1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright(c) 2013 - 2018 Intel Corporation. */ 3 4 #include <linux/etherdevice.h> 5 #include <linux/of_net.h> 6 #include <linux/pci.h> 7 #include <linux/bpf.h> 8 9 /* Local includes */ 10 #include "i40e.h" 11 #include "i40e_diag.h" 12 #include "i40e_xsk.h" 13 #include <net/udp_tunnel.h> 14 #include <net/xdp_sock.h> 15 /* All i40e tracepoints are defined by the include below, which 16 * must be included exactly once across the whole kernel with 17 * CREATE_TRACE_POINTS defined 18 */ 19 #define CREATE_TRACE_POINTS 20 #include "i40e_trace.h" 21 22 const char i40e_driver_name[] = "i40e"; 23 static const char i40e_driver_string[] = 24 "Intel(R) Ethernet Connection XL710 Network Driver"; 25 26 #define DRV_KERN "-k" 27 28 #define DRV_VERSION_MAJOR 2 29 #define DRV_VERSION_MINOR 8 30 #define DRV_VERSION_BUILD 20 31 #define DRV_VERSION __stringify(DRV_VERSION_MAJOR) "." \ 32 __stringify(DRV_VERSION_MINOR) "." \ 33 __stringify(DRV_VERSION_BUILD) DRV_KERN 34 const char i40e_driver_version_str[] = DRV_VERSION; 35 static const char i40e_copyright[] = "Copyright (c) 2013 - 2019 Intel Corporation."; 36 37 /* a bit of forward declarations */ 38 static void i40e_vsi_reinit_locked(struct i40e_vsi *vsi); 39 static void i40e_handle_reset_warning(struct i40e_pf *pf, bool lock_acquired); 40 static int i40e_add_vsi(struct i40e_vsi *vsi); 41 static int i40e_add_veb(struct i40e_veb *veb, struct i40e_vsi *vsi); 42 static int i40e_setup_pf_switch(struct i40e_pf *pf, bool reinit); 43 static int i40e_setup_misc_vector(struct i40e_pf *pf); 44 static void i40e_determine_queue_usage(struct i40e_pf *pf); 45 static int i40e_setup_pf_filter_control(struct i40e_pf *pf); 46 static void i40e_prep_for_reset(struct i40e_pf *pf, bool lock_acquired); 47 static int i40e_reset(struct i40e_pf *pf); 48 static void i40e_rebuild(struct i40e_pf *pf, bool reinit, bool lock_acquired); 49 static int i40e_setup_misc_vector_for_recovery_mode(struct i40e_pf *pf); 50 static int i40e_restore_interrupt_scheme(struct i40e_pf *pf); 51 static bool i40e_check_recovery_mode(struct i40e_pf *pf); 52 static int i40e_init_recovery_mode(struct i40e_pf *pf, struct i40e_hw *hw); 53 static void i40e_fdir_sb_setup(struct i40e_pf *pf); 54 static int i40e_veb_get_bw_info(struct i40e_veb *veb); 55 static int i40e_get_capabilities(struct i40e_pf *pf, 56 enum i40e_admin_queue_opc list_type); 57 58 59 /* i40e_pci_tbl - PCI Device ID Table 60 * 61 * Last entry must be all 0s 62 * 63 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID, 64 * Class, Class Mask, private data (not used) } 65 */ 66 static const struct pci_device_id i40e_pci_tbl[] = { 67 {PCI_VDEVICE(INTEL, I40E_DEV_ID_SFP_XL710), 0}, 68 {PCI_VDEVICE(INTEL, I40E_DEV_ID_QEMU), 0}, 69 {PCI_VDEVICE(INTEL, I40E_DEV_ID_KX_B), 0}, 70 {PCI_VDEVICE(INTEL, I40E_DEV_ID_KX_C), 0}, 71 {PCI_VDEVICE(INTEL, I40E_DEV_ID_QSFP_A), 0}, 72 {PCI_VDEVICE(INTEL, I40E_DEV_ID_QSFP_B), 0}, 73 {PCI_VDEVICE(INTEL, I40E_DEV_ID_QSFP_C), 0}, 74 {PCI_VDEVICE(INTEL, I40E_DEV_ID_10G_BASE_T), 0}, 75 {PCI_VDEVICE(INTEL, I40E_DEV_ID_10G_BASE_T4), 0}, 76 {PCI_VDEVICE(INTEL, I40E_DEV_ID_10G_BASE_T_BC), 0}, 77 {PCI_VDEVICE(INTEL, I40E_DEV_ID_10G_SFP), 0}, 78 {PCI_VDEVICE(INTEL, I40E_DEV_ID_10G_B), 0}, 79 {PCI_VDEVICE(INTEL, I40E_DEV_ID_KX_X722), 0}, 80 {PCI_VDEVICE(INTEL, I40E_DEV_ID_QSFP_X722), 0}, 81 {PCI_VDEVICE(INTEL, I40E_DEV_ID_SFP_X722), 0}, 82 {PCI_VDEVICE(INTEL, I40E_DEV_ID_1G_BASE_T_X722), 0}, 83 {PCI_VDEVICE(INTEL, I40E_DEV_ID_10G_BASE_T_X722), 0}, 84 {PCI_VDEVICE(INTEL, I40E_DEV_ID_SFP_I_X722), 0}, 85 {PCI_VDEVICE(INTEL, I40E_DEV_ID_20G_KR2), 0}, 86 {PCI_VDEVICE(INTEL, I40E_DEV_ID_20G_KR2_A), 0}, 87 {PCI_VDEVICE(INTEL, I40E_DEV_ID_X710_N3000), 0}, 88 {PCI_VDEVICE(INTEL, I40E_DEV_ID_XXV710_N3000), 0}, 89 {PCI_VDEVICE(INTEL, I40E_DEV_ID_25G_B), 0}, 90 {PCI_VDEVICE(INTEL, I40E_DEV_ID_25G_SFP28), 0}, 91 /* required last entry */ 92 {0, } 93 }; 94 MODULE_DEVICE_TABLE(pci, i40e_pci_tbl); 95 96 #define I40E_MAX_VF_COUNT 128 97 static int debug = -1; 98 module_param(debug, uint, 0); 99 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all), Debug mask (0x8XXXXXXX)"); 100 101 MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>"); 102 MODULE_DESCRIPTION("Intel(R) Ethernet Connection XL710 Network Driver"); 103 MODULE_LICENSE("GPL v2"); 104 MODULE_VERSION(DRV_VERSION); 105 106 static struct workqueue_struct *i40e_wq; 107 108 /** 109 * i40e_allocate_dma_mem_d - OS specific memory alloc for shared code 110 * @hw: pointer to the HW structure 111 * @mem: ptr to mem struct to fill out 112 * @size: size of memory requested 113 * @alignment: what to align the allocation to 114 **/ 115 int i40e_allocate_dma_mem_d(struct i40e_hw *hw, struct i40e_dma_mem *mem, 116 u64 size, u32 alignment) 117 { 118 struct i40e_pf *pf = (struct i40e_pf *)hw->back; 119 120 mem->size = ALIGN(size, alignment); 121 mem->va = dma_alloc_coherent(&pf->pdev->dev, mem->size, &mem->pa, 122 GFP_KERNEL); 123 if (!mem->va) 124 return -ENOMEM; 125 126 return 0; 127 } 128 129 /** 130 * i40e_free_dma_mem_d - OS specific memory free for shared code 131 * @hw: pointer to the HW structure 132 * @mem: ptr to mem struct to free 133 **/ 134 int i40e_free_dma_mem_d(struct i40e_hw *hw, struct i40e_dma_mem *mem) 135 { 136 struct i40e_pf *pf = (struct i40e_pf *)hw->back; 137 138 dma_free_coherent(&pf->pdev->dev, mem->size, mem->va, mem->pa); 139 mem->va = NULL; 140 mem->pa = 0; 141 mem->size = 0; 142 143 return 0; 144 } 145 146 /** 147 * i40e_allocate_virt_mem_d - OS specific memory alloc for shared code 148 * @hw: pointer to the HW structure 149 * @mem: ptr to mem struct to fill out 150 * @size: size of memory requested 151 **/ 152 int i40e_allocate_virt_mem_d(struct i40e_hw *hw, struct i40e_virt_mem *mem, 153 u32 size) 154 { 155 mem->size = size; 156 mem->va = kzalloc(size, GFP_KERNEL); 157 158 if (!mem->va) 159 return -ENOMEM; 160 161 return 0; 162 } 163 164 /** 165 * i40e_free_virt_mem_d - OS specific memory free for shared code 166 * @hw: pointer to the HW structure 167 * @mem: ptr to mem struct to free 168 **/ 169 int i40e_free_virt_mem_d(struct i40e_hw *hw, struct i40e_virt_mem *mem) 170 { 171 /* it's ok to kfree a NULL pointer */ 172 kfree(mem->va); 173 mem->va = NULL; 174 mem->size = 0; 175 176 return 0; 177 } 178 179 /** 180 * i40e_get_lump - find a lump of free generic resource 181 * @pf: board private structure 182 * @pile: the pile of resource to search 183 * @needed: the number of items needed 184 * @id: an owner id to stick on the items assigned 185 * 186 * Returns the base item index of the lump, or negative for error 187 * 188 * The search_hint trick and lack of advanced fit-finding only work 189 * because we're highly likely to have all the same size lump requests. 190 * Linear search time and any fragmentation should be minimal. 191 **/ 192 static int i40e_get_lump(struct i40e_pf *pf, struct i40e_lump_tracking *pile, 193 u16 needed, u16 id) 194 { 195 int ret = -ENOMEM; 196 int i, j; 197 198 if (!pile || needed == 0 || id >= I40E_PILE_VALID_BIT) { 199 dev_info(&pf->pdev->dev, 200 "param err: pile=%s needed=%d id=0x%04x\n", 201 pile ? "<valid>" : "<null>", needed, id); 202 return -EINVAL; 203 } 204 205 /* start the linear search with an imperfect hint */ 206 i = pile->search_hint; 207 while (i < pile->num_entries) { 208 /* skip already allocated entries */ 209 if (pile->list[i] & I40E_PILE_VALID_BIT) { 210 i++; 211 continue; 212 } 213 214 /* do we have enough in this lump? */ 215 for (j = 0; (j < needed) && ((i+j) < pile->num_entries); j++) { 216 if (pile->list[i+j] & I40E_PILE_VALID_BIT) 217 break; 218 } 219 220 if (j == needed) { 221 /* there was enough, so assign it to the requestor */ 222 for (j = 0; j < needed; j++) 223 pile->list[i+j] = id | I40E_PILE_VALID_BIT; 224 ret = i; 225 pile->search_hint = i + j; 226 break; 227 } 228 229 /* not enough, so skip over it and continue looking */ 230 i += j; 231 } 232 233 return ret; 234 } 235 236 /** 237 * i40e_put_lump - return a lump of generic resource 238 * @pile: the pile of resource to search 239 * @index: the base item index 240 * @id: the owner id of the items assigned 241 * 242 * Returns the count of items in the lump 243 **/ 244 static int i40e_put_lump(struct i40e_lump_tracking *pile, u16 index, u16 id) 245 { 246 int valid_id = (id | I40E_PILE_VALID_BIT); 247 int count = 0; 248 int i; 249 250 if (!pile || index >= pile->num_entries) 251 return -EINVAL; 252 253 for (i = index; 254 i < pile->num_entries && pile->list[i] == valid_id; 255 i++) { 256 pile->list[i] = 0; 257 count++; 258 } 259 260 if (count && index < pile->search_hint) 261 pile->search_hint = index; 262 263 return count; 264 } 265 266 /** 267 * i40e_find_vsi_from_id - searches for the vsi with the given id 268 * @pf: the pf structure to search for the vsi 269 * @id: id of the vsi it is searching for 270 **/ 271 struct i40e_vsi *i40e_find_vsi_from_id(struct i40e_pf *pf, u16 id) 272 { 273 int i; 274 275 for (i = 0; i < pf->num_alloc_vsi; i++) 276 if (pf->vsi[i] && (pf->vsi[i]->id == id)) 277 return pf->vsi[i]; 278 279 return NULL; 280 } 281 282 /** 283 * i40e_service_event_schedule - Schedule the service task to wake up 284 * @pf: board private structure 285 * 286 * If not already scheduled, this puts the task into the work queue 287 **/ 288 void i40e_service_event_schedule(struct i40e_pf *pf) 289 { 290 if ((!test_bit(__I40E_DOWN, pf->state) && 291 !test_bit(__I40E_RESET_RECOVERY_PENDING, pf->state)) || 292 test_bit(__I40E_RECOVERY_MODE, pf->state)) 293 queue_work(i40e_wq, &pf->service_task); 294 } 295 296 /** 297 * i40e_tx_timeout - Respond to a Tx Hang 298 * @netdev: network interface device structure 299 * 300 * If any port has noticed a Tx timeout, it is likely that the whole 301 * device is munged, not just the one netdev port, so go for the full 302 * reset. 303 **/ 304 static void i40e_tx_timeout(struct net_device *netdev) 305 { 306 struct i40e_netdev_priv *np = netdev_priv(netdev); 307 struct i40e_vsi *vsi = np->vsi; 308 struct i40e_pf *pf = vsi->back; 309 struct i40e_ring *tx_ring = NULL; 310 unsigned int i, hung_queue = 0; 311 u32 head, val; 312 313 pf->tx_timeout_count++; 314 315 /* find the stopped queue the same way the stack does */ 316 for (i = 0; i < netdev->num_tx_queues; i++) { 317 struct netdev_queue *q; 318 unsigned long trans_start; 319 320 q = netdev_get_tx_queue(netdev, i); 321 trans_start = q->trans_start; 322 if (netif_xmit_stopped(q) && 323 time_after(jiffies, 324 (trans_start + netdev->watchdog_timeo))) { 325 hung_queue = i; 326 break; 327 } 328 } 329 330 if (i == netdev->num_tx_queues) { 331 netdev_info(netdev, "tx_timeout: no netdev hung queue found\n"); 332 } else { 333 /* now that we have an index, find the tx_ring struct */ 334 for (i = 0; i < vsi->num_queue_pairs; i++) { 335 if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc) { 336 if (hung_queue == 337 vsi->tx_rings[i]->queue_index) { 338 tx_ring = vsi->tx_rings[i]; 339 break; 340 } 341 } 342 } 343 } 344 345 if (time_after(jiffies, (pf->tx_timeout_last_recovery + HZ*20))) 346 pf->tx_timeout_recovery_level = 1; /* reset after some time */ 347 else if (time_before(jiffies, 348 (pf->tx_timeout_last_recovery + netdev->watchdog_timeo))) 349 return; /* don't do any new action before the next timeout */ 350 351 /* don't kick off another recovery if one is already pending */ 352 if (test_and_set_bit(__I40E_TIMEOUT_RECOVERY_PENDING, pf->state)) 353 return; 354 355 if (tx_ring) { 356 head = i40e_get_head(tx_ring); 357 /* Read interrupt register */ 358 if (pf->flags & I40E_FLAG_MSIX_ENABLED) 359 val = rd32(&pf->hw, 360 I40E_PFINT_DYN_CTLN(tx_ring->q_vector->v_idx + 361 tx_ring->vsi->base_vector - 1)); 362 else 363 val = rd32(&pf->hw, I40E_PFINT_DYN_CTL0); 364 365 netdev_info(netdev, "tx_timeout: VSI_seid: %d, Q %d, NTC: 0x%x, HWB: 0x%x, NTU: 0x%x, TAIL: 0x%x, INT: 0x%x\n", 366 vsi->seid, hung_queue, tx_ring->next_to_clean, 367 head, tx_ring->next_to_use, 368 readl(tx_ring->tail), val); 369 } 370 371 pf->tx_timeout_last_recovery = jiffies; 372 netdev_info(netdev, "tx_timeout recovery level %d, hung_queue %d\n", 373 pf->tx_timeout_recovery_level, hung_queue); 374 375 switch (pf->tx_timeout_recovery_level) { 376 case 1: 377 set_bit(__I40E_PF_RESET_REQUESTED, pf->state); 378 break; 379 case 2: 380 set_bit(__I40E_CORE_RESET_REQUESTED, pf->state); 381 break; 382 case 3: 383 set_bit(__I40E_GLOBAL_RESET_REQUESTED, pf->state); 384 break; 385 default: 386 netdev_err(netdev, "tx_timeout recovery unsuccessful\n"); 387 break; 388 } 389 390 i40e_service_event_schedule(pf); 391 pf->tx_timeout_recovery_level++; 392 } 393 394 /** 395 * i40e_get_vsi_stats_struct - Get System Network Statistics 396 * @vsi: the VSI we care about 397 * 398 * Returns the address of the device statistics structure. 399 * The statistics are actually updated from the service task. 400 **/ 401 struct rtnl_link_stats64 *i40e_get_vsi_stats_struct(struct i40e_vsi *vsi) 402 { 403 return &vsi->net_stats; 404 } 405 406 /** 407 * i40e_get_netdev_stats_struct_tx - populate stats from a Tx ring 408 * @ring: Tx ring to get statistics from 409 * @stats: statistics entry to be updated 410 **/ 411 static void i40e_get_netdev_stats_struct_tx(struct i40e_ring *ring, 412 struct rtnl_link_stats64 *stats) 413 { 414 u64 bytes, packets; 415 unsigned int start; 416 417 do { 418 start = u64_stats_fetch_begin_irq(&ring->syncp); 419 packets = ring->stats.packets; 420 bytes = ring->stats.bytes; 421 } while (u64_stats_fetch_retry_irq(&ring->syncp, start)); 422 423 stats->tx_packets += packets; 424 stats->tx_bytes += bytes; 425 } 426 427 /** 428 * i40e_get_netdev_stats_struct - Get statistics for netdev interface 429 * @netdev: network interface device structure 430 * @stats: data structure to store statistics 431 * 432 * Returns the address of the device statistics structure. 433 * The statistics are actually updated from the service task. 434 **/ 435 static void i40e_get_netdev_stats_struct(struct net_device *netdev, 436 struct rtnl_link_stats64 *stats) 437 { 438 struct i40e_netdev_priv *np = netdev_priv(netdev); 439 struct i40e_vsi *vsi = np->vsi; 440 struct rtnl_link_stats64 *vsi_stats = i40e_get_vsi_stats_struct(vsi); 441 struct i40e_ring *ring; 442 int i; 443 444 if (test_bit(__I40E_VSI_DOWN, vsi->state)) 445 return; 446 447 if (!vsi->tx_rings) 448 return; 449 450 rcu_read_lock(); 451 for (i = 0; i < vsi->num_queue_pairs; i++) { 452 u64 bytes, packets; 453 unsigned int start; 454 455 ring = READ_ONCE(vsi->tx_rings[i]); 456 if (!ring) 457 continue; 458 i40e_get_netdev_stats_struct_tx(ring, stats); 459 460 if (i40e_enabled_xdp_vsi(vsi)) { 461 ring++; 462 i40e_get_netdev_stats_struct_tx(ring, stats); 463 } 464 465 ring++; 466 do { 467 start = u64_stats_fetch_begin_irq(&ring->syncp); 468 packets = ring->stats.packets; 469 bytes = ring->stats.bytes; 470 } while (u64_stats_fetch_retry_irq(&ring->syncp, start)); 471 472 stats->rx_packets += packets; 473 stats->rx_bytes += bytes; 474 475 } 476 rcu_read_unlock(); 477 478 /* following stats updated by i40e_watchdog_subtask() */ 479 stats->multicast = vsi_stats->multicast; 480 stats->tx_errors = vsi_stats->tx_errors; 481 stats->tx_dropped = vsi_stats->tx_dropped; 482 stats->rx_errors = vsi_stats->rx_errors; 483 stats->rx_dropped = vsi_stats->rx_dropped; 484 stats->rx_crc_errors = vsi_stats->rx_crc_errors; 485 stats->rx_length_errors = vsi_stats->rx_length_errors; 486 } 487 488 /** 489 * i40e_vsi_reset_stats - Resets all stats of the given vsi 490 * @vsi: the VSI to have its stats reset 491 **/ 492 void i40e_vsi_reset_stats(struct i40e_vsi *vsi) 493 { 494 struct rtnl_link_stats64 *ns; 495 int i; 496 497 if (!vsi) 498 return; 499 500 ns = i40e_get_vsi_stats_struct(vsi); 501 memset(ns, 0, sizeof(*ns)); 502 memset(&vsi->net_stats_offsets, 0, sizeof(vsi->net_stats_offsets)); 503 memset(&vsi->eth_stats, 0, sizeof(vsi->eth_stats)); 504 memset(&vsi->eth_stats_offsets, 0, sizeof(vsi->eth_stats_offsets)); 505 if (vsi->rx_rings && vsi->rx_rings[0]) { 506 for (i = 0; i < vsi->num_queue_pairs; i++) { 507 memset(&vsi->rx_rings[i]->stats, 0, 508 sizeof(vsi->rx_rings[i]->stats)); 509 memset(&vsi->rx_rings[i]->rx_stats, 0, 510 sizeof(vsi->rx_rings[i]->rx_stats)); 511 memset(&vsi->tx_rings[i]->stats, 0, 512 sizeof(vsi->tx_rings[i]->stats)); 513 memset(&vsi->tx_rings[i]->tx_stats, 0, 514 sizeof(vsi->tx_rings[i]->tx_stats)); 515 } 516 } 517 vsi->stat_offsets_loaded = false; 518 } 519 520 /** 521 * i40e_pf_reset_stats - Reset all of the stats for the given PF 522 * @pf: the PF to be reset 523 **/ 524 void i40e_pf_reset_stats(struct i40e_pf *pf) 525 { 526 int i; 527 528 memset(&pf->stats, 0, sizeof(pf->stats)); 529 memset(&pf->stats_offsets, 0, sizeof(pf->stats_offsets)); 530 pf->stat_offsets_loaded = false; 531 532 for (i = 0; i < I40E_MAX_VEB; i++) { 533 if (pf->veb[i]) { 534 memset(&pf->veb[i]->stats, 0, 535 sizeof(pf->veb[i]->stats)); 536 memset(&pf->veb[i]->stats_offsets, 0, 537 sizeof(pf->veb[i]->stats_offsets)); 538 memset(&pf->veb[i]->tc_stats, 0, 539 sizeof(pf->veb[i]->tc_stats)); 540 memset(&pf->veb[i]->tc_stats_offsets, 0, 541 sizeof(pf->veb[i]->tc_stats_offsets)); 542 pf->veb[i]->stat_offsets_loaded = false; 543 } 544 } 545 pf->hw_csum_rx_error = 0; 546 } 547 548 /** 549 * i40e_stat_update48 - read and update a 48 bit stat from the chip 550 * @hw: ptr to the hardware info 551 * @hireg: the high 32 bit reg to read 552 * @loreg: the low 32 bit reg to read 553 * @offset_loaded: has the initial offset been loaded yet 554 * @offset: ptr to current offset value 555 * @stat: ptr to the stat 556 * 557 * Since the device stats are not reset at PFReset, they likely will not 558 * be zeroed when the driver starts. We'll save the first values read 559 * and use them as offsets to be subtracted from the raw values in order 560 * to report stats that count from zero. In the process, we also manage 561 * the potential roll-over. 562 **/ 563 static void i40e_stat_update48(struct i40e_hw *hw, u32 hireg, u32 loreg, 564 bool offset_loaded, u64 *offset, u64 *stat) 565 { 566 u64 new_data; 567 568 if (hw->device_id == I40E_DEV_ID_QEMU) { 569 new_data = rd32(hw, loreg); 570 new_data |= ((u64)(rd32(hw, hireg) & 0xFFFF)) << 32; 571 } else { 572 new_data = rd64(hw, loreg); 573 } 574 if (!offset_loaded) 575 *offset = new_data; 576 if (likely(new_data >= *offset)) 577 *stat = new_data - *offset; 578 else 579 *stat = (new_data + BIT_ULL(48)) - *offset; 580 *stat &= 0xFFFFFFFFFFFFULL; 581 } 582 583 /** 584 * i40e_stat_update32 - read and update a 32 bit stat from the chip 585 * @hw: ptr to the hardware info 586 * @reg: the hw reg to read 587 * @offset_loaded: has the initial offset been loaded yet 588 * @offset: ptr to current offset value 589 * @stat: ptr to the stat 590 **/ 591 static void i40e_stat_update32(struct i40e_hw *hw, u32 reg, 592 bool offset_loaded, u64 *offset, u64 *stat) 593 { 594 u32 new_data; 595 596 new_data = rd32(hw, reg); 597 if (!offset_loaded) 598 *offset = new_data; 599 if (likely(new_data >= *offset)) 600 *stat = (u32)(new_data - *offset); 601 else 602 *stat = (u32)((new_data + BIT_ULL(32)) - *offset); 603 } 604 605 /** 606 * i40e_stat_update_and_clear32 - read and clear hw reg, update a 32 bit stat 607 * @hw: ptr to the hardware info 608 * @reg: the hw reg to read and clear 609 * @stat: ptr to the stat 610 **/ 611 static void i40e_stat_update_and_clear32(struct i40e_hw *hw, u32 reg, u64 *stat) 612 { 613 u32 new_data = rd32(hw, reg); 614 615 wr32(hw, reg, 1); /* must write a nonzero value to clear register */ 616 *stat += new_data; 617 } 618 619 /** 620 * i40e_update_eth_stats - Update VSI-specific ethernet statistics counters. 621 * @vsi: the VSI to be updated 622 **/ 623 void i40e_update_eth_stats(struct i40e_vsi *vsi) 624 { 625 int stat_idx = le16_to_cpu(vsi->info.stat_counter_idx); 626 struct i40e_pf *pf = vsi->back; 627 struct i40e_hw *hw = &pf->hw; 628 struct i40e_eth_stats *oes; 629 struct i40e_eth_stats *es; /* device's eth stats */ 630 631 es = &vsi->eth_stats; 632 oes = &vsi->eth_stats_offsets; 633 634 /* Gather up the stats that the hw collects */ 635 i40e_stat_update32(hw, I40E_GLV_TEPC(stat_idx), 636 vsi->stat_offsets_loaded, 637 &oes->tx_errors, &es->tx_errors); 638 i40e_stat_update32(hw, I40E_GLV_RDPC(stat_idx), 639 vsi->stat_offsets_loaded, 640 &oes->rx_discards, &es->rx_discards); 641 i40e_stat_update32(hw, I40E_GLV_RUPP(stat_idx), 642 vsi->stat_offsets_loaded, 643 &oes->rx_unknown_protocol, &es->rx_unknown_protocol); 644 645 i40e_stat_update48(hw, I40E_GLV_GORCH(stat_idx), 646 I40E_GLV_GORCL(stat_idx), 647 vsi->stat_offsets_loaded, 648 &oes->rx_bytes, &es->rx_bytes); 649 i40e_stat_update48(hw, I40E_GLV_UPRCH(stat_idx), 650 I40E_GLV_UPRCL(stat_idx), 651 vsi->stat_offsets_loaded, 652 &oes->rx_unicast, &es->rx_unicast); 653 i40e_stat_update48(hw, I40E_GLV_MPRCH(stat_idx), 654 I40E_GLV_MPRCL(stat_idx), 655 vsi->stat_offsets_loaded, 656 &oes->rx_multicast, &es->rx_multicast); 657 i40e_stat_update48(hw, I40E_GLV_BPRCH(stat_idx), 658 I40E_GLV_BPRCL(stat_idx), 659 vsi->stat_offsets_loaded, 660 &oes->rx_broadcast, &es->rx_broadcast); 661 662 i40e_stat_update48(hw, I40E_GLV_GOTCH(stat_idx), 663 I40E_GLV_GOTCL(stat_idx), 664 vsi->stat_offsets_loaded, 665 &oes->tx_bytes, &es->tx_bytes); 666 i40e_stat_update48(hw, I40E_GLV_UPTCH(stat_idx), 667 I40E_GLV_UPTCL(stat_idx), 668 vsi->stat_offsets_loaded, 669 &oes->tx_unicast, &es->tx_unicast); 670 i40e_stat_update48(hw, I40E_GLV_MPTCH(stat_idx), 671 I40E_GLV_MPTCL(stat_idx), 672 vsi->stat_offsets_loaded, 673 &oes->tx_multicast, &es->tx_multicast); 674 i40e_stat_update48(hw, I40E_GLV_BPTCH(stat_idx), 675 I40E_GLV_BPTCL(stat_idx), 676 vsi->stat_offsets_loaded, 677 &oes->tx_broadcast, &es->tx_broadcast); 678 vsi->stat_offsets_loaded = true; 679 } 680 681 /** 682 * i40e_update_veb_stats - Update Switch component statistics 683 * @veb: the VEB being updated 684 **/ 685 void i40e_update_veb_stats(struct i40e_veb *veb) 686 { 687 struct i40e_pf *pf = veb->pf; 688 struct i40e_hw *hw = &pf->hw; 689 struct i40e_eth_stats *oes; 690 struct i40e_eth_stats *es; /* device's eth stats */ 691 struct i40e_veb_tc_stats *veb_oes; 692 struct i40e_veb_tc_stats *veb_es; 693 int i, idx = 0; 694 695 idx = veb->stats_idx; 696 es = &veb->stats; 697 oes = &veb->stats_offsets; 698 veb_es = &veb->tc_stats; 699 veb_oes = &veb->tc_stats_offsets; 700 701 /* Gather up the stats that the hw collects */ 702 i40e_stat_update32(hw, I40E_GLSW_TDPC(idx), 703 veb->stat_offsets_loaded, 704 &oes->tx_discards, &es->tx_discards); 705 if (hw->revision_id > 0) 706 i40e_stat_update32(hw, I40E_GLSW_RUPP(idx), 707 veb->stat_offsets_loaded, 708 &oes->rx_unknown_protocol, 709 &es->rx_unknown_protocol); 710 i40e_stat_update48(hw, I40E_GLSW_GORCH(idx), I40E_GLSW_GORCL(idx), 711 veb->stat_offsets_loaded, 712 &oes->rx_bytes, &es->rx_bytes); 713 i40e_stat_update48(hw, I40E_GLSW_UPRCH(idx), I40E_GLSW_UPRCL(idx), 714 veb->stat_offsets_loaded, 715 &oes->rx_unicast, &es->rx_unicast); 716 i40e_stat_update48(hw, I40E_GLSW_MPRCH(idx), I40E_GLSW_MPRCL(idx), 717 veb->stat_offsets_loaded, 718 &oes->rx_multicast, &es->rx_multicast); 719 i40e_stat_update48(hw, I40E_GLSW_BPRCH(idx), I40E_GLSW_BPRCL(idx), 720 veb->stat_offsets_loaded, 721 &oes->rx_broadcast, &es->rx_broadcast); 722 723 i40e_stat_update48(hw, I40E_GLSW_GOTCH(idx), I40E_GLSW_GOTCL(idx), 724 veb->stat_offsets_loaded, 725 &oes->tx_bytes, &es->tx_bytes); 726 i40e_stat_update48(hw, I40E_GLSW_UPTCH(idx), I40E_GLSW_UPTCL(idx), 727 veb->stat_offsets_loaded, 728 &oes->tx_unicast, &es->tx_unicast); 729 i40e_stat_update48(hw, I40E_GLSW_MPTCH(idx), I40E_GLSW_MPTCL(idx), 730 veb->stat_offsets_loaded, 731 &oes->tx_multicast, &es->tx_multicast); 732 i40e_stat_update48(hw, I40E_GLSW_BPTCH(idx), I40E_GLSW_BPTCL(idx), 733 veb->stat_offsets_loaded, 734 &oes->tx_broadcast, &es->tx_broadcast); 735 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 736 i40e_stat_update48(hw, I40E_GLVEBTC_RPCH(i, idx), 737 I40E_GLVEBTC_RPCL(i, idx), 738 veb->stat_offsets_loaded, 739 &veb_oes->tc_rx_packets[i], 740 &veb_es->tc_rx_packets[i]); 741 i40e_stat_update48(hw, I40E_GLVEBTC_RBCH(i, idx), 742 I40E_GLVEBTC_RBCL(i, idx), 743 veb->stat_offsets_loaded, 744 &veb_oes->tc_rx_bytes[i], 745 &veb_es->tc_rx_bytes[i]); 746 i40e_stat_update48(hw, I40E_GLVEBTC_TPCH(i, idx), 747 I40E_GLVEBTC_TPCL(i, idx), 748 veb->stat_offsets_loaded, 749 &veb_oes->tc_tx_packets[i], 750 &veb_es->tc_tx_packets[i]); 751 i40e_stat_update48(hw, I40E_GLVEBTC_TBCH(i, idx), 752 I40E_GLVEBTC_TBCL(i, idx), 753 veb->stat_offsets_loaded, 754 &veb_oes->tc_tx_bytes[i], 755 &veb_es->tc_tx_bytes[i]); 756 } 757 veb->stat_offsets_loaded = true; 758 } 759 760 /** 761 * i40e_update_vsi_stats - Update the vsi statistics counters. 762 * @vsi: the VSI to be updated 763 * 764 * There are a few instances where we store the same stat in a 765 * couple of different structs. This is partly because we have 766 * the netdev stats that need to be filled out, which is slightly 767 * different from the "eth_stats" defined by the chip and used in 768 * VF communications. We sort it out here. 769 **/ 770 static void i40e_update_vsi_stats(struct i40e_vsi *vsi) 771 { 772 struct i40e_pf *pf = vsi->back; 773 struct rtnl_link_stats64 *ons; 774 struct rtnl_link_stats64 *ns; /* netdev stats */ 775 struct i40e_eth_stats *oes; 776 struct i40e_eth_stats *es; /* device's eth stats */ 777 u32 tx_restart, tx_busy; 778 struct i40e_ring *p; 779 u32 rx_page, rx_buf; 780 u64 bytes, packets; 781 unsigned int start; 782 u64 tx_linearize; 783 u64 tx_force_wb; 784 u64 rx_p, rx_b; 785 u64 tx_p, tx_b; 786 u16 q; 787 788 if (test_bit(__I40E_VSI_DOWN, vsi->state) || 789 test_bit(__I40E_CONFIG_BUSY, pf->state)) 790 return; 791 792 ns = i40e_get_vsi_stats_struct(vsi); 793 ons = &vsi->net_stats_offsets; 794 es = &vsi->eth_stats; 795 oes = &vsi->eth_stats_offsets; 796 797 /* Gather up the netdev and vsi stats that the driver collects 798 * on the fly during packet processing 799 */ 800 rx_b = rx_p = 0; 801 tx_b = tx_p = 0; 802 tx_restart = tx_busy = tx_linearize = tx_force_wb = 0; 803 rx_page = 0; 804 rx_buf = 0; 805 rcu_read_lock(); 806 for (q = 0; q < vsi->num_queue_pairs; q++) { 807 /* locate Tx ring */ 808 p = READ_ONCE(vsi->tx_rings[q]); 809 810 do { 811 start = u64_stats_fetch_begin_irq(&p->syncp); 812 packets = p->stats.packets; 813 bytes = p->stats.bytes; 814 } while (u64_stats_fetch_retry_irq(&p->syncp, start)); 815 tx_b += bytes; 816 tx_p += packets; 817 tx_restart += p->tx_stats.restart_queue; 818 tx_busy += p->tx_stats.tx_busy; 819 tx_linearize += p->tx_stats.tx_linearize; 820 tx_force_wb += p->tx_stats.tx_force_wb; 821 822 /* Rx queue is part of the same block as Tx queue */ 823 p = &p[1]; 824 do { 825 start = u64_stats_fetch_begin_irq(&p->syncp); 826 packets = p->stats.packets; 827 bytes = p->stats.bytes; 828 } while (u64_stats_fetch_retry_irq(&p->syncp, start)); 829 rx_b += bytes; 830 rx_p += packets; 831 rx_buf += p->rx_stats.alloc_buff_failed; 832 rx_page += p->rx_stats.alloc_page_failed; 833 } 834 rcu_read_unlock(); 835 vsi->tx_restart = tx_restart; 836 vsi->tx_busy = tx_busy; 837 vsi->tx_linearize = tx_linearize; 838 vsi->tx_force_wb = tx_force_wb; 839 vsi->rx_page_failed = rx_page; 840 vsi->rx_buf_failed = rx_buf; 841 842 ns->rx_packets = rx_p; 843 ns->rx_bytes = rx_b; 844 ns->tx_packets = tx_p; 845 ns->tx_bytes = tx_b; 846 847 /* update netdev stats from eth stats */ 848 i40e_update_eth_stats(vsi); 849 ons->tx_errors = oes->tx_errors; 850 ns->tx_errors = es->tx_errors; 851 ons->multicast = oes->rx_multicast; 852 ns->multicast = es->rx_multicast; 853 ons->rx_dropped = oes->rx_discards; 854 ns->rx_dropped = es->rx_discards; 855 ons->tx_dropped = oes->tx_discards; 856 ns->tx_dropped = es->tx_discards; 857 858 /* pull in a couple PF stats if this is the main vsi */ 859 if (vsi == pf->vsi[pf->lan_vsi]) { 860 ns->rx_crc_errors = pf->stats.crc_errors; 861 ns->rx_errors = pf->stats.crc_errors + pf->stats.illegal_bytes; 862 ns->rx_length_errors = pf->stats.rx_length_errors; 863 } 864 } 865 866 /** 867 * i40e_update_pf_stats - Update the PF statistics counters. 868 * @pf: the PF to be updated 869 **/ 870 static void i40e_update_pf_stats(struct i40e_pf *pf) 871 { 872 struct i40e_hw_port_stats *osd = &pf->stats_offsets; 873 struct i40e_hw_port_stats *nsd = &pf->stats; 874 struct i40e_hw *hw = &pf->hw; 875 u32 val; 876 int i; 877 878 i40e_stat_update48(hw, I40E_GLPRT_GORCH(hw->port), 879 I40E_GLPRT_GORCL(hw->port), 880 pf->stat_offsets_loaded, 881 &osd->eth.rx_bytes, &nsd->eth.rx_bytes); 882 i40e_stat_update48(hw, I40E_GLPRT_GOTCH(hw->port), 883 I40E_GLPRT_GOTCL(hw->port), 884 pf->stat_offsets_loaded, 885 &osd->eth.tx_bytes, &nsd->eth.tx_bytes); 886 i40e_stat_update32(hw, I40E_GLPRT_RDPC(hw->port), 887 pf->stat_offsets_loaded, 888 &osd->eth.rx_discards, 889 &nsd->eth.rx_discards); 890 i40e_stat_update48(hw, I40E_GLPRT_UPRCH(hw->port), 891 I40E_GLPRT_UPRCL(hw->port), 892 pf->stat_offsets_loaded, 893 &osd->eth.rx_unicast, 894 &nsd->eth.rx_unicast); 895 i40e_stat_update48(hw, I40E_GLPRT_MPRCH(hw->port), 896 I40E_GLPRT_MPRCL(hw->port), 897 pf->stat_offsets_loaded, 898 &osd->eth.rx_multicast, 899 &nsd->eth.rx_multicast); 900 i40e_stat_update48(hw, I40E_GLPRT_BPRCH(hw->port), 901 I40E_GLPRT_BPRCL(hw->port), 902 pf->stat_offsets_loaded, 903 &osd->eth.rx_broadcast, 904 &nsd->eth.rx_broadcast); 905 i40e_stat_update48(hw, I40E_GLPRT_UPTCH(hw->port), 906 I40E_GLPRT_UPTCL(hw->port), 907 pf->stat_offsets_loaded, 908 &osd->eth.tx_unicast, 909 &nsd->eth.tx_unicast); 910 i40e_stat_update48(hw, I40E_GLPRT_MPTCH(hw->port), 911 I40E_GLPRT_MPTCL(hw->port), 912 pf->stat_offsets_loaded, 913 &osd->eth.tx_multicast, 914 &nsd->eth.tx_multicast); 915 i40e_stat_update48(hw, I40E_GLPRT_BPTCH(hw->port), 916 I40E_GLPRT_BPTCL(hw->port), 917 pf->stat_offsets_loaded, 918 &osd->eth.tx_broadcast, 919 &nsd->eth.tx_broadcast); 920 921 i40e_stat_update32(hw, I40E_GLPRT_TDOLD(hw->port), 922 pf->stat_offsets_loaded, 923 &osd->tx_dropped_link_down, 924 &nsd->tx_dropped_link_down); 925 926 i40e_stat_update32(hw, I40E_GLPRT_CRCERRS(hw->port), 927 pf->stat_offsets_loaded, 928 &osd->crc_errors, &nsd->crc_errors); 929 930 i40e_stat_update32(hw, I40E_GLPRT_ILLERRC(hw->port), 931 pf->stat_offsets_loaded, 932 &osd->illegal_bytes, &nsd->illegal_bytes); 933 934 i40e_stat_update32(hw, I40E_GLPRT_MLFC(hw->port), 935 pf->stat_offsets_loaded, 936 &osd->mac_local_faults, 937 &nsd->mac_local_faults); 938 i40e_stat_update32(hw, I40E_GLPRT_MRFC(hw->port), 939 pf->stat_offsets_loaded, 940 &osd->mac_remote_faults, 941 &nsd->mac_remote_faults); 942 943 i40e_stat_update32(hw, I40E_GLPRT_RLEC(hw->port), 944 pf->stat_offsets_loaded, 945 &osd->rx_length_errors, 946 &nsd->rx_length_errors); 947 948 i40e_stat_update32(hw, I40E_GLPRT_LXONRXC(hw->port), 949 pf->stat_offsets_loaded, 950 &osd->link_xon_rx, &nsd->link_xon_rx); 951 i40e_stat_update32(hw, I40E_GLPRT_LXONTXC(hw->port), 952 pf->stat_offsets_loaded, 953 &osd->link_xon_tx, &nsd->link_xon_tx); 954 i40e_stat_update32(hw, I40E_GLPRT_LXOFFRXC(hw->port), 955 pf->stat_offsets_loaded, 956 &osd->link_xoff_rx, &nsd->link_xoff_rx); 957 i40e_stat_update32(hw, I40E_GLPRT_LXOFFTXC(hw->port), 958 pf->stat_offsets_loaded, 959 &osd->link_xoff_tx, &nsd->link_xoff_tx); 960 961 for (i = 0; i < 8; i++) { 962 i40e_stat_update32(hw, I40E_GLPRT_PXOFFRXC(hw->port, i), 963 pf->stat_offsets_loaded, 964 &osd->priority_xoff_rx[i], 965 &nsd->priority_xoff_rx[i]); 966 i40e_stat_update32(hw, I40E_GLPRT_PXONRXC(hw->port, i), 967 pf->stat_offsets_loaded, 968 &osd->priority_xon_rx[i], 969 &nsd->priority_xon_rx[i]); 970 i40e_stat_update32(hw, I40E_GLPRT_PXONTXC(hw->port, i), 971 pf->stat_offsets_loaded, 972 &osd->priority_xon_tx[i], 973 &nsd->priority_xon_tx[i]); 974 i40e_stat_update32(hw, I40E_GLPRT_PXOFFTXC(hw->port, i), 975 pf->stat_offsets_loaded, 976 &osd->priority_xoff_tx[i], 977 &nsd->priority_xoff_tx[i]); 978 i40e_stat_update32(hw, 979 I40E_GLPRT_RXON2OFFCNT(hw->port, i), 980 pf->stat_offsets_loaded, 981 &osd->priority_xon_2_xoff[i], 982 &nsd->priority_xon_2_xoff[i]); 983 } 984 985 i40e_stat_update48(hw, I40E_GLPRT_PRC64H(hw->port), 986 I40E_GLPRT_PRC64L(hw->port), 987 pf->stat_offsets_loaded, 988 &osd->rx_size_64, &nsd->rx_size_64); 989 i40e_stat_update48(hw, I40E_GLPRT_PRC127H(hw->port), 990 I40E_GLPRT_PRC127L(hw->port), 991 pf->stat_offsets_loaded, 992 &osd->rx_size_127, &nsd->rx_size_127); 993 i40e_stat_update48(hw, I40E_GLPRT_PRC255H(hw->port), 994 I40E_GLPRT_PRC255L(hw->port), 995 pf->stat_offsets_loaded, 996 &osd->rx_size_255, &nsd->rx_size_255); 997 i40e_stat_update48(hw, I40E_GLPRT_PRC511H(hw->port), 998 I40E_GLPRT_PRC511L(hw->port), 999 pf->stat_offsets_loaded, 1000 &osd->rx_size_511, &nsd->rx_size_511); 1001 i40e_stat_update48(hw, I40E_GLPRT_PRC1023H(hw->port), 1002 I40E_GLPRT_PRC1023L(hw->port), 1003 pf->stat_offsets_loaded, 1004 &osd->rx_size_1023, &nsd->rx_size_1023); 1005 i40e_stat_update48(hw, I40E_GLPRT_PRC1522H(hw->port), 1006 I40E_GLPRT_PRC1522L(hw->port), 1007 pf->stat_offsets_loaded, 1008 &osd->rx_size_1522, &nsd->rx_size_1522); 1009 i40e_stat_update48(hw, I40E_GLPRT_PRC9522H(hw->port), 1010 I40E_GLPRT_PRC9522L(hw->port), 1011 pf->stat_offsets_loaded, 1012 &osd->rx_size_big, &nsd->rx_size_big); 1013 1014 i40e_stat_update48(hw, I40E_GLPRT_PTC64H(hw->port), 1015 I40E_GLPRT_PTC64L(hw->port), 1016 pf->stat_offsets_loaded, 1017 &osd->tx_size_64, &nsd->tx_size_64); 1018 i40e_stat_update48(hw, I40E_GLPRT_PTC127H(hw->port), 1019 I40E_GLPRT_PTC127L(hw->port), 1020 pf->stat_offsets_loaded, 1021 &osd->tx_size_127, &nsd->tx_size_127); 1022 i40e_stat_update48(hw, I40E_GLPRT_PTC255H(hw->port), 1023 I40E_GLPRT_PTC255L(hw->port), 1024 pf->stat_offsets_loaded, 1025 &osd->tx_size_255, &nsd->tx_size_255); 1026 i40e_stat_update48(hw, I40E_GLPRT_PTC511H(hw->port), 1027 I40E_GLPRT_PTC511L(hw->port), 1028 pf->stat_offsets_loaded, 1029 &osd->tx_size_511, &nsd->tx_size_511); 1030 i40e_stat_update48(hw, I40E_GLPRT_PTC1023H(hw->port), 1031 I40E_GLPRT_PTC1023L(hw->port), 1032 pf->stat_offsets_loaded, 1033 &osd->tx_size_1023, &nsd->tx_size_1023); 1034 i40e_stat_update48(hw, I40E_GLPRT_PTC1522H(hw->port), 1035 I40E_GLPRT_PTC1522L(hw->port), 1036 pf->stat_offsets_loaded, 1037 &osd->tx_size_1522, &nsd->tx_size_1522); 1038 i40e_stat_update48(hw, I40E_GLPRT_PTC9522H(hw->port), 1039 I40E_GLPRT_PTC9522L(hw->port), 1040 pf->stat_offsets_loaded, 1041 &osd->tx_size_big, &nsd->tx_size_big); 1042 1043 i40e_stat_update32(hw, I40E_GLPRT_RUC(hw->port), 1044 pf->stat_offsets_loaded, 1045 &osd->rx_undersize, &nsd->rx_undersize); 1046 i40e_stat_update32(hw, I40E_GLPRT_RFC(hw->port), 1047 pf->stat_offsets_loaded, 1048 &osd->rx_fragments, &nsd->rx_fragments); 1049 i40e_stat_update32(hw, I40E_GLPRT_ROC(hw->port), 1050 pf->stat_offsets_loaded, 1051 &osd->rx_oversize, &nsd->rx_oversize); 1052 i40e_stat_update32(hw, I40E_GLPRT_RJC(hw->port), 1053 pf->stat_offsets_loaded, 1054 &osd->rx_jabber, &nsd->rx_jabber); 1055 1056 /* FDIR stats */ 1057 i40e_stat_update_and_clear32(hw, 1058 I40E_GLQF_PCNT(I40E_FD_ATR_STAT_IDX(hw->pf_id)), 1059 &nsd->fd_atr_match); 1060 i40e_stat_update_and_clear32(hw, 1061 I40E_GLQF_PCNT(I40E_FD_SB_STAT_IDX(hw->pf_id)), 1062 &nsd->fd_sb_match); 1063 i40e_stat_update_and_clear32(hw, 1064 I40E_GLQF_PCNT(I40E_FD_ATR_TUNNEL_STAT_IDX(hw->pf_id)), 1065 &nsd->fd_atr_tunnel_match); 1066 1067 val = rd32(hw, I40E_PRTPM_EEE_STAT); 1068 nsd->tx_lpi_status = 1069 (val & I40E_PRTPM_EEE_STAT_TX_LPI_STATUS_MASK) >> 1070 I40E_PRTPM_EEE_STAT_TX_LPI_STATUS_SHIFT; 1071 nsd->rx_lpi_status = 1072 (val & I40E_PRTPM_EEE_STAT_RX_LPI_STATUS_MASK) >> 1073 I40E_PRTPM_EEE_STAT_RX_LPI_STATUS_SHIFT; 1074 i40e_stat_update32(hw, I40E_PRTPM_TLPIC, 1075 pf->stat_offsets_loaded, 1076 &osd->tx_lpi_count, &nsd->tx_lpi_count); 1077 i40e_stat_update32(hw, I40E_PRTPM_RLPIC, 1078 pf->stat_offsets_loaded, 1079 &osd->rx_lpi_count, &nsd->rx_lpi_count); 1080 1081 if (pf->flags & I40E_FLAG_FD_SB_ENABLED && 1082 !test_bit(__I40E_FD_SB_AUTO_DISABLED, pf->state)) 1083 nsd->fd_sb_status = true; 1084 else 1085 nsd->fd_sb_status = false; 1086 1087 if (pf->flags & I40E_FLAG_FD_ATR_ENABLED && 1088 !test_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state)) 1089 nsd->fd_atr_status = true; 1090 else 1091 nsd->fd_atr_status = false; 1092 1093 pf->stat_offsets_loaded = true; 1094 } 1095 1096 /** 1097 * i40e_update_stats - Update the various statistics counters. 1098 * @vsi: the VSI to be updated 1099 * 1100 * Update the various stats for this VSI and its related entities. 1101 **/ 1102 void i40e_update_stats(struct i40e_vsi *vsi) 1103 { 1104 struct i40e_pf *pf = vsi->back; 1105 1106 if (vsi == pf->vsi[pf->lan_vsi]) 1107 i40e_update_pf_stats(pf); 1108 1109 i40e_update_vsi_stats(vsi); 1110 } 1111 1112 /** 1113 * i40e_find_filter - Search VSI filter list for specific mac/vlan filter 1114 * @vsi: the VSI to be searched 1115 * @macaddr: the MAC address 1116 * @vlan: the vlan 1117 * 1118 * Returns ptr to the filter object or NULL 1119 **/ 1120 static struct i40e_mac_filter *i40e_find_filter(struct i40e_vsi *vsi, 1121 const u8 *macaddr, s16 vlan) 1122 { 1123 struct i40e_mac_filter *f; 1124 u64 key; 1125 1126 if (!vsi || !macaddr) 1127 return NULL; 1128 1129 key = i40e_addr_to_hkey(macaddr); 1130 hash_for_each_possible(vsi->mac_filter_hash, f, hlist, key) { 1131 if ((ether_addr_equal(macaddr, f->macaddr)) && 1132 (vlan == f->vlan)) 1133 return f; 1134 } 1135 return NULL; 1136 } 1137 1138 /** 1139 * i40e_find_mac - Find a mac addr in the macvlan filters list 1140 * @vsi: the VSI to be searched 1141 * @macaddr: the MAC address we are searching for 1142 * 1143 * Returns the first filter with the provided MAC address or NULL if 1144 * MAC address was not found 1145 **/ 1146 struct i40e_mac_filter *i40e_find_mac(struct i40e_vsi *vsi, const u8 *macaddr) 1147 { 1148 struct i40e_mac_filter *f; 1149 u64 key; 1150 1151 if (!vsi || !macaddr) 1152 return NULL; 1153 1154 key = i40e_addr_to_hkey(macaddr); 1155 hash_for_each_possible(vsi->mac_filter_hash, f, hlist, key) { 1156 if ((ether_addr_equal(macaddr, f->macaddr))) 1157 return f; 1158 } 1159 return NULL; 1160 } 1161 1162 /** 1163 * i40e_is_vsi_in_vlan - Check if VSI is in vlan mode 1164 * @vsi: the VSI to be searched 1165 * 1166 * Returns true if VSI is in vlan mode or false otherwise 1167 **/ 1168 bool i40e_is_vsi_in_vlan(struct i40e_vsi *vsi) 1169 { 1170 /* If we have a PVID, always operate in VLAN mode */ 1171 if (vsi->info.pvid) 1172 return true; 1173 1174 /* We need to operate in VLAN mode whenever we have any filters with 1175 * a VLAN other than I40E_VLAN_ALL. We could check the table each 1176 * time, incurring search cost repeatedly. However, we can notice two 1177 * things: 1178 * 1179 * 1) the only place where we can gain a VLAN filter is in 1180 * i40e_add_filter. 1181 * 1182 * 2) the only place where filters are actually removed is in 1183 * i40e_sync_filters_subtask. 1184 * 1185 * Thus, we can simply use a boolean value, has_vlan_filters which we 1186 * will set to true when we add a VLAN filter in i40e_add_filter. Then 1187 * we have to perform the full search after deleting filters in 1188 * i40e_sync_filters_subtask, but we already have to search 1189 * filters here and can perform the check at the same time. This 1190 * results in avoiding embedding a loop for VLAN mode inside another 1191 * loop over all the filters, and should maintain correctness as noted 1192 * above. 1193 */ 1194 return vsi->has_vlan_filter; 1195 } 1196 1197 /** 1198 * i40e_correct_mac_vlan_filters - Correct non-VLAN filters if necessary 1199 * @vsi: the VSI to configure 1200 * @tmp_add_list: list of filters ready to be added 1201 * @tmp_del_list: list of filters ready to be deleted 1202 * @vlan_filters: the number of active VLAN filters 1203 * 1204 * Update VLAN=0 and VLAN=-1 (I40E_VLAN_ANY) filters properly so that they 1205 * behave as expected. If we have any active VLAN filters remaining or about 1206 * to be added then we need to update non-VLAN filters to be marked as VLAN=0 1207 * so that they only match against untagged traffic. If we no longer have any 1208 * active VLAN filters, we need to make all non-VLAN filters marked as VLAN=-1 1209 * so that they match against both tagged and untagged traffic. In this way, 1210 * we ensure that we correctly receive the desired traffic. This ensures that 1211 * when we have an active VLAN we will receive only untagged traffic and 1212 * traffic matching active VLANs. If we have no active VLANs then we will 1213 * operate in non-VLAN mode and receive all traffic, tagged or untagged. 1214 * 1215 * Finally, in a similar fashion, this function also corrects filters when 1216 * there is an active PVID assigned to this VSI. 1217 * 1218 * In case of memory allocation failure return -ENOMEM. Otherwise, return 0. 1219 * 1220 * This function is only expected to be called from within 1221 * i40e_sync_vsi_filters. 1222 * 1223 * NOTE: This function expects to be called while under the 1224 * mac_filter_hash_lock 1225 */ 1226 static int i40e_correct_mac_vlan_filters(struct i40e_vsi *vsi, 1227 struct hlist_head *tmp_add_list, 1228 struct hlist_head *tmp_del_list, 1229 int vlan_filters) 1230 { 1231 s16 pvid = le16_to_cpu(vsi->info.pvid); 1232 struct i40e_mac_filter *f, *add_head; 1233 struct i40e_new_mac_filter *new; 1234 struct hlist_node *h; 1235 int bkt, new_vlan; 1236 1237 /* To determine if a particular filter needs to be replaced we 1238 * have the three following conditions: 1239 * 1240 * a) if we have a PVID assigned, then all filters which are 1241 * not marked as VLAN=PVID must be replaced with filters that 1242 * are. 1243 * b) otherwise, if we have any active VLANS, all filters 1244 * which are marked as VLAN=-1 must be replaced with 1245 * filters marked as VLAN=0 1246 * c) finally, if we do not have any active VLANS, all filters 1247 * which are marked as VLAN=0 must be replaced with filters 1248 * marked as VLAN=-1 1249 */ 1250 1251 /* Update the filters about to be added in place */ 1252 hlist_for_each_entry(new, tmp_add_list, hlist) { 1253 if (pvid && new->f->vlan != pvid) 1254 new->f->vlan = pvid; 1255 else if (vlan_filters && new->f->vlan == I40E_VLAN_ANY) 1256 new->f->vlan = 0; 1257 else if (!vlan_filters && new->f->vlan == 0) 1258 new->f->vlan = I40E_VLAN_ANY; 1259 } 1260 1261 /* Update the remaining active filters */ 1262 hash_for_each_safe(vsi->mac_filter_hash, bkt, h, f, hlist) { 1263 /* Combine the checks for whether a filter needs to be changed 1264 * and then determine the new VLAN inside the if block, in 1265 * order to avoid duplicating code for adding the new filter 1266 * then deleting the old filter. 1267 */ 1268 if ((pvid && f->vlan != pvid) || 1269 (vlan_filters && f->vlan == I40E_VLAN_ANY) || 1270 (!vlan_filters && f->vlan == 0)) { 1271 /* Determine the new vlan we will be adding */ 1272 if (pvid) 1273 new_vlan = pvid; 1274 else if (vlan_filters) 1275 new_vlan = 0; 1276 else 1277 new_vlan = I40E_VLAN_ANY; 1278 1279 /* Create the new filter */ 1280 add_head = i40e_add_filter(vsi, f->macaddr, new_vlan); 1281 if (!add_head) 1282 return -ENOMEM; 1283 1284 /* Create a temporary i40e_new_mac_filter */ 1285 new = kzalloc(sizeof(*new), GFP_ATOMIC); 1286 if (!new) 1287 return -ENOMEM; 1288 1289 new->f = add_head; 1290 new->state = add_head->state; 1291 1292 /* Add the new filter to the tmp list */ 1293 hlist_add_head(&new->hlist, tmp_add_list); 1294 1295 /* Put the original filter into the delete list */ 1296 f->state = I40E_FILTER_REMOVE; 1297 hash_del(&f->hlist); 1298 hlist_add_head(&f->hlist, tmp_del_list); 1299 } 1300 } 1301 1302 vsi->has_vlan_filter = !!vlan_filters; 1303 1304 return 0; 1305 } 1306 1307 /** 1308 * i40e_rm_default_mac_filter - Remove the default MAC filter set by NVM 1309 * @vsi: the PF Main VSI - inappropriate for any other VSI 1310 * @macaddr: the MAC address 1311 * 1312 * Remove whatever filter the firmware set up so the driver can manage 1313 * its own filtering intelligently. 1314 **/ 1315 static void i40e_rm_default_mac_filter(struct i40e_vsi *vsi, u8 *macaddr) 1316 { 1317 struct i40e_aqc_remove_macvlan_element_data element; 1318 struct i40e_pf *pf = vsi->back; 1319 1320 /* Only appropriate for the PF main VSI */ 1321 if (vsi->type != I40E_VSI_MAIN) 1322 return; 1323 1324 memset(&element, 0, sizeof(element)); 1325 ether_addr_copy(element.mac_addr, macaddr); 1326 element.vlan_tag = 0; 1327 /* Ignore error returns, some firmware does it this way... */ 1328 element.flags = I40E_AQC_MACVLAN_DEL_PERFECT_MATCH; 1329 i40e_aq_remove_macvlan(&pf->hw, vsi->seid, &element, 1, NULL); 1330 1331 memset(&element, 0, sizeof(element)); 1332 ether_addr_copy(element.mac_addr, macaddr); 1333 element.vlan_tag = 0; 1334 /* ...and some firmware does it this way. */ 1335 element.flags = I40E_AQC_MACVLAN_DEL_PERFECT_MATCH | 1336 I40E_AQC_MACVLAN_DEL_IGNORE_VLAN; 1337 i40e_aq_remove_macvlan(&pf->hw, vsi->seid, &element, 1, NULL); 1338 } 1339 1340 /** 1341 * i40e_add_filter - Add a mac/vlan filter to the VSI 1342 * @vsi: the VSI to be searched 1343 * @macaddr: the MAC address 1344 * @vlan: the vlan 1345 * 1346 * Returns ptr to the filter object or NULL when no memory available. 1347 * 1348 * NOTE: This function is expected to be called with mac_filter_hash_lock 1349 * being held. 1350 **/ 1351 struct i40e_mac_filter *i40e_add_filter(struct i40e_vsi *vsi, 1352 const u8 *macaddr, s16 vlan) 1353 { 1354 struct i40e_mac_filter *f; 1355 u64 key; 1356 1357 if (!vsi || !macaddr) 1358 return NULL; 1359 1360 f = i40e_find_filter(vsi, macaddr, vlan); 1361 if (!f) { 1362 f = kzalloc(sizeof(*f), GFP_ATOMIC); 1363 if (!f) 1364 return NULL; 1365 1366 /* Update the boolean indicating if we need to function in 1367 * VLAN mode. 1368 */ 1369 if (vlan >= 0) 1370 vsi->has_vlan_filter = true; 1371 1372 ether_addr_copy(f->macaddr, macaddr); 1373 f->vlan = vlan; 1374 f->state = I40E_FILTER_NEW; 1375 INIT_HLIST_NODE(&f->hlist); 1376 1377 key = i40e_addr_to_hkey(macaddr); 1378 hash_add(vsi->mac_filter_hash, &f->hlist, key); 1379 1380 vsi->flags |= I40E_VSI_FLAG_FILTER_CHANGED; 1381 set_bit(__I40E_MACVLAN_SYNC_PENDING, vsi->back->state); 1382 } 1383 1384 /* If we're asked to add a filter that has been marked for removal, it 1385 * is safe to simply restore it to active state. __i40e_del_filter 1386 * will have simply deleted any filters which were previously marked 1387 * NEW or FAILED, so if it is currently marked REMOVE it must have 1388 * previously been ACTIVE. Since we haven't yet run the sync filters 1389 * task, just restore this filter to the ACTIVE state so that the 1390 * sync task leaves it in place 1391 */ 1392 if (f->state == I40E_FILTER_REMOVE) 1393 f->state = I40E_FILTER_ACTIVE; 1394 1395 return f; 1396 } 1397 1398 /** 1399 * __i40e_del_filter - Remove a specific filter from the VSI 1400 * @vsi: VSI to remove from 1401 * @f: the filter to remove from the list 1402 * 1403 * This function should be called instead of i40e_del_filter only if you know 1404 * the exact filter you will remove already, such as via i40e_find_filter or 1405 * i40e_find_mac. 1406 * 1407 * NOTE: This function is expected to be called with mac_filter_hash_lock 1408 * being held. 1409 * ANOTHER NOTE: This function MUST be called from within the context of 1410 * the "safe" variants of any list iterators, e.g. list_for_each_entry_safe() 1411 * instead of list_for_each_entry(). 1412 **/ 1413 void __i40e_del_filter(struct i40e_vsi *vsi, struct i40e_mac_filter *f) 1414 { 1415 if (!f) 1416 return; 1417 1418 /* If the filter was never added to firmware then we can just delete it 1419 * directly and we don't want to set the status to remove or else an 1420 * admin queue command will unnecessarily fire. 1421 */ 1422 if ((f->state == I40E_FILTER_FAILED) || 1423 (f->state == I40E_FILTER_NEW)) { 1424 hash_del(&f->hlist); 1425 kfree(f); 1426 } else { 1427 f->state = I40E_FILTER_REMOVE; 1428 } 1429 1430 vsi->flags |= I40E_VSI_FLAG_FILTER_CHANGED; 1431 set_bit(__I40E_MACVLAN_SYNC_PENDING, vsi->back->state); 1432 } 1433 1434 /** 1435 * i40e_del_filter - Remove a MAC/VLAN filter from the VSI 1436 * @vsi: the VSI to be searched 1437 * @macaddr: the MAC address 1438 * @vlan: the VLAN 1439 * 1440 * NOTE: This function is expected to be called with mac_filter_hash_lock 1441 * being held. 1442 * ANOTHER NOTE: This function MUST be called from within the context of 1443 * the "safe" variants of any list iterators, e.g. list_for_each_entry_safe() 1444 * instead of list_for_each_entry(). 1445 **/ 1446 void i40e_del_filter(struct i40e_vsi *vsi, const u8 *macaddr, s16 vlan) 1447 { 1448 struct i40e_mac_filter *f; 1449 1450 if (!vsi || !macaddr) 1451 return; 1452 1453 f = i40e_find_filter(vsi, macaddr, vlan); 1454 __i40e_del_filter(vsi, f); 1455 } 1456 1457 /** 1458 * i40e_add_mac_filter - Add a MAC filter for all active VLANs 1459 * @vsi: the VSI to be searched 1460 * @macaddr: the mac address to be filtered 1461 * 1462 * If we're not in VLAN mode, just add the filter to I40E_VLAN_ANY. Otherwise, 1463 * go through all the macvlan filters and add a macvlan filter for each 1464 * unique vlan that already exists. If a PVID has been assigned, instead only 1465 * add the macaddr to that VLAN. 1466 * 1467 * Returns last filter added on success, else NULL 1468 **/ 1469 struct i40e_mac_filter *i40e_add_mac_filter(struct i40e_vsi *vsi, 1470 const u8 *macaddr) 1471 { 1472 struct i40e_mac_filter *f, *add = NULL; 1473 struct hlist_node *h; 1474 int bkt; 1475 1476 if (vsi->info.pvid) 1477 return i40e_add_filter(vsi, macaddr, 1478 le16_to_cpu(vsi->info.pvid)); 1479 1480 if (!i40e_is_vsi_in_vlan(vsi)) 1481 return i40e_add_filter(vsi, macaddr, I40E_VLAN_ANY); 1482 1483 hash_for_each_safe(vsi->mac_filter_hash, bkt, h, f, hlist) { 1484 if (f->state == I40E_FILTER_REMOVE) 1485 continue; 1486 add = i40e_add_filter(vsi, macaddr, f->vlan); 1487 if (!add) 1488 return NULL; 1489 } 1490 1491 return add; 1492 } 1493 1494 /** 1495 * i40e_del_mac_filter - Remove a MAC filter from all VLANs 1496 * @vsi: the VSI to be searched 1497 * @macaddr: the mac address to be removed 1498 * 1499 * Removes a given MAC address from a VSI regardless of what VLAN it has been 1500 * associated with. 1501 * 1502 * Returns 0 for success, or error 1503 **/ 1504 int i40e_del_mac_filter(struct i40e_vsi *vsi, const u8 *macaddr) 1505 { 1506 struct i40e_mac_filter *f; 1507 struct hlist_node *h; 1508 bool found = false; 1509 int bkt; 1510 1511 lockdep_assert_held(&vsi->mac_filter_hash_lock); 1512 hash_for_each_safe(vsi->mac_filter_hash, bkt, h, f, hlist) { 1513 if (ether_addr_equal(macaddr, f->macaddr)) { 1514 __i40e_del_filter(vsi, f); 1515 found = true; 1516 } 1517 } 1518 1519 if (found) 1520 return 0; 1521 else 1522 return -ENOENT; 1523 } 1524 1525 /** 1526 * i40e_set_mac - NDO callback to set mac address 1527 * @netdev: network interface device structure 1528 * @p: pointer to an address structure 1529 * 1530 * Returns 0 on success, negative on failure 1531 **/ 1532 static int i40e_set_mac(struct net_device *netdev, void *p) 1533 { 1534 struct i40e_netdev_priv *np = netdev_priv(netdev); 1535 struct i40e_vsi *vsi = np->vsi; 1536 struct i40e_pf *pf = vsi->back; 1537 struct i40e_hw *hw = &pf->hw; 1538 struct sockaddr *addr = p; 1539 1540 if (!is_valid_ether_addr(addr->sa_data)) 1541 return -EADDRNOTAVAIL; 1542 1543 if (ether_addr_equal(netdev->dev_addr, addr->sa_data)) { 1544 netdev_info(netdev, "already using mac address %pM\n", 1545 addr->sa_data); 1546 return 0; 1547 } 1548 1549 if (test_bit(__I40E_DOWN, pf->state) || 1550 test_bit(__I40E_RESET_RECOVERY_PENDING, pf->state)) 1551 return -EADDRNOTAVAIL; 1552 1553 if (ether_addr_equal(hw->mac.addr, addr->sa_data)) 1554 netdev_info(netdev, "returning to hw mac address %pM\n", 1555 hw->mac.addr); 1556 else 1557 netdev_info(netdev, "set new mac address %pM\n", addr->sa_data); 1558 1559 /* Copy the address first, so that we avoid a possible race with 1560 * .set_rx_mode(). 1561 * - Remove old address from MAC filter 1562 * - Copy new address 1563 * - Add new address to MAC filter 1564 */ 1565 spin_lock_bh(&vsi->mac_filter_hash_lock); 1566 i40e_del_mac_filter(vsi, netdev->dev_addr); 1567 ether_addr_copy(netdev->dev_addr, addr->sa_data); 1568 i40e_add_mac_filter(vsi, netdev->dev_addr); 1569 spin_unlock_bh(&vsi->mac_filter_hash_lock); 1570 1571 if (vsi->type == I40E_VSI_MAIN) { 1572 i40e_status ret; 1573 1574 ret = i40e_aq_mac_address_write(hw, I40E_AQC_WRITE_TYPE_LAA_WOL, 1575 addr->sa_data, NULL); 1576 if (ret) 1577 netdev_info(netdev, "Ignoring error from firmware on LAA update, status %s, AQ ret %s\n", 1578 i40e_stat_str(hw, ret), 1579 i40e_aq_str(hw, hw->aq.asq_last_status)); 1580 } 1581 1582 /* schedule our worker thread which will take care of 1583 * applying the new filter changes 1584 */ 1585 i40e_service_event_schedule(pf); 1586 return 0; 1587 } 1588 1589 /** 1590 * i40e_config_rss_aq - Prepare for RSS using AQ commands 1591 * @vsi: vsi structure 1592 * @seed: RSS hash seed 1593 **/ 1594 static int i40e_config_rss_aq(struct i40e_vsi *vsi, const u8 *seed, 1595 u8 *lut, u16 lut_size) 1596 { 1597 struct i40e_pf *pf = vsi->back; 1598 struct i40e_hw *hw = &pf->hw; 1599 int ret = 0; 1600 1601 if (seed) { 1602 struct i40e_aqc_get_set_rss_key_data *seed_dw = 1603 (struct i40e_aqc_get_set_rss_key_data *)seed; 1604 ret = i40e_aq_set_rss_key(hw, vsi->id, seed_dw); 1605 if (ret) { 1606 dev_info(&pf->pdev->dev, 1607 "Cannot set RSS key, err %s aq_err %s\n", 1608 i40e_stat_str(hw, ret), 1609 i40e_aq_str(hw, hw->aq.asq_last_status)); 1610 return ret; 1611 } 1612 } 1613 if (lut) { 1614 bool pf_lut = vsi->type == I40E_VSI_MAIN ? true : false; 1615 1616 ret = i40e_aq_set_rss_lut(hw, vsi->id, pf_lut, lut, lut_size); 1617 if (ret) { 1618 dev_info(&pf->pdev->dev, 1619 "Cannot set RSS lut, err %s aq_err %s\n", 1620 i40e_stat_str(hw, ret), 1621 i40e_aq_str(hw, hw->aq.asq_last_status)); 1622 return ret; 1623 } 1624 } 1625 return ret; 1626 } 1627 1628 /** 1629 * i40e_vsi_config_rss - Prepare for VSI(VMDq) RSS if used 1630 * @vsi: VSI structure 1631 **/ 1632 static int i40e_vsi_config_rss(struct i40e_vsi *vsi) 1633 { 1634 struct i40e_pf *pf = vsi->back; 1635 u8 seed[I40E_HKEY_ARRAY_SIZE]; 1636 u8 *lut; 1637 int ret; 1638 1639 if (!(pf->hw_features & I40E_HW_RSS_AQ_CAPABLE)) 1640 return 0; 1641 if (!vsi->rss_size) 1642 vsi->rss_size = min_t(int, pf->alloc_rss_size, 1643 vsi->num_queue_pairs); 1644 if (!vsi->rss_size) 1645 return -EINVAL; 1646 lut = kzalloc(vsi->rss_table_size, GFP_KERNEL); 1647 if (!lut) 1648 return -ENOMEM; 1649 1650 /* Use the user configured hash keys and lookup table if there is one, 1651 * otherwise use default 1652 */ 1653 if (vsi->rss_lut_user) 1654 memcpy(lut, vsi->rss_lut_user, vsi->rss_table_size); 1655 else 1656 i40e_fill_rss_lut(pf, lut, vsi->rss_table_size, vsi->rss_size); 1657 if (vsi->rss_hkey_user) 1658 memcpy(seed, vsi->rss_hkey_user, I40E_HKEY_ARRAY_SIZE); 1659 else 1660 netdev_rss_key_fill((void *)seed, I40E_HKEY_ARRAY_SIZE); 1661 ret = i40e_config_rss_aq(vsi, seed, lut, vsi->rss_table_size); 1662 kfree(lut); 1663 return ret; 1664 } 1665 1666 /** 1667 * i40e_vsi_setup_queue_map_mqprio - Prepares mqprio based tc_config 1668 * @vsi: the VSI being configured, 1669 * @ctxt: VSI context structure 1670 * @enabled_tc: number of traffic classes to enable 1671 * 1672 * Prepares VSI tc_config to have queue configurations based on MQPRIO options. 1673 **/ 1674 static int i40e_vsi_setup_queue_map_mqprio(struct i40e_vsi *vsi, 1675 struct i40e_vsi_context *ctxt, 1676 u8 enabled_tc) 1677 { 1678 u16 qcount = 0, max_qcount, qmap, sections = 0; 1679 int i, override_q, pow, num_qps, ret; 1680 u8 netdev_tc = 0, offset = 0; 1681 1682 if (vsi->type != I40E_VSI_MAIN) 1683 return -EINVAL; 1684 sections = I40E_AQ_VSI_PROP_QUEUE_MAP_VALID; 1685 sections |= I40E_AQ_VSI_PROP_SCHED_VALID; 1686 vsi->tc_config.numtc = vsi->mqprio_qopt.qopt.num_tc; 1687 vsi->tc_config.enabled_tc = enabled_tc ? enabled_tc : 1; 1688 num_qps = vsi->mqprio_qopt.qopt.count[0]; 1689 1690 /* find the next higher power-of-2 of num queue pairs */ 1691 pow = ilog2(num_qps); 1692 if (!is_power_of_2(num_qps)) 1693 pow++; 1694 qmap = (offset << I40E_AQ_VSI_TC_QUE_OFFSET_SHIFT) | 1695 (pow << I40E_AQ_VSI_TC_QUE_NUMBER_SHIFT); 1696 1697 /* Setup queue offset/count for all TCs for given VSI */ 1698 max_qcount = vsi->mqprio_qopt.qopt.count[0]; 1699 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 1700 /* See if the given TC is enabled for the given VSI */ 1701 if (vsi->tc_config.enabled_tc & BIT(i)) { 1702 offset = vsi->mqprio_qopt.qopt.offset[i]; 1703 qcount = vsi->mqprio_qopt.qopt.count[i]; 1704 if (qcount > max_qcount) 1705 max_qcount = qcount; 1706 vsi->tc_config.tc_info[i].qoffset = offset; 1707 vsi->tc_config.tc_info[i].qcount = qcount; 1708 vsi->tc_config.tc_info[i].netdev_tc = netdev_tc++; 1709 } else { 1710 /* TC is not enabled so set the offset to 1711 * default queue and allocate one queue 1712 * for the given TC. 1713 */ 1714 vsi->tc_config.tc_info[i].qoffset = 0; 1715 vsi->tc_config.tc_info[i].qcount = 1; 1716 vsi->tc_config.tc_info[i].netdev_tc = 0; 1717 } 1718 } 1719 1720 /* Set actual Tx/Rx queue pairs */ 1721 vsi->num_queue_pairs = offset + qcount; 1722 1723 /* Setup queue TC[0].qmap for given VSI context */ 1724 ctxt->info.tc_mapping[0] = cpu_to_le16(qmap); 1725 ctxt->info.mapping_flags |= cpu_to_le16(I40E_AQ_VSI_QUE_MAP_CONTIG); 1726 ctxt->info.queue_mapping[0] = cpu_to_le16(vsi->base_queue); 1727 ctxt->info.valid_sections |= cpu_to_le16(sections); 1728 1729 /* Reconfigure RSS for main VSI with max queue count */ 1730 vsi->rss_size = max_qcount; 1731 ret = i40e_vsi_config_rss(vsi); 1732 if (ret) { 1733 dev_info(&vsi->back->pdev->dev, 1734 "Failed to reconfig rss for num_queues (%u)\n", 1735 max_qcount); 1736 return ret; 1737 } 1738 vsi->reconfig_rss = true; 1739 dev_dbg(&vsi->back->pdev->dev, 1740 "Reconfigured rss with num_queues (%u)\n", max_qcount); 1741 1742 /* Find queue count available for channel VSIs and starting offset 1743 * for channel VSIs 1744 */ 1745 override_q = vsi->mqprio_qopt.qopt.count[0]; 1746 if (override_q && override_q < vsi->num_queue_pairs) { 1747 vsi->cnt_q_avail = vsi->num_queue_pairs - override_q; 1748 vsi->next_base_queue = override_q; 1749 } 1750 return 0; 1751 } 1752 1753 /** 1754 * i40e_vsi_setup_queue_map - Setup a VSI queue map based on enabled_tc 1755 * @vsi: the VSI being setup 1756 * @ctxt: VSI context structure 1757 * @enabled_tc: Enabled TCs bitmap 1758 * @is_add: True if called before Add VSI 1759 * 1760 * Setup VSI queue mapping for enabled traffic classes. 1761 **/ 1762 static void i40e_vsi_setup_queue_map(struct i40e_vsi *vsi, 1763 struct i40e_vsi_context *ctxt, 1764 u8 enabled_tc, 1765 bool is_add) 1766 { 1767 struct i40e_pf *pf = vsi->back; 1768 u16 sections = 0; 1769 u8 netdev_tc = 0; 1770 u16 numtc = 1; 1771 u16 qcount; 1772 u8 offset; 1773 u16 qmap; 1774 int i; 1775 u16 num_tc_qps = 0; 1776 1777 sections = I40E_AQ_VSI_PROP_QUEUE_MAP_VALID; 1778 offset = 0; 1779 1780 /* Number of queues per enabled TC */ 1781 num_tc_qps = vsi->alloc_queue_pairs; 1782 if (enabled_tc && (vsi->back->flags & I40E_FLAG_DCB_ENABLED)) { 1783 /* Find numtc from enabled TC bitmap */ 1784 for (i = 0, numtc = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 1785 if (enabled_tc & BIT(i)) /* TC is enabled */ 1786 numtc++; 1787 } 1788 if (!numtc) { 1789 dev_warn(&pf->pdev->dev, "DCB is enabled but no TC enabled, forcing TC0\n"); 1790 numtc = 1; 1791 } 1792 num_tc_qps = num_tc_qps / numtc; 1793 num_tc_qps = min_t(int, num_tc_qps, 1794 i40e_pf_get_max_q_per_tc(pf)); 1795 } 1796 1797 vsi->tc_config.numtc = numtc; 1798 vsi->tc_config.enabled_tc = enabled_tc ? enabled_tc : 1; 1799 1800 /* Do not allow use more TC queue pairs than MSI-X vectors exist */ 1801 if (pf->flags & I40E_FLAG_MSIX_ENABLED) 1802 num_tc_qps = min_t(int, num_tc_qps, pf->num_lan_msix); 1803 1804 /* Setup queue offset/count for all TCs for given VSI */ 1805 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 1806 /* See if the given TC is enabled for the given VSI */ 1807 if (vsi->tc_config.enabled_tc & BIT(i)) { 1808 /* TC is enabled */ 1809 int pow, num_qps; 1810 1811 switch (vsi->type) { 1812 case I40E_VSI_MAIN: 1813 if (!(pf->flags & (I40E_FLAG_FD_SB_ENABLED | 1814 I40E_FLAG_FD_ATR_ENABLED)) || 1815 vsi->tc_config.enabled_tc != 1) { 1816 qcount = min_t(int, pf->alloc_rss_size, 1817 num_tc_qps); 1818 break; 1819 } 1820 /* fall through */ 1821 case I40E_VSI_FDIR: 1822 case I40E_VSI_SRIOV: 1823 case I40E_VSI_VMDQ2: 1824 default: 1825 qcount = num_tc_qps; 1826 WARN_ON(i != 0); 1827 break; 1828 } 1829 vsi->tc_config.tc_info[i].qoffset = offset; 1830 vsi->tc_config.tc_info[i].qcount = qcount; 1831 1832 /* find the next higher power-of-2 of num queue pairs */ 1833 num_qps = qcount; 1834 pow = 0; 1835 while (num_qps && (BIT_ULL(pow) < qcount)) { 1836 pow++; 1837 num_qps >>= 1; 1838 } 1839 1840 vsi->tc_config.tc_info[i].netdev_tc = netdev_tc++; 1841 qmap = 1842 (offset << I40E_AQ_VSI_TC_QUE_OFFSET_SHIFT) | 1843 (pow << I40E_AQ_VSI_TC_QUE_NUMBER_SHIFT); 1844 1845 offset += qcount; 1846 } else { 1847 /* TC is not enabled so set the offset to 1848 * default queue and allocate one queue 1849 * for the given TC. 1850 */ 1851 vsi->tc_config.tc_info[i].qoffset = 0; 1852 vsi->tc_config.tc_info[i].qcount = 1; 1853 vsi->tc_config.tc_info[i].netdev_tc = 0; 1854 1855 qmap = 0; 1856 } 1857 ctxt->info.tc_mapping[i] = cpu_to_le16(qmap); 1858 } 1859 1860 /* Set actual Tx/Rx queue pairs */ 1861 vsi->num_queue_pairs = offset; 1862 if ((vsi->type == I40E_VSI_MAIN) && (numtc == 1)) { 1863 if (vsi->req_queue_pairs > 0) 1864 vsi->num_queue_pairs = vsi->req_queue_pairs; 1865 else if (pf->flags & I40E_FLAG_MSIX_ENABLED) 1866 vsi->num_queue_pairs = pf->num_lan_msix; 1867 } 1868 1869 /* Scheduler section valid can only be set for ADD VSI */ 1870 if (is_add) { 1871 sections |= I40E_AQ_VSI_PROP_SCHED_VALID; 1872 1873 ctxt->info.up_enable_bits = enabled_tc; 1874 } 1875 if (vsi->type == I40E_VSI_SRIOV) { 1876 ctxt->info.mapping_flags |= 1877 cpu_to_le16(I40E_AQ_VSI_QUE_MAP_NONCONTIG); 1878 for (i = 0; i < vsi->num_queue_pairs; i++) 1879 ctxt->info.queue_mapping[i] = 1880 cpu_to_le16(vsi->base_queue + i); 1881 } else { 1882 ctxt->info.mapping_flags |= 1883 cpu_to_le16(I40E_AQ_VSI_QUE_MAP_CONTIG); 1884 ctxt->info.queue_mapping[0] = cpu_to_le16(vsi->base_queue); 1885 } 1886 ctxt->info.valid_sections |= cpu_to_le16(sections); 1887 } 1888 1889 /** 1890 * i40e_addr_sync - Callback for dev_(mc|uc)_sync to add address 1891 * @netdev: the netdevice 1892 * @addr: address to add 1893 * 1894 * Called by __dev_(mc|uc)_sync when an address needs to be added. We call 1895 * __dev_(uc|mc)_sync from .set_rx_mode and guarantee to hold the hash lock. 1896 */ 1897 static int i40e_addr_sync(struct net_device *netdev, const u8 *addr) 1898 { 1899 struct i40e_netdev_priv *np = netdev_priv(netdev); 1900 struct i40e_vsi *vsi = np->vsi; 1901 1902 if (i40e_add_mac_filter(vsi, addr)) 1903 return 0; 1904 else 1905 return -ENOMEM; 1906 } 1907 1908 /** 1909 * i40e_addr_unsync - Callback for dev_(mc|uc)_sync to remove address 1910 * @netdev: the netdevice 1911 * @addr: address to add 1912 * 1913 * Called by __dev_(mc|uc)_sync when an address needs to be removed. We call 1914 * __dev_(uc|mc)_sync from .set_rx_mode and guarantee to hold the hash lock. 1915 */ 1916 static int i40e_addr_unsync(struct net_device *netdev, const u8 *addr) 1917 { 1918 struct i40e_netdev_priv *np = netdev_priv(netdev); 1919 struct i40e_vsi *vsi = np->vsi; 1920 1921 /* Under some circumstances, we might receive a request to delete 1922 * our own device address from our uc list. Because we store the 1923 * device address in the VSI's MAC/VLAN filter list, we need to ignore 1924 * such requests and not delete our device address from this list. 1925 */ 1926 if (ether_addr_equal(addr, netdev->dev_addr)) 1927 return 0; 1928 1929 i40e_del_mac_filter(vsi, addr); 1930 1931 return 0; 1932 } 1933 1934 /** 1935 * i40e_set_rx_mode - NDO callback to set the netdev filters 1936 * @netdev: network interface device structure 1937 **/ 1938 static void i40e_set_rx_mode(struct net_device *netdev) 1939 { 1940 struct i40e_netdev_priv *np = netdev_priv(netdev); 1941 struct i40e_vsi *vsi = np->vsi; 1942 1943 spin_lock_bh(&vsi->mac_filter_hash_lock); 1944 1945 __dev_uc_sync(netdev, i40e_addr_sync, i40e_addr_unsync); 1946 __dev_mc_sync(netdev, i40e_addr_sync, i40e_addr_unsync); 1947 1948 spin_unlock_bh(&vsi->mac_filter_hash_lock); 1949 1950 /* check for other flag changes */ 1951 if (vsi->current_netdev_flags != vsi->netdev->flags) { 1952 vsi->flags |= I40E_VSI_FLAG_FILTER_CHANGED; 1953 set_bit(__I40E_MACVLAN_SYNC_PENDING, vsi->back->state); 1954 } 1955 } 1956 1957 /** 1958 * i40e_undo_del_filter_entries - Undo the changes made to MAC filter entries 1959 * @vsi: Pointer to VSI struct 1960 * @from: Pointer to list which contains MAC filter entries - changes to 1961 * those entries needs to be undone. 