1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright(c) 2013 - 2021 Intel Corporation. */ 3 4 #include <linux/etherdevice.h> 5 #include <linux/of_net.h> 6 #include <linux/pci.h> 7 #include <linux/bpf.h> 8 #include <generated/utsrelease.h> 9 #include <linux/crash_dump.h> 10 11 /* Local includes */ 12 #include "i40e.h" 13 #include "i40e_diag.h" 14 #include "i40e_xsk.h" 15 #include <net/udp_tunnel.h> 16 #include <net/xdp_sock_drv.h> 17 /* All i40e tracepoints are defined by the include below, which 18 * must be included exactly once across the whole kernel with 19 * CREATE_TRACE_POINTS defined 20 */ 21 #define CREATE_TRACE_POINTS 22 #include "i40e_trace.h" 23 24 const char i40e_driver_name[] = "i40e"; 25 static const char i40e_driver_string[] = 26 "Intel(R) Ethernet Connection XL710 Network Driver"; 27 28 static const char i40e_copyright[] = "Copyright (c) 2013 - 2019 Intel Corporation."; 29 30 /* a bit of forward declarations */ 31 static void i40e_vsi_reinit_locked(struct i40e_vsi *vsi); 32 static void i40e_handle_reset_warning(struct i40e_pf *pf, bool lock_acquired); 33 static int i40e_add_vsi(struct i40e_vsi *vsi); 34 static int i40e_add_veb(struct i40e_veb *veb, struct i40e_vsi *vsi); 35 static int i40e_setup_pf_switch(struct i40e_pf *pf, bool reinit); 36 static int i40e_setup_misc_vector(struct i40e_pf *pf); 37 static void i40e_determine_queue_usage(struct i40e_pf *pf); 38 static int i40e_setup_pf_filter_control(struct i40e_pf *pf); 39 static void i40e_prep_for_reset(struct i40e_pf *pf); 40 static void i40e_reset_and_rebuild(struct i40e_pf *pf, bool reinit, 41 bool lock_acquired); 42 static int i40e_reset(struct i40e_pf *pf); 43 static void i40e_rebuild(struct i40e_pf *pf, bool reinit, bool lock_acquired); 44 static int i40e_setup_misc_vector_for_recovery_mode(struct i40e_pf *pf); 45 static int i40e_restore_interrupt_scheme(struct i40e_pf *pf); 46 static bool i40e_check_recovery_mode(struct i40e_pf *pf); 47 static int i40e_init_recovery_mode(struct i40e_pf *pf, struct i40e_hw *hw); 48 static void i40e_fdir_sb_setup(struct i40e_pf *pf); 49 static int i40e_veb_get_bw_info(struct i40e_veb *veb); 50 static int i40e_get_capabilities(struct i40e_pf *pf, 51 enum i40e_admin_queue_opc list_type); 52 static bool i40e_is_total_port_shutdown_enabled(struct i40e_pf *pf); 53 54 /* i40e_pci_tbl - PCI Device ID Table 55 * 56 * Last entry must be all 0s 57 * 58 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID, 59 * Class, Class Mask, private data (not used) } 60 */ 61 static const struct pci_device_id i40e_pci_tbl[] = { 62 {PCI_VDEVICE(INTEL, I40E_DEV_ID_SFP_XL710), 0}, 63 {PCI_VDEVICE(INTEL, I40E_DEV_ID_QEMU), 0}, 64 {PCI_VDEVICE(INTEL, I40E_DEV_ID_KX_B), 0}, 65 {PCI_VDEVICE(INTEL, I40E_DEV_ID_KX_C), 0}, 66 {PCI_VDEVICE(INTEL, I40E_DEV_ID_QSFP_A), 0}, 67 {PCI_VDEVICE(INTEL, I40E_DEV_ID_QSFP_B), 0}, 68 {PCI_VDEVICE(INTEL, I40E_DEV_ID_QSFP_C), 0}, 69 {PCI_VDEVICE(INTEL, I40E_DEV_ID_10G_BASE_T), 0}, 70 {PCI_VDEVICE(INTEL, I40E_DEV_ID_10G_BASE_T4), 0}, 71 {PCI_VDEVICE(INTEL, I40E_DEV_ID_10G_BASE_T_BC), 0}, 72 {PCI_VDEVICE(INTEL, I40E_DEV_ID_10G_SFP), 0}, 73 {PCI_VDEVICE(INTEL, I40E_DEV_ID_10G_B), 0}, 74 {PCI_VDEVICE(INTEL, I40E_DEV_ID_KX_X722), 0}, 75 {PCI_VDEVICE(INTEL, I40E_DEV_ID_QSFP_X722), 0}, 76 {PCI_VDEVICE(INTEL, I40E_DEV_ID_SFP_X722), 0}, 77 {PCI_VDEVICE(INTEL, I40E_DEV_ID_1G_BASE_T_X722), 0}, 78 {PCI_VDEVICE(INTEL, I40E_DEV_ID_10G_BASE_T_X722), 0}, 79 {PCI_VDEVICE(INTEL, I40E_DEV_ID_SFP_I_X722), 0}, 80 {PCI_VDEVICE(INTEL, I40E_DEV_ID_20G_KR2), 0}, 81 {PCI_VDEVICE(INTEL, I40E_DEV_ID_20G_KR2_A), 0}, 82 {PCI_VDEVICE(INTEL, I40E_DEV_ID_X710_N3000), 0}, 83 {PCI_VDEVICE(INTEL, I40E_DEV_ID_XXV710_N3000), 0}, 84 {PCI_VDEVICE(INTEL, I40E_DEV_ID_25G_B), 0}, 85 {PCI_VDEVICE(INTEL, I40E_DEV_ID_25G_SFP28), 0}, 86 /* required last entry */ 87 {0, } 88 }; 89 MODULE_DEVICE_TABLE(pci, i40e_pci_tbl); 90 91 #define I40E_MAX_VF_COUNT 128 92 static int debug = -1; 93 module_param(debug, uint, 0); 94 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all), Debug mask (0x8XXXXXXX)"); 95 96 MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>"); 97 MODULE_DESCRIPTION("Intel(R) Ethernet Connection XL710 Network Driver"); 98 MODULE_LICENSE("GPL v2"); 99 100 static struct workqueue_struct *i40e_wq; 101 102 /** 103 * i40e_allocate_dma_mem_d - OS specific memory alloc for shared code 104 * @hw: pointer to the HW structure 105 * @mem: ptr to mem struct to fill out 106 * @size: size of memory requested 107 * @alignment: what to align the allocation to 108 **/ 109 int i40e_allocate_dma_mem_d(struct i40e_hw *hw, struct i40e_dma_mem *mem, 110 u64 size, u32 alignment) 111 { 112 struct i40e_pf *pf = (struct i40e_pf *)hw->back; 113 114 mem->size = ALIGN(size, alignment); 115 mem->va = dma_alloc_coherent(&pf->pdev->dev, mem->size, &mem->pa, 116 GFP_KERNEL); 117 if (!mem->va) 118 return -ENOMEM; 119 120 return 0; 121 } 122 123 /** 124 * i40e_free_dma_mem_d - OS specific memory free for shared code 125 * @hw: pointer to the HW structure 126 * @mem: ptr to mem struct to free 127 **/ 128 int i40e_free_dma_mem_d(struct i40e_hw *hw, struct i40e_dma_mem *mem) 129 { 130 struct i40e_pf *pf = (struct i40e_pf *)hw->back; 131 132 dma_free_coherent(&pf->pdev->dev, mem->size, mem->va, mem->pa); 133 mem->va = NULL; 134 mem->pa = 0; 135 mem->size = 0; 136 137 return 0; 138 } 139 140 /** 141 * i40e_allocate_virt_mem_d - OS specific memory alloc for shared code 142 * @hw: pointer to the HW structure 143 * @mem: ptr to mem struct to fill out 144 * @size: size of memory requested 145 **/ 146 int i40e_allocate_virt_mem_d(struct i40e_hw *hw, struct i40e_virt_mem *mem, 147 u32 size) 148 { 149 mem->size = size; 150 mem->va = kzalloc(size, GFP_KERNEL); 151 152 if (!mem->va) 153 return -ENOMEM; 154 155 return 0; 156 } 157 158 /** 159 * i40e_free_virt_mem_d - OS specific memory free for shared code 160 * @hw: pointer to the HW structure 161 * @mem: ptr to mem struct to free 162 **/ 163 int i40e_free_virt_mem_d(struct i40e_hw *hw, struct i40e_virt_mem *mem) 164 { 165 /* it's ok to kfree a NULL pointer */ 166 kfree(mem->va); 167 mem->va = NULL; 168 mem->size = 0; 169 170 return 0; 171 } 172 173 /** 174 * i40e_get_lump - find a lump of free generic resource 175 * @pf: board private structure 176 * @pile: the pile of resource to search 177 * @needed: the number of items needed 178 * @id: an owner id to stick on the items assigned 179 * 180 * Returns the base item index of the lump, or negative for error 181 * 182 * The search_hint trick and lack of advanced fit-finding only work 183 * because we're highly likely to have all the same size lump requests. 184 * Linear search time and any fragmentation should be minimal. 185 **/ 186 static int i40e_get_lump(struct i40e_pf *pf, struct i40e_lump_tracking *pile, 187 u16 needed, u16 id) 188 { 189 int ret = -ENOMEM; 190 int i, j; 191 192 if (!pile || needed == 0 || id >= I40E_PILE_VALID_BIT) { 193 dev_info(&pf->pdev->dev, 194 "param err: pile=%s needed=%d id=0x%04x\n", 195 pile ? "<valid>" : "<null>", needed, id); 196 return -EINVAL; 197 } 198 199 /* start the linear search with an imperfect hint */ 200 i = pile->search_hint; 201 while (i < pile->num_entries) { 202 /* skip already allocated entries */ 203 if (pile->list[i] & I40E_PILE_VALID_BIT) { 204 i++; 205 continue; 206 } 207 208 /* do we have enough in this lump? */ 209 for (j = 0; (j < needed) && ((i+j) < pile->num_entries); j++) { 210 if (pile->list[i+j] & I40E_PILE_VALID_BIT) 211 break; 212 } 213 214 if (j == needed) { 215 /* there was enough, so assign it to the requestor */ 216 for (j = 0; j < needed; j++) 217 pile->list[i+j] = id | I40E_PILE_VALID_BIT; 218 ret = i; 219 pile->search_hint = i + j; 220 break; 221 } 222 223 /* not enough, so skip over it and continue looking */ 224 i += j; 225 } 226 227 return ret; 228 } 229 230 /** 231 * i40e_put_lump - return a lump of generic resource 232 * @pile: the pile of resource to search 233 * @index: the base item index 234 * @id: the owner id of the items assigned 235 * 236 * Returns the count of items in the lump 237 **/ 238 static int i40e_put_lump(struct i40e_lump_tracking *pile, u16 index, u16 id) 239 { 240 int valid_id = (id | I40E_PILE_VALID_BIT); 241 int count = 0; 242 int i; 243 244 if (!pile || index >= pile->num_entries) 245 return -EINVAL; 246 247 for (i = index; 248 i < pile->num_entries && pile->list[i] == valid_id; 249 i++) { 250 pile->list[i] = 0; 251 count++; 252 } 253 254 if (count && index < pile->search_hint) 255 pile->search_hint = index; 256 257 return count; 258 } 259 260 /** 261 * i40e_find_vsi_from_id - searches for the vsi with the given id 262 * @pf: the pf structure to search for the vsi 263 * @id: id of the vsi it is searching for 264 **/ 265 struct i40e_vsi *i40e_find_vsi_from_id(struct i40e_pf *pf, u16 id) 266 { 267 int i; 268 269 for (i = 0; i < pf->num_alloc_vsi; i++) 270 if (pf->vsi[i] && (pf->vsi[i]->id == id)) 271 return pf->vsi[i]; 272 273 return NULL; 274 } 275 276 /** 277 * i40e_service_event_schedule - Schedule the service task to wake up 278 * @pf: board private structure 279 * 280 * If not already scheduled, this puts the task into the work queue 281 **/ 282 void i40e_service_event_schedule(struct i40e_pf *pf) 283 { 284 if ((!test_bit(__I40E_DOWN, pf->state) && 285 !test_bit(__I40E_RESET_RECOVERY_PENDING, pf->state)) || 286 test_bit(__I40E_RECOVERY_MODE, pf->state)) 287 queue_work(i40e_wq, &pf->service_task); 288 } 289 290 /** 291 * i40e_tx_timeout - Respond to a Tx Hang 292 * @netdev: network interface device structure 293 * @txqueue: queue number timing out 294 * 295 * If any port has noticed a Tx timeout, it is likely that the whole 296 * device is munged, not just the one netdev port, so go for the full 297 * reset. 298 **/ 299 static void i40e_tx_timeout(struct net_device *netdev, unsigned int txqueue) 300 { 301 struct i40e_netdev_priv *np = netdev_priv(netdev); 302 struct i40e_vsi *vsi = np->vsi; 303 struct i40e_pf *pf = vsi->back; 304 struct i40e_ring *tx_ring = NULL; 305 unsigned int i; 306 u32 head, val; 307 308 pf->tx_timeout_count++; 309 310 /* with txqueue index, find the tx_ring struct */ 311 for (i = 0; i < vsi->num_queue_pairs; i++) { 312 if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc) { 313 if (txqueue == 314 vsi->tx_rings[i]->queue_index) { 315 tx_ring = vsi->tx_rings[i]; 316 break; 317 } 318 } 319 } 320 321 if (time_after(jiffies, (pf->tx_timeout_last_recovery + HZ*20))) 322 pf->tx_timeout_recovery_level = 1; /* reset after some time */ 323 else if (time_before(jiffies, 324 (pf->tx_timeout_last_recovery + netdev->watchdog_timeo))) 325 return; /* don't do any new action before the next timeout */ 326 327 /* don't kick off another recovery if one is already pending */ 328 if (test_and_set_bit(__I40E_TIMEOUT_RECOVERY_PENDING, pf->state)) 329 return; 330 331 if (tx_ring) { 332 head = i40e_get_head(tx_ring); 333 /* Read interrupt register */ 334 if (pf->flags & I40E_FLAG_MSIX_ENABLED) 335 val = rd32(&pf->hw, 336 I40E_PFINT_DYN_CTLN(tx_ring->q_vector->v_idx + 337 tx_ring->vsi->base_vector - 1)); 338 else 339 val = rd32(&pf->hw, I40E_PFINT_DYN_CTL0); 340 341 netdev_info(netdev, "tx_timeout: VSI_seid: %d, Q %d, NTC: 0x%x, HWB: 0x%x, NTU: 0x%x, TAIL: 0x%x, INT: 0x%x\n", 342 vsi->seid, txqueue, tx_ring->next_to_clean, 343 head, tx_ring->next_to_use, 344 readl(tx_ring->tail), val); 345 } 346 347 pf->tx_timeout_last_recovery = jiffies; 348 netdev_info(netdev, "tx_timeout recovery level %d, txqueue %d\n", 349 pf->tx_timeout_recovery_level, txqueue); 350 351 switch (pf->tx_timeout_recovery_level) { 352 case 1: 353 set_bit(__I40E_PF_RESET_REQUESTED, pf->state); 354 break; 355 case 2: 356 set_bit(__I40E_CORE_RESET_REQUESTED, pf->state); 357 break; 358 case 3: 359 set_bit(__I40E_GLOBAL_RESET_REQUESTED, pf->state); 360 break; 361 default: 362 netdev_err(netdev, "tx_timeout recovery unsuccessful\n"); 363 break; 364 } 365 366 i40e_service_event_schedule(pf); 367 pf->tx_timeout_recovery_level++; 368 } 369 370 /** 371 * i40e_get_vsi_stats_struct - Get System Network Statistics 372 * @vsi: the VSI we care about 373 * 374 * Returns the address of the device statistics structure. 375 * The statistics are actually updated from the service task. 376 **/ 377 struct rtnl_link_stats64 *i40e_get_vsi_stats_struct(struct i40e_vsi *vsi) 378 { 379 return &vsi->net_stats; 380 } 381 382 /** 383 * i40e_get_netdev_stats_struct_tx - populate stats from a Tx ring 384 * @ring: Tx ring to get statistics from 385 * @stats: statistics entry to be updated 386 **/ 387 static void i40e_get_netdev_stats_struct_tx(struct i40e_ring *ring, 388 struct rtnl_link_stats64 *stats) 389 { 390 u64 bytes, packets; 391 unsigned int start; 392 393 do { 394 start = u64_stats_fetch_begin_irq(&ring->syncp); 395 packets = ring->stats.packets; 396 bytes = ring->stats.bytes; 397 } while (u64_stats_fetch_retry_irq(&ring->syncp, start)); 398 399 stats->tx_packets += packets; 400 stats->tx_bytes += bytes; 401 } 402 403 /** 404 * i40e_get_netdev_stats_struct - Get statistics for netdev interface 405 * @netdev: network interface device structure 406 * @stats: data structure to store statistics 407 * 408 * Returns the address of the device statistics structure. 409 * The statistics are actually updated from the service task. 410 **/ 411 static void i40e_get_netdev_stats_struct(struct net_device *netdev, 412 struct rtnl_link_stats64 *stats) 413 { 414 struct i40e_netdev_priv *np = netdev_priv(netdev); 415 struct i40e_vsi *vsi = np->vsi; 416 struct rtnl_link_stats64 *vsi_stats = i40e_get_vsi_stats_struct(vsi); 417 struct i40e_ring *ring; 418 int i; 419 420 if (test_bit(__I40E_VSI_DOWN, vsi->state)) 421 return; 422 423 if (!vsi->tx_rings) 424 return; 425 426 rcu_read_lock(); 427 for (i = 0; i < vsi->num_queue_pairs; i++) { 428 u64 bytes, packets; 429 unsigned int start; 430 431 ring = READ_ONCE(vsi->tx_rings[i]); 432 if (!ring) 433 continue; 434 i40e_get_netdev_stats_struct_tx(ring, stats); 435 436 if (i40e_enabled_xdp_vsi(vsi)) { 437 ring = READ_ONCE(vsi->xdp_rings[i]); 438 if (!ring) 439 continue; 440 i40e_get_netdev_stats_struct_tx(ring, stats); 441 } 442 443 ring = READ_ONCE(vsi->rx_rings[i]); 444 if (!ring) 445 continue; 446 do { 447 start = u64_stats_fetch_begin_irq(&ring->syncp); 448 packets = ring->stats.packets; 449 bytes = ring->stats.bytes; 450 } while (u64_stats_fetch_retry_irq(&ring->syncp, start)); 451 452 stats->rx_packets += packets; 453 stats->rx_bytes += bytes; 454 455 } 456 rcu_read_unlock(); 457 458 /* following stats updated by i40e_watchdog_subtask() */ 459 stats->multicast = vsi_stats->multicast; 460 stats->tx_errors = vsi_stats->tx_errors; 461 stats->tx_dropped = vsi_stats->tx_dropped; 462 stats->rx_errors = vsi_stats->rx_errors; 463 stats->rx_dropped = vsi_stats->rx_dropped; 464 stats->rx_crc_errors = vsi_stats->rx_crc_errors; 465 stats->rx_length_errors = vsi_stats->rx_length_errors; 466 } 467 468 /** 469 * i40e_vsi_reset_stats - Resets all stats of the given vsi 470 * @vsi: the VSI to have its stats reset 471 **/ 472 void i40e_vsi_reset_stats(struct i40e_vsi *vsi) 473 { 474 struct rtnl_link_stats64 *ns; 475 int i; 476 477 if (!vsi) 478 return; 479 480 ns = i40e_get_vsi_stats_struct(vsi); 481 memset(ns, 0, sizeof(*ns)); 482 memset(&vsi->net_stats_offsets, 0, sizeof(vsi->net_stats_offsets)); 483 memset(&vsi->eth_stats, 0, sizeof(vsi->eth_stats)); 484 memset(&vsi->eth_stats_offsets, 0, sizeof(vsi->eth_stats_offsets)); 485 if (vsi->rx_rings && vsi->rx_rings[0]) { 486 for (i = 0; i < vsi->num_queue_pairs; i++) { 487 memset(&vsi->rx_rings[i]->stats, 0, 488 sizeof(vsi->rx_rings[i]->stats)); 489 memset(&vsi->rx_rings[i]->rx_stats, 0, 490 sizeof(vsi->rx_rings[i]->rx_stats)); 491 memset(&vsi->tx_rings[i]->stats, 0, 492 sizeof(vsi->tx_rings[i]->stats)); 493 memset(&vsi->tx_rings[i]->tx_stats, 0, 494 sizeof(vsi->tx_rings[i]->tx_stats)); 495 } 496 } 497 vsi->stat_offsets_loaded = false; 498 } 499 500 /** 501 * i40e_pf_reset_stats - Reset all of the stats for the given PF 502 * @pf: the PF to be reset 503 **/ 504 void i40e_pf_reset_stats(struct i40e_pf *pf) 505 { 506 int i; 507 508 memset(&pf->stats, 0, sizeof(pf->stats)); 509 memset(&pf->stats_offsets, 0, sizeof(pf->stats_offsets)); 510 pf->stat_offsets_loaded = false; 511 512 for (i = 0; i < I40E_MAX_VEB; i++) { 513 if (pf->veb[i]) { 514 memset(&pf->veb[i]->stats, 0, 515 sizeof(pf->veb[i]->stats)); 516 memset(&pf->veb[i]->stats_offsets, 0, 517 sizeof(pf->veb[i]->stats_offsets)); 518 memset(&pf->veb[i]->tc_stats, 0, 519 sizeof(pf->veb[i]->tc_stats)); 520 memset(&pf->veb[i]->tc_stats_offsets, 0, 521 sizeof(pf->veb[i]->tc_stats_offsets)); 522 pf->veb[i]->stat_offsets_loaded = false; 523 } 524 } 525 pf->hw_csum_rx_error = 0; 526 } 527 528 /** 529 * i40e_stat_update48 - read and update a 48 bit stat from the chip 530 * @hw: ptr to the hardware info 531 * @hireg: the high 32 bit reg to read 532 * @loreg: the low 32 bit reg to read 533 * @offset_loaded: has the initial offset been loaded yet 534 * @offset: ptr to current offset value 535 * @stat: ptr to the stat 536 * 537 * Since the device stats are not reset at PFReset, they likely will not 538 * be zeroed when the driver starts. We'll save the first values read 539 * and use them as offsets to be subtracted from the raw values in order 540 * to report stats that count from zero. In the process, we also manage 541 * the potential roll-over. 542 **/ 543 static void i40e_stat_update48(struct i40e_hw *hw, u32 hireg, u32 loreg, 544 bool offset_loaded, u64 *offset, u64 *stat) 545 { 546 u64 new_data; 547 548 if (hw->device_id == I40E_DEV_ID_QEMU) { 549 new_data = rd32(hw, loreg); 550 new_data |= ((u64)(rd32(hw, hireg) & 0xFFFF)) << 32; 551 } else { 552 new_data = rd64(hw, loreg); 553 } 554 if (!offset_loaded) 555 *offset = new_data; 556 if (likely(new_data >= *offset)) 557 *stat = new_data - *offset; 558 else 559 *stat = (new_data + BIT_ULL(48)) - *offset; 560 *stat &= 0xFFFFFFFFFFFFULL; 561 } 562 563 /** 564 * i40e_stat_update32 - read and update a 32 bit stat from the chip 565 * @hw: ptr to the hardware info 566 * @reg: the hw reg to read 567 * @offset_loaded: has the initial offset been loaded yet 568 * @offset: ptr to current offset value 569 * @stat: ptr to the stat 570 **/ 571 static void i40e_stat_update32(struct i40e_hw *hw, u32 reg, 572 bool offset_loaded, u64 *offset, u64 *stat) 573 { 574 u32 new_data; 575 576 new_data = rd32(hw, reg); 577 if (!offset_loaded) 578 *offset = new_data; 579 if (likely(new_data >= *offset)) 580 *stat = (u32)(new_data - *offset); 581 else 582 *stat = (u32)((new_data + BIT_ULL(32)) - *offset); 583 } 584 585 /** 586 * i40e_stat_update_and_clear32 - read and clear hw reg, update a 32 bit stat 587 * @hw: ptr to the hardware info 588 * @reg: the hw reg to read and clear 589 * @stat: ptr to the stat 590 **/ 591 static void i40e_stat_update_and_clear32(struct i40e_hw *hw, u32 reg, u64 *stat) 592 { 593 u32 new_data = rd32(hw, reg); 594 595 wr32(hw, reg, 1); /* must write a nonzero value to clear register */ 596 *stat += new_data; 597 } 598 599 /** 600 * i40e_update_eth_stats - Update VSI-specific ethernet statistics counters. 601 * @vsi: the VSI to be updated 602 **/ 603 void i40e_update_eth_stats(struct i40e_vsi *vsi) 604 { 605 int stat_idx = le16_to_cpu(vsi->info.stat_counter_idx); 606 struct i40e_pf *pf = vsi->back; 607 struct i40e_hw *hw = &pf->hw; 608 struct i40e_eth_stats *oes; 609 struct i40e_eth_stats *es; /* device's eth stats */ 610 611 es = &vsi->eth_stats; 612 oes = &vsi->eth_stats_offsets; 613 614 /* Gather up the stats that the hw collects */ 615 i40e_stat_update32(hw, I40E_GLV_TEPC(stat_idx), 616 vsi->stat_offsets_loaded, 617 &oes->tx_errors, &es->tx_errors); 618 i40e_stat_update32(hw, I40E_GLV_RDPC(stat_idx), 619 vsi->stat_offsets_loaded, 620 &oes->rx_discards, &es->rx_discards); 621 i40e_stat_update32(hw, I40E_GLV_RUPP(stat_idx), 622 vsi->stat_offsets_loaded, 623 &oes->rx_unknown_protocol, &es->rx_unknown_protocol); 624 625 i40e_stat_update48(hw, I40E_GLV_GORCH(stat_idx), 626 I40E_GLV_GORCL(stat_idx), 627 vsi->stat_offsets_loaded, 628 &oes->rx_bytes, &es->rx_bytes); 629 i40e_stat_update48(hw, I40E_GLV_UPRCH(stat_idx), 630 I40E_GLV_UPRCL(stat_idx), 631 vsi->stat_offsets_loaded, 632 &oes->rx_unicast, &es->rx_unicast); 633 i40e_stat_update48(hw, I40E_GLV_MPRCH(stat_idx), 634 I40E_GLV_MPRCL(stat_idx), 635 vsi->stat_offsets_loaded, 636 &oes->rx_multicast, &es->rx_multicast); 637 i40e_stat_update48(hw, I40E_GLV_BPRCH(stat_idx), 638 I40E_GLV_BPRCL(stat_idx), 639 vsi->stat_offsets_loaded, 640 &oes->rx_broadcast, &es->rx_broadcast); 641 642 i40e_stat_update48(hw, I40E_GLV_GOTCH(stat_idx), 643 I40E_GLV_GOTCL(stat_idx), 644 vsi->stat_offsets_loaded, 645 &oes->tx_bytes, &es->tx_bytes); 646 i40e_stat_update48(hw, I40E_GLV_UPTCH(stat_idx), 647 I40E_GLV_UPTCL(stat_idx), 648 vsi->stat_offsets_loaded, 649 &oes->tx_unicast, &es->tx_unicast); 650 i40e_stat_update48(hw, I40E_GLV_MPTCH(stat_idx), 651 I40E_GLV_MPTCL(stat_idx), 652 vsi->stat_offsets_loaded, 653 &oes->tx_multicast, &es->tx_multicast); 654 i40e_stat_update48(hw, I40E_GLV_BPTCH(stat_idx), 655 I40E_GLV_BPTCL(stat_idx), 656 vsi->stat_offsets_loaded, 657 &oes->tx_broadcast, &es->tx_broadcast); 658 vsi->stat_offsets_loaded = true; 659 } 660 661 /** 662 * i40e_update_veb_stats - Update Switch component statistics 663 * @veb: the VEB being updated 664 **/ 665 void i40e_update_veb_stats(struct i40e_veb *veb) 666 { 667 struct i40e_pf *pf = veb->pf; 668 struct i40e_hw *hw = &pf->hw; 669 struct i40e_eth_stats *oes; 670 struct i40e_eth_stats *es; /* device's eth stats */ 671 struct i40e_veb_tc_stats *veb_oes; 672 struct i40e_veb_tc_stats *veb_es; 673 int i, idx = 0; 674 675 idx = veb->stats_idx; 676 es = &veb->stats; 677 oes = &veb->stats_offsets; 678 veb_es = &veb->tc_stats; 679 veb_oes = &veb->tc_stats_offsets; 680 681 /* Gather up the stats that the hw collects */ 682 i40e_stat_update32(hw, I40E_GLSW_TDPC(idx), 683 veb->stat_offsets_loaded, 684 &oes->tx_discards, &es->tx_discards); 685 if (hw->revision_id > 0) 686 i40e_stat_update32(hw, I40E_GLSW_RUPP(idx), 687 veb->stat_offsets_loaded, 688 &oes->rx_unknown_protocol, 689 &es->rx_unknown_protocol); 690 i40e_stat_update48(hw, I40E_GLSW_GORCH(idx), I40E_GLSW_GORCL(idx), 691 veb->stat_offsets_loaded, 692 &oes->rx_bytes, &es->rx_bytes); 693 i40e_stat_update48(hw, I40E_GLSW_UPRCH(idx), I40E_GLSW_UPRCL(idx), 694 veb->stat_offsets_loaded, 695 &oes->rx_unicast, &es->rx_unicast); 696 i40e_stat_update48(hw, I40E_GLSW_MPRCH(idx), I40E_GLSW_MPRCL(idx), 697 veb->stat_offsets_loaded, 698 &oes->rx_multicast, &es->rx_multicast); 699 i40e_stat_update48(hw, I40E_GLSW_BPRCH(idx), I40E_GLSW_BPRCL(idx), 700 veb->stat_offsets_loaded, 701 &oes->rx_broadcast, &es->rx_broadcast); 702 703 i40e_stat_update48(hw, I40E_GLSW_GOTCH(idx), I40E_GLSW_GOTCL(idx), 704 veb->stat_offsets_loaded, 705 &oes->tx_bytes, &es->tx_bytes); 706 i40e_stat_update48(hw, I40E_GLSW_UPTCH(idx), I40E_GLSW_UPTCL(idx), 707 veb->stat_offsets_loaded, 708 &oes->tx_unicast, &es->tx_unicast); 709 i40e_stat_update48(hw, I40E_GLSW_MPTCH(idx), I40E_GLSW_MPTCL(idx), 710 veb->stat_offsets_loaded, 711 &oes->tx_multicast, &es->tx_multicast); 712 i40e_stat_update48(hw, I40E_GLSW_BPTCH(idx), I40E_GLSW_BPTCL(idx), 713 veb->stat_offsets_loaded, 714 &oes->tx_broadcast, &es->tx_broadcast); 715 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 716 i40e_stat_update48(hw, I40E_GLVEBTC_RPCH(i, idx), 717 I40E_GLVEBTC_RPCL(i, idx), 718 veb->stat_offsets_loaded, 719 &veb_oes->tc_rx_packets[i], 720 &veb_es->tc_rx_packets[i]); 721 i40e_stat_update48(hw, I40E_GLVEBTC_RBCH(i, idx), 722 I40E_GLVEBTC_RBCL(i, idx), 723 veb->stat_offsets_loaded, 724 &veb_oes->tc_rx_bytes[i], 725 &veb_es->tc_rx_bytes[i]); 726 i40e_stat_update48(hw, I40E_GLVEBTC_TPCH(i, idx), 727 I40E_GLVEBTC_TPCL(i, idx), 728 veb->stat_offsets_loaded, 729 &veb_oes->tc_tx_packets[i], 730 &veb_es->tc_tx_packets[i]); 731 i40e_stat_update48(hw, I40E_GLVEBTC_TBCH(i, idx), 732 I40E_GLVEBTC_TBCL(i, idx), 733 veb->stat_offsets_loaded, 734 &veb_oes->tc_tx_bytes[i], 735 &veb_es->tc_tx_bytes[i]); 736 } 737 veb->stat_offsets_loaded = true; 738 } 739 740 /** 741 * i40e_update_vsi_stats - Update the vsi statistics counters. 742 * @vsi: the VSI to be updated 743 * 744 * There are a few instances where we store the same stat in a 745 * couple of different structs. This is partly because we have 746 * the netdev stats that need to be filled out, which is slightly 747 * different from the "eth_stats" defined by the chip and used in 748 * VF communications. We sort it out here. 749 **/ 750 static void i40e_update_vsi_stats(struct i40e_vsi *vsi) 751 { 752 struct i40e_pf *pf = vsi->back; 753 struct rtnl_link_stats64 *ons; 754 struct rtnl_link_stats64 *ns; /* netdev stats */ 755 struct i40e_eth_stats *oes; 756 struct i40e_eth_stats *es; /* device's eth stats */ 757 u32 tx_restart, tx_busy; 758 struct i40e_ring *p; 759 u32 rx_page, rx_buf; 760 u64 bytes, packets; 761 unsigned int start; 762 u64 tx_linearize; 763 u64 tx_force_wb; 764 u64 rx_p, rx_b; 765 u64 tx_p, tx_b; 766 u16 q; 767 768 if (test_bit(__I40E_VSI_DOWN, vsi->state) || 769 test_bit(__I40E_CONFIG_BUSY, pf->state)) 770 return; 771 772 ns = i40e_get_vsi_stats_struct(vsi); 773 ons = &vsi->net_stats_offsets; 774 es = &vsi->eth_stats; 775 oes = &vsi->eth_stats_offsets; 776 777 /* Gather up the netdev and vsi stats that the driver collects 778 * on the fly during packet processing 779 */ 780 rx_b = rx_p = 0; 781 tx_b = tx_p = 0; 782 tx_restart = tx_busy = tx_linearize = tx_force_wb = 0; 783 rx_page = 0; 784 rx_buf = 0; 785 rcu_read_lock(); 786 for (q = 0; q < vsi->num_queue_pairs; q++) { 787 /* locate Tx ring */ 788 p = READ_ONCE(vsi->tx_rings[q]); 789 if (!p) 790 continue; 791 792 do { 793 start = u64_stats_fetch_begin_irq(&p->syncp); 794 packets = p->stats.packets; 795 bytes = p->stats.bytes; 796 } while (u64_stats_fetch_retry_irq(&p->syncp, start)); 797 tx_b += bytes; 798 tx_p += packets; 799 tx_restart += p->tx_stats.restart_queue; 800 tx_busy += p->tx_stats.tx_busy; 801 tx_linearize += p->tx_stats.tx_linearize; 802 tx_force_wb += p->tx_stats.tx_force_wb; 803 804 /* locate Rx ring */ 805 p = READ_ONCE(vsi->rx_rings[q]); 806 if (!p) 807 continue; 808 809 do { 810 start = u64_stats_fetch_begin_irq(&p->syncp); 811 packets = p->stats.packets; 812 bytes = p->stats.bytes; 813 } while (u64_stats_fetch_retry_irq(&p->syncp, start)); 814 rx_b += bytes; 815 rx_p += packets; 816 rx_buf += p->rx_stats.alloc_buff_failed; 817 rx_page += p->rx_stats.alloc_page_failed; 818 819 if (i40e_enabled_xdp_vsi(vsi)) { 820 /* locate XDP ring */ 821 p = READ_ONCE(vsi->xdp_rings[q]); 822 if (!p) 823 continue; 824 825 do { 826 start = u64_stats_fetch_begin_irq(&p->syncp); 827 packets = p->stats.packets; 828 bytes = p->stats.bytes; 829 } while (u64_stats_fetch_retry_irq(&p->syncp, start)); 830 tx_b += bytes; 831 tx_p += packets; 832 tx_restart += p->tx_stats.restart_queue; 833 tx_busy += p->tx_stats.tx_busy; 834 tx_linearize += p->tx_stats.tx_linearize; 835 tx_force_wb += p->tx_stats.tx_force_wb; 836 } 837 } 838 rcu_read_unlock(); 839 vsi->tx_restart = tx_restart; 840 vsi->tx_busy = tx_busy; 841 vsi->tx_linearize = tx_linearize; 842 vsi->tx_force_wb = tx_force_wb; 843 vsi->rx_page_failed = rx_page; 844 vsi->rx_buf_failed = rx_buf; 845 846 ns->rx_packets = rx_p; 847 ns->rx_bytes = rx_b; 848 ns->tx_packets = tx_p; 849 ns->tx_bytes = tx_b; 850 851 /* update netdev stats from eth stats */ 852 i40e_update_eth_stats(vsi); 853 ons->tx_errors = oes->tx_errors; 854 ns->tx_errors = es->tx_errors; 855 ons->multicast = oes->rx_multicast; 856 ns->multicast = es->rx_multicast; 857 ons->rx_dropped = oes->rx_discards; 858 ns->rx_dropped = es->rx_discards; 859 ons->tx_dropped = oes->tx_discards; 860 ns->tx_dropped = es->tx_discards; 861 862 /* pull in a couple PF stats if this is the main vsi */ 863 if (vsi == pf->vsi[pf->lan_vsi]) { 864 ns->rx_crc_errors = pf->stats.crc_errors; 865 ns->rx_errors = pf->stats.crc_errors + pf->stats.illegal_bytes; 866 ns->rx_length_errors = pf->stats.rx_length_errors; 867 } 868 } 869 870 /** 871 * i40e_update_pf_stats - Update the PF statistics counters. 872 * @pf: the PF to be updated 873 **/ 874 static void i40e_update_pf_stats(struct i40e_pf *pf) 875 { 876 struct i40e_hw_port_stats *osd = &pf->stats_offsets; 877 struct i40e_hw_port_stats *nsd = &pf->stats; 878 struct i40e_hw *hw = &pf->hw; 879 u32 val; 880 int i; 881 882 i40e_stat_update48(hw, I40E_GLPRT_GORCH(hw->port), 883 I40E_GLPRT_GORCL(hw->port), 884 pf->stat_offsets_loaded, 885 &osd->eth.rx_bytes, &nsd->eth.rx_bytes); 886 i40e_stat_update48(hw, I40E_GLPRT_GOTCH(hw->port), 887 I40E_GLPRT_GOTCL(hw->port), 888 pf->stat_offsets_loaded, 889 &osd->eth.tx_bytes, &nsd->eth.tx_bytes); 890 i40e_stat_update32(hw, I40E_GLPRT_RDPC(hw->port), 891 pf->stat_offsets_loaded, 892 &osd->eth.rx_discards, 893 &nsd->eth.rx_discards); 894 i40e_stat_update48(hw, I40E_GLPRT_UPRCH(hw->port), 895 I40E_GLPRT_UPRCL(hw->port), 896 pf->stat_offsets_loaded, 897 &osd->eth.rx_unicast, 898 &nsd->eth.rx_unicast); 899 i40e_stat_update48(hw, I40E_GLPRT_MPRCH(hw->port), 900 I40E_GLPRT_MPRCL(hw->port), 901 pf->stat_offsets_loaded, 902 &osd->eth.rx_multicast, 903 &nsd->eth.rx_multicast); 904 i40e_stat_update48(hw, I40E_GLPRT_BPRCH(hw->port), 905 I40E_GLPRT_BPRCL(hw->port), 906 pf->stat_offsets_loaded, 907 &osd->eth.rx_broadcast, 908 &nsd->eth.rx_broadcast); 909 i40e_stat_update48(hw, I40E_GLPRT_UPTCH(hw->port), 910 I40E_GLPRT_UPTCL(hw->port), 911 pf->stat_offsets_loaded, 912 &osd->eth.tx_unicast, 913 &nsd->eth.tx_unicast); 914 i40e_stat_update48(hw, I40E_GLPRT_MPTCH(hw->port), 915 I40E_GLPRT_MPTCL(hw->port), 916 pf->stat_offsets_loaded, 917 &osd->eth.tx_multicast, 918 &nsd->eth.tx_multicast); 919 i40e_stat_update48(hw, I40E_GLPRT_BPTCH(hw->port), 920 I40E_GLPRT_BPTCL(hw->port), 921 pf->stat_offsets_loaded, 922 &osd->eth.tx_broadcast, 923 &nsd->eth.tx_broadcast); 924 925 i40e_stat_update32(hw, I40E_GLPRT_TDOLD(hw->port), 926 pf->stat_offsets_loaded, 927 &osd->tx_dropped_link_down, 928 &nsd->tx_dropped_link_down); 929 930 i40e_stat_update32(hw, I40E_GLPRT_CRCERRS(hw->port), 931 pf->stat_offsets_loaded, 932 &osd->crc_errors, &nsd->crc_errors); 933 934 i40e_stat_update32(hw, I40E_GLPRT_ILLERRC(hw->port), 935 pf->stat_offsets_loaded, 936 &osd->illegal_bytes, &nsd->illegal_bytes); 937 938 i40e_stat_update32(hw, I40E_GLPRT_MLFC(hw->port), 939 pf->stat_offsets_loaded, 940 &osd->mac_local_faults, 941 &nsd->mac_local_faults); 942 i40e_stat_update32(hw, I40E_GLPRT_MRFC(hw->port), 943 pf->stat_offsets_loaded, 944 &osd->mac_remote_faults, 945 &nsd->mac_remote_faults); 946 947 i40e_stat_update32(hw, I40E_GLPRT_RLEC(hw->port), 948 pf->stat_offsets_loaded, 949 &osd->rx_length_errors, 950 &nsd->rx_length_errors); 951 952 i40e_stat_update32(hw, I40E_GLPRT_LXONRXC(hw->port), 953 pf->stat_offsets_loaded, 954 &osd->link_xon_rx, &nsd->link_xon_rx); 955 i40e_stat_update32(hw, I40E_GLPRT_LXONTXC(hw->port), 956 pf->stat_offsets_loaded, 957 &osd->link_xon_tx, &nsd->link_xon_tx); 958 i40e_stat_update32(hw, I40E_GLPRT_LXOFFRXC(hw->port), 959 pf->stat_offsets_loaded, 960 &osd->link_xoff_rx, &nsd->link_xoff_rx); 961 i40e_stat_update32(hw, I40E_GLPRT_LXOFFTXC(hw->port), 962 pf->stat_offsets_loaded, 963 &osd->link_xoff_tx, &nsd->link_xoff_tx); 964 965 for (i = 0; i < 8; i++) { 966 i40e_stat_update32(hw, I40E_GLPRT_PXOFFRXC(hw->port, i), 967 pf->stat_offsets_loaded, 968 &osd->priority_xoff_rx[i], 969 &nsd->priority_xoff_rx[i]); 970 i40e_stat_update32(hw, I40E_GLPRT_PXONRXC(hw->port, i), 971 pf->stat_offsets_loaded, 972 &osd->priority_xon_rx[i], 973 &nsd->priority_xon_rx[i]); 974 i40e_stat_update32(hw, I40E_GLPRT_PXONTXC(hw->port, i), 975 pf->stat_offsets_loaded, 976 &osd->priority_xon_tx[i], 977 &nsd->priority_xon_tx[i]); 978 i40e_stat_update32(hw, I40E_GLPRT_PXOFFTXC(hw->port, i), 979 pf->stat_offsets_loaded, 980 &osd->priority_xoff_tx[i], 981 &nsd->priority_xoff_tx[i]); 982 i40e_stat_update32(hw, 983 I40E_GLPRT_RXON2OFFCNT(hw->port, i), 984 pf->stat_offsets_loaded, 985 &osd->priority_xon_2_xoff[i], 986 &nsd->priority_xon_2_xoff[i]); 987 } 988 989 i40e_stat_update48(hw, I40E_GLPRT_PRC64H(hw->port), 990 I40E_GLPRT_PRC64L(hw->port), 991 pf->stat_offsets_loaded, 992 &osd->rx_size_64, &nsd->rx_size_64); 993 i40e_stat_update48(hw, I40E_GLPRT_PRC127H(hw->port), 994 I40E_GLPRT_PRC127L(hw->port), 995 pf->stat_offsets_loaded, 996 &osd->rx_size_127, &nsd->rx_size_127); 997 i40e_stat_update48(hw, I40E_GLPRT_PRC255H(hw->port), 998 I40E_GLPRT_PRC255L(hw->port), 999 pf->stat_offsets_loaded, 1000 &osd->rx_size_255, &nsd->rx_size_255); 1001 i40e_stat_update48(hw, I40E_GLPRT_PRC511H(hw->port), 1002 I40E_GLPRT_PRC511L(hw->port), 1003 pf->stat_offsets_loaded, 1004 &osd->rx_size_511, &nsd->rx_size_511); 1005 i40e_stat_update48(hw, I40E_GLPRT_PRC1023H(hw->port), 1006 I40E_GLPRT_PRC1023L(hw->port), 1007 pf->stat_offsets_loaded, 1008 &osd->rx_size_1023, &nsd->rx_size_1023); 1009 i40e_stat_update48(hw, I40E_GLPRT_PRC1522H(hw->port), 1010 I40E_GLPRT_PRC1522L(hw->port), 1011 pf->stat_offsets_loaded, 1012 &osd->rx_size_1522, &nsd->rx_size_1522); 1013 i40e_stat_update48(hw, I40E_GLPRT_PRC9522H(hw->port), 1014 I40E_GLPRT_PRC9522L(hw->port), 1015 pf->stat_offsets_loaded, 1016 &osd->rx_size_big, &nsd->rx_size_big); 1017 1018 i40e_stat_update48(hw, I40E_GLPRT_PTC64H(hw->port), 1019 I40E_GLPRT_PTC64L(hw->port), 1020 pf->stat_offsets_loaded, 1021 &osd->tx_size_64, &nsd->tx_size_64); 1022 i40e_stat_update48(hw, I40E_GLPRT_PTC127H(hw->port), 1023 I40E_GLPRT_PTC127L(hw->port), 1024 pf->stat_offsets_loaded, 1025 &osd->tx_size_127, &nsd->tx_size_127); 1026 i40e_stat_update48(hw, I40E_GLPRT_PTC255H(hw->port), 1027 I40E_GLPRT_PTC255L(hw->port), 1028 pf->stat_offsets_loaded, 1029 &osd->tx_size_255, &nsd->tx_size_255); 1030 i40e_stat_update48(hw, I40E_GLPRT_PTC511H(hw->port), 1031 I40E_GLPRT_PTC511L(hw->port), 1032 pf->stat_offsets_loaded, 1033 &osd->tx_size_511, &nsd->tx_size_511); 1034 i40e_stat_update48(hw, I40E_GLPRT_PTC1023H(hw->port), 1035 I40E_GLPRT_PTC1023L(hw->port), 1036 pf->stat_offsets_loaded, 1037 &osd->tx_size_1023, &nsd->tx_size_1023); 1038 i40e_stat_update48(hw, I40E_GLPRT_PTC1522H(hw->port), 1039 I40E_GLPRT_PTC1522L(hw->port), 1040 pf->stat_offsets_loaded, 1041 &osd->tx_size_1522, &nsd->tx_size_1522); 1042 i40e_stat_update48(hw, I40E_GLPRT_PTC9522H(hw->port), 1043 I40E_GLPRT_PTC9522L(hw->port), 1044 pf->stat_offsets_loaded, 1045 &osd->tx_size_big, &nsd->tx_size_big); 1046 1047 i40e_stat_update32(hw, I40E_GLPRT_RUC(hw->port), 1048 pf->stat_offsets_loaded, 1049 &osd->rx_undersize, &nsd->rx_undersize); 1050 i40e_stat_update32(hw, I40E_GLPRT_RFC(hw->port), 1051 pf->stat_offsets_loaded, 1052 &osd->rx_fragments, &nsd->rx_fragments); 1053 i40e_stat_update32(hw, I40E_GLPRT_ROC(hw->port), 1054 pf->stat_offsets_loaded, 1055 &osd->rx_oversize, &nsd->rx_oversize); 1056 i40e_stat_update32(hw, I40E_GLPRT_RJC(hw->port), 1057 pf->stat_offsets_loaded, 1058 &osd->rx_jabber, &nsd->rx_jabber); 1059 1060 /* FDIR stats */ 1061 i40e_stat_update_and_clear32(hw, 1062 I40E_GLQF_PCNT(I40E_FD_ATR_STAT_IDX(hw->pf_id)), 1063 &nsd->fd_atr_match); 1064 i40e_stat_update_and_clear32(hw, 1065 I40E_GLQF_PCNT(I40E_FD_SB_STAT_IDX(hw->pf_id)), 1066 &nsd->fd_sb_match); 1067 i40e_stat_update_and_clear32(hw, 1068 I40E_GLQF_PCNT(I40E_FD_ATR_TUNNEL_STAT_IDX(hw->pf_id)), 1069 &nsd->fd_atr_tunnel_match); 1070 1071 val = rd32(hw, I40E_PRTPM_EEE_STAT); 1072 nsd->tx_lpi_status = 1073 (val & I40E_PRTPM_EEE_STAT_TX_LPI_STATUS_MASK) >> 1074 I40E_PRTPM_EEE_STAT_TX_LPI_STATUS_SHIFT; 1075 nsd->rx_lpi_status = 1076 (val & I40E_PRTPM_EEE_STAT_RX_LPI_STATUS_MASK) >> 1077 I40E_PRTPM_EEE_STAT_RX_LPI_STATUS_SHIFT; 1078 i40e_stat_update32(hw, I40E_PRTPM_TLPIC, 1079 pf->stat_offsets_loaded, 1080 &osd->tx_lpi_count, &nsd->tx_lpi_count); 1081 i40e_stat_update32(hw, I40E_PRTPM_RLPIC, 1082 pf->stat_offsets_loaded, 1083 &osd->rx_lpi_count, &nsd->rx_lpi_count); 1084 1085 if (pf->flags & I40E_FLAG_FD_SB_ENABLED && 1086 !test_bit(__I40E_FD_SB_AUTO_DISABLED, pf->state)) 1087 nsd->fd_sb_status = true; 1088 else 1089 nsd->fd_sb_status = false; 1090 1091 if (pf->flags & I40E_FLAG_FD_ATR_ENABLED && 1092 !test_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state)) 1093 nsd->fd_atr_status = true; 1094 else 1095 nsd->fd_atr_status = false; 1096 1097 pf->stat_offsets_loaded = true; 1098 } 1099 1100 /** 1101 * i40e_update_stats - Update the various statistics counters. 1102 * @vsi: the VSI to be updated 1103 * 1104 * Update the various stats for this VSI and its related entities. 1105 **/ 1106 void i40e_update_stats(struct i40e_vsi *vsi) 1107 { 1108 struct i40e_pf *pf = vsi->back; 1109 1110 if (vsi == pf->vsi[pf->lan_vsi]) 1111 i40e_update_pf_stats(pf); 1112 1113 i40e_update_vsi_stats(vsi); 1114 } 1115 1116 /** 1117 * i40e_count_filters - counts VSI mac filters 1118 * @vsi: the VSI to be searched 1119 * 1120 * Returns count of mac filters 1121 **/ 1122 int i40e_count_filters(struct i40e_vsi *vsi) 1123 { 1124 struct i40e_mac_filter *f; 1125 struct hlist_node *h; 1126 int bkt; 1127 int cnt = 0; 1128 1129 hash_for_each_safe(vsi->mac_filter_hash, bkt, h, f, hlist) 1130 ++cnt; 1131 1132 return cnt; 1133 } 1134 1135 /** 1136 * i40e_find_filter - Search VSI filter list for specific mac/vlan filter 1137 * @vsi: the VSI to be searched 1138 * @macaddr: the MAC address 1139 * @vlan: the vlan 1140 * 1141 * Returns ptr to the filter object or NULL 1142 **/ 1143 static struct i40e_mac_filter *i40e_find_filter(struct i40e_vsi *vsi, 1144 const u8 *macaddr, s16 vlan) 1145 { 1146 struct i40e_mac_filter *f; 1147 u64 key; 1148 1149 if (!vsi || !macaddr) 1150 return NULL; 1151 1152 key = i40e_addr_to_hkey(macaddr); 1153 hash_for_each_possible(vsi->mac_filter_hash, f, hlist, key) { 1154 if ((ether_addr_equal(macaddr, f->macaddr)) && 1155 (vlan == f->vlan)) 1156 return f; 1157 } 1158 return NULL; 1159 } 1160 1161 /** 1162 * i40e_find_mac - Find a mac addr in the macvlan filters list 1163 * @vsi: the VSI to be searched 1164 * @macaddr: the MAC address we are searching for 1165 * 1166 * Returns the first filter with the provided MAC address or NULL if 1167 * MAC address was not found 1168 **/ 1169 struct i40e_mac_filter *i40e_find_mac(struct i40e_vsi *vsi, const u8 *macaddr) 1170 { 1171 struct i40e_mac_filter *f; 1172 u64 key; 1173 1174 if (!vsi || !macaddr) 1175 return NULL; 1176 1177 key = i40e_addr_to_hkey(macaddr); 1178 hash_for_each_possible(vsi->mac_filter_hash, f, hlist, key) { 1179 if ((ether_addr_equal(macaddr, f->macaddr))) 1180 return f; 1181 } 1182 return NULL; 1183 } 1184 1185 /** 1186 * i40e_is_vsi_in_vlan - Check if VSI is in vlan mode 1187 * @vsi: the VSI to be searched 1188 * 1189 * Returns true if VSI is in vlan mode or false otherwise 1190 **/ 1191 bool i40e_is_vsi_in_vlan(struct i40e_vsi *vsi) 1192 { 1193 /* If we have a PVID, always operate in VLAN mode */ 1194 if (vsi->info.pvid) 1195 return true; 1196 1197 /* We need to operate in VLAN mode whenever we have any filters with 1198 * a VLAN other than I40E_VLAN_ALL. We could check the table each 1199 * time, incurring search cost repeatedly. However, we can notice two 1200 * things: 1201 * 1202 * 1) the only place where we can gain a VLAN filter is in 1203 * i40e_add_filter. 1204 * 1205 * 2) the only place where filters are actually removed is in 1206 * i40e_sync_filters_subtask. 1207 * 1208 * Thus, we can simply use a boolean value, has_vlan_filters which we 1209 * will set to true when we add a VLAN filter in i40e_add_filter. Then 1210 * we have to perform the full search after deleting filters in 1211 * i40e_sync_filters_subtask, but we already have to search 1212 * filters here and can perform the check at the same time. This 1213 * results in avoiding embedding a loop for VLAN mode inside another 1214 * loop over all the filters, and should maintain correctness as noted 1215 * above. 1216 */ 1217 return vsi->has_vlan_filter; 1218 } 1219 1220 /** 1221 * i40e_correct_mac_vlan_filters - Correct non-VLAN filters if necessary 1222 * @vsi: the VSI to configure 1223 * @tmp_add_list: list of filters ready to be added 1224 * @tmp_del_list: list of filters ready to be deleted 1225 * @vlan_filters: the number of active VLAN filters 1226 * 1227 * Update VLAN=0 and VLAN=-1 (I40E_VLAN_ANY) filters properly so that they 1228 * behave as expected. If we have any active VLAN filters remaining or about 1229 * to be added then we need to update non-VLAN filters to be marked as VLAN=0 1230 * so that they only match against untagged traffic. If we no longer have any 1231 * active VLAN filters, we need to make all non-VLAN filters marked as VLAN=-1 1232 * so that they match against both tagged and untagged traffic. In this way, 1233 * we ensure that we correctly receive the desired traffic. This ensures that 1234 * when we have an active VLAN we will receive only untagged traffic and 1235 * traffic matching active VLANs. If we have no active VLANs then we will 1236 * operate in non-VLAN mode and receive all traffic, tagged or untagged. 1237 * 1238 * Finally, in a similar fashion, this function also corrects filters when 1239 * there is an active PVID assigned to this VSI. 1240 * 1241 * In case of memory allocation failure return -ENOMEM. Otherwise, return 0. 1242 * 1243 * This function is only expected to be called from within 1244 * i40e_sync_vsi_filters. 1245 * 1246 * NOTE: This function expects to be called while under the 1247 * mac_filter_hash_lock 1248 */ 1249 static int i40e_correct_mac_vlan_filters(struct i40e_vsi *vsi, 1250 struct hlist_head *tmp_add_list, 1251 struct hlist_head *tmp_del_list, 1252 int vlan_filters) 1253 { 1254 s16 pvid = le16_to_cpu(vsi->info.pvid); 1255 struct i40e_mac_filter *f, *add_head; 1256 struct i40e_new_mac_filter *new; 1257 struct hlist_node *h; 1258 int bkt, new_vlan; 1259 1260 /* To determine if a particular filter needs to be replaced we 1261 * have the three following conditions: 1262 * 1263 * a) if we have a PVID assigned, then all filters which are 1264 * not marked as VLAN=PVID must be replaced with filters that 1265 * are. 1266 * b) otherwise, if we have any active VLANS, all filters 1267 * which are marked as VLAN=-1 must be replaced with 1268 * filters marked as VLAN=0 1269 * c) finally, if we do not have any active VLANS, all filters 1270 * which are marked as VLAN=0 must be replaced with filters 1271 * marked as VLAN=-1 1272 */ 1273 1274 /* Update the filters about to be added in place */ 1275 hlist_for_each_entry(new, tmp_add_list, hlist) { 1276 if (pvid && new->f->vlan != pvid) 1277 new->f->vlan = pvid; 1278 else if (vlan_filters && new->f->vlan == I40E_VLAN_ANY) 1279 new->f->vlan = 0; 1280 else if (!vlan_filters && new->f->vlan == 0) 1281 new->f->vlan = I40E_VLAN_ANY; 1282 } 1283 1284 /* Update the remaining active filters */ 1285 hash_for_each_safe(vsi->mac_filter_hash, bkt, h, f, hlist) { 1286 /* Combine the checks for whether a filter needs to be changed 1287 * and then determine the new VLAN inside the if block, in 1288 * order to avoid duplicating code for adding the new filter 1289 * then deleting the old filter. 1290 */ 1291 if ((pvid && f->vlan != pvid) || 1292 (vlan_filters && f->vlan == I40E_VLAN_ANY) || 1293 (!vlan_filters && f->vlan == 0)) { 1294 /* Determine the new vlan we will be adding */ 1295 if (pvid) 1296 new_vlan = pvid; 1297 else if (vlan_filters) 1298 new_vlan = 0; 1299 else 1300 new_vlan = I40E_VLAN_ANY; 1301 1302 /* Create the new filter */ 1303 add_head = i40e_add_filter(vsi, f->macaddr, new_vlan); 1304 if (!add_head) 1305 return -ENOMEM; 1306 1307 /* Create a temporary i40e_new_mac_filter */ 1308 new = kzalloc(sizeof(*new), GFP_ATOMIC); 1309 if (!new) 1310 return -ENOMEM; 1311 1312 new->f = add_head; 1313 new->state = add_head->state; 1314 1315 /* Add the new filter to the tmp list */ 1316 hlist_add_head(&new->hlist, tmp_add_list); 1317 1318 /* Put the original filter into the delete list */ 1319 f->state = I40E_FILTER_REMOVE; 1320 hash_del(&f->hlist); 1321 hlist_add_head(&f->hlist, tmp_del_list); 1322 } 1323 } 1324 1325 vsi->has_vlan_filter = !!vlan_filters; 1326 1327 return 0; 1328 } 1329 1330 /** 1331 * i40e_rm_default_mac_filter - Remove the default MAC filter set by NVM 1332 * @vsi: the PF Main VSI - inappropriate for any other VSI 1333 * @macaddr: the MAC address 1334 * 1335 * Remove whatever filter the firmware set up so the driver can manage 1336 * its own filtering intelligently. 1337 **/ 1338 static void i40e_rm_default_mac_filter(struct i40e_vsi *vsi, u8 *macaddr) 1339 { 1340 struct i40e_aqc_remove_macvlan_element_data element; 1341 struct i40e_pf *pf = vsi->back; 1342 1343 /* Only appropriate for the PF main VSI */ 1344 if (vsi->type != I40E_VSI_MAIN) 1345 return; 1346 1347 memset(&element, 0, sizeof(element)); 1348 ether_addr_copy(element.mac_addr, macaddr); 1349 element.vlan_tag = 0; 1350 /* Ignore error returns, some firmware does it this way... */ 1351 element.flags = I40E_AQC_MACVLAN_DEL_PERFECT_MATCH; 1352 i40e_aq_remove_macvlan(&pf->hw, vsi->seid, &element, 1, NULL); 1353 1354 memset(&element, 0, sizeof(element)); 1355 ether_addr_copy(element.mac_addr, macaddr); 1356 element.vlan_tag = 0; 1357 /* ...and some firmware does it this way. */ 1358 element.flags = I40E_AQC_MACVLAN_DEL_PERFECT_MATCH | 1359 I40E_AQC_MACVLAN_DEL_IGNORE_VLAN; 1360 i40e_aq_remove_macvlan(&pf->hw, vsi->seid, &element, 1, NULL); 1361 } 1362 1363 /** 1364 * i40e_add_filter - Add a mac/vlan filter to the VSI 1365 * @vsi: the VSI to be searched 1366 * @macaddr: the MAC address 1367 * @vlan: the vlan 1368 * 1369 * Returns ptr to the filter object or NULL when no memory available. 1370 * 1371 * NOTE: This function is expected to be called with mac_filter_hash_lock 1372 * being held. 1373 **/ 1374 struct i40e_mac_filter *i40e_add_filter(struct i40e_vsi *vsi, 1375 const u8 *macaddr, s16 vlan) 1376 { 1377 struct i40e_mac_filter *f; 1378 u64 key; 1379 1380 if (!vsi || !macaddr) 1381 return NULL; 1382 1383 f = i40e_find_filter(vsi, macaddr, vlan); 1384 if (!f) { 1385 f = kzalloc(sizeof(*f), GFP_ATOMIC); 1386 if (!f) 1387 return NULL; 1388 1389 /* Update the boolean indicating if we need to function in 1390 * VLAN mode. 1391 */ 1392 if (vlan >= 0) 1393 vsi->has_vlan_filter = true; 1394 1395 ether_addr_copy(f->macaddr, macaddr); 1396 f->vlan = vlan; 1397 f->state = I40E_FILTER_NEW; 1398 INIT_HLIST_NODE(&f->hlist); 1399 1400 key = i40e_addr_to_hkey(macaddr); 1401 hash_add(vsi->mac_filter_hash, &f->hlist, key); 1402 1403 vsi->flags |= I40E_VSI_FLAG_FILTER_CHANGED; 1404 set_bit(__I40E_MACVLAN_SYNC_PENDING, vsi->back->state); 1405 } 1406 1407 /* If we're asked to add a filter that has been marked for removal, it 1408 * is safe to simply restore it to active state. __i40e_del_filter 1409 * will have simply deleted any filters which were previously marked 1410 * NEW or FAILED, so if it is currently marked REMOVE it must have 1411 * previously been ACTIVE. Since we haven't yet run the sync filters 1412 * task, just restore this filter to the ACTIVE state so that the 1413 * sync task leaves it in place 1414 */ 1415 if (f->state == I40E_FILTER_REMOVE) 1416 f->state = I40E_FILTER_ACTIVE; 1417 1418 return f; 1419 } 1420 1421 /** 1422 * __i40e_del_filter - Remove a specific filter from the VSI 1423 * @vsi: VSI to remove from 1424 * @f: the filter to remove from the list 1425 * 1426 * This function should be called instead of i40e_del_filter only if you know 1427 * the exact filter you will remove already, such as via i40e_find_filter or 1428 * i40e_find_mac. 1429 * 1430 * NOTE: This function is expected to be called with mac_filter_hash_lock 1431 * being held. 1432 * ANOTHER NOTE: This function MUST be called from within the context of 1433 * the "safe" variants of any list iterators, e.g. list_for_each_entry_safe() 1434 * instead of list_for_each_entry(). 1435 **/ 1436 void __i40e_del_filter(struct i40e_vsi *vsi, struct i40e_mac_filter *f) 1437 { 1438 if (!f) 1439 return; 1440 1441 /* If the filter was never added to firmware then we can just delete it 1442 * directly and we don't want to set the status to remove or else an 1443 * admin queue command will unnecessarily fire. 1444 */ 1445 if ((f->state == I40E_FILTER_FAILED) || 1446 (f->state == I40E_FILTER_NEW)) { 1447 hash_del(&f->hlist); 1448 kfree(f); 1449 } else { 1450 f->state = I40E_FILTER_REMOVE; 1451 } 1452 1453 vsi->flags |= I40E_VSI_FLAG_FILTER_CHANGED; 1454 set_bit(__I40E_MACVLAN_SYNC_PENDING, vsi->back->state); 1455 } 1456 1457 /** 1458 * i40e_del_filter - Remove a MAC/VLAN filter from the VSI 1459 * @vsi: the VSI to be searched 1460 * @macaddr: the MAC address 1461 * @vlan: the VLAN 1462 * 1463 * NOTE: This function is expected to be called with mac_filter_hash_lock 1464 * being held. 1465 * ANOTHER NOTE: This function MUST be called from within the context of 1466 * the "safe" variants of any list iterators, e.g. list_for_each_entry_safe() 1467 * instead of list_for_each_entry(). 1468 **/ 1469 void i40e_del_filter(struct i40e_vsi *vsi, const u8 *macaddr, s16 vlan) 1470 { 1471 struct i40e_mac_filter *f; 1472 1473 if (!vsi || !macaddr) 1474 return; 1475 1476 f = i40e_find_filter(vsi, macaddr, vlan); 1477 __i40e_del_filter(vsi, f); 1478 } 1479 1480 /** 1481 * i40e_add_mac_filter - Add a MAC filter for all active VLANs 1482 * @vsi: the VSI to be searched 1483 * @macaddr: the mac address to be filtered 1484 * 1485 * If we're not in VLAN mode, just add the filter to I40E_VLAN_ANY. Otherwise, 1486 * go through all the macvlan filters and add a macvlan filter for each 1487 * unique vlan that already exists. If a PVID has been assigned, instead only 1488 * add the macaddr to that VLAN. 1489 * 1490 * Returns last filter added on success, else NULL 1491 **/ 1492 struct i40e_mac_filter *i40e_add_mac_filter(struct i40e_vsi *vsi, 1493 const u8 *macaddr) 1494 { 1495 struct i40e_mac_filter *f, *add = NULL; 1496 struct hlist_node *h; 1497 int bkt; 1498 1499 if (vsi->info.pvid) 1500 return i40e_add_filter(vsi, macaddr, 1501 le16_to_cpu(vsi->info.pvid)); 1502 1503 if (!i40e_is_vsi_in_vlan(vsi)) 1504 return i40e_add_filter(vsi, macaddr, I40E_VLAN_ANY); 1505 1506 hash_for_each_safe(vsi->mac_filter_hash, bkt, h, f, hlist) { 1507 if (f->state == I40E_FILTER_REMOVE) 1508 continue; 1509 add = i40e_add_filter(vsi, macaddr, f->vlan); 1510 if (!add) 1511 return NULL; 1512 } 1513 1514 return add; 1515 } 1516 1517 /** 1518 * i40e_del_mac_filter - Remove a MAC filter from all VLANs 1519 * @vsi: the VSI to be searched 1520 * @macaddr: the mac address to be removed 1521 * 1522 * Removes a given MAC address from a VSI regardless of what VLAN it has been 1523 * associated with. 1524 * 1525 * Returns 0 for success, or error 1526 **/ 1527 int i40e_del_mac_filter(struct i40e_vsi *vsi, const u8 *macaddr) 1528 { 1529 struct i40e_mac_filter *f; 1530 struct hlist_node *h; 1531 bool found = false; 1532 int bkt; 1533 1534 lockdep_assert_held(&vsi->mac_filter_hash_lock); 1535 hash_for_each_safe(vsi->mac_filter_hash, bkt, h, f, hlist) { 1536 if (ether_addr_equal(macaddr, f->macaddr)) { 1537 __i40e_del_filter(vsi, f); 1538 found = true; 1539 } 1540 } 1541 1542 if (found) 1543 return 0; 1544 else 1545 return -ENOENT; 1546 } 1547 1548 /** 1549 * i40e_set_mac - NDO callback to set mac address 1550 * @netdev: network interface device structure 1551 * @p: pointer to an address structure 1552 * 1553 * Returns 0 on success, negative on failure 1554 **/ 1555 static int i40e_set_mac(struct net_device *netdev, void *p) 1556 { 1557 struct i40e_netdev_priv *np = netdev_priv(netdev); 1558 struct i40e_vsi *vsi = np->vsi; 1559 struct i40e_pf *pf = vsi->back; 1560 struct i40e_hw *hw = &pf->hw; 1561 struct sockaddr *addr = p; 1562 1563 if (!is_valid_ether_addr(addr->sa_data)) 1564 return -EADDRNOTAVAIL; 1565 1566 if (ether_addr_equal(netdev->dev_addr, addr->sa_data)) { 1567 netdev_info(netdev, "already using mac address %pM\n", 1568 addr->sa_data); 1569 return 0; 1570 } 1571 1572 if (test_bit(__I40E_DOWN, pf->state) || 1573 test_bit(__I40E_RESET_RECOVERY_PENDING, pf->state)) 1574 return -EADDRNOTAVAIL; 1575 1576 if (ether_addr_equal(hw->mac.addr, addr->sa_data)) 1577 netdev_info(netdev, "returning to hw mac address %pM\n", 1578 hw->mac.addr); 1579 else 1580 netdev_info(netdev, "set new mac address %pM\n", addr->sa_data); 1581 1582 /* Copy the address first, so that we avoid a possible race with 1583 * .set_rx_mode(). 1584 * - Remove old address from MAC filter 1585 * - Copy new address 1586 * - Add new address to MAC filter 1587 */ 1588 spin_lock_bh(&vsi->mac_filter_hash_lock); 1589 i40e_del_mac_filter(vsi, netdev->dev_addr); 1590 ether_addr_copy(netdev->dev_addr, addr->sa_data); 1591 i40e_add_mac_filter(vsi, netdev->dev_addr); 1592 spin_unlock_bh(&vsi->mac_filter_hash_lock); 1593 1594 if (vsi->type == I40E_VSI_MAIN) { 1595 i40e_status ret; 1596 1597 ret = i40e_aq_mac_address_write(hw, I40E_AQC_WRITE_TYPE_LAA_WOL, 1598 addr->sa_data, NULL); 1599 if (ret) 1600 netdev_info(netdev, "Ignoring error from firmware on LAA update, status %s, AQ ret %s\n", 1601 i40e_stat_str(hw, ret), 1602 i40e_aq_str(hw, hw->aq.asq_last_status)); 1603 } 1604 1605 /* schedule our worker thread which will take care of 1606 * applying the new filter changes 1607 */ 1608 i40e_service_event_schedule(pf); 1609 return 0; 1610 } 1611 1612 /** 1613 * i40e_config_rss_aq - Prepare for RSS using AQ commands 1614 * @vsi: vsi structure 1615 * @seed: RSS hash seed 1616 * @lut: pointer to lookup table of lut_size 1617 * @lut_size: size of the lookup table 1618 **/ 1619 static int i40e_config_rss_aq(struct i40e_vsi *vsi, const u8 *seed, 1620 u8 *lut, u16 lut_size) 1621 { 1622 struct i40e_pf *pf = vsi->back; 1623 struct i40e_hw *hw = &pf->hw; 1624 int ret = 0; 1625 1626 if (seed) { 1627 struct i40e_aqc_get_set_rss_key_data *seed_dw = 1628 (struct i40e_aqc_get_set_rss_key_data *)seed; 1629 ret = i40e_aq_set_rss_key(hw, vsi->id, seed_dw); 1630 if (ret) { 1631 dev_info(&pf->pdev->dev, 1632 "Cannot set RSS key, err %s aq_err %s\n", 1633 i40e_stat_str(hw, ret), 1634 i40e_aq_str(hw, hw->aq.asq_last_status)); 1635 return ret; 1636 } 1637 } 1638 if (lut) { 1639 bool pf_lut = vsi->type == I40E_VSI_MAIN; 1640 1641 ret = i40e_aq_set_rss_lut(hw, vsi->id, pf_lut, lut, lut_size); 1642 if (ret) { 1643 dev_info(&pf->pdev->dev, 1644 "Cannot set RSS lut, err %s aq_err %s\n", 1645 i40e_stat_str(hw, ret), 1646 i40e_aq_str(hw, hw->aq.asq_last_status)); 1647 return ret; 1648 } 1649 } 1650 return ret; 1651 } 1652 1653 /** 1654 * i40e_vsi_config_rss - Prepare for VSI(VMDq) RSS if used 1655 * @vsi: VSI structure 1656 **/ 1657 static int i40e_vsi_config_rss(struct i40e_vsi *vsi) 1658 { 1659 struct i40e_pf *pf = vsi->back; 1660 u8 seed[I40E_HKEY_ARRAY_SIZE]; 1661 u8 *lut; 1662 int ret; 1663 1664 if (!(pf->hw_features & I40E_HW_RSS_AQ_CAPABLE)) 1665 return 0; 1666 if (!vsi->rss_size) 1667 vsi->rss_size = min_t(int, pf->alloc_rss_size, 1668 vsi->num_queue_pairs); 1669 if (!vsi->rss_size) 1670 return -EINVAL; 1671 lut = kzalloc(vsi->rss_table_size, GFP_KERNEL); 1672 if (!lut) 1673 return -ENOMEM; 1674 1675 /* Use the user configured hash keys and lookup table if there is one, 1676 * otherwise use default 1677 */ 1678 if (vsi->rss_lut_user) 1679 memcpy(lut, vsi->rss_lut_user, vsi->rss_table_size); 1680 else 1681 i40e_fill_rss_lut(pf, lut, vsi->rss_table_size, vsi->rss_size); 1682 if (vsi->rss_hkey_user) 1683 memcpy(seed, vsi->rss_hkey_user, I40E_HKEY_ARRAY_SIZE); 1684 else 1685 netdev_rss_key_fill((void *)seed, I40E_HKEY_ARRAY_SIZE); 1686 ret = i40e_config_rss_aq(vsi, seed, lut, vsi->rss_table_size); 1687 kfree(lut); 1688 return ret; 1689 } 1690 1691 /** 1692 * i40e_vsi_setup_queue_map_mqprio - Prepares mqprio based tc_config 1693 * @vsi: the VSI being configured, 1694 * @ctxt: VSI context structure 1695 * @enabled_tc: number of traffic classes to enable 1696 * 1697 * Prepares VSI tc_config to have queue configurations based on MQPRIO options. 1698 **/ 1699 static int i40e_vsi_setup_queue_map_mqprio(struct i40e_vsi *vsi, 1700 struct i40e_vsi_context *ctxt, 1701 u8 enabled_tc) 1702 { 1703 u16 qcount = 0, max_qcount, qmap, sections = 0; 1704 int i, override_q, pow, num_qps, ret; 1705 u8 netdev_tc = 0, offset = 0; 1706 1707 if (vsi->type != I40E_VSI_MAIN) 1708 return -EINVAL; 1709 sections = I40E_AQ_VSI_PROP_QUEUE_MAP_VALID; 1710 sections |= I40E_AQ_VSI_PROP_SCHED_VALID; 1711 vsi->tc_config.numtc = vsi->mqprio_qopt.qopt.num_tc; 1712 vsi->tc_config.enabled_tc = enabled_tc ? enabled_tc : 1; 1713 num_qps = vsi->mqprio_qopt.qopt.count[0]; 1714 1715 /* find the next higher power-of-2 of num queue pairs */ 1716 pow = ilog2(num_qps); 1717 if (!is_power_of_2(num_qps)) 1718 pow++; 1719 qmap = (offset << I40E_AQ_VSI_TC_QUE_OFFSET_SHIFT) | 1720 (pow << I40E_AQ_VSI_TC_QUE_NUMBER_SHIFT); 1721 1722 /* Setup queue offset/count for all TCs for given VSI */ 1723 max_qcount = vsi->mqprio_qopt.qopt.count[0]; 1724 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 1725 /* See if the given TC is enabled for the given VSI */ 1726 if (vsi->tc_config.enabled_tc & BIT(i)) { 1727 offset = vsi->mqprio_qopt.qopt.offset[i]; 1728 qcount = vsi->mqprio_qopt.qopt.count[i]; 1729 if (qcount > max_qcount) 1730 max_qcount = qcount; 1731 vsi->tc_config.tc_info[i].qoffset = offset; 1732 vsi->tc_config.tc_info[i].qcount = qcount; 1733 vsi->tc_config.tc_info[i].netdev_tc = netdev_tc++; 1734 } else { 1735 /* TC is not enabled so set the offset to 1736 * default queue and allocate one queue 1737 * for the given TC. 1738 */ 1739 vsi->tc_config.tc_info[i].qoffset = 0; 1740 vsi->tc_config.tc_info[i].qcount = 1; 1741 vsi->tc_config.tc_info[i].netdev_tc = 0; 1742 } 1743 } 1744 1745 /* Set actual Tx/Rx queue pairs */ 1746 vsi->num_queue_pairs = offset + qcount; 1747 1748 /* Setup queue TC[0].qmap for given VSI context */ 1749 ctxt->info.tc_mapping[0] = cpu_to_le16(qmap); 1750 ctxt->info.mapping_flags |= cpu_to_le16(I40E_AQ_VSI_QUE_MAP_CONTIG); 1751 ctxt->info.queue_mapping[0] = cpu_to_le16(vsi->base_queue); 1752 ctxt->info.valid_sections |= cpu_to_le16(sections); 1753 1754 /* Reconfigure RSS for main VSI with max queue count */ 1755 vsi->rss_size = max_qcount; 1756 ret = i40e_vsi_config_rss(vsi); 1757 if (ret) { 1758 dev_info(&vsi->back->pdev->dev, 1759 "Failed to reconfig rss for num_queues (%u)\n", 1760 max_qcount); 1761 return ret; 1762 } 1763 vsi->reconfig_rss = true; 1764 dev_dbg(&vsi->back->pdev->dev, 1765 "Reconfigured rss with num_queues (%u)\n", max_qcount); 1766 1767 /* Find queue count available for channel VSIs and starting offset 1768 * for channel VSIs 1769 */ 1770 override_q = vsi->mqprio_qopt.qopt.count[0]; 1771 if (override_q && override_q < vsi->num_queue_pairs) { 1772 vsi->cnt_q_avail = vsi->num_queue_pairs - override_q; 1773 vsi->next_base_queue = override_q; 1774 } 1775 return 0; 1776 } 1777 1778 /** 1779 * i40e_vsi_setup_queue_map - Setup a VSI queue map based on enabled_tc 1780 * @vsi: the VSI being setup 1781 * @ctxt: VSI context structure 1782 * @enabled_tc: Enabled TCs bitmap 1783 * @is_add: True if called before Add VSI 1784 * 1785 * Setup VSI queue mapping for enabled traffic classes. 1786 **/ 1787 static void i40e_vsi_setup_queue_map(struct i40e_vsi *vsi, 1788 struct i40e_vsi_context *ctxt, 1789 u8 enabled_tc, 1790 bool is_add) 1791 { 1792 struct i40e_pf *pf = vsi->back; 1793 u16 sections = 0; 1794 u8 netdev_tc = 0; 1795 u16 numtc = 1; 1796 u16 qcount; 1797 u8 offset; 1798 u16 qmap; 1799 int i; 1800 u16 num_tc_qps = 0; 1801 1802 sections = I40E_AQ_VSI_PROP_QUEUE_MAP_VALID; 1803 offset = 0; 1804 1805 /* Number of queues per enabled TC */ 1806 num_tc_qps = vsi->alloc_queue_pairs; 1807 if (enabled_tc && (vsi->back->flags & I40E_FLAG_DCB_ENABLED)) { 1808 /* Find numtc from enabled TC bitmap */ 1809 for (i = 0, numtc = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 1810 if (enabled_tc & BIT(i)) /* TC is enabled */ 1811 numtc++; 1812 } 1813 if (!numtc) { 1814 dev_warn(&pf->pdev->dev, "DCB is enabled but no TC enabled, forcing TC0\n"); 1815 numtc = 1; 1816 } 1817 num_tc_qps = num_tc_qps / numtc; 1818 num_tc_qps = min_t(int, num_tc_qps, 1819 i40e_pf_get_max_q_per_tc(pf)); 1820 } 1821 1822 vsi->tc_config.numtc = numtc; 1823 vsi->tc_config.enabled_tc = enabled_tc ? enabled_tc : 1; 1824 1825 /* Do not allow use more TC queue pairs than MSI-X vectors exist */ 1826 if (pf->flags & I40E_FLAG_MSIX_ENABLED) 1827 num_tc_qps = min_t(int, num_tc_qps, pf->num_lan_msix); 1828 1829 /* Setup queue offset/count for all TCs for given VSI */ 1830 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 1831 /* See if the given TC is enabled for the given VSI */ 1832 if (vsi->tc_config.enabled_tc & BIT(i)) { 1833 /* TC is enabled */ 1834 int pow, num_qps; 1835 1836 switch (vsi->type) { 1837 case I40E_VSI_MAIN: 1838 if (!(pf->flags & (I40E_FLAG_FD_SB_ENABLED | 1839 I40E_FLAG_FD_ATR_ENABLED)) || 1840 vsi->tc_config.enabled_tc != 1) { 1841 qcount = min_t(int, pf->alloc_rss_size, 1842 num_tc_qps); 1843 break; 1844 } 1845 fallthrough; 1846 case I40E_VSI_FDIR: 1847 case I40E_VSI_SRIOV: 1848 case I40E_VSI_VMDQ2: 1849 default: 1850 qcount = num_tc_qps; 1851 WARN_ON(i != 0); 1852 break; 1853 } 1854 vsi->tc_config.tc_info[i].qoffset = offset; 1855 vsi->tc_config.tc_info[i].qcount = qcount; 1856 1857 /* find the next higher power-of-2 of num queue pairs */ 1858 num_qps = qcount; 1859 pow = 0; 1860 while (num_qps && (BIT_ULL(pow) < qcount)) { 1861 pow++; 1862 num_qps >>= 1; 1863 } 1864 1865 vsi->tc_config.tc_info[i].netdev_tc = netdev_tc++; 1866 qmap = 1867 (offset << I40E_AQ_VSI_TC_QUE_OFFSET_SHIFT) | 1868 (pow << I40E_AQ_VSI_TC_QUE_NUMBER_SHIFT); 1869 1870 offset += qcount; 1871 } else { 1872 /* TC is not enabled so set the offset to 1873 * default queue and allocate one queue 1874 * for the given TC. 1875 */ 1876 vsi->tc_config.tc_info[i].qoffset = 0; 1877 vsi->tc_config.tc_info[i].qcount = 1; 1878 vsi->tc_config.tc_info[i].netdev_tc = 0; 1879 1880 qmap = 0; 1881 } 1882 ctxt->info.tc_mapping[i] = cpu_to_le16(qmap); 1883 } 1884 1885 /* Set actual Tx/Rx queue pairs */ 1886 vsi->num_queue_pairs = offset; 1887 if ((vsi->type == I40E_VSI_MAIN) && (numtc == 1)) { 1888 if (vsi->req_queue_pairs > 0) 1889 vsi->num_queue_pairs = vsi->req_queue_pairs; 1890 else if (pf->flags & I40E_FLAG_MSIX_ENABLED) 1891 vsi->num_queue_pairs = pf->num_lan_msix; 1892 } 1893 1894 /* Scheduler section valid can only be set for ADD VSI */ 1895 if (is_add) { 1896 sections |= I40E_AQ_VSI_PROP_SCHED_VALID; 1897 1898 ctxt->info.up_enable_bits = enabled_tc; 1899 } 1900 if (vsi->type == I40E_VSI_SRIOV) { 1901 ctxt->info.mapping_flags |= 1902 cpu_to_le16(I40E_AQ_VSI_QUE_MAP_NONCONTIG); 1903 for (i = 0; i < vsi->num_queue_pairs; i++) 1904 ctxt->info.queue_mapping[i] = 1905 cpu_to_le16(vsi->base_queue + i); 1906 } else { 1907 ctxt->info.mapping_flags |= 1908 cpu_to_le16(I40E_AQ_VSI_QUE_MAP_CONTIG); 1909 ctxt->info.queue_mapping[0] = cpu_to_le16(vsi->base_queue); 1910 } 1911 ctxt->info.valid_sections |= cpu_to_le16(sections); 1912 } 1913 1914 /** 1915 * i40e_addr_sync - Callback for dev_(mc|uc)_sync to add address 1916 * @netdev: the netdevice 1917 * @addr: address to add 1918 * 1919 * Called by __dev_(mc|uc)_sync when an address needs to be added. We call 1920 * __dev_(uc|mc)_sync from .set_rx_mode and guarantee to hold the hash lock. 1921 */ 1922 static int i40e_addr_sync(struct net_device *netdev, const u8 *addr) 1923 { 1924 struct i40e_netdev_priv *np = netdev_priv(netdev); 1925 struct i40e_vsi *vsi = np->vsi; 1926 1927 if (i40e_add_mac_filter(vsi, addr)) 1928 return 0; 1929 else 1930 return -ENOMEM; 1931 } 1932 1933 /** 1934 * i40e_addr_unsync - Callback for dev_(mc|uc)_sync to remove address 1935 * @netdev: the netdevice 1936 * @addr: address to add 1937 * 1938 * Called by __dev_(mc|uc)_sync when an address needs to be removed. We call 1939 * __dev_(uc|mc)_sync from .set_rx_mode and guarantee to hold the hash lock. 1940 */ 1941 static int i40e_addr_unsync(struct net_device *netdev, const u8 *addr) 1942 { 1943 struct i40e_netdev_priv *np = netdev_priv(netdev); 1944 struct i40e_vsi *vsi = np->vsi; 1945 1946 /* Under some circumstances, we might receive a request to delete 1947 * our own device address from our uc list. Because we store the 1948 * device address in the VSI's MAC/VLAN filter list, we need to ignore 1949 * such requests and not delete our device address from this list. 1950 */ 1951 if (ether_addr_equal(addr, netdev->dev_addr)) 1952 return 0; 1953 1954 i40e_del_mac_filter(vsi, addr); 1955 1956 return 0; 1957 } 1958 1959 /** 1960 * i40e_set_rx_mode - NDO callback to set the netdev filters 1961 * @netdev: network interface device structure 1962 **/ 1963 static void i40e_set_rx_mode(struct net_device *netdev) 1964 { 1965 struct i40e_netdev_priv *np = netdev_priv(netdev); 1966 struct i40e_vsi *vsi = np->vsi; 1967 1968 spin_lock_bh(&vsi->mac_filter_hash_lock); 1969 1970 __dev_uc_sync(netdev, i40e_addr_sync, i40e_addr_unsync); 1971 __dev_mc_sync(netdev, i40e_addr_sync, i40e_addr_unsync); 1972 1973 spin_unlock_bh(&vsi->mac_filter_hash_lock); 1974 1975 /* check for other flag changes */ 1976 if (vsi->current_netdev_flags != vsi->netdev->flags) { 1977 vsi->flags |= I40E_VSI_FLAG_FILTER_CHANGED; 1978 set_bit(__I40E_MACVLAN_SYNC_PENDING, vsi->back->state); 1979 } 1980 } 1981 1982 /** 1983 * i40e_undo_del_filter_entries - Undo the changes made to MAC filter entries 1984 * @vsi: Pointer to VSI struct 1985 * @from: Pointer to list which contains MAC filter entries - changes to 1986 * those entries needs to be undone. 