1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright(c) 2013 - 2018 Intel Corporation. */ 3 4 #include <linux/etherdevice.h> 5 #include <linux/of_net.h> 6 #include <linux/pci.h> 7 #include <linux/bpf.h> 8 9 /* Local includes */ 10 #include "i40e.h" 11 #include "i40e_diag.h" 12 #include "i40e_xsk.h" 13 #include <net/udp_tunnel.h> 14 #include <net/xdp_sock_drv.h> 15 /* All i40e tracepoints are defined by the include below, which 16 * must be included exactly once across the whole kernel with 17 * CREATE_TRACE_POINTS defined 18 */ 19 #define CREATE_TRACE_POINTS 20 #include "i40e_trace.h" 21 22 const char i40e_driver_name[] = "i40e"; 23 static const char i40e_driver_string[] = 24 "Intel(R) Ethernet Connection XL710 Network Driver"; 25 26 #define DRV_KERN "-k" 27 28 #define DRV_VERSION_MAJOR 2 29 #define DRV_VERSION_MINOR 8 30 #define DRV_VERSION_BUILD 20 31 #define DRV_VERSION __stringify(DRV_VERSION_MAJOR) "." \ 32 __stringify(DRV_VERSION_MINOR) "." \ 33 __stringify(DRV_VERSION_BUILD) DRV_KERN 34 const char i40e_driver_version_str[] = DRV_VERSION; 35 static const char i40e_copyright[] = "Copyright (c) 2013 - 2019 Intel Corporation."; 36 37 /* a bit of forward declarations */ 38 static void i40e_vsi_reinit_locked(struct i40e_vsi *vsi); 39 static void i40e_handle_reset_warning(struct i40e_pf *pf, bool lock_acquired); 40 static int i40e_add_vsi(struct i40e_vsi *vsi); 41 static int i40e_add_veb(struct i40e_veb *veb, struct i40e_vsi *vsi); 42 static int i40e_setup_pf_switch(struct i40e_pf *pf, bool reinit); 43 static int i40e_setup_misc_vector(struct i40e_pf *pf); 44 static void i40e_determine_queue_usage(struct i40e_pf *pf); 45 static int i40e_setup_pf_filter_control(struct i40e_pf *pf); 46 static void i40e_prep_for_reset(struct i40e_pf *pf, bool lock_acquired); 47 static int i40e_reset(struct i40e_pf *pf); 48 static void i40e_rebuild(struct i40e_pf *pf, bool reinit, bool lock_acquired); 49 static int i40e_setup_misc_vector_for_recovery_mode(struct i40e_pf *pf); 50 static int i40e_restore_interrupt_scheme(struct i40e_pf *pf); 51 static bool i40e_check_recovery_mode(struct i40e_pf *pf); 52 static int i40e_init_recovery_mode(struct i40e_pf *pf, struct i40e_hw *hw); 53 static void i40e_fdir_sb_setup(struct i40e_pf *pf); 54 static int i40e_veb_get_bw_info(struct i40e_veb *veb); 55 static int i40e_get_capabilities(struct i40e_pf *pf, 56 enum i40e_admin_queue_opc list_type); 57 58 59 /* i40e_pci_tbl - PCI Device ID Table 60 * 61 * Last entry must be all 0s 62 * 63 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID, 64 * Class, Class Mask, private data (not used) } 65 */ 66 static const struct pci_device_id i40e_pci_tbl[] = { 67 {PCI_VDEVICE(INTEL, I40E_DEV_ID_SFP_XL710), 0}, 68 {PCI_VDEVICE(INTEL, I40E_DEV_ID_QEMU), 0}, 69 {PCI_VDEVICE(INTEL, I40E_DEV_ID_KX_B), 0}, 70 {PCI_VDEVICE(INTEL, I40E_DEV_ID_KX_C), 0}, 71 {PCI_VDEVICE(INTEL, I40E_DEV_ID_QSFP_A), 0}, 72 {PCI_VDEVICE(INTEL, I40E_DEV_ID_QSFP_B), 0}, 73 {PCI_VDEVICE(INTEL, I40E_DEV_ID_QSFP_C), 0}, 74 {PCI_VDEVICE(INTEL, I40E_DEV_ID_10G_BASE_T), 0}, 75 {PCI_VDEVICE(INTEL, I40E_DEV_ID_10G_BASE_T4), 0}, 76 {PCI_VDEVICE(INTEL, I40E_DEV_ID_10G_BASE_T_BC), 0}, 77 {PCI_VDEVICE(INTEL, I40E_DEV_ID_10G_SFP), 0}, 78 {PCI_VDEVICE(INTEL, I40E_DEV_ID_10G_B), 0}, 79 {PCI_VDEVICE(INTEL, I40E_DEV_ID_KX_X722), 0}, 80 {PCI_VDEVICE(INTEL, I40E_DEV_ID_QSFP_X722), 0}, 81 {PCI_VDEVICE(INTEL, I40E_DEV_ID_SFP_X722), 0}, 82 {PCI_VDEVICE(INTEL, I40E_DEV_ID_1G_BASE_T_X722), 0}, 83 {PCI_VDEVICE(INTEL, I40E_DEV_ID_10G_BASE_T_X722), 0}, 84 {PCI_VDEVICE(INTEL, I40E_DEV_ID_SFP_I_X722), 0}, 85 {PCI_VDEVICE(INTEL, I40E_DEV_ID_20G_KR2), 0}, 86 {PCI_VDEVICE(INTEL, I40E_DEV_ID_20G_KR2_A), 0}, 87 {PCI_VDEVICE(INTEL, I40E_DEV_ID_X710_N3000), 0}, 88 {PCI_VDEVICE(INTEL, I40E_DEV_ID_XXV710_N3000), 0}, 89 {PCI_VDEVICE(INTEL, I40E_DEV_ID_25G_B), 0}, 90 {PCI_VDEVICE(INTEL, I40E_DEV_ID_25G_SFP28), 0}, 91 /* required last entry */ 92 {0, } 93 }; 94 MODULE_DEVICE_TABLE(pci, i40e_pci_tbl); 95 96 #define I40E_MAX_VF_COUNT 128 97 static int debug = -1; 98 module_param(debug, uint, 0); 99 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all), Debug mask (0x8XXXXXXX)"); 100 101 MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>"); 102 MODULE_DESCRIPTION("Intel(R) Ethernet Connection XL710 Network Driver"); 103 MODULE_LICENSE("GPL v2"); 104 MODULE_VERSION(DRV_VERSION); 105 106 static struct workqueue_struct *i40e_wq; 107 108 /** 109 * i40e_allocate_dma_mem_d - OS specific memory alloc for shared code 110 * @hw: pointer to the HW structure 111 * @mem: ptr to mem struct to fill out 112 * @size: size of memory requested 113 * @alignment: what to align the allocation to 114 **/ 115 int i40e_allocate_dma_mem_d(struct i40e_hw *hw, struct i40e_dma_mem *mem, 116 u64 size, u32 alignment) 117 { 118 struct i40e_pf *pf = (struct i40e_pf *)hw->back; 119 120 mem->size = ALIGN(size, alignment); 121 mem->va = dma_alloc_coherent(&pf->pdev->dev, mem->size, &mem->pa, 122 GFP_KERNEL); 123 if (!mem->va) 124 return -ENOMEM; 125 126 return 0; 127 } 128 129 /** 130 * i40e_free_dma_mem_d - OS specific memory free for shared code 131 * @hw: pointer to the HW structure 132 * @mem: ptr to mem struct to free 133 **/ 134 int i40e_free_dma_mem_d(struct i40e_hw *hw, struct i40e_dma_mem *mem) 135 { 136 struct i40e_pf *pf = (struct i40e_pf *)hw->back; 137 138 dma_free_coherent(&pf->pdev->dev, mem->size, mem->va, mem->pa); 139 mem->va = NULL; 140 mem->pa = 0; 141 mem->size = 0; 142 143 return 0; 144 } 145 146 /** 147 * i40e_allocate_virt_mem_d - OS specific memory alloc for shared code 148 * @hw: pointer to the HW structure 149 * @mem: ptr to mem struct to fill out 150 * @size: size of memory requested 151 **/ 152 int i40e_allocate_virt_mem_d(struct i40e_hw *hw, struct i40e_virt_mem *mem, 153 u32 size) 154 { 155 mem->size = size; 156 mem->va = kzalloc(size, GFP_KERNEL); 157 158 if (!mem->va) 159 return -ENOMEM; 160 161 return 0; 162 } 163 164 /** 165 * i40e_free_virt_mem_d - OS specific memory free for shared code 166 * @hw: pointer to the HW structure 167 * @mem: ptr to mem struct to free 168 **/ 169 int i40e_free_virt_mem_d(struct i40e_hw *hw, struct i40e_virt_mem *mem) 170 { 171 /* it's ok to kfree a NULL pointer */ 172 kfree(mem->va); 173 mem->va = NULL; 174 mem->size = 0; 175 176 return 0; 177 } 178 179 /** 180 * i40e_get_lump - find a lump of free generic resource 181 * @pf: board private structure 182 * @pile: the pile of resource to search 183 * @needed: the number of items needed 184 * @id: an owner id to stick on the items assigned 185 * 186 * Returns the base item index of the lump, or negative for error 187 * 188 * The search_hint trick and lack of advanced fit-finding only work 189 * because we're highly likely to have all the same size lump requests. 190 * Linear search time and any fragmentation should be minimal. 191 **/ 192 static int i40e_get_lump(struct i40e_pf *pf, struct i40e_lump_tracking *pile, 193 u16 needed, u16 id) 194 { 195 int ret = -ENOMEM; 196 int i, j; 197 198 if (!pile || needed == 0 || id >= I40E_PILE_VALID_BIT) { 199 dev_info(&pf->pdev->dev, 200 "param err: pile=%s needed=%d id=0x%04x\n", 201 pile ? "<valid>" : "<null>", needed, id); 202 return -EINVAL; 203 } 204 205 /* start the linear search with an imperfect hint */ 206 i = pile->search_hint; 207 while (i < pile->num_entries) { 208 /* skip already allocated entries */ 209 if (pile->list[i] & I40E_PILE_VALID_BIT) { 210 i++; 211 continue; 212 } 213 214 /* do we have enough in this lump? */ 215 for (j = 0; (j < needed) && ((i+j) < pile->num_entries); j++) { 216 if (pile->list[i+j] & I40E_PILE_VALID_BIT) 217 break; 218 } 219 220 if (j == needed) { 221 /* there was enough, so assign it to the requestor */ 222 for (j = 0; j < needed; j++) 223 pile->list[i+j] = id | I40E_PILE_VALID_BIT; 224 ret = i; 225 pile->search_hint = i + j; 226 break; 227 } 228 229 /* not enough, so skip over it and continue looking */ 230 i += j; 231 } 232 233 return ret; 234 } 235 236 /** 237 * i40e_put_lump - return a lump of generic resource 238 * @pile: the pile of resource to search 239 * @index: the base item index 240 * @id: the owner id of the items assigned 241 * 242 * Returns the count of items in the lump 243 **/ 244 static int i40e_put_lump(struct i40e_lump_tracking *pile, u16 index, u16 id) 245 { 246 int valid_id = (id | I40E_PILE_VALID_BIT); 247 int count = 0; 248 int i; 249 250 if (!pile || index >= pile->num_entries) 251 return -EINVAL; 252 253 for (i = index; 254 i < pile->num_entries && pile->list[i] == valid_id; 255 i++) { 256 pile->list[i] = 0; 257 count++; 258 } 259 260 if (count && index < pile->search_hint) 261 pile->search_hint = index; 262 263 return count; 264 } 265 266 /** 267 * i40e_find_vsi_from_id - searches for the vsi with the given id 268 * @pf: the pf structure to search for the vsi 269 * @id: id of the vsi it is searching for 270 **/ 271 struct i40e_vsi *i40e_find_vsi_from_id(struct i40e_pf *pf, u16 id) 272 { 273 int i; 274 275 for (i = 0; i < pf->num_alloc_vsi; i++) 276 if (pf->vsi[i] && (pf->vsi[i]->id == id)) 277 return pf->vsi[i]; 278 279 return NULL; 280 } 281 282 /** 283 * i40e_service_event_schedule - Schedule the service task to wake up 284 * @pf: board private structure 285 * 286 * If not already scheduled, this puts the task into the work queue 287 **/ 288 void i40e_service_event_schedule(struct i40e_pf *pf) 289 { 290 if ((!test_bit(__I40E_DOWN, pf->state) && 291 !test_bit(__I40E_RESET_RECOVERY_PENDING, pf->state)) || 292 test_bit(__I40E_RECOVERY_MODE, pf->state)) 293 queue_work(i40e_wq, &pf->service_task); 294 } 295 296 /** 297 * i40e_tx_timeout - Respond to a Tx Hang 298 * @netdev: network interface device structure 299 * 300 * If any port has noticed a Tx timeout, it is likely that the whole 301 * device is munged, not just the one netdev port, so go for the full 302 * reset. 303 **/ 304 static void i40e_tx_timeout(struct net_device *netdev, unsigned int txqueue) 305 { 306 struct i40e_netdev_priv *np = netdev_priv(netdev); 307 struct i40e_vsi *vsi = np->vsi; 308 struct i40e_pf *pf = vsi->back; 309 struct i40e_ring *tx_ring = NULL; 310 unsigned int i; 311 u32 head, val; 312 313 pf->tx_timeout_count++; 314 315 /* with txqueue index, find the tx_ring struct */ 316 for (i = 0; i < vsi->num_queue_pairs; i++) { 317 if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc) { 318 if (txqueue == 319 vsi->tx_rings[i]->queue_index) { 320 tx_ring = vsi->tx_rings[i]; 321 break; 322 } 323 } 324 } 325 326 if (time_after(jiffies, (pf->tx_timeout_last_recovery + HZ*20))) 327 pf->tx_timeout_recovery_level = 1; /* reset after some time */ 328 else if (time_before(jiffies, 329 (pf->tx_timeout_last_recovery + netdev->watchdog_timeo))) 330 return; /* don't do any new action before the next timeout */ 331 332 /* don't kick off another recovery if one is already pending */ 333 if (test_and_set_bit(__I40E_TIMEOUT_RECOVERY_PENDING, pf->state)) 334 return; 335 336 if (tx_ring) { 337 head = i40e_get_head(tx_ring); 338 /* Read interrupt register */ 339 if (pf->flags & I40E_FLAG_MSIX_ENABLED) 340 val = rd32(&pf->hw, 341 I40E_PFINT_DYN_CTLN(tx_ring->q_vector->v_idx + 342 tx_ring->vsi->base_vector - 1)); 343 else 344 val = rd32(&pf->hw, I40E_PFINT_DYN_CTL0); 345 346 netdev_info(netdev, "tx_timeout: VSI_seid: %d, Q %d, NTC: 0x%x, HWB: 0x%x, NTU: 0x%x, TAIL: 0x%x, INT: 0x%x\n", 347 vsi->seid, txqueue, tx_ring->next_to_clean, 348 head, tx_ring->next_to_use, 349 readl(tx_ring->tail), val); 350 } 351 352 pf->tx_timeout_last_recovery = jiffies; 353 netdev_info(netdev, "tx_timeout recovery level %d, txqueue %d\n", 354 pf->tx_timeout_recovery_level, txqueue); 355 356 switch (pf->tx_timeout_recovery_level) { 357 case 1: 358 set_bit(__I40E_PF_RESET_REQUESTED, pf->state); 359 break; 360 case 2: 361 set_bit(__I40E_CORE_RESET_REQUESTED, pf->state); 362 break; 363 case 3: 364 set_bit(__I40E_GLOBAL_RESET_REQUESTED, pf->state); 365 break; 366 default: 367 netdev_err(netdev, "tx_timeout recovery unsuccessful\n"); 368 break; 369 } 370 371 i40e_service_event_schedule(pf); 372 pf->tx_timeout_recovery_level++; 373 } 374 375 /** 376 * i40e_get_vsi_stats_struct - Get System Network Statistics 377 * @vsi: the VSI we care about 378 * 379 * Returns the address of the device statistics structure. 380 * The statistics are actually updated from the service task. 381 **/ 382 struct rtnl_link_stats64 *i40e_get_vsi_stats_struct(struct i40e_vsi *vsi) 383 { 384 return &vsi->net_stats; 385 } 386 387 /** 388 * i40e_get_netdev_stats_struct_tx - populate stats from a Tx ring 389 * @ring: Tx ring to get statistics from 390 * @stats: statistics entry to be updated 391 **/ 392 static void i40e_get_netdev_stats_struct_tx(struct i40e_ring *ring, 393 struct rtnl_link_stats64 *stats) 394 { 395 u64 bytes, packets; 396 unsigned int start; 397 398 do { 399 start = u64_stats_fetch_begin_irq(&ring->syncp); 400 packets = ring->stats.packets; 401 bytes = ring->stats.bytes; 402 } while (u64_stats_fetch_retry_irq(&ring->syncp, start)); 403 404 stats->tx_packets += packets; 405 stats->tx_bytes += bytes; 406 } 407 408 /** 409 * i40e_get_netdev_stats_struct - Get statistics for netdev interface 410 * @netdev: network interface device structure 411 * @stats: data structure to store statistics 412 * 413 * Returns the address of the device statistics structure. 414 * The statistics are actually updated from the service task. 415 **/ 416 static void i40e_get_netdev_stats_struct(struct net_device *netdev, 417 struct rtnl_link_stats64 *stats) 418 { 419 struct i40e_netdev_priv *np = netdev_priv(netdev); 420 struct i40e_vsi *vsi = np->vsi; 421 struct rtnl_link_stats64 *vsi_stats = i40e_get_vsi_stats_struct(vsi); 422 struct i40e_ring *ring; 423 int i; 424 425 if (test_bit(__I40E_VSI_DOWN, vsi->state)) 426 return; 427 428 if (!vsi->tx_rings) 429 return; 430 431 rcu_read_lock(); 432 for (i = 0; i < vsi->num_queue_pairs; i++) { 433 u64 bytes, packets; 434 unsigned int start; 435 436 ring = READ_ONCE(vsi->tx_rings[i]); 437 if (!ring) 438 continue; 439 i40e_get_netdev_stats_struct_tx(ring, stats); 440 441 if (i40e_enabled_xdp_vsi(vsi)) { 442 ring = READ_ONCE(vsi->xdp_rings[i]); 443 if (!ring) 444 continue; 445 i40e_get_netdev_stats_struct_tx(ring, stats); 446 } 447 448 ring = READ_ONCE(vsi->rx_rings[i]); 449 if (!ring) 450 continue; 451 do { 452 start = u64_stats_fetch_begin_irq(&ring->syncp); 453 packets = ring->stats.packets; 454 bytes = ring->stats.bytes; 455 } while (u64_stats_fetch_retry_irq(&ring->syncp, start)); 456 457 stats->rx_packets += packets; 458 stats->rx_bytes += bytes; 459 460 } 461 rcu_read_unlock(); 462 463 /* following stats updated by i40e_watchdog_subtask() */ 464 stats->multicast = vsi_stats->multicast; 465 stats->tx_errors = vsi_stats->tx_errors; 466 stats->tx_dropped = vsi_stats->tx_dropped; 467 stats->rx_errors = vsi_stats->rx_errors; 468 stats->rx_dropped = vsi_stats->rx_dropped; 469 stats->rx_crc_errors = vsi_stats->rx_crc_errors; 470 stats->rx_length_errors = vsi_stats->rx_length_errors; 471 } 472 473 /** 474 * i40e_vsi_reset_stats - Resets all stats of the given vsi 475 * @vsi: the VSI to have its stats reset 476 **/ 477 void i40e_vsi_reset_stats(struct i40e_vsi *vsi) 478 { 479 struct rtnl_link_stats64 *ns; 480 int i; 481 482 if (!vsi) 483 return; 484 485 ns = i40e_get_vsi_stats_struct(vsi); 486 memset(ns, 0, sizeof(*ns)); 487 memset(&vsi->net_stats_offsets, 0, sizeof(vsi->net_stats_offsets)); 488 memset(&vsi->eth_stats, 0, sizeof(vsi->eth_stats)); 489 memset(&vsi->eth_stats_offsets, 0, sizeof(vsi->eth_stats_offsets)); 490 if (vsi->rx_rings && vsi->rx_rings[0]) { 491 for (i = 0; i < vsi->num_queue_pairs; i++) { 492 memset(&vsi->rx_rings[i]->stats, 0, 493 sizeof(vsi->rx_rings[i]->stats)); 494 memset(&vsi->rx_rings[i]->rx_stats, 0, 495 sizeof(vsi->rx_rings[i]->rx_stats)); 496 memset(&vsi->tx_rings[i]->stats, 0, 497 sizeof(vsi->tx_rings[i]->stats)); 498 memset(&vsi->tx_rings[i]->tx_stats, 0, 499 sizeof(vsi->tx_rings[i]->tx_stats)); 500 } 501 } 502 vsi->stat_offsets_loaded = false; 503 } 504 505 /** 506 * i40e_pf_reset_stats - Reset all of the stats for the given PF 507 * @pf: the PF to be reset 508 **/ 509 void i40e_pf_reset_stats(struct i40e_pf *pf) 510 { 511 int i; 512 513 memset(&pf->stats, 0, sizeof(pf->stats)); 514 memset(&pf->stats_offsets, 0, sizeof(pf->stats_offsets)); 515 pf->stat_offsets_loaded = false; 516 517 for (i = 0; i < I40E_MAX_VEB; i++) { 518 if (pf->veb[i]) { 519 memset(&pf->veb[i]->stats, 0, 520 sizeof(pf->veb[i]->stats)); 521 memset(&pf->veb[i]->stats_offsets, 0, 522 sizeof(pf->veb[i]->stats_offsets)); 523 memset(&pf->veb[i]->tc_stats, 0, 524 sizeof(pf->veb[i]->tc_stats)); 525 memset(&pf->veb[i]->tc_stats_offsets, 0, 526 sizeof(pf->veb[i]->tc_stats_offsets)); 527 pf->veb[i]->stat_offsets_loaded = false; 528 } 529 } 530 pf->hw_csum_rx_error = 0; 531 } 532 533 /** 534 * i40e_stat_update48 - read and update a 48 bit stat from the chip 535 * @hw: ptr to the hardware info 536 * @hireg: the high 32 bit reg to read 537 * @loreg: the low 32 bit reg to read 538 * @offset_loaded: has the initial offset been loaded yet 539 * @offset: ptr to current offset value 540 * @stat: ptr to the stat 541 * 542 * Since the device stats are not reset at PFReset, they likely will not 543 * be zeroed when the driver starts. We'll save the first values read 544 * and use them as offsets to be subtracted from the raw values in order 545 * to report stats that count from zero. In the process, we also manage 546 * the potential roll-over. 547 **/ 548 static void i40e_stat_update48(struct i40e_hw *hw, u32 hireg, u32 loreg, 549 bool offset_loaded, u64 *offset, u64 *stat) 550 { 551 u64 new_data; 552 553 if (hw->device_id == I40E_DEV_ID_QEMU) { 554 new_data = rd32(hw, loreg); 555 new_data |= ((u64)(rd32(hw, hireg) & 0xFFFF)) << 32; 556 } else { 557 new_data = rd64(hw, loreg); 558 } 559 if (!offset_loaded) 560 *offset = new_data; 561 if (likely(new_data >= *offset)) 562 *stat = new_data - *offset; 563 else 564 *stat = (new_data + BIT_ULL(48)) - *offset; 565 *stat &= 0xFFFFFFFFFFFFULL; 566 } 567 568 /** 569 * i40e_stat_update32 - read and update a 32 bit stat from the chip 570 * @hw: ptr to the hardware info 571 * @reg: the hw reg to read 572 * @offset_loaded: has the initial offset been loaded yet 573 * @offset: ptr to current offset value 574 * @stat: ptr to the stat 575 **/ 576 static void i40e_stat_update32(struct i40e_hw *hw, u32 reg, 577 bool offset_loaded, u64 *offset, u64 *stat) 578 { 579 u32 new_data; 580 581 new_data = rd32(hw, reg); 582 if (!offset_loaded) 583 *offset = new_data; 584 if (likely(new_data >= *offset)) 585 *stat = (u32)(new_data - *offset); 586 else 587 *stat = (u32)((new_data + BIT_ULL(32)) - *offset); 588 } 589 590 /** 591 * i40e_stat_update_and_clear32 - read and clear hw reg, update a 32 bit stat 592 * @hw: ptr to the hardware info 593 * @reg: the hw reg to read and clear 594 * @stat: ptr to the stat 595 **/ 596 static void i40e_stat_update_and_clear32(struct i40e_hw *hw, u32 reg, u64 *stat) 597 { 598 u32 new_data = rd32(hw, reg); 599 600 wr32(hw, reg, 1); /* must write a nonzero value to clear register */ 601 *stat += new_data; 602 } 603 604 /** 605 * i40e_update_eth_stats - Update VSI-specific ethernet statistics counters. 606 * @vsi: the VSI to be updated 607 **/ 608 void i40e_update_eth_stats(struct i40e_vsi *vsi) 609 { 610 int stat_idx = le16_to_cpu(vsi->info.stat_counter_idx); 611 struct i40e_pf *pf = vsi->back; 612 struct i40e_hw *hw = &pf->hw; 613 struct i40e_eth_stats *oes; 614 struct i40e_eth_stats *es; /* device's eth stats */ 615 616 es = &vsi->eth_stats; 617 oes = &vsi->eth_stats_offsets; 618 619 /* Gather up the stats that the hw collects */ 620 i40e_stat_update32(hw, I40E_GLV_TEPC(stat_idx), 621 vsi->stat_offsets_loaded, 622 &oes->tx_errors, &es->tx_errors); 623 i40e_stat_update32(hw, I40E_GLV_RDPC(stat_idx), 624 vsi->stat_offsets_loaded, 625 &oes->rx_discards, &es->rx_discards); 626 i40e_stat_update32(hw, I40E_GLV_RUPP(stat_idx), 627 vsi->stat_offsets_loaded, 628 &oes->rx_unknown_protocol, &es->rx_unknown_protocol); 629 630 i40e_stat_update48(hw, I40E_GLV_GORCH(stat_idx), 631 I40E_GLV_GORCL(stat_idx), 632 vsi->stat_offsets_loaded, 633 &oes->rx_bytes, &es->rx_bytes); 634 i40e_stat_update48(hw, I40E_GLV_UPRCH(stat_idx), 635 I40E_GLV_UPRCL(stat_idx), 636 vsi->stat_offsets_loaded, 637 &oes->rx_unicast, &es->rx_unicast); 638 i40e_stat_update48(hw, I40E_GLV_MPRCH(stat_idx), 639 I40E_GLV_MPRCL(stat_idx), 640 vsi->stat_offsets_loaded, 641 &oes->rx_multicast, &es->rx_multicast); 642 i40e_stat_update48(hw, I40E_GLV_BPRCH(stat_idx), 643 I40E_GLV_BPRCL(stat_idx), 644 vsi->stat_offsets_loaded, 645 &oes->rx_broadcast, &es->rx_broadcast); 646 647 i40e_stat_update48(hw, I40E_GLV_GOTCH(stat_idx), 648 I40E_GLV_GOTCL(stat_idx), 649 vsi->stat_offsets_loaded, 650 &oes->tx_bytes, &es->tx_bytes); 651 i40e_stat_update48(hw, I40E_GLV_UPTCH(stat_idx), 652 I40E_GLV_UPTCL(stat_idx), 653 vsi->stat_offsets_loaded, 654 &oes->tx_unicast, &es->tx_unicast); 655 i40e_stat_update48(hw, I40E_GLV_MPTCH(stat_idx), 656 I40E_GLV_MPTCL(stat_idx), 657 vsi->stat_offsets_loaded, 658 &oes->tx_multicast, &es->tx_multicast); 659 i40e_stat_update48(hw, I40E_GLV_BPTCH(stat_idx), 660 I40E_GLV_BPTCL(stat_idx), 661 vsi->stat_offsets_loaded, 662 &oes->tx_broadcast, &es->tx_broadcast); 663 vsi->stat_offsets_loaded = true; 664 } 665 666 /** 667 * i40e_update_veb_stats - Update Switch component statistics 668 * @veb: the VEB being updated 669 **/ 670 void i40e_update_veb_stats(struct i40e_veb *veb) 671 { 672 struct i40e_pf *pf = veb->pf; 673 struct i40e_hw *hw = &pf->hw; 674 struct i40e_eth_stats *oes; 675 struct i40e_eth_stats *es; /* device's eth stats */ 676 struct i40e_veb_tc_stats *veb_oes; 677 struct i40e_veb_tc_stats *veb_es; 678 int i, idx = 0; 679 680 idx = veb->stats_idx; 681 es = &veb->stats; 682 oes = &veb->stats_offsets; 683 veb_es = &veb->tc_stats; 684 veb_oes = &veb->tc_stats_offsets; 685 686 /* Gather up the stats that the hw collects */ 687 i40e_stat_update32(hw, I40E_GLSW_TDPC(idx), 688 veb->stat_offsets_loaded, 689 &oes->tx_discards, &es->tx_discards); 690 if (hw->revision_id > 0) 691 i40e_stat_update32(hw, I40E_GLSW_RUPP(idx), 692 veb->stat_offsets_loaded, 693 &oes->rx_unknown_protocol, 694 &es->rx_unknown_protocol); 695 i40e_stat_update48(hw, I40E_GLSW_GORCH(idx), I40E_GLSW_GORCL(idx), 696 veb->stat_offsets_loaded, 697 &oes->rx_bytes, &es->rx_bytes); 698 i40e_stat_update48(hw, I40E_GLSW_UPRCH(idx), I40E_GLSW_UPRCL(idx), 699 veb->stat_offsets_loaded, 700 &oes->rx_unicast, &es->rx_unicast); 701 i40e_stat_update48(hw, I40E_GLSW_MPRCH(idx), I40E_GLSW_MPRCL(idx), 702 veb->stat_offsets_loaded, 703 &oes->rx_multicast, &es->rx_multicast); 704 i40e_stat_update48(hw, I40E_GLSW_BPRCH(idx), I40E_GLSW_BPRCL(idx), 705 veb->stat_offsets_loaded, 706 &oes->rx_broadcast, &es->rx_broadcast); 707 708 i40e_stat_update48(hw, I40E_GLSW_GOTCH(idx), I40E_GLSW_GOTCL(idx), 709 veb->stat_offsets_loaded, 710 &oes->tx_bytes, &es->tx_bytes); 711 i40e_stat_update48(hw, I40E_GLSW_UPTCH(idx), I40E_GLSW_UPTCL(idx), 712 veb->stat_offsets_loaded, 713 &oes->tx_unicast, &es->tx_unicast); 714 i40e_stat_update48(hw, I40E_GLSW_MPTCH(idx), I40E_GLSW_MPTCL(idx), 715 veb->stat_offsets_loaded, 716 &oes->tx_multicast, &es->tx_multicast); 717 i40e_stat_update48(hw, I40E_GLSW_BPTCH(idx), I40E_GLSW_BPTCL(idx), 718 veb->stat_offsets_loaded, 719 &oes->tx_broadcast, &es->tx_broadcast); 720 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 721 i40e_stat_update48(hw, I40E_GLVEBTC_RPCH(i, idx), 722 I40E_GLVEBTC_RPCL(i, idx), 723 veb->stat_offsets_loaded, 724 &veb_oes->tc_rx_packets[i], 725 &veb_es->tc_rx_packets[i]); 726 i40e_stat_update48(hw, I40E_GLVEBTC_RBCH(i, idx), 727 I40E_GLVEBTC_RBCL(i, idx), 728 veb->stat_offsets_loaded, 729 &veb_oes->tc_rx_bytes[i], 730 &veb_es->tc_rx_bytes[i]); 731 i40e_stat_update48(hw, I40E_GLVEBTC_TPCH(i, idx), 732 I40E_GLVEBTC_TPCL(i, idx), 733 veb->stat_offsets_loaded, 734 &veb_oes->tc_tx_packets[i], 735 &veb_es->tc_tx_packets[i]); 736 i40e_stat_update48(hw, I40E_GLVEBTC_TBCH(i, idx), 737 I40E_GLVEBTC_TBCL(i, idx), 738 veb->stat_offsets_loaded, 739 &veb_oes->tc_tx_bytes[i], 740 &veb_es->tc_tx_bytes[i]); 741 } 742 veb->stat_offsets_loaded = true; 743 } 744 745 /** 746 * i40e_update_vsi_stats - Update the vsi statistics counters. 747 * @vsi: the VSI to be updated 748 * 749 * There are a few instances where we store the same stat in a 750 * couple of different structs. This is partly because we have 751 * the netdev stats that need to be filled out, which is slightly 752 * different from the "eth_stats" defined by the chip and used in 753 * VF communications. We sort it out here. 754 **/ 755 static void i40e_update_vsi_stats(struct i40e_vsi *vsi) 756 { 757 struct i40e_pf *pf = vsi->back; 758 struct rtnl_link_stats64 *ons; 759 struct rtnl_link_stats64 *ns; /* netdev stats */ 760 struct i40e_eth_stats *oes; 761 struct i40e_eth_stats *es; /* device's eth stats */ 762 u32 tx_restart, tx_busy; 763 struct i40e_ring *p; 764 u32 rx_page, rx_buf; 765 u64 bytes, packets; 766 unsigned int start; 767 u64 tx_linearize; 768 u64 tx_force_wb; 769 u64 rx_p, rx_b; 770 u64 tx_p, tx_b; 771 u16 q; 772 773 if (test_bit(__I40E_VSI_DOWN, vsi->state) || 774 test_bit(__I40E_CONFIG_BUSY, pf->state)) 775 return; 776 777 ns = i40e_get_vsi_stats_struct(vsi); 778 ons = &vsi->net_stats_offsets; 779 es = &vsi->eth_stats; 780 oes = &vsi->eth_stats_offsets; 781 782 /* Gather up the netdev and vsi stats that the driver collects 783 * on the fly during packet processing 784 */ 785 rx_b = rx_p = 0; 786 tx_b = tx_p = 0; 787 tx_restart = tx_busy = tx_linearize = tx_force_wb = 0; 788 rx_page = 0; 789 rx_buf = 0; 790 rcu_read_lock(); 791 for (q = 0; q < vsi->num_queue_pairs; q++) { 792 /* locate Tx ring */ 793 p = READ_ONCE(vsi->tx_rings[q]); 794 if (!p) 795 continue; 796 797 do { 798 start = u64_stats_fetch_begin_irq(&p->syncp); 799 packets = p->stats.packets; 800 bytes = p->stats.bytes; 801 } while (u64_stats_fetch_retry_irq(&p->syncp, start)); 802 tx_b += bytes; 803 tx_p += packets; 804 tx_restart += p->tx_stats.restart_queue; 805 tx_busy += p->tx_stats.tx_busy; 806 tx_linearize += p->tx_stats.tx_linearize; 807 tx_force_wb += p->tx_stats.tx_force_wb; 808 809 /* locate Rx ring */ 810 p = READ_ONCE(vsi->rx_rings[q]); 811 if (!p) 812 continue; 813 814 do { 815 start = u64_stats_fetch_begin_irq(&p->syncp); 816 packets = p->stats.packets; 817 bytes = p->stats.bytes; 818 } while (u64_stats_fetch_retry_irq(&p->syncp, start)); 819 rx_b += bytes; 820 rx_p += packets; 821 rx_buf += p->rx_stats.alloc_buff_failed; 822 rx_page += p->rx_stats.alloc_page_failed; 823 } 824 rcu_read_unlock(); 825 vsi->tx_restart = tx_restart; 826 vsi->tx_busy = tx_busy; 827 vsi->tx_linearize = tx_linearize; 828 vsi->tx_force_wb = tx_force_wb; 829 vsi->rx_page_failed = rx_page; 830 vsi->rx_buf_failed = rx_buf; 831 832 ns->rx_packets = rx_p; 833 ns->rx_bytes = rx_b; 834 ns->tx_packets = tx_p; 835 ns->tx_bytes = tx_b; 836 837 /* update netdev stats from eth stats */ 838 i40e_update_eth_stats(vsi); 839 ons->tx_errors = oes->tx_errors; 840 ns->tx_errors = es->tx_errors; 841 ons->multicast = oes->rx_multicast; 842 ns->multicast = es->rx_multicast; 843 ons->rx_dropped = oes->rx_discards; 844 ns->rx_dropped = es->rx_discards; 845 ons->tx_dropped = oes->tx_discards; 846 ns->tx_dropped = es->tx_discards; 847 848 /* pull in a couple PF stats if this is the main vsi */ 849 if (vsi == pf->vsi[pf->lan_vsi]) { 850 ns->rx_crc_errors = pf->stats.crc_errors; 851 ns->rx_errors = pf->stats.crc_errors + pf->stats.illegal_bytes; 852 ns->rx_length_errors = pf->stats.rx_length_errors; 853 } 854 } 855 856 /** 857 * i40e_update_pf_stats - Update the PF statistics counters. 858 * @pf: the PF to be updated 859 **/ 860 static void i40e_update_pf_stats(struct i40e_pf *pf) 861 { 862 struct i40e_hw_port_stats *osd = &pf->stats_offsets; 863 struct i40e_hw_port_stats *nsd = &pf->stats; 864 struct i40e_hw *hw = &pf->hw; 865 u32 val; 866 int i; 867 868 i40e_stat_update48(hw, I40E_GLPRT_GORCH(hw->port), 869 I40E_GLPRT_GORCL(hw->port), 870 pf->stat_offsets_loaded, 871 &osd->eth.rx_bytes, &nsd->eth.rx_bytes); 872 i40e_stat_update48(hw, I40E_GLPRT_GOTCH(hw->port), 873 I40E_GLPRT_GOTCL(hw->port), 874 pf->stat_offsets_loaded, 875 &osd->eth.tx_bytes, &nsd->eth.tx_bytes); 876 i40e_stat_update32(hw, I40E_GLPRT_RDPC(hw->port), 877 pf->stat_offsets_loaded, 878 &osd->eth.rx_discards, 879 &nsd->eth.rx_discards); 880 i40e_stat_update48(hw, I40E_GLPRT_UPRCH(hw->port), 881 I40E_GLPRT_UPRCL(hw->port), 882 pf->stat_offsets_loaded, 883 &osd->eth.rx_unicast, 884 &nsd->eth.rx_unicast); 885 i40e_stat_update48(hw, I40E_GLPRT_MPRCH(hw->port), 886 I40E_GLPRT_MPRCL(hw->port), 887 pf->stat_offsets_loaded, 888 &osd->eth.rx_multicast, 889 &nsd->eth.rx_multicast); 890 i40e_stat_update48(hw, I40E_GLPRT_BPRCH(hw->port), 891 I40E_GLPRT_BPRCL(hw->port), 892 pf->stat_offsets_loaded, 893 &osd->eth.rx_broadcast, 894 &nsd->eth.rx_broadcast); 895 i40e_stat_update48(hw, I40E_GLPRT_UPTCH(hw->port), 896 I40E_GLPRT_UPTCL(hw->port), 897 pf->stat_offsets_loaded, 898 &osd->eth.tx_unicast, 899 &nsd->eth.tx_unicast); 900 i40e_stat_update48(hw, I40E_GLPRT_MPTCH(hw->port), 901 I40E_GLPRT_MPTCL(hw->port), 902 pf->stat_offsets_loaded, 903 &osd->eth.tx_multicast, 904 &nsd->eth.tx_multicast); 905 i40e_stat_update48(hw, I40E_GLPRT_BPTCH(hw->port), 906 I40E_GLPRT_BPTCL(hw->port), 907 pf->stat_offsets_loaded, 908 &osd->eth.tx_broadcast, 909 &nsd->eth.tx_broadcast); 910 911 i40e_stat_update32(hw, I40E_GLPRT_TDOLD(hw->port), 912 pf->stat_offsets_loaded, 913 &osd->tx_dropped_link_down, 914 &nsd->tx_dropped_link_down); 915 916 i40e_stat_update32(hw, I40E_GLPRT_CRCERRS(hw->port), 917 pf->stat_offsets_loaded, 918 &osd->crc_errors, &nsd->crc_errors); 919 920 i40e_stat_update32(hw, I40E_GLPRT_ILLERRC(hw->port), 921 pf->stat_offsets_loaded, 922 &osd->illegal_bytes, &nsd->illegal_bytes); 923 924 i40e_stat_update32(hw, I40E_GLPRT_MLFC(hw->port), 925 pf->stat_offsets_loaded, 926 &osd->mac_local_faults, 927 &nsd->mac_local_faults); 928 i40e_stat_update32(hw, I40E_GLPRT_MRFC(hw->port), 929 pf->stat_offsets_loaded, 930 &osd->mac_remote_faults, 931 &nsd->mac_remote_faults); 932 933 i40e_stat_update32(hw, I40E_GLPRT_RLEC(hw->port), 934 pf->stat_offsets_loaded, 935 &osd->rx_length_errors, 936 &nsd->rx_length_errors); 937 938 i40e_stat_update32(hw, I40E_GLPRT_LXONRXC(hw->port), 939 pf->stat_offsets_loaded, 940 &osd->link_xon_rx, &nsd->link_xon_rx); 941 i40e_stat_update32(hw, I40E_GLPRT_LXONTXC(hw->port), 942 pf->stat_offsets_loaded, 943 &osd->link_xon_tx, &nsd->link_xon_tx); 944 i40e_stat_update32(hw, I40E_GLPRT_LXOFFRXC(hw->port), 945 pf->stat_offsets_loaded, 946 &osd->link_xoff_rx, &nsd->link_xoff_rx); 947 i40e_stat_update32(hw, I40E_GLPRT_LXOFFTXC(hw->port), 948 pf->stat_offsets_loaded, 949 &osd->link_xoff_tx, &nsd->link_xoff_tx); 950 951 for (i = 0; i < 8; i++) { 952 i40e_stat_update32(hw, I40E_GLPRT_PXOFFRXC(hw->port, i), 953 pf->stat_offsets_loaded, 954 &osd->priority_xoff_rx[i], 955 &nsd->priority_xoff_rx[i]); 956 i40e_stat_update32(hw, I40E_GLPRT_PXONRXC(hw->port, i), 957 pf->stat_offsets_loaded, 958 &osd->priority_xon_rx[i], 959 &nsd->priority_xon_rx[i]); 960 i40e_stat_update32(hw, I40E_GLPRT_PXONTXC(hw->port, i), 961 pf->stat_offsets_loaded, 962 &osd->priority_xon_tx[i], 963 &nsd->priority_xon_tx[i]); 964 i40e_stat_update32(hw, I40E_GLPRT_PXOFFTXC(hw->port, i), 965 pf->stat_offsets_loaded, 966 &osd->priority_xoff_tx[i], 967 &nsd->priority_xoff_tx[i]); 968 i40e_stat_update32(hw, 969 I40E_GLPRT_RXON2OFFCNT(hw->port, i), 970 pf->stat_offsets_loaded, 971 &osd->priority_xon_2_xoff[i], 972 &nsd->priority_xon_2_xoff[i]); 973 } 974 975 i40e_stat_update48(hw, I40E_GLPRT_PRC64H(hw->port), 976 I40E_GLPRT_PRC64L(hw->port), 977 pf->stat_offsets_loaded, 978 &osd->rx_size_64, &nsd->rx_size_64); 979 i40e_stat_update48(hw, I40E_GLPRT_PRC127H(hw->port), 980 I40E_GLPRT_PRC127L(hw->port), 981 pf->stat_offsets_loaded, 982 &osd->rx_size_127, &nsd->rx_size_127); 983 i40e_stat_update48(hw, I40E_GLPRT_PRC255H(hw->port), 984 I40E_GLPRT_PRC255L(hw->port), 985 pf->stat_offsets_loaded, 986 &osd->rx_size_255, &nsd->rx_size_255); 987 i40e_stat_update48(hw, I40E_GLPRT_PRC511H(hw->port), 988 I40E_GLPRT_PRC511L(hw->port), 989 pf->stat_offsets_loaded, 990 &osd->rx_size_511, &nsd->rx_size_511); 991 i40e_stat_update48(hw, I40E_GLPRT_PRC1023H(hw->port), 992 I40E_GLPRT_PRC1023L(hw->port), 993 pf->stat_offsets_loaded, 994 &osd->rx_size_1023, &nsd->rx_size_1023); 995 i40e_stat_update48(hw, I40E_GLPRT_PRC1522H(hw->port), 996 I40E_GLPRT_PRC1522L(hw->port), 997 pf->stat_offsets_loaded, 998 &osd->rx_size_1522, &nsd->rx_size_1522); 999 i40e_stat_update48(hw, I40E_GLPRT_PRC9522H(hw->port), 1000 I40E_GLPRT_PRC9522L(hw->port), 1001 pf->stat_offsets_loaded, 1002 &osd->rx_size_big, &nsd->rx_size_big); 1003 1004 i40e_stat_update48(hw, I40E_GLPRT_PTC64H(hw->port), 1005 I40E_GLPRT_PTC64L(hw->port), 1006 pf->stat_offsets_loaded, 1007 &osd->tx_size_64, &nsd->tx_size_64); 1008 i40e_stat_update48(hw, I40E_GLPRT_PTC127H(hw->port), 1009 I40E_GLPRT_PTC127L(hw->port), 1010 pf->stat_offsets_loaded, 1011 &osd->tx_size_127, &nsd->tx_size_127); 1012 i40e_stat_update48(hw, I40E_GLPRT_PTC255H(hw->port), 1013 I40E_GLPRT_PTC255L(hw->port), 1014 pf->stat_offsets_loaded, 1015 &osd->tx_size_255, &nsd->tx_size_255); 1016 i40e_stat_update48(hw, I40E_GLPRT_PTC511H(hw->port), 1017 I40E_GLPRT_PTC511L(hw->port), 1018 pf->stat_offsets_loaded, 1019 &osd->tx_size_511, &nsd->tx_size_511); 1020 i40e_stat_update48(hw, I40E_GLPRT_PTC1023H(hw->port), 1021 I40E_GLPRT_PTC1023L(hw->port), 1022 pf->stat_offsets_loaded, 1023 &osd->tx_size_1023, &nsd->tx_size_1023); 1024 i40e_stat_update48(hw, I40E_GLPRT_PTC1522H(hw->port), 1025 I40E_GLPRT_PTC1522L(hw->port), 1026 pf->stat_offsets_loaded, 1027 &osd->tx_size_1522, &nsd->tx_size_1522); 1028 i40e_stat_update48(hw, I40E_GLPRT_PTC9522H(hw->port), 1029 I40E_GLPRT_PTC9522L(hw->port), 1030 pf->stat_offsets_loaded, 1031 &osd->tx_size_big, &nsd->tx_size_big); 1032 1033 i40e_stat_update32(hw, I40E_GLPRT_RUC(hw->port), 1034 pf->stat_offsets_loaded, 1035 &osd->rx_undersize, &nsd->rx_undersize); 1036 i40e_stat_update32(hw, I40E_GLPRT_RFC(hw->port), 1037 pf->stat_offsets_loaded, 1038 &osd->rx_fragments, &nsd->rx_fragments); 1039 i40e_stat_update32(hw, I40E_GLPRT_ROC(hw->port), 1040 pf->stat_offsets_loaded, 1041 &osd->rx_oversize, &nsd->rx_oversize); 1042 i40e_stat_update32(hw, I40E_GLPRT_RJC(hw->port), 1043 pf->stat_offsets_loaded, 1044 &osd->rx_jabber, &nsd->rx_jabber); 1045 1046 /* FDIR stats */ 1047 i40e_stat_update_and_clear32(hw, 1048 I40E_GLQF_PCNT(I40E_FD_ATR_STAT_IDX(hw->pf_id)), 1049 &nsd->fd_atr_match); 1050 i40e_stat_update_and_clear32(hw, 1051 I40E_GLQF_PCNT(I40E_FD_SB_STAT_IDX(hw->pf_id)), 1052 &nsd->fd_sb_match); 1053 i40e_stat_update_and_clear32(hw, 1054 I40E_GLQF_PCNT(I40E_FD_ATR_TUNNEL_STAT_IDX(hw->pf_id)), 1055 &nsd->fd_atr_tunnel_match); 1056 1057 val = rd32(hw, I40E_PRTPM_EEE_STAT); 1058 nsd->tx_lpi_status = 1059 (val & I40E_PRTPM_EEE_STAT_TX_LPI_STATUS_MASK) >> 1060 I40E_PRTPM_EEE_STAT_TX_LPI_STATUS_SHIFT; 1061 nsd->rx_lpi_status = 1062 (val & I40E_PRTPM_EEE_STAT_RX_LPI_STATUS_MASK) >> 1063 I40E_PRTPM_EEE_STAT_RX_LPI_STATUS_SHIFT; 1064 i40e_stat_update32(hw, I40E_PRTPM_TLPIC, 1065 pf->stat_offsets_loaded, 1066 &osd->tx_lpi_count, &nsd->tx_lpi_count); 1067 i40e_stat_update32(hw, I40E_PRTPM_RLPIC, 1068 pf->stat_offsets_loaded, 1069 &osd->rx_lpi_count, &nsd->rx_lpi_count); 1070 1071 if (pf->flags & I40E_FLAG_FD_SB_ENABLED && 1072 !test_bit(__I40E_FD_SB_AUTO_DISABLED, pf->state)) 1073 nsd->fd_sb_status = true; 1074 else 1075 nsd->fd_sb_status = false; 1076 1077 if (pf->flags & I40E_FLAG_FD_ATR_ENABLED && 1078 !test_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state)) 1079 nsd->fd_atr_status = true; 1080 else 1081 nsd->fd_atr_status = false; 1082 1083 pf->stat_offsets_loaded = true; 1084 } 1085 1086 /** 1087 * i40e_update_stats - Update the various statistics counters. 1088 * @vsi: the VSI to be updated 1089 * 1090 * Update the various stats for this VSI and its related entities. 1091 **/ 1092 void i40e_update_stats(struct i40e_vsi *vsi) 1093 { 1094 struct i40e_pf *pf = vsi->back; 1095 1096 if (vsi == pf->vsi[pf->lan_vsi]) 1097 i40e_update_pf_stats(pf); 1098 1099 i40e_update_vsi_stats(vsi); 1100 } 1101 1102 /** 1103 * i40e_count_filters - counts VSI mac filters 1104 * @vsi: the VSI to be searched 1105 * 1106 * Returns count of mac filters 1107 **/ 1108 int i40e_count_filters(struct i40e_vsi *vsi) 1109 { 1110 struct i40e_mac_filter *f; 1111 struct hlist_node *h; 1112 int bkt; 1113 int cnt = 0; 1114 1115 hash_for_each_safe(vsi->mac_filter_hash, bkt, h, f, hlist) 1116 ++cnt; 1117 1118 return cnt; 1119 } 1120 1121 /** 1122 * i40e_find_filter - Search VSI filter list for specific mac/vlan filter 1123 * @vsi: the VSI to be searched 1124 * @macaddr: the MAC address 1125 * @vlan: the vlan 1126 * 1127 * Returns ptr to the filter object or NULL 1128 **/ 1129 static struct i40e_mac_filter *i40e_find_filter(struct i40e_vsi *vsi, 1130 const u8 *macaddr, s16 vlan) 1131 { 1132 struct i40e_mac_filter *f; 1133 u64 key; 1134 1135 if (!vsi || !macaddr) 1136 return NULL; 1137 1138 key = i40e_addr_to_hkey(macaddr); 1139 hash_for_each_possible(vsi->mac_filter_hash, f, hlist, key) { 1140 if ((ether_addr_equal(macaddr, f->macaddr)) && 1141 (vlan == f->vlan)) 1142 return f; 1143 } 1144 return NULL; 1145 } 1146 1147 /** 1148 * i40e_find_mac - Find a mac addr in the macvlan filters list 1149 * @vsi: the VSI to be searched 1150 * @macaddr: the MAC address we are searching for 1151 * 1152 * Returns the first filter with the provided MAC address or NULL if 1153 * MAC address was not found 1154 **/ 1155 struct i40e_mac_filter *i40e_find_mac(struct i40e_vsi *vsi, const u8 *macaddr) 1156 { 1157 struct i40e_mac_filter *f; 1158 u64 key; 1159 1160 if (!vsi || !macaddr) 1161 return NULL; 1162 1163 key = i40e_addr_to_hkey(macaddr); 1164 hash_for_each_possible(vsi->mac_filter_hash, f, hlist, key) { 1165 if ((ether_addr_equal(macaddr, f->macaddr))) 1166 return f; 1167 } 1168 return NULL; 1169 } 1170 1171 /** 1172 * i40e_is_vsi_in_vlan - Check if VSI is in vlan mode 1173 * @vsi: the VSI to be searched 1174 * 1175 * Returns true if VSI is in vlan mode or false otherwise 1176 **/ 1177 bool i40e_is_vsi_in_vlan(struct i40e_vsi *vsi) 1178 { 1179 /* If we have a PVID, always operate in VLAN mode */ 1180 if (vsi->info.pvid) 1181 return true; 1182 1183 /* We need to operate in VLAN mode whenever we have any filters with 1184 * a VLAN other than I40E_VLAN_ALL. We could check the table each 1185 * time, incurring search cost repeatedly. However, we can notice two 1186 * things: 1187 * 1188 * 1) the only place where we can gain a VLAN filter is in 1189 * i40e_add_filter. 1190 * 1191 * 2) the only place where filters are actually removed is in 1192 * i40e_sync_filters_subtask. 1193 * 1194 * Thus, we can simply use a boolean value, has_vlan_filters which we 1195 * will set to true when we add a VLAN filter in i40e_add_filter. Then 1196 * we have to perform the full search after deleting filters in 1197 * i40e_sync_filters_subtask, but we already have to search 1198 * filters here and can perform the check at the same time. This 1199 * results in avoiding embedding a loop for VLAN mode inside another 1200 * loop over all the filters, and should maintain correctness as noted 1201 * above. 1202 */ 1203 return vsi->has_vlan_filter; 1204 } 1205 1206 /** 1207 * i40e_correct_mac_vlan_filters - Correct non-VLAN filters if necessary 1208 * @vsi: the VSI to configure 1209 * @tmp_add_list: list of filters ready to be added 1210 * @tmp_del_list: list of filters ready to be deleted 1211 * @vlan_filters: the number of active VLAN filters 1212 * 1213 * Update VLAN=0 and VLAN=-1 (I40E_VLAN_ANY) filters properly so that they 1214 * behave as expected. If we have any active VLAN filters remaining or about 1215 * to be added then we need to update non-VLAN filters to be marked as VLAN=0 1216 * so that they only match against untagged traffic. If we no longer have any 1217 * active VLAN filters, we need to make all non-VLAN filters marked as VLAN=-1 1218 * so that they match against both tagged and untagged traffic. In this way, 1219 * we ensure that we correctly receive the desired traffic. This ensures that 1220 * when we have an active VLAN we will receive only untagged traffic and 1221 * traffic matching active VLANs. If we have no active VLANs then we will 1222 * operate in non-VLAN mode and receive all traffic, tagged or untagged. 1223 * 1224 * Finally, in a similar fashion, this function also corrects filters when 1225 * there is an active PVID assigned to this VSI. 1226 * 1227 * In case of memory allocation failure return -ENOMEM. Otherwise, return 0. 1228 * 1229 * This function is only expected to be called from within 1230 * i40e_sync_vsi_filters. 1231 * 1232 * NOTE: This function expects to be called while under the 1233 * mac_filter_hash_lock 1234 */ 1235 static int i40e_correct_mac_vlan_filters(struct i40e_vsi *vsi, 1236 struct hlist_head *tmp_add_list, 1237 struct hlist_head *tmp_del_list, 1238 int vlan_filters) 1239 { 1240 s16 pvid = le16_to_cpu(vsi->info.pvid); 1241 struct i40e_mac_filter *f, *add_head; 1242 struct i40e_new_mac_filter *new; 1243 struct hlist_node *h; 1244 int bkt, new_vlan; 1245 1246 /* To determine if a particular filter needs to be replaced we 1247 * have the three following conditions: 1248 * 1249 * a) if we have a PVID assigned, then all filters which are 1250 * not marked as VLAN=PVID must be replaced with filters that 1251 * are. 1252 * b) otherwise, if we have any active VLANS, all filters 1253 * which are marked as VLAN=-1 must be replaced with 1254 * filters marked as VLAN=0 1255 * c) finally, if we do not have any active VLANS, all filters 1256 * which are marked as VLAN=0 must be replaced with filters 1257 * marked as VLAN=-1 1258 */ 1259 1260 /* Update the filters about to be added in place */ 1261 hlist_for_each_entry(new, tmp_add_list, hlist) { 1262 if (pvid && new->f->vlan != pvid) 1263 new->f->vlan = pvid; 1264 else if (vlan_filters && new->f->vlan == I40E_VLAN_ANY) 1265 new->f->vlan = 0; 1266 else if (!vlan_filters && new->f->vlan == 0) 1267 new->f->vlan = I40E_VLAN_ANY; 1268 } 1269 1270 /* Update the remaining active filters */ 1271 hash_for_each_safe(vsi->mac_filter_hash, bkt, h, f, hlist) { 1272 /* Combine the checks for whether a filter needs to be changed 1273 * and then determine the new VLAN inside the if block, in 1274 * order to avoid duplicating code for adding the new filter 1275 * then deleting the old filter. 1276 */ 1277 if ((pvid && f->vlan != pvid) || 1278 (vlan_filters && f->vlan == I40E_VLAN_ANY) || 1279 (!vlan_filters && f->vlan == 0)) { 1280 /* Determine the new vlan we will be adding */ 1281 if (pvid) 1282 new_vlan = pvid; 1283 else if (vlan_filters) 1284 new_vlan = 0; 1285 else 1286 new_vlan = I40E_VLAN_ANY; 1287 1288 /* Create the new filter */ 1289 add_head = i40e_add_filter(vsi, f->macaddr, new_vlan); 1290 if (!add_head) 1291 return -ENOMEM; 1292 1293 /* Create a temporary i40e_new_mac_filter */ 1294 new = kzalloc(sizeof(*new), GFP_ATOMIC); 1295 if (!new) 1296 return -ENOMEM; 1297 1298 new->f = add_head; 1299 new->state = add_head->state; 1300 1301 /* Add the new filter to the tmp list */ 1302 hlist_add_head(&new->hlist, tmp_add_list); 1303 1304 /* Put the original filter into the delete list */ 1305 f->state = I40E_FILTER_REMOVE; 1306 hash_del(&f->hlist); 1307 hlist_add_head(&f->hlist, tmp_del_list); 1308 } 1309 } 1310 1311 vsi->has_vlan_filter = !!vlan_filters; 1312 1313 return 0; 1314 } 1315 1316 /** 1317 * i40e_rm_default_mac_filter - Remove the default MAC filter set by NVM 1318 * @vsi: the PF Main VSI - inappropriate for any other VSI 1319 * @macaddr: the MAC address 1320 * 1321 * Remove whatever filter the firmware set up so the driver can manage 1322 * its own filtering intelligently. 1323 **/ 1324 static void i40e_rm_default_mac_filter(struct i40e_vsi *vsi, u8 *macaddr) 1325 { 1326 struct i40e_aqc_remove_macvlan_element_data element; 1327 struct i40e_pf *pf = vsi->back; 1328 1329 /* Only appropriate for the PF main VSI */ 1330 if (vsi->type != I40E_VSI_MAIN) 1331 return; 1332 1333 memset(&element, 0, sizeof(element)); 1334 ether_addr_copy(element.mac_addr, macaddr); 1335 element.vlan_tag = 0; 1336 /* Ignore error returns, some firmware does it this way... */ 1337 element.flags = I40E_AQC_MACVLAN_DEL_PERFECT_MATCH; 1338 i40e_aq_remove_macvlan(&pf->hw, vsi->seid, &element, 1, NULL); 1339 1340 memset(&element, 0, sizeof(element)); 1341 ether_addr_copy(element.mac_addr, macaddr); 1342 element.vlan_tag = 0; 1343 /* ...and some firmware does it this way. */ 1344 element.flags = I40E_AQC_MACVLAN_DEL_PERFECT_MATCH | 1345 I40E_AQC_MACVLAN_DEL_IGNORE_VLAN; 1346 i40e_aq_remove_macvlan(&pf->hw, vsi->seid, &element, 1, NULL); 1347 } 1348 1349 /** 1350 * i40e_add_filter - Add a mac/vlan filter to the VSI 1351 * @vsi: the VSI to be searched 1352 * @macaddr: the MAC address 1353 * @vlan: the vlan 1354 * 1355 * Returns ptr to the filter object or NULL when no memory available. 1356 * 1357 * NOTE: This function is expected to be called with mac_filter_hash_lock 1358 * being held. 1359 **/ 1360 struct i40e_mac_filter *i40e_add_filter(struct i40e_vsi *vsi, 1361 const u8 *macaddr, s16 vlan) 1362 { 1363 struct i40e_mac_filter *f; 1364 u64 key; 1365 1366 if (!vsi || !macaddr) 1367 return NULL; 1368 1369 f = i40e_find_filter(vsi, macaddr, vlan); 1370 if (!f) { 1371 f = kzalloc(sizeof(*f), GFP_ATOMIC); 1372 if (!f) 1373 return NULL; 1374 1375 /* Update the boolean indicating if we need to function in 1376 * VLAN mode. 1377 */ 1378 if (vlan >= 0) 1379 vsi->has_vlan_filter = true; 1380 1381 ether_addr_copy(f->macaddr, macaddr); 1382 f->vlan = vlan; 1383 f->state = I40E_FILTER_NEW; 1384 INIT_HLIST_NODE(&f->hlist); 1385 1386 key = i40e_addr_to_hkey(macaddr); 1387 hash_add(vsi->mac_filter_hash, &f->hlist, key); 1388 1389 vsi->flags |= I40E_VSI_FLAG_FILTER_CHANGED; 1390 set_bit(__I40E_MACVLAN_SYNC_PENDING, vsi->back->state); 1391 } 1392 1393 /* If we're asked to add a filter that has been marked for removal, it 1394 * is safe to simply restore it to active state. __i40e_del_filter 1395 * will have simply deleted any filters which were previously marked 1396 * NEW or FAILED, so if it is currently marked REMOVE it must have 1397 * previously been ACTIVE. Since we haven't yet run the sync filters 1398 * task, just restore this filter to the ACTIVE state so that the 1399 * sync task leaves it in place 1400 */ 1401 if (f->state == I40E_FILTER_REMOVE) 1402 f->state = I40E_FILTER_ACTIVE; 1403 1404 return f; 1405 } 1406 1407 /** 1408 * __i40e_del_filter - Remove a specific filter from the VSI 1409 * @vsi: VSI to remove from 1410 * @f: the filter to remove from the list 1411 * 1412 * This function should be called instead of i40e_del_filter only if you know 1413 * the exact filter you will remove already, such as via i40e_find_filter or 1414 * i40e_find_mac. 1415 * 1416 * NOTE: This function is expected to be called with mac_filter_hash_lock 1417 * being held. 1418 * ANOTHER NOTE: This function MUST be called from within the context of 1419 * the "safe" variants of any list iterators, e.g. list_for_each_entry_safe() 1420 * instead of list_for_each_entry(). 1421 **/ 1422 void __i40e_del_filter(struct i40e_vsi *vsi, struct i40e_mac_filter *f) 1423 { 1424 if (!f) 1425 return; 1426 1427 /* If the filter was never added to firmware then we can just delete it 1428 * directly and we don't want to set the status to remove or else an 1429 * admin queue command will unnecessarily fire. 1430 */ 1431 if ((f->state == I40E_FILTER_FAILED) || 1432 (f->state == I40E_FILTER_NEW)) { 1433 hash_del(&f->hlist); 1434 kfree(f); 1435 } else { 1436 f->state = I40E_FILTER_REMOVE; 1437 } 1438 1439 vsi->flags |= I40E_VSI_FLAG_FILTER_CHANGED; 1440 set_bit(__I40E_MACVLAN_SYNC_PENDING, vsi->back->state); 1441 } 1442 1443 /** 1444 * i40e_del_filter - Remove a MAC/VLAN filter from the VSI 1445 * @vsi: the VSI to be searched 1446 * @macaddr: the MAC address 1447 * @vlan: the VLAN 1448 * 1449 * NOTE: This function is expected to be called with mac_filter_hash_lock 1450 * being held. 1451 * ANOTHER NOTE: This function MUST be called from within the context of 1452 * the "safe" variants of any list iterators, e.g. list_for_each_entry_safe() 1453 * instead of list_for_each_entry(). 1454 **/ 1455 void i40e_del_filter(struct i40e_vsi *vsi, const u8 *macaddr, s16 vlan) 1456 { 1457 struct i40e_mac_filter *f; 1458 1459 if (!vsi || !macaddr) 1460 return; 1461 1462 f = i40e_find_filter(vsi, macaddr, vlan); 1463 __i40e_del_filter(vsi, f); 1464 } 1465 1466 /** 1467 * i40e_add_mac_filter - Add a MAC filter for all active VLANs 1468 * @vsi: the VSI to be searched 1469 * @macaddr: the mac address to be filtered 1470 * 1471 * If we're not in VLAN mode, just add the filter to I40E_VLAN_ANY. Otherwise, 1472 * go through all the macvlan filters and add a macvlan filter for each 1473 * unique vlan that already exists. If a PVID has been assigned, instead only 1474 * add the macaddr to that VLAN. 1475 * 1476 * Returns last filter added on success, else NULL 1477 **/ 1478 struct i40e_mac_filter *i40e_add_mac_filter(struct i40e_vsi *vsi, 1479 const u8 *macaddr) 1480 { 1481 struct i40e_mac_filter *f, *add = NULL; 1482 struct hlist_node *h; 1483 int bkt; 1484 1485 if (vsi->info.pvid) 1486 return i40e_add_filter(vsi, macaddr, 1487 le16_to_cpu(vsi->info.pvid)); 1488 1489 if (!i40e_is_vsi_in_vlan(vsi)) 1490 return i40e_add_filter(vsi, macaddr, I40E_VLAN_ANY); 1491 1492 hash_for_each_safe(vsi->mac_filter_hash, bkt, h, f, hlist) { 1493 if (f->state == I40E_FILTER_REMOVE) 1494 continue; 1495 add = i40e_add_filter(vsi, macaddr, f->vlan); 1496 if (!add) 1497 return NULL; 1498 } 1499 1500 return add; 1501 } 1502 1503 /** 1504 * i40e_del_mac_filter - Remove a MAC filter from all VLANs 1505 * @vsi: the VSI to be searched 1506 * @macaddr: the mac address to be removed 1507 * 1508 * Removes a given MAC address from a VSI regardless of what VLAN it has been 1509 * associated with. 1510 * 1511 * Returns 0 for success, or error 1512 **/ 1513 int i40e_del_mac_filter(struct i40e_vsi *vsi, const u8 *macaddr) 1514 { 1515 struct i40e_mac_filter *f; 1516 struct hlist_node *h; 1517 bool found = false; 1518 int bkt; 1519 1520 lockdep_assert_held(&vsi->mac_filter_hash_lock); 1521 hash_for_each_safe(vsi->mac_filter_hash, bkt, h, f, hlist) { 1522 if (ether_addr_equal(macaddr, f->macaddr)) { 1523 __i40e_del_filter(vsi, f); 1524 found = true; 1525 } 1526 } 1527 1528 if (found) 1529 return 0; 1530 else 1531 return -ENOENT; 1532 } 1533 1534 /** 1535 * i40e_set_mac - NDO callback to set mac address 1536 * @netdev: network interface device structure 1537 * @p: pointer to an address structure 1538 * 1539 * Returns 0 on success, negative on failure 1540 **/ 1541 static int i40e_set_mac(struct net_device *netdev, void *p) 1542 { 1543 struct i40e_netdev_priv *np = netdev_priv(netdev); 1544 struct i40e_vsi *vsi = np->vsi; 1545 struct i40e_pf *pf = vsi->back; 1546 struct i40e_hw *hw = &pf->hw; 1547 struct sockaddr *addr = p; 1548 1549 if (!is_valid_ether_addr(addr->sa_data)) 1550 return -EADDRNOTAVAIL; 1551 1552 if (ether_addr_equal(netdev->dev_addr, addr->sa_data)) { 1553 netdev_info(netdev, "already using mac address %pM\n", 1554 addr->sa_data); 1555 return 0; 1556 } 1557 1558 if (test_bit(__I40E_DOWN, pf->state) || 1559 test_bit(__I40E_RESET_RECOVERY_PENDING, pf->state)) 1560 return -EADDRNOTAVAIL; 1561 1562 if (ether_addr_equal(hw->mac.addr, addr->sa_data)) 1563 netdev_info(netdev, "returning to hw mac address %pM\n", 1564 hw->mac.addr); 1565 else 1566 netdev_info(netdev, "set new mac address %pM\n", addr->sa_data); 1567 1568 /* Copy the address first, so that we avoid a possible race with 1569 * .set_rx_mode(). 1570 * - Remove old address from MAC filter 1571 * - Copy new address 1572 * - Add new address to MAC filter 1573 */ 1574 spin_lock_bh(&vsi->mac_filter_hash_lock); 1575 i40e_del_mac_filter(vsi, netdev->dev_addr); 1576 ether_addr_copy(netdev->dev_addr, addr->sa_data); 1577 i40e_add_mac_filter(vsi, netdev->dev_addr); 1578 spin_unlock_bh(&vsi->mac_filter_hash_lock); 1579 1580 if (vsi->type == I40E_VSI_MAIN) { 1581 i40e_status ret; 1582 1583 ret = i40e_aq_mac_address_write(hw, I40E_AQC_WRITE_TYPE_LAA_WOL, 1584 addr->sa_data, NULL); 1585 if (ret) 1586 netdev_info(netdev, "Ignoring error from firmware on LAA update, status %s, AQ ret %s\n", 1587 i40e_stat_str(hw, ret), 1588 i40e_aq_str(hw, hw->aq.asq_last_status)); 1589 } 1590 1591 /* schedule our worker thread which will take care of 1592 * applying the new filter changes 1593 */ 1594 i40e_service_event_schedule(pf); 1595 return 0; 1596 } 1597 1598 /** 1599 * i40e_config_rss_aq - Prepare for RSS using AQ commands 1600 * @vsi: vsi structure 1601 * @seed: RSS hash seed 1602 **/ 1603 static int i40e_config_rss_aq(struct i40e_vsi *vsi, const u8 *seed, 1604 u8 *lut, u16 lut_size) 1605 { 1606 struct i40e_pf *pf = vsi->back; 1607 struct i40e_hw *hw = &pf->hw; 1608 int ret = 0; 1609 1610 if (seed) { 1611 struct i40e_aqc_get_set_rss_key_data *seed_dw = 1612 (struct i40e_aqc_get_set_rss_key_data *)seed; 1613 ret = i40e_aq_set_rss_key(hw, vsi->id, seed_dw); 1614 if (ret) { 1615 dev_info(&pf->pdev->dev, 1616 "Cannot set RSS key, err %s aq_err %s\n", 1617 i40e_stat_str(hw, ret), 1618 i40e_aq_str(hw, hw->aq.asq_last_status)); 1619 return ret; 1620 } 1621 } 1622 if (lut) { 1623 bool pf_lut = vsi->type == I40E_VSI_MAIN; 1624 1625 ret = i40e_aq_set_rss_lut(hw, vsi->id, pf_lut, lut, lut_size); 1626 if (ret) { 1627 dev_info(&pf->pdev->dev, 1628 "Cannot set RSS lut, err %s aq_err %s\n", 1629 i40e_stat_str(hw, ret), 1630 i40e_aq_str(hw, hw->aq.asq_last_status)); 1631 return ret; 1632 } 1633 } 1634 return ret; 1635 } 1636 1637 /** 1638 * i40e_vsi_config_rss - Prepare for VSI(VMDq) RSS if used 1639 * @vsi: VSI structure 1640 **/ 1641 static int i40e_vsi_config_rss(struct i40e_vsi *vsi) 1642 { 1643 struct i40e_pf *pf = vsi->back; 1644 u8 seed[I40E_HKEY_ARRAY_SIZE]; 1645 u8 *lut; 1646 int ret; 1647 1648 if (!(pf->hw_features & I40E_HW_RSS_AQ_CAPABLE)) 1649 return 0; 1650 if (!vsi->rss_size) 1651 vsi->rss_size = min_t(int, pf->alloc_rss_size, 1652 vsi->num_queue_pairs); 1653 if (!vsi->rss_size) 1654 return -EINVAL; 1655 lut = kzalloc(vsi->rss_table_size, GFP_KERNEL); 1656 if (!lut) 1657 return -ENOMEM; 1658 1659 /* Use the user configured hash keys and lookup table if there is one, 1660 * otherwise use default 1661 */ 1662 if (vsi->rss_lut_user) 1663 memcpy(lut, vsi->rss_lut_user, vsi->rss_table_size); 1664 else 1665 i40e_fill_rss_lut(pf, lut, vsi->rss_table_size, vsi->rss_size); 1666 if (vsi->rss_hkey_user) 1667 memcpy(seed, vsi->rss_hkey_user, I40E_HKEY_ARRAY_SIZE); 1668 else 1669 netdev_rss_key_fill((void *)seed, I40E_HKEY_ARRAY_SIZE); 1670 ret = i40e_config_rss_aq(vsi, seed, lut, vsi->rss_table_size); 1671 kfree(lut); 1672 return ret; 1673 } 1674 1675 /** 1676 * i40e_vsi_setup_queue_map_mqprio - Prepares mqprio based tc_config 1677 * @vsi: the VSI being configured, 1678 * @ctxt: VSI context structure 1679 * @enabled_tc: number of traffic classes to enable 1680 * 1681 * Prepares VSI tc_config to have queue configurations based on MQPRIO options. 1682 **/ 1683 static int i40e_vsi_setup_queue_map_mqprio(struct i40e_vsi *vsi, 1684 struct i40e_vsi_context *ctxt, 1685 u8 enabled_tc) 1686 { 1687 u16 qcount = 0, max_qcount, qmap, sections = 0; 1688 int i, override_q, pow, num_qps, ret; 1689 u8 netdev_tc = 0, offset = 0; 1690 1691 if (vsi->type != I40E_VSI_MAIN) 1692 return -EINVAL; 1693 sections = I40E_AQ_VSI_PROP_QUEUE_MAP_VALID; 1694 sections |= I40E_AQ_VSI_PROP_SCHED_VALID; 1695 vsi->tc_config.numtc = vsi->mqprio_qopt.qopt.num_tc; 1696 vsi->tc_config.enabled_tc = enabled_tc ? enabled_tc : 1; 1697 num_qps = vsi->mqprio_qopt.qopt.count[0]; 1698 1699 /* find the next higher power-of-2 of num queue pairs */ 1700 pow = ilog2(num_qps); 1701 if (!is_power_of_2(num_qps)) 1702 pow++; 1703 qmap = (offset << I40E_AQ_VSI_TC_QUE_OFFSET_SHIFT) | 1704 (pow << I40E_AQ_VSI_TC_QUE_NUMBER_SHIFT); 1705 1706 /* Setup queue offset/count for all TCs for given VSI */ 1707 max_qcount = vsi->mqprio_qopt.qopt.count[0]; 1708 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 1709 /* See if the given TC is enabled for the given VSI */ 1710 if (vsi->tc_config.enabled_tc & BIT(i)) { 1711 offset = vsi->mqprio_qopt.qopt.offset[i]; 1712 qcount = vsi->mqprio_qopt.qopt.count[i]; 1713 if (qcount > max_qcount) 1714 max_qcount = qcount; 1715 vsi->tc_config.tc_info[i].qoffset = offset; 1716 vsi->tc_config.tc_info[i].qcount = qcount; 1717 vsi->tc_config.tc_info[i].netdev_tc = netdev_tc++; 1718 } else { 1719 /* TC is not enabled so set the offset to 1720 * default queue and allocate one queue 1721 * for the given TC. 1722 */ 1723 vsi->tc_config.tc_info[i].qoffset = 0; 1724 vsi->tc_config.tc_info[i].qcount = 1; 1725 vsi->tc_config.tc_info[i].netdev_tc = 0; 1726 } 1727 } 1728 1729 /* Set actual Tx/Rx queue pairs */ 1730 vsi->num_queue_pairs = offset + qcount; 1731 1732 /* Setup queue TC[0].qmap for given VSI context */ 1733 ctxt->info.tc_mapping[0] = cpu_to_le16(qmap); 1734 ctxt->info.mapping_flags |= cpu_to_le16(I40E_AQ_VSI_QUE_MAP_CONTIG); 1735 ctxt->info.queue_mapping[0] = cpu_to_le16(vsi->base_queue); 1736 ctxt->info.valid_sections |= cpu_to_le16(sections); 1737 1738 /* Reconfigure RSS for main VSI with max queue count */ 1739 vsi->rss_size = max_qcount; 1740 ret = i40e_vsi_config_rss(vsi); 1741 if (ret) { 1742 dev_info(&vsi->back->pdev->dev, 1743 "Failed to reconfig rss for num_queues (%u)\n", 1744 max_qcount); 1745 return ret; 1746 } 1747 vsi->reconfig_rss = true; 1748 dev_dbg(&vsi->back->pdev->dev, 1749 "Reconfigured rss with num_queues (%u)\n", max_qcount); 1750 1751 /* Find queue count available for channel VSIs and starting offset 1752 * for channel VSIs 1753 */ 1754 override_q = vsi->mqprio_qopt.qopt.count[0]; 1755 if (override_q && override_q < vsi->num_queue_pairs) { 1756 vsi->cnt_q_avail = vsi->num_queue_pairs - override_q; 1757 vsi->next_base_queue = override_q; 1758 } 1759 return 0; 1760 } 1761 1762 /** 1763 * i40e_vsi_setup_queue_map - Setup a VSI queue map based on enabled_tc 1764 * @vsi: the VSI being setup 1765 * @ctxt: VSI context structure 1766 * @enabled_tc: Enabled TCs bitmap 1767 * @is_add: True if called before Add VSI 1768 * 1769 * Setup VSI queue mapping for enabled traffic classes. 1770 **/ 1771 static void i40e_vsi_setup_queue_map(struct i40e_vsi *vsi, 1772 struct i40e_vsi_context *ctxt, 1773 u8 enabled_tc, 1774 bool is_add) 1775 { 1776 struct i40e_pf *pf = vsi->back; 1777 u16 sections = 0; 1778 u8 netdev_tc = 0; 1779 u16 numtc = 1; 1780 u16 qcount; 1781 u8 offset; 1782 u16 qmap; 1783 int i; 1784 u16 num_tc_qps = 0; 1785 1786 sections = I40E_AQ_VSI_PROP_QUEUE_MAP_VALID; 1787 offset = 0; 1788 1789 /* Number of queues per enabled TC */ 1790 num_tc_qps = vsi->alloc_queue_pairs; 1791 if (enabled_tc && (vsi->back->flags & I40E_FLAG_DCB_ENABLED)) { 1792 /* Find numtc from enabled TC bitmap */ 1793 for (i = 0, numtc = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 1794 if (enabled_tc & BIT(i)) /* TC is enabled */ 1795 numtc++; 1796 } 1797 if (!numtc) { 1798 dev_warn(&pf->pdev->dev, "DCB is enabled but no TC enabled, forcing TC0\n"); 1799 numtc = 1; 1800 } 1801 num_tc_qps = num_tc_qps / numtc; 1802 num_tc_qps = min_t(int, num_tc_qps, 1803 i40e_pf_get_max_q_per_tc(pf)); 1804 } 1805 1806 vsi->tc_config.numtc = numtc; 1807 vsi->tc_config.enabled_tc = enabled_tc ? enabled_tc : 1; 1808 1809 /* Do not allow use more TC queue pairs than MSI-X vectors exist */ 1810 if (pf->flags & I40E_FLAG_MSIX_ENABLED) 1811 num_tc_qps = min_t(int, num_tc_qps, pf->num_lan_msix); 1812 1813 /* Setup queue offset/count for all TCs for given VSI */ 1814 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 1815 /* See if the given TC is enabled for the given VSI */ 1816 if (vsi->tc_config.enabled_tc & BIT(i)) { 1817 /* TC is enabled */ 1818 int pow, num_qps; 1819 1820 switch (vsi->type) { 1821 case I40E_VSI_MAIN: 1822 if (!(pf->flags & (I40E_FLAG_FD_SB_ENABLED | 1823 I40E_FLAG_FD_ATR_ENABLED)) || 1824 vsi->tc_config.enabled_tc != 1) { 1825 qcount = min_t(int, pf->alloc_rss_size, 1826 num_tc_qps); 1827 break; 1828 } 1829 /* fall through */ 1830 case I40E_VSI_FDIR: 1831 case I40E_VSI_SRIOV: 1832 case I40E_VSI_VMDQ2: 1833 default: 1834 qcount = num_tc_qps; 1835 WARN_ON(i != 0); 1836 break; 1837 } 1838 vsi->tc_config.tc_info[i].qoffset = offset; 1839 vsi->tc_config.tc_info[i].qcount = qcount; 1840 1841 /* find the next higher power-of-2 of num queue pairs */ 1842 num_qps = qcount; 1843 pow = 0; 1844 while (num_qps && (BIT_ULL(pow) < qcount)) { 1845 pow++; 1846 num_qps >>= 1; 1847 } 1848 1849 vsi->tc_config.tc_info[i].netdev_tc = netdev_tc++; 1850 qmap = 1851 (offset << I40E_AQ_VSI_TC_QUE_OFFSET_SHIFT) | 1852 (pow << I40E_AQ_VSI_TC_QUE_NUMBER_SHIFT); 1853 1854 offset += qcount; 1855 } else { 1856 /* TC is not enabled so set the offset to 1857 * default queue and allocate one queue 1858 * for the given TC. 1859 */ 1860 vsi->tc_config.tc_info[i].qoffset = 0; 1861 vsi->tc_config.tc_info[i].qcount = 1; 1862 vsi->tc_config.tc_info[i].netdev_tc = 0; 1863 1864 qmap = 0; 1865 } 1866 ctxt->info.tc_mapping[i] = cpu_to_le16(qmap); 1867 } 1868 1869 /* Set actual Tx/Rx queue pairs */ 1870 vsi->num_queue_pairs = offset; 1871 if ((vsi->type == I40E_VSI_MAIN) && (numtc == 1)) { 1872 if (vsi->req_queue_pairs > 0) 1873 vsi->num_queue_pairs = vsi->req_queue_pairs; 1874 else if (pf->flags & I40E_FLAG_MSIX_ENABLED) 1875 vsi->num_queue_pairs = pf->num_lan_msix; 1876 } 1877 1878 /* Scheduler section valid can only be set for ADD VSI */ 1879 if (is_add) { 1880 sections |= I40E_AQ_VSI_PROP_SCHED_VALID; 1881 1882 ctxt->info.up_enable_bits = enabled_tc; 1883 } 1884 if (vsi->type == I40E_VSI_SRIOV) { 1885 ctxt->info.mapping_flags |= 1886 cpu_to_le16(I40E_AQ_VSI_QUE_MAP_NONCONTIG); 1887 for (i = 0; i < vsi->num_queue_pairs; i++) 1888 ctxt->info.queue_mapping[i] = 1889 cpu_to_le16(vsi->base_queue + i); 1890 } else { 1891 ctxt->info.mapping_flags |= 1892 cpu_to_le16(I40E_AQ_VSI_QUE_MAP_CONTIG); 1893 ctxt->info.queue_mapping[0] = cpu_to_le16(vsi->base_queue); 1894 } 1895 ctxt->info.valid_sections |= cpu_to_le16(sections); 1896 } 1897 1898 /** 1899 * i40e_addr_sync - Callback for dev_(mc|uc)_sync to add address 1900 * @netdev: the netdevice 1901 * @addr: address to add 1902 * 1903 * Called by __dev_(mc|uc)_sync when an address needs to be added. We call 1904 * __dev_(uc|mc)_sync from .set_rx_mode and guarantee to hold the hash lock. 1905 */ 1906 static int i40e_addr_sync(struct net_device *netdev, const u8 *addr) 1907 { 1908 struct i40e_netdev_priv *np = netdev_priv(netdev); 1909 struct i40e_vsi *vsi = np->vsi; 1910 1911 if (i40e_add_mac_filter(vsi, addr)) 1912 return 0; 1913 else 1914 return -ENOMEM; 1915 } 1916 1917 /** 1918 * i40e_addr_unsync - Callback for dev_(mc|uc)_sync to remove address 1919 * @netdev: the netdevice 1920 * @addr: address to add 1921 * 1922 * Called by __dev_(mc|uc)_sync when an address needs to be removed. We call 1923 * __dev_(uc|mc)_sync from .set_rx_mode and guarantee to hold the hash lock. 1924 */ 1925 static int i40e_addr_unsync(struct net_device *netdev, const u8 *addr) 1926 { 1927 struct i40e_netdev_priv *np = netdev_priv(netdev); 1928 struct i40e_vsi *vsi = np->vsi; 1929 1930 /* Under some circumstances, we might receive a request to delete 1931 * our own device address from our uc list. Because we store the 1932 * device address in the VSI's MAC/VLAN filter list, we need to ignore 1933 * such requests and not delete our device address from this list. 1934 */ 1935 if (ether_addr_equal(addr, netdev->dev_addr)) 1936 return 0; 1937 1938 i40e_del_mac_filter(vsi, addr); 1939 1940 return 0; 1941 } 1942 1943 /** 1944 * i40e_set_rx_mode - NDO callback to set the netdev filters 1945 * @netdev: network interface device structure 1946 **/ 1947 static void i40e_set_rx_mode(struct net_device *netdev) 1948 { 1949 struct i40e_netdev_priv *np = netdev_priv(netdev); 1950 struct i40e_vsi *vsi = np->vsi; 1951 1952 spin_lock_bh(&vsi->mac_filter_hash_lock); 1953 1954 __dev_uc_sync(netdev, i40e_addr_sync, i40e_addr_unsync); 1955 __dev_mc_sync(netdev, i40e_addr_sync, i40e_addr_unsync); 1956 1957 spin_unlock_bh(&vsi->mac_filter_hash_lock); 1958 1959 /* check for other flag changes */ 1960 if (vsi->current_netdev_flags != vsi->netdev->flags) { 1961 vsi->flags |= I40E_VSI_FLAG_FILTER_CHANGED; 1962 set_bit(__I40E_MACVLAN_SYNC_PENDING, vsi->back->state); 1963 } 1964 } 1965 1966 /** 1967 * i40e_undo_del_filter_entries - Undo the changes made to MAC filter entries 1968 * @vsi: Pointer to VSI struct 1969 * @from: Pointer to list which contains MAC filter entries - changes to 1970 * those entries needs to be undone. 