1962 * 1963 * MAC filter entries from this list were slated for deletion. 1964 **/ 1965 static void i40e_undo_del_filter_entries(struct i40e_vsi *vsi, 1966 struct hlist_head *from) 1967 { 1968 struct i40e_mac_filter *f; 1969 struct hlist_node *h; 1970 1971 hlist_for_each_entry_safe(f, h, from, hlist) { 1972 u64 key = i40e_addr_to_hkey(f->macaddr); 1973 1974 /* Move the element back into MAC filter list*/ 1975 hlist_del(&f->hlist); 1976 hash_add(vsi->mac_filter_hash, &f->hlist, key); 1977 } 1978 } 1979 1980 /** 1981 * i40e_undo_add_filter_entries - Undo the changes made to MAC filter entries 1982 * @vsi: Pointer to vsi struct 1983 * @from: Pointer to list which contains MAC filter entries - changes to 1984 * those entries needs to be undone. 1985 * 1986 * MAC filter entries from this list were slated for addition. 1987 **/ 1988 static void i40e_undo_add_filter_entries(struct i40e_vsi *vsi, 1989 struct hlist_head *from) 1990 { 1991 struct i40e_new_mac_filter *new; 1992 struct hlist_node *h; 1993 1994 hlist_for_each_entry_safe(new, h, from, hlist) { 1995 /* We can simply free the wrapper structure */ 1996 hlist_del(&new->hlist); 1997 kfree(new); 1998 } 1999 } 2000 2001 /** 2002 * i40e_next_entry - Get the next non-broadcast filter from a list 2003 * @next: pointer to filter in list 2004 * 2005 * Returns the next non-broadcast filter in the list. Required so that we 2006 * ignore broadcast filters within the list, since these are not handled via 2007 * the normal firmware update path. 2008 */ 2009 static 2010 struct i40e_new_mac_filter *i40e_next_filter(struct i40e_new_mac_filter *next) 2011 { 2012 hlist_for_each_entry_continue(next, hlist) { 2013 if (!is_broadcast_ether_addr(next->f->macaddr)) 2014 return next; 2015 } 2016 2017 return NULL; 2018 } 2019 2020 /** 2021 * i40e_update_filter_state - Update filter state based on return data 2022 * from firmware 2023 * @count: Number of filters added 2024 * @add_list: return data from fw 2025 * @add_head: pointer to first filter in current batch 2026 * 2027 * MAC filter entries from list were slated to be added to device. Returns 2028 * number of successful filters. Note that 0 does NOT mean success! 2029 **/ 2030 static int 2031 i40e_update_filter_state(int count, 2032 struct i40e_aqc_add_macvlan_element_data *add_list, 2033 struct i40e_new_mac_filter *add_head) 2034 { 2035 int retval = 0; 2036 int i; 2037 2038 for (i = 0; i < count; i++) { 2039 /* Always check status of each filter. We don't need to check 2040 * the firmware return status because we pre-set the filter 2041 * status to I40E_AQC_MM_ERR_NO_RES when sending the filter 2042 * request to the adminq. Thus, if it no longer matches then 2043 * we know the filter is active. 2044 */ 2045 if (add_list[i].match_method == I40E_AQC_MM_ERR_NO_RES) { 2046 add_head->state = I40E_FILTER_FAILED; 2047 } else { 2048 add_head->state = I40E_FILTER_ACTIVE; 2049 retval++; 2050 } 2051 2052 add_head = i40e_next_filter(add_head); 2053 if (!add_head) 2054 break; 2055 } 2056 2057 return retval; 2058 } 2059 2060 /** 2061 * i40e_aqc_del_filters - Request firmware to delete a set of filters 2062 * @vsi: ptr to the VSI 2063 * @vsi_name: name to display in messages 2064 * @list: the list of filters to send to firmware 2065 * @num_del: the number of filters to delete 2066 * @retval: Set to -EIO on failure to delete 2067 * 2068 * Send a request to firmware via AdminQ to delete a set of filters. Uses 2069 * *retval instead of a return value so that success does not force ret_val to 2070 * be set to 0. This ensures that a sequence of calls to this function 2071 * preserve the previous value of *retval on successful delete. 2072 */ 2073 static 2074 void i40e_aqc_del_filters(struct i40e_vsi *vsi, const char *vsi_name, 2075 struct i40e_aqc_remove_macvlan_element_data *list, 2076 int num_del, int *retval) 2077 { 2078 struct i40e_hw *hw = &vsi->back->hw; 2079 i40e_status aq_ret; 2080 int aq_err; 2081 2082 aq_ret = i40e_aq_remove_macvlan(hw, vsi->seid, list, num_del, NULL); 2083 aq_err = hw->aq.asq_last_status; 2084 2085 /* Explicitly ignore and do not report when firmware returns ENOENT */ 2086 if (aq_ret && !(aq_err == I40E_AQ_RC_ENOENT)) { 2087 *retval = -EIO; 2088 dev_info(&vsi->back->pdev->dev, 2089 "ignoring delete macvlan error on %s, err %s, aq_err %s\n", 2090 vsi_name, i40e_stat_str(hw, aq_ret), 2091 i40e_aq_str(hw, aq_err)); 2092 } 2093 } 2094 2095 /** 2096 * i40e_aqc_add_filters - Request firmware to add a set of filters 2097 * @vsi: ptr to the VSI 2098 * @vsi_name: name to display in messages 2099 * @list: the list of filters to send to firmware 2100 * @add_head: Position in the add hlist 2101 * @num_add: the number of filters to add 2102 * 2103 * Send a request to firmware via AdminQ to add a chunk of filters. Will set 2104 * __I40E_VSI_OVERFLOW_PROMISC bit in vsi->state if the firmware has run out of 2105 * space for more filters. 2106 */ 2107 static 2108 void i40e_aqc_add_filters(struct i40e_vsi *vsi, const char *vsi_name, 2109 struct i40e_aqc_add_macvlan_element_data *list, 2110 struct i40e_new_mac_filter *add_head, 2111 int num_add) 2112 { 2113 struct i40e_hw *hw = &vsi->back->hw; 2114 int aq_err, fcnt; 2115 2116 i40e_aq_add_macvlan(hw, vsi->seid, list, num_add, NULL); 2117 aq_err = hw->aq.asq_last_status; 2118 fcnt = i40e_update_filter_state(num_add, list, add_head); 2119 2120 if (fcnt != num_add) { 2121 if (vsi->type == I40E_VSI_MAIN) { 2122 set_bit(__I40E_VSI_OVERFLOW_PROMISC, vsi->state); 2123 dev_warn(&vsi->back->pdev->dev, 2124 "Error %s adding RX filters on %s, promiscuous mode forced on\n", 2125 i40e_aq_str(hw, aq_err), vsi_name); 2126 } else if (vsi->type == I40E_VSI_SRIOV || 2127 vsi->type == I40E_VSI_VMDQ1 || 2128 vsi->type == I40E_VSI_VMDQ2) { 2129 dev_warn(&vsi->back->pdev->dev, 2130 "Error %s adding RX filters on %s, please set promiscuous on manually for %s\n", 2131 i40e_aq_str(hw, aq_err), vsi_name, vsi_name); 2132 } else { 2133 dev_warn(&vsi->back->pdev->dev, 2134 "Error %s adding RX filters on %s, incorrect VSI type: %i.\n", 2135 i40e_aq_str(hw, aq_err), vsi_name, vsi->type); 2136 } 2137 } 2138 } 2139 2140 /** 2141 * i40e_aqc_broadcast_filter - Set promiscuous broadcast flags 2142 * @vsi: pointer to the VSI 2143 * @vsi_name: the VSI name 2144 * @f: filter data 2145 * 2146 * This function sets or clears the promiscuous broadcast flags for VLAN 2147 * filters in order to properly receive broadcast frames. Assumes that only 2148 * broadcast filters are passed. 2149 * 2150 * Returns status indicating success or failure; 2151 **/ 2152 static i40e_status 2153 i40e_aqc_broadcast_filter(struct i40e_vsi *vsi, const char *vsi_name, 2154 struct i40e_mac_filter *f) 2155 { 2156 bool enable = f->state == I40E_FILTER_NEW; 2157 struct i40e_hw *hw = &vsi->back->hw; 2158 i40e_status aq_ret; 2159 2160 if (f->vlan == I40E_VLAN_ANY) { 2161 aq_ret = i40e_aq_set_vsi_broadcast(hw, 2162 vsi->seid, 2163 enable, 2164 NULL); 2165 } else { 2166 aq_ret = i40e_aq_set_vsi_bc_promisc_on_vlan(hw, 2167 vsi->seid, 2168 enable, 2169 f->vlan, 2170 NULL); 2171 } 2172 2173 if (aq_ret) { 2174 set_bit(__I40E_VSI_OVERFLOW_PROMISC, vsi->state); 2175 dev_warn(&vsi->back->pdev->dev, 2176 "Error %s, forcing overflow promiscuous on %s\n", 2177 i40e_aq_str(hw, hw->aq.asq_last_status), 2178 vsi_name); 2179 } 2180 2181 return aq_ret; 2182 } 2183 2184 /** 2185 * i40e_set_promiscuous - set promiscuous mode 2186 * @pf: board private structure 2187 * @promisc: promisc on or off 2188 * 2189 * There are different ways of setting promiscuous mode on a PF depending on 2190 * what state/environment we're in. This identifies and sets it appropriately. 2191 * Returns 0 on success. 2192 **/ 2193 static int i40e_set_promiscuous(struct i40e_pf *pf, bool promisc) 2194 { 2195 struct i40e_vsi *vsi = pf->vsi[pf->lan_vsi]; 2196 struct i40e_hw *hw = &pf->hw; 2197 i40e_status aq_ret; 2198 2199 if (vsi->type == I40E_VSI_MAIN && 2200 pf->lan_veb != I40E_NO_VEB && 2201 !(pf->flags & I40E_FLAG_MFP_ENABLED)) { 2202 /* set defport ON for Main VSI instead of true promisc 2203 * this way we will get all unicast/multicast and VLAN 2204 * promisc behavior but will not get VF or VMDq traffic 2205 * replicated on the Main VSI. 2206 */ 2207 if (promisc) 2208 aq_ret = i40e_aq_set_default_vsi(hw, 2209 vsi->seid, 2210 NULL); 2211 else 2212 aq_ret = i40e_aq_clear_default_vsi(hw, 2213 vsi->seid, 2214 NULL); 2215 if (aq_ret) { 2216 dev_info(&pf->pdev->dev, 2217 "Set default VSI failed, err %s, aq_err %s\n", 2218 i40e_stat_str(hw, aq_ret), 2219 i40e_aq_str(hw, hw->aq.asq_last_status)); 2220 } 2221 } else { 2222 aq_ret = i40e_aq_set_vsi_unicast_promiscuous( 2223 hw, 2224 vsi->seid, 2225 promisc, NULL, 2226 true); 2227 if (aq_ret) { 2228 dev_info(&pf->pdev->dev, 2229 "set unicast promisc failed, err %s, aq_err %s\n", 2230 i40e_stat_str(hw, aq_ret), 2231 i40e_aq_str(hw, hw->aq.asq_last_status)); 2232 } 2233 aq_ret = i40e_aq_set_vsi_multicast_promiscuous( 2234 hw, 2235 vsi->seid, 2236 promisc, NULL); 2237 if (aq_ret) { 2238 dev_info(&pf->pdev->dev, 2239 "set multicast promisc failed, err %s, aq_err %s\n", 2240 i40e_stat_str(hw, aq_ret), 2241 i40e_aq_str(hw, hw->aq.asq_last_status)); 2242 } 2243 } 2244 2245 if (!aq_ret) 2246 pf->cur_promisc = promisc; 2247 2248 return aq_ret; 2249 } 2250 2251 /** 2252 * i40e_sync_vsi_filters - Update the VSI filter list to the HW 2253 * @vsi: ptr to the VSI 2254 * 2255 * Push any outstanding VSI filter changes through the AdminQ. 2256 * 2257 * Returns 0 or error value 2258 **/ 2259 int i40e_sync_vsi_filters(struct i40e_vsi *vsi) 2260 { 2261 struct hlist_head tmp_add_list, tmp_del_list; 2262 struct i40e_mac_filter *f; 2263 struct i40e_new_mac_filter *new, *add_head = NULL; 2264 struct i40e_hw *hw = &vsi->back->hw; 2265 bool old_overflow, new_overflow; 2266 unsigned int failed_filters = 0; 2267 unsigned int vlan_filters = 0; 2268 char vsi_name[16] = "PF"; 2269 int filter_list_len = 0; 2270 i40e_status aq_ret = 0; 2271 u32 changed_flags = 0; 2272 struct hlist_node *h; 2273 struct i40e_pf *pf; 2274 int num_add = 0; 2275 int num_del = 0; 2276 int retval = 0; 2277 u16 cmd_flags; 2278 int list_size; 2279 int bkt; 2280 2281 /* empty array typed pointers, kcalloc later */ 2282 struct i40e_aqc_add_macvlan_element_data *add_list; 2283 struct i40e_aqc_remove_macvlan_element_data *del_list; 2284 2285 while (test_and_set_bit(__I40E_VSI_SYNCING_FILTERS, vsi->state)) 2286 usleep_range(1000, 2000); 2287 pf = vsi->back; 2288 2289 old_overflow = test_bit(__I40E_VSI_OVERFLOW_PROMISC, vsi->state); 2290 2291 if (vsi->netdev) { 2292 changed_flags = vsi->current_netdev_flags ^ vsi->netdev->flags; 2293 vsi->current_netdev_flags = vsi->netdev->flags; 2294 } 2295 2296 INIT_HLIST_HEAD(&tmp_add_list); 2297 INIT_HLIST_HEAD(&tmp_del_list); 2298 2299 if (vsi->type == I40E_VSI_SRIOV) 2300 snprintf(vsi_name, sizeof(vsi_name) - 1, "VF %d", vsi->vf_id); 2301 else if (vsi->type != I40E_VSI_MAIN) 2302 snprintf(vsi_name, sizeof(vsi_name) - 1, "vsi %d", vsi->seid); 2303 2304 if (vsi->flags & I40E_VSI_FLAG_FILTER_CHANGED) { 2305 vsi->flags &= ~I40E_VSI_FLAG_FILTER_CHANGED; 2306 2307 spin_lock_bh(&vsi->mac_filter_hash_lock); 2308 /* Create a list of filters to delete. */ 2309 hash_for_each_safe(vsi->mac_filter_hash, bkt, h, f, hlist) { 2310 if (f->state == I40E_FILTER_REMOVE) { 2311 /* Move the element into temporary del_list */ 2312 hash_del(&f->hlist); 2313 hlist_add_head(&f->hlist, &tmp_del_list); 2314 2315 /* Avoid counting removed filters */ 2316 continue; 2317 } 2318 if (f->state == I40E_FILTER_NEW) { 2319 /* Create a temporary i40e_new_mac_filter */ 2320 new = kzalloc(sizeof(*new), GFP_ATOMIC); 2321 if (!new) 2322 goto err_no_memory_locked; 2323 2324 /* Store pointer to the real filter */ 2325 new->f = f; 2326 new->state = f->state; 2327 2328 /* Add it to the hash list */ 2329 hlist_add_head(&new->hlist, &tmp_add_list); 2330 } 2331 2332 /* Count the number of active (current and new) VLAN 2333 * filters we have now. Does not count filters which 2334 * are marked for deletion. 2335 */ 2336 if (f->vlan > 0) 2337 vlan_filters++; 2338 } 2339 2340 retval = i40e_correct_mac_vlan_filters(vsi, 2341 &tmp_add_list, 2342 &tmp_del_list, 2343 vlan_filters); 2344 if (retval) 2345 goto err_no_memory_locked; 2346 2347 spin_unlock_bh(&vsi->mac_filter_hash_lock); 2348 } 2349 2350 /* Now process 'del_list' outside the lock */ 2351 if (!hlist_empty(&tmp_del_list)) { 2352 filter_list_len = hw->aq.asq_buf_size / 2353 sizeof(struct i40e_aqc_remove_macvlan_element_data); 2354 list_size = filter_list_len * 2355 sizeof(struct i40e_aqc_remove_macvlan_element_data); 2356 del_list = kzalloc(list_size, GFP_ATOMIC); 2357 if (!del_list) 2358 goto err_no_memory; 2359 2360 hlist_for_each_entry_safe(f, h, &tmp_del_list, hlist) { 2361 cmd_flags = 0; 2362 2363 /* handle broadcast filters by updating the broadcast 2364 * promiscuous flag and release filter list. 2365 */ 2366 if (is_broadcast_ether_addr(f->macaddr)) { 2367 i40e_aqc_broadcast_filter(vsi, vsi_name, f); 2368 2369 hlist_del(&f->hlist); 2370 kfree(f); 2371 continue; 2372 } 2373 2374 /* add to delete list */ 2375 ether_addr_copy(del_list[num_del].mac_addr, f->macaddr); 2376 if (f->vlan == I40E_VLAN_ANY) { 2377 del_list[num_del].vlan_tag = 0; 2378 cmd_flags |= I40E_AQC_MACVLAN_DEL_IGNORE_VLAN; 2379 } else { 2380 del_list[num_del].vlan_tag = 2381 cpu_to_le16((u16)(f->vlan)); 2382 } 2383 2384 cmd_flags |= I40E_AQC_MACVLAN_DEL_PERFECT_MATCH; 2385 del_list[num_del].flags = cmd_flags; 2386 num_del++; 2387 2388 /* flush a full buffer */ 2389 if (num_del == filter_list_len) { 2390 i40e_aqc_del_filters(vsi, vsi_name, del_list, 2391 num_del, &retval); 2392 memset(del_list, 0, list_size); 2393 num_del = 0; 2394 } 2395 /* Release memory for MAC filter entries which were 2396 * synced up with HW. 2397 */ 2398 hlist_del(&f->hlist); 2399 kfree(f); 2400 } 2401 2402 if (num_del) { 2403 i40e_aqc_del_filters(vsi, vsi_name, del_list, 2404 num_del, &retval); 2405 } 2406 2407 kfree(del_list); 2408 del_list = NULL; 2409 } 2410 2411 if (!hlist_empty(&tmp_add_list)) { 2412 /* Do all the adds now. */ 2413 filter_list_len = hw->aq.asq_buf_size / 2414 sizeof(struct i40e_aqc_add_macvlan_element_data); 2415 list_size = filter_list_len * 2416 sizeof(struct i40e_aqc_add_macvlan_element_data); 2417 add_list = kzalloc(list_size, GFP_ATOMIC); 2418 if (!add_list) 2419 goto err_no_memory; 2420 2421 num_add = 0; 2422 hlist_for_each_entry_safe(new, h, &tmp_add_list, hlist) { 2423 /* handle broadcast filters by updating the broadcast 2424 * promiscuous flag instead of adding a MAC filter. 2425 */ 2426 if (is_broadcast_ether_addr(new->f->macaddr)) { 2427 if (i40e_aqc_broadcast_filter(vsi, vsi_name, 2428 new->f)) 2429 new->state = I40E_FILTER_FAILED; 2430 else 2431 new->state = I40E_FILTER_ACTIVE; 2432 continue; 2433 } 2434 2435 /* add to add array */ 2436 if (num_add == 0) 2437 add_head = new; 2438 cmd_flags = 0; 2439 ether_addr_copy(add_list[num_add].mac_addr, 2440 new->f->macaddr); 2441 if (new->f->vlan == I40E_VLAN_ANY) { 2442 add_list[num_add].vlan_tag = 0; 2443 cmd_flags |= I40E_AQC_MACVLAN_ADD_IGNORE_VLAN; 2444 } else { 2445 add_list[num_add].vlan_tag = 2446 cpu_to_le16((u16)(new->f->vlan)); 2447 } 2448 add_list[num_add].queue_number = 0; 2449 /* set invalid match method for later detection */ 2450 add_list[num_add].match_method = I40E_AQC_MM_ERR_NO_RES; 2451 cmd_flags |= I40E_AQC_MACVLAN_ADD_PERFECT_MATCH; 2452 add_list[num_add].flags = cpu_to_le16(cmd_flags); 2453 num_add++; 2454 2455 /* flush a full buffer */ 2456 if (num_add == filter_list_len) { 2457 i40e_aqc_add_filters(vsi, vsi_name, add_list, 2458 add_head, num_add); 2459 memset(add_list, 0, list_size); 2460 num_add = 0; 2461 } 2462 } 2463 if (num_add) { 2464 i40e_aqc_add_filters(vsi, vsi_name, add_list, add_head, 2465 num_add); 2466 } 2467 /* Now move all of the filters from the temp add list back to 2468 * the VSI's list. 2469 */ 2470 spin_lock_bh(&vsi->mac_filter_hash_lock); 2471 hlist_for_each_entry_safe(new, h, &tmp_add_list, hlist) { 2472 /* Only update the state if we're still NEW */ 2473 if (new->f->state == I40E_FILTER_NEW) 2474 new->f->state = new->state; 2475 hlist_del(&new->hlist); 2476 kfree(new); 2477 } 2478 spin_unlock_bh(&vsi->mac_filter_hash_lock); 2479 kfree(add_list); 2480 add_list = NULL; 2481 } 2482 2483 /* Determine the number of active and failed filters. */ 2484 spin_lock_bh(&vsi->mac_filter_hash_lock); 2485 vsi->active_filters = 0; 2486 hash_for_each(vsi->mac_filter_hash, bkt, f, hlist) { 2487 if (f->state == I40E_FILTER_ACTIVE) 2488 vsi->active_filters++; 2489 else if (f->state == I40E_FILTER_FAILED) 2490 failed_filters++; 2491 } 2492 spin_unlock_bh(&vsi->mac_filter_hash_lock); 2493 2494 /* Check if we are able to exit overflow promiscuous mode. We can 2495 * safely exit if we didn't just enter, we no longer have any failed 2496 * filters, and we have reduced filters below the threshold value. 2497 */ 2498 if (old_overflow && !failed_filters && 2499 vsi->active_filters < vsi->promisc_threshold) { 2500 dev_info(&pf->pdev->dev, 2501 "filter logjam cleared on %s, leaving overflow promiscuous mode\n", 2502 vsi_name); 2503 clear_bit(__I40E_VSI_OVERFLOW_PROMISC, vsi->state); 2504 vsi->promisc_threshold = 0; 2505 } 2506 2507 /* if the VF is not trusted do not do promisc */ 2508 if ((vsi->type == I40E_VSI_SRIOV) && !pf->vf[vsi->vf_id].trusted) { 2509 clear_bit(__I40E_VSI_OVERFLOW_PROMISC, vsi->state); 2510 goto out; 2511 } 2512 2513 new_overflow = test_bit(__I40E_VSI_OVERFLOW_PROMISC, vsi->state); 2514 2515 /* If we are entering overflow promiscuous, we need to calculate a new 2516 * threshold for when we are safe to exit 2517 */ 2518 if (!old_overflow && new_overflow) 2519 vsi->promisc_threshold = (vsi->active_filters * 3) / 4; 2520 2521 /* check for changes in promiscuous modes */ 2522 if (changed_flags & IFF_ALLMULTI) { 2523 bool cur_multipromisc; 2524 2525 cur_multipromisc = !!(vsi->current_netdev_flags & IFF_ALLMULTI); 2526 aq_ret = i40e_aq_set_vsi_multicast_promiscuous(&vsi->back->hw, 2527 vsi->seid, 2528 cur_multipromisc, 2529 NULL); 2530 if (aq_ret) { 2531 retval = i40e_aq_rc_to_posix(aq_ret, 2532 hw->aq.asq_last_status); 2533 dev_info(&pf->pdev->dev, 2534 "set multi promisc failed on %s, err %s aq_err %s\n", 2535 vsi_name, 2536 i40e_stat_str(hw, aq_ret), 2537 i40e_aq_str(hw, hw->aq.asq_last_status)); 2538 } else { 2539 dev_info(&pf->pdev->dev, "%s is %s allmulti mode.\n", 2540 vsi->netdev->name, 2541 cur_multipromisc ? "entering" : "leaving"); 2542 } 2543 } 2544 2545 if ((changed_flags & IFF_PROMISC) || old_overflow != new_overflow) { 2546 bool cur_promisc; 2547 2548 cur_promisc = (!!(vsi->current_netdev_flags & IFF_PROMISC) || 2549 new_overflow); 2550 aq_ret = i40e_set_promiscuous(pf, cur_promisc); 2551 if (aq_ret) { 2552 retval = i40e_aq_rc_to_posix(aq_ret, 2553 hw->aq.asq_last_status); 2554 dev_info(&pf->pdev->dev, 2555 "Setting promiscuous %s failed on %s, err %s aq_err %s\n", 2556 cur_promisc ? "on" : "off", 2557 vsi_name, 2558 i40e_stat_str(hw, aq_ret), 2559 i40e_aq_str(hw, hw->aq.asq_last_status)); 2560 } 2561 } 2562 out: 2563 /* if something went wrong then set the changed flag so we try again */ 2564 if (retval) 2565 vsi->flags |= I40E_VSI_FLAG_FILTER_CHANGED; 2566 2567 clear_bit(__I40E_VSI_SYNCING_FILTERS, vsi->state); 2568 return retval; 2569 2570 err_no_memory: 2571 /* Restore elements on the temporary add and delete lists */ 2572 spin_lock_bh(&vsi->mac_filter_hash_lock); 2573 err_no_memory_locked: 2574 i40e_undo_del_filter_entries(vsi, &tmp_del_list); 2575 i40e_undo_add_filter_entries(vsi, &tmp_add_list); 2576 spin_unlock_bh(&vsi->mac_filter_hash_lock); 2577 2578 vsi->flags |= I40E_VSI_FLAG_FILTER_CHANGED; 2579 clear_bit(__I40E_VSI_SYNCING_FILTERS, vsi->state); 2580 return -ENOMEM; 2581 } 2582 2583 /** 2584 * i40e_sync_filters_subtask - Sync the VSI filter list with HW 2585 * @pf: board private structure 2586 **/ 2587 static void i40e_sync_filters_subtask(struct i40e_pf *pf) 2588 { 2589 int v; 2590 2591 if (!pf) 2592 return; 2593 if (!test_and_clear_bit(__I40E_MACVLAN_SYNC_PENDING, pf->state)) 2594 return; 2595 if (test_and_set_bit(__I40E_VF_DISABLE, pf->state)) { 2596 set_bit(__I40E_MACVLAN_SYNC_PENDING, pf->state); 2597 return; 2598 } 2599 2600 for (v = 0; v < pf->num_alloc_vsi; v++) { 2601 if (pf->vsi[v] && 2602 (pf->vsi[v]->flags & I40E_VSI_FLAG_FILTER_CHANGED)) { 2603 int ret = i40e_sync_vsi_filters(pf->vsi[v]); 2604 2605 if (ret) { 2606 /* come back and try again later */ 2607 set_bit(__I40E_MACVLAN_SYNC_PENDING, 2608 pf->state); 2609 break; 2610 } 2611 } 2612 } 2613 clear_bit(__I40E_VF_DISABLE, pf->state); 2614 } 2615 2616 /** 2617 * i40e_max_xdp_frame_size - returns the maximum allowed frame size for XDP 2618 * @vsi: the vsi 2619 **/ 2620 static int i40e_max_xdp_frame_size(struct i40e_vsi *vsi) 2621 { 2622 if (PAGE_SIZE >= 8192 || (vsi->back->flags & I40E_FLAG_LEGACY_RX)) 2623 return I40E_RXBUFFER_2048; 2624 else 2625 return I40E_RXBUFFER_3072; 2626 } 2627 2628 /** 2629 * i40e_change_mtu - NDO callback to change the Maximum Transfer Unit 2630 * @netdev: network interface device structure 2631 * @new_mtu: new value for maximum frame size 2632 * 2633 * Returns 0 on success, negative on failure 2634 **/ 2635 static int i40e_change_mtu(struct net_device *netdev, int new_mtu) 2636 { 2637 struct i40e_netdev_priv *np = netdev_priv(netdev); 2638 struct i40e_vsi *vsi = np->vsi; 2639 struct i40e_pf *pf = vsi->back; 2640 2641 if (i40e_enabled_xdp_vsi(vsi)) { 2642 int frame_size = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN; 2643 2644 if (frame_size > i40e_max_xdp_frame_size(vsi)) 2645 return -EINVAL; 2646 } 2647 2648 netdev_info(netdev, "changing MTU from %d to %d\n", 2649 netdev->mtu, new_mtu); 2650 netdev->mtu = new_mtu; 2651 if (netif_running(netdev)) 2652 i40e_vsi_reinit_locked(vsi); 2653 set_bit(__I40E_CLIENT_SERVICE_REQUESTED, pf->state); 2654 set_bit(__I40E_CLIENT_L2_CHANGE, pf->state); 2655 return 0; 2656 } 2657 2658 /** 2659 * i40e_ioctl - Access the hwtstamp interface 2660 * @netdev: network interface device structure 2661 * @ifr: interface request data 2662 * @cmd: ioctl command 2663 **/ 2664 int i40e_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) 2665 { 2666 struct i40e_netdev_priv *np = netdev_priv(netdev); 2667 struct i40e_pf *pf = np->vsi->back; 2668 2669 switch (cmd) { 2670 case SIOCGHWTSTAMP: 2671 return i40e_ptp_get_ts_config(pf, ifr); 2672 case SIOCSHWTSTAMP: 2673 return i40e_ptp_set_ts_config(pf, ifr); 2674 default: 2675 return -EOPNOTSUPP; 2676 } 2677 } 2678 2679 /** 2680 * i40e_vlan_stripping_enable - Turn on vlan stripping for the VSI 2681 * @vsi: the vsi being adjusted 2682 **/ 2683 void i40e_vlan_stripping_enable(struct i40e_vsi *vsi) 2684 { 2685 struct i40e_vsi_context ctxt; 2686 i40e_status ret; 2687 2688 /* Don't modify stripping options if a port VLAN is active */ 2689 if (vsi->info.pvid) 2690 return; 2691 2692 if ((vsi->info.valid_sections & 2693 cpu_to_le16(I40E_AQ_VSI_PROP_VLAN_VALID)) && 2694 ((vsi->info.port_vlan_flags & I40E_AQ_VSI_PVLAN_MODE_MASK) == 0)) 2695 return; /* already enabled */ 2696 2697 vsi->info.valid_sections = cpu_to_le16(I40E_AQ_VSI_PROP_VLAN_VALID); 2698 vsi->info.port_vlan_flags = I40E_AQ_VSI_PVLAN_MODE_ALL | 2699 I40E_AQ_VSI_PVLAN_EMOD_STR_BOTH; 2700 2701 ctxt.seid = vsi->seid; 2702 ctxt.info = vsi->info; 2703 ret = i40e_aq_update_vsi_params(&vsi->back->hw, &ctxt, NULL); 2704 if (ret) { 2705 dev_info(&vsi->back->pdev->dev, 2706 "update vlan stripping failed, err %s aq_err %s\n", 2707 i40e_stat_str(&vsi->back->hw, ret), 2708 i40e_aq_str(&vsi->back->hw, 2709 vsi->back->hw.aq.asq_last_status)); 2710 } 2711 } 2712 2713 /** 2714 * i40e_vlan_stripping_disable - Turn off vlan stripping for the VSI 2715 * @vsi: the vsi being adjusted 2716 **/ 2717 void i40e_vlan_stripping_disable(struct i40e_vsi *vsi) 2718 { 2719 struct i40e_vsi_context ctxt; 2720 i40e_status ret; 2721 2722 /* Don't modify stripping options if a port VLAN is active */ 2723 if (vsi->info.pvid) 2724 return; 2725 2726 if ((vsi->info.valid_sections & 2727 cpu_to_le16(I40E_AQ_VSI_PROP_VLAN_VALID)) && 2728 ((vsi->info.port_vlan_flags & I40E_AQ_VSI_PVLAN_EMOD_MASK) == 2729 I40E_AQ_VSI_PVLAN_EMOD_MASK)) 2730 return; /* already disabled */ 2731 2732 vsi->info.valid_sections = cpu_to_le16(I40E_AQ_VSI_PROP_VLAN_VALID); 2733 vsi->info.port_vlan_flags = I40E_AQ_VSI_PVLAN_MODE_ALL | 2734 I40E_AQ_VSI_PVLAN_EMOD_NOTHING; 2735 2736 ctxt.seid = vsi->seid; 2737 ctxt.info = vsi->info; 2738 ret = i40e_aq_update_vsi_params(&vsi->back->hw, &ctxt, NULL); 2739 if (ret) { 2740 dev_info(&vsi->back->pdev->dev, 2741 "update vlan stripping failed, err %s aq_err %s\n", 2742 i40e_stat_str(&vsi->back->hw, ret), 2743 i40e_aq_str(&vsi->back->hw, 2744 vsi->back->hw.aq.asq_last_status)); 2745 } 2746 } 2747 2748 /** 2749 * i40e_add_vlan_all_mac - Add a MAC/VLAN filter for each existing MAC address 2750 * @vsi: the vsi being configured 2751 * @vid: vlan id to be added (0 = untagged only , -1 = any) 2752 * 2753 * This is a helper function for adding a new MAC/VLAN filter with the 2754 * specified VLAN for each existing MAC address already in the hash table. 2755 * This function does *not* perform any accounting to update filters based on 2756 * VLAN mode. 2757 * 2758 * NOTE: this function expects to be called while under the 2759 * mac_filter_hash_lock 2760 **/ 2761 int i40e_add_vlan_all_mac(struct i40e_vsi *vsi, s16 vid) 2762 { 2763 struct i40e_mac_filter *f, *add_f; 2764 struct hlist_node *h; 2765 int bkt; 2766 2767 hash_for_each_safe(vsi->mac_filter_hash, bkt, h, f, hlist) { 2768 if (f->state == I40E_FILTER_REMOVE) 2769 continue; 2770 add_f = i40e_add_filter(vsi, f->macaddr, vid); 2771 if (!add_f) { 2772 dev_info(&vsi->back->pdev->dev, 2773 "Could not add vlan filter %d for %pM\n", 2774 vid, f->macaddr); 2775 return -ENOMEM; 2776 } 2777 } 2778 2779 return 0; 2780 } 2781 2782 /** 2783 * i40e_vsi_add_vlan - Add VSI membership for given VLAN 2784 * @vsi: the VSI being configured 2785 * @vid: VLAN id to be added 2786 **/ 2787 int i40e_vsi_add_vlan(struct i40e_vsi *vsi, u16 vid) 2788 { 2789 int err; 2790 2791 if (vsi->info.pvid) 2792 return -EINVAL; 2793 2794 /* The network stack will attempt to add VID=0, with the intention to 2795 * receive priority tagged packets with a VLAN of 0. Our HW receives 2796 * these packets by default when configured to receive untagged 2797 * packets, so we don't need to add a filter for this case. 2798 * Additionally, HW interprets adding a VID=0 filter as meaning to 2799 * receive *only* tagged traffic and stops receiving untagged traffic. 2800 * Thus, we do not want to actually add a filter for VID=0 2801 */ 2802 if (!vid) 2803 return 0; 2804 2805 /* Locked once because all functions invoked below iterates list*/ 2806 spin_lock_bh(&vsi->mac_filter_hash_lock); 2807 err = i40e_add_vlan_all_mac(vsi, vid); 2808 spin_unlock_bh(&vsi->mac_filter_hash_lock); 2809 if (err) 2810 return err; 2811 2812 /* schedule our worker thread which will take care of 2813 * applying the new filter changes 2814 */ 2815 i40e_service_event_schedule(vsi->back); 2816 return 0; 2817 } 2818 2819 /** 2820 * i40e_rm_vlan_all_mac - Remove MAC/VLAN pair for all MAC with the given VLAN 2821 * @vsi: the vsi being configured 2822 * @vid: vlan id to be removed (0 = untagged only , -1 = any) 2823 * 2824 * This function should be used to remove all VLAN filters which match the 2825 * given VID. It does not schedule the service event and does not take the 2826 * mac_filter_hash_lock so it may be combined with other operations under 2827 * a single invocation of the mac_filter_hash_lock. 2828 * 2829 * NOTE: this function expects to be called while under the 2830 * mac_filter_hash_lock 2831 */ 2832 void i40e_rm_vlan_all_mac(struct i40e_vsi *vsi, s16 vid) 2833 { 2834 struct i40e_mac_filter *f; 2835 struct hlist_node *h; 2836 int bkt; 2837 2838 hash_for_each_safe(vsi->mac_filter_hash, bkt, h, f, hlist) { 2839 if (f->vlan == vid) 2840 __i40e_del_filter(vsi, f); 2841 } 2842 } 2843 2844 /** 2845 * i40e_vsi_kill_vlan - Remove VSI membership for given VLAN 2846 * @vsi: the VSI being configured 2847 * @vid: VLAN id to be removed 2848 **/ 2849 void i40e_vsi_kill_vlan(struct i40e_vsi *vsi, u16 vid) 2850 { 2851 if (!vid || vsi->info.pvid) 2852 return; 2853 2854 spin_lock_bh(&vsi->mac_filter_hash_lock); 2855 i40e_rm_vlan_all_mac(vsi, vid); 2856 spin_unlock_bh(&vsi->mac_filter_hash_lock); 2857 2858 /* schedule our worker thread which will take care of 2859 * applying the new filter changes 2860 */ 2861 i40e_service_event_schedule(vsi->back); 2862 } 2863 2864 /** 2865 * i40e_vlan_rx_add_vid - Add a vlan id filter to HW offload 2866 * @netdev: network interface to be adjusted 2867 * @proto: unused protocol value 2868 * @vid: vlan id to be added 2869 * 2870 * net_device_ops implementation for adding vlan ids 2871 **/ 2872 static int i40e_vlan_rx_add_vid(struct net_device *netdev, 2873 __always_unused __be16 proto, u16 vid) 2874 { 2875 struct i40e_netdev_priv *np = netdev_priv(netdev); 2876 struct i40e_vsi *vsi = np->vsi; 2877 int ret = 0; 2878 2879 if (vid >= VLAN_N_VID) 2880 return -EINVAL; 2881 2882 ret = i40e_vsi_add_vlan(vsi, vid); 2883 if (!ret) 2884 set_bit(vid, vsi->active_vlans); 2885 2886 return ret; 2887 } 2888 2889 /** 2890 * i40e_vlan_rx_add_vid_up - Add a vlan id filter to HW offload in UP path 2891 * @netdev: network interface to be adjusted 2892 * @proto: unused protocol value 2893 * @vid: vlan id to be added 2894 **/ 2895 static void i40e_vlan_rx_add_vid_up(struct net_device *netdev, 2896 __always_unused __be16 proto, u16 vid) 2897 { 2898 struct i40e_netdev_priv *np = netdev_priv(netdev); 2899 struct i40e_vsi *vsi = np->vsi; 2900 2901 if (vid >= VLAN_N_VID) 2902 return; 2903 set_bit(vid, vsi->active_vlans); 2904 } 2905 2906 /** 2907 * i40e_vlan_rx_kill_vid - Remove a vlan id filter from HW offload 2908 * @netdev: network interface to be adjusted 2909 * @proto: unused protocol value 2910 * @vid: vlan id to be removed 2911 * 2912 * net_device_ops implementation for removing vlan ids 2913 **/ 2914 static int i40e_vlan_rx_kill_vid(struct net_device *netdev, 2915 __always_unused __be16 proto, u16 vid) 2916 { 2917 struct i40e_netdev_priv *np = netdev_priv(netdev); 2918 struct i40e_vsi *vsi = np->vsi; 2919 2920 /* return code is ignored as there is nothing a user 2921 * can do about failure to remove and a log message was 2922 * already printed from the other function 2923 */ 2924 i40e_vsi_kill_vlan(vsi, vid); 2925 2926 clear_bit(vid, vsi->active_vlans); 2927 2928 return 0; 2929 } 2930 2931 /** 2932 * i40e_restore_vlan - Reinstate vlans when vsi/netdev comes back up 2933 * @vsi: the vsi being brought back up 2934 **/ 2935 static void i40e_restore_vlan(struct i40e_vsi *vsi) 2936 { 2937 u16 vid; 2938 2939 if (!vsi->netdev) 2940 return; 2941 2942 if (vsi->netdev->features & NETIF_F_HW_VLAN_CTAG_RX) 2943 i40e_vlan_stripping_enable(vsi); 2944 else 2945 i40e_vlan_stripping_disable(vsi); 2946 2947 for_each_set_bit(vid, vsi->active_vlans, VLAN_N_VID) 2948 i40e_vlan_rx_add_vid_up(vsi->netdev, htons(ETH_P_8021Q), 2949 vid); 2950 } 2951 2952 /** 2953 * i40e_vsi_add_pvid - Add pvid for the VSI 2954 * @vsi: the vsi being adjusted 2955 * @vid: the vlan id to set as a PVID 2956 **/ 2957 int i40e_vsi_add_pvid(struct i40e_vsi *vsi, u16 vid) 2958 { 2959 struct i40e_vsi_context ctxt; 2960 i40e_status ret; 2961 2962 vsi->info.valid_sections = cpu_to_le16(I40E_AQ_VSI_PROP_VLAN_VALID); 2963 vsi->info.pvid = cpu_to_le16(vid); 2964 vsi->info.port_vlan_flags = I40E_AQ_VSI_PVLAN_MODE_TAGGED | 2965 I40E_AQ_VSI_PVLAN_INSERT_PVID | 2966 I40E_AQ_VSI_PVLAN_EMOD_STR; 2967 2968 ctxt.seid = vsi->seid; 2969 ctxt.info = vsi->info; 2970 ret = i40e_aq_update_vsi_params(&vsi->back->hw, &ctxt, NULL); 2971 if (ret) { 2972 dev_info(&vsi->back->pdev->dev, 2973 "add pvid failed, err %s aq_err %s\n", 2974 i40e_stat_str(&vsi->back->hw, ret), 2975 i40e_aq_str(&vsi->back->hw, 2976 vsi->back->hw.aq.asq_last_status)); 2977 return -ENOENT; 2978 } 2979 2980 return 0; 2981 } 2982 2983 /** 2984 * i40e_vsi_remove_pvid - Remove the pvid from the VSI 2985 * @vsi: the vsi being adjusted 2986 * 2987 * Just use the vlan_rx_register() service to put it back to normal 2988 **/ 2989 void i40e_vsi_remove_pvid(struct i40e_vsi *vsi) 2990 { 2991 vsi->info.pvid = 0; 2992 2993 i40e_vlan_stripping_disable(vsi); 2994 } 2995 2996 /** 2997 * i40e_vsi_setup_tx_resources - Allocate VSI Tx queue resources 2998 * @vsi: ptr to the VSI 2999 * 3000 * If this function returns with an error, then it's possible one or 3001 * more of the rings is populated (while the rest are not). It is the 3002 * callers duty to clean those orphaned rings. 3003 * 3004 * Return 0 on success, negative on failure 3005 **/ 3006 static int i40e_vsi_setup_tx_resources(struct i40e_vsi *vsi) 3007 { 3008 int i, err = 0; 3009 3010 for (i = 0; i < vsi->num_queue_pairs && !err; i++) 3011 err = i40e_setup_tx_descriptors(vsi->tx_rings[i]); 3012 3013 if (!i40e_enabled_xdp_vsi(vsi)) 3014 return err; 3015 3016 for (i = 0; i < vsi->num_queue_pairs && !err; i++) 3017 err = i40e_setup_tx_descriptors(vsi->xdp_rings[i]); 3018 3019 return err; 3020 } 3021 3022 /** 3023 * i40e_vsi_free_tx_resources - Free Tx resources for VSI queues 3024 * @vsi: ptr to the VSI 3025 * 3026 * Free VSI's transmit software resources 3027 **/ 3028 static void i40e_vsi_free_tx_resources(struct i40e_vsi *vsi) 3029 { 3030 int i; 3031 3032 if (vsi->tx_rings) { 3033 for (i = 0; i < vsi->num_queue_pairs; i++) 3034 if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc) 3035 i40e_free_tx_resources(vsi->tx_rings[i]); 3036 } 3037 3038 if (vsi->xdp_rings) { 3039 for (i = 0; i < vsi->num_queue_pairs; i++) 3040 if (vsi->xdp_rings[i] && vsi->xdp_rings[i]->desc) 3041 i40e_free_tx_resources(vsi->xdp_rings[i]); 3042 } 3043 } 3044 3045 /** 3046 * i40e_vsi_setup_rx_resources - Allocate VSI queues Rx resources 3047 * @vsi: ptr to the VSI 3048 * 3049 * If this function returns with an error, then it's possible one or 3050 * more of the rings is populated (while the rest are not). It is the 3051 * callers duty to clean those orphaned rings. 3052 * 3053 * Return 0 on success, negative on failure 3054 **/ 3055 static int i40e_vsi_setup_rx_resources(struct i40e_vsi *vsi) 3056 { 3057 int i, err = 0; 3058 3059 for (i = 0; i < vsi->num_queue_pairs && !err; i++) 3060 err = i40e_setup_rx_descriptors(vsi->rx_rings[i]); 3061 return err; 3062 } 3063 3064 /** 3065 * i40e_vsi_free_rx_resources - Free Rx Resources for VSI queues 3066 * @vsi: ptr to the VSI 3067 * 3068 * Free all receive software resources 3069 **/ 3070 static void i40e_vsi_free_rx_resources(struct i40e_vsi *vsi) 3071 { 3072 int i; 3073 3074 if (!vsi->rx_rings) 3075 return; 3076 3077 for (i = 0; i < vsi->num_queue_pairs; i++) 3078 if (vsi->rx_rings[i] && vsi->rx_rings[i]->desc) 3079 i40e_free_rx_resources(vsi->rx_rings[i]); 3080 } 3081 3082 /** 3083 * i40e_config_xps_tx_ring - Configure XPS for a Tx ring 3084 * @ring: The Tx ring to configure 3085 * 3086 * This enables/disables XPS for a given Tx descriptor ring 3087 * based on the TCs enabled for the VSI that ring belongs to. 3088 **/ 3089 static void i40e_config_xps_tx_ring(struct i40e_ring *ring) 3090 { 3091 int cpu; 3092 3093 if (!ring->q_vector || !ring->netdev || ring->ch) 3094 return; 3095 3096 /* We only initialize XPS once, so as not to overwrite user settings */ 3097 if (test_and_set_bit(__I40E_TX_XPS_INIT_DONE, ring->state)) 3098 return; 3099 3100 cpu = cpumask_local_spread(ring->q_vector->v_idx, -1); 3101 netif_set_xps_queue(ring->netdev, get_cpu_mask(cpu), 3102 ring->queue_index); 3103 } 3104 3105 /** 3106 * i40e_xsk_umem - Retrieve the AF_XDP ZC if XDP and ZC is enabled 3107 * @ring: The Tx or Rx ring 3108 * 3109 * Returns the UMEM or NULL. 3110 **/ 3111 static struct xdp_umem *i40e_xsk_umem(struct i40e_ring *ring) 3112 { 3113 bool xdp_on = i40e_enabled_xdp_vsi(ring->vsi); 3114 int qid = ring->queue_index; 3115 3116 if (ring_is_xdp(ring)) 3117 qid -= ring->vsi->alloc_queue_pairs; 3118 3119 if (!xdp_on || !test_bit(qid, ring->vsi->af_xdp_zc_qps)) 3120 return NULL; 3121 3122 return xdp_get_umem_from_qid(ring->vsi->netdev, qid); 3123 } 3124 3125 /** 3126 * i40e_configure_tx_ring - Configure a transmit ring context and rest 3127 * @ring: The Tx ring to configure 3128 * 3129 * Configure the Tx descriptor ring in the HMC context. 3130 **/ 3131 static int i40e_configure_tx_ring(struct i40e_ring *ring) 3132 { 3133 struct i40e_vsi *vsi = ring->vsi; 3134 u16 pf_q = vsi->base_queue + ring->queue_index; 3135 struct i40e_hw *hw = &vsi->back->hw; 3136 struct i40e_hmc_obj_txq tx_ctx; 3137 i40e_status err = 0; 3138 u32 qtx_ctl = 0; 3139 3140 if (ring_is_xdp(ring)) 3141 ring->xsk_umem = i40e_xsk_umem(ring); 3142 3143 /* some ATR related tx ring init */ 3144 if (vsi->back->flags & I40E_FLAG_FD_ATR_ENABLED) { 3145 ring->atr_sample_rate = vsi->back->atr_sample_rate; 3146 ring->atr_count = 0; 3147 } else { 3148 ring->atr_sample_rate = 0; 3149 } 3150 3151 /* configure XPS */ 3152 i40e_config_xps_tx_ring(ring); 3153 3154 /* clear the context structure first */ 3155 memset(&tx_ctx, 0, sizeof(tx_ctx)); 3156 3157 tx_ctx.new_context = 1; 3158 tx_ctx.base = (ring->dma / 128); 3159 tx_ctx.qlen = ring->count; 3160 tx_ctx.fd_ena = !!(vsi->back->flags & (I40E_FLAG_FD_SB_ENABLED | 3161 I40E_FLAG_FD_ATR_ENABLED)); 3162 tx_ctx.timesync_ena = !!(vsi->back->flags & I40E_FLAG_PTP); 3163 /* FDIR VSI tx ring can still use RS bit and writebacks */ 3164 if (vsi->type != I40E_VSI_FDIR) 3165 tx_ctx.head_wb_ena = 1; 3166 tx_ctx.head_wb_addr = ring->dma + 3167 (ring->count * sizeof(struct i40e_tx_desc)); 3168 3169 /* As part of VSI creation/update, FW allocates certain 3170 * Tx arbitration queue sets for each TC enabled for 3171 * the VSI. The FW returns the handles to these queue 3172 * sets as part of the response buffer to Add VSI, 3173 * Update VSI, etc. AQ commands. It is expected that 3174 * these queue set handles be associated with the Tx 3175 * queues by the driver as part of the TX queue context 3176 * initialization. This has to be done regardless of 3177 * DCB as by default everything is mapped to TC0. 3178 */ 3179 3180 if (ring->ch) 3181 tx_ctx.rdylist = 3182 le16_to_cpu(ring->ch->info.qs_handle[ring->dcb_tc]); 3183 3184 else 3185 tx_ctx.rdylist = le16_to_cpu(vsi->info.qs_handle[ring->dcb_tc]); 3186 3187 tx_ctx.rdylist_act = 0; 3188 3189 /* clear the context in the HMC */ 3190 err = i40e_clear_lan_tx_queue_context(hw, pf_q); 3191 if (err) { 3192 dev_info(&vsi->back->pdev->dev, 3193 "Failed to clear LAN Tx queue context on Tx ring %d (pf_q %d), error: %d\n", 3194 ring->queue_index, pf_q, err); 3195 return -ENOMEM; 3196 } 3197 3198 /* set the context in the HMC */ 3199 err = i40e_set_lan_tx_queue_context(hw, pf_q, &tx_ctx); 3200 if (err) { 3201 dev_info(&vsi->back->pdev->dev, 3202 "Failed to set LAN Tx queue context on Tx ring %d (pf_q %d, error: %d\n", 3203 ring->queue_index, pf_q, err); 3204 return -ENOMEM; 3205 } 3206 3207 /* Now associate this queue with this PCI function */ 3208 if (ring->ch) { 3209 if (ring->ch->type == I40E_VSI_VMDQ2) 3210 qtx_ctl = I40E_QTX_CTL_VM_QUEUE; 3211 else 3212 return -EINVAL; 3213 3214 qtx_ctl |= (ring->ch->vsi_number << 3215 I40E_QTX_CTL_VFVM_INDX_SHIFT) & 3216 I40E_QTX_CTL_VFVM_INDX_MASK; 3217 } else { 3218 if (vsi->type == I40E_VSI_VMDQ2) { 3219 qtx_ctl = I40E_QTX_CTL_VM_QUEUE; 3220 qtx_ctl |= ((vsi->id) << I40E_QTX_CTL_VFVM_INDX_SHIFT) & 3221 I40E_QTX_CTL_VFVM_INDX_MASK; 3222 } else { 3223 qtx_ctl = I40E_QTX_CTL_PF_QUEUE; 3224 } 3225 } 3226 3227 qtx_ctl |= ((hw->pf_id << I40E_QTX_CTL_PF_INDX_SHIFT) & 3228 I40E_QTX_CTL_PF_INDX_MASK); 3229 wr32(hw, I40E_QTX_CTL(pf_q), qtx_ctl); 3230 i40e_flush(hw); 3231 3232 /* cache tail off for easier writes later */ 3233 ring->tail = hw->hw_addr + I40E_QTX_TAIL(pf_q); 3234 3235 return 0; 3236 } 3237 3238 /** 3239 * i40e_configure_rx_ring - Configure a receive ring context 3240 * @ring: The Rx ring to configure 3241 * 3242 * Configure the Rx descriptor ring in the HMC context. 3243 **/ 3244 static int i40e_configure_rx_ring(struct i40e_ring *ring) 3245 { 3246 struct i40e_vsi *vsi = ring->vsi; 3247 u32 chain_len = vsi->back->hw.func_caps.rx_buf_chain_len; 3248 u16 pf_q = vsi->base_queue + ring->queue_index; 3249 struct i40e_hw *hw = &vsi->back->hw; 3250 struct i40e_hmc_obj_rxq rx_ctx; 3251 i40e_status err = 0; 3252 bool ok; 3253 int ret; 3254 3255 bitmap_zero(ring->state, __I40E_RING_STATE_NBITS); 3256 3257 /* clear the context structure first */ 3258 memset(&rx_ctx, 0, sizeof(rx_ctx)); 3259 3260 if (ring->vsi->type == I40E_VSI_MAIN) 3261 xdp_rxq_info_unreg_mem_model(&ring->xdp_rxq); 3262 3263 ring->xsk_umem = i40e_xsk_umem(ring); 3264 if (ring->xsk_umem) { 3265 ring->rx_buf_len = ring->xsk_umem->chunk_size_nohr - 3266 XDP_PACKET_HEADROOM; 3267 /* For AF_XDP ZC, we disallow packets to span on 3268 * multiple buffers, thus letting us skip that 3269 * handling in the fast-path. 3270 */ 3271 chain_len = 1; 3272 ring->zca.free = i40e_zca_free; 3273 ret = xdp_rxq_info_reg_mem_model(&ring->xdp_rxq, 3274 MEM_TYPE_ZERO_COPY, 3275 &ring->zca); 3276 if (ret) 3277 return ret; 3278 dev_info(&vsi->back->pdev->dev, 3279 "Registered XDP mem model MEM_TYPE_ZERO_COPY on Rx ring %d\n", 3280 ring->queue_index); 3281 3282 } else { 3283 ring->rx_buf_len = vsi->rx_buf_len; 3284 if (ring->vsi->type == I40E_VSI_MAIN) { 3285 ret = xdp_rxq_info_reg_mem_model(&ring->xdp_rxq, 3286 MEM_TYPE_PAGE_SHARED, 3287 NULL); 3288 if (ret) 3289 return ret; 3290 } 3291 } 3292 3293 rx_ctx.dbuff = DIV_ROUND_UP(ring->rx_buf_len, 3294 BIT_ULL(I40E_RXQ_CTX_DBUFF_SHIFT)); 3295 3296 rx_ctx.base = (ring->dma / 128); 3297 rx_ctx.qlen = ring->count; 3298 3299 /* use 32 byte descriptors */ 3300 rx_ctx.dsize = 1; 3301 3302 /* descriptor type is always zero 3303 * rx_ctx.dtype = 0; 3304 */ 3305 rx_ctx.hsplit_0 = 0; 3306 3307 rx_ctx.rxmax = min_t(u16, vsi->max_frame, chain_len * ring->rx_buf_len); 3308 if (hw->revision_id == 0) 3309 rx_ctx.lrxqthresh = 0; 3310 else 3311 rx_ctx.lrxqthresh = 1; 3312 rx_ctx.crcstrip = 1; 3313 rx_ctx.l2tsel = 1; 3314 /* this controls whether VLAN is stripped from inner headers */ 3315 rx_ctx.showiv = 0; 3316 /* set the prefena field to 1 because the manual says to */ 3317 rx_ctx.prefena = 1; 3318 3319 /* clear the context in the HMC */ 3320 err = i40e_clear_lan_rx_queue_context(hw, pf_q); 3321 if (err) { 3322 dev_info(&vsi->back->pdev->dev, 3323 "Failed to clear LAN Rx queue context on Rx ring %d (pf_q %d), error: %d\n", 3324 ring->queue_index, pf_q, err); 3325 return -ENOMEM; 3326 } 3327 3328 /* set the context in the HMC */ 3329 err = i40e_set_lan_rx_queue_context(hw, pf_q, &rx_ctx); 3330 if (err) { 3331 dev_info(&vsi->back->pdev->dev, 3332 "Failed to set LAN Rx queue context on Rx ring %d (pf_q %d), error: %d\n", 3333 ring->queue_index, pf_q, err); 3334 return -ENOMEM; 3335 } 3336 3337 /* configure Rx buffer alignment */ 3338 if (!vsi->netdev || (vsi->back->flags & I40E_FLAG_LEGACY_RX)) 3339 clear_ring_build_skb_enabled(ring); 3340 else 3341 set_ring_build_skb_enabled(ring); 3342 3343 /* cache tail for quicker writes, and clear the reg before use */ 3344 ring->tail = hw->hw_addr + I40E_QRX_TAIL(pf_q); 3345 writel(0, ring->tail); 3346 3347 ok = ring->xsk_umem ? 3348 i40e_alloc_rx_buffers_zc(ring, I40E_DESC_UNUSED(ring)) : 3349 !i40e_alloc_rx_buffers(ring, I40E_DESC_UNUSED(ring)); 3350 if (!ok) { 3351 /* Log this in case the user has forgotten to give the kernel 3352 * any buffers, even later in the application. 3353 */ 3354 dev_info(&vsi->back->pdev->dev, 3355 "Failed to allocate some buffers on %sRx ring %d (pf_q %d)\n", 3356 ring->xsk_umem ? "UMEM enabled " : "", 3357 ring->queue_index, pf_q); 3358 } 3359 3360 return 0; 3361 } 3362 3363 /** 3364 * i40e_vsi_configure_tx - Configure the VSI for Tx 3365 * @vsi: VSI structure describing this set of rings and resources 3366 * 3367 * Configure the Tx VSI for operation. 3368 **/ 3369 static int i40e_vsi_configure_tx(struct i40e_vsi *vsi) 3370 { 3371 int err = 0; 3372 u16 i; 3373 3374 for (i = 0; (i < vsi->num_queue_pairs) && !err; i++) 3375 err = i40e_configure_tx_ring(vsi->tx_rings[i]); 3376 3377 if (err || !i40e_enabled_xdp_vsi(vsi)) 3378 return err; 3379 3380 for (i = 0; (i < vsi->num_queue_pairs) && !err; i++) 3381 err = i40e_configure_tx_ring(vsi->xdp_rings[i]); 3382 3383 return err; 3384 } 3385 3386 /** 3387 * i40e_vsi_configure_rx - Configure the VSI for Rx 3388 * @vsi: the VSI being configured 3389 * 3390 * Configure the Rx VSI for operation. 3391 **/ 3392 static int i40e_vsi_configure_rx(struct i40e_vsi *vsi) 3393 { 3394 int err = 0; 3395 u16 i; 3396 3397 if (!vsi->netdev || (vsi->back->flags & I40E_FLAG_LEGACY_RX)) { 3398 vsi->max_frame = I40E_MAX_RXBUFFER; 3399 vsi->rx_buf_len = I40E_RXBUFFER_2048; 3400 #if (PAGE_SIZE < 8192) 3401 } else if (!I40E_2K_TOO_SMALL_WITH_PADDING && 3402 (vsi->netdev->mtu <= ETH_DATA_LEN)) { 3403 vsi->max_frame = I40E_RXBUFFER_1536 - NET_IP_ALIGN; 3404 vsi->rx_buf_len = I40E_RXBUFFER_1536 - NET_IP_ALIGN; 3405 #endif 3406 } else { 3407 vsi->max_frame = I40E_MAX_RXBUFFER; 3408 vsi->rx_buf_len = (PAGE_SIZE < 8192) ? I40E_RXBUFFER_3072 : 3409 I40E_RXBUFFER_2048; 3410 } 3411 3412 /* set up individual rings */ 3413 for (i = 0; i < vsi->num_queue_pairs && !err; i++) 3414 err = i40e_configure_rx_ring(vsi->rx_rings[i]); 3415 3416 return err; 3417 } 3418 3419 /** 3420 * i40e_vsi_config_dcb_rings - Update rings to reflect DCB TC 3421 * @vsi: ptr to the VSI 3422 **/ 3423 static void i40e_vsi_config_dcb_rings(struct i40e_vsi *vsi) 3424 { 3425 struct i40e_ring *tx_ring, *rx_ring; 3426 u16 qoffset, qcount; 3427 int i, n; 3428 3429 if (!(vsi->back->flags & I40E_FLAG_DCB_ENABLED)) { 3430 /* Reset the TC information */ 3431 for (i = 0; i < vsi->num_queue_pairs; i++) { 3432 rx_ring = vsi->rx_rings[i]; 3433 tx_ring = vsi->tx_rings[i]; 3434 rx_ring->dcb_tc = 0; 3435 tx_ring->dcb_tc = 0; 3436 } 3437 return; 3438 } 3439 3440 for (n = 0; n < I40E_MAX_TRAFFIC_CLASS; n++) { 3441 if (!(vsi->tc_config.enabled_tc & BIT_ULL(n))) 3442 continue; 3443 3444 qoffset = vsi->tc_config.tc_info[n].qoffset; 3445 qcount = vsi->tc_config.tc_info[n].qcount; 3446 for (i = qoffset; i < (qoffset + qcount); i++) { 3447 rx_ring = vsi->rx_rings[i]; 3448 tx_ring = vsi->tx_rings[i]; 3449 rx_ring->dcb_tc = n; 3450 tx_ring->dcb_tc = n; 3451 } 3452 } 3453 } 3454 3455 /** 3456 * i40e_set_vsi_rx_mode - Call set_rx_mode on a VSI 3457 * @vsi: ptr to the VSI 3458 **/ 3459 static void i40e_set_vsi_rx_mode(struct i40e_vsi *vsi) 3460 { 3461 if (vsi->netdev) 3462 i40e_set_rx_mode(vsi->netdev); 3463 } 3464 3465 /** 3466 * i40e_fdir_filter_restore - Restore the Sideband Flow Director filters 3467 * @vsi: Pointer to the targeted VSI 3468 * 3469 * This function replays the hlist on the hw where all the SB Flow Director 3470 * filters were saved. 3471 **/ 3472 static void i40e_fdir_filter_restore(struct i40e_vsi *vsi) 3473 { 3474 struct i40e_fdir_filter *filter; 3475 struct i40e_pf *pf = vsi->back; 3476 struct hlist_node *node; 3477 3478 if (!(pf->flags & I40E_FLAG_FD_SB_ENABLED)) 3479 return; 3480 3481 /* Reset FDir counters as we're replaying all existing filters */ 3482 pf->fd_tcp4_filter_cnt = 0; 3483 pf->fd_udp4_filter_cnt = 0; 3484 pf->fd_sctp4_filter_cnt = 0; 3485 pf->fd_ip4_filter_cnt = 0; 3486 3487 hlist_for_each_entry_safe(filter, node, 3488 &pf->fdir_filter_list, fdir_node) { 3489 i40e_add_del_fdir(vsi, filter, true); 3490 } 3491 } 3492 3493 /** 3494 * i40e_vsi_configure - Set up the VSI for action 3495 * @vsi: the VSI being configured 3496 **/ 3497 static int i40e_vsi_configure(struct i40e_vsi *vsi) 3498 { 3499 int err; 3500 3501 i40e_set_vsi_rx_mode(vsi); 3502 i40e_restore_vlan(vsi); 3503 i40e_vsi_config_dcb_rings(vsi); 3504 err = i40e_vsi_configure_tx(vsi); 3505 if (!err) 3506 err = i40e_vsi_configure_rx(vsi); 3507 3508 return err; 3509 } 3510 3511 /** 3512 * i40e_vsi_configure_msix - MSIX mode Interrupt Config in the HW 3513 * @vsi: the VSI being configured 3514 **/ 3515 static void i40e_vsi_configure_msix(struct i40e_vsi *vsi) 3516 { 3517 bool has_xdp = i40e_enabled_xdp_vsi(vsi); 3518 struct i40e_pf *pf = vsi->back; 3519 struct i40e_hw *hw = &pf->hw; 3520 u16 vector; 3521 int i, q; 3522 u32 qp; 3523 3524 /* The interrupt indexing is offset by 1 in the PFINT_ITRn 3525 * and PFINT_LNKLSTn registers, e.g.: 3526 * PFINT_ITRn[0..n-1] gets msix-1..msix-n (qpair interrupts) 3527 */ 3528 qp = vsi->base_queue; 3529 vector = vsi->base_vector; 3530 for (i = 0; i < vsi->num_q_vectors; i++, vector++) { 3531 struct i40e_q_vector *q_vector = vsi->q_vectors[i]; 3532 3533 q_vector->rx.next_update = jiffies + 1; 3534 q_vector->rx.target_itr = 3535 ITR_TO_REG(vsi->rx_rings[i]->itr_setting); 3536 wr32(hw, I40E_PFINT_ITRN(I40E_RX_ITR, vector - 1), 3537 q_vector->rx.target_itr); 3538 q_vector->rx.current_itr = q_vector->rx.target_itr; 3539 3540 q_vector->tx.next_update = jiffies + 1; 3541 q_vector->tx.target_itr = 3542 ITR_TO_REG(vsi->tx_rings[i]->itr_setting); 3543 wr32(hw, I40E_PFINT_ITRN(I40E_TX_ITR, vector - 1), 3544 q_vector->tx.target_itr); 3545 q_vector->tx.current_itr = q_vector->tx.target_itr; 3546 3547 wr32(hw, I40E_PFINT_RATEN(vector - 1), 3548 i40e_intrl_usec_to_reg(vsi->int_rate_limit)); 3549 3550 /* Linked list for the queuepairs assigned to this vector */ 3551 wr32(hw, I40E_PFINT_LNKLSTN(vector - 1), qp); 3552 for (q = 0; q < q_vector->num_ringpairs; q++) { 3553 u32 nextqp = has_xdp ? qp + vsi->alloc_queue_pairs : qp; 3554 u32 val; 3555 3556 val = I40E_QINT_RQCTL_CAUSE_ENA_MASK | 3557 (I40E_RX_ITR << I40E_QINT_RQCTL_ITR_INDX_SHIFT) | 3558 (vector << I40E_QINT_RQCTL_MSIX_INDX_SHIFT) | 3559 (nextqp << I40E_QINT_RQCTL_NEXTQ_INDX_SHIFT) | 3560 (I40E_QUEUE_TYPE_TX << 3561 I40E_QINT_RQCTL_NEXTQ_TYPE_SHIFT); 3562 3563 wr32(hw, I40E_QINT_RQCTL(qp), val); 3564 3565 if (has_xdp) { 3566 val = I40E_QINT_TQCTL_CAUSE_ENA_MASK | 3567 (I40E_TX_ITR << I40E_QINT_TQCTL_ITR_INDX_SHIFT) | 3568 (vector << I40E_QINT_TQCTL_MSIX_INDX_SHIFT) | 3569 (qp << I40E_QINT_TQCTL_NEXTQ_INDX_SHIFT) | 3570 (I40E_QUEUE_TYPE_TX << 3571 I40E_QINT_TQCTL_NEXTQ_TYPE_SHIFT); 3572 3573 wr32(hw, I40E_QINT_TQCTL(nextqp), val); 3574 } 3575 3576 val = I40E_QINT_TQCTL_CAUSE_ENA_MASK | 3577 (I40E_TX_ITR << I40E_QINT_TQCTL_ITR_INDX_SHIFT) | 3578 (vector << I40E_QINT_TQCTL_MSIX_INDX_SHIFT) | 3579 ((qp + 1) << I40E_QINT_TQCTL_NEXTQ_INDX_SHIFT) | 3580 (I40E_QUEUE_TYPE_RX << 3581 I40E_QINT_TQCTL_NEXTQ_TYPE_SHIFT); 3582 3583 /* Terminate the linked list */ 3584 if (q == (q_vector->num_ringpairs - 1)) 3585 val |= (I40E_QUEUE_END_OF_LIST << 3586 I40E_QINT_TQCTL_NEXTQ_INDX_SHIFT); 3587 3588 wr32(hw, I40E_QINT_TQCTL(qp), val); 3589 qp++; 3590 } 3591 } 3592 3593 i40e_flush(hw); 3594 } 3595 3596 /** 3597 * i40e_enable_misc_int_causes - enable the non-queue interrupts 3598 * @pf: pointer to private device data structure 3599 **/ 3600 static void i40e_enable_misc_int_causes(struct i40e_pf *pf) 3601 { 3602 struct i40e_hw *hw = &pf->hw; 3603 u32 val; 3604 3605 /* clear things first */ 3606 wr32(hw, I40E_PFINT_ICR0_ENA, 0); /* disable all */ 3607 rd32(hw, I40E_PFINT_ICR0); /* read to clear */ 3608 3609 val = I40E_PFINT_ICR0_ENA_ECC_ERR_MASK | 3610 I40E_PFINT_ICR0_ENA_MAL_DETECT_MASK | 3611 I40E_PFINT_ICR0_ENA_GRST_MASK | 3612 I40E_PFINT_ICR0_ENA_PCI_EXCEPTION_MASK | 3613 I40E_PFINT_ICR0_ENA_GPIO_MASK | 3614 I40E_PFINT_ICR0_ENA_HMC_ERR_MASK | 3615 I40E_PFINT_ICR0_ENA_VFLR_MASK | 3616 I40E_PFINT_ICR0_ENA_ADMINQ_MASK; 3617 3618 if (pf->flags & I40E_FLAG_IWARP_ENABLED) 3619 val |= I40E_PFINT_ICR0_ENA_PE_CRITERR_MASK; 3620 3621 if (pf->flags & I40E_FLAG_PTP) 3622 val |= I40E_PFINT_ICR0_ENA_TIMESYNC_MASK; 3623 3624 wr32(hw, I40E_PFINT_ICR0_ENA, val); 3625 3626 /* SW_ITR_IDX = 0, but don't change INTENA */ 3627 wr32(hw, I40E_PFINT_DYN_CTL0, I40E_PFINT_DYN_CTL0_SW_ITR_INDX_MASK | 3628 I40E_PFINT_DYN_CTL0_INTENA_MSK_MASK); 3629 3630 /* OTHER_ITR_IDX = 0 */ 3631 wr32(hw, I40E_PFINT_STAT_CTL0, 0); 3632 } 3633 3634 /** 3635 * i40e_configure_msi_and_legacy - Legacy mode interrupt config in the HW 3636 * @vsi: the VSI being configured 3637 **/ 3638 static void i40e_configure_msi_and_legacy(struct i40e_vsi *vsi) 3639 { 3640 u32 nextqp = i40e_enabled_xdp_vsi(vsi) ? vsi->alloc_queue_pairs : 0; 3641 struct i40e_q_vector *q_vector = vsi->q_vectors[0]; 3642 struct i40e_pf *pf = vsi->back; 3643 struct i40e_hw *hw = &pf->hw; 3644 u32 val; 3645 3646 /* set the ITR configuration */ 3647 q_vector->rx.next_update = jiffies + 1; 3648 q_vector->rx.target_itr = ITR_TO_REG(vsi->rx_rings[0]->itr_setting); 3649 wr32(hw, I40E_PFINT_ITR0(I40E_RX_ITR), q_vector->rx.target_itr); 3650 q_vector->rx.current_itr = q_vector->rx.target_itr; 3651 q_vector->tx.next_update = jiffies + 1; 3652 q_vector->tx.target_itr = ITR_TO_REG(vsi->tx_rings[0]->itr_setting); 3653 wr32(hw, I40E_PFINT_ITR0(I40E_TX_ITR), q_vector->tx.target_itr); 3654 q_vector->tx.current_itr = q_vector->tx.target_itr; 3655 3656 i40e_enable_misc_int_causes(pf); 3657 3658 /* FIRSTQ_INDX = 0, FIRSTQ_TYPE = 0 (rx) */ 3659 wr32(hw, I40E_PFINT_LNKLST0, 0); 3660 3661 /* Associate the queue pair to the vector and enable the queue int */ 3662 val = I40E_QINT_RQCTL_CAUSE_ENA_MASK | 3663 (I40E_RX_ITR << I40E_QINT_RQCTL_ITR_INDX_SHIFT) | 3664 (nextqp << I40E_QINT_RQCTL_NEXTQ_INDX_SHIFT)| 3665 (I40E_QUEUE_TYPE_TX << I40E_QINT_TQCTL_NEXTQ_TYPE_SHIFT); 3666 3667 wr32(hw, I40E_QINT_RQCTL(0), val); 3668 3669 if (i40e_enabled_xdp_vsi(vsi)) { 3670 val = I40E_QINT_TQCTL_CAUSE_ENA_MASK | 3671 (I40E_TX_ITR << I40E_QINT_TQCTL_ITR_INDX_SHIFT)| 3672 (I40E_QUEUE_TYPE_TX 3673 << I40E_QINT_TQCTL_NEXTQ_TYPE_SHIFT); 3674 3675 wr32(hw, I40E_QINT_TQCTL(nextqp), val); 3676 } 3677 3678 val = I40E_QINT_TQCTL_CAUSE_ENA_MASK | 3679 (I40E_TX_ITR << I40E_QINT_TQCTL_ITR_INDX_SHIFT) | 3680 (I40E_QUEUE_END_OF_LIST << I40E_QINT_TQCTL_NEXTQ_INDX_SHIFT); 3681 3682 wr32(hw, I40E_QINT_TQCTL(0), val); 3683 i40e_flush(hw); 3684 } 3685 3686 /** 3687 * i40e_irq_dynamic_disable_icr0 - Disable default interrupt generation for icr0 3688 * @pf: board private structure 3689 **/ 3690 void i40e_irq_dynamic_disable_icr0(struct i40e_pf *pf) 3691 { 3692 struct i40e_hw *hw = &pf->hw; 3693 3694 wr32(hw, I40E_PFINT_DYN_CTL0, 3695 I40E_ITR_NONE << I40E_PFINT_DYN_CTLN_ITR_INDX_SHIFT); 3696 i40e_flush(hw); 3697 } 3698 3699 /** 3700 * i40e_irq_dynamic_enable_icr0 - Enable default interrupt generation for icr0 3701 * @pf: board private structure 3702 **/ 3703 void i40e_irq_dynamic_enable_icr0(struct i40e_pf *pf) 3704 { 3705 struct i40e_hw *hw = &pf->hw; 3706 u32 val; 3707 3708 val = I40E_PFINT_DYN_CTL0_INTENA_MASK | 3709 I40E_PFINT_DYN_CTL0_CLEARPBA_MASK | 3710 (I40E_ITR_NONE << I40E_PFINT_DYN_CTL0_ITR_INDX_SHIFT); 3711 3712 wr32(hw, I40E_PFINT_DYN_CTL0, val); 3713 i40e_flush(hw); 3714 } 3715 3716 /** 3717 * i40e_msix_clean_rings - MSIX mode Interrupt Handler 3718 * @irq: interrupt number 3719 * @data: pointer to a q_vector 3720 **/ 3721 static irqreturn_t i40e_msix_clean_rings(int irq, void *data) 3722 { 3723 struct i40e_q_vector *q_vector = data; 3724 3725 if (!q_vector->tx.ring && !q_vector->rx.ring) 3726 return IRQ_HANDLED; 3727 3728 napi_schedule_irqoff(&q_vector->napi); 3729 3730 return IRQ_HANDLED; 3731 } 3732 3733 /** 3734 * i40e_irq_affinity_notify - Callback for affinity changes 3735 * @notify: context as to what irq was changed 3736 * @mask: the new affinity mask 3737 * 3738 * This is a callback function used by the irq_set_affinity_notifier function 3739 * so that we may register to receive changes to the irq affinity masks. 3740 **/ 3741 static void i40e_irq_affinity_notify(struct irq_affinity_notify *notify, 3742 const cpumask_t *mask) 3743 { 3744 struct i40e_q_vector *q_vector = 3745 container_of(notify, struct i40e_q_vector, affinity_notify); 3746 3747 cpumask_copy(&q_vector->affinity_mask, mask); 3748 } 3749 3750 /** 3751 * i40e_irq_affinity_release - Callback for affinity notifier release 3752 * @ref: internal core kernel usage 3753 * 3754 * This is a callback function used by the irq_set_affinity_notifier function 3755 * to inform the current notification subscriber that they will no longer 3756 * receive notifications. 3757 **/ 3758 static void i40e_irq_affinity_release(struct kref *ref) {} 3759 3760 /** 3761 * i40e_vsi_request_irq_msix - Initialize MSI-X interrupts 3762 * @vsi: the VSI being configured 3763 * @basename: name for the vector 3764 * 3765 * Allocates MSI-X vectors and requests interrupts from the kernel. 3766 **/ 3767 static int i40e_vsi_request_irq_msix(struct i40e_vsi *vsi, char *basename) 3768 { 3769 int q_vectors = vsi->num_q_vectors; 3770 struct i40e_pf *pf = vsi->back; 3771 int base = vsi->base_vector; 3772 int rx_int_idx = 0; 3773 int tx_int_idx = 0; 3774 int vector, err; 3775 int irq_num; 3776 int cpu; 3777 3778 for (vector = 0; vector < q_vectors; vector++) { 3779 struct i40e_q_vector *q_vector = vsi->q_vectors[vector]; 3780 3781 irq_num = pf->msix_entries[base + vector].vector; 3782 3783 if (q_vector->tx.ring && q_vector->rx.ring) { 3784 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 3785 "%s-%s-%d", basename, "TxRx", rx_int_idx++); 3786 tx_int_idx++; 3787 } else if (q_vector->rx.ring) { 3788 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 3789 "%s-%s-%d", basename, "rx", rx_int_idx++); 3790 } else if (q_vector->tx.ring) { 3791 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 3792 "%s-%s-%d", basename, "tx", tx_int_idx++); 3793 } else { 3794 /* skip this unused q_vector */ 3795 continue; 3796 } 3797 err = request_irq(irq_num, 3798 vsi->irq_handler, 3799 0, 3800 q_vector->name, 3801 q_vector); 3802 if (err) { 3803 dev_info(&pf->pdev->dev, 3804 "MSIX request_irq failed, error: %d\n", err); 3805 goto free_queue_irqs; 3806 } 3807 3808 /* register for affinity change notifications */ 3809 q_vector->affinity_notify.notify = i40e_irq_affinity_notify; 3810 q_vector->affinity_notify.release = i40e_irq_affinity_release; 3811 irq_set_affinity_notifier(irq_num, &q_vector->affinity_notify); 3812 /* Spread affinity hints out across online CPUs. 3813 * 3814 * get_cpu_mask returns a static constant mask with 3815 * a permanent lifetime so it's ok to pass to 3816 * irq_set_affinity_hint without making a copy. 3817 */ 3818 cpu = cpumask_local_spread(q_vector->v_idx, -1); 3819 irq_set_affinity_hint(irq_num, get_cpu_mask(cpu)); 3820 } 3821 3822 vsi->irqs_ready = true; 3823 return 0; 3824 3825 free_queue_irqs: 3826 while (vector) { 3827 vector--; 3828 irq_num = pf->msix_entries[base + vector].vector; 3829 irq_set_affinity_notifier(irq_num, NULL); 3830 irq_set_affinity_hint(irq_num, NULL); 3831 free_irq(irq_num, &vsi->q_vectors[vector]); 3832 } 3833 return err; 3834 } 3835 3836 /** 3837 * i40e_vsi_disable_irq - Mask off queue interrupt generation on the VSI 3838 * @vsi: the VSI being un-configured 3839 **/ 3840 static void i40e_vsi_disable_irq(struct i40e_vsi *vsi) 3841 { 3842 struct i40e_pf *pf = vsi->back; 3843 struct i40e_hw *hw = &pf->hw; 3844 int base = vsi->base_vector; 3845 int i; 3846 3847 /* disable interrupt causation from each queue */ 3848 for (i = 0; i < vsi->num_queue_pairs; i++) { 3849 u32 val; 3850 3851 val = rd32(hw, I40E_QINT_TQCTL(vsi->tx_rings[i]->reg_idx)); 3852 val &= ~I40E_QINT_TQCTL_CAUSE_ENA_MASK; 3853 wr32(hw, I40E_QINT_TQCTL(vsi->tx_rings[i]->reg_idx), val); 3854 3855 val = rd32(hw, I40E_QINT_RQCTL(vsi->rx_rings[i]->reg_idx)); 3856 val &= ~I40E_QINT_RQCTL_CAUSE_ENA_MASK; 3857 wr32(hw, I40E_QINT_RQCTL(vsi->rx_rings[i]->reg_idx), val); 3858 3859 if (!i40e_enabled_xdp_vsi(vsi)) 3860 continue; 3861 wr32(hw, I40E_QINT_TQCTL(vsi->xdp_rings[i]->reg_idx), 0); 3862 } 3863 3864 /* disable each interrupt */ 3865 if (pf->flags & I40E_FLAG_MSIX_ENABLED) { 3866 for (i = vsi->base_vector; 3867 i < (vsi->num_q_vectors + vsi->base_vector); i++) 3868 wr32(hw, I40E_PFINT_DYN_CTLN(i - 1), 0); 3869 3870 i40e_flush(hw); 3871 for (i = 0; i < vsi->num_q_vectors; i++) 3872 synchronize_irq(pf->msix_entries[i + base].vector); 3873 } else { 3874 /* Legacy and MSI mode - this stops all interrupt handling */ 3875 wr32(hw, I40E_PFINT_ICR0_ENA, 0); 3876 wr32(hw, I40E_PFINT_DYN_CTL0, 0); 3877 i40e_flush(hw); 3878 synchronize_irq(pf->pdev->irq); 3879 } 3880 } 3881 3882 /** 3883 * i40e_vsi_enable_irq - Enable IRQ for the given VSI 3884 * @vsi: the VSI being configured 3885 **/ 3886 static int i40e_vsi_enable_irq(struct i40e_vsi *vsi) 3887 { 3888 struct i40e_pf *pf = vsi->back; 3889 int i; 3890 3891 if (pf->flags & I40E_FLAG_MSIX_ENABLED) { 3892 for (i = 0; i < vsi->num_q_vectors; i++) 3893 i40e_irq_dynamic_enable(vsi, i); 3894 } else { 3895 i40e_irq_dynamic_enable_icr0(pf); 3896 } 3897 3898 i40e_flush(&pf->hw); 3899 return 0; 3900 } 3901 3902 /** 3903 * i40e_free_misc_vector - Free the vector that handles non-queue events 3904 * @pf: board private structure 3905 **/ 3906 static void i40e_free_misc_vector(struct i40e_pf *pf) 3907 { 3908 /* Disable ICR 0 */ 3909 wr32(&pf->hw, I40E_PFINT_ICR0_ENA, 0); 3910 i40e_flush(&pf->hw); 3911 3912 if (pf->flags & I40E_FLAG_MSIX_ENABLED && pf->msix_entries) { 3913 synchronize_irq(pf->msix_entries[0].vector); 3914 free_irq(pf->msix_entries[0].vector, pf); 3915 clear_bit(__I40E_MISC_IRQ_REQUESTED, pf->state); 3916 } 3917 } 3918 3919 /** 3920 * i40e_intr - MSI/Legacy and non-queue interrupt handler 3921 * @irq: interrupt number 3922 * @data: pointer to a q_vector 3923 * 3924 * This is the handler used for all MSI/Legacy interrupts, and deals 3925 * with both queue and non-queue interrupts. This is also used in 3926 * MSIX mode to handle the non-queue interrupts. 