break;
236 		}
237 
238 		/* not enough, so skip over it and continue looking */
239 		i += j;
240 	}
241 
242 	return ret;
243 }
244 
245 /**
246  * i40e_put_lump - return a lump of generic resource
247  * @pile: the pile of resource to search
248  * @index: the base item index
249  * @id: the owner id of the items assigned
250  *
251  * Returns the count of items in the lump
252  **/
253 static int i40e_put_lump(struct i40e_lump_tracking *pile, u16 index, u16 id)
254 {
255 	int valid_id = (id | I40E_PILE_VALID_BIT);
256 	int count = 0;
257 	int i;
258 
259 	if (!pile || index >= pile->num_entries)
260 		return -EINVAL;
261 
262 	for (i = index;
263 	     i < pile->num_entries && pile->list[i] == valid_id;
264 	     i++) {
265 		pile->list[i] = 0;
266 		count++;
267 	}
268 
269 	if (count && index < pile->search_hint)
270 		pile->search_hint = index;
271 
272 	return count;
273 }
274 
275 /**
276  * i40e_find_vsi_from_id - searches for the vsi with the given id
277  * @pf - the pf structure to search for the vsi
278  * @id - id of the vsi it is searching for
279  **/
280 struct i40e_vsi *i40e_find_vsi_from_id(struct i40e_pf *pf, u16 id)
281 {
282 	int i;
283 
284 	for (i = 0; i < pf->num_alloc_vsi; i++)
285 		if (pf->vsi[i] && (pf->vsi[i]->id == id))
286 			return pf->vsi[i];
287 
288 	return NULL;
289 }
290 
291 /**
292  * i40e_service_event_schedule - Schedule the service task to wake up
293  * @pf: board private structure
294  *
295  * If not already scheduled, this puts the task into the work queue
296  **/
297 void i40e_service_event_schedule(struct i40e_pf *pf)
298 {
299 	if (!test_bit(__I40E_DOWN, pf->state) &&
300 	    !test_bit(__I40E_RESET_RECOVERY_PENDING, pf->state))
301 		queue_work(i40e_wq, &pf->service_task);
302 }
303 
304 /**
305  * i40e_tx_timeout - Respond to a Tx Hang
306  * @netdev: network interface device structure
307  *
308  * If any port has noticed a Tx timeout, it is likely that the whole
309  * device is munged, not just the one netdev port, so go for the full
310  * reset.
311  **/
312 static void i40e_tx_timeout(struct net_device *netdev)
313 {
314 	struct i40e_netdev_priv *np = netdev_priv(netdev);
315 	struct i40e_vsi *vsi = np->vsi;
316 	struct i40e_pf *pf = vsi->back;
317 	struct i40e_ring *tx_ring = NULL;
318 	unsigned int i, hung_queue = 0;
319 	u32 head, val;
320 
321 	pf->tx_timeout_count++;
322 
323 	/* find the stopped queue the same way the stack does */
324 	for (i = 0; i < netdev->num_tx_queues; i++) {
325 		struct netdev_queue *q;
326 		unsigned long trans_start;
327 
328 		q = netdev_get_tx_queue(netdev, i);
329 		trans_start = q->trans_start;
330 		if (netif_xmit_stopped(q) &&
331 		    time_after(jiffies,
332 			       (trans_start + netdev->watchdog_timeo))) {
333 			hung_queue = i;
334 			break;
335 		}
336 	}
337 
338 	if (i == netdev->num_tx_queues) {
339 		netdev_info(netdev, "tx_timeout: no netdev hung queue found\n");
340 	} else {
341 		/* now that we have an index, find the tx_ring struct */
342 		for (i = 0; i < vsi->num_queue_pairs; i++) {
343 			if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc) {
344 				if (hung_queue ==
345 				    vsi->tx_rings[i]->queue_index) {
346 					tx_ring = vsi->tx_rings[i];
347 					break;
348 				}
349 			}
350 		}
351 	}
352 
353 	if (time_after(jiffies, (pf->tx_timeout_last_recovery + HZ*20)))
354 		pf->tx_timeout_recovery_level = 1;  /* reset after some time */
355 	else if (time_before(jiffies,
356 		      (pf->tx_timeout_last_recovery + netdev->watchdog_timeo)))
357 		return;   /* don't do any new action before the next timeout */
358 
359 	if (tx_ring) {
360 		head = i40e_get_head(tx_ring);
361 		/* Read interrupt register */
362 		if (pf->flags & I40E_FLAG_MSIX_ENABLED)
363 			val = rd32(&pf->hw,
364 			     I40E_PFINT_DYN_CTLN(tx_ring->q_vector->v_idx +
365 						tx_ring->vsi->base_vector - 1));
366 		else
367 			val = rd32(&pf->hw, I40E_PFINT_DYN_CTL0);
368 
369 		netdev_info(netdev, "tx_timeout: VSI_seid: %d, Q %d, NTC: 0x%x, HWB: 0x%x, NTU: 0x%x, TAIL: 0x%x, INT: 0x%x\n",
370 			    vsi->seid, hung_queue, tx_ring->next_to_clean,
371 			    head, tx_ring->next_to_use,
372 			    readl(tx_ring->tail), val);
373 	}
374 
375 	pf->tx_timeout_last_recovery = jiffies;
376 	netdev_info(netdev, "tx_timeout recovery level %d, hung_queue %d\n",
377 		    pf->tx_timeout_recovery_level, hung_queue);
378 
379 	switch (pf->tx_timeout_recovery_level) {
380 	case 1:
381 		set_bit(__I40E_PF_RESET_REQUESTED, pf->state);
382 		break;
383 	case 2:
384 		set_bit(__I40E_CORE_RESET_REQUESTED, pf->state);
385 		break;
386 	case 3:
387 		set_bit(__I40E_GLOBAL_RESET_REQUESTED, pf->state);
388 		break;
389 	default:
390 		netdev_err(netdev, "tx_timeout recovery unsuccessful\n");
391 		break;
392 	}
393 
394 	i40e_service_event_schedule(pf);
395 	pf->tx_timeout_recovery_level++;
396 }
397 
398 /**
399  * i40e_get_vsi_stats_struct - Get System Network Statistics
400  * @vsi: the VSI we care about
401  *
402  * Returns the address of the device statistics structure.
403  * The statistics are actually updated from the service task.
404  **/
405 struct rtnl_link_stats64 *i40e_get_vsi_stats_struct(struct i40e_vsi *vsi)
406 {
407 	return &vsi->net_stats;
408 }
409 
410 /**
411  * i40e_get_netdev_stats_struct_tx - populate stats from a Tx ring
412  * @ring: Tx ring to get statistics from
413  * @stats: statistics entry to be updated
414  **/
415 static void i40e_get_netdev_stats_struct_tx(struct i40e_ring *ring,
416 					    struct rtnl_link_stats64 *stats)
417 {
418 	u64 bytes, packets;
419 	unsigned int start;
420 
421 	do {
422 		start = u64_stats_fetch_begin_irq(&ring->syncp);
423 		packets = ring->stats.packets;
424 		bytes   = ring->stats.bytes;
425 	} while (u64_stats_fetch_retry_irq(&ring->syncp, start));
426 
427 	stats->tx_packets += packets;
428 	stats->tx_bytes   += bytes;
429 }
430 
431 /**
432  * i40e_get_netdev_stats_struct - Get statistics for netdev interface
433  * @netdev: network interface device structure
434  *
435  * Returns the address of the device statistics structure.
436  * The statistics are actually updated from the service task.
437  **/
438 static void i40e_get_netdev_stats_struct(struct net_device *netdev,
439 				  struct rtnl_link_stats64 *stats)
440 {
441 	struct i40e_netdev_priv *np = netdev_priv(netdev);
442 	struct i40e_ring *tx_ring, *rx_ring;
443 	struct i40e_vsi *vsi = np->vsi;
444 	struct rtnl_link_stats64 *vsi_stats = i40e_get_vsi_stats_struct(vsi);
445 	int i;
446 
447 	if (test_bit(__I40E_VSI_DOWN, vsi->state))
448 		return;
449 
450 	if (!vsi->tx_rings)
451 		return;
452 
453 	rcu_read_lock();
454 	for (i = 0; i < vsi->num_queue_pairs; i++) {
455 		u64 bytes, packets;
456 		unsigned int start;
457 
458 		tx_ring = ACCESS_ONCE(vsi->tx_rings[i]);
459 		if (!tx_ring)
460 			continue;
461 		i40e_get_netdev_stats_struct_tx(tx_ring, stats);
462 
463 		rx_ring = &tx_ring[1];
464 
465 		do {
466 			start = u64_stats_fetch_begin_irq(&rx_ring->syncp);
467 			packets = rx_ring->stats.packets;
468 			bytes   = rx_ring->stats.bytes;
469 		} while (u64_stats_fetch_retry_irq(&rx_ring->syncp, start));
470 
471 		stats->rx_packets += packets;
472 		stats->rx_bytes   += bytes;
473 
474 		if (i40e_enabled_xdp_vsi(vsi))
475 			i40e_get_netdev_stats_struct_tx(&rx_ring[1], stats);
476 	}
477 	rcu_read_unlock();
478 
479 	/* following stats updated by i40e_watchdog_subtask() */
480 	stats->multicast	= vsi_stats->multicast;
481 	stats->tx_errors	= vsi_stats->tx_errors;
482 	stats->tx_dropped	= vsi_stats->tx_dropped;
483 	stats->rx_errors	= vsi_stats->rx_errors;
484 	stats->rx_dropped	= vsi_stats->rx_dropped;
485 	stats->rx_crc_errors	= vsi_stats->rx_crc_errors;
486 	stats->rx_length_errors	= vsi_stats->rx_length_errors;
487 }
488 
489 /**
490  * i40e_vsi_reset_stats - Resets all stats of the given vsi
491  * @vsi: the VSI to have its stats reset
492  **/
493 void i40e_vsi_reset_stats(struct i40e_vsi *vsi)
494 {
495 	struct rtnl_link_stats64 *ns;
496 	int i;
497 
498 	if (!vsi)
499 		return;
500 
501 	ns = i40e_get_vsi_stats_struct(vsi);
502 	memset(ns, 0, sizeof(*ns));
503 	memset(&vsi->net_stats_offsets, 0, sizeof(vsi->net_stats_offsets));
504 	memset(&vsi->eth_stats, 0, sizeof(vsi->eth_stats));
505 	memset(&vsi->eth_stats_offsets, 0, sizeof(vsi->eth_stats_offsets));
506 	if (vsi->rx_rings && vsi->rx_rings[0]) {
507 		for (i = 0; i < vsi->num_queue_pairs; i++) {
508 			memset(&vsi->rx_rings[i]->stats, 0,
509 			       sizeof(vsi->rx_rings[i]->stats));
510 			memset(&vsi->rx_rings[i]->rx_stats, 0,
511 			       sizeof(vsi->rx_rings[i]->rx_stats));
512 			memset(&vsi->tx_rings[i]->stats, 0,
513 			       sizeof(vsi->tx_rings[i]->stats));
514 			memset(&vsi->tx_rings[i]->tx_stats, 0,
515 			       sizeof(vsi->tx_rings[i]->tx_stats));
516 		}
517 	}
518 	vsi->stat_offsets_loaded = false;
519 }
520 
521 /**
522  * i40e_pf_reset_stats - Reset all of the stats for the given PF
523  * @pf: the PF to be reset
524  **/
525 void i40e_pf_reset_stats(struct i40e_pf *pf)
526 {
527 	int i;
528 
529 	memset(&pf->stats, 0, sizeof(pf->stats));
530 	memset(&pf->stats_offsets, 0, sizeof(pf->stats_offsets));
531 	pf->stat_offsets_loaded = false;
532 
533 	for (i = 0; i < I40E_MAX_VEB; i++) {
534 		if (pf->veb[i]) {
535 			memset(&pf->veb[i]->stats, 0,
536 			       sizeof(pf->veb[i]->stats));
537 			memset(&pf->veb[i]->stats_offsets, 0,
538 			       sizeof(pf->veb[i]->stats_offsets));
539 			pf->veb[i]->stat_offsets_loaded = false;
540 		}
541 	}
542 	pf->hw_csum_rx_error = 0;
543 }
544 
545 /**
546  * i40e_stat_update48 - read and update a 48 bit stat from the chip
547  * @hw: ptr to the hardware info
548  * @hireg: the high 32 bit reg to read
549  * @loreg: the low 32 bit reg to read
550  * @offset_loaded: has the initial offset been loaded yet
551  * @offset: ptr to current offset value
552  * @stat: ptr to the stat
553  *
554  * Since the device stats are not reset at PFReset, they likely will not
555  * be zeroed when the driver starts.  We'll save the first values read
556  * and use them as offsets to be subtracted from the raw values in order
557  * to report stats that count from zero.  In the process, we also manage
558  * the potential roll-over.
559  **/
560 static void i40e_stat_update48(struct i40e_hw *hw, u32 hireg, u32 loreg,
561 			       bool offset_loaded, u64 *offset, u64 *stat)
562 {
563 	u64 new_data;
564 
565 	if (hw->device_id == I40E_DEV_ID_QEMU) {
566 		new_data = rd32(hw, loreg);
567 		new_data |= ((u64)(rd32(hw, hireg) & 0xFFFF)) << 32;
568 	} else {
569 		new_data = rd64(hw, loreg);
570 	}
571 	if (!offset_loaded)
572 		*offset = new_data;
573 	if (likely(new_data >= *offset))
574 		*stat = new_data - *offset;
575 	else
576 		*stat = (new_data + BIT_ULL(48)) - *offset;
577 	*stat &= 0xFFFFFFFFFFFFULL;
578 }
579 
580 /**
581  * i40e_stat_update32 - read and update a 32 bit stat from the chip
582  * @hw: ptr to the hardware info
583  * @reg: the hw reg to read
584  * @offset_loaded: has the initial offset been loaded yet
585  * @offset: ptr to current offset value
586  * @stat: ptr to the stat
587  **/
588 static void i40e_stat_update32(struct i40e_hw *hw, u32 reg,
589 			       bool offset_loaded, u64 *offset, u64 *stat)
590 {
591 	u32 new_data;
592 
593 	new_data = rd32(hw, reg);
594 	if (!offset_loaded)
595 		*offset = new_data;
596 	if (likely(new_data >= *offset))
597 		*stat = (u32)(new_data - *offset);
598 	else
599 		*stat = (u32)((new_data + BIT_ULL(32)) - *offset);
600 }
601 
602 /**
603  * i40e_update_eth_stats - Update VSI-specific ethernet statistics counters.
604  * @vsi: the VSI to be updated
605  **/
606 void i40e_update_eth_stats(struct i40e_vsi *vsi)
607 {
608 	int stat_idx = le16_to_cpu(vsi->info.stat_counter_idx);
609 	struct i40e_pf *pf = vsi->back;
610 	struct i40e_hw *hw = &pf->hw;
611 	struct i40e_eth_stats *oes;
612 	struct i40e_eth_stats *es;     /* device's eth stats */
613 
614 	es = &vsi->eth_stats;
615 	oes = &vsi->eth_stats_offsets;
616 
617 	/* Gather up the stats that the hw collects */
618 	i40e_stat_update32(hw, I40E_GLV_TEPC(stat_idx),
619 			   vsi->stat_offsets_loaded,
620 			   &oes->tx_errors, &es->tx_errors);
621 	i40e_stat_update32(hw, I40E_GLV_RDPC(stat_idx),
622 			   vsi->stat_offsets_loaded,
623 			   &oes->rx_discards, &es->rx_discards);
624 	i40e_stat_update32(hw, I40E_GLV_RUPP(stat_idx),
625 			   vsi->stat_offsets_loaded,
626 			   &oes->rx_unknown_protocol, &es->rx_unknown_protocol);
627 	i40e_stat_update32(hw, I40E_GLV_TEPC(stat_idx),
628 			   vsi->stat_offsets_loaded,
629 			   &oes->tx_errors, &es->tx_errors);
630 
631 	i40e_stat_update48(hw, I40E_GLV_GORCH(stat_idx),
632 			   I40E_GLV_GORCL(stat_idx),
633 			   vsi->stat_offsets_loaded,
634 			   &oes->rx_bytes, &es->rx_bytes);
635 	i40e_stat_update48(hw, I40E_GLV_UPRCH(stat_idx),
636 			   I40E_GLV_UPRCL(stat_idx),
637 			   vsi->stat_offsets_loaded,
638 			   &oes->rx_unicast, &es->rx_unicast);
639 	i40e_stat_update48(hw, I40E_GLV_MPRCH(stat_idx),
640 			   I40E_GLV_MPRCL(stat_idx),
641 			   vsi->stat_offsets_loaded,
642 			   &oes->rx_multicast, &es->rx_multicast);
643 	i40e_stat_update48(hw, I40E_GLV_BPRCH(stat_idx),
644 			   I40E_GLV_BPRCL(stat_idx),
645 			   vsi->stat_offsets_loaded,
646 			   &oes->rx_broadcast, &es->rx_broadcast);
647 
648 	i40e_stat_update48(hw, I40E_GLV_GOTCH(stat_idx),
649 			   I40E_GLV_GOTCL(stat_idx),
650 			   vsi->stat_offsets_loaded,
651 			   &oes->tx_bytes, &es->tx_bytes);
652 	i40e_stat_update48(hw, I40E_GLV_UPTCH(stat_idx),
653 			   I40E_GLV_UPTCL(stat_idx),
654 			   vsi->stat_offsets_loaded,
655 			   &oes->tx_unicast, &es->tx_unicast);
656 	i40e_stat_update48(hw, I40E_GLV_MPTCH(stat_idx),
657 			   I40E_GLV_MPTCL(stat_idx),
658 			   vsi->stat_offsets_loaded,
659 			   &oes->tx_multicast, &es->tx_multicast);
660 	i40e_stat_update48(hw, I40E_GLV_BPTCH(stat_idx),
661 			   I40E_GLV_BPTCL(stat_idx),
662 			   vsi->stat_offsets_loaded,
663 			   &oes->tx_broadcast, &es->tx_broadcast);
664 	vsi->stat_offsets_loaded = true;
665 }
666 
667 /**
668  * i40e_update_veb_stats - Update Switch component statistics
669  * @veb: the VEB being updated
670  **/
671 static void i40e_update_veb_stats(struct i40e_veb *veb)
672 {
673 	struct i40e_pf *pf = veb->pf;
674 	struct i40e_hw *hw = &pf->hw;
675 	struct i40e_eth_stats *oes;
676 	struct i40e_eth_stats *es;     /* device's eth stats */
677 	struct i40e_veb_tc_stats *veb_oes;
678 	struct i40e_veb_tc_stats *veb_es;
679 	int i, idx = 0;
680 
681 	idx = veb->stats_idx;
682 	es = &veb->stats;
683 	oes = &veb->stats_offsets;
684 	veb_es = &veb->tc_stats;
685 	veb_oes = &veb->tc_stats_offsets;
686 
687 	/* Gather up the stats that the hw collects */
688 	i40e_stat_update32(hw, I40E_GLSW_TDPC(idx),
689 			   veb->stat_offsets_loaded,
690 			   &oes->tx_discards, &es->tx_discards);
691 	if (hw->revision_id > 0)
692 		i40e_stat_update32(hw, I40E_GLSW_RUPP(idx),
693 				   veb->stat_offsets_loaded,
694 				   &oes->rx_unknown_protocol,
695 				   &es->rx_unknown_protocol);
696 	i40e_stat_update48(hw, I40E_GLSW_GORCH(idx), I40E_GLSW_GORCL(idx),
697 			   veb->stat_offsets_loaded,
698 			   &oes->rx_bytes, &es->rx_bytes);
699 	i40e_stat_update48(hw, I40E_GLSW_UPRCH(idx), I40E_GLSW_UPRCL(idx),
700 			   veb->stat_offsets_loaded,
701 			   &oes->rx_unicast, &es->rx_unicast);
702 	i40e_stat_update48(hw, I40E_GLSW_MPRCH(idx), I40E_GLSW_MPRCL(idx),
703 			   veb->stat_offsets_loaded,
704 			   &oes->rx_multicast, &es->rx_multicast);
705 	i40e_stat_update48(hw, I40E_GLSW_BPRCH(idx), I40E_GLSW_BPRCL(idx),
706 			   veb->stat_offsets_loaded,
707 			   &oes->rx_broadcast, &es->rx_broadcast);
708 
709 	i40e_stat_update48(hw, I40E_GLSW_GOTCH(idx), I40E_GLSW_GOTCL(idx),
710 			   veb->stat_offsets_loaded,
711 			   &oes->tx_bytes, &es->tx_bytes);
712 	i40e_stat_update48(hw, I40E_GLSW_UPTCH(idx), I40E_GLSW_UPTCL(idx),
713 			   veb->stat_offsets_loaded,
714 			   &oes->tx_unicast, &es->tx_unicast);
715 	i40e_stat_update48(hw, I40E_GLSW_MPTCH(idx), I40E_GLSW_MPTCL(idx),
716 			   veb->stat_offsets_loaded,
717 			   &oes->tx_multicast, &es->tx_multicast);
718 	i40e_stat_update48(hw, I40E_GLSW_BPTCH(idx), I40E_GLSW_BPTCL(idx),
719 			   veb->stat_offsets_loaded,
720 			   &oes->tx_broadcast, &es->tx_broadcast);
721 	for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) {
722 		i40e_stat_update48(hw, I40E_GLVEBTC_RPCH(i, idx),
723 				   I40E_GLVEBTC_RPCL(i, idx),
724 				   veb->stat_offsets_loaded,
725 				   &veb_oes->tc_rx_packets[i],
726 				   &veb_es->tc_rx_packets[i]);
727 		i40e_stat_update48(hw, I40E_GLVEBTC_RBCH(i, idx),
728 				   I40E_GLVEBTC_RBCL(i, idx),
729 				   veb->stat_offsets_loaded,
730 				   &veb_oes->tc_rx_bytes[i],
731 				   &veb_es->tc_rx_bytes[i]);
732 		i40e_stat_update48(hw, I40E_GLVEBTC_TPCH(i, idx),
733 				   I40E_GLVEBTC_TPCL(i, idx),
734 				   veb->stat_offsets_loaded,
735 				   &veb_oes->tc_tx_packets[i],
736 				   &veb_es->tc_tx_packets[i]);
737 		i40e_stat_update48(hw, I40E_GLVEBTC_TBCH(i, idx),
738 				   I40E_GLVEBTC_TBCL(i, idx),
739 				   veb->stat_offsets_loaded,
740 				   &veb_oes->tc_tx_bytes[i],
741 				   &veb_es->tc_tx_bytes[i]);
742 	}
743 	veb->stat_offsets_loaded = true;
744 }
745 
746 /**
747  * i40e_update_vsi_stats - Update the vsi statistics counters.
748  * @vsi: the VSI to be updated
749  *
750  * There are a few instances where we store the same stat in a
751  * couple of different structs.  This is partly because we have
752  * the netdev stats that need to be filled out, which is slightly
753  * different from the "eth_stats" defined by the chip and used in
754  * VF communications.  We sort it out here.
755  **/
756 static void i40e_update_vsi_stats(struct i40e_vsi *vsi)
757 {
758 	struct i40e_pf *pf = vsi->back;
759 	struct rtnl_link_stats64 *ons;
760 	struct rtnl_link_stats64 *ns;   /* netdev stats */
761 	struct i40e_eth_stats *oes;
762 	struct i40e_eth_stats *es;     /* device's eth stats */
763 	u32 tx_restart, tx_busy;
764 	struct i40e_ring *p;
765 	u32 rx_page, rx_buf;
766 	u64 bytes, packets;
767 	unsigned int start;
768 	u64 tx_linearize;
769 	u64 tx_force_wb;
770 	u64 rx_p, rx_b;
771 	u64 tx_p, tx_b;
772 	u16 q;
773 
774 	if (test_bit(__I40E_VSI_DOWN, vsi->state) ||
775 	    test_bit(__I40E_CONFIG_BUSY, pf->state))
776 		return;
777 
778 	ns = i40e_get_vsi_stats_struct(vsi);
779 	ons = &vsi->net_stats_offsets;
780 	es = &vsi->eth_stats;
781 	oes = &vsi->eth_stats_offsets;
782 
783 	/* Gather up the netdev and vsi stats that the driver collects
784 	 * on the fly during packet processing
785 	 */
786 	rx_b = rx_p = 0;
787 	tx_b = tx_p = 0;
788 	tx_restart = tx_busy = tx_linearize = tx_force_wb = 0;
789 	rx_page = 0;
790 	rx_buf = 0;
791 	rcu_read_lock();
792 	for (q = 0; q < vsi->num_queue_pairs; q++) {
793 		/* locate Tx ring */
794 		p = ACCESS_ONCE(vsi->tx_rings[q]);
795 
796 		do {
797 			start = u64_stats_fetch_begin_irq(&p->syncp);
798 			packets = p->stats.packets;
799 			bytes = p->stats.bytes;
800 		} while (u64_stats_fetch_retry_irq(&p->syncp, start));
801 		tx_b += bytes;
802 		tx_p += packets;
803 		tx_restart += p->tx_stats.restart_queue;
804 		tx_busy += p->tx_stats.tx_busy;
805 		tx_linearize += p->tx_stats.tx_linearize;
806 		tx_force_wb += p->tx_stats.tx_force_wb;
807 
808 		/* Rx queue is part of the same block as Tx queue */
809 		p = &p[1];
810 		do {
811 			start = u64_stats_fetch_begin_irq(&p->syncp);
812 			packets = p->stats.packets;
813 			bytes = p->stats.bytes;
814 		} while (u64_stats_fetch_retry_irq(&p->syncp, start));
815 		rx_b += bytes;
816 		rx_p += packets;
817 		rx_buf += p->rx_stats.alloc_buff_failed;
818 		rx_page += p->rx_stats.alloc_page_failed;
819 	}
820 	rcu_read_unlock();
821 	vsi->tx_restart = tx_restart;
822 	vsi->tx_busy = tx_busy;
823 	vsi->tx_linearize = tx_linearize;
824 	vsi->tx_force_wb = tx_force_wb;
825 	vsi->rx_page_failed = rx_page;
826 	vsi->rx_buf_failed = rx_buf;
827 
828 	ns->rx_packets = rx_p;
829 	ns->rx_bytes = rx_b;
830 	ns->tx_packets = tx_p;
831 	ns->tx_bytes = tx_b;
832 
833 	/* update netdev stats from eth stats */
834 	i40e_update_eth_stats(vsi);
835 	ons->tx_errors = oes->tx_errors;
836 	ns->tx_errors = es->tx_errors;
837 	ons->multicast = oes->rx_multicast;
838 	ns->multicast = es->rx_multicast;
839 	ons->rx_dropped = oes->rx_discards;
840 	ns->rx_dropped = es->rx_discards;
841 	ons->tx_dropped = oes->tx_discards;
842 	ns->tx_dropped = es->tx_discards;
843 
844 	/* pull in a couple PF stats if this is the main vsi */
845 	if (vsi == pf->vsi[pf->lan_vsi]) {
846 		ns->rx_crc_errors = pf->stats.crc_errors;
847 		ns->rx_errors = pf->stats.crc_errors + pf->stats.illegal_bytes;
848 		ns->rx_length_errors = pf->stats.rx_length_errors;
849 	}
850 }
851 
852 /**
853  * i40e_update_pf_stats - Update the PF statistics counters.
854  * @pf: the PF to be updated
855  **/
856 static void i40e_update_pf_stats(struct i40e_pf *pf)
857 {
858 	struct i40e_hw_port_stats *osd = &pf->stats_offsets;
859 	struct i40e_hw_port_stats *nsd = &pf->stats;
860 	struct i40e_hw *hw = &pf->hw;
861 	u32 val;
862 	int i;
863 
864 	i40e_stat_update48(hw, I40E_GLPRT_GORCH(hw->port),
865 			   I40E_GLPRT_GORCL(hw->port),
866 			   pf->stat_offsets_loaded,
867 			   &osd->eth.rx_bytes, &nsd->eth.rx_bytes);
868 	i40e_stat_update48(hw, I40E_GLPRT_GOTCH(hw->port),
869 			   I40E_GLPRT_GOTCL(hw->port),
870 			   pf->stat_offsets_loaded,
871 			   &osd->eth.tx_bytes, &nsd->eth.tx_bytes);
872 	i40e_stat_update32(hw, I40E_GLPRT_RDPC(hw->port),
873 			   pf->stat_offsets_loaded,
874 			   &osd->eth.rx_discards,
875 			   &nsd->eth.rx_discards);
876 	i40e_stat_update48(hw, I40E_GLPRT_UPRCH(hw->port),
877 			   I40E_GLPRT_UPRCL(hw->port),
878 			   pf->stat_offsets_loaded,
879 			   &osd->eth.rx_unicast,
880 			   &nsd->eth.rx_unicast);
881 	i40e_stat_update48(hw, I40E_GLPRT_MPRCH(hw->port),
882 			   I40E_GLPRT_MPRCL(hw->port),
883 			   pf->stat_offsets_loaded,
884 			   &osd->eth.rx_multicast,
885 			   &nsd->eth.rx_multicast);
886 	i40e_stat_update48(hw, I40E_GLPRT_BPRCH(hw->port),
887 			   I40E_GLPRT_BPRCL(hw->port),
888 			   pf->stat_offsets_loaded,
889 			   &osd->eth.rx_broadcast,
890 			   &nsd->eth.rx_broadcast);
891 	i40e_stat_update48(hw, I40E_GLPRT_UPTCH(hw->port),
892 			   I40E_GLPRT_UPTCL(hw->port),
893 			   pf->stat_offsets_loaded,
894 			   &osd->eth.tx_unicast,
895 			   &nsd->eth.tx_unicast);
896 	i40e_stat_update48(hw, I40E_GLPRT_MPTCH(hw->port),
897 			   I40E_GLPRT_MPTCL(hw->port),
898 			   pf->stat_offsets_loaded,
899 			   &osd->eth.tx_multicast,
900 			   &nsd->eth.tx_multicast);
901 	i40e_stat_update48(hw, I40E_GLPRT_BPTCH(hw->port),
902 			   I40E_GLPRT_BPTCL(hw->port),
903 			   pf->stat_offsets_loaded,
904 			   &osd->eth.tx_broadcast,
905 			   &nsd->eth.tx_broadcast);
906 
907 	i40e_stat_update32(hw, I40E_GLPRT_TDOLD(hw->port),
908 			   pf->stat_offsets_loaded,
909 			   &osd->tx_dropped_link_down,
910 			   &nsd->tx_dropped_link_down);
911 
912 	i40e_stat_update32(hw, I40E_GLPRT_CRCERRS(hw->port),
913 			   pf->stat_offsets_loaded,
914 			   &osd->crc_errors, &nsd->crc_errors);
915 
916 	i40e_stat_update32(hw, I40E_GLPRT_ILLERRC(hw->port),
917 			   pf->stat_offsets_loaded,
918 			   &osd->illegal_bytes, &nsd->illegal_bytes);
919 
920 	i40e_stat_update32(hw, I40E_GLPRT_MLFC(hw->port),
921 			   pf->stat_offsets_loaded,
922 			   &osd->mac_local_faults,
923 			   &nsd->mac_local_faults);
924 	i40e_stat_update32(hw, I40E_GLPRT_MRFC(hw->port),
925 			   pf->stat_offsets_loaded,
926 			   &osd->mac_remote_faults,
927 			   &nsd->mac_remote_faults);
928 
929 	i40e_stat_update32(hw, I40E_GLPRT_RLEC(hw->port),
930 			   pf->stat_offsets_loaded,
931 			   &osd->rx_length_errors,
932 			   &nsd->rx_length_errors);
933 
934 	i40e_stat_update32(hw, I40E_GLPRT_LXONRXC(hw->port),
935 			   pf->stat_offsets_loaded,
936 			   &osd->link_xon_rx, &nsd->link_xon_rx);
937 	i40e_stat_update32(hw, I40E_GLPRT_LXONTXC(hw->port),
938 			   pf->stat_offsets_loaded,
939 			   &osd->link_xon_tx, &nsd->link_xon_tx);
940 	i40e_stat_update32(hw, I40E_GLPRT_LXOFFRXC(hw->port),
941 			   pf->stat_offsets_loaded,
942 			   &osd->link_xoff_rx, &nsd->link_xoff_rx);
943 	i40e_stat_update32(hw, I40E_GLPRT_LXOFFTXC(hw->port),
944 			   pf->stat_offsets_loaded,
945 			   &osd->link_xoff_tx, &nsd->link_xoff_tx);
946 
947 	for (i = 0; i < 8; i++) {
948 		i40e_stat_update32(hw, I40E_GLPRT_PXOFFRXC(hw->port, i),
949 				   pf->stat_offsets_loaded,
950 				   &osd->priority_xoff_rx[i],
951 				   &nsd->priority_xoff_rx[i]);
952 		i40e_stat_update32(hw, I40E_GLPRT_PXONRXC(hw->port, i),
953 				   pf->stat_offsets_loaded,
954 				   &osd->priority_xon_rx[i],
955 				   &nsd->priority_xon_rx[i]);
956 		i40e_stat_update32(hw, I40E_GLPRT_PXONTXC(hw->port, i),
957 				   pf->stat_offsets_loaded,
958 				   &osd->priority_xon_tx[i],
959 				   &nsd->priority_xon_tx[i]);
960 		i40e_stat_update32(hw, I40E_GLPRT_PXOFFTXC(hw->port, i),
961 				   pf->stat_offsets_loaded,
962 				   &osd->priority_xoff_tx[i],
963 				   &nsd->priority_xoff_tx[i]);
964 		i40e_stat_update32(hw,
965 				   I40E_GLPRT_RXON2OFFCNT(hw->port, i),
966 				   pf->stat_offsets_loaded,
967 				   &osd->priority_xon_2_xoff[i],
968 				   &nsd->priority_xon_2_xoff[i]);
969 	}
970 
971 	i40e_stat_update48(hw, I40E_GLPRT_PRC64H(hw->port),
972 			   I40E_GLPRT_PRC64L(hw->port),
973 			   pf->stat_offsets_loaded,
974 			   &osd->rx_size_64, &nsd->rx_size_64);
975 	i40e_stat_update48(hw, I40E_GLPRT_PRC127H(hw->port),
976 			   I40E_GLPRT_PRC127L(hw->port),
977 			   pf->stat_offsets_loaded,
978 			   &osd->rx_size_127, &nsd->rx_size_127);
979 	i40e_stat_update48(hw, I40E_GLPRT_PRC255H(hw->port),
980 			   I40E_GLPRT_PRC255L(hw->port),
981 			   pf->stat_offsets_loaded,
982 			   &osd->rx_size_255, &nsd->rx_size_255);
983 	i40e_stat_update48(hw, I40E_GLPRT_PRC511H(hw->port),
984 			   I40E_GLPRT_PRC511L(hw->port),
985 			   pf->stat_offsets_loaded,
986 			   &osd->rx_size_511, &nsd->rx_size_511);
987 	i40e_stat_update48(hw, I40E_GLPRT_PRC1023H(hw->port),
988 			   I40E_GLPRT_PRC1023L(hw->port),
989 			   pf->stat_offsets_loaded,
990 			   &osd->rx_size_1023, &nsd->rx_size_1023);
991 	i40e_stat_update48(hw, I40E_GLPRT_PRC1522H(hw->port),
992 			   I40E_GLPRT_PRC1522L(hw->port),
993 			   pf->stat_offsets_loaded,
994 			   &osd->rx_size_1522, &nsd->rx_size_1522);
995 	i40e_stat_update48(hw, I40E_GLPRT_PRC9522H(hw->port),
996 			   I40E_GLPRT_PRC9522L(hw->port),
997 			   pf->stat_offsets_loaded,
998 			   &osd->rx_size_big, &nsd->rx_size_big);
999 
1000 	i40e_stat_update48(hw, I40E_GLPRT_PTC64H(hw->port),
1001 			   I40E_GLPRT_PTC64L(hw->port),
1002 			   pf->stat_offsets_loaded,
1003 			   &osd->tx_size_64, &nsd->tx_size_64);
1004 	i40e_stat_update48(hw, I40E_GLPRT_PTC127H(hw->port),
1005 			   I40E_GLPRT_PTC127L(hw->port),
1006 			   pf->stat_offsets_loaded,
1007 			   &osd->tx_size_127, &nsd->tx_size_127);
1008 	i40e_stat_update48(hw, I40E_GLPRT_PTC255H(hw->port),
1009 			   I40E_GLPRT_PTC255L(hw->port),
1010 			   pf->stat_offsets_loaded,
1011 			   &osd->tx_size_255, &nsd->tx_size_255);
1012 	i40e_stat_update48(hw, I40E_GLPRT_PTC511H(hw->port),
1013 			   I40E_GLPRT_PTC511L(hw->port),
1014 			   pf->stat_offsets_loaded,
1015 			   &osd->tx_size_511, &nsd->tx_size_511);
1016 	i40e_stat_update48(hw, I40E_GLPRT_PTC1023H(hw->port),
1017 			   I40E_GLPRT_PTC1023L(hw->port),
1018 			   pf->stat_offsets_loaded,
1019 			   &osd->tx_size_1023, &nsd->tx_size_1023);
1020 	i40e_stat_update48(hw, I40E_GLPRT_PTC1522H(hw->port),
1021 			   I40E_GLPRT_PTC1522L(hw->port),
1022 			   pf->stat_offsets_loaded,
1023 			   &osd->tx_size_1522, &nsd->tx_size_1522);
1024 	i40e_stat_update48(hw, I40E_GLPRT_PTC9522H(hw->port),
1025 			   I40E_GLPRT_PTC9522L(hw->port),
1026 			   pf->stat_offsets_loaded,
1027 			   &osd->tx_size_big, &nsd->tx_size_big);
1028 
1029 	i40e_stat_update32(hw, I40E_GLPRT_RUC(hw->port),
1030 			   pf->stat_offsets_loaded,
1031 			   &osd->rx_undersize, &nsd->rx_undersize);
1032 	i40e_stat_update32(hw, I40E_GLPRT_RFC(hw->port),
1033 			   pf->stat_offsets_loaded,
1034 			   &osd->rx_fragments, &nsd->rx_fragments);
1035 	i40e_stat_update32(hw, I40E_GLPRT_ROC(hw->port),
1036 			   pf->stat_offsets_loaded,
1037 			   &osd->rx_oversize, &nsd->rx_oversize);
1038 	i40e_stat_update32(hw, I40E_GLPRT_RJC(hw->port),
1039 			   pf->stat_offsets_loaded,
1040 			   &osd->rx_jabber, &nsd->rx_jabber);
1041 
1042 	/* FDIR stats */
1043 	i40e_stat_update32(hw,
1044 			   I40E_GLQF_PCNT(I40E_FD_ATR_STAT_IDX(pf->hw.pf_id)),
1045 			   pf->stat_offsets_loaded,
1046 			   &osd->fd_atr_match, &nsd->fd_atr_match);
1047 	i40e_stat_update32(hw,
1048 			   I40E_GLQF_PCNT(I40E_FD_SB_STAT_IDX(pf->hw.pf_id)),
1049 			   pf->stat_offsets_loaded,
1050 			   &osd->fd_sb_match, &nsd->fd_sb_match);
1051 	i40e_stat_update32(hw,
1052 		      I40E_GLQF_PCNT(I40E_FD_ATR_TUNNEL_STAT_IDX(pf->hw.pf_id)),
1053 		      pf->stat_offsets_loaded,
1054 		      &osd->fd_atr_tunnel_match, &nsd->fd_atr_tunnel_match);
1055 
1056 	val = rd32(hw, I40E_PRTPM_EEE_STAT);
1057 	nsd->tx_lpi_status =
1058 		       (val & I40E_PRTPM_EEE_STAT_TX_LPI_STATUS_MASK) >>
1059 			I40E_PRTPM_EEE_STAT_TX_LPI_STATUS_SHIFT;
1060 	nsd->rx_lpi_status =
1061 		       (val & I40E_PRTPM_EEE_STAT_RX_LPI_STATUS_MASK) >>
1062 			I40E_PRTPM_EEE_STAT_RX_LPI_STATUS_SHIFT;
1063 	i40e_stat_update32(hw, I40E_PRTPM_TLPIC,
1064 			   pf->stat_offsets_loaded,
1065 			   &osd->tx_lpi_count, &nsd->tx_lpi_count);
1066 	i40e_stat_update32(hw, I40E_PRTPM_RLPIC,
1067 			   pf->stat_offsets_loaded,
1068 			   &osd->rx_lpi_count, &nsd->rx_lpi_count);
1069 
1070 	if (pf->flags & I40E_FLAG_FD_SB_ENABLED &&
1071 	    !(pf->flags & I40E_FLAG_FD_SB_AUTO_DISABLED))
1072 		nsd->fd_sb_status = true;
1073 	else
1074 		nsd->fd_sb_status = false;
1075 
1076 	if (pf->flags & I40E_FLAG_FD_ATR_ENABLED &&
1077 	    !(pf->flags & I40E_FLAG_FD_ATR_AUTO_DISABLED))
1078 		nsd->fd_atr_status = true;
1079 	else
1080 		nsd->fd_atr_status = false;
1081 
1082 	pf->stat_offsets_loaded = true;
1083 }
1084 
1085 /**
1086  * i40e_update_stats - Update the various statistics counters.
1087  * @vsi: the VSI to be updated
1088  *
1089  * Update the various stats for this VSI and its related entities.
1090  **/
1091 void i40e_update_stats(struct i40e_vsi *vsi)
1092 {
1093 	struct i40e_pf *pf = vsi->back;
1094 
1095 	if (vsi == pf->vsi[pf->lan_vsi])
1096 		i40e_update_pf_stats(pf);
1097 
1098 	i40e_update_vsi_stats(vsi);
1099 }
1100 
1101 /**
1102  * i40e_find_filter - Search VSI filter list for specific mac/vlan filter
1103  * @vsi: the VSI to be searched
1104  * @macaddr: the MAC address
1105  * @vlan: the vlan
1106  *
1107  * Returns ptr to the filter object or NULL
1108  **/
1109 static struct i40e_mac_filter *i40e_find_filter(struct i40e_vsi *vsi,
1110 						const u8 *macaddr, s16 vlan)
1111 {
1112 	struct i40e_mac_filter *f;
1113 	u64 key;
1114 
1115 	if (!vsi || !macaddr)
1116 		return NULL;
1117 
1118 	key = i40e_addr_to_hkey(macaddr);
1119 	hash_for_each_possible(vsi->mac_filter_hash, f, hlist, key) {
1120 		if ((ether_addr_equal(macaddr, f->macaddr)) &&
1121 		    (vlan == f->vlan))
1122 			return f;
1123 	}
1124 	return NULL;
1125 }
1126 
1127 /**
1128  * i40e_find_mac - Find a mac addr in the macvlan filters list
1129  * @vsi: the VSI to be searched
1130  * @macaddr: the MAC address we are searching for
1131  *
1132  * Returns the first filter with the provided MAC address or NULL if
1133  * MAC address was not found
1134  **/
1135 struct i40e_mac_filter *i40e_find_mac(struct i40e_vsi *vsi, const u8 *macaddr)
1136 {
1137 	struct i40e_mac_filter *f;
1138 	u64 key;
1139 
1140 	if (!vsi || !macaddr)
1141 		return NULL;
1142 
1143 	key = i40e_addr_to_hkey(macaddr);
1144 	hash_for_each_possible(vsi->mac_filter_hash, f, hlist, key) {
1145 		if ((ether_addr_equal(macaddr, f->macaddr)))
1146 			return f;
1147 	}
1148 	return NULL;
1149 }
1150 
1151 /**
1152  * i40e_is_vsi_in_vlan - Check if VSI is in vlan mode
1153  * @vsi: the VSI to be searched
1154  *
1155  * Returns true if VSI is in vlan mode or false otherwise
1156  **/
1157 bool i40e_is_vsi_in_vlan(struct i40e_vsi *vsi)
1158 {
1159 	/* If we have a PVID, always operate in VLAN mode */
1160 	if (vsi->info.pvid)
1161 		return true;
1162 
1163 	/* We need to operate in VLAN mode whenever we have any filters with
1164 	 * a VLAN other than I40E_VLAN_ALL. We could check the table each
1165 	 * time, incurring search cost repeatedly. However, we can notice two
1166 	 * things:
1167 	 *
1168 	 * 1) the only place where we can gain a VLAN filter is in
1169 	 *    i40e_add_filter.
1170 	 *
1171 	 * 2) the only place where filters are actually removed is in
1172 	 *    i40e_sync_filters_subtask.
1173 	 *
1174 	 * Thus, we can simply use a boolean value, has_vlan_filters which we
1175 	 * will set to true when we add a VLAN filter in i40e_add_filter. Then
1176 	 * we have to perform the full search after deleting filters in
1177 	 * i40e_sync_filters_subtask, but we already have to search
1178 	 * filters here and can perform the check at the same time. This
1179 	 * results in avoiding embedding a loop for VLAN mode inside another
1180 	 * loop over all the filters, and should maintain correctness as noted
1181 	 * above.
1182 	 */
1183 	return vsi->has_vlan_filter;
1184 }
1185 
1186 /**
1187  * i40e_correct_mac_vlan_filters - Correct non-VLAN filters if necessary
1188  * @vsi: the VSI to configure
1189  * @tmp_add_list: list of filters ready to be added
1190  * @tmp_del_list: list of filters ready to be deleted
1191  * @vlan_filters: the number of active VLAN filters
1192  *
1193  * Update VLAN=0 and VLAN=-1 (I40E_VLAN_ANY) filters properly so that they
1194  * behave as expected. If we have any active VLAN filters remaining or about
1195  * to be added then we need to update non-VLAN filters to be marked as VLAN=0
1196  * so that they only match against untagged traffic. If we no longer have any
1197  * active VLAN filters, we need to make all non-VLAN filters marked as VLAN=-1
1198  * so that they match against both tagged and untagged traffic. In this way,
1199  * we ensure that we correctly receive the desired traffic. This ensures that
1200  * when we have an active VLAN we will receive only untagged traffic and
1201  * traffic matching active VLANs. If we have no active VLANs then we will
1202  * operate in non-VLAN mode and receive all traffic, tagged or untagged.
1203  *
1204  * Finally, in a similar fashion, this function also corrects filters when
1205  * there is an active PVID assigned to this VSI.
1206  *
1207  * In case of memory allocation failure return -ENOMEM. Otherwise, return 0.
1208  *
1209  * This function is only expected to be called from within
1210  * i40e_sync_vsi_filters.
1211  *
1212  * NOTE: This function expects to be called while under the
1213  * mac_filter_hash_lock
1214  */
1215 static int i40e_correct_mac_vlan_filters(struct i40e_vsi *vsi,
1216 					 struct hlist_head *tmp_add_list,
1217 					 struct hlist_head *tmp_del_list,
1218 					 int vlan_filters)
1219 {
1220 	s16 pvid = le16_to_cpu(vsi->info.pvid);
1221 	struct i40e_mac_filter *f, *add_head;
1222 	struct i40e_new_mac_filter *new;
1223 	struct hlist_node *h;
1224 	int bkt, new_vlan;
1225 
1226 	/* To determine if a particular filter needs to be replaced we
1227 	 * have the three following conditions:
1228 	 *
1229 	 * a) if we have a PVID assigned, then all filters which are
1230 	 *    not marked as VLAN=PVID must be replaced with filters that
1231 	 *    are.
1232 	 * b) otherwise, if we have any active VLANS, all filters
1233 	 *    which are marked as VLAN=-1 must be replaced with
1234 	 *    filters marked as VLAN=0
1235 	 * c) finally, if we do not have any active VLANS, all filters
1236 	 *    which are marked as VLAN=0 must be replaced with filters
1237 	 *    marked as VLAN=-1
1238 	 */
1239 
1240 	/* Update the filters about to be added in place */
1241 	hlist_for_each_entry(new, tmp_add_list, hlist) {
1242 		if (pvid && new->f->vlan != pvid)
1243 			new->f->vlan = pvid;
1244 		else if (vlan_filters && new->f->vlan == I40E_VLAN_ANY)
1245 			new->f->vlan = 0;
1246 		else if (!vlan_filters && new->f->vlan == 0)
1247 			new->f->vlan = I40E_VLAN_ANY;
1248 	}
1249 
1250 	/* Update the remaining active filters */
1251 	hash_for_each_safe(vsi->mac_filter_hash, bkt, h, f, hlist) {
1252 		/* Combine the checks for whether a filter needs to be changed
1253 		 * and then determine the new VLAN inside the if block, in
1254 		 * order to avoid duplicating code for adding the new filter
1255 		 * then deleting the old filter.
1256 		 */
1257 		if ((pvid && f->vlan != pvid) ||
1258 		    (vlan_filters && f->vlan == I40E_VLAN_ANY) ||
1259 		    (!vlan_filters && f->vlan == 0)) {
1260 			/* Determine the new vlan we will be adding */
1261 			if (pvid)
1262 				new_vlan = pvid;
1263 			else if (vlan_filters)
1264 				new_vlan = 0;
1265 			else
1266 				new_vlan = I40E_VLAN_ANY;
1267 
1268 			/* Create the new filter */
1269 			add_head = i40e_add_filter(vsi, f->macaddr, new_vlan);
1270 			if (!add_head)
1271 				return -ENOMEM;
1272 
1273 			/* Create a temporary i40e_new_mac_filter */
1274 			new = kzalloc(sizeof(*new), GFP_ATOMIC);
1275 			if (!new)
1276 				return -ENOMEM;
1277 
1278 			new->f = add_head;
1279 			new->state = add_head->state;
1280 
1281 			/* Add the new filter to the tmp list */
1282 			hlist_add_head(&new->hlist, tmp_add_list);
1283 
1284 			/* Put the original filter into the delete list */
1285 			f->state = I40E_FILTER_REMOVE;
1286 			hash_del(&f->hlist);
1287 			hlist_add_head(&f->hlist, tmp_del_list);
1288 		}
1289 	}
1290 
1291 	vsi->has_vlan_filter = !!vlan_filters;
1292 
1293 	return 0;
1294 }
1295 
1296 /**
1297  * i40e_rm_default_mac_filter - Remove the default MAC filter set by NVM
1298  * @vsi: the PF Main VSI - inappropriate for any other VSI
1299  * @macaddr: the MAC address
1300  *
1301  * Remove whatever filter the firmware set up so the driver can manage
1302  * its own filtering intelligently.
1303  **/
1304 static void i40e_rm_default_mac_filter(struct i40e_vsi *vsi, u8 *macaddr)
1305 {
1306 	struct i40e_aqc_remove_macvlan_element_data element;
1307 	struct i40e_pf *pf = vsi->back;
1308 
1309 	/* Only appropriate for the PF main VSI */
1310 	if (vsi->type != I40E_VSI_MAIN)
1311 		return;
1312 
1313 	memset(&element, 0, sizeof(element));
1314 	ether_addr_copy(element.mac_addr, macaddr);
1315 	element.vlan_tag = 0;
1316 	/* Ignore error returns, some firmware does it this way... */
1317 	element.flags = I40E_AQC_MACVLAN_DEL_PERFECT_MATCH;
1318 	i40e_aq_remove_macvlan(&pf->hw, vsi->seid, &element, 1, NULL);
1319 
1320 	memset(&element, 0, sizeof(element));
1321 	ether_addr_copy(element.mac_addr, macaddr);
1322 	element.vlan_tag = 0;
1323 	/* ...and some firmware does it this way. */
1324 	element.flags = I40E_AQC_MACVLAN_DEL_PERFECT_MATCH |
1325 			I40E_AQC_MACVLAN_DEL_IGNORE_VLAN;
1326 	i40e_aq_remove_macvlan(&pf->hw, vsi->seid, &element, 1, NULL);
1327 }
1328 
1329 /**
1330  * i40e_add_filter - Add a mac/vlan filter to the VSI
1331  * @vsi: the VSI to be searched
1332  * @macaddr: the MAC address
1333  * @vlan: the vlan
1334  *
1335  * Returns ptr to the filter object or NULL when no memory available.
1336  *
1337  * NOTE: This function is expected to be called with mac_filter_hash_lock
1338  * being held.
1339  **/
1340 struct i40e_mac_filter *i40e_add_filter(struct i40e_vsi *vsi,
1341 					const u8 *macaddr, s16 vlan)
1342 {
1343 	struct i40e_mac_filter *f;
1344 	u64 key;
1345 
1346 	if (!vsi || !macaddr)
1347 		return NULL;
1348 
1349 	f = i40e_find_filter(vsi, macaddr, vlan);
1350 	if (!f) {
1351 		f = kzalloc(sizeof(*f), GFP_ATOMIC);
1352 		if (!f)
1353 			return NULL;
1354 
1355 		/* Update the boolean indicating if we need to function in
1356 		 * VLAN mode.
1357 		 */
1358 		if (vlan >= 0)
1359 			vsi->has_vlan_filter = true;
1360 
1361 		ether_addr_copy(f->macaddr, macaddr);
1362 		f->vlan = vlan;
1363 		/* If we're in overflow promisc mode, set the state directly
1364 		 * to failed, so we don't bother to try sending the filter
1365 		 * to the hardware.
1366 		 */
1367 		if (test_bit(__I40E_VSI_OVERFLOW_PROMISC, vsi->state))
1368 			f->state = I40E_FILTER_FAILED;
1369 		else
1370 			f->state = I40E_FILTER_NEW;
1371 		INIT_HLIST_NODE(&f->hlist);
1372 
1373 		key = i40e_addr_to_hkey(macaddr);
1374 		hash_add(vsi->mac_filter_hash, &f->hlist, key);
1375 
1376 		vsi->flags |= I40E_VSI_FLAG_FILTER_CHANGED;
1377 		vsi->back->flags |= I40E_FLAG_FILTER_SYNC;
1378 	}
1379 
1380 	/* If we're asked to add a filter that has been marked for removal, it
1381 	 * is safe to simply restore it to active state. __i40e_del_filter
1382 	 * will have simply deleted any filters which were previously marked
1383 	 * NEW or FAILED, so if it is currently marked REMOVE it must have
1384 	 * previously been ACTIVE. Since we haven't yet run the sync filters
1385 	 * task, just restore this filter to the ACTIVE state so that the
1386 	 * sync task leaves it in place
1387 	 */
1388 	if (f->state == I40E_FILTER_REMOVE)
1389 		f->state = I40E_FILTER_ACTIVE;
1390 
1391 	return f;
1392 }
1393 
1394 /**
1395  * __i40e_del_filter - Remove a specific filter from the VSI
1396  * @vsi: VSI to remove from
1397  * @f: the filter to remove from the list
1398  *
1399  * This function should be called instead of i40e_del_filter only if you know
1400  * the exact filter you will remove already, such as via i40e_find_filter or
1401  * i40e_find_mac.
1402  *
1403  * NOTE: This function is expected to be called with mac_filter_hash_lock
1404  * being held.
1405  * ANOTHER NOTE: This function MUST be called from within the context of
1406  * the "safe" variants of any list iterators, e.g. list_for_each_entry_safe()
1407  * instead of list_for_each_entry().
1408  **/
1409 void __i40e_del_filter(struct i40e_vsi *vsi, struct i40e_mac_filter *f)
1410 {
1411 	if (!f)
1412 		return;
1413 
1414 	/* If the filter was never added to firmware then we can just delete it
1415 	 * directly and we don't want to set the status to remove or else an
1416 	 * admin queue command will unnecessarily fire.
1417 	 */
1418 	if ((f->state == I40E_FILTER_FAILED) ||
1419 	    (f->state == I40E_FILTER_NEW)) {
1420 		hash_del(&f->hlist);
1421 		kfree(f);
1422 	} else {
1423 		f->state = I40E_FILTER_REMOVE;
1424 	}
1425 
1426 	vsi->flags |= I40E_VSI_FLAG_FILTER_CHANGED;
1427 	vsi->back->flags |= I40E_FLAG_FILTER_SYNC;
1428 }
1429 
1430 /**
1431  * i40e_del_filter - Remove a MAC/VLAN filter from the VSI
1432  * @vsi: the VSI to be searched
1433  * @macaddr: the MAC address
1434  * @vlan: the VLAN
1435  *
1436  * NOTE: This function is expected to be called with mac_filter_hash_lock
1437  * being held.
1438  * ANOTHER NOTE: This function MUST be called from within the context of
1439  * the "safe" variants of any list iterators, e.g. list_for_each_entry_safe()
1440  * instead of list_for_each_entry().
1441  **/
1442 void i40e_del_filter(struct i40e_vsi *vsi, const u8 *macaddr, s16 vlan)
1443 {
1444 	struct i40e_mac_filter *f;
1445 
1446 	if (!vsi || !macaddr)
1447 		return;
1448 
1449 	f = i40e_find_filter(vsi, macaddr, vlan);
1450 	__i40e_del_filter(vsi, f);
1451 }
1452 
1453 /**
1454  * i40e_add_mac_filter - Add a MAC filter for all active VLANs
1455  * @vsi: the VSI to be searched
1456  * @macaddr: the mac address to be filtered
1457  *
1458  * If we're not in VLAN mode, just add the filter to I40E_VLAN_ANY. Otherwise,
1459  * go through all the macvlan filters and add a macvlan filter for each
1460  * unique vlan that already exists. If a PVID has been assigned, instead only
1461  * add the macaddr to that VLAN.
1462  *
1463  * Returns last filter added on success, else NULL
1464  **/
1465 struct i40e_mac_filter *i40e_add_mac_filter(struct i40e_vsi *vsi,
1466 					    const u8 *macaddr)
1467 {
1468 	struct i40e_mac_filter *f, *add = NULL;
1469 	struct hlist_node *h;
1470 	int bkt;
1471 
1472 	if (vsi->info.pvid)
1473 		return i40e_add_filter(vsi, macaddr,
1474 				       le16_to_cpu(vsi->info.pvid));
1475 
1476 	if (!i40e_is_vsi_in_vlan(vsi))
1477 		return i40e_add_filter(vsi, macaddr, I40E_VLAN_ANY);
1478 
1479 	hash_for_each_safe(vsi->mac_filter_hash, bkt, h, f, hlist) {
1480 		if (f->state == I40E_FILTER_REMOVE)
1481 			continue;
1482 		add = i40e_add_filter(vsi, macaddr, f->vlan);
1483 		if (!add)
1484 			return NULL;
1485 	}
1486 
1487 	return add;
1488 }
1489 
1490 /**
1491  * i40e_del_mac_filter - Remove a MAC filter from all VLANs
1492  * @vsi: the VSI to be searched
1493  * @macaddr: the mac address to be removed
1494  *
1495  * Removes a given MAC address from a VSI regardless of what VLAN it has been
1496  * associated with.
1497  *
1498  * Returns 0 for success, or error
1499  **/
1500 int i40e_del_mac_filter(struct i40e_vsi *vsi, const u8 *macaddr)
1501 {
1502 	struct i40e_mac_filter *f;
1503 	struct hlist_node *h;
1504 	bool found = false;
1505 	int bkt;
1506 
1507 	WARN(!spin_is_locked(&vsi->mac_filter_hash_lock),
1508 	     "Missing mac_filter_hash_lock\n");
1509 	hash_for_each_safe(vsi->mac_filter_hash, bkt, h, f, hlist) {
1510 		if (ether_addr_equal(macaddr, f->macaddr)) {
1511 			__i40e_del_filter(vsi, f);
1512 			found = true;
1513 		}
1514 	}
1515 
1516 	if (found)
1517 		return 0;
1518 	else
1519 		return -ENOENT;
1520 }
1521 
1522 /**
1523  * i40e_set_mac - NDO callback to set mac address
1524  * @netdev: network interface device structure
1525  * @p: pointer to an address structure
1526  *
1527  * Returns 0 on success, negative on failure
1528  **/
1529 static int i40e_set_mac(struct net_device *netdev, void *p)
1530 {
1531 	struct i40e_netdev_priv *np = netdev_priv(netdev);
1532 	struct i40e_vsi *vsi = np->vsi;
1533 	struct i40e_pf *pf = vsi->back;
1534 	struct i40e_hw *hw = &pf->hw;
1535 	struct sockaddr *addr = p;
1536 
1537 	if (!is_valid_ether_addr(addr->sa_data))
1538 		return -EADDRNOTAVAIL;
1539 
1540 	if (ether_addr_equal(netdev->dev_addr, addr->sa_data)) {
1541 		netdev_info(netdev, "already using mac address %pM\n",
1542 			    addr->sa_data);
1543 		return 0;
1544 	}
1545 
1546 	if (test_bit(__I40E_VSI_DOWN, vsi->back->state) ||
1547 	    test_bit(__I40E_RESET_RECOVERY_PENDING, vsi->back->state))
1548 		return -EADDRNOTAVAIL;
1549 
1550 	if (ether_addr_equal(hw->mac.addr, addr->sa_data))
1551 		netdev_info(netdev, "returning to hw mac address %pM\n",
1552 			    hw->mac.addr);
1553 	else
1554 		netdev_info(netdev, "set new mac address %pM\n", addr->sa_data);
1555 
1556 	spin_lock_bh(&vsi->mac_filter_hash_lock);
1557 	i40e_del_mac_filter(vsi, netdev->dev_addr);
1558 	i40e_add_mac_filter(vsi, addr->sa_data);
1559 	spin_unlock_bh(&vsi->mac_filter_hash_lock);
1560 	ether_addr_copy(netdev->dev_addr, addr->sa_data);
1561 	if (vsi->type == I40E_VSI_MAIN) {
1562 		i40e_status ret;
1563 
1564 		ret = i40e_aq_mac_address_write(&vsi->back->hw,
1565 						I40E_AQC_WRITE_TYPE_LAA_WOL,
1566 						addr->sa_data, NULL);
1567 		if (ret)
1568 			netdev_info(netdev, "Ignoring error from firmware on LAA update, status %s, AQ ret %s\n",
1569 				    i40e_stat_str(hw, ret),
1570 				    i40e_aq_str(hw, hw->aq.asq_last_status));
1571 	}
1572 
1573 	/* schedule our worker thread which will take care of
1574 	 * applying the new filter changes
1575 	 */
1576 	i40e_service_event_schedule(vsi->back);
1577 	return 0;
1578 }
1579 
1580 /**
1581  * i40e_vsi_setup_queue_map - Setup a VSI queue map based on enabled_tc
1582  * @vsi: the VSI being setup
1583  * @ctxt: VSI context structure
1584  * @enabled_tc: Enabled TCs bitmap
1585  * @is_add: True if called before Add VSI
1586  *
1587  * Setup VSI queue mapping for enabled traffic classes.
1588  **/
1589 static void i40e_vsi_setup_queue_map(struct i40e_vsi *vsi,
1590 				     struct i40e_vsi_context *ctxt,
1591 				     u8 enabled_tc,
1592 				     bool is_add)
1593 {
1594 	struct i40e_pf *pf = vsi->back;
1595 	u16 sections = 0;
1596 	u8 netdev_tc = 0;
1597 	u16 numtc = 0;
1598 	u16 qcount;
1599 	u8 offset;
1600 	u16 qmap;
1601 	int i;
1602 	u16 num_tc_qps = 0;
1603 
1604 	sections = I40E_AQ_VSI_PROP_QUEUE_MAP_VALID;
1605 	offset = 0;
1606 
1607 	if (enabled_tc && (vsi->back->flags & I40E_FLAG_DCB_ENABLED)) {
1608 		/* Find numtc from enabled TC bitmap */
1609 		for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) {
1610 			if (enabled_tc & BIT(i)) /* TC is enabled */
1611 				numtc++;
1612 		}
1613 		if (!numtc) {
1614 			dev_warn(&pf->pdev->dev, "DCB is enabled but no TC enabled, forcing TC0\n");
1615 			numtc = 1;
1616 		}
1617 	} else {
1618 		/* At least TC0 is enabled in case of non-DCB case */
1619 		numtc = 1;
1620 	}
1621 
1622 	vsi->tc_config.numtc = numtc;
1623 	vsi->tc_config.enabled_tc = enabled_tc ? enabled_tc : 1;
1624 	/* Number of queues per enabled TC */
1625 	qcount = vsi->alloc_queue_pairs;
1626 
1627 	num_tc_qps = qcount / numtc;
1628 	num_tc_qps = min_t(int, num_tc_qps, i40e_pf_get_max_q_per_tc(pf));
1629 
1630 	/* Setup queue offset/count for all TCs for given VSI */
1631 	for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) {
1632 		/* See if the given TC is enabled for the given VSI */
1633 		if (vsi->tc_config.enabled_tc & BIT(i)) {
1634 			/* TC is enabled */
1635 			int pow, num_qps;
1636 
1637 			switch (vsi->type) {
1638 			case I40E_VSI_MAIN:
1639 				qcount = min_t(int, pf->alloc_rss_size,
1640 					       num_tc_qps);
1641 				break;
1642 			case I40E_VSI_FDIR:
1643 			case I40E_VSI_SRIOV:
1644 			case I40E_VSI_VMDQ2:
1645 			default:
1646 				qcount = num_tc_qps;
1647 				WARN_ON(i != 0);
1648 				break;
1649 			}
1650 			vsi->tc_config.tc_info[i].qoffset = offset;
1651 			vsi->tc_config.tc_info[i].qcount = qcount;
1652 
1653 			/* find the next higher power-of-2 of num queue pairs */
1654 			num_qps = qcount;
1655 			pow = 0;
1656 			while (num_qps && (BIT_ULL(pow) < qcount)) {
1657 				pow++;
1658 				num_qps >>= 1;
1659 			}
1660 
1661 			vsi->tc_config.tc_info[i].netdev_tc = netdev_tc++;
1662 			qmap =
1663 			    (offset << I40E_AQ_VSI_TC_QUE_OFFSET_SHIFT) |
1664 			    (pow << I40E_AQ_VSI_TC_QUE_NUMBER_SHIFT);
1665 
1666 			offset += qcount;
1667 		} else {
1668 			/* TC is not enabled so set the offset to
1669 			 * default queue and allocate one queue
1670 			 * for the given TC.
1671 			 */
1672 			vsi->tc_config.tc_info[i].qoffset = 0;
1673 			vsi->tc_config.tc_info[i].qcount = 1;
1674 			vsi->tc_config.tc_info[i].netdev_tc = 0;
1675 
1676 			qmap = 0;
1677 		}
1678 		ctxt->info.tc_mapping[i] = cpu_to_le16(qmap);
1679 	}
1680 
1681 	/* Set actual Tx/Rx queue pairs */
1682 	vsi->num_queue_pairs = offset;
1683 	if ((vsi->type == I40E_VSI_MAIN) && (numtc == 1)) {
1684 		if (vsi->req_queue_pairs > 0)
1685 			vsi->num_queue_pairs = vsi->req_queue_pairs;
1686 		else if (pf->flags & I40E_FLAG_MSIX_ENABLED)
1687 			vsi->num_queue_pairs = pf->num_lan_msix;
1688 	}
1689 
1690 	/* Scheduler section valid can only be set for ADD VSI */
1691 	if (is_add) {
1692 		sections |= I40E_AQ_VSI_PROP_SCHED_VALID;
1693 
1694 		ctxt->info.up_enable_bits = enabled_tc;
1695 	}
1696 	if (vsi->type == I40E_VSI_SRIOV) {
1697 		ctxt->info.mapping_flags |=
1698 				     cpu_to_le16(I40E_AQ_VSI_QUE_MAP_NONCONTIG);
1699 		for (i = 0; i < vsi->num_queue_pairs; i++)
1700 			ctxt->info.queue_mapping[i] =
1701 					       cpu_to_le16(vsi->base_queue + i);
1702 	} else {
1703 		ctxt->info.mapping_flags |=
1704 					cpu_to_le16(I40E_AQ_VSI_QUE_MAP_CONTIG);
1705 		ctxt->info.queue_mapping[0] = cpu_to_le16(vsi->base_queue);
1706 	}
1707 	ctxt->info.valid_sections |= cpu_to_le16(sections);
1708 }
1709 
1710 /**
1711  * i40e_addr_sync - Callback for dev_(mc|uc)_sync to add address
1712  * @netdev: the netdevice
1713  * @addr: address to add
1714  *
1715  * Called by __dev_(mc|uc)_sync when an address needs to be added. We call
1716  * __dev_(uc|mc)_sync from .set_rx_mode and guarantee to hold the hash lock.