1987 * 1988 * MAC filter entries from this list were slated for deletion. 1989 **/ 1990 static void i40e_undo_del_filter_entries(struct i40e_vsi *vsi, 1991 struct hlist_head *from) 1992 { 1993 struct i40e_mac_filter *f; 1994 struct hlist_node *h; 1995 1996 hlist_for_each_entry_safe(f, h, from, hlist) { 1997 u64 key = i40e_addr_to_hkey(f->macaddr); 1998 1999 /* Move the element back into MAC filter list*/ 2000 hlist_del(&f->hlist); 2001 hash_add(vsi->mac_filter_hash, &f->hlist, key); 2002 } 2003 } 2004 2005 /** 2006 * i40e_undo_add_filter_entries - Undo the changes made to MAC filter entries 2007 * @vsi: Pointer to vsi struct 2008 * @from: Pointer to list which contains MAC filter entries - changes to 2009 * those entries needs to be undone. 2010 * 2011 * MAC filter entries from this list were slated for addition. 2012 **/ 2013 static void i40e_undo_add_filter_entries(struct i40e_vsi *vsi, 2014 struct hlist_head *from) 2015 { 2016 struct i40e_new_mac_filter *new; 2017 struct hlist_node *h; 2018 2019 hlist_for_each_entry_safe(new, h, from, hlist) { 2020 /* We can simply free the wrapper structure */ 2021 hlist_del(&new->hlist); 2022 kfree(new); 2023 } 2024 } 2025 2026 /** 2027 * i40e_next_filter - Get the next non-broadcast filter from a list 2028 * @next: pointer to filter in list 2029 * 2030 * Returns the next non-broadcast filter in the list. Required so that we 2031 * ignore broadcast filters within the list, since these are not handled via 2032 * the normal firmware update path. 2033 */ 2034 static 2035 struct i40e_new_mac_filter *i40e_next_filter(struct i40e_new_mac_filter *next) 2036 { 2037 hlist_for_each_entry_continue(next, hlist) { 2038 if (!is_broadcast_ether_addr(next->f->macaddr)) 2039 return next; 2040 } 2041 2042 return NULL; 2043 } 2044 2045 /** 2046 * i40e_update_filter_state - Update filter state based on return data 2047 * from firmware 2048 * @count: Number of filters added 2049 * @add_list: return data from fw 2050 * @add_head: pointer to first filter in current batch 2051 * 2052 * MAC filter entries from list were slated to be added to device. Returns 2053 * number of successful filters. Note that 0 does NOT mean success! 2054 **/ 2055 static int 2056 i40e_update_filter_state(int count, 2057 struct i40e_aqc_add_macvlan_element_data *add_list, 2058 struct i40e_new_mac_filter *add_head) 2059 { 2060 int retval = 0; 2061 int i; 2062 2063 for (i = 0; i < count; i++) { 2064 /* Always check status of each filter. We don't need to check 2065 * the firmware return status because we pre-set the filter 2066 * status to I40E_AQC_MM_ERR_NO_RES when sending the filter 2067 * request to the adminq. Thus, if it no longer matches then 2068 * we know the filter is active. 2069 */ 2070 if (add_list[i].match_method == I40E_AQC_MM_ERR_NO_RES) { 2071 add_head->state = I40E_FILTER_FAILED; 2072 } else { 2073 add_head->state = I40E_FILTER_ACTIVE; 2074 retval++; 2075 } 2076 2077 add_head = i40e_next_filter(add_head); 2078 if (!add_head) 2079 break; 2080 } 2081 2082 return retval; 2083 } 2084 2085 /** 2086 * i40e_aqc_del_filters - Request firmware to delete a set of filters 2087 * @vsi: ptr to the VSI 2088 * @vsi_name: name to display in messages 2089 * @list: the list of filters to send to firmware 2090 * @num_del: the number of filters to delete 2091 * @retval: Set to -EIO on failure to delete 2092 * 2093 * Send a request to firmware via AdminQ to delete a set of filters. Uses 2094 * *retval instead of a return value so that success does not force ret_val to 2095 * be set to 0. This ensures that a sequence of calls to this function 2096 * preserve the previous value of *retval on successful delete. 2097 */ 2098 static 2099 void i40e_aqc_del_filters(struct i40e_vsi *vsi, const char *vsi_name, 2100 struct i40e_aqc_remove_macvlan_element_data *list, 2101 int num_del, int *retval) 2102 { 2103 struct i40e_hw *hw = &vsi->back->hw; 2104 i40e_status aq_ret; 2105 int aq_err; 2106 2107 aq_ret = i40e_aq_remove_macvlan(hw, vsi->seid, list, num_del, NULL); 2108 aq_err = hw->aq.asq_last_status; 2109 2110 /* Explicitly ignore and do not report when firmware returns ENOENT */ 2111 if (aq_ret && !(aq_err == I40E_AQ_RC_ENOENT)) { 2112 *retval = -EIO; 2113 dev_info(&vsi->back->pdev->dev, 2114 "ignoring delete macvlan error on %s, err %s, aq_err %s\n", 2115 vsi_name, i40e_stat_str(hw, aq_ret), 2116 i40e_aq_str(hw, aq_err)); 2117 } 2118 } 2119 2120 /** 2121 * i40e_aqc_add_filters - Request firmware to add a set of filters 2122 * @vsi: ptr to the VSI 2123 * @vsi_name: name to display in messages 2124 * @list: the list of filters to send to firmware 2125 * @add_head: Position in the add hlist 2126 * @num_add: the number of filters to add 2127 * 2128 * Send a request to firmware via AdminQ to add a chunk of filters. Will set 2129 * __I40E_VSI_OVERFLOW_PROMISC bit in vsi->state if the firmware has run out of 2130 * space for more filters. 2131 */ 2132 static 2133 void i40e_aqc_add_filters(struct i40e_vsi *vsi, const char *vsi_name, 2134 struct i40e_aqc_add_macvlan_element_data *list, 2135 struct i40e_new_mac_filter *add_head, 2136 int num_add) 2137 { 2138 struct i40e_hw *hw = &vsi->back->hw; 2139 int aq_err, fcnt; 2140 2141 i40e_aq_add_macvlan(hw, vsi->seid, list, num_add, NULL); 2142 aq_err = hw->aq.asq_last_status; 2143 fcnt = i40e_update_filter_state(num_add, list, add_head); 2144 2145 if (fcnt != num_add) { 2146 if (vsi->type == I40E_VSI_MAIN) { 2147 set_bit(__I40E_VSI_OVERFLOW_PROMISC, vsi->state); 2148 dev_warn(&vsi->back->pdev->dev, 2149 "Error %s adding RX filters on %s, promiscuous mode forced on\n", 2150 i40e_aq_str(hw, aq_err), vsi_name); 2151 } else if (vsi->type == I40E_VSI_SRIOV || 2152 vsi->type == I40E_VSI_VMDQ1 || 2153 vsi->type == I40E_VSI_VMDQ2) { 2154 dev_warn(&vsi->back->pdev->dev, 2155 "Error %s adding RX filters on %s, please set promiscuous on manually for %s\n", 2156 i40e_aq_str(hw, aq_err), vsi_name, vsi_name); 2157 } else { 2158 dev_warn(&vsi->back->pdev->dev, 2159 "Error %s adding RX filters on %s, incorrect VSI type: %i.\n", 2160 i40e_aq_str(hw, aq_err), vsi_name, vsi->type); 2161 } 2162 } 2163 } 2164 2165 /** 2166 * i40e_aqc_broadcast_filter - Set promiscuous broadcast flags 2167 * @vsi: pointer to the VSI 2168 * @vsi_name: the VSI name 2169 * @f: filter data 2170 * 2171 * This function sets or clears the promiscuous broadcast flags for VLAN 2172 * filters in order to properly receive broadcast frames. Assumes that only 2173 * broadcast filters are passed. 2174 * 2175 * Returns status indicating success or failure; 2176 **/ 2177 static i40e_status 2178 i40e_aqc_broadcast_filter(struct i40e_vsi *vsi, const char *vsi_name, 2179 struct i40e_mac_filter *f) 2180 { 2181 bool enable = f->state == I40E_FILTER_NEW; 2182 struct i40e_hw *hw = &vsi->back->hw; 2183 i40e_status aq_ret; 2184 2185 if (f->vlan == I40E_VLAN_ANY) { 2186 aq_ret = i40e_aq_set_vsi_broadcast(hw, 2187 vsi->seid, 2188 enable, 2189 NULL); 2190 } else { 2191 aq_ret = i40e_aq_set_vsi_bc_promisc_on_vlan(hw, 2192 vsi->seid, 2193 enable, 2194 f->vlan, 2195 NULL); 2196 } 2197 2198 if (aq_ret) { 2199 set_bit(__I40E_VSI_OVERFLOW_PROMISC, vsi->state); 2200 dev_warn(&vsi->back->pdev->dev, 2201 "Error %s, forcing overflow promiscuous on %s\n", 2202 i40e_aq_str(hw, hw->aq.asq_last_status), 2203 vsi_name); 2204 } 2205 2206 return aq_ret; 2207 } 2208 2209 /** 2210 * i40e_set_promiscuous - set promiscuous mode 2211 * @pf: board private structure 2212 * @promisc: promisc on or off 2213 * 2214 * There are different ways of setting promiscuous mode on a PF depending on 2215 * what state/environment we're in. This identifies and sets it appropriately. 2216 * Returns 0 on success. 2217 **/ 2218 static int i40e_set_promiscuous(struct i40e_pf *pf, bool promisc) 2219 { 2220 struct i40e_vsi *vsi = pf->vsi[pf->lan_vsi]; 2221 struct i40e_hw *hw = &pf->hw; 2222 i40e_status aq_ret; 2223 2224 if (vsi->type == I40E_VSI_MAIN && 2225 pf->lan_veb != I40E_NO_VEB && 2226 !(pf->flags & I40E_FLAG_MFP_ENABLED)) { 2227 /* set defport ON for Main VSI instead of true promisc 2228 * this way we will get all unicast/multicast and VLAN 2229 * promisc behavior but will not get VF or VMDq traffic 2230 * replicated on the Main VSI. 2231 */ 2232 if (promisc) 2233 aq_ret = i40e_aq_set_default_vsi(hw, 2234 vsi->seid, 2235 NULL); 2236 else 2237 aq_ret = i40e_aq_clear_default_vsi(hw, 2238 vsi->seid, 2239 NULL); 2240 if (aq_ret) { 2241 dev_info(&pf->pdev->dev, 2242 "Set default VSI failed, err %s, aq_err %s\n", 2243 i40e_stat_str(hw, aq_ret), 2244 i40e_aq_str(hw, hw->aq.asq_last_status)); 2245 } 2246 } else { 2247 aq_ret = i40e_aq_set_vsi_unicast_promiscuous( 2248 hw, 2249 vsi->seid, 2250 promisc, NULL, 2251 true); 2252 if (aq_ret) { 2253 dev_info(&pf->pdev->dev, 2254 "set unicast promisc failed, err %s, aq_err %s\n", 2255 i40e_stat_str(hw, aq_ret), 2256 i40e_aq_str(hw, hw->aq.asq_last_status)); 2257 } 2258 aq_ret = i40e_aq_set_vsi_multicast_promiscuous( 2259 hw, 2260 vsi->seid, 2261 promisc, NULL); 2262 if (aq_ret) { 2263 dev_info(&pf->pdev->dev, 2264 "set multicast promisc failed, err %s, aq_err %s\n", 2265 i40e_stat_str(hw, aq_ret), 2266 i40e_aq_str(hw, hw->aq.asq_last_status)); 2267 } 2268 } 2269 2270 if (!aq_ret) 2271 pf->cur_promisc = promisc; 2272 2273 return aq_ret; 2274 } 2275 2276 /** 2277 * i40e_sync_vsi_filters - Update the VSI filter list to the HW 2278 * @vsi: ptr to the VSI 2279 * 2280 * Push any outstanding VSI filter changes through the AdminQ. 2281 * 2282 * Returns 0 or error value 2283 **/ 2284 int i40e_sync_vsi_filters(struct i40e_vsi *vsi) 2285 { 2286 struct hlist_head tmp_add_list, tmp_del_list; 2287 struct i40e_mac_filter *f; 2288 struct i40e_new_mac_filter *new, *add_head = NULL; 2289 struct i40e_hw *hw = &vsi->back->hw; 2290 bool old_overflow, new_overflow; 2291 unsigned int failed_filters = 0; 2292 unsigned int vlan_filters = 0; 2293 char vsi_name[16] = "PF"; 2294 int filter_list_len = 0; 2295 i40e_status aq_ret = 0; 2296 u32 changed_flags = 0; 2297 struct hlist_node *h; 2298 struct i40e_pf *pf; 2299 int num_add = 0; 2300 int num_del = 0; 2301 int retval = 0; 2302 u16 cmd_flags; 2303 int list_size; 2304 int bkt; 2305 2306 /* empty array typed pointers, kcalloc later */ 2307 struct i40e_aqc_add_macvlan_element_data *add_list; 2308 struct i40e_aqc_remove_macvlan_element_data *del_list; 2309 2310 while (test_and_set_bit(__I40E_VSI_SYNCING_FILTERS, vsi->state)) 2311 usleep_range(1000, 2000); 2312 pf = vsi->back; 2313 2314 old_overflow = test_bit(__I40E_VSI_OVERFLOW_PROMISC, vsi->state); 2315 2316 if (vsi->netdev) { 2317 changed_flags = vsi->current_netdev_flags ^ vsi->netdev->flags; 2318 vsi->current_netdev_flags = vsi->netdev->flags; 2319 } 2320 2321 INIT_HLIST_HEAD(&tmp_add_list); 2322 INIT_HLIST_HEAD(&tmp_del_list); 2323 2324 if (vsi->type == I40E_VSI_SRIOV) 2325 snprintf(vsi_name, sizeof(vsi_name) - 1, "VF %d", vsi->vf_id); 2326 else if (vsi->type != I40E_VSI_MAIN) 2327 snprintf(vsi_name, sizeof(vsi_name) - 1, "vsi %d", vsi->seid); 2328 2329 if (vsi->flags & I40E_VSI_FLAG_FILTER_CHANGED) { 2330 vsi->flags &= ~I40E_VSI_FLAG_FILTER_CHANGED; 2331 2332 spin_lock_bh(&vsi->mac_filter_hash_lock); 2333 /* Create a list of filters to delete. */ 2334 hash_for_each_safe(vsi->mac_filter_hash, bkt, h, f, hlist) { 2335 if (f->state == I40E_FILTER_REMOVE) { 2336 /* Move the element into temporary del_list */ 2337 hash_del(&f->hlist); 2338 hlist_add_head(&f->hlist, &tmp_del_list); 2339 2340 /* Avoid counting removed filters */ 2341 continue; 2342 } 2343 if (f->state == I40E_FILTER_NEW) { 2344 /* Create a temporary i40e_new_mac_filter */ 2345 new = kzalloc(sizeof(*new), GFP_ATOMIC); 2346 if (!new) 2347 goto err_no_memory_locked; 2348 2349 /* Store pointer to the real filter */ 2350 new->f = f; 2351 new->state = f->state; 2352 2353 /* Add it to the hash list */ 2354 hlist_add_head(&new->hlist, &tmp_add_list); 2355 } 2356 2357 /* Count the number of active (current and new) VLAN 2358 * filters we have now. Does not count filters which 2359 * are marked for deletion. 2360 */ 2361 if (f->vlan > 0) 2362 vlan_filters++; 2363 } 2364 2365 retval = i40e_correct_mac_vlan_filters(vsi, 2366 &tmp_add_list, 2367 &tmp_del_list, 2368 vlan_filters); 2369 if (retval) 2370 goto err_no_memory_locked; 2371 2372 spin_unlock_bh(&vsi->mac_filter_hash_lock); 2373 } 2374 2375 /* Now process 'del_list' outside the lock */ 2376 if (!hlist_empty(&tmp_del_list)) { 2377 filter_list_len = hw->aq.asq_buf_size / 2378 sizeof(struct i40e_aqc_remove_macvlan_element_data); 2379 list_size = filter_list_len * 2380 sizeof(struct i40e_aqc_remove_macvlan_element_data); 2381 del_list = kzalloc(list_size, GFP_ATOMIC); 2382 if (!del_list) 2383 goto err_no_memory; 2384 2385 hlist_for_each_entry_safe(f, h, &tmp_del_list, hlist) { 2386 cmd_flags = 0; 2387 2388 /* handle broadcast filters by updating the broadcast 2389 * promiscuous flag and release filter list. 2390 */ 2391 if (is_broadcast_ether_addr(f->macaddr)) { 2392 i40e_aqc_broadcast_filter(vsi, vsi_name, f); 2393 2394 hlist_del(&f->hlist); 2395 kfree(f); 2396 continue; 2397 } 2398 2399 /* add to delete list */ 2400 ether_addr_copy(del_list[num_del].mac_addr, f->macaddr); 2401 if (f->vlan == I40E_VLAN_ANY) { 2402 del_list[num_del].vlan_tag = 0; 2403 cmd_flags |= I40E_AQC_MACVLAN_DEL_IGNORE_VLAN; 2404 } else { 2405 del_list[num_del].vlan_tag = 2406 cpu_to_le16((u16)(f->vlan)); 2407 } 2408 2409 cmd_flags |= I40E_AQC_MACVLAN_DEL_PERFECT_MATCH; 2410 del_list[num_del].flags = cmd_flags; 2411 num_del++; 2412 2413 /* flush a full buffer */ 2414 if (num_del == filter_list_len) { 2415 i40e_aqc_del_filters(vsi, vsi_name, del_list, 2416 num_del, &retval); 2417 memset(del_list, 0, list_size); 2418 num_del = 0; 2419 } 2420 /* Release memory for MAC filter entries which were 2421 * synced up with HW. 2422 */ 2423 hlist_del(&f->hlist); 2424 kfree(f); 2425 } 2426 2427 if (num_del) { 2428 i40e_aqc_del_filters(vsi, vsi_name, del_list, 2429 num_del, &retval); 2430 } 2431 2432 kfree(del_list); 2433 del_list = NULL; 2434 } 2435 2436 if (!hlist_empty(&tmp_add_list)) { 2437 /* Do all the adds now. */ 2438 filter_list_len = hw->aq.asq_buf_size / 2439 sizeof(struct i40e_aqc_add_macvlan_element_data); 2440 list_size = filter_list_len * 2441 sizeof(struct i40e_aqc_add_macvlan_element_data); 2442 add_list = kzalloc(list_size, GFP_ATOMIC); 2443 if (!add_list) 2444 goto err_no_memory; 2445 2446 num_add = 0; 2447 hlist_for_each_entry_safe(new, h, &tmp_add_list, hlist) { 2448 /* handle broadcast filters by updating the broadcast 2449 * promiscuous flag instead of adding a MAC filter. 2450 */ 2451 if (is_broadcast_ether_addr(new->f->macaddr)) { 2452 if (i40e_aqc_broadcast_filter(vsi, vsi_name, 2453 new->f)) 2454 new->state = I40E_FILTER_FAILED; 2455 else 2456 new->state = I40E_FILTER_ACTIVE; 2457 continue; 2458 } 2459 2460 /* add to add array */ 2461 if (num_add == 0) 2462 add_head = new; 2463 cmd_flags = 0; 2464 ether_addr_copy(add_list[num_add].mac_addr, 2465 new->f->macaddr); 2466 if (new->f->vlan == I40E_VLAN_ANY) { 2467 add_list[num_add].vlan_tag = 0; 2468 cmd_flags |= I40E_AQC_MACVLAN_ADD_IGNORE_VLAN; 2469 } else { 2470 add_list[num_add].vlan_tag = 2471 cpu_to_le16((u16)(new->f->vlan)); 2472 } 2473 add_list[num_add].queue_number = 0; 2474 /* set invalid match method for later detection */ 2475 add_list[num_add].match_method = I40E_AQC_MM_ERR_NO_RES; 2476 cmd_flags |= I40E_AQC_MACVLAN_ADD_PERFECT_MATCH; 2477 add_list[num_add].flags = cpu_to_le16(cmd_flags); 2478 num_add++; 2479 2480 /* flush a full buffer */ 2481 if (num_add == filter_list_len) { 2482 i40e_aqc_add_filters(vsi, vsi_name, add_list, 2483 add_head, num_add); 2484 memset(add_list, 0, list_size); 2485 num_add = 0; 2486 } 2487 } 2488 if (num_add) { 2489 i40e_aqc_add_filters(vsi, vsi_name, add_list, add_head, 2490 num_add); 2491 } 2492 /* Now move all of the filters from the temp add list back to 2493 * the VSI's list. 2494 */ 2495 spin_lock_bh(&vsi->mac_filter_hash_lock); 2496 hlist_for_each_entry_safe(new, h, &tmp_add_list, hlist) { 2497 /* Only update the state if we're still NEW */ 2498 if (new->f->state == I40E_FILTER_NEW) 2499 new->f->state = new->state; 2500 hlist_del(&new->hlist); 2501 kfree(new); 2502 } 2503 spin_unlock_bh(&vsi->mac_filter_hash_lock); 2504 kfree(add_list); 2505 add_list = NULL; 2506 } 2507 2508 /* Determine the number of active and failed filters. */ 2509 spin_lock_bh(&vsi->mac_filter_hash_lock); 2510 vsi->active_filters = 0; 2511 hash_for_each(vsi->mac_filter_hash, bkt, f, hlist) { 2512 if (f->state == I40E_FILTER_ACTIVE) 2513 vsi->active_filters++; 2514 else if (f->state == I40E_FILTER_FAILED) 2515 failed_filters++; 2516 } 2517 spin_unlock_bh(&vsi->mac_filter_hash_lock); 2518 2519 /* Check if we are able to exit overflow promiscuous mode. We can 2520 * safely exit if we didn't just enter, we no longer have any failed 2521 * filters, and we have reduced filters below the threshold value. 2522 */ 2523 if (old_overflow && !failed_filters && 2524 vsi->active_filters < vsi->promisc_threshold) { 2525 dev_info(&pf->pdev->dev, 2526 "filter logjam cleared on %s, leaving overflow promiscuous mode\n", 2527 vsi_name); 2528 clear_bit(__I40E_VSI_OVERFLOW_PROMISC, vsi->state); 2529 vsi->promisc_threshold = 0; 2530 } 2531 2532 /* if the VF is not trusted do not do promisc */ 2533 if ((vsi->type == I40E_VSI_SRIOV) && !pf->vf[vsi->vf_id].trusted) { 2534 clear_bit(__I40E_VSI_OVERFLOW_PROMISC, vsi->state); 2535 goto out; 2536 } 2537 2538 new_overflow = test_bit(__I40E_VSI_OVERFLOW_PROMISC, vsi->state); 2539 2540 /* If we are entering overflow promiscuous, we need to calculate a new 2541 * threshold for when we are safe to exit 2542 */ 2543 if (!old_overflow && new_overflow) 2544 vsi->promisc_threshold = (vsi->active_filters * 3) / 4; 2545 2546 /* check for changes in promiscuous modes */ 2547 if (changed_flags & IFF_ALLMULTI) { 2548 bool cur_multipromisc; 2549 2550 cur_multipromisc = !!(vsi->current_netdev_flags & IFF_ALLMULTI); 2551 aq_ret = i40e_aq_set_vsi_multicast_promiscuous(&vsi->back->hw, 2552 vsi->seid, 2553 cur_multipromisc, 2554 NULL); 2555 if (aq_ret) { 2556 retval = i40e_aq_rc_to_posix(aq_ret, 2557 hw->aq.asq_last_status); 2558 dev_info(&pf->pdev->dev, 2559 "set multi promisc failed on %s, err %s aq_err %s\n", 2560 vsi_name, 2561 i40e_stat_str(hw, aq_ret), 2562 i40e_aq_str(hw, hw->aq.asq_last_status)); 2563 } else { 2564 dev_info(&pf->pdev->dev, "%s allmulti mode.\n", 2565 cur_multipromisc ? "entering" : "leaving"); 2566 } 2567 } 2568 2569 if ((changed_flags & IFF_PROMISC) || old_overflow != new_overflow) { 2570 bool cur_promisc; 2571 2572 cur_promisc = (!!(vsi->current_netdev_flags & IFF_PROMISC) || 2573 new_overflow); 2574 aq_ret = i40e_set_promiscuous(pf, cur_promisc); 2575 if (aq_ret) { 2576 retval = i40e_aq_rc_to_posix(aq_ret, 2577 hw->aq.asq_last_status); 2578 dev_info(&pf->pdev->dev, 2579 "Setting promiscuous %s failed on %s, err %s aq_err %s\n", 2580 cur_promisc ? "on" : "off", 2581 vsi_name, 2582 i40e_stat_str(hw, aq_ret), 2583 i40e_aq_str(hw, hw->aq.asq_last_status)); 2584 } 2585 } 2586 out: 2587 /* if something went wrong then set the changed flag so we try again */ 2588 if (retval) 2589 vsi->flags |= I40E_VSI_FLAG_FILTER_CHANGED; 2590 2591 clear_bit(__I40E_VSI_SYNCING_FILTERS, vsi->state); 2592 return retval; 2593 2594 err_no_memory: 2595 /* Restore elements on the temporary add and delete lists */ 2596 spin_lock_bh(&vsi->mac_filter_hash_lock); 2597 err_no_memory_locked: 2598 i40e_undo_del_filter_entries(vsi, &tmp_del_list); 2599 i40e_undo_add_filter_entries(vsi, &tmp_add_list); 2600 spin_unlock_bh(&vsi->mac_filter_hash_lock); 2601 2602 vsi->flags |= I40E_VSI_FLAG_FILTER_CHANGED; 2603 clear_bit(__I40E_VSI_SYNCING_FILTERS, vsi->state); 2604 return -ENOMEM; 2605 } 2606 2607 /** 2608 * i40e_sync_filters_subtask - Sync the VSI filter list with HW 2609 * @pf: board private structure 2610 **/ 2611 static void i40e_sync_filters_subtask(struct i40e_pf *pf) 2612 { 2613 int v; 2614 2615 if (!pf) 2616 return; 2617 if (!test_and_clear_bit(__I40E_MACVLAN_SYNC_PENDING, pf->state)) 2618 return; 2619 if (test_bit(__I40E_VF_DISABLE, pf->state)) { 2620 set_bit(__I40E_MACVLAN_SYNC_PENDING, pf->state); 2621 return; 2622 } 2623 2624 for (v = 0; v < pf->num_alloc_vsi; v++) { 2625 if (pf->vsi[v] && 2626 (pf->vsi[v]->flags & I40E_VSI_FLAG_FILTER_CHANGED)) { 2627 int ret = i40e_sync_vsi_filters(pf->vsi[v]); 2628 2629 if (ret) { 2630 /* come back and try again later */ 2631 set_bit(__I40E_MACVLAN_SYNC_PENDING, 2632 pf->state); 2633 break; 2634 } 2635 } 2636 } 2637 } 2638 2639 /** 2640 * i40e_max_xdp_frame_size - returns the maximum allowed frame size for XDP 2641 * @vsi: the vsi 2642 **/ 2643 static int i40e_max_xdp_frame_size(struct i40e_vsi *vsi) 2644 { 2645 if (PAGE_SIZE >= 8192 || (vsi->back->flags & I40E_FLAG_LEGACY_RX)) 2646 return I40E_RXBUFFER_2048; 2647 else 2648 return I40E_RXBUFFER_3072; 2649 } 2650 2651 /** 2652 * i40e_change_mtu - NDO callback to change the Maximum Transfer Unit 2653 * @netdev: network interface device structure 2654 * @new_mtu: new value for maximum frame size 2655 * 2656 * Returns 0 on success, negative on failure 2657 **/ 2658 static int i40e_change_mtu(struct net_device *netdev, int new_mtu) 2659 { 2660 struct i40e_netdev_priv *np = netdev_priv(netdev); 2661 struct i40e_vsi *vsi = np->vsi; 2662 struct i40e_pf *pf = vsi->back; 2663 2664 if (i40e_enabled_xdp_vsi(vsi)) { 2665 int frame_size = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN; 2666 2667 if (frame_size > i40e_max_xdp_frame_size(vsi)) 2668 return -EINVAL; 2669 } 2670 2671 netdev_dbg(netdev, "changing MTU from %d to %d\n", 2672 netdev->mtu, new_mtu); 2673 netdev->mtu = new_mtu; 2674 if (netif_running(netdev)) 2675 i40e_vsi_reinit_locked(vsi); 2676 set_bit(__I40E_CLIENT_SERVICE_REQUESTED, pf->state); 2677 set_bit(__I40E_CLIENT_L2_CHANGE, pf->state); 2678 return 0; 2679 } 2680 2681 /** 2682 * i40e_ioctl - Access the hwtstamp interface 2683 * @netdev: network interface device structure 2684 * @ifr: interface request data 2685 * @cmd: ioctl command 2686 **/ 2687 int i40e_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) 2688 { 2689 struct i40e_netdev_priv *np = netdev_priv(netdev); 2690 struct i40e_pf *pf = np->vsi->back; 2691 2692 switch (cmd) { 2693 case SIOCGHWTSTAMP: 2694 return i40e_ptp_get_ts_config(pf, ifr); 2695 case SIOCSHWTSTAMP: 2696 return i40e_ptp_set_ts_config(pf, ifr); 2697 default: 2698 return -EOPNOTSUPP; 2699 } 2700 } 2701 2702 /** 2703 * i40e_vlan_stripping_enable - Turn on vlan stripping for the VSI 2704 * @vsi: the vsi being adjusted 2705 **/ 2706 void i40e_vlan_stripping_enable(struct i40e_vsi *vsi) 2707 { 2708 struct i40e_vsi_context ctxt; 2709 i40e_status ret; 2710 2711 /* Don't modify stripping options if a port VLAN is active */ 2712 if (vsi->info.pvid) 2713 return; 2714 2715 if ((vsi->info.valid_sections & 2716 cpu_to_le16(I40E_AQ_VSI_PROP_VLAN_VALID)) && 2717 ((vsi->info.port_vlan_flags & I40E_AQ_VSI_PVLAN_MODE_MASK) == 0)) 2718 return; /* already enabled */ 2719 2720 vsi->info.valid_sections = cpu_to_le16(I40E_AQ_VSI_PROP_VLAN_VALID); 2721 vsi->info.port_vlan_flags = I40E_AQ_VSI_PVLAN_MODE_ALL | 2722 I40E_AQ_VSI_PVLAN_EMOD_STR_BOTH; 2723 2724 ctxt.seid = vsi->seid; 2725 ctxt.info = vsi->info; 2726 ret = i40e_aq_update_vsi_params(&vsi->back->hw, &ctxt, NULL); 2727 if (ret) { 2728 dev_info(&vsi->back->pdev->dev, 2729 "update vlan stripping failed, err %s aq_err %s\n", 2730 i40e_stat_str(&vsi->back->hw, ret), 2731 i40e_aq_str(&vsi->back->hw, 2732 vsi->back->hw.aq.asq_last_status)); 2733 } 2734 } 2735 2736 /** 2737 * i40e_vlan_stripping_disable - Turn off vlan stripping for the VSI 2738 * @vsi: the vsi being adjusted 2739 **/ 2740 void i40e_vlan_stripping_disable(struct i40e_vsi *vsi) 2741 { 2742 struct i40e_vsi_context ctxt; 2743 i40e_status ret; 2744 2745 /* Don't modify stripping options if a port VLAN is active */ 2746 if (vsi->info.pvid) 2747 return; 2748 2749 if ((vsi->info.valid_sections & 2750 cpu_to_le16(I40E_AQ_VSI_PROP_VLAN_VALID)) && 2751 ((vsi->info.port_vlan_flags & I40E_AQ_VSI_PVLAN_EMOD_MASK) == 2752 I40E_AQ_VSI_PVLAN_EMOD_MASK)) 2753 return; /* already disabled */ 2754 2755 vsi->info.valid_sections = cpu_to_le16(I40E_AQ_VSI_PROP_VLAN_VALID); 2756 vsi->info.port_vlan_flags = I40E_AQ_VSI_PVLAN_MODE_ALL | 2757 I40E_AQ_VSI_PVLAN_EMOD_NOTHING; 2758 2759 ctxt.seid = vsi->seid; 2760 ctxt.info = vsi->info; 2761 ret = i40e_aq_update_vsi_params(&vsi->back->hw, &ctxt, NULL); 2762 if (ret) { 2763 dev_info(&vsi->back->pdev->dev, 2764 "update vlan stripping failed, err %s aq_err %s\n", 2765 i40e_stat_str(&vsi->back->hw, ret), 2766 i40e_aq_str(&vsi->back->hw, 2767 vsi->back->hw.aq.asq_last_status)); 2768 } 2769 } 2770 2771 /** 2772 * i40e_add_vlan_all_mac - Add a MAC/VLAN filter for each existing MAC address 2773 * @vsi: the vsi being configured 2774 * @vid: vlan id to be added (0 = untagged only , -1 = any) 2775 * 2776 * This is a helper function for adding a new MAC/VLAN filter with the 2777 * specified VLAN for each existing MAC address already in the hash table. 2778 * This function does *not* perform any accounting to update filters based on 2779 * VLAN mode. 2780 * 2781 * NOTE: this function expects to be called while under the 2782 * mac_filter_hash_lock 2783 **/ 2784 int i40e_add_vlan_all_mac(struct i40e_vsi *vsi, s16 vid) 2785 { 2786 struct i40e_mac_filter *f, *add_f; 2787 struct hlist_node *h; 2788 int bkt; 2789 2790 hash_for_each_safe(vsi->mac_filter_hash, bkt, h, f, hlist) { 2791 if (f->state == I40E_FILTER_REMOVE) 2792 continue; 2793 add_f = i40e_add_filter(vsi, f->macaddr, vid); 2794 if (!add_f) { 2795 dev_info(&vsi->back->pdev->dev, 2796 "Could not add vlan filter %d for %pM\n", 2797 vid, f->macaddr); 2798 return -ENOMEM; 2799 } 2800 } 2801 2802 return 0; 2803 } 2804 2805 /** 2806 * i40e_vsi_add_vlan - Add VSI membership for given VLAN 2807 * @vsi: the VSI being configured 2808 * @vid: VLAN id to be added 2809 **/ 2810 int i40e_vsi_add_vlan(struct i40e_vsi *vsi, u16 vid) 2811 { 2812 int err; 2813 2814 if (vsi->info.pvid) 2815 return -EINVAL; 2816 2817 /* The network stack will attempt to add VID=0, with the intention to 2818 * receive priority tagged packets with a VLAN of 0. Our HW receives 2819 * these packets by default when configured to receive untagged 2820 * packets, so we don't need to add a filter for this case. 2821 * Additionally, HW interprets adding a VID=0 filter as meaning to 2822 * receive *only* tagged traffic and stops receiving untagged traffic. 2823 * Thus, we do not want to actually add a filter for VID=0 2824 */ 2825 if (!vid) 2826 return 0; 2827 2828 /* Locked once because all functions invoked below iterates list*/ 2829 spin_lock_bh(&vsi->mac_filter_hash_lock); 2830 err = i40e_add_vlan_all_mac(vsi, vid); 2831 spin_unlock_bh(&vsi->mac_filter_hash_lock); 2832 if (err) 2833 return err; 2834 2835 /* schedule our worker thread which will take care of 2836 * applying the new filter changes 2837 */ 2838 i40e_service_event_schedule(vsi->back); 2839 return 0; 2840 } 2841 2842 /** 2843 * i40e_rm_vlan_all_mac - Remove MAC/VLAN pair for all MAC with the given VLAN 2844 * @vsi: the vsi being configured 2845 * @vid: vlan id to be removed (0 = untagged only , -1 = any) 2846 * 2847 * This function should be used to remove all VLAN filters which match the 2848 * given VID. It does not schedule the service event and does not take the 2849 * mac_filter_hash_lock so it may be combined with other operations under 2850 * a single invocation of the mac_filter_hash_lock. 2851 * 2852 * NOTE: this function expects to be called while under the 2853 * mac_filter_hash_lock 2854 */ 2855 void i40e_rm_vlan_all_mac(struct i40e_vsi *vsi, s16 vid) 2856 { 2857 struct i40e_mac_filter *f; 2858 struct hlist_node *h; 2859 int bkt; 2860 2861 hash_for_each_safe(vsi->mac_filter_hash, bkt, h, f, hlist) { 2862 if (f->vlan == vid) 2863 __i40e_del_filter(vsi, f); 2864 } 2865 } 2866 2867 /** 2868 * i40e_vsi_kill_vlan - Remove VSI membership for given VLAN 2869 * @vsi: the VSI being configured 2870 * @vid: VLAN id to be removed 2871 **/ 2872 void i40e_vsi_kill_vlan(struct i40e_vsi *vsi, u16 vid) 2873 { 2874 if (!vid || vsi->info.pvid) 2875 return; 2876 2877 spin_lock_bh(&vsi->mac_filter_hash_lock); 2878 i40e_rm_vlan_all_mac(vsi, vid); 2879 spin_unlock_bh(&vsi->mac_filter_hash_lock); 2880 2881 /* schedule our worker thread which will take care of 2882 * applying the new filter changes 2883 */ 2884 i40e_service_event_schedule(vsi->back); 2885 } 2886 2887 /** 2888 * i40e_vlan_rx_add_vid - Add a vlan id filter to HW offload 2889 * @netdev: network interface to be adjusted 2890 * @proto: unused protocol value 2891 * @vid: vlan id to be added 2892 * 2893 * net_device_ops implementation for adding vlan ids 2894 **/ 2895 static int i40e_vlan_rx_add_vid(struct net_device *netdev, 2896 __always_unused __be16 proto, u16 vid) 2897 { 2898 struct i40e_netdev_priv *np = netdev_priv(netdev); 2899 struct i40e_vsi *vsi = np->vsi; 2900 int ret = 0; 2901 2902 if (vid >= VLAN_N_VID) 2903 return -EINVAL; 2904 2905 ret = i40e_vsi_add_vlan(vsi, vid); 2906 if (!ret) 2907 set_bit(vid, vsi->active_vlans); 2908 2909 return ret; 2910 } 2911 2912 /** 2913 * i40e_vlan_rx_add_vid_up - Add a vlan id filter to HW offload in UP path 2914 * @netdev: network interface to be adjusted 2915 * @proto: unused protocol value 2916 * @vid: vlan id to be added 2917 **/ 2918 static void i40e_vlan_rx_add_vid_up(struct net_device *netdev, 2919 __always_unused __be16 proto, u16 vid) 2920 { 2921 struct i40e_netdev_priv *np = netdev_priv(netdev); 2922 struct i40e_vsi *vsi = np->vsi; 2923 2924 if (vid >= VLAN_N_VID) 2925 return; 2926 set_bit(vid, vsi->active_vlans); 2927 } 2928 2929 /** 2930 * i40e_vlan_rx_kill_vid - Remove a vlan id filter from HW offload 2931 * @netdev: network interface to be adjusted 2932 * @proto: unused protocol value 2933 * @vid: vlan id to be removed 2934 * 2935 * net_device_ops implementation for removing vlan ids 2936 **/ 2937 static int i40e_vlan_rx_kill_vid(struct net_device *netdev, 2938 __always_unused __be16 proto, u16 vid) 2939 { 2940 struct i40e_netdev_priv *np = netdev_priv(netdev); 2941 struct i40e_vsi *vsi = np->vsi; 2942 2943 /* return code is ignored as there is nothing a user 2944 * can do about failure to remove and a log message was 2945 * already printed from the other function 2946 */ 2947 i40e_vsi_kill_vlan(vsi, vid); 2948 2949 clear_bit(vid, vsi->active_vlans); 2950 2951 return 0; 2952 } 2953 2954 /** 2955 * i40e_restore_vlan - Reinstate vlans when vsi/netdev comes back up 2956 * @vsi: the vsi being brought back up 2957 **/ 2958 static void i40e_restore_vlan(struct i40e_vsi *vsi) 2959 { 2960 u16 vid; 2961 2962 if (!vsi->netdev) 2963 return; 2964 2965 if (vsi->netdev->features & NETIF_F_HW_VLAN_CTAG_RX) 2966 i40e_vlan_stripping_enable(vsi); 2967 else 2968 i40e_vlan_stripping_disable(vsi); 2969 2970 for_each_set_bit(vid, vsi->active_vlans, VLAN_N_VID) 2971 i40e_vlan_rx_add_vid_up(vsi->netdev, htons(ETH_P_8021Q), 2972 vid); 2973 } 2974 2975 /** 2976 * i40e_vsi_add_pvid - Add pvid for the VSI 2977 * @vsi: the vsi being adjusted 2978 * @vid: the vlan id to set as a PVID 2979 **/ 2980 int i40e_vsi_add_pvid(struct i40e_vsi *vsi, u16 vid) 2981 { 2982 struct i40e_vsi_context ctxt; 2983 i40e_status ret; 2984 2985 vsi->info.valid_sections = cpu_to_le16(I40E_AQ_VSI_PROP_VLAN_VALID); 2986 vsi->info.pvid = cpu_to_le16(vid); 2987 vsi->info.port_vlan_flags = I40E_AQ_VSI_PVLAN_MODE_TAGGED | 2988 I40E_AQ_VSI_PVLAN_INSERT_PVID | 2989 I40E_AQ_VSI_PVLAN_EMOD_STR; 2990 2991 ctxt.seid = vsi->seid; 2992 ctxt.info = vsi->info; 2993 ret = i40e_aq_update_vsi_params(&vsi->back->hw, &ctxt, NULL); 2994 if (ret) { 2995 dev_info(&vsi->back->pdev->dev, 2996 "add pvid failed, err %s aq_err %s\n", 2997 i40e_stat_str(&vsi->back->hw, ret), 2998 i40e_aq_str(&vsi->back->hw, 2999 vsi->back->hw.aq.asq_last_status)); 3000 return -ENOENT; 3001 } 3002 3003 return 0; 3004 } 3005 3006 /** 3007 * i40e_vsi_remove_pvid - Remove the pvid from the VSI 3008 * @vsi: the vsi being adjusted 3009 * 3010 * Just use the vlan_rx_register() service to put it back to normal 3011 **/ 3012 void i40e_vsi_remove_pvid(struct i40e_vsi *vsi) 3013 { 3014 vsi->info.pvid = 0; 3015 3016 i40e_vlan_stripping_disable(vsi); 3017 } 3018 3019 /** 3020 * i40e_vsi_setup_tx_resources - Allocate VSI Tx queue resources 3021 * @vsi: ptr to the VSI 3022 * 3023 * If this function returns with an error, then it's possible one or 3024 * more of the rings is populated (while the rest are not). It is the 3025 * callers duty to clean those orphaned rings. 3026 * 3027 * Return 0 on success, negative on failure 3028 **/ 3029 static int i40e_vsi_setup_tx_resources(struct i40e_vsi *vsi) 3030 { 3031 int i, err = 0; 3032 3033 for (i = 0; i < vsi->num_queue_pairs && !err; i++) 3034 err = i40e_setup_tx_descriptors(vsi->tx_rings[i]); 3035 3036 if (!i40e_enabled_xdp_vsi(vsi)) 3037 return err; 3038 3039 for (i = 0; i < vsi->num_queue_pairs && !err; i++) 3040 err = i40e_setup_tx_descriptors(vsi->xdp_rings[i]); 3041 3042 return err; 3043 } 3044 3045 /** 3046 * i40e_vsi_free_tx_resources - Free Tx resources for VSI queues 3047 * @vsi: ptr to the VSI 3048 * 3049 * Free VSI's transmit software resources 3050 **/ 3051 static void i40e_vsi_free_tx_resources(struct i40e_vsi *vsi) 3052 { 3053 int i; 3054 3055 if (vsi->tx_rings) { 3056 for (i = 0; i < vsi->num_queue_pairs; i++) 3057 if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc) 3058 i40e_free_tx_resources(vsi->tx_rings[i]); 3059 } 3060 3061 if (vsi->xdp_rings) { 3062 for (i = 0; i < vsi->num_queue_pairs; i++) 3063 if (vsi->xdp_rings[i] && vsi->xdp_rings[i]->desc) 3064 i40e_free_tx_resources(vsi->xdp_rings[i]); 3065 } 3066 } 3067 3068 /** 3069 * i40e_vsi_setup_rx_resources - Allocate VSI queues Rx resources 3070 * @vsi: ptr to the VSI 3071 * 3072 * If this function returns with an error, then it's possible one or 3073 * more of the rings is populated (while the rest are not). It is the 3074 * callers duty to clean those orphaned rings. 3075 * 3076 * Return 0 on success, negative on failure 3077 **/ 3078 static int i40e_vsi_setup_rx_resources(struct i40e_vsi *vsi) 3079 { 3080 int i, err = 0; 3081 3082 for (i = 0; i < vsi->num_queue_pairs && !err; i++) 3083 err = i40e_setup_rx_descriptors(vsi->rx_rings[i]); 3084 return err; 3085 } 3086 3087 /** 3088 * i40e_vsi_free_rx_resources - Free Rx Resources for VSI queues 3089 * @vsi: ptr to the VSI 3090 * 3091 * Free all receive software resources 3092 **/ 3093 static void i40e_vsi_free_rx_resources(struct i40e_vsi *vsi) 3094 { 3095 int i; 3096 3097 if (!vsi->rx_rings) 3098 return; 3099 3100 for (i = 0; i < vsi->num_queue_pairs; i++) 3101 if (vsi->rx_rings[i] && vsi->rx_rings[i]->desc) 3102 i40e_free_rx_resources(vsi->rx_rings[i]); 3103 } 3104 3105 /** 3106 * i40e_config_xps_tx_ring - Configure XPS for a Tx ring 3107 * @ring: The Tx ring to configure 3108 * 3109 * This enables/disables XPS for a given Tx descriptor ring 3110 * based on the TCs enabled for the VSI that ring belongs to. 3111 **/ 3112 static void i40e_config_xps_tx_ring(struct i40e_ring *ring) 3113 { 3114 int cpu; 3115 3116 if (!ring->q_vector || !ring->netdev || ring->ch) 3117 return; 3118 3119 /* We only initialize XPS once, so as not to overwrite user settings */ 3120 if (test_and_set_bit(__I40E_TX_XPS_INIT_DONE, ring->state)) 3121 return; 3122 3123 cpu = cpumask_local_spread(ring->q_vector->v_idx, -1); 3124 netif_set_xps_queue(ring->netdev, get_cpu_mask(cpu), 3125 ring->queue_index); 3126 } 3127 3128 /** 3129 * i40e_xsk_pool - Retrieve the AF_XDP buffer pool if XDP and ZC is enabled 3130 * @ring: The Tx or Rx ring 3131 * 3132 * Returns the AF_XDP buffer pool or NULL. 3133 **/ 3134 static struct xsk_buff_pool *i40e_xsk_pool(struct i40e_ring *ring) 3135 { 3136 bool xdp_on = i40e_enabled_xdp_vsi(ring->vsi); 3137 int qid = ring->queue_index; 3138 3139 if (ring_is_xdp(ring)) 3140 qid -= ring->vsi->alloc_queue_pairs; 3141 3142 if (!xdp_on || !test_bit(qid, ring->vsi->af_xdp_zc_qps)) 3143 return NULL; 3144 3145 return xsk_get_pool_from_qid(ring->vsi->netdev, qid); 3146 } 3147 3148 /** 3149 * i40e_configure_tx_ring - Configure a transmit ring context and rest 3150 * @ring: The Tx ring to configure 3151 * 3152 * Configure the Tx descriptor ring in the HMC context. 3153 **/ 3154 static int i40e_configure_tx_ring(struct i40e_ring *ring) 3155 { 3156 struct i40e_vsi *vsi = ring->vsi; 3157 u16 pf_q = vsi->base_queue + ring->queue_index; 3158 struct i40e_hw *hw = &vsi->back->hw; 3159 struct i40e_hmc_obj_txq tx_ctx; 3160 i40e_status err = 0; 3161 u32 qtx_ctl = 0; 3162 3163 if (ring_is_xdp(ring)) 3164 ring->xsk_pool = i40e_xsk_pool(ring); 3165 3166 /* some ATR related tx ring init */ 3167 if (vsi->back->flags & I40E_FLAG_FD_ATR_ENABLED) { 3168 ring->atr_sample_rate = vsi->back->atr_sample_rate; 3169 ring->atr_count = 0; 3170 } else { 3171 ring->atr_sample_rate = 0; 3172 } 3173 3174 /* configure XPS */ 3175 i40e_config_xps_tx_ring(ring); 3176 3177 /* clear the context structure first */ 3178 memset(&tx_ctx, 0, sizeof(tx_ctx)); 3179 3180 tx_ctx.new_context = 1; 3181 tx_ctx.base = (ring->dma / 128); 3182 tx_ctx.qlen = ring->count; 3183 tx_ctx.fd_ena = !!(vsi->back->flags & (I40E_FLAG_FD_SB_ENABLED | 3184 I40E_FLAG_FD_ATR_ENABLED)); 3185 tx_ctx.timesync_ena = !!(vsi->back->flags & I40E_FLAG_PTP); 3186 /* FDIR VSI tx ring can still use RS bit and writebacks */ 3187 if (vsi->type != I40E_VSI_FDIR) 3188 tx_ctx.head_wb_ena = 1; 3189 tx_ctx.head_wb_addr = ring->dma + 3190 (ring->count * sizeof(struct i40e_tx_desc)); 3191 3192 /* As part of VSI creation/update, FW allocates certain 3193 * Tx arbitration queue sets for each TC enabled for 3194 * the VSI. The FW returns the handles to these queue 3195 * sets as part of the response buffer to Add VSI, 3196 * Update VSI, etc. AQ commands. It is expected that 3197 * these queue set handles be associated with the Tx 3198 * queues by the driver as part of the TX queue context 3199 * initialization. This has to be done regardless of 3200 * DCB as by default everything is mapped to TC0. 3201 */ 3202 3203 if (ring->ch) 3204 tx_ctx.rdylist = 3205 le16_to_cpu(ring->ch->info.qs_handle[ring->dcb_tc]); 3206 3207 else 3208 tx_ctx.rdylist = le16_to_cpu(vsi->info.qs_handle[ring->dcb_tc]); 3209 3210 tx_ctx.rdylist_act = 0; 3211 3212 /* clear the context in the HMC */ 3213 err = i40e_clear_lan_tx_queue_context(hw, pf_q); 3214 if (err) { 3215 dev_info(&vsi->back->pdev->dev, 3216 "Failed to clear LAN Tx queue context on Tx ring %d (pf_q %d), error: %d\n", 3217 ring->queue_index, pf_q, err); 3218 return -ENOMEM; 3219 } 3220 3221 /* set the context in the HMC */ 3222 err = i40e_set_lan_tx_queue_context(hw, pf_q, &tx_ctx); 3223 if (err) { 3224 dev_info(&vsi->back->pdev->dev, 3225 "Failed to set LAN Tx queue context on Tx ring %d (pf_q %d, error: %d\n", 3226 ring->queue_index, pf_q, err); 3227 return -ENOMEM; 3228 } 3229 3230 /* Now associate this queue with this PCI function */ 3231 if (ring->ch) { 3232 if (ring->ch->type == I40E_VSI_VMDQ2) 3233 qtx_ctl = I40E_QTX_CTL_VM_QUEUE; 3234 else 3235 return -EINVAL; 3236 3237 qtx_ctl |= (ring->ch->vsi_number << 3238 I40E_QTX_CTL_VFVM_INDX_SHIFT) & 3239 I40E_QTX_CTL_VFVM_INDX_MASK; 3240 } else { 3241 if (vsi->type == I40E_VSI_VMDQ2) { 3242 qtx_ctl = I40E_QTX_CTL_VM_QUEUE; 3243 qtx_ctl |= ((vsi->id) << I40E_QTX_CTL_VFVM_INDX_SHIFT) & 3244 I40E_QTX_CTL_VFVM_INDX_MASK; 3245 } else { 3246 qtx_ctl = I40E_QTX_CTL_PF_QUEUE; 3247 } 3248 } 3249 3250 qtx_ctl |= ((hw->pf_id << I40E_QTX_CTL_PF_INDX_SHIFT) & 3251 I40E_QTX_CTL_PF_INDX_MASK); 3252 wr32(hw, I40E_QTX_CTL(pf_q), qtx_ctl); 3253 i40e_flush(hw); 3254 3255 /* cache tail off for easier writes later */ 3256 ring->tail = hw->hw_addr + I40E_QTX_TAIL(pf_q); 3257 3258 return 0; 3259 } 3260 3261 /** 3262 * i40e_rx_offset - Return expected offset into page to access data 3263 * @rx_ring: Ring we are requesting offset of 3264 * 3265 * Returns the offset value for ring into the data buffer. 3266 */ 3267 static unsigned int i40e_rx_offset(struct i40e_ring *rx_ring) 3268 { 3269 return ring_uses_build_skb(rx_ring) ? I40E_SKB_PAD : 0; 3270 } 3271 3272 /** 3273 * i40e_configure_rx_ring - Configure a receive ring context 3274 * @ring: The Rx ring to configure 3275 * 3276 * Configure the Rx descriptor ring in the HMC context. 3277 **/ 3278 static int i40e_configure_rx_ring(struct i40e_ring *ring) 3279 { 3280 struct i40e_vsi *vsi = ring->vsi; 3281 u32 chain_len = vsi->back->hw.func_caps.rx_buf_chain_len; 3282 u16 pf_q = vsi->base_queue + ring->queue_index; 3283 struct i40e_hw *hw = &vsi->back->hw; 3284 struct i40e_hmc_obj_rxq rx_ctx; 3285 i40e_status err = 0; 3286 bool ok; 3287 int ret; 3288 3289 bitmap_zero(ring->state, __I40E_RING_STATE_NBITS); 3290 3291 /* clear the context structure first */ 3292 memset(&rx_ctx, 0, sizeof(rx_ctx)); 3293 3294 if (ring->vsi->type == I40E_VSI_MAIN) 3295 xdp_rxq_info_unreg_mem_model(&ring->xdp_rxq); 3296 3297 kfree(ring->rx_bi); 3298 ring->xsk_pool = i40e_xsk_pool(ring); 3299 if (ring->xsk_pool) { 3300 ret = i40e_alloc_rx_bi_zc(ring); 3301 if (ret) 3302 return ret; 3303 ring->rx_buf_len = 3304 xsk_pool_get_rx_frame_size(ring->xsk_pool); 3305 /* For AF_XDP ZC, we disallow packets to span on 3306 * multiple buffers, thus letting us skip that 3307 * handling in the fast-path. 3308 */ 3309 chain_len = 1; 3310 ret = xdp_rxq_info_reg_mem_model(&ring->xdp_rxq, 3311 MEM_TYPE_XSK_BUFF_POOL, 3312 NULL); 3313 if (ret) 3314 return ret; 3315 dev_info(&vsi->back->pdev->dev, 3316 "Registered XDP mem model MEM_TYPE_XSK_BUFF_POOL on Rx ring %d\n", 3317 ring->queue_index); 3318 3319 } else { 3320 ret = i40e_alloc_rx_bi(ring); 3321 if (ret) 3322 return ret; 3323 ring->rx_buf_len = vsi->rx_buf_len; 3324 if (ring->vsi->type == I40E_VSI_MAIN) { 3325 ret = xdp_rxq_info_reg_mem_model(&ring->xdp_rxq, 3326 MEM_TYPE_PAGE_SHARED, 3327 NULL); 3328 if (ret) 3329 return ret; 3330 } 3331 } 3332 3333 rx_ctx.dbuff = DIV_ROUND_UP(ring->rx_buf_len, 3334 BIT_ULL(I40E_RXQ_CTX_DBUFF_SHIFT)); 3335 3336 rx_ctx.base = (ring->dma / 128); 3337 rx_ctx.qlen = ring->count; 3338 3339 /* use 16 byte descriptors */ 3340 rx_ctx.dsize = 0; 3341 3342 /* descriptor type is always zero 3343 * rx_ctx.dtype = 0; 3344 */ 3345 rx_ctx.hsplit_0 = 0; 3346 3347 rx_ctx.rxmax = min_t(u16, vsi->max_frame, chain_len * ring->rx_buf_len); 3348 if (hw->revision_id == 0) 3349 rx_ctx.lrxqthresh = 0; 3350 else 3351 rx_ctx.lrxqthresh = 1; 3352 rx_ctx.crcstrip = 1; 3353 rx_ctx.l2tsel = 1; 3354 /* this controls whether VLAN is stripped from inner headers */ 3355 rx_ctx.showiv = 0; 3356 /* set the prefena field to 1 because the manual says to */ 3357 rx_ctx.prefena = 1; 3358 3359 /* clear the context in the HMC */ 3360 err = i40e_clear_lan_rx_queue_context(hw, pf_q); 3361 if (err) { 3362 dev_info(&vsi->back->pdev->dev, 3363 "Failed to clear LAN Rx queue context on Rx ring %d (pf_q %d), error: %d\n", 3364 ring->queue_index, pf_q, err); 3365 return -ENOMEM; 3366 } 3367 3368 /* set the context in the HMC */ 3369 err = i40e_set_lan_rx_queue_context(hw, pf_q, &rx_ctx); 3370 if (err) { 3371 dev_info(&vsi->back->pdev->dev, 3372 "Failed to set LAN Rx queue context on Rx ring %d (pf_q %d), error: %d\n", 3373 ring->queue_index, pf_q, err); 3374 return -ENOMEM; 3375 } 3376 3377 /* configure Rx buffer alignment */ 3378 if (!vsi->netdev || (vsi->back->flags & I40E_FLAG_LEGACY_RX)) 3379 clear_ring_build_skb_enabled(ring); 3380 else 3381 set_ring_build_skb_enabled(ring); 3382 3383 ring->rx_offset = i40e_rx_offset(ring); 3384 3385 /* cache tail for quicker writes, and clear the reg before use */ 3386 ring->tail = hw->hw_addr + I40E_QRX_TAIL(pf_q); 3387 writel(0, ring->tail); 3388 3389 if (ring->xsk_pool) { 3390 xsk_pool_set_rxq_info(ring->xsk_pool, &ring->xdp_rxq); 3391 ok = i40e_alloc_rx_buffers_zc(ring, I40E_DESC_UNUSED(ring)); 3392 } else { 3393 ok = !i40e_alloc_rx_buffers(ring, I40E_DESC_UNUSED(ring)); 3394 } 3395 if (!ok) { 3396 /* Log this in case the user has forgotten to give the kernel 3397 * any buffers, even later in the application. 3398 */ 3399 dev_info(&vsi->back->pdev->dev, 3400 "Failed to allocate some buffers on %sRx ring %d (pf_q %d)\n", 3401 ring->xsk_pool ? "AF_XDP ZC enabled " : "", 3402 ring->queue_index, pf_q); 3403 } 3404 3405 return 0; 3406 } 3407 3408 /** 3409 * i40e_vsi_configure_tx - Configure the VSI for Tx 3410 * @vsi: VSI structure describing this set of rings and resources 3411 * 3412 * Configure the Tx VSI for operation. 3413 **/ 3414 static int i40e_vsi_configure_tx(struct i40e_vsi *vsi) 3415 { 3416 int err = 0; 3417 u16 i; 3418 3419 for (i = 0; (i < vsi->num_queue_pairs) && !err; i++) 3420 err = i40e_configure_tx_ring(vsi->tx_rings[i]); 3421 3422 if (err || !i40e_enabled_xdp_vsi(vsi)) 3423 return err; 3424 3425 for (i = 0; (i < vsi->num_queue_pairs) && !err; i++) 3426 err = i40e_configure_tx_ring(vsi->xdp_rings[i]); 3427 3428 return err; 3429 } 3430 3431 /** 3432 * i40e_vsi_configure_rx - Configure the VSI for Rx 3433 * @vsi: the VSI being configured 3434 * 3435 * Configure the Rx VSI for operation. 3436 **/ 3437 static int i40e_vsi_configure_rx(struct i40e_vsi *vsi) 3438 { 3439 int err = 0; 3440 u16 i; 3441 3442 if (!vsi->netdev || (vsi->back->flags & I40E_FLAG_LEGACY_RX)) { 3443 vsi->max_frame = I40E_MAX_RXBUFFER; 3444 vsi->rx_buf_len = I40E_RXBUFFER_2048; 3445 #if (PAGE_SIZE < 8192) 3446 } else if (!I40E_2K_TOO_SMALL_WITH_PADDING && 3447 (vsi->netdev->mtu <= ETH_DATA_LEN)) { 3448 vsi->max_frame = I40E_RXBUFFER_1536 - NET_IP_ALIGN; 3449 vsi->rx_buf_len = I40E_RXBUFFER_1536 - NET_IP_ALIGN; 3450 #endif 3451 } else { 3452 vsi->max_frame = I40E_MAX_RXBUFFER; 3453 vsi->rx_buf_len = (PAGE_SIZE < 8192) ? I40E_RXBUFFER_3072 : 3454 I40E_RXBUFFER_2048; 3455 } 3456 3457 /* set up individual rings */ 3458 for (i = 0; i < vsi->num_queue_pairs && !err; i++) 3459 err = i40e_configure_rx_ring(vsi->rx_rings[i]); 3460 3461 return err; 3462 } 3463 3464 /** 3465 * i40e_vsi_config_dcb_rings - Update rings to reflect DCB TC 3466 * @vsi: ptr to the VSI 3467 **/ 3468 static void i40e_vsi_config_dcb_rings(struct i40e_vsi *vsi) 3469 { 3470 struct i40e_ring *tx_ring, *rx_ring; 3471 u16 qoffset, qcount; 3472 int i, n; 3473 3474 if (!(vsi->back->flags & I40E_FLAG_DCB_ENABLED)) { 3475 /* Reset the TC information */ 3476 for (i = 0; i < vsi->num_queue_pairs; i++) { 3477 rx_ring = vsi->rx_rings[i]; 3478 tx_ring = vsi->tx_rings[i]; 3479 rx_ring->dcb_tc = 0; 3480 tx_ring->dcb_tc = 0; 3481 } 3482 return; 3483 } 3484 3485 for (n = 0; n < I40E_MAX_TRAFFIC_CLASS; n++) { 3486 if (!(vsi->tc_config.enabled_tc & BIT_ULL(n))) 3487 continue; 3488 3489 qoffset = vsi->tc_config.tc_info[n].qoffset; 3490 qcount = vsi->tc_config.tc_info[n].qcount; 3491 for (i = qoffset; i < (qoffset + qcount); i++) { 3492 rx_ring = vsi->rx_rings[i]; 3493 tx_ring = vsi->tx_rings[i]; 3494 rx_ring->dcb_tc = n; 3495 tx_ring->dcb_tc = n; 3496 } 3497 } 3498 } 3499 3500 /** 3501 * i40e_set_vsi_rx_mode - Call set_rx_mode on a VSI 3502 * @vsi: ptr to the VSI 3503 **/ 3504 static void i40e_set_vsi_rx_mode(struct i40e_vsi *vsi) 3505 { 3506 if (vsi->netdev) 3507 i40e_set_rx_mode(vsi->netdev); 3508 } 3509 3510 /** 3511 * i40e_reset_fdir_filter_cnt - Reset flow director filter counters 3512 * @pf: Pointer to the targeted PF 3513 * 3514 * Set all flow director counters to 0. 3515 */ 3516 static void i40e_reset_fdir_filter_cnt(struct i40e_pf *pf) 3517 { 3518 pf->fd_tcp4_filter_cnt = 0; 3519 pf->fd_udp4_filter_cnt = 0; 3520 pf->fd_sctp4_filter_cnt = 0; 3521 pf->fd_ip4_filter_cnt = 0; 3522 pf->fd_tcp6_filter_cnt = 0; 3523 pf->fd_udp6_filter_cnt = 0; 3524 pf->fd_sctp6_filter_cnt = 0; 3525 pf->fd_ip6_filter_cnt = 0; 3526 } 3527 3528 /** 3529 * i40e_fdir_filter_restore - Restore the Sideband Flow Director filters 3530 * @vsi: Pointer to the targeted VSI 3531 * 3532 * This function replays the hlist on the hw where all the SB Flow Director 3533 * filters were saved. 3534 **/ 3535 static void i40e_fdir_filter_restore(struct i40e_vsi *vsi) 3536 { 3537 struct i40e_fdir_filter *filter; 3538 struct i40e_pf *pf = vsi->back; 3539 struct hlist_node *node; 3540 3541 if (!(pf->flags & I40E_FLAG_FD_SB_ENABLED)) 3542 return; 3543 3544 /* Reset FDir counters as we're replaying all existing filters */ 3545 i40e_reset_fdir_filter_cnt(pf); 3546 3547 hlist_for_each_entry_safe(filter, node, 3548 &pf->fdir_filter_list, fdir_node) { 3549 i40e_add_del_fdir(vsi, filter, true); 3550 } 3551 } 3552 3553 /** 3554 * i40e_vsi_configure - Set up the VSI for action 3555 * @vsi: the VSI being configured 3556 **/ 3557 static int i40e_vsi_configure(struct i40e_vsi *vsi) 3558 { 3559 int err; 3560 3561 i40e_set_vsi_rx_mode(vsi); 3562 i40e_restore_vlan(vsi); 3563 i40e_vsi_config_dcb_rings(vsi); 3564 err = i40e_vsi_configure_tx(vsi); 3565 if (!err) 3566 err = i40e_vsi_configure_rx(vsi); 3567 3568 return err; 3569 } 3570 3571 /** 3572 * i40e_vsi_configure_msix - MSIX mode Interrupt Config in the HW 3573 * @vsi: the VSI being configured 3574 **/ 3575 static void i40e_vsi_configure_msix(struct i40e_vsi *vsi) 3576 { 3577 bool has_xdp = i40e_enabled_xdp_vsi(vsi); 3578 struct i40e_pf *pf = vsi->back; 3579 struct i40e_hw *hw = &pf->hw; 3580 u16 vector; 3581 int i, q; 3582 u32 qp; 3583 3584 /* The interrupt indexing is offset by 1 in the PFINT_ITRn 3585 * and PFINT_LNKLSTn registers, e.g.: 3586 * PFINT_ITRn[0..n-1] gets msix-1..msix-n (qpair interrupts) 3587 */ 3588 qp = vsi->base_queue; 3589 vector = vsi->base_vector; 3590 for (i = 0; i < vsi->num_q_vectors; i++, vector++) { 3591 struct i40e_q_vector *q_vector = vsi->q_vectors[i]; 3592 3593 q_vector->rx.next_update = jiffies + 1; 3594 q_vector->rx.target_itr = 3595 ITR_TO_REG(vsi->rx_rings[i]->itr_setting); 3596 wr32(hw, I40E_PFINT_ITRN(I40E_RX_ITR, vector - 1), 3597 q_vector->rx.target_itr >> 1); 3598 q_vector->rx.current_itr = q_vector->rx.target_itr; 3599 3600 q_vector->tx.next_update = jiffies + 1; 3601 q_vector->tx.target_itr = 3602 ITR_TO_REG(vsi->tx_rings[i]->itr_setting); 3603 wr32(hw, I40E_PFINT_ITRN(I40E_TX_ITR, vector - 1), 3604 q_vector->tx.target_itr >> 1); 3605 q_vector->tx.current_itr = q_vector->tx.target_itr; 3606 3607 wr32(hw, I40E_PFINT_RATEN(vector - 1), 3608 i40e_intrl_usec_to_reg(vsi->int_rate_limit)); 3609 3610 /* Linked list for the queuepairs assigned to this vector */ 3611 wr32(hw, I40E_PFINT_LNKLSTN(vector - 1), qp); 3612 for (q = 0; q < q_vector->num_ringpairs; q++) { 3613 u32 nextqp = has_xdp ? qp + vsi->alloc_queue_pairs : qp; 3614 u32 val; 3615 3616 val = I40E_QINT_RQCTL_CAUSE_ENA_MASK | 3617 (I40E_RX_ITR << I40E_QINT_RQCTL_ITR_INDX_SHIFT) | 3618 (vector << I40E_QINT_RQCTL_MSIX_INDX_SHIFT) | 3619 (nextqp << I40E_QINT_RQCTL_NEXTQ_INDX_SHIFT) | 3620 (I40E_QUEUE_TYPE_TX << 3621 I40E_QINT_RQCTL_NEXTQ_TYPE_SHIFT); 3622 3623 wr32(hw, I40E_QINT_RQCTL(qp), val); 3624 3625 if (has_xdp) { 3626 val = I40E_QINT_TQCTL_CAUSE_ENA_MASK | 3627 (I40E_TX_ITR << I40E_QINT_TQCTL_ITR_INDX_SHIFT) | 3628 (vector << I40E_QINT_TQCTL_MSIX_INDX_SHIFT) | 3629 (qp << I40E_QINT_TQCTL_NEXTQ_INDX_SHIFT) | 3630 (I40E_QUEUE_TYPE_TX << 3631 I40E_QINT_TQCTL_NEXTQ_TYPE_SHIFT); 3632 3633 wr32(hw, I40E_QINT_TQCTL(nextqp), val); 3634 } 3635 3636 val = I40E_QINT_TQCTL_CAUSE_ENA_MASK | 3637 (I40E_TX_ITR << I40E_QINT_TQCTL_ITR_INDX_SHIFT) | 3638 (vector << I40E_QINT_TQCTL_MSIX_INDX_SHIFT) | 3639 ((qp + 1) << I40E_QINT_TQCTL_NEXTQ_INDX_SHIFT) | 3640 (I40E_QUEUE_TYPE_RX << 3641 I40E_QINT_TQCTL_NEXTQ_TYPE_SHIFT); 3642 3643 /* Terminate the linked list */ 3644 if (q == (q_vector->num_ringpairs - 1)) 3645 val |= (I40E_QUEUE_END_OF_LIST << 3646 I40E_QINT_TQCTL_NEXTQ_INDX_SHIFT); 3647 3648 wr32(hw, I40E_QINT_TQCTL(qp), val); 3649 qp++; 3650 } 3651 } 3652 3653 i40e_flush(hw); 3654 } 3655 3656 /** 3657 * i40e_enable_misc_int_causes - enable the non-queue interrupts 3658 * @pf: pointer to private device data structure 3659 **/ 3660 static void i40e_enable_misc_int_causes(struct i40e_pf *pf) 3661 { 3662 struct i40e_hw *hw = &pf->hw; 3663 u32 val; 3664 3665 /* clear things first */ 3666 wr32(hw, I40E_PFINT_ICR0_ENA, 0); /* disable all */ 3667 rd32(hw, I40E_PFINT_ICR0); /* read to clear */ 3668 3669 val = I40E_PFINT_ICR0_ENA_ECC_ERR_MASK | 3670 I40E_PFINT_ICR0_ENA_MAL_DETECT_MASK | 3671 I40E_PFINT_ICR0_ENA_GRST_MASK | 3672 I40E_PFINT_ICR0_ENA_PCI_EXCEPTION_MASK | 3673 I40E_PFINT_ICR0_ENA_GPIO_MASK | 3674 I40E_PFINT_ICR0_ENA_HMC_ERR_MASK | 3675 I40E_PFINT_ICR0_ENA_VFLR_MASK | 3676 I40E_PFINT_ICR0_ENA_ADMINQ_MASK; 3677 3678 if (pf->flags & I40E_FLAG_IWARP_ENABLED) 3679 val |= I40E_PFINT_ICR0_ENA_PE_CRITERR_MASK; 3680 3681 if (pf->flags & I40E_FLAG_PTP) 3682 val |= I40E_PFINT_ICR0_ENA_TIMESYNC_MASK; 3683 3684 wr32(hw, I40E_PFINT_ICR0_ENA, val); 3685 3686 /* SW_ITR_IDX = 0, but don't change INTENA */ 3687 wr32(hw, I40E_PFINT_DYN_CTL0, I40E_PFINT_DYN_CTL0_SW_ITR_INDX_MASK | 3688 I40E_PFINT_DYN_CTL0_INTENA_MSK_MASK); 3689 3690 /* OTHER_ITR_IDX = 0 */ 3691 wr32(hw, I40E_PFINT_STAT_CTL0, 0); 3692 } 3693 3694 /** 3695 * i40e_configure_msi_and_legacy - Legacy mode interrupt config in the HW 3696 * @vsi: the VSI being configured 3697 **/ 3698 static void i40e_configure_msi_and_legacy(struct i40e_vsi *vsi) 3699 { 3700 u32 nextqp = i40e_enabled_xdp_vsi(vsi) ? vsi->alloc_queue_pairs : 0; 3701 struct i40e_q_vector *q_vector = vsi->q_vectors[0]; 3702 struct i40e_pf *pf = vsi->back; 3703 struct i40e_hw *hw = &pf->hw; 3704 u32 val; 3705 3706 /* set the ITR configuration */ 3707 q_vector->rx.next_update = jiffies + 1; 3708 q_vector->rx.target_itr = ITR_TO_REG(vsi->rx_rings[0]->itr_setting); 3709 wr32(hw, I40E_PFINT_ITR0(I40E_RX_ITR), q_vector->rx.target_itr >> 1); 3710 q_vector->rx.current_itr = q_vector->rx.target_itr; 3711 q_vector->tx.next_update = jiffies + 1; 3712 q_vector->tx.target_itr = ITR_TO_REG(vsi->tx_rings[0]->itr_setting); 3713 wr32(hw, I40E_PFINT_ITR0(I40E_TX_ITR), q_vector->tx.target_itr >> 1); 3714 q_vector->tx.current_itr = q_vector->tx.target_itr; 3715 3716 i40e_enable_misc_int_causes(pf); 3717 3718 /* FIRSTQ_INDX = 0, FIRSTQ_TYPE = 0 (rx) */ 3719 wr32(hw, I40E_PFINT_LNKLST0, 0); 3720 3721 /* Associate the queue pair to the vector and enable the queue int */ 3722 val = I40E_QINT_RQCTL_CAUSE_ENA_MASK | 3723 (I40E_RX_ITR << I40E_QINT_RQCTL_ITR_INDX_SHIFT) | 3724 (nextqp << I40E_QINT_RQCTL_NEXTQ_INDX_SHIFT)| 3725 (I40E_QUEUE_TYPE_TX << I40E_QINT_TQCTL_NEXTQ_TYPE_SHIFT); 3726 3727 wr32(hw, I40E_QINT_RQCTL(0), val); 3728 3729 if (i40e_enabled_xdp_vsi(vsi)) { 3730 val = I40E_QINT_TQCTL_CAUSE_ENA_MASK | 3731 (I40E_TX_ITR << I40E_QINT_TQCTL_ITR_INDX_SHIFT)| 3732 (I40E_QUEUE_TYPE_TX 3733 << I40E_QINT_TQCTL_NEXTQ_TYPE_SHIFT); 3734 3735 wr32(hw, I40E_QINT_TQCTL(nextqp), val); 3736 } 3737 3738 val = I40E_QINT_TQCTL_CAUSE_ENA_MASK | 3739 (I40E_TX_ITR << I40E_QINT_TQCTL_ITR_INDX_SHIFT) | 3740 (I40E_QUEUE_END_OF_LIST << I40E_QINT_TQCTL_NEXTQ_INDX_SHIFT); 3741 3742 wr32(hw, I40E_QINT_TQCTL(0), val); 3743 i40e_flush(hw); 3744 } 3745 3746 /** 3747 * i40e_irq_dynamic_disable_icr0 - Disable default interrupt generation for icr0 3748 * @pf: board private structure 3749 **/ 3750 void i40e_irq_dynamic_disable_icr0(struct i40e_pf *pf) 3751 { 3752 struct i40e_hw *hw = &pf->hw; 3753 3754 wr32(hw, I40E_PFINT_DYN_CTL0, 3755 I40E_ITR_NONE << I40E_PFINT_DYN_CTLN_ITR_INDX_SHIFT); 3756 i40e_flush(hw); 3757 } 3758 3759 /** 3760 * i40e_irq_dynamic_enable_icr0 - Enable default interrupt generation for icr0 3761 * @pf: board private structure 3762 **/ 3763 void i40e_irq_dynamic_enable_icr0(struct i40e_pf *pf) 3764 { 3765 struct i40e_hw *hw = &pf->hw; 3766 u32 val; 3767 3768 val = I40E_PFINT_DYN_CTL0_INTENA_MASK | 3769 I40E_PFINT_DYN_CTL0_CLEARPBA_MASK | 3770 (I40E_ITR_NONE << I40E_PFINT_DYN_CTL0_ITR_INDX_SHIFT); 3771 3772 wr32(hw, I40E_PFINT_DYN_CTL0, val); 3773 i40e_flush(hw); 3774 } 3775 3776 /** 3777 * i40e_msix_clean_rings - MSIX mode Interrupt Handler 3778 * @irq: interrupt number 3779 * @data: pointer to a q_vector 3780 **/ 3781 static irqreturn_t i40e_msix_clean_rings(int irq, void *data) 3782 { 3783 struct i40e_q_vector *q_vector = data; 3784 3785 if (!q_vector->tx.ring && !q_vector->rx.ring) 3786 return IRQ_HANDLED; 3787 3788 napi_schedule_irqoff(&q_vector->napi); 3789 3790 return IRQ_HANDLED; 3791 } 3792 3793 /** 3794 * i40e_irq_affinity_notify - Callback for affinity changes 3795 * @notify: context as to what irq was changed 3796 * @mask: the new affinity mask 3797 * 3798 * This is a callback function used by the irq_set_affinity_notifier function 3799 * so that we may register to receive changes to the irq affinity masks. 3800 **/ 3801 static void i40e_irq_affinity_notify(struct irq_affinity_notify *notify, 3802 const cpumask_t *mask) 3803 { 3804 struct i40e_q_vector *q_vector = 3805 container_of(notify, struct i40e_q_vector, affinity_notify); 3806 3807 cpumask_copy(&q_vector->affinity_mask, mask); 3808 } 3809 3810 /** 3811 * i40e_irq_affinity_release - Callback for affinity notifier release 3812 * @ref: internal core kernel usage 3813 * 3814 * This is a callback function used by the irq_set_affinity_notifier function 3815 * to inform the current notification subscriber that they will no longer 3816 * receive notifications. 3817 **/ 3818 static void i40e_irq_affinity_release(struct kref *ref) {} 3819 3820 /** 3821 * i40e_vsi_request_irq_msix - Initialize MSI-X interrupts 3822 * @vsi: the VSI being configured 3823 * @basename: name for the vector 3824 * 3825 * Allocates MSI-X vectors and requests interrupts from the kernel. 3826 **/ 3827 static int i40e_vsi_request_irq_msix(struct i40e_vsi *vsi, char *basename) 3828 { 3829 int q_vectors = vsi->num_q_vectors; 3830 struct i40e_pf *pf = vsi->back; 3831 int base = vsi->base_vector; 3832 int rx_int_idx = 0; 3833 int tx_int_idx = 0; 3834 int vector, err; 3835 int irq_num; 3836 int cpu; 3837 3838 for (vector = 0; vector < q_vectors; vector++) { 3839 struct i40e_q_vector *q_vector = vsi->q_vectors[vector]; 3840 3841 irq_num = pf->msix_entries[base + vector].vector; 3842 3843 if (q_vector->tx.ring && q_vector->rx.ring) { 3844 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 3845 "%s-%s-%d", basename, "TxRx", rx_int_idx++); 3846 tx_int_idx++; 3847 } else if (q_vector->rx.ring) { 3848 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 3849 "%s-%s-%d", basename, "rx", rx_int_idx++); 3850 } else if (q_vector->tx.ring) { 3851 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 3852 "%s-%s-%d", basename, "tx", tx_int_idx++); 3853 } else { 3854 /* skip this unused q_vector */ 3855 continue; 3856 } 3857 err = request_irq(irq_num, 3858 vsi->irq_handler, 3859 0, 3860 q_vector->name, 3861 q_vector); 3862 if (err) { 3863 dev_info(&pf->pdev->dev, 3864 "MSIX request_irq failed, error: %d\n", err); 3865 goto free_queue_irqs; 3866 } 3867 3868 /* register for affinity change notifications */ 3869 q_vector->affinity_notify.notify = i40e_irq_affinity_notify; 3870 q_vector->affinity_notify.release = i40e_irq_affinity_release; 3871 irq_set_affinity_notifier(irq_num, &q_vector->affinity_notify); 3872 /* Spread affinity hints out across online CPUs. 3873 * 3874 * get_cpu_mask returns a static constant mask with 3875 * a permanent lifetime so it's ok to pass to 3876 * irq_set_affinity_hint without making a copy. 3877 */ 3878 cpu = cpumask_local_spread(q_vector->v_idx, -1); 3879 irq_set_affinity_hint(irq_num, get_cpu_mask(cpu)); 3880 } 3881 3882 vsi->irqs_ready = true; 3883 return 0; 3884 3885 free_queue_irqs: 3886 while (vector) { 3887 vector--; 3888 irq_num = pf->msix_entries[base + vector].vector; 3889 irq_set_affinity_notifier(irq_num, NULL); 3890 irq_set_affinity_hint(irq_num, NULL); 3891 free_irq(irq_num, &vsi->q_vectors[vector]); 3892 } 3893 return err; 3894 } 3895 3896 /** 3897 * i40e_vsi_disable_irq - Mask off queue interrupt generation on the VSI 3898 * @vsi: the VSI being un-configured 3899 **/ 3900 static void i40e_vsi_disable_irq(struct i40e_vsi *vsi) 3901 { 3902 struct i40e_pf *pf = vsi->back; 3903 struct i40e_hw *hw = &pf->hw; 3904 int base = vsi->base_vector; 3905 int i; 3906 3907 /* disable interrupt causation from each queue */ 3908 for (i = 0; i < vsi->num_queue_pairs; i++) { 3909 u32 val; 3910 3911 val = rd32(hw, I40E_QINT_TQCTL(vsi->tx_rings[i]->reg_idx)); 3912 val &= ~I40E_QINT_TQCTL_CAUSE_ENA_MASK; 3913 wr32(hw, I40E_QINT_TQCTL(vsi->tx_rings[i]->reg_idx), val); 3914 3915 val = rd32(hw, I40E_QINT_RQCTL(vsi->rx_rings[i]->reg_idx)); 3916 val &= ~I40E_QINT_RQCTL_CAUSE_ENA_MASK; 3917 wr32(hw, I40E_QINT_RQCTL(vsi->rx_rings[i]->reg_idx), val); 3918 3919 if (!i40e_enabled_xdp_vsi(vsi)) 3920 continue; 3921 wr32(hw, I40E_QINT_TQCTL(vsi->xdp_rings[i]->reg_idx), 0); 3922 } 3923 3924 /* disable each interrupt */ 3925 if (pf->flags & I40E_FLAG_MSIX_ENABLED) { 3926 for (i = vsi->base_vector; 3927 i < (vsi->num_q_vectors + vsi->base_vector); i++) 3928 wr32(hw, I40E_PFINT_DYN_CTLN(i - 1), 0); 3929 3930 i40e_flush(hw); 3931 for (i = 0; i < vsi->num_q_vectors; i++) 3932 synchronize_irq(pf->msix_entries[i + base].vector); 3933 } else { 3934 /* Legacy and MSI mode - this stops all interrupt handling */ 3935 wr32(hw, I40E_PFINT_ICR0_ENA, 0); 3936 wr32(hw, I40E_PFINT_DYN_CTL0, 0); 3937 i40e_flush(hw); 3938 synchronize_irq(pf->pdev->irq); 3939 } 3940 } 3941 3942 /** 3943 * i40e_vsi_enable_irq - Enable IRQ for the given VSI 3944 * @vsi: the VSI being configured 3945 **/ 3946 static int i40e_vsi_enable_irq(struct i40e_vsi *vsi) 3947 { 3948 struct i40e_pf *pf = vsi->back; 3949 int i; 3950 3951 if (pf->flags & I40E_FLAG_MSIX_ENABLED) { 3952 for (i = 0; i < vsi->num_q_vectors; i++) 3953 i40e_irq_dynamic_enable(vsi, i); 3954 } else { 3955 i40e_irq_dynamic_enable_icr0(pf); 3956 } 3957 3958 i40e_flush(&pf->hw); 3959 return 0; 3960 } 3961 3962 /** 3963 * i40e_free_misc_vector - Free the vector that handles non-queue events 3964 * @pf: board private structure 3965 **/ 3966 static void i40e_free_misc_vector(struct i40e_pf *pf) 3967 { 3968 /* Disable ICR 0 */ 3969 wr32(&pf->hw, I40E_PFINT_ICR0_ENA, 0); 3970 i40e_flush(&pf->hw); 3971 3972 if (pf->flags & I40E_FLAG_MSIX_ENABLED && pf->msix_entries) { 3973 synchronize_irq(pf->msix_entries[0].vector); 3974 free_irq(pf->msix_entries[0].vector, pf); 3975 clear_bit(__I40E_MISC_IRQ_REQUESTED, pf->state); 3976 } 3977 } 3978 3979 /** 3980 * i40e_intr - MSI/Legacy and non-queue interrupt handler 3981 * @irq: interrupt number 3982 * @data: pointer to a q_vector 3983 * 3984 * This is the handler used for all MSI/Legacy interrupts, and deals 3985 * with both queue and non-queue interrupts. This is also used in 3986 * MSIX mode to handle the non-queue interrupts. 3987 **/ 3988 static irqreturn_t i40e_intr(int irq, void *data) 3989 { 3990 struct i40e_pf *pf = (struct i40e_pf *)data; 3991 struct i40e_hw *hw = &pf->hw; 3992 irqreturn_t ret = IRQ_NONE; 3993 u32 icr0, icr0_remaining; 3994 u32 val, ena_mask; 3995 3996 icr0 = rd32(hw, I40E_PFINT_ICR0); 3997 ena_mask = rd32(hw, I40E_PFINT_ICR0_ENA); 3998 3999 /* if sharing a legacy IRQ, we might get called w/o an intr pending */ 4000 if ((icr0 & I40E_PFINT_ICR0_INTEVENT_MASK) == 0) 4001 goto enable_intr; 4002 4003 /* if interrupt but no bits showing, must be SWINT */ 4004 if (((icr0 & ~I40E_PFINT_ICR0_INTEVENT_MASK) == 0) || 4005 (icr0 & I40E_PFINT_ICR0_SWINT_MASK)) 4006 pf->sw_int_count++; 4007 4008 if ((pf->flags & I40E_FLAG_IWARP_ENABLED) && 4009 (icr0 & I40E_PFINT_ICR0_ENA_PE_CRITERR_MASK)) { 4010 ena_mask &= ~I40E_PFINT_ICR0_ENA_PE_CRITERR_MASK; 4011 dev_dbg(&pf->pdev->dev, "cleared PE_CRITERR\n"); 4012 set_bit(__I40E_CORE_RESET_REQUESTED, pf->state); 4013 } 4014 4015 /* only q0 is used in MSI/Legacy mode, and none are used in MSIX */ 4016 if (icr0 & I40E_PFINT_ICR0_QUEUE_0_MASK) { 4017 struct i40e_vsi *vsi = pf->vsi[pf->lan_vsi]; 4018 struct i40e_q_vector *q_vector = vsi->q_vectors[0]; 4019 4020 /* We do not have a way to disarm Queue causes while leaving 4021 * interrupt enabled for all other causes, ideally 4022 * interrupt should be disabled while we are in NAPI but 4023 * this is not a performance path and napi_schedule() 4024 * can deal with rescheduling. 