3927 **/ 3928 static irqreturn_t i40e_intr(int irq, void *data) 3929 { 3930 struct i40e_pf *pf = (struct i40e_pf *)data; 3931 struct i40e_hw *hw = &pf->hw; 3932 irqreturn_t ret = IRQ_NONE; 3933 u32 icr0, icr0_remaining; 3934 u32 val, ena_mask; 3935 3936 icr0 = rd32(hw, I40E_PFINT_ICR0); 3937 ena_mask = rd32(hw, I40E_PFINT_ICR0_ENA); 3938 3939 /* if sharing a legacy IRQ, we might get called w/o an intr pending */ 3940 if ((icr0 & I40E_PFINT_ICR0_INTEVENT_MASK) == 0) 3941 goto enable_intr; 3942 3943 /* if interrupt but no bits showing, must be SWINT */ 3944 if (((icr0 & ~I40E_PFINT_ICR0_INTEVENT_MASK) == 0) || 3945 (icr0 & I40E_PFINT_ICR0_SWINT_MASK)) 3946 pf->sw_int_count++; 3947 3948 if ((pf->flags & I40E_FLAG_IWARP_ENABLED) && 3949 (icr0 & I40E_PFINT_ICR0_ENA_PE_CRITERR_MASK)) { 3950 ena_mask &= ~I40E_PFINT_ICR0_ENA_PE_CRITERR_MASK; 3951 dev_dbg(&pf->pdev->dev, "cleared PE_CRITERR\n"); 3952 set_bit(__I40E_CORE_RESET_REQUESTED, pf->state); 3953 } 3954 3955 /* only q0 is used in MSI/Legacy mode, and none are used in MSIX */ 3956 if (icr0 & I40E_PFINT_ICR0_QUEUE_0_MASK) { 3957 struct i40e_vsi *vsi = pf->vsi[pf->lan_vsi]; 3958 struct i40e_q_vector *q_vector = vsi->q_vectors[0]; 3959 3960 /* We do not have a way to disarm Queue causes while leaving 3961 * interrupt enabled for all other causes, ideally 3962 * interrupt should be disabled while we are in NAPI but 3963 * this is not a performance path and napi_schedule() 3964 * can deal with rescheduling. 3965 */ 3966 if (!test_bit(__I40E_DOWN, pf->state)) 3967 napi_schedule_irqoff(&q_vector->napi); 3968 } 3969 3970 if (icr0 & I40E_PFINT_ICR0_ADMINQ_MASK) { 3971 ena_mask &= ~I40E_PFINT_ICR0_ENA_ADMINQ_MASK; 3972 set_bit(__I40E_ADMINQ_EVENT_PENDING, pf->state); 3973 i40e_debug(&pf->hw, I40E_DEBUG_NVM, "AdminQ event\n"); 3974 } 3975 3976 if (icr0 & I40E_PFINT_ICR0_MAL_DETECT_MASK) { 3977 ena_mask &= ~I40E_PFINT_ICR0_ENA_MAL_DETECT_MASK; 3978 set_bit(__I40E_MDD_EVENT_PENDING, pf->state); 3979 } 3980 3981 if (icr0 & I40E_PFINT_ICR0_VFLR_MASK) { 3982 ena_mask &= ~I40E_PFINT_ICR0_ENA_VFLR_MASK; 3983 set_bit(__I40E_VFLR_EVENT_PENDING, pf->state); 3984 } 3985 3986 if (icr0 & I40E_PFINT_ICR0_GRST_MASK) { 3987 if (!test_bit(__I40E_RESET_RECOVERY_PENDING, pf->state)) 3988 set_bit(__I40E_RESET_INTR_RECEIVED, pf->state); 3989 ena_mask &= ~I40E_PFINT_ICR0_ENA_GRST_MASK; 3990 val = rd32(hw, I40E_GLGEN_RSTAT); 3991 val = (val & I40E_GLGEN_RSTAT_RESET_TYPE_MASK) 3992 >> I40E_GLGEN_RSTAT_RESET_TYPE_SHIFT; 3993 if (val == I40E_RESET_CORER) { 3994 pf->corer_count++; 3995 } else if (val == I40E_RESET_GLOBR) { 3996 pf->globr_count++; 3997 } else if (val == I40E_RESET_EMPR) { 3998 pf->empr_count++; 3999 set_bit(__I40E_EMP_RESET_INTR_RECEIVED, pf->state); 4000 } 4001 } 4002 4003 if (icr0 & I40E_PFINT_ICR0_HMC_ERR_MASK) { 4004 icr0 &= ~I40E_PFINT_ICR0_HMC_ERR_MASK; 4005 dev_info(&pf->pdev->dev, "HMC error interrupt\n"); 4006 dev_info(&pf->pdev->dev, "HMC error info 0x%x, HMC error data 0x%x\n", 4007 rd32(hw, I40E_PFHMC_ERRORINFO), 4008 rd32(hw, I40E_PFHMC_ERRORDATA)); 4009 } 4010 4011 if (icr0 & I40E_PFINT_ICR0_TIMESYNC_MASK) { 4012 u32 prttsyn_stat = rd32(hw, I40E_PRTTSYN_STAT_0); 4013 4014 if (prttsyn_stat & I40E_PRTTSYN_STAT_0_TXTIME_MASK) { 4015 icr0 &= ~I40E_PFINT_ICR0_ENA_TIMESYNC_MASK; 4016 i40e_ptp_tx_hwtstamp(pf); 4017 } 4018 } 4019 4020 /* If a critical error is pending we have no choice but to reset the 4021 * device. 4022 * Report and mask out any remaining unexpected interrupts. 4023 */ 4024 icr0_remaining = icr0 & ena_mask; 4025 if (icr0_remaining) { 4026 dev_info(&pf->pdev->dev, "unhandled interrupt icr0=0x%08x\n", 4027 icr0_remaining); 4028 if ((icr0_remaining & I40E_PFINT_ICR0_PE_CRITERR_MASK) || 4029 (icr0_remaining & I40E_PFINT_ICR0_PCI_EXCEPTION_MASK) || 4030 (icr0_remaining & I40E_PFINT_ICR0_ECC_ERR_MASK)) { 4031 dev_info(&pf->pdev->dev, "device will be reset\n"); 4032 set_bit(__I40E_PF_RESET_REQUESTED, pf->state); 4033 i40e_service_event_schedule(pf); 4034 } 4035 ena_mask &= ~icr0_remaining; 4036 } 4037 ret = IRQ_HANDLED; 4038 4039 enable_intr: 4040 /* re-enable interrupt causes */ 4041 wr32(hw, I40E_PFINT_ICR0_ENA, ena_mask); 4042 if (!test_bit(__I40E_DOWN, pf->state) || 4043 test_bit(__I40E_RECOVERY_MODE, pf->state)) { 4044 i40e_service_event_schedule(pf); 4045 i40e_irq_dynamic_enable_icr0(pf); 4046 } 4047 4048 return ret; 4049 } 4050 4051 /** 4052 * i40e_clean_fdir_tx_irq - Reclaim resources after transmit completes 4053 * @tx_ring: tx ring to clean 4054 * @budget: how many cleans we're allowed 4055 * 4056 * Returns true if there's any budget left (e.g. the clean is finished) 4057 **/ 4058 static bool i40e_clean_fdir_tx_irq(struct i40e_ring *tx_ring, int budget) 4059 { 4060 struct i40e_vsi *vsi = tx_ring->vsi; 4061 u16 i = tx_ring->next_to_clean; 4062 struct i40e_tx_buffer *tx_buf; 4063 struct i40e_tx_desc *tx_desc; 4064 4065 tx_buf = &tx_ring->tx_bi[i]; 4066 tx_desc = I40E_TX_DESC(tx_ring, i); 4067 i -= tx_ring->count; 4068 4069 do { 4070 struct i40e_tx_desc *eop_desc = tx_buf->next_to_watch; 4071 4072 /* if next_to_watch is not set then there is no work pending */ 4073 if (!eop_desc) 4074 break; 4075 4076 /* prevent any other reads prior to eop_desc */ 4077 smp_rmb(); 4078 4079 /* if the descriptor isn't done, no work yet to do */ 4080 if (!(eop_desc->cmd_type_offset_bsz & 4081 cpu_to_le64(I40E_TX_DESC_DTYPE_DESC_DONE))) 4082 break; 4083 4084 /* clear next_to_watch to prevent false hangs */ 4085 tx_buf->next_to_watch = NULL; 4086 4087 tx_desc->buffer_addr = 0; 4088 tx_desc->cmd_type_offset_bsz = 0; 4089 /* move past filter desc */ 4090 tx_buf++; 4091 tx_desc++; 4092 i++; 4093 if (unlikely(!i)) { 4094 i -= tx_ring->count; 4095 tx_buf = tx_ring->tx_bi; 4096 tx_desc = I40E_TX_DESC(tx_ring, 0); 4097 } 4098 /* unmap skb header data */ 4099 dma_unmap_single(tx_ring->dev, 4100 dma_unmap_addr(tx_buf, dma), 4101 dma_unmap_len(tx_buf, len), 4102 DMA_TO_DEVICE); 4103 if (tx_buf->tx_flags & I40E_TX_FLAGS_FD_SB) 4104 kfree(tx_buf->raw_buf); 4105 4106 tx_buf->raw_buf = NULL; 4107 tx_buf->tx_flags = 0; 4108 tx_buf->next_to_watch = NULL; 4109 dma_unmap_len_set(tx_buf, len, 0); 4110 tx_desc->buffer_addr = 0; 4111 tx_desc->cmd_type_offset_bsz = 0; 4112 4113 /* move us past the eop_desc for start of next FD desc */ 4114 tx_buf++; 4115 tx_desc++; 4116 i++; 4117 if (unlikely(!i)) { 4118 i -= tx_ring->count; 4119 tx_buf = tx_ring->tx_bi; 4120 tx_desc = I40E_TX_DESC(tx_ring, 0); 4121 } 4122 4123 /* update budget accounting */ 4124 budget--; 4125 } while (likely(budget)); 4126 4127 i += tx_ring->count; 4128 tx_ring->next_to_clean = i; 4129 4130 if (vsi->back->flags & I40E_FLAG_MSIX_ENABLED) 4131 i40e_irq_dynamic_enable(vsi, tx_ring->q_vector->v_idx); 4132 4133 return budget > 0; 4134 } 4135 4136 /** 4137 * i40e_fdir_clean_ring - Interrupt Handler for FDIR SB ring 4138 * @irq: interrupt number 4139 * @data: pointer to a q_vector 4140 **/ 4141 static irqreturn_t i40e_fdir_clean_ring(int irq, void *data) 4142 { 4143 struct i40e_q_vector *q_vector = data; 4144 struct i40e_vsi *vsi; 4145 4146 if (!q_vector->tx.ring) 4147 return IRQ_HANDLED; 4148 4149 vsi = q_vector->tx.ring->vsi; 4150 i40e_clean_fdir_tx_irq(q_vector->tx.ring, vsi->work_limit); 4151 4152 return IRQ_HANDLED; 4153 } 4154 4155 /** 4156 * i40e_map_vector_to_qp - Assigns the queue pair to the vector 4157 * @vsi: the VSI being configured 4158 * @v_idx: vector index 4159 * @qp_idx: queue pair index 4160 **/ 4161 static void i40e_map_vector_to_qp(struct i40e_vsi *vsi, int v_idx, int qp_idx) 4162 { 4163 struct i40e_q_vector *q_vector = vsi->q_vectors[v_idx]; 4164 struct i40e_ring *tx_ring = vsi->tx_rings[qp_idx]; 4165 struct i40e_ring *rx_ring = vsi->rx_rings[qp_idx]; 4166 4167 tx_ring->q_vector = q_vector; 4168 tx_ring->next = q_vector->tx.ring; 4169 q_vector->tx.ring = tx_ring; 4170 q_vector->tx.count++; 4171 4172 /* Place XDP Tx ring in the same q_vector ring list as regular Tx */ 4173 if (i40e_enabled_xdp_vsi(vsi)) { 4174 struct i40e_ring *xdp_ring = vsi->xdp_rings[qp_idx]; 4175 4176 xdp_ring->q_vector = q_vector; 4177 xdp_ring->next = q_vector->tx.ring; 4178 q_vector->tx.ring = xdp_ring; 4179 q_vector->tx.count++; 4180 } 4181 4182 rx_ring->q_vector = q_vector; 4183 rx_ring->next = q_vector->rx.ring; 4184 q_vector->rx.ring = rx_ring; 4185 q_vector->rx.count++; 4186 } 4187 4188 /** 4189 * i40e_vsi_map_rings_to_vectors - Maps descriptor rings to vectors 4190 * @vsi: the VSI being configured 4191 * 4192 * This function maps descriptor rings to the queue-specific vectors 4193 * we were allotted through the MSI-X enabling code. Ideally, we'd have 4194 * one vector per queue pair, but on a constrained vector budget, we 4195 * group the queue pairs as "efficiently" as possible. 4196 **/ 4197 static void i40e_vsi_map_rings_to_vectors(struct i40e_vsi *vsi) 4198 { 4199 int qp_remaining = vsi->num_queue_pairs; 4200 int q_vectors = vsi->num_q_vectors; 4201 int num_ringpairs; 4202 int v_start = 0; 4203 int qp_idx = 0; 4204 4205 /* If we don't have enough vectors for a 1-to-1 mapping, we'll have to 4206 * group them so there are multiple queues per vector. 4207 * It is also important to go through all the vectors available to be 4208 * sure that if we don't use all the vectors, that the remaining vectors 4209 * are cleared. This is especially important when decreasing the 4210 * number of queues in use. 4211 */ 4212 for (; v_start < q_vectors; v_start++) { 4213 struct i40e_q_vector *q_vector = vsi->q_vectors[v_start]; 4214 4215 num_ringpairs = DIV_ROUND_UP(qp_remaining, q_vectors - v_start); 4216 4217 q_vector->num_ringpairs = num_ringpairs; 4218 q_vector->reg_idx = q_vector->v_idx + vsi->base_vector - 1; 4219 4220 q_vector->rx.count = 0; 4221 q_vector->tx.count = 0; 4222 q_vector->rx.ring = NULL; 4223 q_vector->tx.ring = NULL; 4224 4225 while (num_ringpairs--) { 4226 i40e_map_vector_to_qp(vsi, v_start, qp_idx); 4227 qp_idx++; 4228 qp_remaining--; 4229 } 4230 } 4231 } 4232 4233 /** 4234 * i40e_vsi_request_irq - Request IRQ from the OS 4235 * @vsi: the VSI being configured 4236 * @basename: name for the vector 4237 **/ 4238 static int i40e_vsi_request_irq(struct i40e_vsi *vsi, char *basename) 4239 { 4240 struct i40e_pf *pf = vsi->back; 4241 int err; 4242 4243 if (pf->flags & I40E_FLAG_MSIX_ENABLED) 4244 err = i40e_vsi_request_irq_msix(vsi, basename); 4245 else if (pf->flags & I40E_FLAG_MSI_ENABLED) 4246 err = request_irq(pf->pdev->irq, i40e_intr, 0, 4247 pf->int_name, pf); 4248 else 4249 err = request_irq(pf->pdev->irq, i40e_intr, IRQF_SHARED, 4250 pf->int_name, pf); 4251 4252 if (err) 4253 dev_info(&pf->pdev->dev, "request_irq failed, Error %d\n", err); 4254 4255 return err; 4256 } 4257 4258 #ifdef CONFIG_NET_POLL_CONTROLLER 4259 /** 4260 * i40e_netpoll - A Polling 'interrupt' handler 4261 * @netdev: network interface device structure 4262 * 4263 * This is used by netconsole to send skbs without having to re-enable 4264 * interrupts. It's not called while the normal interrupt routine is executing. 4265 **/ 4266 static void i40e_netpoll(struct net_device *netdev) 4267 { 4268 struct i40e_netdev_priv *np = netdev_priv(netdev); 4269 struct i40e_vsi *vsi = np->vsi; 4270 struct i40e_pf *pf = vsi->back; 4271 int i; 4272 4273 /* if interface is down do nothing */ 4274 if (test_bit(__I40E_VSI_DOWN, vsi->state)) 4275 return; 4276 4277 if (pf->flags & I40E_FLAG_MSIX_ENABLED) { 4278 for (i = 0; i < vsi->num_q_vectors; i++) 4279 i40e_msix_clean_rings(0, vsi->q_vectors[i]); 4280 } else { 4281 i40e_intr(pf->pdev->irq, netdev); 4282 } 4283 } 4284 #endif 4285 4286 #define I40E_QTX_ENA_WAIT_COUNT 50 4287 4288 /** 4289 * i40e_pf_txq_wait - Wait for a PF's Tx queue to be enabled or disabled 4290 * @pf: the PF being configured 4291 * @pf_q: the PF queue 4292 * @enable: enable or disable state of the queue 4293 * 4294 * This routine will wait for the given Tx queue of the PF to reach the 4295 * enabled or disabled state. 4296 * Returns -ETIMEDOUT in case of failing to reach the requested state after 4297 * multiple retries; else will return 0 in case of success. 4298 **/ 4299 static int i40e_pf_txq_wait(struct i40e_pf *pf, int pf_q, bool enable) 4300 { 4301 int i; 4302 u32 tx_reg; 4303 4304 for (i = 0; i < I40E_QUEUE_WAIT_RETRY_LIMIT; i++) { 4305 tx_reg = rd32(&pf->hw, I40E_QTX_ENA(pf_q)); 4306 if (enable == !!(tx_reg & I40E_QTX_ENA_QENA_STAT_MASK)) 4307 break; 4308 4309 usleep_range(10, 20); 4310 } 4311 if (i >= I40E_QUEUE_WAIT_RETRY_LIMIT) 4312 return -ETIMEDOUT; 4313 4314 return 0; 4315 } 4316 4317 /** 4318 * i40e_control_tx_q - Start or stop a particular Tx queue 4319 * @pf: the PF structure 4320 * @pf_q: the PF queue to configure 4321 * @enable: start or stop the queue 4322 * 4323 * This function enables or disables a single queue. Note that any delay 4324 * required after the operation is expected to be handled by the caller of 4325 * this function. 4326 **/ 4327 static void i40e_control_tx_q(struct i40e_pf *pf, int pf_q, bool enable) 4328 { 4329 struct i40e_hw *hw = &pf->hw; 4330 u32 tx_reg; 4331 int i; 4332 4333 /* warn the TX unit of coming changes */ 4334 i40e_pre_tx_queue_cfg(&pf->hw, pf_q, enable); 4335 if (!enable) 4336 usleep_range(10, 20); 4337 4338 for (i = 0; i < I40E_QTX_ENA_WAIT_COUNT; i++) { 4339 tx_reg = rd32(hw, I40E_QTX_ENA(pf_q)); 4340 if (((tx_reg >> I40E_QTX_ENA_QENA_REQ_SHIFT) & 1) == 4341 ((tx_reg >> I40E_QTX_ENA_QENA_STAT_SHIFT) & 1)) 4342 break; 4343 usleep_range(1000, 2000); 4344 } 4345 4346 /* Skip if the queue is already in the requested state */ 4347 if (enable == !!(tx_reg & I40E_QTX_ENA_QENA_STAT_MASK)) 4348 return; 4349 4350 /* turn on/off the queue */ 4351 if (enable) { 4352 wr32(hw, I40E_QTX_HEAD(pf_q), 0); 4353 tx_reg |= I40E_QTX_ENA_QENA_REQ_MASK; 4354 } else { 4355 tx_reg &= ~I40E_QTX_ENA_QENA_REQ_MASK; 4356 } 4357 4358 wr32(hw, I40E_QTX_ENA(pf_q), tx_reg); 4359 } 4360 4361 /** 4362 * i40e_control_wait_tx_q - Start/stop Tx queue and wait for completion 4363 * @seid: VSI SEID 4364 * @pf: the PF structure 4365 * @pf_q: the PF queue to configure 4366 * @is_xdp: true if the queue is used for XDP 4367 * @enable: start or stop the queue 4368 **/ 4369 int i40e_control_wait_tx_q(int seid, struct i40e_pf *pf, int pf_q, 4370 bool is_xdp, bool enable) 4371 { 4372 int ret; 4373 4374 i40e_control_tx_q(pf, pf_q, enable); 4375 4376 /* wait for the change to finish */ 4377 ret = i40e_pf_txq_wait(pf, pf_q, enable); 4378 if (ret) { 4379 dev_info(&pf->pdev->dev, 4380 "VSI seid %d %sTx ring %d %sable timeout\n", 4381 seid, (is_xdp ? "XDP " : ""), pf_q, 4382 (enable ? "en" : "dis")); 4383 } 4384 4385 return ret; 4386 } 4387 4388 /** 4389 * i40e_vsi_control_tx - Start or stop a VSI's rings 4390 * @vsi: the VSI being configured 4391 * @enable: start or stop the rings 4392 **/ 4393 static int i40e_vsi_control_tx(struct i40e_vsi *vsi, bool enable) 4394 { 4395 struct i40e_pf *pf = vsi->back; 4396 int i, pf_q, ret = 0; 4397 4398 pf_q = vsi->base_queue; 4399 for (i = 0; i < vsi->num_queue_pairs; i++, pf_q++) { 4400 ret = i40e_control_wait_tx_q(vsi->seid, pf, 4401 pf_q, 4402 false /*is xdp*/, enable); 4403 if (ret) 4404 break; 4405 4406 if (!i40e_enabled_xdp_vsi(vsi)) 4407 continue; 4408 4409 ret = i40e_control_wait_tx_q(vsi->seid, pf, 4410 pf_q + vsi->alloc_queue_pairs, 4411 true /*is xdp*/, enable); 4412 if (ret) 4413 break; 4414 } 4415 return ret; 4416 } 4417 4418 /** 4419 * i40e_pf_rxq_wait - Wait for a PF's Rx queue to be enabled or disabled 4420 * @pf: the PF being configured 4421 * @pf_q: the PF queue 4422 * @enable: enable or disable state of the queue 4423 * 4424 * This routine will wait for the given Rx queue of the PF to reach the 4425 * enabled or disabled state. 4426 * Returns -ETIMEDOUT in case of failing to reach the requested state after 4427 * multiple retries; else will return 0 in case of success. 4428 **/ 4429 static int i40e_pf_rxq_wait(struct i40e_pf *pf, int pf_q, bool enable) 4430 { 4431 int i; 4432 u32 rx_reg; 4433 4434 for (i = 0; i < I40E_QUEUE_WAIT_RETRY_LIMIT; i++) { 4435 rx_reg = rd32(&pf->hw, I40E_QRX_ENA(pf_q)); 4436 if (enable == !!(rx_reg & I40E_QRX_ENA_QENA_STAT_MASK)) 4437 break; 4438 4439 usleep_range(10, 20); 4440 } 4441 if (i >= I40E_QUEUE_WAIT_RETRY_LIMIT) 4442 return -ETIMEDOUT; 4443 4444 return 0; 4445 } 4446 4447 /** 4448 * i40e_control_rx_q - Start or stop a particular Rx queue 4449 * @pf: the PF structure 4450 * @pf_q: the PF queue to configure 4451 * @enable: start or stop the queue 4452 * 4453 * This function enables or disables a single queue. Note that 4454 * any delay required after the operation is expected to be 4455 * handled by the caller of this function. 4456 **/ 4457 static void i40e_control_rx_q(struct i40e_pf *pf, int pf_q, bool enable) 4458 { 4459 struct i40e_hw *hw = &pf->hw; 4460 u32 rx_reg; 4461 int i; 4462 4463 for (i = 0; i < I40E_QTX_ENA_WAIT_COUNT; i++) { 4464 rx_reg = rd32(hw, I40E_QRX_ENA(pf_q)); 4465 if (((rx_reg >> I40E_QRX_ENA_QENA_REQ_SHIFT) & 1) == 4466 ((rx_reg >> I40E_QRX_ENA_QENA_STAT_SHIFT) & 1)) 4467 break; 4468 usleep_range(1000, 2000); 4469 } 4470 4471 /* Skip if the queue is already in the requested state */ 4472 if (enable == !!(rx_reg & I40E_QRX_ENA_QENA_STAT_MASK)) 4473 return; 4474 4475 /* turn on/off the queue */ 4476 if (enable) 4477 rx_reg |= I40E_QRX_ENA_QENA_REQ_MASK; 4478 else 4479 rx_reg &= ~I40E_QRX_ENA_QENA_REQ_MASK; 4480 4481 wr32(hw, I40E_QRX_ENA(pf_q), rx_reg); 4482 } 4483 4484 /** 4485 * i40e_control_wait_rx_q 4486 * @pf: the PF structure 4487 * @pf_q: queue being configured 4488 * @enable: start or stop the rings 4489 * 4490 * This function enables or disables a single queue along with waiting 4491 * for the change to finish. The caller of this function should handle 4492 * the delays needed in the case of disabling queues. 4493 **/ 4494 int i40e_control_wait_rx_q(struct i40e_pf *pf, int pf_q, bool enable) 4495 { 4496 int ret = 0; 4497 4498 i40e_control_rx_q(pf, pf_q, enable); 4499 4500 /* wait for the change to finish */ 4501 ret = i40e_pf_rxq_wait(pf, pf_q, enable); 4502 if (ret) 4503 return ret; 4504 4505 return ret; 4506 } 4507 4508 /** 4509 * i40e_vsi_control_rx - Start or stop a VSI's rings 4510 * @vsi: the VSI being configured 4511 * @enable: start or stop the rings 4512 **/ 4513 static int i40e_vsi_control_rx(struct i40e_vsi *vsi, bool enable) 4514 { 4515 struct i40e_pf *pf = vsi->back; 4516 int i, pf_q, ret = 0; 4517 4518 pf_q = vsi->base_queue; 4519 for (i = 0; i < vsi->num_queue_pairs; i++, pf_q++) { 4520 ret = i40e_control_wait_rx_q(pf, pf_q, enable); 4521 if (ret) { 4522 dev_info(&pf->pdev->dev, 4523 "VSI seid %d Rx ring %d %sable timeout\n", 4524 vsi->seid, pf_q, (enable ? "en" : "dis")); 4525 break; 4526 } 4527 } 4528 4529 /* Due to HW errata, on Rx disable only, the register can indicate done 4530 * before it really is. Needs 50ms to be sure 4531 */ 4532 if (!enable) 4533 mdelay(50); 4534 4535 return ret; 4536 } 4537 4538 /** 4539 * i40e_vsi_start_rings - Start a VSI's rings 4540 * @vsi: the VSI being configured 4541 **/ 4542 int i40e_vsi_start_rings(struct i40e_vsi *vsi) 4543 { 4544 int ret = 0; 4545 4546 /* do rx first for enable and last for disable */ 4547 ret = i40e_vsi_control_rx(vsi, true); 4548 if (ret) 4549 return ret; 4550 ret = i40e_vsi_control_tx(vsi, true); 4551 4552 return ret; 4553 } 4554 4555 /** 4556 * i40e_vsi_stop_rings - Stop a VSI's rings 4557 * @vsi: the VSI being configured 4558 **/ 4559 void i40e_vsi_stop_rings(struct i40e_vsi *vsi) 4560 { 4561 /* When port TX is suspended, don't wait */ 4562 if (test_bit(__I40E_PORT_SUSPENDED, vsi->back->state)) 4563 return i40e_vsi_stop_rings_no_wait(vsi); 4564 4565 /* do rx first for enable and last for disable 4566 * Ignore return value, we need to shutdown whatever we can 4567 */ 4568 i40e_vsi_control_tx(vsi, false); 4569 i40e_vsi_control_rx(vsi, false); 4570 } 4571 4572 /** 4573 * i40e_vsi_stop_rings_no_wait - Stop a VSI's rings and do not delay 4574 * @vsi: the VSI being shutdown 4575 * 4576 * This function stops all the rings for a VSI but does not delay to verify 4577 * that rings have been disabled. It is expected that the caller is shutting 4578 * down multiple VSIs at once and will delay together for all the VSIs after 4579 * initiating the shutdown. This is particularly useful for shutting down lots 4580 * of VFs together. Otherwise, a large delay can be incurred while configuring 4581 * each VSI in serial. 4582 **/ 4583 void i40e_vsi_stop_rings_no_wait(struct i40e_vsi *vsi) 4584 { 4585 struct i40e_pf *pf = vsi->back; 4586 int i, pf_q; 4587 4588 pf_q = vsi->base_queue; 4589 for (i = 0; i < vsi->num_queue_pairs; i++, pf_q++) { 4590 i40e_control_tx_q(pf, pf_q, false); 4591 i40e_control_rx_q(pf, pf_q, false); 4592 } 4593 } 4594 4595 /** 4596 * i40e_vsi_free_irq - Free the irq association with the OS 4597 * @vsi: the VSI being configured 4598 **/ 4599 static void i40e_vsi_free_irq(struct i40e_vsi *vsi) 4600 { 4601 struct i40e_pf *pf = vsi->back; 4602 struct i40e_hw *hw = &pf->hw; 4603 int base = vsi->base_vector; 4604 u32 val, qp; 4605 int i; 4606 4607 if (pf->flags & I40E_FLAG_MSIX_ENABLED) { 4608 if (!vsi->q_vectors) 4609 return; 4610 4611 if (!vsi->irqs_ready) 4612 return; 4613 4614 vsi->irqs_ready = false; 4615 for (i = 0; i < vsi->num_q_vectors; i++) { 4616 int irq_num; 4617 u16 vector; 4618 4619 vector = i + base; 4620 irq_num = pf->msix_entries[vector].vector; 4621 4622 /* free only the irqs that were actually requested */ 4623 if (!vsi->q_vectors[i] || 4624 !vsi->q_vectors[i]->num_ringpairs) 4625 continue; 4626 4627 /* clear the affinity notifier in the IRQ descriptor */ 4628 irq_set_affinity_notifier(irq_num, NULL); 4629 /* remove our suggested affinity mask for this IRQ */ 4630 irq_set_affinity_hint(irq_num, NULL); 4631 synchronize_irq(irq_num); 4632 free_irq(irq_num, vsi->q_vectors[i]); 4633 4634 /* Tear down the interrupt queue link list 4635 * 4636 * We know that they come in pairs and always 4637 * the Rx first, then the Tx. To clear the 4638 * link list, stick the EOL value into the 4639 * next_q field of the registers. 4640 */ 4641 val = rd32(hw, I40E_PFINT_LNKLSTN(vector - 1)); 4642 qp = (val & I40E_PFINT_LNKLSTN_FIRSTQ_INDX_MASK) 4643 >> I40E_PFINT_LNKLSTN_FIRSTQ_INDX_SHIFT; 4644 val |= I40E_QUEUE_END_OF_LIST 4645 << I40E_PFINT_LNKLSTN_FIRSTQ_INDX_SHIFT; 4646 wr32(hw, I40E_PFINT_LNKLSTN(vector - 1), val); 4647 4648 while (qp != I40E_QUEUE_END_OF_LIST) { 4649 u32 next; 4650 4651 val = rd32(hw, I40E_QINT_RQCTL(qp)); 4652 4653 val &= ~(I40E_QINT_RQCTL_MSIX_INDX_MASK | 4654 I40E_QINT_RQCTL_MSIX0_INDX_MASK | 4655 I40E_QINT_RQCTL_CAUSE_ENA_MASK | 4656 I40E_QINT_RQCTL_INTEVENT_MASK); 4657 4658 val |= (I40E_QINT_RQCTL_ITR_INDX_MASK | 4659 I40E_QINT_RQCTL_NEXTQ_INDX_MASK); 4660 4661 wr32(hw, I40E_QINT_RQCTL(qp), val); 4662 4663 val = rd32(hw, I40E_QINT_TQCTL(qp)); 4664 4665 next = (val & I40E_QINT_TQCTL_NEXTQ_INDX_MASK) 4666 >> I40E_QINT_TQCTL_NEXTQ_INDX_SHIFT; 4667 4668 val &= ~(I40E_QINT_TQCTL_MSIX_INDX_MASK | 4669 I40E_QINT_TQCTL_MSIX0_INDX_MASK | 4670 I40E_QINT_TQCTL_CAUSE_ENA_MASK | 4671 I40E_QINT_TQCTL_INTEVENT_MASK); 4672 4673 val |= (I40E_QINT_TQCTL_ITR_INDX_MASK | 4674 I40E_QINT_TQCTL_NEXTQ_INDX_MASK); 4675 4676 wr32(hw, I40E_QINT_TQCTL(qp), val); 4677 qp = next; 4678 } 4679 } 4680 } else { 4681 free_irq(pf->pdev->irq, pf); 4682 4683 val = rd32(hw, I40E_PFINT_LNKLST0); 4684 qp = (val & I40E_PFINT_LNKLSTN_FIRSTQ_INDX_MASK) 4685 >> I40E_PFINT_LNKLSTN_FIRSTQ_INDX_SHIFT; 4686 val |= I40E_QUEUE_END_OF_LIST 4687 << I40E_PFINT_LNKLST0_FIRSTQ_INDX_SHIFT; 4688 wr32(hw, I40E_PFINT_LNKLST0, val); 4689 4690 val = rd32(hw, I40E_QINT_RQCTL(qp)); 4691 val &= ~(I40E_QINT_RQCTL_MSIX_INDX_MASK | 4692 I40E_QINT_RQCTL_MSIX0_INDX_MASK | 4693 I40E_QINT_RQCTL_CAUSE_ENA_MASK | 4694 I40E_QINT_RQCTL_INTEVENT_MASK); 4695 4696 val |= (I40E_QINT_RQCTL_ITR_INDX_MASK | 4697 I40E_QINT_RQCTL_NEXTQ_INDX_MASK); 4698 4699 wr32(hw, I40E_QINT_RQCTL(qp), val); 4700 4701 val = rd32(hw, I40E_QINT_TQCTL(qp)); 4702 4703 val &= ~(I40E_QINT_TQCTL_MSIX_INDX_MASK | 4704 I40E_QINT_TQCTL_MSIX0_INDX_MASK | 4705 I40E_QINT_TQCTL_CAUSE_ENA_MASK | 4706 I40E_QINT_TQCTL_INTEVENT_MASK); 4707 4708 val |= (I40E_QINT_TQCTL_ITR_INDX_MASK | 4709 I40E_QINT_TQCTL_NEXTQ_INDX_MASK); 4710 4711 wr32(hw, I40E_QINT_TQCTL(qp), val); 4712 } 4713 } 4714 4715 /** 4716 * i40e_free_q_vector - Free memory allocated for specific interrupt vector 4717 * @vsi: the VSI being configured 4718 * @v_idx: Index of vector to be freed 4719 * 4720 * This function frees the memory allocated to the q_vector. In addition if 4721 * NAPI is enabled it will delete any references to the NAPI struct prior 4722 * to freeing the q_vector. 4723 **/ 4724 static void i40e_free_q_vector(struct i40e_vsi *vsi, int v_idx) 4725 { 4726 struct i40e_q_vector *q_vector = vsi->q_vectors[v_idx]; 4727 struct i40e_ring *ring; 4728 4729 if (!q_vector) 4730 return; 4731 4732 /* disassociate q_vector from rings */ 4733 i40e_for_each_ring(ring, q_vector->tx) 4734 ring->q_vector = NULL; 4735 4736 i40e_for_each_ring(ring, q_vector->rx) 4737 ring->q_vector = NULL; 4738 4739 /* only VSI w/ an associated netdev is set up w/ NAPI */ 4740 if (vsi->netdev) 4741 netif_napi_del(&q_vector->napi); 4742 4743 vsi->q_vectors[v_idx] = NULL; 4744 4745 kfree_rcu(q_vector, rcu); 4746 } 4747 4748 /** 4749 * i40e_vsi_free_q_vectors - Free memory allocated for interrupt vectors 4750 * @vsi: the VSI being un-configured 4751 * 4752 * This frees the memory allocated to the q_vectors and 4753 * deletes references to the NAPI struct. 4754 **/ 4755 static void i40e_vsi_free_q_vectors(struct i40e_vsi *vsi) 4756 { 4757 int v_idx; 4758 4759 for (v_idx = 0; v_idx < vsi->num_q_vectors; v_idx++) 4760 i40e_free_q_vector(vsi, v_idx); 4761 } 4762 4763 /** 4764 * i40e_reset_interrupt_capability - Disable interrupt setup in OS 4765 * @pf: board private structure 4766 **/ 4767 static void i40e_reset_interrupt_capability(struct i40e_pf *pf) 4768 { 4769 /* If we're in Legacy mode, the interrupt was cleaned in vsi_close */ 4770 if (pf->flags & I40E_FLAG_MSIX_ENABLED) { 4771 pci_disable_msix(pf->pdev); 4772 kfree(pf->msix_entries); 4773 pf->msix_entries = NULL; 4774 kfree(pf->irq_pile); 4775 pf->irq_pile = NULL; 4776 } else if (pf->flags & I40E_FLAG_MSI_ENABLED) { 4777 pci_disable_msi(pf->pdev); 4778 } 4779 pf->flags &= ~(I40E_FLAG_MSIX_ENABLED | I40E_FLAG_MSI_ENABLED); 4780 } 4781 4782 /** 4783 * i40e_clear_interrupt_scheme - Clear the current interrupt scheme settings 4784 * @pf: board private structure 4785 * 4786 * We go through and clear interrupt specific resources and reset the structure 4787 * to pre-load conditions 4788 **/ 4789 static void i40e_clear_interrupt_scheme(struct i40e_pf *pf) 4790 { 4791 int i; 4792 4793 i40e_free_misc_vector(pf); 4794 4795 i40e_put_lump(pf->irq_pile, pf->iwarp_base_vector, 4796 I40E_IWARP_IRQ_PILE_ID); 4797 4798 i40e_put_lump(pf->irq_pile, 0, I40E_PILE_VALID_BIT-1); 4799 for (i = 0; i < pf->num_alloc_vsi; i++) 4800 if (pf->vsi[i]) 4801 i40e_vsi_free_q_vectors(pf->vsi[i]); 4802 i40e_reset_interrupt_capability(pf); 4803 } 4804 4805 /** 4806 * i40e_napi_enable_all - Enable NAPI for all q_vectors in the VSI 4807 * @vsi: the VSI being configured 4808 **/ 4809 static void i40e_napi_enable_all(struct i40e_vsi *vsi) 4810 { 4811 int q_idx; 4812 4813 if (!vsi->netdev) 4814 return; 4815 4816 for (q_idx = 0; q_idx < vsi->num_q_vectors; q_idx++) { 4817 struct i40e_q_vector *q_vector = vsi->q_vectors[q_idx]; 4818 4819 if (q_vector->rx.ring || q_vector->tx.ring) 4820 napi_enable(&q_vector->napi); 4821 } 4822 } 4823 4824 /** 4825 * i40e_napi_disable_all - Disable NAPI for all q_vectors in the VSI 4826 * @vsi: the VSI being configured 4827 **/ 4828 static void i40e_napi_disable_all(struct i40e_vsi *vsi) 4829 { 4830 int q_idx; 4831 4832 if (!vsi->netdev) 4833 return; 4834 4835 for (q_idx = 0; q_idx < vsi->num_q_vectors; q_idx++) { 4836 struct i40e_q_vector *q_vector = vsi->q_vectors[q_idx]; 4837 4838 if (q_vector->rx.ring || q_vector->tx.ring) 4839 napi_disable(&q_vector->napi); 4840 } 4841 } 4842 4843 /** 4844 * i40e_vsi_close - Shut down a VSI 4845 * @vsi: the vsi to be quelled 4846 **/ 4847 static void i40e_vsi_close(struct i40e_vsi *vsi) 4848 { 4849 struct i40e_pf *pf = vsi->back; 4850 if (!test_and_set_bit(__I40E_VSI_DOWN, vsi->state)) 4851 i40e_down(vsi); 4852 i40e_vsi_free_irq(vsi); 4853 i40e_vsi_free_tx_resources(vsi); 4854 i40e_vsi_free_rx_resources(vsi); 4855 vsi->current_netdev_flags = 0; 4856 set_bit(__I40E_CLIENT_SERVICE_REQUESTED, pf->state); 4857 if (test_bit(__I40E_RESET_RECOVERY_PENDING, pf->state)) 4858 set_bit(__I40E_CLIENT_RESET, pf->state); 4859 } 4860 4861 /** 4862 * i40e_quiesce_vsi - Pause a given VSI 4863 * @vsi: the VSI being paused 4864 **/ 4865 static void i40e_quiesce_vsi(struct i40e_vsi *vsi) 4866 { 4867 if (test_bit(__I40E_VSI_DOWN, vsi->state)) 4868 return; 4869 4870 set_bit(__I40E_VSI_NEEDS_RESTART, vsi->state); 4871 if (vsi->netdev && netif_running(vsi->netdev)) 4872 vsi->netdev->netdev_ops->ndo_stop(vsi->netdev); 4873 else 4874 i40e_vsi_close(vsi); 4875 } 4876 4877 /** 4878 * i40e_unquiesce_vsi - Resume a given VSI 4879 * @vsi: the VSI being resumed 4880 **/ 4881 static void i40e_unquiesce_vsi(struct i40e_vsi *vsi) 4882 { 4883 if (!test_and_clear_bit(__I40E_VSI_NEEDS_RESTART, vsi->state)) 4884 return; 4885 4886 if (vsi->netdev && netif_running(vsi->netdev)) 4887 vsi->netdev->netdev_ops->ndo_open(vsi->netdev); 4888 else 4889 i40e_vsi_open(vsi); /* this clears the DOWN bit */ 4890 } 4891 4892 /** 4893 * i40e_pf_quiesce_all_vsi - Pause all VSIs on a PF 4894 * @pf: the PF 4895 **/ 4896 static void i40e_pf_quiesce_all_vsi(struct i40e_pf *pf) 4897 { 4898 int v; 4899 4900 for (v = 0; v < pf->num_alloc_vsi; v++) { 4901 if (pf->vsi[v]) 4902 i40e_quiesce_vsi(pf->vsi[v]); 4903 } 4904 } 4905 4906 /** 4907 * i40e_pf_unquiesce_all_vsi - Resume all VSIs on a PF 4908 * @pf: the PF 4909 **/ 4910 static void i40e_pf_unquiesce_all_vsi(struct i40e_pf *pf) 4911 { 4912 int v; 4913 4914 for (v = 0; v < pf->num_alloc_vsi; v++) { 4915 if (pf->vsi[v]) 4916 i40e_unquiesce_vsi(pf->vsi[v]); 4917 } 4918 } 4919 4920 /** 4921 * i40e_vsi_wait_queues_disabled - Wait for VSI's queues to be disabled 4922 * @vsi: the VSI being configured 4923 * 4924 * Wait until all queues on a given VSI have been disabled. 4925 **/ 4926 int i40e_vsi_wait_queues_disabled(struct i40e_vsi *vsi) 4927 { 4928 struct i40e_pf *pf = vsi->back; 4929 int i, pf_q, ret; 4930 4931 pf_q = vsi->base_queue; 4932 for (i = 0; i < vsi->num_queue_pairs; i++, pf_q++) { 4933 /* Check and wait for the Tx queue */ 4934 ret = i40e_pf_txq_wait(pf, pf_q, false); 4935 if (ret) { 4936 dev_info(&pf->pdev->dev, 4937 "VSI seid %d Tx ring %d disable timeout\n", 4938 vsi->seid, pf_q); 4939 return ret; 4940 } 4941 4942 if (!i40e_enabled_xdp_vsi(vsi)) 4943 goto wait_rx; 4944 4945 /* Check and wait for the XDP Tx queue */ 4946 ret = i40e_pf_txq_wait(pf, pf_q + vsi->alloc_queue_pairs, 4947 false); 4948 if (ret) { 4949 dev_info(&pf->pdev->dev, 4950 "VSI seid %d XDP Tx ring %d disable timeout\n", 4951 vsi->seid, pf_q); 4952 return ret; 4953 } 4954 wait_rx: 4955 /* Check and wait for the Rx queue */ 4956 ret = i40e_pf_rxq_wait(pf, pf_q, false); 4957 if (ret) { 4958 dev_info(&pf->pdev->dev, 4959 "VSI seid %d Rx ring %d disable timeout\n", 4960 vsi->seid, pf_q); 4961 return ret; 4962 } 4963 } 4964 4965 return 0; 4966 } 4967 4968 #ifdef CONFIG_I40E_DCB 4969 /** 4970 * i40e_pf_wait_queues_disabled - Wait for all queues of PF VSIs to be disabled 4971 * @pf: the PF 4972 * 4973 * This function waits for the queues to be in disabled state for all the 4974 * VSIs that are managed by this PF. 4975 **/ 4976 static int i40e_pf_wait_queues_disabled(struct i40e_pf *pf) 4977 { 4978 int v, ret = 0; 4979 4980 for (v = 0; v < pf->hw.func_caps.num_vsis; v++) { 4981 if (pf->vsi[v]) { 4982 ret = i40e_vsi_wait_queues_disabled(pf->vsi[v]); 4983 if (ret) 4984 break; 4985 } 4986 } 4987 4988 return ret; 4989 } 4990 4991 #endif 4992 4993 /** 4994 * i40e_get_iscsi_tc_map - Return TC map for iSCSI APP 4995 * @pf: pointer to PF 4996 * 4997 * Get TC map for ISCSI PF type that will include iSCSI TC 4998 * and LAN TC. 4999 **/ 5000 static u8 i40e_get_iscsi_tc_map(struct i40e_pf *pf) 5001 { 5002 struct i40e_dcb_app_priority_table app; 5003 struct i40e_hw *hw = &pf->hw; 5004 u8 enabled_tc = 1; /* TC0 is always enabled */ 5005 u8 tc, i; 5006 /* Get the iSCSI APP TLV */ 5007 struct i40e_dcbx_config *dcbcfg = &hw->local_dcbx_config; 5008 5009 for (i = 0; i < dcbcfg->numapps; i++) { 5010 app = dcbcfg->app[i]; 5011 if (app.selector == I40E_APP_SEL_TCPIP && 5012 app.protocolid == I40E_APP_PROTOID_ISCSI) { 5013 tc = dcbcfg->etscfg.prioritytable[app.priority]; 5014 enabled_tc |= BIT(tc); 5015 break; 5016 } 5017 } 5018 5019 return enabled_tc; 5020 } 5021 5022 /** 5023 * i40e_dcb_get_num_tc - Get the number of TCs from DCBx config 5024 * @dcbcfg: the corresponding DCBx configuration structure 5025 * 5026 * Return the number of TCs from given DCBx configuration 5027 **/ 5028 static u8 i40e_dcb_get_num_tc(struct i40e_dcbx_config *dcbcfg) 5029 { 5030 int i, tc_unused = 0; 5031 u8 num_tc = 0; 5032 u8 ret = 0; 5033 5034 /* Scan the ETS Config Priority Table to find 5035 * traffic class enabled for a given priority 5036 * and create a bitmask of enabled TCs 5037 */ 5038 for (i = 0; i < I40E_MAX_USER_PRIORITY; i++) 5039 num_tc |= BIT(dcbcfg->etscfg.prioritytable[i]); 5040 5041 /* Now scan the bitmask to check for 5042 * contiguous TCs starting with TC0 5043 */ 5044 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 5045 if (num_tc & BIT(i)) { 5046 if (!tc_unused) { 5047 ret++; 5048 } else { 5049 pr_err("Non-contiguous TC - Disabling DCB\n"); 5050 return 1; 5051 } 5052 } else { 5053 tc_unused = 1; 5054 } 5055 } 5056 5057 /* There is always at least TC0 */ 5058 if (!ret) 5059 ret = 1; 5060 5061 return ret; 5062 } 5063 5064 /** 5065 * i40e_dcb_get_enabled_tc - Get enabled traffic classes 5066 * @dcbcfg: the corresponding DCBx configuration structure 5067 * 5068 * Query the current DCB configuration and return the number of 5069 * traffic classes enabled from the given DCBX config 5070 **/ 5071 static u8 i40e_dcb_get_enabled_tc(struct i40e_dcbx_config *dcbcfg) 5072 { 5073 u8 num_tc = i40e_dcb_get_num_tc(dcbcfg); 5074 u8 enabled_tc = 1; 5075 u8 i; 5076 5077 for (i = 0; i < num_tc; i++) 5078 enabled_tc |= BIT(i); 5079 5080 return enabled_tc; 5081 } 5082 5083 /** 5084 * i40e_mqprio_get_enabled_tc - Get enabled traffic classes 5085 * @pf: PF being queried 5086 * 5087 * Query the current MQPRIO configuration and return the number of 5088 * traffic classes enabled. 5089 **/ 5090 static u8 i40e_mqprio_get_enabled_tc(struct i40e_pf *pf) 5091 { 5092 struct i40e_vsi *vsi = pf->vsi[pf->lan_vsi]; 5093 u8 num_tc = vsi->mqprio_qopt.qopt.num_tc; 5094 u8 enabled_tc = 1, i; 5095 5096 for (i = 1; i < num_tc; i++) 5097 enabled_tc |= BIT(i); 5098 return enabled_tc; 5099 } 5100 5101 /** 5102 * i40e_pf_get_num_tc - Get enabled traffic classes for PF 5103 * @pf: PF being queried 5104 * 5105 * Return number of traffic classes enabled for the given PF 5106 **/ 5107 static u8 i40e_pf_get_num_tc(struct i40e_pf *pf) 5108 { 5109 struct i40e_hw *hw = &pf->hw; 5110 u8 i, enabled_tc = 1; 5111 u8 num_tc = 0; 5112 struct i40e_dcbx_config *dcbcfg = &hw->local_dcbx_config; 5113 5114 if (pf->flags & I40E_FLAG_TC_MQPRIO) 5115 return pf->vsi[pf->lan_vsi]->mqprio_qopt.qopt.num_tc; 5116 5117 /* If neither MQPRIO nor DCB is enabled, then always use single TC */ 5118 if (!(pf->flags & I40E_FLAG_DCB_ENABLED)) 5119 return 1; 5120 5121 /* SFP mode will be enabled for all TCs on port */ 5122 if (!(pf->flags & I40E_FLAG_MFP_ENABLED)) 5123 return i40e_dcb_get_num_tc(dcbcfg); 5124 5125 /* MFP mode return count of enabled TCs for this PF */ 5126 if (pf->hw.func_caps.iscsi) 5127 enabled_tc = i40e_get_iscsi_tc_map(pf); 5128 else 5129 return 1; /* Only TC0 */ 5130 5131 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 5132 if (enabled_tc & BIT(i)) 5133 num_tc++; 5134 } 5135 return num_tc; 5136 } 5137 5138 /** 5139 * i40e_pf_get_pf_tc_map - Get bitmap for enabled traffic classes 5140 * @pf: PF being queried 5141 * 5142 * Return a bitmap for enabled traffic classes for this PF. 5143 **/ 5144 static u8 i40e_pf_get_tc_map(struct i40e_pf *pf) 5145 { 5146 if (pf->flags & I40E_FLAG_TC_MQPRIO) 5147 return i40e_mqprio_get_enabled_tc(pf); 5148 5149 /* If neither MQPRIO nor DCB is enabled for this PF then just return 5150 * default TC 5151 */ 5152 if (!(pf->flags & I40E_FLAG_DCB_ENABLED)) 5153 return I40E_DEFAULT_TRAFFIC_CLASS; 5154 5155 /* SFP mode we want PF to be enabled for all TCs */ 5156 if (!(pf->flags & I40E_FLAG_MFP_ENABLED)) 5157 return i40e_dcb_get_enabled_tc(&pf->hw.local_dcbx_config); 5158 5159 /* MFP enabled and iSCSI PF type */ 5160 if (pf->hw.func_caps.iscsi) 5161 return i40e_get_iscsi_tc_map(pf); 5162 else 5163 return I40E_DEFAULT_TRAFFIC_CLASS; 5164 } 5165 5166 /** 5167 * i40e_vsi_get_bw_info - Query VSI BW Information 5168 * @vsi: the VSI being queried 5169 * 5170 * Returns 0 on success, negative value on failure 5171 **/ 5172 static int i40e_vsi_get_bw_info(struct i40e_vsi *vsi) 5173 { 5174 struct i40e_aqc_query_vsi_ets_sla_config_resp bw_ets_config = {0}; 5175 struct i40e_aqc_query_vsi_bw_config_resp bw_config = {0}; 5176 struct i40e_pf *pf = vsi->back; 5177 struct i40e_hw *hw = &pf->hw; 5178 i40e_status ret; 5179 u32 tc_bw_max; 5180 int i; 5181 5182 /* Get the VSI level BW configuration */ 5183 ret = i40e_aq_query_vsi_bw_config(hw, vsi->seid, &bw_config, NULL); 5184 if (ret) { 5185 dev_info(&pf->pdev->dev, 5186 "couldn't get PF vsi bw config, err %s aq_err %s\n", 5187 i40e_stat_str(&pf->hw, ret), 5188 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 5189 return -EINVAL; 5190 } 5191 5192 /* Get the VSI level BW configuration per TC */ 5193 ret = i40e_aq_query_vsi_ets_sla_config(hw, vsi->seid, &bw_ets_config, 5194 NULL); 5195 if (ret) { 5196 dev_info(&pf->pdev->dev, 5197 "couldn't get PF vsi ets bw config, err %s aq_err %s\n", 5198 i40e_stat_str(&pf->hw, ret), 5199 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 5200 return -EINVAL; 5201 } 5202 5203 if (bw_config.tc_valid_bits != bw_ets_config.tc_valid_bits) { 5204 dev_info(&pf->pdev->dev, 5205 "Enabled TCs mismatch from querying VSI BW info 0x%08x 0x%08x\n", 5206 bw_config.tc_valid_bits, 5207 bw_ets_config.tc_valid_bits); 5208 /* Still continuing */ 5209 } 5210 5211 vsi->bw_limit = le16_to_cpu(bw_config.port_bw_limit); 5212 vsi->bw_max_quanta = bw_config.max_bw; 5213 tc_bw_max = le16_to_cpu(bw_ets_config.tc_bw_max[0]) | 5214 (le16_to_cpu(bw_ets_config.tc_bw_max[1]) << 16); 5215 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 5216 vsi->bw_ets_share_credits[i] = bw_ets_config.share_credits[i]; 5217 vsi->bw_ets_limit_credits[i] = 5218 le16_to_cpu(bw_ets_config.credits[i]); 5219 /* 3 bits out of 4 for each TC */ 5220 vsi->bw_ets_max_quanta[i] = (u8)((tc_bw_max >> (i*4)) & 0x7); 5221 } 5222 5223 return 0; 5224 } 5225 5226 /** 5227 * i40e_vsi_configure_bw_alloc - Configure VSI BW allocation per TC 5228 * @vsi: the VSI being configured 5229 * @enabled_tc: TC bitmap 5230 * @bw_share: BW shared credits per TC 5231 * 5232 * Returns 0 on success, negative value on failure 5233 **/ 5234 static int i40e_vsi_configure_bw_alloc(struct i40e_vsi *vsi, u8 enabled_tc, 5235 u8 *bw_share) 5236 { 5237 struct i40e_aqc_configure_vsi_tc_bw_data bw_data; 5238 struct i40e_pf *pf = vsi->back; 5239 i40e_status ret; 5240 int i; 5241 5242 /* There is no need to reset BW when mqprio mode is on. */ 5243 if (pf->flags & I40E_FLAG_TC_MQPRIO) 5244 return 0; 5245 if (!vsi->mqprio_qopt.qopt.hw && !(pf->flags & I40E_FLAG_DCB_ENABLED)) { 5246 ret = i40e_set_bw_limit(vsi, vsi->seid, 0); 5247 if (ret) 5248 dev_info(&pf->pdev->dev, 5249 "Failed to reset tx rate for vsi->seid %u\n", 5250 vsi->seid); 5251 return ret; 5252 } 5253 bw_data.tc_valid_bits = enabled_tc; 5254 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) 5255 bw_data.tc_bw_credits[i] = bw_share[i]; 5256 5257 ret = i40e_aq_config_vsi_tc_bw(&pf->hw, vsi->seid, &bw_data, NULL); 5258 if (ret) { 5259 dev_info(&pf->pdev->dev, 5260 "AQ command Config VSI BW allocation per TC failed = %d\n", 5261 pf->hw.aq.asq_last_status); 5262 return -EINVAL; 5263 } 5264 5265 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) 5266 vsi->info.qs_handle[i] = bw_data.qs_handles[i]; 5267 5268 return 0; 5269 } 5270 5271 /** 5272 * i40e_vsi_config_netdev_tc - Setup the netdev TC configuration 5273 * @vsi: the VSI being configured 5274 * @enabled_tc: TC map to be enabled 5275 * 5276 **/ 5277 static void i40e_vsi_config_netdev_tc(struct i40e_vsi *vsi, u8 enabled_tc) 5278 { 5279 struct net_device *netdev = vsi->netdev; 5280 struct i40e_pf *pf = vsi->back; 5281 struct i40e_hw *hw = &pf->hw; 5282 u8 netdev_tc = 0; 5283 int i; 5284 struct i40e_dcbx_config *dcbcfg = &hw->local_dcbx_config; 5285 5286 if (!netdev) 5287 return; 5288 5289 if (!enabled_tc) { 5290 netdev_reset_tc(netdev); 5291 return; 5292 } 5293 5294 /* Set up actual enabled TCs on the VSI */ 5295 if (netdev_set_num_tc(netdev, vsi->tc_config.numtc)) 5296 return; 5297 5298 /* set per TC queues for the VSI */ 5299 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 5300 /* Only set TC queues for enabled tcs 5301 * 5302 * e.g. For a VSI that has TC0 and TC3 enabled the 5303 * enabled_tc bitmap would be 0x00001001; the driver 5304 * will set the numtc for netdev as 2 that will be 5305 * referenced by the netdev layer as TC 0 and 1. 5306 */ 5307 if (vsi->tc_config.enabled_tc & BIT(i)) 5308 netdev_set_tc_queue(netdev, 5309 vsi->tc_config.tc_info[i].netdev_tc, 5310 vsi->tc_config.tc_info[i].qcount, 5311 vsi->tc_config.tc_info[i].qoffset); 5312 } 5313 5314 if (pf->flags & I40E_FLAG_TC_MQPRIO) 5315 return; 5316 5317 /* Assign UP2TC map for the VSI */ 5318 for (i = 0; i < I40E_MAX_USER_PRIORITY; i++) { 5319 /* Get the actual TC# for the UP */ 5320 u8 ets_tc = dcbcfg->etscfg.prioritytable[i]; 5321 /* Get the mapped netdev TC# for the UP */ 5322 netdev_tc = vsi->tc_config.tc_info[ets_tc].netdev_tc; 5323 netdev_set_prio_tc_map(netdev, i, netdev_tc); 5324 } 5325 } 5326 5327 /** 5328 * i40e_vsi_update_queue_map - Update our copy of VSi info with new queue map 5329 * @vsi: the VSI being configured 5330 * @ctxt: the ctxt buffer returned from AQ VSI update param command 5331 **/ 5332 static void i40e_vsi_update_queue_map(struct i40e_vsi *vsi, 5333 struct i40e_vsi_context *ctxt) 5334 { 5335 /* copy just the sections touched not the entire info 5336 * since not all sections are valid as returned by 5337 * update vsi params 5338 */ 5339 vsi->info.mapping_flags = ctxt->info.mapping_flags; 5340 memcpy(&vsi->info.queue_mapping, 5341 &ctxt->info.queue_mapping, sizeof(vsi->info.queue_mapping)); 5342 memcpy(&vsi->info.tc_mapping, ctxt->info.tc_mapping, 5343 sizeof(vsi->info.tc_mapping)); 5344 } 5345 5346 /** 5347 * i40e_vsi_config_tc - Configure VSI Tx Scheduler for given TC map 5348 * @vsi: VSI to be configured 5349 * @enabled_tc: TC bitmap 5350 * 5351 * This configures a particular VSI for TCs that are mapped to the 5352 * given TC bitmap. It uses default bandwidth share for TCs across 5353 * VSIs to configure TC for a particular VSI. 5354 * 5355 * NOTE: 5356 * It is expected that the VSI queues have been quisced before calling 5357 * this function. 5358 **/ 5359 static int i40e_vsi_config_tc(struct i40e_vsi *vsi, u8 enabled_tc) 5360 { 5361 u8 bw_share[I40E_MAX_TRAFFIC_CLASS] = {0}; 5362 struct i40e_pf *pf = vsi->back; 5363 struct i40e_hw *hw = &pf->hw; 5364 struct i40e_vsi_context ctxt; 5365 int ret = 0; 5366 int i; 5367 5368 /* Check if enabled_tc is same as existing or new TCs */ 5369 if (vsi->tc_config.enabled_tc == enabled_tc && 5370 vsi->mqprio_qopt.mode != TC_MQPRIO_MODE_CHANNEL) 5371 return ret; 5372 5373 /* Enable ETS TCs with equal BW Share for now across all VSIs */ 5374 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 5375 if (enabled_tc & BIT(i)) 5376 bw_share[i] = 1; 5377 } 5378 5379 ret = i40e_vsi_configure_bw_alloc(vsi, enabled_tc, bw_share); 5380 if (ret) { 5381 struct i40e_aqc_query_vsi_bw_config_resp bw_config = {0}; 5382 5383 dev_info(&pf->pdev->dev, 5384 "Failed configuring TC map %d for VSI %d\n", 5385 enabled_tc, vsi->seid); 5386 ret = i40e_aq_query_vsi_bw_config(hw, vsi->seid, 5387 &bw_config, NULL); 5388 if (ret) { 5389 dev_info(&pf->pdev->dev, 5390 "Failed querying vsi bw info, err %s aq_err %s\n", 5391 i40e_stat_str(hw, ret), 5392 i40e_aq_str(hw, hw->aq.asq_last_status)); 5393 goto out; 5394 } 5395 if ((bw_config.tc_valid_bits & enabled_tc) != enabled_tc) { 5396 u8 valid_tc = bw_config.tc_valid_bits & enabled_tc; 5397 5398 if (!valid_tc) 5399 valid_tc = bw_config.tc_valid_bits; 5400 /* Always enable TC0, no matter what */ 5401 valid_tc |= 1; 5402 dev_info(&pf->pdev->dev, 5403 "Requested tc 0x%x, but FW reports 0x%x as valid. Attempting to use 0x%x.\n", 5404 enabled_tc, bw_config.tc_valid_bits, valid_tc); 5405 enabled_tc = valid_tc; 5406 } 5407 5408 ret = i40e_vsi_configure_bw_alloc(vsi, enabled_tc, bw_share); 5409 if (ret) { 5410 dev_err(&pf->pdev->dev, 5411 "Unable to configure TC map %d for VSI %d\n", 5412 enabled_tc, vsi->seid); 5413 goto out; 5414 } 5415 } 5416 5417 /* Update Queue Pairs Mapping for currently enabled UPs */ 5418 ctxt.seid = vsi->seid; 5419 ctxt.pf_num = vsi->back->hw.pf_id; 5420 ctxt.vf_num = 0; 5421 ctxt.uplink_seid = vsi->uplink_seid; 5422 ctxt.info = vsi->info; 5423 if (vsi->back->flags & I40E_FLAG_TC_MQPRIO) { 5424 ret = i40e_vsi_setup_queue_map_mqprio(vsi, &ctxt, enabled_tc); 5425 if (ret) 5426 goto out; 5427 } else { 5428 i40e_vsi_setup_queue_map(vsi, &ctxt, enabled_tc, false); 5429 } 5430 5431 /* On destroying the qdisc, reset vsi->rss_size, as number of enabled 5432 * queues changed. 5433 */ 5434 if (!vsi->mqprio_qopt.qopt.hw && vsi->reconfig_rss) { 5435 vsi->rss_size = min_t(int, vsi->back->alloc_rss_size, 5436 vsi->num_queue_pairs); 5437 ret = i40e_vsi_config_rss(vsi); 5438 if (ret) { 5439 dev_info(&vsi->back->pdev->dev, 5440 "Failed to reconfig rss for num_queues\n"); 5441 return ret; 5442 } 5443 vsi->reconfig_rss = false; 5444 } 5445 if (vsi->back->flags & I40E_FLAG_IWARP_ENABLED) { 5446 ctxt.info.valid_sections |= 5447 cpu_to_le16(I40E_AQ_VSI_PROP_QUEUE_OPT_VALID); 5448 ctxt.info.queueing_opt_flags |= I40E_AQ_VSI_QUE_OPT_TCP_ENA; 5449 } 5450 5451 /* Update the VSI after updating the VSI queue-mapping 5452 * information 5453 */ 5454 ret = i40e_aq_update_vsi_params(hw, &ctxt, NULL); 5455 if (ret) { 5456 dev_info(&pf->pdev->dev, 5457 "Update vsi tc config failed, err %s aq_err %s\n", 5458 i40e_stat_str(hw, ret), 5459 i40e_aq_str(hw, hw->aq.asq_last_status)); 5460 goto out; 5461 } 5462 /* update the local VSI info with updated queue map */ 5463 i40e_vsi_update_queue_map(vsi, &ctxt); 5464 vsi->info.valid_sections = 0; 5465 5466 /* Update current VSI BW information */ 5467 ret = i40e_vsi_get_bw_info(vsi); 5468 if (ret) { 5469 dev_info(&pf->pdev->dev, 5470 "Failed updating vsi bw info, err %s aq_err %s\n", 5471 i40e_stat_str(hw, ret), 5472 i40e_aq_str(hw, hw->aq.asq_last_status)); 5473 goto out; 5474 } 5475 5476 /* Update the netdev TC setup */ 5477 i40e_vsi_config_netdev_tc(vsi, enabled_tc); 5478 out: 5479 return ret; 5480 } 5481 5482 /** 5483 * i40e_get_link_speed - Returns link speed for the interface 5484 * @vsi: VSI to be configured 5485 * 5486 **/ 5487 static int i40e_get_link_speed(struct i40e_vsi *vsi) 5488 { 5489 struct i40e_pf *pf = vsi->back; 5490 5491 switch (pf->hw.phy.link_info.link_speed) { 5492 case I40E_LINK_SPEED_40GB: 5493 return 40000; 5494 case I40E_LINK_SPEED_25GB: 5495 return 25000; 5496 case I40E_LINK_SPEED_20GB: 5497 return 20000; 5498 case I40E_LINK_SPEED_10GB: 5499 return 10000; 5500 case I40E_LINK_SPEED_1GB: 5501 return 1000; 5502 default: 5503 return -EINVAL; 5504 } 5505 } 5506 5507 /** 5508 * i40e_set_bw_limit - setup BW limit for Tx traffic based on max_tx_rate 5509 * @vsi: VSI to be configured 5510 * @seid: seid of the channel/VSI 5511 * @max_tx_rate: max TX rate to be configured as BW limit 5512 * 5513 * Helper function to set BW limit for a given VSI 5514 **/ 5515 int i40e_set_bw_limit(struct i40e_vsi *vsi, u16 seid, u64 max_tx_rate) 5516 { 5517 struct i40e_pf *pf = vsi->back; 5518 u64 credits = 0; 5519 int speed = 0; 5520 int ret = 0; 5521 5522 speed = i40e_get_link_speed(vsi); 5523 if (max_tx_rate > speed) { 5524 dev_err(&pf->pdev->dev, 5525 "Invalid max tx rate %llu specified for VSI seid %d.", 5526 max_tx_rate, seid); 5527 return -EINVAL; 5528 } 5529 if (max_tx_rate && max_tx_rate < 50) { 5530 dev_warn(&pf->pdev->dev, 5531 "Setting max tx rate to minimum usable value of 50Mbps.\n"); 5532 max_tx_rate = 50; 5533 } 5534 5535 /* Tx rate credits are in values of 50Mbps, 0 is disabled */ 5536 credits = max_tx_rate; 5537 do_div(credits, I40E_BW_CREDIT_DIVISOR); 5538 ret = i40e_aq_config_vsi_bw_limit(&pf->hw, seid, credits, 5539 I40E_MAX_BW_INACTIVE_ACCUM, NULL); 5540 if (ret) 5541 dev_err(&pf->pdev->dev, 5542 "Failed set tx rate (%llu Mbps) for vsi->seid %u, err %s aq_err %s\n", 5543 max_tx_rate, seid, i40e_stat_str(&pf->hw, ret), 5544 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 5545 return ret; 5546 } 5547 5548 /** 5549 * i40e_remove_queue_channels - Remove queue channels for the TCs 5550 * @vsi: VSI to be configured 5551 * 5552 * Remove queue channels for the TCs 5553 **/ 5554 static void i40e_remove_queue_channels(struct i40e_vsi *vsi) 5555 { 5556 enum i40e_admin_queue_err last_aq_status; 5557 struct i40e_cloud_filter *cfilter; 5558 struct i40e_channel *ch, *ch_tmp; 5559 struct i40e_pf *pf = vsi->back; 5560 struct hlist_node *node; 5561 int ret, i; 5562 5563 /* Reset rss size that was stored when reconfiguring rss for 5564 * channel VSIs with non-power-of-2 queue count. 5565 */ 5566 vsi->current_rss_size = 0; 5567 5568 /* perform cleanup for channels if they exist */ 5569 if (list_empty(&vsi->ch_list)) 5570 return; 5571 5572 list_for_each_entry_safe(ch, ch_tmp, &vsi->ch_list, list) { 5573 struct i40e_vsi *p_vsi; 5574 5575 list_del(&ch->list); 5576 p_vsi = ch->parent_vsi; 5577 if (!p_vsi || !ch->initialized) { 5578 kfree(ch); 5579 continue; 5580 } 5581 /* Reset queue contexts */ 5582 for (i = 0; i < ch->num_queue_pairs; i++) { 5583 struct i40e_ring *tx_ring, *rx_ring; 5584 u16 pf_q; 5585 5586 pf_q = ch->base_queue + i; 5587 tx_ring = vsi->tx_rings[pf_q]; 5588 tx_ring->ch = NULL; 5589 5590 rx_ring = vsi->rx_rings[pf_q]; 5591 rx_ring->ch = NULL; 5592 } 5593 5594 /* Reset BW configured for this VSI via mqprio */ 5595 ret = i40e_set_bw_limit(vsi, ch->seid, 0); 5596 if (ret) 5597 dev_info(&vsi->back->pdev->dev, 5598 "Failed to reset tx rate for ch->seid %u\n", 5599 ch->seid); 5600 5601 /* delete cloud filters associated with this channel */ 5602 hlist_for_each_entry_safe(cfilter, node, 5603 &pf->cloud_filter_list, cloud_node) { 5604 if (cfilter->seid != ch->seid) 5605 continue; 5606 5607 hash_del(&cfilter->cloud_node); 5608 if (cfilter->dst_port) 5609 ret = i40e_add_del_cloud_filter_big_buf(vsi, 5610 cfilter, 5611 false); 5612 else 5613 ret = i40e_add_del_cloud_filter(vsi, cfilter, 5614 false); 5615 last_aq_status = pf->hw.aq.asq_last_status; 5616 if (ret) 5617 dev_info(&pf->pdev->dev, 5618 "Failed to delete cloud filter, err %s aq_err %s\n", 5619 i40e_stat_str(&pf->hw, ret), 5620 i40e_aq_str(&pf->hw, last_aq_status)); 5621 kfree(cfilter); 5622 } 5623 5624 /* delete VSI from FW */ 5625 ret = i40e_aq_delete_element(&vsi->back->hw, ch->seid, 5626 NULL); 5627 if (ret) 5628 dev_err(&vsi->back->pdev->dev, 5629 "unable to remove channel (%d) for parent VSI(%d)\n", 5630 ch->seid, p_vsi->seid); 5631 kfree(ch); 5632 } 5633 INIT_LIST_HEAD(&vsi->ch_list); 5634 } 5635 5636 /** 5637 * i40e_is_any_channel - channel exist or not 5638 * @vsi: ptr to VSI to which channels are associated with 5639 * 5640 * Returns true or false if channel(s) exist for associated VSI or not 5641 **/ 5642 static bool i40e_is_any_channel(struct i40e_vsi *vsi) 5643 { 5644 struct i40e_channel *ch, *ch_tmp; 5645 5646 list_for_each_entry_safe(ch, ch_tmp, &vsi->ch_list, list) { 5647 if (ch->initialized) 5648 return true; 5649 } 5650 5651 return false; 5652 } 5653 5654 /** 5655 * i40e_get_max_queues_for_channel 5656 * @vsi: ptr to VSI to which channels are associated with 5657 * 5658 * Helper function which returns max value among the queue counts set on the 5659 * channels/TCs created. 5660 **/ 5661 static int i40e_get_max_queues_for_channel(struct i40e_vsi *vsi) 5662 { 5663 struct i40e_channel *ch, *ch_tmp; 5664 int max = 0; 5665 5666 list_for_each_entry_safe(ch, ch_tmp, &vsi->ch_list, list) { 5667 if (!ch->initialized) 5668 continue; 5669 if (ch->num_queue_pairs > max) 5670 max = ch->num_queue_pairs; 5671 } 5672 5673 return max; 5674 } 5675 5676 /** 5677 * i40e_validate_num_queues - validate num_queues w.r.t channel 5678 * @pf: ptr to PF device 5679 * @num_queues: number of queues 5680 * @vsi: the parent VSI 5681 * @reconfig_rss: indicates should the RSS be reconfigured or not 5682 * 5683 * This function validates number of queues in the context of new channel 5684 * which is being established and determines if RSS should be reconfigured 5685 * or not for parent VSI. 5686 **/ 5687 static int i40e_validate_num_queues(struct i40e_pf *pf, int num_queues, 5688 struct i40e_vsi *vsi, bool *reconfig_rss) 5689 { 5690 int max_ch_queues; 5691 5692 if (!reconfig_rss) 5693 return -EINVAL; 5694 5695 *reconfig_rss = false; 5696 if (vsi->current_rss_size) { 5697 if (num_queues > vsi->current_rss_size) { 5698 dev_dbg(&pf->pdev->dev, 5699 "Error: num_queues (%d) > vsi's current_size(%d)\n", 5700 num_queues, vsi->current_rss_size); 5701 return -EINVAL; 5702 } else if ((num_queues < vsi->current_rss_size) && 5703 (!is_power_of_2(num_queues))) { 5704 dev_dbg(&pf->pdev->dev, 5705 "Error: num_queues (%d) < vsi's current_size(%d), but not power of 2\n", 5706 num_queues, vsi->current_rss_size); 5707 return -EINVAL; 5708 } 5709 } 5710 5711 if (!is_power_of_2(num_queues)) { 5712 /* Find the max num_queues configured for channel if channel 5713 * exist. 5714 * if channel exist, then enforce 'num_queues' to be more than 5715 * max ever queues configured for channel. 5716 */ 5717 max_ch_queues = i40e_get_max_queues_for_channel(vsi); 5718 if (num_queues < max_ch_queues) { 5719 dev_dbg(&pf->pdev->dev, 5720 "Error: num_queues (%d) < max queues configured for channel(%d)\n", 5721 num_queues, max_ch_queues); 5722 return -EINVAL; 5723 } 5724 *reconfig_rss = true; 5725 } 5726 5727 return 0; 5728 } 5729 5730 /** 5731 * i40e_vsi_reconfig_rss - reconfig RSS based on specified rss_size 5732 * @vsi: the VSI being setup 5733 * @rss_size: size of RSS, accordingly LUT gets reprogrammed 5734 * 5735 * This function reconfigures RSS by reprogramming LUTs using 'rss_size' 5736 **/ 5737 static int i40e_vsi_reconfig_rss(struct i40e_vsi *vsi, u16 rss_size) 5738 { 5739 struct i40e_pf *pf = vsi->back; 5740 u8 seed[I40E_HKEY_ARRAY_SIZE]; 5741 struct i40e_hw *hw = &pf->hw; 5742 int local_rss_size; 5743 u8 *lut; 5744 int ret; 5745 5746 if (!vsi->rss_size) 5747 return -EINVAL; 5748 5749 if (rss_size > vsi->rss_size) 5750 return -EINVAL; 5751 5752 local_rss_size = min_t(int, vsi->rss_size, rss_size); 5753 lut = kzalloc(vsi->rss_table_size, GFP_KERNEL); 5754 if (!lut) 5755 return -ENOMEM; 5756 5757 /* Ignoring user configured lut if there is one */ 5758 i40e_fill_rss_lut(pf, lut, vsi->rss_table_size, local_rss_size); 5759 5760 /* Use user configured hash key if there is one, otherwise 5761 * use default. 5762 */ 5763 if (vsi->rss_hkey_user) 5764 memcpy(seed, vsi->rss_hkey_user, I40E_HKEY_ARRAY_SIZE); 5765 else 5766 netdev_rss_key_fill((void *)seed, I40E_HKEY_ARRAY_SIZE); 5767 5768 ret = i40e_config_rss(vsi, seed, lut, vsi->rss_table_size); 5769 if (ret) { 5770 dev_info(&pf->pdev->dev, 5771 "Cannot set RSS lut, err %s aq_err %s\n", 5772 i40e_stat_str(hw, ret), 5773 i40e_aq_str(hw, hw->aq.asq_last_status)); 5774 kfree(lut); 5775 return ret; 5776 } 5777 kfree(lut); 5778 5779 /* Do the update w.r.t. storing rss_size */ 5780 if (!vsi->orig_rss_size) 5781 vsi->orig_rss_size = vsi->rss_size; 5782 vsi->current_rss_size = local_rss_size; 5783 5784 return ret; 5785 } 5786 5787 /** 5788 * i40e_channel_setup_queue_map - Setup a channel queue map 5789 * @pf: ptr to PF device 5790 * @vsi: the VSI being setup 5791 * @ctxt: VSI context structure 5792 * @ch: ptr to channel structure 5793 * 5794 * Setup queue map for a specific channel 5795 **/ 5796 static void i40e_channel_setup_queue_map(struct i40e_pf *pf, 5797 struct i40e_vsi_context *ctxt, 5798 struct i40e_channel *ch) 5799 { 5800 u16 qcount, qmap, sections = 0; 5801 u8 offset = 0; 5802 int pow; 5803 5804 sections = I40E_AQ_VSI_PROP_QUEUE_MAP_VALID; 5805 sections |= I40E_AQ_VSI_PROP_SCHED_VALID; 5806 5807 qcount = min_t(int, ch->num_queue_pairs, pf->num_lan_msix); 5808 ch->num_queue_pairs = qcount; 5809 5810 /* find the next higher power-of-2 of num queue pairs */ 5811 pow = ilog2(qcount); 5812 if (!is_power_of_2(qcount)) 5813 pow++; 5814 5815 qmap = (offset << I40E_AQ_VSI_TC_QUE_OFFSET_SHIFT) | 5816 (pow << I40E_AQ_VSI_TC_QUE_NUMBER_SHIFT); 5817 5818 /* Setup queue TC[0].qmap for given VSI context */ 5819 ctxt->info.tc_mapping[0] = cpu_to_le16(qmap); 5820 5821 ctxt->info.up_enable_bits = 0x1; /* TC0 enabled */ 5822 ctxt->info.mapping_flags |= cpu_to_le16(I40E_AQ_VSI_QUE_MAP_CONTIG); 5823 ctxt->info.queue_mapping[0] = cpu_to_le16(ch->base_queue); 5824 ctxt->info.valid_sections |= cpu_to_le16(sections); 5825 } 5826 5827 /** 5828 * i40e_add_channel - add a channel by adding VSI 5829 * @pf: ptr to PF device 5830 * @uplink_seid: underlying HW switching element (VEB) ID 5831 * @ch: ptr to channel structure 5832 * 5833 * Add a channel (VSI) using add_vsi and queue_map 5834 **/ 5835 static int i40e_add_channel(struct i40e_pf *pf, u16 uplink_seid, 5836 struct i40e_channel *ch) 5837 { 5838 struct i40e_hw *hw = &pf->hw; 5839 struct i40e_vsi_context ctxt; 5840 u8 enabled_tc = 0x1; /* TC0 enabled */ 5841 int ret; 5842 5843 if (ch->type != I40E_VSI_VMDQ2) { 5844 dev_info(&pf->pdev->dev, 5845 "add new vsi failed, ch->type %d\n", ch->type); 5846 return -EINVAL; 5847 } 5848 5849 memset(&ctxt, 0, sizeof(ctxt)); 5850 ctxt.pf_num = hw->pf_id; 5851 ctxt.vf_num = 0; 5852 ctxt.uplink_seid = uplink_seid; 5853 ctxt.connection_type = I40E_AQ_VSI_CONN_TYPE_NORMAL; 5854 if (ch->type == I40E_VSI_VMDQ2) 5855 ctxt.flags = I40E_AQ_VSI_TYPE_VMDQ2; 5856 5857 if (pf->flags & I40E_FLAG_VEB_MODE_ENABLED) { 5858 ctxt.info.valid_sections |= 5859 cpu_to_le16(I40E_AQ_VSI_PROP_SWITCH_VALID); 5860 ctxt.info.switch_id = 5861 cpu_to_le16(I40E_AQ_VSI_SW_ID_FLAG_ALLOW_LB); 5862 } 5863 5864 /* Set queue map for a given VSI context */ 5865 i40e_channel_setup_queue_map(pf, &ctxt, ch); 5866 5867 /* Now time to create VSI */ 5868 ret = i40e_aq_add_vsi(hw, &ctxt, NULL); 5869 if (ret) { 5870 dev_info(&pf->pdev->dev, 5871 "add new vsi failed, err %s aq_err %s\n", 5872 i40e_stat_str(&pf->hw, ret), 5873 i40e_aq_str(&pf->hw, 5874 pf->hw.aq.asq_last_status)); 5875 return -ENOENT; 5876 } 5877 5878 /* Success, update channel, set enabled_tc only if the channel 5879 * is not a macvlan 5880 */ 5881 ch->enabled_tc = !i40e_is_channel_macvlan(ch) && enabled_tc; 5882 ch->seid = ctxt.seid; 5883 ch->vsi_number = ctxt.vsi_number; 5884 ch->stat_counter_idx = cpu_to_le16(ctxt.info.stat_counter_idx); 5885 5886 /* copy just the sections touched not the entire info 5887 * since not all sections are valid as returned by 5888 * update vsi params 5889 */ 5890 ch->info.mapping_flags = ctxt.info.mapping_flags; 5891 memcpy(&ch->info.queue_mapping, 5892 &ctxt.info.queue_mapping, sizeof(ctxt.info.queue_mapping)); 5893 memcpy(&ch->info.tc_mapping, ctxt.info.tc_mapping, 5894 sizeof(ctxt.info.tc_mapping)); 5895 5896 return 0; 5897 } 5898 5899 static int i40e_channel_config_bw(struct i40e_vsi *vsi, struct i40e_channel *ch, 5900 u8 *bw_share) 5901 { 5902 struct i40e_aqc_configure_vsi_tc_bw_data bw_data; 5903 i40e_status ret; 5904 int i; 5905 5906 bw_data.tc_valid_bits = ch->enabled_tc; 5907 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) 5908 bw_data.tc_bw_credits[i] = bw_share[i]; 5909 5910 ret = i40e_aq_config_vsi_tc_bw(&vsi->back->hw, ch->seid, 5911 &bw_data, NULL); 5912 if (ret) { 5913 dev_info(&vsi->back->pdev->dev, 5914 "Config VSI BW allocation per TC failed, aq_err: %d for new_vsi->seid %u\n", 5915 vsi->back->hw.aq.asq_last_status, ch->seid); 5916 return -EINVAL; 5917 } 5918 5919 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) 5920 ch->info.qs_handle[i] = bw_data.qs_handles[i]; 5921 5922 return 0; 5923 } 5924 5925 /** 5926 * i40e_channel_config_tx_ring - config TX ring associated with new channel 5927 * @pf: ptr to PF device 5928 * @vsi: the VSI being setup 5929 * @ch: ptr to channel structure 5930 * 5931 * Configure TX rings associated with channel (VSI) since queues are being 5932 * from parent VSI. 5933 **/ 5934 static int i40e_channel_config_tx_ring(struct i40e_pf *pf, 5935 struct i40e_vsi *vsi, 5936 struct i40e_channel *ch) 5937 { 5938 i40e_status ret; 5939 int i; 5940 u8 bw_share[I40E_MAX_TRAFFIC_CLASS] = {0}; 5941 5942 /* Enable ETS TCs with equal BW Share for now across all VSIs */ 5943 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 5944 if (ch->enabled_tc & BIT(i)) 5945 bw_share[i] = 1; 5946 } 5947 5948 /* configure BW for new VSI */ 5949 ret = i40e_channel_config_bw(vsi, ch, bw_share); 5950 if (ret) { 5951 dev_info(&vsi->back->pdev->dev, 5952 "Failed configuring TC map %d for channel (seid %u)\n", 5953 ch->enabled_tc, ch->seid); 5954 return ret; 5955 } 5956 5957 for (i = 0; i < ch->num_queue_pairs; i++) { 5958 struct i40e_ring *tx_ring, *rx_ring; 5959 u16 pf_q; 5960 5961 pf_q = ch->base_queue + i; 5962 5963 /* Get to TX ring ptr of main VSI, for re-setup TX queue 5964 * context 5965 */ 5966 tx_ring = vsi->tx_rings[pf_q]; 5967 tx_ring->ch = ch; 5968 5969 /* Get the RX ring ptr */ 5970 rx_ring = vsi->rx_rings[pf_q]; 5971 rx_ring->ch = ch; 5972 } 5973 5974 return 0; 5975 } 5976 5977 /** 5978 * i40e_setup_hw_channel - setup new channel 5979 * @pf: ptr to PF device 5980 * @vsi: the VSI being setup 5981 * @ch: ptr to channel structure 5982 * @uplink_seid: underlying HW switching element (VEB) ID 5983 * @type: type of channel to be created (VMDq2/VF) 5984 * 5985 * Setup new channel (VSI) based on specified type (VMDq2/VF) 5986 * and configures TX rings accordingly 5987 **/ 5988 static inline int i40e_setup_hw_channel(struct i40e_pf *pf, 5989 struct i40e_vsi *vsi, 5990 struct i40e_channel *ch, 5991 u16 uplink_seid, u8 type) 5992 { 5993 int ret; 5994 5995 ch->initialized = false; 5996 ch->base_queue = vsi->next_base_queue; 5997 ch->type = type; 5998 5999 /* Proceed with creation of channel (VMDq2) VSI */ 6000 ret = i40e_add_channel(pf, uplink_seid, ch); 6001 if (ret) { 6002 dev_info(&pf->pdev->dev, 6003 "failed to add_channel using uplink_seid %u\n", 6004 uplink_seid); 6005 return ret; 6006 } 6007 6008 /* Mark the successful creation of channel */ 6009 ch->initialized = true; 6010 6011 /* Reconfigure TX queues using QTX_CTL register */ 6012 ret = i40e_channel_config_tx_ring(pf, vsi, ch); 6013 if (ret) { 6014 dev_info(&pf->pdev->dev, 6015 "failed to configure TX rings for channel %u\n", 6016 ch->seid); 6017 return ret; 6018 } 6019 6020 /* update 'next_base_queue' */ 6021 vsi->next_base_queue = vsi->next_base_queue + ch->num_queue_pairs; 6022 dev_dbg(&pf->pdev->dev, 6023 "Added channel: vsi_seid %u, vsi_number %u, stat_counter_idx %u, num_queue_pairs %u, pf->next_base_queue %d\n", 6024 ch->seid, ch->vsi_number, ch->stat_counter_idx, 6025 ch->num_queue_pairs, 6026 vsi->next_base_queue); 6027 return ret; 6028 } 6029 6030 /** 6031 * i40e_setup_channel - setup new channel using uplink element 6032 * @pf: ptr to PF device 6033 * @type: type of channel to be created (VMDq2/VF) 6034 * @uplink_seid: underlying HW switching element (VEB) ID 6035 * @ch: ptr to channel structure 6036 * 6037 * Setup new channel (VSI) based on specified type (VMDq2/VF) 6038 * and uplink switching element (uplink_seid) 6039 **/ 6040 static bool i40e_setup_channel(struct i40e_pf *pf, struct i40e_vsi *vsi, 6041 struct i40e_channel *ch) 6042 { 6043 u8 vsi_type; 6044 u16 seid; 6045 int ret; 6046 6047 if (vsi->type == I40E_VSI_MAIN) { 6048 vsi_type = I40E_VSI_VMDQ2; 6049 } else { 6050 dev_err(&pf->pdev->dev, "unsupported parent vsi type(%d)\n", 6051 vsi->type); 6052 return false; 6053 } 6054 6055 /* underlying switching element */ 6056 seid = pf->vsi[pf->lan_vsi]->uplink_seid; 6057 6058 /* create channel (VSI), configure TX rings */ 6059 ret = i40e_setup_hw_channel(pf, vsi, ch, seid, vsi_type); 6060 if (ret) { 6061 dev_err(&pf->pdev->dev, "failed to setup hw_channel\n"); 6062 return false; 6063 } 6064 6065 return ch->initialized ? true : false; 6066 } 6067 6068 /** 6069 * i40e_validate_and_set_switch_mode - sets up switch mode correctly 6070 * @vsi: ptr to VSI which has PF backing 6071 * 6072 * Sets up switch mode correctly if it needs to be changed and perform 6073 * what are allowed modes. 