1717  */
1718 static int i40e_addr_sync(struct net_device *netdev, const u8 *addr)
1719 {
1720 	struct i40e_netdev_priv *np = netdev_priv(netdev);
1721 	struct i40e_vsi *vsi = np->vsi;
1722 
1723 	if (i40e_add_mac_filter(vsi, addr))
1724 		return 0;
1725 	else
1726 		return -ENOMEM;
1727 }
1728 
1729 /**
1730  * i40e_addr_unsync - Callback for dev_(mc|uc)_sync to remove address
1731  * @netdev: the netdevice
1732  * @addr: address to add
1733  *
1734  * Called by __dev_(mc|uc)_sync when an address needs to be removed. We call
1735  * __dev_(uc|mc)_sync from .set_rx_mode and guarantee to hold the hash lock.
1736  */
1737 static int i40e_addr_unsync(struct net_device *netdev, const u8 *addr)
1738 {
1739 	struct i40e_netdev_priv *np = netdev_priv(netdev);
1740 	struct i40e_vsi *vsi = np->vsi;
1741 
1742 	i40e_del_mac_filter(vsi, addr);
1743 
1744 	return 0;
1745 }
1746 
1747 /**
1748  * i40e_set_rx_mode - NDO callback to set the netdev filters
1749  * @netdev: network interface device structure
1750  **/
1751 static void i40e_set_rx_mode(struct net_device *netdev)
1752 {
1753 	struct i40e_netdev_priv *np = netdev_priv(netdev);
1754 	struct i40e_vsi *vsi = np->vsi;
1755 
1756 	spin_lock_bh(&vsi->mac_filter_hash_lock);
1757 
1758 	__dev_uc_sync(netdev, i40e_addr_sync, i40e_addr_unsync);
1759 	__dev_mc_sync(netdev, i40e_addr_sync, i40e_addr_unsync);
1760 
1761 	spin_unlock_bh(&vsi->mac_filter_hash_lock);
1762 
1763 	/* check for other flag changes */
1764 	if (vsi->current_netdev_flags != vsi->netdev->flags) {
1765 		vsi->flags |= I40E_VSI_FLAG_FILTER_CHANGED;
1766 		vsi->back->flags |= I40E_FLAG_FILTER_SYNC;
1767 	}
1768 
1769 	/* schedule our worker thread which will take care of
1770 	 * applying the new filter changes
1771 	 */
1772 	i40e_service_event_schedule(vsi->back);
1773 }
1774 
1775 /**
1776  * i40e_undo_del_filter_entries - Undo the changes made to MAC filter entries
1777  * @vsi: Pointer to VSI struct
1778  * @from: Pointer to list which contains MAC filter entries - changes to
1779  *        those entries needs to be undone.
1780  *
1781  * MAC filter entries from this list were slated for deletion.
1782  **/
1783 static void i40e_undo_del_filter_entries(struct i40e_vsi *vsi,
1784 					 struct hlist_head *from)
1785 {
1786 	struct i40e_mac_filter *f;
1787 	struct hlist_node *h;
1788 
1789 	hlist_for_each_entry_safe(f, h, from, hlist) {
1790 		u64 key = i40e_addr_to_hkey(f->macaddr);
1791 
1792 		/* Move the element back into MAC filter list*/
1793 		hlist_del(&f->hlist);
1794 		hash_add(vsi->mac_filter_hash, &f->hlist, key);
1795 	}
1796 }
1797 
1798 /**
1799  * i40e_undo_add_filter_entries - Undo the changes made to MAC filter entries
1800  * @vsi: Pointer to vsi struct
1801  * @from: Pointer to list which contains MAC filter entries - changes to
1802  *        those entries needs to be undone.
1803  *
1804  * MAC filter entries from this list were slated for addition.
1805  **/
1806 static void i40e_undo_add_filter_entries(struct i40e_vsi *vsi,
1807 					 struct hlist_head *from)
1808 {
1809 	struct i40e_new_mac_filter *new;
1810 	struct hlist_node *h;
1811 
1812 	hlist_for_each_entry_safe(new, h, from, hlist) {
1813 		/* We can simply free the wrapper structure */
1814 		hlist_del(&new->hlist);
1815 		kfree(new);
1816 	}
1817 }
1818 
1819 /**
1820  * i40e_next_entry - Get the next non-broadcast filter from a list
1821  * @next: pointer to filter in list
1822  *
1823  * Returns the next non-broadcast filter in the list. Required so that we
1824  * ignore broadcast filters within the list, since these are not handled via
1825  * the normal firmware update path.
1826  */
1827 static
1828 struct i40e_new_mac_filter *i40e_next_filter(struct i40e_new_mac_filter *next)
1829 {
1830 	hlist_for_each_entry_continue(next, hlist) {
1831 		if (!is_broadcast_ether_addr(next->f->macaddr))
1832 			return next;
1833 	}
1834 
1835 	return NULL;
1836 }
1837 
1838 /**
1839  * i40e_update_filter_state - Update filter state based on return data
1840  * from firmware
1841  * @count: Number of filters added
1842  * @add_list: return data from fw
1843  * @head: pointer to first filter in current batch
1844  *
1845  * MAC filter entries from list were slated to be added to device. Returns
1846  * number of successful filters. Note that 0 does NOT mean success!
1847  **/
1848 static int
1849 i40e_update_filter_state(int count,
1850 			 struct i40e_aqc_add_macvlan_element_data *add_list,
1851 			 struct i40e_new_mac_filter *add_head)
1852 {
1853 	int retval = 0;
1854 	int i;
1855 
1856 	for (i = 0; i < count; i++) {
1857 		/* Always check status of each filter. We don't need to check
1858 		 * the firmware return status because we pre-set the filter
1859 		 * status to I40E_AQC_MM_ERR_NO_RES when sending the filter
1860 		 * request to the adminq. Thus, if it no longer matches then
1861 		 * we know the filter is active.
1862 		 */
1863 		if (add_list[i].match_method == I40E_AQC_MM_ERR_NO_RES) {
1864 			add_head->state = I40E_FILTER_FAILED;
1865 		} else {
1866 			add_head->state = I40E_FILTER_ACTIVE;
1867 			retval++;
1868 		}
1869 
1870 		add_head = i40e_next_filter(add_head);
1871 		if (!add_head)
1872 			break;
1873 	}
1874 
1875 	return retval;
1876 }
1877 
1878 /**
1879  * i40e_aqc_del_filters - Request firmware to delete a set of filters
1880  * @vsi: ptr to the VSI
1881  * @vsi_name: name to display in messages
1882  * @list: the list of filters to send to firmware
1883  * @num_del: the number of filters to delete
1884  * @retval: Set to -EIO on failure to delete
1885  *
1886  * Send a request to firmware via AdminQ to delete a set of filters. Uses
1887  * *retval instead of a return value so that success does not force ret_val to
1888  * be set to 0. This ensures that a sequence of calls to this function
1889  * preserve the previous value of *retval on successful delete.
1890  */
1891 static
1892 void i40e_aqc_del_filters(struct i40e_vsi *vsi, const char *vsi_name,
1893 			  struct i40e_aqc_remove_macvlan_element_data *list,
1894 			  int num_del, int *retval)
1895 {
1896 	struct i40e_hw *hw = &vsi->back->hw;
1897 	i40e_status aq_ret;
1898 	int aq_err;
1899 
1900 	aq_ret = i40e_aq_remove_macvlan(hw, vsi->seid, list, num_del, NULL);
1901 	aq_err = hw->aq.asq_last_status;
1902 
1903 	/* Explicitly ignore and do not report when firmware returns ENOENT */
1904 	if (aq_ret && !(aq_err == I40E_AQ_RC_ENOENT)) {
1905 		*retval = -EIO;
1906 		dev_info(&vsi->back->pdev->dev,
1907 			 "ignoring delete macvlan error on %s, err %s, aq_err %s\n",
1908 			 vsi_name, i40e_stat_str(hw, aq_ret),
1909 			 i40e_aq_str(hw, aq_err));
1910 	}
1911 }
1912 
1913 /**
1914  * i40e_aqc_add_filters - Request firmware to add a set of filters
1915  * @vsi: ptr to the VSI
1916  * @vsi_name: name to display in messages
1917  * @list: the list of filters to send to firmware
1918  * @add_head: Position in the add hlist
1919  * @num_add: the number of filters to add
1920  * @promisc_change: set to true on exit if promiscuous mode was forced on
1921  *
1922  * Send a request to firmware via AdminQ to add a chunk of filters. Will set
1923  * promisc_changed to true if the firmware has run out of space for more
1924  * filters.
1925  */
1926 static
1927 void i40e_aqc_add_filters(struct i40e_vsi *vsi, const char *vsi_name,
1928 			  struct i40e_aqc_add_macvlan_element_data *list,
1929 			  struct i40e_new_mac_filter *add_head,
1930 			  int num_add, bool *promisc_changed)
1931 {
1932 	struct i40e_hw *hw = &vsi->back->hw;
1933 	int aq_err, fcnt;
1934 
1935 	i40e_aq_add_macvlan(hw, vsi->seid, list, num_add, NULL);
1936 	aq_err = hw->aq.asq_last_status;
1937 	fcnt = i40e_update_filter_state(num_add, list, add_head);
1938 
1939 	if (fcnt != num_add) {
1940 		*promisc_changed = true;
1941 		set_bit(__I40E_VSI_OVERFLOW_PROMISC, vsi->state);
1942 		dev_warn(&vsi->back->pdev->dev,
1943 			 "Error %s adding RX filters on %s, promiscuous mode forced on\n",
1944 			 i40e_aq_str(hw, aq_err),
1945 			 vsi_name);
1946 	}
1947 }
1948 
1949 /**
1950  * i40e_aqc_broadcast_filter - Set promiscuous broadcast flags
1951  * @vsi: pointer to the VSI
1952  * @f: filter data
1953  *
1954  * This function sets or clears the promiscuous broadcast flags for VLAN
1955  * filters in order to properly receive broadcast frames. Assumes that only
1956  * broadcast filters are passed.
1957  *
1958  * Returns status indicating success or failure;
1959  **/
1960 static i40e_status
1961 i40e_aqc_broadcast_filter(struct i40e_vsi *vsi, const char *vsi_name,
1962 			  struct i40e_mac_filter *f)
1963 {
1964 	bool enable = f->state == I40E_FILTER_NEW;
1965 	struct i40e_hw *hw = &vsi->back->hw;
1966 	i40e_status aq_ret;
1967 
1968 	if (f->vlan == I40E_VLAN_ANY) {
1969 		aq_ret = i40e_aq_set_vsi_broadcast(hw,
1970 						   vsi->seid,
1971 						   enable,
1972 						   NULL);
1973 	} else {
1974 		aq_ret = i40e_aq_set_vsi_bc_promisc_on_vlan(hw,
1975 							    vsi->seid,
1976 							    enable,
1977 							    f->vlan,
1978 							    NULL);
1979 	}
1980 
1981 	if (aq_ret)
1982 		dev_warn(&vsi->back->pdev->dev,
1983 			 "Error %s setting broadcast promiscuous mode on %s\n",
1984 			 i40e_aq_str(hw, hw->aq.asq_last_status),
1985 			 vsi_name);
1986 
1987 	return aq_ret;
1988 }
1989 
1990 /**
1991  * i40e_sync_vsi_filters - Update the VSI filter list to the HW
1992  * @vsi: ptr to the VSI
1993  *
1994  * Push any outstanding VSI filter changes through the AdminQ.
1995  *
1996  * Returns 0 or error value
1997  **/
1998 int i40e_sync_vsi_filters(struct i40e_vsi *vsi)
1999 {
2000 	struct hlist_head tmp_add_list, tmp_del_list;
2001 	struct i40e_mac_filter *f;
2002 	struct i40e_new_mac_filter *new, *add_head = NULL;
2003 	struct i40e_hw *hw = &vsi->back->hw;
2004 	unsigned int failed_filters = 0;
2005 	unsigned int vlan_filters = 0;
2006 	bool promisc_changed = false;
2007 	char vsi_name[16] = "PF";
2008 	int filter_list_len = 0;
2009 	i40e_status aq_ret = 0;
2010 	u32 changed_flags = 0;
2011 	struct hlist_node *h;
2012 	struct i40e_pf *pf;
2013 	int num_add = 0;
2014 	int num_del = 0;
2015 	int retval = 0;
2016 	u16 cmd_flags;
2017 	int list_size;
2018 	int bkt;
2019 
2020 	/* empty array typed pointers, kcalloc later */
2021 	struct i40e_aqc_add_macvlan_element_data *add_list;
2022 	struct i40e_aqc_remove_macvlan_element_data *del_list;
2023 
2024 	while (test_and_set_bit(__I40E_VSI_SYNCING_FILTERS, vsi->state))
2025 		usleep_range(1000, 2000);
2026 	pf = vsi->back;
2027 
2028 	if (vsi->netdev) {
2029 		changed_flags = vsi->current_netdev_flags ^ vsi->netdev->flags;
2030 		vsi->current_netdev_flags = vsi->netdev->flags;
2031 	}
2032 
2033 	INIT_HLIST_HEAD(&tmp_add_list);
2034 	INIT_HLIST_HEAD(&tmp_del_list);
2035 
2036 	if (vsi->type == I40E_VSI_SRIOV)
2037 		snprintf(vsi_name, sizeof(vsi_name) - 1, "VF %d", vsi->vf_id);
2038 	else if (vsi->type != I40E_VSI_MAIN)
2039 		snprintf(vsi_name, sizeof(vsi_name) - 1, "vsi %d", vsi->seid);
2040 
2041 	if (vsi->flags & I40E_VSI_FLAG_FILTER_CHANGED) {
2042 		vsi->flags &= ~I40E_VSI_FLAG_FILTER_CHANGED;
2043 
2044 		spin_lock_bh(&vsi->mac_filter_hash_lock);
2045 		/* Create a list of filters to delete. */
2046 		hash_for_each_safe(vsi->mac_filter_hash, bkt, h, f, hlist) {
2047 			if (f->state == I40E_FILTER_REMOVE) {
2048 				/* Move the element into temporary del_list */
2049 				hash_del(&f->hlist);
2050 				hlist_add_head(&f->hlist, &tmp_del_list);
2051 
2052 				/* Avoid counting removed filters */
2053 				continue;
2054 			}
2055 			if (f->state == I40E_FILTER_NEW) {
2056 				/* Create a temporary i40e_new_mac_filter */
2057 				new = kzalloc(sizeof(*new), GFP_ATOMIC);
2058 				if (!new)
2059 					goto err_no_memory_locked;
2060 
2061 				/* Store pointer to the real filter */
2062 				new->f = f;
2063 				new->state = f->state;
2064 
2065 				/* Add it to the hash list */
2066 				hlist_add_head(&new->hlist, &tmp_add_list);
2067 			}
2068 
2069 			/* Count the number of active (current and new) VLAN
2070 			 * filters we have now. Does not count filters which
2071 			 * are marked for deletion.
2072 			 */
2073 			if (f->vlan > 0)
2074 				vlan_filters++;
2075 		}
2076 
2077 		retval = i40e_correct_mac_vlan_filters(vsi,
2078 						       &tmp_add_list,
2079 						       &tmp_del_list,
2080 						       vlan_filters);
2081 		if (retval)
2082 			goto err_no_memory_locked;
2083 
2084 		spin_unlock_bh(&vsi->mac_filter_hash_lock);
2085 	}
2086 
2087 	/* Now process 'del_list' outside the lock */
2088 	if (!hlist_empty(&tmp_del_list)) {
2089 		filter_list_len = hw->aq.asq_buf_size /
2090 			    sizeof(struct i40e_aqc_remove_macvlan_element_data);
2091 		list_size = filter_list_len *
2092 			    sizeof(struct i40e_aqc_remove_macvlan_element_data);
2093 		del_list = kzalloc(list_size, GFP_ATOMIC);
2094 		if (!del_list)
2095 			goto err_no_memory;
2096 
2097 		hlist_for_each_entry_safe(f, h, &tmp_del_list, hlist) {
2098 			cmd_flags = 0;
2099 
2100 			/* handle broadcast filters by updating the broadcast
2101 			 * promiscuous flag and release filter list.
2102 			 */
2103 			if (is_broadcast_ether_addr(f->macaddr)) {
2104 				i40e_aqc_broadcast_filter(vsi, vsi_name, f);
2105 
2106 				hlist_del(&f->hlist);
2107 				kfree(f);
2108 				continue;
2109 			}
2110 
2111 			/* add to delete list */
2112 			ether_addr_copy(del_list[num_del].mac_addr, f->macaddr);
2113 			if (f->vlan == I40E_VLAN_ANY) {
2114 				del_list[num_del].vlan_tag = 0;
2115 				cmd_flags |= I40E_AQC_MACVLAN_DEL_IGNORE_VLAN;
2116 			} else {
2117 				del_list[num_del].vlan_tag =
2118 					cpu_to_le16((u16)(f->vlan));
2119 			}
2120 
2121 			cmd_flags |= I40E_AQC_MACVLAN_DEL_PERFECT_MATCH;
2122 			del_list[num_del].flags = cmd_flags;
2123 			num_del++;
2124 
2125 			/* flush a full buffer */
2126 			if (num_del == filter_list_len) {
2127 				i40e_aqc_del_filters(vsi, vsi_name, del_list,
2128 						     num_del, &retval);
2129 				memset(del_list, 0, list_size);
2130 				num_del = 0;
2131 			}
2132 			/* Release memory for MAC filter entries which were
2133 			 * synced up with HW.
2134 			 */
2135 			hlist_del(&f->hlist);
2136 			kfree(f);
2137 		}
2138 
2139 		if (num_del) {
2140 			i40e_aqc_del_filters(vsi, vsi_name, del_list,
2141 					     num_del, &retval);
2142 		}
2143 
2144 		kfree(del_list);
2145 		del_list = NULL;
2146 	}
2147 
2148 	if (!hlist_empty(&tmp_add_list)) {
2149 		/* Do all the adds now. */
2150 		filter_list_len = hw->aq.asq_buf_size /
2151 			       sizeof(struct i40e_aqc_add_macvlan_element_data);
2152 		list_size = filter_list_len *
2153 			       sizeof(struct i40e_aqc_add_macvlan_element_data);
2154 		add_list = kzalloc(list_size, GFP_ATOMIC);
2155 		if (!add_list)
2156 			goto err_no_memory;
2157 
2158 		num_add = 0;
2159 		hlist_for_each_entry_safe(new, h, &tmp_add_list, hlist) {
2160 			if (test_bit(__I40E_VSI_OVERFLOW_PROMISC,
2161 				     vsi->state)) {
2162 				new->state = I40E_FILTER_FAILED;
2163 				continue;
2164 			}
2165 
2166 			/* handle broadcast filters by updating the broadcast
2167 			 * promiscuous flag instead of adding a MAC filter.
2168 			 */
2169 			if (is_broadcast_ether_addr(new->f->macaddr)) {
2170 				if (i40e_aqc_broadcast_filter(vsi, vsi_name,
2171 							      new->f))
2172 					new->state = I40E_FILTER_FAILED;
2173 				else
2174 					new->state = I40E_FILTER_ACTIVE;
2175 				continue;
2176 			}
2177 
2178 			/* add to add array */
2179 			if (num_add == 0)
2180 				add_head = new;
2181 			cmd_flags = 0;
2182 			ether_addr_copy(add_list[num_add].mac_addr,
2183 					new->f->macaddr);
2184 			if (new->f->vlan == I40E_VLAN_ANY) {
2185 				add_list[num_add].vlan_tag = 0;
2186 				cmd_flags |= I40E_AQC_MACVLAN_ADD_IGNORE_VLAN;
2187 			} else {
2188 				add_list[num_add].vlan_tag =
2189 					cpu_to_le16((u16)(new->f->vlan));
2190 			}
2191 			add_list[num_add].queue_number = 0;
2192 			/* set invalid match method for later detection */
2193 			add_list[num_add].match_method = I40E_AQC_MM_ERR_NO_RES;
2194 			cmd_flags |= I40E_AQC_MACVLAN_ADD_PERFECT_MATCH;
2195 			add_list[num_add].flags = cpu_to_le16(cmd_flags);
2196 			num_add++;
2197 
2198 			/* flush a full buffer */
2199 			if (num_add == filter_list_len) {
2200 				i40e_aqc_add_filters(vsi, vsi_name, add_list,
2201 						     add_head, num_add,
2202 						     &promisc_changed);
2203 				memset(add_list, 0, list_size);
2204 				num_add = 0;
2205 			}
2206 		}
2207 		if (num_add) {
2208 			i40e_aqc_add_filters(vsi, vsi_name, add_list, add_head,
2209 					     num_add, &promisc_changed);
2210 		}
2211 		/* Now move all of the filters from the temp add list back to
2212 		 * the VSI's list.
2213 		 */
2214 		spin_lock_bh(&vsi->mac_filter_hash_lock);
2215 		hlist_for_each_entry_safe(new, h, &tmp_add_list, hlist) {
2216 			/* Only update the state if we're still NEW */
2217 			if (new->f->state == I40E_FILTER_NEW)
2218 				new->f->state = new->state;
2219 			hlist_del(&new->hlist);
2220 			kfree(new);
2221 		}
2222 		spin_unlock_bh(&vsi->mac_filter_hash_lock);
2223 		kfree(add_list);
2224 		add_list = NULL;
2225 	}
2226 
2227 	/* Determine the number of active and failed filters. */
2228 	spin_lock_bh(&vsi->mac_filter_hash_lock);
2229 	vsi->active_filters = 0;
2230 	hash_for_each(vsi->mac_filter_hash, bkt, f, hlist) {
2231 		if (f->state == I40E_FILTER_ACTIVE)
2232 			vsi->active_filters++;
2233 		else if (f->state == I40E_FILTER_FAILED)
2234 			failed_filters++;
2235 	}
2236 	spin_unlock_bh(&vsi->mac_filter_hash_lock);
2237 
2238 	/* If promiscuous mode has changed, we need to calculate a new
2239 	 * threshold for when we are safe to exit
2240 	 */
2241 	if (promisc_changed)
2242 		vsi->promisc_threshold = (vsi->active_filters * 3) / 4;
2243 
2244 	/* Check if we are able to exit overflow promiscuous mode. We can
2245 	 * safely exit if we didn't just enter, we no longer have any failed
2246 	 * filters, and we have reduced filters below the threshold value.
2247 	 */
2248 	if (test_bit(__I40E_VSI_OVERFLOW_PROMISC, vsi->state) &&
2249 	    !promisc_changed && !failed_filters &&
2250 	    (vsi->active_filters < vsi->promisc_threshold)) {
2251 		dev_info(&pf->pdev->dev,
2252 			 "filter logjam cleared on %s, leaving overflow promiscuous mode\n",
2253 			 vsi_name);
2254 		clear_bit(__I40E_VSI_OVERFLOW_PROMISC, vsi->state);
2255 		promisc_changed = true;
2256 		vsi->promisc_threshold = 0;
2257 	}
2258 
2259 	/* if the VF is not trusted do not do promisc */
2260 	if ((vsi->type == I40E_VSI_SRIOV) && !pf->vf[vsi->vf_id].trusted) {
2261 		clear_bit(__I40E_VSI_OVERFLOW_PROMISC, vsi->state);
2262 		goto out;
2263 	}
2264 
2265 	/* check for changes in promiscuous modes */
2266 	if (changed_flags & IFF_ALLMULTI) {
2267 		bool cur_multipromisc;
2268 
2269 		cur_multipromisc = !!(vsi->current_netdev_flags & IFF_ALLMULTI);
2270 		aq_ret = i40e_aq_set_vsi_multicast_promiscuous(&vsi->back->hw,
2271 							       vsi->seid,
2272 							       cur_multipromisc,
2273 							       NULL);
2274 		if (aq_ret) {
2275 			retval = i40e_aq_rc_to_posix(aq_ret,
2276 						     hw->aq.asq_last_status);
2277 			dev_info(&pf->pdev->dev,
2278 				 "set multi promisc failed on %s, err %s aq_err %s\n",
2279 				 vsi_name,
2280 				 i40e_stat_str(hw, aq_ret),
2281 				 i40e_aq_str(hw, hw->aq.asq_last_status));
2282 		}
2283 	}
2284 
2285 	if ((changed_flags & IFF_PROMISC) || promisc_changed) {
2286 		bool cur_promisc;
2287 
2288 		cur_promisc = (!!(vsi->current_netdev_flags & IFF_PROMISC) ||
2289 			       test_bit(__I40E_VSI_OVERFLOW_PROMISC,
2290 					vsi->state));
2291 		if ((vsi->type == I40E_VSI_MAIN) &&
2292 		    (pf->lan_veb != I40E_NO_VEB) &&
2293 		    !(pf->flags & I40E_FLAG_MFP_ENABLED)) {
2294 			/* set defport ON for Main VSI instead of true promisc
2295 			 * this way we will get all unicast/multicast and VLAN
2296 			 * promisc behavior but will not get VF or VMDq traffic
2297 			 * replicated on the Main VSI.
2298 			 */
2299 			if (pf->cur_promisc != cur_promisc) {
2300 				pf->cur_promisc = cur_promisc;
2301 				if (cur_promisc)
2302 					aq_ret =
2303 					      i40e_aq_set_default_vsi(hw,
2304 								      vsi->seid,
2305 								      NULL);
2306 				else
2307 					aq_ret =
2308 					    i40e_aq_clear_default_vsi(hw,
2309 								      vsi->seid,
2310 								      NULL);
2311 				if (aq_ret) {
2312 					retval = i40e_aq_rc_to_posix(aq_ret,
2313 							hw->aq.asq_last_status);
2314 					dev_info(&pf->pdev->dev,
2315 						 "Set default VSI failed on %s, err %s, aq_err %s\n",
2316 						 vsi_name,
2317 						 i40e_stat_str(hw, aq_ret),
2318 						 i40e_aq_str(hw,
2319 						     hw->aq.asq_last_status));
2320 				}
2321 			}
2322 		} else {
2323 			aq_ret = i40e_aq_set_vsi_unicast_promiscuous(
2324 							  hw,
2325 							  vsi->seid,
2326 							  cur_promisc, NULL,
2327 							  true);
2328 			if (aq_ret) {
2329 				retval =
2330 				i40e_aq_rc_to_posix(aq_ret,
2331 						    hw->aq.asq_last_status);
2332 				dev_info(&pf->pdev->dev,
2333 					 "set unicast promisc failed on %s, err %s, aq_err %s\n",
2334 					 vsi_name,
2335 					 i40e_stat_str(hw, aq_ret),
2336 					 i40e_aq_str(hw,
2337 						     hw->aq.asq_last_status));
2338 			}
2339 			aq_ret = i40e_aq_set_vsi_multicast_promiscuous(
2340 							  hw,
2341 							  vsi->seid,
2342 							  cur_promisc, NULL);
2343 			if (aq_ret) {
2344 				retval =
2345 				i40e_aq_rc_to_posix(aq_ret,
2346 						    hw->aq.asq_last_status);
2347 				dev_info(&pf->pdev->dev,
2348 					 "set multicast promisc failed on %s, err %s, aq_err %s\n",
2349 					 vsi_name,
2350 					 i40e_stat_str(hw, aq_ret),
2351 					 i40e_aq_str(hw,
2352 						     hw->aq.asq_last_status));
2353 			}
2354 		}
2355 		aq_ret = i40e_aq_set_vsi_broadcast(&vsi->back->hw,
2356 						   vsi->seid,
2357 						   cur_promisc, NULL);
2358 		if (aq_ret) {
2359 			retval = i40e_aq_rc_to_posix(aq_ret,
2360 						     pf->hw.aq.asq_last_status);
2361 			dev_info(&pf->pdev->dev,
2362 				 "set brdcast promisc failed, err %s, aq_err %s\n",
2363 					 i40e_stat_str(hw, aq_ret),
2364 					 i40e_aq_str(hw,
2365 						     hw->aq.asq_last_status));
2366 		}
2367 	}
2368 out:
2369 	/* if something went wrong then set the changed flag so we try again */
2370 	if (retval)
2371 		vsi->flags |= I40E_VSI_FLAG_FILTER_CHANGED;
2372 
2373 	clear_bit(__I40E_VSI_SYNCING_FILTERS, vsi->state);
2374 	return retval;
2375 
2376 err_no_memory:
2377 	/* Restore elements on the temporary add and delete lists */
2378 	spin_lock_bh(&vsi->mac_filter_hash_lock);
2379 err_no_memory_locked:
2380 	i40e_undo_del_filter_entries(vsi, &tmp_del_list);
2381 	i40e_undo_add_filter_entries(vsi, &tmp_add_list);
2382 	spin_unlock_bh(&vsi->mac_filter_hash_lock);
2383 
2384 	vsi->flags |= I40E_VSI_FLAG_FILTER_CHANGED;
2385 	clear_bit(__I40E_VSI_SYNCING_FILTERS, vsi->state);
2386 	return -ENOMEM;
2387 }
2388 
2389 /**
2390  * i40e_sync_filters_subtask - Sync the VSI filter list with HW
2391  * @pf: board private structure
2392  **/
2393 static void i40e_sync_filters_subtask(struct i40e_pf *pf)
2394 {
2395 	int v;
2396 
2397 	if (!pf || !(pf->flags & I40E_FLAG_FILTER_SYNC))
2398 		return;
2399 	pf->flags &= ~I40E_FLAG_FILTER_SYNC;
2400 
2401 	for (v = 0; v < pf->num_alloc_vsi; v++) {
2402 		if (pf->vsi[v] &&
2403 		    (pf->vsi[v]->flags & I40E_VSI_FLAG_FILTER_CHANGED)) {
2404 			int ret = i40e_sync_vsi_filters(pf->vsi[v]);
2405 
2406 			if (ret) {
2407 				/* come back and try again later */
2408 				pf->flags |= I40E_FLAG_FILTER_SYNC;
2409 				break;
2410 			}
2411 		}
2412 	}
2413 }
2414 
2415 /**
2416  * i40e_max_xdp_frame_size - returns the maximum allowed frame size for XDP
2417  * @vsi: the vsi
2418  **/
2419 static int i40e_max_xdp_frame_size(struct i40e_vsi *vsi)
2420 {
2421 	if (PAGE_SIZE >= 8192 || (vsi->back->flags & I40E_FLAG_LEGACY_RX))
2422 		return I40E_RXBUFFER_2048;
2423 	else
2424 		return I40E_RXBUFFER_3072;
2425 }
2426 
2427 /**
2428  * i40e_change_mtu - NDO callback to change the Maximum Transfer Unit
2429  * @netdev: network interface device structure
2430  * @new_mtu: new value for maximum frame size
2431  *
2432  * Returns 0 on success, negative on failure
2433  **/
2434 static int i40e_change_mtu(struct net_device *netdev, int new_mtu)
2435 {
2436 	struct i40e_netdev_priv *np = netdev_priv(netdev);
2437 	struct i40e_vsi *vsi = np->vsi;
2438 	struct i40e_pf *pf = vsi->back;
2439 
2440 	if (i40e_enabled_xdp_vsi(vsi)) {
2441 		int frame_size = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
2442 
2443 		if (frame_size > i40e_max_xdp_frame_size(vsi))
2444 			return -EINVAL;
2445 	}
2446 
2447 	netdev_info(netdev, "changing MTU from %d to %d\n",
2448 		    netdev->mtu, new_mtu);
2449 	netdev->mtu = new_mtu;
2450 	if (netif_running(netdev))
2451 		i40e_vsi_reinit_locked(vsi);
2452 	pf->flags |= (I40E_FLAG_SERVICE_CLIENT_REQUESTED |
2453 		      I40E_FLAG_CLIENT_L2_CHANGE);
2454 	return 0;
2455 }
2456 
2457 /**
2458  * i40e_ioctl - Access the hwtstamp interface
2459  * @netdev: network interface device structure
2460  * @ifr: interface request data
2461  * @cmd: ioctl command
2462  **/
2463 int i40e_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
2464 {
2465 	struct i40e_netdev_priv *np = netdev_priv(netdev);
2466 	struct i40e_pf *pf = np->vsi->back;
2467 
2468 	switch (cmd) {
2469 	case SIOCGHWTSTAMP:
2470 		return i40e_ptp_get_ts_config(pf, ifr);
2471 	case SIOCSHWTSTAMP:
2472 		return i40e_ptp_set_ts_config(pf, ifr);
2473 	default:
2474 		return -EOPNOTSUPP;
2475 	}
2476 }
2477 
2478 /**
2479  * i40e_vlan_stripping_enable - Turn on vlan stripping for the VSI
2480  * @vsi: the vsi being adjusted
2481  **/
2482 void i40e_vlan_stripping_enable(struct i40e_vsi *vsi)
2483 {
2484 	struct i40e_vsi_context ctxt;
2485 	i40e_status ret;
2486 
2487 	if ((vsi->info.valid_sections &
2488 	     cpu_to_le16(I40E_AQ_VSI_PROP_VLAN_VALID)) &&
2489 	    ((vsi->info.port_vlan_flags & I40E_AQ_VSI_PVLAN_MODE_MASK) == 0))
2490 		return;  /* already enabled */
2491 
2492 	vsi->info.valid_sections = cpu_to_le16(I40E_AQ_VSI_PROP_VLAN_VALID);
2493 	vsi->info.port_vlan_flags = I40E_AQ_VSI_PVLAN_MODE_ALL |
2494 				    I40E_AQ_VSI_PVLAN_EMOD_STR_BOTH;
2495 
2496 	ctxt.seid = vsi->seid;
2497 	ctxt.info = vsi->info;
2498 	ret = i40e_aq_update_vsi_params(&vsi->back->hw, &ctxt, NULL);
2499 	if (ret) {
2500 		dev_info(&vsi->back->pdev->dev,
2501 			 "update vlan stripping failed, err %s aq_err %s\n",
2502 			 i40e_stat_str(&vsi->back->hw, ret),
2503 			 i40e_aq_str(&vsi->back->hw,
2504 				     vsi->back->hw.aq.asq_last_status));
2505 	}
2506 }
2507 
2508 /**
2509  * i40e_vlan_stripping_disable - Turn off vlan stripping for the VSI
2510  * @vsi: the vsi being adjusted
2511  **/
2512 void i40e_vlan_stripping_disable(struct i40e_vsi *vsi)
2513 {
2514 	struct i40e_vsi_context ctxt;
2515 	i40e_status ret;
2516 
2517 	if ((vsi->info.valid_sections &
2518 	     cpu_to_le16(I40E_AQ_VSI_PROP_VLAN_VALID)) &&
2519 	    ((vsi->info.port_vlan_flags & I40E_AQ_VSI_PVLAN_EMOD_MASK) ==
2520 	     I40E_AQ_VSI_PVLAN_EMOD_MASK))
2521 		return;  /* already disabled */
2522 
2523 	vsi->info.valid_sections = cpu_to_le16(I40E_AQ_VSI_PROP_VLAN_VALID);
2524 	vsi->info.port_vlan_flags = I40E_AQ_VSI_PVLAN_MODE_ALL |
2525 				    I40E_AQ_VSI_PVLAN_EMOD_NOTHING;
2526 
2527 	ctxt.seid = vsi->seid;
2528 	ctxt.info = vsi->info;
2529 	ret = i40e_aq_update_vsi_params(&vsi->back->hw, &ctxt, NULL);
2530 	if (ret) {
2531 		dev_info(&vsi->back->pdev->dev,
2532 			 "update vlan stripping failed, err %s aq_err %s\n",
2533 			 i40e_stat_str(&vsi->back->hw, ret),
2534 			 i40e_aq_str(&vsi->back->hw,
2535 				     vsi->back->hw.aq.asq_last_status));
2536 	}
2537 }
2538 
2539 /**
2540  * i40e_vlan_rx_register - Setup or shutdown vlan offload
2541  * @netdev: network interface to be adjusted
2542  * @features: netdev features to test if VLAN offload is enabled or not
2543  **/
2544 static void i40e_vlan_rx_register(struct net_device *netdev, u32 features)
2545 {
2546 	struct i40e_netdev_priv *np = netdev_priv(netdev);
2547 	struct i40e_vsi *vsi = np->vsi;
2548 
2549 	if (features & NETIF_F_HW_VLAN_CTAG_RX)
2550 		i40e_vlan_stripping_enable(vsi);
2551 	else
2552 		i40e_vlan_stripping_disable(vsi);
2553 }
2554 
2555 /**
2556  * i40e_add_vlan_all_mac - Add a MAC/VLAN filter for each existing MAC address
2557  * @vsi: the vsi being configured
2558  * @vid: vlan id to be added (0 = untagged only , -1 = any)
2559  *
2560  * This is a helper function for adding a new MAC/VLAN filter with the
2561  * specified VLAN for each existing MAC address already in the hash table.
2562  * This function does *not* perform any accounting to update filters based on
2563  * VLAN mode.
2564  *
2565  * NOTE: this function expects to be called while under the
2566  * mac_filter_hash_lock
2567  **/
2568 int i40e_add_vlan_all_mac(struct i40e_vsi *vsi, s16 vid)
2569 {
2570 	struct i40e_mac_filter *f, *add_f;
2571 	struct hlist_node *h;
2572 	int bkt;
2573 
2574 	hash_for_each_safe(vsi->mac_filter_hash, bkt, h, f, hlist) {
2575 		if (f->state == I40E_FILTER_REMOVE)
2576 			continue;
2577 		add_f = i40e_add_filter(vsi, f->macaddr, vid);
2578 		if (!add_f) {
2579 			dev_info(&vsi->back->pdev->dev,
2580 				 "Could not add vlan filter %d for %pM\n",
2581 				 vid, f->macaddr);
2582 			return -ENOMEM;
2583 		}
2584 	}
2585 
2586 	return 0;
2587 }
2588 
2589 /**
2590  * i40e_vsi_add_vlan - Add VSI membership for given VLAN
2591  * @vsi: the VSI being configured
2592  * @vid: VLAN id to be added
2593  **/
2594 int i40e_vsi_add_vlan(struct i40e_vsi *vsi, u16 vid)
2595 {
2596 	int err;
2597 
2598 	if (vsi->info.pvid)
2599 		return -EINVAL;
2600 
2601 	/* The network stack will attempt to add VID=0, with the intention to
2602 	 * receive priority tagged packets with a VLAN of 0. Our HW receives
2603 	 * these packets by default when configured to receive untagged
2604 	 * packets, so we don't need to add a filter for this case.
2605 	 * Additionally, HW interprets adding a VID=0 filter as meaning to
2606 	 * receive *only* tagged traffic and stops receiving untagged traffic.
2607 	 * Thus, we do not want to actually add a filter for VID=0
2608 	 */
2609 	if (!vid)
2610 		return 0;
2611 
2612 	/* Locked once because all functions invoked below iterates list*/
2613 	spin_lock_bh(&vsi->mac_filter_hash_lock);
2614 	err = i40e_add_vlan_all_mac(vsi, vid);
2615 	spin_unlock_bh(&vsi->mac_filter_hash_lock);
2616 	if (err)
2617 		return err;
2618 
2619 	/* schedule our worker thread which will take care of
2620 	 * applying the new filter changes
2621 	 */
2622 	i40e_service_event_schedule(vsi->back);
2623 	return 0;
2624 }
2625 
2626 /**
2627  * i40e_rm_vlan_all_mac - Remove MAC/VLAN pair for all MAC with the given VLAN
2628  * @vsi: the vsi being configured
2629  * @vid: vlan id to be removed (0 = untagged only , -1 = any)
2630  *
2631  * This function should be used to remove all VLAN filters which match the
2632  * given VID. It does not schedule the service event and does not take the
2633  * mac_filter_hash_lock so it may be combined with other operations under
2634  * a single invocation of the mac_filter_hash_lock.
2635  *
2636  * NOTE: this function expects to be called while under the
2637  * mac_filter_hash_lock
2638  */
2639 void i40e_rm_vlan_all_mac(struct i40e_vsi *vsi, s16 vid)
2640 {
2641 	struct i40e_mac_filter *f;
2642 	struct hlist_node *h;
2643 	int bkt;
2644 
2645 	hash_for_each_safe(vsi->mac_filter_hash, bkt, h, f, hlist) {
2646 		if (f->vlan == vid)
2647 			__i40e_del_filter(vsi, f);
2648 	}
2649 }
2650 
2651 /**
2652  * i40e_vsi_kill_vlan - Remove VSI membership for given VLAN
2653  * @vsi: the VSI being configured
2654  * @vid: VLAN id to be removed
2655  **/
2656 void i40e_vsi_kill_vlan(struct i40e_vsi *vsi, u16 vid)
2657 {
2658 	if (!vid || vsi->info.pvid)
2659 		return;
2660 
2661 	spin_lock_bh(&vsi->mac_filter_hash_lock);
2662 	i40e_rm_vlan_all_mac(vsi, vid);
2663 	spin_unlock_bh(&vsi->mac_filter_hash_lock);
2664 
2665 	/* schedule our worker thread which will take care of
2666 	 * applying the new filter changes
2667 	 */
2668 	i40e_service_event_schedule(vsi->back);
2669 }
2670 
2671 /**
2672  * i40e_vlan_rx_add_vid - Add a vlan id filter to HW offload
2673  * @netdev: network interface to be adjusted
2674  * @vid: vlan id to be added
2675  *
2676  * net_device_ops implementation for adding vlan ids
2677  **/
2678 static int i40e_vlan_rx_add_vid(struct net_device *netdev,
2679 				__always_unused __be16 proto, u16 vid)
2680 {
2681 	struct i40e_netdev_priv *np = netdev_priv(netdev);
2682 	struct i40e_vsi *vsi = np->vsi;
2683 	int ret = 0;
2684 
2685 	if (vid >= VLAN_N_VID)
2686 		return -EINVAL;
2687 
2688 	ret = i40e_vsi_add_vlan(vsi, vid);
2689 	if (!ret)
2690 		set_bit(vid, vsi->active_vlans);
2691 
2692 	return ret;
2693 }
2694 
2695 /**
2696  * i40e_vlan_rx_kill_vid - Remove a vlan id filter from HW offload
2697  * @netdev: network interface to be adjusted
2698  * @vid: vlan id to be removed
2699  *
2700  * net_device_ops implementation for removing vlan ids
2701  **/
2702 static int i40e_vlan_rx_kill_vid(struct net_device *netdev,
2703 				 __always_unused __be16 proto, u16 vid)
2704 {
2705 	struct i40e_netdev_priv *np = netdev_priv(netdev);
2706 	struct i40e_vsi *vsi = np->vsi;
2707 
2708 	/* return code is ignored as there is nothing a user
2709 	 * can do about failure to remove and a log message was
2710 	 * already printed from the other function
2711 	 */
2712 	i40e_vsi_kill_vlan(vsi, vid);
2713 
2714 	clear_bit(vid, vsi->active_vlans);
2715 
2716 	return 0;
2717 }
2718 
2719 /**
2720  * i40e_restore_vlan - Reinstate vlans when vsi/netdev comes back up
2721  * @vsi: the vsi being brought back up
2722  **/
2723 static void i40e_restore_vlan(struct i40e_vsi *vsi)
2724 {
2725 	u16 vid;
2726 
2727 	if (!vsi->netdev)
2728 		return;
2729 
2730 	i40e_vlan_rx_register(vsi->netdev, vsi->netdev->features);
2731 
2732 	for_each_set_bit(vid, vsi->active_vlans, VLAN_N_VID)
2733 		i40e_vlan_rx_add_vid(vsi->netdev, htons(ETH_P_8021Q),
2734 				     vid);
2735 }
2736 
2737 /**
2738  * i40e_vsi_add_pvid - Add pvid for the VSI
2739  * @vsi: the vsi being adjusted
2740  * @vid: the vlan id to set as a PVID
2741  **/
2742 int i40e_vsi_add_pvid(struct i40e_vsi *vsi, u16 vid)
2743 {
2744 	struct i40e_vsi_context ctxt;
2745 	i40e_status ret;
2746 
2747 	vsi->info.valid_sections = cpu_to_le16(I40E_AQ_VSI_PROP_VLAN_VALID);
2748 	vsi->info.pvid = cpu_to_le16(vid);
2749 	vsi->info.port_vlan_flags = I40E_AQ_VSI_PVLAN_MODE_TAGGED |
2750 				    I40E_AQ_VSI_PVLAN_INSERT_PVID |
2751 				    I40E_AQ_VSI_PVLAN_EMOD_STR;
2752 
2753 	ctxt.seid = vsi->seid;
2754 	ctxt.info = vsi->info;
2755 	ret = i40e_aq_update_vsi_params(&vsi->back->hw, &ctxt, NULL);
2756 	if (ret) {
2757 		dev_info(&vsi->back->pdev->dev,
2758 			 "add pvid failed, err %s aq_err %s\n",
2759 			 i40e_stat_str(&vsi->back->hw, ret),
2760 			 i40e_aq_str(&vsi->back->hw,
2761 				     vsi->back->hw.aq.asq_last_status));
2762 		return -ENOENT;
2763 	}
2764 
2765 	return 0;
2766 }
2767 
2768 /**
2769  * i40e_vsi_remove_pvid - Remove the pvid from the VSI
2770  * @vsi: the vsi being adjusted
2771  *
2772  * Just use the vlan_rx_register() service to put it back to normal
2773  **/
2774 void i40e_vsi_remove_pvid(struct i40e_vsi *vsi)
2775 {
2776 	i40e_vlan_stripping_disable(vsi);
2777 
2778 	vsi->info.pvid = 0;
2779 }
2780 
2781 /**
2782  * i40e_vsi_setup_tx_resources - Allocate VSI Tx queue resources
2783  * @vsi: ptr to the VSI
2784  *
2785  * If this function returns with an error, then it's possible one or
2786  * more of the rings is populated (while the rest are not).  It is the
2787  * callers duty to clean those orphaned rings.
2788  *
2789  * Return 0 on success, negative on failure
2790  **/
2791 static int i40e_vsi_setup_tx_resources(struct i40e_vsi *vsi)
2792 {
2793 	int i, err = 0;
2794 
2795 	for (i = 0; i < vsi->num_queue_pairs && !err; i++)
2796 		err = i40e_setup_tx_descriptors(vsi->tx_rings[i]);
2797 
2798 	if (!i40e_enabled_xdp_vsi(vsi))
2799 		return err;
2800 
2801 	for (i = 0; i < vsi->num_queue_pairs && !err; i++)
2802 		err = i40e_setup_tx_descriptors(vsi->xdp_rings[i]);
2803 
2804 	return err;
2805 }
2806 
2807 /**
2808  * i40e_vsi_free_tx_resources - Free Tx resources for VSI queues
2809  * @vsi: ptr to the VSI
2810  *
2811  * Free VSI's transmit software resources
2812  **/
2813 static void i40e_vsi_free_tx_resources(struct i40e_vsi *vsi)
2814 {
2815 	int i;
2816 
2817 	if (vsi->tx_rings) {
2818 		for (i = 0; i < vsi->num_queue_pairs; i++)
2819 			if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc)
2820 				i40e_free_tx_resources(vsi->tx_rings[i]);
2821 	}
2822 
2823 	if (vsi->xdp_rings) {
2824 		for (i = 0; i < vsi->num_queue_pairs; i++)
2825 			if (vsi->xdp_rings[i] && vsi->xdp_rings[i]->desc)
2826 				i40e_free_tx_resources(vsi->xdp_rings[i]);
2827 	}
2828 }
2829 
2830 /**
2831  * i40e_vsi_setup_rx_resources - Allocate VSI queues Rx resources
2832  * @vsi: ptr to the VSI
2833  *
2834  * If this function returns with an error, then it's possible one or
2835  * more of the rings is populated (while the rest are not).  It is the
2836  * callers duty to clean those orphaned rings.
2837  *
2838  * Return 0 on success, negative on failure
2839  **/
2840 static int i40e_vsi_setup_rx_resources(struct i40e_vsi *vsi)
2841 {
2842 	int i, err = 0;
2843 
2844 	for (i = 0; i < vsi->num_queue_pairs && !err; i++)
2845 		err = i40e_setup_rx_descriptors(vsi->rx_rings[i]);
2846 	return err;
2847 }
2848 
2849 /**
2850  * i40e_vsi_free_rx_resources - Free Rx Resources for VSI queues
2851  * @vsi: ptr to the VSI
2852  *
2853  * Free all receive software resources
2854  **/
2855 static void i40e_vsi_free_rx_resources(struct i40e_vsi *vsi)
2856 {
2857 	int i;
2858 
2859 	if (!vsi->rx_rings)
2860 		return;
2861 
2862 	for (i = 0; i < vsi->num_queue_pairs; i++)
2863 		if (vsi->rx_rings[i] && vsi->rx_rings[i]->desc)
2864 			i40e_free_rx_resources(vsi->rx_rings[i]);
2865 }
2866 
2867 /**
2868  * i40e_config_xps_tx_ring - Configure XPS for a Tx ring
2869  * @ring: The Tx ring to configure
2870  *
2871  * This enables/disables XPS for a given Tx descriptor ring
2872  * based on the TCs enabled for the VSI that ring belongs to.
2873  **/
2874 static void i40e_config_xps_tx_ring(struct i40e_ring *ring)
2875 {
2876 	struct i40e_vsi *vsi = ring->vsi;
2877 
2878 	if (!ring->q_vector || !ring->netdev)
2879 		return;
2880 
2881 	if ((vsi->tc_config.numtc <= 1) &&
2882 	    !test_and_set_bit(__I40E_TX_XPS_INIT_DONE, &ring->state)) {
2883 		netif_set_xps_queue(ring->netdev,
2884 				    get_cpu_mask(ring->q_vector->v_idx),
2885 				    ring->queue_index);
2886 	}
2887 
2888 	/* schedule our worker thread which will take care of
2889 	 * applying the new filter changes
2890 	 */
2891 	i40e_service_event_schedule(vsi->back);
2892 }
2893 
2894 /**
2895  * i40e_configure_tx_ring - Configure a transmit ring context and rest
2896  * @ring: The Tx ring to configure
2897  *
2898  * Configure the Tx descriptor ring in the HMC context.
2899  **/
2900 static int i40e_configure_tx_ring(struct i40e_ring *ring)
2901 {
2902 	struct i40e_vsi *vsi = ring->vsi;
2903 	u16 pf_q = vsi->base_queue + ring->queue_index;
2904 	struct i40e_hw *hw = &vsi->back->hw;
2905 	struct i40e_hmc_obj_txq tx_ctx;
2906 	i40e_status err = 0;
2907 	u32 qtx_ctl = 0;
2908 
2909 	/* some ATR related tx ring init */
2910 	if (vsi->back->flags & I40E_FLAG_FD_ATR_ENABLED) {
2911 		ring->atr_sample_rate = vsi->back->atr_sample_rate;
2912 		ring->atr_count = 0;
2913 	} else {
2914 		ring->atr_sample_rate = 0;
2915 	}
2916 
2917 	/* configure XPS */
2918 	i40e_config_xps_tx_ring(ring);
2919 
2920 	/* clear the context structure first */
2921 	memset(&tx_ctx, 0, sizeof(tx_ctx));
2922 
2923 	tx_ctx.new_context = 1;
2924 	tx_ctx.base = (ring->dma / 128);
2925 	tx_ctx.qlen = ring->count;
2926 	tx_ctx.fd_ena = !!(vsi->back->flags & (I40E_FLAG_FD_SB_ENABLED |
2927 					       I40E_FLAG_FD_ATR_ENABLED));
2928 	tx_ctx.timesync_ena = !!(vsi->back->flags & I40E_FLAG_PTP);
2929 	/* FDIR VSI tx ring can still use RS bit and writebacks */
2930 	if (vsi->type != I40E_VSI_FDIR)
2931 		tx_ctx.head_wb_ena = 1;
2932 	tx_ctx.head_wb_addr = ring->dma +
2933 			      (ring->count * sizeof(struct i40e_tx_desc));
2934 
2935 	/* As part of VSI creation/update, FW allocates certain
2936 	 * Tx arbitration queue sets for each TC enabled for
2937 	 * the VSI. The FW returns the handles to these queue
2938 	 * sets as part of the response buffer to Add VSI,
2939 	 * Update VSI, etc. AQ commands. It is expected that
2940 	 * these queue set handles be associated with the Tx
2941 	 * queues by the driver as part of the TX queue context
2942 	 * initialization. This has to be done regardless of
2943 	 * DCB as by default everything is mapped to TC0.
2944 	 */
2945 	tx_ctx.rdylist = le16_to_cpu(vsi->info.qs_handle[ring->dcb_tc]);
2946 	tx_ctx.rdylist_act = 0;
2947 
2948 	/* clear the context in the HMC */
2949 	err = i40e_clear_lan_tx_queue_context(hw, pf_q);
2950 	if (err) {
2951 		dev_info(&vsi->back->pdev->dev,
2952 			 "Failed to clear LAN Tx queue context on Tx ring %d (pf_q %d), error: %d\n",
2953 			 ring->queue_index, pf_q, err);
2954 		return -ENOMEM;
2955 	}
2956 
2957 	/* set the context in the HMC */
2958 	err = i40e_set_lan_tx_queue_context(hw, pf_q, &tx_ctx);
2959 	if (err) {
2960 		dev_info(&vsi->back->pdev->dev,
2961 			 "Failed to set LAN Tx queue context on Tx ring %d (pf_q %d, error: %d\n",
2962 			 ring->queue_index, pf_q, err);
2963 		return -ENOMEM;
2964 	}
2965 
2966 	/* Now associate this queue with this PCI function */
2967 	if (vsi->type == I40E_VSI_VMDQ2) {
2968 		qtx_ctl = I40E_QTX_CTL_VM_QUEUE;
2969 		qtx_ctl |= ((vsi->id) << I40E_QTX_CTL_VFVM_INDX_SHIFT) &
2970 			   I40E_QTX_CTL_VFVM_INDX_MASK;
2971 	} else {
2972 		qtx_ctl = I40E_QTX_CTL_PF_QUEUE;
2973 	}
2974 
2975 	qtx_ctl |= ((hw->pf_id << I40E_QTX_CTL_PF_INDX_SHIFT) &
2976 		    I40E_QTX_CTL_PF_INDX_MASK);
2977 	wr32(hw, I40E_QTX_CTL(pf_q), qtx_ctl);
2978 	i40e_flush(hw);
2979 
2980 	/* cache tail off for easier writes later */
2981 	ring->tail = hw->hw_addr + I40E_QTX_TAIL(pf_q);
2982 
2983 	return 0;
2984 }
2985 
2986 /**
2987  * i40e_configure_rx_ring - Configure a receive ring context
2988  * @ring: The Rx ring to configure
2989  *
2990  * Configure the Rx descriptor ring in the HMC context.
2991  **/
2992 static int i40e_configure_rx_ring(struct i40e_ring *ring)
2993 {
2994 	struct i40e_vsi *vsi = ring->vsi;
2995 	u32 chain_len = vsi->back->hw.func_caps.rx_buf_chain_len;
2996 	u16 pf_q = vsi->base_queue + ring->queue_index;
2997 	struct i40e_hw *hw = &vsi->back->hw;
2998 	struct i40e_hmc_obj_rxq rx_ctx;
2999 	i40e_status err = 0;
3000 
3001 	ring->state = 0;
3002 
3003 	/* clear the context structure first */
3004 	memset(&rx_ctx, 0, sizeof(rx_ctx));
3005 
3006 	ring->rx_buf_len = vsi->rx_buf_len;
3007 
3008 	rx_ctx.dbuff = DIV_ROUND_UP(ring->rx_buf_len,
3009 				    BIT_ULL(I40E_RXQ_CTX_DBUFF_SHIFT));
3010 
3011 	rx_ctx.base = (ring->dma / 128);
3012 	rx_ctx.qlen = ring->count;
3013 
3014 	/* use 32 byte descriptors */
3015 	rx_ctx.dsize = 1;
3016 
3017 	/* descriptor type is always zero
3018 	 * rx_ctx.dtype = 0;
3019 	 */
3020 	rx_ctx.hsplit_0 = 0;
3021 
3022 	rx_ctx.rxmax = min_t(u16, vsi->max_frame, chain_len * ring->rx_buf_len);
3023 	if (hw->revision_id == 0)
3024 		rx_ctx.lrxqthresh = 0;
3025 	else
3026 		rx_ctx.lrxqthresh = 2;
3027 	rx_ctx.crcstrip = 1;
3028 	rx_ctx.l2tsel = 1;
3029 	/* this controls whether VLAN is stripped from inner headers */
3030 	rx_ctx.showiv = 0;
3031 	/* set the prefena field to 1 because the manual says to */
3032 	rx_ctx.prefena = 1;
3033 
3034 	/* clear the context in the HMC */
3035 	err = i40e_clear_lan_rx_queue_context(hw, pf_q);
3036 	if (err) {
3037 		dev_info(&vsi->back->pdev->dev,
3038 			 "Failed to clear LAN Rx queue context on Rx ring %d (pf_q %d), error: %d\n",
3039 			 ring->queue_index, pf_q, err);
3040 		return -ENOMEM;
3041 	}
3042 
3043 	/* set the context in the HMC */
3044 	err = i40e_set_lan_rx_queue_context(hw, pf_q, &rx_ctx);
3045 	if (err) {
3046 		dev_info(&vsi->back->pdev->dev,
3047 			 "Failed to set LAN Rx queue context on Rx ring %d (pf_q %d), error: %d\n",
3048 			 ring->queue_index, pf_q, err);
3049 		return -ENOMEM;
3050 	}
3051 
3052 	/* configure Rx buffer alignment */
3053 	if (!vsi->netdev || (vsi->back->flags & I40E_FLAG_LEGACY_RX))
3054 		clear_ring_build_skb_enabled(ring);
3055 	else
3056 		set_ring_build_skb_enabled(ring);
3057 
3058 	/* cache tail for quicker writes, and clear the reg before use */
3059 	ring->tail = hw->hw_addr + I40E_QRX_TAIL(pf_q);
3060 	writel(0, ring->tail);
3061 
3062 	i40e_alloc_rx_buffers(ring, I40E_DESC_UNUSED(ring));
3063 
3064 	return 0;
3065 }
3066 
3067 /**
3068  * i40e_vsi_configure_tx - Configure the VSI for Tx
3069  * @vsi: VSI structure describing this set of rings and resources
3070  *
3071  * Configure the Tx VSI for operation.
3072  **/
3073 static int i40e_vsi_configure_tx(struct i40e_vsi *vsi)
3074 {
3075 	int err = 0;
3076 	u16 i;
3077 
3078 	for (i = 0; (i < vsi->num_queue_pairs) && !err; i++)
3079 		err = i40e_configure_tx_ring(vsi->tx_rings[i]);
3080 
3081 	if (!i40e_enabled_xdp_vsi(vsi))
3082 		return err;
3083 
3084 	for (i = 0; (i < vsi->num_queue_pairs) && !err; i++)
3085 		err = i40e_configure_tx_ring(vsi->xdp_rings[i]);
3086 
3087 	return err;
3088 }
3089 
3090 /**
3091  * i40e_vsi_configure_rx - Configure the VSI for Rx
3092  * @vsi: the VSI being configured
3093  *
3094  * Configure the Rx VSI for operation.
3095  **/
3096 static int i40e_vsi_configure_rx(struct i40e_vsi *vsi)
3097 {
3098 	int err = 0;
3099 	u16 i;
3100 
3101 	if (!vsi->netdev || (vsi->back->flags & I40E_FLAG_LEGACY_RX)) {
3102 		vsi->max_frame = I40E_MAX_RXBUFFER;
3103 		vsi->rx_buf_len = I40E_RXBUFFER_2048;
3104 #if (PAGE_SIZE < 8192)
3105 	} else if (!I40E_2K_TOO_SMALL_WITH_PADDING &&
3106 		   (vsi->netdev->mtu <= ETH_DATA_LEN)) {
3107 		vsi->max_frame = I40E_RXBUFFER_1536 - NET_IP_ALIGN;
3108 		vsi->rx_buf_len = I40E_RXBUFFER_1536 - NET_IP_ALIGN;
3109 #endif
3110 	} else {
3111 		vsi->max_frame = I40E_MAX_RXBUFFER;
3112 		vsi->rx_buf_len = (PAGE_SIZE < 8192) ? I40E_RXBUFFER_3072 :
3113 						       I40E_RXBUFFER_2048;
3114 	}
3115 
3116 	/* set up individual rings */
3117 	for (i = 0; i < vsi->num_queue_pairs && !err; i++)
3118 		err = i40e_configure_rx_ring(vsi->rx_rings[i]);
3119 
3120 	return err;
3121 }
3122 
3123 /**
3124  * i40e_vsi_config_dcb_rings - Update rings to reflect DCB TC
3125  * @vsi: ptr to the VSI
3126  **/
3127 static void i40e_vsi_config_dcb_rings(struct i40e_vsi *vsi)
3128 {
3129 	struct i40e_ring *tx_ring, *rx_ring;
3130 	u16 qoffset, qcount;
3131 	int i, n;
3132 
3133 	if (!(vsi->back->flags & I40E_FLAG_DCB_ENABLED)) {
3134 		/* Reset the TC information */
3135 		for (i = 0; i < vsi->num_queue_pairs; i++) {
3136 			rx_ring = vsi->rx_rings[i];
3137 			tx_ring = vsi->tx_rings[i];
3138 			rx_ring->dcb_tc = 0;
3139 			tx_ring->dcb_tc = 0;
3140 		}
3141 	}
3142 
3143 	for (n = 0; n < I40E_MAX_TRAFFIC_CLASS; n++) {
3144 		if (!(vsi->tc_config.enabled_tc & BIT_ULL(n)))
3145 			continue;
3146 
3147 		qoffset = vsi->tc_config.tc_info[n].qoffset;
3148 		qcount = vsi->tc_config.tc_info[n].qcount;
3149 		for (i = qoffset; i < (qoffset + qcount); i++) {
3150 			rx_ring = vsi->rx_rings[i];
3151 			tx_ring = vsi->tx_rings[i];
3152 			rx_ring->dcb_tc = n;
3153 			tx_ring->dcb_tc = n;
3154 		}
3155 	}
3156 }
3157 
3158 /**
3159  * i40e_set_vsi_rx_mode - Call set_rx_mode on a VSI
3160  * @vsi: ptr to the VSI
3161  **/
3162 static void i40e_set_vsi_rx_mode(struct i40e_vsi *vsi)
3163 {
3164 	if (vsi->netdev)
3165 		i40e_set_rx_mode(vsi->netdev);
3166 }
3167 
3168 /**
3169  * i40e_fdir_filter_restore - Restore the Sideband Flow Director filters
3170  * @vsi: Pointer to the targeted VSI
3171  *
3172  * This function replays the hlist on the hw where all the SB Flow Director
3173  * filters were saved.
