1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright(c) 2013 - 2018 Intel Corporation. */ 3 4 #include <linux/etherdevice.h> 5 #include <linux/of_net.h> 6 #include <linux/pci.h> 7 #include <linux/bpf.h> 8 9 /* Local includes */ 10 #include "i40e.h" 11 #include "i40e_diag.h" 12 #include "i40e_xsk.h" 13 #include <net/udp_tunnel.h> 14 #include <net/xdp_sock.h> 15 /* All i40e tracepoints are defined by the include below, which 16 * must be included exactly once across the whole kernel with 17 * CREATE_TRACE_POINTS defined 18 */ 19 #define CREATE_TRACE_POINTS 20 #include "i40e_trace.h" 21 22 const char i40e_driver_name[] = "i40e"; 23 static const char i40e_driver_string[] = 24 "Intel(R) Ethernet Connection XL710 Network Driver"; 25 26 #define DRV_KERN "-k" 27 28 #define DRV_VERSION_MAJOR 2 29 #define DRV_VERSION_MINOR 8 30 #define DRV_VERSION_BUILD 10 31 #define DRV_VERSION __stringify(DRV_VERSION_MAJOR) "." \ 32 __stringify(DRV_VERSION_MINOR) "." \ 33 __stringify(DRV_VERSION_BUILD) DRV_KERN 34 const char i40e_driver_version_str[] = DRV_VERSION; 35 static const char i40e_copyright[] = "Copyright (c) 2013 - 2014 Intel Corporation."; 36 37 /* a bit of forward declarations */ 38 static void i40e_vsi_reinit_locked(struct i40e_vsi *vsi); 39 static void i40e_handle_reset_warning(struct i40e_pf *pf, bool lock_acquired); 40 static int i40e_add_vsi(struct i40e_vsi *vsi); 41 static int i40e_add_veb(struct i40e_veb *veb, struct i40e_vsi *vsi); 42 static int i40e_setup_pf_switch(struct i40e_pf *pf, bool reinit); 43 static int i40e_setup_misc_vector(struct i40e_pf *pf); 44 static void i40e_determine_queue_usage(struct i40e_pf *pf); 45 static int i40e_setup_pf_filter_control(struct i40e_pf *pf); 46 static void i40e_prep_for_reset(struct i40e_pf *pf, bool lock_acquired); 47 static int i40e_reset(struct i40e_pf *pf); 48 static void i40e_rebuild(struct i40e_pf *pf, bool reinit, bool lock_acquired); 49 static void i40e_fdir_sb_setup(struct i40e_pf *pf); 50 static int i40e_veb_get_bw_info(struct i40e_veb *veb); 51 static int i40e_get_capabilities(struct i40e_pf *pf, 52 enum i40e_admin_queue_opc list_type); 53 54 55 /* i40e_pci_tbl - PCI Device ID Table 56 * 57 * Last entry must be all 0s 58 * 59 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID, 60 * Class, Class Mask, private data (not used) } 61 */ 62 static const struct pci_device_id i40e_pci_tbl[] = { 63 {PCI_VDEVICE(INTEL, I40E_DEV_ID_SFP_XL710), 0}, 64 {PCI_VDEVICE(INTEL, I40E_DEV_ID_QEMU), 0}, 65 {PCI_VDEVICE(INTEL, I40E_DEV_ID_KX_B), 0}, 66 {PCI_VDEVICE(INTEL, I40E_DEV_ID_KX_C), 0}, 67 {PCI_VDEVICE(INTEL, I40E_DEV_ID_QSFP_A), 0}, 68 {PCI_VDEVICE(INTEL, I40E_DEV_ID_QSFP_B), 0}, 69 {PCI_VDEVICE(INTEL, I40E_DEV_ID_QSFP_C), 0}, 70 {PCI_VDEVICE(INTEL, I40E_DEV_ID_10G_BASE_T), 0}, 71 {PCI_VDEVICE(INTEL, I40E_DEV_ID_10G_BASE_T4), 0}, 72 {PCI_VDEVICE(INTEL, I40E_DEV_ID_KX_X722), 0}, 73 {PCI_VDEVICE(INTEL, I40E_DEV_ID_QSFP_X722), 0}, 74 {PCI_VDEVICE(INTEL, I40E_DEV_ID_SFP_X722), 0}, 75 {PCI_VDEVICE(INTEL, I40E_DEV_ID_1G_BASE_T_X722), 0}, 76 {PCI_VDEVICE(INTEL, I40E_DEV_ID_10G_BASE_T_X722), 0}, 77 {PCI_VDEVICE(INTEL, I40E_DEV_ID_SFP_I_X722), 0}, 78 {PCI_VDEVICE(INTEL, I40E_DEV_ID_20G_KR2), 0}, 79 {PCI_VDEVICE(INTEL, I40E_DEV_ID_20G_KR2_A), 0}, 80 {PCI_VDEVICE(INTEL, I40E_DEV_ID_25G_B), 0}, 81 {PCI_VDEVICE(INTEL, I40E_DEV_ID_25G_SFP28), 0}, 82 /* required last entry */ 83 {0, } 84 }; 85 MODULE_DEVICE_TABLE(pci, i40e_pci_tbl); 86 87 #define I40E_MAX_VF_COUNT 128 88 static int debug = -1; 89 module_param(debug, uint, 0); 90 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all), Debug mask (0x8XXXXXXX)"); 91 92 MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>"); 93 MODULE_DESCRIPTION("Intel(R) Ethernet Connection XL710 Network Driver"); 94 MODULE_LICENSE("GPL v2"); 95 MODULE_VERSION(DRV_VERSION); 96 97 static struct workqueue_struct *i40e_wq; 98 99 /** 100 * i40e_allocate_dma_mem_d - OS specific memory alloc for shared code 101 * @hw: pointer to the HW structure 102 * @mem: ptr to mem struct to fill out 103 * @size: size of memory requested 104 * @alignment: what to align the allocation to 105 **/ 106 int i40e_allocate_dma_mem_d(struct i40e_hw *hw, struct i40e_dma_mem *mem, 107 u64 size, u32 alignment) 108 { 109 struct i40e_pf *pf = (struct i40e_pf *)hw->back; 110 111 mem->size = ALIGN(size, alignment); 112 mem->va = dma_alloc_coherent(&pf->pdev->dev, mem->size, &mem->pa, 113 GFP_KERNEL); 114 if (!mem->va) 115 return -ENOMEM; 116 117 return 0; 118 } 119 120 /** 121 * i40e_free_dma_mem_d - OS specific memory free for shared code 122 * @hw: pointer to the HW structure 123 * @mem: ptr to mem struct to free 124 **/ 125 int i40e_free_dma_mem_d(struct i40e_hw *hw, struct i40e_dma_mem *mem) 126 { 127 struct i40e_pf *pf = (struct i40e_pf *)hw->back; 128 129 dma_free_coherent(&pf->pdev->dev, mem->size, mem->va, mem->pa); 130 mem->va = NULL; 131 mem->pa = 0; 132 mem->size = 0; 133 134 return 0; 135 } 136 137 /** 138 * i40e_allocate_virt_mem_d - OS specific memory alloc for shared code 139 * @hw: pointer to the HW structure 140 * @mem: ptr to mem struct to fill out 141 * @size: size of memory requested 142 **/ 143 int i40e_allocate_virt_mem_d(struct i40e_hw *hw, struct i40e_virt_mem *mem, 144 u32 size) 145 { 146 mem->size = size; 147 mem->va = kzalloc(size, GFP_KERNEL); 148 149 if (!mem->va) 150 return -ENOMEM; 151 152 return 0; 153 } 154 155 /** 156 * i40e_free_virt_mem_d - OS specific memory free for shared code 157 * @hw: pointer to the HW structure 158 * @mem: ptr to mem struct to free 159 **/ 160 int i40e_free_virt_mem_d(struct i40e_hw *hw, struct i40e_virt_mem *mem) 161 { 162 /* it's ok to kfree a NULL pointer */ 163 kfree(mem->va); 164 mem->va = NULL; 165 mem->size = 0; 166 167 return 0; 168 } 169 170 /** 171 * i40e_get_lump - find a lump of free generic resource 172 * @pf: board private structure 173 * @pile: the pile of resource to search 174 * @needed: the number of items needed 175 * @id: an owner id to stick on the items assigned 176 * 177 * Returns the base item index of the lump, or negative for error 178 * 179 * The search_hint trick and lack of advanced fit-finding only work 180 * because we're highly likely to have all the same size lump requests. 181 * Linear search time and any fragmentation should be minimal. 182 **/ 183 static int i40e_get_lump(struct i40e_pf *pf, struct i40e_lump_tracking *pile, 184 u16 needed, u16 id) 185 { 186 int ret = -ENOMEM; 187 int i, j; 188 189 if (!pile || needed == 0 || id >= I40E_PILE_VALID_BIT) { 190 dev_info(&pf->pdev->dev, 191 "param err: pile=%s needed=%d id=0x%04x\n", 192 pile ? "<valid>" : "<null>", needed, id); 193 return -EINVAL; 194 } 195 196 /* start the linear search with an imperfect hint */ 197 i = pile->search_hint; 198 while (i < pile->num_entries) { 199 /* skip already allocated entries */ 200 if (pile->list[i] & I40E_PILE_VALID_BIT) { 201 i++; 202 continue; 203 } 204 205 /* do we have enough in this lump? */ 206 for (j = 0; (j < needed) && ((i+j) < pile->num_entries); j++) { 207 if (pile->list[i+j] & I40E_PILE_VALID_BIT) 208 break; 209 } 210 211 if (j == needed) { 212 /* there was enough, so assign it to the requestor */ 213 for (j = 0; j < needed; j++) 214 pile->list[i+j] = id | I40E_PILE_VALID_BIT; 215 ret = i; 216 pile->search_hint = i + j; 217 break; 218 } 219 220 /* not enough, so skip over it and continue looking */ 221 i += j; 222 } 223 224 return ret; 225 } 226 227 /** 228 * i40e_put_lump - return a lump of generic resource 229 * @pile: the pile of resource to search 230 * @index: the base item index 231 * @id: the owner id of the items assigned 232 * 233 * Returns the count of items in the lump 234 **/ 235 static int i40e_put_lump(struct i40e_lump_tracking *pile, u16 index, u16 id) 236 { 237 int valid_id = (id | I40E_PILE_VALID_BIT); 238 int count = 0; 239 int i; 240 241 if (!pile || index >= pile->num_entries) 242 return -EINVAL; 243 244 for (i = index; 245 i < pile->num_entries && pile->list[i] == valid_id; 246 i++) { 247 pile->list[i] = 0; 248 count++; 249 } 250 251 if (count && index < pile->search_hint) 252 pile->search_hint = index; 253 254 return count; 255 } 256 257 /** 258 * i40e_find_vsi_from_id - searches for the vsi with the given id 259 * @pf: the pf structure to search for the vsi 260 * @id: id of the vsi it is searching for 261 **/ 262 struct i40e_vsi *i40e_find_vsi_from_id(struct i40e_pf *pf, u16 id) 263 { 264 int i; 265 266 for (i = 0; i < pf->num_alloc_vsi; i++) 267 if (pf->vsi[i] && (pf->vsi[i]->id == id)) 268 return pf->vsi[i]; 269 270 return NULL; 271 } 272 273 /** 274 * i40e_service_event_schedule - Schedule the service task to wake up 275 * @pf: board private structure 276 * 277 * If not already scheduled, this puts the task into the work queue 278 **/ 279 void i40e_service_event_schedule(struct i40e_pf *pf) 280 { 281 if (!test_bit(__I40E_DOWN, pf->state) && 282 !test_bit(__I40E_RESET_RECOVERY_PENDING, pf->state)) 283 queue_work(i40e_wq, &pf->service_task); 284 } 285 286 /** 287 * i40e_tx_timeout - Respond to a Tx Hang 288 * @netdev: network interface device structure 289 * 290 * If any port has noticed a Tx timeout, it is likely that the whole 291 * device is munged, not just the one netdev port, so go for the full 292 * reset. 293 **/ 294 static void i40e_tx_timeout(struct net_device *netdev) 295 { 296 struct i40e_netdev_priv *np = netdev_priv(netdev); 297 struct i40e_vsi *vsi = np->vsi; 298 struct i40e_pf *pf = vsi->back; 299 struct i40e_ring *tx_ring = NULL; 300 unsigned int i, hung_queue = 0; 301 u32 head, val; 302 303 pf->tx_timeout_count++; 304 305 /* find the stopped queue the same way the stack does */ 306 for (i = 0; i < netdev->num_tx_queues; i++) { 307 struct netdev_queue *q; 308 unsigned long trans_start; 309 310 q = netdev_get_tx_queue(netdev, i); 311 trans_start = q->trans_start; 312 if (netif_xmit_stopped(q) && 313 time_after(jiffies, 314 (trans_start + netdev->watchdog_timeo))) { 315 hung_queue = i; 316 break; 317 } 318 } 319 320 if (i == netdev->num_tx_queues) { 321 netdev_info(netdev, "tx_timeout: no netdev hung queue found\n"); 322 } else { 323 /* now that we have an index, find the tx_ring struct */ 324 for (i = 0; i < vsi->num_queue_pairs; i++) { 325 if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc) { 326 if (hung_queue == 327 vsi->tx_rings[i]->queue_index) { 328 tx_ring = vsi->tx_rings[i]; 329 break; 330 } 331 } 332 } 333 } 334 335 if (time_after(jiffies, (pf->tx_timeout_last_recovery + HZ*20))) 336 pf->tx_timeout_recovery_level = 1; /* reset after some time */ 337 else if (time_before(jiffies, 338 (pf->tx_timeout_last_recovery + netdev->watchdog_timeo))) 339 return; /* don't do any new action before the next timeout */ 340 341 /* don't kick off another recovery if one is already pending */ 342 if (test_and_set_bit(__I40E_TIMEOUT_RECOVERY_PENDING, pf->state)) 343 return; 344 345 if (tx_ring) { 346 head = i40e_get_head(tx_ring); 347 /* Read interrupt register */ 348 if (pf->flags & I40E_FLAG_MSIX_ENABLED) 349 val = rd32(&pf->hw, 350 I40E_PFINT_DYN_CTLN(tx_ring->q_vector->v_idx + 351 tx_ring->vsi->base_vector - 1)); 352 else 353 val = rd32(&pf->hw, I40E_PFINT_DYN_CTL0); 354 355 netdev_info(netdev, "tx_timeout: VSI_seid: %d, Q %d, NTC: 0x%x, HWB: 0x%x, NTU: 0x%x, TAIL: 0x%x, INT: 0x%x\n", 356 vsi->seid, hung_queue, tx_ring->next_to_clean, 357 head, tx_ring->next_to_use, 358 readl(tx_ring->tail), val); 359 } 360 361 pf->tx_timeout_last_recovery = jiffies; 362 netdev_info(netdev, "tx_timeout recovery level %d, hung_queue %d\n", 363 pf->tx_timeout_recovery_level, hung_queue); 364 365 switch (pf->tx_timeout_recovery_level) { 366 case 1: 367 set_bit(__I40E_PF_RESET_REQUESTED, pf->state); 368 break; 369 case 2: 370 set_bit(__I40E_CORE_RESET_REQUESTED, pf->state); 371 break; 372 case 3: 373 set_bit(__I40E_GLOBAL_RESET_REQUESTED, pf->state); 374 break; 375 default: 376 netdev_err(netdev, "tx_timeout recovery unsuccessful\n"); 377 break; 378 } 379 380 i40e_service_event_schedule(pf); 381 pf->tx_timeout_recovery_level++; 382 } 383 384 /** 385 * i40e_get_vsi_stats_struct - Get System Network Statistics 386 * @vsi: the VSI we care about 387 * 388 * Returns the address of the device statistics structure. 389 * The statistics are actually updated from the service task. 390 **/ 391 struct rtnl_link_stats64 *i40e_get_vsi_stats_struct(struct i40e_vsi *vsi) 392 { 393 return &vsi->net_stats; 394 } 395 396 /** 397 * i40e_get_netdev_stats_struct_tx - populate stats from a Tx ring 398 * @ring: Tx ring to get statistics from 399 * @stats: statistics entry to be updated 400 **/ 401 static void i40e_get_netdev_stats_struct_tx(struct i40e_ring *ring, 402 struct rtnl_link_stats64 *stats) 403 { 404 u64 bytes, packets; 405 unsigned int start; 406 407 do { 408 start = u64_stats_fetch_begin_irq(&ring->syncp); 409 packets = ring->stats.packets; 410 bytes = ring->stats.bytes; 411 } while (u64_stats_fetch_retry_irq(&ring->syncp, start)); 412 413 stats->tx_packets += packets; 414 stats->tx_bytes += bytes; 415 } 416 417 /** 418 * i40e_get_netdev_stats_struct - Get statistics for netdev interface 419 * @netdev: network interface device structure 420 * @stats: data structure to store statistics 421 * 422 * Returns the address of the device statistics structure. 423 * The statistics are actually updated from the service task. 424 **/ 425 static void i40e_get_netdev_stats_struct(struct net_device *netdev, 426 struct rtnl_link_stats64 *stats) 427 { 428 struct i40e_netdev_priv *np = netdev_priv(netdev); 429 struct i40e_vsi *vsi = np->vsi; 430 struct rtnl_link_stats64 *vsi_stats = i40e_get_vsi_stats_struct(vsi); 431 struct i40e_ring *ring; 432 int i; 433 434 if (test_bit(__I40E_VSI_DOWN, vsi->state)) 435 return; 436 437 if (!vsi->tx_rings) 438 return; 439 440 rcu_read_lock(); 441 for (i = 0; i < vsi->num_queue_pairs; i++) { 442 u64 bytes, packets; 443 unsigned int start; 444 445 ring = READ_ONCE(vsi->tx_rings[i]); 446 if (!ring) 447 continue; 448 i40e_get_netdev_stats_struct_tx(ring, stats); 449 450 if (i40e_enabled_xdp_vsi(vsi)) { 451 ring++; 452 i40e_get_netdev_stats_struct_tx(ring, stats); 453 } 454 455 ring++; 456 do { 457 start = u64_stats_fetch_begin_irq(&ring->syncp); 458 packets = ring->stats.packets; 459 bytes = ring->stats.bytes; 460 } while (u64_stats_fetch_retry_irq(&ring->syncp, start)); 461 462 stats->rx_packets += packets; 463 stats->rx_bytes += bytes; 464 465 } 466 rcu_read_unlock(); 467 468 /* following stats updated by i40e_watchdog_subtask() */ 469 stats->multicast = vsi_stats->multicast; 470 stats->tx_errors = vsi_stats->tx_errors; 471 stats->tx_dropped = vsi_stats->tx_dropped; 472 stats->rx_errors = vsi_stats->rx_errors; 473 stats->rx_dropped = vsi_stats->rx_dropped; 474 stats->rx_crc_errors = vsi_stats->rx_crc_errors; 475 stats->rx_length_errors = vsi_stats->rx_length_errors; 476 } 477 478 /** 479 * i40e_vsi_reset_stats - Resets all stats of the given vsi 480 * @vsi: the VSI to have its stats reset 481 **/ 482 void i40e_vsi_reset_stats(struct i40e_vsi *vsi) 483 { 484 struct rtnl_link_stats64 *ns; 485 int i; 486 487 if (!vsi) 488 return; 489 490 ns = i40e_get_vsi_stats_struct(vsi); 491 memset(ns, 0, sizeof(*ns)); 492 memset(&vsi->net_stats_offsets, 0, sizeof(vsi->net_stats_offsets)); 493 memset(&vsi->eth_stats, 0, sizeof(vsi->eth_stats)); 494 memset(&vsi->eth_stats_offsets, 0, sizeof(vsi->eth_stats_offsets)); 495 if (vsi->rx_rings && vsi->rx_rings[0]) { 496 for (i = 0; i < vsi->num_queue_pairs; i++) { 497 memset(&vsi->rx_rings[i]->stats, 0, 498 sizeof(vsi->rx_rings[i]->stats)); 499 memset(&vsi->rx_rings[i]->rx_stats, 0, 500 sizeof(vsi->rx_rings[i]->rx_stats)); 501 memset(&vsi->tx_rings[i]->stats, 0, 502 sizeof(vsi->tx_rings[i]->stats)); 503 memset(&vsi->tx_rings[i]->tx_stats, 0, 504 sizeof(vsi->tx_rings[i]->tx_stats)); 505 } 506 } 507 vsi->stat_offsets_loaded = false; 508 } 509 510 /** 511 * i40e_pf_reset_stats - Reset all of the stats for the given PF 512 * @pf: the PF to be reset 513 **/ 514 void i40e_pf_reset_stats(struct i40e_pf *pf) 515 { 516 int i; 517 518 memset(&pf->stats, 0, sizeof(pf->stats)); 519 memset(&pf->stats_offsets, 0, sizeof(pf->stats_offsets)); 520 pf->stat_offsets_loaded = false; 521 522 for (i = 0; i < I40E_MAX_VEB; i++) { 523 if (pf->veb[i]) { 524 memset(&pf->veb[i]->stats, 0, 525 sizeof(pf->veb[i]->stats)); 526 memset(&pf->veb[i]->stats_offsets, 0, 527 sizeof(pf->veb[i]->stats_offsets)); 528 pf->veb[i]->stat_offsets_loaded = false; 529 } 530 } 531 pf->hw_csum_rx_error = 0; 532 } 533 534 /** 535 * i40e_stat_update48 - read and update a 48 bit stat from the chip 536 * @hw: ptr to the hardware info 537 * @hireg: the high 32 bit reg to read 538 * @loreg: the low 32 bit reg to read 539 * @offset_loaded: has the initial offset been loaded yet 540 * @offset: ptr to current offset value 541 * @stat: ptr to the stat 542 * 543 * Since the device stats are not reset at PFReset, they likely will not 544 * be zeroed when the driver starts. We'll save the first values read 545 * and use them as offsets to be subtracted from the raw values in order 546 * to report stats that count from zero. In the process, we also manage 547 * the potential roll-over. 548 **/ 549 static void i40e_stat_update48(struct i40e_hw *hw, u32 hireg, u32 loreg, 550 bool offset_loaded, u64 *offset, u64 *stat) 551 { 552 u64 new_data; 553 554 if (hw->device_id == I40E_DEV_ID_QEMU) { 555 new_data = rd32(hw, loreg); 556 new_data |= ((u64)(rd32(hw, hireg) & 0xFFFF)) << 32; 557 } else { 558 new_data = rd64(hw, loreg); 559 } 560 if (!offset_loaded) 561 *offset = new_data; 562 if (likely(new_data >= *offset)) 563 *stat = new_data - *offset; 564 else 565 *stat = (new_data + BIT_ULL(48)) - *offset; 566 *stat &= 0xFFFFFFFFFFFFULL; 567 } 568 569 /** 570 * i40e_stat_update32 - read and update a 32 bit stat from the chip 571 * @hw: ptr to the hardware info 572 * @reg: the hw reg to read 573 * @offset_loaded: has the initial offset been loaded yet 574 * @offset: ptr to current offset value 575 * @stat: ptr to the stat 576 **/ 577 static void i40e_stat_update32(struct i40e_hw *hw, u32 reg, 578 bool offset_loaded, u64 *offset, u64 *stat) 579 { 580 u32 new_data; 581 582 new_data = rd32(hw, reg); 583 if (!offset_loaded) 584 *offset = new_data; 585 if (likely(new_data >= *offset)) 586 *stat = (u32)(new_data - *offset); 587 else 588 *stat = (u32)((new_data + BIT_ULL(32)) - *offset); 589 } 590 591 /** 592 * i40e_stat_update_and_clear32 - read and clear hw reg, update a 32 bit stat 593 * @hw: ptr to the hardware info 594 * @reg: the hw reg to read and clear 595 * @stat: ptr to the stat 596 **/ 597 static void i40e_stat_update_and_clear32(struct i40e_hw *hw, u32 reg, u64 *stat) 598 { 599 u32 new_data = rd32(hw, reg); 600 601 wr32(hw, reg, 1); /* must write a nonzero value to clear register */ 602 *stat += new_data; 603 } 604 605 /** 606 * i40e_update_eth_stats - Update VSI-specific ethernet statistics counters. 607 * @vsi: the VSI to be updated 608 **/ 609 void i40e_update_eth_stats(struct i40e_vsi *vsi) 610 { 611 int stat_idx = le16_to_cpu(vsi->info.stat_counter_idx); 612 struct i40e_pf *pf = vsi->back; 613 struct i40e_hw *hw = &pf->hw; 614 struct i40e_eth_stats *oes; 615 struct i40e_eth_stats *es; /* device's eth stats */ 616 617 es = &vsi->eth_stats; 618 oes = &vsi->eth_stats_offsets; 619 620 /* Gather up the stats that the hw collects */ 621 i40e_stat_update32(hw, I40E_GLV_TEPC(stat_idx), 622 vsi->stat_offsets_loaded, 623 &oes->tx_errors, &es->tx_errors); 624 i40e_stat_update32(hw, I40E_GLV_RDPC(stat_idx), 625 vsi->stat_offsets_loaded, 626 &oes->rx_discards, &es->rx_discards); 627 i40e_stat_update32(hw, I40E_GLV_RUPP(stat_idx), 628 vsi->stat_offsets_loaded, 629 &oes->rx_unknown_protocol, &es->rx_unknown_protocol); 630 i40e_stat_update32(hw, I40E_GLV_TEPC(stat_idx), 631 vsi->stat_offsets_loaded, 632 &oes->tx_errors, &es->tx_errors); 633 634 i40e_stat_update48(hw, I40E_GLV_GORCH(stat_idx), 635 I40E_GLV_GORCL(stat_idx), 636 vsi->stat_offsets_loaded, 637 &oes->rx_bytes, &es->rx_bytes); 638 i40e_stat_update48(hw, I40E_GLV_UPRCH(stat_idx), 639 I40E_GLV_UPRCL(stat_idx), 640 vsi->stat_offsets_loaded, 641 &oes->rx_unicast, &es->rx_unicast); 642 i40e_stat_update48(hw, I40E_GLV_MPRCH(stat_idx), 643 I40E_GLV_MPRCL(stat_idx), 644 vsi->stat_offsets_loaded, 645 &oes->rx_multicast, &es->rx_multicast); 646 i40e_stat_update48(hw, I40E_GLV_BPRCH(stat_idx), 647 I40E_GLV_BPRCL(stat_idx), 648 vsi->stat_offsets_loaded, 649 &oes->rx_broadcast, &es->rx_broadcast); 650 651 i40e_stat_update48(hw, I40E_GLV_GOTCH(stat_idx), 652 I40E_GLV_GOTCL(stat_idx), 653 vsi->stat_offsets_loaded, 654 &oes->tx_bytes, &es->tx_bytes); 655 i40e_stat_update48(hw, I40E_GLV_UPTCH(stat_idx), 656 I40E_GLV_UPTCL(stat_idx), 657 vsi->stat_offsets_loaded, 658 &oes->tx_unicast, &es->tx_unicast); 659 i40e_stat_update48(hw, I40E_GLV_MPTCH(stat_idx), 660 I40E_GLV_MPTCL(stat_idx), 661 vsi->stat_offsets_loaded, 662 &oes->tx_multicast, &es->tx_multicast); 663 i40e_stat_update48(hw, I40E_GLV_BPTCH(stat_idx), 664 I40E_GLV_BPTCL(stat_idx), 665 vsi->stat_offsets_loaded, 666 &oes->tx_broadcast, &es->tx_broadcast); 667 vsi->stat_offsets_loaded = true; 668 } 669 670 /** 671 * i40e_update_veb_stats - Update Switch component statistics 672 * @veb: the VEB being updated 673 **/ 674 static void i40e_update_veb_stats(struct i40e_veb *veb) 675 { 676 struct i40e_pf *pf = veb->pf; 677 struct i40e_hw *hw = &pf->hw; 678 struct i40e_eth_stats *oes; 679 struct i40e_eth_stats *es; /* device's eth stats */ 680 struct i40e_veb_tc_stats *veb_oes; 681 struct i40e_veb_tc_stats *veb_es; 682 int i, idx = 0; 683 684 idx = veb->stats_idx; 685 es = &veb->stats; 686 oes = &veb->stats_offsets; 687 veb_es = &veb->tc_stats; 688 veb_oes = &veb->tc_stats_offsets; 689 690 /* Gather up the stats that the hw collects */ 691 i40e_stat_update32(hw, I40E_GLSW_TDPC(idx), 692 veb->stat_offsets_loaded, 693 &oes->tx_discards, &es->tx_discards); 694 if (hw->revision_id > 0) 695 i40e_stat_update32(hw, I40E_GLSW_RUPP(idx), 696 veb->stat_offsets_loaded, 697 &oes->rx_unknown_protocol, 698 &es->rx_unknown_protocol); 699 i40e_stat_update48(hw, I40E_GLSW_GORCH(idx), I40E_GLSW_GORCL(idx), 700 veb->stat_offsets_loaded, 701 &oes->rx_bytes, &es->rx_bytes); 702 i40e_stat_update48(hw, I40E_GLSW_UPRCH(idx), I40E_GLSW_UPRCL(idx), 703 veb->stat_offsets_loaded, 704 &oes->rx_unicast, &es->rx_unicast); 705 i40e_stat_update48(hw, I40E_GLSW_MPRCH(idx), I40E_GLSW_MPRCL(idx), 706 veb->stat_offsets_loaded, 707 &oes->rx_multicast, &es->rx_multicast); 708 i40e_stat_update48(hw, I40E_GLSW_BPRCH(idx), I40E_GLSW_BPRCL(idx), 709 veb->stat_offsets_loaded, 710 &oes->rx_broadcast, &es->rx_broadcast); 711 712 i40e_stat_update48(hw, I40E_GLSW_GOTCH(idx), I40E_GLSW_GOTCL(idx), 713 veb->stat_offsets_loaded, 714 &oes->tx_bytes, &es->tx_bytes); 715 i40e_stat_update48(hw, I40E_GLSW_UPTCH(idx), I40E_GLSW_UPTCL(idx), 716 veb->stat_offsets_loaded, 717 &oes->tx_unicast, &es->tx_unicast); 718 i40e_stat_update48(hw, I40E_GLSW_MPTCH(idx), I40E_GLSW_MPTCL(idx), 719 veb->stat_offsets_loaded, 720 &oes->tx_multicast, &es->tx_multicast); 721 i40e_stat_update48(hw, I40E_GLSW_BPTCH(idx), I40E_GLSW_BPTCL(idx), 722 veb->stat_offsets_loaded, 723 &oes->tx_broadcast, &es->tx_broadcast); 724 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 725 i40e_stat_update48(hw, I40E_GLVEBTC_RPCH(i, idx), 726 I40E_GLVEBTC_RPCL(i, idx), 727 veb->stat_offsets_loaded, 728 &veb_oes->tc_rx_packets[i], 729 &veb_es->tc_rx_packets[i]); 730 i40e_stat_update48(hw, I40E_GLVEBTC_RBCH(i, idx), 731 I40E_GLVEBTC_RBCL(i, idx), 732 veb->stat_offsets_loaded, 733 &veb_oes->tc_rx_bytes[i], 734 &veb_es->tc_rx_bytes[i]); 735 i40e_stat_update48(hw, I40E_GLVEBTC_TPCH(i, idx), 736 I40E_GLVEBTC_TPCL(i, idx), 737 veb->stat_offsets_loaded, 738 &veb_oes->tc_tx_packets[i], 739 &veb_es->tc_tx_packets[i]); 740 i40e_stat_update48(hw, I40E_GLVEBTC_TBCH(i, idx), 741 I40E_GLVEBTC_TBCL(i, idx), 742 veb->stat_offsets_loaded, 743 &veb_oes->tc_tx_bytes[i], 744 &veb_es->tc_tx_bytes[i]); 745 } 746 veb->stat_offsets_loaded = true; 747 } 748 749 /** 750 * i40e_update_vsi_stats - Update the vsi statistics counters. 751 * @vsi: the VSI to be updated 752 * 753 * There are a few instances where we store the same stat in a 754 * couple of different structs. This is partly because we have 755 * the netdev stats that need to be filled out, which is slightly 756 * different from the "eth_stats" defined by the chip and used in 757 * VF communications. We sort it out here. 758 **/ 759 static void i40e_update_vsi_stats(struct i40e_vsi *vsi) 760 { 761 struct i40e_pf *pf = vsi->back; 762 struct rtnl_link_stats64 *ons; 763 struct rtnl_link_stats64 *ns; /* netdev stats */ 764 struct i40e_eth_stats *oes; 765 struct i40e_eth_stats *es; /* device's eth stats */ 766 u32 tx_restart, tx_busy; 767 struct i40e_ring *p; 768 u32 rx_page, rx_buf; 769 u64 bytes, packets; 770 unsigned int start; 771 u64 tx_linearize; 772 u64 tx_force_wb; 773 u64 rx_p, rx_b; 774 u64 tx_p, tx_b; 775 u16 q; 776 777 if (test_bit(__I40E_VSI_DOWN, vsi->state) || 778 test_bit(__I40E_CONFIG_BUSY, pf->state)) 779 return; 780 781 ns = i40e_get_vsi_stats_struct(vsi); 782 ons = &vsi->net_stats_offsets; 783 es = &vsi->eth_stats; 784 oes = &vsi->eth_stats_offsets; 785 786 /* Gather up the netdev and vsi stats that the driver collects 787 * on the fly during packet processing 788 */ 789 rx_b = rx_p = 0; 790 tx_b = tx_p = 0; 791 tx_restart = tx_busy = tx_linearize = tx_force_wb = 0; 792 rx_page = 0; 793 rx_buf = 0; 794 rcu_read_lock(); 795 for (q = 0; q < vsi->num_queue_pairs; q++) { 796 /* locate Tx ring */ 797 p = READ_ONCE(vsi->tx_rings[q]); 798 799 do { 800 start = u64_stats_fetch_begin_irq(&p->syncp); 801 packets = p->stats.packets; 802 bytes = p->stats.bytes; 803 } while (u64_stats_fetch_retry_irq(&p->syncp, start)); 804 tx_b += bytes; 805 tx_p += packets; 806 tx_restart += p->tx_stats.restart_queue; 807 tx_busy += p->tx_stats.tx_busy; 808 tx_linearize += p->tx_stats.tx_linearize; 809 tx_force_wb += p->tx_stats.tx_force_wb; 810 811 /* Rx queue is part of the same block as Tx queue */ 812 p = &p[1]; 813 do { 814 start = u64_stats_fetch_begin_irq(&p->syncp); 815 packets = p->stats.packets; 816 bytes = p->stats.bytes; 817 } while (u64_stats_fetch_retry_irq(&p->syncp, start)); 818 rx_b += bytes; 819 rx_p += packets; 820 rx_buf += p->rx_stats.alloc_buff_failed; 821 rx_page += p->rx_stats.alloc_page_failed; 822 } 823 rcu_read_unlock(); 824 vsi->tx_restart = tx_restart; 825 vsi->tx_busy = tx_busy; 826 vsi->tx_linearize = tx_linearize; 827 vsi->tx_force_wb = tx_force_wb; 828 vsi->rx_page_failed = rx_page; 829 vsi->rx_buf_failed = rx_buf; 830 831 ns->rx_packets = rx_p; 832 ns->rx_bytes = rx_b; 833 ns->tx_packets = tx_p; 834 ns->tx_bytes = tx_b; 835 836 /* update netdev stats from eth stats */ 837 i40e_update_eth_stats(vsi); 838 ons->tx_errors = oes->tx_errors; 839 ns->tx_errors = es->tx_errors; 840 ons->multicast = oes->rx_multicast; 841 ns->multicast = es->rx_multicast; 842 ons->rx_dropped = oes->rx_discards; 843 ns->rx_dropped = es->rx_discards; 844 ons->tx_dropped = oes->tx_discards; 845 ns->tx_dropped = es->tx_discards; 846 847 /* pull in a couple PF stats if this is the main vsi */ 848 if (vsi == pf->vsi[pf->lan_vsi]) { 849 ns->rx_crc_errors = pf->stats.crc_errors; 850 ns->rx_errors = pf->stats.crc_errors + pf->stats.illegal_bytes; 851 ns->rx_length_errors = pf->stats.rx_length_errors; 852 } 853 } 854 855 /** 856 * i40e_update_pf_stats - Update the PF statistics counters. 