1971 * 1972 * MAC filter entries from this list were slated for deletion. 1973 **/ 1974 static void i40e_undo_del_filter_entries(struct i40e_vsi *vsi, 1975 struct hlist_head *from) 1976 { 1977 struct i40e_mac_filter *f; 1978 struct hlist_node *h; 1979 1980 hlist_for_each_entry_safe(f, h, from, hlist) { 1981 u64 key = i40e_addr_to_hkey(f->macaddr); 1982 1983 /* Move the element back into MAC filter list*/ 1984 hlist_del(&f->hlist); 1985 hash_add(vsi->mac_filter_hash, &f->hlist, key); 1986 } 1987 } 1988 1989 /** 1990 * i40e_undo_add_filter_entries - Undo the changes made to MAC filter entries 1991 * @vsi: Pointer to vsi struct 1992 * @from: Pointer to list which contains MAC filter entries - changes to 1993 * those entries needs to be undone. 1994 * 1995 * MAC filter entries from this list were slated for addition. 1996 **/ 1997 static void i40e_undo_add_filter_entries(struct i40e_vsi *vsi, 1998 struct hlist_head *from) 1999 { 2000 struct i40e_new_mac_filter *new; 2001 struct hlist_node *h; 2002 2003 hlist_for_each_entry_safe(new, h, from, hlist) { 2004 /* We can simply free the wrapper structure */ 2005 hlist_del(&new->hlist); 2006 kfree(new); 2007 } 2008 } 2009 2010 /** 2011 * i40e_next_entry - Get the next non-broadcast filter from a list 2012 * @next: pointer to filter in list 2013 * 2014 * Returns the next non-broadcast filter in the list. Required so that we 2015 * ignore broadcast filters within the list, since these are not handled via 2016 * the normal firmware update path. 2017 */ 2018 static 2019 struct i40e_new_mac_filter *i40e_next_filter(struct i40e_new_mac_filter *next) 2020 { 2021 hlist_for_each_entry_continue(next, hlist) { 2022 if (!is_broadcast_ether_addr(next->f->macaddr)) 2023 return next; 2024 } 2025 2026 return NULL; 2027 } 2028 2029 /** 2030 * i40e_update_filter_state - Update filter state based on return data 2031 * from firmware 2032 * @count: Number of filters added 2033 * @add_list: return data from fw 2034 * @add_head: pointer to first filter in current batch 2035 * 2036 * MAC filter entries from list were slated to be added to device. Returns 2037 * number of successful filters. Note that 0 does NOT mean success! 2038 **/ 2039 static int 2040 i40e_update_filter_state(int count, 2041 struct i40e_aqc_add_macvlan_element_data *add_list, 2042 struct i40e_new_mac_filter *add_head) 2043 { 2044 int retval = 0; 2045 int i; 2046 2047 for (i = 0; i < count; i++) { 2048 /* Always check status of each filter. We don't need to check 2049 * the firmware return status because we pre-set the filter 2050 * status to I40E_AQC_MM_ERR_NO_RES when sending the filter 2051 * request to the adminq. Thus, if it no longer matches then 2052 * we know the filter is active. 2053 */ 2054 if (add_list[i].match_method == I40E_AQC_MM_ERR_NO_RES) { 2055 add_head->state = I40E_FILTER_FAILED; 2056 } else { 2057 add_head->state = I40E_FILTER_ACTIVE; 2058 retval++; 2059 } 2060 2061 add_head = i40e_next_filter(add_head); 2062 if (!add_head) 2063 break; 2064 } 2065 2066 return retval; 2067 } 2068 2069 /** 2070 * i40e_aqc_del_filters - Request firmware to delete a set of filters 2071 * @vsi: ptr to the VSI 2072 * @vsi_name: name to display in messages 2073 * @list: the list of filters to send to firmware 2074 * @num_del: the number of filters to delete 2075 * @retval: Set to -EIO on failure to delete 2076 * 2077 * Send a request to firmware via AdminQ to delete a set of filters. Uses 2078 * *retval instead of a return value so that success does not force ret_val to 2079 * be set to 0. This ensures that a sequence of calls to this function 2080 * preserve the previous value of *retval on successful delete. 2081 */ 2082 static 2083 void i40e_aqc_del_filters(struct i40e_vsi *vsi, const char *vsi_name, 2084 struct i40e_aqc_remove_macvlan_element_data *list, 2085 int num_del, int *retval) 2086 { 2087 struct i40e_hw *hw = &vsi->back->hw; 2088 i40e_status aq_ret; 2089 int aq_err; 2090 2091 aq_ret = i40e_aq_remove_macvlan(hw, vsi->seid, list, num_del, NULL); 2092 aq_err = hw->aq.asq_last_status; 2093 2094 /* Explicitly ignore and do not report when firmware returns ENOENT */ 2095 if (aq_ret && !(aq_err == I40E_AQ_RC_ENOENT)) { 2096 *retval = -EIO; 2097 dev_info(&vsi->back->pdev->dev, 2098 "ignoring delete macvlan error on %s, err %s, aq_err %s\n", 2099 vsi_name, i40e_stat_str(hw, aq_ret), 2100 i40e_aq_str(hw, aq_err)); 2101 } 2102 } 2103 2104 /** 2105 * i40e_aqc_add_filters - Request firmware to add a set of filters 2106 * @vsi: ptr to the VSI 2107 * @vsi_name: name to display in messages 2108 * @list: the list of filters to send to firmware 2109 * @add_head: Position in the add hlist 2110 * @num_add: the number of filters to add 2111 * 2112 * Send a request to firmware via AdminQ to add a chunk of filters. Will set 2113 * __I40E_VSI_OVERFLOW_PROMISC bit in vsi->state if the firmware has run out of 2114 * space for more filters. 2115 */ 2116 static 2117 void i40e_aqc_add_filters(struct i40e_vsi *vsi, const char *vsi_name, 2118 struct i40e_aqc_add_macvlan_element_data *list, 2119 struct i40e_new_mac_filter *add_head, 2120 int num_add) 2121 { 2122 struct i40e_hw *hw = &vsi->back->hw; 2123 int aq_err, fcnt; 2124 2125 i40e_aq_add_macvlan(hw, vsi->seid, list, num_add, NULL); 2126 aq_err = hw->aq.asq_last_status; 2127 fcnt = i40e_update_filter_state(num_add, list, add_head); 2128 2129 if (fcnt != num_add) { 2130 if (vsi->type == I40E_VSI_MAIN) { 2131 set_bit(__I40E_VSI_OVERFLOW_PROMISC, vsi->state); 2132 dev_warn(&vsi->back->pdev->dev, 2133 "Error %s adding RX filters on %s, promiscuous mode forced on\n", 2134 i40e_aq_str(hw, aq_err), vsi_name); 2135 } else if (vsi->type == I40E_VSI_SRIOV || 2136 vsi->type == I40E_VSI_VMDQ1 || 2137 vsi->type == I40E_VSI_VMDQ2) { 2138 dev_warn(&vsi->back->pdev->dev, 2139 "Error %s adding RX filters on %s, please set promiscuous on manually for %s\n", 2140 i40e_aq_str(hw, aq_err), vsi_name, vsi_name); 2141 } else { 2142 dev_warn(&vsi->back->pdev->dev, 2143 "Error %s adding RX filters on %s, incorrect VSI type: %i.\n", 2144 i40e_aq_str(hw, aq_err), vsi_name, vsi->type); 2145 } 2146 } 2147 } 2148 2149 /** 2150 * i40e_aqc_broadcast_filter - Set promiscuous broadcast flags 2151 * @vsi: pointer to the VSI 2152 * @vsi_name: the VSI name 2153 * @f: filter data 2154 * 2155 * This function sets or clears the promiscuous broadcast flags for VLAN 2156 * filters in order to properly receive broadcast frames. Assumes that only 2157 * broadcast filters are passed. 2158 * 2159 * Returns status indicating success or failure; 2160 **/ 2161 static i40e_status 2162 i40e_aqc_broadcast_filter(struct i40e_vsi *vsi, const char *vsi_name, 2163 struct i40e_mac_filter *f) 2164 { 2165 bool enable = f->state == I40E_FILTER_NEW; 2166 struct i40e_hw *hw = &vsi->back->hw; 2167 i40e_status aq_ret; 2168 2169 if (f->vlan == I40E_VLAN_ANY) { 2170 aq_ret = i40e_aq_set_vsi_broadcast(hw, 2171 vsi->seid, 2172 enable, 2173 NULL); 2174 } else { 2175 aq_ret = i40e_aq_set_vsi_bc_promisc_on_vlan(hw, 2176 vsi->seid, 2177 enable, 2178 f->vlan, 2179 NULL); 2180 } 2181 2182 if (aq_ret) { 2183 set_bit(__I40E_VSI_OVERFLOW_PROMISC, vsi->state); 2184 dev_warn(&vsi->back->pdev->dev, 2185 "Error %s, forcing overflow promiscuous on %s\n", 2186 i40e_aq_str(hw, hw->aq.asq_last_status), 2187 vsi_name); 2188 } 2189 2190 return aq_ret; 2191 } 2192 2193 /** 2194 * i40e_set_promiscuous - set promiscuous mode 2195 * @pf: board private structure 2196 * @promisc: promisc on or off 2197 * 2198 * There are different ways of setting promiscuous mode on a PF depending on 2199 * what state/environment we're in. This identifies and sets it appropriately. 2200 * Returns 0 on success. 2201 **/ 2202 static int i40e_set_promiscuous(struct i40e_pf *pf, bool promisc) 2203 { 2204 struct i40e_vsi *vsi = pf->vsi[pf->lan_vsi]; 2205 struct i40e_hw *hw = &pf->hw; 2206 i40e_status aq_ret; 2207 2208 if (vsi->type == I40E_VSI_MAIN && 2209 pf->lan_veb != I40E_NO_VEB && 2210 !(pf->flags & I40E_FLAG_MFP_ENABLED)) { 2211 /* set defport ON for Main VSI instead of true promisc 2212 * this way we will get all unicast/multicast and VLAN 2213 * promisc behavior but will not get VF or VMDq traffic 2214 * replicated on the Main VSI. 2215 */ 2216 if (promisc) 2217 aq_ret = i40e_aq_set_default_vsi(hw, 2218 vsi->seid, 2219 NULL); 2220 else 2221 aq_ret = i40e_aq_clear_default_vsi(hw, 2222 vsi->seid, 2223 NULL); 2224 if (aq_ret) { 2225 dev_info(&pf->pdev->dev, 2226 "Set default VSI failed, err %s, aq_err %s\n", 2227 i40e_stat_str(hw, aq_ret), 2228 i40e_aq_str(hw, hw->aq.asq_last_status)); 2229 } 2230 } else { 2231 aq_ret = i40e_aq_set_vsi_unicast_promiscuous( 2232 hw, 2233 vsi->seid, 2234 promisc, NULL, 2235 true); 2236 if (aq_ret) { 2237 dev_info(&pf->pdev->dev, 2238 "set unicast promisc failed, err %s, aq_err %s\n", 2239 i40e_stat_str(hw, aq_ret), 2240 i40e_aq_str(hw, hw->aq.asq_last_status)); 2241 } 2242 aq_ret = i40e_aq_set_vsi_multicast_promiscuous( 2243 hw, 2244 vsi->seid, 2245 promisc, NULL); 2246 if (aq_ret) { 2247 dev_info(&pf->pdev->dev, 2248 "set multicast promisc failed, err %s, aq_err %s\n", 2249 i40e_stat_str(hw, aq_ret), 2250 i40e_aq_str(hw, hw->aq.asq_last_status)); 2251 } 2252 } 2253 2254 if (!aq_ret) 2255 pf->cur_promisc = promisc; 2256 2257 return aq_ret; 2258 } 2259 2260 /** 2261 * i40e_sync_vsi_filters - Update the VSI filter list to the HW 2262 * @vsi: ptr to the VSI 2263 * 2264 * Push any outstanding VSI filter changes through the AdminQ. 2265 * 2266 * Returns 0 or error value 2267 **/ 2268 int i40e_sync_vsi_filters(struct i40e_vsi *vsi) 2269 { 2270 struct hlist_head tmp_add_list, tmp_del_list; 2271 struct i40e_mac_filter *f; 2272 struct i40e_new_mac_filter *new, *add_head = NULL; 2273 struct i40e_hw *hw = &vsi->back->hw; 2274 bool old_overflow, new_overflow; 2275 unsigned int failed_filters = 0; 2276 unsigned int vlan_filters = 0; 2277 char vsi_name[16] = "PF"; 2278 int filter_list_len = 0; 2279 i40e_status aq_ret = 0; 2280 u32 changed_flags = 0; 2281 struct hlist_node *h; 2282 struct i40e_pf *pf; 2283 int num_add = 0; 2284 int num_del = 0; 2285 int retval = 0; 2286 u16 cmd_flags; 2287 int list_size; 2288 int bkt; 2289 2290 /* empty array typed pointers, kcalloc later */ 2291 struct i40e_aqc_add_macvlan_element_data *add_list; 2292 struct i40e_aqc_remove_macvlan_element_data *del_list; 2293 2294 while (test_and_set_bit(__I40E_VSI_SYNCING_FILTERS, vsi->state)) 2295 usleep_range(1000, 2000); 2296 pf = vsi->back; 2297 2298 old_overflow = test_bit(__I40E_VSI_OVERFLOW_PROMISC, vsi->state); 2299 2300 if (vsi->netdev) { 2301 changed_flags = vsi->current_netdev_flags ^ vsi->netdev->flags; 2302 vsi->current_netdev_flags = vsi->netdev->flags; 2303 } 2304 2305 INIT_HLIST_HEAD(&tmp_add_list); 2306 INIT_HLIST_HEAD(&tmp_del_list); 2307 2308 if (vsi->type == I40E_VSI_SRIOV) 2309 snprintf(vsi_name, sizeof(vsi_name) - 1, "VF %d", vsi->vf_id); 2310 else if (vsi->type != I40E_VSI_MAIN) 2311 snprintf(vsi_name, sizeof(vsi_name) - 1, "vsi %d", vsi->seid); 2312 2313 if (vsi->flags & I40E_VSI_FLAG_FILTER_CHANGED) { 2314 vsi->flags &= ~I40E_VSI_FLAG_FILTER_CHANGED; 2315 2316 spin_lock_bh(&vsi->mac_filter_hash_lock); 2317 /* Create a list of filters to delete. */ 2318 hash_for_each_safe(vsi->mac_filter_hash, bkt, h, f, hlist) { 2319 if (f->state == I40E_FILTER_REMOVE) { 2320 /* Move the element into temporary del_list */ 2321 hash_del(&f->hlist); 2322 hlist_add_head(&f->hlist, &tmp_del_list); 2323 2324 /* Avoid counting removed filters */ 2325 continue; 2326 } 2327 if (f->state == I40E_FILTER_NEW) { 2328 /* Create a temporary i40e_new_mac_filter */ 2329 new = kzalloc(sizeof(*new), GFP_ATOMIC); 2330 if (!new) 2331 goto err_no_memory_locked; 2332 2333 /* Store pointer to the real filter */ 2334 new->f = f; 2335 new->state = f->state; 2336 2337 /* Add it to the hash list */ 2338 hlist_add_head(&new->hlist, &tmp_add_list); 2339 } 2340 2341 /* Count the number of active (current and new) VLAN 2342 * filters we have now. Does not count filters which 2343 * are marked for deletion. 2344 */ 2345 if (f->vlan > 0) 2346 vlan_filters++; 2347 } 2348 2349 retval = i40e_correct_mac_vlan_filters(vsi, 2350 &tmp_add_list, 2351 &tmp_del_list, 2352 vlan_filters); 2353 if (retval) 2354 goto err_no_memory_locked; 2355 2356 spin_unlock_bh(&vsi->mac_filter_hash_lock); 2357 } 2358 2359 /* Now process 'del_list' outside the lock */ 2360 if (!hlist_empty(&tmp_del_list)) { 2361 filter_list_len = hw->aq.asq_buf_size / 2362 sizeof(struct i40e_aqc_remove_macvlan_element_data); 2363 list_size = filter_list_len * 2364 sizeof(struct i40e_aqc_remove_macvlan_element_data); 2365 del_list = kzalloc(list_size, GFP_ATOMIC); 2366 if (!del_list) 2367 goto err_no_memory; 2368 2369 hlist_for_each_entry_safe(f, h, &tmp_del_list, hlist) { 2370 cmd_flags = 0; 2371 2372 /* handle broadcast filters by updating the broadcast 2373 * promiscuous flag and release filter list. 2374 */ 2375 if (is_broadcast_ether_addr(f->macaddr)) { 2376 i40e_aqc_broadcast_filter(vsi, vsi_name, f); 2377 2378 hlist_del(&f->hlist); 2379 kfree(f); 2380 continue; 2381 } 2382 2383 /* add to delete list */ 2384 ether_addr_copy(del_list[num_del].mac_addr, f->macaddr); 2385 if (f->vlan == I40E_VLAN_ANY) { 2386 del_list[num_del].vlan_tag = 0; 2387 cmd_flags |= I40E_AQC_MACVLAN_DEL_IGNORE_VLAN; 2388 } else { 2389 del_list[num_del].vlan_tag = 2390 cpu_to_le16((u16)(f->vlan)); 2391 } 2392 2393 cmd_flags |= I40E_AQC_MACVLAN_DEL_PERFECT_MATCH; 2394 del_list[num_del].flags = cmd_flags; 2395 num_del++; 2396 2397 /* flush a full buffer */ 2398 if (num_del == filter_list_len) { 2399 i40e_aqc_del_filters(vsi, vsi_name, del_list, 2400 num_del, &retval); 2401 memset(del_list, 0, list_size); 2402 num_del = 0; 2403 } 2404 /* Release memory for MAC filter entries which were 2405 * synced up with HW. 2406 */ 2407 hlist_del(&f->hlist); 2408 kfree(f); 2409 } 2410 2411 if (num_del) { 2412 i40e_aqc_del_filters(vsi, vsi_name, del_list, 2413 num_del, &retval); 2414 } 2415 2416 kfree(del_list); 2417 del_list = NULL; 2418 } 2419 2420 if (!hlist_empty(&tmp_add_list)) { 2421 /* Do all the adds now. */ 2422 filter_list_len = hw->aq.asq_buf_size / 2423 sizeof(struct i40e_aqc_add_macvlan_element_data); 2424 list_size = filter_list_len * 2425 sizeof(struct i40e_aqc_add_macvlan_element_data); 2426 add_list = kzalloc(list_size, GFP_ATOMIC); 2427 if (!add_list) 2428 goto err_no_memory; 2429 2430 num_add = 0; 2431 hlist_for_each_entry_safe(new, h, &tmp_add_list, hlist) { 2432 /* handle broadcast filters by updating the broadcast 2433 * promiscuous flag instead of adding a MAC filter. 2434 */ 2435 if (is_broadcast_ether_addr(new->f->macaddr)) { 2436 if (i40e_aqc_broadcast_filter(vsi, vsi_name, 2437 new->f)) 2438 new->state = I40E_FILTER_FAILED; 2439 else 2440 new->state = I40E_FILTER_ACTIVE; 2441 continue; 2442 } 2443 2444 /* add to add array */ 2445 if (num_add == 0) 2446 add_head = new; 2447 cmd_flags = 0; 2448 ether_addr_copy(add_list[num_add].mac_addr, 2449 new->f->macaddr); 2450 if (new->f->vlan == I40E_VLAN_ANY) { 2451 add_list[num_add].vlan_tag = 0; 2452 cmd_flags |= I40E_AQC_MACVLAN_ADD_IGNORE_VLAN; 2453 } else { 2454 add_list[num_add].vlan_tag = 2455 cpu_to_le16((u16)(new->f->vlan)); 2456 } 2457 add_list[num_add].queue_number = 0; 2458 /* set invalid match method for later detection */ 2459 add_list[num_add].match_method = I40E_AQC_MM_ERR_NO_RES; 2460 cmd_flags |= I40E_AQC_MACVLAN_ADD_PERFECT_MATCH; 2461 add_list[num_add].flags = cpu_to_le16(cmd_flags); 2462 num_add++; 2463 2464 /* flush a full buffer */ 2465 if (num_add == filter_list_len) { 2466 i40e_aqc_add_filters(vsi, vsi_name, add_list, 2467 add_head, num_add); 2468 memset(add_list, 0, list_size); 2469 num_add = 0; 2470 } 2471 } 2472 if (num_add) { 2473 i40e_aqc_add_filters(vsi, vsi_name, add_list, add_head, 2474 num_add); 2475 } 2476 /* Now move all of the filters from the temp add list back to 2477 * the VSI's list. 2478 */ 2479 spin_lock_bh(&vsi->mac_filter_hash_lock); 2480 hlist_for_each_entry_safe(new, h, &tmp_add_list, hlist) { 2481 /* Only update the state if we're still NEW */ 2482 if (new->f->state == I40E_FILTER_NEW) 2483 new->f->state = new->state; 2484 hlist_del(&new->hlist); 2485 kfree(new); 2486 } 2487 spin_unlock_bh(&vsi->mac_filter_hash_lock); 2488 kfree(add_list); 2489 add_list = NULL; 2490 } 2491 2492 /* Determine the number of active and failed filters. */ 2493 spin_lock_bh(&vsi->mac_filter_hash_lock); 2494 vsi->active_filters = 0; 2495 hash_for_each(vsi->mac_filter_hash, bkt, f, hlist) { 2496 if (f->state == I40E_FILTER_ACTIVE) 2497 vsi->active_filters++; 2498 else if (f->state == I40E_FILTER_FAILED) 2499 failed_filters++; 2500 } 2501 spin_unlock_bh(&vsi->mac_filter_hash_lock); 2502 2503 /* Check if we are able to exit overflow promiscuous mode. We can 2504 * safely exit if we didn't just enter, we no longer have any failed 2505 * filters, and we have reduced filters below the threshold value. 2506 */ 2507 if (old_overflow && !failed_filters && 2508 vsi->active_filters < vsi->promisc_threshold) { 2509 dev_info(&pf->pdev->dev, 2510 "filter logjam cleared on %s, leaving overflow promiscuous mode\n", 2511 vsi_name); 2512 clear_bit(__I40E_VSI_OVERFLOW_PROMISC, vsi->state); 2513 vsi->promisc_threshold = 0; 2514 } 2515 2516 /* if the VF is not trusted do not do promisc */ 2517 if ((vsi->type == I40E_VSI_SRIOV) && !pf->vf[vsi->vf_id].trusted) { 2518 clear_bit(__I40E_VSI_OVERFLOW_PROMISC, vsi->state); 2519 goto out; 2520 } 2521 2522 new_overflow = test_bit(__I40E_VSI_OVERFLOW_PROMISC, vsi->state); 2523 2524 /* If we are entering overflow promiscuous, we need to calculate a new 2525 * threshold for when we are safe to exit 2526 */ 2527 if (!old_overflow && new_overflow) 2528 vsi->promisc_threshold = (vsi->active_filters * 3) / 4; 2529 2530 /* check for changes in promiscuous modes */ 2531 if (changed_flags & IFF_ALLMULTI) { 2532 bool cur_multipromisc; 2533 2534 cur_multipromisc = !!(vsi->current_netdev_flags & IFF_ALLMULTI); 2535 aq_ret = i40e_aq_set_vsi_multicast_promiscuous(&vsi->back->hw, 2536 vsi->seid, 2537 cur_multipromisc, 2538 NULL); 2539 if (aq_ret) { 2540 retval = i40e_aq_rc_to_posix(aq_ret, 2541 hw->aq.asq_last_status); 2542 dev_info(&pf->pdev->dev, 2543 "set multi promisc failed on %s, err %s aq_err %s\n", 2544 vsi_name, 2545 i40e_stat_str(hw, aq_ret), 2546 i40e_aq_str(hw, hw->aq.asq_last_status)); 2547 } else { 2548 dev_info(&pf->pdev->dev, "%s is %s allmulti mode.\n", 2549 vsi->netdev->name, 2550 cur_multipromisc ? "entering" : "leaving"); 2551 } 2552 } 2553 2554 if ((changed_flags & IFF_PROMISC) || old_overflow != new_overflow) { 2555 bool cur_promisc; 2556 2557 cur_promisc = (!!(vsi->current_netdev_flags & IFF_PROMISC) || 2558 new_overflow); 2559 aq_ret = i40e_set_promiscuous(pf, cur_promisc); 2560 if (aq_ret) { 2561 retval = i40e_aq_rc_to_posix(aq_ret, 2562 hw->aq.asq_last_status); 2563 dev_info(&pf->pdev->dev, 2564 "Setting promiscuous %s failed on %s, err %s aq_err %s\n", 2565 cur_promisc ? "on" : "off", 2566 vsi_name, 2567 i40e_stat_str(hw, aq_ret), 2568 i40e_aq_str(hw, hw->aq.asq_last_status)); 2569 } 2570 } 2571 out: 2572 /* if something went wrong then set the changed flag so we try again */ 2573 if (retval) 2574 vsi->flags |= I40E_VSI_FLAG_FILTER_CHANGED; 2575 2576 clear_bit(__I40E_VSI_SYNCING_FILTERS, vsi->state); 2577 return retval; 2578 2579 err_no_memory: 2580 /* Restore elements on the temporary add and delete lists */ 2581 spin_lock_bh(&vsi->mac_filter_hash_lock); 2582 err_no_memory_locked: 2583 i40e_undo_del_filter_entries(vsi, &tmp_del_list); 2584 i40e_undo_add_filter_entries(vsi, &tmp_add_list); 2585 spin_unlock_bh(&vsi->mac_filter_hash_lock); 2586 2587 vsi->flags |= I40E_VSI_FLAG_FILTER_CHANGED; 2588 clear_bit(__I40E_VSI_SYNCING_FILTERS, vsi->state); 2589 return -ENOMEM; 2590 } 2591 2592 /** 2593 * i40e_sync_filters_subtask - Sync the VSI filter list with HW 2594 * @pf: board private structure 2595 **/ 2596 static void i40e_sync_filters_subtask(struct i40e_pf *pf) 2597 { 2598 int v; 2599 2600 if (!pf) 2601 return; 2602 if (!test_and_clear_bit(__I40E_MACVLAN_SYNC_PENDING, pf->state)) 2603 return; 2604 if (test_and_set_bit(__I40E_VF_DISABLE, pf->state)) { 2605 set_bit(__I40E_MACVLAN_SYNC_PENDING, pf->state); 2606 return; 2607 } 2608 2609 for (v = 0; v < pf->num_alloc_vsi; v++) { 2610 if (pf->vsi[v] && 2611 (pf->vsi[v]->flags & I40E_VSI_FLAG_FILTER_CHANGED)) { 2612 int ret = i40e_sync_vsi_filters(pf->vsi[v]); 2613 2614 if (ret) { 2615 /* come back and try again later */ 2616 set_bit(__I40E_MACVLAN_SYNC_PENDING, 2617 pf->state); 2618 break; 2619 } 2620 } 2621 } 2622 clear_bit(__I40E_VF_DISABLE, pf->state); 2623 } 2624 2625 /** 2626 * i40e_max_xdp_frame_size - returns the maximum allowed frame size for XDP 2627 * @vsi: the vsi 2628 **/ 2629 static int i40e_max_xdp_frame_size(struct i40e_vsi *vsi) 2630 { 2631 if (PAGE_SIZE >= 8192 || (vsi->back->flags & I40E_FLAG_LEGACY_RX)) 2632 return I40E_RXBUFFER_2048; 2633 else 2634 return I40E_RXBUFFER_3072; 2635 } 2636 2637 /** 2638 * i40e_change_mtu - NDO callback to change the Maximum Transfer Unit 2639 * @netdev: network interface device structure 2640 * @new_mtu: new value for maximum frame size 2641 * 2642 * Returns 0 on success, negative on failure 2643 **/ 2644 static int i40e_change_mtu(struct net_device *netdev, int new_mtu) 2645 { 2646 struct i40e_netdev_priv *np = netdev_priv(netdev); 2647 struct i40e_vsi *vsi = np->vsi; 2648 struct i40e_pf *pf = vsi->back; 2649 2650 if (i40e_enabled_xdp_vsi(vsi)) { 2651 int frame_size = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN; 2652 2653 if (frame_size > i40e_max_xdp_frame_size(vsi)) 2654 return -EINVAL; 2655 } 2656 2657 netdev_dbg(netdev, "changing MTU from %d to %d\n", 2658 netdev->mtu, new_mtu); 2659 netdev->mtu = new_mtu; 2660 if (netif_running(netdev)) 2661 i40e_vsi_reinit_locked(vsi); 2662 set_bit(__I40E_CLIENT_SERVICE_REQUESTED, pf->state); 2663 set_bit(__I40E_CLIENT_L2_CHANGE, pf->state); 2664 return 0; 2665 } 2666 2667 /** 2668 * i40e_ioctl - Access the hwtstamp interface 2669 * @netdev: network interface device structure 2670 * @ifr: interface request data 2671 * @cmd: ioctl command 2672 **/ 2673 int i40e_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) 2674 { 2675 struct i40e_netdev_priv *np = netdev_priv(netdev); 2676 struct i40e_pf *pf = np->vsi->back; 2677 2678 switch (cmd) { 2679 case SIOCGHWTSTAMP: 2680 return i40e_ptp_get_ts_config(pf, ifr); 2681 case SIOCSHWTSTAMP: 2682 return i40e_ptp_set_ts_config(pf, ifr); 2683 default: 2684 return -EOPNOTSUPP; 2685 } 2686 } 2687 2688 /** 2689 * i40e_vlan_stripping_enable - Turn on vlan stripping for the VSI 2690 * @vsi: the vsi being adjusted 2691 **/ 2692 void i40e_vlan_stripping_enable(struct i40e_vsi *vsi) 2693 { 2694 struct i40e_vsi_context ctxt; 2695 i40e_status ret; 2696 2697 /* Don't modify stripping options if a port VLAN is active */ 2698 if (vsi->info.pvid) 2699 return; 2700 2701 if ((vsi->info.valid_sections & 2702 cpu_to_le16(I40E_AQ_VSI_PROP_VLAN_VALID)) && 2703 ((vsi->info.port_vlan_flags & I40E_AQ_VSI_PVLAN_MODE_MASK) == 0)) 2704 return; /* already enabled */ 2705 2706 vsi->info.valid_sections = cpu_to_le16(I40E_AQ_VSI_PROP_VLAN_VALID); 2707 vsi->info.port_vlan_flags = I40E_AQ_VSI_PVLAN_MODE_ALL | 2708 I40E_AQ_VSI_PVLAN_EMOD_STR_BOTH; 2709 2710 ctxt.seid = vsi->seid; 2711 ctxt.info = vsi->info; 2712 ret = i40e_aq_update_vsi_params(&vsi->back->hw, &ctxt, NULL); 2713 if (ret) { 2714 dev_info(&vsi->back->pdev->dev, 2715 "update vlan stripping failed, err %s aq_err %s\n", 2716 i40e_stat_str(&vsi->back->hw, ret), 2717 i40e_aq_str(&vsi->back->hw, 2718 vsi->back->hw.aq.asq_last_status)); 2719 } 2720 } 2721 2722 /** 2723 * i40e_vlan_stripping_disable - Turn off vlan stripping for the VSI 2724 * @vsi: the vsi being adjusted 2725 **/ 2726 void i40e_vlan_stripping_disable(struct i40e_vsi *vsi) 2727 { 2728 struct i40e_vsi_context ctxt; 2729 i40e_status ret; 2730 2731 /* Don't modify stripping options if a port VLAN is active */ 2732 if (vsi->info.pvid) 2733 return; 2734 2735 if ((vsi->info.valid_sections & 2736 cpu_to_le16(I40E_AQ_VSI_PROP_VLAN_VALID)) && 2737 ((vsi->info.port_vlan_flags & I40E_AQ_VSI_PVLAN_EMOD_MASK) == 2738 I40E_AQ_VSI_PVLAN_EMOD_MASK)) 2739 return; /* already disabled */ 2740 2741 vsi->info.valid_sections = cpu_to_le16(I40E_AQ_VSI_PROP_VLAN_VALID); 2742 vsi->info.port_vlan_flags = I40E_AQ_VSI_PVLAN_MODE_ALL | 2743 I40E_AQ_VSI_PVLAN_EMOD_NOTHING; 2744 2745 ctxt.seid = vsi->seid; 2746 ctxt.info = vsi->info; 2747 ret = i40e_aq_update_vsi_params(&vsi->back->hw, &ctxt, NULL); 2748 if (ret) { 2749 dev_info(&vsi->back->pdev->dev, 2750 "update vlan stripping failed, err %s aq_err %s\n", 2751 i40e_stat_str(&vsi->back->hw, ret), 2752 i40e_aq_str(&vsi->back->hw, 2753 vsi->back->hw.aq.asq_last_status)); 2754 } 2755 } 2756 2757 /** 2758 * i40e_add_vlan_all_mac - Add a MAC/VLAN filter for each existing MAC address 2759 * @vsi: the vsi being configured 2760 * @vid: vlan id to be added (0 = untagged only , -1 = any) 2761 * 2762 * This is a helper function for adding a new MAC/VLAN filter with the 2763 * specified VLAN for each existing MAC address already in the hash table. 2764 * This function does *not* perform any accounting to update filters based on 2765 * VLAN mode. 2766 * 2767 * NOTE: this function expects to be called while under the 2768 * mac_filter_hash_lock 2769 **/ 2770 int i40e_add_vlan_all_mac(struct i40e_vsi *vsi, s16 vid) 2771 { 2772 struct i40e_mac_filter *f, *add_f; 2773 struct hlist_node *h; 2774 int bkt; 2775 2776 hash_for_each_safe(vsi->mac_filter_hash, bkt, h, f, hlist) { 2777 if (f->state == I40E_FILTER_REMOVE) 2778 continue; 2779 add_f = i40e_add_filter(vsi, f->macaddr, vid); 2780 if (!add_f) { 2781 dev_info(&vsi->back->pdev->dev, 2782 "Could not add vlan filter %d for %pM\n", 2783 vid, f->macaddr); 2784 return -ENOMEM; 2785 } 2786 } 2787 2788 return 0; 2789 } 2790 2791 /** 2792 * i40e_vsi_add_vlan - Add VSI membership for given VLAN 2793 * @vsi: the VSI being configured 2794 * @vid: VLAN id to be added 2795 **/ 2796 int i40e_vsi_add_vlan(struct i40e_vsi *vsi, u16 vid) 2797 { 2798 int err; 2799 2800 if (vsi->info.pvid) 2801 return -EINVAL; 2802 2803 /* The network stack will attempt to add VID=0, with the intention to 2804 * receive priority tagged packets with a VLAN of 0. Our HW receives 2805 * these packets by default when configured to receive untagged 2806 * packets, so we don't need to add a filter for this case. 2807 * Additionally, HW interprets adding a VID=0 filter as meaning to 2808 * receive *only* tagged traffic and stops receiving untagged traffic. 2809 * Thus, we do not want to actually add a filter for VID=0 2810 */ 2811 if (!vid) 2812 return 0; 2813 2814 /* Locked once because all functions invoked below iterates list*/ 2815 spin_lock_bh(&vsi->mac_filter_hash_lock); 2816 err = i40e_add_vlan_all_mac(vsi, vid); 2817 spin_unlock_bh(&vsi->mac_filter_hash_lock); 2818 if (err) 2819 return err; 2820 2821 /* schedule our worker thread which will take care of 2822 * applying the new filter changes 2823 */ 2824 i40e_service_event_schedule(vsi->back); 2825 return 0; 2826 } 2827 2828 /** 2829 * i40e_rm_vlan_all_mac - Remove MAC/VLAN pair for all MAC with the given VLAN 2830 * @vsi: the vsi being configured 2831 * @vid: vlan id to be removed (0 = untagged only , -1 = any) 2832 * 2833 * This function should be used to remove all VLAN filters which match the 2834 * given VID. It does not schedule the service event and does not take the 2835 * mac_filter_hash_lock so it may be combined with other operations under 2836 * a single invocation of the mac_filter_hash_lock. 2837 * 2838 * NOTE: this function expects to be called while under the 2839 * mac_filter_hash_lock 2840 */ 2841 void i40e_rm_vlan_all_mac(struct i40e_vsi *vsi, s16 vid) 2842 { 2843 struct i40e_mac_filter *f; 2844 struct hlist_node *h; 2845 int bkt; 2846 2847 hash_for_each_safe(vsi->mac_filter_hash, bkt, h, f, hlist) { 2848 if (f->vlan == vid) 2849 __i40e_del_filter(vsi, f); 2850 } 2851 } 2852 2853 /** 2854 * i40e_vsi_kill_vlan - Remove VSI membership for given VLAN 2855 * @vsi: the VSI being configured 2856 * @vid: VLAN id to be removed 2857 **/ 2858 void i40e_vsi_kill_vlan(struct i40e_vsi *vsi, u16 vid) 2859 { 2860 if (!vid || vsi->info.pvid) 2861 return; 2862 2863 spin_lock_bh(&vsi->mac_filter_hash_lock); 2864 i40e_rm_vlan_all_mac(vsi, vid); 2865 spin_unlock_bh(&vsi->mac_filter_hash_lock); 2866 2867 /* schedule our worker thread which will take care of 2868 * applying the new filter changes 2869 */ 2870 i40e_service_event_schedule(vsi->back); 2871 } 2872 2873 /** 2874 * i40e_vlan_rx_add_vid - Add a vlan id filter to HW offload 2875 * @netdev: network interface to be adjusted 2876 * @proto: unused protocol value 2877 * @vid: vlan id to be added 2878 * 2879 * net_device_ops implementation for adding vlan ids 2880 **/ 2881 static int i40e_vlan_rx_add_vid(struct net_device *netdev, 2882 __always_unused __be16 proto, u16 vid) 2883 { 2884 struct i40e_netdev_priv *np = netdev_priv(netdev); 2885 struct i40e_vsi *vsi = np->vsi; 2886 int ret = 0; 2887 2888 if (vid >= VLAN_N_VID) 2889 return -EINVAL; 2890 2891 ret = i40e_vsi_add_vlan(vsi, vid); 2892 if (!ret) 2893 set_bit(vid, vsi->active_vlans); 2894 2895 return ret; 2896 } 2897 2898 /** 2899 * i40e_vlan_rx_add_vid_up - Add a vlan id filter to HW offload in UP path 2900 * @netdev: network interface to be adjusted 2901 * @proto: unused protocol value 2902 * @vid: vlan id to be added 2903 **/ 2904 static void i40e_vlan_rx_add_vid_up(struct net_device *netdev, 2905 __always_unused __be16 proto, u16 vid) 2906 { 2907 struct i40e_netdev_priv *np = netdev_priv(netdev); 2908 struct i40e_vsi *vsi = np->vsi; 2909 2910 if (vid >= VLAN_N_VID) 2911 return; 2912 set_bit(vid, vsi->active_vlans); 2913 } 2914 2915 /** 2916 * i40e_vlan_rx_kill_vid - Remove a vlan id filter from HW offload 2917 * @netdev: network interface to be adjusted 2918 * @proto: unused protocol value 2919 * @vid: vlan id to be removed 2920 * 2921 * net_device_ops implementation for removing vlan ids 2922 **/ 2923 static int i40e_vlan_rx_kill_vid(struct net_device *netdev, 2924 __always_unused __be16 proto, u16 vid) 2925 { 2926 struct i40e_netdev_priv *np = netdev_priv(netdev); 2927 struct i40e_vsi *vsi = np->vsi; 2928 2929 /* return code is ignored as there is nothing a user 2930 * can do about failure to remove and a log message was 2931 * already printed from the other function 2932 */ 2933 i40e_vsi_kill_vlan(vsi, vid); 2934 2935 clear_bit(vid, vsi->active_vlans); 2936 2937 return 0; 2938 } 2939 2940 /** 2941 * i40e_restore_vlan - Reinstate vlans when vsi/netdev comes back up 2942 * @vsi: the vsi being brought back up 2943 **/ 2944 static void i40e_restore_vlan(struct i40e_vsi *vsi) 2945 { 2946 u16 vid; 2947 2948 if (!vsi->netdev) 2949 return; 2950 2951 if (vsi->netdev->features & NETIF_F_HW_VLAN_CTAG_RX) 2952 i40e_vlan_stripping_enable(vsi); 2953 else 2954 i40e_vlan_stripping_disable(vsi); 2955 2956 for_each_set_bit(vid, vsi->active_vlans, VLAN_N_VID) 2957 i40e_vlan_rx_add_vid_up(vsi->netdev, htons(ETH_P_8021Q), 2958 vid); 2959 } 2960 2961 /** 2962 * i40e_vsi_add_pvid - Add pvid for the VSI 2963 * @vsi: the vsi being adjusted 2964 * @vid: the vlan id to set as a PVID 2965 **/ 2966 int i40e_vsi_add_pvid(struct i40e_vsi *vsi, u16 vid) 2967 { 2968 struct i40e_vsi_context ctxt; 2969 i40e_status ret; 2970 2971 vsi->info.valid_sections = cpu_to_le16(I40E_AQ_VSI_PROP_VLAN_VALID); 2972 vsi->info.pvid = cpu_to_le16(vid); 2973 vsi->info.port_vlan_flags = I40E_AQ_VSI_PVLAN_MODE_TAGGED | 2974 I40E_AQ_VSI_PVLAN_INSERT_PVID | 2975 I40E_AQ_VSI_PVLAN_EMOD_STR; 2976 2977 ctxt.seid = vsi->seid; 2978 ctxt.info = vsi->info; 2979 ret = i40e_aq_update_vsi_params(&vsi->back->hw, &ctxt, NULL); 2980 if (ret) { 2981 dev_info(&vsi->back->pdev->dev, 2982 "add pvid failed, err %s aq_err %s\n", 2983 i40e_stat_str(&vsi->back->hw, ret), 2984 i40e_aq_str(&vsi->back->hw, 2985 vsi->back->hw.aq.asq_last_status)); 2986 return -ENOENT; 2987 } 2988 2989 return 0; 2990 } 2991 2992 /** 2993 * i40e_vsi_remove_pvid - Remove the pvid from the VSI 2994 * @vsi: the vsi being adjusted 2995 * 2996 * Just use the vlan_rx_register() service to put it back to normal 2997 **/ 2998 void i40e_vsi_remove_pvid(struct i40e_vsi *vsi) 2999 { 3000 vsi->info.pvid = 0; 3001 3002 i40e_vlan_stripping_disable(vsi); 3003 } 3004 3005 /** 3006 * i40e_vsi_setup_tx_resources - Allocate VSI Tx queue resources 3007 * @vsi: ptr to the VSI 3008 * 3009 * If this function returns with an error, then it's possible one or 3010 * more of the rings is populated (while the rest are not). It is the 3011 * callers duty to clean those orphaned rings. 3012 * 3013 * Return 0 on success, negative on failure 3014 **/ 3015 static int i40e_vsi_setup_tx_resources(struct i40e_vsi *vsi) 3016 { 3017 int i, err = 0; 3018 3019 for (i = 0; i < vsi->num_queue_pairs && !err; i++) 3020 err = i40e_setup_tx_descriptors(vsi->tx_rings[i]); 3021 3022 if (!i40e_enabled_xdp_vsi(vsi)) 3023 return err; 3024 3025 for (i = 0; i < vsi->num_queue_pairs && !err; i++) 3026 err = i40e_setup_tx_descriptors(vsi->xdp_rings[i]); 3027 3028 return err; 3029 } 3030 3031 /** 3032 * i40e_vsi_free_tx_resources - Free Tx resources for VSI queues 3033 * @vsi: ptr to the VSI 3034 * 3035 * Free VSI's transmit software resources 3036 **/ 3037 static void i40e_vsi_free_tx_resources(struct i40e_vsi *vsi) 3038 { 3039 int i; 3040 3041 if (vsi->tx_rings) { 3042 for (i = 0; i < vsi->num_queue_pairs; i++) 3043 if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc) 3044 i40e_free_tx_resources(vsi->tx_rings[i]); 3045 } 3046 3047 if (vsi->xdp_rings) { 3048 for (i = 0; i < vsi->num_queue_pairs; i++) 3049 if (vsi->xdp_rings[i] && vsi->xdp_rings[i]->desc) 3050 i40e_free_tx_resources(vsi->xdp_rings[i]); 3051 } 3052 } 3053 3054 /** 3055 * i40e_vsi_setup_rx_resources - Allocate VSI queues Rx resources 3056 * @vsi: ptr to the VSI 3057 * 3058 * If this function returns with an error, then it's possible one or 3059 * more of the rings is populated (while the rest are not). It is the 3060 * callers duty to clean those orphaned rings. 3061 * 3062 * Return 0 on success, negative on failure 3063 **/ 3064 static int i40e_vsi_setup_rx_resources(struct i40e_vsi *vsi) 3065 { 3066 int i, err = 0; 3067 3068 for (i = 0; i < vsi->num_queue_pairs && !err; i++) 3069 err = i40e_setup_rx_descriptors(vsi->rx_rings[i]); 3070 return err; 3071 } 3072 3073 /** 3074 * i40e_vsi_free_rx_resources - Free Rx Resources for VSI queues 3075 * @vsi: ptr to the VSI 3076 * 3077 * Free all receive software resources 3078 **/ 3079 static void i40e_vsi_free_rx_resources(struct i40e_vsi *vsi) 3080 { 3081 int i; 3082 3083 if (!vsi->rx_rings) 3084 return; 3085 3086 for (i = 0; i < vsi->num_queue_pairs; i++) 3087 if (vsi->rx_rings[i] && vsi->rx_rings[i]->desc) 3088 i40e_free_rx_resources(vsi->rx_rings[i]); 3089 } 3090 3091 /** 3092 * i40e_config_xps_tx_ring - Configure XPS for a Tx ring 3093 * @ring: The Tx ring to configure 3094 * 3095 * This enables/disables XPS for a given Tx descriptor ring 3096 * based on the TCs enabled for the VSI that ring belongs to. 3097 **/ 3098 static void i40e_config_xps_tx_ring(struct i40e_ring *ring) 3099 { 3100 int cpu; 3101 3102 if (!ring->q_vector || !ring->netdev || ring->ch) 3103 return; 3104 3105 /* We only initialize XPS once, so as not to overwrite user settings */ 3106 if (test_and_set_bit(__I40E_TX_XPS_INIT_DONE, ring->state)) 3107 return; 3108 3109 cpu = cpumask_local_spread(ring->q_vector->v_idx, -1); 3110 netif_set_xps_queue(ring->netdev, get_cpu_mask(cpu), 3111 ring->queue_index); 3112 } 3113 3114 /** 3115 * i40e_xsk_umem - Retrieve the AF_XDP ZC if XDP and ZC is enabled 3116 * @ring: The Tx or Rx ring 3117 * 3118 * Returns the UMEM or NULL. 3119 **/ 3120 static struct xdp_umem *i40e_xsk_umem(struct i40e_ring *ring) 3121 { 3122 bool xdp_on = i40e_enabled_xdp_vsi(ring->vsi); 3123 int qid = ring->queue_index; 3124 3125 if (ring_is_xdp(ring)) 3126 qid -= ring->vsi->alloc_queue_pairs; 3127 3128 if (!xdp_on || !test_bit(qid, ring->vsi->af_xdp_zc_qps)) 3129 return NULL; 3130 3131 return xdp_get_umem_from_qid(ring->vsi->netdev, qid); 3132 } 3133 3134 /** 3135 * i40e_configure_tx_ring - Configure a transmit ring context and rest 3136 * @ring: The Tx ring to configure 3137 * 3138 * Configure the Tx descriptor ring in the HMC context. 3139 **/ 3140 static int i40e_configure_tx_ring(struct i40e_ring *ring) 3141 { 3142 struct i40e_vsi *vsi = ring->vsi; 3143 u16 pf_q = vsi->base_queue + ring->queue_index; 3144 struct i40e_hw *hw = &vsi->back->hw; 3145 struct i40e_hmc_obj_txq tx_ctx; 3146 i40e_status err = 0; 3147 u32 qtx_ctl = 0; 3148 3149 if (ring_is_xdp(ring)) 3150 ring->xsk_umem = i40e_xsk_umem(ring); 3151 3152 /* some ATR related tx ring init */ 3153 if (vsi->back->flags & I40E_FLAG_FD_ATR_ENABLED) { 3154 ring->atr_sample_rate = vsi->back->atr_sample_rate; 3155 ring->atr_count = 0; 3156 } else { 3157 ring->atr_sample_rate = 0; 3158 } 3159 3160 /* configure XPS */ 3161 i40e_config_xps_tx_ring(ring); 3162 3163 /* clear the context structure first */ 3164 memset(&tx_ctx, 0, sizeof(tx_ctx)); 3165 3166 tx_ctx.new_context = 1; 3167 tx_ctx.base = (ring->dma / 128); 3168 tx_ctx.qlen = ring->count; 3169 tx_ctx.fd_ena = !!(vsi->back->flags & (I40E_FLAG_FD_SB_ENABLED | 3170 I40E_FLAG_FD_ATR_ENABLED)); 3171 tx_ctx.timesync_ena = !!(vsi->back->flags & I40E_FLAG_PTP); 3172 /* FDIR VSI tx ring can still use RS bit and writebacks */ 3173 if (vsi->type != I40E_VSI_FDIR) 3174 tx_ctx.head_wb_ena = 1; 3175 tx_ctx.head_wb_addr = ring->dma + 3176 (ring->count * sizeof(struct i40e_tx_desc)); 3177 3178 /* As part of VSI creation/update, FW allocates certain 3179 * Tx arbitration queue sets for each TC enabled for 3180 * the VSI. The FW returns the handles to these queue 3181 * sets as part of the response buffer to Add VSI, 3182 * Update VSI, etc. AQ commands. It is expected that 3183 * these queue set handles be associated with the Tx 3184 * queues by the driver as part of the TX queue context 3185 * initialization. This has to be done regardless of 3186 * DCB as by default everything is mapped to TC0. 3187 */ 3188 3189 if (ring->ch) 3190 tx_ctx.rdylist = 3191 le16_to_cpu(ring->ch->info.qs_handle[ring->dcb_tc]); 3192 3193 else 3194 tx_ctx.rdylist = le16_to_cpu(vsi->info.qs_handle[ring->dcb_tc]); 3195 3196 tx_ctx.rdylist_act = 0; 3197 3198 /* clear the context in the HMC */ 3199 err = i40e_clear_lan_tx_queue_context(hw, pf_q); 3200 if (err) { 3201 dev_info(&vsi->back->pdev->dev, 3202 "Failed to clear LAN Tx queue context on Tx ring %d (pf_q %d), error: %d\n", 3203 ring->queue_index, pf_q, err); 3204 return -ENOMEM; 3205 } 3206 3207 /* set the context in the HMC */ 3208 err = i40e_set_lan_tx_queue_context(hw, pf_q, &tx_ctx); 3209 if (err) { 3210 dev_info(&vsi->back->pdev->dev, 3211 "Failed to set LAN Tx queue context on Tx ring %d (pf_q %d, error: %d\n", 3212 ring->queue_index, pf_q, err); 3213 return -ENOMEM; 3214 } 3215 3216 /* Now associate this queue with this PCI function */ 3217 if (ring->ch) { 3218 if (ring->ch->type == I40E_VSI_VMDQ2) 3219 qtx_ctl = I40E_QTX_CTL_VM_QUEUE; 3220 else 3221 return -EINVAL; 3222 3223 qtx_ctl |= (ring->ch->vsi_number << 3224 I40E_QTX_CTL_VFVM_INDX_SHIFT) & 3225 I40E_QTX_CTL_VFVM_INDX_MASK; 3226 } else { 3227 if (vsi->type == I40E_VSI_VMDQ2) { 3228 qtx_ctl = I40E_QTX_CTL_VM_QUEUE; 3229 qtx_ctl |= ((vsi->id) << I40E_QTX_CTL_VFVM_INDX_SHIFT) & 3230 I40E_QTX_CTL_VFVM_INDX_MASK; 3231 } else { 3232 qtx_ctl = I40E_QTX_CTL_PF_QUEUE; 3233 } 3234 } 3235 3236 qtx_ctl |= ((hw->pf_id << I40E_QTX_CTL_PF_INDX_SHIFT) & 3237 I40E_QTX_CTL_PF_INDX_MASK); 3238 wr32(hw, I40E_QTX_CTL(pf_q), qtx_ctl); 3239 i40e_flush(hw); 3240 3241 /* cache tail off for easier writes later */ 3242 ring->tail = hw->hw_addr + I40E_QTX_TAIL(pf_q); 3243 3244 return 0; 3245 } 3246 3247 /** 3248 * i40e_configure_rx_ring - Configure a receive ring context 3249 * @ring: The Rx ring to configure 3250 * 3251 * Configure the Rx descriptor ring in the HMC context. 3252 **/ 3253 static int i40e_configure_rx_ring(struct i40e_ring *ring) 3254 { 3255 struct i40e_vsi *vsi = ring->vsi; 3256 u32 chain_len = vsi->back->hw.func_caps.rx_buf_chain_len; 3257 u16 pf_q = vsi->base_queue + ring->queue_index; 3258 struct i40e_hw *hw = &vsi->back->hw; 3259 struct i40e_hmc_obj_rxq rx_ctx; 3260 i40e_status err = 0; 3261 bool ok; 3262 int ret; 3263 3264 bitmap_zero(ring->state, __I40E_RING_STATE_NBITS); 3265 3266 /* clear the context structure first */ 3267 memset(&rx_ctx, 0, sizeof(rx_ctx)); 3268 3269 if (ring->vsi->type == I40E_VSI_MAIN) 3270 xdp_rxq_info_unreg_mem_model(&ring->xdp_rxq); 3271 3272 kfree(ring->rx_bi); 3273 ring->xsk_umem = i40e_xsk_umem(ring); 3274 if (ring->xsk_umem) { 3275 ret = i40e_alloc_rx_bi_zc(ring); 3276 if (ret) 3277 return ret; 3278 ring->rx_buf_len = xsk_umem_get_rx_frame_size(ring->xsk_umem); 3279 /* For AF_XDP ZC, we disallow packets to span on 3280 * multiple buffers, thus letting us skip that 3281 * handling in the fast-path. 3282 */ 3283 chain_len = 1; 3284 ret = xdp_rxq_info_reg_mem_model(&ring->xdp_rxq, 3285 MEM_TYPE_XSK_BUFF_POOL, 3286 NULL); 3287 if (ret) 3288 return ret; 3289 dev_info(&vsi->back->pdev->dev, 3290 "Registered XDP mem model MEM_TYPE_XSK_BUFF_POOL on Rx ring %d\n", 3291 ring->queue_index); 3292 3293 } else { 3294 ret = i40e_alloc_rx_bi(ring); 3295 if (ret) 3296 return ret; 3297 ring->rx_buf_len = vsi->rx_buf_len; 3298 if (ring->vsi->type == I40E_VSI_MAIN) { 3299 ret = xdp_rxq_info_reg_mem_model(&ring->xdp_rxq, 3300 MEM_TYPE_PAGE_SHARED, 3301 NULL); 3302 if (ret) 3303 return ret; 3304 } 3305 } 3306 3307 rx_ctx.dbuff = DIV_ROUND_UP(ring->rx_buf_len, 3308 BIT_ULL(I40E_RXQ_CTX_DBUFF_SHIFT)); 3309 3310 rx_ctx.base = (ring->dma / 128); 3311 rx_ctx.qlen = ring->count; 3312 3313 /* use 32 byte descriptors */ 3314 rx_ctx.dsize = 1; 3315 3316 /* descriptor type is always zero 3317 * rx_ctx.dtype = 0; 3318 */ 3319 rx_ctx.hsplit_0 = 0; 3320 3321 rx_ctx.rxmax = min_t(u16, vsi->max_frame, chain_len * ring->rx_buf_len); 3322 if (hw->revision_id == 0) 3323 rx_ctx.lrxqthresh = 0; 3324 else 3325 rx_ctx.lrxqthresh = 1; 3326 rx_ctx.crcstrip = 1; 3327 rx_ctx.l2tsel = 1; 3328 /* this controls whether VLAN is stripped from inner headers */ 3329 rx_ctx.showiv = 0; 3330 /* set the prefena field to 1 because the manual says to */ 3331 rx_ctx.prefena = 1; 3332 3333 /* clear the context in the HMC */ 3334 err = i40e_clear_lan_rx_queue_context(hw, pf_q); 3335 if (err) { 3336 dev_info(&vsi->back->pdev->dev, 3337 "Failed to clear LAN Rx queue context on Rx ring %d (pf_q %d), error: %d\n", 3338 ring->queue_index, pf_q, err); 3339 return -ENOMEM; 3340 } 3341 3342 /* set the context in the HMC */ 3343 err = i40e_set_lan_rx_queue_context(hw, pf_q, &rx_ctx); 3344 if (err) { 3345 dev_info(&vsi->back->pdev->dev, 3346 "Failed to set LAN Rx queue context on Rx ring %d (pf_q %d), error: %d\n", 3347 ring->queue_index, pf_q, err); 3348 return -ENOMEM; 3349 } 3350 3351 /* configure Rx buffer alignment */ 3352 if (!vsi->netdev || (vsi->back->flags & I40E_FLAG_LEGACY_RX)) 3353 clear_ring_build_skb_enabled(ring); 3354 else 3355 set_ring_build_skb_enabled(ring); 3356 3357 /* cache tail for quicker writes, and clear the reg before use */ 3358 ring->tail = hw->hw_addr + I40E_QRX_TAIL(pf_q); 3359 writel(0, ring->tail); 3360 3361 if (ring->xsk_umem) { 3362 xsk_buff_set_rxq_info(ring->xsk_umem, &ring->xdp_rxq); 3363 ok = i40e_alloc_rx_buffers_zc(ring, I40E_DESC_UNUSED(ring)); 3364 } else { 3365 ok = !i40e_alloc_rx_buffers(ring, I40E_DESC_UNUSED(ring)); 3366 } 3367 if (!ok) { 3368 /* Log this in case the user has forgotten to give the kernel 3369 * any buffers, even later in the application. 3370 */ 3371 dev_info(&vsi->back->pdev->dev, 3372 "Failed to allocate some buffers on %sRx ring %d (pf_q %d)\n", 3373 ring->xsk_umem ? "UMEM enabled " : "", 3374 ring->queue_index, pf_q); 3375 } 3376 3377 return 0; 3378 } 3379 3380 /** 3381 * i40e_vsi_configure_tx - Configure the VSI for Tx 3382 * @vsi: VSI structure describing this set of rings and resources 3383 * 3384 * Configure the Tx VSI for operation. 3385 **/ 3386 static int i40e_vsi_configure_tx(struct i40e_vsi *vsi) 3387 { 3388 int err = 0; 3389 u16 i; 3390 3391 for (i = 0; (i < vsi->num_queue_pairs) && !err; i++) 3392 err = i40e_configure_tx_ring(vsi->tx_rings[i]); 3393 3394 if (err || !i40e_enabled_xdp_vsi(vsi)) 3395 return err; 3396 3397 for (i = 0; (i < vsi->num_queue_pairs) && !err; i++) 3398 err = i40e_configure_tx_ring(vsi->xdp_rings[i]); 3399 3400 return err; 3401 } 3402 3403 /** 3404 * i40e_vsi_configure_rx - Configure the VSI for Rx 3405 * @vsi: the VSI being configured 3406 * 3407 * Configure the Rx VSI for operation. 3408 **/ 3409 static int i40e_vsi_configure_rx(struct i40e_vsi *vsi) 3410 { 3411 int err = 0; 3412 u16 i; 3413 3414 if (!vsi->netdev || (vsi->back->flags & I40E_FLAG_LEGACY_RX)) { 3415 vsi->max_frame = I40E_MAX_RXBUFFER; 3416 vsi->rx_buf_len = I40E_RXBUFFER_2048; 3417 #if (PAGE_SIZE < 8192) 3418 } else if (!I40E_2K_TOO_SMALL_WITH_PADDING && 3419 (vsi->netdev->mtu <= ETH_DATA_LEN)) { 3420 vsi->max_frame = I40E_RXBUFFER_1536 - NET_IP_ALIGN; 3421 vsi->rx_buf_len = I40E_RXBUFFER_1536 - NET_IP_ALIGN; 3422 #endif 3423 } else { 3424 vsi->max_frame = I40E_MAX_RXBUFFER; 3425 vsi->rx_buf_len = (PAGE_SIZE < 8192) ? I40E_RXBUFFER_3072 : 3426 I40E_RXBUFFER_2048; 3427 } 3428 3429 /* set up individual rings */ 3430 for (i = 0; i < vsi->num_queue_pairs && !err; i++) 3431 err = i40e_configure_rx_ring(vsi->rx_rings[i]); 3432 3433 return err; 3434 } 3435 3436 /** 3437 * i40e_vsi_config_dcb_rings - Update rings to reflect DCB TC 3438 * @vsi: ptr to the VSI 3439 **/ 3440 static void i40e_vsi_config_dcb_rings(struct i40e_vsi *vsi) 3441 { 3442 struct i40e_ring *tx_ring, *rx_ring; 3443 u16 qoffset, qcount; 3444 int i, n; 3445 3446 if (!(vsi->back->flags & I40E_FLAG_DCB_ENABLED)) { 3447 /* Reset the TC information */ 3448 for (i = 0; i < vsi->num_queue_pairs; i++) { 3449 rx_ring = vsi->rx_rings[i]; 3450 tx_ring = vsi->tx_rings[i]; 3451 rx_ring->dcb_tc = 0; 3452 tx_ring->dcb_tc = 0; 3453 } 3454 return; 3455 } 3456 3457 for (n = 0; n < I40E_MAX_TRAFFIC_CLASS; n++) { 3458 if (!(vsi->tc_config.enabled_tc & BIT_ULL(n))) 3459 continue; 3460 3461 qoffset = vsi->tc_config.tc_info[n].qoffset; 3462 qcount = vsi->tc_config.tc_info[n].qcount; 3463 for (i = qoffset; i < (qoffset + qcount); i++) { 3464 rx_ring = vsi->rx_rings[i]; 3465 tx_ring = vsi->tx_rings[i]; 3466 rx_ring->dcb_tc = n; 3467 tx_ring->dcb_tc = n; 3468 } 3469 } 3470 } 3471 3472 /** 3473 * i40e_set_vsi_rx_mode - Call set_rx_mode on a VSI 3474 * @vsi: ptr to the VSI 3475 **/ 3476 static void i40e_set_vsi_rx_mode(struct i40e_vsi *vsi) 3477 { 3478 if (vsi->netdev) 3479 i40e_set_rx_mode(vsi->netdev); 3480 } 3481 3482 /** 3483 * i40e_fdir_filter_restore - Restore the Sideband Flow Director filters 3484 * @vsi: Pointer to the targeted VSI 3485 * 3486 * This function replays the hlist on the hw where all the SB Flow Director 3487 * filters were saved. 3488 **/ 3489 static void i40e_fdir_filter_restore(struct i40e_vsi *vsi) 3490 { 3491 struct i40e_fdir_filter *filter; 3492 struct i40e_pf *pf = vsi->back; 3493 struct hlist_node *node; 3494 3495 if (!(pf->flags & I40E_FLAG_FD_SB_ENABLED)) 3496 return; 3497 3498 /* Reset FDir counters as we're replaying all existing filters */ 3499 pf->fd_tcp4_filter_cnt = 0; 3500 pf->fd_udp4_filter_cnt = 0; 3501 pf->fd_sctp4_filter_cnt = 0; 3502 pf->fd_ip4_filter_cnt = 0; 3503 3504 hlist_for_each_entry_safe(filter, node, 3505 &pf->fdir_filter_list, fdir_node) { 3506 i40e_add_del_fdir(vsi, filter, true); 3507 } 3508 } 3509 3510 /** 3511 * i40e_vsi_configure - Set up the VSI for action 3512 * @vsi: the VSI being configured 3513 **/ 3514 static int i40e_vsi_configure(struct i40e_vsi *vsi) 3515 { 3516 int err; 3517 3518 i40e_set_vsi_rx_mode(vsi); 3519 i40e_restore_vlan(vsi); 3520 i40e_vsi_config_dcb_rings(vsi); 3521 err = i40e_vsi_configure_tx(vsi); 3522 if (!err) 3523 err = i40e_vsi_configure_rx(vsi); 3524 3525 return err; 3526 } 3527 3528 /** 3529 * i40e_vsi_configure_msix - MSIX mode Interrupt Config in the HW 3530 * @vsi: the VSI being configured 3531 **/ 3532 static void i40e_vsi_configure_msix(struct i40e_vsi *vsi) 3533 { 3534 bool has_xdp = i40e_enabled_xdp_vsi(vsi); 3535 struct i40e_pf *pf = vsi->back; 3536 struct i40e_hw *hw = &pf->hw; 3537 u16 vector; 3538 int i, q; 3539 u32 qp; 3540 3541 /* The interrupt indexing is offset by 1 in the PFINT_ITRn 3542 * and PFINT_LNKLSTn registers, e.g.: 3543 * PFINT_ITRn[0..n-1] gets msix-1..msix-n (qpair interrupts) 3544 */ 3545 qp = vsi->base_queue; 3546 vector = vsi->base_vector; 3547 for (i = 0; i < vsi->num_q_vectors; i++, vector++) { 3548 struct i40e_q_vector *q_vector = vsi->q_vectors[i]; 3549 3550 q_vector->rx.next_update = jiffies + 1; 3551 q_vector->rx.target_itr = 3552 ITR_TO_REG(vsi->rx_rings[i]->itr_setting); 3553 wr32(hw, I40E_PFINT_ITRN(I40E_RX_ITR, vector - 1), 3554 q_vector->rx.target_itr >> 1); 3555 q_vector->rx.current_itr = q_vector->rx.target_itr; 3556 3557 q_vector->tx.next_update = jiffies + 1; 3558 q_vector->tx.target_itr = 3559 ITR_TO_REG(vsi->tx_rings[i]->itr_setting); 3560 wr32(hw, I40E_PFINT_ITRN(I40E_TX_ITR, vector - 1), 3561 q_vector->tx.target_itr >> 1); 3562 q_vector->tx.current_itr = q_vector->tx.target_itr; 3563 3564 wr32(hw, I40E_PFINT_RATEN(vector - 1), 3565 i40e_intrl_usec_to_reg(vsi->int_rate_limit)); 3566 3567 /* Linked list for the queuepairs assigned to this vector */ 3568 wr32(hw, I40E_PFINT_LNKLSTN(vector - 1), qp); 3569 for (q = 0; q < q_vector->num_ringpairs; q++) { 3570 u32 nextqp = has_xdp ? qp + vsi->alloc_queue_pairs : qp; 3571 u32 val; 3572 3573 val = I40E_QINT_RQCTL_CAUSE_ENA_MASK | 3574 (I40E_RX_ITR << I40E_QINT_RQCTL_ITR_INDX_SHIFT) | 3575 (vector << I40E_QINT_RQCTL_MSIX_INDX_SHIFT) | 3576 (nextqp << I40E_QINT_RQCTL_NEXTQ_INDX_SHIFT) | 3577 (I40E_QUEUE_TYPE_TX << 3578 I40E_QINT_RQCTL_NEXTQ_TYPE_SHIFT); 3579 3580 wr32(hw, I40E_QINT_RQCTL(qp), val); 3581 3582 if (has_xdp) { 3583 val = I40E_QINT_TQCTL_CAUSE_ENA_MASK | 3584 (I40E_TX_ITR << I40E_QINT_TQCTL_ITR_INDX_SHIFT) | 3585 (vector << I40E_QINT_TQCTL_MSIX_INDX_SHIFT) | 3586 (qp << I40E_QINT_TQCTL_NEXTQ_INDX_SHIFT) | 3587 (I40E_QUEUE_TYPE_TX << 3588 I40E_QINT_TQCTL_NEXTQ_TYPE_SHIFT); 3589 3590 wr32(hw, I40E_QINT_TQCTL(nextqp), val); 3591 } 3592 3593 val = I40E_QINT_TQCTL_CAUSE_ENA_MASK | 3594 (I40E_TX_ITR << I40E_QINT_TQCTL_ITR_INDX_SHIFT) | 3595 (vector << I40E_QINT_TQCTL_MSIX_INDX_SHIFT) | 3596 ((qp + 1) << I40E_QINT_TQCTL_NEXTQ_INDX_SHIFT) | 3597 (I40E_QUEUE_TYPE_RX << 3598 I40E_QINT_TQCTL_NEXTQ_TYPE_SHIFT); 3599 3600 /* Terminate the linked list */ 3601 if (q == (q_vector->num_ringpairs - 1)) 3602 val |= (I40E_QUEUE_END_OF_LIST << 3603 I40E_QINT_TQCTL_NEXTQ_INDX_SHIFT); 3604 3605 wr32(hw, I40E_QINT_TQCTL(qp), val); 3606 qp++; 3607 } 3608 } 3609 3610 i40e_flush(hw); 3611 } 3612 3613 /** 3614 * i40e_enable_misc_int_causes - enable the non-queue interrupts 3615 * @pf: pointer to private device data structure 3616 **/ 3617 static void i40e_enable_misc_int_causes(struct i40e_pf *pf) 3618 { 3619 struct i40e_hw *hw = &pf->hw; 3620 u32 val; 3621 3622 /* clear things first */ 3623 wr32(hw, I40E_PFINT_ICR0_ENA, 0); /* disable all */ 3624 rd32(hw, I40E_PFINT_ICR0); /* read to clear */ 3625 3626 val = I40E_PFINT_ICR0_ENA_ECC_ERR_MASK | 3627 I40E_PFINT_ICR0_ENA_MAL_DETECT_MASK | 3628 I40E_PFINT_ICR0_ENA_GRST_MASK | 3629 I40E_PFINT_ICR0_ENA_PCI_EXCEPTION_MASK | 3630 I40E_PFINT_ICR0_ENA_GPIO_MASK | 3631 I40E_PFINT_ICR0_ENA_HMC_ERR_MASK | 3632 I40E_PFINT_ICR0_ENA_VFLR_MASK | 3633 I40E_PFINT_ICR0_ENA_ADMINQ_MASK; 3634 3635 if (pf->flags & I40E_FLAG_IWARP_ENABLED) 3636 val |= I40E_PFINT_ICR0_ENA_PE_CRITERR_MASK; 3637 3638 if (pf->flags & I40E_FLAG_PTP) 3639 val |= I40E_PFINT_ICR0_ENA_TIMESYNC_MASK; 3640 3641 wr32(hw, I40E_PFINT_ICR0_ENA, val); 3642 3643 /* SW_ITR_IDX = 0, but don't change INTENA */ 3644 wr32(hw, I40E_PFINT_DYN_CTL0, I40E_PFINT_DYN_CTL0_SW_ITR_INDX_MASK | 3645 I40E_PFINT_DYN_CTL0_INTENA_MSK_MASK); 3646 3647 /* OTHER_ITR_IDX = 0 */ 3648 wr32(hw, I40E_PFINT_STAT_CTL0, 0); 3649 } 3650 3651 /** 3652 * i40e_configure_msi_and_legacy - Legacy mode interrupt config in the HW 3653 * @vsi: the VSI being configured 3654 **/ 3655 static void i40e_configure_msi_and_legacy(struct i40e_vsi *vsi) 3656 { 3657 u32 nextqp = i40e_enabled_xdp_vsi(vsi) ? vsi->alloc_queue_pairs : 0; 3658 struct i40e_q_vector *q_vector = vsi->q_vectors[0]; 3659 struct i40e_pf *pf = vsi->back; 3660 struct i40e_hw *hw = &pf->hw; 3661 u32 val; 3662 3663 /* set the ITR configuration */ 3664 q_vector->rx.next_update = jiffies + 1; 3665 q_vector->rx.target_itr = ITR_TO_REG(vsi->rx_rings[0]->itr_setting); 3666 wr32(hw, I40E_PFINT_ITR0(I40E_RX_ITR), q_vector->rx.target_itr >> 1); 3667 q_vector->rx.current_itr = q_vector->rx.target_itr; 3668 q_vector->tx.next_update = jiffies + 1; 3669 q_vector->tx.target_itr = ITR_TO_REG(vsi->tx_rings[0]->itr_setting); 3670 wr32(hw, I40E_PFINT_ITR0(I40E_TX_ITR), q_vector->tx.target_itr >> 1); 3671 q_vector->tx.current_itr = q_vector->tx.target_itr; 3672 3673 i40e_enable_misc_int_causes(pf); 3674 3675 /* FIRSTQ_INDX = 0, FIRSTQ_TYPE = 0 (rx) */ 3676 wr32(hw, I40E_PFINT_LNKLST0, 0); 3677 3678 /* Associate the queue pair to the vector and enable the queue int */ 3679 val = I40E_QINT_RQCTL_CAUSE_ENA_MASK | 3680 (I40E_RX_ITR << I40E_QINT_RQCTL_ITR_INDX_SHIFT) | 3681 (nextqp << I40E_QINT_RQCTL_NEXTQ_INDX_SHIFT)| 3682 (I40E_QUEUE_TYPE_TX << I40E_QINT_TQCTL_NEXTQ_TYPE_SHIFT); 3683 3684 wr32(hw, I40E_QINT_RQCTL(0), val); 3685 3686 if (i40e_enabled_xdp_vsi(vsi)) { 3687 val = I40E_QINT_TQCTL_CAUSE_ENA_MASK | 3688 (I40E_TX_ITR << I40E_QINT_TQCTL_ITR_INDX_SHIFT)| 3689 (I40E_QUEUE_TYPE_TX 3690 << I40E_QINT_TQCTL_NEXTQ_TYPE_SHIFT); 3691 3692 wr32(hw, I40E_QINT_TQCTL(nextqp), val); 3693 } 3694 3695 val = I40E_QINT_TQCTL_CAUSE_ENA_MASK | 3696 (I40E_TX_ITR << I40E_QINT_TQCTL_ITR_INDX_SHIFT) | 3697 (I40E_QUEUE_END_OF_LIST << I40E_QINT_TQCTL_NEXTQ_INDX_SHIFT); 3698 3699 wr32(hw, I40E_QINT_TQCTL(0), val); 3700 i40e_flush(hw); 3701 } 3702 3703 /** 3704 * i40e_irq_dynamic_disable_icr0 - Disable default interrupt generation for icr0 3705 * @pf: board private structure 3706 **/ 3707 void i40e_irq_dynamic_disable_icr0(struct i40e_pf *pf) 3708 { 3709 struct i40e_hw *hw = &pf->hw; 3710 3711 wr32(hw, I40E_PFINT_DYN_CTL0, 3712 I40E_ITR_NONE << I40E_PFINT_DYN_CTLN_ITR_INDX_SHIFT); 3713 i40e_flush(hw); 3714 } 3715 3716 /** 3717 * i40e_irq_dynamic_enable_icr0 - Enable default interrupt generation for icr0 3718 * @pf: board private structure 3719 **/ 3720 void i40e_irq_dynamic_enable_icr0(struct i40e_pf *pf) 3721 { 3722 struct i40e_hw *hw = &pf->hw; 3723 u32 val; 3724 3725 val = I40E_PFINT_DYN_CTL0_INTENA_MASK | 3726 I40E_PFINT_DYN_CTL0_CLEARPBA_MASK | 3727 (I40E_ITR_NONE << I40E_PFINT_DYN_CTL0_ITR_INDX_SHIFT); 3728 3729 wr32(hw, I40E_PFINT_DYN_CTL0, val); 3730 i40e_flush(hw); 3731 } 3732 3733 /** 3734 * i40e_msix_clean_rings - MSIX mode Interrupt Handler 3735 * @irq: interrupt number 3736 * @data: pointer to a q_vector 3737 **/ 3738 static irqreturn_t i40e_msix_clean_rings(int irq, void *data) 3739 { 3740 struct i40e_q_vector *q_vector = data; 3741 3742 if (!q_vector->tx.ring && !q_vector->rx.ring) 3743 return IRQ_HANDLED; 3744 3745 napi_schedule_irqoff(&q_vector->napi); 3746 3747 return IRQ_HANDLED; 3748 } 3749 3750 /** 3751 * i40e_irq_affinity_notify - Callback for affinity changes 3752 * @notify: context as to what irq was changed 3753 * @mask: the new affinity mask 3754 * 3755 * This is a callback function used by the irq_set_affinity_notifier function 3756 * so that we may register to receive changes to the irq affinity masks. 3757 **/ 3758 static void i40e_irq_affinity_notify(struct irq_affinity_notify *notify, 3759 const cpumask_t *mask) 3760 { 3761 struct i40e_q_vector *q_vector = 3762 container_of(notify, struct i40e_q_vector, affinity_notify); 3763 3764 cpumask_copy(&q_vector->affinity_mask, mask); 3765 } 3766 3767 /** 3768 * i40e_irq_affinity_release - Callback for affinity notifier release 3769 * @ref: internal core kernel usage 3770 * 3771 * This is a callback function used by the irq_set_affinity_notifier function 3772 * to inform the current notification subscriber that they will no longer 3773 * receive notifications. 3774 **/ 3775 static void i40e_irq_affinity_release(struct kref *ref) {} 3776 3777 /** 3778 * i40e_vsi_request_irq_msix - Initialize MSI-X interrupts 3779 * @vsi: the VSI being configured 3780 * @basename: name for the vector 3781 * 3782 * Allocates MSI-X vectors and requests interrupts from the kernel. 3783 **/ 3784 static int i40e_vsi_request_irq_msix(struct i40e_vsi *vsi, char *basename) 3785 { 3786 int q_vectors = vsi->num_q_vectors; 3787 struct i40e_pf *pf = vsi->back; 3788 int base = vsi->base_vector; 3789 int rx_int_idx = 0; 3790 int tx_int_idx = 0; 3791 int vector, err; 3792 int irq_num; 3793 int cpu; 3794 3795 for (vector = 0; vector < q_vectors; vector++) { 3796 struct i40e_q_vector *q_vector = vsi->q_vectors[vector]; 3797 3798 irq_num = pf->msix_entries[base + vector].vector; 3799 3800 if (q_vector->tx.ring && q_vector->rx.ring) { 3801 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 3802 "%s-%s-%d", basename, "TxRx", rx_int_idx++); 3803 tx_int_idx++; 3804 } else if (q_vector->rx.ring) { 3805 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 3806 "%s-%s-%d", basename, "rx", rx_int_idx++); 3807 } else if (q_vector->tx.ring) { 3808 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 3809 "%s-%s-%d", basename, "tx", tx_int_idx++); 3810 } else { 3811 /* skip this unused q_vector */ 3812 continue; 3813 } 3814 err = request_irq(irq_num, 3815 vsi->irq_handler, 3816 0, 3817 q_vector->name, 3818 q_vector); 3819 if (err) { 3820 dev_info(&pf->pdev->dev, 3821 "MSIX request_irq failed, error: %d\n", err); 3822 goto free_queue_irqs; 3823 } 3824 3825 /* register for affinity change notifications */ 3826 q_vector->affinity_notify.notify = i40e_irq_affinity_notify; 3827 q_vector->affinity_notify.release = i40e_irq_affinity_release; 3828 irq_set_affinity_notifier(irq_num, &q_vector->affinity_notify); 3829 /* Spread affinity hints out across online CPUs. 3830 * 3831 * get_cpu_mask returns a static constant mask with 3832 * a permanent lifetime so it's ok to pass to 3833 * irq_set_affinity_hint without making a copy. 3834 */ 3835 cpu = cpumask_local_spread(q_vector->v_idx, -1); 3836 irq_set_affinity_hint(irq_num, get_cpu_mask(cpu)); 3837 } 3838 3839 vsi->irqs_ready = true; 3840 return 0; 3841 3842 free_queue_irqs: 3843 while (vector) { 3844 vector--; 3845 irq_num = pf->msix_entries[base + vector].vector; 3846 irq_set_affinity_notifier(irq_num, NULL); 3847 irq_set_affinity_hint(irq_num, NULL); 3848 free_irq(irq_num, &vsi->q_vectors[vector]); 3849 } 3850 return err; 3851 } 3852 3853 /** 3854 * i40e_vsi_disable_irq - Mask off queue interrupt generation on the VSI 3855 * @vsi: the VSI being un-configured 3856 **/ 3857 static void i40e_vsi_disable_irq(struct i40e_vsi *vsi) 3858 { 3859 struct i40e_pf *pf = vsi->back; 3860 struct i40e_hw *hw = &pf->hw; 3861 int base = vsi->base_vector; 3862 int i; 3863 3864 /* disable interrupt causation from each queue */ 3865 for (i = 0; i < vsi->num_queue_pairs; i++) { 3866 u32 val; 3867 3868 val = rd32(hw, I40E_QINT_TQCTL(vsi->tx_rings[i]->reg_idx)); 3869 val &= ~I40E_QINT_TQCTL_CAUSE_ENA_MASK; 3870 wr32(hw, I40E_QINT_TQCTL(vsi->tx_rings[i]->reg_idx), val); 3871 3872 val = rd32(hw, I40E_QINT_RQCTL(vsi->rx_rings[i]->reg_idx)); 3873 val &= ~I40E_QINT_RQCTL_CAUSE_ENA_MASK; 3874 wr32(hw, I40E_QINT_RQCTL(vsi->rx_rings[i]->reg_idx), val); 3875 3876 if (!i40e_enabled_xdp_vsi(vsi)) 3877 continue; 3878 wr32(hw, I40E_QINT_TQCTL(vsi->xdp_rings[i]->reg_idx), 0); 3879 } 3880 3881 /* disable each interrupt */ 3882 if (pf->flags & I40E_FLAG_MSIX_ENABLED) { 3883 for (i = vsi->base_vector; 3884 i < (vsi->num_q_vectors + vsi->base_vector); i++) 3885 wr32(hw, I40E_PFINT_DYN_CTLN(i - 1), 0); 3886 3887 i40e_flush(hw); 3888 for (i = 0; i < vsi->num_q_vectors; i++) 3889 synchronize_irq(pf->msix_entries[i + base].vector); 3890 } else { 3891 /* Legacy and MSI mode - this stops all interrupt handling */ 3892 wr32(hw, I40E_PFINT_ICR0_ENA, 0); 3893 wr32(hw, I40E_PFINT_DYN_CTL0, 0); 3894 i40e_flush(hw); 3895 synchronize_irq(pf->pdev->irq); 3896 } 3897 } 3898 3899 /** 3900 * i40e_vsi_enable_irq - Enable IRQ for the given VSI 3901 * @vsi: the VSI being configured 3902 **/ 3903 static int i40e_vsi_enable_irq(struct i40e_vsi *vsi) 3904 { 3905 struct i40e_pf *pf = vsi->back; 3906 int i; 3907 3908 if (pf->flags & I40E_FLAG_MSIX_ENABLED) { 3909 for (i = 0; i < vsi->num_q_vectors; i++) 3910 i40e_irq_dynamic_enable(vsi, i); 3911 } else { 3912 i40e_irq_dynamic_enable_icr0(pf); 3913 } 3914 3915 i40e_flush(&pf->hw); 3916 return 0; 3917 } 3918 3919 /** 3920 * i40e_free_misc_vector - Free the vector that handles non-queue events 3921 * @pf: board private structure 3922 **/ 3923 static void i40e_free_misc_vector(struct i40e_pf *pf) 3924 { 3925 /* Disable ICR 0 */ 3926 wr32(&pf->hw, I40E_PFINT_ICR0_ENA, 0); 3927 i40e_flush(&pf->hw); 3928 3929 if (pf->flags & I40E_FLAG_MSIX_ENABLED && pf->msix_entries) { 3930 synchronize_irq(pf->msix_entries[0].vector); 3931 free_irq(pf->msix_entries[0].vector, pf); 3932 clear_bit(__I40E_MISC_IRQ_REQUESTED, pf->state); 3933 } 3934 } 3935 3936 /** 3937 * i40e_intr - MSI/Legacy and non-queue interrupt handler 3938 * @irq: interrupt number 3939 * @data: pointer to a q_vector 3940 * 3941 * This is the handler used for all MSI/Legacy interrupts, and deals 3942 * with both queue and non-queue interrupts. This is also used in 3943 * MSIX mode to handle the non-queue interrupts. 