4025 */ 4026 if (!test_bit(__I40E_DOWN, pf->state)) 4027 napi_schedule_irqoff(&q_vector->napi); 4028 } 4029 4030 if (icr0 & I40E_PFINT_ICR0_ADMINQ_MASK) { 4031 ena_mask &= ~I40E_PFINT_ICR0_ENA_ADMINQ_MASK; 4032 set_bit(__I40E_ADMINQ_EVENT_PENDING, pf->state); 4033 i40e_debug(&pf->hw, I40E_DEBUG_NVM, "AdminQ event\n"); 4034 } 4035 4036 if (icr0 & I40E_PFINT_ICR0_MAL_DETECT_MASK) { 4037 ena_mask &= ~I40E_PFINT_ICR0_ENA_MAL_DETECT_MASK; 4038 set_bit(__I40E_MDD_EVENT_PENDING, pf->state); 4039 } 4040 4041 if (icr0 & I40E_PFINT_ICR0_VFLR_MASK) { 4042 /* disable any further VFLR event notifications */ 4043 if (test_bit(__I40E_VF_RESETS_DISABLED, pf->state)) { 4044 u32 reg = rd32(hw, I40E_PFINT_ICR0_ENA); 4045 4046 reg &= ~I40E_PFINT_ICR0_VFLR_MASK; 4047 wr32(hw, I40E_PFINT_ICR0_ENA, reg); 4048 } else { 4049 ena_mask &= ~I40E_PFINT_ICR0_ENA_VFLR_MASK; 4050 set_bit(__I40E_VFLR_EVENT_PENDING, pf->state); 4051 } 4052 } 4053 4054 if (icr0 & I40E_PFINT_ICR0_GRST_MASK) { 4055 if (!test_bit(__I40E_RESET_RECOVERY_PENDING, pf->state)) 4056 set_bit(__I40E_RESET_INTR_RECEIVED, pf->state); 4057 ena_mask &= ~I40E_PFINT_ICR0_ENA_GRST_MASK; 4058 val = rd32(hw, I40E_GLGEN_RSTAT); 4059 val = (val & I40E_GLGEN_RSTAT_RESET_TYPE_MASK) 4060 >> I40E_GLGEN_RSTAT_RESET_TYPE_SHIFT; 4061 if (val == I40E_RESET_CORER) { 4062 pf->corer_count++; 4063 } else if (val == I40E_RESET_GLOBR) { 4064 pf->globr_count++; 4065 } else if (val == I40E_RESET_EMPR) { 4066 pf->empr_count++; 4067 set_bit(__I40E_EMP_RESET_INTR_RECEIVED, pf->state); 4068 } 4069 } 4070 4071 if (icr0 & I40E_PFINT_ICR0_HMC_ERR_MASK) { 4072 icr0 &= ~I40E_PFINT_ICR0_HMC_ERR_MASK; 4073 dev_info(&pf->pdev->dev, "HMC error interrupt\n"); 4074 dev_info(&pf->pdev->dev, "HMC error info 0x%x, HMC error data 0x%x\n", 4075 rd32(hw, I40E_PFHMC_ERRORINFO), 4076 rd32(hw, I40E_PFHMC_ERRORDATA)); 4077 } 4078 4079 if (icr0 & I40E_PFINT_ICR0_TIMESYNC_MASK) { 4080 u32 prttsyn_stat = rd32(hw, I40E_PRTTSYN_STAT_0); 4081 4082 if (prttsyn_stat & I40E_PRTTSYN_STAT_0_TXTIME_MASK) { 4083 icr0 &= ~I40E_PFINT_ICR0_ENA_TIMESYNC_MASK; 4084 i40e_ptp_tx_hwtstamp(pf); 4085 } 4086 } 4087 4088 /* If a critical error is pending we have no choice but to reset the 4089 * device. 4090 * Report and mask out any remaining unexpected interrupts. 4091 */ 4092 icr0_remaining = icr0 & ena_mask; 4093 if (icr0_remaining) { 4094 dev_info(&pf->pdev->dev, "unhandled interrupt icr0=0x%08x\n", 4095 icr0_remaining); 4096 if ((icr0_remaining & I40E_PFINT_ICR0_PE_CRITERR_MASK) || 4097 (icr0_remaining & I40E_PFINT_ICR0_PCI_EXCEPTION_MASK) || 4098 (icr0_remaining & I40E_PFINT_ICR0_ECC_ERR_MASK)) { 4099 dev_info(&pf->pdev->dev, "device will be reset\n"); 4100 set_bit(__I40E_PF_RESET_REQUESTED, pf->state); 4101 i40e_service_event_schedule(pf); 4102 } 4103 ena_mask &= ~icr0_remaining; 4104 } 4105 ret = IRQ_HANDLED; 4106 4107 enable_intr: 4108 /* re-enable interrupt causes */ 4109 wr32(hw, I40E_PFINT_ICR0_ENA, ena_mask); 4110 if (!test_bit(__I40E_DOWN, pf->state) || 4111 test_bit(__I40E_RECOVERY_MODE, pf->state)) { 4112 i40e_service_event_schedule(pf); 4113 i40e_irq_dynamic_enable_icr0(pf); 4114 } 4115 4116 return ret; 4117 } 4118 4119 /** 4120 * i40e_clean_fdir_tx_irq - Reclaim resources after transmit completes 4121 * @tx_ring: tx ring to clean 4122 * @budget: how many cleans we're allowed 4123 * 4124 * Returns true if there's any budget left (e.g. the clean is finished) 4125 **/ 4126 static bool i40e_clean_fdir_tx_irq(struct i40e_ring *tx_ring, int budget) 4127 { 4128 struct i40e_vsi *vsi = tx_ring->vsi; 4129 u16 i = tx_ring->next_to_clean; 4130 struct i40e_tx_buffer *tx_buf; 4131 struct i40e_tx_desc *tx_desc; 4132 4133 tx_buf = &tx_ring->tx_bi[i]; 4134 tx_desc = I40E_TX_DESC(tx_ring, i); 4135 i -= tx_ring->count; 4136 4137 do { 4138 struct i40e_tx_desc *eop_desc = tx_buf->next_to_watch; 4139 4140 /* if next_to_watch is not set then there is no work pending */ 4141 if (!eop_desc) 4142 break; 4143 4144 /* prevent any other reads prior to eop_desc */ 4145 smp_rmb(); 4146 4147 /* if the descriptor isn't done, no work yet to do */ 4148 if (!(eop_desc->cmd_type_offset_bsz & 4149 cpu_to_le64(I40E_TX_DESC_DTYPE_DESC_DONE))) 4150 break; 4151 4152 /* clear next_to_watch to prevent false hangs */ 4153 tx_buf->next_to_watch = NULL; 4154 4155 tx_desc->buffer_addr = 0; 4156 tx_desc->cmd_type_offset_bsz = 0; 4157 /* move past filter desc */ 4158 tx_buf++; 4159 tx_desc++; 4160 i++; 4161 if (unlikely(!i)) { 4162 i -= tx_ring->count; 4163 tx_buf = tx_ring->tx_bi; 4164 tx_desc = I40E_TX_DESC(tx_ring, 0); 4165 } 4166 /* unmap skb header data */ 4167 dma_unmap_single(tx_ring->dev, 4168 dma_unmap_addr(tx_buf, dma), 4169 dma_unmap_len(tx_buf, len), 4170 DMA_TO_DEVICE); 4171 if (tx_buf->tx_flags & I40E_TX_FLAGS_FD_SB) 4172 kfree(tx_buf->raw_buf); 4173 4174 tx_buf->raw_buf = NULL; 4175 tx_buf->tx_flags = 0; 4176 tx_buf->next_to_watch = NULL; 4177 dma_unmap_len_set(tx_buf, len, 0); 4178 tx_desc->buffer_addr = 0; 4179 tx_desc->cmd_type_offset_bsz = 0; 4180 4181 /* move us past the eop_desc for start of next FD desc */ 4182 tx_buf++; 4183 tx_desc++; 4184 i++; 4185 if (unlikely(!i)) { 4186 i -= tx_ring->count; 4187 tx_buf = tx_ring->tx_bi; 4188 tx_desc = I40E_TX_DESC(tx_ring, 0); 4189 } 4190 4191 /* update budget accounting */ 4192 budget--; 4193 } while (likely(budget)); 4194 4195 i += tx_ring->count; 4196 tx_ring->next_to_clean = i; 4197 4198 if (vsi->back->flags & I40E_FLAG_MSIX_ENABLED) 4199 i40e_irq_dynamic_enable(vsi, tx_ring->q_vector->v_idx); 4200 4201 return budget > 0; 4202 } 4203 4204 /** 4205 * i40e_fdir_clean_ring - Interrupt Handler for FDIR SB ring 4206 * @irq: interrupt number 4207 * @data: pointer to a q_vector 4208 **/ 4209 static irqreturn_t i40e_fdir_clean_ring(int irq, void *data) 4210 { 4211 struct i40e_q_vector *q_vector = data; 4212 struct i40e_vsi *vsi; 4213 4214 if (!q_vector->tx.ring) 4215 return IRQ_HANDLED; 4216 4217 vsi = q_vector->tx.ring->vsi; 4218 i40e_clean_fdir_tx_irq(q_vector->tx.ring, vsi->work_limit); 4219 4220 return IRQ_HANDLED; 4221 } 4222 4223 /** 4224 * i40e_map_vector_to_qp - Assigns the queue pair to the vector 4225 * @vsi: the VSI being configured 4226 * @v_idx: vector index 4227 * @qp_idx: queue pair index 4228 **/ 4229 static void i40e_map_vector_to_qp(struct i40e_vsi *vsi, int v_idx, int qp_idx) 4230 { 4231 struct i40e_q_vector *q_vector = vsi->q_vectors[v_idx]; 4232 struct i40e_ring *tx_ring = vsi->tx_rings[qp_idx]; 4233 struct i40e_ring *rx_ring = vsi->rx_rings[qp_idx]; 4234 4235 tx_ring->q_vector = q_vector; 4236 tx_ring->next = q_vector->tx.ring; 4237 q_vector->tx.ring = tx_ring; 4238 q_vector->tx.count++; 4239 4240 /* Place XDP Tx ring in the same q_vector ring list as regular Tx */ 4241 if (i40e_enabled_xdp_vsi(vsi)) { 4242 struct i40e_ring *xdp_ring = vsi->xdp_rings[qp_idx]; 4243 4244 xdp_ring->q_vector = q_vector; 4245 xdp_ring->next = q_vector->tx.ring; 4246 q_vector->tx.ring = xdp_ring; 4247 q_vector->tx.count++; 4248 } 4249 4250 rx_ring->q_vector = q_vector; 4251 rx_ring->next = q_vector->rx.ring; 4252 q_vector->rx.ring = rx_ring; 4253 q_vector->rx.count++; 4254 } 4255 4256 /** 4257 * i40e_vsi_map_rings_to_vectors - Maps descriptor rings to vectors 4258 * @vsi: the VSI being configured 4259 * 4260 * This function maps descriptor rings to the queue-specific vectors 4261 * we were allotted through the MSI-X enabling code. Ideally, we'd have 4262 * one vector per queue pair, but on a constrained vector budget, we 4263 * group the queue pairs as "efficiently" as possible. 4264 **/ 4265 static void i40e_vsi_map_rings_to_vectors(struct i40e_vsi *vsi) 4266 { 4267 int qp_remaining = vsi->num_queue_pairs; 4268 int q_vectors = vsi->num_q_vectors; 4269 int num_ringpairs; 4270 int v_start = 0; 4271 int qp_idx = 0; 4272 4273 /* If we don't have enough vectors for a 1-to-1 mapping, we'll have to 4274 * group them so there are multiple queues per vector. 4275 * It is also important to go through all the vectors available to be 4276 * sure that if we don't use all the vectors, that the remaining vectors 4277 * are cleared. This is especially important when decreasing the 4278 * number of queues in use. 4279 */ 4280 for (; v_start < q_vectors; v_start++) { 4281 struct i40e_q_vector *q_vector = vsi->q_vectors[v_start]; 4282 4283 num_ringpairs = DIV_ROUND_UP(qp_remaining, q_vectors - v_start); 4284 4285 q_vector->num_ringpairs = num_ringpairs; 4286 q_vector->reg_idx = q_vector->v_idx + vsi->base_vector - 1; 4287 4288 q_vector->rx.count = 0; 4289 q_vector->tx.count = 0; 4290 q_vector->rx.ring = NULL; 4291 q_vector->tx.ring = NULL; 4292 4293 while (num_ringpairs--) { 4294 i40e_map_vector_to_qp(vsi, v_start, qp_idx); 4295 qp_idx++; 4296 qp_remaining--; 4297 } 4298 } 4299 } 4300 4301 /** 4302 * i40e_vsi_request_irq - Request IRQ from the OS 4303 * @vsi: the VSI being configured 4304 * @basename: name for the vector 4305 **/ 4306 static int i40e_vsi_request_irq(struct i40e_vsi *vsi, char *basename) 4307 { 4308 struct i40e_pf *pf = vsi->back; 4309 int err; 4310 4311 if (pf->flags & I40E_FLAG_MSIX_ENABLED) 4312 err = i40e_vsi_request_irq_msix(vsi, basename); 4313 else if (pf->flags & I40E_FLAG_MSI_ENABLED) 4314 err = request_irq(pf->pdev->irq, i40e_intr, 0, 4315 pf->int_name, pf); 4316 else 4317 err = request_irq(pf->pdev->irq, i40e_intr, IRQF_SHARED, 4318 pf->int_name, pf); 4319 4320 if (err) 4321 dev_info(&pf->pdev->dev, "request_irq failed, Error %d\n", err); 4322 4323 return err; 4324 } 4325 4326 #ifdef CONFIG_NET_POLL_CONTROLLER 4327 /** 4328 * i40e_netpoll - A Polling 'interrupt' handler 4329 * @netdev: network interface device structure 4330 * 4331 * This is used by netconsole to send skbs without having to re-enable 4332 * interrupts. It's not called while the normal interrupt routine is executing. 4333 **/ 4334 static void i40e_netpoll(struct net_device *netdev) 4335 { 4336 struct i40e_netdev_priv *np = netdev_priv(netdev); 4337 struct i40e_vsi *vsi = np->vsi; 4338 struct i40e_pf *pf = vsi->back; 4339 int i; 4340 4341 /* if interface is down do nothing */ 4342 if (test_bit(__I40E_VSI_DOWN, vsi->state)) 4343 return; 4344 4345 if (pf->flags & I40E_FLAG_MSIX_ENABLED) { 4346 for (i = 0; i < vsi->num_q_vectors; i++) 4347 i40e_msix_clean_rings(0, vsi->q_vectors[i]); 4348 } else { 4349 i40e_intr(pf->pdev->irq, netdev); 4350 } 4351 } 4352 #endif 4353 4354 #define I40E_QTX_ENA_WAIT_COUNT 50 4355 4356 /** 4357 * i40e_pf_txq_wait - Wait for a PF's Tx queue to be enabled or disabled 4358 * @pf: the PF being configured 4359 * @pf_q: the PF queue 4360 * @enable: enable or disable state of the queue 4361 * 4362 * This routine will wait for the given Tx queue of the PF to reach the 4363 * enabled or disabled state. 4364 * Returns -ETIMEDOUT in case of failing to reach the requested state after 4365 * multiple retries; else will return 0 in case of success. 4366 **/ 4367 static int i40e_pf_txq_wait(struct i40e_pf *pf, int pf_q, bool enable) 4368 { 4369 int i; 4370 u32 tx_reg; 4371 4372 for (i = 0; i < I40E_QUEUE_WAIT_RETRY_LIMIT; i++) { 4373 tx_reg = rd32(&pf->hw, I40E_QTX_ENA(pf_q)); 4374 if (enable == !!(tx_reg & I40E_QTX_ENA_QENA_STAT_MASK)) 4375 break; 4376 4377 usleep_range(10, 20); 4378 } 4379 if (i >= I40E_QUEUE_WAIT_RETRY_LIMIT) 4380 return -ETIMEDOUT; 4381 4382 return 0; 4383 } 4384 4385 /** 4386 * i40e_control_tx_q - Start or stop a particular Tx queue 4387 * @pf: the PF structure 4388 * @pf_q: the PF queue to configure 4389 * @enable: start or stop the queue 4390 * 4391 * This function enables or disables a single queue. Note that any delay 4392 * required after the operation is expected to be handled by the caller of 4393 * this function. 4394 **/ 4395 static void i40e_control_tx_q(struct i40e_pf *pf, int pf_q, bool enable) 4396 { 4397 struct i40e_hw *hw = &pf->hw; 4398 u32 tx_reg; 4399 int i; 4400 4401 /* warn the TX unit of coming changes */ 4402 i40e_pre_tx_queue_cfg(&pf->hw, pf_q, enable); 4403 if (!enable) 4404 usleep_range(10, 20); 4405 4406 for (i = 0; i < I40E_QTX_ENA_WAIT_COUNT; i++) { 4407 tx_reg = rd32(hw, I40E_QTX_ENA(pf_q)); 4408 if (((tx_reg >> I40E_QTX_ENA_QENA_REQ_SHIFT) & 1) == 4409 ((tx_reg >> I40E_QTX_ENA_QENA_STAT_SHIFT) & 1)) 4410 break; 4411 usleep_range(1000, 2000); 4412 } 4413 4414 /* Skip if the queue is already in the requested state */ 4415 if (enable == !!(tx_reg & I40E_QTX_ENA_QENA_STAT_MASK)) 4416 return; 4417 4418 /* turn on/off the queue */ 4419 if (enable) { 4420 wr32(hw, I40E_QTX_HEAD(pf_q), 0); 4421 tx_reg |= I40E_QTX_ENA_QENA_REQ_MASK; 4422 } else { 4423 tx_reg &= ~I40E_QTX_ENA_QENA_REQ_MASK; 4424 } 4425 4426 wr32(hw, I40E_QTX_ENA(pf_q), tx_reg); 4427 } 4428 4429 /** 4430 * i40e_control_wait_tx_q - Start/stop Tx queue and wait for completion 4431 * @seid: VSI SEID 4432 * @pf: the PF structure 4433 * @pf_q: the PF queue to configure 4434 * @is_xdp: true if the queue is used for XDP 4435 * @enable: start or stop the queue 4436 **/ 4437 int i40e_control_wait_tx_q(int seid, struct i40e_pf *pf, int pf_q, 4438 bool is_xdp, bool enable) 4439 { 4440 int ret; 4441 4442 i40e_control_tx_q(pf, pf_q, enable); 4443 4444 /* wait for the change to finish */ 4445 ret = i40e_pf_txq_wait(pf, pf_q, enable); 4446 if (ret) { 4447 dev_info(&pf->pdev->dev, 4448 "VSI seid %d %sTx ring %d %sable timeout\n", 4449 seid, (is_xdp ? "XDP " : ""), pf_q, 4450 (enable ? "en" : "dis")); 4451 } 4452 4453 return ret; 4454 } 4455 4456 /** 4457 * i40e_vsi_control_tx - Start or stop a VSI's rings 4458 * @vsi: the VSI being configured 4459 * @enable: start or stop the rings 4460 **/ 4461 static int i40e_vsi_control_tx(struct i40e_vsi *vsi, bool enable) 4462 { 4463 struct i40e_pf *pf = vsi->back; 4464 int i, pf_q, ret = 0; 4465 4466 pf_q = vsi->base_queue; 4467 for (i = 0; i < vsi->num_queue_pairs; i++, pf_q++) { 4468 ret = i40e_control_wait_tx_q(vsi->seid, pf, 4469 pf_q, 4470 false /*is xdp*/, enable); 4471 if (ret) 4472 break; 4473 4474 if (!i40e_enabled_xdp_vsi(vsi)) 4475 continue; 4476 4477 ret = i40e_control_wait_tx_q(vsi->seid, pf, 4478 pf_q + vsi->alloc_queue_pairs, 4479 true /*is xdp*/, enable); 4480 if (ret) 4481 break; 4482 } 4483 return ret; 4484 } 4485 4486 /** 4487 * i40e_pf_rxq_wait - Wait for a PF's Rx queue to be enabled or disabled 4488 * @pf: the PF being configured 4489 * @pf_q: the PF queue 4490 * @enable: enable or disable state of the queue 4491 * 4492 * This routine will wait for the given Rx queue of the PF to reach the 4493 * enabled or disabled state. 4494 * Returns -ETIMEDOUT in case of failing to reach the requested state after 4495 * multiple retries; else will return 0 in case of success. 4496 **/ 4497 static int i40e_pf_rxq_wait(struct i40e_pf *pf, int pf_q, bool enable) 4498 { 4499 int i; 4500 u32 rx_reg; 4501 4502 for (i = 0; i < I40E_QUEUE_WAIT_RETRY_LIMIT; i++) { 4503 rx_reg = rd32(&pf->hw, I40E_QRX_ENA(pf_q)); 4504 if (enable == !!(rx_reg & I40E_QRX_ENA_QENA_STAT_MASK)) 4505 break; 4506 4507 usleep_range(10, 20); 4508 } 4509 if (i >= I40E_QUEUE_WAIT_RETRY_LIMIT) 4510 return -ETIMEDOUT; 4511 4512 return 0; 4513 } 4514 4515 /** 4516 * i40e_control_rx_q - Start or stop a particular Rx queue 4517 * @pf: the PF structure 4518 * @pf_q: the PF queue to configure 4519 * @enable: start or stop the queue 4520 * 4521 * This function enables or disables a single queue. Note that 4522 * any delay required after the operation is expected to be 4523 * handled by the caller of this function. 4524 **/ 4525 static void i40e_control_rx_q(struct i40e_pf *pf, int pf_q, bool enable) 4526 { 4527 struct i40e_hw *hw = &pf->hw; 4528 u32 rx_reg; 4529 int i; 4530 4531 for (i = 0; i < I40E_QTX_ENA_WAIT_COUNT; i++) { 4532 rx_reg = rd32(hw, I40E_QRX_ENA(pf_q)); 4533 if (((rx_reg >> I40E_QRX_ENA_QENA_REQ_SHIFT) & 1) == 4534 ((rx_reg >> I40E_QRX_ENA_QENA_STAT_SHIFT) & 1)) 4535 break; 4536 usleep_range(1000, 2000); 4537 } 4538 4539 /* Skip if the queue is already in the requested state */ 4540 if (enable == !!(rx_reg & I40E_QRX_ENA_QENA_STAT_MASK)) 4541 return; 4542 4543 /* turn on/off the queue */ 4544 if (enable) 4545 rx_reg |= I40E_QRX_ENA_QENA_REQ_MASK; 4546 else 4547 rx_reg &= ~I40E_QRX_ENA_QENA_REQ_MASK; 4548 4549 wr32(hw, I40E_QRX_ENA(pf_q), rx_reg); 4550 } 4551 4552 /** 4553 * i40e_control_wait_rx_q 4554 * @pf: the PF structure 4555 * @pf_q: queue being configured 4556 * @enable: start or stop the rings 4557 * 4558 * This function enables or disables a single queue along with waiting 4559 * for the change to finish. The caller of this function should handle 4560 * the delays needed in the case of disabling queues. 4561 **/ 4562 int i40e_control_wait_rx_q(struct i40e_pf *pf, int pf_q, bool enable) 4563 { 4564 int ret = 0; 4565 4566 i40e_control_rx_q(pf, pf_q, enable); 4567 4568 /* wait for the change to finish */ 4569 ret = i40e_pf_rxq_wait(pf, pf_q, enable); 4570 if (ret) 4571 return ret; 4572 4573 return ret; 4574 } 4575 4576 /** 4577 * i40e_vsi_control_rx - Start or stop a VSI's rings 4578 * @vsi: the VSI being configured 4579 * @enable: start or stop the rings 4580 **/ 4581 static int i40e_vsi_control_rx(struct i40e_vsi *vsi, bool enable) 4582 { 4583 struct i40e_pf *pf = vsi->back; 4584 int i, pf_q, ret = 0; 4585 4586 pf_q = vsi->base_queue; 4587 for (i = 0; i < vsi->num_queue_pairs; i++, pf_q++) { 4588 ret = i40e_control_wait_rx_q(pf, pf_q, enable); 4589 if (ret) { 4590 dev_info(&pf->pdev->dev, 4591 "VSI seid %d Rx ring %d %sable timeout\n", 4592 vsi->seid, pf_q, (enable ? "en" : "dis")); 4593 break; 4594 } 4595 } 4596 4597 /* Due to HW errata, on Rx disable only, the register can indicate done 4598 * before it really is. Needs 50ms to be sure 4599 */ 4600 if (!enable) 4601 mdelay(50); 4602 4603 return ret; 4604 } 4605 4606 /** 4607 * i40e_vsi_start_rings - Start a VSI's rings 4608 * @vsi: the VSI being configured 4609 **/ 4610 int i40e_vsi_start_rings(struct i40e_vsi *vsi) 4611 { 4612 int ret = 0; 4613 4614 /* do rx first for enable and last for disable */ 4615 ret = i40e_vsi_control_rx(vsi, true); 4616 if (ret) 4617 return ret; 4618 ret = i40e_vsi_control_tx(vsi, true); 4619 4620 return ret; 4621 } 4622 4623 /** 4624 * i40e_vsi_stop_rings - Stop a VSI's rings 4625 * @vsi: the VSI being configured 4626 **/ 4627 void i40e_vsi_stop_rings(struct i40e_vsi *vsi) 4628 { 4629 /* When port TX is suspended, don't wait */ 4630 if (test_bit(__I40E_PORT_SUSPENDED, vsi->back->state)) 4631 return i40e_vsi_stop_rings_no_wait(vsi); 4632 4633 /* do rx first for enable and last for disable 4634 * Ignore return value, we need to shutdown whatever we can 4635 */ 4636 i40e_vsi_control_tx(vsi, false); 4637 i40e_vsi_control_rx(vsi, false); 4638 } 4639 4640 /** 4641 * i40e_vsi_stop_rings_no_wait - Stop a VSI's rings and do not delay 4642 * @vsi: the VSI being shutdown 4643 * 4644 * This function stops all the rings for a VSI but does not delay to verify 4645 * that rings have been disabled. It is expected that the caller is shutting 4646 * down multiple VSIs at once and will delay together for all the VSIs after 4647 * initiating the shutdown. This is particularly useful for shutting down lots 4648 * of VFs together. Otherwise, a large delay can be incurred while configuring 4649 * each VSI in serial. 4650 **/ 4651 void i40e_vsi_stop_rings_no_wait(struct i40e_vsi *vsi) 4652 { 4653 struct i40e_pf *pf = vsi->back; 4654 int i, pf_q; 4655 4656 pf_q = vsi->base_queue; 4657 for (i = 0; i < vsi->num_queue_pairs; i++, pf_q++) { 4658 i40e_control_tx_q(pf, pf_q, false); 4659 i40e_control_rx_q(pf, pf_q, false); 4660 } 4661 } 4662 4663 /** 4664 * i40e_vsi_free_irq - Free the irq association with the OS 4665 * @vsi: the VSI being configured 4666 **/ 4667 static void i40e_vsi_free_irq(struct i40e_vsi *vsi) 4668 { 4669 struct i40e_pf *pf = vsi->back; 4670 struct i40e_hw *hw = &pf->hw; 4671 int base = vsi->base_vector; 4672 u32 val, qp; 4673 int i; 4674 4675 if (pf->flags & I40E_FLAG_MSIX_ENABLED) { 4676 if (!vsi->q_vectors) 4677 return; 4678 4679 if (!vsi->irqs_ready) 4680 return; 4681 4682 vsi->irqs_ready = false; 4683 for (i = 0; i < vsi->num_q_vectors; i++) { 4684 int irq_num; 4685 u16 vector; 4686 4687 vector = i + base; 4688 irq_num = pf->msix_entries[vector].vector; 4689 4690 /* free only the irqs that were actually requested */ 4691 if (!vsi->q_vectors[i] || 4692 !vsi->q_vectors[i]->num_ringpairs) 4693 continue; 4694 4695 /* clear the affinity notifier in the IRQ descriptor */ 4696 irq_set_affinity_notifier(irq_num, NULL); 4697 /* remove our suggested affinity mask for this IRQ */ 4698 irq_set_affinity_hint(irq_num, NULL); 4699 synchronize_irq(irq_num); 4700 free_irq(irq_num, vsi->q_vectors[i]); 4701 4702 /* Tear down the interrupt queue link list 4703 * 4704 * We know that they come in pairs and always 4705 * the Rx first, then the Tx. To clear the 4706 * link list, stick the EOL value into the 4707 * next_q field of the registers. 4708 */ 4709 val = rd32(hw, I40E_PFINT_LNKLSTN(vector - 1)); 4710 qp = (val & I40E_PFINT_LNKLSTN_FIRSTQ_INDX_MASK) 4711 >> I40E_PFINT_LNKLSTN_FIRSTQ_INDX_SHIFT; 4712 val |= I40E_QUEUE_END_OF_LIST 4713 << I40E_PFINT_LNKLSTN_FIRSTQ_INDX_SHIFT; 4714 wr32(hw, I40E_PFINT_LNKLSTN(vector - 1), val); 4715 4716 while (qp != I40E_QUEUE_END_OF_LIST) { 4717 u32 next; 4718 4719 val = rd32(hw, I40E_QINT_RQCTL(qp)); 4720 4721 val &= ~(I40E_QINT_RQCTL_MSIX_INDX_MASK | 4722 I40E_QINT_RQCTL_MSIX0_INDX_MASK | 4723 I40E_QINT_RQCTL_CAUSE_ENA_MASK | 4724 I40E_QINT_RQCTL_INTEVENT_MASK); 4725 4726 val |= (I40E_QINT_RQCTL_ITR_INDX_MASK | 4727 I40E_QINT_RQCTL_NEXTQ_INDX_MASK); 4728 4729 wr32(hw, I40E_QINT_RQCTL(qp), val); 4730 4731 val = rd32(hw, I40E_QINT_TQCTL(qp)); 4732 4733 next = (val & I40E_QINT_TQCTL_NEXTQ_INDX_MASK) 4734 >> I40E_QINT_TQCTL_NEXTQ_INDX_SHIFT; 4735 4736 val &= ~(I40E_QINT_TQCTL_MSIX_INDX_MASK | 4737 I40E_QINT_TQCTL_MSIX0_INDX_MASK | 4738 I40E_QINT_TQCTL_CAUSE_ENA_MASK | 4739 I40E_QINT_TQCTL_INTEVENT_MASK); 4740 4741 val |= (I40E_QINT_TQCTL_ITR_INDX_MASK | 4742 I40E_QINT_TQCTL_NEXTQ_INDX_MASK); 4743 4744 wr32(hw, I40E_QINT_TQCTL(qp), val); 4745 qp = next; 4746 } 4747 } 4748 } else { 4749 free_irq(pf->pdev->irq, pf); 4750 4751 val = rd32(hw, I40E_PFINT_LNKLST0); 4752 qp = (val & I40E_PFINT_LNKLSTN_FIRSTQ_INDX_MASK) 4753 >> I40E_PFINT_LNKLSTN_FIRSTQ_INDX_SHIFT; 4754 val |= I40E_QUEUE_END_OF_LIST 4755 << I40E_PFINT_LNKLST0_FIRSTQ_INDX_SHIFT; 4756 wr32(hw, I40E_PFINT_LNKLST0, val); 4757 4758 val = rd32(hw, I40E_QINT_RQCTL(qp)); 4759 val &= ~(I40E_QINT_RQCTL_MSIX_INDX_MASK | 4760 I40E_QINT_RQCTL_MSIX0_INDX_MASK | 4761 I40E_QINT_RQCTL_CAUSE_ENA_MASK | 4762 I40E_QINT_RQCTL_INTEVENT_MASK); 4763 4764 val |= (I40E_QINT_RQCTL_ITR_INDX_MASK | 4765 I40E_QINT_RQCTL_NEXTQ_INDX_MASK); 4766 4767 wr32(hw, I40E_QINT_RQCTL(qp), val); 4768 4769 val = rd32(hw, I40E_QINT_TQCTL(qp)); 4770 4771 val &= ~(I40E_QINT_TQCTL_MSIX_INDX_MASK | 4772 I40E_QINT_TQCTL_MSIX0_INDX_MASK | 4773 I40E_QINT_TQCTL_CAUSE_ENA_MASK | 4774 I40E_QINT_TQCTL_INTEVENT_MASK); 4775 4776 val |= (I40E_QINT_TQCTL_ITR_INDX_MASK | 4777 I40E_QINT_TQCTL_NEXTQ_INDX_MASK); 4778 4779 wr32(hw, I40E_QINT_TQCTL(qp), val); 4780 } 4781 } 4782 4783 /** 4784 * i40e_free_q_vector - Free memory allocated for specific interrupt vector 4785 * @vsi: the VSI being configured 4786 * @v_idx: Index of vector to be freed 4787 * 4788 * This function frees the memory allocated to the q_vector. In addition if 4789 * NAPI is enabled it will delete any references to the NAPI struct prior 4790 * to freeing the q_vector. 4791 **/ 4792 static void i40e_free_q_vector(struct i40e_vsi *vsi, int v_idx) 4793 { 4794 struct i40e_q_vector *q_vector = vsi->q_vectors[v_idx]; 4795 struct i40e_ring *ring; 4796 4797 if (!q_vector) 4798 return; 4799 4800 /* disassociate q_vector from rings */ 4801 i40e_for_each_ring(ring, q_vector->tx) 4802 ring->q_vector = NULL; 4803 4804 i40e_for_each_ring(ring, q_vector->rx) 4805 ring->q_vector = NULL; 4806 4807 /* only VSI w/ an associated netdev is set up w/ NAPI */ 4808 if (vsi->netdev) 4809 netif_napi_del(&q_vector->napi); 4810 4811 vsi->q_vectors[v_idx] = NULL; 4812 4813 kfree_rcu(q_vector, rcu); 4814 } 4815 4816 /** 4817 * i40e_vsi_free_q_vectors - Free memory allocated for interrupt vectors 4818 * @vsi: the VSI being un-configured 4819 * 4820 * This frees the memory allocated to the q_vectors and 4821 * deletes references to the NAPI struct. 4822 **/ 4823 static void i40e_vsi_free_q_vectors(struct i40e_vsi *vsi) 4824 { 4825 int v_idx; 4826 4827 for (v_idx = 0; v_idx < vsi->num_q_vectors; v_idx++) 4828 i40e_free_q_vector(vsi, v_idx); 4829 } 4830 4831 /** 4832 * i40e_reset_interrupt_capability - Disable interrupt setup in OS 4833 * @pf: board private structure 4834 **/ 4835 static void i40e_reset_interrupt_capability(struct i40e_pf *pf) 4836 { 4837 /* If we're in Legacy mode, the interrupt was cleaned in vsi_close */ 4838 if (pf->flags & I40E_FLAG_MSIX_ENABLED) { 4839 pci_disable_msix(pf->pdev); 4840 kfree(pf->msix_entries); 4841 pf->msix_entries = NULL; 4842 kfree(pf->irq_pile); 4843 pf->irq_pile = NULL; 4844 } else if (pf->flags & I40E_FLAG_MSI_ENABLED) { 4845 pci_disable_msi(pf->pdev); 4846 } 4847 pf->flags &= ~(I40E_FLAG_MSIX_ENABLED | I40E_FLAG_MSI_ENABLED); 4848 } 4849 4850 /** 4851 * i40e_clear_interrupt_scheme - Clear the current interrupt scheme settings 4852 * @pf: board private structure 4853 * 4854 * We go through and clear interrupt specific resources and reset the structure 4855 * to pre-load conditions 4856 **/ 4857 static void i40e_clear_interrupt_scheme(struct i40e_pf *pf) 4858 { 4859 int i; 4860 4861 i40e_free_misc_vector(pf); 4862 4863 i40e_put_lump(pf->irq_pile, pf->iwarp_base_vector, 4864 I40E_IWARP_IRQ_PILE_ID); 4865 4866 i40e_put_lump(pf->irq_pile, 0, I40E_PILE_VALID_BIT-1); 4867 for (i = 0; i < pf->num_alloc_vsi; i++) 4868 if (pf->vsi[i]) 4869 i40e_vsi_free_q_vectors(pf->vsi[i]); 4870 i40e_reset_interrupt_capability(pf); 4871 } 4872 4873 /** 4874 * i40e_napi_enable_all - Enable NAPI for all q_vectors in the VSI 4875 * @vsi: the VSI being configured 4876 **/ 4877 static void i40e_napi_enable_all(struct i40e_vsi *vsi) 4878 { 4879 int q_idx; 4880 4881 if (!vsi->netdev) 4882 return; 4883 4884 for (q_idx = 0; q_idx < vsi->num_q_vectors; q_idx++) { 4885 struct i40e_q_vector *q_vector = vsi->q_vectors[q_idx]; 4886 4887 if (q_vector->rx.ring || q_vector->tx.ring) 4888 napi_enable(&q_vector->napi); 4889 } 4890 } 4891 4892 /** 4893 * i40e_napi_disable_all - Disable NAPI for all q_vectors in the VSI 4894 * @vsi: the VSI being configured 4895 **/ 4896 static void i40e_napi_disable_all(struct i40e_vsi *vsi) 4897 { 4898 int q_idx; 4899 4900 if (!vsi->netdev) 4901 return; 4902 4903 for (q_idx = 0; q_idx < vsi->num_q_vectors; q_idx++) { 4904 struct i40e_q_vector *q_vector = vsi->q_vectors[q_idx]; 4905 4906 if (q_vector->rx.ring || q_vector->tx.ring) 4907 napi_disable(&q_vector->napi); 4908 } 4909 } 4910 4911 /** 4912 * i40e_vsi_close - Shut down a VSI 4913 * @vsi: the vsi to be quelled 4914 **/ 4915 static void i40e_vsi_close(struct i40e_vsi *vsi) 4916 { 4917 struct i40e_pf *pf = vsi->back; 4918 if (!test_and_set_bit(__I40E_VSI_DOWN, vsi->state)) 4919 i40e_down(vsi); 4920 i40e_vsi_free_irq(vsi); 4921 i40e_vsi_free_tx_resources(vsi); 4922 i40e_vsi_free_rx_resources(vsi); 4923 vsi->current_netdev_flags = 0; 4924 set_bit(__I40E_CLIENT_SERVICE_REQUESTED, pf->state); 4925 if (test_bit(__I40E_RESET_RECOVERY_PENDING, pf->state)) 4926 set_bit(__I40E_CLIENT_RESET, pf->state); 4927 } 4928 4929 /** 4930 * i40e_quiesce_vsi - Pause a given VSI 4931 * @vsi: the VSI being paused 4932 **/ 4933 static void i40e_quiesce_vsi(struct i40e_vsi *vsi) 4934 { 4935 if (test_bit(__I40E_VSI_DOWN, vsi->state)) 4936 return; 4937 4938 set_bit(__I40E_VSI_NEEDS_RESTART, vsi->state); 4939 if (vsi->netdev && netif_running(vsi->netdev)) 4940 vsi->netdev->netdev_ops->ndo_stop(vsi->netdev); 4941 else 4942 i40e_vsi_close(vsi); 4943 } 4944 4945 /** 4946 * i40e_unquiesce_vsi - Resume a given VSI 4947 * @vsi: the VSI being resumed 4948 **/ 4949 static void i40e_unquiesce_vsi(struct i40e_vsi *vsi) 4950 { 4951 if (!test_and_clear_bit(__I40E_VSI_NEEDS_RESTART, vsi->state)) 4952 return; 4953 4954 if (vsi->netdev && netif_running(vsi->netdev)) 4955 vsi->netdev->netdev_ops->ndo_open(vsi->netdev); 4956 else 4957 i40e_vsi_open(vsi); /* this clears the DOWN bit */ 4958 } 4959 4960 /** 4961 * i40e_pf_quiesce_all_vsi - Pause all VSIs on a PF 4962 * @pf: the PF 4963 **/ 4964 static void i40e_pf_quiesce_all_vsi(struct i40e_pf *pf) 4965 { 4966 int v; 4967 4968 for (v = 0; v < pf->num_alloc_vsi; v++) { 4969 if (pf->vsi[v]) 4970 i40e_quiesce_vsi(pf->vsi[v]); 4971 } 4972 } 4973 4974 /** 4975 * i40e_pf_unquiesce_all_vsi - Resume all VSIs on a PF 4976 * @pf: the PF 4977 **/ 4978 static void i40e_pf_unquiesce_all_vsi(struct i40e_pf *pf) 4979 { 4980 int v; 4981 4982 for (v = 0; v < pf->num_alloc_vsi; v++) { 4983 if (pf->vsi[v]) 4984 i40e_unquiesce_vsi(pf->vsi[v]); 4985 } 4986 } 4987 4988 /** 4989 * i40e_vsi_wait_queues_disabled - Wait for VSI's queues to be disabled 4990 * @vsi: the VSI being configured 4991 * 4992 * Wait until all queues on a given VSI have been disabled. 4993 **/ 4994 int i40e_vsi_wait_queues_disabled(struct i40e_vsi *vsi) 4995 { 4996 struct i40e_pf *pf = vsi->back; 4997 int i, pf_q, ret; 4998 4999 pf_q = vsi->base_queue; 5000 for (i = 0; i < vsi->num_queue_pairs; i++, pf_q++) { 5001 /* Check and wait for the Tx queue */ 5002 ret = i40e_pf_txq_wait(pf, pf_q, false); 5003 if (ret) { 5004 dev_info(&pf->pdev->dev, 5005 "VSI seid %d Tx ring %d disable timeout\n", 5006 vsi->seid, pf_q); 5007 return ret; 5008 } 5009 5010 if (!i40e_enabled_xdp_vsi(vsi)) 5011 goto wait_rx; 5012 5013 /* Check and wait for the XDP Tx queue */ 5014 ret = i40e_pf_txq_wait(pf, pf_q + vsi->alloc_queue_pairs, 5015 false); 5016 if (ret) { 5017 dev_info(&pf->pdev->dev, 5018 "VSI seid %d XDP Tx ring %d disable timeout\n", 5019 vsi->seid, pf_q); 5020 return ret; 5021 } 5022 wait_rx: 5023 /* Check and wait for the Rx queue */ 5024 ret = i40e_pf_rxq_wait(pf, pf_q, false); 5025 if (ret) { 5026 dev_info(&pf->pdev->dev, 5027 "VSI seid %d Rx ring %d disable timeout\n", 5028 vsi->seid, pf_q); 5029 return ret; 5030 } 5031 } 5032 5033 return 0; 5034 } 5035 5036 #ifdef CONFIG_I40E_DCB 5037 /** 5038 * i40e_pf_wait_queues_disabled - Wait for all queues of PF VSIs to be disabled 5039 * @pf: the PF 5040 * 5041 * This function waits for the queues to be in disabled state for all the 5042 * VSIs that are managed by this PF. 5043 **/ 5044 static int i40e_pf_wait_queues_disabled(struct i40e_pf *pf) 5045 { 5046 int v, ret = 0; 5047 5048 for (v = 0; v < pf->hw.func_caps.num_vsis; v++) { 5049 if (pf->vsi[v]) { 5050 ret = i40e_vsi_wait_queues_disabled(pf->vsi[v]); 5051 if (ret) 5052 break; 5053 } 5054 } 5055 5056 return ret; 5057 } 5058 5059 #endif 5060 5061 /** 5062 * i40e_get_iscsi_tc_map - Return TC map for iSCSI APP 5063 * @pf: pointer to PF 5064 * 5065 * Get TC map for ISCSI PF type that will include iSCSI TC 5066 * and LAN TC. 5067 **/ 5068 static u8 i40e_get_iscsi_tc_map(struct i40e_pf *pf) 5069 { 5070 struct i40e_dcb_app_priority_table app; 5071 struct i40e_hw *hw = &pf->hw; 5072 u8 enabled_tc = 1; /* TC0 is always enabled */ 5073 u8 tc, i; 5074 /* Get the iSCSI APP TLV */ 5075 struct i40e_dcbx_config *dcbcfg = &hw->local_dcbx_config; 5076 5077 for (i = 0; i < dcbcfg->numapps; i++) { 5078 app = dcbcfg->app[i]; 5079 if (app.selector == I40E_APP_SEL_TCPIP && 5080 app.protocolid == I40E_APP_PROTOID_ISCSI) { 5081 tc = dcbcfg->etscfg.prioritytable[app.priority]; 5082 enabled_tc |= BIT(tc); 5083 break; 5084 } 5085 } 5086 5087 return enabled_tc; 5088 } 5089 5090 /** 5091 * i40e_dcb_get_num_tc - Get the number of TCs from DCBx config 5092 * @dcbcfg: the corresponding DCBx configuration structure 5093 * 5094 * Return the number of TCs from given DCBx configuration 5095 **/ 5096 static u8 i40e_dcb_get_num_tc(struct i40e_dcbx_config *dcbcfg) 5097 { 5098 int i, tc_unused = 0; 5099 u8 num_tc = 0; 5100 u8 ret = 0; 5101 5102 /* Scan the ETS Config Priority Table to find 5103 * traffic class enabled for a given priority 5104 * and create a bitmask of enabled TCs 5105 */ 5106 for (i = 0; i < I40E_MAX_USER_PRIORITY; i++) 5107 num_tc |= BIT(dcbcfg->etscfg.prioritytable[i]); 5108 5109 /* Now scan the bitmask to check for 5110 * contiguous TCs starting with TC0 5111 */ 5112 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 5113 if (num_tc & BIT(i)) { 5114 if (!tc_unused) { 5115 ret++; 5116 } else { 5117 pr_err("Non-contiguous TC - Disabling DCB\n"); 5118 return 1; 5119 } 5120 } else { 5121 tc_unused = 1; 5122 } 5123 } 5124 5125 /* There is always at least TC0 */ 5126 if (!ret) 5127 ret = 1; 5128 5129 return ret; 5130 } 5131 5132 /** 5133 * i40e_dcb_get_enabled_tc - Get enabled traffic classes 5134 * @dcbcfg: the corresponding DCBx configuration structure 5135 * 5136 * Query the current DCB configuration and return the number of 5137 * traffic classes enabled from the given DCBX config 5138 **/ 5139 static u8 i40e_dcb_get_enabled_tc(struct i40e_dcbx_config *dcbcfg) 5140 { 5141 u8 num_tc = i40e_dcb_get_num_tc(dcbcfg); 5142 u8 enabled_tc = 1; 5143 u8 i; 5144 5145 for (i = 0; i < num_tc; i++) 5146 enabled_tc |= BIT(i); 5147 5148 return enabled_tc; 5149 } 5150 5151 /** 5152 * i40e_mqprio_get_enabled_tc - Get enabled traffic classes 5153 * @pf: PF being queried 5154 * 5155 * Query the current MQPRIO configuration and return the number of 5156 * traffic classes enabled. 5157 **/ 5158 static u8 i40e_mqprio_get_enabled_tc(struct i40e_pf *pf) 5159 { 5160 struct i40e_vsi *vsi = pf->vsi[pf->lan_vsi]; 5161 u8 num_tc = vsi->mqprio_qopt.qopt.num_tc; 5162 u8 enabled_tc = 1, i; 5163 5164 for (i = 1; i < num_tc; i++) 5165 enabled_tc |= BIT(i); 5166 return enabled_tc; 5167 } 5168 5169 /** 5170 * i40e_pf_get_num_tc - Get enabled traffic classes for PF 5171 * @pf: PF being queried 5172 * 5173 * Return number of traffic classes enabled for the given PF 5174 **/ 5175 static u8 i40e_pf_get_num_tc(struct i40e_pf *pf) 5176 { 5177 struct i40e_hw *hw = &pf->hw; 5178 u8 i, enabled_tc = 1; 5179 u8 num_tc = 0; 5180 struct i40e_dcbx_config *dcbcfg = &hw->local_dcbx_config; 5181 5182 if (pf->flags & I40E_FLAG_TC_MQPRIO) 5183 return pf->vsi[pf->lan_vsi]->mqprio_qopt.qopt.num_tc; 5184 5185 /* If neither MQPRIO nor DCB is enabled, then always use single TC */ 5186 if (!(pf->flags & I40E_FLAG_DCB_ENABLED)) 5187 return 1; 5188 5189 /* SFP mode will be enabled for all TCs on port */ 5190 if (!(pf->flags & I40E_FLAG_MFP_ENABLED)) 5191 return i40e_dcb_get_num_tc(dcbcfg); 5192 5193 /* MFP mode return count of enabled TCs for this PF */ 5194 if (pf->hw.func_caps.iscsi) 5195 enabled_tc = i40e_get_iscsi_tc_map(pf); 5196 else 5197 return 1; /* Only TC0 */ 5198 5199 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 5200 if (enabled_tc & BIT(i)) 5201 num_tc++; 5202 } 5203 return num_tc; 5204 } 5205 5206 /** 5207 * i40e_pf_get_tc_map - Get bitmap for enabled traffic classes 5208 * @pf: PF being queried 5209 * 5210 * Return a bitmap for enabled traffic classes for this PF. 5211 **/ 5212 static u8 i40e_pf_get_tc_map(struct i40e_pf *pf) 5213 { 5214 if (pf->flags & I40E_FLAG_TC_MQPRIO) 5215 return i40e_mqprio_get_enabled_tc(pf); 5216 5217 /* If neither MQPRIO nor DCB is enabled for this PF then just return 5218 * default TC 5219 */ 5220 if (!(pf->flags & I40E_FLAG_DCB_ENABLED)) 5221 return I40E_DEFAULT_TRAFFIC_CLASS; 5222 5223 /* SFP mode we want PF to be enabled for all TCs */ 5224 if (!(pf->flags & I40E_FLAG_MFP_ENABLED)) 5225 return i40e_dcb_get_enabled_tc(&pf->hw.local_dcbx_config); 5226 5227 /* MFP enabled and iSCSI PF type */ 5228 if (pf->hw.func_caps.iscsi) 5229 return i40e_get_iscsi_tc_map(pf); 5230 else 5231 return I40E_DEFAULT_TRAFFIC_CLASS; 5232 } 5233 5234 /** 5235 * i40e_vsi_get_bw_info - Query VSI BW Information 5236 * @vsi: the VSI being queried 5237 * 5238 * Returns 0 on success, negative value on failure 5239 **/ 5240 static int i40e_vsi_get_bw_info(struct i40e_vsi *vsi) 5241 { 5242 struct i40e_aqc_query_vsi_ets_sla_config_resp bw_ets_config = {0}; 5243 struct i40e_aqc_query_vsi_bw_config_resp bw_config = {0}; 5244 struct i40e_pf *pf = vsi->back; 5245 struct i40e_hw *hw = &pf->hw; 5246 i40e_status ret; 5247 u32 tc_bw_max; 5248 int i; 5249 5250 /* Get the VSI level BW configuration */ 5251 ret = i40e_aq_query_vsi_bw_config(hw, vsi->seid, &bw_config, NULL); 5252 if (ret) { 5253 dev_info(&pf->pdev->dev, 5254 "couldn't get PF vsi bw config, err %s aq_err %s\n", 5255 i40e_stat_str(&pf->hw, ret), 5256 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 5257 return -EINVAL; 5258 } 5259 5260 /* Get the VSI level BW configuration per TC */ 5261 ret = i40e_aq_query_vsi_ets_sla_config(hw, vsi->seid, &bw_ets_config, 5262 NULL); 5263 if (ret) { 5264 dev_info(&pf->pdev->dev, 5265 "couldn't get PF vsi ets bw config, err %s aq_err %s\n", 5266 i40e_stat_str(&pf->hw, ret), 5267 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 5268 return -EINVAL; 5269 } 5270 5271 if (bw_config.tc_valid_bits != bw_ets_config.tc_valid_bits) { 5272 dev_info(&pf->pdev->dev, 5273 "Enabled TCs mismatch from querying VSI BW info 0x%08x 0x%08x\n", 5274 bw_config.tc_valid_bits, 5275 bw_ets_config.tc_valid_bits); 5276 /* Still continuing */ 5277 } 5278 5279 vsi->bw_limit = le16_to_cpu(bw_config.port_bw_limit); 5280 vsi->bw_max_quanta = bw_config.max_bw; 5281 tc_bw_max = le16_to_cpu(bw_ets_config.tc_bw_max[0]) | 5282 (le16_to_cpu(bw_ets_config.tc_bw_max[1]) << 16); 5283 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 5284 vsi->bw_ets_share_credits[i] = bw_ets_config.share_credits[i]; 5285 vsi->bw_ets_limit_credits[i] = 5286 le16_to_cpu(bw_ets_config.credits[i]); 5287 /* 3 bits out of 4 for each TC */ 5288 vsi->bw_ets_max_quanta[i] = (u8)((tc_bw_max >> (i*4)) & 0x7); 5289 } 5290 5291 return 0; 5292 } 5293 5294 /** 5295 * i40e_vsi_configure_bw_alloc - Configure VSI BW allocation per TC 5296 * @vsi: the VSI being configured 5297 * @enabled_tc: TC bitmap 5298 * @bw_share: BW shared credits per TC 5299 * 5300 * Returns 0 on success, negative value on failure 5301 **/ 5302 static int i40e_vsi_configure_bw_alloc(struct i40e_vsi *vsi, u8 enabled_tc, 5303 u8 *bw_share) 5304 { 5305 struct i40e_aqc_configure_vsi_tc_bw_data bw_data; 5306 struct i40e_pf *pf = vsi->back; 5307 i40e_status ret; 5308 int i; 5309 5310 /* There is no need to reset BW when mqprio mode is on. */ 5311 if (pf->flags & I40E_FLAG_TC_MQPRIO) 5312 return 0; 5313 if (!vsi->mqprio_qopt.qopt.hw && !(pf->flags & I40E_FLAG_DCB_ENABLED)) { 5314 ret = i40e_set_bw_limit(vsi, vsi->seid, 0); 5315 if (ret) 5316 dev_info(&pf->pdev->dev, 5317 "Failed to reset tx rate for vsi->seid %u\n", 5318 vsi->seid); 5319 return ret; 5320 } 5321 memset(&bw_data, 0, sizeof(bw_data)); 5322 bw_data.tc_valid_bits = enabled_tc; 5323 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) 5324 bw_data.tc_bw_credits[i] = bw_share[i]; 5325 5326 ret = i40e_aq_config_vsi_tc_bw(&pf->hw, vsi->seid, &bw_data, NULL); 5327 if (ret) { 5328 dev_info(&pf->pdev->dev, 5329 "AQ command Config VSI BW allocation per TC failed = %d\n", 5330 pf->hw.aq.asq_last_status); 5331 return -EINVAL; 5332 } 5333 5334 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) 5335 vsi->info.qs_handle[i] = bw_data.qs_handles[i]; 5336 5337 return 0; 5338 } 5339 5340 /** 5341 * i40e_vsi_config_netdev_tc - Setup the netdev TC configuration 5342 * @vsi: the VSI being configured 5343 * @enabled_tc: TC map to be enabled 5344 * 5345 **/ 5346 static void i40e_vsi_config_netdev_tc(struct i40e_vsi *vsi, u8 enabled_tc) 5347 { 5348 struct net_device *netdev = vsi->netdev; 5349 struct i40e_pf *pf = vsi->back; 5350 struct i40e_hw *hw = &pf->hw; 5351 u8 netdev_tc = 0; 5352 int i; 5353 struct i40e_dcbx_config *dcbcfg = &hw->local_dcbx_config; 5354 5355 if (!netdev) 5356 return; 5357 5358 if (!enabled_tc) { 5359 netdev_reset_tc(netdev); 5360 return; 5361 } 5362 5363 /* Set up actual enabled TCs on the VSI */ 5364 if (netdev_set_num_tc(netdev, vsi->tc_config.numtc)) 5365 return; 5366 5367 /* set per TC queues for the VSI */ 5368 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 5369 /* Only set TC queues for enabled tcs 5370 * 5371 * e.g. For a VSI that has TC0 and TC3 enabled the 5372 * enabled_tc bitmap would be 0x00001001; the driver 5373 * will set the numtc for netdev as 2 that will be 5374 * referenced by the netdev layer as TC 0 and 1. 5375 */ 5376 if (vsi->tc_config.enabled_tc & BIT(i)) 5377 netdev_set_tc_queue(netdev, 5378 vsi->tc_config.tc_info[i].netdev_tc, 5379 vsi->tc_config.tc_info[i].qcount, 5380 vsi->tc_config.tc_info[i].qoffset); 5381 } 5382 5383 if (pf->flags & I40E_FLAG_TC_MQPRIO) 5384 return; 5385 5386 /* Assign UP2TC map for the VSI */ 5387 for (i = 0; i < I40E_MAX_USER_PRIORITY; i++) { 5388 /* Get the actual TC# for the UP */ 5389 u8 ets_tc = dcbcfg->etscfg.prioritytable[i]; 5390 /* Get the mapped netdev TC# for the UP */ 5391 netdev_tc = vsi->tc_config.tc_info[ets_tc].netdev_tc; 5392 netdev_set_prio_tc_map(netdev, i, netdev_tc); 5393 } 5394 } 5395 5396 /** 5397 * i40e_vsi_update_queue_map - Update our copy of VSi info with new queue map 5398 * @vsi: the VSI being configured 5399 * @ctxt: the ctxt buffer returned from AQ VSI update param command 5400 **/ 5401 static void i40e_vsi_update_queue_map(struct i40e_vsi *vsi, 5402 struct i40e_vsi_context *ctxt) 5403 { 5404 /* copy just the sections touched not the entire info 5405 * since not all sections are valid as returned by 5406 * update vsi params 5407 */ 5408 vsi->info.mapping_flags = ctxt->info.mapping_flags; 5409 memcpy(&vsi->info.queue_mapping, 5410 &ctxt->info.queue_mapping, sizeof(vsi->info.queue_mapping)); 5411 memcpy(&vsi->info.tc_mapping, ctxt->info.tc_mapping, 5412 sizeof(vsi->info.tc_mapping)); 5413 } 5414 5415 /** 5416 * i40e_vsi_config_tc - Configure VSI Tx Scheduler for given TC map 5417 * @vsi: VSI to be configured 5418 * @enabled_tc: TC bitmap 5419 * 5420 * This configures a particular VSI for TCs that are mapped to the 5421 * given TC bitmap. It uses default bandwidth share for TCs across 5422 * VSIs to configure TC for a particular VSI. 5423 * 5424 * NOTE: 5425 * It is expected that the VSI queues have been quisced before calling 5426 * this function. 5427 **/ 5428 static int i40e_vsi_config_tc(struct i40e_vsi *vsi, u8 enabled_tc) 5429 { 5430 u8 bw_share[I40E_MAX_TRAFFIC_CLASS] = {0}; 5431 struct i40e_pf *pf = vsi->back; 5432 struct i40e_hw *hw = &pf->hw; 5433 struct i40e_vsi_context ctxt; 5434 int ret = 0; 5435 int i; 5436 5437 /* Check if enabled_tc is same as existing or new TCs */ 5438 if (vsi->tc_config.enabled_tc == enabled_tc && 5439 vsi->mqprio_qopt.mode != TC_MQPRIO_MODE_CHANNEL) 5440 return ret; 5441 5442 /* Enable ETS TCs with equal BW Share for now across all VSIs */ 5443 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 5444 if (enabled_tc & BIT(i)) 5445 bw_share[i] = 1; 5446 } 5447 5448 ret = i40e_vsi_configure_bw_alloc(vsi, enabled_tc, bw_share); 5449 if (ret) { 5450 struct i40e_aqc_query_vsi_bw_config_resp bw_config = {0}; 5451 5452 dev_info(&pf->pdev->dev, 5453 "Failed configuring TC map %d for VSI %d\n", 5454 enabled_tc, vsi->seid); 5455 ret = i40e_aq_query_vsi_bw_config(hw, vsi->seid, 5456 &bw_config, NULL); 5457 if (ret) { 5458 dev_info(&pf->pdev->dev, 5459 "Failed querying vsi bw info, err %s aq_err %s\n", 5460 i40e_stat_str(hw, ret), 5461 i40e_aq_str(hw, hw->aq.asq_last_status)); 5462 goto out; 5463 } 5464 if ((bw_config.tc_valid_bits & enabled_tc) != enabled_tc) { 5465 u8 valid_tc = bw_config.tc_valid_bits & enabled_tc; 5466 5467 if (!valid_tc) 5468 valid_tc = bw_config.tc_valid_bits; 5469 /* Always enable TC0, no matter what */ 5470 valid_tc |= 1; 5471 dev_info(&pf->pdev->dev, 5472 "Requested tc 0x%x, but FW reports 0x%x as valid. Attempting to use 0x%x.\n", 5473 enabled_tc, bw_config.tc_valid_bits, valid_tc); 5474 enabled_tc = valid_tc; 5475 } 5476 5477 ret = i40e_vsi_configure_bw_alloc(vsi, enabled_tc, bw_share); 5478 if (ret) { 5479 dev_err(&pf->pdev->dev, 5480 "Unable to configure TC map %d for VSI %d\n", 5481 enabled_tc, vsi->seid); 5482 goto out; 5483 } 5484 } 5485 5486 /* Update Queue Pairs Mapping for currently enabled UPs */ 5487 ctxt.seid = vsi->seid; 5488 ctxt.pf_num = vsi->back->hw.pf_id; 5489 ctxt.vf_num = 0; 5490 ctxt.uplink_seid = vsi->uplink_seid; 5491 ctxt.info = vsi->info; 5492 if (vsi->back->flags & I40E_FLAG_TC_MQPRIO) { 5493 ret = i40e_vsi_setup_queue_map_mqprio(vsi, &ctxt, enabled_tc); 5494 if (ret) 5495 goto out; 5496 } else { 5497 i40e_vsi_setup_queue_map(vsi, &ctxt, enabled_tc, false); 5498 } 5499 5500 /* On destroying the qdisc, reset vsi->rss_size, as number of enabled 5501 * queues changed. 5502 */ 5503 if (!vsi->mqprio_qopt.qopt.hw && vsi->reconfig_rss) { 5504 vsi->rss_size = min_t(int, vsi->back->alloc_rss_size, 5505 vsi->num_queue_pairs); 5506 ret = i40e_vsi_config_rss(vsi); 5507 if (ret) { 5508 dev_info(&vsi->back->pdev->dev, 5509 "Failed to reconfig rss for num_queues\n"); 5510 return ret; 5511 } 5512 vsi->reconfig_rss = false; 5513 } 5514 if (vsi->back->flags & I40E_FLAG_IWARP_ENABLED) { 5515 ctxt.info.valid_sections |= 5516 cpu_to_le16(I40E_AQ_VSI_PROP_QUEUE_OPT_VALID); 5517 ctxt.info.queueing_opt_flags |= I40E_AQ_VSI_QUE_OPT_TCP_ENA; 5518 } 5519 5520 /* Update the VSI after updating the VSI queue-mapping 5521 * information 5522 */ 5523 ret = i40e_aq_update_vsi_params(hw, &ctxt, NULL); 5524 if (ret) { 5525 dev_info(&pf->pdev->dev, 5526 "Update vsi tc config failed, err %s aq_err %s\n", 5527 i40e_stat_str(hw, ret), 5528 i40e_aq_str(hw, hw->aq.asq_last_status)); 5529 goto out; 5530 } 5531 /* update the local VSI info with updated queue map */ 5532 i40e_vsi_update_queue_map(vsi, &ctxt); 5533 vsi->info.valid_sections = 0; 5534 5535 /* Update current VSI BW information */ 5536 ret = i40e_vsi_get_bw_info(vsi); 5537 if (ret) { 5538 dev_info(&pf->pdev->dev, 5539 "Failed updating vsi bw info, err %s aq_err %s\n", 5540 i40e_stat_str(hw, ret), 5541 i40e_aq_str(hw, hw->aq.asq_last_status)); 5542 goto out; 5543 } 5544 5545 /* Update the netdev TC setup */ 5546 i40e_vsi_config_netdev_tc(vsi, enabled_tc); 5547 out: 5548 return ret; 5549 } 5550 5551 /** 5552 * i40e_get_link_speed - Returns link speed for the interface 5553 * @vsi: VSI to be configured 5554 * 5555 **/ 5556 static int i40e_get_link_speed(struct i40e_vsi *vsi) 5557 { 5558 struct i40e_pf *pf = vsi->back; 5559 5560 switch (pf->hw.phy.link_info.link_speed) { 5561 case I40E_LINK_SPEED_40GB: 5562 return 40000; 5563 case I40E_LINK_SPEED_25GB: 5564 return 25000; 5565 case I40E_LINK_SPEED_20GB: 5566 return 20000; 5567 case I40E_LINK_SPEED_10GB: 5568 return 10000; 5569 case I40E_LINK_SPEED_1GB: 5570 return 1000; 5571 default: 5572 return -EINVAL; 5573 } 5574 } 5575 5576 /** 5577 * i40e_set_bw_limit - setup BW limit for Tx traffic based on max_tx_rate 5578 * @vsi: VSI to be configured 5579 * @seid: seid of the channel/VSI 5580 * @max_tx_rate: max TX rate to be configured as BW limit 5581 * 5582 * Helper function to set BW limit for a given VSI 5583 **/ 5584 int i40e_set_bw_limit(struct i40e_vsi *vsi, u16 seid, u64 max_tx_rate) 5585 { 5586 struct i40e_pf *pf = vsi->back; 5587 u64 credits = 0; 5588 int speed = 0; 5589 int ret = 0; 5590 5591 speed = i40e_get_link_speed(vsi); 5592 if (max_tx_rate > speed) { 5593 dev_err(&pf->pdev->dev, 5594 "Invalid max tx rate %llu specified for VSI seid %d.", 5595 max_tx_rate, seid); 5596 return -EINVAL; 5597 } 5598 if (max_tx_rate && max_tx_rate < 50) { 5599 dev_warn(&pf->pdev->dev, 5600 "Setting max tx rate to minimum usable value of 50Mbps.\n"); 5601 max_tx_rate = 50; 5602 } 5603 5604 /* Tx rate credits are in values of 50Mbps, 0 is disabled */ 5605 credits = max_tx_rate; 5606 do_div(credits, I40E_BW_CREDIT_DIVISOR); 5607 ret = i40e_aq_config_vsi_bw_limit(&pf->hw, seid, credits, 5608 I40E_MAX_BW_INACTIVE_ACCUM, NULL); 5609 if (ret) 5610 dev_err(&pf->pdev->dev, 5611 "Failed set tx rate (%llu Mbps) for vsi->seid %u, err %s aq_err %s\n", 5612 max_tx_rate, seid, i40e_stat_str(&pf->hw, ret), 5613 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 5614 return ret; 5615 } 5616 5617 /** 5618 * i40e_remove_queue_channels - Remove queue channels for the TCs 5619 * @vsi: VSI to be configured 5620 * 5621 * Remove queue channels for the TCs 5622 **/ 5623 static void i40e_remove_queue_channels(struct i40e_vsi *vsi) 5624 { 5625 enum i40e_admin_queue_err last_aq_status; 5626 struct i40e_cloud_filter *cfilter; 5627 struct i40e_channel *ch, *ch_tmp; 5628 struct i40e_pf *pf = vsi->back; 5629 struct hlist_node *node; 5630 int ret, i; 5631 5632 /* Reset rss size that was stored when reconfiguring rss for 5633 * channel VSIs with non-power-of-2 queue count. 5634 */ 5635 vsi->current_rss_size = 0; 5636 5637 /* perform cleanup for channels if they exist */ 5638 if (list_empty(&vsi->ch_list)) 5639 return; 5640 5641 list_for_each_entry_safe(ch, ch_tmp, &vsi->ch_list, list) { 5642 struct i40e_vsi *p_vsi; 5643 5644 list_del(&ch->list); 5645 p_vsi = ch->parent_vsi; 5646 if (!p_vsi || !ch->initialized) { 5647 kfree(ch); 5648 continue; 5649 } 5650 /* Reset queue contexts */ 5651 for (i = 0; i < ch->num_queue_pairs; i++) { 5652 struct i40e_ring *tx_ring, *rx_ring; 5653 u16 pf_q; 5654 5655 pf_q = ch->base_queue + i; 5656 tx_ring = vsi->tx_rings[pf_q]; 5657 tx_ring->ch = NULL; 5658 5659 rx_ring = vsi->rx_rings[pf_q]; 5660 rx_ring->ch = NULL; 5661 } 5662 5663 /* Reset BW configured for this VSI via mqprio */ 5664 ret = i40e_set_bw_limit(vsi, ch->seid, 0); 5665 if (ret) 5666 dev_info(&vsi->back->pdev->dev, 5667 "Failed to reset tx rate for ch->seid %u\n", 5668 ch->seid); 5669 5670 /* delete cloud filters associated with this channel */ 5671 hlist_for_each_entry_safe(cfilter, node, 5672 &pf->cloud_filter_list, cloud_node) { 5673 if (cfilter->seid != ch->seid) 5674 continue; 5675 5676 hash_del(&cfilter->cloud_node); 5677 if (cfilter->dst_port) 5678 ret = i40e_add_del_cloud_filter_big_buf(vsi, 5679 cfilter, 5680 false); 5681 else 5682 ret = i40e_add_del_cloud_filter(vsi, cfilter, 5683 false); 5684 last_aq_status = pf->hw.aq.asq_last_status; 5685 if (ret) 5686 dev_info(&pf->pdev->dev, 5687 "Failed to delete cloud filter, err %s aq_err %s\n", 5688 i40e_stat_str(&pf->hw, ret), 5689 i40e_aq_str(&pf->hw, last_aq_status)); 5690 kfree(cfilter); 5691 } 5692 5693 /* delete VSI from FW */ 5694 ret = i40e_aq_delete_element(&vsi->back->hw, ch->seid, 5695 NULL); 5696 if (ret) 5697 dev_err(&vsi->back->pdev->dev, 5698 "unable to remove channel (%d) for parent VSI(%d)\n", 5699 ch->seid, p_vsi->seid); 5700 kfree(ch); 5701 } 5702 INIT_LIST_HEAD(&vsi->ch_list); 5703 } 5704 5705 /** 5706 * i40e_is_any_channel - channel exist or not 5707 * @vsi: ptr to VSI to which channels are associated with 5708 * 5709 * Returns true or false if channel(s) exist for associated VSI or not 5710 **/ 5711 static bool i40e_is_any_channel(struct i40e_vsi *vsi) 5712 { 5713 struct i40e_channel *ch, *ch_tmp; 5714 5715 list_for_each_entry_safe(ch, ch_tmp, &vsi->ch_list, list) { 5716 if (ch->initialized) 5717 return true; 5718 } 5719 5720 return false; 5721 } 5722 5723 /** 5724 * i40e_get_max_queues_for_channel 5725 * @vsi: ptr to VSI to which channels are associated with 5726 * 5727 * Helper function which returns max value among the queue counts set on the 5728 * channels/TCs created. 5729 **/ 5730 static int i40e_get_max_queues_for_channel(struct i40e_vsi *vsi) 5731 { 5732 struct i40e_channel *ch, *ch_tmp; 5733 int max = 0; 5734 5735 list_for_each_entry_safe(ch, ch_tmp, &vsi->ch_list, list) { 5736 if (!ch->initialized) 5737 continue; 5738 if (ch->num_queue_pairs > max) 5739 max = ch->num_queue_pairs; 5740 } 5741 5742 return max; 5743 } 5744 5745 /** 5746 * i40e_validate_num_queues - validate num_queues w.r.t channel 5747 * @pf: ptr to PF device 5748 * @num_queues: number of queues 5749 * @vsi: the parent VSI 5750 * @reconfig_rss: indicates should the RSS be reconfigured or not 5751 * 5752 * This function validates number of queues in the context of new channel 5753 * which is being established and determines if RSS should be reconfigured 5754 * or not for parent VSI. 5755 **/ 5756 static int i40e_validate_num_queues(struct i40e_pf *pf, int num_queues, 5757 struct i40e_vsi *vsi, bool *reconfig_rss) 5758 { 5759 int max_ch_queues; 5760 5761 if (!reconfig_rss) 5762 return -EINVAL; 5763 5764 *reconfig_rss = false; 5765 if (vsi->current_rss_size) { 5766 if (num_queues > vsi->current_rss_size) { 5767 dev_dbg(&pf->pdev->dev, 5768 "Error: num_queues (%d) > vsi's current_size(%d)\n", 5769 num_queues, vsi->current_rss_size); 5770 return -EINVAL; 5771 } else if ((num_queues < vsi->current_rss_size) && 5772 (!is_power_of_2(num_queues))) { 5773 dev_dbg(&pf->pdev->dev, 5774 "Error: num_queues (%d) < vsi's current_size(%d), but not power of 2\n", 5775 num_queues, vsi->current_rss_size); 5776 return -EINVAL; 5777 } 5778 } 5779 5780 if (!is_power_of_2(num_queues)) { 5781 /* Find the max num_queues configured for channel if channel 5782 * exist. 5783 * if channel exist, then enforce 'num_queues' to be more than 5784 * max ever queues configured for channel. 5785 */ 5786 max_ch_queues = i40e_get_max_queues_for_channel(vsi); 5787 if (num_queues < max_ch_queues) { 5788 dev_dbg(&pf->pdev->dev, 5789 "Error: num_queues (%d) < max queues configured for channel(%d)\n", 5790 num_queues, max_ch_queues); 5791 return -EINVAL; 5792 } 5793 *reconfig_rss = true; 5794 } 5795 5796 return 0; 5797 } 5798 5799 /** 5800 * i40e_vsi_reconfig_rss - reconfig RSS based on specified rss_size 5801 * @vsi: the VSI being setup 5802 * @rss_size: size of RSS, accordingly LUT gets reprogrammed 5803 * 5804 * This function reconfigures RSS by reprogramming LUTs using 'rss_size' 5805 **/ 5806 static int i40e_vsi_reconfig_rss(struct i40e_vsi *vsi, u16 rss_size) 5807 { 5808 struct i40e_pf *pf = vsi->back; 5809 u8 seed[I40E_HKEY_ARRAY_SIZE]; 5810 struct i40e_hw *hw = &pf->hw; 5811 int local_rss_size; 5812 u8 *lut; 5813 int ret; 5814 5815 if (!vsi->rss_size) 5816 return -EINVAL; 5817 5818 if (rss_size > vsi->rss_size) 5819 return -EINVAL; 5820 5821 local_rss_size = min_t(int, vsi->rss_size, rss_size); 5822 lut = kzalloc(vsi->rss_table_size, GFP_KERNEL); 5823 if (!lut) 5824 return -ENOMEM; 5825 5826 /* Ignoring user configured lut if there is one */ 5827 i40e_fill_rss_lut(pf, lut, vsi->rss_table_size, local_rss_size); 5828 5829 /* Use user configured hash key if there is one, otherwise 5830 * use default. 5831 */ 5832 if (vsi->rss_hkey_user) 5833 memcpy(seed, vsi->rss_hkey_user, I40E_HKEY_ARRAY_SIZE); 5834 else 5835 netdev_rss_key_fill((void *)seed, I40E_HKEY_ARRAY_SIZE); 5836 5837 ret = i40e_config_rss(vsi, seed, lut, vsi->rss_table_size); 5838 if (ret) { 5839 dev_info(&pf->pdev->dev, 5840 "Cannot set RSS lut, err %s aq_err %s\n", 5841 i40e_stat_str(hw, ret), 5842 i40e_aq_str(hw, hw->aq.asq_last_status)); 5843 kfree(lut); 5844 return ret; 5845 } 5846 kfree(lut); 5847 5848 /* Do the update w.r.t. storing rss_size */ 5849 if (!vsi->orig_rss_size) 5850 vsi->orig_rss_size = vsi->rss_size; 5851 vsi->current_rss_size = local_rss_size; 5852 5853 return ret; 5854 } 5855 5856 /** 5857 * i40e_channel_setup_queue_map - Setup a channel queue map 5858 * @pf: ptr to PF device 5859 * @ctxt: VSI context structure 5860 * @ch: ptr to channel structure 5861 * 5862 * Setup queue map for a specific channel 5863 **/ 5864 static void i40e_channel_setup_queue_map(struct i40e_pf *pf, 5865 struct i40e_vsi_context *ctxt, 5866 struct i40e_channel *ch) 5867 { 5868 u16 qcount, qmap, sections = 0; 5869 u8 offset = 0; 5870 int pow; 5871 5872 sections = I40E_AQ_VSI_PROP_QUEUE_MAP_VALID; 5873 sections |= I40E_AQ_VSI_PROP_SCHED_VALID; 5874 5875 qcount = min_t(int, ch->num_queue_pairs, pf->num_lan_msix); 5876 ch->num_queue_pairs = qcount; 5877 5878 /* find the next higher power-of-2 of num queue pairs */ 5879 pow = ilog2(qcount); 5880 if (!is_power_of_2(qcount)) 5881 pow++; 5882 5883 qmap = (offset << I40E_AQ_VSI_TC_QUE_OFFSET_SHIFT) | 5884 (pow << I40E_AQ_VSI_TC_QUE_NUMBER_SHIFT); 5885 5886 /* Setup queue TC[0].qmap for given VSI context */ 5887 ctxt->info.tc_mapping[0] = cpu_to_le16(qmap); 5888 5889 ctxt->info.up_enable_bits = 0x1; /* TC0 enabled */ 5890 ctxt->info.mapping_flags |= cpu_to_le16(I40E_AQ_VSI_QUE_MAP_CONTIG); 5891 ctxt->info.queue_mapping[0] = cpu_to_le16(ch->base_queue); 5892 ctxt->info.valid_sections |= cpu_to_le16(sections); 5893 } 5894 5895 /** 5896 * i40e_add_channel - add a channel by adding VSI 5897 * @pf: ptr to PF device 5898 * @uplink_seid: underlying HW switching element (VEB) ID 5899 * @ch: ptr to channel structure 5900 * 5901 * Add a channel (VSI) using add_vsi and queue_map 5902 **/ 5903 static int i40e_add_channel(struct i40e_pf *pf, u16 uplink_seid, 5904 struct i40e_channel *ch) 5905 { 5906 struct i40e_hw *hw = &pf->hw; 5907 struct i40e_vsi_context ctxt; 5908 u8 enabled_tc = 0x1; /* TC0 enabled */ 5909 int ret; 5910 5911 if (ch->type != I40E_VSI_VMDQ2) { 5912 dev_info(&pf->pdev->dev, 5913 "add new vsi failed, ch->type %d\n", ch->type); 5914 return -EINVAL; 5915 } 5916 5917 memset(&ctxt, 0, sizeof(ctxt)); 5918 ctxt.pf_num = hw->pf_id; 5919 ctxt.vf_num = 0; 5920 ctxt.uplink_seid = uplink_seid; 5921 ctxt.connection_type = I40E_AQ_VSI_CONN_TYPE_NORMAL; 5922 if (ch->type == I40E_VSI_VMDQ2) 5923 ctxt.flags = I40E_AQ_VSI_TYPE_VMDQ2; 5924 5925 if (pf->flags & I40E_FLAG_VEB_MODE_ENABLED) { 5926 ctxt.info.valid_sections |= 5927 cpu_to_le16(I40E_AQ_VSI_PROP_SWITCH_VALID); 5928 ctxt.info.switch_id = 5929 cpu_to_le16(I40E_AQ_VSI_SW_ID_FLAG_ALLOW_LB); 5930 } 5931 5932 /* Set queue map for a given VSI context */ 5933 i40e_channel_setup_queue_map(pf, &ctxt, ch); 5934 5935 /* Now time to create VSI */ 5936 ret = i40e_aq_add_vsi(hw, &ctxt, NULL); 5937 if (ret) { 5938 dev_info(&pf->pdev->dev, 5939 "add new vsi failed, err %s aq_err %s\n", 5940 i40e_stat_str(&pf->hw, ret), 5941 i40e_aq_str(&pf->hw, 5942 pf->hw.aq.asq_last_status)); 5943 return -ENOENT; 5944 } 5945 5946 /* Success, update channel, set enabled_tc only if the channel 5947 * is not a macvlan 5948 */ 5949 ch->enabled_tc = !i40e_is_channel_macvlan(ch) && enabled_tc; 5950 ch->seid = ctxt.seid; 5951 ch->vsi_number = ctxt.vsi_number; 5952 ch->stat_counter_idx = le16_to_cpu(ctxt.info.stat_counter_idx); 5953 5954 /* copy just the sections touched not the entire info 5955 * since not all sections are valid as returned by 5956 * update vsi params 5957 */ 5958 ch->info.mapping_flags = ctxt.info.mapping_flags; 5959 memcpy(&ch->info.queue_mapping, 5960 &ctxt.info.queue_mapping, sizeof(ctxt.info.queue_mapping)); 5961 memcpy(&ch->info.tc_mapping, ctxt.info.tc_mapping, 5962 sizeof(ctxt.info.tc_mapping)); 5963 5964 return 0; 5965 } 5966 5967 static int i40e_channel_config_bw(struct i40e_vsi *vsi, struct i40e_channel *ch, 5968 u8 *bw_share) 5969 { 5970 struct i40e_aqc_configure_vsi_tc_bw_data bw_data; 5971 i40e_status ret; 5972 int i; 5973 5974 memset(&bw_data, 0, sizeof(bw_data)); 5975 bw_data.tc_valid_bits = ch->enabled_tc; 5976 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) 5977 bw_data.tc_bw_credits[i] = bw_share[i]; 5978 5979 ret = i40e_aq_config_vsi_tc_bw(&vsi->back->hw, ch->seid, 5980 &bw_data, NULL); 5981 if (ret) { 5982 dev_info(&vsi->back->pdev->dev, 5983 "Config VSI BW allocation per TC failed, aq_err: %d for new_vsi->seid %u\n", 5984 vsi->back->hw.aq.asq_last_status, ch->seid); 5985 return -EINVAL; 5986 } 5987 5988 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) 5989 ch->info.qs_handle[i] = bw_data.qs_handles[i]; 5990 5991 return 0; 5992 } 5993 5994 /** 5995 * i40e_channel_config_tx_ring - config TX ring associated with new channel 5996 * @pf: ptr to PF device 5997 * @vsi: the VSI being setup 5998 * @ch: ptr to channel structure 5999 * 6000 * Configure TX rings associated with channel (VSI) since queues are being 6001 * from parent VSI. 6002 **/ 6003 static int i40e_channel_config_tx_ring(struct i40e_pf *pf, 6004 struct i40e_vsi *vsi, 6005 struct i40e_channel *ch) 6006 { 6007 i40e_status ret; 6008 int i; 6009 u8 bw_share[I40E_MAX_TRAFFIC_CLASS] = {0}; 6010 6011 /* Enable ETS TCs with equal BW Share for now across all VSIs */ 6012 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 6013 if (ch->enabled_tc & BIT(i)) 6014 bw_share[i] = 1; 6015 } 6016 6017 /* configure BW for new VSI */ 6018 ret = i40e_channel_config_bw(vsi, ch, bw_share); 6019 if (ret) { 6020 dev_info(&vsi->back->pdev->dev, 6021 "Failed configuring TC map %d for channel (seid %u)\n", 6022 ch->enabled_tc, ch->seid); 6023 return ret; 6024 } 6025 6026 for (i = 0; i < ch->num_queue_pairs; i++) { 6027 struct i40e_ring *tx_ring, *rx_ring; 6028 u16 pf_q; 6029 6030 pf_q = ch->base_queue + i; 6031 6032 /* Get to TX ring ptr of main VSI, for re-setup TX queue 6033 * context 6034 */ 6035 tx_ring = vsi->tx_rings[pf_q]; 6036 tx_ring->ch = ch; 6037 6038 /* Get the RX ring ptr */ 6039 rx_ring = vsi->rx_rings[pf_q]; 6040 rx_ring->ch = ch; 6041 } 6042 6043 return 0; 6044 } 6045 6046 /** 6047 * i40e_setup_hw_channel - setup new channel 6048 * @pf: ptr to PF device 6049 * @vsi: the VSI being setup 6050 * @ch: ptr to channel structure 6051 * @uplink_seid: underlying HW switching element (VEB) ID 6052 * @type: type of channel to be created (VMDq2/VF) 6053 * 6054 * Setup new channel (VSI) based on specified type (VMDq2/VF) 6055 * and configures TX rings accordingly 6056 **/ 6057 static inline int i40e_setup_hw_channel(struct i40e_pf *pf, 6058 struct i40e_vsi *vsi, 6059 struct i40e_channel *ch, 6060 u16 uplink_seid, u8 type) 6061 { 6062 int ret; 6063 6064 ch->initialized = false; 6065 ch->base_queue = vsi->next_base_queue; 6066 ch->type = type; 6067 6068 /* Proceed with creation of channel (VMDq2) VSI */ 6069 ret = i40e_add_channel(pf, uplink_seid, ch); 6070 if (ret) { 6071 dev_info(&pf->pdev->dev, 6072 "failed to add_channel using uplink_seid %u\n", 6073 uplink_seid); 6074 return ret; 6075 } 6076 6077 /* Mark the successful creation of channel */ 6078 ch->initialized = true; 6079 6080 /* Reconfigure TX queues using QTX_CTL register */ 6081 ret = i40e_channel_config_tx_ring(pf, vsi, ch); 6082 if (ret) { 6083 dev_info(&pf->pdev->dev, 6084 "failed to configure TX rings for channel %u\n", 6085 ch->seid); 6086 return ret; 6087 } 6088 6089 /* update 'next_base_queue' */ 6090 vsi->next_base_queue = vsi->next_base_queue + ch->num_queue_pairs; 6091 dev_dbg(&pf->pdev->dev, 6092 "Added channel: vsi_seid %u, vsi_number %u, stat_counter_idx %u, num_queue_pairs %u, pf->next_base_queue %d\n", 6093 ch->seid, ch->vsi_number, ch->stat_counter_idx, 6094 ch->num_queue_pairs, 6095 vsi->next_base_queue); 6096 return ret; 6097 } 6098 6099 /** 6100 * i40e_setup_channel - setup new channel using uplink element 6101 * @pf: ptr to PF device 6102 * @vsi: pointer to the VSI to set up the channel within 6103 * @ch: ptr to channel structure 6104 * 6105 * Setup new channel (VSI) based on specified type (VMDq2/VF) 6106 * and uplink switching element (uplink_seid) 6107 **/ 6108 static bool i40e_setup_channel(struct i40e_pf *pf, struct i40e_vsi *vsi, 6109 struct i40e_channel *ch) 6110 { 6111 u8 vsi_type; 6112 u16 seid; 6113 int ret; 6114 6115 if (vsi->type == I40E_VSI_MAIN) { 6116 vsi_type = I40E_VSI_VMDQ2; 6117 } else { 6118 dev_err(&pf->pdev->dev, "unsupported parent vsi type(%d)\n", 6119 vsi->type); 6120 return false; 6121 } 6122 6123 /* underlying switching element */ 6124 seid = pf->vsi[pf->lan_vsi]->uplink_seid; 6125 6126 /* create channel (VSI), configure TX rings */ 6127 ret = i40e_setup_hw_channel(pf, vsi, ch, seid, vsi_type); 6128 if (ret) { 6129 dev_err(&pf->pdev->dev, "failed to setup hw_channel\n"); 6130 return false; 6131 } 6132 6133 return ch->initialized ? true : false; 6134 } 6135 6136 /** 6137 * i40e_validate_and_set_switch_mode - sets up switch mode correctly 6138 * @vsi: ptr to VSI which has PF backing 6139 * 6140 * Sets up switch mode correctly if it needs to be changed and perform 6141 * what are allowed modes. 6142 **/ 6143 static int i40e_validate_and_set_switch_mode(struct i40e_vsi *vsi) 6144 { 6145 u8 mode; 6146 struct i40e_pf *pf = vsi->back; 6147 struct i40e_hw *hw = &pf->hw; 6148 int ret; 6149 6150 ret = i40e_get_capabilities(pf, i40e_aqc_opc_list_dev_capabilities); 6151 if (ret) 6152 return -EINVAL; 6153 6154 if (hw->dev_caps.switch_mode) { 6155 /* if switch mode is set, support mode2 (non-tunneled for 6156 * cloud filter) for now 6157 */ 6158 u32 switch_mode = hw->dev_caps.switch_mode & 6159 I40E_SWITCH_MODE_MASK; 6160 if (switch_mode >= I40E_CLOUD_FILTER_MODE1) { 6161 if (switch_mode == I40E_CLOUD_FILTER_MODE2) 6162 return 0; 6163 dev_err(&pf->pdev->dev, 6164 "Invalid switch_mode (%d), only non-tunneled mode for cloud filter is supported\n", 6165 hw->dev_caps.switch_mode); 6166 return -EINVAL; 6167 } 6168 } 6169 6170 /* Set Bit 7 to be valid */ 6171 mode = I40E_AQ_SET_SWITCH_BIT7_VALID; 6172 6173 /* Set L4type for TCP support */ 6174 mode |= I40E_AQ_SET_SWITCH_L4_TYPE_TCP; 6175 6176 /* Set cloud filter mode */ 6177 mode |= I40E_AQ_SET_SWITCH_MODE_NON_TUNNEL; 6178 6179 /* Prep mode field for set_switch_config */ 6180 ret = i40e_aq_set_switch_config(hw, pf->last_sw_conf_flags, 6181 pf->last_sw_conf_valid_flags, 6182 mode, NULL); 6183 if (ret && hw->aq.asq_last_status != I40E_AQ_RC_ESRCH) 6184 dev_err(&pf->pdev->dev, 6185 "couldn't set switch config bits, err %s aq_err %s\n", 6186 i40e_stat_str(hw, ret), 6187 i40e_aq_str(hw, 6188 hw->aq.asq_last_status)); 6189 6190 return ret; 6191 } 6192 6193 /** 6194 * i40e_create_queue_channel - function to create channel 6195 * @vsi: VSI to be configured 6196 * @ch: ptr to channel (it contains channel specific params) 6197 * 6198 * This function creates channel (VSI) using num_queues specified by user, 6199 * reconfigs RSS if needed. 