857 * @pf: the PF to be updated 858 **/ 859 static void i40e_update_pf_stats(struct i40e_pf *pf) 860 { 861 struct i40e_hw_port_stats *osd = &pf->stats_offsets; 862 struct i40e_hw_port_stats *nsd = &pf->stats; 863 struct i40e_hw *hw = &pf->hw; 864 u32 val; 865 int i; 866 867 i40e_stat_update48(hw, I40E_GLPRT_GORCH(hw->port), 868 I40E_GLPRT_GORCL(hw->port), 869 pf->stat_offsets_loaded, 870 &osd->eth.rx_bytes, &nsd->eth.rx_bytes); 871 i40e_stat_update48(hw, I40E_GLPRT_GOTCH(hw->port), 872 I40E_GLPRT_GOTCL(hw->port), 873 pf->stat_offsets_loaded, 874 &osd->eth.tx_bytes, &nsd->eth.tx_bytes); 875 i40e_stat_update32(hw, I40E_GLPRT_RDPC(hw->port), 876 pf->stat_offsets_loaded, 877 &osd->eth.rx_discards, 878 &nsd->eth.rx_discards); 879 i40e_stat_update48(hw, I40E_GLPRT_UPRCH(hw->port), 880 I40E_GLPRT_UPRCL(hw->port), 881 pf->stat_offsets_loaded, 882 &osd->eth.rx_unicast, 883 &nsd->eth.rx_unicast); 884 i40e_stat_update48(hw, I40E_GLPRT_MPRCH(hw->port), 885 I40E_GLPRT_MPRCL(hw->port), 886 pf->stat_offsets_loaded, 887 &osd->eth.rx_multicast, 888 &nsd->eth.rx_multicast); 889 i40e_stat_update48(hw, I40E_GLPRT_BPRCH(hw->port), 890 I40E_GLPRT_BPRCL(hw->port), 891 pf->stat_offsets_loaded, 892 &osd->eth.rx_broadcast, 893 &nsd->eth.rx_broadcast); 894 i40e_stat_update48(hw, I40E_GLPRT_UPTCH(hw->port), 895 I40E_GLPRT_UPTCL(hw->port), 896 pf->stat_offsets_loaded, 897 &osd->eth.tx_unicast, 898 &nsd->eth.tx_unicast); 899 i40e_stat_update48(hw, I40E_GLPRT_MPTCH(hw->port), 900 I40E_GLPRT_MPTCL(hw->port), 901 pf->stat_offsets_loaded, 902 &osd->eth.tx_multicast, 903 &nsd->eth.tx_multicast); 904 i40e_stat_update48(hw, I40E_GLPRT_BPTCH(hw->port), 905 I40E_GLPRT_BPTCL(hw->port), 906 pf->stat_offsets_loaded, 907 &osd->eth.tx_broadcast, 908 &nsd->eth.tx_broadcast); 909 910 i40e_stat_update32(hw, I40E_GLPRT_TDOLD(hw->port), 911 pf->stat_offsets_loaded, 912 &osd->tx_dropped_link_down, 913 &nsd->tx_dropped_link_down); 914 915 i40e_stat_update32(hw, I40E_GLPRT_CRCERRS(hw->port), 916 pf->stat_offsets_loaded, 917 &osd->crc_errors, &nsd->crc_errors); 918 919 i40e_stat_update32(hw, I40E_GLPRT_ILLERRC(hw->port), 920 pf->stat_offsets_loaded, 921 &osd->illegal_bytes, &nsd->illegal_bytes); 922 923 i40e_stat_update32(hw, I40E_GLPRT_MLFC(hw->port), 924 pf->stat_offsets_loaded, 925 &osd->mac_local_faults, 926 &nsd->mac_local_faults); 927 i40e_stat_update32(hw, I40E_GLPRT_MRFC(hw->port), 928 pf->stat_offsets_loaded, 929 &osd->mac_remote_faults, 930 &nsd->mac_remote_faults); 931 932 i40e_stat_update32(hw, I40E_GLPRT_RLEC(hw->port), 933 pf->stat_offsets_loaded, 934 &osd->rx_length_errors, 935 &nsd->rx_length_errors); 936 937 i40e_stat_update32(hw, I40E_GLPRT_LXONRXC(hw->port), 938 pf->stat_offsets_loaded, 939 &osd->link_xon_rx, &nsd->link_xon_rx); 940 i40e_stat_update32(hw, I40E_GLPRT_LXONTXC(hw->port), 941 pf->stat_offsets_loaded, 942 &osd->link_xon_tx, &nsd->link_xon_tx); 943 i40e_stat_update32(hw, I40E_GLPRT_LXOFFRXC(hw->port), 944 pf->stat_offsets_loaded, 945 &osd->link_xoff_rx, &nsd->link_xoff_rx); 946 i40e_stat_update32(hw, I40E_GLPRT_LXOFFTXC(hw->port), 947 pf->stat_offsets_loaded, 948 &osd->link_xoff_tx, &nsd->link_xoff_tx); 949 950 for (i = 0; i < 8; i++) { 951 i40e_stat_update32(hw, I40E_GLPRT_PXOFFRXC(hw->port, i), 952 pf->stat_offsets_loaded, 953 &osd->priority_xoff_rx[i], 954 &nsd->priority_xoff_rx[i]); 955 i40e_stat_update32(hw, I40E_GLPRT_PXONRXC(hw->port, i), 956 pf->stat_offsets_loaded, 957 &osd->priority_xon_rx[i], 958 &nsd->priority_xon_rx[i]); 959 i40e_stat_update32(hw, I40E_GLPRT_PXONTXC(hw->port, i), 960 pf->stat_offsets_loaded, 961 &osd->priority_xon_tx[i], 962 &nsd->priority_xon_tx[i]); 963 i40e_stat_update32(hw, I40E_GLPRT_PXOFFTXC(hw->port, i), 964 pf->stat_offsets_loaded, 965 &osd->priority_xoff_tx[i], 966 &nsd->priority_xoff_tx[i]); 967 i40e_stat_update32(hw, 968 I40E_GLPRT_RXON2OFFCNT(hw->port, i), 969 pf->stat_offsets_loaded, 970 &osd->priority_xon_2_xoff[i], 971 &nsd->priority_xon_2_xoff[i]); 972 } 973 974 i40e_stat_update48(hw, I40E_GLPRT_PRC64H(hw->port), 975 I40E_GLPRT_PRC64L(hw->port), 976 pf->stat_offsets_loaded, 977 &osd->rx_size_64, &nsd->rx_size_64); 978 i40e_stat_update48(hw, I40E_GLPRT_PRC127H(hw->port), 979 I40E_GLPRT_PRC127L(hw->port), 980 pf->stat_offsets_loaded, 981 &osd->rx_size_127, &nsd->rx_size_127); 982 i40e_stat_update48(hw, I40E_GLPRT_PRC255H(hw->port), 983 I40E_GLPRT_PRC255L(hw->port), 984 pf->stat_offsets_loaded, 985 &osd->rx_size_255, &nsd->rx_size_255); 986 i40e_stat_update48(hw, I40E_GLPRT_PRC511H(hw->port), 987 I40E_GLPRT_PRC511L(hw->port), 988 pf->stat_offsets_loaded, 989 &osd->rx_size_511, &nsd->rx_size_511); 990 i40e_stat_update48(hw, I40E_GLPRT_PRC1023H(hw->port), 991 I40E_GLPRT_PRC1023L(hw->port), 992 pf->stat_offsets_loaded, 993 &osd->rx_size_1023, &nsd->rx_size_1023); 994 i40e_stat_update48(hw, I40E_GLPRT_PRC1522H(hw->port), 995 I40E_GLPRT_PRC1522L(hw->port), 996 pf->stat_offsets_loaded, 997 &osd->rx_size_1522, &nsd->rx_size_1522); 998 i40e_stat_update48(hw, I40E_GLPRT_PRC9522H(hw->port), 999 I40E_GLPRT_PRC9522L(hw->port), 1000 pf->stat_offsets_loaded, 1001 &osd->rx_size_big, &nsd->rx_size_big); 1002 1003 i40e_stat_update48(hw, I40E_GLPRT_PTC64H(hw->port), 1004 I40E_GLPRT_PTC64L(hw->port), 1005 pf->stat_offsets_loaded, 1006 &osd->tx_size_64, &nsd->tx_size_64); 1007 i40e_stat_update48(hw, I40E_GLPRT_PTC127H(hw->port), 1008 I40E_GLPRT_PTC127L(hw->port), 1009 pf->stat_offsets_loaded, 1010 &osd->tx_size_127, &nsd->tx_size_127); 1011 i40e_stat_update48(hw, I40E_GLPRT_PTC255H(hw->port), 1012 I40E_GLPRT_PTC255L(hw->port), 1013 pf->stat_offsets_loaded, 1014 &osd->tx_size_255, &nsd->tx_size_255); 1015 i40e_stat_update48(hw, I40E_GLPRT_PTC511H(hw->port), 1016 I40E_GLPRT_PTC511L(hw->port), 1017 pf->stat_offsets_loaded, 1018 &osd->tx_size_511, &nsd->tx_size_511); 1019 i40e_stat_update48(hw, I40E_GLPRT_PTC1023H(hw->port), 1020 I40E_GLPRT_PTC1023L(hw->port), 1021 pf->stat_offsets_loaded, 1022 &osd->tx_size_1023, &nsd->tx_size_1023); 1023 i40e_stat_update48(hw, I40E_GLPRT_PTC1522H(hw->port), 1024 I40E_GLPRT_PTC1522L(hw->port), 1025 pf->stat_offsets_loaded, 1026 &osd->tx_size_1522, &nsd->tx_size_1522); 1027 i40e_stat_update48(hw, I40E_GLPRT_PTC9522H(hw->port), 1028 I40E_GLPRT_PTC9522L(hw->port), 1029 pf->stat_offsets_loaded, 1030 &osd->tx_size_big, &nsd->tx_size_big); 1031 1032 i40e_stat_update32(hw, I40E_GLPRT_RUC(hw->port), 1033 pf->stat_offsets_loaded, 1034 &osd->rx_undersize, &nsd->rx_undersize); 1035 i40e_stat_update32(hw, I40E_GLPRT_RFC(hw->port), 1036 pf->stat_offsets_loaded, 1037 &osd->rx_fragments, &nsd->rx_fragments); 1038 i40e_stat_update32(hw, I40E_GLPRT_ROC(hw->port), 1039 pf->stat_offsets_loaded, 1040 &osd->rx_oversize, &nsd->rx_oversize); 1041 i40e_stat_update32(hw, I40E_GLPRT_RJC(hw->port), 1042 pf->stat_offsets_loaded, 1043 &osd->rx_jabber, &nsd->rx_jabber); 1044 1045 /* FDIR stats */ 1046 i40e_stat_update_and_clear32(hw, 1047 I40E_GLQF_PCNT(I40E_FD_ATR_STAT_IDX(hw->pf_id)), 1048 &nsd->fd_atr_match); 1049 i40e_stat_update_and_clear32(hw, 1050 I40E_GLQF_PCNT(I40E_FD_SB_STAT_IDX(hw->pf_id)), 1051 &nsd->fd_sb_match); 1052 i40e_stat_update_and_clear32(hw, 1053 I40E_GLQF_PCNT(I40E_FD_ATR_TUNNEL_STAT_IDX(hw->pf_id)), 1054 &nsd->fd_atr_tunnel_match); 1055 1056 val = rd32(hw, I40E_PRTPM_EEE_STAT); 1057 nsd->tx_lpi_status = 1058 (val & I40E_PRTPM_EEE_STAT_TX_LPI_STATUS_MASK) >> 1059 I40E_PRTPM_EEE_STAT_TX_LPI_STATUS_SHIFT; 1060 nsd->rx_lpi_status = 1061 (val & I40E_PRTPM_EEE_STAT_RX_LPI_STATUS_MASK) >> 1062 I40E_PRTPM_EEE_STAT_RX_LPI_STATUS_SHIFT; 1063 i40e_stat_update32(hw, I40E_PRTPM_TLPIC, 1064 pf->stat_offsets_loaded, 1065 &osd->tx_lpi_count, &nsd->tx_lpi_count); 1066 i40e_stat_update32(hw, I40E_PRTPM_RLPIC, 1067 pf->stat_offsets_loaded, 1068 &osd->rx_lpi_count, &nsd->rx_lpi_count); 1069 1070 if (pf->flags & I40E_FLAG_FD_SB_ENABLED && 1071 !test_bit(__I40E_FD_SB_AUTO_DISABLED, pf->state)) 1072 nsd->fd_sb_status = true; 1073 else 1074 nsd->fd_sb_status = false; 1075 1076 if (pf->flags & I40E_FLAG_FD_ATR_ENABLED && 1077 !test_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state)) 1078 nsd->fd_atr_status = true; 1079 else 1080 nsd->fd_atr_status = false; 1081 1082 pf->stat_offsets_loaded = true; 1083 } 1084 1085 /** 1086 * i40e_update_stats - Update the various statistics counters. 1087 * @vsi: the VSI to be updated 1088 * 1089 * Update the various stats for this VSI and its related entities. 1090 **/ 1091 void i40e_update_stats(struct i40e_vsi *vsi) 1092 { 1093 struct i40e_pf *pf = vsi->back; 1094 1095 if (vsi == pf->vsi[pf->lan_vsi]) 1096 i40e_update_pf_stats(pf); 1097 1098 i40e_update_vsi_stats(vsi); 1099 } 1100 1101 /** 1102 * i40e_find_filter - Search VSI filter list for specific mac/vlan filter 1103 * @vsi: the VSI to be searched 1104 * @macaddr: the MAC address 1105 * @vlan: the vlan 1106 * 1107 * Returns ptr to the filter object or NULL 1108 **/ 1109 static struct i40e_mac_filter *i40e_find_filter(struct i40e_vsi *vsi, 1110 const u8 *macaddr, s16 vlan) 1111 { 1112 struct i40e_mac_filter *f; 1113 u64 key; 1114 1115 if (!vsi || !macaddr) 1116 return NULL; 1117 1118 key = i40e_addr_to_hkey(macaddr); 1119 hash_for_each_possible(vsi->mac_filter_hash, f, hlist, key) { 1120 if ((ether_addr_equal(macaddr, f->macaddr)) && 1121 (vlan == f->vlan)) 1122 return f; 1123 } 1124 return NULL; 1125 } 1126 1127 /** 1128 * i40e_find_mac - Find a mac addr in the macvlan filters list 1129 * @vsi: the VSI to be searched 1130 * @macaddr: the MAC address we are searching for 1131 * 1132 * Returns the first filter with the provided MAC address or NULL if 1133 * MAC address was not found 1134 **/ 1135 struct i40e_mac_filter *i40e_find_mac(struct i40e_vsi *vsi, const u8 *macaddr) 1136 { 1137 struct i40e_mac_filter *f; 1138 u64 key; 1139 1140 if (!vsi || !macaddr) 1141 return NULL; 1142 1143 key = i40e_addr_to_hkey(macaddr); 1144 hash_for_each_possible(vsi->mac_filter_hash, f, hlist, key) { 1145 if ((ether_addr_equal(macaddr, f->macaddr))) 1146 return f; 1147 } 1148 return NULL; 1149 } 1150 1151 /** 1152 * i40e_is_vsi_in_vlan - Check if VSI is in vlan mode 1153 * @vsi: the VSI to be searched 1154 * 1155 * Returns true if VSI is in vlan mode or false otherwise 1156 **/ 1157 bool i40e_is_vsi_in_vlan(struct i40e_vsi *vsi) 1158 { 1159 /* If we have a PVID, always operate in VLAN mode */ 1160 if (vsi->info.pvid) 1161 return true; 1162 1163 /* We need to operate in VLAN mode whenever we have any filters with 1164 * a VLAN other than I40E_VLAN_ALL. We could check the table each 1165 * time, incurring search cost repeatedly. However, we can notice two 1166 * things: 1167 * 1168 * 1) the only place where we can gain a VLAN filter is in 1169 * i40e_add_filter. 1170 * 1171 * 2) the only place where filters are actually removed is in 1172 * i40e_sync_filters_subtask. 1173 * 1174 * Thus, we can simply use a boolean value, has_vlan_filters which we 1175 * will set to true when we add a VLAN filter in i40e_add_filter. Then 1176 * we have to perform the full search after deleting filters in 1177 * i40e_sync_filters_subtask, but we already have to search 1178 * filters here and can perform the check at the same time. This 1179 * results in avoiding embedding a loop for VLAN mode inside another 1180 * loop over all the filters, and should maintain correctness as noted 1181 * above. 1182 */ 1183 return vsi->has_vlan_filter; 1184 } 1185 1186 /** 1187 * i40e_correct_mac_vlan_filters - Correct non-VLAN filters if necessary 1188 * @vsi: the VSI to configure 1189 * @tmp_add_list: list of filters ready to be added 1190 * @tmp_del_list: list of filters ready to be deleted 1191 * @vlan_filters: the number of active VLAN filters 1192 * 1193 * Update VLAN=0 and VLAN=-1 (I40E_VLAN_ANY) filters properly so that they 1194 * behave as expected. If we have any active VLAN filters remaining or about 1195 * to be added then we need to update non-VLAN filters to be marked as VLAN=0 1196 * so that they only match against untagged traffic. If we no longer have any 1197 * active VLAN filters, we need to make all non-VLAN filters marked as VLAN=-1 1198 * so that they match against both tagged and untagged traffic. In this way, 1199 * we ensure that we correctly receive the desired traffic. This ensures that 1200 * when we have an active VLAN we will receive only untagged traffic and 1201 * traffic matching active VLANs. If we have no active VLANs then we will 1202 * operate in non-VLAN mode and receive all traffic, tagged or untagged. 1203 * 1204 * Finally, in a similar fashion, this function also corrects filters when 1205 * there is an active PVID assigned to this VSI. 1206 * 1207 * In case of memory allocation failure return -ENOMEM. Otherwise, return 0. 1208 * 1209 * This function is only expected to be called from within 1210 * i40e_sync_vsi_filters. 1211 * 1212 * NOTE: This function expects to be called while under the 1213 * mac_filter_hash_lock 1214 */ 1215 static int i40e_correct_mac_vlan_filters(struct i40e_vsi *vsi, 1216 struct hlist_head *tmp_add_list, 1217 struct hlist_head *tmp_del_list, 1218 int vlan_filters) 1219 { 1220 s16 pvid = le16_to_cpu(vsi->info.pvid); 1221 struct i40e_mac_filter *f, *add_head; 1222 struct i40e_new_mac_filter *new; 1223 struct hlist_node *h; 1224 int bkt, new_vlan; 1225 1226 /* To determine if a particular filter needs to be replaced we 1227 * have the three following conditions: 1228 * 1229 * a) if we have a PVID assigned, then all filters which are 1230 * not marked as VLAN=PVID must be replaced with filters that 1231 * are. 1232 * b) otherwise, if we have any active VLANS, all filters 1233 * which are marked as VLAN=-1 must be replaced with 1234 * filters marked as VLAN=0 1235 * c) finally, if we do not have any active VLANS, all filters 1236 * which are marked as VLAN=0 must be replaced with filters 1237 * marked as VLAN=-1 1238 */ 1239 1240 /* Update the filters about to be added in place */ 1241 hlist_for_each_entry(new, tmp_add_list, hlist) { 1242 if (pvid && new->f->vlan != pvid) 1243 new->f->vlan = pvid; 1244 else if (vlan_filters && new->f->vlan == I40E_VLAN_ANY) 1245 new->f->vlan = 0; 1246 else if (!vlan_filters && new->f->vlan == 0) 1247 new->f->vlan = I40E_VLAN_ANY; 1248 } 1249 1250 /* Update the remaining active filters */ 1251 hash_for_each_safe(vsi->mac_filter_hash, bkt, h, f, hlist) { 1252 /* Combine the checks for whether a filter needs to be changed 1253 * and then determine the new VLAN inside the if block, in 1254 * order to avoid duplicating code for adding the new filter 1255 * then deleting the old filter. 1256 */ 1257 if ((pvid && f->vlan != pvid) || 1258 (vlan_filters && f->vlan == I40E_VLAN_ANY) || 1259 (!vlan_filters && f->vlan == 0)) { 1260 /* Determine the new vlan we will be adding */ 1261 if (pvid) 1262 new_vlan = pvid; 1263 else if (vlan_filters) 1264 new_vlan = 0; 1265 else 1266 new_vlan = I40E_VLAN_ANY; 1267 1268 /* Create the new filter */ 1269 add_head = i40e_add_filter(vsi, f->macaddr, new_vlan); 1270 if (!add_head) 1271 return -ENOMEM; 1272 1273 /* Create a temporary i40e_new_mac_filter */ 1274 new = kzalloc(sizeof(*new), GFP_ATOMIC); 1275 if (!new) 1276 return -ENOMEM; 1277 1278 new->f = add_head; 1279 new->state = add_head->state; 1280 1281 /* Add the new filter to the tmp list */ 1282 hlist_add_head(&new->hlist, tmp_add_list); 1283 1284 /* Put the original filter into the delete list */ 1285 f->state = I40E_FILTER_REMOVE; 1286 hash_del(&f->hlist); 1287 hlist_add_head(&f->hlist, tmp_del_list); 1288 } 1289 } 1290 1291 vsi->has_vlan_filter = !!vlan_filters; 1292 1293 return 0; 1294 } 1295 1296 /** 1297 * i40e_rm_default_mac_filter - Remove the default MAC filter set by NVM 1298 * @vsi: the PF Main VSI - inappropriate for any other VSI 1299 * @macaddr: the MAC address 1300 * 1301 * Remove whatever filter the firmware set up so the driver can manage 1302 * its own filtering intelligently. 1303 **/ 1304 static void i40e_rm_default_mac_filter(struct i40e_vsi *vsi, u8 *macaddr) 1305 { 1306 struct i40e_aqc_remove_macvlan_element_data element; 1307 struct i40e_pf *pf = vsi->back; 1308 1309 /* Only appropriate for the PF main VSI */ 1310 if (vsi->type != I40E_VSI_MAIN) 1311 return; 1312 1313 memset(&element, 0, sizeof(element)); 1314 ether_addr_copy(element.mac_addr, macaddr); 1315 element.vlan_tag = 0; 1316 /* Ignore error returns, some firmware does it this way... */ 1317 element.flags = I40E_AQC_MACVLAN_DEL_PERFECT_MATCH; 1318 i40e_aq_remove_macvlan(&pf->hw, vsi->seid, &element, 1, NULL); 1319 1320 memset(&element, 0, sizeof(element)); 1321 ether_addr_copy(element.mac_addr, macaddr); 1322 element.vlan_tag = 0; 1323 /* ...and some firmware does it this way. */ 1324 element.flags = I40E_AQC_MACVLAN_DEL_PERFECT_MATCH | 1325 I40E_AQC_MACVLAN_DEL_IGNORE_VLAN; 1326 i40e_aq_remove_macvlan(&pf->hw, vsi->seid, &element, 1, NULL); 1327 } 1328 1329 /** 1330 * i40e_add_filter - Add a mac/vlan filter to the VSI 1331 * @vsi: the VSI to be searched 1332 * @macaddr: the MAC address 1333 * @vlan: the vlan 1334 * 1335 * Returns ptr to the filter object or NULL when no memory available. 1336 * 1337 * NOTE: This function is expected to be called with mac_filter_hash_lock 1338 * being held. 1339 **/ 1340 struct i40e_mac_filter *i40e_add_filter(struct i40e_vsi *vsi, 1341 const u8 *macaddr, s16 vlan) 1342 { 1343 struct i40e_mac_filter *f; 1344 u64 key; 1345 1346 if (!vsi || !macaddr) 1347 return NULL; 1348 1349 f = i40e_find_filter(vsi, macaddr, vlan); 1350 if (!f) { 1351 f = kzalloc(sizeof(*f), GFP_ATOMIC); 1352 if (!f) 1353 return NULL; 1354 1355 /* Update the boolean indicating if we need to function in 1356 * VLAN mode. 1357 */ 1358 if (vlan >= 0) 1359 vsi->has_vlan_filter = true; 1360 1361 ether_addr_copy(f->macaddr, macaddr); 1362 f->vlan = vlan; 1363 f->state = I40E_FILTER_NEW; 1364 INIT_HLIST_NODE(&f->hlist); 1365 1366 key = i40e_addr_to_hkey(macaddr); 1367 hash_add(vsi->mac_filter_hash, &f->hlist, key); 1368 1369 vsi->flags |= I40E_VSI_FLAG_FILTER_CHANGED; 1370 set_bit(__I40E_MACVLAN_SYNC_PENDING, vsi->back->state); 1371 } 1372 1373 /* If we're asked to add a filter that has been marked for removal, it 1374 * is safe to simply restore it to active state. __i40e_del_filter 1375 * will have simply deleted any filters which were previously marked 1376 * NEW or FAILED, so if it is currently marked REMOVE it must have 1377 * previously been ACTIVE. Since we haven't yet run the sync filters 1378 * task, just restore this filter to the ACTIVE state so that the 1379 * sync task leaves it in place 1380 */ 1381 if (f->state == I40E_FILTER_REMOVE) 1382 f->state = I40E_FILTER_ACTIVE; 1383 1384 return f; 1385 } 1386 1387 /** 1388 * __i40e_del_filter - Remove a specific filter from the VSI 1389 * @vsi: VSI to remove from 1390 * @f: the filter to remove from the list 1391 * 1392 * This function should be called instead of i40e_del_filter only if you know 1393 * the exact filter you will remove already, such as via i40e_find_filter or 1394 * i40e_find_mac. 1395 * 1396 * NOTE: This function is expected to be called with mac_filter_hash_lock 1397 * being held. 1398 * ANOTHER NOTE: This function MUST be called from within the context of 1399 * the "safe" variants of any list iterators, e.g. list_for_each_entry_safe() 1400 * instead of list_for_each_entry(). 1401 **/ 1402 void __i40e_del_filter(struct i40e_vsi *vsi, struct i40e_mac_filter *f) 1403 { 1404 if (!f) 1405 return; 1406 1407 /* If the filter was never added to firmware then we can just delete it 1408 * directly and we don't want to set the status to remove or else an 1409 * admin queue command will unnecessarily fire. 1410 */ 1411 if ((f->state == I40E_FILTER_FAILED) || 1412 (f->state == I40E_FILTER_NEW)) { 1413 hash_del(&f->hlist); 1414 kfree(f); 1415 } else { 1416 f->state = I40E_FILTER_REMOVE; 1417 } 1418 1419 vsi->flags |= I40E_VSI_FLAG_FILTER_CHANGED; 1420 set_bit(__I40E_MACVLAN_SYNC_PENDING, vsi->back->state); 1421 } 1422 1423 /** 1424 * i40e_del_filter - Remove a MAC/VLAN filter from the VSI 1425 * @vsi: the VSI to be searched 1426 * @macaddr: the MAC address 1427 * @vlan: the VLAN 1428 * 1429 * NOTE: This function is expected to be called with mac_filter_hash_lock 1430 * being held. 1431 * ANOTHER NOTE: This function MUST be called from within the context of 1432 * the "safe" variants of any list iterators, e.g. list_for_each_entry_safe() 1433 * instead of list_for_each_entry(). 1434 **/ 1435 void i40e_del_filter(struct i40e_vsi *vsi, const u8 *macaddr, s16 vlan) 1436 { 1437 struct i40e_mac_filter *f; 1438 1439 if (!vsi || !macaddr) 1440 return; 1441 1442 f = i40e_find_filter(vsi, macaddr, vlan); 1443 __i40e_del_filter(vsi, f); 1444 } 1445 1446 /** 1447 * i40e_add_mac_filter - Add a MAC filter for all active VLANs 1448 * @vsi: the VSI to be searched 1449 * @macaddr: the mac address to be filtered 1450 * 1451 * If we're not in VLAN mode, just add the filter to I40E_VLAN_ANY. Otherwise, 1452 * go through all the macvlan filters and add a macvlan filter for each 1453 * unique vlan that already exists. If a PVID has been assigned, instead only 1454 * add the macaddr to that VLAN. 1455 * 1456 * Returns last filter added on success, else NULL 1457 **/ 1458 struct i40e_mac_filter *i40e_add_mac_filter(struct i40e_vsi *vsi, 1459 const u8 *macaddr) 1460 { 1461 struct i40e_mac_filter *f, *add = NULL; 1462 struct hlist_node *h; 1463 int bkt; 1464 1465 if (vsi->info.pvid) 1466 return i40e_add_filter(vsi, macaddr, 1467 le16_to_cpu(vsi->info.pvid)); 1468 1469 if (!i40e_is_vsi_in_vlan(vsi)) 1470 return i40e_add_filter(vsi, macaddr, I40E_VLAN_ANY); 1471 1472 hash_for_each_safe(vsi->mac_filter_hash, bkt, h, f, hlist) { 1473 if (f->state == I40E_FILTER_REMOVE) 1474 continue; 1475 add = i40e_add_filter(vsi, macaddr, f->vlan); 1476 if (!add) 1477 return NULL; 1478 } 1479 1480 return add; 1481 } 1482 1483 /** 1484 * i40e_del_mac_filter - Remove a MAC filter from all VLANs 1485 * @vsi: the VSI to be searched 1486 * @macaddr: the mac address to be removed 1487 * 1488 * Removes a given MAC address from a VSI regardless of what VLAN it has been 1489 * associated with. 1490 * 1491 * Returns 0 for success, or error 1492 **/ 1493 int i40e_del_mac_filter(struct i40e_vsi *vsi, const u8 *macaddr) 1494 { 1495 struct i40e_mac_filter *f; 1496 struct hlist_node *h; 1497 bool found = false; 1498 int bkt; 1499 1500 lockdep_assert_held(&vsi->mac_filter_hash_lock); 1501 hash_for_each_safe(vsi->mac_filter_hash, bkt, h, f, hlist) { 1502 if (ether_addr_equal(macaddr, f->macaddr)) { 1503 __i40e_del_filter(vsi, f); 1504 found = true; 1505 } 1506 } 1507 1508 if (found) 1509 return 0; 1510 else 1511 return -ENOENT; 1512 } 1513 1514 /** 1515 * i40e_set_mac - NDO callback to set mac address 1516 * @netdev: network interface device structure 1517 * @p: pointer to an address structure 1518 * 1519 * Returns 0 on success, negative on failure 1520 **/ 1521 static int i40e_set_mac(struct net_device *netdev, void *p) 1522 { 1523 struct i40e_netdev_priv *np = netdev_priv(netdev); 1524 struct i40e_vsi *vsi = np->vsi; 1525 struct i40e_pf *pf = vsi->back; 1526 struct i40e_hw *hw = &pf->hw; 1527 struct sockaddr *addr = p; 1528 1529 if (!is_valid_ether_addr(addr->sa_data)) 1530 return -EADDRNOTAVAIL; 1531 1532 if (ether_addr_equal(netdev->dev_addr, addr->sa_data)) { 1533 netdev_info(netdev, "already using mac address %pM\n", 1534 addr->sa_data); 1535 return 0; 1536 } 1537 1538 if (test_bit(__I40E_DOWN, pf->state) || 1539 test_bit(__I40E_RESET_RECOVERY_PENDING, pf->state)) 1540 return -EADDRNOTAVAIL; 1541 1542 if (ether_addr_equal(hw->mac.addr, addr->sa_data)) 1543 netdev_info(netdev, "returning to hw mac address %pM\n", 1544 hw->mac.addr); 1545 else 1546 netdev_info(netdev, "set new mac address %pM\n", addr->sa_data); 1547 1548 /* Copy the address first, so that we avoid a possible race with 1549 * .set_rx_mode(). 1550 * - Remove old address from MAC filter 1551 * - Copy new address 1552 * - Add new address to MAC filter 1553 */ 1554 spin_lock_bh(&vsi->mac_filter_hash_lock); 1555 i40e_del_mac_filter(vsi, netdev->dev_addr); 1556 ether_addr_copy(netdev->dev_addr, addr->sa_data); 1557 i40e_add_mac_filter(vsi, netdev->dev_addr); 1558 spin_unlock_bh(&vsi->mac_filter_hash_lock); 1559 1560 if (vsi->type == I40E_VSI_MAIN) { 1561 i40e_status ret; 1562 1563 ret = i40e_aq_mac_address_write(hw, I40E_AQC_WRITE_TYPE_LAA_WOL, 1564 addr->sa_data, NULL); 1565 if (ret) 1566 netdev_info(netdev, "Ignoring error from firmware on LAA update, status %s, AQ ret %s\n", 1567 i40e_stat_str(hw, ret), 1568 i40e_aq_str(hw, hw->aq.asq_last_status)); 1569 } 1570 1571 /* schedule our worker thread which will take care of 1572 * applying the new filter changes 1573 */ 1574 i40e_service_event_schedule(pf); 1575 return 0; 1576 } 1577 1578 /** 1579 * i40e_config_rss_aq - Prepare for RSS using AQ commands 1580 * @vsi: vsi structure 1581 * @seed: RSS hash seed 1582 **/ 1583 static int i40e_config_rss_aq(struct i40e_vsi *vsi, const u8 *seed, 1584 u8 *lut, u16 lut_size) 1585 { 1586 struct i40e_pf *pf = vsi->back; 1587 struct i40e_hw *hw = &pf->hw; 1588 int ret = 0; 1589 1590 if (seed) { 1591 struct i40e_aqc_get_set_rss_key_data *seed_dw = 1592 (struct i40e_aqc_get_set_rss_key_data *)seed; 1593 ret = i40e_aq_set_rss_key(hw, vsi->id, seed_dw); 1594 if (ret) { 1595 dev_info(&pf->pdev->dev, 1596 "Cannot set RSS key, err %s aq_err %s\n", 1597 i40e_stat_str(hw, ret), 1598 i40e_aq_str(hw, hw->aq.asq_last_status)); 1599 return ret; 1600 } 1601 } 1602 if (lut) { 1603 bool pf_lut = vsi->type == I40E_VSI_MAIN ? true : false; 1604 1605 ret = i40e_aq_set_rss_lut(hw, vsi->id, pf_lut, lut, lut_size); 1606 if (ret) { 1607 dev_info(&pf->pdev->dev, 1608 "Cannot set RSS lut, err %s aq_err %s\n", 1609 i40e_stat_str(hw, ret), 1610 i40e_aq_str(hw, hw->aq.asq_last_status)); 1611 return ret; 1612 } 1613 } 1614 return ret; 1615 } 1616 1617 /** 1618 * i40e_vsi_config_rss - Prepare for VSI(VMDq) RSS if used 1619 * @vsi: VSI structure 1620 **/ 1621 static int i40e_vsi_config_rss(struct i40e_vsi *vsi) 1622 { 1623 struct i40e_pf *pf = vsi->back; 1624 u8 seed[I40E_HKEY_ARRAY_SIZE]; 1625 u8 *lut; 1626 int ret; 1627 1628 if (!(pf->hw_features & I40E_HW_RSS_AQ_CAPABLE)) 1629 return 0; 1630 if (!vsi->rss_size) 1631 vsi->rss_size = min_t(int, pf->alloc_rss_size, 1632 vsi->num_queue_pairs); 1633 if (!vsi->rss_size) 1634 return -EINVAL; 1635 lut = kzalloc(vsi->rss_table_size, GFP_KERNEL); 1636 if (!lut) 1637 return -ENOMEM; 1638 1639 /* Use the user configured hash keys and lookup table if there is one, 1640 * otherwise use default 1641 */ 1642 if (vsi->rss_lut_user) 1643 memcpy(lut, vsi->rss_lut_user, vsi->rss_table_size); 1644 else 1645 i40e_fill_rss_lut(pf, lut, vsi->rss_table_size, vsi->rss_size); 1646 if (vsi->rss_hkey_user) 1647 memcpy(seed, vsi->rss_hkey_user, I40E_HKEY_ARRAY_SIZE); 1648 else 1649 netdev_rss_key_fill((void *)seed, I40E_HKEY_ARRAY_SIZE); 1650 ret = i40e_config_rss_aq(vsi, seed, lut, vsi->rss_table_size); 1651 kfree(lut); 1652 return ret; 1653 } 1654 1655 /** 1656 * i40e_vsi_setup_queue_map_mqprio - Prepares mqprio based tc_config 1657 * @vsi: the VSI being configured, 1658 * @ctxt: VSI context structure 1659 * @enabled_tc: number of traffic classes to enable 1660 * 1661 * Prepares VSI tc_config to have queue configurations based on MQPRIO options. 1662 **/ 1663 static int i40e_vsi_setup_queue_map_mqprio(struct i40e_vsi *vsi, 1664 struct i40e_vsi_context *ctxt, 1665 u8 enabled_tc) 1666 { 1667 u16 qcount = 0, max_qcount, qmap, sections = 0; 1668 int i, override_q, pow, num_qps, ret; 1669 u8 netdev_tc = 0, offset = 0; 1670 1671 if (vsi->type != I40E_VSI_MAIN) 1672 return -EINVAL; 1673 sections = I40E_AQ_VSI_PROP_QUEUE_MAP_VALID; 1674 sections |= I40E_AQ_VSI_PROP_SCHED_VALID; 1675 vsi->tc_config.numtc = vsi->mqprio_qopt.qopt.num_tc; 1676 vsi->tc_config.enabled_tc = enabled_tc ? enabled_tc : 1; 1677 num_qps = vsi->mqprio_qopt.qopt.count[0]; 1678 1679 /* find the next higher power-of-2 of num queue pairs */ 1680 pow = ilog2(num_qps); 1681 if (!is_power_of_2(num_qps)) 1682 pow++; 1683 qmap = (offset << I40E_AQ_VSI_TC_QUE_OFFSET_SHIFT) | 1684 (pow << I40E_AQ_VSI_TC_QUE_NUMBER_SHIFT); 1685 1686 /* Setup queue offset/count for all TCs for given VSI */ 1687 max_qcount = vsi->mqprio_qopt.qopt.count[0]; 1688 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 1689 /* See if the given TC is enabled for the given VSI */ 1690 if (vsi->tc_config.enabled_tc & BIT(i)) { 1691 offset = vsi->mqprio_qopt.qopt.offset[i]; 1692 qcount = vsi->mqprio_qopt.qopt.count[i]; 1693 if (qcount > max_qcount) 1694 max_qcount = qcount; 1695 vsi->tc_config.tc_info[i].qoffset = offset; 1696 vsi->tc_config.tc_info[i].qcount = qcount; 1697 vsi->tc_config.tc_info[i].netdev_tc = netdev_tc++; 1698 } else { 1699 /* TC is not enabled so set the offset to 1700 * default queue and allocate one queue 1701 * for the given TC. 1702 */ 1703 vsi->tc_config.tc_info[i].qoffset = 0; 1704 vsi->tc_config.tc_info[i].qcount = 1; 1705 vsi->tc_config.tc_info[i].netdev_tc = 0; 1706 } 1707 } 1708 1709 /* Set actual Tx/Rx queue pairs */ 1710 vsi->num_queue_pairs = offset + qcount; 1711 1712 /* Setup queue TC[0].qmap for given VSI context */ 1713 ctxt->info.tc_mapping[0] = cpu_to_le16(qmap); 1714 ctxt->info.mapping_flags |= cpu_to_le16(I40E_AQ_VSI_QUE_MAP_CONTIG); 1715 ctxt->info.queue_mapping[0] = cpu_to_le16(vsi->base_queue); 1716 ctxt->info.valid_sections |= cpu_to_le16(sections); 1717 1718 /* Reconfigure RSS for main VSI with max queue count */ 1719 vsi->rss_size = max_qcount; 1720 ret = i40e_vsi_config_rss(vsi); 1721 if (ret) { 1722 dev_info(&vsi->back->pdev->dev, 1723 "Failed to reconfig rss for num_queues (%u)\n", 1724 max_qcount); 1725 return ret; 1726 } 1727 vsi->reconfig_rss = true; 1728 dev_dbg(&vsi->back->pdev->dev, 1729 "Reconfigured rss with num_queues (%u)\n", max_qcount); 1730 1731 /* Find queue count available for channel VSIs and starting offset 1732 * for channel VSIs 1733 */ 1734 override_q = vsi->mqprio_qopt.qopt.count[0]; 1735 if (override_q && override_q < vsi->num_queue_pairs) { 1736 vsi->cnt_q_avail = vsi->num_queue_pairs - override_q; 1737 vsi->next_base_queue = override_q; 1738 } 1739 return 0; 1740 } 1741 1742 /** 1743 * i40e_vsi_setup_queue_map - Setup a VSI queue map based on enabled_tc 1744 * @vsi: the VSI being setup 1745 * @ctxt: VSI context structure 1746 * @enabled_tc: Enabled TCs bitmap 1747 * @is_add: True if called before Add VSI 1748 * 1749 * Setup VSI queue mapping for enabled traffic classes. 