3944 **/ 3945 static irqreturn_t i40e_intr(int irq, void *data) 3946 { 3947 struct i40e_pf *pf = (struct i40e_pf *)data; 3948 struct i40e_hw *hw = &pf->hw; 3949 irqreturn_t ret = IRQ_NONE; 3950 u32 icr0, icr0_remaining; 3951 u32 val, ena_mask; 3952 3953 icr0 = rd32(hw, I40E_PFINT_ICR0); 3954 ena_mask = rd32(hw, I40E_PFINT_ICR0_ENA); 3955 3956 /* if sharing a legacy IRQ, we might get called w/o an intr pending */ 3957 if ((icr0 & I40E_PFINT_ICR0_INTEVENT_MASK) == 0) 3958 goto enable_intr; 3959 3960 /* if interrupt but no bits showing, must be SWINT */ 3961 if (((icr0 & ~I40E_PFINT_ICR0_INTEVENT_MASK) == 0) || 3962 (icr0 & I40E_PFINT_ICR0_SWINT_MASK)) 3963 pf->sw_int_count++; 3964 3965 if ((pf->flags & I40E_FLAG_IWARP_ENABLED) && 3966 (icr0 & I40E_PFINT_ICR0_ENA_PE_CRITERR_MASK)) { 3967 ena_mask &= ~I40E_PFINT_ICR0_ENA_PE_CRITERR_MASK; 3968 dev_dbg(&pf->pdev->dev, "cleared PE_CRITERR\n"); 3969 set_bit(__I40E_CORE_RESET_REQUESTED, pf->state); 3970 } 3971 3972 /* only q0 is used in MSI/Legacy mode, and none are used in MSIX */ 3973 if (icr0 & I40E_PFINT_ICR0_QUEUE_0_MASK) { 3974 struct i40e_vsi *vsi = pf->vsi[pf->lan_vsi]; 3975 struct i40e_q_vector *q_vector = vsi->q_vectors[0]; 3976 3977 /* We do not have a way to disarm Queue causes while leaving 3978 * interrupt enabled for all other causes, ideally 3979 * interrupt should be disabled while we are in NAPI but 3980 * this is not a performance path and napi_schedule() 3981 * can deal with rescheduling. 3982 */ 3983 if (!test_bit(__I40E_DOWN, pf->state)) 3984 napi_schedule_irqoff(&q_vector->napi); 3985 } 3986 3987 if (icr0 & I40E_PFINT_ICR0_ADMINQ_MASK) { 3988 ena_mask &= ~I40E_PFINT_ICR0_ENA_ADMINQ_MASK; 3989 set_bit(__I40E_ADMINQ_EVENT_PENDING, pf->state); 3990 i40e_debug(&pf->hw, I40E_DEBUG_NVM, "AdminQ event\n"); 3991 } 3992 3993 if (icr0 & I40E_PFINT_ICR0_MAL_DETECT_MASK) { 3994 ena_mask &= ~I40E_PFINT_ICR0_ENA_MAL_DETECT_MASK; 3995 set_bit(__I40E_MDD_EVENT_PENDING, pf->state); 3996 } 3997 3998 if (icr0 & I40E_PFINT_ICR0_VFLR_MASK) { 3999 ena_mask &= ~I40E_PFINT_ICR0_ENA_VFLR_MASK; 4000 set_bit(__I40E_VFLR_EVENT_PENDING, pf->state); 4001 } 4002 4003 if (icr0 & I40E_PFINT_ICR0_GRST_MASK) { 4004 if (!test_bit(__I40E_RESET_RECOVERY_PENDING, pf->state)) 4005 set_bit(__I40E_RESET_INTR_RECEIVED, pf->state); 4006 ena_mask &= ~I40E_PFINT_ICR0_ENA_GRST_MASK; 4007 val = rd32(hw, I40E_GLGEN_RSTAT); 4008 val = (val & I40E_GLGEN_RSTAT_RESET_TYPE_MASK) 4009 >> I40E_GLGEN_RSTAT_RESET_TYPE_SHIFT; 4010 if (val == I40E_RESET_CORER) { 4011 pf->corer_count++; 4012 } else if (val == I40E_RESET_GLOBR) { 4013 pf->globr_count++; 4014 } else if (val == I40E_RESET_EMPR) { 4015 pf->empr_count++; 4016 set_bit(__I40E_EMP_RESET_INTR_RECEIVED, pf->state); 4017 } 4018 } 4019 4020 if (icr0 & I40E_PFINT_ICR0_HMC_ERR_MASK) { 4021 icr0 &= ~I40E_PFINT_ICR0_HMC_ERR_MASK; 4022 dev_info(&pf->pdev->dev, "HMC error interrupt\n"); 4023 dev_info(&pf->pdev->dev, "HMC error info 0x%x, HMC error data 0x%x\n", 4024 rd32(hw, I40E_PFHMC_ERRORINFO), 4025 rd32(hw, I40E_PFHMC_ERRORDATA)); 4026 } 4027 4028 if (icr0 & I40E_PFINT_ICR0_TIMESYNC_MASK) { 4029 u32 prttsyn_stat = rd32(hw, I40E_PRTTSYN_STAT_0); 4030 4031 if (prttsyn_stat & I40E_PRTTSYN_STAT_0_TXTIME_MASK) { 4032 icr0 &= ~I40E_PFINT_ICR0_ENA_TIMESYNC_MASK; 4033 i40e_ptp_tx_hwtstamp(pf); 4034 } 4035 } 4036 4037 /* If a critical error is pending we have no choice but to reset the 4038 * device. 4039 * Report and mask out any remaining unexpected interrupts. 4040 */ 4041 icr0_remaining = icr0 & ena_mask; 4042 if (icr0_remaining) { 4043 dev_info(&pf->pdev->dev, "unhandled interrupt icr0=0x%08x\n", 4044 icr0_remaining); 4045 if ((icr0_remaining & I40E_PFINT_ICR0_PE_CRITERR_MASK) || 4046 (icr0_remaining & I40E_PFINT_ICR0_PCI_EXCEPTION_MASK) || 4047 (icr0_remaining & I40E_PFINT_ICR0_ECC_ERR_MASK)) { 4048 dev_info(&pf->pdev->dev, "device will be reset\n"); 4049 set_bit(__I40E_PF_RESET_REQUESTED, pf->state); 4050 i40e_service_event_schedule(pf); 4051 } 4052 ena_mask &= ~icr0_remaining; 4053 } 4054 ret = IRQ_HANDLED; 4055 4056 enable_intr: 4057 /* re-enable interrupt causes */ 4058 wr32(hw, I40E_PFINT_ICR0_ENA, ena_mask); 4059 if (!test_bit(__I40E_DOWN, pf->state) || 4060 test_bit(__I40E_RECOVERY_MODE, pf->state)) { 4061 i40e_service_event_schedule(pf); 4062 i40e_irq_dynamic_enable_icr0(pf); 4063 } 4064 4065 return ret; 4066 } 4067 4068 /** 4069 * i40e_clean_fdir_tx_irq - Reclaim resources after transmit completes 4070 * @tx_ring: tx ring to clean 4071 * @budget: how many cleans we're allowed 4072 * 4073 * Returns true if there's any budget left (e.g. the clean is finished) 4074 **/ 4075 static bool i40e_clean_fdir_tx_irq(struct i40e_ring *tx_ring, int budget) 4076 { 4077 struct i40e_vsi *vsi = tx_ring->vsi; 4078 u16 i = tx_ring->next_to_clean; 4079 struct i40e_tx_buffer *tx_buf; 4080 struct i40e_tx_desc *tx_desc; 4081 4082 tx_buf = &tx_ring->tx_bi[i]; 4083 tx_desc = I40E_TX_DESC(tx_ring, i); 4084 i -= tx_ring->count; 4085 4086 do { 4087 struct i40e_tx_desc *eop_desc = tx_buf->next_to_watch; 4088 4089 /* if next_to_watch is not set then there is no work pending */ 4090 if (!eop_desc) 4091 break; 4092 4093 /* prevent any other reads prior to eop_desc */ 4094 smp_rmb(); 4095 4096 /* if the descriptor isn't done, no work yet to do */ 4097 if (!(eop_desc->cmd_type_offset_bsz & 4098 cpu_to_le64(I40E_TX_DESC_DTYPE_DESC_DONE))) 4099 break; 4100 4101 /* clear next_to_watch to prevent false hangs */ 4102 tx_buf->next_to_watch = NULL; 4103 4104 tx_desc->buffer_addr = 0; 4105 tx_desc->cmd_type_offset_bsz = 0; 4106 /* move past filter desc */ 4107 tx_buf++; 4108 tx_desc++; 4109 i++; 4110 if (unlikely(!i)) { 4111 i -= tx_ring->count; 4112 tx_buf = tx_ring->tx_bi; 4113 tx_desc = I40E_TX_DESC(tx_ring, 0); 4114 } 4115 /* unmap skb header data */ 4116 dma_unmap_single(tx_ring->dev, 4117 dma_unmap_addr(tx_buf, dma), 4118 dma_unmap_len(tx_buf, len), 4119 DMA_TO_DEVICE); 4120 if (tx_buf->tx_flags & I40E_TX_FLAGS_FD_SB) 4121 kfree(tx_buf->raw_buf); 4122 4123 tx_buf->raw_buf = NULL; 4124 tx_buf->tx_flags = 0; 4125 tx_buf->next_to_watch = NULL; 4126 dma_unmap_len_set(tx_buf, len, 0); 4127 tx_desc->buffer_addr = 0; 4128 tx_desc->cmd_type_offset_bsz = 0; 4129 4130 /* move us past the eop_desc for start of next FD desc */ 4131 tx_buf++; 4132 tx_desc++; 4133 i++; 4134 if (unlikely(!i)) { 4135 i -= tx_ring->count; 4136 tx_buf = tx_ring->tx_bi; 4137 tx_desc = I40E_TX_DESC(tx_ring, 0); 4138 } 4139 4140 /* update budget accounting */ 4141 budget--; 4142 } while (likely(budget)); 4143 4144 i += tx_ring->count; 4145 tx_ring->next_to_clean = i; 4146 4147 if (vsi->back->flags & I40E_FLAG_MSIX_ENABLED) 4148 i40e_irq_dynamic_enable(vsi, tx_ring->q_vector->v_idx); 4149 4150 return budget > 0; 4151 } 4152 4153 /** 4154 * i40e_fdir_clean_ring - Interrupt Handler for FDIR SB ring 4155 * @irq: interrupt number 4156 * @data: pointer to a q_vector 4157 **/ 4158 static irqreturn_t i40e_fdir_clean_ring(int irq, void *data) 4159 { 4160 struct i40e_q_vector *q_vector = data; 4161 struct i40e_vsi *vsi; 4162 4163 if (!q_vector->tx.ring) 4164 return IRQ_HANDLED; 4165 4166 vsi = q_vector->tx.ring->vsi; 4167 i40e_clean_fdir_tx_irq(q_vector->tx.ring, vsi->work_limit); 4168 4169 return IRQ_HANDLED; 4170 } 4171 4172 /** 4173 * i40e_map_vector_to_qp - Assigns the queue pair to the vector 4174 * @vsi: the VSI being configured 4175 * @v_idx: vector index 4176 * @qp_idx: queue pair index 4177 **/ 4178 static void i40e_map_vector_to_qp(struct i40e_vsi *vsi, int v_idx, int qp_idx) 4179 { 4180 struct i40e_q_vector *q_vector = vsi->q_vectors[v_idx]; 4181 struct i40e_ring *tx_ring = vsi->tx_rings[qp_idx]; 4182 struct i40e_ring *rx_ring = vsi->rx_rings[qp_idx]; 4183 4184 tx_ring->q_vector = q_vector; 4185 tx_ring->next = q_vector->tx.ring; 4186 q_vector->tx.ring = tx_ring; 4187 q_vector->tx.count++; 4188 4189 /* Place XDP Tx ring in the same q_vector ring list as regular Tx */ 4190 if (i40e_enabled_xdp_vsi(vsi)) { 4191 struct i40e_ring *xdp_ring = vsi->xdp_rings[qp_idx]; 4192 4193 xdp_ring->q_vector = q_vector; 4194 xdp_ring->next = q_vector->tx.ring; 4195 q_vector->tx.ring = xdp_ring; 4196 q_vector->tx.count++; 4197 } 4198 4199 rx_ring->q_vector = q_vector; 4200 rx_ring->next = q_vector->rx.ring; 4201 q_vector->rx.ring = rx_ring; 4202 q_vector->rx.count++; 4203 } 4204 4205 /** 4206 * i40e_vsi_map_rings_to_vectors - Maps descriptor rings to vectors 4207 * @vsi: the VSI being configured 4208 * 4209 * This function maps descriptor rings to the queue-specific vectors 4210 * we were allotted through the MSI-X enabling code. Ideally, we'd have 4211 * one vector per queue pair, but on a constrained vector budget, we 4212 * group the queue pairs as "efficiently" as possible. 4213 **/ 4214 static void i40e_vsi_map_rings_to_vectors(struct i40e_vsi *vsi) 4215 { 4216 int qp_remaining = vsi->num_queue_pairs; 4217 int q_vectors = vsi->num_q_vectors; 4218 int num_ringpairs; 4219 int v_start = 0; 4220 int qp_idx = 0; 4221 4222 /* If we don't have enough vectors for a 1-to-1 mapping, we'll have to 4223 * group them so there are multiple queues per vector. 4224 * It is also important to go through all the vectors available to be 4225 * sure that if we don't use all the vectors, that the remaining vectors 4226 * are cleared. This is especially important when decreasing the 4227 * number of queues in use. 4228 */ 4229 for (; v_start < q_vectors; v_start++) { 4230 struct i40e_q_vector *q_vector = vsi->q_vectors[v_start]; 4231 4232 num_ringpairs = DIV_ROUND_UP(qp_remaining, q_vectors - v_start); 4233 4234 q_vector->num_ringpairs = num_ringpairs; 4235 q_vector->reg_idx = q_vector->v_idx + vsi->base_vector - 1; 4236 4237 q_vector->rx.count = 0; 4238 q_vector->tx.count = 0; 4239 q_vector->rx.ring = NULL; 4240 q_vector->tx.ring = NULL; 4241 4242 while (num_ringpairs--) { 4243 i40e_map_vector_to_qp(vsi, v_start, qp_idx); 4244 qp_idx++; 4245 qp_remaining--; 4246 } 4247 } 4248 } 4249 4250 /** 4251 * i40e_vsi_request_irq - Request IRQ from the OS 4252 * @vsi: the VSI being configured 4253 * @basename: name for the vector 4254 **/ 4255 static int i40e_vsi_request_irq(struct i40e_vsi *vsi, char *basename) 4256 { 4257 struct i40e_pf *pf = vsi->back; 4258 int err; 4259 4260 if (pf->flags & I40E_FLAG_MSIX_ENABLED) 4261 err = i40e_vsi_request_irq_msix(vsi, basename); 4262 else if (pf->flags & I40E_FLAG_MSI_ENABLED) 4263 err = request_irq(pf->pdev->irq, i40e_intr, 0, 4264 pf->int_name, pf); 4265 else 4266 err = request_irq(pf->pdev->irq, i40e_intr, IRQF_SHARED, 4267 pf->int_name, pf); 4268 4269 if (err) 4270 dev_info(&pf->pdev->dev, "request_irq failed, Error %d\n", err); 4271 4272 return err; 4273 } 4274 4275 #ifdef CONFIG_NET_POLL_CONTROLLER 4276 /** 4277 * i40e_netpoll - A Polling 'interrupt' handler 4278 * @netdev: network interface device structure 4279 * 4280 * This is used by netconsole to send skbs without having to re-enable 4281 * interrupts. It's not called while the normal interrupt routine is executing. 4282 **/ 4283 static void i40e_netpoll(struct net_device *netdev) 4284 { 4285 struct i40e_netdev_priv *np = netdev_priv(netdev); 4286 struct i40e_vsi *vsi = np->vsi; 4287 struct i40e_pf *pf = vsi->back; 4288 int i; 4289 4290 /* if interface is down do nothing */ 4291 if (test_bit(__I40E_VSI_DOWN, vsi->state)) 4292 return; 4293 4294 if (pf->flags & I40E_FLAG_MSIX_ENABLED) { 4295 for (i = 0; i < vsi->num_q_vectors; i++) 4296 i40e_msix_clean_rings(0, vsi->q_vectors[i]); 4297 } else { 4298 i40e_intr(pf->pdev->irq, netdev); 4299 } 4300 } 4301 #endif 4302 4303 #define I40E_QTX_ENA_WAIT_COUNT 50 4304 4305 /** 4306 * i40e_pf_txq_wait - Wait for a PF's Tx queue to be enabled or disabled 4307 * @pf: the PF being configured 4308 * @pf_q: the PF queue 4309 * @enable: enable or disable state of the queue 4310 * 4311 * This routine will wait for the given Tx queue of the PF to reach the 4312 * enabled or disabled state. 4313 * Returns -ETIMEDOUT in case of failing to reach the requested state after 4314 * multiple retries; else will return 0 in case of success. 4315 **/ 4316 static int i40e_pf_txq_wait(struct i40e_pf *pf, int pf_q, bool enable) 4317 { 4318 int i; 4319 u32 tx_reg; 4320 4321 for (i = 0; i < I40E_QUEUE_WAIT_RETRY_LIMIT; i++) { 4322 tx_reg = rd32(&pf->hw, I40E_QTX_ENA(pf_q)); 4323 if (enable == !!(tx_reg & I40E_QTX_ENA_QENA_STAT_MASK)) 4324 break; 4325 4326 usleep_range(10, 20); 4327 } 4328 if (i >= I40E_QUEUE_WAIT_RETRY_LIMIT) 4329 return -ETIMEDOUT; 4330 4331 return 0; 4332 } 4333 4334 /** 4335 * i40e_control_tx_q - Start or stop a particular Tx queue 4336 * @pf: the PF structure 4337 * @pf_q: the PF queue to configure 4338 * @enable: start or stop the queue 4339 * 4340 * This function enables or disables a single queue. Note that any delay 4341 * required after the operation is expected to be handled by the caller of 4342 * this function. 4343 **/ 4344 static void i40e_control_tx_q(struct i40e_pf *pf, int pf_q, bool enable) 4345 { 4346 struct i40e_hw *hw = &pf->hw; 4347 u32 tx_reg; 4348 int i; 4349 4350 /* warn the TX unit of coming changes */ 4351 i40e_pre_tx_queue_cfg(&pf->hw, pf_q, enable); 4352 if (!enable) 4353 usleep_range(10, 20); 4354 4355 for (i = 0; i < I40E_QTX_ENA_WAIT_COUNT; i++) { 4356 tx_reg = rd32(hw, I40E_QTX_ENA(pf_q)); 4357 if (((tx_reg >> I40E_QTX_ENA_QENA_REQ_SHIFT) & 1) == 4358 ((tx_reg >> I40E_QTX_ENA_QENA_STAT_SHIFT) & 1)) 4359 break; 4360 usleep_range(1000, 2000); 4361 } 4362 4363 /* Skip if the queue is already in the requested state */ 4364 if (enable == !!(tx_reg & I40E_QTX_ENA_QENA_STAT_MASK)) 4365 return; 4366 4367 /* turn on/off the queue */ 4368 if (enable) { 4369 wr32(hw, I40E_QTX_HEAD(pf_q), 0); 4370 tx_reg |= I40E_QTX_ENA_QENA_REQ_MASK; 4371 } else { 4372 tx_reg &= ~I40E_QTX_ENA_QENA_REQ_MASK; 4373 } 4374 4375 wr32(hw, I40E_QTX_ENA(pf_q), tx_reg); 4376 } 4377 4378 /** 4379 * i40e_control_wait_tx_q - Start/stop Tx queue and wait for completion 4380 * @seid: VSI SEID 4381 * @pf: the PF structure 4382 * @pf_q: the PF queue to configure 4383 * @is_xdp: true if the queue is used for XDP 4384 * @enable: start or stop the queue 4385 **/ 4386 int i40e_control_wait_tx_q(int seid, struct i40e_pf *pf, int pf_q, 4387 bool is_xdp, bool enable) 4388 { 4389 int ret; 4390 4391 i40e_control_tx_q(pf, pf_q, enable); 4392 4393 /* wait for the change to finish */ 4394 ret = i40e_pf_txq_wait(pf, pf_q, enable); 4395 if (ret) { 4396 dev_info(&pf->pdev->dev, 4397 "VSI seid %d %sTx ring %d %sable timeout\n", 4398 seid, (is_xdp ? "XDP " : ""), pf_q, 4399 (enable ? "en" : "dis")); 4400 } 4401 4402 return ret; 4403 } 4404 4405 /** 4406 * i40e_vsi_control_tx - Start or stop a VSI's rings 4407 * @vsi: the VSI being configured 4408 * @enable: start or stop the rings 4409 **/ 4410 static int i40e_vsi_control_tx(struct i40e_vsi *vsi, bool enable) 4411 { 4412 struct i40e_pf *pf = vsi->back; 4413 int i, pf_q, ret = 0; 4414 4415 pf_q = vsi->base_queue; 4416 for (i = 0; i < vsi->num_queue_pairs; i++, pf_q++) { 4417 ret = i40e_control_wait_tx_q(vsi->seid, pf, 4418 pf_q, 4419 false /*is xdp*/, enable); 4420 if (ret) 4421 break; 4422 4423 if (!i40e_enabled_xdp_vsi(vsi)) 4424 continue; 4425 4426 ret = i40e_control_wait_tx_q(vsi->seid, pf, 4427 pf_q + vsi->alloc_queue_pairs, 4428 true /*is xdp*/, enable); 4429 if (ret) 4430 break; 4431 } 4432 return ret; 4433 } 4434 4435 /** 4436 * i40e_pf_rxq_wait - Wait for a PF's Rx queue to be enabled or disabled 4437 * @pf: the PF being configured 4438 * @pf_q: the PF queue 4439 * @enable: enable or disable state of the queue 4440 * 4441 * This routine will wait for the given Rx queue of the PF to reach the 4442 * enabled or disabled state. 4443 * Returns -ETIMEDOUT in case of failing to reach the requested state after 4444 * multiple retries; else will return 0 in case of success. 4445 **/ 4446 static int i40e_pf_rxq_wait(struct i40e_pf *pf, int pf_q, bool enable) 4447 { 4448 int i; 4449 u32 rx_reg; 4450 4451 for (i = 0; i < I40E_QUEUE_WAIT_RETRY_LIMIT; i++) { 4452 rx_reg = rd32(&pf->hw, I40E_QRX_ENA(pf_q)); 4453 if (enable == !!(rx_reg & I40E_QRX_ENA_QENA_STAT_MASK)) 4454 break; 4455 4456 usleep_range(10, 20); 4457 } 4458 if (i >= I40E_QUEUE_WAIT_RETRY_LIMIT) 4459 return -ETIMEDOUT; 4460 4461 return 0; 4462 } 4463 4464 /** 4465 * i40e_control_rx_q - Start or stop a particular Rx queue 4466 * @pf: the PF structure 4467 * @pf_q: the PF queue to configure 4468 * @enable: start or stop the queue 4469 * 4470 * This function enables or disables a single queue. Note that 4471 * any delay required after the operation is expected to be 4472 * handled by the caller of this function. 4473 **/ 4474 static void i40e_control_rx_q(struct i40e_pf *pf, int pf_q, bool enable) 4475 { 4476 struct i40e_hw *hw = &pf->hw; 4477 u32 rx_reg; 4478 int i; 4479 4480 for (i = 0; i < I40E_QTX_ENA_WAIT_COUNT; i++) { 4481 rx_reg = rd32(hw, I40E_QRX_ENA(pf_q)); 4482 if (((rx_reg >> I40E_QRX_ENA_QENA_REQ_SHIFT) & 1) == 4483 ((rx_reg >> I40E_QRX_ENA_QENA_STAT_SHIFT) & 1)) 4484 break; 4485 usleep_range(1000, 2000); 4486 } 4487 4488 /* Skip if the queue is already in the requested state */ 4489 if (enable == !!(rx_reg & I40E_QRX_ENA_QENA_STAT_MASK)) 4490 return; 4491 4492 /* turn on/off the queue */ 4493 if (enable) 4494 rx_reg |= I40E_QRX_ENA_QENA_REQ_MASK; 4495 else 4496 rx_reg &= ~I40E_QRX_ENA_QENA_REQ_MASK; 4497 4498 wr32(hw, I40E_QRX_ENA(pf_q), rx_reg); 4499 } 4500 4501 /** 4502 * i40e_control_wait_rx_q 4503 * @pf: the PF structure 4504 * @pf_q: queue being configured 4505 * @enable: start or stop the rings 4506 * 4507 * This function enables or disables a single queue along with waiting 4508 * for the change to finish. The caller of this function should handle 4509 * the delays needed in the case of disabling queues. 4510 **/ 4511 int i40e_control_wait_rx_q(struct i40e_pf *pf, int pf_q, bool enable) 4512 { 4513 int ret = 0; 4514 4515 i40e_control_rx_q(pf, pf_q, enable); 4516 4517 /* wait for the change to finish */ 4518 ret = i40e_pf_rxq_wait(pf, pf_q, enable); 4519 if (ret) 4520 return ret; 4521 4522 return ret; 4523 } 4524 4525 /** 4526 * i40e_vsi_control_rx - Start or stop a VSI's rings 4527 * @vsi: the VSI being configured 4528 * @enable: start or stop the rings 4529 **/ 4530 static int i40e_vsi_control_rx(struct i40e_vsi *vsi, bool enable) 4531 { 4532 struct i40e_pf *pf = vsi->back; 4533 int i, pf_q, ret = 0; 4534 4535 pf_q = vsi->base_queue; 4536 for (i = 0; i < vsi->num_queue_pairs; i++, pf_q++) { 4537 ret = i40e_control_wait_rx_q(pf, pf_q, enable); 4538 if (ret) { 4539 dev_info(&pf->pdev->dev, 4540 "VSI seid %d Rx ring %d %sable timeout\n", 4541 vsi->seid, pf_q, (enable ? "en" : "dis")); 4542 break; 4543 } 4544 } 4545 4546 /* Due to HW errata, on Rx disable only, the register can indicate done 4547 * before it really is. Needs 50ms to be sure 4548 */ 4549 if (!enable) 4550 mdelay(50); 4551 4552 return ret; 4553 } 4554 4555 /** 4556 * i40e_vsi_start_rings - Start a VSI's rings 4557 * @vsi: the VSI being configured 4558 **/ 4559 int i40e_vsi_start_rings(struct i40e_vsi *vsi) 4560 { 4561 int ret = 0; 4562 4563 /* do rx first for enable and last for disable */ 4564 ret = i40e_vsi_control_rx(vsi, true); 4565 if (ret) 4566 return ret; 4567 ret = i40e_vsi_control_tx(vsi, true); 4568 4569 return ret; 4570 } 4571 4572 /** 4573 * i40e_vsi_stop_rings - Stop a VSI's rings 4574 * @vsi: the VSI being configured 4575 **/ 4576 void i40e_vsi_stop_rings(struct i40e_vsi *vsi) 4577 { 4578 /* When port TX is suspended, don't wait */ 4579 if (test_bit(__I40E_PORT_SUSPENDED, vsi->back->state)) 4580 return i40e_vsi_stop_rings_no_wait(vsi); 4581 4582 /* do rx first for enable and last for disable 4583 * Ignore return value, we need to shutdown whatever we can 4584 */ 4585 i40e_vsi_control_tx(vsi, false); 4586 i40e_vsi_control_rx(vsi, false); 4587 } 4588 4589 /** 4590 * i40e_vsi_stop_rings_no_wait - Stop a VSI's rings and do not delay 4591 * @vsi: the VSI being shutdown 4592 * 4593 * This function stops all the rings for a VSI but does not delay to verify 4594 * that rings have been disabled. It is expected that the caller is shutting 4595 * down multiple VSIs at once and will delay together for all the VSIs after 4596 * initiating the shutdown. This is particularly useful for shutting down lots 4597 * of VFs together. Otherwise, a large delay can be incurred while configuring 4598 * each VSI in serial. 4599 **/ 4600 void i40e_vsi_stop_rings_no_wait(struct i40e_vsi *vsi) 4601 { 4602 struct i40e_pf *pf = vsi->back; 4603 int i, pf_q; 4604 4605 pf_q = vsi->base_queue; 4606 for (i = 0; i < vsi->num_queue_pairs; i++, pf_q++) { 4607 i40e_control_tx_q(pf, pf_q, false); 4608 i40e_control_rx_q(pf, pf_q, false); 4609 } 4610 } 4611 4612 /** 4613 * i40e_vsi_free_irq - Free the irq association with the OS 4614 * @vsi: the VSI being configured 4615 **/ 4616 static void i40e_vsi_free_irq(struct i40e_vsi *vsi) 4617 { 4618 struct i40e_pf *pf = vsi->back; 4619 struct i40e_hw *hw = &pf->hw; 4620 int base = vsi->base_vector; 4621 u32 val, qp; 4622 int i; 4623 4624 if (pf->flags & I40E_FLAG_MSIX_ENABLED) { 4625 if (!vsi->q_vectors) 4626 return; 4627 4628 if (!vsi->irqs_ready) 4629 return; 4630 4631 vsi->irqs_ready = false; 4632 for (i = 0; i < vsi->num_q_vectors; i++) { 4633 int irq_num; 4634 u16 vector; 4635 4636 vector = i + base; 4637 irq_num = pf->msix_entries[vector].vector; 4638 4639 /* free only the irqs that were actually requested */ 4640 if (!vsi->q_vectors[i] || 4641 !vsi->q_vectors[i]->num_ringpairs) 4642 continue; 4643 4644 /* clear the affinity notifier in the IRQ descriptor */ 4645 irq_set_affinity_notifier(irq_num, NULL); 4646 /* remove our suggested affinity mask for this IRQ */ 4647 irq_set_affinity_hint(irq_num, NULL); 4648 synchronize_irq(irq_num); 4649 free_irq(irq_num, vsi->q_vectors[i]); 4650 4651 /* Tear down the interrupt queue link list 4652 * 4653 * We know that they come in pairs and always 4654 * the Rx first, then the Tx. To clear the 4655 * link list, stick the EOL value into the 4656 * next_q field of the registers. 4657 */ 4658 val = rd32(hw, I40E_PFINT_LNKLSTN(vector - 1)); 4659 qp = (val & I40E_PFINT_LNKLSTN_FIRSTQ_INDX_MASK) 4660 >> I40E_PFINT_LNKLSTN_FIRSTQ_INDX_SHIFT; 4661 val |= I40E_QUEUE_END_OF_LIST 4662 << I40E_PFINT_LNKLSTN_FIRSTQ_INDX_SHIFT; 4663 wr32(hw, I40E_PFINT_LNKLSTN(vector - 1), val); 4664 4665 while (qp != I40E_QUEUE_END_OF_LIST) { 4666 u32 next; 4667 4668 val = rd32(hw, I40E_QINT_RQCTL(qp)); 4669 4670 val &= ~(I40E_QINT_RQCTL_MSIX_INDX_MASK | 4671 I40E_QINT_RQCTL_MSIX0_INDX_MASK | 4672 I40E_QINT_RQCTL_CAUSE_ENA_MASK | 4673 I40E_QINT_RQCTL_INTEVENT_MASK); 4674 4675 val |= (I40E_QINT_RQCTL_ITR_INDX_MASK | 4676 I40E_QINT_RQCTL_NEXTQ_INDX_MASK); 4677 4678 wr32(hw, I40E_QINT_RQCTL(qp), val); 4679 4680 val = rd32(hw, I40E_QINT_TQCTL(qp)); 4681 4682 next = (val & I40E_QINT_TQCTL_NEXTQ_INDX_MASK) 4683 >> I40E_QINT_TQCTL_NEXTQ_INDX_SHIFT; 4684 4685 val &= ~(I40E_QINT_TQCTL_MSIX_INDX_MASK | 4686 I40E_QINT_TQCTL_MSIX0_INDX_MASK | 4687 I40E_QINT_TQCTL_CAUSE_ENA_MASK | 4688 I40E_QINT_TQCTL_INTEVENT_MASK); 4689 4690 val |= (I40E_QINT_TQCTL_ITR_INDX_MASK | 4691 I40E_QINT_TQCTL_NEXTQ_INDX_MASK); 4692 4693 wr32(hw, I40E_QINT_TQCTL(qp), val); 4694 qp = next; 4695 } 4696 } 4697 } else { 4698 free_irq(pf->pdev->irq, pf); 4699 4700 val = rd32(hw, I40E_PFINT_LNKLST0); 4701 qp = (val & I40E_PFINT_LNKLSTN_FIRSTQ_INDX_MASK) 4702 >> I40E_PFINT_LNKLSTN_FIRSTQ_INDX_SHIFT; 4703 val |= I40E_QUEUE_END_OF_LIST 4704 << I40E_PFINT_LNKLST0_FIRSTQ_INDX_SHIFT; 4705 wr32(hw, I40E_PFINT_LNKLST0, val); 4706 4707 val = rd32(hw, I40E_QINT_RQCTL(qp)); 4708 val &= ~(I40E_QINT_RQCTL_MSIX_INDX_MASK | 4709 I40E_QINT_RQCTL_MSIX0_INDX_MASK | 4710 I40E_QINT_RQCTL_CAUSE_ENA_MASK | 4711 I40E_QINT_RQCTL_INTEVENT_MASK); 4712 4713 val |= (I40E_QINT_RQCTL_ITR_INDX_MASK | 4714 I40E_QINT_RQCTL_NEXTQ_INDX_MASK); 4715 4716 wr32(hw, I40E_QINT_RQCTL(qp), val); 4717 4718 val = rd32(hw, I40E_QINT_TQCTL(qp)); 4719 4720 val &= ~(I40E_QINT_TQCTL_MSIX_INDX_MASK | 4721 I40E_QINT_TQCTL_MSIX0_INDX_MASK | 4722 I40E_QINT_TQCTL_CAUSE_ENA_MASK | 4723 I40E_QINT_TQCTL_INTEVENT_MASK); 4724 4725 val |= (I40E_QINT_TQCTL_ITR_INDX_MASK | 4726 I40E_QINT_TQCTL_NEXTQ_INDX_MASK); 4727 4728 wr32(hw, I40E_QINT_TQCTL(qp), val); 4729 } 4730 } 4731 4732 /** 4733 * i40e_free_q_vector - Free memory allocated for specific interrupt vector 4734 * @vsi: the VSI being configured 4735 * @v_idx: Index of vector to be freed 4736 * 4737 * This function frees the memory allocated to the q_vector. In addition if 4738 * NAPI is enabled it will delete any references to the NAPI struct prior 4739 * to freeing the q_vector. 4740 **/ 4741 static void i40e_free_q_vector(struct i40e_vsi *vsi, int v_idx) 4742 { 4743 struct i40e_q_vector *q_vector = vsi->q_vectors[v_idx]; 4744 struct i40e_ring *ring; 4745 4746 if (!q_vector) 4747 return; 4748 4749 /* disassociate q_vector from rings */ 4750 i40e_for_each_ring(ring, q_vector->tx) 4751 ring->q_vector = NULL; 4752 4753 i40e_for_each_ring(ring, q_vector->rx) 4754 ring->q_vector = NULL; 4755 4756 /* only VSI w/ an associated netdev is set up w/ NAPI */ 4757 if (vsi->netdev) 4758 netif_napi_del(&q_vector->napi); 4759 4760 vsi->q_vectors[v_idx] = NULL; 4761 4762 kfree_rcu(q_vector, rcu); 4763 } 4764 4765 /** 4766 * i40e_vsi_free_q_vectors - Free memory allocated for interrupt vectors 4767 * @vsi: the VSI being un-configured 4768 * 4769 * This frees the memory allocated to the q_vectors and 4770 * deletes references to the NAPI struct. 4771 **/ 4772 static void i40e_vsi_free_q_vectors(struct i40e_vsi *vsi) 4773 { 4774 int v_idx; 4775 4776 for (v_idx = 0; v_idx < vsi->num_q_vectors; v_idx++) 4777 i40e_free_q_vector(vsi, v_idx); 4778 } 4779 4780 /** 4781 * i40e_reset_interrupt_capability - Disable interrupt setup in OS 4782 * @pf: board private structure 4783 **/ 4784 static void i40e_reset_interrupt_capability(struct i40e_pf *pf) 4785 { 4786 /* If we're in Legacy mode, the interrupt was cleaned in vsi_close */ 4787 if (pf->flags & I40E_FLAG_MSIX_ENABLED) { 4788 pci_disable_msix(pf->pdev); 4789 kfree(pf->msix_entries); 4790 pf->msix_entries = NULL; 4791 kfree(pf->irq_pile); 4792 pf->irq_pile = NULL; 4793 } else if (pf->flags & I40E_FLAG_MSI_ENABLED) { 4794 pci_disable_msi(pf->pdev); 4795 } 4796 pf->flags &= ~(I40E_FLAG_MSIX_ENABLED | I40E_FLAG_MSI_ENABLED); 4797 } 4798 4799 /** 4800 * i40e_clear_interrupt_scheme - Clear the current interrupt scheme settings 4801 * @pf: board private structure 4802 * 4803 * We go through and clear interrupt specific resources and reset the structure 4804 * to pre-load conditions 4805 **/ 4806 static void i40e_clear_interrupt_scheme(struct i40e_pf *pf) 4807 { 4808 int i; 4809 4810 i40e_free_misc_vector(pf); 4811 4812 i40e_put_lump(pf->irq_pile, pf->iwarp_base_vector, 4813 I40E_IWARP_IRQ_PILE_ID); 4814 4815 i40e_put_lump(pf->irq_pile, 0, I40E_PILE_VALID_BIT-1); 4816 for (i = 0; i < pf->num_alloc_vsi; i++) 4817 if (pf->vsi[i]) 4818 i40e_vsi_free_q_vectors(pf->vsi[i]); 4819 i40e_reset_interrupt_capability(pf); 4820 } 4821 4822 /** 4823 * i40e_napi_enable_all - Enable NAPI for all q_vectors in the VSI 4824 * @vsi: the VSI being configured 4825 **/ 4826 static void i40e_napi_enable_all(struct i40e_vsi *vsi) 4827 { 4828 int q_idx; 4829 4830 if (!vsi->netdev) 4831 return; 4832 4833 for (q_idx = 0; q_idx < vsi->num_q_vectors; q_idx++) { 4834 struct i40e_q_vector *q_vector = vsi->q_vectors[q_idx]; 4835 4836 if (q_vector->rx.ring || q_vector->tx.ring) 4837 napi_enable(&q_vector->napi); 4838 } 4839 } 4840 4841 /** 4842 * i40e_napi_disable_all - Disable NAPI for all q_vectors in the VSI 4843 * @vsi: the VSI being configured 4844 **/ 4845 static void i40e_napi_disable_all(struct i40e_vsi *vsi) 4846 { 4847 int q_idx; 4848 4849 if (!vsi->netdev) 4850 return; 4851 4852 for (q_idx = 0; q_idx < vsi->num_q_vectors; q_idx++) { 4853 struct i40e_q_vector *q_vector = vsi->q_vectors[q_idx]; 4854 4855 if (q_vector->rx.ring || q_vector->tx.ring) 4856 napi_disable(&q_vector->napi); 4857 } 4858 } 4859 4860 /** 4861 * i40e_vsi_close - Shut down a VSI 4862 * @vsi: the vsi to be quelled 4863 **/ 4864 static void i40e_vsi_close(struct i40e_vsi *vsi) 4865 { 4866 struct i40e_pf *pf = vsi->back; 4867 if (!test_and_set_bit(__I40E_VSI_DOWN, vsi->state)) 4868 i40e_down(vsi); 4869 i40e_vsi_free_irq(vsi); 4870 i40e_vsi_free_tx_resources(vsi); 4871 i40e_vsi_free_rx_resources(vsi); 4872 vsi->current_netdev_flags = 0; 4873 set_bit(__I40E_CLIENT_SERVICE_REQUESTED, pf->state); 4874 if (test_bit(__I40E_RESET_RECOVERY_PENDING, pf->state)) 4875 set_bit(__I40E_CLIENT_RESET, pf->state); 4876 } 4877 4878 /** 4879 * i40e_quiesce_vsi - Pause a given VSI 4880 * @vsi: the VSI being paused 4881 **/ 4882 static void i40e_quiesce_vsi(struct i40e_vsi *vsi) 4883 { 4884 if (test_bit(__I40E_VSI_DOWN, vsi->state)) 4885 return; 4886 4887 set_bit(__I40E_VSI_NEEDS_RESTART, vsi->state); 4888 if (vsi->netdev && netif_running(vsi->netdev)) 4889 vsi->netdev->netdev_ops->ndo_stop(vsi->netdev); 4890 else 4891 i40e_vsi_close(vsi); 4892 } 4893 4894 /** 4895 * i40e_unquiesce_vsi - Resume a given VSI 4896 * @vsi: the VSI being resumed 4897 **/ 4898 static void i40e_unquiesce_vsi(struct i40e_vsi *vsi) 4899 { 4900 if (!test_and_clear_bit(__I40E_VSI_NEEDS_RESTART, vsi->state)) 4901 return; 4902 4903 if (vsi->netdev && netif_running(vsi->netdev)) 4904 vsi->netdev->netdev_ops->ndo_open(vsi->netdev); 4905 else 4906 i40e_vsi_open(vsi); /* this clears the DOWN bit */ 4907 } 4908 4909 /** 4910 * i40e_pf_quiesce_all_vsi - Pause all VSIs on a PF 4911 * @pf: the PF 4912 **/ 4913 static void i40e_pf_quiesce_all_vsi(struct i40e_pf *pf) 4914 { 4915 int v; 4916 4917 for (v = 0; v < pf->num_alloc_vsi; v++) { 4918 if (pf->vsi[v]) 4919 i40e_quiesce_vsi(pf->vsi[v]); 4920 } 4921 } 4922 4923 /** 4924 * i40e_pf_unquiesce_all_vsi - Resume all VSIs on a PF 4925 * @pf: the PF 4926 **/ 4927 static void i40e_pf_unquiesce_all_vsi(struct i40e_pf *pf) 4928 { 4929 int v; 4930 4931 for (v = 0; v < pf->num_alloc_vsi; v++) { 4932 if (pf->vsi[v]) 4933 i40e_unquiesce_vsi(pf->vsi[v]); 4934 } 4935 } 4936 4937 /** 4938 * i40e_vsi_wait_queues_disabled - Wait for VSI's queues to be disabled 4939 * @vsi: the VSI being configured 4940 * 4941 * Wait until all queues on a given VSI have been disabled. 4942 **/ 4943 int i40e_vsi_wait_queues_disabled(struct i40e_vsi *vsi) 4944 { 4945 struct i40e_pf *pf = vsi->back; 4946 int i, pf_q, ret; 4947 4948 pf_q = vsi->base_queue; 4949 for (i = 0; i < vsi->num_queue_pairs; i++, pf_q++) { 4950 /* Check and wait for the Tx queue */ 4951 ret = i40e_pf_txq_wait(pf, pf_q, false); 4952 if (ret) { 4953 dev_info(&pf->pdev->dev, 4954 "VSI seid %d Tx ring %d disable timeout\n", 4955 vsi->seid, pf_q); 4956 return ret; 4957 } 4958 4959 if (!i40e_enabled_xdp_vsi(vsi)) 4960 goto wait_rx; 4961 4962 /* Check and wait for the XDP Tx queue */ 4963 ret = i40e_pf_txq_wait(pf, pf_q + vsi->alloc_queue_pairs, 4964 false); 4965 if (ret) { 4966 dev_info(&pf->pdev->dev, 4967 "VSI seid %d XDP Tx ring %d disable timeout\n", 4968 vsi->seid, pf_q); 4969 return ret; 4970 } 4971 wait_rx: 4972 /* Check and wait for the Rx queue */ 4973 ret = i40e_pf_rxq_wait(pf, pf_q, false); 4974 if (ret) { 4975 dev_info(&pf->pdev->dev, 4976 "VSI seid %d Rx ring %d disable timeout\n", 4977 vsi->seid, pf_q); 4978 return ret; 4979 } 4980 } 4981 4982 return 0; 4983 } 4984 4985 #ifdef CONFIG_I40E_DCB 4986 /** 4987 * i40e_pf_wait_queues_disabled - Wait for all queues of PF VSIs to be disabled 4988 * @pf: the PF 4989 * 4990 * This function waits for the queues to be in disabled state for all the 4991 * VSIs that are managed by this PF. 4992 **/ 4993 static int i40e_pf_wait_queues_disabled(struct i40e_pf *pf) 4994 { 4995 int v, ret = 0; 4996 4997 for (v = 0; v < pf->hw.func_caps.num_vsis; v++) { 4998 if (pf->vsi[v]) { 4999 ret = i40e_vsi_wait_queues_disabled(pf->vsi[v]); 5000 if (ret) 5001 break; 5002 } 5003 } 5004 5005 return ret; 5006 } 5007 5008 #endif 5009 5010 /** 5011 * i40e_get_iscsi_tc_map - Return TC map for iSCSI APP 5012 * @pf: pointer to PF 5013 * 5014 * Get TC map for ISCSI PF type that will include iSCSI TC 5015 * and LAN TC. 5016 **/ 5017 static u8 i40e_get_iscsi_tc_map(struct i40e_pf *pf) 5018 { 5019 struct i40e_dcb_app_priority_table app; 5020 struct i40e_hw *hw = &pf->hw; 5021 u8 enabled_tc = 1; /* TC0 is always enabled */ 5022 u8 tc, i; 5023 /* Get the iSCSI APP TLV */ 5024 struct i40e_dcbx_config *dcbcfg = &hw->local_dcbx_config; 5025 5026 for (i = 0; i < dcbcfg->numapps; i++) { 5027 app = dcbcfg->app[i]; 5028 if (app.selector == I40E_APP_SEL_TCPIP && 5029 app.protocolid == I40E_APP_PROTOID_ISCSI) { 5030 tc = dcbcfg->etscfg.prioritytable[app.priority]; 5031 enabled_tc |= BIT(tc); 5032 break; 5033 } 5034 } 5035 5036 return enabled_tc; 5037 } 5038 5039 /** 5040 * i40e_dcb_get_num_tc - Get the number of TCs from DCBx config 5041 * @dcbcfg: the corresponding DCBx configuration structure 5042 * 5043 * Return the number of TCs from given DCBx configuration 5044 **/ 5045 static u8 i40e_dcb_get_num_tc(struct i40e_dcbx_config *dcbcfg) 5046 { 5047 int i, tc_unused = 0; 5048 u8 num_tc = 0; 5049 u8 ret = 0; 5050 5051 /* Scan the ETS Config Priority Table to find 5052 * traffic class enabled for a given priority 5053 * and create a bitmask of enabled TCs 5054 */ 5055 for (i = 0; i < I40E_MAX_USER_PRIORITY; i++) 5056 num_tc |= BIT(dcbcfg->etscfg.prioritytable[i]); 5057 5058 /* Now scan the bitmask to check for 5059 * contiguous TCs starting with TC0 5060 */ 5061 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 5062 if (num_tc & BIT(i)) { 5063 if (!tc_unused) { 5064 ret++; 5065 } else { 5066 pr_err("Non-contiguous TC - Disabling DCB\n"); 5067 return 1; 5068 } 5069 } else { 5070 tc_unused = 1; 5071 } 5072 } 5073 5074 /* There is always at least TC0 */ 5075 if (!ret) 5076 ret = 1; 5077 5078 return ret; 5079 } 5080 5081 /** 5082 * i40e_dcb_get_enabled_tc - Get enabled traffic classes 5083 * @dcbcfg: the corresponding DCBx configuration structure 5084 * 5085 * Query the current DCB configuration and return the number of 5086 * traffic classes enabled from the given DCBX config 5087 **/ 5088 static u8 i40e_dcb_get_enabled_tc(struct i40e_dcbx_config *dcbcfg) 5089 { 5090 u8 num_tc = i40e_dcb_get_num_tc(dcbcfg); 5091 u8 enabled_tc = 1; 5092 u8 i; 5093 5094 for (i = 0; i < num_tc; i++) 5095 enabled_tc |= BIT(i); 5096 5097 return enabled_tc; 5098 } 5099 5100 /** 5101 * i40e_mqprio_get_enabled_tc - Get enabled traffic classes 5102 * @pf: PF being queried 5103 * 5104 * Query the current MQPRIO configuration and return the number of 5105 * traffic classes enabled. 5106 **/ 5107 static u8 i40e_mqprio_get_enabled_tc(struct i40e_pf *pf) 5108 { 5109 struct i40e_vsi *vsi = pf->vsi[pf->lan_vsi]; 5110 u8 num_tc = vsi->mqprio_qopt.qopt.num_tc; 5111 u8 enabled_tc = 1, i; 5112 5113 for (i = 1; i < num_tc; i++) 5114 enabled_tc |= BIT(i); 5115 return enabled_tc; 5116 } 5117 5118 /** 5119 * i40e_pf_get_num_tc - Get enabled traffic classes for PF 5120 * @pf: PF being queried 5121 * 5122 * Return number of traffic classes enabled for the given PF 5123 **/ 5124 static u8 i40e_pf_get_num_tc(struct i40e_pf *pf) 5125 { 5126 struct i40e_hw *hw = &pf->hw; 5127 u8 i, enabled_tc = 1; 5128 u8 num_tc = 0; 5129 struct i40e_dcbx_config *dcbcfg = &hw->local_dcbx_config; 5130 5131 if (pf->flags & I40E_FLAG_TC_MQPRIO) 5132 return pf->vsi[pf->lan_vsi]->mqprio_qopt.qopt.num_tc; 5133 5134 /* If neither MQPRIO nor DCB is enabled, then always use single TC */ 5135 if (!(pf->flags & I40E_FLAG_DCB_ENABLED)) 5136 return 1; 5137 5138 /* SFP mode will be enabled for all TCs on port */ 5139 if (!(pf->flags & I40E_FLAG_MFP_ENABLED)) 5140 return i40e_dcb_get_num_tc(dcbcfg); 5141 5142 /* MFP mode return count of enabled TCs for this PF */ 5143 if (pf->hw.func_caps.iscsi) 5144 enabled_tc = i40e_get_iscsi_tc_map(pf); 5145 else 5146 return 1; /* Only TC0 */ 5147 5148 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 5149 if (enabled_tc & BIT(i)) 5150 num_tc++; 5151 } 5152 return num_tc; 5153 } 5154 5155 /** 5156 * i40e_pf_get_pf_tc_map - Get bitmap for enabled traffic classes 5157 * @pf: PF being queried 5158 * 5159 * Return a bitmap for enabled traffic classes for this PF. 5160 **/ 5161 static u8 i40e_pf_get_tc_map(struct i40e_pf *pf) 5162 { 5163 if (pf->flags & I40E_FLAG_TC_MQPRIO) 5164 return i40e_mqprio_get_enabled_tc(pf); 5165 5166 /* If neither MQPRIO nor DCB is enabled for this PF then just return 5167 * default TC 5168 */ 5169 if (!(pf->flags & I40E_FLAG_DCB_ENABLED)) 5170 return I40E_DEFAULT_TRAFFIC_CLASS; 5171 5172 /* SFP mode we want PF to be enabled for all TCs */ 5173 if (!(pf->flags & I40E_FLAG_MFP_ENABLED)) 5174 return i40e_dcb_get_enabled_tc(&pf->hw.local_dcbx_config); 5175 5176 /* MFP enabled and iSCSI PF type */ 5177 if (pf->hw.func_caps.iscsi) 5178 return i40e_get_iscsi_tc_map(pf); 5179 else 5180 return I40E_DEFAULT_TRAFFIC_CLASS; 5181 } 5182 5183 /** 5184 * i40e_vsi_get_bw_info - Query VSI BW Information 5185 * @vsi: the VSI being queried 5186 * 5187 * Returns 0 on success, negative value on failure 5188 **/ 5189 static int i40e_vsi_get_bw_info(struct i40e_vsi *vsi) 5190 { 5191 struct i40e_aqc_query_vsi_ets_sla_config_resp bw_ets_config = {0}; 5192 struct i40e_aqc_query_vsi_bw_config_resp bw_config = {0}; 5193 struct i40e_pf *pf = vsi->back; 5194 struct i40e_hw *hw = &pf->hw; 5195 i40e_status ret; 5196 u32 tc_bw_max; 5197 int i; 5198 5199 /* Get the VSI level BW configuration */ 5200 ret = i40e_aq_query_vsi_bw_config(hw, vsi->seid, &bw_config, NULL); 5201 if (ret) { 5202 dev_info(&pf->pdev->dev, 5203 "couldn't get PF vsi bw config, err %s aq_err %s\n", 5204 i40e_stat_str(&pf->hw, ret), 5205 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 5206 return -EINVAL; 5207 } 5208 5209 /* Get the VSI level BW configuration per TC */ 5210 ret = i40e_aq_query_vsi_ets_sla_config(hw, vsi->seid, &bw_ets_config, 5211 NULL); 5212 if (ret) { 5213 dev_info(&pf->pdev->dev, 5214 "couldn't get PF vsi ets bw config, err %s aq_err %s\n", 5215 i40e_stat_str(&pf->hw, ret), 5216 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 5217 return -EINVAL; 5218 } 5219 5220 if (bw_config.tc_valid_bits != bw_ets_config.tc_valid_bits) { 5221 dev_info(&pf->pdev->dev, 5222 "Enabled TCs mismatch from querying VSI BW info 0x%08x 0x%08x\n", 5223 bw_config.tc_valid_bits, 5224 bw_ets_config.tc_valid_bits); 5225 /* Still continuing */ 5226 } 5227 5228 vsi->bw_limit = le16_to_cpu(bw_config.port_bw_limit); 5229 vsi->bw_max_quanta = bw_config.max_bw; 5230 tc_bw_max = le16_to_cpu(bw_ets_config.tc_bw_max[0]) | 5231 (le16_to_cpu(bw_ets_config.tc_bw_max[1]) << 16); 5232 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 5233 vsi->bw_ets_share_credits[i] = bw_ets_config.share_credits[i]; 5234 vsi->bw_ets_limit_credits[i] = 5235 le16_to_cpu(bw_ets_config.credits[i]); 5236 /* 3 bits out of 4 for each TC */ 5237 vsi->bw_ets_max_quanta[i] = (u8)((tc_bw_max >> (i*4)) & 0x7); 5238 } 5239 5240 return 0; 5241 } 5242 5243 /** 5244 * i40e_vsi_configure_bw_alloc - Configure VSI BW allocation per TC 5245 * @vsi: the VSI being configured 5246 * @enabled_tc: TC bitmap 5247 * @bw_share: BW shared credits per TC 5248 * 5249 * Returns 0 on success, negative value on failure 5250 **/ 5251 static int i40e_vsi_configure_bw_alloc(struct i40e_vsi *vsi, u8 enabled_tc, 5252 u8 *bw_share) 5253 { 5254 struct i40e_aqc_configure_vsi_tc_bw_data bw_data; 5255 struct i40e_pf *pf = vsi->back; 5256 i40e_status ret; 5257 int i; 5258 5259 /* There is no need to reset BW when mqprio mode is on. */ 5260 if (pf->flags & I40E_FLAG_TC_MQPRIO) 5261 return 0; 5262 if (!vsi->mqprio_qopt.qopt.hw && !(pf->flags & I40E_FLAG_DCB_ENABLED)) { 5263 ret = i40e_set_bw_limit(vsi, vsi->seid, 0); 5264 if (ret) 5265 dev_info(&pf->pdev->dev, 5266 "Failed to reset tx rate for vsi->seid %u\n", 5267 vsi->seid); 5268 return ret; 5269 } 5270 bw_data.tc_valid_bits = enabled_tc; 5271 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) 5272 bw_data.tc_bw_credits[i] = bw_share[i]; 5273 5274 ret = i40e_aq_config_vsi_tc_bw(&pf->hw, vsi->seid, &bw_data, NULL); 5275 if (ret) { 5276 dev_info(&pf->pdev->dev, 5277 "AQ command Config VSI BW allocation per TC failed = %d\n", 5278 pf->hw.aq.asq_last_status); 5279 return -EINVAL; 5280 } 5281 5282 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) 5283 vsi->info.qs_handle[i] = bw_data.qs_handles[i]; 5284 5285 return 0; 5286 } 5287 5288 /** 5289 * i40e_vsi_config_netdev_tc - Setup the netdev TC configuration 5290 * @vsi: the VSI being configured 5291 * @enabled_tc: TC map to be enabled 5292 * 5293 **/ 5294 static void i40e_vsi_config_netdev_tc(struct i40e_vsi *vsi, u8 enabled_tc) 5295 { 5296 struct net_device *netdev = vsi->netdev; 5297 struct i40e_pf *pf = vsi->back; 5298 struct i40e_hw *hw = &pf->hw; 5299 u8 netdev_tc = 0; 5300 int i; 5301 struct i40e_dcbx_config *dcbcfg = &hw->local_dcbx_config; 5302 5303 if (!netdev) 5304 return; 5305 5306 if (!enabled_tc) { 5307 netdev_reset_tc(netdev); 5308 return; 5309 } 5310 5311 /* Set up actual enabled TCs on the VSI */ 5312 if (netdev_set_num_tc(netdev, vsi->tc_config.numtc)) 5313 return; 5314 5315 /* set per TC queues for the VSI */ 5316 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 5317 /* Only set TC queues for enabled tcs 5318 * 5319 * e.g. For a VSI that has TC0 and TC3 enabled the 5320 * enabled_tc bitmap would be 0x00001001; the driver 5321 * will set the numtc for netdev as 2 that will be 5322 * referenced by the netdev layer as TC 0 and 1. 5323 */ 5324 if (vsi->tc_config.enabled_tc & BIT(i)) 5325 netdev_set_tc_queue(netdev, 5326 vsi->tc_config.tc_info[i].netdev_tc, 5327 vsi->tc_config.tc_info[i].qcount, 5328 vsi->tc_config.tc_info[i].qoffset); 5329 } 5330 5331 if (pf->flags & I40E_FLAG_TC_MQPRIO) 5332 return; 5333 5334 /* Assign UP2TC map for the VSI */ 5335 for (i = 0; i < I40E_MAX_USER_PRIORITY; i++) { 5336 /* Get the actual TC# for the UP */ 5337 u8 ets_tc = dcbcfg->etscfg.prioritytable[i]; 5338 /* Get the mapped netdev TC# for the UP */ 5339 netdev_tc = vsi->tc_config.tc_info[ets_tc].netdev_tc; 5340 netdev_set_prio_tc_map(netdev, i, netdev_tc); 5341 } 5342 } 5343 5344 /** 5345 * i40e_vsi_update_queue_map - Update our copy of VSi info with new queue map 5346 * @vsi: the VSI being configured 5347 * @ctxt: the ctxt buffer returned from AQ VSI update param command 5348 **/ 5349 static void i40e_vsi_update_queue_map(struct i40e_vsi *vsi, 5350 struct i40e_vsi_context *ctxt) 5351 { 5352 /* copy just the sections touched not the entire info 5353 * since not all sections are valid as returned by 5354 * update vsi params 5355 */ 5356 vsi->info.mapping_flags = ctxt->info.mapping_flags; 5357 memcpy(&vsi->info.queue_mapping, 5358 &ctxt->info.queue_mapping, sizeof(vsi->info.queue_mapping)); 5359 memcpy(&vsi->info.tc_mapping, ctxt->info.tc_mapping, 5360 sizeof(vsi->info.tc_mapping)); 5361 } 5362 5363 /** 5364 * i40e_vsi_config_tc - Configure VSI Tx Scheduler for given TC map 5365 * @vsi: VSI to be configured 5366 * @enabled_tc: TC bitmap 5367 * 5368 * This configures a particular VSI for TCs that are mapped to the 5369 * given TC bitmap. It uses default bandwidth share for TCs across 5370 * VSIs to configure TC for a particular VSI. 5371 * 5372 * NOTE: 5373 * It is expected that the VSI queues have been quisced before calling 5374 * this function. 5375 **/ 5376 static int i40e_vsi_config_tc(struct i40e_vsi *vsi, u8 enabled_tc) 5377 { 5378 u8 bw_share[I40E_MAX_TRAFFIC_CLASS] = {0}; 5379 struct i40e_pf *pf = vsi->back; 5380 struct i40e_hw *hw = &pf->hw; 5381 struct i40e_vsi_context ctxt; 5382 int ret = 0; 5383 int i; 5384 5385 /* Check if enabled_tc is same as existing or new TCs */ 5386 if (vsi->tc_config.enabled_tc == enabled_tc && 5387 vsi->mqprio_qopt.mode != TC_MQPRIO_MODE_CHANNEL) 5388 return ret; 5389 5390 /* Enable ETS TCs with equal BW Share for now across all VSIs */ 5391 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 5392 if (enabled_tc & BIT(i)) 5393 bw_share[i] = 1; 5394 } 5395 5396 ret = i40e_vsi_configure_bw_alloc(vsi, enabled_tc, bw_share); 5397 if (ret) { 5398 struct i40e_aqc_query_vsi_bw_config_resp bw_config = {0}; 5399 5400 dev_info(&pf->pdev->dev, 5401 "Failed configuring TC map %d for VSI %d\n", 5402 enabled_tc, vsi->seid); 5403 ret = i40e_aq_query_vsi_bw_config(hw, vsi->seid, 5404 &bw_config, NULL); 5405 if (ret) { 5406 dev_info(&pf->pdev->dev, 5407 "Failed querying vsi bw info, err %s aq_err %s\n", 5408 i40e_stat_str(hw, ret), 5409 i40e_aq_str(hw, hw->aq.asq_last_status)); 5410 goto out; 5411 } 5412 if ((bw_config.tc_valid_bits & enabled_tc) != enabled_tc) { 5413 u8 valid_tc = bw_config.tc_valid_bits & enabled_tc; 5414 5415 if (!valid_tc) 5416 valid_tc = bw_config.tc_valid_bits; 5417 /* Always enable TC0, no matter what */ 5418 valid_tc |= 1; 5419 dev_info(&pf->pdev->dev, 5420 "Requested tc 0x%x, but FW reports 0x%x as valid. Attempting to use 0x%x.\n", 5421 enabled_tc, bw_config.tc_valid_bits, valid_tc); 5422 enabled_tc = valid_tc; 5423 } 5424 5425 ret = i40e_vsi_configure_bw_alloc(vsi, enabled_tc, bw_share); 5426 if (ret) { 5427 dev_err(&pf->pdev->dev, 5428 "Unable to configure TC map %d for VSI %d\n", 5429 enabled_tc, vsi->seid); 5430 goto out; 5431 } 5432 } 5433 5434 /* Update Queue Pairs Mapping for currently enabled UPs */ 5435 ctxt.seid = vsi->seid; 5436 ctxt.pf_num = vsi->back->hw.pf_id; 5437 ctxt.vf_num = 0; 5438 ctxt.uplink_seid = vsi->uplink_seid; 5439 ctxt.info = vsi->info; 5440 if (vsi->back->flags & I40E_FLAG_TC_MQPRIO) { 5441 ret = i40e_vsi_setup_queue_map_mqprio(vsi, &ctxt, enabled_tc); 5442 if (ret) 5443 goto out; 5444 } else { 5445 i40e_vsi_setup_queue_map(vsi, &ctxt, enabled_tc, false); 5446 } 5447 5448 /* On destroying the qdisc, reset vsi->rss_size, as number of enabled 5449 * queues changed. 5450 */ 5451 if (!vsi->mqprio_qopt.qopt.hw && vsi->reconfig_rss) { 5452 vsi->rss_size = min_t(int, vsi->back->alloc_rss_size, 5453 vsi->num_queue_pairs); 5454 ret = i40e_vsi_config_rss(vsi); 5455 if (ret) { 5456 dev_info(&vsi->back->pdev->dev, 5457 "Failed to reconfig rss for num_queues\n"); 5458 return ret; 5459 } 5460 vsi->reconfig_rss = false; 5461 } 5462 if (vsi->back->flags & I40E_FLAG_IWARP_ENABLED) { 5463 ctxt.info.valid_sections |= 5464 cpu_to_le16(I40E_AQ_VSI_PROP_QUEUE_OPT_VALID); 5465 ctxt.info.queueing_opt_flags |= I40E_AQ_VSI_QUE_OPT_TCP_ENA; 5466 } 5467 5468 /* Update the VSI after updating the VSI queue-mapping 5469 * information 5470 */ 5471 ret = i40e_aq_update_vsi_params(hw, &ctxt, NULL); 5472 if (ret) { 5473 dev_info(&pf->pdev->dev, 5474 "Update vsi tc config failed, err %s aq_err %s\n", 5475 i40e_stat_str(hw, ret), 5476 i40e_aq_str(hw, hw->aq.asq_last_status)); 5477 goto out; 5478 } 5479 /* update the local VSI info with updated queue map */ 5480 i40e_vsi_update_queue_map(vsi, &ctxt); 5481 vsi->info.valid_sections = 0; 5482 5483 /* Update current VSI BW information */ 5484 ret = i40e_vsi_get_bw_info(vsi); 5485 if (ret) { 5486 dev_info(&pf->pdev->dev, 5487 "Failed updating vsi bw info, err %s aq_err %s\n", 5488 i40e_stat_str(hw, ret), 5489 i40e_aq_str(hw, hw->aq.asq_last_status)); 5490 goto out; 5491 } 5492 5493 /* Update the netdev TC setup */ 5494 i40e_vsi_config_netdev_tc(vsi, enabled_tc); 5495 out: 5496 return ret; 5497 } 5498 5499 /** 5500 * i40e_get_link_speed - Returns link speed for the interface 5501 * @vsi: VSI to be configured 5502 * 5503 **/ 5504 static int i40e_get_link_speed(struct i40e_vsi *vsi) 5505 { 5506 struct i40e_pf *pf = vsi->back; 5507 5508 switch (pf->hw.phy.link_info.link_speed) { 5509 case I40E_LINK_SPEED_40GB: 5510 return 40000; 5511 case I40E_LINK_SPEED_25GB: 5512 return 25000; 5513 case I40E_LINK_SPEED_20GB: 5514 return 20000; 5515 case I40E_LINK_SPEED_10GB: 5516 return 10000; 5517 case I40E_LINK_SPEED_1GB: 5518 return 1000; 5519 default: 5520 return -EINVAL; 5521 } 5522 } 5523 5524 /** 5525 * i40e_set_bw_limit - setup BW limit for Tx traffic based on max_tx_rate 5526 * @vsi: VSI to be configured 5527 * @seid: seid of the channel/VSI 5528 * @max_tx_rate: max TX rate to be configured as BW limit 5529 * 5530 * Helper function to set BW limit for a given VSI 5531 **/ 5532 int i40e_set_bw_limit(struct i40e_vsi *vsi, u16 seid, u64 max_tx_rate) 5533 { 5534 struct i40e_pf *pf = vsi->back; 5535 u64 credits = 0; 5536 int speed = 0; 5537 int ret = 0; 5538 5539 speed = i40e_get_link_speed(vsi); 5540 if (max_tx_rate > speed) { 5541 dev_err(&pf->pdev->dev, 5542 "Invalid max tx rate %llu specified for VSI seid %d.", 5543 max_tx_rate, seid); 5544 return -EINVAL; 5545 } 5546 if (max_tx_rate && max_tx_rate < 50) { 5547 dev_warn(&pf->pdev->dev, 5548 "Setting max tx rate to minimum usable value of 50Mbps.\n"); 5549 max_tx_rate = 50; 5550 } 5551 5552 /* Tx rate credits are in values of 50Mbps, 0 is disabled */ 5553 credits = max_tx_rate; 5554 do_div(credits, I40E_BW_CREDIT_DIVISOR); 5555 ret = i40e_aq_config_vsi_bw_limit(&pf->hw, seid, credits, 5556 I40E_MAX_BW_INACTIVE_ACCUM, NULL); 5557 if (ret) 5558 dev_err(&pf->pdev->dev, 5559 "Failed set tx rate (%llu Mbps) for vsi->seid %u, err %s aq_err %s\n", 5560 max_tx_rate, seid, i40e_stat_str(&pf->hw, ret), 5561 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 5562 return ret; 5563 } 5564 5565 /** 5566 * i40e_remove_queue_channels - Remove queue channels for the TCs 5567 * @vsi: VSI to be configured 5568 * 5569 * Remove queue channels for the TCs 5570 **/ 5571 static void i40e_remove_queue_channels(struct i40e_vsi *vsi) 5572 { 5573 enum i40e_admin_queue_err last_aq_status; 5574 struct i40e_cloud_filter *cfilter; 5575 struct i40e_channel *ch, *ch_tmp; 5576 struct i40e_pf *pf = vsi->back; 5577 struct hlist_node *node; 5578 int ret, i; 5579 5580 /* Reset rss size that was stored when reconfiguring rss for 5581 * channel VSIs with non-power-of-2 queue count. 5582 */ 5583 vsi->current_rss_size = 0; 5584 5585 /* perform cleanup for channels if they exist */ 5586 if (list_empty(&vsi->ch_list)) 5587 return; 5588 5589 list_for_each_entry_safe(ch, ch_tmp, &vsi->ch_list, list) { 5590 struct i40e_vsi *p_vsi; 5591 5592 list_del(&ch->list); 5593 p_vsi = ch->parent_vsi; 5594 if (!p_vsi || !ch->initialized) { 5595 kfree(ch); 5596 continue; 5597 } 5598 /* Reset queue contexts */ 5599 for (i = 0; i < ch->num_queue_pairs; i++) { 5600 struct i40e_ring *tx_ring, *rx_ring; 5601 u16 pf_q; 5602 5603 pf_q = ch->base_queue + i; 5604 tx_ring = vsi->tx_rings[pf_q]; 5605 tx_ring->ch = NULL; 5606 5607 rx_ring = vsi->rx_rings[pf_q]; 5608 rx_ring->ch = NULL; 5609 } 5610 5611 /* Reset BW configured for this VSI via mqprio */ 5612 ret = i40e_set_bw_limit(vsi, ch->seid, 0); 5613 if (ret) 5614 dev_info(&vsi->back->pdev->dev, 5615 "Failed to reset tx rate for ch->seid %u\n", 5616 ch->seid); 5617 5618 /* delete cloud filters associated with this channel */ 5619 hlist_for_each_entry_safe(cfilter, node, 5620 &pf->cloud_filter_list, cloud_node) { 5621 if (cfilter->seid != ch->seid) 5622 continue; 5623 5624 hash_del(&cfilter->cloud_node); 5625 if (cfilter->dst_port) 5626 ret = i40e_add_del_cloud_filter_big_buf(vsi, 5627 cfilter, 5628 false); 5629 else 5630 ret = i40e_add_del_cloud_filter(vsi, cfilter, 5631 false); 5632 last_aq_status = pf->hw.aq.asq_last_status; 5633 if (ret) 5634 dev_info(&pf->pdev->dev, 5635 "Failed to delete cloud filter, err %s aq_err %s\n", 5636 i40e_stat_str(&pf->hw, ret), 5637 i40e_aq_str(&pf->hw, last_aq_status)); 5638 kfree(cfilter); 5639 } 5640 5641 /* delete VSI from FW */ 5642 ret = i40e_aq_delete_element(&vsi->back->hw, ch->seid, 5643 NULL); 5644 if (ret) 5645 dev_err(&vsi->back->pdev->dev, 5646 "unable to remove channel (%d) for parent VSI(%d)\n", 5647 ch->seid, p_vsi->seid); 5648 kfree(ch); 5649 } 5650 INIT_LIST_HEAD(&vsi->ch_list); 5651 } 5652 5653 /** 5654 * i40e_is_any_channel - channel exist or not 5655 * @vsi: ptr to VSI to which channels are associated with 5656 * 5657 * Returns true or false if channel(s) exist for associated VSI or not 5658 **/ 5659 static bool i40e_is_any_channel(struct i40e_vsi *vsi) 5660 { 5661 struct i40e_channel *ch, *ch_tmp; 5662 5663 list_for_each_entry_safe(ch, ch_tmp, &vsi->ch_list, list) { 5664 if (ch->initialized) 5665 return true; 5666 } 5667 5668 return false; 5669 } 5670 5671 /** 5672 * i40e_get_max_queues_for_channel 5673 * @vsi: ptr to VSI to which channels are associated with 5674 * 5675 * Helper function which returns max value among the queue counts set on the 5676 * channels/TCs created. 5677 **/ 5678 static int i40e_get_max_queues_for_channel(struct i40e_vsi *vsi) 5679 { 5680 struct i40e_channel *ch, *ch_tmp; 5681 int max = 0; 5682 5683 list_for_each_entry_safe(ch, ch_tmp, &vsi->ch_list, list) { 5684 if (!ch->initialized) 5685 continue; 5686 if (ch->num_queue_pairs > max) 5687 max = ch->num_queue_pairs; 5688 } 5689 5690 return max; 5691 } 5692 5693 /** 5694 * i40e_validate_num_queues - validate num_queues w.r.t channel 5695 * @pf: ptr to PF device 5696 * @num_queues: number of queues 5697 * @vsi: the parent VSI 5698 * @reconfig_rss: indicates should the RSS be reconfigured or not 5699 * 5700 * This function validates number of queues in the context of new channel 5701 * which is being established and determines if RSS should be reconfigured 5702 * or not for parent VSI. 5703 **/ 5704 static int i40e_validate_num_queues(struct i40e_pf *pf, int num_queues, 5705 struct i40e_vsi *vsi, bool *reconfig_rss) 5706 { 5707 int max_ch_queues; 5708 5709 if (!reconfig_rss) 5710 return -EINVAL; 5711 5712 *reconfig_rss = false; 5713 if (vsi->current_rss_size) { 5714 if (num_queues > vsi->current_rss_size) { 5715 dev_dbg(&pf->pdev->dev, 5716 "Error: num_queues (%d) > vsi's current_size(%d)\n", 5717 num_queues, vsi->current_rss_size); 5718 return -EINVAL; 5719 } else if ((num_queues < vsi->current_rss_size) && 5720 (!is_power_of_2(num_queues))) { 5721 dev_dbg(&pf->pdev->dev, 5722 "Error: num_queues (%d) < vsi's current_size(%d), but not power of 2\n", 5723 num_queues, vsi->current_rss_size); 5724 return -EINVAL; 5725 } 5726 } 5727 5728 if (!is_power_of_2(num_queues)) { 5729 /* Find the max num_queues configured for channel if channel 5730 * exist. 5731 * if channel exist, then enforce 'num_queues' to be more than 5732 * max ever queues configured for channel. 5733 */ 5734 max_ch_queues = i40e_get_max_queues_for_channel(vsi); 5735 if (num_queues < max_ch_queues) { 5736 dev_dbg(&pf->pdev->dev, 5737 "Error: num_queues (%d) < max queues configured for channel(%d)\n", 5738 num_queues, max_ch_queues); 5739 return -EINVAL; 5740 } 5741 *reconfig_rss = true; 5742 } 5743 5744 return 0; 5745 } 5746 5747 /** 5748 * i40e_vsi_reconfig_rss - reconfig RSS based on specified rss_size 5749 * @vsi: the VSI being setup 5750 * @rss_size: size of RSS, accordingly LUT gets reprogrammed 5751 * 5752 * This function reconfigures RSS by reprogramming LUTs using 'rss_size' 5753 **/ 5754 static int i40e_vsi_reconfig_rss(struct i40e_vsi *vsi, u16 rss_size) 5755 { 5756 struct i40e_pf *pf = vsi->back; 5757 u8 seed[I40E_HKEY_ARRAY_SIZE]; 5758 struct i40e_hw *hw = &pf->hw; 5759 int local_rss_size; 5760 u8 *lut; 5761 int ret; 5762 5763 if (!vsi->rss_size) 5764 return -EINVAL; 5765 5766 if (rss_size > vsi->rss_size) 5767 return -EINVAL; 5768 5769 local_rss_size = min_t(int, vsi->rss_size, rss_size); 5770 lut = kzalloc(vsi->rss_table_size, GFP_KERNEL); 5771 if (!lut) 5772 return -ENOMEM; 5773 5774 /* Ignoring user configured lut if there is one */ 5775 i40e_fill_rss_lut(pf, lut, vsi->rss_table_size, local_rss_size); 5776 5777 /* Use user configured hash key if there is one, otherwise 5778 * use default. 5779 */ 5780 if (vsi->rss_hkey_user) 5781 memcpy(seed, vsi->rss_hkey_user, I40E_HKEY_ARRAY_SIZE); 5782 else 5783 netdev_rss_key_fill((void *)seed, I40E_HKEY_ARRAY_SIZE); 5784 5785 ret = i40e_config_rss(vsi, seed, lut, vsi->rss_table_size); 5786 if (ret) { 5787 dev_info(&pf->pdev->dev, 5788 "Cannot set RSS lut, err %s aq_err %s\n", 5789 i40e_stat_str(hw, ret), 5790 i40e_aq_str(hw, hw->aq.asq_last_status)); 5791 kfree(lut); 5792 return ret; 5793 } 5794 kfree(lut); 5795 5796 /* Do the update w.r.t. storing rss_size */ 5797 if (!vsi->orig_rss_size) 5798 vsi->orig_rss_size = vsi->rss_size; 5799 vsi->current_rss_size = local_rss_size; 5800 5801 return ret; 5802 } 5803 5804 /** 5805 * i40e_channel_setup_queue_map - Setup a channel queue map 5806 * @pf: ptr to PF device 5807 * @vsi: the VSI being setup 5808 * @ctxt: VSI context structure 5809 * @ch: ptr to channel structure 5810 * 5811 * Setup queue map for a specific channel 5812 **/ 5813 static void i40e_channel_setup_queue_map(struct i40e_pf *pf, 5814 struct i40e_vsi_context *ctxt, 5815 struct i40e_channel *ch) 5816 { 5817 u16 qcount, qmap, sections = 0; 5818 u8 offset = 0; 5819 int pow; 5820 5821 sections = I40E_AQ_VSI_PROP_QUEUE_MAP_VALID; 5822 sections |= I40E_AQ_VSI_PROP_SCHED_VALID; 5823 5824 qcount = min_t(int, ch->num_queue_pairs, pf->num_lan_msix); 5825 ch->num_queue_pairs = qcount; 5826 5827 /* find the next higher power-of-2 of num queue pairs */ 5828 pow = ilog2(qcount); 5829 if (!is_power_of_2(qcount)) 5830 pow++; 5831 5832 qmap = (offset << I40E_AQ_VSI_TC_QUE_OFFSET_SHIFT) | 5833 (pow << I40E_AQ_VSI_TC_QUE_NUMBER_SHIFT); 5834 5835 /* Setup queue TC[0].qmap for given VSI context */ 5836 ctxt->info.tc_mapping[0] = cpu_to_le16(qmap); 5837 5838 ctxt->info.up_enable_bits = 0x1; /* TC0 enabled */ 5839 ctxt->info.mapping_flags |= cpu_to_le16(I40E_AQ_VSI_QUE_MAP_CONTIG); 5840 ctxt->info.queue_mapping[0] = cpu_to_le16(ch->base_queue); 5841 ctxt->info.valid_sections |= cpu_to_le16(sections); 5842 } 5843 5844 /** 5845 * i40e_add_channel - add a channel by adding VSI 5846 * @pf: ptr to PF device 5847 * @uplink_seid: underlying HW switching element (VEB) ID 5848 * @ch: ptr to channel structure 5849 * 5850 * Add a channel (VSI) using add_vsi and queue_map 5851 **/ 5852 static int i40e_add_channel(struct i40e_pf *pf, u16 uplink_seid, 5853 struct i40e_channel *ch) 5854 { 5855 struct i40e_hw *hw = &pf->hw; 5856 struct i40e_vsi_context ctxt; 5857 u8 enabled_tc = 0x1; /* TC0 enabled */ 5858 int ret; 5859 5860 if (ch->type != I40E_VSI_VMDQ2) { 5861 dev_info(&pf->pdev->dev, 5862 "add new vsi failed, ch->type %d\n", ch->type); 5863 return -EINVAL; 5864 } 5865 5866 memset(&ctxt, 0, sizeof(ctxt)); 5867 ctxt.pf_num = hw->pf_id; 5868 ctxt.vf_num = 0; 5869 ctxt.uplink_seid = uplink_seid; 5870 ctxt.connection_type = I40E_AQ_VSI_CONN_TYPE_NORMAL; 5871 if (ch->type == I40E_VSI_VMDQ2) 5872 ctxt.flags = I40E_AQ_VSI_TYPE_VMDQ2; 5873 5874 if (pf->flags & I40E_FLAG_VEB_MODE_ENABLED) { 5875 ctxt.info.valid_sections |= 5876 cpu_to_le16(I40E_AQ_VSI_PROP_SWITCH_VALID); 5877 ctxt.info.switch_id = 5878 cpu_to_le16(I40E_AQ_VSI_SW_ID_FLAG_ALLOW_LB); 5879 } 5880 5881 /* Set queue map for a given VSI context */ 5882 i40e_channel_setup_queue_map(pf, &ctxt, ch); 5883 5884 /* Now time to create VSI */ 5885 ret = i40e_aq_add_vsi(hw, &ctxt, NULL); 5886 if (ret) { 5887 dev_info(&pf->pdev->dev, 5888 "add new vsi failed, err %s aq_err %s\n", 5889 i40e_stat_str(&pf->hw, ret), 5890 i40e_aq_str(&pf->hw, 5891 pf->hw.aq.asq_last_status)); 5892 return -ENOENT; 5893 } 5894 5895 /* Success, update channel, set enabled_tc only if the channel 5896 * is not a macvlan 5897 */ 5898 ch->enabled_tc = !i40e_is_channel_macvlan(ch) && enabled_tc; 5899 ch->seid = ctxt.seid; 5900 ch->vsi_number = ctxt.vsi_number; 5901 ch->stat_counter_idx = cpu_to_le16(ctxt.info.stat_counter_idx); 5902 5903 /* copy just the sections touched not the entire info 5904 * since not all sections are valid as returned by 5905 * update vsi params 5906 */ 5907 ch->info.mapping_flags = ctxt.info.mapping_flags; 5908 memcpy(&ch->info.queue_mapping, 5909 &ctxt.info.queue_mapping, sizeof(ctxt.info.queue_mapping)); 5910 memcpy(&ch->info.tc_mapping, ctxt.info.tc_mapping, 5911 sizeof(ctxt.info.tc_mapping)); 5912 5913 return 0; 5914 } 5915 5916 static int i40e_channel_config_bw(struct i40e_vsi *vsi, struct i40e_channel *ch, 5917 u8 *bw_share) 5918 { 5919 struct i40e_aqc_configure_vsi_tc_bw_data bw_data; 5920 i40e_status ret; 5921 int i; 5922 5923 bw_data.tc_valid_bits = ch->enabled_tc; 5924 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) 5925 bw_data.tc_bw_credits[i] = bw_share[i]; 5926 5927 ret = i40e_aq_config_vsi_tc_bw(&vsi->back->hw, ch->seid, 5928 &bw_data, NULL); 5929 if (ret) { 5930 dev_info(&vsi->back->pdev->dev, 5931 "Config VSI BW allocation per TC failed, aq_err: %d for new_vsi->seid %u\n", 5932 vsi->back->hw.aq.asq_last_status, ch->seid); 5933 return -EINVAL; 5934 } 5935 5936 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) 5937 ch->info.qs_handle[i] = bw_data.qs_handles[i]; 5938 5939 return 0; 5940 } 5941 5942 /** 5943 * i40e_channel_config_tx_ring - config TX ring associated with new channel 5944 * @pf: ptr to PF device 5945 * @vsi: the VSI being setup 5946 * @ch: ptr to channel structure 5947 * 5948 * Configure TX rings associated with channel (VSI) since queues are being 5949 * from parent VSI. 5950 **/ 5951 static int i40e_channel_config_tx_ring(struct i40e_pf *pf, 5952 struct i40e_vsi *vsi, 5953 struct i40e_channel *ch) 5954 { 5955 i40e_status ret; 5956 int i; 5957 u8 bw_share[I40E_MAX_TRAFFIC_CLASS] = {0}; 5958 5959 /* Enable ETS TCs with equal BW Share for now across all VSIs */ 5960 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 5961 if (ch->enabled_tc & BIT(i)) 5962 bw_share[i] = 1; 5963 } 5964 5965 /* configure BW for new VSI */ 5966 ret = i40e_channel_config_bw(vsi, ch, bw_share); 5967 if (ret) { 5968 dev_info(&vsi->back->pdev->dev, 5969 "Failed configuring TC map %d for channel (seid %u)\n", 5970 ch->enabled_tc, ch->seid); 5971 return ret; 5972 } 5973 5974 for (i = 0; i < ch->num_queue_pairs; i++) { 5975 struct i40e_ring *tx_ring, *rx_ring; 5976 u16 pf_q; 5977 5978 pf_q = ch->base_queue + i; 5979 5980 /* Get to TX ring ptr of main VSI, for re-setup TX queue 5981 * context 5982 */ 5983 tx_ring = vsi->tx_rings[pf_q]; 5984 tx_ring->ch = ch; 5985 5986 /* Get the RX ring ptr */ 5987 rx_ring = vsi->rx_rings[pf_q]; 5988 rx_ring->ch = ch; 5989 } 5990 5991 return 0; 5992 } 5993 5994 /** 5995 * i40e_setup_hw_channel - setup new channel 5996 * @pf: ptr to PF device 5997 * @vsi: the VSI being setup 5998 * @ch: ptr to channel structure 5999 * @uplink_seid: underlying HW switching element (VEB) ID 6000 * @type: type of channel to be created (VMDq2/VF) 6001 * 6002 * Setup new channel (VSI) based on specified type (VMDq2/VF) 6003 * and configures TX rings accordingly 6004 **/ 6005 static inline int i40e_setup_hw_channel(struct i40e_pf *pf, 6006 struct i40e_vsi *vsi, 6007 struct i40e_channel *ch, 6008 u16 uplink_seid, u8 type) 6009 { 6010 int ret; 6011 6012 ch->initialized = false; 6013 ch->base_queue = vsi->next_base_queue; 6014 ch->type = type; 6015 6016 /* Proceed with creation of channel (VMDq2) VSI */ 6017 ret = i40e_add_channel(pf, uplink_seid, ch); 6018 if (ret) { 6019 dev_info(&pf->pdev->dev, 6020 "failed to add_channel using uplink_seid %u\n", 6021 uplink_seid); 6022 return ret; 6023 } 6024 6025 /* Mark the successful creation of channel */ 6026 ch->initialized = true; 6027 6028 /* Reconfigure TX queues using QTX_CTL register */ 6029 ret = i40e_channel_config_tx_ring(pf, vsi, ch); 6030 if (ret) { 6031 dev_info(&pf->pdev->dev, 6032 "failed to configure TX rings for channel %u\n", 6033 ch->seid); 6034 return ret; 6035 } 6036 6037 /* update 'next_base_queue' */ 6038 vsi->next_base_queue = vsi->next_base_queue + ch->num_queue_pairs; 6039 dev_dbg(&pf->pdev->dev, 6040 "Added channel: vsi_seid %u, vsi_number %u, stat_counter_idx %u, num_queue_pairs %u, pf->next_base_queue %d\n", 6041 ch->seid, ch->vsi_number, ch->stat_counter_idx, 6042 ch->num_queue_pairs, 6043 vsi->next_base_queue); 6044 return ret; 6045 } 6046 6047 /** 6048 * i40e_setup_channel - setup new channel using uplink element 6049 * @pf: ptr to PF device 6050 * @type: type of channel to be created (VMDq2/VF) 6051 * @uplink_seid: underlying HW switching element (VEB) ID 6052 * @ch: ptr to channel structure 6053 * 6054 * Setup new channel (VSI) based on specified type (VMDq2/VF) 6055 * and uplink switching element (uplink_seid) 6056 **/ 6057 static bool i40e_setup_channel(struct i40e_pf *pf, struct i40e_vsi *vsi, 6058 struct i40e_channel *ch) 6059 { 6060 u8 vsi_type; 6061 u16 seid; 6062 int ret; 6063 6064 if (vsi->type == I40E_VSI_MAIN) { 6065 vsi_type = I40E_VSI_VMDQ2; 6066 } else { 6067 dev_err(&pf->pdev->dev, "unsupported parent vsi type(%d)\n", 6068 vsi->type); 6069 return false; 6070 } 6071 6072 /* underlying switching element */ 6073 seid = pf->vsi[pf->lan_vsi]->uplink_seid; 6074 6075 /* create channel (VSI), configure TX rings */ 6076 ret = i40e_setup_hw_channel(pf, vsi, ch, seid, vsi_type); 6077 if (ret) { 6078 dev_err(&pf->pdev->dev, "failed to setup hw_channel\n"); 6079 return false; 6080 } 6081 6082 return ch->initialized ? true : false; 6083 } 6084 6085 /** 6086 * i40e_validate_and_set_switch_mode - sets up switch mode correctly 6087 * @vsi: ptr to VSI which has PF backing 6088 * 6089 * Sets up switch mode correctly if it needs to be changed and perform 6090 * what are allowed modes. 