6074 **/ 6075 static int i40e_validate_and_set_switch_mode(struct i40e_vsi *vsi) 6076 { 6077 u8 mode; 6078 struct i40e_pf *pf = vsi->back; 6079 struct i40e_hw *hw = &pf->hw; 6080 int ret; 6081 6082 ret = i40e_get_capabilities(pf, i40e_aqc_opc_list_dev_capabilities); 6083 if (ret) 6084 return -EINVAL; 6085 6086 if (hw->dev_caps.switch_mode) { 6087 /* if switch mode is set, support mode2 (non-tunneled for 6088 * cloud filter) for now 6089 */ 6090 u32 switch_mode = hw->dev_caps.switch_mode & 6091 I40E_SWITCH_MODE_MASK; 6092 if (switch_mode >= I40E_CLOUD_FILTER_MODE1) { 6093 if (switch_mode == I40E_CLOUD_FILTER_MODE2) 6094 return 0; 6095 dev_err(&pf->pdev->dev, 6096 "Invalid switch_mode (%d), only non-tunneled mode for cloud filter is supported\n", 6097 hw->dev_caps.switch_mode); 6098 return -EINVAL; 6099 } 6100 } 6101 6102 /* Set Bit 7 to be valid */ 6103 mode = I40E_AQ_SET_SWITCH_BIT7_VALID; 6104 6105 /* Set L4type for TCP support */ 6106 mode |= I40E_AQ_SET_SWITCH_L4_TYPE_TCP; 6107 6108 /* Set cloud filter mode */ 6109 mode |= I40E_AQ_SET_SWITCH_MODE_NON_TUNNEL; 6110 6111 /* Prep mode field for set_switch_config */ 6112 ret = i40e_aq_set_switch_config(hw, pf->last_sw_conf_flags, 6113 pf->last_sw_conf_valid_flags, 6114 mode, NULL); 6115 if (ret && hw->aq.asq_last_status != I40E_AQ_RC_ESRCH) 6116 dev_err(&pf->pdev->dev, 6117 "couldn't set switch config bits, err %s aq_err %s\n", 6118 i40e_stat_str(hw, ret), 6119 i40e_aq_str(hw, 6120 hw->aq.asq_last_status)); 6121 6122 return ret; 6123 } 6124 6125 /** 6126 * i40e_create_queue_channel - function to create channel 6127 * @vsi: VSI to be configured 6128 * @ch: ptr to channel (it contains channel specific params) 6129 * 6130 * This function creates channel (VSI) using num_queues specified by user, 6131 * reconfigs RSS if needed. 6132 **/ 6133 int i40e_create_queue_channel(struct i40e_vsi *vsi, 6134 struct i40e_channel *ch) 6135 { 6136 struct i40e_pf *pf = vsi->back; 6137 bool reconfig_rss; 6138 int err; 6139 6140 if (!ch) 6141 return -EINVAL; 6142 6143 if (!ch->num_queue_pairs) { 6144 dev_err(&pf->pdev->dev, "Invalid num_queues requested: %d\n", 6145 ch->num_queue_pairs); 6146 return -EINVAL; 6147 } 6148 6149 /* validate user requested num_queues for channel */ 6150 err = i40e_validate_num_queues(pf, ch->num_queue_pairs, vsi, 6151 &reconfig_rss); 6152 if (err) { 6153 dev_info(&pf->pdev->dev, "Failed to validate num_queues (%d)\n", 6154 ch->num_queue_pairs); 6155 return -EINVAL; 6156 } 6157 6158 /* By default we are in VEPA mode, if this is the first VF/VMDq 6159 * VSI to be added switch to VEB mode. 6160 */ 6161 if ((!(pf->flags & I40E_FLAG_VEB_MODE_ENABLED)) || 6162 (!i40e_is_any_channel(vsi))) { 6163 if (!is_power_of_2(vsi->tc_config.tc_info[0].qcount)) { 6164 dev_dbg(&pf->pdev->dev, 6165 "Failed to create channel. Override queues (%u) not power of 2\n", 6166 vsi->tc_config.tc_info[0].qcount); 6167 return -EINVAL; 6168 } 6169 6170 if (!(pf->flags & I40E_FLAG_VEB_MODE_ENABLED)) { 6171 pf->flags |= I40E_FLAG_VEB_MODE_ENABLED; 6172 6173 if (vsi->type == I40E_VSI_MAIN) { 6174 if (pf->flags & I40E_FLAG_TC_MQPRIO) 6175 i40e_do_reset(pf, I40E_PF_RESET_FLAG, 6176 true); 6177 else 6178 i40e_do_reset_safe(pf, 6179 I40E_PF_RESET_FLAG); 6180 } 6181 } 6182 /* now onwards for main VSI, number of queues will be value 6183 * of TC0's queue count 6184 */ 6185 } 6186 6187 /* By this time, vsi->cnt_q_avail shall be set to non-zero and 6188 * it should be more than num_queues 6189 */ 6190 if (!vsi->cnt_q_avail || vsi->cnt_q_avail < ch->num_queue_pairs) { 6191 dev_dbg(&pf->pdev->dev, 6192 "Error: cnt_q_avail (%u) less than num_queues %d\n", 6193 vsi->cnt_q_avail, ch->num_queue_pairs); 6194 return -EINVAL; 6195 } 6196 6197 /* reconfig_rss only if vsi type is MAIN_VSI */ 6198 if (reconfig_rss && (vsi->type == I40E_VSI_MAIN)) { 6199 err = i40e_vsi_reconfig_rss(vsi, ch->num_queue_pairs); 6200 if (err) { 6201 dev_info(&pf->pdev->dev, 6202 "Error: unable to reconfig rss for num_queues (%u)\n", 6203 ch->num_queue_pairs); 6204 return -EINVAL; 6205 } 6206 } 6207 6208 if (!i40e_setup_channel(pf, vsi, ch)) { 6209 dev_info(&pf->pdev->dev, "Failed to setup channel\n"); 6210 return -EINVAL; 6211 } 6212 6213 dev_info(&pf->pdev->dev, 6214 "Setup channel (id:%u) utilizing num_queues %d\n", 6215 ch->seid, ch->num_queue_pairs); 6216 6217 /* configure VSI for BW limit */ 6218 if (ch->max_tx_rate) { 6219 u64 credits = ch->max_tx_rate; 6220 6221 if (i40e_set_bw_limit(vsi, ch->seid, ch->max_tx_rate)) 6222 return -EINVAL; 6223 6224 do_div(credits, I40E_BW_CREDIT_DIVISOR); 6225 dev_dbg(&pf->pdev->dev, 6226 "Set tx rate of %llu Mbps (count of 50Mbps %llu) for vsi->seid %u\n", 6227 ch->max_tx_rate, 6228 credits, 6229 ch->seid); 6230 } 6231 6232 /* in case of VF, this will be main SRIOV VSI */ 6233 ch->parent_vsi = vsi; 6234 6235 /* and update main_vsi's count for queue_available to use */ 6236 vsi->cnt_q_avail -= ch->num_queue_pairs; 6237 6238 return 0; 6239 } 6240 6241 /** 6242 * i40e_configure_queue_channels - Add queue channel for the given TCs 6243 * @vsi: VSI to be configured 6244 * 6245 * Configures queue channel mapping to the given TCs 6246 **/ 6247 static int i40e_configure_queue_channels(struct i40e_vsi *vsi) 6248 { 6249 struct i40e_channel *ch; 6250 u64 max_rate = 0; 6251 int ret = 0, i; 6252 6253 /* Create app vsi with the TCs. Main VSI with TC0 is already set up */ 6254 vsi->tc_seid_map[0] = vsi->seid; 6255 for (i = 1; i < I40E_MAX_TRAFFIC_CLASS; i++) { 6256 if (vsi->tc_config.enabled_tc & BIT(i)) { 6257 ch = kzalloc(sizeof(*ch), GFP_KERNEL); 6258 if (!ch) { 6259 ret = -ENOMEM; 6260 goto err_free; 6261 } 6262 6263 INIT_LIST_HEAD(&ch->list); 6264 ch->num_queue_pairs = 6265 vsi->tc_config.tc_info[i].qcount; 6266 ch->base_queue = 6267 vsi->tc_config.tc_info[i].qoffset; 6268 6269 /* Bandwidth limit through tc interface is in bytes/s, 6270 * change to Mbit/s 6271 */ 6272 max_rate = vsi->mqprio_qopt.max_rate[i]; 6273 do_div(max_rate, I40E_BW_MBPS_DIVISOR); 6274 ch->max_tx_rate = max_rate; 6275 6276 list_add_tail(&ch->list, &vsi->ch_list); 6277 6278 ret = i40e_create_queue_channel(vsi, ch); 6279 if (ret) { 6280 dev_err(&vsi->back->pdev->dev, 6281 "Failed creating queue channel with TC%d: queues %d\n", 6282 i, ch->num_queue_pairs); 6283 goto err_free; 6284 } 6285 vsi->tc_seid_map[i] = ch->seid; 6286 } 6287 } 6288 return ret; 6289 6290 err_free: 6291 i40e_remove_queue_channels(vsi); 6292 return ret; 6293 } 6294 6295 /** 6296 * i40e_veb_config_tc - Configure TCs for given VEB 6297 * @veb: given VEB 6298 * @enabled_tc: TC bitmap 6299 * 6300 * Configures given TC bitmap for VEB (switching) element 6301 **/ 6302 int i40e_veb_config_tc(struct i40e_veb *veb, u8 enabled_tc) 6303 { 6304 struct i40e_aqc_configure_switching_comp_bw_config_data bw_data = {0}; 6305 struct i40e_pf *pf = veb->pf; 6306 int ret = 0; 6307 int i; 6308 6309 /* No TCs or already enabled TCs just return */ 6310 if (!enabled_tc || veb->enabled_tc == enabled_tc) 6311 return ret; 6312 6313 bw_data.tc_valid_bits = enabled_tc; 6314 /* bw_data.absolute_credits is not set (relative) */ 6315 6316 /* Enable ETS TCs with equal BW Share for now */ 6317 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 6318 if (enabled_tc & BIT(i)) 6319 bw_data.tc_bw_share_credits[i] = 1; 6320 } 6321 6322 ret = i40e_aq_config_switch_comp_bw_config(&pf->hw, veb->seid, 6323 &bw_data, NULL); 6324 if (ret) { 6325 dev_info(&pf->pdev->dev, 6326 "VEB bw config failed, err %s aq_err %s\n", 6327 i40e_stat_str(&pf->hw, ret), 6328 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 6329 goto out; 6330 } 6331 6332 /* Update the BW information */ 6333 ret = i40e_veb_get_bw_info(veb); 6334 if (ret) { 6335 dev_info(&pf->pdev->dev, 6336 "Failed getting veb bw config, err %s aq_err %s\n", 6337 i40e_stat_str(&pf->hw, ret), 6338 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 6339 } 6340 6341 out: 6342 return ret; 6343 } 6344 6345 #ifdef CONFIG_I40E_DCB 6346 /** 6347 * i40e_dcb_reconfigure - Reconfigure all VEBs and VSIs 6348 * @pf: PF struct 6349 * 6350 * Reconfigure VEB/VSIs on a given PF; it is assumed that 6351 * the caller would've quiesce all the VSIs before calling 6352 * this function 6353 **/ 6354 static void i40e_dcb_reconfigure(struct i40e_pf *pf) 6355 { 6356 u8 tc_map = 0; 6357 int ret; 6358 u8 v; 6359 6360 /* Enable the TCs available on PF to all VEBs */ 6361 tc_map = i40e_pf_get_tc_map(pf); 6362 for (v = 0; v < I40E_MAX_VEB; v++) { 6363 if (!pf->veb[v]) 6364 continue; 6365 ret = i40e_veb_config_tc(pf->veb[v], tc_map); 6366 if (ret) { 6367 dev_info(&pf->pdev->dev, 6368 "Failed configuring TC for VEB seid=%d\n", 6369 pf->veb[v]->seid); 6370 /* Will try to configure as many components */ 6371 } 6372 } 6373 6374 /* Update each VSI */ 6375 for (v = 0; v < pf->num_alloc_vsi; v++) { 6376 if (!pf->vsi[v]) 6377 continue; 6378 6379 /* - Enable all TCs for the LAN VSI 6380 * - For all others keep them at TC0 for now 6381 */ 6382 if (v == pf->lan_vsi) 6383 tc_map = i40e_pf_get_tc_map(pf); 6384 else 6385 tc_map = I40E_DEFAULT_TRAFFIC_CLASS; 6386 6387 ret = i40e_vsi_config_tc(pf->vsi[v], tc_map); 6388 if (ret) { 6389 dev_info(&pf->pdev->dev, 6390 "Failed configuring TC for VSI seid=%d\n", 6391 pf->vsi[v]->seid); 6392 /* Will try to configure as many components */ 6393 } else { 6394 /* Re-configure VSI vectors based on updated TC map */ 6395 i40e_vsi_map_rings_to_vectors(pf->vsi[v]); 6396 if (pf->vsi[v]->netdev) 6397 i40e_dcbnl_set_all(pf->vsi[v]); 6398 } 6399 } 6400 } 6401 6402 /** 6403 * i40e_resume_port_tx - Resume port Tx 6404 * @pf: PF struct 6405 * 6406 * Resume a port's Tx and issue a PF reset in case of failure to 6407 * resume. 6408 **/ 6409 static int i40e_resume_port_tx(struct i40e_pf *pf) 6410 { 6411 struct i40e_hw *hw = &pf->hw; 6412 int ret; 6413 6414 ret = i40e_aq_resume_port_tx(hw, NULL); 6415 if (ret) { 6416 dev_info(&pf->pdev->dev, 6417 "Resume Port Tx failed, err %s aq_err %s\n", 6418 i40e_stat_str(&pf->hw, ret), 6419 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 6420 /* Schedule PF reset to recover */ 6421 set_bit(__I40E_PF_RESET_REQUESTED, pf->state); 6422 i40e_service_event_schedule(pf); 6423 } 6424 6425 return ret; 6426 } 6427 6428 /** 6429 * i40e_init_pf_dcb - Initialize DCB configuration 6430 * @pf: PF being configured 6431 * 6432 * Query the current DCB configuration and cache it 6433 * in the hardware structure 6434 **/ 6435 static int i40e_init_pf_dcb(struct i40e_pf *pf) 6436 { 6437 struct i40e_hw *hw = &pf->hw; 6438 int err = 0; 6439 6440 /* Do not enable DCB for SW1 and SW2 images even if the FW is capable 6441 * Also do not enable DCBx if FW LLDP agent is disabled 6442 */ 6443 if ((pf->hw_features & I40E_HW_NO_DCB_SUPPORT) || 6444 (pf->flags & I40E_FLAG_DISABLE_FW_LLDP)) { 6445 dev_info(&pf->pdev->dev, "DCB is not supported or FW LLDP is disabled\n"); 6446 err = I40E_NOT_SUPPORTED; 6447 goto out; 6448 } 6449 6450 err = i40e_init_dcb(hw, true); 6451 if (!err) { 6452 /* Device/Function is not DCBX capable */ 6453 if ((!hw->func_caps.dcb) || 6454 (hw->dcbx_status == I40E_DCBX_STATUS_DISABLED)) { 6455 dev_info(&pf->pdev->dev, 6456 "DCBX offload is not supported or is disabled for this PF.\n"); 6457 } else { 6458 /* When status is not DISABLED then DCBX in FW */ 6459 pf->dcbx_cap = DCB_CAP_DCBX_LLD_MANAGED | 6460 DCB_CAP_DCBX_VER_IEEE; 6461 6462 pf->flags |= I40E_FLAG_DCB_CAPABLE; 6463 /* Enable DCB tagging only when more than one TC 6464 * or explicitly disable if only one TC 6465 */ 6466 if (i40e_dcb_get_num_tc(&hw->local_dcbx_config) > 1) 6467 pf->flags |= I40E_FLAG_DCB_ENABLED; 6468 else 6469 pf->flags &= ~I40E_FLAG_DCB_ENABLED; 6470 dev_dbg(&pf->pdev->dev, 6471 "DCBX offload is supported for this PF.\n"); 6472 } 6473 } else if (pf->hw.aq.asq_last_status == I40E_AQ_RC_EPERM) { 6474 dev_info(&pf->pdev->dev, "FW LLDP disabled for this PF.\n"); 6475 pf->flags |= I40E_FLAG_DISABLE_FW_LLDP; 6476 } else { 6477 dev_info(&pf->pdev->dev, 6478 "Query for DCB configuration failed, err %s aq_err %s\n", 6479 i40e_stat_str(&pf->hw, err), 6480 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 6481 } 6482 6483 out: 6484 return err; 6485 } 6486 #endif /* CONFIG_I40E_DCB */ 6487 #define SPEED_SIZE 14 6488 #define FC_SIZE 8 6489 /** 6490 * i40e_print_link_message - print link up or down 6491 * @vsi: the VSI for which link needs a message 6492 * @isup: true of link is up, false otherwise 6493 */ 6494 void i40e_print_link_message(struct i40e_vsi *vsi, bool isup) 6495 { 6496 enum i40e_aq_link_speed new_speed; 6497 struct i40e_pf *pf = vsi->back; 6498 char *speed = "Unknown"; 6499 char *fc = "Unknown"; 6500 char *fec = ""; 6501 char *req_fec = ""; 6502 char *an = ""; 6503 6504 if (isup) 6505 new_speed = pf->hw.phy.link_info.link_speed; 6506 else 6507 new_speed = I40E_LINK_SPEED_UNKNOWN; 6508 6509 if ((vsi->current_isup == isup) && (vsi->current_speed == new_speed)) 6510 return; 6511 vsi->current_isup = isup; 6512 vsi->current_speed = new_speed; 6513 if (!isup) { 6514 netdev_info(vsi->netdev, "NIC Link is Down\n"); 6515 return; 6516 } 6517 6518 /* Warn user if link speed on NPAR enabled partition is not at 6519 * least 10GB 6520 */ 6521 if (pf->hw.func_caps.npar_enable && 6522 (pf->hw.phy.link_info.link_speed == I40E_LINK_SPEED_1GB || 6523 pf->hw.phy.link_info.link_speed == I40E_LINK_SPEED_100MB)) 6524 netdev_warn(vsi->netdev, 6525 "The partition detected link speed that is less than 10Gbps\n"); 6526 6527 switch (pf->hw.phy.link_info.link_speed) { 6528 case I40E_LINK_SPEED_40GB: 6529 speed = "40 G"; 6530 break; 6531 case I40E_LINK_SPEED_20GB: 6532 speed = "20 G"; 6533 break; 6534 case I40E_LINK_SPEED_25GB: 6535 speed = "25 G"; 6536 break; 6537 case I40E_LINK_SPEED_10GB: 6538 speed = "10 G"; 6539 break; 6540 case I40E_LINK_SPEED_5GB: 6541 speed = "5 G"; 6542 break; 6543 case I40E_LINK_SPEED_2_5GB: 6544 speed = "2.5 G"; 6545 break; 6546 case I40E_LINK_SPEED_1GB: 6547 speed = "1000 M"; 6548 break; 6549 case I40E_LINK_SPEED_100MB: 6550 speed = "100 M"; 6551 break; 6552 default: 6553 break; 6554 } 6555 6556 switch (pf->hw.fc.current_mode) { 6557 case I40E_FC_FULL: 6558 fc = "RX/TX"; 6559 break; 6560 case I40E_FC_TX_PAUSE: 6561 fc = "TX"; 6562 break; 6563 case I40E_FC_RX_PAUSE: 6564 fc = "RX"; 6565 break; 6566 default: 6567 fc = "None"; 6568 break; 6569 } 6570 6571 if (pf->hw.phy.link_info.link_speed == I40E_LINK_SPEED_25GB) { 6572 req_fec = "None"; 6573 fec = "None"; 6574 an = "False"; 6575 6576 if (pf->hw.phy.link_info.an_info & I40E_AQ_AN_COMPLETED) 6577 an = "True"; 6578 6579 if (pf->hw.phy.link_info.fec_info & 6580 I40E_AQ_CONFIG_FEC_KR_ENA) 6581 fec = "CL74 FC-FEC/BASE-R"; 6582 else if (pf->hw.phy.link_info.fec_info & 6583 I40E_AQ_CONFIG_FEC_RS_ENA) 6584 fec = "CL108 RS-FEC"; 6585 6586 /* 'CL108 RS-FEC' should be displayed when RS is requested, or 6587 * both RS and FC are requested 6588 */ 6589 if (vsi->back->hw.phy.link_info.req_fec_info & 6590 (I40E_AQ_REQUEST_FEC_KR | I40E_AQ_REQUEST_FEC_RS)) { 6591 if (vsi->back->hw.phy.link_info.req_fec_info & 6592 I40E_AQ_REQUEST_FEC_RS) 6593 req_fec = "CL108 RS-FEC"; 6594 else 6595 req_fec = "CL74 FC-FEC/BASE-R"; 6596 } 6597 netdev_info(vsi->netdev, 6598 "NIC Link is Up, %sbps Full Duplex, Requested FEC: %s, Negotiated FEC: %s, Autoneg: %s, Flow Control: %s\n", 6599 speed, req_fec, fec, an, fc); 6600 } else { 6601 netdev_info(vsi->netdev, 6602 "NIC Link is Up, %sbps Full Duplex, Flow Control: %s\n", 6603 speed, fc); 6604 } 6605 6606 } 6607 6608 /** 6609 * i40e_up_complete - Finish the last steps of bringing up a connection 6610 * @vsi: the VSI being configured 6611 **/ 6612 static int i40e_up_complete(struct i40e_vsi *vsi) 6613 { 6614 struct i40e_pf *pf = vsi->back; 6615 int err; 6616 6617 if (pf->flags & I40E_FLAG_MSIX_ENABLED) 6618 i40e_vsi_configure_msix(vsi); 6619 else 6620 i40e_configure_msi_and_legacy(vsi); 6621 6622 /* start rings */ 6623 err = i40e_vsi_start_rings(vsi); 6624 if (err) 6625 return err; 6626 6627 clear_bit(__I40E_VSI_DOWN, vsi->state); 6628 i40e_napi_enable_all(vsi); 6629 i40e_vsi_enable_irq(vsi); 6630 6631 if ((pf->hw.phy.link_info.link_info & I40E_AQ_LINK_UP) && 6632 (vsi->netdev)) { 6633 i40e_print_link_message(vsi, true); 6634 netif_tx_start_all_queues(vsi->netdev); 6635 netif_carrier_on(vsi->netdev); 6636 } 6637 6638 /* replay FDIR SB filters */ 6639 if (vsi->type == I40E_VSI_FDIR) { 6640 /* reset fd counters */ 6641 pf->fd_add_err = 0; 6642 pf->fd_atr_cnt = 0; 6643 i40e_fdir_filter_restore(vsi); 6644 } 6645 6646 /* On the next run of the service_task, notify any clients of the new 6647 * opened netdev 6648 */ 6649 set_bit(__I40E_CLIENT_SERVICE_REQUESTED, pf->state); 6650 i40e_service_event_schedule(pf); 6651 6652 return 0; 6653 } 6654 6655 /** 6656 * i40e_vsi_reinit_locked - Reset the VSI 6657 * @vsi: the VSI being configured 6658 * 6659 * Rebuild the ring structs after some configuration 6660 * has changed, e.g. MTU size. 6661 **/ 6662 static void i40e_vsi_reinit_locked(struct i40e_vsi *vsi) 6663 { 6664 struct i40e_pf *pf = vsi->back; 6665 6666 WARN_ON(in_interrupt()); 6667 while (test_and_set_bit(__I40E_CONFIG_BUSY, pf->state)) 6668 usleep_range(1000, 2000); 6669 i40e_down(vsi); 6670 6671 i40e_up(vsi); 6672 clear_bit(__I40E_CONFIG_BUSY, pf->state); 6673 } 6674 6675 /** 6676 * i40e_up - Bring the connection back up after being down 6677 * @vsi: the VSI being configured 6678 **/ 6679 int i40e_up(struct i40e_vsi *vsi) 6680 { 6681 int err; 6682 6683 err = i40e_vsi_configure(vsi); 6684 if (!err) 6685 err = i40e_up_complete(vsi); 6686 6687 return err; 6688 } 6689 6690 /** 6691 * i40e_force_link_state - Force the link status 6692 * @pf: board private structure 6693 * @is_up: whether the link state should be forced up or down 6694 **/ 6695 static i40e_status i40e_force_link_state(struct i40e_pf *pf, bool is_up) 6696 { 6697 struct i40e_aq_get_phy_abilities_resp abilities; 6698 struct i40e_aq_set_phy_config config = {0}; 6699 struct i40e_hw *hw = &pf->hw; 6700 i40e_status err; 6701 u64 mask; 6702 u8 speed; 6703 6704 /* Card might've been put in an unstable state by other drivers 6705 * and applications, which causes incorrect speed values being 6706 * set on startup. In order to clear speed registers, we call 6707 * get_phy_capabilities twice, once to get initial state of 6708 * available speeds, and once to get current PHY config. 6709 */ 6710 err = i40e_aq_get_phy_capabilities(hw, false, true, &abilities, 6711 NULL); 6712 if (err) { 6713 dev_err(&pf->pdev->dev, 6714 "failed to get phy cap., ret = %s last_status = %s\n", 6715 i40e_stat_str(hw, err), 6716 i40e_aq_str(hw, hw->aq.asq_last_status)); 6717 return err; 6718 } 6719 speed = abilities.link_speed; 6720 6721 /* Get the current phy config */ 6722 err = i40e_aq_get_phy_capabilities(hw, false, false, &abilities, 6723 NULL); 6724 if (err) { 6725 dev_err(&pf->pdev->dev, 6726 "failed to get phy cap., ret = %s last_status = %s\n", 6727 i40e_stat_str(hw, err), 6728 i40e_aq_str(hw, hw->aq.asq_last_status)); 6729 return err; 6730 } 6731 6732 /* If link needs to go up, but was not forced to go down, 6733 * and its speed values are OK, no need for a flap 6734 */ 6735 if (is_up && abilities.phy_type != 0 && abilities.link_speed != 0) 6736 return I40E_SUCCESS; 6737 6738 /* To force link we need to set bits for all supported PHY types, 6739 * but there are now more than 32, so we need to split the bitmap 6740 * across two fields. 6741 */ 6742 mask = I40E_PHY_TYPES_BITMASK; 6743 config.phy_type = is_up ? cpu_to_le32((u32)(mask & 0xffffffff)) : 0; 6744 config.phy_type_ext = is_up ? (u8)((mask >> 32) & 0xff) : 0; 6745 /* Copy the old settings, except of phy_type */ 6746 config.abilities = abilities.abilities; 6747 if (abilities.link_speed != 0) 6748 config.link_speed = abilities.link_speed; 6749 else 6750 config.link_speed = speed; 6751 config.eee_capability = abilities.eee_capability; 6752 config.eeer = abilities.eeer_val; 6753 config.low_power_ctrl = abilities.d3_lpan; 6754 config.fec_config = abilities.fec_cfg_curr_mod_ext_info & 6755 I40E_AQ_PHY_FEC_CONFIG_MASK; 6756 err = i40e_aq_set_phy_config(hw, &config, NULL); 6757 6758 if (err) { 6759 dev_err(&pf->pdev->dev, 6760 "set phy config ret = %s last_status = %s\n", 6761 i40e_stat_str(&pf->hw, err), 6762 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 6763 return err; 6764 } 6765 6766 /* Update the link info */ 6767 err = i40e_update_link_info(hw); 6768 if (err) { 6769 /* Wait a little bit (on 40G cards it sometimes takes a really 6770 * long time for link to come back from the atomic reset) 6771 * and try once more 6772 */ 6773 msleep(1000); 6774 i40e_update_link_info(hw); 6775 } 6776 6777 i40e_aq_set_link_restart_an(hw, true, NULL); 6778 6779 return I40E_SUCCESS; 6780 } 6781 6782 /** 6783 * i40e_down - Shutdown the connection processing 6784 * @vsi: the VSI being stopped 6785 **/ 6786 void i40e_down(struct i40e_vsi *vsi) 6787 { 6788 int i; 6789 6790 /* It is assumed that the caller of this function 6791 * sets the vsi->state __I40E_VSI_DOWN bit. 6792 */ 6793 if (vsi->netdev) { 6794 netif_carrier_off(vsi->netdev); 6795 netif_tx_disable(vsi->netdev); 6796 } 6797 i40e_vsi_disable_irq(vsi); 6798 i40e_vsi_stop_rings(vsi); 6799 if (vsi->type == I40E_VSI_MAIN && 6800 vsi->back->flags & I40E_FLAG_LINK_DOWN_ON_CLOSE_ENABLED) 6801 i40e_force_link_state(vsi->back, false); 6802 i40e_napi_disable_all(vsi); 6803 6804 for (i = 0; i < vsi->num_queue_pairs; i++) { 6805 i40e_clean_tx_ring(vsi->tx_rings[i]); 6806 if (i40e_enabled_xdp_vsi(vsi)) { 6807 /* Make sure that in-progress ndo_xdp_xmit 6808 * calls are completed. 6809 */ 6810 synchronize_rcu(); 6811 i40e_clean_tx_ring(vsi->xdp_rings[i]); 6812 } 6813 i40e_clean_rx_ring(vsi->rx_rings[i]); 6814 } 6815 6816 } 6817 6818 /** 6819 * i40e_validate_mqprio_qopt- validate queue mapping info 6820 * @vsi: the VSI being configured 6821 * @mqprio_qopt: queue parametrs 6822 **/ 6823 static int i40e_validate_mqprio_qopt(struct i40e_vsi *vsi, 6824 struct tc_mqprio_qopt_offload *mqprio_qopt) 6825 { 6826 u64 sum_max_rate = 0; 6827 u64 max_rate = 0; 6828 int i; 6829 6830 if (mqprio_qopt->qopt.offset[0] != 0 || 6831 mqprio_qopt->qopt.num_tc < 1 || 6832 mqprio_qopt->qopt.num_tc > I40E_MAX_TRAFFIC_CLASS) 6833 return -EINVAL; 6834 for (i = 0; ; i++) { 6835 if (!mqprio_qopt->qopt.count[i]) 6836 return -EINVAL; 6837 if (mqprio_qopt->min_rate[i]) { 6838 dev_err(&vsi->back->pdev->dev, 6839 "Invalid min tx rate (greater than 0) specified\n"); 6840 return -EINVAL; 6841 } 6842 max_rate = mqprio_qopt->max_rate[i]; 6843 do_div(max_rate, I40E_BW_MBPS_DIVISOR); 6844 sum_max_rate += max_rate; 6845 6846 if (i >= mqprio_qopt->qopt.num_tc - 1) 6847 break; 6848 if (mqprio_qopt->qopt.offset[i + 1] != 6849 (mqprio_qopt->qopt.offset[i] + mqprio_qopt->qopt.count[i])) 6850 return -EINVAL; 6851 } 6852 if (vsi->num_queue_pairs < 6853 (mqprio_qopt->qopt.offset[i] + mqprio_qopt->qopt.count[i])) { 6854 return -EINVAL; 6855 } 6856 if (sum_max_rate > i40e_get_link_speed(vsi)) { 6857 dev_err(&vsi->back->pdev->dev, 6858 "Invalid max tx rate specified\n"); 6859 return -EINVAL; 6860 } 6861 return 0; 6862 } 6863 6864 /** 6865 * i40e_vsi_set_default_tc_config - set default values for tc configuration 6866 * @vsi: the VSI being configured 6867 **/ 6868 static void i40e_vsi_set_default_tc_config(struct i40e_vsi *vsi) 6869 { 6870 u16 qcount; 6871 int i; 6872 6873 /* Only TC0 is enabled */ 6874 vsi->tc_config.numtc = 1; 6875 vsi->tc_config.enabled_tc = 1; 6876 qcount = min_t(int, vsi->alloc_queue_pairs, 6877 i40e_pf_get_max_q_per_tc(vsi->back)); 6878 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 6879 /* For the TC that is not enabled set the offset to to default 6880 * queue and allocate one queue for the given TC. 6881 */ 6882 vsi->tc_config.tc_info[i].qoffset = 0; 6883 if (i == 0) 6884 vsi->tc_config.tc_info[i].qcount = qcount; 6885 else 6886 vsi->tc_config.tc_info[i].qcount = 1; 6887 vsi->tc_config.tc_info[i].netdev_tc = 0; 6888 } 6889 } 6890 6891 /** 6892 * i40e_del_macvlan_filter 6893 * @hw: pointer to the HW structure 6894 * @seid: seid of the channel VSI 6895 * @macaddr: the mac address to apply as a filter 6896 * @aq_err: store the admin Q error 6897 * 6898 * This function deletes a mac filter on the channel VSI which serves as the 6899 * macvlan. Returns 0 on success. 6900 **/ 6901 static i40e_status i40e_del_macvlan_filter(struct i40e_hw *hw, u16 seid, 6902 const u8 *macaddr, int *aq_err) 6903 { 6904 struct i40e_aqc_remove_macvlan_element_data element; 6905 i40e_status status; 6906 6907 memset(&element, 0, sizeof(element)); 6908 ether_addr_copy(element.mac_addr, macaddr); 6909 element.vlan_tag = 0; 6910 element.flags = I40E_AQC_MACVLAN_DEL_PERFECT_MATCH; 6911 status = i40e_aq_remove_macvlan(hw, seid, &element, 1, NULL); 6912 *aq_err = hw->aq.asq_last_status; 6913 6914 return status; 6915 } 6916 6917 /** 6918 * i40e_add_macvlan_filter 6919 * @hw: pointer to the HW structure 6920 * @seid: seid of the channel VSI 6921 * @macaddr: the mac address to apply as a filter 6922 * @aq_err: store the admin Q error 6923 * 6924 * This function adds a mac filter on the channel VSI which serves as the 6925 * macvlan. Returns 0 on success. 6926 **/ 6927 static i40e_status i40e_add_macvlan_filter(struct i40e_hw *hw, u16 seid, 6928 const u8 *macaddr, int *aq_err) 6929 { 6930 struct i40e_aqc_add_macvlan_element_data element; 6931 i40e_status status; 6932 u16 cmd_flags = 0; 6933 6934 ether_addr_copy(element.mac_addr, macaddr); 6935 element.vlan_tag = 0; 6936 element.queue_number = 0; 6937 element.match_method = I40E_AQC_MM_ERR_NO_RES; 6938 cmd_flags |= I40E_AQC_MACVLAN_ADD_PERFECT_MATCH; 6939 element.flags = cpu_to_le16(cmd_flags); 6940 status = i40e_aq_add_macvlan(hw, seid, &element, 1, NULL); 6941 *aq_err = hw->aq.asq_last_status; 6942 6943 return status; 6944 } 6945 6946 /** 6947 * i40e_reset_ch_rings - Reset the queue contexts in a channel 6948 * @vsi: the VSI we want to access 6949 * @ch: the channel we want to access 6950 */ 6951 static void i40e_reset_ch_rings(struct i40e_vsi *vsi, struct i40e_channel *ch) 6952 { 6953 struct i40e_ring *tx_ring, *rx_ring; 6954 u16 pf_q; 6955 int i; 6956 6957 for (i = 0; i < ch->num_queue_pairs; i++) { 6958 pf_q = ch->base_queue + i; 6959 tx_ring = vsi->tx_rings[pf_q]; 6960 tx_ring->ch = NULL; 6961 rx_ring = vsi->rx_rings[pf_q]; 6962 rx_ring->ch = NULL; 6963 } 6964 } 6965 6966 /** 6967 * i40e_free_macvlan_channels 6968 * @vsi: the VSI we want to access 6969 * 6970 * This function frees the Qs of the channel VSI from 6971 * the stack and also deletes the channel VSIs which 6972 * serve as macvlans. 6973 */ 6974 static void i40e_free_macvlan_channels(struct i40e_vsi *vsi) 6975 { 6976 struct i40e_channel *ch, *ch_tmp; 6977 int ret; 6978 6979 if (list_empty(&vsi->macvlan_list)) 6980 return; 6981 6982 list_for_each_entry_safe(ch, ch_tmp, &vsi->macvlan_list, list) { 6983 struct i40e_vsi *parent_vsi; 6984 6985 if (i40e_is_channel_macvlan(ch)) { 6986 i40e_reset_ch_rings(vsi, ch); 6987 clear_bit(ch->fwd->bit_no, vsi->fwd_bitmask); 6988 netdev_unbind_sb_channel(vsi->netdev, ch->fwd->netdev); 6989 netdev_set_sb_channel(ch->fwd->netdev, 0); 6990 kfree(ch->fwd); 6991 ch->fwd = NULL; 6992 } 6993 6994 list_del(&ch->list); 6995 parent_vsi = ch->parent_vsi; 6996 if (!parent_vsi || !ch->initialized) { 6997 kfree(ch); 6998 continue; 6999 } 7000 7001 /* remove the VSI */ 7002 ret = i40e_aq_delete_element(&vsi->back->hw, ch->seid, 7003 NULL); 7004 if (ret) 7005 dev_err(&vsi->back->pdev->dev, 7006 "unable to remove channel (%d) for parent VSI(%d)\n", 7007 ch->seid, parent_vsi->seid); 7008 kfree(ch); 7009 } 7010 vsi->macvlan_cnt = 0; 7011 } 7012 7013 /** 7014 * i40e_fwd_ring_up - bring the macvlan device up 7015 * @vsi: the VSI we want to access 7016 * @vdev: macvlan netdevice 7017 * @fwd: the private fwd structure 7018 */ 7019 static int i40e_fwd_ring_up(struct i40e_vsi *vsi, struct net_device *vdev, 7020 struct i40e_fwd_adapter *fwd) 7021 { 7022 int ret = 0, num_tc = 1, i, aq_err; 7023 struct i40e_channel *ch, *ch_tmp; 7024 struct i40e_pf *pf = vsi->back; 7025 struct i40e_hw *hw = &pf->hw; 7026 7027 if (list_empty(&vsi->macvlan_list)) 7028 return -EINVAL; 7029 7030 /* Go through the list and find an available channel */ 7031 list_for_each_entry_safe(ch, ch_tmp, &vsi->macvlan_list, list) { 7032 if (!i40e_is_channel_macvlan(ch)) { 7033 ch->fwd = fwd; 7034 /* record configuration for macvlan interface in vdev */ 7035 for (i = 0; i < num_tc; i++) 7036 netdev_bind_sb_channel_queue(vsi->netdev, vdev, 7037 i, 7038 ch->num_queue_pairs, 7039 ch->base_queue); 7040 for (i = 0; i < ch->num_queue_pairs; i++) { 7041 struct i40e_ring *tx_ring, *rx_ring; 7042 u16 pf_q; 7043 7044 pf_q = ch->base_queue + i; 7045 7046 /* Get to TX ring ptr */ 7047 tx_ring = vsi->tx_rings[pf_q]; 7048 tx_ring->ch = ch; 7049 7050 /* Get the RX ring ptr */ 7051 rx_ring = vsi->rx_rings[pf_q]; 7052 rx_ring->ch = ch; 7053 } 7054 break; 7055 } 7056 } 7057 7058 /* Guarantee all rings are updated before we update the 7059 * MAC address filter. 7060 */ 7061 wmb(); 7062 7063 /* Add a mac filter */ 7064 ret = i40e_add_macvlan_filter(hw, ch->seid, vdev->dev_addr, &aq_err); 7065 if (ret) { 7066 /* if we cannot add the MAC rule then disable the offload */ 7067 macvlan_release_l2fw_offload(vdev); 7068 for (i = 0; i < ch->num_queue_pairs; i++) { 7069 struct i40e_ring *rx_ring; 7070 u16 pf_q; 7071 7072 pf_q = ch->base_queue + i; 7073 rx_ring = vsi->rx_rings[pf_q]; 7074 rx_ring->netdev = NULL; 7075 } 7076 dev_info(&pf->pdev->dev, 7077 "Error adding mac filter on macvlan err %s, aq_err %s\n", 7078 i40e_stat_str(hw, ret), 7079 i40e_aq_str(hw, aq_err)); 7080 netdev_err(vdev, "L2fwd offload disabled to L2 filter error\n"); 7081 } 7082 7083 return ret; 7084 } 7085 7086 /** 7087 * i40e_setup_macvlans - create the channels which will be macvlans 7088 * @vsi: the VSI we want to access 7089 * @macvlan_cnt: no. of macvlans to be setup 7090 * @qcnt: no. of Qs per macvlan 7091 * @vdev: macvlan netdevice 7092 */ 7093 static int i40e_setup_macvlans(struct i40e_vsi *vsi, u16 macvlan_cnt, u16 qcnt, 7094 struct net_device *vdev) 7095 { 7096 struct i40e_pf *pf = vsi->back; 7097 struct i40e_hw *hw = &pf->hw; 7098 struct i40e_vsi_context ctxt; 7099 u16 sections, qmap, num_qps; 7100 struct i40e_channel *ch; 7101 int i, pow, ret = 0; 7102 u8 offset = 0; 7103 7104 if (vsi->type != I40E_VSI_MAIN || !macvlan_cnt) 7105 return -EINVAL; 7106 7107 num_qps = vsi->num_queue_pairs - (macvlan_cnt * qcnt); 7108 7109 /* find the next higher power-of-2 of num queue pairs */ 7110 pow = fls(roundup_pow_of_two(num_qps) - 1); 7111 7112 qmap = (offset << I40E_AQ_VSI_TC_QUE_OFFSET_SHIFT) | 7113 (pow << I40E_AQ_VSI_TC_QUE_NUMBER_SHIFT); 7114 7115 /* Setup context bits for the main VSI */ 7116 sections = I40E_AQ_VSI_PROP_QUEUE_MAP_VALID; 7117 sections |= I40E_AQ_VSI_PROP_SCHED_VALID; 7118 memset(&ctxt, 0, sizeof(ctxt)); 7119 ctxt.seid = vsi->seid; 7120 ctxt.pf_num = vsi->back->hw.pf_id; 7121 ctxt.vf_num = 0; 7122 ctxt.uplink_seid = vsi->uplink_seid; 7123 ctxt.info = vsi->info; 7124 ctxt.info.tc_mapping[0] = cpu_to_le16(qmap); 7125 ctxt.info.mapping_flags |= cpu_to_le16(I40E_AQ_VSI_QUE_MAP_CONTIG); 7126 ctxt.info.queue_mapping[0] = cpu_to_le16(vsi->base_queue); 7127 ctxt.info.valid_sections |= cpu_to_le16(sections); 7128 7129 /* Reconfigure RSS for main VSI with new max queue count */ 7130 vsi->rss_size = max_t(u16, num_qps, qcnt); 7131 ret = i40e_vsi_config_rss(vsi); 7132 if (ret) { 7133 dev_info(&pf->pdev->dev, 7134 "Failed to reconfig RSS for num_queues (%u)\n", 7135 vsi->rss_size); 7136 return ret; 7137 } 7138 vsi->reconfig_rss = true; 7139 dev_dbg(&vsi->back->pdev->dev, 7140 "Reconfigured RSS with num_queues (%u)\n", vsi->rss_size); 7141 vsi->next_base_queue = num_qps; 7142 vsi->cnt_q_avail = vsi->num_queue_pairs - num_qps; 7143 7144 /* Update the VSI after updating the VSI queue-mapping 7145 * information 7146 */ 7147 ret = i40e_aq_update_vsi_params(hw, &ctxt, NULL); 7148 if (ret) { 7149 dev_info(&pf->pdev->dev, 7150 "Update vsi tc config failed, err %s aq_err %s\n", 7151 i40e_stat_str(hw, ret), 7152 i40e_aq_str(hw, hw->aq.asq_last_status)); 7153 return ret; 7154 } 7155 /* update the local VSI info with updated queue map */ 7156 i40e_vsi_update_queue_map(vsi, &ctxt); 7157 vsi->info.valid_sections = 0; 7158 7159 /* Create channels for macvlans */ 7160 INIT_LIST_HEAD(&vsi->macvlan_list); 7161 for (i = 0; i < macvlan_cnt; i++) { 7162 ch = kzalloc(sizeof(*ch), GFP_KERNEL); 7163 if (!ch) { 7164 ret = -ENOMEM; 7165 goto err_free; 7166 } 7167 INIT_LIST_HEAD(&ch->list); 7168 ch->num_queue_pairs = qcnt; 7169 if (!i40e_setup_channel(pf, vsi, ch)) { 7170 ret = -EINVAL; 7171 goto err_free; 7172 } 7173 ch->parent_vsi = vsi; 7174 vsi->cnt_q_avail -= ch->num_queue_pairs; 7175 vsi->macvlan_cnt++; 7176 list_add_tail(&ch->list, &vsi->macvlan_list); 7177 } 7178 7179 return ret; 7180 7181 err_free: 7182 dev_info(&pf->pdev->dev, "Failed to setup macvlans\n"); 7183 i40e_free_macvlan_channels(vsi); 7184 7185 return ret; 7186 } 7187 7188 /** 7189 * i40e_fwd_add - configure macvlans 7190 * @netdev: net device to configure 7191 * @vdev: macvlan netdevice 7192 **/ 7193 static void *i40e_fwd_add(struct net_device *netdev, struct net_device *vdev) 7194 { 7195 struct i40e_netdev_priv *np = netdev_priv(netdev); 7196 u16 q_per_macvlan = 0, macvlan_cnt = 0, vectors; 7197 struct i40e_vsi *vsi = np->vsi; 7198 struct i40e_pf *pf = vsi->back; 7199 struct i40e_fwd_adapter *fwd; 7200 int avail_macvlan, ret; 7201 7202 if ((pf->flags & I40E_FLAG_DCB_ENABLED)) { 7203 netdev_info(netdev, "Macvlans are not supported when DCB is enabled\n"); 7204 return ERR_PTR(-EINVAL); 7205 } 7206 if ((pf->flags & I40E_FLAG_TC_MQPRIO)) { 7207 netdev_info(netdev, "Macvlans are not supported when HW TC offload is on\n"); 7208 return ERR_PTR(-EINVAL); 7209 } 7210 if (pf->num_lan_msix < I40E_MIN_MACVLAN_VECTORS) { 7211 netdev_info(netdev, "Not enough vectors available to support macvlans\n"); 7212 return ERR_PTR(-EINVAL); 7213 } 7214 7215 /* The macvlan device has to be a single Q device so that the 7216 * tc_to_txq field can be reused to pick the tx queue. 7217 */ 7218 if (netif_is_multiqueue(vdev)) 7219 return ERR_PTR(-ERANGE); 7220 7221 if (!vsi->macvlan_cnt) { 7222 /* reserve bit 0 for the pf device */ 7223 set_bit(0, vsi->fwd_bitmask); 7224 7225 /* Try to reserve as many queues as possible for macvlans. First 7226 * reserve 3/4th of max vectors, then half, then quarter and 7227 * calculate Qs per macvlan as you go 7228 */ 7229 vectors = pf->num_lan_msix; 7230 if (vectors <= I40E_MAX_MACVLANS && vectors > 64) { 7231 /* allocate 4 Qs per macvlan and 32 Qs to the PF*/ 7232 q_per_macvlan = 4; 7233 macvlan_cnt = (vectors - 32) / 4; 7234 } else if (vectors <= 64 && vectors > 32) { 7235 /* allocate 2 Qs per macvlan and 16 Qs to the PF*/ 7236 q_per_macvlan = 2; 7237 macvlan_cnt = (vectors - 16) / 2; 7238 } else if (vectors <= 32 && vectors > 16) { 7239 /* allocate 1 Q per macvlan and 16 Qs to the PF*/ 7240 q_per_macvlan = 1; 7241 macvlan_cnt = vectors - 16; 7242 } else if (vectors <= 16 && vectors > 8) { 7243 /* allocate 1 Q per macvlan and 8 Qs to the PF */ 7244 q_per_macvlan = 1; 7245 macvlan_cnt = vectors - 8; 7246 } else { 7247 /* allocate 1 Q per macvlan and 1 Q to the PF */ 7248 q_per_macvlan = 1; 7249 macvlan_cnt = vectors - 1; 7250 } 7251 7252 if (macvlan_cnt == 0) 7253 return ERR_PTR(-EBUSY); 7254 7255 /* Quiesce VSI queues */ 7256 i40e_quiesce_vsi(vsi); 7257 7258 /* sets up the macvlans but does not "enable" them */ 7259 ret = i40e_setup_macvlans(vsi, macvlan_cnt, q_per_macvlan, 7260 vdev); 7261 if (ret) 7262 return ERR_PTR(ret); 7263 7264 /* Unquiesce VSI */ 7265 i40e_unquiesce_vsi(vsi); 7266 } 7267 avail_macvlan = find_first_zero_bit(vsi->fwd_bitmask, 7268 vsi->macvlan_cnt); 7269 if (avail_macvlan >= I40E_MAX_MACVLANS) 7270 return ERR_PTR(-EBUSY); 7271 7272 /* create the fwd struct */ 7273 fwd = kzalloc(sizeof(*fwd), GFP_KERNEL); 7274 if (!fwd) 7275 return ERR_PTR(-ENOMEM); 7276 7277 set_bit(avail_macvlan, vsi->fwd_bitmask); 7278 fwd->bit_no = avail_macvlan; 7279 netdev_set_sb_channel(vdev, avail_macvlan); 7280 fwd->netdev = vdev; 7281 7282 if (!netif_running(netdev)) 7283 return fwd; 7284 7285 /* Set fwd ring up */ 7286 ret = i40e_fwd_ring_up(vsi, vdev, fwd); 7287 if (ret) { 7288 /* unbind the queues and drop the subordinate channel config */ 7289 netdev_unbind_sb_channel(netdev, vdev); 7290 netdev_set_sb_channel(vdev, 0); 7291 7292 kfree(fwd); 7293 return ERR_PTR(-EINVAL); 7294 } 7295 7296 return fwd; 7297 } 7298 7299 /** 7300 * i40e_del_all_macvlans - Delete all the mac filters on the channels 7301 * @vsi: the VSI we want to access 7302 */ 7303 static void i40e_del_all_macvlans(struct i40e_vsi *vsi) 7304 { 7305 struct i40e_channel *ch, *ch_tmp; 7306 struct i40e_pf *pf = vsi->back; 7307 struct i40e_hw *hw = &pf->hw; 7308 int aq_err, ret = 0; 7309 7310 if (list_empty(&vsi->macvlan_list)) 7311 return; 7312 7313 list_for_each_entry_safe(ch, ch_tmp, &vsi->macvlan_list, list) { 7314 if (i40e_is_channel_macvlan(ch)) { 7315 ret = i40e_del_macvlan_filter(hw, ch->seid, 7316 i40e_channel_mac(ch), 7317 &aq_err); 7318 if (!ret) { 7319 /* Reset queue contexts */ 7320 i40e_reset_ch_rings(vsi, ch); 7321 clear_bit(ch->fwd->bit_no, vsi->fwd_bitmask); 7322 netdev_unbind_sb_channel(vsi->netdev, 7323 ch->fwd->netdev); 7324 netdev_set_sb_channel(ch->fwd->netdev, 0); 7325 kfree(ch->fwd); 7326 ch->fwd = NULL; 7327 } 7328 } 7329 } 7330 } 7331 7332 /** 7333 * i40e_fwd_del - delete macvlan interfaces 7334 * @netdev: net device to configure 7335 * @vdev: macvlan netdevice 7336 */ 7337 static void i40e_fwd_del(struct net_device *netdev, void *vdev) 7338 { 7339 struct i40e_netdev_priv *np = netdev_priv(netdev); 7340 struct i40e_fwd_adapter *fwd = vdev; 7341 struct i40e_channel *ch, *ch_tmp; 7342 struct i40e_vsi *vsi = np->vsi; 7343 struct i40e_pf *pf = vsi->back; 7344 struct i40e_hw *hw = &pf->hw; 7345 int aq_err, ret = 0; 7346 7347 /* Find the channel associated with the macvlan and del mac filter */ 7348 list_for_each_entry_safe(ch, ch_tmp, &vsi->macvlan_list, list) { 7349 if (i40e_is_channel_macvlan(ch) && 7350 ether_addr_equal(i40e_channel_mac(ch), 7351 fwd->netdev->dev_addr)) { 7352 ret = i40e_del_macvlan_filter(hw, ch->seid, 7353 i40e_channel_mac(ch), 7354 &aq_err); 7355 if (!ret) { 7356 /* Reset queue contexts */ 7357 i40e_reset_ch_rings(vsi, ch); 7358 clear_bit(ch->fwd->bit_no, vsi->fwd_bitmask); 7359 netdev_unbind_sb_channel(netdev, fwd->netdev); 7360 netdev_set_sb_channel(fwd->netdev, 0); 7361 kfree(ch->fwd); 7362 ch->fwd = NULL; 7363 } else { 7364 dev_info(&pf->pdev->dev, 7365 "Error deleting mac filter on macvlan err %s, aq_err %s\n", 7366 i40e_stat_str(hw, ret), 7367 i40e_aq_str(hw, aq_err)); 7368 } 7369 break; 7370 } 7371 } 7372 } 7373 7374 /** 7375 * i40e_setup_tc - configure multiple traffic classes 7376 * @netdev: net device to configure 7377 * @type_data: tc offload data 7378 **/ 7379 static int i40e_setup_tc(struct net_device *netdev, void *type_data) 7380 { 7381 struct tc_mqprio_qopt_offload *mqprio_qopt = type_data; 7382 struct i40e_netdev_priv *np = netdev_priv(netdev); 7383 struct i40e_vsi *vsi = np->vsi; 7384 struct i40e_pf *pf = vsi->back; 7385 u8 enabled_tc = 0, num_tc, hw; 7386 bool need_reset = false; 7387 int old_queue_pairs; 7388 int ret = -EINVAL; 7389 u16 mode; 7390 int i; 7391 7392 old_queue_pairs = vsi->num_queue_pairs; 7393 num_tc = mqprio_qopt->qopt.num_tc; 7394 hw = mqprio_qopt->qopt.hw; 7395 mode = mqprio_qopt->mode; 7396 if (!hw) { 7397 pf->flags &= ~I40E_FLAG_TC_MQPRIO; 7398 memcpy(&vsi->mqprio_qopt, mqprio_qopt, sizeof(*mqprio_qopt)); 7399 goto config_tc; 7400 } 7401 7402 /* Check if MFP enabled */ 7403 if (pf->flags & I40E_FLAG_MFP_ENABLED) { 7404 netdev_info(netdev, 7405 "Configuring TC not supported in MFP mode\n"); 7406 return ret; 7407 } 7408 switch (mode) { 7409 case TC_MQPRIO_MODE_DCB: 7410 pf->flags &= ~I40E_FLAG_TC_MQPRIO; 7411 7412 /* Check if DCB enabled to continue */ 7413 if (!(pf->flags & I40E_FLAG_DCB_ENABLED)) { 7414 netdev_info(netdev, 7415 "DCB is not enabled for adapter\n"); 7416 return ret; 7417 } 7418 7419 /* Check whether tc count is within enabled limit */ 7420 if (num_tc > i40e_pf_get_num_tc(pf)) { 7421 netdev_info(netdev, 7422 "TC count greater than enabled on link for adapter\n"); 7423 return ret; 7424 } 7425 break; 7426 case TC_MQPRIO_MODE_CHANNEL: 7427 if (pf->flags & I40E_FLAG_DCB_ENABLED) { 7428 netdev_info(netdev, 7429 "Full offload of TC Mqprio options is not supported when DCB is enabled\n"); 7430 return ret; 7431 } 7432 if (!(pf->flags & I40E_FLAG_MSIX_ENABLED)) 7433 return ret; 7434 ret = i40e_validate_mqprio_qopt(vsi, mqprio_qopt); 7435 if (ret) 7436 return ret; 7437 memcpy(&vsi->mqprio_qopt, mqprio_qopt, 7438 sizeof(*mqprio_qopt)); 7439 pf->flags |= I40E_FLAG_TC_MQPRIO; 7440 pf->flags &= ~I40E_FLAG_DCB_ENABLED; 7441 break; 7442 default: 7443 return -EINVAL; 7444 } 7445 7446 config_tc: 7447 /* Generate TC map for number of tc requested */ 7448 for (i = 0; i < num_tc; i++) 7449 enabled_tc |= BIT(i); 7450 7451 /* Requesting same TC configuration as already enabled */ 7452 if (enabled_tc == vsi->tc_config.enabled_tc && 7453 mode != TC_MQPRIO_MODE_CHANNEL) 7454 return 0; 7455 7456 /* Quiesce VSI queues */ 7457 i40e_quiesce_vsi(vsi); 7458 7459 if (!hw && !(pf->flags & I40E_FLAG_TC_MQPRIO)) 7460 i40e_remove_queue_channels(vsi); 7461 7462 /* Configure VSI for enabled TCs */ 7463 ret = i40e_vsi_config_tc(vsi, enabled_tc); 7464 if (ret) { 7465 netdev_info(netdev, "Failed configuring TC for VSI seid=%d\n", 7466 vsi->seid); 7467 need_reset = true; 7468 goto exit; 7469 } else { 7470 dev_info(&vsi->back->pdev->dev, 7471 "Setup channel (id:%u) utilizing num_queues %d\n", 7472 vsi->seid, vsi->tc_config.tc_info[0].qcount); 7473 } 7474 7475 if (pf->flags & I40E_FLAG_TC_MQPRIO) { 7476 if (vsi->mqprio_qopt.max_rate[0]) { 7477 u64 max_tx_rate = vsi->mqprio_qopt.max_rate[0]; 7478 7479 do_div(max_tx_rate, I40E_BW_MBPS_DIVISOR); 7480 ret = i40e_set_bw_limit(vsi, vsi->seid, max_tx_rate); 7481 if (!ret) { 7482 u64 credits = max_tx_rate; 7483 7484 do_div(credits, I40E_BW_CREDIT_DIVISOR); 7485 dev_dbg(&vsi->back->pdev->dev, 7486 "Set tx rate of %llu Mbps (count of 50Mbps %llu) for vsi->seid %u\n", 7487 max_tx_rate, 7488 credits, 7489 vsi->seid); 7490 } else { 7491 need_reset = true; 7492 goto exit; 7493 } 7494 } 7495 ret = i40e_configure_queue_channels(vsi); 7496 if (ret) { 7497 vsi->num_queue_pairs = old_queue_pairs; 7498 netdev_info(netdev, 7499 "Failed configuring queue channels\n"); 7500 need_reset = true; 7501 goto exit; 7502 } 7503 } 7504 7505 exit: 7506 /* Reset the configuration data to defaults, only TC0 is enabled */ 7507 if (need_reset) { 7508 i40e_vsi_set_default_tc_config(vsi); 7509 need_reset = false; 7510 } 7511 7512 /* Unquiesce VSI */ 7513 i40e_unquiesce_vsi(vsi); 7514 return ret; 7515 } 7516 7517 /** 7518 * i40e_set_cld_element - sets cloud filter element data 7519 * @filter: cloud filter rule 7520 * @cld: ptr to cloud filter element data 7521 * 7522 * This is helper function to copy data into cloud filter element 7523 **/ 7524 static inline void 7525 i40e_set_cld_element(struct i40e_cloud_filter *filter, 7526 struct i40e_aqc_cloud_filters_element_data *cld) 7527 { 7528 int i, j; 7529 u32 ipa; 7530 7531 memset(cld, 0, sizeof(*cld)); 7532 ether_addr_copy(cld->outer_mac, filter->dst_mac); 7533 ether_addr_copy(cld->inner_mac, filter->src_mac); 7534 7535 if (filter->n_proto != ETH_P_IP && filter->n_proto != ETH_P_IPV6) 7536 return; 7537 7538 if (filter->n_proto == ETH_P_IPV6) { 7539 #define IPV6_MAX_INDEX (ARRAY_SIZE(filter->dst_ipv6) - 1) 7540 for (i = 0, j = 0; i < ARRAY_SIZE(filter->dst_ipv6); 7541 i++, j += 2) { 7542 ipa = be32_to_cpu(filter->dst_ipv6[IPV6_MAX_INDEX - i]); 7543 ipa = cpu_to_le32(ipa); 7544 memcpy(&cld->ipaddr.raw_v6.data[j], &ipa, sizeof(ipa)); 7545 } 7546 } else { 7547 ipa = be32_to_cpu(filter->dst_ipv4); 7548 memcpy(&cld->ipaddr.v4.data, &ipa, sizeof(ipa)); 7549 } 7550 7551 cld->inner_vlan = cpu_to_le16(ntohs(filter->vlan_id)); 7552 7553 /* tenant_id is not supported by FW now, once the support is enabled 7554 * fill the cld->tenant_id with cpu_to_le32(filter->tenant_id) 7555 */ 7556 if (filter->tenant_id) 7557 return; 7558 } 7559 7560 /** 7561 * i40e_add_del_cloud_filter - Add/del cloud filter 7562 * @vsi: pointer to VSI 7563 * @filter: cloud filter rule 7564 * @add: if true, add, if false, delete 7565 * 7566 * Add or delete a cloud filter for a specific flow spec. 7567 * Returns 0 if the filter were successfully added. 7568 **/ 7569 int i40e_add_del_cloud_filter(struct i40e_vsi *vsi, 7570 struct i40e_cloud_filter *filter, bool add) 7571 { 7572 struct i40e_aqc_cloud_filters_element_data cld_filter; 7573 struct i40e_pf *pf = vsi->back; 7574 int ret; 7575 static const u16 flag_table[128] = { 7576 [I40E_CLOUD_FILTER_FLAGS_OMAC] = 7577 I40E_AQC_ADD_CLOUD_FILTER_OMAC, 7578 [I40E_CLOUD_FILTER_FLAGS_IMAC] = 7579 I40E_AQC_ADD_CLOUD_FILTER_IMAC, 7580 [I40E_CLOUD_FILTER_FLAGS_IMAC_IVLAN] = 7581 I40E_AQC_ADD_CLOUD_FILTER_IMAC_IVLAN, 7582 [I40E_CLOUD_FILTER_FLAGS_IMAC_TEN_ID] = 7583 I40E_AQC_ADD_CLOUD_FILTER_IMAC_TEN_ID, 7584 [I40E_CLOUD_FILTER_FLAGS_OMAC_TEN_ID_IMAC] = 7585 I40E_AQC_ADD_CLOUD_FILTER_OMAC_TEN_ID_IMAC, 7586 [I40E_CLOUD_FILTER_FLAGS_IMAC_IVLAN_TEN_ID] = 7587 I40E_AQC_ADD_CLOUD_FILTER_IMAC_IVLAN_TEN_ID, 7588 [I40E_CLOUD_FILTER_FLAGS_IIP] = 7589 I40E_AQC_ADD_CLOUD_FILTER_IIP, 7590 }; 7591 7592 if (filter->flags >= ARRAY_SIZE(flag_table)) 7593 return I40E_ERR_CONFIG; 7594 7595 /* copy element needed to add cloud filter from filter */ 7596 i40e_set_cld_element(filter, &cld_filter); 7597 7598 if (filter->tunnel_type != I40E_CLOUD_TNL_TYPE_NONE) 7599 cld_filter.flags = cpu_to_le16(filter->tunnel_type << 7600 I40E_AQC_ADD_CLOUD_TNL_TYPE_SHIFT); 7601 7602 if (filter->n_proto == ETH_P_IPV6) 7603 cld_filter.flags |= cpu_to_le16(flag_table[filter->flags] | 7604 I40E_AQC_ADD_CLOUD_FLAGS_IPV6); 7605 else 7606 cld_filter.flags |= cpu_to_le16(flag_table[filter->flags] | 7607 I40E_AQC_ADD_CLOUD_FLAGS_IPV4); 7608 7609 if (add) 7610 ret = i40e_aq_add_cloud_filters(&pf->hw, filter->seid, 7611 &cld_filter, 1); 7612 else 7613 ret = i40e_aq_rem_cloud_filters(&pf->hw, filter->seid, 7614 &cld_filter, 1); 7615 if (ret) 7616 dev_dbg(&pf->pdev->dev, 7617 "Failed to %s cloud filter using l4 port %u, err %d aq_err %d\n", 7618 add ? "add" : "delete", filter->dst_port, ret, 7619 pf->hw.aq.asq_last_status); 7620 else 7621 dev_info(&pf->pdev->dev, 7622 "%s cloud filter for VSI: %d\n", 7623 add ? "Added" : "Deleted", filter->seid); 7624 return ret; 7625 } 7626 7627 /** 7628 * i40e_add_del_cloud_filter_big_buf - Add/del cloud filter using big_buf 7629 * @vsi: pointer to VSI 7630 * @filter: cloud filter rule 7631 * @add: if true, add, if false, delete 7632 * 7633 * Add or delete a cloud filter for a specific flow spec using big buffer. 7634 * Returns 0 if the filter were successfully added. 7635 **/ 7636 int i40e_add_del_cloud_filter_big_buf(struct i40e_vsi *vsi, 7637 struct i40e_cloud_filter *filter, 7638 bool add) 7639 { 7640 struct i40e_aqc_cloud_filters_element_bb cld_filter; 7641 struct i40e_pf *pf = vsi->back; 7642 int ret; 7643 7644 /* Both (src/dst) valid mac_addr are not supported */ 7645 if ((is_valid_ether_addr(filter->dst_mac) && 7646 is_valid_ether_addr(filter->src_mac)) || 7647 (is_multicast_ether_addr(filter->dst_mac) && 7648 is_multicast_ether_addr(filter->src_mac))) 7649 return -EOPNOTSUPP; 7650 7651 /* Big buffer cloud filter needs 'L4 port' to be non-zero. Also, UDP 7652 * ports are not supported via big buffer now. 7653 */ 7654 if (!filter->dst_port || filter->ip_proto == IPPROTO_UDP) 7655 return -EOPNOTSUPP; 7656 7657 /* adding filter using src_port/src_ip is not supported at this stage */ 7658 if (filter->src_port || filter->src_ipv4 || 7659 !ipv6_addr_any(&filter->ip.v6.src_ip6)) 7660 return -EOPNOTSUPP; 7661 7662 /* copy element needed to add cloud filter from filter */ 7663 i40e_set_cld_element(filter, &cld_filter.element); 7664 7665 if (is_valid_ether_addr(filter->dst_mac) || 7666 is_valid_ether_addr(filter->src_mac) || 7667 is_multicast_ether_addr(filter->dst_mac) || 7668 is_multicast_ether_addr(filter->src_mac)) { 7669 /* MAC + IP : unsupported mode */ 7670 if (filter->dst_ipv4) 7671 return -EOPNOTSUPP; 7672 7673 /* since we validated that L4 port must be valid before 7674 * we get here, start with respective "flags" value 7675 * and update if vlan is present or not 7676 */ 7677 cld_filter.element.flags = 7678 cpu_to_le16(I40E_AQC_ADD_CLOUD_FILTER_MAC_PORT); 7679 7680 if (filter->vlan_id) { 7681 cld_filter.element.flags = 7682 cpu_to_le16(I40E_AQC_ADD_CLOUD_FILTER_MAC_VLAN_PORT); 7683 } 7684 7685 } else if (filter->dst_ipv4 || 7686 !ipv6_addr_any(&filter->ip.v6.dst_ip6)) { 7687 cld_filter.element.flags = 7688 cpu_to_le16(I40E_AQC_ADD_CLOUD_FILTER_IP_PORT); 7689 if (filter->n_proto == ETH_P_IPV6) 7690 cld_filter.element.flags |= 7691 cpu_to_le16(I40E_AQC_ADD_CLOUD_FLAGS_IPV6); 7692 else 7693 cld_filter.element.flags |= 7694 cpu_to_le16(I40E_AQC_ADD_CLOUD_FLAGS_IPV4); 7695 } else { 7696 dev_err(&pf->pdev->dev, 7697 "either mac or ip has to be valid for cloud filter\n"); 7698 return -EINVAL; 7699 } 7700 7701 /* Now copy L4 port in Byte 6..7 in general fields */ 7702 cld_filter.general_fields[I40E_AQC_ADD_CLOUD_FV_FLU_0X16_WORD0] = 7703 be16_to_cpu(filter->dst_port); 7704 7705 if (add) { 7706 /* Validate current device switch mode, change if necessary */ 7707 ret = i40e_validate_and_set_switch_mode(vsi); 7708 if (ret) { 7709 dev_err(&pf->pdev->dev, 7710 "failed to set switch mode, ret %d\n", 7711 ret); 7712 return ret; 7713 } 7714 7715 ret = i40e_aq_add_cloud_filters_bb(&pf->hw, filter->seid, 7716 &cld_filter, 1); 7717 } else { 7718 ret = i40e_aq_rem_cloud_filters_bb(&pf->hw, filter->seid, 7719 &cld_filter, 1); 7720 } 7721 7722 if (ret) 7723 dev_dbg(&pf->pdev->dev, 7724 "Failed to %s cloud filter(big buffer) err %d aq_err %d\n", 7725 add ? "add" : "delete", ret, pf->hw.aq.asq_last_status); 7726 else 7727 dev_info(&pf->pdev->dev, 7728 "%s cloud filter for VSI: %d, L4 port: %d\n", 7729 add ? "add" : "delete", filter->seid, 7730 ntohs(filter->dst_port)); 7731 return ret; 7732 } 7733 7734 /** 7735 * i40e_parse_cls_flower - Parse tc flower filters provided by kernel 7736 * @vsi: Pointer to VSI 7737 * @cls_flower: Pointer to struct flow_cls_offload 7738 * @filter: Pointer to cloud filter structure 7739 * 7740 **/ 7741 static int i40e_parse_cls_flower(struct i40e_vsi *vsi, 7742 struct flow_cls_offload *f, 7743 struct i40e_cloud_filter *filter) 7744 { 7745 struct flow_rule *rule = flow_cls_offload_flow_rule(f); 7746 struct flow_dissector *dissector = rule->match.dissector; 7747 u16 n_proto_mask = 0, n_proto_key = 0, addr_type = 0; 7748 struct i40e_pf *pf = vsi->back; 7749 u8 field_flags = 0; 7750 7751 if (dissector->used_keys & 7752 ~(BIT(FLOW_DISSECTOR_KEY_CONTROL) | 7753 BIT(FLOW_DISSECTOR_KEY_BASIC) | 7754 BIT(FLOW_DISSECTOR_KEY_ETH_ADDRS) | 7755 BIT(FLOW_DISSECTOR_KEY_VLAN) | 7756 BIT(FLOW_DISSECTOR_KEY_IPV4_ADDRS) | 7757 BIT(FLOW_DISSECTOR_KEY_IPV6_ADDRS) | 7758 BIT(FLOW_DISSECTOR_KEY_PORTS) | 7759 BIT(FLOW_DISSECTOR_KEY_ENC_KEYID))) { 7760 dev_err(&pf->pdev->dev, "Unsupported key used: 0x%x\n", 7761 dissector->used_keys); 7762 return -EOPNOTSUPP; 7763 } 7764 7765 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ENC_KEYID)) { 7766 struct flow_match_enc_keyid match; 7767 7768 flow_rule_match_enc_keyid(rule, &match); 7769 if (match.mask->keyid != 0) 7770 field_flags |= I40E_CLOUD_FIELD_TEN_ID; 7771 7772 filter->tenant_id = be32_to_cpu(match.key->keyid); 7773 } 7774 7775 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_BASIC)) { 7776 struct flow_match_basic match; 7777 7778 flow_rule_match_basic(rule, &match); 7779 n_proto_key = ntohs(match.key->n_proto); 7780 n_proto_mask = ntohs(match.mask->n_proto); 7781 7782 if (n_proto_key == ETH_P_ALL) { 7783 n_proto_key = 0; 7784 n_proto_mask = 0; 7785 } 7786 filter->n_proto = n_proto_key & n_proto_mask; 7787 filter->ip_proto = match.key->ip_proto; 7788 } 7789 7790 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ETH_ADDRS)) { 7791 struct flow_match_eth_addrs match; 7792 7793 flow_rule_match_eth_addrs(rule, &match); 7794 7795 /* use is_broadcast and is_zero to check for all 0xf or 0 */ 7796 if (!is_zero_ether_addr(match.mask->dst)) { 7797 if (is_broadcast_ether_addr(match.mask->dst)) { 7798 field_flags |= I40E_CLOUD_FIELD_OMAC; 7799 } else { 7800 dev_err(&pf->pdev->dev, "Bad ether dest mask %pM\n", 7801 match.mask->dst); 7802 return I40E_ERR_CONFIG; 7803 } 7804 } 7805 7806 if (!is_zero_ether_addr(match.mask->src)) { 7807 if (is_broadcast_ether_addr(match.mask->src)) { 7808 field_flags |= I40E_CLOUD_FIELD_IMAC; 7809 } else { 7810 dev_err(&pf->pdev->dev, "Bad ether src mask %pM\n", 7811 match.mask->src); 7812 return I40E_ERR_CONFIG; 7813 } 7814 } 7815 ether_addr_copy(filter->dst_mac, match.key->dst); 7816 ether_addr_copy(filter->src_mac, match.key->src); 7817 } 7818 7819 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_VLAN)) { 7820 struct flow_match_vlan match; 7821 7822 flow_rule_match_vlan(rule, &match); 7823 if (match.mask->vlan_id) { 7824 if (match.mask->vlan_id == VLAN_VID_MASK) { 7825 field_flags |= I40E_CLOUD_FIELD_IVLAN; 7826 7827 } else { 7828 dev_err(&pf->pdev->dev, "Bad vlan mask 0x%04x\n", 7829 match.mask->vlan_id); 7830 return I40E_ERR_CONFIG; 7831 } 7832 } 7833 7834 filter->vlan_id = cpu_to_be16(match.key->vlan_id); 7835 } 7836 7837 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_CONTROL)) { 7838 struct flow_match_control match; 7839 7840 flow_rule_match_control(rule, &match); 7841 addr_type = match.key->addr_type; 7842 } 7843 7844 if (addr_type == FLOW_DISSECTOR_KEY_IPV4_ADDRS) { 7845 struct flow_match_ipv4_addrs match; 7846 7847 flow_rule_match_ipv4_addrs(rule, &match); 7848 if (match.mask->dst) { 7849 if (match.mask->dst == cpu_to_be32(0xffffffff)) { 7850 field_flags |= I40E_CLOUD_FIELD_IIP; 7851 } else { 7852 dev_err(&pf->pdev->dev, "Bad ip dst mask %pI4b\n", 7853 &match.mask->dst); 7854 return I40E_ERR_CONFIG; 7855 } 7856 } 7857 7858 if (match.mask->src) { 7859 if (match.mask->src == cpu_to_be32(0xffffffff)) { 7860 field_flags |= I40E_CLOUD_FIELD_IIP; 7861 } else { 7862 dev_err(&pf->pdev->dev, "Bad ip src mask %pI4b\n", 7863 &match.mask->src); 7864 return I40E_ERR_CONFIG; 7865 } 7866 } 7867 7868 if (field_flags & I40E_CLOUD_FIELD_TEN_ID) { 7869 dev_err(&pf->pdev->dev, "Tenant id not allowed for ip filter\n"); 7870 return I40E_ERR_CONFIG; 7871 } 7872 filter->dst_ipv4 = match.key->dst; 7873 filter->src_ipv4 = match.key->src; 7874 } 7875 7876 if (addr_type == FLOW_DISSECTOR_KEY_IPV6_ADDRS) { 7877 struct flow_match_ipv6_addrs match; 7878 7879 flow_rule_match_ipv6_addrs(rule, &match); 7880 7881 /* src and dest IPV6 address should not be LOOPBACK 7882 * (0:0:0:0:0:0:0:1), which can be represented as ::1 7883 */ 7884 if (ipv6_addr_loopback(&match.key->dst) || 7885 ipv6_addr_loopback(&match.key->src)) { 7886 dev_err(&pf->pdev->dev, 7887 "Bad ipv6, addr is LOOPBACK\n"); 7888 return I40E_ERR_CONFIG; 7889 } 7890 if (!ipv6_addr_any(&match.mask->dst) || 7891 !ipv6_addr_any(&match.mask->src)) 7892 field_flags |= I40E_CLOUD_FIELD_IIP; 7893 7894 memcpy(&filter->src_ipv6, &match.key->src.s6_addr32, 7895 sizeof(filter->src_ipv6)); 7896 memcpy(&filter->dst_ipv6, &match.key->dst.s6_addr32, 7897 sizeof(filter->dst_ipv6)); 7898 } 7899 7900 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_PORTS)) { 7901 struct flow_match_ports match; 7902 7903 flow_rule_match_ports(rule, &match); 7904 if (match.mask->src) { 7905 if (match.mask->src == cpu_to_be16(0xffff)) { 7906 field_flags |= I40E_CLOUD_FIELD_IIP; 7907 } else { 7908 dev_err(&pf->pdev->dev, "Bad src port mask 0x%04x\n", 7909 be16_to_cpu(match.mask->src)); 7910 return I40E_ERR_CONFIG; 7911 } 7912 } 7913 7914 if (match.mask->dst) { 7915 if (match.mask->dst == cpu_to_be16(0xffff)) { 7916 field_flags |= I40E_CLOUD_FIELD_IIP; 7917 } else { 7918 dev_err(&pf->pdev->dev, "Bad dst port mask 0x%04x\n", 7919 be16_to_cpu(match.mask->dst)); 7920 return I40E_ERR_CONFIG; 7921 } 7922 } 7923 7924 filter->dst_port = match.key->dst; 7925 filter->src_port = match.key->src; 7926 7927 switch (filter->ip_proto) { 7928 case IPPROTO_TCP: 7929 case IPPROTO_UDP: 7930 break; 7931 default: 7932 dev_err(&pf->pdev->dev, 7933 "Only UDP and TCP transport are supported\n"); 7934 return -EINVAL; 7935 } 7936 } 7937 filter->flags = field_flags; 7938 return 0; 7939 } 7940 7941 /** 7942 * i40e_handle_tclass: Forward to a traffic class on the device 7943 * @vsi: Pointer to VSI 7944 * @tc: traffic class index on the device 7945 * @filter: Pointer to cloud filter structure 7946 * 7947 **/ 7948 static int i40e_handle_tclass(struct i40e_vsi *vsi, u32 tc, 7949 struct i40e_cloud_filter *filter) 7950 { 7951 struct i40e_channel *ch, *ch_tmp; 7952 7953 /* direct to a traffic class on the same device */ 7954 if (tc == 0) { 7955 filter->seid = vsi->seid; 7956 return 0; 7957 } else if (vsi->tc_config.enabled_tc & BIT(tc)) { 7958 if (!filter->dst_port) { 7959 dev_err(&vsi->back->pdev->dev, 7960 "Specify destination port to direct to traffic class that is not default\n"); 7961 return -EINVAL; 7962 } 7963 if (list_empty(&vsi->ch_list)) 7964 return -EINVAL; 7965 list_for_each_entry_safe(ch, ch_tmp, &vsi->ch_list, 7966 list) { 7967 if (ch->seid == vsi->tc_seid_map[tc]) 7968 filter->seid = ch->seid; 7969 } 7970 return 0; 7971 } 7972 dev_err(&vsi->back->pdev->dev, "TC is not enabled\n"); 7973 return -EINVAL; 7974 } 7975 7976 /** 7977 * i40e_configure_clsflower - Configure tc flower filters 7978 * @vsi: Pointer to VSI 7979 * @cls_flower: Pointer to struct flow_cls_offload 7980 * 7981 **/ 7982 static int i40e_configure_clsflower(struct i40e_vsi *vsi, 7983 struct flow_cls_offload *cls_flower) 7984 { 7985 int tc = tc_classid_to_hwtc(vsi->netdev, cls_flower->classid); 7986 struct i40e_cloud_filter *filter = NULL; 7987 struct i40e_pf *pf = vsi->back; 7988 int err = 0; 7989 7990 if (tc < 0) { 7991 dev_err(&vsi->back->pdev->dev, "Invalid traffic class\n"); 7992 return -EOPNOTSUPP; 7993 } 7994 7995 if (test_bit(__I40E_RESET_RECOVERY_PENDING, pf->state) || 7996 test_bit(__I40E_RESET_INTR_RECEIVED, pf->state)) 7997 return -EBUSY; 7998 7999 if (pf->fdir_pf_active_filters || 8000 (!hlist_empty(&pf->fdir_filter_list))) { 8001 dev_err(&vsi->back->pdev->dev, 8002 "Flow Director Sideband filters exists, turn ntuple off to configure cloud filters\n"); 8003 return -EINVAL; 8004 } 8005 8006 if (vsi->back->flags & I40E_FLAG_FD_SB_ENABLED) { 8007 dev_err(&vsi->back->pdev->dev, 8008 "Disable Flow Director Sideband, configuring Cloud filters via tc-flower\n"); 8009 vsi->back->flags &= ~I40E_FLAG_FD_SB_ENABLED; 8010 vsi->back->flags |= I40E_FLAG_FD_SB_TO_CLOUD_FILTER; 8011 } 8012 8013 filter = kzalloc(sizeof(*filter), GFP_KERNEL); 8014 if (!filter) 8015 return -ENOMEM; 8016 8017 filter->cookie = cls_flower->cookie; 8018 8019 err = i40e_parse_cls_flower(vsi, cls_flower, filter); 8020 if (err < 0) 8021 goto err; 8022 8023 err = i40e_handle_tclass(vsi, tc, filter); 8024 if (err < 0) 8025 goto err; 8026 8027 /* Add cloud filter */ 8028 if (filter->dst_port) 8029 err = i40e_add_del_cloud_filter_big_buf(vsi, filter, true); 8030 else 8031 err = i40e_add_del_cloud_filter(vsi, filter, true); 8032 8033 if (err) { 8034 dev_err(&pf->pdev->dev, 8035 "Failed to add cloud filter, err %s\n", 8036 i40e_stat_str(&pf->hw, err)); 8037 goto err; 8038 } 8039 8040 /* add filter to the ordered list */ 8041 INIT_HLIST_NODE(&filter->cloud_node); 8042 8043 hlist_add_head(&filter->cloud_node, &pf->cloud_filter_list); 8044 8045 pf->num_cloud_filters++; 8046 8047 return err; 8048 err: 8049 kfree(filter); 8050 return err; 8051 } 8052 8053 /** 8054 * i40e_find_cloud_filter - Find the could filter in the list 8055 * @vsi: Pointer to VSI 8056 * @cookie: filter specific cookie 8057 * 8058 **/ 8059 static struct i40e_cloud_filter *i40e_find_cloud_filter(struct i40e_vsi *vsi, 8060 unsigned long *cookie) 8061 { 8062 struct i40e_cloud_filter *filter = NULL; 8063 struct hlist_node *node2; 8064 8065 hlist_for_each_entry_safe(filter, node2, 8066 &vsi->back->cloud_filter_list, cloud_node) 8067 if (!memcmp(cookie, &filter->cookie, sizeof(filter->cookie))) 8068 return filter; 8069 return NULL; 8070 } 8071 8072 /** 8073 * i40e_delete_clsflower - Remove tc flower filters 8074 * @vsi: Pointer to VSI 8075 * @cls_flower: Pointer to struct flow_cls_offload 8076 * 8077 **/ 8078 static int i40e_delete_clsflower(struct i40e_vsi *vsi, 8079 struct flow_cls_offload *cls_flower) 8080 { 8081 struct i40e_cloud_filter *filter = NULL; 8082 struct i40e_pf *pf = vsi->back; 8083 int err = 0; 8084 8085 filter = i40e_find_cloud_filter(vsi, &cls_flower->cookie); 8086 8087 if (!filter) 8088 return -EINVAL; 8089 8090 hash_del(&filter->cloud_node); 8091 8092 if (filter->dst_port) 8093 err = i40e_add_del_cloud_filter_big_buf(vsi, filter, false); 8094 else 8095 err = i40e_add_del_cloud_filter(vsi, filter, false); 8096 8097 kfree(filter); 8098 if (err) { 8099 dev_err(&pf->pdev->dev, 8100 "Failed to delete cloud filter, err %s\n", 8101 i40e_stat_str(&pf->hw, err)); 8102 return i40e_aq_rc_to_posix(err, pf->hw.aq.asq_last_status); 8103 } 8104 8105 pf->num_cloud_filters--; 8106 if (!pf->num_cloud_filters) 8107 if ((pf->flags & I40E_FLAG_FD_SB_TO_CLOUD_FILTER) && 8108 !