1750 **/ 1751 static void i40e_vsi_setup_queue_map(struct i40e_vsi *vsi, 1752 struct i40e_vsi_context *ctxt, 1753 u8 enabled_tc, 1754 bool is_add) 1755 { 1756 struct i40e_pf *pf = vsi->back; 1757 u16 sections = 0; 1758 u8 netdev_tc = 0; 1759 u16 numtc = 1; 1760 u16 qcount; 1761 u8 offset; 1762 u16 qmap; 1763 int i; 1764 u16 num_tc_qps = 0; 1765 1766 sections = I40E_AQ_VSI_PROP_QUEUE_MAP_VALID; 1767 offset = 0; 1768 1769 /* Number of queues per enabled TC */ 1770 num_tc_qps = vsi->alloc_queue_pairs; 1771 if (enabled_tc && (vsi->back->flags & I40E_FLAG_DCB_ENABLED)) { 1772 /* Find numtc from enabled TC bitmap */ 1773 for (i = 0, numtc = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 1774 if (enabled_tc & BIT(i)) /* TC is enabled */ 1775 numtc++; 1776 } 1777 if (!numtc) { 1778 dev_warn(&pf->pdev->dev, "DCB is enabled but no TC enabled, forcing TC0\n"); 1779 numtc = 1; 1780 } 1781 num_tc_qps = num_tc_qps / numtc; 1782 num_tc_qps = min_t(int, num_tc_qps, 1783 i40e_pf_get_max_q_per_tc(pf)); 1784 } 1785 1786 vsi->tc_config.numtc = numtc; 1787 vsi->tc_config.enabled_tc = enabled_tc ? enabled_tc : 1; 1788 1789 /* Do not allow use more TC queue pairs than MSI-X vectors exist */ 1790 if (pf->flags & I40E_FLAG_MSIX_ENABLED) 1791 num_tc_qps = min_t(int, num_tc_qps, pf->num_lan_msix); 1792 1793 /* Setup queue offset/count for all TCs for given VSI */ 1794 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 1795 /* See if the given TC is enabled for the given VSI */ 1796 if (vsi->tc_config.enabled_tc & BIT(i)) { 1797 /* TC is enabled */ 1798 int pow, num_qps; 1799 1800 switch (vsi->type) { 1801 case I40E_VSI_MAIN: 1802 if (!(pf->flags & (I40E_FLAG_FD_SB_ENABLED | 1803 I40E_FLAG_FD_ATR_ENABLED)) || 1804 vsi->tc_config.enabled_tc != 1) { 1805 qcount = min_t(int, pf->alloc_rss_size, 1806 num_tc_qps); 1807 break; 1808 } 1809 /* fall through */ 1810 case I40E_VSI_FDIR: 1811 case I40E_VSI_SRIOV: 1812 case I40E_VSI_VMDQ2: 1813 default: 1814 qcount = num_tc_qps; 1815 WARN_ON(i != 0); 1816 break; 1817 } 1818 vsi->tc_config.tc_info[i].qoffset = offset; 1819 vsi->tc_config.tc_info[i].qcount = qcount; 1820 1821 /* find the next higher power-of-2 of num queue pairs */ 1822 num_qps = qcount; 1823 pow = 0; 1824 while (num_qps && (BIT_ULL(pow) < qcount)) { 1825 pow++; 1826 num_qps >>= 1; 1827 } 1828 1829 vsi->tc_config.tc_info[i].netdev_tc = netdev_tc++; 1830 qmap = 1831 (offset << I40E_AQ_VSI_TC_QUE_OFFSET_SHIFT) | 1832 (pow << I40E_AQ_VSI_TC_QUE_NUMBER_SHIFT); 1833 1834 offset += qcount; 1835 } else { 1836 /* TC is not enabled so set the offset to 1837 * default queue and allocate one queue 1838 * for the given TC. 1839 */ 1840 vsi->tc_config.tc_info[i].qoffset = 0; 1841 vsi->tc_config.tc_info[i].qcount = 1; 1842 vsi->tc_config.tc_info[i].netdev_tc = 0; 1843 1844 qmap = 0; 1845 } 1846 ctxt->info.tc_mapping[i] = cpu_to_le16(qmap); 1847 } 1848 1849 /* Set actual Tx/Rx queue pairs */ 1850 vsi->num_queue_pairs = offset; 1851 if ((vsi->type == I40E_VSI_MAIN) && (numtc == 1)) { 1852 if (vsi->req_queue_pairs > 0) 1853 vsi->num_queue_pairs = vsi->req_queue_pairs; 1854 else if (pf->flags & I40E_FLAG_MSIX_ENABLED) 1855 vsi->num_queue_pairs = pf->num_lan_msix; 1856 } 1857 1858 /* Scheduler section valid can only be set for ADD VSI */ 1859 if (is_add) { 1860 sections |= I40E_AQ_VSI_PROP_SCHED_VALID; 1861 1862 ctxt->info.up_enable_bits = enabled_tc; 1863 } 1864 if (vsi->type == I40E_VSI_SRIOV) { 1865 ctxt->info.mapping_flags |= 1866 cpu_to_le16(I40E_AQ_VSI_QUE_MAP_NONCONTIG); 1867 for (i = 0; i < vsi->num_queue_pairs; i++) 1868 ctxt->info.queue_mapping[i] = 1869 cpu_to_le16(vsi->base_queue + i); 1870 } else { 1871 ctxt->info.mapping_flags |= 1872 cpu_to_le16(I40E_AQ_VSI_QUE_MAP_CONTIG); 1873 ctxt->info.queue_mapping[0] = cpu_to_le16(vsi->base_queue); 1874 } 1875 ctxt->info.valid_sections |= cpu_to_le16(sections); 1876 } 1877 1878 /** 1879 * i40e_addr_sync - Callback for dev_(mc|uc)_sync to add address 1880 * @netdev: the netdevice 1881 * @addr: address to add 1882 * 1883 * Called by __dev_(mc|uc)_sync when an address needs to be added. We call 1884 * __dev_(uc|mc)_sync from .set_rx_mode and guarantee to hold the hash lock. 1885 */ 1886 static int i40e_addr_sync(struct net_device *netdev, const u8 *addr) 1887 { 1888 struct i40e_netdev_priv *np = netdev_priv(netdev); 1889 struct i40e_vsi *vsi = np->vsi; 1890 1891 if (i40e_add_mac_filter(vsi, addr)) 1892 return 0; 1893 else 1894 return -ENOMEM; 1895 } 1896 1897 /** 1898 * i40e_addr_unsync - Callback for dev_(mc|uc)_sync to remove address 1899 * @netdev: the netdevice 1900 * @addr: address to add 1901 * 1902 * Called by __dev_(mc|uc)_sync when an address needs to be removed. We call 1903 * __dev_(uc|mc)_sync from .set_rx_mode and guarantee to hold the hash lock. 1904 */ 1905 static int i40e_addr_unsync(struct net_device *netdev, const u8 *addr) 1906 { 1907 struct i40e_netdev_priv *np = netdev_priv(netdev); 1908 struct i40e_vsi *vsi = np->vsi; 1909 1910 /* Under some circumstances, we might receive a request to delete 1911 * our own device address from our uc list. Because we store the 1912 * device address in the VSI's MAC/VLAN filter list, we need to ignore 1913 * such requests and not delete our device address from this list. 1914 */ 1915 if (ether_addr_equal(addr, netdev->dev_addr)) 1916 return 0; 1917 1918 i40e_del_mac_filter(vsi, addr); 1919 1920 return 0; 1921 } 1922 1923 /** 1924 * i40e_set_rx_mode - NDO callback to set the netdev filters 1925 * @netdev: network interface device structure 1926 **/ 1927 static void i40e_set_rx_mode(struct net_device *netdev) 1928 { 1929 struct i40e_netdev_priv *np = netdev_priv(netdev); 1930 struct i40e_vsi *vsi = np->vsi; 1931 1932 spin_lock_bh(&vsi->mac_filter_hash_lock); 1933 1934 __dev_uc_sync(netdev, i40e_addr_sync, i40e_addr_unsync); 1935 __dev_mc_sync(netdev, i40e_addr_sync, i40e_addr_unsync); 1936 1937 spin_unlock_bh(&vsi->mac_filter_hash_lock); 1938 1939 /* check for other flag changes */ 1940 if (vsi->current_netdev_flags != vsi->netdev->flags) { 1941 vsi->flags |= I40E_VSI_FLAG_FILTER_CHANGED; 1942 set_bit(__I40E_MACVLAN_SYNC_PENDING, vsi->back->state); 1943 } 1944 } 1945 1946 /** 1947 * i40e_undo_del_filter_entries - Undo the changes made to MAC filter entries 1948 * @vsi: Pointer to VSI struct 1949 * @from: Pointer to list which contains MAC filter entries - changes to 1950 * those entries needs to be undone. 1951 * 1952 * MAC filter entries from this list were slated for deletion. 1953 **/ 1954 static void i40e_undo_del_filter_entries(struct i40e_vsi *vsi, 1955 struct hlist_head *from) 1956 { 1957 struct i40e_mac_filter *f; 1958 struct hlist_node *h; 1959 1960 hlist_for_each_entry_safe(f, h, from, hlist) { 1961 u64 key = i40e_addr_to_hkey(f->macaddr); 1962 1963 /* Move the element back into MAC filter list*/ 1964 hlist_del(&f->hlist); 1965 hash_add(vsi->mac_filter_hash, &f->hlist, key); 1966 } 1967 } 1968 1969 /** 1970 * i40e_undo_add_filter_entries - Undo the changes made to MAC filter entries 1971 * @vsi: Pointer to vsi struct 1972 * @from: Pointer to list which contains MAC filter entries - changes to 1973 * those entries needs to be undone. 1974 * 1975 * MAC filter entries from this list were slated for addition. 1976 **/ 1977 static void i40e_undo_add_filter_entries(struct i40e_vsi *vsi, 1978 struct hlist_head *from) 1979 { 1980 struct i40e_new_mac_filter *new; 1981 struct hlist_node *h; 1982 1983 hlist_for_each_entry_safe(new, h, from, hlist) { 1984 /* We can simply free the wrapper structure */ 1985 hlist_del(&new->hlist); 1986 kfree(new); 1987 } 1988 } 1989 1990 /** 1991 * i40e_next_entry - Get the next non-broadcast filter from a list 1992 * @next: pointer to filter in list 1993 * 1994 * Returns the next non-broadcast filter in the list. Required so that we 1995 * ignore broadcast filters within the list, since these are not handled via 1996 * the normal firmware update path. 1997 */ 1998 static 1999 struct i40e_new_mac_filter *i40e_next_filter(struct i40e_new_mac_filter *next) 2000 { 2001 hlist_for_each_entry_continue(next, hlist) { 2002 if (!is_broadcast_ether_addr(next->f->macaddr)) 2003 return next; 2004 } 2005 2006 return NULL; 2007 } 2008 2009 /** 2010 * i40e_update_filter_state - Update filter state based on return data 2011 * from firmware 2012 * @count: Number of filters added 2013 * @add_list: return data from fw 2014 * @add_head: pointer to first filter in current batch 2015 * 2016 * MAC filter entries from list were slated to be added to device. Returns 2017 * number of successful filters. Note that 0 does NOT mean success! 2018 **/ 2019 static int 2020 i40e_update_filter_state(int count, 2021 struct i40e_aqc_add_macvlan_element_data *add_list, 2022 struct i40e_new_mac_filter *add_head) 2023 { 2024 int retval = 0; 2025 int i; 2026 2027 for (i = 0; i < count; i++) { 2028 /* Always check status of each filter. We don't need to check 2029 * the firmware return status because we pre-set the filter 2030 * status to I40E_AQC_MM_ERR_NO_RES when sending the filter 2031 * request to the adminq. Thus, if it no longer matches then 2032 * we know the filter is active. 2033 */ 2034 if (add_list[i].match_method == I40E_AQC_MM_ERR_NO_RES) { 2035 add_head->state = I40E_FILTER_FAILED; 2036 } else { 2037 add_head->state = I40E_FILTER_ACTIVE; 2038 retval++; 2039 } 2040 2041 add_head = i40e_next_filter(add_head); 2042 if (!add_head) 2043 break; 2044 } 2045 2046 return retval; 2047 } 2048 2049 /** 2050 * i40e_aqc_del_filters - Request firmware to delete a set of filters 2051 * @vsi: ptr to the VSI 2052 * @vsi_name: name to display in messages 2053 * @list: the list of filters to send to firmware 2054 * @num_del: the number of filters to delete 2055 * @retval: Set to -EIO on failure to delete 2056 * 2057 * Send a request to firmware via AdminQ to delete a set of filters. Uses 2058 * *retval instead of a return value so that success does not force ret_val to 2059 * be set to 0. This ensures that a sequence of calls to this function 2060 * preserve the previous value of *retval on successful delete. 2061 */ 2062 static 2063 void i40e_aqc_del_filters(struct i40e_vsi *vsi, const char *vsi_name, 2064 struct i40e_aqc_remove_macvlan_element_data *list, 2065 int num_del, int *retval) 2066 { 2067 struct i40e_hw *hw = &vsi->back->hw; 2068 i40e_status aq_ret; 2069 int aq_err; 2070 2071 aq_ret = i40e_aq_remove_macvlan(hw, vsi->seid, list, num_del, NULL); 2072 aq_err = hw->aq.asq_last_status; 2073 2074 /* Explicitly ignore and do not report when firmware returns ENOENT */ 2075 if (aq_ret && !(aq_err == I40E_AQ_RC_ENOENT)) { 2076 *retval = -EIO; 2077 dev_info(&vsi->back->pdev->dev, 2078 "ignoring delete macvlan error on %s, err %s, aq_err %s\n", 2079 vsi_name, i40e_stat_str(hw, aq_ret), 2080 i40e_aq_str(hw, aq_err)); 2081 } 2082 } 2083 2084 /** 2085 * i40e_aqc_add_filters - Request firmware to add a set of filters 2086 * @vsi: ptr to the VSI 2087 * @vsi_name: name to display in messages 2088 * @list: the list of filters to send to firmware 2089 * @add_head: Position in the add hlist 2090 * @num_add: the number of filters to add 2091 * 2092 * Send a request to firmware via AdminQ to add a chunk of filters. Will set 2093 * __I40E_VSI_OVERFLOW_PROMISC bit in vsi->state if the firmware has run out of 2094 * space for more filters. 2095 */ 2096 static 2097 void i40e_aqc_add_filters(struct i40e_vsi *vsi, const char *vsi_name, 2098 struct i40e_aqc_add_macvlan_element_data *list, 2099 struct i40e_new_mac_filter *add_head, 2100 int num_add) 2101 { 2102 struct i40e_hw *hw = &vsi->back->hw; 2103 int aq_err, fcnt; 2104 2105 i40e_aq_add_macvlan(hw, vsi->seid, list, num_add, NULL); 2106 aq_err = hw->aq.asq_last_status; 2107 fcnt = i40e_update_filter_state(num_add, list, add_head); 2108 2109 if (fcnt != num_add) { 2110 if (vsi->type == I40E_VSI_MAIN) { 2111 set_bit(__I40E_VSI_OVERFLOW_PROMISC, vsi->state); 2112 dev_warn(&vsi->back->pdev->dev, 2113 "Error %s adding RX filters on %s, promiscuous mode forced on\n", 2114 i40e_aq_str(hw, aq_err), vsi_name); 2115 } else if (vsi->type == I40E_VSI_SRIOV || 2116 vsi->type == I40E_VSI_VMDQ1 || 2117 vsi->type == I40E_VSI_VMDQ2) { 2118 dev_warn(&vsi->back->pdev->dev, 2119 "Error %s adding RX filters on %s, please set promiscuous on manually for %s\n", 2120 i40e_aq_str(hw, aq_err), vsi_name, vsi_name); 2121 } else { 2122 dev_warn(&vsi->back->pdev->dev, 2123 "Error %s adding RX filters on %s, incorrect VSI type: %i.\n", 2124 i40e_aq_str(hw, aq_err), vsi_name, vsi->type); 2125 } 2126 } 2127 } 2128 2129 /** 2130 * i40e_aqc_broadcast_filter - Set promiscuous broadcast flags 2131 * @vsi: pointer to the VSI 2132 * @vsi_name: the VSI name 2133 * @f: filter data 2134 * 2135 * This function sets or clears the promiscuous broadcast flags for VLAN 2136 * filters in order to properly receive broadcast frames. Assumes that only 2137 * broadcast filters are passed. 2138 * 2139 * Returns status indicating success or failure; 2140 **/ 2141 static i40e_status 2142 i40e_aqc_broadcast_filter(struct i40e_vsi *vsi, const char *vsi_name, 2143 struct i40e_mac_filter *f) 2144 { 2145 bool enable = f->state == I40E_FILTER_NEW; 2146 struct i40e_hw *hw = &vsi->back->hw; 2147 i40e_status aq_ret; 2148 2149 if (f->vlan == I40E_VLAN_ANY) { 2150 aq_ret = i40e_aq_set_vsi_broadcast(hw, 2151 vsi->seid, 2152 enable, 2153 NULL); 2154 } else { 2155 aq_ret = i40e_aq_set_vsi_bc_promisc_on_vlan(hw, 2156 vsi->seid, 2157 enable, 2158 f->vlan, 2159 NULL); 2160 } 2161 2162 if (aq_ret) { 2163 set_bit(__I40E_VSI_OVERFLOW_PROMISC, vsi->state); 2164 dev_warn(&vsi->back->pdev->dev, 2165 "Error %s, forcing overflow promiscuous on %s\n", 2166 i40e_aq_str(hw, hw->aq.asq_last_status), 2167 vsi_name); 2168 } 2169 2170 return aq_ret; 2171 } 2172 2173 /** 2174 * i40e_set_promiscuous - set promiscuous mode 2175 * @pf: board private structure 2176 * @promisc: promisc on or off 2177 * 2178 * There are different ways of setting promiscuous mode on a PF depending on 2179 * what state/environment we're in. This identifies and sets it appropriately. 2180 * Returns 0 on success. 2181 **/ 2182 static int i40e_set_promiscuous(struct i40e_pf *pf, bool promisc) 2183 { 2184 struct i40e_vsi *vsi = pf->vsi[pf->lan_vsi]; 2185 struct i40e_hw *hw = &pf->hw; 2186 i40e_status aq_ret; 2187 2188 if (vsi->type == I40E_VSI_MAIN && 2189 pf->lan_veb != I40E_NO_VEB && 2190 !(pf->flags & I40E_FLAG_MFP_ENABLED)) { 2191 /* set defport ON for Main VSI instead of true promisc 2192 * this way we will get all unicast/multicast and VLAN 2193 * promisc behavior but will not get VF or VMDq traffic 2194 * replicated on the Main VSI. 2195 */ 2196 if (promisc) 2197 aq_ret = i40e_aq_set_default_vsi(hw, 2198 vsi->seid, 2199 NULL); 2200 else 2201 aq_ret = i40e_aq_clear_default_vsi(hw, 2202 vsi->seid, 2203 NULL); 2204 if (aq_ret) { 2205 dev_info(&pf->pdev->dev, 2206 "Set default VSI failed, err %s, aq_err %s\n", 2207 i40e_stat_str(hw, aq_ret), 2208 i40e_aq_str(hw, hw->aq.asq_last_status)); 2209 } 2210 } else { 2211 aq_ret = i40e_aq_set_vsi_unicast_promiscuous( 2212 hw, 2213 vsi->seid, 2214 promisc, NULL, 2215 true); 2216 if (aq_ret) { 2217 dev_info(&pf->pdev->dev, 2218 "set unicast promisc failed, err %s, aq_err %s\n", 2219 i40e_stat_str(hw, aq_ret), 2220 i40e_aq_str(hw, hw->aq.asq_last_status)); 2221 } 2222 aq_ret = i40e_aq_set_vsi_multicast_promiscuous( 2223 hw, 2224 vsi->seid, 2225 promisc, NULL); 2226 if (aq_ret) { 2227 dev_info(&pf->pdev->dev, 2228 "set multicast promisc failed, err %s, aq_err %s\n", 2229 i40e_stat_str(hw, aq_ret), 2230 i40e_aq_str(hw, hw->aq.asq_last_status)); 2231 } 2232 } 2233 2234 if (!aq_ret) 2235 pf->cur_promisc = promisc; 2236 2237 return aq_ret; 2238 } 2239 2240 /** 2241 * i40e_sync_vsi_filters - Update the VSI filter list to the HW 2242 * @vsi: ptr to the VSI 2243 * 2244 * Push any outstanding VSI filter changes through the AdminQ. 2245 * 2246 * Returns 0 or error value 2247 **/ 2248 int i40e_sync_vsi_filters(struct i40e_vsi *vsi) 2249 { 2250 struct hlist_head tmp_add_list, tmp_del_list; 2251 struct i40e_mac_filter *f; 2252 struct i40e_new_mac_filter *new, *add_head = NULL; 2253 struct i40e_hw *hw = &vsi->back->hw; 2254 bool old_overflow, new_overflow; 2255 unsigned int failed_filters = 0; 2256 unsigned int vlan_filters = 0; 2257 char vsi_name[16] = "PF"; 2258 int filter_list_len = 0; 2259 i40e_status aq_ret = 0; 2260 u32 changed_flags = 0; 2261 struct hlist_node *h; 2262 struct i40e_pf *pf; 2263 int num_add = 0; 2264 int num_del = 0; 2265 int retval = 0; 2266 u16 cmd_flags; 2267 int list_size; 2268 int bkt; 2269 2270 /* empty array typed pointers, kcalloc later */ 2271 struct i40e_aqc_add_macvlan_element_data *add_list; 2272 struct i40e_aqc_remove_macvlan_element_data *del_list; 2273 2274 while (test_and_set_bit(__I40E_VSI_SYNCING_FILTERS, vsi->state)) 2275 usleep_range(1000, 2000); 2276 pf = vsi->back; 2277 2278 old_overflow = test_bit(__I40E_VSI_OVERFLOW_PROMISC, vsi->state); 2279 2280 if (vsi->netdev) { 2281 changed_flags = vsi->current_netdev_flags ^ vsi->netdev->flags; 2282 vsi->current_netdev_flags = vsi->netdev->flags; 2283 } 2284 2285 INIT_HLIST_HEAD(&tmp_add_list); 2286 INIT_HLIST_HEAD(&tmp_del_list); 2287 2288 if (vsi->type == I40E_VSI_SRIOV) 2289 snprintf(vsi_name, sizeof(vsi_name) - 1, "VF %d", vsi->vf_id); 2290 else if (vsi->type != I40E_VSI_MAIN) 2291 snprintf(vsi_name, sizeof(vsi_name) - 1, "vsi %d", vsi->seid); 2292 2293 if (vsi->flags & I40E_VSI_FLAG_FILTER_CHANGED) { 2294 vsi->flags &= ~I40E_VSI_FLAG_FILTER_CHANGED; 2295 2296 spin_lock_bh(&vsi->mac_filter_hash_lock); 2297 /* Create a list of filters to delete. */ 2298 hash_for_each_safe(vsi->mac_filter_hash, bkt, h, f, hlist) { 2299 if (f->state == I40E_FILTER_REMOVE) { 2300 /* Move the element into temporary del_list */ 2301 hash_del(&f->hlist); 2302 hlist_add_head(&f->hlist, &tmp_del_list); 2303 2304 /* Avoid counting removed filters */ 2305 continue; 2306 } 2307 if (f->state == I40E_FILTER_NEW) { 2308 /* Create a temporary i40e_new_mac_filter */ 2309 new = kzalloc(sizeof(*new), GFP_ATOMIC); 2310 if (!new) 2311 goto err_no_memory_locked; 2312 2313 /* Store pointer to the real filter */ 2314 new->f = f; 2315 new->state = f->state; 2316 2317 /* Add it to the hash list */ 2318 hlist_add_head(&new->hlist, &tmp_add_list); 2319 } 2320 2321 /* Count the number of active (current and new) VLAN 2322 * filters we have now. Does not count filters which 2323 * are marked for deletion. 2324 */ 2325 if (f->vlan > 0) 2326 vlan_filters++; 2327 } 2328 2329 retval = i40e_correct_mac_vlan_filters(vsi, 2330 &tmp_add_list, 2331 &tmp_del_list, 2332 vlan_filters); 2333 if (retval) 2334 goto err_no_memory_locked; 2335 2336 spin_unlock_bh(&vsi->mac_filter_hash_lock); 2337 } 2338 2339 /* Now process 'del_list' outside the lock */ 2340 if (!hlist_empty(&tmp_del_list)) { 2341 filter_list_len = hw->aq.asq_buf_size / 2342 sizeof(struct i40e_aqc_remove_macvlan_element_data); 2343 list_size = filter_list_len * 2344 sizeof(struct i40e_aqc_remove_macvlan_element_data); 2345 del_list = kzalloc(list_size, GFP_ATOMIC); 2346 if (!del_list) 2347 goto err_no_memory; 2348 2349 hlist_for_each_entry_safe(f, h, &tmp_del_list, hlist) { 2350 cmd_flags = 0; 2351 2352 /* handle broadcast filters by updating the broadcast 2353 * promiscuous flag and release filter list. 2354 */ 2355 if (is_broadcast_ether_addr(f->macaddr)) { 2356 i40e_aqc_broadcast_filter(vsi, vsi_name, f); 2357 2358 hlist_del(&f->hlist); 2359 kfree(f); 2360 continue; 2361 } 2362 2363 /* add to delete list */ 2364 ether_addr_copy(del_list[num_del].mac_addr, f->macaddr); 2365 if (f->vlan == I40E_VLAN_ANY) { 2366 del_list[num_del].vlan_tag = 0; 2367 cmd_flags |= I40E_AQC_MACVLAN_DEL_IGNORE_VLAN; 2368 } else { 2369 del_list[num_del].vlan_tag = 2370 cpu_to_le16((u16)(f->vlan)); 2371 } 2372 2373 cmd_flags |= I40E_AQC_MACVLAN_DEL_PERFECT_MATCH; 2374 del_list[num_del].flags = cmd_flags; 2375 num_del++; 2376 2377 /* flush a full buffer */ 2378 if (num_del == filter_list_len) { 2379 i40e_aqc_del_filters(vsi, vsi_name, del_list, 2380 num_del, &retval); 2381 memset(del_list, 0, list_size); 2382 num_del = 0; 2383 } 2384 /* Release memory for MAC filter entries which were 2385 * synced up with HW. 2386 */ 2387 hlist_del(&f->hlist); 2388 kfree(f); 2389 } 2390 2391 if (num_del) { 2392 i40e_aqc_del_filters(vsi, vsi_name, del_list, 2393 num_del, &retval); 2394 } 2395 2396 kfree(del_list); 2397 del_list = NULL; 2398 } 2399 2400 if (!hlist_empty(&tmp_add_list)) { 2401 /* Do all the adds now. */ 2402 filter_list_len = hw->aq.asq_buf_size / 2403 sizeof(struct i40e_aqc_add_macvlan_element_data); 2404 list_size = filter_list_len * 2405 sizeof(struct i40e_aqc_add_macvlan_element_data); 2406 add_list = kzalloc(list_size, GFP_ATOMIC); 2407 if (!add_list) 2408 goto err_no_memory; 2409 2410 num_add = 0; 2411 hlist_for_each_entry_safe(new, h, &tmp_add_list, hlist) { 2412 /* handle broadcast filters by updating the broadcast 2413 * promiscuous flag instead of adding a MAC filter. 2414 */ 2415 if (is_broadcast_ether_addr(new->f->macaddr)) { 2416 if (i40e_aqc_broadcast_filter(vsi, vsi_name, 2417 new->f)) 2418 new->state = I40E_FILTER_FAILED; 2419 else 2420 new->state = I40E_FILTER_ACTIVE; 2421 continue; 2422 } 2423 2424 /* add to add array */ 2425 if (num_add == 0) 2426 add_head = new; 2427 cmd_flags = 0; 2428 ether_addr_copy(add_list[num_add].mac_addr, 2429 new->f->macaddr); 2430 if (new->f->vlan == I40E_VLAN_ANY) { 2431 add_list[num_add].vlan_tag = 0; 2432 cmd_flags |= I40E_AQC_MACVLAN_ADD_IGNORE_VLAN; 2433 } else { 2434 add_list[num_add].vlan_tag = 2435 cpu_to_le16((u16)(new->f->vlan)); 2436 } 2437 add_list[num_add].queue_number = 0; 2438 /* set invalid match method for later detection */ 2439 add_list[num_add].match_method = I40E_AQC_MM_ERR_NO_RES; 2440 cmd_flags |= I40E_AQC_MACVLAN_ADD_PERFECT_MATCH; 2441 add_list[num_add].flags = cpu_to_le16(cmd_flags); 2442 num_add++; 2443 2444 /* flush a full buffer */ 2445 if (num_add == filter_list_len) { 2446 i40e_aqc_add_filters(vsi, vsi_name, add_list, 2447 add_head, num_add); 2448 memset(add_list, 0, list_size); 2449 num_add = 0; 2450 } 2451 } 2452 if (num_add) { 2453 i40e_aqc_add_filters(vsi, vsi_name, add_list, add_head, 2454 num_add); 2455 } 2456 /* Now move all of the filters from the temp add list back to 2457 * the VSI's list. 2458 */ 2459 spin_lock_bh(&vsi->mac_filter_hash_lock); 2460 hlist_for_each_entry_safe(new, h, &tmp_add_list, hlist) { 2461 /* Only update the state if we're still NEW */ 2462 if (new->f->state == I40E_FILTER_NEW) 2463 new->f->state = new->state; 2464 hlist_del(&new->hlist); 2465 kfree(new); 2466 } 2467 spin_unlock_bh(&vsi->mac_filter_hash_lock); 2468 kfree(add_list); 2469 add_list = NULL; 2470 } 2471 2472 /* Determine the number of active and failed filters. */ 2473 spin_lock_bh(&vsi->mac_filter_hash_lock); 2474 vsi->active_filters = 0; 2475 hash_for_each(vsi->mac_filter_hash, bkt, f, hlist) { 2476 if (f->state == I40E_FILTER_ACTIVE) 2477 vsi->active_filters++; 2478 else if (f->state == I40E_FILTER_FAILED) 2479 failed_filters++; 2480 } 2481 spin_unlock_bh(&vsi->mac_filter_hash_lock); 2482 2483 /* Check if we are able to exit overflow promiscuous mode. We can 2484 * safely exit if we didn't just enter, we no longer have any failed 2485 * filters, and we have reduced filters below the threshold value. 2486 */ 2487 if (old_overflow && !failed_filters && 2488 vsi->active_filters < vsi->promisc_threshold) { 2489 dev_info(&pf->pdev->dev, 2490 "filter logjam cleared on %s, leaving overflow promiscuous mode\n", 2491 vsi_name); 2492 clear_bit(__I40E_VSI_OVERFLOW_PROMISC, vsi->state); 2493 vsi->promisc_threshold = 0; 2494 } 2495 2496 /* if the VF is not trusted do not do promisc */ 2497 if ((vsi->type == I40E_VSI_SRIOV) && !pf->vf[vsi->vf_id].trusted) { 2498 clear_bit(__I40E_VSI_OVERFLOW_PROMISC, vsi->state); 2499 goto out; 2500 } 2501 2502 new_overflow = test_bit(__I40E_VSI_OVERFLOW_PROMISC, vsi->state); 2503 2504 /* If we are entering overflow promiscuous, we need to calculate a new 2505 * threshold for when we are safe to exit 2506 */ 2507 if (!old_overflow && new_overflow) 2508 vsi->promisc_threshold = (vsi->active_filters * 3) / 4; 2509 2510 /* check for changes in promiscuous modes */ 2511 if (changed_flags & IFF_ALLMULTI) { 2512 bool cur_multipromisc; 2513 2514 cur_multipromisc = !!(vsi->current_netdev_flags & IFF_ALLMULTI); 2515 aq_ret = i40e_aq_set_vsi_multicast_promiscuous(&vsi->back->hw, 2516 vsi->seid, 2517 cur_multipromisc, 2518 NULL); 2519 if (aq_ret) { 2520 retval = i40e_aq_rc_to_posix(aq_ret, 2521 hw->aq.asq_last_status); 2522 dev_info(&pf->pdev->dev, 2523 "set multi promisc failed on %s, err %s aq_err %s\n", 2524 vsi_name, 2525 i40e_stat_str(hw, aq_ret), 2526 i40e_aq_str(hw, hw->aq.asq_last_status)); 2527 } 2528 } 2529 2530 if ((changed_flags & IFF_PROMISC) || old_overflow != new_overflow) { 2531 bool cur_promisc; 2532 2533 cur_promisc = (!!(vsi->current_netdev_flags & IFF_PROMISC) || 2534 new_overflow); 2535 aq_ret = i40e_set_promiscuous(pf, cur_promisc); 2536 if (aq_ret) { 2537 retval = i40e_aq_rc_to_posix(aq_ret, 2538 hw->aq.asq_last_status); 2539 dev_info(&pf->pdev->dev, 2540 "Setting promiscuous %s failed on %s, err %s aq_err %s\n", 2541 cur_promisc ? "on" : "off", 2542 vsi_name, 2543 i40e_stat_str(hw, aq_ret), 2544 i40e_aq_str(hw, hw->aq.asq_last_status)); 2545 } 2546 } 2547 out: 2548 /* if something went wrong then set the changed flag so we try again */ 2549 if (retval) 2550 vsi->flags |= I40E_VSI_FLAG_FILTER_CHANGED; 2551 2552 clear_bit(__I40E_VSI_SYNCING_FILTERS, vsi->state); 2553 return retval; 2554 2555 err_no_memory: 2556 /* Restore elements on the temporary add and delete lists */ 2557 spin_lock_bh(&vsi->mac_filter_hash_lock); 2558 err_no_memory_locked: 2559 i40e_undo_del_filter_entries(vsi, &tmp_del_list); 2560 i40e_undo_add_filter_entries(vsi, &tmp_add_list); 2561 spin_unlock_bh(&vsi->mac_filter_hash_lock); 2562 2563 vsi->flags |= I40E_VSI_FLAG_FILTER_CHANGED; 2564 clear_bit(__I40E_VSI_SYNCING_FILTERS, vsi->state); 2565 return -ENOMEM; 2566 } 2567 2568 /** 2569 * i40e_sync_filters_subtask - Sync the VSI filter list with HW 2570 * @pf: board private structure 2571 **/ 2572 static void i40e_sync_filters_subtask(struct i40e_pf *pf) 2573 { 2574 int v; 2575 2576 if (!pf) 2577 return; 2578 if (!test_and_clear_bit(__I40E_MACVLAN_SYNC_PENDING, pf->state)) 2579 return; 2580 2581 for (v = 0; v < pf->num_alloc_vsi; v++) { 2582 if (pf->vsi[v] && 2583 (pf->vsi[v]->flags & I40E_VSI_FLAG_FILTER_CHANGED)) { 2584 int ret = i40e_sync_vsi_filters(pf->vsi[v]); 2585 2586 if (ret) { 2587 /* come back and try again later */ 2588 set_bit(__I40E_MACVLAN_SYNC_PENDING, 2589 pf->state); 2590 break; 2591 } 2592 } 2593 } 2594 } 2595 2596 /** 2597 * i40e_max_xdp_frame_size - returns the maximum allowed frame size for XDP 2598 * @vsi: the vsi 2599 **/ 2600 static int i40e_max_xdp_frame_size(struct i40e_vsi *vsi) 2601 { 2602 if (PAGE_SIZE >= 8192 || (vsi->back->flags & I40E_FLAG_LEGACY_RX)) 2603 return I40E_RXBUFFER_2048; 2604 else 2605 return I40E_RXBUFFER_3072; 2606 } 2607 2608 /** 2609 * i40e_change_mtu - NDO callback to change the Maximum Transfer Unit 2610 * @netdev: network interface device structure 2611 * @new_mtu: new value for maximum frame size 2612 * 2613 * Returns 0 on success, negative on failure 2614 **/ 2615 static int i40e_change_mtu(struct net_device *netdev, int new_mtu) 2616 { 2617 struct i40e_netdev_priv *np = netdev_priv(netdev); 2618 struct i40e_vsi *vsi = np->vsi; 2619 struct i40e_pf *pf = vsi->back; 2620 2621 if (i40e_enabled_xdp_vsi(vsi)) { 2622 int frame_size = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN; 2623 2624 if (frame_size > i40e_max_xdp_frame_size(vsi)) 2625 return -EINVAL; 2626 } 2627 2628 netdev_info(netdev, "changing MTU from %d to %d\n", 2629 netdev->mtu, new_mtu); 2630 netdev->mtu = new_mtu; 2631 if (netif_running(netdev)) 2632 i40e_vsi_reinit_locked(vsi); 2633 set_bit(__I40E_CLIENT_SERVICE_REQUESTED, pf->state); 2634 set_bit(__I40E_CLIENT_L2_CHANGE, pf->state); 2635 return 0; 2636 } 2637 2638 /** 2639 * i40e_ioctl - Access the hwtstamp interface 2640 * @netdev: network interface device structure 2641 * @ifr: interface request data 2642 * @cmd: ioctl command 2643 **/ 2644 int i40e_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) 2645 { 2646 struct i40e_netdev_priv *np = netdev_priv(netdev); 2647 struct i40e_pf *pf = np->vsi->back; 2648 2649 switch (cmd) { 2650 case SIOCGHWTSTAMP: 2651 return i40e_ptp_get_ts_config(pf, ifr); 2652 case SIOCSHWTSTAMP: 2653 return i40e_ptp_set_ts_config(pf, ifr); 2654 default: 2655 return -EOPNOTSUPP; 2656 } 2657 } 2658 2659 /** 2660 * i40e_vlan_stripping_enable - Turn on vlan stripping for the VSI 2661 * @vsi: the vsi being adjusted 2662 **/ 2663 void i40e_vlan_stripping_enable(struct i40e_vsi *vsi) 2664 { 2665 struct i40e_vsi_context ctxt; 2666 i40e_status ret; 2667 2668 /* Don't modify stripping options if a port VLAN is active */ 2669 if (vsi->info.pvid) 2670 return; 2671 2672 if ((vsi->info.valid_sections & 2673 cpu_to_le16(I40E_AQ_VSI_PROP_VLAN_VALID)) && 2674 ((vsi->info.port_vlan_flags & I40E_AQ_VSI_PVLAN_MODE_MASK) == 0)) 2675 return; /* already enabled */ 2676 2677 vsi->info.valid_sections = cpu_to_le16(I40E_AQ_VSI_PROP_VLAN_VALID); 2678 vsi->info.port_vlan_flags = I40E_AQ_VSI_PVLAN_MODE_ALL | 2679 I40E_AQ_VSI_PVLAN_EMOD_STR_BOTH; 2680 2681 ctxt.seid = vsi->seid; 2682 ctxt.info = vsi->info; 2683 ret = i40e_aq_update_vsi_params(&vsi->back->hw, &ctxt, NULL); 2684 if (ret) { 2685 dev_info(&vsi->back->pdev->dev, 2686 "update vlan stripping failed, err %s aq_err %s\n", 2687 i40e_stat_str(&vsi->back->hw, ret), 2688 i40e_aq_str(&vsi->back->hw, 2689 vsi->back->hw.aq.asq_last_status)); 2690 } 2691 } 2692 2693 /** 2694 * i40e_vlan_stripping_disable - Turn off vlan stripping for the VSI 2695 * @vsi: the vsi being adjusted 2696 **/ 2697 void i40e_vlan_stripping_disable(struct i40e_vsi *vsi) 2698 { 2699 struct i40e_vsi_context ctxt; 2700 i40e_status ret; 2701 2702 /* Don't modify stripping options if a port VLAN is active */ 2703 if (vsi->info.pvid) 2704 return; 2705 2706 if ((vsi->info.valid_sections & 2707 cpu_to_le16(I40E_AQ_VSI_PROP_VLAN_VALID)) && 2708 ((vsi->info.port_vlan_flags & I40E_AQ_VSI_PVLAN_EMOD_MASK) == 2709 I40E_AQ_VSI_PVLAN_EMOD_MASK)) 2710 return; /* already disabled */ 2711 2712 vsi->info.valid_sections = cpu_to_le16(I40E_AQ_VSI_PROP_VLAN_VALID); 2713 vsi->info.port_vlan_flags = I40E_AQ_VSI_PVLAN_MODE_ALL | 2714 I40E_AQ_VSI_PVLAN_EMOD_NOTHING; 2715 2716 ctxt.seid = vsi->seid; 2717 ctxt.info = vsi->info; 2718 ret = i40e_aq_update_vsi_params(&vsi->back->hw, &ctxt, NULL); 2719 if (ret) { 2720 dev_info(&vsi->back->pdev->dev, 2721 "update vlan stripping failed, err %s aq_err %s\n", 2722 i40e_stat_str(&vsi->back->hw, ret), 2723 i40e_aq_str(&vsi->back->hw, 2724 vsi->back->hw.aq.asq_last_status)); 2725 } 2726 } 2727 2728 /** 2729 * i40e_add_vlan_all_mac - Add a MAC/VLAN filter for each existing MAC address 2730 * @vsi: the vsi being configured 2731 * @vid: vlan id to be added (0 = untagged only , -1 = any) 2732 * 2733 * This is a helper function for adding a new MAC/VLAN filter with the 2734 * specified VLAN for each existing MAC address already in the hash table. 