6091 **/ 6092 static int i40e_validate_and_set_switch_mode(struct i40e_vsi *vsi) 6093 { 6094 u8 mode; 6095 struct i40e_pf *pf = vsi->back; 6096 struct i40e_hw *hw = &pf->hw; 6097 int ret; 6098 6099 ret = i40e_get_capabilities(pf, i40e_aqc_opc_list_dev_capabilities); 6100 if (ret) 6101 return -EINVAL; 6102 6103 if (hw->dev_caps.switch_mode) { 6104 /* if switch mode is set, support mode2 (non-tunneled for 6105 * cloud filter) for now 6106 */ 6107 u32 switch_mode = hw->dev_caps.switch_mode & 6108 I40E_SWITCH_MODE_MASK; 6109 if (switch_mode >= I40E_CLOUD_FILTER_MODE1) { 6110 if (switch_mode == I40E_CLOUD_FILTER_MODE2) 6111 return 0; 6112 dev_err(&pf->pdev->dev, 6113 "Invalid switch_mode (%d), only non-tunneled mode for cloud filter is supported\n", 6114 hw->dev_caps.switch_mode); 6115 return -EINVAL; 6116 } 6117 } 6118 6119 /* Set Bit 7 to be valid */ 6120 mode = I40E_AQ_SET_SWITCH_BIT7_VALID; 6121 6122 /* Set L4type for TCP support */ 6123 mode |= I40E_AQ_SET_SWITCH_L4_TYPE_TCP; 6124 6125 /* Set cloud filter mode */ 6126 mode |= I40E_AQ_SET_SWITCH_MODE_NON_TUNNEL; 6127 6128 /* Prep mode field for set_switch_config */ 6129 ret = i40e_aq_set_switch_config(hw, pf->last_sw_conf_flags, 6130 pf->last_sw_conf_valid_flags, 6131 mode, NULL); 6132 if (ret && hw->aq.asq_last_status != I40E_AQ_RC_ESRCH) 6133 dev_err(&pf->pdev->dev, 6134 "couldn't set switch config bits, err %s aq_err %s\n", 6135 i40e_stat_str(hw, ret), 6136 i40e_aq_str(hw, 6137 hw->aq.asq_last_status)); 6138 6139 return ret; 6140 } 6141 6142 /** 6143 * i40e_create_queue_channel - function to create channel 6144 * @vsi: VSI to be configured 6145 * @ch: ptr to channel (it contains channel specific params) 6146 * 6147 * This function creates channel (VSI) using num_queues specified by user, 6148 * reconfigs RSS if needed. 6149 **/ 6150 int i40e_create_queue_channel(struct i40e_vsi *vsi, 6151 struct i40e_channel *ch) 6152 { 6153 struct i40e_pf *pf = vsi->back; 6154 bool reconfig_rss; 6155 int err; 6156 6157 if (!ch) 6158 return -EINVAL; 6159 6160 if (!ch->num_queue_pairs) { 6161 dev_err(&pf->pdev->dev, "Invalid num_queues requested: %d\n", 6162 ch->num_queue_pairs); 6163 return -EINVAL; 6164 } 6165 6166 /* validate user requested num_queues for channel */ 6167 err = i40e_validate_num_queues(pf, ch->num_queue_pairs, vsi, 6168 &reconfig_rss); 6169 if (err) { 6170 dev_info(&pf->pdev->dev, "Failed to validate num_queues (%d)\n", 6171 ch->num_queue_pairs); 6172 return -EINVAL; 6173 } 6174 6175 /* By default we are in VEPA mode, if this is the first VF/VMDq 6176 * VSI to be added switch to VEB mode. 6177 */ 6178 if ((!(pf->flags & I40E_FLAG_VEB_MODE_ENABLED)) || 6179 (!i40e_is_any_channel(vsi))) { 6180 if (!is_power_of_2(vsi->tc_config.tc_info[0].qcount)) { 6181 dev_dbg(&pf->pdev->dev, 6182 "Failed to create channel. Override queues (%u) not power of 2\n", 6183 vsi->tc_config.tc_info[0].qcount); 6184 return -EINVAL; 6185 } 6186 6187 if (!(pf->flags & I40E_FLAG_VEB_MODE_ENABLED)) { 6188 pf->flags |= I40E_FLAG_VEB_MODE_ENABLED; 6189 6190 if (vsi->type == I40E_VSI_MAIN) { 6191 if (pf->flags & I40E_FLAG_TC_MQPRIO) 6192 i40e_do_reset(pf, I40E_PF_RESET_FLAG, 6193 true); 6194 else 6195 i40e_do_reset_safe(pf, 6196 I40E_PF_RESET_FLAG); 6197 } 6198 } 6199 /* now onwards for main VSI, number of queues will be value 6200 * of TC0's queue count 6201 */ 6202 } 6203 6204 /* By this time, vsi->cnt_q_avail shall be set to non-zero and 6205 * it should be more than num_queues 6206 */ 6207 if (!vsi->cnt_q_avail || vsi->cnt_q_avail < ch->num_queue_pairs) { 6208 dev_dbg(&pf->pdev->dev, 6209 "Error: cnt_q_avail (%u) less than num_queues %d\n", 6210 vsi->cnt_q_avail, ch->num_queue_pairs); 6211 return -EINVAL; 6212 } 6213 6214 /* reconfig_rss only if vsi type is MAIN_VSI */ 6215 if (reconfig_rss && (vsi->type == I40E_VSI_MAIN)) { 6216 err = i40e_vsi_reconfig_rss(vsi, ch->num_queue_pairs); 6217 if (err) { 6218 dev_info(&pf->pdev->dev, 6219 "Error: unable to reconfig rss for num_queues (%u)\n", 6220 ch->num_queue_pairs); 6221 return -EINVAL; 6222 } 6223 } 6224 6225 if (!i40e_setup_channel(pf, vsi, ch)) { 6226 dev_info(&pf->pdev->dev, "Failed to setup channel\n"); 6227 return -EINVAL; 6228 } 6229 6230 dev_info(&pf->pdev->dev, 6231 "Setup channel (id:%u) utilizing num_queues %d\n", 6232 ch->seid, ch->num_queue_pairs); 6233 6234 /* configure VSI for BW limit */ 6235 if (ch->max_tx_rate) { 6236 u64 credits = ch->max_tx_rate; 6237 6238 if (i40e_set_bw_limit(vsi, ch->seid, ch->max_tx_rate)) 6239 return -EINVAL; 6240 6241 do_div(credits, I40E_BW_CREDIT_DIVISOR); 6242 dev_dbg(&pf->pdev->dev, 6243 "Set tx rate of %llu Mbps (count of 50Mbps %llu) for vsi->seid %u\n", 6244 ch->max_tx_rate, 6245 credits, 6246 ch->seid); 6247 } 6248 6249 /* in case of VF, this will be main SRIOV VSI */ 6250 ch->parent_vsi = vsi; 6251 6252 /* and update main_vsi's count for queue_available to use */ 6253 vsi->cnt_q_avail -= ch->num_queue_pairs; 6254 6255 return 0; 6256 } 6257 6258 /** 6259 * i40e_configure_queue_channels - Add queue channel for the given TCs 6260 * @vsi: VSI to be configured 6261 * 6262 * Configures queue channel mapping to the given TCs 6263 **/ 6264 static int i40e_configure_queue_channels(struct i40e_vsi *vsi) 6265 { 6266 struct i40e_channel *ch; 6267 u64 max_rate = 0; 6268 int ret = 0, i; 6269 6270 /* Create app vsi with the TCs. Main VSI with TC0 is already set up */ 6271 vsi->tc_seid_map[0] = vsi->seid; 6272 for (i = 1; i < I40E_MAX_TRAFFIC_CLASS; i++) { 6273 if (vsi->tc_config.enabled_tc & BIT(i)) { 6274 ch = kzalloc(sizeof(*ch), GFP_KERNEL); 6275 if (!ch) { 6276 ret = -ENOMEM; 6277 goto err_free; 6278 } 6279 6280 INIT_LIST_HEAD(&ch->list); 6281 ch->num_queue_pairs = 6282 vsi->tc_config.tc_info[i].qcount; 6283 ch->base_queue = 6284 vsi->tc_config.tc_info[i].qoffset; 6285 6286 /* Bandwidth limit through tc interface is in bytes/s, 6287 * change to Mbit/s 6288 */ 6289 max_rate = vsi->mqprio_qopt.max_rate[i]; 6290 do_div(max_rate, I40E_BW_MBPS_DIVISOR); 6291 ch->max_tx_rate = max_rate; 6292 6293 list_add_tail(&ch->list, &vsi->ch_list); 6294 6295 ret = i40e_create_queue_channel(vsi, ch); 6296 if (ret) { 6297 dev_err(&vsi->back->pdev->dev, 6298 "Failed creating queue channel with TC%d: queues %d\n", 6299 i, ch->num_queue_pairs); 6300 goto err_free; 6301 } 6302 vsi->tc_seid_map[i] = ch->seid; 6303 } 6304 } 6305 return ret; 6306 6307 err_free: 6308 i40e_remove_queue_channels(vsi); 6309 return ret; 6310 } 6311 6312 /** 6313 * i40e_veb_config_tc - Configure TCs for given VEB 6314 * @veb: given VEB 6315 * @enabled_tc: TC bitmap 6316 * 6317 * Configures given TC bitmap for VEB (switching) element 6318 **/ 6319 int i40e_veb_config_tc(struct i40e_veb *veb, u8 enabled_tc) 6320 { 6321 struct i40e_aqc_configure_switching_comp_bw_config_data bw_data = {0}; 6322 struct i40e_pf *pf = veb->pf; 6323 int ret = 0; 6324 int i; 6325 6326 /* No TCs or already enabled TCs just return */ 6327 if (!enabled_tc || veb->enabled_tc == enabled_tc) 6328 return ret; 6329 6330 bw_data.tc_valid_bits = enabled_tc; 6331 /* bw_data.absolute_credits is not set (relative) */ 6332 6333 /* Enable ETS TCs with equal BW Share for now */ 6334 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 6335 if (enabled_tc & BIT(i)) 6336 bw_data.tc_bw_share_credits[i] = 1; 6337 } 6338 6339 ret = i40e_aq_config_switch_comp_bw_config(&pf->hw, veb->seid, 6340 &bw_data, NULL); 6341 if (ret) { 6342 dev_info(&pf->pdev->dev, 6343 "VEB bw config failed, err %s aq_err %s\n", 6344 i40e_stat_str(&pf->hw, ret), 6345 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 6346 goto out; 6347 } 6348 6349 /* Update the BW information */ 6350 ret = i40e_veb_get_bw_info(veb); 6351 if (ret) { 6352 dev_info(&pf->pdev->dev, 6353 "Failed getting veb bw config, err %s aq_err %s\n", 6354 i40e_stat_str(&pf->hw, ret), 6355 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 6356 } 6357 6358 out: 6359 return ret; 6360 } 6361 6362 #ifdef CONFIG_I40E_DCB 6363 /** 6364 * i40e_dcb_reconfigure - Reconfigure all VEBs and VSIs 6365 * @pf: PF struct 6366 * 6367 * Reconfigure VEB/VSIs on a given PF; it is assumed that 6368 * the caller would've quiesce all the VSIs before calling 6369 * this function 6370 **/ 6371 static void i40e_dcb_reconfigure(struct i40e_pf *pf) 6372 { 6373 u8 tc_map = 0; 6374 int ret; 6375 u8 v; 6376 6377 /* Enable the TCs available on PF to all VEBs */ 6378 tc_map = i40e_pf_get_tc_map(pf); 6379 for (v = 0; v < I40E_MAX_VEB; v++) { 6380 if (!pf->veb[v]) 6381 continue; 6382 ret = i40e_veb_config_tc(pf->veb[v], tc_map); 6383 if (ret) { 6384 dev_info(&pf->pdev->dev, 6385 "Failed configuring TC for VEB seid=%d\n", 6386 pf->veb[v]->seid); 6387 /* Will try to configure as many components */ 6388 } 6389 } 6390 6391 /* Update each VSI */ 6392 for (v = 0; v < pf->num_alloc_vsi; v++) { 6393 if (!pf->vsi[v]) 6394 continue; 6395 6396 /* - Enable all TCs for the LAN VSI 6397 * - For all others keep them at TC0 for now 6398 */ 6399 if (v == pf->lan_vsi) 6400 tc_map = i40e_pf_get_tc_map(pf); 6401 else 6402 tc_map = I40E_DEFAULT_TRAFFIC_CLASS; 6403 6404 ret = i40e_vsi_config_tc(pf->vsi[v], tc_map); 6405 if (ret) { 6406 dev_info(&pf->pdev->dev, 6407 "Failed configuring TC for VSI seid=%d\n", 6408 pf->vsi[v]->seid); 6409 /* Will try to configure as many components */ 6410 } else { 6411 /* Re-configure VSI vectors based on updated TC map */ 6412 i40e_vsi_map_rings_to_vectors(pf->vsi[v]); 6413 if (pf->vsi[v]->netdev) 6414 i40e_dcbnl_set_all(pf->vsi[v]); 6415 } 6416 } 6417 } 6418 6419 /** 6420 * i40e_resume_port_tx - Resume port Tx 6421 * @pf: PF struct 6422 * 6423 * Resume a port's Tx and issue a PF reset in case of failure to 6424 * resume. 6425 **/ 6426 static int i40e_resume_port_tx(struct i40e_pf *pf) 6427 { 6428 struct i40e_hw *hw = &pf->hw; 6429 int ret; 6430 6431 ret = i40e_aq_resume_port_tx(hw, NULL); 6432 if (ret) { 6433 dev_info(&pf->pdev->dev, 6434 "Resume Port Tx failed, err %s aq_err %s\n", 6435 i40e_stat_str(&pf->hw, ret), 6436 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 6437 /* Schedule PF reset to recover */ 6438 set_bit(__I40E_PF_RESET_REQUESTED, pf->state); 6439 i40e_service_event_schedule(pf); 6440 } 6441 6442 return ret; 6443 } 6444 6445 /** 6446 * i40e_init_pf_dcb - Initialize DCB configuration 6447 * @pf: PF being configured 6448 * 6449 * Query the current DCB configuration and cache it 6450 * in the hardware structure 6451 **/ 6452 static int i40e_init_pf_dcb(struct i40e_pf *pf) 6453 { 6454 struct i40e_hw *hw = &pf->hw; 6455 int err = 0; 6456 6457 /* Do not enable DCB for SW1 and SW2 images even if the FW is capable 6458 * Also do not enable DCBx if FW LLDP agent is disabled 6459 */ 6460 if ((pf->hw_features & I40E_HW_NO_DCB_SUPPORT) || 6461 (pf->flags & I40E_FLAG_DISABLE_FW_LLDP)) { 6462 dev_info(&pf->pdev->dev, "DCB is not supported or FW LLDP is disabled\n"); 6463 err = I40E_NOT_SUPPORTED; 6464 goto out; 6465 } 6466 6467 err = i40e_init_dcb(hw, true); 6468 if (!err) { 6469 /* Device/Function is not DCBX capable */ 6470 if ((!hw->func_caps.dcb) || 6471 (hw->dcbx_status == I40E_DCBX_STATUS_DISABLED)) { 6472 dev_info(&pf->pdev->dev, 6473 "DCBX offload is not supported or is disabled for this PF.\n"); 6474 } else { 6475 /* When status is not DISABLED then DCBX in FW */ 6476 pf->dcbx_cap = DCB_CAP_DCBX_LLD_MANAGED | 6477 DCB_CAP_DCBX_VER_IEEE; 6478 6479 pf->flags |= I40E_FLAG_DCB_CAPABLE; 6480 /* Enable DCB tagging only when more than one TC 6481 * or explicitly disable if only one TC 6482 */ 6483 if (i40e_dcb_get_num_tc(&hw->local_dcbx_config) > 1) 6484 pf->flags |= I40E_FLAG_DCB_ENABLED; 6485 else 6486 pf->flags &= ~I40E_FLAG_DCB_ENABLED; 6487 dev_dbg(&pf->pdev->dev, 6488 "DCBX offload is supported for this PF.\n"); 6489 } 6490 } else if (pf->hw.aq.asq_last_status == I40E_AQ_RC_EPERM) { 6491 dev_info(&pf->pdev->dev, "FW LLDP disabled for this PF.\n"); 6492 pf->flags |= I40E_FLAG_DISABLE_FW_LLDP; 6493 } else { 6494 dev_info(&pf->pdev->dev, 6495 "Query for DCB configuration failed, err %s aq_err %s\n", 6496 i40e_stat_str(&pf->hw, err), 6497 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 6498 } 6499 6500 out: 6501 return err; 6502 } 6503 #endif /* CONFIG_I40E_DCB */ 6504 #define SPEED_SIZE 14 6505 #define FC_SIZE 8 6506 /** 6507 * i40e_print_link_message - print link up or down 6508 * @vsi: the VSI for which link needs a message 6509 * @isup: true of link is up, false otherwise 6510 */ 6511 void i40e_print_link_message(struct i40e_vsi *vsi, bool isup) 6512 { 6513 enum i40e_aq_link_speed new_speed; 6514 struct i40e_pf *pf = vsi->back; 6515 char *speed = "Unknown"; 6516 char *fc = "Unknown"; 6517 char *fec = ""; 6518 char *req_fec = ""; 6519 char *an = ""; 6520 6521 if (isup) 6522 new_speed = pf->hw.phy.link_info.link_speed; 6523 else 6524 new_speed = I40E_LINK_SPEED_UNKNOWN; 6525 6526 if ((vsi->current_isup == isup) && (vsi->current_speed == new_speed)) 6527 return; 6528 vsi->current_isup = isup; 6529 vsi->current_speed = new_speed; 6530 if (!isup) { 6531 netdev_info(vsi->netdev, "NIC Link is Down\n"); 6532 return; 6533 } 6534 6535 /* Warn user if link speed on NPAR enabled partition is not at 6536 * least 10GB 6537 */ 6538 if (pf->hw.func_caps.npar_enable && 6539 (pf->hw.phy.link_info.link_speed == I40E_LINK_SPEED_1GB || 6540 pf->hw.phy.link_info.link_speed == I40E_LINK_SPEED_100MB)) 6541 netdev_warn(vsi->netdev, 6542 "The partition detected link speed that is less than 10Gbps\n"); 6543 6544 switch (pf->hw.phy.link_info.link_speed) { 6545 case I40E_LINK_SPEED_40GB: 6546 speed = "40 G"; 6547 break; 6548 case I40E_LINK_SPEED_20GB: 6549 speed = "20 G"; 6550 break; 6551 case I40E_LINK_SPEED_25GB: 6552 speed = "25 G"; 6553 break; 6554 case I40E_LINK_SPEED_10GB: 6555 speed = "10 G"; 6556 break; 6557 case I40E_LINK_SPEED_5GB: 6558 speed = "5 G"; 6559 break; 6560 case I40E_LINK_SPEED_2_5GB: 6561 speed = "2.5 G"; 6562 break; 6563 case I40E_LINK_SPEED_1GB: 6564 speed = "1000 M"; 6565 break; 6566 case I40E_LINK_SPEED_100MB: 6567 speed = "100 M"; 6568 break; 6569 default: 6570 break; 6571 } 6572 6573 switch (pf->hw.fc.current_mode) { 6574 case I40E_FC_FULL: 6575 fc = "RX/TX"; 6576 break; 6577 case I40E_FC_TX_PAUSE: 6578 fc = "TX"; 6579 break; 6580 case I40E_FC_RX_PAUSE: 6581 fc = "RX"; 6582 break; 6583 default: 6584 fc = "None"; 6585 break; 6586 } 6587 6588 if (pf->hw.phy.link_info.link_speed == I40E_LINK_SPEED_25GB) { 6589 req_fec = "None"; 6590 fec = "None"; 6591 an = "False"; 6592 6593 if (pf->hw.phy.link_info.an_info & I40E_AQ_AN_COMPLETED) 6594 an = "True"; 6595 6596 if (pf->hw.phy.link_info.fec_info & 6597 I40E_AQ_CONFIG_FEC_KR_ENA) 6598 fec = "CL74 FC-FEC/BASE-R"; 6599 else if (pf->hw.phy.link_info.fec_info & 6600 I40E_AQ_CONFIG_FEC_RS_ENA) 6601 fec = "CL108 RS-FEC"; 6602 6603 /* 'CL108 RS-FEC' should be displayed when RS is requested, or 6604 * both RS and FC are requested 6605 */ 6606 if (vsi->back->hw.phy.link_info.req_fec_info & 6607 (I40E_AQ_REQUEST_FEC_KR | I40E_AQ_REQUEST_FEC_RS)) { 6608 if (vsi->back->hw.phy.link_info.req_fec_info & 6609 I40E_AQ_REQUEST_FEC_RS) 6610 req_fec = "CL108 RS-FEC"; 6611 else 6612 req_fec = "CL74 FC-FEC/BASE-R"; 6613 } 6614 netdev_info(vsi->netdev, 6615 "NIC Link is Up, %sbps Full Duplex, Requested FEC: %s, Negotiated FEC: %s, Autoneg: %s, Flow Control: %s\n", 6616 speed, req_fec, fec, an, fc); 6617 } else { 6618 netdev_info(vsi->netdev, 6619 "NIC Link is Up, %sbps Full Duplex, Flow Control: %s\n", 6620 speed, fc); 6621 } 6622 6623 } 6624 6625 /** 6626 * i40e_up_complete - Finish the last steps of bringing up a connection 6627 * @vsi: the VSI being configured 6628 **/ 6629 static int i40e_up_complete(struct i40e_vsi *vsi) 6630 { 6631 struct i40e_pf *pf = vsi->back; 6632 int err; 6633 6634 if (pf->flags & I40E_FLAG_MSIX_ENABLED) 6635 i40e_vsi_configure_msix(vsi); 6636 else 6637 i40e_configure_msi_and_legacy(vsi); 6638 6639 /* start rings */ 6640 err = i40e_vsi_start_rings(vsi); 6641 if (err) 6642 return err; 6643 6644 clear_bit(__I40E_VSI_DOWN, vsi->state); 6645 i40e_napi_enable_all(vsi); 6646 i40e_vsi_enable_irq(vsi); 6647 6648 if ((pf->hw.phy.link_info.link_info & I40E_AQ_LINK_UP) && 6649 (vsi->netdev)) { 6650 i40e_print_link_message(vsi, true); 6651 netif_tx_start_all_queues(vsi->netdev); 6652 netif_carrier_on(vsi->netdev); 6653 } 6654 6655 /* replay FDIR SB filters */ 6656 if (vsi->type == I40E_VSI_FDIR) { 6657 /* reset fd counters */ 6658 pf->fd_add_err = 0; 6659 pf->fd_atr_cnt = 0; 6660 i40e_fdir_filter_restore(vsi); 6661 } 6662 6663 /* On the next run of the service_task, notify any clients of the new 6664 * opened netdev 6665 */ 6666 set_bit(__I40E_CLIENT_SERVICE_REQUESTED, pf->state); 6667 i40e_service_event_schedule(pf); 6668 6669 return 0; 6670 } 6671 6672 /** 6673 * i40e_vsi_reinit_locked - Reset the VSI 6674 * @vsi: the VSI being configured 6675 * 6676 * Rebuild the ring structs after some configuration 6677 * has changed, e.g. MTU size. 6678 **/ 6679 static void i40e_vsi_reinit_locked(struct i40e_vsi *vsi) 6680 { 6681 struct i40e_pf *pf = vsi->back; 6682 6683 WARN_ON(in_interrupt()); 6684 while (test_and_set_bit(__I40E_CONFIG_BUSY, pf->state)) 6685 usleep_range(1000, 2000); 6686 i40e_down(vsi); 6687 6688 i40e_up(vsi); 6689 clear_bit(__I40E_CONFIG_BUSY, pf->state); 6690 } 6691 6692 /** 6693 * i40e_up - Bring the connection back up after being down 6694 * @vsi: the VSI being configured 6695 **/ 6696 int i40e_up(struct i40e_vsi *vsi) 6697 { 6698 int err; 6699 6700 err = i40e_vsi_configure(vsi); 6701 if (!err) 6702 err = i40e_up_complete(vsi); 6703 6704 return err; 6705 } 6706 6707 /** 6708 * i40e_force_link_state - Force the link status 6709 * @pf: board private structure 6710 * @is_up: whether the link state should be forced up or down 6711 **/ 6712 static i40e_status i40e_force_link_state(struct i40e_pf *pf, bool is_up) 6713 { 6714 struct i40e_aq_get_phy_abilities_resp abilities; 6715 struct i40e_aq_set_phy_config config = {0}; 6716 struct i40e_hw *hw = &pf->hw; 6717 i40e_status err; 6718 u64 mask; 6719 u8 speed; 6720 6721 /* Card might've been put in an unstable state by other drivers 6722 * and applications, which causes incorrect speed values being 6723 * set on startup. In order to clear speed registers, we call 6724 * get_phy_capabilities twice, once to get initial state of 6725 * available speeds, and once to get current PHY config. 6726 */ 6727 err = i40e_aq_get_phy_capabilities(hw, false, true, &abilities, 6728 NULL); 6729 if (err) { 6730 dev_err(&pf->pdev->dev, 6731 "failed to get phy cap., ret = %s last_status = %s\n", 6732 i40e_stat_str(hw, err), 6733 i40e_aq_str(hw, hw->aq.asq_last_status)); 6734 return err; 6735 } 6736 speed = abilities.link_speed; 6737 6738 /* Get the current phy config */ 6739 err = i40e_aq_get_phy_capabilities(hw, false, false, &abilities, 6740 NULL); 6741 if (err) { 6742 dev_err(&pf->pdev->dev, 6743 "failed to get phy cap., ret = %s last_status = %s\n", 6744 i40e_stat_str(hw, err), 6745 i40e_aq_str(hw, hw->aq.asq_last_status)); 6746 return err; 6747 } 6748 6749 /* If link needs to go up, but was not forced to go down, 6750 * and its speed values are OK, no need for a flap 6751 */ 6752 if (is_up && abilities.phy_type != 0 && abilities.link_speed != 0) 6753 return I40E_SUCCESS; 6754 6755 /* To force link we need to set bits for all supported PHY types, 6756 * but there are now more than 32, so we need to split the bitmap 6757 * across two fields. 6758 */ 6759 mask = I40E_PHY_TYPES_BITMASK; 6760 config.phy_type = is_up ? cpu_to_le32((u32)(mask & 0xffffffff)) : 0; 6761 config.phy_type_ext = is_up ? (u8)((mask >> 32) & 0xff) : 0; 6762 /* Copy the old settings, except of phy_type */ 6763 config.abilities = abilities.abilities; 6764 if (abilities.link_speed != 0) 6765 config.link_speed = abilities.link_speed; 6766 else 6767 config.link_speed = speed; 6768 config.eee_capability = abilities.eee_capability; 6769 config.eeer = abilities.eeer_val; 6770 config.low_power_ctrl = abilities.d3_lpan; 6771 config.fec_config = abilities.fec_cfg_curr_mod_ext_info & 6772 I40E_AQ_PHY_FEC_CONFIG_MASK; 6773 err = i40e_aq_set_phy_config(hw, &config, NULL); 6774 6775 if (err) { 6776 dev_err(&pf->pdev->dev, 6777 "set phy config ret = %s last_status = %s\n", 6778 i40e_stat_str(&pf->hw, err), 6779 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 6780 return err; 6781 } 6782 6783 /* Update the link info */ 6784 err = i40e_update_link_info(hw); 6785 if (err) { 6786 /* Wait a little bit (on 40G cards it sometimes takes a really 6787 * long time for link to come back from the atomic reset) 6788 * and try once more 6789 */ 6790 msleep(1000); 6791 i40e_update_link_info(hw); 6792 } 6793 6794 i40e_aq_set_link_restart_an(hw, true, NULL); 6795 6796 return I40E_SUCCESS; 6797 } 6798 6799 /** 6800 * i40e_down - Shutdown the connection processing 6801 * @vsi: the VSI being stopped 6802 **/ 6803 void i40e_down(struct i40e_vsi *vsi) 6804 { 6805 int i; 6806 6807 /* It is assumed that the caller of this function 6808 * sets the vsi->state __I40E_VSI_DOWN bit. 6809 */ 6810 if (vsi->netdev) { 6811 netif_carrier_off(vsi->netdev); 6812 netif_tx_disable(vsi->netdev); 6813 } 6814 i40e_vsi_disable_irq(vsi); 6815 i40e_vsi_stop_rings(vsi); 6816 if (vsi->type == I40E_VSI_MAIN && 6817 vsi->back->flags & I40E_FLAG_LINK_DOWN_ON_CLOSE_ENABLED) 6818 i40e_force_link_state(vsi->back, false); 6819 i40e_napi_disable_all(vsi); 6820 6821 for (i = 0; i < vsi->num_queue_pairs; i++) { 6822 i40e_clean_tx_ring(vsi->tx_rings[i]); 6823 if (i40e_enabled_xdp_vsi(vsi)) { 6824 /* Make sure that in-progress ndo_xdp_xmit and 6825 * ndo_xsk_wakeup calls are completed. 6826 */ 6827 synchronize_rcu(); 6828 i40e_clean_tx_ring(vsi->xdp_rings[i]); 6829 } 6830 i40e_clean_rx_ring(vsi->rx_rings[i]); 6831 } 6832 6833 } 6834 6835 /** 6836 * i40e_validate_mqprio_qopt- validate queue mapping info 6837 * @vsi: the VSI being configured 6838 * @mqprio_qopt: queue parametrs 6839 **/ 6840 static int i40e_validate_mqprio_qopt(struct i40e_vsi *vsi, 6841 struct tc_mqprio_qopt_offload *mqprio_qopt) 6842 { 6843 u64 sum_max_rate = 0; 6844 u64 max_rate = 0; 6845 int i; 6846 6847 if (mqprio_qopt->qopt.offset[0] != 0 || 6848 mqprio_qopt->qopt.num_tc < 1 || 6849 mqprio_qopt->qopt.num_tc > I40E_MAX_TRAFFIC_CLASS) 6850 return -EINVAL; 6851 for (i = 0; ; i++) { 6852 if (!mqprio_qopt->qopt.count[i]) 6853 return -EINVAL; 6854 if (mqprio_qopt->min_rate[i]) { 6855 dev_err(&vsi->back->pdev->dev, 6856 "Invalid min tx rate (greater than 0) specified\n"); 6857 return -EINVAL; 6858 } 6859 max_rate = mqprio_qopt->max_rate[i]; 6860 do_div(max_rate, I40E_BW_MBPS_DIVISOR); 6861 sum_max_rate += max_rate; 6862 6863 if (i >= mqprio_qopt->qopt.num_tc - 1) 6864 break; 6865 if (mqprio_qopt->qopt.offset[i + 1] != 6866 (mqprio_qopt->qopt.offset[i] + mqprio_qopt->qopt.count[i])) 6867 return -EINVAL; 6868 } 6869 if (vsi->num_queue_pairs < 6870 (mqprio_qopt->qopt.offset[i] + mqprio_qopt->qopt.count[i])) { 6871 return -EINVAL; 6872 } 6873 if (sum_max_rate > i40e_get_link_speed(vsi)) { 6874 dev_err(&vsi->back->pdev->dev, 6875 "Invalid max tx rate specified\n"); 6876 return -EINVAL; 6877 } 6878 return 0; 6879 } 6880 6881 /** 6882 * i40e_vsi_set_default_tc_config - set default values for tc configuration 6883 * @vsi: the VSI being configured 6884 **/ 6885 static void i40e_vsi_set_default_tc_config(struct i40e_vsi *vsi) 6886 { 6887 u16 qcount; 6888 int i; 6889 6890 /* Only TC0 is enabled */ 6891 vsi->tc_config.numtc = 1; 6892 vsi->tc_config.enabled_tc = 1; 6893 qcount = min_t(int, vsi->alloc_queue_pairs, 6894 i40e_pf_get_max_q_per_tc(vsi->back)); 6895 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 6896 /* For the TC that is not enabled set the offset to to default 6897 * queue and allocate one queue for the given TC. 6898 */ 6899 vsi->tc_config.tc_info[i].qoffset = 0; 6900 if (i == 0) 6901 vsi->tc_config.tc_info[i].qcount = qcount; 6902 else 6903 vsi->tc_config.tc_info[i].qcount = 1; 6904 vsi->tc_config.tc_info[i].netdev_tc = 0; 6905 } 6906 } 6907 6908 /** 6909 * i40e_del_macvlan_filter 6910 * @hw: pointer to the HW structure 6911 * @seid: seid of the channel VSI 6912 * @macaddr: the mac address to apply as a filter 6913 * @aq_err: store the admin Q error 6914 * 6915 * This function deletes a mac filter on the channel VSI which serves as the 6916 * macvlan. Returns 0 on success. 6917 **/ 6918 static i40e_status i40e_del_macvlan_filter(struct i40e_hw *hw, u16 seid, 6919 const u8 *macaddr, int *aq_err) 6920 { 6921 struct i40e_aqc_remove_macvlan_element_data element; 6922 i40e_status status; 6923 6924 memset(&element, 0, sizeof(element)); 6925 ether_addr_copy(element.mac_addr, macaddr); 6926 element.vlan_tag = 0; 6927 element.flags = I40E_AQC_MACVLAN_DEL_PERFECT_MATCH; 6928 status = i40e_aq_remove_macvlan(hw, seid, &element, 1, NULL); 6929 *aq_err = hw->aq.asq_last_status; 6930 6931 return status; 6932 } 6933 6934 /** 6935 * i40e_add_macvlan_filter 6936 * @hw: pointer to the HW structure 6937 * @seid: seid of the channel VSI 6938 * @macaddr: the mac address to apply as a filter 6939 * @aq_err: store the admin Q error 6940 * 6941 * This function adds a mac filter on the channel VSI which serves as the 6942 * macvlan. Returns 0 on success. 6943 **/ 6944 static i40e_status i40e_add_macvlan_filter(struct i40e_hw *hw, u16 seid, 6945 const u8 *macaddr, int *aq_err) 6946 { 6947 struct i40e_aqc_add_macvlan_element_data element; 6948 i40e_status status; 6949 u16 cmd_flags = 0; 6950 6951 ether_addr_copy(element.mac_addr, macaddr); 6952 element.vlan_tag = 0; 6953 element.queue_number = 0; 6954 element.match_method = I40E_AQC_MM_ERR_NO_RES; 6955 cmd_flags |= I40E_AQC_MACVLAN_ADD_PERFECT_MATCH; 6956 element.flags = cpu_to_le16(cmd_flags); 6957 status = i40e_aq_add_macvlan(hw, seid, &element, 1, NULL); 6958 *aq_err = hw->aq.asq_last_status; 6959 6960 return status; 6961 } 6962 6963 /** 6964 * i40e_reset_ch_rings - Reset the queue contexts in a channel 6965 * @vsi: the VSI we want to access 6966 * @ch: the channel we want to access 6967 */ 6968 static void i40e_reset_ch_rings(struct i40e_vsi *vsi, struct i40e_channel *ch) 6969 { 6970 struct i40e_ring *tx_ring, *rx_ring; 6971 u16 pf_q; 6972 int i; 6973 6974 for (i = 0; i < ch->num_queue_pairs; i++) { 6975 pf_q = ch->base_queue + i; 6976 tx_ring = vsi->tx_rings[pf_q]; 6977 tx_ring->ch = NULL; 6978 rx_ring = vsi->rx_rings[pf_q]; 6979 rx_ring->ch = NULL; 6980 } 6981 } 6982 6983 /** 6984 * i40e_free_macvlan_channels 6985 * @vsi: the VSI we want to access 6986 * 6987 * This function frees the Qs of the channel VSI from 6988 * the stack and also deletes the channel VSIs which 6989 * serve as macvlans. 6990 */ 6991 static void i40e_free_macvlan_channels(struct i40e_vsi *vsi) 6992 { 6993 struct i40e_channel *ch, *ch_tmp; 6994 int ret; 6995 6996 if (list_empty(&vsi->macvlan_list)) 6997 return; 6998 6999 list_for_each_entry_safe(ch, ch_tmp, &vsi->macvlan_list, list) { 7000 struct i40e_vsi *parent_vsi; 7001 7002 if (i40e_is_channel_macvlan(ch)) { 7003 i40e_reset_ch_rings(vsi, ch); 7004 clear_bit(ch->fwd->bit_no, vsi->fwd_bitmask); 7005 netdev_unbind_sb_channel(vsi->netdev, ch->fwd->netdev); 7006 netdev_set_sb_channel(ch->fwd->netdev, 0); 7007 kfree(ch->fwd); 7008 ch->fwd = NULL; 7009 } 7010 7011 list_del(&ch->list); 7012 parent_vsi = ch->parent_vsi; 7013 if (!parent_vsi || !ch->initialized) { 7014 kfree(ch); 7015 continue; 7016 } 7017 7018 /* remove the VSI */ 7019 ret = i40e_aq_delete_element(&vsi->back->hw, ch->seid, 7020 NULL); 7021 if (ret) 7022 dev_err(&vsi->back->pdev->dev, 7023 "unable to remove channel (%d) for parent VSI(%d)\n", 7024 ch->seid, parent_vsi->seid); 7025 kfree(ch); 7026 } 7027 vsi->macvlan_cnt = 0; 7028 } 7029 7030 /** 7031 * i40e_fwd_ring_up - bring the macvlan device up 7032 * @vsi: the VSI we want to access 7033 * @vdev: macvlan netdevice 7034 * @fwd: the private fwd structure 7035 */ 7036 static int i40e_fwd_ring_up(struct i40e_vsi *vsi, struct net_device *vdev, 7037 struct i40e_fwd_adapter *fwd) 7038 { 7039 int ret = 0, num_tc = 1, i, aq_err; 7040 struct i40e_channel *ch, *ch_tmp; 7041 struct i40e_pf *pf = vsi->back; 7042 struct i40e_hw *hw = &pf->hw; 7043 7044 if (list_empty(&vsi->macvlan_list)) 7045 return -EINVAL; 7046 7047 /* Go through the list and find an available channel */ 7048 list_for_each_entry_safe(ch, ch_tmp, &vsi->macvlan_list, list) { 7049 if (!i40e_is_channel_macvlan(ch)) { 7050 ch->fwd = fwd; 7051 /* record configuration for macvlan interface in vdev */ 7052 for (i = 0; i < num_tc; i++) 7053 netdev_bind_sb_channel_queue(vsi->netdev, vdev, 7054 i, 7055 ch->num_queue_pairs, 7056 ch->base_queue); 7057 for (i = 0; i < ch->num_queue_pairs; i++) { 7058 struct i40e_ring *tx_ring, *rx_ring; 7059 u16 pf_q; 7060 7061 pf_q = ch->base_queue + i; 7062 7063 /* Get to TX ring ptr */ 7064 tx_ring = vsi->tx_rings[pf_q]; 7065 tx_ring->ch = ch; 7066 7067 /* Get the RX ring ptr */ 7068 rx_ring = vsi->rx_rings[pf_q]; 7069 rx_ring->ch = ch; 7070 } 7071 break; 7072 } 7073 } 7074 7075 /* Guarantee all rings are updated before we update the 7076 * MAC address filter. 7077 */ 7078 wmb(); 7079 7080 /* Add a mac filter */ 7081 ret = i40e_add_macvlan_filter(hw, ch->seid, vdev->dev_addr, &aq_err); 7082 if (ret) { 7083 /* if we cannot add the MAC rule then disable the offload */ 7084 macvlan_release_l2fw_offload(vdev); 7085 for (i = 0; i < ch->num_queue_pairs; i++) { 7086 struct i40e_ring *rx_ring; 7087 u16 pf_q; 7088 7089 pf_q = ch->base_queue + i; 7090 rx_ring = vsi->rx_rings[pf_q]; 7091 rx_ring->netdev = NULL; 7092 } 7093 dev_info(&pf->pdev->dev, 7094 "Error adding mac filter on macvlan err %s, aq_err %s\n", 7095 i40e_stat_str(hw, ret), 7096 i40e_aq_str(hw, aq_err)); 7097 netdev_err(vdev, "L2fwd offload disabled to L2 filter error\n"); 7098 } 7099 7100 return ret; 7101 } 7102 7103 /** 7104 * i40e_setup_macvlans - create the channels which will be macvlans 7105 * @vsi: the VSI we want to access 7106 * @macvlan_cnt: no. of macvlans to be setup 7107 * @qcnt: no. of Qs per macvlan 7108 * @vdev: macvlan netdevice 7109 */ 7110 static int i40e_setup_macvlans(struct i40e_vsi *vsi, u16 macvlan_cnt, u16 qcnt, 7111 struct net_device *vdev) 7112 { 7113 struct i40e_pf *pf = vsi->back; 7114 struct i40e_hw *hw = &pf->hw; 7115 struct i40e_vsi_context ctxt; 7116 u16 sections, qmap, num_qps; 7117 struct i40e_channel *ch; 7118 int i, pow, ret = 0; 7119 u8 offset = 0; 7120 7121 if (vsi->type != I40E_VSI_MAIN || !macvlan_cnt) 7122 return -EINVAL; 7123 7124 num_qps = vsi->num_queue_pairs - (macvlan_cnt * qcnt); 7125 7126 /* find the next higher power-of-2 of num queue pairs */ 7127 pow = fls(roundup_pow_of_two(num_qps) - 1); 7128 7129 qmap = (offset << I40E_AQ_VSI_TC_QUE_OFFSET_SHIFT) | 7130 (pow << I40E_AQ_VSI_TC_QUE_NUMBER_SHIFT); 7131 7132 /* Setup context bits for the main VSI */ 7133 sections = I40E_AQ_VSI_PROP_QUEUE_MAP_VALID; 7134 sections |= I40E_AQ_VSI_PROP_SCHED_VALID; 7135 memset(&ctxt, 0, sizeof(ctxt)); 7136 ctxt.seid = vsi->seid; 7137 ctxt.pf_num = vsi->back->hw.pf_id; 7138 ctxt.vf_num = 0; 7139 ctxt.uplink_seid = vsi->uplink_seid; 7140 ctxt.info = vsi->info; 7141 ctxt.info.tc_mapping[0] = cpu_to_le16(qmap); 7142 ctxt.info.mapping_flags |= cpu_to_le16(I40E_AQ_VSI_QUE_MAP_CONTIG); 7143 ctxt.info.queue_mapping[0] = cpu_to_le16(vsi->base_queue); 7144 ctxt.info.valid_sections |= cpu_to_le16(sections); 7145 7146 /* Reconfigure RSS for main VSI with new max queue count */ 7147 vsi->rss_size = max_t(u16, num_qps, qcnt); 7148 ret = i40e_vsi_config_rss(vsi); 7149 if (ret) { 7150 dev_info(&pf->pdev->dev, 7151 "Failed to reconfig RSS for num_queues (%u)\n", 7152 vsi->rss_size); 7153 return ret; 7154 } 7155 vsi->reconfig_rss = true; 7156 dev_dbg(&vsi->back->pdev->dev, 7157 "Reconfigured RSS with num_queues (%u)\n", vsi->rss_size); 7158 vsi->next_base_queue = num_qps; 7159 vsi->cnt_q_avail = vsi->num_queue_pairs - num_qps; 7160 7161 /* Update the VSI after updating the VSI queue-mapping 7162 * information 7163 */ 7164 ret = i40e_aq_update_vsi_params(hw, &ctxt, NULL); 7165 if (ret) { 7166 dev_info(&pf->pdev->dev, 7167 "Update vsi tc config failed, err %s aq_err %s\n", 7168 i40e_stat_str(hw, ret), 7169 i40e_aq_str(hw, hw->aq.asq_last_status)); 7170 return ret; 7171 } 7172 /* update the local VSI info with updated queue map */ 7173 i40e_vsi_update_queue_map(vsi, &ctxt); 7174 vsi->info.valid_sections = 0; 7175 7176 /* Create channels for macvlans */ 7177 INIT_LIST_HEAD(&vsi->macvlan_list); 7178 for (i = 0; i < macvlan_cnt; i++) { 7179 ch = kzalloc(sizeof(*ch), GFP_KERNEL); 7180 if (!ch) { 7181 ret = -ENOMEM; 7182 goto err_free; 7183 } 7184 INIT_LIST_HEAD(&ch->list); 7185 ch->num_queue_pairs = qcnt; 7186 if (!i40e_setup_channel(pf, vsi, ch)) { 7187 ret = -EINVAL; 7188 kfree(ch); 7189 goto err_free; 7190 } 7191 ch->parent_vsi = vsi; 7192 vsi->cnt_q_avail -= ch->num_queue_pairs; 7193 vsi->macvlan_cnt++; 7194 list_add_tail(&ch->list, &vsi->macvlan_list); 7195 } 7196 7197 return ret; 7198 7199 err_free: 7200 dev_info(&pf->pdev->dev, "Failed to setup macvlans\n"); 7201 i40e_free_macvlan_channels(vsi); 7202 7203 return ret; 7204 } 7205 7206 /** 7207 * i40e_fwd_add - configure macvlans 7208 * @netdev: net device to configure 7209 * @vdev: macvlan netdevice 7210 **/ 7211 static void *i40e_fwd_add(struct net_device *netdev, struct net_device *vdev) 7212 { 7213 struct i40e_netdev_priv *np = netdev_priv(netdev); 7214 u16 q_per_macvlan = 0, macvlan_cnt = 0, vectors; 7215 struct i40e_vsi *vsi = np->vsi; 7216 struct i40e_pf *pf = vsi->back; 7217 struct i40e_fwd_adapter *fwd; 7218 int avail_macvlan, ret; 7219 7220 if ((pf->flags & I40E_FLAG_DCB_ENABLED)) { 7221 netdev_info(netdev, "Macvlans are not supported when DCB is enabled\n"); 7222 return ERR_PTR(-EINVAL); 7223 } 7224 if ((pf->flags & I40E_FLAG_TC_MQPRIO)) { 7225 netdev_info(netdev, "Macvlans are not supported when HW TC offload is on\n"); 7226 return ERR_PTR(-EINVAL); 7227 } 7228 if (pf->num_lan_msix < I40E_MIN_MACVLAN_VECTORS) { 7229 netdev_info(netdev, "Not enough vectors available to support macvlans\n"); 7230 return ERR_PTR(-EINVAL); 7231 } 7232 7233 /* The macvlan device has to be a single Q device so that the 7234 * tc_to_txq field can be reused to pick the tx queue. 7235 */ 7236 if (netif_is_multiqueue(vdev)) 7237 return ERR_PTR(-ERANGE); 7238 7239 if (!vsi->macvlan_cnt) { 7240 /* reserve bit 0 for the pf device */ 7241 set_bit(0, vsi->fwd_bitmask); 7242 7243 /* Try to reserve as many queues as possible for macvlans. First 7244 * reserve 3/4th of max vectors, then half, then quarter and 7245 * calculate Qs per macvlan as you go 7246 */ 7247 vectors = pf->num_lan_msix; 7248 if (vectors <= I40E_MAX_MACVLANS && vectors > 64) { 7249 /* allocate 4 Qs per macvlan and 32 Qs to the PF*/ 7250 q_per_macvlan = 4; 7251 macvlan_cnt = (vectors - 32) / 4; 7252 } else if (vectors <= 64 && vectors > 32) { 7253 /* allocate 2 Qs per macvlan and 16 Qs to the PF*/ 7254 q_per_macvlan = 2; 7255 macvlan_cnt = (vectors - 16) / 2; 7256 } else if (vectors <= 32 && vectors > 16) { 7257 /* allocate 1 Q per macvlan and 16 Qs to the PF*/ 7258 q_per_macvlan = 1; 7259 macvlan_cnt = vectors - 16; 7260 } else if (vectors <= 16 && vectors > 8) { 7261 /* allocate 1 Q per macvlan and 8 Qs to the PF */ 7262 q_per_macvlan = 1; 7263 macvlan_cnt = vectors - 8; 7264 } else { 7265 /* allocate 1 Q per macvlan and 1 Q to the PF */ 7266 q_per_macvlan = 1; 7267 macvlan_cnt = vectors - 1; 7268 } 7269 7270 if (macvlan_cnt == 0) 7271 return ERR_PTR(-EBUSY); 7272 7273 /* Quiesce VSI queues */ 7274 i40e_quiesce_vsi(vsi); 7275 7276 /* sets up the macvlans but does not "enable" them */ 7277 ret = i40e_setup_macvlans(vsi, macvlan_cnt, q_per_macvlan, 7278 vdev); 7279 if (ret) 7280 return ERR_PTR(ret); 7281 7282 /* Unquiesce VSI */ 7283 i40e_unquiesce_vsi(vsi); 7284 } 7285 avail_macvlan = find_first_zero_bit(vsi->fwd_bitmask, 7286 vsi->macvlan_cnt); 7287 if (avail_macvlan >= I40E_MAX_MACVLANS) 7288 return ERR_PTR(-EBUSY); 7289 7290 /* create the fwd struct */ 7291 fwd = kzalloc(sizeof(*fwd), GFP_KERNEL); 7292 if (!fwd) 7293 return ERR_PTR(-ENOMEM); 7294 7295 set_bit(avail_macvlan, vsi->fwd_bitmask); 7296 fwd->bit_no = avail_macvlan; 7297 netdev_set_sb_channel(vdev, avail_macvlan); 7298 fwd->netdev = vdev; 7299 7300 if (!netif_running(netdev)) 7301 return fwd; 7302 7303 /* Set fwd ring up */ 7304 ret = i40e_fwd_ring_up(vsi, vdev, fwd); 7305 if (ret) { 7306 /* unbind the queues and drop the subordinate channel config */ 7307 netdev_unbind_sb_channel(netdev, vdev); 7308 netdev_set_sb_channel(vdev, 0); 7309 7310 kfree(fwd); 7311 return ERR_PTR(-EINVAL); 7312 } 7313 7314 return fwd; 7315 } 7316 7317 /** 7318 * i40e_del_all_macvlans - Delete all the mac filters on the channels 7319 * @vsi: the VSI we want to access 7320 */ 7321 static void i40e_del_all_macvlans(struct i40e_vsi *vsi) 7322 { 7323 struct i40e_channel *ch, *ch_tmp; 7324 struct i40e_pf *pf = vsi->back; 7325 struct i40e_hw *hw = &pf->hw; 7326 int aq_err, ret = 0; 7327 7328 if (list_empty(&vsi->macvlan_list)) 7329 return; 7330 7331 list_for_each_entry_safe(ch, ch_tmp, &vsi->macvlan_list, list) { 7332 if (i40e_is_channel_macvlan(ch)) { 7333 ret = i40e_del_macvlan_filter(hw, ch->seid, 7334 i40e_channel_mac(ch), 7335 &aq_err); 7336 if (!ret) { 7337 /* Reset queue contexts */ 7338 i40e_reset_ch_rings(vsi, ch); 7339 clear_bit(ch->fwd->bit_no, vsi->fwd_bitmask); 7340 netdev_unbind_sb_channel(vsi->netdev, 7341 ch->fwd->netdev); 7342 netdev_set_sb_channel(ch->fwd->netdev, 0); 7343 kfree(ch->fwd); 7344 ch->fwd = NULL; 7345 } 7346 } 7347 } 7348 } 7349 7350 /** 7351 * i40e_fwd_del - delete macvlan interfaces 7352 * @netdev: net device to configure 7353 * @vdev: macvlan netdevice 7354 */ 7355 static void i40e_fwd_del(struct net_device *netdev, void *vdev) 7356 { 7357 struct i40e_netdev_priv *np = netdev_priv(netdev); 7358 struct i40e_fwd_adapter *fwd = vdev; 7359 struct i40e_channel *ch, *ch_tmp; 7360 struct i40e_vsi *vsi = np->vsi; 7361 struct i40e_pf *pf = vsi->back; 7362 struct i40e_hw *hw = &pf->hw; 7363 int aq_err, ret = 0; 7364 7365 /* Find the channel associated with the macvlan and del mac filter */ 7366 list_for_each_entry_safe(ch, ch_tmp, &vsi->macvlan_list, list) { 7367 if (i40e_is_channel_macvlan(ch) && 7368 ether_addr_equal(i40e_channel_mac(ch), 7369 fwd->netdev->dev_addr)) { 7370 ret = i40e_del_macvlan_filter(hw, ch->seid, 7371 i40e_channel_mac(ch), 7372 &aq_err); 7373 if (!ret) { 7374 /* Reset queue contexts */ 7375 i40e_reset_ch_rings(vsi, ch); 7376 clear_bit(ch->fwd->bit_no, vsi->fwd_bitmask); 7377 netdev_unbind_sb_channel(netdev, fwd->netdev); 7378 netdev_set_sb_channel(fwd->netdev, 0); 7379 kfree(ch->fwd); 7380 ch->fwd = NULL; 7381 } else { 7382 dev_info(&pf->pdev->dev, 7383 "Error deleting mac filter on macvlan err %s, aq_err %s\n", 7384 i40e_stat_str(hw, ret), 7385 i40e_aq_str(hw, aq_err)); 7386 } 7387 break; 7388 } 7389 } 7390 } 7391 7392 /** 7393 * i40e_setup_tc - configure multiple traffic classes 7394 * @netdev: net device to configure 7395 * @type_data: tc offload data 7396 **/ 7397 static int i40e_setup_tc(struct net_device *netdev, void *type_data) 7398 { 7399 struct tc_mqprio_qopt_offload *mqprio_qopt = type_data; 7400 struct i40e_netdev_priv *np = netdev_priv(netdev); 7401 struct i40e_vsi *vsi = np->vsi; 7402 struct i40e_pf *pf = vsi->back; 7403 u8 enabled_tc = 0, num_tc, hw; 7404 bool need_reset = false; 7405 int old_queue_pairs; 7406 int ret = -EINVAL; 7407 u16 mode; 7408 int i; 7409 7410 old_queue_pairs = vsi->num_queue_pairs; 7411 num_tc = mqprio_qopt->qopt.num_tc; 7412 hw = mqprio_qopt->qopt.hw; 7413 mode = mqprio_qopt->mode; 7414 if (!hw) { 7415 pf->flags &= ~I40E_FLAG_TC_MQPRIO; 7416 memcpy(&vsi->mqprio_qopt, mqprio_qopt, sizeof(*mqprio_qopt)); 7417 goto config_tc; 7418 } 7419 7420 /* Check if MFP enabled */ 7421 if (pf->flags & I40E_FLAG_MFP_ENABLED) { 7422 netdev_info(netdev, 7423 "Configuring TC not supported in MFP mode\n"); 7424 return ret; 7425 } 7426 switch (mode) { 7427 case TC_MQPRIO_MODE_DCB: 7428 pf->flags &= ~I40E_FLAG_TC_MQPRIO; 7429 7430 /* Check if DCB enabled to continue */ 7431 if (!(pf->flags & I40E_FLAG_DCB_ENABLED)) { 7432 netdev_info(netdev, 7433 "DCB is not enabled for adapter\n"); 7434 return ret; 7435 } 7436 7437 /* Check whether tc count is within enabled limit */ 7438 if (num_tc > i40e_pf_get_num_tc(pf)) { 7439 netdev_info(netdev, 7440 "TC count greater than enabled on link for adapter\n"); 7441 return ret; 7442 } 7443 break; 7444 case TC_MQPRIO_MODE_CHANNEL: 7445 if (pf->flags & I40E_FLAG_DCB_ENABLED) { 7446 netdev_info(netdev, 7447 "Full offload of TC Mqprio options is not supported when DCB is enabled\n"); 7448 return ret; 7449 } 7450 if (!(pf->flags & I40E_FLAG_MSIX_ENABLED)) 7451 return ret; 7452 ret = i40e_validate_mqprio_qopt(vsi, mqprio_qopt); 7453 if (ret) 7454 return ret; 7455 memcpy(&vsi->mqprio_qopt, mqprio_qopt, 7456 sizeof(*mqprio_qopt)); 7457 pf->flags |= I40E_FLAG_TC_MQPRIO; 7458 pf->flags &= ~I40E_FLAG_DCB_ENABLED; 7459 break; 7460 default: 7461 return -EINVAL; 7462 } 7463 7464 config_tc: 7465 /* Generate TC map for number of tc requested */ 7466 for (i = 0; i < num_tc; i++) 7467 enabled_tc |= BIT(i); 7468 7469 /* Requesting same TC configuration as already enabled */ 7470 if (enabled_tc == vsi->tc_config.enabled_tc && 7471 mode != TC_MQPRIO_MODE_CHANNEL) 7472 return 0; 7473 7474 /* Quiesce VSI queues */ 7475 i40e_quiesce_vsi(vsi); 7476 7477 if (!hw && !(pf->flags & I40E_FLAG_TC_MQPRIO)) 7478 i40e_remove_queue_channels(vsi); 7479 7480 /* Configure VSI for enabled TCs */ 7481 ret = i40e_vsi_config_tc(vsi, enabled_tc); 7482 if (ret) { 7483 netdev_info(netdev, "Failed configuring TC for VSI seid=%d\n", 7484 vsi->seid); 7485 need_reset = true; 7486 goto exit; 7487 } else { 7488 dev_info(&vsi->back->pdev->dev, 7489 "Setup channel (id:%u) utilizing num_queues %d\n", 7490 vsi->seid, vsi->tc_config.tc_info[0].qcount); 7491 } 7492 7493 if (pf->flags & I40E_FLAG_TC_MQPRIO) { 7494 if (vsi->mqprio_qopt.max_rate[0]) { 7495 u64 max_tx_rate = vsi->mqprio_qopt.max_rate[0]; 7496 7497 do_div(max_tx_rate, I40E_BW_MBPS_DIVISOR); 7498 ret = i40e_set_bw_limit(vsi, vsi->seid, max_tx_rate); 7499 if (!ret) { 7500 u64 credits = max_tx_rate; 7501 7502 do_div(credits, I40E_BW_CREDIT_DIVISOR); 7503 dev_dbg(&vsi->back->pdev->dev, 7504 "Set tx rate of %llu Mbps (count of 50Mbps %llu) for vsi->seid %u\n", 7505 max_tx_rate, 7506 credits, 7507 vsi->seid); 7508 } else { 7509 need_reset = true; 7510 goto exit; 7511 } 7512 } 7513 ret = i40e_configure_queue_channels(vsi); 7514 if (ret) { 7515 vsi->num_queue_pairs = old_queue_pairs; 7516 netdev_info(netdev, 7517 "Failed configuring queue channels\n"); 7518 need_reset = true; 7519 goto exit; 7520 } 7521 } 7522 7523 exit: 7524 /* Reset the configuration data to defaults, only TC0 is enabled */ 7525 if (need_reset) { 7526 i40e_vsi_set_default_tc_config(vsi); 7527 need_reset = false; 7528 } 7529 7530 /* Unquiesce VSI */ 7531 i40e_unquiesce_vsi(vsi); 7532 return ret; 7533 } 7534 7535 /** 7536 * i40e_set_cld_element - sets cloud filter element data 7537 * @filter: cloud filter rule 7538 * @cld: ptr to cloud filter element data 7539 * 7540 * This is helper function to copy data into cloud filter element 7541 **/ 7542 static inline void 7543 i40e_set_cld_element(struct i40e_cloud_filter *filter, 7544 struct i40e_aqc_cloud_filters_element_data *cld) 7545 { 7546 int i, j; 7547 u32 ipa; 7548 7549 memset(cld, 0, sizeof(*cld)); 7550 ether_addr_copy(cld->outer_mac, filter->dst_mac); 7551 ether_addr_copy(cld->inner_mac, filter->src_mac); 7552 7553 if (filter->n_proto != ETH_P_IP && filter->n_proto != ETH_P_IPV6) 7554 return; 7555 7556 if (filter->n_proto == ETH_P_IPV6) { 7557 #define IPV6_MAX_INDEX (ARRAY_SIZE(filter->dst_ipv6) - 1) 7558 for (i = 0, j = 0; i < ARRAY_SIZE(filter->dst_ipv6); 7559 i++, j += 2) { 7560 ipa = be32_to_cpu(filter->dst_ipv6[IPV6_MAX_INDEX - i]); 7561 ipa = cpu_to_le32(ipa); 7562 memcpy(&cld->ipaddr.raw_v6.data[j], &ipa, sizeof(ipa)); 7563 } 7564 } else { 7565 ipa = be32_to_cpu(filter->dst_ipv4); 7566 memcpy(&cld->ipaddr.v4.data, &ipa, sizeof(ipa)); 7567 } 7568 7569 cld->inner_vlan = cpu_to_le16(ntohs(filter->vlan_id)); 7570 7571 /* tenant_id is not supported by FW now, once the support is enabled 7572 * fill the cld->tenant_id with cpu_to_le32(filter->tenant_id) 7573 */ 7574 if (filter->tenant_id) 7575 return; 7576 } 7577 7578 /** 7579 * i40e_add_del_cloud_filter - Add/del cloud filter 7580 * @vsi: pointer to VSI 7581 * @filter: cloud filter rule 7582 * @add: if true, add, if false, delete 7583 * 7584 * Add or delete a cloud filter for a specific flow spec. 7585 * Returns 0 if the filter were successfully added. 7586 **/ 7587 int i40e_add_del_cloud_filter(struct i40e_vsi *vsi, 7588 struct i40e_cloud_filter *filter, bool add) 7589 { 7590 struct i40e_aqc_cloud_filters_element_data cld_filter; 7591 struct i40e_pf *pf = vsi->back; 7592 int ret; 7593 static const u16 flag_table[128] = { 7594 [I40E_CLOUD_FILTER_FLAGS_OMAC] = 7595 I40E_AQC_ADD_CLOUD_FILTER_OMAC, 7596 [I40E_CLOUD_FILTER_FLAGS_IMAC] = 7597 I40E_AQC_ADD_CLOUD_FILTER_IMAC, 7598 [I40E_CLOUD_FILTER_FLAGS_IMAC_IVLAN] = 7599 I40E_AQC_ADD_CLOUD_FILTER_IMAC_IVLAN, 7600 [I40E_CLOUD_FILTER_FLAGS_IMAC_TEN_ID] = 7601 I40E_AQC_ADD_CLOUD_FILTER_IMAC_TEN_ID, 7602 [I40E_CLOUD_FILTER_FLAGS_OMAC_TEN_ID_IMAC] = 7603 I40E_AQC_ADD_CLOUD_FILTER_OMAC_TEN_ID_IMAC, 7604 [I40E_CLOUD_FILTER_FLAGS_IMAC_IVLAN_TEN_ID] = 7605 I40E_AQC_ADD_CLOUD_FILTER_IMAC_IVLAN_TEN_ID, 7606 [I40E_CLOUD_FILTER_FLAGS_IIP] = 7607 I40E_AQC_ADD_CLOUD_FILTER_IIP, 7608 }; 7609 7610 if (filter->flags >= ARRAY_SIZE(flag_table)) 7611 return I40E_ERR_CONFIG; 7612 7613 /* copy element needed to add cloud filter from filter */ 7614 i40e_set_cld_element(filter, &cld_filter); 7615 7616 if (filter->tunnel_type != I40E_CLOUD_TNL_TYPE_NONE) 7617 cld_filter.flags = cpu_to_le16(filter->tunnel_type << 7618 I40E_AQC_ADD_CLOUD_TNL_TYPE_SHIFT); 7619 7620 if (filter->n_proto == ETH_P_IPV6) 7621 cld_filter.flags |= cpu_to_le16(flag_table[filter->flags] | 7622 I40E_AQC_ADD_CLOUD_FLAGS_IPV6); 7623 else 7624 cld_filter.flags |= cpu_to_le16(flag_table[filter->flags] | 7625 I40E_AQC_ADD_CLOUD_FLAGS_IPV4); 7626 7627 if (add) 7628 ret = i40e_aq_add_cloud_filters(&pf->hw, filter->seid, 7629 &cld_filter, 1); 7630 else 7631 ret = i40e_aq_rem_cloud_filters(&pf->hw, filter->seid, 7632 &cld_filter, 1); 7633 if (ret) 7634 dev_dbg(&pf->pdev->dev, 7635 "Failed to %s cloud filter using l4 port %u, err %d aq_err %d\n", 7636 add ? "add" : "delete", filter->dst_port, ret, 7637 pf->hw.aq.asq_last_status); 7638 else 7639 dev_info(&pf->pdev->dev, 7640 "%s cloud filter for VSI: %d\n", 7641 add ? "Added" : "Deleted", filter->seid); 7642 return ret; 7643 } 7644 7645 /** 7646 * i40e_add_del_cloud_filter_big_buf - Add/del cloud filter using big_buf 7647 * @vsi: pointer to VSI 7648 * @filter: cloud filter rule 7649 * @add: if true, add, if false, delete 7650 * 7651 * Add or delete a cloud filter for a specific flow spec using big buffer. 7652 * Returns 0 if the filter were successfully added. 7653 **/ 7654 int i40e_add_del_cloud_filter_big_buf(struct i40e_vsi *vsi, 7655 struct i40e_cloud_filter *filter, 7656 bool add) 7657 { 7658 struct i40e_aqc_cloud_filters_element_bb cld_filter; 7659 struct i40e_pf *pf = vsi->back; 7660 int ret; 7661 7662 /* Both (src/dst) valid mac_addr are not supported */ 7663 if ((is_valid_ether_addr(filter->dst_mac) && 7664 is_valid_ether_addr(filter->src_mac)) || 7665 (is_multicast_ether_addr(filter->dst_mac) && 7666 is_multicast_ether_addr(filter->src_mac))) 7667 return -EOPNOTSUPP; 7668 7669 /* Big buffer cloud filter needs 'L4 port' to be non-zero. Also, UDP 7670 * ports are not supported via big buffer now. 7671 */ 7672 if (!filter->dst_port || filter->ip_proto == IPPROTO_UDP) 7673 return -EOPNOTSUPP; 7674 7675 /* adding filter using src_port/src_ip is not supported at this stage */ 7676 if (filter->src_port || filter->src_ipv4 || 7677 !ipv6_addr_any(&filter->ip.v6.src_ip6)) 7678 return -EOPNOTSUPP; 7679 7680 /* copy element needed to add cloud filter from filter */ 7681 i40e_set_cld_element(filter, &cld_filter.element); 7682 7683 if (is_valid_ether_addr(filter->dst_mac) || 7684 is_valid_ether_addr(filter->src_mac) || 7685 is_multicast_ether_addr(filter->dst_mac) || 7686 is_multicast_ether_addr(filter->src_mac)) { 7687 /* MAC + IP : unsupported mode */ 7688 if (filter->dst_ipv4) 7689 return -EOPNOTSUPP; 7690 7691 /* since we validated that L4 port must be valid before 7692 * we get here, start with respective "flags" value 7693 * and update if vlan is present or not 7694 */ 7695 cld_filter.element.flags = 7696 cpu_to_le16(I40E_AQC_ADD_CLOUD_FILTER_MAC_PORT); 7697 7698 if (filter->vlan_id) { 7699 cld_filter.element.flags = 7700 cpu_to_le16(I40E_AQC_ADD_CLOUD_FILTER_MAC_VLAN_PORT); 7701 } 7702 7703 } else if (filter->dst_ipv4 || 7704 !ipv6_addr_any(&filter->ip.v6.dst_ip6)) { 7705 cld_filter.element.flags = 7706 cpu_to_le16(I40E_AQC_ADD_CLOUD_FILTER_IP_PORT); 7707 if (filter->n_proto == ETH_P_IPV6) 7708 cld_filter.element.flags |= 7709 cpu_to_le16(I40E_AQC_ADD_CLOUD_FLAGS_IPV6); 7710 else 7711 cld_filter.element.flags |= 7712 cpu_to_le16(I40E_AQC_ADD_CLOUD_FLAGS_IPV4); 7713 } else { 7714 dev_err(&pf->pdev->dev, 7715 "either mac or ip has to be valid for cloud filter\n"); 7716 return -EINVAL; 7717 } 7718 7719 /* Now copy L4 port in Byte 6..7 in general fields */ 7720 cld_filter.general_fields[I40E_AQC_ADD_CLOUD_FV_FLU_0X16_WORD0] = 7721 be16_to_cpu(filter->dst_port); 7722 7723 if (add) { 7724 /* Validate current device switch mode, change if necessary */ 7725 ret = i40e_validate_and_set_switch_mode(vsi); 7726 if (ret) { 7727 dev_err(&pf->pdev->dev, 7728 "failed to set switch mode, ret %d\n", 7729 ret); 7730 return ret; 7731 } 7732 7733 ret = i40e_aq_add_cloud_filters_bb(&pf->hw, filter->seid, 7734 &cld_filter, 1); 7735 } else { 7736 ret = i40e_aq_rem_cloud_filters_bb(&pf->hw, filter->seid, 7737 &cld_filter, 1); 7738 } 7739 7740 if (ret) 7741 dev_dbg(&pf->pdev->dev, 7742 "Failed to %s cloud filter(big buffer) err %d aq_err %d\n", 7743 add ? "add" : "delete", ret, pf->hw.aq.asq_last_status); 7744 else 7745 dev_info(&pf->pdev->dev, 7746 "%s cloud filter for VSI: %d, L4 port: %d\n", 7747 add ? "add" : "delete", filter->seid, 7748 ntohs(filter->dst_port)); 7749 return ret; 7750 } 7751 7752 /** 7753 * i40e_parse_cls_flower - Parse tc flower filters provided by kernel 7754 * @vsi: Pointer to VSI 7755 * @cls_flower: Pointer to struct flow_cls_offload 7756 * @filter: Pointer to cloud filter structure 7757 * 7758 **/ 7759 static int i40e_parse_cls_flower(struct i40e_vsi *vsi, 7760 struct flow_cls_offload *f, 7761 struct i40e_cloud_filter *filter) 7762 { 7763 struct flow_rule *rule = flow_cls_offload_flow_rule(f); 7764 struct flow_dissector *dissector = rule->match.dissector; 7765 u16 n_proto_mask = 0, n_proto_key = 0, addr_type = 0; 7766 struct i40e_pf *pf = vsi->back; 7767 u8 field_flags = 0; 7768 7769 if (dissector->used_keys & 7770 ~(BIT(FLOW_DISSECTOR_KEY_CONTROL) | 7771 BIT(FLOW_DISSECTOR_KEY_BASIC) | 7772 BIT(FLOW_DISSECTOR_KEY_ETH_ADDRS) | 7773 BIT(FLOW_DISSECTOR_KEY_VLAN) | 7774 BIT(FLOW_DISSECTOR_KEY_IPV4_ADDRS) | 7775 BIT(FLOW_DISSECTOR_KEY_IPV6_ADDRS) | 7776 BIT(FLOW_DISSECTOR_KEY_PORTS) | 7777 BIT(FLOW_DISSECTOR_KEY_ENC_KEYID))) { 7778 dev_err(&pf->pdev->dev, "Unsupported key used: 0x%x\n", 7779 dissector->used_keys); 7780 return -EOPNOTSUPP; 7781 } 7782 7783 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ENC_KEYID)) { 7784 struct flow_match_enc_keyid match; 7785 7786 flow_rule_match_enc_keyid(rule, &match); 7787 if (match.mask->keyid != 0) 7788 field_flags |= I40E_CLOUD_FIELD_TEN_ID; 7789 7790 filter->tenant_id = be32_to_cpu(match.key->keyid); 7791 } 7792 7793 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_BASIC)) { 7794 struct flow_match_basic match; 7795 7796 flow_rule_match_basic(rule, &match); 7797 n_proto_key = ntohs(match.key->n_proto); 7798 n_proto_mask = ntohs(match.mask->n_proto); 7799 7800 if (n_proto_key == ETH_P_ALL) { 7801 n_proto_key = 0; 7802 n_proto_mask = 0; 7803 } 7804 filter->n_proto = n_proto_key & n_proto_mask; 7805 filter->ip_proto = match.key->ip_proto; 7806 } 7807 7808 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ETH_ADDRS)) { 7809 struct flow_match_eth_addrs match; 7810 7811 flow_rule_match_eth_addrs(rule, &match); 7812 7813 /* use is_broadcast and is_zero to check for all 0xf or 0 */ 7814 if (!is_zero_ether_addr(match.mask->dst)) { 7815 if (is_broadcast_ether_addr(match.mask->dst)) { 7816 field_flags |= I40E_CLOUD_FIELD_OMAC; 7817 } else { 7818 dev_err(&pf->pdev->dev, "Bad ether dest mask %pM\n", 7819 match.mask->dst); 7820 return I40E_ERR_CONFIG; 7821 } 7822 } 7823 7824 if (!is_zero_ether_addr(match.mask->src)) { 7825 if (is_broadcast_ether_addr(match.mask->src)) { 7826 field_flags |= I40E_CLOUD_FIELD_IMAC; 7827 } else { 7828 dev_err(&pf->pdev->dev, "Bad ether src mask %pM\n", 7829 match.mask->src); 7830 return I40E_ERR_CONFIG; 7831 } 7832 } 7833 ether_addr_copy(filter->dst_mac, match.key->dst); 7834 ether_addr_copy(filter->src_mac, match.key->src); 7835 } 7836 7837 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_VLAN)) { 7838 struct flow_match_vlan match; 7839 7840 flow_rule_match_vlan(rule, &match); 7841 if (match.mask->vlan_id) { 7842 if (match.mask->vlan_id == VLAN_VID_MASK) { 7843 field_flags |= I40E_CLOUD_FIELD_IVLAN; 7844 7845 } else { 7846 dev_err(&pf->pdev->dev, "Bad vlan mask 0x%04x\n", 7847 match.mask->vlan_id); 7848 return I40E_ERR_CONFIG; 7849 } 7850 } 7851 7852 filter->vlan_id = cpu_to_be16(match.key->vlan_id); 7853 } 7854 7855 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_CONTROL)) { 7856 struct flow_match_control match; 7857 7858 flow_rule_match_control(rule, &match); 7859 addr_type = match.key->addr_type; 7860 } 7861 7862 if (addr_type == FLOW_DISSECTOR_KEY_IPV4_ADDRS) { 7863 struct flow_match_ipv4_addrs match; 7864 7865 flow_rule_match_ipv4_addrs(rule, &match); 7866 if (match.mask->dst) { 7867 if (match.mask->dst == cpu_to_be32(0xffffffff)) { 7868 field_flags |= I40E_CLOUD_FIELD_IIP; 7869 } else { 7870 dev_err(&pf->pdev->dev, "Bad ip dst mask %pI4b\n", 7871 &match.mask->dst); 7872 return I40E_ERR_CONFIG; 7873 } 7874 } 7875 7876 if (match.mask->src) { 7877 if (match.mask->src == cpu_to_be32(0xffffffff)) { 7878 field_flags |= I40E_CLOUD_FIELD_IIP; 7879 } else { 7880 dev_err(&pf->pdev->dev, "Bad ip src mask %pI4b\n", 7881 &match.mask->src); 7882 return I40E_ERR_CONFIG; 7883 } 7884 } 7885 7886 if (field_flags & I40E_CLOUD_FIELD_TEN_ID) { 7887 dev_err(&pf->pdev->dev, "Tenant id not allowed for ip filter\n"); 7888 return I40E_ERR_CONFIG; 7889 } 7890 filter->dst_ipv4 = match.key->dst; 7891 filter->src_ipv4 = match.key->src; 7892 } 7893 7894 if (addr_type == FLOW_DISSECTOR_KEY_IPV6_ADDRS) { 7895 struct flow_match_ipv6_addrs match; 7896 7897 flow_rule_match_ipv6_addrs(rule, &match); 7898 7899 /* src and dest IPV6 address should not be LOOPBACK 7900 * (0:0:0:0:0:0:0:1), which can be represented as ::1 7901 */ 7902 if (ipv6_addr_loopback(&match.key->dst) || 7903 ipv6_addr_loopback(&match.key->src)) { 7904 dev_err(&pf->pdev->dev, 7905 "Bad ipv6, addr is LOOPBACK\n"); 7906 return I40E_ERR_CONFIG; 7907 } 7908 if (!ipv6_addr_any(&match.mask->dst) || 7909 !ipv6_addr_any(&match.mask->src)) 7910 field_flags |= I40E_CLOUD_FIELD_IIP; 7911 7912 memcpy(&filter->src_ipv6, &match.key->src.s6_addr32, 7913 sizeof(filter->src_ipv6)); 7914 memcpy(&filter->dst_ipv6, &match.key->dst.s6_addr32, 7915 sizeof(filter->dst_ipv6)); 7916 } 7917 7918 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_PORTS)) { 7919 struct flow_match_ports match; 7920 7921 flow_rule_match_ports(rule, &match); 7922 if (match.mask->src) { 7923 if (match.mask->src == cpu_to_be16(0xffff)) { 7924 field_flags |= I40E_CLOUD_FIELD_IIP; 7925 } else { 7926 dev_err(&pf->pdev->dev, "Bad src port mask 0x%04x\n", 7927 be16_to_cpu(match.mask->src)); 7928 return I40E_ERR_CONFIG; 7929 } 7930 } 7931 7932 if (match.mask->dst) { 7933 if (match.mask->dst == cpu_to_be16(0xffff)) { 7934 field_flags |= I40E_CLOUD_FIELD_IIP; 7935 } else { 7936 dev_err(&pf->pdev->dev, "Bad dst port mask 0x%04x\n", 7937 be16_to_cpu(match.mask->dst)); 7938 return I40E_ERR_CONFIG; 7939 } 7940 } 7941 7942 filter->dst_port = match.key->dst; 7943 filter->src_port = match.key->src; 7944 7945 switch (filter->ip_proto) { 7946 case IPPROTO_TCP: 7947 case IPPROTO_UDP: 7948 break; 7949 default: 7950 dev_err(&pf->pdev->dev, 7951 "Only UDP and TCP transport are supported\n"); 7952 return -EINVAL; 7953 } 7954 } 7955 filter->flags = field_flags; 7956 return 0; 7957 } 7958 7959 /** 7960 * i40e_handle_tclass: Forward to a traffic class on the device 7961 * @vsi: Pointer to VSI 7962 * @tc: traffic class index on the device 7963 * @filter: Pointer to cloud filter structure 7964 * 7965 **/ 7966 static int i40e_handle_tclass(struct i40e_vsi *vsi, u32 tc, 7967 struct i40e_cloud_filter *filter) 7968 { 7969 struct i40e_channel *ch, *ch_tmp; 7970 7971 /* direct to a traffic class on the same device */ 7972 if (tc == 0) { 7973 filter->seid = vsi->seid; 7974 return 0; 7975 } else if (vsi->tc_config.enabled_tc & BIT(tc)) { 7976 if (!filter->dst_port) { 7977 dev_err(&vsi->back->pdev->dev, 7978 "Specify destination port to direct to traffic class that is not default\n"); 7979 return -EINVAL; 7980 } 7981 if (list_empty(&vsi->ch_list)) 7982 return -EINVAL; 7983 list_for_each_entry_safe(ch, ch_tmp, &vsi->ch_list, 7984 list) { 7985 if (ch->seid == vsi->tc_seid_map[tc]) 7986 filter->seid = ch->seid; 7987 } 7988 return 0; 7989 } 7990 dev_err(&vsi->back->pdev->dev, "TC is not enabled\n"); 7991 return -EINVAL; 7992 } 7993 7994 /** 7995 * i40e_configure_clsflower - Configure tc flower filters 7996 * @vsi: Pointer to VSI 7997 * @cls_flower: Pointer to struct flow_cls_offload 7998 * 7999 **/ 8000 static int i40e_configure_clsflower(struct i40e_vsi *vsi, 8001 struct flow_cls_offload *cls_flower) 8002 { 8003 int tc = tc_classid_to_hwtc(vsi->netdev, cls_flower->classid); 8004 struct i40e_cloud_filter *filter = NULL; 8005 struct i40e_pf *pf = vsi->back; 8006 int err = 0; 8007 8008 if (tc < 0) { 8009 dev_err(&vsi->back->pdev->dev, "Invalid traffic class\n"); 8010 return -EOPNOTSUPP; 8011 } 8012 8013 if (test_bit(__I40E_RESET_RECOVERY_PENDING, pf->state) || 8014 test_bit(__I40E_RESET_INTR_RECEIVED, pf->state)) 8015 return -EBUSY; 8016 8017 if (pf->fdir_pf_active_filters || 8018 (!hlist_empty(&pf->fdir_filter_list))) { 8019 dev_err(&vsi->back->pdev->dev, 8020 "Flow Director Sideband filters exists, turn ntuple off to configure cloud filters\n"); 8021 return -EINVAL; 8022 } 8023 8024 if (vsi->back->flags & I40E_FLAG_FD_SB_ENABLED) { 8025 dev_err(&vsi->back->pdev->dev, 8026 "Disable Flow Director Sideband, configuring Cloud filters via tc-flower\n"); 8027 vsi->back->flags &= ~I40E_FLAG_FD_SB_ENABLED; 8028 vsi->back->flags |= I40E_FLAG_FD_SB_TO_CLOUD_FILTER; 8029 } 8030 8031 filter = kzalloc(sizeof(*filter), GFP_KERNEL); 8032 if (!filter) 8033 return -ENOMEM; 8034 8035 filter->cookie = cls_flower->cookie; 8036 8037 err = i40e_parse_cls_flower(vsi, cls_flower, filter); 8038 if (err < 0) 8039 goto err; 8040 8041 err = i40e_handle_tclass(vsi, tc, filter); 8042 if (err < 0) 8043 goto err; 8044 8045 /* Add cloud filter */ 8046 if (filter->dst_port) 8047 err = i40e_add_del_cloud_filter_big_buf(vsi, filter, true); 8048 else 8049 err = i40e_add_del_cloud_filter(vsi, filter, true); 8050 8051 if (err) { 8052 dev_err(&pf->pdev->dev, 8053 "Failed to add cloud filter, err %s\n", 8054 i40e_stat_str(&pf->hw, err)); 8055 goto err; 8056 } 8057 8058 /* add filter to the ordered list */ 8059 INIT_HLIST_NODE(&filter->cloud_node); 8060 8061 hlist_add_head(&filter->cloud_node, &pf->cloud_filter_list); 8062 8063 pf->num_cloud_filters++; 8064 8065 return err; 8066 err: 8067 kfree(filter); 8068 return err; 8069 } 8070 8071 /** 8072 * i40e_find_cloud_filter - Find the could filter in the list 8073 * @vsi: Pointer to VSI 8074 * @cookie: filter specific cookie 8075 * 8076 **/ 8077 static struct i40e_cloud_filter *i40e_find_cloud_filter(struct i40e_vsi *vsi, 8078 unsigned long *cookie) 8079 { 8080 struct i40e_cloud_filter *filter = NULL; 8081 struct hlist_node *node2; 8082 8083 hlist_for_each_entry_safe(filter, node2, 8084 &vsi->back->cloud_filter_list, cloud_node) 8085 if (!memcmp(cookie, &filter->cookie, sizeof(filter->cookie))) 8086 return filter; 8087 return NULL; 8088 } 8089 8090 /** 8091 * i40e_delete_clsflower - Remove tc flower filters 8092 * @vsi: Pointer to VSI 8093 * @cls_flower: Pointer to struct flow_cls_offload 8094 * 8095 **/ 8096 static int i40e_delete_clsflower(struct i40e_vsi *vsi, 8097 struct flow_cls_offload *cls_flower) 8098 { 8099 struct i40e_cloud_filter *filter = NULL; 8100 struct i40e_pf *pf = vsi->back; 8101 int err = 0; 8102 8103 filter = i40e_find_cloud_filter(vsi, &cls_flower->cookie); 8104 8105 if (!filter) 8106 return -EINVAL; 8107 8108 hash_del(&filter->cloud_node); 8109 8110 if (filter->dst_port) 8111 err = i40e_add_del_cloud_filter_big_buf(vsi, filter, false); 8112 else 8113 err = i40e_add_del_cloud_filter(vsi, filter, false); 8114 8115 kfree(filter); 8116 if (err) { 8117 dev_err(&pf->pdev->dev, 8118 "Failed to delete cloud filter, err %s\n", 8119 i40e_stat_str(&pf->hw, err)); 8120 return i40e_aq_rc_to_posix(err, pf->hw.aq.asq_last_status); 8121 } 8122 8123 pf->num_cloud_filters--; 8124 if (!pf->num_cloud_filters) 8125 if ((pf->flags & I40E_FLAG_FD_SB_TO_CLOUD_FILTER) && 8126 !