(pf->flags & I40E_FLAG_FD_SB_INACTIVE)) { 8109 pf->flags |= I40E_FLAG_FD_SB_ENABLED; 8110 pf->flags &= ~I40E_FLAG_FD_SB_TO_CLOUD_FILTER; 8111 pf->flags &= ~I40E_FLAG_FD_SB_INACTIVE; 8112 } 8113 return 0; 8114 } 8115 8116 /** 8117 * i40e_setup_tc_cls_flower - flower classifier offloads 8118 * @netdev: net device to configure 8119 * @type_data: offload data 8120 **/ 8121 static int i40e_setup_tc_cls_flower(struct i40e_netdev_priv *np, 8122 struct flow_cls_offload *cls_flower) 8123 { 8124 struct i40e_vsi *vsi = np->vsi; 8125 8126 switch (cls_flower->command) { 8127 case FLOW_CLS_REPLACE: 8128 return i40e_configure_clsflower(vsi, cls_flower); 8129 case FLOW_CLS_DESTROY: 8130 return i40e_delete_clsflower(vsi, cls_flower); 8131 case FLOW_CLS_STATS: 8132 return -EOPNOTSUPP; 8133 default: 8134 return -EOPNOTSUPP; 8135 } 8136 } 8137 8138 static int i40e_setup_tc_block_cb(enum tc_setup_type type, void *type_data, 8139 void *cb_priv) 8140 { 8141 struct i40e_netdev_priv *np = cb_priv; 8142 8143 if (!tc_cls_can_offload_and_chain0(np->vsi->netdev, type_data)) 8144 return -EOPNOTSUPP; 8145 8146 switch (type) { 8147 case TC_SETUP_CLSFLOWER: 8148 return i40e_setup_tc_cls_flower(np, type_data); 8149 8150 default: 8151 return -EOPNOTSUPP; 8152 } 8153 } 8154 8155 static LIST_HEAD(i40e_block_cb_list); 8156 8157 static int __i40e_setup_tc(struct net_device *netdev, enum tc_setup_type type, 8158 void *type_data) 8159 { 8160 struct i40e_netdev_priv *np = netdev_priv(netdev); 8161 8162 switch (type) { 8163 case TC_SETUP_QDISC_MQPRIO: 8164 return i40e_setup_tc(netdev, type_data); 8165 case TC_SETUP_BLOCK: 8166 return flow_block_cb_setup_simple(type_data, 8167 &i40e_block_cb_list, 8168 i40e_setup_tc_block_cb, 8169 np, np, true); 8170 default: 8171 return -EOPNOTSUPP; 8172 } 8173 } 8174 8175 /** 8176 * i40e_open - Called when a network interface is made active 8177 * @netdev: network interface device structure 8178 * 8179 * The open entry point is called when a network interface is made 8180 * active by the system (IFF_UP). At this point all resources needed 8181 * for transmit and receive operations are allocated, the interrupt 8182 * handler is registered with the OS, the netdev watchdog subtask is 8183 * enabled, and the stack is notified that the interface is ready. 8184 * 8185 * Returns 0 on success, negative value on failure 8186 **/ 8187 int i40e_open(struct net_device *netdev) 8188 { 8189 struct i40e_netdev_priv *np = netdev_priv(netdev); 8190 struct i40e_vsi *vsi = np->vsi; 8191 struct i40e_pf *pf = vsi->back; 8192 int err; 8193 8194 /* disallow open during test or if eeprom is broken */ 8195 if (test_bit(__I40E_TESTING, pf->state) || 8196 test_bit(__I40E_BAD_EEPROM, pf->state)) 8197 return -EBUSY; 8198 8199 netif_carrier_off(netdev); 8200 8201 if (i40e_force_link_state(pf, true)) 8202 return -EAGAIN; 8203 8204 err = i40e_vsi_open(vsi); 8205 if (err) 8206 return err; 8207 8208 /* configure global TSO hardware offload settings */ 8209 wr32(&pf->hw, I40E_GLLAN_TSOMSK_F, be32_to_cpu(TCP_FLAG_PSH | 8210 TCP_FLAG_FIN) >> 16); 8211 wr32(&pf->hw, I40E_GLLAN_TSOMSK_M, be32_to_cpu(TCP_FLAG_PSH | 8212 TCP_FLAG_FIN | 8213 TCP_FLAG_CWR) >> 16); 8214 wr32(&pf->hw, I40E_GLLAN_TSOMSK_L, be32_to_cpu(TCP_FLAG_CWR) >> 16); 8215 8216 udp_tunnel_get_rx_info(netdev); 8217 8218 return 0; 8219 } 8220 8221 /** 8222 * i40e_vsi_open - 8223 * @vsi: the VSI to open 8224 * 8225 * Finish initialization of the VSI. 8226 * 8227 * Returns 0 on success, negative value on failure 8228 * 8229 * Note: expects to be called while under rtnl_lock() 8230 **/ 8231 int i40e_vsi_open(struct i40e_vsi *vsi) 8232 { 8233 struct i40e_pf *pf = vsi->back; 8234 char int_name[I40E_INT_NAME_STR_LEN]; 8235 int err; 8236 8237 /* allocate descriptors */ 8238 err = i40e_vsi_setup_tx_resources(vsi); 8239 if (err) 8240 goto err_setup_tx; 8241 err = i40e_vsi_setup_rx_resources(vsi); 8242 if (err) 8243 goto err_setup_rx; 8244 8245 err = i40e_vsi_configure(vsi); 8246 if (err) 8247 goto err_setup_rx; 8248 8249 if (vsi->netdev) { 8250 snprintf(int_name, sizeof(int_name) - 1, "%s-%s", 8251 dev_driver_string(&pf->pdev->dev), vsi->netdev->name); 8252 err = i40e_vsi_request_irq(vsi, int_name); 8253 if (err) 8254 goto err_setup_rx; 8255 8256 /* Notify the stack of the actual queue counts. */ 8257 err = netif_set_real_num_tx_queues(vsi->netdev, 8258 vsi->num_queue_pairs); 8259 if (err) 8260 goto err_set_queues; 8261 8262 err = netif_set_real_num_rx_queues(vsi->netdev, 8263 vsi->num_queue_pairs); 8264 if (err) 8265 goto err_set_queues; 8266 8267 } else if (vsi->type == I40E_VSI_FDIR) { 8268 snprintf(int_name, sizeof(int_name) - 1, "%s-%s:fdir", 8269 dev_driver_string(&pf->pdev->dev), 8270 dev_name(&pf->pdev->dev)); 8271 err = i40e_vsi_request_irq(vsi, int_name); 8272 8273 } else { 8274 err = -EINVAL; 8275 goto err_setup_rx; 8276 } 8277 8278 err = i40e_up_complete(vsi); 8279 if (err) 8280 goto err_up_complete; 8281 8282 return 0; 8283 8284 err_up_complete: 8285 i40e_down(vsi); 8286 err_set_queues: 8287 i40e_vsi_free_irq(vsi); 8288 err_setup_rx: 8289 i40e_vsi_free_rx_resources(vsi); 8290 err_setup_tx: 8291 i40e_vsi_free_tx_resources(vsi); 8292 if (vsi == pf->vsi[pf->lan_vsi]) 8293 i40e_do_reset(pf, I40E_PF_RESET_FLAG, true); 8294 8295 return err; 8296 } 8297 8298 /** 8299 * i40e_fdir_filter_exit - Cleans up the Flow Director accounting 8300 * @pf: Pointer to PF 8301 * 8302 * This function destroys the hlist where all the Flow Director 8303 * filters were saved. 8304 **/ 8305 static void i40e_fdir_filter_exit(struct i40e_pf *pf) 8306 { 8307 struct i40e_fdir_filter *filter; 8308 struct i40e_flex_pit *pit_entry, *tmp; 8309 struct hlist_node *node2; 8310 8311 hlist_for_each_entry_safe(filter, node2, 8312 &pf->fdir_filter_list, fdir_node) { 8313 hlist_del(&filter->fdir_node); 8314 kfree(filter); 8315 } 8316 8317 list_for_each_entry_safe(pit_entry, tmp, &pf->l3_flex_pit_list, list) { 8318 list_del(&pit_entry->list); 8319 kfree(pit_entry); 8320 } 8321 INIT_LIST_HEAD(&pf->l3_flex_pit_list); 8322 8323 list_for_each_entry_safe(pit_entry, tmp, &pf->l4_flex_pit_list, list) { 8324 list_del(&pit_entry->list); 8325 kfree(pit_entry); 8326 } 8327 INIT_LIST_HEAD(&pf->l4_flex_pit_list); 8328 8329 pf->fdir_pf_active_filters = 0; 8330 pf->fd_tcp4_filter_cnt = 0; 8331 pf->fd_udp4_filter_cnt = 0; 8332 pf->fd_sctp4_filter_cnt = 0; 8333 pf->fd_ip4_filter_cnt = 0; 8334 8335 /* Reprogram the default input set for TCP/IPv4 */ 8336 i40e_write_fd_input_set(pf, I40E_FILTER_PCTYPE_NONF_IPV4_TCP, 8337 I40E_L3_SRC_MASK | I40E_L3_DST_MASK | 8338 I40E_L4_SRC_MASK | I40E_L4_DST_MASK); 8339 8340 /* Reprogram the default input set for UDP/IPv4 */ 8341 i40e_write_fd_input_set(pf, I40E_FILTER_PCTYPE_NONF_IPV4_UDP, 8342 I40E_L3_SRC_MASK | I40E_L3_DST_MASK | 8343 I40E_L4_SRC_MASK | I40E_L4_DST_MASK); 8344 8345 /* Reprogram the default input set for SCTP/IPv4 */ 8346 i40e_write_fd_input_set(pf, I40E_FILTER_PCTYPE_NONF_IPV4_SCTP, 8347 I40E_L3_SRC_MASK | I40E_L3_DST_MASK | 8348 I40E_L4_SRC_MASK | I40E_L4_DST_MASK); 8349 8350 /* Reprogram the default input set for Other/IPv4 */ 8351 i40e_write_fd_input_set(pf, I40E_FILTER_PCTYPE_NONF_IPV4_OTHER, 8352 I40E_L3_SRC_MASK | I40E_L3_DST_MASK); 8353 8354 i40e_write_fd_input_set(pf, I40E_FILTER_PCTYPE_FRAG_IPV4, 8355 I40E_L3_SRC_MASK | I40E_L3_DST_MASK); 8356 } 8357 8358 /** 8359 * i40e_cloud_filter_exit - Cleans up the cloud filters 8360 * @pf: Pointer to PF 8361 * 8362 * This function destroys the hlist where all the cloud filters 8363 * were saved. 8364 **/ 8365 static void i40e_cloud_filter_exit(struct i40e_pf *pf) 8366 { 8367 struct i40e_cloud_filter *cfilter; 8368 struct hlist_node *node; 8369 8370 hlist_for_each_entry_safe(cfilter, node, 8371 &pf->cloud_filter_list, cloud_node) { 8372 hlist_del(&cfilter->cloud_node); 8373 kfree(cfilter); 8374 } 8375 pf->num_cloud_filters = 0; 8376 8377 if ((pf->flags & I40E_FLAG_FD_SB_TO_CLOUD_FILTER) && 8378 !(pf->flags & I40E_FLAG_FD_SB_INACTIVE)) { 8379 pf->flags |= I40E_FLAG_FD_SB_ENABLED; 8380 pf->flags &= ~I40E_FLAG_FD_SB_TO_CLOUD_FILTER; 8381 pf->flags &= ~I40E_FLAG_FD_SB_INACTIVE; 8382 } 8383 } 8384 8385 /** 8386 * i40e_close - Disables a network interface 8387 * @netdev: network interface device structure 8388 * 8389 * The close entry point is called when an interface is de-activated 8390 * by the OS. The hardware is still under the driver's control, but 8391 * this netdev interface is disabled. 8392 * 8393 * Returns 0, this is not allowed to fail 8394 **/ 8395 int i40e_close(struct net_device *netdev) 8396 { 8397 struct i40e_netdev_priv *np = netdev_priv(netdev); 8398 struct i40e_vsi *vsi = np->vsi; 8399 8400 i40e_vsi_close(vsi); 8401 8402 return 0; 8403 } 8404 8405 /** 8406 * i40e_do_reset - Start a PF or Core Reset sequence 8407 * @pf: board private structure 8408 * @reset_flags: which reset is requested 8409 * @lock_acquired: indicates whether or not the lock has been acquired 8410 * before this function was called. 8411 * 8412 * The essential difference in resets is that the PF Reset 8413 * doesn't clear the packet buffers, doesn't reset the PE 8414 * firmware, and doesn't bother the other PFs on the chip. 8415 **/ 8416 void i40e_do_reset(struct i40e_pf *pf, u32 reset_flags, bool lock_acquired) 8417 { 8418 u32 val; 8419 8420 WARN_ON(in_interrupt()); 8421 8422 8423 /* do the biggest reset indicated */ 8424 if (reset_flags & BIT_ULL(__I40E_GLOBAL_RESET_REQUESTED)) { 8425 8426 /* Request a Global Reset 8427 * 8428 * This will start the chip's countdown to the actual full 8429 * chip reset event, and a warning interrupt to be sent 8430 * to all PFs, including the requestor. Our handler 8431 * for the warning interrupt will deal with the shutdown 8432 * and recovery of the switch setup. 8433 */ 8434 dev_dbg(&pf->pdev->dev, "GlobalR requested\n"); 8435 val = rd32(&pf->hw, I40E_GLGEN_RTRIG); 8436 val |= I40E_GLGEN_RTRIG_GLOBR_MASK; 8437 wr32(&pf->hw, I40E_GLGEN_RTRIG, val); 8438 8439 } else if (reset_flags & BIT_ULL(__I40E_CORE_RESET_REQUESTED)) { 8440 8441 /* Request a Core Reset 8442 * 8443 * Same as Global Reset, except does *not* include the MAC/PHY 8444 */ 8445 dev_dbg(&pf->pdev->dev, "CoreR requested\n"); 8446 val = rd32(&pf->hw, I40E_GLGEN_RTRIG); 8447 val |= I40E_GLGEN_RTRIG_CORER_MASK; 8448 wr32(&pf->hw, I40E_GLGEN_RTRIG, val); 8449 i40e_flush(&pf->hw); 8450 8451 } else if (reset_flags & I40E_PF_RESET_FLAG) { 8452 8453 /* Request a PF Reset 8454 * 8455 * Resets only the PF-specific registers 8456 * 8457 * This goes directly to the tear-down and rebuild of 8458 * the switch, since we need to do all the recovery as 8459 * for the Core Reset. 8460 */ 8461 dev_dbg(&pf->pdev->dev, "PFR requested\n"); 8462 i40e_handle_reset_warning(pf, lock_acquired); 8463 8464 dev_info(&pf->pdev->dev, 8465 pf->flags & I40E_FLAG_DISABLE_FW_LLDP ? 8466 "FW LLDP is disabled\n" : 8467 "FW LLDP is enabled\n"); 8468 8469 } else if (reset_flags & BIT_ULL(__I40E_REINIT_REQUESTED)) { 8470 int v; 8471 8472 /* Find the VSI(s) that requested a re-init */ 8473 dev_info(&pf->pdev->dev, 8474 "VSI reinit requested\n"); 8475 for (v = 0; v < pf->num_alloc_vsi; v++) { 8476 struct i40e_vsi *vsi = pf->vsi[v]; 8477 8478 if (vsi != NULL && 8479 test_and_clear_bit(__I40E_VSI_REINIT_REQUESTED, 8480 vsi->state)) 8481 i40e_vsi_reinit_locked(pf->vsi[v]); 8482 } 8483 } else if (reset_flags & BIT_ULL(__I40E_DOWN_REQUESTED)) { 8484 int v; 8485 8486 /* Find the VSI(s) that needs to be brought down */ 8487 dev_info(&pf->pdev->dev, "VSI down requested\n"); 8488 for (v = 0; v < pf->num_alloc_vsi; v++) { 8489 struct i40e_vsi *vsi = pf->vsi[v]; 8490 8491 if (vsi != NULL && 8492 test_and_clear_bit(__I40E_VSI_DOWN_REQUESTED, 8493 vsi->state)) { 8494 set_bit(__I40E_VSI_DOWN, vsi->state); 8495 i40e_down(vsi); 8496 } 8497 } 8498 } else { 8499 dev_info(&pf->pdev->dev, 8500 "bad reset request 0x%08x\n", reset_flags); 8501 } 8502 } 8503 8504 #ifdef CONFIG_I40E_DCB 8505 /** 8506 * i40e_dcb_need_reconfig - Check if DCB needs reconfig 8507 * @pf: board private structure 8508 * @old_cfg: current DCB config 8509 * @new_cfg: new DCB config 8510 **/ 8511 bool i40e_dcb_need_reconfig(struct i40e_pf *pf, 8512 struct i40e_dcbx_config *old_cfg, 8513 struct i40e_dcbx_config *new_cfg) 8514 { 8515 bool need_reconfig = false; 8516 8517 /* Check if ETS configuration has changed */ 8518 if (memcmp(&new_cfg->etscfg, 8519 &old_cfg->etscfg, 8520 sizeof(new_cfg->etscfg))) { 8521 /* If Priority Table has changed reconfig is needed */ 8522 if (memcmp(&new_cfg->etscfg.prioritytable, 8523 &old_cfg->etscfg.prioritytable, 8524 sizeof(new_cfg->etscfg.prioritytable))) { 8525 need_reconfig = true; 8526 dev_dbg(&pf->pdev->dev, "ETS UP2TC changed.\n"); 8527 } 8528 8529 if (memcmp(&new_cfg->etscfg.tcbwtable, 8530 &old_cfg->etscfg.tcbwtable, 8531 sizeof(new_cfg->etscfg.tcbwtable))) 8532 dev_dbg(&pf->pdev->dev, "ETS TC BW Table changed.\n"); 8533 8534 if (memcmp(&new_cfg->etscfg.tsatable, 8535 &old_cfg->etscfg.tsatable, 8536 sizeof(new_cfg->etscfg.tsatable))) 8537 dev_dbg(&pf->pdev->dev, "ETS TSA Table changed.\n"); 8538 } 8539 8540 /* Check if PFC configuration has changed */ 8541 if (memcmp(&new_cfg->pfc, 8542 &old_cfg->pfc, 8543 sizeof(new_cfg->pfc))) { 8544 need_reconfig = true; 8545 dev_dbg(&pf->pdev->dev, "PFC config change detected.\n"); 8546 } 8547 8548 /* Check if APP Table has changed */ 8549 if (memcmp(&new_cfg->app, 8550 &old_cfg->app, 8551 sizeof(new_cfg->app))) { 8552 need_reconfig = true; 8553 dev_dbg(&pf->pdev->dev, "APP Table change detected.\n"); 8554 } 8555 8556 dev_dbg(&pf->pdev->dev, "dcb need_reconfig=%d\n", need_reconfig); 8557 return need_reconfig; 8558 } 8559 8560 /** 8561 * i40e_handle_lldp_event - Handle LLDP Change MIB event 8562 * @pf: board private structure 8563 * @e: event info posted on ARQ 8564 **/ 8565 static int i40e_handle_lldp_event(struct i40e_pf *pf, 8566 struct i40e_arq_event_info *e) 8567 { 8568 struct i40e_aqc_lldp_get_mib *mib = 8569 (struct i40e_aqc_lldp_get_mib *)&e->desc.params.raw; 8570 struct i40e_hw *hw = &pf->hw; 8571 struct i40e_dcbx_config tmp_dcbx_cfg; 8572 bool need_reconfig = false; 8573 int ret = 0; 8574 u8 type; 8575 8576 /* Not DCB capable or capability disabled */ 8577 if (!(pf->flags & I40E_FLAG_DCB_CAPABLE)) 8578 return ret; 8579 8580 /* Ignore if event is not for Nearest Bridge */ 8581 type = ((mib->type >> I40E_AQ_LLDP_BRIDGE_TYPE_SHIFT) 8582 & I40E_AQ_LLDP_BRIDGE_TYPE_MASK); 8583 dev_dbg(&pf->pdev->dev, "LLDP event mib bridge type 0x%x\n", type); 8584 if (type != I40E_AQ_LLDP_BRIDGE_TYPE_NEAREST_BRIDGE) 8585 return ret; 8586 8587 /* Check MIB Type and return if event for Remote MIB update */ 8588 type = mib->type & I40E_AQ_LLDP_MIB_TYPE_MASK; 8589 dev_dbg(&pf->pdev->dev, 8590 "LLDP event mib type %s\n", type ? "remote" : "local"); 8591 if (type == I40E_AQ_LLDP_MIB_REMOTE) { 8592 /* Update the remote cached instance and return */ 8593 ret = i40e_aq_get_dcb_config(hw, I40E_AQ_LLDP_MIB_REMOTE, 8594 I40E_AQ_LLDP_BRIDGE_TYPE_NEAREST_BRIDGE, 8595 &hw->remote_dcbx_config); 8596 goto exit; 8597 } 8598 8599 /* Store the old configuration */ 8600 tmp_dcbx_cfg = hw->local_dcbx_config; 8601 8602 /* Reset the old DCBx configuration data */ 8603 memset(&hw->local_dcbx_config, 0, sizeof(hw->local_dcbx_config)); 8604 /* Get updated DCBX data from firmware */ 8605 ret = i40e_get_dcb_config(&pf->hw); 8606 if (ret) { 8607 dev_info(&pf->pdev->dev, 8608 "Failed querying DCB configuration data from firmware, err %s aq_err %s\n", 8609 i40e_stat_str(&pf->hw, ret), 8610 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 8611 goto exit; 8612 } 8613 8614 /* No change detected in DCBX configs */ 8615 if (!memcmp(&tmp_dcbx_cfg, &hw->local_dcbx_config, 8616 sizeof(tmp_dcbx_cfg))) { 8617 dev_dbg(&pf->pdev->dev, "No change detected in DCBX configuration.\n"); 8618 goto exit; 8619 } 8620 8621 need_reconfig = i40e_dcb_need_reconfig(pf, &tmp_dcbx_cfg, 8622 &hw->local_dcbx_config); 8623 8624 i40e_dcbnl_flush_apps(pf, &tmp_dcbx_cfg, &hw->local_dcbx_config); 8625 8626 if (!need_reconfig) 8627 goto exit; 8628 8629 /* Enable DCB tagging only when more than one TC */ 8630 if (i40e_dcb_get_num_tc(&hw->local_dcbx_config) > 1) 8631 pf->flags |= I40E_FLAG_DCB_ENABLED; 8632 else 8633 pf->flags &= ~I40E_FLAG_DCB_ENABLED; 8634 8635 set_bit(__I40E_PORT_SUSPENDED, pf->state); 8636 /* Reconfiguration needed quiesce all VSIs */ 8637 i40e_pf_quiesce_all_vsi(pf); 8638 8639 /* Changes in configuration update VEB/VSI */ 8640 i40e_dcb_reconfigure(pf); 8641 8642 ret = i40e_resume_port_tx(pf); 8643 8644 clear_bit(__I40E_PORT_SUSPENDED, pf->state); 8645 /* In case of error no point in resuming VSIs */ 8646 if (ret) 8647 goto exit; 8648 8649 /* Wait for the PF's queues to be disabled */ 8650 ret = i40e_pf_wait_queues_disabled(pf); 8651 if (ret) { 8652 /* Schedule PF reset to recover */ 8653 set_bit(__I40E_PF_RESET_REQUESTED, pf->state); 8654 i40e_service_event_schedule(pf); 8655 } else { 8656 i40e_pf_unquiesce_all_vsi(pf); 8657 set_bit(__I40E_CLIENT_SERVICE_REQUESTED, pf->state); 8658 set_bit(__I40E_CLIENT_L2_CHANGE, pf->state); 8659 } 8660 8661 exit: 8662 return ret; 8663 } 8664 #endif /* CONFIG_I40E_DCB */ 8665 8666 /** 8667 * i40e_do_reset_safe - Protected reset path for userland calls. 8668 * @pf: board private structure 8669 * @reset_flags: which reset is requested 8670 * 8671 **/ 8672 void i40e_do_reset_safe(struct i40e_pf *pf, u32 reset_flags) 8673 { 8674 rtnl_lock(); 8675 i40e_do_reset(pf, reset_flags, true); 8676 rtnl_unlock(); 8677 } 8678 8679 /** 8680 * i40e_handle_lan_overflow_event - Handler for LAN queue overflow event 8681 * @pf: board private structure 8682 * @e: event info posted on ARQ 8683 * 8684 * Handler for LAN Queue Overflow Event generated by the firmware for PF 8685 * and VF queues 8686 **/ 8687 static void i40e_handle_lan_overflow_event(struct i40e_pf *pf, 8688 struct i40e_arq_event_info *e) 8689 { 8690 struct i40e_aqc_lan_overflow *data = 8691 (struct i40e_aqc_lan_overflow *)&e->desc.params.raw; 8692 u32 queue = le32_to_cpu(data->prtdcb_rupto); 8693 u32 qtx_ctl = le32_to_cpu(data->otx_ctl); 8694 struct i40e_hw *hw = &pf->hw; 8695 struct i40e_vf *vf; 8696 u16 vf_id; 8697 8698 dev_dbg(&pf->pdev->dev, "overflow Rx Queue Number = %d QTX_CTL=0x%08x\n", 8699 queue, qtx_ctl); 8700 8701 /* Queue belongs to VF, find the VF and issue VF reset */ 8702 if (((qtx_ctl & I40E_QTX_CTL_PFVF_Q_MASK) 8703 >> I40E_QTX_CTL_PFVF_Q_SHIFT) == I40E_QTX_CTL_VF_QUEUE) { 8704 vf_id = (u16)((qtx_ctl & I40E_QTX_CTL_VFVM_INDX_MASK) 8705 >> I40E_QTX_CTL_VFVM_INDX_SHIFT); 8706 vf_id -= hw->func_caps.vf_base_id; 8707 vf = &pf->vf[vf_id]; 8708 i40e_vc_notify_vf_reset(vf); 8709 /* Allow VF to process pending reset notification */ 8710 msleep(20); 8711 i40e_reset_vf(vf, false); 8712 } 8713 } 8714 8715 /** 8716 * i40e_get_cur_guaranteed_fd_count - Get the consumed guaranteed FD filters 8717 * @pf: board private structure 8718 **/ 8719 u32 i40e_get_cur_guaranteed_fd_count(struct i40e_pf *pf) 8720 { 8721 u32 val, fcnt_prog; 8722 8723 val = rd32(&pf->hw, I40E_PFQF_FDSTAT); 8724 fcnt_prog = (val & I40E_PFQF_FDSTAT_GUARANT_CNT_MASK); 8725 return fcnt_prog; 8726 } 8727 8728 /** 8729 * i40e_get_current_fd_count - Get total FD filters programmed for this PF 8730 * @pf: board private structure 8731 **/ 8732 u32 i40e_get_current_fd_count(struct i40e_pf *pf) 8733 { 8734 u32 val, fcnt_prog; 8735 8736 val = rd32(&pf->hw, I40E_PFQF_FDSTAT); 8737 fcnt_prog = (val & I40E_PFQF_FDSTAT_GUARANT_CNT_MASK) + 8738 ((val & I40E_PFQF_FDSTAT_BEST_CNT_MASK) >> 8739 I40E_PFQF_FDSTAT_BEST_CNT_SHIFT); 8740 return fcnt_prog; 8741 } 8742 8743 /** 8744 * i40e_get_global_fd_count - Get total FD filters programmed on device 8745 * @pf: board private structure 8746 **/ 8747 u32 i40e_get_global_fd_count(struct i40e_pf *pf) 8748 { 8749 u32 val, fcnt_prog; 8750 8751 val = rd32(&pf->hw, I40E_GLQF_FDCNT_0); 8752 fcnt_prog = (val & I40E_GLQF_FDCNT_0_GUARANT_CNT_MASK) + 8753 ((val & I40E_GLQF_FDCNT_0_BESTCNT_MASK) >> 8754 I40E_GLQF_FDCNT_0_BESTCNT_SHIFT); 8755 return fcnt_prog; 8756 } 8757 8758 /** 8759 * i40e_reenable_fdir_sb - Restore FDir SB capability 8760 * @pf: board private structure 8761 **/ 8762 static void i40e_reenable_fdir_sb(struct i40e_pf *pf) 8763 { 8764 if (test_and_clear_bit(__I40E_FD_SB_AUTO_DISABLED, pf->state)) 8765 if ((pf->flags & I40E_FLAG_FD_SB_ENABLED) && 8766 (I40E_DEBUG_FD & pf->hw.debug_mask)) 8767 dev_info(&pf->pdev->dev, "FD Sideband/ntuple is being enabled since we have space in the table now\n"); 8768 } 8769 8770 /** 8771 * i40e_reenable_fdir_atr - Restore FDir ATR capability 8772 * @pf: board private structure 8773 **/ 8774 static void i40e_reenable_fdir_atr(struct i40e_pf *pf) 8775 { 8776 if (test_and_clear_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state)) { 8777 /* ATR uses the same filtering logic as SB rules. It only 8778 * functions properly if the input set mask is at the default 8779 * settings. It is safe to restore the default input set 8780 * because there are no active TCPv4 filter rules. 8781 */ 8782 i40e_write_fd_input_set(pf, I40E_FILTER_PCTYPE_NONF_IPV4_TCP, 8783 I40E_L3_SRC_MASK | I40E_L3_DST_MASK | 8784 I40E_L4_SRC_MASK | I40E_L4_DST_MASK); 8785 8786 if ((pf->flags & I40E_FLAG_FD_ATR_ENABLED) && 8787 (I40E_DEBUG_FD & pf->hw.debug_mask)) 8788 dev_info(&pf->pdev->dev, "ATR is being enabled since we have space in the table and there are no conflicting ntuple rules\n"); 8789 } 8790 } 8791 8792 /** 8793 * i40e_delete_invalid_filter - Delete an invalid FDIR filter 8794 * @pf: board private structure 8795 * @filter: FDir filter to remove 8796 */ 8797 static void i40e_delete_invalid_filter(struct i40e_pf *pf, 8798 struct i40e_fdir_filter *filter) 8799 { 8800 /* Update counters */ 8801 pf->fdir_pf_active_filters--; 8802 pf->fd_inv = 0; 8803 8804 switch (filter->flow_type) { 8805 case TCP_V4_FLOW: 8806 pf->fd_tcp4_filter_cnt--; 8807 break; 8808 case UDP_V4_FLOW: 8809 pf->fd_udp4_filter_cnt--; 8810 break; 8811 case SCTP_V4_FLOW: 8812 pf->fd_sctp4_filter_cnt--; 8813 break; 8814 case IP_USER_FLOW: 8815 switch (filter->ip4_proto) { 8816 case IPPROTO_TCP: 8817 pf->fd_tcp4_filter_cnt--; 8818 break; 8819 case IPPROTO_UDP: 8820 pf->fd_udp4_filter_cnt--; 8821 break; 8822 case IPPROTO_SCTP: 8823 pf->fd_sctp4_filter_cnt--; 8824 break; 8825 case IPPROTO_IP: 8826 pf->fd_ip4_filter_cnt--; 8827 break; 8828 } 8829 break; 8830 } 8831 8832 /* Remove the filter from the list and free memory */ 8833 hlist_del(&filter->fdir_node); 8834 kfree(filter); 8835 } 8836 8837 /** 8838 * i40e_fdir_check_and_reenable - Function to reenabe FD ATR or SB if disabled 8839 * @pf: board private structure 8840 **/ 8841 void i40e_fdir_check_and_reenable(struct i40e_pf *pf) 8842 { 8843 struct i40e_fdir_filter *filter; 8844 u32 fcnt_prog, fcnt_avail; 8845 struct hlist_node *node; 8846 8847 if (test_bit(__I40E_FD_FLUSH_REQUESTED, pf->state)) 8848 return; 8849 8850 /* Check if we have enough room to re-enable FDir SB capability. */ 8851 fcnt_prog = i40e_get_global_fd_count(pf); 8852 fcnt_avail = pf->fdir_pf_filter_count; 8853 if ((fcnt_prog < (fcnt_avail - I40E_FDIR_BUFFER_HEAD_ROOM)) || 8854 (pf->fd_add_err == 0) || 8855 (i40e_get_current_atr_cnt(pf) < pf->fd_atr_cnt)) 8856 i40e_reenable_fdir_sb(pf); 8857 8858 /* We should wait for even more space before re-enabling ATR. 8859 * Additionally, we cannot enable ATR as long as we still have TCP SB 8860 * rules active. 8861 */ 8862 if ((fcnt_prog < (fcnt_avail - I40E_FDIR_BUFFER_HEAD_ROOM_FOR_ATR)) && 8863 (pf->fd_tcp4_filter_cnt == 0)) 8864 i40e_reenable_fdir_atr(pf); 8865 8866 /* if hw had a problem adding a filter, delete it */ 8867 if (pf->fd_inv > 0) { 8868 hlist_for_each_entry_safe(filter, node, 8869 &pf->fdir_filter_list, fdir_node) 8870 if (filter->fd_id == pf->fd_inv) 8871 i40e_delete_invalid_filter(pf, filter); 8872 } 8873 } 8874 8875 #define I40E_MIN_FD_FLUSH_INTERVAL 10 8876 #define I40E_MIN_FD_FLUSH_SB_ATR_UNSTABLE 30 8877 /** 8878 * i40e_fdir_flush_and_replay - Function to flush all FD filters and replay SB 8879 * @pf: board private structure 8880 **/ 8881 static void i40e_fdir_flush_and_replay(struct i40e_pf *pf) 8882 { 8883 unsigned long min_flush_time; 8884 int flush_wait_retry = 50; 8885 bool disable_atr = false; 8886 int fd_room; 8887 int reg; 8888 8889 if (!time_after(jiffies, pf->fd_flush_timestamp + 8890 (I40E_MIN_FD_FLUSH_INTERVAL * HZ))) 8891 return; 8892 8893 /* If the flush is happening too quick and we have mostly SB rules we 8894 * should not re-enable ATR for some time. 8895 */ 8896 min_flush_time = pf->fd_flush_timestamp + 8897 (I40E_MIN_FD_FLUSH_SB_ATR_UNSTABLE * HZ); 8898 fd_room = pf->fdir_pf_filter_count - pf->fdir_pf_active_filters; 8899 8900 if (!(time_after(jiffies, min_flush_time)) && 8901 (fd_room < I40E_FDIR_BUFFER_HEAD_ROOM_FOR_ATR)) { 8902 if (I40E_DEBUG_FD & pf->hw.debug_mask) 8903 dev_info(&pf->pdev->dev, "ATR disabled, not enough FD filter space.\n"); 8904 disable_atr = true; 8905 } 8906 8907 pf->fd_flush_timestamp = jiffies; 8908 set_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state); 8909 /* flush all filters */ 8910 wr32(&pf->hw, I40E_PFQF_CTL_1, 8911 I40E_PFQF_CTL_1_CLEARFDTABLE_MASK); 8912 i40e_flush(&pf->hw); 8913 pf->fd_flush_cnt++; 8914 pf->fd_add_err = 0; 8915 do { 8916 /* Check FD flush status every 5-6msec */ 8917 usleep_range(5000, 6000); 8918 reg = rd32(&pf->hw, I40E_PFQF_CTL_1); 8919 if (!(reg & I40E_PFQF_CTL_1_CLEARFDTABLE_MASK)) 8920 break; 8921 } while (flush_wait_retry--); 8922 if (reg & I40E_PFQF_CTL_1_CLEARFDTABLE_MASK) { 8923 dev_warn(&pf->pdev->dev, "FD table did not flush, needs more time\n"); 8924 } else { 8925 /* replay sideband filters */ 8926 i40e_fdir_filter_restore(pf->vsi[pf->lan_vsi]); 8927 if (!disable_atr && !pf->fd_tcp4_filter_cnt) 8928 clear_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state); 8929 clear_bit(__I40E_FD_FLUSH_REQUESTED, pf->state); 8930 if (I40E_DEBUG_FD & pf->hw.debug_mask) 8931 dev_info(&pf->pdev->dev, "FD Filter table flushed and FD-SB replayed.\n"); 8932 } 8933 } 8934 8935 /** 8936 * i40e_get_current_atr_count - Get the count of total FD ATR filters programmed 8937 * @pf: board private structure 8938 **/ 8939 u32 i40e_get_current_atr_cnt(struct i40e_pf *pf) 8940 { 8941 return i40e_get_current_fd_count(pf) - pf->fdir_pf_active_filters; 8942 } 8943 8944 /* We can see up to 256 filter programming desc in transit if the filters are 8945 * being applied really fast; before we see the first 8946 * filter miss error on Rx queue 0. Accumulating enough error messages before 8947 * reacting will make sure we don't cause flush too often. 8948 */ 8949 #define I40E_MAX_FD_PROGRAM_ERROR 256 8950 8951 /** 8952 * i40e_fdir_reinit_subtask - Worker thread to reinit FDIR filter table 8953 * @pf: board private structure 8954 **/ 8955 static void i40e_fdir_reinit_subtask(struct i40e_pf *pf) 8956 { 8957 8958 /* if interface is down do nothing */ 8959 if (test_bit(__I40E_DOWN, pf->state)) 8960 return; 8961 8962 if (test_bit(__I40E_FD_FLUSH_REQUESTED, pf->state)) 8963 i40e_fdir_flush_and_replay(pf); 8964 8965 i40e_fdir_check_and_reenable(pf); 8966 8967 } 8968 8969 /** 8970 * i40e_vsi_link_event - notify VSI of a link event 8971 * @vsi: vsi to be notified 8972 * @link_up: link up or down 8973 **/ 8974 static void i40e_vsi_link_event(struct i40e_vsi *vsi, bool link_up) 8975 { 8976 if (!vsi || test_bit(__I40E_VSI_DOWN, vsi->state)) 8977 return; 8978 8979 switch (vsi->type) { 8980 case I40E_VSI_MAIN: 8981 if (!vsi->netdev || !vsi->netdev_registered) 8982 break; 8983 8984 if (link_up) { 8985 netif_carrier_on(vsi->netdev); 8986 netif_tx_wake_all_queues(vsi->netdev); 8987 } else { 8988 netif_carrier_off(vsi->netdev); 8989 netif_tx_stop_all_queues(vsi->netdev); 8990 } 8991 break; 8992 8993 case I40E_VSI_SRIOV: 8994 case I40E_VSI_VMDQ2: 8995 case I40E_VSI_CTRL: 8996 case I40E_VSI_IWARP: 8997 case I40E_VSI_MIRROR: 8998 default: 8999 /* there is no notification for other VSIs */ 9000 break; 9001 } 9002 } 9003 9004 /** 9005 * i40e_veb_link_event - notify elements on the veb of a link event 9006 * @veb: veb to be notified 9007 * @link_up: link up or down 9008 **/ 9009 static void i40e_veb_link_event(struct i40e_veb *veb, bool link_up) 9010 { 9011 struct i40e_pf *pf; 9012 int i; 9013 9014 if (!veb || !veb->pf) 9015 return; 9016 pf = veb->pf; 9017 9018 /* depth first... */ 9019 for (i = 0; i < I40E_MAX_VEB; i++) 9020 if (pf->veb[i] && (pf->veb[i]->uplink_seid == veb->seid)) 9021 i40e_veb_link_event(pf->veb[i], link_up); 9022 9023 /* ... now the local VSIs */ 9024 for (i = 0; i < pf->num_alloc_vsi; i++) 9025 if (pf->vsi[i] && (pf->vsi[i]->uplink_seid == veb->seid)) 9026 i40e_vsi_link_event(pf->vsi[i], link_up); 9027 } 9028 9029 /** 9030 * i40e_link_event - Update netif_carrier status 9031 * @pf: board private structure 9032 **/ 9033 static void i40e_link_event(struct i40e_pf *pf) 9034 { 9035 struct i40e_vsi *vsi = pf->vsi[pf->lan_vsi]; 9036 u8 new_link_speed, old_link_speed; 9037 i40e_status status; 9038 bool new_link, old_link; 9039 9040 /* set this to force the get_link_status call to refresh state */ 9041 pf->hw.phy.get_link_info = true; 9042 old_link = (pf->hw.phy.link_info_old.link_info & I40E_AQ_LINK_UP); 9043 status = i40e_get_link_status(&pf->hw, &new_link); 9044 9045 /* On success, disable temp link polling */ 9046 if (status == I40E_SUCCESS) { 9047 clear_bit(__I40E_TEMP_LINK_POLLING, pf->state); 9048 } else { 9049 /* Enable link polling temporarily until i40e_get_link_status 9050 * returns I40E_SUCCESS 9051 */ 9052 set_bit(__I40E_TEMP_LINK_POLLING, pf->state); 9053 dev_dbg(&pf->pdev->dev, "couldn't get link state, status: %d\n", 9054 status); 9055 return; 9056 } 9057 9058 old_link_speed = pf->hw.phy.link_info_old.link_speed; 9059 new_link_speed = pf->hw.phy.link_info.link_speed; 9060 9061 if (new_link == old_link && 9062 new_link_speed == old_link_speed && 9063 (test_bit(__I40E_VSI_DOWN, vsi->state) || 9064 new_link == netif_carrier_ok(vsi->netdev))) 9065 return; 9066 9067 i40e_print_link_message(vsi, new_link); 9068 9069 /* Notify the base of the switch tree connected to 9070 * the link. Floating VEBs are not notified. 9071 */ 9072 if (pf->lan_veb < I40E_MAX_VEB && pf->veb[pf->lan_veb]) 9073 i40e_veb_link_event(pf->veb[pf->lan_veb], new_link); 9074 else 9075 i40e_vsi_link_event(vsi, new_link); 9076 9077 if (pf->vf) 9078 i40e_vc_notify_link_state(pf); 9079 9080 if (pf->flags & I40E_FLAG_PTP) 9081 i40e_ptp_set_increment(pf); 9082 } 9083 9084 /** 9085 * i40e_watchdog_subtask - periodic checks not using event driven response 9086 * @pf: board private structure 9087 **/ 9088 static void i40e_watchdog_subtask(struct i40e_pf *pf) 9089 { 9090 int i; 9091 9092 /* if interface is down do nothing */ 9093 if (test_bit(__I40E_DOWN, pf->state) || 9094 test_bit(__I40E_CONFIG_BUSY, pf->state)) 9095 return; 9096 9097 /* make sure we don't do these things too often */ 9098 if (time_before(jiffies, (pf->service_timer_previous + 9099 pf->service_timer_period))) 9100 return; 9101 pf->service_timer_previous = jiffies; 9102 9103 if ((pf->flags & I40E_FLAG_LINK_POLLING_ENABLED) || 9104 test_bit(__I40E_TEMP_LINK_POLLING, pf->state)) 9105 i40e_link_event(pf); 9106 9107 /* Update the stats for active netdevs so the network stack 9108 * can look at updated numbers whenever it cares to 9109 */ 9110 for (i = 0; i < pf->num_alloc_vsi; i++) 9111 if (pf->vsi[i] && pf->vsi[i]->netdev) 9112 i40e_update_stats(pf->vsi[i]); 9113 9114 if (pf->flags & I40E_FLAG_VEB_STATS_ENABLED) { 9115 /* Update the stats for the active switching components */ 9116 for (i = 0; i < I40E_MAX_VEB; i++) 9117 if (pf->veb[i]) 9118 i40e_update_veb_stats(pf->veb[i]); 9119 } 9120 9121 i40e_ptp_rx_hang(pf); 9122 i40e_ptp_tx_hang(pf); 9123 } 9124 9125 /** 9126 * i40e_reset_subtask - Set up for resetting the device and driver 9127 * @pf: board private structure 9128 **/ 9129 static void i40e_reset_subtask(struct i40e_pf *pf) 9130 { 9131 u32 reset_flags = 0; 9132 9133 if (test_bit(__I40E_REINIT_REQUESTED, pf->state)) { 9134 reset_flags |= BIT(__I40E_REINIT_REQUESTED); 9135 clear_bit(__I40E_REINIT_REQUESTED, pf->state); 9136 } 9137 if (test_bit(__I40E_PF_RESET_REQUESTED, pf->state)) { 9138 reset_flags |= BIT(__I40E_PF_RESET_REQUESTED); 9139 clear_bit(__I40E_PF_RESET_REQUESTED, pf->state); 9140 } 9141 if (test_bit(__I40E_CORE_RESET_REQUESTED, pf->state)) { 9142 reset_flags |= BIT(__I40E_CORE_RESET_REQUESTED); 9143 clear_bit(__I40E_CORE_RESET_REQUESTED, pf->state); 9144 } 9145 if (test_bit(__I40E_GLOBAL_RESET_REQUESTED, pf->state)) { 9146 reset_flags |= BIT(__I40E_GLOBAL_RESET_REQUESTED); 9147 clear_bit(__I40E_GLOBAL_RESET_REQUESTED, pf->state); 9148 } 9149 if (test_bit(__I40E_DOWN_REQUESTED, pf->state)) { 9150 reset_flags |= BIT(__I40E_DOWN_REQUESTED); 9151 clear_bit(__I40E_DOWN_REQUESTED, pf->state); 9152 } 9153 9154 /* If there's a recovery already waiting, it takes 9155 * precedence before starting a new reset sequence. 9156 */ 9157 if (test_bit(__I40E_RESET_INTR_RECEIVED, pf->state)) { 9158 i40e_prep_for_reset(pf, false); 9159 i40e_reset(pf); 9160 i40e_rebuild(pf, false, false); 9161 } 9162 9163 /* If we're already down or resetting, just bail */ 9164 if (reset_flags && 9165 !test_bit(__I40E_DOWN, pf->state) && 9166 !test_bit(__I40E_CONFIG_BUSY, pf->state)) { 9167 i40e_do_reset(pf, reset_flags, false); 9168 } 9169 } 9170 9171 /** 9172 * i40e_handle_link_event - Handle link event 9173 * @pf: board private structure 9174 * @e: event info posted on ARQ 9175 **/ 9176 static void i40e_handle_link_event(struct i40e_pf *pf, 9177 struct i40e_arq_event_info *e) 9178 { 9179 struct i40e_aqc_get_link_status *status = 9180 (struct i40e_aqc_get_link_status *)&e->desc.params.raw; 9181 9182 /* Do a new status request to re-enable LSE reporting 9183 * and load new status information into the hw struct 9184 * This completely ignores any state information 9185 * in the ARQ event info, instead choosing to always 9186 * issue the AQ update link status command. 9187 */ 9188 i40e_link_event(pf); 9189 9190 /* Check if module meets thermal requirements */ 9191 if (status->phy_type == I40E_PHY_TYPE_NOT_SUPPORTED_HIGH_TEMP) { 9192 dev_err(&pf->pdev->dev, 9193 "Rx/Tx is disabled on this device because the module does not meet thermal requirements.\n"); 9194 dev_err(&pf->pdev->dev, 9195 "Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules.\n"); 9196 } else { 9197 /* check for unqualified module, if link is down, suppress 9198 * the message if link was forced to be down. 9199 */ 9200 if ((status->link_info & I40E_AQ_MEDIA_AVAILABLE) && 9201 (!(status->an_info & I40E_AQ_QUALIFIED_MODULE)) && 9202 (!(status->link_info & I40E_AQ_LINK_UP)) && 9203 (!(pf->flags & I40E_FLAG_LINK_DOWN_ON_CLOSE_ENABLED))) { 9204 dev_err(&pf->pdev->dev, 9205 "Rx/Tx is disabled on this device because an unsupported SFP module type was detected.\n"); 9206 dev_err(&pf->pdev->dev, 9207 "Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules.\n"); 9208 } 9209 } 9210 } 9211 9212 /** 9213 * i40e_clean_adminq_subtask - Clean the AdminQ rings 9214 * @pf: board private structure 9215 **/ 9216 static void i40e_clean_adminq_subtask(struct i40e_pf *pf) 9217 { 9218 struct i40e_arq_event_info event; 9219 struct i40e_hw *hw = &pf->hw; 9220 u16 pending, i = 0; 9221 i40e_status ret; 9222 u16 opcode; 9223 u32 oldval; 9224 u32 val; 9225 9226 /* Do not run clean AQ when PF reset fails */ 9227 if (test_bit(__I40E_RESET_FAILED, pf->state)) 9228 return; 9229 9230 /* check for error indications */ 9231 val = rd32(&pf->hw, pf->hw.aq.arq.len); 9232 oldval = val; 9233 if (val & I40E_PF_ARQLEN_ARQVFE_MASK) { 9234 if (hw->debug_mask & I40E_DEBUG_AQ) 9235 dev_info(&pf->pdev->dev, "ARQ VF Error detected\n"); 9236 val &= ~I40E_PF_ARQLEN_ARQVFE_MASK; 9237 } 9238 if (val & I40E_PF_ARQLEN_ARQOVFL_MASK) { 9239 if (hw->debug_mask & I40E_DEBUG_AQ) 9240 dev_info(&pf->pdev->dev, "ARQ Overflow Error detected\n"); 9241 val &= ~I40E_PF_ARQLEN_ARQOVFL_MASK; 9242 pf->arq_overflows++; 9243 } 9244 if (val & I40E_PF_ARQLEN_ARQCRIT_MASK) { 9245 if (hw->debug_mask & I40E_DEBUG_AQ) 9246 dev_info(&pf->pdev->dev, "ARQ Critical Error detected\n"); 9247 val &= ~I40E_PF_ARQLEN_ARQCRIT_MASK; 9248 } 9249 if (oldval != val) 9250 wr32(&pf->hw, pf->hw.aq.arq.len, val); 9251 9252 val = rd32(&pf->hw, pf->hw.aq.asq.len); 9253 oldval = val; 9254 if (val & I40E_PF_ATQLEN_ATQVFE_MASK) { 9255 if (pf->hw.debug_mask & I40E_DEBUG_AQ) 9256 dev_info(&pf->pdev->dev, "ASQ VF Error detected\n"); 9257 val &= ~I40E_PF_ATQLEN_ATQVFE_MASK; 9258 } 9259 if (val & I40E_PF_ATQLEN_ATQOVFL_MASK) { 9260 if (pf->hw.debug_mask & I40E_DEBUG_AQ) 9261 dev_info(&pf->pdev->dev, "ASQ Overflow Error detected\n"); 9262 val &= ~I40E_PF_ATQLEN_ATQOVFL_MASK; 9263 } 9264 if (val & I40E_PF_ATQLEN_ATQCRIT_MASK) { 9265 if (pf->hw.debug_mask & I40E_DEBUG_AQ) 9266 dev_info(&pf->pdev->dev, "ASQ Critical Error detected\n"); 9267 val &= ~I40E_PF_ATQLEN_ATQCRIT_MASK; 9268 } 9269 if (oldval != val) 9270 wr32(&pf->hw, pf->hw.aq.asq.len, val); 9271 9272 event.buf_len = I40E_MAX_AQ_BUF_SIZE; 9273 event.msg_buf = kzalloc(event.buf_len, GFP_KERNEL); 9274 if (!event.msg_buf) 9275 return; 9276 9277 do { 9278 ret = i40e_clean_arq_element(hw, &event, &pending); 9279 if (ret == I40E_ERR_ADMIN_QUEUE_NO_WORK) 9280 break; 9281 else if (ret) { 9282 dev_info(&pf->pdev->dev, "ARQ event error %d\n", ret); 9283 break; 9284 } 9285 9286 opcode = le16_to_cpu(event.desc.opcode); 9287 switch (opcode) { 9288 9289 case i40e_aqc_opc_get_link_status: 9290 i40e_handle_link_event(pf, &event); 9291 break; 9292 case i40e_aqc_opc_send_msg_to_pf: 9293 ret = i40e_vc_process_vf_msg(pf, 9294 le16_to_cpu(event.desc.retval), 9295 le32_to_cpu(event.desc.cookie_high), 9296 le32_to_cpu(event.desc.cookie_low), 9297 event.msg_buf, 9298 event.msg_len); 9299 break; 9300 case i40e_aqc_opc_lldp_update_mib: 9301 dev_dbg(&pf->pdev->dev, "ARQ: Update LLDP MIB event received\n"); 9302 #ifdef CONFIG_I40E_DCB 9303 rtnl_lock(); 9304 ret = i40e_handle_lldp_event(pf, &event); 9305 rtnl_unlock(); 9306 #endif /* CONFIG_I40E_DCB */ 9307 break; 9308 case i40e_aqc_opc_event_lan_overflow: 9309 dev_dbg(&pf->pdev->dev, "ARQ LAN queue overflow event received\n"); 9310 i40e_handle_lan_overflow_event(pf, &event); 9311 break; 9312 case i40e_aqc_opc_send_msg_to_peer: 9313 dev_info(&pf->pdev->dev, "ARQ: Msg from other pf\n"); 9314 break; 9315 case i40e_aqc_opc_nvm_erase: 9316 case i40e_aqc_opc_nvm_update: 9317 case i40e_aqc_opc_oem_post_update: 9318 i40e_debug(&pf->hw, I40E_DEBUG_NVM, 9319 "ARQ NVM operation 0x%04x completed\n", 9320 opcode); 9321 break; 9322 default: 9323 dev_info(&pf->pdev->dev, 9324 "ARQ: Unknown event 0x%04x ignored\n", 9325 opcode); 9326 break; 9327 } 9328 } while (i++ < pf->adminq_work_limit); 9329 9330 if (i < pf->adminq_work_limit) 9331 clear_bit(__I40E_ADMINQ_EVENT_PENDING, pf->state); 9332 9333 /* re-enable Admin queue interrupt cause */ 9334 val = rd32(hw, I40E_PFINT_ICR0_ENA); 9335 val |= I40E_PFINT_ICR0_ENA_ADMINQ_MASK; 9336 wr32(hw, I40E_PFINT_ICR0_ENA, val); 9337 i40e_flush(hw); 9338 9339 kfree(event.msg_buf); 9340 } 9341 9342 /** 9343 * i40e_verify_eeprom - make sure eeprom is good to use 9344 * @pf: board private structure 9345 **/ 9346 static void i40e_verify_eeprom(struct i40e_pf *pf) 9347 { 9348 int err; 9349 9350 err = i40e_diag_eeprom_test(&pf->hw); 9351 if (err) { 9352 /* retry in case of garbage read */ 9353 err = i40e_diag_eeprom_test(&pf->hw); 9354 if (err) { 9355 dev_info(&pf->pdev->dev, "eeprom check failed (%d), Tx/Rx traffic disabled\n", 9356 err); 9357 set_bit(__I40E_BAD_EEPROM, pf->state); 9358 } 9359 } 9360 9361 if (!err && test_bit(__I40E_BAD_EEPROM, pf->state)) { 9362 dev_info(&pf->pdev->dev, "eeprom check passed, Tx/Rx traffic enabled\n"); 9363 clear_bit(__I40E_BAD_EEPROM, pf->state); 9364 } 9365 } 9366 9367 /** 9368 * i40e_enable_pf_switch_lb 9369 * @pf: pointer to the PF structure 9370 * 9371 * enable switch loop back or die - no point in a return value 9372 **/ 9373 static void i40e_enable_pf_switch_lb(struct i40e_pf *pf) 9374 { 9375 struct i40e_vsi *vsi = pf->vsi[pf->lan_vsi]; 9376 struct i40e_vsi_context ctxt; 9377 int ret; 9378 9379 ctxt.seid = pf->main_vsi_seid; 9380 ctxt.pf_num = pf->hw.pf_id; 9381 ctxt.vf_num = 0; 9382 ret = i40e_aq_get_vsi_params(&pf->hw, &ctxt, NULL); 9383 if (ret) { 9384 dev_info(&pf->pdev->dev, 9385 "couldn't get PF vsi config, err %s aq_err %s\n", 9386 i40e_stat_str(&pf->hw, ret), 9387 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 9388 return; 9389 } 9390 ctxt.flags = I40E_AQ_VSI_TYPE_PF; 9391 ctxt.info.valid_sections = cpu_to_le16(I40E_AQ_VSI_PROP_SWITCH_VALID); 9392 ctxt.info.switch_id |= cpu_to_le16(I40E_AQ_VSI_SW_ID_FLAG_ALLOW_LB); 9393 9394 ret = i40e_aq_update_vsi_params(&vsi->back->hw, &ctxt, NULL); 9395 if (ret) { 9396 dev_info(&pf->pdev->dev, 9397 "update vsi switch failed, err %s aq_err %s\n", 9398 i40e_stat_str(&pf->hw, ret), 9399 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 9400 } 9401 } 9402 9403 /** 9404 * i40e_disable_pf_switch_lb 9405 * @pf: pointer to the PF structure 9406 * 9407 * disable switch loop back or die - no point in a return value 9408 **/ 9409 static void i40e_disable_pf_switch_lb(struct i40e_pf *pf) 9410 { 9411 struct i40e_vsi *vsi = pf->vsi[pf->lan_vsi]; 9412 struct i40e_vsi_context ctxt; 9413 int ret; 9414 9415 ctxt.seid = pf->main_vsi_seid; 9416 ctxt.pf_num = pf->hw.pf_id; 9417 ctxt.vf_num = 0; 9418 ret = i40e_aq_get_vsi_params(&pf->hw, &ctxt, NULL); 9419 if (ret) { 9420 dev_info(&pf->pdev->dev, 9421 "couldn't get PF vsi config, err %s aq_err %s\n", 9422 i40e_stat_str(&pf->hw, ret), 9423 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 9424 return; 9425 } 9426 ctxt.flags = I40E_AQ_VSI_TYPE_PF; 9427 ctxt.info.valid_sections = cpu_to_le16(I40E_AQ_VSI_PROP_SWITCH_VALID); 9428 ctxt.info.switch_id &= ~cpu_to_le16(I40E_AQ_VSI_SW_ID_FLAG_ALLOW_LB); 9429 9430 ret = i40e_aq_update_vsi_params(&vsi->back->hw, &ctxt, NULL); 9431 if (ret) { 9432 dev_info(&pf->pdev->dev, 9433 "update vsi switch failed, err %s aq_err %s\n", 9434 i40e_stat_str(&pf->hw, ret), 9435 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 9436 } 9437 } 9438 9439 /** 9440 * i40e_config_bridge_mode - Configure the HW bridge mode 9441 * @veb: pointer to the bridge instance 9442 * 9443 * Configure the loop back mode for the LAN VSI that is downlink to the 9444 * specified HW bridge instance. It is expected this function is called 9445 * when a new HW bridge is instantiated. 9446 **/ 9447 static void i40e_config_bridge_mode(struct i40e_veb *veb) 9448 { 9449 struct i40e_pf *pf = veb->pf; 9450 9451 if (pf->hw.debug_mask & I40E_DEBUG_LAN) 9452 dev_info(&pf->pdev->dev, "enabling bridge mode: %s\n", 9453 veb->bridge_mode == BRIDGE_MODE_VEPA ? "VEPA" : "VEB"); 9454 if (veb->bridge_mode & BRIDGE_MODE_VEPA) 9455 i40e_disable_pf_switch_lb(pf); 9456 else 9457 i40e_enable_pf_switch_lb(pf); 9458 } 9459 9460 /** 9461 * i40e_reconstitute_veb - rebuild the VEB and anything connected to it 9462 * @veb: pointer to the VEB instance 9463 * 9464 * This is a recursive function that first builds the attached VSIs then 9465 * recurses in to build the next layer of VEB. We track the connections 9466 * through our own index numbers because the seid's from the HW could 9467 * change across the reset. 9468 **/ 9469 static int i40e_reconstitute_veb(struct i40e_veb *veb) 9470 { 9471 struct i40e_vsi *ctl_vsi = NULL; 9472 struct i40e_pf *pf = veb->pf; 9473 int v, veb_idx; 9474 int ret; 9475 9476 /* build VSI that owns this VEB, temporarily attached to base VEB */ 9477 for (v = 0; v < pf->num_alloc_vsi && !ctl_vsi; v++) { 9478 if (pf->vsi[v] && 9479 pf->vsi[v]->veb_idx == veb->idx && 9480 pf->vsi[v]->flags & I40E_VSI_FLAG_VEB_OWNER) { 9481 ctl_vsi = pf->vsi[v]; 9482 break; 9483 } 9484 } 9485 if (!ctl_vsi) { 9486 dev_info(&pf->pdev->dev, 9487 "missing owner VSI for veb_idx %d\n", veb->idx); 9488 ret = -ENOENT; 9489 goto end_reconstitute; 9490 } 9491 if (ctl_vsi != pf->vsi[pf->lan_vsi]) 9492 ctl_vsi->uplink_seid = pf->vsi[pf->lan_vsi]->uplink_seid; 9493 ret = i40e_add_vsi(ctl_vsi); 9494 if (ret) { 9495 dev_info(&pf->pdev->dev, 9496 "rebuild of veb_idx %d owner VSI failed: %d\n", 9497 veb->idx, ret); 9498 goto end_reconstitute; 9499 } 9500 i40e_vsi_reset_stats(ctl_vsi); 9501 9502 /* create the VEB in the switch and move the VSI onto the VEB */ 9503 ret = i40e_add_veb(veb, ctl_vsi); 9504 if (ret) 9505 goto end_reconstitute; 9506 9507 if (pf->flags & I40E_FLAG_VEB_MODE_ENABLED) 9508 veb->bridge_mode = BRIDGE_MODE_VEB; 9509 else 9510 veb->bridge_mode = BRIDGE_MODE_VEPA; 9511 i40e_config_bridge_mode(veb); 9512 9513 /* create the remaining VSIs attached to this VEB */ 9514 for (v = 0; v < pf->num_alloc_vsi; v++) { 9515 if (!pf->vsi[v] || pf->vsi[v] == ctl_vsi) 9516 continue; 9517 9518 if (pf->vsi[v]->veb_idx == veb->idx) { 9519 struct i40e_vsi *vsi = pf->vsi[v]; 9520 9521 vsi->uplink_seid = veb->seid; 9522 ret = i40e_add_vsi(vsi); 9523 if (ret) { 9524 dev_info(&pf->pdev->dev, 9525 "rebuild of vsi_idx %d failed: %d\n", 9526 v, ret); 9527 goto end_reconstitute; 9528 } 9529 i40e_vsi_reset_stats(vsi); 9530 } 9531 } 9532 9533 /* create any VEBs attached to this VEB - RECURSION */ 9534 for (veb_idx = 0; veb_idx < I40E_MAX_VEB; veb_idx++) { 9535 if (pf->veb[veb_idx] && pf->veb[veb_idx]->veb_idx == veb->idx) { 9536 pf->veb[veb_idx]->uplink_seid = veb->seid; 9537 ret = i40e_reconstitute_veb(pf->veb[veb_idx]); 9538 if (ret) 9539 break; 9540 } 9541 } 9542 9543 end_reconstitute: 9544 return ret; 9545 } 9546 9547 /** 9548 * i40e_get_capabilities - get info about the HW 9549 * @pf: the PF struct 9550 **/ 9551 static int i40e_get_capabilities(struct i40e_pf *pf, 9552 enum i40e_admin_queue_opc list_type) 9553 { 9554 struct i40e_aqc_list_capabilities_element_resp *cap_buf; 9555 u16 data_size; 9556 int buf_len; 9557 int err; 9558 9559 buf_len = 40 * sizeof(struct i40e_aqc_list_capabilities_element_resp); 9560 do { 9561 cap_buf = kzalloc(buf_len, GFP_KERNEL); 9562 if (!cap_buf) 9563 return -ENOMEM; 9564 9565 /* this loads the data into the hw struct for us */ 9566 err = i40e_aq_discover_capabilities(&pf->hw, cap_buf, buf_len, 9567 &data_size, list_type, 9568 NULL); 9569 /* data loaded, buffer no longer needed */ 9570 kfree(cap_buf); 9571 9572 if (pf->hw.aq.asq_last_status == I40E_AQ_RC_ENOMEM) { 9573 /* retry with a larger buffer */ 9574 buf_len = data_size; 9575 } else if (pf->hw.aq.asq_last_status != I40E_AQ_RC_OK) { 9576 dev_info(&pf->pdev->dev, 9577 "capability discovery failed, err %s aq_err %s\n", 9578 i40e_stat_str(&pf->hw, err), 9579 i40e_aq_str(&pf->hw, 9580 pf->hw.aq.asq_last_status)); 9581 return -ENODEV; 9582 } 9583 } while (err); 9584 9585 if (pf->hw.debug_mask & I40E_DEBUG_USER) { 9586 if (list_type == i40e_aqc_opc_list_func_capabilities) { 9587 dev_info(&pf->pdev->dev, 9588 "pf=%d, num_vfs=%d, msix_pf=%d, msix_vf=%d, fd_g=%d, fd_b=%d, pf_max_q=%d num_vsi=%d\n", 9589 pf->hw.pf_id, pf->hw.func_caps.num_vfs, 9590 pf->hw.func_caps.num_msix_vectors, 9591 pf->hw.func_caps.num_msix_vectors_vf, 9592 pf->hw.func_caps.fd_filters_guaranteed, 9593 pf->hw.func_caps.fd_filters_best_effort, 9594 pf->hw.func_caps.num_tx_qp, 9595 pf->hw.func_caps.num_vsis); 9596 } else if (list_type == i40e_aqc_opc_list_dev_capabilities) { 9597 dev_info(&pf->pdev->dev, 9598 "switch_mode=0x%04x, function_valid=0x%08x\n", 9599 pf->hw.dev_caps.switch_mode, 9600 pf->hw.dev_caps.valid_functions); 9601 dev_info(&pf->pdev->dev, 9602 "SR-IOV=%d, num_vfs for all function=%u\n", 9603 pf->hw.dev_caps.sr_iov_1_1, 9604 pf->hw.dev_caps.num_vfs); 9605 dev_info(&pf->pdev->dev, 9606 "num_vsis=%u, num_rx:%u, num_tx=%u\n", 9607 pf->hw.dev_caps.num_vsis, 9608 pf->hw.dev_caps.num_rx_qp, 9609 pf->hw.dev_caps.num_tx_qp); 9610 } 9611 } 9612 if (list_type == i40e_aqc_opc_list_func_capabilities) { 9613 #define DEF_NUM_VSI (1 + (pf->hw.func_caps.fcoe ? 1 : 0) \ 9614 + pf->hw.func_caps.num_vfs) 9615 if (pf->hw.revision_id == 0 && 9616 pf->hw.func_caps.num_vsis < DEF_NUM_VSI) { 9617 dev_info(&pf->pdev->dev, 9618 "got num_vsis %d, setting num_vsis to %d\n", 9619 pf->hw.func_caps.num_vsis, DEF_NUM_VSI); 9620 pf->hw.func_caps.num_vsis = DEF_NUM_VSI; 9621 } 9622 } 9623 return 0; 9624 } 9625 9626 static int i40e_vsi_clear(struct i40e_vsi *vsi); 9627 9628 /** 9629 * i40e_fdir_sb_setup - initialize the Flow Director resources for Sideband 9630 * @pf: board private structure 9631 **/ 9632 static void i40e_fdir_sb_setup(struct i40e_pf *pf) 9633 { 9634 struct i40e_vsi *vsi; 9635 9636 /* quick workaround for an NVM issue that leaves a critical register 9637 * uninitialized 9638 */ 9639 if (!rd32(&pf->hw, I40E_GLQF_HKEY(0))) { 9640 static const u32 hkey[] = { 9641 0xe640d33f, 0xcdfe98ab, 0x73fa7161, 0x0d7a7d36, 9642 0xeacb7d61, 0xaa4f05b6, 0x9c5c89ed, 0xfc425ddb, 9643 0xa4654832, 0xfc7461d4, 0x8f827619, 0xf5c63c21, 9644 0x95b3a76d}; 9645 int i; 9646 9647 for (i = 0; i <= I40E_GLQF_HKEY_MAX_INDEX; i++) 9648 wr32(&pf->hw, I40E_GLQF_HKEY(i), hkey[i]); 9649 } 9650 9651 if (!(pf->flags & I40E_FLAG_FD_SB_ENABLED)) 9652 return; 9653 9654 /* find existing VSI and see if it needs configuring */ 9655 vsi = i40e_find_vsi_by_type(pf, I40E_VSI_FDIR); 9656 9657 /* create a new VSI if none exists */ 9658 if (!vsi) { 9659 vsi = i40e_vsi_setup(pf, I40E_VSI_FDIR, 9660 pf->vsi[pf->lan_vsi]->seid, 0); 9661 if (!vsi) { 9662 dev_info(&pf->pdev->dev, "Couldn't create FDir VSI\n"); 9663 pf->flags &= ~I40E_FLAG_FD_SB_ENABLED; 9664 pf->flags |= I40E_FLAG_FD_SB_INACTIVE; 9665 return; 9666 } 9667 } 9668 9669 i40e_vsi_setup_irqhandler(vsi, i40e_fdir_clean_ring); 9670 } 9671 9672 /** 9673 * i40e_fdir_teardown - release the Flow Director resources 9674 * @pf: board private structure 9675 **/ 9676 static void i40e_fdir_teardown(struct i40e_pf *pf) 9677 { 9678 struct i40e_vsi *vsi; 9679 9680 i40e_fdir_filter_exit(pf); 9681 vsi = i40e_find_vsi_by_type(pf, I40E_VSI_FDIR); 9682 if (vsi) 9683 i40e_vsi_release(vsi); 9684 } 9685 9686 /** 9687 * i40e_rebuild_cloud_filters - Rebuilds cloud filters for VSIs 9688 * @vsi: PF main vsi 9689 * @seid: seid of main or channel VSIs 9690 * 9691 * Rebuilds cloud filters associated with main VSI and channel VSIs if they 9692 * existed before reset 9693 **/ 9694 static int i40e_rebuild_cloud_filters(struct i40e_vsi *vsi, u16 seid) 9695 { 9696 struct i40e_cloud_filter *cfilter; 9697 struct i40e_pf *pf = vsi->back; 9698 struct hlist_node *node; 9699 i40e_status ret; 9700 9701 /* Add cloud filters back if they exist */ 9702 hlist_for_each_entry_safe(cfilter, node, &pf->cloud_filter_list, 9703 cloud_node) { 9704 if (cfilter->seid != seid) 9705 continue; 9706 9707 if (cfilter->dst_port) 9708 ret = i40e_add_del_cloud_filter_big_buf(vsi, cfilter, 9709 true); 9710 else 9711 ret = i40e_add_del_cloud_filter(vsi, cfilter, true); 9712 9713 if (ret) { 9714 dev_dbg(&pf->pdev->dev, 9715 "Failed to rebuild cloud filter, err %s aq_err %s\n", 9716 i40e_stat_str(&pf->hw, ret), 9717 i40e_aq_str(&pf->hw, 9718 pf->hw.aq.asq_last_status)); 9719 return ret; 9720 } 9721 } 9722 return 0; 9723 } 9724 9725 /** 9726 * i40e_rebuild_channels - Rebuilds channel VSIs if they existed before reset 9727 * @vsi: PF main vsi 9728 * 9729 * Rebuilds channel VSIs if they existed before reset 9730 **/ 9731 static int i40e_rebuild_channels(struct i40e_vsi *vsi) 9732 { 9733 struct i40e_channel *ch, *ch_tmp; 9734 i40e_status ret; 9735 9736 if (list_empty(&vsi->ch_list)) 9737 return 0; 9738 9739 list_for_each_entry_safe(ch, ch_tmp, &vsi->ch_list, list) { 9740 if (!ch->initialized) 9741 break; 9742 /* Proceed with creation of channel (VMDq2) VSI */ 9743 ret = i40e_add_channel(vsi->back, vsi->uplink_seid, ch); 9744 if (ret) { 9745 dev_info(&vsi->back->pdev->dev, 9746 "failed to rebuild channels using uplink_seid %u\n", 9747 vsi->uplink_seid); 9748 return ret; 9749 } 9750 /* Reconfigure TX queues using QTX_CTL register */ 9751 ret = i40e_channel_config_tx_ring(vsi->back, vsi, ch); 9752 if (ret) { 9753 dev_info(&vsi->back->pdev->dev, 9754 "failed to configure TX rings for channel %u\n", 9755 ch->seid); 9756 return ret; 9757 } 9758 /* update 'next_base_queue' */ 9759 vsi->next_base_queue = vsi->next_base_queue + 9760 ch->num_queue_pairs; 9761 if (ch->max_tx_rate) { 9762 u64 credits = ch->max_tx_rate; 9763 9764 if (i40e_set_bw_limit(vsi, ch->seid, 9765 ch->max_tx_rate)) 9766 return -EINVAL; 9767 9768 do_div(credits, I40E_BW_CREDIT_DIVISOR); 9769 dev_dbg(&vsi->back->pdev->dev, 9770 "Set tx rate of %llu Mbps (count of 50Mbps %llu) for vsi->seid %u\n", 9771 ch->max_tx_rate, 9772 credits, 9773 ch->seid); 9774 } 9775 ret = i40e_rebuild_cloud_filters(vsi, ch->seid); 9776 if (ret) { 9777 dev_dbg(&vsi->back->pdev->dev, 9778 "Failed to rebuild cloud filters for channel VSI %u\n", 9779 ch->seid); 9780 return ret; 9781 } 9782 } 9783 return 0; 9784 } 9785 9786 /** 9787 * i40e_prep_for_reset - prep for the core to reset 9788 * @pf: board private structure 9789 * @lock_acquired: indicates whether or not the lock has been acquired 9790 * before this function was called. 9791 * 9792 * Close up the VFs and other things in prep for PF Reset. 9793 **/ 9794 static void i40e_prep_for_reset(struct i40e_pf *pf, bool lock_acquired) 9795 { 9796 struct i40e_hw *hw = &pf->hw; 9797 i40e_status ret = 0; 9798 u32 v; 9799 9800 clear_bit(__I40E_RESET_INTR_RECEIVED, pf->state); 9801 if (test_and_set_bit(__I40E_RESET_RECOVERY_PENDING, pf->state)) 9802 return; 9803 if (i40e_check_asq_alive(&pf->hw)) 9804 i40e_vc_notify_reset(pf); 9805 9806 dev_dbg(&pf->pdev->dev, "Tearing down internal switch for reset\n"); 9807 9808 /* quiesce the VSIs and their queues that are not already DOWN */ 9809 /* pf_quiesce_all_vsi modifies netdev structures -rtnl_lock needed */ 9810 if (!lock_acquired) 9811 rtnl_lock(); 9812 i40e_pf_quiesce_all_vsi(pf); 9813 if (!lock_acquired) 9814 rtnl_unlock(); 9815 9816 for (v = 0; v < pf->num_alloc_vsi; v++) { 9817 if (pf->vsi[v]) 9818 pf->vsi[v]->seid = 0; 9819 } 9820 9821 i40e_shutdown_adminq(&pf->hw); 9822 9823 /* call shutdown HMC */ 9824 if (hw->hmc.hmc_obj) { 9825 ret = i40e_shutdown_lan_hmc(hw); 9826 if (ret) 9827 dev_warn(&pf->pdev->dev, 9828 "shutdown_lan_hmc failed: %d\n", ret); 9829 } 9830 9831 /* Save the current PTP time so that we can restore the time after the 9832 * reset completes. 9833 */ 9834 i40e_ptp_save_hw_time(pf); 9835 } 9836 9837 /** 9838 * i40e_send_version - update firmware with driver version 9839 * @pf: PF struct 9840 */ 9841 static void i40e_send_version(struct i40e_pf *pf) 9842 { 9843 struct i40e_driver_version dv; 9844 9845 dv.major_version = DRV_VERSION_MAJOR; 9846 dv.minor_version = DRV_VERSION_MINOR; 9847 dv.build_version = DRV_VERSION_BUILD; 9848 dv.subbuild_version = 0; 9849 strlcpy(dv.driver_string, DRV_VERSION, sizeof(dv.driver_string)); 9850 i40e_aq_send_driver_version(&pf->hw, &dv, NULL); 9851 } 9852 9853 /** 9854 * i40e_get_oem_version - get OEM specific version information 9855 * @hw: pointer to the hardware structure 9856 **/ 9857 static void i40e_get_oem_version(struct i40e_hw *hw) 9858 { 9859 u16 block_offset = 0xffff; 9860 u16 block_length = 0; 9861 u16 capabilities = 0; 9862 u16 gen_snap = 0; 9863 u16 release = 0; 9864 9865 #define I40E_SR_NVM_OEM_VERSION_PTR 0x1B 9866 #define I40E_NVM_OEM_LENGTH_OFFSET 0x00 9867 #define I40E_NVM_OEM_CAPABILITIES_OFFSET 0x01 9868 #define I40E_NVM_OEM_GEN_OFFSET 0x02 9869 #define I40E_NVM_OEM_RELEASE_OFFSET 0x03 9870 #define I40E_NVM_OEM_CAPABILITIES_MASK 0x000F 9871 #define I40E_NVM_OEM_LENGTH 3 9872 9873 /* Check if pointer to OEM version block is valid. */ 9874 i40e_read_nvm_word(hw, I40E_SR_NVM_OEM_VERSION_PTR, &block_offset); 9875 if (block_offset == 0xffff) 9876 return; 9877 9878 /* Check if OEM version block has correct length. */ 9879 i40e_read_nvm_word(hw, block_offset + I40E_NVM_OEM_LENGTH_OFFSET, 9880 &block_length); 9881 if (block_length < I40E_NVM_OEM_LENGTH) 9882 return; 9883 9884 /* Check if OEM version format is as expected. */ 9885 i40e_read_nvm_word(hw, block_offset + I40E_NVM_OEM_CAPABILITIES_OFFSET, 9886 &capabilities); 9887 if ((capabilities & I40E_NVM_OEM_CAPABILITIES_MASK) != 0) 9888 return; 9889 9890 i40e_read_nvm_word(hw, block_offset + I40E_NVM_OEM_GEN_OFFSET, 9891 &gen_snap); 9892 i40e_read_nvm_word(hw, block_offset + I40E_NVM_OEM_RELEASE_OFFSET, 9893 &release); 9894 hw->nvm.oem_ver = (gen_snap << I40E_OEM_SNAP_SHIFT) | release; 9895 hw->nvm.eetrack = I40E_OEM_EETRACK_ID; 9896 } 9897 9898 /** 9899 * i40e_reset - wait for core reset to finish reset, reset pf if corer not seen 9900 * @pf: board private structure 9901 **/ 9902 static int i40e_reset(struct i40e_pf *pf) 9903 { 9904 struct i40e_hw *hw = &pf->hw; 9905 i40e_status ret; 9906 9907 ret = i40e_pf_reset(hw); 9908 if (ret) { 9909 dev_info(&pf->pdev->dev, "PF reset failed, %d\n", ret); 9910 set_bit(__I40E_RESET_FAILED, pf->state); 9911 clear_bit(__I40E_RESET_RECOVERY_PENDING, pf->state); 9912 } else { 9913 pf->pfr_count++; 9914 } 9915 return ret; 9916 } 9917 9918 /** 9919 * i40e_rebuild - rebuild using a saved config 9920 * @pf: board private structure 9921 * @reinit: if the Main VSI needs to re-initialized. 9922 * @lock_acquired: indicates whether or not the lock has been acquired 9923 * before this function was called. 9924 **/ 9925 static void i40e_rebuild(struct i40e_pf *pf, bool reinit, bool lock_acquired) 9926 { 9927 int old_recovery_mode_bit = test_bit(__I40E_RECOVERY_MODE, pf->state); 9928 struct i40e_vsi *vsi = pf->vsi[pf->lan_vsi]; 9929 struct i40e_hw *hw = &pf->hw; 9930 u8 set_fc_aq_fail = 0; 9931 i40e_status ret; 9932 u32 val; 9933 int v; 9934 9935 if (test_bit(__I40E_EMP_RESET_INTR_RECEIVED, pf->state) && 9936 i40e_check_recovery_mode(pf)) { 9937 i40e_set_ethtool_ops(pf->vsi[pf->lan_vsi]->netdev); 9938 } 9939 9940 if (test_bit(__I40E_DOWN, pf->state) && 9941 !test_bit(__I40E_RECOVERY_MODE, pf->state) && 9942 !old_recovery_mode_bit) 9943 goto clear_recovery; 9944 dev_dbg(&pf->pdev->dev, "Rebuilding internal switch\n"); 9945 9946 /* rebuild the basics for the AdminQ, HMC, and initial HW switch */ 9947 ret = i40e_init_adminq(&pf->hw); 9948 if (ret) { 9949 dev_info(&pf->pdev->dev, "Rebuild AdminQ failed, err %s aq_err %s\n", 9950 i40e_stat_str(&pf->hw, ret), 9951 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 9952 goto clear_recovery; 9953 } 9954 i40e_get_oem_version(&pf->hw); 9955 9956 if (test_bit(__I40E_EMP_RESET_INTR_RECEIVED, pf->state) && 9957 ((hw->aq.fw_maj_ver == 4 && hw->aq.fw_min_ver <= 33) || 9958 hw->aq.fw_maj_ver < 4) && hw->mac.type == I40E_MAC_XL710) { 9959 /* The following delay is necessary for 4.33 firmware and older 9960 * to recover after EMP reset. 200 ms should suffice but we 9961 * put here 300 ms to be sure that FW is ready to operate 9962 * after reset. 9963 */ 9964 mdelay(300); 9965 } 9966 9967 /* re-verify the eeprom if we just had an EMP reset */ 9968 if (test_and_clear_bit(__I40E_EMP_RESET_INTR_RECEIVED, pf->state)) 9969 i40e_verify_eeprom(pf); 9970 9971 /* if we are going out of or into recovery mode we have to act 9972 * accordingly with regard to resources initialization 9973 * and deinitialization 9974 */ 9975 if (test_bit(__I40E_RECOVERY_MODE, pf->state) || 9976 old_recovery_mode_bit) { 9977 if (i40e_get_capabilities(pf, 9978 i40e_aqc_opc_list_func_capabilities)) 9979 goto end_unlock; 9980 9981 if (test_bit(__I40E_RECOVERY_MODE, pf->state)) { 9982 /* we're staying in recovery mode so we'll reinitialize 9983 * misc vector here 9984 */ 9985 if (i40e_setup_misc_vector_for_recovery_mode(pf)) 9986 goto end_unlock; 9987 } else { 9988 if (!lock_acquired) 9989 rtnl_lock(); 9990 /* we're going out of recovery mode so we'll free 9991 * the IRQ allocated specifically for recovery mode 9992 * and restore the interrupt scheme 9993 */ 9994 free_irq(pf->pdev->irq, pf); 9995 i40e_clear_interrupt_scheme(pf); 9996 if (i40e_restore_interrupt_scheme(pf)) 9997 goto end_unlock; 9998 } 9999 10000 /* tell the firmware that we're starting */ 10001 i40e_send_version(pf); 10002 10003 /* bail out in case recovery mode was detected, as there is 10004 * no need for further configuration. 