2735 * This function does *not* perform any accounting to update filters based on 2736 * VLAN mode. 2737 * 2738 * NOTE: this function expects to be called while under the 2739 * mac_filter_hash_lock 2740 **/ 2741 int i40e_add_vlan_all_mac(struct i40e_vsi *vsi, s16 vid) 2742 { 2743 struct i40e_mac_filter *f, *add_f; 2744 struct hlist_node *h; 2745 int bkt; 2746 2747 hash_for_each_safe(vsi->mac_filter_hash, bkt, h, f, hlist) { 2748 if (f->state == I40E_FILTER_REMOVE) 2749 continue; 2750 add_f = i40e_add_filter(vsi, f->macaddr, vid); 2751 if (!add_f) { 2752 dev_info(&vsi->back->pdev->dev, 2753 "Could not add vlan filter %d for %pM\n", 2754 vid, f->macaddr); 2755 return -ENOMEM; 2756 } 2757 } 2758 2759 return 0; 2760 } 2761 2762 /** 2763 * i40e_vsi_add_vlan - Add VSI membership for given VLAN 2764 * @vsi: the VSI being configured 2765 * @vid: VLAN id to be added 2766 **/ 2767 int i40e_vsi_add_vlan(struct i40e_vsi *vsi, u16 vid) 2768 { 2769 int err; 2770 2771 if (vsi->info.pvid) 2772 return -EINVAL; 2773 2774 /* The network stack will attempt to add VID=0, with the intention to 2775 * receive priority tagged packets with a VLAN of 0. Our HW receives 2776 * these packets by default when configured to receive untagged 2777 * packets, so we don't need to add a filter for this case. 2778 * Additionally, HW interprets adding a VID=0 filter as meaning to 2779 * receive *only* tagged traffic and stops receiving untagged traffic. 2780 * Thus, we do not want to actually add a filter for VID=0 2781 */ 2782 if (!vid) 2783 return 0; 2784 2785 /* Locked once because all functions invoked below iterates list*/ 2786 spin_lock_bh(&vsi->mac_filter_hash_lock); 2787 err = i40e_add_vlan_all_mac(vsi, vid); 2788 spin_unlock_bh(&vsi->mac_filter_hash_lock); 2789 if (err) 2790 return err; 2791 2792 /* schedule our worker thread which will take care of 2793 * applying the new filter changes 2794 */ 2795 i40e_service_event_schedule(vsi->back); 2796 return 0; 2797 } 2798 2799 /** 2800 * i40e_rm_vlan_all_mac - Remove MAC/VLAN pair for all MAC with the given VLAN 2801 * @vsi: the vsi being configured 2802 * @vid: vlan id to be removed (0 = untagged only , -1 = any) 2803 * 2804 * This function should be used to remove all VLAN filters which match the 2805 * given VID. It does not schedule the service event and does not take the 2806 * mac_filter_hash_lock so it may be combined with other operations under 2807 * a single invocation of the mac_filter_hash_lock. 2808 * 2809 * NOTE: this function expects to be called while under the 2810 * mac_filter_hash_lock 2811 */ 2812 void i40e_rm_vlan_all_mac(struct i40e_vsi *vsi, s16 vid) 2813 { 2814 struct i40e_mac_filter *f; 2815 struct hlist_node *h; 2816 int bkt; 2817 2818 hash_for_each_safe(vsi->mac_filter_hash, bkt, h, f, hlist) { 2819 if (f->vlan == vid) 2820 __i40e_del_filter(vsi, f); 2821 } 2822 } 2823 2824 /** 2825 * i40e_vsi_kill_vlan - Remove VSI membership for given VLAN 2826 * @vsi: the VSI being configured 2827 * @vid: VLAN id to be removed 2828 **/ 2829 void i40e_vsi_kill_vlan(struct i40e_vsi *vsi, u16 vid) 2830 { 2831 if (!vid || vsi->info.pvid) 2832 return; 2833 2834 spin_lock_bh(&vsi->mac_filter_hash_lock); 2835 i40e_rm_vlan_all_mac(vsi, vid); 2836 spin_unlock_bh(&vsi->mac_filter_hash_lock); 2837 2838 /* schedule our worker thread which will take care of 2839 * applying the new filter changes 2840 */ 2841 i40e_service_event_schedule(vsi->back); 2842 } 2843 2844 /** 2845 * i40e_vlan_rx_add_vid - Add a vlan id filter to HW offload 2846 * @netdev: network interface to be adjusted 2847 * @proto: unused protocol value 2848 * @vid: vlan id to be added 2849 * 2850 * net_device_ops implementation for adding vlan ids 2851 **/ 2852 static int i40e_vlan_rx_add_vid(struct net_device *netdev, 2853 __always_unused __be16 proto, u16 vid) 2854 { 2855 struct i40e_netdev_priv *np = netdev_priv(netdev); 2856 struct i40e_vsi *vsi = np->vsi; 2857 int ret = 0; 2858 2859 if (vid >= VLAN_N_VID) 2860 return -EINVAL; 2861 2862 ret = i40e_vsi_add_vlan(vsi, vid); 2863 if (!ret) 2864 set_bit(vid, vsi->active_vlans); 2865 2866 return ret; 2867 } 2868 2869 /** 2870 * i40e_vlan_rx_add_vid_up - Add a vlan id filter to HW offload in UP path 2871 * @netdev: network interface to be adjusted 2872 * @proto: unused protocol value 2873 * @vid: vlan id to be added 2874 **/ 2875 static void i40e_vlan_rx_add_vid_up(struct net_device *netdev, 2876 __always_unused __be16 proto, u16 vid) 2877 { 2878 struct i40e_netdev_priv *np = netdev_priv(netdev); 2879 struct i40e_vsi *vsi = np->vsi; 2880 2881 if (vid >= VLAN_N_VID) 2882 return; 2883 set_bit(vid, vsi->active_vlans); 2884 } 2885 2886 /** 2887 * i40e_vlan_rx_kill_vid - Remove a vlan id filter from HW offload 2888 * @netdev: network interface to be adjusted 2889 * @proto: unused protocol value 2890 * @vid: vlan id to be removed 2891 * 2892 * net_device_ops implementation for removing vlan ids 2893 **/ 2894 static int i40e_vlan_rx_kill_vid(struct net_device *netdev, 2895 __always_unused __be16 proto, u16 vid) 2896 { 2897 struct i40e_netdev_priv *np = netdev_priv(netdev); 2898 struct i40e_vsi *vsi = np->vsi; 2899 2900 /* return code is ignored as there is nothing a user 2901 * can do about failure to remove and a log message was 2902 * already printed from the other function 2903 */ 2904 i40e_vsi_kill_vlan(vsi, vid); 2905 2906 clear_bit(vid, vsi->active_vlans); 2907 2908 return 0; 2909 } 2910 2911 /** 2912 * i40e_restore_vlan - Reinstate vlans when vsi/netdev comes back up 2913 * @vsi: the vsi being brought back up 2914 **/ 2915 static void i40e_restore_vlan(struct i40e_vsi *vsi) 2916 { 2917 u16 vid; 2918 2919 if (!vsi->netdev) 2920 return; 2921 2922 if (vsi->netdev->features & NETIF_F_HW_VLAN_CTAG_RX) 2923 i40e_vlan_stripping_enable(vsi); 2924 else 2925 i40e_vlan_stripping_disable(vsi); 2926 2927 for_each_set_bit(vid, vsi->active_vlans, VLAN_N_VID) 2928 i40e_vlan_rx_add_vid_up(vsi->netdev, htons(ETH_P_8021Q), 2929 vid); 2930 } 2931 2932 /** 2933 * i40e_vsi_add_pvid - Add pvid for the VSI 2934 * @vsi: the vsi being adjusted 2935 * @vid: the vlan id to set as a PVID 2936 **/ 2937 int i40e_vsi_add_pvid(struct i40e_vsi *vsi, u16 vid) 2938 { 2939 struct i40e_vsi_context ctxt; 2940 i40e_status ret; 2941 2942 vsi->info.valid_sections = cpu_to_le16(I40E_AQ_VSI_PROP_VLAN_VALID); 2943 vsi->info.pvid = cpu_to_le16(vid); 2944 vsi->info.port_vlan_flags = I40E_AQ_VSI_PVLAN_MODE_TAGGED | 2945 I40E_AQ_VSI_PVLAN_INSERT_PVID | 2946 I40E_AQ_VSI_PVLAN_EMOD_STR; 2947 2948 ctxt.seid = vsi->seid; 2949 ctxt.info = vsi->info; 2950 ret = i40e_aq_update_vsi_params(&vsi->back->hw, &ctxt, NULL); 2951 if (ret) { 2952 dev_info(&vsi->back->pdev->dev, 2953 "add pvid failed, err %s aq_err %s\n", 2954 i40e_stat_str(&vsi->back->hw, ret), 2955 i40e_aq_str(&vsi->back->hw, 2956 vsi->back->hw.aq.asq_last_status)); 2957 return -ENOENT; 2958 } 2959 2960 return 0; 2961 } 2962 2963 /** 2964 * i40e_vsi_remove_pvid - Remove the pvid from the VSI 2965 * @vsi: the vsi being adjusted 2966 * 2967 * Just use the vlan_rx_register() service to put it back to normal 2968 **/ 2969 void i40e_vsi_remove_pvid(struct i40e_vsi *vsi) 2970 { 2971 i40e_vlan_stripping_disable(vsi); 2972 2973 vsi->info.pvid = 0; 2974 } 2975 2976 /** 2977 * i40e_vsi_setup_tx_resources - Allocate VSI Tx queue resources 2978 * @vsi: ptr to the VSI 2979 * 2980 * If this function returns with an error, then it's possible one or 2981 * more of the rings is populated (while the rest are not). It is the 2982 * callers duty to clean those orphaned rings. 2983 * 2984 * Return 0 on success, negative on failure 2985 **/ 2986 static int i40e_vsi_setup_tx_resources(struct i40e_vsi *vsi) 2987 { 2988 int i, err = 0; 2989 2990 for (i = 0; i < vsi->num_queue_pairs && !err; i++) 2991 err = i40e_setup_tx_descriptors(vsi->tx_rings[i]); 2992 2993 if (!i40e_enabled_xdp_vsi(vsi)) 2994 return err; 2995 2996 for (i = 0; i < vsi->num_queue_pairs && !err; i++) 2997 err = i40e_setup_tx_descriptors(vsi->xdp_rings[i]); 2998 2999 return err; 3000 } 3001 3002 /** 3003 * i40e_vsi_free_tx_resources - Free Tx resources for VSI queues 3004 * @vsi: ptr to the VSI 3005 * 3006 * Free VSI's transmit software resources 3007 **/ 3008 static void i40e_vsi_free_tx_resources(struct i40e_vsi *vsi) 3009 { 3010 int i; 3011 3012 if (vsi->tx_rings) { 3013 for (i = 0; i < vsi->num_queue_pairs; i++) 3014 if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc) 3015 i40e_free_tx_resources(vsi->tx_rings[i]); 3016 } 3017 3018 if (vsi->xdp_rings) { 3019 for (i = 0; i < vsi->num_queue_pairs; i++) 3020 if (vsi->xdp_rings[i] && vsi->xdp_rings[i]->desc) 3021 i40e_free_tx_resources(vsi->xdp_rings[i]); 3022 } 3023 } 3024 3025 /** 3026 * i40e_vsi_setup_rx_resources - Allocate VSI queues Rx resources 3027 * @vsi: ptr to the VSI 3028 * 3029 * If this function returns with an error, then it's possible one or 3030 * more of the rings is populated (while the rest are not). It is the 3031 * callers duty to clean those orphaned rings. 3032 * 3033 * Return 0 on success, negative on failure 3034 **/ 3035 static int i40e_vsi_setup_rx_resources(struct i40e_vsi *vsi) 3036 { 3037 int i, err = 0; 3038 3039 for (i = 0; i < vsi->num_queue_pairs && !err; i++) 3040 err = i40e_setup_rx_descriptors(vsi->rx_rings[i]); 3041 return err; 3042 } 3043 3044 /** 3045 * i40e_vsi_free_rx_resources - Free Rx Resources for VSI queues 3046 * @vsi: ptr to the VSI 3047 * 3048 * Free all receive software resources 3049 **/ 3050 static void i40e_vsi_free_rx_resources(struct i40e_vsi *vsi) 3051 { 3052 int i; 3053 3054 if (!vsi->rx_rings) 3055 return; 3056 3057 for (i = 0; i < vsi->num_queue_pairs; i++) 3058 if (vsi->rx_rings[i] && vsi->rx_rings[i]->desc) 3059 i40e_free_rx_resources(vsi->rx_rings[i]); 3060 } 3061 3062 /** 3063 * i40e_config_xps_tx_ring - Configure XPS for a Tx ring 3064 * @ring: The Tx ring to configure 3065 * 3066 * This enables/disables XPS for a given Tx descriptor ring 3067 * based on the TCs enabled for the VSI that ring belongs to. 3068 **/ 3069 static void i40e_config_xps_tx_ring(struct i40e_ring *ring) 3070 { 3071 int cpu; 3072 3073 if (!ring->q_vector || !ring->netdev || ring->ch) 3074 return; 3075 3076 /* We only initialize XPS once, so as not to overwrite user settings */ 3077 if (test_and_set_bit(__I40E_TX_XPS_INIT_DONE, ring->state)) 3078 return; 3079 3080 cpu = cpumask_local_spread(ring->q_vector->v_idx, -1); 3081 netif_set_xps_queue(ring->netdev, get_cpu_mask(cpu), 3082 ring->queue_index); 3083 } 3084 3085 /** 3086 * i40e_xsk_umem - Retrieve the AF_XDP ZC if XDP and ZC is enabled 3087 * @ring: The Tx or Rx ring 3088 * 3089 * Returns the UMEM or NULL. 3090 **/ 3091 static struct xdp_umem *i40e_xsk_umem(struct i40e_ring *ring) 3092 { 3093 bool xdp_on = i40e_enabled_xdp_vsi(ring->vsi); 3094 int qid = ring->queue_index; 3095 3096 if (ring_is_xdp(ring)) 3097 qid -= ring->vsi->alloc_queue_pairs; 3098 3099 if (!xdp_on || !test_bit(qid, ring->vsi->af_xdp_zc_qps)) 3100 return NULL; 3101 3102 return xdp_get_umem_from_qid(ring->vsi->netdev, qid); 3103 } 3104 3105 /** 3106 * i40e_configure_tx_ring - Configure a transmit ring context and rest 3107 * @ring: The Tx ring to configure 3108 * 3109 * Configure the Tx descriptor ring in the HMC context. 3110 **/ 3111 static int i40e_configure_tx_ring(struct i40e_ring *ring) 3112 { 3113 struct i40e_vsi *vsi = ring->vsi; 3114 u16 pf_q = vsi->base_queue + ring->queue_index; 3115 struct i40e_hw *hw = &vsi->back->hw; 3116 struct i40e_hmc_obj_txq tx_ctx; 3117 i40e_status err = 0; 3118 u32 qtx_ctl = 0; 3119 3120 if (ring_is_xdp(ring)) 3121 ring->xsk_umem = i40e_xsk_umem(ring); 3122 3123 /* some ATR related tx ring init */ 3124 if (vsi->back->flags & I40E_FLAG_FD_ATR_ENABLED) { 3125 ring->atr_sample_rate = vsi->back->atr_sample_rate; 3126 ring->atr_count = 0; 3127 } else { 3128 ring->atr_sample_rate = 0; 3129 } 3130 3131 /* configure XPS */ 3132 i40e_config_xps_tx_ring(ring); 3133 3134 /* clear the context structure first */ 3135 memset(&tx_ctx, 0, sizeof(tx_ctx)); 3136 3137 tx_ctx.new_context = 1; 3138 tx_ctx.base = (ring->dma / 128); 3139 tx_ctx.qlen = ring->count; 3140 tx_ctx.fd_ena = !!(vsi->back->flags & (I40E_FLAG_FD_SB_ENABLED | 3141 I40E_FLAG_FD_ATR_ENABLED)); 3142 tx_ctx.timesync_ena = !!(vsi->back->flags & I40E_FLAG_PTP); 3143 /* FDIR VSI tx ring can still use RS bit and writebacks */ 3144 if (vsi->type != I40E_VSI_FDIR) 3145 tx_ctx.head_wb_ena = 1; 3146 tx_ctx.head_wb_addr = ring->dma + 3147 (ring->count * sizeof(struct i40e_tx_desc)); 3148 3149 /* As part of VSI creation/update, FW allocates certain 3150 * Tx arbitration queue sets for each TC enabled for 3151 * the VSI. The FW returns the handles to these queue 3152 * sets as part of the response buffer to Add VSI, 3153 * Update VSI, etc. AQ commands. It is expected that 3154 * these queue set handles be associated with the Tx 3155 * queues by the driver as part of the TX queue context 3156 * initialization. This has to be done regardless of 3157 * DCB as by default everything is mapped to TC0. 3158 */ 3159 3160 if (ring->ch) 3161 tx_ctx.rdylist = 3162 le16_to_cpu(ring->ch->info.qs_handle[ring->dcb_tc]); 3163 3164 else 3165 tx_ctx.rdylist = le16_to_cpu(vsi->info.qs_handle[ring->dcb_tc]); 3166 3167 tx_ctx.rdylist_act = 0; 3168 3169 /* clear the context in the HMC */ 3170 err = i40e_clear_lan_tx_queue_context(hw, pf_q); 3171 if (err) { 3172 dev_info(&vsi->back->pdev->dev, 3173 "Failed to clear LAN Tx queue context on Tx ring %d (pf_q %d), error: %d\n", 3174 ring->queue_index, pf_q, err); 3175 return -ENOMEM; 3176 } 3177 3178 /* set the context in the HMC */ 3179 err = i40e_set_lan_tx_queue_context(hw, pf_q, &tx_ctx); 3180 if (err) { 3181 dev_info(&vsi->back->pdev->dev, 3182 "Failed to set LAN Tx queue context on Tx ring %d (pf_q %d, error: %d\n", 3183 ring->queue_index, pf_q, err); 3184 return -ENOMEM; 3185 } 3186 3187 /* Now associate this queue with this PCI function */ 3188 if (ring->ch) { 3189 if (ring->ch->type == I40E_VSI_VMDQ2) 3190 qtx_ctl = I40E_QTX_CTL_VM_QUEUE; 3191 else 3192 return -EINVAL; 3193 3194 qtx_ctl |= (ring->ch->vsi_number << 3195 I40E_QTX_CTL_VFVM_INDX_SHIFT) & 3196 I40E_QTX_CTL_VFVM_INDX_MASK; 3197 } else { 3198 if (vsi->type == I40E_VSI_VMDQ2) { 3199 qtx_ctl = I40E_QTX_CTL_VM_QUEUE; 3200 qtx_ctl |= ((vsi->id) << I40E_QTX_CTL_VFVM_INDX_SHIFT) & 3201 I40E_QTX_CTL_VFVM_INDX_MASK; 3202 } else { 3203 qtx_ctl = I40E_QTX_CTL_PF_QUEUE; 3204 } 3205 } 3206 3207 qtx_ctl |= ((hw->pf_id << I40E_QTX_CTL_PF_INDX_SHIFT) & 3208 I40E_QTX_CTL_PF_INDX_MASK); 3209 wr32(hw, I40E_QTX_CTL(pf_q), qtx_ctl); 3210 i40e_flush(hw); 3211 3212 /* cache tail off for easier writes later */ 3213 ring->tail = hw->hw_addr + I40E_QTX_TAIL(pf_q); 3214 3215 return 0; 3216 } 3217 3218 /** 3219 * i40e_configure_rx_ring - Configure a receive ring context 3220 * @ring: The Rx ring to configure 3221 * 3222 * Configure the Rx descriptor ring in the HMC context. 3223 **/ 3224 static int i40e_configure_rx_ring(struct i40e_ring *ring) 3225 { 3226 struct i40e_vsi *vsi = ring->vsi; 3227 u32 chain_len = vsi->back->hw.func_caps.rx_buf_chain_len; 3228 u16 pf_q = vsi->base_queue + ring->queue_index; 3229 struct i40e_hw *hw = &vsi->back->hw; 3230 struct i40e_hmc_obj_rxq rx_ctx; 3231 i40e_status err = 0; 3232 bool ok; 3233 int ret; 3234 3235 bitmap_zero(ring->state, __I40E_RING_STATE_NBITS); 3236 3237 /* clear the context structure first */ 3238 memset(&rx_ctx, 0, sizeof(rx_ctx)); 3239 3240 if (ring->vsi->type == I40E_VSI_MAIN) 3241 xdp_rxq_info_unreg_mem_model(&ring->xdp_rxq); 3242 3243 ring->xsk_umem = i40e_xsk_umem(ring); 3244 if (ring->xsk_umem) { 3245 ring->rx_buf_len = ring->xsk_umem->chunk_size_nohr - 3246 XDP_PACKET_HEADROOM; 3247 /* For AF_XDP ZC, we disallow packets to span on 3248 * multiple buffers, thus letting us skip that 3249 * handling in the fast-path. 3250 */ 3251 chain_len = 1; 3252 ring->zca.free = i40e_zca_free; 3253 ret = xdp_rxq_info_reg_mem_model(&ring->xdp_rxq, 3254 MEM_TYPE_ZERO_COPY, 3255 &ring->zca); 3256 if (ret) 3257 return ret; 3258 dev_info(&vsi->back->pdev->dev, 3259 "Registered XDP mem model MEM_TYPE_ZERO_COPY on Rx ring %d\n", 3260 ring->queue_index); 3261 3262 } else { 3263 ring->rx_buf_len = vsi->rx_buf_len; 3264 if (ring->vsi->type == I40E_VSI_MAIN) { 3265 ret = xdp_rxq_info_reg_mem_model(&ring->xdp_rxq, 3266 MEM_TYPE_PAGE_SHARED, 3267 NULL); 3268 if (ret) 3269 return ret; 3270 } 3271 } 3272 3273 rx_ctx.dbuff = DIV_ROUND_UP(ring->rx_buf_len, 3274 BIT_ULL(I40E_RXQ_CTX_DBUFF_SHIFT)); 3275 3276 rx_ctx.base = (ring->dma / 128); 3277 rx_ctx.qlen = ring->count; 3278 3279 /* use 32 byte descriptors */ 3280 rx_ctx.dsize = 1; 3281 3282 /* descriptor type is always zero 3283 * rx_ctx.dtype = 0; 3284 */ 3285 rx_ctx.hsplit_0 = 0; 3286 3287 rx_ctx.rxmax = min_t(u16, vsi->max_frame, chain_len * ring->rx_buf_len); 3288 if (hw->revision_id == 0) 3289 rx_ctx.lrxqthresh = 0; 3290 else 3291 rx_ctx.lrxqthresh = 1; 3292 rx_ctx.crcstrip = 1; 3293 rx_ctx.l2tsel = 1; 3294 /* this controls whether VLAN is stripped from inner headers */ 3295 rx_ctx.showiv = 0; 3296 /* set the prefena field to 1 because the manual says to */ 3297 rx_ctx.prefena = 1; 3298 3299 /* clear the context in the HMC */ 3300 err = i40e_clear_lan_rx_queue_context(hw, pf_q); 3301 if (err) { 3302 dev_info(&vsi->back->pdev->dev, 3303 "Failed to clear LAN Rx queue context on Rx ring %d (pf_q %d), error: %d\n", 3304 ring->queue_index, pf_q, err); 3305 return -ENOMEM; 3306 } 3307 3308 /* set the context in the HMC */ 3309 err = i40e_set_lan_rx_queue_context(hw, pf_q, &rx_ctx); 3310 if (err) { 3311 dev_info(&vsi->back->pdev->dev, 3312 "Failed to set LAN Rx queue context on Rx ring %d (pf_q %d), error: %d\n", 3313 ring->queue_index, pf_q, err); 3314 return -ENOMEM; 3315 } 3316 3317 /* configure Rx buffer alignment */ 3318 if (!vsi->netdev || (vsi->back->flags & I40E_FLAG_LEGACY_RX)) 3319 clear_ring_build_skb_enabled(ring); 3320 else 3321 set_ring_build_skb_enabled(ring); 3322 3323 /* cache tail for quicker writes, and clear the reg before use */ 3324 ring->tail = hw->hw_addr + I40E_QRX_TAIL(pf_q); 3325 writel(0, ring->tail); 3326 3327 ok = ring->xsk_umem ? 3328 i40e_alloc_rx_buffers_zc(ring, I40E_DESC_UNUSED(ring)) : 3329 !i40e_alloc_rx_buffers(ring, I40E_DESC_UNUSED(ring)); 3330 if (!ok) { 3331 /* Log this in case the user has forgotten to give the kernel 3332 * any buffers, even later in the application. 3333 */ 3334 dev_info(&vsi->back->pdev->dev, 3335 "Failed to allocate some buffers on %sRx ring %d (pf_q %d)\n", 3336 ring->xsk_umem ? "UMEM enabled " : "", 3337 ring->queue_index, pf_q); 3338 } 3339 3340 return 0; 3341 } 3342 3343 /** 3344 * i40e_vsi_configure_tx - Configure the VSI for Tx 3345 * @vsi: VSI structure describing this set of rings and resources 3346 * 3347 * Configure the Tx VSI for operation. 3348 **/ 3349 static int i40e_vsi_configure_tx(struct i40e_vsi *vsi) 3350 { 3351 int err = 0; 3352 u16 i; 3353 3354 for (i = 0; (i < vsi->num_queue_pairs) && !err; i++) 3355 err = i40e_configure_tx_ring(vsi->tx_rings[i]); 3356 3357 if (!i40e_enabled_xdp_vsi(vsi)) 3358 return err; 3359 3360 for (i = 0; (i < vsi->num_queue_pairs) && !err; i++) 3361 err = i40e_configure_tx_ring(vsi->xdp_rings[i]); 3362 3363 return err; 3364 } 3365 3366 /** 3367 * i40e_vsi_configure_rx - Configure the VSI for Rx 3368 * @vsi: the VSI being configured 3369 * 3370 * Configure the Rx VSI for operation. 3371 **/ 3372 static int i40e_vsi_configure_rx(struct i40e_vsi *vsi) 3373 { 3374 int err = 0; 3375 u16 i; 3376 3377 if (!vsi->netdev || (vsi->back->flags & I40E_FLAG_LEGACY_RX)) { 3378 vsi->max_frame = I40E_MAX_RXBUFFER; 3379 vsi->rx_buf_len = I40E_RXBUFFER_2048; 3380 #if (PAGE_SIZE < 8192) 3381 } else if (!I40E_2K_TOO_SMALL_WITH_PADDING && 3382 (vsi->netdev->mtu <= ETH_DATA_LEN)) { 3383 vsi->max_frame = I40E_RXBUFFER_1536 - NET_IP_ALIGN; 3384 vsi->rx_buf_len = I40E_RXBUFFER_1536 - NET_IP_ALIGN; 3385 #endif 3386 } else { 3387 vsi->max_frame = I40E_MAX_RXBUFFER; 3388 vsi->rx_buf_len = (PAGE_SIZE < 8192) ? I40E_RXBUFFER_3072 : 3389 I40E_RXBUFFER_2048; 3390 } 3391 3392 /* set up individual rings */ 3393 for (i = 0; i < vsi->num_queue_pairs && !err; i++) 3394 err = i40e_configure_rx_ring(vsi->rx_rings[i]); 3395 3396 return err; 3397 } 3398 3399 /** 3400 * i40e_vsi_config_dcb_rings - Update rings to reflect DCB TC 3401 * @vsi: ptr to the VSI 3402 **/ 3403 static void i40e_vsi_config_dcb_rings(struct i40e_vsi *vsi) 3404 { 3405 struct i40e_ring *tx_ring, *rx_ring; 3406 u16 qoffset, qcount; 3407 int i, n; 3408 3409 if (!(vsi->back->flags & I40E_FLAG_DCB_ENABLED)) { 3410 /* Reset the TC information */ 3411 for (i = 0; i < vsi->num_queue_pairs; i++) { 3412 rx_ring = vsi->rx_rings[i]; 3413 tx_ring = vsi->tx_rings[i]; 3414 rx_ring->dcb_tc = 0; 3415 tx_ring->dcb_tc = 0; 3416 } 3417 return; 3418 } 3419 3420 for (n = 0; n < I40E_MAX_TRAFFIC_CLASS; n++) { 3421 if (!(vsi->tc_config.enabled_tc & BIT_ULL(n))) 3422 continue; 3423 3424 qoffset = vsi->tc_config.tc_info[n].qoffset; 3425 qcount = vsi->tc_config.tc_info[n].qcount; 3426 for (i = qoffset; i < (qoffset + qcount); i++) { 3427 rx_ring = vsi->rx_rings[i]; 3428 tx_ring = vsi->tx_rings[i]; 3429 rx_ring->dcb_tc = n; 3430 tx_ring->dcb_tc = n; 3431 } 3432 } 3433 } 3434 3435 /** 3436 * i40e_set_vsi_rx_mode - Call set_rx_mode on a VSI 3437 * @vsi: ptr to the VSI 3438 **/ 3439 static void i40e_set_vsi_rx_mode(struct i40e_vsi *vsi) 3440 { 3441 if (vsi->netdev) 3442 i40e_set_rx_mode(vsi->netdev); 3443 } 3444 3445 /** 3446 * i40e_fdir_filter_restore - Restore the Sideband Flow Director filters 3447 * @vsi: Pointer to the targeted VSI 3448 * 3449 * This function replays the hlist on the hw where all the SB Flow Director 3450 * filters were saved. 3451 **/ 3452 static void i40e_fdir_filter_restore(struct i40e_vsi *vsi) 3453 { 3454 struct i40e_fdir_filter *filter; 3455 struct i40e_pf *pf = vsi->back; 3456 struct hlist_node *node; 3457 3458 if (!(pf->flags & I40E_FLAG_FD_SB_ENABLED)) 3459 return; 3460 3461 /* Reset FDir counters as we're replaying all existing filters */ 3462 pf->fd_tcp4_filter_cnt = 0; 3463 pf->fd_udp4_filter_cnt = 0; 3464 pf->fd_sctp4_filter_cnt = 0; 3465 pf->fd_ip4_filter_cnt = 0; 3466 3467 hlist_for_each_entry_safe(filter, node, 3468 &pf->fdir_filter_list, fdir_node) { 3469 i40e_add_del_fdir(vsi, filter, true); 3470 } 3471 } 3472 3473 /** 3474 * i40e_vsi_configure - Set up the VSI for action 3475 * @vsi: the VSI being configured 3476 **/ 3477 static int i40e_vsi_configure(struct i40e_vsi *vsi) 3478 { 3479 int err; 3480 3481 i40e_set_vsi_rx_mode(vsi); 3482 i40e_restore_vlan(vsi); 3483 i40e_vsi_config_dcb_rings(vsi); 3484 err = i40e_vsi_configure_tx(vsi); 3485 if (!err) 3486 err = i40e_vsi_configure_rx(vsi); 3487 3488 return err; 3489 } 3490 3491 /** 3492 * i40e_vsi_configure_msix - MSIX mode Interrupt Config in the HW 3493 * @vsi: the VSI being configured 3494 **/ 3495 static void i40e_vsi_configure_msix(struct i40e_vsi *vsi) 3496 { 3497 bool has_xdp = i40e_enabled_xdp_vsi(vsi); 3498 struct i40e_pf *pf = vsi->back; 3499 struct i40e_hw *hw = &pf->hw; 3500 u16 vector; 3501 int i, q; 3502 u32 qp; 3503 3504 /* The interrupt indexing is offset by 1 in the PFINT_ITRn 3505 * and PFINT_LNKLSTn registers, e.g.: 3506 * PFINT_ITRn[0..n-1] gets msix-1..msix-n (qpair interrupts) 3507 */ 3508 qp = vsi->base_queue; 3509 vector = vsi->base_vector; 3510 for (i = 0; i < vsi->num_q_vectors; i++, vector++) { 3511 struct i40e_q_vector *q_vector = vsi->q_vectors[i]; 3512 3513 q_vector->rx.next_update = jiffies + 1; 3514 q_vector->rx.target_itr = 3515 ITR_TO_REG(vsi->rx_rings[i]->itr_setting); 3516 wr32(hw, I40E_PFINT_ITRN(I40E_RX_ITR, vector - 1), 3517 q_vector->rx.target_itr); 3518 q_vector->rx.current_itr = q_vector->rx.target_itr; 3519 3520 q_vector->tx.next_update = jiffies + 1; 3521 q_vector->tx.target_itr = 3522 ITR_TO_REG(vsi->tx_rings[i]->itr_setting); 3523 wr32(hw, I40E_PFINT_ITRN(I40E_TX_ITR, vector - 1), 3524 q_vector->tx.target_itr); 3525 q_vector->tx.current_itr = q_vector->tx.target_itr; 3526 3527 wr32(hw, I40E_PFINT_RATEN(vector - 1), 3528 i40e_intrl_usec_to_reg(vsi->int_rate_limit)); 3529 3530 /* Linked list for the queuepairs assigned to this vector */ 3531 wr32(hw, I40E_PFINT_LNKLSTN(vector - 1), qp); 3532 for (q = 0; q < q_vector->num_ringpairs; q++) { 3533 u32 nextqp = has_xdp ? qp + vsi->alloc_queue_pairs : qp; 3534 u32 val; 3535 3536 val = I40E_QINT_RQCTL_CAUSE_ENA_MASK | 3537 (I40E_RX_ITR << I40E_QINT_RQCTL_ITR_INDX_SHIFT) | 3538 (vector << I40E_QINT_RQCTL_MSIX_INDX_SHIFT) | 3539 (nextqp << I40E_QINT_RQCTL_NEXTQ_INDX_SHIFT) | 3540 (I40E_QUEUE_TYPE_TX << 3541 I40E_QINT_RQCTL_NEXTQ_TYPE_SHIFT); 3542 3543 wr32(hw, I40E_QINT_RQCTL(qp), val); 3544 3545 if (has_xdp) { 3546 val = I40E_QINT_TQCTL_CAUSE_ENA_MASK | 3547 (I40E_TX_ITR << I40E_QINT_TQCTL_ITR_INDX_SHIFT) | 3548 (vector << I40E_QINT_TQCTL_MSIX_INDX_SHIFT) | 3549 (qp << I40E_QINT_TQCTL_NEXTQ_INDX_SHIFT) | 3550 (I40E_QUEUE_TYPE_TX << 3551 I40E_QINT_TQCTL_NEXTQ_TYPE_SHIFT); 3552 3553 wr32(hw, I40E_QINT_TQCTL(nextqp), val); 3554 } 3555 3556 val = I40E_QINT_TQCTL_CAUSE_ENA_MASK | 3557 (I40E_TX_ITR << I40E_QINT_TQCTL_ITR_INDX_SHIFT) | 3558 (vector << I40E_QINT_TQCTL_MSIX_INDX_SHIFT) | 3559 ((qp + 1) << I40E_QINT_TQCTL_NEXTQ_INDX_SHIFT) | 3560 (I40E_QUEUE_TYPE_RX << 3561 I40E_QINT_TQCTL_NEXTQ_TYPE_SHIFT); 3562 3563 /* Terminate the linked list */ 3564 if (q == (q_vector->num_ringpairs - 1)) 3565 val |= (I40E_QUEUE_END_OF_LIST << 3566 I40E_QINT_TQCTL_NEXTQ_INDX_SHIFT); 3567 3568 wr32(hw, I40E_QINT_TQCTL(qp), val); 3569 qp++; 3570 } 3571 } 3572 3573 i40e_flush(hw); 3574 } 3575 3576 /** 3577 * i40e_enable_misc_int_causes - enable the non-queue interrupts 3578 * @pf: pointer to private device data structure 3579 **/ 3580 static void i40e_enable_misc_int_causes(struct i40e_pf *pf) 3581 { 3582 struct i40e_hw *hw = &pf->hw; 3583 u32 val; 3584 3585 /* clear things first */ 3586 wr32(hw, I40E_PFINT_ICR0_ENA, 0); /* disable all */ 3587 rd32(hw, I40E_PFINT_ICR0); /* read to clear */ 3588 3589 val = I40E_PFINT_ICR0_ENA_ECC_ERR_MASK | 3590 I40E_PFINT_ICR0_ENA_MAL_DETECT_MASK | 3591 I40E_PFINT_ICR0_ENA_GRST_MASK | 3592 I40E_PFINT_ICR0_ENA_PCI_EXCEPTION_MASK | 3593 I40E_PFINT_ICR0_ENA_GPIO_MASK | 3594 I40E_PFINT_ICR0_ENA_HMC_ERR_MASK | 3595 I40E_PFINT_ICR0_ENA_VFLR_MASK | 3596 I40E_PFINT_ICR0_ENA_ADMINQ_MASK; 3597 3598 if (pf->flags & I40E_FLAG_IWARP_ENABLED) 3599 val |= I40E_PFINT_ICR0_ENA_PE_CRITERR_MASK; 3600 3601 if (pf->flags & I40E_FLAG_PTP) 3602 val |= I40E_PFINT_ICR0_ENA_TIMESYNC_MASK; 3603 3604 wr32(hw, I40E_PFINT_ICR0_ENA, val); 3605 3606 /* SW_ITR_IDX = 0, but don't change INTENA */ 3607 wr32(hw, I40E_PFINT_DYN_CTL0, I40E_PFINT_DYN_CTL0_SW_ITR_INDX_MASK | 3608 I40E_PFINT_DYN_CTL0_INTENA_MSK_MASK); 3609 3610 /* OTHER_ITR_IDX = 0 */ 3611 wr32(hw, I40E_PFINT_STAT_CTL0, 0); 3612 } 3613 3614 /** 3615 * i40e_configure_msi_and_legacy - Legacy mode interrupt config in the HW 3616 * @vsi: the VSI being configured 3617 **/ 3618 static void i40e_configure_msi_and_legacy(struct i40e_vsi *vsi) 3619 { 3620 u32 nextqp = i40e_enabled_xdp_vsi(vsi) ? vsi->alloc_queue_pairs : 0; 3621 struct i40e_q_vector *q_vector = vsi->q_vectors[0]; 3622 struct i40e_pf *pf = vsi->back; 3623 struct i40e_hw *hw = &pf->hw; 3624 u32 val; 3625 3626 /* set the ITR configuration */ 3627 q_vector->rx.next_update = jiffies + 1; 3628 q_vector->rx.target_itr = ITR_TO_REG(vsi->rx_rings[0]->itr_setting); 3629 wr32(hw, I40E_PFINT_ITR0(I40E_RX_ITR), q_vector->rx.target_itr); 3630 q_vector->rx.current_itr = q_vector->rx.target_itr; 3631 q_vector->tx.next_update = jiffies + 1; 3632 q_vector->tx.target_itr = ITR_TO_REG(vsi->tx_rings[0]->itr_setting); 3633 wr32(hw, I40E_PFINT_ITR0(I40E_TX_ITR), q_vector->tx.target_itr); 3634 q_vector->tx.current_itr = q_vector->tx.target_itr; 3635 3636 i40e_enable_misc_int_causes(pf); 3637 3638 /* FIRSTQ_INDX = 0, FIRSTQ_TYPE = 0 (rx) */ 3639 wr32(hw, I40E_PFINT_LNKLST0, 0); 3640 3641 /* Associate the queue pair to the vector and enable the queue int */ 3642 val = I40E_QINT_RQCTL_CAUSE_ENA_MASK | 3643 (I40E_RX_ITR << I40E_QINT_RQCTL_ITR_INDX_SHIFT) | 3644 (nextqp << I40E_QINT_RQCTL_NEXTQ_INDX_SHIFT)| 3645 (I40E_QUEUE_TYPE_TX << I40E_QINT_TQCTL_NEXTQ_TYPE_SHIFT); 3646 3647 wr32(hw, I40E_QINT_RQCTL(0), val); 3648 3649 if (i40e_enabled_xdp_vsi(vsi)) { 3650 val = I40E_QINT_TQCTL_CAUSE_ENA_MASK | 3651 (I40E_TX_ITR << I40E_QINT_TQCTL_ITR_INDX_SHIFT)| 3652 (I40E_QUEUE_TYPE_TX 3653 << I40E_QINT_TQCTL_NEXTQ_TYPE_SHIFT); 3654 3655 wr32(hw, I40E_QINT_TQCTL(nextqp), val); 3656 } 3657 3658 val = I40E_QINT_TQCTL_CAUSE_ENA_MASK | 3659 (I40E_TX_ITR << I40E_QINT_TQCTL_ITR_INDX_SHIFT) | 3660 (I40E_QUEUE_END_OF_LIST << I40E_QINT_TQCTL_NEXTQ_INDX_SHIFT); 3661 3662 wr32(hw, I40E_QINT_TQCTL(0), val); 3663 i40e_flush(hw); 3664 } 3665 3666 /** 3667 * i40e_irq_dynamic_disable_icr0 - Disable default interrupt generation for icr0 3668 * @pf: board private structure 3669 **/ 3670 void i40e_irq_dynamic_disable_icr0(struct i40e_pf *pf) 3671 { 3672 struct i40e_hw *hw = &pf->hw; 3673 3674 wr32(hw, I40E_PFINT_DYN_CTL0, 3675 I40E_ITR_NONE << I40E_PFINT_DYN_CTLN_ITR_INDX_SHIFT); 3676 i40e_flush(hw); 3677 } 3678 3679 /** 3680 * i40e_irq_dynamic_enable_icr0 - Enable default interrupt generation for icr0 3681 * @pf: board private structure 3682 **/ 3683 void i40e_irq_dynamic_enable_icr0(struct i40e_pf *pf) 3684 { 3685 struct i40e_hw *hw = &pf->hw; 3686 u32 val; 3687 3688 val = I40E_PFINT_DYN_CTL0_INTENA_MASK | 3689 I40E_PFINT_DYN_CTL0_CLEARPBA_MASK | 3690 (I40E_ITR_NONE << I40E_PFINT_DYN_CTL0_ITR_INDX_SHIFT); 3691 3692 wr32(hw, I40E_PFINT_DYN_CTL0, val); 3693 i40e_flush(hw); 3694 } 3695 3696 /** 3697 * i40e_msix_clean_rings - MSIX mode Interrupt Handler 3698 * @irq: interrupt number 3699 * @data: pointer to a q_vector 3700 **/ 3701 static irqreturn_t i40e_msix_clean_rings(int irq, void *data) 3702 { 3703 struct i40e_q_vector *q_vector = data; 3704 3705 if (!q_vector->tx.ring && !q_vector->rx.ring) 3706 return IRQ_HANDLED; 3707 3708 napi_schedule_irqoff(&q_vector->napi); 3709 3710 return IRQ_HANDLED; 3711 } 3712 3713 /** 3714 * i40e_irq_affinity_notify - Callback for affinity changes 3715 * @notify: context as to what irq was changed 3716 * @mask: the new affinity mask 3717 * 3718 * This is a callback function used by the irq_set_affinity_notifier function 3719 * so that we may register to receive changes to the irq affinity masks. 