3174  **/
3175 static void i40e_fdir_filter_restore(struct i40e_vsi *vsi)
3176 {
3177 	struct i40e_fdir_filter *filter;
3178 	struct i40e_pf *pf = vsi->back;
3179 	struct hlist_node *node;
3180 
3181 	if (!(pf->flags & I40E_FLAG_FD_SB_ENABLED))
3182 		return;
3183 
3184 	/* Reset FDir counters as we're replaying all existing filters */
3185 	pf->fd_tcp4_filter_cnt = 0;
3186 	pf->fd_udp4_filter_cnt = 0;
3187 	pf->fd_sctp4_filter_cnt = 0;
3188 	pf->fd_ip4_filter_cnt = 0;
3189 
3190 	hlist_for_each_entry_safe(filter, node,
3191 				  &pf->fdir_filter_list, fdir_node) {
3192 		i40e_add_del_fdir(vsi, filter, true);
3193 	}
3194 }
3195 
3196 /**
3197  * i40e_vsi_configure - Set up the VSI for action
3198  * @vsi: the VSI being configured
3199  **/
3200 static int i40e_vsi_configure(struct i40e_vsi *vsi)
3201 {
3202 	int err;
3203 
3204 	i40e_set_vsi_rx_mode(vsi);
3205 	i40e_restore_vlan(vsi);
3206 	i40e_vsi_config_dcb_rings(vsi);
3207 	err = i40e_vsi_configure_tx(vsi);
3208 	if (!err)
3209 		err = i40e_vsi_configure_rx(vsi);
3210 
3211 	return err;
3212 }
3213 
3214 /**
3215  * i40e_vsi_configure_msix - MSIX mode Interrupt Config in the HW
3216  * @vsi: the VSI being configured
3217  **/
3218 static void i40e_vsi_configure_msix(struct i40e_vsi *vsi)
3219 {
3220 	bool has_xdp = i40e_enabled_xdp_vsi(vsi);
3221 	struct i40e_pf *pf = vsi->back;
3222 	struct i40e_hw *hw = &pf->hw;
3223 	u16 vector;
3224 	int i, q;
3225 	u32 qp;
3226 
3227 	/* The interrupt indexing is offset by 1 in the PFINT_ITRn
3228 	 * and PFINT_LNKLSTn registers, e.g.:
3229 	 *   PFINT_ITRn[0..n-1] gets msix-1..msix-n  (qpair interrupts)
3230 	 */
3231 	qp = vsi->base_queue;
3232 	vector = vsi->base_vector;
3233 	for (i = 0; i < vsi->num_q_vectors; i++, vector++) {
3234 		struct i40e_q_vector *q_vector = vsi->q_vectors[i];
3235 
3236 		q_vector->itr_countdown = ITR_COUNTDOWN_START;
3237 		q_vector->rx.itr = ITR_TO_REG(vsi->rx_rings[i]->rx_itr_setting);
3238 		q_vector->rx.latency_range = I40E_LOW_LATENCY;
3239 		wr32(hw, I40E_PFINT_ITRN(I40E_RX_ITR, vector - 1),
3240 		     q_vector->rx.itr);
3241 		q_vector->tx.itr = ITR_TO_REG(vsi->tx_rings[i]->tx_itr_setting);
3242 		q_vector->tx.latency_range = I40E_LOW_LATENCY;
3243 		wr32(hw, I40E_PFINT_ITRN(I40E_TX_ITR, vector - 1),
3244 		     q_vector->tx.itr);
3245 		wr32(hw, I40E_PFINT_RATEN(vector - 1),
3246 		     i40e_intrl_usec_to_reg(vsi->int_rate_limit));
3247 
3248 		/* Linked list for the queuepairs assigned to this vector */
3249 		wr32(hw, I40E_PFINT_LNKLSTN(vector - 1), qp);
3250 		for (q = 0; q < q_vector->num_ringpairs; q++) {
3251 			u32 nextqp = has_xdp ? qp + vsi->alloc_queue_pairs : qp;
3252 			u32 val;
3253 
3254 			val = I40E_QINT_RQCTL_CAUSE_ENA_MASK |
3255 			      (I40E_RX_ITR << I40E_QINT_RQCTL_ITR_INDX_SHIFT) |
3256 			      (vector << I40E_QINT_RQCTL_MSIX_INDX_SHIFT) |
3257 			      (nextqp << I40E_QINT_RQCTL_NEXTQ_INDX_SHIFT) |
3258 			      (I40E_QUEUE_TYPE_TX <<
3259 			       I40E_QINT_RQCTL_NEXTQ_TYPE_SHIFT);
3260 
3261 			wr32(hw, I40E_QINT_RQCTL(qp), val);
3262 
3263 			if (has_xdp) {
3264 				val = I40E_QINT_TQCTL_CAUSE_ENA_MASK |
3265 				      (I40E_TX_ITR << I40E_QINT_TQCTL_ITR_INDX_SHIFT) |
3266 				      (vector << I40E_QINT_TQCTL_MSIX_INDX_SHIFT) |
3267 				      (qp << I40E_QINT_TQCTL_NEXTQ_INDX_SHIFT) |
3268 				      (I40E_QUEUE_TYPE_TX <<
3269 				       I40E_QINT_TQCTL_NEXTQ_TYPE_SHIFT);
3270 
3271 				wr32(hw, I40E_QINT_TQCTL(nextqp), val);
3272 			}
3273 
3274 			val = I40E_QINT_TQCTL_CAUSE_ENA_MASK |
3275 			      (I40E_TX_ITR << I40E_QINT_TQCTL_ITR_INDX_SHIFT) |
3276 			      (vector << I40E_QINT_TQCTL_MSIX_INDX_SHIFT) |
3277 			      ((qp + 1) << I40E_QINT_TQCTL_NEXTQ_INDX_SHIFT) |
3278 			      (I40E_QUEUE_TYPE_RX <<
3279 			       I40E_QINT_TQCTL_NEXTQ_TYPE_SHIFT);
3280 
3281 			/* Terminate the linked list */
3282 			if (q == (q_vector->num_ringpairs - 1))
3283 				val |= (I40E_QUEUE_END_OF_LIST <<
3284 					I40E_QINT_TQCTL_NEXTQ_INDX_SHIFT);
3285 
3286 			wr32(hw, I40E_QINT_TQCTL(qp), val);
3287 			qp++;
3288 		}
3289 	}
3290 
3291 	i40e_flush(hw);
3292 }
3293 
3294 /**
3295  * i40e_enable_misc_int_causes - enable the non-queue interrupts
3296  * @hw: ptr to the hardware info
3297  **/
3298 static void i40e_enable_misc_int_causes(struct i40e_pf *pf)
3299 {
3300 	struct i40e_hw *hw = &pf->hw;
3301 	u32 val;
3302 
3303 	/* clear things first */
3304 	wr32(hw, I40E_PFINT_ICR0_ENA, 0);  /* disable all */
3305 	rd32(hw, I40E_PFINT_ICR0);         /* read to clear */
3306 
3307 	val = I40E_PFINT_ICR0_ENA_ECC_ERR_MASK       |
3308 	      I40E_PFINT_ICR0_ENA_MAL_DETECT_MASK    |
3309 	      I40E_PFINT_ICR0_ENA_GRST_MASK          |
3310 	      I40E_PFINT_ICR0_ENA_PCI_EXCEPTION_MASK |
3311 	      I40E_PFINT_ICR0_ENA_GPIO_MASK          |
3312 	      I40E_PFINT_ICR0_ENA_HMC_ERR_MASK       |
3313 	      I40E_PFINT_ICR0_ENA_VFLR_MASK          |
3314 	      I40E_PFINT_ICR0_ENA_ADMINQ_MASK;
3315 
3316 	if (pf->flags & I40E_FLAG_IWARP_ENABLED)
3317 		val |= I40E_PFINT_ICR0_ENA_PE_CRITERR_MASK;
3318 
3319 	if (pf->flags & I40E_FLAG_PTP)
3320 		val |= I40E_PFINT_ICR0_ENA_TIMESYNC_MASK;
3321 
3322 	wr32(hw, I40E_PFINT_ICR0_ENA, val);
3323 
3324 	/* SW_ITR_IDX = 0, but don't change INTENA */
3325 	wr32(hw, I40E_PFINT_DYN_CTL0, I40E_PFINT_DYN_CTL0_SW_ITR_INDX_MASK |
3326 					I40E_PFINT_DYN_CTL0_INTENA_MSK_MASK);
3327 
3328 	/* OTHER_ITR_IDX = 0 */
3329 	wr32(hw, I40E_PFINT_STAT_CTL0, 0);
3330 }
3331 
3332 /**
3333  * i40e_configure_msi_and_legacy - Legacy mode interrupt config in the HW
3334  * @vsi: the VSI being configured
3335  **/
3336 static void i40e_configure_msi_and_legacy(struct i40e_vsi *vsi)
3337 {
3338 	u32 nextqp = i40e_enabled_xdp_vsi(vsi) ? vsi->alloc_queue_pairs : 0;
3339 	struct i40e_q_vector *q_vector = vsi->q_vectors[0];
3340 	struct i40e_pf *pf = vsi->back;
3341 	struct i40e_hw *hw = &pf->hw;
3342 	u32 val;
3343 
3344 	/* set the ITR configuration */
3345 	q_vector->itr_countdown = ITR_COUNTDOWN_START;
3346 	q_vector->rx.itr = ITR_TO_REG(vsi->rx_rings[0]->rx_itr_setting);
3347 	q_vector->rx.latency_range = I40E_LOW_LATENCY;
3348 	wr32(hw, I40E_PFINT_ITR0(I40E_RX_ITR), q_vector->rx.itr);
3349 	q_vector->tx.itr = ITR_TO_REG(vsi->tx_rings[0]->tx_itr_setting);
3350 	q_vector->tx.latency_range = I40E_LOW_LATENCY;
3351 	wr32(hw, I40E_PFINT_ITR0(I40E_TX_ITR), q_vector->tx.itr);
3352 
3353 	i40e_enable_misc_int_causes(pf);
3354 
3355 	/* FIRSTQ_INDX = 0, FIRSTQ_TYPE = 0 (rx) */
3356 	wr32(hw, I40E_PFINT_LNKLST0, 0);
3357 
3358 	/* Associate the queue pair to the vector and enable the queue int */
3359 	val = I40E_QINT_RQCTL_CAUSE_ENA_MASK		       |
3360 	      (I40E_RX_ITR << I40E_QINT_RQCTL_ITR_INDX_SHIFT)  |
3361 	      (nextqp	   << I40E_QINT_RQCTL_NEXTQ_INDX_SHIFT)|
3362 	      (I40E_QUEUE_TYPE_TX << I40E_QINT_TQCTL_NEXTQ_TYPE_SHIFT);
3363 
3364 	wr32(hw, I40E_QINT_RQCTL(0), val);
3365 
3366 	if (i40e_enabled_xdp_vsi(vsi)) {
3367 		val = I40E_QINT_TQCTL_CAUSE_ENA_MASK		     |
3368 		      (I40E_TX_ITR << I40E_QINT_TQCTL_ITR_INDX_SHIFT)|
3369 		      (I40E_QUEUE_TYPE_TX
3370 		       << I40E_QINT_TQCTL_NEXTQ_TYPE_SHIFT);
3371 
3372 	       wr32(hw, I40E_QINT_TQCTL(nextqp), val);
3373 	}
3374 
3375 	val = I40E_QINT_TQCTL_CAUSE_ENA_MASK		      |
3376 	      (I40E_TX_ITR << I40E_QINT_TQCTL_ITR_INDX_SHIFT) |
3377 	      (I40E_QUEUE_END_OF_LIST << I40E_QINT_TQCTL_NEXTQ_INDX_SHIFT);
3378 
3379 	wr32(hw, I40E_QINT_TQCTL(0), val);
3380 	i40e_flush(hw);
3381 }
3382 
3383 /**
3384  * i40e_irq_dynamic_disable_icr0 - Disable default interrupt generation for icr0
3385  * @pf: board private structure
3386  **/
3387 void i40e_irq_dynamic_disable_icr0(struct i40e_pf *pf)
3388 {
3389 	struct i40e_hw *hw = &pf->hw;
3390 
3391 	wr32(hw, I40E_PFINT_DYN_CTL0,
3392 	     I40E_ITR_NONE << I40E_PFINT_DYN_CTLN_ITR_INDX_SHIFT);
3393 	i40e_flush(hw);
3394 }
3395 
3396 /**
3397  * i40e_irq_dynamic_enable_icr0 - Enable default interrupt generation for icr0
3398  * @pf: board private structure
3399  * @clearpba: true when all pending interrupt events should be cleared
3400  **/
3401 void i40e_irq_dynamic_enable_icr0(struct i40e_pf *pf, bool clearpba)
3402 {
3403 	struct i40e_hw *hw = &pf->hw;
3404 	u32 val;
3405 
3406 	val = I40E_PFINT_DYN_CTL0_INTENA_MASK   |
3407 	      (clearpba ? I40E_PFINT_DYN_CTL0_CLEARPBA_MASK : 0) |
3408 	      (I40E_ITR_NONE << I40E_PFINT_DYN_CTL0_ITR_INDX_SHIFT);
3409 
3410 	wr32(hw, I40E_PFINT_DYN_CTL0, val);
3411 	i40e_flush(hw);
3412 }
3413 
3414 /**
3415  * i40e_msix_clean_rings - MSIX mode Interrupt Handler
3416  * @irq: interrupt number
3417  * @data: pointer to a q_vector
3418  **/
3419 static irqreturn_t i40e_msix_clean_rings(int irq, void *data)
3420 {
3421 	struct i40e_q_vector *q_vector = data;
3422 
3423 	if (!q_vector->tx.ring && !q_vector->rx.ring)
3424 		return IRQ_HANDLED;
3425 
3426 	napi_schedule_irqoff(&q_vector->napi);
3427 
3428 	return IRQ_HANDLED;
3429 }
3430 
3431 /**
3432  * i40e_irq_affinity_notify - Callback for affinity changes
3433  * @notify: context as to what irq was changed
3434  * @mask: the new affinity mask
3435  *
3436  * This is a callback function used by the irq_set_affinity_notifier function
3437  * so that we may register to receive changes to the irq affinity masks.
3438  **/
3439 static void i40e_irq_affinity_notify(struct irq_affinity_notify *notify,
3440 				     const cpumask_t *mask)
3441 {
3442 	struct i40e_q_vector *q_vector =
3443 		container_of(notify, struct i40e_q_vector, affinity_notify);
3444 
3445 	cpumask_copy(&q_vector->affinity_mask, mask);
3446 }
3447 
3448 /**
3449  * i40e_irq_affinity_release - Callback for affinity notifier release
3450  * @ref: internal core kernel usage
3451  *
3452  * This is a callback function used by the irq_set_affinity_notifier function
3453  * to inform the current notification subscriber that they will no longer
3454  * receive notifications.
3455  **/
3456 static void i40e_irq_affinity_release(struct kref *ref) {}
3457 
3458 /**
3459  * i40e_vsi_request_irq_msix - Initialize MSI-X interrupts
3460  * @vsi: the VSI being configured
3461  * @basename: name for the vector
3462  *
3463  * Allocates MSI-X vectors and requests interrupts from the kernel.
3464  **/
3465 static int i40e_vsi_request_irq_msix(struct i40e_vsi *vsi, char *basename)
3466 {
3467 	int q_vectors = vsi->num_q_vectors;
3468 	struct i40e_pf *pf = vsi->back;
3469 	int base = vsi->base_vector;
3470 	int rx_int_idx = 0;
3471 	int tx_int_idx = 0;
3472 	int vector, err;
3473 	int irq_num;
3474 
3475 	for (vector = 0; vector < q_vectors; vector++) {
3476 		struct i40e_q_vector *q_vector = vsi->q_vectors[vector];
3477 
3478 		irq_num = pf->msix_entries[base + vector].vector;
3479 
3480 		if (q_vector->tx.ring && q_vector->rx.ring) {
3481 			snprintf(q_vector->name, sizeof(q_vector->name) - 1,
3482 				 "%s-%s-%d", basename, "TxRx", rx_int_idx++);
3483 			tx_int_idx++;
3484 		} else if (q_vector->rx.ring) {
3485 			snprintf(q_vector->name, sizeof(q_vector->name) - 1,
3486 				 "%s-%s-%d", basename, "rx", rx_int_idx++);
3487 		} else if (q_vector->tx.ring) {
3488 			snprintf(q_vector->name, sizeof(q_vector->name) - 1,
3489 				 "%s-%s-%d", basename, "tx", tx_int_idx++);
3490 		} else {
3491 			/* skip this unused q_vector */
3492 			continue;
3493 		}
3494 		err = request_irq(irq_num,
3495 				  vsi->irq_handler,
3496 				  0,
3497 				  q_vector->name,
3498 				  q_vector);
3499 		if (err) {
3500 			dev_info(&pf->pdev->dev,
3501 				 "MSIX request_irq failed, error: %d\n", err);
3502 			goto free_queue_irqs;
3503 		}
3504 
3505 		/* register for affinity change notifications */
3506 		q_vector->affinity_notify.notify = i40e_irq_affinity_notify;
3507 		q_vector->affinity_notify.release = i40e_irq_affinity_release;
3508 		irq_set_affinity_notifier(irq_num, &q_vector->affinity_notify);
3509 		/* get_cpu_mask returns a static constant mask with
3510 		 * a permanent lifetime so it's ok to use here.
3511 		 */
3512 		irq_set_affinity_hint(irq_num, get_cpu_mask(q_vector->v_idx));
3513 	}
3514 
3515 	vsi->irqs_ready = true;
3516 	return 0;
3517 
3518 free_queue_irqs:
3519 	while (vector) {
3520 		vector--;
3521 		irq_num = pf->msix_entries[base + vector].vector;
3522 		irq_set_affinity_notifier(irq_num, NULL);
3523 		irq_set_affinity_hint(irq_num, NULL);
3524 		free_irq(irq_num, &vsi->q_vectors[vector]);
3525 	}
3526 	return err;
3527 }
3528 
3529 /**
3530  * i40e_vsi_disable_irq - Mask off queue interrupt generation on the VSI
3531  * @vsi: the VSI being un-configured
3532  **/
3533 static void i40e_vsi_disable_irq(struct i40e_vsi *vsi)
3534 {
3535 	struct i40e_pf *pf = vsi->back;
3536 	struct i40e_hw *hw = &pf->hw;
3537 	int base = vsi->base_vector;
3538 	int i;
3539 
3540 	/* disable interrupt causation from each queue */
3541 	for (i = 0; i < vsi->num_queue_pairs; i++) {
3542 		u32 val;
3543 
3544 		val = rd32(hw, I40E_QINT_TQCTL(vsi->tx_rings[i]->reg_idx));
3545 		val &= ~I40E_QINT_TQCTL_CAUSE_ENA_MASK;
3546 		wr32(hw, I40E_QINT_TQCTL(vsi->tx_rings[i]->reg_idx), val);
3547 
3548 		val = rd32(hw, I40E_QINT_RQCTL(vsi->rx_rings[i]->reg_idx));
3549 		val &= ~I40E_QINT_RQCTL_CAUSE_ENA_MASK;
3550 		wr32(hw, I40E_QINT_RQCTL(vsi->rx_rings[i]->reg_idx), val);
3551 
3552 		if (!i40e_enabled_xdp_vsi(vsi))
3553 			continue;
3554 		wr32(hw, I40E_QINT_TQCTL(vsi->xdp_rings[i]->reg_idx), 0);
3555 	}
3556 
3557 	/* disable each interrupt */
3558 	if (pf->flags & I40E_FLAG_MSIX_ENABLED) {
3559 		for (i = vsi->base_vector;
3560 		     i < (vsi->num_q_vectors + vsi->base_vector); i++)
3561 			wr32(hw, I40E_PFINT_DYN_CTLN(i - 1), 0);
3562 
3563 		i40e_flush(hw);
3564 		for (i = 0; i < vsi->num_q_vectors; i++)
3565 			synchronize_irq(pf->msix_entries[i + base].vector);
3566 	} else {
3567 		/* Legacy and MSI mode - this stops all interrupt handling */
3568 		wr32(hw, I40E_PFINT_ICR0_ENA, 0);
3569 		wr32(hw, I40E_PFINT_DYN_CTL0, 0);
3570 		i40e_flush(hw);
3571 		synchronize_irq(pf->pdev->irq);
3572 	}
3573 }
3574 
3575 /**
3576  * i40e_vsi_enable_irq - Enable IRQ for the given VSI
3577  * @vsi: the VSI being configured
3578  **/
3579 static int i40e_vsi_enable_irq(struct i40e_vsi *vsi)
3580 {
3581 	struct i40e_pf *pf = vsi->back;
3582 	int i;
3583 
3584 	if (pf->flags & I40E_FLAG_MSIX_ENABLED) {
3585 		for (i = 0; i < vsi->num_q_vectors; i++)
3586 			i40e_irq_dynamic_enable(vsi, i);
3587 	} else {
3588 		i40e_irq_dynamic_enable_icr0(pf, true);
3589 	}
3590 
3591 	i40e_flush(&pf->hw);
3592 	return 0;
3593 }
3594 
3595 /**
3596  * i40e_stop_misc_vector - Stop the vector that handles non-queue events
3597  * @pf: board private structure
3598  **/
3599 static void i40e_stop_misc_vector(struct i40e_pf *pf)
3600 {
3601 	/* Disable ICR 0 */
3602 	wr32(&pf->hw, I40E_PFINT_ICR0_ENA, 0);
3603 	i40e_flush(&pf->hw);
3604 }
3605 
3606 /**
3607  * i40e_intr - MSI/Legacy and non-queue interrupt handler
3608  * @irq: interrupt number
3609  * @data: pointer to a q_vector
3610  *
3611  * This is the handler used for all MSI/Legacy interrupts, and deals
3612  * with both queue and non-queue interrupts.  This is also used in
3613  * MSIX mode to handle the non-queue interrupts.
3614  **/
3615 static irqreturn_t i40e_intr(int irq, void *data)
3616 {
3617 	struct i40e_pf *pf = (struct i40e_pf *)data;
3618 	struct i40e_hw *hw = &pf->hw;
3619 	irqreturn_t ret = IRQ_NONE;
3620 	u32 icr0, icr0_remaining;
3621 	u32 val, ena_mask;
3622 
3623 	icr0 = rd32(hw, I40E_PFINT_ICR0);
3624 	ena_mask = rd32(hw, I40E_PFINT_ICR0_ENA);
3625 
3626 	/* if sharing a legacy IRQ, we might get called w/o an intr pending */
3627 	if ((icr0 & I40E_PFINT_ICR0_INTEVENT_MASK) == 0)
3628 		goto enable_intr;
3629 
3630 	/* if interrupt but no bits showing, must be SWINT */
3631 	if (((icr0 & ~I40E_PFINT_ICR0_INTEVENT_MASK) == 0) ||
3632 	    (icr0 & I40E_PFINT_ICR0_SWINT_MASK))
3633 		pf->sw_int_count++;
3634 
3635 	if ((pf->flags & I40E_FLAG_IWARP_ENABLED) &&
3636 	    (icr0 & I40E_PFINT_ICR0_ENA_PE_CRITERR_MASK)) {
3637 		ena_mask &= ~I40E_PFINT_ICR0_ENA_PE_CRITERR_MASK;
3638 		dev_dbg(&pf->pdev->dev, "cleared PE_CRITERR\n");
3639 		set_bit(__I40E_CORE_RESET_REQUESTED, pf->state);
3640 	}
3641 
3642 	/* only q0 is used in MSI/Legacy mode, and none are used in MSIX */
3643 	if (icr0 & I40E_PFINT_ICR0_QUEUE_0_MASK) {
3644 		struct i40e_vsi *vsi = pf->vsi[pf->lan_vsi];
3645 		struct i40e_q_vector *q_vector = vsi->q_vectors[0];
3646 
3647 		/* We do not have a way to disarm Queue causes while leaving
3648 		 * interrupt enabled for all other causes, ideally
3649 		 * interrupt should be disabled while we are in NAPI but
3650 		 * this is not a performance path and napi_schedule()
3651 		 * can deal with rescheduling.
3652 		 */
3653 		if (!test_bit(__I40E_DOWN, pf->state))
3654 			napi_schedule_irqoff(&q_vector->napi);
3655 	}
3656 
3657 	if (icr0 & I40E_PFINT_ICR0_ADMINQ_MASK) {
3658 		ena_mask &= ~I40E_PFINT_ICR0_ENA_ADMINQ_MASK;
3659 		set_bit(__I40E_ADMINQ_EVENT_PENDING, pf->state);
3660 		i40e_debug(&pf->hw, I40E_DEBUG_NVM, "AdminQ event\n");
3661 	}
3662 
3663 	if (icr0 & I40E_PFINT_ICR0_MAL_DETECT_MASK) {
3664 		ena_mask &= ~I40E_PFINT_ICR0_ENA_MAL_DETECT_MASK;
3665 		set_bit(__I40E_MDD_EVENT_PENDING, pf->state);
3666 	}
3667 
3668 	if (icr0 & I40E_PFINT_ICR0_VFLR_MASK) {
3669 		ena_mask &= ~I40E_PFINT_ICR0_ENA_VFLR_MASK;
3670 		set_bit(__I40E_VFLR_EVENT_PENDING, pf->state);
3671 	}
3672 
3673 	if (icr0 & I40E_PFINT_ICR0_GRST_MASK) {
3674 		if (!test_bit(__I40E_RESET_RECOVERY_PENDING, pf->state))
3675 			set_bit(__I40E_RESET_INTR_RECEIVED, pf->state);
3676 		ena_mask &= ~I40E_PFINT_ICR0_ENA_GRST_MASK;
3677 		val = rd32(hw, I40E_GLGEN_RSTAT);
3678 		val = (val & I40E_GLGEN_RSTAT_RESET_TYPE_MASK)
3679 		       >> I40E_GLGEN_RSTAT_RESET_TYPE_SHIFT;
3680 		if (val == I40E_RESET_CORER) {
3681 			pf->corer_count++;
3682 		} else if (val == I40E_RESET_GLOBR) {
3683 			pf->globr_count++;
3684 		} else if (val == I40E_RESET_EMPR) {
3685 			pf->empr_count++;
3686 			set_bit(__I40E_EMP_RESET_INTR_RECEIVED, pf->state);
3687 		}
3688 	}
3689 
3690 	if (icr0 & I40E_PFINT_ICR0_HMC_ERR_MASK) {
3691 		icr0 &= ~I40E_PFINT_ICR0_HMC_ERR_MASK;
3692 		dev_info(&pf->pdev->dev, "HMC error interrupt\n");
3693 		dev_info(&pf->pdev->dev, "HMC error info 0x%x, HMC error data 0x%x\n",
3694 			 rd32(hw, I40E_PFHMC_ERRORINFO),
3695 			 rd32(hw, I40E_PFHMC_ERRORDATA));
3696 	}
3697 
3698 	if (icr0 & I40E_PFINT_ICR0_TIMESYNC_MASK) {
3699 		u32 prttsyn_stat = rd32(hw, I40E_PRTTSYN_STAT_0);
3700 
3701 		if (prttsyn_stat & I40E_PRTTSYN_STAT_0_TXTIME_MASK) {
3702 			icr0 &= ~I40E_PFINT_ICR0_ENA_TIMESYNC_MASK;
3703 			i40e_ptp_tx_hwtstamp(pf);
3704 		}
3705 	}
3706 
3707 	/* If a critical error is pending we have no choice but to reset the
3708 	 * device.
3709 	 * Report and mask out any remaining unexpected interrupts.
3710 	 */
3711 	icr0_remaining = icr0 & ena_mask;
3712 	if (icr0_remaining) {
3713 		dev_info(&pf->pdev->dev, "unhandled interrupt icr0=0x%08x\n",
3714 			 icr0_remaining);
3715 		if ((icr0_remaining & I40E_PFINT_ICR0_PE_CRITERR_MASK) ||
3716 		    (icr0_remaining & I40E_PFINT_ICR0_PCI_EXCEPTION_MASK) ||
3717 		    (icr0_remaining & I40E_PFINT_ICR0_ECC_ERR_MASK)) {
3718 			dev_info(&pf->pdev->dev, "device will be reset\n");
3719 			set_bit(__I40E_PF_RESET_REQUESTED, pf->state);
3720 			i40e_service_event_schedule(pf);
3721 		}
3722 		ena_mask &= ~icr0_remaining;
3723 	}
3724 	ret = IRQ_HANDLED;
3725 
3726 enable_intr:
3727 	/* re-enable interrupt causes */
3728 	wr32(hw, I40E_PFINT_ICR0_ENA, ena_mask);
3729 	if (!test_bit(__I40E_DOWN, pf->state)) {
3730 		i40e_service_event_schedule(pf);
3731 		i40e_irq_dynamic_enable_icr0(pf, false);
3732 	}
3733 
3734 	return ret;
3735 }
3736 
3737 /**
3738  * i40e_clean_fdir_tx_irq - Reclaim resources after transmit completes
3739  * @tx_ring:  tx ring to clean
3740  * @budget:   how many cleans we're allowed
3741  *
3742  * Returns true if there's any budget left (e.g. the clean is finished)
3743  **/
3744 static bool i40e_clean_fdir_tx_irq(struct i40e_ring *tx_ring, int budget)
3745 {
3746 	struct i40e_vsi *vsi = tx_ring->vsi;
3747 	u16 i = tx_ring->next_to_clean;
3748 	struct i40e_tx_buffer *tx_buf;
3749 	struct i40e_tx_desc *tx_desc;
3750 
3751 	tx_buf = &tx_ring->tx_bi[i];
3752 	tx_desc = I40E_TX_DESC(tx_ring, i);
3753 	i -= tx_ring->count;
3754 
3755 	do {
3756 		struct i40e_tx_desc *eop_desc = tx_buf->next_to_watch;
3757 
3758 		/* if next_to_watch is not set then there is no work pending */
3759 		if (!eop_desc)
3760 			break;
3761 
3762 		/* prevent any other reads prior to eop_desc */
3763 		read_barrier_depends();
3764 
3765 		/* if the descriptor isn't done, no work yet to do */
3766 		if (!(eop_desc->cmd_type_offset_bsz &
3767 		      cpu_to_le64(I40E_TX_DESC_DTYPE_DESC_DONE)))
3768 			break;
3769 
3770 		/* clear next_to_watch to prevent false hangs */
3771 		tx_buf->next_to_watch = NULL;
3772 
3773 		tx_desc->buffer_addr = 0;
3774 		tx_desc->cmd_type_offset_bsz = 0;
3775 		/* move past filter desc */
3776 		tx_buf++;
3777 		tx_desc++;
3778 		i++;
3779 		if (unlikely(!i)) {
3780 			i -= tx_ring->count;
3781 			tx_buf = tx_ring->tx_bi;
3782 			tx_desc = I40E_TX_DESC(tx_ring, 0);
3783 		}
3784 		/* unmap skb header data */
3785 		dma_unmap_single(tx_ring->dev,
3786 				 dma_unmap_addr(tx_buf, dma),
3787 				 dma_unmap_len(tx_buf, len),
3788 				 DMA_TO_DEVICE);
3789 		if (tx_buf->tx_flags & I40E_TX_FLAGS_FD_SB)
3790 			kfree(tx_buf->raw_buf);
3791 
3792 		tx_buf->raw_buf = NULL;
3793 		tx_buf->tx_flags = 0;
3794 		tx_buf->next_to_watch = NULL;
3795 		dma_unmap_len_set(tx_buf, len, 0);
3796 		tx_desc->buffer_addr = 0;
3797 		tx_desc->cmd_type_offset_bsz = 0;
3798 
3799 		/* move us past the eop_desc for start of next FD desc */
3800 		tx_buf++;
3801 		tx_desc++;
3802 		i++;
3803 		if (unlikely(!i)) {
3804 			i -= tx_ring->count;
3805 			tx_buf = tx_ring->tx_bi;
3806 			tx_desc = I40E_TX_DESC(tx_ring, 0);
3807 		}
3808 
3809 		/* update budget accounting */
3810 		budget--;
3811 	} while (likely(budget));
3812 
3813 	i += tx_ring->count;
3814 	tx_ring->next_to_clean = i;
3815 
3816 	if (vsi->back->flags & I40E_FLAG_MSIX_ENABLED)
3817 		i40e_irq_dynamic_enable(vsi, tx_ring->q_vector->v_idx);
3818 
3819 	return budget > 0;
3820 }
3821 
3822 /**
3823  * i40e_fdir_clean_ring - Interrupt Handler for FDIR SB ring
3824  * @irq: interrupt number
3825  * @data: pointer to a q_vector
3826  **/
3827 static irqreturn_t i40e_fdir_clean_ring(int irq, void *data)
3828 {
3829 	struct i40e_q_vector *q_vector = data;
3830 	struct i40e_vsi *vsi;
3831 
3832 	if (!q_vector->tx.ring)
3833 		return IRQ_HANDLED;
3834 
3835 	vsi = q_vector->tx.ring->vsi;
3836 	i40e_clean_fdir_tx_irq(q_vector->tx.ring, vsi->work_limit);
3837 
3838 	return IRQ_HANDLED;
3839 }
3840 
3841 /**
3842  * i40e_map_vector_to_qp - Assigns the queue pair to the vector
3843  * @vsi: the VSI being configured
3844  * @v_idx: vector index
3845  * @qp_idx: queue pair index
3846  **/
3847 static void i40e_map_vector_to_qp(struct i40e_vsi *vsi, int v_idx, int qp_idx)
3848 {
3849 	struct i40e_q_vector *q_vector = vsi->q_vectors[v_idx];
3850 	struct i40e_ring *tx_ring = vsi->tx_rings[qp_idx];
3851 	struct i40e_ring *rx_ring = vsi->rx_rings[qp_idx];
3852 
3853 	tx_ring->q_vector = q_vector;
3854 	tx_ring->next = q_vector->tx.ring;
3855 	q_vector->tx.ring = tx_ring;
3856 	q_vector->tx.count++;
3857 
3858 	/* Place XDP Tx ring in the same q_vector ring list as regular Tx */
3859 	if (i40e_enabled_xdp_vsi(vsi)) {
3860 		struct i40e_ring *xdp_ring = vsi->xdp_rings[qp_idx];
3861 
3862 		xdp_ring->q_vector = q_vector;
3863 		xdp_ring->next = q_vector->tx.ring;
3864 		q_vector->tx.ring = xdp_ring;
3865 		q_vector->tx.count++;
3866 	}
3867 
3868 	rx_ring->q_vector = q_vector;
3869 	rx_ring->next = q_vector->rx.ring;
3870 	q_vector->rx.ring = rx_ring;
3871 	q_vector->rx.count++;
3872 }
3873 
3874 /**
3875  * i40e_vsi_map_rings_to_vectors - Maps descriptor rings to vectors
3876  * @vsi: the VSI being configured
3877  *
3878  * This function maps descriptor rings to the queue-specific vectors
3879  * we were allotted through the MSI-X enabling code.  Ideally, we'd have
3880  * one vector per queue pair, but on a constrained vector budget, we
3881  * group the queue pairs as "efficiently" as possible.
3882  **/
3883 static void i40e_vsi_map_rings_to_vectors(struct i40e_vsi *vsi)
3884 {
3885 	int qp_remaining = vsi->num_queue_pairs;
3886 	int q_vectors = vsi->num_q_vectors;
3887 	int num_ringpairs;
3888 	int v_start = 0;
3889 	int qp_idx = 0;
3890 
3891 	/* If we don't have enough vectors for a 1-to-1 mapping, we'll have to
3892 	 * group them so there are multiple queues per vector.
3893 	 * It is also important to go through all the vectors available to be
3894 	 * sure that if we don't use all the vectors, that the remaining vectors
3895 	 * are cleared. This is especially important when decreasing the
3896 	 * number of queues in use.
3897 	 */
3898 	for (; v_start < q_vectors; v_start++) {
3899 		struct i40e_q_vector *q_vector = vsi->q_vectors[v_start];
3900 
3901 		num_ringpairs = DIV_ROUND_UP(qp_remaining, q_vectors - v_start);
3902 
3903 		q_vector->num_ringpairs = num_ringpairs;
3904 
3905 		q_vector->rx.count = 0;
3906 		q_vector->tx.count = 0;
3907 		q_vector->rx.ring = NULL;
3908 		q_vector->tx.ring = NULL;
3909 
3910 		while (num_ringpairs--) {
3911 			i40e_map_vector_to_qp(vsi, v_start, qp_idx);
3912 			qp_idx++;
3913 			qp_remaining--;
3914 		}
3915 	}
3916 }
3917 
3918 /**
3919  * i40e_vsi_request_irq - Request IRQ from the OS
3920  * @vsi: the VSI being configured
3921  * @basename: name for the vector
3922  **/
3923 static int i40e_vsi_request_irq(struct i40e_vsi *vsi, char *basename)
3924 {
3925 	struct i40e_pf *pf = vsi->back;
3926 	int err;
3927 
3928 	if (pf->flags & I40E_FLAG_MSIX_ENABLED)
3929 		err = i40e_vsi_request_irq_msix(vsi, basename);
3930 	else if (pf->flags & I40E_FLAG_MSI_ENABLED)
3931 		err = request_irq(pf->pdev->irq, i40e_intr, 0,
3932 				  pf->int_name, pf);
3933 	else
3934 		err = request_irq(pf->pdev->irq, i40e_intr, IRQF_SHARED,
3935 				  pf->int_name, pf);
3936 
3937 	if (err)
3938 		dev_info(&pf->pdev->dev, "request_irq failed, Error %d\n", err);
3939 
3940 	return err;
3941 }
3942 
3943 #ifdef CONFIG_NET_POLL_CONTROLLER
3944 /**
3945  * i40e_netpoll - A Polling 'interrupt' handler
3946  * @netdev: network interface device structure
3947  *
3948  * This is used by netconsole to send skbs without having to re-enable
3949  * interrupts.  It's not called while the normal interrupt routine is executing.
3950  **/
3951 static void i40e_netpoll(struct net_device *netdev)
3952 {
3953 	struct i40e_netdev_priv *np = netdev_priv(netdev);
3954 	struct i40e_vsi *vsi = np->vsi;
3955 	struct i40e_pf *pf = vsi->back;
3956 	int i;
3957 
3958 	/* if interface is down do nothing */
3959 	if (test_bit(__I40E_VSI_DOWN, vsi->state))
3960 		return;
3961 
3962 	if (pf->flags & I40E_FLAG_MSIX_ENABLED) {
3963 		for (i = 0; i < vsi->num_q_vectors; i++)
3964 			i40e_msix_clean_rings(0, vsi->q_vectors[i]);
3965 	} else {
3966 		i40e_intr(pf->pdev->irq, netdev);
3967 	}
3968 }
3969 #endif
3970 
3971 #define I40E_QTX_ENA_WAIT_COUNT 50
3972 
3973 /**
3974  * i40e_pf_txq_wait - Wait for a PF's Tx queue to be enabled or disabled
3975  * @pf: the PF being configured
3976  * @pf_q: the PF queue
3977  * @enable: enable or disable state of the queue
3978  *
3979  * This routine will wait for the given Tx queue of the PF to reach the
3980  * enabled or disabled state.
3981  * Returns -ETIMEDOUT in case of failing to reach the requested state after
3982  * multiple retries; else will return 0 in case of success.
3983  **/
3984 static int i40e_pf_txq_wait(struct i40e_pf *pf, int pf_q, bool enable)
3985 {
3986 	int i;
3987 	u32 tx_reg;
3988 
3989 	for (i = 0; i < I40E_QUEUE_WAIT_RETRY_LIMIT; i++) {
3990 		tx_reg = rd32(&pf->hw, I40E_QTX_ENA(pf_q));
3991 		if (enable == !!(tx_reg & I40E_QTX_ENA_QENA_STAT_MASK))
3992 			break;
3993 
3994 		usleep_range(10, 20);
3995 	}
3996 	if (i >= I40E_QUEUE_WAIT_RETRY_LIMIT)
3997 		return -ETIMEDOUT;
3998 
3999 	return 0;
4000 }
4001 
4002 /**
4003  * i40e_control_tx_q - Start or stop a particular Tx queue
4004  * @pf: the PF structure
4005  * @pf_q: the PF queue to configure
4006  * @enable: start or stop the queue
4007  *
4008  * This function enables or disables a single queue. Note that any delay
4009  * required after the operation is expected to be handled by the caller of
4010  * this function.
4011  **/
4012 static void i40e_control_tx_q(struct i40e_pf *pf, int pf_q, bool enable)
4013 {
4014 	struct i40e_hw *hw = &pf->hw;
4015 	u32 tx_reg;
4016 	int i;
4017 
4018 	/* warn the TX unit of coming changes */
4019 	i40e_pre_tx_queue_cfg(&pf->hw, pf_q, enable);
4020 	if (!enable)
4021 		usleep_range(10, 20);
4022 
4023 	for (i = 0; i < I40E_QTX_ENA_WAIT_COUNT; i++) {
4024 		tx_reg = rd32(hw, I40E_QTX_ENA(pf_q));
4025 		if (((tx_reg >> I40E_QTX_ENA_QENA_REQ_SHIFT) & 1) ==
4026 		    ((tx_reg >> I40E_QTX_ENA_QENA_STAT_SHIFT) & 1))
4027 			break;
4028 		usleep_range(1000, 2000);
4029 	}
4030 
4031 	/* Skip if the queue is already in the requested state */
4032 	if (enable == !!(tx_reg & I40E_QTX_ENA_QENA_STAT_MASK))
4033 		return;
4034 
4035 	/* turn on/off the queue */
4036 	if (enable) {
4037 		wr32(hw, I40E_QTX_HEAD(pf_q), 0);
4038 		tx_reg |= I40E_QTX_ENA_QENA_REQ_MASK;
4039 	} else {
4040 		tx_reg &= ~I40E_QTX_ENA_QENA_REQ_MASK;
4041 	}
4042 
4043 	wr32(hw, I40E_QTX_ENA(pf_q), tx_reg);
4044 }
4045 
4046 /**
4047  * i40e_control_wait_tx_q - Start/stop Tx queue and wait for completion
4048  * @seid: VSI SEID
4049  * @pf: the PF structure
4050  * @pf_q: the PF queue to configure
4051  * @is_xdp: true if the queue is used for XDP
4052  * @enable: start or stop the queue
4053  **/
4054 static int i40e_control_wait_tx_q(int seid, struct i40e_pf *pf, int pf_q,
4055 				  bool is_xdp, bool enable)
4056 {
4057 	int ret;
4058 
4059 	i40e_control_tx_q(pf, pf_q, enable);
4060 
4061 	/* wait for the change to finish */
4062 	ret = i40e_pf_txq_wait(pf, pf_q, enable);
4063 	if (ret) {
4064 		dev_info(&pf->pdev->dev,
4065 			 "VSI seid %d %sTx ring %d %sable timeout\n",
4066 			 seid, (is_xdp ? "XDP " : ""), pf_q,
4067 			 (enable ? "en" : "dis"));
4068 	}
4069 
4070 	return ret;
4071 }
4072 
4073 /**
4074  * i40e_vsi_control_tx - Start or stop a VSI's rings
4075  * @vsi: the VSI being configured
4076  * @enable: start or stop the rings
4077  **/
4078 static int i40e_vsi_control_tx(struct i40e_vsi *vsi, bool enable)
4079 {
4080 	struct i40e_pf *pf = vsi->back;
4081 	int i, pf_q, ret = 0;
4082 
4083 	pf_q = vsi->base_queue;
4084 	for (i = 0; i < vsi->num_queue_pairs; i++, pf_q++) {
4085 		ret = i40e_control_wait_tx_q(vsi->seid, pf,
4086 					     pf_q,
4087 					     false /*is xdp*/, enable);
4088 		if (ret)
4089 			break;
4090 
4091 		if (!i40e_enabled_xdp_vsi(vsi))
4092 			continue;
4093 
4094 		ret = i40e_control_wait_tx_q(vsi->seid, pf,
4095 					     pf_q + vsi->alloc_queue_pairs,
4096 					     true /*is xdp*/, enable);
4097 		if (ret)
4098 			break;
4099 	}
4100 
4101 	return ret;
4102 }
4103 
4104 /**
4105  * i40e_pf_rxq_wait - Wait for a PF's Rx queue to be enabled or disabled
4106  * @pf: the PF being configured
4107  * @pf_q: the PF queue
4108  * @enable: enable or disable state of the queue
4109  *
4110  * This routine will wait for the given Rx queue of the PF to reach the
4111  * enabled or disabled state.
4112  * Returns -ETIMEDOUT in case of failing to reach the requested state after
4113  * multiple retries; else will return 0 in case of success.
4114  **/
4115 static int i40e_pf_rxq_wait(struct i40e_pf *pf, int pf_q, bool enable)
4116 {
4117 	int i;
4118 	u32 rx_reg;
4119 
4120 	for (i = 0; i < I40E_QUEUE_WAIT_RETRY_LIMIT; i++) {
4121 		rx_reg = rd32(&pf->hw, I40E_QRX_ENA(pf_q));
4122 		if (enable == !!(rx_reg & I40E_QRX_ENA_QENA_STAT_MASK))
4123 			break;
4124 
4125 		usleep_range(10, 20);
4126 	}
4127 	if (i >= I40E_QUEUE_WAIT_RETRY_LIMIT)
4128 		return -ETIMEDOUT;
4129 
4130 	return 0;
4131 }
4132 
4133 /**
4134  * i40e_control_rx_q - Start or stop a particular Rx queue
4135  * @pf: the PF structure
4136  * @pf_q: the PF queue to configure
4137  * @enable: start or stop the queue
4138  *
4139  * This function enables or disables a single queue. Note that any delay
4140  * required after the operation is expected to be handled by the caller of
4141  * this function.
4142  **/
4143 static void i40e_control_rx_q(struct i40e_pf *pf, int pf_q, bool enable)
4144 {
4145 	struct i40e_hw *hw = &pf->hw;
4146 	u32 rx_reg;
4147 	int i;
4148 
4149 	for (i = 0; i < I40E_QTX_ENA_WAIT_COUNT; i++) {
4150 		rx_reg = rd32(hw, I40E_QRX_ENA(pf_q));
4151 		if (((rx_reg >> I40E_QRX_ENA_QENA_REQ_SHIFT) & 1) ==
4152 		    ((rx_reg >> I40E_QRX_ENA_QENA_STAT_SHIFT) & 1))
4153 			break;
4154 		usleep_range(1000, 2000);
4155 	}
4156 
4157 	/* Skip if the queue is already in the requested state */
4158 	if (enable == !!(rx_reg & I40E_QRX_ENA_QENA_STAT_MASK))
4159 		return;
4160 
4161 	/* turn on/off the queue */
4162 	if (enable)
4163 		rx_reg |= I40E_QRX_ENA_QENA_REQ_MASK;
4164 	else
4165 		rx_reg &= ~I40E_QRX_ENA_QENA_REQ_MASK;
4166 
4167 	wr32(hw, I40E_QRX_ENA(pf_q), rx_reg);
4168 }
4169 
4170 /**
4171  * i40e_vsi_control_rx - Start or stop a VSI's rings
4172  * @vsi: the VSI being configured
4173  * @enable: start or stop the rings
4174  **/
4175 static int i40e_vsi_control_rx(struct i40e_vsi *vsi, bool enable)
4176 {
4177 	struct i40e_pf *pf = vsi->back;
4178 	int i, pf_q, ret = 0;
4179 
4180 	pf_q = vsi->base_queue;
4181 	for (i = 0; i < vsi->num_queue_pairs; i++, pf_q++) {
4182 		i40e_control_rx_q(pf, pf_q, enable);
4183 
4184 		/* wait for the change to finish */
4185 		ret = i40e_pf_rxq_wait(pf, pf_q, enable);
4186 		if (ret) {
4187 			dev_info(&pf->pdev->dev,
4188 				 "VSI seid %d Rx ring %d %sable timeout\n",
4189 				 vsi->seid, pf_q, (enable ? "en" : "dis"));
4190 			break;
4191 		}
4192 	}
4193 
4194 	/* Due to HW errata, on Rx disable only, the register can indicate done
4195 	 * before it really is. Needs 50ms to be sure
4196 	 */
4197 	if (!enable)
4198 		mdelay(50);
4199 
4200 	return ret;
4201 }
4202 
4203 /**
4204  * i40e_vsi_start_rings - Start a VSI's rings
4205  * @vsi: the VSI being configured
4206  **/
4207 int i40e_vsi_start_rings(struct i40e_vsi *vsi)
4208 {
4209 	int ret = 0;
4210 
4211 	/* do rx first for enable and last for disable */
4212 	ret = i40e_vsi_control_rx(vsi, true);
4213 	if (ret)
4214 		return ret;
4215 	ret = i40e_vsi_control_tx(vsi, true);
4216 
4217 	return ret;
4218 }
4219 
4220 /**
4221  * i40e_vsi_stop_rings - Stop a VSI's rings
4222  * @vsi: the VSI being configured
4223  **/
4224 void i40e_vsi_stop_rings(struct i40e_vsi *vsi)
4225 {
4226 	/* When port TX is suspended, don't wait */
4227 	if (test_bit(__I40E_PORT_SUSPENDED, vsi->back->state))
4228 		return i40e_vsi_stop_rings_no_wait(vsi);
4229 
4230 	/* do rx first for enable and last for disable
4231 	 * Ignore return value, we need to shutdown whatever we can
4232 	 */
4233 	i40e_vsi_control_tx(vsi, false);
4234 	i40e_vsi_control_rx(vsi, false);
4235 }
4236 
4237 /**
4238  * i40e_vsi_stop_rings_no_wait - Stop a VSI's rings and do not delay
4239  * @vsi: the VSI being shutdown
4240  *
4241  * This function stops all the rings for a VSI but does not delay to verify
4242  * that rings have been disabled. It is expected that the caller is shutting
4243  * down multiple VSIs at once and will delay together for all the VSIs after
4244  * initiating the shutdown. This is particularly useful for shutting down lots
4245  * of VFs together. Otherwise, a large delay can be incurred while configuring
4246  * each VSI in serial.
4247  **/
4248 void i40e_vsi_stop_rings_no_wait(struct i40e_vsi *vsi)
4249 {
4250 	struct i40e_pf *pf = vsi->back;
4251 	int i, pf_q;
4252 
4253 	pf_q = vsi->base_queue;
4254 	for (i = 0; i < vsi->num_queue_pairs; i++, pf_q++) {
4255 		i40e_control_tx_q(pf, pf_q, false);
4256 		i40e_control_rx_q(pf, pf_q, false);
4257 	}
4258 }
4259 
4260 /**
4261  * i40e_vsi_free_irq - Free the irq association with the OS
4262  * @vsi: the VSI being configured
4263  **/
4264 static void i40e_vsi_free_irq(struct i40e_vsi *vsi)
4265 {
4266 	struct i40e_pf *pf = vsi->back;
4267 	struct i40e_hw *hw = &pf->hw;
4268 	int base = vsi->base_vector;
4269 	u32 val, qp;
4270 	int i;
4271 
4272 	if (pf->flags & I40E_FLAG_MSIX_ENABLED) {
4273 		if (!vsi->q_vectors)
4274 			return;
4275 
4276 		if (!vsi->irqs_ready)
4277 			return;
4278 
4279 		vsi->irqs_ready = false;
4280 		for (i = 0; i < vsi->num_q_vectors; i++) {
4281 			int irq_num;
4282 			u16 vector;
4283 
4284 			vector = i + base;
4285 			irq_num = pf->msix_entries[vector].vector;
4286 
4287 			/* free only the irqs that were actually requested */
4288 			if (!vsi->q_vectors[i] ||
4289 			    !vsi->q_vectors[i]->num_ringpairs)
4290 				continue;
4291 
4292 			/* clear the affinity notifier in the IRQ descriptor */
4293 			irq_set_affinity_notifier(irq_num, NULL);
4294 			/* remove our suggested affinity mask for this IRQ */
4295 			irq_set_affinity_hint(irq_num, NULL);
4296 			synchronize_irq(irq_num);
4297 			free_irq(irq_num, vsi->q_vectors[i]);
4298 
4299 			/* Tear down the interrupt queue link list
4300 			 *
4301 			 * We know that they come in pairs and always
4302 			 * the Rx first, then the Tx.  To clear the
4303 			 * link list, stick the EOL value into the
4304 			 * next_q field of the registers.
4305 			 */
4306 			val = rd32(hw, I40E_PFINT_LNKLSTN(vector - 1));
4307 			qp = (val & I40E_PFINT_LNKLSTN_FIRSTQ_INDX_MASK)
4308 				>> I40E_PFINT_LNKLSTN_FIRSTQ_INDX_SHIFT;
4309 			val |= I40E_QUEUE_END_OF_LIST
4310 				<< I40E_PFINT_LNKLSTN_FIRSTQ_INDX_SHIFT;
4311 			wr32(hw, I40E_PFINT_LNKLSTN(vector - 1), val);
4312 
4313 			while (qp != I40E_QUEUE_END_OF_LIST) {
4314 				u32 next;
4315 
4316 				val = rd32(hw, I40E_QINT_RQCTL(qp));
4317 
4318 				val &= ~(I40E_QINT_RQCTL_MSIX_INDX_MASK  |
4319 					 I40E_QINT_RQCTL_MSIX0_INDX_MASK |
4320 					 I40E_QINT_RQCTL_CAUSE_ENA_MASK  |
4321 					 I40E_QINT_RQCTL_INTEVENT_MASK);
4322 
4323 				val |= (I40E_QINT_RQCTL_ITR_INDX_MASK |
4324 					 I40E_QINT_RQCTL_NEXTQ_INDX_MASK);
4325 
4326 				wr32(hw, I40E_QINT_RQCTL(qp), val);
4327 
4328 				val = rd32(hw, I40E_QINT_TQCTL(qp));
4329 
4330 				next = (val & I40E_QINT_TQCTL_NEXTQ_INDX_MASK)
4331 					>> I40E_QINT_TQCTL_NEXTQ_INDX_SHIFT;
4332 
4333 				val &= ~(I40E_QINT_TQCTL_MSIX_INDX_MASK  |
4334 					 I40E_QINT_TQCTL_MSIX0_INDX_MASK |
4335 					 I40E_QINT_TQCTL_CAUSE_ENA_MASK  |
4336 					 I40E_QINT_TQCTL_INTEVENT_MASK);
4337 
4338 				val |= (I40E_QINT_TQCTL_ITR_INDX_MASK |
4339 					 I40E_QINT_TQCTL_NEXTQ_INDX_MASK);
4340 
4341 				wr32(hw, I40E_QINT_TQCTL(qp), val);
4342 				qp = next;
4343 			}
4344 		}
4345 	} else {
4346 		free_irq(pf->pdev->irq, pf);
4347 
4348 		val = rd32(hw, I40E_PFINT_LNKLST0);
4349 		qp = (val & I40E_PFINT_LNKLSTN_FIRSTQ_INDX_MASK)
4350 			>> I40E_PFINT_LNKLSTN_FIRSTQ_INDX_SHIFT;
4351 		val |= I40E_QUEUE_END_OF_LIST
4352 			<< I40E_PFINT_LNKLST0_FIRSTQ_INDX_SHIFT;
4353 		wr32(hw, I40E_PFINT_LNKLST0, val);
4354 
4355 		val = rd32(hw, I40E_QINT_RQCTL(qp));
4356 		val &= ~(I40E_QINT_RQCTL_MSIX_INDX_MASK  |
4357 			 I40E_QINT_RQCTL_MSIX0_INDX_MASK |
4358 			 I40E_QINT_RQCTL_CAUSE_ENA_MASK  |
4359 			 I40E_QINT_RQCTL_INTEVENT_MASK);
4360 
4361 		val |= (I40E_QINT_RQCTL_ITR_INDX_MASK |
4362 			I40E_QINT_RQCTL_NEXTQ_INDX_MASK);
4363 
4364 		wr32(hw, I40E_QINT_RQCTL(qp), val);
4365 
4366 		val = rd32(hw, I40E_QINT_TQCTL(qp));
4367 
4368 		val &= ~(I40E_QINT_TQCTL_MSIX_INDX_MASK  |
4369 			 I40E_QINT_TQCTL_MSIX0_INDX_MASK |
4370 			 I40E_QINT_TQCTL_CAUSE_ENA_MASK  |
4371 			 I40E_QINT_TQCTL_INTEVENT_MASK);
4372 
4373 		val |= (I40E_QINT_TQCTL_ITR_INDX_MASK |
4374 			I40E_QINT_TQCTL_NEXTQ_INDX_MASK);
4375 
4376 		wr32(hw, I40E_QINT_TQCTL(qp), val);
4377 	}
4378 }
4379 
4380 /**
4381  * i40e_free_q_vector - Free memory allocated for specific interrupt vector
4382  * @vsi: the VSI being configured
4383  * @v_idx: Index of vector to be freed
4384  *
4385  * This function frees the memory allocated to the q_vector.  In addition if
4386  * NAPI is enabled it will delete any references to the NAPI struct prior
4387  * to freeing the q_vector.
4388  **/
4389 static void i40e_free_q_vector(struct i40e_vsi *vsi, int v_idx)
4390 {
4391 	struct i40e_q_vector *q_vector = vsi->q_vectors[v_idx];
4392 	struct i40e_ring *ring;
4393 
4394 	if (!q_vector)
4395 		return;
4396 
4397 	/* disassociate q_vector from rings */
4398 	i40e_for_each_ring(ring, q_vector->tx)
4399 		ring->q_vector = NULL;
4400 
4401 	i40e_for_each_ring(ring, q_vector->rx)
4402 		ring->q_vector = NULL;
4403 
4404 	/* only VSI w/ an associated netdev is set up w/ NAPI */
4405 	if (vsi->netdev)
4406 		netif_napi_del(&q_vector->napi);
4407 
4408 	vsi->q_vectors[v_idx] = NULL;
4409 
4410 	kfree_rcu(q_vector, rcu);
4411 }
4412 
4413 /**
4414  * i40e_vsi_free_q_vectors - Free memory allocated for interrupt vectors
4415  * @vsi: the VSI being un-configured
4416  *
4417  * This frees the memory allocated to the q_vectors and
4418  * deletes references to the NAPI struct.
4419  **/
4420 static void i40e_vsi_free_q_vectors(struct i40e_vsi *vsi)
4421 {
4422 	int v_idx;
4423 
4424 	for (v_idx = 0; v_idx < vsi->num_q_vectors; v_idx++)
4425 		i40e_free_q_vector(vsi, v_idx);
4426 }
4427 
4428 /**
4429  * i40e_reset_interrupt_capability - Disable interrupt setup in OS
4430  * @pf: board private structure
4431  **/
4432 static void i40e_reset_interrupt_capability(struct i40e_pf *pf)
4433 {
4434 	/* If we're in Legacy mode, the interrupt was cleaned in vsi_close */
4435 	if (pf->flags & I40E_FLAG_MSIX_ENABLED) {
4436 		pci_disable_msix(pf->pdev);
4437 		kfree(pf->msix_entries);
4438 		pf->msix_entries = NULL;
4439 		kfree(pf->irq_pile);
4440 		pf->irq_pile = NULL;
4441 	} else if (pf->flags & I40E_FLAG_MSI_ENABLED) {
4442 		pci_disable_msi(pf->pdev);
4443 	}
4444 	pf->flags &= ~(I40E_FLAG_MSIX_ENABLED | I40E_FLAG_MSI_ENABLED);
4445 }
4446 
4447 /**
4448  * i40e_clear_interrupt_scheme - Clear the current interrupt scheme settings
4449  * @pf: board private structure
4450  *
4451  * We go through and clear interrupt specific resources and reset the structure
4452  * to pre-load conditions
4453  **/
4454 static void i40e_clear_interrupt_scheme(struct i40e_pf *pf)
4455 {
4456 	int i;
4457 
4458 	i40e_stop_misc_vector(pf);
4459 	if (pf->flags & I40E_FLAG_MSIX_ENABLED && pf->msix_entries) {
4460 		synchronize_irq(pf->msix_entries[0].vector);
4461 		free_irq(pf->msix_entries[0].vector, pf);
4462 	}
4463 
4464 	i40e_put_lump(pf->irq_pile, pf->iwarp_base_vector,
4465 		      I40E_IWARP_IRQ_PILE_ID);
4466 
4467 	i40e_put_lump(pf->irq_pile, 0, I40E_PILE_VALID_BIT-1);
4468 	for (i = 0; i < pf->num_alloc_vsi; i++)
4469 		if (pf->vsi[i])
4470 			i40e_vsi_free_q_vectors(pf->vsi[i]);
4471 	i40e_reset_interrupt_capability(pf);
4472 }
4473 
4474 /**
4475  * i40e_napi_enable_all - Enable NAPI for all q_vectors in the VSI
4476  * @vsi: the VSI being configured
4477  **/
4478 static void i40e_napi_enable_all(struct i40e_vsi *vsi)
4479 {
4480 	int q_idx;
4481 
4482 	if (!vsi->netdev)
4483 		return;
4484 
4485 	for (q_idx = 0; q_idx < vsi->num_q_vectors; q_idx++) {
4486 		struct i40e_q_vector *q_vector = vsi->q_vectors[q_idx];
4487 
4488 		if (q_vector->rx.ring || q_vector->tx.ring)
4489 			napi_enable(&q_vector->napi);
4490 	}
4491 }
4492 
4493 /**
4494  * i40e_napi_disable_all - Disable NAPI for all q_vectors in the VSI
4495  * @vsi: the VSI being configured
4496  **/
4497 static void i40e_napi_disable_all(struct i40e_vsi *vsi)
4498 {
4499 	int q_idx;
4500 
4501 	if (!vsi->netdev)
4502 		return;
4503 
4504 	for (q_idx = 0; q_idx < vsi->num_q_vectors; q_idx++) {
4505 		struct i40e_q_vector *q_vector = vsi->q_vectors[q_idx];
4506 
4507 		if (q_vector->rx.ring || q_vector->tx.ring)
4508 			napi_disable(&q_vector->napi);
4509 	}
4510 }
4511 
4512 /**
4513  * i40e_vsi_close - Shut down a VSI
4514  * @vsi: the vsi to be quelled
4515  **/
4516 static void i40e_vsi_close(struct i40e_vsi *vsi)
4517 {
4518 	struct i40e_pf *pf = vsi->back;
4519 	if (!test_and_set_bit(__I40E_VSI_DOWN, vsi->state))
4520 		i40e_down(vsi);
4521 	i40e_vsi_free_irq(vsi);
4522 	i40e_vsi_free_tx_resources(vsi);
4523 	i40e_vsi_free_rx_resources(vsi);
4524 	vsi->current_netdev_flags = 0;
4525 	pf->flags |= I40E_FLAG_SERVICE_CLIENT_REQUESTED;
4526 	if (test_bit(__I40E_RESET_RECOVERY_PENDING, pf->state))
4527 		pf->flags |=  I40E_FLAG_CLIENT_RESET;
4528 }
4529 
4530 /**
4531  * i40e_quiesce_vsi - Pause a given VSI
4532  * @vsi: the VSI being paused
4533  **/
4534 static void i40e_quiesce_vsi(struct i40e_vsi *vsi)
4535 {
4536 	if (test_bit(__I40E_VSI_DOWN, vsi->state))
4537 		return;
4538 
4539 	set_bit(__I40E_VSI_NEEDS_RESTART, vsi->state);
4540 	if (vsi->netdev && netif_running(vsi->netdev))
4541 		vsi->netdev->netdev_ops->ndo_stop(vsi->netdev);
4542 	else
4543 		i40e_vsi_close(vsi);
4544 }
4545 
4546 /**
4547  * i40e_unquiesce_vsi - Resume a given VSI
4548  * @vsi: the VSI being resumed
4549  **/
4550 static void i40e_unquiesce_vsi(struct i40e_vsi *vsi)
4551 {
4552 	if (!test_and_clear_bit(__I40E_VSI_NEEDS_RESTART, vsi->state))
4553 		return;
4554 
4555 	if (vsi->netdev && netif_running(vsi->netdev))
4556 		vsi->netdev->netdev_ops->ndo_open(vsi->netdev);
4557 	else
4558 		i40e_vsi_open(vsi);   /* this clears the DOWN bit */
4559 }
4560 
4561 /**
4562  * i40e_pf_quiesce_all_vsi - Pause all VSIs on a PF
4563  * @pf: the PF
4564  **/
4565 static void i40e_pf_quiesce_all_vsi(struct i40e_pf *pf)
4566 {
4567 	int v;
4568 
4569 	for (v = 0; v < pf->num_alloc_vsi; v++) {
4570 		if (pf->vsi[v])
4571 			i40e_quiesce_vsi(pf->vsi[v]);
4572 	}
4573 }
4574 
4575 /**
4576  * i40e_pf_unquiesce_all_vsi - Resume all VSIs on a PF
4577  * @pf: the PF
4578  **/
4579 static void i40e_pf_unquiesce_all_vsi(struct i40e_pf *pf)
4580 {
4581 	int v;
4582 
4583 	for (v = 0; v < pf->num_alloc_vsi; v++) {
4584 		if (pf->vsi[v])
4585 			i40e_unquiesce_vsi(pf->vsi[v]);
4586 	}
4587 }
4588 
4589 /**
4590  * i40e_vsi_wait_queues_disabled - Wait for VSI's queues to be disabled
4591  * @vsi: the VSI being configured
4592  *
4593  * Wait until all queues on a given VSI have been disabled.
4594  **/
4595 int i40e_vsi_wait_queues_disabled(struct i40e_vsi *vsi)
4596 {
4597 	struct i40e_pf *pf = vsi->back;
4598 	int i, pf_q, ret;
4599 
4600 	pf_q = vsi->base_queue;
4601 	for (i = 0; i < vsi->num_queue_pairs; i++, pf_q++) {
4602 		/* Check and wait for the Tx queue */
4603 		ret = i40e_pf_txq_wait(pf, pf_q, false);
4604 		if (ret) {
4605 			dev_info(&pf->pdev->dev,
4606 				 "VSI seid %d Tx ring %d disable timeout\n",
4607 				 vsi->seid, pf_q);
4608 			return ret;
4609 		}
4610 
4611 		if (!i40e_enabled_xdp_vsi(vsi))
4612 			goto wait_rx;
4613 
4614 		/* Check and wait for the XDP Tx queue */
4615 		ret = i40e_pf_txq_wait(pf, pf_q + vsi->alloc_queue_pairs,
4616 				       false);
4617 		if (ret) {
4618 			dev_info(&pf->pdev->dev,
4619 				 "VSI seid %d XDP Tx ring %d disable timeout\n",
4620 				 vsi->seid, pf_q);
4621 			return ret;
4622 		}
4623 wait_rx:
4624 		/* Check and wait for the Rx queue */
4625 		ret = i40e_pf_rxq_wait(pf, pf_q, false);
4626 		if (ret) {
4627 			dev_info(&pf->pdev->dev,
4628 				 "VSI seid %d Rx ring %d disable timeout\n",
4629 				 vsi->seid, pf_q);
4630 			return ret;
4631 		}
4632 	}
4633 
4634 	return 0;
4635 }
4636 
4637 #ifdef CONFIG_I40E_DCB
4638 /**
4639  * i40e_pf_wait_queues_disabled - Wait for all queues of PF VSIs to be disabled
4640  * @pf: the PF
4641  *
4642  * This function waits for the queues to be in disabled state for all the
4643  * VSIs that are managed by this PF.
4644  **/
4645 static int i40e_pf_wait_queues_disabled(struct i40e_pf *pf)
4646 {
4647 	int v, ret = 0;
4648 
4649 	for (v = 0; v < pf->hw.func_caps.num_vsis; v++) {
4650 		if (pf->vsi[v]) {
4651 			ret = i40e_vsi_wait_queues_disabled(pf->vsi[v]);
4652 			if (ret)
4653 				break;
4654 		}
4655 	}
4656 
4657 	return ret;
4658 }
4659 
4660 #endif
4661 
4662 /**
4663  * i40e_detect_recover_hung_queue - Function to detect and recover hung_queue
4664  * @q_idx: TX queue number
4665  * @vsi: Pointer to VSI struct
4666  *
4667  * This function checks specified queue for given VSI. Detects hung condition.
4668  * We proactively detect hung TX queues by checking if interrupts are disabled
4669  * but there are pending descriptors.  If it appears hung, attempt to recover
4670  * by triggering a SW interrupt.
4671  **/
4672 static void i40e_detect_recover_hung_queue(int q_idx, struct i40e_vsi *vsi)
4673 {
4674 	struct i40e_ring *tx_ring = NULL;
4675 	struct i40e_pf	*pf;
4676 	u32 val, tx_pending;
4677 	int i;
4678 
4679 	pf = vsi->back;
4680 
4681 	/* now that we have an index, find the tx_ring struct */
4682 	for (i = 0; i < vsi->num_queue_pairs; i++) {
4683 		if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc) {
4684 			if (q_idx == vsi->tx_rings[i]->queue_index) {
4685 				tx_ring = vsi->tx_rings[i];
4686 				break;
4687 			}
4688 		}
4689 	}
4690 
4691 	if (!tx_ring)
4692 		return;
4693 
4694 	/* Read interrupt register */
4695 	if (pf->flags & I40E_FLAG_MSIX_ENABLED)
4696 		val = rd32(&pf->hw,
4697 			   I40E_PFINT_DYN_CTLN(tx_ring->q_vector->v_idx +
4698 					       tx_ring->vsi->base_vector - 1));
4699 	else
4700 		val = rd32(&pf->hw, I40E_PFINT_DYN_CTL0);
4701 
4702 	tx_pending = i40e_get_tx_pending(tx_ring);
4703 
4704 	/* Interrupts are disabled and TX pending is non-zero,
4705 	 * trigger the SW interrupt (don't wait). Worst case
4706 	 * there will be one extra interrupt which may result
4707 	 * into not cleaning any queues because queues are cleaned.
4708 	 */
4709 	if (tx_pending && (!(val & I40E_PFINT_DYN_CTLN_INTENA_MASK)))
4710 		i40e_force_wb(vsi, tx_ring->q_vector);
4711 }
4712 
4713 /**
4714  * i40e_detect_recover_hung - Function to detect and recover hung_queues
4715  * @pf:  pointer to PF struct
4716  *
4717  * LAN VSI has netdev and netdev has TX queues. This function is to check
4718  * each of those TX queues if they are hung, trigger recovery by issuing
4719  * SW interrupt.