6200 **/ 6201 int i40e_create_queue_channel(struct i40e_vsi *vsi, 6202 struct i40e_channel *ch) 6203 { 6204 struct i40e_pf *pf = vsi->back; 6205 bool reconfig_rss; 6206 int err; 6207 6208 if (!ch) 6209 return -EINVAL; 6210 6211 if (!ch->num_queue_pairs) { 6212 dev_err(&pf->pdev->dev, "Invalid num_queues requested: %d\n", 6213 ch->num_queue_pairs); 6214 return -EINVAL; 6215 } 6216 6217 /* validate user requested num_queues for channel */ 6218 err = i40e_validate_num_queues(pf, ch->num_queue_pairs, vsi, 6219 &reconfig_rss); 6220 if (err) { 6221 dev_info(&pf->pdev->dev, "Failed to validate num_queues (%d)\n", 6222 ch->num_queue_pairs); 6223 return -EINVAL; 6224 } 6225 6226 /* By default we are in VEPA mode, if this is the first VF/VMDq 6227 * VSI to be added switch to VEB mode. 6228 */ 6229 if ((!(pf->flags & I40E_FLAG_VEB_MODE_ENABLED)) || 6230 (!i40e_is_any_channel(vsi))) { 6231 if (!is_power_of_2(vsi->tc_config.tc_info[0].qcount)) { 6232 dev_dbg(&pf->pdev->dev, 6233 "Failed to create channel. Override queues (%u) not power of 2\n", 6234 vsi->tc_config.tc_info[0].qcount); 6235 return -EINVAL; 6236 } 6237 6238 if (!(pf->flags & I40E_FLAG_VEB_MODE_ENABLED)) { 6239 pf->flags |= I40E_FLAG_VEB_MODE_ENABLED; 6240 6241 if (vsi->type == I40E_VSI_MAIN) { 6242 if (pf->flags & I40E_FLAG_TC_MQPRIO) 6243 i40e_do_reset(pf, I40E_PF_RESET_FLAG, 6244 true); 6245 else 6246 i40e_do_reset_safe(pf, 6247 I40E_PF_RESET_FLAG); 6248 } 6249 } 6250 /* now onwards for main VSI, number of queues will be value 6251 * of TC0's queue count 6252 */ 6253 } 6254 6255 /* By this time, vsi->cnt_q_avail shall be set to non-zero and 6256 * it should be more than num_queues 6257 */ 6258 if (!vsi->cnt_q_avail || vsi->cnt_q_avail < ch->num_queue_pairs) { 6259 dev_dbg(&pf->pdev->dev, 6260 "Error: cnt_q_avail (%u) less than num_queues %d\n", 6261 vsi->cnt_q_avail, ch->num_queue_pairs); 6262 return -EINVAL; 6263 } 6264 6265 /* reconfig_rss only if vsi type is MAIN_VSI */ 6266 if (reconfig_rss && (vsi->type == I40E_VSI_MAIN)) { 6267 err = i40e_vsi_reconfig_rss(vsi, ch->num_queue_pairs); 6268 if (err) { 6269 dev_info(&pf->pdev->dev, 6270 "Error: unable to reconfig rss for num_queues (%u)\n", 6271 ch->num_queue_pairs); 6272 return -EINVAL; 6273 } 6274 } 6275 6276 if (!i40e_setup_channel(pf, vsi, ch)) { 6277 dev_info(&pf->pdev->dev, "Failed to setup channel\n"); 6278 return -EINVAL; 6279 } 6280 6281 dev_info(&pf->pdev->dev, 6282 "Setup channel (id:%u) utilizing num_queues %d\n", 6283 ch->seid, ch->num_queue_pairs); 6284 6285 /* configure VSI for BW limit */ 6286 if (ch->max_tx_rate) { 6287 u64 credits = ch->max_tx_rate; 6288 6289 if (i40e_set_bw_limit(vsi, ch->seid, ch->max_tx_rate)) 6290 return -EINVAL; 6291 6292 do_div(credits, I40E_BW_CREDIT_DIVISOR); 6293 dev_dbg(&pf->pdev->dev, 6294 "Set tx rate of %llu Mbps (count of 50Mbps %llu) for vsi->seid %u\n", 6295 ch->max_tx_rate, 6296 credits, 6297 ch->seid); 6298 } 6299 6300 /* in case of VF, this will be main SRIOV VSI */ 6301 ch->parent_vsi = vsi; 6302 6303 /* and update main_vsi's count for queue_available to use */ 6304 vsi->cnt_q_avail -= ch->num_queue_pairs; 6305 6306 return 0; 6307 } 6308 6309 /** 6310 * i40e_configure_queue_channels - Add queue channel for the given TCs 6311 * @vsi: VSI to be configured 6312 * 6313 * Configures queue channel mapping to the given TCs 6314 **/ 6315 static int i40e_configure_queue_channels(struct i40e_vsi *vsi) 6316 { 6317 struct i40e_channel *ch; 6318 u64 max_rate = 0; 6319 int ret = 0, i; 6320 6321 /* Create app vsi with the TCs. Main VSI with TC0 is already set up */ 6322 vsi->tc_seid_map[0] = vsi->seid; 6323 for (i = 1; i < I40E_MAX_TRAFFIC_CLASS; i++) { 6324 if (vsi->tc_config.enabled_tc & BIT(i)) { 6325 ch = kzalloc(sizeof(*ch), GFP_KERNEL); 6326 if (!ch) { 6327 ret = -ENOMEM; 6328 goto err_free; 6329 } 6330 6331 INIT_LIST_HEAD(&ch->list); 6332 ch->num_queue_pairs = 6333 vsi->tc_config.tc_info[i].qcount; 6334 ch->base_queue = 6335 vsi->tc_config.tc_info[i].qoffset; 6336 6337 /* Bandwidth limit through tc interface is in bytes/s, 6338 * change to Mbit/s 6339 */ 6340 max_rate = vsi->mqprio_qopt.max_rate[i]; 6341 do_div(max_rate, I40E_BW_MBPS_DIVISOR); 6342 ch->max_tx_rate = max_rate; 6343 6344 list_add_tail(&ch->list, &vsi->ch_list); 6345 6346 ret = i40e_create_queue_channel(vsi, ch); 6347 if (ret) { 6348 dev_err(&vsi->back->pdev->dev, 6349 "Failed creating queue channel with TC%d: queues %d\n", 6350 i, ch->num_queue_pairs); 6351 goto err_free; 6352 } 6353 vsi->tc_seid_map[i] = ch->seid; 6354 } 6355 } 6356 return ret; 6357 6358 err_free: 6359 i40e_remove_queue_channels(vsi); 6360 return ret; 6361 } 6362 6363 /** 6364 * i40e_veb_config_tc - Configure TCs for given VEB 6365 * @veb: given VEB 6366 * @enabled_tc: TC bitmap 6367 * 6368 * Configures given TC bitmap for VEB (switching) element 6369 **/ 6370 int i40e_veb_config_tc(struct i40e_veb *veb, u8 enabled_tc) 6371 { 6372 struct i40e_aqc_configure_switching_comp_bw_config_data bw_data = {0}; 6373 struct i40e_pf *pf = veb->pf; 6374 int ret = 0; 6375 int i; 6376 6377 /* No TCs or already enabled TCs just return */ 6378 if (!enabled_tc || veb->enabled_tc == enabled_tc) 6379 return ret; 6380 6381 bw_data.tc_valid_bits = enabled_tc; 6382 /* bw_data.absolute_credits is not set (relative) */ 6383 6384 /* Enable ETS TCs with equal BW Share for now */ 6385 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 6386 if (enabled_tc & BIT(i)) 6387 bw_data.tc_bw_share_credits[i] = 1; 6388 } 6389 6390 ret = i40e_aq_config_switch_comp_bw_config(&pf->hw, veb->seid, 6391 &bw_data, NULL); 6392 if (ret) { 6393 dev_info(&pf->pdev->dev, 6394 "VEB bw config failed, err %s aq_err %s\n", 6395 i40e_stat_str(&pf->hw, ret), 6396 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 6397 goto out; 6398 } 6399 6400 /* Update the BW information */ 6401 ret = i40e_veb_get_bw_info(veb); 6402 if (ret) { 6403 dev_info(&pf->pdev->dev, 6404 "Failed getting veb bw config, err %s aq_err %s\n", 6405 i40e_stat_str(&pf->hw, ret), 6406 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 6407 } 6408 6409 out: 6410 return ret; 6411 } 6412 6413 #ifdef CONFIG_I40E_DCB 6414 /** 6415 * i40e_dcb_reconfigure - Reconfigure all VEBs and VSIs 6416 * @pf: PF struct 6417 * 6418 * Reconfigure VEB/VSIs on a given PF; it is assumed that 6419 * the caller would've quiesce all the VSIs before calling 6420 * this function 6421 **/ 6422 static void i40e_dcb_reconfigure(struct i40e_pf *pf) 6423 { 6424 u8 tc_map = 0; 6425 int ret; 6426 u8 v; 6427 6428 /* Enable the TCs available on PF to all VEBs */ 6429 tc_map = i40e_pf_get_tc_map(pf); 6430 if (tc_map == I40E_DEFAULT_TRAFFIC_CLASS) 6431 return; 6432 6433 for (v = 0; v < I40E_MAX_VEB; v++) { 6434 if (!pf->veb[v]) 6435 continue; 6436 ret = i40e_veb_config_tc(pf->veb[v], tc_map); 6437 if (ret) { 6438 dev_info(&pf->pdev->dev, 6439 "Failed configuring TC for VEB seid=%d\n", 6440 pf->veb[v]->seid); 6441 /* Will try to configure as many components */ 6442 } 6443 } 6444 6445 /* Update each VSI */ 6446 for (v = 0; v < pf->num_alloc_vsi; v++) { 6447 if (!pf->vsi[v]) 6448 continue; 6449 6450 /* - Enable all TCs for the LAN VSI 6451 * - For all others keep them at TC0 for now 6452 */ 6453 if (v == pf->lan_vsi) 6454 tc_map = i40e_pf_get_tc_map(pf); 6455 else 6456 tc_map = I40E_DEFAULT_TRAFFIC_CLASS; 6457 6458 ret = i40e_vsi_config_tc(pf->vsi[v], tc_map); 6459 if (ret) { 6460 dev_info(&pf->pdev->dev, 6461 "Failed configuring TC for VSI seid=%d\n", 6462 pf->vsi[v]->seid); 6463 /* Will try to configure as many components */ 6464 } else { 6465 /* Re-configure VSI vectors based on updated TC map */ 6466 i40e_vsi_map_rings_to_vectors(pf->vsi[v]); 6467 if (pf->vsi[v]->netdev) 6468 i40e_dcbnl_set_all(pf->vsi[v]); 6469 } 6470 } 6471 } 6472 6473 /** 6474 * i40e_resume_port_tx - Resume port Tx 6475 * @pf: PF struct 6476 * 6477 * Resume a port's Tx and issue a PF reset in case of failure to 6478 * resume. 6479 **/ 6480 static int i40e_resume_port_tx(struct i40e_pf *pf) 6481 { 6482 struct i40e_hw *hw = &pf->hw; 6483 int ret; 6484 6485 ret = i40e_aq_resume_port_tx(hw, NULL); 6486 if (ret) { 6487 dev_info(&pf->pdev->dev, 6488 "Resume Port Tx failed, err %s aq_err %s\n", 6489 i40e_stat_str(&pf->hw, ret), 6490 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 6491 /* Schedule PF reset to recover */ 6492 set_bit(__I40E_PF_RESET_REQUESTED, pf->state); 6493 i40e_service_event_schedule(pf); 6494 } 6495 6496 return ret; 6497 } 6498 6499 /** 6500 * i40e_suspend_port_tx - Suspend port Tx 6501 * @pf: PF struct 6502 * 6503 * Suspend a port's Tx and issue a PF reset in case of failure. 6504 **/ 6505 static int i40e_suspend_port_tx(struct i40e_pf *pf) 6506 { 6507 struct i40e_hw *hw = &pf->hw; 6508 int ret; 6509 6510 ret = i40e_aq_suspend_port_tx(hw, pf->mac_seid, NULL); 6511 if (ret) { 6512 dev_info(&pf->pdev->dev, 6513 "Suspend Port Tx failed, err %s aq_err %s\n", 6514 i40e_stat_str(&pf->hw, ret), 6515 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 6516 /* Schedule PF reset to recover */ 6517 set_bit(__I40E_PF_RESET_REQUESTED, pf->state); 6518 i40e_service_event_schedule(pf); 6519 } 6520 6521 return ret; 6522 } 6523 6524 /** 6525 * i40e_hw_set_dcb_config - Program new DCBX settings into HW 6526 * @pf: PF being configured 6527 * @new_cfg: New DCBX configuration 6528 * 6529 * Program DCB settings into HW and reconfigure VEB/VSIs on 6530 * given PF. Uses "Set LLDP MIB" AQC to program the hardware. 6531 **/ 6532 static int i40e_hw_set_dcb_config(struct i40e_pf *pf, 6533 struct i40e_dcbx_config *new_cfg) 6534 { 6535 struct i40e_dcbx_config *old_cfg = &pf->hw.local_dcbx_config; 6536 int ret; 6537 6538 /* Check if need reconfiguration */ 6539 if (!memcmp(&new_cfg, &old_cfg, sizeof(new_cfg))) { 6540 dev_dbg(&pf->pdev->dev, "No Change in DCB Config required.\n"); 6541 return 0; 6542 } 6543 6544 /* Config change disable all VSIs */ 6545 i40e_pf_quiesce_all_vsi(pf); 6546 6547 /* Copy the new config to the current config */ 6548 *old_cfg = *new_cfg; 6549 old_cfg->etsrec = old_cfg->etscfg; 6550 ret = i40e_set_dcb_config(&pf->hw); 6551 if (ret) { 6552 dev_info(&pf->pdev->dev, 6553 "Set DCB Config failed, err %s aq_err %s\n", 6554 i40e_stat_str(&pf->hw, ret), 6555 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 6556 goto out; 6557 } 6558 6559 /* Changes in configuration update VEB/VSI */ 6560 i40e_dcb_reconfigure(pf); 6561 out: 6562 /* In case of reset do not try to resume anything */ 6563 if (!test_bit(__I40E_RESET_RECOVERY_PENDING, pf->state)) { 6564 /* Re-start the VSIs if disabled */ 6565 ret = i40e_resume_port_tx(pf); 6566 /* In case of error no point in resuming VSIs */ 6567 if (ret) 6568 goto err; 6569 i40e_pf_unquiesce_all_vsi(pf); 6570 } 6571 err: 6572 return ret; 6573 } 6574 6575 /** 6576 * i40e_hw_dcb_config - Program new DCBX settings into HW 6577 * @pf: PF being configured 6578 * @new_cfg: New DCBX configuration 6579 * 6580 * Program DCB settings into HW and reconfigure VEB/VSIs on 6581 * given PF 6582 **/ 6583 int i40e_hw_dcb_config(struct i40e_pf *pf, struct i40e_dcbx_config *new_cfg) 6584 { 6585 struct i40e_aqc_configure_switching_comp_ets_data ets_data; 6586 u8 prio_type[I40E_MAX_TRAFFIC_CLASS] = {0}; 6587 u32 mfs_tc[I40E_MAX_TRAFFIC_CLASS]; 6588 struct i40e_dcbx_config *old_cfg; 6589 u8 mode[I40E_MAX_TRAFFIC_CLASS]; 6590 struct i40e_rx_pb_config pb_cfg; 6591 struct i40e_hw *hw = &pf->hw; 6592 u8 num_ports = hw->num_ports; 6593 bool need_reconfig; 6594 int ret = -EINVAL; 6595 u8 lltc_map = 0; 6596 u8 tc_map = 0; 6597 u8 new_numtc; 6598 u8 i; 6599 6600 dev_dbg(&pf->pdev->dev, "Configuring DCB registers directly\n"); 6601 /* Un-pack information to Program ETS HW via shared API 6602 * numtc, tcmap 6603 * LLTC map 6604 * ETS/NON-ETS arbiter mode 6605 * max exponent (credit refills) 6606 * Total number of ports 6607 * PFC priority bit-map 6608 * Priority Table 6609 * BW % per TC 6610 * Arbiter mode between UPs sharing same TC 6611 * TSA table (ETS or non-ETS) 6612 * EEE enabled or not 6613 * MFS TC table 6614 */ 6615 6616 new_numtc = i40e_dcb_get_num_tc(new_cfg); 6617 6618 memset(&ets_data, 0, sizeof(ets_data)); 6619 for (i = 0; i < new_numtc; i++) { 6620 tc_map |= BIT(i); 6621 switch (new_cfg->etscfg.tsatable[i]) { 6622 case I40E_IEEE_TSA_ETS: 6623 prio_type[i] = I40E_DCB_PRIO_TYPE_ETS; 6624 ets_data.tc_bw_share_credits[i] = 6625 new_cfg->etscfg.tcbwtable[i]; 6626 break; 6627 case I40E_IEEE_TSA_STRICT: 6628 prio_type[i] = I40E_DCB_PRIO_TYPE_STRICT; 6629 lltc_map |= BIT(i); 6630 ets_data.tc_bw_share_credits[i] = 6631 I40E_DCB_STRICT_PRIO_CREDITS; 6632 break; 6633 default: 6634 /* Invalid TSA type */ 6635 need_reconfig = false; 6636 goto out; 6637 } 6638 } 6639 6640 old_cfg = &hw->local_dcbx_config; 6641 /* Check if need reconfiguration */ 6642 need_reconfig = i40e_dcb_need_reconfig(pf, old_cfg, new_cfg); 6643 6644 /* If needed, enable/disable frame tagging, disable all VSIs 6645 * and suspend port tx 6646 */ 6647 if (need_reconfig) { 6648 /* Enable DCB tagging only when more than one TC */ 6649 if (new_numtc > 1) 6650 pf->flags |= I40E_FLAG_DCB_ENABLED; 6651 else 6652 pf->flags &= ~I40E_FLAG_DCB_ENABLED; 6653 6654 set_bit(__I40E_PORT_SUSPENDED, pf->state); 6655 /* Reconfiguration needed quiesce all VSIs */ 6656 i40e_pf_quiesce_all_vsi(pf); 6657 ret = i40e_suspend_port_tx(pf); 6658 if (ret) 6659 goto err; 6660 } 6661 6662 /* Configure Port ETS Tx Scheduler */ 6663 ets_data.tc_valid_bits = tc_map; 6664 ets_data.tc_strict_priority_flags = lltc_map; 6665 ret = i40e_aq_config_switch_comp_ets 6666 (hw, pf->mac_seid, &ets_data, 6667 i40e_aqc_opc_modify_switching_comp_ets, NULL); 6668 if (ret) { 6669 dev_info(&pf->pdev->dev, 6670 "Modify Port ETS failed, err %s aq_err %s\n", 6671 i40e_stat_str(&pf->hw, ret), 6672 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 6673 goto out; 6674 } 6675 6676 /* Configure Rx ETS HW */ 6677 memset(&mode, I40E_DCB_ARB_MODE_ROUND_ROBIN, sizeof(mode)); 6678 i40e_dcb_hw_set_num_tc(hw, new_numtc); 6679 i40e_dcb_hw_rx_fifo_config(hw, I40E_DCB_ARB_MODE_ROUND_ROBIN, 6680 I40E_DCB_ARB_MODE_STRICT_PRIORITY, 6681 I40E_DCB_DEFAULT_MAX_EXPONENT, 6682 lltc_map); 6683 i40e_dcb_hw_rx_cmd_monitor_config(hw, new_numtc, num_ports); 6684 i40e_dcb_hw_rx_ets_bw_config(hw, new_cfg->etscfg.tcbwtable, mode, 6685 prio_type); 6686 i40e_dcb_hw_pfc_config(hw, new_cfg->pfc.pfcenable, 6687 new_cfg->etscfg.prioritytable); 6688 i40e_dcb_hw_rx_up2tc_config(hw, new_cfg->etscfg.prioritytable); 6689 6690 /* Configure Rx Packet Buffers in HW */ 6691 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 6692 mfs_tc[i] = pf->vsi[pf->lan_vsi]->netdev->mtu; 6693 mfs_tc[i] += I40E_PACKET_HDR_PAD; 6694 } 6695 6696 i40e_dcb_hw_calculate_pool_sizes(hw, num_ports, 6697 false, new_cfg->pfc.pfcenable, 6698 mfs_tc, &pb_cfg); 6699 i40e_dcb_hw_rx_pb_config(hw, &pf->pb_cfg, &pb_cfg); 6700 6701 /* Update the local Rx Packet buffer config */ 6702 pf->pb_cfg = pb_cfg; 6703 6704 /* Inform the FW about changes to DCB configuration */ 6705 ret = i40e_aq_dcb_updated(&pf->hw, NULL); 6706 if (ret) { 6707 dev_info(&pf->pdev->dev, 6708 "DCB Updated failed, err %s aq_err %s\n", 6709 i40e_stat_str(&pf->hw, ret), 6710 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 6711 goto out; 6712 } 6713 6714 /* Update the port DCBx configuration */ 6715 *old_cfg = *new_cfg; 6716 6717 /* Changes in configuration update VEB/VSI */ 6718 i40e_dcb_reconfigure(pf); 6719 out: 6720 /* Re-start the VSIs if disabled */ 6721 if (need_reconfig) { 6722 ret = i40e_resume_port_tx(pf); 6723 6724 clear_bit(__I40E_PORT_SUSPENDED, pf->state); 6725 /* In case of error no point in resuming VSIs */ 6726 if (ret) 6727 goto err; 6728 6729 /* Wait for the PF's queues to be disabled */ 6730 ret = i40e_pf_wait_queues_disabled(pf); 6731 if (ret) { 6732 /* Schedule PF reset to recover */ 6733 set_bit(__I40E_PF_RESET_REQUESTED, pf->state); 6734 i40e_service_event_schedule(pf); 6735 goto err; 6736 } else { 6737 i40e_pf_unquiesce_all_vsi(pf); 6738 set_bit(__I40E_CLIENT_SERVICE_REQUESTED, pf->state); 6739 set_bit(__I40E_CLIENT_L2_CHANGE, pf->state); 6740 } 6741 /* registers are set, lets apply */ 6742 if (pf->hw_features & I40E_HW_USE_SET_LLDP_MIB) 6743 ret = i40e_hw_set_dcb_config(pf, new_cfg); 6744 } 6745 6746 err: 6747 return ret; 6748 } 6749 6750 /** 6751 * i40e_dcb_sw_default_config - Set default DCB configuration when DCB in SW 6752 * @pf: PF being queried 6753 * 6754 * Set default DCB configuration in case DCB is to be done in SW. 6755 **/ 6756 int i40e_dcb_sw_default_config(struct i40e_pf *pf) 6757 { 6758 struct i40e_dcbx_config *dcb_cfg = &pf->hw.local_dcbx_config; 6759 struct i40e_aqc_configure_switching_comp_ets_data ets_data; 6760 struct i40e_hw *hw = &pf->hw; 6761 int err; 6762 6763 if (pf->hw_features & I40E_HW_USE_SET_LLDP_MIB) { 6764 /* Update the local cached instance with TC0 ETS */ 6765 memset(&pf->tmp_cfg, 0, sizeof(struct i40e_dcbx_config)); 6766 pf->tmp_cfg.etscfg.willing = I40E_IEEE_DEFAULT_ETS_WILLING; 6767 pf->tmp_cfg.etscfg.maxtcs = 0; 6768 pf->tmp_cfg.etscfg.tcbwtable[0] = I40E_IEEE_DEFAULT_ETS_TCBW; 6769 pf->tmp_cfg.etscfg.tsatable[0] = I40E_IEEE_TSA_ETS; 6770 pf->tmp_cfg.pfc.willing = I40E_IEEE_DEFAULT_PFC_WILLING; 6771 pf->tmp_cfg.pfc.pfccap = I40E_MAX_TRAFFIC_CLASS; 6772 /* FW needs one App to configure HW */ 6773 pf->tmp_cfg.numapps = I40E_IEEE_DEFAULT_NUM_APPS; 6774 pf->tmp_cfg.app[0].selector = I40E_APP_SEL_ETHTYPE; 6775 pf->tmp_cfg.app[0].priority = I40E_IEEE_DEFAULT_APP_PRIO; 6776 pf->tmp_cfg.app[0].protocolid = I40E_APP_PROTOID_FCOE; 6777 6778 return i40e_hw_set_dcb_config(pf, &pf->tmp_cfg); 6779 } 6780 6781 memset(&ets_data, 0, sizeof(ets_data)); 6782 ets_data.tc_valid_bits = I40E_DEFAULT_TRAFFIC_CLASS; /* TC0 only */ 6783 ets_data.tc_strict_priority_flags = 0; /* ETS */ 6784 ets_data.tc_bw_share_credits[0] = I40E_IEEE_DEFAULT_ETS_TCBW; /* 100% to TC0 */ 6785 6786 /* Enable ETS on the Physical port */ 6787 err = i40e_aq_config_switch_comp_ets 6788 (hw, pf->mac_seid, &ets_data, 6789 i40e_aqc_opc_enable_switching_comp_ets, NULL); 6790 if (err) { 6791 dev_info(&pf->pdev->dev, 6792 "Enable Port ETS failed, err %s aq_err %s\n", 6793 i40e_stat_str(&pf->hw, err), 6794 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 6795 err = -ENOENT; 6796 goto out; 6797 } 6798 6799 /* Update the local cached instance with TC0 ETS */ 6800 dcb_cfg->etscfg.willing = I40E_IEEE_DEFAULT_ETS_WILLING; 6801 dcb_cfg->etscfg.cbs = 0; 6802 dcb_cfg->etscfg.maxtcs = I40E_MAX_TRAFFIC_CLASS; 6803 dcb_cfg->etscfg.tcbwtable[0] = I40E_IEEE_DEFAULT_ETS_TCBW; 6804 6805 out: 6806 return err; 6807 } 6808 6809 /** 6810 * i40e_init_pf_dcb - Initialize DCB configuration 6811 * @pf: PF being configured 6812 * 6813 * Query the current DCB configuration and cache it 6814 * in the hardware structure 6815 **/ 6816 static int i40e_init_pf_dcb(struct i40e_pf *pf) 6817 { 6818 struct i40e_hw *hw = &pf->hw; 6819 int err; 6820 6821 /* Do not enable DCB for SW1 and SW2 images even if the FW is capable 6822 * Also do not enable DCBx if FW LLDP agent is disabled 6823 */ 6824 if (pf->hw_features & I40E_HW_NO_DCB_SUPPORT) { 6825 dev_info(&pf->pdev->dev, "DCB is not supported.\n"); 6826 err = I40E_NOT_SUPPORTED; 6827 goto out; 6828 } 6829 if (pf->flags & I40E_FLAG_DISABLE_FW_LLDP) { 6830 dev_info(&pf->pdev->dev, "FW LLDP is disabled, attempting SW DCB\n"); 6831 err = i40e_dcb_sw_default_config(pf); 6832 if (err) { 6833 dev_info(&pf->pdev->dev, "Could not initialize SW DCB\n"); 6834 goto out; 6835 } 6836 dev_info(&pf->pdev->dev, "SW DCB initialization succeeded.\n"); 6837 pf->dcbx_cap = DCB_CAP_DCBX_HOST | 6838 DCB_CAP_DCBX_VER_IEEE; 6839 /* at init capable but disabled */ 6840 pf->flags |= I40E_FLAG_DCB_CAPABLE; 6841 pf->flags &= ~I40E_FLAG_DCB_ENABLED; 6842 goto out; 6843 } 6844 err = i40e_init_dcb(hw, true); 6845 if (!err) { 6846 /* Device/Function is not DCBX capable */ 6847 if ((!hw->func_caps.dcb) || 6848 (hw->dcbx_status == I40E_DCBX_STATUS_DISABLED)) { 6849 dev_info(&pf->pdev->dev, 6850 "DCBX offload is not supported or is disabled for this PF.\n"); 6851 } else { 6852 /* When status is not DISABLED then DCBX in FW */ 6853 pf->dcbx_cap = DCB_CAP_DCBX_LLD_MANAGED | 6854 DCB_CAP_DCBX_VER_IEEE; 6855 6856 pf->flags |= I40E_FLAG_DCB_CAPABLE; 6857 /* Enable DCB tagging only when more than one TC 6858 * or explicitly disable if only one TC 6859 */ 6860 if (i40e_dcb_get_num_tc(&hw->local_dcbx_config) > 1) 6861 pf->flags |= I40E_FLAG_DCB_ENABLED; 6862 else 6863 pf->flags &= ~I40E_FLAG_DCB_ENABLED; 6864 dev_dbg(&pf->pdev->dev, 6865 "DCBX offload is supported for this PF.\n"); 6866 } 6867 } else if (pf->hw.aq.asq_last_status == I40E_AQ_RC_EPERM) { 6868 dev_info(&pf->pdev->dev, "FW LLDP disabled for this PF.\n"); 6869 pf->flags |= I40E_FLAG_DISABLE_FW_LLDP; 6870 } else { 6871 dev_info(&pf->pdev->dev, 6872 "Query for DCB configuration failed, err %s aq_err %s\n", 6873 i40e_stat_str(&pf->hw, err), 6874 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 6875 } 6876 6877 out: 6878 return err; 6879 } 6880 #endif /* CONFIG_I40E_DCB */ 6881 6882 /** 6883 * i40e_print_link_message - print link up or down 6884 * @vsi: the VSI for which link needs a message 6885 * @isup: true of link is up, false otherwise 6886 */ 6887 void i40e_print_link_message(struct i40e_vsi *vsi, bool isup) 6888 { 6889 enum i40e_aq_link_speed new_speed; 6890 struct i40e_pf *pf = vsi->back; 6891 char *speed = "Unknown"; 6892 char *fc = "Unknown"; 6893 char *fec = ""; 6894 char *req_fec = ""; 6895 char *an = ""; 6896 6897 if (isup) 6898 new_speed = pf->hw.phy.link_info.link_speed; 6899 else 6900 new_speed = I40E_LINK_SPEED_UNKNOWN; 6901 6902 if ((vsi->current_isup == isup) && (vsi->current_speed == new_speed)) 6903 return; 6904 vsi->current_isup = isup; 6905 vsi->current_speed = new_speed; 6906 if (!isup) { 6907 netdev_info(vsi->netdev, "NIC Link is Down\n"); 6908 return; 6909 } 6910 6911 /* Warn user if link speed on NPAR enabled partition is not at 6912 * least 10GB 6913 */ 6914 if (pf->hw.func_caps.npar_enable && 6915 (pf->hw.phy.link_info.link_speed == I40E_LINK_SPEED_1GB || 6916 pf->hw.phy.link_info.link_speed == I40E_LINK_SPEED_100MB)) 6917 netdev_warn(vsi->netdev, 6918 "The partition detected link speed that is less than 10Gbps\n"); 6919 6920 switch (pf->hw.phy.link_info.link_speed) { 6921 case I40E_LINK_SPEED_40GB: 6922 speed = "40 G"; 6923 break; 6924 case I40E_LINK_SPEED_20GB: 6925 speed = "20 G"; 6926 break; 6927 case I40E_LINK_SPEED_25GB: 6928 speed = "25 G"; 6929 break; 6930 case I40E_LINK_SPEED_10GB: 6931 speed = "10 G"; 6932 break; 6933 case I40E_LINK_SPEED_5GB: 6934 speed = "5 G"; 6935 break; 6936 case I40E_LINK_SPEED_2_5GB: 6937 speed = "2.5 G"; 6938 break; 6939 case I40E_LINK_SPEED_1GB: 6940 speed = "1000 M"; 6941 break; 6942 case I40E_LINK_SPEED_100MB: 6943 speed = "100 M"; 6944 break; 6945 default: 6946 break; 6947 } 6948 6949 switch (pf->hw.fc.current_mode) { 6950 case I40E_FC_FULL: 6951 fc = "RX/TX"; 6952 break; 6953 case I40E_FC_TX_PAUSE: 6954 fc = "TX"; 6955 break; 6956 case I40E_FC_RX_PAUSE: 6957 fc = "RX"; 6958 break; 6959 default: 6960 fc = "None"; 6961 break; 6962 } 6963 6964 if (pf->hw.phy.link_info.link_speed == I40E_LINK_SPEED_25GB) { 6965 req_fec = "None"; 6966 fec = "None"; 6967 an = "False"; 6968 6969 if (pf->hw.phy.link_info.an_info & I40E_AQ_AN_COMPLETED) 6970 an = "True"; 6971 6972 if (pf->hw.phy.link_info.fec_info & 6973 I40E_AQ_CONFIG_FEC_KR_ENA) 6974 fec = "CL74 FC-FEC/BASE-R"; 6975 else if (pf->hw.phy.link_info.fec_info & 6976 I40E_AQ_CONFIG_FEC_RS_ENA) 6977 fec = "CL108 RS-FEC"; 6978 6979 /* 'CL108 RS-FEC' should be displayed when RS is requested, or 6980 * both RS and FC are requested 6981 */ 6982 if (vsi->back->hw.phy.link_info.req_fec_info & 6983 (I40E_AQ_REQUEST_FEC_KR | I40E_AQ_REQUEST_FEC_RS)) { 6984 if (vsi->back->hw.phy.link_info.req_fec_info & 6985 I40E_AQ_REQUEST_FEC_RS) 6986 req_fec = "CL108 RS-FEC"; 6987 else 6988 req_fec = "CL74 FC-FEC/BASE-R"; 6989 } 6990 netdev_info(vsi->netdev, 6991 "NIC Link is Up, %sbps Full Duplex, Requested FEC: %s, Negotiated FEC: %s, Autoneg: %s, Flow Control: %s\n", 6992 speed, req_fec, fec, an, fc); 6993 } else if (pf->hw.device_id == I40E_DEV_ID_KX_X722) { 6994 req_fec = "None"; 6995 fec = "None"; 6996 an = "False"; 6997 6998 if (pf->hw.phy.link_info.an_info & I40E_AQ_AN_COMPLETED) 6999 an = "True"; 7000 7001 if (pf->hw.phy.link_info.fec_info & 7002 I40E_AQ_CONFIG_FEC_KR_ENA) 7003 fec = "CL74 FC-FEC/BASE-R"; 7004 7005 if (pf->hw.phy.link_info.req_fec_info & 7006 I40E_AQ_REQUEST_FEC_KR) 7007 req_fec = "CL74 FC-FEC/BASE-R"; 7008 7009 netdev_info(vsi->netdev, 7010 "NIC Link is Up, %sbps Full Duplex, Requested FEC: %s, Negotiated FEC: %s, Autoneg: %s, Flow Control: %s\n", 7011 speed, req_fec, fec, an, fc); 7012 } else { 7013 netdev_info(vsi->netdev, 7014 "NIC Link is Up, %sbps Full Duplex, Flow Control: %s\n", 7015 speed, fc); 7016 } 7017 7018 } 7019 7020 /** 7021 * i40e_up_complete - Finish the last steps of bringing up a connection 7022 * @vsi: the VSI being configured 7023 **/ 7024 static int i40e_up_complete(struct i40e_vsi *vsi) 7025 { 7026 struct i40e_pf *pf = vsi->back; 7027 int err; 7028 7029 if (pf->flags & I40E_FLAG_MSIX_ENABLED) 7030 i40e_vsi_configure_msix(vsi); 7031 else 7032 i40e_configure_msi_and_legacy(vsi); 7033 7034 /* start rings */ 7035 err = i40e_vsi_start_rings(vsi); 7036 if (err) 7037 return err; 7038 7039 clear_bit(__I40E_VSI_DOWN, vsi->state); 7040 i40e_napi_enable_all(vsi); 7041 i40e_vsi_enable_irq(vsi); 7042 7043 if ((pf->hw.phy.link_info.link_info & I40E_AQ_LINK_UP) && 7044 (vsi->netdev)) { 7045 i40e_print_link_message(vsi, true); 7046 netif_tx_start_all_queues(vsi->netdev); 7047 netif_carrier_on(vsi->netdev); 7048 } 7049 7050 /* replay FDIR SB filters */ 7051 if (vsi->type == I40E_VSI_FDIR) { 7052 /* reset fd counters */ 7053 pf->fd_add_err = 0; 7054 pf->fd_atr_cnt = 0; 7055 i40e_fdir_filter_restore(vsi); 7056 } 7057 7058 /* On the next run of the service_task, notify any clients of the new 7059 * opened netdev 7060 */ 7061 set_bit(__I40E_CLIENT_SERVICE_REQUESTED, pf->state); 7062 i40e_service_event_schedule(pf); 7063 7064 return 0; 7065 } 7066 7067 /** 7068 * i40e_vsi_reinit_locked - Reset the VSI 7069 * @vsi: the VSI being configured 7070 * 7071 * Rebuild the ring structs after some configuration 7072 * has changed, e.g. MTU size. 7073 **/ 7074 static void i40e_vsi_reinit_locked(struct i40e_vsi *vsi) 7075 { 7076 struct i40e_pf *pf = vsi->back; 7077 7078 while (test_and_set_bit(__I40E_CONFIG_BUSY, pf->state)) 7079 usleep_range(1000, 2000); 7080 i40e_down(vsi); 7081 7082 i40e_up(vsi); 7083 clear_bit(__I40E_CONFIG_BUSY, pf->state); 7084 } 7085 7086 /** 7087 * i40e_force_link_state - Force the link status 7088 * @pf: board private structure 7089 * @is_up: whether the link state should be forced up or down 7090 **/ 7091 static i40e_status i40e_force_link_state(struct i40e_pf *pf, bool is_up) 7092 { 7093 struct i40e_aq_get_phy_abilities_resp abilities; 7094 struct i40e_aq_set_phy_config config = {0}; 7095 bool non_zero_phy_type = is_up; 7096 struct i40e_hw *hw = &pf->hw; 7097 i40e_status err; 7098 u64 mask; 7099 u8 speed; 7100 7101 /* Card might've been put in an unstable state by other drivers 7102 * and applications, which causes incorrect speed values being 7103 * set on startup. In order to clear speed registers, we call 7104 * get_phy_capabilities twice, once to get initial state of 7105 * available speeds, and once to get current PHY config. 7106 */ 7107 err = i40e_aq_get_phy_capabilities(hw, false, true, &abilities, 7108 NULL); 7109 if (err) { 7110 dev_err(&pf->pdev->dev, 7111 "failed to get phy cap., ret = %s last_status = %s\n", 7112 i40e_stat_str(hw, err), 7113 i40e_aq_str(hw, hw->aq.asq_last_status)); 7114 return err; 7115 } 7116 speed = abilities.link_speed; 7117 7118 /* Get the current phy config */ 7119 err = i40e_aq_get_phy_capabilities(hw, false, false, &abilities, 7120 NULL); 7121 if (err) { 7122 dev_err(&pf->pdev->dev, 7123 "failed to get phy cap., ret = %s last_status = %s\n", 7124 i40e_stat_str(hw, err), 7125 i40e_aq_str(hw, hw->aq.asq_last_status)); 7126 return err; 7127 } 7128 7129 /* If link needs to go up, but was not forced to go down, 7130 * and its speed values are OK, no need for a flap 7131 * if non_zero_phy_type was set, still need to force up 7132 */ 7133 if (pf->flags & I40E_FLAG_TOTAL_PORT_SHUTDOWN_ENABLED) 7134 non_zero_phy_type = true; 7135 else if (is_up && abilities.phy_type != 0 && abilities.link_speed != 0) 7136 return I40E_SUCCESS; 7137 7138 /* To force link we need to set bits for all supported PHY types, 7139 * but there are now more than 32, so we need to split the bitmap 7140 * across two fields. 7141 */ 7142 mask = I40E_PHY_TYPES_BITMASK; 7143 config.phy_type = 7144 non_zero_phy_type ? cpu_to_le32((u32)(mask & 0xffffffff)) : 0; 7145 config.phy_type_ext = 7146 non_zero_phy_type ? (u8)((mask >> 32) & 0xff) : 0; 7147 /* Copy the old settings, except of phy_type */ 7148 config.abilities = abilities.abilities; 7149 if (pf->flags & I40E_FLAG_TOTAL_PORT_SHUTDOWN_ENABLED) { 7150 if (is_up) 7151 config.abilities |= I40E_AQ_PHY_ENABLE_LINK; 7152 else 7153 config.abilities &= ~(I40E_AQ_PHY_ENABLE_LINK); 7154 } 7155 if (abilities.link_speed != 0) 7156 config.link_speed = abilities.link_speed; 7157 else 7158 config.link_speed = speed; 7159 config.eee_capability = abilities.eee_capability; 7160 config.eeer = abilities.eeer_val; 7161 config.low_power_ctrl = abilities.d3_lpan; 7162 config.fec_config = abilities.fec_cfg_curr_mod_ext_info & 7163 I40E_AQ_PHY_FEC_CONFIG_MASK; 7164 err = i40e_aq_set_phy_config(hw, &config, NULL); 7165 7166 if (err) { 7167 dev_err(&pf->pdev->dev, 7168 "set phy config ret = %s last_status = %s\n", 7169 i40e_stat_str(&pf->hw, err), 7170 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 7171 return err; 7172 } 7173 7174 /* Update the link info */ 7175 err = i40e_update_link_info(hw); 7176 if (err) { 7177 /* Wait a little bit (on 40G cards it sometimes takes a really 7178 * long time for link to come back from the atomic reset) 7179 * and try once more 7180 */ 7181 msleep(1000); 7182 i40e_update_link_info(hw); 7183 } 7184 7185 i40e_aq_set_link_restart_an(hw, is_up, NULL); 7186 7187 return I40E_SUCCESS; 7188 } 7189 7190 /** 7191 * i40e_up - Bring the connection back up after being down 7192 * @vsi: the VSI being configured 7193 **/ 7194 int i40e_up(struct i40e_vsi *vsi) 7195 { 7196 int err; 7197 7198 if (vsi->type == I40E_VSI_MAIN && 7199 (vsi->back->flags & I40E_FLAG_LINK_DOWN_ON_CLOSE_ENABLED || 7200 vsi->back->flags & I40E_FLAG_TOTAL_PORT_SHUTDOWN_ENABLED)) 7201 i40e_force_link_state(vsi->back, true); 7202 7203 err = i40e_vsi_configure(vsi); 7204 if (!err) 7205 err = i40e_up_complete(vsi); 7206 7207 return err; 7208 } 7209 7210 /** 7211 * i40e_down - Shutdown the connection processing 7212 * @vsi: the VSI being stopped 7213 **/ 7214 void i40e_down(struct i40e_vsi *vsi) 7215 { 7216 int i; 7217 7218 /* It is assumed that the caller of this function 7219 * sets the vsi->state __I40E_VSI_DOWN bit. 7220 */ 7221 if (vsi->netdev) { 7222 netif_carrier_off(vsi->netdev); 7223 netif_tx_disable(vsi->netdev); 7224 } 7225 i40e_vsi_disable_irq(vsi); 7226 i40e_vsi_stop_rings(vsi); 7227 if (vsi->type == I40E_VSI_MAIN && 7228 (vsi->back->flags & I40E_FLAG_LINK_DOWN_ON_CLOSE_ENABLED || 7229 vsi->back->flags & I40E_FLAG_TOTAL_PORT_SHUTDOWN_ENABLED)) 7230 i40e_force_link_state(vsi->back, false); 7231 i40e_napi_disable_all(vsi); 7232 7233 for (i = 0; i < vsi->num_queue_pairs; i++) { 7234 i40e_clean_tx_ring(vsi->tx_rings[i]); 7235 if (i40e_enabled_xdp_vsi(vsi)) { 7236 /* Make sure that in-progress ndo_xdp_xmit and 7237 * ndo_xsk_wakeup calls are completed. 7238 */ 7239 synchronize_rcu(); 7240 i40e_clean_tx_ring(vsi->xdp_rings[i]); 7241 } 7242 i40e_clean_rx_ring(vsi->rx_rings[i]); 7243 } 7244 7245 } 7246 7247 /** 7248 * i40e_validate_mqprio_qopt- validate queue mapping info 7249 * @vsi: the VSI being configured 7250 * @mqprio_qopt: queue parametrs 7251 **/ 7252 static int i40e_validate_mqprio_qopt(struct i40e_vsi *vsi, 7253 struct tc_mqprio_qopt_offload *mqprio_qopt) 7254 { 7255 u64 sum_max_rate = 0; 7256 u64 max_rate = 0; 7257 int i; 7258 7259 if (mqprio_qopt->qopt.offset[0] != 0 || 7260 mqprio_qopt->qopt.num_tc < 1 || 7261 mqprio_qopt->qopt.num_tc > I40E_MAX_TRAFFIC_CLASS) 7262 return -EINVAL; 7263 for (i = 0; ; i++) { 7264 if (!mqprio_qopt->qopt.count[i]) 7265 return -EINVAL; 7266 if (mqprio_qopt->min_rate[i]) { 7267 dev_err(&vsi->back->pdev->dev, 7268 "Invalid min tx rate (greater than 0) specified\n"); 7269 return -EINVAL; 7270 } 7271 max_rate = mqprio_qopt->max_rate[i]; 7272 do_div(max_rate, I40E_BW_MBPS_DIVISOR); 7273 sum_max_rate += max_rate; 7274 7275 if (i >= mqprio_qopt->qopt.num_tc - 1) 7276 break; 7277 if (mqprio_qopt->qopt.offset[i + 1] != 7278 (mqprio_qopt->qopt.offset[i] + mqprio_qopt->qopt.count[i])) 7279 return -EINVAL; 7280 } 7281 if (vsi->num_queue_pairs < 7282 (mqprio_qopt->qopt.offset[i] + mqprio_qopt->qopt.count[i])) { 7283 return -EINVAL; 7284 } 7285 if (sum_max_rate > i40e_get_link_speed(vsi)) { 7286 dev_err(&vsi->back->pdev->dev, 7287 "Invalid max tx rate specified\n"); 7288 return -EINVAL; 7289 } 7290 return 0; 7291 } 7292 7293 /** 7294 * i40e_vsi_set_default_tc_config - set default values for tc configuration 7295 * @vsi: the VSI being configured 7296 **/ 7297 static void i40e_vsi_set_default_tc_config(struct i40e_vsi *vsi) 7298 { 7299 u16 qcount; 7300 int i; 7301 7302 /* Only TC0 is enabled */ 7303 vsi->tc_config.numtc = 1; 7304 vsi->tc_config.enabled_tc = 1; 7305 qcount = min_t(int, vsi->alloc_queue_pairs, 7306 i40e_pf_get_max_q_per_tc(vsi->back)); 7307 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 7308 /* For the TC that is not enabled set the offset to default 7309 * queue and allocate one queue for the given TC. 7310 */ 7311 vsi->tc_config.tc_info[i].qoffset = 0; 7312 if (i == 0) 7313 vsi->tc_config.tc_info[i].qcount = qcount; 7314 else 7315 vsi->tc_config.tc_info[i].qcount = 1; 7316 vsi->tc_config.tc_info[i].netdev_tc = 0; 7317 } 7318 } 7319 7320 /** 7321 * i40e_del_macvlan_filter 7322 * @hw: pointer to the HW structure 7323 * @seid: seid of the channel VSI 7324 * @macaddr: the mac address to apply as a filter 7325 * @aq_err: store the admin Q error 7326 * 7327 * This function deletes a mac filter on the channel VSI which serves as the 7328 * macvlan. Returns 0 on success. 7329 **/ 7330 static i40e_status i40e_del_macvlan_filter(struct i40e_hw *hw, u16 seid, 7331 const u8 *macaddr, int *aq_err) 7332 { 7333 struct i40e_aqc_remove_macvlan_element_data element; 7334 i40e_status status; 7335 7336 memset(&element, 0, sizeof(element)); 7337 ether_addr_copy(element.mac_addr, macaddr); 7338 element.vlan_tag = 0; 7339 element.flags = I40E_AQC_MACVLAN_DEL_PERFECT_MATCH; 7340 status = i40e_aq_remove_macvlan(hw, seid, &element, 1, NULL); 7341 *aq_err = hw->aq.asq_last_status; 7342 7343 return status; 7344 } 7345 7346 /** 7347 * i40e_add_macvlan_filter 7348 * @hw: pointer to the HW structure 7349 * @seid: seid of the channel VSI 7350 * @macaddr: the mac address to apply as a filter 7351 * @aq_err: store the admin Q error 7352 * 7353 * This function adds a mac filter on the channel VSI which serves as the 7354 * macvlan. Returns 0 on success. 7355 **/ 7356 static i40e_status i40e_add_macvlan_filter(struct i40e_hw *hw, u16 seid, 7357 const u8 *macaddr, int *aq_err) 7358 { 7359 struct i40e_aqc_add_macvlan_element_data element; 7360 i40e_status status; 7361 u16 cmd_flags = 0; 7362 7363 ether_addr_copy(element.mac_addr, macaddr); 7364 element.vlan_tag = 0; 7365 element.queue_number = 0; 7366 element.match_method = I40E_AQC_MM_ERR_NO_RES; 7367 cmd_flags |= I40E_AQC_MACVLAN_ADD_PERFECT_MATCH; 7368 element.flags = cpu_to_le16(cmd_flags); 7369 status = i40e_aq_add_macvlan(hw, seid, &element, 1, NULL); 7370 *aq_err = hw->aq.asq_last_status; 7371 7372 return status; 7373 } 7374 7375 /** 7376 * i40e_reset_ch_rings - Reset the queue contexts in a channel 7377 * @vsi: the VSI we want to access 7378 * @ch: the channel we want to access 7379 */ 7380 static void i40e_reset_ch_rings(struct i40e_vsi *vsi, struct i40e_channel *ch) 7381 { 7382 struct i40e_ring *tx_ring, *rx_ring; 7383 u16 pf_q; 7384 int i; 7385 7386 for (i = 0; i < ch->num_queue_pairs; i++) { 7387 pf_q = ch->base_queue + i; 7388 tx_ring = vsi->tx_rings[pf_q]; 7389 tx_ring->ch = NULL; 7390 rx_ring = vsi->rx_rings[pf_q]; 7391 rx_ring->ch = NULL; 7392 } 7393 } 7394 7395 /** 7396 * i40e_free_macvlan_channels 7397 * @vsi: the VSI we want to access 7398 * 7399 * This function frees the Qs of the channel VSI from 7400 * the stack and also deletes the channel VSIs which 7401 * serve as macvlans. 7402 */ 7403 static void i40e_free_macvlan_channels(struct i40e_vsi *vsi) 7404 { 7405 struct i40e_channel *ch, *ch_tmp; 7406 int ret; 7407 7408 if (list_empty(&vsi->macvlan_list)) 7409 return; 7410 7411 list_for_each_entry_safe(ch, ch_tmp, &vsi->macvlan_list, list) { 7412 struct i40e_vsi *parent_vsi; 7413 7414 if (i40e_is_channel_macvlan(ch)) { 7415 i40e_reset_ch_rings(vsi, ch); 7416 clear_bit(ch->fwd->bit_no, vsi->fwd_bitmask); 7417 netdev_unbind_sb_channel(vsi->netdev, ch->fwd->netdev); 7418 netdev_set_sb_channel(ch->fwd->netdev, 0); 7419 kfree(ch->fwd); 7420 ch->fwd = NULL; 7421 } 7422 7423 list_del(&ch->list); 7424 parent_vsi = ch->parent_vsi; 7425 if (!parent_vsi || !ch->initialized) { 7426 kfree(ch); 7427 continue; 7428 } 7429 7430 /* remove the VSI */ 7431 ret = i40e_aq_delete_element(&vsi->back->hw, ch->seid, 7432 NULL); 7433 if (ret) 7434 dev_err(&vsi->back->pdev->dev, 7435 "unable to remove channel (%d) for parent VSI(%d)\n", 7436 ch->seid, parent_vsi->seid); 7437 kfree(ch); 7438 } 7439 vsi->macvlan_cnt = 0; 7440 } 7441 7442 /** 7443 * i40e_fwd_ring_up - bring the macvlan device up 7444 * @vsi: the VSI we want to access 7445 * @vdev: macvlan netdevice 7446 * @fwd: the private fwd structure 7447 */ 7448 static int i40e_fwd_ring_up(struct i40e_vsi *vsi, struct net_device *vdev, 7449 struct i40e_fwd_adapter *fwd) 7450 { 7451 int ret = 0, num_tc = 1, i, aq_err; 7452 struct i40e_channel *ch, *ch_tmp; 7453 struct i40e_pf *pf = vsi->back; 7454 struct i40e_hw *hw = &pf->hw; 7455 7456 if (list_empty(&vsi->macvlan_list)) 7457 return -EINVAL; 7458 7459 /* Go through the list and find an available channel */ 7460 list_for_each_entry_safe(ch, ch_tmp, &vsi->macvlan_list, list) { 7461 if (!i40e_is_channel_macvlan(ch)) { 7462 ch->fwd = fwd; 7463 /* record configuration for macvlan interface in vdev */ 7464 for (i = 0; i < num_tc; i++) 7465 netdev_bind_sb_channel_queue(vsi->netdev, vdev, 7466 i, 7467 ch->num_queue_pairs, 7468 ch->base_queue); 7469 for (i = 0; i < ch->num_queue_pairs; i++) { 7470 struct i40e_ring *tx_ring, *rx_ring; 7471 u16 pf_q; 7472 7473 pf_q = ch->base_queue + i; 7474 7475 /* Get to TX ring ptr */ 7476 tx_ring = vsi->tx_rings[pf_q]; 7477 tx_ring->ch = ch; 7478 7479 /* Get the RX ring ptr */ 7480 rx_ring = vsi->rx_rings[pf_q]; 7481 rx_ring->ch = ch; 7482 } 7483 break; 7484 } 7485 } 7486 7487 /* Guarantee all rings are updated before we update the 7488 * MAC address filter. 7489 */ 7490 wmb(); 7491 7492 /* Add a mac filter */ 7493 ret = i40e_add_macvlan_filter(hw, ch->seid, vdev->dev_addr, &aq_err); 7494 if (ret) { 7495 /* if we cannot add the MAC rule then disable the offload */ 7496 macvlan_release_l2fw_offload(vdev); 7497 for (i = 0; i < ch->num_queue_pairs; i++) { 7498 struct i40e_ring *rx_ring; 7499 u16 pf_q; 7500 7501 pf_q = ch->base_queue + i; 7502 rx_ring = vsi->rx_rings[pf_q]; 7503 rx_ring->netdev = NULL; 7504 } 7505 dev_info(&pf->pdev->dev, 7506 "Error adding mac filter on macvlan err %s, aq_err %s\n", 7507 i40e_stat_str(hw, ret), 7508 i40e_aq_str(hw, aq_err)); 7509 netdev_err(vdev, "L2fwd offload disabled to L2 filter error\n"); 7510 } 7511 7512 return ret; 7513 } 7514 7515 /** 7516 * i40e_setup_macvlans - create the channels which will be macvlans 7517 * @vsi: the VSI we want to access 7518 * @macvlan_cnt: no. of macvlans to be setup 7519 * @qcnt: no. of Qs per macvlan 7520 * @vdev: macvlan netdevice 7521 */ 7522 static int i40e_setup_macvlans(struct i40e_vsi *vsi, u16 macvlan_cnt, u16 qcnt, 7523 struct net_device *vdev) 7524 { 7525 struct i40e_pf *pf = vsi->back; 7526 struct i40e_hw *hw = &pf->hw; 7527 struct i40e_vsi_context ctxt; 7528 u16 sections, qmap, num_qps; 7529 struct i40e_channel *ch; 7530 int i, pow, ret = 0; 7531 u8 offset = 0; 7532 7533 if (vsi->type != I40E_VSI_MAIN || !macvlan_cnt) 7534 return -EINVAL; 7535 7536 num_qps = vsi->num_queue_pairs - (macvlan_cnt * qcnt); 7537 7538 /* find the next higher power-of-2 of num queue pairs */ 7539 pow = fls(roundup_pow_of_two(num_qps) - 1); 7540 7541 qmap = (offset << I40E_AQ_VSI_TC_QUE_OFFSET_SHIFT) | 7542 (pow << I40E_AQ_VSI_TC_QUE_NUMBER_SHIFT); 7543 7544 /* Setup context bits for the main VSI */ 7545 sections = I40E_AQ_VSI_PROP_QUEUE_MAP_VALID; 7546 sections |= I40E_AQ_VSI_PROP_SCHED_VALID; 7547 memset(&ctxt, 0, sizeof(ctxt)); 7548 ctxt.seid = vsi->seid; 7549 ctxt.pf_num = vsi->back->hw.pf_id; 7550 ctxt.vf_num = 0; 7551 ctxt.uplink_seid = vsi->uplink_seid; 7552 ctxt.info = vsi->info; 7553 ctxt.info.tc_mapping[0] = cpu_to_le16(qmap); 7554 ctxt.info.mapping_flags |= cpu_to_le16(I40E_AQ_VSI_QUE_MAP_CONTIG); 7555 ctxt.info.queue_mapping[0] = cpu_to_le16(vsi->base_queue); 7556 ctxt.info.valid_sections |= cpu_to_le16(sections); 7557 7558 /* Reconfigure RSS for main VSI with new max queue count */ 7559 vsi->rss_size = max_t(u16, num_qps, qcnt); 7560 ret = i40e_vsi_config_rss(vsi); 7561 if (ret) { 7562 dev_info(&pf->pdev->dev, 7563 "Failed to reconfig RSS for num_queues (%u)\n", 7564 vsi->rss_size); 7565 return ret; 7566 } 7567 vsi->reconfig_rss = true; 7568 dev_dbg(&vsi->back->pdev->dev, 7569 "Reconfigured RSS with num_queues (%u)\n", vsi->rss_size); 7570 vsi->next_base_queue = num_qps; 7571 vsi->cnt_q_avail = vsi->num_queue_pairs - num_qps; 7572 7573 /* Update the VSI after updating the VSI queue-mapping 7574 * information 7575 */ 7576 ret = i40e_aq_update_vsi_params(hw, &ctxt, NULL); 7577 if (ret) { 7578 dev_info(&pf->pdev->dev, 7579 "Update vsi tc config failed, err %s aq_err %s\n", 7580 i40e_stat_str(hw, ret), 7581 i40e_aq_str(hw, hw->aq.asq_last_status)); 7582 return ret; 7583 } 7584 /* update the local VSI info with updated queue map */ 7585 i40e_vsi_update_queue_map(vsi, &ctxt); 7586 vsi->info.valid_sections = 0; 7587 7588 /* Create channels for macvlans */ 7589 INIT_LIST_HEAD(&vsi->macvlan_list); 7590 for (i = 0; i < macvlan_cnt; i++) { 7591 ch = kzalloc(sizeof(*ch), GFP_KERNEL); 7592 if (!ch) { 7593 ret = -ENOMEM; 7594 goto err_free; 7595 } 7596 INIT_LIST_HEAD(&ch->list); 7597 ch->num_queue_pairs = qcnt; 7598 if (!i40e_setup_channel(pf, vsi, ch)) { 7599 ret = -EINVAL; 7600 kfree(ch); 7601 goto err_free; 7602 } 7603 ch->parent_vsi = vsi; 7604 vsi->cnt_q_avail -= ch->num_queue_pairs; 7605 vsi->macvlan_cnt++; 7606 list_add_tail(&ch->list, &vsi->macvlan_list); 7607 } 7608 7609 return ret; 7610 7611 err_free: 7612 dev_info(&pf->pdev->dev, "Failed to setup macvlans\n"); 7613 i40e_free_macvlan_channels(vsi); 7614 7615 return ret; 7616 } 7617 7618 /** 7619 * i40e_fwd_add - configure macvlans 7620 * @netdev: net device to configure 7621 * @vdev: macvlan netdevice 7622 **/ 7623 static void *i40e_fwd_add(struct net_device *netdev, struct net_device *vdev) 7624 { 7625 struct i40e_netdev_priv *np = netdev_priv(netdev); 7626 u16 q_per_macvlan = 0, macvlan_cnt = 0, vectors; 7627 struct i40e_vsi *vsi = np->vsi; 7628 struct i40e_pf *pf = vsi->back; 7629 struct i40e_fwd_adapter *fwd; 7630 int avail_macvlan, ret; 7631 7632 if ((pf->flags & I40E_FLAG_DCB_ENABLED)) { 7633 netdev_info(netdev, "Macvlans are not supported when DCB is enabled\n"); 7634 return ERR_PTR(-EINVAL); 7635 } 7636 if ((pf->flags & I40E_FLAG_TC_MQPRIO)) { 7637 netdev_info(netdev, "Macvlans are not supported when HW TC offload is on\n"); 7638 return ERR_PTR(-EINVAL); 7639 } 7640 if (pf->num_lan_msix < I40E_MIN_MACVLAN_VECTORS) { 7641 netdev_info(netdev, "Not enough vectors available to support macvlans\n"); 7642 return ERR_PTR(-EINVAL); 7643 } 7644 7645 /* The macvlan device has to be a single Q device so that the 7646 * tc_to_txq field can be reused to pick the tx queue. 7647 */ 7648 if (netif_is_multiqueue(vdev)) 7649 return ERR_PTR(-ERANGE); 7650 7651 if (!vsi->macvlan_cnt) { 7652 /* reserve bit 0 for the pf device */ 7653 set_bit(0, vsi->fwd_bitmask); 7654 7655 /* Try to reserve as many queues as possible for macvlans. First 7656 * reserve 3/4th of max vectors, then half, then quarter and 7657 * calculate Qs per macvlan as you go 7658 */ 7659 vectors = pf->num_lan_msix; 7660 if (vectors <= I40E_MAX_MACVLANS && vectors > 64) { 7661 /* allocate 4 Qs per macvlan and 32 Qs to the PF*/ 7662 q_per_macvlan = 4; 7663 macvlan_cnt = (vectors - 32) / 4; 7664 } else if (vectors <= 64 && vectors > 32) { 7665 /* allocate 2 Qs per macvlan and 16 Qs to the PF*/ 7666 q_per_macvlan = 2; 7667 macvlan_cnt = (vectors - 16) / 2; 7668 } else if (vectors <= 32 && vectors > 16) { 7669 /* allocate 1 Q per macvlan and 16 Qs to the PF*/ 7670 q_per_macvlan = 1; 7671 macvlan_cnt = vectors - 16; 7672 } else if (vectors <= 16 && vectors > 8) { 7673 /* allocate 1 Q per macvlan and 8 Qs to the PF */ 7674 q_per_macvlan = 1; 7675 macvlan_cnt = vectors - 8; 7676 } else { 7677 /* allocate 1 Q per macvlan and 1 Q to the PF */ 7678 q_per_macvlan = 1; 7679 macvlan_cnt = vectors - 1; 7680 } 7681 7682 if (macvlan_cnt == 0) 7683 return ERR_PTR(-EBUSY); 7684 7685 /* Quiesce VSI queues */ 7686 i40e_quiesce_vsi(vsi); 7687 7688 /* sets up the macvlans but does not "enable" them */ 7689 ret = i40e_setup_macvlans(vsi, macvlan_cnt, q_per_macvlan, 7690 vdev); 7691 if (ret) 7692 return ERR_PTR(ret); 7693 7694 /* Unquiesce VSI */ 7695 i40e_unquiesce_vsi(vsi); 7696 } 7697 avail_macvlan = find_first_zero_bit(vsi->fwd_bitmask, 7698 vsi->macvlan_cnt); 7699 if (avail_macvlan >= I40E_MAX_MACVLANS) 7700 return ERR_PTR(-EBUSY); 7701 7702 /* create the fwd struct */ 7703 fwd = kzalloc(sizeof(*fwd), GFP_KERNEL); 7704 if (!fwd) 7705 return ERR_PTR(-ENOMEM); 7706 7707 set_bit(avail_macvlan, vsi->fwd_bitmask); 7708 fwd->bit_no = avail_macvlan; 7709 netdev_set_sb_channel(vdev, avail_macvlan); 7710 fwd->netdev = vdev; 7711 7712 if (!netif_running(netdev)) 7713 return fwd; 7714 7715 /* Set fwd ring up */ 7716 ret = i40e_fwd_ring_up(vsi, vdev, fwd); 7717 if (ret) { 7718 /* unbind the queues and drop the subordinate channel config */ 7719 netdev_unbind_sb_channel(netdev, vdev); 7720 netdev_set_sb_channel(vdev, 0); 7721 7722 kfree(fwd); 7723 return ERR_PTR(-EINVAL); 7724 } 7725 7726 return fwd; 7727 } 7728 7729 /** 7730 * i40e_del_all_macvlans - Delete all the mac filters on the channels 7731 * @vsi: the VSI we want to access 7732 */ 7733 static void i40e_del_all_macvlans(struct i40e_vsi *vsi) 7734 { 7735 struct i40e_channel *ch, *ch_tmp; 7736 struct i40e_pf *pf = vsi->back; 7737 struct i40e_hw *hw = &pf->hw; 7738 int aq_err, ret = 0; 7739 7740 if (list_empty(&vsi->macvlan_list)) 7741 return; 7742 7743 list_for_each_entry_safe(ch, ch_tmp, &vsi->macvlan_list, list) { 7744 if (i40e_is_channel_macvlan(ch)) { 7745 ret = i40e_del_macvlan_filter(hw, ch->seid, 7746 i40e_channel_mac(ch), 7747 &aq_err); 7748 if (!ret) { 7749 /* Reset queue contexts */ 7750 i40e_reset_ch_rings(vsi, ch); 7751 clear_bit(ch->fwd->bit_no, vsi->fwd_bitmask); 7752 netdev_unbind_sb_channel(vsi->netdev, 7753 ch->fwd->netdev); 7754 netdev_set_sb_channel(ch->fwd->netdev, 0); 7755 kfree(ch->fwd); 7756 ch->fwd = NULL; 7757 } 7758 } 7759 } 7760 } 7761 7762 /** 7763 * i40e_fwd_del - delete macvlan interfaces 7764 * @netdev: net device to configure 7765 * @vdev: macvlan netdevice 7766 */ 7767 static void i40e_fwd_del(struct net_device *netdev, void *vdev) 7768 { 7769 struct i40e_netdev_priv *np = netdev_priv(netdev); 7770 struct i40e_fwd_adapter *fwd = vdev; 7771 struct i40e_channel *ch, *ch_tmp; 7772 struct i40e_vsi *vsi = np->vsi; 7773 struct i40e_pf *pf = vsi->back; 7774 struct i40e_hw *hw = &pf->hw; 7775 int aq_err, ret = 0; 7776 7777 /* Find the channel associated with the macvlan and del mac filter */ 7778 list_for_each_entry_safe(ch, ch_tmp, &vsi->macvlan_list, list) { 7779 if (i40e_is_channel_macvlan(ch) && 7780 ether_addr_equal(i40e_channel_mac(ch), 7781 fwd->netdev->dev_addr)) { 7782 ret = i40e_del_macvlan_filter(hw, ch->seid, 7783 i40e_channel_mac(ch), 7784 &aq_err); 7785 if (!ret) { 7786 /* Reset queue contexts */ 7787 i40e_reset_ch_rings(vsi, ch); 7788 clear_bit(ch->fwd->bit_no, vsi->fwd_bitmask); 7789 netdev_unbind_sb_channel(netdev, fwd->netdev); 7790 netdev_set_sb_channel(fwd->netdev, 0); 7791 kfree(ch->fwd); 7792 ch->fwd = NULL; 7793 } else { 7794 dev_info(&pf->pdev->dev, 7795 "Error deleting mac filter on macvlan err %s, aq_err %s\n", 7796 i40e_stat_str(hw, ret), 7797 i40e_aq_str(hw, aq_err)); 7798 } 7799 break; 7800 } 7801 } 7802 } 7803 7804 /** 7805 * i40e_setup_tc - configure multiple traffic classes 7806 * @netdev: net device to configure 7807 * @type_data: tc offload data 7808 **/ 7809 static int i40e_setup_tc(struct net_device *netdev, void *type_data) 7810 { 7811 struct tc_mqprio_qopt_offload *mqprio_qopt = type_data; 7812 struct i40e_netdev_priv *np = netdev_priv(netdev); 7813 struct i40e_vsi *vsi = np->vsi; 7814 struct i40e_pf *pf = vsi->back; 7815 u8 enabled_tc = 0, num_tc, hw; 7816 bool need_reset = false; 7817 int old_queue_pairs; 7818 int ret = -EINVAL; 7819 u16 mode; 7820 int i; 7821 7822 old_queue_pairs = vsi->num_queue_pairs; 7823 num_tc = mqprio_qopt->qopt.num_tc; 7824 hw = mqprio_qopt->qopt.hw; 7825 mode = mqprio_qopt->mode; 7826 if (!hw) { 7827 pf->flags &= ~I40E_FLAG_TC_MQPRIO; 7828 memcpy(&vsi->mqprio_qopt, mqprio_qopt, sizeof(*mqprio_qopt)); 7829 goto config_tc; 7830 } 7831 7832 /* Check if MFP enabled */ 7833 if (pf->flags & I40E_FLAG_MFP_ENABLED) { 7834 netdev_info(netdev, 7835 "Configuring TC not supported in MFP mode\n"); 7836 return ret; 7837 } 7838 switch (mode) { 7839 case TC_MQPRIO_MODE_DCB: 7840 pf->flags &= ~I40E_FLAG_TC_MQPRIO; 7841 7842 /* Check if DCB enabled to continue */ 7843 if (!(pf->flags & I40E_FLAG_DCB_ENABLED)) { 7844 netdev_info(netdev, 7845 "DCB is not enabled for adapter\n"); 7846 return ret; 7847 } 7848 7849 /* Check whether tc count is within enabled limit */ 7850 if (num_tc > i40e_pf_get_num_tc(pf)) { 7851 netdev_info(netdev, 7852 "TC count greater than enabled on link for adapter\n"); 7853 return ret; 7854 } 7855 break; 7856 case TC_MQPRIO_MODE_CHANNEL: 7857 if (pf->flags & I40E_FLAG_DCB_ENABLED) { 7858 netdev_info(netdev, 7859 "Full offload of TC Mqprio options is not supported when DCB is enabled\n"); 7860 return ret; 7861 } 7862 if (!(pf->flags & I40E_FLAG_MSIX_ENABLED)) 7863 return ret; 7864 ret = i40e_validate_mqprio_qopt(vsi, mqprio_qopt); 7865 if (ret) 7866 return ret; 7867 memcpy(&vsi->mqprio_qopt, mqprio_qopt, 7868 sizeof(*mqprio_qopt)); 7869 pf->flags |= I40E_FLAG_TC_MQPRIO; 7870 pf->flags &= ~I40E_FLAG_DCB_ENABLED; 7871 break; 7872 default: 7873 return -EINVAL; 7874 } 7875 7876 config_tc: 7877 /* Generate TC map for number of tc requested */ 7878 for (i = 0; i < num_tc; i++) 7879 enabled_tc |= BIT(i); 7880 7881 /* Requesting same TC configuration as already enabled */ 7882 if (enabled_tc == vsi->tc_config.enabled_tc && 7883 mode != TC_MQPRIO_MODE_CHANNEL) 7884 return 0; 7885 7886 /* Quiesce VSI queues */ 7887 i40e_quiesce_vsi(vsi); 7888 7889 if (!hw && !(pf->flags & I40E_FLAG_TC_MQPRIO)) 7890 i40e_remove_queue_channels(vsi); 7891 7892 /* Configure VSI for enabled TCs */ 7893 ret = i40e_vsi_config_tc(vsi, enabled_tc); 7894 if (ret) { 7895 netdev_info(netdev, "Failed configuring TC for VSI seid=%d\n", 7896 vsi->seid); 7897 need_reset = true; 7898 goto exit; 7899 } else { 7900 dev_info(&vsi->back->pdev->dev, 7901 "Setup channel (id:%u) utilizing num_queues %d\n", 7902 vsi->seid, vsi->tc_config.tc_info[0].qcount); 7903 } 7904 7905 if (pf->flags & I40E_FLAG_TC_MQPRIO) { 7906 if (vsi->mqprio_qopt.max_rate[0]) { 7907 u64 max_tx_rate = vsi->mqprio_qopt.max_rate[0]; 7908 7909 do_div(max_tx_rate, I40E_BW_MBPS_DIVISOR); 7910 ret = i40e_set_bw_limit(vsi, vsi->seid, max_tx_rate); 7911 if (!ret) { 7912 u64 credits = max_tx_rate; 7913 7914 do_div(credits, I40E_BW_CREDIT_DIVISOR); 7915 dev_dbg(&vsi->back->pdev->dev, 7916 "Set tx rate of %llu Mbps (count of 50Mbps %llu) for vsi->seid %u\n", 7917 max_tx_rate, 7918 credits, 7919 vsi->seid); 7920 } else { 7921 need_reset = true; 7922 goto exit; 7923 } 7924 } 7925 ret = i40e_configure_queue_channels(vsi); 7926 if (ret) { 7927 vsi->num_queue_pairs = old_queue_pairs; 7928 netdev_info(netdev, 7929 "Failed configuring queue channels\n"); 7930 need_reset = true; 7931 goto exit; 7932 } 7933 } 7934 7935 exit: 7936 /* Reset the configuration data to defaults, only TC0 is enabled */ 7937 if (need_reset) { 7938 i40e_vsi_set_default_tc_config(vsi); 7939 need_reset = false; 7940 } 7941 7942 /* Unquiesce VSI */ 7943 i40e_unquiesce_vsi(vsi); 7944 return ret; 7945 } 7946 7947 /** 7948 * i40e_set_cld_element - sets cloud filter element data 7949 * @filter: cloud filter rule 7950 * @cld: ptr to cloud filter element data 7951 * 7952 * This is helper function to copy data into cloud filter element 7953 **/ 7954 static inline void 7955 i40e_set_cld_element(struct i40e_cloud_filter *filter, 7956 struct i40e_aqc_cloud_filters_element_data *cld) 7957 { 7958 u32 ipa; 7959 int i; 7960 7961 memset(cld, 0, sizeof(*cld)); 7962 ether_addr_copy(cld->outer_mac, filter->dst_mac); 7963 ether_addr_copy(cld->inner_mac, filter->src_mac); 7964 7965 if (filter->n_proto != ETH_P_IP && filter->n_proto != ETH_P_IPV6) 7966 return; 7967 7968 if (filter->n_proto == ETH_P_IPV6) { 7969 #define IPV6_MAX_INDEX (ARRAY_SIZE(filter->dst_ipv6) - 1) 7970 for (i = 0; i < ARRAY_SIZE(filter->dst_ipv6); i++) { 7971 ipa = be32_to_cpu(filter->dst_ipv6[IPV6_MAX_INDEX - i]); 7972 7973 *(__le32 *)&cld->ipaddr.raw_v6.data[i * 2] = cpu_to_le32(ipa); 7974 } 7975 } else { 7976 ipa = be32_to_cpu(filter->dst_ipv4); 7977 7978 memcpy(&cld->ipaddr.v4.data, &ipa, sizeof(ipa)); 7979 } 7980 7981 cld->inner_vlan = cpu_to_le16(ntohs(filter->vlan_id)); 7982 7983 /* tenant_id is not supported by FW now, once the support is enabled 7984 * fill the cld->tenant_id with cpu_to_le32(filter->tenant_id) 7985 */ 7986 if (filter->tenant_id) 7987 return; 7988 } 7989 7990 /** 7991 * i40e_add_del_cloud_filter - Add/del cloud filter 7992 * @vsi: pointer to VSI 7993 * @filter: cloud filter rule 7994 * @add: if true, add, if false, delete 7995 * 7996 * Add or delete a cloud filter for a specific flow spec. 7997 * Returns 0 if the filter were successfully added. 7998 **/ 7999 int i40e_add_del_cloud_filter(struct i40e_vsi *vsi, 8000 struct i40e_cloud_filter *filter, bool add) 8001 { 8002 struct i40e_aqc_cloud_filters_element_data cld_filter; 8003 struct i40e_pf *pf = vsi->back; 8004 int ret; 8005 static const u16 flag_table[128] = { 8006 [I40E_CLOUD_FILTER_FLAGS_OMAC] = 8007 I40E_AQC_ADD_CLOUD_FILTER_OMAC, 8008 [I40E_CLOUD_FILTER_FLAGS_IMAC] = 8009 I40E_AQC_ADD_CLOUD_FILTER_IMAC, 8010 [I40E_CLOUD_FILTER_FLAGS_IMAC_IVLAN] = 8011 I40E_AQC_ADD_CLOUD_FILTER_IMAC_IVLAN, 8012 [I40E_CLOUD_FILTER_FLAGS_IMAC_TEN_ID] = 8013 I40E_AQC_ADD_CLOUD_FILTER_IMAC_TEN_ID, 8014 [I40E_CLOUD_FILTER_FLAGS_OMAC_TEN_ID_IMAC] = 8015 I40E_AQC_ADD_CLOUD_FILTER_OMAC_TEN_ID_IMAC, 8016 [I40E_CLOUD_FILTER_FLAGS_IMAC_IVLAN_TEN_ID] = 8017 I40E_AQC_ADD_CLOUD_FILTER_IMAC_IVLAN_TEN_ID, 8018 [I40E_CLOUD_FILTER_FLAGS_IIP] = 8019 I40E_AQC_ADD_CLOUD_FILTER_IIP, 8020 }; 8021 8022 if (filter->flags >= ARRAY_SIZE(flag_table)) 8023 return I40E_ERR_CONFIG; 8024 8025 memset(&cld_filter, 0, sizeof(cld_filter)); 8026 8027 /* copy element needed to add cloud filter from filter */ 8028 i40e_set_cld_element(filter, &cld_filter); 8029 8030 if (filter->tunnel_type != I40E_CLOUD_TNL_TYPE_NONE) 8031 cld_filter.flags = cpu_to_le16(filter->tunnel_type << 8032 I40E_AQC_ADD_CLOUD_TNL_TYPE_SHIFT); 8033 8034 if (filter->n_proto == ETH_P_IPV6) 8035 cld_filter.flags |= cpu_to_le16(flag_table[filter->flags] | 8036 I40E_AQC_ADD_CLOUD_FLAGS_IPV6); 8037 else 8038 cld_filter.flags |= cpu_to_le16(flag_table[filter->flags] | 8039 I40E_AQC_ADD_CLOUD_FLAGS_IPV4); 8040 8041 if (add) 8042 ret = i40e_aq_add_cloud_filters(&pf->hw, filter->seid, 8043 &cld_filter, 1); 8044 else 8045 ret = i40e_aq_rem_cloud_filters(&pf->hw, filter->seid, 8046 &cld_filter, 1); 8047 if (ret) 8048 dev_dbg(&pf->pdev->dev, 8049 "Failed to %s cloud filter using l4 port %u, err %d aq_err %d\n", 8050 add ? "add" : "delete", filter->dst_port, ret, 8051 pf->hw.aq.asq_last_status); 8052 else 8053 dev_info(&pf->pdev->dev, 8054 "%s cloud filter for VSI: %d\n", 8055 add ? "Added" : "Deleted", filter->seid); 8056 return ret; 8057 } 8058 8059 /** 8060 * i40e_add_del_cloud_filter_big_buf - Add/del cloud filter using big_buf 8061 * @vsi: pointer to VSI 8062 * @filter: cloud filter rule 8063 * @add: if true, add, if false, delete 8064 * 8065 * Add or delete a cloud filter for a specific flow spec using big buffer. 8066 * Returns 0 if the filter were successfully added. 