3720 **/ 3721 static void i40e_irq_affinity_notify(struct irq_affinity_notify *notify, 3722 const cpumask_t *mask) 3723 { 3724 struct i40e_q_vector *q_vector = 3725 container_of(notify, struct i40e_q_vector, affinity_notify); 3726 3727 cpumask_copy(&q_vector->affinity_mask, mask); 3728 } 3729 3730 /** 3731 * i40e_irq_affinity_release - Callback for affinity notifier release 3732 * @ref: internal core kernel usage 3733 * 3734 * This is a callback function used by the irq_set_affinity_notifier function 3735 * to inform the current notification subscriber that they will no longer 3736 * receive notifications. 3737 **/ 3738 static void i40e_irq_affinity_release(struct kref *ref) {} 3739 3740 /** 3741 * i40e_vsi_request_irq_msix - Initialize MSI-X interrupts 3742 * @vsi: the VSI being configured 3743 * @basename: name for the vector 3744 * 3745 * Allocates MSI-X vectors and requests interrupts from the kernel. 3746 **/ 3747 static int i40e_vsi_request_irq_msix(struct i40e_vsi *vsi, char *basename) 3748 { 3749 int q_vectors = vsi->num_q_vectors; 3750 struct i40e_pf *pf = vsi->back; 3751 int base = vsi->base_vector; 3752 int rx_int_idx = 0; 3753 int tx_int_idx = 0; 3754 int vector, err; 3755 int irq_num; 3756 int cpu; 3757 3758 for (vector = 0; vector < q_vectors; vector++) { 3759 struct i40e_q_vector *q_vector = vsi->q_vectors[vector]; 3760 3761 irq_num = pf->msix_entries[base + vector].vector; 3762 3763 if (q_vector->tx.ring && q_vector->rx.ring) { 3764 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 3765 "%s-%s-%d", basename, "TxRx", rx_int_idx++); 3766 tx_int_idx++; 3767 } else if (q_vector->rx.ring) { 3768 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 3769 "%s-%s-%d", basename, "rx", rx_int_idx++); 3770 } else if (q_vector->tx.ring) { 3771 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 3772 "%s-%s-%d", basename, "tx", tx_int_idx++); 3773 } else { 3774 /* skip this unused q_vector */ 3775 continue; 3776 } 3777 err = request_irq(irq_num, 3778 vsi->irq_handler, 3779 0, 3780 q_vector->name, 3781 q_vector); 3782 if (err) { 3783 dev_info(&pf->pdev->dev, 3784 "MSIX request_irq failed, error: %d\n", err); 3785 goto free_queue_irqs; 3786 } 3787 3788 /* register for affinity change notifications */ 3789 q_vector->affinity_notify.notify = i40e_irq_affinity_notify; 3790 q_vector->affinity_notify.release = i40e_irq_affinity_release; 3791 irq_set_affinity_notifier(irq_num, &q_vector->affinity_notify); 3792 /* Spread affinity hints out across online CPUs. 3793 * 3794 * get_cpu_mask returns a static constant mask with 3795 * a permanent lifetime so it's ok to pass to 3796 * irq_set_affinity_hint without making a copy. 3797 */ 3798 cpu = cpumask_local_spread(q_vector->v_idx, -1); 3799 irq_set_affinity_hint(irq_num, get_cpu_mask(cpu)); 3800 } 3801 3802 vsi->irqs_ready = true; 3803 return 0; 3804 3805 free_queue_irqs: 3806 while (vector) { 3807 vector--; 3808 irq_num = pf->msix_entries[base + vector].vector; 3809 irq_set_affinity_notifier(irq_num, NULL); 3810 irq_set_affinity_hint(irq_num, NULL); 3811 free_irq(irq_num, &vsi->q_vectors[vector]); 3812 } 3813 return err; 3814 } 3815 3816 /** 3817 * i40e_vsi_disable_irq - Mask off queue interrupt generation on the VSI 3818 * @vsi: the VSI being un-configured 3819 **/ 3820 static void i40e_vsi_disable_irq(struct i40e_vsi *vsi) 3821 { 3822 struct i40e_pf *pf = vsi->back; 3823 struct i40e_hw *hw = &pf->hw; 3824 int base = vsi->base_vector; 3825 int i; 3826 3827 /* disable interrupt causation from each queue */ 3828 for (i = 0; i < vsi->num_queue_pairs; i++) { 3829 u32 val; 3830 3831 val = rd32(hw, I40E_QINT_TQCTL(vsi->tx_rings[i]->reg_idx)); 3832 val &= ~I40E_QINT_TQCTL_CAUSE_ENA_MASK; 3833 wr32(hw, I40E_QINT_TQCTL(vsi->tx_rings[i]->reg_idx), val); 3834 3835 val = rd32(hw, I40E_QINT_RQCTL(vsi->rx_rings[i]->reg_idx)); 3836 val &= ~I40E_QINT_RQCTL_CAUSE_ENA_MASK; 3837 wr32(hw, I40E_QINT_RQCTL(vsi->rx_rings[i]->reg_idx), val); 3838 3839 if (!i40e_enabled_xdp_vsi(vsi)) 3840 continue; 3841 wr32(hw, I40E_QINT_TQCTL(vsi->xdp_rings[i]->reg_idx), 0); 3842 } 3843 3844 /* disable each interrupt */ 3845 if (pf->flags & I40E_FLAG_MSIX_ENABLED) { 3846 for (i = vsi->base_vector; 3847 i < (vsi->num_q_vectors + vsi->base_vector); i++) 3848 wr32(hw, I40E_PFINT_DYN_CTLN(i - 1), 0); 3849 3850 i40e_flush(hw); 3851 for (i = 0; i < vsi->num_q_vectors; i++) 3852 synchronize_irq(pf->msix_entries[i + base].vector); 3853 } else { 3854 /* Legacy and MSI mode - this stops all interrupt handling */ 3855 wr32(hw, I40E_PFINT_ICR0_ENA, 0); 3856 wr32(hw, I40E_PFINT_DYN_CTL0, 0); 3857 i40e_flush(hw); 3858 synchronize_irq(pf->pdev->irq); 3859 } 3860 } 3861 3862 /** 3863 * i40e_vsi_enable_irq - Enable IRQ for the given VSI 3864 * @vsi: the VSI being configured 3865 **/ 3866 static int i40e_vsi_enable_irq(struct i40e_vsi *vsi) 3867 { 3868 struct i40e_pf *pf = vsi->back; 3869 int i; 3870 3871 if (pf->flags & I40E_FLAG_MSIX_ENABLED) { 3872 for (i = 0; i < vsi->num_q_vectors; i++) 3873 i40e_irq_dynamic_enable(vsi, i); 3874 } else { 3875 i40e_irq_dynamic_enable_icr0(pf); 3876 } 3877 3878 i40e_flush(&pf->hw); 3879 return 0; 3880 } 3881 3882 /** 3883 * i40e_free_misc_vector - Free the vector that handles non-queue events 3884 * @pf: board private structure 3885 **/ 3886 static void i40e_free_misc_vector(struct i40e_pf *pf) 3887 { 3888 /* Disable ICR 0 */ 3889 wr32(&pf->hw, I40E_PFINT_ICR0_ENA, 0); 3890 i40e_flush(&pf->hw); 3891 3892 if (pf->flags & I40E_FLAG_MSIX_ENABLED && pf->msix_entries) { 3893 synchronize_irq(pf->msix_entries[0].vector); 3894 free_irq(pf->msix_entries[0].vector, pf); 3895 clear_bit(__I40E_MISC_IRQ_REQUESTED, pf->state); 3896 } 3897 } 3898 3899 /** 3900 * i40e_intr - MSI/Legacy and non-queue interrupt handler 3901 * @irq: interrupt number 3902 * @data: pointer to a q_vector 3903 * 3904 * This is the handler used for all MSI/Legacy interrupts, and deals 3905 * with both queue and non-queue interrupts. This is also used in 3906 * MSIX mode to handle the non-queue interrupts. 3907 **/ 3908 static irqreturn_t i40e_intr(int irq, void *data) 3909 { 3910 struct i40e_pf *pf = (struct i40e_pf *)data; 3911 struct i40e_hw *hw = &pf->hw; 3912 irqreturn_t ret = IRQ_NONE; 3913 u32 icr0, icr0_remaining; 3914 u32 val, ena_mask; 3915 3916 icr0 = rd32(hw, I40E_PFINT_ICR0); 3917 ena_mask = rd32(hw, I40E_PFINT_ICR0_ENA); 3918 3919 /* if sharing a legacy IRQ, we might get called w/o an intr pending */ 3920 if ((icr0 & I40E_PFINT_ICR0_INTEVENT_MASK) == 0) 3921 goto enable_intr; 3922 3923 /* if interrupt but no bits showing, must be SWINT */ 3924 if (((icr0 & ~I40E_PFINT_ICR0_INTEVENT_MASK) == 0) || 3925 (icr0 & I40E_PFINT_ICR0_SWINT_MASK)) 3926 pf->sw_int_count++; 3927 3928 if ((pf->flags & I40E_FLAG_IWARP_ENABLED) && 3929 (icr0 & I40E_PFINT_ICR0_ENA_PE_CRITERR_MASK)) { 3930 ena_mask &= ~I40E_PFINT_ICR0_ENA_PE_CRITERR_MASK; 3931 dev_dbg(&pf->pdev->dev, "cleared PE_CRITERR\n"); 3932 set_bit(__I40E_CORE_RESET_REQUESTED, pf->state); 3933 } 3934 3935 /* only q0 is used in MSI/Legacy mode, and none are used in MSIX */ 3936 if (icr0 & I40E_PFINT_ICR0_QUEUE_0_MASK) { 3937 struct i40e_vsi *vsi = pf->vsi[pf->lan_vsi]; 3938 struct i40e_q_vector *q_vector = vsi->q_vectors[0]; 3939 3940 /* We do not have a way to disarm Queue causes while leaving 3941 * interrupt enabled for all other causes, ideally 3942 * interrupt should be disabled while we are in NAPI but 3943 * this is not a performance path and napi_schedule() 3944 * can deal with rescheduling. 3945 */ 3946 if (!test_bit(__I40E_DOWN, pf->state)) 3947 napi_schedule_irqoff(&q_vector->napi); 3948 } 3949 3950 if (icr0 & I40E_PFINT_ICR0_ADMINQ_MASK) { 3951 ena_mask &= ~I40E_PFINT_ICR0_ENA_ADMINQ_MASK; 3952 set_bit(__I40E_ADMINQ_EVENT_PENDING, pf->state); 3953 i40e_debug(&pf->hw, I40E_DEBUG_NVM, "AdminQ event\n"); 3954 } 3955 3956 if (icr0 & I40E_PFINT_ICR0_MAL_DETECT_MASK) { 3957 ena_mask &= ~I40E_PFINT_ICR0_ENA_MAL_DETECT_MASK; 3958 set_bit(__I40E_MDD_EVENT_PENDING, pf->state); 3959 } 3960 3961 if (icr0 & I40E_PFINT_ICR0_VFLR_MASK) { 3962 ena_mask &= ~I40E_PFINT_ICR0_ENA_VFLR_MASK; 3963 set_bit(__I40E_VFLR_EVENT_PENDING, pf->state); 3964 } 3965 3966 if (icr0 & I40E_PFINT_ICR0_GRST_MASK) { 3967 if (!test_bit(__I40E_RESET_RECOVERY_PENDING, pf->state)) 3968 set_bit(__I40E_RESET_INTR_RECEIVED, pf->state); 3969 ena_mask &= ~I40E_PFINT_ICR0_ENA_GRST_MASK; 3970 val = rd32(hw, I40E_GLGEN_RSTAT); 3971 val = (val & I40E_GLGEN_RSTAT_RESET_TYPE_MASK) 3972 >> I40E_GLGEN_RSTAT_RESET_TYPE_SHIFT; 3973 if (val == I40E_RESET_CORER) { 3974 pf->corer_count++; 3975 } else if (val == I40E_RESET_GLOBR) { 3976 pf->globr_count++; 3977 } else if (val == I40E_RESET_EMPR) { 3978 pf->empr_count++; 3979 set_bit(__I40E_EMP_RESET_INTR_RECEIVED, pf->state); 3980 } 3981 } 3982 3983 if (icr0 & I40E_PFINT_ICR0_HMC_ERR_MASK) { 3984 icr0 &= ~I40E_PFINT_ICR0_HMC_ERR_MASK; 3985 dev_info(&pf->pdev->dev, "HMC error interrupt\n"); 3986 dev_info(&pf->pdev->dev, "HMC error info 0x%x, HMC error data 0x%x\n", 3987 rd32(hw, I40E_PFHMC_ERRORINFO), 3988 rd32(hw, I40E_PFHMC_ERRORDATA)); 3989 } 3990 3991 if (icr0 & I40E_PFINT_ICR0_TIMESYNC_MASK) { 3992 u32 prttsyn_stat = rd32(hw, I40E_PRTTSYN_STAT_0); 3993 3994 if (prttsyn_stat & I40E_PRTTSYN_STAT_0_TXTIME_MASK) { 3995 icr0 &= ~I40E_PFINT_ICR0_ENA_TIMESYNC_MASK; 3996 i40e_ptp_tx_hwtstamp(pf); 3997 } 3998 } 3999 4000 /* If a critical error is pending we have no choice but to reset the 4001 * device. 4002 * Report and mask out any remaining unexpected interrupts. 4003 */ 4004 icr0_remaining = icr0 & ena_mask; 4005 if (icr0_remaining) { 4006 dev_info(&pf->pdev->dev, "unhandled interrupt icr0=0x%08x\n", 4007 icr0_remaining); 4008 if ((icr0_remaining & I40E_PFINT_ICR0_PE_CRITERR_MASK) || 4009 (icr0_remaining & I40E_PFINT_ICR0_PCI_EXCEPTION_MASK) || 4010 (icr0_remaining & I40E_PFINT_ICR0_ECC_ERR_MASK)) { 4011 dev_info(&pf->pdev->dev, "device will be reset\n"); 4012 set_bit(__I40E_PF_RESET_REQUESTED, pf->state); 4013 i40e_service_event_schedule(pf); 4014 } 4015 ena_mask &= ~icr0_remaining; 4016 } 4017 ret = IRQ_HANDLED; 4018 4019 enable_intr: 4020 /* re-enable interrupt causes */ 4021 wr32(hw, I40E_PFINT_ICR0_ENA, ena_mask); 4022 if (!test_bit(__I40E_DOWN, pf->state)) { 4023 i40e_service_event_schedule(pf); 4024 i40e_irq_dynamic_enable_icr0(pf); 4025 } 4026 4027 return ret; 4028 } 4029 4030 /** 4031 * i40e_clean_fdir_tx_irq - Reclaim resources after transmit completes 4032 * @tx_ring: tx ring to clean 4033 * @budget: how many cleans we're allowed 4034 * 4035 * Returns true if there's any budget left (e.g. the clean is finished) 4036 **/ 4037 static bool i40e_clean_fdir_tx_irq(struct i40e_ring *tx_ring, int budget) 4038 { 4039 struct i40e_vsi *vsi = tx_ring->vsi; 4040 u16 i = tx_ring->next_to_clean; 4041 struct i40e_tx_buffer *tx_buf; 4042 struct i40e_tx_desc *tx_desc; 4043 4044 tx_buf = &tx_ring->tx_bi[i]; 4045 tx_desc = I40E_TX_DESC(tx_ring, i); 4046 i -= tx_ring->count; 4047 4048 do { 4049 struct i40e_tx_desc *eop_desc = tx_buf->next_to_watch; 4050 4051 /* if next_to_watch is not set then there is no work pending */ 4052 if (!eop_desc) 4053 break; 4054 4055 /* prevent any other reads prior to eop_desc */ 4056 smp_rmb(); 4057 4058 /* if the descriptor isn't done, no work yet to do */ 4059 if (!(eop_desc->cmd_type_offset_bsz & 4060 cpu_to_le64(I40E_TX_DESC_DTYPE_DESC_DONE))) 4061 break; 4062 4063 /* clear next_to_watch to prevent false hangs */ 4064 tx_buf->next_to_watch = NULL; 4065 4066 tx_desc->buffer_addr = 0; 4067 tx_desc->cmd_type_offset_bsz = 0; 4068 /* move past filter desc */ 4069 tx_buf++; 4070 tx_desc++; 4071 i++; 4072 if (unlikely(!i)) { 4073 i -= tx_ring->count; 4074 tx_buf = tx_ring->tx_bi; 4075 tx_desc = I40E_TX_DESC(tx_ring, 0); 4076 } 4077 /* unmap skb header data */ 4078 dma_unmap_single(tx_ring->dev, 4079 dma_unmap_addr(tx_buf, dma), 4080 dma_unmap_len(tx_buf, len), 4081 DMA_TO_DEVICE); 4082 if (tx_buf->tx_flags & I40E_TX_FLAGS_FD_SB) 4083 kfree(tx_buf->raw_buf); 4084 4085 tx_buf->raw_buf = NULL; 4086 tx_buf->tx_flags = 0; 4087 tx_buf->next_to_watch = NULL; 4088 dma_unmap_len_set(tx_buf, len, 0); 4089 tx_desc->buffer_addr = 0; 4090 tx_desc->cmd_type_offset_bsz = 0; 4091 4092 /* move us past the eop_desc for start of next FD desc */ 4093 tx_buf++; 4094 tx_desc++; 4095 i++; 4096 if (unlikely(!i)) { 4097 i -= tx_ring->count; 4098 tx_buf = tx_ring->tx_bi; 4099 tx_desc = I40E_TX_DESC(tx_ring, 0); 4100 } 4101 4102 /* update budget accounting */ 4103 budget--; 4104 } while (likely(budget)); 4105 4106 i += tx_ring->count; 4107 tx_ring->next_to_clean = i; 4108 4109 if (vsi->back->flags & I40E_FLAG_MSIX_ENABLED) 4110 i40e_irq_dynamic_enable(vsi, tx_ring->q_vector->v_idx); 4111 4112 return budget > 0; 4113 } 4114 4115 /** 4116 * i40e_fdir_clean_ring - Interrupt Handler for FDIR SB ring 4117 * @irq: interrupt number 4118 * @data: pointer to a q_vector 4119 **/ 4120 static irqreturn_t i40e_fdir_clean_ring(int irq, void *data) 4121 { 4122 struct i40e_q_vector *q_vector = data; 4123 struct i40e_vsi *vsi; 4124 4125 if (!q_vector->tx.ring) 4126 return IRQ_HANDLED; 4127 4128 vsi = q_vector->tx.ring->vsi; 4129 i40e_clean_fdir_tx_irq(q_vector->tx.ring, vsi->work_limit); 4130 4131 return IRQ_HANDLED; 4132 } 4133 4134 /** 4135 * i40e_map_vector_to_qp - Assigns the queue pair to the vector 4136 * @vsi: the VSI being configured 4137 * @v_idx: vector index 4138 * @qp_idx: queue pair index 4139 **/ 4140 static void i40e_map_vector_to_qp(struct i40e_vsi *vsi, int v_idx, int qp_idx) 4141 { 4142 struct i40e_q_vector *q_vector = vsi->q_vectors[v_idx]; 4143 struct i40e_ring *tx_ring = vsi->tx_rings[qp_idx]; 4144 struct i40e_ring *rx_ring = vsi->rx_rings[qp_idx]; 4145 4146 tx_ring->q_vector = q_vector; 4147 tx_ring->next = q_vector->tx.ring; 4148 q_vector->tx.ring = tx_ring; 4149 q_vector->tx.count++; 4150 4151 /* Place XDP Tx ring in the same q_vector ring list as regular Tx */ 4152 if (i40e_enabled_xdp_vsi(vsi)) { 4153 struct i40e_ring *xdp_ring = vsi->xdp_rings[qp_idx]; 4154 4155 xdp_ring->q_vector = q_vector; 4156 xdp_ring->next = q_vector->tx.ring; 4157 q_vector->tx.ring = xdp_ring; 4158 q_vector->tx.count++; 4159 } 4160 4161 rx_ring->q_vector = q_vector; 4162 rx_ring->next = q_vector->rx.ring; 4163 q_vector->rx.ring = rx_ring; 4164 q_vector->rx.count++; 4165 } 4166 4167 /** 4168 * i40e_vsi_map_rings_to_vectors - Maps descriptor rings to vectors 4169 * @vsi: the VSI being configured 4170 * 4171 * This function maps descriptor rings to the queue-specific vectors 4172 * we were allotted through the MSI-X enabling code. Ideally, we'd have 4173 * one vector per queue pair, but on a constrained vector budget, we 4174 * group the queue pairs as "efficiently" as possible. 4175 **/ 4176 static void i40e_vsi_map_rings_to_vectors(struct i40e_vsi *vsi) 4177 { 4178 int qp_remaining = vsi->num_queue_pairs; 4179 int q_vectors = vsi->num_q_vectors; 4180 int num_ringpairs; 4181 int v_start = 0; 4182 int qp_idx = 0; 4183 4184 /* If we don't have enough vectors for a 1-to-1 mapping, we'll have to 4185 * group them so there are multiple queues per vector. 4186 * It is also important to go through all the vectors available to be 4187 * sure that if we don't use all the vectors, that the remaining vectors 4188 * are cleared. This is especially important when decreasing the 4189 * number of queues in use. 4190 */ 4191 for (; v_start < q_vectors; v_start++) { 4192 struct i40e_q_vector *q_vector = vsi->q_vectors[v_start]; 4193 4194 num_ringpairs = DIV_ROUND_UP(qp_remaining, q_vectors - v_start); 4195 4196 q_vector->num_ringpairs = num_ringpairs; 4197 q_vector->reg_idx = q_vector->v_idx + vsi->base_vector - 1; 4198 4199 q_vector->rx.count = 0; 4200 q_vector->tx.count = 0; 4201 q_vector->rx.ring = NULL; 4202 q_vector->tx.ring = NULL; 4203 4204 while (num_ringpairs--) { 4205 i40e_map_vector_to_qp(vsi, v_start, qp_idx); 4206 qp_idx++; 4207 qp_remaining--; 4208 } 4209 } 4210 } 4211 4212 /** 4213 * i40e_vsi_request_irq - Request IRQ from the OS 4214 * @vsi: the VSI being configured 4215 * @basename: name for the vector 4216 **/ 4217 static int i40e_vsi_request_irq(struct i40e_vsi *vsi, char *basename) 4218 { 4219 struct i40e_pf *pf = vsi->back; 4220 int err; 4221 4222 if (pf->flags & I40E_FLAG_MSIX_ENABLED) 4223 err = i40e_vsi_request_irq_msix(vsi, basename); 4224 else if (pf->flags & I40E_FLAG_MSI_ENABLED) 4225 err = request_irq(pf->pdev->irq, i40e_intr, 0, 4226 pf->int_name, pf); 4227 else 4228 err = request_irq(pf->pdev->irq, i40e_intr, IRQF_SHARED, 4229 pf->int_name, pf); 4230 4231 if (err) 4232 dev_info(&pf->pdev->dev, "request_irq failed, Error %d\n", err); 4233 4234 return err; 4235 } 4236 4237 #ifdef CONFIG_NET_POLL_CONTROLLER 4238 /** 4239 * i40e_netpoll - A Polling 'interrupt' handler 4240 * @netdev: network interface device structure 4241 * 4242 * This is used by netconsole to send skbs without having to re-enable 4243 * interrupts. It's not called while the normal interrupt routine is executing. 4244 **/ 4245 static void i40e_netpoll(struct net_device *netdev) 4246 { 4247 struct i40e_netdev_priv *np = netdev_priv(netdev); 4248 struct i40e_vsi *vsi = np->vsi; 4249 struct i40e_pf *pf = vsi->back; 4250 int i; 4251 4252 /* if interface is down do nothing */ 4253 if (test_bit(__I40E_VSI_DOWN, vsi->state)) 4254 return; 4255 4256 if (pf->flags & I40E_FLAG_MSIX_ENABLED) { 4257 for (i = 0; i < vsi->num_q_vectors; i++) 4258 i40e_msix_clean_rings(0, vsi->q_vectors[i]); 4259 } else { 4260 i40e_intr(pf->pdev->irq, netdev); 4261 } 4262 } 4263 #endif 4264 4265 #define I40E_QTX_ENA_WAIT_COUNT 50 4266 4267 /** 4268 * i40e_pf_txq_wait - Wait for a PF's Tx queue to be enabled or disabled 4269 * @pf: the PF being configured 4270 * @pf_q: the PF queue 4271 * @enable: enable or disable state of the queue 4272 * 4273 * This routine will wait for the given Tx queue of the PF to reach the 4274 * enabled or disabled state. 4275 * Returns -ETIMEDOUT in case of failing to reach the requested state after 4276 * multiple retries; else will return 0 in case of success. 4277 **/ 4278 static int i40e_pf_txq_wait(struct i40e_pf *pf, int pf_q, bool enable) 4279 { 4280 int i; 4281 u32 tx_reg; 4282 4283 for (i = 0; i < I40E_QUEUE_WAIT_RETRY_LIMIT; i++) { 4284 tx_reg = rd32(&pf->hw, I40E_QTX_ENA(pf_q)); 4285 if (enable == !!(tx_reg & I40E_QTX_ENA_QENA_STAT_MASK)) 4286 break; 4287 4288 usleep_range(10, 20); 4289 } 4290 if (i >= I40E_QUEUE_WAIT_RETRY_LIMIT) 4291 return -ETIMEDOUT; 4292 4293 return 0; 4294 } 4295 4296 /** 4297 * i40e_control_tx_q - Start or stop a particular Tx queue 4298 * @pf: the PF structure 4299 * @pf_q: the PF queue to configure 4300 * @enable: start or stop the queue 4301 * 4302 * This function enables or disables a single queue. Note that any delay 4303 * required after the operation is expected to be handled by the caller of 4304 * this function. 4305 **/ 4306 static void i40e_control_tx_q(struct i40e_pf *pf, int pf_q, bool enable) 4307 { 4308 struct i40e_hw *hw = &pf->hw; 4309 u32 tx_reg; 4310 int i; 4311 4312 /* warn the TX unit of coming changes */ 4313 i40e_pre_tx_queue_cfg(&pf->hw, pf_q, enable); 4314 if (!enable) 4315 usleep_range(10, 20); 4316 4317 for (i = 0; i < I40E_QTX_ENA_WAIT_COUNT; i++) { 4318 tx_reg = rd32(hw, I40E_QTX_ENA(pf_q)); 4319 if (((tx_reg >> I40E_QTX_ENA_QENA_REQ_SHIFT) & 1) == 4320 ((tx_reg >> I40E_QTX_ENA_QENA_STAT_SHIFT) & 1)) 4321 break; 4322 usleep_range(1000, 2000); 4323 } 4324 4325 /* Skip if the queue is already in the requested state */ 4326 if (enable == !!(tx_reg & I40E_QTX_ENA_QENA_STAT_MASK)) 4327 return; 4328 4329 /* turn on/off the queue */ 4330 if (enable) { 4331 wr32(hw, I40E_QTX_HEAD(pf_q), 0); 4332 tx_reg |= I40E_QTX_ENA_QENA_REQ_MASK; 4333 } else { 4334 tx_reg &= ~I40E_QTX_ENA_QENA_REQ_MASK; 4335 } 4336 4337 wr32(hw, I40E_QTX_ENA(pf_q), tx_reg); 4338 } 4339 4340 /** 4341 * i40e_control_wait_tx_q - Start/stop Tx queue and wait for completion 4342 * @seid: VSI SEID 4343 * @pf: the PF structure 4344 * @pf_q: the PF queue to configure 4345 * @is_xdp: true if the queue is used for XDP 4346 * @enable: start or stop the queue 4347 **/ 4348 int i40e_control_wait_tx_q(int seid, struct i40e_pf *pf, int pf_q, 4349 bool is_xdp, bool enable) 4350 { 4351 int ret; 4352 4353 i40e_control_tx_q(pf, pf_q, enable); 4354 4355 /* wait for the change to finish */ 4356 ret = i40e_pf_txq_wait(pf, pf_q, enable); 4357 if (ret) { 4358 dev_info(&pf->pdev->dev, 4359 "VSI seid %d %sTx ring %d %sable timeout\n", 4360 seid, (is_xdp ? "XDP " : ""), pf_q, 4361 (enable ? "en" : "dis")); 4362 } 4363 4364 return ret; 4365 } 4366 4367 /** 4368 * i40e_vsi_control_tx - Start or stop a VSI's rings 4369 * @vsi: the VSI being configured 4370 * @enable: start or stop the rings 4371 **/ 4372 static int i40e_vsi_control_tx(struct i40e_vsi *vsi, bool enable) 4373 { 4374 struct i40e_pf *pf = vsi->back; 4375 int i, pf_q, ret = 0; 4376 4377 pf_q = vsi->base_queue; 4378 for (i = 0; i < vsi->num_queue_pairs; i++, pf_q++) { 4379 ret = i40e_control_wait_tx_q(vsi->seid, pf, 4380 pf_q, 4381 false /*is xdp*/, enable); 4382 if (ret) 4383 break; 4384 4385 if (!i40e_enabled_xdp_vsi(vsi)) 4386 continue; 4387 4388 ret = i40e_control_wait_tx_q(vsi->seid, pf, 4389 pf_q + vsi->alloc_queue_pairs, 4390 true /*is xdp*/, enable); 4391 if (ret) 4392 break; 4393 } 4394 return ret; 4395 } 4396 4397 /** 4398 * i40e_pf_rxq_wait - Wait for a PF's Rx queue to be enabled or disabled 4399 * @pf: the PF being configured 4400 * @pf_q: the PF queue 4401 * @enable: enable or disable state of the queue 4402 * 4403 * This routine will wait for the given Rx queue of the PF to reach the 4404 * enabled or disabled state. 4405 * Returns -ETIMEDOUT in case of failing to reach the requested state after 4406 * multiple retries; else will return 0 in case of success. 4407 **/ 4408 static int i40e_pf_rxq_wait(struct i40e_pf *pf, int pf_q, bool enable) 4409 { 4410 int i; 4411 u32 rx_reg; 4412 4413 for (i = 0; i < I40E_QUEUE_WAIT_RETRY_LIMIT; i++) { 4414 rx_reg = rd32(&pf->hw, I40E_QRX_ENA(pf_q)); 4415 if (enable == !!(rx_reg & I40E_QRX_ENA_QENA_STAT_MASK)) 4416 break; 4417 4418 usleep_range(10, 20); 4419 } 4420 if (i >= I40E_QUEUE_WAIT_RETRY_LIMIT) 4421 return -ETIMEDOUT; 4422 4423 return 0; 4424 } 4425 4426 /** 4427 * i40e_control_rx_q - Start or stop a particular Rx queue 4428 * @pf: the PF structure 4429 * @pf_q: the PF queue to configure 4430 * @enable: start or stop the queue 4431 * 4432 * This function enables or disables a single queue. Note that 4433 * any delay required after the operation is expected to be 4434 * handled by the caller of this function. 4435 **/ 4436 static void i40e_control_rx_q(struct i40e_pf *pf, int pf_q, bool enable) 4437 { 4438 struct i40e_hw *hw = &pf->hw; 4439 u32 rx_reg; 4440 int i; 4441 4442 for (i = 0; i < I40E_QTX_ENA_WAIT_COUNT; i++) { 4443 rx_reg = rd32(hw, I40E_QRX_ENA(pf_q)); 4444 if (((rx_reg >> I40E_QRX_ENA_QENA_REQ_SHIFT) & 1) == 4445 ((rx_reg >> I40E_QRX_ENA_QENA_STAT_SHIFT) & 1)) 4446 break; 4447 usleep_range(1000, 2000); 4448 } 4449 4450 /* Skip if the queue is already in the requested state */ 4451 if (enable == !!(rx_reg & I40E_QRX_ENA_QENA_STAT_MASK)) 4452 return; 4453 4454 /* turn on/off the queue */ 4455 if (enable) 4456 rx_reg |= I40E_QRX_ENA_QENA_REQ_MASK; 4457 else 4458 rx_reg &= ~I40E_QRX_ENA_QENA_REQ_MASK; 4459 4460 wr32(hw, I40E_QRX_ENA(pf_q), rx_reg); 4461 } 4462 4463 /** 4464 * i40e_control_wait_rx_q 4465 * @pf: the PF structure 4466 * @pf_q: queue being configured 4467 * @enable: start or stop the rings 4468 * 4469 * This function enables or disables a single queue along with waiting 4470 * for the change to finish. The caller of this function should handle 4471 * the delays needed in the case of disabling queues. 4472 **/ 4473 int i40e_control_wait_rx_q(struct i40e_pf *pf, int pf_q, bool enable) 4474 { 4475 int ret = 0; 4476 4477 i40e_control_rx_q(pf, pf_q, enable); 4478 4479 /* wait for the change to finish */ 4480 ret = i40e_pf_rxq_wait(pf, pf_q, enable); 4481 if (ret) 4482 return ret; 4483 4484 return ret; 4485 } 4486 4487 /** 4488 * i40e_vsi_control_rx - Start or stop a VSI's rings 4489 * @vsi: the VSI being configured 4490 * @enable: start or stop the rings 4491 **/ 4492 static int i40e_vsi_control_rx(struct i40e_vsi *vsi, bool enable) 4493 { 4494 struct i40e_pf *pf = vsi->back; 4495 int i, pf_q, ret = 0; 4496 4497 pf_q = vsi->base_queue; 4498 for (i = 0; i < vsi->num_queue_pairs; i++, pf_q++) { 4499 ret = i40e_control_wait_rx_q(pf, pf_q, enable); 4500 if (ret) { 4501 dev_info(&pf->pdev->dev, 4502 "VSI seid %d Rx ring %d %sable timeout\n", 4503 vsi->seid, pf_q, (enable ? "en" : "dis")); 4504 break; 4505 } 4506 } 4507 4508 /* Due to HW errata, on Rx disable only, the register can indicate done 4509 * before it really is. Needs 50ms to be sure 4510 */ 4511 if (!enable) 4512 mdelay(50); 4513 4514 return ret; 4515 } 4516 4517 /** 4518 * i40e_vsi_start_rings - Start a VSI's rings 4519 * @vsi: the VSI being configured 4520 **/ 4521 int i40e_vsi_start_rings(struct i40e_vsi *vsi) 4522 { 4523 int ret = 0; 4524 4525 /* do rx first for enable and last for disable */ 4526 ret = i40e_vsi_control_rx(vsi, true); 4527 if (ret) 4528 return ret; 4529 ret = i40e_vsi_control_tx(vsi, true); 4530 4531 return ret; 4532 } 4533 4534 /** 4535 * i40e_vsi_stop_rings - Stop a VSI's rings 4536 * @vsi: the VSI being configured 4537 **/ 4538 void i40e_vsi_stop_rings(struct i40e_vsi *vsi) 4539 { 4540 /* When port TX is suspended, don't wait */ 4541 if (test_bit(__I40E_PORT_SUSPENDED, vsi->back->state)) 4542 return i40e_vsi_stop_rings_no_wait(vsi); 4543 4544 /* do rx first for enable and last for disable 4545 * Ignore return value, we need to shutdown whatever we can 4546 */ 4547 i40e_vsi_control_tx(vsi, false); 4548 i40e_vsi_control_rx(vsi, false); 4549 } 4550 4551 /** 4552 * i40e_vsi_stop_rings_no_wait - Stop a VSI's rings and do not delay 4553 * @vsi: the VSI being shutdown 4554 * 4555 * This function stops all the rings for a VSI but does not delay to verify 4556 * that rings have been disabled. It is expected that the caller is shutting 4557 * down multiple VSIs at once and will delay together for all the VSIs after 4558 * initiating the shutdown. This is particularly useful for shutting down lots 4559 * of VFs together. Otherwise, a large delay can be incurred while configuring 4560 * each VSI in serial. 