4720  **/
4721 static void i40e_detect_recover_hung(struct i40e_pf *pf)
4722 {
4723 	struct net_device *netdev;
4724 	struct i40e_vsi *vsi;
4725 	unsigned int i;
4726 
4727 	/* Only for LAN VSI */
4728 	vsi = pf->vsi[pf->lan_vsi];
4729 
4730 	if (!vsi)
4731 		return;
4732 
4733 	/* Make sure, VSI state is not DOWN/RECOVERY_PENDING */
4734 	if (test_bit(__I40E_VSI_DOWN, vsi->back->state) ||
4735 	    test_bit(__I40E_RESET_RECOVERY_PENDING, vsi->back->state))
4736 		return;
4737 
4738 	/* Make sure type is MAIN VSI */
4739 	if (vsi->type != I40E_VSI_MAIN)
4740 		return;
4741 
4742 	netdev = vsi->netdev;
4743 	if (!netdev)
4744 		return;
4745 
4746 	/* Bail out if netif_carrier is not OK */
4747 	if (!netif_carrier_ok(netdev))
4748 		return;
4749 
4750 	/* Go thru' TX queues for netdev */
4751 	for (i = 0; i < netdev->num_tx_queues; i++) {
4752 		struct netdev_queue *q;
4753 
4754 		q = netdev_get_tx_queue(netdev, i);
4755 		if (q)
4756 			i40e_detect_recover_hung_queue(i, vsi);
4757 	}
4758 }
4759 
4760 /**
4761  * i40e_get_iscsi_tc_map - Return TC map for iSCSI APP
4762  * @pf: pointer to PF
4763  *
4764  * Get TC map for ISCSI PF type that will include iSCSI TC
4765  * and LAN TC.
4766  **/
4767 static u8 i40e_get_iscsi_tc_map(struct i40e_pf *pf)
4768 {
4769 	struct i40e_dcb_app_priority_table app;
4770 	struct i40e_hw *hw = &pf->hw;
4771 	u8 enabled_tc = 1; /* TC0 is always enabled */
4772 	u8 tc, i;
4773 	/* Get the iSCSI APP TLV */
4774 	struct i40e_dcbx_config *dcbcfg = &hw->local_dcbx_config;
4775 
4776 	for (i = 0; i < dcbcfg->numapps; i++) {
4777 		app = dcbcfg->app[i];
4778 		if (app.selector == I40E_APP_SEL_TCPIP &&
4779 		    app.protocolid == I40E_APP_PROTOID_ISCSI) {
4780 			tc = dcbcfg->etscfg.prioritytable[app.priority];
4781 			enabled_tc |= BIT(tc);
4782 			break;
4783 		}
4784 	}
4785 
4786 	return enabled_tc;
4787 }
4788 
4789 /**
4790  * i40e_dcb_get_num_tc -  Get the number of TCs from DCBx config
4791  * @dcbcfg: the corresponding DCBx configuration structure
4792  *
4793  * Return the number of TCs from given DCBx configuration
4794  **/
4795 static u8 i40e_dcb_get_num_tc(struct i40e_dcbx_config *dcbcfg)
4796 {
4797 	int i, tc_unused = 0;
4798 	u8 num_tc = 0;
4799 	u8 ret = 0;
4800 
4801 	/* Scan the ETS Config Priority Table to find
4802 	 * traffic class enabled for a given priority
4803 	 * and create a bitmask of enabled TCs
4804 	 */
4805 	for (i = 0; i < I40E_MAX_USER_PRIORITY; i++)
4806 		num_tc |= BIT(dcbcfg->etscfg.prioritytable[i]);
4807 
4808 	/* Now scan the bitmask to check for
4809 	 * contiguous TCs starting with TC0
4810 	 */
4811 	for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) {
4812 		if (num_tc & BIT(i)) {
4813 			if (!tc_unused) {
4814 				ret++;
4815 			} else {
4816 				pr_err("Non-contiguous TC - Disabling DCB\n");
4817 				return 1;
4818 			}
4819 		} else {
4820 			tc_unused = 1;
4821 		}
4822 	}
4823 
4824 	/* There is always at least TC0 */
4825 	if (!ret)
4826 		ret = 1;
4827 
4828 	return ret;
4829 }
4830 
4831 /**
4832  * i40e_dcb_get_enabled_tc - Get enabled traffic classes
4833  * @dcbcfg: the corresponding DCBx configuration structure
4834  *
4835  * Query the current DCB configuration and return the number of
4836  * traffic classes enabled from the given DCBX config
4837  **/
4838 static u8 i40e_dcb_get_enabled_tc(struct i40e_dcbx_config *dcbcfg)
4839 {
4840 	u8 num_tc = i40e_dcb_get_num_tc(dcbcfg);
4841 	u8 enabled_tc = 1;
4842 	u8 i;
4843 
4844 	for (i = 0; i < num_tc; i++)
4845 		enabled_tc |= BIT(i);
4846 
4847 	return enabled_tc;
4848 }
4849 
4850 /**
4851  * i40e_pf_get_num_tc - Get enabled traffic classes for PF
4852  * @pf: PF being queried
4853  *
4854  * Return number of traffic classes enabled for the given PF
4855  **/
4856 static u8 i40e_pf_get_num_tc(struct i40e_pf *pf)
4857 {
4858 	struct i40e_hw *hw = &pf->hw;
4859 	u8 i, enabled_tc = 1;
4860 	u8 num_tc = 0;
4861 	struct i40e_dcbx_config *dcbcfg = &hw->local_dcbx_config;
4862 
4863 	/* If DCB is not enabled then always in single TC */
4864 	if (!(pf->flags & I40E_FLAG_DCB_ENABLED))
4865 		return 1;
4866 
4867 	/* SFP mode will be enabled for all TCs on port */
4868 	if (!(pf->flags & I40E_FLAG_MFP_ENABLED))
4869 		return i40e_dcb_get_num_tc(dcbcfg);
4870 
4871 	/* MFP mode return count of enabled TCs for this PF */
4872 	if (pf->hw.func_caps.iscsi)
4873 		enabled_tc =  i40e_get_iscsi_tc_map(pf);
4874 	else
4875 		return 1; /* Only TC0 */
4876 
4877 	for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) {
4878 		if (enabled_tc & BIT(i))
4879 			num_tc++;
4880 	}
4881 	return num_tc;
4882 }
4883 
4884 /**
4885  * i40e_pf_get_pf_tc_map - Get bitmap for enabled traffic classes
4886  * @pf: PF being queried
4887  *
4888  * Return a bitmap for enabled traffic classes for this PF.
4889  **/
4890 static u8 i40e_pf_get_tc_map(struct i40e_pf *pf)
4891 {
4892 	/* If DCB is not enabled for this PF then just return default TC */
4893 	if (!(pf->flags & I40E_FLAG_DCB_ENABLED))
4894 		return I40E_DEFAULT_TRAFFIC_CLASS;
4895 
4896 	/* SFP mode we want PF to be enabled for all TCs */
4897 	if (!(pf->flags & I40E_FLAG_MFP_ENABLED))
4898 		return i40e_dcb_get_enabled_tc(&pf->hw.local_dcbx_config);
4899 
4900 	/* MFP enabled and iSCSI PF type */
4901 	if (pf->hw.func_caps.iscsi)
4902 		return i40e_get_iscsi_tc_map(pf);
4903 	else
4904 		return I40E_DEFAULT_TRAFFIC_CLASS;
4905 }
4906 
4907 /**
4908  * i40e_vsi_get_bw_info - Query VSI BW Information
4909  * @vsi: the VSI being queried
4910  *
4911  * Returns 0 on success, negative value on failure
4912  **/
4913 static int i40e_vsi_get_bw_info(struct i40e_vsi *vsi)
4914 {
4915 	struct i40e_aqc_query_vsi_ets_sla_config_resp bw_ets_config = {0};
4916 	struct i40e_aqc_query_vsi_bw_config_resp bw_config = {0};
4917 	struct i40e_pf *pf = vsi->back;
4918 	struct i40e_hw *hw = &pf->hw;
4919 	i40e_status ret;
4920 	u32 tc_bw_max;
4921 	int i;
4922 
4923 	/* Get the VSI level BW configuration */
4924 	ret = i40e_aq_query_vsi_bw_config(hw, vsi->seid, &bw_config, NULL);
4925 	if (ret) {
4926 		dev_info(&pf->pdev->dev,
4927 			 "couldn't get PF vsi bw config, err %s aq_err %s\n",
4928 			 i40e_stat_str(&pf->hw, ret),
4929 			 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status));
4930 		return -EINVAL;
4931 	}
4932 
4933 	/* Get the VSI level BW configuration per TC */
4934 	ret = i40e_aq_query_vsi_ets_sla_config(hw, vsi->seid, &bw_ets_config,
4935 					       NULL);
4936 	if (ret) {
4937 		dev_info(&pf->pdev->dev,
4938 			 "couldn't get PF vsi ets bw config, err %s aq_err %s\n",
4939 			 i40e_stat_str(&pf->hw, ret),
4940 			 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status));
4941 		return -EINVAL;
4942 	}
4943 
4944 	if (bw_config.tc_valid_bits != bw_ets_config.tc_valid_bits) {
4945 		dev_info(&pf->pdev->dev,
4946 			 "Enabled TCs mismatch from querying VSI BW info 0x%08x 0x%08x\n",
4947 			 bw_config.tc_valid_bits,
4948 			 bw_ets_config.tc_valid_bits);
4949 		/* Still continuing */
4950 	}
4951 
4952 	vsi->bw_limit = le16_to_cpu(bw_config.port_bw_limit);
4953 	vsi->bw_max_quanta = bw_config.max_bw;
4954 	tc_bw_max = le16_to_cpu(bw_ets_config.tc_bw_max[0]) |
4955 		    (le16_to_cpu(bw_ets_config.tc_bw_max[1]) << 16);
4956 	for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) {
4957 		vsi->bw_ets_share_credits[i] = bw_ets_config.share_credits[i];
4958 		vsi->bw_ets_limit_credits[i] =
4959 					le16_to_cpu(bw_ets_config.credits[i]);
4960 		/* 3 bits out of 4 for each TC */
4961 		vsi->bw_ets_max_quanta[i] = (u8)((tc_bw_max >> (i*4)) & 0x7);
4962 	}
4963 
4964 	return 0;
4965 }
4966 
4967 /**
4968  * i40e_vsi_configure_bw_alloc - Configure VSI BW allocation per TC
4969  * @vsi: the VSI being configured
4970  * @enabled_tc: TC bitmap
4971  * @bw_credits: BW shared credits per TC
4972  *
4973  * Returns 0 on success, negative value on failure
4974  **/
4975 static int i40e_vsi_configure_bw_alloc(struct i40e_vsi *vsi, u8 enabled_tc,
4976 				       u8 *bw_share)
4977 {
4978 	struct i40e_aqc_configure_vsi_tc_bw_data bw_data;
4979 	i40e_status ret;
4980 	int i;
4981 
4982 	bw_data.tc_valid_bits = enabled_tc;
4983 	for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++)
4984 		bw_data.tc_bw_credits[i] = bw_share[i];
4985 
4986 	ret = i40e_aq_config_vsi_tc_bw(&vsi->back->hw, vsi->seid, &bw_data,
4987 				       NULL);
4988 	if (ret) {
4989 		dev_info(&vsi->back->pdev->dev,
4990 			 "AQ command Config VSI BW allocation per TC failed = %d\n",
4991 			 vsi->back->hw.aq.asq_last_status);
4992 		return -EINVAL;
4993 	}
4994 
4995 	for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++)
4996 		vsi->info.qs_handle[i] = bw_data.qs_handles[i];
4997 
4998 	return 0;
4999 }
5000 
5001 /**
5002  * i40e_vsi_config_netdev_tc - Setup the netdev TC configuration
5003  * @vsi: the VSI being configured
5004  * @enabled_tc: TC map to be enabled
5005  *
5006  **/
5007 static void i40e_vsi_config_netdev_tc(struct i40e_vsi *vsi, u8 enabled_tc)
5008 {
5009 	struct net_device *netdev = vsi->netdev;
5010 	struct i40e_pf *pf = vsi->back;
5011 	struct i40e_hw *hw = &pf->hw;
5012 	u8 netdev_tc = 0;
5013 	int i;
5014 	struct i40e_dcbx_config *dcbcfg = &hw->local_dcbx_config;
5015 
5016 	if (!netdev)
5017 		return;
5018 
5019 	if (!enabled_tc) {
5020 		netdev_reset_tc(netdev);
5021 		return;
5022 	}
5023 
5024 	/* Set up actual enabled TCs on the VSI */
5025 	if (netdev_set_num_tc(netdev, vsi->tc_config.numtc))
5026 		return;
5027 
5028 	/* set per TC queues for the VSI */
5029 	for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) {
5030 		/* Only set TC queues for enabled tcs
5031 		 *
5032 		 * e.g. For a VSI that has TC0 and TC3 enabled the
5033 		 * enabled_tc bitmap would be 0x00001001; the driver
5034 		 * will set the numtc for netdev as 2 that will be
5035 		 * referenced by the netdev layer as TC 0 and 1.
5036 		 */
5037 		if (vsi->tc_config.enabled_tc & BIT(i))
5038 			netdev_set_tc_queue(netdev,
5039 					vsi->tc_config.tc_info[i].netdev_tc,
5040 					vsi->tc_config.tc_info[i].qcount,
5041 					vsi->tc_config.tc_info[i].qoffset);
5042 	}
5043 
5044 	/* Assign UP2TC map for the VSI */
5045 	for (i = 0; i < I40E_MAX_USER_PRIORITY; i++) {
5046 		/* Get the actual TC# for the UP */
5047 		u8 ets_tc = dcbcfg->etscfg.prioritytable[i];
5048 		/* Get the mapped netdev TC# for the UP */
5049 		netdev_tc =  vsi->tc_config.tc_info[ets_tc].netdev_tc;
5050 		netdev_set_prio_tc_map(netdev, i, netdev_tc);
5051 	}
5052 }
5053 
5054 /**
5055  * i40e_vsi_update_queue_map - Update our copy of VSi info with new queue map
5056  * @vsi: the VSI being configured
5057  * @ctxt: the ctxt buffer returned from AQ VSI update param command
5058  **/
5059 static void i40e_vsi_update_queue_map(struct i40e_vsi *vsi,
5060 				      struct i40e_vsi_context *ctxt)
5061 {
5062 	/* copy just the sections touched not the entire info
5063 	 * since not all sections are valid as returned by
5064 	 * update vsi params
5065 	 */
5066 	vsi->info.mapping_flags = ctxt->info.mapping_flags;
5067 	memcpy(&vsi->info.queue_mapping,
5068 	       &ctxt->info.queue_mapping, sizeof(vsi->info.queue_mapping));
5069 	memcpy(&vsi->info.tc_mapping, ctxt->info.tc_mapping,
5070 	       sizeof(vsi->info.tc_mapping));
5071 }
5072 
5073 /**
5074  * i40e_vsi_config_tc - Configure VSI Tx Scheduler for given TC map
5075  * @vsi: VSI to be configured
5076  * @enabled_tc: TC bitmap
5077  *
5078  * This configures a particular VSI for TCs that are mapped to the
5079  * given TC bitmap. It uses default bandwidth share for TCs across
5080  * VSIs to configure TC for a particular VSI.
5081  *
5082  * NOTE:
5083  * It is expected that the VSI queues have been quisced before calling
5084  * this function.
5085  **/
5086 static int i40e_vsi_config_tc(struct i40e_vsi *vsi, u8 enabled_tc)
5087 {
5088 	u8 bw_share[I40E_MAX_TRAFFIC_CLASS] = {0};
5089 	struct i40e_vsi_context ctxt;
5090 	int ret = 0;
5091 	int i;
5092 
5093 	/* Check if enabled_tc is same as existing or new TCs */
5094 	if (vsi->tc_config.enabled_tc == enabled_tc)
5095 		return ret;
5096 
5097 	/* Enable ETS TCs with equal BW Share for now across all VSIs */
5098 	for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) {
5099 		if (enabled_tc & BIT(i))
5100 			bw_share[i] = 1;
5101 	}
5102 
5103 	ret = i40e_vsi_configure_bw_alloc(vsi, enabled_tc, bw_share);
5104 	if (ret) {
5105 		dev_info(&vsi->back->pdev->dev,
5106 			 "Failed configuring TC map %d for VSI %d\n",
5107 			 enabled_tc, vsi->seid);
5108 		goto out;
5109 	}
5110 
5111 	/* Update Queue Pairs Mapping for currently enabled UPs */
5112 	ctxt.seid = vsi->seid;
5113 	ctxt.pf_num = vsi->back->hw.pf_id;
5114 	ctxt.vf_num = 0;
5115 	ctxt.uplink_seid = vsi->uplink_seid;
5116 	ctxt.info = vsi->info;
5117 	i40e_vsi_setup_queue_map(vsi, &ctxt, enabled_tc, false);
5118 
5119 	if (vsi->back->flags & I40E_FLAG_IWARP_ENABLED) {
5120 		ctxt.info.valid_sections |=
5121 				cpu_to_le16(I40E_AQ_VSI_PROP_QUEUE_OPT_VALID);
5122 		ctxt.info.queueing_opt_flags |= I40E_AQ_VSI_QUE_OPT_TCP_ENA;
5123 	}
5124 
5125 	/* Update the VSI after updating the VSI queue-mapping information */
5126 	ret = i40e_aq_update_vsi_params(&vsi->back->hw, &ctxt, NULL);
5127 	if (ret) {
5128 		dev_info(&vsi->back->pdev->dev,
5129 			 "Update vsi tc config failed, err %s aq_err %s\n",
5130 			 i40e_stat_str(&vsi->back->hw, ret),
5131 			 i40e_aq_str(&vsi->back->hw,
5132 				     vsi->back->hw.aq.asq_last_status));
5133 		goto out;
5134 	}
5135 	/* update the local VSI info with updated queue map */
5136 	i40e_vsi_update_queue_map(vsi, &ctxt);
5137 	vsi->info.valid_sections = 0;
5138 
5139 	/* Update current VSI BW information */
5140 	ret = i40e_vsi_get_bw_info(vsi);
5141 	if (ret) {
5142 		dev_info(&vsi->back->pdev->dev,
5143 			 "Failed updating vsi bw info, err %s aq_err %s\n",
5144 			 i40e_stat_str(&vsi->back->hw, ret),
5145 			 i40e_aq_str(&vsi->back->hw,
5146 				     vsi->back->hw.aq.asq_last_status));
5147 		goto out;
5148 	}
5149 
5150 	/* Update the netdev TC setup */
5151 	i40e_vsi_config_netdev_tc(vsi, enabled_tc);
5152 out:
5153 	return ret;
5154 }
5155 
5156 /**
5157  * i40e_veb_config_tc - Configure TCs for given VEB
5158  * @veb: given VEB
5159  * @enabled_tc: TC bitmap
5160  *
5161  * Configures given TC bitmap for VEB (switching) element
5162  **/
5163 int i40e_veb_config_tc(struct i40e_veb *veb, u8 enabled_tc)
5164 {
5165 	struct i40e_aqc_configure_switching_comp_bw_config_data bw_data = {0};
5166 	struct i40e_pf *pf = veb->pf;
5167 	int ret = 0;
5168 	int i;
5169 
5170 	/* No TCs or already enabled TCs just return */
5171 	if (!enabled_tc || veb->enabled_tc == enabled_tc)
5172 		return ret;
5173 
5174 	bw_data.tc_valid_bits = enabled_tc;
5175 	/* bw_data.absolute_credits is not set (relative) */
5176 
5177 	/* Enable ETS TCs with equal BW Share for now */
5178 	for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) {
5179 		if (enabled_tc & BIT(i))
5180 			bw_data.tc_bw_share_credits[i] = 1;
5181 	}
5182 
5183 	ret = i40e_aq_config_switch_comp_bw_config(&pf->hw, veb->seid,
5184 						   &bw_data, NULL);
5185 	if (ret) {
5186 		dev_info(&pf->pdev->dev,
5187 			 "VEB bw config failed, err %s aq_err %s\n",
5188 			 i40e_stat_str(&pf->hw, ret),
5189 			 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status));
5190 		goto out;
5191 	}
5192 
5193 	/* Update the BW information */
5194 	ret = i40e_veb_get_bw_info(veb);
5195 	if (ret) {
5196 		dev_info(&pf->pdev->dev,
5197 			 "Failed getting veb bw config, err %s aq_err %s\n",
5198 			 i40e_stat_str(&pf->hw, ret),
5199 			 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status));
5200 	}
5201 
5202 out:
5203 	return ret;
5204 }
5205 
5206 #ifdef CONFIG_I40E_DCB
5207 /**
5208  * i40e_dcb_reconfigure - Reconfigure all VEBs and VSIs
5209  * @pf: PF struct
5210  *
5211  * Reconfigure VEB/VSIs on a given PF; it is assumed that
5212  * the caller would've quiesce all the VSIs before calling
5213  * this function
5214  **/
5215 static void i40e_dcb_reconfigure(struct i40e_pf *pf)
5216 {
5217 	u8 tc_map = 0;
5218 	int ret;
5219 	u8 v;
5220 
5221 	/* Enable the TCs available on PF to all VEBs */
5222 	tc_map = i40e_pf_get_tc_map(pf);
5223 	for (v = 0; v < I40E_MAX_VEB; v++) {
5224 		if (!pf->veb[v])
5225 			continue;
5226 		ret = i40e_veb_config_tc(pf->veb[v], tc_map);
5227 		if (ret) {
5228 			dev_info(&pf->pdev->dev,
5229 				 "Failed configuring TC for VEB seid=%d\n",
5230 				 pf->veb[v]->seid);
5231 			/* Will try to configure as many components */
5232 		}
5233 	}
5234 
5235 	/* Update each VSI */
5236 	for (v = 0; v < pf->num_alloc_vsi; v++) {
5237 		if (!pf->vsi[v])
5238 			continue;
5239 
5240 		/* - Enable all TCs for the LAN VSI
5241 		 * - For all others keep them at TC0 for now
5242 		 */
5243 		if (v == pf->lan_vsi)
5244 			tc_map = i40e_pf_get_tc_map(pf);
5245 		else
5246 			tc_map = I40E_DEFAULT_TRAFFIC_CLASS;
5247 
5248 		ret = i40e_vsi_config_tc(pf->vsi[v], tc_map);
5249 		if (ret) {
5250 			dev_info(&pf->pdev->dev,
5251 				 "Failed configuring TC for VSI seid=%d\n",
5252 				 pf->vsi[v]->seid);
5253 			/* Will try to configure as many components */
5254 		} else {
5255 			/* Re-configure VSI vectors based on updated TC map */
5256 			i40e_vsi_map_rings_to_vectors(pf->vsi[v]);
5257 			if (pf->vsi[v]->netdev)
5258 				i40e_dcbnl_set_all(pf->vsi[v]);
5259 		}
5260 	}
5261 }
5262 
5263 /**
5264  * i40e_resume_port_tx - Resume port Tx
5265  * @pf: PF struct
5266  *
5267  * Resume a port's Tx and issue a PF reset in case of failure to
5268  * resume.
5269  **/
5270 static int i40e_resume_port_tx(struct i40e_pf *pf)
5271 {
5272 	struct i40e_hw *hw = &pf->hw;
5273 	int ret;
5274 
5275 	ret = i40e_aq_resume_port_tx(hw, NULL);
5276 	if (ret) {
5277 		dev_info(&pf->pdev->dev,
5278 			 "Resume Port Tx failed, err %s aq_err %s\n",
5279 			  i40e_stat_str(&pf->hw, ret),
5280 			  i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status));
5281 		/* Schedule PF reset to recover */
5282 		set_bit(__I40E_PF_RESET_REQUESTED, pf->state);
5283 		i40e_service_event_schedule(pf);
5284 	}
5285 
5286 	return ret;
5287 }
5288 
5289 /**
5290  * i40e_init_pf_dcb - Initialize DCB configuration
5291  * @pf: PF being configured
5292  *
5293  * Query the current DCB configuration and cache it
5294  * in the hardware structure
5295  **/
5296 static int i40e_init_pf_dcb(struct i40e_pf *pf)
5297 {
5298 	struct i40e_hw *hw = &pf->hw;
5299 	int err = 0;
5300 
5301 	/* Do not enable DCB for SW1 and SW2 images even if the FW is capable */
5302 	if (pf->hw_features & I40E_HW_NO_DCB_SUPPORT)
5303 		goto out;
5304 
5305 	/* Get the initial DCB configuration */
5306 	err = i40e_init_dcb(hw);
5307 	if (!err) {
5308 		/* Device/Function is not DCBX capable */
5309 		if ((!hw->func_caps.dcb) ||
5310 		    (hw->dcbx_status == I40E_DCBX_STATUS_DISABLED)) {
5311 			dev_info(&pf->pdev->dev,
5312 				 "DCBX offload is not supported or is disabled for this PF.\n");
5313 		} else {
5314 			/* When status is not DISABLED then DCBX in FW */
5315 			pf->dcbx_cap = DCB_CAP_DCBX_LLD_MANAGED |
5316 				       DCB_CAP_DCBX_VER_IEEE;
5317 
5318 			pf->flags |= I40E_FLAG_DCB_CAPABLE;
5319 			/* Enable DCB tagging only when more than one TC
5320 			 * or explicitly disable if only one TC
5321 			 */
5322 			if (i40e_dcb_get_num_tc(&hw->local_dcbx_config) > 1)
5323 				pf->flags |= I40E_FLAG_DCB_ENABLED;
5324 			else
5325 				pf->flags &= ~I40E_FLAG_DCB_ENABLED;
5326 			dev_dbg(&pf->pdev->dev,
5327 				"DCBX offload is supported for this PF.\n");
5328 		}
5329 	} else {
5330 		dev_info(&pf->pdev->dev,
5331 			 "Query for DCB configuration failed, err %s aq_err %s\n",
5332 			 i40e_stat_str(&pf->hw, err),
5333 			 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status));
5334 	}
5335 
5336 out:
5337 	return err;
5338 }
5339 #endif /* CONFIG_I40E_DCB */
5340 #define SPEED_SIZE 14
5341 #define FC_SIZE 8
5342 /**
5343  * i40e_print_link_message - print link up or down
5344  * @vsi: the VSI for which link needs a message
5345  */
5346 void i40e_print_link_message(struct i40e_vsi *vsi, bool isup)
5347 {
5348 	enum i40e_aq_link_speed new_speed;
5349 	char *speed = "Unknown";
5350 	char *fc = "Unknown";
5351 	char *fec = "";
5352 	char *req_fec = "";
5353 	char *an = "";
5354 
5355 	new_speed = vsi->back->hw.phy.link_info.link_speed;
5356 
5357 	if ((vsi->current_isup == isup) && (vsi->current_speed == new_speed))
5358 		return;
5359 	vsi->current_isup = isup;
5360 	vsi->current_speed = new_speed;
5361 	if (!isup) {
5362 		netdev_info(vsi->netdev, "NIC Link is Down\n");
5363 		return;
5364 	}
5365 
5366 	/* Warn user if link speed on NPAR enabled partition is not at
5367 	 * least 10GB
5368 	 */
5369 	if (vsi->back->hw.func_caps.npar_enable &&
5370 	    (vsi->back->hw.phy.link_info.link_speed == I40E_LINK_SPEED_1GB ||
5371 	     vsi->back->hw.phy.link_info.link_speed == I40E_LINK_SPEED_100MB))
5372 		netdev_warn(vsi->netdev,
5373 			    "The partition detected link speed that is less than 10Gbps\n");
5374 
5375 	switch (vsi->back->hw.phy.link_info.link_speed) {
5376 	case I40E_LINK_SPEED_40GB:
5377 		speed = "40 G";
5378 		break;
5379 	case I40E_LINK_SPEED_20GB:
5380 		speed = "20 G";
5381 		break;
5382 	case I40E_LINK_SPEED_25GB:
5383 		speed = "25 G";
5384 		break;
5385 	case I40E_LINK_SPEED_10GB:
5386 		speed = "10 G";
5387 		break;
5388 	case I40E_LINK_SPEED_1GB:
5389 		speed = "1000 M";
5390 		break;
5391 	case I40E_LINK_SPEED_100MB:
5392 		speed = "100 M";
5393 		break;
5394 	default:
5395 		break;
5396 	}
5397 
5398 	switch (vsi->back->hw.fc.current_mode) {
5399 	case I40E_FC_FULL:
5400 		fc = "RX/TX";
5401 		break;
5402 	case I40E_FC_TX_PAUSE:
5403 		fc = "TX";
5404 		break;
5405 	case I40E_FC_RX_PAUSE:
5406 		fc = "RX";
5407 		break;
5408 	default:
5409 		fc = "None";
5410 		break;
5411 	}
5412 
5413 	if (vsi->back->hw.phy.link_info.link_speed == I40E_LINK_SPEED_25GB) {
5414 		req_fec = ", Requested FEC: None";
5415 		fec = ", FEC: None";
5416 		an = ", Autoneg: False";
5417 
5418 		if (vsi->back->hw.phy.link_info.an_info & I40E_AQ_AN_COMPLETED)
5419 			an = ", Autoneg: True";
5420 
5421 		if (vsi->back->hw.phy.link_info.fec_info &
5422 		    I40E_AQ_CONFIG_FEC_KR_ENA)
5423 			fec = ", FEC: CL74 FC-FEC/BASE-R";
5424 		else if (vsi->back->hw.phy.link_info.fec_info &
5425 			 I40E_AQ_CONFIG_FEC_RS_ENA)
5426 			fec = ", FEC: CL108 RS-FEC";
5427 
5428 		/* 'CL108 RS-FEC' should be displayed when RS is requested, or
5429 		 * both RS and FC are requested
5430 		 */
5431 		if (vsi->back->hw.phy.link_info.req_fec_info &
5432 		    (I40E_AQ_REQUEST_FEC_KR | I40E_AQ_REQUEST_FEC_RS)) {
5433 			if (vsi->back->hw.phy.link_info.req_fec_info &
5434 			    I40E_AQ_REQUEST_FEC_RS)
5435 				req_fec = ", Requested FEC: CL108 RS-FEC";
5436 			else
5437 				req_fec = ", Requested FEC: CL74 FC-FEC/BASE-R";
5438 		}
5439 	}
5440 
5441 	netdev_info(vsi->netdev, "NIC Link is Up, %sbps Full Duplex%s%s%s, Flow Control: %s\n",
5442 		    speed, req_fec, fec, an, fc);
5443 }
5444 
5445 /**
5446  * i40e_up_complete - Finish the last steps of bringing up a connection
5447  * @vsi: the VSI being configured
5448  **/
5449 static int i40e_up_complete(struct i40e_vsi *vsi)
5450 {
5451 	struct i40e_pf *pf = vsi->back;
5452 	int err;
5453 
5454 	if (pf->flags & I40E_FLAG_MSIX_ENABLED)
5455 		i40e_vsi_configure_msix(vsi);
5456 	else
5457 		i40e_configure_msi_and_legacy(vsi);
5458 
5459 	/* start rings */
5460 	err = i40e_vsi_start_rings(vsi);
5461 	if (err)
5462 		return err;
5463 
5464 	clear_bit(__I40E_VSI_DOWN, vsi->state);
5465 	i40e_napi_enable_all(vsi);
5466 	i40e_vsi_enable_irq(vsi);
5467 
5468 	if ((pf->hw.phy.link_info.link_info & I40E_AQ_LINK_UP) &&
5469 	    (vsi->netdev)) {
5470 		i40e_print_link_message(vsi, true);
5471 		netif_tx_start_all_queues(vsi->netdev);
5472 		netif_carrier_on(vsi->netdev);
5473 	} else if (vsi->netdev) {
5474 		i40e_print_link_message(vsi, false);
5475 		/* need to check for qualified module here*/
5476 		if ((pf->hw.phy.link_info.link_info &
5477 			I40E_AQ_MEDIA_AVAILABLE) &&
5478 		    (!(pf->hw.phy.link_info.an_info &
5479 			I40E_AQ_QUALIFIED_MODULE)))
5480 			netdev_err(vsi->netdev,
5481 				   "the driver failed to link because an unqualified module was detected.");
5482 	}
5483 
5484 	/* replay FDIR SB filters */
5485 	if (vsi->type == I40E_VSI_FDIR) {
5486 		/* reset fd counters */
5487 		pf->fd_add_err = 0;
5488 		pf->fd_atr_cnt = 0;
5489 		i40e_fdir_filter_restore(vsi);
5490 	}
5491 
5492 	/* On the next run of the service_task, notify any clients of the new
5493 	 * opened netdev
5494 	 */
5495 	pf->flags |= I40E_FLAG_SERVICE_CLIENT_REQUESTED;
5496 	i40e_service_event_schedule(pf);
5497 
5498 	return 0;
5499 }
5500 
5501 /**
5502  * i40e_vsi_reinit_locked - Reset the VSI
5503  * @vsi: the VSI being configured
5504  *
5505  * Rebuild the ring structs after some configuration
5506  * has changed, e.g. MTU size.
5507  **/
5508 static void i40e_vsi_reinit_locked(struct i40e_vsi *vsi)
5509 {
5510 	struct i40e_pf *pf = vsi->back;
5511 
5512 	WARN_ON(in_interrupt());
5513 	while (test_and_set_bit(__I40E_CONFIG_BUSY, pf->state))
5514 		usleep_range(1000, 2000);
5515 	i40e_down(vsi);
5516 
5517 	i40e_up(vsi);
5518 	clear_bit(__I40E_CONFIG_BUSY, pf->state);
5519 }
5520 
5521 /**
5522  * i40e_up - Bring the connection back up after being down
5523  * @vsi: the VSI being configured
5524  **/
5525 int i40e_up(struct i40e_vsi *vsi)
5526 {
5527 	int err;
5528 
5529 	err = i40e_vsi_configure(vsi);
5530 	if (!err)
5531 		err = i40e_up_complete(vsi);
5532 
5533 	return err;
5534 }
5535 
5536 /**
5537  * i40e_down - Shutdown the connection processing
5538  * @vsi: the VSI being stopped
5539  **/
5540 void i40e_down(struct i40e_vsi *vsi)
5541 {
5542 	int i;
5543 
5544 	/* It is assumed that the caller of this function
5545 	 * sets the vsi->state __I40E_VSI_DOWN bit.
5546 	 */
5547 	if (vsi->netdev) {
5548 		netif_carrier_off(vsi->netdev);
5549 		netif_tx_disable(vsi->netdev);
5550 	}
5551 	i40e_vsi_disable_irq(vsi);
5552 	i40e_vsi_stop_rings(vsi);
5553 	i40e_napi_disable_all(vsi);
5554 
5555 	for (i = 0; i < vsi->num_queue_pairs; i++) {
5556 		i40e_clean_tx_ring(vsi->tx_rings[i]);
5557 		if (i40e_enabled_xdp_vsi(vsi))
5558 			i40e_clean_tx_ring(vsi->xdp_rings[i]);
5559 		i40e_clean_rx_ring(vsi->rx_rings[i]);
5560 	}
5561 
5562 }
5563 
5564 /**
5565  * i40e_setup_tc - configure multiple traffic classes
5566  * @netdev: net device to configure
5567  * @tc: number of traffic classes to enable
5568  **/
5569 static int i40e_setup_tc(struct net_device *netdev, u8 tc)
5570 {
5571 	struct i40e_netdev_priv *np = netdev_priv(netdev);
5572 	struct i40e_vsi *vsi = np->vsi;
5573 	struct i40e_pf *pf = vsi->back;
5574 	u8 enabled_tc = 0;
5575 	int ret = -EINVAL;
5576 	int i;
5577 
5578 	/* Check if DCB enabled to continue */
5579 	if (!(pf->flags & I40E_FLAG_DCB_ENABLED)) {
5580 		netdev_info(netdev, "DCB is not enabled for adapter\n");
5581 		goto exit;
5582 	}
5583 
5584 	/* Check if MFP enabled */
5585 	if (pf->flags & I40E_FLAG_MFP_ENABLED) {
5586 		netdev_info(netdev, "Configuring TC not supported in MFP mode\n");
5587 		goto exit;
5588 	}
5589 
5590 	/* Check whether tc count is within enabled limit */
5591 	if (tc > i40e_pf_get_num_tc(pf)) {
5592 		netdev_info(netdev, "TC count greater than enabled on link for adapter\n");
5593 		goto exit;
5594 	}
5595 
5596 	/* Generate TC map for number of tc requested */
5597 	for (i = 0; i < tc; i++)
5598 		enabled_tc |= BIT(i);
5599 
5600 	/* Requesting same TC configuration as already enabled */
5601 	if (enabled_tc == vsi->tc_config.enabled_tc)
5602 		return 0;
5603 
5604 	/* Quiesce VSI queues */
5605 	i40e_quiesce_vsi(vsi);
5606 
5607 	/* Configure VSI for enabled TCs */
5608 	ret = i40e_vsi_config_tc(vsi, enabled_tc);
5609 	if (ret) {
5610 		netdev_info(netdev, "Failed configuring TC for VSI seid=%d\n",
5611 			    vsi->seid);
5612 		goto exit;
5613 	}
5614 
5615 	/* Unquiesce VSI */
5616 	i40e_unquiesce_vsi(vsi);
5617 
5618 exit:
5619 	return ret;
5620 }
5621 
5622 static int __i40e_setup_tc(struct net_device *netdev, enum tc_setup_type type,
5623 			   void *type_data)
5624 {
5625 	struct tc_mqprio_qopt *mqprio = type_data;
5626 
5627 	if (type != TC_SETUP_MQPRIO)
5628 		return -EOPNOTSUPP;
5629 
5630 	mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS;
5631 
5632 	return i40e_setup_tc(netdev, mqprio->num_tc);
5633 }
5634 
5635 /**
5636  * i40e_open - Called when a network interface is made active
5637  * @netdev: network interface device structure
5638  *
5639  * The open entry point is called when a network interface is made
5640  * active by the system (IFF_UP).  At this point all resources needed
5641  * for transmit and receive operations are allocated, the interrupt
5642  * handler is registered with the OS, the netdev watchdog subtask is
5643  * enabled, and the stack is notified that the interface is ready.
5644  *
5645  * Returns 0 on success, negative value on failure
5646  **/
5647 int i40e_open(struct net_device *netdev)
5648 {
5649 	struct i40e_netdev_priv *np = netdev_priv(netdev);
5650 	struct i40e_vsi *vsi = np->vsi;
5651 	struct i40e_pf *pf = vsi->back;
5652 	int err;
5653 
5654 	/* disallow open during test or if eeprom is broken */
5655 	if (test_bit(__I40E_TESTING, pf->state) ||
5656 	    test_bit(__I40E_BAD_EEPROM, pf->state))
5657 		return -EBUSY;
5658 
5659 	netif_carrier_off(netdev);
5660 
5661 	err = i40e_vsi_open(vsi);
5662 	if (err)
5663 		return err;
5664 
5665 	/* configure global TSO hardware offload settings */
5666 	wr32(&pf->hw, I40E_GLLAN_TSOMSK_F, be32_to_cpu(TCP_FLAG_PSH |
5667 						       TCP_FLAG_FIN) >> 16);
5668 	wr32(&pf->hw, I40E_GLLAN_TSOMSK_M, be32_to_cpu(TCP_FLAG_PSH |
5669 						       TCP_FLAG_FIN |
5670 						       TCP_FLAG_CWR) >> 16);
5671 	wr32(&pf->hw, I40E_GLLAN_TSOMSK_L, be32_to_cpu(TCP_FLAG_CWR) >> 16);
5672 
5673 	udp_tunnel_get_rx_info(netdev);
5674 
5675 	return 0;
5676 }
5677 
5678 /**
5679  * i40e_vsi_open -
5680  * @vsi: the VSI to open
5681  *
5682  * Finish initialization of the VSI.
5683  *
5684  * Returns 0 on success, negative value on failure
5685  *
5686  * Note: expects to be called while under rtnl_lock()
5687  **/
5688 int i40e_vsi_open(struct i40e_vsi *vsi)
5689 {
5690 	struct i40e_pf *pf = vsi->back;
5691 	char int_name[I40E_INT_NAME_STR_LEN];
5692 	int err;
5693 
5694 	/* allocate descriptors */
5695 	err = i40e_vsi_setup_tx_resources(vsi);
5696 	if (err)
5697 		goto err_setup_tx;
5698 	err = i40e_vsi_setup_rx_resources(vsi);
5699 	if (err)
5700 		goto err_setup_rx;
5701 
5702 	err = i40e_vsi_configure(vsi);
5703 	if (err)
5704 		goto err_setup_rx;
5705 
5706 	if (vsi->netdev) {
5707 		snprintf(int_name, sizeof(int_name) - 1, "%s-%s",
5708 			 dev_driver_string(&pf->pdev->dev), vsi->netdev->name);
5709 		err = i40e_vsi_request_irq(vsi, int_name);
5710 		if (err)
5711 			goto err_setup_rx;
5712 
5713 		/* Notify the stack of the actual queue counts. */
5714 		err = netif_set_real_num_tx_queues(vsi->netdev,
5715 						   vsi->num_queue_pairs);
5716 		if (err)
5717 			goto err_set_queues;
5718 
5719 		err = netif_set_real_num_rx_queues(vsi->netdev,
5720 						   vsi->num_queue_pairs);
5721 		if (err)
5722 			goto err_set_queues;
5723 
5724 	} else if (vsi->type == I40E_VSI_FDIR) {
5725 		snprintf(int_name, sizeof(int_name) - 1, "%s-%s:fdir",
5726 			 dev_driver_string(&pf->pdev->dev),
5727 			 dev_name(&pf->pdev->dev));
5728 		err = i40e_vsi_request_irq(vsi, int_name);
5729 
5730 	} else {
5731 		err = -EINVAL;
5732 		goto err_setup_rx;
5733 	}
5734 
5735 	err = i40e_up_complete(vsi);
5736 	if (err)
5737 		goto err_up_complete;
5738 
5739 	return 0;
5740 
5741 err_up_complete:
5742 	i40e_down(vsi);
5743 err_set_queues:
5744 	i40e_vsi_free_irq(vsi);
5745 err_setup_rx:
5746 	i40e_vsi_free_rx_resources(vsi);
5747 err_setup_tx:
5748 	i40e_vsi_free_tx_resources(vsi);
5749 	if (vsi == pf->vsi[pf->lan_vsi])
5750 		i40e_do_reset(pf, BIT_ULL(__I40E_PF_RESET_REQUESTED), true);
5751 
5752 	return err;
5753 }
5754 
5755 /**
5756  * i40e_fdir_filter_exit - Cleans up the Flow Director accounting
5757  * @pf: Pointer to PF
5758  *
5759  * This function destroys the hlist where all the Flow Director
5760  * filters were saved.
5761  **/
5762 static void i40e_fdir_filter_exit(struct i40e_pf *pf)
5763 {
5764 	struct i40e_fdir_filter *filter;
5765 	struct i40e_flex_pit *pit_entry, *tmp;
5766 	struct hlist_node *node2;
5767 
5768 	hlist_for_each_entry_safe(filter, node2,
5769 				  &pf->fdir_filter_list, fdir_node) {
5770 		hlist_del(&filter->fdir_node);
5771 		kfree(filter);
5772 	}
5773 
5774 	list_for_each_entry_safe(pit_entry, tmp, &pf->l3_flex_pit_list, list) {
5775 		list_del(&pit_entry->list);
5776 		kfree(pit_entry);
5777 	}
5778 	INIT_LIST_HEAD(&pf->l3_flex_pit_list);
5779 
5780 	list_for_each_entry_safe(pit_entry, tmp, &pf->l4_flex_pit_list, list) {
5781 		list_del(&pit_entry->list);
5782 		kfree(pit_entry);
5783 	}
5784 	INIT_LIST_HEAD(&pf->l4_flex_pit_list);
5785 
5786 	pf->fdir_pf_active_filters = 0;
5787 	pf->fd_tcp4_filter_cnt = 0;
5788 	pf->fd_udp4_filter_cnt = 0;
5789 	pf->fd_sctp4_filter_cnt = 0;
5790 	pf->fd_ip4_filter_cnt = 0;
5791 
5792 	/* Reprogram the default input set for TCP/IPv4 */
5793 	i40e_write_fd_input_set(pf, I40E_FILTER_PCTYPE_NONF_IPV4_TCP,
5794 				I40E_L3_SRC_MASK | I40E_L3_DST_MASK |
5795 				I40E_L4_SRC_MASK | I40E_L4_DST_MASK);
5796 
5797 	/* Reprogram the default input set for UDP/IPv4 */
5798 	i40e_write_fd_input_set(pf, I40E_FILTER_PCTYPE_NONF_IPV4_UDP,
5799 				I40E_L3_SRC_MASK | I40E_L3_DST_MASK |
5800 				I40E_L4_SRC_MASK | I40E_L4_DST_MASK);
5801 
5802 	/* Reprogram the default input set for SCTP/IPv4 */
5803 	i40e_write_fd_input_set(pf, I40E_FILTER_PCTYPE_NONF_IPV4_SCTP,
5804 				I40E_L3_SRC_MASK | I40E_L3_DST_MASK |
5805 				I40E_L4_SRC_MASK | I40E_L4_DST_MASK);
5806 
5807 	/* Reprogram the default input set for Other/IPv4 */
5808 	i40e_write_fd_input_set(pf, I40E_FILTER_PCTYPE_NONF_IPV4_OTHER,
5809 				I40E_L3_SRC_MASK | I40E_L3_DST_MASK);
5810 }
5811 
5812 /**
5813  * i40e_close - Disables a network interface
5814  * @netdev: network interface device structure
5815  *
5816  * The close entry point is called when an interface is de-activated
5817  * by the OS.  The hardware is still under the driver's control, but
5818  * this netdev interface is disabled.
5819  *
5820  * Returns 0, this is not allowed to fail
5821  **/
5822 int i40e_close(struct net_device *netdev)
5823 {
5824 	struct i40e_netdev_priv *np = netdev_priv(netdev);
5825 	struct i40e_vsi *vsi = np->vsi;
5826 
5827 	i40e_vsi_close(vsi);
5828 
5829 	return 0;
5830 }
5831 
5832 /**
5833  * i40e_do_reset - Start a PF or Core Reset sequence
5834  * @pf: board private structure
5835  * @reset_flags: which reset is requested
5836  * @lock_acquired: indicates whether or not the lock has been acquired
5837  * before this function was called.
5838  *
5839  * The essential difference in resets is that the PF Reset
5840  * doesn't clear the packet buffers, doesn't reset the PE
5841  * firmware, and doesn't bother the other PFs on the chip.
5842  **/
5843 void i40e_do_reset(struct i40e_pf *pf, u32 reset_flags, bool lock_acquired)
5844 {
5845 	u32 val;
5846 
5847 	WARN_ON(in_interrupt());
5848 
5849 
5850 	/* do the biggest reset indicated */
5851 	if (reset_flags & BIT_ULL(__I40E_GLOBAL_RESET_REQUESTED)) {
5852 
5853 		/* Request a Global Reset
5854 		 *
5855 		 * This will start the chip's countdown to the actual full
5856 		 * chip reset event, and a warning interrupt to be sent
5857 		 * to all PFs, including the requestor.  Our handler
5858 		 * for the warning interrupt will deal with the shutdown
5859 		 * and recovery of the switch setup.
5860 		 */
5861 		dev_dbg(&pf->pdev->dev, "GlobalR requested\n");
5862 		val = rd32(&pf->hw, I40E_GLGEN_RTRIG);
5863 		val |= I40E_GLGEN_RTRIG_GLOBR_MASK;
5864 		wr32(&pf->hw, I40E_GLGEN_RTRIG, val);
5865 
5866 	} else if (reset_flags & BIT_ULL(__I40E_CORE_RESET_REQUESTED)) {
5867 
5868 		/* Request a Core Reset
5869 		 *
5870 		 * Same as Global Reset, except does *not* include the MAC/PHY
5871 		 */
5872 		dev_dbg(&pf->pdev->dev, "CoreR requested\n");
5873 		val = rd32(&pf->hw, I40E_GLGEN_RTRIG);
5874 		val |= I40E_GLGEN_RTRIG_CORER_MASK;
5875 		wr32(&pf->hw, I40E_GLGEN_RTRIG, val);
5876 		i40e_flush(&pf->hw);
5877 
5878 	} else if (reset_flags & BIT_ULL(__I40E_PF_RESET_REQUESTED)) {
5879 
5880 		/* Request a PF Reset
5881 		 *
5882 		 * Resets only the PF-specific registers
5883 		 *
5884 		 * This goes directly to the tear-down and rebuild of
5885 		 * the switch, since we need to do all the recovery as
5886 		 * for the Core Reset.
5887 		 */
5888 		dev_dbg(&pf->pdev->dev, "PFR requested\n");
5889 		i40e_handle_reset_warning(pf, lock_acquired);
5890 
5891 	} else if (reset_flags & BIT_ULL(__I40E_REINIT_REQUESTED)) {
5892 		int v;
5893 
5894 		/* Find the VSI(s) that requested a re-init */
5895 		dev_info(&pf->pdev->dev,
5896 			 "VSI reinit requested\n");
5897 		for (v = 0; v < pf->num_alloc_vsi; v++) {
5898 			struct i40e_vsi *vsi = pf->vsi[v];
5899 
5900 			if (vsi != NULL &&
5901 			    test_and_clear_bit(__I40E_VSI_REINIT_REQUESTED,
5902 					       vsi->state))
5903 				i40e_vsi_reinit_locked(pf->vsi[v]);
5904 		}
5905 	} else if (reset_flags & BIT_ULL(__I40E_DOWN_REQUESTED)) {
5906 		int v;
5907 
5908 		/* Find the VSI(s) that needs to be brought down */
5909 		dev_info(&pf->pdev->dev, "VSI down requested\n");
5910 		for (v = 0; v < pf->num_alloc_vsi; v++) {
5911 			struct i40e_vsi *vsi = pf->vsi[v];
5912 
5913 			if (vsi != NULL &&
5914 			    test_and_clear_bit(__I40E_VSI_DOWN_REQUESTED,
5915 					       vsi->state)) {
5916 				set_bit(__I40E_VSI_DOWN, vsi->state);
5917 				i40e_down(vsi);
5918 			}
5919 		}
5920 	} else {
5921 		dev_info(&pf->pdev->dev,
5922 			 "bad reset request 0x%08x\n", reset_flags);
5923 	}
5924 }
5925 
5926 #ifdef CONFIG_I40E_DCB
5927 /**
5928  * i40e_dcb_need_reconfig - Check if DCB needs reconfig
5929  * @pf: board private structure
5930  * @old_cfg: current DCB config
5931  * @new_cfg: new DCB config
5932  **/
5933 bool i40e_dcb_need_reconfig(struct i40e_pf *pf,
5934 			    struct i40e_dcbx_config *old_cfg,
5935 			    struct i40e_dcbx_config *new_cfg)
5936 {
5937 	bool need_reconfig = false;
5938 
5939 	/* Check if ETS configuration has changed */
5940 	if (memcmp(&new_cfg->etscfg,
5941 		   &old_cfg->etscfg,
5942 		   sizeof(new_cfg->etscfg))) {
5943 		/* If Priority Table has changed reconfig is needed */
5944 		if (memcmp(&new_cfg->etscfg.prioritytable,
5945 			   &old_cfg->etscfg.prioritytable,
5946 			   sizeof(new_cfg->etscfg.prioritytable))) {
5947 			need_reconfig = true;
5948 			dev_dbg(&pf->pdev->dev, "ETS UP2TC changed.\n");
5949 		}
5950 
5951 		if (memcmp(&new_cfg->etscfg.tcbwtable,
5952 			   &old_cfg->etscfg.tcbwtable,
5953 			   sizeof(new_cfg->etscfg.tcbwtable)))
5954 			dev_dbg(&pf->pdev->dev, "ETS TC BW Table changed.\n");
5955 
5956 		if (memcmp(&new_cfg->etscfg.tsatable,
5957 			   &old_cfg->etscfg.tsatable,
5958 			   sizeof(new_cfg->etscfg.tsatable)))
5959 			dev_dbg(&pf->pdev->dev, "ETS TSA Table changed.\n");
5960 	}
5961 
5962 	/* Check if PFC configuration has changed */
5963 	if (memcmp(&new_cfg->pfc,
5964 		   &old_cfg->pfc,
5965 		   sizeof(new_cfg->pfc))) {
5966 		need_reconfig = true;
5967 		dev_dbg(&pf->pdev->dev, "PFC config change detected.\n");
5968 	}
5969 
5970 	/* Check if APP Table has changed */
5971 	if (memcmp(&new_cfg->app,
5972 		   &old_cfg->app,
5973 		   sizeof(new_cfg->app))) {
5974 		need_reconfig = true;
5975 		dev_dbg(&pf->pdev->dev, "APP Table change detected.\n");
5976 	}
5977 
5978 	dev_dbg(&pf->pdev->dev, "dcb need_reconfig=%d\n", need_reconfig);
5979 	return need_reconfig;
5980 }
5981 
5982 /**
5983  * i40e_handle_lldp_event - Handle LLDP Change MIB event
5984  * @pf: board private structure
5985  * @e: event info posted on ARQ
5986  **/
5987 static int i40e_handle_lldp_event(struct i40e_pf *pf,
5988 				  struct i40e_arq_event_info *e)
5989 {
5990 	struct i40e_aqc_lldp_get_mib *mib =
5991 		(struct i40e_aqc_lldp_get_mib *)&e->desc.params.raw;
5992 	struct i40e_hw *hw = &pf->hw;
5993 	struct i40e_dcbx_config tmp_dcbx_cfg;
5994 	bool need_reconfig = false;
5995 	int ret = 0;
5996 	u8 type;
5997 
5998 	/* Not DCB capable or capability disabled */
5999 	if (!(pf->flags & I40E_FLAG_DCB_CAPABLE))
6000 		return ret;
6001 
6002 	/* Ignore if event is not for Nearest Bridge */
6003 	type = ((mib->type >> I40E_AQ_LLDP_BRIDGE_TYPE_SHIFT)
6004 		& I40E_AQ_LLDP_BRIDGE_TYPE_MASK);
6005 	dev_dbg(&pf->pdev->dev, "LLDP event mib bridge type 0x%x\n", type);
6006 	if (type != I40E_AQ_LLDP_BRIDGE_TYPE_NEAREST_BRIDGE)
6007 		return ret;
6008 
6009 	/* Check MIB Type and return if event for Remote MIB update */
6010 	type = mib->type & I40E_AQ_LLDP_MIB_TYPE_MASK;
6011 	dev_dbg(&pf->pdev->dev,
6012 		"LLDP event mib type %s\n", type ? "remote" : "local");
6013 	if (type == I40E_AQ_LLDP_MIB_REMOTE) {
6014 		/* Update the remote cached instance and return */
6015 		ret = i40e_aq_get_dcb_config(hw, I40E_AQ_LLDP_MIB_REMOTE,
6016 				I40E_AQ_LLDP_BRIDGE_TYPE_NEAREST_BRIDGE,
6017 				&hw->remote_dcbx_config);
6018 		goto exit;
6019 	}
6020 
6021 	/* Store the old configuration */
6022 	tmp_dcbx_cfg = hw->local_dcbx_config;
6023 
6024 	/* Reset the old DCBx configuration data */
6025 	memset(&hw->local_dcbx_config, 0, sizeof(hw->local_dcbx_config));
6026 	/* Get updated DCBX data from firmware */
6027 	ret = i40e_get_dcb_config(&pf->hw);
6028 	if (ret) {
6029 		dev_info(&pf->pdev->dev,
6030 			 "Failed querying DCB configuration data from firmware, err %s aq_err %s\n",
6031 			 i40e_stat_str(&pf->hw, ret),
6032 			 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status));
6033 		goto exit;
6034 	}
6035 
6036 	/* No change detected in DCBX configs */
6037 	if (!memcmp(&tmp_dcbx_cfg, &hw->local_dcbx_config,
6038 		    sizeof(tmp_dcbx_cfg))) {
6039 		dev_dbg(&pf->pdev->dev, "No change detected in DCBX configuration.\n");
6040 		goto exit;
6041 	}
6042 
6043 	need_reconfig = i40e_dcb_need_reconfig(pf, &tmp_dcbx_cfg,
6044 					       &hw->local_dcbx_config);
6045 
6046 	i40e_dcbnl_flush_apps(pf, &tmp_dcbx_cfg, &hw->local_dcbx_config);
6047 
6048 	if (!need_reconfig)
6049 		goto exit;
6050 
6051 	/* Enable DCB tagging only when more than one TC */
6052 	if (i40e_dcb_get_num_tc(&hw->local_dcbx_config) > 1)
6053 		pf->flags |= I40E_FLAG_DCB_ENABLED;
6054 	else
6055 		pf->flags &= ~I40E_FLAG_DCB_ENABLED;
6056 
6057 	set_bit(__I40E_PORT_SUSPENDED, pf->state);
6058 	/* Reconfiguration needed quiesce all VSIs */
6059 	i40e_pf_quiesce_all_vsi(pf);
6060 
6061 	/* Changes in configuration update VEB/VSI */
6062 	i40e_dcb_reconfigure(pf);
6063 
6064 	ret = i40e_resume_port_tx(pf);
6065 
6066 	clear_bit(__I40E_PORT_SUSPENDED, pf->state);
6067 	/* In case of error no point in resuming VSIs */
6068 	if (ret)
6069 		goto exit;
6070 
6071 	/* Wait for the PF's queues to be disabled */
6072 	ret = i40e_pf_wait_queues_disabled(pf);
6073 	if (ret) {
6074 		/* Schedule PF reset to recover */
6075 		set_bit(__I40E_PF_RESET_REQUESTED, pf->state);
6076 		i40e_service_event_schedule(pf);
6077 	} else {
6078 		i40e_pf_unquiesce_all_vsi(pf);
6079 	pf->flags |= (I40E_FLAG_SERVICE_CLIENT_REQUESTED |
6080 		      I40E_FLAG_CLIENT_L2_CHANGE);
6081 	}
6082 
6083 exit:
6084 	return ret;
6085 }
6086 #endif /* CONFIG_I40E_DCB */
6087 
6088 /**
6089  * i40e_do_reset_safe - Protected reset path for userland calls.
6090  * @pf: board private structure
6091  * @reset_flags: which reset is requested
6092  *
6093  **/
6094 void i40e_do_reset_safe(struct i40e_pf *pf, u32 reset_flags)
6095 {
6096 	rtnl_lock();
6097 	i40e_do_reset(pf, reset_flags, true);
6098 	rtnl_unlock();
6099 }
6100 
6101 /**
6102  * i40e_handle_lan_overflow_event - Handler for LAN queue overflow event
6103  * @pf: board private structure
6104  * @e: event info posted on ARQ
6105  *
6106  * Handler for LAN Queue Overflow Event generated by the firmware for PF
6107  * and VF queues
6108  **/
6109 static void i40e_handle_lan_overflow_event(struct i40e_pf *pf,
6110 					   struct i40e_arq_event_info *e)
6111 {
6112 	struct i40e_aqc_lan_overflow *data =
6113 		(struct i40e_aqc_lan_overflow *)&e->desc.params.raw;
6114 	u32 queue = le32_to_cpu(data->prtdcb_rupto);
6115 	u32 qtx_ctl = le32_to_cpu(data->otx_ctl);
6116 	struct i40e_hw *hw = &pf->hw;
6117 	struct i40e_vf *vf;
6118 	u16 vf_id;
6119 
6120 	dev_dbg(&pf->pdev->dev, "overflow Rx Queue Number = %d QTX_CTL=0x%08x\n",
6121 		queue, qtx_ctl);
6122 
6123 	/* Queue belongs to VF, find the VF and issue VF reset */
6124 	if (((qtx_ctl & I40E_QTX_CTL_PFVF_Q_MASK)
6125 	    >> I40E_QTX_CTL_PFVF_Q_SHIFT) == I40E_QTX_CTL_VF_QUEUE) {
6126 		vf_id = (u16)((qtx_ctl & I40E_QTX_CTL_VFVM_INDX_MASK)
6127 			 >> I40E_QTX_CTL_VFVM_INDX_SHIFT);
6128 		vf_id -= hw->func_caps.vf_base_id;
6129 		vf = &pf->vf[vf_id];
6130 		i40e_vc_notify_vf_reset(vf);
6131 		/* Allow VF to process pending reset notification */
6132 		msleep(20);
6133 		i40e_reset_vf(vf, false);
6134 	}
6135 }
6136 
6137 /**
6138  * i40e_get_cur_guaranteed_fd_count - Get the consumed guaranteed FD filters
6139  * @pf: board private structure
6140  **/
6141 u32 i40e_get_cur_guaranteed_fd_count(struct i40e_pf *pf)
6142 {
6143 	u32 val, fcnt_prog;
6144 
6145 	val = rd32(&pf->hw, I40E_PFQF_FDSTAT);
6146 	fcnt_prog = (val & I40E_PFQF_FDSTAT_GUARANT_CNT_MASK);
6147 	return fcnt_prog;
6148 }
6149 
6150 /**
6151  * i40e_get_current_fd_count - Get total FD filters programmed for this PF
6152  * @pf: board private structure
6153  **/
6154 u32 i40e_get_current_fd_count(struct i40e_pf *pf)
6155 {
6156 	u32 val, fcnt_prog;
6157 
6158 	val = rd32(&pf->hw, I40E_PFQF_FDSTAT);
6159 	fcnt_prog = (val & I40E_PFQF_FDSTAT_GUARANT_CNT_MASK) +
6160 		    ((val & I40E_PFQF_FDSTAT_BEST_CNT_MASK) >>
6161 		      I40E_PFQF_FDSTAT_BEST_CNT_SHIFT);
6162 	return fcnt_prog;
6163 }
6164 
6165 /**
6166  * i40e_get_global_fd_count - Get total FD filters programmed on device
6167  * @pf: board private structure
6168  **/
6169 u32 i40e_get_global_fd_count(struct i40e_pf *pf)
6170 {
6171 	u32 val, fcnt_prog;
6172 
6173 	val = rd32(&pf->hw, I40E_GLQF_FDCNT_0);
6174 	fcnt_prog = (val & I40E_GLQF_FDCNT_0_GUARANT_CNT_MASK) +
6175 		    ((val & I40E_GLQF_FDCNT_0_BESTCNT_MASK) >>
6176 		     I40E_GLQF_FDCNT_0_BESTCNT_SHIFT);
6177 	return fcnt_prog;
6178 }
6179 
6180 /**
6181  * i40e_fdir_check_and_reenable - Function to reenabe FD ATR or SB if disabled
6182  * @pf: board private structure
6183  **/
6184 void i40e_fdir_check_and_reenable(struct i40e_pf *pf)
6185 {
6186 	struct i40e_fdir_filter *filter;
6187 	u32 fcnt_prog, fcnt_avail;
6188 	struct hlist_node *node;
6189 
6190 	if (test_bit(__I40E_FD_FLUSH_REQUESTED, pf->state))
6191 		return;
6192 
6193 	/* Check if we have enough room to re-enable FDir SB capability. */
6194 	fcnt_prog = i40e_get_global_fd_count(pf);
6195 	fcnt_avail = pf->fdir_pf_filter_count;
6196 	if ((fcnt_prog < (fcnt_avail - I40E_FDIR_BUFFER_HEAD_ROOM)) ||
6197 	    (pf->fd_add_err == 0) ||
6198 	    (i40e_get_current_atr_cnt(pf) < pf->fd_atr_cnt)) {
6199 		if (pf->flags & I40E_FLAG_FD_SB_AUTO_DISABLED) {
6200 			pf->flags &= ~I40E_FLAG_FD_SB_AUTO_DISABLED;
6201 			if ((pf->flags & I40E_FLAG_FD_SB_ENABLED) &&
6202 			    (I40E_DEBUG_FD & pf->hw.debug_mask))
6203 				dev_info(&pf->pdev->dev, "FD Sideband/ntuple is being enabled since we have space in the table now\n");
6204 		}
6205 	}
6206 
6207 	/* We should wait for even more space before re-enabling ATR.
6208 	 * Additionally, we cannot enable ATR as long as we still have TCP SB
6209 	 * rules active.
6210 	 */
6211 	if ((fcnt_prog < (fcnt_avail - I40E_FDIR_BUFFER_HEAD_ROOM_FOR_ATR)) &&
6212 	    (pf->fd_tcp4_filter_cnt == 0)) {
6213 		if (pf->flags & I40E_FLAG_FD_ATR_AUTO_DISABLED) {
6214 			pf->flags &= ~I40E_FLAG_FD_ATR_AUTO_DISABLED;
6215 			if ((pf->flags & I40E_FLAG_FD_ATR_ENABLED) &&
6216 			    (I40E_DEBUG_FD & pf->hw.debug_mask))
6217 				dev_info(&pf->pdev->dev, "ATR is being enabled since we have space in the table and there are no conflicting ntuple rules\n");
6218 		}
6219 	}
6220 
6221 	/* if hw had a problem adding a filter, delete it */
6222 	if (pf->fd_inv > 0) {
6223 		hlist_for_each_entry_safe(filter, node,
6224 					  &pf->fdir_filter_list, fdir_node) {
6225 			if (filter->fd_id == pf->fd_inv) {
6226 				hlist_del(&filter->fdir_node);
6227 				kfree(filter);
6228 				pf->fdir_pf_active_filters--;
6229 			}
6230 		}
6231 	}
6232 }
6233 
6234 #define I40E_MIN_FD_FLUSH_INTERVAL 10
6235 #define I40E_MIN_FD_FLUSH_SB_ATR_UNSTABLE 30
6236 /**
6237  * i40e_fdir_flush_and_replay - Function to flush all FD filters and replay SB
6238  * @pf: board private structure
6239  **/
6240 static void i40e_fdir_flush_and_replay(struct i40e_pf *pf)
6241 {
6242 	unsigned long min_flush_time;
6243 	int flush_wait_retry = 50;
6244 	bool disable_atr = false;
6245 	int fd_room;
6246 	int reg;
6247 
6248 	if (!time_after(jiffies, pf->fd_flush_timestamp +
6249 				 (I40E_MIN_FD_FLUSH_INTERVAL * HZ)))
6250 		return;
6251 
6252 	/* If the flush is happening too quick and we have mostly SB rules we
6253 	 * should not re-enable ATR for some time.