10005 */ 10006 goto end_unlock; 10007 } 10008 10009 i40e_clear_pxe_mode(hw); 10010 ret = i40e_get_capabilities(pf, i40e_aqc_opc_list_func_capabilities); 10011 if (ret) 10012 goto end_core_reset; 10013 10014 ret = i40e_init_lan_hmc(hw, hw->func_caps.num_tx_qp, 10015 hw->func_caps.num_rx_qp, 0, 0); 10016 if (ret) { 10017 dev_info(&pf->pdev->dev, "init_lan_hmc failed: %d\n", ret); 10018 goto end_core_reset; 10019 } 10020 ret = i40e_configure_lan_hmc(hw, I40E_HMC_MODEL_DIRECT_ONLY); 10021 if (ret) { 10022 dev_info(&pf->pdev->dev, "configure_lan_hmc failed: %d\n", ret); 10023 goto end_core_reset; 10024 } 10025 10026 /* Enable FW to write a default DCB config on link-up */ 10027 i40e_aq_set_dcb_parameters(hw, true, NULL); 10028 10029 #ifdef CONFIG_I40E_DCB 10030 ret = i40e_init_pf_dcb(pf); 10031 if (ret) { 10032 dev_info(&pf->pdev->dev, "DCB init failed %d, disabled\n", ret); 10033 pf->flags &= ~I40E_FLAG_DCB_CAPABLE; 10034 /* Continue without DCB enabled */ 10035 } 10036 #endif /* CONFIG_I40E_DCB */ 10037 /* do basic switch setup */ 10038 if (!lock_acquired) 10039 rtnl_lock(); 10040 ret = i40e_setup_pf_switch(pf, reinit); 10041 if (ret) 10042 goto end_unlock; 10043 10044 /* The driver only wants link up/down and module qualification 10045 * reports from firmware. Note the negative logic. 10046 */ 10047 ret = i40e_aq_set_phy_int_mask(&pf->hw, 10048 ~(I40E_AQ_EVENT_LINK_UPDOWN | 10049 I40E_AQ_EVENT_MEDIA_NA | 10050 I40E_AQ_EVENT_MODULE_QUAL_FAIL), NULL); 10051 if (ret) 10052 dev_info(&pf->pdev->dev, "set phy mask fail, err %s aq_err %s\n", 10053 i40e_stat_str(&pf->hw, ret), 10054 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 10055 10056 /* make sure our flow control settings are restored */ 10057 ret = i40e_set_fc(&pf->hw, &set_fc_aq_fail, true); 10058 if (ret) 10059 dev_dbg(&pf->pdev->dev, "setting flow control: ret = %s last_status = %s\n", 10060 i40e_stat_str(&pf->hw, ret), 10061 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 10062 10063 /* Rebuild the VSIs and VEBs that existed before reset. 10064 * They are still in our local switch element arrays, so only 10065 * need to rebuild the switch model in the HW. 10066 * 10067 * If there were VEBs but the reconstitution failed, we'll try 10068 * try to recover minimal use by getting the basic PF VSI working. 10069 */ 10070 if (vsi->uplink_seid != pf->mac_seid) { 10071 dev_dbg(&pf->pdev->dev, "attempting to rebuild switch\n"); 10072 /* find the one VEB connected to the MAC, and find orphans */ 10073 for (v = 0; v < I40E_MAX_VEB; v++) { 10074 if (!pf->veb[v]) 10075 continue; 10076 10077 if (pf->veb[v]->uplink_seid == pf->mac_seid || 10078 pf->veb[v]->uplink_seid == 0) { 10079 ret = i40e_reconstitute_veb(pf->veb[v]); 10080 10081 if (!ret) 10082 continue; 10083 10084 /* If Main VEB failed, we're in deep doodoo, 10085 * so give up rebuilding the switch and set up 10086 * for minimal rebuild of PF VSI. 10087 * If orphan failed, we'll report the error 10088 * but try to keep going. 10089 */ 10090 if (pf->veb[v]->uplink_seid == pf->mac_seid) { 10091 dev_info(&pf->pdev->dev, 10092 "rebuild of switch failed: %d, will try to set up simple PF connection\n", 10093 ret); 10094 vsi->uplink_seid = pf->mac_seid; 10095 break; 10096 } else if (pf->veb[v]->uplink_seid == 0) { 10097 dev_info(&pf->pdev->dev, 10098 "rebuild of orphan VEB failed: %d\n", 10099 ret); 10100 } 10101 } 10102 } 10103 } 10104 10105 if (vsi->uplink_seid == pf->mac_seid) { 10106 dev_dbg(&pf->pdev->dev, "attempting to rebuild PF VSI\n"); 10107 /* no VEB, so rebuild only the Main VSI */ 10108 ret = i40e_add_vsi(vsi); 10109 if (ret) { 10110 dev_info(&pf->pdev->dev, 10111 "rebuild of Main VSI failed: %d\n", ret); 10112 goto end_unlock; 10113 } 10114 } 10115 10116 if (vsi->mqprio_qopt.max_rate[0]) { 10117 u64 max_tx_rate = vsi->mqprio_qopt.max_rate[0]; 10118 u64 credits = 0; 10119 10120 do_div(max_tx_rate, I40E_BW_MBPS_DIVISOR); 10121 ret = i40e_set_bw_limit(vsi, vsi->seid, max_tx_rate); 10122 if (ret) 10123 goto end_unlock; 10124 10125 credits = max_tx_rate; 10126 do_div(credits, I40E_BW_CREDIT_DIVISOR); 10127 dev_dbg(&vsi->back->pdev->dev, 10128 "Set tx rate of %llu Mbps (count of 50Mbps %llu) for vsi->seid %u\n", 10129 max_tx_rate, 10130 credits, 10131 vsi->seid); 10132 } 10133 10134 ret = i40e_rebuild_cloud_filters(vsi, vsi->seid); 10135 if (ret) 10136 goto end_unlock; 10137 10138 /* PF Main VSI is rebuild by now, go ahead and rebuild channel VSIs 10139 * for this main VSI if they exist 10140 */ 10141 ret = i40e_rebuild_channels(vsi); 10142 if (ret) 10143 goto end_unlock; 10144 10145 /* Reconfigure hardware for allowing smaller MSS in the case 10146 * of TSO, so that we avoid the MDD being fired and causing 10147 * a reset in the case of small MSS+TSO. 10148 */ 10149 #define I40E_REG_MSS 0x000E64DC 10150 #define I40E_REG_MSS_MIN_MASK 0x3FF0000 10151 #define I40E_64BYTE_MSS 0x400000 10152 val = rd32(hw, I40E_REG_MSS); 10153 if ((val & I40E_REG_MSS_MIN_MASK) > I40E_64BYTE_MSS) { 10154 val &= ~I40E_REG_MSS_MIN_MASK; 10155 val |= I40E_64BYTE_MSS; 10156 wr32(hw, I40E_REG_MSS, val); 10157 } 10158 10159 if (pf->hw_features & I40E_HW_RESTART_AUTONEG) { 10160 msleep(75); 10161 ret = i40e_aq_set_link_restart_an(&pf->hw, true, NULL); 10162 if (ret) 10163 dev_info(&pf->pdev->dev, "link restart failed, err %s aq_err %s\n", 10164 i40e_stat_str(&pf->hw, ret), 10165 i40e_aq_str(&pf->hw, 10166 pf->hw.aq.asq_last_status)); 10167 } 10168 /* reinit the misc interrupt */ 10169 if (pf->flags & I40E_FLAG_MSIX_ENABLED) 10170 ret = i40e_setup_misc_vector(pf); 10171 10172 /* Add a filter to drop all Flow control frames from any VSI from being 10173 * transmitted. By doing so we stop a malicious VF from sending out 10174 * PAUSE or PFC frames and potentially controlling traffic for other 10175 * PF/VF VSIs. 10176 * The FW can still send Flow control frames if enabled. 10177 */ 10178 i40e_add_filter_to_drop_tx_flow_control_frames(&pf->hw, 10179 pf->main_vsi_seid); 10180 10181 /* restart the VSIs that were rebuilt and running before the reset */ 10182 i40e_pf_unquiesce_all_vsi(pf); 10183 10184 /* Release the RTNL lock before we start resetting VFs */ 10185 if (!lock_acquired) 10186 rtnl_unlock(); 10187 10188 /* Restore promiscuous settings */ 10189 ret = i40e_set_promiscuous(pf, pf->cur_promisc); 10190 if (ret) 10191 dev_warn(&pf->pdev->dev, 10192 "Failed to restore promiscuous setting: %s, err %s aq_err %s\n", 10193 pf->cur_promisc ? "on" : "off", 10194 i40e_stat_str(&pf->hw, ret), 10195 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 10196 10197 i40e_reset_all_vfs(pf, true); 10198 10199 /* tell the firmware that we're starting */ 10200 i40e_send_version(pf); 10201 10202 /* We've already released the lock, so don't do it again */ 10203 goto end_core_reset; 10204 10205 end_unlock: 10206 if (!lock_acquired) 10207 rtnl_unlock(); 10208 end_core_reset: 10209 clear_bit(__I40E_RESET_FAILED, pf->state); 10210 clear_recovery: 10211 clear_bit(__I40E_RESET_RECOVERY_PENDING, pf->state); 10212 clear_bit(__I40E_TIMEOUT_RECOVERY_PENDING, pf->state); 10213 } 10214 10215 /** 10216 * i40e_reset_and_rebuild - reset and rebuild using a saved config 10217 * @pf: board private structure 10218 * @reinit: if the Main VSI needs to re-initialized. 10219 * @lock_acquired: indicates whether or not the lock has been acquired 10220 * before this function was called. 10221 **/ 10222 static void i40e_reset_and_rebuild(struct i40e_pf *pf, bool reinit, 10223 bool lock_acquired) 10224 { 10225 int ret; 10226 /* Now we wait for GRST to settle out. 10227 * We don't have to delete the VEBs or VSIs from the hw switch 10228 * because the reset will make them disappear. 10229 */ 10230 ret = i40e_reset(pf); 10231 if (!ret) 10232 i40e_rebuild(pf, reinit, lock_acquired); 10233 } 10234 10235 /** 10236 * i40e_handle_reset_warning - prep for the PF to reset, reset and rebuild 10237 * @pf: board private structure 10238 * 10239 * Close up the VFs and other things in prep for a Core Reset, 10240 * then get ready to rebuild the world. 10241 * @lock_acquired: indicates whether or not the lock has been acquired 10242 * before this function was called. 10243 **/ 10244 static void i40e_handle_reset_warning(struct i40e_pf *pf, bool lock_acquired) 10245 { 10246 i40e_prep_for_reset(pf, lock_acquired); 10247 i40e_reset_and_rebuild(pf, false, lock_acquired); 10248 } 10249 10250 /** 10251 * i40e_handle_mdd_event 10252 * @pf: pointer to the PF structure 10253 * 10254 * Called from the MDD irq handler to identify possibly malicious vfs 10255 **/ 10256 static void i40e_handle_mdd_event(struct i40e_pf *pf) 10257 { 10258 struct i40e_hw *hw = &pf->hw; 10259 bool mdd_detected = false; 10260 struct i40e_vf *vf; 10261 u32 reg; 10262 int i; 10263 10264 if (!test_bit(__I40E_MDD_EVENT_PENDING, pf->state)) 10265 return; 10266 10267 /* find what triggered the MDD event */ 10268 reg = rd32(hw, I40E_GL_MDET_TX); 10269 if (reg & I40E_GL_MDET_TX_VALID_MASK) { 10270 u8 pf_num = (reg & I40E_GL_MDET_TX_PF_NUM_MASK) >> 10271 I40E_GL_MDET_TX_PF_NUM_SHIFT; 10272 u16 vf_num = (reg & I40E_GL_MDET_TX_VF_NUM_MASK) >> 10273 I40E_GL_MDET_TX_VF_NUM_SHIFT; 10274 u8 event = (reg & I40E_GL_MDET_TX_EVENT_MASK) >> 10275 I40E_GL_MDET_TX_EVENT_SHIFT; 10276 u16 queue = ((reg & I40E_GL_MDET_TX_QUEUE_MASK) >> 10277 I40E_GL_MDET_TX_QUEUE_SHIFT) - 10278 pf->hw.func_caps.base_queue; 10279 if (netif_msg_tx_err(pf)) 10280 dev_info(&pf->pdev->dev, "Malicious Driver Detection event 0x%02x on TX queue %d PF number 0x%02x VF number 0x%02x\n", 10281 event, queue, pf_num, vf_num); 10282 wr32(hw, I40E_GL_MDET_TX, 0xffffffff); 10283 mdd_detected = true; 10284 } 10285 reg = rd32(hw, I40E_GL_MDET_RX); 10286 if (reg & I40E_GL_MDET_RX_VALID_MASK) { 10287 u8 func = (reg & I40E_GL_MDET_RX_FUNCTION_MASK) >> 10288 I40E_GL_MDET_RX_FUNCTION_SHIFT; 10289 u8 event = (reg & I40E_GL_MDET_RX_EVENT_MASK) >> 10290 I40E_GL_MDET_RX_EVENT_SHIFT; 10291 u16 queue = ((reg & I40E_GL_MDET_RX_QUEUE_MASK) >> 10292 I40E_GL_MDET_RX_QUEUE_SHIFT) - 10293 pf->hw.func_caps.base_queue; 10294 if (netif_msg_rx_err(pf)) 10295 dev_info(&pf->pdev->dev, "Malicious Driver Detection event 0x%02x on RX queue %d of function 0x%02x\n", 10296 event, queue, func); 10297 wr32(hw, I40E_GL_MDET_RX, 0xffffffff); 10298 mdd_detected = true; 10299 } 10300 10301 if (mdd_detected) { 10302 reg = rd32(hw, I40E_PF_MDET_TX); 10303 if (reg & I40E_PF_MDET_TX_VALID_MASK) { 10304 wr32(hw, I40E_PF_MDET_TX, 0xFFFF); 10305 dev_dbg(&pf->pdev->dev, "TX driver issue detected on PF\n"); 10306 } 10307 reg = rd32(hw, I40E_PF_MDET_RX); 10308 if (reg & I40E_PF_MDET_RX_VALID_MASK) { 10309 wr32(hw, I40E_PF_MDET_RX, 0xFFFF); 10310 dev_dbg(&pf->pdev->dev, "RX driver issue detected on PF\n"); 10311 } 10312 } 10313 10314 /* see if one of the VFs needs its hand slapped */ 10315 for (i = 0; i < pf->num_alloc_vfs && mdd_detected; i++) { 10316 vf = &(pf->vf[i]); 10317 reg = rd32(hw, I40E_VP_MDET_TX(i)); 10318 if (reg & I40E_VP_MDET_TX_VALID_MASK) { 10319 wr32(hw, I40E_VP_MDET_TX(i), 0xFFFF); 10320 vf->num_mdd_events++; 10321 dev_info(&pf->pdev->dev, "TX driver issue detected on VF %d\n", 10322 i); 10323 dev_info(&pf->pdev->dev, 10324 "Use PF Control I/F to re-enable the VF\n"); 10325 set_bit(I40E_VF_STATE_DISABLED, &vf->vf_states); 10326 } 10327 10328 reg = rd32(hw, I40E_VP_MDET_RX(i)); 10329 if (reg & I40E_VP_MDET_RX_VALID_MASK) { 10330 wr32(hw, I40E_VP_MDET_RX(i), 0xFFFF); 10331 vf->num_mdd_events++; 10332 dev_info(&pf->pdev->dev, "RX driver issue detected on VF %d\n", 10333 i); 10334 dev_info(&pf->pdev->dev, 10335 "Use PF Control I/F to re-enable the VF\n"); 10336 set_bit(I40E_VF_STATE_DISABLED, &vf->vf_states); 10337 } 10338 } 10339 10340 /* re-enable mdd interrupt cause */ 10341 clear_bit(__I40E_MDD_EVENT_PENDING, pf->state); 10342 reg = rd32(hw, I40E_PFINT_ICR0_ENA); 10343 reg |= I40E_PFINT_ICR0_ENA_MAL_DETECT_MASK; 10344 wr32(hw, I40E_PFINT_ICR0_ENA, reg); 10345 i40e_flush(hw); 10346 } 10347 10348 static const char *i40e_tunnel_name(u8 type) 10349 { 10350 switch (type) { 10351 case UDP_TUNNEL_TYPE_VXLAN: 10352 return "vxlan"; 10353 case UDP_TUNNEL_TYPE_GENEVE: 10354 return "geneve"; 10355 default: 10356 return "unknown"; 10357 } 10358 } 10359 10360 /** 10361 * i40e_sync_udp_filters - Trigger a sync event for existing UDP filters 10362 * @pf: board private structure 10363 **/ 10364 static void i40e_sync_udp_filters(struct i40e_pf *pf) 10365 { 10366 int i; 10367 10368 /* loop through and set pending bit for all active UDP filters */ 10369 for (i = 0; i < I40E_MAX_PF_UDP_OFFLOAD_PORTS; i++) { 10370 if (pf->udp_ports[i].port) 10371 pf->pending_udp_bitmap |= BIT_ULL(i); 10372 } 10373 10374 set_bit(__I40E_UDP_FILTER_SYNC_PENDING, pf->state); 10375 } 10376 10377 /** 10378 * i40e_sync_udp_filters_subtask - Sync the VSI filter list with HW 10379 * @pf: board private structure 10380 **/ 10381 static void i40e_sync_udp_filters_subtask(struct i40e_pf *pf) 10382 { 10383 struct i40e_hw *hw = &pf->hw; 10384 u8 filter_index, type; 10385 u16 port; 10386 int i; 10387 10388 if (!test_and_clear_bit(__I40E_UDP_FILTER_SYNC_PENDING, pf->state)) 10389 return; 10390 10391 /* acquire RTNL to maintain state of flags and port requests */ 10392 rtnl_lock(); 10393 10394 for (i = 0; i < I40E_MAX_PF_UDP_OFFLOAD_PORTS; i++) { 10395 if (pf->pending_udp_bitmap & BIT_ULL(i)) { 10396 struct i40e_udp_port_config *udp_port; 10397 i40e_status ret = 0; 10398 10399 udp_port = &pf->udp_ports[i]; 10400 pf->pending_udp_bitmap &= ~BIT_ULL(i); 10401 10402 port = READ_ONCE(udp_port->port); 10403 type = READ_ONCE(udp_port->type); 10404 filter_index = READ_ONCE(udp_port->filter_index); 10405 10406 /* release RTNL while we wait on AQ command */ 10407 rtnl_unlock(); 10408 10409 if (port) 10410 ret = i40e_aq_add_udp_tunnel(hw, port, 10411 type, 10412 &filter_index, 10413 NULL); 10414 else if (filter_index != I40E_UDP_PORT_INDEX_UNUSED) 10415 ret = i40e_aq_del_udp_tunnel(hw, filter_index, 10416 NULL); 10417 10418 /* reacquire RTNL so we can update filter_index */ 10419 rtnl_lock(); 10420 10421 if (ret) { 10422 dev_info(&pf->pdev->dev, 10423 "%s %s port %d, index %d failed, err %s aq_err %s\n", 10424 i40e_tunnel_name(type), 10425 port ? "add" : "delete", 10426 port, 10427 filter_index, 10428 i40e_stat_str(&pf->hw, ret), 10429 i40e_aq_str(&pf->hw, 10430 pf->hw.aq.asq_last_status)); 10431 if (port) { 10432 /* failed to add, just reset port, 10433 * drop pending bit for any deletion 10434 */ 10435 udp_port->port = 0; 10436 pf->pending_udp_bitmap &= ~BIT_ULL(i); 10437 } 10438 } else if (port) { 10439 /* record filter index on success */ 10440 udp_port->filter_index = filter_index; 10441 } 10442 } 10443 } 10444 10445 rtnl_unlock(); 10446 } 10447 10448 /** 10449 * i40e_service_task - Run the driver's async subtasks 10450 * @work: pointer to work_struct containing our data 10451 **/ 10452 static void i40e_service_task(struct work_struct *work) 10453 { 10454 struct i40e_pf *pf = container_of(work, 10455 struct i40e_pf, 10456 service_task); 10457 unsigned long start_time = jiffies; 10458 10459 /* don't bother with service tasks if a reset is in progress */ 10460 if (test_bit(__I40E_RESET_RECOVERY_PENDING, pf->state) || 10461 test_bit(__I40E_SUSPENDED, pf->state)) 10462 return; 10463 10464 if (test_and_set_bit(__I40E_SERVICE_SCHED, pf->state)) 10465 return; 10466 10467 if (!test_bit(__I40E_RECOVERY_MODE, pf->state)) { 10468 i40e_detect_recover_hung(pf->vsi[pf->lan_vsi]); 10469 i40e_sync_filters_subtask(pf); 10470 i40e_reset_subtask(pf); 10471 i40e_handle_mdd_event(pf); 10472 i40e_vc_process_vflr_event(pf); 10473 i40e_watchdog_subtask(pf); 10474 i40e_fdir_reinit_subtask(pf); 10475 if (test_and_clear_bit(__I40E_CLIENT_RESET, pf->state)) { 10476 /* Client subtask will reopen next time through. */ 10477 i40e_notify_client_of_netdev_close(pf->vsi[pf->lan_vsi], 10478 true); 10479 } else { 10480 i40e_client_subtask(pf); 10481 if (test_and_clear_bit(__I40E_CLIENT_L2_CHANGE, 10482 pf->state)) 10483 i40e_notify_client_of_l2_param_changes( 10484 pf->vsi[pf->lan_vsi]); 10485 } 10486 i40e_sync_filters_subtask(pf); 10487 i40e_sync_udp_filters_subtask(pf); 10488 } else { 10489 i40e_reset_subtask(pf); 10490 } 10491 10492 i40e_clean_adminq_subtask(pf); 10493 10494 /* flush memory to make sure state is correct before next watchdog */ 10495 smp_mb__before_atomic(); 10496 clear_bit(__I40E_SERVICE_SCHED, pf->state); 10497 10498 /* If the tasks have taken longer than one timer cycle or there 10499 * is more work to be done, reschedule the service task now 10500 * rather than wait for the timer to tick again. 10501 */ 10502 if (time_after(jiffies, (start_time + pf->service_timer_period)) || 10503 test_bit(__I40E_ADMINQ_EVENT_PENDING, pf->state) || 10504 test_bit(__I40E_MDD_EVENT_PENDING, pf->state) || 10505 test_bit(__I40E_VFLR_EVENT_PENDING, pf->state)) 10506 i40e_service_event_schedule(pf); 10507 } 10508 10509 /** 10510 * i40e_service_timer - timer callback 10511 * @data: pointer to PF struct 10512 **/ 10513 static void i40e_service_timer(struct timer_list *t) 10514 { 10515 struct i40e_pf *pf = from_timer(pf, t, service_timer); 10516 10517 mod_timer(&pf->service_timer, 10518 round_jiffies(jiffies + pf->service_timer_period)); 10519 i40e_service_event_schedule(pf); 10520 } 10521 10522 /** 10523 * i40e_set_num_rings_in_vsi - Determine number of rings in the VSI 10524 * @vsi: the VSI being configured 10525 **/ 10526 static int i40e_set_num_rings_in_vsi(struct i40e_vsi *vsi) 10527 { 10528 struct i40e_pf *pf = vsi->back; 10529 10530 switch (vsi->type) { 10531 case I40E_VSI_MAIN: 10532 vsi->alloc_queue_pairs = pf->num_lan_qps; 10533 if (!vsi->num_tx_desc) 10534 vsi->num_tx_desc = ALIGN(I40E_DEFAULT_NUM_DESCRIPTORS, 10535 I40E_REQ_DESCRIPTOR_MULTIPLE); 10536 if (!vsi->num_rx_desc) 10537 vsi->num_rx_desc = ALIGN(I40E_DEFAULT_NUM_DESCRIPTORS, 10538 I40E_REQ_DESCRIPTOR_MULTIPLE); 10539 if (pf->flags & I40E_FLAG_MSIX_ENABLED) 10540 vsi->num_q_vectors = pf->num_lan_msix; 10541 else 10542 vsi->num_q_vectors = 1; 10543 10544 break; 10545 10546 case I40E_VSI_FDIR: 10547 vsi->alloc_queue_pairs = 1; 10548 vsi->num_tx_desc = ALIGN(I40E_FDIR_RING_COUNT, 10549 I40E_REQ_DESCRIPTOR_MULTIPLE); 10550 vsi->num_rx_desc = ALIGN(I40E_FDIR_RING_COUNT, 10551 I40E_REQ_DESCRIPTOR_MULTIPLE); 10552 vsi->num_q_vectors = pf->num_fdsb_msix; 10553 break; 10554 10555 case I40E_VSI_VMDQ2: 10556 vsi->alloc_queue_pairs = pf->num_vmdq_qps; 10557 if (!vsi->num_tx_desc) 10558 vsi->num_tx_desc = ALIGN(I40E_DEFAULT_NUM_DESCRIPTORS, 10559 I40E_REQ_DESCRIPTOR_MULTIPLE); 10560 if (!vsi->num_rx_desc) 10561 vsi->num_rx_desc = ALIGN(I40E_DEFAULT_NUM_DESCRIPTORS, 10562 I40E_REQ_DESCRIPTOR_MULTIPLE); 10563 vsi->num_q_vectors = pf->num_vmdq_msix; 10564 break; 10565 10566 case I40E_VSI_SRIOV: 10567 vsi->alloc_queue_pairs = pf->num_vf_qps; 10568 if (!vsi->num_tx_desc) 10569 vsi->num_tx_desc = ALIGN(I40E_DEFAULT_NUM_DESCRIPTORS, 10570 I40E_REQ_DESCRIPTOR_MULTIPLE); 10571 if (!vsi->num_rx_desc) 10572 vsi->num_rx_desc = ALIGN(I40E_DEFAULT_NUM_DESCRIPTORS, 10573 I40E_REQ_DESCRIPTOR_MULTIPLE); 10574 break; 10575 10576 default: 10577 WARN_ON(1); 10578 return -ENODATA; 10579 } 10580 10581 return 0; 10582 } 10583 10584 /** 10585 * i40e_vsi_alloc_arrays - Allocate queue and vector pointer arrays for the vsi 10586 * @vsi: VSI pointer 10587 * @alloc_qvectors: a bool to specify if q_vectors need to be allocated. 10588 * 10589 * On error: returns error code (negative) 10590 * On success: returns 0 10591 **/ 10592 static int i40e_vsi_alloc_arrays(struct i40e_vsi *vsi, bool alloc_qvectors) 10593 { 10594 struct i40e_ring **next_rings; 10595 int size; 10596 int ret = 0; 10597 10598 /* allocate memory for both Tx, XDP Tx and Rx ring pointers */ 10599 size = sizeof(struct i40e_ring *) * vsi->alloc_queue_pairs * 10600 (i40e_enabled_xdp_vsi(vsi) ? 3 : 2); 10601 vsi->tx_rings = kzalloc(size, GFP_KERNEL); 10602 if (!vsi->tx_rings) 10603 return -ENOMEM; 10604 next_rings = vsi->tx_rings + vsi->alloc_queue_pairs; 10605 if (i40e_enabled_xdp_vsi(vsi)) { 10606 vsi->xdp_rings = next_rings; 10607 next_rings += vsi->alloc_queue_pairs; 10608 } 10609 vsi->rx_rings = next_rings; 10610 10611 if (alloc_qvectors) { 10612 /* allocate memory for q_vector pointers */ 10613 size = sizeof(struct i40e_q_vector *) * vsi->num_q_vectors; 10614 vsi->q_vectors = kzalloc(size, GFP_KERNEL); 10615 if (!vsi->q_vectors) { 10616 ret = -ENOMEM; 10617 goto err_vectors; 10618 } 10619 } 10620 return ret; 10621 10622 err_vectors: 10623 kfree(vsi->tx_rings); 10624 return ret; 10625 } 10626 10627 /** 10628 * i40e_vsi_mem_alloc - Allocates the next available struct vsi in the PF 10629 * @pf: board private structure 10630 * @type: type of VSI 10631 * 10632 * On error: returns error code (negative) 10633 * On success: returns vsi index in PF (positive) 10634 **/ 10635 static int i40e_vsi_mem_alloc(struct i40e_pf *pf, enum i40e_vsi_type type) 10636 { 10637 int ret = -ENODEV; 10638 struct i40e_vsi *vsi; 10639 int vsi_idx; 10640 int i; 10641 10642 /* Need to protect the allocation of the VSIs at the PF level */ 10643 mutex_lock(&pf->switch_mutex); 10644 10645 /* VSI list may be fragmented if VSI creation/destruction has 10646 * been happening. We can afford to do a quick scan to look 10647 * for any free VSIs in the list. 10648 * 10649 * find next empty vsi slot, looping back around if necessary 10650 */ 10651 i = pf->next_vsi; 10652 while (i < pf->num_alloc_vsi && pf->vsi[i]) 10653 i++; 10654 if (i >= pf->num_alloc_vsi) { 10655 i = 0; 10656 while (i < pf->next_vsi && pf->vsi[i]) 10657 i++; 10658 } 10659 10660 if (i < pf->num_alloc_vsi && !pf->vsi[i]) { 10661 vsi_idx = i; /* Found one! */ 10662 } else { 10663 ret = -ENODEV; 10664 goto unlock_pf; /* out of VSI slots! */ 10665 } 10666 pf->next_vsi = ++i; 10667 10668 vsi = kzalloc(sizeof(*vsi), GFP_KERNEL); 10669 if (!vsi) { 10670 ret = -ENOMEM; 10671 goto unlock_pf; 10672 } 10673 vsi->type = type; 10674 vsi->back = pf; 10675 set_bit(__I40E_VSI_DOWN, vsi->state); 10676 vsi->flags = 0; 10677 vsi->idx = vsi_idx; 10678 vsi->int_rate_limit = 0; 10679 vsi->rss_table_size = (vsi->type == I40E_VSI_MAIN) ? 10680 pf->rss_table_size : 64; 10681 vsi->netdev_registered = false; 10682 vsi->work_limit = I40E_DEFAULT_IRQ_WORK; 10683 hash_init(vsi->mac_filter_hash); 10684 vsi->irqs_ready = false; 10685 10686 if (type == I40E_VSI_MAIN) { 10687 vsi->af_xdp_zc_qps = bitmap_zalloc(pf->num_lan_qps, GFP_KERNEL); 10688 if (!vsi->af_xdp_zc_qps) 10689 goto err_rings; 10690 } 10691 10692 ret = i40e_set_num_rings_in_vsi(vsi); 10693 if (ret) 10694 goto err_rings; 10695 10696 ret = i40e_vsi_alloc_arrays(vsi, true); 10697 if (ret) 10698 goto err_rings; 10699 10700 /* Setup default MSIX irq handler for VSI */ 10701 i40e_vsi_setup_irqhandler(vsi, i40e_msix_clean_rings); 10702 10703 /* Initialize VSI lock */ 10704 spin_lock_init(&vsi->mac_filter_hash_lock); 10705 pf->vsi[vsi_idx] = vsi; 10706 ret = vsi_idx; 10707 goto unlock_pf; 10708 10709 err_rings: 10710 bitmap_free(vsi->af_xdp_zc_qps); 10711 pf->next_vsi = i - 1; 10712 kfree(vsi); 10713 unlock_pf: 10714 mutex_unlock(&pf->switch_mutex); 10715 return ret; 10716 } 10717 10718 /** 10719 * i40e_vsi_free_arrays - Free queue and vector pointer arrays for the VSI 10720 * @vsi: VSI pointer 10721 * @free_qvectors: a bool to specify if q_vectors need to be freed. 10722 * 10723 * On error: returns error code (negative) 10724 * On success: returns 0 10725 **/ 10726 static void i40e_vsi_free_arrays(struct i40e_vsi *vsi, bool free_qvectors) 10727 { 10728 /* free the ring and vector containers */ 10729 if (free_qvectors) { 10730 kfree(vsi->q_vectors); 10731 vsi->q_vectors = NULL; 10732 } 10733 kfree(vsi->tx_rings); 10734 vsi->tx_rings = NULL; 10735 vsi->rx_rings = NULL; 10736 vsi->xdp_rings = NULL; 10737 } 10738 10739 /** 10740 * i40e_clear_rss_config_user - clear the user configured RSS hash keys 10741 * and lookup table 10742 * @vsi: Pointer to VSI structure 10743 */ 10744 static void i40e_clear_rss_config_user(struct i40e_vsi *vsi) 10745 { 10746 if (!vsi) 10747 return; 10748 10749 kfree(vsi->rss_hkey_user); 10750 vsi->rss_hkey_user = NULL; 10751 10752 kfree(vsi->rss_lut_user); 10753 vsi->rss_lut_user = NULL; 10754 } 10755 10756 /** 10757 * i40e_vsi_clear - Deallocate the VSI provided 10758 * @vsi: the VSI being un-configured 10759 **/ 10760 static int i40e_vsi_clear(struct i40e_vsi *vsi) 10761 { 10762 struct i40e_pf *pf; 10763 10764 if (!vsi) 10765 return 0; 10766 10767 if (!vsi->back) 10768 goto free_vsi; 10769 pf = vsi->back; 10770 10771 mutex_lock(&pf->switch_mutex); 10772 if (!pf->vsi[vsi->idx]) { 10773 dev_err(&pf->pdev->dev, "pf->vsi[%d] is NULL, just free vsi[%d](type %d)\n", 10774 vsi->idx, vsi->idx, vsi->type); 10775 goto unlock_vsi; 10776 } 10777 10778 if (pf->vsi[vsi->idx] != vsi) { 10779 dev_err(&pf->pdev->dev, 10780 "pf->vsi[%d](type %d) != vsi[%d](type %d): no free!\n", 10781 pf->vsi[vsi->idx]->idx, 10782 pf->vsi[vsi->idx]->type, 10783 vsi->idx, vsi->type); 10784 goto unlock_vsi; 10785 } 10786 10787 /* updates the PF for this cleared vsi */ 10788 i40e_put_lump(pf->qp_pile, vsi->base_queue, vsi->idx); 10789 i40e_put_lump(pf->irq_pile, vsi->base_vector, vsi->idx); 10790 10791 bitmap_free(vsi->af_xdp_zc_qps); 10792 i40e_vsi_free_arrays(vsi, true); 10793 i40e_clear_rss_config_user(vsi); 10794 10795 pf->vsi[vsi->idx] = NULL; 10796 if (vsi->idx < pf->next_vsi) 10797 pf->next_vsi = vsi->idx; 10798 10799 unlock_vsi: 10800 mutex_unlock(&pf->switch_mutex); 10801 free_vsi: 10802 kfree(vsi); 10803 10804 return 0; 10805 } 10806 10807 /** 10808 * i40e_vsi_clear_rings - Deallocates the Rx and Tx rings for the provided VSI 10809 * @vsi: the VSI being cleaned 10810 **/ 10811 static void i40e_vsi_clear_rings(struct i40e_vsi *vsi) 10812 { 10813 int i; 10814 10815 if (vsi->tx_rings && vsi->tx_rings[0]) { 10816 for (i = 0; i < vsi->alloc_queue_pairs; i++) { 10817 kfree_rcu(vsi->tx_rings[i], rcu); 10818 vsi->tx_rings[i] = NULL; 10819 vsi->rx_rings[i] = NULL; 10820 if (vsi->xdp_rings) 10821 vsi->xdp_rings[i] = NULL; 10822 } 10823 } 10824 } 10825 10826 /** 10827 * i40e_alloc_rings - Allocates the Rx and Tx rings for the provided VSI 10828 * @vsi: the VSI being configured 10829 **/ 10830 static int i40e_alloc_rings(struct i40e_vsi *vsi) 10831 { 10832 int i, qpv = i40e_enabled_xdp_vsi(vsi) ? 3 : 2; 10833 struct i40e_pf *pf = vsi->back; 10834 struct i40e_ring *ring; 10835 10836 /* Set basic values in the rings to be used later during open() */ 10837 for (i = 0; i < vsi->alloc_queue_pairs; i++) { 10838 /* allocate space for both Tx and Rx in one shot */ 10839 ring = kcalloc(qpv, sizeof(struct i40e_ring), GFP_KERNEL); 10840 if (!ring) 10841 goto err_out; 10842 10843 ring->queue_index = i; 10844 ring->reg_idx = vsi->base_queue + i; 10845 ring->ring_active = false; 10846 ring->vsi = vsi; 10847 ring->netdev = vsi->netdev; 10848 ring->dev = &pf->pdev->dev; 10849 ring->count = vsi->num_tx_desc; 10850 ring->size = 0; 10851 ring->dcb_tc = 0; 10852 if (vsi->back->hw_features & I40E_HW_WB_ON_ITR_CAPABLE) 10853 ring->flags = I40E_TXR_FLAGS_WB_ON_ITR; 10854 ring->itr_setting = pf->tx_itr_default; 10855 vsi->tx_rings[i] = ring++; 10856 10857 if (!i40e_enabled_xdp_vsi(vsi)) 10858 goto setup_rx; 10859 10860 ring->queue_index = vsi->alloc_queue_pairs + i; 10861 ring->reg_idx = vsi->base_queue + ring->queue_index; 10862 ring->ring_active = false; 10863 ring->vsi = vsi; 10864 ring->netdev = NULL; 10865 ring->dev = &pf->pdev->dev; 10866 ring->count = vsi->num_tx_desc; 10867 ring->size = 0; 10868 ring->dcb_tc = 0; 10869 if (vsi->back->hw_features & I40E_HW_WB_ON_ITR_CAPABLE) 10870 ring->flags = I40E_TXR_FLAGS_WB_ON_ITR; 10871 set_ring_xdp(ring); 10872 ring->itr_setting = pf->tx_itr_default; 10873 vsi->xdp_rings[i] = ring++; 10874 10875 setup_rx: 10876 ring->queue_index = i; 10877 ring->reg_idx = vsi->base_queue + i; 10878 ring->ring_active = false; 10879 ring->vsi = vsi; 10880 ring->netdev = vsi->netdev; 10881 ring->dev = &pf->pdev->dev; 10882 ring->count = vsi->num_rx_desc; 10883 ring->size = 0; 10884 ring->dcb_tc = 0; 10885 ring->itr_setting = pf->rx_itr_default; 10886 vsi->rx_rings[i] = ring; 10887 } 10888 10889 return 0; 10890 10891 err_out: 10892 i40e_vsi_clear_rings(vsi); 10893 return -ENOMEM; 10894 } 10895 10896 /** 10897 * i40e_reserve_msix_vectors - Reserve MSI-X vectors in the kernel 10898 * @pf: board private structure 10899 * @vectors: the number of MSI-X vectors to request 10900 * 10901 * Returns the number of vectors reserved, or error 10902 **/ 10903 static int i40e_reserve_msix_vectors(struct i40e_pf *pf, int vectors) 10904 { 10905 vectors = pci_enable_msix_range(pf->pdev, pf->msix_entries, 10906 I40E_MIN_MSIX, vectors); 10907 if (vectors < 0) { 10908 dev_info(&pf->pdev->dev, 10909 "MSI-X vector reservation failed: %d\n", vectors); 10910 vectors = 0; 10911 } 10912 10913 return vectors; 10914 } 10915 10916 /** 10917 * i40e_init_msix - Setup the MSIX capability 10918 * @pf: board private structure 10919 * 10920 * Work with the OS to set up the MSIX vectors needed. 10921 * 10922 * Returns the number of vectors reserved or negative on failure 10923 **/ 10924 static int i40e_init_msix(struct i40e_pf *pf) 10925 { 10926 struct i40e_hw *hw = &pf->hw; 10927 int cpus, extra_vectors; 10928 int vectors_left; 10929 int v_budget, i; 10930 int v_actual; 10931 int iwarp_requested = 0; 10932 10933 if (!(pf->flags & I40E_FLAG_MSIX_ENABLED)) 10934 return -ENODEV; 10935 10936 /* The number of vectors we'll request will be comprised of: 10937 * - Add 1 for "other" cause for Admin Queue events, etc. 10938 * - The number of LAN queue pairs 10939 * - Queues being used for RSS. 10940 * We don't need as many as max_rss_size vectors. 10941 * use rss_size instead in the calculation since that 10942 * is governed by number of cpus in the system. 10943 * - assumes symmetric Tx/Rx pairing 10944 * - The number of VMDq pairs 10945 * - The CPU count within the NUMA node if iWARP is enabled 10946 * Once we count this up, try the request. 10947 * 10948 * If we can't get what we want, we'll simplify to nearly nothing 10949 * and try again. If that still fails, we punt. 10950 */ 10951 vectors_left = hw->func_caps.num_msix_vectors; 10952 v_budget = 0; 10953 10954 /* reserve one vector for miscellaneous handler */ 10955 if (vectors_left) { 10956 v_budget++; 10957 vectors_left--; 10958 } 10959 10960 /* reserve some vectors for the main PF traffic queues. Initially we 10961 * only reserve at most 50% of the available vectors, in the case that 10962 * the number of online CPUs is large. This ensures that we can enable 10963 * extra features as well. Once we've enabled the other features, we 10964 * will use any remaining vectors to reach as close as we can to the 10965 * number of online CPUs. 10966 */ 10967 cpus = num_online_cpus(); 10968 pf->num_lan_msix = min_t(int, cpus, vectors_left / 2); 10969 vectors_left -= pf->num_lan_msix; 10970 10971 /* reserve one vector for sideband flow director */ 10972 if (pf->flags & I40E_FLAG_FD_SB_ENABLED) { 10973 if (vectors_left) { 10974 pf->num_fdsb_msix = 1; 10975 v_budget++; 10976 vectors_left--; 10977 } else { 10978 pf->num_fdsb_msix = 0; 10979 } 10980 } 10981 10982 /* can we reserve enough for iWARP? */ 10983 if (pf->flags & I40E_FLAG_IWARP_ENABLED) { 10984 iwarp_requested = pf->num_iwarp_msix; 10985 10986 if (!vectors_left) 10987 pf->num_iwarp_msix = 0; 10988 else if (vectors_left < pf->num_iwarp_msix) 10989 pf->num_iwarp_msix = 1; 10990 v_budget += pf->num_iwarp_msix; 10991 vectors_left -= pf->num_iwarp_msix; 10992 } 10993 10994 /* any vectors left over go for VMDq support */ 10995 if (pf->flags & I40E_FLAG_VMDQ_ENABLED) { 10996 if (!vectors_left) { 10997 pf->num_vmdq_msix = 0; 10998 pf->num_vmdq_qps = 0; 10999 } else { 11000 int vmdq_vecs_wanted = 11001 pf->num_vmdq_vsis * pf->num_vmdq_qps; 11002 int vmdq_vecs = 11003 min_t(int, vectors_left, vmdq_vecs_wanted); 11004 11005 /* if we're short on vectors for what's desired, we limit 11006 * the queues per vmdq. If this is still more than are 11007 * available, the user will need to change the number of 11008 * queues/vectors used by the PF later with the ethtool 11009 * channels command 11010 */ 11011 if (vectors_left < vmdq_vecs_wanted) { 11012 pf->num_vmdq_qps = 1; 11013 vmdq_vecs_wanted = pf->num_vmdq_vsis; 11014 vmdq_vecs = min_t(int, 11015 vectors_left, 11016 vmdq_vecs_wanted); 11017 } 11018 pf->num_vmdq_msix = pf->num_vmdq_qps; 11019 11020 v_budget += vmdq_vecs; 11021 vectors_left -= vmdq_vecs; 11022 } 11023 } 11024 11025 /* On systems with a large number of SMP cores, we previously limited 11026 * the number of vectors for num_lan_msix to be at most 50% of the 11027 * available vectors, to allow for other features. Now, we add back 11028 * the remaining vectors. However, we ensure that the total 11029 * num_lan_msix will not exceed num_online_cpus(). To do this, we 11030 * calculate the number of vectors we can add without going over the 11031 * cap of CPUs. For systems with a small number of CPUs this will be 11032 * zero. 11033 */ 11034 extra_vectors = min_t(int, cpus - pf->num_lan_msix, vectors_left); 11035 pf->num_lan_msix += extra_vectors; 11036 vectors_left -= extra_vectors; 11037 11038 WARN(vectors_left < 0, 11039 "Calculation of remaining vectors underflowed. This is an accounting bug when determining total MSI-X vectors.\n"); 11040 11041 v_budget += pf->num_lan_msix; 11042 pf->msix_entries = kcalloc(v_budget, sizeof(struct msix_entry), 11043 GFP_KERNEL); 11044 if (!pf->msix_entries) 11045 return -ENOMEM; 11046 11047 for (i = 0; i < v_budget; i++) 11048 pf->msix_entries[i].entry = i; 11049 v_actual = i40e_reserve_msix_vectors(pf, v_budget); 11050 11051 if (v_actual < I40E_MIN_MSIX) { 11052 pf->flags &= ~I40E_FLAG_MSIX_ENABLED; 11053 kfree(pf->msix_entries); 11054 pf->msix_entries = NULL; 11055 pci_disable_msix(pf->pdev); 11056 return -ENODEV; 11057 11058 } else if (v_actual == I40E_MIN_MSIX) { 11059 /* Adjust for minimal MSIX use */ 11060 pf->num_vmdq_vsis = 0; 11061 pf->num_vmdq_qps = 0; 11062 pf->num_lan_qps = 1; 11063 pf->num_lan_msix = 1; 11064 11065 } else if (v_actual != v_budget) { 11066 /* If we have limited resources, we will start with no vectors 11067 * for the special features and then allocate vectors to some 11068 * of these features based on the policy and at the end disable 11069 * the features that did not get any vectors. 11070 */ 11071 int vec; 11072 11073 dev_info(&pf->pdev->dev, 11074 "MSI-X vector limit reached with %d, wanted %d, attempting to redistribute vectors\n", 11075 v_actual, v_budget); 11076 /* reserve the misc vector */ 11077 vec = v_actual - 1; 11078 11079 /* Scale vector usage down */ 11080 pf->num_vmdq_msix = 1; /* force VMDqs to only one vector */ 11081 pf->num_vmdq_vsis = 1; 11082 pf->num_vmdq_qps = 1; 11083 11084 /* partition out the remaining vectors */ 11085 switch (vec) { 11086 case 2: 11087 pf->num_lan_msix = 1; 11088 break; 11089 case 3: 11090 if (pf->flags & I40E_FLAG_IWARP_ENABLED) { 11091 pf->num_lan_msix = 1; 11092 pf->num_iwarp_msix = 1; 11093 } else { 11094 pf->num_lan_msix = 2; 11095 } 11096 break; 11097 default: 11098 if (pf->flags & I40E_FLAG_IWARP_ENABLED) { 11099 pf->num_iwarp_msix = min_t(int, (vec / 3), 11100 iwarp_requested); 11101 pf->num_vmdq_vsis = min_t(int, (vec / 3), 11102 I40E_DEFAULT_NUM_VMDQ_VSI); 11103 } else { 11104 pf->num_vmdq_vsis = min_t(int, (vec / 2), 11105 I40E_DEFAULT_NUM_VMDQ_VSI); 11106 } 11107 if (pf->flags & I40E_FLAG_FD_SB_ENABLED) { 11108 pf->num_fdsb_msix = 1; 11109 vec--; 11110 } 11111 pf->num_lan_msix = min_t(int, 11112 (vec - (pf->num_iwarp_msix + pf->num_vmdq_vsis)), 11113 pf->num_lan_msix); 11114 pf->num_lan_qps = pf->num_lan_msix; 11115 break; 11116 } 11117 } 11118 11119 if ((pf->flags & I40E_FLAG_FD_SB_ENABLED) && 11120 (pf->num_fdsb_msix == 0)) { 11121 dev_info(&pf->pdev->dev, "Sideband Flowdir disabled, not enough MSI-X vectors\n"); 11122 pf->flags &= ~I40E_FLAG_FD_SB_ENABLED; 11123 pf->flags |= I40E_FLAG_FD_SB_INACTIVE; 11124 } 11125 if ((pf->flags & I40E_FLAG_VMDQ_ENABLED) && 11126 (pf->num_vmdq_msix == 0)) { 11127 dev_info(&pf->pdev->dev, "VMDq disabled, not enough MSI-X vectors\n"); 11128 pf->flags &= ~I40E_FLAG_VMDQ_ENABLED; 11129 } 11130 11131 if ((pf->flags & I40E_FLAG_IWARP_ENABLED) && 11132 (pf->num_iwarp_msix == 0)) { 11133 dev_info(&pf->pdev->dev, "IWARP disabled, not enough MSI-X vectors\n"); 11134 pf->flags &= ~I40E_FLAG_IWARP_ENABLED; 11135 } 11136 i40e_debug(&pf->hw, I40E_DEBUG_INIT, 11137 "MSI-X vector distribution: PF %d, VMDq %d, FDSB %d, iWARP %d\n", 11138 pf->num_lan_msix, 11139 pf->num_vmdq_msix * pf->num_vmdq_vsis, 11140 pf->num_fdsb_msix, 11141 pf->num_iwarp_msix); 11142 11143 return v_actual; 11144 } 11145 11146 /** 11147 * i40e_vsi_alloc_q_vector - Allocate memory for a single interrupt vector 11148 * @vsi: the VSI being configured 11149 * @v_idx: index of the vector in the vsi struct 11150 * @cpu: cpu to be used on affinity_mask 11151 * 11152 * We allocate one q_vector. If allocation fails we return -ENOMEM. 11153 **/ 11154 static int i40e_vsi_alloc_q_vector(struct i40e_vsi *vsi, int v_idx, int cpu) 11155 { 11156 struct i40e_q_vector *q_vector; 11157 11158 /* allocate q_vector */ 11159 q_vector = kzalloc(sizeof(struct i40e_q_vector), GFP_KERNEL); 11160 if (!q_vector) 11161 return -ENOMEM; 11162 11163 q_vector->vsi = vsi; 11164 q_vector->v_idx = v_idx; 11165 cpumask_copy(&q_vector->affinity_mask, cpu_possible_mask); 11166 11167 if (vsi->netdev) 11168 netif_napi_add(vsi->netdev, &q_vector->napi, 11169 i40e_napi_poll, NAPI_POLL_WEIGHT); 11170 11171 /* tie q_vector and vsi together */ 11172 vsi->q_vectors[v_idx] = q_vector; 11173 11174 return 0; 11175 } 11176 11177 /** 11178 * i40e_vsi_alloc_q_vectors - Allocate memory for interrupt vectors 11179 * @vsi: the VSI being configured 11180 * 11181 * We allocate one q_vector per queue interrupt. If allocation fails we 11182 * return -ENOMEM. 11183 **/ 11184 static int i40e_vsi_alloc_q_vectors(struct i40e_vsi *vsi) 11185 { 11186 struct i40e_pf *pf = vsi->back; 11187 int err, v_idx, num_q_vectors, current_cpu; 11188 11189 /* if not MSIX, give the one vector only to the LAN VSI */ 11190 if (pf->flags & I40E_FLAG_MSIX_ENABLED) 11191 num_q_vectors = vsi->num_q_vectors; 11192 else if (vsi == pf->vsi[pf->lan_vsi]) 11193 num_q_vectors = 1; 11194 else 11195 return -EINVAL; 11196 11197 current_cpu = cpumask_first(cpu_online_mask); 11198 11199 for (v_idx = 0; v_idx < num_q_vectors; v_idx++) { 11200 err = i40e_vsi_alloc_q_vector(vsi, v_idx, current_cpu); 11201 if (err) 11202 goto err_out; 11203 current_cpu = cpumask_next(current_cpu, cpu_online_mask); 11204 if (unlikely(current_cpu >= nr_cpu_ids)) 11205 current_cpu = cpumask_first(cpu_online_mask); 11206 } 11207 11208 return 0; 11209 11210 err_out: 11211 while (v_idx--) 11212 i40e_free_q_vector(vsi, v_idx); 11213 11214 return err; 11215 } 11216 11217 /** 11218 * i40e_init_interrupt_scheme - Determine proper interrupt scheme 11219 * @pf: board private structure to initialize 11220 **/ 11221 static int i40e_init_interrupt_scheme(struct i40e_pf *pf) 11222 { 11223 int vectors = 0; 11224 ssize_t size; 11225 11226 if (pf->flags & I40E_FLAG_MSIX_ENABLED) { 11227 vectors = i40e_init_msix(pf); 11228 if (vectors < 0) { 11229 pf->flags &= ~(I40E_FLAG_MSIX_ENABLED | 11230 I40E_FLAG_IWARP_ENABLED | 11231 I40E_FLAG_RSS_ENABLED | 11232 I40E_FLAG_DCB_CAPABLE | 11233 I40E_FLAG_DCB_ENABLED | 11234 I40E_FLAG_SRIOV_ENABLED | 11235 I40E_FLAG_FD_SB_ENABLED | 11236 I40E_FLAG_FD_ATR_ENABLED | 11237 I40E_FLAG_VMDQ_ENABLED); 11238 pf->flags |= I40E_FLAG_FD_SB_INACTIVE; 11239 11240 /* rework the queue expectations without MSIX */ 11241 i40e_determine_queue_usage(pf); 11242 } 11243 } 11244 11245 if (!(pf->flags & I40E_FLAG_MSIX_ENABLED) && 11246 (pf->flags & I40E_FLAG_MSI_ENABLED)) { 11247 dev_info(&pf->pdev->dev, "MSI-X not available, trying MSI\n"); 11248 vectors = pci_enable_msi(pf->pdev); 11249 if (vectors < 0) { 11250 dev_info(&pf->pdev->dev, "MSI init failed - %d\n", 11251 vectors); 11252 pf->flags &= ~I40E_FLAG_MSI_ENABLED; 11253 } 11254 vectors = 1; /* one MSI or Legacy vector */ 11255 } 11256 11257 if (!(pf->flags & (I40E_FLAG_MSIX_ENABLED | I40E_FLAG_MSI_ENABLED))) 11258 dev_info(&pf->pdev->dev, "MSI-X and MSI not available, falling back to Legacy IRQ\n"); 11259 11260 /* set up vector assignment tracking */ 11261 size = sizeof(struct i40e_lump_tracking) + (sizeof(u16) * vectors); 11262 pf->irq_pile = kzalloc(size, GFP_KERNEL); 11263 if (!pf->irq_pile) 11264 return -ENOMEM; 11265 11266 pf->irq_pile->num_entries = vectors; 11267 pf->irq_pile->search_hint = 0; 11268 11269 /* track first vector for misc interrupts, ignore return */ 11270 (void)i40e_get_lump(pf, pf->irq_pile, 1, I40E_PILE_VALID_BIT - 1); 11271 11272 return 0; 11273 } 11274 11275 /** 11276 * i40e_restore_interrupt_scheme - Restore the interrupt scheme 11277 * @pf: private board data structure 11278 * 11279 * Restore the interrupt scheme that was cleared when we suspended the 11280 * device. This should be called during resume to re-allocate the q_vectors 11281 * and reacquire IRQs. 11282 */ 11283 static int i40e_restore_interrupt_scheme(struct i40e_pf *pf) 11284 { 11285 int err, i; 11286 11287 /* We cleared the MSI and MSI-X flags when disabling the old interrupt 11288 * scheme. We need to re-enabled them here in order to attempt to 11289 * re-acquire the MSI or MSI-X vectors 11290 */ 11291 pf->flags |= (I40E_FLAG_MSIX_ENABLED | I40E_FLAG_MSI_ENABLED); 11292 11293 err = i40e_init_interrupt_scheme(pf); 11294 if (err) 11295 return err; 11296 11297 /* Now that we've re-acquired IRQs, we need to remap the vectors and 11298 * rings together again. 11299 */ 11300 for (i = 0; i < pf->num_alloc_vsi; i++) { 11301 if (pf->vsi[i]) { 11302 err = i40e_vsi_alloc_q_vectors(pf->vsi[i]); 11303 if (err) 11304 goto err_unwind; 11305 i40e_vsi_map_rings_to_vectors(pf->vsi[i]); 11306 } 11307 } 11308 11309 err = i40e_setup_misc_vector(pf); 11310 if (err) 11311 goto err_unwind; 11312 11313 if (pf->flags & I40E_FLAG_IWARP_ENABLED) 11314 i40e_client_update_msix_info(pf); 11315 11316 return 0; 11317 11318 err_unwind: 11319 while (i--) { 11320 if (pf->vsi[i]) 11321 i40e_vsi_free_q_vectors(pf->vsi[i]); 11322 } 11323 11324 return err; 11325 } 11326 11327 /** 11328 * i40e_setup_misc_vector_for_recovery_mode - Setup the misc vector to handle 11329 * non queue events in recovery mode 11330 * @pf: board private structure 11331 * 11332 * This sets up the handler for MSIX 0 or MSI/legacy, which is used to manage 11333 * the non-queue interrupts, e.g. AdminQ and errors in recovery mode. 11334 * This is handled differently than in recovery mode since no Tx/Rx resources 11335 * are being allocated. 11336 **/ 11337 static int i40e_setup_misc_vector_for_recovery_mode(struct i40e_pf *pf) 11338 { 11339 int err; 11340 11341 if (pf->flags & I40E_FLAG_MSIX_ENABLED) { 11342 err = i40e_setup_misc_vector(pf); 11343 11344 if (err) { 11345 dev_info(&pf->pdev->dev, 11346 "MSI-X misc vector request failed, error %d\n", 11347 err); 11348 return err; 11349 } 11350 } else { 11351 u32 flags = pf->flags & I40E_FLAG_MSI_ENABLED ? 0 : IRQF_SHARED; 11352 11353 err = request_irq(pf->pdev->irq, i40e_intr, flags, 11354 pf->int_name, pf); 11355 11356 if (err) { 11357 dev_info(&pf->pdev->dev, 11358 "MSI/legacy misc vector request failed, error %d\n", 11359 err); 11360 return err; 11361 } 11362 i40e_enable_misc_int_causes(pf); 11363 i40e_irq_dynamic_enable_icr0(pf); 11364 } 11365 11366 return 0; 11367 } 11368 11369 /** 11370 * i40e_setup_misc_vector - Setup the misc vector to handle non queue events 11371 * @pf: board private structure 11372 * 11373 * This sets up the handler for MSIX 0, which is used to manage the 11374 * non-queue interrupts, e.g. AdminQ and errors. This is not used 11375 * when in MSI or Legacy interrupt mode. 11376 **/ 11377 static int i40e_setup_misc_vector(struct i40e_pf *pf) 11378 { 11379 struct i40e_hw *hw = &pf->hw; 11380 int err = 0; 11381 11382 /* Only request the IRQ once, the first time through. */ 11383 if (!test_and_set_bit(__I40E_MISC_IRQ_REQUESTED, pf->state)) { 11384 err = request_irq(pf->msix_entries[0].vector, 11385 i40e_intr, 0, pf->int_name, pf); 11386 if (err) { 11387 clear_bit(__I40E_MISC_IRQ_REQUESTED, pf->state); 11388 dev_info(&pf->pdev->dev, 11389 "request_irq for %s failed: %d\n", 11390 pf->int_name, err); 11391 return -EFAULT; 11392 } 11393 } 11394 11395 i40e_enable_misc_int_causes(pf); 11396 11397 /* associate no queues to the misc vector */ 11398 wr32(hw, I40E_PFINT_LNKLST0, I40E_QUEUE_END_OF_LIST); 11399 wr32(hw, I40E_PFINT_ITR0(I40E_RX_ITR), I40E_ITR_8K); 11400 11401 i40e_flush(hw); 11402 11403 i40e_irq_dynamic_enable_icr0(pf); 11404 11405 return err; 11406 } 11407 11408 /** 11409 * i40e_get_rss_aq - Get RSS keys and lut by using AQ commands 11410 * @vsi: Pointer to vsi structure 11411 * @seed: Buffter to store the hash keys 11412 * @lut: Buffer to store the lookup table entries 11413 * @lut_size: Size of buffer to store the lookup table entries 11414 * 11415 * Return 0 on success, negative on failure 11416 */ 11417 static int i40e_get_rss_aq(struct i40e_vsi *vsi, const u8 *seed, 11418 u8 *lut, u16 lut_size) 11419 { 11420 struct i40e_pf *pf = vsi->back; 11421 struct i40e_hw *hw = &pf->hw; 11422 int ret = 0; 11423 11424 if (seed) { 11425 ret = i40e_aq_get_rss_key(hw, vsi->id, 11426 (struct i40e_aqc_get_set_rss_key_data *)seed); 11427 if (ret) { 11428 dev_info(&pf->pdev->dev, 11429 "Cannot get RSS key, err %s aq_err %s\n", 11430 i40e_stat_str(&pf->hw, ret), 11431 i40e_aq_str(&pf->hw, 11432 pf->hw.aq.asq_last_status)); 11433 return ret; 11434 } 11435 } 11436 11437 if (lut) { 11438 bool pf_lut = vsi->type == I40E_VSI_MAIN ? true : false; 11439 11440 ret = i40e_aq_get_rss_lut(hw, vsi->id, pf_lut, lut, lut_size); 11441 if (ret) { 11442 dev_info(&pf->pdev->dev, 11443 "Cannot get RSS lut, err %s aq_err %s\n", 11444 i40e_stat_str(&pf->hw, ret), 11445 i40e_aq_str(&pf->hw, 11446 pf->hw.aq.asq_last_status)); 11447 return ret; 11448 } 11449 } 11450 11451 return ret; 11452 } 11453 11454 /** 11455 * i40e_config_rss_reg - Configure RSS keys and lut by writing registers 11456 * @vsi: Pointer to vsi structure 11457 * @seed: RSS hash seed 11458 * @lut: Lookup table 11459 * @lut_size: Lookup table size 11460 * 11461 * Returns 0 on success, negative on failure 11462 **/ 11463 static int i40e_config_rss_reg(struct i40e_vsi *vsi, const u8 *seed, 11464 const u8 *lut, u16 lut_size) 11465 { 11466 struct i40e_pf *pf = vsi->back; 11467 struct i40e_hw *hw = &pf->hw; 11468 u16 vf_id = vsi->vf_id; 11469 u8 i; 11470 11471 /* Fill out hash function seed */ 11472 if (seed) { 11473 u32 *seed_dw = (u32 *)seed; 11474 11475 if (vsi->type == I40E_VSI_MAIN) { 11476 for (i = 0; i <= I40E_PFQF_HKEY_MAX_INDEX; i++) 11477 wr32(hw, I40E_PFQF_HKEY(i), seed_dw[i]); 11478 } else if (vsi->type == I40E_VSI_SRIOV) { 11479 for (i = 0; i <= I40E_VFQF_HKEY1_MAX_INDEX; i++) 11480 wr32(hw, I40E_VFQF_HKEY1(i, vf_id), seed_dw[i]); 11481 } else { 11482 dev_err(&pf->pdev->dev, "Cannot set RSS seed - invalid VSI type\n"); 11483 } 11484 } 11485 11486 if (lut) { 11487 u32 *lut_dw = (u32 *)lut; 11488 11489 if (vsi->type == I40E_VSI_MAIN) { 11490 if (lut_size != I40E_HLUT_ARRAY_SIZE) 11491 return -EINVAL; 11492 for (i = 0; i <= I40E_PFQF_HLUT_MAX_INDEX; i++) 11493 wr32(hw, I40E_PFQF_HLUT(i), lut_dw[i]); 11494 } else if (vsi->type == I40E_VSI_SRIOV) { 11495 if (lut_size != I40E_VF_HLUT_ARRAY_SIZE) 11496 return -EINVAL; 11497 for (i = 0; i <= I40E_VFQF_HLUT_MAX_INDEX; i++) 11498 wr32(hw, I40E_VFQF_HLUT1(i, vf_id), lut_dw[i]); 11499 } else { 11500 dev_err(&pf->pdev->dev, "Cannot set RSS LUT - invalid VSI type\n"); 11501 } 11502 } 11503 i40e_flush(hw); 11504 11505 return 0; 11506 } 11507 11508 /** 11509 * i40e_get_rss_reg - Get the RSS keys and lut by reading registers 11510 * @vsi: Pointer to VSI structure 11511 * @seed: Buffer to store the keys 11512 * @lut: Buffer to store the lookup table entries 11513 * @lut_size: Size of buffer to store the lookup table entries 11514 * 11515 * Returns 0 on success, negative on failure 11516 */ 11517 static int i40e_get_rss_reg(struct i40e_vsi *vsi, u8 *seed, 11518 u8 *lut, u16 lut_size) 11519 { 11520 struct i40e_pf *pf = vsi->back; 11521 struct i40e_hw *hw = &pf->hw; 11522 u16 i; 11523 11524 if (seed) { 11525 u32 *seed_dw = (u32 *)seed; 11526 11527 for (i = 0; i <= I40E_PFQF_HKEY_MAX_INDEX; i++) 11528 seed_dw[i] = i40e_read_rx_ctl(hw, I40E_PFQF_HKEY(i)); 11529 } 11530 if (lut) { 11531 u32 *lut_dw = (u32 *)lut; 11532 11533 if (lut_size != I40E_HLUT_ARRAY_SIZE) 11534 return -EINVAL; 11535 for (i = 0; i <= I40E_PFQF_HLUT_MAX_INDEX; i++) 11536 lut_dw[i] = rd32(hw, I40E_PFQF_HLUT(i)); 11537 } 11538 11539 return 0; 11540 } 11541 11542 /** 11543 * i40e_config_rss - Configure RSS keys and lut 11544 * @vsi: Pointer to VSI structure 11545 * @seed: RSS hash seed 11546 * @lut: Lookup table 11547 * @lut_size: Lookup table size 11548 * 11549 * Returns 0 on success, negative on failure 11550 */ 11551 int i40e_config_rss(struct i40e_vsi *vsi, u8 *seed, u8 *lut, u16 lut_size) 11552 { 11553 struct i40e_pf *pf = vsi->back; 11554 11555 if (pf->hw_features & I40E_HW_RSS_AQ_CAPABLE) 11556 return i40e_config_rss_aq(vsi, seed, lut, lut_size); 11557 else 11558 return i40e_config_rss_reg(vsi, seed, lut, lut_size); 11559 } 11560 11561 /** 11562 * i40e_get_rss - Get RSS keys and lut 11563 * @vsi: Pointer to VSI structure 11564 * @seed: Buffer to store the keys 11565 * @lut: Buffer to store the lookup table entries 11566 * @lut_size: Size of buffer to store the lookup table entries 11567 * 11568 * Returns 0 on success, negative on failure 11569 */ 11570 int i40e_get_rss(struct i40e_vsi *vsi, u8 *seed, u8 *lut, u16 lut_size) 11571 { 11572 struct i40e_pf *pf = vsi->back; 11573 11574 if (pf->hw_features & I40E_HW_RSS_AQ_CAPABLE) 11575 return i40e_get_rss_aq(vsi, seed, lut, lut_size); 11576 else 11577 return i40e_get_rss_reg(vsi, seed, lut, lut_size); 11578 } 11579 11580 /** 11581 * i40e_fill_rss_lut - Fill the RSS lookup table with default values 11582 * @pf: Pointer to board private structure 11583 * @lut: Lookup table 11584 * @rss_table_size: Lookup table size 11585 * @rss_size: Range of queue number for hashing 11586 */ 11587 void i40e_fill_rss_lut(struct i40e_pf *pf, u8 *lut, 11588 u16 rss_table_size, u16 rss_size) 11589 { 11590 u16 i; 11591 11592 for (i = 0; i < rss_table_size; i++) 11593 lut[i] = i % rss_size; 11594 } 11595 11596 /** 11597 * i40e_pf_config_rss - Prepare for RSS if used 11598 * @pf: board private structure 11599 **/ 11600 static int i40e_pf_config_rss(struct i40e_pf *pf) 11601 { 11602 struct i40e_vsi *vsi = pf->vsi[pf->lan_vsi]; 11603 u8 seed[I40E_HKEY_ARRAY_SIZE]; 11604 u8 *lut; 11605 struct i40e_hw *hw = &pf->hw; 11606 u32 reg_val; 11607 u64 hena; 11608 int ret; 11609 11610 /* By default we enable TCP/UDP with IPv4/IPv6 ptypes */ 11611 hena = (u64)i40e_read_rx_ctl(hw, I40E_PFQF_HENA(0)) | 11612 ((u64)i40e_read_rx_ctl(hw, I40E_PFQF_HENA(1)) << 32); 11613 hena |= i40e_pf_get_default_rss_hena(pf); 11614 11615 i40e_write_rx_ctl(hw, I40E_PFQF_HENA(0), (u32)hena); 11616 i40e_write_rx_ctl(hw, I40E_PFQF_HENA(1), (u32)(hena >> 32)); 11617 11618 /* Determine the RSS table size based on the hardware capabilities */ 11619 reg_val = i40e_read_rx_ctl(hw, I40E_PFQF_CTL_0); 11620 reg_val = (pf->rss_table_size == 512) ? 11621 (reg_val | I40E_PFQF_CTL_0_HASHLUTSIZE_512) : 11622 (reg_val & ~I40E_PFQF_CTL_0_HASHLUTSIZE_512); 11623 i40e_write_rx_ctl(hw, I40E_PFQF_CTL_0, reg_val); 11624 11625 /* Determine the RSS size of the VSI */ 11626 if (!vsi->rss_size) { 11627 u16 qcount; 11628 /* If the firmware does something weird during VSI init, we 11629 * could end up with zero TCs. Check for that to avoid 11630 * divide-by-zero. It probably won't pass traffic, but it also 11631 * won't panic. 11632 */ 11633 qcount = vsi->num_queue_pairs / 11634 (vsi->tc_config.numtc ? vsi->tc_config.numtc : 1); 11635 vsi->rss_size = min_t(int, pf->alloc_rss_size, qcount); 11636 } 11637 if (!vsi->rss_size) 11638 return -EINVAL; 11639 11640 lut = kzalloc(vsi->rss_table_size, GFP_KERNEL); 11641 if (!lut) 11642 return -ENOMEM; 11643 11644 /* Use user configured lut if there is one, otherwise use default */ 11645 if (vsi->rss_lut_user) 11646 memcpy(lut, vsi->rss_lut_user, vsi->rss_table_size); 11647 else 11648 i40e_fill_rss_lut(pf, lut, vsi->rss_table_size, vsi->rss_size); 11649 11650 /* Use user configured hash key if there is one, otherwise 11651 * use default. 11652 */ 11653 if (vsi->rss_hkey_user) 11654 memcpy(seed, vsi->rss_hkey_user, I40E_HKEY_ARRAY_SIZE); 11655 else 11656 netdev_rss_key_fill((void *)seed, I40E_HKEY_ARRAY_SIZE); 11657 ret = i40e_config_rss(vsi, seed, lut, vsi->rss_table_size); 11658 kfree(lut); 11659 11660 return ret; 11661 } 11662 11663 /** 11664 * i40e_reconfig_rss_queues - change number of queues for rss and rebuild 11665 * @pf: board private structure 11666 * @queue_count: the requested queue count for rss. 11667 * 11668 * returns 0 if rss is not enabled, if enabled returns the final rss queue 11669 * count which may be different from the requested queue count. 11670 * Note: expects to be called while under rtnl_lock() 11671 **/ 11672 int i40e_reconfig_rss_queues(struct i40e_pf *pf, int queue_count) 11673 { 11674 struct i40e_vsi *vsi = pf->vsi[pf->lan_vsi]; 11675 int new_rss_size; 11676 11677 if (!(pf->flags & I40E_FLAG_RSS_ENABLED)) 11678 return 0; 11679 11680 queue_count = min_t(int, queue_count, num_online_cpus()); 11681 new_rss_size = min_t(int, queue_count, pf->rss_size_max); 11682 11683 if (queue_count != vsi->num_queue_pairs) { 11684 u16 qcount; 11685 11686 vsi->req_queue_pairs = queue_count; 11687 i40e_prep_for_reset(pf, true); 11688 11689 pf->alloc_rss_size = new_rss_size; 11690 11691 i40e_reset_and_rebuild(pf, true, true); 11692 11693 /* Discard the user configured hash keys and lut, if less 11694 * queues are enabled. 11695 */ 11696 if (queue_count < vsi->rss_size) { 11697 i40e_clear_rss_config_user(vsi); 11698 dev_dbg(&pf->pdev->dev, 11699 "discard user configured hash keys and lut\n"); 11700 } 11701 11702 /* Reset vsi->rss_size, as number of enabled queues changed */ 11703 qcount = vsi->num_queue_pairs / vsi->tc_config.numtc; 11704 vsi->rss_size = min_t(int, pf->alloc_rss_size, qcount); 11705 11706 i40e_pf_config_rss(pf); 11707 } 11708 dev_info(&pf->pdev->dev, "User requested queue count/HW max RSS count: %d/%d\n", 11709 vsi->req_queue_pairs, pf->rss_size_max); 11710 return pf->alloc_rss_size; 11711 } 11712 11713 /** 11714 * i40e_get_partition_bw_setting - Retrieve BW settings for this PF partition 11715 * @pf: board private structure 11716 **/ 11717 i40e_status i40e_get_partition_bw_setting(struct i40e_pf *pf) 11718 { 11719 i40e_status status; 11720 bool min_valid, max_valid; 11721 u32 max_bw, min_bw; 11722 11723 status = i40e_read_bw_from_alt_ram(&pf->hw, &max_bw, &min_bw, 11724 &min_valid, &max_valid); 11725 11726 if (!status) { 11727 if (min_valid) 11728 pf->min_bw = min_bw; 11729 if (max_valid) 11730 pf->max_bw = max_bw; 11731 } 11732 11733 return status; 11734 } 11735 11736 /** 11737 * i40e_set_partition_bw_setting - Set BW settings for this PF partition 11738 * @pf: board private structure 11739 **/ 11740 i40e_status i40e_set_partition_bw_setting(struct i40e_pf *pf) 11741 { 11742 struct i40e_aqc_configure_partition_bw_data bw_data; 11743 i40e_status status; 11744 11745 /* Set the valid bit for this PF */ 11746 bw_data.pf_valid_bits = cpu_to_le16(BIT(pf->hw.pf_id)); 11747 bw_data.max_bw[pf->hw.pf_id] = pf->max_bw & I40E_ALT_BW_VALUE_MASK; 11748 bw_data.min_bw[pf->hw.pf_id] = pf->min_bw & I40E_ALT_BW_VALUE_MASK; 11749 11750 /* Set the new bandwidths */ 11751 status = i40e_aq_configure_partition_bw(&pf->hw, &bw_data, NULL); 11752 11753 return status; 11754 } 11755 11756 /** 11757 * i40e_commit_partition_bw_setting - Commit BW settings for this PF partition 11758 * @pf: board private structure 11759 **/ 11760 i40e_status i40e_commit_partition_bw_setting(struct i40e_pf *pf) 11761 { 11762 /* Commit temporary BW setting to permanent NVM image */ 11763 enum i40e_admin_queue_err last_aq_status; 11764 i40e_status ret; 11765 u16 nvm_word; 11766 11767 if (pf->hw.partition_id != 1) { 11768 dev_info(&pf->pdev->dev, 11769 "Commit BW only works on partition 1! This is partition %d", 11770 pf->hw.partition_id); 11771 ret = I40E_NOT_SUPPORTED; 11772 goto bw_commit_out; 11773 } 11774 11775 /* Acquire NVM for read access */ 11776 ret = i40e_acquire_nvm(&pf->hw, I40E_RESOURCE_READ); 11777 last_aq_status = pf->hw.aq.asq_last_status; 11778 if (ret) { 11779 dev_info(&pf->pdev->dev, 11780 "Cannot acquire NVM for read access, err %s aq_err %s\n", 11781 i40e_stat_str(&pf->hw, ret), 11782 i40e_aq_str(&pf->hw, last_aq_status)); 11783 goto bw_commit_out; 11784 } 11785 11786 /* Read word 0x10 of NVM - SW compatibility word 1 */ 11787 ret = i40e_aq_read_nvm(&pf->hw, 11788 I40E_SR_NVM_CONTROL_WORD, 11789 0x10, sizeof(nvm_word), &nvm_word, 11790 false, NULL); 11791 /* Save off last admin queue command status before releasing 11792 * the NVM 11793 */ 11794 last_aq_status = pf->hw.aq.asq_last_status; 11795 i40e_release_nvm(&pf->hw); 11796 if (ret) { 11797 dev_info(&pf->pdev->dev, "NVM read error, err %s aq_err %s\n", 11798 i40e_stat_str(&pf->hw, ret), 11799 i40e_aq_str(&pf->hw, last_aq_status)); 11800 goto bw_commit_out; 11801 } 11802 11803 /* Wait a bit for NVM release to complete */ 11804 msleep(50); 11805 11806 /* Acquire NVM for write access */ 11807 ret = i40e_acquire_nvm(&pf->hw, I40E_RESOURCE_WRITE); 11808 last_aq_status = pf->hw.aq.asq_last_status; 11809 if (ret) { 11810 dev_info(&pf->pdev->dev, 11811 "Cannot acquire NVM for write access, err %s aq_err %s\n", 11812 i40e_stat_str(&pf->hw, ret), 11813 i40e_aq_str(&pf->hw, last_aq_status)); 11814 goto bw_commit_out; 11815 } 11816 /* Write it back out unchanged to initiate update NVM, 11817 * which will force a write of the shadow (alt) RAM to 11818 * the NVM - thus storing the bandwidth values permanently. 11819 */ 11820 ret = i40e_aq_update_nvm(&pf->hw, 11821 I40E_SR_NVM_CONTROL_WORD, 11822 0x10, sizeof(nvm_word), 11823 &nvm_word, true, 0, NULL); 11824 /* Save off last admin queue command status before releasing 11825 * the NVM 11826 */ 11827 last_aq_status = pf->hw.aq.asq_last_status; 11828 i40e_release_nvm(&pf->hw); 11829 if (ret) 11830 dev_info(&pf->pdev->dev, 11831 "BW settings NOT SAVED, err %s aq_err %s\n", 11832 i40e_stat_str(&pf->hw, ret), 11833 i40e_aq_str(&pf->hw, last_aq_status)); 11834 bw_commit_out: 11835 11836 return ret; 11837 } 11838 11839 /** 11840 * i40e_sw_init - Initialize general software structures (struct i40e_pf) 11841 * @pf: board private structure to initialize 11842 * 11843 * i40e_sw_init initializes the Adapter private data structure. 11844 * Fields are initialized based on PCI device information and 11845 * OS network device settings (MTU size). 11846 **/ 11847 static int i40e_sw_init(struct i40e_pf *pf) 11848 { 11849 int err = 0; 11850 int size; 11851 11852 /* Set default capability flags */ 11853 pf->flags = I40E_FLAG_RX_CSUM_ENABLED | 11854 I40E_FLAG_MSI_ENABLED | 11855 I40E_FLAG_MSIX_ENABLED; 11856 11857 /* Set default ITR */ 11858 pf->rx_itr_default = I40E_ITR_RX_DEF; 11859 pf->tx_itr_default = I40E_ITR_TX_DEF; 11860 11861 /* Depending on PF configurations, it is possible that the RSS 11862 * maximum might end up larger than the available queues 11863 */ 11864 pf->rss_size_max = BIT(pf->hw.func_caps.rss_table_entry_width); 11865 pf->alloc_rss_size = 1; 11866 pf->rss_table_size = pf->hw.func_caps.rss_table_size; 11867 pf->rss_size_max = min_t(int, pf->rss_size_max, 11868 pf->hw.func_caps.num_tx_qp); 11869 if (pf->hw.func_caps.rss) { 11870 pf->flags |= I40E_FLAG_RSS_ENABLED; 11871 pf->alloc_rss_size = min_t(int, pf->rss_size_max, 11872 num_online_cpus()); 11873 } 11874 11875 /* MFP mode enabled */ 11876 if (pf->hw.func_caps.npar_enable || pf->hw.func_caps.flex10_enable) { 11877 pf->flags |= I40E_FLAG_MFP_ENABLED; 11878 dev_info(&pf->pdev->dev, "MFP mode Enabled\n"); 11879 if (i40e_get_partition_bw_setting(pf)) { 11880 dev_warn(&pf->pdev->dev, 11881 "Could not get partition bw settings\n"); 11882 } else { 11883 dev_info(&pf->pdev->dev, 11884 "Partition BW Min = %8.8x, Max = %8.8x\n", 11885 pf->min_bw, pf->max_bw); 11886 11887 /* nudge the Tx scheduler */ 11888 i40e_set_partition_bw_setting(pf); 11889 } 11890 } 11891 11892 if ((pf->hw.func_caps.fd_filters_guaranteed > 0) || 11893 (pf->hw.func_caps.fd_filters_best_effort > 0)) { 11894 pf->flags |= I40E_FLAG_FD_ATR_ENABLED; 11895 pf->atr_sample_rate = I40E_DEFAULT_ATR_SAMPLE_RATE; 11896 if (pf->flags & I40E_FLAG_MFP_ENABLED && 11897 pf->hw.num_partitions > 1) 11898 dev_info(&pf->pdev->dev, 11899 "Flow Director Sideband mode Disabled in MFP mode\n"); 11900 else 11901 pf->flags |= I40E_FLAG_FD_SB_ENABLED; 11902 pf->fdir_pf_filter_count = 11903 pf->hw.func_caps.fd_filters_guaranteed; 11904 pf->hw.fdir_shared_filter_count = 11905 pf->hw.func_caps.fd_filters_best_effort; 11906 } 11907 11908 if (pf->hw.mac.type == I40E_MAC_X722) { 11909 pf->hw_features |= (I40E_HW_RSS_AQ_CAPABLE | 11910 I40E_HW_128_QP_RSS_CAPABLE | 11911 I40E_HW_ATR_EVICT_CAPABLE | 11912 I40E_HW_WB_ON_ITR_CAPABLE | 11913 I40E_HW_MULTIPLE_TCP_UDP_RSS_PCTYPE | 11914 I40E_HW_NO_PCI_LINK_CHECK | 11915 I40E_HW_USE_SET_LLDP_MIB | 11916 I40E_HW_GENEVE_OFFLOAD_CAPABLE | 11917 I40E_HW_PTP_L4_CAPABLE | 11918 I40E_HW_WOL_MC_MAGIC_PKT_WAKE | 11919 I40E_HW_OUTER_UDP_CSUM_CAPABLE); 11920 11921 #define I40E_FDEVICT_PCTYPE_DEFAULT 0xc03 11922 if (rd32(&pf->hw, I40E_GLQF_FDEVICTENA(1)) != 11923 I40E_FDEVICT_PCTYPE_DEFAULT) { 11924 dev_warn(&pf->pdev->dev, 11925 "FD EVICT PCTYPES are not right, disable FD HW EVICT\n"); 11926 pf->hw_features &= ~I40E_HW_ATR_EVICT_CAPABLE; 11927 } 11928 } else if ((pf->hw.aq.api_maj_ver > 1) || 11929 ((pf->hw.aq.api_maj_ver == 1) && 11930 (pf->hw.aq.api_min_ver > 4))) { 11931 /* Supported in FW API version higher than 1.4 */ 11932 pf->hw_features |= I40E_HW_GENEVE_OFFLOAD_CAPABLE; 11933 } 11934 11935 /* Enable HW ATR eviction if possible */ 11936 if (pf->hw_features & I40E_HW_ATR_EVICT_CAPABLE) 11937 pf->flags |= I40E_FLAG_HW_ATR_EVICT_ENABLED; 11938 11939 if ((pf->hw.mac.type == I40E_MAC_XL710) && 11940 (((pf->hw.aq.fw_maj_ver == 4) && (pf->hw.aq.fw_min_ver < 33)) || 11941 (pf->hw.aq.fw_maj_ver < 4))) { 11942 pf->hw_features |= I40E_HW_RESTART_AUTONEG; 11943 /* No DCB support for FW < v4.33 */ 11944 pf->hw_features |= I40E_HW_NO_DCB_SUPPORT; 11945 } 11946 11947 /* Disable FW LLDP if FW < v4.3 */ 11948 if ((pf->hw.mac.type == I40E_MAC_XL710) && 11949 (((pf->hw.aq.fw_maj_ver == 4) && (pf->hw.aq.fw_min_ver < 3)) || 11950 (pf->hw.aq.fw_maj_ver < 4))) 11951 pf->hw_features |= I40E_HW_STOP_FW_LLDP; 11952 11953 /* Use the FW Set LLDP MIB API if FW > v4.40 */ 11954 if ((pf->hw.mac.type == I40E_MAC_XL710) && 11955 (((pf->hw.aq.fw_maj_ver == 4) && (pf->hw.aq.fw_min_ver >= 40)) || 11956 (pf->hw.aq.fw_maj_ver >= 5))) 11957 pf->hw_features |= I40E_HW_USE_SET_LLDP_MIB; 11958 11959 /* Enable PTP L4 if FW > v6.0 */ 11960 if (pf->hw.mac.type == I40E_MAC_XL710 && 11961 pf->hw.aq.fw_maj_ver >= 6) 11962 pf->hw_features |= I40E_HW_PTP_L4_CAPABLE; 11963 11964 if (pf->hw.func_caps.vmdq && num_online_cpus() != 1) { 11965 pf->num_vmdq_vsis = I40E_DEFAULT_NUM_VMDQ_VSI; 11966 pf->flags |= I40E_FLAG_VMDQ_ENABLED; 11967 pf->num_vmdq_qps = i40e_default_queues_per_vmdq(pf); 11968 } 11969 11970 if (pf->hw.func_caps.iwarp && num_online_cpus() != 1) { 11971 pf->flags |= I40E_FLAG_IWARP_ENABLED; 11972 /* IWARP needs one extra vector for CQP just like MISC.