8067 **/ 8068 int i40e_add_del_cloud_filter_big_buf(struct i40e_vsi *vsi, 8069 struct i40e_cloud_filter *filter, 8070 bool add) 8071 { 8072 struct i40e_aqc_cloud_filters_element_bb cld_filter; 8073 struct i40e_pf *pf = vsi->back; 8074 int ret; 8075 8076 /* Both (src/dst) valid mac_addr are not supported */ 8077 if ((is_valid_ether_addr(filter->dst_mac) && 8078 is_valid_ether_addr(filter->src_mac)) || 8079 (is_multicast_ether_addr(filter->dst_mac) && 8080 is_multicast_ether_addr(filter->src_mac))) 8081 return -EOPNOTSUPP; 8082 8083 /* Big buffer cloud filter needs 'L4 port' to be non-zero. Also, UDP 8084 * ports are not supported via big buffer now. 8085 */ 8086 if (!filter->dst_port || filter->ip_proto == IPPROTO_UDP) 8087 return -EOPNOTSUPP; 8088 8089 /* adding filter using src_port/src_ip is not supported at this stage */ 8090 if (filter->src_port || 8091 (filter->src_ipv4 && filter->n_proto != ETH_P_IPV6) || 8092 !ipv6_addr_any(&filter->ip.v6.src_ip6)) 8093 return -EOPNOTSUPP; 8094 8095 memset(&cld_filter, 0, sizeof(cld_filter)); 8096 8097 /* copy element needed to add cloud filter from filter */ 8098 i40e_set_cld_element(filter, &cld_filter.element); 8099 8100 if (is_valid_ether_addr(filter->dst_mac) || 8101 is_valid_ether_addr(filter->src_mac) || 8102 is_multicast_ether_addr(filter->dst_mac) || 8103 is_multicast_ether_addr(filter->src_mac)) { 8104 /* MAC + IP : unsupported mode */ 8105 if (filter->dst_ipv4) 8106 return -EOPNOTSUPP; 8107 8108 /* since we validated that L4 port must be valid before 8109 * we get here, start with respective "flags" value 8110 * and update if vlan is present or not 8111 */ 8112 cld_filter.element.flags = 8113 cpu_to_le16(I40E_AQC_ADD_CLOUD_FILTER_MAC_PORT); 8114 8115 if (filter->vlan_id) { 8116 cld_filter.element.flags = 8117 cpu_to_le16(I40E_AQC_ADD_CLOUD_FILTER_MAC_VLAN_PORT); 8118 } 8119 8120 } else if ((filter->dst_ipv4 && filter->n_proto != ETH_P_IPV6) || 8121 !ipv6_addr_any(&filter->ip.v6.dst_ip6)) { 8122 cld_filter.element.flags = 8123 cpu_to_le16(I40E_AQC_ADD_CLOUD_FILTER_IP_PORT); 8124 if (filter->n_proto == ETH_P_IPV6) 8125 cld_filter.element.flags |= 8126 cpu_to_le16(I40E_AQC_ADD_CLOUD_FLAGS_IPV6); 8127 else 8128 cld_filter.element.flags |= 8129 cpu_to_le16(I40E_AQC_ADD_CLOUD_FLAGS_IPV4); 8130 } else { 8131 dev_err(&pf->pdev->dev, 8132 "either mac or ip has to be valid for cloud filter\n"); 8133 return -EINVAL; 8134 } 8135 8136 /* Now copy L4 port in Byte 6..7 in general fields */ 8137 cld_filter.general_fields[I40E_AQC_ADD_CLOUD_FV_FLU_0X16_WORD0] = 8138 be16_to_cpu(filter->dst_port); 8139 8140 if (add) { 8141 /* Validate current device switch mode, change if necessary */ 8142 ret = i40e_validate_and_set_switch_mode(vsi); 8143 if (ret) { 8144 dev_err(&pf->pdev->dev, 8145 "failed to set switch mode, ret %d\n", 8146 ret); 8147 return ret; 8148 } 8149 8150 ret = i40e_aq_add_cloud_filters_bb(&pf->hw, filter->seid, 8151 &cld_filter, 1); 8152 } else { 8153 ret = i40e_aq_rem_cloud_filters_bb(&pf->hw, filter->seid, 8154 &cld_filter, 1); 8155 } 8156 8157 if (ret) 8158 dev_dbg(&pf->pdev->dev, 8159 "Failed to %s cloud filter(big buffer) err %d aq_err %d\n", 8160 add ? "add" : "delete", ret, pf->hw.aq.asq_last_status); 8161 else 8162 dev_info(&pf->pdev->dev, 8163 "%s cloud filter for VSI: %d, L4 port: %d\n", 8164 add ? "add" : "delete", filter->seid, 8165 ntohs(filter->dst_port)); 8166 return ret; 8167 } 8168 8169 /** 8170 * i40e_parse_cls_flower - Parse tc flower filters provided by kernel 8171 * @vsi: Pointer to VSI 8172 * @f: Pointer to struct flow_cls_offload 8173 * @filter: Pointer to cloud filter structure 8174 * 8175 **/ 8176 static int i40e_parse_cls_flower(struct i40e_vsi *vsi, 8177 struct flow_cls_offload *f, 8178 struct i40e_cloud_filter *filter) 8179 { 8180 struct flow_rule *rule = flow_cls_offload_flow_rule(f); 8181 struct flow_dissector *dissector = rule->match.dissector; 8182 u16 n_proto_mask = 0, n_proto_key = 0, addr_type = 0; 8183 struct i40e_pf *pf = vsi->back; 8184 u8 field_flags = 0; 8185 8186 if (dissector->used_keys & 8187 ~(BIT(FLOW_DISSECTOR_KEY_CONTROL) | 8188 BIT(FLOW_DISSECTOR_KEY_BASIC) | 8189 BIT(FLOW_DISSECTOR_KEY_ETH_ADDRS) | 8190 BIT(FLOW_DISSECTOR_KEY_VLAN) | 8191 BIT(FLOW_DISSECTOR_KEY_IPV4_ADDRS) | 8192 BIT(FLOW_DISSECTOR_KEY_IPV6_ADDRS) | 8193 BIT(FLOW_DISSECTOR_KEY_PORTS) | 8194 BIT(FLOW_DISSECTOR_KEY_ENC_KEYID))) { 8195 dev_err(&pf->pdev->dev, "Unsupported key used: 0x%x\n", 8196 dissector->used_keys); 8197 return -EOPNOTSUPP; 8198 } 8199 8200 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ENC_KEYID)) { 8201 struct flow_match_enc_keyid match; 8202 8203 flow_rule_match_enc_keyid(rule, &match); 8204 if (match.mask->keyid != 0) 8205 field_flags |= I40E_CLOUD_FIELD_TEN_ID; 8206 8207 filter->tenant_id = be32_to_cpu(match.key->keyid); 8208 } 8209 8210 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_BASIC)) { 8211 struct flow_match_basic match; 8212 8213 flow_rule_match_basic(rule, &match); 8214 n_proto_key = ntohs(match.key->n_proto); 8215 n_proto_mask = ntohs(match.mask->n_proto); 8216 8217 if (n_proto_key == ETH_P_ALL) { 8218 n_proto_key = 0; 8219 n_proto_mask = 0; 8220 } 8221 filter->n_proto = n_proto_key & n_proto_mask; 8222 filter->ip_proto = match.key->ip_proto; 8223 } 8224 8225 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ETH_ADDRS)) { 8226 struct flow_match_eth_addrs match; 8227 8228 flow_rule_match_eth_addrs(rule, &match); 8229 8230 /* use is_broadcast and is_zero to check for all 0xf or 0 */ 8231 if (!is_zero_ether_addr(match.mask->dst)) { 8232 if (is_broadcast_ether_addr(match.mask->dst)) { 8233 field_flags |= I40E_CLOUD_FIELD_OMAC; 8234 } else { 8235 dev_err(&pf->pdev->dev, "Bad ether dest mask %pM\n", 8236 match.mask->dst); 8237 return I40E_ERR_CONFIG; 8238 } 8239 } 8240 8241 if (!is_zero_ether_addr(match.mask->src)) { 8242 if (is_broadcast_ether_addr(match.mask->src)) { 8243 field_flags |= I40E_CLOUD_FIELD_IMAC; 8244 } else { 8245 dev_err(&pf->pdev->dev, "Bad ether src mask %pM\n", 8246 match.mask->src); 8247 return I40E_ERR_CONFIG; 8248 } 8249 } 8250 ether_addr_copy(filter->dst_mac, match.key->dst); 8251 ether_addr_copy(filter->src_mac, match.key->src); 8252 } 8253 8254 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_VLAN)) { 8255 struct flow_match_vlan match; 8256 8257 flow_rule_match_vlan(rule, &match); 8258 if (match.mask->vlan_id) { 8259 if (match.mask->vlan_id == VLAN_VID_MASK) { 8260 field_flags |= I40E_CLOUD_FIELD_IVLAN; 8261 8262 } else { 8263 dev_err(&pf->pdev->dev, "Bad vlan mask 0x%04x\n", 8264 match.mask->vlan_id); 8265 return I40E_ERR_CONFIG; 8266 } 8267 } 8268 8269 filter->vlan_id = cpu_to_be16(match.key->vlan_id); 8270 } 8271 8272 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_CONTROL)) { 8273 struct flow_match_control match; 8274 8275 flow_rule_match_control(rule, &match); 8276 addr_type = match.key->addr_type; 8277 } 8278 8279 if (addr_type == FLOW_DISSECTOR_KEY_IPV4_ADDRS) { 8280 struct flow_match_ipv4_addrs match; 8281 8282 flow_rule_match_ipv4_addrs(rule, &match); 8283 if (match.mask->dst) { 8284 if (match.mask->dst == cpu_to_be32(0xffffffff)) { 8285 field_flags |= I40E_CLOUD_FIELD_IIP; 8286 } else { 8287 dev_err(&pf->pdev->dev, "Bad ip dst mask %pI4b\n", 8288 &match.mask->dst); 8289 return I40E_ERR_CONFIG; 8290 } 8291 } 8292 8293 if (match.mask->src) { 8294 if (match.mask->src == cpu_to_be32(0xffffffff)) { 8295 field_flags |= I40E_CLOUD_FIELD_IIP; 8296 } else { 8297 dev_err(&pf->pdev->dev, "Bad ip src mask %pI4b\n", 8298 &match.mask->src); 8299 return I40E_ERR_CONFIG; 8300 } 8301 } 8302 8303 if (field_flags & I40E_CLOUD_FIELD_TEN_ID) { 8304 dev_err(&pf->pdev->dev, "Tenant id not allowed for ip filter\n"); 8305 return I40E_ERR_CONFIG; 8306 } 8307 filter->dst_ipv4 = match.key->dst; 8308 filter->src_ipv4 = match.key->src; 8309 } 8310 8311 if (addr_type == FLOW_DISSECTOR_KEY_IPV6_ADDRS) { 8312 struct flow_match_ipv6_addrs match; 8313 8314 flow_rule_match_ipv6_addrs(rule, &match); 8315 8316 /* src and dest IPV6 address should not be LOOPBACK 8317 * (0:0:0:0:0:0:0:1), which can be represented as ::1 8318 */ 8319 if (ipv6_addr_loopback(&match.key->dst) || 8320 ipv6_addr_loopback(&match.key->src)) { 8321 dev_err(&pf->pdev->dev, 8322 "Bad ipv6, addr is LOOPBACK\n"); 8323 return I40E_ERR_CONFIG; 8324 } 8325 if (!ipv6_addr_any(&match.mask->dst) || 8326 !ipv6_addr_any(&match.mask->src)) 8327 field_flags |= I40E_CLOUD_FIELD_IIP; 8328 8329 memcpy(&filter->src_ipv6, &match.key->src.s6_addr32, 8330 sizeof(filter->src_ipv6)); 8331 memcpy(&filter->dst_ipv6, &match.key->dst.s6_addr32, 8332 sizeof(filter->dst_ipv6)); 8333 } 8334 8335 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_PORTS)) { 8336 struct flow_match_ports match; 8337 8338 flow_rule_match_ports(rule, &match); 8339 if (match.mask->src) { 8340 if (match.mask->src == cpu_to_be16(0xffff)) { 8341 field_flags |= I40E_CLOUD_FIELD_IIP; 8342 } else { 8343 dev_err(&pf->pdev->dev, "Bad src port mask 0x%04x\n", 8344 be16_to_cpu(match.mask->src)); 8345 return I40E_ERR_CONFIG; 8346 } 8347 } 8348 8349 if (match.mask->dst) { 8350 if (match.mask->dst == cpu_to_be16(0xffff)) { 8351 field_flags |= I40E_CLOUD_FIELD_IIP; 8352 } else { 8353 dev_err(&pf->pdev->dev, "Bad dst port mask 0x%04x\n", 8354 be16_to_cpu(match.mask->dst)); 8355 return I40E_ERR_CONFIG; 8356 } 8357 } 8358 8359 filter->dst_port = match.key->dst; 8360 filter->src_port = match.key->src; 8361 8362 switch (filter->ip_proto) { 8363 case IPPROTO_TCP: 8364 case IPPROTO_UDP: 8365 break; 8366 default: 8367 dev_err(&pf->pdev->dev, 8368 "Only UDP and TCP transport are supported\n"); 8369 return -EINVAL; 8370 } 8371 } 8372 filter->flags = field_flags; 8373 return 0; 8374 } 8375 8376 /** 8377 * i40e_handle_tclass: Forward to a traffic class on the device 8378 * @vsi: Pointer to VSI 8379 * @tc: traffic class index on the device 8380 * @filter: Pointer to cloud filter structure 8381 * 8382 **/ 8383 static int i40e_handle_tclass(struct i40e_vsi *vsi, u32 tc, 8384 struct i40e_cloud_filter *filter) 8385 { 8386 struct i40e_channel *ch, *ch_tmp; 8387 8388 /* direct to a traffic class on the same device */ 8389 if (tc == 0) { 8390 filter->seid = vsi->seid; 8391 return 0; 8392 } else if (vsi->tc_config.enabled_tc & BIT(tc)) { 8393 if (!filter->dst_port) { 8394 dev_err(&vsi->back->pdev->dev, 8395 "Specify destination port to direct to traffic class that is not default\n"); 8396 return -EINVAL; 8397 } 8398 if (list_empty(&vsi->ch_list)) 8399 return -EINVAL; 8400 list_for_each_entry_safe(ch, ch_tmp, &vsi->ch_list, 8401 list) { 8402 if (ch->seid == vsi->tc_seid_map[tc]) 8403 filter->seid = ch->seid; 8404 } 8405 return 0; 8406 } 8407 dev_err(&vsi->back->pdev->dev, "TC is not enabled\n"); 8408 return -EINVAL; 8409 } 8410 8411 /** 8412 * i40e_configure_clsflower - Configure tc flower filters 8413 * @vsi: Pointer to VSI 8414 * @cls_flower: Pointer to struct flow_cls_offload 8415 * 8416 **/ 8417 static int i40e_configure_clsflower(struct i40e_vsi *vsi, 8418 struct flow_cls_offload *cls_flower) 8419 { 8420 int tc = tc_classid_to_hwtc(vsi->netdev, cls_flower->classid); 8421 struct i40e_cloud_filter *filter = NULL; 8422 struct i40e_pf *pf = vsi->back; 8423 int err = 0; 8424 8425 if (tc < 0) { 8426 dev_err(&vsi->back->pdev->dev, "Invalid traffic class\n"); 8427 return -EOPNOTSUPP; 8428 } 8429 8430 if (test_bit(__I40E_RESET_RECOVERY_PENDING, pf->state) || 8431 test_bit(__I40E_RESET_INTR_RECEIVED, pf->state)) 8432 return -EBUSY; 8433 8434 if (pf->fdir_pf_active_filters || 8435 (!hlist_empty(&pf->fdir_filter_list))) { 8436 dev_err(&vsi->back->pdev->dev, 8437 "Flow Director Sideband filters exists, turn ntuple off to configure cloud filters\n"); 8438 return -EINVAL; 8439 } 8440 8441 if (vsi->back->flags & I40E_FLAG_FD_SB_ENABLED) { 8442 dev_err(&vsi->back->pdev->dev, 8443 "Disable Flow Director Sideband, configuring Cloud filters via tc-flower\n"); 8444 vsi->back->flags &= ~I40E_FLAG_FD_SB_ENABLED; 8445 vsi->back->flags |= I40E_FLAG_FD_SB_TO_CLOUD_FILTER; 8446 } 8447 8448 filter = kzalloc(sizeof(*filter), GFP_KERNEL); 8449 if (!filter) 8450 return -ENOMEM; 8451 8452 filter->cookie = cls_flower->cookie; 8453 8454 err = i40e_parse_cls_flower(vsi, cls_flower, filter); 8455 if (err < 0) 8456 goto err; 8457 8458 err = i40e_handle_tclass(vsi, tc, filter); 8459 if (err < 0) 8460 goto err; 8461 8462 /* Add cloud filter */ 8463 if (filter->dst_port) 8464 err = i40e_add_del_cloud_filter_big_buf(vsi, filter, true); 8465 else 8466 err = i40e_add_del_cloud_filter(vsi, filter, true); 8467 8468 if (err) { 8469 dev_err(&pf->pdev->dev, 8470 "Failed to add cloud filter, err %s\n", 8471 i40e_stat_str(&pf->hw, err)); 8472 goto err; 8473 } 8474 8475 /* add filter to the ordered list */ 8476 INIT_HLIST_NODE(&filter->cloud_node); 8477 8478 hlist_add_head(&filter->cloud_node, &pf->cloud_filter_list); 8479 8480 pf->num_cloud_filters++; 8481 8482 return err; 8483 err: 8484 kfree(filter); 8485 return err; 8486 } 8487 8488 /** 8489 * i40e_find_cloud_filter - Find the could filter in the list 8490 * @vsi: Pointer to VSI 8491 * @cookie: filter specific cookie 8492 * 8493 **/ 8494 static struct i40e_cloud_filter *i40e_find_cloud_filter(struct i40e_vsi *vsi, 8495 unsigned long *cookie) 8496 { 8497 struct i40e_cloud_filter *filter = NULL; 8498 struct hlist_node *node2; 8499 8500 hlist_for_each_entry_safe(filter, node2, 8501 &vsi->back->cloud_filter_list, cloud_node) 8502 if (!memcmp(cookie, &filter->cookie, sizeof(filter->cookie))) 8503 return filter; 8504 return NULL; 8505 } 8506 8507 /** 8508 * i40e_delete_clsflower - Remove tc flower filters 8509 * @vsi: Pointer to VSI 8510 * @cls_flower: Pointer to struct flow_cls_offload 8511 * 8512 **/ 8513 static int i40e_delete_clsflower(struct i40e_vsi *vsi, 8514 struct flow_cls_offload *cls_flower) 8515 { 8516 struct i40e_cloud_filter *filter = NULL; 8517 struct i40e_pf *pf = vsi->back; 8518 int err = 0; 8519 8520 filter = i40e_find_cloud_filter(vsi, &cls_flower->cookie); 8521 8522 if (!filter) 8523 return -EINVAL; 8524 8525 hash_del(&filter->cloud_node); 8526 8527 if (filter->dst_port) 8528 err = i40e_add_del_cloud_filter_big_buf(vsi, filter, false); 8529 else 8530 err = i40e_add_del_cloud_filter(vsi, filter, false); 8531 8532 kfree(filter); 8533 if (err) { 8534 dev_err(&pf->pdev->dev, 8535 "Failed to delete cloud filter, err %s\n", 8536 i40e_stat_str(&pf->hw, err)); 8537 return i40e_aq_rc_to_posix(err, pf->hw.aq.asq_last_status); 8538 } 8539 8540 pf->num_cloud_filters--; 8541 if (!pf->num_cloud_filters) 8542 if ((pf->flags & I40E_FLAG_FD_SB_TO_CLOUD_FILTER) && 8543 !(pf->flags & I40E_FLAG_FD_SB_INACTIVE)) { 8544 pf->flags |= I40E_FLAG_FD_SB_ENABLED; 8545 pf->flags &= ~I40E_FLAG_FD_SB_TO_CLOUD_FILTER; 8546 pf->flags &= ~I40E_FLAG_FD_SB_INACTIVE; 8547 } 8548 return 0; 8549 } 8550 8551 /** 8552 * i40e_setup_tc_cls_flower - flower classifier offloads 8553 * @np: net device to configure 8554 * @cls_flower: offload data 8555 **/ 8556 static int i40e_setup_tc_cls_flower(struct i40e_netdev_priv *np, 8557 struct flow_cls_offload *cls_flower) 8558 { 8559 struct i40e_vsi *vsi = np->vsi; 8560 8561 switch (cls_flower->command) { 8562 case FLOW_CLS_REPLACE: 8563 return i40e_configure_clsflower(vsi, cls_flower); 8564 case FLOW_CLS_DESTROY: 8565 return i40e_delete_clsflower(vsi, cls_flower); 8566 case FLOW_CLS_STATS: 8567 return -EOPNOTSUPP; 8568 default: 8569 return -EOPNOTSUPP; 8570 } 8571 } 8572 8573 static int i40e_setup_tc_block_cb(enum tc_setup_type type, void *type_data, 8574 void *cb_priv) 8575 { 8576 struct i40e_netdev_priv *np = cb_priv; 8577 8578 if (!tc_cls_can_offload_and_chain0(np->vsi->netdev, type_data)) 8579 return -EOPNOTSUPP; 8580 8581 switch (type) { 8582 case TC_SETUP_CLSFLOWER: 8583 return i40e_setup_tc_cls_flower(np, type_data); 8584 8585 default: 8586 return -EOPNOTSUPP; 8587 } 8588 } 8589 8590 static LIST_HEAD(i40e_block_cb_list); 8591 8592 static int __i40e_setup_tc(struct net_device *netdev, enum tc_setup_type type, 8593 void *type_data) 8594 { 8595 struct i40e_netdev_priv *np = netdev_priv(netdev); 8596 8597 switch (type) { 8598 case TC_SETUP_QDISC_MQPRIO: 8599 return i40e_setup_tc(netdev, type_data); 8600 case TC_SETUP_BLOCK: 8601 return flow_block_cb_setup_simple(type_data, 8602 &i40e_block_cb_list, 8603 i40e_setup_tc_block_cb, 8604 np, np, true); 8605 default: 8606 return -EOPNOTSUPP; 8607 } 8608 } 8609 8610 /** 8611 * i40e_open - Called when a network interface is made active 8612 * @netdev: network interface device structure 8613 * 8614 * The open entry point is called when a network interface is made 8615 * active by the system (IFF_UP). At this point all resources needed 8616 * for transmit and receive operations are allocated, the interrupt 8617 * handler is registered with the OS, the netdev watchdog subtask is 8618 * enabled, and the stack is notified that the interface is ready. 8619 * 8620 * Returns 0 on success, negative value on failure 8621 **/ 8622 int i40e_open(struct net_device *netdev) 8623 { 8624 struct i40e_netdev_priv *np = netdev_priv(netdev); 8625 struct i40e_vsi *vsi = np->vsi; 8626 struct i40e_pf *pf = vsi->back; 8627 int err; 8628 8629 /* disallow open during test or if eeprom is broken */ 8630 if (test_bit(__I40E_TESTING, pf->state) || 8631 test_bit(__I40E_BAD_EEPROM, pf->state)) 8632 return -EBUSY; 8633 8634 netif_carrier_off(netdev); 8635 8636 if (i40e_force_link_state(pf, true)) 8637 return -EAGAIN; 8638 8639 err = i40e_vsi_open(vsi); 8640 if (err) 8641 return err; 8642 8643 /* configure global TSO hardware offload settings */ 8644 wr32(&pf->hw, I40E_GLLAN_TSOMSK_F, be32_to_cpu(TCP_FLAG_PSH | 8645 TCP_FLAG_FIN) >> 16); 8646 wr32(&pf->hw, I40E_GLLAN_TSOMSK_M, be32_to_cpu(TCP_FLAG_PSH | 8647 TCP_FLAG_FIN | 8648 TCP_FLAG_CWR) >> 16); 8649 wr32(&pf->hw, I40E_GLLAN_TSOMSK_L, be32_to_cpu(TCP_FLAG_CWR) >> 16); 8650 udp_tunnel_get_rx_info(netdev); 8651 8652 return 0; 8653 } 8654 8655 /** 8656 * i40e_vsi_open - 8657 * @vsi: the VSI to open 8658 * 8659 * Finish initialization of the VSI. 8660 * 8661 * Returns 0 on success, negative value on failure 8662 * 8663 * Note: expects to be called while under rtnl_lock() 8664 **/ 8665 int i40e_vsi_open(struct i40e_vsi *vsi) 8666 { 8667 struct i40e_pf *pf = vsi->back; 8668 char int_name[I40E_INT_NAME_STR_LEN]; 8669 int err; 8670 8671 /* allocate descriptors */ 8672 err = i40e_vsi_setup_tx_resources(vsi); 8673 if (err) 8674 goto err_setup_tx; 8675 err = i40e_vsi_setup_rx_resources(vsi); 8676 if (err) 8677 goto err_setup_rx; 8678 8679 err = i40e_vsi_configure(vsi); 8680 if (err) 8681 goto err_setup_rx; 8682 8683 if (vsi->netdev) { 8684 snprintf(int_name, sizeof(int_name) - 1, "%s-%s", 8685 dev_driver_string(&pf->pdev->dev), vsi->netdev->name); 8686 err = i40e_vsi_request_irq(vsi, int_name); 8687 if (err) 8688 goto err_setup_rx; 8689 8690 /* Notify the stack of the actual queue counts. */ 8691 err = netif_set_real_num_tx_queues(vsi->netdev, 8692 vsi->num_queue_pairs); 8693 if (err) 8694 goto err_set_queues; 8695 8696 err = netif_set_real_num_rx_queues(vsi->netdev, 8697 vsi->num_queue_pairs); 8698 if (err) 8699 goto err_set_queues; 8700 8701 } else if (vsi->type == I40E_VSI_FDIR) { 8702 snprintf(int_name, sizeof(int_name) - 1, "%s-%s:fdir", 8703 dev_driver_string(&pf->pdev->dev), 8704 dev_name(&pf->pdev->dev)); 8705 err = i40e_vsi_request_irq(vsi, int_name); 8706 8707 } else { 8708 err = -EINVAL; 8709 goto err_setup_rx; 8710 } 8711 8712 err = i40e_up_complete(vsi); 8713 if (err) 8714 goto err_up_complete; 8715 8716 return 0; 8717 8718 err_up_complete: 8719 i40e_down(vsi); 8720 err_set_queues: 8721 i40e_vsi_free_irq(vsi); 8722 err_setup_rx: 8723 i40e_vsi_free_rx_resources(vsi); 8724 err_setup_tx: 8725 i40e_vsi_free_tx_resources(vsi); 8726 if (vsi == pf->vsi[pf->lan_vsi]) 8727 i40e_do_reset(pf, I40E_PF_RESET_FLAG, true); 8728 8729 return err; 8730 } 8731 8732 /** 8733 * i40e_fdir_filter_exit - Cleans up the Flow Director accounting 8734 * @pf: Pointer to PF 8735 * 8736 * This function destroys the hlist where all the Flow Director 8737 * filters were saved. 8738 **/ 8739 static void i40e_fdir_filter_exit(struct i40e_pf *pf) 8740 { 8741 struct i40e_fdir_filter *filter; 8742 struct i40e_flex_pit *pit_entry, *tmp; 8743 struct hlist_node *node2; 8744 8745 hlist_for_each_entry_safe(filter, node2, 8746 &pf->fdir_filter_list, fdir_node) { 8747 hlist_del(&filter->fdir_node); 8748 kfree(filter); 8749 } 8750 8751 list_for_each_entry_safe(pit_entry, tmp, &pf->l3_flex_pit_list, list) { 8752 list_del(&pit_entry->list); 8753 kfree(pit_entry); 8754 } 8755 INIT_LIST_HEAD(&pf->l3_flex_pit_list); 8756 8757 list_for_each_entry_safe(pit_entry, tmp, &pf->l4_flex_pit_list, list) { 8758 list_del(&pit_entry->list); 8759 kfree(pit_entry); 8760 } 8761 INIT_LIST_HEAD(&pf->l4_flex_pit_list); 8762 8763 pf->fdir_pf_active_filters = 0; 8764 i40e_reset_fdir_filter_cnt(pf); 8765 8766 /* Reprogram the default input set for TCP/IPv4 */ 8767 i40e_write_fd_input_set(pf, I40E_FILTER_PCTYPE_NONF_IPV4_TCP, 8768 I40E_L3_SRC_MASK | I40E_L3_DST_MASK | 8769 I40E_L4_SRC_MASK | I40E_L4_DST_MASK); 8770 8771 /* Reprogram the default input set for TCP/IPv6 */ 8772 i40e_write_fd_input_set(pf, I40E_FILTER_PCTYPE_NONF_IPV6_TCP, 8773 I40E_L3_V6_SRC_MASK | I40E_L3_V6_DST_MASK | 8774 I40E_L4_SRC_MASK | I40E_L4_DST_MASK); 8775 8776 /* Reprogram the default input set for UDP/IPv4 */ 8777 i40e_write_fd_input_set(pf, I40E_FILTER_PCTYPE_NONF_IPV4_UDP, 8778 I40E_L3_SRC_MASK | I40E_L3_DST_MASK | 8779 I40E_L4_SRC_MASK | I40E_L4_DST_MASK); 8780 8781 /* Reprogram the default input set for UDP/IPv6 */ 8782 i40e_write_fd_input_set(pf, I40E_FILTER_PCTYPE_NONF_IPV6_UDP, 8783 I40E_L3_V6_SRC_MASK | I40E_L3_V6_DST_MASK | 8784 I40E_L4_SRC_MASK | I40E_L4_DST_MASK); 8785 8786 /* Reprogram the default input set for SCTP/IPv4 */ 8787 i40e_write_fd_input_set(pf, I40E_FILTER_PCTYPE_NONF_IPV4_SCTP, 8788 I40E_L3_SRC_MASK | I40E_L3_DST_MASK | 8789 I40E_L4_SRC_MASK | I40E_L4_DST_MASK); 8790 8791 /* Reprogram the default input set for SCTP/IPv6 */ 8792 i40e_write_fd_input_set(pf, I40E_FILTER_PCTYPE_NONF_IPV6_SCTP, 8793 I40E_L3_V6_SRC_MASK | I40E_L3_V6_DST_MASK | 8794 I40E_L4_SRC_MASK | I40E_L4_DST_MASK); 8795 8796 /* Reprogram the default input set for Other/IPv4 */ 8797 i40e_write_fd_input_set(pf, I40E_FILTER_PCTYPE_NONF_IPV4_OTHER, 8798 I40E_L3_SRC_MASK | I40E_L3_DST_MASK); 8799 8800 i40e_write_fd_input_set(pf, I40E_FILTER_PCTYPE_FRAG_IPV4, 8801 I40E_L3_SRC_MASK | I40E_L3_DST_MASK); 8802 8803 /* Reprogram the default input set for Other/IPv6 */ 8804 i40e_write_fd_input_set(pf, I40E_FILTER_PCTYPE_NONF_IPV6_OTHER, 8805 I40E_L3_SRC_MASK | I40E_L3_DST_MASK); 8806 8807 i40e_write_fd_input_set(pf, I40E_FILTER_PCTYPE_FRAG_IPV6, 8808 I40E_L3_SRC_MASK | I40E_L3_DST_MASK); 8809 } 8810 8811 /** 8812 * i40e_cloud_filter_exit - Cleans up the cloud filters 8813 * @pf: Pointer to PF 8814 * 8815 * This function destroys the hlist where all the cloud filters 8816 * were saved. 8817 **/ 8818 static void i40e_cloud_filter_exit(struct i40e_pf *pf) 8819 { 8820 struct i40e_cloud_filter *cfilter; 8821 struct hlist_node *node; 8822 8823 hlist_for_each_entry_safe(cfilter, node, 8824 &pf->cloud_filter_list, cloud_node) { 8825 hlist_del(&cfilter->cloud_node); 8826 kfree(cfilter); 8827 } 8828 pf->num_cloud_filters = 0; 8829 8830 if ((pf->flags & I40E_FLAG_FD_SB_TO_CLOUD_FILTER) && 8831 !(pf->flags & I40E_FLAG_FD_SB_INACTIVE)) { 8832 pf->flags |= I40E_FLAG_FD_SB_ENABLED; 8833 pf->flags &= ~I40E_FLAG_FD_SB_TO_CLOUD_FILTER; 8834 pf->flags &= ~I40E_FLAG_FD_SB_INACTIVE; 8835 } 8836 } 8837 8838 /** 8839 * i40e_close - Disables a network interface 8840 * @netdev: network interface device structure 8841 * 8842 * The close entry point is called when an interface is de-activated 8843 * by the OS. The hardware is still under the driver's control, but 8844 * this netdev interface is disabled. 8845 * 8846 * Returns 0, this is not allowed to fail 8847 **/ 8848 int i40e_close(struct net_device *netdev) 8849 { 8850 struct i40e_netdev_priv *np = netdev_priv(netdev); 8851 struct i40e_vsi *vsi = np->vsi; 8852 8853 i40e_vsi_close(vsi); 8854 8855 return 0; 8856 } 8857 8858 /** 8859 * i40e_do_reset - Start a PF or Core Reset sequence 8860 * @pf: board private structure 8861 * @reset_flags: which reset is requested 8862 * @lock_acquired: indicates whether or not the lock has been acquired 8863 * before this function was called. 8864 * 8865 * The essential difference in resets is that the PF Reset 8866 * doesn't clear the packet buffers, doesn't reset the PE 8867 * firmware, and doesn't bother the other PFs on the chip. 8868 **/ 8869 void i40e_do_reset(struct i40e_pf *pf, u32 reset_flags, bool lock_acquired) 8870 { 8871 u32 val; 8872 8873 /* do the biggest reset indicated */ 8874 if (reset_flags & BIT_ULL(__I40E_GLOBAL_RESET_REQUESTED)) { 8875 8876 /* Request a Global Reset 8877 * 8878 * This will start the chip's countdown to the actual full 8879 * chip reset event, and a warning interrupt to be sent 8880 * to all PFs, including the requestor. Our handler 8881 * for the warning interrupt will deal with the shutdown 8882 * and recovery of the switch setup. 8883 */ 8884 dev_dbg(&pf->pdev->dev, "GlobalR requested\n"); 8885 val = rd32(&pf->hw, I40E_GLGEN_RTRIG); 8886 val |= I40E_GLGEN_RTRIG_GLOBR_MASK; 8887 wr32(&pf->hw, I40E_GLGEN_RTRIG, val); 8888 8889 } else if (reset_flags & BIT_ULL(__I40E_CORE_RESET_REQUESTED)) { 8890 8891 /* Request a Core Reset 8892 * 8893 * Same as Global Reset, except does *not* include the MAC/PHY 8894 */ 8895 dev_dbg(&pf->pdev->dev, "CoreR requested\n"); 8896 val = rd32(&pf->hw, I40E_GLGEN_RTRIG); 8897 val |= I40E_GLGEN_RTRIG_CORER_MASK; 8898 wr32(&pf->hw, I40E_GLGEN_RTRIG, val); 8899 i40e_flush(&pf->hw); 8900 8901 } else if (reset_flags & I40E_PF_RESET_FLAG) { 8902 8903 /* Request a PF Reset 8904 * 8905 * Resets only the PF-specific registers 8906 * 8907 * This goes directly to the tear-down and rebuild of 8908 * the switch, since we need to do all the recovery as 8909 * for the Core Reset. 8910 */ 8911 dev_dbg(&pf->pdev->dev, "PFR requested\n"); 8912 i40e_handle_reset_warning(pf, lock_acquired); 8913 8914 } else if (reset_flags & I40E_PF_RESET_AND_REBUILD_FLAG) { 8915 /* Request a PF Reset 8916 * 8917 * Resets PF and reinitializes PFs VSI. 8918 */ 8919 i40e_prep_for_reset(pf); 8920 i40e_reset_and_rebuild(pf, true, lock_acquired); 8921 dev_info(&pf->pdev->dev, 8922 pf->flags & I40E_FLAG_DISABLE_FW_LLDP ? 8923 "FW LLDP is disabled\n" : 8924 "FW LLDP is enabled\n"); 8925 8926 } else if (reset_flags & BIT_ULL(__I40E_REINIT_REQUESTED)) { 8927 int v; 8928 8929 /* Find the VSI(s) that requested a re-init */ 8930 dev_info(&pf->pdev->dev, 8931 "VSI reinit requested\n"); 8932 for (v = 0; v < pf->num_alloc_vsi; v++) { 8933 struct i40e_vsi *vsi = pf->vsi[v]; 8934 8935 if (vsi != NULL && 8936 test_and_clear_bit(__I40E_VSI_REINIT_REQUESTED, 8937 vsi->state)) 8938 i40e_vsi_reinit_locked(pf->vsi[v]); 8939 } 8940 } else if (reset_flags & BIT_ULL(__I40E_DOWN_REQUESTED)) { 8941 int v; 8942 8943 /* Find the VSI(s) that needs to be brought down */ 8944 dev_info(&pf->pdev->dev, "VSI down requested\n"); 8945 for (v = 0; v < pf->num_alloc_vsi; v++) { 8946 struct i40e_vsi *vsi = pf->vsi[v]; 8947 8948 if (vsi != NULL && 8949 test_and_clear_bit(__I40E_VSI_DOWN_REQUESTED, 8950 vsi->state)) { 8951 set_bit(__I40E_VSI_DOWN, vsi->state); 8952 i40e_down(vsi); 8953 } 8954 } 8955 } else { 8956 dev_info(&pf->pdev->dev, 8957 "bad reset request 0x%08x\n", reset_flags); 8958 } 8959 } 8960 8961 #ifdef CONFIG_I40E_DCB 8962 /** 8963 * i40e_dcb_need_reconfig - Check if DCB needs reconfig 8964 * @pf: board private structure 8965 * @old_cfg: current DCB config 8966 * @new_cfg: new DCB config 8967 **/ 8968 bool i40e_dcb_need_reconfig(struct i40e_pf *pf, 8969 struct i40e_dcbx_config *old_cfg, 8970 struct i40e_dcbx_config *new_cfg) 8971 { 8972 bool need_reconfig = false; 8973 8974 /* Check if ETS configuration has changed */ 8975 if (memcmp(&new_cfg->etscfg, 8976 &old_cfg->etscfg, 8977 sizeof(new_cfg->etscfg))) { 8978 /* If Priority Table has changed reconfig is needed */ 8979 if (memcmp(&new_cfg->etscfg.prioritytable, 8980 &old_cfg->etscfg.prioritytable, 8981 sizeof(new_cfg->etscfg.prioritytable))) { 8982 need_reconfig = true; 8983 dev_dbg(&pf->pdev->dev, "ETS UP2TC changed.\n"); 8984 } 8985 8986 if (memcmp(&new_cfg->etscfg.tcbwtable, 8987 &old_cfg->etscfg.tcbwtable, 8988 sizeof(new_cfg->etscfg.tcbwtable))) 8989 dev_dbg(&pf->pdev->dev, "ETS TC BW Table changed.\n"); 8990 8991 if (memcmp(&new_cfg->etscfg.tsatable, 8992 &old_cfg->etscfg.tsatable, 8993 sizeof(new_cfg->etscfg.tsatable))) 8994 dev_dbg(&pf->pdev->dev, "ETS TSA Table changed.\n"); 8995 } 8996 8997 /* Check if PFC configuration has changed */ 8998 if (memcmp(&new_cfg->pfc, 8999 &old_cfg->pfc, 9000 sizeof(new_cfg->pfc))) { 9001 need_reconfig = true; 9002 dev_dbg(&pf->pdev->dev, "PFC config change detected.\n"); 9003 } 9004 9005 /* Check if APP Table has changed */ 9006 if (memcmp(&new_cfg->app, 9007 &old_cfg->app, 9008 sizeof(new_cfg->app))) { 9009 need_reconfig = true; 9010 dev_dbg(&pf->pdev->dev, "APP Table change detected.\n"); 9011 } 9012 9013 dev_dbg(&pf->pdev->dev, "dcb need_reconfig=%d\n", need_reconfig); 9014 return need_reconfig; 9015 } 9016 9017 /** 9018 * i40e_handle_lldp_event - Handle LLDP Change MIB event 9019 * @pf: board private structure 9020 * @e: event info posted on ARQ 9021 **/ 9022 static int i40e_handle_lldp_event(struct i40e_pf *pf, 9023 struct i40e_arq_event_info *e) 9024 { 9025 struct i40e_aqc_lldp_get_mib *mib = 9026 (struct i40e_aqc_lldp_get_mib *)&e->desc.params.raw; 9027 struct i40e_hw *hw = &pf->hw; 9028 struct i40e_dcbx_config tmp_dcbx_cfg; 9029 bool need_reconfig = false; 9030 int ret = 0; 9031 u8 type; 9032 9033 /* X710-T*L 2.5G and 5G speeds don't support DCB */ 9034 if (I40E_IS_X710TL_DEVICE(hw->device_id) && 9035 (hw->phy.link_info.link_speed & 9036 ~(I40E_LINK_SPEED_2_5GB | I40E_LINK_SPEED_5GB)) && 9037 !(pf->flags & I40E_FLAG_DCB_CAPABLE)) 9038 /* let firmware decide if the DCB should be disabled */ 9039 pf->flags |= I40E_FLAG_DCB_CAPABLE; 9040 9041 /* Not DCB capable or capability disabled */ 9042 if (!(pf->flags & I40E_FLAG_DCB_CAPABLE)) 9043 return ret; 9044 9045 /* Ignore if event is not for Nearest Bridge */ 9046 type = ((mib->type >> I40E_AQ_LLDP_BRIDGE_TYPE_SHIFT) 9047 & I40E_AQ_LLDP_BRIDGE_TYPE_MASK); 9048 dev_dbg(&pf->pdev->dev, "LLDP event mib bridge type 0x%x\n", type); 9049 if (type != I40E_AQ_LLDP_BRIDGE_TYPE_NEAREST_BRIDGE) 9050 return ret; 9051 9052 /* Check MIB Type and return if event for Remote MIB update */ 9053 type = mib->type & I40E_AQ_LLDP_MIB_TYPE_MASK; 9054 dev_dbg(&pf->pdev->dev, 9055 "LLDP event mib type %s\n", type ? "remote" : "local"); 9056 if (type == I40E_AQ_LLDP_MIB_REMOTE) { 9057 /* Update the remote cached instance and return */ 9058 ret = i40e_aq_get_dcb_config(hw, I40E_AQ_LLDP_MIB_REMOTE, 9059 I40E_AQ_LLDP_BRIDGE_TYPE_NEAREST_BRIDGE, 9060 &hw->remote_dcbx_config); 9061 goto exit; 9062 } 9063 9064 /* Store the old configuration */ 9065 tmp_dcbx_cfg = hw->local_dcbx_config; 9066 9067 /* Reset the old DCBx configuration data */ 9068 memset(&hw->local_dcbx_config, 0, sizeof(hw->local_dcbx_config)); 9069 /* Get updated DCBX data from firmware */ 9070 ret = i40e_get_dcb_config(&pf->hw); 9071 if (ret) { 9072 /* X710-T*L 2.5G and 5G speeds don't support DCB */ 9073 if (I40E_IS_X710TL_DEVICE(hw->device_id) && 9074 (hw->phy.link_info.link_speed & 9075 (I40E_LINK_SPEED_2_5GB | I40E_LINK_SPEED_5GB))) { 9076 dev_warn(&pf->pdev->dev, 9077 "DCB is not supported for X710-T*L 2.5/5G speeds\n"); 9078 pf->flags &= ~I40E_FLAG_DCB_CAPABLE; 9079 } else { 9080 dev_info(&pf->pdev->dev, 9081 "Failed querying DCB configuration data from firmware, err %s aq_err %s\n", 9082 i40e_stat_str(&pf->hw, ret), 9083 i40e_aq_str(&pf->hw, 9084 pf->hw.aq.asq_last_status)); 9085 } 9086 goto exit; 9087 } 9088 9089 /* No change detected in DCBX configs */ 9090 if (!memcmp(&tmp_dcbx_cfg, &hw->local_dcbx_config, 9091 sizeof(tmp_dcbx_cfg))) { 9092 dev_dbg(&pf->pdev->dev, "No change detected in DCBX configuration.\n"); 9093 goto exit; 9094 } 9095 9096 need_reconfig = i40e_dcb_need_reconfig(pf, &tmp_dcbx_cfg, 9097 &hw->local_dcbx_config); 9098 9099 i40e_dcbnl_flush_apps(pf, &tmp_dcbx_cfg, &hw->local_dcbx_config); 9100 9101 if (!need_reconfig) 9102 goto exit; 9103 9104 /* Enable DCB tagging only when more than one TC */ 9105 if (i40e_dcb_get_num_tc(&hw->local_dcbx_config) > 1) 9106 pf->flags |= I40E_FLAG_DCB_ENABLED; 9107 else 9108 pf->flags &= ~I40E_FLAG_DCB_ENABLED; 9109 9110 set_bit(__I40E_PORT_SUSPENDED, pf->state); 9111 /* Reconfiguration needed quiesce all VSIs */ 9112 i40e_pf_quiesce_all_vsi(pf); 9113 9114 /* Changes in configuration update VEB/VSI */ 9115 i40e_dcb_reconfigure(pf); 9116 9117 ret = i40e_resume_port_tx(pf); 9118 9119 clear_bit(__I40E_PORT_SUSPENDED, pf->state); 9120 /* In case of error no point in resuming VSIs */ 9121 if (ret) 9122 goto exit; 9123 9124 /* Wait for the PF's queues to be disabled */ 9125 ret = i40e_pf_wait_queues_disabled(pf); 9126 if (ret) { 9127 /* Schedule PF reset to recover */ 9128 set_bit(__I40E_PF_RESET_REQUESTED, pf->state); 9129 i40e_service_event_schedule(pf); 9130 } else { 9131 i40e_pf_unquiesce_all_vsi(pf); 9132 set_bit(__I40E_CLIENT_SERVICE_REQUESTED, pf->state); 9133 set_bit(__I40E_CLIENT_L2_CHANGE, pf->state); 9134 } 9135 9136 exit: 9137 return ret; 9138 } 9139 #endif /* CONFIG_I40E_DCB */ 9140 9141 /** 9142 * i40e_do_reset_safe - Protected reset path for userland calls. 9143 * @pf: board private structure 9144 * @reset_flags: which reset is requested 9145 * 9146 **/ 9147 void i40e_do_reset_safe(struct i40e_pf *pf, u32 reset_flags) 9148 { 9149 rtnl_lock(); 9150 i40e_do_reset(pf, reset_flags, true); 9151 rtnl_unlock(); 9152 } 9153 9154 /** 9155 * i40e_handle_lan_overflow_event - Handler for LAN queue overflow event 9156 * @pf: board private structure 9157 * @e: event info posted on ARQ 9158 * 9159 * Handler for LAN Queue Overflow Event generated by the firmware for PF 9160 * and VF queues 9161 **/ 9162 static void i40e_handle_lan_overflow_event(struct i40e_pf *pf, 9163 struct i40e_arq_event_info *e) 9164 { 9165 struct i40e_aqc_lan_overflow *data = 9166 (struct i40e_aqc_lan_overflow *)&e->desc.params.raw; 9167 u32 queue = le32_to_cpu(data->prtdcb_rupto); 9168 u32 qtx_ctl = le32_to_cpu(data->otx_ctl); 9169 struct i40e_hw *hw = &pf->hw; 9170 struct i40e_vf *vf; 9171 u16 vf_id; 9172 9173 dev_dbg(&pf->pdev->dev, "overflow Rx Queue Number = %d QTX_CTL=0x%08x\n", 9174 queue, qtx_ctl); 9175 9176 /* Queue belongs to VF, find the VF and issue VF reset */ 9177 if (((qtx_ctl & I40E_QTX_CTL_PFVF_Q_MASK) 9178 >> I40E_QTX_CTL_PFVF_Q_SHIFT) == I40E_QTX_CTL_VF_QUEUE) { 9179 vf_id = (u16)((qtx_ctl & I40E_QTX_CTL_VFVM_INDX_MASK) 9180 >> I40E_QTX_CTL_VFVM_INDX_SHIFT); 9181 vf_id -= hw->func_caps.vf_base_id; 9182 vf = &pf->vf[vf_id]; 9183 i40e_vc_notify_vf_reset(vf); 9184 /* Allow VF to process pending reset notification */ 9185 msleep(20); 9186 i40e_reset_vf(vf, false); 9187 } 9188 } 9189 9190 /** 9191 * i40e_get_cur_guaranteed_fd_count - Get the consumed guaranteed FD filters 9192 * @pf: board private structure 9193 **/ 9194 u32 i40e_get_cur_guaranteed_fd_count(struct i40e_pf *pf) 9195 { 9196 u32 val, fcnt_prog; 9197 9198 val = rd32(&pf->hw, I40E_PFQF_FDSTAT); 9199 fcnt_prog = (val & I40E_PFQF_FDSTAT_GUARANT_CNT_MASK); 9200 return fcnt_prog; 9201 } 9202 9203 /** 9204 * i40e_get_current_fd_count - Get total FD filters programmed for this PF 9205 * @pf: board private structure 9206 **/ 9207 u32 i40e_get_current_fd_count(struct i40e_pf *pf) 9208 { 9209 u32 val, fcnt_prog; 9210 9211 val = rd32(&pf->hw, I40E_PFQF_FDSTAT); 9212 fcnt_prog = (val & I40E_PFQF_FDSTAT_GUARANT_CNT_MASK) + 9213 ((val & I40E_PFQF_FDSTAT_BEST_CNT_MASK) >> 9214 I40E_PFQF_FDSTAT_BEST_CNT_SHIFT); 9215 return fcnt_prog; 9216 } 9217 9218 /** 9219 * i40e_get_global_fd_count - Get total FD filters programmed on device 9220 * @pf: board private structure 9221 **/ 9222 u32 i40e_get_global_fd_count(struct i40e_pf *pf) 9223 { 9224 u32 val, fcnt_prog; 9225 9226 val = rd32(&pf->hw, I40E_GLQF_FDCNT_0); 9227 fcnt_prog = (val & I40E_GLQF_FDCNT_0_GUARANT_CNT_MASK) + 9228 ((val & I40E_GLQF_FDCNT_0_BESTCNT_MASK) >> 9229 I40E_GLQF_FDCNT_0_BESTCNT_SHIFT); 9230 return fcnt_prog; 9231 } 9232 9233 /** 9234 * i40e_reenable_fdir_sb - Restore FDir SB capability 9235 * @pf: board private structure 9236 **/ 9237 static void i40e_reenable_fdir_sb(struct i40e_pf *pf) 9238 { 9239 if (test_and_clear_bit(__I40E_FD_SB_AUTO_DISABLED, pf->state)) 9240 if ((pf->flags & I40E_FLAG_FD_SB_ENABLED) && 9241 (I40E_DEBUG_FD & pf->hw.debug_mask)) 9242 dev_info(&pf->pdev->dev, "FD Sideband/ntuple is being enabled since we have space in the table now\n"); 9243 } 9244 9245 /** 9246 * i40e_reenable_fdir_atr - Restore FDir ATR capability 9247 * @pf: board private structure 9248 **/ 9249 static void i40e_reenable_fdir_atr(struct i40e_pf *pf) 9250 { 9251 if (test_and_clear_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state)) { 9252 /* ATR uses the same filtering logic as SB rules. It only 9253 * functions properly if the input set mask is at the default 9254 * settings. It is safe to restore the default input set 9255 * because there are no active TCPv4 filter rules. 9256 */ 9257 i40e_write_fd_input_set(pf, I40E_FILTER_PCTYPE_NONF_IPV4_TCP, 9258 I40E_L3_SRC_MASK | I40E_L3_DST_MASK | 9259 I40E_L4_SRC_MASK | I40E_L4_DST_MASK); 9260 9261 if ((pf->flags & I40E_FLAG_FD_ATR_ENABLED) && 9262 (I40E_DEBUG_FD & pf->hw.debug_mask)) 9263 dev_info(&pf->pdev->dev, "ATR is being enabled since we have space in the table and there are no conflicting ntuple rules\n"); 9264 } 9265 } 9266 9267 /** 9268 * i40e_delete_invalid_filter - Delete an invalid FDIR filter 9269 * @pf: board private structure 9270 * @filter: FDir filter to remove 9271 */ 9272 static void i40e_delete_invalid_filter(struct i40e_pf *pf, 9273 struct i40e_fdir_filter *filter) 9274 { 9275 /* Update counters */ 9276 pf->fdir_pf_active_filters--; 9277 pf->fd_inv = 0; 9278 9279 switch (filter->flow_type) { 9280 case TCP_V4_FLOW: 9281 pf->fd_tcp4_filter_cnt--; 9282 break; 9283 case UDP_V4_FLOW: 9284 pf->fd_udp4_filter_cnt--; 9285 break; 9286 case SCTP_V4_FLOW: 9287 pf->fd_sctp4_filter_cnt--; 9288 break; 9289 case TCP_V6_FLOW: 9290 pf->fd_tcp6_filter_cnt--; 9291 break; 9292 case UDP_V6_FLOW: 9293 pf->fd_udp6_filter_cnt--; 9294 break; 9295 case SCTP_V6_FLOW: 9296 pf->fd_udp6_filter_cnt--; 9297 break; 9298 case IP_USER_FLOW: 9299 switch (filter->ipl4_proto) { 9300 case IPPROTO_TCP: 9301 pf->fd_tcp4_filter_cnt--; 9302 break; 9303 case IPPROTO_UDP: 9304 pf->fd_udp4_filter_cnt--; 9305 break; 9306 case IPPROTO_SCTP: 9307 pf->fd_sctp4_filter_cnt--; 9308 break; 9309 case IPPROTO_IP: 9310 pf->fd_ip4_filter_cnt--; 9311 break; 9312 } 9313 break; 9314 case IPV6_USER_FLOW: 9315 switch (filter->ipl4_proto) { 9316 case IPPROTO_TCP: 9317 pf->fd_tcp6_filter_cnt--; 9318 break; 9319 case IPPROTO_UDP: 9320 pf->fd_udp6_filter_cnt--; 9321 break; 9322 case IPPROTO_SCTP: 9323 pf->fd_sctp6_filter_cnt--; 9324 break; 9325 case IPPROTO_IP: 9326 pf->fd_ip6_filter_cnt--; 9327 break; 9328 } 9329 break; 9330 } 9331 9332 /* Remove the filter from the list and free memory */ 9333 hlist_del(&filter->fdir_node); 9334 kfree(filter); 9335 } 9336 9337 /** 9338 * i40e_fdir_check_and_reenable - Function to reenabe FD ATR or SB if disabled 9339 * @pf: board private structure 9340 **/ 9341 void i40e_fdir_check_and_reenable(struct i40e_pf *pf) 9342 { 9343 struct i40e_fdir_filter *filter; 9344 u32 fcnt_prog, fcnt_avail; 9345 struct hlist_node *node; 9346 9347 if (test_bit(__I40E_FD_FLUSH_REQUESTED, pf->state)) 9348 return; 9349 9350 /* Check if we have enough room to re-enable FDir SB capability. */ 9351 fcnt_prog = i40e_get_global_fd_count(pf); 9352 fcnt_avail = pf->fdir_pf_filter_count; 9353 if ((fcnt_prog < (fcnt_avail - I40E_FDIR_BUFFER_HEAD_ROOM)) || 9354 (pf->fd_add_err == 0) || 9355 (i40e_get_current_atr_cnt(pf) < pf->fd_atr_cnt)) 9356 i40e_reenable_fdir_sb(pf); 9357 9358 /* We should wait for even more space before re-enabling ATR. 9359 * Additionally, we cannot enable ATR as long as we still have TCP SB 9360 * rules active. 9361 */ 9362 if ((fcnt_prog < (fcnt_avail - I40E_FDIR_BUFFER_HEAD_ROOM_FOR_ATR)) && 9363 pf->fd_tcp4_filter_cnt == 0 && pf->fd_tcp6_filter_cnt == 0) 9364 i40e_reenable_fdir_atr(pf); 9365 9366 /* if hw had a problem adding a filter, delete it */ 9367 if (pf->fd_inv > 0) { 9368 hlist_for_each_entry_safe(filter, node, 9369 &pf->fdir_filter_list, fdir_node) 9370 if (filter->fd_id == pf->fd_inv) 9371 i40e_delete_invalid_filter(pf, filter); 9372 } 9373 } 9374 9375 #define I40E_MIN_FD_FLUSH_INTERVAL 10 9376 #define I40E_MIN_FD_FLUSH_SB_ATR_UNSTABLE 30 9377 /** 9378 * i40e_fdir_flush_and_replay - Function to flush all FD filters and replay SB 9379 * @pf: board private structure 9380 **/ 9381 static void i40e_fdir_flush_and_replay(struct i40e_pf *pf) 9382 { 9383 unsigned long min_flush_time; 9384 int flush_wait_retry = 50; 9385 bool disable_atr = false; 9386 int fd_room; 9387 int reg; 9388 9389 if (!time_after(jiffies, pf->fd_flush_timestamp + 9390 (I40E_MIN_FD_FLUSH_INTERVAL * HZ))) 9391 return; 9392 9393 /* If the flush is happening too quick and we have mostly SB rules we 9394 * should not re-enable ATR for some time. 9395 */ 9396 min_flush_time = pf->fd_flush_timestamp + 9397 (I40E_MIN_FD_FLUSH_SB_ATR_UNSTABLE * HZ); 9398 fd_room = pf->fdir_pf_filter_count - pf->fdir_pf_active_filters; 9399 9400 if (!(time_after(jiffies, min_flush_time)) && 9401 (fd_room < I40E_FDIR_BUFFER_HEAD_ROOM_FOR_ATR)) { 9402 if (I40E_DEBUG_FD & pf->hw.debug_mask) 9403 dev_info(&pf->pdev->dev, "ATR disabled, not enough FD filter space.\n"); 9404 disable_atr = true; 9405 } 9406 9407 pf->fd_flush_timestamp = jiffies; 9408 set_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state); 9409 /* flush all filters */ 9410 wr32(&pf->hw, I40E_PFQF_CTL_1, 9411 I40E_PFQF_CTL_1_CLEARFDTABLE_MASK); 9412 i40e_flush(&pf->hw); 9413 pf->fd_flush_cnt++; 9414 pf->fd_add_err = 0; 9415 do { 9416 /* Check FD flush status every 5-6msec */ 9417 usleep_range(5000, 6000); 9418 reg = rd32(&pf->hw, I40E_PFQF_CTL_1); 9419 if (!(reg & I40E_PFQF_CTL_1_CLEARFDTABLE_MASK)) 9420 break; 9421 } while (flush_wait_retry--); 9422 if (reg & I40E_PFQF_CTL_1_CLEARFDTABLE_MASK) { 9423 dev_warn(&pf->pdev->dev, "FD table did not flush, needs more time\n"); 9424 } else { 9425 /* replay sideband filters */ 9426 i40e_fdir_filter_restore(pf->vsi[pf->lan_vsi]); 9427 if (!disable_atr && !pf->fd_tcp4_filter_cnt) 9428 clear_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state); 9429 clear_bit(__I40E_FD_FLUSH_REQUESTED, pf->state); 9430 if (I40E_DEBUG_FD & pf->hw.debug_mask) 9431 dev_info(&pf->pdev->dev, "FD Filter table flushed and FD-SB replayed.\n"); 9432 } 9433 } 9434 9435 /** 9436 * i40e_get_current_atr_cnt - Get the count of total FD ATR filters programmed 9437 * @pf: board private structure 9438 **/ 9439 u32 i40e_get_current_atr_cnt(struct i40e_pf *pf) 9440 { 9441 return i40e_get_current_fd_count(pf) - pf->fdir_pf_active_filters; 9442 } 9443 9444 /** 9445 * i40e_fdir_reinit_subtask - Worker thread to reinit FDIR filter table 9446 * @pf: board private structure 9447 **/ 9448 static void i40e_fdir_reinit_subtask(struct i40e_pf *pf) 9449 { 9450 9451 /* if interface is down do nothing */ 9452 if (test_bit(__I40E_DOWN, pf->state)) 9453 return; 9454 9455 if (test_bit(__I40E_FD_FLUSH_REQUESTED, pf->state)) 9456 i40e_fdir_flush_and_replay(pf); 9457 9458 i40e_fdir_check_and_reenable(pf); 9459 9460 } 9461 9462 /** 9463 * i40e_vsi_link_event - notify VSI of a link event 9464 * @vsi: vsi to be notified 9465 * @link_up: link up or down 9466 **/ 9467 static void i40e_vsi_link_event(struct i40e_vsi *vsi, bool link_up) 9468 { 9469 if (!vsi || test_bit(__I40E_VSI_DOWN, vsi->state)) 9470 return; 9471 9472 switch (vsi->type) { 9473 case I40E_VSI_MAIN: 9474 if (!vsi->netdev || !vsi->netdev_registered) 9475 break; 9476 9477 if (link_up) { 9478 netif_carrier_on(vsi->netdev); 9479 netif_tx_wake_all_queues(vsi->netdev); 9480 } else { 9481 netif_carrier_off(vsi->netdev); 9482 netif_tx_stop_all_queues(vsi->netdev); 9483 } 9484 break; 9485 9486 case I40E_VSI_SRIOV: 9487 case I40E_VSI_VMDQ2: 9488 case I40E_VSI_CTRL: 9489 case I40E_VSI_IWARP: 9490 case I40E_VSI_MIRROR: 9491 default: 9492 /* there is no notification for other VSIs */ 9493 break; 9494 } 9495 } 9496 9497 /** 9498 * i40e_veb_link_event - notify elements on the veb of a link event 9499 * @veb: veb to be notified 9500 * @link_up: link up or down 9501 **/ 9502 static void i40e_veb_link_event(struct i40e_veb *veb, bool link_up) 9503 { 9504 struct i40e_pf *pf; 9505 int i; 9506 9507 if (!veb || !veb->pf) 9508 return; 9509 pf = veb->pf; 9510 9511 /* depth first... */ 9512 for (i = 0; i < I40E_MAX_VEB; i++) 9513 if (pf->veb[i] && (pf->veb[i]->uplink_seid == veb->seid)) 9514 i40e_veb_link_event(pf->veb[i], link_up); 9515 9516 /* ... now the local VSIs */ 9517 for (i = 0; i < pf->num_alloc_vsi; i++) 9518 if (pf->vsi[i] && (pf->vsi[i]->uplink_seid == veb->seid)) 9519 i40e_vsi_link_event(pf->vsi[i], link_up); 9520 } 9521 9522 /** 9523 * i40e_link_event - Update netif_carrier status 9524 * @pf: board private structure 9525 **/ 9526 static void i40e_link_event(struct i40e_pf *pf) 9527 { 9528 struct i40e_vsi *vsi = pf->vsi[pf->lan_vsi]; 9529 u8 new_link_speed, old_link_speed; 9530 i40e_status status; 9531 bool new_link, old_link; 9532 #ifdef CONFIG_I40E_DCB 9533 int err; 9534 #endif /* CONFIG_I40E_DCB */ 9535 9536 /* set this to force the get_link_status call to refresh state */ 9537 pf->hw.phy.get_link_info = true; 9538 old_link = (pf->hw.phy.link_info_old.link_info & I40E_AQ_LINK_UP); 9539 status = i40e_get_link_status(&pf->hw, &new_link); 9540 9541 /* On success, disable temp link polling */ 9542 if (status == I40E_SUCCESS) { 9543 clear_bit(__I40E_TEMP_LINK_POLLING, pf->state); 9544 } else { 9545 /* Enable link polling temporarily until i40e_get_link_status 9546 * returns I40E_SUCCESS 9547 */ 9548 set_bit(__I40E_TEMP_LINK_POLLING, pf->state); 9549 dev_dbg(&pf->pdev->dev, "couldn't get link state, status: %d\n", 9550 status); 9551 return; 9552 } 9553 9554 old_link_speed = pf->hw.phy.link_info_old.link_speed; 9555 new_link_speed = pf->hw.phy.link_info.link_speed; 9556 9557 if (new_link == old_link && 9558 new_link_speed == old_link_speed && 9559 (test_bit(__I40E_VSI_DOWN, vsi->state) || 9560 new_link == netif_carrier_ok(vsi->netdev))) 9561 return; 9562 9563 i40e_print_link_message(vsi, new_link); 9564 9565 /* Notify the base of the switch tree connected to 9566 * the link. Floating VEBs are not notified. 9567 */ 9568 if (pf->lan_veb < I40E_MAX_VEB && pf->veb[pf->lan_veb]) 9569 i40e_veb_link_event(pf->veb[pf->lan_veb], new_link); 9570 else 9571 i40e_vsi_link_event(vsi, new_link); 9572 9573 if (pf->vf) 9574 i40e_vc_notify_link_state(pf); 9575 9576 if (pf->flags & I40E_FLAG_PTP) 9577 i40e_ptp_set_increment(pf); 9578 #ifdef CONFIG_I40E_DCB 9579 if (new_link == old_link) 9580 return; 9581 /* Not SW DCB so firmware will take care of default settings */ 9582 if (pf->dcbx_cap & DCB_CAP_DCBX_LLD_MANAGED) 9583 return; 9584 9585 /* We cover here only link down, as after link up in case of SW DCB 9586 * SW LLDP agent will take care of setting it up 9587 */ 9588 if (!new_link) { 9589 dev_dbg(&pf->pdev->dev, "Reconfig DCB to single TC as result of Link Down\n"); 9590 memset(&pf->tmp_cfg, 0, sizeof(pf->tmp_cfg)); 9591 err = i40e_dcb_sw_default_config(pf); 9592 if (err) { 9593 pf->flags &= ~(I40E_FLAG_DCB_CAPABLE | 9594 I40E_FLAG_DCB_ENABLED); 9595 } else { 9596 pf->dcbx_cap = DCB_CAP_DCBX_HOST | 9597 DCB_CAP_DCBX_VER_IEEE; 9598 pf->flags |= I40E_FLAG_DCB_CAPABLE; 9599 pf->flags &= ~I40E_FLAG_DCB_ENABLED; 9600 } 9601 } 9602 #endif /* CONFIG_I40E_DCB */ 9603 } 9604 9605 /** 9606 * i40e_watchdog_subtask - periodic checks not using event driven response 9607 * @pf: board private structure 9608 **/ 9609 static void i40e_watchdog_subtask(struct i40e_pf *pf) 9610 { 9611 int i; 9612 9613 /* if interface is down do nothing */ 9614 if (test_bit(__I40E_DOWN, pf->state) || 9615 test_bit(__I40E_CONFIG_BUSY, pf->state)) 9616 return; 9617 9618 /* make sure we don't do these things too often */ 9619 if (time_before(jiffies, (pf->service_timer_previous + 9620 pf->service_timer_period))) 9621 return; 9622 pf->service_timer_previous = jiffies; 9623 9624 if ((pf->flags & I40E_FLAG_LINK_POLLING_ENABLED) || 9625 test_bit(__I40E_TEMP_LINK_POLLING, pf->state)) 9626 i40e_link_event(pf); 9627 9628 /* Update the stats for active netdevs so the network stack 9629 * can look at updated numbers whenever it cares to 9630 */ 9631 for (i = 0; i < pf->num_alloc_vsi; i++) 9632 if (pf->vsi[i] && pf->vsi[i]->netdev) 9633 i40e_update_stats(pf->vsi[i]); 9634 9635 if (pf->flags & I40E_FLAG_VEB_STATS_ENABLED) { 9636 /* Update the stats for the active switching components */ 9637 for (i = 0; i < I40E_MAX_VEB; i++) 9638 if (pf->veb[i]) 9639 i40e_update_veb_stats(pf->veb[i]); 9640 } 9641 9642 i40e_ptp_rx_hang(pf); 9643 i40e_ptp_tx_hang(pf); 9644 } 9645 9646 /** 9647 * i40e_reset_subtask - Set up for resetting the device and driver 9648 * @pf: board private structure 9649 **/ 9650 static void i40e_reset_subtask(struct i40e_pf *pf) 9651 { 9652 u32 reset_flags = 0; 9653 9654 if (test_bit(__I40E_REINIT_REQUESTED, pf->state)) { 9655 reset_flags |= BIT(__I40E_REINIT_REQUESTED); 9656 clear_bit(__I40E_REINIT_REQUESTED, pf->state); 9657 } 9658 if (test_bit(__I40E_PF_RESET_REQUESTED, pf->state)) { 9659 reset_flags |= BIT(__I40E_PF_RESET_REQUESTED); 9660 clear_bit(__I40E_PF_RESET_REQUESTED, pf->state); 9661 } 9662 if (test_bit(__I40E_CORE_RESET_REQUESTED, pf->state)) { 9663 reset_flags |= BIT(__I40E_CORE_RESET_REQUESTED); 9664 clear_bit(__I40E_CORE_RESET_REQUESTED, pf->state); 9665 } 9666 if (test_bit(__I40E_GLOBAL_RESET_REQUESTED, pf->state)) { 9667 reset_flags |= BIT(__I40E_GLOBAL_RESET_REQUESTED); 9668 clear_bit(__I40E_GLOBAL_RESET_REQUESTED, pf->state); 9669 } 9670 if (test_bit(__I40E_DOWN_REQUESTED, pf->state)) { 9671 reset_flags |= BIT(__I40E_DOWN_REQUESTED); 9672 clear_bit(__I40E_DOWN_REQUESTED, pf->state); 9673 } 9674 9675 /* If there's a recovery already waiting, it takes 9676 * precedence before starting a new reset sequence. 9677 */ 9678 if (test_bit(__I40E_RESET_INTR_RECEIVED, pf->state)) { 9679 i40e_prep_for_reset(pf); 9680 i40e_reset(pf); 9681 i40e_rebuild(pf, false, false); 9682 } 9683 9684 /* If we're already down or resetting, just bail */ 9685 if (reset_flags && 9686 !test_bit(__I40E_DOWN, pf->state) && 9687 !test_bit(__I40E_CONFIG_BUSY, pf->state)) { 9688 i40e_do_reset(pf, reset_flags, false); 9689 } 9690 } 9691 9692 /** 9693 * i40e_handle_link_event - Handle link event 9694 * @pf: board private structure 9695 * @e: event info posted on ARQ 9696 **/ 9697 static void i40e_handle_link_event(struct i40e_pf *pf, 9698 struct i40e_arq_event_info *e) 9699 { 9700 struct i40e_aqc_get_link_status *status = 9701 (struct i40e_aqc_get_link_status *)&e->desc.params.raw; 9702 9703 /* Do a new status request to re-enable LSE reporting 9704 * and load new status information into the hw struct 9705 * This completely ignores any state information 9706 * in the ARQ event info, instead choosing to always 9707 * issue the AQ update link status command. 9708 */ 9709 i40e_link_event(pf); 9710 9711 /* Check if module meets thermal requirements */ 9712 if (status->phy_type == I40E_PHY_TYPE_NOT_SUPPORTED_HIGH_TEMP) { 9713 dev_err(&pf->pdev->dev, 9714 "Rx/Tx is disabled on this device because the module does not meet thermal requirements.\n"); 9715 dev_err(&pf->pdev->dev, 9716 "Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules.\n"); 9717 } else { 9718 /* check for unqualified module, if link is down, suppress 9719 * the message if link was forced to be down. 9720 */ 9721 if ((status->link_info & I40E_AQ_MEDIA_AVAILABLE) && 9722 (!(status->an_info & I40E_AQ_QUALIFIED_MODULE)) && 9723 (!(status->link_info & I40E_AQ_LINK_UP)) && 9724 (!(pf->flags & I40E_FLAG_LINK_DOWN_ON_CLOSE_ENABLED))) { 9725 dev_err(&pf->pdev->dev, 9726 "Rx/Tx is disabled on this device because an unsupported SFP module type was detected.\n"); 9727 dev_err(&pf->pdev->dev, 9728 "Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules.\n"); 9729 } 9730 } 9731 } 9732 9733 /** 9734 * i40e_clean_adminq_subtask - Clean the AdminQ rings 9735 * @pf: board private structure 9736 **/ 9737 static void i40e_clean_adminq_subtask(struct i40e_pf *pf) 9738 { 9739 struct i40e_arq_event_info event; 9740 struct i40e_hw *hw = &pf->hw; 9741 u16 pending, i = 0; 9742 i40e_status ret; 9743 u16 opcode; 9744 u32 oldval; 9745 u32 val; 9746 9747 /* Do not run clean AQ when PF reset fails */ 9748 if (test_bit(__I40E_RESET_FAILED, pf->state)) 9749 return; 9750 9751 /* check for error indications */ 9752 val = rd32(&pf->hw, pf->hw.aq.arq.len); 9753 oldval = val; 9754 if (val & I40E_PF_ARQLEN_ARQVFE_MASK) { 9755 if (hw->debug_mask & I40E_DEBUG_AQ) 9756 dev_info(&pf->pdev->dev, "ARQ VF Error detected\n"); 9757 val &= ~I40E_PF_ARQLEN_ARQVFE_MASK; 9758 } 9759 if (val & I40E_PF_ARQLEN_ARQOVFL_MASK) { 9760 if (hw->debug_mask & I40E_DEBUG_AQ) 9761 dev_info(&pf->pdev->dev, "ARQ Overflow Error detected\n"); 9762 val &= ~I40E_PF_ARQLEN_ARQOVFL_MASK; 9763 pf->arq_overflows++; 9764 } 9765 if (val & I40E_PF_ARQLEN_ARQCRIT_MASK) { 9766 if (hw->debug_mask & I40E_DEBUG_AQ) 9767 dev_info(&pf->pdev->dev, "ARQ Critical Error detected\n"); 9768 val &= ~I40E_PF_ARQLEN_ARQCRIT_MASK; 9769 } 9770 if (oldval != val) 9771 wr32(&pf->hw, pf->hw.aq.arq.len, val); 9772 9773 val = rd32(&pf->hw, pf->hw.aq.asq.len); 9774 oldval = val; 9775 if (val & I40E_PF_ATQLEN_ATQVFE_MASK) { 9776 if (pf->hw.debug_mask & I40E_DEBUG_AQ) 9777 dev_info(&pf->pdev->dev, "ASQ VF Error detected\n"); 9778 val &= ~I40E_PF_ATQLEN_ATQVFE_MASK; 9779 } 9780 if (val & I40E_PF_ATQLEN_ATQOVFL_MASK) { 9781 if (pf->hw.debug_mask & I40E_DEBUG_AQ) 9782 dev_info(&pf->pdev->dev, "ASQ Overflow Error detected\n"); 9783 val &= ~I40E_PF_ATQLEN_ATQOVFL_MASK; 9784 } 9785 if (val & I40E_PF_ATQLEN_ATQCRIT_MASK) { 9786 if (pf->hw.debug_mask & I40E_DEBUG_AQ) 9787 dev_info(&pf->pdev->dev, "ASQ Critical Error detected\n"); 9788 val &= ~I40E_PF_ATQLEN_ATQCRIT_MASK; 9789 } 9790 if (oldval != val) 9791 wr32(&pf->hw, pf->hw.aq.asq.len, val); 9792 9793 event.buf_len = I40E_MAX_AQ_BUF_SIZE; 9794 event.msg_buf = kzalloc(event.buf_len, GFP_KERNEL); 9795 if (!event.msg_buf) 9796 return; 9797 9798 do { 9799 ret = i40e_clean_arq_element(hw, &event, &pending); 9800 if (ret == I40E_ERR_ADMIN_QUEUE_NO_WORK) 9801 break; 9802 else if (ret) { 9803 dev_info(&pf->pdev->dev, "ARQ event error %d\n", ret); 9804 break; 9805 } 9806 9807 opcode = le16_to_cpu(event.desc.opcode); 9808 switch (opcode) { 9809 9810 case i40e_aqc_opc_get_link_status: 9811 rtnl_lock(); 9812 i40e_handle_link_event(pf, &event); 9813 rtnl_unlock(); 9814 break; 9815 case i40e_aqc_opc_send_msg_to_pf: 9816 ret = i40e_vc_process_vf_msg(pf, 9817 le16_to_cpu(event.desc.retval), 9818 le32_to_cpu(event.desc.cookie_high), 9819 le32_to_cpu(event.desc.cookie_low), 9820 event.msg_buf, 9821 event.msg_len); 9822 break; 9823 case i40e_aqc_opc_lldp_update_mib: 9824 dev_dbg(&pf->pdev->dev, "ARQ: Update LLDP MIB event received\n"); 9825 #ifdef CONFIG_I40E_DCB 9826 rtnl_lock(); 9827 i40e_handle_lldp_event(pf, &event); 9828 rtnl_unlock(); 9829 #endif /* CONFIG_I40E_DCB */ 9830 break; 9831 case i40e_aqc_opc_event_lan_overflow: 9832 dev_dbg(&pf->pdev->dev, "ARQ LAN queue overflow event received\n"); 9833 i40e_handle_lan_overflow_event(pf, &event); 9834 break; 9835 case i40e_aqc_opc_send_msg_to_peer: 9836 dev_info(&pf->pdev->dev, "ARQ: Msg from other pf\n"); 9837 break; 9838 case i40e_aqc_opc_nvm_erase: 9839 case i40e_aqc_opc_nvm_update: 9840 case i40e_aqc_opc_oem_post_update: 9841 i40e_debug(&pf->hw, I40E_DEBUG_NVM, 9842 "ARQ NVM operation 0x%04x completed\n", 9843 opcode); 9844 break; 9845 default: 9846 dev_info(&pf->pdev->dev, 9847 "ARQ: Unknown event 0x%04x ignored\n", 9848 opcode); 9849 break; 9850 } 9851 } while (i++ < pf->adminq_work_limit); 9852 9853 if (i < pf->adminq_work_limit) 9854 clear_bit(__I40E_ADMINQ_EVENT_PENDING, pf->state); 9855 9856 /* re-enable Admin queue interrupt cause */ 9857 val = rd32(hw, I40E_PFINT_ICR0_ENA); 9858 val |= I40E_PFINT_ICR0_ENA_ADMINQ_MASK; 9859 wr32(hw, I40E_PFINT_ICR0_ENA, val); 9860 i40e_flush(hw); 9861 9862 kfree(event.msg_buf); 9863 } 9864 9865 /** 9866 * i40e_verify_eeprom - make sure eeprom is good to use 9867 * @pf: board private structure 9868 **/ 9869 static void i40e_verify_eeprom(struct i40e_pf *pf) 9870 { 9871 int err; 9872 9873 err = i40e_diag_eeprom_test(&pf->hw); 9874 if (err) { 9875 /* retry in case of garbage read */ 9876 err = i40e_diag_eeprom_test(&pf->hw); 9877 if (err) { 9878 dev_info(&pf->pdev->dev, "eeprom check failed (%d), Tx/Rx traffic disabled\n", 9879 err); 9880 set_bit(__I40E_BAD_EEPROM, pf->state); 9881 } 9882 } 9883 9884 if (!err && test_bit(__I40E_BAD_EEPROM, pf->state)) { 9885 dev_info(&pf->pdev->dev, "eeprom check passed, Tx/Rx traffic enabled\n"); 9886 clear_bit(__I40E_BAD_EEPROM, pf->state); 9887 } 9888 } 9889 9890 /** 9891 * i40e_enable_pf_switch_lb 9892 * @pf: pointer to the PF structure 9893 * 9894 * enable switch loop back or die - no point in a return value 9895 **/ 9896 static void i40e_enable_pf_switch_lb(struct i40e_pf *pf) 9897 { 9898 struct i40e_vsi *vsi = pf->vsi[pf->lan_vsi]; 9899 struct i40e_vsi_context ctxt; 9900 int ret; 9901 9902 ctxt.seid = pf->main_vsi_seid; 9903 ctxt.pf_num = pf->hw.pf_id; 9904 ctxt.vf_num = 0; 9905 ret = i40e_aq_get_vsi_params(&pf->hw, &ctxt, NULL); 9906 if (ret) { 9907 dev_info(&pf->pdev->dev, 9908 "couldn't get PF vsi config, err %s aq_err %s\n", 9909 i40e_stat_str(&pf->hw, ret), 9910 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 9911 return; 9912 } 9913 ctxt.flags = I40E_AQ_VSI_TYPE_PF; 9914 ctxt.info.valid_sections = cpu_to_le16(I40E_AQ_VSI_PROP_SWITCH_VALID); 9915 ctxt.info.switch_id |= cpu_to_le16(I40E_AQ_VSI_SW_ID_FLAG_ALLOW_LB); 9916 9917 ret = i40e_aq_update_vsi_params(&vsi->back->hw, &ctxt, NULL); 9918 if (ret) { 9919 dev_info(&pf->pdev->dev, 9920 "update vsi switch failed, err %s aq_err %s\n", 9921 i40e_stat_str(&pf->hw, ret), 9922 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 9923 } 9924 } 9925 9926 /** 9927 * i40e_disable_pf_switch_lb 9928 * @pf: pointer to the PF structure 9929 * 9930 * disable switch loop back or die - no point in a return value 9931 **/ 9932 static void i40e_disable_pf_switch_lb(struct i40e_pf *pf) 9933 { 9934 struct i40e_vsi *vsi = pf->vsi[pf->lan_vsi]; 9935 struct i40e_vsi_context ctxt; 9936 int ret; 9937 9938 ctxt.seid = pf->main_vsi_seid; 9939 ctxt.pf_num = pf->hw.pf_id; 9940 ctxt.vf_num = 0; 9941 ret = i40e_aq_get_vsi_params(&pf->hw, &ctxt, NULL); 9942 if (ret) { 9943 dev_info(&pf->pdev->dev, 9944 "couldn't get PF vsi config, err %s aq_err %s\n", 9945 i40e_stat_str(&pf->hw, ret), 9946 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 9947 return; 9948 } 9949 ctxt.flags = I40E_AQ_VSI_TYPE_PF; 9950 ctxt.info.valid_sections = cpu_to_le16(I40E_AQ_VSI_PROP_SWITCH_VALID); 9951 ctxt.info.switch_id &= ~cpu_to_le16(I40E_AQ_VSI_SW_ID_FLAG_ALLOW_LB); 9952 9953 ret = i40e_aq_update_vsi_params(&vsi->back->hw, &ctxt, NULL); 9954 if (ret) { 9955 dev_info(&pf->pdev->dev, 9956 "update vsi switch failed, err %s aq_err %s\n", 9957 i40e_stat_str(&pf->hw, ret), 9958 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 9959 } 9960 } 9961 9962 /** 9963 * i40e_config_bridge_mode - Configure the HW bridge mode 9964 * @veb: pointer to the bridge instance 9965 * 9966 * Configure the loop back mode for the LAN VSI that is downlink to the 9967 * specified HW bridge instance. It is expected this function is called 9968 * when a new HW bridge is instantiated. 9969 **/ 9970 static void i40e_config_bridge_mode(struct i40e_veb *veb) 9971 { 9972 struct i40e_pf *pf = veb->pf; 9973 9974 if (pf->hw.debug_mask & I40E_DEBUG_LAN) 9975 dev_info(&pf->pdev->dev, "enabling bridge mode: %s\n", 9976 veb->bridge_mode == BRIDGE_MODE_VEPA ? "VEPA" : "VEB"); 9977 if (veb->bridge_mode & BRIDGE_MODE_VEPA) 9978 i40e_disable_pf_switch_lb(pf); 9979 else 9980 i40e_enable_pf_switch_lb(pf); 9981 } 9982 9983 /** 9984 * i40e_reconstitute_veb - rebuild the VEB and anything connected to it 9985 * @veb: pointer to the VEB instance 9986 * 9987 * This is a recursive function that first builds the attached VSIs then 9988 * recurses in to build the next layer of VEB. We track the connections 9989 * through our own index numbers because the seid's from the HW could 9990 * change across the reset. 9991 **/ 9992 static int i40e_reconstitute_veb(struct i40e_veb *veb) 9993 { 9994 struct i40e_vsi *ctl_vsi = NULL; 9995 struct i40e_pf *pf = veb->pf; 9996 int v, veb_idx; 9997 int ret; 9998 9999 /* build VSI that owns this VEB, temporarily attached to base VEB */ 10000 for (v = 0; v < pf->num_alloc_vsi && !ctl_vsi; v++) { 10001 if (pf->vsi[v] && 10002 pf->vsi[v]->veb_idx == veb->idx && 10003 pf->vsi[v]->flags & I40E_VSI_FLAG_VEB_OWNER) { 10004 ctl_vsi = pf->vsi[v]; 10005 break; 10006 } 10007 } 10008 if (!ctl_vsi) { 10009 dev_info(&pf->pdev->dev, 10010 "missing owner VSI for veb_idx %d\n", veb->idx); 10011 ret = -ENOENT; 10012 goto end_reconstitute; 10013 } 10014 if (ctl_vsi != pf->vsi[pf->lan_vsi]) 10015 ctl_vsi->uplink_seid = pf->vsi[pf->lan_vsi]->uplink_seid; 10016 ret = i40e_add_vsi(ctl_vsi); 10017 if (ret) { 10018 dev_info(&pf->pdev->dev, 10019 "rebuild of veb_idx %d owner VSI failed: %d\n", 10020 veb->idx, ret); 10021 goto end_reconstitute; 10022 } 10023 i40e_vsi_reset_stats(ctl_vsi); 10024 10025 /* create the VEB in the switch and move the VSI onto the VEB */ 10026 ret = i40e_add_veb(veb, ctl_vsi); 10027 if (ret) 10028 goto end_reconstitute; 10029 10030 if (pf->flags & I40E_FLAG_VEB_MODE_ENABLED) 10031 veb->bridge_mode = BRIDGE_MODE_VEB; 10032 else 10033 veb->bridge_mode = BRIDGE_MODE_VEPA; 10034 i40e_config_bridge_mode(veb); 10035 10036 /* create the remaining VSIs attached to this VEB */ 10037 for (v = 0; v < pf->num_alloc_vsi; v++) { 10038 if (!pf->vsi[v] || pf->vsi[v] == ctl_vsi) 10039 continue; 10040 10041 if (pf->vsi[v]->veb_idx == veb->idx) { 10042 struct i40e_vsi *vsi = pf->vsi[v]; 10043 10044 vsi->uplink_seid = veb->seid; 10045 ret = i40e_add_vsi(vsi); 10046 if (ret) { 10047 dev_info(&pf->pdev->dev, 10048 "rebuild of vsi_idx %d failed: %d\n", 10049 v, ret); 10050 goto end_reconstitute; 10051 } 10052 i40e_vsi_reset_stats(vsi); 10053 } 10054 } 10055 10056 /* create any VEBs attached to this VEB - RECURSION */ 10057 for (veb_idx = 0; veb_idx < I40E_MAX_VEB; veb_idx++) { 10058 if (pf->veb[veb_idx] && pf->veb[veb_idx]->veb_idx == veb->idx) { 10059 pf->veb[veb_idx]->uplink_seid = veb->seid; 10060 ret = i40e_reconstitute_veb(pf->veb[veb_idx]); 10061 if (ret) 10062 break; 10063 } 10064 } 10065 10066 end_reconstitute: 10067 return ret; 10068 } 10069 10070 /** 10071 * i40e_get_capabilities - get info about the HW 10072 * @pf: the PF struct 10073 * @list_type: AQ capability to be queried 10074 **/ 10075 static int i40e_get_capabilities(struct i40e_pf *pf, 10076 enum i40e_admin_queue_opc list_type) 10077 { 10078 struct i40e_aqc_list_capabilities_element_resp *cap_buf; 10079 u16 data_size; 10080 int buf_len; 10081 int err; 10082 10083 buf_len = 40 * sizeof(struct i40e_aqc_list_capabilities_element_resp); 10084 do { 10085 cap_buf = kzalloc(buf_len, GFP_KERNEL); 10086 if (!cap_buf) 10087 return -ENOMEM; 10088 10089 /* this loads the data into the hw struct for us */ 10090 err = i40e_aq_discover_capabilities(&pf->hw, cap_buf, buf_len, 10091 &data_size, list_type, 10092 NULL); 10093 /* data loaded, buffer no longer needed */ 10094 kfree(cap_buf); 10095 10096 if (pf->hw.aq.asq_last_status == I40E_AQ_RC_ENOMEM) { 10097 /* retry with a larger buffer */ 10098 buf_len = data_size; 10099 } else if (pf->hw.aq.asq_last_status != I40E_AQ_RC_OK) { 10100 dev_info(&pf->pdev->dev, 10101 "capability discovery failed, err %s aq_err %s\n", 10102 i40e_stat_str(&pf->hw, err), 10103 i40e_aq_str(&pf->hw, 10104 pf->hw.aq.asq_last_status)); 10105 return -ENODEV; 10106 } 10107 } while (err); 10108 10109 if (pf->hw.debug_mask & I40E_DEBUG_USER) { 10110 if (list_type == i40e_aqc_opc_list_func_capabilities) { 10111 dev_info(&pf->pdev->dev, 10112 "pf=%d, num_vfs=%d, msix_pf=%d, msix_vf=%d, fd_g=%d, fd_b=%d, pf_max_q=%d num_vsi=%d\n", 10113 pf->hw.pf_id, pf->hw.func_caps.num_vfs, 10114 pf->hw.func_caps.num_msix_vectors, 10115 pf->hw.func_caps.num_msix_vectors_vf, 10116 pf->hw.func_caps.fd_filters_guaranteed, 10117 pf->hw.func_caps.fd_filters_best_effort, 10118 pf->hw.func_caps.num_tx_qp, 10119 pf->hw.func_caps.num_vsis); 10120 } else if (list_type == i40e_aqc_opc_list_dev_capabilities) { 10121 dev_info(&pf->pdev->dev, 10122 "switch_mode=0x%04x, function_valid=0x%08x\n", 10123 pf->hw.dev_caps.switch_mode, 10124 pf->hw.dev_caps.valid_functions); 10125 dev_info(&pf->pdev->dev, 10126 "SR-IOV=%d, num_vfs for all function=%u\n", 10127 pf->hw.dev_caps.sr_iov_1_1, 10128 pf->hw.dev_caps.num_vfs); 10129 dev_info(&pf->pdev->dev, 10130 "num_vsis=%u, num_rx:%u, num_tx=%u\n", 10131 pf->hw.dev_caps.num_vsis, 10132 pf->hw.dev_caps.num_rx_qp, 10133 pf->hw.dev_caps.num_tx_qp); 10134 } 10135 } 10136 if (list_type == i40e_aqc_opc_list_func_capabilities) { 10137 #define DEF_NUM_VSI (1 + (pf->hw.func_caps.fcoe ? 1 : 0) \ 10138 + pf->hw.func_caps.num_vfs) 10139 if (pf->hw.revision_id == 0 && 10140 pf->hw.func_caps.num_vsis < DEF_NUM_VSI) { 10141 dev_info(&pf->pdev->dev, 10142 "got num_vsis %d, setting num_vsis to %d\n", 10143 pf->hw.func_caps.num_vsis, DEF_NUM_VSI); 10144 pf->hw.func_caps.num_vsis = DEF_NUM_VSI; 10145 } 10146 } 10147 return 0; 10148 } 10149 10150 static int i40e_vsi_clear(struct i40e_vsi *vsi); 10151 10152 /** 10153 * i40e_fdir_sb_setup - initialize the Flow Director resources for Sideband 10154 * @pf: board private structure 10155 **/ 10156 static void i40e_fdir_sb_setup(struct i40e_pf *pf) 10157 { 10158 struct i40e_vsi *vsi; 10159 10160 /* quick workaround for an NVM issue that leaves a critical register 10161 * uninitialized 10162 */ 10163 if (!rd32(&pf->hw, I40E_GLQF_HKEY(0))) { 10164 static const u32 hkey[] = { 10165 0xe640d33f, 0xcdfe98ab, 0x73fa7161, 0x0d7a7d36, 10166 0xeacb7d61, 0xaa4f05b6, 0x9c5c89ed, 0xfc425ddb, 10167 0xa4654832, 0xfc7461d4, 0x8f827619, 0xf5c63c21, 10168 0x95b3a76d}; 10169 int i; 10170 10171 for (i = 0; i <= I40E_GLQF_HKEY_MAX_INDEX; i++) 10172 wr32(&pf->hw, I40E_GLQF_HKEY(i), hkey[i]); 10173 } 10174 10175 if (!(pf->flags & I40E_FLAG_FD_SB_ENABLED)) 10176 return; 10177 10178 /* find existing VSI and see if it needs configuring */ 10179 vsi = i40e_find_vsi_by_type(pf, I40E_VSI_FDIR); 10180 10181 /* create a new VSI if none exists */ 10182 if (!vsi) { 10183 vsi = i40e_vsi_setup(pf, I40E_VSI_FDIR, 10184 pf->vsi[pf->lan_vsi]->seid, 0); 10185 if (!vsi) { 10186 dev_info(&pf->pdev->dev, "Couldn't create FDir VSI\n"); 10187 pf->flags &= ~I40E_FLAG_FD_SB_ENABLED; 10188 pf->flags |= I40E_FLAG_FD_SB_INACTIVE; 10189 return; 10190 } 10191 } 10192 10193 i40e_vsi_setup_irqhandler(vsi, i40e_fdir_clean_ring); 10194 } 10195 10196 /** 10197 * i40e_fdir_teardown - release the Flow Director resources 10198 * @pf: board private structure 10199 **/ 10200 static void i40e_fdir_teardown(struct i40e_pf *pf) 10201 { 10202 struct i40e_vsi *vsi; 10203 10204 i40e_fdir_filter_exit(pf); 10205 vsi = i40e_find_vsi_by_type(pf, I40E_VSI_FDIR); 10206 if (vsi) 10207 i40e_vsi_release(vsi); 10208 } 10209 10210 /** 10211 * i40e_rebuild_cloud_filters - Rebuilds cloud filters for VSIs 10212 * @vsi: PF main vsi 10213 * @seid: seid of main or channel VSIs 10214 * 10215 * Rebuilds cloud filters associated with main VSI and channel VSIs if they 10216 * existed before reset 10217 **/ 10218 static int i40e_rebuild_cloud_filters(struct i40e_vsi *vsi, u16 seid) 10219 { 10220 struct i40e_cloud_filter *cfilter; 10221 struct i40e_pf *pf = vsi->back; 10222 struct hlist_node *node; 10223 i40e_status ret; 10224 10225 /* Add cloud filters back if they exist */ 10226 hlist_for_each_entry_safe(cfilter, node, &pf->cloud_filter_list, 10227 cloud_node) { 10228 if (cfilter->seid != seid) 10229 continue; 10230 10231 if (cfilter->dst_port) 10232 ret = i40e_add_del_cloud_filter_big_buf(vsi, cfilter, 10233 true); 10234 else 10235 ret = i40e_add_del_cloud_filter(vsi, cfilter, true); 10236 10237 if (ret) { 10238 dev_dbg(&pf->pdev->dev, 10239 "Failed to rebuild cloud filter, err %s aq_err %s\n", 10240 i40e_stat_str(&pf->hw, ret), 10241 i40e_aq_str(&pf->hw, 10242 pf->hw.aq.asq_last_status)); 10243 return ret; 10244 } 10245 } 10246 return 0; 10247 } 10248 10249 /** 10250 * i40e_rebuild_channels - Rebuilds channel VSIs if they existed before reset 10251 * @vsi: PF main vsi 10252 * 10253 * Rebuilds channel VSIs if they existed before reset 10254 **/ 10255 static int i40e_rebuild_channels(struct i40e_vsi *vsi) 10256 { 10257 struct i40e_channel *ch, *ch_tmp; 10258 i40e_status ret; 10259 10260 if (list_empty(&vsi->ch_list)) 10261 return 0; 10262 10263 list_for_each_entry_safe(ch, ch_tmp, &vsi->ch_list, list) { 10264 if (!ch->initialized) 10265 break; 10266 /* Proceed with creation of channel (VMDq2) VSI */ 10267 ret = i40e_add_channel(vsi->back, vsi->uplink_seid, ch); 10268 if (ret) { 10269 dev_info(&vsi->back->pdev->dev, 10270 "failed to rebuild channels using uplink_seid %u\n", 10271 vsi->uplink_seid); 10272 return ret; 10273 } 10274 /* Reconfigure TX queues using QTX_CTL register */ 10275 ret = i40e_channel_config_tx_ring(vsi->back, vsi, ch); 10276 if (ret) { 10277 dev_info(&vsi->back->pdev->dev, 10278 "failed to configure TX rings for channel %u\n", 10279 ch->seid); 10280 return ret; 10281 } 10282 /* update 'next_base_queue' */ 10283 vsi->next_base_queue = vsi->next_base_queue + 10284 ch->num_queue_pairs; 10285 if (ch->max_tx_rate) { 10286 u64 credits = ch->max_tx_rate; 10287 10288 if (i40e_set_bw_limit(vsi, ch->seid, 10289 ch->max_tx_rate)) 10290 return -EINVAL; 10291 10292 do_div(credits, I40E_BW_CREDIT_DIVISOR); 10293 dev_dbg(&vsi->back->pdev->dev, 10294 "Set tx rate of %llu Mbps (count of 50Mbps %llu) for vsi->seid %u\n", 10295 ch->max_tx_rate, 10296 credits, 10297 ch->seid); 10298 } 10299 ret = i40e_rebuild_cloud_filters(vsi, ch->seid); 10300 if (ret) { 10301 dev_dbg(&vsi->back->pdev->dev, 10302 "Failed to rebuild cloud filters for channel VSI %u\n", 10303 ch->seid); 10304 return ret; 10305 } 10306 } 10307 return 0; 10308 } 10309 10310 /** 10311 * i40e_prep_for_reset - prep for the core to reset 10312 * @pf: board private structure 10313 * 10314 * Close up the VFs and other things in prep for PF Reset. 10315 **/ 10316 static void i40e_prep_for_reset(struct i40e_pf *pf) 10317 { 10318 struct i40e_hw *hw = &pf->hw; 10319 i40e_status ret = 0; 10320 u32 v; 10321 10322 clear_bit(__I40E_RESET_INTR_RECEIVED, pf->state); 10323 if (test_and_set_bit(__I40E_RESET_RECOVERY_PENDING, pf->state)) 10324 return; 10325 if (i40e_check_asq_alive(&pf->hw)) 10326 i40e_vc_notify_reset(pf); 10327 10328 dev_dbg(&pf->pdev->dev, "Tearing down internal switch for reset\n"); 10329 10330 /* quiesce the VSIs and their queues that are not already DOWN */ 10331 i40e_pf_quiesce_all_vsi(pf); 10332 10333 for (v = 0; v < pf->num_alloc_vsi; v++) { 10334 if (pf->vsi[v]) 10335 pf->vsi[v]->seid = 0; 10336 } 10337 10338 i40e_shutdown_adminq(&pf->hw); 10339 10340 /* call shutdown HMC */ 10341 if (hw->hmc.hmc_obj) { 10342 ret = i40e_shutdown_lan_hmc(hw); 10343 if (ret) 10344 dev_warn(&pf->pdev->dev, 10345 "shutdown_lan_hmc failed: %d\n", ret); 10346 } 10347 10348 /* Save the current PTP time so that we can restore the time after the 10349 * reset completes. 