6254 	 */
6255 	min_flush_time = pf->fd_flush_timestamp +
6256 			 (I40E_MIN_FD_FLUSH_SB_ATR_UNSTABLE * HZ);
6257 	fd_room = pf->fdir_pf_filter_count - pf->fdir_pf_active_filters;
6258 
6259 	if (!(time_after(jiffies, min_flush_time)) &&
6260 	    (fd_room < I40E_FDIR_BUFFER_HEAD_ROOM_FOR_ATR)) {
6261 		if (I40E_DEBUG_FD & pf->hw.debug_mask)
6262 			dev_info(&pf->pdev->dev, "ATR disabled, not enough FD filter space.\n");
6263 		disable_atr = true;
6264 	}
6265 
6266 	pf->fd_flush_timestamp = jiffies;
6267 	pf->flags |= I40E_FLAG_FD_ATR_AUTO_DISABLED;
6268 	/* flush all filters */
6269 	wr32(&pf->hw, I40E_PFQF_CTL_1,
6270 	     I40E_PFQF_CTL_1_CLEARFDTABLE_MASK);
6271 	i40e_flush(&pf->hw);
6272 	pf->fd_flush_cnt++;
6273 	pf->fd_add_err = 0;
6274 	do {
6275 		/* Check FD flush status every 5-6msec */
6276 		usleep_range(5000, 6000);
6277 		reg = rd32(&pf->hw, I40E_PFQF_CTL_1);
6278 		if (!(reg & I40E_PFQF_CTL_1_CLEARFDTABLE_MASK))
6279 			break;
6280 	} while (flush_wait_retry--);
6281 	if (reg & I40E_PFQF_CTL_1_CLEARFDTABLE_MASK) {
6282 		dev_warn(&pf->pdev->dev, "FD table did not flush, needs more time\n");
6283 	} else {
6284 		/* replay sideband filters */
6285 		i40e_fdir_filter_restore(pf->vsi[pf->lan_vsi]);
6286 		if (!disable_atr && !pf->fd_tcp4_filter_cnt)
6287 			pf->flags &= ~I40E_FLAG_FD_ATR_AUTO_DISABLED;
6288 		clear_bit(__I40E_FD_FLUSH_REQUESTED, pf->state);
6289 		if (I40E_DEBUG_FD & pf->hw.debug_mask)
6290 			dev_info(&pf->pdev->dev, "FD Filter table flushed and FD-SB replayed.\n");
6291 	}
6292 }
6293 
6294 /**
6295  * i40e_get_current_atr_count - Get the count of total FD ATR filters programmed
6296  * @pf: board private structure
6297  **/
6298 u32 i40e_get_current_atr_cnt(struct i40e_pf *pf)
6299 {
6300 	return i40e_get_current_fd_count(pf) - pf->fdir_pf_active_filters;
6301 }
6302 
6303 /* We can see up to 256 filter programming desc in transit if the filters are
6304  * being applied really fast; before we see the first
6305  * filter miss error on Rx queue 0. Accumulating enough error messages before
6306  * reacting will make sure we don't cause flush too often.
6307  */
6308 #define I40E_MAX_FD_PROGRAM_ERROR 256
6309 
6310 /**
6311  * i40e_fdir_reinit_subtask - Worker thread to reinit FDIR filter table
6312  * @pf: board private structure
6313  **/
6314 static void i40e_fdir_reinit_subtask(struct i40e_pf *pf)
6315 {
6316 
6317 	/* if interface is down do nothing */
6318 	if (test_bit(__I40E_DOWN, pf->state))
6319 		return;
6320 
6321 	if (test_bit(__I40E_FD_FLUSH_REQUESTED, pf->state))
6322 		i40e_fdir_flush_and_replay(pf);
6323 
6324 	i40e_fdir_check_and_reenable(pf);
6325 
6326 }
6327 
6328 /**
6329  * i40e_vsi_link_event - notify VSI of a link event
6330  * @vsi: vsi to be notified
6331  * @link_up: link up or down
6332  **/
6333 static void i40e_vsi_link_event(struct i40e_vsi *vsi, bool link_up)
6334 {
6335 	if (!vsi || test_bit(__I40E_VSI_DOWN, vsi->state))
6336 		return;
6337 
6338 	switch (vsi->type) {
6339 	case I40E_VSI_MAIN:
6340 		if (!vsi->netdev || !vsi->netdev_registered)
6341 			break;
6342 
6343 		if (link_up) {
6344 			netif_carrier_on(vsi->netdev);
6345 			netif_tx_wake_all_queues(vsi->netdev);
6346 		} else {
6347 			netif_carrier_off(vsi->netdev);
6348 			netif_tx_stop_all_queues(vsi->netdev);
6349 		}
6350 		break;
6351 
6352 	case I40E_VSI_SRIOV:
6353 	case I40E_VSI_VMDQ2:
6354 	case I40E_VSI_CTRL:
6355 	case I40E_VSI_IWARP:
6356 	case I40E_VSI_MIRROR:
6357 	default:
6358 		/* there is no notification for other VSIs */
6359 		break;
6360 	}
6361 }
6362 
6363 /**
6364  * i40e_veb_link_event - notify elements on the veb of a link event
6365  * @veb: veb to be notified
6366  * @link_up: link up or down
6367  **/
6368 static void i40e_veb_link_event(struct i40e_veb *veb, bool link_up)
6369 {
6370 	struct i40e_pf *pf;
6371 	int i;
6372 
6373 	if (!veb || !veb->pf)
6374 		return;
6375 	pf = veb->pf;
6376 
6377 	/* depth first... */
6378 	for (i = 0; i < I40E_MAX_VEB; i++)
6379 		if (pf->veb[i] && (pf->veb[i]->uplink_seid == veb->seid))
6380 			i40e_veb_link_event(pf->veb[i], link_up);
6381 
6382 	/* ... now the local VSIs */
6383 	for (i = 0; i < pf->num_alloc_vsi; i++)
6384 		if (pf->vsi[i] && (pf->vsi[i]->uplink_seid == veb->seid))
6385 			i40e_vsi_link_event(pf->vsi[i], link_up);
6386 }
6387 
6388 /**
6389  * i40e_link_event - Update netif_carrier status
6390  * @pf: board private structure
6391  **/
6392 static void i40e_link_event(struct i40e_pf *pf)
6393 {
6394 	struct i40e_vsi *vsi = pf->vsi[pf->lan_vsi];
6395 	u8 new_link_speed, old_link_speed;
6396 	i40e_status status;
6397 	bool new_link, old_link;
6398 
6399 	/* save off old link status information */
6400 	pf->hw.phy.link_info_old = pf->hw.phy.link_info;
6401 
6402 	/* set this to force the get_link_status call to refresh state */
6403 	pf->hw.phy.get_link_info = true;
6404 
6405 	old_link = (pf->hw.phy.link_info_old.link_info & I40E_AQ_LINK_UP);
6406 
6407 	status = i40e_get_link_status(&pf->hw, &new_link);
6408 
6409 	/* On success, disable temp link polling */
6410 	if (status == I40E_SUCCESS) {
6411 		if (pf->flags & I40E_FLAG_TEMP_LINK_POLLING)
6412 			pf->flags &= ~I40E_FLAG_TEMP_LINK_POLLING;
6413 	} else {
6414 		/* Enable link polling temporarily until i40e_get_link_status
6415 		 * returns I40E_SUCCESS
6416 		 */
6417 		pf->flags |= I40E_FLAG_TEMP_LINK_POLLING;
6418 		dev_dbg(&pf->pdev->dev, "couldn't get link state, status: %d\n",
6419 			status);
6420 		return;
6421 	}
6422 
6423 	old_link_speed = pf->hw.phy.link_info_old.link_speed;
6424 	new_link_speed = pf->hw.phy.link_info.link_speed;
6425 
6426 	if (new_link == old_link &&
6427 	    new_link_speed == old_link_speed &&
6428 	    (test_bit(__I40E_VSI_DOWN, vsi->state) ||
6429 	     new_link == netif_carrier_ok(vsi->netdev)))
6430 		return;
6431 
6432 	if (!test_bit(__I40E_VSI_DOWN, vsi->state))
6433 		i40e_print_link_message(vsi, new_link);
6434 
6435 	/* Notify the base of the switch tree connected to
6436 	 * the link.  Floating VEBs are not notified.
6437 	 */
6438 	if (pf->lan_veb != I40E_NO_VEB && pf->veb[pf->lan_veb])
6439 		i40e_veb_link_event(pf->veb[pf->lan_veb], new_link);
6440 	else
6441 		i40e_vsi_link_event(vsi, new_link);
6442 
6443 	if (pf->vf)
6444 		i40e_vc_notify_link_state(pf);
6445 
6446 	if (pf->flags & I40E_FLAG_PTP)
6447 		i40e_ptp_set_increment(pf);
6448 }
6449 
6450 /**
6451  * i40e_watchdog_subtask - periodic checks not using event driven response
6452  * @pf: board private structure
6453  **/
6454 static void i40e_watchdog_subtask(struct i40e_pf *pf)
6455 {
6456 	int i;
6457 
6458 	/* if interface is down do nothing */
6459 	if (test_bit(__I40E_DOWN, pf->state) ||
6460 	    test_bit(__I40E_CONFIG_BUSY, pf->state))
6461 		return;
6462 
6463 	/* make sure we don't do these things too often */
6464 	if (time_before(jiffies, (pf->service_timer_previous +
6465 				  pf->service_timer_period)))
6466 		return;
6467 	pf->service_timer_previous = jiffies;
6468 
6469 	if ((pf->flags & I40E_FLAG_LINK_POLLING_ENABLED) ||
6470 	    (pf->flags & I40E_FLAG_TEMP_LINK_POLLING))
6471 		i40e_link_event(pf);
6472 
6473 	/* Update the stats for active netdevs so the network stack
6474 	 * can look at updated numbers whenever it cares to
6475 	 */
6476 	for (i = 0; i < pf->num_alloc_vsi; i++)
6477 		if (pf->vsi[i] && pf->vsi[i]->netdev)
6478 			i40e_update_stats(pf->vsi[i]);
6479 
6480 	if (pf->flags & I40E_FLAG_VEB_STATS_ENABLED) {
6481 		/* Update the stats for the active switching components */
6482 		for (i = 0; i < I40E_MAX_VEB; i++)
6483 			if (pf->veb[i])
6484 				i40e_update_veb_stats(pf->veb[i]);
6485 	}
6486 
6487 	i40e_ptp_rx_hang(pf);
6488 	i40e_ptp_tx_hang(pf);
6489 }
6490 
6491 /**
6492  * i40e_reset_subtask - Set up for resetting the device and driver
6493  * @pf: board private structure
6494  **/
6495 static void i40e_reset_subtask(struct i40e_pf *pf)
6496 {
6497 	u32 reset_flags = 0;
6498 
6499 	if (test_bit(__I40E_REINIT_REQUESTED, pf->state)) {
6500 		reset_flags |= BIT(__I40E_REINIT_REQUESTED);
6501 		clear_bit(__I40E_REINIT_REQUESTED, pf->state);
6502 	}
6503 	if (test_bit(__I40E_PF_RESET_REQUESTED, pf->state)) {
6504 		reset_flags |= BIT(__I40E_PF_RESET_REQUESTED);
6505 		clear_bit(__I40E_PF_RESET_REQUESTED, pf->state);
6506 	}
6507 	if (test_bit(__I40E_CORE_RESET_REQUESTED, pf->state)) {
6508 		reset_flags |= BIT(__I40E_CORE_RESET_REQUESTED);
6509 		clear_bit(__I40E_CORE_RESET_REQUESTED, pf->state);
6510 	}
6511 	if (test_bit(__I40E_GLOBAL_RESET_REQUESTED, pf->state)) {
6512 		reset_flags |= BIT(__I40E_GLOBAL_RESET_REQUESTED);
6513 		clear_bit(__I40E_GLOBAL_RESET_REQUESTED, pf->state);
6514 	}
6515 	if (test_bit(__I40E_DOWN_REQUESTED, pf->state)) {
6516 		reset_flags |= BIT(__I40E_DOWN_REQUESTED);
6517 		clear_bit(__I40E_DOWN_REQUESTED, pf->state);
6518 	}
6519 
6520 	/* If there's a recovery already waiting, it takes
6521 	 * precedence before starting a new reset sequence.
6522 	 */
6523 	if (test_bit(__I40E_RESET_INTR_RECEIVED, pf->state)) {
6524 		i40e_prep_for_reset(pf, false);
6525 		i40e_reset(pf);
6526 		i40e_rebuild(pf, false, false);
6527 	}
6528 
6529 	/* If we're already down or resetting, just bail */
6530 	if (reset_flags &&
6531 	    !test_bit(__I40E_DOWN, pf->state) &&
6532 	    !test_bit(__I40E_CONFIG_BUSY, pf->state)) {
6533 		i40e_do_reset(pf, reset_flags, false);
6534 	}
6535 }
6536 
6537 /**
6538  * i40e_handle_link_event - Handle link event
6539  * @pf: board private structure
6540  * @e: event info posted on ARQ
6541  **/
6542 static void i40e_handle_link_event(struct i40e_pf *pf,
6543 				   struct i40e_arq_event_info *e)
6544 {
6545 	struct i40e_aqc_get_link_status *status =
6546 		(struct i40e_aqc_get_link_status *)&e->desc.params.raw;
6547 
6548 	/* Do a new status request to re-enable LSE reporting
6549 	 * and load new status information into the hw struct
6550 	 * This completely ignores any state information
6551 	 * in the ARQ event info, instead choosing to always
6552 	 * issue the AQ update link status command.
6553 	 */
6554 	i40e_link_event(pf);
6555 
6556 	/* check for unqualified module, if link is down */
6557 	if ((status->link_info & I40E_AQ_MEDIA_AVAILABLE) &&
6558 	    (!(status->an_info & I40E_AQ_QUALIFIED_MODULE)) &&
6559 	    (!(status->link_info & I40E_AQ_LINK_UP)))
6560 		dev_err(&pf->pdev->dev,
6561 			"The driver failed to link because an unqualified module was detected.\n");
6562 }
6563 
6564 /**
6565  * i40e_clean_adminq_subtask - Clean the AdminQ rings
6566  * @pf: board private structure
6567  **/
6568 static void i40e_clean_adminq_subtask(struct i40e_pf *pf)
6569 {
6570 	struct i40e_arq_event_info event;
6571 	struct i40e_hw *hw = &pf->hw;
6572 	u16 pending, i = 0;
6573 	i40e_status ret;
6574 	u16 opcode;
6575 	u32 oldval;
6576 	u32 val;
6577 
6578 	/* Do not run clean AQ when PF reset fails */
6579 	if (test_bit(__I40E_RESET_FAILED, pf->state))
6580 		return;
6581 
6582 	/* check for error indications */
6583 	val = rd32(&pf->hw, pf->hw.aq.arq.len);
6584 	oldval = val;
6585 	if (val & I40E_PF_ARQLEN_ARQVFE_MASK) {
6586 		if (hw->debug_mask & I40E_DEBUG_AQ)
6587 			dev_info(&pf->pdev->dev, "ARQ VF Error detected\n");
6588 		val &= ~I40E_PF_ARQLEN_ARQVFE_MASK;
6589 	}
6590 	if (val & I40E_PF_ARQLEN_ARQOVFL_MASK) {
6591 		if (hw->debug_mask & I40E_DEBUG_AQ)
6592 			dev_info(&pf->pdev->dev, "ARQ Overflow Error detected\n");
6593 		val &= ~I40E_PF_ARQLEN_ARQOVFL_MASK;
6594 		pf->arq_overflows++;
6595 	}
6596 	if (val & I40E_PF_ARQLEN_ARQCRIT_MASK) {
6597 		if (hw->debug_mask & I40E_DEBUG_AQ)
6598 			dev_info(&pf->pdev->dev, "ARQ Critical Error detected\n");
6599 		val &= ~I40E_PF_ARQLEN_ARQCRIT_MASK;
6600 	}
6601 	if (oldval != val)
6602 		wr32(&pf->hw, pf->hw.aq.arq.len, val);
6603 
6604 	val = rd32(&pf->hw, pf->hw.aq.asq.len);
6605 	oldval = val;
6606 	if (val & I40E_PF_ATQLEN_ATQVFE_MASK) {
6607 		if (pf->hw.debug_mask & I40E_DEBUG_AQ)
6608 			dev_info(&pf->pdev->dev, "ASQ VF Error detected\n");
6609 		val &= ~I40E_PF_ATQLEN_ATQVFE_MASK;
6610 	}
6611 	if (val & I40E_PF_ATQLEN_ATQOVFL_MASK) {
6612 		if (pf->hw.debug_mask & I40E_DEBUG_AQ)
6613 			dev_info(&pf->pdev->dev, "ASQ Overflow Error detected\n");
6614 		val &= ~I40E_PF_ATQLEN_ATQOVFL_MASK;
6615 	}
6616 	if (val & I40E_PF_ATQLEN_ATQCRIT_MASK) {
6617 		if (pf->hw.debug_mask & I40E_DEBUG_AQ)
6618 			dev_info(&pf->pdev->dev, "ASQ Critical Error detected\n");
6619 		val &= ~I40E_PF_ATQLEN_ATQCRIT_MASK;
6620 	}
6621 	if (oldval != val)
6622 		wr32(&pf->hw, pf->hw.aq.asq.len, val);
6623 
6624 	event.buf_len = I40E_MAX_AQ_BUF_SIZE;
6625 	event.msg_buf = kzalloc(event.buf_len, GFP_KERNEL);
6626 	if (!event.msg_buf)
6627 		return;
6628 
6629 	do {
6630 		ret = i40e_clean_arq_element(hw, &event, &pending);
6631 		if (ret == I40E_ERR_ADMIN_QUEUE_NO_WORK)
6632 			break;
6633 		else if (ret) {
6634 			dev_info(&pf->pdev->dev, "ARQ event error %d\n", ret);
6635 			break;
6636 		}
6637 
6638 		opcode = le16_to_cpu(event.desc.opcode);
6639 		switch (opcode) {
6640 
6641 		case i40e_aqc_opc_get_link_status:
6642 			i40e_handle_link_event(pf, &event);
6643 			break;
6644 		case i40e_aqc_opc_send_msg_to_pf:
6645 			ret = i40e_vc_process_vf_msg(pf,
6646 					le16_to_cpu(event.desc.retval),
6647 					le32_to_cpu(event.desc.cookie_high),
6648 					le32_to_cpu(event.desc.cookie_low),
6649 					event.msg_buf,
6650 					event.msg_len);
6651 			break;
6652 		case i40e_aqc_opc_lldp_update_mib:
6653 			dev_dbg(&pf->pdev->dev, "ARQ: Update LLDP MIB event received\n");
6654 #ifdef CONFIG_I40E_DCB
6655 			rtnl_lock();
6656 			ret = i40e_handle_lldp_event(pf, &event);
6657 			rtnl_unlock();
6658 #endif /* CONFIG_I40E_DCB */
6659 			break;
6660 		case i40e_aqc_opc_event_lan_overflow:
6661 			dev_dbg(&pf->pdev->dev, "ARQ LAN queue overflow event received\n");
6662 			i40e_handle_lan_overflow_event(pf, &event);
6663 			break;
6664 		case i40e_aqc_opc_send_msg_to_peer:
6665 			dev_info(&pf->pdev->dev, "ARQ: Msg from other pf\n");
6666 			break;
6667 		case i40e_aqc_opc_nvm_erase:
6668 		case i40e_aqc_opc_nvm_update:
6669 		case i40e_aqc_opc_oem_post_update:
6670 			i40e_debug(&pf->hw, I40E_DEBUG_NVM,
6671 				   "ARQ NVM operation 0x%04x completed\n",
6672 				   opcode);
6673 			break;
6674 		default:
6675 			dev_info(&pf->pdev->dev,
6676 				 "ARQ: Unknown event 0x%04x ignored\n",
6677 				 opcode);
6678 			break;
6679 		}
6680 	} while (i++ < pf->adminq_work_limit);
6681 
6682 	if (i < pf->adminq_work_limit)
6683 		clear_bit(__I40E_ADMINQ_EVENT_PENDING, pf->state);
6684 
6685 	/* re-enable Admin queue interrupt cause */
6686 	val = rd32(hw, I40E_PFINT_ICR0_ENA);
6687 	val |=  I40E_PFINT_ICR0_ENA_ADMINQ_MASK;
6688 	wr32(hw, I40E_PFINT_ICR0_ENA, val);
6689 	i40e_flush(hw);
6690 
6691 	kfree(event.msg_buf);
6692 }
6693 
6694 /**
6695  * i40e_verify_eeprom - make sure eeprom is good to use
6696  * @pf: board private structure
6697  **/
6698 static void i40e_verify_eeprom(struct i40e_pf *pf)
6699 {
6700 	int err;
6701 
6702 	err = i40e_diag_eeprom_test(&pf->hw);
6703 	if (err) {
6704 		/* retry in case of garbage read */
6705 		err = i40e_diag_eeprom_test(&pf->hw);
6706 		if (err) {
6707 			dev_info(&pf->pdev->dev, "eeprom check failed (%d), Tx/Rx traffic disabled\n",
6708 				 err);
6709 			set_bit(__I40E_BAD_EEPROM, pf->state);
6710 		}
6711 	}
6712 
6713 	if (!err && test_bit(__I40E_BAD_EEPROM, pf->state)) {
6714 		dev_info(&pf->pdev->dev, "eeprom check passed, Tx/Rx traffic enabled\n");
6715 		clear_bit(__I40E_BAD_EEPROM, pf->state);
6716 	}
6717 }
6718 
6719 /**
6720  * i40e_enable_pf_switch_lb
6721  * @pf: pointer to the PF structure
6722  *
6723  * enable switch loop back or die - no point in a return value
6724  **/
6725 static void i40e_enable_pf_switch_lb(struct i40e_pf *pf)
6726 {
6727 	struct i40e_vsi *vsi = pf->vsi[pf->lan_vsi];
6728 	struct i40e_vsi_context ctxt;
6729 	int ret;
6730 
6731 	ctxt.seid = pf->main_vsi_seid;
6732 	ctxt.pf_num = pf->hw.pf_id;
6733 	ctxt.vf_num = 0;
6734 	ret = i40e_aq_get_vsi_params(&pf->hw, &ctxt, NULL);
6735 	if (ret) {
6736 		dev_info(&pf->pdev->dev,
6737 			 "couldn't get PF vsi config, err %s aq_err %s\n",
6738 			 i40e_stat_str(&pf->hw, ret),
6739 			 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status));
6740 		return;
6741 	}
6742 	ctxt.flags = I40E_AQ_VSI_TYPE_PF;
6743 	ctxt.info.valid_sections = cpu_to_le16(I40E_AQ_VSI_PROP_SWITCH_VALID);
6744 	ctxt.info.switch_id |= cpu_to_le16(I40E_AQ_VSI_SW_ID_FLAG_ALLOW_LB);
6745 
6746 	ret = i40e_aq_update_vsi_params(&vsi->back->hw, &ctxt, NULL);
6747 	if (ret) {
6748 		dev_info(&pf->pdev->dev,
6749 			 "update vsi switch failed, err %s aq_err %s\n",
6750 			 i40e_stat_str(&pf->hw, ret),
6751 			 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status));
6752 	}
6753 }
6754 
6755 /**
6756  * i40e_disable_pf_switch_lb
6757  * @pf: pointer to the PF structure
6758  *
6759  * disable switch loop back or die - no point in a return value
6760  **/
6761 static void i40e_disable_pf_switch_lb(struct i40e_pf *pf)
6762 {
6763 	struct i40e_vsi *vsi = pf->vsi[pf->lan_vsi];
6764 	struct i40e_vsi_context ctxt;
6765 	int ret;
6766 
6767 	ctxt.seid = pf->main_vsi_seid;
6768 	ctxt.pf_num = pf->hw.pf_id;
6769 	ctxt.vf_num = 0;
6770 	ret = i40e_aq_get_vsi_params(&pf->hw, &ctxt, NULL);
6771 	if (ret) {
6772 		dev_info(&pf->pdev->dev,
6773 			 "couldn't get PF vsi config, err %s aq_err %s\n",
6774 			 i40e_stat_str(&pf->hw, ret),
6775 			 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status));
6776 		return;
6777 	}
6778 	ctxt.flags = I40E_AQ_VSI_TYPE_PF;
6779 	ctxt.info.valid_sections = cpu_to_le16(I40E_AQ_VSI_PROP_SWITCH_VALID);
6780 	ctxt.info.switch_id &= ~cpu_to_le16(I40E_AQ_VSI_SW_ID_FLAG_ALLOW_LB);
6781 
6782 	ret = i40e_aq_update_vsi_params(&vsi->back->hw, &ctxt, NULL);
6783 	if (ret) {
6784 		dev_info(&pf->pdev->dev,
6785 			 "update vsi switch failed, err %s aq_err %s\n",
6786 			 i40e_stat_str(&pf->hw, ret),
6787 			 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status));
6788 	}
6789 }
6790 
6791 /**
6792  * i40e_config_bridge_mode - Configure the HW bridge mode
6793  * @veb: pointer to the bridge instance
6794  *
6795  * Configure the loop back mode for the LAN VSI that is downlink to the
6796  * specified HW bridge instance. It is expected this function is called
6797  * when a new HW bridge is instantiated.
6798  **/
6799 static void i40e_config_bridge_mode(struct i40e_veb *veb)
6800 {
6801 	struct i40e_pf *pf = veb->pf;
6802 
6803 	if (pf->hw.debug_mask & I40E_DEBUG_LAN)
6804 		dev_info(&pf->pdev->dev, "enabling bridge mode: %s\n",
6805 			 veb->bridge_mode == BRIDGE_MODE_VEPA ? "VEPA" : "VEB");
6806 	if (veb->bridge_mode & BRIDGE_MODE_VEPA)
6807 		i40e_disable_pf_switch_lb(pf);
6808 	else
6809 		i40e_enable_pf_switch_lb(pf);
6810 }
6811 
6812 /**
6813  * i40e_reconstitute_veb - rebuild the VEB and anything connected to it
6814  * @veb: pointer to the VEB instance
6815  *
6816  * This is a recursive function that first builds the attached VSIs then
6817  * recurses in to build the next layer of VEB.  We track the connections
6818  * through our own index numbers because the seid's from the HW could
6819  * change across the reset.
6820  **/
6821 static int i40e_reconstitute_veb(struct i40e_veb *veb)
6822 {
6823 	struct i40e_vsi *ctl_vsi = NULL;
6824 	struct i40e_pf *pf = veb->pf;
6825 	int v, veb_idx;
6826 	int ret;
6827 
6828 	/* build VSI that owns this VEB, temporarily attached to base VEB */
6829 	for (v = 0; v < pf->num_alloc_vsi && !ctl_vsi; v++) {
6830 		if (pf->vsi[v] &&
6831 		    pf->vsi[v]->veb_idx == veb->idx &&
6832 		    pf->vsi[v]->flags & I40E_VSI_FLAG_VEB_OWNER) {
6833 			ctl_vsi = pf->vsi[v];
6834 			break;
6835 		}
6836 	}
6837 	if (!ctl_vsi) {
6838 		dev_info(&pf->pdev->dev,
6839 			 "missing owner VSI for veb_idx %d\n", veb->idx);
6840 		ret = -ENOENT;
6841 		goto end_reconstitute;
6842 	}
6843 	if (ctl_vsi != pf->vsi[pf->lan_vsi])
6844 		ctl_vsi->uplink_seid = pf->vsi[pf->lan_vsi]->uplink_seid;
6845 	ret = i40e_add_vsi(ctl_vsi);
6846 	if (ret) {
6847 		dev_info(&pf->pdev->dev,
6848 			 "rebuild of veb_idx %d owner VSI failed: %d\n",
6849 			 veb->idx, ret);
6850 		goto end_reconstitute;
6851 	}
6852 	i40e_vsi_reset_stats(ctl_vsi);
6853 
6854 	/* create the VEB in the switch and move the VSI onto the VEB */
6855 	ret = i40e_add_veb(veb, ctl_vsi);
6856 	if (ret)
6857 		goto end_reconstitute;
6858 
6859 	if (pf->flags & I40E_FLAG_VEB_MODE_ENABLED)
6860 		veb->bridge_mode = BRIDGE_MODE_VEB;
6861 	else
6862 		veb->bridge_mode = BRIDGE_MODE_VEPA;
6863 	i40e_config_bridge_mode(veb);
6864 
6865 	/* create the remaining VSIs attached to this VEB */
6866 	for (v = 0; v < pf->num_alloc_vsi; v++) {
6867 		if (!pf->vsi[v] || pf->vsi[v] == ctl_vsi)
6868 			continue;
6869 
6870 		if (pf->vsi[v]->veb_idx == veb->idx) {
6871 			struct i40e_vsi *vsi = pf->vsi[v];
6872 
6873 			vsi->uplink_seid = veb->seid;
6874 			ret = i40e_add_vsi(vsi);
6875 			if (ret) {
6876 				dev_info(&pf->pdev->dev,
6877 					 "rebuild of vsi_idx %d failed: %d\n",
6878 					 v, ret);
6879 				goto end_reconstitute;
6880 			}
6881 			i40e_vsi_reset_stats(vsi);
6882 		}
6883 	}
6884 
6885 	/* create any VEBs attached to this VEB - RECURSION */
6886 	for (veb_idx = 0; veb_idx < I40E_MAX_VEB; veb_idx++) {
6887 		if (pf->veb[veb_idx] && pf->veb[veb_idx]->veb_idx == veb->idx) {
6888 			pf->veb[veb_idx]->uplink_seid = veb->seid;
6889 			ret = i40e_reconstitute_veb(pf->veb[veb_idx]);
6890 			if (ret)
6891 				break;
6892 		}
6893 	}
6894 
6895 end_reconstitute:
6896 	return ret;
6897 }
6898 
6899 /**
6900  * i40e_get_capabilities - get info about the HW
6901  * @pf: the PF struct
6902  **/
6903 static int i40e_get_capabilities(struct i40e_pf *pf)
6904 {
6905 	struct i40e_aqc_list_capabilities_element_resp *cap_buf;
6906 	u16 data_size;
6907 	int buf_len;
6908 	int err;
6909 
6910 	buf_len = 40 * sizeof(struct i40e_aqc_list_capabilities_element_resp);
6911 	do {
6912 		cap_buf = kzalloc(buf_len, GFP_KERNEL);
6913 		if (!cap_buf)
6914 			return -ENOMEM;
6915 
6916 		/* this loads the data into the hw struct for us */
6917 		err = i40e_aq_discover_capabilities(&pf->hw, cap_buf, buf_len,
6918 					    &data_size,
6919 					    i40e_aqc_opc_list_func_capabilities,
6920 					    NULL);
6921 		/* data loaded, buffer no longer needed */
6922 		kfree(cap_buf);
6923 
6924 		if (pf->hw.aq.asq_last_status == I40E_AQ_RC_ENOMEM) {
6925 			/* retry with a larger buffer */
6926 			buf_len = data_size;
6927 		} else if (pf->hw.aq.asq_last_status != I40E_AQ_RC_OK) {
6928 			dev_info(&pf->pdev->dev,
6929 				 "capability discovery failed, err %s aq_err %s\n",
6930 				 i40e_stat_str(&pf->hw, err),
6931 				 i40e_aq_str(&pf->hw,
6932 					     pf->hw.aq.asq_last_status));
6933 			return -ENODEV;
6934 		}
6935 	} while (err);
6936 
6937 	if (pf->hw.debug_mask & I40E_DEBUG_USER)
6938 		dev_info(&pf->pdev->dev,
6939 			 "pf=%d, num_vfs=%d, msix_pf=%d, msix_vf=%d, fd_g=%d, fd_b=%d, pf_max_q=%d num_vsi=%d\n",
6940 			 pf->hw.pf_id, pf->hw.func_caps.num_vfs,
6941 			 pf->hw.func_caps.num_msix_vectors,
6942 			 pf->hw.func_caps.num_msix_vectors_vf,
6943 			 pf->hw.func_caps.fd_filters_guaranteed,
6944 			 pf->hw.func_caps.fd_filters_best_effort,
6945 			 pf->hw.func_caps.num_tx_qp,
6946 			 pf->hw.func_caps.num_vsis);
6947 
6948 #define DEF_NUM_VSI (1 + (pf->hw.func_caps.fcoe ? 1 : 0) \
6949 		       + pf->hw.func_caps.num_vfs)
6950 	if (pf->hw.revision_id == 0 && (DEF_NUM_VSI > pf->hw.func_caps.num_vsis)) {
6951 		dev_info(&pf->pdev->dev,
6952 			 "got num_vsis %d, setting num_vsis to %d\n",
6953 			 pf->hw.func_caps.num_vsis, DEF_NUM_VSI);
6954 		pf->hw.func_caps.num_vsis = DEF_NUM_VSI;
6955 	}
6956 
6957 	return 0;
6958 }
6959 
6960 static int i40e_vsi_clear(struct i40e_vsi *vsi);
6961 
6962 /**
6963  * i40e_fdir_sb_setup - initialize the Flow Director resources for Sideband
6964  * @pf: board private structure
6965  **/
6966 static void i40e_fdir_sb_setup(struct i40e_pf *pf)
6967 {
6968 	struct i40e_vsi *vsi;
6969 
6970 	/* quick workaround for an NVM issue that leaves a critical register
6971 	 * uninitialized
6972 	 */
6973 	if (!rd32(&pf->hw, I40E_GLQF_HKEY(0))) {
6974 		static const u32 hkey[] = {
6975 			0xe640d33f, 0xcdfe98ab, 0x73fa7161, 0x0d7a7d36,
6976 			0xeacb7d61, 0xaa4f05b6, 0x9c5c89ed, 0xfc425ddb,
6977 			0xa4654832, 0xfc7461d4, 0x8f827619, 0xf5c63c21,
6978 			0x95b3a76d};
6979 		int i;
6980 
6981 		for (i = 0; i <= I40E_GLQF_HKEY_MAX_INDEX; i++)
6982 			wr32(&pf->hw, I40E_GLQF_HKEY(i), hkey[i]);
6983 	}
6984 
6985 	if (!(pf->flags & I40E_FLAG_FD_SB_ENABLED))
6986 		return;
6987 
6988 	/* find existing VSI and see if it needs configuring */
6989 	vsi = i40e_find_vsi_by_type(pf, I40E_VSI_FDIR);
6990 
6991 	/* create a new VSI if none exists */
6992 	if (!vsi) {
6993 		vsi = i40e_vsi_setup(pf, I40E_VSI_FDIR,
6994 				     pf->vsi[pf->lan_vsi]->seid, 0);
6995 		if (!vsi) {
6996 			dev_info(&pf->pdev->dev, "Couldn't create FDir VSI\n");
6997 			pf->flags &= ~I40E_FLAG_FD_SB_ENABLED;
6998 			return;
6999 		}
7000 	}
7001 
7002 	i40e_vsi_setup_irqhandler(vsi, i40e_fdir_clean_ring);
7003 }
7004 
7005 /**
7006  * i40e_fdir_teardown - release the Flow Director resources
7007  * @pf: board private structure
7008  **/
7009 static void i40e_fdir_teardown(struct i40e_pf *pf)
7010 {
7011 	struct i40e_vsi *vsi;
7012 
7013 	i40e_fdir_filter_exit(pf);
7014 	vsi = i40e_find_vsi_by_type(pf, I40E_VSI_FDIR);
7015 	if (vsi)
7016 		i40e_vsi_release(vsi);
7017 }
7018 
7019 /**
7020  * i40e_prep_for_reset - prep for the core to reset
7021  * @pf: board private structure
7022  * @lock_acquired: indicates whether or not the lock has been acquired
7023  * before this function was called.
7024  *
7025  * Close up the VFs and other things in prep for PF Reset.
7026   **/
7027 static void i40e_prep_for_reset(struct i40e_pf *pf, bool lock_acquired)
7028 {
7029 	struct i40e_hw *hw = &pf->hw;
7030 	i40e_status ret = 0;
7031 	u32 v;
7032 
7033 	clear_bit(__I40E_RESET_INTR_RECEIVED, pf->state);
7034 	if (test_and_set_bit(__I40E_RESET_RECOVERY_PENDING, pf->state))
7035 		return;
7036 	if (i40e_check_asq_alive(&pf->hw))
7037 		i40e_vc_notify_reset(pf);
7038 
7039 	dev_dbg(&pf->pdev->dev, "Tearing down internal switch for reset\n");
7040 
7041 	/* quiesce the VSIs and their queues that are not already DOWN */
7042 	/* pf_quiesce_all_vsi modifies netdev structures -rtnl_lock needed */
7043 	if (!lock_acquired)
7044 		rtnl_lock();
7045 	i40e_pf_quiesce_all_vsi(pf);
7046 	if (!lock_acquired)
7047 		rtnl_unlock();
7048 
7049 	for (v = 0; v < pf->num_alloc_vsi; v++) {
7050 		if (pf->vsi[v])
7051 			pf->vsi[v]->seid = 0;
7052 	}
7053 
7054 	i40e_shutdown_adminq(&pf->hw);
7055 
7056 	/* call shutdown HMC */
7057 	if (hw->hmc.hmc_obj) {
7058 		ret = i40e_shutdown_lan_hmc(hw);
7059 		if (ret)
7060 			dev_warn(&pf->pdev->dev,
7061 				 "shutdown_lan_hmc failed: %d\n", ret);
7062 	}
7063 }
7064 
7065 /**
7066  * i40e_send_version - update firmware with driver version
7067  * @pf: PF struct
7068  */
7069 static void i40e_send_version(struct i40e_pf *pf)
7070 {
7071 	struct i40e_driver_version dv;
7072 
7073 	dv.major_version = DRV_VERSION_MAJOR;
7074 	dv.minor_version = DRV_VERSION_MINOR;
7075 	dv.build_version = DRV_VERSION_BUILD;
7076 	dv.subbuild_version = 0;
7077 	strlcpy(dv.driver_string, DRV_VERSION, sizeof(dv.driver_string));
7078 	i40e_aq_send_driver_version(&pf->hw, &dv, NULL);
7079 }
7080 
7081 /**
7082  * i40e_get_oem_version - get OEM specific version information
7083  * @hw: pointer to the hardware structure
7084  **/
7085 static void i40e_get_oem_version(struct i40e_hw *hw)
7086 {
7087 	u16 block_offset = 0xffff;
7088 	u16 block_length = 0;
7089 	u16 capabilities = 0;
7090 	u16 gen_snap = 0;
7091 	u16 release = 0;
7092 
7093 #define I40E_SR_NVM_OEM_VERSION_PTR		0x1B
7094 #define I40E_NVM_OEM_LENGTH_OFFSET		0x00
7095 #define I40E_NVM_OEM_CAPABILITIES_OFFSET	0x01
7096 #define I40E_NVM_OEM_GEN_OFFSET			0x02
7097 #define I40E_NVM_OEM_RELEASE_OFFSET		0x03
7098 #define I40E_NVM_OEM_CAPABILITIES_MASK		0x000F
7099 #define I40E_NVM_OEM_LENGTH			3
7100 
7101 	/* Check if pointer to OEM version block is valid. */
7102 	i40e_read_nvm_word(hw, I40E_SR_NVM_OEM_VERSION_PTR, &block_offset);
7103 	if (block_offset == 0xffff)
7104 		return;
7105 
7106 	/* Check if OEM version block has correct length. */
7107 	i40e_read_nvm_word(hw, block_offset + I40E_NVM_OEM_LENGTH_OFFSET,
7108 			   &block_length);
7109 	if (block_length < I40E_NVM_OEM_LENGTH)
7110 		return;
7111 
7112 	/* Check if OEM version format is as expected. */
7113 	i40e_read_nvm_word(hw, block_offset + I40E_NVM_OEM_CAPABILITIES_OFFSET,
7114 			   &capabilities);
7115 	if ((capabilities & I40E_NVM_OEM_CAPABILITIES_MASK) != 0)
7116 		return;
7117 
7118 	i40e_read_nvm_word(hw, block_offset + I40E_NVM_OEM_GEN_OFFSET,
7119 			   &gen_snap);
7120 	i40e_read_nvm_word(hw, block_offset + I40E_NVM_OEM_RELEASE_OFFSET,
7121 			   &release);
7122 	hw->nvm.oem_ver = (gen_snap << I40E_OEM_SNAP_SHIFT) | release;
7123 	hw->nvm.eetrack = I40E_OEM_EETRACK_ID;
7124 }
7125 
7126 /**
7127  * i40e_reset - wait for core reset to finish reset, reset pf if corer not seen
7128  * @pf: board private structure
7129  **/
7130 static int i40e_reset(struct i40e_pf *pf)
7131 {
7132 	struct i40e_hw *hw = &pf->hw;
7133 	i40e_status ret;
7134 
7135 	ret = i40e_pf_reset(hw);
7136 	if (ret) {
7137 		dev_info(&pf->pdev->dev, "PF reset failed, %d\n", ret);
7138 		set_bit(__I40E_RESET_FAILED, pf->state);
7139 		clear_bit(__I40E_RESET_RECOVERY_PENDING, pf->state);
7140 	} else {
7141 		pf->pfr_count++;
7142 	}
7143 	return ret;
7144 }
7145 
7146 /**
7147  * i40e_rebuild - rebuild using a saved config
7148  * @pf: board private structure
7149  * @reinit: if the Main VSI needs to re-initialized.
7150  * @lock_acquired: indicates whether or not the lock has been acquired
7151  * before this function was called.
7152  **/
7153 static void i40e_rebuild(struct i40e_pf *pf, bool reinit, bool lock_acquired)
7154 {
7155 	struct i40e_hw *hw = &pf->hw;
7156 	u8 set_fc_aq_fail = 0;
7157 	i40e_status ret;
7158 	u32 val;
7159 	int v;
7160 
7161 	if (test_bit(__I40E_DOWN, pf->state))
7162 		goto clear_recovery;
7163 	dev_dbg(&pf->pdev->dev, "Rebuilding internal switch\n");
7164 
7165 	/* rebuild the basics for the AdminQ, HMC, and initial HW switch */
7166 	ret = i40e_init_adminq(&pf->hw);
7167 	if (ret) {
7168 		dev_info(&pf->pdev->dev, "Rebuild AdminQ failed, err %s aq_err %s\n",
7169 			 i40e_stat_str(&pf->hw, ret),
7170 			 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status));
7171 		goto clear_recovery;
7172 	}
7173 	i40e_get_oem_version(&pf->hw);
7174 
7175 	/* re-verify the eeprom if we just had an EMP reset */
7176 	if (test_and_clear_bit(__I40E_EMP_RESET_INTR_RECEIVED, pf->state))
7177 		i40e_verify_eeprom(pf);
7178 
7179 	i40e_clear_pxe_mode(hw);
7180 	ret = i40e_get_capabilities(pf);
7181 	if (ret)
7182 		goto end_core_reset;
7183 
7184 	ret = i40e_init_lan_hmc(hw, hw->func_caps.num_tx_qp,
7185 				hw->func_caps.num_rx_qp, 0, 0);
7186 	if (ret) {
7187 		dev_info(&pf->pdev->dev, "init_lan_hmc failed: %d\n", ret);
7188 		goto end_core_reset;
7189 	}
7190 	ret = i40e_configure_lan_hmc(hw, I40E_HMC_MODEL_DIRECT_ONLY);
7191 	if (ret) {
7192 		dev_info(&pf->pdev->dev, "configure_lan_hmc failed: %d\n", ret);
7193 		goto end_core_reset;
7194 	}
7195 
7196 #ifdef CONFIG_I40E_DCB
7197 	ret = i40e_init_pf_dcb(pf);
7198 	if (ret) {
7199 		dev_info(&pf->pdev->dev, "DCB init failed %d, disabled\n", ret);
7200 		pf->flags &= ~I40E_FLAG_DCB_CAPABLE;
7201 		/* Continue without DCB enabled */
7202 	}
7203 #endif /* CONFIG_I40E_DCB */
7204 	/* do basic switch setup */
7205 	if (!lock_acquired)
7206 		rtnl_lock();
7207 	ret = i40e_setup_pf_switch(pf, reinit);
7208 	if (ret)
7209 		goto end_unlock;
7210 
7211 	/* The driver only wants link up/down and module qualification
7212 	 * reports from firmware.  Note the negative logic.
7213 	 */
7214 	ret = i40e_aq_set_phy_int_mask(&pf->hw,
7215 				       ~(I40E_AQ_EVENT_LINK_UPDOWN |
7216 					 I40E_AQ_EVENT_MEDIA_NA |
7217 					 I40E_AQ_EVENT_MODULE_QUAL_FAIL), NULL);
7218 	if (ret)
7219 		dev_info(&pf->pdev->dev, "set phy mask fail, err %s aq_err %s\n",
7220 			 i40e_stat_str(&pf->hw, ret),
7221 			 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status));
7222 
7223 	/* make sure our flow control settings are restored */
7224 	ret = i40e_set_fc(&pf->hw, &set_fc_aq_fail, true);
7225 	if (ret)
7226 		dev_dbg(&pf->pdev->dev, "setting flow control: ret = %s last_status = %s\n",
7227 			i40e_stat_str(&pf->hw, ret),
7228 			i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status));
7229 
7230 	/* Rebuild the VSIs and VEBs that existed before reset.
7231 	 * They are still in our local switch element arrays, so only
7232 	 * need to rebuild the switch model in the HW.
7233 	 *
7234 	 * If there were VEBs but the reconstitution failed, we'll try
7235 	 * try to recover minimal use by getting the basic PF VSI working.
7236 	 */
7237 	if (pf->vsi[pf->lan_vsi]->uplink_seid != pf->mac_seid) {
7238 		dev_dbg(&pf->pdev->dev, "attempting to rebuild switch\n");
7239 		/* find the one VEB connected to the MAC, and find orphans */
7240 		for (v = 0; v < I40E_MAX_VEB; v++) {
7241 			if (!pf->veb[v])
7242 				continue;
7243 
7244 			if (pf->veb[v]->uplink_seid == pf->mac_seid ||
7245 			    pf->veb[v]->uplink_seid == 0) {
7246 				ret = i40e_reconstitute_veb(pf->veb[v]);
7247 
7248 				if (!ret)
7249 					continue;
7250 
7251 				/* If Main VEB failed, we're in deep doodoo,
7252 				 * so give up rebuilding the switch and set up
7253 				 * for minimal rebuild of PF VSI.
7254 				 * If orphan failed, we'll report the error
7255 				 * but try to keep going.
7256 				 */
7257 				if (pf->veb[v]->uplink_seid == pf->mac_seid) {
7258 					dev_info(&pf->pdev->dev,
7259 						 "rebuild of switch failed: %d, will try to set up simple PF connection\n",
7260 						 ret);
7261 					pf->vsi[pf->lan_vsi]->uplink_seid
7262 								= pf->mac_seid;
7263 					break;
7264 				} else if (pf->veb[v]->uplink_seid == 0) {
7265 					dev_info(&pf->pdev->dev,
7266 						 "rebuild of orphan VEB failed: %d\n",
7267 						 ret);
7268 				}
7269 			}
7270 		}
7271 	}
7272 
7273 	if (pf->vsi[pf->lan_vsi]->uplink_seid == pf->mac_seid) {
7274 		dev_dbg(&pf->pdev->dev, "attempting to rebuild PF VSI\n");
7275 		/* no VEB, so rebuild only the Main VSI */
7276 		ret = i40e_add_vsi(pf->vsi[pf->lan_vsi]);
7277 		if (ret) {
7278 			dev_info(&pf->pdev->dev,
7279 				 "rebuild of Main VSI failed: %d\n", ret);
7280 			goto end_unlock;
7281 		}
7282 	}
7283 
7284 	/* Reconfigure hardware for allowing smaller MSS in the case
7285 	 * of TSO, so that we avoid the MDD being fired and causing
7286 	 * a reset in the case of small MSS+TSO.
7287 	 */
7288 #define I40E_REG_MSS          0x000E64DC
7289 #define I40E_REG_MSS_MIN_MASK 0x3FF0000
7290 #define I40E_64BYTE_MSS       0x400000
7291 	val = rd32(hw, I40E_REG_MSS);
7292 	if ((val & I40E_REG_MSS_MIN_MASK) > I40E_64BYTE_MSS) {
7293 		val &= ~I40E_REG_MSS_MIN_MASK;
7294 		val |= I40E_64BYTE_MSS;
7295 		wr32(hw, I40E_REG_MSS, val);
7296 	}
7297 
7298 	if (pf->hw_features & I40E_HW_RESTART_AUTONEG) {
7299 		msleep(75);
7300 		ret = i40e_aq_set_link_restart_an(&pf->hw, true, NULL);
7301 		if (ret)
7302 			dev_info(&pf->pdev->dev, "link restart failed, err %s aq_err %s\n",
7303 				 i40e_stat_str(&pf->hw, ret),
7304 				 i40e_aq_str(&pf->hw,
7305 					     pf->hw.aq.asq_last_status));
7306 	}
7307 	/* reinit the misc interrupt */
7308 	if (pf->flags & I40E_FLAG_MSIX_ENABLED)
7309 		ret = i40e_setup_misc_vector(pf);
7310 
7311 	/* Add a filter to drop all Flow control frames from any VSI from being
7312 	 * transmitted. By doing so we stop a malicious VF from sending out
7313 	 * PAUSE or PFC frames and potentially controlling traffic for other
7314 	 * PF/VF VSIs.
7315 	 * The FW can still send Flow control frames if enabled.
7316 	 */
7317 	i40e_add_filter_to_drop_tx_flow_control_frames(&pf->hw,
7318 						       pf->main_vsi_seid);
7319 
7320 	/* restart the VSIs that were rebuilt and running before the reset */
7321 	i40e_pf_unquiesce_all_vsi(pf);
7322 
7323 	/* Release the RTNL lock before we start resetting VFs */
7324 	if (!lock_acquired)
7325 		rtnl_unlock();
7326 
7327 	i40e_reset_all_vfs(pf, true);
7328 
7329 	/* tell the firmware that we're starting */
7330 	i40e_send_version(pf);
7331 
7332 	/* We've already released the lock, so don't do it again */
7333 	goto end_core_reset;
7334 
7335 end_unlock:
7336 	if (!lock_acquired)
7337 		rtnl_unlock();
7338 end_core_reset:
7339 	clear_bit(__I40E_RESET_FAILED, pf->state);
7340 clear_recovery:
7341 	clear_bit(__I40E_RESET_RECOVERY_PENDING, pf->state);
7342 }
7343 
7344 /**
7345  * i40e_reset_and_rebuild - reset and rebuild using a saved config
7346  * @pf: board private structure
7347  * @reinit: if the Main VSI needs to re-initialized.
7348  * @lock_acquired: indicates whether or not the lock has been acquired
7349  * before this function was called.
7350  **/
7351 static void i40e_reset_and_rebuild(struct i40e_pf *pf, bool reinit,
7352 				   bool lock_acquired)
7353 {
7354 	int ret;
7355 	/* Now we wait for GRST to settle out.
7356 	 * We don't have to delete the VEBs or VSIs from the hw switch
7357 	 * because the reset will make them disappear.
7358 	 */
7359 	ret = i40e_reset(pf);
7360 	if (!ret)
7361 		i40e_rebuild(pf, reinit, lock_acquired);
7362 }
7363 
7364 /**
7365  * i40e_handle_reset_warning - prep for the PF to reset, reset and rebuild
7366  * @pf: board private structure
7367  *
7368  * Close up the VFs and other things in prep for a Core Reset,
7369  * then get ready to rebuild the world.
7370  * @lock_acquired: indicates whether or not the lock has been acquired
7371  * before this function was called.
7372  **/
7373 static void i40e_handle_reset_warning(struct i40e_pf *pf, bool lock_acquired)
7374 {
7375 	i40e_prep_for_reset(pf, lock_acquired);
7376 	i40e_reset_and_rebuild(pf, false, lock_acquired);
7377 }
7378 
7379 /**
7380  * i40e_handle_mdd_event
7381  * @pf: pointer to the PF structure
7382  *
7383  * Called from the MDD irq handler to identify possibly malicious vfs
7384  **/
7385 static void i40e_handle_mdd_event(struct i40e_pf *pf)
7386 {
7387 	struct i40e_hw *hw = &pf->hw;
7388 	bool mdd_detected = false;
7389 	bool pf_mdd_detected = false;
7390 	struct i40e_vf *vf;
7391 	u32 reg;
7392 	int i;
7393 
7394 	if (!test_bit(__I40E_MDD_EVENT_PENDING, pf->state))
7395 		return;
7396 
7397 	/* find what triggered the MDD event */
7398 	reg = rd32(hw, I40E_GL_MDET_TX);
7399 	if (reg & I40E_GL_MDET_TX_VALID_MASK) {
7400 		u8 pf_num = (reg & I40E_GL_MDET_TX_PF_NUM_MASK) >>
7401 				I40E_GL_MDET_TX_PF_NUM_SHIFT;
7402 		u16 vf_num = (reg & I40E_GL_MDET_TX_VF_NUM_MASK) >>
7403 				I40E_GL_MDET_TX_VF_NUM_SHIFT;
7404 		u8 event = (reg & I40E_GL_MDET_TX_EVENT_MASK) >>
7405 				I40E_GL_MDET_TX_EVENT_SHIFT;
7406 		u16 queue = ((reg & I40E_GL_MDET_TX_QUEUE_MASK) >>
7407 				I40E_GL_MDET_TX_QUEUE_SHIFT) -
7408 				pf->hw.func_caps.base_queue;
7409 		if (netif_msg_tx_err(pf))
7410 			dev_info(&pf->pdev->dev, "Malicious Driver Detection event 0x%02x on TX queue %d PF number 0x%02x VF number 0x%02x\n",
7411 				 event, queue, pf_num, vf_num);
7412 		wr32(hw, I40E_GL_MDET_TX, 0xffffffff);
7413 		mdd_detected = true;
7414 	}
7415 	reg = rd32(hw, I40E_GL_MDET_RX);
7416 	if (reg & I40E_GL_MDET_RX_VALID_MASK) {
7417 		u8 func = (reg & I40E_GL_MDET_RX_FUNCTION_MASK) >>
7418 				I40E_GL_MDET_RX_FUNCTION_SHIFT;
7419 		u8 event = (reg & I40E_GL_MDET_RX_EVENT_MASK) >>
7420 				I40E_GL_MDET_RX_EVENT_SHIFT;
7421 		u16 queue = ((reg & I40E_GL_MDET_RX_QUEUE_MASK) >>
7422 				I40E_GL_MDET_RX_QUEUE_SHIFT) -
7423 				pf->hw.func_caps.base_queue;
7424 		if (netif_msg_rx_err(pf))
7425 			dev_info(&pf->pdev->dev, "Malicious Driver Detection event 0x%02x on RX queue %d of function 0x%02x\n",
7426 				 event, queue, func);
7427 		wr32(hw, I40E_GL_MDET_RX, 0xffffffff);
7428 		mdd_detected = true;
7429 	}
7430 
7431 	if (mdd_detected) {
7432 		reg = rd32(hw, I40E_PF_MDET_TX);
7433 		if (reg & I40E_PF_MDET_TX_VALID_MASK) {
7434 			wr32(hw, I40E_PF_MDET_TX, 0xFFFF);
7435 			dev_info(&pf->pdev->dev, "TX driver issue detected, PF reset issued\n");
7436 			pf_mdd_detected = true;
7437 		}
7438 		reg = rd32(hw, I40E_PF_MDET_RX);
7439 		if (reg & I40E_PF_MDET_RX_VALID_MASK) {
7440 			wr32(hw, I40E_PF_MDET_RX, 0xFFFF);
7441 			dev_info(&pf->pdev->dev, "RX driver issue detected, PF reset issued\n");
7442 			pf_mdd_detected = true;
7443 		}
7444 		/* Queue belongs to the PF, initiate a reset */
7445 		if (pf_mdd_detected) {
7446 			set_bit(__I40E_PF_RESET_REQUESTED, pf->state);
7447 			i40e_service_event_schedule(pf);
7448 		}
7449 	}
7450 
7451 	/* see if one of the VFs needs its hand slapped */
7452 	for (i = 0; i < pf->num_alloc_vfs && mdd_detected; i++) {
7453 		vf = &(pf->vf[i]);
7454 		reg = rd32(hw, I40E_VP_MDET_TX(i));
7455 		if (reg & I40E_VP_MDET_TX_VALID_MASK) {
7456 			wr32(hw, I40E_VP_MDET_TX(i), 0xFFFF);
7457 			vf->num_mdd_events++;
7458 			dev_info(&pf->pdev->dev, "TX driver issue detected on VF %d\n",
7459 				 i);
7460 		}
7461 
7462 		reg = rd32(hw, I40E_VP_MDET_RX(i));
7463 		if (reg & I40E_VP_MDET_RX_VALID_MASK) {
7464 			wr32(hw, I40E_VP_MDET_RX(i), 0xFFFF);
7465 			vf->num_mdd_events++;
7466 			dev_info(&pf->pdev->dev, "RX driver issue detected on VF %d\n",
7467 				 i);
7468 		}
7469 
7470 		if (vf->num_mdd_events > I40E_DEFAULT_NUM_MDD_EVENTS_ALLOWED) {
7471 			dev_info(&pf->pdev->dev,
7472 				 "Too many MDD events on VF %d, disabled\n", i);
7473 			dev_info(&pf->pdev->dev,
7474 				 "Use PF Control I/F to re-enable the VF\n");
7475 			set_bit(I40E_VF_STATE_DISABLED, &vf->vf_states);
7476 		}
7477 	}
7478 
7479 	/* re-enable mdd interrupt cause */
7480 	clear_bit(__I40E_MDD_EVENT_PENDING, pf->state);
7481 	reg = rd32(hw, I40E_PFINT_ICR0_ENA);
7482 	reg |=  I40E_PFINT_ICR0_ENA_MAL_DETECT_MASK;
7483 	wr32(hw, I40E_PFINT_ICR0_ENA, reg);
7484 	i40e_flush(hw);
7485 }
7486 
7487 static const char *i40e_tunnel_name(struct i40e_udp_port_config *port)
7488 {
7489 	switch (port->type) {
7490 	case UDP_TUNNEL_TYPE_VXLAN:
7491 		return "vxlan";
7492 	case UDP_TUNNEL_TYPE_GENEVE:
7493 		return "geneve";
7494 	default:
7495 		return "unknown";
7496 	}
7497 }
7498 
7499 /**
7500  * i40e_sync_udp_filters - Trigger a sync event for existing UDP filters
7501  * @pf: board private structure
7502  **/
7503 static void i40e_sync_udp_filters(struct i40e_pf *pf)
7504 {
7505 	int i;
7506 
7507 	/* loop through and set pending bit for all active UDP filters */
7508 	for (i = 0; i < I40E_MAX_PF_UDP_OFFLOAD_PORTS; i++) {
7509 		if (pf->udp_ports[i].port)
7510 			pf->pending_udp_bitmap |= BIT_ULL(i);
7511 	}
7512 
7513 	pf->flags |= I40E_FLAG_UDP_FILTER_SYNC;
7514 }
7515 
7516 /**
7517  * i40e_sync_udp_filters_subtask - Sync the VSI filter list with HW
7518  * @pf: board private structure
7519  **/
7520 static void i40e_sync_udp_filters_subtask(struct i40e_pf *pf)
7521 {
7522 	struct i40e_hw *hw = &pf->hw;
7523 	i40e_status ret;
7524 	u16 port;
7525 	int i;
7526 
7527 	if (!(pf->flags & I40E_FLAG_UDP_FILTER_SYNC))
7528 		return;
7529 
7530 	pf->flags &= ~I40E_FLAG_UDP_FILTER_SYNC;
7531 
7532 	for (i = 0; i < I40E_MAX_PF_UDP_OFFLOAD_PORTS; i++) {
7533 		if (pf->pending_udp_bitmap & BIT_ULL(i)) {
7534 			pf->pending_udp_bitmap &= ~BIT_ULL(i);
7535 			port = pf->udp_ports[i].port;
7536 			if (port)
7537 				ret = i40e_aq_add_udp_tunnel(hw, port,
7538 							pf->udp_ports[i].type,
7539 							NULL, NULL);
7540 			else
7541 				ret = i40e_aq_del_udp_tunnel(hw, i, NULL);
7542 
7543 			if (ret) {
7544 				dev_info(&pf->pdev->dev,
7545 					 "%s %s port %d, index %d failed, err %s aq_err %s\n",
7546 					 i40e_tunnel_name(&pf->udp_ports[i]),
7547 					 port ? "add" : "delete",
7548 					 port, i,
7549 					 i40e_stat_str(&pf->hw, ret),
7550 					 i40e_aq_str(&pf->hw,
7551 						     pf->hw.aq.asq_last_status));
7552 				pf->udp_ports[i].port = 0;
7553 			}
7554 		}
7555 	}
7556 }
7557 
7558 /**
7559  * i40e_service_task - Run the driver's async subtasks
7560  * @work: pointer to work_struct containing our data
7561  **/
7562 static void i40e_service_task(struct work_struct *work)
7563 {
7564 	struct i40e_pf *pf = container_of(work,
7565 					  struct i40e_pf,
7566 					  service_task);
7567 	unsigned long start_time = jiffies;
7568 
7569 	/* don't bother with service tasks if a reset is in progress */
7570 	if (test_bit(__I40E_RESET_RECOVERY_PENDING, pf->state))
7571 		return;
7572 
7573 	if (test_and_set_bit(__I40E_SERVICE_SCHED, pf->state))
7574 		return;
7575 
7576 	i40e_detect_recover_hung(pf);
7577 	i40e_sync_filters_subtask(pf);
7578 	i40e_reset_subtask(pf);
7579 	i40e_handle_mdd_event(pf);
7580 	i40e_vc_process_vflr_event(pf);
7581 	i40e_watchdog_subtask(pf);
7582 	i40e_fdir_reinit_subtask(pf);
7583 	if (pf->flags & I40E_FLAG_CLIENT_RESET) {
7584 		/* Client subtask will reopen next time through. */
7585 		i40e_notify_client_of_netdev_close(pf->vsi[pf->lan_vsi], true);
7586 		pf->flags &= ~I40E_FLAG_CLIENT_RESET;
7587 	} else {
7588 		i40e_client_subtask(pf);
7589 		if (pf->flags & I40E_FLAG_CLIENT_L2_CHANGE) {
7590 			i40e_notify_client_of_l2_param_changes(
7591 							pf->vsi[pf->lan_vsi]);
7592 			pf->flags &= ~I40E_FLAG_CLIENT_L2_CHANGE;
7593 		}
7594 	}
7595 	i40e_sync_filters_subtask(pf);
7596 	i40e_sync_udp_filters_subtask(pf);
7597 	i40e_clean_adminq_subtask(pf);
7598 
7599 	/* flush memory to make sure state is correct before next watchdog */
7600 	smp_mb__before_atomic();
7601 	clear_bit(__I40E_SERVICE_SCHED, pf->state);
7602 
7603 	/* If the tasks have taken longer than one timer cycle or there
7604 	 * is more work to be done, reschedule the service task now
7605 	 * rather than wait for the timer to tick again.
7606 	 */
7607 	if (time_after(jiffies, (start_time + pf->service_timer_period)) ||
7608 	    test_bit(__I40E_ADMINQ_EVENT_PENDING, pf->state)		 ||
7609 	    test_bit(__I40E_MDD_EVENT_PENDING, pf->state)		 ||
7610 	    test_bit(__I40E_VFLR_EVENT_PENDING, pf->state))
7611 		i40e_service_event_schedule(pf);
7612 }
7613 
7614 /**
7615  * i40e_service_timer - timer callback
7616  * @data: pointer to PF struct
7617  **/
7618 static void i40e_service_timer(unsigned long data)
7619 {
7620 	struct i40e_pf *pf = (struct i40e_pf *)data;
7621 
7622 	mod_timer(&pf->service_timer,
7623 		  round_jiffies(jiffies + pf->service_timer_period));
7624 	i40e_service_event_schedule(pf);
7625 }
7626 
7627 /**
7628  * i40e_set_num_rings_in_vsi - Determine number of rings in the VSI
7629  * @vsi: the VSI being configured
7630  **/
7631 static int i40e_set_num_rings_in_vsi(struct i40e_vsi *vsi)
7632 {
7633 	struct i40e_pf *pf = vsi->back;
7634 
7635 	switch (vsi->type) {
7636 	case I40E_VSI_MAIN:
7637 		vsi->alloc_queue_pairs = pf->num_lan_qps;
7638 		vsi->num_desc = ALIGN(I40E_DEFAULT_NUM_DESCRIPTORS,
7639 				      I40E_REQ_DESCRIPTOR_MULTIPLE);
7640 		if (pf->flags & I40E_FLAG_MSIX_ENABLED)
7641 			vsi->num_q_vectors = pf->num_lan_msix;
7642 		else
7643 			vsi->num_q_vectors = 1;
7644 
7645 		break;
7646 
7647 	case I40E_VSI_FDIR:
7648 		vsi->alloc_queue_pairs = 1;
7649 		vsi->num_desc = ALIGN(I40E_FDIR_RING_COUNT,
7650 				      I40E_REQ_DESCRIPTOR_MULTIPLE);
7651 		vsi->num_q_vectors = pf->num_fdsb_msix;
7652 		break;
7653 
7654 	case I40E_VSI_VMDQ2:
7655 		vsi->alloc_queue_pairs = pf->num_vmdq_qps;
7656 		vsi->num_desc = ALIGN(I40E_DEFAULT_NUM_DESCRIPTORS,
7657 				      I40E_REQ_DESCRIPTOR_MULTIPLE);
7658 		vsi->num_q_vectors = pf->num_vmdq_msix;
7659 		break;
7660 
7661 	case I40E_VSI_SRIOV:
7662 		vsi->alloc_queue_pairs = pf->num_vf_qps;
7663 		vsi->num_desc = ALIGN(I40E_DEFAULT_NUM_DESCRIPTORS,
7664 				      I40E_REQ_DESCRIPTOR_MULTIPLE);
7665 		break;
7666 
7667 	default:
7668 		WARN_ON(1);
7669 		return -ENODATA;
7670 	}
7671 
7672 	return 0;
7673 }
7674 
7675 /**
7676  * i40e_vsi_alloc_arrays - Allocate queue and vector pointer arrays for the vsi
7677  * @type: VSI pointer
7678  * @alloc_qvectors: a bool to specify if q_vectors need to be allocated.
7679  *
7680  * On error: returns error code (negative)
7681  * On success: returns 0
7682  **/
7683 static int i40e_vsi_alloc_arrays(struct i40e_vsi *vsi, bool alloc_qvectors)
7684 {
7685 	struct i40e_ring **next_rings;
7686 	int size;
7687 	int ret = 0;
7688 
7689 	/* allocate memory for both Tx, XDP Tx and Rx ring pointers */
7690 	size = sizeof(struct i40e_ring *) * vsi->alloc_queue_pairs *
7691 	       (i40e_enabled_xdp_vsi(vsi) ? 3 : 2);
7692 	vsi->tx_rings = kzalloc(size, GFP_KERNEL);
7693 	if (!vsi->tx_rings)
7694 		return -ENOMEM;
7695 	next_rings = vsi->tx_rings + vsi->alloc_queue_pairs;
7696 	if (i40e_enabled_xdp_vsi(vsi)) {
7697 		vsi->xdp_rings = next_rings;
7698 		next_rings += vsi->alloc_queue_pairs;
7699 	}
7700 	vsi->rx_rings = next_rings;
7701 
7702 	if (alloc_qvectors) {
7703 		/* allocate memory for q_vector pointers */
7704 		size = sizeof(struct i40e_q_vector *) * vsi->num_q_vectors;
7705 		vsi->q_vectors = kzalloc(size, GFP_KERNEL);
7706 		if (!vsi->q_vectors) {
7707 			ret = -ENOMEM;
7708 			goto err_vectors;
7709 		}
7710 	}
7711 	return ret;
7712 
7713 err_vectors:
7714 	kfree(vsi->tx_rings);
7715 	return ret;
7716 }
7717 
7718 /**
7719  * i40e_vsi_mem_alloc - Allocates the next available struct vsi in the PF
7720  * @pf: board private structure
7721  * @type: type of VSI
7722  *
7723  * On error: returns error code (negative)
7724  * On success: returns vsi index in PF (positive)
7725  **/
7726 static int i40e_vsi_mem_alloc(struct i40e_pf *pf, enum i40e_vsi_type type)
7727 {
7728 	int ret = -ENODEV;
7729 	struct i40e_vsi *vsi;
7730 	int vsi_idx;
7731 	int i;
7732 
7733 	/* Need to protect the allocation of the VSIs at the PF level */
7734 	mutex_lock(&pf->switch_mutex);
7735 
7736 	/* VSI list may be fragmented if VSI creation/destruction has
7737 	 * been happening.  We can afford to do a quick scan to look
7738 	 * for any free VSIs in the list.