*/ 11973 pf->num_iwarp_msix = (int)num_online_cpus() + 1; 11974 } 11975 /* Stopping FW LLDP engine is supported on XL710 and X722 11976 * starting from FW versions determined in i40e_init_adminq. 11977 * Stopping the FW LLDP engine is not supported on XL710 11978 * if NPAR is functioning so unset this hw flag in this case. 11979 */ 11980 if (pf->hw.mac.type == I40E_MAC_XL710 && 11981 pf->hw.func_caps.npar_enable && 11982 (pf->hw.flags & I40E_HW_FLAG_FW_LLDP_STOPPABLE)) 11983 pf->hw.flags &= ~I40E_HW_FLAG_FW_LLDP_STOPPABLE; 11984 11985 #ifdef CONFIG_PCI_IOV 11986 if (pf->hw.func_caps.num_vfs && pf->hw.partition_id == 1) { 11987 pf->num_vf_qps = I40E_DEFAULT_QUEUES_PER_VF; 11988 pf->flags |= I40E_FLAG_SRIOV_ENABLED; 11989 pf->num_req_vfs = min_t(int, 11990 pf->hw.func_caps.num_vfs, 11991 I40E_MAX_VF_COUNT); 11992 } 11993 #endif /* CONFIG_PCI_IOV */ 11994 pf->eeprom_version = 0xDEAD; 11995 pf->lan_veb = I40E_NO_VEB; 11996 pf->lan_vsi = I40E_NO_VSI; 11997 11998 /* By default FW has this off for performance reasons */ 11999 pf->flags &= ~I40E_FLAG_VEB_STATS_ENABLED; 12000 12001 /* set up queue assignment tracking */ 12002 size = sizeof(struct i40e_lump_tracking) 12003 + (sizeof(u16) * pf->hw.func_caps.num_tx_qp); 12004 pf->qp_pile = kzalloc(size, GFP_KERNEL); 12005 if (!pf->qp_pile) { 12006 err = -ENOMEM; 12007 goto sw_init_done; 12008 } 12009 pf->qp_pile->num_entries = pf->hw.func_caps.num_tx_qp; 12010 pf->qp_pile->search_hint = 0; 12011 12012 pf->tx_timeout_recovery_level = 1; 12013 12014 mutex_init(&pf->switch_mutex); 12015 12016 sw_init_done: 12017 return err; 12018 } 12019 12020 /** 12021 * i40e_set_ntuple - set the ntuple feature flag and take action 12022 * @pf: board private structure to initialize 12023 * @features: the feature set that the stack is suggesting 12024 * 12025 * returns a bool to indicate if reset needs to happen 12026 **/ 12027 bool i40e_set_ntuple(struct i40e_pf *pf, netdev_features_t features) 12028 { 12029 bool need_reset = false; 12030 12031 /* Check if Flow Director n-tuple support was enabled or disabled. If 12032 * the state changed, we need to reset. 12033 */ 12034 if (features & NETIF_F_NTUPLE) { 12035 /* Enable filters and mark for reset */ 12036 if (!(pf->flags & I40E_FLAG_FD_SB_ENABLED)) 12037 need_reset = true; 12038 /* enable FD_SB only if there is MSI-X vector and no cloud 12039 * filters exist 12040 */ 12041 if (pf->num_fdsb_msix > 0 && !pf->num_cloud_filters) { 12042 pf->flags |= I40E_FLAG_FD_SB_ENABLED; 12043 pf->flags &= ~I40E_FLAG_FD_SB_INACTIVE; 12044 } 12045 } else { 12046 /* turn off filters, mark for reset and clear SW filter list */ 12047 if (pf->flags & I40E_FLAG_FD_SB_ENABLED) { 12048 need_reset = true; 12049 i40e_fdir_filter_exit(pf); 12050 } 12051 pf->flags &= ~I40E_FLAG_FD_SB_ENABLED; 12052 clear_bit(__I40E_FD_SB_AUTO_DISABLED, pf->state); 12053 pf->flags |= I40E_FLAG_FD_SB_INACTIVE; 12054 12055 /* reset fd counters */ 12056 pf->fd_add_err = 0; 12057 pf->fd_atr_cnt = 0; 12058 /* if ATR was auto disabled it can be re-enabled. */ 12059 if (test_and_clear_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state)) 12060 if ((pf->flags & I40E_FLAG_FD_ATR_ENABLED) && 12061 (I40E_DEBUG_FD & pf->hw.debug_mask)) 12062 dev_info(&pf->pdev->dev, "ATR re-enabled.\n"); 12063 } 12064 return need_reset; 12065 } 12066 12067 /** 12068 * i40e_clear_rss_lut - clear the rx hash lookup table 12069 * @vsi: the VSI being configured 12070 **/ 12071 static void i40e_clear_rss_lut(struct i40e_vsi *vsi) 12072 { 12073 struct i40e_pf *pf = vsi->back; 12074 struct i40e_hw *hw = &pf->hw; 12075 u16 vf_id = vsi->vf_id; 12076 u8 i; 12077 12078 if (vsi->type == I40E_VSI_MAIN) { 12079 for (i = 0; i <= I40E_PFQF_HLUT_MAX_INDEX; i++) 12080 wr32(hw, I40E_PFQF_HLUT(i), 0); 12081 } else if (vsi->type == I40E_VSI_SRIOV) { 12082 for (i = 0; i <= I40E_VFQF_HLUT_MAX_INDEX; i++) 12083 i40e_write_rx_ctl(hw, I40E_VFQF_HLUT1(i, vf_id), 0); 12084 } else { 12085 dev_err(&pf->pdev->dev, "Cannot set RSS LUT - invalid VSI type\n"); 12086 } 12087 } 12088 12089 /** 12090 * i40e_set_features - set the netdev feature flags 12091 * @netdev: ptr to the netdev being adjusted 12092 * @features: the feature set that the stack is suggesting 12093 * Note: expects to be called while under rtnl_lock() 12094 **/ 12095 static int i40e_set_features(struct net_device *netdev, 12096 netdev_features_t features) 12097 { 12098 struct i40e_netdev_priv *np = netdev_priv(netdev); 12099 struct i40e_vsi *vsi = np->vsi; 12100 struct i40e_pf *pf = vsi->back; 12101 bool need_reset; 12102 12103 if (features & NETIF_F_RXHASH && !(netdev->features & NETIF_F_RXHASH)) 12104 i40e_pf_config_rss(pf); 12105 else if (!(features & NETIF_F_RXHASH) && 12106 netdev->features & NETIF_F_RXHASH) 12107 i40e_clear_rss_lut(vsi); 12108 12109 if (features & NETIF_F_HW_VLAN_CTAG_RX) 12110 i40e_vlan_stripping_enable(vsi); 12111 else 12112 i40e_vlan_stripping_disable(vsi); 12113 12114 if (!(features & NETIF_F_HW_TC) && pf->num_cloud_filters) { 12115 dev_err(&pf->pdev->dev, 12116 "Offloaded tc filters active, can't turn hw_tc_offload off"); 12117 return -EINVAL; 12118 } 12119 12120 if (!(features & NETIF_F_HW_L2FW_DOFFLOAD) && vsi->macvlan_cnt) 12121 i40e_del_all_macvlans(vsi); 12122 12123 need_reset = i40e_set_ntuple(pf, features); 12124 12125 if (need_reset) 12126 i40e_do_reset(pf, I40E_PF_RESET_FLAG, true); 12127 12128 return 0; 12129 } 12130 12131 /** 12132 * i40e_get_udp_port_idx - Lookup a possibly offloaded for Rx UDP port 12133 * @pf: board private structure 12134 * @port: The UDP port to look up 12135 * 12136 * Returns the index number or I40E_MAX_PF_UDP_OFFLOAD_PORTS if port not found 12137 **/ 12138 static u8 i40e_get_udp_port_idx(struct i40e_pf *pf, u16 port) 12139 { 12140 u8 i; 12141 12142 for (i = 0; i < I40E_MAX_PF_UDP_OFFLOAD_PORTS; i++) { 12143 /* Do not report ports with pending deletions as 12144 * being available. 12145 */ 12146 if (!port && (pf->pending_udp_bitmap & BIT_ULL(i))) 12147 continue; 12148 if (pf->udp_ports[i].port == port) 12149 return i; 12150 } 12151 12152 return i; 12153 } 12154 12155 /** 12156 * i40e_udp_tunnel_add - Get notifications about UDP tunnel ports that come up 12157 * @netdev: This physical port's netdev 12158 * @ti: Tunnel endpoint information 12159 **/ 12160 static void i40e_udp_tunnel_add(struct net_device *netdev, 12161 struct udp_tunnel_info *ti) 12162 { 12163 struct i40e_netdev_priv *np = netdev_priv(netdev); 12164 struct i40e_vsi *vsi = np->vsi; 12165 struct i40e_pf *pf = vsi->back; 12166 u16 port = ntohs(ti->port); 12167 u8 next_idx; 12168 u8 idx; 12169 12170 idx = i40e_get_udp_port_idx(pf, port); 12171 12172 /* Check if port already exists */ 12173 if (idx < I40E_MAX_PF_UDP_OFFLOAD_PORTS) { 12174 netdev_info(netdev, "port %d already offloaded\n", port); 12175 return; 12176 } 12177 12178 /* Now check if there is space to add the new port */ 12179 next_idx = i40e_get_udp_port_idx(pf, 0); 12180 12181 if (next_idx == I40E_MAX_PF_UDP_OFFLOAD_PORTS) { 12182 netdev_info(netdev, "maximum number of offloaded UDP ports reached, not adding port %d\n", 12183 port); 12184 return; 12185 } 12186 12187 switch (ti->type) { 12188 case UDP_TUNNEL_TYPE_VXLAN: 12189 pf->udp_ports[next_idx].type = I40E_AQC_TUNNEL_TYPE_VXLAN; 12190 break; 12191 case UDP_TUNNEL_TYPE_GENEVE: 12192 if (!(pf->hw_features & I40E_HW_GENEVE_OFFLOAD_CAPABLE)) 12193 return; 12194 pf->udp_ports[next_idx].type = I40E_AQC_TUNNEL_TYPE_NGE; 12195 break; 12196 default: 12197 return; 12198 } 12199 12200 /* New port: add it and mark its index in the bitmap */ 12201 pf->udp_ports[next_idx].port = port; 12202 pf->udp_ports[next_idx].filter_index = I40E_UDP_PORT_INDEX_UNUSED; 12203 pf->pending_udp_bitmap |= BIT_ULL(next_idx); 12204 set_bit(__I40E_UDP_FILTER_SYNC_PENDING, pf->state); 12205 } 12206 12207 /** 12208 * i40e_udp_tunnel_del - Get notifications about UDP tunnel ports that go away 12209 * @netdev: This physical port's netdev 12210 * @ti: Tunnel endpoint information 12211 **/ 12212 static void i40e_udp_tunnel_del(struct net_device *netdev, 12213 struct udp_tunnel_info *ti) 12214 { 12215 struct i40e_netdev_priv *np = netdev_priv(netdev); 12216 struct i40e_vsi *vsi = np->vsi; 12217 struct i40e_pf *pf = vsi->back; 12218 u16 port = ntohs(ti->port); 12219 u8 idx; 12220 12221 idx = i40e_get_udp_port_idx(pf, port); 12222 12223 /* Check if port already exists */ 12224 if (idx >= I40E_MAX_PF_UDP_OFFLOAD_PORTS) 12225 goto not_found; 12226 12227 switch (ti->type) { 12228 case UDP_TUNNEL_TYPE_VXLAN: 12229 if (pf->udp_ports[idx].type != I40E_AQC_TUNNEL_TYPE_VXLAN) 12230 goto not_found; 12231 break; 12232 case UDP_TUNNEL_TYPE_GENEVE: 12233 if (pf->udp_ports[idx].type != I40E_AQC_TUNNEL_TYPE_NGE) 12234 goto not_found; 12235 break; 12236 default: 12237 goto not_found; 12238 } 12239 12240 /* if port exists, set it to 0 (mark for deletion) 12241 * and make it pending 12242 */ 12243 pf->udp_ports[idx].port = 0; 12244 12245 /* Toggle pending bit instead of setting it. This way if we are 12246 * deleting a port that has yet to be added we just clear the pending 12247 * bit and don't have to worry about it. 12248 */ 12249 pf->pending_udp_bitmap ^= BIT_ULL(idx); 12250 set_bit(__I40E_UDP_FILTER_SYNC_PENDING, pf->state); 12251 12252 return; 12253 not_found: 12254 netdev_warn(netdev, "UDP port %d was not found, not deleting\n", 12255 port); 12256 } 12257 12258 static int i40e_get_phys_port_id(struct net_device *netdev, 12259 struct netdev_phys_item_id *ppid) 12260 { 12261 struct i40e_netdev_priv *np = netdev_priv(netdev); 12262 struct i40e_pf *pf = np->vsi->back; 12263 struct i40e_hw *hw = &pf->hw; 12264 12265 if (!(pf->hw_features & I40E_HW_PORT_ID_VALID)) 12266 return -EOPNOTSUPP; 12267 12268 ppid->id_len = min_t(int, sizeof(hw->mac.port_addr), sizeof(ppid->id)); 12269 memcpy(ppid->id, hw->mac.port_addr, ppid->id_len); 12270 12271 return 0; 12272 } 12273 12274 /** 12275 * i40e_ndo_fdb_add - add an entry to the hardware database 12276 * @ndm: the input from the stack 12277 * @tb: pointer to array of nladdr (unused) 12278 * @dev: the net device pointer 12279 * @addr: the MAC address entry being added 12280 * @vid: VLAN ID 12281 * @flags: instructions from stack about fdb operation 12282 */ 12283 static int i40e_ndo_fdb_add(struct ndmsg *ndm, struct nlattr *tb[], 12284 struct net_device *dev, 12285 const unsigned char *addr, u16 vid, 12286 u16 flags, 12287 struct netlink_ext_ack *extack) 12288 { 12289 struct i40e_netdev_priv *np = netdev_priv(dev); 12290 struct i40e_pf *pf = np->vsi->back; 12291 int err = 0; 12292 12293 if (!(pf->flags & I40E_FLAG_SRIOV_ENABLED)) 12294 return -EOPNOTSUPP; 12295 12296 if (vid) { 12297 pr_info("%s: vlans aren't supported yet for dev_uc|mc_add()\n", dev->name); 12298 return -EINVAL; 12299 } 12300 12301 /* Hardware does not support aging addresses so if a 12302 * ndm_state is given only allow permanent addresses 12303 */ 12304 if (ndm->ndm_state && !(ndm->ndm_state & NUD_PERMANENT)) { 12305 netdev_info(dev, "FDB only supports static addresses\n"); 12306 return -EINVAL; 12307 } 12308 12309 if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr)) 12310 err = dev_uc_add_excl(dev, addr); 12311 else if (is_multicast_ether_addr(addr)) 12312 err = dev_mc_add_excl(dev, addr); 12313 else 12314 err = -EINVAL; 12315 12316 /* Only return duplicate errors if NLM_F_EXCL is set */ 12317 if (err == -EEXIST && !(flags & NLM_F_EXCL)) 12318 err = 0; 12319 12320 return err; 12321 } 12322 12323 /** 12324 * i40e_ndo_bridge_setlink - Set the hardware bridge mode 12325 * @dev: the netdev being configured 12326 * @nlh: RTNL message 12327 * @flags: bridge flags 12328 * @extack: netlink extended ack 12329 * 12330 * Inserts a new hardware bridge if not already created and 12331 * enables the bridging mode requested (VEB or VEPA). If the 12332 * hardware bridge has already been inserted and the request 12333 * is to change the mode then that requires a PF reset to 12334 * allow rebuild of the components with required hardware 12335 * bridge mode enabled. 12336 * 12337 * Note: expects to be called while under rtnl_lock() 12338 **/ 12339 static int i40e_ndo_bridge_setlink(struct net_device *dev, 12340 struct nlmsghdr *nlh, 12341 u16 flags, 12342 struct netlink_ext_ack *extack) 12343 { 12344 struct i40e_netdev_priv *np = netdev_priv(dev); 12345 struct i40e_vsi *vsi = np->vsi; 12346 struct i40e_pf *pf = vsi->back; 12347 struct i40e_veb *veb = NULL; 12348 struct nlattr *attr, *br_spec; 12349 int i, rem; 12350 12351 /* Only for PF VSI for now */ 12352 if (vsi->seid != pf->vsi[pf->lan_vsi]->seid) 12353 return -EOPNOTSUPP; 12354 12355 /* Find the HW bridge for PF VSI */ 12356 for (i = 0; i < I40E_MAX_VEB && !veb; i++) { 12357 if (pf->veb[i] && pf->veb[i]->seid == vsi->uplink_seid) 12358 veb = pf->veb[i]; 12359 } 12360 12361 br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC); 12362 12363 nla_for_each_nested(attr, br_spec, rem) { 12364 __u16 mode; 12365 12366 if (nla_type(attr) != IFLA_BRIDGE_MODE) 12367 continue; 12368 12369 mode = nla_get_u16(attr); 12370 if ((mode != BRIDGE_MODE_VEPA) && 12371 (mode != BRIDGE_MODE_VEB)) 12372 return -EINVAL; 12373 12374 /* Insert a new HW bridge */ 12375 if (!veb) { 12376 veb = i40e_veb_setup(pf, 0, vsi->uplink_seid, vsi->seid, 12377 vsi->tc_config.enabled_tc); 12378 if (veb) { 12379 veb->bridge_mode = mode; 12380 i40e_config_bridge_mode(veb); 12381 } else { 12382 /* No Bridge HW offload available */ 12383 return -ENOENT; 12384 } 12385 break; 12386 } else if (mode != veb->bridge_mode) { 12387 /* Existing HW bridge but different mode needs reset */ 12388 veb->bridge_mode = mode; 12389 /* TODO: If no VFs or VMDq VSIs, disallow VEB mode */ 12390 if (mode == BRIDGE_MODE_VEB) 12391 pf->flags |= I40E_FLAG_VEB_MODE_ENABLED; 12392 else 12393 pf->flags &= ~I40E_FLAG_VEB_MODE_ENABLED; 12394 i40e_do_reset(pf, I40E_PF_RESET_FLAG, true); 12395 break; 12396 } 12397 } 12398 12399 return 0; 12400 } 12401 12402 /** 12403 * i40e_ndo_bridge_getlink - Get the hardware bridge mode 12404 * @skb: skb buff 12405 * @pid: process id 12406 * @seq: RTNL message seq # 12407 * @dev: the netdev being configured 12408 * @filter_mask: unused 12409 * @nlflags: netlink flags passed in 12410 * 12411 * Return the mode in which the hardware bridge is operating in 12412 * i.e VEB or VEPA. 12413 **/ 12414 static int i40e_ndo_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq, 12415 struct net_device *dev, 12416 u32 __always_unused filter_mask, 12417 int nlflags) 12418 { 12419 struct i40e_netdev_priv *np = netdev_priv(dev); 12420 struct i40e_vsi *vsi = np->vsi; 12421 struct i40e_pf *pf = vsi->back; 12422 struct i40e_veb *veb = NULL; 12423 int i; 12424 12425 /* Only for PF VSI for now */ 12426 if (vsi->seid != pf->vsi[pf->lan_vsi]->seid) 12427 return -EOPNOTSUPP; 12428 12429 /* Find the HW bridge for the PF VSI */ 12430 for (i = 0; i < I40E_MAX_VEB && !veb; i++) { 12431 if (pf->veb[i] && pf->veb[i]->seid == vsi->uplink_seid) 12432 veb = pf->veb[i]; 12433 } 12434 12435 if (!veb) 12436 return 0; 12437 12438 return ndo_dflt_bridge_getlink(skb, pid, seq, dev, veb->bridge_mode, 12439 0, 0, nlflags, filter_mask, NULL); 12440 } 12441 12442 /** 12443 * i40e_features_check - Validate encapsulated packet conforms to limits 12444 * @skb: skb buff 12445 * @dev: This physical port's netdev 12446 * @features: Offload features that the stack believes apply 12447 **/ 12448 static netdev_features_t i40e_features_check(struct sk_buff *skb, 12449 struct net_device *dev, 12450 netdev_features_t features) 12451 { 12452 size_t len; 12453 12454 /* No point in doing any of this if neither checksum nor GSO are 12455 * being requested for this frame. We can rule out both by just 12456 * checking for CHECKSUM_PARTIAL 12457 */ 12458 if (skb->ip_summed != CHECKSUM_PARTIAL) 12459 return features; 12460 12461 /* We cannot support GSO if the MSS is going to be less than 12462 * 64 bytes. If it is then we need to drop support for GSO. 12463 */ 12464 if (skb_is_gso(skb) && (skb_shinfo(skb)->gso_size < 64)) 12465 features &= ~NETIF_F_GSO_MASK; 12466 12467 /* MACLEN can support at most 63 words */ 12468 len = skb_network_header(skb) - skb->data; 12469 if (len & ~(63 * 2)) 12470 goto out_err; 12471 12472 /* IPLEN and EIPLEN can support at most 127 dwords */ 12473 len = skb_transport_header(skb) - skb_network_header(skb); 12474 if (len & ~(127 * 4)) 12475 goto out_err; 12476 12477 if (skb->encapsulation) { 12478 /* L4TUNLEN can support 127 words */ 12479 len = skb_inner_network_header(skb) - skb_transport_header(skb); 12480 if (len & ~(127 * 2)) 12481 goto out_err; 12482 12483 /* IPLEN can support at most 127 dwords */ 12484 len = skb_inner_transport_header(skb) - 12485 skb_inner_network_header(skb); 12486 if (len & ~(127 * 4)) 12487 goto out_err; 12488 } 12489 12490 /* No need to validate L4LEN as TCP is the only protocol with a 12491 * a flexible value and we support all possible values supported 12492 * by TCP, which is at most 15 dwords 12493 */ 12494 12495 return features; 12496 out_err: 12497 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 12498 } 12499 12500 /** 12501 * i40e_xdp_setup - add/remove an XDP program 12502 * @vsi: VSI to changed 12503 * @prog: XDP program 12504 **/ 12505 static int i40e_xdp_setup(struct i40e_vsi *vsi, 12506 struct bpf_prog *prog) 12507 { 12508 int frame_size = vsi->netdev->mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN; 12509 struct i40e_pf *pf = vsi->back; 12510 struct bpf_prog *old_prog; 12511 bool need_reset; 12512 int i; 12513 12514 /* Don't allow frames that span over multiple buffers */ 12515 if (frame_size > vsi->rx_buf_len) 12516 return -EINVAL; 12517 12518 if (!i40e_enabled_xdp_vsi(vsi) && !prog) 12519 return 0; 12520 12521 /* When turning XDP on->off/off->on we reset and rebuild the rings. */ 12522 need_reset = (i40e_enabled_xdp_vsi(vsi) != !!prog); 12523 12524 if (need_reset) 12525 i40e_prep_for_reset(pf, true); 12526 12527 old_prog = xchg(&vsi->xdp_prog, prog); 12528 12529 if (need_reset) 12530 i40e_reset_and_rebuild(pf, true, true); 12531 12532 for (i = 0; i < vsi->num_queue_pairs; i++) 12533 WRITE_ONCE(vsi->rx_rings[i]->xdp_prog, vsi->xdp_prog); 12534 12535 if (old_prog) 12536 bpf_prog_put(old_prog); 12537 12538 /* Kick start the NAPI context if there is an AF_XDP socket open 12539 * on that queue id. This so that receiving will start. 12540 */ 12541 if (need_reset && prog) 12542 for (i = 0; i < vsi->num_queue_pairs; i++) 12543 if (vsi->xdp_rings[i]->xsk_umem) 12544 (void)i40e_xsk_wakeup(vsi->netdev, i, 12545 XDP_WAKEUP_RX); 12546 12547 return 0; 12548 } 12549 12550 /** 12551 * i40e_enter_busy_conf - Enters busy config state 12552 * @vsi: vsi 12553 * 12554 * Returns 0 on success, <0 for failure. 12555 **/ 12556 static int i40e_enter_busy_conf(struct i40e_vsi *vsi) 12557 { 12558 struct i40e_pf *pf = vsi->back; 12559 int timeout = 50; 12560 12561 while (test_and_set_bit(__I40E_CONFIG_BUSY, pf->state)) { 12562 timeout--; 12563 if (!timeout) 12564 return -EBUSY; 12565 usleep_range(1000, 2000); 12566 } 12567 12568 return 0; 12569 } 12570 12571 /** 12572 * i40e_exit_busy_conf - Exits busy config state 12573 * @vsi: vsi 12574 **/ 12575 static void i40e_exit_busy_conf(struct i40e_vsi *vsi) 12576 { 12577 struct i40e_pf *pf = vsi->back; 12578 12579 clear_bit(__I40E_CONFIG_BUSY, pf->state); 12580 } 12581 12582 /** 12583 * i40e_queue_pair_reset_stats - Resets all statistics for a queue pair 12584 * @vsi: vsi 12585 * @queue_pair: queue pair 12586 **/ 12587 static void i40e_queue_pair_reset_stats(struct i40e_vsi *vsi, int queue_pair) 12588 { 12589 memset(&vsi->rx_rings[queue_pair]->rx_stats, 0, 12590 sizeof(vsi->rx_rings[queue_pair]->rx_stats)); 12591 memset(&vsi->tx_rings[queue_pair]->stats, 0, 12592 sizeof(vsi->tx_rings[queue_pair]->stats)); 12593 if (i40e_enabled_xdp_vsi(vsi)) { 12594 memset(&vsi->xdp_rings[queue_pair]->stats, 0, 12595 sizeof(vsi->xdp_rings[queue_pair]->stats)); 12596 } 12597 } 12598 12599 /** 12600 * i40e_queue_pair_clean_rings - Cleans all the rings of a queue pair 12601 * @vsi: vsi 12602 * @queue_pair: queue pair 12603 **/ 12604 static void i40e_queue_pair_clean_rings(struct i40e_vsi *vsi, int queue_pair) 12605 { 12606 i40e_clean_tx_ring(vsi->tx_rings[queue_pair]); 12607 if (i40e_enabled_xdp_vsi(vsi)) { 12608 /* Make sure that in-progress ndo_xdp_xmit calls are 12609 * completed. 12610 */ 12611 synchronize_rcu(); 12612 i40e_clean_tx_ring(vsi->xdp_rings[queue_pair]); 12613 } 12614 i40e_clean_rx_ring(vsi->rx_rings[queue_pair]); 12615 } 12616 12617 /** 12618 * i40e_queue_pair_toggle_napi - Enables/disables NAPI for a queue pair 12619 * @vsi: vsi 12620 * @queue_pair: queue pair 12621 * @enable: true for enable, false for disable 12622 **/ 12623 static void i40e_queue_pair_toggle_napi(struct i40e_vsi *vsi, int queue_pair, 12624 bool enable) 12625 { 12626 struct i40e_ring *rxr = vsi->rx_rings[queue_pair]; 12627 struct i40e_q_vector *q_vector = rxr->q_vector; 12628 12629 if (!vsi->netdev) 12630 return; 12631 12632 /* All rings in a qp belong to the same qvector. */ 12633 if (q_vector->rx.ring || q_vector->tx.ring) { 12634 if (enable) 12635 napi_enable(&q_vector->napi); 12636 else 12637 napi_disable(&q_vector->napi); 12638 } 12639 } 12640 12641 /** 12642 * i40e_queue_pair_toggle_rings - Enables/disables all rings for a queue pair 12643 * @vsi: vsi 12644 * @queue_pair: queue pair 12645 * @enable: true for enable, false for disable 12646 * 12647 * Returns 0 on success, <0 on failure. 12648 **/ 12649 static int i40e_queue_pair_toggle_rings(struct i40e_vsi *vsi, int queue_pair, 12650 bool enable) 12651 { 12652 struct i40e_pf *pf = vsi->back; 12653 int pf_q, ret = 0; 12654 12655 pf_q = vsi->base_queue + queue_pair; 12656 ret = i40e_control_wait_tx_q(vsi->seid, pf, pf_q, 12657 false /*is xdp*/, enable); 12658 if (ret) { 12659 dev_info(&pf->pdev->dev, 12660 "VSI seid %d Tx ring %d %sable timeout\n", 12661 vsi->seid, pf_q, (enable ? "en" : "dis")); 12662 return ret; 12663 } 12664 12665 i40e_control_rx_q(pf, pf_q, enable); 12666 ret = i40e_pf_rxq_wait(pf, pf_q, enable); 12667 if (ret) { 12668 dev_info(&pf->pdev->dev, 12669 "VSI seid %d Rx ring %d %sable timeout\n", 12670 vsi->seid, pf_q, (enable ? "en" : "dis")); 12671 return ret; 12672 } 12673 12674 /* Due to HW errata, on Rx disable only, the register can 12675 * indicate done before it really is. Needs 50ms to be sure 12676 */ 12677 if (!enable) 12678 mdelay(50); 12679 12680 if (!i40e_enabled_xdp_vsi(vsi)) 12681 return ret; 12682 12683 ret = i40e_control_wait_tx_q(vsi->seid, pf, 12684 pf_q + vsi->alloc_queue_pairs, 12685 true /*is xdp*/, enable); 12686 if (ret) { 12687 dev_info(&pf->pdev->dev, 12688 "VSI seid %d XDP Tx ring %d %sable timeout\n", 12689 vsi->seid, pf_q, (enable ? "en" : "dis")); 12690 } 12691 12692 return ret; 12693 } 12694 12695 /** 12696 * i40e_queue_pair_enable_irq - Enables interrupts for a queue pair 12697 * @vsi: vsi 12698 * @queue_pair: queue_pair 12699 **/ 12700 static void i40e_queue_pair_enable_irq(struct i40e_vsi *vsi, int queue_pair) 12701 { 12702 struct i40e_ring *rxr = vsi->rx_rings[queue_pair]; 12703 struct i40e_pf *pf = vsi->back; 12704 struct i40e_hw *hw = &pf->hw; 12705 12706 /* All rings in a qp belong to the same qvector. */ 12707 if (pf->flags & I40E_FLAG_MSIX_ENABLED) 12708 i40e_irq_dynamic_enable(vsi, rxr->q_vector->v_idx); 12709 else 12710 i40e_irq_dynamic_enable_icr0(pf); 12711 12712 i40e_flush(hw); 12713 } 12714 12715 /** 12716 * i40e_queue_pair_disable_irq - Disables interrupts for a queue pair 12717 * @vsi: vsi 12718 * @queue_pair: queue_pair 12719 **/ 12720 static void i40e_queue_pair_disable_irq(struct i40e_vsi *vsi, int queue_pair) 12721 { 12722 struct i40e_ring *rxr = vsi->rx_rings[queue_pair]; 12723 struct i40e_pf *pf = vsi->back; 12724 struct i40e_hw *hw = &pf->hw; 12725 12726 /* For simplicity, instead of removing the qp interrupt causes 12727 * from the interrupt linked list, we simply disable the interrupt, and 12728 * leave the list intact. 12729 * 12730 * All rings in a qp belong to the same qvector. 12731 */ 12732 if (pf->flags & I40E_FLAG_MSIX_ENABLED) { 12733 u32 intpf = vsi->base_vector + rxr->q_vector->v_idx; 12734 12735 wr32(hw, I40E_PFINT_DYN_CTLN(intpf - 1), 0); 12736 i40e_flush(hw); 12737 synchronize_irq(pf->msix_entries[intpf].vector); 12738 } else { 12739 /* Legacy and MSI mode - this stops all interrupt handling */ 12740 wr32(hw, I40E_PFINT_ICR0_ENA, 0); 12741 wr32(hw, I40E_PFINT_DYN_CTL0, 0); 12742 i40e_flush(hw); 12743 synchronize_irq(pf->pdev->irq); 12744 } 12745 } 12746 12747 /** 12748 * i40e_queue_pair_disable - Disables a queue pair 12749 * @vsi: vsi 12750 * @queue_pair: queue pair 12751 * 12752 * Returns 0 on success, <0 on failure. 12753 **/ 12754 int i40e_queue_pair_disable(struct i40e_vsi *vsi, int queue_pair) 12755 { 12756 int err; 12757 12758 err = i40e_enter_busy_conf(vsi); 12759 if (err) 12760 return err; 12761 12762 i40e_queue_pair_disable_irq(vsi, queue_pair); 12763 err = i40e_queue_pair_toggle_rings(vsi, queue_pair, false /* off */); 12764 i40e_queue_pair_toggle_napi(vsi, queue_pair, false /* off */); 12765 i40e_queue_pair_clean_rings(vsi, queue_pair); 12766 i40e_queue_pair_reset_stats(vsi, queue_pair); 12767 12768 return err; 12769 } 12770 12771 /** 12772 * i40e_queue_pair_enable - Enables a queue pair 12773 * @vsi: vsi 12774 * @queue_pair: queue pair 12775 * 12776 * Returns 0 on success, <0 on failure. 12777 **/ 12778 int i40e_queue_pair_enable(struct i40e_vsi *vsi, int queue_pair) 12779 { 12780 int err; 12781 12782 err = i40e_configure_tx_ring(vsi->tx_rings[queue_pair]); 12783 if (err) 12784 return err; 12785 12786 if (i40e_enabled_xdp_vsi(vsi)) { 12787 err = i40e_configure_tx_ring(vsi->xdp_rings[queue_pair]); 12788 if (err) 12789 return err; 12790 } 12791 12792 err = i40e_configure_rx_ring(vsi->rx_rings[queue_pair]); 12793 if (err) 12794 return err; 12795 12796 err = i40e_queue_pair_toggle_rings(vsi, queue_pair, true /* on */); 12797 i40e_queue_pair_toggle_napi(vsi, queue_pair, true /* on */); 12798 i40e_queue_pair_enable_irq(vsi, queue_pair); 12799 12800 i40e_exit_busy_conf(vsi); 12801 12802 return err; 12803 } 12804 12805 /** 12806 * i40e_xdp - implements ndo_bpf for i40e 12807 * @dev: netdevice 12808 * @xdp: XDP command 12809 **/ 12810 static int i40e_xdp(struct net_device *dev, 12811 struct netdev_bpf *xdp) 12812 { 12813 struct i40e_netdev_priv *np = netdev_priv(dev); 12814 struct i40e_vsi *vsi = np->vsi; 12815 12816 if (vsi->type != I40E_VSI_MAIN) 12817 return -EINVAL; 12818 12819 switch (xdp->command) { 12820 case XDP_SETUP_PROG: 12821 return i40e_xdp_setup(vsi, xdp->prog); 12822 case XDP_QUERY_PROG: 12823 xdp->prog_id = vsi->xdp_prog ? vsi->xdp_prog->aux->id : 0; 12824 return 0; 12825 case XDP_SETUP_XSK_UMEM: 12826 return i40e_xsk_umem_setup(vsi, xdp->xsk.umem, 12827 xdp->xsk.queue_id); 12828 default: 12829 return -EINVAL; 12830 } 12831 } 12832 12833 static const struct net_device_ops i40e_netdev_ops = { 12834 .ndo_open = i40e_open, 12835 .ndo_stop = i40e_close, 12836 .ndo_start_xmit = i40e_lan_xmit_frame, 12837 .ndo_get_stats64 = i40e_get_netdev_stats_struct, 12838 .ndo_set_rx_mode = i40e_set_rx_mode, 12839 .ndo_validate_addr = eth_validate_addr, 12840 .ndo_set_mac_address = i40e_set_mac, 12841 .ndo_change_mtu = i40e_change_mtu, 12842 .ndo_do_ioctl = i40e_ioctl, 12843 .ndo_tx_timeout = i40e_tx_timeout, 12844 .ndo_vlan_rx_add_vid = i40e_vlan_rx_add_vid, 12845 .ndo_vlan_rx_kill_vid = i40e_vlan_rx_kill_vid, 12846 #ifdef CONFIG_NET_POLL_CONTROLLER 12847 .ndo_poll_controller = i40e_netpoll, 12848 #endif 12849 .ndo_setup_tc = __i40e_setup_tc, 12850 .ndo_set_features = i40e_set_features, 12851 .ndo_set_vf_mac = i40e_ndo_set_vf_mac, 12852 .ndo_set_vf_vlan = i40e_ndo_set_vf_port_vlan, 12853 .ndo_set_vf_rate = i40e_ndo_set_vf_bw, 12854 .ndo_get_vf_config = i40e_ndo_get_vf_config, 12855 .ndo_set_vf_link_state = i40e_ndo_set_vf_link_state, 12856 .ndo_set_vf_spoofchk = i40e_ndo_set_vf_spoofchk, 12857 .ndo_set_vf_trust = i40e_ndo_set_vf_trust, 12858 .ndo_udp_tunnel_add = i40e_udp_tunnel_add, 12859 .ndo_udp_tunnel_del = i40e_udp_tunnel_del, 12860 .ndo_get_phys_port_id = i40e_get_phys_port_id, 12861 .ndo_fdb_add = i40e_ndo_fdb_add, 12862 .ndo_features_check = i40e_features_check, 12863 .ndo_bridge_getlink = i40e_ndo_bridge_getlink, 12864 .ndo_bridge_setlink = i40e_ndo_bridge_setlink, 12865 .ndo_bpf = i40e_xdp, 12866 .ndo_xdp_xmit = i40e_xdp_xmit, 12867 .ndo_xsk_wakeup = i40e_xsk_wakeup, 12868 .ndo_dfwd_add_station = i40e_fwd_add, 12869 .ndo_dfwd_del_station = i40e_fwd_del, 12870 }; 12871 12872 /** 12873 * i40e_config_netdev - Setup the netdev flags 12874 * @vsi: the VSI being configured 12875 * 12876 * Returns 0 on success, negative value on failure 12877 **/ 12878 static int i40e_config_netdev(struct i40e_vsi *vsi) 12879 { 12880 struct i40e_pf *pf = vsi->back; 12881 struct i40e_hw *hw = &pf->hw; 12882 struct i40e_netdev_priv *np; 12883 struct net_device *netdev; 12884 u8 broadcast[ETH_ALEN]; 12885 u8 mac_addr[ETH_ALEN]; 12886 int etherdev_size; 12887 netdev_features_t hw_enc_features; 12888 netdev_features_t hw_features; 12889 12890 etherdev_size = sizeof(struct i40e_netdev_priv); 12891 netdev = alloc_etherdev_mq(etherdev_size, vsi->alloc_queue_pairs); 12892 if (!netdev) 12893 return -ENOMEM; 12894 12895 vsi->netdev = netdev; 12896 np = netdev_priv(netdev); 12897 np->vsi = vsi; 12898 12899 hw_enc_features = NETIF_F_SG | 12900 NETIF_F_IP_CSUM | 12901 NETIF_F_IPV6_CSUM | 12902 NETIF_F_HIGHDMA | 12903 NETIF_F_SOFT_FEATURES | 12904 NETIF_F_TSO | 12905 NETIF_F_TSO_ECN | 12906 NETIF_F_TSO6 | 12907 NETIF_F_GSO_GRE | 12908 NETIF_F_GSO_GRE_CSUM | 12909 NETIF_F_GSO_PARTIAL | 12910 NETIF_F_GSO_IPXIP4 | 12911 NETIF_F_GSO_IPXIP6 | 12912 NETIF_F_GSO_UDP_TUNNEL | 12913 NETIF_F_GSO_UDP_TUNNEL_CSUM | 12914 NETIF_F_SCTP_CRC | 12915 NETIF_F_RXHASH | 12916 NETIF_F_RXCSUM | 12917 0; 12918 12919 if (!(pf->hw_features & I40E_HW_OUTER_UDP_CSUM_CAPABLE)) 12920 netdev->gso_partial_features |= NETIF_F_GSO_UDP_TUNNEL_CSUM; 12921 12922 netdev->gso_partial_features |= NETIF_F_GSO_GRE_CSUM; 12923 12924 netdev->hw_enc_features |= hw_enc_features; 12925 12926 /* record features VLANs can make use of */ 12927 netdev->vlan_features |= hw_enc_features | NETIF_F_TSO_MANGLEID; 12928 12929 /* enable macvlan offloads */ 12930 netdev->hw_features |= NETIF_F_HW_L2FW_DOFFLOAD; 12931 12932 hw_features = hw_enc_features | 12933 NETIF_F_HW_VLAN_CTAG_TX | 12934 NETIF_F_HW_VLAN_CTAG_RX; 12935 12936 if (!(pf->flags & I40E_FLAG_MFP_ENABLED)) 12937 hw_features |= NETIF_F_NTUPLE | NETIF_F_HW_TC; 12938 12939 netdev->hw_features |= hw_features; 12940 12941 netdev->features |= hw_features | NETIF_F_HW_VLAN_CTAG_FILTER; 12942 netdev->hw_enc_features |= NETIF_F_TSO_MANGLEID; 12943 12944 if (vsi->type == I40E_VSI_MAIN) { 12945 SET_NETDEV_DEV(netdev, &pf->pdev->dev); 12946 ether_addr_copy(mac_addr, hw->mac.perm_addr); 12947 /* The following steps are necessary for two reasons. First, 12948 * some older NVM configurations load a default MAC-VLAN 12949 * filter that will accept any tagged packet, and we want to 12950 * replace this with a normal filter. Additionally, it is 12951 * possible our MAC address was provided by the platform using 12952 * Open Firmware or similar. 12953 * 12954 * Thus, we need to remove the default filter and install one 12955 * specific to the MAC address. 12956 */ 12957 i40e_rm_default_mac_filter(vsi, mac_addr); 12958 spin_lock_bh(&vsi->mac_filter_hash_lock); 12959 i40e_add_mac_filter(vsi, mac_addr); 12960 spin_unlock_bh(&vsi->mac_filter_hash_lock); 12961 } else { 12962 /* Relate the VSI_VMDQ name to the VSI_MAIN name. Note that we 12963 * are still limited by IFNAMSIZ, but we're adding 'v%d\0' to 12964 * the end, which is 4 bytes long, so force truncation of the 12965 * original name by IFNAMSIZ - 4 12966 */ 12967 snprintf(netdev->name, IFNAMSIZ, "%.*sv%%d", 12968 IFNAMSIZ - 4, 12969 pf->vsi[pf->lan_vsi]->netdev->name); 12970 eth_random_addr(mac_addr); 12971 12972 spin_lock_bh(&vsi->mac_filter_hash_lock); 12973 i40e_add_mac_filter(vsi, mac_addr); 12974 spin_unlock_bh(&vsi->mac_filter_hash_lock); 12975 } 12976 12977 /* Add the broadcast filter so that we initially will receive 12978 * broadcast packets. Note that when a new VLAN is first added the 12979 * driver will convert all filters marked I40E_VLAN_ANY into VLAN 12980 * specific filters as part of transitioning into "vlan" operation. 12981 * When more VLANs are added, the driver will copy each existing MAC 12982 * filter and add it for the new VLAN. 12983 * 12984 * Broadcast filters are handled specially by 12985 * i40e_sync_filters_subtask, as the driver must to set the broadcast 12986 * promiscuous bit instead of adding this directly as a MAC/VLAN 12987 * filter. The subtask will update the correct broadcast promiscuous 12988 * bits as VLANs become active or inactive. 12989 */ 12990 eth_broadcast_addr(broadcast); 12991 spin_lock_bh(&vsi->mac_filter_hash_lock); 12992 i40e_add_mac_filter(vsi, broadcast); 12993 spin_unlock_bh(&vsi->mac_filter_hash_lock); 12994 12995 ether_addr_copy(netdev->dev_addr, mac_addr); 12996 ether_addr_copy(netdev->perm_addr, mac_addr); 12997 12998 /* i40iw_net_event() reads 16 bytes from neigh->primary_key */ 12999 netdev->neigh_priv_len = sizeof(u32) * 4; 13000 13001 netdev->priv_flags |= IFF_UNICAST_FLT; 13002 netdev->priv_flags |= IFF_SUPP_NOFCS; 13003 /* Setup netdev TC information */ 13004 i40e_vsi_config_netdev_tc(vsi, vsi->tc_config.enabled_tc); 13005 13006 netdev->netdev_ops = &i40e_netdev_ops; 13007 netdev->watchdog_timeo = 5 * HZ; 13008 i40e_set_ethtool_ops(netdev); 13009 13010 /* MTU range: 68 - 9706 */ 13011 netdev->min_mtu = ETH_MIN_MTU; 13012 netdev->max_mtu = I40E_MAX_RXBUFFER - I40E_PACKET_HDR_PAD; 13013 13014 return 0; 13015 } 13016 13017 /** 13018 * i40e_vsi_delete - Delete a VSI from the switch 13019 * @vsi: the VSI being removed 13020 * 13021 * Returns 0 on success, negative value on failure 13022 **/ 13023 static void i40e_vsi_delete(struct i40e_vsi *vsi) 13024 { 13025 /* remove default VSI is not allowed */ 13026 if (vsi == vsi->back->vsi[vsi->back->lan_vsi]) 13027 return; 13028 13029 i40e_aq_delete_element(&vsi->back->hw, vsi->seid, NULL); 13030 } 13031 13032 /** 13033 * i40e_is_vsi_uplink_mode_veb - Check if the VSI's uplink bridge mode is VEB 13034 * @vsi: the VSI being queried 13035 * 13036 * Returns 1 if HW bridge mode is VEB and return 0 in case of VEPA mode 13037 **/ 13038 int i40e_is_vsi_uplink_mode_veb(struct i40e_vsi *vsi) 13039 { 13040 struct i40e_veb *veb; 13041 struct i40e_pf *pf = vsi->back; 13042 13043 /* Uplink is not a bridge so default to VEB */ 13044 if (vsi->veb_idx >= I40E_MAX_VEB) 13045 return 1; 13046 13047 veb = pf->veb[vsi->veb_idx]; 13048 if (!veb) { 13049 dev_info(&pf->pdev->dev, 13050 "There is no veb associated with the bridge\n"); 13051 return -ENOENT; 13052 } 13053 13054 /* Uplink is a bridge in VEPA mode */ 13055 if (veb->bridge_mode & BRIDGE_MODE_VEPA) { 13056 return 0; 13057 } else { 13058 /* Uplink is a bridge in VEB mode */ 13059 return 1; 13060 } 13061 13062 /* VEPA is now default bridge, so return 0 */ 13063 return 0; 13064 } 13065 13066 /** 13067 * i40e_add_vsi - Add a VSI to the switch 13068 * @vsi: the VSI being configured 13069 * 13070 * This initializes a VSI context depending on the VSI type to be added and 13071 * passes it down to the add_vsi aq command. 13072 **/ 13073 static int i40e_add_vsi(struct i40e_vsi *vsi) 13074 { 13075 int ret = -ENODEV; 13076 struct i40e_pf *pf = vsi->back; 13077 struct i40e_hw *hw = &pf->hw; 13078 struct i40e_vsi_context ctxt; 13079 struct i40e_mac_filter *f; 13080 struct hlist_node *h; 13081 int bkt; 13082 13083 u8 enabled_tc = 0x1; /* TC0 enabled */ 13084 int f_count = 0; 13085 13086 memset(&ctxt, 0, sizeof(ctxt)); 13087 switch (vsi->type) { 13088 case I40E_VSI_MAIN: 13089 /* The PF's main VSI is already setup as part of the 13090 * device initialization, so we'll not bother with 13091 * the add_vsi call, but we will retrieve the current 13092 * VSI context. 13093 */ 13094 ctxt.seid = pf->main_vsi_seid; 13095 ctxt.pf_num = pf->hw.pf_id; 13096 ctxt.vf_num = 0; 13097 ret = i40e_aq_get_vsi_params(&pf->hw, &ctxt, NULL); 13098 ctxt.flags = I40E_AQ_VSI_TYPE_PF; 13099 if (ret) { 13100 dev_info(&pf->pdev->dev, 13101 "couldn't get PF vsi config, err %s aq_err %s\n", 13102 i40e_stat_str(&pf->hw, ret), 13103 i40e_aq_str(&pf->hw, 13104 pf->hw.aq.asq_last_status)); 13105 return -ENOENT; 13106 } 13107 vsi->info = ctxt.info; 13108 vsi->info.valid_sections = 0; 13109 13110 vsi->seid = ctxt.seid; 13111 vsi->id = ctxt.vsi_number; 13112 13113 enabled_tc = i40e_pf_get_tc_map(pf); 13114 13115 /* Source pruning is enabled by default, so the flag is 13116 * negative logic - if it's set, we need to fiddle with 13117 * the VSI to disable source pruning. 13118 */ 13119 if (pf->flags & I40E_FLAG_SOURCE_PRUNING_DISABLED) { 13120 memset(&ctxt, 0, sizeof(ctxt)); 13121 ctxt.seid = pf->main_vsi_seid; 13122 ctxt.pf_num = pf->hw.pf_id; 13123 ctxt.vf_num = 0; 13124 ctxt.info.valid_sections |= 13125 cpu_to_le16(I40E_AQ_VSI_PROP_SWITCH_VALID); 13126 ctxt.info.switch_id = 13127 cpu_to_le16(I40E_AQ_VSI_SW_ID_FLAG_LOCAL_LB); 13128 ret = i40e_aq_update_vsi_params(hw, &ctxt, NULL); 13129 if (ret) { 13130 dev_info(&pf->pdev->dev, 13131 "update vsi failed, err %s aq_err %s\n", 13132 i40e_stat_str(&pf->hw, ret), 13133 i40e_aq_str(&pf->hw, 13134 pf->hw.aq.asq_last_status)); 13135 ret = -ENOENT; 13136 goto err; 13137 } 13138 } 13139 13140 /* MFP mode setup queue map and update VSI */ 13141 if ((pf->flags & I40E_FLAG_MFP_ENABLED) && 13142 !(pf->hw.func_caps.iscsi)) { /* NIC type PF */ 13143 memset(&ctxt, 0, sizeof(ctxt)); 13144 ctxt.seid = pf->main_vsi_seid; 13145 ctxt.pf_num = pf->hw.pf_id; 13146 ctxt.vf_num = 0; 13147 i40e_vsi_setup_queue_map(vsi, &ctxt, enabled_tc, false); 13148 ret = i40e_aq_update_vsi_params(hw, &ctxt, NULL); 13149 if (ret) { 13150 dev_info(&pf->pdev->dev, 13151 "update vsi failed, err %s aq_err %s\n", 13152 i40e_stat_str(&pf->hw, ret), 13153 i40e_aq_str(&pf->hw, 13154 pf->hw.aq.asq_last_status)); 13155 ret = -ENOENT; 13156 goto err; 13157 } 13158 /* update the local VSI info queue map */ 13159 i40e_vsi_update_queue_map(vsi, &ctxt); 13160 vsi->info.valid_sections = 0; 13161 } else { 13162 /* Default/Main VSI is only enabled for TC0 13163 * reconfigure it to enable all TCs that are 13164 * available on the port in SFP mode. 13165 * For MFP case the iSCSI PF would use this 13166 * flow to enable LAN+iSCSI TC. 13167 */ 13168 ret = i40e_vsi_config_tc(vsi, enabled_tc); 13169 if (ret) { 13170 /* Single TC condition is not fatal, 13171 * message and continue 13172 */ 13173 dev_info(&pf->pdev->dev, 13174 "failed to configure TCs for main VSI tc_map 0x%08x, err %s aq_err %s\n", 13175 enabled_tc, 13176 i40e_stat_str(&pf->hw, ret), 13177 i40e_aq_str(&pf->hw, 13178 pf->hw.aq.asq_last_status)); 13179 } 13180 } 13181 break; 13182 13183 case I40E_VSI_FDIR: 13184 ctxt.pf_num = hw->pf_id; 13185 ctxt.vf_num = 0; 13186 ctxt.uplink_seid = vsi->uplink_seid; 13187 ctxt.connection_type = I40E_AQ_VSI_CONN_TYPE_NORMAL; 13188 ctxt.flags = I40E_AQ_VSI_TYPE_PF; 13189 if ((pf->flags & I40E_FLAG_VEB_MODE_ENABLED) && 13190 (i40e_is_vsi_uplink_mode_veb(vsi))) { 13191 ctxt.info.valid_sections |= 13192 cpu_to_le16(I40E_AQ_VSI_PROP_SWITCH_VALID); 13193 ctxt.info.switch_id = 13194 cpu_to_le16(I40E_AQ_VSI_SW_ID_FLAG_ALLOW_LB); 13195 } 13196 i40e_vsi_setup_queue_map(vsi, &ctxt, enabled_tc, true); 13197 break; 13198 13199 case I40E_VSI_VMDQ2: 13200 ctxt.pf_num = hw->pf_id; 13201 ctxt.vf_num = 0; 13202 ctxt.uplink_seid = vsi->uplink_seid; 13203 ctxt.connection_type = I40E_AQ_VSI_CONN_TYPE_NORMAL; 13204 ctxt.flags = I40E_AQ_VSI_TYPE_VMDQ2; 13205 13206 /* This VSI is connected to VEB so the switch_id 13207 * should be set to zero by default. 13208 */ 13209 if (i40e_is_vsi_uplink_mode_veb(vsi)) { 13210 ctxt.info.valid_sections |= 13211 cpu_to_le16(I40E_AQ_VSI_PROP_SWITCH_VALID); 13212 ctxt.info.switch_id = 13213 cpu_to_le16(I40E_AQ_VSI_SW_ID_FLAG_ALLOW_LB); 13214 } 13215 13216 /* Setup the VSI tx/rx queue map for TC0 only for now */ 13217 i40e_vsi_setup_queue_map(vsi, &ctxt, enabled_tc, true); 13218 break; 13219 13220 case I40E_VSI_SRIOV: 13221 ctxt.pf_num = hw->pf_id; 13222 ctxt.vf_num = vsi->vf_id + hw->func_caps.vf_base_id; 13223 ctxt.uplink_seid = vsi->uplink_seid; 13224 ctxt.connection_type = I40E_AQ_VSI_CONN_TYPE_NORMAL; 13225 ctxt.flags = I40E_AQ_VSI_TYPE_VF; 13226 13227 /* This VSI is connected to VEB so the switch_id 13228 * should be set to zero by default. 13229 */ 13230 if (i40e_is_vsi_uplink_mode_veb(vsi)) { 13231 ctxt.info.valid_sections |= 13232 cpu_to_le16(I40E_AQ_VSI_PROP_SWITCH_VALID); 13233 ctxt.info.switch_id = 13234 cpu_to_le16(I40E_AQ_VSI_SW_ID_FLAG_ALLOW_LB); 13235 } 13236 13237 if (vsi->back->flags & I40E_FLAG_IWARP_ENABLED) { 13238 ctxt.info.valid_sections |= 13239 cpu_to_le16(I40E_AQ_VSI_PROP_QUEUE_OPT_VALID); 13240 ctxt.info.queueing_opt_flags |= 13241 (I40E_AQ_VSI_QUE_OPT_TCP_ENA | 13242 I40E_AQ_VSI_QUE_OPT_RSS_LUT_VSI); 13243 } 13244 13245 ctxt.info.valid_sections |= cpu_to_le16(I40E_AQ_VSI_PROP_VLAN_VALID); 13246 ctxt.info.port_vlan_flags |= I40E_AQ_VSI_PVLAN_MODE_ALL; 13247 if (pf->vf[vsi->vf_id].spoofchk) { 13248 ctxt.info.valid_sections |= 13249 cpu_to_le16(I40E_AQ_VSI_PROP_SECURITY_VALID); 13250 ctxt.info.sec_flags |= 13251 (I40E_AQ_VSI_SEC_FLAG_ENABLE_VLAN_CHK | 13252 I40E_AQ_VSI_SEC_FLAG_ENABLE_MAC_CHK); 13253 } 13254 /* Setup the VSI tx/rx queue map for TC0 only for now */ 13255 i40e_vsi_setup_queue_map(vsi, &ctxt, enabled_tc, true); 13256 break; 13257 13258 case I40E_VSI_IWARP: 13259 /* send down message to iWARP */ 13260 break; 13261 13262 default: 13263 return -ENODEV; 13264 } 13265 13266 if (vsi->type != I40E_VSI_MAIN) { 13267 ret = i40e_aq_add_vsi(hw, &ctxt, NULL); 13268 if (ret) { 13269 dev_info(&vsi->back->pdev->dev, 13270 "add vsi failed, err %s aq_err %s\n", 13271 i40e_stat_str(&pf->hw, ret), 13272 i40e_aq_str(&pf->hw, 13273 pf->hw.aq.asq_last_status)); 13274 ret = -ENOENT; 13275 goto err; 13276 } 13277 vsi->info = ctxt.info; 13278 vsi->info.valid_sections = 0; 13279 vsi->seid = ctxt.seid; 13280 vsi->id = ctxt.vsi_number; 13281 } 13282 13283 vsi->active_filters = 0; 13284 clear_bit(__I40E_VSI_OVERFLOW_PROMISC, vsi->state); 13285 spin_lock_bh(&vsi->mac_filter_hash_lock); 13286 /* If macvlan filters already exist, force them to get loaded */ 13287 hash_for_each_safe(vsi->mac_filter_hash, bkt, h, f, hlist) { 13288 f->state = I40E_FILTER_NEW; 13289 f_count++; 13290 } 13291 spin_unlock_bh(&vsi->mac_filter_hash_lock); 13292 13293 if (f_count) { 13294 vsi->flags |= I40E_VSI_FLAG_FILTER_CHANGED; 13295 set_bit(__I40E_MACVLAN_SYNC_PENDING, pf->state); 13296 } 13297 13298 /* Update VSI BW information */ 13299 ret = i40e_vsi_get_bw_info(vsi); 13300 if (ret) { 13301 dev_info(&pf->pdev->dev, 13302 "couldn't get vsi bw info, err %s aq_err %s\n", 13303 i40e_stat_str(&pf->hw, ret), 13304 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 13305 /* VSI is already added so not tearing that up */ 13306 ret = 0; 13307 } 13308 13309 err: 13310 return ret; 13311 } 13312 13313 /** 13314 * i40e_vsi_release - Delete a VSI and free its resources 13315 * @vsi: the VSI being removed 13316 * 13317 * Returns 0 on success or < 0 on error 13318 **/ 13319 int i40e_vsi_release(struct i40e_vsi *vsi) 13320 { 13321 struct i40e_mac_filter *f; 13322 struct hlist_node *h; 13323 struct i40e_veb *veb = NULL; 13324 struct i40e_pf *pf; 13325 u16 uplink_seid; 13326 int i, n, bkt; 13327 13328 pf = vsi->back; 13329 13330 /* release of a VEB-owner or last VSI is not allowed */ 13331 if (vsi->flags & I40E_VSI_FLAG_VEB_OWNER) { 13332 dev_info(&pf->pdev->dev, "VSI %d has existing VEB %d\n", 13333 vsi->seid, vsi->uplink_seid); 13334 return -ENODEV; 13335 } 13336 if (vsi == pf->vsi[pf->lan_vsi] && 13337 !test_bit(__I40E_DOWN, pf->state)) { 13338 dev_info(&pf->pdev->dev, "Can't remove PF VSI\n"); 13339 return -ENODEV; 13340 } 13341 13342 uplink_seid = vsi->uplink_seid; 13343 if (vsi->type != I40E_VSI_SRIOV) { 13344 if (vsi->netdev_registered) { 13345 vsi->netdev_registered = false; 13346 if (vsi->netdev) { 13347 /* results in a call to i40e_close() */ 13348 unregister_netdev(vsi->netdev); 13349 } 13350 } else { 13351 i40e_vsi_close(vsi); 13352 } 13353 i40e_vsi_disable_irq(vsi); 13354 } 13355 13356 spin_lock_bh(&vsi->mac_filter_hash_lock); 13357 13358 /* clear the sync flag on all filters */ 13359 if (vsi->netdev) { 13360 __dev_uc_unsync(vsi->netdev, NULL); 13361 __dev_mc_unsync(vsi->netdev, NULL); 13362 } 13363 13364 /* make sure any remaining filters are marked for deletion */ 13365 hash_for_each_safe(vsi->mac_filter_hash, bkt, h, f, hlist) 13366 __i40e_del_filter(vsi, f); 13367 13368 spin_unlock_bh(&vsi->mac_filter_hash_lock); 13369 13370 i40e_sync_vsi_filters(vsi); 13371 13372 i40e_vsi_delete(vsi); 13373 i40e_vsi_free_q_vectors(vsi); 13374 if (vsi->netdev) { 13375 free_netdev(vsi->netdev); 13376 vsi->netdev = NULL; 13377 } 13378 i40e_vsi_clear_rings(vsi); 13379 i40e_vsi_clear(vsi); 13380 13381 /* If this was the last thing on the VEB, except for the 13382 * controlling VSI, remove the VEB, which puts the controlling 13383 * VSI onto the next level down in the switch. 13384 * 13385 * Well, okay, there's one more exception here: don't remove 13386 * the orphan VEBs yet. We'll wait for an explicit remove request 13387 * from up the network stack. 13388 */ 13389 for (n = 0, i = 0; i < pf->num_alloc_vsi; i++) { 13390 if (pf->vsi[i] && 13391 pf->vsi[i]->uplink_seid == uplink_seid && 13392 (pf->vsi[i]->flags & I40E_VSI_FLAG_VEB_OWNER) == 0) { 13393 n++; /* count the VSIs */ 13394 } 13395 } 13396 for (i = 0; i < I40E_MAX_VEB; i++) { 13397 if (!pf->veb[i]) 13398 continue; 13399 if (pf->veb[i]->uplink_seid == uplink_seid) 13400 n++; /* count the VEBs */ 13401 if (pf->veb[i]->seid == uplink_seid) 13402 veb = pf->veb[i]; 13403 } 13404 if (n == 0 && veb && veb->uplink_seid != 0) 13405 i40e_veb_release(veb); 13406 13407 return 0; 13408 } 13409 13410 /** 13411 * i40e_vsi_setup_vectors - Set up the q_vectors for the given VSI 13412 * @vsi: ptr to the VSI 13413 * 13414 * This should only be called after i40e_vsi_mem_alloc() which allocates the 13415 * corresponding SW VSI structure and initializes num_queue_pairs for the 13416 * newly allocated VSI. 13417 * 13418 * Returns 0 on success or negative on failure 13419 **/ 13420 static int i40e_vsi_setup_vectors(struct i40e_vsi *vsi) 13421 { 13422 int ret = -ENOENT; 13423 struct i40e_pf *pf = vsi->back; 13424 13425 if (vsi->q_vectors[0]) { 13426 dev_info(&pf->pdev->dev, "VSI %d has existing q_vectors\n", 13427 vsi->seid); 13428 return -EEXIST; 13429 } 13430 13431 if (vsi->base_vector) { 13432 dev_info(&pf->pdev->dev, "VSI %d has non-zero base vector %d\n", 13433 vsi->seid, vsi->base_vector); 13434 return -EEXIST; 13435 } 13436 13437 ret = i40e_vsi_alloc_q_vectors(vsi); 13438 if (ret) { 13439 dev_info(&pf->pdev->dev, 13440 "failed to allocate %d q_vector for VSI %d, ret=%d\n", 13441 vsi->num_q_vectors, vsi->seid, ret); 13442 vsi->num_q_vectors = 0; 13443 goto vector_setup_out; 13444 } 13445 13446 /* In Legacy mode, we do not have to get any other vector since we 13447 * piggyback on the misc/ICR0 for queue interrupts. 13448 */ 13449 if (!(pf->flags & I40E_FLAG_MSIX_ENABLED)) 13450 return ret; 13451 if (vsi->num_q_vectors) 13452 vsi->base_vector = i40e_get_lump(pf, pf->irq_pile, 13453 vsi->num_q_vectors, vsi->idx); 13454 if (vsi->base_vector < 0) { 13455 dev_info(&pf->pdev->dev, 13456 "failed to get tracking for %d vectors for VSI %d, err=%d\n", 13457 vsi->num_q_vectors, vsi->seid, vsi->base_vector); 13458 i40e_vsi_free_q_vectors(vsi); 13459 ret = -ENOENT; 13460 goto vector_setup_out; 13461 } 13462 13463 vector_setup_out: 13464 return ret; 13465 } 13466 13467 /** 13468 * i40e_vsi_reinit_setup - return and reallocate resources for a VSI 13469 * @vsi: pointer to the vsi. 13470 * 13471 * This re-allocates a vsi's queue resources. 13472 * 13473 * Returns pointer to the successfully allocated and configured VSI sw struct 13474 * on success, otherwise returns NULL on failure. 13475 **/ 13476 static struct i40e_vsi *i40e_vsi_reinit_setup(struct i40e_vsi *vsi) 13477 { 13478 u16 alloc_queue_pairs; 13479 struct i40e_pf *pf; 13480 u8 enabled_tc; 13481 int ret; 13482 13483 if (!vsi) 13484 return NULL; 13485 13486 pf = vsi->back; 13487 13488 i40e_put_lump(pf->qp_pile, vsi->base_queue, vsi->idx); 13489 i40e_vsi_clear_rings(vsi); 13490 13491 i40e_vsi_free_arrays(vsi, false); 13492 i40e_set_num_rings_in_vsi(vsi); 13493 ret = i40e_vsi_alloc_arrays(vsi, false); 13494 if (ret) 13495 goto err_vsi; 13496 13497 alloc_queue_pairs = vsi->alloc_queue_pairs * 13498 (i40e_enabled_xdp_vsi(vsi) ? 2 : 1); 13499 13500 ret = i40e_get_lump(pf, pf->qp_pile, alloc_queue_pairs, vsi->idx); 13501 if (ret < 0) { 13502 dev_info(&pf->pdev->dev, 13503 "failed to get tracking for %d queues for VSI %d err %d\n", 13504 alloc_queue_pairs, vsi->seid, ret); 13505 goto err_vsi; 13506 } 13507 vsi->base_queue = ret; 13508 13509 /* Update the FW view of the VSI. Force a reset of TC and queue 13510 * layout configurations. 13511 */ 13512 enabled_tc = pf->vsi[pf->lan_vsi]->tc_config.enabled_tc; 13513 pf->vsi[pf->lan_vsi]->tc_config.enabled_tc = 0; 13514 pf->vsi[pf->lan_vsi]->seid = pf->main_vsi_seid; 13515 i40e_vsi_config_tc(pf->vsi[pf->lan_vsi], enabled_tc); 13516 if (vsi->type == I40E_VSI_MAIN) 13517 i40e_rm_default_mac_filter(vsi, pf->hw.mac.perm_addr); 13518 13519 /* assign it some queues */ 13520 ret = i40e_alloc_rings(vsi); 13521 if (ret) 13522 goto err_rings; 13523 13524 /* map all of the rings to the q_vectors */ 13525 i40e_vsi_map_rings_to_vectors(vsi); 13526 return vsi; 13527 13528 err_rings: 13529 i40e_vsi_free_q_vectors(vsi); 13530 if (vsi->netdev_registered) { 13531 vsi->netdev_registered = false; 13532 unregister_netdev(vsi->netdev); 13533 free_netdev(vsi->netdev); 13534 vsi->netdev = NULL; 13535 } 13536 i40e_aq_delete_element(&pf->hw, vsi->seid, NULL); 13537 err_vsi: 13538 i40e_vsi_clear(vsi); 13539 return NULL; 13540 } 13541 13542 /** 13543 * i40e_vsi_setup - Set up a VSI by a given type 13544 * @pf: board private structure 13545 * @type: VSI type 13546 * @uplink_seid: the switch element to link to 13547 * @param1: usage depends upon VSI type. For VF types, indicates VF id 13548 * 13549 * This allocates the sw VSI structure and its queue resources, then add a VSI 13550 * to the identified VEB. 13551 * 13552 * Returns pointer to the successfully allocated and configure VSI sw struct on 13553 * success, otherwise returns NULL on failure. 13554 **/ 13555 struct i40e_vsi *i40e_vsi_setup(struct i40e_pf *pf, u8 type, 13556 u16 uplink_seid, u32 param1) 13557 { 13558 struct i40e_vsi *vsi = NULL; 13559 struct i40e_veb *veb = NULL; 13560 u16 alloc_queue_pairs; 13561 int ret, i; 13562 int v_idx; 13563 13564 /* The requested uplink_seid must be either 13565 * - the PF's port seid 13566 * no VEB is needed because this is the PF 13567 * or this is a Flow Director special case VSI 13568 * - seid of an existing VEB 13569 * - seid of a VSI that owns an existing VEB 13570 * - seid of a VSI that doesn't own a VEB 13571 * a new VEB is created and the VSI becomes the owner 13572 * - seid of the PF VSI, which is what creates the first VEB 13573 * this is a special case of the previous 13574 * 13575 * Find which uplink_seid we were given and create a new VEB if needed 13576 */ 13577 for (i = 0; i < I40E_MAX_VEB; i++) { 13578 if (pf->veb[i] && pf->veb[i]->seid == uplink_seid) { 13579 veb = pf->veb[i]; 13580 break; 13581 } 13582 } 13583 13584 if (!veb && uplink_seid != pf->mac_seid) { 13585 13586 for (i = 0; i < pf->num_alloc_vsi; i++) { 13587 if (pf->vsi[i] && pf->vsi[i]->seid == uplink_seid) { 13588 vsi = pf->vsi[i]; 13589 break; 13590 } 13591 } 13592 if (!vsi) { 13593 dev_info(&pf->pdev->dev, "no such uplink_seid %d\n", 13594 uplink_seid); 13595 return NULL; 13596 } 13597 13598 if (vsi->uplink_seid == pf->mac_seid) 13599 veb = i40e_veb_setup(pf, 0, pf->mac_seid, vsi->seid, 13600 vsi->tc_config.enabled_tc); 13601 else if ((vsi->flags & I40E_VSI_FLAG_VEB_OWNER) == 0) 13602 veb = i40e_veb_setup(pf, 0, vsi->uplink_seid, vsi->seid, 13603 vsi->tc_config.enabled_tc); 13604 if (veb) { 13605 if (vsi->seid != pf->vsi[pf->lan_vsi]->seid) { 13606 dev_info(&vsi->back->pdev->dev, 13607 "New VSI creation error, uplink seid of LAN VSI expected.\n"); 13608 return NULL; 13609 } 13610 /* We come up by default in VEPA mode if SRIOV is not 13611 * already enabled, in which case we can't force VEPA 13612 * mode. 13613 */ 13614 if (!(pf->flags & I40E_FLAG_VEB_MODE_ENABLED)) { 13615 veb->bridge_mode = BRIDGE_MODE_VEPA; 13616 pf->flags &= ~I40E_FLAG_VEB_MODE_ENABLED; 13617 } 13618 i40e_config_bridge_mode(veb); 13619 } 13620 for (i = 0; i < I40E_MAX_VEB && !veb; i++) { 13621 if (pf->veb[i] && pf->veb[i]->seid == vsi->uplink_seid) 13622 veb = pf->veb[i]; 13623 } 13624 if (!veb) { 13625 dev_info(&pf->pdev->dev, "couldn't add VEB\n"); 13626 return NULL; 13627 } 13628 13629 vsi->flags |= I40E_VSI_FLAG_VEB_OWNER; 13630 uplink_seid = veb->seid; 13631 } 13632 13633 /* get vsi sw struct */ 13634 v_idx = i40e_vsi_mem_alloc(pf, type); 13635 if (v_idx < 0) 13636 goto err_alloc; 13637 vsi = pf->vsi[v_idx]; 13638 if (!vsi) 13639 goto err_alloc; 13640 vsi->type = type; 13641 vsi->veb_idx = (veb ? veb->idx : I40E_NO_VEB); 13642 13643 if (type == I40E_VSI_MAIN) 13644 pf->lan_vsi = v_idx; 13645 else if (type == I40E_VSI_SRIOV) 13646 vsi->vf_id = param1; 13647 /* assign it some queues */ 13648 alloc_queue_pairs = vsi->alloc_queue_pairs * 13649 (i40e_enabled_xdp_vsi(vsi) ? 2 : 1); 13650 13651 ret = i40e_get_lump(pf, pf->qp_pile, alloc_queue_pairs, vsi->idx); 13652 if (ret < 0) { 13653 dev_info(&pf->pdev->dev, 13654 "failed to get tracking for %d queues for VSI %d err=%d\n", 13655 alloc_queue_pairs, vsi->seid, ret); 13656 goto err_vsi; 13657 } 13658 vsi->base_queue = ret; 13659 13660 /* get a VSI from the hardware */ 13661 vsi->uplink_seid = uplink_seid; 13662 ret = i40e_add_vsi(vsi); 13663 if (ret) 13664 goto err_vsi; 13665 13666 switch (vsi->type) { 13667 /* setup the netdev if needed */ 13668 case I40E_VSI_MAIN: 13669 case I40E_VSI_VMDQ2: 13670 ret = i40e_config_netdev(vsi); 13671 if (ret) 13672 goto err_netdev; 13673 ret = register_netdev(vsi->netdev); 13674 if (ret) 13675 goto err_netdev; 13676 vsi->netdev_registered = true; 13677 netif_carrier_off(vsi->netdev); 13678 #ifdef CONFIG_I40E_DCB 13679 /* Setup DCB netlink interface */ 13680 i40e_dcbnl_setup(vsi); 13681 #endif /* CONFIG_I40E_DCB */ 13682 /* fall through */ 13683 13684 case I40E_VSI_FDIR: 13685 /* set up vectors and rings if needed */ 13686 ret = i40e_vsi_setup_vectors(vsi); 13687 if (ret) 13688 goto err_msix; 13689 13690 ret = i40e_alloc_rings(vsi); 13691 if (ret) 13692 goto err_rings; 13693 13694 /* map all of the rings to the q_vectors */ 13695 i40e_vsi_map_rings_to_vectors(vsi); 13696 13697 i40e_vsi_reset_stats(vsi); 13698 break; 13699 13700 default: 13701 /* no netdev or rings for the other VSI types */ 13702 break; 13703 } 13704 13705 if ((pf->hw_features & I40E_HW_RSS_AQ_CAPABLE) && 13706 (vsi->type == I40E_VSI_VMDQ2)) { 13707 ret = i40e_vsi_config_rss(vsi); 13708 } 13709 return vsi; 13710 13711 err_rings: 13712 i40e_vsi_free_q_vectors(vsi); 13713 err_msix: 13714 if (vsi->netdev_registered) { 13715 vsi->netdev_registered = false; 13716 unregister_netdev(vsi->netdev); 13717 free_netdev(vsi->netdev); 13718 vsi->netdev = NULL; 13719 } 13720 err_netdev: 13721 i40e_aq_delete_element(&pf->hw, vsi->seid, NULL); 13722 err_vsi: 13723 i40e_vsi_clear(vsi); 13724 err_alloc: 13725 return NULL; 13726 } 13727 13728 /** 13729 * i40e_veb_get_bw_info - Query VEB BW information 13730 * @veb: the veb to query 13731 * 13732 * Query the Tx scheduler BW configuration data for given VEB 13733 **/ 13734 static int i40e_veb_get_bw_info(struct i40e_veb *veb) 13735 { 13736 struct i40e_aqc_query_switching_comp_ets_config_resp ets_data; 13737 struct i40e_aqc_query_switching_comp_bw_config_resp bw_data; 13738 struct i40e_pf *pf = veb->pf; 13739 struct i40e_hw *hw = &pf->hw; 13740 u32 tc_bw_max; 13741 int ret = 0; 13742 int i; 13743 13744 ret = i40e_aq_query_switch_comp_bw_config(hw, veb->seid, 13745 &bw_data, NULL); 13746 if (ret) { 13747 dev_info(&pf->pdev->dev, 13748 "query veb bw config failed, err %s aq_err %s\n", 13749 i40e_stat_str(&pf->hw, ret), 13750 i40e_aq_str(&pf->hw, hw->aq.asq_last_status)); 13751 goto out; 13752 } 13753 13754 ret = i40e_aq_query_switch_comp_ets_config(hw, veb->seid, 13755 &ets_data, NULL); 13756 if (ret) { 13757 dev_info(&pf->pdev->dev, 13758 "query veb bw ets config failed, err %s aq_err %s\n", 13759 i40e_stat_str(&pf->hw, ret), 13760 i40e_aq_str(&pf->hw, hw->aq.asq_last_status)); 13761 goto out; 13762 } 13763 13764 veb->bw_limit = le16_to_cpu(ets_data.port_bw_limit); 13765 veb->bw_max_quanta = ets_data.tc_bw_max; 13766 veb->is_abs_credits = bw_data.absolute_credits_enable; 13767 veb->enabled_tc = ets_data.tc_valid_bits; 13768 tc_bw_max = le16_to_cpu(bw_data.tc_bw_max[0]) | 13769 (le16_to_cpu(bw_data.tc_bw_max[1]) << 16); 13770 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 13771 veb->bw_tc_share_credits[i] = bw_data.tc_bw_share_credits[i]; 13772 veb->bw_tc_limit_credits[i] = 13773 le16_to_cpu(bw_data.tc_bw_limits[i]); 13774 veb->bw_tc_max_quanta[i] = ((tc_bw_max >> (i*4)) & 0x7); 13775 } 13776 13777 out: 13778 return ret; 13779 } 13780 13781 /** 13782 * i40e_veb_mem_alloc - Allocates the next available struct veb in the PF 13783 * @pf: board private structure 13784 * 13785 * On error: returns error code (negative) 13786 * On success: returns vsi index in PF (positive) 13787 **/ 13788 static int i40e_veb_mem_alloc(struct i40e_pf *pf) 13789 { 13790 int ret = -ENOENT; 13791 struct i40e_veb *veb; 13792 int i; 13793 13794 /* Need to protect the allocation of switch elements at the PF level */ 13795 mutex_lock(&pf->switch_mutex); 13796 13797 /* VEB list may be fragmented if VEB creation/destruction has 13798 * been happening. We can afford to do a quick scan to look 13799 * for any free slots in the list. 13800 * 13801 * find next empty veb slot, looping back around if necessary 13802 */ 13803 i = 0; 13804 while ((i < I40E_MAX_VEB) && (pf->veb[i] != NULL)) 13805 i++; 13806 if (i >= I40E_MAX_VEB) { 13807 ret = -ENOMEM; 13808 goto err_alloc_veb; /* out of VEB slots! */ 13809 } 13810 13811 veb = kzalloc(sizeof(*veb), GFP_KERNEL); 13812 if (!veb) { 13813 ret = -ENOMEM; 13814 goto err_alloc_veb; 13815 } 13816 veb->pf = pf; 13817 veb->idx = i; 13818 veb->enabled_tc = 1; 13819 13820 pf->veb[i] = veb; 13821 ret = i; 13822 err_alloc_veb: 13823 mutex_unlock(&pf->switch_mutex); 13824 return ret; 13825 } 13826 13827 /** 13828 * i40e_switch_branch_release - Delete a branch of the switch tree 13829 * @branch: where to start deleting 13830 * 13831 * This uses recursion to find the tips of the branch to be 13832 * removed, deleting until we get back to and can delete this VEB. 13833 **/ 13834 static void i40e_switch_branch_release(struct i40e_veb *branch) 13835 { 13836 struct i40e_pf *pf = branch->pf; 13837 u16 branch_seid = branch->seid; 13838 u16 veb_idx = branch->idx; 13839 int i; 13840 13841 /* release any VEBs on this VEB - RECURSION */ 13842 for (i = 0; i < I40E_MAX_VEB; i++) { 13843 if (!pf->veb[i]) 13844 continue; 13845 if (pf->veb[i]->uplink_seid == branch->seid) 13846 i40e_switch_branch_release(pf->veb[i]); 13847 } 13848 13849 /* Release the VSIs on this VEB, but not the owner VSI. 13850 * 13851 * NOTE: Removing the last VSI on a VEB has the SIDE EFFECT of removing 13852 * the VEB itself, so don't use (*branch) after this loop. 13853 */ 13854 for (i = 0; i < pf->num_alloc_vsi; i++) { 13855 if (!pf->vsi[i]) 13856 continue; 13857 if (pf->vsi[i]->uplink_seid == branch_seid && 13858 (pf->vsi[i]->flags & I40E_VSI_FLAG_VEB_OWNER) == 0) { 13859 i40e_vsi_release(pf->vsi[i]); 13860 } 13861 } 13862 13863 /* There's one corner case where the VEB might not have been 13864 * removed, so double check it here and remove it if needed. 13865 * This case happens if the veb was created from the debugfs 13866 * commands and no VSIs were added to it. 13867 */ 13868 if (pf->veb[veb_idx]) 13869 i40e_veb_release(pf->veb[veb_idx]); 13870 } 13871 13872 /** 13873 * i40e_veb_clear - remove veb struct 13874 * @veb: the veb to remove 13875 **/ 13876 static void i40e_veb_clear(struct i40e_veb *veb) 13877 { 13878 if (!veb) 13879 return; 13880 13881 if (veb->pf) { 13882 struct i40e_pf *pf = veb->pf; 13883 13884 mutex_lock(&pf->switch_mutex); 13885 if (pf->veb[veb->idx] == veb) 13886 pf->veb[veb->idx] = NULL; 13887 mutex_unlock(&pf->switch_mutex); 13888 } 13889 13890 kfree(veb); 13891 } 13892 13893 /** 13894 * i40e_veb_release - Delete a VEB and free its resources 13895 * @veb: the VEB being removed 13896 **/ 13897 void i40e_veb_release(struct i40e_veb *veb) 13898 { 13899 struct i40e_vsi *vsi = NULL; 13900 struct i40e_pf *pf; 13901 int i, n = 0; 13902 13903 pf = veb->pf; 13904 13905 /* find the remaining VSI and check for extras */ 13906 for (i = 0; i < pf->num_alloc_vsi; i++) { 13907 if (pf->vsi[i] && pf->vsi[i]->uplink_seid == veb->seid) { 13908 n++; 13909 vsi = pf->vsi[i]; 13910 } 13911 } 13912 if (n != 1) { 13913 dev_info(&pf->pdev->dev, 13914 "can't remove VEB %d with %d VSIs left\n", 13915 veb->seid, n); 13916 return; 13917 } 13918 13919 /* move the remaining VSI to uplink veb */ 13920 vsi->flags &= ~I40E_VSI_FLAG_VEB_OWNER; 13921 if (veb->uplink_seid) { 13922 vsi->uplink_seid = veb->uplink_seid; 13923 if (veb->uplink_seid == pf->mac_seid) 13924 vsi->veb_idx = I40E_NO_VEB; 13925 else 13926 vsi->veb_idx = veb->veb_idx; 13927 } else { 13928 /* floating VEB */ 13929 vsi->uplink_seid = pf->vsi[pf->lan_vsi]->uplink_seid; 13930 vsi->veb_idx = pf->vsi[pf->lan_vsi]->veb_idx; 13931 } 13932 13933 i40e_aq_delete_element(&pf->hw, veb->seid, NULL); 13934 i40e_veb_clear(veb); 13935 } 13936 13937 /** 13938 * i40e_add_veb - create the VEB in the switch 13939 * @veb: the VEB to be instantiated 13940 * @vsi: the controlling VSI 13941 **/ 13942 static int i40e_add_veb(struct i40e_veb *veb, struct i40e_vsi *vsi) 13943 { 13944 struct i40e_pf *pf = veb->pf; 13945 bool enable_stats = !!