10350 */ 10351 i40e_ptp_save_hw_time(pf); 10352 } 10353 10354 /** 10355 * i40e_send_version - update firmware with driver version 10356 * @pf: PF struct 10357 */ 10358 static void i40e_send_version(struct i40e_pf *pf) 10359 { 10360 struct i40e_driver_version dv; 10361 10362 dv.major_version = 0xff; 10363 dv.minor_version = 0xff; 10364 dv.build_version = 0xff; 10365 dv.subbuild_version = 0; 10366 strlcpy(dv.driver_string, UTS_RELEASE, sizeof(dv.driver_string)); 10367 i40e_aq_send_driver_version(&pf->hw, &dv, NULL); 10368 } 10369 10370 /** 10371 * i40e_get_oem_version - get OEM specific version information 10372 * @hw: pointer to the hardware structure 10373 **/ 10374 static void i40e_get_oem_version(struct i40e_hw *hw) 10375 { 10376 u16 block_offset = 0xffff; 10377 u16 block_length = 0; 10378 u16 capabilities = 0; 10379 u16 gen_snap = 0; 10380 u16 release = 0; 10381 10382 #define I40E_SR_NVM_OEM_VERSION_PTR 0x1B 10383 #define I40E_NVM_OEM_LENGTH_OFFSET 0x00 10384 #define I40E_NVM_OEM_CAPABILITIES_OFFSET 0x01 10385 #define I40E_NVM_OEM_GEN_OFFSET 0x02 10386 #define I40E_NVM_OEM_RELEASE_OFFSET 0x03 10387 #define I40E_NVM_OEM_CAPABILITIES_MASK 0x000F 10388 #define I40E_NVM_OEM_LENGTH 3 10389 10390 /* Check if pointer to OEM version block is valid. */ 10391 i40e_read_nvm_word(hw, I40E_SR_NVM_OEM_VERSION_PTR, &block_offset); 10392 if (block_offset == 0xffff) 10393 return; 10394 10395 /* Check if OEM version block has correct length. */ 10396 i40e_read_nvm_word(hw, block_offset + I40E_NVM_OEM_LENGTH_OFFSET, 10397 &block_length); 10398 if (block_length < I40E_NVM_OEM_LENGTH) 10399 return; 10400 10401 /* Check if OEM version format is as expected. */ 10402 i40e_read_nvm_word(hw, block_offset + I40E_NVM_OEM_CAPABILITIES_OFFSET, 10403 &capabilities); 10404 if ((capabilities & I40E_NVM_OEM_CAPABILITIES_MASK) != 0) 10405 return; 10406 10407 i40e_read_nvm_word(hw, block_offset + I40E_NVM_OEM_GEN_OFFSET, 10408 &gen_snap); 10409 i40e_read_nvm_word(hw, block_offset + I40E_NVM_OEM_RELEASE_OFFSET, 10410 &release); 10411 hw->nvm.oem_ver = (gen_snap << I40E_OEM_SNAP_SHIFT) | release; 10412 hw->nvm.eetrack = I40E_OEM_EETRACK_ID; 10413 } 10414 10415 /** 10416 * i40e_reset - wait for core reset to finish reset, reset pf if corer not seen 10417 * @pf: board private structure 10418 **/ 10419 static int i40e_reset(struct i40e_pf *pf) 10420 { 10421 struct i40e_hw *hw = &pf->hw; 10422 i40e_status ret; 10423 10424 ret = i40e_pf_reset(hw); 10425 if (ret) { 10426 dev_info(&pf->pdev->dev, "PF reset failed, %d\n", ret); 10427 set_bit(__I40E_RESET_FAILED, pf->state); 10428 clear_bit(__I40E_RESET_RECOVERY_PENDING, pf->state); 10429 } else { 10430 pf->pfr_count++; 10431 } 10432 return ret; 10433 } 10434 10435 /** 10436 * i40e_rebuild - rebuild using a saved config 10437 * @pf: board private structure 10438 * @reinit: if the Main VSI needs to re-initialized. 10439 * @lock_acquired: indicates whether or not the lock has been acquired 10440 * before this function was called. 10441 **/ 10442 static void i40e_rebuild(struct i40e_pf *pf, bool reinit, bool lock_acquired) 10443 { 10444 int old_recovery_mode_bit = test_bit(__I40E_RECOVERY_MODE, pf->state); 10445 struct i40e_vsi *vsi = pf->vsi[pf->lan_vsi]; 10446 struct i40e_hw *hw = &pf->hw; 10447 i40e_status ret; 10448 u32 val; 10449 int v; 10450 10451 if (test_bit(__I40E_EMP_RESET_INTR_RECEIVED, pf->state) && 10452 i40e_check_recovery_mode(pf)) { 10453 i40e_set_ethtool_ops(pf->vsi[pf->lan_vsi]->netdev); 10454 } 10455 10456 if (test_bit(__I40E_DOWN, pf->state) && 10457 !test_bit(__I40E_RECOVERY_MODE, pf->state) && 10458 !old_recovery_mode_bit) 10459 goto clear_recovery; 10460 dev_dbg(&pf->pdev->dev, "Rebuilding internal switch\n"); 10461 10462 /* rebuild the basics for the AdminQ, HMC, and initial HW switch */ 10463 ret = i40e_init_adminq(&pf->hw); 10464 if (ret) { 10465 dev_info(&pf->pdev->dev, "Rebuild AdminQ failed, err %s aq_err %s\n", 10466 i40e_stat_str(&pf->hw, ret), 10467 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 10468 goto clear_recovery; 10469 } 10470 i40e_get_oem_version(&pf->hw); 10471 10472 if (test_bit(__I40E_EMP_RESET_INTR_RECEIVED, pf->state) && 10473 ((hw->aq.fw_maj_ver == 4 && hw->aq.fw_min_ver <= 33) || 10474 hw->aq.fw_maj_ver < 4) && hw->mac.type == I40E_MAC_XL710) { 10475 /* The following delay is necessary for 4.33 firmware and older 10476 * to recover after EMP reset. 200 ms should suffice but we 10477 * put here 300 ms to be sure that FW is ready to operate 10478 * after reset. 10479 */ 10480 mdelay(300); 10481 } 10482 10483 /* re-verify the eeprom if we just had an EMP reset */ 10484 if (test_and_clear_bit(__I40E_EMP_RESET_INTR_RECEIVED, pf->state)) 10485 i40e_verify_eeprom(pf); 10486 10487 /* if we are going out of or into recovery mode we have to act 10488 * accordingly with regard to resources initialization 10489 * and deinitialization 10490 */ 10491 if (test_bit(__I40E_RECOVERY_MODE, pf->state) || 10492 old_recovery_mode_bit) { 10493 if (i40e_get_capabilities(pf, 10494 i40e_aqc_opc_list_func_capabilities)) 10495 goto end_unlock; 10496 10497 if (test_bit(__I40E_RECOVERY_MODE, pf->state)) { 10498 /* we're staying in recovery mode so we'll reinitialize 10499 * misc vector here 10500 */ 10501 if (i40e_setup_misc_vector_for_recovery_mode(pf)) 10502 goto end_unlock; 10503 } else { 10504 if (!lock_acquired) 10505 rtnl_lock(); 10506 /* we're going out of recovery mode so we'll free 10507 * the IRQ allocated specifically for recovery mode 10508 * and restore the interrupt scheme 10509 */ 10510 free_irq(pf->pdev->irq, pf); 10511 i40e_clear_interrupt_scheme(pf); 10512 if (i40e_restore_interrupt_scheme(pf)) 10513 goto end_unlock; 10514 } 10515 10516 /* tell the firmware that we're starting */ 10517 i40e_send_version(pf); 10518 10519 /* bail out in case recovery mode was detected, as there is 10520 * no need for further configuration. 10521 */ 10522 goto end_unlock; 10523 } 10524 10525 i40e_clear_pxe_mode(hw); 10526 ret = i40e_get_capabilities(pf, i40e_aqc_opc_list_func_capabilities); 10527 if (ret) 10528 goto end_core_reset; 10529 10530 ret = i40e_init_lan_hmc(hw, hw->func_caps.num_tx_qp, 10531 hw->func_caps.num_rx_qp, 0, 0); 10532 if (ret) { 10533 dev_info(&pf->pdev->dev, "init_lan_hmc failed: %d\n", ret); 10534 goto end_core_reset; 10535 } 10536 ret = i40e_configure_lan_hmc(hw, I40E_HMC_MODEL_DIRECT_ONLY); 10537 if (ret) { 10538 dev_info(&pf->pdev->dev, "configure_lan_hmc failed: %d\n", ret); 10539 goto end_core_reset; 10540 } 10541 10542 #ifdef CONFIG_I40E_DCB 10543 /* Enable FW to write a default DCB config on link-up 10544 * unless I40E_FLAG_TC_MQPRIO was enabled or DCB 10545 * is not supported with new link speed 10546 */ 10547 if (pf->flags & I40E_FLAG_TC_MQPRIO) { 10548 i40e_aq_set_dcb_parameters(hw, false, NULL); 10549 } else { 10550 if (I40E_IS_X710TL_DEVICE(hw->device_id) && 10551 (hw->phy.link_info.link_speed & 10552 (I40E_LINK_SPEED_2_5GB | I40E_LINK_SPEED_5GB))) { 10553 i40e_aq_set_dcb_parameters(hw, false, NULL); 10554 dev_warn(&pf->pdev->dev, 10555 "DCB is not supported for X710-T*L 2.5/5G speeds\n"); 10556 pf->flags &= ~I40E_FLAG_DCB_CAPABLE; 10557 } else { 10558 i40e_aq_set_dcb_parameters(hw, true, NULL); 10559 ret = i40e_init_pf_dcb(pf); 10560 if (ret) { 10561 dev_info(&pf->pdev->dev, "DCB init failed %d, disabled\n", 10562 ret); 10563 pf->flags &= ~I40E_FLAG_DCB_CAPABLE; 10564 /* Continue without DCB enabled */ 10565 } 10566 } 10567 } 10568 10569 #endif /* CONFIG_I40E_DCB */ 10570 if (!lock_acquired) 10571 rtnl_lock(); 10572 ret = i40e_setup_pf_switch(pf, reinit); 10573 if (ret) 10574 goto end_unlock; 10575 10576 /* The driver only wants link up/down and module qualification 10577 * reports from firmware. Note the negative logic. 10578 */ 10579 ret = i40e_aq_set_phy_int_mask(&pf->hw, 10580 ~(I40E_AQ_EVENT_LINK_UPDOWN | 10581 I40E_AQ_EVENT_MEDIA_NA | 10582 I40E_AQ_EVENT_MODULE_QUAL_FAIL), NULL); 10583 if (ret) 10584 dev_info(&pf->pdev->dev, "set phy mask fail, err %s aq_err %s\n", 10585 i40e_stat_str(&pf->hw, ret), 10586 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 10587 10588 /* Rebuild the VSIs and VEBs that existed before reset. 10589 * They are still in our local switch element arrays, so only 10590 * need to rebuild the switch model in the HW. 10591 * 10592 * If there were VEBs but the reconstitution failed, we'll try 10593 * to recover minimal use by getting the basic PF VSI working. 10594 */ 10595 if (vsi->uplink_seid != pf->mac_seid) { 10596 dev_dbg(&pf->pdev->dev, "attempting to rebuild switch\n"); 10597 /* find the one VEB connected to the MAC, and find orphans */ 10598 for (v = 0; v < I40E_MAX_VEB; v++) { 10599 if (!pf->veb[v]) 10600 continue; 10601 10602 if (pf->veb[v]->uplink_seid == pf->mac_seid || 10603 pf->veb[v]->uplink_seid == 0) { 10604 ret = i40e_reconstitute_veb(pf->veb[v]); 10605 10606 if (!ret) 10607 continue; 10608 10609 /* If Main VEB failed, we're in deep doodoo, 10610 * so give up rebuilding the switch and set up 10611 * for minimal rebuild of PF VSI. 10612 * If orphan failed, we'll report the error 10613 * but try to keep going. 10614 */ 10615 if (pf->veb[v]->uplink_seid == pf->mac_seid) { 10616 dev_info(&pf->pdev->dev, 10617 "rebuild of switch failed: %d, will try to set up simple PF connection\n", 10618 ret); 10619 vsi->uplink_seid = pf->mac_seid; 10620 break; 10621 } else if (pf->veb[v]->uplink_seid == 0) { 10622 dev_info(&pf->pdev->dev, 10623 "rebuild of orphan VEB failed: %d\n", 10624 ret); 10625 } 10626 } 10627 } 10628 } 10629 10630 if (vsi->uplink_seid == pf->mac_seid) { 10631 dev_dbg(&pf->pdev->dev, "attempting to rebuild PF VSI\n"); 10632 /* no VEB, so rebuild only the Main VSI */ 10633 ret = i40e_add_vsi(vsi); 10634 if (ret) { 10635 dev_info(&pf->pdev->dev, 10636 "rebuild of Main VSI failed: %d\n", ret); 10637 goto end_unlock; 10638 } 10639 } 10640 10641 if (vsi->mqprio_qopt.max_rate[0]) { 10642 u64 max_tx_rate = vsi->mqprio_qopt.max_rate[0]; 10643 u64 credits = 0; 10644 10645 do_div(max_tx_rate, I40E_BW_MBPS_DIVISOR); 10646 ret = i40e_set_bw_limit(vsi, vsi->seid, max_tx_rate); 10647 if (ret) 10648 goto end_unlock; 10649 10650 credits = max_tx_rate; 10651 do_div(credits, I40E_BW_CREDIT_DIVISOR); 10652 dev_dbg(&vsi->back->pdev->dev, 10653 "Set tx rate of %llu Mbps (count of 50Mbps %llu) for vsi->seid %u\n", 10654 max_tx_rate, 10655 credits, 10656 vsi->seid); 10657 } 10658 10659 ret = i40e_rebuild_cloud_filters(vsi, vsi->seid); 10660 if (ret) 10661 goto end_unlock; 10662 10663 /* PF Main VSI is rebuild by now, go ahead and rebuild channel VSIs 10664 * for this main VSI if they exist 10665 */ 10666 ret = i40e_rebuild_channels(vsi); 10667 if (ret) 10668 goto end_unlock; 10669 10670 /* Reconfigure hardware for allowing smaller MSS in the case 10671 * of TSO, so that we avoid the MDD being fired and causing 10672 * a reset in the case of small MSS+TSO. 10673 */ 10674 #define I40E_REG_MSS 0x000E64DC 10675 #define I40E_REG_MSS_MIN_MASK 0x3FF0000 10676 #define I40E_64BYTE_MSS 0x400000 10677 val = rd32(hw, I40E_REG_MSS); 10678 if ((val & I40E_REG_MSS_MIN_MASK) > I40E_64BYTE_MSS) { 10679 val &= ~I40E_REG_MSS_MIN_MASK; 10680 val |= I40E_64BYTE_MSS; 10681 wr32(hw, I40E_REG_MSS, val); 10682 } 10683 10684 if (pf->hw_features & I40E_HW_RESTART_AUTONEG) { 10685 msleep(75); 10686 ret = i40e_aq_set_link_restart_an(&pf->hw, true, NULL); 10687 if (ret) 10688 dev_info(&pf->pdev->dev, "link restart failed, err %s aq_err %s\n", 10689 i40e_stat_str(&pf->hw, ret), 10690 i40e_aq_str(&pf->hw, 10691 pf->hw.aq.asq_last_status)); 10692 } 10693 /* reinit the misc interrupt */ 10694 if (pf->flags & I40E_FLAG_MSIX_ENABLED) 10695 ret = i40e_setup_misc_vector(pf); 10696 10697 /* Add a filter to drop all Flow control frames from any VSI from being 10698 * transmitted. By doing so we stop a malicious VF from sending out 10699 * PAUSE or PFC frames and potentially controlling traffic for other 10700 * PF/VF VSIs. 10701 * The FW can still send Flow control frames if enabled. 10702 */ 10703 i40e_add_filter_to_drop_tx_flow_control_frames(&pf->hw, 10704 pf->main_vsi_seid); 10705 10706 /* restart the VSIs that were rebuilt and running before the reset */ 10707 i40e_pf_unquiesce_all_vsi(pf); 10708 10709 /* Release the RTNL lock before we start resetting VFs */ 10710 if (!lock_acquired) 10711 rtnl_unlock(); 10712 10713 /* Restore promiscuous settings */ 10714 ret = i40e_set_promiscuous(pf, pf->cur_promisc); 10715 if (ret) 10716 dev_warn(&pf->pdev->dev, 10717 "Failed to restore promiscuous setting: %s, err %s aq_err %s\n", 10718 pf->cur_promisc ? "on" : "off", 10719 i40e_stat_str(&pf->hw, ret), 10720 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 10721 10722 i40e_reset_all_vfs(pf, true); 10723 10724 /* tell the firmware that we're starting */ 10725 i40e_send_version(pf); 10726 10727 /* We've already released the lock, so don't do it again */ 10728 goto end_core_reset; 10729 10730 end_unlock: 10731 if (!lock_acquired) 10732 rtnl_unlock(); 10733 end_core_reset: 10734 clear_bit(__I40E_RESET_FAILED, pf->state); 10735 clear_recovery: 10736 clear_bit(__I40E_RESET_RECOVERY_PENDING, pf->state); 10737 clear_bit(__I40E_TIMEOUT_RECOVERY_PENDING, pf->state); 10738 } 10739 10740 /** 10741 * i40e_reset_and_rebuild - reset and rebuild using a saved config 10742 * @pf: board private structure 10743 * @reinit: if the Main VSI needs to re-initialized. 10744 * @lock_acquired: indicates whether or not the lock has been acquired 10745 * before this function was called. 10746 **/ 10747 static void i40e_reset_and_rebuild(struct i40e_pf *pf, bool reinit, 10748 bool lock_acquired) 10749 { 10750 int ret; 10751 /* Now we wait for GRST to settle out. 10752 * We don't have to delete the VEBs or VSIs from the hw switch 10753 * because the reset will make them disappear. 10754 */ 10755 ret = i40e_reset(pf); 10756 if (!ret) 10757 i40e_rebuild(pf, reinit, lock_acquired); 10758 } 10759 10760 /** 10761 * i40e_handle_reset_warning - prep for the PF to reset, reset and rebuild 10762 * @pf: board private structure 10763 * 10764 * Close up the VFs and other things in prep for a Core Reset, 10765 * then get ready to rebuild the world. 10766 * @lock_acquired: indicates whether or not the lock has been acquired 10767 * before this function was called. 10768 **/ 10769 static void i40e_handle_reset_warning(struct i40e_pf *pf, bool lock_acquired) 10770 { 10771 i40e_prep_for_reset(pf); 10772 i40e_reset_and_rebuild(pf, false, lock_acquired); 10773 } 10774 10775 /** 10776 * i40e_handle_mdd_event 10777 * @pf: pointer to the PF structure 10778 * 10779 * Called from the MDD irq handler to identify possibly malicious vfs 10780 **/ 10781 static void i40e_handle_mdd_event(struct i40e_pf *pf) 10782 { 10783 struct i40e_hw *hw = &pf->hw; 10784 bool mdd_detected = false; 10785 struct i40e_vf *vf; 10786 u32 reg; 10787 int i; 10788 10789 if (!test_bit(__I40E_MDD_EVENT_PENDING, pf->state)) 10790 return; 10791 10792 /* find what triggered the MDD event */ 10793 reg = rd32(hw, I40E_GL_MDET_TX); 10794 if (reg & I40E_GL_MDET_TX_VALID_MASK) { 10795 u8 pf_num = (reg & I40E_GL_MDET_TX_PF_NUM_MASK) >> 10796 I40E_GL_MDET_TX_PF_NUM_SHIFT; 10797 u16 vf_num = (reg & I40E_GL_MDET_TX_VF_NUM_MASK) >> 10798 I40E_GL_MDET_TX_VF_NUM_SHIFT; 10799 u8 event = (reg & I40E_GL_MDET_TX_EVENT_MASK) >> 10800 I40E_GL_MDET_TX_EVENT_SHIFT; 10801 u16 queue = ((reg & I40E_GL_MDET_TX_QUEUE_MASK) >> 10802 I40E_GL_MDET_TX_QUEUE_SHIFT) - 10803 pf->hw.func_caps.base_queue; 10804 if (netif_msg_tx_err(pf)) 10805 dev_info(&pf->pdev->dev, "Malicious Driver Detection event 0x%02x on TX queue %d PF number 0x%02x VF number 0x%02x\n", 10806 event, queue, pf_num, vf_num); 10807 wr32(hw, I40E_GL_MDET_TX, 0xffffffff); 10808 mdd_detected = true; 10809 } 10810 reg = rd32(hw, I40E_GL_MDET_RX); 10811 if (reg & I40E_GL_MDET_RX_VALID_MASK) { 10812 u8 func = (reg & I40E_GL_MDET_RX_FUNCTION_MASK) >> 10813 I40E_GL_MDET_RX_FUNCTION_SHIFT; 10814 u8 event = (reg & I40E_GL_MDET_RX_EVENT_MASK) >> 10815 I40E_GL_MDET_RX_EVENT_SHIFT; 10816 u16 queue = ((reg & I40E_GL_MDET_RX_QUEUE_MASK) >> 10817 I40E_GL_MDET_RX_QUEUE_SHIFT) - 10818 pf->hw.func_caps.base_queue; 10819 if (netif_msg_rx_err(pf)) 10820 dev_info(&pf->pdev->dev, "Malicious Driver Detection event 0x%02x on RX queue %d of function 0x%02x\n", 10821 event, queue, func); 10822 wr32(hw, I40E_GL_MDET_RX, 0xffffffff); 10823 mdd_detected = true; 10824 } 10825 10826 if (mdd_detected) { 10827 reg = rd32(hw, I40E_PF_MDET_TX); 10828 if (reg & I40E_PF_MDET_TX_VALID_MASK) { 10829 wr32(hw, I40E_PF_MDET_TX, 0xFFFF); 10830 dev_dbg(&pf->pdev->dev, "TX driver issue detected on PF\n"); 10831 } 10832 reg = rd32(hw, I40E_PF_MDET_RX); 10833 if (reg & I40E_PF_MDET_RX_VALID_MASK) { 10834 wr32(hw, I40E_PF_MDET_RX, 0xFFFF); 10835 dev_dbg(&pf->pdev->dev, "RX driver issue detected on PF\n"); 10836 } 10837 } 10838 10839 /* see if one of the VFs needs its hand slapped */ 10840 for (i = 0; i < pf->num_alloc_vfs && mdd_detected; i++) { 10841 vf = &(pf->vf[i]); 10842 reg = rd32(hw, I40E_VP_MDET_TX(i)); 10843 if (reg & I40E_VP_MDET_TX_VALID_MASK) { 10844 wr32(hw, I40E_VP_MDET_TX(i), 0xFFFF); 10845 vf->num_mdd_events++; 10846 dev_info(&pf->pdev->dev, "TX driver issue detected on VF %d\n", 10847 i); 10848 dev_info(&pf->pdev->dev, 10849 "Use PF Control I/F to re-enable the VF\n"); 10850 set_bit(I40E_VF_STATE_DISABLED, &vf->vf_states); 10851 } 10852 10853 reg = rd32(hw, I40E_VP_MDET_RX(i)); 10854 if (reg & I40E_VP_MDET_RX_VALID_MASK) { 10855 wr32(hw, I40E_VP_MDET_RX(i), 0xFFFF); 10856 vf->num_mdd_events++; 10857 dev_info(&pf->pdev->dev, "RX driver issue detected on VF %d\n", 10858 i); 10859 dev_info(&pf->pdev->dev, 10860 "Use PF Control I/F to re-enable the VF\n"); 10861 set_bit(I40E_VF_STATE_DISABLED, &vf->vf_states); 10862 } 10863 } 10864 10865 /* re-enable mdd interrupt cause */ 10866 clear_bit(__I40E_MDD_EVENT_PENDING, pf->state); 10867 reg = rd32(hw, I40E_PFINT_ICR0_ENA); 10868 reg |= I40E_PFINT_ICR0_ENA_MAL_DETECT_MASK; 10869 wr32(hw, I40E_PFINT_ICR0_ENA, reg); 10870 i40e_flush(hw); 10871 } 10872 10873 /** 10874 * i40e_service_task - Run the driver's async subtasks 10875 * @work: pointer to work_struct containing our data 10876 **/ 10877 static void i40e_service_task(struct work_struct *work) 10878 { 10879 struct i40e_pf *pf = container_of(work, 10880 struct i40e_pf, 10881 service_task); 10882 unsigned long start_time = jiffies; 10883 10884 /* don't bother with service tasks if a reset is in progress */ 10885 if (test_bit(__I40E_RESET_RECOVERY_PENDING, pf->state) || 10886 test_bit(__I40E_SUSPENDED, pf->state)) 10887 return; 10888 10889 if (test_and_set_bit(__I40E_SERVICE_SCHED, pf->state)) 10890 return; 10891 10892 if (!test_bit(__I40E_RECOVERY_MODE, pf->state)) { 10893 i40e_detect_recover_hung(pf->vsi[pf->lan_vsi]); 10894 i40e_sync_filters_subtask(pf); 10895 i40e_reset_subtask(pf); 10896 i40e_handle_mdd_event(pf); 10897 i40e_vc_process_vflr_event(pf); 10898 i40e_watchdog_subtask(pf); 10899 i40e_fdir_reinit_subtask(pf); 10900 if (test_and_clear_bit(__I40E_CLIENT_RESET, pf->state)) { 10901 /* Client subtask will reopen next time through. */ 10902 i40e_notify_client_of_netdev_close(pf->vsi[pf->lan_vsi], 10903 true); 10904 } else { 10905 i40e_client_subtask(pf); 10906 if (test_and_clear_bit(__I40E_CLIENT_L2_CHANGE, 10907 pf->state)) 10908 i40e_notify_client_of_l2_param_changes( 10909 pf->vsi[pf->lan_vsi]); 10910 } 10911 i40e_sync_filters_subtask(pf); 10912 } else { 10913 i40e_reset_subtask(pf); 10914 } 10915 10916 i40e_clean_adminq_subtask(pf); 10917 10918 /* flush memory to make sure state is correct before next watchdog */ 10919 smp_mb__before_atomic(); 10920 clear_bit(__I40E_SERVICE_SCHED, pf->state); 10921 10922 /* If the tasks have taken longer than one timer cycle or there 10923 * is more work to be done, reschedule the service task now 10924 * rather than wait for the timer to tick again. 10925 */ 10926 if (time_after(jiffies, (start_time + pf->service_timer_period)) || 10927 test_bit(__I40E_ADMINQ_EVENT_PENDING, pf->state) || 10928 test_bit(__I40E_MDD_EVENT_PENDING, pf->state) || 10929 test_bit(__I40E_VFLR_EVENT_PENDING, pf->state)) 10930 i40e_service_event_schedule(pf); 10931 } 10932 10933 /** 10934 * i40e_service_timer - timer callback 10935 * @t: timer list pointer 10936 **/ 10937 static void i40e_service_timer(struct timer_list *t) 10938 { 10939 struct i40e_pf *pf = from_timer(pf, t, service_timer); 10940 10941 mod_timer(&pf->service_timer, 10942 round_jiffies(jiffies + pf->service_timer_period)); 10943 i40e_service_event_schedule(pf); 10944 } 10945 10946 /** 10947 * i40e_set_num_rings_in_vsi - Determine number of rings in the VSI 10948 * @vsi: the VSI being configured 10949 **/ 10950 static int i40e_set_num_rings_in_vsi(struct i40e_vsi *vsi) 10951 { 10952 struct i40e_pf *pf = vsi->back; 10953 10954 switch (vsi->type) { 10955 case I40E_VSI_MAIN: 10956 vsi->alloc_queue_pairs = pf->num_lan_qps; 10957 if (!vsi->num_tx_desc) 10958 vsi->num_tx_desc = ALIGN(I40E_DEFAULT_NUM_DESCRIPTORS, 10959 I40E_REQ_DESCRIPTOR_MULTIPLE); 10960 if (!vsi->num_rx_desc) 10961 vsi->num_rx_desc = ALIGN(I40E_DEFAULT_NUM_DESCRIPTORS, 10962 I40E_REQ_DESCRIPTOR_MULTIPLE); 10963 if (pf->flags & I40E_FLAG_MSIX_ENABLED) 10964 vsi->num_q_vectors = pf->num_lan_msix; 10965 else 10966 vsi->num_q_vectors = 1; 10967 10968 break; 10969 10970 case I40E_VSI_FDIR: 10971 vsi->alloc_queue_pairs = 1; 10972 vsi->num_tx_desc = ALIGN(I40E_FDIR_RING_COUNT, 10973 I40E_REQ_DESCRIPTOR_MULTIPLE); 10974 vsi->num_rx_desc = ALIGN(I40E_FDIR_RING_COUNT, 10975 I40E_REQ_DESCRIPTOR_MULTIPLE); 10976 vsi->num_q_vectors = pf->num_fdsb_msix; 10977 break; 10978 10979 case I40E_VSI_VMDQ2: 10980 vsi->alloc_queue_pairs = pf->num_vmdq_qps; 10981 if (!vsi->num_tx_desc) 10982 vsi->num_tx_desc = ALIGN(I40E_DEFAULT_NUM_DESCRIPTORS, 10983 I40E_REQ_DESCRIPTOR_MULTIPLE); 10984 if (!vsi->num_rx_desc) 10985 vsi->num_rx_desc = ALIGN(I40E_DEFAULT_NUM_DESCRIPTORS, 10986 I40E_REQ_DESCRIPTOR_MULTIPLE); 10987 vsi->num_q_vectors = pf->num_vmdq_msix; 10988 break; 10989 10990 case I40E_VSI_SRIOV: 10991 vsi->alloc_queue_pairs = pf->num_vf_qps; 10992 if (!vsi->num_tx_desc) 10993 vsi->num_tx_desc = ALIGN(I40E_DEFAULT_NUM_DESCRIPTORS, 10994 I40E_REQ_DESCRIPTOR_MULTIPLE); 10995 if (!vsi->num_rx_desc) 10996 vsi->num_rx_desc = ALIGN(I40E_DEFAULT_NUM_DESCRIPTORS, 10997 I40E_REQ_DESCRIPTOR_MULTIPLE); 10998 break; 10999 11000 default: 11001 WARN_ON(1); 11002 return -ENODATA; 11003 } 11004 11005 if (is_kdump_kernel()) { 11006 vsi->num_tx_desc = I40E_MIN_NUM_DESCRIPTORS; 11007 vsi->num_rx_desc = I40E_MIN_NUM_DESCRIPTORS; 11008 } 11009 11010 return 0; 11011 } 11012 11013 /** 11014 * i40e_vsi_alloc_arrays - Allocate queue and vector pointer arrays for the vsi 11015 * @vsi: VSI pointer 11016 * @alloc_qvectors: a bool to specify if q_vectors need to be allocated. 11017 * 11018 * On error: returns error code (negative) 11019 * On success: returns 0 11020 **/ 11021 static int i40e_vsi_alloc_arrays(struct i40e_vsi *vsi, bool alloc_qvectors) 11022 { 11023 struct i40e_ring **next_rings; 11024 int size; 11025 int ret = 0; 11026 11027 /* allocate memory for both Tx, XDP Tx and Rx ring pointers */ 11028 size = sizeof(struct i40e_ring *) * vsi->alloc_queue_pairs * 11029 (i40e_enabled_xdp_vsi(vsi) ? 3 : 2); 11030 vsi->tx_rings = kzalloc(size, GFP_KERNEL); 11031 if (!vsi->tx_rings) 11032 return -ENOMEM; 11033 next_rings = vsi->tx_rings + vsi->alloc_queue_pairs; 11034 if (i40e_enabled_xdp_vsi(vsi)) { 11035 vsi->xdp_rings = next_rings; 11036 next_rings += vsi->alloc_queue_pairs; 11037 } 11038 vsi->rx_rings = next_rings; 11039 11040 if (alloc_qvectors) { 11041 /* allocate memory for q_vector pointers */ 11042 size = sizeof(struct i40e_q_vector *) * vsi->num_q_vectors; 11043 vsi->q_vectors = kzalloc(size, GFP_KERNEL); 11044 if (!vsi->q_vectors) { 11045 ret = -ENOMEM; 11046 goto err_vectors; 11047 } 11048 } 11049 return ret; 11050 11051 err_vectors: 11052 kfree(vsi->tx_rings); 11053 return ret; 11054 } 11055 11056 /** 11057 * i40e_vsi_mem_alloc - Allocates the next available struct vsi in the PF 11058 * @pf: board private structure 11059 * @type: type of VSI 11060 * 11061 * On error: returns error code (negative) 11062 * On success: returns vsi index in PF (positive) 11063 **/ 11064 static int i40e_vsi_mem_alloc(struct i40e_pf *pf, enum i40e_vsi_type type) 11065 { 11066 int ret = -ENODEV; 11067 struct i40e_vsi *vsi; 11068 int vsi_idx; 11069 int i; 11070 11071 /* Need to protect the allocation of the VSIs at the PF level */ 11072 mutex_lock(&pf->switch_mutex); 11073 11074 /* VSI list may be fragmented if VSI creation/destruction has 11075 * been happening. We can afford to do a quick scan to look 11076 * for any free VSIs in the list. 11077 * 11078 * find next empty vsi slot, looping back around if necessary 11079 */ 11080 i = pf->next_vsi; 11081 while (i < pf->num_alloc_vsi && pf->vsi[i]) 11082 i++; 11083 if (i >= pf->num_alloc_vsi) { 11084 i = 0; 11085 while (i < pf->next_vsi && pf->vsi[i]) 11086 i++; 11087 } 11088 11089 if (i < pf->num_alloc_vsi && !pf->vsi[i]) { 11090 vsi_idx = i; /* Found one! */ 11091 } else { 11092 ret = -ENODEV; 11093 goto unlock_pf; /* out of VSI slots! */ 11094 } 11095 pf->next_vsi = ++i; 11096 11097 vsi = kzalloc(sizeof(*vsi), GFP_KERNEL); 11098 if (!vsi) { 11099 ret = -ENOMEM; 11100 goto unlock_pf; 11101 } 11102 vsi->type = type; 11103 vsi->back = pf; 11104 set_bit(__I40E_VSI_DOWN, vsi->state); 11105 vsi->flags = 0; 11106 vsi->idx = vsi_idx; 11107 vsi->int_rate_limit = 0; 11108 vsi->rss_table_size = (vsi->type == I40E_VSI_MAIN) ? 11109 pf->rss_table_size : 64; 11110 vsi->netdev_registered = false; 11111 vsi->work_limit = I40E_DEFAULT_IRQ_WORK; 11112 hash_init(vsi->mac_filter_hash); 11113 vsi->irqs_ready = false; 11114 11115 if (type == I40E_VSI_MAIN) { 11116 vsi->af_xdp_zc_qps = bitmap_zalloc(pf->num_lan_qps, GFP_KERNEL); 11117 if (!vsi->af_xdp_zc_qps) 11118 goto err_rings; 11119 } 11120 11121 ret = i40e_set_num_rings_in_vsi(vsi); 11122 if (ret) 11123 goto err_rings; 11124 11125 ret = i40e_vsi_alloc_arrays(vsi, true); 11126 if (ret) 11127 goto err_rings; 11128 11129 /* Setup default MSIX irq handler for VSI */ 11130 i40e_vsi_setup_irqhandler(vsi, i40e_msix_clean_rings); 11131 11132 /* Initialize VSI lock */ 11133 spin_lock_init(&vsi->mac_filter_hash_lock); 11134 pf->vsi[vsi_idx] = vsi; 11135 ret = vsi_idx; 11136 goto unlock_pf; 11137 11138 err_rings: 11139 bitmap_free(vsi->af_xdp_zc_qps); 11140 pf->next_vsi = i - 1; 11141 kfree(vsi); 11142 unlock_pf: 11143 mutex_unlock(&pf->switch_mutex); 11144 return ret; 11145 } 11146 11147 /** 11148 * i40e_vsi_free_arrays - Free queue and vector pointer arrays for the VSI 11149 * @vsi: VSI pointer 11150 * @free_qvectors: a bool to specify if q_vectors need to be freed. 11151 * 11152 * On error: returns error code (negative) 11153 * On success: returns 0 11154 **/ 11155 static void i40e_vsi_free_arrays(struct i40e_vsi *vsi, bool free_qvectors) 11156 { 11157 /* free the ring and vector containers */ 11158 if (free_qvectors) { 11159 kfree(vsi->q_vectors); 11160 vsi->q_vectors = NULL; 11161 } 11162 kfree(vsi->tx_rings); 11163 vsi->tx_rings = NULL; 11164 vsi->rx_rings = NULL; 11165 vsi->xdp_rings = NULL; 11166 } 11167 11168 /** 11169 * i40e_clear_rss_config_user - clear the user configured RSS hash keys 11170 * and lookup table 11171 * @vsi: Pointer to VSI structure 11172 */ 11173 static void i40e_clear_rss_config_user(struct i40e_vsi *vsi) 11174 { 11175 if (!vsi) 11176 return; 11177 11178 kfree(vsi->rss_hkey_user); 11179 vsi->rss_hkey_user = NULL; 11180 11181 kfree(vsi->rss_lut_user); 11182 vsi->rss_lut_user = NULL; 11183 } 11184 11185 /** 11186 * i40e_vsi_clear - Deallocate the VSI provided 11187 * @vsi: the VSI being un-configured 11188 **/ 11189 static int i40e_vsi_clear(struct i40e_vsi *vsi) 11190 { 11191 struct i40e_pf *pf; 11192 11193 if (!vsi) 11194 return 0; 11195 11196 if (!vsi->back) 11197 goto free_vsi; 11198 pf = vsi->back; 11199 11200 mutex_lock(&pf->switch_mutex); 11201 if (!pf->vsi[vsi->idx]) { 11202 dev_err(&pf->pdev->dev, "pf->vsi[%d] is NULL, just free vsi[%d](type %d)\n", 11203 vsi->idx, vsi->idx, vsi->type); 11204 goto unlock_vsi; 11205 } 11206 11207 if (pf->vsi[vsi->idx] != vsi) { 11208 dev_err(&pf->pdev->dev, 11209 "pf->vsi[%d](type %d) != vsi[%d](type %d): no free!\n", 11210 pf->vsi[vsi->idx]->idx, 11211 pf->vsi[vsi->idx]->type, 11212 vsi->idx, vsi->type); 11213 goto unlock_vsi; 11214 } 11215 11216 /* updates the PF for this cleared vsi */ 11217 i40e_put_lump(pf->qp_pile, vsi->base_queue, vsi->idx); 11218 i40e_put_lump(pf->irq_pile, vsi->base_vector, vsi->idx); 11219 11220 bitmap_free(vsi->af_xdp_zc_qps); 11221 i40e_vsi_free_arrays(vsi, true); 11222 i40e_clear_rss_config_user(vsi); 11223 11224 pf->vsi[vsi->idx] = NULL; 11225 if (vsi->idx < pf->next_vsi) 11226 pf->next_vsi = vsi->idx; 11227 11228 unlock_vsi: 11229 mutex_unlock(&pf->switch_mutex); 11230 free_vsi: 11231 kfree(vsi); 11232 11233 return 0; 11234 } 11235 11236 /** 11237 * i40e_vsi_clear_rings - Deallocates the Rx and Tx rings for the provided VSI 11238 * @vsi: the VSI being cleaned 11239 **/ 11240 static void i40e_vsi_clear_rings(struct i40e_vsi *vsi) 11241 { 11242 int i; 11243 11244 if (vsi->tx_rings && vsi->tx_rings[0]) { 11245 for (i = 0; i < vsi->alloc_queue_pairs; i++) { 11246 kfree_rcu(vsi->tx_rings[i], rcu); 11247 WRITE_ONCE(vsi->tx_rings[i], NULL); 11248 WRITE_ONCE(vsi->rx_rings[i], NULL); 11249 if (vsi->xdp_rings) 11250 WRITE_ONCE(vsi->xdp_rings[i], NULL); 11251 } 11252 } 11253 } 11254 11255 /** 11256 * i40e_alloc_rings - Allocates the Rx and Tx rings for the provided VSI 11257 * @vsi: the VSI being configured 11258 **/ 11259 static int i40e_alloc_rings(struct i40e_vsi *vsi) 11260 { 11261 int i, qpv = i40e_enabled_xdp_vsi(vsi) ? 3 : 2; 11262 struct i40e_pf *pf = vsi->back; 11263 struct i40e_ring *ring; 11264 11265 /* Set basic values in the rings to be used later during open() */ 11266 for (i = 0; i < vsi->alloc_queue_pairs; i++) { 11267 /* allocate space for both Tx and Rx in one shot */ 11268 ring = kcalloc(qpv, sizeof(struct i40e_ring), GFP_KERNEL); 11269 if (!ring) 11270 goto err_out; 11271 11272 ring->queue_index = i; 11273 ring->reg_idx = vsi->base_queue + i; 11274 ring->ring_active = false; 11275 ring->vsi = vsi; 11276 ring->netdev = vsi->netdev; 11277 ring->dev = &pf->pdev->dev; 11278 ring->count = vsi->num_tx_desc; 11279 ring->size = 0; 11280 ring->dcb_tc = 0; 11281 if (vsi->back->hw_features & I40E_HW_WB_ON_ITR_CAPABLE) 11282 ring->flags = I40E_TXR_FLAGS_WB_ON_ITR; 11283 ring->itr_setting = pf->tx_itr_default; 11284 WRITE_ONCE(vsi->tx_rings[i], ring++); 11285 11286 if (!i40e_enabled_xdp_vsi(vsi)) 11287 goto setup_rx; 11288 11289 ring->queue_index = vsi->alloc_queue_pairs + i; 11290 ring->reg_idx = vsi->base_queue + ring->queue_index; 11291 ring->ring_active = false; 11292 ring->vsi = vsi; 11293 ring->netdev = NULL; 11294 ring->dev = &pf->pdev->dev; 11295 ring->count = vsi->num_tx_desc; 11296 ring->size = 0; 11297 ring->dcb_tc = 0; 11298 if (vsi->back->hw_features & I40E_HW_WB_ON_ITR_CAPABLE) 11299 ring->flags = I40E_TXR_FLAGS_WB_ON_ITR; 11300 set_ring_xdp(ring); 11301 ring->itr_setting = pf->tx_itr_default; 11302 WRITE_ONCE(vsi->xdp_rings[i], ring++); 11303 11304 setup_rx: 11305 ring->queue_index = i; 11306 ring->reg_idx = vsi->base_queue + i; 11307 ring->ring_active = false; 11308 ring->vsi = vsi; 11309 ring->netdev = vsi->netdev; 11310 ring->dev = &pf->pdev->dev; 11311 ring->count = vsi->num_rx_desc; 11312 ring->size = 0; 11313 ring->dcb_tc = 0; 11314 ring->itr_setting = pf->rx_itr_default; 11315 WRITE_ONCE(vsi->rx_rings[i], ring); 11316 } 11317 11318 return 0; 11319 11320 err_out: 11321 i40e_vsi_clear_rings(vsi); 11322 return -ENOMEM; 11323 } 11324 11325 /** 11326 * i40e_reserve_msix_vectors - Reserve MSI-X vectors in the kernel 11327 * @pf: board private structure 11328 * @vectors: the number of MSI-X vectors to request 11329 * 11330 * Returns the number of vectors reserved, or error 11331 **/ 11332 static int i40e_reserve_msix_vectors(struct i40e_pf *pf, int vectors) 11333 { 11334 vectors = pci_enable_msix_range(pf->pdev, pf->msix_entries, 11335 I40E_MIN_MSIX, vectors); 11336 if (vectors < 0) { 11337 dev_info(&pf->pdev->dev, 11338 "MSI-X vector reservation failed: %d\n", vectors); 11339 vectors = 0; 11340 } 11341 11342 return vectors; 11343 } 11344 11345 /** 11346 * i40e_init_msix - Setup the MSIX capability 11347 * @pf: board private structure 11348 * 11349 * Work with the OS to set up the MSIX vectors needed. 11350 * 11351 * Returns the number of vectors reserved or negative on failure 11352 **/ 11353 static int i40e_init_msix(struct i40e_pf *pf) 11354 { 11355 struct i40e_hw *hw = &pf->hw; 11356 int cpus, extra_vectors; 11357 int vectors_left; 11358 int v_budget, i; 11359 int v_actual; 11360 int iwarp_requested = 0; 11361 11362 if (!(pf->flags & I40E_FLAG_MSIX_ENABLED)) 11363 return -ENODEV; 11364 11365 /* The number of vectors we'll request will be comprised of: 11366 * - Add 1 for "other" cause for Admin Queue events, etc. 11367 * - The number of LAN queue pairs 11368 * - Queues being used for RSS. 11369 * We don't need as many as max_rss_size vectors. 11370 * use rss_size instead in the calculation since that 11371 * is governed by number of cpus in the system. 11372 * - assumes symmetric Tx/Rx pairing 11373 * - The number of VMDq pairs 11374 * - The CPU count within the NUMA node if iWARP is enabled 11375 * Once we count this up, try the request. 11376 * 11377 * If we can't get what we want, we'll simplify to nearly nothing 11378 * and try again. If that still fails, we punt. 11379 */ 11380 vectors_left = hw->func_caps.num_msix_vectors; 11381 v_budget = 0; 11382 11383 /* reserve one vector for miscellaneous handler */ 11384 if (vectors_left) { 11385 v_budget++; 11386 vectors_left--; 11387 } 11388 11389 /* reserve some vectors for the main PF traffic queues. Initially we 11390 * only reserve at most 50% of the available vectors, in the case that 11391 * the number of online CPUs is large. This ensures that we can enable 11392 * extra features as well. Once we've enabled the other features, we 11393 * will use any remaining vectors to reach as close as we can to the 11394 * number of online CPUs. 11395 */ 11396 cpus = num_online_cpus(); 11397 pf->num_lan_msix = min_t(int, cpus, vectors_left / 2); 11398 vectors_left -= pf->num_lan_msix; 11399 11400 /* reserve one vector for sideband flow director */ 11401 if (pf->flags & I40E_FLAG_FD_SB_ENABLED) { 11402 if (vectors_left) { 11403 pf->num_fdsb_msix = 1; 11404 v_budget++; 11405 vectors_left--; 11406 } else { 11407 pf->num_fdsb_msix = 0; 11408 } 11409 } 11410 11411 /* can we reserve enough for iWARP? */ 11412 if (pf->flags & I40E_FLAG_IWARP_ENABLED) { 11413 iwarp_requested = pf->num_iwarp_msix; 11414 11415 if (!vectors_left) 11416 pf->num_iwarp_msix = 0; 11417 else if (vectors_left < pf->num_iwarp_msix) 11418 pf->num_iwarp_msix = 1; 11419 v_budget += pf->num_iwarp_msix; 11420 vectors_left -= pf->num_iwarp_msix; 11421 } 11422 11423 /* any vectors left over go for VMDq support */ 11424 if (pf->flags & I40E_FLAG_VMDQ_ENABLED) { 11425 if (!vectors_left) { 11426 pf->num_vmdq_msix = 0; 11427 pf->num_vmdq_qps = 0; 11428 } else { 11429 int vmdq_vecs_wanted = 11430 pf->num_vmdq_vsis * pf->num_vmdq_qps; 11431 int vmdq_vecs = 11432 min_t(int, vectors_left, vmdq_vecs_wanted); 11433 11434 /* if we're short on vectors for what's desired, we limit 11435 * the queues per vmdq. If this is still more than are 11436 * available, the user will need to change the number of 11437 * queues/vectors used by the PF later with the ethtool 11438 * channels command 11439 */ 11440 if (vectors_left < vmdq_vecs_wanted) { 11441 pf->num_vmdq_qps = 1; 11442 vmdq_vecs_wanted = pf->num_vmdq_vsis; 11443 vmdq_vecs = min_t(int, 11444 vectors_left, 11445 vmdq_vecs_wanted); 11446 } 11447 pf->num_vmdq_msix = pf->num_vmdq_qps; 11448 11449 v_budget += vmdq_vecs; 11450 vectors_left -= vmdq_vecs; 11451 } 11452 } 11453 11454 /* On systems with a large number of SMP cores, we previously limited 11455 * the number of vectors for num_lan_msix to be at most 50% of the 11456 * available vectors, to allow for other features. Now, we add back 11457 * the remaining vectors. However, we ensure that the total 11458 * num_lan_msix will not exceed num_online_cpus(). To do this, we 11459 * calculate the number of vectors we can add without going over the 11460 * cap of CPUs. For systems with a small number of CPUs this will be 11461 * zero. 11462 */ 11463 extra_vectors = min_t(int, cpus - pf->num_lan_msix, vectors_left); 11464 pf->num_lan_msix += extra_vectors; 11465 vectors_left -= extra_vectors; 11466 11467 WARN(vectors_left < 0, 11468 "Calculation of remaining vectors underflowed. This is an accounting bug when determining total MSI-X vectors.\n"); 11469 11470 v_budget += pf->num_lan_msix; 11471 pf->msix_entries = kcalloc(v_budget, sizeof(struct msix_entry), 11472 GFP_KERNEL); 11473 if (!pf->msix_entries) 11474 return -ENOMEM; 11475 11476 for (i = 0; i < v_budget; i++) 11477 pf->msix_entries[i].entry = i; 11478 v_actual = i40e_reserve_msix_vectors(pf, v_budget); 11479 11480 if (v_actual < I40E_MIN_MSIX) { 11481 pf->flags &= ~I40E_FLAG_MSIX_ENABLED; 11482 kfree(pf->msix_entries); 11483 pf->msix_entries = NULL; 11484 pci_disable_msix(pf->pdev); 11485 return -ENODEV; 11486 11487 } else if (v_actual == I40E_MIN_MSIX) { 11488 /* Adjust for minimal MSIX use */ 11489 pf->num_vmdq_vsis = 0; 11490 pf->num_vmdq_qps = 0; 11491 pf->num_lan_qps = 1; 11492 pf->num_lan_msix = 1; 11493 11494 } else if (v_actual != v_budget) { 11495 /* If we have limited resources, we will start with no vectors 11496 * for the special features and then allocate vectors to some 11497 * of these features based on the policy and at the end disable 11498 * the features that did not get any vectors. 11499 */ 11500 int vec; 11501 11502 dev_info(&pf->pdev->dev, 11503 "MSI-X vector limit reached with %d, wanted %d, attempting to redistribute vectors\n", 11504 v_actual, v_budget); 11505 /* reserve the misc vector */ 11506 vec = v_actual - 1; 11507 11508 /* Scale vector usage down */ 11509 pf->num_vmdq_msix = 1; /* force VMDqs to only one vector */ 11510 pf->num_vmdq_vsis = 1; 11511 pf->num_vmdq_qps = 1; 11512 11513 /* partition out the remaining vectors */ 11514 switch (vec) { 11515 case 2: 11516 pf->num_lan_msix = 1; 11517 break; 11518 case 3: 11519 if (pf->flags & I40E_FLAG_IWARP_ENABLED) { 11520 pf->num_lan_msix = 1; 11521 pf->num_iwarp_msix = 1; 11522 } else { 11523 pf->num_lan_msix = 2; 11524 } 11525 break; 11526 default: 11527 if (pf->flags & I40E_FLAG_IWARP_ENABLED) { 11528 pf->num_iwarp_msix = min_t(int, (vec / 3), 11529 iwarp_requested); 11530 pf->num_vmdq_vsis = min_t(int, (vec / 3), 11531 I40E_DEFAULT_NUM_VMDQ_VSI); 11532 } else { 11533 pf->num_vmdq_vsis = min_t(int, (vec / 2), 11534 I40E_DEFAULT_NUM_VMDQ_VSI); 11535 } 11536 if (pf->flags & I40E_FLAG_FD_SB_ENABLED) { 11537 pf->num_fdsb_msix = 1; 11538 vec--; 11539 } 11540 pf->num_lan_msix = min_t(int, 11541 (vec - (pf->num_iwarp_msix + pf->num_vmdq_vsis)), 11542 pf->num_lan_msix); 11543 pf->num_lan_qps = pf->num_lan_msix; 11544 break; 11545 } 11546 } 11547 11548 if ((pf->flags & I40E_FLAG_FD_SB_ENABLED) && 11549 (pf->num_fdsb_msix == 0)) { 11550 dev_info(&pf->pdev->dev, "Sideband Flowdir disabled, not enough MSI-X vectors\n"); 11551 pf->flags &= ~I40E_FLAG_FD_SB_ENABLED; 11552 pf->flags |= I40E_FLAG_FD_SB_INACTIVE; 11553 } 11554 if ((pf->flags & I40E_FLAG_VMDQ_ENABLED) && 11555 (pf->num_vmdq_msix == 0)) { 11556 dev_info(&pf->pdev->dev, "VMDq disabled, not enough MSI-X vectors\n"); 11557 pf->flags &= ~I40E_FLAG_VMDQ_ENABLED; 11558 } 11559 11560 if ((pf->flags & I40E_FLAG_IWARP_ENABLED) && 11561 (pf->num_iwarp_msix == 0)) { 11562 dev_info(&pf->pdev->dev, "IWARP disabled, not enough MSI-X vectors\n"); 11563 pf->flags &= ~I40E_FLAG_IWARP_ENABLED; 11564 } 11565 i40e_debug(&pf->hw, I40E_DEBUG_INIT, 11566 "MSI-X vector distribution: PF %d, VMDq %d, FDSB %d, iWARP %d\n", 11567 pf->num_lan_msix, 11568 pf->num_vmdq_msix * pf->num_vmdq_vsis, 11569 pf->num_fdsb_msix, 11570 pf->num_iwarp_msix); 11571 11572 return v_actual; 11573 } 11574 11575 /** 11576 * i40e_vsi_alloc_q_vector - Allocate memory for a single interrupt vector 11577 * @vsi: the VSI being configured 11578 * @v_idx: index of the vector in the vsi struct 11579 * 11580 * We allocate one q_vector. If allocation fails we return -ENOMEM. 11581 **/ 11582 static int i40e_vsi_alloc_q_vector(struct i40e_vsi *vsi, int v_idx) 11583 { 11584 struct i40e_q_vector *q_vector; 11585 11586 /* allocate q_vector */ 11587 q_vector = kzalloc(sizeof(struct i40e_q_vector), GFP_KERNEL); 11588 if (!q_vector) 11589 return -ENOMEM; 11590 11591 q_vector->vsi = vsi; 11592 q_vector->v_idx = v_idx; 11593 cpumask_copy(&q_vector->affinity_mask, cpu_possible_mask); 11594 11595 if (vsi->netdev) 11596 netif_napi_add(vsi->netdev, &q_vector->napi, 11597 i40e_napi_poll, NAPI_POLL_WEIGHT); 11598 11599 /* tie q_vector and vsi together */ 11600 vsi->q_vectors[v_idx] = q_vector; 11601 11602 return 0; 11603 } 11604 11605 /** 11606 * i40e_vsi_alloc_q_vectors - Allocate memory for interrupt vectors 11607 * @vsi: the VSI being configured 11608 * 11609 * We allocate one q_vector per queue interrupt. If allocation fails we 11610 * return -ENOMEM. 11611 **/ 11612 static int i40e_vsi_alloc_q_vectors(struct i40e_vsi *vsi) 11613 { 11614 struct i40e_pf *pf = vsi->back; 11615 int err, v_idx, num_q_vectors; 11616 11617 /* if not MSIX, give the one vector only to the LAN VSI */ 11618 if (pf->flags & I40E_FLAG_MSIX_ENABLED) 11619 num_q_vectors = vsi->num_q_vectors; 11620 else if (vsi == pf->vsi[pf->lan_vsi]) 11621 num_q_vectors = 1; 11622 else 11623 return -EINVAL; 11624 11625 for (v_idx = 0; v_idx < num_q_vectors; v_idx++) { 11626 err = i40e_vsi_alloc_q_vector(vsi, v_idx); 11627 if (err) 11628 goto err_out; 11629 } 11630 11631 return 0; 11632 11633 err_out: 11634 while (v_idx--) 11635 i40e_free_q_vector(vsi, v_idx); 11636 11637 return err; 11638 } 11639 11640 /** 11641 * i40e_init_interrupt_scheme - Determine proper interrupt scheme 11642 * @pf: board private structure to initialize 11643 **/ 11644 static int i40e_init_interrupt_scheme(struct i40e_pf *pf) 11645 { 11646 int vectors = 0; 11647 ssize_t size; 11648 11649 if (pf->flags & I40E_FLAG_MSIX_ENABLED) { 11650 vectors = i40e_init_msix(pf); 11651 if (vectors < 0) { 11652 pf->flags &= ~(I40E_FLAG_MSIX_ENABLED | 11653 I40E_FLAG_IWARP_ENABLED | 11654 I40E_FLAG_RSS_ENABLED | 11655 I40E_FLAG_DCB_CAPABLE | 11656 I40E_FLAG_DCB_ENABLED | 11657 I40E_FLAG_SRIOV_ENABLED | 11658 I40E_FLAG_FD_SB_ENABLED | 11659 I40E_FLAG_FD_ATR_ENABLED | 11660 I40E_FLAG_VMDQ_ENABLED); 11661 pf->flags |= I40E_FLAG_FD_SB_INACTIVE; 11662 11663 /* rework the queue expectations without MSIX */ 11664 i40e_determine_queue_usage(pf); 11665 } 11666 } 11667 11668 if (!(pf->flags & I40E_FLAG_MSIX_ENABLED) && 11669 (pf->flags & I40E_FLAG_MSI_ENABLED)) { 11670 dev_info(&pf->pdev->dev, "MSI-X not available, trying MSI\n"); 11671 vectors = pci_enable_msi(pf->pdev); 11672 if (vectors < 0) { 11673 dev_info(&pf->pdev->dev, "MSI init failed - %d\n", 11674 vectors); 11675 pf->flags &= ~I40E_FLAG_MSI_ENABLED; 11676 } 11677 vectors = 1; /* one MSI or Legacy vector */ 11678 } 11679 11680 if (!(pf->flags & (I40E_FLAG_MSIX_ENABLED | I40E_FLAG_MSI_ENABLED))) 11681 dev_info(&pf->pdev->dev, "MSI-X and MSI not available, falling back to Legacy IRQ\n"); 11682 11683 /* set up vector assignment tracking */ 11684 size = sizeof(struct i40e_lump_tracking) + (sizeof(u16) * vectors); 11685 pf->irq_pile = kzalloc(size, GFP_KERNEL); 11686 if (!pf->irq_pile) 11687 return -ENOMEM; 11688 11689 pf->irq_pile->num_entries = vectors; 11690 pf->irq_pile->search_hint = 0; 11691 11692 /* track first vector for misc interrupts, ignore return */ 11693 (void)i40e_get_lump(pf, pf->irq_pile, 1, I40E_PILE_VALID_BIT - 1); 11694 11695 return 0; 11696 } 11697 11698 /** 11699 * i40e_restore_interrupt_scheme - Restore the interrupt scheme 11700 * @pf: private board data structure 11701 * 11702 * Restore the interrupt scheme that was cleared when we suspended the 11703 * device. This should be called during resume to re-allocate the q_vectors 11704 * and reacquire IRQs. 11705 */ 11706 static int i40e_restore_interrupt_scheme(struct i40e_pf *pf) 11707 { 11708 int err, i; 11709 11710 /* We cleared the MSI and MSI-X flags when disabling the old interrupt 11711 * scheme. We need to re-enabled them here in order to attempt to 11712 * re-acquire the MSI or MSI-X vectors 11713 */ 11714 pf->flags |= (I40E_FLAG_MSIX_ENABLED | I40E_FLAG_MSI_ENABLED); 11715 11716 err = i40e_init_interrupt_scheme(pf); 11717 if (err) 11718 return err; 11719 11720 /* Now that we've re-acquired IRQs, we need to remap the vectors and 11721 * rings together again. 11722 */ 11723 for (i = 0; i < pf->num_alloc_vsi; i++) { 11724 if (pf->vsi[i]) { 11725 err = i40e_vsi_alloc_q_vectors(pf->vsi[i]); 11726 if (err) 11727 goto err_unwind; 11728 i40e_vsi_map_rings_to_vectors(pf->vsi[i]); 11729 } 11730 } 11731 11732 err = i40e_setup_misc_vector(pf); 11733 if (err) 11734 goto err_unwind; 11735 11736 if (pf->flags & I40E_FLAG_IWARP_ENABLED) 11737 i40e_client_update_msix_info(pf); 11738 11739 return 0; 11740 11741 err_unwind: 11742 while (i--) { 11743 if (pf->vsi[i]) 11744 i40e_vsi_free_q_vectors(pf->vsi[i]); 11745 } 11746 11747 return err; 11748 } 11749 11750 /** 11751 * i40e_setup_misc_vector_for_recovery_mode - Setup the misc vector to handle 11752 * non queue events in recovery mode 11753 * @pf: board private structure 11754 * 11755 * This sets up the handler for MSIX 0 or MSI/legacy, which is used to manage 11756 * the non-queue interrupts, e.g. AdminQ and errors in recovery mode. 11757 * This is handled differently than in recovery mode since no Tx/Rx resources 11758 * are being allocated. 11759 **/ 11760 static int i40e_setup_misc_vector_for_recovery_mode(struct i40e_pf *pf) 11761 { 11762 int err; 11763 11764 if (pf->flags & I40E_FLAG_MSIX_ENABLED) { 11765 err = i40e_setup_misc_vector(pf); 11766 11767 if (err) { 11768 dev_info(&pf->pdev->dev, 11769 "MSI-X misc vector request failed, error %d\n", 11770 err); 11771 return err; 11772 } 11773 } else { 11774 u32 flags = pf->flags & I40E_FLAG_MSI_ENABLED ? 0 : IRQF_SHARED; 11775 11776 err = request_irq(pf->pdev->irq, i40e_intr, flags, 11777 pf->int_name, pf); 11778 11779 if (err) { 11780 dev_info(&pf->pdev->dev, 11781 "MSI/legacy misc vector request failed, error %d\n", 11782 err); 11783 return err; 11784 } 11785 i40e_enable_misc_int_causes(pf); 11786 i40e_irq_dynamic_enable_icr0(pf); 11787 } 11788 11789 return 0; 11790 } 11791 11792 /** 11793 * i40e_setup_misc_vector - Setup the misc vector to handle non queue events 11794 * @pf: board private structure 11795 * 11796 * This sets up the handler for MSIX 0, which is used to manage the 11797 * non-queue interrupts, e.g. AdminQ and errors. This is not used 11798 * when in MSI or Legacy interrupt mode. 11799 **/ 11800 static int i40e_setup_misc_vector(struct i40e_pf *pf) 11801 { 11802 struct i40e_hw *hw = &pf->hw; 11803 int err = 0; 11804 11805 /* Only request the IRQ once, the first time through. */ 11806 if (!test_and_set_bit(__I40E_MISC_IRQ_REQUESTED, pf->state)) { 11807 err = request_irq(pf->msix_entries[0].vector, 11808 i40e_intr, 0, pf->int_name, pf); 11809 if (err) { 11810 clear_bit(__I40E_MISC_IRQ_REQUESTED, pf->state); 11811 dev_info(&pf->pdev->dev, 11812 "request_irq for %s failed: %d\n", 11813 pf->int_name, err); 11814 return -EFAULT; 11815 } 11816 } 11817 11818 i40e_enable_misc_int_causes(pf); 11819 11820 /* associate no queues to the misc vector */ 11821 wr32(hw, I40E_PFINT_LNKLST0, I40E_QUEUE_END_OF_LIST); 11822 wr32(hw, I40E_PFINT_ITR0(I40E_RX_ITR), I40E_ITR_8K >> 1); 11823 11824 i40e_flush(hw); 11825 11826 i40e_irq_dynamic_enable_icr0(pf); 11827 11828 return err; 11829 } 11830 11831 /** 11832 * i40e_get_rss_aq - Get RSS keys and lut by using AQ commands 11833 * @vsi: Pointer to vsi structure 11834 * @seed: Buffter to store the hash keys 11835 * @lut: Buffer to store the lookup table entries 11836 * @lut_size: Size of buffer to store the lookup table entries 11837 * 11838 * Return 0 on success, negative on failure 11839 */ 11840 static int i40e_get_rss_aq(struct i40e_vsi *vsi, const u8 *seed, 11841 u8 *lut, u16 lut_size) 11842 { 11843 struct i40e_pf *pf = vsi->back; 11844 struct i40e_hw *hw = &pf->hw; 11845 int ret = 0; 11846 11847 if (seed) { 11848 ret = i40e_aq_get_rss_key(hw, vsi->id, 11849 (struct i40e_aqc_get_set_rss_key_data *)seed); 11850 if (ret) { 11851 dev_info(&pf->pdev->dev, 11852 "Cannot get RSS key, err %s aq_err %s\n", 11853 i40e_stat_str(&pf->hw, ret), 11854 i40e_aq_str(&pf->hw, 11855 pf->hw.aq.asq_last_status)); 11856 return ret; 11857 } 11858 } 11859 11860 if (lut) { 11861 bool pf_lut = vsi->type == I40E_VSI_MAIN; 11862 11863 ret = i40e_aq_get_rss_lut(hw, vsi->id, pf_lut, lut, lut_size); 11864 if (ret) { 11865 dev_info(&pf->pdev->dev, 11866 "Cannot get RSS lut, err %s aq_err %s\n", 11867 i40e_stat_str(&pf->hw, ret), 11868 i40e_aq_str(&pf->hw, 11869 pf->hw.aq.asq_last_status)); 11870 return ret; 11871 } 11872 } 11873 11874 return ret; 11875 } 11876 11877 /** 11878 * i40e_config_rss_reg - Configure RSS keys and lut by writing registers 11879 * @vsi: Pointer to vsi structure 11880 * @seed: RSS hash seed 11881 * @lut: Lookup table 11882 * @lut_size: Lookup table size 11883 * 11884 * Returns 0 on success, negative on failure 11885 **/ 11886 static int i40e_config_rss_reg(struct i40e_vsi *vsi, const u8 *seed, 11887 const u8 *lut, u16 lut_size) 11888 { 11889 struct i40e_pf *pf = vsi->back; 11890 struct i40e_hw *hw = &pf->hw; 11891 u16 vf_id = vsi->vf_id; 11892 u8 i; 11893 11894 /* Fill out hash function seed */ 11895 if (seed) { 11896 u32 *seed_dw = (u32 *)seed; 11897 11898 if (vsi->type == I40E_VSI_MAIN) { 11899 for (i = 0; i <= I40E_PFQF_HKEY_MAX_INDEX; i++) 11900 wr32(hw, I40E_PFQF_HKEY(i), seed_dw[i]); 11901 } else if (vsi->type == I40E_VSI_SRIOV) { 11902 for (i = 0; i <= I40E_VFQF_HKEY1_MAX_INDEX; i++) 11903 wr32(hw, I40E_VFQF_HKEY1(i, vf_id), seed_dw[i]); 11904 } else { 11905 dev_err(&pf->pdev->dev, "Cannot set RSS seed - invalid VSI type\n"); 11906 } 11907 } 11908 11909 if (lut) { 11910 u32 *lut_dw = (u32 *)lut; 11911 11912 if (vsi->type == I40E_VSI_MAIN) { 11913 if (lut_size != I40E_HLUT_ARRAY_SIZE) 11914 return -EINVAL; 11915 for (i = 0; i <= I40E_PFQF_HLUT_MAX_INDEX; i++) 11916 wr32(hw, I40E_PFQF_HLUT(i), lut_dw[i]); 11917 } else if (vsi->type == I40E_VSI_SRIOV) { 11918 if (lut_size != I40E_VF_HLUT_ARRAY_SIZE) 11919 return -EINVAL; 11920 for (i = 0; i <= I40E_VFQF_HLUT_MAX_INDEX; i++) 11921 wr32(hw, I40E_VFQF_HLUT1(i, vf_id), lut_dw[i]); 11922 } else { 11923 dev_err(&pf->pdev->dev, "Cannot set RSS LUT - invalid VSI type\n"); 11924 } 11925 } 11926 i40e_flush(hw); 11927 11928 return 0; 11929 } 11930 11931 /** 11932 * i40e_get_rss_reg - Get the RSS keys and lut by reading registers 11933 * @vsi: Pointer to VSI structure 11934 * @seed: Buffer to store the keys 11935 * @lut: Buffer to store the lookup table entries 11936 * @lut_size: Size of buffer to store the lookup table entries 11937 * 11938 * Returns 0 on success, negative on failure 11939 */ 11940 static int i40e_get_rss_reg(struct i40e_vsi *vsi, u8 *seed, 11941 u8 *lut, u16 lut_size) 11942 { 11943 struct i40e_pf *pf = vsi->back; 11944 struct i40e_hw *hw = &pf->hw; 11945 u16 i; 11946 11947 if (seed) { 11948 u32 *seed_dw = (u32 *)seed; 11949 11950 for (i = 0; i <= I40E_PFQF_HKEY_MAX_INDEX; i++) 11951 seed_dw[i] = i40e_read_rx_ctl(hw, I40E_PFQF_HKEY(i)); 11952 } 11953 if (lut) { 11954 u32 *lut_dw = (u32 *)lut; 11955 11956 if (lut_size != I40E_HLUT_ARRAY_SIZE) 11957 return -EINVAL; 11958 for (i = 0; i <= I40E_PFQF_HLUT_MAX_INDEX; i++) 11959 lut_dw[i] = rd32(hw, I40E_PFQF_HLUT(i)); 11960 } 11961 11962 return 0; 11963 } 11964 11965 /** 11966 * i40e_config_rss - Configure RSS keys and lut 11967 * @vsi: Pointer to VSI structure 11968 * @seed: RSS hash seed 11969 * @lut: Lookup table 11970 * @lut_size: Lookup table size 11971 * 11972 * Returns 0 on success, negative on failure 11973 */ 11974 int i40e_config_rss(struct i40e_vsi *vsi, u8 *seed, u8 *lut, u16 lut_size) 11975 { 11976 struct i40e_pf *pf = vsi->back; 11977 11978 if (pf->hw_features & I40E_HW_RSS_AQ_CAPABLE) 11979 return i40e_config_rss_aq(vsi, seed, lut, lut_size); 11980 else 11981 return i40e_config_rss_reg(vsi, seed, lut, lut_size); 11982 } 11983 11984 /** 11985 * i40e_get_rss - Get RSS keys and lut 11986 * @vsi: Pointer to VSI structure 11987 * @seed: Buffer to store the keys 11988 * @lut: Buffer to store the lookup table entries 11989 * @lut_size: Size of buffer to store the lookup table entries 11990 * 11991 * Returns 0 on success, negative on failure 11992 */ 11993 int i40e_get_rss(struct i40e_vsi *vsi, u8 *seed, u8 *lut, u16 lut_size) 11994 { 11995 struct i40e_pf *pf = vsi->back; 11996 11997 if (pf->hw_features & I40E_HW_RSS_AQ_CAPABLE) 11998 return i40e_get_rss_aq(vsi, seed, lut, lut_size); 11999 else 12000 return i40e_get_rss_reg(vsi, seed, lut, lut_size); 12001 } 12002 12003 /** 12004 * i40e_fill_rss_lut - Fill the RSS lookup table with default values 12005 * @pf: Pointer to board private structure 12006 * @lut: Lookup table 12007 * @rss_table_size: Lookup table size 12008 * @rss_size: Range of queue number for hashing 12009 */ 12010 void i40e_fill_rss_lut(struct i40e_pf *pf, u8 *lut, 12011 u16 rss_table_size, u16 rss_size) 12012 { 12013 u16 i; 12014 12015 for (i = 0; i < rss_table_size; i++) 12016 lut[i] = i % rss_size; 12017 } 12018 12019 /** 12020 * i40e_pf_config_rss - Prepare for RSS if used 12021 * @pf: board private structure 12022 **/ 12023 static int i40e_pf_config_rss(struct i40e_pf *pf) 12024 { 12025 struct i40e_vsi *vsi = pf->vsi[pf->lan_vsi]; 12026 u8 seed[I40E_HKEY_ARRAY_SIZE]; 12027 u8 *lut; 12028 struct i40e_hw *hw = &pf->hw; 12029 u32 reg_val; 12030 u64 hena; 12031 int ret; 12032 12033 /* By default we enable TCP/UDP with IPv4/IPv6 ptypes */ 12034 hena = (u64)i40e_read_rx_ctl(hw, I40E_PFQF_HENA(0)) | 12035 ((u64)i40e_read_rx_ctl(hw, I40E_PFQF_HENA(1)) << 32); 12036 hena |= i40e_pf_get_default_rss_hena(pf); 12037 12038 i40e_write_rx_ctl(hw, I40E_PFQF_HENA(0), (u32)hena); 12039 i40e_write_rx_ctl(hw, I40E_PFQF_HENA(1), (u32)(hena >> 32)); 12040 12041 /* Determine the RSS table size based on the hardware capabilities */ 12042 reg_val = i40e_read_rx_ctl(hw, I40E_PFQF_CTL_0); 12043 reg_val = (pf->rss_table_size == 512) ? 12044 (reg_val | I40E_PFQF_CTL_0_HASHLUTSIZE_512) : 12045 (reg_val & ~I40E_PFQF_CTL_0_HASHLUTSIZE_512); 12046 i40e_write_rx_ctl(hw, I40E_PFQF_CTL_0, reg_val); 12047 12048 /* Determine the RSS size of the VSI */ 12049 if (!vsi->rss_size) { 12050 u16 qcount; 12051 /* If the firmware does something weird during VSI init, we 12052 * could end up with zero TCs. Check for that to avoid 12053 * divide-by-zero. It probably won't pass traffic, but it also 12054 * won't panic. 12055 */ 12056 qcount = vsi->num_queue_pairs / 12057 (vsi->tc_config.numtc ? vsi->tc_config.numtc : 1); 12058 vsi->rss_size = min_t(int, pf->alloc_rss_size, qcount); 12059 } 12060 if (!vsi->rss_size) 12061 return -EINVAL; 12062 12063 lut = kzalloc(vsi->rss_table_size, GFP_KERNEL); 12064 if (!lut) 12065 return -ENOMEM; 12066 12067 /* Use user configured lut if there is one, otherwise use default */ 12068 if (vsi->rss_lut_user) 12069 memcpy(lut, vsi->rss_lut_user, vsi->rss_table_size); 12070 else 12071 i40e_fill_rss_lut(pf, lut, vsi->rss_table_size, vsi->rss_size); 12072 12073 /* Use user configured hash key if there is one, otherwise 12074 * use default. 12075 */ 12076 if (vsi->rss_hkey_user) 12077 memcpy(seed, vsi->rss_hkey_user, I40E_HKEY_ARRAY_SIZE); 12078 else 12079 netdev_rss_key_fill((void *)seed, I40E_HKEY_ARRAY_SIZE); 12080 ret = i40e_config_rss(vsi, seed, lut, vsi->rss_table_size); 12081 kfree(lut); 12082 12083 return ret; 12084 } 12085 12086 /** 12087 * i40e_reconfig_rss_queues - change number of queues for rss and rebuild 12088 * @pf: board private structure 12089 * @queue_count: the requested queue count for rss. 12090 * 12091 * returns 0 if rss is not enabled, if enabled returns the final rss queue 12092 * count which may be different from the requested queue count. 12093 * Note: expects to be called while under rtnl_lock() 12094 **/ 12095 int i40e_reconfig_rss_queues(struct i40e_pf *pf, int queue_count) 12096 { 12097 struct i40e_vsi *vsi = pf->vsi[pf->lan_vsi]; 12098 int new_rss_size; 12099 12100 if (!(pf->flags & I40E_FLAG_RSS_ENABLED)) 12101 return 0; 12102 12103 queue_count = min_t(int, queue_count, num_online_cpus()); 12104 new_rss_size = min_t(int, queue_count, pf->rss_size_max); 12105 12106 if (queue_count != vsi->num_queue_pairs) { 12107 u16 qcount; 12108 12109 vsi->req_queue_pairs = queue_count; 12110 i40e_prep_for_reset(pf); 12111 12112 pf->alloc_rss_size = new_rss_size; 12113 12114 i40e_reset_and_rebuild(pf, true, true); 12115 12116 /* Discard the user configured hash keys and lut, if less 12117 * queues are enabled. 12118 */ 12119 if (queue_count < vsi->rss_size) { 12120 i40e_clear_rss_config_user(vsi); 12121 dev_dbg(&pf->pdev->dev, 12122 "discard user configured hash keys and lut\n"); 12123 } 12124 12125 /* Reset vsi->rss_size, as number of enabled queues changed */ 12126 qcount = vsi->num_queue_pairs / vsi->tc_config.numtc; 12127 vsi->rss_size = min_t(int, pf->alloc_rss_size, qcount); 12128 12129 i40e_pf_config_rss(pf); 12130 } 12131 dev_info(&pf->pdev->dev, "User requested queue count/HW max RSS count: %d/%d\n", 12132 vsi->req_queue_pairs, pf->rss_size_max); 12133 return pf->alloc_rss_size; 12134 } 12135 12136 /** 12137 * i40e_get_partition_bw_setting - Retrieve BW settings for this PF partition 12138 * @pf: board private structure 12139 **/ 12140 i40e_status i40e_get_partition_bw_setting(struct i40e_pf *pf) 12141 { 12142 i40e_status status; 12143 bool min_valid, max_valid; 12144 u32 max_bw, min_bw; 12145 12146 status = i40e_read_bw_from_alt_ram(&pf->hw, &max_bw, &min_bw, 12147 &min_valid, &max_valid); 12148 12149 if (!status) { 12150 if (min_valid) 12151 pf->min_bw = min_bw; 12152 if (max_valid) 12153 pf->max_bw = max_bw; 12154 } 12155 12156 return status; 12157 } 12158 12159 /** 12160 * i40e_set_partition_bw_setting - Set BW settings for this PF partition 12161 * @pf: board private structure 12162 **/ 12163 i40e_status i40e_set_partition_bw_setting(struct i40e_pf *pf) 12164 { 12165 struct i40e_aqc_configure_partition_bw_data bw_data; 12166 i40e_status status; 12167 12168 memset(&bw_data, 0, sizeof(bw_data)); 12169 12170 /* Set the valid bit for this PF */ 12171 bw_data.pf_valid_bits = cpu_to_le16(BIT(pf->hw.pf_id)); 12172 bw_data.max_bw[pf->hw.pf_id] = pf->max_bw & I40E_ALT_BW_VALUE_MASK; 12173 bw_data.min_bw[pf->hw.pf_id] = pf->min_bw & I40E_ALT_BW_VALUE_MASK; 12174 12175 /* Set the new bandwidths */ 12176 status = i40e_aq_configure_partition_bw(&pf->hw, &bw_data, NULL); 12177 12178 return status; 12179 } 12180 12181 /** 12182 * i40e_commit_partition_bw_setting - Commit BW settings for this PF partition 12183 * @pf: board private structure 12184 **/ 12185 i40e_status i40e_commit_partition_bw_setting(struct i40e_pf *pf) 12186 { 12187 /* Commit temporary BW setting to permanent NVM image */ 12188 enum i40e_admin_queue_err last_aq_status; 12189 i40e_status ret; 12190 u16 nvm_word; 12191 12192 if (pf->hw.partition_id != 1) { 12193 dev_info(&pf->pdev->dev, 12194 "Commit BW only works on partition 1! This is partition %d", 12195 pf->hw.partition_id); 12196 ret = I40E_NOT_SUPPORTED; 12197 goto bw_commit_out; 12198 } 12199 12200 /* Acquire NVM for read access */ 12201 ret = i40e_acquire_nvm(&pf->hw, I40E_RESOURCE_READ); 12202 last_aq_status = pf->hw.aq.asq_last_status; 12203 if (ret) { 12204 dev_info(&pf->pdev->dev, 12205 "Cannot acquire NVM for read access, err %s aq_err %s\n", 12206 i40e_stat_str(&pf->hw, ret), 12207 i40e_aq_str(&pf->hw, last_aq_status)); 12208 goto bw_commit_out; 12209 } 12210 12211 /* Read word 0x10 of NVM - SW compatibility word 1 */ 12212 ret = i40e_aq_read_nvm(&pf->hw, 12213 I40E_SR_NVM_CONTROL_WORD, 12214 0x10, sizeof(nvm_word), &nvm_word, 12215 false, NULL); 12216 /* Save off last admin queue command status before releasing 12217 * the NVM 12218 */ 12219 last_aq_status = pf->hw.aq.asq_last_status; 12220 i40e_release_nvm(&pf->hw); 12221 if (ret) { 12222 dev_info(&pf->pdev->dev, "NVM read error, err %s aq_err %s\n", 12223 i40e_stat_str(&pf->hw, ret), 12224 i40e_aq_str(&pf->hw, last_aq_status)); 12225 goto bw_commit_out; 12226 } 12227 12228 /* Wait a bit for NVM release to complete */ 12229 msleep(50); 12230 12231 /* Acquire NVM for write access */ 12232 ret = i40e_acquire_nvm(&pf->hw, I40E_RESOURCE_WRITE); 12233 last_aq_status = pf->hw.aq.asq_last_status; 12234 if (ret) { 12235 dev_info(&pf->pdev->dev, 12236 "Cannot acquire NVM for write access, err %s aq_err %s\n", 12237 i40e_stat_str(&pf->hw, ret), 12238 i40e_aq_str(&pf->hw, last_aq_status)); 12239 goto bw_commit_out; 12240 } 12241 /* Write it back out unchanged to initiate update NVM, 12242 * which will force a write of the shadow (alt) RAM to 12243 * the NVM - thus storing the bandwidth values permanently. 12244 */ 12245 ret = i40e_aq_update_nvm(&pf->hw, 12246 I40E_SR_NVM_CONTROL_WORD, 12247 0x10, sizeof(nvm_word), 12248 &nvm_word, true, 0, NULL); 12249 /* Save off last admin queue command status before releasing 12250 * the NVM 12251 */ 12252 last_aq_status = pf->hw.aq.asq_last_status; 12253 i40e_release_nvm(&pf->hw); 12254 if (ret) 12255 dev_info(&pf->pdev->dev, 12256 "BW settings NOT SAVED, err %s aq_err %s\n", 12257 i40e_stat_str(&pf->hw, ret), 12258 i40e_aq_str(&pf->hw, last_aq_status)); 12259 bw_commit_out: 12260 12261 return ret; 12262 } 12263 12264 /** 12265 * i40e_is_total_port_shutdown_enabled - read NVM and return value 12266 * if total port shutdown feature is enabled for this PF 12267 * @pf: board private structure 12268 **/ 12269 static bool i40e_is_total_port_shutdown_enabled(struct i40e_pf *pf) 12270 { 12271 #define I40E_TOTAL_PORT_SHUTDOWN_ENABLED BIT(4) 12272 #define I40E_FEATURES_ENABLE_PTR 0x2A 12273 #define I40E_CURRENT_SETTING_PTR 0x2B 12274 #define I40E_LINK_BEHAVIOR_WORD_OFFSET 0x2D 12275 #define I40E_LINK_BEHAVIOR_WORD_LENGTH 0x1 12276 #define I40E_LINK_BEHAVIOR_OS_FORCED_ENABLED BIT(0) 12277 #define I40E_LINK_BEHAVIOR_PORT_BIT_LENGTH 4 12278 i40e_status read_status = I40E_SUCCESS; 12279 u16 sr_emp_sr_settings_ptr = 0; 12280 u16 features_enable = 0; 12281 u16 link_behavior = 0; 12282 bool ret = false; 12283 12284 read_status = i40e_read_nvm_word(&pf->hw, 12285 I40E_SR_EMP_SR_SETTINGS_PTR, 12286 &sr_emp_sr_settings_ptr); 12287 if (read_status) 12288 goto err_nvm; 12289 read_status = i40e_read_nvm_word(&pf->hw, 12290 sr_emp_sr_settings_ptr + 12291 I40E_FEATURES_ENABLE_PTR, 12292 &features_enable); 12293 if (read_status) 12294 goto err_nvm; 12295 if (I40E_TOTAL_PORT_SHUTDOWN_ENABLED & features_enable) { 12296 read_status = i40e_read_nvm_module_data(&pf->hw, 12297 I40E_SR_EMP_SR_SETTINGS_PTR, 12298 I40E_CURRENT_SETTING_PTR, 12299 I40E_LINK_BEHAVIOR_WORD_OFFSET, 12300 I40E_LINK_BEHAVIOR_WORD_LENGTH, 12301 &link_behavior); 12302 if (read_status) 12303 goto err_nvm; 12304 link_behavior >>= (pf->hw.port * I40E_LINK_BEHAVIOR_PORT_BIT_LENGTH); 12305 ret = I40E_LINK_BEHAVIOR_OS_FORCED_ENABLED & link_behavior; 12306 } 12307 return ret; 12308 12309 err_nvm: 12310 dev_warn(&pf->pdev->dev, 12311 "total-port-shutdown feature is off due to read nvm error: %s\n", 12312 i40e_stat_str(&pf->hw, read_status)); 12313 return ret; 12314 } 12315 12316 /** 12317 * i40e_sw_init - Initialize general software structures (struct i40e_pf) 12318 * @pf: board private structure to initialize 12319 * 12320 * i40e_sw_init initializes the Adapter private data structure. 12321 * Fields are initialized based on PCI device information and 12322 * OS network device settings (MTU size). 