4561 **/ 4562 void i40e_vsi_stop_rings_no_wait(struct i40e_vsi *vsi) 4563 { 4564 struct i40e_pf *pf = vsi->back; 4565 int i, pf_q; 4566 4567 pf_q = vsi->base_queue; 4568 for (i = 0; i < vsi->num_queue_pairs; i++, pf_q++) { 4569 i40e_control_tx_q(pf, pf_q, false); 4570 i40e_control_rx_q(pf, pf_q, false); 4571 } 4572 } 4573 4574 /** 4575 * i40e_vsi_free_irq - Free the irq association with the OS 4576 * @vsi: the VSI being configured 4577 **/ 4578 static void i40e_vsi_free_irq(struct i40e_vsi *vsi) 4579 { 4580 struct i40e_pf *pf = vsi->back; 4581 struct i40e_hw *hw = &pf->hw; 4582 int base = vsi->base_vector; 4583 u32 val, qp; 4584 int i; 4585 4586 if (pf->flags & I40E_FLAG_MSIX_ENABLED) { 4587 if (!vsi->q_vectors) 4588 return; 4589 4590 if (!vsi->irqs_ready) 4591 return; 4592 4593 vsi->irqs_ready = false; 4594 for (i = 0; i < vsi->num_q_vectors; i++) { 4595 int irq_num; 4596 u16 vector; 4597 4598 vector = i + base; 4599 irq_num = pf->msix_entries[vector].vector; 4600 4601 /* free only the irqs that were actually requested */ 4602 if (!vsi->q_vectors[i] || 4603 !vsi->q_vectors[i]->num_ringpairs) 4604 continue; 4605 4606 /* clear the affinity notifier in the IRQ descriptor */ 4607 irq_set_affinity_notifier(irq_num, NULL); 4608 /* remove our suggested affinity mask for this IRQ */ 4609 irq_set_affinity_hint(irq_num, NULL); 4610 synchronize_irq(irq_num); 4611 free_irq(irq_num, vsi->q_vectors[i]); 4612 4613 /* Tear down the interrupt queue link list 4614 * 4615 * We know that they come in pairs and always 4616 * the Rx first, then the Tx. To clear the 4617 * link list, stick the EOL value into the 4618 * next_q field of the registers. 4619 */ 4620 val = rd32(hw, I40E_PFINT_LNKLSTN(vector - 1)); 4621 qp = (val & I40E_PFINT_LNKLSTN_FIRSTQ_INDX_MASK) 4622 >> I40E_PFINT_LNKLSTN_FIRSTQ_INDX_SHIFT; 4623 val |= I40E_QUEUE_END_OF_LIST 4624 << I40E_PFINT_LNKLSTN_FIRSTQ_INDX_SHIFT; 4625 wr32(hw, I40E_PFINT_LNKLSTN(vector - 1), val); 4626 4627 while (qp != I40E_QUEUE_END_OF_LIST) { 4628 u32 next; 4629 4630 val = rd32(hw, I40E_QINT_RQCTL(qp)); 4631 4632 val &= ~(I40E_QINT_RQCTL_MSIX_INDX_MASK | 4633 I40E_QINT_RQCTL_MSIX0_INDX_MASK | 4634 I40E_QINT_RQCTL_CAUSE_ENA_MASK | 4635 I40E_QINT_RQCTL_INTEVENT_MASK); 4636 4637 val |= (I40E_QINT_RQCTL_ITR_INDX_MASK | 4638 I40E_QINT_RQCTL_NEXTQ_INDX_MASK); 4639 4640 wr32(hw, I40E_QINT_RQCTL(qp), val); 4641 4642 val = rd32(hw, I40E_QINT_TQCTL(qp)); 4643 4644 next = (val & I40E_QINT_TQCTL_NEXTQ_INDX_MASK) 4645 >> I40E_QINT_TQCTL_NEXTQ_INDX_SHIFT; 4646 4647 val &= ~(I40E_QINT_TQCTL_MSIX_INDX_MASK | 4648 I40E_QINT_TQCTL_MSIX0_INDX_MASK | 4649 I40E_QINT_TQCTL_CAUSE_ENA_MASK | 4650 I40E_QINT_TQCTL_INTEVENT_MASK); 4651 4652 val |= (I40E_QINT_TQCTL_ITR_INDX_MASK | 4653 I40E_QINT_TQCTL_NEXTQ_INDX_MASK); 4654 4655 wr32(hw, I40E_QINT_TQCTL(qp), val); 4656 qp = next; 4657 } 4658 } 4659 } else { 4660 free_irq(pf->pdev->irq, pf); 4661 4662 val = rd32(hw, I40E_PFINT_LNKLST0); 4663 qp = (val & I40E_PFINT_LNKLSTN_FIRSTQ_INDX_MASK) 4664 >> I40E_PFINT_LNKLSTN_FIRSTQ_INDX_SHIFT; 4665 val |= I40E_QUEUE_END_OF_LIST 4666 << I40E_PFINT_LNKLST0_FIRSTQ_INDX_SHIFT; 4667 wr32(hw, I40E_PFINT_LNKLST0, val); 4668 4669 val = rd32(hw, I40E_QINT_RQCTL(qp)); 4670 val &= ~(I40E_QINT_RQCTL_MSIX_INDX_MASK | 4671 I40E_QINT_RQCTL_MSIX0_INDX_MASK | 4672 I40E_QINT_RQCTL_CAUSE_ENA_MASK | 4673 I40E_QINT_RQCTL_INTEVENT_MASK); 4674 4675 val |= (I40E_QINT_RQCTL_ITR_INDX_MASK | 4676 I40E_QINT_RQCTL_NEXTQ_INDX_MASK); 4677 4678 wr32(hw, I40E_QINT_RQCTL(qp), val); 4679 4680 val = rd32(hw, I40E_QINT_TQCTL(qp)); 4681 4682 val &= ~(I40E_QINT_TQCTL_MSIX_INDX_MASK | 4683 I40E_QINT_TQCTL_MSIX0_INDX_MASK | 4684 I40E_QINT_TQCTL_CAUSE_ENA_MASK | 4685 I40E_QINT_TQCTL_INTEVENT_MASK); 4686 4687 val |= (I40E_QINT_TQCTL_ITR_INDX_MASK | 4688 I40E_QINT_TQCTL_NEXTQ_INDX_MASK); 4689 4690 wr32(hw, I40E_QINT_TQCTL(qp), val); 4691 } 4692 } 4693 4694 /** 4695 * i40e_free_q_vector - Free memory allocated for specific interrupt vector 4696 * @vsi: the VSI being configured 4697 * @v_idx: Index of vector to be freed 4698 * 4699 * This function frees the memory allocated to the q_vector. In addition if 4700 * NAPI is enabled it will delete any references to the NAPI struct prior 4701 * to freeing the q_vector. 4702 **/ 4703 static void i40e_free_q_vector(struct i40e_vsi *vsi, int v_idx) 4704 { 4705 struct i40e_q_vector *q_vector = vsi->q_vectors[v_idx]; 4706 struct i40e_ring *ring; 4707 4708 if (!q_vector) 4709 return; 4710 4711 /* disassociate q_vector from rings */ 4712 i40e_for_each_ring(ring, q_vector->tx) 4713 ring->q_vector = NULL; 4714 4715 i40e_for_each_ring(ring, q_vector->rx) 4716 ring->q_vector = NULL; 4717 4718 /* only VSI w/ an associated netdev is set up w/ NAPI */ 4719 if (vsi->netdev) 4720 netif_napi_del(&q_vector->napi); 4721 4722 vsi->q_vectors[v_idx] = NULL; 4723 4724 kfree_rcu(q_vector, rcu); 4725 } 4726 4727 /** 4728 * i40e_vsi_free_q_vectors - Free memory allocated for interrupt vectors 4729 * @vsi: the VSI being un-configured 4730 * 4731 * This frees the memory allocated to the q_vectors and 4732 * deletes references to the NAPI struct. 4733 **/ 4734 static void i40e_vsi_free_q_vectors(struct i40e_vsi *vsi) 4735 { 4736 int v_idx; 4737 4738 for (v_idx = 0; v_idx < vsi->num_q_vectors; v_idx++) 4739 i40e_free_q_vector(vsi, v_idx); 4740 } 4741 4742 /** 4743 * i40e_reset_interrupt_capability - Disable interrupt setup in OS 4744 * @pf: board private structure 4745 **/ 4746 static void i40e_reset_interrupt_capability(struct i40e_pf *pf) 4747 { 4748 /* If we're in Legacy mode, the interrupt was cleaned in vsi_close */ 4749 if (pf->flags & I40E_FLAG_MSIX_ENABLED) { 4750 pci_disable_msix(pf->pdev); 4751 kfree(pf->msix_entries); 4752 pf->msix_entries = NULL; 4753 kfree(pf->irq_pile); 4754 pf->irq_pile = NULL; 4755 } else if (pf->flags & I40E_FLAG_MSI_ENABLED) { 4756 pci_disable_msi(pf->pdev); 4757 } 4758 pf->flags &= ~(I40E_FLAG_MSIX_ENABLED | I40E_FLAG_MSI_ENABLED); 4759 } 4760 4761 /** 4762 * i40e_clear_interrupt_scheme - Clear the current interrupt scheme settings 4763 * @pf: board private structure 4764 * 4765 * We go through and clear interrupt specific resources and reset the structure 4766 * to pre-load conditions 4767 **/ 4768 static void i40e_clear_interrupt_scheme(struct i40e_pf *pf) 4769 { 4770 int i; 4771 4772 i40e_free_misc_vector(pf); 4773 4774 i40e_put_lump(pf->irq_pile, pf->iwarp_base_vector, 4775 I40E_IWARP_IRQ_PILE_ID); 4776 4777 i40e_put_lump(pf->irq_pile, 0, I40E_PILE_VALID_BIT-1); 4778 for (i = 0; i < pf->num_alloc_vsi; i++) 4779 if (pf->vsi[i]) 4780 i40e_vsi_free_q_vectors(pf->vsi[i]); 4781 i40e_reset_interrupt_capability(pf); 4782 } 4783 4784 /** 4785 * i40e_napi_enable_all - Enable NAPI for all q_vectors in the VSI 4786 * @vsi: the VSI being configured 4787 **/ 4788 static void i40e_napi_enable_all(struct i40e_vsi *vsi) 4789 { 4790 int q_idx; 4791 4792 if (!vsi->netdev) 4793 return; 4794 4795 for (q_idx = 0; q_idx < vsi->num_q_vectors; q_idx++) { 4796 struct i40e_q_vector *q_vector = vsi->q_vectors[q_idx]; 4797 4798 if (q_vector->rx.ring || q_vector->tx.ring) 4799 napi_enable(&q_vector->napi); 4800 } 4801 } 4802 4803 /** 4804 * i40e_napi_disable_all - Disable NAPI for all q_vectors in the VSI 4805 * @vsi: the VSI being configured 4806 **/ 4807 static void i40e_napi_disable_all(struct i40e_vsi *vsi) 4808 { 4809 int q_idx; 4810 4811 if (!vsi->netdev) 4812 return; 4813 4814 for (q_idx = 0; q_idx < vsi->num_q_vectors; q_idx++) { 4815 struct i40e_q_vector *q_vector = vsi->q_vectors[q_idx]; 4816 4817 if (q_vector->rx.ring || q_vector->tx.ring) 4818 napi_disable(&q_vector->napi); 4819 } 4820 } 4821 4822 /** 4823 * i40e_vsi_close - Shut down a VSI 4824 * @vsi: the vsi to be quelled 4825 **/ 4826 static void i40e_vsi_close(struct i40e_vsi *vsi) 4827 { 4828 struct i40e_pf *pf = vsi->back; 4829 if (!test_and_set_bit(__I40E_VSI_DOWN, vsi->state)) 4830 i40e_down(vsi); 4831 i40e_vsi_free_irq(vsi); 4832 i40e_vsi_free_tx_resources(vsi); 4833 i40e_vsi_free_rx_resources(vsi); 4834 vsi->current_netdev_flags = 0; 4835 set_bit(__I40E_CLIENT_SERVICE_REQUESTED, pf->state); 4836 if (test_bit(__I40E_RESET_RECOVERY_PENDING, pf->state)) 4837 set_bit(__I40E_CLIENT_RESET, pf->state); 4838 } 4839 4840 /** 4841 * i40e_quiesce_vsi - Pause a given VSI 4842 * @vsi: the VSI being paused 4843 **/ 4844 static void i40e_quiesce_vsi(struct i40e_vsi *vsi) 4845 { 4846 if (test_bit(__I40E_VSI_DOWN, vsi->state)) 4847 return; 4848 4849 set_bit(__I40E_VSI_NEEDS_RESTART, vsi->state); 4850 if (vsi->netdev && netif_running(vsi->netdev)) 4851 vsi->netdev->netdev_ops->ndo_stop(vsi->netdev); 4852 else 4853 i40e_vsi_close(vsi); 4854 } 4855 4856 /** 4857 * i40e_unquiesce_vsi - Resume a given VSI 4858 * @vsi: the VSI being resumed 4859 **/ 4860 static void i40e_unquiesce_vsi(struct i40e_vsi *vsi) 4861 { 4862 if (!test_and_clear_bit(__I40E_VSI_NEEDS_RESTART, vsi->state)) 4863 return; 4864 4865 if (vsi->netdev && netif_running(vsi->netdev)) 4866 vsi->netdev->netdev_ops->ndo_open(vsi->netdev); 4867 else 4868 i40e_vsi_open(vsi); /* this clears the DOWN bit */ 4869 } 4870 4871 /** 4872 * i40e_pf_quiesce_all_vsi - Pause all VSIs on a PF 4873 * @pf: the PF 4874 **/ 4875 static void i40e_pf_quiesce_all_vsi(struct i40e_pf *pf) 4876 { 4877 int v; 4878 4879 for (v = 0; v < pf->num_alloc_vsi; v++) { 4880 if (pf->vsi[v]) 4881 i40e_quiesce_vsi(pf->vsi[v]); 4882 } 4883 } 4884 4885 /** 4886 * i40e_pf_unquiesce_all_vsi - Resume all VSIs on a PF 4887 * @pf: the PF 4888 **/ 4889 static void i40e_pf_unquiesce_all_vsi(struct i40e_pf *pf) 4890 { 4891 int v; 4892 4893 for (v = 0; v < pf->num_alloc_vsi; v++) { 4894 if (pf->vsi[v]) 4895 i40e_unquiesce_vsi(pf->vsi[v]); 4896 } 4897 } 4898 4899 /** 4900 * i40e_vsi_wait_queues_disabled - Wait for VSI's queues to be disabled 4901 * @vsi: the VSI being configured 4902 * 4903 * Wait until all queues on a given VSI have been disabled. 4904 **/ 4905 int i40e_vsi_wait_queues_disabled(struct i40e_vsi *vsi) 4906 { 4907 struct i40e_pf *pf = vsi->back; 4908 int i, pf_q, ret; 4909 4910 pf_q = vsi->base_queue; 4911 for (i = 0; i < vsi->num_queue_pairs; i++, pf_q++) { 4912 /* Check and wait for the Tx queue */ 4913 ret = i40e_pf_txq_wait(pf, pf_q, false); 4914 if (ret) { 4915 dev_info(&pf->pdev->dev, 4916 "VSI seid %d Tx ring %d disable timeout\n", 4917 vsi->seid, pf_q); 4918 return ret; 4919 } 4920 4921 if (!i40e_enabled_xdp_vsi(vsi)) 4922 goto wait_rx; 4923 4924 /* Check and wait for the XDP Tx queue */ 4925 ret = i40e_pf_txq_wait(pf, pf_q + vsi->alloc_queue_pairs, 4926 false); 4927 if (ret) { 4928 dev_info(&pf->pdev->dev, 4929 "VSI seid %d XDP Tx ring %d disable timeout\n", 4930 vsi->seid, pf_q); 4931 return ret; 4932 } 4933 wait_rx: 4934 /* Check and wait for the Rx queue */ 4935 ret = i40e_pf_rxq_wait(pf, pf_q, false); 4936 if (ret) { 4937 dev_info(&pf->pdev->dev, 4938 "VSI seid %d Rx ring %d disable timeout\n", 4939 vsi->seid, pf_q); 4940 return ret; 4941 } 4942 } 4943 4944 return 0; 4945 } 4946 4947 #ifdef CONFIG_I40E_DCB 4948 /** 4949 * i40e_pf_wait_queues_disabled - Wait for all queues of PF VSIs to be disabled 4950 * @pf: the PF 4951 * 4952 * This function waits for the queues to be in disabled state for all the 4953 * VSIs that are managed by this PF. 4954 **/ 4955 static int i40e_pf_wait_queues_disabled(struct i40e_pf *pf) 4956 { 4957 int v, ret = 0; 4958 4959 for (v = 0; v < pf->hw.func_caps.num_vsis; v++) { 4960 if (pf->vsi[v]) { 4961 ret = i40e_vsi_wait_queues_disabled(pf->vsi[v]); 4962 if (ret) 4963 break; 4964 } 4965 } 4966 4967 return ret; 4968 } 4969 4970 #endif 4971 4972 /** 4973 * i40e_get_iscsi_tc_map - Return TC map for iSCSI APP 4974 * @pf: pointer to PF 4975 * 4976 * Get TC map for ISCSI PF type that will include iSCSI TC 4977 * and LAN TC. 4978 **/ 4979 static u8 i40e_get_iscsi_tc_map(struct i40e_pf *pf) 4980 { 4981 struct i40e_dcb_app_priority_table app; 4982 struct i40e_hw *hw = &pf->hw; 4983 u8 enabled_tc = 1; /* TC0 is always enabled */ 4984 u8 tc, i; 4985 /* Get the iSCSI APP TLV */ 4986 struct i40e_dcbx_config *dcbcfg = &hw->local_dcbx_config; 4987 4988 for (i = 0; i < dcbcfg->numapps; i++) { 4989 app = dcbcfg->app[i]; 4990 if (app.selector == I40E_APP_SEL_TCPIP && 4991 app.protocolid == I40E_APP_PROTOID_ISCSI) { 4992 tc = dcbcfg->etscfg.prioritytable[app.priority]; 4993 enabled_tc |= BIT(tc); 4994 break; 4995 } 4996 } 4997 4998 return enabled_tc; 4999 } 5000 5001 /** 5002 * i40e_dcb_get_num_tc - Get the number of TCs from DCBx config 5003 * @dcbcfg: the corresponding DCBx configuration structure 5004 * 5005 * Return the number of TCs from given DCBx configuration 5006 **/ 5007 static u8 i40e_dcb_get_num_tc(struct i40e_dcbx_config *dcbcfg) 5008 { 5009 int i, tc_unused = 0; 5010 u8 num_tc = 0; 5011 u8 ret = 0; 5012 5013 /* Scan the ETS Config Priority Table to find 5014 * traffic class enabled for a given priority 5015 * and create a bitmask of enabled TCs 5016 */ 5017 for (i = 0; i < I40E_MAX_USER_PRIORITY; i++) 5018 num_tc |= BIT(dcbcfg->etscfg.prioritytable[i]); 5019 5020 /* Now scan the bitmask to check for 5021 * contiguous TCs starting with TC0 5022 */ 5023 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 5024 if (num_tc & BIT(i)) { 5025 if (!tc_unused) { 5026 ret++; 5027 } else { 5028 pr_err("Non-contiguous TC - Disabling DCB\n"); 5029 return 1; 5030 } 5031 } else { 5032 tc_unused = 1; 5033 } 5034 } 5035 5036 /* There is always at least TC0 */ 5037 if (!ret) 5038 ret = 1; 5039 5040 return ret; 5041 } 5042 5043 /** 5044 * i40e_dcb_get_enabled_tc - Get enabled traffic classes 5045 * @dcbcfg: the corresponding DCBx configuration structure 5046 * 5047 * Query the current DCB configuration and return the number of 5048 * traffic classes enabled from the given DCBX config 5049 **/ 5050 static u8 i40e_dcb_get_enabled_tc(struct i40e_dcbx_config *dcbcfg) 5051 { 5052 u8 num_tc = i40e_dcb_get_num_tc(dcbcfg); 5053 u8 enabled_tc = 1; 5054 u8 i; 5055 5056 for (i = 0; i < num_tc; i++) 5057 enabled_tc |= BIT(i); 5058 5059 return enabled_tc; 5060 } 5061 5062 /** 5063 * i40e_mqprio_get_enabled_tc - Get enabled traffic classes 5064 * @pf: PF being queried 5065 * 5066 * Query the current MQPRIO configuration and return the number of 5067 * traffic classes enabled. 5068 **/ 5069 static u8 i40e_mqprio_get_enabled_tc(struct i40e_pf *pf) 5070 { 5071 struct i40e_vsi *vsi = pf->vsi[pf->lan_vsi]; 5072 u8 num_tc = vsi->mqprio_qopt.qopt.num_tc; 5073 u8 enabled_tc = 1, i; 5074 5075 for (i = 1; i < num_tc; i++) 5076 enabled_tc |= BIT(i); 5077 return enabled_tc; 5078 } 5079 5080 /** 5081 * i40e_pf_get_num_tc - Get enabled traffic classes for PF 5082 * @pf: PF being queried 5083 * 5084 * Return number of traffic classes enabled for the given PF 5085 **/ 5086 static u8 i40e_pf_get_num_tc(struct i40e_pf *pf) 5087 { 5088 struct i40e_hw *hw = &pf->hw; 5089 u8 i, enabled_tc = 1; 5090 u8 num_tc = 0; 5091 struct i40e_dcbx_config *dcbcfg = &hw->local_dcbx_config; 5092 5093 if (pf->flags & I40E_FLAG_TC_MQPRIO) 5094 return pf->vsi[pf->lan_vsi]->mqprio_qopt.qopt.num_tc; 5095 5096 /* If neither MQPRIO nor DCB is enabled, then always use single TC */ 5097 if (!(pf->flags & I40E_FLAG_DCB_ENABLED)) 5098 return 1; 5099 5100 /* SFP mode will be enabled for all TCs on port */ 5101 if (!(pf->flags & I40E_FLAG_MFP_ENABLED)) 5102 return i40e_dcb_get_num_tc(dcbcfg); 5103 5104 /* MFP mode return count of enabled TCs for this PF */ 5105 if (pf->hw.func_caps.iscsi) 5106 enabled_tc = i40e_get_iscsi_tc_map(pf); 5107 else 5108 return 1; /* Only TC0 */ 5109 5110 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 5111 if (enabled_tc & BIT(i)) 5112 num_tc++; 5113 } 5114 return num_tc; 5115 } 5116 5117 /** 5118 * i40e_pf_get_pf_tc_map - Get bitmap for enabled traffic classes 5119 * @pf: PF being queried 5120 * 5121 * Return a bitmap for enabled traffic classes for this PF. 5122 **/ 5123 static u8 i40e_pf_get_tc_map(struct i40e_pf *pf) 5124 { 5125 if (pf->flags & I40E_FLAG_TC_MQPRIO) 5126 return i40e_mqprio_get_enabled_tc(pf); 5127 5128 /* If neither MQPRIO nor DCB is enabled for this PF then just return 5129 * default TC 5130 */ 5131 if (!(pf->flags & I40E_FLAG_DCB_ENABLED)) 5132 return I40E_DEFAULT_TRAFFIC_CLASS; 5133 5134 /* SFP mode we want PF to be enabled for all TCs */ 5135 if (!(pf->flags & I40E_FLAG_MFP_ENABLED)) 5136 return i40e_dcb_get_enabled_tc(&pf->hw.local_dcbx_config); 5137 5138 /* MFP enabled and iSCSI PF type */ 5139 if (pf->hw.func_caps.iscsi) 5140 return i40e_get_iscsi_tc_map(pf); 5141 else 5142 return I40E_DEFAULT_TRAFFIC_CLASS; 5143 } 5144 5145 /** 5146 * i40e_vsi_get_bw_info - Query VSI BW Information 5147 * @vsi: the VSI being queried 5148 * 5149 * Returns 0 on success, negative value on failure 5150 **/ 5151 static int i40e_vsi_get_bw_info(struct i40e_vsi *vsi) 5152 { 5153 struct i40e_aqc_query_vsi_ets_sla_config_resp bw_ets_config = {0}; 5154 struct i40e_aqc_query_vsi_bw_config_resp bw_config = {0}; 5155 struct i40e_pf *pf = vsi->back; 5156 struct i40e_hw *hw = &pf->hw; 5157 i40e_status ret; 5158 u32 tc_bw_max; 5159 int i; 5160 5161 /* Get the VSI level BW configuration */ 5162 ret = i40e_aq_query_vsi_bw_config(hw, vsi->seid, &bw_config, NULL); 5163 if (ret) { 5164 dev_info(&pf->pdev->dev, 5165 "couldn't get PF vsi bw config, err %s aq_err %s\n", 5166 i40e_stat_str(&pf->hw, ret), 5167 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 5168 return -EINVAL; 5169 } 5170 5171 /* Get the VSI level BW configuration per TC */ 5172 ret = i40e_aq_query_vsi_ets_sla_config(hw, vsi->seid, &bw_ets_config, 5173 NULL); 5174 if (ret) { 5175 dev_info(&pf->pdev->dev, 5176 "couldn't get PF vsi ets bw config, err %s aq_err %s\n", 5177 i40e_stat_str(&pf->hw, ret), 5178 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 5179 return -EINVAL; 5180 } 5181 5182 if (bw_config.tc_valid_bits != bw_ets_config.tc_valid_bits) { 5183 dev_info(&pf->pdev->dev, 5184 "Enabled TCs mismatch from querying VSI BW info 0x%08x 0x%08x\n", 5185 bw_config.tc_valid_bits, 5186 bw_ets_config.tc_valid_bits); 5187 /* Still continuing */ 5188 } 5189 5190 vsi->bw_limit = le16_to_cpu(bw_config.port_bw_limit); 5191 vsi->bw_max_quanta = bw_config.max_bw; 5192 tc_bw_max = le16_to_cpu(bw_ets_config.tc_bw_max[0]) | 5193 (le16_to_cpu(bw_ets_config.tc_bw_max[1]) << 16); 5194 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 5195 vsi->bw_ets_share_credits[i] = bw_ets_config.share_credits[i]; 5196 vsi->bw_ets_limit_credits[i] = 5197 le16_to_cpu(bw_ets_config.credits[i]); 5198 /* 3 bits out of 4 for each TC */ 5199 vsi->bw_ets_max_quanta[i] = (u8)((tc_bw_max >> (i*4)) & 0x7); 5200 } 5201 5202 return 0; 5203 } 5204 5205 /** 5206 * i40e_vsi_configure_bw_alloc - Configure VSI BW allocation per TC 5207 * @vsi: the VSI being configured 5208 * @enabled_tc: TC bitmap 5209 * @bw_share: BW shared credits per TC 5210 * 5211 * Returns 0 on success, negative value on failure 5212 **/ 5213 static int i40e_vsi_configure_bw_alloc(struct i40e_vsi *vsi, u8 enabled_tc, 5214 u8 *bw_share) 5215 { 5216 struct i40e_aqc_configure_vsi_tc_bw_data bw_data; 5217 struct i40e_pf *pf = vsi->back; 5218 i40e_status ret; 5219 int i; 5220 5221 /* There is no need to reset BW when mqprio mode is on. */ 5222 if (pf->flags & I40E_FLAG_TC_MQPRIO) 5223 return 0; 5224 if (!vsi->mqprio_qopt.qopt.hw && !(pf->flags & I40E_FLAG_DCB_ENABLED)) { 5225 ret = i40e_set_bw_limit(vsi, vsi->seid, 0); 5226 if (ret) 5227 dev_info(&pf->pdev->dev, 5228 "Failed to reset tx rate for vsi->seid %u\n", 5229 vsi->seid); 5230 return ret; 5231 } 5232 bw_data.tc_valid_bits = enabled_tc; 5233 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) 5234 bw_data.tc_bw_credits[i] = bw_share[i]; 5235 5236 ret = i40e_aq_config_vsi_tc_bw(&pf->hw, vsi->seid, &bw_data, NULL); 5237 if (ret) { 5238 dev_info(&pf->pdev->dev, 5239 "AQ command Config VSI BW allocation per TC failed = %d\n", 5240 pf->hw.aq.asq_last_status); 5241 return -EINVAL; 5242 } 5243 5244 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) 5245 vsi->info.qs_handle[i] = bw_data.qs_handles[i]; 5246 5247 return 0; 5248 } 5249 5250 /** 5251 * i40e_vsi_config_netdev_tc - Setup the netdev TC configuration 5252 * @vsi: the VSI being configured 5253 * @enabled_tc: TC map to be enabled 5254 * 5255 **/ 5256 static void i40e_vsi_config_netdev_tc(struct i40e_vsi *vsi, u8 enabled_tc) 5257 { 5258 struct net_device *netdev = vsi->netdev; 5259 struct i40e_pf *pf = vsi->back; 5260 struct i40e_hw *hw = &pf->hw; 5261 u8 netdev_tc = 0; 5262 int i; 5263 struct i40e_dcbx_config *dcbcfg = &hw->local_dcbx_config; 5264 5265 if (!netdev) 5266 return; 5267 5268 if (!enabled_tc) { 5269 netdev_reset_tc(netdev); 5270 return; 5271 } 5272 5273 /* Set up actual enabled TCs on the VSI */ 5274 if (netdev_set_num_tc(netdev, vsi->tc_config.numtc)) 5275 return; 5276 5277 /* set per TC queues for the VSI */ 5278 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 5279 /* Only set TC queues for enabled tcs 5280 * 5281 * e.g. For a VSI that has TC0 and TC3 enabled the 5282 * enabled_tc bitmap would be 0x00001001; the driver 5283 * will set the numtc for netdev as 2 that will be 5284 * referenced by the netdev layer as TC 0 and 1. 5285 */ 5286 if (vsi->tc_config.enabled_tc & BIT(i)) 5287 netdev_set_tc_queue(netdev, 5288 vsi->tc_config.tc_info[i].netdev_tc, 5289 vsi->tc_config.tc_info[i].qcount, 5290 vsi->tc_config.tc_info[i].qoffset); 5291 } 5292 5293 if (pf->flags & I40E_FLAG_TC_MQPRIO) 5294 return; 5295 5296 /* Assign UP2TC map for the VSI */ 5297 for (i = 0; i < I40E_MAX_USER_PRIORITY; i++) { 5298 /* Get the actual TC# for the UP */ 5299 u8 ets_tc = dcbcfg->etscfg.prioritytable[i]; 5300 /* Get the mapped netdev TC# for the UP */ 5301 netdev_tc = vsi->tc_config.tc_info[ets_tc].netdev_tc; 5302 netdev_set_prio_tc_map(netdev, i, netdev_tc); 5303 } 5304 } 5305 5306 /** 5307 * i40e_vsi_update_queue_map - Update our copy of VSi info with new queue map 5308 * @vsi: the VSI being configured 5309 * @ctxt: the ctxt buffer returned from AQ VSI update param command 5310 **/ 5311 static void i40e_vsi_update_queue_map(struct i40e_vsi *vsi, 5312 struct i40e_vsi_context *ctxt) 5313 { 5314 /* copy just the sections touched not the entire info 5315 * since not all sections are valid as returned by 5316 * update vsi params 5317 */ 5318 vsi->info.mapping_flags = ctxt->info.mapping_flags; 5319 memcpy(&vsi->info.queue_mapping, 5320 &ctxt->info.queue_mapping, sizeof(vsi->info.queue_mapping)); 5321 memcpy(&vsi->info.tc_mapping, ctxt->info.tc_mapping, 5322 sizeof(vsi->info.tc_mapping)); 5323 } 5324 5325 /** 5326 * i40e_vsi_config_tc - Configure VSI Tx Scheduler for given TC map 5327 * @vsi: VSI to be configured 5328 * @enabled_tc: TC bitmap 5329 * 5330 * This configures a particular VSI for TCs that are mapped to the 5331 * given TC bitmap. It uses default bandwidth share for TCs across 5332 * VSIs to configure TC for a particular VSI. 5333 * 5334 * NOTE: 5335 * It is expected that the VSI queues have been quisced before calling 5336 * this function. 5337 **/ 5338 static int i40e_vsi_config_tc(struct i40e_vsi *vsi, u8 enabled_tc) 5339 { 5340 u8 bw_share[I40E_MAX_TRAFFIC_CLASS] = {0}; 5341 struct i40e_pf *pf = vsi->back; 5342 struct i40e_hw *hw = &pf->hw; 5343 struct i40e_vsi_context ctxt; 5344 int ret = 0; 5345 int i; 5346 5347 /* Check if enabled_tc is same as existing or new TCs */ 5348 if (vsi->tc_config.enabled_tc == enabled_tc && 5349 vsi->mqprio_qopt.mode != TC_MQPRIO_MODE_CHANNEL) 5350 return ret; 5351 5352 /* Enable ETS TCs with equal BW Share for now across all VSIs */ 5353 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 5354 if (enabled_tc & BIT(i)) 5355 bw_share[i] = 1; 5356 } 5357 5358 ret = i40e_vsi_configure_bw_alloc(vsi, enabled_tc, bw_share); 5359 if (ret) { 5360 struct i40e_aqc_query_vsi_bw_config_resp bw_config = {0}; 5361 5362 dev_info(&pf->pdev->dev, 5363 "Failed configuring TC map %d for VSI %d\n", 5364 enabled_tc, vsi->seid); 5365 ret = i40e_aq_query_vsi_bw_config(hw, vsi->seid, 5366 &bw_config, NULL); 5367 if (ret) { 5368 dev_info(&pf->pdev->dev, 5369 "Failed querying vsi bw info, err %s aq_err %s\n", 5370 i40e_stat_str(hw, ret), 5371 i40e_aq_str(hw, hw->aq.asq_last_status)); 5372 goto out; 5373 } 5374 if ((bw_config.tc_valid_bits & enabled_tc) != enabled_tc) { 5375 u8 valid_tc = bw_config.tc_valid_bits & enabled_tc; 5376 5377 if (!valid_tc) 5378 valid_tc = bw_config.tc_valid_bits; 5379 /* Always enable TC0, no matter what */ 5380 valid_tc |= 1; 5381 dev_info(&pf->pdev->dev, 5382 "Requested tc 0x%x, but FW reports 0x%x as valid. Attempting to use 0x%x.\n", 5383 enabled_tc, bw_config.tc_valid_bits, valid_tc); 5384 enabled_tc = valid_tc; 5385 } 5386 5387 ret = i40e_vsi_configure_bw_alloc(vsi, enabled_tc, bw_share); 5388 if (ret) { 5389 dev_err(&pf->pdev->dev, 5390 "Unable to configure TC map %d for VSI %d\n", 5391 enabled_tc, vsi->seid); 5392 goto out; 5393 } 5394 } 5395 5396 /* Update Queue Pairs Mapping for currently enabled UPs */ 5397 ctxt.seid = vsi->seid; 5398 ctxt.pf_num = vsi->back->hw.pf_id; 5399 ctxt.vf_num = 0; 5400 ctxt.uplink_seid = vsi->uplink_seid; 5401 ctxt.info = vsi->info; 5402 if (vsi->back->flags & I40E_FLAG_TC_MQPRIO) { 5403 ret = i40e_vsi_setup_queue_map_mqprio(vsi, &ctxt, enabled_tc); 5404 if (ret) 5405 goto out; 5406 } else { 5407 i40e_vsi_setup_queue_map(vsi, &ctxt, enabled_tc, false); 5408 } 5409 5410 /* On destroying the qdisc, reset vsi->rss_size, as number of enabled 5411 * queues changed. 5412 */ 5413 if (!vsi->mqprio_qopt.qopt.hw && vsi->reconfig_rss) { 5414 vsi->rss_size = min_t(int, vsi->back->alloc_rss_size, 5415 vsi->num_queue_pairs); 5416 ret = i40e_vsi_config_rss(vsi); 5417 if (ret) { 5418 dev_info(&vsi->back->pdev->dev, 5419 "Failed to reconfig rss for num_queues\n"); 5420 return ret; 5421 } 5422 vsi->reconfig_rss = false; 5423 } 5424 if (vsi->back->flags & I40E_FLAG_IWARP_ENABLED) { 5425 ctxt.info.valid_sections |= 5426 cpu_to_le16(I40E_AQ_VSI_PROP_QUEUE_OPT_VALID); 5427 ctxt.info.queueing_opt_flags |= I40E_AQ_VSI_QUE_OPT_TCP_ENA; 5428 } 5429 5430 /* Update the VSI after updating the VSI queue-mapping 5431 * information 5432 */ 5433 ret = i40e_aq_update_vsi_params(hw, &ctxt, NULL); 5434 if (ret) { 5435 dev_info(&pf->pdev->dev, 5436 "Update vsi tc config failed, err %s aq_err %s\n", 5437 i40e_stat_str(hw, ret), 5438 i40e_aq_str(hw, hw->aq.asq_last_status)); 5439 goto out; 5440 } 5441 /* update the local VSI info with updated queue map */ 5442 i40e_vsi_update_queue_map(vsi, &ctxt); 5443 vsi->info.valid_sections = 0; 5444 5445 /* Update current VSI BW information */ 5446 ret = i40e_vsi_get_bw_info(vsi); 5447 if (ret) { 5448 dev_info(&pf->pdev->dev, 5449 "Failed updating vsi bw info, err %s aq_err %s\n", 5450 i40e_stat_str(hw, ret), 5451 i40e_aq_str(hw, hw->aq.asq_last_status)); 5452 goto out; 5453 } 5454 5455 /* Update the netdev TC setup */ 5456 i40e_vsi_config_netdev_tc(vsi, enabled_tc); 5457 out: 5458 return ret; 5459 } 5460 5461 /** 5462 * i40e_get_link_speed - Returns link speed for the interface 5463 * @vsi: VSI to be configured 5464 * 5465 **/ 5466 static int i40e_get_link_speed(struct i40e_vsi *vsi) 5467 { 5468 struct i40e_pf *pf = vsi->back; 5469 5470 switch (pf->hw.phy.link_info.link_speed) { 5471 case I40E_LINK_SPEED_40GB: 5472 return 40000; 5473 case I40E_LINK_SPEED_25GB: 5474 return 25000; 5475 case I40E_LINK_SPEED_20GB: 5476 return 20000; 5477 case I40E_LINK_SPEED_10GB: 5478 return 10000; 5479 case I40E_LINK_SPEED_1GB: 5480 return 1000; 5481 default: 5482 return -EINVAL; 5483 } 5484 } 5485 5486 /** 5487 * i40e_set_bw_limit - setup BW limit for Tx traffic based on max_tx_rate 5488 * @vsi: VSI to be configured 5489 * @seid: seid of the channel/VSI 5490 * @max_tx_rate: max TX rate to be configured as BW limit 5491 * 5492 * Helper function to set BW limit for a given VSI 5493 **/ 5494 int i40e_set_bw_limit(struct i40e_vsi *vsi, u16 seid, u64 max_tx_rate) 5495 { 5496 struct i40e_pf *pf = vsi->back; 5497 u64 credits = 0; 5498 int speed = 0; 5499 int ret = 0; 5500 5501 speed = i40e_get_link_speed(vsi); 5502 if (max_tx_rate > speed) { 5503 dev_err(&pf->pdev->dev, 5504 "Invalid max tx rate %llu specified for VSI seid %d.", 5505 max_tx_rate, seid); 5506 return -EINVAL; 5507 } 5508 if (max_tx_rate && max_tx_rate < 50) { 5509 dev_warn(&pf->pdev->dev, 5510 "Setting max tx rate to minimum usable value of 50Mbps.