(pf->flags & I40E_FLAG_FD_SB_INACTIVE)) { 8127 pf->flags |= I40E_FLAG_FD_SB_ENABLED; 8128 pf->flags &= ~I40E_FLAG_FD_SB_TO_CLOUD_FILTER; 8129 pf->flags &= ~I40E_FLAG_FD_SB_INACTIVE; 8130 } 8131 return 0; 8132 } 8133 8134 /** 8135 * i40e_setup_tc_cls_flower - flower classifier offloads 8136 * @netdev: net device to configure 8137 * @type_data: offload data 8138 **/ 8139 static int i40e_setup_tc_cls_flower(struct i40e_netdev_priv *np, 8140 struct flow_cls_offload *cls_flower) 8141 { 8142 struct i40e_vsi *vsi = np->vsi; 8143 8144 switch (cls_flower->command) { 8145 case FLOW_CLS_REPLACE: 8146 return i40e_configure_clsflower(vsi, cls_flower); 8147 case FLOW_CLS_DESTROY: 8148 return i40e_delete_clsflower(vsi, cls_flower); 8149 case FLOW_CLS_STATS: 8150 return -EOPNOTSUPP; 8151 default: 8152 return -EOPNOTSUPP; 8153 } 8154 } 8155 8156 static int i40e_setup_tc_block_cb(enum tc_setup_type type, void *type_data, 8157 void *cb_priv) 8158 { 8159 struct i40e_netdev_priv *np = cb_priv; 8160 8161 if (!tc_cls_can_offload_and_chain0(np->vsi->netdev, type_data)) 8162 return -EOPNOTSUPP; 8163 8164 switch (type) { 8165 case TC_SETUP_CLSFLOWER: 8166 return i40e_setup_tc_cls_flower(np, type_data); 8167 8168 default: 8169 return -EOPNOTSUPP; 8170 } 8171 } 8172 8173 static LIST_HEAD(i40e_block_cb_list); 8174 8175 static int __i40e_setup_tc(struct net_device *netdev, enum tc_setup_type type, 8176 void *type_data) 8177 { 8178 struct i40e_netdev_priv *np = netdev_priv(netdev); 8179 8180 switch (type) { 8181 case TC_SETUP_QDISC_MQPRIO: 8182 return i40e_setup_tc(netdev, type_data); 8183 case TC_SETUP_BLOCK: 8184 return flow_block_cb_setup_simple(type_data, 8185 &i40e_block_cb_list, 8186 i40e_setup_tc_block_cb, 8187 np, np, true); 8188 default: 8189 return -EOPNOTSUPP; 8190 } 8191 } 8192 8193 /** 8194 * i40e_open - Called when a network interface is made active 8195 * @netdev: network interface device structure 8196 * 8197 * The open entry point is called when a network interface is made 8198 * active by the system (IFF_UP). At this point all resources needed 8199 * for transmit and receive operations are allocated, the interrupt 8200 * handler is registered with the OS, the netdev watchdog subtask is 8201 * enabled, and the stack is notified that the interface is ready. 8202 * 8203 * Returns 0 on success, negative value on failure 8204 **/ 8205 int i40e_open(struct net_device *netdev) 8206 { 8207 struct i40e_netdev_priv *np = netdev_priv(netdev); 8208 struct i40e_vsi *vsi = np->vsi; 8209 struct i40e_pf *pf = vsi->back; 8210 int err; 8211 8212 /* disallow open during test or if eeprom is broken */ 8213 if (test_bit(__I40E_TESTING, pf->state) || 8214 test_bit(__I40E_BAD_EEPROM, pf->state)) 8215 return -EBUSY; 8216 8217 netif_carrier_off(netdev); 8218 8219 if (i40e_force_link_state(pf, true)) 8220 return -EAGAIN; 8221 8222 err = i40e_vsi_open(vsi); 8223 if (err) 8224 return err; 8225 8226 /* configure global TSO hardware offload settings */ 8227 wr32(&pf->hw, I40E_GLLAN_TSOMSK_F, be32_to_cpu(TCP_FLAG_PSH | 8228 TCP_FLAG_FIN) >> 16); 8229 wr32(&pf->hw, I40E_GLLAN_TSOMSK_M, be32_to_cpu(TCP_FLAG_PSH | 8230 TCP_FLAG_FIN | 8231 TCP_FLAG_CWR) >> 16); 8232 wr32(&pf->hw, I40E_GLLAN_TSOMSK_L, be32_to_cpu(TCP_FLAG_CWR) >> 16); 8233 8234 udp_tunnel_get_rx_info(netdev); 8235 8236 return 0; 8237 } 8238 8239 /** 8240 * i40e_vsi_open - 8241 * @vsi: the VSI to open 8242 * 8243 * Finish initialization of the VSI. 8244 * 8245 * Returns 0 on success, negative value on failure 8246 * 8247 * Note: expects to be called while under rtnl_lock() 8248 **/ 8249 int i40e_vsi_open(struct i40e_vsi *vsi) 8250 { 8251 struct i40e_pf *pf = vsi->back; 8252 char int_name[I40E_INT_NAME_STR_LEN]; 8253 int err; 8254 8255 /* allocate descriptors */ 8256 err = i40e_vsi_setup_tx_resources(vsi); 8257 if (err) 8258 goto err_setup_tx; 8259 err = i40e_vsi_setup_rx_resources(vsi); 8260 if (err) 8261 goto err_setup_rx; 8262 8263 err = i40e_vsi_configure(vsi); 8264 if (err) 8265 goto err_setup_rx; 8266 8267 if (vsi->netdev) { 8268 snprintf(int_name, sizeof(int_name) - 1, "%s-%s", 8269 dev_driver_string(&pf->pdev->dev), vsi->netdev->name); 8270 err = i40e_vsi_request_irq(vsi, int_name); 8271 if (err) 8272 goto err_setup_rx; 8273 8274 /* Notify the stack of the actual queue counts. */ 8275 err = netif_set_real_num_tx_queues(vsi->netdev, 8276 vsi->num_queue_pairs); 8277 if (err) 8278 goto err_set_queues; 8279 8280 err = netif_set_real_num_rx_queues(vsi->netdev, 8281 vsi->num_queue_pairs); 8282 if (err) 8283 goto err_set_queues; 8284 8285 } else if (vsi->type == I40E_VSI_FDIR) { 8286 snprintf(int_name, sizeof(int_name) - 1, "%s-%s:fdir", 8287 dev_driver_string(&pf->pdev->dev), 8288 dev_name(&pf->pdev->dev)); 8289 err = i40e_vsi_request_irq(vsi, int_name); 8290 8291 } else { 8292 err = -EINVAL; 8293 goto err_setup_rx; 8294 } 8295 8296 err = i40e_up_complete(vsi); 8297 if (err) 8298 goto err_up_complete; 8299 8300 return 0; 8301 8302 err_up_complete: 8303 i40e_down(vsi); 8304 err_set_queues: 8305 i40e_vsi_free_irq(vsi); 8306 err_setup_rx: 8307 i40e_vsi_free_rx_resources(vsi); 8308 err_setup_tx: 8309 i40e_vsi_free_tx_resources(vsi); 8310 if (vsi == pf->vsi[pf->lan_vsi]) 8311 i40e_do_reset(pf, I40E_PF_RESET_FLAG, true); 8312 8313 return err; 8314 } 8315 8316 /** 8317 * i40e_fdir_filter_exit - Cleans up the Flow Director accounting 8318 * @pf: Pointer to PF 8319 * 8320 * This function destroys the hlist where all the Flow Director 8321 * filters were saved. 8322 **/ 8323 static void i40e_fdir_filter_exit(struct i40e_pf *pf) 8324 { 8325 struct i40e_fdir_filter *filter; 8326 struct i40e_flex_pit *pit_entry, *tmp; 8327 struct hlist_node *node2; 8328 8329 hlist_for_each_entry_safe(filter, node2, 8330 &pf->fdir_filter_list, fdir_node) { 8331 hlist_del(&filter->fdir_node); 8332 kfree(filter); 8333 } 8334 8335 list_for_each_entry_safe(pit_entry, tmp, &pf->l3_flex_pit_list, list) { 8336 list_del(&pit_entry->list); 8337 kfree(pit_entry); 8338 } 8339 INIT_LIST_HEAD(&pf->l3_flex_pit_list); 8340 8341 list_for_each_entry_safe(pit_entry, tmp, &pf->l4_flex_pit_list, list) { 8342 list_del(&pit_entry->list); 8343 kfree(pit_entry); 8344 } 8345 INIT_LIST_HEAD(&pf->l4_flex_pit_list); 8346 8347 pf->fdir_pf_active_filters = 0; 8348 pf->fd_tcp4_filter_cnt = 0; 8349 pf->fd_udp4_filter_cnt = 0; 8350 pf->fd_sctp4_filter_cnt = 0; 8351 pf->fd_ip4_filter_cnt = 0; 8352 8353 /* Reprogram the default input set for TCP/IPv4 */ 8354 i40e_write_fd_input_set(pf, I40E_FILTER_PCTYPE_NONF_IPV4_TCP, 8355 I40E_L3_SRC_MASK | I40E_L3_DST_MASK | 8356 I40E_L4_SRC_MASK | I40E_L4_DST_MASK); 8357 8358 /* Reprogram the default input set for UDP/IPv4 */ 8359 i40e_write_fd_input_set(pf, I40E_FILTER_PCTYPE_NONF_IPV4_UDP, 8360 I40E_L3_SRC_MASK | I40E_L3_DST_MASK | 8361 I40E_L4_SRC_MASK | I40E_L4_DST_MASK); 8362 8363 /* Reprogram the default input set for SCTP/IPv4 */ 8364 i40e_write_fd_input_set(pf, I40E_FILTER_PCTYPE_NONF_IPV4_SCTP, 8365 I40E_L3_SRC_MASK | I40E_L3_DST_MASK | 8366 I40E_L4_SRC_MASK | I40E_L4_DST_MASK); 8367 8368 /* Reprogram the default input set for Other/IPv4 */ 8369 i40e_write_fd_input_set(pf, I40E_FILTER_PCTYPE_NONF_IPV4_OTHER, 8370 I40E_L3_SRC_MASK | I40E_L3_DST_MASK); 8371 8372 i40e_write_fd_input_set(pf, I40E_FILTER_PCTYPE_FRAG_IPV4, 8373 I40E_L3_SRC_MASK | I40E_L3_DST_MASK); 8374 } 8375 8376 /** 8377 * i40e_cloud_filter_exit - Cleans up the cloud filters 8378 * @pf: Pointer to PF 8379 * 8380 * This function destroys the hlist where all the cloud filters 8381 * were saved. 8382 **/ 8383 static void i40e_cloud_filter_exit(struct i40e_pf *pf) 8384 { 8385 struct i40e_cloud_filter *cfilter; 8386 struct hlist_node *node; 8387 8388 hlist_for_each_entry_safe(cfilter, node, 8389 &pf->cloud_filter_list, cloud_node) { 8390 hlist_del(&cfilter->cloud_node); 8391 kfree(cfilter); 8392 } 8393 pf->num_cloud_filters = 0; 8394 8395 if ((pf->flags & I40E_FLAG_FD_SB_TO_CLOUD_FILTER) && 8396 !(pf->flags & I40E_FLAG_FD_SB_INACTIVE)) { 8397 pf->flags |= I40E_FLAG_FD_SB_ENABLED; 8398 pf->flags &= ~I40E_FLAG_FD_SB_TO_CLOUD_FILTER; 8399 pf->flags &= ~I40E_FLAG_FD_SB_INACTIVE; 8400 } 8401 } 8402 8403 /** 8404 * i40e_close - Disables a network interface 8405 * @netdev: network interface device structure 8406 * 8407 * The close entry point is called when an interface is de-activated 8408 * by the OS. The hardware is still under the driver's control, but 8409 * this netdev interface is disabled. 8410 * 8411 * Returns 0, this is not allowed to fail 8412 **/ 8413 int i40e_close(struct net_device *netdev) 8414 { 8415 struct i40e_netdev_priv *np = netdev_priv(netdev); 8416 struct i40e_vsi *vsi = np->vsi; 8417 8418 i40e_vsi_close(vsi); 8419 8420 return 0; 8421 } 8422 8423 /** 8424 * i40e_do_reset - Start a PF or Core Reset sequence 8425 * @pf: board private structure 8426 * @reset_flags: which reset is requested 8427 * @lock_acquired: indicates whether or not the lock has been acquired 8428 * before this function was called. 8429 * 8430 * The essential difference in resets is that the PF Reset 8431 * doesn't clear the packet buffers, doesn't reset the PE 8432 * firmware, and doesn't bother the other PFs on the chip. 8433 **/ 8434 void i40e_do_reset(struct i40e_pf *pf, u32 reset_flags, bool lock_acquired) 8435 { 8436 u32 val; 8437 8438 WARN_ON(in_interrupt()); 8439 8440 8441 /* do the biggest reset indicated */ 8442 if (reset_flags & BIT_ULL(__I40E_GLOBAL_RESET_REQUESTED)) { 8443 8444 /* Request a Global Reset 8445 * 8446 * This will start the chip's countdown to the actual full 8447 * chip reset event, and a warning interrupt to be sent 8448 * to all PFs, including the requestor. Our handler 8449 * for the warning interrupt will deal with the shutdown 8450 * and recovery of the switch setup. 8451 */ 8452 dev_dbg(&pf->pdev->dev, "GlobalR requested\n"); 8453 val = rd32(&pf->hw, I40E_GLGEN_RTRIG); 8454 val |= I40E_GLGEN_RTRIG_GLOBR_MASK; 8455 wr32(&pf->hw, I40E_GLGEN_RTRIG, val); 8456 8457 } else if (reset_flags & BIT_ULL(__I40E_CORE_RESET_REQUESTED)) { 8458 8459 /* Request a Core Reset 8460 * 8461 * Same as Global Reset, except does *not* include the MAC/PHY 8462 */ 8463 dev_dbg(&pf->pdev->dev, "CoreR requested\n"); 8464 val = rd32(&pf->hw, I40E_GLGEN_RTRIG); 8465 val |= I40E_GLGEN_RTRIG_CORER_MASK; 8466 wr32(&pf->hw, I40E_GLGEN_RTRIG, val); 8467 i40e_flush(&pf->hw); 8468 8469 } else if (reset_flags & I40E_PF_RESET_FLAG) { 8470 8471 /* Request a PF Reset 8472 * 8473 * Resets only the PF-specific registers 8474 * 8475 * This goes directly to the tear-down and rebuild of 8476 * the switch, since we need to do all the recovery as 8477 * for the Core Reset. 8478 */ 8479 dev_dbg(&pf->pdev->dev, "PFR requested\n"); 8480 i40e_handle_reset_warning(pf, lock_acquired); 8481 8482 dev_info(&pf->pdev->dev, 8483 pf->flags & I40E_FLAG_DISABLE_FW_LLDP ? 8484 "FW LLDP is disabled\n" : 8485 "FW LLDP is enabled\n"); 8486 8487 } else if (reset_flags & BIT_ULL(__I40E_REINIT_REQUESTED)) { 8488 int v; 8489 8490 /* Find the VSI(s) that requested a re-init */ 8491 dev_info(&pf->pdev->dev, 8492 "VSI reinit requested\n"); 8493 for (v = 0; v < pf->num_alloc_vsi; v++) { 8494 struct i40e_vsi *vsi = pf->vsi[v]; 8495 8496 if (vsi != NULL && 8497 test_and_clear_bit(__I40E_VSI_REINIT_REQUESTED, 8498 vsi->state)) 8499 i40e_vsi_reinit_locked(pf->vsi[v]); 8500 } 8501 } else if (reset_flags & BIT_ULL(__I40E_DOWN_REQUESTED)) { 8502 int v; 8503 8504 /* Find the VSI(s) that needs to be brought down */ 8505 dev_info(&pf->pdev->dev, "VSI down requested\n"); 8506 for (v = 0; v < pf->num_alloc_vsi; v++) { 8507 struct i40e_vsi *vsi = pf->vsi[v]; 8508 8509 if (vsi != NULL && 8510 test_and_clear_bit(__I40E_VSI_DOWN_REQUESTED, 8511 vsi->state)) { 8512 set_bit(__I40E_VSI_DOWN, vsi->state); 8513 i40e_down(vsi); 8514 } 8515 } 8516 } else { 8517 dev_info(&pf->pdev->dev, 8518 "bad reset request 0x%08x\n", reset_flags); 8519 } 8520 } 8521 8522 #ifdef CONFIG_I40E_DCB 8523 /** 8524 * i40e_dcb_need_reconfig - Check if DCB needs reconfig 8525 * @pf: board private structure 8526 * @old_cfg: current DCB config 8527 * @new_cfg: new DCB config 8528 **/ 8529 bool i40e_dcb_need_reconfig(struct i40e_pf *pf, 8530 struct i40e_dcbx_config *old_cfg, 8531 struct i40e_dcbx_config *new_cfg) 8532 { 8533 bool need_reconfig = false; 8534 8535 /* Check if ETS configuration has changed */ 8536 if (memcmp(&new_cfg->etscfg, 8537 &old_cfg->etscfg, 8538 sizeof(new_cfg->etscfg))) { 8539 /* If Priority Table has changed reconfig is needed */ 8540 if (memcmp(&new_cfg->etscfg.prioritytable, 8541 &old_cfg->etscfg.prioritytable, 8542 sizeof(new_cfg->etscfg.prioritytable))) { 8543 need_reconfig = true; 8544 dev_dbg(&pf->pdev->dev, "ETS UP2TC changed.\n"); 8545 } 8546 8547 if (memcmp(&new_cfg->etscfg.tcbwtable, 8548 &old_cfg->etscfg.tcbwtable, 8549 sizeof(new_cfg->etscfg.tcbwtable))) 8550 dev_dbg(&pf->pdev->dev, "ETS TC BW Table changed.\n"); 8551 8552 if (memcmp(&new_cfg->etscfg.tsatable, 8553 &old_cfg->etscfg.tsatable, 8554 sizeof(new_cfg->etscfg.tsatable))) 8555 dev_dbg(&pf->pdev->dev, "ETS TSA Table changed.\n"); 8556 } 8557 8558 /* Check if PFC configuration has changed */ 8559 if (memcmp(&new_cfg->pfc, 8560 &old_cfg->pfc, 8561 sizeof(new_cfg->pfc))) { 8562 need_reconfig = true; 8563 dev_dbg(&pf->pdev->dev, "PFC config change detected.\n"); 8564 } 8565 8566 /* Check if APP Table has changed */ 8567 if (memcmp(&new_cfg->app, 8568 &old_cfg->app, 8569 sizeof(new_cfg->app))) { 8570 need_reconfig = true; 8571 dev_dbg(&pf->pdev->dev, "APP Table change detected.\n"); 8572 } 8573 8574 dev_dbg(&pf->pdev->dev, "dcb need_reconfig=%d\n", need_reconfig); 8575 return need_reconfig; 8576 } 8577 8578 /** 8579 * i40e_handle_lldp_event - Handle LLDP Change MIB event 8580 * @pf: board private structure 8581 * @e: event info posted on ARQ 8582 **/ 8583 static int i40e_handle_lldp_event(struct i40e_pf *pf, 8584 struct i40e_arq_event_info *e) 8585 { 8586 struct i40e_aqc_lldp_get_mib *mib = 8587 (struct i40e_aqc_lldp_get_mib *)&e->desc.params.raw; 8588 struct i40e_hw *hw = &pf->hw; 8589 struct i40e_dcbx_config tmp_dcbx_cfg; 8590 bool need_reconfig = false; 8591 int ret = 0; 8592 u8 type; 8593 8594 /* Not DCB capable or capability disabled */ 8595 if (!(pf->flags & I40E_FLAG_DCB_CAPABLE)) 8596 return ret; 8597 8598 /* Ignore if event is not for Nearest Bridge */ 8599 type = ((mib->type >> I40E_AQ_LLDP_BRIDGE_TYPE_SHIFT) 8600 & I40E_AQ_LLDP_BRIDGE_TYPE_MASK); 8601 dev_dbg(&pf->pdev->dev, "LLDP event mib bridge type 0x%x\n", type); 8602 if (type != I40E_AQ_LLDP_BRIDGE_TYPE_NEAREST_BRIDGE) 8603 return ret; 8604 8605 /* Check MIB Type and return if event for Remote MIB update */ 8606 type = mib->type & I40E_AQ_LLDP_MIB_TYPE_MASK; 8607 dev_dbg(&pf->pdev->dev, 8608 "LLDP event mib type %s\n", type ? "remote" : "local"); 8609 if (type == I40E_AQ_LLDP_MIB_REMOTE) { 8610 /* Update the remote cached instance and return */ 8611 ret = i40e_aq_get_dcb_config(hw, I40E_AQ_LLDP_MIB_REMOTE, 8612 I40E_AQ_LLDP_BRIDGE_TYPE_NEAREST_BRIDGE, 8613 &hw->remote_dcbx_config); 8614 goto exit; 8615 } 8616 8617 /* Store the old configuration */ 8618 tmp_dcbx_cfg = hw->local_dcbx_config; 8619 8620 /* Reset the old DCBx configuration data */ 8621 memset(&hw->local_dcbx_config, 0, sizeof(hw->local_dcbx_config)); 8622 /* Get updated DCBX data from firmware */ 8623 ret = i40e_get_dcb_config(&pf->hw); 8624 if (ret) { 8625 dev_info(&pf->pdev->dev, 8626 "Failed querying DCB configuration data from firmware, err %s aq_err %s\n", 8627 i40e_stat_str(&pf->hw, ret), 8628 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 8629 goto exit; 8630 } 8631 8632 /* No change detected in DCBX configs */ 8633 if (!memcmp(&tmp_dcbx_cfg, &hw->local_dcbx_config, 8634 sizeof(tmp_dcbx_cfg))) { 8635 dev_dbg(&pf->pdev->dev, "No change detected in DCBX configuration.\n"); 8636 goto exit; 8637 } 8638 8639 need_reconfig = i40e_dcb_need_reconfig(pf, &tmp_dcbx_cfg, 8640 &hw->local_dcbx_config); 8641 8642 i40e_dcbnl_flush_apps(pf, &tmp_dcbx_cfg, &hw->local_dcbx_config); 8643 8644 if (!need_reconfig) 8645 goto exit; 8646 8647 /* Enable DCB tagging only when more than one TC */ 8648 if (i40e_dcb_get_num_tc(&hw->local_dcbx_config) > 1) 8649 pf->flags |= I40E_FLAG_DCB_ENABLED; 8650 else 8651 pf->flags &= ~I40E_FLAG_DCB_ENABLED; 8652 8653 set_bit(__I40E_PORT_SUSPENDED, pf->state); 8654 /* Reconfiguration needed quiesce all VSIs */ 8655 i40e_pf_quiesce_all_vsi(pf); 8656 8657 /* Changes in configuration update VEB/VSI */ 8658 i40e_dcb_reconfigure(pf); 8659 8660 ret = i40e_resume_port_tx(pf); 8661 8662 clear_bit(__I40E_PORT_SUSPENDED, pf->state); 8663 /* In case of error no point in resuming VSIs */ 8664 if (ret) 8665 goto exit; 8666 8667 /* Wait for the PF's queues to be disabled */ 8668 ret = i40e_pf_wait_queues_disabled(pf); 8669 if (ret) { 8670 /* Schedule PF reset to recover */ 8671 set_bit(__I40E_PF_RESET_REQUESTED, pf->state); 8672 i40e_service_event_schedule(pf); 8673 } else { 8674 i40e_pf_unquiesce_all_vsi(pf); 8675 set_bit(__I40E_CLIENT_SERVICE_REQUESTED, pf->state); 8676 set_bit(__I40E_CLIENT_L2_CHANGE, pf->state); 8677 } 8678 8679 exit: 8680 return ret; 8681 } 8682 #endif /* CONFIG_I40E_DCB */ 8683 8684 /** 8685 * i40e_do_reset_safe - Protected reset path for userland calls. 8686 * @pf: board private structure 8687 * @reset_flags: which reset is requested 8688 * 8689 **/ 8690 void i40e_do_reset_safe(struct i40e_pf *pf, u32 reset_flags) 8691 { 8692 rtnl_lock(); 8693 i40e_do_reset(pf, reset_flags, true); 8694 rtnl_unlock(); 8695 } 8696 8697 /** 8698 * i40e_handle_lan_overflow_event - Handler for LAN queue overflow event 8699 * @pf: board private structure 8700 * @e: event info posted on ARQ 8701 * 8702 * Handler for LAN Queue Overflow Event generated by the firmware for PF 8703 * and VF queues 8704 **/ 8705 static void i40e_handle_lan_overflow_event(struct i40e_pf *pf, 8706 struct i40e_arq_event_info *e) 8707 { 8708 struct i40e_aqc_lan_overflow *data = 8709 (struct i40e_aqc_lan_overflow *)&e->desc.params.raw; 8710 u32 queue = le32_to_cpu(data->prtdcb_rupto); 8711 u32 qtx_ctl = le32_to_cpu(data->otx_ctl); 8712 struct i40e_hw *hw = &pf->hw; 8713 struct i40e_vf *vf; 8714 u16 vf_id; 8715 8716 dev_dbg(&pf->pdev->dev, "overflow Rx Queue Number = %d QTX_CTL=0x%08x\n", 8717 queue, qtx_ctl); 8718 8719 /* Queue belongs to VF, find the VF and issue VF reset */ 8720 if (((qtx_ctl & I40E_QTX_CTL_PFVF_Q_MASK) 8721 >> I40E_QTX_CTL_PFVF_Q_SHIFT) == I40E_QTX_CTL_VF_QUEUE) { 8722 vf_id = (u16)((qtx_ctl & I40E_QTX_CTL_VFVM_INDX_MASK) 8723 >> I40E_QTX_CTL_VFVM_INDX_SHIFT); 8724 vf_id -= hw->func_caps.vf_base_id; 8725 vf = &pf->vf[vf_id]; 8726 i40e_vc_notify_vf_reset(vf); 8727 /* Allow VF to process pending reset notification */ 8728 msleep(20); 8729 i40e_reset_vf(vf, false); 8730 } 8731 } 8732 8733 /** 8734 * i40e_get_cur_guaranteed_fd_count - Get the consumed guaranteed FD filters 8735 * @pf: board private structure 8736 **/ 8737 u32 i40e_get_cur_guaranteed_fd_count(struct i40e_pf *pf) 8738 { 8739 u32 val, fcnt_prog; 8740 8741 val = rd32(&pf->hw, I40E_PFQF_FDSTAT); 8742 fcnt_prog = (val & I40E_PFQF_FDSTAT_GUARANT_CNT_MASK); 8743 return fcnt_prog; 8744 } 8745 8746 /** 8747 * i40e_get_current_fd_count - Get total FD filters programmed for this PF 8748 * @pf: board private structure 8749 **/ 8750 u32 i40e_get_current_fd_count(struct i40e_pf *pf) 8751 { 8752 u32 val, fcnt_prog; 8753 8754 val = rd32(&pf->hw, I40E_PFQF_FDSTAT); 8755 fcnt_prog = (val & I40E_PFQF_FDSTAT_GUARANT_CNT_MASK) + 8756 ((val & I40E_PFQF_FDSTAT_BEST_CNT_MASK) >> 8757 I40E_PFQF_FDSTAT_BEST_CNT_SHIFT); 8758 return fcnt_prog; 8759 } 8760 8761 /** 8762 * i40e_get_global_fd_count - Get total FD filters programmed on device 8763 * @pf: board private structure 8764 **/ 8765 u32 i40e_get_global_fd_count(struct i40e_pf *pf) 8766 { 8767 u32 val, fcnt_prog; 8768 8769 val = rd32(&pf->hw, I40E_GLQF_FDCNT_0); 8770 fcnt_prog = (val & I40E_GLQF_FDCNT_0_GUARANT_CNT_MASK) + 8771 ((val & I40E_GLQF_FDCNT_0_BESTCNT_MASK) >> 8772 I40E_GLQF_FDCNT_0_BESTCNT_SHIFT); 8773 return fcnt_prog; 8774 } 8775 8776 /** 8777 * i40e_reenable_fdir_sb - Restore FDir SB capability 8778 * @pf: board private structure 8779 **/ 8780 static void i40e_reenable_fdir_sb(struct i40e_pf *pf) 8781 { 8782 if (test_and_clear_bit(__I40E_FD_SB_AUTO_DISABLED, pf->state)) 8783 if ((pf->flags & I40E_FLAG_FD_SB_ENABLED) && 8784 (I40E_DEBUG_FD & pf->hw.debug_mask)) 8785 dev_info(&pf->pdev->dev, "FD Sideband/ntuple is being enabled since we have space in the table now\n"); 8786 } 8787 8788 /** 8789 * i40e_reenable_fdir_atr - Restore FDir ATR capability 8790 * @pf: board private structure 8791 **/ 8792 static void i40e_reenable_fdir_atr(struct i40e_pf *pf) 8793 { 8794 if (test_and_clear_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state)) { 8795 /* ATR uses the same filtering logic as SB rules. It only 8796 * functions properly if the input set mask is at the default 8797 * settings. It is safe to restore the default input set 8798 * because there are no active TCPv4 filter rules. 8799 */ 8800 i40e_write_fd_input_set(pf, I40E_FILTER_PCTYPE_NONF_IPV4_TCP, 8801 I40E_L3_SRC_MASK | I40E_L3_DST_MASK | 8802 I40E_L4_SRC_MASK | I40E_L4_DST_MASK); 8803 8804 if ((pf->flags & I40E_FLAG_FD_ATR_ENABLED) && 8805 (I40E_DEBUG_FD & pf->hw.debug_mask)) 8806 dev_info(&pf->pdev->dev, "ATR is being enabled since we have space in the table and there are no conflicting ntuple rules\n"); 8807 } 8808 } 8809 8810 /** 8811 * i40e_delete_invalid_filter - Delete an invalid FDIR filter 8812 * @pf: board private structure 8813 * @filter: FDir filter to remove 8814 */ 8815 static void i40e_delete_invalid_filter(struct i40e_pf *pf, 8816 struct i40e_fdir_filter *filter) 8817 { 8818 /* Update counters */ 8819 pf->fdir_pf_active_filters--; 8820 pf->fd_inv = 0; 8821 8822 switch (filter->flow_type) { 8823 case TCP_V4_FLOW: 8824 pf->fd_tcp4_filter_cnt--; 8825 break; 8826 case UDP_V4_FLOW: 8827 pf->fd_udp4_filter_cnt--; 8828 break; 8829 case SCTP_V4_FLOW: 8830 pf->fd_sctp4_filter_cnt--; 8831 break; 8832 case IP_USER_FLOW: 8833 switch (filter->ip4_proto) { 8834 case IPPROTO_TCP: 8835 pf->fd_tcp4_filter_cnt--; 8836 break; 8837 case IPPROTO_UDP: 8838 pf->fd_udp4_filter_cnt--; 8839 break; 8840 case IPPROTO_SCTP: 8841 pf->fd_sctp4_filter_cnt--; 8842 break; 8843 case IPPROTO_IP: 8844 pf->fd_ip4_filter_cnt--; 8845 break; 8846 } 8847 break; 8848 } 8849 8850 /* Remove the filter from the list and free memory */ 8851 hlist_del(&filter->fdir_node); 8852 kfree(filter); 8853 } 8854 8855 /** 8856 * i40e_fdir_check_and_reenable - Function to reenabe FD ATR or SB if disabled 8857 * @pf: board private structure 8858 **/ 8859 void i40e_fdir_check_and_reenable(struct i40e_pf *pf) 8860 { 8861 struct i40e_fdir_filter *filter; 8862 u32 fcnt_prog, fcnt_avail; 8863 struct hlist_node *node; 8864 8865 if (test_bit(__I40E_FD_FLUSH_REQUESTED, pf->state)) 8866 return; 8867 8868 /* Check if we have enough room to re-enable FDir SB capability. */ 8869 fcnt_prog = i40e_get_global_fd_count(pf); 8870 fcnt_avail = pf->fdir_pf_filter_count; 8871 if ((fcnt_prog < (fcnt_avail - I40E_FDIR_BUFFER_HEAD_ROOM)) || 8872 (pf->fd_add_err == 0) || 8873 (i40e_get_current_atr_cnt(pf) < pf->fd_atr_cnt)) 8874 i40e_reenable_fdir_sb(pf); 8875 8876 /* We should wait for even more space before re-enabling ATR. 8877 * Additionally, we cannot enable ATR as long as we still have TCP SB 8878 * rules active. 8879 */ 8880 if ((fcnt_prog < (fcnt_avail - I40E_FDIR_BUFFER_HEAD_ROOM_FOR_ATR)) && 8881 (pf->fd_tcp4_filter_cnt == 0)) 8882 i40e_reenable_fdir_atr(pf); 8883 8884 /* if hw had a problem adding a filter, delete it */ 8885 if (pf->fd_inv > 0) { 8886 hlist_for_each_entry_safe(filter, node, 8887 &pf->fdir_filter_list, fdir_node) 8888 if (filter->fd_id == pf->fd_inv) 8889 i40e_delete_invalid_filter(pf, filter); 8890 } 8891 } 8892 8893 #define I40E_MIN_FD_FLUSH_INTERVAL 10 8894 #define I40E_MIN_FD_FLUSH_SB_ATR_UNSTABLE 30 8895 /** 8896 * i40e_fdir_flush_and_replay - Function to flush all FD filters and replay SB 8897 * @pf: board private structure 8898 **/ 8899 static void i40e_fdir_flush_and_replay(struct i40e_pf *pf) 8900 { 8901 unsigned long min_flush_time; 8902 int flush_wait_retry = 50; 8903 bool disable_atr = false; 8904 int fd_room; 8905 int reg; 8906 8907 if (!time_after(jiffies, pf->fd_flush_timestamp + 8908 (I40E_MIN_FD_FLUSH_INTERVAL * HZ))) 8909 return; 8910 8911 /* If the flush is happening too quick and we have mostly SB rules we 8912 * should not re-enable ATR for some time. 8913 */ 8914 min_flush_time = pf->fd_flush_timestamp + 8915 (I40E_MIN_FD_FLUSH_SB_ATR_UNSTABLE * HZ); 8916 fd_room = pf->fdir_pf_filter_count - pf->fdir_pf_active_filters; 8917 8918 if (!(time_after(jiffies, min_flush_time)) && 8919 (fd_room < I40E_FDIR_BUFFER_HEAD_ROOM_FOR_ATR)) { 8920 if (I40E_DEBUG_FD & pf->hw.debug_mask) 8921 dev_info(&pf->pdev->dev, "ATR disabled, not enough FD filter space.\n"); 8922 disable_atr = true; 8923 } 8924 8925 pf->fd_flush_timestamp = jiffies; 8926 set_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state); 8927 /* flush all filters */ 8928 wr32(&pf->hw, I40E_PFQF_CTL_1, 8929 I40E_PFQF_CTL_1_CLEARFDTABLE_MASK); 8930 i40e_flush(&pf->hw); 8931 pf->fd_flush_cnt++; 8932 pf->fd_add_err = 0; 8933 do { 8934 /* Check FD flush status every 5-6msec */ 8935 usleep_range(5000, 6000); 8936 reg = rd32(&pf->hw, I40E_PFQF_CTL_1); 8937 if (!(reg & I40E_PFQF_CTL_1_CLEARFDTABLE_MASK)) 8938 break; 8939 } while (flush_wait_retry--); 8940 if (reg & I40E_PFQF_CTL_1_CLEARFDTABLE_MASK) { 8941 dev_warn(&pf->pdev->dev, "FD table did not flush, needs more time\n"); 8942 } else { 8943 /* replay sideband filters */ 8944 i40e_fdir_filter_restore(pf->vsi[pf->lan_vsi]); 8945 if (!disable_atr && !pf->fd_tcp4_filter_cnt) 8946 clear_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state); 8947 clear_bit(__I40E_FD_FLUSH_REQUESTED, pf->state); 8948 if (I40E_DEBUG_FD & pf->hw.debug_mask) 8949 dev_info(&pf->pdev->dev, "FD Filter table flushed and FD-SB replayed.\n"); 8950 } 8951 } 8952 8953 /** 8954 * i40e_get_current_atr_count - Get the count of total FD ATR filters programmed 8955 * @pf: board private structure 8956 **/ 8957 u32 i40e_get_current_atr_cnt(struct i40e_pf *pf) 8958 { 8959 return i40e_get_current_fd_count(pf) - pf->fdir_pf_active_filters; 8960 } 8961 8962 /* We can see up to 256 filter programming desc in transit if the filters are 8963 * being applied really fast; before we see the first 8964 * filter miss error on Rx queue 0. Accumulating enough error messages before 8965 * reacting will make sure we don't cause flush too often. 8966 */ 8967 #define I40E_MAX_FD_PROGRAM_ERROR 256 8968 8969 /** 8970 * i40e_fdir_reinit_subtask - Worker thread to reinit FDIR filter table 8971 * @pf: board private structure 8972 **/ 8973 static void i40e_fdir_reinit_subtask(struct i40e_pf *pf) 8974 { 8975 8976 /* if interface is down do nothing */ 8977 if (test_bit(__I40E_DOWN, pf->state)) 8978 return; 8979 8980 if (test_bit(__I40E_FD_FLUSH_REQUESTED, pf->state)) 8981 i40e_fdir_flush_and_replay(pf); 8982 8983 i40e_fdir_check_and_reenable(pf); 8984 8985 } 8986 8987 /** 8988 * i40e_vsi_link_event - notify VSI of a link event 8989 * @vsi: vsi to be notified 8990 * @link_up: link up or down 8991 **/ 8992 static void i40e_vsi_link_event(struct i40e_vsi *vsi, bool link_up) 8993 { 8994 if (!vsi || test_bit(__I40E_VSI_DOWN, vsi->state)) 8995 return; 8996 8997 switch (vsi->type) { 8998 case I40E_VSI_MAIN: 8999 if (!vsi->netdev || !vsi->netdev_registered) 9000 break; 9001 9002 if (link_up) { 9003 netif_carrier_on(vsi->netdev); 9004 netif_tx_wake_all_queues(vsi->netdev); 9005 } else { 9006 netif_carrier_off(vsi->netdev); 9007 netif_tx_stop_all_queues(vsi->netdev); 9008 } 9009 break; 9010 9011 case I40E_VSI_SRIOV: 9012 case I40E_VSI_VMDQ2: 9013 case I40E_VSI_CTRL: 9014 case I40E_VSI_IWARP: 9015 case I40E_VSI_MIRROR: 9016 default: 9017 /* there is no notification for other VSIs */ 9018 break; 9019 } 9020 } 9021 9022 /** 9023 * i40e_veb_link_event - notify elements on the veb of a link event 9024 * @veb: veb to be notified 9025 * @link_up: link up or down 9026 **/ 9027 static void i40e_veb_link_event(struct i40e_veb *veb, bool link_up) 9028 { 9029 struct i40e_pf *pf; 9030 int i; 9031 9032 if (!veb || !veb->pf) 9033 return; 9034 pf = veb->pf; 9035 9036 /* depth first... */ 9037 for (i = 0; i < I40E_MAX_VEB; i++) 9038 if (pf->veb[i] && (pf->veb[i]->uplink_seid == veb->seid)) 9039 i40e_veb_link_event(pf->veb[i], link_up); 9040 9041 /* ... now the local VSIs */ 9042 for (i = 0; i < pf->num_alloc_vsi; i++) 9043 if (pf->vsi[i] && (pf->vsi[i]->uplink_seid == veb->seid)) 9044 i40e_vsi_link_event(pf->vsi[i], link_up); 9045 } 9046 9047 /** 9048 * i40e_link_event - Update netif_carrier status 9049 * @pf: board private structure 9050 **/ 9051 static void i40e_link_event(struct i40e_pf *pf) 9052 { 9053 struct i40e_vsi *vsi = pf->vsi[pf->lan_vsi]; 9054 u8 new_link_speed, old_link_speed; 9055 i40e_status status; 9056 bool new_link, old_link; 9057 9058 /* set this to force the get_link_status call to refresh state */ 9059 pf->hw.phy.get_link_info = true; 9060 old_link = (pf->hw.phy.link_info_old.link_info & I40E_AQ_LINK_UP); 9061 status = i40e_get_link_status(&pf->hw, &new_link); 9062 9063 /* On success, disable temp link polling */ 9064 if (status == I40E_SUCCESS) { 9065 clear_bit(__I40E_TEMP_LINK_POLLING, pf->state); 9066 } else { 9067 /* Enable link polling temporarily until i40e_get_link_status 9068 * returns I40E_SUCCESS 9069 */ 9070 set_bit(__I40E_TEMP_LINK_POLLING, pf->state); 9071 dev_dbg(&pf->pdev->dev, "couldn't get link state, status: %d\n", 9072 status); 9073 return; 9074 } 9075 9076 old_link_speed = pf->hw.phy.link_info_old.link_speed; 9077 new_link_speed = pf->hw.phy.link_info.link_speed; 9078 9079 if (new_link == old_link && 9080 new_link_speed == old_link_speed && 9081 (test_bit(__I40E_VSI_DOWN, vsi->state) || 9082 new_link == netif_carrier_ok(vsi->netdev))) 9083 return; 9084 9085 i40e_print_link_message(vsi, new_link); 9086 9087 /* Notify the base of the switch tree connected to 9088 * the link. Floating VEBs are not notified. 9089 */ 9090 if (pf->lan_veb < I40E_MAX_VEB && pf->veb[pf->lan_veb]) 9091 i40e_veb_link_event(pf->veb[pf->lan_veb], new_link); 9092 else 9093 i40e_vsi_link_event(vsi, new_link); 9094 9095 if (pf->vf) 9096 i40e_vc_notify_link_state(pf); 9097 9098 if (pf->flags & I40E_FLAG_PTP) 9099 i40e_ptp_set_increment(pf); 9100 } 9101 9102 /** 9103 * i40e_watchdog_subtask - periodic checks not using event driven response 9104 * @pf: board private structure 9105 **/ 9106 static void i40e_watchdog_subtask(struct i40e_pf *pf) 9107 { 9108 int i; 9109 9110 /* if interface is down do nothing */ 9111 if (test_bit(__I40E_DOWN, pf->state) || 9112 test_bit(__I40E_CONFIG_BUSY, pf->state)) 9113 return; 9114 9115 /* make sure we don't do these things too often */ 9116 if (time_before(jiffies, (pf->service_timer_previous + 9117 pf->service_timer_period))) 9118 return; 9119 pf->service_timer_previous = jiffies; 9120 9121 if ((pf->flags & I40E_FLAG_LINK_POLLING_ENABLED) || 9122 test_bit(__I40E_TEMP_LINK_POLLING, pf->state)) 9123 i40e_link_event(pf); 9124 9125 /* Update the stats for active netdevs so the network stack 9126 * can look at updated numbers whenever it cares to 9127 */ 9128 for (i = 0; i < pf->num_alloc_vsi; i++) 9129 if (pf->vsi[i] && pf->vsi[i]->netdev) 9130 i40e_update_stats(pf->vsi[i]); 9131 9132 if (pf->flags & I40E_FLAG_VEB_STATS_ENABLED) { 9133 /* Update the stats for the active switching components */ 9134 for (i = 0; i < I40E_MAX_VEB; i++) 9135 if (pf->veb[i]) 9136 i40e_update_veb_stats(pf->veb[i]); 9137 } 9138 9139 i40e_ptp_rx_hang(pf); 9140 i40e_ptp_tx_hang(pf); 9141 } 9142 9143 /** 9144 * i40e_reset_subtask - Set up for resetting the device and driver 9145 * @pf: board private structure 9146 **/ 9147 static void i40e_reset_subtask(struct i40e_pf *pf) 9148 { 9149 u32 reset_flags = 0; 9150 9151 if (test_bit(__I40E_REINIT_REQUESTED, pf->state)) { 9152 reset_flags |= BIT(__I40E_REINIT_REQUESTED); 9153 clear_bit(__I40E_REINIT_REQUESTED, pf->state); 9154 } 9155 if (test_bit(__I40E_PF_RESET_REQUESTED, pf->state)) { 9156 reset_flags |= BIT(__I40E_PF_RESET_REQUESTED); 9157 clear_bit(__I40E_PF_RESET_REQUESTED, pf->state); 9158 } 9159 if (test_bit(__I40E_CORE_RESET_REQUESTED, pf->state)) { 9160 reset_flags |= BIT(__I40E_CORE_RESET_REQUESTED); 9161 clear_bit(__I40E_CORE_RESET_REQUESTED, pf->state); 9162 } 9163 if (test_bit(__I40E_GLOBAL_RESET_REQUESTED, pf->state)) { 9164 reset_flags |= BIT(__I40E_GLOBAL_RESET_REQUESTED); 9165 clear_bit(__I40E_GLOBAL_RESET_REQUESTED, pf->state); 9166 } 9167 if (test_bit(__I40E_DOWN_REQUESTED, pf->state)) { 9168 reset_flags |= BIT(__I40E_DOWN_REQUESTED); 9169 clear_bit(__I40E_DOWN_REQUESTED, pf->state); 9170 } 9171 9172 /* If there's a recovery already waiting, it takes 9173 * precedence before starting a new reset sequence. 9174 */ 9175 if (test_bit(__I40E_RESET_INTR_RECEIVED, pf->state)) { 9176 i40e_prep_for_reset(pf, false); 9177 i40e_reset(pf); 9178 i40e_rebuild(pf, false, false); 9179 } 9180 9181 /* If we're already down or resetting, just bail */ 9182 if (reset_flags && 9183 !test_bit(__I40E_DOWN, pf->state) && 9184 !test_bit(__I40E_CONFIG_BUSY, pf->state)) { 9185 i40e_do_reset(pf, reset_flags, false); 9186 } 9187 } 9188 9189 /** 9190 * i40e_handle_link_event - Handle link event 9191 * @pf: board private structure 9192 * @e: event info posted on ARQ 9193 **/ 9194 static void i40e_handle_link_event(struct i40e_pf *pf, 9195 struct i40e_arq_event_info *e) 9196 { 9197 struct i40e_aqc_get_link_status *status = 9198 (struct i40e_aqc_get_link_status *)&e->desc.params.raw; 9199 9200 /* Do a new status request to re-enable LSE reporting 9201 * and load new status information into the hw struct 9202 * This completely ignores any state information 9203 * in the ARQ event info, instead choosing to always 9204 * issue the AQ update link status command. 9205 */ 9206 i40e_link_event(pf); 9207 9208 /* Check if module meets thermal requirements */ 9209 if (status->phy_type == I40E_PHY_TYPE_NOT_SUPPORTED_HIGH_TEMP) { 9210 dev_err(&pf->pdev->dev, 9211 "Rx/Tx is disabled on this device because the module does not meet thermal requirements.\n"); 9212 dev_err(&pf->pdev->dev, 9213 "Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules.\n"); 9214 } else { 9215 /* check for unqualified module, if link is down, suppress 9216 * the message if link was forced to be down. 9217 */ 9218 if ((status->link_info & I40E_AQ_MEDIA_AVAILABLE) && 9219 (!(status->an_info & I40E_AQ_QUALIFIED_MODULE)) && 9220 (!(status->link_info & I40E_AQ_LINK_UP)) && 9221 (!(pf->flags & I40E_FLAG_LINK_DOWN_ON_CLOSE_ENABLED))) { 9222 dev_err(&pf->pdev->dev, 9223 "Rx/Tx is disabled on this device because an unsupported SFP module type was detected.\n"); 9224 dev_err(&pf->pdev->dev, 9225 "Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules.\n"); 9226 } 9227 } 9228 } 9229 9230 /** 9231 * i40e_clean_adminq_subtask - Clean the AdminQ rings 9232 * @pf: board private structure 9233 **/ 9234 static void i40e_clean_adminq_subtask(struct i40e_pf *pf) 9235 { 9236 struct i40e_arq_event_info event; 9237 struct i40e_hw *hw = &pf->hw; 9238 u16 pending, i = 0; 9239 i40e_status ret; 9240 u16 opcode; 9241 u32 oldval; 9242 u32 val; 9243 9244 /* Do not run clean AQ when PF reset fails */ 9245 if (test_bit(__I40E_RESET_FAILED, pf->state)) 9246 return; 9247 9248 /* check for error indications */ 9249 val = rd32(&pf->hw, pf->hw.aq.arq.len); 9250 oldval = val; 9251 if (val & I40E_PF_ARQLEN_ARQVFE_MASK) { 9252 if (hw->debug_mask & I40E_DEBUG_AQ) 9253 dev_info(&pf->pdev->dev, "ARQ VF Error detected\n"); 9254 val &= ~I40E_PF_ARQLEN_ARQVFE_MASK; 9255 } 9256 if (val & I40E_PF_ARQLEN_ARQOVFL_MASK) { 9257 if (hw->debug_mask & I40E_DEBUG_AQ) 9258 dev_info(&pf->pdev->dev, "ARQ Overflow Error detected\n"); 9259 val &= ~I40E_PF_ARQLEN_ARQOVFL_MASK; 9260 pf->arq_overflows++; 9261 } 9262 if (val & I40E_PF_ARQLEN_ARQCRIT_MASK) { 9263 if (hw->debug_mask & I40E_DEBUG_AQ) 9264 dev_info(&pf->pdev->dev, "ARQ Critical Error detected\n"); 9265 val &= ~I40E_PF_ARQLEN_ARQCRIT_MASK; 9266 } 9267 if (oldval != val) 9268 wr32(&pf->hw, pf->hw.aq.arq.len, val); 9269 9270 val = rd32(&pf->hw, pf->hw.aq.asq.len); 9271 oldval = val; 9272 if (val & I40E_PF_ATQLEN_ATQVFE_MASK) { 9273 if (pf->hw.debug_mask & I40E_DEBUG_AQ) 9274 dev_info(&pf->pdev->dev, "ASQ VF Error detected\n"); 9275 val &= ~I40E_PF_ATQLEN_ATQVFE_MASK; 9276 } 9277 if (val & I40E_PF_ATQLEN_ATQOVFL_MASK) { 9278 if (pf->hw.debug_mask & I40E_DEBUG_AQ) 9279 dev_info(&pf->pdev->dev, "ASQ Overflow Error detected\n"); 9280 val &= ~I40E_PF_ATQLEN_ATQOVFL_MASK; 9281 } 9282 if (val & I40E_PF_ATQLEN_ATQCRIT_MASK) { 9283 if (pf->hw.debug_mask & I40E_DEBUG_AQ) 9284 dev_info(&pf->pdev->dev, "ASQ Critical Error detected\n"); 9285 val &= ~I40E_PF_ATQLEN_ATQCRIT_MASK; 9286 } 9287 if (oldval != val) 9288 wr32(&pf->hw, pf->hw.aq.asq.len, val); 9289 9290 event.buf_len = I40E_MAX_AQ_BUF_SIZE; 9291 event.msg_buf = kzalloc(event.buf_len, GFP_KERNEL); 9292 if (!event.msg_buf) 9293 return; 9294 9295 do { 9296 ret = i40e_clean_arq_element(hw, &event, &pending); 9297 if (ret == I40E_ERR_ADMIN_QUEUE_NO_WORK) 9298 break; 9299 else if (ret) { 9300 dev_info(&pf->pdev->dev, "ARQ event error %d\n", ret); 9301 break; 9302 } 9303 9304 opcode = le16_to_cpu(event.desc.opcode); 9305 switch (opcode) { 9306 9307 case i40e_aqc_opc_get_link_status: 9308 i40e_handle_link_event(pf, &event); 9309 break; 9310 case i40e_aqc_opc_send_msg_to_pf: 9311 ret = i40e_vc_process_vf_msg(pf, 9312 le16_to_cpu(event.desc.retval), 9313 le32_to_cpu(event.desc.cookie_high), 9314 le32_to_cpu(event.desc.cookie_low), 9315 event.msg_buf, 9316 event.msg_len); 9317 break; 9318 case i40e_aqc_opc_lldp_update_mib: 9319 dev_dbg(&pf->pdev->dev, "ARQ: Update LLDP MIB event received\n"); 9320 #ifdef CONFIG_I40E_DCB 9321 rtnl_lock(); 9322 ret = i40e_handle_lldp_event(pf, &event); 9323 rtnl_unlock(); 9324 #endif /* CONFIG_I40E_DCB */ 9325 break; 9326 case i40e_aqc_opc_event_lan_overflow: 9327 dev_dbg(&pf->pdev->dev, "ARQ LAN queue overflow event received\n"); 9328 i40e_handle_lan_overflow_event(pf, &event); 9329 break; 9330 case i40e_aqc_opc_send_msg_to_peer: 9331 dev_info(&pf->pdev->dev, "ARQ: Msg from other pf\n"); 9332 break; 9333 case i40e_aqc_opc_nvm_erase: 9334 case i40e_aqc_opc_nvm_update: 9335 case i40e_aqc_opc_oem_post_update: 9336 i40e_debug(&pf->hw, I40E_DEBUG_NVM, 9337 "ARQ NVM operation 0x%04x completed\n", 9338 opcode); 9339 break; 9340 default: 9341 dev_info(&pf->pdev->dev, 9342 "ARQ: Unknown event 0x%04x ignored\n", 9343 opcode); 9344 break; 9345 } 9346 } while (i++ < pf->adminq_work_limit); 9347 9348 if (i < pf->adminq_work_limit) 9349 clear_bit(__I40E_ADMINQ_EVENT_PENDING, pf->state); 9350 9351 /* re-enable Admin queue interrupt cause */ 9352 val = rd32(hw, I40E_PFINT_ICR0_ENA); 9353 val |= I40E_PFINT_ICR0_ENA_ADMINQ_MASK; 9354 wr32(hw, I40E_PFINT_ICR0_ENA, val); 9355 i40e_flush(hw); 9356 9357 kfree(event.msg_buf); 9358 } 9359 9360 /** 9361 * i40e_verify_eeprom - make sure eeprom is good to use 9362 * @pf: board private structure 9363 **/ 9364 static void i40e_verify_eeprom(struct i40e_pf *pf) 9365 { 9366 int err; 9367 9368 err = i40e_diag_eeprom_test(&pf->hw); 9369 if (err) { 9370 /* retry in case of garbage read */ 9371 err = i40e_diag_eeprom_test(&pf->hw); 9372 if (err) { 9373 dev_info(&pf->pdev->dev, "eeprom check failed (%d), Tx/Rx traffic disabled\n", 9374 err); 9375 set_bit(__I40E_BAD_EEPROM, pf->state); 9376 } 9377 } 9378 9379 if (!err && test_bit(__I40E_BAD_EEPROM, pf->state)) { 9380 dev_info(&pf->pdev->dev, "eeprom check passed, Tx/Rx traffic enabled\n"); 9381 clear_bit(__I40E_BAD_EEPROM, pf->state); 9382 } 9383 } 9384 9385 /** 9386 * i40e_enable_pf_switch_lb 9387 * @pf: pointer to the PF structure 9388 * 9389 * enable switch loop back or die - no point in a return value 9390 **/ 9391 static void i40e_enable_pf_switch_lb(struct i40e_pf *pf) 9392 { 9393 struct i40e_vsi *vsi = pf->vsi[pf->lan_vsi]; 9394 struct i40e_vsi_context ctxt; 9395 int ret; 9396 9397 ctxt.seid = pf->main_vsi_seid; 9398 ctxt.pf_num = pf->hw.pf_id; 9399 ctxt.vf_num = 0; 9400 ret = i40e_aq_get_vsi_params(&pf->hw, &ctxt, NULL); 9401 if (ret) { 9402 dev_info(&pf->pdev->dev, 9403 "couldn't get PF vsi config, err %s aq_err %s\n", 9404 i40e_stat_str(&pf->hw, ret), 9405 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 9406 return; 9407 } 9408 ctxt.flags = I40E_AQ_VSI_TYPE_PF; 9409 ctxt.info.valid_sections = cpu_to_le16(I40E_AQ_VSI_PROP_SWITCH_VALID); 9410 ctxt.info.switch_id |= cpu_to_le16(I40E_AQ_VSI_SW_ID_FLAG_ALLOW_LB); 9411 9412 ret = i40e_aq_update_vsi_params(&vsi->back->hw, &ctxt, NULL); 9413 if (ret) { 9414 dev_info(&pf->pdev->dev, 9415 "update vsi switch failed, err %s aq_err %s\n", 9416 i40e_stat_str(&pf->hw, ret), 9417 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 9418 } 9419 } 9420 9421 /** 9422 * i40e_disable_pf_switch_lb 9423 * @pf: pointer to the PF structure 9424 * 9425 * disable switch loop back or die - no point in a return value 9426 **/ 9427 static void i40e_disable_pf_switch_lb(struct i40e_pf *pf) 9428 { 9429 struct i40e_vsi *vsi = pf->vsi[pf->lan_vsi]; 9430 struct i40e_vsi_context ctxt; 9431 int ret; 9432 9433 ctxt.seid = pf->main_vsi_seid; 9434 ctxt.pf_num = pf->hw.pf_id; 9435 ctxt.vf_num = 0; 9436 ret = i40e_aq_get_vsi_params(&pf->hw, &ctxt, NULL); 9437 if (ret) { 9438 dev_info(&pf->pdev->dev, 9439 "couldn't get PF vsi config, err %s aq_err %s\n", 9440 i40e_stat_str(&pf->hw, ret), 9441 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 9442 return; 9443 } 9444 ctxt.flags = I40E_AQ_VSI_TYPE_PF; 9445 ctxt.info.valid_sections = cpu_to_le16(I40E_AQ_VSI_PROP_SWITCH_VALID); 9446 ctxt.info.switch_id &= ~cpu_to_le16(I40E_AQ_VSI_SW_ID_FLAG_ALLOW_LB); 9447 9448 ret = i40e_aq_update_vsi_params(&vsi->back->hw, &ctxt, NULL); 9449 if (ret) { 9450 dev_info(&pf->pdev->dev, 9451 "update vsi switch failed, err %s aq_err %s\n", 9452 i40e_stat_str(&pf->hw, ret), 9453 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 9454 } 9455 } 9456 9457 /** 9458 * i40e_config_bridge_mode - Configure the HW bridge mode 9459 * @veb: pointer to the bridge instance 9460 * 9461 * Configure the loop back mode for the LAN VSI that is downlink to the 9462 * specified HW bridge instance. It is expected this function is called 9463 * when a new HW bridge is instantiated. 9464 **/ 9465 static void i40e_config_bridge_mode(struct i40e_veb *veb) 9466 { 9467 struct i40e_pf *pf = veb->pf; 9468 9469 if (pf->hw.debug_mask & I40E_DEBUG_LAN) 9470 dev_info(&pf->pdev->dev, "enabling bridge mode: %s\n", 9471 veb->bridge_mode == BRIDGE_MODE_VEPA ? "VEPA" : "VEB"); 9472 if (veb->bridge_mode & BRIDGE_MODE_VEPA) 9473 i40e_disable_pf_switch_lb(pf); 9474 else 9475 i40e_enable_pf_switch_lb(pf); 9476 } 9477 9478 /** 9479 * i40e_reconstitute_veb - rebuild the VEB and anything connected to it 9480 * @veb: pointer to the VEB instance 9481 * 9482 * This is a recursive function that first builds the attached VSIs then 9483 * recurses in to build the next layer of VEB. We track the connections 9484 * through our own index numbers because the seid's from the HW could 9485 * change across the reset. 9486 **/ 9487 static int i40e_reconstitute_veb(struct i40e_veb *veb) 9488 { 9489 struct i40e_vsi *ctl_vsi = NULL; 9490 struct i40e_pf *pf = veb->pf; 9491 int v, veb_idx; 9492 int ret; 9493 9494 /* build VSI that owns this VEB, temporarily attached to base VEB */ 9495 for (v = 0; v < pf->num_alloc_vsi && !ctl_vsi; v++) { 9496 if (pf->vsi[v] && 9497 pf->vsi[v]->veb_idx == veb->idx && 9498 pf->vsi[v]->flags & I40E_VSI_FLAG_VEB_OWNER) { 9499 ctl_vsi = pf->vsi[v]; 9500 break; 9501 } 9502 } 9503 if (!ctl_vsi) { 9504 dev_info(&pf->pdev->dev, 9505 "missing owner VSI for veb_idx %d\n", veb->idx); 9506 ret = -ENOENT; 9507 goto end_reconstitute; 9508 } 9509 if (ctl_vsi != pf->vsi[pf->lan_vsi]) 9510 ctl_vsi->uplink_seid = pf->vsi[pf->lan_vsi]->uplink_seid; 9511 ret = i40e_add_vsi(ctl_vsi); 9512 if (ret) { 9513 dev_info(&pf->pdev->dev, 9514 "rebuild of veb_idx %d owner VSI failed: %d\n", 9515 veb->idx, ret); 9516 goto end_reconstitute; 9517 } 9518 i40e_vsi_reset_stats(ctl_vsi); 9519 9520 /* create the VEB in the switch and move the VSI onto the VEB */ 9521 ret = i40e_add_veb(veb, ctl_vsi); 9522 if (ret) 9523 goto end_reconstitute; 9524 9525 if (pf->flags & I40E_FLAG_VEB_MODE_ENABLED) 9526 veb->bridge_mode = BRIDGE_MODE_VEB; 9527 else 9528 veb->bridge_mode = BRIDGE_MODE_VEPA; 9529 i40e_config_bridge_mode(veb); 9530 9531 /* create the remaining VSIs attached to this VEB */ 9532 for (v = 0; v < pf->num_alloc_vsi; v++) { 9533 if (!pf->vsi[v] || pf->vsi[v] == ctl_vsi) 9534 continue; 9535 9536 if (pf->vsi[v]->veb_idx == veb->idx) { 9537 struct i40e_vsi *vsi = pf->vsi[v]; 9538 9539 vsi->uplink_seid = veb->seid; 9540 ret = i40e_add_vsi(vsi); 9541 if (ret) { 9542 dev_info(&pf->pdev->dev, 9543 "rebuild of vsi_idx %d failed: %d\n", 9544 v, ret); 9545 goto end_reconstitute; 9546 } 9547 i40e_vsi_reset_stats(vsi); 9548 } 9549 } 9550 9551 /* create any VEBs attached to this VEB - RECURSION */ 9552 for (veb_idx = 0; veb_idx < I40E_MAX_VEB; veb_idx++) { 9553 if (pf->veb[veb_idx] && pf->veb[veb_idx]->veb_idx == veb->idx) { 9554 pf->veb[veb_idx]->uplink_seid = veb->seid; 9555 ret = i40e_reconstitute_veb(pf->veb[veb_idx]); 9556 if (ret) 9557 break; 9558 } 9559 } 9560 9561 end_reconstitute: 9562 return ret; 9563 } 9564 9565 /** 9566 * i40e_get_capabilities - get info about the HW 9567 * @pf: the PF struct 9568 **/ 9569 static int i40e_get_capabilities(struct i40e_pf *pf, 9570 enum i40e_admin_queue_opc list_type) 9571 { 9572 struct i40e_aqc_list_capabilities_element_resp *cap_buf; 9573 u16 data_size; 9574 int buf_len; 9575 int err; 9576 9577 buf_len = 40 * sizeof(struct i40e_aqc_list_capabilities_element_resp); 9578 do { 9579 cap_buf = kzalloc(buf_len, GFP_KERNEL); 9580 if (!cap_buf) 9581 return -ENOMEM; 9582 9583 /* this loads the data into the hw struct for us */ 9584 err = i40e_aq_discover_capabilities(&pf->hw, cap_buf, buf_len, 9585 &data_size, list_type, 9586 NULL); 9587 /* data loaded, buffer no longer needed */ 9588 kfree(cap_buf); 9589 9590 if (pf->hw.aq.asq_last_status == I40E_AQ_RC_ENOMEM) { 9591 /* retry with a larger buffer */ 9592 buf_len = data_size; 9593 } else if (pf->hw.aq.asq_last_status != I40E_AQ_RC_OK) { 9594 dev_info(&pf->pdev->dev, 9595 "capability discovery failed, err %s aq_err %s\n", 9596 i40e_stat_str(&pf->hw, err), 9597 i40e_aq_str(&pf->hw, 9598 pf->hw.aq.asq_last_status)); 9599 return -ENODEV; 9600 } 9601 } while (err); 9602 9603 if (pf->hw.debug_mask & I40E_DEBUG_USER) { 9604 if (list_type == i40e_aqc_opc_list_func_capabilities) { 9605 dev_info(&pf->pdev->dev, 9606 "pf=%d, num_vfs=%d, msix_pf=%d, msix_vf=%d, fd_g=%d, fd_b=%d, pf_max_q=%d num_vsi=%d\n", 9607 pf->hw.pf_id, pf->hw.func_caps.num_vfs, 9608 pf->hw.func_caps.num_msix_vectors, 9609 pf->hw.func_caps.num_msix_vectors_vf, 9610 pf->hw.func_caps.fd_filters_guaranteed, 9611 pf->hw.func_caps.fd_filters_best_effort, 9612 pf->hw.func_caps.num_tx_qp, 9613 pf->hw.func_caps.num_vsis); 9614 } else if (list_type == i40e_aqc_opc_list_dev_capabilities) { 9615 dev_info(&pf->pdev->dev, 9616 "switch_mode=0x%04x, function_valid=0x%08x\n", 9617 pf->hw.dev_caps.switch_mode, 9618 pf->hw.dev_caps.valid_functions); 9619 dev_info(&pf->pdev->dev, 9620 "SR-IOV=%d, num_vfs for all function=%u\n", 9621 pf->hw.dev_caps.sr_iov_1_1, 9622 pf->hw.dev_caps.num_vfs); 9623 dev_info(&pf->pdev->dev, 9624 "num_vsis=%u, num_rx:%u, num_tx=%u\n", 9625 pf->hw.dev_caps.num_vsis, 9626 pf->hw.dev_caps.num_rx_qp, 9627 pf->hw.dev_caps.num_tx_qp); 9628 } 9629 } 9630 if (list_type == i40e_aqc_opc_list_func_capabilities) { 9631 #define DEF_NUM_VSI (1 + (pf->hw.func_caps.fcoe ? 1 : 0) \ 9632 + pf->hw.func_caps.num_vfs) 9633 if (pf->hw.revision_id == 0 && 9634 pf->hw.func_caps.num_vsis < DEF_NUM_VSI) { 9635 dev_info(&pf->pdev->dev, 9636 "got num_vsis %d, setting num_vsis to %d\n", 9637 pf->hw.func_caps.num_vsis, DEF_NUM_VSI); 9638 pf->hw.func_caps.num_vsis = DEF_NUM_VSI; 9639 } 9640 } 9641 return 0; 9642 } 9643 9644 static int i40e_vsi_clear(struct i40e_vsi *vsi); 9645 9646 /** 9647 * i40e_fdir_sb_setup - initialize the Flow Director resources for Sideband 9648 * @pf: board private structure 9649 **/ 9650 static void i40e_fdir_sb_setup(struct i40e_pf *pf) 9651 { 9652 struct i40e_vsi *vsi; 9653 9654 /* quick workaround for an NVM issue that leaves a critical register 9655 * uninitialized 9656 */ 9657 if (!rd32(&pf->hw, I40E_GLQF_HKEY(0))) { 9658 static const u32 hkey[] = { 9659 0xe640d33f, 0xcdfe98ab, 0x73fa7161, 0x0d7a7d36, 9660 0xeacb7d61, 0xaa4f05b6, 0x9c5c89ed, 0xfc425ddb, 9661 0xa4654832, 0xfc7461d4, 0x8f827619, 0xf5c63c21, 9662 0x95b3a76d}; 9663 int i; 9664 9665 for (i = 0; i <= I40E_GLQF_HKEY_MAX_INDEX; i++) 9666 wr32(&pf->hw, I40E_GLQF_HKEY(i), hkey[i]); 9667 } 9668 9669 if (!(pf->flags & I40E_FLAG_FD_SB_ENABLED)) 9670 return; 9671 9672 /* find existing VSI and see if it needs configuring */ 9673 vsi = i40e_find_vsi_by_type(pf, I40E_VSI_FDIR); 9674 9675 /* create a new VSI if none exists */ 9676 if (!vsi) { 9677 vsi = i40e_vsi_setup(pf, I40E_VSI_FDIR, 9678 pf->vsi[pf->lan_vsi]->seid, 0); 9679 if (!vsi) { 9680 dev_info(&pf->pdev->dev, "Couldn't create FDir VSI\n"); 9681 pf->flags &= ~I40E_FLAG_FD_SB_ENABLED; 9682 pf->flags |= I40E_FLAG_FD_SB_INACTIVE; 9683 return; 9684 } 9685 } 9686 9687 i40e_vsi_setup_irqhandler(vsi, i40e_fdir_clean_ring); 9688 } 9689 9690 /** 9691 * i40e_fdir_teardown - release the Flow Director resources 9692 * @pf: board private structure 9693 **/ 9694 static void i40e_fdir_teardown(struct i40e_pf *pf) 9695 { 9696 struct i40e_vsi *vsi; 9697 9698 i40e_fdir_filter_exit(pf); 9699 vsi = i40e_find_vsi_by_type(pf, I40E_VSI_FDIR); 9700 if (vsi) 9701 i40e_vsi_release(vsi); 9702 } 9703 9704 /** 9705 * i40e_rebuild_cloud_filters - Rebuilds cloud filters for VSIs 9706 * @vsi: PF main vsi 9707 * @seid: seid of main or channel VSIs 9708 * 9709 * Rebuilds cloud filters associated with main VSI and channel VSIs if they 9710 * existed before reset 9711 **/ 9712 static int i40e_rebuild_cloud_filters(struct i40e_vsi *vsi, u16 seid) 9713 { 9714 struct i40e_cloud_filter *cfilter; 9715 struct i40e_pf *pf = vsi->back; 9716 struct hlist_node *node; 9717 i40e_status ret; 9718 9719 /* Add cloud filters back if they exist */ 9720 hlist_for_each_entry_safe(cfilter, node, &pf->cloud_filter_list, 9721 cloud_node) { 9722 if (cfilter->seid != seid) 9723 continue; 9724 9725 if (cfilter->dst_port) 9726 ret = i40e_add_del_cloud_filter_big_buf(vsi, cfilter, 9727 true); 9728 else 9729 ret = i40e_add_del_cloud_filter(vsi, cfilter, true); 9730 9731 if (ret) { 9732 dev_dbg(&pf->pdev->dev, 9733 "Failed to rebuild cloud filter, err %s aq_err %s\n", 9734 i40e_stat_str(&pf->hw, ret), 9735 i40e_aq_str(&pf->hw, 9736 pf->hw.aq.asq_last_status)); 9737 return ret; 9738 } 9739 } 9740 return 0; 9741 } 9742 9743 /** 9744 * i40e_rebuild_channels - Rebuilds channel VSIs if they existed before reset 9745 * @vsi: PF main vsi 9746 * 9747 * Rebuilds channel VSIs if they existed before reset 9748 **/ 9749 static int i40e_rebuild_channels(struct i40e_vsi *vsi) 9750 { 9751 struct i40e_channel *ch, *ch_tmp; 9752 i40e_status ret; 9753 9754 if (list_empty(&vsi->ch_list)) 9755 return 0; 9756 9757 list_for_each_entry_safe(ch, ch_tmp, &vsi->ch_list, list) { 9758 if (!ch->initialized) 9759 break; 9760 /* Proceed with creation of channel (VMDq2) VSI */ 9761 ret = i40e_add_channel(vsi->back, vsi->uplink_seid, ch); 9762 if (ret) { 9763 dev_info(&vsi->back->pdev->dev, 9764 "failed to rebuild channels using uplink_seid %u\n", 9765 vsi->uplink_seid); 9766 return ret; 9767 } 9768 /* Reconfigure TX queues using QTX_CTL register */ 9769 ret = i40e_channel_config_tx_ring(vsi->back, vsi, ch); 9770 if (ret) { 9771 dev_info(&vsi->back->pdev->dev, 9772 "failed to configure TX rings for channel %u\n", 9773 ch->seid); 9774 return ret; 9775 } 9776 /* update 'next_base_queue' */ 9777 vsi->next_base_queue = vsi->next_base_queue + 9778 ch->num_queue_pairs; 9779 if (ch->max_tx_rate) { 9780 u64 credits = ch->max_tx_rate; 9781 9782 if (i40e_set_bw_limit(vsi, ch->seid, 9783 ch->max_tx_rate)) 9784 return -EINVAL; 9785 9786 do_div(credits, I40E_BW_CREDIT_DIVISOR); 9787 dev_dbg(&vsi->back->pdev->dev, 9788 "Set tx rate of %llu Mbps (count of 50Mbps %llu) for vsi->seid %u\n", 9789 ch->max_tx_rate, 9790 credits, 9791 ch->seid); 9792 } 9793 ret = i40e_rebuild_cloud_filters(vsi, ch->seid); 9794 if (ret) { 9795 dev_dbg(&vsi->back->pdev->dev, 9796 "Failed to rebuild cloud filters for channel VSI %u\n", 9797 ch->seid); 9798 return ret; 9799 } 9800 } 9801 return 0; 9802 } 9803 9804 /** 9805 * i40e_prep_for_reset - prep for the core to reset 9806 * @pf: board private structure 9807 * @lock_acquired: indicates whether or not the lock has been acquired 9808 * before this function was called. 9809 * 9810 * Close up the VFs and other things in prep for PF Reset. 9811 **/ 9812 static void i40e_prep_for_reset(struct i40e_pf *pf, bool lock_acquired) 9813 { 9814 struct i40e_hw *hw = &pf->hw; 9815 i40e_status ret = 0; 9816 u32 v; 9817 9818 clear_bit(__I40E_RESET_INTR_RECEIVED, pf->state); 9819 if (test_and_set_bit(__I40E_RESET_RECOVERY_PENDING, pf->state)) 9820 return; 9821 if (i40e_check_asq_alive(&pf->hw)) 9822 i40e_vc_notify_reset(pf); 9823 9824 dev_dbg(&pf->pdev->dev, "Tearing down internal switch for reset\n"); 9825 9826 /* quiesce the VSIs and their queues that are not already DOWN */ 9827 /* pf_quiesce_all_vsi modifies netdev structures -rtnl_lock needed */ 9828 if (!lock_acquired) 9829 rtnl_lock(); 9830 i40e_pf_quiesce_all_vsi(pf); 9831 if (!lock_acquired) 9832 rtnl_unlock(); 9833 9834 for (v = 0; v < pf->num_alloc_vsi; v++) { 9835 if (pf->vsi[v]) 9836 pf->vsi[v]->seid = 0; 9837 } 9838 9839 i40e_shutdown_adminq(&pf->hw); 9840 9841 /* call shutdown HMC */ 9842 if (hw->hmc.hmc_obj) { 9843 ret = i40e_shutdown_lan_hmc(hw); 9844 if (ret) 9845 dev_warn(&pf->pdev->dev, 9846 "shutdown_lan_hmc failed: %d\n", ret); 9847 } 9848 9849 /* Save the current PTP time so that we can restore the time after the 9850 * reset completes. 9851 */ 9852 i40e_ptp_save_hw_time(pf); 9853 } 9854 9855 /** 9856 * i40e_send_version - update firmware with driver version 9857 * @pf: PF struct 9858 */ 9859 static void i40e_send_version(struct i40e_pf *pf) 9860 { 9861 struct i40e_driver_version dv; 9862 9863 dv.major_version = DRV_VERSION_MAJOR; 9864 dv.minor_version = DRV_VERSION_MINOR; 9865 dv.build_version = DRV_VERSION_BUILD; 9866 dv.subbuild_version = 0; 9867 strlcpy(dv.driver_string, DRV_VERSION, sizeof(dv.driver_string)); 9868 i40e_aq_send_driver_version(&pf->hw, &dv, NULL); 9869 } 9870 9871 /** 9872 * i40e_get_oem_version - get OEM specific version information 9873 * @hw: pointer to the hardware structure 9874 **/ 9875 static void i40e_get_oem_version(struct i40e_hw *hw) 9876 { 9877 u16 block_offset = 0xffff; 9878 u16 block_length = 0; 9879 u16 capabilities = 0; 9880 u16 gen_snap = 0; 9881 u16 release = 0; 9882 9883 #define I40E_SR_NVM_OEM_VERSION_PTR 0x1B 9884 #define I40E_NVM_OEM_LENGTH_OFFSET 0x00 9885 #define I40E_NVM_OEM_CAPABILITIES_OFFSET 0x01 9886 #define I40E_NVM_OEM_GEN_OFFSET 0x02 9887 #define I40E_NVM_OEM_RELEASE_OFFSET 0x03 9888 #define I40E_NVM_OEM_CAPABILITIES_MASK 0x000F 9889 #define I40E_NVM_OEM_LENGTH 3 9890 9891 /* Check if pointer to OEM version block is valid. */ 9892 i40e_read_nvm_word(hw, I40E_SR_NVM_OEM_VERSION_PTR, &block_offset); 9893 if (block_offset == 0xffff) 9894 return; 9895 9896 /* Check if OEM version block has correct length. */ 9897 i40e_read_nvm_word(hw, block_offset + I40E_NVM_OEM_LENGTH_OFFSET, 9898 &block_length); 9899 if (block_length < I40E_NVM_OEM_LENGTH) 9900 return; 9901 9902 /* Check if OEM version format is as expected. */ 9903 i40e_read_nvm_word(hw, block_offset + I40E_NVM_OEM_CAPABILITIES_OFFSET, 9904 &capabilities); 9905 if ((capabilities & I40E_NVM_OEM_CAPABILITIES_MASK) != 0) 9906 return; 9907 9908 i40e_read_nvm_word(hw, block_offset + I40E_NVM_OEM_GEN_OFFSET, 9909 &gen_snap); 9910 i40e_read_nvm_word(hw, block_offset + I40E_NVM_OEM_RELEASE_OFFSET, 9911 &release); 9912 hw->nvm.oem_ver = (gen_snap << I40E_OEM_SNAP_SHIFT) | release; 9913 hw->nvm.eetrack = I40E_OEM_EETRACK_ID; 9914 } 9915 9916 /** 9917 * i40e_reset - wait for core reset to finish reset, reset pf if corer not seen 9918 * @pf: board private structure 9919 **/ 9920 static int i40e_reset(struct i40e_pf *pf) 9921 { 9922 struct i40e_hw *hw = &pf->hw; 9923 i40e_status ret; 9924 9925 ret = i40e_pf_reset(hw); 9926 if (ret) { 9927 dev_info(&pf->pdev->dev, "PF reset failed, %d\n", ret); 9928 set_bit(__I40E_RESET_FAILED, pf->state); 9929 clear_bit(__I40E_RESET_RECOVERY_PENDING, pf->state); 9930 } else { 9931 pf->pfr_count++; 9932 } 9933 return ret; 9934 } 9935 9936 /** 9937 * i40e_rebuild - rebuild using a saved config 9938 * @pf: board private structure 9939 * @reinit: if the Main VSI needs to re-initialized. 9940 * @lock_acquired: indicates whether or not the lock has been acquired 9941 * before this function was called. 9942 **/ 9943 static void i40e_rebuild(struct i40e_pf *pf, bool reinit, bool lock_acquired) 9944 { 9945 int old_recovery_mode_bit = test_bit(__I40E_RECOVERY_MODE, pf->state); 9946 struct i40e_vsi *vsi = pf->vsi[pf->lan_vsi]; 9947 struct i40e_hw *hw = &pf->hw; 9948 u8 set_fc_aq_fail = 0; 9949 i40e_status ret; 9950 u32 val; 9951 int v; 9952 9953 if (test_bit(__I40E_EMP_RESET_INTR_RECEIVED, pf->state) && 9954 i40e_check_recovery_mode(pf)) { 9955 i40e_set_ethtool_ops(pf->vsi[pf->lan_vsi]->netdev); 9956 } 9957 9958 if (test_bit(__I40E_DOWN, pf->state) && 9959 !test_bit(__I40E_RECOVERY_MODE, pf->state) && 9960 !old_recovery_mode_bit) 9961 goto clear_recovery; 9962 dev_dbg(&pf->pdev->dev, "Rebuilding internal switch\n"); 9963 9964 /* rebuild the basics for the AdminQ, HMC, and initial HW switch */ 9965 ret = i40e_init_adminq(&pf->hw); 9966 if (ret) { 9967 dev_info(&pf->pdev->dev, "Rebuild AdminQ failed, err %s aq_err %s\n", 9968 i40e_stat_str(&pf->hw, ret), 9969 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 9970 goto clear_recovery; 9971 } 9972 i40e_get_oem_version(&pf->hw); 9973 9974 if (test_bit(__I40E_EMP_RESET_INTR_RECEIVED, pf->state) && 9975 ((hw->aq.fw_maj_ver == 4 && hw->aq.fw_min_ver <= 33) || 9976 hw->aq.fw_maj_ver < 4) && hw->mac.type == I40E_MAC_XL710) { 9977 /* The following delay is necessary for 4.33 firmware and older 9978 * to recover after EMP reset. 200 ms should suffice but we 9979 * put here 300 ms to be sure that FW is ready to operate 9980 * after reset. 9981 */ 9982 mdelay(300); 9983 } 9984 9985 /* re-verify the eeprom if we just had an EMP reset */ 9986 if (test_and_clear_bit(__I40E_EMP_RESET_INTR_RECEIVED, pf->state)) 9987 i40e_verify_eeprom(pf); 9988 9989 /* if we are going out of or into recovery mode we have to act 9990 * accordingly with regard to resources initialization 9991 * and deinitialization 9992 */ 9993 if (test_bit(__I40E_RECOVERY_MODE, pf->state) || 9994 old_recovery_mode_bit) { 9995 if (i40e_get_capabilities(pf, 9996 i40e_aqc_opc_list_func_capabilities)) 9997 goto end_unlock; 9998 9999 if (test_bit(__I40E_RECOVERY_MODE, pf->state)) { 10000 /* we're staying in recovery mode so we'll reinitialize 10001 * misc vector here 10002 */ 10003 if (i40e_setup_misc_vector_for_recovery_mode(pf)) 10004 goto end_unlock; 10005 } else { 10006 if (!lock_acquired) 10007 rtnl_lock(); 10008 /* we're going out of recovery mode so we'll free 10009 * the IRQ allocated specifically for recovery mode 10010 * and restore the interrupt scheme 10011 */ 10012 free_irq(pf->pdev->irq, pf); 10013 i40e_clear_interrupt_scheme(pf); 10014 if (i40e_restore_interrupt_scheme(pf)) 10015 goto end_unlock; 10016 } 10017 10018 /* tell the firmware that we're starting */ 10019 i40e_send_version(pf); 10020 10021 /* bail out in case recovery mode was detected, as there is 10022 * no need for further configuration. 