(pf->flags & I40E_FLAG_VEB_STATS_ENABLED); 13946 int ret; 13947 13948 ret = i40e_aq_add_veb(&pf->hw, veb->uplink_seid, vsi->seid, 13949 veb->enabled_tc, false, 13950 &veb->seid, enable_stats, NULL); 13951 13952 /* get a VEB from the hardware */ 13953 if (ret) { 13954 dev_info(&pf->pdev->dev, 13955 "couldn't add VEB, err %s aq_err %s\n", 13956 i40e_stat_str(&pf->hw, ret), 13957 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 13958 return -EPERM; 13959 } 13960 13961 /* get statistics counter */ 13962 ret = i40e_aq_get_veb_parameters(&pf->hw, veb->seid, NULL, NULL, 13963 &veb->stats_idx, NULL, NULL, NULL); 13964 if (ret) { 13965 dev_info(&pf->pdev->dev, 13966 "couldn't get VEB statistics idx, err %s aq_err %s\n", 13967 i40e_stat_str(&pf->hw, ret), 13968 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 13969 return -EPERM; 13970 } 13971 ret = i40e_veb_get_bw_info(veb); 13972 if (ret) { 13973 dev_info(&pf->pdev->dev, 13974 "couldn't get VEB bw info, err %s aq_err %s\n", 13975 i40e_stat_str(&pf->hw, ret), 13976 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 13977 i40e_aq_delete_element(&pf->hw, veb->seid, NULL); 13978 return -ENOENT; 13979 } 13980 13981 vsi->uplink_seid = veb->seid; 13982 vsi->veb_idx = veb->idx; 13983 vsi->flags |= I40E_VSI_FLAG_VEB_OWNER; 13984 13985 return 0; 13986 } 13987 13988 /** 13989 * i40e_veb_setup - Set up a VEB 13990 * @pf: board private structure 13991 * @flags: VEB setup flags 13992 * @uplink_seid: the switch element to link to 13993 * @vsi_seid: the initial VSI seid 13994 * @enabled_tc: Enabled TC bit-map 13995 * 13996 * This allocates the sw VEB structure and links it into the switch 13997 * It is possible and legal for this to be a duplicate of an already 13998 * existing VEB. It is also possible for both uplink and vsi seids 13999 * to be zero, in order to create a floating VEB. 14000 * 14001 * Returns pointer to the successfully allocated VEB sw struct on 14002 * success, otherwise returns NULL on failure. 14003 **/ 14004 struct i40e_veb *i40e_veb_setup(struct i40e_pf *pf, u16 flags, 14005 u16 uplink_seid, u16 vsi_seid, 14006 u8 enabled_tc) 14007 { 14008 struct i40e_veb *veb, *uplink_veb = NULL; 14009 int vsi_idx, veb_idx; 14010 int ret; 14011 14012 /* if one seid is 0, the other must be 0 to create a floating relay */ 14013 if ((uplink_seid == 0 || vsi_seid == 0) && 14014 (uplink_seid + vsi_seid != 0)) { 14015 dev_info(&pf->pdev->dev, 14016 "one, not both seid's are 0: uplink=%d vsi=%d\n", 14017 uplink_seid, vsi_seid); 14018 return NULL; 14019 } 14020 14021 /* make sure there is such a vsi and uplink */ 14022 for (vsi_idx = 0; vsi_idx < pf->num_alloc_vsi; vsi_idx++) 14023 if (pf->vsi[vsi_idx] && pf->vsi[vsi_idx]->seid == vsi_seid) 14024 break; 14025 if (vsi_idx == pf->num_alloc_vsi && vsi_seid != 0) { 14026 dev_info(&pf->pdev->dev, "vsi seid %d not found\n", 14027 vsi_seid); 14028 return NULL; 14029 } 14030 14031 if (uplink_seid && uplink_seid != pf->mac_seid) { 14032 for (veb_idx = 0; veb_idx < I40E_MAX_VEB; veb_idx++) { 14033 if (pf->veb[veb_idx] && 14034 pf->veb[veb_idx]->seid == uplink_seid) { 14035 uplink_veb = pf->veb[veb_idx]; 14036 break; 14037 } 14038 } 14039 if (!uplink_veb) { 14040 dev_info(&pf->pdev->dev, 14041 "uplink seid %d not found\n", uplink_seid); 14042 return NULL; 14043 } 14044 } 14045 14046 /* get veb sw struct */ 14047 veb_idx = i40e_veb_mem_alloc(pf); 14048 if (veb_idx < 0) 14049 goto err_alloc; 14050 veb = pf->veb[veb_idx]; 14051 veb->flags = flags; 14052 veb->uplink_seid = uplink_seid; 14053 veb->veb_idx = (uplink_veb ? uplink_veb->idx : I40E_NO_VEB); 14054 veb->enabled_tc = (enabled_tc ? enabled_tc : 0x1); 14055 14056 /* create the VEB in the switch */ 14057 ret = i40e_add_veb(veb, pf->vsi[vsi_idx]); 14058 if (ret) 14059 goto err_veb; 14060 if (vsi_idx == pf->lan_vsi) 14061 pf->lan_veb = veb->idx; 14062 14063 return veb; 14064 14065 err_veb: 14066 i40e_veb_clear(veb); 14067 err_alloc: 14068 return NULL; 14069 } 14070 14071 /** 14072 * i40e_setup_pf_switch_element - set PF vars based on switch type 14073 * @pf: board private structure 14074 * @ele: element we are building info from 14075 * @num_reported: total number of elements 14076 * @printconfig: should we print the contents 14077 * 14078 * helper function to assist in extracting a few useful SEID values. 14079 **/ 14080 static void i40e_setup_pf_switch_element(struct i40e_pf *pf, 14081 struct i40e_aqc_switch_config_element_resp *ele, 14082 u16 num_reported, bool printconfig) 14083 { 14084 u16 downlink_seid = le16_to_cpu(ele->downlink_seid); 14085 u16 uplink_seid = le16_to_cpu(ele->uplink_seid); 14086 u8 element_type = ele->element_type; 14087 u16 seid = le16_to_cpu(ele->seid); 14088 14089 if (printconfig) 14090 dev_info(&pf->pdev->dev, 14091 "type=%d seid=%d uplink=%d downlink=%d\n", 14092 element_type, seid, uplink_seid, downlink_seid); 14093 14094 switch (element_type) { 14095 case I40E_SWITCH_ELEMENT_TYPE_MAC: 14096 pf->mac_seid = seid; 14097 break; 14098 case I40E_SWITCH_ELEMENT_TYPE_VEB: 14099 /* Main VEB? */ 14100 if (uplink_seid != pf->mac_seid) 14101 break; 14102 if (pf->lan_veb >= I40E_MAX_VEB) { 14103 int v; 14104 14105 /* find existing or else empty VEB */ 14106 for (v = 0; v < I40E_MAX_VEB; v++) { 14107 if (pf->veb[v] && (pf->veb[v]->seid == seid)) { 14108 pf->lan_veb = v; 14109 break; 14110 } 14111 } 14112 if (pf->lan_veb >= I40E_MAX_VEB) { 14113 v = i40e_veb_mem_alloc(pf); 14114 if (v < 0) 14115 break; 14116 pf->lan_veb = v; 14117 } 14118 } 14119 if (pf->lan_veb >= I40E_MAX_VEB) 14120 break; 14121 14122 pf->veb[pf->lan_veb]->seid = seid; 14123 pf->veb[pf->lan_veb]->uplink_seid = pf->mac_seid; 14124 pf->veb[pf->lan_veb]->pf = pf; 14125 pf->veb[pf->lan_veb]->veb_idx = I40E_NO_VEB; 14126 break; 14127 case I40E_SWITCH_ELEMENT_TYPE_VSI: 14128 if (num_reported != 1) 14129 break; 14130 /* This is immediately after a reset so we can assume this is 14131 * the PF's VSI 14132 */ 14133 pf->mac_seid = uplink_seid; 14134 pf->pf_seid = downlink_seid; 14135 pf->main_vsi_seid = seid; 14136 if (printconfig) 14137 dev_info(&pf->pdev->dev, 14138 "pf_seid=%d main_vsi_seid=%d\n", 14139 pf->pf_seid, pf->main_vsi_seid); 14140 break; 14141 case I40E_SWITCH_ELEMENT_TYPE_PF: 14142 case I40E_SWITCH_ELEMENT_TYPE_VF: 14143 case I40E_SWITCH_ELEMENT_TYPE_EMP: 14144 case I40E_SWITCH_ELEMENT_TYPE_BMC: 14145 case I40E_SWITCH_ELEMENT_TYPE_PE: 14146 case I40E_SWITCH_ELEMENT_TYPE_PA: 14147 /* ignore these for now */ 14148 break; 14149 default: 14150 dev_info(&pf->pdev->dev, "unknown element type=%d seid=%d\n", 14151 element_type, seid); 14152 break; 14153 } 14154 } 14155 14156 /** 14157 * i40e_fetch_switch_configuration - Get switch config from firmware 14158 * @pf: board private structure 14159 * @printconfig: should we print the contents 14160 * 14161 * Get the current switch configuration from the device and 14162 * extract a few useful SEID values. 14163 **/ 14164 int i40e_fetch_switch_configuration(struct i40e_pf *pf, bool printconfig) 14165 { 14166 struct i40e_aqc_get_switch_config_resp *sw_config; 14167 u16 next_seid = 0; 14168 int ret = 0; 14169 u8 *aq_buf; 14170 int i; 14171 14172 aq_buf = kzalloc(I40E_AQ_LARGE_BUF, GFP_KERNEL); 14173 if (!aq_buf) 14174 return -ENOMEM; 14175 14176 sw_config = (struct i40e_aqc_get_switch_config_resp *)aq_buf; 14177 do { 14178 u16 num_reported, num_total; 14179 14180 ret = i40e_aq_get_switch_config(&pf->hw, sw_config, 14181 I40E_AQ_LARGE_BUF, 14182 &next_seid, NULL); 14183 if (ret) { 14184 dev_info(&pf->pdev->dev, 14185 "get switch config failed err %s aq_err %s\n", 14186 i40e_stat_str(&pf->hw, ret), 14187 i40e_aq_str(&pf->hw, 14188 pf->hw.aq.asq_last_status)); 14189 kfree(aq_buf); 14190 return -ENOENT; 14191 } 14192 14193 num_reported = le16_to_cpu(sw_config->header.num_reported); 14194 num_total = le16_to_cpu(sw_config->header.num_total); 14195 14196 if (printconfig) 14197 dev_info(&pf->pdev->dev, 14198 "header: %d reported %d total\n", 14199 num_reported, num_total); 14200 14201 for (i = 0; i < num_reported; i++) { 14202 struct i40e_aqc_switch_config_element_resp *ele = 14203 &sw_config->element[i]; 14204 14205 i40e_setup_pf_switch_element(pf, ele, num_reported, 14206 printconfig); 14207 } 14208 } while (next_seid != 0); 14209 14210 kfree(aq_buf); 14211 return ret; 14212 } 14213 14214 /** 14215 * i40e_setup_pf_switch - Setup the HW switch on startup or after reset 14216 * @pf: board private structure 14217 * @reinit: if the Main VSI needs to re-initialized. 14218 * 14219 * Returns 0 on success, negative value on failure 14220 **/ 14221 static int i40e_setup_pf_switch(struct i40e_pf *pf, bool reinit) 14222 { 14223 u16 flags = 0; 14224 int ret; 14225 14226 /* find out what's out there already */ 14227 ret = i40e_fetch_switch_configuration(pf, false); 14228 if (ret) { 14229 dev_info(&pf->pdev->dev, 14230 "couldn't fetch switch config, err %s aq_err %s\n", 14231 i40e_stat_str(&pf->hw, ret), 14232 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 14233 return ret; 14234 } 14235 i40e_pf_reset_stats(pf); 14236 14237 /* set the switch config bit for the whole device to 14238 * support limited promisc or true promisc 14239 * when user requests promisc. The default is limited 14240 * promisc. 14241 */ 14242 14243 if ((pf->hw.pf_id == 0) && 14244 !(pf->flags & I40E_FLAG_TRUE_PROMISC_SUPPORT)) { 14245 flags = I40E_AQ_SET_SWITCH_CFG_PROMISC; 14246 pf->last_sw_conf_flags = flags; 14247 } 14248 14249 if (pf->hw.pf_id == 0) { 14250 u16 valid_flags; 14251 14252 valid_flags = I40E_AQ_SET_SWITCH_CFG_PROMISC; 14253 ret = i40e_aq_set_switch_config(&pf->hw, flags, valid_flags, 0, 14254 NULL); 14255 if (ret && pf->hw.aq.asq_last_status != I40E_AQ_RC_ESRCH) { 14256 dev_info(&pf->pdev->dev, 14257 "couldn't set switch config bits, err %s aq_err %s\n", 14258 i40e_stat_str(&pf->hw, ret), 14259 i40e_aq_str(&pf->hw, 14260 pf->hw.aq.asq_last_status)); 14261 /* not a fatal problem, just keep going */ 14262 } 14263 pf->last_sw_conf_valid_flags = valid_flags; 14264 } 14265 14266 /* first time setup */ 14267 if (pf->lan_vsi == I40E_NO_VSI || reinit) { 14268 struct i40e_vsi *vsi = NULL; 14269 u16 uplink_seid; 14270 14271 /* Set up the PF VSI associated with the PF's main VSI 14272 * that is already in the HW switch 14273 */ 14274 if (pf->lan_veb < I40E_MAX_VEB && pf->veb[pf->lan_veb]) 14275 uplink_seid = pf->veb[pf->lan_veb]->seid; 14276 else 14277 uplink_seid = pf->mac_seid; 14278 if (pf->lan_vsi == I40E_NO_VSI) 14279 vsi = i40e_vsi_setup(pf, I40E_VSI_MAIN, uplink_seid, 0); 14280 else if (reinit) 14281 vsi = i40e_vsi_reinit_setup(pf->vsi[pf->lan_vsi]); 14282 if (!vsi) { 14283 dev_info(&pf->pdev->dev, "setup of MAIN VSI failed\n"); 14284 i40e_cloud_filter_exit(pf); 14285 i40e_fdir_teardown(pf); 14286 return -EAGAIN; 14287 } 14288 } else { 14289 /* force a reset of TC and queue layout configurations */ 14290 u8 enabled_tc = pf->vsi[pf->lan_vsi]->tc_config.enabled_tc; 14291 14292 pf->vsi[pf->lan_vsi]->tc_config.enabled_tc = 0; 14293 pf->vsi[pf->lan_vsi]->seid = pf->main_vsi_seid; 14294 i40e_vsi_config_tc(pf->vsi[pf->lan_vsi], enabled_tc); 14295 } 14296 i40e_vlan_stripping_disable(pf->vsi[pf->lan_vsi]); 14297 14298 i40e_fdir_sb_setup(pf); 14299 14300 /* Setup static PF queue filter control settings */ 14301 ret = i40e_setup_pf_filter_control(pf); 14302 if (ret) { 14303 dev_info(&pf->pdev->dev, "setup_pf_filter_control failed: %d\n", 14304 ret); 14305 /* Failure here should not stop continuing other steps */ 14306 } 14307 14308 /* enable RSS in the HW, even for only one queue, as the stack can use 14309 * the hash 14310 */ 14311 if ((pf->flags & I40E_FLAG_RSS_ENABLED)) 14312 i40e_pf_config_rss(pf); 14313 14314 /* fill in link information and enable LSE reporting */ 14315 i40e_link_event(pf); 14316 14317 /* Initialize user-specific link properties */ 14318 pf->fc_autoneg_status = ((pf->hw.phy.link_info.an_info & 14319 I40E_AQ_AN_COMPLETED) ? true : false); 14320 14321 i40e_ptp_init(pf); 14322 14323 /* repopulate tunnel port filters */ 14324 i40e_sync_udp_filters(pf); 14325 14326 return ret; 14327 } 14328 14329 /** 14330 * i40e_determine_queue_usage - Work out queue distribution 14331 * @pf: board private structure 14332 **/ 14333 static void i40e_determine_queue_usage(struct i40e_pf *pf) 14334 { 14335 int queues_left; 14336 int q_max; 14337 14338 pf->num_lan_qps = 0; 14339 14340 /* Find the max queues to be put into basic use. We'll always be 14341 * using TC0, whether or not DCB is running, and TC0 will get the 14342 * big RSS set. 14343 */ 14344 queues_left = pf->hw.func_caps.num_tx_qp; 14345 14346 if ((queues_left == 1) || 14347 !(pf->flags & I40E_FLAG_MSIX_ENABLED)) { 14348 /* one qp for PF, no queues for anything else */ 14349 queues_left = 0; 14350 pf->alloc_rss_size = pf->num_lan_qps = 1; 14351 14352 /* make sure all the fancies are disabled */ 14353 pf->flags &= ~(I40E_FLAG_RSS_ENABLED | 14354 I40E_FLAG_IWARP_ENABLED | 14355 I40E_FLAG_FD_SB_ENABLED | 14356 I40E_FLAG_FD_ATR_ENABLED | 14357 I40E_FLAG_DCB_CAPABLE | 14358 I40E_FLAG_DCB_ENABLED | 14359 I40E_FLAG_SRIOV_ENABLED | 14360 I40E_FLAG_VMDQ_ENABLED); 14361 pf->flags |= I40E_FLAG_FD_SB_INACTIVE; 14362 } else if (!(pf->flags & (I40E_FLAG_RSS_ENABLED | 14363 I40E_FLAG_FD_SB_ENABLED | 14364 I40E_FLAG_FD_ATR_ENABLED | 14365 I40E_FLAG_DCB_CAPABLE))) { 14366 /* one qp for PF */ 14367 pf->alloc_rss_size = pf->num_lan_qps = 1; 14368 queues_left -= pf->num_lan_qps; 14369 14370 pf->flags &= ~(I40E_FLAG_RSS_ENABLED | 14371 I40E_FLAG_IWARP_ENABLED | 14372 I40E_FLAG_FD_SB_ENABLED | 14373 I40E_FLAG_FD_ATR_ENABLED | 14374 I40E_FLAG_DCB_ENABLED | 14375 I40E_FLAG_VMDQ_ENABLED); 14376 pf->flags |= I40E_FLAG_FD_SB_INACTIVE; 14377 } else { 14378 /* Not enough queues for all TCs */ 14379 if ((pf->flags & I40E_FLAG_DCB_CAPABLE) && 14380 (queues_left < I40E_MAX_TRAFFIC_CLASS)) { 14381 pf->flags &= ~(I40E_FLAG_DCB_CAPABLE | 14382 I40E_FLAG_DCB_ENABLED); 14383 dev_info(&pf->pdev->dev, "not enough queues for DCB. DCB is disabled.\n"); 14384 } 14385 14386 /* limit lan qps to the smaller of qps, cpus or msix */ 14387 q_max = max_t(int, pf->rss_size_max, num_online_cpus()); 14388 q_max = min_t(int, q_max, pf->hw.func_caps.num_tx_qp); 14389 q_max = min_t(int, q_max, pf->hw.func_caps.num_msix_vectors); 14390 pf->num_lan_qps = q_max; 14391 14392 queues_left -= pf->num_lan_qps; 14393 } 14394 14395 if (pf->flags & I40E_FLAG_FD_SB_ENABLED) { 14396 if (queues_left > 1) { 14397 queues_left -= 1; /* save 1 queue for FD */ 14398 } else { 14399 pf->flags &= ~I40E_FLAG_FD_SB_ENABLED; 14400 pf->flags |= I40E_FLAG_FD_SB_INACTIVE; 14401 dev_info(&pf->pdev->dev, "not enough queues for Flow Director. Flow Director feature is disabled\n"); 14402 } 14403 } 14404 14405 if ((pf->flags & I40E_FLAG_SRIOV_ENABLED) && 14406 pf->num_vf_qps && pf->num_req_vfs && queues_left) { 14407 pf->num_req_vfs = min_t(int, pf->num_req_vfs, 14408 (queues_left / pf->num_vf_qps)); 14409 queues_left -= (pf->num_req_vfs * pf->num_vf_qps); 14410 } 14411 14412 if ((pf->flags & I40E_FLAG_VMDQ_ENABLED) && 14413 pf->num_vmdq_vsis && pf->num_vmdq_qps && queues_left) { 14414 pf->num_vmdq_vsis = min_t(int, pf->num_vmdq_vsis, 14415 (queues_left / pf->num_vmdq_qps)); 14416 queues_left -= (pf->num_vmdq_vsis * pf->num_vmdq_qps); 14417 } 14418 14419 pf->queues_left = queues_left; 14420 dev_dbg(&pf->pdev->dev, 14421 "qs_avail=%d FD SB=%d lan_qs=%d lan_tc0=%d vf=%d*%d vmdq=%d*%d, remaining=%d\n", 14422 pf->hw.func_caps.num_tx_qp, 14423 !!(pf->flags & I40E_FLAG_FD_SB_ENABLED), 14424 pf->num_lan_qps, pf->alloc_rss_size, pf->num_req_vfs, 14425 pf->num_vf_qps, pf->num_vmdq_vsis, pf->num_vmdq_qps, 14426 queues_left); 14427 } 14428 14429 /** 14430 * i40e_setup_pf_filter_control - Setup PF static filter control 14431 * @pf: PF to be setup 14432 * 14433 * i40e_setup_pf_filter_control sets up a PF's initial filter control 14434 * settings. If PE/FCoE are enabled then it will also set the per PF 14435 * based filter sizes required for them. It also enables Flow director, 14436 * ethertype and macvlan type filter settings for the pf. 14437 * 14438 * Returns 0 on success, negative on failure 14439 **/ 14440 static int i40e_setup_pf_filter_control(struct i40e_pf *pf) 14441 { 14442 struct i40e_filter_control_settings *settings = &pf->filter_settings; 14443 14444 settings->hash_lut_size = I40E_HASH_LUT_SIZE_128; 14445 14446 /* Flow Director is enabled */ 14447 if (pf->flags & (I40E_FLAG_FD_SB_ENABLED | I40E_FLAG_FD_ATR_ENABLED)) 14448 settings->enable_fdir = true; 14449 14450 /* Ethtype and MACVLAN filters enabled for PF */ 14451 settings->enable_ethtype = true; 14452 settings->enable_macvlan = true; 14453 14454 if (i40e_set_filter_control(&pf->hw, settings)) 14455 return -ENOENT; 14456 14457 return 0; 14458 } 14459 14460 #define INFO_STRING_LEN 255 14461 #define REMAIN(__x) (INFO_STRING_LEN - (__x)) 14462 static void i40e_print_features(struct i40e_pf *pf) 14463 { 14464 struct i40e_hw *hw = &pf->hw; 14465 char *buf; 14466 int i; 14467 14468 buf = kmalloc(INFO_STRING_LEN, GFP_KERNEL); 14469 if (!buf) 14470 return; 14471 14472 i = snprintf(buf, INFO_STRING_LEN, "Features: PF-id[%d]", hw->pf_id); 14473 #ifdef CONFIG_PCI_IOV 14474 i += snprintf(&buf[i], REMAIN(i), " VFs: %d", pf->num_req_vfs); 14475 #endif 14476 i += snprintf(&buf[i], REMAIN(i), " VSIs: %d QP: %d", 14477 pf->hw.func_caps.num_vsis, 14478 pf->vsi[pf->lan_vsi]->num_queue_pairs); 14479 if (pf->flags & I40E_FLAG_RSS_ENABLED) 14480 i += snprintf(&buf[i], REMAIN(i), " RSS"); 14481 if (pf->flags & I40E_FLAG_FD_ATR_ENABLED) 14482 i += snprintf(&buf[i], REMAIN(i), " FD_ATR"); 14483 if (pf->flags & I40E_FLAG_FD_SB_ENABLED) { 14484 i += snprintf(&buf[i], REMAIN(i), " FD_SB"); 14485 i += snprintf(&buf[i], REMAIN(i), " NTUPLE"); 14486 } 14487 if (pf->flags & I40E_FLAG_DCB_CAPABLE) 14488 i += snprintf(&buf[i], REMAIN(i), " DCB"); 14489 i += snprintf(&buf[i], REMAIN(i), " VxLAN"); 14490 i += snprintf(&buf[i], REMAIN(i), " Geneve"); 14491 if (pf->flags & I40E_FLAG_PTP) 14492 i += snprintf(&buf[i], REMAIN(i), " PTP"); 14493 if (pf->flags & I40E_FLAG_VEB_MODE_ENABLED) 14494 i += snprintf(&buf[i], REMAIN(i), " VEB"); 14495 else 14496 i += snprintf(&buf[i], REMAIN(i), " VEPA"); 14497 14498 dev_info(&pf->pdev->dev, "%s\n", buf); 14499 kfree(buf); 14500 WARN_ON(i > INFO_STRING_LEN); 14501 } 14502 14503 /** 14504 * i40e_get_platform_mac_addr - get platform-specific MAC address 14505 * @pdev: PCI device information struct 14506 * @pf: board private structure 14507 * 14508 * Look up the MAC address for the device. First we'll try 14509 * eth_platform_get_mac_address, which will check Open Firmware, or arch 14510 * specific fallback. Otherwise, we'll default to the stored value in 14511 * firmware. 14512 **/ 14513 static void i40e_get_platform_mac_addr(struct pci_dev *pdev, struct i40e_pf *pf) 14514 { 14515 if (eth_platform_get_mac_address(&pdev->dev, pf->hw.mac.addr)) 14516 i40e_get_mac_addr(&pf->hw, pf->hw.mac.addr); 14517 } 14518 14519 /** 14520 * i40e_set_fec_in_flags - helper function for setting FEC options in flags 14521 * @fec_cfg: FEC option to set in flags 14522 * @flags: ptr to flags in which we set FEC option 14523 **/ 14524 void i40e_set_fec_in_flags(u8 fec_cfg, u32 *flags) 14525 { 14526 if (fec_cfg & I40E_AQ_SET_FEC_AUTO) 14527 *flags |= I40E_FLAG_RS_FEC | I40E_FLAG_BASE_R_FEC; 14528 if ((fec_cfg & I40E_AQ_SET_FEC_REQUEST_RS) || 14529 (fec_cfg & I40E_AQ_SET_FEC_ABILITY_RS)) { 14530 *flags |= I40E_FLAG_RS_FEC; 14531 *flags &= ~I40E_FLAG_BASE_R_FEC; 14532 } 14533 if ((fec_cfg & I40E_AQ_SET_FEC_REQUEST_KR) || 14534 (fec_cfg & I40E_AQ_SET_FEC_ABILITY_KR)) { 14535 *flags |= I40E_FLAG_BASE_R_FEC; 14536 *flags &= ~I40E_FLAG_RS_FEC; 14537 } 14538 if (fec_cfg == 0) 14539 *flags &= ~(I40E_FLAG_RS_FEC | I40E_FLAG_BASE_R_FEC); 14540 } 14541 14542 /** 14543 * i40e_check_recovery_mode - check if we are running transition firmware 14544 * @pf: board private structure 14545 * 14546 * Check registers indicating the firmware runs in recovery mode. Sets the 14547 * appropriate driver state. 14548 * 14549 * Returns true if the recovery mode was detected, false otherwise 14550 **/ 14551 static bool i40e_check_recovery_mode(struct i40e_pf *pf) 14552 { 14553 u32 val = rd32(&pf->hw, I40E_GL_FWSTS) & I40E_GL_FWSTS_FWS1B_MASK; 14554 bool is_recovery_mode = false; 14555 14556 if (pf->hw.mac.type == I40E_MAC_XL710) 14557 is_recovery_mode = 14558 val == I40E_XL710_GL_FWSTS_FWS1B_REC_MOD_CORER_MASK || 14559 val == I40E_XL710_GL_FWSTS_FWS1B_REC_MOD_GLOBR_MASK || 14560 val == I40E_XL710_GL_FWSTS_FWS1B_REC_MOD_TRANSITION_MASK || 14561 val == I40E_XL710_GL_FWSTS_FWS1B_REC_MOD_NVM_MASK; 14562 if (pf->hw.mac.type == I40E_MAC_X722) 14563 is_recovery_mode = 14564 val == I40E_X722_GL_FWSTS_FWS1B_REC_MOD_CORER_MASK || 14565 val == I40E_X722_GL_FWSTS_FWS1B_REC_MOD_GLOBR_MASK; 14566 if (is_recovery_mode) { 14567 dev_notice(&pf->pdev->dev, "Firmware recovery mode detected. Limiting functionality.\n"); 14568 dev_notice(&pf->pdev->dev, "Refer to the Intel(R) Ethernet Adapters and Devices User Guide for details on firmware recovery mode.\n"); 14569 set_bit(__I40E_RECOVERY_MODE, pf->state); 14570 14571 return true; 14572 } 14573 if (test_and_clear_bit(__I40E_RECOVERY_MODE, pf->state)) 14574 dev_info(&pf->pdev->dev, "Reinitializing in normal mode with full functionality.\n"); 14575 14576 return false; 14577 } 14578 14579 /** 14580 * i40e_pf_loop_reset - perform reset in a loop. 14581 * @pf: board private structure 14582 * 14583 * This function is useful when a NIC is about to enter recovery mode. 14584 * When a NIC's internal data structures are corrupted the NIC's 14585 * firmware is going to enter recovery mode. 14586 * Right after a POR it takes about 7 minutes for firmware to enter 14587 * recovery mode. Until that time a NIC is in some kind of intermediate 14588 * state. After that time period the NIC almost surely enters 14589 * recovery mode. The only way for a driver to detect intermediate 14590 * state is to issue a series of pf-resets and check a return value. 14591 * If a PF reset returns success then the firmware could be in recovery 14592 * mode so the caller of this code needs to check for recovery mode 14593 * if this function returns success. There is a little chance that 14594 * firmware will hang in intermediate state forever. 14595 * Since waiting 7 minutes is quite a lot of time this function waits 14596 * 10 seconds and then gives up by returning an error. 14597 * 14598 * Return 0 on success, negative on failure. 14599 **/ 14600 static i40e_status i40e_pf_loop_reset(struct i40e_pf *pf) 14601 { 14602 const unsigned short MAX_CNT = 1000; 14603 const unsigned short MSECS = 10; 14604 struct i40e_hw *hw = &pf->hw; 14605 i40e_status ret; 14606 int cnt; 14607 14608 for (cnt = 0; cnt < MAX_CNT; ++cnt) { 14609 ret = i40e_pf_reset(hw); 14610 if (!ret) 14611 break; 14612 msleep(MSECS); 14613 } 14614 14615 if (cnt == MAX_CNT) { 14616 dev_info(&pf->pdev->dev, "PF reset failed: %d\n", ret); 14617 return ret; 14618 } 14619 14620 pf->pfr_count++; 14621 return ret; 14622 } 14623 14624 /** 14625 * i40e_init_recovery_mode - initialize subsystems needed in recovery mode 14626 * @pf: board private structure 14627 * @hw: ptr to the hardware info 14628 * 14629 * This function does a minimal setup of all subsystems needed for running 14630 * recovery mode. 14631 * 14632 * Returns 0 on success, negative on failure 14633 **/ 14634 static int i40e_init_recovery_mode(struct i40e_pf *pf, struct i40e_hw *hw) 14635 { 14636 struct i40e_vsi *vsi; 14637 int err; 14638 int v_idx; 14639 14640 pci_save_state(pf->pdev); 14641 14642 /* set up periodic task facility */ 14643 timer_setup(&pf->service_timer, i40e_service_timer, 0); 14644 pf->service_timer_period = HZ; 14645 14646 INIT_WORK(&pf->service_task, i40e_service_task); 14647 clear_bit(__I40E_SERVICE_SCHED, pf->state); 14648 14649 err = i40e_init_interrupt_scheme(pf); 14650 if (err) 14651 goto err_switch_setup; 14652 14653 /* The number of VSIs reported by the FW is the minimum guaranteed 14654 * to us; HW supports far more and we share the remaining pool with 14655 * the other PFs. We allocate space for more than the guarantee with 14656 * the understanding that we might not get them all later. 14657 */ 14658 if (pf->hw.func_caps.num_vsis < I40E_MIN_VSI_ALLOC) 14659 pf->num_alloc_vsi = I40E_MIN_VSI_ALLOC; 14660 else 14661 pf->num_alloc_vsi = pf->hw.func_caps.num_vsis; 14662 14663 /* Set up the vsi struct and our local tracking of the MAIN PF vsi. */ 14664 pf->vsi = kcalloc(pf->num_alloc_vsi, sizeof(struct i40e_vsi *), 14665 GFP_KERNEL); 14666 if (!pf->vsi) { 14667 err = -ENOMEM; 14668 goto err_switch_setup; 14669 } 14670 14671 /* We allocate one VSI which is needed as absolute minimum 14672 * in order to register the netdev 14673 */ 14674 v_idx = i40e_vsi_mem_alloc(pf, I40E_VSI_MAIN); 14675 if (v_idx < 0) 14676 goto err_switch_setup; 14677 pf->lan_vsi = v_idx; 14678 vsi = pf->vsi[v_idx]; 14679 if (!vsi) 14680 goto err_switch_setup; 14681 vsi->alloc_queue_pairs = 1; 14682 err = i40e_config_netdev(vsi); 14683 if (err) 14684 goto err_switch_setup; 14685 err = register_netdev(vsi->netdev); 14686 if (err) 14687 goto err_switch_setup; 14688 vsi->netdev_registered = true; 14689 i40e_dbg_pf_init(pf); 14690 14691 err = i40e_setup_misc_vector_for_recovery_mode(pf); 14692 if (err) 14693 goto err_switch_setup; 14694 14695 /* tell the firmware that we're starting */ 14696 i40e_send_version(pf); 14697 14698 /* since everything's happy, start the service_task timer */ 14699 mod_timer(&pf->service_timer, 14700 round_jiffies(jiffies + pf->service_timer_period)); 14701 14702 return 0; 14703 14704 err_switch_setup: 14705 i40e_reset_interrupt_capability(pf); 14706 del_timer_sync(&pf->service_timer); 14707 i40e_shutdown_adminq(hw); 14708 iounmap(hw->hw_addr); 14709 pci_disable_pcie_error_reporting(pf->pdev); 14710 pci_release_mem_regions(pf->pdev); 14711 pci_disable_device(pf->pdev); 14712 kfree(pf); 14713 14714 return err; 14715 } 14716 14717 /** 14718 * i40e_probe - Device initialization routine 14719 * @pdev: PCI device information struct 14720 * @ent: entry in i40e_pci_tbl 14721 * 14722 * i40e_probe initializes a PF identified by a pci_dev structure. 14723 * The OS initialization, configuring of the PF private structure, 14724 * and a hardware reset occur. 14725 * 14726 * Returns 0 on success, negative on failure 14727 **/ 14728 static int i40e_probe(struct pci_dev *pdev, const struct pci_device_id *ent) 14729 { 14730 struct i40e_aq_get_phy_abilities_resp abilities; 14731 struct i40e_pf *pf; 14732 struct i40e_hw *hw; 14733 static u16 pfs_found; 14734 u16 wol_nvm_bits; 14735 u16 link_status; 14736 int err; 14737 u32 val; 14738 u32 i; 14739 u8 set_fc_aq_fail; 14740 14741 err = pci_enable_device_mem(pdev); 14742 if (err) 14743 return err; 14744 14745 /* set up for high or low dma */ 14746 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)); 14747 if (err) { 14748 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)); 14749 if (err) { 14750 dev_err(&pdev->dev, 14751 "DMA configuration failed: 0x%x\n", err); 14752 goto err_dma; 14753 } 14754 } 14755 14756 /* set up pci connections */ 14757 err = pci_request_mem_regions(pdev, i40e_driver_name); 14758 if (err) { 14759 dev_info(&pdev->dev, 14760 "pci_request_selected_regions failed %d\n", err); 14761 goto err_pci_reg; 14762 } 14763 14764 pci_enable_pcie_error_reporting(pdev); 14765 pci_set_master(pdev); 14766 14767 /* Now that we have a PCI connection, we need to do the 14768 * low level device setup. This is primarily setting up 14769 * the Admin Queue structures and then querying for the 14770 * device's current profile information. 14771 */ 14772 pf = kzalloc(sizeof(*pf), GFP_KERNEL); 14773 if (!pf) { 14774 err = -ENOMEM; 14775 goto err_pf_alloc; 14776 } 14777 pf->next_vsi = 0; 14778 pf->pdev = pdev; 14779 set_bit(__I40E_DOWN, pf->state); 14780 14781 hw = &pf->hw; 14782 hw->back = pf; 14783 14784 pf->ioremap_len = min_t(int, pci_resource_len(pdev, 0), 14785 I40E_MAX_CSR_SPACE); 14786 /* We believe that the highest register to read is 14787 * I40E_GLGEN_STAT_CLEAR, so we check if the BAR size 14788 * is not less than that before mapping to prevent a 14789 * kernel panic. 14790 */ 14791 if (pf->ioremap_len < I40E_GLGEN_STAT_CLEAR) { 14792 dev_err(&pdev->dev, "Cannot map registers, bar size 0x%X too small, aborting\n", 14793 pf->ioremap_len); 14794 err = -ENOMEM; 14795 goto err_ioremap; 14796 } 14797 hw->hw_addr = ioremap(pci_resource_start(pdev, 0), pf->ioremap_len); 14798 if (!hw->hw_addr) { 14799 err = -EIO; 14800 dev_info(&pdev->dev, "ioremap(0x%04x, 0x%04x) failed: 0x%x\n", 14801 (unsigned int)pci_resource_start(pdev, 0), 14802 pf->ioremap_len, err); 14803 goto err_ioremap; 14804 } 14805 hw->vendor_id = pdev->vendor; 14806 hw->device_id = pdev->device; 14807 pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id); 14808 hw->subsystem_vendor_id = pdev->subsystem_vendor; 14809 hw->subsystem_device_id = pdev->subsystem_device; 14810 hw->bus.device = PCI_SLOT(pdev->devfn); 14811 hw->bus.func = PCI_FUNC(pdev->devfn); 14812 hw->bus.bus_id = pdev->bus->number; 14813 pf->instance = pfs_found; 14814 14815 /* Select something other than the 802.1ad ethertype for the 14816 * switch to use internally and drop on ingress. 14817 */ 14818 hw->switch_tag = 0xffff; 14819 hw->first_tag = ETH_P_8021AD; 14820 hw->second_tag = ETH_P_8021Q; 14821 14822 INIT_LIST_HEAD(&pf->l3_flex_pit_list); 14823 INIT_LIST_HEAD(&pf->l4_flex_pit_list); 14824 INIT_LIST_HEAD(&pf->ddp_old_prof); 14825 14826 /* set up the locks for the AQ, do this only once in probe 14827 * and destroy them only once in remove 14828 */ 14829 mutex_init(&hw->aq.asq_mutex); 14830 mutex_init(&hw->aq.arq_mutex); 14831 14832 pf->msg_enable = netif_msg_init(debug, 14833 NETIF_MSG_DRV | 14834 NETIF_MSG_PROBE | 14835 NETIF_MSG_LINK); 14836 if (debug < -1) 14837 pf->hw.debug_mask = debug; 14838 14839 /* do a special CORER for clearing PXE mode once at init */ 14840 if (hw->revision_id == 0 && 14841 (rd32(hw, I40E_GLLAN_RCTL_0) & I40E_GLLAN_RCTL_0_PXE_MODE_MASK)) { 14842 wr32(hw, I40E_GLGEN_RTRIG, I40E_GLGEN_RTRIG_CORER_MASK); 14843 i40e_flush(hw); 14844 msleep(200); 14845 pf->corer_count++; 14846 14847 i40e_clear_pxe_mode(hw); 14848 } 14849 14850 /* Reset here to make sure all is clean and to define PF 'n' */ 14851 i40e_clear_hw(hw); 14852 14853 err = i40e_set_mac_type(hw); 14854 if (err) { 14855 dev_warn(&pdev->dev, "unidentified MAC or BLANK NVM: %d\n", 14856 err); 14857 goto err_pf_reset; 14858 } 14859 14860 err = i40e_pf_loop_reset(pf); 14861 if (err) { 14862 dev_info(&pdev->dev, "Initial pf_reset failed: %d\n", err); 14863 goto err_pf_reset; 14864 } 14865 14866 i40e_check_recovery_mode(pf); 14867 14868 hw->aq.num_arq_entries = I40E_AQ_LEN; 14869 hw->aq.num_asq_entries = I40E_AQ_LEN; 14870 hw->aq.arq_buf_size = I40E_MAX_AQ_BUF_SIZE; 14871 hw->aq.asq_buf_size = I40E_MAX_AQ_BUF_SIZE; 14872 pf->adminq_work_limit = I40E_AQ_WORK_LIMIT; 14873 14874 snprintf(pf->int_name, sizeof(pf->int_name) - 1, 14875 "%s-%s:misc", 14876 dev_driver_string(&pf->pdev->dev), dev_name(&pdev->dev)); 14877 14878 err = i40e_init_shared_code(hw); 14879 if (err) { 14880 dev_warn(&pdev->dev, "unidentified MAC or BLANK NVM: %d\n", 14881 err); 14882 goto err_pf_reset; 14883 } 14884 14885 /* set up a default setting for link flow control */ 14886 pf->hw.fc.requested_mode = I40E_FC_NONE; 14887 14888 err = i40e_init_adminq(hw); 14889 if (err) { 14890 if (err == I40E_ERR_FIRMWARE_API_VERSION) 14891 dev_info(&pdev->dev, 14892 "The driver for the device stopped because the NVM image v%u.%u is newer than expected v%u.%u. You must install the most recent version of the network driver.\n", 14893 hw->aq.api_maj_ver, 14894 hw->aq.api_min_ver, 14895 I40E_FW_API_VERSION_MAJOR, 14896 I40E_FW_MINOR_VERSION(hw)); 14897 else 14898 dev_info(&pdev->dev, 14899 "The driver for the device stopped because the device firmware failed to init. Try updating your NVM image.\n"); 14900 14901 goto err_pf_reset; 14902 } 14903 i40e_get_oem_version(hw); 14904 14905 /* provide nvm, fw, api versions, vendor:device id, subsys vendor:device id */ 14906 dev_info(&pdev->dev, "fw %d.%d.%05d api %d.%d nvm %s [%04x:%04x] [%04x:%04x]\n", 14907 hw->aq.fw_maj_ver, hw->aq.fw_min_ver, hw->aq.fw_build, 14908 hw->aq.api_maj_ver, hw->aq.api_min_ver, 14909 i40e_nvm_version_str(hw), hw->vendor_id, hw->device_id, 14910 hw->subsystem_vendor_id, hw->subsystem_device_id); 14911 14912 if (hw->aq.api_maj_ver == I40E_FW_API_VERSION_MAJOR && 14913 hw->aq.api_min_ver > I40E_FW_MINOR_VERSION(hw)) 14914 dev_info(&pdev->dev, 14915 "The driver for the device detected a newer version of the NVM image v%u.%u than expected v%u.%u. Please install the most recent version of the network driver.\n", 14916 hw->aq.api_maj_ver, 14917 hw->aq.api_min_ver, 14918 I40E_FW_API_VERSION_MAJOR, 14919 I40E_FW_MINOR_VERSION(hw)); 14920 else if (hw->aq.api_maj_ver == 1 && hw->aq.api_min_ver < 4) 14921 dev_info(&pdev->dev, 14922 "The driver for the device detected an older version of the NVM image v%u.%u than expected v%u.%u. Please update the NVM image.\n", 14923 hw->aq.api_maj_ver, 14924 hw->aq.api_min_ver, 14925 I40E_FW_API_VERSION_MAJOR, 14926 I40E_FW_MINOR_VERSION(hw)); 14927 14928 i40e_verify_eeprom(pf); 14929 14930 /* Rev 0 hardware was never productized */ 14931 if (hw->revision_id < 1) 14932 dev_warn(&pdev->dev, "This device is a pre-production adapter/LOM. Please be aware there may be issues with your hardware. If you are experiencing problems please contact your Intel or hardware representative who provided you with this hardware.\n"); 14933 14934 i40e_clear_pxe_mode(hw); 14935 14936 err = i40e_get_capabilities(pf, i40e_aqc_opc_list_func_capabilities); 14937 if (err) 14938 goto err_adminq_setup; 14939 14940 err = i40e_sw_init(pf); 14941 if (err) { 14942 dev_info(&pdev->dev, "sw_init failed: %d\n", err); 14943 goto err_sw_init; 14944 } 14945 14946 if (test_bit(__I40E_RECOVERY_MODE, pf->state)) 14947 return i40e_init_recovery_mode(pf, hw); 14948 14949 err = i40e_init_lan_hmc(hw, hw->func_caps.num_tx_qp, 14950 hw->func_caps.num_rx_qp, 0, 0); 14951 if (err) { 14952 dev_info(&pdev->dev, "init_lan_hmc failed: %d\n", err); 14953 goto err_init_lan_hmc; 14954 } 14955 14956 err = i40e_configure_lan_hmc(hw, I40E_HMC_MODEL_DIRECT_ONLY); 14957 if (err) { 14958 dev_info(&pdev->dev, "configure_lan_hmc failed: %d\n", err); 14959 err = -ENOENT; 14960 goto err_configure_lan_hmc; 14961 } 14962 14963 /* Disable LLDP for NICs that have firmware versions lower than v4.3. 14964 * Ignore error return codes because if it was already disabled via 14965 * hardware settings this will fail 14966 */ 14967 if (pf->hw_features & I40E_HW_STOP_FW_LLDP) { 14968 dev_info(&pdev->dev, "Stopping firmware LLDP agent.\n"); 14969 i40e_aq_stop_lldp(hw, true, false, NULL); 14970 } 14971 14972 /* allow a platform config to override the HW addr */ 14973 i40e_get_platform_mac_addr(pdev, pf); 14974 14975 if (!is_valid_ether_addr(hw->mac.addr)) { 14976 dev_info(&pdev->dev, "invalid MAC address %pM\n", hw->mac.addr); 14977 err = -EIO; 14978 goto err_mac_addr; 14979 } 14980 dev_info(&pdev->dev, "MAC address: %pM\n", hw->mac.addr); 14981 ether_addr_copy(hw->mac.perm_addr, hw->mac.addr); 14982 i40e_get_port_mac_addr(hw, hw->mac.port_addr); 14983 if (is_valid_ether_addr(hw->mac.port_addr)) 14984 pf->hw_features |= I40E_HW_PORT_ID_VALID; 14985 14986 pci_set_drvdata(pdev, pf); 14987 pci_save_state(pdev); 14988 14989 dev_info(&pdev->dev, 14990 (pf->flags & I40E_FLAG_DISABLE_FW_LLDP) ? 14991 "FW LLDP is disabled\n" : 14992 "FW LLDP is enabled\n"); 14993 14994 /* Enable FW to write default DCB config on link-up */ 14995 i40e_aq_set_dcb_parameters(hw, true, NULL); 14996 14997 #ifdef CONFIG_I40E_DCB 14998 err = i40e_init_pf_dcb(pf); 14999 if (err) { 15000 dev_info(&pdev->dev, "DCB init failed %d, disabled\n", err); 15001 pf->flags &= ~(I40E_FLAG_DCB_CAPABLE | I40E_FLAG_DCB_ENABLED); 15002 /* Continue without DCB enabled */ 15003 } 15004 #endif /* CONFIG_I40E_DCB */ 15005 15006 /* set up periodic task facility */ 15007 timer_setup(&pf->service_timer, i40e_service_timer, 0); 15008 pf->service_timer_period = HZ; 15009 15010 INIT_WORK(&pf->service_task, i40e_service_task); 15011 clear_bit(__I40E_SERVICE_SCHED, pf->state); 15012 15013 /* NVM bit on means WoL disabled for the port */ 15014 i40e_read_nvm_word(hw, I40E_SR_NVM_WAKE_ON_LAN, &wol_nvm_bits); 15015 if (BIT (hw->port) & wol_nvm_bits || hw->partition_id != 1) 15016 pf->wol_en = false; 15017 else 15018 pf->wol_en = true; 15019 device_set_wakeup_enable(&pf->pdev->dev, pf->wol_en); 15020 15021 /* set up the main switch operations */ 15022 i40e_determine_queue_usage(pf); 15023 err = i40e_init_interrupt_scheme(pf); 15024 if (err) 15025 goto err_switch_setup; 15026 15027 /* The number of VSIs reported by the FW is the minimum guaranteed 15028 * to us; HW supports far more and we share the remaining pool with 15029 * the other PFs. We allocate space for more than the guarantee with 15030 * the understanding that we might not get them all later. 15031 */ 15032 if (pf->hw.func_caps.num_vsis < I40E_MIN_VSI_ALLOC) 15033 pf->num_alloc_vsi = I40E_MIN_VSI_ALLOC; 15034 else 15035 pf->num_alloc_vsi = pf->hw.func_caps.num_vsis; 15036 15037 /* Set up the *vsi struct and our local tracking of the MAIN PF vsi. */ 15038 pf->vsi = kcalloc(pf->num_alloc_vsi, sizeof(struct i40e_vsi *), 15039 GFP_KERNEL); 15040 if (!pf->vsi) { 15041 err = -ENOMEM; 15042 goto err_switch_setup; 15043 } 15044 15045 #ifdef CONFIG_PCI_IOV 15046 /* prep for VF support */ 15047 if ((pf->flags & I40E_FLAG_SRIOV_ENABLED) && 15048 (pf->flags & I40E_FLAG_MSIX_ENABLED) && 15049 !test_bit(__I40E_BAD_EEPROM, pf->state)) { 15050 if (pci_num_vf(pdev)) 15051 pf->flags |= I40E_FLAG_VEB_MODE_ENABLED; 15052 } 15053 #endif 15054 err = i40e_setup_pf_switch(pf, false); 15055 if (err) { 15056 dev_info(&pdev->dev, "setup_pf_switch failed: %d\n", err); 15057 goto err_vsis; 15058 } 15059 INIT_LIST_HEAD(&pf->vsi[pf->lan_vsi]->ch_list); 15060 15061 /* Make sure flow control is set according to current settings */ 15062 err = i40e_set_fc(hw, &set_fc_aq_fail, true); 15063 if (set_fc_aq_fail & I40E_SET_FC_AQ_FAIL_GET) 15064 dev_dbg(&pf->pdev->dev, 15065 "Set fc with err %s aq_err %s on get_phy_cap\n", 15066 i40e_stat_str(hw, err), 15067 i40e_aq_str(hw, hw->aq.asq_last_status)); 15068 if (set_fc_aq_fail & I40E_SET_FC_AQ_FAIL_SET) 15069 dev_dbg(&pf->pdev->dev, 15070 "Set fc with err %s aq_err %s on set_phy_config\n", 15071 i40e_stat_str(hw, err), 15072 i40e_aq_str(hw, hw->aq.asq_last_status)); 15073 if (set_fc_aq_fail & I40E_SET_FC_AQ_FAIL_UPDATE) 15074 dev_dbg(&pf->pdev->dev, 15075 "Set fc with err %s aq_err %s on get_link_info\n", 15076 i40e_stat_str(hw, err), 15077 i40e_aq_str(hw, hw->aq.asq_last_status)); 15078 15079 /* if FDIR VSI was set up, start it now */ 15080 for (i = 0; i < pf->num_alloc_vsi; i++) { 15081 if (pf->vsi[i] && pf->vsi[i]->type == I40E_VSI_FDIR) { 15082 i40e_vsi_open(pf->vsi[i]); 15083 break; 15084 } 15085 } 15086 15087 /* The driver only wants link up/down and module qualification 15088 * reports from firmware. Note the negative logic. 15089 */ 15090 err = i40e_aq_set_phy_int_mask(&pf->hw, 15091 ~(I40E_AQ_EVENT_LINK_UPDOWN | 15092 I40E_AQ_EVENT_MEDIA_NA | 15093 I40E_AQ_EVENT_MODULE_QUAL_FAIL), NULL); 15094 if (err) 15095 dev_info(&pf->pdev->dev, "set phy mask fail, err %s aq_err %s\n", 15096 i40e_stat_str(&pf->hw, err), 15097 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 15098 15099 /* Reconfigure hardware for allowing smaller MSS in the case 15100 * of TSO, so that we avoid the MDD being fired and causing 15101 * a reset in the case of small MSS+TSO. 15102 */ 15103 val = rd32(hw, I40E_REG_MSS); 15104 if ((val & I40E_REG_MSS_MIN_MASK) > I40E_64BYTE_MSS) { 15105 val &= ~I40E_REG_MSS_MIN_MASK; 15106 val |= I40E_64BYTE_MSS; 15107 wr32(hw, I40E_REG_MSS, val); 15108 } 15109 15110 if (pf->hw_features & I40E_HW_RESTART_AUTONEG) { 15111 msleep(75); 15112 err = i40e_aq_set_link_restart_an(&pf->hw, true, NULL); 15113 if (err) 15114 dev_info(&pf->pdev->dev, "link restart failed, err %s aq_err %s\n", 15115 i40e_stat_str(&pf->hw, err), 15116 i40e_aq_str(&pf->hw, 15117 pf->hw.aq.asq_last_status)); 15118 } 15119 /* The main driver is (mostly) up and happy. We need to set this state 15120 * before setting up the misc vector or we get a race and the vector 15121 * ends up disabled forever. 15122 */ 15123 clear_bit(__I40E_DOWN, pf->state); 15124 15125 /* In case of MSIX we are going to setup the misc vector right here 15126 * to handle admin queue events etc. In case of legacy and MSI 15127 * the misc functionality and queue processing is combined in 15128 * the same vector and that gets setup at open. 15129 */ 15130 if (pf->flags & I40E_FLAG_MSIX_ENABLED) { 15131 err = i40e_setup_misc_vector(pf); 15132 if (err) { 15133 dev_info(&pdev->dev, 15134 "setup of misc vector failed: %d\n", err); 15135 goto err_vsis; 15136 } 15137 } 15138 15139 #ifdef CONFIG_PCI_IOV 15140 /* prep for VF support */ 15141 if ((pf->flags & I40E_FLAG_SRIOV_ENABLED) && 15142 (pf->flags & I40E_FLAG_MSIX_ENABLED) && 15143 !test_bit(__I40E_BAD_EEPROM, pf->state)) { 15144 /* disable link interrupts for VFs */ 15145 val = rd32(hw, I40E_PFGEN_PORTMDIO_NUM); 15146 val &= ~I40E_PFGEN_PORTMDIO_NUM_VFLINK_STAT_ENA_MASK; 15147 wr32(hw, I40E_PFGEN_PORTMDIO_NUM, val); 15148 i40e_flush(hw); 15149 15150 if (pci_num_vf(pdev)) { 15151 dev_info(&pdev->dev, 15152 "Active VFs found, allocating resources.\n"); 15153 err = i40e_alloc_vfs(pf, pci_num_vf(pdev)); 15154 if (err) 15155 dev_info(&pdev->dev, 15156 "Error %d allocating resources for existing VFs\n", 15157 err); 15158 } 15159 } 15160 #endif /* CONFIG_PCI_IOV */ 15161 15162 if (pf->flags & I40E_FLAG_IWARP_ENABLED) { 15163 pf->iwarp_base_vector = i40e_get_lump(pf, pf->irq_pile, 15164 pf->num_iwarp_msix, 15165 I40E_IWARP_IRQ_PILE_ID); 15166 if (pf->iwarp_base_vector < 0) { 15167 dev_info(&pdev->dev, 15168 "failed to get tracking for %d vectors for IWARP err=%d\n", 15169 pf->num_iwarp_msix, pf->iwarp_base_vector); 15170 pf->flags &= ~I40E_FLAG_IWARP_ENABLED; 15171 } 15172 } 15173 15174 i40e_dbg_pf_init(pf); 15175 15176 /* tell the firmware that we're starting */ 15177 i40e_send_version(pf); 15178 15179 /* since everything's happy, start the service_task timer */ 15180 mod_timer(&pf->service_timer, 15181 round_jiffies(jiffies + pf->service_timer_period)); 15182 15183 /* add this PF to client device list and launch a client service task */ 15184 if (pf->flags & I40E_FLAG_IWARP_ENABLED) { 15185 err = i40e_lan_add_device(pf); 15186 if (err) 15187 dev_info(&pdev->dev, "Failed to add PF to client API service list: %d\n", 15188 err); 15189 } 15190 15191 #define PCI_SPEED_SIZE 8 15192 #define PCI_WIDTH_SIZE 8 15193 /* Devices on the IOSF bus do not have this information 15194 * and will report PCI Gen 1 x 1 by default so don't bother 15195 * checking them. 15196 */ 15197 if (!(pf->hw_features & I40E_HW_NO_PCI_LINK_CHECK)) { 15198 char speed[PCI_SPEED_SIZE] = "Unknown"; 15199 char width[PCI_WIDTH_SIZE] = "Unknown"; 15200 15201 /* Get the negotiated link width and speed from PCI config 15202 * space 15203 */ 15204 pcie_capability_read_word(pf->pdev, PCI_EXP_LNKSTA, 15205 &link_status); 15206 15207 i40e_set_pci_config_data(hw, link_status); 15208 15209 switch (hw->bus.speed) { 15210 case i40e_bus_speed_8000: 15211 strlcpy(speed, "8.0", PCI_SPEED_SIZE); break; 15212 case i40e_bus_speed_5000: 15213 strlcpy(speed, "5.0", PCI_SPEED_SIZE); break; 15214 case i40e_bus_speed_2500: 15215 strlcpy(speed, "2.5", PCI_SPEED_SIZE); break; 15216 default: 15217 break; 15218 } 15219 switch (hw->bus.width) { 15220 case i40e_bus_width_pcie_x8: 15221 strlcpy(width, "8", PCI_WIDTH_SIZE); break; 15222 case i40e_bus_width_pcie_x4: 15223 strlcpy(width, "4", PCI_WIDTH_SIZE); break; 15224 case i40e_bus_width_pcie_x2: 15225 strlcpy(width, "2", PCI_WIDTH_SIZE); break; 15226 case i40e_bus_width_pcie_x1: 15227 strlcpy(width, "1", PCI_WIDTH_SIZE); break; 15228 default: 15229 break; 15230 } 15231 15232 dev_info(&pdev->dev, "PCI-Express: Speed %sGT/s Width x%s\n", 15233 speed, width); 15234 15235 if (hw->bus.width < i40e_bus_width_pcie_x8 || 15236 hw->bus.speed < i40e_bus_speed_8000) { 15237 dev_warn(&pdev->dev, "PCI-Express bandwidth available for this device may be insufficient for optimal performance.\n"); 15238 dev_warn(&pdev->dev, "Please move the device to a different PCI-e link with more lanes and/or higher transfer rate.\n"); 15239 } 15240 } 15241 15242 /* get the requested speeds from the fw */ 15243 err = i40e_aq_get_phy_capabilities(hw, false, false, &abilities, NULL); 15244 if (err) 15245 dev_dbg(&pf->pdev->dev, "get requested speeds ret = %s last_status = %s\n", 15246 i40e_stat_str(&pf->hw, err), 15247 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 15248 pf->hw.phy.link_info.requested_speeds = abilities.link_speed; 15249 15250 /* set the FEC config due to the board capabilities */ 15251 i40e_set_fec_in_flags(abilities.fec_cfg_curr_mod_ext_info, &pf->flags); 15252 15253 /* get the supported phy types from the fw */ 15254 err = i40e_aq_get_phy_capabilities(hw, false, true, &abilities, NULL); 15255 if (err) 15256 dev_dbg(&pf->pdev->dev, "get supported phy types ret = %s last_status = %s\n", 15257 i40e_stat_str(&pf->hw, err), 15258 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 15259 15260 /* Add a filter to drop all Flow control frames from any VSI from being 15261 * transmitted. By doing so we stop a malicious VF from sending out 15262 * PAUSE or PFC frames and potentially controlling traffic for other 15263 * PF/VF VSIs. 15264 * The FW can still send Flow control frames if enabled. 15265 */ 15266 i40e_add_filter_to_drop_tx_flow_control_frames(&pf->hw, 15267 pf->main_vsi_seid); 15268 15269 if ((pf->hw.device_id == I40E_DEV_ID_10G_BASE_T) || 15270 (pf->hw.device_id == I40E_DEV_ID_10G_BASE_T4)) 15271 pf->hw_features |= I40E_HW_PHY_CONTROLS_LEDS; 15272 if (pf->hw.device_id == I40E_DEV_ID_SFP_I_X722) 15273 pf->hw_features |= I40E_HW_HAVE_CRT_RETIMER; 15274 /* print a string summarizing features */ 15275 i40e_print_features(pf); 15276 15277 return 0; 15278 15279 /* Unwind what we've done if something failed in the setup */ 15280 err_vsis: 15281 set_bit(__I40E_DOWN, pf->state); 15282 i40e_clear_interrupt_scheme(pf); 15283 kfree(pf->vsi); 15284 err_switch_setup: 15285 i40e_reset_interrupt_capability(pf); 15286 del_timer_sync(&pf->service_timer); 15287 err_mac_addr: 15288 err_configure_lan_hmc: 15289 (void)i40e_shutdown_lan_hmc(hw); 15290 err_init_lan_hmc: 15291 kfree(pf->qp_pile); 15292 err_sw_init: 15293 err_adminq_setup: 15294 err_pf_reset: 15295 iounmap(hw->hw_addr); 15296 err_ioremap: 15297 kfree(pf); 15298 err_pf_alloc: 15299 pci_disable_pcie_error_reporting(pdev); 15300 pci_release_mem_regions(pdev); 15301 err_pci_reg: 15302 err_dma: 15303 pci_disable_device(pdev); 15304 return err; 15305 } 15306 15307 /** 15308 * i40e_remove - Device removal routine 15309 * @pdev: PCI device information struct 15310 * 15311 * i40e_remove is called by the PCI subsystem to alert the driver 15312 * that is should release a PCI device. This could be caused by a 15313 * Hot-Plug event, or because the driver is going to be removed from 15314 * memory. 15315 **/ 15316 static void i40e_remove(struct pci_dev *pdev) 15317 { 15318 struct i40e_pf *pf = pci_get_drvdata(pdev); 15319 struct i40e_hw *hw = &pf->hw; 15320 i40e_status ret_code; 15321 int i; 15322 15323 i40e_dbg_pf_exit(pf); 15324 15325 i40e_ptp_stop(pf); 15326 15327 /* Disable RSS in hw */ 15328 i40e_write_rx_ctl(hw, I40E_PFQF_HENA(0), 0); 15329 i40e_write_rx_ctl(hw, I40E_PFQF_HENA(1), 0); 15330 15331 /* no more scheduling of any task */ 15332 set_bit(__I40E_SUSPENDED, pf->state); 15333 set_bit(__I40E_DOWN, pf->state); 15334 if (pf->service_timer.function) 15335 del_timer_sync(&pf->service_timer); 15336 if (pf->service_task.func) 15337 cancel_work_sync(&pf->service_task); 15338 15339 if (test_bit(__I40E_RECOVERY_MODE, pf->state)) { 15340 struct i40e_vsi *vsi = pf->vsi[0]; 15341 15342 /* We know that we have allocated only one vsi for this PF, 15343 * it was just for registering netdevice, so the interface 15344 * could be visible in the 'ifconfig' output 15345 */ 15346 unregister_netdev(vsi->netdev); 15347 free_netdev(vsi->netdev); 15348 15349 goto unmap; 15350 } 15351 15352 /* Client close must be called explicitly here because the timer 15353 * has been stopped. 15354 */ 15355 i40e_notify_client_of_netdev_close(pf->vsi[pf->lan_vsi], false); 15356 15357 if (pf->flags & I40E_FLAG_SRIOV_ENABLED) { 15358 i40e_free_vfs(pf); 15359 pf->flags &= ~I40E_FLAG_SRIOV_ENABLED; 15360 } 15361 15362 i40e_fdir_teardown(pf); 15363 15364 /* If there is a switch structure or any orphans, remove them. 15365 * This will leave only the PF's VSI remaining. 15366 */ 15367 for (i = 0; i < I40E_MAX_VEB; i++) { 15368 if (!pf->veb[i]) 15369 continue; 15370 15371 if (pf->veb[i]->uplink_seid == pf->mac_seid || 15372 pf->veb[i]->uplink_seid == 0) 15373 i40e_switch_branch_release(pf->veb[i]); 15374 } 15375 15376 /* Now we can shutdown the PF's VSI, just before we kill 15377 * adminq and hmc. 15378 */ 15379 if (pf->vsi[pf->lan_vsi]) 15380 i40e_vsi_release(pf->vsi[pf->lan_vsi]); 15381 15382 i40e_cloud_filter_exit(pf); 15383 15384 /* remove attached clients */ 15385 if (pf->flags & I40E_FLAG_IWARP_ENABLED) { 15386 ret_code = i40e_lan_del_device(pf); 15387 if (ret_code) 15388 dev_warn(&pdev->dev, "Failed to delete client device: %d\n", 15389 ret_code); 15390 } 15391 15392 /* shutdown and destroy the HMC */ 15393 if (hw->hmc.hmc_obj) { 15394 ret_code = i40e_shutdown_lan_hmc(hw); 15395 if (ret_code) 15396 dev_warn(&pdev->dev, 15397 "Failed to destroy the HMC resources: %d\n", 15398 ret_code); 15399 } 15400 15401 unmap: 15402 /* Free MSI/legacy interrupt 0 when in recovery mode. */ 15403 if (test_bit(__I40E_RECOVERY_MODE, pf->state) && 15404 !(pf->flags & I40E_FLAG_MSIX_ENABLED)) 15405 free_irq(pf->pdev->irq, pf); 15406 15407 /* shutdown the adminq */ 15408 i40e_shutdown_adminq(hw); 15409 15410 /* destroy the locks only once, here */ 15411 mutex_destroy(&hw->aq.arq_mutex); 15412 mutex_destroy(&hw->aq.asq_mutex); 15413 15414 /* Clear all dynamic memory lists of rings, q_vectors, and VSIs */ 15415 rtnl_lock(); 15416 i40e_clear_interrupt_scheme(pf); 15417 for (i = 0; i < pf->num_alloc_vsi; i++) { 15418 if (pf->vsi[i]) { 15419 if (!test_bit(__I40E_RECOVERY_MODE, pf->state)) 15420 i40e_vsi_clear_rings(pf->vsi[i]); 15421 i40e_vsi_clear(pf->vsi[i]); 15422 pf->vsi[i] = NULL; 15423 } 15424 } 15425 rtnl_unlock(); 15426 15427 for (i = 0; i < I40E_MAX_VEB; i++) { 15428 kfree(pf->veb[i]); 15429 pf->veb[i] = NULL; 15430 } 15431 15432 kfree(pf->qp_pile); 15433 kfree(pf->vsi); 15434 15435 iounmap(hw->hw_addr); 15436 kfree(pf); 15437 pci_release_mem_regions(pdev); 15438 15439 pci_disable_pcie_error_reporting(pdev); 15440 pci_disable_device(pdev); 15441 } 15442 15443 /** 15444 * i40e_pci_error_detected - warning that something funky happened in PCI land 15445 * @pdev: PCI device information struct 15446 * @error: the type of PCI error 15447 * 15448 * Called to warn that something happened and the error handling steps 15449 * are in progress. Allows the driver to quiesce things, be ready for 15450 * remediation. 15451 **/ 15452 static pci_ers_result_t i40e_pci_error_detected(struct pci_dev *pdev, 15453 enum pci_channel_state error) 15454 { 15455 struct i40e_pf *pf = pci_get_drvdata(pdev); 15456 15457 dev_info(&pdev->dev, "%s: error %d\n", __func__, error); 15458 15459 if (!pf) { 15460 dev_info(&pdev->dev, 15461 "Cannot recover - error happened during device probe\n"); 15462 return PCI_ERS_RESULT_DISCONNECT; 15463 } 15464 15465 /* shutdown all operations */ 15466 if (!test_bit(__I40E_SUSPENDED, pf->state)) 15467 i40e_prep_for_reset(pf, false); 15468 15469 /* Request a slot reset */ 15470 return PCI_ERS_RESULT_NEED_RESET; 15471 } 15472 15473 /** 15474 * i40e_pci_error_slot_reset - a PCI slot reset just happened 15475 * @pdev: PCI device information struct 15476 * 15477 * Called to find if the driver can work with the device now that 15478 * the pci slot has been reset. If a basic connection seems good 15479 * (registers are readable and have sane content) then return a 15480 * happy little PCI_ERS_RESULT_xxx. 15481 **/ 15482 static pci_ers_result_t i40e_pci_error_slot_reset(struct pci_dev *pdev) 15483 { 15484 struct i40e_pf *pf = pci_get_drvdata(pdev); 15485 pci_ers_result_t result; 15486 u32 reg; 15487 15488 dev_dbg(&pdev->dev, "%s\n", __func__); 15489 if (pci_enable_device_mem(pdev)) { 15490 dev_info(&pdev->dev, 15491 "Cannot re-enable PCI device after reset.\n"); 15492 result = PCI_ERS_RESULT_DISCONNECT; 15493 } else { 15494 pci_set_master(pdev); 15495 pci_restore_state(pdev); 15496 pci_save_state(pdev); 15497 pci_wake_from_d3(pdev, false); 15498 15499 reg = rd32(&pf->hw, I40E_GLGEN_RTRIG); 15500 if (reg == 0) 15501 result = PCI_ERS_RESULT_RECOVERED; 15502 else 15503 result = PCI_ERS_RESULT_DISCONNECT; 15504 } 15505 15506 return result; 15507 } 15508 15509 /** 15510 * i40e_pci_error_reset_prepare - prepare device driver for pci reset 15511 * @pdev: PCI device information struct 15512 */ 15513 static void i40e_pci_error_reset_prepare(struct pci_dev *pdev) 15514 { 15515 struct i40e_pf *pf = pci_get_drvdata(pdev); 15516 15517 i40e_prep_for_reset(pf, false); 15518 } 15519 15520 /** 15521 * i40e_pci_error_reset_done - pci reset done, device driver reset can begin 15522 * @pdev: PCI device information struct 15523 */ 15524 static void i40e_pci_error_reset_done(struct pci_dev *pdev) 15525 { 15526 struct i40e_pf *pf = pci_get_drvdata(pdev); 15527 15528 i40e_reset_and_rebuild(pf, false, false); 15529 } 15530 15531 /** 15532 * i40e_pci_error_resume - restart operations after PCI error recovery 15533 * @pdev: PCI device information struct 15534 * 15535 * Called to allow the driver to bring things back up after PCI error 15536 * and/or reset recovery has finished. 15537 **/ 15538 static void i40e_pci_error_resume(struct pci_dev *pdev) 15539 { 15540 struct i40e_pf *pf = pci_get_drvdata(pdev); 15541 15542 dev_dbg(&pdev->dev, "%s\n", __func__); 15543 if (test_bit(__I40E_SUSPENDED, pf->state)) 15544 return; 15545 15546 i40e_handle_reset_warning(pf, false); 15547 } 15548 15549 /** 15550 * i40e_enable_mc_magic_wake - enable multicast magic packet wake up 15551 * using the mac_address_write admin q function 15552 * @pf: pointer to i40e_pf struct 15553 **/ 15554 static void i40e_enable_mc_magic_wake(struct i40e_pf *pf) 15555 { 15556 struct i40e_hw *hw = &pf->hw; 15557 i40e_status ret; 15558 u8 mac_addr[6]; 15559 u16 flags = 0; 15560 15561 /* Get current MAC address in case it's an LAA */ 15562 if (pf->vsi[pf->lan_vsi] && pf->vsi[pf->lan_vsi]->netdev) { 15563 ether_addr_copy(mac_addr, 15564 pf->vsi[pf->lan_vsi]->netdev->dev_addr); 15565 } else { 15566 dev_err(&pf->pdev->dev, 15567 "Failed to retrieve MAC address; using default\n"); 15568 ether_addr_copy(mac_addr, hw->mac.addr); 15569 } 15570 15571 /* The FW expects the mac address write cmd to first be called with 15572 * one of these flags before calling it again with the multicast 15573 * enable flags. 15574 */ 15575 flags = I40E_AQC_WRITE_TYPE_LAA_WOL; 15576 15577 if (hw->func_caps.flex10_enable && hw->partition_id != 1) 15578 flags = I40E_AQC_WRITE_TYPE_LAA_ONLY; 15579 15580 ret = i40e_aq_mac_address_write(hw, flags, mac_addr, NULL); 15581 if (ret) { 15582 dev_err(&pf->pdev->dev, 15583 "Failed to update MAC address registers; cannot enable Multicast Magic packet wake up"); 15584 return; 15585 } 15586 15587 flags = I40E_AQC_MC_MAG_EN 15588 | I40E_AQC_WOL_PRESERVE_ON_PFR 15589 | I40E_AQC_WRITE_TYPE_UPDATE_MC_MAG; 15590 ret = i40e_aq_mac_address_write(hw, flags, mac_addr, NULL); 15591 if (ret) 15592 dev_err(&pf->pdev->dev, 15593 "Failed to enable Multicast Magic Packet wake up\n"); 15594 } 15595 15596 /** 15597 * i40e_shutdown - PCI callback for shutting down 15598 * @pdev: PCI device information struct 15599 **/ 15600 static void i40e_shutdown(struct pci_dev *pdev) 15601 { 15602 struct i40e_pf *pf = pci_get_drvdata(pdev); 15603 struct i40e_hw *hw = &pf->hw; 15604 15605 set_bit(__I40E_SUSPENDED, pf->state); 15606 set_bit(__I40E_DOWN, pf->state); 15607 15608 del_timer_sync(&pf->service_timer); 15609 cancel_work_sync(&pf->service_task); 15610 i40e_cloud_filter_exit(pf); 15611 i40e_fdir_teardown(pf); 15612 15613 /* Client close must be called explicitly here because the timer 15614 * has been stopped. 15615 */ 15616 i40e_notify_client_of_netdev_close(pf->vsi[pf->lan_vsi], false); 15617 15618 if (pf->wol_en && (pf->hw_features & I40E_HW_WOL_MC_MAGIC_PKT_WAKE)) 15619 i40e_enable_mc_magic_wake(pf); 15620 15621 i40e_prep_for_reset(pf, false); 15622 15623 wr32(hw, I40E_PFPM_APM, 15624 (pf->wol_en ? I40E_PFPM_APM_APME_MASK : 0)); 15625 wr32(hw, I40E_PFPM_WUFC, 15626 (pf->wol_en ? I40E_PFPM_WUFC_MAG_MASK : 0)); 15627 15628 /* Free MSI/legacy interrupt 0 when in recovery mode. */ 15629 if (test_bit(__I40E_RECOVERY_MODE, pf->state) && 15630 !(pf->flags & I40E_FLAG_MSIX_ENABLED)) 15631 free_irq(pf->pdev->irq, pf); 15632 15633 /* Since we're going to destroy queues during the 15634 * i40e_clear_interrupt_scheme() we should hold the RTNL lock for this 15635 * whole section 15636 */ 15637 rtnl_lock(); 15638 i40e_clear_interrupt_scheme(pf); 15639 rtnl_unlock(); 15640 15641 if (system_state == SYSTEM_POWER_OFF) { 15642 pci_wake_from_d3(pdev, pf->wol_en); 15643 pci_set_power_state(pdev, PCI_D3hot); 15644 } 15645 } 15646 15647 /** 15648 * i40e_suspend - PM callback for moving to D3 15649 * @dev: generic device information structure 15650 **/ 15651 static int __maybe_unused i40e_suspend(struct device *dev) 15652 { 15653 struct i40e_pf *pf = dev_get_drvdata(dev); 15654 struct i40e_hw *hw = &pf->hw; 15655 15656 /* If we're already suspended, then there is nothing to do */ 15657 if (test_and_set_bit(__I40E_SUSPENDED, pf->state)) 15658 return 0; 15659 15660 set_bit(__I40E_DOWN, pf->state); 15661 15662 /* Ensure service task will not be running */ 15663 del_timer_sync(&pf->service_timer); 15664 cancel_work_sync(&pf->service_task); 15665 15666 /* Client close must be called explicitly here because the timer 15667 * has been stopped. 15668 */ 15669 i40e_notify_client_of_netdev_close(pf->vsi[pf->lan_vsi], false); 15670 15671 if (pf->wol_en && (pf->hw_features & I40E_HW_WOL_MC_MAGIC_PKT_WAKE)) 15672 i40e_enable_mc_magic_wake(pf); 15673 15674 /* Since we're going to destroy queues during the 15675 * i40e_clear_interrupt_scheme() we should hold the RTNL lock for this 15676 * whole section 15677 */ 15678 rtnl_lock(); 15679 15680 i40e_prep_for_reset(pf, true); 15681 15682 wr32(hw, I40E_PFPM_APM, (pf->wol_en ? I40E_PFPM_APM_APME_MASK : 0)); 15683 wr32(hw, I40E_PFPM_WUFC, (pf->wol_en ? I40E_PFPM_WUFC_MAG_MASK : 0)); 15684 15685 /* Clear the interrupt scheme and release our IRQs so that the system 15686 * can safely hibernate even when there are a large number of CPUs. 15687 * Otherwise hibernation might fail when mapping all the vectors back 15688 * to CPU0. 15689 */ 15690 i40e_clear_interrupt_scheme(pf); 15691 15692 rtnl_unlock(); 15693 15694 return 0; 15695 } 15696 15697 /** 15698 * i40e_resume - PM callback for waking up from D3 15699 * @dev: generic device information structure 15700 **/ 15701 static int __maybe_unused i40e_resume(struct device *dev) 15702 { 15703 struct i40e_pf *pf = dev_get_drvdata(dev); 15704 int err; 15705 15706 /* If we're not suspended, then there is nothing to do */ 15707 if (!test_bit(__I40E_SUSPENDED, pf->state)) 15708 return 0; 15709 15710 /* We need to hold the RTNL lock prior to restoring interrupt schemes, 15711 * since we're going to be restoring queues 15712 */ 15713 rtnl_lock(); 15714 15715 /* We cleared the interrupt scheme when we suspended, so we need to 15716 * restore it now to resume device functionality. 15717 */ 15718 err = i40e_restore_interrupt_scheme(pf); 15719 if (err) { 15720 dev_err(dev, "Cannot restore interrupt scheme: %d\n", 15721 err); 15722 } 15723 15724 clear_bit(__I40E_DOWN, pf->state); 15725 i40e_reset_and_rebuild(pf, false, true); 15726 15727 rtnl_unlock(); 15728 15729 /* Clear suspended state last after everything is recovered */ 15730 clear_bit(__I40E_SUSPENDED, pf->state); 15731 15732 /* Restart the service task */ 15733 mod_timer(&pf->service_timer, 15734 round_jiffies(jiffies + pf->service_timer_period)); 15735 15736 return 0; 15737 } 15738 15739 static const struct pci_error_handlers i40e_err_handler = { 15740 .error_detected = i40e_pci_error_detected, 15741 .slot_reset = i40e_pci_error_slot_reset, 15742 .reset_prepare = i40e_pci_error_reset_prepare, 15743 .reset_done = i40e_pci_error_reset_done, 15744 .resume = i40e_pci_error_resume, 15745 }; 15746 15747 static SIMPLE_DEV_PM_OPS(i40e_pm_ops, i40e_suspend, i40e_resume); 15748 15749 static struct pci_driver i40e_driver = { 15750 .name = i40e_driver_name, 15751 .id_table = i40e_pci_tbl, 15752 .probe = i40e_probe, 15753 .remove = i40e_remove, 15754 .driver = { 15755 .pm = &i40e_pm_ops, 15756 }, 15757 .shutdown = i40e_shutdown, 15758 .err_handler = &i40e_err_handler, 15759 .sriov_configure = i40e_pci_sriov_configure, 15760 }; 15761 15762 /** 15763 * i40e_init_module - Driver registration routine 15764 * 15765 * i40e_init_module is the first routine called when the driver is 15766 * loaded. All it does is register with the PCI subsystem. 15767 **/ 15768 static int __init i40e_init_module(void) 15769 { 15770 pr_info("%s: %s - version %s\n", i40e_driver_name, 15771 i40e_driver_string, i40e_driver_version_str); 15772 pr_info("%s: %s\n", i40e_driver_name, i40e_copyright); 15773 15774 /* There is no need to throttle the number of active tasks because 15775 * each device limits its own task using a state bit for scheduling 15776 * the service task, and the device tasks do not interfere with each 15777 * other, so we don't set a max task limit. We must set WQ_MEM_RECLAIM 15778 * since we need to be able to guarantee forward progress even under 15779 * memory pressure. 15780 */ 15781 i40e_wq = alloc_workqueue("%s", WQ_MEM_RECLAIM, 0, i40e_driver_name); 15782 if (!i40e_wq) { 15783 pr_err("%s: Failed to create workqueue\n", i40e_driver_name); 15784 return -ENOMEM; 15785 } 15786 15787 i40e_dbg_init(); 15788 return pci_register_driver(&i40e_driver); 15789 } 15790 module_init(i40e_init_module); 15791 15792 /** 15793 * i40e_exit_module - Driver exit cleanup routine 15794 * 15795 * i40e_exit_module is called just before the driver is removed 15796 * from memory. 15797 **/ 15798 static void __exit i40e_exit_module(void) 15799 { 15800 pci_unregister_driver(&i40e_driver); 15801 destroy_workqueue(i40e_wq); 15802 i40e_dbg_exit(); 15803 } 15804 module_exit(i40e_exit_module); 15805