12323 **/ 12324 static int i40e_sw_init(struct i40e_pf *pf) 12325 { 12326 int err = 0; 12327 int size; 12328 u16 pow; 12329 12330 /* Set default capability flags */ 12331 pf->flags = I40E_FLAG_RX_CSUM_ENABLED | 12332 I40E_FLAG_MSI_ENABLED | 12333 I40E_FLAG_MSIX_ENABLED; 12334 12335 /* Set default ITR */ 12336 pf->rx_itr_default = I40E_ITR_RX_DEF; 12337 pf->tx_itr_default = I40E_ITR_TX_DEF; 12338 12339 /* Depending on PF configurations, it is possible that the RSS 12340 * maximum might end up larger than the available queues 12341 */ 12342 pf->rss_size_max = BIT(pf->hw.func_caps.rss_table_entry_width); 12343 pf->alloc_rss_size = 1; 12344 pf->rss_table_size = pf->hw.func_caps.rss_table_size; 12345 pf->rss_size_max = min_t(int, pf->rss_size_max, 12346 pf->hw.func_caps.num_tx_qp); 12347 12348 /* find the next higher power-of-2 of num cpus */ 12349 pow = roundup_pow_of_two(num_online_cpus()); 12350 pf->rss_size_max = min_t(int, pf->rss_size_max, pow); 12351 12352 if (pf->hw.func_caps.rss) { 12353 pf->flags |= I40E_FLAG_RSS_ENABLED; 12354 pf->alloc_rss_size = min_t(int, pf->rss_size_max, 12355 num_online_cpus()); 12356 } 12357 12358 /* MFP mode enabled */ 12359 if (pf->hw.func_caps.npar_enable || pf->hw.func_caps.flex10_enable) { 12360 pf->flags |= I40E_FLAG_MFP_ENABLED; 12361 dev_info(&pf->pdev->dev, "MFP mode Enabled\n"); 12362 if (i40e_get_partition_bw_setting(pf)) { 12363 dev_warn(&pf->pdev->dev, 12364 "Could not get partition bw settings\n"); 12365 } else { 12366 dev_info(&pf->pdev->dev, 12367 "Partition BW Min = %8.8x, Max = %8.8x\n", 12368 pf->min_bw, pf->max_bw); 12369 12370 /* nudge the Tx scheduler */ 12371 i40e_set_partition_bw_setting(pf); 12372 } 12373 } 12374 12375 if ((pf->hw.func_caps.fd_filters_guaranteed > 0) || 12376 (pf->hw.func_caps.fd_filters_best_effort > 0)) { 12377 pf->flags |= I40E_FLAG_FD_ATR_ENABLED; 12378 pf->atr_sample_rate = I40E_DEFAULT_ATR_SAMPLE_RATE; 12379 if (pf->flags & I40E_FLAG_MFP_ENABLED && 12380 pf->hw.num_partitions > 1) 12381 dev_info(&pf->pdev->dev, 12382 "Flow Director Sideband mode Disabled in MFP mode\n"); 12383 else 12384 pf->flags |= I40E_FLAG_FD_SB_ENABLED; 12385 pf->fdir_pf_filter_count = 12386 pf->hw.func_caps.fd_filters_guaranteed; 12387 pf->hw.fdir_shared_filter_count = 12388 pf->hw.func_caps.fd_filters_best_effort; 12389 } 12390 12391 if (pf->hw.mac.type == I40E_MAC_X722) { 12392 pf->hw_features |= (I40E_HW_RSS_AQ_CAPABLE | 12393 I40E_HW_128_QP_RSS_CAPABLE | 12394 I40E_HW_ATR_EVICT_CAPABLE | 12395 I40E_HW_WB_ON_ITR_CAPABLE | 12396 I40E_HW_MULTIPLE_TCP_UDP_RSS_PCTYPE | 12397 I40E_HW_NO_PCI_LINK_CHECK | 12398 I40E_HW_USE_SET_LLDP_MIB | 12399 I40E_HW_GENEVE_OFFLOAD_CAPABLE | 12400 I40E_HW_PTP_L4_CAPABLE | 12401 I40E_HW_WOL_MC_MAGIC_PKT_WAKE | 12402 I40E_HW_OUTER_UDP_CSUM_CAPABLE); 12403 12404 #define I40E_FDEVICT_PCTYPE_DEFAULT 0xc03 12405 if (rd32(&pf->hw, I40E_GLQF_FDEVICTENA(1)) != 12406 I40E_FDEVICT_PCTYPE_DEFAULT) { 12407 dev_warn(&pf->pdev->dev, 12408 "FD EVICT PCTYPES are not right, disable FD HW EVICT\n"); 12409 pf->hw_features &= ~I40E_HW_ATR_EVICT_CAPABLE; 12410 } 12411 } else if ((pf->hw.aq.api_maj_ver > 1) || 12412 ((pf->hw.aq.api_maj_ver == 1) && 12413 (pf->hw.aq.api_min_ver > 4))) { 12414 /* Supported in FW API version higher than 1.4 */ 12415 pf->hw_features |= I40E_HW_GENEVE_OFFLOAD_CAPABLE; 12416 } 12417 12418 /* Enable HW ATR eviction if possible */ 12419 if (pf->hw_features & I40E_HW_ATR_EVICT_CAPABLE) 12420 pf->flags |= I40E_FLAG_HW_ATR_EVICT_ENABLED; 12421 12422 if ((pf->hw.mac.type == I40E_MAC_XL710) && 12423 (((pf->hw.aq.fw_maj_ver == 4) && (pf->hw.aq.fw_min_ver < 33)) || 12424 (pf->hw.aq.fw_maj_ver < 4))) { 12425 pf->hw_features |= I40E_HW_RESTART_AUTONEG; 12426 /* No DCB support for FW < v4.33 */ 12427 pf->hw_features |= I40E_HW_NO_DCB_SUPPORT; 12428 } 12429 12430 /* Disable FW LLDP if FW < v4.3 */ 12431 if ((pf->hw.mac.type == I40E_MAC_XL710) && 12432 (((pf->hw.aq.fw_maj_ver == 4) && (pf->hw.aq.fw_min_ver < 3)) || 12433 (pf->hw.aq.fw_maj_ver < 4))) 12434 pf->hw_features |= I40E_HW_STOP_FW_LLDP; 12435 12436 /* Use the FW Set LLDP MIB API if FW > v4.40 */ 12437 if ((pf->hw.mac.type == I40E_MAC_XL710) && 12438 (((pf->hw.aq.fw_maj_ver == 4) && (pf->hw.aq.fw_min_ver >= 40)) || 12439 (pf->hw.aq.fw_maj_ver >= 5))) 12440 pf->hw_features |= I40E_HW_USE_SET_LLDP_MIB; 12441 12442 /* Enable PTP L4 if FW > v6.0 */ 12443 if (pf->hw.mac.type == I40E_MAC_XL710 && 12444 pf->hw.aq.fw_maj_ver >= 6) 12445 pf->hw_features |= I40E_HW_PTP_L4_CAPABLE; 12446 12447 if (pf->hw.func_caps.vmdq && num_online_cpus() != 1) { 12448 pf->num_vmdq_vsis = I40E_DEFAULT_NUM_VMDQ_VSI; 12449 pf->flags |= I40E_FLAG_VMDQ_ENABLED; 12450 pf->num_vmdq_qps = i40e_default_queues_per_vmdq(pf); 12451 } 12452 12453 if (pf->hw.func_caps.iwarp && num_online_cpus() != 1) { 12454 pf->flags |= I40E_FLAG_IWARP_ENABLED; 12455 /* IWARP needs one extra vector for CQP just like MISC.*/ 12456 pf->num_iwarp_msix = (int)num_online_cpus() + 1; 12457 } 12458 /* Stopping FW LLDP engine is supported on XL710 and X722 12459 * starting from FW versions determined in i40e_init_adminq. 12460 * Stopping the FW LLDP engine is not supported on XL710 12461 * if NPAR is functioning so unset this hw flag in this case. 12462 */ 12463 if (pf->hw.mac.type == I40E_MAC_XL710 && 12464 pf->hw.func_caps.npar_enable && 12465 (pf->hw.flags & I40E_HW_FLAG_FW_LLDP_STOPPABLE)) 12466 pf->hw.flags &= ~I40E_HW_FLAG_FW_LLDP_STOPPABLE; 12467 12468 #ifdef CONFIG_PCI_IOV 12469 if (pf->hw.func_caps.num_vfs && pf->hw.partition_id == 1) { 12470 pf->num_vf_qps = I40E_DEFAULT_QUEUES_PER_VF; 12471 pf->flags |= I40E_FLAG_SRIOV_ENABLED; 12472 pf->num_req_vfs = min_t(int, 12473 pf->hw.func_caps.num_vfs, 12474 I40E_MAX_VF_COUNT); 12475 } 12476 #endif /* CONFIG_PCI_IOV */ 12477 pf->eeprom_version = 0xDEAD; 12478 pf->lan_veb = I40E_NO_VEB; 12479 pf->lan_vsi = I40E_NO_VSI; 12480 12481 /* By default FW has this off for performance reasons */ 12482 pf->flags &= ~I40E_FLAG_VEB_STATS_ENABLED; 12483 12484 /* set up queue assignment tracking */ 12485 size = sizeof(struct i40e_lump_tracking) 12486 + (sizeof(u16) * pf->hw.func_caps.num_tx_qp); 12487 pf->qp_pile = kzalloc(size, GFP_KERNEL); 12488 if (!pf->qp_pile) { 12489 err = -ENOMEM; 12490 goto sw_init_done; 12491 } 12492 pf->qp_pile->num_entries = pf->hw.func_caps.num_tx_qp; 12493 pf->qp_pile->search_hint = 0; 12494 12495 pf->tx_timeout_recovery_level = 1; 12496 12497 if (pf->hw.mac.type != I40E_MAC_X722 && 12498 i40e_is_total_port_shutdown_enabled(pf)) { 12499 /* Link down on close must be on when total port shutdown 12500 * is enabled for a given port 12501 */ 12502 pf->flags |= (I40E_FLAG_TOTAL_PORT_SHUTDOWN_ENABLED | 12503 I40E_FLAG_LINK_DOWN_ON_CLOSE_ENABLED); 12504 dev_info(&pf->pdev->dev, 12505 "total-port-shutdown was enabled, link-down-on-close is forced on\n"); 12506 } 12507 mutex_init(&pf->switch_mutex); 12508 12509 sw_init_done: 12510 return err; 12511 } 12512 12513 /** 12514 * i40e_set_ntuple - set the ntuple feature flag and take action 12515 * @pf: board private structure to initialize 12516 * @features: the feature set that the stack is suggesting 12517 * 12518 * returns a bool to indicate if reset needs to happen 12519 **/ 12520 bool i40e_set_ntuple(struct i40e_pf *pf, netdev_features_t features) 12521 { 12522 bool need_reset = false; 12523 12524 /* Check if Flow Director n-tuple support was enabled or disabled. If 12525 * the state changed, we need to reset. 12526 */ 12527 if (features & NETIF_F_NTUPLE) { 12528 /* Enable filters and mark for reset */ 12529 if (!(pf->flags & I40E_FLAG_FD_SB_ENABLED)) 12530 need_reset = true; 12531 /* enable FD_SB only if there is MSI-X vector and no cloud 12532 * filters exist 12533 */ 12534 if (pf->num_fdsb_msix > 0 && !pf->num_cloud_filters) { 12535 pf->flags |= I40E_FLAG_FD_SB_ENABLED; 12536 pf->flags &= ~I40E_FLAG_FD_SB_INACTIVE; 12537 } 12538 } else { 12539 /* turn off filters, mark for reset and clear SW filter list */ 12540 if (pf->flags & I40E_FLAG_FD_SB_ENABLED) { 12541 need_reset = true; 12542 i40e_fdir_filter_exit(pf); 12543 } 12544 pf->flags &= ~I40E_FLAG_FD_SB_ENABLED; 12545 clear_bit(__I40E_FD_SB_AUTO_DISABLED, pf->state); 12546 pf->flags |= I40E_FLAG_FD_SB_INACTIVE; 12547 12548 /* reset fd counters */ 12549 pf->fd_add_err = 0; 12550 pf->fd_atr_cnt = 0; 12551 /* if ATR was auto disabled it can be re-enabled. */ 12552 if (test_and_clear_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state)) 12553 if ((pf->flags & I40E_FLAG_FD_ATR_ENABLED) && 12554 (I40E_DEBUG_FD & pf->hw.debug_mask)) 12555 dev_info(&pf->pdev->dev, "ATR re-enabled.\n"); 12556 } 12557 return need_reset; 12558 } 12559 12560 /** 12561 * i40e_clear_rss_lut - clear the rx hash lookup table 12562 * @vsi: the VSI being configured 12563 **/ 12564 static void i40e_clear_rss_lut(struct i40e_vsi *vsi) 12565 { 12566 struct i40e_pf *pf = vsi->back; 12567 struct i40e_hw *hw = &pf->hw; 12568 u16 vf_id = vsi->vf_id; 12569 u8 i; 12570 12571 if (vsi->type == I40E_VSI_MAIN) { 12572 for (i = 0; i <= I40E_PFQF_HLUT_MAX_INDEX; i++) 12573 wr32(hw, I40E_PFQF_HLUT(i), 0); 12574 } else if (vsi->type == I40E_VSI_SRIOV) { 12575 for (i = 0; i <= I40E_VFQF_HLUT_MAX_INDEX; i++) 12576 i40e_write_rx_ctl(hw, I40E_VFQF_HLUT1(i, vf_id), 0); 12577 } else { 12578 dev_err(&pf->pdev->dev, "Cannot set RSS LUT - invalid VSI type\n"); 12579 } 12580 } 12581 12582 /** 12583 * i40e_set_features - set the netdev feature flags 12584 * @netdev: ptr to the netdev being adjusted 12585 * @features: the feature set that the stack is suggesting 12586 * Note: expects to be called while under rtnl_lock() 12587 **/ 12588 static int i40e_set_features(struct net_device *netdev, 12589 netdev_features_t features) 12590 { 12591 struct i40e_netdev_priv *np = netdev_priv(netdev); 12592 struct i40e_vsi *vsi = np->vsi; 12593 struct i40e_pf *pf = vsi->back; 12594 bool need_reset; 12595 12596 if (features & NETIF_F_RXHASH && !(netdev->features & NETIF_F_RXHASH)) 12597 i40e_pf_config_rss(pf); 12598 else if (!(features & NETIF_F_RXHASH) && 12599 netdev->features & NETIF_F_RXHASH) 12600 i40e_clear_rss_lut(vsi); 12601 12602 if (features & NETIF_F_HW_VLAN_CTAG_RX) 12603 i40e_vlan_stripping_enable(vsi); 12604 else 12605 i40e_vlan_stripping_disable(vsi); 12606 12607 if (!(features & NETIF_F_HW_TC) && pf->num_cloud_filters) { 12608 dev_err(&pf->pdev->dev, 12609 "Offloaded tc filters active, can't turn hw_tc_offload off"); 12610 return -EINVAL; 12611 } 12612 12613 if (!(features & NETIF_F_HW_L2FW_DOFFLOAD) && vsi->macvlan_cnt) 12614 i40e_del_all_macvlans(vsi); 12615 12616 need_reset = i40e_set_ntuple(pf, features); 12617 12618 if (need_reset) 12619 i40e_do_reset(pf, I40E_PF_RESET_FLAG, true); 12620 12621 return 0; 12622 } 12623 12624 static int i40e_udp_tunnel_set_port(struct net_device *netdev, 12625 unsigned int table, unsigned int idx, 12626 struct udp_tunnel_info *ti) 12627 { 12628 struct i40e_netdev_priv *np = netdev_priv(netdev); 12629 struct i40e_hw *hw = &np->vsi->back->hw; 12630 u8 type, filter_index; 12631 i40e_status ret; 12632 12633 type = ti->type == UDP_TUNNEL_TYPE_VXLAN ? I40E_AQC_TUNNEL_TYPE_VXLAN : 12634 I40E_AQC_TUNNEL_TYPE_NGE; 12635 12636 ret = i40e_aq_add_udp_tunnel(hw, ntohs(ti->port), type, &filter_index, 12637 NULL); 12638 if (ret) { 12639 netdev_info(netdev, "add UDP port failed, err %s aq_err %s\n", 12640 i40e_stat_str(hw, ret), 12641 i40e_aq_str(hw, hw->aq.asq_last_status)); 12642 return -EIO; 12643 } 12644 12645 udp_tunnel_nic_set_port_priv(netdev, table, idx, filter_index); 12646 return 0; 12647 } 12648 12649 static int i40e_udp_tunnel_unset_port(struct net_device *netdev, 12650 unsigned int table, unsigned int idx, 12651 struct udp_tunnel_info *ti) 12652 { 12653 struct i40e_netdev_priv *np = netdev_priv(netdev); 12654 struct i40e_hw *hw = &np->vsi->back->hw; 12655 i40e_status ret; 12656 12657 ret = i40e_aq_del_udp_tunnel(hw, ti->hw_priv, NULL); 12658 if (ret) { 12659 netdev_info(netdev, "delete UDP port failed, err %s aq_err %s\n", 12660 i40e_stat_str(hw, ret), 12661 i40e_aq_str(hw, hw->aq.asq_last_status)); 12662 return -EIO; 12663 } 12664 12665 return 0; 12666 } 12667 12668 static int i40e_get_phys_port_id(struct net_device *netdev, 12669 struct netdev_phys_item_id *ppid) 12670 { 12671 struct i40e_netdev_priv *np = netdev_priv(netdev); 12672 struct i40e_pf *pf = np->vsi->back; 12673 struct i40e_hw *hw = &pf->hw; 12674 12675 if (!(pf->hw_features & I40E_HW_PORT_ID_VALID)) 12676 return -EOPNOTSUPP; 12677 12678 ppid->id_len = min_t(int, sizeof(hw->mac.port_addr), sizeof(ppid->id)); 12679 memcpy(ppid->id, hw->mac.port_addr, ppid->id_len); 12680 12681 return 0; 12682 } 12683 12684 /** 12685 * i40e_ndo_fdb_add - add an entry to the hardware database 12686 * @ndm: the input from the stack 12687 * @tb: pointer to array of nladdr (unused) 12688 * @dev: the net device pointer 12689 * @addr: the MAC address entry being added 12690 * @vid: VLAN ID 12691 * @flags: instructions from stack about fdb operation 12692 * @extack: netlink extended ack, unused currently 12693 */ 12694 static int i40e_ndo_fdb_add(struct ndmsg *ndm, struct nlattr *tb[], 12695 struct net_device *dev, 12696 const unsigned char *addr, u16 vid, 12697 u16 flags, 12698 struct netlink_ext_ack *extack) 12699 { 12700 struct i40e_netdev_priv *np = netdev_priv(dev); 12701 struct i40e_pf *pf = np->vsi->back; 12702 int err = 0; 12703 12704 if (!(pf->flags & I40E_FLAG_SRIOV_ENABLED)) 12705 return -EOPNOTSUPP; 12706 12707 if (vid) { 12708 pr_info("%s: vlans aren't supported yet for dev_uc|mc_add()\n", dev->name); 12709 return -EINVAL; 12710 } 12711 12712 /* Hardware does not support aging addresses so if a 12713 * ndm_state is given only allow permanent addresses 12714 */ 12715 if (ndm->ndm_state && !(ndm->ndm_state & NUD_PERMANENT)) { 12716 netdev_info(dev, "FDB only supports static addresses\n"); 12717 return -EINVAL; 12718 } 12719 12720 if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr)) 12721 err = dev_uc_add_excl(dev, addr); 12722 else if (is_multicast_ether_addr(addr)) 12723 err = dev_mc_add_excl(dev, addr); 12724 else 12725 err = -EINVAL; 12726 12727 /* Only return duplicate errors if NLM_F_EXCL is set */ 12728 if (err == -EEXIST && !(flags & NLM_F_EXCL)) 12729 err = 0; 12730 12731 return err; 12732 } 12733 12734 /** 12735 * i40e_ndo_bridge_setlink - Set the hardware bridge mode 12736 * @dev: the netdev being configured 12737 * @nlh: RTNL message 12738 * @flags: bridge flags 12739 * @extack: netlink extended ack 12740 * 12741 * Inserts a new hardware bridge if not already created and 12742 * enables the bridging mode requested (VEB or VEPA). If the 12743 * hardware bridge has already been inserted and the request 12744 * is to change the mode then that requires a PF reset to 12745 * allow rebuild of the components with required hardware 12746 * bridge mode enabled. 12747 * 12748 * Note: expects to be called while under rtnl_lock() 12749 **/ 12750 static int i40e_ndo_bridge_setlink(struct net_device *dev, 12751 struct nlmsghdr *nlh, 12752 u16 flags, 12753 struct netlink_ext_ack *extack) 12754 { 12755 struct i40e_netdev_priv *np = netdev_priv(dev); 12756 struct i40e_vsi *vsi = np->vsi; 12757 struct i40e_pf *pf = vsi->back; 12758 struct i40e_veb *veb = NULL; 12759 struct nlattr *attr, *br_spec; 12760 int i, rem; 12761 12762 /* Only for PF VSI for now */ 12763 if (vsi->seid != pf->vsi[pf->lan_vsi]->seid) 12764 return -EOPNOTSUPP; 12765 12766 /* Find the HW bridge for PF VSI */ 12767 for (i = 0; i < I40E_MAX_VEB && !veb; i++) { 12768 if (pf->veb[i] && pf->veb[i]->seid == vsi->uplink_seid) 12769 veb = pf->veb[i]; 12770 } 12771 12772 br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC); 12773 12774 nla_for_each_nested(attr, br_spec, rem) { 12775 __u16 mode; 12776 12777 if (nla_type(attr) != IFLA_BRIDGE_MODE) 12778 continue; 12779 12780 mode = nla_get_u16(attr); 12781 if ((mode != BRIDGE_MODE_VEPA) && 12782 (mode != BRIDGE_MODE_VEB)) 12783 return -EINVAL; 12784 12785 /* Insert a new HW bridge */ 12786 if (!veb) { 12787 veb = i40e_veb_setup(pf, 0, vsi->uplink_seid, vsi->seid, 12788 vsi->tc_config.enabled_tc); 12789 if (veb) { 12790 veb->bridge_mode = mode; 12791 i40e_config_bridge_mode(veb); 12792 } else { 12793 /* No Bridge HW offload available */ 12794 return -ENOENT; 12795 } 12796 break; 12797 } else if (mode != veb->bridge_mode) { 12798 /* Existing HW bridge but different mode needs reset */ 12799 veb->bridge_mode = mode; 12800 /* TODO: If no VFs or VMDq VSIs, disallow VEB mode */ 12801 if (mode == BRIDGE_MODE_VEB) 12802 pf->flags |= I40E_FLAG_VEB_MODE_ENABLED; 12803 else 12804 pf->flags &= ~I40E_FLAG_VEB_MODE_ENABLED; 12805 i40e_do_reset(pf, I40E_PF_RESET_FLAG, true); 12806 break; 12807 } 12808 } 12809 12810 return 0; 12811 } 12812 12813 /** 12814 * i40e_ndo_bridge_getlink - Get the hardware bridge mode 12815 * @skb: skb buff 12816 * @pid: process id 12817 * @seq: RTNL message seq # 12818 * @dev: the netdev being configured 12819 * @filter_mask: unused 12820 * @nlflags: netlink flags passed in 12821 * 12822 * Return the mode in which the hardware bridge is operating in 12823 * i.e VEB or VEPA. 12824 **/ 12825 static int i40e_ndo_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq, 12826 struct net_device *dev, 12827 u32 __always_unused filter_mask, 12828 int nlflags) 12829 { 12830 struct i40e_netdev_priv *np = netdev_priv(dev); 12831 struct i40e_vsi *vsi = np->vsi; 12832 struct i40e_pf *pf = vsi->back; 12833 struct i40e_veb *veb = NULL; 12834 int i; 12835 12836 /* Only for PF VSI for now */ 12837 if (vsi->seid != pf->vsi[pf->lan_vsi]->seid) 12838 return -EOPNOTSUPP; 12839 12840 /* Find the HW bridge for the PF VSI */ 12841 for (i = 0; i < I40E_MAX_VEB && !veb; i++) { 12842 if (pf->veb[i] && pf->veb[i]->seid == vsi->uplink_seid) 12843 veb = pf->veb[i]; 12844 } 12845 12846 if (!veb) 12847 return 0; 12848 12849 return ndo_dflt_bridge_getlink(skb, pid, seq, dev, veb->bridge_mode, 12850 0, 0, nlflags, filter_mask, NULL); 12851 } 12852 12853 /** 12854 * i40e_features_check - Validate encapsulated packet conforms to limits 12855 * @skb: skb buff 12856 * @dev: This physical port's netdev 12857 * @features: Offload features that the stack believes apply 12858 **/ 12859 static netdev_features_t i40e_features_check(struct sk_buff *skb, 12860 struct net_device *dev, 12861 netdev_features_t features) 12862 { 12863 size_t len; 12864 12865 /* No point in doing any of this if neither checksum nor GSO are 12866 * being requested for this frame. We can rule out both by just 12867 * checking for CHECKSUM_PARTIAL 12868 */ 12869 if (skb->ip_summed != CHECKSUM_PARTIAL) 12870 return features; 12871 12872 /* We cannot support GSO if the MSS is going to be less than 12873 * 64 bytes. If it is then we need to drop support for GSO. 12874 */ 12875 if (skb_is_gso(skb) && (skb_shinfo(skb)->gso_size < 64)) 12876 features &= ~NETIF_F_GSO_MASK; 12877 12878 /* MACLEN can support at most 63 words */ 12879 len = skb_network_header(skb) - skb->data; 12880 if (len & ~(63 * 2)) 12881 goto out_err; 12882 12883 /* IPLEN and EIPLEN can support at most 127 dwords */ 12884 len = skb_transport_header(skb) - skb_network_header(skb); 12885 if (len & ~(127 * 4)) 12886 goto out_err; 12887 12888 if (skb->encapsulation) { 12889 /* L4TUNLEN can support 127 words */ 12890 len = skb_inner_network_header(skb) - skb_transport_header(skb); 12891 if (len & ~(127 * 2)) 12892 goto out_err; 12893 12894 /* IPLEN can support at most 127 dwords */ 12895 len = skb_inner_transport_header(skb) - 12896 skb_inner_network_header(skb); 12897 if (len & ~(127 * 4)) 12898 goto out_err; 12899 } 12900 12901 /* No need to validate L4LEN as TCP is the only protocol with a 12902 * a flexible value and we support all possible values supported 12903 * by TCP, which is at most 15 dwords 12904 */ 12905 12906 return features; 12907 out_err: 12908 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 12909 } 12910 12911 /** 12912 * i40e_xdp_setup - add/remove an XDP program 12913 * @vsi: VSI to changed 12914 * @prog: XDP program 12915 * @extack: netlink extended ack 12916 **/ 12917 static int i40e_xdp_setup(struct i40e_vsi *vsi, struct bpf_prog *prog, 12918 struct netlink_ext_ack *extack) 12919 { 12920 int frame_size = vsi->netdev->mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN; 12921 struct i40e_pf *pf = vsi->back; 12922 struct bpf_prog *old_prog; 12923 bool need_reset; 12924 int i; 12925 12926 /* Don't allow frames that span over multiple buffers */ 12927 if (frame_size > vsi->rx_buf_len) { 12928 NL_SET_ERR_MSG_MOD(extack, "MTU too large to enable XDP"); 12929 return -EINVAL; 12930 } 12931 12932 /* When turning XDP on->off/off->on we reset and rebuild the rings. */ 12933 need_reset = (i40e_enabled_xdp_vsi(vsi) != !!prog); 12934 12935 if (need_reset) 12936 i40e_prep_for_reset(pf); 12937 12938 old_prog = xchg(&vsi->xdp_prog, prog); 12939 12940 if (need_reset) { 12941 if (!prog) 12942 /* Wait until ndo_xsk_wakeup completes. */ 12943 synchronize_rcu(); 12944 i40e_reset_and_rebuild(pf, true, true); 12945 } 12946 12947 for (i = 0; i < vsi->num_queue_pairs; i++) 12948 WRITE_ONCE(vsi->rx_rings[i]->xdp_prog, vsi->xdp_prog); 12949 12950 if (old_prog) 12951 bpf_prog_put(old_prog); 12952 12953 /* Kick start the NAPI context if there is an AF_XDP socket open 12954 * on that queue id. This so that receiving will start. 12955 */ 12956 if (need_reset && prog) 12957 for (i = 0; i < vsi->num_queue_pairs; i++) 12958 if (vsi->xdp_rings[i]->xsk_pool) 12959 (void)i40e_xsk_wakeup(vsi->netdev, i, 12960 XDP_WAKEUP_RX); 12961 12962 return 0; 12963 } 12964 12965 /** 12966 * i40e_enter_busy_conf - Enters busy config state 12967 * @vsi: vsi 12968 * 12969 * Returns 0 on success, <0 for failure. 12970 **/ 12971 static int i40e_enter_busy_conf(struct i40e_vsi *vsi) 12972 { 12973 struct i40e_pf *pf = vsi->back; 12974 int timeout = 50; 12975 12976 while (test_and_set_bit(__I40E_CONFIG_BUSY, pf->state)) { 12977 timeout--; 12978 if (!timeout) 12979 return -EBUSY; 12980 usleep_range(1000, 2000); 12981 } 12982 12983 return 0; 12984 } 12985 12986 /** 12987 * i40e_exit_busy_conf - Exits busy config state 12988 * @vsi: vsi 12989 **/ 12990 static void i40e_exit_busy_conf(struct i40e_vsi *vsi) 12991 { 12992 struct i40e_pf *pf = vsi->back; 12993 12994 clear_bit(__I40E_CONFIG_BUSY, pf->state); 12995 } 12996 12997 /** 12998 * i40e_queue_pair_reset_stats - Resets all statistics for a queue pair 12999 * @vsi: vsi 13000 * @queue_pair: queue pair 13001 **/ 13002 static void i40e_queue_pair_reset_stats(struct i40e_vsi *vsi, int queue_pair) 13003 { 13004 memset(&vsi->rx_rings[queue_pair]->rx_stats, 0, 13005 sizeof(vsi->rx_rings[queue_pair]->rx_stats)); 13006 memset(&vsi->tx_rings[queue_pair]->stats, 0, 13007 sizeof(vsi->tx_rings[queue_pair]->stats)); 13008 if (i40e_enabled_xdp_vsi(vsi)) { 13009 memset(&vsi->xdp_rings[queue_pair]->stats, 0, 13010 sizeof(vsi->xdp_rings[queue_pair]->stats)); 13011 } 13012 } 13013 13014 /** 13015 * i40e_queue_pair_clean_rings - Cleans all the rings of a queue pair 13016 * @vsi: vsi 13017 * @queue_pair: queue pair 13018 **/ 13019 static void i40e_queue_pair_clean_rings(struct i40e_vsi *vsi, int queue_pair) 13020 { 13021 i40e_clean_tx_ring(vsi->tx_rings[queue_pair]); 13022 if (i40e_enabled_xdp_vsi(vsi)) { 13023 /* Make sure that in-progress ndo_xdp_xmit calls are 13024 * completed. 13025 */ 13026 synchronize_rcu(); 13027 i40e_clean_tx_ring(vsi->xdp_rings[queue_pair]); 13028 } 13029 i40e_clean_rx_ring(vsi->rx_rings[queue_pair]); 13030 } 13031 13032 /** 13033 * i40e_queue_pair_toggle_napi - Enables/disables NAPI for a queue pair 13034 * @vsi: vsi 13035 * @queue_pair: queue pair 13036 * @enable: true for enable, false for disable 13037 **/ 13038 static void i40e_queue_pair_toggle_napi(struct i40e_vsi *vsi, int queue_pair, 13039 bool enable) 13040 { 13041 struct i40e_ring *rxr = vsi->rx_rings[queue_pair]; 13042 struct i40e_q_vector *q_vector = rxr->q_vector; 13043 13044 if (!vsi->netdev) 13045 return; 13046 13047 /* All rings in a qp belong to the same qvector. */ 13048 if (q_vector->rx.ring || q_vector->tx.ring) { 13049 if (enable) 13050 napi_enable(&q_vector->napi); 13051 else 13052 napi_disable(&q_vector->napi); 13053 } 13054 } 13055 13056 /** 13057 * i40e_queue_pair_toggle_rings - Enables/disables all rings for a queue pair 13058 * @vsi: vsi 13059 * @queue_pair: queue pair 13060 * @enable: true for enable, false for disable 13061 * 13062 * Returns 0 on success, <0 on failure. 13063 **/ 13064 static int i40e_queue_pair_toggle_rings(struct i40e_vsi *vsi, int queue_pair, 13065 bool enable) 13066 { 13067 struct i40e_pf *pf = vsi->back; 13068 int pf_q, ret = 0; 13069 13070 pf_q = vsi->base_queue + queue_pair; 13071 ret = i40e_control_wait_tx_q(vsi->seid, pf, pf_q, 13072 false /*is xdp*/, enable); 13073 if (ret) { 13074 dev_info(&pf->pdev->dev, 13075 "VSI seid %d Tx ring %d %sable timeout\n", 13076 vsi->seid, pf_q, (enable ? "en" : "dis")); 13077 return ret; 13078 } 13079 13080 i40e_control_rx_q(pf, pf_q, enable); 13081 ret = i40e_pf_rxq_wait(pf, pf_q, enable); 13082 if (ret) { 13083 dev_info(&pf->pdev->dev, 13084 "VSI seid %d Rx ring %d %sable timeout\n", 13085 vsi->seid, pf_q, (enable ? "en" : "dis")); 13086 return ret; 13087 } 13088 13089 /* Due to HW errata, on Rx disable only, the register can 13090 * indicate done before it really is. Needs 50ms to be sure 13091 */ 13092 if (!enable) 13093 mdelay(50); 13094 13095 if (!i40e_enabled_xdp_vsi(vsi)) 13096 return ret; 13097 13098 ret = i40e_control_wait_tx_q(vsi->seid, pf, 13099 pf_q + vsi->alloc_queue_pairs, 13100 true /*is xdp*/, enable); 13101 if (ret) { 13102 dev_info(&pf->pdev->dev, 13103 "VSI seid %d XDP Tx ring %d %sable timeout\n", 13104 vsi->seid, pf_q, (enable ? "en" : "dis")); 13105 } 13106 13107 return ret; 13108 } 13109 13110 /** 13111 * i40e_queue_pair_enable_irq - Enables interrupts for a queue pair 13112 * @vsi: vsi 13113 * @queue_pair: queue_pair 13114 **/ 13115 static void i40e_queue_pair_enable_irq(struct i40e_vsi *vsi, int queue_pair) 13116 { 13117 struct i40e_ring *rxr = vsi->rx_rings[queue_pair]; 13118 struct i40e_pf *pf = vsi->back; 13119 struct i40e_hw *hw = &pf->hw; 13120 13121 /* All rings in a qp belong to the same qvector. */ 13122 if (pf->flags & I40E_FLAG_MSIX_ENABLED) 13123 i40e_irq_dynamic_enable(vsi, rxr->q_vector->v_idx); 13124 else 13125 i40e_irq_dynamic_enable_icr0(pf); 13126 13127 i40e_flush(hw); 13128 } 13129 13130 /** 13131 * i40e_queue_pair_disable_irq - Disables interrupts for a queue pair 13132 * @vsi: vsi 13133 * @queue_pair: queue_pair 13134 **/ 13135 static void i40e_queue_pair_disable_irq(struct i40e_vsi *vsi, int queue_pair) 13136 { 13137 struct i40e_ring *rxr = vsi->rx_rings[queue_pair]; 13138 struct i40e_pf *pf = vsi->back; 13139 struct i40e_hw *hw = &pf->hw; 13140 13141 /* For simplicity, instead of removing the qp interrupt causes 13142 * from the interrupt linked list, we simply disable the interrupt, and 13143 * leave the list intact. 13144 * 13145 * All rings in a qp belong to the same qvector. 13146 */ 13147 if (pf->flags & I40E_FLAG_MSIX_ENABLED) { 13148 u32 intpf = vsi->base_vector + rxr->q_vector->v_idx; 13149 13150 wr32(hw, I40E_PFINT_DYN_CTLN(intpf - 1), 0); 13151 i40e_flush(hw); 13152 synchronize_irq(pf->msix_entries[intpf].vector); 13153 } else { 13154 /* Legacy and MSI mode - this stops all interrupt handling */ 13155 wr32(hw, I40E_PFINT_ICR0_ENA, 0); 13156 wr32(hw, I40E_PFINT_DYN_CTL0, 0); 13157 i40e_flush(hw); 13158 synchronize_irq(pf->pdev->irq); 13159 } 13160 } 13161 13162 /** 13163 * i40e_queue_pair_disable - Disables a queue pair 13164 * @vsi: vsi 13165 * @queue_pair: queue pair 13166 * 13167 * Returns 0 on success, <0 on failure. 13168 **/ 13169 int i40e_queue_pair_disable(struct i40e_vsi *vsi, int queue_pair) 13170 { 13171 int err; 13172 13173 err = i40e_enter_busy_conf(vsi); 13174 if (err) 13175 return err; 13176 13177 i40e_queue_pair_disable_irq(vsi, queue_pair); 13178 err = i40e_queue_pair_toggle_rings(vsi, queue_pair, false /* off */); 13179 i40e_queue_pair_toggle_napi(vsi, queue_pair, false /* off */); 13180 i40e_queue_pair_clean_rings(vsi, queue_pair); 13181 i40e_queue_pair_reset_stats(vsi, queue_pair); 13182 13183 return err; 13184 } 13185 13186 /** 13187 * i40e_queue_pair_enable - Enables a queue pair 13188 * @vsi: vsi 13189 * @queue_pair: queue pair 13190 * 13191 * Returns 0 on success, <0 on failure. 13192 **/ 13193 int i40e_queue_pair_enable(struct i40e_vsi *vsi, int queue_pair) 13194 { 13195 int err; 13196 13197 err = i40e_configure_tx_ring(vsi->tx_rings[queue_pair]); 13198 if (err) 13199 return err; 13200 13201 if (i40e_enabled_xdp_vsi(vsi)) { 13202 err = i40e_configure_tx_ring(vsi->xdp_rings[queue_pair]); 13203 if (err) 13204 return err; 13205 } 13206 13207 err = i40e_configure_rx_ring(vsi->rx_rings[queue_pair]); 13208 if (err) 13209 return err; 13210 13211 err = i40e_queue_pair_toggle_rings(vsi, queue_pair, true /* on */); 13212 i40e_queue_pair_toggle_napi(vsi, queue_pair, true /* on */); 13213 i40e_queue_pair_enable_irq(vsi, queue_pair); 13214 13215 i40e_exit_busy_conf(vsi); 13216 13217 return err; 13218 } 13219 13220 /** 13221 * i40e_xdp - implements ndo_bpf for i40e 13222 * @dev: netdevice 13223 * @xdp: XDP command 13224 **/ 13225 static int i40e_xdp(struct net_device *dev, 13226 struct netdev_bpf *xdp) 13227 { 13228 struct i40e_netdev_priv *np = netdev_priv(dev); 13229 struct i40e_vsi *vsi = np->vsi; 13230 13231 if (vsi->type != I40E_VSI_MAIN) 13232 return -EINVAL; 13233 13234 switch (xdp->command) { 13235 case XDP_SETUP_PROG: 13236 return i40e_xdp_setup(vsi, xdp->prog, xdp->extack); 13237 case XDP_SETUP_XSK_POOL: 13238 return i40e_xsk_pool_setup(vsi, xdp->xsk.pool, 13239 xdp->xsk.queue_id); 13240 default: 13241 return -EINVAL; 13242 } 13243 } 13244 13245 static const struct net_device_ops i40e_netdev_ops = { 13246 .ndo_open = i40e_open, 13247 .ndo_stop = i40e_close, 13248 .ndo_start_xmit = i40e_lan_xmit_frame, 13249 .ndo_get_stats64 = i40e_get_netdev_stats_struct, 13250 .ndo_set_rx_mode = i40e_set_rx_mode, 13251 .ndo_validate_addr = eth_validate_addr, 13252 .ndo_set_mac_address = i40e_set_mac, 13253 .ndo_change_mtu = i40e_change_mtu, 13254 .ndo_do_ioctl = i40e_ioctl, 13255 .ndo_tx_timeout = i40e_tx_timeout, 13256 .ndo_vlan_rx_add_vid = i40e_vlan_rx_add_vid, 13257 .ndo_vlan_rx_kill_vid = i40e_vlan_rx_kill_vid, 13258 #ifdef CONFIG_NET_POLL_CONTROLLER 13259 .ndo_poll_controller = i40e_netpoll, 13260 #endif 13261 .ndo_setup_tc = __i40e_setup_tc, 13262 .ndo_set_features = i40e_set_features, 13263 .ndo_set_vf_mac = i40e_ndo_set_vf_mac, 13264 .ndo_set_vf_vlan = i40e_ndo_set_vf_port_vlan, 13265 .ndo_get_vf_stats = i40e_get_vf_stats, 13266 .ndo_set_vf_rate = i40e_ndo_set_vf_bw, 13267 .ndo_get_vf_config = i40e_ndo_get_vf_config, 13268 .ndo_set_vf_link_state = i40e_ndo_set_vf_link_state, 13269 .ndo_set_vf_spoofchk = i40e_ndo_set_vf_spoofchk, 13270 .ndo_set_vf_trust = i40e_ndo_set_vf_trust, 13271 .ndo_get_phys_port_id = i40e_get_phys_port_id, 13272 .ndo_fdb_add = i40e_ndo_fdb_add, 13273 .ndo_features_check = i40e_features_check, 13274 .ndo_bridge_getlink = i40e_ndo_bridge_getlink, 13275 .ndo_bridge_setlink = i40e_ndo_bridge_setlink, 13276 .ndo_bpf = i40e_xdp, 13277 .ndo_xdp_xmit = i40e_xdp_xmit, 13278 .ndo_xsk_wakeup = i40e_xsk_wakeup, 13279 .ndo_dfwd_add_station = i40e_fwd_add, 13280 .ndo_dfwd_del_station = i40e_fwd_del, 13281 }; 13282 13283 /** 13284 * i40e_config_netdev - Setup the netdev flags 13285 * @vsi: the VSI being configured 13286 * 13287 * Returns 0 on success, negative value on failure 13288 **/ 13289 static int i40e_config_netdev(struct i40e_vsi *vsi) 13290 { 13291 struct i40e_pf *pf = vsi->back; 13292 struct i40e_hw *hw = &pf->hw; 13293 struct i40e_netdev_priv *np; 13294 struct net_device *netdev; 13295 u8 broadcast[ETH_ALEN]; 13296 u8 mac_addr[ETH_ALEN]; 13297 int etherdev_size; 13298 netdev_features_t hw_enc_features; 13299 netdev_features_t hw_features; 13300 13301 etherdev_size = sizeof(struct i40e_netdev_priv); 13302 netdev = alloc_etherdev_mq(etherdev_size, vsi->alloc_queue_pairs); 13303 if (!netdev) 13304 return -ENOMEM; 13305 13306 vsi->netdev = netdev; 13307 np = netdev_priv(netdev); 13308 np->vsi = vsi; 13309 13310 hw_enc_features = NETIF_F_SG | 13311 NETIF_F_IP_CSUM | 13312 NETIF_F_IPV6_CSUM | 13313 NETIF_F_HIGHDMA | 13314 NETIF_F_SOFT_FEATURES | 13315 NETIF_F_TSO | 13316 NETIF_F_TSO_ECN | 13317 NETIF_F_TSO6 | 13318 NETIF_F_GSO_GRE | 13319 NETIF_F_GSO_GRE_CSUM | 13320 NETIF_F_GSO_PARTIAL | 13321 NETIF_F_GSO_IPXIP4 | 13322 NETIF_F_GSO_IPXIP6 | 13323 NETIF_F_GSO_UDP_TUNNEL | 13324 NETIF_F_GSO_UDP_TUNNEL_CSUM | 13325 NETIF_F_GSO_UDP_L4 | 13326 NETIF_F_SCTP_CRC | 13327 NETIF_F_RXHASH | 13328 NETIF_F_RXCSUM | 13329 0; 13330 13331 if (!(pf->hw_features & I40E_HW_OUTER_UDP_CSUM_CAPABLE)) 13332 netdev->gso_partial_features |= NETIF_F_GSO_UDP_TUNNEL_CSUM; 13333 13334 netdev->udp_tunnel_nic_info = &pf->udp_tunnel_nic; 13335 13336 netdev->gso_partial_features |= NETIF_F_GSO_GRE_CSUM; 13337 13338 netdev->hw_enc_features |= hw_enc_features; 13339 13340 /* record features VLANs can make use of */ 13341 netdev->vlan_features |= hw_enc_features | NETIF_F_TSO_MANGLEID; 13342 13343 /* enable macvlan offloads */ 13344 netdev->hw_features |= NETIF_F_HW_L2FW_DOFFLOAD; 13345 13346 hw_features = hw_enc_features | 13347 NETIF_F_HW_VLAN_CTAG_TX | 13348 NETIF_F_HW_VLAN_CTAG_RX; 13349 13350 if (!(pf->flags & I40E_FLAG_MFP_ENABLED)) 13351 hw_features |= NETIF_F_NTUPLE | NETIF_F_HW_TC; 13352 13353 netdev->hw_features |= hw_features; 13354 13355 netdev->features |= hw_features | NETIF_F_HW_VLAN_CTAG_FILTER; 13356 netdev->hw_enc_features |= NETIF_F_TSO_MANGLEID; 13357 13358 if (vsi->type == I40E_VSI_MAIN) { 13359 SET_NETDEV_DEV(netdev, &pf->pdev->dev); 13360 ether_addr_copy(mac_addr, hw->mac.perm_addr); 13361 /* The following steps are necessary for two reasons. First, 13362 * some older NVM configurations load a default MAC-VLAN 13363 * filter that will accept any tagged packet, and we want to 13364 * replace this with a normal filter. Additionally, it is 13365 * possible our MAC address was provided by the platform using 13366 * Open Firmware or similar. 13367 * 13368 * Thus, we need to remove the default filter and install one 13369 * specific to the MAC address. 13370 */ 13371 i40e_rm_default_mac_filter(vsi, mac_addr); 13372 spin_lock_bh(&vsi->mac_filter_hash_lock); 13373 i40e_add_mac_filter(vsi, mac_addr); 13374 spin_unlock_bh(&vsi->mac_filter_hash_lock); 13375 } else { 13376 /* Relate the VSI_VMDQ name to the VSI_MAIN name. Note that we 13377 * are still limited by IFNAMSIZ, but we're adding 'v%d\0' to 13378 * the end, which is 4 bytes long, so force truncation of the 13379 * original name by IFNAMSIZ - 4 13380 */ 13381 snprintf(netdev->name, IFNAMSIZ, "%.*sv%%d", 13382 IFNAMSIZ - 4, 13383 pf->vsi[pf->lan_vsi]->netdev->name); 13384 eth_random_addr(mac_addr); 13385 13386 spin_lock_bh(&vsi->mac_filter_hash_lock); 13387 i40e_add_mac_filter(vsi, mac_addr); 13388 spin_unlock_bh(&vsi->mac_filter_hash_lock); 13389 } 13390 13391 /* Add the broadcast filter so that we initially will receive 13392 * broadcast packets. Note that when a new VLAN is first added the 13393 * driver will convert all filters marked I40E_VLAN_ANY into VLAN 13394 * specific filters as part of transitioning into "vlan" operation. 13395 * When more VLANs are added, the driver will copy each existing MAC 13396 * filter and add it for the new VLAN. 13397 * 13398 * Broadcast filters are handled specially by 13399 * i40e_sync_filters_subtask, as the driver must to set the broadcast 13400 * promiscuous bit instead of adding this directly as a MAC/VLAN 13401 * filter. The subtask will update the correct broadcast promiscuous 13402 * bits as VLANs become active or inactive. 13403 */ 13404 eth_broadcast_addr(broadcast); 13405 spin_lock_bh(&vsi->mac_filter_hash_lock); 13406 i40e_add_mac_filter(vsi, broadcast); 13407 spin_unlock_bh(&vsi->mac_filter_hash_lock); 13408 13409 ether_addr_copy(netdev->dev_addr, mac_addr); 13410 ether_addr_copy(netdev->perm_addr, mac_addr); 13411 13412 /* i40iw_net_event() reads 16 bytes from neigh->primary_key */ 13413 netdev->neigh_priv_len = sizeof(u32) * 4; 13414 13415 netdev->priv_flags |= IFF_UNICAST_FLT; 13416 netdev->priv_flags |= IFF_SUPP_NOFCS; 13417 /* Setup netdev TC information */ 13418 i40e_vsi_config_netdev_tc(vsi, vsi->tc_config.enabled_tc); 13419 13420 netdev->netdev_ops = &i40e_netdev_ops; 13421 netdev->watchdog_timeo = 5 * HZ; 13422 i40e_set_ethtool_ops(netdev); 13423 13424 /* MTU range: 68 - 9706 */ 13425 netdev->min_mtu = ETH_MIN_MTU; 13426 netdev->max_mtu = I40E_MAX_RXBUFFER - I40E_PACKET_HDR_PAD; 13427 13428 return 0; 13429 } 13430 13431 /** 13432 * i40e_vsi_delete - Delete a VSI from the switch 13433 * @vsi: the VSI being removed 13434 * 13435 * Returns 0 on success, negative value on failure 13436 **/ 13437 static void i40e_vsi_delete(struct i40e_vsi *vsi) 13438 { 13439 /* remove default VSI is not allowed */ 13440 if (vsi == vsi->back->vsi[vsi->back->lan_vsi]) 13441 return; 13442 13443 i40e_aq_delete_element(&vsi->back->hw, vsi->seid, NULL); 13444 } 13445 13446 /** 13447 * i40e_is_vsi_uplink_mode_veb - Check if the VSI's uplink bridge mode is VEB 13448 * @vsi: the VSI being queried 13449 * 13450 * Returns 1 if HW bridge mode is VEB and return 0 in case of VEPA mode 13451 **/ 13452 int i40e_is_vsi_uplink_mode_veb(struct i40e_vsi *vsi) 13453 { 13454 struct i40e_veb *veb; 13455 struct i40e_pf *pf = vsi->back; 13456 13457 /* Uplink is not a bridge so default to VEB */ 13458 if (vsi->veb_idx >= I40E_MAX_VEB) 13459 return 1; 13460 13461 veb = pf->veb[vsi->veb_idx]; 13462 if (!veb) { 13463 dev_info(&pf->pdev->dev, 13464 "There is no veb associated with the bridge\n"); 13465 return -ENOENT; 13466 } 13467 13468 /* Uplink is a bridge in VEPA mode */ 13469 if (veb->bridge_mode & BRIDGE_MODE_VEPA) { 13470 return 0; 13471 } else { 13472 /* Uplink is a bridge in VEB mode */ 13473 return 1; 13474 } 13475 13476 /* VEPA is now default bridge, so return 0 */ 13477 return 0; 13478 } 13479 13480 /** 13481 * i40e_add_vsi - Add a VSI to the switch 13482 * @vsi: the VSI being configured 13483 * 13484 * This initializes a VSI context depending on the VSI type to be added and 13485 * passes it down to the add_vsi aq command. 13486 **/ 13487 static int i40e_add_vsi(struct i40e_vsi *vsi) 13488 { 13489 int ret = -ENODEV; 13490 struct i40e_pf *pf = vsi->back; 13491 struct i40e_hw *hw = &pf->hw; 13492 struct i40e_vsi_context ctxt; 13493 struct i40e_mac_filter *f; 13494 struct hlist_node *h; 13495 int bkt; 13496 13497 u8 enabled_tc = 0x1; /* TC0 enabled */ 13498 int f_count = 0; 13499 13500 memset(&ctxt, 0, sizeof(ctxt)); 13501 switch (vsi->type) { 13502 case I40E_VSI_MAIN: 13503 /* The PF's main VSI is already setup as part of the 13504 * device initialization, so we'll not bother with 13505 * the add_vsi call, but we will retrieve the current 13506 * VSI context. 13507 */ 13508 ctxt.seid = pf->main_vsi_seid; 13509 ctxt.pf_num = pf->hw.pf_id; 13510 ctxt.vf_num = 0; 13511 ret = i40e_aq_get_vsi_params(&pf->hw, &ctxt, NULL); 13512 ctxt.flags = I40E_AQ_VSI_TYPE_PF; 13513 if (ret) { 13514 dev_info(&pf->pdev->dev, 13515 "couldn't get PF vsi config, err %s aq_err %s\n", 13516 i40e_stat_str(&pf->hw, ret), 13517 i40e_aq_str(&pf->hw, 13518 pf->hw.aq.asq_last_status)); 13519 return -ENOENT; 13520 } 13521 vsi->info = ctxt.info; 13522 vsi->info.valid_sections = 0; 13523 13524 vsi->seid = ctxt.seid; 13525 vsi->id = ctxt.vsi_number; 13526 13527 enabled_tc = i40e_pf_get_tc_map(pf); 13528 13529 /* Source pruning is enabled by default, so the flag is 13530 * negative logic - if it's set, we need to fiddle with 13531 * the VSI to disable source pruning. 13532 */ 13533 if (pf->flags & I40E_FLAG_SOURCE_PRUNING_DISABLED) { 13534 memset(&ctxt, 0, sizeof(ctxt)); 13535 ctxt.seid = pf->main_vsi_seid; 13536 ctxt.pf_num = pf->hw.pf_id; 13537 ctxt.vf_num = 0; 13538 ctxt.info.valid_sections |= 13539 cpu_to_le16(I40E_AQ_VSI_PROP_SWITCH_VALID); 13540 ctxt.info.switch_id = 13541 cpu_to_le16(I40E_AQ_VSI_SW_ID_FLAG_LOCAL_LB); 13542 ret = i40e_aq_update_vsi_params(hw, &ctxt, NULL); 13543 if (ret) { 13544 dev_info(&pf->pdev->dev, 13545 "update vsi failed, err %s aq_err %s\n", 13546 i40e_stat_str(&pf->hw, ret), 13547 i40e_aq_str(&pf->hw, 13548 pf->hw.aq.asq_last_status)); 13549 ret = -ENOENT; 13550 goto err; 13551 } 13552 } 13553 13554 /* MFP mode setup queue map and update VSI */ 13555 if ((pf->flags & I40E_FLAG_MFP_ENABLED) && 13556 !(pf->hw.func_caps.iscsi)) { /* NIC type PF */ 13557 memset(&ctxt, 0, sizeof(ctxt)); 13558 ctxt.seid = pf->main_vsi_seid; 13559 ctxt.pf_num = pf->hw.pf_id; 13560 ctxt.vf_num = 0; 13561 i40e_vsi_setup_queue_map(vsi, &ctxt, enabled_tc, false); 13562 ret = i40e_aq_update_vsi_params(hw, &ctxt, NULL); 13563 if (ret) { 13564 dev_info(&pf->pdev->dev, 13565 "update vsi failed, err %s aq_err %s\n", 13566 i40e_stat_str(&pf->hw, ret), 13567 i40e_aq_str(&pf->hw, 13568 pf->hw.aq.asq_last_status)); 13569 ret = -ENOENT; 13570 goto err; 13571 } 13572 /* update the local VSI info queue map */ 13573 i40e_vsi_update_queue_map(vsi, &ctxt); 13574 vsi->info.valid_sections = 0; 13575 } else { 13576 /* Default/Main VSI is only enabled for TC0 13577 * reconfigure it to enable all TCs that are 13578 * available on the port in SFP mode. 13579 * For MFP case the iSCSI PF would use this 13580 * flow to enable LAN+iSCSI TC. 13581 */ 13582 ret = i40e_vsi_config_tc(vsi, enabled_tc); 13583 if (ret) { 13584 /* Single TC condition is not fatal, 13585 * message and continue 13586 */ 13587 dev_info(&pf->pdev->dev, 13588 "failed to configure TCs for main VSI tc_map 0x%08x, err %s aq_err %s\n", 13589 enabled_tc, 13590 i40e_stat_str(&pf->hw, ret), 13591 i40e_aq_str(&pf->hw, 13592 pf->hw.aq.asq_last_status)); 13593 } 13594 } 13595 break; 13596 13597 case I40E_VSI_FDIR: 13598 ctxt.pf_num = hw->pf_id; 13599 ctxt.vf_num = 0; 13600 ctxt.uplink_seid = vsi->uplink_seid; 13601 ctxt.connection_type = I40E_AQ_VSI_CONN_TYPE_NORMAL; 13602 ctxt.flags = I40E_AQ_VSI_TYPE_PF; 13603 if ((pf->flags & I40E_FLAG_VEB_MODE_ENABLED) && 13604 (i40e_is_vsi_uplink_mode_veb(vsi))) { 13605 ctxt.info.valid_sections |= 13606 cpu_to_le16(I40E_AQ_VSI_PROP_SWITCH_VALID); 13607 ctxt.info.switch_id = 13608 cpu_to_le16(I40E_AQ_VSI_SW_ID_FLAG_ALLOW_LB); 13609 } 13610 i40e_vsi_setup_queue_map(vsi, &ctxt, enabled_tc, true); 13611 break; 13612 13613 case I40E_VSI_VMDQ2: 13614 ctxt.pf_num = hw->pf_id; 13615 ctxt.vf_num = 0; 13616 ctxt.uplink_seid = vsi->uplink_seid; 13617 ctxt.connection_type = I40E_AQ_VSI_CONN_TYPE_NORMAL; 13618 ctxt.flags = I40E_AQ_VSI_TYPE_VMDQ2; 13619 13620 /* This VSI is connected to VEB so the switch_id 13621 * should be set to zero by default. 13622 */ 13623 if (i40e_is_vsi_uplink_mode_veb(vsi)) { 13624 ctxt.info.valid_sections |= 13625 cpu_to_le16(I40E_AQ_VSI_PROP_SWITCH_VALID); 13626 ctxt.info.switch_id = 13627 cpu_to_le16(I40E_AQ_VSI_SW_ID_FLAG_ALLOW_LB); 13628 } 13629 13630 /* Setup the VSI tx/rx queue map for TC0 only for now */ 13631 i40e_vsi_setup_queue_map(vsi, &ctxt, enabled_tc, true); 13632 break; 13633 13634 case I40E_VSI_SRIOV: 13635 ctxt.pf_num = hw->pf_id; 13636 ctxt.vf_num = vsi->vf_id + hw->func_caps.vf_base_id; 13637 ctxt.uplink_seid = vsi->uplink_seid; 13638 ctxt.connection_type = I40E_AQ_VSI_CONN_TYPE_NORMAL; 13639 ctxt.flags = I40E_AQ_VSI_TYPE_VF; 13640 13641 /* This VSI is connected to VEB so the switch_id 13642 * should be set to zero by default. 13643 */ 13644 if (i40e_is_vsi_uplink_mode_veb(vsi)) { 13645 ctxt.info.valid_sections |= 13646 cpu_to_le16(I40E_AQ_VSI_PROP_SWITCH_VALID); 13647 ctxt.info.switch_id = 13648 cpu_to_le16(I40E_AQ_VSI_SW_ID_FLAG_ALLOW_LB); 13649 } 13650 13651 if (vsi->back->flags & I40E_FLAG_IWARP_ENABLED) { 13652 ctxt.info.valid_sections |= 13653 cpu_to_le16(I40E_AQ_VSI_PROP_QUEUE_OPT_VALID); 13654 ctxt.info.queueing_opt_flags |= 13655 (I40E_AQ_VSI_QUE_OPT_TCP_ENA | 13656 I40E_AQ_VSI_QUE_OPT_RSS_LUT_VSI); 13657 } 13658 13659 ctxt.info.valid_sections |= cpu_to_le16(I40E_AQ_VSI_PROP_VLAN_VALID); 13660 ctxt.info.port_vlan_flags |= I40E_AQ_VSI_PVLAN_MODE_ALL; 13661 if (pf->vf[vsi->vf_id].spoofchk) { 13662 ctxt.info.valid_sections |= 13663 cpu_to_le16(I40E_AQ_VSI_PROP_SECURITY_VALID); 13664 ctxt.info.sec_flags |= 13665 (I40E_AQ_VSI_SEC_FLAG_ENABLE_VLAN_CHK | 13666 I40E_AQ_VSI_SEC_FLAG_ENABLE_MAC_CHK); 13667 } 13668 /* Setup the VSI tx/rx queue map for TC0 only for now */ 13669 i40e_vsi_setup_queue_map(vsi, &ctxt, enabled_tc, true); 13670 break; 13671 13672 case I40E_VSI_IWARP: 13673 /* send down message to iWARP */ 13674 break; 13675 13676 default: 13677 return -ENODEV; 13678 } 13679 13680 if (vsi->type != I40E_VSI_MAIN) { 13681 ret = i40e_aq_add_vsi(hw, &ctxt, NULL); 13682 if (ret) { 13683 dev_info(&vsi->back->pdev->dev, 13684 "add vsi failed, err %s aq_err %s\n", 13685 i40e_stat_str(&pf->hw, ret), 13686 i40e_aq_str(&pf->hw, 13687 pf->hw.aq.asq_last_status)); 13688 ret = -ENOENT; 13689 goto err; 13690 } 13691 vsi->info = ctxt.info; 13692 vsi->info.valid_sections = 0; 13693 vsi->seid = ctxt.seid; 13694 vsi->id = ctxt.vsi_number; 13695 } 13696 13697 vsi->active_filters = 0; 13698 clear_bit(__I40E_VSI_OVERFLOW_PROMISC, vsi->state); 13699 spin_lock_bh(&vsi->mac_filter_hash_lock); 13700 /* If macvlan filters already exist, force them to get loaded */ 13701 hash_for_each_safe(vsi->mac_filter_hash, bkt, h, f, hlist) { 13702 f->state = I40E_FILTER_NEW; 13703 f_count++; 13704 } 13705 spin_unlock_bh(&vsi->mac_filter_hash_lock); 13706 13707 if (f_count) { 13708 vsi->flags |= I40E_VSI_FLAG_FILTER_CHANGED; 13709 set_bit(__I40E_MACVLAN_SYNC_PENDING, pf->state); 13710 } 13711 13712 /* Update VSI BW information */ 13713 ret = i40e_vsi_get_bw_info(vsi); 13714 if (ret) { 13715 dev_info(&pf->pdev->dev, 13716 "couldn't get vsi bw info, err %s aq_err %s\n", 13717 i40e_stat_str(&pf->hw, ret), 13718 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 13719 /* VSI is already added so not tearing that up */ 13720 ret = 0; 13721 } 13722 13723 err: 13724 return ret; 13725 } 13726 13727 /** 13728 * i40e_vsi_release - Delete a VSI and free its resources 13729 * @vsi: the VSI being removed 13730 * 13731 * Returns 0 on success or < 0 on error 13732 **/ 13733 int i40e_vsi_release(struct i40e_vsi *vsi) 13734 { 13735 struct i40e_mac_filter *f; 13736 struct hlist_node *h; 13737 struct i40e_veb *veb = NULL; 13738 struct i40e_pf *pf; 13739 u16 uplink_seid; 13740 int i, n, bkt; 13741 13742 pf = vsi->back; 13743 13744 /* release of a VEB-owner or last VSI is not allowed */ 13745 if (vsi->flags & I40E_VSI_FLAG_VEB_OWNER) { 13746 dev_info(&pf->pdev->dev, "VSI %d has existing VEB %d\n", 13747 vsi->seid, vsi->uplink_seid); 13748 return -ENODEV; 13749 } 13750 if (vsi == pf->vsi[pf->lan_vsi] && 13751 !test_bit(__I40E_DOWN, pf->state)) { 13752 dev_info(&pf->pdev->dev, "Can't remove PF VSI\n"); 13753 return -ENODEV; 13754 } 13755 13756 uplink_seid = vsi->uplink_seid; 13757 if (vsi->type != I40E_VSI_SRIOV) { 13758 if (vsi->netdev_registered) { 13759 vsi->netdev_registered = false; 13760 if (vsi->netdev) { 13761 /* results in a call to i40e_close() */ 13762 unregister_netdev(vsi->netdev); 13763 } 13764 } else { 13765 i40e_vsi_close(vsi); 13766 } 13767 i40e_vsi_disable_irq(vsi); 13768 } 13769 13770 spin_lock_bh(&vsi->mac_filter_hash_lock); 13771 13772 /* clear the sync flag on all filters */ 13773 if (vsi->netdev) { 13774 __dev_uc_unsync(vsi->netdev, NULL); 13775 __dev_mc_unsync(vsi->netdev, NULL); 13776 } 13777 13778 /* make sure any remaining filters are marked for deletion */ 13779 hash_for_each_safe(vsi->mac_filter_hash, bkt, h, f, hlist) 13780 __i40e_del_filter(vsi, f); 13781 13782 spin_unlock_bh(&vsi->mac_filter_hash_lock); 13783 13784 i40e_sync_vsi_filters(vsi); 13785 13786 i40e_vsi_delete(vsi); 13787 i40e_vsi_free_q_vectors(vsi); 13788 if (vsi->netdev) { 13789 free_netdev(vsi->netdev); 13790 vsi->netdev = NULL; 13791 } 13792 i40e_vsi_clear_rings(vsi); 13793 i40e_vsi_clear(vsi); 13794 13795 /* If this was the last thing on the VEB, except for the 13796 * controlling VSI, remove the VEB, which puts the controlling 13797 * VSI onto the next level down in the switch. 13798 * 13799 * Well, okay, there's one more exception here: don't remove 13800 * the orphan VEBs yet. We'll wait for an explicit remove request 13801 * from up the network stack. 13802 */ 13803 for (n = 0, i = 0; i < pf->num_alloc_vsi; i++) { 13804 if (pf->vsi[i] && 13805 pf->vsi[i]->uplink_seid == uplink_seid && 13806 (pf->vsi[i]->flags & I40E_VSI_FLAG_VEB_OWNER) == 0) { 13807 n++; /* count the VSIs */ 13808 } 13809 } 13810 for (i = 0; i < I40E_MAX_VEB; i++) { 13811 if (!pf->veb[i]) 13812 continue; 13813 if (pf->veb[i]->uplink_seid == uplink_seid) 13814 n++; /* count the VEBs */ 13815 if (pf->veb[i]->seid == uplink_seid) 13816 veb = pf->veb[i]; 13817 } 13818 if (n == 0 && veb && veb->uplink_seid != 0) 13819 i40e_veb_release(veb); 13820 13821 return 0; 13822 } 13823 13824 /** 13825 * i40e_vsi_setup_vectors - Set up the q_vectors for the given VSI 13826 * @vsi: ptr to the VSI 13827 * 13828 * This should only be called after i40e_vsi_mem_alloc() which allocates the 13829 * corresponding SW VSI structure and initializes num_queue_pairs for the 13830 * newly allocated VSI. 13831 * 13832 * Returns 0 on success or negative on failure 13833 **/ 13834 static int i40e_vsi_setup_vectors(struct i40e_vsi *vsi) 13835 { 13836 int ret = -ENOENT; 13837 struct i40e_pf *pf = vsi->back; 13838 13839 if (vsi->q_vectors[0]) { 13840 dev_info(&pf->pdev->dev, "VSI %d has existing q_vectors\n", 13841 vsi->seid); 13842 return -EEXIST; 13843 } 13844 13845 if (vsi->base_vector) { 13846 dev_info(&pf->pdev->dev, "VSI %d has non-zero base vector %d\n", 13847 vsi->seid, vsi->base_vector); 13848 return -EEXIST; 13849 } 13850 13851 ret = i40e_vsi_alloc_q_vectors(vsi); 13852 if (ret) { 13853 dev_info(&pf->pdev->dev, 13854 "failed to allocate %d q_vector for VSI %d, ret=%d\n", 13855 vsi->num_q_vectors, vsi->seid, ret); 13856 vsi->num_q_vectors = 0; 13857 goto vector_setup_out; 13858 } 13859 13860 /* In Legacy mode, we do not have to get any other vector since we 13861 * piggyback on the misc/ICR0 for queue interrupts. 13862 */ 13863 if (!(pf->flags & I40E_FLAG_MSIX_ENABLED)) 13864 return ret; 13865 if (vsi->num_q_vectors) 13866 vsi->base_vector = i40e_get_lump(pf, pf->irq_pile, 13867 vsi->num_q_vectors, vsi->idx); 13868 if (vsi->base_vector < 0) { 13869 dev_info(&pf->pdev->dev, 13870 "failed to get tracking for %d vectors for VSI %d, err=%d\n", 13871 vsi->num_q_vectors, vsi->seid, vsi->base_vector); 13872 i40e_vsi_free_q_vectors(vsi); 13873 ret = -ENOENT; 13874 goto vector_setup_out; 13875 } 13876 13877 vector_setup_out: 13878 return ret; 13879 } 13880 13881 /** 13882 * i40e_vsi_reinit_setup - return and reallocate resources for a VSI 13883 * @vsi: pointer to the vsi. 13884 * 13885 * This re-allocates a vsi's queue resources. 13886 * 13887 * Returns pointer to the successfully allocated and configured VSI sw struct 13888 * on success, otherwise returns NULL on failure. 13889 **/ 13890 static struct i40e_vsi *i40e_vsi_reinit_setup(struct i40e_vsi *vsi) 13891 { 13892 u16 alloc_queue_pairs; 13893 struct i40e_pf *pf; 13894 u8 enabled_tc; 13895 int ret; 13896 13897 if (!vsi) 13898 return NULL; 13899 13900 pf = vsi->back; 13901 13902 i40e_put_lump(pf->qp_pile, vsi->base_queue, vsi->idx); 13903 i40e_vsi_clear_rings(vsi); 13904 13905 i40e_vsi_free_arrays(vsi, false); 13906 i40e_set_num_rings_in_vsi(vsi); 13907 ret = i40e_vsi_alloc_arrays(vsi, false); 13908 if (ret) 13909 goto err_vsi; 13910 13911 alloc_queue_pairs = vsi->alloc_queue_pairs * 13912 (i40e_enabled_xdp_vsi(vsi) ? 2 : 1); 13913 13914 ret = i40e_get_lump(pf, pf->qp_pile, alloc_queue_pairs, vsi->idx); 13915 if (ret < 0) { 13916 dev_info(&pf->pdev->dev, 13917 "failed to get tracking for %d queues for VSI %d err %d\n", 13918 alloc_queue_pairs, vsi->seid, ret); 13919 goto err_vsi; 13920 } 13921 vsi->base_queue = ret; 13922 13923 /* Update the FW view of the VSI. Force a reset of TC and queue 13924 * layout configurations. 13925 */ 13926 enabled_tc = pf->vsi[pf->lan_vsi]->tc_config.enabled_tc; 13927 pf->vsi[pf->lan_vsi]->tc_config.enabled_tc = 0; 13928 pf->vsi[pf->lan_vsi]->seid = pf->main_vsi_seid; 13929 i40e_vsi_config_tc(pf->vsi[pf->lan_vsi], enabled_tc); 13930 if (vsi->type == I40E_VSI_MAIN) 13931 i40e_rm_default_mac_filter(vsi, pf->hw.mac.perm_addr); 13932 13933 /* assign it some queues */ 13934 ret = i40e_alloc_rings(vsi); 13935 if (ret) 13936 goto err_rings; 13937 13938 /* map all of the rings to the q_vectors */ 13939 i40e_vsi_map_rings_to_vectors(vsi); 13940 return vsi; 13941 13942 err_rings: 13943 i40e_vsi_free_q_vectors(vsi); 13944 if (vsi->netdev_registered) { 13945 vsi->netdev_registered = false; 13946 unregister_netdev(vsi->netdev); 13947 free_netdev(vsi->netdev); 13948 vsi->netdev = NULL; 13949 } 13950 i40e_aq_delete_element(&pf->hw, vsi->seid, NULL); 13951 err_vsi: 13952 i40e_vsi_clear(vsi); 13953 return NULL; 13954 } 13955 13956 /** 13957 * i40e_vsi_setup - Set up a VSI by a given type 13958 * @pf: board private structure 13959 * @type: VSI type 13960 * @uplink_seid: the switch element to link to 13961 * @param1: usage depends upon VSI type. For VF types, indicates VF id 13962 * 13963 * This allocates the sw VSI structure and its queue resources, then add a VSI 13964 * to the identified VEB. 13965 * 13966 * Returns pointer to the successfully allocated and configure VSI sw struct on 13967 * success, otherwise returns NULL on failure. 13968 **/ 13969 struct i40e_vsi *i40e_vsi_setup(struct i40e_pf *pf, u8 type, 13970 u16 uplink_seid, u32 param1) 13971 { 13972 struct i40e_vsi *vsi = NULL; 13973 struct i40e_veb *veb = NULL; 13974 u16 alloc_queue_pairs; 13975 int ret, i; 13976 int v_idx; 13977 13978 /* The requested uplink_seid must be either 13979 * - the PF's port seid 13980 * no VEB is needed because this is the PF 13981 * or this is a Flow Director special case VSI 13982 * - seid of an existing VEB 13983 * - seid of a VSI that owns an existing VEB 13984 * - seid of a VSI that doesn't own a VEB 13985 * a new VEB is created and the VSI becomes the owner 13986 * - seid of the PF VSI, which is what creates the first VEB 13987 * this is a special case of the previous 13988 * 13989 * Find which uplink_seid we were given and create a new VEB if needed 13990 */ 13991 for (i = 0; i < I40E_MAX_VEB; i++) { 13992 if (pf->veb[i] && pf->veb[i]->seid == uplink_seid) { 13993 veb = pf->veb[i]; 13994 break; 13995 } 13996 } 13997 13998 if (!veb && uplink_seid != pf->mac_seid) { 13999 14000 for (i = 0; i < pf->num_alloc_vsi; i++) { 14001 if (pf->vsi[i] && pf->vsi[i]->seid == uplink_seid) { 14002 vsi = pf->vsi[i]; 14003 break; 14004 } 14005 } 14006 if (!vsi) { 14007 dev_info(&pf->pdev->dev, "no such uplink_seid %d\n", 14008 uplink_seid); 14009 return NULL; 14010 } 14011 14012 if (vsi->uplink_seid == pf->mac_seid) 14013 veb = i40e_veb_setup(pf, 0, pf->mac_seid, vsi->seid, 14014 vsi->tc_config.enabled_tc); 14015 else if ((vsi->flags & I40E_VSI_FLAG_VEB_OWNER) == 0) 14016 veb = i40e_veb_setup(pf, 0, vsi->uplink_seid, vsi->seid, 14017 vsi->tc_config.enabled_tc); 14018 if (veb) { 14019 if (vsi->seid != pf->vsi[pf->lan_vsi]->seid) { 14020 dev_info(&vsi->back->pdev->dev, 14021 "New VSI creation error, uplink seid of LAN VSI expected.\n"); 14022 return NULL; 14023 } 14024 /* We come up by default in VEPA mode if SRIOV is not 14025 * already enabled, in which case we can't force VEPA 14026 * mode. 14027 */ 14028 if (!(pf->flags & I40E_FLAG_VEB_MODE_ENABLED)) { 14029 veb->bridge_mode = BRIDGE_MODE_VEPA; 14030 pf->flags &= ~I40E_FLAG_VEB_MODE_ENABLED; 14031 } 14032 i40e_config_bridge_mode(veb); 14033 } 14034 for (i = 0; i < I40E_MAX_VEB && !veb; i++) { 14035 if (pf->veb[i] && pf->veb[i]->seid == vsi->uplink_seid) 14036 veb = pf->veb[i]; 14037 } 14038 if (!veb) { 14039 dev_info(&pf->pdev->dev, "couldn't add VEB\n"); 14040 return NULL; 14041 } 14042 14043 vsi->flags |= I40E_VSI_FLAG_VEB_OWNER; 14044 uplink_seid = veb->seid; 14045 } 14046 14047 /* get vsi sw struct */ 14048 v_idx = i40e_vsi_mem_alloc(pf, type); 14049 if (v_idx < 0) 14050 goto err_alloc; 14051 vsi = pf->vsi[v_idx]; 14052 if (!vsi) 14053 goto err_alloc; 14054 vsi->type = type; 14055 vsi->veb_idx = (veb ? veb->idx : I40E_NO_VEB); 14056 14057 if (type == I40E_VSI_MAIN) 14058 pf->lan_vsi = v_idx; 14059 else if (type == I40E_VSI_SRIOV) 14060 vsi->vf_id = param1; 14061 /* assign it some queues */ 14062 alloc_queue_pairs = vsi->alloc_queue_pairs * 14063 (i40e_enabled_xdp_vsi(vsi) ? 2 : 1); 14064 14065 ret = i40e_get_lump(pf, pf->qp_pile, alloc_queue_pairs, vsi->idx); 14066 if (ret < 0) { 14067 dev_info(&pf->pdev->dev, 14068 "failed to get tracking for %d queues for VSI %d err=%d\n", 14069 alloc_queue_pairs, vsi->seid, ret); 14070 goto err_vsi; 14071 } 14072 vsi->base_queue = ret; 14073 14074 /* get a VSI from the hardware */ 14075 vsi->uplink_seid = uplink_seid; 14076 ret = i40e_add_vsi(vsi); 14077 if (ret) 14078 goto err_vsi; 14079 14080 switch (vsi->type) { 14081 /* setup the netdev if needed */ 14082 case I40E_VSI_MAIN: 14083 case I40E_VSI_VMDQ2: 14084 ret = i40e_config_netdev(vsi); 14085 if (ret) 14086 goto err_netdev; 14087 ret = register_netdev(vsi->netdev); 14088 if (ret) 14089 goto err_netdev; 14090 vsi->netdev_registered = true; 14091 netif_carrier_off(vsi->netdev); 14092 #ifdef CONFIG_I40E_DCB 14093 /* Setup DCB netlink interface */ 14094 i40e_dcbnl_setup(vsi); 14095 #endif /* CONFIG_I40E_DCB */ 14096 fallthrough; 14097 case I40E_VSI_FDIR: 14098 /* set up vectors and rings if needed */ 14099 ret = i40e_vsi_setup_vectors(vsi); 14100 if (ret) 14101 goto err_msix; 14102 14103 ret = i40e_alloc_rings(vsi); 14104 if (ret) 14105 goto err_rings; 14106 14107 /* map all of the rings to the q_vectors */ 14108 i40e_vsi_map_rings_to_vectors(vsi); 14109 14110 i40e_vsi_reset_stats(vsi); 14111 break; 14112 default: 14113 /* no netdev or rings for the other VSI types */ 14114 break; 14115 } 14116 14117 if ((pf->hw_features & I40E_HW_RSS_AQ_CAPABLE) && 14118 (vsi->type == I40E_VSI_VMDQ2)) { 14119 ret = i40e_vsi_config_rss(vsi); 14120 } 14121 return vsi; 14122 14123 err_rings: 14124 i40e_vsi_free_q_vectors(vsi); 14125 err_msix: 14126 if (vsi->netdev_registered) { 14127 vsi->netdev_registered = false; 14128 unregister_netdev(vsi->netdev); 14129 free_netdev(vsi->netdev); 14130 vsi->netdev = NULL; 14131 } 14132 err_netdev: 14133 i40e_aq_delete_element(&pf->hw, vsi->seid, NULL); 14134 err_vsi: 14135 i40e_vsi_clear(vsi); 14136 err_alloc: 14137 return NULL; 14138 } 14139 14140 /** 14141 * i40e_veb_get_bw_info - Query VEB BW information 14142 * @veb: the veb to query 14143 * 14144 * Query the Tx scheduler BW configuration data for given VEB 14145 **/ 14146 static int i40e_veb_get_bw_info(struct i40e_veb *veb) 14147 { 14148 struct i40e_aqc_query_switching_comp_ets_config_resp ets_data; 14149 struct i40e_aqc_query_switching_comp_bw_config_resp bw_data; 14150 struct i40e_pf *pf = veb->pf; 14151 struct i40e_hw *hw = &pf->hw; 14152 u32 tc_bw_max; 14153 int ret = 0; 14154 int i; 14155 14156 ret = i40e_aq_query_switch_comp_bw_config(hw, veb->seid, 14157 &bw_data, NULL); 14158 if (ret) { 14159 dev_info(&pf->pdev->dev, 14160 "query veb bw config failed, err %s aq_err %s\n", 14161 i40e_stat_str(&pf->hw, ret), 14162 i40e_aq_str(&pf->hw, hw->aq.asq_last_status)); 14163 goto out; 14164 } 14165 14166 ret = i40e_aq_query_switch_comp_ets_config(hw, veb->seid, 14167 &ets_data, NULL); 14168 if (ret) { 14169 dev_info(&pf->pdev->dev, 14170 "query veb bw ets config failed, err %s aq_err %s\n", 14171 i40e_stat_str(&pf->hw, ret), 14172 i40e_aq_str(&pf->hw, hw->aq.asq_last_status)); 14173 goto out; 14174 } 14175 14176 veb->bw_limit = le16_to_cpu(ets_data.port_bw_limit); 14177 veb->bw_max_quanta = ets_data.tc_bw_max; 14178 veb->is_abs_credits = bw_data.absolute_credits_enable; 14179 veb->enabled_tc = ets_data.tc_valid_bits; 14180 tc_bw_max = le16_to_cpu(bw_data.tc_bw_max[0]) | 14181 (le16_to_cpu(bw_data.tc_bw_max[1]) << 16); 14182 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 14183 veb->bw_tc_share_credits[i] = bw_data.tc_bw_share_credits[i]; 14184 veb->bw_tc_limit_credits[i] = 14185 le16_to_cpu(bw_data.tc_bw_limits[i]); 14186 veb->bw_tc_max_quanta[i] = ((tc_bw_max >> (i*4)) & 0x7); 14187 } 14188 14189 out: 14190 return ret; 14191 } 14192 14193 /** 14194 * i40e_veb_mem_alloc - Allocates the next available struct veb in the PF 14195 * @pf: board private structure 14196 * 14197 * On error: returns error code (negative) 14198 * On success: returns vsi index in PF (positive) 14199 **/ 14200 static int i40e_veb_mem_alloc(struct i40e_pf *pf) 14201 { 14202 int ret = -ENOENT; 14203 struct i40e_veb *veb; 14204 int i; 14205 14206 /* Need to protect the allocation of switch elements at the PF level */ 14207 mutex_lock(&pf->switch_mutex); 14208 14209 /* VEB list may be fragmented if VEB creation/destruction has 14210 * been happening. We can afford to do a quick scan to look 14211 * for any free slots in the list. 14212 * 14213 * find next empty veb slot, looping back around if necessary 14214 */ 14215 i = 0; 14216 while ((i < I40E_MAX_VEB) && (pf->veb[i] != NULL)) 14217 i++; 14218 if (i >= I40E_MAX_VEB) { 14219 ret = -ENOMEM; 14220 goto err_alloc_veb; /* out of VEB slots! */ 14221 } 14222 14223 veb = kzalloc(sizeof(*veb), GFP_KERNEL); 14224 if (!veb) { 14225 ret = -ENOMEM; 14226 goto err_alloc_veb; 14227 } 14228 veb->pf = pf; 14229 veb->idx = i; 14230 veb->enabled_tc = 1; 14231 14232 pf->veb[i] = veb; 14233 ret = i; 14234 err_alloc_veb: 14235 mutex_unlock(&pf->switch_mutex); 14236 return ret; 14237 } 14238 14239 /** 14240 * i40e_switch_branch_release - Delete a branch of the switch tree 14241 * @branch: where to start deleting 14242 * 14243 * This uses recursion to find the tips of the branch to be 14244 * removed, deleting until we get back to and can delete this VEB. 14245 **/ 14246 static void i40e_switch_branch_release(struct i40e_veb *branch) 14247 { 14248 struct i40e_pf *pf = branch->pf; 14249 u16 branch_seid = branch->seid; 14250 u16 veb_idx = branch->idx; 14251 int i; 14252 14253 /* release any VEBs on this VEB - RECURSION */ 14254 for (i = 0; i < I40E_MAX_VEB; i++) { 14255 if (!pf->veb[i]) 14256 continue; 14257 if (pf->veb[i]->uplink_seid == branch->seid) 14258 i40e_switch_branch_release(pf->veb[i]); 14259 } 14260 14261 /* Release the VSIs on this VEB, but not the owner VSI. 14262 * 14263 * NOTE: Removing the last VSI on a VEB has the SIDE EFFECT of removing 14264 * the VEB itself, so don't use (*branch) after this loop. 14265 */ 14266 for (i = 0; i < pf->num_alloc_vsi; i++) { 14267 if (!pf->vsi[i]) 14268 continue; 14269 if (pf->vsi[i]->uplink_seid == branch_seid && 14270 (pf->vsi[i]->flags & I40E_VSI_FLAG_VEB_OWNER) == 0) { 14271 i40e_vsi_release(pf->vsi[i]); 14272 } 14273 } 14274 14275 /* There's one corner case where the VEB might not have been 14276 * removed, so double check it here and remove it if needed. 14277 * This case happens if the veb was created from the debugfs 14278 * commands and no VSIs were added to it. 14279 */ 14280 if (pf->veb[veb_idx]) 14281 i40e_veb_release(pf->veb[veb_idx]); 14282 } 14283 14284 /** 14285 * i40e_veb_clear - remove veb struct 14286 * @veb: the veb to remove 14287 **/ 14288 static void i40e_veb_clear(struct i40e_veb *veb) 14289 { 14290 if (!veb) 14291 return; 14292 14293 if (veb->pf) { 14294 struct i40e_pf *pf = veb->pf; 14295 14296 mutex_lock(&pf->switch_mutex); 14297 if (pf->veb[veb->idx] == veb) 14298 pf->veb[veb->idx] = NULL; 14299 mutex_unlock(&pf->switch_mutex); 14300 } 14301 14302 kfree(veb); 14303 } 14304 14305 /** 14306 * i40e_veb_release - Delete a VEB and free its resources 14307 * @veb: the VEB being removed 14308 **/ 14309 void i40e_veb_release(struct i40e_veb *veb) 14310 { 14311 struct i40e_vsi *vsi = NULL; 14312 struct i40e_pf *pf; 14313 int i, n = 0; 14314 14315 pf = veb->pf; 14316 14317 /* find the remaining VSI and check for extras */ 14318 for (i = 0; i < pf->num_alloc_vsi; i++) { 14319 if (pf->vsi[i] && pf->vsi[i]->uplink_seid == veb->seid) { 14320 n++; 14321 vsi = pf->vsi[i]; 14322 } 14323 } 14324 if (n != 1) { 14325 dev_info(&pf->pdev->dev, 14326 "can't remove VEB %d with %d VSIs left\n", 14327 veb->seid, n); 14328 return; 14329 } 14330 14331 /* move the remaining VSI to uplink veb */ 14332 vsi->flags &= ~I40E_VSI_FLAG_VEB_OWNER; 14333 if (veb->uplink_seid) { 14334 vsi->uplink_seid = veb->uplink_seid; 14335 if (veb->uplink_seid == pf->mac_seid) 14336 vsi->veb_idx = I40E_NO_VEB; 14337 else 14338 vsi->veb_idx = veb->veb_idx; 14339 } else { 14340 /* floating VEB */ 14341 vsi->uplink_seid = pf->vsi[pf->lan_vsi]->uplink_seid; 14342 vsi->veb_idx = pf->vsi[pf->lan_vsi]->veb_idx; 14343 } 14344 14345 i40e_aq_delete_element(&pf->hw, veb->seid, NULL); 14346 i40e_veb_clear(veb); 14347 } 14348 14349 /** 14350 * i40e_add_veb - create the VEB in the switch 14351 * @veb: the VEB to be instantiated 14352 * @vsi: the controlling VSI 14353 **/ 14354 static int i40e_add_veb(struct i40e_veb *veb, struct i40e_vsi *vsi) 14355 { 14356 struct i40e_pf *pf = veb->pf; 14357 bool enable_stats = !!