7739 	 *
7740 	 * find next empty vsi slot, looping back around if necessary
7741 	 */
7742 	i = pf->next_vsi;
7743 	while (i < pf->num_alloc_vsi && pf->vsi[i])
7744 		i++;
7745 	if (i >= pf->num_alloc_vsi) {
7746 		i = 0;
7747 		while (i < pf->next_vsi && pf->vsi[i])
7748 			i++;
7749 	}
7750 
7751 	if (i < pf->num_alloc_vsi && !pf->vsi[i]) {
7752 		vsi_idx = i;             /* Found one! */
7753 	} else {
7754 		ret = -ENODEV;
7755 		goto unlock_pf;  /* out of VSI slots! */
7756 	}
7757 	pf->next_vsi = ++i;
7758 
7759 	vsi = kzalloc(sizeof(*vsi), GFP_KERNEL);
7760 	if (!vsi) {
7761 		ret = -ENOMEM;
7762 		goto unlock_pf;
7763 	}
7764 	vsi->type = type;
7765 	vsi->back = pf;
7766 	set_bit(__I40E_VSI_DOWN, vsi->state);
7767 	vsi->flags = 0;
7768 	vsi->idx = vsi_idx;
7769 	vsi->int_rate_limit = 0;
7770 	vsi->rss_table_size = (vsi->type == I40E_VSI_MAIN) ?
7771 				pf->rss_table_size : 64;
7772 	vsi->netdev_registered = false;
7773 	vsi->work_limit = I40E_DEFAULT_IRQ_WORK;
7774 	hash_init(vsi->mac_filter_hash);
7775 	vsi->irqs_ready = false;
7776 
7777 	ret = i40e_set_num_rings_in_vsi(vsi);
7778 	if (ret)
7779 		goto err_rings;
7780 
7781 	ret = i40e_vsi_alloc_arrays(vsi, true);
7782 	if (ret)
7783 		goto err_rings;
7784 
7785 	/* Setup default MSIX irq handler for VSI */
7786 	i40e_vsi_setup_irqhandler(vsi, i40e_msix_clean_rings);
7787 
7788 	/* Initialize VSI lock */
7789 	spin_lock_init(&vsi->mac_filter_hash_lock);
7790 	pf->vsi[vsi_idx] = vsi;
7791 	ret = vsi_idx;
7792 	goto unlock_pf;
7793 
7794 err_rings:
7795 	pf->next_vsi = i - 1;
7796 	kfree(vsi);
7797 unlock_pf:
7798 	mutex_unlock(&pf->switch_mutex);
7799 	return ret;
7800 }
7801 
7802 /**
7803  * i40e_vsi_free_arrays - Free queue and vector pointer arrays for the VSI
7804  * @type: VSI pointer
7805  * @free_qvectors: a bool to specify if q_vectors need to be freed.
7806  *
7807  * On error: returns error code (negative)
7808  * On success: returns 0
7809  **/
7810 static void i40e_vsi_free_arrays(struct i40e_vsi *vsi, bool free_qvectors)
7811 {
7812 	/* free the ring and vector containers */
7813 	if (free_qvectors) {
7814 		kfree(vsi->q_vectors);
7815 		vsi->q_vectors = NULL;
7816 	}
7817 	kfree(vsi->tx_rings);
7818 	vsi->tx_rings = NULL;
7819 	vsi->rx_rings = NULL;
7820 	vsi->xdp_rings = NULL;
7821 }
7822 
7823 /**
7824  * i40e_clear_rss_config_user - clear the user configured RSS hash keys
7825  * and lookup table
7826  * @vsi: Pointer to VSI structure
7827  */
7828 static void i40e_clear_rss_config_user(struct i40e_vsi *vsi)
7829 {
7830 	if (!vsi)
7831 		return;
7832 
7833 	kfree(vsi->rss_hkey_user);
7834 	vsi->rss_hkey_user = NULL;
7835 
7836 	kfree(vsi->rss_lut_user);
7837 	vsi->rss_lut_user = NULL;
7838 }
7839 
7840 /**
7841  * i40e_vsi_clear - Deallocate the VSI provided
7842  * @vsi: the VSI being un-configured
7843  **/
7844 static int i40e_vsi_clear(struct i40e_vsi *vsi)
7845 {
7846 	struct i40e_pf *pf;
7847 
7848 	if (!vsi)
7849 		return 0;
7850 
7851 	if (!vsi->back)
7852 		goto free_vsi;
7853 	pf = vsi->back;
7854 
7855 	mutex_lock(&pf->switch_mutex);
7856 	if (!pf->vsi[vsi->idx]) {
7857 		dev_err(&pf->pdev->dev, "pf->vsi[%d] is NULL, just free vsi[%d](%p,type %d)\n",
7858 			vsi->idx, vsi->idx, vsi, vsi->type);
7859 		goto unlock_vsi;
7860 	}
7861 
7862 	if (pf->vsi[vsi->idx] != vsi) {
7863 		dev_err(&pf->pdev->dev,
7864 			"pf->vsi[%d](%p, type %d) != vsi[%d](%p,type %d): no free!\n",
7865 			pf->vsi[vsi->idx]->idx,
7866 			pf->vsi[vsi->idx],
7867 			pf->vsi[vsi->idx]->type,
7868 			vsi->idx, vsi, vsi->type);
7869 		goto unlock_vsi;
7870 	}
7871 
7872 	/* updates the PF for this cleared vsi */
7873 	i40e_put_lump(pf->qp_pile, vsi->base_queue, vsi->idx);
7874 	i40e_put_lump(pf->irq_pile, vsi->base_vector, vsi->idx);
7875 
7876 	i40e_vsi_free_arrays(vsi, true);
7877 	i40e_clear_rss_config_user(vsi);
7878 
7879 	pf->vsi[vsi->idx] = NULL;
7880 	if (vsi->idx < pf->next_vsi)
7881 		pf->next_vsi = vsi->idx;
7882 
7883 unlock_vsi:
7884 	mutex_unlock(&pf->switch_mutex);
7885 free_vsi:
7886 	kfree(vsi);
7887 
7888 	return 0;
7889 }
7890 
7891 /**
7892  * i40e_vsi_clear_rings - Deallocates the Rx and Tx rings for the provided VSI
7893  * @vsi: the VSI being cleaned
7894  **/
7895 static void i40e_vsi_clear_rings(struct i40e_vsi *vsi)
7896 {
7897 	int i;
7898 
7899 	if (vsi->tx_rings && vsi->tx_rings[0]) {
7900 		for (i = 0; i < vsi->alloc_queue_pairs; i++) {
7901 			kfree_rcu(vsi->tx_rings[i], rcu);
7902 			vsi->tx_rings[i] = NULL;
7903 			vsi->rx_rings[i] = NULL;
7904 			if (vsi->xdp_rings)
7905 				vsi->xdp_rings[i] = NULL;
7906 		}
7907 	}
7908 }
7909 
7910 /**
7911  * i40e_alloc_rings - Allocates the Rx and Tx rings for the provided VSI
7912  * @vsi: the VSI being configured
7913  **/
7914 static int i40e_alloc_rings(struct i40e_vsi *vsi)
7915 {
7916 	int i, qpv = i40e_enabled_xdp_vsi(vsi) ? 3 : 2;
7917 	struct i40e_pf *pf = vsi->back;
7918 	struct i40e_ring *ring;
7919 
7920 	/* Set basic values in the rings to be used later during open() */
7921 	for (i = 0; i < vsi->alloc_queue_pairs; i++) {
7922 		/* allocate space for both Tx and Rx in one shot */
7923 		ring = kcalloc(qpv, sizeof(struct i40e_ring), GFP_KERNEL);
7924 		if (!ring)
7925 			goto err_out;
7926 
7927 		ring->queue_index = i;
7928 		ring->reg_idx = vsi->base_queue + i;
7929 		ring->ring_active = false;
7930 		ring->vsi = vsi;
7931 		ring->netdev = vsi->netdev;
7932 		ring->dev = &pf->pdev->dev;
7933 		ring->count = vsi->num_desc;
7934 		ring->size = 0;
7935 		ring->dcb_tc = 0;
7936 		if (vsi->back->hw_features & I40E_HW_WB_ON_ITR_CAPABLE)
7937 			ring->flags = I40E_TXR_FLAGS_WB_ON_ITR;
7938 		ring->tx_itr_setting = pf->tx_itr_default;
7939 		vsi->tx_rings[i] = ring++;
7940 
7941 		if (!i40e_enabled_xdp_vsi(vsi))
7942 			goto setup_rx;
7943 
7944 		ring->queue_index = vsi->alloc_queue_pairs + i;
7945 		ring->reg_idx = vsi->base_queue + ring->queue_index;
7946 		ring->ring_active = false;
7947 		ring->vsi = vsi;
7948 		ring->netdev = NULL;
7949 		ring->dev = &pf->pdev->dev;
7950 		ring->count = vsi->num_desc;
7951 		ring->size = 0;
7952 		ring->dcb_tc = 0;
7953 		if (vsi->back->hw_features & I40E_HW_WB_ON_ITR_CAPABLE)
7954 			ring->flags = I40E_TXR_FLAGS_WB_ON_ITR;
7955 		set_ring_xdp(ring);
7956 		ring->tx_itr_setting = pf->tx_itr_default;
7957 		vsi->xdp_rings[i] = ring++;
7958 
7959 setup_rx:
7960 		ring->queue_index = i;
7961 		ring->reg_idx = vsi->base_queue + i;
7962 		ring->ring_active = false;
7963 		ring->vsi = vsi;
7964 		ring->netdev = vsi->netdev;
7965 		ring->dev = &pf->pdev->dev;
7966 		ring->count = vsi->num_desc;
7967 		ring->size = 0;
7968 		ring->dcb_tc = 0;
7969 		ring->rx_itr_setting = pf->rx_itr_default;
7970 		vsi->rx_rings[i] = ring;
7971 	}
7972 
7973 	return 0;
7974 
7975 err_out:
7976 	i40e_vsi_clear_rings(vsi);
7977 	return -ENOMEM;
7978 }
7979 
7980 /**
7981  * i40e_reserve_msix_vectors - Reserve MSI-X vectors in the kernel
7982  * @pf: board private structure
7983  * @vectors: the number of MSI-X vectors to request
7984  *
7985  * Returns the number of vectors reserved, or error
7986  **/
7987 static int i40e_reserve_msix_vectors(struct i40e_pf *pf, int vectors)
7988 {
7989 	vectors = pci_enable_msix_range(pf->pdev, pf->msix_entries,
7990 					I40E_MIN_MSIX, vectors);
7991 	if (vectors < 0) {
7992 		dev_info(&pf->pdev->dev,
7993 			 "MSI-X vector reservation failed: %d\n", vectors);
7994 		vectors = 0;
7995 	}
7996 
7997 	return vectors;
7998 }
7999 
8000 /**
8001  * i40e_init_msix - Setup the MSIX capability
8002  * @pf: board private structure
8003  *
8004  * Work with the OS to set up the MSIX vectors needed.
8005  *
8006  * Returns the number of vectors reserved or negative on failure
8007  **/
8008 static int i40e_init_msix(struct i40e_pf *pf)
8009 {
8010 	struct i40e_hw *hw = &pf->hw;
8011 	int cpus, extra_vectors;
8012 	int vectors_left;
8013 	int v_budget, i;
8014 	int v_actual;
8015 	int iwarp_requested = 0;
8016 
8017 	if (!(pf->flags & I40E_FLAG_MSIX_ENABLED))
8018 		return -ENODEV;
8019 
8020 	/* The number of vectors we'll request will be comprised of:
8021 	 *   - Add 1 for "other" cause for Admin Queue events, etc.
8022 	 *   - The number of LAN queue pairs
8023 	 *	- Queues being used for RSS.
8024 	 *		We don't need as many as max_rss_size vectors.
8025 	 *		use rss_size instead in the calculation since that
8026 	 *		is governed by number of cpus in the system.
8027 	 *	- assumes symmetric Tx/Rx pairing
8028 	 *   - The number of VMDq pairs
8029 	 *   - The CPU count within the NUMA node if iWARP is enabled
8030 	 * Once we count this up, try the request.
8031 	 *
8032 	 * If we can't get what we want, we'll simplify to nearly nothing
8033 	 * and try again.  If that still fails, we punt.
8034 	 */
8035 	vectors_left = hw->func_caps.num_msix_vectors;
8036 	v_budget = 0;
8037 
8038 	/* reserve one vector for miscellaneous handler */
8039 	if (vectors_left) {
8040 		v_budget++;
8041 		vectors_left--;
8042 	}
8043 
8044 	/* reserve some vectors for the main PF traffic queues. Initially we
8045 	 * only reserve at most 50% of the available vectors, in the case that
8046 	 * the number of online CPUs is large. This ensures that we can enable
8047 	 * extra features as well. Once we've enabled the other features, we
8048 	 * will use any remaining vectors to reach as close as we can to the
8049 	 * number of online CPUs.
8050 	 */
8051 	cpus = num_online_cpus();
8052 	pf->num_lan_msix = min_t(int, cpus, vectors_left / 2);
8053 	vectors_left -= pf->num_lan_msix;
8054 
8055 	/* reserve one vector for sideband flow director */
8056 	if (pf->flags & I40E_FLAG_FD_SB_ENABLED) {
8057 		if (vectors_left) {
8058 			pf->num_fdsb_msix = 1;
8059 			v_budget++;
8060 			vectors_left--;
8061 		} else {
8062 			pf->num_fdsb_msix = 0;
8063 		}
8064 	}
8065 
8066 	/* can we reserve enough for iWARP? */
8067 	if (pf->flags & I40E_FLAG_IWARP_ENABLED) {
8068 		iwarp_requested = pf->num_iwarp_msix;
8069 
8070 		if (!vectors_left)
8071 			pf->num_iwarp_msix = 0;
8072 		else if (vectors_left < pf->num_iwarp_msix)
8073 			pf->num_iwarp_msix = 1;
8074 		v_budget += pf->num_iwarp_msix;
8075 		vectors_left -= pf->num_iwarp_msix;
8076 	}
8077 
8078 	/* any vectors left over go for VMDq support */
8079 	if (pf->flags & I40E_FLAG_VMDQ_ENABLED) {
8080 		int vmdq_vecs_wanted = pf->num_vmdq_vsis * pf->num_vmdq_qps;
8081 		int vmdq_vecs = min_t(int, vectors_left, vmdq_vecs_wanted);
8082 
8083 		if (!vectors_left) {
8084 			pf->num_vmdq_msix = 0;
8085 			pf->num_vmdq_qps = 0;
8086 		} else {
8087 			/* if we're short on vectors for what's desired, we limit
8088 			 * the queues per vmdq.  If this is still more than are
8089 			 * available, the user will need to change the number of
8090 			 * queues/vectors used by the PF later with the ethtool
8091 			 * channels command
8092 			 */
8093 			if (vmdq_vecs < vmdq_vecs_wanted)
8094 				pf->num_vmdq_qps = 1;
8095 			pf->num_vmdq_msix = pf->num_vmdq_qps;
8096 
8097 			v_budget += vmdq_vecs;
8098 			vectors_left -= vmdq_vecs;
8099 		}
8100 	}
8101 
8102 	/* On systems with a large number of SMP cores, we previously limited
8103 	 * the number of vectors for num_lan_msix to be at most 50% of the
8104 	 * available vectors, to allow for other features. Now, we add back
8105 	 * the remaining vectors. However, we ensure that the total
8106 	 * num_lan_msix will not exceed num_online_cpus(). To do this, we
8107 	 * calculate the number of vectors we can add without going over the
8108 	 * cap of CPUs. For systems with a small number of CPUs this will be
8109 	 * zero.
8110 	 */
8111 	extra_vectors = min_t(int, cpus - pf->num_lan_msix, vectors_left);
8112 	pf->num_lan_msix += extra_vectors;
8113 	vectors_left -= extra_vectors;
8114 
8115 	WARN(vectors_left < 0,
8116 	     "Calculation of remaining vectors underflowed. This is an accounting bug when determining total MSI-X vectors.\n");
8117 
8118 	v_budget += pf->num_lan_msix;
8119 	pf->msix_entries = kcalloc(v_budget, sizeof(struct msix_entry),
8120 				   GFP_KERNEL);
8121 	if (!pf->msix_entries)
8122 		return -ENOMEM;
8123 
8124 	for (i = 0; i < v_budget; i++)
8125 		pf->msix_entries[i].entry = i;
8126 	v_actual = i40e_reserve_msix_vectors(pf, v_budget);
8127 
8128 	if (v_actual < I40E_MIN_MSIX) {
8129 		pf->flags &= ~I40E_FLAG_MSIX_ENABLED;
8130 		kfree(pf->msix_entries);
8131 		pf->msix_entries = NULL;
8132 		pci_disable_msix(pf->pdev);
8133 		return -ENODEV;
8134 
8135 	} else if (v_actual == I40E_MIN_MSIX) {
8136 		/* Adjust for minimal MSIX use */
8137 		pf->num_vmdq_vsis = 0;
8138 		pf->num_vmdq_qps = 0;
8139 		pf->num_lan_qps = 1;
8140 		pf->num_lan_msix = 1;
8141 
8142 	} else if (!vectors_left) {
8143 		/* If we have limited resources, we will start with no vectors
8144 		 * for the special features and then allocate vectors to some
8145 		 * of these features based on the policy and at the end disable
8146 		 * the features that did not get any vectors.
8147 		 */
8148 		int vec;
8149 
8150 		dev_info(&pf->pdev->dev,
8151 			 "MSI-X vector limit reached, attempting to redistribute vectors\n");
8152 		/* reserve the misc vector */
8153 		vec = v_actual - 1;
8154 
8155 		/* Scale vector usage down */
8156 		pf->num_vmdq_msix = 1;    /* force VMDqs to only one vector */
8157 		pf->num_vmdq_vsis = 1;
8158 		pf->num_vmdq_qps = 1;
8159 
8160 		/* partition out the remaining vectors */
8161 		switch (vec) {
8162 		case 2:
8163 			pf->num_lan_msix = 1;
8164 			break;
8165 		case 3:
8166 			if (pf->flags & I40E_FLAG_IWARP_ENABLED) {
8167 				pf->num_lan_msix = 1;
8168 				pf->num_iwarp_msix = 1;
8169 			} else {
8170 				pf->num_lan_msix = 2;
8171 			}
8172 			break;
8173 		default:
8174 			if (pf->flags & I40E_FLAG_IWARP_ENABLED) {
8175 				pf->num_iwarp_msix = min_t(int, (vec / 3),
8176 						 iwarp_requested);
8177 				pf->num_vmdq_vsis = min_t(int, (vec / 3),
8178 						  I40E_DEFAULT_NUM_VMDQ_VSI);
8179 			} else {
8180 				pf->num_vmdq_vsis = min_t(int, (vec / 2),
8181 						  I40E_DEFAULT_NUM_VMDQ_VSI);
8182 			}
8183 			if (pf->flags & I40E_FLAG_FD_SB_ENABLED) {
8184 				pf->num_fdsb_msix = 1;
8185 				vec--;
8186 			}
8187 			pf->num_lan_msix = min_t(int,
8188 			       (vec - (pf->num_iwarp_msix + pf->num_vmdq_vsis)),
8189 							      pf->num_lan_msix);
8190 			pf->num_lan_qps = pf->num_lan_msix;
8191 			break;
8192 		}
8193 	}
8194 
8195 	if ((pf->flags & I40E_FLAG_FD_SB_ENABLED) &&
8196 	    (pf->num_fdsb_msix == 0)) {
8197 		dev_info(&pf->pdev->dev, "Sideband Flowdir disabled, not enough MSI-X vectors\n");
8198 		pf->flags &= ~I40E_FLAG_FD_SB_ENABLED;
8199 	}
8200 	if ((pf->flags & I40E_FLAG_VMDQ_ENABLED) &&
8201 	    (pf->num_vmdq_msix == 0)) {
8202 		dev_info(&pf->pdev->dev, "VMDq disabled, not enough MSI-X vectors\n");
8203 		pf->flags &= ~I40E_FLAG_VMDQ_ENABLED;
8204 	}
8205 
8206 	if ((pf->flags & I40E_FLAG_IWARP_ENABLED) &&
8207 	    (pf->num_iwarp_msix == 0)) {
8208 		dev_info(&pf->pdev->dev, "IWARP disabled, not enough MSI-X vectors\n");
8209 		pf->flags &= ~I40E_FLAG_IWARP_ENABLED;
8210 	}
8211 	i40e_debug(&pf->hw, I40E_DEBUG_INIT,
8212 		   "MSI-X vector distribution: PF %d, VMDq %d, FDSB %d, iWARP %d\n",
8213 		   pf->num_lan_msix,
8214 		   pf->num_vmdq_msix * pf->num_vmdq_vsis,
8215 		   pf->num_fdsb_msix,
8216 		   pf->num_iwarp_msix);
8217 
8218 	return v_actual;
8219 }
8220 
8221 /**
8222  * i40e_vsi_alloc_q_vector - Allocate memory for a single interrupt vector
8223  * @vsi: the VSI being configured
8224  * @v_idx: index of the vector in the vsi struct
8225  * @cpu: cpu to be used on affinity_mask
8226  *
8227  * We allocate one q_vector.  If allocation fails we return -ENOMEM.
8228  **/
8229 static int i40e_vsi_alloc_q_vector(struct i40e_vsi *vsi, int v_idx, int cpu)
8230 {
8231 	struct i40e_q_vector *q_vector;
8232 
8233 	/* allocate q_vector */
8234 	q_vector = kzalloc(sizeof(struct i40e_q_vector), GFP_KERNEL);
8235 	if (!q_vector)
8236 		return -ENOMEM;
8237 
8238 	q_vector->vsi = vsi;
8239 	q_vector->v_idx = v_idx;
8240 	cpumask_copy(&q_vector->affinity_mask, cpu_possible_mask);
8241 
8242 	if (vsi->netdev)
8243 		netif_napi_add(vsi->netdev, &q_vector->napi,
8244 			       i40e_napi_poll, NAPI_POLL_WEIGHT);
8245 
8246 	q_vector->rx.latency_range = I40E_LOW_LATENCY;
8247 	q_vector->tx.latency_range = I40E_LOW_LATENCY;
8248 
8249 	/* tie q_vector and vsi together */
8250 	vsi->q_vectors[v_idx] = q_vector;
8251 
8252 	return 0;
8253 }
8254 
8255 /**
8256  * i40e_vsi_alloc_q_vectors - Allocate memory for interrupt vectors
8257  * @vsi: the VSI being configured
8258  *
8259  * We allocate one q_vector per queue interrupt.  If allocation fails we
8260  * return -ENOMEM.
8261  **/
8262 static int i40e_vsi_alloc_q_vectors(struct i40e_vsi *vsi)
8263 {
8264 	struct i40e_pf *pf = vsi->back;
8265 	int err, v_idx, num_q_vectors, current_cpu;
8266 
8267 	/* if not MSIX, give the one vector only to the LAN VSI */
8268 	if (pf->flags & I40E_FLAG_MSIX_ENABLED)
8269 		num_q_vectors = vsi->num_q_vectors;
8270 	else if (vsi == pf->vsi[pf->lan_vsi])
8271 		num_q_vectors = 1;
8272 	else
8273 		return -EINVAL;
8274 
8275 	current_cpu = cpumask_first(cpu_online_mask);
8276 
8277 	for (v_idx = 0; v_idx < num_q_vectors; v_idx++) {
8278 		err = i40e_vsi_alloc_q_vector(vsi, v_idx, current_cpu);
8279 		if (err)
8280 			goto err_out;
8281 		current_cpu = cpumask_next(current_cpu, cpu_online_mask);
8282 		if (unlikely(current_cpu >= nr_cpu_ids))
8283 			current_cpu = cpumask_first(cpu_online_mask);
8284 	}
8285 
8286 	return 0;
8287 
8288 err_out:
8289 	while (v_idx--)
8290 		i40e_free_q_vector(vsi, v_idx);
8291 
8292 	return err;
8293 }
8294 
8295 /**
8296  * i40e_init_interrupt_scheme - Determine proper interrupt scheme
8297  * @pf: board private structure to initialize
8298  **/
8299 static int i40e_init_interrupt_scheme(struct i40e_pf *pf)
8300 {
8301 	int vectors = 0;
8302 	ssize_t size;
8303 
8304 	if (pf->flags & I40E_FLAG_MSIX_ENABLED) {
8305 		vectors = i40e_init_msix(pf);
8306 		if (vectors < 0) {
8307 			pf->flags &= ~(I40E_FLAG_MSIX_ENABLED	|
8308 				       I40E_FLAG_IWARP_ENABLED	|
8309 				       I40E_FLAG_RSS_ENABLED	|
8310 				       I40E_FLAG_DCB_CAPABLE	|
8311 				       I40E_FLAG_DCB_ENABLED	|
8312 				       I40E_FLAG_SRIOV_ENABLED	|
8313 				       I40E_FLAG_FD_SB_ENABLED	|
8314 				       I40E_FLAG_FD_ATR_ENABLED	|
8315 				       I40E_FLAG_VMDQ_ENABLED);
8316 
8317 			/* rework the queue expectations without MSIX */
8318 			i40e_determine_queue_usage(pf);
8319 		}
8320 	}
8321 
8322 	if (!(pf->flags & I40E_FLAG_MSIX_ENABLED) &&
8323 	    (pf->flags & I40E_FLAG_MSI_ENABLED)) {
8324 		dev_info(&pf->pdev->dev, "MSI-X not available, trying MSI\n");
8325 		vectors = pci_enable_msi(pf->pdev);
8326 		if (vectors < 0) {
8327 			dev_info(&pf->pdev->dev, "MSI init failed - %d\n",
8328 				 vectors);
8329 			pf->flags &= ~I40E_FLAG_MSI_ENABLED;
8330 		}
8331 		vectors = 1;  /* one MSI or Legacy vector */
8332 	}
8333 
8334 	if (!(pf->flags & (I40E_FLAG_MSIX_ENABLED | I40E_FLAG_MSI_ENABLED)))
8335 		dev_info(&pf->pdev->dev, "MSI-X and MSI not available, falling back to Legacy IRQ\n");
8336 
8337 	/* set up vector assignment tracking */
8338 	size = sizeof(struct i40e_lump_tracking) + (sizeof(u16) * vectors);
8339 	pf->irq_pile = kzalloc(size, GFP_KERNEL);
8340 	if (!pf->irq_pile) {
8341 		dev_err(&pf->pdev->dev, "error allocating irq_pile memory\n");
8342 		return -ENOMEM;
8343 	}
8344 	pf->irq_pile->num_entries = vectors;
8345 	pf->irq_pile->search_hint = 0;
8346 
8347 	/* track first vector for misc interrupts, ignore return */
8348 	(void)i40e_get_lump(pf, pf->irq_pile, 1, I40E_PILE_VALID_BIT - 1);
8349 
8350 	return 0;
8351 }
8352 
8353 /**
8354  * i40e_setup_misc_vector - Setup the misc vector to handle non queue events
8355  * @pf: board private structure
8356  *
8357  * This sets up the handler for MSIX 0, which is used to manage the
8358  * non-queue interrupts, e.g. AdminQ and errors.  This is not used
8359  * when in MSI or Legacy interrupt mode.
8360  **/
8361 static int i40e_setup_misc_vector(struct i40e_pf *pf)
8362 {
8363 	struct i40e_hw *hw = &pf->hw;
8364 	int err = 0;
8365 
8366 	/* Only request the irq if this is the first time through, and
8367 	 * not when we're rebuilding after a Reset
8368 	 */
8369 	if (!test_bit(__I40E_RESET_RECOVERY_PENDING, pf->state)) {
8370 		err = request_irq(pf->msix_entries[0].vector,
8371 				  i40e_intr, 0, pf->int_name, pf);
8372 		if (err) {
8373 			dev_info(&pf->pdev->dev,
8374 				 "request_irq for %s failed: %d\n",
8375 				 pf->int_name, err);
8376 			return -EFAULT;
8377 		}
8378 	}
8379 
8380 	i40e_enable_misc_int_causes(pf);
8381 
8382 	/* associate no queues to the misc vector */
8383 	wr32(hw, I40E_PFINT_LNKLST0, I40E_QUEUE_END_OF_LIST);
8384 	wr32(hw, I40E_PFINT_ITR0(I40E_RX_ITR), I40E_ITR_8K);
8385 
8386 	i40e_flush(hw);
8387 
8388 	i40e_irq_dynamic_enable_icr0(pf, true);
8389 
8390 	return err;
8391 }
8392 
8393 /**
8394  * i40e_config_rss_aq - Prepare for RSS using AQ commands
8395  * @vsi: vsi structure
8396  * @seed: RSS hash seed
8397  **/
8398 static int i40e_config_rss_aq(struct i40e_vsi *vsi, const u8 *seed,
8399 			      u8 *lut, u16 lut_size)
8400 {
8401 	struct i40e_pf *pf = vsi->back;
8402 	struct i40e_hw *hw = &pf->hw;
8403 	int ret = 0;
8404 
8405 	if (seed) {
8406 		struct i40e_aqc_get_set_rss_key_data *seed_dw =
8407 			(struct i40e_aqc_get_set_rss_key_data *)seed;
8408 		ret = i40e_aq_set_rss_key(hw, vsi->id, seed_dw);
8409 		if (ret) {
8410 			dev_info(&pf->pdev->dev,
8411 				 "Cannot set RSS key, err %s aq_err %s\n",
8412 				 i40e_stat_str(hw, ret),
8413 				 i40e_aq_str(hw, hw->aq.asq_last_status));
8414 			return ret;
8415 		}
8416 	}
8417 	if (lut) {
8418 		bool pf_lut = vsi->type == I40E_VSI_MAIN ? true : false;
8419 
8420 		ret = i40e_aq_set_rss_lut(hw, vsi->id, pf_lut, lut, lut_size);
8421 		if (ret) {
8422 			dev_info(&pf->pdev->dev,
8423 				 "Cannot set RSS lut, err %s aq_err %s\n",
8424 				 i40e_stat_str(hw, ret),
8425 				 i40e_aq_str(hw, hw->aq.asq_last_status));
8426 			return ret;
8427 		}
8428 	}
8429 	return ret;
8430 }
8431 
8432 /**
8433  * i40e_get_rss_aq - Get RSS keys and lut by using AQ commands
8434  * @vsi: Pointer to vsi structure
8435  * @seed: Buffter to store the hash keys
8436  * @lut: Buffer to store the lookup table entries
8437  * @lut_size: Size of buffer to store the lookup table entries
8438  *
8439  * Return 0 on success, negative on failure
8440  */
8441 static int i40e_get_rss_aq(struct i40e_vsi *vsi, const u8 *seed,
8442 			   u8 *lut, u16 lut_size)
8443 {
8444 	struct i40e_pf *pf = vsi->back;
8445 	struct i40e_hw *hw = &pf->hw;
8446 	int ret = 0;
8447 
8448 	if (seed) {
8449 		ret = i40e_aq_get_rss_key(hw, vsi->id,
8450 			(struct i40e_aqc_get_set_rss_key_data *)seed);
8451 		if (ret) {
8452 			dev_info(&pf->pdev->dev,
8453 				 "Cannot get RSS key, err %s aq_err %s\n",
8454 				 i40e_stat_str(&pf->hw, ret),
8455 				 i40e_aq_str(&pf->hw,
8456 					     pf->hw.aq.asq_last_status));
8457 			return ret;
8458 		}
8459 	}
8460 
8461 	if (lut) {
8462 		bool pf_lut = vsi->type == I40E_VSI_MAIN ? true : false;
8463 
8464 		ret = i40e_aq_get_rss_lut(hw, vsi->id, pf_lut, lut, lut_size);
8465 		if (ret) {
8466 			dev_info(&pf->pdev->dev,
8467 				 "Cannot get RSS lut, err %s aq_err %s\n",
8468 				 i40e_stat_str(&pf->hw, ret),
8469 				 i40e_aq_str(&pf->hw,
8470 					     pf->hw.aq.asq_last_status));
8471 			return ret;
8472 		}
8473 	}
8474 
8475 	return ret;
8476 }
8477 
8478 /**
8479  * i40e_vsi_config_rss - Prepare for VSI(VMDq) RSS if used
8480  * @vsi: VSI structure
8481  **/
8482 static int i40e_vsi_config_rss(struct i40e_vsi *vsi)
8483 {
8484 	u8 seed[I40E_HKEY_ARRAY_SIZE];
8485 	struct i40e_pf *pf = vsi->back;
8486 	u8 *lut;
8487 	int ret;
8488 
8489 	if (!(pf->hw_features & I40E_HW_RSS_AQ_CAPABLE))
8490 		return 0;
8491 
8492 	if (!vsi->rss_size)
8493 		vsi->rss_size = min_t(int, pf->alloc_rss_size,
8494 				      vsi->num_queue_pairs);
8495 	if (!vsi->rss_size)
8496 		return -EINVAL;
8497 
8498 	lut = kzalloc(vsi->rss_table_size, GFP_KERNEL);
8499 	if (!lut)
8500 		return -ENOMEM;
8501 	/* Use the user configured hash keys and lookup table if there is one,
8502 	 * otherwise use default
8503 	 */
8504 	if (vsi->rss_lut_user)
8505 		memcpy(lut, vsi->rss_lut_user, vsi->rss_table_size);
8506 	else
8507 		i40e_fill_rss_lut(pf, lut, vsi->rss_table_size, vsi->rss_size);
8508 	if (vsi->rss_hkey_user)
8509 		memcpy(seed, vsi->rss_hkey_user, I40E_HKEY_ARRAY_SIZE);
8510 	else
8511 		netdev_rss_key_fill((void *)seed, I40E_HKEY_ARRAY_SIZE);
8512 	ret = i40e_config_rss_aq(vsi, seed, lut, vsi->rss_table_size);
8513 	kfree(lut);
8514 
8515 	return ret;
8516 }
8517 
8518 /**
8519  * i40e_config_rss_reg - Configure RSS keys and lut by writing registers
8520  * @vsi: Pointer to vsi structure
8521  * @seed: RSS hash seed
8522  * @lut: Lookup table
8523  * @lut_size: Lookup table size
8524  *
8525  * Returns 0 on success, negative on failure
8526  **/
8527 static int i40e_config_rss_reg(struct i40e_vsi *vsi, const u8 *seed,
8528 			       const u8 *lut, u16 lut_size)
8529 {
8530 	struct i40e_pf *pf = vsi->back;
8531 	struct i40e_hw *hw = &pf->hw;
8532 	u16 vf_id = vsi->vf_id;
8533 	u8 i;
8534 
8535 	/* Fill out hash function seed */
8536 	if (seed) {
8537 		u32 *seed_dw = (u32 *)seed;
8538 
8539 		if (vsi->type == I40E_VSI_MAIN) {
8540 			for (i = 0; i <= I40E_PFQF_HKEY_MAX_INDEX; i++)
8541 				wr32(hw, I40E_PFQF_HKEY(i), seed_dw[i]);
8542 		} else if (vsi->type == I40E_VSI_SRIOV) {
8543 			for (i = 0; i <= I40E_VFQF_HKEY1_MAX_INDEX; i++)
8544 				wr32(hw, I40E_VFQF_HKEY1(i, vf_id), seed_dw[i]);
8545 		} else {
8546 			dev_err(&pf->pdev->dev, "Cannot set RSS seed - invalid VSI type\n");
8547 		}
8548 	}
8549 
8550 	if (lut) {
8551 		u32 *lut_dw = (u32 *)lut;
8552 
8553 		if (vsi->type == I40E_VSI_MAIN) {
8554 			if (lut_size != I40E_HLUT_ARRAY_SIZE)
8555 				return -EINVAL;
8556 			for (i = 0; i <= I40E_PFQF_HLUT_MAX_INDEX; i++)
8557 				wr32(hw, I40E_PFQF_HLUT(i), lut_dw[i]);
8558 		} else if (vsi->type == I40E_VSI_SRIOV) {
8559 			if (lut_size != I40E_VF_HLUT_ARRAY_SIZE)
8560 				return -EINVAL;
8561 			for (i = 0; i <= I40E_VFQF_HLUT_MAX_INDEX; i++)
8562 				wr32(hw, I40E_VFQF_HLUT1(i, vf_id), lut_dw[i]);
8563 		} else {
8564 			dev_err(&pf->pdev->dev, "Cannot set RSS LUT - invalid VSI type\n");
8565 		}
8566 	}
8567 	i40e_flush(hw);
8568 
8569 	return 0;
8570 }
8571 
8572 /**
8573  * i40e_get_rss_reg - Get the RSS keys and lut by reading registers
8574  * @vsi: Pointer to VSI structure
8575  * @seed: Buffer to store the keys
8576  * @lut: Buffer to store the lookup table entries
8577  * @lut_size: Size of buffer to store the lookup table entries
8578  *
8579  * Returns 0 on success, negative on failure
8580  */
8581 static int i40e_get_rss_reg(struct i40e_vsi *vsi, u8 *seed,
8582 			    u8 *lut, u16 lut_size)
8583 {
8584 	struct i40e_pf *pf = vsi->back;
8585 	struct i40e_hw *hw = &pf->hw;
8586 	u16 i;
8587 
8588 	if (seed) {
8589 		u32 *seed_dw = (u32 *)seed;
8590 
8591 		for (i = 0; i <= I40E_PFQF_HKEY_MAX_INDEX; i++)
8592 			seed_dw[i] = i40e_read_rx_ctl(hw, I40E_PFQF_HKEY(i));
8593 	}
8594 	if (lut) {
8595 		u32 *lut_dw = (u32 *)lut;
8596 
8597 		if (lut_size != I40E_HLUT_ARRAY_SIZE)
8598 			return -EINVAL;
8599 		for (i = 0; i <= I40E_PFQF_HLUT_MAX_INDEX; i++)
8600 			lut_dw[i] = rd32(hw, I40E_PFQF_HLUT(i));
8601 	}
8602 
8603 	return 0;
8604 }
8605 
8606 /**
8607  * i40e_config_rss - Configure RSS keys and lut
8608  * @vsi: Pointer to VSI structure
8609  * @seed: RSS hash seed
8610  * @lut: Lookup table
8611  * @lut_size: Lookup table size
8612  *
8613  * Returns 0 on success, negative on failure
8614  */
8615 int i40e_config_rss(struct i40e_vsi *vsi, u8 *seed, u8 *lut, u16 lut_size)
8616 {
8617 	struct i40e_pf *pf = vsi->back;
8618 
8619 	if (pf->hw_features & I40E_HW_RSS_AQ_CAPABLE)
8620 		return i40e_config_rss_aq(vsi, seed, lut, lut_size);
8621 	else
8622 		return i40e_config_rss_reg(vsi, seed, lut, lut_size);
8623 }
8624 
8625 /**
8626  * i40e_get_rss - Get RSS keys and lut
8627  * @vsi: Pointer to VSI structure
8628  * @seed: Buffer to store the keys
8629  * @lut: Buffer to store the lookup table entries
8630  * lut_size: Size of buffer to store the lookup table entries
8631  *
8632  * Returns 0 on success, negative on failure
8633  */
8634 int i40e_get_rss(struct i40e_vsi *vsi, u8 *seed, u8 *lut, u16 lut_size)
8635 {
8636 	struct i40e_pf *pf = vsi->back;
8637 
8638 	if (pf->hw_features & I40E_HW_RSS_AQ_CAPABLE)
8639 		return i40e_get_rss_aq(vsi, seed, lut, lut_size);
8640 	else
8641 		return i40e_get_rss_reg(vsi, seed, lut, lut_size);
8642 }
8643 
8644 /**
8645  * i40e_fill_rss_lut - Fill the RSS lookup table with default values
8646  * @pf: Pointer to board private structure
8647  * @lut: Lookup table
8648  * @rss_table_size: Lookup table size
8649  * @rss_size: Range of queue number for hashing
8650  */
8651 void i40e_fill_rss_lut(struct i40e_pf *pf, u8 *lut,
8652 		       u16 rss_table_size, u16 rss_size)
8653 {
8654 	u16 i;
8655 
8656 	for (i = 0; i < rss_table_size; i++)
8657 		lut[i] = i % rss_size;
8658 }
8659 
8660 /**
8661  * i40e_pf_config_rss - Prepare for RSS if used
8662  * @pf: board private structure
8663  **/
8664 static int i40e_pf_config_rss(struct i40e_pf *pf)
8665 {
8666 	struct i40e_vsi *vsi = pf->vsi[pf->lan_vsi];
8667 	u8 seed[I40E_HKEY_ARRAY_SIZE];
8668 	u8 *lut;
8669 	struct i40e_hw *hw = &pf->hw;
8670 	u32 reg_val;
8671 	u64 hena;
8672 	int ret;
8673 
8674 	/* By default we enable TCP/UDP with IPv4/IPv6 ptypes */
8675 	hena = (u64)i40e_read_rx_ctl(hw, I40E_PFQF_HENA(0)) |
8676 		((u64)i40e_read_rx_ctl(hw, I40E_PFQF_HENA(1)) << 32);
8677 	hena |= i40e_pf_get_default_rss_hena(pf);
8678 
8679 	i40e_write_rx_ctl(hw, I40E_PFQF_HENA(0), (u32)hena);
8680 	i40e_write_rx_ctl(hw, I40E_PFQF_HENA(1), (u32)(hena >> 32));
8681 
8682 	/* Determine the RSS table size based on the hardware capabilities */
8683 	reg_val = i40e_read_rx_ctl(hw, I40E_PFQF_CTL_0);
8684 	reg_val = (pf->rss_table_size == 512) ?
8685 			(reg_val | I40E_PFQF_CTL_0_HASHLUTSIZE_512) :
8686 			(reg_val & ~I40E_PFQF_CTL_0_HASHLUTSIZE_512);
8687 	i40e_write_rx_ctl(hw, I40E_PFQF_CTL_0, reg_val);
8688 
8689 	/* Determine the RSS size of the VSI */
8690 	if (!vsi->rss_size) {
8691 		u16 qcount;
8692 
8693 		qcount = vsi->num_queue_pairs / vsi->tc_config.numtc;
8694 		vsi->rss_size = min_t(int, pf->alloc_rss_size, qcount);
8695 	}
8696 	if (!vsi->rss_size)
8697 		return -EINVAL;
8698 
8699 	lut = kzalloc(vsi->rss_table_size, GFP_KERNEL);
8700 	if (!lut)
8701 		return -ENOMEM;
8702 
8703 	/* Use user configured lut if there is one, otherwise use default */
8704 	if (vsi->rss_lut_user)
8705 		memcpy(lut, vsi->rss_lut_user, vsi->rss_table_size);
8706 	else
8707 		i40e_fill_rss_lut(pf, lut, vsi->rss_table_size, vsi->rss_size);
8708 
8709 	/* Use user configured hash key if there is one, otherwise
8710 	 * use default.
8711 	 */
8712 	if (vsi->rss_hkey_user)
8713 		memcpy(seed, vsi->rss_hkey_user, I40E_HKEY_ARRAY_SIZE);
8714 	else
8715 		netdev_rss_key_fill((void *)seed, I40E_HKEY_ARRAY_SIZE);
8716 	ret = i40e_config_rss(vsi, seed, lut, vsi->rss_table_size);
8717 	kfree(lut);
8718 
8719 	return ret;
8720 }
8721 
8722 /**
8723  * i40e_reconfig_rss_queues - change number of queues for rss and rebuild
8724  * @pf: board private structure
8725  * @queue_count: the requested queue count for rss.
8726  *
8727  * returns 0 if rss is not enabled, if enabled returns the final rss queue
8728  * count which may be different from the requested queue count.
8729  * Note: expects to be called while under rtnl_lock()
8730  **/
8731 int i40e_reconfig_rss_queues(struct i40e_pf *pf, int queue_count)
8732 {
8733 	struct i40e_vsi *vsi = pf->vsi[pf->lan_vsi];
8734 	int new_rss_size;
8735 
8736 	if (!(pf->flags & I40E_FLAG_RSS_ENABLED))
8737 		return 0;
8738 
8739 	new_rss_size = min_t(int, queue_count, pf->rss_size_max);
8740 
8741 	if (queue_count != vsi->num_queue_pairs) {
8742 		u16 qcount;
8743 
8744 		vsi->req_queue_pairs = queue_count;
8745 		i40e_prep_for_reset(pf, true);
8746 
8747 		pf->alloc_rss_size = new_rss_size;
8748 
8749 		i40e_reset_and_rebuild(pf, true, true);
8750 
8751 		/* Discard the user configured hash keys and lut, if less
8752 		 * queues are enabled.
8753 		 */
8754 		if (queue_count < vsi->rss_size) {
8755 			i40e_clear_rss_config_user(vsi);
8756 			dev_dbg(&pf->pdev->dev,
8757 				"discard user configured hash keys and lut\n");
8758 		}
8759 
8760 		/* Reset vsi->rss_size, as number of enabled queues changed */
8761 		qcount = vsi->num_queue_pairs / vsi->tc_config.numtc;
8762 		vsi->rss_size = min_t(int, pf->alloc_rss_size, qcount);
8763 
8764 		i40e_pf_config_rss(pf);
8765 	}
8766 	dev_info(&pf->pdev->dev, "User requested queue count/HW max RSS count:  %d/%d\n",
8767 		 vsi->req_queue_pairs, pf->rss_size_max);
8768 	return pf->alloc_rss_size;
8769 }
8770 
8771 /**
8772  * i40e_get_partition_bw_setting - Retrieve BW settings for this PF partition
8773  * @pf: board private structure
8774  **/
8775 i40e_status i40e_get_partition_bw_setting(struct i40e_pf *pf)
8776 {
8777 	i40e_status status;
8778 	bool min_valid, max_valid;
8779 	u32 max_bw, min_bw;
8780 
8781 	status = i40e_read_bw_from_alt_ram(&pf->hw, &max_bw, &min_bw,
8782 					   &min_valid, &max_valid);
8783 
8784 	if (!status) {
8785 		if (min_valid)
8786 			pf->min_bw = min_bw;
8787 		if (max_valid)
8788 			pf->max_bw = max_bw;
8789 	}
8790 
8791 	return status;
8792 }
8793 
8794 /**
8795  * i40e_set_partition_bw_setting - Set BW settings for this PF partition
8796  * @pf: board private structure
8797  **/
8798 i40e_status i40e_set_partition_bw_setting(struct i40e_pf *pf)
8799 {
8800 	struct i40e_aqc_configure_partition_bw_data bw_data;
8801 	i40e_status status;
8802 
8803 	/* Set the valid bit for this PF */
8804 	bw_data.pf_valid_bits = cpu_to_le16(BIT(pf->hw.pf_id));
8805 	bw_data.max_bw[pf->hw.pf_id] = pf->max_bw & I40E_ALT_BW_VALUE_MASK;
8806 	bw_data.min_bw[pf->hw.pf_id] = pf->min_bw & I40E_ALT_BW_VALUE_MASK;
8807 
8808 	/* Set the new bandwidths */
8809 	status = i40e_aq_configure_partition_bw(&pf->hw, &bw_data, NULL);
8810 
8811 	return status;
8812 }
8813 
8814 /**
8815  * i40e_commit_partition_bw_setting - Commit BW settings for this PF partition
8816  * @pf: board private structure
8817  **/
8818 i40e_status i40e_commit_partition_bw_setting(struct i40e_pf *pf)
8819 {
8820 	/* Commit temporary BW setting to permanent NVM image */
8821 	enum i40e_admin_queue_err last_aq_status;
8822 	i40e_status ret;
8823 	u16 nvm_word;
8824 
8825 	if (pf->hw.partition_id != 1) {
8826 		dev_info(&pf->pdev->dev,
8827 			 "Commit BW only works on partition 1! This is partition %d",
8828 			 pf->hw.partition_id);
8829 		ret = I40E_NOT_SUPPORTED;
8830 		goto bw_commit_out;
8831 	}
8832 
8833 	/* Acquire NVM for read access */
8834 	ret = i40e_acquire_nvm(&pf->hw, I40E_RESOURCE_READ);
8835 	last_aq_status = pf->hw.aq.asq_last_status;
8836 	if (ret) {
8837 		dev_info(&pf->pdev->dev,
8838 			 "Cannot acquire NVM for read access, err %s aq_err %s\n",
8839 			 i40e_stat_str(&pf->hw, ret),
8840 			 i40e_aq_str(&pf->hw, last_aq_status));
8841 		goto bw_commit_out;
8842 	}
8843 
8844 	/* Read word 0x10 of NVM - SW compatibility word 1 */
8845 	ret = i40e_aq_read_nvm(&pf->hw,
8846 			       I40E_SR_NVM_CONTROL_WORD,
8847 			       0x10, sizeof(nvm_word), &nvm_word,
8848 			       false, NULL);
8849 	/* Save off last admin queue command status before releasing
8850 	 * the NVM
8851 	 */
8852 	last_aq_status = pf->hw.aq.asq_last_status;
8853 	i40e_release_nvm(&pf->hw);
8854 	if (ret) {
8855 		dev_info(&pf->pdev->dev, "NVM read error, err %s aq_err %s\n",
8856 			 i40e_stat_str(&pf->hw, ret),
8857 			 i40e_aq_str(&pf->hw, last_aq_status));
8858 		goto bw_commit_out;
8859 	}
8860 
8861 	/* Wait a bit for NVM release to complete */
8862 	msleep(50);
8863 
8864 	/* Acquire NVM for write access */
8865 	ret = i40e_acquire_nvm(&pf->hw, I40E_RESOURCE_WRITE);
8866 	last_aq_status = pf->hw.aq.asq_last_status;
8867 	if (ret) {
8868 		dev_info(&pf->pdev->dev,
8869 			 "Cannot acquire NVM for write access, err %s aq_err %s\n",
8870 			 i40e_stat_str(&pf->hw, ret),
8871 			 i40e_aq_str(&pf->hw, last_aq_status));
8872 		goto bw_commit_out;
8873 	}
8874 	/* Write it back out unchanged to initiate update NVM,
8875 	 * which will force a write of the shadow (alt) RAM to
8876 	 * the NVM - thus storing the bandwidth values permanently.
8877 	 */
8878 	ret = i40e_aq_update_nvm(&pf->hw,
8879 				 I40E_SR_NVM_CONTROL_WORD,
8880 				 0x10, sizeof(nvm_word),
8881 				 &nvm_word, true, NULL);
8882 	/* Save off last admin queue command status before releasing
8883 	 * the NVM
8884 	 */
8885 	last_aq_status = pf->hw.aq.asq_last_status;
8886 	i40e_release_nvm(&pf->hw);
8887 	if (ret)
8888 		dev_info(&pf->pdev->dev,
8889 			 "BW settings NOT SAVED, err %s aq_err %s\n",
8890 			 i40e_stat_str(&pf->hw, ret),
8891 			 i40e_aq_str(&pf->hw, last_aq_status));
8892 bw_commit_out:
8893 
8894 	return ret;
8895 }
8896 
8897 /**
8898  * i40e_sw_init - Initialize general software structures (struct i40e_pf)
8899  * @pf: board private structure to initialize
8900  *
8901  * i40e_sw_init initializes the Adapter private data structure.
8902  * Fields are initialized based on PCI device information and
8903  * OS network device settings (MTU size).
8904  **/
8905 static int i40e_sw_init(struct i40e_pf *pf)
8906 {
8907 	int err = 0;
8908 	int size;
8909 
8910 	/* Set default capability flags */
8911 	pf->flags = I40E_FLAG_RX_CSUM_ENABLED |
8912 		    I40E_FLAG_MSI_ENABLED     |
8913 		    I40E_FLAG_MSIX_ENABLED;
8914 
8915 	/* Set default ITR */
8916 	pf->rx_itr_default = I40E_ITR_DYNAMIC | I40E_ITR_RX_DEF;
8917 	pf->tx_itr_default = I40E_ITR_DYNAMIC | I40E_ITR_TX_DEF;
8918 
8919 	/* Depending on PF configurations, it is possible that the RSS
8920 	 * maximum might end up larger than the available queues
8921 	 */
8922 	pf->rss_size_max = BIT(pf->hw.func_caps.rss_table_entry_width);
8923 	pf->alloc_rss_size = 1;
8924 	pf->rss_table_size = pf->hw.func_caps.rss_table_size;
8925 	pf->rss_size_max = min_t(int, pf->rss_size_max,
8926 				 pf->hw.func_caps.num_tx_qp);
8927 	if (pf->hw.func_caps.rss) {
8928 		pf->flags |= I40E_FLAG_RSS_ENABLED;
8929 		pf->alloc_rss_size = min_t(int, pf->rss_size_max,
8930 					   num_online_cpus());
8931 	}
8932 
8933 	/* MFP mode enabled */
8934 	if (pf->hw.func_caps.npar_enable || pf->hw.func_caps.flex10_enable) {
8935 		pf->flags |= I40E_FLAG_MFP_ENABLED;
8936 		dev_info(&pf->pdev->dev, "MFP mode Enabled\n");
8937 		if (i40e_get_partition_bw_setting(pf)) {
8938 			dev_warn(&pf->pdev->dev,
8939 				 "Could not get partition bw settings\n");
8940 		} else {
8941 			dev_info(&pf->pdev->dev,
8942 				 "Partition BW Min = %8.8x, Max = %8.8x\n",
8943 				 pf->min_bw, pf->max_bw);
8944 
8945 			/* nudge the Tx scheduler */
8946 			i40e_set_partition_bw_setting(pf);
8947 		}
8948 	}
8949 
8950 	if ((pf->hw.func_caps.fd_filters_guaranteed > 0) ||
8951 	    (pf->hw.func_caps.fd_filters_best_effort > 0)) {
8952 		pf->flags |= I40E_FLAG_FD_ATR_ENABLED;
8953 		pf->atr_sample_rate = I40E_DEFAULT_ATR_SAMPLE_RATE;
8954 		if (pf->flags & I40E_FLAG_MFP_ENABLED &&
8955 		    pf->hw.num_partitions > 1)
8956 			dev_info(&pf->pdev->dev,
8957 				 "Flow Director Sideband mode Disabled in MFP mode\n");
8958 		else
8959 			pf->flags |= I40E_FLAG_FD_SB_ENABLED;
8960 		pf->fdir_pf_filter_count =
8961 				 pf->hw.func_caps.fd_filters_guaranteed;
8962 		pf->hw.fdir_shared_filter_count =
8963 				 pf->hw.func_caps.fd_filters_best_effort;
8964 	}
8965 
8966 	if (pf->hw.mac.type == I40E_MAC_X722) {
8967 		pf->hw_features |= (I40E_HW_RSS_AQ_CAPABLE |
8968 				    I40E_HW_128_QP_RSS_CAPABLE |
8969 				    I40E_HW_ATR_EVICT_CAPABLE |
8970 				    I40E_HW_WB_ON_ITR_CAPABLE |
8971 				    I40E_HW_MULTIPLE_TCP_UDP_RSS_PCTYPE |
8972 				    I40E_HW_NO_PCI_LINK_CHECK |
8973 				    I40E_HW_USE_SET_LLDP_MIB |
8974 				    I40E_HW_GENEVE_OFFLOAD_CAPABLE |
8975 				    I40E_HW_PTP_L4_CAPABLE |
8976 				    I40E_HW_WOL_MC_MAGIC_PKT_WAKE |
8977 				    I40E_HW_OUTER_UDP_CSUM_CAPABLE);
8978 
8979 #define I40E_FDEVICT_PCTYPE_DEFAULT 0xc03
8980 		if (rd32(&pf->hw, I40E_GLQF_FDEVICTENA(1)) !=
8981 		    I40E_FDEVICT_PCTYPE_DEFAULT) {
8982 			dev_warn(&pf->pdev->dev,
8983 				 "FD EVICT PCTYPES are not right, disable FD HW EVICT\n");
8984 			pf->hw_features &= ~I40E_HW_ATR_EVICT_CAPABLE;
8985 		}
8986 	} else if ((pf->hw.aq.api_maj_ver > 1) ||
8987 		   ((pf->hw.aq.api_maj_ver == 1) &&
8988 		    (pf->hw.aq.api_min_ver > 4))) {
8989 		/* Supported in FW API version higher than 1.4 */
8990 		pf->hw_features |= I40E_HW_GENEVE_OFFLOAD_CAPABLE;
8991 	}
8992 
8993 	/* Enable HW ATR eviction if possible */
8994 	if (pf->hw_features & I40E_HW_ATR_EVICT_CAPABLE)
8995 		pf->flags |= I40E_FLAG_HW_ATR_EVICT_ENABLED;
8996 
8997 	if ((pf->hw.mac.type == I40E_MAC_XL710) &&
8998 	    (((pf->hw.aq.fw_maj_ver == 4) && (pf->hw.aq.fw_min_ver < 33)) ||
8999 	    (pf->hw.aq.fw_maj_ver < 4))) {
9000 		pf->hw_features |= I40E_HW_RESTART_AUTONEG;
9001 		/* No DCB support  for FW < v4.33 */
9002 		pf->hw_features |= I40E_HW_NO_DCB_SUPPORT;
9003 	}
9004 
9005 	/* Disable FW LLDP if FW < v4.3 */
9006 	if ((pf->hw.mac.type == I40E_MAC_XL710) &&
9007 	    (((pf->hw.aq.fw_maj_ver == 4) && (pf->hw.aq.fw_min_ver < 3)) ||
9008 	    (pf->hw.aq.fw_maj_ver < 4)))
9009 		pf->hw_features |= I40E_HW_STOP_FW_LLDP;
9010 
9011 	/* Use the FW Set LLDP MIB API if FW > v4.40 */
9012 	if ((pf->hw.mac.type == I40E_MAC_XL710) &&
9013 	    (((pf->hw.aq.fw_maj_ver == 4) && (pf->hw.aq.fw_min_ver >= 40)) ||
9014 	    (pf->hw.aq.fw_maj_ver >= 5)))
9015 		pf->hw_features |= I40E_HW_USE_SET_LLDP_MIB;
9016 
9017 	if (pf->hw.func_caps.vmdq) {
9018 		pf->num_vmdq_vsis = I40E_DEFAULT_NUM_VMDQ_VSI;
9019 		pf->flags |= I40E_FLAG_VMDQ_ENABLED;
9020 		pf->num_vmdq_qps = i40e_default_queues_per_vmdq(pf);
9021 	}
9022 
9023 	if (pf->hw.func_caps.iwarp) {
9024 		pf->flags |= I40E_FLAG_IWARP_ENABLED;
9025 		/* IWARP needs one extra vector for CQP just like MISC.*/
9026 		pf->num_iwarp_msix = (int)num_online_cpus() + 1;
9027 	}
9028 
9029 #ifdef CONFIG_PCI_IOV
9030 	if (pf->hw.func_caps.num_vfs && pf->hw.partition_id == 1) {
9031 		pf->num_vf_qps = I40E_DEFAULT_QUEUES_PER_VF;
9032 		pf->flags |= I40E_FLAG_SRIOV_ENABLED;
9033 		pf->num_req_vfs = min_t(int,
9034 					pf->hw.func_caps.num_vfs,
9035 					I40E_MAX_VF_COUNT);
9036 	}
9037 #endif /* CONFIG_PCI_IOV */
9038 	pf->eeprom_version = 0xDEAD;
9039 	pf->lan_veb = I40E_NO_VEB;
9040 	pf->lan_vsi = I40E_NO_VSI;
9041 
9042 	/* By default FW has this off for performance reasons */
9043 	pf->flags &= ~I40E_FLAG_VEB_STATS_ENABLED;
9044 
9045 	/* set up queue assignment tracking */
9046 	size = sizeof(struct i40e_lump_tracking)
9047 		+ (sizeof(u16) * pf->hw.func_caps.num_tx_qp);
9048 	pf->qp_pile = kzalloc(size, GFP_KERNEL);
9049 	if (!pf->qp_pile) {
9050 		err = -ENOMEM;
9051 		goto sw_init_done;
9052 	}
9053 	pf->qp_pile->num_entries = pf->hw.func_caps.num_tx_qp;
9054 	pf->qp_pile->search_hint = 0;
9055 
9056 	pf->tx_timeout_recovery_level = 1;
9057 
9058 	mutex_init(&pf->switch_mutex);
9059 
9060 sw_init_done:
9061 	return err;
9062 }
9063 
9064 /**
9065  * i40e_set_ntuple - set the ntuple feature flag and take action
9066  * @pf: board private structure to initialize
9067  * @features: the feature set that the stack is suggesting
9068  *
9069  * returns a bool to indicate if reset needs to happen
9070  **/
9071 bool i40e_set_ntuple(struct i40e_pf *pf, netdev_features_t features)
9072 {
9073 	bool need_reset = false;
9074 
9075 	/* Check if Flow Director n-tuple support was enabled or disabled.  If
9076 	 * the state changed, we need to reset.