10023 */ 10024 goto end_unlock; 10025 } 10026 10027 i40e_clear_pxe_mode(hw); 10028 ret = i40e_get_capabilities(pf, i40e_aqc_opc_list_func_capabilities); 10029 if (ret) 10030 goto end_core_reset; 10031 10032 ret = i40e_init_lan_hmc(hw, hw->func_caps.num_tx_qp, 10033 hw->func_caps.num_rx_qp, 0, 0); 10034 if (ret) { 10035 dev_info(&pf->pdev->dev, "init_lan_hmc failed: %d\n", ret); 10036 goto end_core_reset; 10037 } 10038 ret = i40e_configure_lan_hmc(hw, I40E_HMC_MODEL_DIRECT_ONLY); 10039 if (ret) { 10040 dev_info(&pf->pdev->dev, "configure_lan_hmc failed: %d\n", ret); 10041 goto end_core_reset; 10042 } 10043 10044 /* Enable FW to write a default DCB config on link-up */ 10045 i40e_aq_set_dcb_parameters(hw, true, NULL); 10046 10047 #ifdef CONFIG_I40E_DCB 10048 ret = i40e_init_pf_dcb(pf); 10049 if (ret) { 10050 dev_info(&pf->pdev->dev, "DCB init failed %d, disabled\n", ret); 10051 pf->flags &= ~I40E_FLAG_DCB_CAPABLE; 10052 /* Continue without DCB enabled */ 10053 } 10054 #endif /* CONFIG_I40E_DCB */ 10055 /* do basic switch setup */ 10056 if (!lock_acquired) 10057 rtnl_lock(); 10058 ret = i40e_setup_pf_switch(pf, reinit); 10059 if (ret) 10060 goto end_unlock; 10061 10062 /* The driver only wants link up/down and module qualification 10063 * reports from firmware. Note the negative logic. 10064 */ 10065 ret = i40e_aq_set_phy_int_mask(&pf->hw, 10066 ~(I40E_AQ_EVENT_LINK_UPDOWN | 10067 I40E_AQ_EVENT_MEDIA_NA | 10068 I40E_AQ_EVENT_MODULE_QUAL_FAIL), NULL); 10069 if (ret) 10070 dev_info(&pf->pdev->dev, "set phy mask fail, err %s aq_err %s\n", 10071 i40e_stat_str(&pf->hw, ret), 10072 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 10073 10074 /* make sure our flow control settings are restored */ 10075 ret = i40e_set_fc(&pf->hw, &set_fc_aq_fail, true); 10076 if (ret) 10077 dev_dbg(&pf->pdev->dev, "setting flow control: ret = %s last_status = %s\n", 10078 i40e_stat_str(&pf->hw, ret), 10079 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 10080 10081 /* Rebuild the VSIs and VEBs that existed before reset. 10082 * They are still in our local switch element arrays, so only 10083 * need to rebuild the switch model in the HW. 10084 * 10085 * If there were VEBs but the reconstitution failed, we'll try 10086 * try to recover minimal use by getting the basic PF VSI working. 10087 */ 10088 if (vsi->uplink_seid != pf->mac_seid) { 10089 dev_dbg(&pf->pdev->dev, "attempting to rebuild switch\n"); 10090 /* find the one VEB connected to the MAC, and find orphans */ 10091 for (v = 0; v < I40E_MAX_VEB; v++) { 10092 if (!pf->veb[v]) 10093 continue; 10094 10095 if (pf->veb[v]->uplink_seid == pf->mac_seid || 10096 pf->veb[v]->uplink_seid == 0) { 10097 ret = i40e_reconstitute_veb(pf->veb[v]); 10098 10099 if (!ret) 10100 continue; 10101 10102 /* If Main VEB failed, we're in deep doodoo, 10103 * so give up rebuilding the switch and set up 10104 * for minimal rebuild of PF VSI. 10105 * If orphan failed, we'll report the error 10106 * but try to keep going. 10107 */ 10108 if (pf->veb[v]->uplink_seid == pf->mac_seid) { 10109 dev_info(&pf->pdev->dev, 10110 "rebuild of switch failed: %d, will try to set up simple PF connection\n", 10111 ret); 10112 vsi->uplink_seid = pf->mac_seid; 10113 break; 10114 } else if (pf->veb[v]->uplink_seid == 0) { 10115 dev_info(&pf->pdev->dev, 10116 "rebuild of orphan VEB failed: %d\n", 10117 ret); 10118 } 10119 } 10120 } 10121 } 10122 10123 if (vsi->uplink_seid == pf->mac_seid) { 10124 dev_dbg(&pf->pdev->dev, "attempting to rebuild PF VSI\n"); 10125 /* no VEB, so rebuild only the Main VSI */ 10126 ret = i40e_add_vsi(vsi); 10127 if (ret) { 10128 dev_info(&pf->pdev->dev, 10129 "rebuild of Main VSI failed: %d\n", ret); 10130 goto end_unlock; 10131 } 10132 } 10133 10134 if (vsi->mqprio_qopt.max_rate[0]) { 10135 u64 max_tx_rate = vsi->mqprio_qopt.max_rate[0]; 10136 u64 credits = 0; 10137 10138 do_div(max_tx_rate, I40E_BW_MBPS_DIVISOR); 10139 ret = i40e_set_bw_limit(vsi, vsi->seid, max_tx_rate); 10140 if (ret) 10141 goto end_unlock; 10142 10143 credits = max_tx_rate; 10144 do_div(credits, I40E_BW_CREDIT_DIVISOR); 10145 dev_dbg(&vsi->back->pdev->dev, 10146 "Set tx rate of %llu Mbps (count of 50Mbps %llu) for vsi->seid %u\n", 10147 max_tx_rate, 10148 credits, 10149 vsi->seid); 10150 } 10151 10152 ret = i40e_rebuild_cloud_filters(vsi, vsi->seid); 10153 if (ret) 10154 goto end_unlock; 10155 10156 /* PF Main VSI is rebuild by now, go ahead and rebuild channel VSIs 10157 * for this main VSI if they exist 10158 */ 10159 ret = i40e_rebuild_channels(vsi); 10160 if (ret) 10161 goto end_unlock; 10162 10163 /* Reconfigure hardware for allowing smaller MSS in the case 10164 * of TSO, so that we avoid the MDD being fired and causing 10165 * a reset in the case of small MSS+TSO. 10166 */ 10167 #define I40E_REG_MSS 0x000E64DC 10168 #define I40E_REG_MSS_MIN_MASK 0x3FF0000 10169 #define I40E_64BYTE_MSS 0x400000 10170 val = rd32(hw, I40E_REG_MSS); 10171 if ((val & I40E_REG_MSS_MIN_MASK) > I40E_64BYTE_MSS) { 10172 val &= ~I40E_REG_MSS_MIN_MASK; 10173 val |= I40E_64BYTE_MSS; 10174 wr32(hw, I40E_REG_MSS, val); 10175 } 10176 10177 if (pf->hw_features & I40E_HW_RESTART_AUTONEG) { 10178 msleep(75); 10179 ret = i40e_aq_set_link_restart_an(&pf->hw, true, NULL); 10180 if (ret) 10181 dev_info(&pf->pdev->dev, "link restart failed, err %s aq_err %s\n", 10182 i40e_stat_str(&pf->hw, ret), 10183 i40e_aq_str(&pf->hw, 10184 pf->hw.aq.asq_last_status)); 10185 } 10186 /* reinit the misc interrupt */ 10187 if (pf->flags & I40E_FLAG_MSIX_ENABLED) 10188 ret = i40e_setup_misc_vector(pf); 10189 10190 /* Add a filter to drop all Flow control frames from any VSI from being 10191 * transmitted. By doing so we stop a malicious VF from sending out 10192 * PAUSE or PFC frames and potentially controlling traffic for other 10193 * PF/VF VSIs. 10194 * The FW can still send Flow control frames if enabled. 10195 */ 10196 i40e_add_filter_to_drop_tx_flow_control_frames(&pf->hw, 10197 pf->main_vsi_seid); 10198 10199 /* restart the VSIs that were rebuilt and running before the reset */ 10200 i40e_pf_unquiesce_all_vsi(pf); 10201 10202 /* Release the RTNL lock before we start resetting VFs */ 10203 if (!lock_acquired) 10204 rtnl_unlock(); 10205 10206 /* Restore promiscuous settings */ 10207 ret = i40e_set_promiscuous(pf, pf->cur_promisc); 10208 if (ret) 10209 dev_warn(&pf->pdev->dev, 10210 "Failed to restore promiscuous setting: %s, err %s aq_err %s\n", 10211 pf->cur_promisc ? "on" : "off", 10212 i40e_stat_str(&pf->hw, ret), 10213 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 10214 10215 i40e_reset_all_vfs(pf, true); 10216 10217 /* tell the firmware that we're starting */ 10218 i40e_send_version(pf); 10219 10220 /* We've already released the lock, so don't do it again */ 10221 goto end_core_reset; 10222 10223 end_unlock: 10224 if (!lock_acquired) 10225 rtnl_unlock(); 10226 end_core_reset: 10227 clear_bit(__I40E_RESET_FAILED, pf->state); 10228 clear_recovery: 10229 clear_bit(__I40E_RESET_RECOVERY_PENDING, pf->state); 10230 clear_bit(__I40E_TIMEOUT_RECOVERY_PENDING, pf->state); 10231 } 10232 10233 /** 10234 * i40e_reset_and_rebuild - reset and rebuild using a saved config 10235 * @pf: board private structure 10236 * @reinit: if the Main VSI needs to re-initialized. 10237 * @lock_acquired: indicates whether or not the lock has been acquired 10238 * before this function was called. 10239 **/ 10240 static void i40e_reset_and_rebuild(struct i40e_pf *pf, bool reinit, 10241 bool lock_acquired) 10242 { 10243 int ret; 10244 /* Now we wait for GRST to settle out. 10245 * We don't have to delete the VEBs or VSIs from the hw switch 10246 * because the reset will make them disappear. 10247 */ 10248 ret = i40e_reset(pf); 10249 if (!ret) 10250 i40e_rebuild(pf, reinit, lock_acquired); 10251 } 10252 10253 /** 10254 * i40e_handle_reset_warning - prep for the PF to reset, reset and rebuild 10255 * @pf: board private structure 10256 * 10257 * Close up the VFs and other things in prep for a Core Reset, 10258 * then get ready to rebuild the world. 10259 * @lock_acquired: indicates whether or not the lock has been acquired 10260 * before this function was called. 10261 **/ 10262 static void i40e_handle_reset_warning(struct i40e_pf *pf, bool lock_acquired) 10263 { 10264 i40e_prep_for_reset(pf, lock_acquired); 10265 i40e_reset_and_rebuild(pf, false, lock_acquired); 10266 } 10267 10268 /** 10269 * i40e_handle_mdd_event 10270 * @pf: pointer to the PF structure 10271 * 10272 * Called from the MDD irq handler to identify possibly malicious vfs 10273 **/ 10274 static void i40e_handle_mdd_event(struct i40e_pf *pf) 10275 { 10276 struct i40e_hw *hw = &pf->hw; 10277 bool mdd_detected = false; 10278 struct i40e_vf *vf; 10279 u32 reg; 10280 int i; 10281 10282 if (!test_bit(__I40E_MDD_EVENT_PENDING, pf->state)) 10283 return; 10284 10285 /* find what triggered the MDD event */ 10286 reg = rd32(hw, I40E_GL_MDET_TX); 10287 if (reg & I40E_GL_MDET_TX_VALID_MASK) { 10288 u8 pf_num = (reg & I40E_GL_MDET_TX_PF_NUM_MASK) >> 10289 I40E_GL_MDET_TX_PF_NUM_SHIFT; 10290 u16 vf_num = (reg & I40E_GL_MDET_TX_VF_NUM_MASK) >> 10291 I40E_GL_MDET_TX_VF_NUM_SHIFT; 10292 u8 event = (reg & I40E_GL_MDET_TX_EVENT_MASK) >> 10293 I40E_GL_MDET_TX_EVENT_SHIFT; 10294 u16 queue = ((reg & I40E_GL_MDET_TX_QUEUE_MASK) >> 10295 I40E_GL_MDET_TX_QUEUE_SHIFT) - 10296 pf->hw.func_caps.base_queue; 10297 if (netif_msg_tx_err(pf)) 10298 dev_info(&pf->pdev->dev, "Malicious Driver Detection event 0x%02x on TX queue %d PF number 0x%02x VF number 0x%02x\n", 10299 event, queue, pf_num, vf_num); 10300 wr32(hw, I40E_GL_MDET_TX, 0xffffffff); 10301 mdd_detected = true; 10302 } 10303 reg = rd32(hw, I40E_GL_MDET_RX); 10304 if (reg & I40E_GL_MDET_RX_VALID_MASK) { 10305 u8 func = (reg & I40E_GL_MDET_RX_FUNCTION_MASK) >> 10306 I40E_GL_MDET_RX_FUNCTION_SHIFT; 10307 u8 event = (reg & I40E_GL_MDET_RX_EVENT_MASK) >> 10308 I40E_GL_MDET_RX_EVENT_SHIFT; 10309 u16 queue = ((reg & I40E_GL_MDET_RX_QUEUE_MASK) >> 10310 I40E_GL_MDET_RX_QUEUE_SHIFT) - 10311 pf->hw.func_caps.base_queue; 10312 if (netif_msg_rx_err(pf)) 10313 dev_info(&pf->pdev->dev, "Malicious Driver Detection event 0x%02x on RX queue %d of function 0x%02x\n", 10314 event, queue, func); 10315 wr32(hw, I40E_GL_MDET_RX, 0xffffffff); 10316 mdd_detected = true; 10317 } 10318 10319 if (mdd_detected) { 10320 reg = rd32(hw, I40E_PF_MDET_TX); 10321 if (reg & I40E_PF_MDET_TX_VALID_MASK) { 10322 wr32(hw, I40E_PF_MDET_TX, 0xFFFF); 10323 dev_dbg(&pf->pdev->dev, "TX driver issue detected on PF\n"); 10324 } 10325 reg = rd32(hw, I40E_PF_MDET_RX); 10326 if (reg & I40E_PF_MDET_RX_VALID_MASK) { 10327 wr32(hw, I40E_PF_MDET_RX, 0xFFFF); 10328 dev_dbg(&pf->pdev->dev, "RX driver issue detected on PF\n"); 10329 } 10330 } 10331 10332 /* see if one of the VFs needs its hand slapped */ 10333 for (i = 0; i < pf->num_alloc_vfs && mdd_detected; i++) { 10334 vf = &(pf->vf[i]); 10335 reg = rd32(hw, I40E_VP_MDET_TX(i)); 10336 if (reg & I40E_VP_MDET_TX_VALID_MASK) { 10337 wr32(hw, I40E_VP_MDET_TX(i), 0xFFFF); 10338 vf->num_mdd_events++; 10339 dev_info(&pf->pdev->dev, "TX driver issue detected on VF %d\n", 10340 i); 10341 dev_info(&pf->pdev->dev, 10342 "Use PF Control I/F to re-enable the VF\n"); 10343 set_bit(I40E_VF_STATE_DISABLED, &vf->vf_states); 10344 } 10345 10346 reg = rd32(hw, I40E_VP_MDET_RX(i)); 10347 if (reg & I40E_VP_MDET_RX_VALID_MASK) { 10348 wr32(hw, I40E_VP_MDET_RX(i), 0xFFFF); 10349 vf->num_mdd_events++; 10350 dev_info(&pf->pdev->dev, "RX driver issue detected on VF %d\n", 10351 i); 10352 dev_info(&pf->pdev->dev, 10353 "Use PF Control I/F to re-enable the VF\n"); 10354 set_bit(I40E_VF_STATE_DISABLED, &vf->vf_states); 10355 } 10356 } 10357 10358 /* re-enable mdd interrupt cause */ 10359 clear_bit(__I40E_MDD_EVENT_PENDING, pf->state); 10360 reg = rd32(hw, I40E_PFINT_ICR0_ENA); 10361 reg |= I40E_PFINT_ICR0_ENA_MAL_DETECT_MASK; 10362 wr32(hw, I40E_PFINT_ICR0_ENA, reg); 10363 i40e_flush(hw); 10364 } 10365 10366 static const char *i40e_tunnel_name(u8 type) 10367 { 10368 switch (type) { 10369 case UDP_TUNNEL_TYPE_VXLAN: 10370 return "vxlan"; 10371 case UDP_TUNNEL_TYPE_GENEVE: 10372 return "geneve"; 10373 default: 10374 return "unknown"; 10375 } 10376 } 10377 10378 /** 10379 * i40e_sync_udp_filters - Trigger a sync event for existing UDP filters 10380 * @pf: board private structure 10381 **/ 10382 static void i40e_sync_udp_filters(struct i40e_pf *pf) 10383 { 10384 int i; 10385 10386 /* loop through and set pending bit for all active UDP filters */ 10387 for (i = 0; i < I40E_MAX_PF_UDP_OFFLOAD_PORTS; i++) { 10388 if (pf->udp_ports[i].port) 10389 pf->pending_udp_bitmap |= BIT_ULL(i); 10390 } 10391 10392 set_bit(__I40E_UDP_FILTER_SYNC_PENDING, pf->state); 10393 } 10394 10395 /** 10396 * i40e_sync_udp_filters_subtask - Sync the VSI filter list with HW 10397 * @pf: board private structure 10398 **/ 10399 static void i40e_sync_udp_filters_subtask(struct i40e_pf *pf) 10400 { 10401 struct i40e_hw *hw = &pf->hw; 10402 u8 filter_index, type; 10403 u16 port; 10404 int i; 10405 10406 if (!test_and_clear_bit(__I40E_UDP_FILTER_SYNC_PENDING, pf->state)) 10407 return; 10408 10409 /* acquire RTNL to maintain state of flags and port requests */ 10410 rtnl_lock(); 10411 10412 for (i = 0; i < I40E_MAX_PF_UDP_OFFLOAD_PORTS; i++) { 10413 if (pf->pending_udp_bitmap & BIT_ULL(i)) { 10414 struct i40e_udp_port_config *udp_port; 10415 i40e_status ret = 0; 10416 10417 udp_port = &pf->udp_ports[i]; 10418 pf->pending_udp_bitmap &= ~BIT_ULL(i); 10419 10420 port = READ_ONCE(udp_port->port); 10421 type = READ_ONCE(udp_port->type); 10422 filter_index = READ_ONCE(udp_port->filter_index); 10423 10424 /* release RTNL while we wait on AQ command */ 10425 rtnl_unlock(); 10426 10427 if (port) 10428 ret = i40e_aq_add_udp_tunnel(hw, port, 10429 type, 10430 &filter_index, 10431 NULL); 10432 else if (filter_index != I40E_UDP_PORT_INDEX_UNUSED) 10433 ret = i40e_aq_del_udp_tunnel(hw, filter_index, 10434 NULL); 10435 10436 /* reacquire RTNL so we can update filter_index */ 10437 rtnl_lock(); 10438 10439 if (ret) { 10440 dev_info(&pf->pdev->dev, 10441 "%s %s port %d, index %d failed, err %s aq_err %s\n", 10442 i40e_tunnel_name(type), 10443 port ? "add" : "delete", 10444 port, 10445 filter_index, 10446 i40e_stat_str(&pf->hw, ret), 10447 i40e_aq_str(&pf->hw, 10448 pf->hw.aq.asq_last_status)); 10449 if (port) { 10450 /* failed to add, just reset port, 10451 * drop pending bit for any deletion 10452 */ 10453 udp_port->port = 0; 10454 pf->pending_udp_bitmap &= ~BIT_ULL(i); 10455 } 10456 } else if (port) { 10457 /* record filter index on success */ 10458 udp_port->filter_index = filter_index; 10459 } 10460 } 10461 } 10462 10463 rtnl_unlock(); 10464 } 10465 10466 /** 10467 * i40e_service_task - Run the driver's async subtasks 10468 * @work: pointer to work_struct containing our data 10469 **/ 10470 static void i40e_service_task(struct work_struct *work) 10471 { 10472 struct i40e_pf *pf = container_of(work, 10473 struct i40e_pf, 10474 service_task); 10475 unsigned long start_time = jiffies; 10476 10477 /* don't bother with service tasks if a reset is in progress */ 10478 if (test_bit(__I40E_RESET_RECOVERY_PENDING, pf->state) || 10479 test_bit(__I40E_SUSPENDED, pf->state)) 10480 return; 10481 10482 if (test_and_set_bit(__I40E_SERVICE_SCHED, pf->state)) 10483 return; 10484 10485 if (!test_bit(__I40E_RECOVERY_MODE, pf->state)) { 10486 i40e_detect_recover_hung(pf->vsi[pf->lan_vsi]); 10487 i40e_sync_filters_subtask(pf); 10488 i40e_reset_subtask(pf); 10489 i40e_handle_mdd_event(pf); 10490 i40e_vc_process_vflr_event(pf); 10491 i40e_watchdog_subtask(pf); 10492 i40e_fdir_reinit_subtask(pf); 10493 if (test_and_clear_bit(__I40E_CLIENT_RESET, pf->state)) { 10494 /* Client subtask will reopen next time through. */ 10495 i40e_notify_client_of_netdev_close(pf->vsi[pf->lan_vsi], 10496 true); 10497 } else { 10498 i40e_client_subtask(pf); 10499 if (test_and_clear_bit(__I40E_CLIENT_L2_CHANGE, 10500 pf->state)) 10501 i40e_notify_client_of_l2_param_changes( 10502 pf->vsi[pf->lan_vsi]); 10503 } 10504 i40e_sync_filters_subtask(pf); 10505 i40e_sync_udp_filters_subtask(pf); 10506 } else { 10507 i40e_reset_subtask(pf); 10508 } 10509 10510 i40e_clean_adminq_subtask(pf); 10511 10512 /* flush memory to make sure state is correct before next watchdog */ 10513 smp_mb__before_atomic(); 10514 clear_bit(__I40E_SERVICE_SCHED, pf->state); 10515 10516 /* If the tasks have taken longer than one timer cycle or there 10517 * is more work to be done, reschedule the service task now 10518 * rather than wait for the timer to tick again. 10519 */ 10520 if (time_after(jiffies, (start_time + pf->service_timer_period)) || 10521 test_bit(__I40E_ADMINQ_EVENT_PENDING, pf->state) || 10522 test_bit(__I40E_MDD_EVENT_PENDING, pf->state) || 10523 test_bit(__I40E_VFLR_EVENT_PENDING, pf->state)) 10524 i40e_service_event_schedule(pf); 10525 } 10526 10527 /** 10528 * i40e_service_timer - timer callback 10529 * @data: pointer to PF struct 10530 **/ 10531 static void i40e_service_timer(struct timer_list *t) 10532 { 10533 struct i40e_pf *pf = from_timer(pf, t, service_timer); 10534 10535 mod_timer(&pf->service_timer, 10536 round_jiffies(jiffies + pf->service_timer_period)); 10537 i40e_service_event_schedule(pf); 10538 } 10539 10540 /** 10541 * i40e_set_num_rings_in_vsi - Determine number of rings in the VSI 10542 * @vsi: the VSI being configured 10543 **/ 10544 static int i40e_set_num_rings_in_vsi(struct i40e_vsi *vsi) 10545 { 10546 struct i40e_pf *pf = vsi->back; 10547 10548 switch (vsi->type) { 10549 case I40E_VSI_MAIN: 10550 vsi->alloc_queue_pairs = pf->num_lan_qps; 10551 if (!vsi->num_tx_desc) 10552 vsi->num_tx_desc = ALIGN(I40E_DEFAULT_NUM_DESCRIPTORS, 10553 I40E_REQ_DESCRIPTOR_MULTIPLE); 10554 if (!vsi->num_rx_desc) 10555 vsi->num_rx_desc = ALIGN(I40E_DEFAULT_NUM_DESCRIPTORS, 10556 I40E_REQ_DESCRIPTOR_MULTIPLE); 10557 if (pf->flags & I40E_FLAG_MSIX_ENABLED) 10558 vsi->num_q_vectors = pf->num_lan_msix; 10559 else 10560 vsi->num_q_vectors = 1; 10561 10562 break; 10563 10564 case I40E_VSI_FDIR: 10565 vsi->alloc_queue_pairs = 1; 10566 vsi->num_tx_desc = ALIGN(I40E_FDIR_RING_COUNT, 10567 I40E_REQ_DESCRIPTOR_MULTIPLE); 10568 vsi->num_rx_desc = ALIGN(I40E_FDIR_RING_COUNT, 10569 I40E_REQ_DESCRIPTOR_MULTIPLE); 10570 vsi->num_q_vectors = pf->num_fdsb_msix; 10571 break; 10572 10573 case I40E_VSI_VMDQ2: 10574 vsi->alloc_queue_pairs = pf->num_vmdq_qps; 10575 if (!vsi->num_tx_desc) 10576 vsi->num_tx_desc = ALIGN(I40E_DEFAULT_NUM_DESCRIPTORS, 10577 I40E_REQ_DESCRIPTOR_MULTIPLE); 10578 if (!vsi->num_rx_desc) 10579 vsi->num_rx_desc = ALIGN(I40E_DEFAULT_NUM_DESCRIPTORS, 10580 I40E_REQ_DESCRIPTOR_MULTIPLE); 10581 vsi->num_q_vectors = pf->num_vmdq_msix; 10582 break; 10583 10584 case I40E_VSI_SRIOV: 10585 vsi->alloc_queue_pairs = pf->num_vf_qps; 10586 if (!vsi->num_tx_desc) 10587 vsi->num_tx_desc = ALIGN(I40E_DEFAULT_NUM_DESCRIPTORS, 10588 I40E_REQ_DESCRIPTOR_MULTIPLE); 10589 if (!vsi->num_rx_desc) 10590 vsi->num_rx_desc = ALIGN(I40E_DEFAULT_NUM_DESCRIPTORS, 10591 I40E_REQ_DESCRIPTOR_MULTIPLE); 10592 break; 10593 10594 default: 10595 WARN_ON(1); 10596 return -ENODATA; 10597 } 10598 10599 return 0; 10600 } 10601 10602 /** 10603 * i40e_vsi_alloc_arrays - Allocate queue and vector pointer arrays for the vsi 10604 * @vsi: VSI pointer 10605 * @alloc_qvectors: a bool to specify if q_vectors need to be allocated. 10606 * 10607 * On error: returns error code (negative) 10608 * On success: returns 0 10609 **/ 10610 static int i40e_vsi_alloc_arrays(struct i40e_vsi *vsi, bool alloc_qvectors) 10611 { 10612 struct i40e_ring **next_rings; 10613 int size; 10614 int ret = 0; 10615 10616 /* allocate memory for both Tx, XDP Tx and Rx ring pointers */ 10617 size = sizeof(struct i40e_ring *) * vsi->alloc_queue_pairs * 10618 (i40e_enabled_xdp_vsi(vsi) ? 3 : 2); 10619 vsi->tx_rings = kzalloc(size, GFP_KERNEL); 10620 if (!vsi->tx_rings) 10621 return -ENOMEM; 10622 next_rings = vsi->tx_rings + vsi->alloc_queue_pairs; 10623 if (i40e_enabled_xdp_vsi(vsi)) { 10624 vsi->xdp_rings = next_rings; 10625 next_rings += vsi->alloc_queue_pairs; 10626 } 10627 vsi->rx_rings = next_rings; 10628 10629 if (alloc_qvectors) { 10630 /* allocate memory for q_vector pointers */ 10631 size = sizeof(struct i40e_q_vector *) * vsi->num_q_vectors; 10632 vsi->q_vectors = kzalloc(size, GFP_KERNEL); 10633 if (!vsi->q_vectors) { 10634 ret = -ENOMEM; 10635 goto err_vectors; 10636 } 10637 } 10638 return ret; 10639 10640 err_vectors: 10641 kfree(vsi->tx_rings); 10642 return ret; 10643 } 10644 10645 /** 10646 * i40e_vsi_mem_alloc - Allocates the next available struct vsi in the PF 10647 * @pf: board private structure 10648 * @type: type of VSI 10649 * 10650 * On error: returns error code (negative) 10651 * On success: returns vsi index in PF (positive) 10652 **/ 10653 static int i40e_vsi_mem_alloc(struct i40e_pf *pf, enum i40e_vsi_type type) 10654 { 10655 int ret = -ENODEV; 10656 struct i40e_vsi *vsi; 10657 int vsi_idx; 10658 int i; 10659 10660 /* Need to protect the allocation of the VSIs at the PF level */ 10661 mutex_lock(&pf->switch_mutex); 10662 10663 /* VSI list may be fragmented if VSI creation/destruction has 10664 * been happening. We can afford to do a quick scan to look 10665 * for any free VSIs in the list. 10666 * 10667 * find next empty vsi slot, looping back around if necessary 10668 */ 10669 i = pf->next_vsi; 10670 while (i < pf->num_alloc_vsi && pf->vsi[i]) 10671 i++; 10672 if (i >= pf->num_alloc_vsi) { 10673 i = 0; 10674 while (i < pf->next_vsi && pf->vsi[i]) 10675 i++; 10676 } 10677 10678 if (i < pf->num_alloc_vsi && !pf->vsi[i]) { 10679 vsi_idx = i; /* Found one! */ 10680 } else { 10681 ret = -ENODEV; 10682 goto unlock_pf; /* out of VSI slots! */ 10683 } 10684 pf->next_vsi = ++i; 10685 10686 vsi = kzalloc(sizeof(*vsi), GFP_KERNEL); 10687 if (!vsi) { 10688 ret = -ENOMEM; 10689 goto unlock_pf; 10690 } 10691 vsi->type = type; 10692 vsi->back = pf; 10693 set_bit(__I40E_VSI_DOWN, vsi->state); 10694 vsi->flags = 0; 10695 vsi->idx = vsi_idx; 10696 vsi->int_rate_limit = 0; 10697 vsi->rss_table_size = (vsi->type == I40E_VSI_MAIN) ? 10698 pf->rss_table_size : 64; 10699 vsi->netdev_registered = false; 10700 vsi->work_limit = I40E_DEFAULT_IRQ_WORK; 10701 hash_init(vsi->mac_filter_hash); 10702 vsi->irqs_ready = false; 10703 10704 if (type == I40E_VSI_MAIN) { 10705 vsi->af_xdp_zc_qps = bitmap_zalloc(pf->num_lan_qps, GFP_KERNEL); 10706 if (!vsi->af_xdp_zc_qps) 10707 goto err_rings; 10708 } 10709 10710 ret = i40e_set_num_rings_in_vsi(vsi); 10711 if (ret) 10712 goto err_rings; 10713 10714 ret = i40e_vsi_alloc_arrays(vsi, true); 10715 if (ret) 10716 goto err_rings; 10717 10718 /* Setup default MSIX irq handler for VSI */ 10719 i40e_vsi_setup_irqhandler(vsi, i40e_msix_clean_rings); 10720 10721 /* Initialize VSI lock */ 10722 spin_lock_init(&vsi->mac_filter_hash_lock); 10723 pf->vsi[vsi_idx] = vsi; 10724 ret = vsi_idx; 10725 goto unlock_pf; 10726 10727 err_rings: 10728 bitmap_free(vsi->af_xdp_zc_qps); 10729 pf->next_vsi = i - 1; 10730 kfree(vsi); 10731 unlock_pf: 10732 mutex_unlock(&pf->switch_mutex); 10733 return ret; 10734 } 10735 10736 /** 10737 * i40e_vsi_free_arrays - Free queue and vector pointer arrays for the VSI 10738 * @vsi: VSI pointer 10739 * @free_qvectors: a bool to specify if q_vectors need to be freed. 10740 * 10741 * On error: returns error code (negative) 10742 * On success: returns 0 10743 **/ 10744 static void i40e_vsi_free_arrays(struct i40e_vsi *vsi, bool free_qvectors) 10745 { 10746 /* free the ring and vector containers */ 10747 if (free_qvectors) { 10748 kfree(vsi->q_vectors); 10749 vsi->q_vectors = NULL; 10750 } 10751 kfree(vsi->tx_rings); 10752 vsi->tx_rings = NULL; 10753 vsi->rx_rings = NULL; 10754 vsi->xdp_rings = NULL; 10755 } 10756 10757 /** 10758 * i40e_clear_rss_config_user - clear the user configured RSS hash keys 10759 * and lookup table 10760 * @vsi: Pointer to VSI structure 10761 */ 10762 static void i40e_clear_rss_config_user(struct i40e_vsi *vsi) 10763 { 10764 if (!vsi) 10765 return; 10766 10767 kfree(vsi->rss_hkey_user); 10768 vsi->rss_hkey_user = NULL; 10769 10770 kfree(vsi->rss_lut_user); 10771 vsi->rss_lut_user = NULL; 10772 } 10773 10774 /** 10775 * i40e_vsi_clear - Deallocate the VSI provided 10776 * @vsi: the VSI being un-configured 10777 **/ 10778 static int i40e_vsi_clear(struct i40e_vsi *vsi) 10779 { 10780 struct i40e_pf *pf; 10781 10782 if (!vsi) 10783 return 0; 10784 10785 if (!vsi->back) 10786 goto free_vsi; 10787 pf = vsi->back; 10788 10789 mutex_lock(&pf->switch_mutex); 10790 if (!pf->vsi[vsi->idx]) { 10791 dev_err(&pf->pdev->dev, "pf->vsi[%d] is NULL, just free vsi[%d](type %d)\n", 10792 vsi->idx, vsi->idx, vsi->type); 10793 goto unlock_vsi; 10794 } 10795 10796 if (pf->vsi[vsi->idx] != vsi) { 10797 dev_err(&pf->pdev->dev, 10798 "pf->vsi[%d](type %d) != vsi[%d](type %d): no free!\n", 10799 pf->vsi[vsi->idx]->idx, 10800 pf->vsi[vsi->idx]->type, 10801 vsi->idx, vsi->type); 10802 goto unlock_vsi; 10803 } 10804 10805 /* updates the PF for this cleared vsi */ 10806 i40e_put_lump(pf->qp_pile, vsi->base_queue, vsi->idx); 10807 i40e_put_lump(pf->irq_pile, vsi->base_vector, vsi->idx); 10808 10809 bitmap_free(vsi->af_xdp_zc_qps); 10810 i40e_vsi_free_arrays(vsi, true); 10811 i40e_clear_rss_config_user(vsi); 10812 10813 pf->vsi[vsi->idx] = NULL; 10814 if (vsi->idx < pf->next_vsi) 10815 pf->next_vsi = vsi->idx; 10816 10817 unlock_vsi: 10818 mutex_unlock(&pf->switch_mutex); 10819 free_vsi: 10820 kfree(vsi); 10821 10822 return 0; 10823 } 10824 10825 /** 10826 * i40e_vsi_clear_rings - Deallocates the Rx and Tx rings for the provided VSI 10827 * @vsi: the VSI being cleaned 10828 **/ 10829 static void i40e_vsi_clear_rings(struct i40e_vsi *vsi) 10830 { 10831 int i; 10832 10833 if (vsi->tx_rings && vsi->tx_rings[0]) { 10834 for (i = 0; i < vsi->alloc_queue_pairs; i++) { 10835 kfree_rcu(vsi->tx_rings[i], rcu); 10836 WRITE_ONCE(vsi->tx_rings[i], NULL); 10837 WRITE_ONCE(vsi->rx_rings[i], NULL); 10838 if (vsi->xdp_rings) 10839 WRITE_ONCE(vsi->xdp_rings[i], NULL); 10840 } 10841 } 10842 } 10843 10844 /** 10845 * i40e_alloc_rings - Allocates the Rx and Tx rings for the provided VSI 10846 * @vsi: the VSI being configured 10847 **/ 10848 static int i40e_alloc_rings(struct i40e_vsi *vsi) 10849 { 10850 int i, qpv = i40e_enabled_xdp_vsi(vsi) ? 3 : 2; 10851 struct i40e_pf *pf = vsi->back; 10852 struct i40e_ring *ring; 10853 10854 /* Set basic values in the rings to be used later during open() */ 10855 for (i = 0; i < vsi->alloc_queue_pairs; i++) { 10856 /* allocate space for both Tx and Rx in one shot */ 10857 ring = kcalloc(qpv, sizeof(struct i40e_ring), GFP_KERNEL); 10858 if (!ring) 10859 goto err_out; 10860 10861 ring->queue_index = i; 10862 ring->reg_idx = vsi->base_queue + i; 10863 ring->ring_active = false; 10864 ring->vsi = vsi; 10865 ring->netdev = vsi->netdev; 10866 ring->dev = &pf->pdev->dev; 10867 ring->count = vsi->num_tx_desc; 10868 ring->size = 0; 10869 ring->dcb_tc = 0; 10870 if (vsi->back->hw_features & I40E_HW_WB_ON_ITR_CAPABLE) 10871 ring->flags = I40E_TXR_FLAGS_WB_ON_ITR; 10872 ring->itr_setting = pf->tx_itr_default; 10873 WRITE_ONCE(vsi->tx_rings[i], ring++); 10874 10875 if (!i40e_enabled_xdp_vsi(vsi)) 10876 goto setup_rx; 10877 10878 ring->queue_index = vsi->alloc_queue_pairs + i; 10879 ring->reg_idx = vsi->base_queue + ring->queue_index; 10880 ring->ring_active = false; 10881 ring->vsi = vsi; 10882 ring->netdev = NULL; 10883 ring->dev = &pf->pdev->dev; 10884 ring->count = vsi->num_tx_desc; 10885 ring->size = 0; 10886 ring->dcb_tc = 0; 10887 if (vsi->back->hw_features & I40E_HW_WB_ON_ITR_CAPABLE) 10888 ring->flags = I40E_TXR_FLAGS_WB_ON_ITR; 10889 set_ring_xdp(ring); 10890 ring->itr_setting = pf->tx_itr_default; 10891 WRITE_ONCE(vsi->xdp_rings[i], ring++); 10892 10893 setup_rx: 10894 ring->queue_index = i; 10895 ring->reg_idx = vsi->base_queue + i; 10896 ring->ring_active = false; 10897 ring->vsi = vsi; 10898 ring->netdev = vsi->netdev; 10899 ring->dev = &pf->pdev->dev; 10900 ring->count = vsi->num_rx_desc; 10901 ring->size = 0; 10902 ring->dcb_tc = 0; 10903 ring->itr_setting = pf->rx_itr_default; 10904 WRITE_ONCE(vsi->rx_rings[i], ring); 10905 } 10906 10907 return 0; 10908 10909 err_out: 10910 i40e_vsi_clear_rings(vsi); 10911 return -ENOMEM; 10912 } 10913 10914 /** 10915 * i40e_reserve_msix_vectors - Reserve MSI-X vectors in the kernel 10916 * @pf: board private structure 10917 * @vectors: the number of MSI-X vectors to request 10918 * 10919 * Returns the number of vectors reserved, or error 10920 **/ 10921 static int i40e_reserve_msix_vectors(struct i40e_pf *pf, int vectors) 10922 { 10923 vectors = pci_enable_msix_range(pf->pdev, pf->msix_entries, 10924 I40E_MIN_MSIX, vectors); 10925 if (vectors < 0) { 10926 dev_info(&pf->pdev->dev, 10927 "MSI-X vector reservation failed: %d\n", vectors); 10928 vectors = 0; 10929 } 10930 10931 return vectors; 10932 } 10933 10934 /** 10935 * i40e_init_msix - Setup the MSIX capability 10936 * @pf: board private structure 10937 * 10938 * Work with the OS to set up the MSIX vectors needed. 10939 * 10940 * Returns the number of vectors reserved or negative on failure 10941 **/ 10942 static int i40e_init_msix(struct i40e_pf *pf) 10943 { 10944 struct i40e_hw *hw = &pf->hw; 10945 int cpus, extra_vectors; 10946 int vectors_left; 10947 int v_budget, i; 10948 int v_actual; 10949 int iwarp_requested = 0; 10950 10951 if (!(pf->flags & I40E_FLAG_MSIX_ENABLED)) 10952 return -ENODEV; 10953 10954 /* The number of vectors we'll request will be comprised of: 10955 * - Add 1 for "other" cause for Admin Queue events, etc. 10956 * - The number of LAN queue pairs 10957 * - Queues being used for RSS. 10958 * We don't need as many as max_rss_size vectors. 10959 * use rss_size instead in the calculation since that 10960 * is governed by number of cpus in the system. 10961 * - assumes symmetric Tx/Rx pairing 10962 * - The number of VMDq pairs 10963 * - The CPU count within the NUMA node if iWARP is enabled 10964 * Once we count this up, try the request. 10965 * 10966 * If we can't get what we want, we'll simplify to nearly nothing 10967 * and try again. If that still fails, we punt. 10968 */ 10969 vectors_left = hw->func_caps.num_msix_vectors; 10970 v_budget = 0; 10971 10972 /* reserve one vector for miscellaneous handler */ 10973 if (vectors_left) { 10974 v_budget++; 10975 vectors_left--; 10976 } 10977 10978 /* reserve some vectors for the main PF traffic queues. Initially we 10979 * only reserve at most 50% of the available vectors, in the case that 10980 * the number of online CPUs is large. This ensures that we can enable 10981 * extra features as well. Once we've enabled the other features, we 10982 * will use any remaining vectors to reach as close as we can to the 10983 * number of online CPUs. 10984 */ 10985 cpus = num_online_cpus(); 10986 pf->num_lan_msix = min_t(int, cpus, vectors_left / 2); 10987 vectors_left -= pf->num_lan_msix; 10988 10989 /* reserve one vector for sideband flow director */ 10990 if (pf->flags & I40E_FLAG_FD_SB_ENABLED) { 10991 if (vectors_left) { 10992 pf->num_fdsb_msix = 1; 10993 v_budget++; 10994 vectors_left--; 10995 } else { 10996 pf->num_fdsb_msix = 0; 10997 } 10998 } 10999 11000 /* can we reserve enough for iWARP? */ 11001 if (pf->flags & I40E_FLAG_IWARP_ENABLED) { 11002 iwarp_requested = pf->num_iwarp_msix; 11003 11004 if (!vectors_left) 11005 pf->num_iwarp_msix = 0; 11006 else if (vectors_left < pf->num_iwarp_msix) 11007 pf->num_iwarp_msix = 1; 11008 v_budget += pf->num_iwarp_msix; 11009 vectors_left -= pf->num_iwarp_msix; 11010 } 11011 11012 /* any vectors left over go for VMDq support */ 11013 if (pf->flags & I40E_FLAG_VMDQ_ENABLED) { 11014 if (!vectors_left) { 11015 pf->num_vmdq_msix = 0; 11016 pf->num_vmdq_qps = 0; 11017 } else { 11018 int vmdq_vecs_wanted = 11019 pf->num_vmdq_vsis * pf->num_vmdq_qps; 11020 int vmdq_vecs = 11021 min_t(int, vectors_left, vmdq_vecs_wanted); 11022 11023 /* if we're short on vectors for what's desired, we limit 11024 * the queues per vmdq. If this is still more than are 11025 * available, the user will need to change the number of 11026 * queues/vectors used by the PF later with the ethtool 11027 * channels command 11028 */ 11029 if (vectors_left < vmdq_vecs_wanted) { 11030 pf->num_vmdq_qps = 1; 11031 vmdq_vecs_wanted = pf->num_vmdq_vsis; 11032 vmdq_vecs = min_t(int, 11033 vectors_left, 11034 vmdq_vecs_wanted); 11035 } 11036 pf->num_vmdq_msix = pf->num_vmdq_qps; 11037 11038 v_budget += vmdq_vecs; 11039 vectors_left -= vmdq_vecs; 11040 } 11041 } 11042 11043 /* On systems with a large number of SMP cores, we previously limited 11044 * the number of vectors for num_lan_msix to be at most 50% of the 11045 * available vectors, to allow for other features. Now, we add back 11046 * the remaining vectors. However, we ensure that the total 11047 * num_lan_msix will not exceed num_online_cpus(). To do this, we 11048 * calculate the number of vectors we can add without going over the 11049 * cap of CPUs. For systems with a small number of CPUs this will be 11050 * zero. 11051 */ 11052 extra_vectors = min_t(int, cpus - pf->num_lan_msix, vectors_left); 11053 pf->num_lan_msix += extra_vectors; 11054 vectors_left -= extra_vectors; 11055 11056 WARN(vectors_left < 0, 11057 "Calculation of remaining vectors underflowed. This is an accounting bug when determining total MSI-X vectors.\n"); 11058 11059 v_budget += pf->num_lan_msix; 11060 pf->msix_entries = kcalloc(v_budget, sizeof(struct msix_entry), 11061 GFP_KERNEL); 11062 if (!pf->msix_entries) 11063 return -ENOMEM; 11064 11065 for (i = 0; i < v_budget; i++) 11066 pf->msix_entries[i].entry = i; 11067 v_actual = i40e_reserve_msix_vectors(pf, v_budget); 11068 11069 if (v_actual < I40E_MIN_MSIX) { 11070 pf->flags &= ~I40E_FLAG_MSIX_ENABLED; 11071 kfree(pf->msix_entries); 11072 pf->msix_entries = NULL; 11073 pci_disable_msix(pf->pdev); 11074 return -ENODEV; 11075 11076 } else if (v_actual == I40E_MIN_MSIX) { 11077 /* Adjust for minimal MSIX use */ 11078 pf->num_vmdq_vsis = 0; 11079 pf->num_vmdq_qps = 0; 11080 pf->num_lan_qps = 1; 11081 pf->num_lan_msix = 1; 11082 11083 } else if (v_actual != v_budget) { 11084 /* If we have limited resources, we will start with no vectors 11085 * for the special features and then allocate vectors to some 11086 * of these features based on the policy and at the end disable 11087 * the features that did not get any vectors. 11088 */ 11089 int vec; 11090 11091 dev_info(&pf->pdev->dev, 11092 "MSI-X vector limit reached with %d, wanted %d, attempting to redistribute vectors\n", 11093 v_actual, v_budget); 11094 /* reserve the misc vector */ 11095 vec = v_actual - 1; 11096 11097 /* Scale vector usage down */ 11098 pf->num_vmdq_msix = 1; /* force VMDqs to only one vector */ 11099 pf->num_vmdq_vsis = 1; 11100 pf->num_vmdq_qps = 1; 11101 11102 /* partition out the remaining vectors */ 11103 switch (vec) { 11104 case 2: 11105 pf->num_lan_msix = 1; 11106 break; 11107 case 3: 11108 if (pf->flags & I40E_FLAG_IWARP_ENABLED) { 11109 pf->num_lan_msix = 1; 11110 pf->num_iwarp_msix = 1; 11111 } else { 11112 pf->num_lan_msix = 2; 11113 } 11114 break; 11115 default: 11116 if (pf->flags & I40E_FLAG_IWARP_ENABLED) { 11117 pf->num_iwarp_msix = min_t(int, (vec / 3), 11118 iwarp_requested); 11119 pf->num_vmdq_vsis = min_t(int, (vec / 3), 11120 I40E_DEFAULT_NUM_VMDQ_VSI); 11121 } else { 11122 pf->num_vmdq_vsis = min_t(int, (vec / 2), 11123 I40E_DEFAULT_NUM_VMDQ_VSI); 11124 } 11125 if (pf->flags & I40E_FLAG_FD_SB_ENABLED) { 11126 pf->num_fdsb_msix = 1; 11127 vec--; 11128 } 11129 pf->num_lan_msix = min_t(int, 11130 (vec - (pf->num_iwarp_msix + pf->num_vmdq_vsis)), 11131 pf->num_lan_msix); 11132 pf->num_lan_qps = pf->num_lan_msix; 11133 break; 11134 } 11135 } 11136 11137 if ((pf->flags & I40E_FLAG_FD_SB_ENABLED) && 11138 (pf->num_fdsb_msix == 0)) { 11139 dev_info(&pf->pdev->dev, "Sideband Flowdir disabled, not enough MSI-X vectors\n"); 11140 pf->flags &= ~I40E_FLAG_FD_SB_ENABLED; 11141 pf->flags |= I40E_FLAG_FD_SB_INACTIVE; 11142 } 11143 if ((pf->flags & I40E_FLAG_VMDQ_ENABLED) && 11144 (pf->num_vmdq_msix == 0)) { 11145 dev_info(&pf->pdev->dev, "VMDq disabled, not enough MSI-X vectors\n"); 11146 pf->flags &= ~I40E_FLAG_VMDQ_ENABLED; 11147 } 11148 11149 if ((pf->flags & I40E_FLAG_IWARP_ENABLED) && 11150 (pf->num_iwarp_msix == 0)) { 11151 dev_info(&pf->pdev->dev, "IWARP disabled, not enough MSI-X vectors\n"); 11152 pf->flags &= ~I40E_FLAG_IWARP_ENABLED; 11153 } 11154 i40e_debug(&pf->hw, I40E_DEBUG_INIT, 11155 "MSI-X vector distribution: PF %d, VMDq %d, FDSB %d, iWARP %d\n", 11156 pf->num_lan_msix, 11157 pf->num_vmdq_msix * pf->num_vmdq_vsis, 11158 pf->num_fdsb_msix, 11159 pf->num_iwarp_msix); 11160 11161 return v_actual; 11162 } 11163 11164 /** 11165 * i40e_vsi_alloc_q_vector - Allocate memory for a single interrupt vector 11166 * @vsi: the VSI being configured 11167 * @v_idx: index of the vector in the vsi struct 11168 * @cpu: cpu to be used on affinity_mask 11169 * 11170 * We allocate one q_vector. If allocation fails we return -ENOMEM. 11171 **/ 11172 static int i40e_vsi_alloc_q_vector(struct i40e_vsi *vsi, int v_idx, int cpu) 11173 { 11174 struct i40e_q_vector *q_vector; 11175 11176 /* allocate q_vector */ 11177 q_vector = kzalloc(sizeof(struct i40e_q_vector), GFP_KERNEL); 11178 if (!q_vector) 11179 return -ENOMEM; 11180 11181 q_vector->vsi = vsi; 11182 q_vector->v_idx = v_idx; 11183 cpumask_copy(&q_vector->affinity_mask, cpu_possible_mask); 11184 11185 if (vsi->netdev) 11186 netif_napi_add(vsi->netdev, &q_vector->napi, 11187 i40e_napi_poll, NAPI_POLL_WEIGHT); 11188 11189 /* tie q_vector and vsi together */ 11190 vsi->q_vectors[v_idx] = q_vector; 11191 11192 return 0; 11193 } 11194 11195 /** 11196 * i40e_vsi_alloc_q_vectors - Allocate memory for interrupt vectors 11197 * @vsi: the VSI being configured 11198 * 11199 * We allocate one q_vector per queue interrupt. If allocation fails we 11200 * return -ENOMEM. 11201 **/ 11202 static int i40e_vsi_alloc_q_vectors(struct i40e_vsi *vsi) 11203 { 11204 struct i40e_pf *pf = vsi->back; 11205 int err, v_idx, num_q_vectors, current_cpu; 11206 11207 /* if not MSIX, give the one vector only to the LAN VSI */ 11208 if (pf->flags & I40E_FLAG_MSIX_ENABLED) 11209 num_q_vectors = vsi->num_q_vectors; 11210 else if (vsi == pf->vsi[pf->lan_vsi]) 11211 num_q_vectors = 1; 11212 else 11213 return -EINVAL; 11214 11215 current_cpu = cpumask_first(cpu_online_mask); 11216 11217 for (v_idx = 0; v_idx < num_q_vectors; v_idx++) { 11218 err = i40e_vsi_alloc_q_vector(vsi, v_idx, current_cpu); 11219 if (err) 11220 goto err_out; 11221 current_cpu = cpumask_next(current_cpu, cpu_online_mask); 11222 if (unlikely(current_cpu >= nr_cpu_ids)) 11223 current_cpu = cpumask_first(cpu_online_mask); 11224 } 11225 11226 return 0; 11227 11228 err_out: 11229 while (v_idx--) 11230 i40e_free_q_vector(vsi, v_idx); 11231 11232 return err; 11233 } 11234 11235 /** 11236 * i40e_init_interrupt_scheme - Determine proper interrupt scheme 11237 * @pf: board private structure to initialize 11238 **/ 11239 static int i40e_init_interrupt_scheme(struct i40e_pf *pf) 11240 { 11241 int vectors = 0; 11242 ssize_t size; 11243 11244 if (pf->flags & I40E_FLAG_MSIX_ENABLED) { 11245 vectors = i40e_init_msix(pf); 11246 if (vectors < 0) { 11247 pf->flags &= ~(I40E_FLAG_MSIX_ENABLED | 11248 I40E_FLAG_IWARP_ENABLED | 11249 I40E_FLAG_RSS_ENABLED | 11250 I40E_FLAG_DCB_CAPABLE | 11251 I40E_FLAG_DCB_ENABLED | 11252 I40E_FLAG_SRIOV_ENABLED | 11253 I40E_FLAG_FD_SB_ENABLED | 11254 I40E_FLAG_FD_ATR_ENABLED | 11255 I40E_FLAG_VMDQ_ENABLED); 11256 pf->flags |= I40E_FLAG_FD_SB_INACTIVE; 11257 11258 /* rework the queue expectations without MSIX */ 11259 i40e_determine_queue_usage(pf); 11260 } 11261 } 11262 11263 if (!(pf->flags & I40E_FLAG_MSIX_ENABLED) && 11264 (pf->flags & I40E_FLAG_MSI_ENABLED)) { 11265 dev_info(&pf->pdev->dev, "MSI-X not available, trying MSI\n"); 11266 vectors = pci_enable_msi(pf->pdev); 11267 if (vectors < 0) { 11268 dev_info(&pf->pdev->dev, "MSI init failed - %d\n", 11269 vectors); 11270 pf->flags &= ~I40E_FLAG_MSI_ENABLED; 11271 } 11272 vectors = 1; /* one MSI or Legacy vector */ 11273 } 11274 11275 if (!(pf->flags & (I40E_FLAG_MSIX_ENABLED | I40E_FLAG_MSI_ENABLED))) 11276 dev_info(&pf->pdev->dev, "MSI-X and MSI not available, falling back to Legacy IRQ\n"); 11277 11278 /* set up vector assignment tracking */ 11279 size = sizeof(struct i40e_lump_tracking) + (sizeof(u16) * vectors); 11280 pf->irq_pile = kzalloc(size, GFP_KERNEL); 11281 if (!pf->irq_pile) 11282 return -ENOMEM; 11283 11284 pf->irq_pile->num_entries = vectors; 11285 pf->irq_pile->search_hint = 0; 11286 11287 /* track first vector for misc interrupts, ignore return */ 11288 (void)i40e_get_lump(pf, pf->irq_pile, 1, I40E_PILE_VALID_BIT - 1); 11289 11290 return 0; 11291 } 11292 11293 /** 11294 * i40e_restore_interrupt_scheme - Restore the interrupt scheme 11295 * @pf: private board data structure 11296 * 11297 * Restore the interrupt scheme that was cleared when we suspended the 11298 * device. This should be called during resume to re-allocate the q_vectors 11299 * and reacquire IRQs. 11300 */ 11301 static int i40e_restore_interrupt_scheme(struct i40e_pf *pf) 11302 { 11303 int err, i; 11304 11305 /* We cleared the MSI and MSI-X flags when disabling the old interrupt 11306 * scheme. We need to re-enabled them here in order to attempt to 11307 * re-acquire the MSI or MSI-X vectors 11308 */ 11309 pf->flags |= (I40E_FLAG_MSIX_ENABLED | I40E_FLAG_MSI_ENABLED); 11310 11311 err = i40e_init_interrupt_scheme(pf); 11312 if (err) 11313 return err; 11314 11315 /* Now that we've re-acquired IRQs, we need to remap the vectors and 11316 * rings together again. 11317 */ 11318 for (i = 0; i < pf->num_alloc_vsi; i++) { 11319 if (pf->vsi[i]) { 11320 err = i40e_vsi_alloc_q_vectors(pf->vsi[i]); 11321 if (err) 11322 goto err_unwind; 11323 i40e_vsi_map_rings_to_vectors(pf->vsi[i]); 11324 } 11325 } 11326 11327 err = i40e_setup_misc_vector(pf); 11328 if (err) 11329 goto err_unwind; 11330 11331 if (pf->flags & I40E_FLAG_IWARP_ENABLED) 11332 i40e_client_update_msix_info(pf); 11333 11334 return 0; 11335 11336 err_unwind: 11337 while (i--) { 11338 if (pf->vsi[i]) 11339 i40e_vsi_free_q_vectors(pf->vsi[i]); 11340 } 11341 11342 return err; 11343 } 11344 11345 /** 11346 * i40e_setup_misc_vector_for_recovery_mode - Setup the misc vector to handle 11347 * non queue events in recovery mode 11348 * @pf: board private structure 11349 * 11350 * This sets up the handler for MSIX 0 or MSI/legacy, which is used to manage 11351 * the non-queue interrupts, e.g. AdminQ and errors in recovery mode. 11352 * This is handled differently than in recovery mode since no Tx/Rx resources 11353 * are being allocated. 11354 **/ 11355 static int i40e_setup_misc_vector_for_recovery_mode(struct i40e_pf *pf) 11356 { 11357 int err; 11358 11359 if (pf->flags & I40E_FLAG_MSIX_ENABLED) { 11360 err = i40e_setup_misc_vector(pf); 11361 11362 if (err) { 11363 dev_info(&pf->pdev->dev, 11364 "MSI-X misc vector request failed, error %d\n", 11365 err); 11366 return err; 11367 } 11368 } else { 11369 u32 flags = pf->flags & I40E_FLAG_MSI_ENABLED ? 0 : IRQF_SHARED; 11370 11371 err = request_irq(pf->pdev->irq, i40e_intr, flags, 11372 pf->int_name, pf); 11373 11374 if (err) { 11375 dev_info(&pf->pdev->dev, 11376 "MSI/legacy misc vector request failed, error %d\n", 11377 err); 11378 return err; 11379 } 11380 i40e_enable_misc_int_causes(pf); 11381 i40e_irq_dynamic_enable_icr0(pf); 11382 } 11383 11384 return 0; 11385 } 11386 11387 /** 11388 * i40e_setup_misc_vector - Setup the misc vector to handle non queue events 11389 * @pf: board private structure 11390 * 11391 * This sets up the handler for MSIX 0, which is used to manage the 11392 * non-queue interrupts, e.g. AdminQ and errors. This is not used 11393 * when in MSI or Legacy interrupt mode. 11394 **/ 11395 static int i40e_setup_misc_vector(struct i40e_pf *pf) 11396 { 11397 struct i40e_hw *hw = &pf->hw; 11398 int err = 0; 11399 11400 /* Only request the IRQ once, the first time through. */ 11401 if (!test_and_set_bit(__I40E_MISC_IRQ_REQUESTED, pf->state)) { 11402 err = request_irq(pf->msix_entries[0].vector, 11403 i40e_intr, 0, pf->int_name, pf); 11404 if (err) { 11405 clear_bit(__I40E_MISC_IRQ_REQUESTED, pf->state); 11406 dev_info(&pf->pdev->dev, 11407 "request_irq for %s failed: %d\n", 11408 pf->int_name, err); 11409 return -EFAULT; 11410 } 11411 } 11412 11413 i40e_enable_misc_int_causes(pf); 11414 11415 /* associate no queues to the misc vector */ 11416 wr32(hw, I40E_PFINT_LNKLST0, I40E_QUEUE_END_OF_LIST); 11417 wr32(hw, I40E_PFINT_ITR0(I40E_RX_ITR), I40E_ITR_8K >> 1); 11418 11419 i40e_flush(hw); 11420 11421 i40e_irq_dynamic_enable_icr0(pf); 11422 11423 return err; 11424 } 11425 11426 /** 11427 * i40e_get_rss_aq - Get RSS keys and lut by using AQ commands 11428 * @vsi: Pointer to vsi structure 11429 * @seed: Buffter to store the hash keys 11430 * @lut: Buffer to store the lookup table entries 11431 * @lut_size: Size of buffer to store the lookup table entries 11432 * 11433 * Return 0 on success, negative on failure 11434 */ 11435 static int i40e_get_rss_aq(struct i40e_vsi *vsi, const u8 *seed, 11436 u8 *lut, u16 lut_size) 11437 { 11438 struct i40e_pf *pf = vsi->back; 11439 struct i40e_hw *hw = &pf->hw; 11440 int ret = 0; 11441 11442 if (seed) { 11443 ret = i40e_aq_get_rss_key(hw, vsi->id, 11444 (struct i40e_aqc_get_set_rss_key_data *)seed); 11445 if (ret) { 11446 dev_info(&pf->pdev->dev, 11447 "Cannot get RSS key, err %s aq_err %s\n", 11448 i40e_stat_str(&pf->hw, ret), 11449 i40e_aq_str(&pf->hw, 11450 pf->hw.aq.asq_last_status)); 11451 return ret; 11452 } 11453 } 11454 11455 if (lut) { 11456 bool pf_lut = vsi->type == I40E_VSI_MAIN; 11457 11458 ret = i40e_aq_get_rss_lut(hw, vsi->id, pf_lut, lut, lut_size); 11459 if (ret) { 11460 dev_info(&pf->pdev->dev, 11461 "Cannot get RSS lut, err %s aq_err %s\n", 11462 i40e_stat_str(&pf->hw, ret), 11463 i40e_aq_str(&pf->hw, 11464 pf->hw.aq.asq_last_status)); 11465 return ret; 11466 } 11467 } 11468 11469 return ret; 11470 } 11471 11472 /** 11473 * i40e_config_rss_reg - Configure RSS keys and lut by writing registers 11474 * @vsi: Pointer to vsi structure 11475 * @seed: RSS hash seed 11476 * @lut: Lookup table 11477 * @lut_size: Lookup table size 11478 * 11479 * Returns 0 on success, negative on failure 11480 **/ 11481 static int i40e_config_rss_reg(struct i40e_vsi *vsi, const u8 *seed, 11482 const u8 *lut, u16 lut_size) 11483 { 11484 struct i40e_pf *pf = vsi->back; 11485 struct i40e_hw *hw = &pf->hw; 11486 u16 vf_id = vsi->vf_id; 11487 u8 i; 11488 11489 /* Fill out hash function seed */ 11490 if (seed) { 11491 u32 *seed_dw = (u32 *)seed; 11492 11493 if (vsi->type == I40E_VSI_MAIN) { 11494 for (i = 0; i <= I40E_PFQF_HKEY_MAX_INDEX; i++) 11495 wr32(hw, I40E_PFQF_HKEY(i), seed_dw[i]); 11496 } else if (vsi->type == I40E_VSI_SRIOV) { 11497 for (i = 0; i <= I40E_VFQF_HKEY1_MAX_INDEX; i++) 11498 wr32(hw, I40E_VFQF_HKEY1(i, vf_id), seed_dw[i]); 11499 } else { 11500 dev_err(&pf->pdev->dev, "Cannot set RSS seed - invalid VSI type\n"); 11501 } 11502 } 11503 11504 if (lut) { 11505 u32 *lut_dw = (u32 *)lut; 11506 11507 if (vsi->type == I40E_VSI_MAIN) { 11508 if (lut_size != I40E_HLUT_ARRAY_SIZE) 11509 return -EINVAL; 11510 for (i = 0; i <= I40E_PFQF_HLUT_MAX_INDEX; i++) 11511 wr32(hw, I40E_PFQF_HLUT(i), lut_dw[i]); 11512 } else if (vsi->type == I40E_VSI_SRIOV) { 11513 if (lut_size != I40E_VF_HLUT_ARRAY_SIZE) 11514 return -EINVAL; 11515 for (i = 0; i <= I40E_VFQF_HLUT_MAX_INDEX; i++) 11516 wr32(hw, I40E_VFQF_HLUT1(i, vf_id), lut_dw[i]); 11517 } else { 11518 dev_err(&pf->pdev->dev, "Cannot set RSS LUT - invalid VSI type\n"); 11519 } 11520 } 11521 i40e_flush(hw); 11522 11523 return 0; 11524 } 11525 11526 /** 11527 * i40e_get_rss_reg - Get the RSS keys and lut by reading registers 11528 * @vsi: Pointer to VSI structure 11529 * @seed: Buffer to store the keys 11530 * @lut: Buffer to store the lookup table entries 11531 * @lut_size: Size of buffer to store the lookup table entries 11532 * 11533 * Returns 0 on success, negative on failure 11534 */ 11535 static int i40e_get_rss_reg(struct i40e_vsi *vsi, u8 *seed, 11536 u8 *lut, u16 lut_size) 11537 { 11538 struct i40e_pf *pf = vsi->back; 11539 struct i40e_hw *hw = &pf->hw; 11540 u16 i; 11541 11542 if (seed) { 11543 u32 *seed_dw = (u32 *)seed; 11544 11545 for (i = 0; i <= I40E_PFQF_HKEY_MAX_INDEX; i++) 11546 seed_dw[i] = i40e_read_rx_ctl(hw, I40E_PFQF_HKEY(i)); 11547 } 11548 if (lut) { 11549 u32 *lut_dw = (u32 *)lut; 11550 11551 if (lut_size != I40E_HLUT_ARRAY_SIZE) 11552 return -EINVAL; 11553 for (i = 0; i <= I40E_PFQF_HLUT_MAX_INDEX; i++) 11554 lut_dw[i] = rd32(hw, I40E_PFQF_HLUT(i)); 11555 } 11556 11557 return 0; 11558 } 11559 11560 /** 11561 * i40e_config_rss - Configure RSS keys and lut 11562 * @vsi: Pointer to VSI structure 11563 * @seed: RSS hash seed 11564 * @lut: Lookup table 11565 * @lut_size: Lookup table size 11566 * 11567 * Returns 0 on success, negative on failure 11568 */ 11569 int i40e_config_rss(struct i40e_vsi *vsi, u8 *seed, u8 *lut, u16 lut_size) 11570 { 11571 struct i40e_pf *pf = vsi->back; 11572 11573 if (pf->hw_features & I40E_HW_RSS_AQ_CAPABLE) 11574 return i40e_config_rss_aq(vsi, seed, lut, lut_size); 11575 else 11576 return i40e_config_rss_reg(vsi, seed, lut, lut_size); 11577 } 11578 11579 /** 11580 * i40e_get_rss - Get RSS keys and lut 11581 * @vsi: Pointer to VSI structure 11582 * @seed: Buffer to store the keys 11583 * @lut: Buffer to store the lookup table entries 11584 * @lut_size: Size of buffer to store the lookup table entries 11585 * 11586 * Returns 0 on success, negative on failure 11587 */ 11588 int i40e_get_rss(struct i40e_vsi *vsi, u8 *seed, u8 *lut, u16 lut_size) 11589 { 11590 struct i40e_pf *pf = vsi->back; 11591 11592 if (pf->hw_features & I40E_HW_RSS_AQ_CAPABLE) 11593 return i40e_get_rss_aq(vsi, seed, lut, lut_size); 11594 else 11595 return i40e_get_rss_reg(vsi, seed, lut, lut_size); 11596 } 11597 11598 /** 11599 * i40e_fill_rss_lut - Fill the RSS lookup table with default values 11600 * @pf: Pointer to board private structure 11601 * @lut: Lookup table 11602 * @rss_table_size: Lookup table size 11603 * @rss_size: Range of queue number for hashing 11604 */ 11605 void i40e_fill_rss_lut(struct i40e_pf *pf, u8 *lut, 11606 u16 rss_table_size, u16 rss_size) 11607 { 11608 u16 i; 11609 11610 for (i = 0; i < rss_table_size; i++) 11611 lut[i] = i % rss_size; 11612 } 11613 11614 /** 11615 * i40e_pf_config_rss - Prepare for RSS if used 11616 * @pf: board private structure 11617 **/ 11618 static int i40e_pf_config_rss(struct i40e_pf *pf) 11619 { 11620 struct i40e_vsi *vsi = pf->vsi[pf->lan_vsi]; 11621 u8 seed[I40E_HKEY_ARRAY_SIZE]; 11622 u8 *lut; 11623 struct i40e_hw *hw = &pf->hw; 11624 u32 reg_val; 11625 u64 hena; 11626 int ret; 11627 11628 /* By default we enable TCP/UDP with IPv4/IPv6 ptypes */ 11629 hena = (u64)i40e_read_rx_ctl(hw, I40E_PFQF_HENA(0)) | 11630 ((u64)i40e_read_rx_ctl(hw, I40E_PFQF_HENA(1)) << 32); 11631 hena |= i40e_pf_get_default_rss_hena(pf); 11632 11633 i40e_write_rx_ctl(hw, I40E_PFQF_HENA(0), (u32)hena); 11634 i40e_write_rx_ctl(hw, I40E_PFQF_HENA(1), (u32)(hena >> 32)); 11635 11636 /* Determine the RSS table size based on the hardware capabilities */ 11637 reg_val = i40e_read_rx_ctl(hw, I40E_PFQF_CTL_0); 11638 reg_val = (pf->rss_table_size == 512) ? 11639 (reg_val | I40E_PFQF_CTL_0_HASHLUTSIZE_512) : 11640 (reg_val & ~I40E_PFQF_CTL_0_HASHLUTSIZE_512); 11641 i40e_write_rx_ctl(hw, I40E_PFQF_CTL_0, reg_val); 11642 11643 /* Determine the RSS size of the VSI */ 11644 if (!vsi->rss_size) { 11645 u16 qcount; 11646 /* If the firmware does something weird during VSI init, we 11647 * could end up with zero TCs. Check for that to avoid 11648 * divide-by-zero. It probably won't pass traffic, but it also 11649 * won't panic. 11650 */ 11651 qcount = vsi->num_queue_pairs / 11652 (vsi->tc_config.numtc ? vsi->tc_config.numtc : 1); 11653 vsi->rss_size = min_t(int, pf->alloc_rss_size, qcount); 11654 } 11655 if (!vsi->rss_size) 11656 return -EINVAL; 11657 11658 lut = kzalloc(vsi->rss_table_size, GFP_KERNEL); 11659 if (!lut) 11660 return -ENOMEM; 11661 11662 /* Use user configured lut if there is one, otherwise use default */ 11663 if (vsi->rss_lut_user) 11664 memcpy(lut, vsi->rss_lut_user, vsi->rss_table_size); 11665 else 11666 i40e_fill_rss_lut(pf, lut, vsi->rss_table_size, vsi->rss_size); 11667 11668 /* Use user configured hash key if there is one, otherwise 11669 * use default. 11670 */ 11671 if (vsi->rss_hkey_user) 11672 memcpy(seed, vsi->rss_hkey_user, I40E_HKEY_ARRAY_SIZE); 11673 else 11674 netdev_rss_key_fill((void *)seed, I40E_HKEY_ARRAY_SIZE); 11675 ret = i40e_config_rss(vsi, seed, lut, vsi->rss_table_size); 11676 kfree(lut); 11677 11678 return ret; 11679 } 11680 11681 /** 11682 * i40e_reconfig_rss_queues - change number of queues for rss and rebuild 11683 * @pf: board private structure 11684 * @queue_count: the requested queue count for rss. 11685 * 11686 * returns 0 if rss is not enabled, if enabled returns the final rss queue 11687 * count which may be different from the requested queue count. 11688 * Note: expects to be called while under rtnl_lock() 11689 **/ 11690 int i40e_reconfig_rss_queues(struct i40e_pf *pf, int queue_count) 11691 { 11692 struct i40e_vsi *vsi = pf->vsi[pf->lan_vsi]; 11693 int new_rss_size; 11694 11695 if (!(pf->flags & I40E_FLAG_RSS_ENABLED)) 11696 return 0; 11697 11698 queue_count = min_t(int, queue_count, num_online_cpus()); 11699 new_rss_size = min_t(int, queue_count, pf->rss_size_max); 11700 11701 if (queue_count != vsi->num_queue_pairs) { 11702 u16 qcount; 11703 11704 vsi->req_queue_pairs = queue_count; 11705 i40e_prep_for_reset(pf, true); 11706 11707 pf->alloc_rss_size = new_rss_size; 11708 11709 i40e_reset_and_rebuild(pf, true, true); 11710 11711 /* Discard the user configured hash keys and lut, if less 11712 * queues are enabled. 11713 */ 11714 if (queue_count < vsi->rss_size) { 11715 i40e_clear_rss_config_user(vsi); 11716 dev_dbg(&pf->pdev->dev, 11717 "discard user configured hash keys and lut\n"); 11718 } 11719 11720 /* Reset vsi->rss_size, as number of enabled queues changed */ 11721 qcount = vsi->num_queue_pairs / vsi->tc_config.numtc; 11722 vsi->rss_size = min_t(int, pf->alloc_rss_size, qcount); 11723 11724 i40e_pf_config_rss(pf); 11725 } 11726 dev_info(&pf->pdev->dev, "User requested queue count/HW max RSS count: %d/%d\n", 11727 vsi->req_queue_pairs, pf->rss_size_max); 11728 return pf->alloc_rss_size; 11729 } 11730 11731 /** 11732 * i40e_get_partition_bw_setting - Retrieve BW settings for this PF partition 11733 * @pf: board private structure 11734 **/ 11735 i40e_status i40e_get_partition_bw_setting(struct i40e_pf *pf) 11736 { 11737 i40e_status status; 11738 bool min_valid, max_valid; 11739 u32 max_bw, min_bw; 11740 11741 status = i40e_read_bw_from_alt_ram(&pf->hw, &max_bw, &min_bw, 11742 &min_valid, &max_valid); 11743 11744 if (!status) { 11745 if (min_valid) 11746 pf->min_bw = min_bw; 11747 if (max_valid) 11748 pf->max_bw = max_bw; 11749 } 11750 11751 return status; 11752 } 11753 11754 /** 11755 * i40e_set_partition_bw_setting - Set BW settings for this PF partition 11756 * @pf: board private structure 11757 **/ 11758 i40e_status i40e_set_partition_bw_setting(struct i40e_pf *pf) 11759 { 11760 struct i40e_aqc_configure_partition_bw_data bw_data; 11761 i40e_status status; 11762 11763 /* Set the valid bit for this PF */ 11764 bw_data.pf_valid_bits = cpu_to_le16(BIT(pf->hw.pf_id)); 11765 bw_data.max_bw[pf->hw.pf_id] = pf->max_bw & I40E_ALT_BW_VALUE_MASK; 11766 bw_data.min_bw[pf->hw.pf_id] = pf->min_bw & I40E_ALT_BW_VALUE_MASK; 11767 11768 /* Set the new bandwidths */ 11769 status = i40e_aq_configure_partition_bw(&pf->hw, &bw_data, NULL); 11770 11771 return status; 11772 } 11773 11774 /** 11775 * i40e_commit_partition_bw_setting - Commit BW settings for this PF partition 11776 * @pf: board private structure 11777 **/ 11778 i40e_status i40e_commit_partition_bw_setting(struct i40e_pf *pf) 11779 { 11780 /* Commit temporary BW setting to permanent NVM image */ 11781 enum i40e_admin_queue_err last_aq_status; 11782 i40e_status ret; 11783 u16 nvm_word; 11784 11785 if (pf->hw.partition_id != 1) { 11786 dev_info(&pf->pdev->dev, 11787 "Commit BW only works on partition 1! This is partition %d", 11788 pf->hw.partition_id); 11789 ret = I40E_NOT_SUPPORTED; 11790 goto bw_commit_out; 11791 } 11792 11793 /* Acquire NVM for read access */ 11794 ret = i40e_acquire_nvm(&pf->hw, I40E_RESOURCE_READ); 11795 last_aq_status = pf->hw.aq.asq_last_status; 11796 if (ret) { 11797 dev_info(&pf->pdev->dev, 11798 "Cannot acquire NVM for read access, err %s aq_err %s\n", 11799 i40e_stat_str(&pf->hw, ret), 11800 i40e_aq_str(&pf->hw, last_aq_status)); 11801 goto bw_commit_out; 11802 } 11803 11804 /* Read word 0x10 of NVM - SW compatibility word 1 */ 11805 ret = i40e_aq_read_nvm(&pf->hw, 11806 I40E_SR_NVM_CONTROL_WORD, 11807 0x10, sizeof(nvm_word), &nvm_word, 11808 false, NULL); 11809 /* Save off last admin queue command status before releasing 11810 * the NVM 11811 */ 11812 last_aq_status = pf->hw.aq.asq_last_status; 11813 i40e_release_nvm(&pf->hw); 11814 if (ret) { 11815 dev_info(&pf->pdev->dev, "NVM read error, err %s aq_err %s\n", 11816 i40e_stat_str(&pf->hw, ret), 11817 i40e_aq_str(&pf->hw, last_aq_status)); 11818 goto bw_commit_out; 11819 } 11820 11821 /* Wait a bit for NVM release to complete */ 11822 msleep(50); 11823 11824 /* Acquire NVM for write access */ 11825 ret = i40e_acquire_nvm(&pf->hw, I40E_RESOURCE_WRITE); 11826 last_aq_status = pf->hw.aq.asq_last_status; 11827 if (ret) { 11828 dev_info(&pf->pdev->dev, 11829 "Cannot acquire NVM for write access, err %s aq_err %s\n", 11830 i40e_stat_str(&pf->hw, ret), 11831 i40e_aq_str(&pf->hw, last_aq_status)); 11832 goto bw_commit_out; 11833 } 11834 /* Write it back out unchanged to initiate update NVM, 11835 * which will force a write of the shadow (alt) RAM to 11836 * the NVM - thus storing the bandwidth values permanently. 11837 */ 11838 ret = i40e_aq_update_nvm(&pf->hw, 11839 I40E_SR_NVM_CONTROL_WORD, 11840 0x10, sizeof(nvm_word), 11841 &nvm_word, true, 0, NULL); 11842 /* Save off last admin queue command status before releasing 11843 * the NVM 11844 */ 11845 last_aq_status = pf->hw.aq.asq_last_status; 11846 i40e_release_nvm(&pf->hw); 11847 if (ret) 11848 dev_info(&pf->pdev->dev, 11849 "BW settings NOT SAVED, err %s aq_err %s\n", 11850 i40e_stat_str(&pf->hw, ret), 11851 i40e_aq_str(&pf->hw, last_aq_status)); 11852 bw_commit_out: 11853 11854 return ret; 11855 } 11856 11857 /** 11858 * i40e_sw_init - Initialize general software structures (struct i40e_pf) 11859 * @pf: board private structure to initialize 11860 * 11861 * i40e_sw_init initializes the Adapter private data structure. 11862 * Fields are initialized based on PCI device information and 11863 * OS network device settings (MTU size). 11864 **/ 11865 static int i40e_sw_init(struct i40e_pf *pf) 11866 { 11867 int err = 0; 11868 int size; 11869 11870 /* Set default capability flags */ 11871 pf->flags = I40E_FLAG_RX_CSUM_ENABLED | 11872 I40E_FLAG_MSI_ENABLED | 11873 I40E_FLAG_MSIX_ENABLED; 11874 11875 /* Set default ITR */ 11876 pf->rx_itr_default = I40E_ITR_RX_DEF; 11877 pf->tx_itr_default = I40E_ITR_TX_DEF; 11878 11879 /* Depending on PF configurations, it is possible that the RSS 11880 * maximum might end up larger than the available queues 11881 */ 11882 pf->rss_size_max = BIT(pf->hw.func_caps.rss_table_entry_width); 11883 pf->alloc_rss_size = 1; 11884 pf->rss_table_size = pf->hw.func_caps.rss_table_size; 11885 pf->rss_size_max = min_t(int, pf->rss_size_max, 11886 pf->hw.func_caps.num_tx_qp); 11887 if (pf->hw.func_caps.rss) { 11888 pf->flags |= I40E_FLAG_RSS_ENABLED; 11889 pf->alloc_rss_size = min_t(int, pf->rss_size_max, 11890 num_online_cpus()); 11891 } 11892 11893 /* MFP mode enabled */ 11894 if (pf->hw.func_caps.npar_enable || pf->hw.func_caps.flex10_enable) { 11895 pf->flags |= I40E_FLAG_MFP_ENABLED; 11896 dev_info(&pf->pdev->dev, "MFP mode Enabled\n"); 11897 if (i40e_get_partition_bw_setting(pf)) { 11898 dev_warn(&pf->pdev->dev, 11899 "Could not get partition bw settings\n"); 11900 } else { 11901 dev_info(&pf->pdev->dev, 11902 "Partition BW Min = %8.8x, Max = %8.8x\n", 11903 pf->min_bw, pf->max_bw); 11904 11905 /* nudge the Tx scheduler */ 11906 i40e_set_partition_bw_setting(pf); 11907 } 11908 } 11909 11910 if ((pf->hw.func_caps.fd_filters_guaranteed > 0) || 11911 (pf->hw.func_caps.fd_filters_best_effort > 0)) { 11912 pf->flags |= I40E_FLAG_FD_ATR_ENABLED; 11913 pf->atr_sample_rate = I40E_DEFAULT_ATR_SAMPLE_RATE; 11914 if (pf->flags & I40E_FLAG_MFP_ENABLED && 11915 pf->hw.num_partitions > 1) 11916 dev_info(&pf->pdev->dev, 11917 "Flow Director Sideband mode Disabled in MFP mode\n"); 11918 else 11919 pf->flags |= I40E_FLAG_FD_SB_ENABLED; 11920 pf->fdir_pf_filter_count = 11921 pf->hw.func_caps.fd_filters_guaranteed; 11922 pf->hw.fdir_shared_filter_count = 11923 pf->hw.func_caps.fd_filters_best_effort; 11924 } 11925 11926 if (pf->hw.mac.type == I40E_MAC_X722) { 11927 pf->hw_features |= (I40E_HW_RSS_AQ_CAPABLE | 11928 I40E_HW_128_QP_RSS_CAPABLE | 11929 I40E_HW_ATR_EVICT_CAPABLE | 11930 I40E_HW_WB_ON_ITR_CAPABLE | 11931 I40E_HW_MULTIPLE_TCP_UDP_RSS_PCTYPE | 11932 I40E_HW_NO_PCI_LINK_CHECK | 11933 I40E_HW_USE_SET_LLDP_MIB | 11934 I40E_HW_GENEVE_OFFLOAD_CAPABLE | 11935 I40E_HW_PTP_L4_CAPABLE | 11936 I40E_HW_WOL_MC_MAGIC_PKT_WAKE | 11937 I40E_HW_OUTER_UDP_CSUM_CAPABLE); 11938 11939 #define I40E_FDEVICT_PCTYPE_DEFAULT 0xc03 11940 if (rd32(&pf->hw, I40E_GLQF_FDEVICTENA(1)) != 11941 I40E_FDEVICT_PCTYPE_DEFAULT) { 11942 dev_warn(&pf->pdev->dev, 11943 "FD EVICT PCTYPES are not right, disable FD HW EVICT\n"); 11944 pf->hw_features &= ~I40E_HW_ATR_EVICT_CAPABLE; 11945 } 11946 } else if ((pf->hw.aq.api_maj_ver > 1) || 11947 ((pf->hw.aq.api_maj_ver == 1) && 11948 (pf->hw.aq.api_min_ver > 4))) { 11949 /* Supported in FW API version higher than 1.4 */ 11950 pf->hw_features |= I40E_HW_GENEVE_OFFLOAD_CAPABLE; 11951 } 11952 11953 /* Enable HW ATR eviction if possible */ 11954 if (pf->hw_features & I40E_HW_ATR_EVICT_CAPABLE) 11955 pf->flags |= I40E_FLAG_HW_ATR_EVICT_ENABLED; 11956 11957 if ((pf->hw.mac.type == I40E_MAC_XL710) && 11958 (((pf->hw.aq.fw_maj_ver == 4) && (pf->hw.aq.fw_min_ver < 33)) || 11959 (pf->hw.aq.fw_maj_ver < 4))) { 11960 pf->hw_features |= I40E_HW_RESTART_AUTONEG; 11961 /* No DCB support for FW < v4.33 */ 11962 pf->hw_features |= I40E_HW_NO_DCB_SUPPORT; 11963 } 11964 11965 /* Disable FW LLDP if FW < v4.3 */ 11966 if ((pf->hw.mac.type == I40E_MAC_XL710) && 11967 (((pf->hw.aq.fw_maj_ver == 4) && (pf->hw.aq.fw_min_ver < 3)) || 11968 (pf->hw.aq.fw_maj_ver < 4))) 11969 pf->hw_features |= I40E_HW_STOP_FW_LLDP; 11970 11971 /* Use the FW Set LLDP MIB API if FW > v4.40 */ 11972 if ((pf->hw.mac.type == I40E_MAC_XL710) && 11973 (((pf->hw.aq.fw_maj_ver == 4) && (pf->hw.aq.fw_min_ver >= 40)) || 11974 (pf->hw.aq.fw_maj_ver >= 5))) 11975 pf->hw_features |= I40E_HW_USE_SET_LLDP_MIB; 11976 11977 /* Enable PTP L4 if FW > v6.0 */ 11978 if (pf->hw.mac.type == I40E_MAC_XL710 && 11979 pf->hw.aq.fw_maj_ver >= 6) 11980 pf->hw_features |= I40E_HW_PTP_L4_CAPABLE; 11981 11982 if (pf->hw.func_caps.vmdq && num_online_cpus() != 1) { 11983 pf->num_vmdq_vsis = I40E_DEFAULT_NUM_VMDQ_VSI; 11984 pf->flags |= I40E_FLAG_VMDQ_ENABLED; 11985 pf->num_vmdq_qps = i40e_default_queues_per_vmdq(pf); 11986 } 11987 11988 if (pf->hw.func_caps.iwarp && num_online_cpus() != 1) { 11989 pf->flags |= I40E_FLAG_IWARP_ENABLED; 11990 /* IWARP needs one extra vector for CQP just like MISC.