(pf->flags & I40E_FLAG_VEB_STATS_ENABLED); 14358 int ret; 14359 14360 ret = i40e_aq_add_veb(&pf->hw, veb->uplink_seid, vsi->seid, 14361 veb->enabled_tc, false, 14362 &veb->seid, enable_stats, NULL); 14363 14364 /* get a VEB from the hardware */ 14365 if (ret) { 14366 dev_info(&pf->pdev->dev, 14367 "couldn't add VEB, err %s aq_err %s\n", 14368 i40e_stat_str(&pf->hw, ret), 14369 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 14370 return -EPERM; 14371 } 14372 14373 /* get statistics counter */ 14374 ret = i40e_aq_get_veb_parameters(&pf->hw, veb->seid, NULL, NULL, 14375 &veb->stats_idx, NULL, NULL, NULL); 14376 if (ret) { 14377 dev_info(&pf->pdev->dev, 14378 "couldn't get VEB statistics idx, err %s aq_err %s\n", 14379 i40e_stat_str(&pf->hw, ret), 14380 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 14381 return -EPERM; 14382 } 14383 ret = i40e_veb_get_bw_info(veb); 14384 if (ret) { 14385 dev_info(&pf->pdev->dev, 14386 "couldn't get VEB bw info, err %s aq_err %s\n", 14387 i40e_stat_str(&pf->hw, ret), 14388 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 14389 i40e_aq_delete_element(&pf->hw, veb->seid, NULL); 14390 return -ENOENT; 14391 } 14392 14393 vsi->uplink_seid = veb->seid; 14394 vsi->veb_idx = veb->idx; 14395 vsi->flags |= I40E_VSI_FLAG_VEB_OWNER; 14396 14397 return 0; 14398 } 14399 14400 /** 14401 * i40e_veb_setup - Set up a VEB 14402 * @pf: board private structure 14403 * @flags: VEB setup flags 14404 * @uplink_seid: the switch element to link to 14405 * @vsi_seid: the initial VSI seid 14406 * @enabled_tc: Enabled TC bit-map 14407 * 14408 * This allocates the sw VEB structure and links it into the switch 14409 * It is possible and legal for this to be a duplicate of an already 14410 * existing VEB. It is also possible for both uplink and vsi seids 14411 * to be zero, in order to create a floating VEB. 14412 * 14413 * Returns pointer to the successfully allocated VEB sw struct on 14414 * success, otherwise returns NULL on failure. 14415 **/ 14416 struct i40e_veb *i40e_veb_setup(struct i40e_pf *pf, u16 flags, 14417 u16 uplink_seid, u16 vsi_seid, 14418 u8 enabled_tc) 14419 { 14420 struct i40e_veb *veb, *uplink_veb = NULL; 14421 int vsi_idx, veb_idx; 14422 int ret; 14423 14424 /* if one seid is 0, the other must be 0 to create a floating relay */ 14425 if ((uplink_seid == 0 || vsi_seid == 0) && 14426 (uplink_seid + vsi_seid != 0)) { 14427 dev_info(&pf->pdev->dev, 14428 "one, not both seid's are 0: uplink=%d vsi=%d\n", 14429 uplink_seid, vsi_seid); 14430 return NULL; 14431 } 14432 14433 /* make sure there is such a vsi and uplink */ 14434 for (vsi_idx = 0; vsi_idx < pf->num_alloc_vsi; vsi_idx++) 14435 if (pf->vsi[vsi_idx] && pf->vsi[vsi_idx]->seid == vsi_seid) 14436 break; 14437 if (vsi_idx == pf->num_alloc_vsi && vsi_seid != 0) { 14438 dev_info(&pf->pdev->dev, "vsi seid %d not found\n", 14439 vsi_seid); 14440 return NULL; 14441 } 14442 14443 if (uplink_seid && uplink_seid != pf->mac_seid) { 14444 for (veb_idx = 0; veb_idx < I40E_MAX_VEB; veb_idx++) { 14445 if (pf->veb[veb_idx] && 14446 pf->veb[veb_idx]->seid == uplink_seid) { 14447 uplink_veb = pf->veb[veb_idx]; 14448 break; 14449 } 14450 } 14451 if (!uplink_veb) { 14452 dev_info(&pf->pdev->dev, 14453 "uplink seid %d not found\n", uplink_seid); 14454 return NULL; 14455 } 14456 } 14457 14458 /* get veb sw struct */ 14459 veb_idx = i40e_veb_mem_alloc(pf); 14460 if (veb_idx < 0) 14461 goto err_alloc; 14462 veb = pf->veb[veb_idx]; 14463 veb->flags = flags; 14464 veb->uplink_seid = uplink_seid; 14465 veb->veb_idx = (uplink_veb ? uplink_veb->idx : I40E_NO_VEB); 14466 veb->enabled_tc = (enabled_tc ? enabled_tc : 0x1); 14467 14468 /* create the VEB in the switch */ 14469 ret = i40e_add_veb(veb, pf->vsi[vsi_idx]); 14470 if (ret) 14471 goto err_veb; 14472 if (vsi_idx == pf->lan_vsi) 14473 pf->lan_veb = veb->idx; 14474 14475 return veb; 14476 14477 err_veb: 14478 i40e_veb_clear(veb); 14479 err_alloc: 14480 return NULL; 14481 } 14482 14483 /** 14484 * i40e_setup_pf_switch_element - set PF vars based on switch type 14485 * @pf: board private structure 14486 * @ele: element we are building info from 14487 * @num_reported: total number of elements 14488 * @printconfig: should we print the contents 14489 * 14490 * helper function to assist in extracting a few useful SEID values. 14491 **/ 14492 static void i40e_setup_pf_switch_element(struct i40e_pf *pf, 14493 struct i40e_aqc_switch_config_element_resp *ele, 14494 u16 num_reported, bool printconfig) 14495 { 14496 u16 downlink_seid = le16_to_cpu(ele->downlink_seid); 14497 u16 uplink_seid = le16_to_cpu(ele->uplink_seid); 14498 u8 element_type = ele->element_type; 14499 u16 seid = le16_to_cpu(ele->seid); 14500 14501 if (printconfig) 14502 dev_info(&pf->pdev->dev, 14503 "type=%d seid=%d uplink=%d downlink=%d\n", 14504 element_type, seid, uplink_seid, downlink_seid); 14505 14506 switch (element_type) { 14507 case I40E_SWITCH_ELEMENT_TYPE_MAC: 14508 pf->mac_seid = seid; 14509 break; 14510 case I40E_SWITCH_ELEMENT_TYPE_VEB: 14511 /* Main VEB? */ 14512 if (uplink_seid != pf->mac_seid) 14513 break; 14514 if (pf->lan_veb >= I40E_MAX_VEB) { 14515 int v; 14516 14517 /* find existing or else empty VEB */ 14518 for (v = 0; v < I40E_MAX_VEB; v++) { 14519 if (pf->veb[v] && (pf->veb[v]->seid == seid)) { 14520 pf->lan_veb = v; 14521 break; 14522 } 14523 } 14524 if (pf->lan_veb >= I40E_MAX_VEB) { 14525 v = i40e_veb_mem_alloc(pf); 14526 if (v < 0) 14527 break; 14528 pf->lan_veb = v; 14529 } 14530 } 14531 if (pf->lan_veb >= I40E_MAX_VEB) 14532 break; 14533 14534 pf->veb[pf->lan_veb]->seid = seid; 14535 pf->veb[pf->lan_veb]->uplink_seid = pf->mac_seid; 14536 pf->veb[pf->lan_veb]->pf = pf; 14537 pf->veb[pf->lan_veb]->veb_idx = I40E_NO_VEB; 14538 break; 14539 case I40E_SWITCH_ELEMENT_TYPE_VSI: 14540 if (num_reported != 1) 14541 break; 14542 /* This is immediately after a reset so we can assume this is 14543 * the PF's VSI 14544 */ 14545 pf->mac_seid = uplink_seid; 14546 pf->pf_seid = downlink_seid; 14547 pf->main_vsi_seid = seid; 14548 if (printconfig) 14549 dev_info(&pf->pdev->dev, 14550 "pf_seid=%d main_vsi_seid=%d\n", 14551 pf->pf_seid, pf->main_vsi_seid); 14552 break; 14553 case I40E_SWITCH_ELEMENT_TYPE_PF: 14554 case I40E_SWITCH_ELEMENT_TYPE_VF: 14555 case I40E_SWITCH_ELEMENT_TYPE_EMP: 14556 case I40E_SWITCH_ELEMENT_TYPE_BMC: 14557 case I40E_SWITCH_ELEMENT_TYPE_PE: 14558 case I40E_SWITCH_ELEMENT_TYPE_PA: 14559 /* ignore these for now */ 14560 break; 14561 default: 14562 dev_info(&pf->pdev->dev, "unknown element type=%d seid=%d\n", 14563 element_type, seid); 14564 break; 14565 } 14566 } 14567 14568 /** 14569 * i40e_fetch_switch_configuration - Get switch config from firmware 14570 * @pf: board private structure 14571 * @printconfig: should we print the contents 14572 * 14573 * Get the current switch configuration from the device and 14574 * extract a few useful SEID values. 14575 **/ 14576 int i40e_fetch_switch_configuration(struct i40e_pf *pf, bool printconfig) 14577 { 14578 struct i40e_aqc_get_switch_config_resp *sw_config; 14579 u16 next_seid = 0; 14580 int ret = 0; 14581 u8 *aq_buf; 14582 int i; 14583 14584 aq_buf = kzalloc(I40E_AQ_LARGE_BUF, GFP_KERNEL); 14585 if (!aq_buf) 14586 return -ENOMEM; 14587 14588 sw_config = (struct i40e_aqc_get_switch_config_resp *)aq_buf; 14589 do { 14590 u16 num_reported, num_total; 14591 14592 ret = i40e_aq_get_switch_config(&pf->hw, sw_config, 14593 I40E_AQ_LARGE_BUF, 14594 &next_seid, NULL); 14595 if (ret) { 14596 dev_info(&pf->pdev->dev, 14597 "get switch config failed err %s aq_err %s\n", 14598 i40e_stat_str(&pf->hw, ret), 14599 i40e_aq_str(&pf->hw, 14600 pf->hw.aq.asq_last_status)); 14601 kfree(aq_buf); 14602 return -ENOENT; 14603 } 14604 14605 num_reported = le16_to_cpu(sw_config->header.num_reported); 14606 num_total = le16_to_cpu(sw_config->header.num_total); 14607 14608 if (printconfig) 14609 dev_info(&pf->pdev->dev, 14610 "header: %d reported %d total\n", 14611 num_reported, num_total); 14612 14613 for (i = 0; i < num_reported; i++) { 14614 struct i40e_aqc_switch_config_element_resp *ele = 14615 &sw_config->element[i]; 14616 14617 i40e_setup_pf_switch_element(pf, ele, num_reported, 14618 printconfig); 14619 } 14620 } while (next_seid != 0); 14621 14622 kfree(aq_buf); 14623 return ret; 14624 } 14625 14626 /** 14627 * i40e_setup_pf_switch - Setup the HW switch on startup or after reset 14628 * @pf: board private structure 14629 * @reinit: if the Main VSI needs to re-initialized. 14630 * 14631 * Returns 0 on success, negative value on failure 14632 **/ 14633 static int i40e_setup_pf_switch(struct i40e_pf *pf, bool reinit) 14634 { 14635 u16 flags = 0; 14636 int ret; 14637 14638 /* find out what's out there already */ 14639 ret = i40e_fetch_switch_configuration(pf, false); 14640 if (ret) { 14641 dev_info(&pf->pdev->dev, 14642 "couldn't fetch switch config, err %s aq_err %s\n", 14643 i40e_stat_str(&pf->hw, ret), 14644 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 14645 return ret; 14646 } 14647 i40e_pf_reset_stats(pf); 14648 14649 /* set the switch config bit for the whole device to 14650 * support limited promisc or true promisc 14651 * when user requests promisc. The default is limited 14652 * promisc. 14653 */ 14654 14655 if ((pf->hw.pf_id == 0) && 14656 !(pf->flags & I40E_FLAG_TRUE_PROMISC_SUPPORT)) { 14657 flags = I40E_AQ_SET_SWITCH_CFG_PROMISC; 14658 pf->last_sw_conf_flags = flags; 14659 } 14660 14661 if (pf->hw.pf_id == 0) { 14662 u16 valid_flags; 14663 14664 valid_flags = I40E_AQ_SET_SWITCH_CFG_PROMISC; 14665 ret = i40e_aq_set_switch_config(&pf->hw, flags, valid_flags, 0, 14666 NULL); 14667 if (ret && pf->hw.aq.asq_last_status != I40E_AQ_RC_ESRCH) { 14668 dev_info(&pf->pdev->dev, 14669 "couldn't set switch config bits, err %s aq_err %s\n", 14670 i40e_stat_str(&pf->hw, ret), 14671 i40e_aq_str(&pf->hw, 14672 pf->hw.aq.asq_last_status)); 14673 /* not a fatal problem, just keep going */ 14674 } 14675 pf->last_sw_conf_valid_flags = valid_flags; 14676 } 14677 14678 /* first time setup */ 14679 if (pf->lan_vsi == I40E_NO_VSI || reinit) { 14680 struct i40e_vsi *vsi = NULL; 14681 u16 uplink_seid; 14682 14683 /* Set up the PF VSI associated with the PF's main VSI 14684 * that is already in the HW switch 14685 */ 14686 if (pf->lan_veb < I40E_MAX_VEB && pf->veb[pf->lan_veb]) 14687 uplink_seid = pf->veb[pf->lan_veb]->seid; 14688 else 14689 uplink_seid = pf->mac_seid; 14690 if (pf->lan_vsi == I40E_NO_VSI) 14691 vsi = i40e_vsi_setup(pf, I40E_VSI_MAIN, uplink_seid, 0); 14692 else if (reinit) 14693 vsi = i40e_vsi_reinit_setup(pf->vsi[pf->lan_vsi]); 14694 if (!vsi) { 14695 dev_info(&pf->pdev->dev, "setup of MAIN VSI failed\n"); 14696 i40e_cloud_filter_exit(pf); 14697 i40e_fdir_teardown(pf); 14698 return -EAGAIN; 14699 } 14700 } else { 14701 /* force a reset of TC and queue layout configurations */ 14702 u8 enabled_tc = pf->vsi[pf->lan_vsi]->tc_config.enabled_tc; 14703 14704 pf->vsi[pf->lan_vsi]->tc_config.enabled_tc = 0; 14705 pf->vsi[pf->lan_vsi]->seid = pf->main_vsi_seid; 14706 i40e_vsi_config_tc(pf->vsi[pf->lan_vsi], enabled_tc); 14707 } 14708 i40e_vlan_stripping_disable(pf->vsi[pf->lan_vsi]); 14709 14710 i40e_fdir_sb_setup(pf); 14711 14712 /* Setup static PF queue filter control settings */ 14713 ret = i40e_setup_pf_filter_control(pf); 14714 if (ret) { 14715 dev_info(&pf->pdev->dev, "setup_pf_filter_control failed: %d\n", 14716 ret); 14717 /* Failure here should not stop continuing other steps */ 14718 } 14719 14720 /* enable RSS in the HW, even for only one queue, as the stack can use 14721 * the hash 14722 */ 14723 if ((pf->flags & I40E_FLAG_RSS_ENABLED)) 14724 i40e_pf_config_rss(pf); 14725 14726 /* fill in link information and enable LSE reporting */ 14727 i40e_link_event(pf); 14728 14729 /* Initialize user-specific link properties */ 14730 pf->fc_autoneg_status = ((pf->hw.phy.link_info.an_info & 14731 I40E_AQ_AN_COMPLETED) ? true : false); 14732 14733 i40e_ptp_init(pf); 14734 14735 /* repopulate tunnel port filters */ 14736 udp_tunnel_nic_reset_ntf(pf->vsi[pf->lan_vsi]->netdev); 14737 14738 return ret; 14739 } 14740 14741 /** 14742 * i40e_determine_queue_usage - Work out queue distribution 14743 * @pf: board private structure 14744 **/ 14745 static void i40e_determine_queue_usage(struct i40e_pf *pf) 14746 { 14747 int queues_left; 14748 int q_max; 14749 14750 pf->num_lan_qps = 0; 14751 14752 /* Find the max queues to be put into basic use. We'll always be 14753 * using TC0, whether or not DCB is running, and TC0 will get the 14754 * big RSS set. 14755 */ 14756 queues_left = pf->hw.func_caps.num_tx_qp; 14757 14758 if ((queues_left == 1) || 14759 !(pf->flags & I40E_FLAG_MSIX_ENABLED)) { 14760 /* one qp for PF, no queues for anything else */ 14761 queues_left = 0; 14762 pf->alloc_rss_size = pf->num_lan_qps = 1; 14763 14764 /* make sure all the fancies are disabled */ 14765 pf->flags &= ~(I40E_FLAG_RSS_ENABLED | 14766 I40E_FLAG_IWARP_ENABLED | 14767 I40E_FLAG_FD_SB_ENABLED | 14768 I40E_FLAG_FD_ATR_ENABLED | 14769 I40E_FLAG_DCB_CAPABLE | 14770 I40E_FLAG_DCB_ENABLED | 14771 I40E_FLAG_SRIOV_ENABLED | 14772 I40E_FLAG_VMDQ_ENABLED); 14773 pf->flags |= I40E_FLAG_FD_SB_INACTIVE; 14774 } else if (!(pf->flags & (I40E_FLAG_RSS_ENABLED | 14775 I40E_FLAG_FD_SB_ENABLED | 14776 I40E_FLAG_FD_ATR_ENABLED | 14777 I40E_FLAG_DCB_CAPABLE))) { 14778 /* one qp for PF */ 14779 pf->alloc_rss_size = pf->num_lan_qps = 1; 14780 queues_left -= pf->num_lan_qps; 14781 14782 pf->flags &= ~(I40E_FLAG_RSS_ENABLED | 14783 I40E_FLAG_IWARP_ENABLED | 14784 I40E_FLAG_FD_SB_ENABLED | 14785 I40E_FLAG_FD_ATR_ENABLED | 14786 I40E_FLAG_DCB_ENABLED | 14787 I40E_FLAG_VMDQ_ENABLED); 14788 pf->flags |= I40E_FLAG_FD_SB_INACTIVE; 14789 } else { 14790 /* Not enough queues for all TCs */ 14791 if ((pf->flags & I40E_FLAG_DCB_CAPABLE) && 14792 (queues_left < I40E_MAX_TRAFFIC_CLASS)) { 14793 pf->flags &= ~(I40E_FLAG_DCB_CAPABLE | 14794 I40E_FLAG_DCB_ENABLED); 14795 dev_info(&pf->pdev->dev, "not enough queues for DCB. DCB is disabled.\n"); 14796 } 14797 14798 /* limit lan qps to the smaller of qps, cpus or msix */ 14799 q_max = max_t(int, pf->rss_size_max, num_online_cpus()); 14800 q_max = min_t(int, q_max, pf->hw.func_caps.num_tx_qp); 14801 q_max = min_t(int, q_max, pf->hw.func_caps.num_msix_vectors); 14802 pf->num_lan_qps = q_max; 14803 14804 queues_left -= pf->num_lan_qps; 14805 } 14806 14807 if (pf->flags & I40E_FLAG_FD_SB_ENABLED) { 14808 if (queues_left > 1) { 14809 queues_left -= 1; /* save 1 queue for FD */ 14810 } else { 14811 pf->flags &= ~I40E_FLAG_FD_SB_ENABLED; 14812 pf->flags |= I40E_FLAG_FD_SB_INACTIVE; 14813 dev_info(&pf->pdev->dev, "not enough queues for Flow Director. Flow Director feature is disabled\n"); 14814 } 14815 } 14816 14817 if ((pf->flags & I40E_FLAG_SRIOV_ENABLED) && 14818 pf->num_vf_qps && pf->num_req_vfs && queues_left) { 14819 pf->num_req_vfs = min_t(int, pf->num_req_vfs, 14820 (queues_left / pf->num_vf_qps)); 14821 queues_left -= (pf->num_req_vfs * pf->num_vf_qps); 14822 } 14823 14824 if ((pf->flags & I40E_FLAG_VMDQ_ENABLED) && 14825 pf->num_vmdq_vsis && pf->num_vmdq_qps && queues_left) { 14826 pf->num_vmdq_vsis = min_t(int, pf->num_vmdq_vsis, 14827 (queues_left / pf->num_vmdq_qps)); 14828 queues_left -= (pf->num_vmdq_vsis * pf->num_vmdq_qps); 14829 } 14830 14831 pf->queues_left = queues_left; 14832 dev_dbg(&pf->pdev->dev, 14833 "qs_avail=%d FD SB=%d lan_qs=%d lan_tc0=%d vf=%d*%d vmdq=%d*%d, remaining=%d\n", 14834 pf->hw.func_caps.num_tx_qp, 14835 !!(pf->flags & I40E_FLAG_FD_SB_ENABLED), 14836 pf->num_lan_qps, pf->alloc_rss_size, pf->num_req_vfs, 14837 pf->num_vf_qps, pf->num_vmdq_vsis, pf->num_vmdq_qps, 14838 queues_left); 14839 } 14840 14841 /** 14842 * i40e_setup_pf_filter_control - Setup PF static filter control 14843 * @pf: PF to be setup 14844 * 14845 * i40e_setup_pf_filter_control sets up a PF's initial filter control 14846 * settings. If PE/FCoE are enabled then it will also set the per PF 14847 * based filter sizes required for them. It also enables Flow director, 14848 * ethertype and macvlan type filter settings for the pf. 14849 * 14850 * Returns 0 on success, negative on failure 14851 **/ 14852 static int i40e_setup_pf_filter_control(struct i40e_pf *pf) 14853 { 14854 struct i40e_filter_control_settings *settings = &pf->filter_settings; 14855 14856 settings->hash_lut_size = I40E_HASH_LUT_SIZE_128; 14857 14858 /* Flow Director is enabled */ 14859 if (pf->flags & (I40E_FLAG_FD_SB_ENABLED | I40E_FLAG_FD_ATR_ENABLED)) 14860 settings->enable_fdir = true; 14861 14862 /* Ethtype and MACVLAN filters enabled for PF */ 14863 settings->enable_ethtype = true; 14864 settings->enable_macvlan = true; 14865 14866 if (i40e_set_filter_control(&pf->hw, settings)) 14867 return -ENOENT; 14868 14869 return 0; 14870 } 14871 14872 #define INFO_STRING_LEN 255 14873 #define REMAIN(__x) (INFO_STRING_LEN - (__x)) 14874 static void i40e_print_features(struct i40e_pf *pf) 14875 { 14876 struct i40e_hw *hw = &pf->hw; 14877 char *buf; 14878 int i; 14879 14880 buf = kmalloc(INFO_STRING_LEN, GFP_KERNEL); 14881 if (!buf) 14882 return; 14883 14884 i = snprintf(buf, INFO_STRING_LEN, "Features: PF-id[%d]", hw->pf_id); 14885 #ifdef CONFIG_PCI_IOV 14886 i += scnprintf(&buf[i], REMAIN(i), " VFs: %d", pf->num_req_vfs); 14887 #endif 14888 i += scnprintf(&buf[i], REMAIN(i), " VSIs: %d QP: %d", 14889 pf->hw.func_caps.num_vsis, 14890 pf->vsi[pf->lan_vsi]->num_queue_pairs); 14891 if (pf->flags & I40E_FLAG_RSS_ENABLED) 14892 i += scnprintf(&buf[i], REMAIN(i), " RSS"); 14893 if (pf->flags & I40E_FLAG_FD_ATR_ENABLED) 14894 i += scnprintf(&buf[i], REMAIN(i), " FD_ATR"); 14895 if (pf->flags & I40E_FLAG_FD_SB_ENABLED) { 14896 i += scnprintf(&buf[i], REMAIN(i), " FD_SB"); 14897 i += scnprintf(&buf[i], REMAIN(i), " NTUPLE"); 14898 } 14899 if (pf->flags & I40E_FLAG_DCB_CAPABLE) 14900 i += scnprintf(&buf[i], REMAIN(i), " DCB"); 14901 i += scnprintf(&buf[i], REMAIN(i), " VxLAN"); 14902 i += scnprintf(&buf[i], REMAIN(i), " Geneve"); 14903 if (pf->flags & I40E_FLAG_PTP) 14904 i += scnprintf(&buf[i], REMAIN(i), " PTP"); 14905 if (pf->flags & I40E_FLAG_VEB_MODE_ENABLED) 14906 i += scnprintf(&buf[i], REMAIN(i), " VEB"); 14907 else 14908 i += scnprintf(&buf[i], REMAIN(i), " VEPA"); 14909 14910 dev_info(&pf->pdev->dev, "%s\n", buf); 14911 kfree(buf); 14912 WARN_ON(i > INFO_STRING_LEN); 14913 } 14914 14915 /** 14916 * i40e_get_platform_mac_addr - get platform-specific MAC address 14917 * @pdev: PCI device information struct 14918 * @pf: board private structure 14919 * 14920 * Look up the MAC address for the device. First we'll try 14921 * eth_platform_get_mac_address, which will check Open Firmware, or arch 14922 * specific fallback. Otherwise, we'll default to the stored value in 14923 * firmware. 14924 **/ 14925 static void i40e_get_platform_mac_addr(struct pci_dev *pdev, struct i40e_pf *pf) 14926 { 14927 if (eth_platform_get_mac_address(&pdev->dev, pf->hw.mac.addr)) 14928 i40e_get_mac_addr(&pf->hw, pf->hw.mac.addr); 14929 } 14930 14931 /** 14932 * i40e_set_fec_in_flags - helper function for setting FEC options in flags 14933 * @fec_cfg: FEC option to set in flags 14934 * @flags: ptr to flags in which we set FEC option 14935 **/ 14936 void i40e_set_fec_in_flags(u8 fec_cfg, u32 *flags) 14937 { 14938 if (fec_cfg & I40E_AQ_SET_FEC_AUTO) 14939 *flags |= I40E_FLAG_RS_FEC | I40E_FLAG_BASE_R_FEC; 14940 if ((fec_cfg & I40E_AQ_SET_FEC_REQUEST_RS) || 14941 (fec_cfg & I40E_AQ_SET_FEC_ABILITY_RS)) { 14942 *flags |= I40E_FLAG_RS_FEC; 14943 *flags &= ~I40E_FLAG_BASE_R_FEC; 14944 } 14945 if ((fec_cfg & I40E_AQ_SET_FEC_REQUEST_KR) || 14946 (fec_cfg & I40E_AQ_SET_FEC_ABILITY_KR)) { 14947 *flags |= I40E_FLAG_BASE_R_FEC; 14948 *flags &= ~I40E_FLAG_RS_FEC; 14949 } 14950 if (fec_cfg == 0) 14951 *flags &= ~(I40E_FLAG_RS_FEC | I40E_FLAG_BASE_R_FEC); 14952 } 14953 14954 /** 14955 * i40e_check_recovery_mode - check if we are running transition firmware 14956 * @pf: board private structure 14957 * 14958 * Check registers indicating the firmware runs in recovery mode. Sets the 14959 * appropriate driver state. 14960 * 14961 * Returns true if the recovery mode was detected, false otherwise 14962 **/ 14963 static bool i40e_check_recovery_mode(struct i40e_pf *pf) 14964 { 14965 u32 val = rd32(&pf->hw, I40E_GL_FWSTS); 14966 14967 if (val & I40E_GL_FWSTS_FWS1B_MASK) { 14968 dev_crit(&pf->pdev->dev, "Firmware recovery mode detected. Limiting functionality.\n"); 14969 dev_crit(&pf->pdev->dev, "Refer to the Intel(R) Ethernet Adapters and Devices User Guide for details on firmware recovery mode.\n"); 14970 set_bit(__I40E_RECOVERY_MODE, pf->state); 14971 14972 return true; 14973 } 14974 if (test_bit(__I40E_RECOVERY_MODE, pf->state)) 14975 dev_info(&pf->pdev->dev, "Please do Power-On Reset to initialize adapter in normal mode with full functionality.\n"); 14976 14977 return false; 14978 } 14979 14980 /** 14981 * i40e_pf_loop_reset - perform reset in a loop. 14982 * @pf: board private structure 14983 * 14984 * This function is useful when a NIC is about to enter recovery mode. 14985 * When a NIC's internal data structures are corrupted the NIC's 14986 * firmware is going to enter recovery mode. 14987 * Right after a POR it takes about 7 minutes for firmware to enter 14988 * recovery mode. Until that time a NIC is in some kind of intermediate 14989 * state. After that time period the NIC almost surely enters 14990 * recovery mode. The only way for a driver to detect intermediate 14991 * state is to issue a series of pf-resets and check a return value. 14992 * If a PF reset returns success then the firmware could be in recovery 14993 * mode so the caller of this code needs to check for recovery mode 14994 * if this function returns success. There is a little chance that 14995 * firmware will hang in intermediate state forever. 14996 * Since waiting 7 minutes is quite a lot of time this function waits 14997 * 10 seconds and then gives up by returning an error. 14998 * 14999 * Return 0 on success, negative on failure. 15000 **/ 15001 static i40e_status i40e_pf_loop_reset(struct i40e_pf *pf) 15002 { 15003 /* wait max 10 seconds for PF reset to succeed */ 15004 const unsigned long time_end = jiffies + 10 * HZ; 15005 15006 struct i40e_hw *hw = &pf->hw; 15007 i40e_status ret; 15008 15009 ret = i40e_pf_reset(hw); 15010 while (ret != I40E_SUCCESS && time_before(jiffies, time_end)) { 15011 usleep_range(10000, 20000); 15012 ret = i40e_pf_reset(hw); 15013 } 15014 15015 if (ret == I40E_SUCCESS) 15016 pf->pfr_count++; 15017 else 15018 dev_info(&pf->pdev->dev, "PF reset failed: %d\n", ret); 15019 15020 return ret; 15021 } 15022 15023 /** 15024 * i40e_check_fw_empr - check if FW issued unexpected EMP Reset 15025 * @pf: board private structure 15026 * 15027 * Check FW registers to determine if FW issued unexpected EMP Reset. 15028 * Every time when unexpected EMP Reset occurs the FW increments 15029 * a counter of unexpected EMP Resets. When the counter reaches 10 15030 * the FW should enter the Recovery mode 15031 * 15032 * Returns true if FW issued unexpected EMP Reset 15033 **/ 15034 static bool i40e_check_fw_empr(struct i40e_pf *pf) 15035 { 15036 const u32 fw_sts = rd32(&pf->hw, I40E_GL_FWSTS) & 15037 I40E_GL_FWSTS_FWS1B_MASK; 15038 return (fw_sts > I40E_GL_FWSTS_FWS1B_EMPR_0) && 15039 (fw_sts <= I40E_GL_FWSTS_FWS1B_EMPR_10); 15040 } 15041 15042 /** 15043 * i40e_handle_resets - handle EMP resets and PF resets 15044 * @pf: board private structure 15045 * 15046 * Handle both EMP resets and PF resets and conclude whether there are 15047 * any issues regarding these resets. If there are any issues then 15048 * generate log entry. 15049 * 15050 * Return 0 if NIC is healthy or negative value when there are issues 15051 * with resets 15052 **/ 15053 static i40e_status i40e_handle_resets(struct i40e_pf *pf) 15054 { 15055 const i40e_status pfr = i40e_pf_loop_reset(pf); 15056 const bool is_empr = i40e_check_fw_empr(pf); 15057 15058 if (is_empr || pfr != I40E_SUCCESS) 15059 dev_crit(&pf->pdev->dev, "Entering recovery mode due to repeated FW resets. This may take several minutes. Refer to the Intel(R) Ethernet Adapters and Devices User Guide.\n"); 15060 15061 return is_empr ? I40E_ERR_RESET_FAILED : pfr; 15062 } 15063 15064 /** 15065 * i40e_init_recovery_mode - initialize subsystems needed in recovery mode 15066 * @pf: board private structure 15067 * @hw: ptr to the hardware info 15068 * 15069 * This function does a minimal setup of all subsystems needed for running 15070 * recovery mode. 15071 * 15072 * Returns 0 on success, negative on failure 15073 **/ 15074 static int i40e_init_recovery_mode(struct i40e_pf *pf, struct i40e_hw *hw) 15075 { 15076 struct i40e_vsi *vsi; 15077 int err; 15078 int v_idx; 15079 15080 pci_save_state(pf->pdev); 15081 15082 /* set up periodic task facility */ 15083 timer_setup(&pf->service_timer, i40e_service_timer, 0); 15084 pf->service_timer_period = HZ; 15085 15086 INIT_WORK(&pf->service_task, i40e_service_task); 15087 clear_bit(__I40E_SERVICE_SCHED, pf->state); 15088 15089 err = i40e_init_interrupt_scheme(pf); 15090 if (err) 15091 goto err_switch_setup; 15092 15093 /* The number of VSIs reported by the FW is the minimum guaranteed 15094 * to us; HW supports far more and we share the remaining pool with 15095 * the other PFs. We allocate space for more than the guarantee with 15096 * the understanding that we might not get them all later. 15097 */ 15098 if (pf->hw.func_caps.num_vsis < I40E_MIN_VSI_ALLOC) 15099 pf->num_alloc_vsi = I40E_MIN_VSI_ALLOC; 15100 else 15101 pf->num_alloc_vsi = pf->hw.func_caps.num_vsis; 15102 15103 /* Set up the vsi struct and our local tracking of the MAIN PF vsi. */ 15104 pf->vsi = kcalloc(pf->num_alloc_vsi, sizeof(struct i40e_vsi *), 15105 GFP_KERNEL); 15106 if (!pf->vsi) { 15107 err = -ENOMEM; 15108 goto err_switch_setup; 15109 } 15110 15111 /* We allocate one VSI which is needed as absolute minimum 15112 * in order to register the netdev 15113 */ 15114 v_idx = i40e_vsi_mem_alloc(pf, I40E_VSI_MAIN); 15115 if (v_idx < 0) { 15116 err = v_idx; 15117 goto err_switch_setup; 15118 } 15119 pf->lan_vsi = v_idx; 15120 vsi = pf->vsi[v_idx]; 15121 if (!vsi) { 15122 err = -EFAULT; 15123 goto err_switch_setup; 15124 } 15125 vsi->alloc_queue_pairs = 1; 15126 err = i40e_config_netdev(vsi); 15127 if (err) 15128 goto err_switch_setup; 15129 err = register_netdev(vsi->netdev); 15130 if (err) 15131 goto err_switch_setup; 15132 vsi->netdev_registered = true; 15133 i40e_dbg_pf_init(pf); 15134 15135 err = i40e_setup_misc_vector_for_recovery_mode(pf); 15136 if (err) 15137 goto err_switch_setup; 15138 15139 /* tell the firmware that we're starting */ 15140 i40e_send_version(pf); 15141 15142 /* since everything's happy, start the service_task timer */ 15143 mod_timer(&pf->service_timer, 15144 round_jiffies(jiffies + pf->service_timer_period)); 15145 15146 return 0; 15147 15148 err_switch_setup: 15149 i40e_reset_interrupt_capability(pf); 15150 del_timer_sync(&pf->service_timer); 15151 i40e_shutdown_adminq(hw); 15152 iounmap(hw->hw_addr); 15153 pci_disable_pcie_error_reporting(pf->pdev); 15154 pci_release_mem_regions(pf->pdev); 15155 pci_disable_device(pf->pdev); 15156 kfree(pf); 15157 15158 return err; 15159 } 15160 15161 /** 15162 * i40e_probe - Device initialization routine 15163 * @pdev: PCI device information struct 15164 * @ent: entry in i40e_pci_tbl 15165 * 15166 * i40e_probe initializes a PF identified by a pci_dev structure. 15167 * The OS initialization, configuring of the PF private structure, 15168 * and a hardware reset occur. 15169 * 15170 * Returns 0 on success, negative on failure 15171 **/ 15172 static int i40e_probe(struct pci_dev *pdev, const struct pci_device_id *ent) 15173 { 15174 struct i40e_aq_get_phy_abilities_resp abilities; 15175 #ifdef CONFIG_I40E_DCB 15176 enum i40e_get_fw_lldp_status_resp lldp_status; 15177 i40e_status status; 15178 #endif /* CONFIG_I40E_DCB */ 15179 struct i40e_pf *pf; 15180 struct i40e_hw *hw; 15181 static u16 pfs_found; 15182 u16 wol_nvm_bits; 15183 u16 link_status; 15184 int err; 15185 u32 val; 15186 u32 i; 15187 15188 err = pci_enable_device_mem(pdev); 15189 if (err) 15190 return err; 15191 15192 /* set up for high or low dma */ 15193 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)); 15194 if (err) { 15195 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)); 15196 if (err) { 15197 dev_err(&pdev->dev, 15198 "DMA configuration failed: 0x%x\n", err); 15199 goto err_dma; 15200 } 15201 } 15202 15203 /* set up pci connections */ 15204 err = pci_request_mem_regions(pdev, i40e_driver_name); 15205 if (err) { 15206 dev_info(&pdev->dev, 15207 "pci_request_selected_regions failed %d\n", err); 15208 goto err_pci_reg; 15209 } 15210 15211 pci_enable_pcie_error_reporting(pdev); 15212 pci_set_master(pdev); 15213 15214 /* Now that we have a PCI connection, we need to do the 15215 * low level device setup. This is primarily setting up 15216 * the Admin Queue structures and then querying for the 15217 * device's current profile information. 15218 */ 15219 pf = kzalloc(sizeof(*pf), GFP_KERNEL); 15220 if (!pf) { 15221 err = -ENOMEM; 15222 goto err_pf_alloc; 15223 } 15224 pf->next_vsi = 0; 15225 pf->pdev = pdev; 15226 set_bit(__I40E_DOWN, pf->state); 15227 15228 hw = &pf->hw; 15229 hw->back = pf; 15230 15231 pf->ioremap_len = min_t(int, pci_resource_len(pdev, 0), 15232 I40E_MAX_CSR_SPACE); 15233 /* We believe that the highest register to read is 15234 * I40E_GLGEN_STAT_CLEAR, so we check if the BAR size 15235 * is not less than that before mapping to prevent a 15236 * kernel panic. 15237 */ 15238 if (pf->ioremap_len < I40E_GLGEN_STAT_CLEAR) { 15239 dev_err(&pdev->dev, "Cannot map registers, bar size 0x%X too small, aborting\n", 15240 pf->ioremap_len); 15241 err = -ENOMEM; 15242 goto err_ioremap; 15243 } 15244 hw->hw_addr = ioremap(pci_resource_start(pdev, 0), pf->ioremap_len); 15245 if (!hw->hw_addr) { 15246 err = -EIO; 15247 dev_info(&pdev->dev, "ioremap(0x%04x, 0x%04x) failed: 0x%x\n", 15248 (unsigned int)pci_resource_start(pdev, 0), 15249 pf->ioremap_len, err); 15250 goto err_ioremap; 15251 } 15252 hw->vendor_id = pdev->vendor; 15253 hw->device_id = pdev->device; 15254 pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id); 15255 hw->subsystem_vendor_id = pdev->subsystem_vendor; 15256 hw->subsystem_device_id = pdev->subsystem_device; 15257 hw->bus.device = PCI_SLOT(pdev->devfn); 15258 hw->bus.func = PCI_FUNC(pdev->devfn); 15259 hw->bus.bus_id = pdev->bus->number; 15260 pf->instance = pfs_found; 15261 15262 /* Select something other than the 802.1ad ethertype for the 15263 * switch to use internally and drop on ingress. 15264 */ 15265 hw->switch_tag = 0xffff; 15266 hw->first_tag = ETH_P_8021AD; 15267 hw->second_tag = ETH_P_8021Q; 15268 15269 INIT_LIST_HEAD(&pf->l3_flex_pit_list); 15270 INIT_LIST_HEAD(&pf->l4_flex_pit_list); 15271 INIT_LIST_HEAD(&pf->ddp_old_prof); 15272 15273 /* set up the locks for the AQ, do this only once in probe 15274 * and destroy them only once in remove 15275 */ 15276 mutex_init(&hw->aq.asq_mutex); 15277 mutex_init(&hw->aq.arq_mutex); 15278 15279 pf->msg_enable = netif_msg_init(debug, 15280 NETIF_MSG_DRV | 15281 NETIF_MSG_PROBE | 15282 NETIF_MSG_LINK); 15283 if (debug < -1) 15284 pf->hw.debug_mask = debug; 15285 15286 /* do a special CORER for clearing PXE mode once at init */ 15287 if (hw->revision_id == 0 && 15288 (rd32(hw, I40E_GLLAN_RCTL_0) & I40E_GLLAN_RCTL_0_PXE_MODE_MASK)) { 15289 wr32(hw, I40E_GLGEN_RTRIG, I40E_GLGEN_RTRIG_CORER_MASK); 15290 i40e_flush(hw); 15291 msleep(200); 15292 pf->corer_count++; 15293 15294 i40e_clear_pxe_mode(hw); 15295 } 15296 15297 /* Reset here to make sure all is clean and to define PF 'n' */ 15298 i40e_clear_hw(hw); 15299 15300 err = i40e_set_mac_type(hw); 15301 if (err) { 15302 dev_warn(&pdev->dev, "unidentified MAC or BLANK NVM: %d\n", 15303 err); 15304 goto err_pf_reset; 15305 } 15306 15307 err = i40e_handle_resets(pf); 15308 if (err) 15309 goto err_pf_reset; 15310 15311 i40e_check_recovery_mode(pf); 15312 15313 if (is_kdump_kernel()) { 15314 hw->aq.num_arq_entries = I40E_MIN_ARQ_LEN; 15315 hw->aq.num_asq_entries = I40E_MIN_ASQ_LEN; 15316 } else { 15317 hw->aq.num_arq_entries = I40E_AQ_LEN; 15318 hw->aq.num_asq_entries = I40E_AQ_LEN; 15319 } 15320 hw->aq.arq_buf_size = I40E_MAX_AQ_BUF_SIZE; 15321 hw->aq.asq_buf_size = I40E_MAX_AQ_BUF_SIZE; 15322 pf->adminq_work_limit = I40E_AQ_WORK_LIMIT; 15323 15324 snprintf(pf->int_name, sizeof(pf->int_name) - 1, 15325 "%s-%s:misc", 15326 dev_driver_string(&pf->pdev->dev), dev_name(&pdev->dev)); 15327 15328 err = i40e_init_shared_code(hw); 15329 if (err) { 15330 dev_warn(&pdev->dev, "unidentified MAC or BLANK NVM: %d\n", 15331 err); 15332 goto err_pf_reset; 15333 } 15334 15335 /* set up a default setting for link flow control */ 15336 pf->hw.fc.requested_mode = I40E_FC_NONE; 15337 15338 err = i40e_init_adminq(hw); 15339 if (err) { 15340 if (err == I40E_ERR_FIRMWARE_API_VERSION) 15341 dev_info(&pdev->dev, 15342 "The driver for the device stopped because the NVM image v%u.%u is newer than expected v%u.%u. You must install the most recent version of the network driver.\n", 15343 hw->aq.api_maj_ver, 15344 hw->aq.api_min_ver, 15345 I40E_FW_API_VERSION_MAJOR, 15346 I40E_FW_MINOR_VERSION(hw)); 15347 else 15348 dev_info(&pdev->dev, 15349 "The driver for the device stopped because the device firmware failed to init. Try updating your NVM image.\n"); 15350 15351 goto err_pf_reset; 15352 } 15353 i40e_get_oem_version(hw); 15354 15355 /* provide nvm, fw, api versions, vendor:device id, subsys vendor:device id */ 15356 dev_info(&pdev->dev, "fw %d.%d.%05d api %d.%d nvm %s [%04x:%04x] [%04x:%04x]\n", 15357 hw->aq.fw_maj_ver, hw->aq.fw_min_ver, hw->aq.fw_build, 15358 hw->aq.api_maj_ver, hw->aq.api_min_ver, 15359 i40e_nvm_version_str(hw), hw->vendor_id, hw->device_id, 15360 hw->subsystem_vendor_id, hw->subsystem_device_id); 15361 15362 if (hw->aq.api_maj_ver == I40E_FW_API_VERSION_MAJOR && 15363 hw->aq.api_min_ver > I40E_FW_MINOR_VERSION(hw)) 15364 dev_info(&pdev->dev, 15365 "The driver for the device detected a newer version of the NVM image v%u.%u than expected v%u.%u. Please install the most recent version of the network driver.\n", 15366 hw->aq.api_maj_ver, 15367 hw->aq.api_min_ver, 15368 I40E_FW_API_VERSION_MAJOR, 15369 I40E_FW_MINOR_VERSION(hw)); 15370 else if (hw->aq.api_maj_ver == 1 && hw->aq.api_min_ver < 4) 15371 dev_info(&pdev->dev, 15372 "The driver for the device detected an older version of the NVM image v%u.%u than expected v%u.%u. Please update the NVM image.\n", 15373 hw->aq.api_maj_ver, 15374 hw->aq.api_min_ver, 15375 I40E_FW_API_VERSION_MAJOR, 15376 I40E_FW_MINOR_VERSION(hw)); 15377 15378 i40e_verify_eeprom(pf); 15379 15380 /* Rev 0 hardware was never productized */ 15381 if (hw->revision_id < 1) 15382 dev_warn(&pdev->dev, "This device is a pre-production adapter/LOM. Please be aware there may be issues with your hardware. If you are experiencing problems please contact your Intel or hardware representative who provided you with this hardware.\n"); 15383 15384 i40e_clear_pxe_mode(hw); 15385 15386 err = i40e_get_capabilities(pf, i40e_aqc_opc_list_func_capabilities); 15387 if (err) 15388 goto err_adminq_setup; 15389 15390 err = i40e_sw_init(pf); 15391 if (err) { 15392 dev_info(&pdev->dev, "sw_init failed: %d\n", err); 15393 goto err_sw_init; 15394 } 15395 15396 if (test_bit(__I40E_RECOVERY_MODE, pf->state)) 15397 return i40e_init_recovery_mode(pf, hw); 15398 15399 err = i40e_init_lan_hmc(hw, hw->func_caps.num_tx_qp, 15400 hw->func_caps.num_rx_qp, 0, 0); 15401 if (err) { 15402 dev_info(&pdev->dev, "init_lan_hmc failed: %d\n", err); 15403 goto err_init_lan_hmc; 15404 } 15405 15406 err = i40e_configure_lan_hmc(hw, I40E_HMC_MODEL_DIRECT_ONLY); 15407 if (err) { 15408 dev_info(&pdev->dev, "configure_lan_hmc failed: %d\n", err); 15409 err = -ENOENT; 15410 goto err_configure_lan_hmc; 15411 } 15412 15413 /* Disable LLDP for NICs that have firmware versions lower than v4.3. 15414 * Ignore error return codes because if it was already disabled via 15415 * hardware settings this will fail 15416 */ 15417 if (pf->hw_features & I40E_HW_STOP_FW_LLDP) { 15418 dev_info(&pdev->dev, "Stopping firmware LLDP agent.\n"); 15419 i40e_aq_stop_lldp(hw, true, false, NULL); 15420 } 15421 15422 /* allow a platform config to override the HW addr */ 15423 i40e_get_platform_mac_addr(pdev, pf); 15424 15425 if (!is_valid_ether_addr(hw->mac.addr)) { 15426 dev_info(&pdev->dev, "invalid MAC address %pM\n", hw->mac.addr); 15427 err = -EIO; 15428 goto err_mac_addr; 15429 } 15430 dev_info(&pdev->dev, "MAC address: %pM\n", hw->mac.addr); 15431 ether_addr_copy(hw->mac.perm_addr, hw->mac.addr); 15432 i40e_get_port_mac_addr(hw, hw->mac.port_addr); 15433 if (is_valid_ether_addr(hw->mac.port_addr)) 15434 pf->hw_features |= I40E_HW_PORT_ID_VALID; 15435 15436 pci_set_drvdata(pdev, pf); 15437 pci_save_state(pdev); 15438 15439 #ifdef CONFIG_I40E_DCB 15440 status = i40e_get_fw_lldp_status(&pf->hw, &lldp_status); 15441 (!status && 15442 lldp_status == I40E_GET_FW_LLDP_STATUS_ENABLED) ? 15443 (pf->flags &= ~I40E_FLAG_DISABLE_FW_LLDP) : 15444 (pf->flags |= I40E_FLAG_DISABLE_FW_LLDP); 15445 dev_info(&pdev->dev, 15446 (pf->flags & I40E_FLAG_DISABLE_FW_LLDP) ? 15447 "FW LLDP is disabled\n" : 15448 "FW LLDP is enabled\n"); 15449 15450 /* Enable FW to write default DCB config on link-up */ 15451 i40e_aq_set_dcb_parameters(hw, true, NULL); 15452 15453 err = i40e_init_pf_dcb(pf); 15454 if (err) { 15455 dev_info(&pdev->dev, "DCB init failed %d, disabled\n", err); 15456 pf->flags &= ~(I40E_FLAG_DCB_CAPABLE | I40E_FLAG_DCB_ENABLED); 15457 /* Continue without DCB enabled */ 15458 } 15459 #endif /* CONFIG_I40E_DCB */ 15460 15461 /* set up periodic task facility */ 15462 timer_setup(&pf->service_timer, i40e_service_timer, 0); 15463 pf->service_timer_period = HZ; 15464 15465 INIT_WORK(&pf->service_task, i40e_service_task); 15466 clear_bit(__I40E_SERVICE_SCHED, pf->state); 15467 15468 /* NVM bit on means WoL disabled for the port */ 15469 i40e_read_nvm_word(hw, I40E_SR_NVM_WAKE_ON_LAN, &wol_nvm_bits); 15470 if (BIT (hw->port) & wol_nvm_bits || hw->partition_id != 1) 15471 pf->wol_en = false; 15472 else 15473 pf->wol_en = true; 15474 device_set_wakeup_enable(&pf->pdev->dev, pf->wol_en); 15475 15476 /* set up the main switch operations */ 15477 i40e_determine_queue_usage(pf); 15478 err = i40e_init_interrupt_scheme(pf); 15479 if (err) 15480 goto err_switch_setup; 15481 15482 /* Reduce Tx and Rx pairs for kdump 15483 * When MSI-X is enabled, it's not allowed to use more TC queue 15484 * pairs than MSI-X vectors (pf->num_lan_msix) exist. Thus 15485 * vsi->num_queue_pairs will be equal to pf->num_lan_msix, i.e., 1. 15486 */ 15487 if (is_kdump_kernel()) 15488 pf->num_lan_msix = 1; 15489 15490 pf->udp_tunnel_nic.set_port = i40e_udp_tunnel_set_port; 15491 pf->udp_tunnel_nic.unset_port = i40e_udp_tunnel_unset_port; 15492 pf->udp_tunnel_nic.flags = UDP_TUNNEL_NIC_INFO_MAY_SLEEP; 15493 pf->udp_tunnel_nic.shared = &pf->udp_tunnel_shared; 15494 pf->udp_tunnel_nic.tables[0].n_entries = I40E_MAX_PF_UDP_OFFLOAD_PORTS; 15495 pf->udp_tunnel_nic.tables[0].tunnel_types = UDP_TUNNEL_TYPE_VXLAN | 15496 UDP_TUNNEL_TYPE_GENEVE; 15497 15498 /* The number of VSIs reported by the FW is the minimum guaranteed 15499 * to us; HW supports far more and we share the remaining pool with 15500 * the other PFs. We allocate space for more than the guarantee with 15501 * the understanding that we might not get them all later. 15502 */ 15503 if (pf->hw.func_caps.num_vsis < I40E_MIN_VSI_ALLOC) 15504 pf->num_alloc_vsi = I40E_MIN_VSI_ALLOC; 15505 else 15506 pf->num_alloc_vsi = pf->hw.func_caps.num_vsis; 15507 if (pf->num_alloc_vsi > UDP_TUNNEL_NIC_MAX_SHARING_DEVICES) { 15508 dev_warn(&pf->pdev->dev, 15509 "limiting the VSI count due to UDP tunnel limitation %d > %d\n", 15510 pf->num_alloc_vsi, UDP_TUNNEL_NIC_MAX_SHARING_DEVICES); 15511 pf->num_alloc_vsi = UDP_TUNNEL_NIC_MAX_SHARING_DEVICES; 15512 } 15513 15514 /* Set up the *vsi struct and our local tracking of the MAIN PF vsi. */ 15515 pf->vsi = kcalloc(pf->num_alloc_vsi, sizeof(struct i40e_vsi *), 15516 GFP_KERNEL); 15517 if (!pf->vsi) { 15518 err = -ENOMEM; 15519 goto err_switch_setup; 15520 } 15521 15522 #ifdef CONFIG_PCI_IOV 15523 /* prep for VF support */ 15524 if ((pf->flags & I40E_FLAG_SRIOV_ENABLED) && 15525 (pf->flags & I40E_FLAG_MSIX_ENABLED) && 15526 !test_bit(__I40E_BAD_EEPROM, pf->state)) { 15527 if (pci_num_vf(pdev)) 15528 pf->flags |= I40E_FLAG_VEB_MODE_ENABLED; 15529 } 15530 #endif 15531 err = i40e_setup_pf_switch(pf, false); 15532 if (err) { 15533 dev_info(&pdev->dev, "setup_pf_switch failed: %d\n", err); 15534 goto err_vsis; 15535 } 15536 INIT_LIST_HEAD(&pf->vsi[pf->lan_vsi]->ch_list); 15537 15538 /* if FDIR VSI was set up, start it now */ 15539 for (i = 0; i < pf->num_alloc_vsi; i++) { 15540 if (pf->vsi[i] && pf->vsi[i]->type == I40E_VSI_FDIR) { 15541 i40e_vsi_open(pf->vsi[i]); 15542 break; 15543 } 15544 } 15545 15546 /* The driver only wants link up/down and module qualification 15547 * reports from firmware. Note the negative logic. 15548 */ 15549 err = i40e_aq_set_phy_int_mask(&pf->hw, 15550 ~(I40E_AQ_EVENT_LINK_UPDOWN | 15551 I40E_AQ_EVENT_MEDIA_NA | 15552 I40E_AQ_EVENT_MODULE_QUAL_FAIL), NULL); 15553 if (err) 15554 dev_info(&pf->pdev->dev, "set phy mask fail, err %s aq_err %s\n", 15555 i40e_stat_str(&pf->hw, err), 15556 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 15557 15558 /* Reconfigure hardware for allowing smaller MSS in the case 15559 * of TSO, so that we avoid the MDD being fired and causing 15560 * a reset in the case of small MSS+TSO. 15561 */ 15562 val = rd32(hw, I40E_REG_MSS); 15563 if ((val & I40E_REG_MSS_MIN_MASK) > I40E_64BYTE_MSS) { 15564 val &= ~I40E_REG_MSS_MIN_MASK; 15565 val |= I40E_64BYTE_MSS; 15566 wr32(hw, I40E_REG_MSS, val); 15567 } 15568 15569 if (pf->hw_features & I40E_HW_RESTART_AUTONEG) { 15570 msleep(75); 15571 err = i40e_aq_set_link_restart_an(&pf->hw, true, NULL); 15572 if (err) 15573 dev_info(&pf->pdev->dev, "link restart failed, err %s aq_err %s\n", 15574 i40e_stat_str(&pf->hw, err), 15575 i40e_aq_str(&pf->hw, 15576 pf->hw.aq.asq_last_status)); 15577 } 15578 /* The main driver is (mostly) up and happy. We need to set this state 15579 * before setting up the misc vector or we get a race and the vector 15580 * ends up disabled forever. 15581 */ 15582 clear_bit(__I40E_DOWN, pf->state); 15583 15584 /* In case of MSIX we are going to setup the misc vector right here 15585 * to handle admin queue events etc. In case of legacy and MSI 15586 * the misc functionality and queue processing is combined in 15587 * the same vector and that gets setup at open. 15588 */ 15589 if (pf->flags & I40E_FLAG_MSIX_ENABLED) { 15590 err = i40e_setup_misc_vector(pf); 15591 if (err) { 15592 dev_info(&pdev->dev, 15593 "setup of misc vector failed: %d\n", err); 15594 i40e_cloud_filter_exit(pf); 15595 i40e_fdir_teardown(pf); 15596 goto err_vsis; 15597 } 15598 } 15599 15600 #ifdef CONFIG_PCI_IOV 15601 /* prep for VF support */ 15602 if ((pf->flags & I40E_FLAG_SRIOV_ENABLED) && 15603 (pf->flags & I40E_FLAG_MSIX_ENABLED) && 15604 !test_bit(__I40E_BAD_EEPROM, pf->state)) { 15605 /* disable link interrupts for VFs */ 15606 val = rd32(hw, I40E_PFGEN_PORTMDIO_NUM); 15607 val &= ~I40E_PFGEN_PORTMDIO_NUM_VFLINK_STAT_ENA_MASK; 15608 wr32(hw, I40E_PFGEN_PORTMDIO_NUM, val); 15609 i40e_flush(hw); 15610 15611 if (pci_num_vf(pdev)) { 15612 dev_info(&pdev->dev, 15613 "Active VFs found, allocating resources.\n"); 15614 err = i40e_alloc_vfs(pf, pci_num_vf(pdev)); 15615 if (err) 15616 dev_info(&pdev->dev, 15617 "Error %d allocating resources for existing VFs\n", 15618 err); 15619 } 15620 } 15621 #endif /* CONFIG_PCI_IOV */ 15622 15623 if (pf->flags & I40E_FLAG_IWARP_ENABLED) { 15624 pf->iwarp_base_vector = i40e_get_lump(pf, pf->irq_pile, 15625 pf->num_iwarp_msix, 15626 I40E_IWARP_IRQ_PILE_ID); 15627 if (pf->iwarp_base_vector < 0) { 15628 dev_info(&pdev->dev, 15629 "failed to get tracking for %d vectors for IWARP err=%d\n", 15630 pf->num_iwarp_msix, pf->iwarp_base_vector); 15631 pf->flags &= ~I40E_FLAG_IWARP_ENABLED; 15632 } 15633 } 15634 15635 i40e_dbg_pf_init(pf); 15636 15637 /* tell the firmware that we're starting */ 15638 i40e_send_version(pf); 15639 15640 /* since everything's happy, start the service_task timer */ 15641 mod_timer(&pf->service_timer, 15642 round_jiffies(jiffies + pf->service_timer_period)); 15643 15644 /* add this PF to client device list and launch a client service task */ 15645 if (pf->flags & I40E_FLAG_IWARP_ENABLED) { 15646 err = i40e_lan_add_device(pf); 15647 if (err) 15648 dev_info(&pdev->dev, "Failed to add PF to client API service list: %d\n", 15649 err); 15650 } 15651 15652 #define PCI_SPEED_SIZE 8 15653 #define PCI_WIDTH_SIZE 8 15654 /* Devices on the IOSF bus do not have this information 15655 * and will report PCI Gen 1 x 1 by default so don't bother 15656 * checking them. 15657 */ 15658 if (!(pf->hw_features & I40E_HW_NO_PCI_LINK_CHECK)) { 15659 char speed[PCI_SPEED_SIZE] = "Unknown"; 15660 char width[PCI_WIDTH_SIZE] = "Unknown"; 15661 15662 /* Get the negotiated link width and speed from PCI config 15663 * space 15664 */ 15665 pcie_capability_read_word(pf->pdev, PCI_EXP_LNKSTA, 15666 &link_status); 15667 15668 i40e_set_pci_config_data(hw, link_status); 15669 15670 switch (hw->bus.speed) { 15671 case i40e_bus_speed_8000: 15672 strlcpy(speed, "8.0", PCI_SPEED_SIZE); break; 15673 case i40e_bus_speed_5000: 15674 strlcpy(speed, "5.0", PCI_SPEED_SIZE); break; 15675 case i40e_bus_speed_2500: 15676 strlcpy(speed, "2.5", PCI_SPEED_SIZE); break; 15677 default: 15678 break; 15679 } 15680 switch (hw->bus.width) { 15681 case i40e_bus_width_pcie_x8: 15682 strlcpy(width, "8", PCI_WIDTH_SIZE); break; 15683 case i40e_bus_width_pcie_x4: 15684 strlcpy(width, "4", PCI_WIDTH_SIZE); break; 15685 case i40e_bus_width_pcie_x2: 15686 strlcpy(width, "2", PCI_WIDTH_SIZE); break; 15687 case i40e_bus_width_pcie_x1: 15688 strlcpy(width, "1", PCI_WIDTH_SIZE); break; 15689 default: 15690 break; 15691 } 15692 15693 dev_info(&pdev->dev, "PCI-Express: Speed %sGT/s Width x%s\n", 15694 speed, width); 15695 15696 if (hw->bus.width < i40e_bus_width_pcie_x8 || 15697 hw->bus.speed < i40e_bus_speed_8000) { 15698 dev_warn(&pdev->dev, "PCI-Express bandwidth available for this device may be insufficient for optimal performance.\n"); 15699 dev_warn(&pdev->dev, "Please move the device to a different PCI-e link with more lanes and/or higher transfer rate.\n"); 15700 } 15701 } 15702 15703 /* get the requested speeds from the fw */ 15704 err = i40e_aq_get_phy_capabilities(hw, false, false, &abilities, NULL); 15705 if (err) 15706 dev_dbg(&pf->pdev->dev, "get requested speeds ret = %s last_status = %s\n", 15707 i40e_stat_str(&pf->hw, err), 15708 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 15709 pf->hw.phy.link_info.requested_speeds = abilities.link_speed; 15710 15711 /* set the FEC config due to the board capabilities */ 15712 i40e_set_fec_in_flags(abilities.fec_cfg_curr_mod_ext_info, &pf->flags); 15713 15714 /* get the supported phy types from the fw */ 15715 err = i40e_aq_get_phy_capabilities(hw, false, true, &abilities, NULL); 15716 if (err) 15717 dev_dbg(&pf->pdev->dev, "get supported phy types ret = %s last_status = %s\n", 15718 i40e_stat_str(&pf->hw, err), 15719 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 15720 15721 /* make sure the MFS hasn't been set lower than the default */ 15722 #define MAX_FRAME_SIZE_DEFAULT 0x2600 15723 val = (rd32(&pf->hw, I40E_PRTGL_SAH) & 15724 I40E_PRTGL_SAH_MFS_MASK) >> I40E_PRTGL_SAH_MFS_SHIFT; 15725 if (val < MAX_FRAME_SIZE_DEFAULT) 15726 dev_warn(&pdev->dev, "MFS for port %x has been set below the default: %x\n", 15727 i, val); 15728 15729 /* Add a filter to drop all Flow control frames from any VSI from being 15730 * transmitted. By doing so we stop a malicious VF from sending out 15731 * PAUSE or PFC frames and potentially controlling traffic for other 15732 * PF/VF VSIs. 15733 * The FW can still send Flow control frames if enabled. 15734 */ 15735 i40e_add_filter_to_drop_tx_flow_control_frames(&pf->hw, 15736 pf->main_vsi_seid); 15737 15738 if ((pf->hw.device_id == I40E_DEV_ID_10G_BASE_T) || 15739 (pf->hw.device_id == I40E_DEV_ID_10G_BASE_T4)) 15740 pf->hw_features |= I40E_HW_PHY_CONTROLS_LEDS; 15741 if (pf->hw.device_id == I40E_DEV_ID_SFP_I_X722) 15742 pf->hw_features |= I40E_HW_HAVE_CRT_RETIMER; 15743 /* print a string summarizing features */ 15744 i40e_print_features(pf); 15745 15746 return 0; 15747 15748 /* Unwind what we've done if something failed in the setup */ 15749 err_vsis: 15750 set_bit(__I40E_DOWN, pf->state); 15751 i40e_clear_interrupt_scheme(pf); 15752 kfree(pf->vsi); 15753 err_switch_setup: 15754 i40e_reset_interrupt_capability(pf); 15755 del_timer_sync(&pf->service_timer); 15756 err_mac_addr: 15757 err_configure_lan_hmc: 15758 (void)i40e_shutdown_lan_hmc(hw); 15759 err_init_lan_hmc: 15760 kfree(pf->qp_pile); 15761 err_sw_init: 15762 err_adminq_setup: 15763 err_pf_reset: 15764 iounmap(hw->hw_addr); 15765 err_ioremap: 15766 kfree(pf); 15767 err_pf_alloc: 15768 pci_disable_pcie_error_reporting(pdev); 15769 pci_release_mem_regions(pdev); 15770 err_pci_reg: 15771 err_dma: 15772 pci_disable_device(pdev); 15773 return err; 15774 } 15775 15776 /** 15777 * i40e_remove - Device removal routine 15778 * @pdev: PCI device information struct 15779 * 15780 * i40e_remove is called by the PCI subsystem to alert the driver 15781 * that is should release a PCI device. This could be caused by a 15782 * Hot-Plug event, or because the driver is going to be removed from 15783 * memory. 15784 **/ 15785 static void i40e_remove(struct pci_dev *pdev) 15786 { 15787 struct i40e_pf *pf = pci_get_drvdata(pdev); 15788 struct i40e_hw *hw = &pf->hw; 15789 i40e_status ret_code; 15790 int i; 15791 15792 i40e_dbg_pf_exit(pf); 15793 15794 i40e_ptp_stop(pf); 15795 15796 /* Disable RSS in hw */ 15797 i40e_write_rx_ctl(hw, I40E_PFQF_HENA(0), 0); 15798 i40e_write_rx_ctl(hw, I40E_PFQF_HENA(1), 0); 15799 15800 while (test_bit(__I40E_RESET_RECOVERY_PENDING, pf->state)) 15801 usleep_range(1000, 2000); 15802 15803 if (pf->flags & I40E_FLAG_SRIOV_ENABLED) { 15804 set_bit(__I40E_VF_RESETS_DISABLED, pf->state); 15805 i40e_free_vfs(pf); 15806 pf->flags &= ~I40E_FLAG_SRIOV_ENABLED; 15807 } 15808 /* no more scheduling of any task */ 15809 set_bit(__I40E_SUSPENDED, pf->state); 15810 set_bit(__I40E_DOWN, pf->state); 15811 if (pf->service_timer.function) 15812 del_timer_sync(&pf->service_timer); 15813 if (pf->service_task.func) 15814 cancel_work_sync(&pf->service_task); 15815 15816 if (test_bit(__I40E_RECOVERY_MODE, pf->state)) { 15817 struct i40e_vsi *vsi = pf->vsi[0]; 15818 15819 /* We know that we have allocated only one vsi for this PF, 15820 * it was just for registering netdevice, so the interface 15821 * could be visible in the 'ifconfig' output 15822 */ 15823 unregister_netdev(vsi->netdev); 15824 free_netdev(vsi->netdev); 15825 15826 goto unmap; 15827 } 15828 15829 /* Client close must be called explicitly here because the timer 15830 * has been stopped. 15831 */ 15832 i40e_notify_client_of_netdev_close(pf->vsi[pf->lan_vsi], false); 15833 15834 i40e_fdir_teardown(pf); 15835 15836 /* If there is a switch structure or any orphans, remove them. 15837 * This will leave only the PF's VSI remaining. 15838 */ 15839 for (i = 0; i < I40E_MAX_VEB; i++) { 15840 if (!pf->veb[i]) 15841 continue; 15842 15843 if (pf->veb[i]->uplink_seid == pf->mac_seid || 15844 pf->veb[i]->uplink_seid == 0) 15845 i40e_switch_branch_release(pf->veb[i]); 15846 } 15847 15848 /* Now we can shutdown the PF's VSI, just before we kill 15849 * adminq and hmc. 15850 */ 15851 if (pf->vsi[pf->lan_vsi]) 15852 i40e_vsi_release(pf->vsi[pf->lan_vsi]); 15853 15854 i40e_cloud_filter_exit(pf); 15855 15856 /* remove attached clients */ 15857 if (pf->flags & I40E_FLAG_IWARP_ENABLED) { 15858 ret_code = i40e_lan_del_device(pf); 15859 if (ret_code) 15860 dev_warn(&pdev->dev, "Failed to delete client device: %d\n", 15861 ret_code); 15862 } 15863 15864 /* shutdown and destroy the HMC */ 15865 if (hw->hmc.hmc_obj) { 15866 ret_code = i40e_shutdown_lan_hmc(hw); 15867 if (ret_code) 15868 dev_warn(&pdev->dev, 15869 "Failed to destroy the HMC resources: %d\n", 15870 ret_code); 15871 } 15872 15873 unmap: 15874 /* Free MSI/legacy interrupt 0 when in recovery mode. */ 15875 if (test_bit(__I40E_RECOVERY_MODE, pf->state) && 15876 !(pf->flags & I40E_FLAG_MSIX_ENABLED)) 15877 free_irq(pf->pdev->irq, pf); 15878 15879 /* shutdown the adminq */ 15880 i40e_shutdown_adminq(hw); 15881 15882 /* destroy the locks only once, here */ 15883 mutex_destroy(&hw->aq.arq_mutex); 15884 mutex_destroy(&hw->aq.asq_mutex); 15885 15886 /* Clear all dynamic memory lists of rings, q_vectors, and VSIs */ 15887 rtnl_lock(); 15888 i40e_clear_interrupt_scheme(pf); 15889 for (i = 0; i < pf->num_alloc_vsi; i++) { 15890 if (pf->vsi[i]) { 15891 if (!test_bit(__I40E_RECOVERY_MODE, pf->state)) 15892 i40e_vsi_clear_rings(pf->vsi[i]); 15893 i40e_vsi_clear(pf->vsi[i]); 15894 pf->vsi[i] = NULL; 15895 } 15896 } 15897 rtnl_unlock(); 15898 15899 for (i = 0; i < I40E_MAX_VEB; i++) { 15900 kfree(pf->veb[i]); 15901 pf->veb[i] = NULL; 15902 } 15903 15904 kfree(pf->qp_pile); 15905 kfree(pf->vsi); 15906 15907 iounmap(hw->hw_addr); 15908 kfree(pf); 15909 pci_release_mem_regions(pdev); 15910 15911 pci_disable_pcie_error_reporting(pdev); 15912 pci_disable_device(pdev); 15913 } 15914 15915 /** 15916 * i40e_pci_error_detected - warning that something funky happened in PCI land 15917 * @pdev: PCI device information struct 15918 * @error: the type of PCI error 15919 * 15920 * Called to warn that something happened and the error handling steps 15921 * are in progress. Allows the driver to quiesce things, be ready for 15922 * remediation. 15923 **/ 15924 static pci_ers_result_t i40e_pci_error_detected(struct pci_dev *pdev, 15925 pci_channel_state_t error) 15926 { 15927 struct i40e_pf *pf = pci_get_drvdata(pdev); 15928 15929 dev_info(&pdev->dev, "%s: error %d\n", __func__, error); 15930 15931 if (!pf) { 15932 dev_info(&pdev->dev, 15933 "Cannot recover - error happened during device probe\n"); 15934 return PCI_ERS_RESULT_DISCONNECT; 15935 } 15936 15937 /* shutdown all operations */ 15938 if (!test_bit(__I40E_SUSPENDED, pf->state)) 15939 i40e_prep_for_reset(pf); 15940 15941 /* Request a slot reset */ 15942 return PCI_ERS_RESULT_NEED_RESET; 15943 } 15944 15945 /** 15946 * i40e_pci_error_slot_reset - a PCI slot reset just happened 15947 * @pdev: PCI device information struct 15948 * 15949 * Called to find if the driver can work with the device now that 15950 * the pci slot has been reset. If a basic connection seems good 15951 * (registers are readable and have sane content) then return a 15952 * happy little PCI_ERS_RESULT_xxx. 15953 **/ 15954 static pci_ers_result_t i40e_pci_error_slot_reset(struct pci_dev *pdev) 15955 { 15956 struct i40e_pf *pf = pci_get_drvdata(pdev); 15957 pci_ers_result_t result; 15958 u32 reg; 15959 15960 dev_dbg(&pdev->dev, "%s\n", __func__); 15961 if (pci_enable_device_mem(pdev)) { 15962 dev_info(&pdev->dev, 15963 "Cannot re-enable PCI device after reset.\n"); 15964 result = PCI_ERS_RESULT_DISCONNECT; 15965 } else { 15966 pci_set_master(pdev); 15967 pci_restore_state(pdev); 15968 pci_save_state(pdev); 15969 pci_wake_from_d3(pdev, false); 15970 15971 reg = rd32(&pf->hw, I40E_GLGEN_RTRIG); 15972 if (reg == 0) 15973 result = PCI_ERS_RESULT_RECOVERED; 15974 else 15975 result = PCI_ERS_RESULT_DISCONNECT; 15976 } 15977 15978 return result; 15979 } 15980 15981 /** 15982 * i40e_pci_error_reset_prepare - prepare device driver for pci reset 15983 * @pdev: PCI device information struct 15984 */ 15985 static void i40e_pci_error_reset_prepare(struct pci_dev *pdev) 15986 { 15987 struct i40e_pf *pf = pci_get_drvdata(pdev); 15988 15989 i40e_prep_for_reset(pf); 15990 } 15991 15992 /** 15993 * i40e_pci_error_reset_done - pci reset done, device driver reset can begin 15994 * @pdev: PCI device information struct 15995 */ 15996 static void i40e_pci_error_reset_done(struct pci_dev *pdev) 15997 { 15998 struct i40e_pf *pf = pci_get_drvdata(pdev); 15999 16000 i40e_reset_and_rebuild(pf, false, false); 16001 } 16002 16003 /** 16004 * i40e_pci_error_resume - restart operations after PCI error recovery 16005 * @pdev: PCI device information struct 16006 * 16007 * Called to allow the driver to bring things back up after PCI error 16008 * and/or reset recovery has finished. 16009 **/ 16010 static void i40e_pci_error_resume(struct pci_dev *pdev) 16011 { 16012 struct i40e_pf *pf = pci_get_drvdata(pdev); 16013 16014 dev_dbg(&pdev->dev, "%s\n", __func__); 16015 if (test_bit(__I40E_SUSPENDED, pf->state)) 16016 return; 16017 16018 i40e_handle_reset_warning(pf, false); 16019 } 16020 16021 /** 16022 * i40e_enable_mc_magic_wake - enable multicast magic packet wake up 16023 * using the mac_address_write admin q function 16024 * @pf: pointer to i40e_pf struct 16025 **/ 16026 static void i40e_enable_mc_magic_wake(struct i40e_pf *pf) 16027 { 16028 struct i40e_hw *hw = &pf->hw; 16029 i40e_status ret; 16030 u8 mac_addr[6]; 16031 u16 flags = 0; 16032 16033 /* Get current MAC address in case it's an LAA */ 16034 if (pf->vsi[pf->lan_vsi] && pf->vsi[pf->lan_vsi]->netdev) { 16035 ether_addr_copy(mac_addr, 16036 pf->vsi[pf->lan_vsi]->netdev->dev_addr); 16037 } else { 16038 dev_err(&pf->pdev->dev, 16039 "Failed to retrieve MAC address; using default\n"); 16040 ether_addr_copy(mac_addr, hw->mac.addr); 16041 } 16042 16043 /* The FW expects the mac address write cmd to first be called with 16044 * one of these flags before calling it again with the multicast 16045 * enable flags. 16046 */ 16047 flags = I40E_AQC_WRITE_TYPE_LAA_WOL; 16048 16049 if (hw->func_caps.flex10_enable && hw->partition_id != 1) 16050 flags = I40E_AQC_WRITE_TYPE_LAA_ONLY; 16051 16052 ret = i40e_aq_mac_address_write(hw, flags, mac_addr, NULL); 16053 if (ret) { 16054 dev_err(&pf->pdev->dev, 16055 "Failed to update MAC address registers; cannot enable Multicast Magic packet wake up"); 16056 return; 16057 } 16058 16059 flags = I40E_AQC_MC_MAG_EN 16060 | I40E_AQC_WOL_PRESERVE_ON_PFR 16061 | I40E_AQC_WRITE_TYPE_UPDATE_MC_MAG; 16062 ret = i40e_aq_mac_address_write(hw, flags, mac_addr, NULL); 16063 if (ret) 16064 dev_err(&pf->pdev->dev, 16065 "Failed to enable Multicast Magic Packet wake up\n"); 16066 } 16067 16068 /** 16069 * i40e_shutdown - PCI callback for shutting down 16070 * @pdev: PCI device information struct 16071 **/ 16072 static void i40e_shutdown(struct pci_dev *pdev) 16073 { 16074 struct i40e_pf *pf = pci_get_drvdata(pdev); 16075 struct i40e_hw *hw = &pf->hw; 16076 16077 set_bit(__I40E_SUSPENDED, pf->state); 16078 set_bit(__I40E_DOWN, pf->state); 16079 16080 del_timer_sync(&pf->service_timer); 16081 cancel_work_sync(&pf->service_task); 16082 i40e_cloud_filter_exit(pf); 16083 i40e_fdir_teardown(pf); 16084 16085 /* Client close must be called explicitly here because the timer 16086 * has been stopped. 16087 */ 16088 i40e_notify_client_of_netdev_close(pf->vsi[pf->lan_vsi], false); 16089 16090 if (pf->wol_en && (pf->hw_features & I40E_HW_WOL_MC_MAGIC_PKT_WAKE)) 16091 i40e_enable_mc_magic_wake(pf); 16092 16093 i40e_prep_for_reset(pf); 16094 16095 wr32(hw, I40E_PFPM_APM, 16096 (pf->wol_en ? I40E_PFPM_APM_APME_MASK : 0)); 16097 wr32(hw, I40E_PFPM_WUFC, 16098 (pf->wol_en ? I40E_PFPM_WUFC_MAG_MASK : 0)); 16099 16100 /* Free MSI/legacy interrupt 0 when in recovery mode. */ 16101 if (test_bit(__I40E_RECOVERY_MODE, pf->state) && 16102 !(pf->flags & I40E_FLAG_MSIX_ENABLED)) 16103 free_irq(pf->pdev->irq, pf); 16104 16105 /* Since we're going to destroy queues during the 16106 * i40e_clear_interrupt_scheme() we should hold the RTNL lock for this 16107 * whole section 16108 */ 16109 rtnl_lock(); 16110 i40e_clear_interrupt_scheme(pf); 16111 rtnl_unlock(); 16112 16113 if (system_state == SYSTEM_POWER_OFF) { 16114 pci_wake_from_d3(pdev, pf->wol_en); 16115 pci_set_power_state(pdev, PCI_D3hot); 16116 } 16117 } 16118 16119 /** 16120 * i40e_suspend - PM callback for moving to D3 16121 * @dev: generic device information structure 16122 **/ 16123 static int __maybe_unused i40e_suspend(struct device *dev) 16124 { 16125 struct i40e_pf *pf = dev_get_drvdata(dev); 16126 struct i40e_hw *hw = &pf->hw; 16127 16128 /* If we're already suspended, then there is nothing to do */ 16129 if (test_and_set_bit(__I40E_SUSPENDED, pf->state)) 16130 return 0; 16131 16132 set_bit(__I40E_DOWN, pf->state); 16133 16134 /* Ensure service task will not be running */ 16135 del_timer_sync(&pf->service_timer); 16136 cancel_work_sync(&pf->service_task); 16137 16138 /* Client close must be called explicitly here because the timer 16139 * has been stopped. 16140 */ 16141 i40e_notify_client_of_netdev_close(pf->vsi[pf->lan_vsi], false); 16142 16143 if (pf->wol_en && (pf->hw_features & I40E_HW_WOL_MC_MAGIC_PKT_WAKE)) 16144 i40e_enable_mc_magic_wake(pf); 16145 16146 /* Since we're going to destroy queues during the 16147 * i40e_clear_interrupt_scheme() we should hold the RTNL lock for this 16148 * whole section 16149 */ 16150 rtnl_lock(); 16151 16152 i40e_prep_for_reset(pf); 16153 16154 wr32(hw, I40E_PFPM_APM, (pf->wol_en ? I40E_PFPM_APM_APME_MASK : 0)); 16155 wr32(hw, I40E_PFPM_WUFC, (pf->wol_en ? I40E_PFPM_WUFC_MAG_MASK : 0)); 16156 16157 /* Clear the interrupt scheme and release our IRQs so that the system 16158 * can safely hibernate even when there are a large number of CPUs. 16159 * Otherwise hibernation might fail when mapping all the vectors back 16160 * to CPU0. 16161 */ 16162 i40e_clear_interrupt_scheme(pf); 16163 16164 rtnl_unlock(); 16165 16166 return 0; 16167 } 16168 16169 /** 16170 * i40e_resume - PM callback for waking up from D3 16171 * @dev: generic device information structure 16172 **/ 16173 static int __maybe_unused i40e_resume(struct device *dev) 16174 { 16175 struct i40e_pf *pf = dev_get_drvdata(dev); 16176 int err; 16177 16178 /* If we're not suspended, then there is nothing to do */ 16179 if (!test_bit(__I40E_SUSPENDED, pf->state)) 16180 return 0; 16181 16182 /* We need to hold the RTNL lock prior to restoring interrupt schemes, 16183 * since we're going to be restoring queues 16184 */ 16185 rtnl_lock(); 16186 16187 /* We cleared the interrupt scheme when we suspended, so we need to 16188 * restore it now to resume device functionality. 16189 */ 16190 err = i40e_restore_interrupt_scheme(pf); 16191 if (err) { 16192 dev_err(dev, "Cannot restore interrupt scheme: %d\n", 16193 err); 16194 } 16195 16196 clear_bit(__I40E_DOWN, pf->state); 16197 i40e_reset_and_rebuild(pf, false, true); 16198 16199 rtnl_unlock(); 16200 16201 /* Clear suspended state last after everything is recovered */ 16202 clear_bit(__I40E_SUSPENDED, pf->state); 16203 16204 /* Restart the service task */ 16205 mod_timer(&pf->service_timer, 16206 round_jiffies(jiffies + pf->service_timer_period)); 16207 16208 return 0; 16209 } 16210 16211 static const struct pci_error_handlers i40e_err_handler = { 16212 .error_detected = i40e_pci_error_detected, 16213 .slot_reset = i40e_pci_error_slot_reset, 16214 .reset_prepare = i40e_pci_error_reset_prepare, 16215 .reset_done = i40e_pci_error_reset_done, 16216 .resume = i40e_pci_error_resume, 16217 }; 16218 16219 static SIMPLE_DEV_PM_OPS(i40e_pm_ops, i40e_suspend, i40e_resume); 16220 16221 static struct pci_driver i40e_driver = { 16222 .name = i40e_driver_name, 16223 .id_table = i40e_pci_tbl, 16224 .probe = i40e_probe, 16225 .remove = i40e_remove, 16226 .driver = { 16227 .pm = &i40e_pm_ops, 16228 }, 16229 .shutdown = i40e_shutdown, 16230 .err_handler = &i40e_err_handler, 16231 .sriov_configure = i40e_pci_sriov_configure, 16232 }; 16233 16234 /** 16235 * i40e_init_module - Driver registration routine 16236 * 16237 * i40e_init_module is the first routine called when the driver is 16238 * loaded. All it does is register with the PCI subsystem. 16239 **/ 16240 static int __init i40e_init_module(void) 16241 { 16242 pr_info("%s: %s\n", i40e_driver_name, i40e_driver_string); 16243 pr_info("%s: %s\n", i40e_driver_name, i40e_copyright); 16244 16245 /* There is no need to throttle the number of active tasks because 16246 * each device limits its own task using a state bit for scheduling 16247 * the service task, and the device tasks do not interfere with each 16248 * other, so we don't set a max task limit. We must set WQ_MEM_RECLAIM 16249 * since we need to be able to guarantee forward progress even under 16250 * memory pressure. 16251 */ 16252 i40e_wq = alloc_workqueue("%s", WQ_MEM_RECLAIM, 0, i40e_driver_name); 16253 if (!i40e_wq) { 16254 pr_err("%s: Failed to create workqueue\n", i40e_driver_name); 16255 return -ENOMEM; 16256 } 16257 16258 i40e_dbg_init(); 16259 return pci_register_driver(&i40e_driver); 16260 } 16261 module_init(i40e_init_module); 16262 16263 /** 16264 * i40e_exit_module - Driver exit cleanup routine 16265 * 16266 * i40e_exit_module is called just before the driver is removed 16267 * from memory. 16268 **/ 16269 static void __exit i40e_exit_module(void) 16270 { 16271 pci_unregister_driver(&i40e_driver); 16272 destroy_workqueue(i40e_wq); 16273 i40e_dbg_exit(); 16274 } 16275 module_exit(i40e_exit_module); 16276