9077 	 */
9078 	if (features & NETIF_F_NTUPLE) {
9079 		/* Enable filters and mark for reset */
9080 		if (!(pf->flags & I40E_FLAG_FD_SB_ENABLED))
9081 			need_reset = true;
9082 		/* enable FD_SB only if there is MSI-X vector */
9083 		if (pf->num_fdsb_msix > 0)
9084 			pf->flags |= I40E_FLAG_FD_SB_ENABLED;
9085 	} else {
9086 		/* turn off filters, mark for reset and clear SW filter list */
9087 		if (pf->flags & I40E_FLAG_FD_SB_ENABLED) {
9088 			need_reset = true;
9089 			i40e_fdir_filter_exit(pf);
9090 		}
9091 		pf->flags &= ~(I40E_FLAG_FD_SB_ENABLED |
9092 			       I40E_FLAG_FD_SB_AUTO_DISABLED);
9093 		/* reset fd counters */
9094 		pf->fd_add_err = 0;
9095 		pf->fd_atr_cnt = 0;
9096 		/* if ATR was auto disabled it can be re-enabled. */
9097 		if (pf->flags & I40E_FLAG_FD_ATR_AUTO_DISABLED) {
9098 			pf->flags &= ~I40E_FLAG_FD_ATR_AUTO_DISABLED;
9099 			if ((pf->flags & I40E_FLAG_FD_ATR_ENABLED) &&
9100 			    (I40E_DEBUG_FD & pf->hw.debug_mask))
9101 				dev_info(&pf->pdev->dev, "ATR re-enabled.\n");
9102 		}
9103 	}
9104 	return need_reset;
9105 }
9106 
9107 /**
9108  * i40e_clear_rss_lut - clear the rx hash lookup table
9109  * @vsi: the VSI being configured
9110  **/
9111 static void i40e_clear_rss_lut(struct i40e_vsi *vsi)
9112 {
9113 	struct i40e_pf *pf = vsi->back;
9114 	struct i40e_hw *hw = &pf->hw;
9115 	u16 vf_id = vsi->vf_id;
9116 	u8 i;
9117 
9118 	if (vsi->type == I40E_VSI_MAIN) {
9119 		for (i = 0; i <= I40E_PFQF_HLUT_MAX_INDEX; i++)
9120 			wr32(hw, I40E_PFQF_HLUT(i), 0);
9121 	} else if (vsi->type == I40E_VSI_SRIOV) {
9122 		for (i = 0; i <= I40E_VFQF_HLUT_MAX_INDEX; i++)
9123 			i40e_write_rx_ctl(hw, I40E_VFQF_HLUT1(i, vf_id), 0);
9124 	} else {
9125 		dev_err(&pf->pdev->dev, "Cannot set RSS LUT - invalid VSI type\n");
9126 	}
9127 }
9128 
9129 /**
9130  * i40e_set_features - set the netdev feature flags
9131  * @netdev: ptr to the netdev being adjusted
9132  * @features: the feature set that the stack is suggesting
9133  * Note: expects to be called while under rtnl_lock()
9134  **/
9135 static int i40e_set_features(struct net_device *netdev,
9136 			     netdev_features_t features)
9137 {
9138 	struct i40e_netdev_priv *np = netdev_priv(netdev);
9139 	struct i40e_vsi *vsi = np->vsi;
9140 	struct i40e_pf *pf = vsi->back;
9141 	bool need_reset;
9142 
9143 	if (features & NETIF_F_RXHASH && !(netdev->features & NETIF_F_RXHASH))
9144 		i40e_pf_config_rss(pf);
9145 	else if (!(features & NETIF_F_RXHASH) &&
9146 		 netdev->features & NETIF_F_RXHASH)
9147 		i40e_clear_rss_lut(vsi);
9148 
9149 	if (features & NETIF_F_HW_VLAN_CTAG_RX)
9150 		i40e_vlan_stripping_enable(vsi);
9151 	else
9152 		i40e_vlan_stripping_disable(vsi);
9153 
9154 	need_reset = i40e_set_ntuple(pf, features);
9155 
9156 	if (need_reset)
9157 		i40e_do_reset(pf, BIT_ULL(__I40E_PF_RESET_REQUESTED), true);
9158 
9159 	return 0;
9160 }
9161 
9162 /**
9163  * i40e_get_udp_port_idx - Lookup a possibly offloaded for Rx UDP port
9164  * @pf: board private structure
9165  * @port: The UDP port to look up
9166  *
9167  * Returns the index number or I40E_MAX_PF_UDP_OFFLOAD_PORTS if port not found
9168  **/
9169 static u8 i40e_get_udp_port_idx(struct i40e_pf *pf, u16 port)
9170 {
9171 	u8 i;
9172 
9173 	for (i = 0; i < I40E_MAX_PF_UDP_OFFLOAD_PORTS; i++) {
9174 		if (pf->udp_ports[i].port == port)
9175 			return i;
9176 	}
9177 
9178 	return i;
9179 }
9180 
9181 /**
9182  * i40e_udp_tunnel_add - Get notifications about UDP tunnel ports that come up
9183  * @netdev: This physical port's netdev
9184  * @ti: Tunnel endpoint information
9185  **/
9186 static void i40e_udp_tunnel_add(struct net_device *netdev,
9187 				struct udp_tunnel_info *ti)
9188 {
9189 	struct i40e_netdev_priv *np = netdev_priv(netdev);
9190 	struct i40e_vsi *vsi = np->vsi;
9191 	struct i40e_pf *pf = vsi->back;
9192 	u16 port = ntohs(ti->port);
9193 	u8 next_idx;
9194 	u8 idx;
9195 
9196 	idx = i40e_get_udp_port_idx(pf, port);
9197 
9198 	/* Check if port already exists */
9199 	if (idx < I40E_MAX_PF_UDP_OFFLOAD_PORTS) {
9200 		netdev_info(netdev, "port %d already offloaded\n", port);
9201 		return;
9202 	}
9203 
9204 	/* Now check if there is space to add the new port */
9205 	next_idx = i40e_get_udp_port_idx(pf, 0);
9206 
9207 	if (next_idx == I40E_MAX_PF_UDP_OFFLOAD_PORTS) {
9208 		netdev_info(netdev, "maximum number of offloaded UDP ports reached, not adding port %d\n",
9209 			    port);
9210 		return;
9211 	}
9212 
9213 	switch (ti->type) {
9214 	case UDP_TUNNEL_TYPE_VXLAN:
9215 		pf->udp_ports[next_idx].type = I40E_AQC_TUNNEL_TYPE_VXLAN;
9216 		break;
9217 	case UDP_TUNNEL_TYPE_GENEVE:
9218 		if (!(pf->hw_features & I40E_HW_GENEVE_OFFLOAD_CAPABLE))
9219 			return;
9220 		pf->udp_ports[next_idx].type = I40E_AQC_TUNNEL_TYPE_NGE;
9221 		break;
9222 	default:
9223 		return;
9224 	}
9225 
9226 	/* New port: add it and mark its index in the bitmap */
9227 	pf->udp_ports[next_idx].port = port;
9228 	pf->pending_udp_bitmap |= BIT_ULL(next_idx);
9229 	pf->flags |= I40E_FLAG_UDP_FILTER_SYNC;
9230 }
9231 
9232 /**
9233  * i40e_udp_tunnel_del - Get notifications about UDP tunnel ports that go away
9234  * @netdev: This physical port's netdev
9235  * @ti: Tunnel endpoint information
9236  **/
9237 static void i40e_udp_tunnel_del(struct net_device *netdev,
9238 				struct udp_tunnel_info *ti)
9239 {
9240 	struct i40e_netdev_priv *np = netdev_priv(netdev);
9241 	struct i40e_vsi *vsi = np->vsi;
9242 	struct i40e_pf *pf = vsi->back;
9243 	u16 port = ntohs(ti->port);
9244 	u8 idx;
9245 
9246 	idx = i40e_get_udp_port_idx(pf, port);
9247 
9248 	/* Check if port already exists */
9249 	if (idx >= I40E_MAX_PF_UDP_OFFLOAD_PORTS)
9250 		goto not_found;
9251 
9252 	switch (ti->type) {
9253 	case UDP_TUNNEL_TYPE_VXLAN:
9254 		if (pf->udp_ports[idx].type != I40E_AQC_TUNNEL_TYPE_VXLAN)
9255 			goto not_found;
9256 		break;
9257 	case UDP_TUNNEL_TYPE_GENEVE:
9258 		if (pf->udp_ports[idx].type != I40E_AQC_TUNNEL_TYPE_NGE)
9259 			goto not_found;
9260 		break;
9261 	default:
9262 		goto not_found;
9263 	}
9264 
9265 	/* if port exists, set it to 0 (mark for deletion)
9266 	 * and make it pending
9267 	 */
9268 	pf->udp_ports[idx].port = 0;
9269 	pf->pending_udp_bitmap |= BIT_ULL(idx);
9270 	pf->flags |= I40E_FLAG_UDP_FILTER_SYNC;
9271 
9272 	return;
9273 not_found:
9274 	netdev_warn(netdev, "UDP port %d was not found, not deleting\n",
9275 		    port);
9276 }
9277 
9278 static int i40e_get_phys_port_id(struct net_device *netdev,
9279 				 struct netdev_phys_item_id *ppid)
9280 {
9281 	struct i40e_netdev_priv *np = netdev_priv(netdev);
9282 	struct i40e_pf *pf = np->vsi->back;
9283 	struct i40e_hw *hw = &pf->hw;
9284 
9285 	if (!(pf->hw_features & I40E_HW_PORT_ID_VALID))
9286 		return -EOPNOTSUPP;
9287 
9288 	ppid->id_len = min_t(int, sizeof(hw->mac.port_addr), sizeof(ppid->id));
9289 	memcpy(ppid->id, hw->mac.port_addr, ppid->id_len);
9290 
9291 	return 0;
9292 }
9293 
9294 /**
9295  * i40e_ndo_fdb_add - add an entry to the hardware database
9296  * @ndm: the input from the stack
9297  * @tb: pointer to array of nladdr (unused)
9298  * @dev: the net device pointer
9299  * @addr: the MAC address entry being added
9300  * @flags: instructions from stack about fdb operation
9301  */
9302 static int i40e_ndo_fdb_add(struct ndmsg *ndm, struct nlattr *tb[],
9303 			    struct net_device *dev,
9304 			    const unsigned char *addr, u16 vid,
9305 			    u16 flags)
9306 {
9307 	struct i40e_netdev_priv *np = netdev_priv(dev);
9308 	struct i40e_pf *pf = np->vsi->back;
9309 	int err = 0;
9310 
9311 	if (!(pf->flags & I40E_FLAG_SRIOV_ENABLED))
9312 		return -EOPNOTSUPP;
9313 
9314 	if (vid) {
9315 		pr_info("%s: vlans aren't supported yet for dev_uc|mc_add()\n", dev->name);
9316 		return -EINVAL;
9317 	}
9318 
9319 	/* Hardware does not support aging addresses so if a
9320 	 * ndm_state is given only allow permanent addresses
9321 	 */
9322 	if (ndm->ndm_state && !(ndm->ndm_state & NUD_PERMANENT)) {
9323 		netdev_info(dev, "FDB only supports static addresses\n");
9324 		return -EINVAL;
9325 	}
9326 
9327 	if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr))
9328 		err = dev_uc_add_excl(dev, addr);
9329 	else if (is_multicast_ether_addr(addr))
9330 		err = dev_mc_add_excl(dev, addr);
9331 	else
9332 		err = -EINVAL;
9333 
9334 	/* Only return duplicate errors if NLM_F_EXCL is set */
9335 	if (err == -EEXIST && !(flags & NLM_F_EXCL))
9336 		err = 0;
9337 
9338 	return err;
9339 }
9340 
9341 /**
9342  * i40e_ndo_bridge_setlink - Set the hardware bridge mode
9343  * @dev: the netdev being configured
9344  * @nlh: RTNL message
9345  *
9346  * Inserts a new hardware bridge if not already created and
9347  * enables the bridging mode requested (VEB or VEPA). If the
9348  * hardware bridge has already been inserted and the request
9349  * is to change the mode then that requires a PF reset to
9350  * allow rebuild of the components with required hardware
9351  * bridge mode enabled.
9352  *
9353  * Note: expects to be called while under rtnl_lock()
9354  **/
9355 static int i40e_ndo_bridge_setlink(struct net_device *dev,
9356 				   struct nlmsghdr *nlh,
9357 				   u16 flags)
9358 {
9359 	struct i40e_netdev_priv *np = netdev_priv(dev);
9360 	struct i40e_vsi *vsi = np->vsi;
9361 	struct i40e_pf *pf = vsi->back;
9362 	struct i40e_veb *veb = NULL;
9363 	struct nlattr *attr, *br_spec;
9364 	int i, rem;
9365 
9366 	/* Only for PF VSI for now */
9367 	if (vsi->seid != pf->vsi[pf->lan_vsi]->seid)
9368 		return -EOPNOTSUPP;
9369 
9370 	/* Find the HW bridge for PF VSI */
9371 	for (i = 0; i < I40E_MAX_VEB && !veb; i++) {
9372 		if (pf->veb[i] && pf->veb[i]->seid == vsi->uplink_seid)
9373 			veb = pf->veb[i];
9374 	}
9375 
9376 	br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC);
9377 
9378 	nla_for_each_nested(attr, br_spec, rem) {
9379 		__u16 mode;
9380 
9381 		if (nla_type(attr) != IFLA_BRIDGE_MODE)
9382 			continue;
9383 
9384 		mode = nla_get_u16(attr);
9385 		if ((mode != BRIDGE_MODE_VEPA) &&
9386 		    (mode != BRIDGE_MODE_VEB))
9387 			return -EINVAL;
9388 
9389 		/* Insert a new HW bridge */
9390 		if (!veb) {
9391 			veb = i40e_veb_setup(pf, 0, vsi->uplink_seid, vsi->seid,
9392 					     vsi->tc_config.enabled_tc);
9393 			if (veb) {
9394 				veb->bridge_mode = mode;
9395 				i40e_config_bridge_mode(veb);
9396 			} else {
9397 				/* No Bridge HW offload available */
9398 				return -ENOENT;
9399 			}
9400 			break;
9401 		} else if (mode != veb->bridge_mode) {
9402 			/* Existing HW bridge but different mode needs reset */
9403 			veb->bridge_mode = mode;
9404 			/* TODO: If no VFs or VMDq VSIs, disallow VEB mode */
9405 			if (mode == BRIDGE_MODE_VEB)
9406 				pf->flags |= I40E_FLAG_VEB_MODE_ENABLED;
9407 			else
9408 				pf->flags &= ~I40E_FLAG_VEB_MODE_ENABLED;
9409 			i40e_do_reset(pf, BIT_ULL(__I40E_PF_RESET_REQUESTED),
9410 				      true);
9411 			break;
9412 		}
9413 	}
9414 
9415 	return 0;
9416 }
9417 
9418 /**
9419  * i40e_ndo_bridge_getlink - Get the hardware bridge mode
9420  * @skb: skb buff
9421  * @pid: process id
9422  * @seq: RTNL message seq #
9423  * @dev: the netdev being configured
9424  * @filter_mask: unused
9425  * @nlflags: netlink flags passed in
9426  *
9427  * Return the mode in which the hardware bridge is operating in
9428  * i.e VEB or VEPA.
9429  **/
9430 static int i40e_ndo_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq,
9431 				   struct net_device *dev,
9432 				   u32 __always_unused filter_mask,
9433 				   int nlflags)
9434 {
9435 	struct i40e_netdev_priv *np = netdev_priv(dev);
9436 	struct i40e_vsi *vsi = np->vsi;
9437 	struct i40e_pf *pf = vsi->back;
9438 	struct i40e_veb *veb = NULL;
9439 	int i;
9440 
9441 	/* Only for PF VSI for now */
9442 	if (vsi->seid != pf->vsi[pf->lan_vsi]->seid)
9443 		return -EOPNOTSUPP;
9444 
9445 	/* Find the HW bridge for the PF VSI */
9446 	for (i = 0; i < I40E_MAX_VEB && !veb; i++) {
9447 		if (pf->veb[i] && pf->veb[i]->seid == vsi->uplink_seid)
9448 			veb = pf->veb[i];
9449 	}
9450 
9451 	if (!veb)
9452 		return 0;
9453 
9454 	return ndo_dflt_bridge_getlink(skb, pid, seq, dev, veb->bridge_mode,
9455 				       0, 0, nlflags, filter_mask, NULL);
9456 }
9457 
9458 /**
9459  * i40e_features_check - Validate encapsulated packet conforms to limits
9460  * @skb: skb buff
9461  * @dev: This physical port's netdev
9462  * @features: Offload features that the stack believes apply
9463  **/
9464 static netdev_features_t i40e_features_check(struct sk_buff *skb,
9465 					     struct net_device *dev,
9466 					     netdev_features_t features)
9467 {
9468 	size_t len;
9469 
9470 	/* No point in doing any of this if neither checksum nor GSO are
9471 	 * being requested for this frame.  We can rule out both by just
9472 	 * checking for CHECKSUM_PARTIAL
9473 	 */
9474 	if (skb->ip_summed != CHECKSUM_PARTIAL)
9475 		return features;
9476 
9477 	/* We cannot support GSO if the MSS is going to be less than
9478 	 * 64 bytes.  If it is then we need to drop support for GSO.
9479 	 */
9480 	if (skb_is_gso(skb) && (skb_shinfo(skb)->gso_size < 64))
9481 		features &= ~NETIF_F_GSO_MASK;
9482 
9483 	/* MACLEN can support at most 63 words */
9484 	len = skb_network_header(skb) - skb->data;
9485 	if (len & ~(63 * 2))
9486 		goto out_err;
9487 
9488 	/* IPLEN and EIPLEN can support at most 127 dwords */
9489 	len = skb_transport_header(skb) - skb_network_header(skb);
9490 	if (len & ~(127 * 4))
9491 		goto out_err;
9492 
9493 	if (skb->encapsulation) {
9494 		/* L4TUNLEN can support 127 words */
9495 		len = skb_inner_network_header(skb) - skb_transport_header(skb);
9496 		if (len & ~(127 * 2))
9497 			goto out_err;
9498 
9499 		/* IPLEN can support at most 127 dwords */
9500 		len = skb_inner_transport_header(skb) -
9501 		      skb_inner_network_header(skb);
9502 		if (len & ~(127 * 4))
9503 			goto out_err;
9504 	}
9505 
9506 	/* No need to validate L4LEN as TCP is the only protocol with a
9507 	 * a flexible value and we support all possible values supported
9508 	 * by TCP, which is at most 15 dwords
9509 	 */
9510 
9511 	return features;
9512 out_err:
9513 	return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
9514 }
9515 
9516 /**
9517  * i40e_xdp_setup - add/remove an XDP program
9518  * @vsi: VSI to changed
9519  * @prog: XDP program
9520  **/
9521 static int i40e_xdp_setup(struct i40e_vsi *vsi,
9522 			  struct bpf_prog *prog)
9523 {
9524 	int frame_size = vsi->netdev->mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
9525 	struct i40e_pf *pf = vsi->back;
9526 	struct bpf_prog *old_prog;
9527 	bool need_reset;
9528 	int i;
9529 
9530 	/* Don't allow frames that span over multiple buffers */
9531 	if (frame_size > vsi->rx_buf_len)
9532 		return -EINVAL;
9533 
9534 	if (!i40e_enabled_xdp_vsi(vsi) && !prog)
9535 		return 0;
9536 
9537 	/* When turning XDP on->off/off->on we reset and rebuild the rings. */
9538 	need_reset = (i40e_enabled_xdp_vsi(vsi) != !!prog);
9539 
9540 	if (need_reset)
9541 		i40e_prep_for_reset(pf, true);
9542 
9543 	old_prog = xchg(&vsi->xdp_prog, prog);
9544 
9545 	if (need_reset)
9546 		i40e_reset_and_rebuild(pf, true, true);
9547 
9548 	for (i = 0; i < vsi->num_queue_pairs; i++)
9549 		WRITE_ONCE(vsi->rx_rings[i]->xdp_prog, vsi->xdp_prog);
9550 
9551 	if (old_prog)
9552 		bpf_prog_put(old_prog);
9553 
9554 	return 0;
9555 }
9556 
9557 /**
9558  * i40e_xdp - implements ndo_xdp for i40e
9559  * @dev: netdevice
9560  * @xdp: XDP command
9561  **/
9562 static int i40e_xdp(struct net_device *dev,
9563 		    struct netdev_xdp *xdp)
9564 {
9565 	struct i40e_netdev_priv *np = netdev_priv(dev);
9566 	struct i40e_vsi *vsi = np->vsi;
9567 
9568 	if (vsi->type != I40E_VSI_MAIN)
9569 		return -EINVAL;
9570 
9571 	switch (xdp->command) {
9572 	case XDP_SETUP_PROG:
9573 		return i40e_xdp_setup(vsi, xdp->prog);
9574 	case XDP_QUERY_PROG:
9575 		xdp->prog_attached = i40e_enabled_xdp_vsi(vsi);
9576 		xdp->prog_id = vsi->xdp_prog ? vsi->xdp_prog->aux->id : 0;
9577 		return 0;
9578 	default:
9579 		return -EINVAL;
9580 	}
9581 }
9582 
9583 static const struct net_device_ops i40e_netdev_ops = {
9584 	.ndo_open		= i40e_open,
9585 	.ndo_stop		= i40e_close,
9586 	.ndo_start_xmit		= i40e_lan_xmit_frame,
9587 	.ndo_get_stats64	= i40e_get_netdev_stats_struct,
9588 	.ndo_set_rx_mode	= i40e_set_rx_mode,
9589 	.ndo_validate_addr	= eth_validate_addr,
9590 	.ndo_set_mac_address	= i40e_set_mac,
9591 	.ndo_change_mtu		= i40e_change_mtu,
9592 	.ndo_do_ioctl		= i40e_ioctl,
9593 	.ndo_tx_timeout		= i40e_tx_timeout,
9594 	.ndo_vlan_rx_add_vid	= i40e_vlan_rx_add_vid,
9595 	.ndo_vlan_rx_kill_vid	= i40e_vlan_rx_kill_vid,
9596 #ifdef CONFIG_NET_POLL_CONTROLLER
9597 	.ndo_poll_controller	= i40e_netpoll,
9598 #endif
9599 	.ndo_setup_tc		= __i40e_setup_tc,
9600 	.ndo_set_features	= i40e_set_features,
9601 	.ndo_set_vf_mac		= i40e_ndo_set_vf_mac,
9602 	.ndo_set_vf_vlan	= i40e_ndo_set_vf_port_vlan,
9603 	.ndo_set_vf_rate	= i40e_ndo_set_vf_bw,
9604 	.ndo_get_vf_config	= i40e_ndo_get_vf_config,
9605 	.ndo_set_vf_link_state	= i40e_ndo_set_vf_link_state,
9606 	.ndo_set_vf_spoofchk	= i40e_ndo_set_vf_spoofchk,
9607 	.ndo_set_vf_trust	= i40e_ndo_set_vf_trust,
9608 	.ndo_udp_tunnel_add	= i40e_udp_tunnel_add,
9609 	.ndo_udp_tunnel_del	= i40e_udp_tunnel_del,
9610 	.ndo_get_phys_port_id	= i40e_get_phys_port_id,
9611 	.ndo_fdb_add		= i40e_ndo_fdb_add,
9612 	.ndo_features_check	= i40e_features_check,
9613 	.ndo_bridge_getlink	= i40e_ndo_bridge_getlink,
9614 	.ndo_bridge_setlink	= i40e_ndo_bridge_setlink,
9615 	.ndo_xdp		= i40e_xdp,
9616 };
9617 
9618 /**
9619  * i40e_config_netdev - Setup the netdev flags
9620  * @vsi: the VSI being configured
9621  *
9622  * Returns 0 on success, negative value on failure
9623  **/
9624 static int i40e_config_netdev(struct i40e_vsi *vsi)
9625 {
9626 	struct i40e_pf *pf = vsi->back;
9627 	struct i40e_hw *hw = &pf->hw;
9628 	struct i40e_netdev_priv *np;
9629 	struct net_device *netdev;
9630 	u8 broadcast[ETH_ALEN];
9631 	u8 mac_addr[ETH_ALEN];
9632 	int etherdev_size;
9633 	netdev_features_t hw_enc_features;
9634 	netdev_features_t hw_features;
9635 
9636 	etherdev_size = sizeof(struct i40e_netdev_priv);
9637 	netdev = alloc_etherdev_mq(etherdev_size, vsi->alloc_queue_pairs);
9638 	if (!netdev)
9639 		return -ENOMEM;
9640 
9641 	vsi->netdev = netdev;
9642 	np = netdev_priv(netdev);
9643 	np->vsi = vsi;
9644 
9645 	hw_enc_features = NETIF_F_SG			|
9646 			  NETIF_F_IP_CSUM		|
9647 			  NETIF_F_IPV6_CSUM		|
9648 			  NETIF_F_HIGHDMA		|
9649 			  NETIF_F_SOFT_FEATURES		|
9650 			  NETIF_F_TSO			|
9651 			  NETIF_F_TSO_ECN		|
9652 			  NETIF_F_TSO6			|
9653 			  NETIF_F_GSO_GRE		|
9654 			  NETIF_F_GSO_GRE_CSUM		|
9655 			  NETIF_F_GSO_PARTIAL		|
9656 			  NETIF_F_GSO_UDP_TUNNEL	|
9657 			  NETIF_F_GSO_UDP_TUNNEL_CSUM	|
9658 			  NETIF_F_SCTP_CRC		|
9659 			  NETIF_F_RXHASH		|
9660 			  NETIF_F_RXCSUM		|
9661 			  0;
9662 
9663 	if (!(pf->hw_features & I40E_HW_OUTER_UDP_CSUM_CAPABLE))
9664 		netdev->gso_partial_features |= NETIF_F_GSO_UDP_TUNNEL_CSUM;
9665 
9666 	netdev->gso_partial_features |= NETIF_F_GSO_GRE_CSUM;
9667 
9668 	netdev->hw_enc_features |= hw_enc_features;
9669 
9670 	/* record features VLANs can make use of */
9671 	netdev->vlan_features |= hw_enc_features | NETIF_F_TSO_MANGLEID;
9672 
9673 	if (!(pf->flags & I40E_FLAG_MFP_ENABLED))
9674 		netdev->hw_features |= NETIF_F_NTUPLE;
9675 	hw_features = hw_enc_features		|
9676 		      NETIF_F_HW_VLAN_CTAG_TX	|
9677 		      NETIF_F_HW_VLAN_CTAG_RX;
9678 
9679 	netdev->hw_features |= hw_features;
9680 
9681 	netdev->features |= hw_features | NETIF_F_HW_VLAN_CTAG_FILTER;
9682 	netdev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
9683 
9684 	if (vsi->type == I40E_VSI_MAIN) {
9685 		SET_NETDEV_DEV(netdev, &pf->pdev->dev);
9686 		ether_addr_copy(mac_addr, hw->mac.perm_addr);
9687 		/* The following steps are necessary for two reasons. First,
9688 		 * some older NVM configurations load a default MAC-VLAN
9689 		 * filter that will accept any tagged packet, and we want to
9690 		 * replace this with a normal filter. Additionally, it is
9691 		 * possible our MAC address was provided by the platform using
9692 		 * Open Firmware or similar.
9693 		 *
9694 		 * Thus, we need to remove the default filter and install one
9695 		 * specific to the MAC address.
9696 		 */
9697 		i40e_rm_default_mac_filter(vsi, mac_addr);
9698 		spin_lock_bh(&vsi->mac_filter_hash_lock);
9699 		i40e_add_mac_filter(vsi, mac_addr);
9700 		spin_unlock_bh(&vsi->mac_filter_hash_lock);
9701 	} else {
9702 		/* Relate the VSI_VMDQ name to the VSI_MAIN name. Note that we
9703 		 * are still limited by IFNAMSIZ, but we're adding 'v%d\0' to
9704 		 * the end, which is 4 bytes long, so force truncation of the
9705 		 * original name by IFNAMSIZ - 4
9706 		 */
9707 		snprintf(netdev->name, IFNAMSIZ, "%.*sv%%d",
9708 			 IFNAMSIZ - 4,
9709 			 pf->vsi[pf->lan_vsi]->netdev->name);
9710 		random_ether_addr(mac_addr);
9711 
9712 		spin_lock_bh(&vsi->mac_filter_hash_lock);
9713 		i40e_add_mac_filter(vsi, mac_addr);
9714 		spin_unlock_bh(&vsi->mac_filter_hash_lock);
9715 	}
9716 
9717 	/* Add the broadcast filter so that we initially will receive
9718 	 * broadcast packets. Note that when a new VLAN is first added the
9719 	 * driver will convert all filters marked I40E_VLAN_ANY into VLAN
9720 	 * specific filters as part of transitioning into "vlan" operation.
9721 	 * When more VLANs are added, the driver will copy each existing MAC
9722 	 * filter and add it for the new VLAN.
9723 	 *
9724 	 * Broadcast filters are handled specially by
9725 	 * i40e_sync_filters_subtask, as the driver must to set the broadcast
9726 	 * promiscuous bit instead of adding this directly as a MAC/VLAN
9727 	 * filter. The subtask will update the correct broadcast promiscuous
9728 	 * bits as VLANs become active or inactive.
9729 	 */
9730 	eth_broadcast_addr(broadcast);
9731 	spin_lock_bh(&vsi->mac_filter_hash_lock);
9732 	i40e_add_mac_filter(vsi, broadcast);
9733 	spin_unlock_bh(&vsi->mac_filter_hash_lock);
9734 
9735 	ether_addr_copy(netdev->dev_addr, mac_addr);
9736 	ether_addr_copy(netdev->perm_addr, mac_addr);
9737 
9738 	netdev->priv_flags |= IFF_UNICAST_FLT;
9739 	netdev->priv_flags |= IFF_SUPP_NOFCS;
9740 	/* Setup netdev TC information */
9741 	i40e_vsi_config_netdev_tc(vsi, vsi->tc_config.enabled_tc);
9742 
9743 	netdev->netdev_ops = &i40e_netdev_ops;
9744 	netdev->watchdog_timeo = 5 * HZ;
9745 	i40e_set_ethtool_ops(netdev);
9746 
9747 	/* MTU range: 68 - 9706 */
9748 	netdev->min_mtu = ETH_MIN_MTU;
9749 	netdev->max_mtu = I40E_MAX_RXBUFFER - I40E_PACKET_HDR_PAD;
9750 
9751 	return 0;
9752 }
9753 
9754 /**
9755  * i40e_vsi_delete - Delete a VSI from the switch
9756  * @vsi: the VSI being removed
9757  *
9758  * Returns 0 on success, negative value on failure
9759  **/
9760 static void i40e_vsi_delete(struct i40e_vsi *vsi)
9761 {
9762 	/* remove default VSI is not allowed */
9763 	if (vsi == vsi->back->vsi[vsi->back->lan_vsi])
9764 		return;
9765 
9766 	i40e_aq_delete_element(&vsi->back->hw, vsi->seid, NULL);
9767 }
9768 
9769 /**
9770  * i40e_is_vsi_uplink_mode_veb - Check if the VSI's uplink bridge mode is VEB
9771  * @vsi: the VSI being queried
9772  *
9773  * Returns 1 if HW bridge mode is VEB and return 0 in case of VEPA mode
9774  **/
9775 int i40e_is_vsi_uplink_mode_veb(struct i40e_vsi *vsi)
9776 {
9777 	struct i40e_veb *veb;
9778 	struct i40e_pf *pf = vsi->back;
9779 
9780 	/* Uplink is not a bridge so default to VEB */
9781 	if (vsi->veb_idx == I40E_NO_VEB)
9782 		return 1;
9783 
9784 	veb = pf->veb[vsi->veb_idx];
9785 	if (!veb) {
9786 		dev_info(&pf->pdev->dev,
9787 			 "There is no veb associated with the bridge\n");
9788 		return -ENOENT;
9789 	}
9790 
9791 	/* Uplink is a bridge in VEPA mode */
9792 	if (veb->bridge_mode & BRIDGE_MODE_VEPA) {
9793 		return 0;
9794 	} else {
9795 		/* Uplink is a bridge in VEB mode */
9796 		return 1;
9797 	}
9798 
9799 	/* VEPA is now default bridge, so return 0 */
9800 	return 0;
9801 }
9802 
9803 /**
9804  * i40e_add_vsi - Add a VSI to the switch
9805  * @vsi: the VSI being configured
9806  *
9807  * This initializes a VSI context depending on the VSI type to be added and
9808  * passes it down to the add_vsi aq command.
9809  **/
9810 static int i40e_add_vsi(struct i40e_vsi *vsi)
9811 {
9812 	int ret = -ENODEV;
9813 	struct i40e_pf *pf = vsi->back;
9814 	struct i40e_hw *hw = &pf->hw;
9815 	struct i40e_vsi_context ctxt;
9816 	struct i40e_mac_filter *f;
9817 	struct hlist_node *h;
9818 	int bkt;
9819 
9820 	u8 enabled_tc = 0x1; /* TC0 enabled */
9821 	int f_count = 0;
9822 
9823 	memset(&ctxt, 0, sizeof(ctxt));
9824 	switch (vsi->type) {
9825 	case I40E_VSI_MAIN:
9826 		/* The PF's main VSI is already setup as part of the
9827 		 * device initialization, so we'll not bother with
9828 		 * the add_vsi call, but we will retrieve the current
9829 		 * VSI context.
9830 		 */
9831 		ctxt.seid = pf->main_vsi_seid;
9832 		ctxt.pf_num = pf->hw.pf_id;
9833 		ctxt.vf_num = 0;
9834 		ret = i40e_aq_get_vsi_params(&pf->hw, &ctxt, NULL);
9835 		ctxt.flags = I40E_AQ_VSI_TYPE_PF;
9836 		if (ret) {
9837 			dev_info(&pf->pdev->dev,
9838 				 "couldn't get PF vsi config, err %s aq_err %s\n",
9839 				 i40e_stat_str(&pf->hw, ret),
9840 				 i40e_aq_str(&pf->hw,
9841 					     pf->hw.aq.asq_last_status));
9842 			return -ENOENT;
9843 		}
9844 		vsi->info = ctxt.info;
9845 		vsi->info.valid_sections = 0;
9846 
9847 		vsi->seid = ctxt.seid;
9848 		vsi->id = ctxt.vsi_number;
9849 
9850 		enabled_tc = i40e_pf_get_tc_map(pf);
9851 
9852 		/* MFP mode setup queue map and update VSI */
9853 		if ((pf->flags & I40E_FLAG_MFP_ENABLED) &&
9854 		    !(pf->hw.func_caps.iscsi)) { /* NIC type PF */
9855 			memset(&ctxt, 0, sizeof(ctxt));
9856 			ctxt.seid = pf->main_vsi_seid;
9857 			ctxt.pf_num = pf->hw.pf_id;
9858 			ctxt.vf_num = 0;
9859 			i40e_vsi_setup_queue_map(vsi, &ctxt, enabled_tc, false);
9860 			ret = i40e_aq_update_vsi_params(hw, &ctxt, NULL);
9861 			if (ret) {
9862 				dev_info(&pf->pdev->dev,
9863 					 "update vsi failed, err %s aq_err %s\n",
9864 					 i40e_stat_str(&pf->hw, ret),
9865 					 i40e_aq_str(&pf->hw,
9866 						    pf->hw.aq.asq_last_status));
9867 				ret = -ENOENT;
9868 				goto err;
9869 			}
9870 			/* update the local VSI info queue map */
9871 			i40e_vsi_update_queue_map(vsi, &ctxt);
9872 			vsi->info.valid_sections = 0;
9873 		} else {
9874 			/* Default/Main VSI is only enabled for TC0
9875 			 * reconfigure it to enable all TCs that are
9876 			 * available on the port in SFP mode.
9877 			 * For MFP case the iSCSI PF would use this
9878 			 * flow to enable LAN+iSCSI TC.
9879 			 */
9880 			ret = i40e_vsi_config_tc(vsi, enabled_tc);
9881 			if (ret) {
9882 				/* Single TC condition is not fatal,
9883 				 * message and continue
9884 				 */
9885 				dev_info(&pf->pdev->dev,
9886 					 "failed to configure TCs for main VSI tc_map 0x%08x, err %s aq_err %s\n",
9887 					 enabled_tc,
9888 					 i40e_stat_str(&pf->hw, ret),
9889 					 i40e_aq_str(&pf->hw,
9890 						    pf->hw.aq.asq_last_status));
9891 			}
9892 		}
9893 		break;
9894 
9895 	case I40E_VSI_FDIR:
9896 		ctxt.pf_num = hw->pf_id;
9897 		ctxt.vf_num = 0;
9898 		ctxt.uplink_seid = vsi->uplink_seid;
9899 		ctxt.connection_type = I40E_AQ_VSI_CONN_TYPE_NORMAL;
9900 		ctxt.flags = I40E_AQ_VSI_TYPE_PF;
9901 		if ((pf->flags & I40E_FLAG_VEB_MODE_ENABLED) &&
9902 		    (i40e_is_vsi_uplink_mode_veb(vsi))) {
9903 			ctxt.info.valid_sections |=
9904 			     cpu_to_le16(I40E_AQ_VSI_PROP_SWITCH_VALID);
9905 			ctxt.info.switch_id =
9906 			   cpu_to_le16(I40E_AQ_VSI_SW_ID_FLAG_ALLOW_LB);
9907 		}
9908 		i40e_vsi_setup_queue_map(vsi, &ctxt, enabled_tc, true);
9909 		break;
9910 
9911 	case I40E_VSI_VMDQ2:
9912 		ctxt.pf_num = hw->pf_id;
9913 		ctxt.vf_num = 0;
9914 		ctxt.uplink_seid = vsi->uplink_seid;
9915 		ctxt.connection_type = I40E_AQ_VSI_CONN_TYPE_NORMAL;
9916 		ctxt.flags = I40E_AQ_VSI_TYPE_VMDQ2;
9917 
9918 		/* This VSI is connected to VEB so the switch_id
9919 		 * should be set to zero by default.
9920 		 */
9921 		if (i40e_is_vsi_uplink_mode_veb(vsi)) {
9922 			ctxt.info.valid_sections |=
9923 				cpu_to_le16(I40E_AQ_VSI_PROP_SWITCH_VALID);
9924 			ctxt.info.switch_id =
9925 				cpu_to_le16(I40E_AQ_VSI_SW_ID_FLAG_ALLOW_LB);
9926 		}
9927 
9928 		/* Setup the VSI tx/rx queue map for TC0 only for now */
9929 		i40e_vsi_setup_queue_map(vsi, &ctxt, enabled_tc, true);
9930 		break;
9931 
9932 	case I40E_VSI_SRIOV:
9933 		ctxt.pf_num = hw->pf_id;
9934 		ctxt.vf_num = vsi->vf_id + hw->func_caps.vf_base_id;
9935 		ctxt.uplink_seid = vsi->uplink_seid;
9936 		ctxt.connection_type = I40E_AQ_VSI_CONN_TYPE_NORMAL;
9937 		ctxt.flags = I40E_AQ_VSI_TYPE_VF;
9938 
9939 		/* This VSI is connected to VEB so the switch_id
9940 		 * should be set to zero by default.
9941 		 */
9942 		if (i40e_is_vsi_uplink_mode_veb(vsi)) {
9943 			ctxt.info.valid_sections |=
9944 				cpu_to_le16(I40E_AQ_VSI_PROP_SWITCH_VALID);
9945 			ctxt.info.switch_id =
9946 				cpu_to_le16(I40E_AQ_VSI_SW_ID_FLAG_ALLOW_LB);
9947 		}
9948 
9949 		if (vsi->back->flags & I40E_FLAG_IWARP_ENABLED) {
9950 			ctxt.info.valid_sections |=
9951 				cpu_to_le16(I40E_AQ_VSI_PROP_QUEUE_OPT_VALID);
9952 			ctxt.info.queueing_opt_flags |=
9953 				(I40E_AQ_VSI_QUE_OPT_TCP_ENA |
9954 				 I40E_AQ_VSI_QUE_OPT_RSS_LUT_VSI);
9955 		}
9956 
9957 		ctxt.info.valid_sections |= cpu_to_le16(I40E_AQ_VSI_PROP_VLAN_VALID);
9958 		ctxt.info.port_vlan_flags |= I40E_AQ_VSI_PVLAN_MODE_ALL;
9959 		if (pf->vf[vsi->vf_id].spoofchk) {
9960 			ctxt.info.valid_sections |=
9961 				cpu_to_le16(I40E_AQ_VSI_PROP_SECURITY_VALID);
9962 			ctxt.info.sec_flags |=
9963 				(I40E_AQ_VSI_SEC_FLAG_ENABLE_VLAN_CHK |
9964 				 I40E_AQ_VSI_SEC_FLAG_ENABLE_MAC_CHK);
9965 		}
9966 		/* Setup the VSI tx/rx queue map for TC0 only for now */
9967 		i40e_vsi_setup_queue_map(vsi, &ctxt, enabled_tc, true);
9968 		break;
9969 
9970 	case I40E_VSI_IWARP:
9971 		/* send down message to iWARP */
9972 		break;
9973 
9974 	default:
9975 		return -ENODEV;
9976 	}
9977 
9978 	if (vsi->type != I40E_VSI_MAIN) {
9979 		ret = i40e_aq_add_vsi(hw, &ctxt, NULL);
9980 		if (ret) {
9981 			dev_info(&vsi->back->pdev->dev,
9982 				 "add vsi failed, err %s aq_err %s\n",
9983 				 i40e_stat_str(&pf->hw, ret),
9984 				 i40e_aq_str(&pf->hw,
9985 					     pf->hw.aq.asq_last_status));
9986 			ret = -ENOENT;
9987 			goto err;
9988 		}
9989 		vsi->info = ctxt.info;
9990 		vsi->info.valid_sections = 0;
9991 		vsi->seid = ctxt.seid;
9992 		vsi->id = ctxt.vsi_number;
9993 	}
9994 
9995 	vsi->active_filters = 0;
9996 	clear_bit(__I40E_VSI_OVERFLOW_PROMISC, vsi->state);
9997 	spin_lock_bh(&vsi->mac_filter_hash_lock);
9998 	/* If macvlan filters already exist, force them to get loaded */
9999 	hash_for_each_safe(vsi->mac_filter_hash, bkt, h, f, hlist) {
10000 		f->state = I40E_FILTER_NEW;
10001 		f_count++;
10002 	}
10003 	spin_unlock_bh(&vsi->mac_filter_hash_lock);
10004 
10005 	if (f_count) {
10006 		vsi->flags |= I40E_VSI_FLAG_FILTER_CHANGED;
10007 		pf->flags |= I40E_FLAG_FILTER_SYNC;
10008 	}
10009 
10010 	/* Update VSI BW information */
10011 	ret = i40e_vsi_get_bw_info(vsi);
10012 	if (ret) {
10013 		dev_info(&pf->pdev->dev,
10014 			 "couldn't get vsi bw info, err %s aq_err %s\n",
10015 			 i40e_stat_str(&pf->hw, ret),
10016 			 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status));
10017 		/* VSI is already added so not tearing that up */
10018 		ret = 0;
10019 	}
10020 
10021 err:
10022 	return ret;
10023 }
10024 
10025 /**
10026  * i40e_vsi_release - Delete a VSI and free its resources
10027  * @vsi: the VSI being removed
10028  *
10029  * Returns 0 on success or < 0 on error
10030  **/
10031 int i40e_vsi_release(struct i40e_vsi *vsi)
10032 {
10033 	struct i40e_mac_filter *f;
10034 	struct hlist_node *h;
10035 	struct i40e_veb *veb = NULL;
10036 	struct i40e_pf *pf;
10037 	u16 uplink_seid;
10038 	int i, n, bkt;
10039 
10040 	pf = vsi->back;
10041 
10042 	/* release of a VEB-owner or last VSI is not allowed */
10043 	if (vsi->flags & I40E_VSI_FLAG_VEB_OWNER) {
10044 		dev_info(&pf->pdev->dev, "VSI %d has existing VEB %d\n",
10045 			 vsi->seid, vsi->uplink_seid);
10046 		return -ENODEV;
10047 	}
10048 	if (vsi == pf->vsi[pf->lan_vsi] &&
10049 	    !test_bit(__I40E_DOWN, pf->state)) {
10050 		dev_info(&pf->pdev->dev, "Can't remove PF VSI\n");
10051 		return -ENODEV;
10052 	}
10053 
10054 	uplink_seid = vsi->uplink_seid;
10055 	if (vsi->type != I40E_VSI_SRIOV) {
10056 		if (vsi->netdev_registered) {
10057 			vsi->netdev_registered = false;
10058 			if (vsi->netdev) {
10059 				/* results in a call to i40e_close() */
10060 				unregister_netdev(vsi->netdev);
10061 			}
10062 		} else {
10063 			i40e_vsi_close(vsi);
10064 		}
10065 		i40e_vsi_disable_irq(vsi);
10066 	}
10067 
10068 	spin_lock_bh(&vsi->mac_filter_hash_lock);
10069 
10070 	/* clear the sync flag on all filters */
10071 	if (vsi->netdev) {
10072 		__dev_uc_unsync(vsi->netdev, NULL);
10073 		__dev_mc_unsync(vsi->netdev, NULL);
10074 	}
10075 
10076 	/* make sure any remaining filters are marked for deletion */
10077 	hash_for_each_safe(vsi->mac_filter_hash, bkt, h, f, hlist)
10078 		__i40e_del_filter(vsi, f);
10079 
10080 	spin_unlock_bh(&vsi->mac_filter_hash_lock);
10081 
10082 	i40e_sync_vsi_filters(vsi);
10083 
10084 	i40e_vsi_delete(vsi);
10085 	i40e_vsi_free_q_vectors(vsi);
10086 	if (vsi->netdev) {
10087 		free_netdev(vsi->netdev);
10088 		vsi->netdev = NULL;
10089 	}
10090 	i40e_vsi_clear_rings(vsi);
10091 	i40e_vsi_clear(vsi);
10092 
10093 	/* If this was the last thing on the VEB, except for the
10094 	 * controlling VSI, remove the VEB, which puts the controlling
10095 	 * VSI onto the next level down in the switch.
10096 	 *
10097 	 * Well, okay, there's one more exception here: don't remove
10098 	 * the orphan VEBs yet.  We'll wait for an explicit remove request
10099 	 * from up the network stack.
10100 	 */
10101 	for (n = 0, i = 0; i < pf->num_alloc_vsi; i++) {
10102 		if (pf->vsi[i] &&
10103 		    pf->vsi[i]->uplink_seid == uplink_seid &&
10104 		    (pf->vsi[i]->flags & I40E_VSI_FLAG_VEB_OWNER) == 0) {
10105 			n++;      /* count the VSIs */
10106 		}
10107 	}
10108 	for (i = 0; i < I40E_MAX_VEB; i++) {
10109 		if (!pf->veb[i])
10110 			continue;
10111 		if (pf->veb[i]->uplink_seid == uplink_seid)
10112 			n++;     /* count the VEBs */
10113 		if (pf->veb[i]->seid == uplink_seid)
10114 			veb = pf->veb[i];
10115 	}
10116 	if (n == 0 && veb && veb->uplink_seid != 0)
10117 		i40e_veb_release(veb);
10118 
10119 	return 0;
10120 }
10121 
10122 /**
10123  * i40e_vsi_setup_vectors - Set up the q_vectors for the given VSI
10124  * @vsi: ptr to the VSI
10125  *
10126  * This should only be called after i40e_vsi_mem_alloc() which allocates the
10127  * corresponding SW VSI structure and initializes num_queue_pairs for the
10128  * newly allocated VSI.
10129  *
10130  * Returns 0 on success or negative on failure
10131  **/
10132 static int i40e_vsi_setup_vectors(struct i40e_vsi *vsi)
10133 {
10134 	int ret = -ENOENT;
10135 	struct i40e_pf *pf = vsi->back;
10136 
10137 	if (vsi->q_vectors[0]) {
10138 		dev_info(&pf->pdev->dev, "VSI %d has existing q_vectors\n",
10139 			 vsi->seid);
10140 		return -EEXIST;
10141 	}
10142 
10143 	if (vsi->base_vector) {
10144 		dev_info(&pf->pdev->dev, "VSI %d has non-zero base vector %d\n",
10145 			 vsi->seid, vsi->base_vector);
10146 		return -EEXIST;
10147 	}
10148 
10149 	ret = i40e_vsi_alloc_q_vectors(vsi);
10150 	if (ret) {
10151 		dev_info(&pf->pdev->dev,
10152 			 "failed to allocate %d q_vector for VSI %d, ret=%d\n",
10153 			 vsi->num_q_vectors, vsi->seid, ret);
10154 		vsi->num_q_vectors = 0;
10155 		goto vector_setup_out;
10156 	}
10157 
10158 	/* In Legacy mode, we do not have to get any other vector since we
10159 	 * piggyback on the misc/ICR0 for queue interrupts.
10160 	*/
10161 	if (!(pf->flags & I40E_FLAG_MSIX_ENABLED))
10162 		return ret;
10163 	if (vsi->num_q_vectors)
10164 		vsi->base_vector = i40e_get_lump(pf, pf->irq_pile,
10165 						 vsi->num_q_vectors, vsi->idx);
10166 	if (vsi->base_vector < 0) {
10167 		dev_info(&pf->pdev->dev,
10168 			 "failed to get tracking for %d vectors for VSI %d, err=%d\n",
10169 			 vsi->num_q_vectors, vsi->seid, vsi->base_vector);
10170 		i40e_vsi_free_q_vectors(vsi);
10171 		ret = -ENOENT;
10172 		goto vector_setup_out;
10173 	}
10174 
10175 vector_setup_out:
10176 	return ret;
10177 }
10178 
10179 /**
10180  * i40e_vsi_reinit_setup - return and reallocate resources for a VSI
10181  * @vsi: pointer to the vsi.
10182  *
10183  * This re-allocates a vsi's queue resources.
10184  *
10185  * Returns pointer to the successfully allocated and configured VSI sw struct
10186  * on success, otherwise returns NULL on failure.
10187  **/
10188 static struct i40e_vsi *i40e_vsi_reinit_setup(struct i40e_vsi *vsi)
10189 {
10190 	u16 alloc_queue_pairs;
10191 	struct i40e_pf *pf;
10192 	u8 enabled_tc;
10193 	int ret;
10194 
10195 	if (!vsi)
10196 		return NULL;
10197 
10198 	pf = vsi->back;
10199 
10200 	i40e_put_lump(pf->qp_pile, vsi->base_queue, vsi->idx);
10201 	i40e_vsi_clear_rings(vsi);
10202 
10203 	i40e_vsi_free_arrays(vsi, false);
10204 	i40e_set_num_rings_in_vsi(vsi);
10205 	ret = i40e_vsi_alloc_arrays(vsi, false);
10206 	if (ret)
10207 		goto err_vsi;
10208 
10209 	alloc_queue_pairs = vsi->alloc_queue_pairs *
10210 			    (i40e_enabled_xdp_vsi(vsi) ? 2 : 1);
10211 
10212 	ret = i40e_get_lump(pf, pf->qp_pile, alloc_queue_pairs, vsi->idx);
10213 	if (ret < 0) {
10214 		dev_info(&pf->pdev->dev,
10215 			 "failed to get tracking for %d queues for VSI %d err %d\n",
10216 			 alloc_queue_pairs, vsi->seid, ret);
10217 		goto err_vsi;
10218 	}
10219 	vsi->base_queue = ret;
10220 
10221 	/* Update the FW view of the VSI. Force a reset of TC and queue
10222 	 * layout configurations.
10223 	 */
10224 	enabled_tc = pf->vsi[pf->lan_vsi]->tc_config.enabled_tc;
10225 	pf->vsi[pf->lan_vsi]->tc_config.enabled_tc = 0;
10226 	pf->vsi[pf->lan_vsi]->seid = pf->main_vsi_seid;
10227 	i40e_vsi_config_tc(pf->vsi[pf->lan_vsi], enabled_tc);
10228 	if (vsi->type == I40E_VSI_MAIN)
10229 		i40e_rm_default_mac_filter(vsi, pf->hw.mac.perm_addr);
10230 
10231 	/* assign it some queues */
10232 	ret = i40e_alloc_rings(vsi);
10233 	if (ret)
10234 		goto err_rings;
10235 
10236 	/* map all of the rings to the q_vectors */
10237 	i40e_vsi_map_rings_to_vectors(vsi);
10238 	return vsi;
10239 
10240 err_rings:
10241 	i40e_vsi_free_q_vectors(vsi);
10242 	if (vsi->netdev_registered) {
10243 		vsi->netdev_registered = false;
10244 		unregister_netdev(vsi->netdev);
10245 		free_netdev(vsi->netdev);
10246 		vsi->netdev = NULL;
10247 	}
10248 	i40e_aq_delete_element(&pf->hw, vsi->seid, NULL);
10249 err_vsi:
10250 	i40e_vsi_clear(vsi);
10251 	return NULL;
10252 }
10253 
10254 /**
10255  * i40e_vsi_setup - Set up a VSI by a given type
10256  * @pf: board private structure
10257  * @type: VSI type
10258  * @uplink_seid: the switch element to link to
10259  * @param1: usage depends upon VSI type. For VF types, indicates VF id
10260  *
10261  * This allocates the sw VSI structure and its queue resources, then add a VSI
10262  * to the identified VEB.
10263  *
10264  * Returns pointer to the successfully allocated and configure VSI sw struct on
10265  * success, otherwise returns NULL on failure.
10266  **/
10267 struct i40e_vsi *i40e_vsi_setup(struct i40e_pf *pf, u8 type,
10268 				u16 uplink_seid, u32 param1)
10269 {
10270 	struct i40e_vsi *vsi = NULL;
10271 	struct i40e_veb *veb = NULL;
10272 	u16 alloc_queue_pairs;
10273 	int ret, i;
10274 	int v_idx;
10275 
10276 	/* The requested uplink_seid must be either
10277 	 *     - the PF's port seid
10278 	 *              no VEB is needed because this is the PF
10279 	 *              or this is a Flow Director special case VSI
10280 	 *     - seid of an existing VEB
10281 	 *     - seid of a VSI that owns an existing VEB
10282 	 *     - seid of a VSI that doesn't own a VEB
10283 	 *              a new VEB is created and the VSI becomes the owner
10284 	 *     - seid of the PF VSI, which is what creates the first VEB
10285 	 *              this is a special case of the previous
10286 	 *
10287 	 * Find which uplink_seid we were given and create a new VEB if needed
10288 	 */
10289 	for (i = 0; i < I40E_MAX_VEB; i++) {
10290 		if (pf->veb[i] && pf->veb[i]->seid == uplink_seid) {
10291 			veb = pf->veb[i];
10292 			break;
10293 		}
10294 	}
10295 
10296 	if (!veb && uplink_seid != pf->mac_seid) {
10297 
10298 		for (i = 0; i < pf->num_alloc_vsi; i++) {
10299 			if (pf->vsi[i] && pf->vsi[i]->seid == uplink_seid) {
10300 				vsi = pf->vsi[i];
10301 				break;
10302 			}
10303 		}
10304 		if (!vsi) {
10305 			dev_info(&pf->pdev->dev, "no such uplink_seid %d\n",
10306 				 uplink_seid);
10307 			return NULL;
10308 		}
10309 
10310 		if (vsi->uplink_seid == pf->mac_seid)
10311 			veb = i40e_veb_setup(pf, 0, pf->mac_seid, vsi->seid,
10312 					     vsi->tc_config.enabled_tc);
10313 		else if ((vsi->flags & I40E_VSI_FLAG_VEB_OWNER) == 0)
10314 			veb = i40e_veb_setup(pf, 0, vsi->uplink_seid, vsi->seid,
10315 					     vsi->tc_config.enabled_tc);
10316 		if (veb) {
10317 			if (vsi->seid != pf->vsi[pf->lan_vsi]->seid) {
10318 				dev_info(&vsi->back->pdev->dev,
10319 					 "New VSI creation error, uplink seid of LAN VSI expected.\n");
10320 				return NULL;
10321 			}
10322 			/* We come up by default in VEPA mode if SRIOV is not
10323 			 * already enabled, in which case we can't force VEPA
10324 			 * mode.
10325 			 */
10326 			if (!(pf->flags & I40E_FLAG_VEB_MODE_ENABLED)) {
10327 				veb->bridge_mode = BRIDGE_MODE_VEPA;
10328 				pf->flags &= ~I40E_FLAG_VEB_MODE_ENABLED;
10329 			}
10330 			i40e_config_bridge_mode(veb);
10331 		}
10332 		for (i = 0; i < I40E_MAX_VEB && !veb; i++) {
10333 			if (pf->veb[i] && pf->veb[i]->seid == vsi->uplink_seid)
10334 				veb = pf->veb[i];
10335 		}
10336 		if (!veb) {
10337 			dev_info(&pf->pdev->dev, "couldn't add VEB\n");
10338 			return NULL;
10339 		}
10340 
10341 		vsi->flags |= I40E_VSI_FLAG_VEB_OWNER;
10342 		uplink_seid = veb->seid;
10343 	}
10344 
10345 	/* get vsi sw struct */
10346 	v_idx = i40e_vsi_mem_alloc(pf, type);
10347 	if (v_idx < 0)
10348 		goto err_alloc;
10349 	vsi = pf->vsi[v_idx];
10350 	if (!vsi)
10351 		goto err_alloc;
10352 	vsi->type = type;
10353 	vsi->veb_idx = (veb ? veb->idx : I40E_NO_VEB);
10354 
10355 	if (type == I40E_VSI_MAIN)
10356 		pf->lan_vsi = v_idx;
10357 	else if (type == I40E_VSI_SRIOV)
10358 		vsi->vf_id = param1;
10359 	/* assign it some queues */
10360 	alloc_queue_pairs = vsi->alloc_queue_pairs *
10361 			    (i40e_enabled_xdp_vsi(vsi) ? 2 : 1);
10362 
10363 	ret = i40e_get_lump(pf, pf->qp_pile, alloc_queue_pairs, vsi->idx);
10364 	if (ret < 0) {
10365 		dev_info(&pf->pdev->dev,
10366 			 "failed to get tracking for %d queues for VSI %d err=%d\n",
10367 			 alloc_queue_pairs, vsi->seid, ret);
10368 		goto err_vsi;
10369 	}
10370 	vsi->base_queue = ret;
10371 
10372 	/* get a VSI from the hardware */
10373 	vsi->uplink_seid = uplink_seid;
10374 	ret = i40e_add_vsi(vsi);
10375 	if (ret)
10376 		goto err_vsi;
10377 
10378 	switch (vsi->type) {
10379 	/* setup the netdev if needed */
10380 	case I40E_VSI_MAIN:
10381 	case I40E_VSI_VMDQ2:
10382 		ret = i40e_config_netdev(vsi);
10383 		if (ret)
10384 			goto err_netdev;
10385 		ret = register_netdev(vsi->netdev);
10386 		if (ret)
10387 			goto err_netdev;
10388 		vsi->netdev_registered = true;
10389 		netif_carrier_off(vsi->netdev);
10390 #ifdef CONFIG_I40E_DCB
10391 		/* Setup DCB netlink interface */
10392 		i40e_dcbnl_setup(vsi);
10393 #endif /* CONFIG_I40E_DCB */
10394 		/* fall through */
10395 
10396 	case I40E_VSI_FDIR:
10397 		/* set up vectors and rings if needed */
10398 		ret = i40e_vsi_setup_vectors(vsi);
10399 		if (ret)
10400 			goto err_msix;
10401 
10402 		ret = i40e_alloc_rings(vsi);
10403 		if (ret)
10404 			goto err_rings;
10405 
10406 		/* map all of the rings to the q_vectors */
10407 		i40e_vsi_map_rings_to_vectors(vsi);
10408 
10409 		i40e_vsi_reset_stats(vsi);
10410 		break;
10411 
10412 	default:
10413 		/* no netdev or rings for the other VSI types */
10414 		break;
10415 	}
10416 
10417 	if ((pf->hw_features & I40E_HW_RSS_AQ_CAPABLE) &&
10418 	    (vsi->type == I40E_VSI_VMDQ2)) {
10419 		ret = i40e_vsi_config_rss(vsi);
10420 	}
10421 	return vsi;
10422 
10423 err_rings:
10424 	i40e_vsi_free_q_vectors(vsi);
10425 err_msix:
10426 	if (vsi->netdev_registered) {
10427 		vsi->netdev_registered = false;
10428 		unregister_netdev(vsi->netdev);
10429 		free_netdev(vsi->netdev);
10430 		vsi->netdev = NULL;
10431 	}
10432 err_netdev:
10433 	i40e_aq_delete_element(&pf->hw, vsi->seid, NULL);
10434 err_vsi:
10435 	i40e_vsi_clear(vsi);
10436 err_alloc:
10437 	return NULL;
10438 }
10439 
10440 /**
10441  * i40e_veb_get_bw_info - Query VEB BW information
10442  * @veb: the veb to query
10443  *
10444  * Query the Tx scheduler BW configuration data for given VEB
10445  **/
10446 static int i40e_veb_get_bw_info(struct i40e_veb *veb)
10447 {
10448 	struct i40e_aqc_query_switching_comp_ets_config_resp ets_data;
10449 	struct i40e_aqc_query_switching_comp_bw_config_resp bw_data;
10450 	struct i40e_pf *pf = veb->pf;
10451 	struct i40e_hw *hw = &pf->hw;
10452 	u32 tc_bw_max;
10453 	int ret = 0;
10454 	int i;
10455 
10456 	ret = i40e_aq_query_switch_comp_bw_config(hw, veb->seid,
10457 						  &bw_data, NULL);
10458 	if (ret) {
10459 		dev_info(&pf->pdev->dev,
10460 			 "query veb bw config failed, err %s aq_err %s\n",
10461 			 i40e_stat_str(&pf->hw, ret),
10462 			 i40e_aq_str(&pf->hw, hw->aq.asq_last_status));
10463 		goto out;
10464 	}
10465 
10466 	ret = i40e_aq_query_switch_comp_ets_config(hw, veb->seid,
10467 						   &ets_data, NULL);
10468 	if (ret) {
10469 		dev_info(&pf->pdev->dev,
10470 			 "query veb bw ets config failed, err %s aq_err %s\n",
10471 			 i40e_stat_str(&pf->hw, ret),
10472 			 i40e_aq_str(&pf->hw, hw->aq.asq_last_status));
10473 		goto out;
10474 	}
10475 
10476 	veb->bw_limit = le16_to_cpu(ets_data.port_bw_limit);
10477 	veb->bw_max_quanta = ets_data.tc_bw_max;
10478 	veb->is_abs_credits = bw_data.absolute_credits_enable;
10479 	veb->enabled_tc = ets_data.tc_valid_bits;
10480 	tc_bw_max = le16_to_cpu(bw_data.tc_bw_max[0]) |
10481 		    (le16_to_cpu(bw_data.tc_bw_max[1]) << 16);
10482 	for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) {
10483 		veb->bw_tc_share_credits[i] = bw_data.tc_bw_share_credits[i];
10484 		veb->bw_tc_limit_credits[i] =
10485 					le16_to_cpu(bw_data.tc_bw_limits[i]);
10486 		veb->bw_tc_max_quanta[i] = ((tc_bw_max >> (i*4)) & 0x7);
10487 	}
10488 
10489 out:
10490 	return ret;
10491 }
10492 
10493 /**
10494  * i40e_veb_mem_alloc - Allocates the next available struct veb in the PF
10495  * @pf: board private structure
10496  *
10497  * On error: returns error code (negative)
10498  * On success: returns vsi index in PF (positive)
10499  **/
10500 static int i40e_veb_mem_alloc(struct i40e_pf *pf)
10501 {
10502 	int ret = -ENOENT;
10503 	struct i40e_veb *veb;
10504 	int i;
10505 
10506 	/* Need to protect the allocation of switch elements at the PF level */
10507 	mutex_lock(&pf->switch_mutex);
10508 
10509 	/* VEB list may be fragmented if VEB creation/destruction has
10510 	 * been happening.  We can afford to do a quick scan to look
10511 	 * for any free slots in the list.
10512 	 *
10513 	 * find next empty veb slot, looping back around if necessary
10514 	 */
10515 	i = 0;
10516 	while ((i < I40E_MAX_VEB) && (pf->veb[i] != NULL))
10517 		i++;
10518 	if (i >= I40E_MAX_VEB) {
10519 		ret = -ENOMEM;
10520 		goto err_alloc_veb;  /* out of VEB slots! */
10521 	}
10522 
10523 	veb = kzalloc(sizeof(*veb), GFP_KERNEL);
10524 	if (!veb) {
10525 		ret = -ENOMEM;
10526 		goto err_alloc_veb;
10527 	}
10528 	veb->pf = pf;
10529 	veb->idx = i;
10530 	veb->enabled_tc = 1;
10531 
10532 	pf->veb[i] = veb;
10533 	ret = i;
10534 err_alloc_veb:
10535 	mutex_unlock(&pf->switch_mutex);
10536 	return ret;
10537 }
10538 
10539 /**
10540  * i40e_switch_branch_release - Delete a branch of the switch tree
10541  * @branch: where to start deleting
10542  *
10543  * This uses recursion to find the tips of the branch to be
10544  * removed, deleting until we get back to and can delete this VEB.
10545  **/
10546 static void i40e_switch_branch_release(struct i40e_veb *branch)
10547 {
10548 	struct i40e_pf *pf = branch->pf;
10549 	u16 branch_seid = branch->seid;
10550 	u16 veb_idx = branch->idx;
10551 	int i;
10552 
10553 	/* release any VEBs on this VEB - RECURSION */
10554 	for (i = 0; i < I40E_MAX_VEB; i++) {
10555 		if (!pf->veb[i])
10556 			continue;
10557 		if (pf->veb[i]->uplink_seid == branch->seid)
10558 			i40e_switch_branch_release(pf->veb[i]);
10559 	}
10560 
10561 	/* Release the VSIs on this VEB, but not the owner VSI.
10562 	 *
10563 	 * NOTE: Removing the last VSI on a VEB has the SIDE EFFECT of removing
10564 	 *       the VEB itself, so don't use (*branch) after this loop.
10565 	 */
10566 	for (i = 0; i < pf->num_alloc_vsi; i++) {
10567 		if (!pf->vsi[i])
10568 			continue;
10569 		if (pf->vsi[i]->uplink_seid == branch_seid &&
10570 		   (pf->vsi[i]->flags & I40E_VSI_FLAG_VEB_OWNER) == 0) {
10571 			i40e_vsi_release(pf->vsi[i]);
10572 		}
10573 	}
10574 
10575 	/* There's one corner case where the VEB might not have been
10576 	 * removed, so double check it here and remove it if needed.
10577 	 * This case happens if the veb was created from the debugfs
10578 	 * commands and no VSIs were added to it.
10579 	 */
10580 	if (pf->veb[veb_idx])
10581 		i40e_veb_release(pf->veb[veb_idx]);
10582 }
10583 
10584 /**
10585  * i40e_veb_clear - remove veb struct
10586  * @veb: the veb to remove
10587  **/
10588 static void i40e_veb_clear(struct i40e_veb *veb)
10589 {
10590 	if (!veb)
10591 		return;
10592 
10593 	if (veb->pf) {
10594 		struct i40e_pf *pf = veb->pf;
10595 
10596 		mutex_lock(&pf->switch_mutex);
10597 		if (pf->veb[veb->idx] == veb)
10598 			pf->veb[veb->idx] = NULL;
10599 		mutex_unlock(&pf->switch_mutex);
10600 	}
10601 
10602 	kfree(veb);
10603 }
10604 
10605 /**
10606  * i40e_veb_release - Delete a VEB and free its resources
10607  * @veb: the VEB being removed
10608  **/
10609 void i40e_veb_release(struct i40e_veb *veb)
10610 {
10611 	struct i40e_vsi *vsi = NULL;
10612 	struct i40e_pf *pf;
10613 	int i, n = 0;
10614 
10615 	pf = veb->pf;
10616 
10617 	/* find the remaining VSI and check for extras */
10618 	for (i = 0; i < pf->num_alloc_vsi; i++) {
10619 		if (pf->vsi[i] && pf->vsi[i]->uplink_seid == veb->seid) {
10620 			n++;
10621 			vsi = pf->vsi[i];
10622 		}
10623 	}
10624 	if (n != 1) {
10625 		dev_info(&pf->pdev->dev,
10626 			 "can't remove VEB %d with %d VSIs left\n",
10627 			 veb->seid, n);
10628 		return;
10629 	}
10630 
10631 	/* move the remaining VSI to uplink veb */
10632 	vsi->flags &= ~I40E_VSI_FLAG_VEB_OWNER;
10633 	if (veb->uplink_seid) {
10634 		vsi->uplink_seid = veb->uplink_seid;
10635 		if (veb->uplink_seid == pf->mac_seid)
10636 			vsi->veb_idx = I40E_NO_VEB;
10637 		else
10638 			vsi->veb_idx = veb->veb_idx;
10639 	} else {
10640 		/* floating VEB */
10641 		vsi->uplink_seid = pf->vsi[pf->lan_vsi]->uplink_seid;
10642 		vsi->veb_idx = pf->vsi[pf->lan_vsi]->veb_idx;
10643 	}
10644 
10645 	i40e_aq_delete_element(&pf->hw, veb->seid, NULL);
10646 	i40e_veb_clear(veb);
10647 }
10648 
10649 /**
10650  * i40e_add_veb - create the VEB in the switch
10651  * @veb: the VEB to be instantiated
10652  * @vsi: the controlling VSI
10653  **/
10654 static int i40e_add_veb(struct i40e_veb *veb, struct i40e_vsi *vsi)
10655 {
10656 	struct i40e_pf *pf = veb->pf;
10657 	bool enable_stats = !!(pf->flags & I40E_FLAG_VEB_STATS_ENABLED);
10658 	int ret;
10659 
10660 	ret = i40e_aq_add_veb(&pf->hw, veb->uplink_seid, vsi->seid,
10661 			      veb->enabled_tc, false,
10662 			      &veb->seid, enable_stats, NULL);
10663 
10664 	/* get a VEB from the hardware */
10665 	if (ret) {
10666 		dev_info(&pf->pdev->dev,
10667 			 "couldn't add VEB, err %s aq_err %s\n",
10668 			 i40e_stat_str(&pf->hw, ret),
10669 			 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status));
10670 		return -EPERM;
10671 	}
10672 
10673 	/* get statistics counter */
10674 	ret = i40e_aq_get_veb_parameters(&pf->hw, veb->seid, NULL, NULL,
10675 					 &veb->stats_idx, NULL, NULL, NULL);
10676 	if (ret) {
10677 		dev_info(&pf->pdev->dev,
10678 			 "couldn't get VEB statistics idx, err %s aq_err %s\n",
10679 			 i40e_stat_str(&pf->hw, ret),
10680 			 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status));
10681 		return -EPERM;
10682 	}
10683 	ret = i40e_veb_get_bw_info(veb);
10684 	if (ret) {
10685 		dev_info(&pf->pdev->dev,
10686 			 "couldn't get VEB bw info, err %s aq_err %s\n",
10687 			 i40e_stat_str(&pf->hw, ret),
10688 			 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status));
10689 		i40e_aq_delete_element(&pf->hw, veb->seid, NULL);
10690 		return -ENOENT;
10691 	}
10692 
10693 	vsi->uplink_seid = veb->seid;
10694 	vsi->veb_idx = veb->idx;
10695 	vsi->flags |= I40E_VSI_FLAG_VEB_OWNER;
10696 
10697 	return 0;
10698 }
10699 
10700 /**
10701  * i40e_veb_setup - Set up a VEB
10702  * @pf: board private structure
10703  * @flags: VEB setup flags
10704  * @uplink_seid: the switch element to link to
10705  * @vsi_seid: the initial VSI seid
10706  * @enabled_tc: Enabled TC bit-map
10707  *
10708  * This allocates the sw VEB structure and links it into the switch
10709  * It is possible and legal for this to be a duplicate of an already
10710  * existing VEB.  It is also possible for both uplink and vsi seids
10711  * to be zero, in order to create a floating VEB.
10712  *
10713  * Returns pointer to the successfully allocated VEB sw struct on
10714  * success, otherwise returns NULL on failure.