*/ 11991 pf->num_iwarp_msix = (int)num_online_cpus() + 1; 11992 } 11993 /* Stopping FW LLDP engine is supported on XL710 and X722 11994 * starting from FW versions determined in i40e_init_adminq. 11995 * Stopping the FW LLDP engine is not supported on XL710 11996 * if NPAR is functioning so unset this hw flag in this case. 11997 */ 11998 if (pf->hw.mac.type == I40E_MAC_XL710 && 11999 pf->hw.func_caps.npar_enable && 12000 (pf->hw.flags & I40E_HW_FLAG_FW_LLDP_STOPPABLE)) 12001 pf->hw.flags &= ~I40E_HW_FLAG_FW_LLDP_STOPPABLE; 12002 12003 #ifdef CONFIG_PCI_IOV 12004 if (pf->hw.func_caps.num_vfs && pf->hw.partition_id == 1) { 12005 pf->num_vf_qps = I40E_DEFAULT_QUEUES_PER_VF; 12006 pf->flags |= I40E_FLAG_SRIOV_ENABLED; 12007 pf->num_req_vfs = min_t(int, 12008 pf->hw.func_caps.num_vfs, 12009 I40E_MAX_VF_COUNT); 12010 } 12011 #endif /* CONFIG_PCI_IOV */ 12012 pf->eeprom_version = 0xDEAD; 12013 pf->lan_veb = I40E_NO_VEB; 12014 pf->lan_vsi = I40E_NO_VSI; 12015 12016 /* By default FW has this off for performance reasons */ 12017 pf->flags &= ~I40E_FLAG_VEB_STATS_ENABLED; 12018 12019 /* set up queue assignment tracking */ 12020 size = sizeof(struct i40e_lump_tracking) 12021 + (sizeof(u16) * pf->hw.func_caps.num_tx_qp); 12022 pf->qp_pile = kzalloc(size, GFP_KERNEL); 12023 if (!pf->qp_pile) { 12024 err = -ENOMEM; 12025 goto sw_init_done; 12026 } 12027 pf->qp_pile->num_entries = pf->hw.func_caps.num_tx_qp; 12028 pf->qp_pile->search_hint = 0; 12029 12030 pf->tx_timeout_recovery_level = 1; 12031 12032 mutex_init(&pf->switch_mutex); 12033 12034 sw_init_done: 12035 return err; 12036 } 12037 12038 /** 12039 * i40e_set_ntuple - set the ntuple feature flag and take action 12040 * @pf: board private structure to initialize 12041 * @features: the feature set that the stack is suggesting 12042 * 12043 * returns a bool to indicate if reset needs to happen 12044 **/ 12045 bool i40e_set_ntuple(struct i40e_pf *pf, netdev_features_t features) 12046 { 12047 bool need_reset = false; 12048 12049 /* Check if Flow Director n-tuple support was enabled or disabled. If 12050 * the state changed, we need to reset. 12051 */ 12052 if (features & NETIF_F_NTUPLE) { 12053 /* Enable filters and mark for reset */ 12054 if (!(pf->flags & I40E_FLAG_FD_SB_ENABLED)) 12055 need_reset = true; 12056 /* enable FD_SB only if there is MSI-X vector and no cloud 12057 * filters exist 12058 */ 12059 if (pf->num_fdsb_msix > 0 && !pf->num_cloud_filters) { 12060 pf->flags |= I40E_FLAG_FD_SB_ENABLED; 12061 pf->flags &= ~I40E_FLAG_FD_SB_INACTIVE; 12062 } 12063 } else { 12064 /* turn off filters, mark for reset and clear SW filter list */ 12065 if (pf->flags & I40E_FLAG_FD_SB_ENABLED) { 12066 need_reset = true; 12067 i40e_fdir_filter_exit(pf); 12068 } 12069 pf->flags &= ~I40E_FLAG_FD_SB_ENABLED; 12070 clear_bit(__I40E_FD_SB_AUTO_DISABLED, pf->state); 12071 pf->flags |= I40E_FLAG_FD_SB_INACTIVE; 12072 12073 /* reset fd counters */ 12074 pf->fd_add_err = 0; 12075 pf->fd_atr_cnt = 0; 12076 /* if ATR was auto disabled it can be re-enabled. */ 12077 if (test_and_clear_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state)) 12078 if ((pf->flags & I40E_FLAG_FD_ATR_ENABLED) && 12079 (I40E_DEBUG_FD & pf->hw.debug_mask)) 12080 dev_info(&pf->pdev->dev, "ATR re-enabled.\n"); 12081 } 12082 return need_reset; 12083 } 12084 12085 /** 12086 * i40e_clear_rss_lut - clear the rx hash lookup table 12087 * @vsi: the VSI being configured 12088 **/ 12089 static void i40e_clear_rss_lut(struct i40e_vsi *vsi) 12090 { 12091 struct i40e_pf *pf = vsi->back; 12092 struct i40e_hw *hw = &pf->hw; 12093 u16 vf_id = vsi->vf_id; 12094 u8 i; 12095 12096 if (vsi->type == I40E_VSI_MAIN) { 12097 for (i = 0; i <= I40E_PFQF_HLUT_MAX_INDEX; i++) 12098 wr32(hw, I40E_PFQF_HLUT(i), 0); 12099 } else if (vsi->type == I40E_VSI_SRIOV) { 12100 for (i = 0; i <= I40E_VFQF_HLUT_MAX_INDEX; i++) 12101 i40e_write_rx_ctl(hw, I40E_VFQF_HLUT1(i, vf_id), 0); 12102 } else { 12103 dev_err(&pf->pdev->dev, "Cannot set RSS LUT - invalid VSI type\n"); 12104 } 12105 } 12106 12107 /** 12108 * i40e_set_features - set the netdev feature flags 12109 * @netdev: ptr to the netdev being adjusted 12110 * @features: the feature set that the stack is suggesting 12111 * Note: expects to be called while under rtnl_lock() 12112 **/ 12113 static int i40e_set_features(struct net_device *netdev, 12114 netdev_features_t features) 12115 { 12116 struct i40e_netdev_priv *np = netdev_priv(netdev); 12117 struct i40e_vsi *vsi = np->vsi; 12118 struct i40e_pf *pf = vsi->back; 12119 bool need_reset; 12120 12121 if (features & NETIF_F_RXHASH && !(netdev->features & NETIF_F_RXHASH)) 12122 i40e_pf_config_rss(pf); 12123 else if (!(features & NETIF_F_RXHASH) && 12124 netdev->features & NETIF_F_RXHASH) 12125 i40e_clear_rss_lut(vsi); 12126 12127 if (features & NETIF_F_HW_VLAN_CTAG_RX) 12128 i40e_vlan_stripping_enable(vsi); 12129 else 12130 i40e_vlan_stripping_disable(vsi); 12131 12132 if (!(features & NETIF_F_HW_TC) && pf->num_cloud_filters) { 12133 dev_err(&pf->pdev->dev, 12134 "Offloaded tc filters active, can't turn hw_tc_offload off"); 12135 return -EINVAL; 12136 } 12137 12138 if (!(features & NETIF_F_HW_L2FW_DOFFLOAD) && vsi->macvlan_cnt) 12139 i40e_del_all_macvlans(vsi); 12140 12141 need_reset = i40e_set_ntuple(pf, features); 12142 12143 if (need_reset) 12144 i40e_do_reset(pf, I40E_PF_RESET_FLAG, true); 12145 12146 return 0; 12147 } 12148 12149 /** 12150 * i40e_get_udp_port_idx - Lookup a possibly offloaded for Rx UDP port 12151 * @pf: board private structure 12152 * @port: The UDP port to look up 12153 * 12154 * Returns the index number or I40E_MAX_PF_UDP_OFFLOAD_PORTS if port not found 12155 **/ 12156 static u8 i40e_get_udp_port_idx(struct i40e_pf *pf, u16 port) 12157 { 12158 u8 i; 12159 12160 for (i = 0; i < I40E_MAX_PF_UDP_OFFLOAD_PORTS; i++) { 12161 /* Do not report ports with pending deletions as 12162 * being available. 12163 */ 12164 if (!port && (pf->pending_udp_bitmap & BIT_ULL(i))) 12165 continue; 12166 if (pf->udp_ports[i].port == port) 12167 return i; 12168 } 12169 12170 return i; 12171 } 12172 12173 /** 12174 * i40e_udp_tunnel_add - Get notifications about UDP tunnel ports that come up 12175 * @netdev: This physical port's netdev 12176 * @ti: Tunnel endpoint information 12177 **/ 12178 static void i40e_udp_tunnel_add(struct net_device *netdev, 12179 struct udp_tunnel_info *ti) 12180 { 12181 struct i40e_netdev_priv *np = netdev_priv(netdev); 12182 struct i40e_vsi *vsi = np->vsi; 12183 struct i40e_pf *pf = vsi->back; 12184 u16 port = ntohs(ti->port); 12185 u8 next_idx; 12186 u8 idx; 12187 12188 idx = i40e_get_udp_port_idx(pf, port); 12189 12190 /* Check if port already exists */ 12191 if (idx < I40E_MAX_PF_UDP_OFFLOAD_PORTS) { 12192 netdev_info(netdev, "port %d already offloaded\n", port); 12193 return; 12194 } 12195 12196 /* Now check if there is space to add the new port */ 12197 next_idx = i40e_get_udp_port_idx(pf, 0); 12198 12199 if (next_idx == I40E_MAX_PF_UDP_OFFLOAD_PORTS) { 12200 netdev_info(netdev, "maximum number of offloaded UDP ports reached, not adding port %d\n", 12201 port); 12202 return; 12203 } 12204 12205 switch (ti->type) { 12206 case UDP_TUNNEL_TYPE_VXLAN: 12207 pf->udp_ports[next_idx].type = I40E_AQC_TUNNEL_TYPE_VXLAN; 12208 break; 12209 case UDP_TUNNEL_TYPE_GENEVE: 12210 if (!(pf->hw_features & I40E_HW_GENEVE_OFFLOAD_CAPABLE)) 12211 return; 12212 pf->udp_ports[next_idx].type = I40E_AQC_TUNNEL_TYPE_NGE; 12213 break; 12214 default: 12215 return; 12216 } 12217 12218 /* New port: add it and mark its index in the bitmap */ 12219 pf->udp_ports[next_idx].port = port; 12220 pf->udp_ports[next_idx].filter_index = I40E_UDP_PORT_INDEX_UNUSED; 12221 pf->pending_udp_bitmap |= BIT_ULL(next_idx); 12222 set_bit(__I40E_UDP_FILTER_SYNC_PENDING, pf->state); 12223 } 12224 12225 /** 12226 * i40e_udp_tunnel_del - Get notifications about UDP tunnel ports that go away 12227 * @netdev: This physical port's netdev 12228 * @ti: Tunnel endpoint information 12229 **/ 12230 static void i40e_udp_tunnel_del(struct net_device *netdev, 12231 struct udp_tunnel_info *ti) 12232 { 12233 struct i40e_netdev_priv *np = netdev_priv(netdev); 12234 struct i40e_vsi *vsi = np->vsi; 12235 struct i40e_pf *pf = vsi->back; 12236 u16 port = ntohs(ti->port); 12237 u8 idx; 12238 12239 idx = i40e_get_udp_port_idx(pf, port); 12240 12241 /* Check if port already exists */ 12242 if (idx >= I40E_MAX_PF_UDP_OFFLOAD_PORTS) 12243 goto not_found; 12244 12245 switch (ti->type) { 12246 case UDP_TUNNEL_TYPE_VXLAN: 12247 if (pf->udp_ports[idx].type != I40E_AQC_TUNNEL_TYPE_VXLAN) 12248 goto not_found; 12249 break; 12250 case UDP_TUNNEL_TYPE_GENEVE: 12251 if (pf->udp_ports[idx].type != I40E_AQC_TUNNEL_TYPE_NGE) 12252 goto not_found; 12253 break; 12254 default: 12255 goto not_found; 12256 } 12257 12258 /* if port exists, set it to 0 (mark for deletion) 12259 * and make it pending 12260 */ 12261 pf->udp_ports[idx].port = 0; 12262 12263 /* Toggle pending bit instead of setting it. This way if we are 12264 * deleting a port that has yet to be added we just clear the pending 12265 * bit and don't have to worry about it. 12266 */ 12267 pf->pending_udp_bitmap ^= BIT_ULL(idx); 12268 set_bit(__I40E_UDP_FILTER_SYNC_PENDING, pf->state); 12269 12270 return; 12271 not_found: 12272 netdev_warn(netdev, "UDP port %d was not found, not deleting\n", 12273 port); 12274 } 12275 12276 static int i40e_get_phys_port_id(struct net_device *netdev, 12277 struct netdev_phys_item_id *ppid) 12278 { 12279 struct i40e_netdev_priv *np = netdev_priv(netdev); 12280 struct i40e_pf *pf = np->vsi->back; 12281 struct i40e_hw *hw = &pf->hw; 12282 12283 if (!(pf->hw_features & I40E_HW_PORT_ID_VALID)) 12284 return -EOPNOTSUPP; 12285 12286 ppid->id_len = min_t(int, sizeof(hw->mac.port_addr), sizeof(ppid->id)); 12287 memcpy(ppid->id, hw->mac.port_addr, ppid->id_len); 12288 12289 return 0; 12290 } 12291 12292 /** 12293 * i40e_ndo_fdb_add - add an entry to the hardware database 12294 * @ndm: the input from the stack 12295 * @tb: pointer to array of nladdr (unused) 12296 * @dev: the net device pointer 12297 * @addr: the MAC address entry being added 12298 * @vid: VLAN ID 12299 * @flags: instructions from stack about fdb operation 12300 */ 12301 static int i40e_ndo_fdb_add(struct ndmsg *ndm, struct nlattr *tb[], 12302 struct net_device *dev, 12303 const unsigned char *addr, u16 vid, 12304 u16 flags, 12305 struct netlink_ext_ack *extack) 12306 { 12307 struct i40e_netdev_priv *np = netdev_priv(dev); 12308 struct i40e_pf *pf = np->vsi->back; 12309 int err = 0; 12310 12311 if (!(pf->flags & I40E_FLAG_SRIOV_ENABLED)) 12312 return -EOPNOTSUPP; 12313 12314 if (vid) { 12315 pr_info("%s: vlans aren't supported yet for dev_uc|mc_add()\n", dev->name); 12316 return -EINVAL; 12317 } 12318 12319 /* Hardware does not support aging addresses so if a 12320 * ndm_state is given only allow permanent addresses 12321 */ 12322 if (ndm->ndm_state && !(ndm->ndm_state & NUD_PERMANENT)) { 12323 netdev_info(dev, "FDB only supports static addresses\n"); 12324 return -EINVAL; 12325 } 12326 12327 if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr)) 12328 err = dev_uc_add_excl(dev, addr); 12329 else if (is_multicast_ether_addr(addr)) 12330 err = dev_mc_add_excl(dev, addr); 12331 else 12332 err = -EINVAL; 12333 12334 /* Only return duplicate errors if NLM_F_EXCL is set */ 12335 if (err == -EEXIST && !(flags & NLM_F_EXCL)) 12336 err = 0; 12337 12338 return err; 12339 } 12340 12341 /** 12342 * i40e_ndo_bridge_setlink - Set the hardware bridge mode 12343 * @dev: the netdev being configured 12344 * @nlh: RTNL message 12345 * @flags: bridge flags 12346 * @extack: netlink extended ack 12347 * 12348 * Inserts a new hardware bridge if not already created and 12349 * enables the bridging mode requested (VEB or VEPA). If the 12350 * hardware bridge has already been inserted and the request 12351 * is to change the mode then that requires a PF reset to 12352 * allow rebuild of the components with required hardware 12353 * bridge mode enabled. 12354 * 12355 * Note: expects to be called while under rtnl_lock() 12356 **/ 12357 static int i40e_ndo_bridge_setlink(struct net_device *dev, 12358 struct nlmsghdr *nlh, 12359 u16 flags, 12360 struct netlink_ext_ack *extack) 12361 { 12362 struct i40e_netdev_priv *np = netdev_priv(dev); 12363 struct i40e_vsi *vsi = np->vsi; 12364 struct i40e_pf *pf = vsi->back; 12365 struct i40e_veb *veb = NULL; 12366 struct nlattr *attr, *br_spec; 12367 int i, rem; 12368 12369 /* Only for PF VSI for now */ 12370 if (vsi->seid != pf->vsi[pf->lan_vsi]->seid) 12371 return -EOPNOTSUPP; 12372 12373 /* Find the HW bridge for PF VSI */ 12374 for (i = 0; i < I40E_MAX_VEB && !veb; i++) { 12375 if (pf->veb[i] && pf->veb[i]->seid == vsi->uplink_seid) 12376 veb = pf->veb[i]; 12377 } 12378 12379 br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC); 12380 12381 nla_for_each_nested(attr, br_spec, rem) { 12382 __u16 mode; 12383 12384 if (nla_type(attr) != IFLA_BRIDGE_MODE) 12385 continue; 12386 12387 mode = nla_get_u16(attr); 12388 if ((mode != BRIDGE_MODE_VEPA) && 12389 (mode != BRIDGE_MODE_VEB)) 12390 return -EINVAL; 12391 12392 /* Insert a new HW bridge */ 12393 if (!veb) { 12394 veb = i40e_veb_setup(pf, 0, vsi->uplink_seid, vsi->seid, 12395 vsi->tc_config.enabled_tc); 12396 if (veb) { 12397 veb->bridge_mode = mode; 12398 i40e_config_bridge_mode(veb); 12399 } else { 12400 /* No Bridge HW offload available */ 12401 return -ENOENT; 12402 } 12403 break; 12404 } else if (mode != veb->bridge_mode) { 12405 /* Existing HW bridge but different mode needs reset */ 12406 veb->bridge_mode = mode; 12407 /* TODO: If no VFs or VMDq VSIs, disallow VEB mode */ 12408 if (mode == BRIDGE_MODE_VEB) 12409 pf->flags |= I40E_FLAG_VEB_MODE_ENABLED; 12410 else 12411 pf->flags &= ~I40E_FLAG_VEB_MODE_ENABLED; 12412 i40e_do_reset(pf, I40E_PF_RESET_FLAG, true); 12413 break; 12414 } 12415 } 12416 12417 return 0; 12418 } 12419 12420 /** 12421 * i40e_ndo_bridge_getlink - Get the hardware bridge mode 12422 * @skb: skb buff 12423 * @pid: process id 12424 * @seq: RTNL message seq # 12425 * @dev: the netdev being configured 12426 * @filter_mask: unused 12427 * @nlflags: netlink flags passed in 12428 * 12429 * Return the mode in which the hardware bridge is operating in 12430 * i.e VEB or VEPA. 12431 **/ 12432 static int i40e_ndo_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq, 12433 struct net_device *dev, 12434 u32 __always_unused filter_mask, 12435 int nlflags) 12436 { 12437 struct i40e_netdev_priv *np = netdev_priv(dev); 12438 struct i40e_vsi *vsi = np->vsi; 12439 struct i40e_pf *pf = vsi->back; 12440 struct i40e_veb *veb = NULL; 12441 int i; 12442 12443 /* Only for PF VSI for now */ 12444 if (vsi->seid != pf->vsi[pf->lan_vsi]->seid) 12445 return -EOPNOTSUPP; 12446 12447 /* Find the HW bridge for the PF VSI */ 12448 for (i = 0; i < I40E_MAX_VEB && !veb; i++) { 12449 if (pf->veb[i] && pf->veb[i]->seid == vsi->uplink_seid) 12450 veb = pf->veb[i]; 12451 } 12452 12453 if (!veb) 12454 return 0; 12455 12456 return ndo_dflt_bridge_getlink(skb, pid, seq, dev, veb->bridge_mode, 12457 0, 0, nlflags, filter_mask, NULL); 12458 } 12459 12460 /** 12461 * i40e_features_check - Validate encapsulated packet conforms to limits 12462 * @skb: skb buff 12463 * @dev: This physical port's netdev 12464 * @features: Offload features that the stack believes apply 12465 **/ 12466 static netdev_features_t i40e_features_check(struct sk_buff *skb, 12467 struct net_device *dev, 12468 netdev_features_t features) 12469 { 12470 size_t len; 12471 12472 /* No point in doing any of this if neither checksum nor GSO are 12473 * being requested for this frame. We can rule out both by just 12474 * checking for CHECKSUM_PARTIAL 12475 */ 12476 if (skb->ip_summed != CHECKSUM_PARTIAL) 12477 return features; 12478 12479 /* We cannot support GSO if the MSS is going to be less than 12480 * 64 bytes. If it is then we need to drop support for GSO. 12481 */ 12482 if (skb_is_gso(skb) && (skb_shinfo(skb)->gso_size < 64)) 12483 features &= ~NETIF_F_GSO_MASK; 12484 12485 /* MACLEN can support at most 63 words */ 12486 len = skb_network_header(skb) - skb->data; 12487 if (len & ~(63 * 2)) 12488 goto out_err; 12489 12490 /* IPLEN and EIPLEN can support at most 127 dwords */ 12491 len = skb_transport_header(skb) - skb_network_header(skb); 12492 if (len & ~(127 * 4)) 12493 goto out_err; 12494 12495 if (skb->encapsulation) { 12496 /* L4TUNLEN can support 127 words */ 12497 len = skb_inner_network_header(skb) - skb_transport_header(skb); 12498 if (len & ~(127 * 2)) 12499 goto out_err; 12500 12501 /* IPLEN can support at most 127 dwords */ 12502 len = skb_inner_transport_header(skb) - 12503 skb_inner_network_header(skb); 12504 if (len & ~(127 * 4)) 12505 goto out_err; 12506 } 12507 12508 /* No need to validate L4LEN as TCP is the only protocol with a 12509 * a flexible value and we support all possible values supported 12510 * by TCP, which is at most 15 dwords 12511 */ 12512 12513 return features; 12514 out_err: 12515 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 12516 } 12517 12518 /** 12519 * i40e_xdp_setup - add/remove an XDP program 12520 * @vsi: VSI to changed 12521 * @prog: XDP program 12522 **/ 12523 static int i40e_xdp_setup(struct i40e_vsi *vsi, 12524 struct bpf_prog *prog) 12525 { 12526 int frame_size = vsi->netdev->mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN; 12527 struct i40e_pf *pf = vsi->back; 12528 struct bpf_prog *old_prog; 12529 bool need_reset; 12530 int i; 12531 12532 /* Don't allow frames that span over multiple buffers */ 12533 if (frame_size > vsi->rx_buf_len) 12534 return -EINVAL; 12535 12536 if (!i40e_enabled_xdp_vsi(vsi) && !prog) 12537 return 0; 12538 12539 /* When turning XDP on->off/off->on we reset and rebuild the rings. */ 12540 need_reset = (i40e_enabled_xdp_vsi(vsi) != !!prog); 12541 12542 if (need_reset) 12543 i40e_prep_for_reset(pf, true); 12544 12545 old_prog = xchg(&vsi->xdp_prog, prog); 12546 12547 if (need_reset) { 12548 if (!prog) 12549 /* Wait until ndo_xsk_wakeup completes. */ 12550 synchronize_rcu(); 12551 i40e_reset_and_rebuild(pf, true, true); 12552 } 12553 12554 for (i = 0; i < vsi->num_queue_pairs; i++) 12555 WRITE_ONCE(vsi->rx_rings[i]->xdp_prog, vsi->xdp_prog); 12556 12557 if (old_prog) 12558 bpf_prog_put(old_prog); 12559 12560 /* Kick start the NAPI context if there is an AF_XDP socket open 12561 * on that queue id. This so that receiving will start. 12562 */ 12563 if (need_reset && prog) 12564 for (i = 0; i < vsi->num_queue_pairs; i++) 12565 if (vsi->xdp_rings[i]->xsk_umem) 12566 (void)i40e_xsk_wakeup(vsi->netdev, i, 12567 XDP_WAKEUP_RX); 12568 12569 return 0; 12570 } 12571 12572 /** 12573 * i40e_enter_busy_conf - Enters busy config state 12574 * @vsi: vsi 12575 * 12576 * Returns 0 on success, <0 for failure. 12577 **/ 12578 static int i40e_enter_busy_conf(struct i40e_vsi *vsi) 12579 { 12580 struct i40e_pf *pf = vsi->back; 12581 int timeout = 50; 12582 12583 while (test_and_set_bit(__I40E_CONFIG_BUSY, pf->state)) { 12584 timeout--; 12585 if (!timeout) 12586 return -EBUSY; 12587 usleep_range(1000, 2000); 12588 } 12589 12590 return 0; 12591 } 12592 12593 /** 12594 * i40e_exit_busy_conf - Exits busy config state 12595 * @vsi: vsi 12596 **/ 12597 static void i40e_exit_busy_conf(struct i40e_vsi *vsi) 12598 { 12599 struct i40e_pf *pf = vsi->back; 12600 12601 clear_bit(__I40E_CONFIG_BUSY, pf->state); 12602 } 12603 12604 /** 12605 * i40e_queue_pair_reset_stats - Resets all statistics for a queue pair 12606 * @vsi: vsi 12607 * @queue_pair: queue pair 12608 **/ 12609 static void i40e_queue_pair_reset_stats(struct i40e_vsi *vsi, int queue_pair) 12610 { 12611 memset(&vsi->rx_rings[queue_pair]->rx_stats, 0, 12612 sizeof(vsi->rx_rings[queue_pair]->rx_stats)); 12613 memset(&vsi->tx_rings[queue_pair]->stats, 0, 12614 sizeof(vsi->tx_rings[queue_pair]->stats)); 12615 if (i40e_enabled_xdp_vsi(vsi)) { 12616 memset(&vsi->xdp_rings[queue_pair]->stats, 0, 12617 sizeof(vsi->xdp_rings[queue_pair]->stats)); 12618 } 12619 } 12620 12621 /** 12622 * i40e_queue_pair_clean_rings - Cleans all the rings of a queue pair 12623 * @vsi: vsi 12624 * @queue_pair: queue pair 12625 **/ 12626 static void i40e_queue_pair_clean_rings(struct i40e_vsi *vsi, int queue_pair) 12627 { 12628 i40e_clean_tx_ring(vsi->tx_rings[queue_pair]); 12629 if (i40e_enabled_xdp_vsi(vsi)) { 12630 /* Make sure that in-progress ndo_xdp_xmit calls are 12631 * completed. 12632 */ 12633 synchronize_rcu(); 12634 i40e_clean_tx_ring(vsi->xdp_rings[queue_pair]); 12635 } 12636 i40e_clean_rx_ring(vsi->rx_rings[queue_pair]); 12637 } 12638 12639 /** 12640 * i40e_queue_pair_toggle_napi - Enables/disables NAPI for a queue pair 12641 * @vsi: vsi 12642 * @queue_pair: queue pair 12643 * @enable: true for enable, false for disable 12644 **/ 12645 static void i40e_queue_pair_toggle_napi(struct i40e_vsi *vsi, int queue_pair, 12646 bool enable) 12647 { 12648 struct i40e_ring *rxr = vsi->rx_rings[queue_pair]; 12649 struct i40e_q_vector *q_vector = rxr->q_vector; 12650 12651 if (!vsi->netdev) 12652 return; 12653 12654 /* All rings in a qp belong to the same qvector. */ 12655 if (q_vector->rx.ring || q_vector->tx.ring) { 12656 if (enable) 12657 napi_enable(&q_vector->napi); 12658 else 12659 napi_disable(&q_vector->napi); 12660 } 12661 } 12662 12663 /** 12664 * i40e_queue_pair_toggle_rings - Enables/disables all rings for a queue pair 12665 * @vsi: vsi 12666 * @queue_pair: queue pair 12667 * @enable: true for enable, false for disable 12668 * 12669 * Returns 0 on success, <0 on failure. 12670 **/ 12671 static int i40e_queue_pair_toggle_rings(struct i40e_vsi *vsi, int queue_pair, 12672 bool enable) 12673 { 12674 struct i40e_pf *pf = vsi->back; 12675 int pf_q, ret = 0; 12676 12677 pf_q = vsi->base_queue + queue_pair; 12678 ret = i40e_control_wait_tx_q(vsi->seid, pf, pf_q, 12679 false /*is xdp*/, enable); 12680 if (ret) { 12681 dev_info(&pf->pdev->dev, 12682 "VSI seid %d Tx ring %d %sable timeout\n", 12683 vsi->seid, pf_q, (enable ? "en" : "dis")); 12684 return ret; 12685 } 12686 12687 i40e_control_rx_q(pf, pf_q, enable); 12688 ret = i40e_pf_rxq_wait(pf, pf_q, enable); 12689 if (ret) { 12690 dev_info(&pf->pdev->dev, 12691 "VSI seid %d Rx ring %d %sable timeout\n", 12692 vsi->seid, pf_q, (enable ? "en" : "dis")); 12693 return ret; 12694 } 12695 12696 /* Due to HW errata, on Rx disable only, the register can 12697 * indicate done before it really is. Needs 50ms to be sure 12698 */ 12699 if (!enable) 12700 mdelay(50); 12701 12702 if (!i40e_enabled_xdp_vsi(vsi)) 12703 return ret; 12704 12705 ret = i40e_control_wait_tx_q(vsi->seid, pf, 12706 pf_q + vsi->alloc_queue_pairs, 12707 true /*is xdp*/, enable); 12708 if (ret) { 12709 dev_info(&pf->pdev->dev, 12710 "VSI seid %d XDP Tx ring %d %sable timeout\n", 12711 vsi->seid, pf_q, (enable ? "en" : "dis")); 12712 } 12713 12714 return ret; 12715 } 12716 12717 /** 12718 * i40e_queue_pair_enable_irq - Enables interrupts for a queue pair 12719 * @vsi: vsi 12720 * @queue_pair: queue_pair 12721 **/ 12722 static void i40e_queue_pair_enable_irq(struct i40e_vsi *vsi, int queue_pair) 12723 { 12724 struct i40e_ring *rxr = vsi->rx_rings[queue_pair]; 12725 struct i40e_pf *pf = vsi->back; 12726 struct i40e_hw *hw = &pf->hw; 12727 12728 /* All rings in a qp belong to the same qvector. */ 12729 if (pf->flags & I40E_FLAG_MSIX_ENABLED) 12730 i40e_irq_dynamic_enable(vsi, rxr->q_vector->v_idx); 12731 else 12732 i40e_irq_dynamic_enable_icr0(pf); 12733 12734 i40e_flush(hw); 12735 } 12736 12737 /** 12738 * i40e_queue_pair_disable_irq - Disables interrupts for a queue pair 12739 * @vsi: vsi 12740 * @queue_pair: queue_pair 12741 **/ 12742 static void i40e_queue_pair_disable_irq(struct i40e_vsi *vsi, int queue_pair) 12743 { 12744 struct i40e_ring *rxr = vsi->rx_rings[queue_pair]; 12745 struct i40e_pf *pf = vsi->back; 12746 struct i40e_hw *hw = &pf->hw; 12747 12748 /* For simplicity, instead of removing the qp interrupt causes 12749 * from the interrupt linked list, we simply disable the interrupt, and 12750 * leave the list intact. 12751 * 12752 * All rings in a qp belong to the same qvector. 12753 */ 12754 if (pf->flags & I40E_FLAG_MSIX_ENABLED) { 12755 u32 intpf = vsi->base_vector + rxr->q_vector->v_idx; 12756 12757 wr32(hw, I40E_PFINT_DYN_CTLN(intpf - 1), 0); 12758 i40e_flush(hw); 12759 synchronize_irq(pf->msix_entries[intpf].vector); 12760 } else { 12761 /* Legacy and MSI mode - this stops all interrupt handling */ 12762 wr32(hw, I40E_PFINT_ICR0_ENA, 0); 12763 wr32(hw, I40E_PFINT_DYN_CTL0, 0); 12764 i40e_flush(hw); 12765 synchronize_irq(pf->pdev->irq); 12766 } 12767 } 12768 12769 /** 12770 * i40e_queue_pair_disable - Disables a queue pair 12771 * @vsi: vsi 12772 * @queue_pair: queue pair 12773 * 12774 * Returns 0 on success, <0 on failure. 12775 **/ 12776 int i40e_queue_pair_disable(struct i40e_vsi *vsi, int queue_pair) 12777 { 12778 int err; 12779 12780 err = i40e_enter_busy_conf(vsi); 12781 if (err) 12782 return err; 12783 12784 i40e_queue_pair_disable_irq(vsi, queue_pair); 12785 err = i40e_queue_pair_toggle_rings(vsi, queue_pair, false /* off */); 12786 i40e_queue_pair_toggle_napi(vsi, queue_pair, false /* off */); 12787 i40e_queue_pair_clean_rings(vsi, queue_pair); 12788 i40e_queue_pair_reset_stats(vsi, queue_pair); 12789 12790 return err; 12791 } 12792 12793 /** 12794 * i40e_queue_pair_enable - Enables a queue pair 12795 * @vsi: vsi 12796 * @queue_pair: queue pair 12797 * 12798 * Returns 0 on success, <0 on failure. 12799 **/ 12800 int i40e_queue_pair_enable(struct i40e_vsi *vsi, int queue_pair) 12801 { 12802 int err; 12803 12804 err = i40e_configure_tx_ring(vsi->tx_rings[queue_pair]); 12805 if (err) 12806 return err; 12807 12808 if (i40e_enabled_xdp_vsi(vsi)) { 12809 err = i40e_configure_tx_ring(vsi->xdp_rings[queue_pair]); 12810 if (err) 12811 return err; 12812 } 12813 12814 err = i40e_configure_rx_ring(vsi->rx_rings[queue_pair]); 12815 if (err) 12816 return err; 12817 12818 err = i40e_queue_pair_toggle_rings(vsi, queue_pair, true /* on */); 12819 i40e_queue_pair_toggle_napi(vsi, queue_pair, true /* on */); 12820 i40e_queue_pair_enable_irq(vsi, queue_pair); 12821 12822 i40e_exit_busy_conf(vsi); 12823 12824 return err; 12825 } 12826 12827 /** 12828 * i40e_xdp - implements ndo_bpf for i40e 12829 * @dev: netdevice 12830 * @xdp: XDP command 12831 **/ 12832 static int i40e_xdp(struct net_device *dev, 12833 struct netdev_bpf *xdp) 12834 { 12835 struct i40e_netdev_priv *np = netdev_priv(dev); 12836 struct i40e_vsi *vsi = np->vsi; 12837 12838 if (vsi->type != I40E_VSI_MAIN) 12839 return -EINVAL; 12840 12841 switch (xdp->command) { 12842 case XDP_SETUP_PROG: 12843 return i40e_xdp_setup(vsi, xdp->prog); 12844 case XDP_QUERY_PROG: 12845 xdp->prog_id = vsi->xdp_prog ? vsi->xdp_prog->aux->id : 0; 12846 return 0; 12847 case XDP_SETUP_XSK_UMEM: 12848 return i40e_xsk_umem_setup(vsi, xdp->xsk.umem, 12849 xdp->xsk.queue_id); 12850 default: 12851 return -EINVAL; 12852 } 12853 } 12854 12855 static const struct net_device_ops i40e_netdev_ops = { 12856 .ndo_open = i40e_open, 12857 .ndo_stop = i40e_close, 12858 .ndo_start_xmit = i40e_lan_xmit_frame, 12859 .ndo_get_stats64 = i40e_get_netdev_stats_struct, 12860 .ndo_set_rx_mode = i40e_set_rx_mode, 12861 .ndo_validate_addr = eth_validate_addr, 12862 .ndo_set_mac_address = i40e_set_mac, 12863 .ndo_change_mtu = i40e_change_mtu, 12864 .ndo_do_ioctl = i40e_ioctl, 12865 .ndo_tx_timeout = i40e_tx_timeout, 12866 .ndo_vlan_rx_add_vid = i40e_vlan_rx_add_vid, 12867 .ndo_vlan_rx_kill_vid = i40e_vlan_rx_kill_vid, 12868 #ifdef CONFIG_NET_POLL_CONTROLLER 12869 .ndo_poll_controller = i40e_netpoll, 12870 #endif 12871 .ndo_setup_tc = __i40e_setup_tc, 12872 .ndo_set_features = i40e_set_features, 12873 .ndo_set_vf_mac = i40e_ndo_set_vf_mac, 12874 .ndo_set_vf_vlan = i40e_ndo_set_vf_port_vlan, 12875 .ndo_get_vf_stats = i40e_get_vf_stats, 12876 .ndo_set_vf_rate = i40e_ndo_set_vf_bw, 12877 .ndo_get_vf_config = i40e_ndo_get_vf_config, 12878 .ndo_set_vf_link_state = i40e_ndo_set_vf_link_state, 12879 .ndo_set_vf_spoofchk = i40e_ndo_set_vf_spoofchk, 12880 .ndo_set_vf_trust = i40e_ndo_set_vf_trust, 12881 .ndo_udp_tunnel_add = i40e_udp_tunnel_add, 12882 .ndo_udp_tunnel_del = i40e_udp_tunnel_del, 12883 .ndo_get_phys_port_id = i40e_get_phys_port_id, 12884 .ndo_fdb_add = i40e_ndo_fdb_add, 12885 .ndo_features_check = i40e_features_check, 12886 .ndo_bridge_getlink = i40e_ndo_bridge_getlink, 12887 .ndo_bridge_setlink = i40e_ndo_bridge_setlink, 12888 .ndo_bpf = i40e_xdp, 12889 .ndo_xdp_xmit = i40e_xdp_xmit, 12890 .ndo_xsk_wakeup = i40e_xsk_wakeup, 12891 .ndo_dfwd_add_station = i40e_fwd_add, 12892 .ndo_dfwd_del_station = i40e_fwd_del, 12893 }; 12894 12895 /** 12896 * i40e_config_netdev - Setup the netdev flags 12897 * @vsi: the VSI being configured 12898 * 12899 * Returns 0 on success, negative value on failure 12900 **/ 12901 static int i40e_config_netdev(struct i40e_vsi *vsi) 12902 { 12903 struct i40e_pf *pf = vsi->back; 12904 struct i40e_hw *hw = &pf->hw; 12905 struct i40e_netdev_priv *np; 12906 struct net_device *netdev; 12907 u8 broadcast[ETH_ALEN]; 12908 u8 mac_addr[ETH_ALEN]; 12909 int etherdev_size; 12910 netdev_features_t hw_enc_features; 12911 netdev_features_t hw_features; 12912 12913 etherdev_size = sizeof(struct i40e_netdev_priv); 12914 netdev = alloc_etherdev_mq(etherdev_size, vsi->alloc_queue_pairs); 12915 if (!netdev) 12916 return -ENOMEM; 12917 12918 vsi->netdev = netdev; 12919 np = netdev_priv(netdev); 12920 np->vsi = vsi; 12921 12922 hw_enc_features = NETIF_F_SG | 12923 NETIF_F_IP_CSUM | 12924 NETIF_F_IPV6_CSUM | 12925 NETIF_F_HIGHDMA | 12926 NETIF_F_SOFT_FEATURES | 12927 NETIF_F_TSO | 12928 NETIF_F_TSO_ECN | 12929 NETIF_F_TSO6 | 12930 NETIF_F_GSO_GRE | 12931 NETIF_F_GSO_GRE_CSUM | 12932 NETIF_F_GSO_PARTIAL | 12933 NETIF_F_GSO_IPXIP4 | 12934 NETIF_F_GSO_IPXIP6 | 12935 NETIF_F_GSO_UDP_TUNNEL | 12936 NETIF_F_GSO_UDP_TUNNEL_CSUM | 12937 NETIF_F_GSO_UDP_L4 | 12938 NETIF_F_SCTP_CRC | 12939 NETIF_F_RXHASH | 12940 NETIF_F_RXCSUM | 12941 0; 12942 12943 if (!(pf->hw_features & I40E_HW_OUTER_UDP_CSUM_CAPABLE)) 12944 netdev->gso_partial_features |= NETIF_F_GSO_UDP_TUNNEL_CSUM; 12945 12946 netdev->gso_partial_features |= NETIF_F_GSO_GRE_CSUM; 12947 12948 netdev->hw_enc_features |= hw_enc_features; 12949 12950 /* record features VLANs can make use of */ 12951 netdev->vlan_features |= hw_enc_features | NETIF_F_TSO_MANGLEID; 12952 12953 /* enable macvlan offloads */ 12954 netdev->hw_features |= NETIF_F_HW_L2FW_DOFFLOAD; 12955 12956 hw_features = hw_enc_features | 12957 NETIF_F_HW_VLAN_CTAG_TX | 12958 NETIF_F_HW_VLAN_CTAG_RX; 12959 12960 if (!(pf->flags & I40E_FLAG_MFP_ENABLED)) 12961 hw_features |= NETIF_F_NTUPLE | NETIF_F_HW_TC; 12962 12963 netdev->hw_features |= hw_features; 12964 12965 netdev->features |= hw_features | NETIF_F_HW_VLAN_CTAG_FILTER; 12966 netdev->hw_enc_features |= NETIF_F_TSO_MANGLEID; 12967 12968 if (vsi->type == I40E_VSI_MAIN) { 12969 SET_NETDEV_DEV(netdev, &pf->pdev->dev); 12970 ether_addr_copy(mac_addr, hw->mac.perm_addr); 12971 /* The following steps are necessary for two reasons. First, 12972 * some older NVM configurations load a default MAC-VLAN 12973 * filter that will accept any tagged packet, and we want to 12974 * replace this with a normal filter. Additionally, it is 12975 * possible our MAC address was provided by the platform using 12976 * Open Firmware or similar. 12977 * 12978 * Thus, we need to remove the default filter and install one 12979 * specific to the MAC address. 12980 */ 12981 i40e_rm_default_mac_filter(vsi, mac_addr); 12982 spin_lock_bh(&vsi->mac_filter_hash_lock); 12983 i40e_add_mac_filter(vsi, mac_addr); 12984 spin_unlock_bh(&vsi->mac_filter_hash_lock); 12985 } else { 12986 /* Relate the VSI_VMDQ name to the VSI_MAIN name. Note that we 12987 * are still limited by IFNAMSIZ, but we're adding 'v%d\0' to 12988 * the end, which is 4 bytes long, so force truncation of the 12989 * original name by IFNAMSIZ - 4 12990 */ 12991 snprintf(netdev->name, IFNAMSIZ, "%.*sv%%d", 12992 IFNAMSIZ - 4, 12993 pf->vsi[pf->lan_vsi]->netdev->name); 12994 eth_random_addr(mac_addr); 12995 12996 spin_lock_bh(&vsi->mac_filter_hash_lock); 12997 i40e_add_mac_filter(vsi, mac_addr); 12998 spin_unlock_bh(&vsi->mac_filter_hash_lock); 12999 } 13000 13001 /* Add the broadcast filter so that we initially will receive 13002 * broadcast packets. Note that when a new VLAN is first added the 13003 * driver will convert all filters marked I40E_VLAN_ANY into VLAN 13004 * specific filters as part of transitioning into "vlan" operation. 13005 * When more VLANs are added, the driver will copy each existing MAC 13006 * filter and add it for the new VLAN. 13007 * 13008 * Broadcast filters are handled specially by 13009 * i40e_sync_filters_subtask, as the driver must to set the broadcast 13010 * promiscuous bit instead of adding this directly as a MAC/VLAN 13011 * filter. The subtask will update the correct broadcast promiscuous 13012 * bits as VLANs become active or inactive. 13013 */ 13014 eth_broadcast_addr(broadcast); 13015 spin_lock_bh(&vsi->mac_filter_hash_lock); 13016 i40e_add_mac_filter(vsi, broadcast); 13017 spin_unlock_bh(&vsi->mac_filter_hash_lock); 13018 13019 ether_addr_copy(netdev->dev_addr, mac_addr); 13020 ether_addr_copy(netdev->perm_addr, mac_addr); 13021 13022 /* i40iw_net_event() reads 16 bytes from neigh->primary_key */ 13023 netdev->neigh_priv_len = sizeof(u32) * 4; 13024 13025 netdev->priv_flags |= IFF_UNICAST_FLT; 13026 netdev->priv_flags |= IFF_SUPP_NOFCS; 13027 /* Setup netdev TC information */ 13028 i40e_vsi_config_netdev_tc(vsi, vsi->tc_config.enabled_tc); 13029 13030 netdev->netdev_ops = &i40e_netdev_ops; 13031 netdev->watchdog_timeo = 5 * HZ; 13032 i40e_set_ethtool_ops(netdev); 13033 13034 /* MTU range: 68 - 9706 */ 13035 netdev->min_mtu = ETH_MIN_MTU; 13036 netdev->max_mtu = I40E_MAX_RXBUFFER - I40E_PACKET_HDR_PAD; 13037 13038 return 0; 13039 } 13040 13041 /** 13042 * i40e_vsi_delete - Delete a VSI from the switch 13043 * @vsi: the VSI being removed 13044 * 13045 * Returns 0 on success, negative value on failure 13046 **/ 13047 static void i40e_vsi_delete(struct i40e_vsi *vsi) 13048 { 13049 /* remove default VSI is not allowed */ 13050 if (vsi == vsi->back->vsi[vsi->back->lan_vsi]) 13051 return; 13052 13053 i40e_aq_delete_element(&vsi->back->hw, vsi->seid, NULL); 13054 } 13055 13056 /** 13057 * i40e_is_vsi_uplink_mode_veb - Check if the VSI's uplink bridge mode is VEB 13058 * @vsi: the VSI being queried 13059 * 13060 * Returns 1 if HW bridge mode is VEB and return 0 in case of VEPA mode 13061 **/ 13062 int i40e_is_vsi_uplink_mode_veb(struct i40e_vsi *vsi) 13063 { 13064 struct i40e_veb *veb; 13065 struct i40e_pf *pf = vsi->back; 13066 13067 /* Uplink is not a bridge so default to VEB */ 13068 if (vsi->veb_idx >= I40E_MAX_VEB) 13069 return 1; 13070 13071 veb = pf->veb[vsi->veb_idx]; 13072 if (!veb) { 13073 dev_info(&pf->pdev->dev, 13074 "There is no veb associated with the bridge\n"); 13075 return -ENOENT; 13076 } 13077 13078 /* Uplink is a bridge in VEPA mode */ 13079 if (veb->bridge_mode & BRIDGE_MODE_VEPA) { 13080 return 0; 13081 } else { 13082 /* Uplink is a bridge in VEB mode */ 13083 return 1; 13084 } 13085 13086 /* VEPA is now default bridge, so return 0 */ 13087 return 0; 13088 } 13089 13090 /** 13091 * i40e_add_vsi - Add a VSI to the switch 13092 * @vsi: the VSI being configured 13093 * 13094 * This initializes a VSI context depending on the VSI type to be added and 13095 * passes it down to the add_vsi aq command. 13096 **/ 13097 static int i40e_add_vsi(struct i40e_vsi *vsi) 13098 { 13099 int ret = -ENODEV; 13100 struct i40e_pf *pf = vsi->back; 13101 struct i40e_hw *hw = &pf->hw; 13102 struct i40e_vsi_context ctxt; 13103 struct i40e_mac_filter *f; 13104 struct hlist_node *h; 13105 int bkt; 13106 13107 u8 enabled_tc = 0x1; /* TC0 enabled */ 13108 int f_count = 0; 13109 13110 memset(&ctxt, 0, sizeof(ctxt)); 13111 switch (vsi->type) { 13112 case I40E_VSI_MAIN: 13113 /* The PF's main VSI is already setup as part of the 13114 * device initialization, so we'll not bother with 13115 * the add_vsi call, but we will retrieve the current 13116 * VSI context. 13117 */ 13118 ctxt.seid = pf->main_vsi_seid; 13119 ctxt.pf_num = pf->hw.pf_id; 13120 ctxt.vf_num = 0; 13121 ret = i40e_aq_get_vsi_params(&pf->hw, &ctxt, NULL); 13122 ctxt.flags = I40E_AQ_VSI_TYPE_PF; 13123 if (ret) { 13124 dev_info(&pf->pdev->dev, 13125 "couldn't get PF vsi config, err %s aq_err %s\n", 13126 i40e_stat_str(&pf->hw, ret), 13127 i40e_aq_str(&pf->hw, 13128 pf->hw.aq.asq_last_status)); 13129 return -ENOENT; 13130 } 13131 vsi->info = ctxt.info; 13132 vsi->info.valid_sections = 0; 13133 13134 vsi->seid = ctxt.seid; 13135 vsi->id = ctxt.vsi_number; 13136 13137 enabled_tc = i40e_pf_get_tc_map(pf); 13138 13139 /* Source pruning is enabled by default, so the flag is 13140 * negative logic - if it's set, we need to fiddle with 13141 * the VSI to disable source pruning. 13142 */ 13143 if (pf->flags & I40E_FLAG_SOURCE_PRUNING_DISABLED) { 13144 memset(&ctxt, 0, sizeof(ctxt)); 13145 ctxt.seid = pf->main_vsi_seid; 13146 ctxt.pf_num = pf->hw.pf_id; 13147 ctxt.vf_num = 0; 13148 ctxt.info.valid_sections |= 13149 cpu_to_le16(I40E_AQ_VSI_PROP_SWITCH_VALID); 13150 ctxt.info.switch_id = 13151 cpu_to_le16(I40E_AQ_VSI_SW_ID_FLAG_LOCAL_LB); 13152 ret = i40e_aq_update_vsi_params(hw, &ctxt, NULL); 13153 if (ret) { 13154 dev_info(&pf->pdev->dev, 13155 "update vsi failed, err %s aq_err %s\n", 13156 i40e_stat_str(&pf->hw, ret), 13157 i40e_aq_str(&pf->hw, 13158 pf->hw.aq.asq_last_status)); 13159 ret = -ENOENT; 13160 goto err; 13161 } 13162 } 13163 13164 /* MFP mode setup queue map and update VSI */ 13165 if ((pf->flags & I40E_FLAG_MFP_ENABLED) && 13166 !(pf->hw.func_caps.iscsi)) { /* NIC type PF */ 13167 memset(&ctxt, 0, sizeof(ctxt)); 13168 ctxt.seid = pf->main_vsi_seid; 13169 ctxt.pf_num = pf->hw.pf_id; 13170 ctxt.vf_num = 0; 13171 i40e_vsi_setup_queue_map(vsi, &ctxt, enabled_tc, false); 13172 ret = i40e_aq_update_vsi_params(hw, &ctxt, NULL); 13173 if (ret) { 13174 dev_info(&pf->pdev->dev, 13175 "update vsi failed, err %s aq_err %s\n", 13176 i40e_stat_str(&pf->hw, ret), 13177 i40e_aq_str(&pf->hw, 13178 pf->hw.aq.asq_last_status)); 13179 ret = -ENOENT; 13180 goto err; 13181 } 13182 /* update the local VSI info queue map */ 13183 i40e_vsi_update_queue_map(vsi, &ctxt); 13184 vsi->info.valid_sections = 0; 13185 } else { 13186 /* Default/Main VSI is only enabled for TC0 13187 * reconfigure it to enable all TCs that are 13188 * available on the port in SFP mode. 13189 * For MFP case the iSCSI PF would use this 13190 * flow to enable LAN+iSCSI TC. 13191 */ 13192 ret = i40e_vsi_config_tc(vsi, enabled_tc); 13193 if (ret) { 13194 /* Single TC condition is not fatal, 13195 * message and continue 13196 */ 13197 dev_info(&pf->pdev->dev, 13198 "failed to configure TCs for main VSI tc_map 0x%08x, err %s aq_err %s\n", 13199 enabled_tc, 13200 i40e_stat_str(&pf->hw, ret), 13201 i40e_aq_str(&pf->hw, 13202 pf->hw.aq.asq_last_status)); 13203 } 13204 } 13205 break; 13206 13207 case I40E_VSI_FDIR: 13208 ctxt.pf_num = hw->pf_id; 13209 ctxt.vf_num = 0; 13210 ctxt.uplink_seid = vsi->uplink_seid; 13211 ctxt.connection_type = I40E_AQ_VSI_CONN_TYPE_NORMAL; 13212 ctxt.flags = I40E_AQ_VSI_TYPE_PF; 13213 if ((pf->flags & I40E_FLAG_VEB_MODE_ENABLED) && 13214 (i40e_is_vsi_uplink_mode_veb(vsi))) { 13215 ctxt.info.valid_sections |= 13216 cpu_to_le16(I40E_AQ_VSI_PROP_SWITCH_VALID); 13217 ctxt.info.switch_id = 13218 cpu_to_le16(I40E_AQ_VSI_SW_ID_FLAG_ALLOW_LB); 13219 } 13220 i40e_vsi_setup_queue_map(vsi, &ctxt, enabled_tc, true); 13221 break; 13222 13223 case I40E_VSI_VMDQ2: 13224 ctxt.pf_num = hw->pf_id; 13225 ctxt.vf_num = 0; 13226 ctxt.uplink_seid = vsi->uplink_seid; 13227 ctxt.connection_type = I40E_AQ_VSI_CONN_TYPE_NORMAL; 13228 ctxt.flags = I40E_AQ_VSI_TYPE_VMDQ2; 13229 13230 /* This VSI is connected to VEB so the switch_id 13231 * should be set to zero by default. 13232 */ 13233 if (i40e_is_vsi_uplink_mode_veb(vsi)) { 13234 ctxt.info.valid_sections |= 13235 cpu_to_le16(I40E_AQ_VSI_PROP_SWITCH_VALID); 13236 ctxt.info.switch_id = 13237 cpu_to_le16(I40E_AQ_VSI_SW_ID_FLAG_ALLOW_LB); 13238 } 13239 13240 /* Setup the VSI tx/rx queue map for TC0 only for now */ 13241 i40e_vsi_setup_queue_map(vsi, &ctxt, enabled_tc, true); 13242 break; 13243 13244 case I40E_VSI_SRIOV: 13245 ctxt.pf_num = hw->pf_id; 13246 ctxt.vf_num = vsi->vf_id + hw->func_caps.vf_base_id; 13247 ctxt.uplink_seid = vsi->uplink_seid; 13248 ctxt.connection_type = I40E_AQ_VSI_CONN_TYPE_NORMAL; 13249 ctxt.flags = I40E_AQ_VSI_TYPE_VF; 13250 13251 /* This VSI is connected to VEB so the switch_id 13252 * should be set to zero by default. 13253 */ 13254 if (i40e_is_vsi_uplink_mode_veb(vsi)) { 13255 ctxt.info.valid_sections |= 13256 cpu_to_le16(I40E_AQ_VSI_PROP_SWITCH_VALID); 13257 ctxt.info.switch_id = 13258 cpu_to_le16(I40E_AQ_VSI_SW_ID_FLAG_ALLOW_LB); 13259 } 13260 13261 if (vsi->back->flags & I40E_FLAG_IWARP_ENABLED) { 13262 ctxt.info.valid_sections |= 13263 cpu_to_le16(I40E_AQ_VSI_PROP_QUEUE_OPT_VALID); 13264 ctxt.info.queueing_opt_flags |= 13265 (I40E_AQ_VSI_QUE_OPT_TCP_ENA | 13266 I40E_AQ_VSI_QUE_OPT_RSS_LUT_VSI); 13267 } 13268 13269 ctxt.info.valid_sections |= cpu_to_le16(I40E_AQ_VSI_PROP_VLAN_VALID); 13270 ctxt.info.port_vlan_flags |= I40E_AQ_VSI_PVLAN_MODE_ALL; 13271 if (pf->vf[vsi->vf_id].spoofchk) { 13272 ctxt.info.valid_sections |= 13273 cpu_to_le16(I40E_AQ_VSI_PROP_SECURITY_VALID); 13274 ctxt.info.sec_flags |= 13275 (I40E_AQ_VSI_SEC_FLAG_ENABLE_VLAN_CHK | 13276 I40E_AQ_VSI_SEC_FLAG_ENABLE_MAC_CHK); 13277 } 13278 /* Setup the VSI tx/rx queue map for TC0 only for now */ 13279 i40e_vsi_setup_queue_map(vsi, &ctxt, enabled_tc, true); 13280 break; 13281 13282 case I40E_VSI_IWARP: 13283 /* send down message to iWARP */ 13284 break; 13285 13286 default: 13287 return -ENODEV; 13288 } 13289 13290 if (vsi->type != I40E_VSI_MAIN) { 13291 ret = i40e_aq_add_vsi(hw, &ctxt, NULL); 13292 if (ret) { 13293 dev_info(&vsi->back->pdev->dev, 13294 "add vsi failed, err %s aq_err %s\n", 13295 i40e_stat_str(&pf->hw, ret), 13296 i40e_aq_str(&pf->hw, 13297 pf->hw.aq.asq_last_status)); 13298 ret = -ENOENT; 13299 goto err; 13300 } 13301 vsi->info = ctxt.info; 13302 vsi->info.valid_sections = 0; 13303 vsi->seid = ctxt.seid; 13304 vsi->id = ctxt.vsi_number; 13305 } 13306 13307 vsi->active_filters = 0; 13308 clear_bit(__I40E_VSI_OVERFLOW_PROMISC, vsi->state); 13309 spin_lock_bh(&vsi->mac_filter_hash_lock); 13310 /* If macvlan filters already exist, force them to get loaded */ 13311 hash_for_each_safe(vsi->mac_filter_hash, bkt, h, f, hlist) { 13312 f->state = I40E_FILTER_NEW; 13313 f_count++; 13314 } 13315 spin_unlock_bh(&vsi->mac_filter_hash_lock); 13316 13317 if (f_count) { 13318 vsi->flags |= I40E_VSI_FLAG_FILTER_CHANGED; 13319 set_bit(__I40E_MACVLAN_SYNC_PENDING, pf->state); 13320 } 13321 13322 /* Update VSI BW information */ 13323 ret = i40e_vsi_get_bw_info(vsi); 13324 if (ret) { 13325 dev_info(&pf->pdev->dev, 13326 "couldn't get vsi bw info, err %s aq_err %s\n", 13327 i40e_stat_str(&pf->hw, ret), 13328 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 13329 /* VSI is already added so not tearing that up */ 13330 ret = 0; 13331 } 13332 13333 err: 13334 return ret; 13335 } 13336 13337 /** 13338 * i40e_vsi_release - Delete a VSI and free its resources 13339 * @vsi: the VSI being removed 13340 * 13341 * Returns 0 on success or < 0 on error 13342 **/ 13343 int i40e_vsi_release(struct i40e_vsi *vsi) 13344 { 13345 struct i40e_mac_filter *f; 13346 struct hlist_node *h; 13347 struct i40e_veb *veb = NULL; 13348 struct i40e_pf *pf; 13349 u16 uplink_seid; 13350 int i, n, bkt; 13351 13352 pf = vsi->back; 13353 13354 /* release of a VEB-owner or last VSI is not allowed */ 13355 if (vsi->flags & I40E_VSI_FLAG_VEB_OWNER) { 13356 dev_info(&pf->pdev->dev, "VSI %d has existing VEB %d\n", 13357 vsi->seid, vsi->uplink_seid); 13358 return -ENODEV; 13359 } 13360 if (vsi == pf->vsi[pf->lan_vsi] && 13361 !test_bit(__I40E_DOWN, pf->state)) { 13362 dev_info(&pf->pdev->dev, "Can't remove PF VSI\n"); 13363 return -ENODEV; 13364 } 13365 13366 uplink_seid = vsi->uplink_seid; 13367 if (vsi->type != I40E_VSI_SRIOV) { 13368 if (vsi->netdev_registered) { 13369 vsi->netdev_registered = false; 13370 if (vsi->netdev) { 13371 /* results in a call to i40e_close() */ 13372 unregister_netdev(vsi->netdev); 13373 } 13374 } else { 13375 i40e_vsi_close(vsi); 13376 } 13377 i40e_vsi_disable_irq(vsi); 13378 } 13379 13380 spin_lock_bh(&vsi->mac_filter_hash_lock); 13381 13382 /* clear the sync flag on all filters */ 13383 if (vsi->netdev) { 13384 __dev_uc_unsync(vsi->netdev, NULL); 13385 __dev_mc_unsync(vsi->netdev, NULL); 13386 } 13387 13388 /* make sure any remaining filters are marked for deletion */ 13389 hash_for_each_safe(vsi->mac_filter_hash, bkt, h, f, hlist) 13390 __i40e_del_filter(vsi, f); 13391 13392 spin_unlock_bh(&vsi->mac_filter_hash_lock); 13393 13394 i40e_sync_vsi_filters(vsi); 13395 13396 i40e_vsi_delete(vsi); 13397 i40e_vsi_free_q_vectors(vsi); 13398 if (vsi->netdev) { 13399 free_netdev(vsi->netdev); 13400 vsi->netdev = NULL; 13401 } 13402 i40e_vsi_clear_rings(vsi); 13403 i40e_vsi_clear(vsi); 13404 13405 /* If this was the last thing on the VEB, except for the 13406 * controlling VSI, remove the VEB, which puts the controlling 13407 * VSI onto the next level down in the switch. 13408 * 13409 * Well, okay, there's one more exception here: don't remove 13410 * the orphan VEBs yet. We'll wait for an explicit remove request 13411 * from up the network stack. 13412 */ 13413 for (n = 0, i = 0; i < pf->num_alloc_vsi; i++) { 13414 if (pf->vsi[i] && 13415 pf->vsi[i]->uplink_seid == uplink_seid && 13416 (pf->vsi[i]->flags & I40E_VSI_FLAG_VEB_OWNER) == 0) { 13417 n++; /* count the VSIs */ 13418 } 13419 } 13420 for (i = 0; i < I40E_MAX_VEB; i++) { 13421 if (!pf->veb[i]) 13422 continue; 13423 if (pf->veb[i]->uplink_seid == uplink_seid) 13424 n++; /* count the VEBs */ 13425 if (pf->veb[i]->seid == uplink_seid) 13426 veb = pf->veb[i]; 13427 } 13428 if (n == 0 && veb && veb->uplink_seid != 0) 13429 i40e_veb_release(veb); 13430 13431 return 0; 13432 } 13433 13434 /** 13435 * i40e_vsi_setup_vectors - Set up the q_vectors for the given VSI 13436 * @vsi: ptr to the VSI 13437 * 13438 * This should only be called after i40e_vsi_mem_alloc() which allocates the 13439 * corresponding SW VSI structure and initializes num_queue_pairs for the 13440 * newly allocated VSI. 13441 * 13442 * Returns 0 on success or negative on failure 13443 **/ 13444 static int i40e_vsi_setup_vectors(struct i40e_vsi *vsi) 13445 { 13446 int ret = -ENOENT; 13447 struct i40e_pf *pf = vsi->back; 13448 13449 if (vsi->q_vectors[0]) { 13450 dev_info(&pf->pdev->dev, "VSI %d has existing q_vectors\n", 13451 vsi->seid); 13452 return -EEXIST; 13453 } 13454 13455 if (vsi->base_vector) { 13456 dev_info(&pf->pdev->dev, "VSI %d has non-zero base vector %d\n", 13457 vsi->seid, vsi->base_vector); 13458 return -EEXIST; 13459 } 13460 13461 ret = i40e_vsi_alloc_q_vectors(vsi); 13462 if (ret) { 13463 dev_info(&pf->pdev->dev, 13464 "failed to allocate %d q_vector for VSI %d, ret=%d\n", 13465 vsi->num_q_vectors, vsi->seid, ret); 13466 vsi->num_q_vectors = 0; 13467 goto vector_setup_out; 13468 } 13469 13470 /* In Legacy mode, we do not have to get any other vector since we 13471 * piggyback on the misc/ICR0 for queue interrupts. 13472 */ 13473 if (!(pf->flags & I40E_FLAG_MSIX_ENABLED)) 13474 return ret; 13475 if (vsi->num_q_vectors) 13476 vsi->base_vector = i40e_get_lump(pf, pf->irq_pile, 13477 vsi->num_q_vectors, vsi->idx); 13478 if (vsi->base_vector < 0) { 13479 dev_info(&pf->pdev->dev, 13480 "failed to get tracking for %d vectors for VSI %d, err=%d\n", 13481 vsi->num_q_vectors, vsi->seid, vsi->base_vector); 13482 i40e_vsi_free_q_vectors(vsi); 13483 ret = -ENOENT; 13484 goto vector_setup_out; 13485 } 13486 13487 vector_setup_out: 13488 return ret; 13489 } 13490 13491 /** 13492 * i40e_vsi_reinit_setup - return and reallocate resources for a VSI 13493 * @vsi: pointer to the vsi. 13494 * 13495 * This re-allocates a vsi's queue resources. 13496 * 13497 * Returns pointer to the successfully allocated and configured VSI sw struct 13498 * on success, otherwise returns NULL on failure. 13499 **/ 13500 static struct i40e_vsi *i40e_vsi_reinit_setup(struct i40e_vsi *vsi) 13501 { 13502 u16 alloc_queue_pairs; 13503 struct i40e_pf *pf; 13504 u8 enabled_tc; 13505 int ret; 13506 13507 if (!vsi) 13508 return NULL; 13509 13510 pf = vsi->back; 13511 13512 i40e_put_lump(pf->qp_pile, vsi->base_queue, vsi->idx); 13513 i40e_vsi_clear_rings(vsi); 13514 13515 i40e_vsi_free_arrays(vsi, false); 13516 i40e_set_num_rings_in_vsi(vsi); 13517 ret = i40e_vsi_alloc_arrays(vsi, false); 13518 if (ret) 13519 goto err_vsi; 13520 13521 alloc_queue_pairs = vsi->alloc_queue_pairs * 13522 (i40e_enabled_xdp_vsi(vsi) ? 2 : 1); 13523 13524 ret = i40e_get_lump(pf, pf->qp_pile, alloc_queue_pairs, vsi->idx); 13525 if (ret < 0) { 13526 dev_info(&pf->pdev->dev, 13527 "failed to get tracking for %d queues for VSI %d err %d\n", 13528 alloc_queue_pairs, vsi->seid, ret); 13529 goto err_vsi; 13530 } 13531 vsi->base_queue = ret; 13532 13533 /* Update the FW view of the VSI. Force a reset of TC and queue 13534 * layout configurations. 13535 */ 13536 enabled_tc = pf->vsi[pf->lan_vsi]->tc_config.enabled_tc; 13537 pf->vsi[pf->lan_vsi]->tc_config.enabled_tc = 0; 13538 pf->vsi[pf->lan_vsi]->seid = pf->main_vsi_seid; 13539 i40e_vsi_config_tc(pf->vsi[pf->lan_vsi], enabled_tc); 13540 if (vsi->type == I40E_VSI_MAIN) 13541 i40e_rm_default_mac_filter(vsi, pf->hw.mac.perm_addr); 13542 13543 /* assign it some queues */ 13544 ret = i40e_alloc_rings(vsi); 13545 if (ret) 13546 goto err_rings; 13547 13548 /* map all of the rings to the q_vectors */ 13549 i40e_vsi_map_rings_to_vectors(vsi); 13550 return vsi; 13551 13552 err_rings: 13553 i40e_vsi_free_q_vectors(vsi); 13554 if (vsi->netdev_registered) { 13555 vsi->netdev_registered = false; 13556 unregister_netdev(vsi->netdev); 13557 free_netdev(vsi->netdev); 13558 vsi->netdev = NULL; 13559 } 13560 i40e_aq_delete_element(&pf->hw, vsi->seid, NULL); 13561 err_vsi: 13562 i40e_vsi_clear(vsi); 13563 return NULL; 13564 } 13565 13566 /** 13567 * i40e_vsi_setup - Set up a VSI by a given type 13568 * @pf: board private structure 13569 * @type: VSI type 13570 * @uplink_seid: the switch element to link to 13571 * @param1: usage depends upon VSI type. For VF types, indicates VF id 13572 * 13573 * This allocates the sw VSI structure and its queue resources, then add a VSI 13574 * to the identified VEB. 13575 * 13576 * Returns pointer to the successfully allocated and configure VSI sw struct on 13577 * success, otherwise returns NULL on failure. 13578 **/ 13579 struct i40e_vsi *i40e_vsi_setup(struct i40e_pf *pf, u8 type, 13580 u16 uplink_seid, u32 param1) 13581 { 13582 struct i40e_vsi *vsi = NULL; 13583 struct i40e_veb *veb = NULL; 13584 u16 alloc_queue_pairs; 13585 int ret, i; 13586 int v_idx; 13587 13588 /* The requested uplink_seid must be either 13589 * - the PF's port seid 13590 * no VEB is needed because this is the PF 13591 * or this is a Flow Director special case VSI 13592 * - seid of an existing VEB 13593 * - seid of a VSI that owns an existing VEB 13594 * - seid of a VSI that doesn't own a VEB 13595 * a new VEB is created and the VSI becomes the owner 13596 * - seid of the PF VSI, which is what creates the first VEB 13597 * this is a special case of the previous 13598 * 13599 * Find which uplink_seid we were given and create a new VEB if needed 13600 */ 13601 for (i = 0; i < I40E_MAX_VEB; i++) { 13602 if (pf->veb[i] && pf->veb[i]->seid == uplink_seid) { 13603 veb = pf->veb[i]; 13604 break; 13605 } 13606 } 13607 13608 if (!veb && uplink_seid != pf->mac_seid) { 13609 13610 for (i = 0; i < pf->num_alloc_vsi; i++) { 13611 if (pf->vsi[i] && pf->vsi[i]->seid == uplink_seid) { 13612 vsi = pf->vsi[i]; 13613 break; 13614 } 13615 } 13616 if (!vsi) { 13617 dev_info(&pf->pdev->dev, "no such uplink_seid %d\n", 13618 uplink_seid); 13619 return NULL; 13620 } 13621 13622 if (vsi->uplink_seid == pf->mac_seid) 13623 veb = i40e_veb_setup(pf, 0, pf->mac_seid, vsi->seid, 13624 vsi->tc_config.enabled_tc); 13625 else if ((vsi->flags & I40E_VSI_FLAG_VEB_OWNER) == 0) 13626 veb = i40e_veb_setup(pf, 0, vsi->uplink_seid, vsi->seid, 13627 vsi->tc_config.enabled_tc); 13628 if (veb) { 13629 if (vsi->seid != pf->vsi[pf->lan_vsi]->seid) { 13630 dev_info(&vsi->back->pdev->dev, 13631 "New VSI creation error, uplink seid of LAN VSI expected.\n"); 13632 return NULL; 13633 } 13634 /* We come up by default in VEPA mode if SRIOV is not 13635 * already enabled, in which case we can't force VEPA 13636 * mode. 13637 */ 13638 if (!(pf->flags & I40E_FLAG_VEB_MODE_ENABLED)) { 13639 veb->bridge_mode = BRIDGE_MODE_VEPA; 13640 pf->flags &= ~I40E_FLAG_VEB_MODE_ENABLED; 13641 } 13642 i40e_config_bridge_mode(veb); 13643 } 13644 for (i = 0; i < I40E_MAX_VEB && !veb; i++) { 13645 if (pf->veb[i] && pf->veb[i]->seid == vsi->uplink_seid) 13646 veb = pf->veb[i]; 13647 } 13648 if (!veb) { 13649 dev_info(&pf->pdev->dev, "couldn't add VEB\n"); 13650 return NULL; 13651 } 13652 13653 vsi->flags |= I40E_VSI_FLAG_VEB_OWNER; 13654 uplink_seid = veb->seid; 13655 } 13656 13657 /* get vsi sw struct */ 13658 v_idx = i40e_vsi_mem_alloc(pf, type); 13659 if (v_idx < 0) 13660 goto err_alloc; 13661 vsi = pf->vsi[v_idx]; 13662 if (!vsi) 13663 goto err_alloc; 13664 vsi->type = type; 13665 vsi->veb_idx = (veb ? veb->idx : I40E_NO_VEB); 13666 13667 if (type == I40E_VSI_MAIN) 13668 pf->lan_vsi = v_idx; 13669 else if (type == I40E_VSI_SRIOV) 13670 vsi->vf_id = param1; 13671 /* assign it some queues */ 13672 alloc_queue_pairs = vsi->alloc_queue_pairs * 13673 (i40e_enabled_xdp_vsi(vsi) ? 2 : 1); 13674 13675 ret = i40e_get_lump(pf, pf->qp_pile, alloc_queue_pairs, vsi->idx); 13676 if (ret < 0) { 13677 dev_info(&pf->pdev->dev, 13678 "failed to get tracking for %d queues for VSI %d err=%d\n", 13679 alloc_queue_pairs, vsi->seid, ret); 13680 goto err_vsi; 13681 } 13682 vsi->base_queue = ret; 13683 13684 /* get a VSI from the hardware */ 13685 vsi->uplink_seid = uplink_seid; 13686 ret = i40e_add_vsi(vsi); 13687 if (ret) 13688 goto err_vsi; 13689 13690 switch (vsi->type) { 13691 /* setup the netdev if needed */ 13692 case I40E_VSI_MAIN: 13693 case I40E_VSI_VMDQ2: 13694 ret = i40e_config_netdev(vsi); 13695 if (ret) 13696 goto err_netdev; 13697 ret = register_netdev(vsi->netdev); 13698 if (ret) 13699 goto err_netdev; 13700 vsi->netdev_registered = true; 13701 netif_carrier_off(vsi->netdev); 13702 #ifdef CONFIG_I40E_DCB 13703 /* Setup DCB netlink interface */ 13704 i40e_dcbnl_setup(vsi); 13705 #endif /* CONFIG_I40E_DCB */ 13706 /* fall through */ 13707 13708 case I40E_VSI_FDIR: 13709 /* set up vectors and rings if needed */ 13710 ret = i40e_vsi_setup_vectors(vsi); 13711 if (ret) 13712 goto err_msix; 13713 13714 ret = i40e_alloc_rings(vsi); 13715 if (ret) 13716 goto err_rings; 13717 13718 /* map all of the rings to the q_vectors */ 13719 i40e_vsi_map_rings_to_vectors(vsi); 13720 13721 i40e_vsi_reset_stats(vsi); 13722 break; 13723 13724 default: 13725 /* no netdev or rings for the other VSI types */ 13726 break; 13727 } 13728 13729 if ((pf->hw_features & I40E_HW_RSS_AQ_CAPABLE) && 13730 (vsi->type == I40E_VSI_VMDQ2)) { 13731 ret = i40e_vsi_config_rss(vsi); 13732 } 13733 return vsi; 13734 13735 err_rings: 13736 i40e_vsi_free_q_vectors(vsi); 13737 err_msix: 13738 if (vsi->netdev_registered) { 13739 vsi->netdev_registered = false; 13740 unregister_netdev(vsi->netdev); 13741 free_netdev(vsi->netdev); 13742 vsi->netdev = NULL; 13743 } 13744 err_netdev: 13745 i40e_aq_delete_element(&pf->hw, vsi->seid, NULL); 13746 err_vsi: 13747 i40e_vsi_clear(vsi); 13748 err_alloc: 13749 return NULL; 13750 } 13751 13752 /** 13753 * i40e_veb_get_bw_info - Query VEB BW information 13754 * @veb: the veb to query 13755 * 13756 * Query the Tx scheduler BW configuration data for given VEB 13757 **/ 13758 static int i40e_veb_get_bw_info(struct i40e_veb *veb) 13759 { 13760 struct i40e_aqc_query_switching_comp_ets_config_resp ets_data; 13761 struct i40e_aqc_query_switching_comp_bw_config_resp bw_data; 13762 struct i40e_pf *pf = veb->pf; 13763 struct i40e_hw *hw = &pf->hw; 13764 u32 tc_bw_max; 13765 int ret = 0; 13766 int i; 13767 13768 ret = i40e_aq_query_switch_comp_bw_config(hw, veb->seid, 13769 &bw_data, NULL); 13770 if (ret) { 13771 dev_info(&pf->pdev->dev, 13772 "query veb bw config failed, err %s aq_err %s\n", 13773 i40e_stat_str(&pf->hw, ret), 13774 i40e_aq_str(&pf->hw, hw->aq.asq_last_status)); 13775 goto out; 13776 } 13777 13778 ret = i40e_aq_query_switch_comp_ets_config(hw, veb->seid, 13779 &ets_data, NULL); 13780 if (ret) { 13781 dev_info(&pf->pdev->dev, 13782 "query veb bw ets config failed, err %s aq_err %s\n", 13783 i40e_stat_str(&pf->hw, ret), 13784 i40e_aq_str(&pf->hw, hw->aq.asq_last_status)); 13785 goto out; 13786 } 13787 13788 veb->bw_limit = le16_to_cpu(ets_data.port_bw_limit); 13789 veb->bw_max_quanta = ets_data.tc_bw_max; 13790 veb->is_abs_credits = bw_data.absolute_credits_enable; 13791 veb->enabled_tc = ets_data.tc_valid_bits; 13792 tc_bw_max = le16_to_cpu(bw_data.tc_bw_max[0]) | 13793 (le16_to_cpu(bw_data.tc_bw_max[1]) << 16); 13794 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 13795 veb->bw_tc_share_credits[i] = bw_data.tc_bw_share_credits[i]; 13796 veb->bw_tc_limit_credits[i] = 13797 le16_to_cpu(bw_data.tc_bw_limits[i]); 13798 veb->bw_tc_max_quanta[i] = ((tc_bw_max >> (i*4)) & 0x7); 13799 } 13800 13801 out: 13802 return ret; 13803 } 13804 13805 /** 13806 * i40e_veb_mem_alloc - Allocates the next available struct veb in the PF 13807 * @pf: board private structure 13808 * 13809 * On error: returns error code (negative) 13810 * On success: returns vsi index in PF (positive) 13811 **/ 13812 static int i40e_veb_mem_alloc(struct i40e_pf *pf) 13813 { 13814 int ret = -ENOENT; 13815 struct i40e_veb *veb; 13816 int i; 13817 13818 /* Need to protect the allocation of switch elements at the PF level */ 13819 mutex_lock(&pf->switch_mutex); 13820 13821 /* VEB list may be fragmented if VEB creation/destruction has 13822 * been happening. We can afford to do a quick scan to look 13823 * for any free slots in the list. 13824 * 13825 * find next empty veb slot, looping back around if necessary 13826 */ 13827 i = 0; 13828 while ((i < I40E_MAX_VEB) && (pf->veb[i] != NULL)) 13829 i++; 13830 if (i >= I40E_MAX_VEB) { 13831 ret = -ENOMEM; 13832 goto err_alloc_veb; /* out of VEB slots! */ 13833 } 13834 13835 veb = kzalloc(sizeof(*veb), GFP_KERNEL); 13836 if (!veb) { 13837 ret = -ENOMEM; 13838 goto err_alloc_veb; 13839 } 13840 veb->pf = pf; 13841 veb->idx = i; 13842 veb->enabled_tc = 1; 13843 13844 pf->veb[i] = veb; 13845 ret = i; 13846 err_alloc_veb: 13847 mutex_unlock(&pf->switch_mutex); 13848 return ret; 13849 } 13850 13851 /** 13852 * i40e_switch_branch_release - Delete a branch of the switch tree 13853 * @branch: where to start deleting 13854 * 13855 * This uses recursion to find the tips of the branch to be 13856 * removed, deleting until we get back to and can delete this VEB. 13857 **/ 13858 static void i40e_switch_branch_release(struct i40e_veb *branch) 13859 { 13860 struct i40e_pf *pf = branch->pf; 13861 u16 branch_seid = branch->seid; 13862 u16 veb_idx = branch->idx; 13863 int i; 13864 13865 /* release any VEBs on this VEB - RECURSION */ 13866 for (i = 0; i < I40E_MAX_VEB; i++) { 13867 if (!pf->veb[i]) 13868 continue; 13869 if (pf->veb[i]->uplink_seid == branch->seid) 13870 i40e_switch_branch_release(pf->veb[i]); 13871 } 13872 13873 /* Release the VSIs on this VEB, but not the owner VSI. 13874 * 13875 * NOTE: Removing the last VSI on a VEB has the SIDE EFFECT of removing 13876 * the VEB itself, so don't use (*branch) after this loop. 13877 */ 13878 for (i = 0; i < pf->num_alloc_vsi; i++) { 13879 if (!pf->vsi[i]) 13880 continue; 13881 if (pf->vsi[i]->uplink_seid == branch_seid && 13882 (pf->vsi[i]->flags & I40E_VSI_FLAG_VEB_OWNER) == 0) { 13883 i40e_vsi_release(pf->vsi[i]); 13884 } 13885 } 13886 13887 /* There's one corner case where the VEB might not have been 13888 * removed, so double check it here and remove it if needed. 13889 * This case happens if the veb was created from the debugfs 13890 * commands and no VSIs were added to it. 13891 */ 13892 if (pf->veb[veb_idx]) 13893 i40e_veb_release(pf->veb[veb_idx]); 13894 } 13895 13896 /** 13897 * i40e_veb_clear - remove veb struct 13898 * @veb: the veb to remove 13899 **/ 13900 static void i40e_veb_clear(struct i40e_veb *veb) 13901 { 13902 if (!veb) 13903 return; 13904 13905 if (veb->pf) { 13906 struct i40e_pf *pf = veb->pf; 13907 13908 mutex_lock(&pf->switch_mutex); 13909 if (pf->veb[veb->idx] == veb) 13910 pf->veb[veb->idx] = NULL; 13911 mutex_unlock(&pf->switch_mutex); 13912 } 13913 13914 kfree(veb); 13915 } 13916 13917 /** 13918 * i40e_veb_release - Delete a VEB and free its resources 13919 * @veb: the VEB being removed 13920 **/ 13921 void i40e_veb_release(struct i40e_veb *veb) 13922 { 13923 struct i40e_vsi *vsi = NULL; 13924 struct i40e_pf *pf; 13925 int i, n = 0; 13926 13927 pf = veb->pf; 13928 13929 /* find the remaining VSI and check for extras */ 13930 for (i = 0; i < pf->num_alloc_vsi; i++) { 13931 if (pf->vsi[i] && pf->vsi[i]->uplink_seid == veb->seid) { 13932 n++; 13933 vsi = pf->vsi[i]; 13934 } 13935 } 13936 if (n != 1) { 13937 dev_info(&pf->pdev->dev, 13938 "can't remove VEB %d with %d VSIs left\n", 13939 veb->seid, n); 13940 return; 13941 } 13942 13943 /* move the remaining VSI to uplink veb */ 13944 vsi->flags &= ~I40E_VSI_FLAG_VEB_OWNER; 13945 if (veb->uplink_seid) { 13946 vsi->uplink_seid = veb->uplink_seid; 13947 if (veb->uplink_seid == pf->mac_seid) 13948 vsi->veb_idx = I40E_NO_VEB; 13949 else 13950 vsi->veb_idx = veb->veb_idx; 13951 } else { 13952 /* floating VEB */ 13953 vsi->uplink_seid = pf->vsi[pf->lan_vsi]->uplink_seid; 13954 vsi->veb_idx = pf->vsi[pf->lan_vsi]->veb_idx; 13955 } 13956 13957 i40e_aq_delete_element(&pf->hw, veb->seid, NULL); 13958 i40e_veb_clear(veb); 13959 } 13960 13961 /** 13962 * i40e_add_veb - create the VEB in the switch 13963 * @veb: the VEB to be instantiated 13964 * @vsi: the controlling VSI 13965 **/ 13966 static int i40e_add_veb(struct i40e_veb *veb, struct i40e_vsi *vsi) 13967 { 13968 struct i40e_pf *pf = veb->pf; 13969 bool enable_stats = !!