\n"); 5511 max_tx_rate = 50; 5512 } 5513 5514 /* Tx rate credits are in values of 50Mbps, 0 is disabled */ 5515 credits = max_tx_rate; 5516 do_div(credits, I40E_BW_CREDIT_DIVISOR); 5517 ret = i40e_aq_config_vsi_bw_limit(&pf->hw, seid, credits, 5518 I40E_MAX_BW_INACTIVE_ACCUM, NULL); 5519 if (ret) 5520 dev_err(&pf->pdev->dev, 5521 "Failed set tx rate (%llu Mbps) for vsi->seid %u, err %s aq_err %s\n", 5522 max_tx_rate, seid, i40e_stat_str(&pf->hw, ret), 5523 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 5524 return ret; 5525 } 5526 5527 /** 5528 * i40e_remove_queue_channels - Remove queue channels for the TCs 5529 * @vsi: VSI to be configured 5530 * 5531 * Remove queue channels for the TCs 5532 **/ 5533 static void i40e_remove_queue_channels(struct i40e_vsi *vsi) 5534 { 5535 enum i40e_admin_queue_err last_aq_status; 5536 struct i40e_cloud_filter *cfilter; 5537 struct i40e_channel *ch, *ch_tmp; 5538 struct i40e_pf *pf = vsi->back; 5539 struct hlist_node *node; 5540 int ret, i; 5541 5542 /* Reset rss size that was stored when reconfiguring rss for 5543 * channel VSIs with non-power-of-2 queue count. 5544 */ 5545 vsi->current_rss_size = 0; 5546 5547 /* perform cleanup for channels if they exist */ 5548 if (list_empty(&vsi->ch_list)) 5549 return; 5550 5551 list_for_each_entry_safe(ch, ch_tmp, &vsi->ch_list, list) { 5552 struct i40e_vsi *p_vsi; 5553 5554 list_del(&ch->list); 5555 p_vsi = ch->parent_vsi; 5556 if (!p_vsi || !ch->initialized) { 5557 kfree(ch); 5558 continue; 5559 } 5560 /* Reset queue contexts */ 5561 for (i = 0; i < ch->num_queue_pairs; i++) { 5562 struct i40e_ring *tx_ring, *rx_ring; 5563 u16 pf_q; 5564 5565 pf_q = ch->base_queue + i; 5566 tx_ring = vsi->tx_rings[pf_q]; 5567 tx_ring->ch = NULL; 5568 5569 rx_ring = vsi->rx_rings[pf_q]; 5570 rx_ring->ch = NULL; 5571 } 5572 5573 /* Reset BW configured for this VSI via mqprio */ 5574 ret = i40e_set_bw_limit(vsi, ch->seid, 0); 5575 if (ret) 5576 dev_info(&vsi->back->pdev->dev, 5577 "Failed to reset tx rate for ch->seid %u\n", 5578 ch->seid); 5579 5580 /* delete cloud filters associated with this channel */ 5581 hlist_for_each_entry_safe(cfilter, node, 5582 &pf->cloud_filter_list, cloud_node) { 5583 if (cfilter->seid != ch->seid) 5584 continue; 5585 5586 hash_del(&cfilter->cloud_node); 5587 if (cfilter->dst_port) 5588 ret = i40e_add_del_cloud_filter_big_buf(vsi, 5589 cfilter, 5590 false); 5591 else 5592 ret = i40e_add_del_cloud_filter(vsi, cfilter, 5593 false); 5594 last_aq_status = pf->hw.aq.asq_last_status; 5595 if (ret) 5596 dev_info(&pf->pdev->dev, 5597 "Failed to delete cloud filter, err %s aq_err %s\n", 5598 i40e_stat_str(&pf->hw, ret), 5599 i40e_aq_str(&pf->hw, last_aq_status)); 5600 kfree(cfilter); 5601 } 5602 5603 /* delete VSI from FW */ 5604 ret = i40e_aq_delete_element(&vsi->back->hw, ch->seid, 5605 NULL); 5606 if (ret) 5607 dev_err(&vsi->back->pdev->dev, 5608 "unable to remove channel (%d) for parent VSI(%d)\n", 5609 ch->seid, p_vsi->seid); 5610 kfree(ch); 5611 } 5612 INIT_LIST_HEAD(&vsi->ch_list); 5613 } 5614 5615 /** 5616 * i40e_is_any_channel - channel exist or not 5617 * @vsi: ptr to VSI to which channels are associated with 5618 * 5619 * Returns true or false if channel(s) exist for associated VSI or not 5620 **/ 5621 static bool i40e_is_any_channel(struct i40e_vsi *vsi) 5622 { 5623 struct i40e_channel *ch, *ch_tmp; 5624 5625 list_for_each_entry_safe(ch, ch_tmp, &vsi->ch_list, list) { 5626 if (ch->initialized) 5627 return true; 5628 } 5629 5630 return false; 5631 } 5632 5633 /** 5634 * i40e_get_max_queues_for_channel 5635 * @vsi: ptr to VSI to which channels are associated with 5636 * 5637 * Helper function which returns max value among the queue counts set on the 5638 * channels/TCs created. 5639 **/ 5640 static int i40e_get_max_queues_for_channel(struct i40e_vsi *vsi) 5641 { 5642 struct i40e_channel *ch, *ch_tmp; 5643 int max = 0; 5644 5645 list_for_each_entry_safe(ch, ch_tmp, &vsi->ch_list, list) { 5646 if (!ch->initialized) 5647 continue; 5648 if (ch->num_queue_pairs > max) 5649 max = ch->num_queue_pairs; 5650 } 5651 5652 return max; 5653 } 5654 5655 /** 5656 * i40e_validate_num_queues - validate num_queues w.r.t channel 5657 * @pf: ptr to PF device 5658 * @num_queues: number of queues 5659 * @vsi: the parent VSI 5660 * @reconfig_rss: indicates should the RSS be reconfigured or not 5661 * 5662 * This function validates number of queues in the context of new channel 5663 * which is being established and determines if RSS should be reconfigured 5664 * or not for parent VSI. 5665 **/ 5666 static int i40e_validate_num_queues(struct i40e_pf *pf, int num_queues, 5667 struct i40e_vsi *vsi, bool *reconfig_rss) 5668 { 5669 int max_ch_queues; 5670 5671 if (!reconfig_rss) 5672 return -EINVAL; 5673 5674 *reconfig_rss = false; 5675 if (vsi->current_rss_size) { 5676 if (num_queues > vsi->current_rss_size) { 5677 dev_dbg(&pf->pdev->dev, 5678 "Error: num_queues (%d) > vsi's current_size(%d)\n", 5679 num_queues, vsi->current_rss_size); 5680 return -EINVAL; 5681 } else if ((num_queues < vsi->current_rss_size) && 5682 (!is_power_of_2(num_queues))) { 5683 dev_dbg(&pf->pdev->dev, 5684 "Error: num_queues (%d) < vsi's current_size(%d), but not power of 2\n", 5685 num_queues, vsi->current_rss_size); 5686 return -EINVAL; 5687 } 5688 } 5689 5690 if (!is_power_of_2(num_queues)) { 5691 /* Find the max num_queues configured for channel if channel 5692 * exist. 5693 * if channel exist, then enforce 'num_queues' to be more than 5694 * max ever queues configured for channel. 5695 */ 5696 max_ch_queues = i40e_get_max_queues_for_channel(vsi); 5697 if (num_queues < max_ch_queues) { 5698 dev_dbg(&pf->pdev->dev, 5699 "Error: num_queues (%d) < max queues configured for channel(%d)\n", 5700 num_queues, max_ch_queues); 5701 return -EINVAL; 5702 } 5703 *reconfig_rss = true; 5704 } 5705 5706 return 0; 5707 } 5708 5709 /** 5710 * i40e_vsi_reconfig_rss - reconfig RSS based on specified rss_size 5711 * @vsi: the VSI being setup 5712 * @rss_size: size of RSS, accordingly LUT gets reprogrammed 5713 * 5714 * This function reconfigures RSS by reprogramming LUTs using 'rss_size' 5715 **/ 5716 static int i40e_vsi_reconfig_rss(struct i40e_vsi *vsi, u16 rss_size) 5717 { 5718 struct i40e_pf *pf = vsi->back; 5719 u8 seed[I40E_HKEY_ARRAY_SIZE]; 5720 struct i40e_hw *hw = &pf->hw; 5721 int local_rss_size; 5722 u8 *lut; 5723 int ret; 5724 5725 if (!vsi->rss_size) 5726 return -EINVAL; 5727 5728 if (rss_size > vsi->rss_size) 5729 return -EINVAL; 5730 5731 local_rss_size = min_t(int, vsi->rss_size, rss_size); 5732 lut = kzalloc(vsi->rss_table_size, GFP_KERNEL); 5733 if (!lut) 5734 return -ENOMEM; 5735 5736 /* Ignoring user configured lut if there is one */ 5737 i40e_fill_rss_lut(pf, lut, vsi->rss_table_size, local_rss_size); 5738 5739 /* Use user configured hash key if there is one, otherwise 5740 * use default. 5741 */ 5742 if (vsi->rss_hkey_user) 5743 memcpy(seed, vsi->rss_hkey_user, I40E_HKEY_ARRAY_SIZE); 5744 else 5745 netdev_rss_key_fill((void *)seed, I40E_HKEY_ARRAY_SIZE); 5746 5747 ret = i40e_config_rss(vsi, seed, lut, vsi->rss_table_size); 5748 if (ret) { 5749 dev_info(&pf->pdev->dev, 5750 "Cannot set RSS lut, err %s aq_err %s\n", 5751 i40e_stat_str(hw, ret), 5752 i40e_aq_str(hw, hw->aq.asq_last_status)); 5753 kfree(lut); 5754 return ret; 5755 } 5756 kfree(lut); 5757 5758 /* Do the update w.r.t. storing rss_size */ 5759 if (!vsi->orig_rss_size) 5760 vsi->orig_rss_size = vsi->rss_size; 5761 vsi->current_rss_size = local_rss_size; 5762 5763 return ret; 5764 } 5765 5766 /** 5767 * i40e_channel_setup_queue_map - Setup a channel queue map 5768 * @pf: ptr to PF device 5769 * @vsi: the VSI being setup 5770 * @ctxt: VSI context structure 5771 * @ch: ptr to channel structure 5772 * 5773 * Setup queue map for a specific channel 5774 **/ 5775 static void i40e_channel_setup_queue_map(struct i40e_pf *pf, 5776 struct i40e_vsi_context *ctxt, 5777 struct i40e_channel *ch) 5778 { 5779 u16 qcount, qmap, sections = 0; 5780 u8 offset = 0; 5781 int pow; 5782 5783 sections = I40E_AQ_VSI_PROP_QUEUE_MAP_VALID; 5784 sections |= I40E_AQ_VSI_PROP_SCHED_VALID; 5785 5786 qcount = min_t(int, ch->num_queue_pairs, pf->num_lan_msix); 5787 ch->num_queue_pairs = qcount; 5788 5789 /* find the next higher power-of-2 of num queue pairs */ 5790 pow = ilog2(qcount); 5791 if (!is_power_of_2(qcount)) 5792 pow++; 5793 5794 qmap = (offset << I40E_AQ_VSI_TC_QUE_OFFSET_SHIFT) | 5795 (pow << I40E_AQ_VSI_TC_QUE_NUMBER_SHIFT); 5796 5797 /* Setup queue TC[0].qmap for given VSI context */ 5798 ctxt->info.tc_mapping[0] = cpu_to_le16(qmap); 5799 5800 ctxt->info.up_enable_bits = 0x1; /* TC0 enabled */ 5801 ctxt->info.mapping_flags |= cpu_to_le16(I40E_AQ_VSI_QUE_MAP_CONTIG); 5802 ctxt->info.queue_mapping[0] = cpu_to_le16(ch->base_queue); 5803 ctxt->info.valid_sections |= cpu_to_le16(sections); 5804 } 5805 5806 /** 5807 * i40e_add_channel - add a channel by adding VSI 5808 * @pf: ptr to PF device 5809 * @uplink_seid: underlying HW switching element (VEB) ID 5810 * @ch: ptr to channel structure 5811 * 5812 * Add a channel (VSI) using add_vsi and queue_map 5813 **/ 5814 static int i40e_add_channel(struct i40e_pf *pf, u16 uplink_seid, 5815 struct i40e_channel *ch) 5816 { 5817 struct i40e_hw *hw = &pf->hw; 5818 struct i40e_vsi_context ctxt; 5819 u8 enabled_tc = 0x1; /* TC0 enabled */ 5820 int ret; 5821 5822 if (ch->type != I40E_VSI_VMDQ2) { 5823 dev_info(&pf->pdev->dev, 5824 "add new vsi failed, ch->type %d\n", ch->type); 5825 return -EINVAL; 5826 } 5827 5828 memset(&ctxt, 0, sizeof(ctxt)); 5829 ctxt.pf_num = hw->pf_id; 5830 ctxt.vf_num = 0; 5831 ctxt.uplink_seid = uplink_seid; 5832 ctxt.connection_type = I40E_AQ_VSI_CONN_TYPE_NORMAL; 5833 if (ch->type == I40E_VSI_VMDQ2) 5834 ctxt.flags = I40E_AQ_VSI_TYPE_VMDQ2; 5835 5836 if (pf->flags & I40E_FLAG_VEB_MODE_ENABLED) { 5837 ctxt.info.valid_sections |= 5838 cpu_to_le16(I40E_AQ_VSI_PROP_SWITCH_VALID); 5839 ctxt.info.switch_id = 5840 cpu_to_le16(I40E_AQ_VSI_SW_ID_FLAG_ALLOW_LB); 5841 } 5842 5843 /* Set queue map for a given VSI context */ 5844 i40e_channel_setup_queue_map(pf, &ctxt, ch); 5845 5846 /* Now time to create VSI */ 5847 ret = i40e_aq_add_vsi(hw, &ctxt, NULL); 5848 if (ret) { 5849 dev_info(&pf->pdev->dev, 5850 "add new vsi failed, err %s aq_err %s\n", 5851 i40e_stat_str(&pf->hw, ret), 5852 i40e_aq_str(&pf->hw, 5853 pf->hw.aq.asq_last_status)); 5854 return -ENOENT; 5855 } 5856 5857 /* Success, update channel */ 5858 ch->enabled_tc = enabled_tc; 5859 ch->seid = ctxt.seid; 5860 ch->vsi_number = ctxt.vsi_number; 5861 ch->stat_counter_idx = cpu_to_le16(ctxt.info.stat_counter_idx); 5862 5863 /* copy just the sections touched not the entire info 5864 * since not all sections are valid as returned by 5865 * update vsi params 5866 */ 5867 ch->info.mapping_flags = ctxt.info.mapping_flags; 5868 memcpy(&ch->info.queue_mapping, 5869 &ctxt.info.queue_mapping, sizeof(ctxt.info.queue_mapping)); 5870 memcpy(&ch->info.tc_mapping, ctxt.info.tc_mapping, 5871 sizeof(ctxt.info.tc_mapping)); 5872 5873 return 0; 5874 } 5875 5876 static int i40e_channel_config_bw(struct i40e_vsi *vsi, struct i40e_channel *ch, 5877 u8 *bw_share) 5878 { 5879 struct i40e_aqc_configure_vsi_tc_bw_data bw_data; 5880 i40e_status ret; 5881 int i; 5882 5883 bw_data.tc_valid_bits = ch->enabled_tc; 5884 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) 5885 bw_data.tc_bw_credits[i] = bw_share[i]; 5886 5887 ret = i40e_aq_config_vsi_tc_bw(&vsi->back->hw, ch->seid, 5888 &bw_data, NULL); 5889 if (ret) { 5890 dev_info(&vsi->back->pdev->dev, 5891 "Config VSI BW allocation per TC failed, aq_err: %d for new_vsi->seid %u\n", 5892 vsi->back->hw.aq.asq_last_status, ch->seid); 5893 return -EINVAL; 5894 } 5895 5896 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) 5897 ch->info.qs_handle[i] = bw_data.qs_handles[i]; 5898 5899 return 0; 5900 } 5901 5902 /** 5903 * i40e_channel_config_tx_ring - config TX ring associated with new channel 5904 * @pf: ptr to PF device 5905 * @vsi: the VSI being setup 5906 * @ch: ptr to channel structure 5907 * 5908 * Configure TX rings associated with channel (VSI) since queues are being 5909 * from parent VSI. 5910 **/ 5911 static int i40e_channel_config_tx_ring(struct i40e_pf *pf, 5912 struct i40e_vsi *vsi, 5913 struct i40e_channel *ch) 5914 { 5915 i40e_status ret; 5916 int i; 5917 u8 bw_share[I40E_MAX_TRAFFIC_CLASS] = {0}; 5918 5919 /* Enable ETS TCs with equal BW Share for now across all VSIs */ 5920 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 5921 if (ch->enabled_tc & BIT(i)) 5922 bw_share[i] = 1; 5923 } 5924 5925 /* configure BW for new VSI */ 5926 ret = i40e_channel_config_bw(vsi, ch, bw_share); 5927 if (ret) { 5928 dev_info(&vsi->back->pdev->dev, 5929 "Failed configuring TC map %d for channel (seid %u)\n", 5930 ch->enabled_tc, ch->seid); 5931 return ret; 5932 } 5933 5934 for (i = 0; i < ch->num_queue_pairs; i++) { 5935 struct i40e_ring *tx_ring, *rx_ring; 5936 u16 pf_q; 5937 5938 pf_q = ch->base_queue + i; 5939 5940 /* Get to TX ring ptr of main VSI, for re-setup TX queue 5941 * context 5942 */ 5943 tx_ring = vsi->tx_rings[pf_q]; 5944 tx_ring->ch = ch; 5945 5946 /* Get the RX ring ptr */ 5947 rx_ring = vsi->rx_rings[pf_q]; 5948 rx_ring->ch = ch; 5949 } 5950 5951 return 0; 5952 } 5953 5954 /** 5955 * i40e_setup_hw_channel - setup new channel 5956 * @pf: ptr to PF device 5957 * @vsi: the VSI being setup 5958 * @ch: ptr to channel structure 5959 * @uplink_seid: underlying HW switching element (VEB) ID 5960 * @type: type of channel to be created (VMDq2/VF) 5961 * 5962 * Setup new channel (VSI) based on specified type (VMDq2/VF) 5963 * and configures TX rings accordingly 5964 **/ 5965 static inline int i40e_setup_hw_channel(struct i40e_pf *pf, 5966 struct i40e_vsi *vsi, 5967 struct i40e_channel *ch, 5968 u16 uplink_seid, u8 type) 5969 { 5970 int ret; 5971 5972 ch->initialized = false; 5973 ch->base_queue = vsi->next_base_queue; 5974 ch->type = type; 5975 5976 /* Proceed with creation of channel (VMDq2) VSI */ 5977 ret = i40e_add_channel(pf, uplink_seid, ch); 5978 if (ret) { 5979 dev_info(&pf->pdev->dev, 5980 "failed to add_channel using uplink_seid %u\n", 5981 uplink_seid); 5982 return ret; 5983 } 5984 5985 /* Mark the successful creation of channel */ 5986 ch->initialized = true; 5987 5988 /* Reconfigure TX queues using QTX_CTL register */ 5989 ret = i40e_channel_config_tx_ring(pf, vsi, ch); 5990 if (ret) { 5991 dev_info(&pf->pdev->dev, 5992 "failed to configure TX rings for channel %u\n", 5993 ch->seid); 5994 return ret; 5995 } 5996 5997 /* update 'next_base_queue' */ 5998 vsi->next_base_queue = vsi->next_base_queue + ch->num_queue_pairs; 5999 dev_dbg(&pf->pdev->dev, 6000 "Added channel: vsi_seid %u, vsi_number %u, stat_counter_idx %u, num_queue_pairs %u, pf->next_base_queue %d\n", 6001 ch->seid, ch->vsi_number, ch->stat_counter_idx, 6002 ch->num_queue_pairs, 6003 vsi->next_base_queue); 6004 return ret; 6005 } 6006 6007 /** 6008 * i40e_setup_channel - setup new channel using uplink element 6009 * @pf: ptr to PF device 6010 * @type: type of channel to be created (VMDq2/VF) 6011 * @uplink_seid: underlying HW switching element (VEB) ID 6012 * @ch: ptr to channel structure 6013 * 6014 * Setup new channel (VSI) based on specified type (VMDq2/VF) 6015 * and uplink switching element (uplink_seid) 6016 **/ 6017 static bool i40e_setup_channel(struct i40e_pf *pf, struct i40e_vsi *vsi, 6018 struct i40e_channel *ch) 6019 { 6020 u8 vsi_type; 6021 u16 seid; 6022 int ret; 6023 6024 if (vsi->type == I40E_VSI_MAIN) { 6025 vsi_type = I40E_VSI_VMDQ2; 6026 } else { 6027 dev_err(&pf->pdev->dev, "unsupported parent vsi type(%d)\n", 6028 vsi->type); 6029 return false; 6030 } 6031 6032 /* underlying switching element */ 6033 seid = pf->vsi[pf->lan_vsi]->uplink_seid; 6034 6035 /* create channel (VSI), configure TX rings */ 6036 ret = i40e_setup_hw_channel(pf, vsi, ch, seid, vsi_type); 6037 if (ret) { 6038 dev_err(&pf->pdev->dev, "failed to setup hw_channel\n"); 6039 return false; 6040 } 6041 6042 return ch->initialized ? true : false; 6043 } 6044 6045 /** 6046 * i40e_validate_and_set_switch_mode - sets up switch mode correctly 6047 * @vsi: ptr to VSI which has PF backing 6048 * 6049 * Sets up switch mode correctly if it needs to be changed and perform 6050 * what are allowed modes. 6051 **/ 6052 static int i40e_validate_and_set_switch_mode(struct i40e_vsi *vsi) 6053 { 6054 u8 mode; 6055 struct i40e_pf *pf = vsi->back; 6056 struct i40e_hw *hw = &pf->hw; 6057 int ret; 6058 6059 ret = i40e_get_capabilities(pf, i40e_aqc_opc_list_dev_capabilities); 6060 if (ret) 6061 return -EINVAL; 6062 6063 if (hw->dev_caps.switch_mode) { 6064 /* if switch mode is set, support mode2 (non-tunneled for 6065 * cloud filter) for now 6066 */ 6067 u32 switch_mode = hw->dev_caps.switch_mode & 6068 I40E_SWITCH_MODE_MASK; 6069 if (switch_mode >= I40E_CLOUD_FILTER_MODE1) { 6070 if (switch_mode == I40E_CLOUD_FILTER_MODE2) 6071 return 0; 6072 dev_err(&pf->pdev->dev, 6073 "Invalid switch_mode (%d), only non-tunneled mode for cloud filter is supported\n", 6074 hw->dev_caps.switch_mode); 6075 return -EINVAL; 6076 } 6077 } 6078 6079 /* Set Bit 7 to be valid */ 6080 mode = I40E_AQ_SET_SWITCH_BIT7_VALID; 6081 6082 /* Set L4type for TCP support */ 6083 mode |= I40E_AQ_SET_SWITCH_L4_TYPE_TCP; 6084 6085 /* Set cloud filter mode */ 6086 mode |= I40E_AQ_SET_SWITCH_MODE_NON_TUNNEL; 6087 6088 /* Prep mode field for set_switch_config */ 6089 ret = i40e_aq_set_switch_config(hw, pf->last_sw_conf_flags, 6090 pf->last_sw_conf_valid_flags, 6091 mode, NULL); 6092 if (ret && hw->aq.asq_last_status != I40E_AQ_RC_ESRCH) 6093 dev_err(&pf->pdev->dev, 6094 "couldn't set switch config bits, err %s aq_err %s\n", 6095 i40e_stat_str(hw, ret), 6096 i40e_aq_str(hw, 6097 hw->aq.asq_last_status)); 6098 6099 return ret; 6100 } 6101 6102 /** 6103 * i40e_create_queue_channel - function to create channel 6104 * @vsi: VSI to be configured 6105 * @ch: ptr to channel (it contains channel specific params) 6106 * 6107 * This function creates channel (VSI) using num_queues specified by user, 6108 * reconfigs RSS if needed. 6109 **/ 6110 int i40e_create_queue_channel(struct i40e_vsi *vsi, 6111 struct i40e_channel *ch) 6112 { 6113 struct i40e_pf *pf = vsi->back; 6114 bool reconfig_rss; 6115 int err; 6116 6117 if (!ch) 6118 return -EINVAL; 6119 6120 if (!ch->num_queue_pairs) { 6121 dev_err(&pf->pdev->dev, "Invalid num_queues requested: %d\n", 6122 ch->num_queue_pairs); 6123 return -EINVAL; 6124 } 6125 6126 /* validate user requested num_queues for channel */ 6127 err = i40e_validate_num_queues(pf, ch->num_queue_pairs, vsi, 6128 &reconfig_rss); 6129 if (err) { 6130 dev_info(&pf->pdev->dev, "Failed to validate num_queues (%d)\n", 6131 ch->num_queue_pairs); 6132 return -EINVAL; 6133 } 6134 6135 /* By default we are in VEPA mode, if this is the first VF/VMDq 6136 * VSI to be added switch to VEB mode. 6137 */ 6138 if ((!(pf->flags & I40E_FLAG_VEB_MODE_ENABLED)) || 6139 (!i40e_is_any_channel(vsi))) { 6140 if (!is_power_of_2(vsi->tc_config.tc_info[0].qcount)) { 6141 dev_dbg(&pf->pdev->dev, 6142 "Failed to create channel. Override queues (%u) not power of 2\n", 6143 vsi->tc_config.tc_info[0].qcount); 6144 return -EINVAL; 6145 } 6146 6147 if (!(pf->flags & I40E_FLAG_VEB_MODE_ENABLED)) { 6148 pf->flags |= I40E_FLAG_VEB_MODE_ENABLED; 6149 6150 if (vsi->type == I40E_VSI_MAIN) { 6151 if (pf->flags & I40E_FLAG_TC_MQPRIO) 6152 i40e_do_reset(pf, I40E_PF_RESET_FLAG, 6153 true); 6154 else 6155 i40e_do_reset_safe(pf, 6156 I40E_PF_RESET_FLAG); 6157 } 6158 } 6159 /* now onwards for main VSI, number of queues will be value 6160 * of TC0's queue count 6161 */ 6162 } 6163 6164 /* By this time, vsi->cnt_q_avail shall be set to non-zero and 6165 * it should be more than num_queues 6166 */ 6167 if (!vsi->cnt_q_avail || vsi->cnt_q_avail < ch->num_queue_pairs) { 6168 dev_dbg(&pf->pdev->dev, 6169 "Error: cnt_q_avail (%u) less than num_queues %d\n", 6170 vsi->cnt_q_avail, ch->num_queue_pairs); 6171 return -EINVAL; 6172 } 6173 6174 /* reconfig_rss only if vsi type is MAIN_VSI */ 6175 if (reconfig_rss && (vsi->type == I40E_VSI_MAIN)) { 6176 err = i40e_vsi_reconfig_rss(vsi, ch->num_queue_pairs); 6177 if (err) { 6178 dev_info(&pf->pdev->dev, 6179 "Error: unable to reconfig rss for num_queues (%u)\n", 6180 ch->num_queue_pairs); 6181 return -EINVAL; 6182 } 6183 } 6184 6185 if (!i40e_setup_channel(pf, vsi, ch)) { 6186 dev_info(&pf->pdev->dev, "Failed to setup channel\n"); 6187 return -EINVAL; 6188 } 6189 6190 dev_info(&pf->pdev->dev, 6191 "Setup channel (id:%u) utilizing num_queues %d\n", 6192 ch->seid, ch->num_queue_pairs); 6193 6194 /* configure VSI for BW limit */ 6195 if (ch->max_tx_rate) { 6196 u64 credits = ch->max_tx_rate; 6197 6198 if (i40e_set_bw_limit(vsi, ch->seid, ch->max_tx_rate)) 6199 return -EINVAL; 6200 6201 do_div(credits, I40E_BW_CREDIT_DIVISOR); 6202 dev_dbg(&pf->pdev->dev, 6203 "Set tx rate of %llu Mbps (count of 50Mbps %llu) for vsi->seid %u\n", 6204 ch->max_tx_rate, 6205 credits, 6206 ch->seid); 6207 } 6208 6209 /* in case of VF, this will be main SRIOV VSI */ 6210 ch->parent_vsi = vsi; 6211 6212 /* and update main_vsi's count for queue_available to use */ 6213 vsi->cnt_q_avail -= ch->num_queue_pairs; 6214 6215 return 0; 6216 } 6217 6218 /** 6219 * i40e_configure_queue_channels - Add queue channel for the given TCs 6220 * @vsi: VSI to be configured 6221 * 6222 * Configures queue channel mapping to the given TCs 6223 **/ 6224 static int i40e_configure_queue_channels(struct i40e_vsi *vsi) 6225 { 6226 struct i40e_channel *ch; 6227 u64 max_rate = 0; 6228 int ret = 0, i; 6229 6230 /* Create app vsi with the TCs. Main VSI with TC0 is already set up */ 6231 vsi->tc_seid_map[0] = vsi->seid; 6232 for (i = 1; i < I40E_MAX_TRAFFIC_CLASS; i++) { 6233 if (vsi->tc_config.enabled_tc & BIT(i)) { 6234 ch = kzalloc(sizeof(*ch), GFP_KERNEL); 6235 if (!ch) { 6236 ret = -ENOMEM; 6237 goto err_free; 6238 } 6239 6240 INIT_LIST_HEAD(&ch->list); 6241 ch->num_queue_pairs = 6242 vsi->tc_config.tc_info[i].qcount; 6243 ch->base_queue = 6244 vsi->tc_config.tc_info[i].qoffset; 6245 6246 /* Bandwidth limit through tc interface is in bytes/s, 6247 * change to Mbit/s 6248 */ 6249 max_rate = vsi->mqprio_qopt.max_rate[i]; 6250 do_div(max_rate, I40E_BW_MBPS_DIVISOR); 6251 ch->max_tx_rate = max_rate; 6252 6253 list_add_tail(&ch->list, &vsi->ch_list); 6254 6255 ret = i40e_create_queue_channel(vsi, ch); 6256 if (ret) { 6257 dev_err(&vsi->back->pdev->dev, 6258 "Failed creating queue channel with TC%d: queues %d\n", 6259 i, ch->num_queue_pairs); 6260 goto err_free; 6261 } 6262 vsi->tc_seid_map[i] = ch->seid; 6263 } 6264 } 6265 return ret; 6266 6267 err_free: 6268 i40e_remove_queue_channels(vsi); 6269 return ret; 6270 } 6271 6272 /** 6273 * i40e_veb_config_tc - Configure TCs for given VEB 6274 * @veb: given VEB 6275 * @enabled_tc: TC bitmap 6276 * 6277 * Configures given TC bitmap for VEB (switching) element 6278 **/ 6279 int i40e_veb_config_tc(struct i40e_veb *veb, u8 enabled_tc) 6280 { 6281 struct i40e_aqc_configure_switching_comp_bw_config_data bw_data = {0}; 6282 struct i40e_pf *pf = veb->pf; 6283 int ret = 0; 6284 int i; 6285 6286 /* No TCs or already enabled TCs just return */ 6287 if (!enabled_tc || veb->enabled_tc == enabled_tc) 6288 return ret; 6289 6290 bw_data.tc_valid_bits = enabled_tc; 6291 /* bw_data.absolute_credits is not set (relative) */ 6292 6293 /* Enable ETS TCs with equal BW Share for now */ 6294 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 6295 if (enabled_tc & BIT(i)) 6296 bw_data.tc_bw_share_credits[i] = 1; 6297 } 6298 6299 ret = i40e_aq_config_switch_comp_bw_config(&pf->hw, veb->seid, 6300 &bw_data, NULL); 6301 if (ret) { 6302 dev_info(&pf->pdev->dev, 6303 "VEB bw config failed, err %s aq_err %s\n", 6304 i40e_stat_str(&pf->hw, ret), 6305 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 6306 goto out; 6307 } 6308 6309 /* Update the BW information */ 6310 ret = i40e_veb_get_bw_info(veb); 6311 if (ret) { 6312 dev_info(&pf->pdev->dev, 6313 "Failed getting veb bw config, err %s aq_err %s\n", 6314 i40e_stat_str(&pf->hw, ret), 6315 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 6316 } 6317 6318 out: 6319 return ret; 6320 } 6321 6322 #ifdef CONFIG_I40E_DCB 6323 /** 6324 * i40e_dcb_reconfigure - Reconfigure all VEBs and VSIs 6325 * @pf: PF struct 6326 * 6327 * Reconfigure VEB/VSIs on a given PF; it is assumed that 6328 * the caller would've quiesce all the VSIs before calling 6329 * this function 6330 **/ 6331 static void i40e_dcb_reconfigure(struct i40e_pf *pf) 6332 { 6333 u8 tc_map = 0; 6334 int ret; 6335 u8 v; 6336 6337 /* Enable the TCs available on PF to all VEBs */ 6338 tc_map = i40e_pf_get_tc_map(pf); 6339 for (v = 0; v < I40E_MAX_VEB; v++) { 6340 if (!pf->veb[v]) 6341 continue; 6342 ret = i40e_veb_config_tc(pf->veb[v], tc_map); 6343 if (ret) { 6344 dev_info(&pf->pdev->dev, 6345 "Failed configuring TC for VEB seid=%d\n", 6346 pf->veb[v]->seid); 6347 /* Will try to configure as many components */ 6348 } 6349 } 6350 6351 /* Update each VSI */ 6352 for (v = 0; v < pf->num_alloc_vsi; v++) { 6353 if (!pf->vsi[v]) 6354 continue; 6355 6356 /* - Enable all TCs for the LAN VSI 6357 * - For all others keep them at TC0 for now 6358 */ 6359 if (v == pf->lan_vsi) 6360 tc_map = i40e_pf_get_tc_map(pf); 6361 else 6362 tc_map = I40E_DEFAULT_TRAFFIC_CLASS; 6363 6364 ret = i40e_vsi_config_tc(pf->vsi[v], tc_map); 6365 if (ret) { 6366 dev_info(&pf->pdev->dev, 6367 "Failed configuring TC for VSI seid=%d\n", 6368 pf->vsi[v]->seid); 6369 /* Will try to configure as many components */ 6370 } else { 6371 /* Re-configure VSI vectors based on updated TC map */ 6372 i40e_vsi_map_rings_to_vectors(pf->vsi[v]); 6373 if (pf->vsi[v]->netdev) 6374 i40e_dcbnl_set_all(pf->vsi[v]); 6375 } 6376 } 6377 } 6378 6379 /** 6380 * i40e_resume_port_tx - Resume port Tx 6381 * @pf: PF struct 6382 * 6383 * Resume a port's Tx and issue a PF reset in case of failure to 6384 * resume. 6385 **/ 6386 static int i40e_resume_port_tx(struct i40e_pf *pf) 6387 { 6388 struct i40e_hw *hw = &pf->hw; 6389 int ret; 6390 6391 ret = i40e_aq_resume_port_tx(hw, NULL); 6392 if (ret) { 6393 dev_info(&pf->pdev->dev, 6394 "Resume Port Tx failed, err %s aq_err %s\n", 6395 i40e_stat_str(&pf->hw, ret), 6396 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 6397 /* Schedule PF reset to recover */ 6398 set_bit(__I40E_PF_RESET_REQUESTED, pf->state); 6399 i40e_service_event_schedule(pf); 6400 } 6401 6402 return ret; 6403 } 6404 6405 /** 6406 * i40e_init_pf_dcb - Initialize DCB configuration 6407 * @pf: PF being configured 6408 * 6409 * Query the current DCB configuration and cache it 6410 * in the hardware structure 6411 **/ 6412 static int i40e_init_pf_dcb(struct i40e_pf *pf) 6413 { 6414 struct i40e_hw *hw = &pf->hw; 6415 int err = 0; 6416 6417 /* Do not enable DCB for SW1 and SW2 images even if the FW is capable 6418 * Also do not enable DCBx if FW LLDP agent is disabled 6419 */ 6420 if ((pf->hw_features & I40E_HW_NO_DCB_SUPPORT) || 6421 (pf->flags & I40E_FLAG_DISABLE_FW_LLDP)) 6422 goto out; 6423 6424 /* Get the initial DCB configuration */ 6425 err = i40e_init_dcb(hw, true); 6426 if (!err) { 6427 /* Device/Function is not DCBX capable */ 6428 if ((!hw->func_caps.dcb) || 6429 (hw->dcbx_status == I40E_DCBX_STATUS_DISABLED)) { 6430 dev_info(&pf->pdev->dev, 6431 "DCBX offload is not supported or is disabled for this PF.\n"); 6432 } else { 6433 /* When status is not DISABLED then DCBX in FW */ 6434 pf->dcbx_cap = DCB_CAP_DCBX_LLD_MANAGED | 6435 DCB_CAP_DCBX_VER_IEEE; 6436 6437 pf->flags |= I40E_FLAG_DCB_CAPABLE; 6438 /* Enable DCB tagging only when more than one TC 6439 * or explicitly disable if only one TC 6440 */ 6441 if (i40e_dcb_get_num_tc(&hw->local_dcbx_config) > 1) 6442 pf->flags |= I40E_FLAG_DCB_ENABLED; 6443 else 6444 pf->flags &= ~I40E_FLAG_DCB_ENABLED; 6445 dev_dbg(&pf->pdev->dev, 6446 "DCBX offload is supported for this PF.\n"); 6447 } 6448 } else if (pf->hw.aq.asq_last_status == I40E_AQ_RC_EPERM) { 6449 dev_info(&pf->pdev->dev, "FW LLDP disabled for this PF.