10715  **/
10716 struct i40e_veb *i40e_veb_setup(struct i40e_pf *pf, u16 flags,
10717 				u16 uplink_seid, u16 vsi_seid,
10718 				u8 enabled_tc)
10719 {
10720 	struct i40e_veb *veb, *uplink_veb = NULL;
10721 	int vsi_idx, veb_idx;
10722 	int ret;
10723 
10724 	/* if one seid is 0, the other must be 0 to create a floating relay */
10725 	if ((uplink_seid == 0 || vsi_seid == 0) &&
10726 	    (uplink_seid + vsi_seid != 0)) {
10727 		dev_info(&pf->pdev->dev,
10728 			 "one, not both seid's are 0: uplink=%d vsi=%d\n",
10729 			 uplink_seid, vsi_seid);
10730 		return NULL;
10731 	}
10732 
10733 	/* make sure there is such a vsi and uplink */
10734 	for (vsi_idx = 0; vsi_idx < pf->num_alloc_vsi; vsi_idx++)
10735 		if (pf->vsi[vsi_idx] && pf->vsi[vsi_idx]->seid == vsi_seid)
10736 			break;
10737 	if (vsi_idx >= pf->num_alloc_vsi && vsi_seid != 0) {
10738 		dev_info(&pf->pdev->dev, "vsi seid %d not found\n",
10739 			 vsi_seid);
10740 		return NULL;
10741 	}
10742 
10743 	if (uplink_seid && uplink_seid != pf->mac_seid) {
10744 		for (veb_idx = 0; veb_idx < I40E_MAX_VEB; veb_idx++) {
10745 			if (pf->veb[veb_idx] &&
10746 			    pf->veb[veb_idx]->seid == uplink_seid) {
10747 				uplink_veb = pf->veb[veb_idx];
10748 				break;
10749 			}
10750 		}
10751 		if (!uplink_veb) {
10752 			dev_info(&pf->pdev->dev,
10753 				 "uplink seid %d not found\n", uplink_seid);
10754 			return NULL;
10755 		}
10756 	}
10757 
10758 	/* get veb sw struct */
10759 	veb_idx = i40e_veb_mem_alloc(pf);
10760 	if (veb_idx < 0)
10761 		goto err_alloc;
10762 	veb = pf->veb[veb_idx];
10763 	veb->flags = flags;
10764 	veb->uplink_seid = uplink_seid;
10765 	veb->veb_idx = (uplink_veb ? uplink_veb->idx : I40E_NO_VEB);
10766 	veb->enabled_tc = (enabled_tc ? enabled_tc : 0x1);
10767 
10768 	/* create the VEB in the switch */
10769 	ret = i40e_add_veb(veb, pf->vsi[vsi_idx]);
10770 	if (ret)
10771 		goto err_veb;
10772 	if (vsi_idx == pf->lan_vsi)
10773 		pf->lan_veb = veb->idx;
10774 
10775 	return veb;
10776 
10777 err_veb:
10778 	i40e_veb_clear(veb);
10779 err_alloc:
10780 	return NULL;
10781 }
10782 
10783 /**
10784  * i40e_setup_pf_switch_element - set PF vars based on switch type
10785  * @pf: board private structure
10786  * @ele: element we are building info from
10787  * @num_reported: total number of elements
10788  * @printconfig: should we print the contents
10789  *
10790  * helper function to assist in extracting a few useful SEID values.
10791  **/
10792 static void i40e_setup_pf_switch_element(struct i40e_pf *pf,
10793 				struct i40e_aqc_switch_config_element_resp *ele,
10794 				u16 num_reported, bool printconfig)
10795 {
10796 	u16 downlink_seid = le16_to_cpu(ele->downlink_seid);
10797 	u16 uplink_seid = le16_to_cpu(ele->uplink_seid);
10798 	u8 element_type = ele->element_type;
10799 	u16 seid = le16_to_cpu(ele->seid);
10800 
10801 	if (printconfig)
10802 		dev_info(&pf->pdev->dev,
10803 			 "type=%d seid=%d uplink=%d downlink=%d\n",
10804 			 element_type, seid, uplink_seid, downlink_seid);
10805 
10806 	switch (element_type) {
10807 	case I40E_SWITCH_ELEMENT_TYPE_MAC:
10808 		pf->mac_seid = seid;
10809 		break;
10810 	case I40E_SWITCH_ELEMENT_TYPE_VEB:
10811 		/* Main VEB? */
10812 		if (uplink_seid != pf->mac_seid)
10813 			break;
10814 		if (pf->lan_veb == I40E_NO_VEB) {
10815 			int v;
10816 
10817 			/* find existing or else empty VEB */
10818 			for (v = 0; v < I40E_MAX_VEB; v++) {
10819 				if (pf->veb[v] && (pf->veb[v]->seid == seid)) {
10820 					pf->lan_veb = v;
10821 					break;
10822 				}
10823 			}
10824 			if (pf->lan_veb == I40E_NO_VEB) {
10825 				v = i40e_veb_mem_alloc(pf);
10826 				if (v < 0)
10827 					break;
10828 				pf->lan_veb = v;
10829 			}
10830 		}
10831 
10832 		pf->veb[pf->lan_veb]->seid = seid;
10833 		pf->veb[pf->lan_veb]->uplink_seid = pf->mac_seid;
10834 		pf->veb[pf->lan_veb]->pf = pf;
10835 		pf->veb[pf->lan_veb]->veb_idx = I40E_NO_VEB;
10836 		break;
10837 	case I40E_SWITCH_ELEMENT_TYPE_VSI:
10838 		if (num_reported != 1)
10839 			break;
10840 		/* This is immediately after a reset so we can assume this is
10841 		 * the PF's VSI
10842 		 */
10843 		pf->mac_seid = uplink_seid;
10844 		pf->pf_seid = downlink_seid;
10845 		pf->main_vsi_seid = seid;
10846 		if (printconfig)
10847 			dev_info(&pf->pdev->dev,
10848 				 "pf_seid=%d main_vsi_seid=%d\n",
10849 				 pf->pf_seid, pf->main_vsi_seid);
10850 		break;
10851 	case I40E_SWITCH_ELEMENT_TYPE_PF:
10852 	case I40E_SWITCH_ELEMENT_TYPE_VF:
10853 	case I40E_SWITCH_ELEMENT_TYPE_EMP:
10854 	case I40E_SWITCH_ELEMENT_TYPE_BMC:
10855 	case I40E_SWITCH_ELEMENT_TYPE_PE:
10856 	case I40E_SWITCH_ELEMENT_TYPE_PA:
10857 		/* ignore these for now */
10858 		break;
10859 	default:
10860 		dev_info(&pf->pdev->dev, "unknown element type=%d seid=%d\n",
10861 			 element_type, seid);
10862 		break;
10863 	}
10864 }
10865 
10866 /**
10867  * i40e_fetch_switch_configuration - Get switch config from firmware
10868  * @pf: board private structure
10869  * @printconfig: should we print the contents
10870  *
10871  * Get the current switch configuration from the device and
10872  * extract a few useful SEID values.
10873  **/
10874 int i40e_fetch_switch_configuration(struct i40e_pf *pf, bool printconfig)
10875 {
10876 	struct i40e_aqc_get_switch_config_resp *sw_config;
10877 	u16 next_seid = 0;
10878 	int ret = 0;
10879 	u8 *aq_buf;
10880 	int i;
10881 
10882 	aq_buf = kzalloc(I40E_AQ_LARGE_BUF, GFP_KERNEL);
10883 	if (!aq_buf)
10884 		return -ENOMEM;
10885 
10886 	sw_config = (struct i40e_aqc_get_switch_config_resp *)aq_buf;
10887 	do {
10888 		u16 num_reported, num_total;
10889 
10890 		ret = i40e_aq_get_switch_config(&pf->hw, sw_config,
10891 						I40E_AQ_LARGE_BUF,
10892 						&next_seid, NULL);
10893 		if (ret) {
10894 			dev_info(&pf->pdev->dev,
10895 				 "get switch config failed err %s aq_err %s\n",
10896 				 i40e_stat_str(&pf->hw, ret),
10897 				 i40e_aq_str(&pf->hw,
10898 					     pf->hw.aq.asq_last_status));
10899 			kfree(aq_buf);
10900 			return -ENOENT;
10901 		}
10902 
10903 		num_reported = le16_to_cpu(sw_config->header.num_reported);
10904 		num_total = le16_to_cpu(sw_config->header.num_total);
10905 
10906 		if (printconfig)
10907 			dev_info(&pf->pdev->dev,
10908 				 "header: %d reported %d total\n",
10909 				 num_reported, num_total);
10910 
10911 		for (i = 0; i < num_reported; i++) {
10912 			struct i40e_aqc_switch_config_element_resp *ele =
10913 				&sw_config->element[i];
10914 
10915 			i40e_setup_pf_switch_element(pf, ele, num_reported,
10916 						     printconfig);
10917 		}
10918 	} while (next_seid != 0);
10919 
10920 	kfree(aq_buf);
10921 	return ret;
10922 }
10923 
10924 /**
10925  * i40e_setup_pf_switch - Setup the HW switch on startup or after reset
10926  * @pf: board private structure
10927  * @reinit: if the Main VSI needs to re-initialized.
10928  *
10929  * Returns 0 on success, negative value on failure
10930  **/
10931 static int i40e_setup_pf_switch(struct i40e_pf *pf, bool reinit)
10932 {
10933 	u16 flags = 0;
10934 	int ret;
10935 
10936 	/* find out what's out there already */
10937 	ret = i40e_fetch_switch_configuration(pf, false);
10938 	if (ret) {
10939 		dev_info(&pf->pdev->dev,
10940 			 "couldn't fetch switch config, err %s aq_err %s\n",
10941 			 i40e_stat_str(&pf->hw, ret),
10942 			 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status));
10943 		return ret;
10944 	}
10945 	i40e_pf_reset_stats(pf);
10946 
10947 	/* set the switch config bit for the whole device to
10948 	 * support limited promisc or true promisc
10949 	 * when user requests promisc. The default is limited
10950 	 * promisc.
10951 	*/
10952 
10953 	if ((pf->hw.pf_id == 0) &&
10954 	    !(pf->flags & I40E_FLAG_TRUE_PROMISC_SUPPORT))
10955 		flags = I40E_AQ_SET_SWITCH_CFG_PROMISC;
10956 
10957 	if (pf->hw.pf_id == 0) {
10958 		u16 valid_flags;
10959 
10960 		valid_flags = I40E_AQ_SET_SWITCH_CFG_PROMISC;
10961 		ret = i40e_aq_set_switch_config(&pf->hw, flags, valid_flags,
10962 						NULL);
10963 		if (ret && pf->hw.aq.asq_last_status != I40E_AQ_RC_ESRCH) {
10964 			dev_info(&pf->pdev->dev,
10965 				 "couldn't set switch config bits, err %s aq_err %s\n",
10966 				 i40e_stat_str(&pf->hw, ret),
10967 				 i40e_aq_str(&pf->hw,
10968 					     pf->hw.aq.asq_last_status));
10969 			/* not a fatal problem, just keep going */
10970 		}
10971 	}
10972 
10973 	/* first time setup */
10974 	if (pf->lan_vsi == I40E_NO_VSI || reinit) {
10975 		struct i40e_vsi *vsi = NULL;
10976 		u16 uplink_seid;
10977 
10978 		/* Set up the PF VSI associated with the PF's main VSI
10979 		 * that is already in the HW switch
10980 		 */
10981 		if (pf->lan_veb != I40E_NO_VEB && pf->veb[pf->lan_veb])
10982 			uplink_seid = pf->veb[pf->lan_veb]->seid;
10983 		else
10984 			uplink_seid = pf->mac_seid;
10985 		if (pf->lan_vsi == I40E_NO_VSI)
10986 			vsi = i40e_vsi_setup(pf, I40E_VSI_MAIN, uplink_seid, 0);
10987 		else if (reinit)
10988 			vsi = i40e_vsi_reinit_setup(pf->vsi[pf->lan_vsi]);
10989 		if (!vsi) {
10990 			dev_info(&pf->pdev->dev, "setup of MAIN VSI failed\n");
10991 			i40e_fdir_teardown(pf);
10992 			return -EAGAIN;
10993 		}
10994 	} else {
10995 		/* force a reset of TC and queue layout configurations */
10996 		u8 enabled_tc = pf->vsi[pf->lan_vsi]->tc_config.enabled_tc;
10997 
10998 		pf->vsi[pf->lan_vsi]->tc_config.enabled_tc = 0;
10999 		pf->vsi[pf->lan_vsi]->seid = pf->main_vsi_seid;
11000 		i40e_vsi_config_tc(pf->vsi[pf->lan_vsi], enabled_tc);
11001 	}
11002 	i40e_vlan_stripping_disable(pf->vsi[pf->lan_vsi]);
11003 
11004 	i40e_fdir_sb_setup(pf);
11005 
11006 	/* Setup static PF queue filter control settings */
11007 	ret = i40e_setup_pf_filter_control(pf);
11008 	if (ret) {
11009 		dev_info(&pf->pdev->dev, "setup_pf_filter_control failed: %d\n",
11010 			 ret);
11011 		/* Failure here should not stop continuing other steps */
11012 	}
11013 
11014 	/* enable RSS in the HW, even for only one queue, as the stack can use
11015 	 * the hash
11016 	 */
11017 	if ((pf->flags & I40E_FLAG_RSS_ENABLED))
11018 		i40e_pf_config_rss(pf);
11019 
11020 	/* fill in link information and enable LSE reporting */
11021 	i40e_link_event(pf);
11022 
11023 	/* Initialize user-specific link properties */
11024 	pf->fc_autoneg_status = ((pf->hw.phy.link_info.an_info &
11025 				  I40E_AQ_AN_COMPLETED) ? true : false);
11026 
11027 	i40e_ptp_init(pf);
11028 
11029 	/* repopulate tunnel port filters */
11030 	i40e_sync_udp_filters(pf);
11031 
11032 	return ret;
11033 }
11034 
11035 /**
11036  * i40e_determine_queue_usage - Work out queue distribution
11037  * @pf: board private structure
11038  **/
11039 static void i40e_determine_queue_usage(struct i40e_pf *pf)
11040 {
11041 	int queues_left;
11042 
11043 	pf->num_lan_qps = 0;
11044 
11045 	/* Find the max queues to be put into basic use.  We'll always be
11046 	 * using TC0, whether or not DCB is running, and TC0 will get the
11047 	 * big RSS set.
11048 	 */
11049 	queues_left = pf->hw.func_caps.num_tx_qp;
11050 
11051 	if ((queues_left == 1) ||
11052 	    !(pf->flags & I40E_FLAG_MSIX_ENABLED)) {
11053 		/* one qp for PF, no queues for anything else */
11054 		queues_left = 0;
11055 		pf->alloc_rss_size = pf->num_lan_qps = 1;
11056 
11057 		/* make sure all the fancies are disabled */
11058 		pf->flags &= ~(I40E_FLAG_RSS_ENABLED	|
11059 			       I40E_FLAG_IWARP_ENABLED	|
11060 			       I40E_FLAG_FD_SB_ENABLED	|
11061 			       I40E_FLAG_FD_ATR_ENABLED	|
11062 			       I40E_FLAG_DCB_CAPABLE	|
11063 			       I40E_FLAG_DCB_ENABLED	|
11064 			       I40E_FLAG_SRIOV_ENABLED	|
11065 			       I40E_FLAG_VMDQ_ENABLED);
11066 	} else if (!(pf->flags & (I40E_FLAG_RSS_ENABLED |
11067 				  I40E_FLAG_FD_SB_ENABLED |
11068 				  I40E_FLAG_FD_ATR_ENABLED |
11069 				  I40E_FLAG_DCB_CAPABLE))) {
11070 		/* one qp for PF */
11071 		pf->alloc_rss_size = pf->num_lan_qps = 1;
11072 		queues_left -= pf->num_lan_qps;
11073 
11074 		pf->flags &= ~(I40E_FLAG_RSS_ENABLED	|
11075 			       I40E_FLAG_IWARP_ENABLED	|
11076 			       I40E_FLAG_FD_SB_ENABLED	|
11077 			       I40E_FLAG_FD_ATR_ENABLED	|
11078 			       I40E_FLAG_DCB_ENABLED	|
11079 			       I40E_FLAG_VMDQ_ENABLED);
11080 	} else {
11081 		/* Not enough queues for all TCs */
11082 		if ((pf->flags & I40E_FLAG_DCB_CAPABLE) &&
11083 		    (queues_left < I40E_MAX_TRAFFIC_CLASS)) {
11084 			pf->flags &= ~(I40E_FLAG_DCB_CAPABLE |
11085 					I40E_FLAG_DCB_ENABLED);
11086 			dev_info(&pf->pdev->dev, "not enough queues for DCB. DCB is disabled.\n");
11087 		}
11088 		pf->num_lan_qps = max_t(int, pf->rss_size_max,
11089 					num_online_cpus());
11090 		pf->num_lan_qps = min_t(int, pf->num_lan_qps,
11091 					pf->hw.func_caps.num_tx_qp);
11092 
11093 		queues_left -= pf->num_lan_qps;
11094 	}
11095 
11096 	if (pf->flags & I40E_FLAG_FD_SB_ENABLED) {
11097 		if (queues_left > 1) {
11098 			queues_left -= 1; /* save 1 queue for FD */
11099 		} else {
11100 			pf->flags &= ~I40E_FLAG_FD_SB_ENABLED;
11101 			dev_info(&pf->pdev->dev, "not enough queues for Flow Director. Flow Director feature is disabled\n");
11102 		}
11103 	}
11104 
11105 	if ((pf->flags & I40E_FLAG_SRIOV_ENABLED) &&
11106 	    pf->num_vf_qps && pf->num_req_vfs && queues_left) {
11107 		pf->num_req_vfs = min_t(int, pf->num_req_vfs,
11108 					(queues_left / pf->num_vf_qps));
11109 		queues_left -= (pf->num_req_vfs * pf->num_vf_qps);
11110 	}
11111 
11112 	if ((pf->flags & I40E_FLAG_VMDQ_ENABLED) &&
11113 	    pf->num_vmdq_vsis && pf->num_vmdq_qps && queues_left) {
11114 		pf->num_vmdq_vsis = min_t(int, pf->num_vmdq_vsis,
11115 					  (queues_left / pf->num_vmdq_qps));
11116 		queues_left -= (pf->num_vmdq_vsis * pf->num_vmdq_qps);
11117 	}
11118 
11119 	pf->queues_left = queues_left;
11120 	dev_dbg(&pf->pdev->dev,
11121 		"qs_avail=%d FD SB=%d lan_qs=%d lan_tc0=%d vf=%d*%d vmdq=%d*%d, remaining=%d\n",
11122 		pf->hw.func_caps.num_tx_qp,
11123 		!!(pf->flags & I40E_FLAG_FD_SB_ENABLED),
11124 		pf->num_lan_qps, pf->alloc_rss_size, pf->num_req_vfs,
11125 		pf->num_vf_qps, pf->num_vmdq_vsis, pf->num_vmdq_qps,
11126 		queues_left);
11127 }
11128 
11129 /**
11130  * i40e_setup_pf_filter_control - Setup PF static filter control
11131  * @pf: PF to be setup
11132  *
11133  * i40e_setup_pf_filter_control sets up a PF's initial filter control
11134  * settings. If PE/FCoE are enabled then it will also set the per PF
11135  * based filter sizes required for them. It also enables Flow director,
11136  * ethertype and macvlan type filter settings for the pf.
11137  *
11138  * Returns 0 on success, negative on failure
11139  **/
11140 static int i40e_setup_pf_filter_control(struct i40e_pf *pf)
11141 {
11142 	struct i40e_filter_control_settings *settings = &pf->filter_settings;
11143 
11144 	settings->hash_lut_size = I40E_HASH_LUT_SIZE_128;
11145 
11146 	/* Flow Director is enabled */
11147 	if (pf->flags & (I40E_FLAG_FD_SB_ENABLED | I40E_FLAG_FD_ATR_ENABLED))
11148 		settings->enable_fdir = true;
11149 
11150 	/* Ethtype and MACVLAN filters enabled for PF */
11151 	settings->enable_ethtype = true;
11152 	settings->enable_macvlan = true;
11153 
11154 	if (i40e_set_filter_control(&pf->hw, settings))
11155 		return -ENOENT;
11156 
11157 	return 0;
11158 }
11159 
11160 #define INFO_STRING_LEN 255
11161 #define REMAIN(__x) (INFO_STRING_LEN - (__x))
11162 static void i40e_print_features(struct i40e_pf *pf)
11163 {
11164 	struct i40e_hw *hw = &pf->hw;
11165 	char *buf;
11166 	int i;
11167 
11168 	buf = kmalloc(INFO_STRING_LEN, GFP_KERNEL);
11169 	if (!buf)
11170 		return;
11171 
11172 	i = snprintf(buf, INFO_STRING_LEN, "Features: PF-id[%d]", hw->pf_id);
11173 #ifdef CONFIG_PCI_IOV
11174 	i += snprintf(&buf[i], REMAIN(i), " VFs: %d", pf->num_req_vfs);
11175 #endif
11176 	i += snprintf(&buf[i], REMAIN(i), " VSIs: %d QP: %d",
11177 		      pf->hw.func_caps.num_vsis,
11178 		      pf->vsi[pf->lan_vsi]->num_queue_pairs);
11179 	if (pf->flags & I40E_FLAG_RSS_ENABLED)
11180 		i += snprintf(&buf[i], REMAIN(i), " RSS");
11181 	if (pf->flags & I40E_FLAG_FD_ATR_ENABLED)
11182 		i += snprintf(&buf[i], REMAIN(i), " FD_ATR");
11183 	if (pf->flags & I40E_FLAG_FD_SB_ENABLED) {
11184 		i += snprintf(&buf[i], REMAIN(i), " FD_SB");
11185 		i += snprintf(&buf[i], REMAIN(i), " NTUPLE");
11186 	}
11187 	if (pf->flags & I40E_FLAG_DCB_CAPABLE)
11188 		i += snprintf(&buf[i], REMAIN(i), " DCB");
11189 	i += snprintf(&buf[i], REMAIN(i), " VxLAN");
11190 	i += snprintf(&buf[i], REMAIN(i), " Geneve");
11191 	if (pf->flags & I40E_FLAG_PTP)
11192 		i += snprintf(&buf[i], REMAIN(i), " PTP");
11193 	if (pf->flags & I40E_FLAG_VEB_MODE_ENABLED)
11194 		i += snprintf(&buf[i], REMAIN(i), " VEB");
11195 	else
11196 		i += snprintf(&buf[i], REMAIN(i), " VEPA");
11197 
11198 	dev_info(&pf->pdev->dev, "%s\n", buf);
11199 	kfree(buf);
11200 	WARN_ON(i > INFO_STRING_LEN);
11201 }
11202 
11203 /**
11204  * i40e_get_platform_mac_addr - get platform-specific MAC address
11205  * @pdev: PCI device information struct
11206  * @pf: board private structure
11207  *
11208  * Look up the MAC address for the device. First we'll try
11209  * eth_platform_get_mac_address, which will check Open Firmware, or arch
11210  * specific fallback. Otherwise, we'll default to the stored value in
11211  * firmware.
11212  **/
11213 static void i40e_get_platform_mac_addr(struct pci_dev *pdev, struct i40e_pf *pf)
11214 {
11215 	if (eth_platform_get_mac_address(&pdev->dev, pf->hw.mac.addr))
11216 		i40e_get_mac_addr(&pf->hw, pf->hw.mac.addr);
11217 }
11218 
11219 /**
11220  * i40e_probe - Device initialization routine
11221  * @pdev: PCI device information struct
11222  * @ent: entry in i40e_pci_tbl
11223  *
11224  * i40e_probe initializes a PF identified by a pci_dev structure.
11225  * The OS initialization, configuring of the PF private structure,
11226  * and a hardware reset occur.
11227  *
11228  * Returns 0 on success, negative on failure
11229  **/
11230 static int i40e_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
11231 {
11232 	struct i40e_aq_get_phy_abilities_resp abilities;
11233 	struct i40e_pf *pf;
11234 	struct i40e_hw *hw;
11235 	static u16 pfs_found;
11236 	u16 wol_nvm_bits;
11237 	u16 link_status;
11238 	int err;
11239 	u32 val;
11240 	u32 i;
11241 	u8 set_fc_aq_fail;
11242 
11243 	err = pci_enable_device_mem(pdev);
11244 	if (err)
11245 		return err;
11246 
11247 	/* set up for high or low dma */
11248 	err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
11249 	if (err) {
11250 		err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
11251 		if (err) {
11252 			dev_err(&pdev->dev,
11253 				"DMA configuration failed: 0x%x\n", err);
11254 			goto err_dma;
11255 		}
11256 	}
11257 
11258 	/* set up pci connections */
11259 	err = pci_request_mem_regions(pdev, i40e_driver_name);
11260 	if (err) {
11261 		dev_info(&pdev->dev,
11262 			 "pci_request_selected_regions failed %d\n", err);
11263 		goto err_pci_reg;
11264 	}
11265 
11266 	pci_enable_pcie_error_reporting(pdev);
11267 	pci_set_master(pdev);
11268 
11269 	/* Now that we have a PCI connection, we need to do the
11270 	 * low level device setup.  This is primarily setting up
11271 	 * the Admin Queue structures and then querying for the
11272 	 * device's current profile information.
11273 	 */
11274 	pf = kzalloc(sizeof(*pf), GFP_KERNEL);
11275 	if (!pf) {
11276 		err = -ENOMEM;
11277 		goto err_pf_alloc;
11278 	}
11279 	pf->next_vsi = 0;
11280 	pf->pdev = pdev;
11281 	set_bit(__I40E_DOWN, pf->state);
11282 
11283 	hw = &pf->hw;
11284 	hw->back = pf;
11285 
11286 	pf->ioremap_len = min_t(int, pci_resource_len(pdev, 0),
11287 				I40E_MAX_CSR_SPACE);
11288 
11289 	hw->hw_addr = ioremap(pci_resource_start(pdev, 0), pf->ioremap_len);
11290 	if (!hw->hw_addr) {
11291 		err = -EIO;
11292 		dev_info(&pdev->dev, "ioremap(0x%04x, 0x%04x) failed: 0x%x\n",
11293 			 (unsigned int)pci_resource_start(pdev, 0),
11294 			 pf->ioremap_len, err);
11295 		goto err_ioremap;
11296 	}
11297 	hw->vendor_id = pdev->vendor;
11298 	hw->device_id = pdev->device;
11299 	pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id);
11300 	hw->subsystem_vendor_id = pdev->subsystem_vendor;
11301 	hw->subsystem_device_id = pdev->subsystem_device;
11302 	hw->bus.device = PCI_SLOT(pdev->devfn);
11303 	hw->bus.func = PCI_FUNC(pdev->devfn);
11304 	hw->bus.bus_id = pdev->bus->number;
11305 	pf->instance = pfs_found;
11306 
11307 	INIT_LIST_HEAD(&pf->l3_flex_pit_list);
11308 	INIT_LIST_HEAD(&pf->l4_flex_pit_list);
11309 
11310 	/* set up the locks for the AQ, do this only once in probe
11311 	 * and destroy them only once in remove
11312 	 */
11313 	mutex_init(&hw->aq.asq_mutex);
11314 	mutex_init(&hw->aq.arq_mutex);
11315 
11316 	pf->msg_enable = netif_msg_init(debug,
11317 					NETIF_MSG_DRV |
11318 					NETIF_MSG_PROBE |
11319 					NETIF_MSG_LINK);
11320 	if (debug < -1)
11321 		pf->hw.debug_mask = debug;
11322 
11323 	/* do a special CORER for clearing PXE mode once at init */
11324 	if (hw->revision_id == 0 &&
11325 	    (rd32(hw, I40E_GLLAN_RCTL_0) & I40E_GLLAN_RCTL_0_PXE_MODE_MASK)) {
11326 		wr32(hw, I40E_GLGEN_RTRIG, I40E_GLGEN_RTRIG_CORER_MASK);
11327 		i40e_flush(hw);
11328 		msleep(200);
11329 		pf->corer_count++;
11330 
11331 		i40e_clear_pxe_mode(hw);
11332 	}
11333 
11334 	/* Reset here to make sure all is clean and to define PF 'n' */
11335 	i40e_clear_hw(hw);
11336 	err = i40e_pf_reset(hw);
11337 	if (err) {
11338 		dev_info(&pdev->dev, "Initial pf_reset failed: %d\n", err);
11339 		goto err_pf_reset;
11340 	}
11341 	pf->pfr_count++;
11342 
11343 	hw->aq.num_arq_entries = I40E_AQ_LEN;
11344 	hw->aq.num_asq_entries = I40E_AQ_LEN;
11345 	hw->aq.arq_buf_size = I40E_MAX_AQ_BUF_SIZE;
11346 	hw->aq.asq_buf_size = I40E_MAX_AQ_BUF_SIZE;
11347 	pf->adminq_work_limit = I40E_AQ_WORK_LIMIT;
11348 
11349 	snprintf(pf->int_name, sizeof(pf->int_name) - 1,
11350 		 "%s-%s:misc",
11351 		 dev_driver_string(&pf->pdev->dev), dev_name(&pdev->dev));
11352 
11353 	err = i40e_init_shared_code(hw);
11354 	if (err) {
11355 		dev_warn(&pdev->dev, "unidentified MAC or BLANK NVM: %d\n",
11356 			 err);
11357 		goto err_pf_reset;
11358 	}
11359 
11360 	/* set up a default setting for link flow control */
11361 	pf->hw.fc.requested_mode = I40E_FC_NONE;
11362 
11363 	err = i40e_init_adminq(hw);
11364 	if (err) {
11365 		if (err == I40E_ERR_FIRMWARE_API_VERSION)
11366 			dev_info(&pdev->dev,
11367 				 "The driver for the device stopped because the NVM image is newer than expected. You must install the most recent version of the network driver.\n");
11368 		else
11369 			dev_info(&pdev->dev,
11370 				 "The driver for the device stopped because the device firmware failed to init. Try updating your NVM image.\n");
11371 
11372 		goto err_pf_reset;
11373 	}
11374 	i40e_get_oem_version(hw);
11375 
11376 	/* provide nvm, fw, api versions */
11377 	dev_info(&pdev->dev, "fw %d.%d.%05d api %d.%d nvm %s\n",
11378 		 hw->aq.fw_maj_ver, hw->aq.fw_min_ver, hw->aq.fw_build,
11379 		 hw->aq.api_maj_ver, hw->aq.api_min_ver,
11380 		 i40e_nvm_version_str(hw));
11381 
11382 	if (hw->aq.api_maj_ver == I40E_FW_API_VERSION_MAJOR &&
11383 	    hw->aq.api_min_ver > I40E_FW_API_VERSION_MINOR)
11384 		dev_info(&pdev->dev,
11385 			 "The driver for the device detected a newer version of the NVM image than expected. Please install the most recent version of the network driver.\n");
11386 	else if (hw->aq.api_maj_ver < I40E_FW_API_VERSION_MAJOR ||
11387 		 hw->aq.api_min_ver < (I40E_FW_API_VERSION_MINOR - 1))
11388 		dev_info(&pdev->dev,
11389 			 "The driver for the device detected an older version of the NVM image than expected. Please update the NVM image.\n");
11390 
11391 	i40e_verify_eeprom(pf);
11392 
11393 	/* Rev 0 hardware was never productized */
11394 	if (hw->revision_id < 1)
11395 		dev_warn(&pdev->dev, "This device is a pre-production adapter/LOM. Please be aware there may be issues with your hardware. If you are experiencing problems please contact your Intel or hardware representative who provided you with this hardware.\n");
11396 
11397 	i40e_clear_pxe_mode(hw);
11398 	err = i40e_get_capabilities(pf);
11399 	if (err)
11400 		goto err_adminq_setup;
11401 
11402 	err = i40e_sw_init(pf);
11403 	if (err) {
11404 		dev_info(&pdev->dev, "sw_init failed: %d\n", err);
11405 		goto err_sw_init;
11406 	}
11407 
11408 	err = i40e_init_lan_hmc(hw, hw->func_caps.num_tx_qp,
11409 				hw->func_caps.num_rx_qp, 0, 0);
11410 	if (err) {
11411 		dev_info(&pdev->dev, "init_lan_hmc failed: %d\n", err);
11412 		goto err_init_lan_hmc;
11413 	}
11414 
11415 	err = i40e_configure_lan_hmc(hw, I40E_HMC_MODEL_DIRECT_ONLY);
11416 	if (err) {
11417 		dev_info(&pdev->dev, "configure_lan_hmc failed: %d\n", err);
11418 		err = -ENOENT;
11419 		goto err_configure_lan_hmc;
11420 	}
11421 
11422 	/* Disable LLDP for NICs that have firmware versions lower than v4.3.
11423 	 * Ignore error return codes because if it was already disabled via
11424 	 * hardware settings this will fail
11425 	 */
11426 	if (pf->hw_features & I40E_HW_STOP_FW_LLDP) {
11427 		dev_info(&pdev->dev, "Stopping firmware LLDP agent.\n");
11428 		i40e_aq_stop_lldp(hw, true, NULL);
11429 	}
11430 
11431 	/* allow a platform config to override the HW addr */
11432 	i40e_get_platform_mac_addr(pdev, pf);
11433 
11434 	if (!is_valid_ether_addr(hw->mac.addr)) {
11435 		dev_info(&pdev->dev, "invalid MAC address %pM\n", hw->mac.addr);
11436 		err = -EIO;
11437 		goto err_mac_addr;
11438 	}
11439 	dev_info(&pdev->dev, "MAC address: %pM\n", hw->mac.addr);
11440 	ether_addr_copy(hw->mac.perm_addr, hw->mac.addr);
11441 	i40e_get_port_mac_addr(hw, hw->mac.port_addr);
11442 	if (is_valid_ether_addr(hw->mac.port_addr))
11443 		pf->hw_features |= I40E_HW_PORT_ID_VALID;
11444 
11445 	pci_set_drvdata(pdev, pf);
11446 	pci_save_state(pdev);
11447 #ifdef CONFIG_I40E_DCB
11448 	err = i40e_init_pf_dcb(pf);
11449 	if (err) {
11450 		dev_info(&pdev->dev, "DCB init failed %d, disabled\n", err);
11451 		pf->flags &= ~(I40E_FLAG_DCB_CAPABLE | I40E_FLAG_DCB_ENABLED);
11452 		/* Continue without DCB enabled */
11453 	}
11454 #endif /* CONFIG_I40E_DCB */
11455 
11456 	/* set up periodic task facility */
11457 	setup_timer(&pf->service_timer, i40e_service_timer, (unsigned long)pf);
11458 	pf->service_timer_period = HZ;
11459 
11460 	INIT_WORK(&pf->service_task, i40e_service_task);
11461 	clear_bit(__I40E_SERVICE_SCHED, pf->state);
11462 
11463 	/* NVM bit on means WoL disabled for the port */
11464 	i40e_read_nvm_word(hw, I40E_SR_NVM_WAKE_ON_LAN, &wol_nvm_bits);
11465 	if (BIT (hw->port) & wol_nvm_bits || hw->partition_id != 1)
11466 		pf->wol_en = false;
11467 	else
11468 		pf->wol_en = true;
11469 	device_set_wakeup_enable(&pf->pdev->dev, pf->wol_en);
11470 
11471 	/* set up the main switch operations */
11472 	i40e_determine_queue_usage(pf);
11473 	err = i40e_init_interrupt_scheme(pf);
11474 	if (err)
11475 		goto err_switch_setup;
11476 
11477 	/* The number of VSIs reported by the FW is the minimum guaranteed
11478 	 * to us; HW supports far more and we share the remaining pool with
11479 	 * the other PFs. We allocate space for more than the guarantee with
11480 	 * the understanding that we might not get them all later.
11481 	 */
11482 	if (pf->hw.func_caps.num_vsis < I40E_MIN_VSI_ALLOC)
11483 		pf->num_alloc_vsi = I40E_MIN_VSI_ALLOC;
11484 	else
11485 		pf->num_alloc_vsi = pf->hw.func_caps.num_vsis;
11486 
11487 	/* Set up the *vsi struct and our local tracking of the MAIN PF vsi. */
11488 	pf->vsi = kcalloc(pf->num_alloc_vsi, sizeof(struct i40e_vsi *),
11489 			  GFP_KERNEL);
11490 	if (!pf->vsi) {
11491 		err = -ENOMEM;
11492 		goto err_switch_setup;
11493 	}
11494 
11495 #ifdef CONFIG_PCI_IOV
11496 	/* prep for VF support */
11497 	if ((pf->flags & I40E_FLAG_SRIOV_ENABLED) &&
11498 	    (pf->flags & I40E_FLAG_MSIX_ENABLED) &&
11499 	    !test_bit(__I40E_BAD_EEPROM, pf->state)) {
11500 		if (pci_num_vf(pdev))
11501 			pf->flags |= I40E_FLAG_VEB_MODE_ENABLED;
11502 	}
11503 #endif
11504 	err = i40e_setup_pf_switch(pf, false);
11505 	if (err) {
11506 		dev_info(&pdev->dev, "setup_pf_switch failed: %d\n", err);
11507 		goto err_vsis;
11508 	}
11509 
11510 	/* Make sure flow control is set according to current settings */
11511 	err = i40e_set_fc(hw, &set_fc_aq_fail, true);
11512 	if (set_fc_aq_fail & I40E_SET_FC_AQ_FAIL_GET)
11513 		dev_dbg(&pf->pdev->dev,
11514 			"Set fc with err %s aq_err %s on get_phy_cap\n",
11515 			i40e_stat_str(hw, err),
11516 			i40e_aq_str(hw, hw->aq.asq_last_status));
11517 	if (set_fc_aq_fail & I40E_SET_FC_AQ_FAIL_SET)
11518 		dev_dbg(&pf->pdev->dev,
11519 			"Set fc with err %s aq_err %s on set_phy_config\n",
11520 			i40e_stat_str(hw, err),
11521 			i40e_aq_str(hw, hw->aq.asq_last_status));
11522 	if (set_fc_aq_fail & I40E_SET_FC_AQ_FAIL_UPDATE)
11523 		dev_dbg(&pf->pdev->dev,
11524 			"Set fc with err %s aq_err %s on get_link_info\n",
11525 			i40e_stat_str(hw, err),
11526 			i40e_aq_str(hw, hw->aq.asq_last_status));
11527 
11528 	/* if FDIR VSI was set up, start it now */
11529 	for (i = 0; i < pf->num_alloc_vsi; i++) {
11530 		if (pf->vsi[i] && pf->vsi[i]->type == I40E_VSI_FDIR) {
11531 			i40e_vsi_open(pf->vsi[i]);
11532 			break;
11533 		}
11534 	}
11535 
11536 	/* The driver only wants link up/down and module qualification
11537 	 * reports from firmware.  Note the negative logic.
11538 	 */
11539 	err = i40e_aq_set_phy_int_mask(&pf->hw,
11540 				       ~(I40E_AQ_EVENT_LINK_UPDOWN |
11541 					 I40E_AQ_EVENT_MEDIA_NA |
11542 					 I40E_AQ_EVENT_MODULE_QUAL_FAIL), NULL);
11543 	if (err)
11544 		dev_info(&pf->pdev->dev, "set phy mask fail, err %s aq_err %s\n",
11545 			 i40e_stat_str(&pf->hw, err),
11546 			 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status));
11547 
11548 	/* Reconfigure hardware for allowing smaller MSS in the case
11549 	 * of TSO, so that we avoid the MDD being fired and causing
11550 	 * a reset in the case of small MSS+TSO.
11551 	 */
11552 	val = rd32(hw, I40E_REG_MSS);
11553 	if ((val & I40E_REG_MSS_MIN_MASK) > I40E_64BYTE_MSS) {
11554 		val &= ~I40E_REG_MSS_MIN_MASK;
11555 		val |= I40E_64BYTE_MSS;
11556 		wr32(hw, I40E_REG_MSS, val);
11557 	}
11558 
11559 	if (pf->hw_features & I40E_HW_RESTART_AUTONEG) {
11560 		msleep(75);
11561 		err = i40e_aq_set_link_restart_an(&pf->hw, true, NULL);
11562 		if (err)
11563 			dev_info(&pf->pdev->dev, "link restart failed, err %s aq_err %s\n",
11564 				 i40e_stat_str(&pf->hw, err),
11565 				 i40e_aq_str(&pf->hw,
11566 					     pf->hw.aq.asq_last_status));
11567 	}
11568 	/* The main driver is (mostly) up and happy. We need to set this state
11569 	 * before setting up the misc vector or we get a race and the vector
11570 	 * ends up disabled forever.
11571 	 */
11572 	clear_bit(__I40E_DOWN, pf->state);
11573 
11574 	/* In case of MSIX we are going to setup the misc vector right here
11575 	 * to handle admin queue events etc. In case of legacy and MSI
11576 	 * the misc functionality and queue processing is combined in
11577 	 * the same vector and that gets setup at open.
11578 	 */
11579 	if (pf->flags & I40E_FLAG_MSIX_ENABLED) {
11580 		err = i40e_setup_misc_vector(pf);
11581 		if (err) {
11582 			dev_info(&pdev->dev,
11583 				 "setup of misc vector failed: %d\n", err);
11584 			goto err_vsis;
11585 		}
11586 	}
11587 
11588 #ifdef CONFIG_PCI_IOV
11589 	/* prep for VF support */
11590 	if ((pf->flags & I40E_FLAG_SRIOV_ENABLED) &&
11591 	    (pf->flags & I40E_FLAG_MSIX_ENABLED) &&
11592 	    !test_bit(__I40E_BAD_EEPROM, pf->state)) {
11593 		/* disable link interrupts for VFs */
11594 		val = rd32(hw, I40E_PFGEN_PORTMDIO_NUM);
11595 		val &= ~I40E_PFGEN_PORTMDIO_NUM_VFLINK_STAT_ENA_MASK;
11596 		wr32(hw, I40E_PFGEN_PORTMDIO_NUM, val);
11597 		i40e_flush(hw);
11598 
11599 		if (pci_num_vf(pdev)) {
11600 			dev_info(&pdev->dev,
11601 				 "Active VFs found, allocating resources.\n");
11602 			err = i40e_alloc_vfs(pf, pci_num_vf(pdev));
11603 			if (err)
11604 				dev_info(&pdev->dev,
11605 					 "Error %d allocating resources for existing VFs\n",
11606 					 err);
11607 		}
11608 	}
11609 #endif /* CONFIG_PCI_IOV */
11610 
11611 	if (pf->flags & I40E_FLAG_IWARP_ENABLED) {
11612 		pf->iwarp_base_vector = i40e_get_lump(pf, pf->irq_pile,
11613 						      pf->num_iwarp_msix,
11614 						      I40E_IWARP_IRQ_PILE_ID);
11615 		if (pf->iwarp_base_vector < 0) {
11616 			dev_info(&pdev->dev,
11617 				 "failed to get tracking for %d vectors for IWARP err=%d\n",
11618 				 pf->num_iwarp_msix, pf->iwarp_base_vector);
11619 			pf->flags &= ~I40E_FLAG_IWARP_ENABLED;
11620 		}
11621 	}
11622 
11623 	i40e_dbg_pf_init(pf);
11624 
11625 	/* tell the firmware that we're starting */
11626 	i40e_send_version(pf);
11627 
11628 	/* since everything's happy, start the service_task timer */
11629 	mod_timer(&pf->service_timer,
11630 		  round_jiffies(jiffies + pf->service_timer_period));
11631 
11632 	/* add this PF to client device list and launch a client service task */
11633 	if (pf->flags & I40E_FLAG_IWARP_ENABLED) {
11634 		err = i40e_lan_add_device(pf);
11635 		if (err)
11636 			dev_info(&pdev->dev, "Failed to add PF to client API service list: %d\n",
11637 				 err);
11638 	}
11639 
11640 #define PCI_SPEED_SIZE 8
11641 #define PCI_WIDTH_SIZE 8
11642 	/* Devices on the IOSF bus do not have this information
11643 	 * and will report PCI Gen 1 x 1 by default so don't bother
11644 	 * checking them.
11645 	 */
11646 	if (!(pf->hw_features & I40E_HW_NO_PCI_LINK_CHECK)) {
11647 		char speed[PCI_SPEED_SIZE] = "Unknown";
11648 		char width[PCI_WIDTH_SIZE] = "Unknown";
11649 
11650 		/* Get the negotiated link width and speed from PCI config
11651 		 * space
11652 		 */
11653 		pcie_capability_read_word(pf->pdev, PCI_EXP_LNKSTA,
11654 					  &link_status);
11655 
11656 		i40e_set_pci_config_data(hw, link_status);
11657 
11658 		switch (hw->bus.speed) {
11659 		case i40e_bus_speed_8000:
11660 			strncpy(speed, "8.0", PCI_SPEED_SIZE); break;
11661 		case i40e_bus_speed_5000:
11662 			strncpy(speed, "5.0", PCI_SPEED_SIZE); break;
11663 		case i40e_bus_speed_2500:
11664 			strncpy(speed, "2.5", PCI_SPEED_SIZE); break;
11665 		default:
11666 			break;
11667 		}
11668 		switch (hw->bus.width) {
11669 		case i40e_bus_width_pcie_x8:
11670 			strncpy(width, "8", PCI_WIDTH_SIZE); break;
11671 		case i40e_bus_width_pcie_x4:
11672 			strncpy(width, "4", PCI_WIDTH_SIZE); break;
11673 		case i40e_bus_width_pcie_x2:
11674 			strncpy(width, "2", PCI_WIDTH_SIZE); break;
11675 		case i40e_bus_width_pcie_x1:
11676 			strncpy(width, "1", PCI_WIDTH_SIZE); break;
11677 		default:
11678 			break;
11679 		}
11680 
11681 		dev_info(&pdev->dev, "PCI-Express: Speed %sGT/s Width x%s\n",
11682 			 speed, width);
11683 
11684 		if (hw->bus.width < i40e_bus_width_pcie_x8 ||
11685 		    hw->bus.speed < i40e_bus_speed_8000) {
11686 			dev_warn(&pdev->dev, "PCI-Express bandwidth available for this device may be insufficient for optimal performance.\n");
11687 			dev_warn(&pdev->dev, "Please move the device to a different PCI-e link with more lanes and/or higher transfer rate.\n");
11688 		}
11689 	}
11690 
11691 	/* get the requested speeds from the fw */
11692 	err = i40e_aq_get_phy_capabilities(hw, false, false, &abilities, NULL);
11693 	if (err)
11694 		dev_dbg(&pf->pdev->dev, "get requested speeds ret =  %s last_status =  %s\n",
11695 			i40e_stat_str(&pf->hw, err),
11696 			i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status));
11697 	pf->hw.phy.link_info.requested_speeds = abilities.link_speed;
11698 
11699 	/* get the supported phy types from the fw */
11700 	err = i40e_aq_get_phy_capabilities(hw, false, true, &abilities, NULL);
11701 	if (err)
11702 		dev_dbg(&pf->pdev->dev, "get supported phy types ret =  %s last_status =  %s\n",
11703 			i40e_stat_str(&pf->hw, err),
11704 			i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status));
11705 
11706 	/* Add a filter to drop all Flow control frames from any VSI from being
11707 	 * transmitted. By doing so we stop a malicious VF from sending out
11708 	 * PAUSE or PFC frames and potentially controlling traffic for other
11709 	 * PF/VF VSIs.
11710 	 * The FW can still send Flow control frames if enabled.
11711 	 */
11712 	i40e_add_filter_to_drop_tx_flow_control_frames(&pf->hw,
11713 						       pf->main_vsi_seid);
11714 
11715 	if ((pf->hw.device_id == I40E_DEV_ID_10G_BASE_T) ||
11716 		(pf->hw.device_id == I40E_DEV_ID_10G_BASE_T4))
11717 		pf->hw_features |= I40E_HW_PHY_CONTROLS_LEDS;
11718 	if (pf->hw.device_id == I40E_DEV_ID_SFP_I_X722)
11719 		pf->hw_features |= I40E_HW_HAVE_CRT_RETIMER;
11720 	/* print a string summarizing features */
11721 	i40e_print_features(pf);
11722 
11723 	return 0;
11724 
11725 	/* Unwind what we've done if something failed in the setup */
11726 err_vsis:
11727 	set_bit(__I40E_DOWN, pf->state);
11728 	i40e_clear_interrupt_scheme(pf);
11729 	kfree(pf->vsi);
11730 err_switch_setup:
11731 	i40e_reset_interrupt_capability(pf);
11732 	del_timer_sync(&pf->service_timer);
11733 err_mac_addr:
11734 err_configure_lan_hmc:
11735 	(void)i40e_shutdown_lan_hmc(hw);
11736 err_init_lan_hmc:
11737 	kfree(pf->qp_pile);
11738 err_sw_init:
11739 err_adminq_setup:
11740 err_pf_reset:
11741 	iounmap(hw->hw_addr);
11742 err_ioremap:
11743 	kfree(pf);
11744 err_pf_alloc:
11745 	pci_disable_pcie_error_reporting(pdev);
11746 	pci_release_mem_regions(pdev);
11747 err_pci_reg:
11748 err_dma:
11749 	pci_disable_device(pdev);
11750 	return err;
11751 }
11752 
11753 /**
11754  * i40e_remove - Device removal routine
11755  * @pdev: PCI device information struct
11756  *
11757  * i40e_remove is called by the PCI subsystem to alert the driver
11758  * that is should release a PCI device.  This could be caused by a
11759  * Hot-Plug event, or because the driver is going to be removed from
11760  * memory.
11761  **/
11762 static void i40e_remove(struct pci_dev *pdev)
11763 {
11764 	struct i40e_pf *pf = pci_get_drvdata(pdev);
11765 	struct i40e_hw *hw = &pf->hw;
11766 	i40e_status ret_code;
11767 	int i;
11768 
11769 	i40e_dbg_pf_exit(pf);
11770 
11771 	i40e_ptp_stop(pf);
11772 
11773 	/* Disable RSS in hw */
11774 	i40e_write_rx_ctl(hw, I40E_PFQF_HENA(0), 0);
11775 	i40e_write_rx_ctl(hw, I40E_PFQF_HENA(1), 0);
11776 
11777 	/* no more scheduling of any task */
11778 	set_bit(__I40E_SUSPENDED, pf->state);
11779 	set_bit(__I40E_DOWN, pf->state);
11780 	if (pf->service_timer.data)
11781 		del_timer_sync(&pf->service_timer);
11782 	if (pf->service_task.func)
11783 		cancel_work_sync(&pf->service_task);
11784 
11785 	/* Client close must be called explicitly here because the timer
11786 	 * has been stopped.
11787 	 */
11788 	i40e_notify_client_of_netdev_close(pf->vsi[pf->lan_vsi], false);
11789 
11790 	if (pf->flags & I40E_FLAG_SRIOV_ENABLED) {
11791 		i40e_free_vfs(pf);
11792 		pf->flags &= ~I40E_FLAG_SRIOV_ENABLED;
11793 	}
11794 
11795 	i40e_fdir_teardown(pf);
11796 
11797 	/* If there is a switch structure or any orphans, remove them.
11798 	 * This will leave only the PF's VSI remaining.
11799 	 */
11800 	for (i = 0; i < I40E_MAX_VEB; i++) {
11801 		if (!pf->veb[i])
11802 			continue;
11803 
11804 		if (pf->veb[i]->uplink_seid == pf->mac_seid ||
11805 		    pf->veb[i]->uplink_seid == 0)
11806 			i40e_switch_branch_release(pf->veb[i]);
11807 	}
11808 
11809 	/* Now we can shutdown the PF's VSI, just before we kill
11810 	 * adminq and hmc.
11811 	 */
11812 	if (pf->vsi[pf->lan_vsi])
11813 		i40e_vsi_release(pf->vsi[pf->lan_vsi]);
11814 
11815 	/* remove attached clients */
11816 	if (pf->flags & I40E_FLAG_IWARP_ENABLED) {
11817 		ret_code = i40e_lan_del_device(pf);
11818 		if (ret_code)
11819 			dev_warn(&pdev->dev, "Failed to delete client device: %d\n",
11820 				 ret_code);
11821 	}
11822 
11823 	/* shutdown and destroy the HMC */
11824 	if (hw->hmc.hmc_obj) {
11825 		ret_code = i40e_shutdown_lan_hmc(hw);
11826 		if (ret_code)
11827 			dev_warn(&pdev->dev,
11828 				 "Failed to destroy the HMC resources: %d\n",
11829 				 ret_code);
11830 	}
11831 
11832 	/* shutdown the adminq */
11833 	i40e_shutdown_adminq(hw);
11834 
11835 	/* destroy the locks only once, here */
11836 	mutex_destroy(&hw->aq.arq_mutex);
11837 	mutex_destroy(&hw->aq.asq_mutex);
11838 
11839 	/* Clear all dynamic memory lists of rings, q_vectors, and VSIs */
11840 	i40e_clear_interrupt_scheme(pf);
11841 	for (i = 0; i < pf->num_alloc_vsi; i++) {
11842 		if (pf->vsi[i]) {
11843 			i40e_vsi_clear_rings(pf->vsi[i]);
11844 			i40e_vsi_clear(pf->vsi[i]);
11845 			pf->vsi[i] = NULL;
11846 		}
11847 	}
11848 
11849 	for (i = 0; i < I40E_MAX_VEB; i++) {
11850 		kfree(pf->veb[i]);
11851 		pf->veb[i] = NULL;
11852 	}
11853 
11854 	kfree(pf->qp_pile);
11855 	kfree(pf->vsi);
11856 
11857 	iounmap(hw->hw_addr);
11858 	kfree(pf);
11859 	pci_release_mem_regions(pdev);
11860 
11861 	pci_disable_pcie_error_reporting(pdev);
11862 	pci_disable_device(pdev);
11863 }
11864 
11865 /**
11866  * i40e_pci_error_detected - warning that something funky happened in PCI land
11867  * @pdev: PCI device information struct
11868  *
11869  * Called to warn that something happened and the error handling steps
11870  * are in progress.  Allows the driver to quiesce things, be ready for
11871  * remediation.
11872  **/
11873 static pci_ers_result_t i40e_pci_error_detected(struct pci_dev *pdev,
11874 						enum pci_channel_state error)
11875 {
11876 	struct i40e_pf *pf = pci_get_drvdata(pdev);
11877 
11878 	dev_info(&pdev->dev, "%s: error %d\n", __func__, error);
11879 
11880 	if (!pf) {
11881 		dev_info(&pdev->dev,
11882 			 "Cannot recover - error happened during device probe\n");
11883 		return PCI_ERS_RESULT_DISCONNECT;
11884 	}
11885 
11886 	/* shutdown all operations */
11887 	if (!test_bit(__I40E_SUSPENDED, pf->state))
11888 		i40e_prep_for_reset(pf, false);
11889 
11890 	/* Request a slot reset */
11891 	return PCI_ERS_RESULT_NEED_RESET;
11892 }
11893 
11894 /**
11895  * i40e_pci_error_slot_reset - a PCI slot reset just happened
11896  * @pdev: PCI device information struct
11897  *
11898  * Called to find if the driver can work with the device now that
11899  * the pci slot has been reset.  If a basic connection seems good
11900  * (registers are readable and have sane content) then return a
11901  * happy little PCI_ERS_RESULT_xxx.
11902  **/
11903 static pci_ers_result_t i40e_pci_error_slot_reset(struct pci_dev *pdev)
11904 {
11905 	struct i40e_pf *pf = pci_get_drvdata(pdev);
11906 	pci_ers_result_t result;
11907 	int err;
11908 	u32 reg;
11909 
11910 	dev_dbg(&pdev->dev, "%s\n", __func__);
11911 	if (pci_enable_device_mem(pdev)) {
11912 		dev_info(&pdev->dev,
11913 			 "Cannot re-enable PCI device after reset.\n");
11914 		result = PCI_ERS_RESULT_DISCONNECT;
11915 	} else {
11916 		pci_set_master(pdev);
11917 		pci_restore_state(pdev);
11918 		pci_save_state(pdev);
11919 		pci_wake_from_d3(pdev, false);
11920 
11921 		reg = rd32(&pf->hw, I40E_GLGEN_RTRIG);
11922 		if (reg == 0)
11923 			result = PCI_ERS_RESULT_RECOVERED;
11924 		else
11925 			result = PCI_ERS_RESULT_DISCONNECT;
11926 	}
11927 
11928 	err = pci_cleanup_aer_uncorrect_error_status(pdev);
11929 	if (err) {
11930 		dev_info(&pdev->dev,
11931 			 "pci_cleanup_aer_uncorrect_error_status failed 0x%0x\n",
11932 			 err);
11933 		/* non-fatal, continue */
11934 	}
11935 
11936 	return result;
11937 }
11938 
11939 /**
11940  * i40e_pci_error_resume - restart operations after PCI error recovery
11941  * @pdev: PCI device information struct
11942  *
11943  * Called to allow the driver to bring things back up after PCI error
11944  * and/or reset recovery has finished.
11945  **/
11946 static void i40e_pci_error_resume(struct pci_dev *pdev)
11947 {
11948 	struct i40e_pf *pf = pci_get_drvdata(pdev);
11949 
11950 	dev_dbg(&pdev->dev, "%s\n", __func__);
11951 	if (test_bit(__I40E_SUSPENDED, pf->state))
11952 		return;
11953 
11954 	i40e_handle_reset_warning(pf, false);
11955 }
11956 
11957 /**
11958  * i40e_enable_mc_magic_wake - enable multicast magic packet wake up
11959  * using the mac_address_write admin q function
11960  * @pf: pointer to i40e_pf struct
11961  **/
11962 static void i40e_enable_mc_magic_wake(struct i40e_pf *pf)
11963 {
11964 	struct i40e_hw *hw = &pf->hw;
11965 	i40e_status ret;
11966 	u8 mac_addr[6];
11967 	u16 flags = 0;
11968 
11969 	/* Get current MAC address in case it's an LAA */
11970 	if (pf->vsi[pf->lan_vsi] && pf->vsi[pf->lan_vsi]->netdev) {
11971 		ether_addr_copy(mac_addr,
11972 				pf->vsi[pf->lan_vsi]->netdev->dev_addr);
11973 	} else {
11974 		dev_err(&pf->pdev->dev,
11975 			"Failed to retrieve MAC address; using default\n");
11976 		ether_addr_copy(mac_addr, hw->mac.addr);
11977 	}
11978 
11979 	/* The FW expects the mac address write cmd to first be called with
11980 	 * one of these flags before calling it again with the multicast
11981 	 * enable flags.
11982 	 */
11983 	flags = I40E_AQC_WRITE_TYPE_LAA_WOL;
11984 
11985 	if (hw->func_caps.flex10_enable && hw->partition_id != 1)
11986 		flags = I40E_AQC_WRITE_TYPE_LAA_ONLY;
11987 
11988 	ret = i40e_aq_mac_address_write(hw, flags, mac_addr, NULL);
11989 	if (ret) {
11990 		dev_err(&pf->pdev->dev,
11991 			"Failed to update MAC address registers; cannot enable Multicast Magic packet wake up");
11992 		return;
11993 	}
11994 
11995 	flags = I40E_AQC_MC_MAG_EN
11996 			| I40E_AQC_WOL_PRESERVE_ON_PFR
11997 			| I40E_AQC_WRITE_TYPE_UPDATE_MC_MAG;
11998 	ret = i40e_aq_mac_address_write(hw, flags, mac_addr, NULL);
11999 	if (ret)
12000 		dev_err(&pf->pdev->dev,
12001 			"Failed to enable Multicast Magic Packet wake up\n");
12002 }
12003 
12004 /**
12005  * i40e_shutdown - PCI callback for shutting down
12006  * @pdev: PCI device information struct
12007  **/
12008 static void i40e_shutdown(struct pci_dev *pdev)
12009 {
12010 	struct i40e_pf *pf = pci_get_drvdata(pdev);
12011 	struct i40e_hw *hw = &pf->hw;
12012 
12013 	set_bit(__I40E_SUSPENDED, pf->state);
12014 	set_bit(__I40E_DOWN, pf->state);
12015 	rtnl_lock();
12016 	i40e_prep_for_reset(pf, true);
12017 	rtnl_unlock();
12018 
12019 	wr32(hw, I40E_PFPM_APM, (pf->wol_en ? I40E_PFPM_APM_APME_MASK : 0));
12020 	wr32(hw, I40E_PFPM_WUFC, (pf->wol_en ? I40E_PFPM_WUFC_MAG_MASK : 0));
12021 
12022 	del_timer_sync(&pf->service_timer);
12023 	cancel_work_sync(&pf->service_task);
12024 	i40e_fdir_teardown(pf);
12025 
12026 	/* Client close must be called explicitly here because the timer
12027 	 * has been stopped.
12028 	 */
12029 	i40e_notify_client_of_netdev_close(pf->vsi[pf->lan_vsi], false);
12030 
12031 	if (pf->wol_en && (pf->hw_features & I40E_HW_WOL_MC_MAGIC_PKT_WAKE))
12032 		i40e_enable_mc_magic_wake(pf);
12033 
12034 	i40e_prep_for_reset(pf, false);
12035 
12036 	wr32(hw, I40E_PFPM_APM,
12037 	     (pf->wol_en ? I40E_PFPM_APM_APME_MASK : 0));
12038 	wr32(hw, I40E_PFPM_WUFC,
12039 	     (pf->wol_en ? I40E_PFPM_WUFC_MAG_MASK : 0));
12040 
12041 	i40e_clear_interrupt_scheme(pf);
12042 
12043 	if (system_state == SYSTEM_POWER_OFF) {
12044 		pci_wake_from_d3(pdev, pf->wol_en);
12045 		pci_set_power_state(pdev, PCI_D3hot);
12046 	}
12047 }
12048 
12049 #ifdef CONFIG_PM
12050 /**
12051  * i40e_suspend - PCI callback for moving to D3
12052  * @pdev: PCI device information struct
12053  **/
12054 static int i40e_suspend(struct pci_dev *pdev, pm_message_t state)
12055 {
12056 	struct i40e_pf *pf = pci_get_drvdata(pdev);
12057 	struct i40e_hw *hw = &pf->hw;
12058 	int retval = 0;
12059 
12060 	set_bit(__I40E_SUSPENDED, pf->state);
12061 	set_bit(__I40E_DOWN, pf->state);
12062 
12063 	if (pf->wol_en && (pf->hw_features & I40E_HW_WOL_MC_MAGIC_PKT_WAKE))
12064 		i40e_enable_mc_magic_wake(pf);
12065 
12066 	i40e_prep_for_reset(pf, false);
12067 
12068 	wr32(hw, I40E_PFPM_APM, (pf->wol_en ? I40E_PFPM_APM_APME_MASK : 0));
12069 	wr32(hw, I40E_PFPM_WUFC, (pf->wol_en ? I40E_PFPM_WUFC_MAG_MASK : 0));
12070 
12071 	i40e_stop_misc_vector(pf);
12072 	if (pf->msix_entries) {
12073 		synchronize_irq(pf->msix_entries[0].vector);
12074 		free_irq(pf->msix_entries[0].vector, pf);
12075 	}
12076 	retval = pci_save_state(pdev);
12077 	if (retval)
12078 		return retval;
12079 
12080 	pci_wake_from_d3(pdev, pf->wol_en);
12081 	pci_set_power_state(pdev, PCI_D3hot);
12082 
12083 	return retval;
12084 }
12085 
12086 /**
12087  * i40e_resume - PCI callback for waking up from D3
12088  * @pdev: PCI device information struct
12089  **/
12090 static int i40e_resume(struct pci_dev *pdev)
12091 {
12092 	struct i40e_pf *pf = pci_get_drvdata(pdev);
12093 	u32 err;
12094 
12095 	pci_set_power_state(pdev, PCI_D0);
12096 	pci_restore_state(pdev);
12097 	/* pci_restore_state() clears dev->state_saves, so
12098 	 * call pci_save_state() again to restore it.
12099 	 */
12100 	pci_save_state(pdev);
12101 
12102 	err = pci_enable_device_mem(pdev);
12103 	if (err) {
12104 		dev_err(&pdev->dev, "Cannot enable PCI device from suspend\n");
12105 		return err;
12106 	}
12107 	pci_set_master(pdev);
12108 
12109 	/* no wakeup events while running */
12110 	pci_wake_from_d3(pdev, false);
12111 
12112 	/* handling the reset will rebuild the device state */
12113 	if (test_and_clear_bit(__I40E_SUSPENDED, pf->state)) {
12114 		clear_bit(__I40E_DOWN, pf->state);
12115 		if (pf->msix_entries) {
12116 			err = request_irq(pf->msix_entries[0].vector,
12117 					  i40e_intr, 0, pf->int_name, pf);
12118 			if (err) {
12119 				dev_err(&pf->pdev->dev,
12120 					"request_irq for %s failed: %d\n",
12121 					pf->int_name, err);
12122 			}
12123 		}
12124 		i40e_reset_and_rebuild(pf, false, false);
12125 	}
12126 
12127 	return 0;
12128 }
12129 
12130 #endif
12131 static const struct pci_error_handlers i40e_err_handler = {
12132 	.error_detected = i40e_pci_error_detected,
12133 	.slot_reset = i40e_pci_error_slot_reset,
12134 	.resume = i40e_pci_error_resume,
12135 };
12136 
12137 static struct pci_driver i40e_driver = {
12138 	.name     = i40e_driver_name,
12139 	.id_table = i40e_pci_tbl,
12140 	.probe    = i40e_probe,
12141 	.remove   = i40e_remove,
12142 #ifdef CONFIG_PM
12143 	.suspend  = i40e_suspend,
12144 	.resume   = i40e_resume,
12145 #endif
12146 	.shutdown = i40e_shutdown,
12147 	.err_handler = &i40e_err_handler,
12148 	.sriov_configure = i40e_pci_sriov_configure,
12149 };
12150 
12151 /**
12152  * i40e_init_module - Driver registration routine
12153  *
12154  * i40e_init_module is the first routine called when the driver is
12155  * loaded. All it does is register with the PCI subsystem.
12156  **/
12157 static int __init i40e_init_module(void)
12158 {
12159 	pr_info("%s: %s - version %s\n", i40e_driver_name,
12160 		i40e_driver_string, i40e_driver_version_str);
12161 	pr_info("%s: %s\n", i40e_driver_name, i40e_copyright);
12162 
12163 	/* There is no need to throttle the number of active tasks because
12164 	 * each device limits its own task using a state bit for scheduling
12165 	 * the service task, and the device tasks do not interfere with each
12166 	 * other, so we don't set a max task limit. We must set WQ_MEM_RECLAIM
12167 	 * since we need to be able to guarantee forward progress even under
12168 	 * memory pressure.
12169 	 */
12170 	i40e_wq = alloc_workqueue("%s", WQ_MEM_RECLAIM, 0, i40e_driver_name);
12171 	if (!i40e_wq) {
12172 		pr_err("%s: Failed to create workqueue\n", i40e_driver_name);
12173 		return -ENOMEM;
12174 	}
12175 
12176 	i40e_dbg_init();
12177 	return pci_register_driver(&i40e_driver);
12178 }
12179 module_init(i40e_init_module);
12180 
12181 /**
12182  * i40e_exit_module - Driver exit cleanup routine
12183  *
12184  * i40e_exit_module is called just before the driver is removed
12185  * from memory.
12186  **/
12187 static void __exit i40e_exit_module(void)
12188 {
12189 	pci_unregister_driver(&i40e_driver);
12190 	destroy_workqueue(i40e_wq);
12191 	i40e_dbg_exit();
12192 }
12193 module_exit(i40e_exit_module);
12194