(pf->flags & I40E_FLAG_VEB_STATS_ENABLED); 13970 int ret; 13971 13972 ret = i40e_aq_add_veb(&pf->hw, veb->uplink_seid, vsi->seid, 13973 veb->enabled_tc, false, 13974 &veb->seid, enable_stats, NULL); 13975 13976 /* get a VEB from the hardware */ 13977 if (ret) { 13978 dev_info(&pf->pdev->dev, 13979 "couldn't add VEB, err %s aq_err %s\n", 13980 i40e_stat_str(&pf->hw, ret), 13981 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 13982 return -EPERM; 13983 } 13984 13985 /* get statistics counter */ 13986 ret = i40e_aq_get_veb_parameters(&pf->hw, veb->seid, NULL, NULL, 13987 &veb->stats_idx, NULL, NULL, NULL); 13988 if (ret) { 13989 dev_info(&pf->pdev->dev, 13990 "couldn't get VEB statistics idx, err %s aq_err %s\n", 13991 i40e_stat_str(&pf->hw, ret), 13992 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 13993 return -EPERM; 13994 } 13995 ret = i40e_veb_get_bw_info(veb); 13996 if (ret) { 13997 dev_info(&pf->pdev->dev, 13998 "couldn't get VEB bw info, err %s aq_err %s\n", 13999 i40e_stat_str(&pf->hw, ret), 14000 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 14001 i40e_aq_delete_element(&pf->hw, veb->seid, NULL); 14002 return -ENOENT; 14003 } 14004 14005 vsi->uplink_seid = veb->seid; 14006 vsi->veb_idx = veb->idx; 14007 vsi->flags |= I40E_VSI_FLAG_VEB_OWNER; 14008 14009 return 0; 14010 } 14011 14012 /** 14013 * i40e_veb_setup - Set up a VEB 14014 * @pf: board private structure 14015 * @flags: VEB setup flags 14016 * @uplink_seid: the switch element to link to 14017 * @vsi_seid: the initial VSI seid 14018 * @enabled_tc: Enabled TC bit-map 14019 * 14020 * This allocates the sw VEB structure and links it into the switch 14021 * It is possible and legal for this to be a duplicate of an already 14022 * existing VEB. It is also possible for both uplink and vsi seids 14023 * to be zero, in order to create a floating VEB. 14024 * 14025 * Returns pointer to the successfully allocated VEB sw struct on 14026 * success, otherwise returns NULL on failure. 14027 **/ 14028 struct i40e_veb *i40e_veb_setup(struct i40e_pf *pf, u16 flags, 14029 u16 uplink_seid, u16 vsi_seid, 14030 u8 enabled_tc) 14031 { 14032 struct i40e_veb *veb, *uplink_veb = NULL; 14033 int vsi_idx, veb_idx; 14034 int ret; 14035 14036 /* if one seid is 0, the other must be 0 to create a floating relay */ 14037 if ((uplink_seid == 0 || vsi_seid == 0) && 14038 (uplink_seid + vsi_seid != 0)) { 14039 dev_info(&pf->pdev->dev, 14040 "one, not both seid's are 0: uplink=%d vsi=%d\n", 14041 uplink_seid, vsi_seid); 14042 return NULL; 14043 } 14044 14045 /* make sure there is such a vsi and uplink */ 14046 for (vsi_idx = 0; vsi_idx < pf->num_alloc_vsi; vsi_idx++) 14047 if (pf->vsi[vsi_idx] && pf->vsi[vsi_idx]->seid == vsi_seid) 14048 break; 14049 if (vsi_idx == pf->num_alloc_vsi && vsi_seid != 0) { 14050 dev_info(&pf->pdev->dev, "vsi seid %d not found\n", 14051 vsi_seid); 14052 return NULL; 14053 } 14054 14055 if (uplink_seid && uplink_seid != pf->mac_seid) { 14056 for (veb_idx = 0; veb_idx < I40E_MAX_VEB; veb_idx++) { 14057 if (pf->veb[veb_idx] && 14058 pf->veb[veb_idx]->seid == uplink_seid) { 14059 uplink_veb = pf->veb[veb_idx]; 14060 break; 14061 } 14062 } 14063 if (!uplink_veb) { 14064 dev_info(&pf->pdev->dev, 14065 "uplink seid %d not found\n", uplink_seid); 14066 return NULL; 14067 } 14068 } 14069 14070 /* get veb sw struct */ 14071 veb_idx = i40e_veb_mem_alloc(pf); 14072 if (veb_idx < 0) 14073 goto err_alloc; 14074 veb = pf->veb[veb_idx]; 14075 veb->flags = flags; 14076 veb->uplink_seid = uplink_seid; 14077 veb->veb_idx = (uplink_veb ? uplink_veb->idx : I40E_NO_VEB); 14078 veb->enabled_tc = (enabled_tc ? enabled_tc : 0x1); 14079 14080 /* create the VEB in the switch */ 14081 ret = i40e_add_veb(veb, pf->vsi[vsi_idx]); 14082 if (ret) 14083 goto err_veb; 14084 if (vsi_idx == pf->lan_vsi) 14085 pf->lan_veb = veb->idx; 14086 14087 return veb; 14088 14089 err_veb: 14090 i40e_veb_clear(veb); 14091 err_alloc: 14092 return NULL; 14093 } 14094 14095 /** 14096 * i40e_setup_pf_switch_element - set PF vars based on switch type 14097 * @pf: board private structure 14098 * @ele: element we are building info from 14099 * @num_reported: total number of elements 14100 * @printconfig: should we print the contents 14101 * 14102 * helper function to assist in extracting a few useful SEID values. 14103 **/ 14104 static void i40e_setup_pf_switch_element(struct i40e_pf *pf, 14105 struct i40e_aqc_switch_config_element_resp *ele, 14106 u16 num_reported, bool printconfig) 14107 { 14108 u16 downlink_seid = le16_to_cpu(ele->downlink_seid); 14109 u16 uplink_seid = le16_to_cpu(ele->uplink_seid); 14110 u8 element_type = ele->element_type; 14111 u16 seid = le16_to_cpu(ele->seid); 14112 14113 if (printconfig) 14114 dev_info(&pf->pdev->dev, 14115 "type=%d seid=%d uplink=%d downlink=%d\n", 14116 element_type, seid, uplink_seid, downlink_seid); 14117 14118 switch (element_type) { 14119 case I40E_SWITCH_ELEMENT_TYPE_MAC: 14120 pf->mac_seid = seid; 14121 break; 14122 case I40E_SWITCH_ELEMENT_TYPE_VEB: 14123 /* Main VEB? */ 14124 if (uplink_seid != pf->mac_seid) 14125 break; 14126 if (pf->lan_veb >= I40E_MAX_VEB) { 14127 int v; 14128 14129 /* find existing or else empty VEB */ 14130 for (v = 0; v < I40E_MAX_VEB; v++) { 14131 if (pf->veb[v] && (pf->veb[v]->seid == seid)) { 14132 pf->lan_veb = v; 14133 break; 14134 } 14135 } 14136 if (pf->lan_veb >= I40E_MAX_VEB) { 14137 v = i40e_veb_mem_alloc(pf); 14138 if (v < 0) 14139 break; 14140 pf->lan_veb = v; 14141 } 14142 } 14143 if (pf->lan_veb >= I40E_MAX_VEB) 14144 break; 14145 14146 pf->veb[pf->lan_veb]->seid = seid; 14147 pf->veb[pf->lan_veb]->uplink_seid = pf->mac_seid; 14148 pf->veb[pf->lan_veb]->pf = pf; 14149 pf->veb[pf->lan_veb]->veb_idx = I40E_NO_VEB; 14150 break; 14151 case I40E_SWITCH_ELEMENT_TYPE_VSI: 14152 if (num_reported != 1) 14153 break; 14154 /* This is immediately after a reset so we can assume this is 14155 * the PF's VSI 14156 */ 14157 pf->mac_seid = uplink_seid; 14158 pf->pf_seid = downlink_seid; 14159 pf->main_vsi_seid = seid; 14160 if (printconfig) 14161 dev_info(&pf->pdev->dev, 14162 "pf_seid=%d main_vsi_seid=%d\n", 14163 pf->pf_seid, pf->main_vsi_seid); 14164 break; 14165 case I40E_SWITCH_ELEMENT_TYPE_PF: 14166 case I40E_SWITCH_ELEMENT_TYPE_VF: 14167 case I40E_SWITCH_ELEMENT_TYPE_EMP: 14168 case I40E_SWITCH_ELEMENT_TYPE_BMC: 14169 case I40E_SWITCH_ELEMENT_TYPE_PE: 14170 case I40E_SWITCH_ELEMENT_TYPE_PA: 14171 /* ignore these for now */ 14172 break; 14173 default: 14174 dev_info(&pf->pdev->dev, "unknown element type=%d seid=%d\n", 14175 element_type, seid); 14176 break; 14177 } 14178 } 14179 14180 /** 14181 * i40e_fetch_switch_configuration - Get switch config from firmware 14182 * @pf: board private structure 14183 * @printconfig: should we print the contents 14184 * 14185 * Get the current switch configuration from the device and 14186 * extract a few useful SEID values. 14187 **/ 14188 int i40e_fetch_switch_configuration(struct i40e_pf *pf, bool printconfig) 14189 { 14190 struct i40e_aqc_get_switch_config_resp *sw_config; 14191 u16 next_seid = 0; 14192 int ret = 0; 14193 u8 *aq_buf; 14194 int i; 14195 14196 aq_buf = kzalloc(I40E_AQ_LARGE_BUF, GFP_KERNEL); 14197 if (!aq_buf) 14198 return -ENOMEM; 14199 14200 sw_config = (struct i40e_aqc_get_switch_config_resp *)aq_buf; 14201 do { 14202 u16 num_reported, num_total; 14203 14204 ret = i40e_aq_get_switch_config(&pf->hw, sw_config, 14205 I40E_AQ_LARGE_BUF, 14206 &next_seid, NULL); 14207 if (ret) { 14208 dev_info(&pf->pdev->dev, 14209 "get switch config failed err %s aq_err %s\n", 14210 i40e_stat_str(&pf->hw, ret), 14211 i40e_aq_str(&pf->hw, 14212 pf->hw.aq.asq_last_status)); 14213 kfree(aq_buf); 14214 return -ENOENT; 14215 } 14216 14217 num_reported = le16_to_cpu(sw_config->header.num_reported); 14218 num_total = le16_to_cpu(sw_config->header.num_total); 14219 14220 if (printconfig) 14221 dev_info(&pf->pdev->dev, 14222 "header: %d reported %d total\n", 14223 num_reported, num_total); 14224 14225 for (i = 0; i < num_reported; i++) { 14226 struct i40e_aqc_switch_config_element_resp *ele = 14227 &sw_config->element[i]; 14228 14229 i40e_setup_pf_switch_element(pf, ele, num_reported, 14230 printconfig); 14231 } 14232 } while (next_seid != 0); 14233 14234 kfree(aq_buf); 14235 return ret; 14236 } 14237 14238 /** 14239 * i40e_setup_pf_switch - Setup the HW switch on startup or after reset 14240 * @pf: board private structure 14241 * @reinit: if the Main VSI needs to re-initialized. 14242 * 14243 * Returns 0 on success, negative value on failure 14244 **/ 14245 static int i40e_setup_pf_switch(struct i40e_pf *pf, bool reinit) 14246 { 14247 u16 flags = 0; 14248 int ret; 14249 14250 /* find out what's out there already */ 14251 ret = i40e_fetch_switch_configuration(pf, false); 14252 if (ret) { 14253 dev_info(&pf->pdev->dev, 14254 "couldn't fetch switch config, err %s aq_err %s\n", 14255 i40e_stat_str(&pf->hw, ret), 14256 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 14257 return ret; 14258 } 14259 i40e_pf_reset_stats(pf); 14260 14261 /* set the switch config bit for the whole device to 14262 * support limited promisc or true promisc 14263 * when user requests promisc. The default is limited 14264 * promisc. 14265 */ 14266 14267 if ((pf->hw.pf_id == 0) && 14268 !(pf->flags & I40E_FLAG_TRUE_PROMISC_SUPPORT)) { 14269 flags = I40E_AQ_SET_SWITCH_CFG_PROMISC; 14270 pf->last_sw_conf_flags = flags; 14271 } 14272 14273 if (pf->hw.pf_id == 0) { 14274 u16 valid_flags; 14275 14276 valid_flags = I40E_AQ_SET_SWITCH_CFG_PROMISC; 14277 ret = i40e_aq_set_switch_config(&pf->hw, flags, valid_flags, 0, 14278 NULL); 14279 if (ret && pf->hw.aq.asq_last_status != I40E_AQ_RC_ESRCH) { 14280 dev_info(&pf->pdev->dev, 14281 "couldn't set switch config bits, err %s aq_err %s\n", 14282 i40e_stat_str(&pf->hw, ret), 14283 i40e_aq_str(&pf->hw, 14284 pf->hw.aq.asq_last_status)); 14285 /* not a fatal problem, just keep going */ 14286 } 14287 pf->last_sw_conf_valid_flags = valid_flags; 14288 } 14289 14290 /* first time setup */ 14291 if (pf->lan_vsi == I40E_NO_VSI || reinit) { 14292 struct i40e_vsi *vsi = NULL; 14293 u16 uplink_seid; 14294 14295 /* Set up the PF VSI associated with the PF's main VSI 14296 * that is already in the HW switch 14297 */ 14298 if (pf->lan_veb < I40E_MAX_VEB && pf->veb[pf->lan_veb]) 14299 uplink_seid = pf->veb[pf->lan_veb]->seid; 14300 else 14301 uplink_seid = pf->mac_seid; 14302 if (pf->lan_vsi == I40E_NO_VSI) 14303 vsi = i40e_vsi_setup(pf, I40E_VSI_MAIN, uplink_seid, 0); 14304 else if (reinit) 14305 vsi = i40e_vsi_reinit_setup(pf->vsi[pf->lan_vsi]); 14306 if (!vsi) { 14307 dev_info(&pf->pdev->dev, "setup of MAIN VSI failed\n"); 14308 i40e_cloud_filter_exit(pf); 14309 i40e_fdir_teardown(pf); 14310 return -EAGAIN; 14311 } 14312 } else { 14313 /* force a reset of TC and queue layout configurations */ 14314 u8 enabled_tc = pf->vsi[pf->lan_vsi]->tc_config.enabled_tc; 14315 14316 pf->vsi[pf->lan_vsi]->tc_config.enabled_tc = 0; 14317 pf->vsi[pf->lan_vsi]->seid = pf->main_vsi_seid; 14318 i40e_vsi_config_tc(pf->vsi[pf->lan_vsi], enabled_tc); 14319 } 14320 i40e_vlan_stripping_disable(pf->vsi[pf->lan_vsi]); 14321 14322 i40e_fdir_sb_setup(pf); 14323 14324 /* Setup static PF queue filter control settings */ 14325 ret = i40e_setup_pf_filter_control(pf); 14326 if (ret) { 14327 dev_info(&pf->pdev->dev, "setup_pf_filter_control failed: %d\n", 14328 ret); 14329 /* Failure here should not stop continuing other steps */ 14330 } 14331 14332 /* enable RSS in the HW, even for only one queue, as the stack can use 14333 * the hash 14334 */ 14335 if ((pf->flags & I40E_FLAG_RSS_ENABLED)) 14336 i40e_pf_config_rss(pf); 14337 14338 /* fill in link information and enable LSE reporting */ 14339 i40e_link_event(pf); 14340 14341 /* Initialize user-specific link properties */ 14342 pf->fc_autoneg_status = ((pf->hw.phy.link_info.an_info & 14343 I40E_AQ_AN_COMPLETED) ? true : false); 14344 14345 i40e_ptp_init(pf); 14346 14347 /* repopulate tunnel port filters */ 14348 i40e_sync_udp_filters(pf); 14349 14350 return ret; 14351 } 14352 14353 /** 14354 * i40e_determine_queue_usage - Work out queue distribution 14355 * @pf: board private structure 14356 **/ 14357 static void i40e_determine_queue_usage(struct i40e_pf *pf) 14358 { 14359 int queues_left; 14360 int q_max; 14361 14362 pf->num_lan_qps = 0; 14363 14364 /* Find the max queues to be put into basic use. We'll always be 14365 * using TC0, whether or not DCB is running, and TC0 will get the 14366 * big RSS set. 14367 */ 14368 queues_left = pf->hw.func_caps.num_tx_qp; 14369 14370 if ((queues_left == 1) || 14371 !(pf->flags & I40E_FLAG_MSIX_ENABLED)) { 14372 /* one qp for PF, no queues for anything else */ 14373 queues_left = 0; 14374 pf->alloc_rss_size = pf->num_lan_qps = 1; 14375 14376 /* make sure all the fancies are disabled */ 14377 pf->flags &= ~(I40E_FLAG_RSS_ENABLED | 14378 I40E_FLAG_IWARP_ENABLED | 14379 I40E_FLAG_FD_SB_ENABLED | 14380 I40E_FLAG_FD_ATR_ENABLED | 14381 I40E_FLAG_DCB_CAPABLE | 14382 I40E_FLAG_DCB_ENABLED | 14383 I40E_FLAG_SRIOV_ENABLED | 14384 I40E_FLAG_VMDQ_ENABLED); 14385 pf->flags |= I40E_FLAG_FD_SB_INACTIVE; 14386 } else if (!(pf->flags & (I40E_FLAG_RSS_ENABLED | 14387 I40E_FLAG_FD_SB_ENABLED | 14388 I40E_FLAG_FD_ATR_ENABLED | 14389 I40E_FLAG_DCB_CAPABLE))) { 14390 /* one qp for PF */ 14391 pf->alloc_rss_size = pf->num_lan_qps = 1; 14392 queues_left -= pf->num_lan_qps; 14393 14394 pf->flags &= ~(I40E_FLAG_RSS_ENABLED | 14395 I40E_FLAG_IWARP_ENABLED | 14396 I40E_FLAG_FD_SB_ENABLED | 14397 I40E_FLAG_FD_ATR_ENABLED | 14398 I40E_FLAG_DCB_ENABLED | 14399 I40E_FLAG_VMDQ_ENABLED); 14400 pf->flags |= I40E_FLAG_FD_SB_INACTIVE; 14401 } else { 14402 /* Not enough queues for all TCs */ 14403 if ((pf->flags & I40E_FLAG_DCB_CAPABLE) && 14404 (queues_left < I40E_MAX_TRAFFIC_CLASS)) { 14405 pf->flags &= ~(I40E_FLAG_DCB_CAPABLE | 14406 I40E_FLAG_DCB_ENABLED); 14407 dev_info(&pf->pdev->dev, "not enough queues for DCB. DCB is disabled.\n"); 14408 } 14409 14410 /* limit lan qps to the smaller of qps, cpus or msix */ 14411 q_max = max_t(int, pf->rss_size_max, num_online_cpus()); 14412 q_max = min_t(int, q_max, pf->hw.func_caps.num_tx_qp); 14413 q_max = min_t(int, q_max, pf->hw.func_caps.num_msix_vectors); 14414 pf->num_lan_qps = q_max; 14415 14416 queues_left -= pf->num_lan_qps; 14417 } 14418 14419 if (pf->flags & I40E_FLAG_FD_SB_ENABLED) { 14420 if (queues_left > 1) { 14421 queues_left -= 1; /* save 1 queue for FD */ 14422 } else { 14423 pf->flags &= ~I40E_FLAG_FD_SB_ENABLED; 14424 pf->flags |= I40E_FLAG_FD_SB_INACTIVE; 14425 dev_info(&pf->pdev->dev, "not enough queues for Flow Director. Flow Director feature is disabled\n"); 14426 } 14427 } 14428 14429 if ((pf->flags & I40E_FLAG_SRIOV_ENABLED) && 14430 pf->num_vf_qps && pf->num_req_vfs && queues_left) { 14431 pf->num_req_vfs = min_t(int, pf->num_req_vfs, 14432 (queues_left / pf->num_vf_qps)); 14433 queues_left -= (pf->num_req_vfs * pf->num_vf_qps); 14434 } 14435 14436 if ((pf->flags & I40E_FLAG_VMDQ_ENABLED) && 14437 pf->num_vmdq_vsis && pf->num_vmdq_qps && queues_left) { 14438 pf->num_vmdq_vsis = min_t(int, pf->num_vmdq_vsis, 14439 (queues_left / pf->num_vmdq_qps)); 14440 queues_left -= (pf->num_vmdq_vsis * pf->num_vmdq_qps); 14441 } 14442 14443 pf->queues_left = queues_left; 14444 dev_dbg(&pf->pdev->dev, 14445 "qs_avail=%d FD SB=%d lan_qs=%d lan_tc0=%d vf=%d*%d vmdq=%d*%d, remaining=%d\n", 14446 pf->hw.func_caps.num_tx_qp, 14447 !!(pf->flags & I40E_FLAG_FD_SB_ENABLED), 14448 pf->num_lan_qps, pf->alloc_rss_size, pf->num_req_vfs, 14449 pf->num_vf_qps, pf->num_vmdq_vsis, pf->num_vmdq_qps, 14450 queues_left); 14451 } 14452 14453 /** 14454 * i40e_setup_pf_filter_control - Setup PF static filter control 14455 * @pf: PF to be setup 14456 * 14457 * i40e_setup_pf_filter_control sets up a PF's initial filter control 14458 * settings. If PE/FCoE are enabled then it will also set the per PF 14459 * based filter sizes required for them. It also enables Flow director, 14460 * ethertype and macvlan type filter settings for the pf. 14461 * 14462 * Returns 0 on success, negative on failure 14463 **/ 14464 static int i40e_setup_pf_filter_control(struct i40e_pf *pf) 14465 { 14466 struct i40e_filter_control_settings *settings = &pf->filter_settings; 14467 14468 settings->hash_lut_size = I40E_HASH_LUT_SIZE_128; 14469 14470 /* Flow Director is enabled */ 14471 if (pf->flags & (I40E_FLAG_FD_SB_ENABLED | I40E_FLAG_FD_ATR_ENABLED)) 14472 settings->enable_fdir = true; 14473 14474 /* Ethtype and MACVLAN filters enabled for PF */ 14475 settings->enable_ethtype = true; 14476 settings->enable_macvlan = true; 14477 14478 if (i40e_set_filter_control(&pf->hw, settings)) 14479 return -ENOENT; 14480 14481 return 0; 14482 } 14483 14484 #define INFO_STRING_LEN 255 14485 #define REMAIN(__x) (INFO_STRING_LEN - (__x)) 14486 static void i40e_print_features(struct i40e_pf *pf) 14487 { 14488 struct i40e_hw *hw = &pf->hw; 14489 char *buf; 14490 int i; 14491 14492 buf = kmalloc(INFO_STRING_LEN, GFP_KERNEL); 14493 if (!buf) 14494 return; 14495 14496 i = snprintf(buf, INFO_STRING_LEN, "Features: PF-id[%d]", hw->pf_id); 14497 #ifdef CONFIG_PCI_IOV 14498 i += scnprintf(&buf[i], REMAIN(i), " VFs: %d", pf->num_req_vfs); 14499 #endif 14500 i += scnprintf(&buf[i], REMAIN(i), " VSIs: %d QP: %d", 14501 pf->hw.func_caps.num_vsis, 14502 pf->vsi[pf->lan_vsi]->num_queue_pairs); 14503 if (pf->flags & I40E_FLAG_RSS_ENABLED) 14504 i += scnprintf(&buf[i], REMAIN(i), " RSS"); 14505 if (pf->flags & I40E_FLAG_FD_ATR_ENABLED) 14506 i += scnprintf(&buf[i], REMAIN(i), " FD_ATR"); 14507 if (pf->flags & I40E_FLAG_FD_SB_ENABLED) { 14508 i += scnprintf(&buf[i], REMAIN(i), " FD_SB"); 14509 i += scnprintf(&buf[i], REMAIN(i), " NTUPLE"); 14510 } 14511 if (pf->flags & I40E_FLAG_DCB_CAPABLE) 14512 i += scnprintf(&buf[i], REMAIN(i), " DCB"); 14513 i += scnprintf(&buf[i], REMAIN(i), " VxLAN"); 14514 i += scnprintf(&buf[i], REMAIN(i), " Geneve"); 14515 if (pf->flags & I40E_FLAG_PTP) 14516 i += scnprintf(&buf[i], REMAIN(i), " PTP"); 14517 if (pf->flags & I40E_FLAG_VEB_MODE_ENABLED) 14518 i += scnprintf(&buf[i], REMAIN(i), " VEB"); 14519 else 14520 i += scnprintf(&buf[i], REMAIN(i), " VEPA"); 14521 14522 dev_info(&pf->pdev->dev, "%s\n", buf); 14523 kfree(buf); 14524 WARN_ON(i > INFO_STRING_LEN); 14525 } 14526 14527 /** 14528 * i40e_get_platform_mac_addr - get platform-specific MAC address 14529 * @pdev: PCI device information struct 14530 * @pf: board private structure 14531 * 14532 * Look up the MAC address for the device. First we'll try 14533 * eth_platform_get_mac_address, which will check Open Firmware, or arch 14534 * specific fallback. Otherwise, we'll default to the stored value in 14535 * firmware. 14536 **/ 14537 static void i40e_get_platform_mac_addr(struct pci_dev *pdev, struct i40e_pf *pf) 14538 { 14539 if (eth_platform_get_mac_address(&pdev->dev, pf->hw.mac.addr)) 14540 i40e_get_mac_addr(&pf->hw, pf->hw.mac.addr); 14541 } 14542 14543 /** 14544 * i40e_set_fec_in_flags - helper function for setting FEC options in flags 14545 * @fec_cfg: FEC option to set in flags 14546 * @flags: ptr to flags in which we set FEC option 14547 **/ 14548 void i40e_set_fec_in_flags(u8 fec_cfg, u32 *flags) 14549 { 14550 if (fec_cfg & I40E_AQ_SET_FEC_AUTO) 14551 *flags |= I40E_FLAG_RS_FEC | I40E_FLAG_BASE_R_FEC; 14552 if ((fec_cfg & I40E_AQ_SET_FEC_REQUEST_RS) || 14553 (fec_cfg & I40E_AQ_SET_FEC_ABILITY_RS)) { 14554 *flags |= I40E_FLAG_RS_FEC; 14555 *flags &= ~I40E_FLAG_BASE_R_FEC; 14556 } 14557 if ((fec_cfg & I40E_AQ_SET_FEC_REQUEST_KR) || 14558 (fec_cfg & I40E_AQ_SET_FEC_ABILITY_KR)) { 14559 *flags |= I40E_FLAG_BASE_R_FEC; 14560 *flags &= ~I40E_FLAG_RS_FEC; 14561 } 14562 if (fec_cfg == 0) 14563 *flags &= ~(I40E_FLAG_RS_FEC | I40E_FLAG_BASE_R_FEC); 14564 } 14565 14566 /** 14567 * i40e_check_recovery_mode - check if we are running transition firmware 14568 * @pf: board private structure 14569 * 14570 * Check registers indicating the firmware runs in recovery mode. Sets the 14571 * appropriate driver state. 14572 * 14573 * Returns true if the recovery mode was detected, false otherwise 14574 **/ 14575 static bool i40e_check_recovery_mode(struct i40e_pf *pf) 14576 { 14577 u32 val = rd32(&pf->hw, I40E_GL_FWSTS) & I40E_GL_FWSTS_FWS1B_MASK; 14578 bool is_recovery_mode = false; 14579 14580 if (pf->hw.mac.type == I40E_MAC_XL710) 14581 is_recovery_mode = 14582 val == I40E_XL710_GL_FWSTS_FWS1B_REC_MOD_CORER_MASK || 14583 val == I40E_XL710_GL_FWSTS_FWS1B_REC_MOD_GLOBR_MASK || 14584 val == I40E_XL710_GL_FWSTS_FWS1B_REC_MOD_TRANSITION_MASK || 14585 val == I40E_XL710_GL_FWSTS_FWS1B_REC_MOD_NVM_MASK; 14586 if (pf->hw.mac.type == I40E_MAC_X722) 14587 is_recovery_mode = 14588 val == I40E_X722_GL_FWSTS_FWS1B_REC_MOD_CORER_MASK || 14589 val == I40E_X722_GL_FWSTS_FWS1B_REC_MOD_GLOBR_MASK; 14590 if (is_recovery_mode) { 14591 dev_notice(&pf->pdev->dev, "Firmware recovery mode detected. Limiting functionality.\n"); 14592 dev_notice(&pf->pdev->dev, "Refer to the Intel(R) Ethernet Adapters and Devices User Guide for details on firmware recovery mode.\n"); 14593 set_bit(__I40E_RECOVERY_MODE, pf->state); 14594 14595 return true; 14596 } 14597 if (test_and_clear_bit(__I40E_RECOVERY_MODE, pf->state)) 14598 dev_info(&pf->pdev->dev, "Reinitializing in normal mode with full functionality.\n"); 14599 14600 return false; 14601 } 14602 14603 /** 14604 * i40e_pf_loop_reset - perform reset in a loop. 14605 * @pf: board private structure 14606 * 14607 * This function is useful when a NIC is about to enter recovery mode. 14608 * When a NIC's internal data structures are corrupted the NIC's 14609 * firmware is going to enter recovery mode. 14610 * Right after a POR it takes about 7 minutes for firmware to enter 14611 * recovery mode. Until that time a NIC is in some kind of intermediate 14612 * state. After that time period the NIC almost surely enters 14613 * recovery mode. The only way for a driver to detect intermediate 14614 * state is to issue a series of pf-resets and check a return value. 14615 * If a PF reset returns success then the firmware could be in recovery 14616 * mode so the caller of this code needs to check for recovery mode 14617 * if this function returns success. There is a little chance that 14618 * firmware will hang in intermediate state forever. 14619 * Since waiting 7 minutes is quite a lot of time this function waits 14620 * 10 seconds and then gives up by returning an error. 14621 * 14622 * Return 0 on success, negative on failure. 14623 **/ 14624 static i40e_status i40e_pf_loop_reset(struct i40e_pf *pf) 14625 { 14626 const unsigned short MAX_CNT = 1000; 14627 const unsigned short MSECS = 10; 14628 struct i40e_hw *hw = &pf->hw; 14629 i40e_status ret; 14630 int cnt; 14631 14632 for (cnt = 0; cnt < MAX_CNT; ++cnt) { 14633 ret = i40e_pf_reset(hw); 14634 if (!ret) 14635 break; 14636 msleep(MSECS); 14637 } 14638 14639 if (cnt == MAX_CNT) { 14640 dev_info(&pf->pdev->dev, "PF reset failed: %d\n", ret); 14641 return ret; 14642 } 14643 14644 pf->pfr_count++; 14645 return ret; 14646 } 14647 14648 /** 14649 * i40e_init_recovery_mode - initialize subsystems needed in recovery mode 14650 * @pf: board private structure 14651 * @hw: ptr to the hardware info 14652 * 14653 * This function does a minimal setup of all subsystems needed for running 14654 * recovery mode. 14655 * 14656 * Returns 0 on success, negative on failure 14657 **/ 14658 static int i40e_init_recovery_mode(struct i40e_pf *pf, struct i40e_hw *hw) 14659 { 14660 struct i40e_vsi *vsi; 14661 int err; 14662 int v_idx; 14663 14664 pci_save_state(pf->pdev); 14665 14666 /* set up periodic task facility */ 14667 timer_setup(&pf->service_timer, i40e_service_timer, 0); 14668 pf->service_timer_period = HZ; 14669 14670 INIT_WORK(&pf->service_task, i40e_service_task); 14671 clear_bit(__I40E_SERVICE_SCHED, pf->state); 14672 14673 err = i40e_init_interrupt_scheme(pf); 14674 if (err) 14675 goto err_switch_setup; 14676 14677 /* The number of VSIs reported by the FW is the minimum guaranteed 14678 * to us; HW supports far more and we share the remaining pool with 14679 * the other PFs. We allocate space for more than the guarantee with 14680 * the understanding that we might not get them all later. 14681 */ 14682 if (pf->hw.func_caps.num_vsis < I40E_MIN_VSI_ALLOC) 14683 pf->num_alloc_vsi = I40E_MIN_VSI_ALLOC; 14684 else 14685 pf->num_alloc_vsi = pf->hw.func_caps.num_vsis; 14686 14687 /* Set up the vsi struct and our local tracking of the MAIN PF vsi. */ 14688 pf->vsi = kcalloc(pf->num_alloc_vsi, sizeof(struct i40e_vsi *), 14689 GFP_KERNEL); 14690 if (!pf->vsi) { 14691 err = -ENOMEM; 14692 goto err_switch_setup; 14693 } 14694 14695 /* We allocate one VSI which is needed as absolute minimum 14696 * in order to register the netdev 14697 */ 14698 v_idx = i40e_vsi_mem_alloc(pf, I40E_VSI_MAIN); 14699 if (v_idx < 0) 14700 goto err_switch_setup; 14701 pf->lan_vsi = v_idx; 14702 vsi = pf->vsi[v_idx]; 14703 if (!vsi) 14704 goto err_switch_setup; 14705 vsi->alloc_queue_pairs = 1; 14706 err = i40e_config_netdev(vsi); 14707 if (err) 14708 goto err_switch_setup; 14709 err = register_netdev(vsi->netdev); 14710 if (err) 14711 goto err_switch_setup; 14712 vsi->netdev_registered = true; 14713 i40e_dbg_pf_init(pf); 14714 14715 err = i40e_setup_misc_vector_for_recovery_mode(pf); 14716 if (err) 14717 goto err_switch_setup; 14718 14719 /* tell the firmware that we're starting */ 14720 i40e_send_version(pf); 14721 14722 /* since everything's happy, start the service_task timer */ 14723 mod_timer(&pf->service_timer, 14724 round_jiffies(jiffies + pf->service_timer_period)); 14725 14726 return 0; 14727 14728 err_switch_setup: 14729 i40e_reset_interrupt_capability(pf); 14730 del_timer_sync(&pf->service_timer); 14731 i40e_shutdown_adminq(hw); 14732 iounmap(hw->hw_addr); 14733 pci_disable_pcie_error_reporting(pf->pdev); 14734 pci_release_mem_regions(pf->pdev); 14735 pci_disable_device(pf->pdev); 14736 kfree(pf); 14737 14738 return err; 14739 } 14740 14741 /** 14742 * i40e_probe - Device initialization routine 14743 * @pdev: PCI device information struct 14744 * @ent: entry in i40e_pci_tbl 14745 * 14746 * i40e_probe initializes a PF identified by a pci_dev structure. 14747 * The OS initialization, configuring of the PF private structure, 14748 * and a hardware reset occur. 14749 * 14750 * Returns 0 on success, negative on failure 14751 **/ 14752 static int i40e_probe(struct pci_dev *pdev, const struct pci_device_id *ent) 14753 { 14754 struct i40e_aq_get_phy_abilities_resp abilities; 14755 struct i40e_pf *pf; 14756 struct i40e_hw *hw; 14757 static u16 pfs_found; 14758 u16 wol_nvm_bits; 14759 u16 link_status; 14760 int err; 14761 u32 val; 14762 u32 i; 14763 u8 set_fc_aq_fail; 14764 14765 err = pci_enable_device_mem(pdev); 14766 if (err) 14767 return err; 14768 14769 /* set up for high or low dma */ 14770 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)); 14771 if (err) { 14772 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)); 14773 if (err) { 14774 dev_err(&pdev->dev, 14775 "DMA configuration failed: 0x%x\n", err); 14776 goto err_dma; 14777 } 14778 } 14779 14780 /* set up pci connections */ 14781 err = pci_request_mem_regions(pdev, i40e_driver_name); 14782 if (err) { 14783 dev_info(&pdev->dev, 14784 "pci_request_selected_regions failed %d\n", err); 14785 goto err_pci_reg; 14786 } 14787 14788 pci_enable_pcie_error_reporting(pdev); 14789 pci_set_master(pdev); 14790 14791 /* Now that we have a PCI connection, we need to do the 14792 * low level device setup. This is primarily setting up 14793 * the Admin Queue structures and then querying for the 14794 * device's current profile information. 14795 */ 14796 pf = kzalloc(sizeof(*pf), GFP_KERNEL); 14797 if (!pf) { 14798 err = -ENOMEM; 14799 goto err_pf_alloc; 14800 } 14801 pf->next_vsi = 0; 14802 pf->pdev = pdev; 14803 set_bit(__I40E_DOWN, pf->state); 14804 14805 hw = &pf->hw; 14806 hw->back = pf; 14807 14808 pf->ioremap_len = min_t(int, pci_resource_len(pdev, 0), 14809 I40E_MAX_CSR_SPACE); 14810 /* We believe that the highest register to read is 14811 * I40E_GLGEN_STAT_CLEAR, so we check if the BAR size 14812 * is not less than that before mapping to prevent a 14813 * kernel panic. 14814 */ 14815 if (pf->ioremap_len < I40E_GLGEN_STAT_CLEAR) { 14816 dev_err(&pdev->dev, "Cannot map registers, bar size 0x%X too small, aborting\n", 14817 pf->ioremap_len); 14818 err = -ENOMEM; 14819 goto err_ioremap; 14820 } 14821 hw->hw_addr = ioremap(pci_resource_start(pdev, 0), pf->ioremap_len); 14822 if (!hw->hw_addr) { 14823 err = -EIO; 14824 dev_info(&pdev->dev, "ioremap(0x%04x, 0x%04x) failed: 0x%x\n", 14825 (unsigned int)pci_resource_start(pdev, 0), 14826 pf->ioremap_len, err); 14827 goto err_ioremap; 14828 } 14829 hw->vendor_id = pdev->vendor; 14830 hw->device_id = pdev->device; 14831 pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id); 14832 hw->subsystem_vendor_id = pdev->subsystem_vendor; 14833 hw->subsystem_device_id = pdev->subsystem_device; 14834 hw->bus.device = PCI_SLOT(pdev->devfn); 14835 hw->bus.func = PCI_FUNC(pdev->devfn); 14836 hw->bus.bus_id = pdev->bus->number; 14837 pf->instance = pfs_found; 14838 14839 /* Select something other than the 802.1ad ethertype for the 14840 * switch to use internally and drop on ingress. 14841 */ 14842 hw->switch_tag = 0xffff; 14843 hw->first_tag = ETH_P_8021AD; 14844 hw->second_tag = ETH_P_8021Q; 14845 14846 INIT_LIST_HEAD(&pf->l3_flex_pit_list); 14847 INIT_LIST_HEAD(&pf->l4_flex_pit_list); 14848 INIT_LIST_HEAD(&pf->ddp_old_prof); 14849 14850 /* set up the locks for the AQ, do this only once in probe 14851 * and destroy them only once in remove 14852 */ 14853 mutex_init(&hw->aq.asq_mutex); 14854 mutex_init(&hw->aq.arq_mutex); 14855 14856 pf->msg_enable = netif_msg_init(debug, 14857 NETIF_MSG_DRV | 14858 NETIF_MSG_PROBE | 14859 NETIF_MSG_LINK); 14860 if (debug < -1) 14861 pf->hw.debug_mask = debug; 14862 14863 /* do a special CORER for clearing PXE mode once at init */ 14864 if (hw->revision_id == 0 && 14865 (rd32(hw, I40E_GLLAN_RCTL_0) & I40E_GLLAN_RCTL_0_PXE_MODE_MASK)) { 14866 wr32(hw, I40E_GLGEN_RTRIG, I40E_GLGEN_RTRIG_CORER_MASK); 14867 i40e_flush(hw); 14868 msleep(200); 14869 pf->corer_count++; 14870 14871 i40e_clear_pxe_mode(hw); 14872 } 14873 14874 /* Reset here to make sure all is clean and to define PF 'n' */ 14875 i40e_clear_hw(hw); 14876 14877 err = i40e_set_mac_type(hw); 14878 if (err) { 14879 dev_warn(&pdev->dev, "unidentified MAC or BLANK NVM: %d\n", 14880 err); 14881 goto err_pf_reset; 14882 } 14883 14884 err = i40e_pf_loop_reset(pf); 14885 if (err) { 14886 dev_info(&pdev->dev, "Initial pf_reset failed: %d\n", err); 14887 goto err_pf_reset; 14888 } 14889 14890 i40e_check_recovery_mode(pf); 14891 14892 hw->aq.num_arq_entries = I40E_AQ_LEN; 14893 hw->aq.num_asq_entries = I40E_AQ_LEN; 14894 hw->aq.arq_buf_size = I40E_MAX_AQ_BUF_SIZE; 14895 hw->aq.asq_buf_size = I40E_MAX_AQ_BUF_SIZE; 14896 pf->adminq_work_limit = I40E_AQ_WORK_LIMIT; 14897 14898 snprintf(pf->int_name, sizeof(pf->int_name) - 1, 14899 "%s-%s:misc", 14900 dev_driver_string(&pf->pdev->dev), dev_name(&pdev->dev)); 14901 14902 err = i40e_init_shared_code(hw); 14903 if (err) { 14904 dev_warn(&pdev->dev, "unidentified MAC or BLANK NVM: %d\n", 14905 err); 14906 goto err_pf_reset; 14907 } 14908 14909 /* set up a default setting for link flow control */ 14910 pf->hw.fc.requested_mode = I40E_FC_NONE; 14911 14912 err = i40e_init_adminq(hw); 14913 if (err) { 14914 if (err == I40E_ERR_FIRMWARE_API_VERSION) 14915 dev_info(&pdev->dev, 14916 "The driver for the device stopped because the NVM image v%u.%u is newer than expected v%u.%u. You must install the most recent version of the network driver.\n", 14917 hw->aq.api_maj_ver, 14918 hw->aq.api_min_ver, 14919 I40E_FW_API_VERSION_MAJOR, 14920 I40E_FW_MINOR_VERSION(hw)); 14921 else 14922 dev_info(&pdev->dev, 14923 "The driver for the device stopped because the device firmware failed to init. Try updating your NVM image.\n"); 14924 14925 goto err_pf_reset; 14926 } 14927 i40e_get_oem_version(hw); 14928 14929 /* provide nvm, fw, api versions, vendor:device id, subsys vendor:device id */ 14930 dev_info(&pdev->dev, "fw %d.%d.%05d api %d.%d nvm %s [%04x:%04x] [%04x:%04x]\n", 14931 hw->aq.fw_maj_ver, hw->aq.fw_min_ver, hw->aq.fw_build, 14932 hw->aq.api_maj_ver, hw->aq.api_min_ver, 14933 i40e_nvm_version_str(hw), hw->vendor_id, hw->device_id, 14934 hw->subsystem_vendor_id, hw->subsystem_device_id); 14935 14936 if (hw->aq.api_maj_ver == I40E_FW_API_VERSION_MAJOR && 14937 hw->aq.api_min_ver > I40E_FW_MINOR_VERSION(hw)) 14938 dev_info(&pdev->dev, 14939 "The driver for the device detected a newer version of the NVM image v%u.%u than expected v%u.%u. Please install the most recent version of the network driver.\n", 14940 hw->aq.api_maj_ver, 14941 hw->aq.api_min_ver, 14942 I40E_FW_API_VERSION_MAJOR, 14943 I40E_FW_MINOR_VERSION(hw)); 14944 else if (hw->aq.api_maj_ver == 1 && hw->aq.api_min_ver < 4) 14945 dev_info(&pdev->dev, 14946 "The driver for the device detected an older version of the NVM image v%u.%u than expected v%u.%u. Please update the NVM image.\n", 14947 hw->aq.api_maj_ver, 14948 hw->aq.api_min_ver, 14949 I40E_FW_API_VERSION_MAJOR, 14950 I40E_FW_MINOR_VERSION(hw)); 14951 14952 i40e_verify_eeprom(pf); 14953 14954 /* Rev 0 hardware was never productized */ 14955 if (hw->revision_id < 1) 14956 dev_warn(&pdev->dev, "This device is a pre-production adapter/LOM. Please be aware there may be issues with your hardware. If you are experiencing problems please contact your Intel or hardware representative who provided you with this hardware.\n"); 14957 14958 i40e_clear_pxe_mode(hw); 14959 14960 err = i40e_get_capabilities(pf, i40e_aqc_opc_list_func_capabilities); 14961 if (err) 14962 goto err_adminq_setup; 14963 14964 err = i40e_sw_init(pf); 14965 if (err) { 14966 dev_info(&pdev->dev, "sw_init failed: %d\n", err); 14967 goto err_sw_init; 14968 } 14969 14970 if (test_bit(__I40E_RECOVERY_MODE, pf->state)) 14971 return i40e_init_recovery_mode(pf, hw); 14972 14973 err = i40e_init_lan_hmc(hw, hw->func_caps.num_tx_qp, 14974 hw->func_caps.num_rx_qp, 0, 0); 14975 if (err) { 14976 dev_info(&pdev->dev, "init_lan_hmc failed: %d\n", err); 14977 goto err_init_lan_hmc; 14978 } 14979 14980 err = i40e_configure_lan_hmc(hw, I40E_HMC_MODEL_DIRECT_ONLY); 14981 if (err) { 14982 dev_info(&pdev->dev, "configure_lan_hmc failed: %d\n", err); 14983 err = -ENOENT; 14984 goto err_configure_lan_hmc; 14985 } 14986 14987 /* Disable LLDP for NICs that have firmware versions lower than v4.3. 14988 * Ignore error return codes because if it was already disabled via 14989 * hardware settings this will fail 14990 */ 14991 if (pf->hw_features & I40E_HW_STOP_FW_LLDP) { 14992 dev_info(&pdev->dev, "Stopping firmware LLDP agent.\n"); 14993 i40e_aq_stop_lldp(hw, true, false, NULL); 14994 } 14995 14996 /* allow a platform config to override the HW addr */ 14997 i40e_get_platform_mac_addr(pdev, pf); 14998 14999 if (!is_valid_ether_addr(hw->mac.addr)) { 15000 dev_info(&pdev->dev, "invalid MAC address %pM\n", hw->mac.addr); 15001 err = -EIO; 15002 goto err_mac_addr; 15003 } 15004 dev_info(&pdev->dev, "MAC address: %pM\n", hw->mac.addr); 15005 ether_addr_copy(hw->mac.perm_addr, hw->mac.addr); 15006 i40e_get_port_mac_addr(hw, hw->mac.port_addr); 15007 if (is_valid_ether_addr(hw->mac.port_addr)) 15008 pf->hw_features |= I40E_HW_PORT_ID_VALID; 15009 15010 pci_set_drvdata(pdev, pf); 15011 pci_save_state(pdev); 15012 15013 dev_info(&pdev->dev, 15014 (pf->flags & I40E_FLAG_DISABLE_FW_LLDP) ? 15015 "FW LLDP is disabled\n" : 15016 "FW LLDP is enabled\n"); 15017 15018 /* Enable FW to write default DCB config on link-up */ 15019 i40e_aq_set_dcb_parameters(hw, true, NULL); 15020 15021 #ifdef CONFIG_I40E_DCB 15022 err = i40e_init_pf_dcb(pf); 15023 if (err) { 15024 dev_info(&pdev->dev, "DCB init failed %d, disabled\n", err); 15025 pf->flags &= ~(I40E_FLAG_DCB_CAPABLE | I40E_FLAG_DCB_ENABLED); 15026 /* Continue without DCB enabled */ 15027 } 15028 #endif /* CONFIG_I40E_DCB */ 15029 15030 /* set up periodic task facility */ 15031 timer_setup(&pf->service_timer, i40e_service_timer, 0); 15032 pf->service_timer_period = HZ; 15033 15034 INIT_WORK(&pf->service_task, i40e_service_task); 15035 clear_bit(__I40E_SERVICE_SCHED, pf->state); 15036 15037 /* NVM bit on means WoL disabled for the port */ 15038 i40e_read_nvm_word(hw, I40E_SR_NVM_WAKE_ON_LAN, &wol_nvm_bits); 15039 if (BIT (hw->port) & wol_nvm_bits || hw->partition_id != 1) 15040 pf->wol_en = false; 15041 else 15042 pf->wol_en = true; 15043 device_set_wakeup_enable(&pf->pdev->dev, pf->wol_en); 15044 15045 /* set up the main switch operations */ 15046 i40e_determine_queue_usage(pf); 15047 err = i40e_init_interrupt_scheme(pf); 15048 if (err) 15049 goto err_switch_setup; 15050 15051 /* The number of VSIs reported by the FW is the minimum guaranteed 15052 * to us; HW supports far more and we share the remaining pool with 15053 * the other PFs. We allocate space for more than the guarantee with 15054 * the understanding that we might not get them all later. 15055 */ 15056 if (pf->hw.func_caps.num_vsis < I40E_MIN_VSI_ALLOC) 15057 pf->num_alloc_vsi = I40E_MIN_VSI_ALLOC; 15058 else 15059 pf->num_alloc_vsi = pf->hw.func_caps.num_vsis; 15060 15061 /* Set up the *vsi struct and our local tracking of the MAIN PF vsi. */ 15062 pf->vsi = kcalloc(pf->num_alloc_vsi, sizeof(struct i40e_vsi *), 15063 GFP_KERNEL); 15064 if (!pf->vsi) { 15065 err = -ENOMEM; 15066 goto err_switch_setup; 15067 } 15068 15069 #ifdef CONFIG_PCI_IOV 15070 /* prep for VF support */ 15071 if ((pf->flags & I40E_FLAG_SRIOV_ENABLED) && 15072 (pf->flags & I40E_FLAG_MSIX_ENABLED) && 15073 !test_bit(__I40E_BAD_EEPROM, pf->state)) { 15074 if (pci_num_vf(pdev)) 15075 pf->flags |= I40E_FLAG_VEB_MODE_ENABLED; 15076 } 15077 #endif 15078 err = i40e_setup_pf_switch(pf, false); 15079 if (err) { 15080 dev_info(&pdev->dev, "setup_pf_switch failed: %d\n", err); 15081 goto err_vsis; 15082 } 15083 INIT_LIST_HEAD(&pf->vsi[pf->lan_vsi]->ch_list); 15084 15085 /* Make sure flow control is set according to current settings */ 15086 err = i40e_set_fc(hw, &set_fc_aq_fail, true); 15087 if (set_fc_aq_fail & I40E_SET_FC_AQ_FAIL_GET) 15088 dev_dbg(&pf->pdev->dev, 15089 "Set fc with err %s aq_err %s on get_phy_cap\n", 15090 i40e_stat_str(hw, err), 15091 i40e_aq_str(hw, hw->aq.asq_last_status)); 15092 if (set_fc_aq_fail & I40E_SET_FC_AQ_FAIL_SET) 15093 dev_dbg(&pf->pdev->dev, 15094 "Set fc with err %s aq_err %s on set_phy_config\n", 15095 i40e_stat_str(hw, err), 15096 i40e_aq_str(hw, hw->aq.asq_last_status)); 15097 if (set_fc_aq_fail & I40E_SET_FC_AQ_FAIL_UPDATE) 15098 dev_dbg(&pf->pdev->dev, 15099 "Set fc with err %s aq_err %s on get_link_info\n", 15100 i40e_stat_str(hw, err), 15101 i40e_aq_str(hw, hw->aq.asq_last_status)); 15102 15103 /* if FDIR VSI was set up, start it now */ 15104 for (i = 0; i < pf->num_alloc_vsi; i++) { 15105 if (pf->vsi[i] && pf->vsi[i]->type == I40E_VSI_FDIR) { 15106 i40e_vsi_open(pf->vsi[i]); 15107 break; 15108 } 15109 } 15110 15111 /* The driver only wants link up/down and module qualification 15112 * reports from firmware. Note the negative logic. 15113 */ 15114 err = i40e_aq_set_phy_int_mask(&pf->hw, 15115 ~(I40E_AQ_EVENT_LINK_UPDOWN | 15116 I40E_AQ_EVENT_MEDIA_NA | 15117 I40E_AQ_EVENT_MODULE_QUAL_FAIL), NULL); 15118 if (err) 15119 dev_info(&pf->pdev->dev, "set phy mask fail, err %s aq_err %s\n", 15120 i40e_stat_str(&pf->hw, err), 15121 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 15122 15123 /* Reconfigure hardware for allowing smaller MSS in the case 15124 * of TSO, so that we avoid the MDD being fired and causing 15125 * a reset in the case of small MSS+TSO. 15126 */ 15127 val = rd32(hw, I40E_REG_MSS); 15128 if ((val & I40E_REG_MSS_MIN_MASK) > I40E_64BYTE_MSS) { 15129 val &= ~I40E_REG_MSS_MIN_MASK; 15130 val |= I40E_64BYTE_MSS; 15131 wr32(hw, I40E_REG_MSS, val); 15132 } 15133 15134 if (pf->hw_features & I40E_HW_RESTART_AUTONEG) { 15135 msleep(75); 15136 err = i40e_aq_set_link_restart_an(&pf->hw, true, NULL); 15137 if (err) 15138 dev_info(&pf->pdev->dev, "link restart failed, err %s aq_err %s\n", 15139 i40e_stat_str(&pf->hw, err), 15140 i40e_aq_str(&pf->hw, 15141 pf->hw.aq.asq_last_status)); 15142 } 15143 /* The main driver is (mostly) up and happy. We need to set this state 15144 * before setting up the misc vector or we get a race and the vector 15145 * ends up disabled forever. 15146 */ 15147 clear_bit(__I40E_DOWN, pf->state); 15148 15149 /* In case of MSIX we are going to setup the misc vector right here 15150 * to handle admin queue events etc. In case of legacy and MSI 15151 * the misc functionality and queue processing is combined in 15152 * the same vector and that gets setup at open. 15153 */ 15154 if (pf->flags & I40E_FLAG_MSIX_ENABLED) { 15155 err = i40e_setup_misc_vector(pf); 15156 if (err) { 15157 dev_info(&pdev->dev, 15158 "setup of misc vector failed: %d\n", err); 15159 goto err_vsis; 15160 } 15161 } 15162 15163 #ifdef CONFIG_PCI_IOV 15164 /* prep for VF support */ 15165 if ((pf->flags & I40E_FLAG_SRIOV_ENABLED) && 15166 (pf->flags & I40E_FLAG_MSIX_ENABLED) && 15167 !test_bit(__I40E_BAD_EEPROM, pf->state)) { 15168 /* disable link interrupts for VFs */ 15169 val = rd32(hw, I40E_PFGEN_PORTMDIO_NUM); 15170 val &= ~I40E_PFGEN_PORTMDIO_NUM_VFLINK_STAT_ENA_MASK; 15171 wr32(hw, I40E_PFGEN_PORTMDIO_NUM, val); 15172 i40e_flush(hw); 15173 15174 if (pci_num_vf(pdev)) { 15175 dev_info(&pdev->dev, 15176 "Active VFs found, allocating resources.\n"); 15177 err = i40e_alloc_vfs(pf, pci_num_vf(pdev)); 15178 if (err) 15179 dev_info(&pdev->dev, 15180 "Error %d allocating resources for existing VFs\n", 15181 err); 15182 } 15183 } 15184 #endif /* CONFIG_PCI_IOV */ 15185 15186 if (pf->flags & I40E_FLAG_IWARP_ENABLED) { 15187 pf->iwarp_base_vector = i40e_get_lump(pf, pf->irq_pile, 15188 pf->num_iwarp_msix, 15189 I40E_IWARP_IRQ_PILE_ID); 15190 if (pf->iwarp_base_vector < 0) { 15191 dev_info(&pdev->dev, 15192 "failed to get tracking for %d vectors for IWARP err=%d\n", 15193 pf->num_iwarp_msix, pf->iwarp_base_vector); 15194 pf->flags &= ~I40E_FLAG_IWARP_ENABLED; 15195 } 15196 } 15197 15198 i40e_dbg_pf_init(pf); 15199 15200 /* tell the firmware that we're starting */ 15201 i40e_send_version(pf); 15202 15203 /* since everything's happy, start the service_task timer */ 15204 mod_timer(&pf->service_timer, 15205 round_jiffies(jiffies + pf->service_timer_period)); 15206 15207 /* add this PF to client device list and launch a client service task */ 15208 if (pf->flags & I40E_FLAG_IWARP_ENABLED) { 15209 err = i40e_lan_add_device(pf); 15210 if (err) 15211 dev_info(&pdev->dev, "Failed to add PF to client API service list: %d\n", 15212 err); 15213 } 15214 15215 #define PCI_SPEED_SIZE 8 15216 #define PCI_WIDTH_SIZE 8 15217 /* Devices on the IOSF bus do not have this information 15218 * and will report PCI Gen 1 x 1 by default so don't bother 15219 * checking them. 15220 */ 15221 if (!(pf->hw_features & I40E_HW_NO_PCI_LINK_CHECK)) { 15222 char speed[PCI_SPEED_SIZE] = "Unknown"; 15223 char width[PCI_WIDTH_SIZE] = "Unknown"; 15224 15225 /* Get the negotiated link width and speed from PCI config 15226 * space 15227 */ 15228 pcie_capability_read_word(pf->pdev, PCI_EXP_LNKSTA, 15229 &link_status); 15230 15231 i40e_set_pci_config_data(hw, link_status); 15232 15233 switch (hw->bus.speed) { 15234 case i40e_bus_speed_8000: 15235 strlcpy(speed, "8.0", PCI_SPEED_SIZE); break; 15236 case i40e_bus_speed_5000: 15237 strlcpy(speed, "5.0", PCI_SPEED_SIZE); break; 15238 case i40e_bus_speed_2500: 15239 strlcpy(speed, "2.5", PCI_SPEED_SIZE); break; 15240 default: 15241 break; 15242 } 15243 switch (hw->bus.width) { 15244 case i40e_bus_width_pcie_x8: 15245 strlcpy(width, "8", PCI_WIDTH_SIZE); break; 15246 case i40e_bus_width_pcie_x4: 15247 strlcpy(width, "4", PCI_WIDTH_SIZE); break; 15248 case i40e_bus_width_pcie_x2: 15249 strlcpy(width, "2", PCI_WIDTH_SIZE); break; 15250 case i40e_bus_width_pcie_x1: 15251 strlcpy(width, "1", PCI_WIDTH_SIZE); break; 15252 default: 15253 break; 15254 } 15255 15256 dev_info(&pdev->dev, "PCI-Express: Speed %sGT/s Width x%s\n", 15257 speed, width); 15258 15259 if (hw->bus.width < i40e_bus_width_pcie_x8 || 15260 hw->bus.speed < i40e_bus_speed_8000) { 15261 dev_warn(&pdev->dev, "PCI-Express bandwidth available for this device may be insufficient for optimal performance.\n"); 15262 dev_warn(&pdev->dev, "Please move the device to a different PCI-e link with more lanes and/or higher transfer rate.\n"); 15263 } 15264 } 15265 15266 /* get the requested speeds from the fw */ 15267 err = i40e_aq_get_phy_capabilities(hw, false, false, &abilities, NULL); 15268 if (err) 15269 dev_dbg(&pf->pdev->dev, "get requested speeds ret = %s last_status = %s\n", 15270 i40e_stat_str(&pf->hw, err), 15271 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 15272 pf->hw.phy.link_info.requested_speeds = abilities.link_speed; 15273 15274 /* set the FEC config due to the board capabilities */ 15275 i40e_set_fec_in_flags(abilities.fec_cfg_curr_mod_ext_info, &pf->flags); 15276 15277 /* get the supported phy types from the fw */ 15278 err = i40e_aq_get_phy_capabilities(hw, false, true, &abilities, NULL); 15279 if (err) 15280 dev_dbg(&pf->pdev->dev, "get supported phy types ret = %s last_status = %s\n", 15281 i40e_stat_str(&pf->hw, err), 15282 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 15283 15284 /* Add a filter to drop all Flow control frames from any VSI from being 15285 * transmitted. By doing so we stop a malicious VF from sending out 15286 * PAUSE or PFC frames and potentially controlling traffic for other 15287 * PF/VF VSIs. 15288 * The FW can still send Flow control frames if enabled. 15289 */ 15290 i40e_add_filter_to_drop_tx_flow_control_frames(&pf->hw, 15291 pf->main_vsi_seid); 15292 15293 if ((pf->hw.device_id == I40E_DEV_ID_10G_BASE_T) || 15294 (pf->hw.device_id == I40E_DEV_ID_10G_BASE_T4)) 15295 pf->hw_features |= I40E_HW_PHY_CONTROLS_LEDS; 15296 if (pf->hw.device_id == I40E_DEV_ID_SFP_I_X722) 15297 pf->hw_features |= I40E_HW_HAVE_CRT_RETIMER; 15298 /* print a string summarizing features */ 15299 i40e_print_features(pf); 15300 15301 return 0; 15302 15303 /* Unwind what we've done if something failed in the setup */ 15304 err_vsis: 15305 set_bit(__I40E_DOWN, pf->state); 15306 i40e_clear_interrupt_scheme(pf); 15307 kfree(pf->vsi); 15308 err_switch_setup: 15309 i40e_reset_interrupt_capability(pf); 15310 del_timer_sync(&pf->service_timer); 15311 err_mac_addr: 15312 err_configure_lan_hmc: 15313 (void)i40e_shutdown_lan_hmc(hw); 15314 err_init_lan_hmc: 15315 kfree(pf->qp_pile); 15316 err_sw_init: 15317 err_adminq_setup: 15318 err_pf_reset: 15319 iounmap(hw->hw_addr); 15320 err_ioremap: 15321 kfree(pf); 15322 err_pf_alloc: 15323 pci_disable_pcie_error_reporting(pdev); 15324 pci_release_mem_regions(pdev); 15325 err_pci_reg: 15326 err_dma: 15327 pci_disable_device(pdev); 15328 return err; 15329 } 15330 15331 /** 15332 * i40e_remove - Device removal routine 15333 * @pdev: PCI device information struct 15334 * 15335 * i40e_remove is called by the PCI subsystem to alert the driver 15336 * that is should release a PCI device. This could be caused by a 15337 * Hot-Plug event, or because the driver is going to be removed from 15338 * memory. 15339 **/ 15340 static void i40e_remove(struct pci_dev *pdev) 15341 { 15342 struct i40e_pf *pf = pci_get_drvdata(pdev); 15343 struct i40e_hw *hw = &pf->hw; 15344 i40e_status ret_code; 15345 int i; 15346 15347 i40e_dbg_pf_exit(pf); 15348 15349 i40e_ptp_stop(pf); 15350 15351 /* Disable RSS in hw */ 15352 i40e_write_rx_ctl(hw, I40E_PFQF_HENA(0), 0); 15353 i40e_write_rx_ctl(hw, I40E_PFQF_HENA(1), 0); 15354 15355 /* no more scheduling of any task */ 15356 set_bit(__I40E_SUSPENDED, pf->state); 15357 set_bit(__I40E_DOWN, pf->state); 15358 if (pf->service_timer.function) 15359 del_timer_sync(&pf->service_timer); 15360 if (pf->service_task.func) 15361 cancel_work_sync(&pf->service_task); 15362 15363 if (test_bit(__I40E_RECOVERY_MODE, pf->state)) { 15364 struct i40e_vsi *vsi = pf->vsi[0]; 15365 15366 /* We know that we have allocated only one vsi for this PF, 15367 * it was just for registering netdevice, so the interface 15368 * could be visible in the 'ifconfig' output 15369 */ 15370 unregister_netdev(vsi->netdev); 15371 free_netdev(vsi->netdev); 15372 15373 goto unmap; 15374 } 15375 15376 /* Client close must be called explicitly here because the timer 15377 * has been stopped. 15378 */ 15379 i40e_notify_client_of_netdev_close(pf->vsi[pf->lan_vsi], false); 15380 15381 if (pf->flags & I40E_FLAG_SRIOV_ENABLED) { 15382 i40e_free_vfs(pf); 15383 pf->flags &= ~I40E_FLAG_SRIOV_ENABLED; 15384 } 15385 15386 i40e_fdir_teardown(pf); 15387 15388 /* If there is a switch structure or any orphans, remove them. 15389 * This will leave only the PF's VSI remaining. 15390 */ 15391 for (i = 0; i < I40E_MAX_VEB; i++) { 15392 if (!pf->veb[i]) 15393 continue; 15394 15395 if (pf->veb[i]->uplink_seid == pf->mac_seid || 15396 pf->veb[i]->uplink_seid == 0) 15397 i40e_switch_branch_release(pf->veb[i]); 15398 } 15399 15400 /* Now we can shutdown the PF's VSI, just before we kill 15401 * adminq and hmc. 15402 */ 15403 if (pf->vsi[pf->lan_vsi]) 15404 i40e_vsi_release(pf->vsi[pf->lan_vsi]); 15405 15406 i40e_cloud_filter_exit(pf); 15407 15408 /* remove attached clients */ 15409 if (pf->flags & I40E_FLAG_IWARP_ENABLED) { 15410 ret_code = i40e_lan_del_device(pf); 15411 if (ret_code) 15412 dev_warn(&pdev->dev, "Failed to delete client device: %d\n", 15413 ret_code); 15414 } 15415 15416 /* shutdown and destroy the HMC */ 15417 if (hw->hmc.hmc_obj) { 15418 ret_code = i40e_shutdown_lan_hmc(hw); 15419 if (ret_code) 15420 dev_warn(&pdev->dev, 15421 "Failed to destroy the HMC resources: %d\n", 15422 ret_code); 15423 } 15424 15425 unmap: 15426 /* Free MSI/legacy interrupt 0 when in recovery mode. */ 15427 if (test_bit(__I40E_RECOVERY_MODE, pf->state) && 15428 !(pf->flags & I40E_FLAG_MSIX_ENABLED)) 15429 free_irq(pf->pdev->irq, pf); 15430 15431 /* shutdown the adminq */ 15432 i40e_shutdown_adminq(hw); 15433 15434 /* destroy the locks only once, here */ 15435 mutex_destroy(&hw->aq.arq_mutex); 15436 mutex_destroy(&hw->aq.asq_mutex); 15437 15438 /* Clear all dynamic memory lists of rings, q_vectors, and VSIs */ 15439 rtnl_lock(); 15440 i40e_clear_interrupt_scheme(pf); 15441 for (i = 0; i < pf->num_alloc_vsi; i++) { 15442 if (pf->vsi[i]) { 15443 if (!test_bit(__I40E_RECOVERY_MODE, pf->state)) 15444 i40e_vsi_clear_rings(pf->vsi[i]); 15445 i40e_vsi_clear(pf->vsi[i]); 15446 pf->vsi[i] = NULL; 15447 } 15448 } 15449 rtnl_unlock(); 15450 15451 for (i = 0; i < I40E_MAX_VEB; i++) { 15452 kfree(pf->veb[i]); 15453 pf->veb[i] = NULL; 15454 } 15455 15456 kfree(pf->qp_pile); 15457 kfree(pf->vsi); 15458 15459 iounmap(hw->hw_addr); 15460 kfree(pf); 15461 pci_release_mem_regions(pdev); 15462 15463 pci_disable_pcie_error_reporting(pdev); 15464 pci_disable_device(pdev); 15465 } 15466 15467 /** 15468 * i40e_pci_error_detected - warning that something funky happened in PCI land 15469 * @pdev: PCI device information struct 15470 * @error: the type of PCI error 15471 * 15472 * Called to warn that something happened and the error handling steps 15473 * are in progress. Allows the driver to quiesce things, be ready for 15474 * remediation. 15475 **/ 15476 static pci_ers_result_t i40e_pci_error_detected(struct pci_dev *pdev, 15477 enum pci_channel_state error) 15478 { 15479 struct i40e_pf *pf = pci_get_drvdata(pdev); 15480 15481 dev_info(&pdev->dev, "%s: error %d\n", __func__, error); 15482 15483 if (!pf) { 15484 dev_info(&pdev->dev, 15485 "Cannot recover - error happened during device probe\n"); 15486 return PCI_ERS_RESULT_DISCONNECT; 15487 } 15488 15489 /* shutdown all operations */ 15490 if (!test_bit(__I40E_SUSPENDED, pf->state)) 15491 i40e_prep_for_reset(pf, false); 15492 15493 /* Request a slot reset */ 15494 return PCI_ERS_RESULT_NEED_RESET; 15495 } 15496 15497 /** 15498 * i40e_pci_error_slot_reset - a PCI slot reset just happened 15499 * @pdev: PCI device information struct 15500 * 15501 * Called to find if the driver can work with the device now that 15502 * the pci slot has been reset. If a basic connection seems good 15503 * (registers are readable and have sane content) then return a 15504 * happy little PCI_ERS_RESULT_xxx. 15505 **/ 15506 static pci_ers_result_t i40e_pci_error_slot_reset(struct pci_dev *pdev) 15507 { 15508 struct i40e_pf *pf = pci_get_drvdata(pdev); 15509 pci_ers_result_t result; 15510 u32 reg; 15511 15512 dev_dbg(&pdev->dev, "%s\n", __func__); 15513 if (pci_enable_device_mem(pdev)) { 15514 dev_info(&pdev->dev, 15515 "Cannot re-enable PCI device after reset.\n"); 15516 result = PCI_ERS_RESULT_DISCONNECT; 15517 } else { 15518 pci_set_master(pdev); 15519 pci_restore_state(pdev); 15520 pci_save_state(pdev); 15521 pci_wake_from_d3(pdev, false); 15522 15523 reg = rd32(&pf->hw, I40E_GLGEN_RTRIG); 15524 if (reg == 0) 15525 result = PCI_ERS_RESULT_RECOVERED; 15526 else 15527 result = PCI_ERS_RESULT_DISCONNECT; 15528 } 15529 15530 return result; 15531 } 15532 15533 /** 15534 * i40e_pci_error_reset_prepare - prepare device driver for pci reset 15535 * @pdev: PCI device information struct 15536 */ 15537 static void i40e_pci_error_reset_prepare(struct pci_dev *pdev) 15538 { 15539 struct i40e_pf *pf = pci_get_drvdata(pdev); 15540 15541 i40e_prep_for_reset(pf, false); 15542 } 15543 15544 /** 15545 * i40e_pci_error_reset_done - pci reset done, device driver reset can begin 15546 * @pdev: PCI device information struct 15547 */ 15548 static void i40e_pci_error_reset_done(struct pci_dev *pdev) 15549 { 15550 struct i40e_pf *pf = pci_get_drvdata(pdev); 15551 15552 i40e_reset_and_rebuild(pf, false, false); 15553 } 15554 15555 /** 15556 * i40e_pci_error_resume - restart operations after PCI error recovery 15557 * @pdev: PCI device information struct 15558 * 15559 * Called to allow the driver to bring things back up after PCI error 15560 * and/or reset recovery has finished. 15561 **/ 15562 static void i40e_pci_error_resume(struct pci_dev *pdev) 15563 { 15564 struct i40e_pf *pf = pci_get_drvdata(pdev); 15565 15566 dev_dbg(&pdev->dev, "%s\n", __func__); 15567 if (test_bit(__I40E_SUSPENDED, pf->state)) 15568 return; 15569 15570 i40e_handle_reset_warning(pf, false); 15571 } 15572 15573 /** 15574 * i40e_enable_mc_magic_wake - enable multicast magic packet wake up 15575 * using the mac_address_write admin q function 15576 * @pf: pointer to i40e_pf struct 15577 **/ 15578 static void i40e_enable_mc_magic_wake(struct i40e_pf *pf) 15579 { 15580 struct i40e_hw *hw = &pf->hw; 15581 i40e_status ret; 15582 u8 mac_addr[6]; 15583 u16 flags = 0; 15584 15585 /* Get current MAC address in case it's an LAA */ 15586 if (pf->vsi[pf->lan_vsi] && pf->vsi[pf->lan_vsi]->netdev) { 15587 ether_addr_copy(mac_addr, 15588 pf->vsi[pf->lan_vsi]->netdev->dev_addr); 15589 } else { 15590 dev_err(&pf->pdev->dev, 15591 "Failed to retrieve MAC address; using default\n"); 15592 ether_addr_copy(mac_addr, hw->mac.addr); 15593 } 15594 15595 /* The FW expects the mac address write cmd to first be called with 15596 * one of these flags before calling it again with the multicast 15597 * enable flags. 15598 */ 15599 flags = I40E_AQC_WRITE_TYPE_LAA_WOL; 15600 15601 if (hw->func_caps.flex10_enable && hw->partition_id != 1) 15602 flags = I40E_AQC_WRITE_TYPE_LAA_ONLY; 15603 15604 ret = i40e_aq_mac_address_write(hw, flags, mac_addr, NULL); 15605 if (ret) { 15606 dev_err(&pf->pdev->dev, 15607 "Failed to update MAC address registers; cannot enable Multicast Magic packet wake up"); 15608 return; 15609 } 15610 15611 flags = I40E_AQC_MC_MAG_EN 15612 | I40E_AQC_WOL_PRESERVE_ON_PFR 15613 | I40E_AQC_WRITE_TYPE_UPDATE_MC_MAG; 15614 ret = i40e_aq_mac_address_write(hw, flags, mac_addr, NULL); 15615 if (ret) 15616 dev_err(&pf->pdev->dev, 15617 "Failed to enable Multicast Magic Packet wake up\n"); 15618 } 15619 15620 /** 15621 * i40e_shutdown - PCI callback for shutting down 15622 * @pdev: PCI device information struct 15623 **/ 15624 static void i40e_shutdown(struct pci_dev *pdev) 15625 { 15626 struct i40e_pf *pf = pci_get_drvdata(pdev); 15627 struct i40e_hw *hw = &pf->hw; 15628 15629 set_bit(__I40E_SUSPENDED, pf->state); 15630 set_bit(__I40E_DOWN, pf->state); 15631 15632 del_timer_sync(&pf->service_timer); 15633 cancel_work_sync(&pf->service_task); 15634 i40e_cloud_filter_exit(pf); 15635 i40e_fdir_teardown(pf); 15636 15637 /* Client close must be called explicitly here because the timer 15638 * has been stopped. 15639 */ 15640 i40e_notify_client_of_netdev_close(pf->vsi[pf->lan_vsi], false); 15641 15642 if (pf->wol_en && (pf->hw_features & I40E_HW_WOL_MC_MAGIC_PKT_WAKE)) 15643 i40e_enable_mc_magic_wake(pf); 15644 15645 i40e_prep_for_reset(pf, false); 15646 15647 wr32(hw, I40E_PFPM_APM, 15648 (pf->wol_en ? I40E_PFPM_APM_APME_MASK : 0)); 15649 wr32(hw, I40E_PFPM_WUFC, 15650 (pf->wol_en ? I40E_PFPM_WUFC_MAG_MASK : 0)); 15651 15652 /* Free MSI/legacy interrupt 0 when in recovery mode. */ 15653 if (test_bit(__I40E_RECOVERY_MODE, pf->state) && 15654 !(pf->flags & I40E_FLAG_MSIX_ENABLED)) 15655 free_irq(pf->pdev->irq, pf); 15656 15657 /* Since we're going to destroy queues during the 15658 * i40e_clear_interrupt_scheme() we should hold the RTNL lock for this 15659 * whole section 15660 */ 15661 rtnl_lock(); 15662 i40e_clear_interrupt_scheme(pf); 15663 rtnl_unlock(); 15664 15665 if (system_state == SYSTEM_POWER_OFF) { 15666 pci_wake_from_d3(pdev, pf->wol_en); 15667 pci_set_power_state(pdev, PCI_D3hot); 15668 } 15669 } 15670 15671 /** 15672 * i40e_suspend - PM callback for moving to D3 15673 * @dev: generic device information structure 15674 **/ 15675 static int __maybe_unused i40e_suspend(struct device *dev) 15676 { 15677 struct i40e_pf *pf = dev_get_drvdata(dev); 15678 struct i40e_hw *hw = &pf->hw; 15679 15680 /* If we're already suspended, then there is nothing to do */ 15681 if (test_and_set_bit(__I40E_SUSPENDED, pf->state)) 15682 return 0; 15683 15684 set_bit(__I40E_DOWN, pf->state); 15685 15686 /* Ensure service task will not be running */ 15687 del_timer_sync(&pf->service_timer); 15688 cancel_work_sync(&pf->service_task); 15689 15690 /* Client close must be called explicitly here because the timer 15691 * has been stopped. 15692 */ 15693 i40e_notify_client_of_netdev_close(pf->vsi[pf->lan_vsi], false); 15694 15695 if (pf->wol_en && (pf->hw_features & I40E_HW_WOL_MC_MAGIC_PKT_WAKE)) 15696 i40e_enable_mc_magic_wake(pf); 15697 15698 /* Since we're going to destroy queues during the 15699 * i40e_clear_interrupt_scheme() we should hold the RTNL lock for this 15700 * whole section 15701 */ 15702 rtnl_lock(); 15703 15704 i40e_prep_for_reset(pf, true); 15705 15706 wr32(hw, I40E_PFPM_APM, (pf->wol_en ? I40E_PFPM_APM_APME_MASK : 0)); 15707 wr32(hw, I40E_PFPM_WUFC, (pf->wol_en ? I40E_PFPM_WUFC_MAG_MASK : 0)); 15708 15709 /* Clear the interrupt scheme and release our IRQs so that the system 15710 * can safely hibernate even when there are a large number of CPUs. 15711 * Otherwise hibernation might fail when mapping all the vectors back 15712 * to CPU0. 15713 */ 15714 i40e_clear_interrupt_scheme(pf); 15715 15716 rtnl_unlock(); 15717 15718 return 0; 15719 } 15720 15721 /** 15722 * i40e_resume - PM callback for waking up from D3 15723 * @dev: generic device information structure 15724 **/ 15725 static int __maybe_unused i40e_resume(struct device *dev) 15726 { 15727 struct i40e_pf *pf = dev_get_drvdata(dev); 15728 int err; 15729 15730 /* If we're not suspended, then there is nothing to do */ 15731 if (!test_bit(__I40E_SUSPENDED, pf->state)) 15732 return 0; 15733 15734 /* We need to hold the RTNL lock prior to restoring interrupt schemes, 15735 * since we're going to be restoring queues 15736 */ 15737 rtnl_lock(); 15738 15739 /* We cleared the interrupt scheme when we suspended, so we need to 15740 * restore it now to resume device functionality. 15741 */ 15742 err = i40e_restore_interrupt_scheme(pf); 15743 if (err) { 15744 dev_err(dev, "Cannot restore interrupt scheme: %d\n", 15745 err); 15746 } 15747 15748 clear_bit(__I40E_DOWN, pf->state); 15749 i40e_reset_and_rebuild(pf, false, true); 15750 15751 rtnl_unlock(); 15752 15753 /* Clear suspended state last after everything is recovered */ 15754 clear_bit(__I40E_SUSPENDED, pf->state); 15755 15756 /* Restart the service task */ 15757 mod_timer(&pf->service_timer, 15758 round_jiffies(jiffies + pf->service_timer_period)); 15759 15760 return 0; 15761 } 15762 15763 static const struct pci_error_handlers i40e_err_handler = { 15764 .error_detected = i40e_pci_error_detected, 15765 .slot_reset = i40e_pci_error_slot_reset, 15766 .reset_prepare = i40e_pci_error_reset_prepare, 15767 .reset_done = i40e_pci_error_reset_done, 15768 .resume = i40e_pci_error_resume, 15769 }; 15770 15771 static SIMPLE_DEV_PM_OPS(i40e_pm_ops, i40e_suspend, i40e_resume); 15772 15773 static struct pci_driver i40e_driver = { 15774 .name = i40e_driver_name, 15775 .id_table = i40e_pci_tbl, 15776 .probe = i40e_probe, 15777 .remove = i40e_remove, 15778 .driver = { 15779 .pm = &i40e_pm_ops, 15780 }, 15781 .shutdown = i40e_shutdown, 15782 .err_handler = &i40e_err_handler, 15783 .sriov_configure = i40e_pci_sriov_configure, 15784 }; 15785 15786 /** 15787 * i40e_init_module - Driver registration routine 15788 * 15789 * i40e_init_module is the first routine called when the driver is 15790 * loaded. All it does is register with the PCI subsystem. 15791 **/ 15792 static int __init i40e_init_module(void) 15793 { 15794 pr_info("%s: %s - version %s\n", i40e_driver_name, 15795 i40e_driver_string, i40e_driver_version_str); 15796 pr_info("%s: %s\n", i40e_driver_name, i40e_copyright); 15797 15798 /* There is no need to throttle the number of active tasks because 15799 * each device limits its own task using a state bit for scheduling 15800 * the service task, and the device tasks do not interfere with each 15801 * other, so we don't set a max task limit. We must set WQ_MEM_RECLAIM 15802 * since we need to be able to guarantee forward progress even under 15803 * memory pressure. 15804 */ 15805 i40e_wq = alloc_workqueue("%s", WQ_MEM_RECLAIM, 0, i40e_driver_name); 15806 if (!i40e_wq) { 15807 pr_err("%s: Failed to create workqueue\n", i40e_driver_name); 15808 return -ENOMEM; 15809 } 15810 15811 i40e_dbg_init(); 15812 return pci_register_driver(&i40e_driver); 15813 } 15814 module_init(i40e_init_module); 15815 15816 /** 15817 * i40e_exit_module - Driver exit cleanup routine 15818 * 15819 * i40e_exit_module is called just before the driver is removed 15820 * from memory. 15821 **/ 15822 static void __exit i40e_exit_module(void) 15823 { 15824 pci_unregister_driver(&i40e_driver); 15825 destroy_workqueue(i40e_wq); 15826 i40e_dbg_exit(); 15827 } 15828 module_exit(i40e_exit_module); 15829