\n"); 6450 pf->flags |= I40E_FLAG_DISABLE_FW_LLDP; 6451 } else { 6452 dev_info(&pf->pdev->dev, 6453 "Query for DCB configuration failed, err %s aq_err %s\n", 6454 i40e_stat_str(&pf->hw, err), 6455 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 6456 } 6457 6458 out: 6459 return err; 6460 } 6461 #endif /* CONFIG_I40E_DCB */ 6462 #define SPEED_SIZE 14 6463 #define FC_SIZE 8 6464 /** 6465 * i40e_print_link_message - print link up or down 6466 * @vsi: the VSI for which link needs a message 6467 * @isup: true of link is up, false otherwise 6468 */ 6469 void i40e_print_link_message(struct i40e_vsi *vsi, bool isup) 6470 { 6471 enum i40e_aq_link_speed new_speed; 6472 struct i40e_pf *pf = vsi->back; 6473 char *speed = "Unknown"; 6474 char *fc = "Unknown"; 6475 char *fec = ""; 6476 char *req_fec = ""; 6477 char *an = ""; 6478 6479 if (isup) 6480 new_speed = pf->hw.phy.link_info.link_speed; 6481 else 6482 new_speed = I40E_LINK_SPEED_UNKNOWN; 6483 6484 if ((vsi->current_isup == isup) && (vsi->current_speed == new_speed)) 6485 return; 6486 vsi->current_isup = isup; 6487 vsi->current_speed = new_speed; 6488 if (!isup) { 6489 netdev_info(vsi->netdev, "NIC Link is Down\n"); 6490 return; 6491 } 6492 6493 /* Warn user if link speed on NPAR enabled partition is not at 6494 * least 10GB 6495 */ 6496 if (pf->hw.func_caps.npar_enable && 6497 (pf->hw.phy.link_info.link_speed == I40E_LINK_SPEED_1GB || 6498 pf->hw.phy.link_info.link_speed == I40E_LINK_SPEED_100MB)) 6499 netdev_warn(vsi->netdev, 6500 "The partition detected link speed that is less than 10Gbps\n"); 6501 6502 switch (pf->hw.phy.link_info.link_speed) { 6503 case I40E_LINK_SPEED_40GB: 6504 speed = "40 G"; 6505 break; 6506 case I40E_LINK_SPEED_20GB: 6507 speed = "20 G"; 6508 break; 6509 case I40E_LINK_SPEED_25GB: 6510 speed = "25 G"; 6511 break; 6512 case I40E_LINK_SPEED_10GB: 6513 speed = "10 G"; 6514 break; 6515 case I40E_LINK_SPEED_1GB: 6516 speed = "1000 M"; 6517 break; 6518 case I40E_LINK_SPEED_100MB: 6519 speed = "100 M"; 6520 break; 6521 default: 6522 break; 6523 } 6524 6525 switch (pf->hw.fc.current_mode) { 6526 case I40E_FC_FULL: 6527 fc = "RX/TX"; 6528 break; 6529 case I40E_FC_TX_PAUSE: 6530 fc = "TX"; 6531 break; 6532 case I40E_FC_RX_PAUSE: 6533 fc = "RX"; 6534 break; 6535 default: 6536 fc = "None"; 6537 break; 6538 } 6539 6540 if (pf->hw.phy.link_info.link_speed == I40E_LINK_SPEED_25GB) { 6541 req_fec = ", Requested FEC: None"; 6542 fec = ", FEC: None"; 6543 an = ", Autoneg: False"; 6544 6545 if (pf->hw.phy.link_info.an_info & I40E_AQ_AN_COMPLETED) 6546 an = ", Autoneg: True"; 6547 6548 if (pf->hw.phy.link_info.fec_info & 6549 I40E_AQ_CONFIG_FEC_KR_ENA) 6550 fec = ", FEC: CL74 FC-FEC/BASE-R"; 6551 else if (pf->hw.phy.link_info.fec_info & 6552 I40E_AQ_CONFIG_FEC_RS_ENA) 6553 fec = ", FEC: CL108 RS-FEC"; 6554 6555 /* 'CL108 RS-FEC' should be displayed when RS is requested, or 6556 * both RS and FC are requested 6557 */ 6558 if (vsi->back->hw.phy.link_info.req_fec_info & 6559 (I40E_AQ_REQUEST_FEC_KR | I40E_AQ_REQUEST_FEC_RS)) { 6560 if (vsi->back->hw.phy.link_info.req_fec_info & 6561 I40E_AQ_REQUEST_FEC_RS) 6562 req_fec = ", Requested FEC: CL108 RS-FEC"; 6563 else 6564 req_fec = ", Requested FEC: CL74 FC-FEC/BASE-R"; 6565 } 6566 } 6567 6568 netdev_info(vsi->netdev, "NIC Link is Up, %sbps Full Duplex%s%s%s, Flow Control: %s\n", 6569 speed, req_fec, fec, an, fc); 6570 } 6571 6572 /** 6573 * i40e_up_complete - Finish the last steps of bringing up a connection 6574 * @vsi: the VSI being configured 6575 **/ 6576 static int i40e_up_complete(struct i40e_vsi *vsi) 6577 { 6578 struct i40e_pf *pf = vsi->back; 6579 int err; 6580 6581 if (pf->flags & I40E_FLAG_MSIX_ENABLED) 6582 i40e_vsi_configure_msix(vsi); 6583 else 6584 i40e_configure_msi_and_legacy(vsi); 6585 6586 /* start rings */ 6587 err = i40e_vsi_start_rings(vsi); 6588 if (err) 6589 return err; 6590 6591 clear_bit(__I40E_VSI_DOWN, vsi->state); 6592 i40e_napi_enable_all(vsi); 6593 i40e_vsi_enable_irq(vsi); 6594 6595 if ((pf->hw.phy.link_info.link_info & I40E_AQ_LINK_UP) && 6596 (vsi->netdev)) { 6597 i40e_print_link_message(vsi, true); 6598 netif_tx_start_all_queues(vsi->netdev); 6599 netif_carrier_on(vsi->netdev); 6600 } 6601 6602 /* replay FDIR SB filters */ 6603 if (vsi->type == I40E_VSI_FDIR) { 6604 /* reset fd counters */ 6605 pf->fd_add_err = 0; 6606 pf->fd_atr_cnt = 0; 6607 i40e_fdir_filter_restore(vsi); 6608 } 6609 6610 /* On the next run of the service_task, notify any clients of the new 6611 * opened netdev 6612 */ 6613 set_bit(__I40E_CLIENT_SERVICE_REQUESTED, pf->state); 6614 i40e_service_event_schedule(pf); 6615 6616 return 0; 6617 } 6618 6619 /** 6620 * i40e_vsi_reinit_locked - Reset the VSI 6621 * @vsi: the VSI being configured 6622 * 6623 * Rebuild the ring structs after some configuration 6624 * has changed, e.g. MTU size. 6625 **/ 6626 static void i40e_vsi_reinit_locked(struct i40e_vsi *vsi) 6627 { 6628 struct i40e_pf *pf = vsi->back; 6629 6630 WARN_ON(in_interrupt()); 6631 while (test_and_set_bit(__I40E_CONFIG_BUSY, pf->state)) 6632 usleep_range(1000, 2000); 6633 i40e_down(vsi); 6634 6635 i40e_up(vsi); 6636 clear_bit(__I40E_CONFIG_BUSY, pf->state); 6637 } 6638 6639 /** 6640 * i40e_up - Bring the connection back up after being down 6641 * @vsi: the VSI being configured 6642 **/ 6643 int i40e_up(struct i40e_vsi *vsi) 6644 { 6645 int err; 6646 6647 err = i40e_vsi_configure(vsi); 6648 if (!err) 6649 err = i40e_up_complete(vsi); 6650 6651 return err; 6652 } 6653 6654 /** 6655 * i40e_force_link_state - Force the link status 6656 * @pf: board private structure 6657 * @is_up: whether the link state should be forced up or down 6658 **/ 6659 static i40e_status i40e_force_link_state(struct i40e_pf *pf, bool is_up) 6660 { 6661 struct i40e_aq_get_phy_abilities_resp abilities; 6662 struct i40e_aq_set_phy_config config = {0}; 6663 struct i40e_hw *hw = &pf->hw; 6664 i40e_status err; 6665 u64 mask; 6666 u8 speed; 6667 6668 /* Card might've been put in an unstable state by other drivers 6669 * and applications, which causes incorrect speed values being 6670 * set on startup. In order to clear speed registers, we call 6671 * get_phy_capabilities twice, once to get initial state of 6672 * available speeds, and once to get current PHY config. 6673 */ 6674 err = i40e_aq_get_phy_capabilities(hw, false, true, &abilities, 6675 NULL); 6676 if (err) { 6677 dev_err(&pf->pdev->dev, 6678 "failed to get phy cap., ret = %s last_status = %s\n", 6679 i40e_stat_str(hw, err), 6680 i40e_aq_str(hw, hw->aq.asq_last_status)); 6681 return err; 6682 } 6683 speed = abilities.link_speed; 6684 6685 /* Get the current phy config */ 6686 err = i40e_aq_get_phy_capabilities(hw, false, false, &abilities, 6687 NULL); 6688 if (err) { 6689 dev_err(&pf->pdev->dev, 6690 "failed to get phy cap., ret = %s last_status = %s\n", 6691 i40e_stat_str(hw, err), 6692 i40e_aq_str(hw, hw->aq.asq_last_status)); 6693 return err; 6694 } 6695 6696 /* If link needs to go up, but was not forced to go down, 6697 * and its speed values are OK, no need for a flap 6698 */ 6699 if (is_up && abilities.phy_type != 0 && abilities.link_speed != 0) 6700 return I40E_SUCCESS; 6701 6702 /* To force link we need to set bits for all supported PHY types, 6703 * but there are now more than 32, so we need to split the bitmap 6704 * across two fields. 6705 */ 6706 mask = I40E_PHY_TYPES_BITMASK; 6707 config.phy_type = is_up ? cpu_to_le32((u32)(mask & 0xffffffff)) : 0; 6708 config.phy_type_ext = is_up ? (u8)((mask >> 32) & 0xff) : 0; 6709 /* Copy the old settings, except of phy_type */ 6710 config.abilities = abilities.abilities; 6711 if (abilities.link_speed != 0) 6712 config.link_speed = abilities.link_speed; 6713 else 6714 config.link_speed = speed; 6715 config.eee_capability = abilities.eee_capability; 6716 config.eeer = abilities.eeer_val; 6717 config.low_power_ctrl = abilities.d3_lpan; 6718 config.fec_config = abilities.fec_cfg_curr_mod_ext_info & 6719 I40E_AQ_PHY_FEC_CONFIG_MASK; 6720 err = i40e_aq_set_phy_config(hw, &config, NULL); 6721 6722 if (err) { 6723 dev_err(&pf->pdev->dev, 6724 "set phy config ret = %s last_status = %s\n", 6725 i40e_stat_str(&pf->hw, err), 6726 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 6727 return err; 6728 } 6729 6730 /* Update the link info */ 6731 err = i40e_update_link_info(hw); 6732 if (err) { 6733 /* Wait a little bit (on 40G cards it sometimes takes a really 6734 * long time for link to come back from the atomic reset) 6735 * and try once more 6736 */ 6737 msleep(1000); 6738 i40e_update_link_info(hw); 6739 } 6740 6741 i40e_aq_set_link_restart_an(hw, true, NULL); 6742 6743 return I40E_SUCCESS; 6744 } 6745 6746 /** 6747 * i40e_down - Shutdown the connection processing 6748 * @vsi: the VSI being stopped 6749 **/ 6750 void i40e_down(struct i40e_vsi *vsi) 6751 { 6752 int i; 6753 6754 /* It is assumed that the caller of this function 6755 * sets the vsi->state __I40E_VSI_DOWN bit. 6756 */ 6757 if (vsi->netdev) { 6758 netif_carrier_off(vsi->netdev); 6759 netif_tx_disable(vsi->netdev); 6760 } 6761 i40e_vsi_disable_irq(vsi); 6762 i40e_vsi_stop_rings(vsi); 6763 if (vsi->type == I40E_VSI_MAIN && 6764 vsi->back->flags & I40E_FLAG_LINK_DOWN_ON_CLOSE_ENABLED) 6765 i40e_force_link_state(vsi->back, false); 6766 i40e_napi_disable_all(vsi); 6767 6768 for (i = 0; i < vsi->num_queue_pairs; i++) { 6769 i40e_clean_tx_ring(vsi->tx_rings[i]); 6770 if (i40e_enabled_xdp_vsi(vsi)) { 6771 /* Make sure that in-progress ndo_xdp_xmit 6772 * calls are completed. 6773 */ 6774 synchronize_rcu(); 6775 i40e_clean_tx_ring(vsi->xdp_rings[i]); 6776 } 6777 i40e_clean_rx_ring(vsi->rx_rings[i]); 6778 } 6779 6780 } 6781 6782 /** 6783 * i40e_validate_mqprio_qopt- validate queue mapping info 6784 * @vsi: the VSI being configured 6785 * @mqprio_qopt: queue parametrs 6786 **/ 6787 static int i40e_validate_mqprio_qopt(struct i40e_vsi *vsi, 6788 struct tc_mqprio_qopt_offload *mqprio_qopt) 6789 { 6790 u64 sum_max_rate = 0; 6791 u64 max_rate = 0; 6792 int i; 6793 6794 if (mqprio_qopt->qopt.offset[0] != 0 || 6795 mqprio_qopt->qopt.num_tc < 1 || 6796 mqprio_qopt->qopt.num_tc > I40E_MAX_TRAFFIC_CLASS) 6797 return -EINVAL; 6798 for (i = 0; ; i++) { 6799 if (!mqprio_qopt->qopt.count[i]) 6800 return -EINVAL; 6801 if (mqprio_qopt->min_rate[i]) { 6802 dev_err(&vsi->back->pdev->dev, 6803 "Invalid min tx rate (greater than 0) specified\n"); 6804 return -EINVAL; 6805 } 6806 max_rate = mqprio_qopt->max_rate[i]; 6807 do_div(max_rate, I40E_BW_MBPS_DIVISOR); 6808 sum_max_rate += max_rate; 6809 6810 if (i >= mqprio_qopt->qopt.num_tc - 1) 6811 break; 6812 if (mqprio_qopt->qopt.offset[i + 1] != 6813 (mqprio_qopt->qopt.offset[i] + mqprio_qopt->qopt.count[i])) 6814 return -EINVAL; 6815 } 6816 if (vsi->num_queue_pairs < 6817 (mqprio_qopt->qopt.offset[i] + mqprio_qopt->qopt.count[i])) { 6818 return -EINVAL; 6819 } 6820 if (sum_max_rate > i40e_get_link_speed(vsi)) { 6821 dev_err(&vsi->back->pdev->dev, 6822 "Invalid max tx rate specified\n"); 6823 return -EINVAL; 6824 } 6825 return 0; 6826 } 6827 6828 /** 6829 * i40e_vsi_set_default_tc_config - set default values for tc configuration 6830 * @vsi: the VSI being configured 6831 **/ 6832 static void i40e_vsi_set_default_tc_config(struct i40e_vsi *vsi) 6833 { 6834 u16 qcount; 6835 int i; 6836 6837 /* Only TC0 is enabled */ 6838 vsi->tc_config.numtc = 1; 6839 vsi->tc_config.enabled_tc = 1; 6840 qcount = min_t(int, vsi->alloc_queue_pairs, 6841 i40e_pf_get_max_q_per_tc(vsi->back)); 6842 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 6843 /* For the TC that is not enabled set the offset to to default 6844 * queue and allocate one queue for the given TC. 6845 */ 6846 vsi->tc_config.tc_info[i].qoffset = 0; 6847 if (i == 0) 6848 vsi->tc_config.tc_info[i].qcount = qcount; 6849 else 6850 vsi->tc_config.tc_info[i].qcount = 1; 6851 vsi->tc_config.tc_info[i].netdev_tc = 0; 6852 } 6853 } 6854 6855 /** 6856 * i40e_setup_tc - configure multiple traffic classes 6857 * @netdev: net device to configure 6858 * @type_data: tc offload data 6859 **/ 6860 static int i40e_setup_tc(struct net_device *netdev, void *type_data) 6861 { 6862 struct tc_mqprio_qopt_offload *mqprio_qopt = type_data; 6863 struct i40e_netdev_priv *np = netdev_priv(netdev); 6864 struct i40e_vsi *vsi = np->vsi; 6865 struct i40e_pf *pf = vsi->back; 6866 u8 enabled_tc = 0, num_tc, hw; 6867 bool need_reset = false; 6868 int old_queue_pairs; 6869 int ret = -EINVAL; 6870 u16 mode; 6871 int i; 6872 6873 old_queue_pairs = vsi->num_queue_pairs; 6874 num_tc = mqprio_qopt->qopt.num_tc; 6875 hw = mqprio_qopt->qopt.hw; 6876 mode = mqprio_qopt->mode; 6877 if (!hw) { 6878 pf->flags &= ~I40E_FLAG_TC_MQPRIO; 6879 memcpy(&vsi->mqprio_qopt, mqprio_qopt, sizeof(*mqprio_qopt)); 6880 goto config_tc; 6881 } 6882 6883 /* Check if MFP enabled */ 6884 if (pf->flags & I40E_FLAG_MFP_ENABLED) { 6885 netdev_info(netdev, 6886 "Configuring TC not supported in MFP mode\n"); 6887 return ret; 6888 } 6889 switch (mode) { 6890 case TC_MQPRIO_MODE_DCB: 6891 pf->flags &= ~I40E_FLAG_TC_MQPRIO; 6892 6893 /* Check if DCB enabled to continue */ 6894 if (!(pf->flags & I40E_FLAG_DCB_ENABLED)) { 6895 netdev_info(netdev, 6896 "DCB is not enabled for adapter\n"); 6897 return ret; 6898 } 6899 6900 /* Check whether tc count is within enabled limit */ 6901 if (num_tc > i40e_pf_get_num_tc(pf)) { 6902 netdev_info(netdev, 6903 "TC count greater than enabled on link for adapter\n"); 6904 return ret; 6905 } 6906 break; 6907 case TC_MQPRIO_MODE_CHANNEL: 6908 if (pf->flags & I40E_FLAG_DCB_ENABLED) { 6909 netdev_info(netdev, 6910 "Full offload of TC Mqprio options is not supported when DCB is enabled\n"); 6911 return ret; 6912 } 6913 if (!(pf->flags & I40E_FLAG_MSIX_ENABLED)) 6914 return ret; 6915 ret = i40e_validate_mqprio_qopt(vsi, mqprio_qopt); 6916 if (ret) 6917 return ret; 6918 memcpy(&vsi->mqprio_qopt, mqprio_qopt, 6919 sizeof(*mqprio_qopt)); 6920 pf->flags |= I40E_FLAG_TC_MQPRIO; 6921 pf->flags &= ~I40E_FLAG_DCB_ENABLED; 6922 break; 6923 default: 6924 return -EINVAL; 6925 } 6926 6927 config_tc: 6928 /* Generate TC map for number of tc requested */ 6929 for (i = 0; i < num_tc; i++) 6930 enabled_tc |= BIT(i); 6931 6932 /* Requesting same TC configuration as already enabled */ 6933 if (enabled_tc == vsi->tc_config.enabled_tc && 6934 mode != TC_MQPRIO_MODE_CHANNEL) 6935 return 0; 6936 6937 /* Quiesce VSI queues */ 6938 i40e_quiesce_vsi(vsi); 6939 6940 if (!hw && !(pf->flags & I40E_FLAG_TC_MQPRIO)) 6941 i40e_remove_queue_channels(vsi); 6942 6943 /* Configure VSI for enabled TCs */ 6944 ret = i40e_vsi_config_tc(vsi, enabled_tc); 6945 if (ret) { 6946 netdev_info(netdev, "Failed configuring TC for VSI seid=%d\n", 6947 vsi->seid); 6948 need_reset = true; 6949 goto exit; 6950 } 6951 6952 if (pf->flags & I40E_FLAG_TC_MQPRIO) { 6953 if (vsi->mqprio_qopt.max_rate[0]) { 6954 u64 max_tx_rate = vsi->mqprio_qopt.max_rate[0]; 6955 6956 do_div(max_tx_rate, I40E_BW_MBPS_DIVISOR); 6957 ret = i40e_set_bw_limit(vsi, vsi->seid, max_tx_rate); 6958 if (!ret) { 6959 u64 credits = max_tx_rate; 6960 6961 do_div(credits, I40E_BW_CREDIT_DIVISOR); 6962 dev_dbg(&vsi->back->pdev->dev, 6963 "Set tx rate of %llu Mbps (count of 50Mbps %llu) for vsi->seid %u\n", 6964 max_tx_rate, 6965 credits, 6966 vsi->seid); 6967 } else { 6968 need_reset = true; 6969 goto exit; 6970 } 6971 } 6972 ret = i40e_configure_queue_channels(vsi); 6973 if (ret) { 6974 vsi->num_queue_pairs = old_queue_pairs; 6975 netdev_info(netdev, 6976 "Failed configuring queue channels\n"); 6977 need_reset = true; 6978 goto exit; 6979 } 6980 } 6981 6982 exit: 6983 /* Reset the configuration data to defaults, only TC0 is enabled */ 6984 if (need_reset) { 6985 i40e_vsi_set_default_tc_config(vsi); 6986 need_reset = false; 6987 } 6988 6989 /* Unquiesce VSI */ 6990 i40e_unquiesce_vsi(vsi); 6991 return ret; 6992 } 6993 6994 /** 6995 * i40e_set_cld_element - sets cloud filter element data 6996 * @filter: cloud filter rule 6997 * @cld: ptr to cloud filter element data 6998 * 6999 * This is helper function to copy data into cloud filter element 7000 **/ 7001 static inline void 7002 i40e_set_cld_element(struct i40e_cloud_filter *filter, 7003 struct i40e_aqc_cloud_filters_element_data *cld) 7004 { 7005 int i, j; 7006 u32 ipa; 7007 7008 memset(cld, 0, sizeof(*cld)); 7009 ether_addr_copy(cld->outer_mac, filter->dst_mac); 7010 ether_addr_copy(cld->inner_mac, filter->src_mac); 7011 7012 if (filter->n_proto != ETH_P_IP && filter->n_proto != ETH_P_IPV6) 7013 return; 7014 7015 if (filter->n_proto == ETH_P_IPV6) { 7016 #define IPV6_MAX_INDEX (ARRAY_SIZE(filter->dst_ipv6) - 1) 7017 for (i = 0, j = 0; i < ARRAY_SIZE(filter->dst_ipv6); 7018 i++, j += 2) { 7019 ipa = be32_to_cpu(filter->dst_ipv6[IPV6_MAX_INDEX - i]); 7020 ipa = cpu_to_le32(ipa); 7021 memcpy(&cld->ipaddr.raw_v6.data[j], &ipa, sizeof(ipa)); 7022 } 7023 } else { 7024 ipa = be32_to_cpu(filter->dst_ipv4); 7025 memcpy(&cld->ipaddr.v4.data, &ipa, sizeof(ipa)); 7026 } 7027 7028 cld->inner_vlan = cpu_to_le16(ntohs(filter->vlan_id)); 7029 7030 /* tenant_id is not supported by FW now, once the support is enabled 7031 * fill the cld->tenant_id with cpu_to_le32(filter->tenant_id) 7032 */ 7033 if (filter->tenant_id) 7034 return; 7035 } 7036 7037 /** 7038 * i40e_add_del_cloud_filter - Add/del cloud filter 7039 * @vsi: pointer to VSI 7040 * @filter: cloud filter rule 7041 * @add: if true, add, if false, delete 7042 * 7043 * Add or delete a cloud filter for a specific flow spec. 7044 * Returns 0 if the filter were successfully added. 7045 **/ 7046 int i40e_add_del_cloud_filter(struct i40e_vsi *vsi, 7047 struct i40e_cloud_filter *filter, bool add) 7048 { 7049 struct i40e_aqc_cloud_filters_element_data cld_filter; 7050 struct i40e_pf *pf = vsi->back; 7051 int ret; 7052 static const u16 flag_table[128] = { 7053 [I40E_CLOUD_FILTER_FLAGS_OMAC] = 7054 I40E_AQC_ADD_CLOUD_FILTER_OMAC, 7055 [I40E_CLOUD_FILTER_FLAGS_IMAC] = 7056 I40E_AQC_ADD_CLOUD_FILTER_IMAC, 7057 [I40E_CLOUD_FILTER_FLAGS_IMAC_IVLAN] = 7058 I40E_AQC_ADD_CLOUD_FILTER_IMAC_IVLAN, 7059 [I40E_CLOUD_FILTER_FLAGS_IMAC_TEN_ID] = 7060 I40E_AQC_ADD_CLOUD_FILTER_IMAC_TEN_ID, 7061 [I40E_CLOUD_FILTER_FLAGS_OMAC_TEN_ID_IMAC] = 7062 I40E_AQC_ADD_CLOUD_FILTER_OMAC_TEN_ID_IMAC, 7063 [I40E_CLOUD_FILTER_FLAGS_IMAC_IVLAN_TEN_ID] = 7064 I40E_AQC_ADD_CLOUD_FILTER_IMAC_IVLAN_TEN_ID, 7065 [I40E_CLOUD_FILTER_FLAGS_IIP] = 7066 I40E_AQC_ADD_CLOUD_FILTER_IIP, 7067 }; 7068 7069 if (filter->flags >= ARRAY_SIZE(flag_table)) 7070 return I40E_ERR_CONFIG; 7071 7072 /* copy element needed to add cloud filter from filter */ 7073 i40e_set_cld_element(filter, &cld_filter); 7074 7075 if (filter->tunnel_type != I40E_CLOUD_TNL_TYPE_NONE) 7076 cld_filter.flags = cpu_to_le16(filter->tunnel_type << 7077 I40E_AQC_ADD_CLOUD_TNL_TYPE_SHIFT); 7078 7079 if (filter->n_proto == ETH_P_IPV6) 7080 cld_filter.flags |= cpu_to_le16(flag_table[filter->flags] | 7081 I40E_AQC_ADD_CLOUD_FLAGS_IPV6); 7082 else 7083 cld_filter.flags |= cpu_to_le16(flag_table[filter->flags] | 7084 I40E_AQC_ADD_CLOUD_FLAGS_IPV4); 7085 7086 if (add) 7087 ret = i40e_aq_add_cloud_filters(&pf->hw, filter->seid, 7088 &cld_filter, 1); 7089 else 7090 ret = i40e_aq_rem_cloud_filters(&pf->hw, filter->seid, 7091 &cld_filter, 1); 7092 if (ret) 7093 dev_dbg(&pf->pdev->dev, 7094 "Failed to %s cloud filter using l4 port %u, err %d aq_err %d\n", 7095 add ? "add" : "delete", filter->dst_port, ret, 7096 pf->hw.aq.asq_last_status); 7097 else 7098 dev_info(&pf->pdev->dev, 7099 "%s cloud filter for VSI: %d\n", 7100 add ? "Added" : "Deleted", filter->seid); 7101 return ret; 7102 } 7103 7104 /** 7105 * i40e_add_del_cloud_filter_big_buf - Add/del cloud filter using big_buf 7106 * @vsi: pointer to VSI 7107 * @filter: cloud filter rule 7108 * @add: if true, add, if false, delete 7109 * 7110 * Add or delete a cloud filter for a specific flow spec using big buffer. 7111 * Returns 0 if the filter were successfully added. 7112 **/ 7113 int i40e_add_del_cloud_filter_big_buf(struct i40e_vsi *vsi, 7114 struct i40e_cloud_filter *filter, 7115 bool add) 7116 { 7117 struct i40e_aqc_cloud_filters_element_bb cld_filter; 7118 struct i40e_pf *pf = vsi->back; 7119 int ret; 7120 7121 /* Both (src/dst) valid mac_addr are not supported */ 7122 if ((is_valid_ether_addr(filter->dst_mac) && 7123 is_valid_ether_addr(filter->src_mac)) || 7124 (is_multicast_ether_addr(filter->dst_mac) && 7125 is_multicast_ether_addr(filter->src_mac))) 7126 return -EOPNOTSUPP; 7127 7128 /* Big buffer cloud filter needs 'L4 port' to be non-zero. Also, UDP 7129 * ports are not supported via big buffer now. 7130 */ 7131 if (!filter->dst_port || filter->ip_proto == IPPROTO_UDP) 7132 return -EOPNOTSUPP; 7133 7134 /* adding filter using src_port/src_ip is not supported at this stage */ 7135 if (filter->src_port || filter->src_ipv4 || 7136 !ipv6_addr_any(&filter->ip.v6.src_ip6)) 7137 return -EOPNOTSUPP; 7138 7139 /* copy element needed to add cloud filter from filter */ 7140 i40e_set_cld_element(filter, &cld_filter.element); 7141 7142 if (is_valid_ether_addr(filter->dst_mac) || 7143 is_valid_ether_addr(filter->src_mac) || 7144 is_multicast_ether_addr(filter->dst_mac) || 7145 is_multicast_ether_addr(filter->src_mac)) { 7146 /* MAC + IP : unsupported mode */ 7147 if (filter->dst_ipv4) 7148 return -EOPNOTSUPP; 7149 7150 /* since we validated that L4 port must be valid before 7151 * we get here, start with respective "flags" value 7152 * and update if vlan is present or not 7153 */ 7154 cld_filter.element.flags = 7155 cpu_to_le16(I40E_AQC_ADD_CLOUD_FILTER_MAC_PORT); 7156 7157 if (filter->vlan_id) { 7158 cld_filter.element.flags = 7159 cpu_to_le16(I40E_AQC_ADD_CLOUD_FILTER_MAC_VLAN_PORT); 7160 } 7161 7162 } else if (filter->dst_ipv4 || 7163 !ipv6_addr_any(&filter->ip.v6.dst_ip6)) { 7164 cld_filter.element.flags = 7165 cpu_to_le16(I40E_AQC_ADD_CLOUD_FILTER_IP_PORT); 7166 if (filter->n_proto == ETH_P_IPV6) 7167 cld_filter.element.flags |= 7168 cpu_to_le16(I40E_AQC_ADD_CLOUD_FLAGS_IPV6); 7169 else 7170 cld_filter.element.flags |= 7171 cpu_to_le16(I40E_AQC_ADD_CLOUD_FLAGS_IPV4); 7172 } else { 7173 dev_err(&pf->pdev->dev, 7174 "either mac or ip has to be valid for cloud filter\n"); 7175 return -EINVAL; 7176 } 7177 7178 /* Now copy L4 port in Byte 6..7 in general fields */ 7179 cld_filter.general_fields[I40E_AQC_ADD_CLOUD_FV_FLU_0X16_WORD0] = 7180 be16_to_cpu(filter->dst_port); 7181 7182 if (add) { 7183 /* Validate current device switch mode, change if necessary */ 7184 ret = i40e_validate_and_set_switch_mode(vsi); 7185 if (ret) { 7186 dev_err(&pf->pdev->dev, 7187 "failed to set switch mode, ret %d\n", 7188 ret); 7189 return ret; 7190 } 7191 7192 ret = i40e_aq_add_cloud_filters_bb(&pf->hw, filter->seid, 7193 &cld_filter, 1); 7194 } else { 7195 ret = i40e_aq_rem_cloud_filters_bb(&pf->hw, filter->seid, 7196 &cld_filter, 1); 7197 } 7198 7199 if (ret) 7200 dev_dbg(&pf->pdev->dev, 7201 "Failed to %s cloud filter(big buffer) err %d aq_err %d\n", 7202 add ? "add" : "delete", ret, pf->hw.aq.asq_last_status); 7203 else 7204 dev_info(&pf->pdev->dev, 7205 "%s cloud filter for VSI: %d, L4 port: %d\n", 7206 add ? "add" : "delete", filter->seid, 7207 ntohs(filter->dst_port)); 7208 return ret; 7209 } 7210 7211 /** 7212 * i40e_parse_cls_flower - Parse tc flower filters provided by kernel 7213 * @vsi: Pointer to VSI 7214 * @cls_flower: Pointer to struct tc_cls_flower_offload 7215 * @filter: Pointer to cloud filter structure 7216 * 7217 **/ 7218 static int i40e_parse_cls_flower(struct i40e_vsi *vsi, 7219 struct tc_cls_flower_offload *f, 7220 struct i40e_cloud_filter *filter) 7221 { 7222 struct flow_rule *rule = tc_cls_flower_offload_flow_rule(f); 7223 struct flow_dissector *dissector = rule->match.dissector; 7224 u16 n_proto_mask = 0, n_proto_key = 0, addr_type = 0; 7225 struct i40e_pf *pf = vsi->back; 7226 u8 field_flags = 0; 7227 7228 if (dissector->used_keys & 7229 ~(BIT(FLOW_DISSECTOR_KEY_CONTROL) | 7230 BIT(FLOW_DISSECTOR_KEY_BASIC) | 7231 BIT(FLOW_DISSECTOR_KEY_ETH_ADDRS) | 7232 BIT(FLOW_DISSECTOR_KEY_VLAN) | 7233 BIT(FLOW_DISSECTOR_KEY_IPV4_ADDRS) | 7234 BIT(FLOW_DISSECTOR_KEY_IPV6_ADDRS) | 7235 BIT(FLOW_DISSECTOR_KEY_PORTS) | 7236 BIT(FLOW_DISSECTOR_KEY_ENC_KEYID))) { 7237 dev_err(&pf->pdev->dev, "Unsupported key used: 0x%x\n", 7238 dissector->used_keys); 7239 return -EOPNOTSUPP; 7240 } 7241 7242 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ENC_KEYID)) { 7243 struct flow_match_enc_keyid match; 7244 7245 flow_rule_match_enc_keyid(rule, &match); 7246 if (match.mask->keyid != 0) 7247 field_flags |= I40E_CLOUD_FIELD_TEN_ID; 7248 7249 filter->tenant_id = be32_to_cpu(match.key->keyid); 7250 } 7251 7252 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_BASIC)) { 7253 struct flow_match_basic match; 7254 7255 flow_rule_match_basic(rule, &match); 7256 n_proto_key = ntohs(match.key->n_proto); 7257 n_proto_mask = ntohs(match.mask->n_proto); 7258 7259 if (n_proto_key == ETH_P_ALL) { 7260 n_proto_key = 0; 7261 n_proto_mask = 0; 7262 } 7263 filter->n_proto = n_proto_key & n_proto_mask; 7264 filter->ip_proto = match.key->ip_proto; 7265 } 7266 7267 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ETH_ADDRS)) { 7268 struct flow_match_eth_addrs match; 7269 7270 flow_rule_match_eth_addrs(rule, &match); 7271 7272 /* use is_broadcast and is_zero to check for all 0xf or 0 */ 7273 if (!is_zero_ether_addr(match.mask->dst)) { 7274 if (is_broadcast_ether_addr(match.mask->dst)) { 7275 field_flags |= I40E_CLOUD_FIELD_OMAC; 7276 } else { 7277 dev_err(&pf->pdev->dev, "Bad ether dest mask %pM\n", 7278 match.mask->dst); 7279 return I40E_ERR_CONFIG; 7280 } 7281 } 7282 7283 if (!is_zero_ether_addr(match.mask->src)) { 7284 if (is_broadcast_ether_addr(match.mask->src)) { 7285 field_flags |= I40E_CLOUD_FIELD_IMAC; 7286 } else { 7287 dev_err(&pf->pdev->dev, "Bad ether src mask %pM\n", 7288 match.mask->src); 7289 return I40E_ERR_CONFIG; 7290 } 7291 } 7292 ether_addr_copy(filter->dst_mac, match.key->dst); 7293 ether_addr_copy(filter->src_mac, match.key->src); 7294 } 7295 7296 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_VLAN)) { 7297 struct flow_match_vlan match; 7298 7299 flow_rule_match_vlan(rule, &match); 7300 if (match.mask->vlan_id) { 7301 if (match.mask->vlan_id == VLAN_VID_MASK) { 7302 field_flags |= I40E_CLOUD_FIELD_IVLAN; 7303 7304 } else { 7305 dev_err(&pf->pdev->dev, "Bad vlan mask 0x%04x\n", 7306 match.mask->vlan_id); 7307 return I40E_ERR_CONFIG; 7308 } 7309 } 7310 7311 filter->vlan_id = cpu_to_be16(match.key->vlan_id); 7312 } 7313 7314 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_CONTROL)) { 7315 struct flow_match_control match; 7316 7317 flow_rule_match_control(rule, &match); 7318 addr_type = match.key->addr_type; 7319 } 7320 7321 if (addr_type == FLOW_DISSECTOR_KEY_IPV4_ADDRS) { 7322 struct flow_match_ipv4_addrs match; 7323 7324 flow_rule_match_ipv4_addrs(rule, &match); 7325 if (match.mask->dst) { 7326 if (match.mask->dst == cpu_to_be32(0xffffffff)) { 7327 field_flags |= I40E_CLOUD_FIELD_IIP; 7328 } else { 7329 dev_err(&pf->pdev->dev, "Bad ip dst mask %pI4b\n", 7330 &match.mask->dst); 7331 return I40E_ERR_CONFIG; 7332 } 7333 } 7334 7335 if (match.mask->src) { 7336 if (match.mask->src == cpu_to_be32(0xffffffff)) { 7337 field_flags |= I40E_CLOUD_FIELD_IIP; 7338 } else { 7339 dev_err(&pf->pdev->dev, "Bad ip src mask %pI4b\n", 7340 &match.mask->src); 7341 return I40E_ERR_CONFIG; 7342 } 7343 } 7344 7345 if (field_flags & I40E_CLOUD_FIELD_TEN_ID) { 7346 dev_err(&pf->pdev->dev, "Tenant id not allowed for ip filter\n"); 7347 return I40E_ERR_CONFIG; 7348 } 7349 filter->dst_ipv4 = match.key->dst; 7350 filter->src_ipv4 = match.key->src; 7351 } 7352 7353 if (addr_type == FLOW_DISSECTOR_KEY_IPV6_ADDRS) { 7354 struct flow_match_ipv6_addrs match; 7355 7356 flow_rule_match_ipv6_addrs(rule, &match); 7357 7358 /* src and dest IPV6 address should not be LOOPBACK 7359 * (0:0:0:0:0:0:0:1), which can be represented as ::1 7360 */ 7361 if (ipv6_addr_loopback(&match.key->dst) || 7362 ipv6_addr_loopback(&match.key->src)) { 7363 dev_err(&pf->pdev->dev, 7364 "Bad ipv6, addr is LOOPBACK\n"); 7365 return I40E_ERR_CONFIG; 7366 } 7367 if (!ipv6_addr_any(&match.mask->dst) || 7368 !ipv6_addr_any(&match.mask->src)) 7369 field_flags |= I40E_CLOUD_FIELD_IIP; 7370 7371 memcpy(&filter->src_ipv6, &match.key->src.s6_addr32, 7372 sizeof(filter->src_ipv6)); 7373 memcpy(&filter->dst_ipv6, &match.key->dst.s6_addr32, 7374 sizeof(filter->dst_ipv6)); 7375 } 7376 7377 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_PORTS)) { 7378 struct flow_match_ports match; 7379 7380 flow_rule_match_ports(rule, &match); 7381 if (match.mask->src) { 7382 if (match.mask->src == cpu_to_be16(0xffff)) { 7383 field_flags |= I40E_CLOUD_FIELD_IIP; 7384 } else { 7385 dev_err(&pf->pdev->dev, "Bad src port mask 0x%04x\n", 7386 be16_to_cpu(match.mask->src)); 7387 return I40E_ERR_CONFIG; 7388 } 7389 } 7390 7391 if (match.mask->dst) { 7392 if (match.mask->dst == cpu_to_be16(0xffff)) { 7393 field_flags |= I40E_CLOUD_FIELD_IIP; 7394 } else { 7395 dev_err(&pf->pdev->dev, "Bad dst port mask 0x%04x\n", 7396 be16_to_cpu(match.mask->dst)); 7397 return I40E_ERR_CONFIG; 7398 } 7399 } 7400 7401 filter->dst_port = match.key->dst; 7402 filter->src_port = match.key->src; 7403 7404 switch (filter->ip_proto) { 7405 case IPPROTO_TCP: 7406 case IPPROTO_UDP: 7407 break; 7408 default: 7409 dev_err(&pf->pdev->dev, 7410 "Only UDP and TCP transport are supported\n"); 7411 return -EINVAL; 7412 } 7413 } 7414 filter->flags = field_flags; 7415 return 0; 7416 } 7417 7418 /** 7419 * i40e_handle_tclass: Forward to a traffic class on the device 7420 * @vsi: Pointer to VSI 7421 * @tc: traffic class index on the device 7422 * @filter: Pointer to cloud filter structure 7423 * 7424 **/ 7425 static int i40e_handle_tclass(struct i40e_vsi *vsi, u32 tc, 7426 struct i40e_cloud_filter *filter) 7427 { 7428 struct i40e_channel *ch, *ch_tmp; 7429 7430 /* direct to a traffic class on the same device */ 7431 if (tc == 0) { 7432 filter->seid = vsi->seid; 7433 return 0; 7434 } else if (vsi->tc_config.enabled_tc & BIT(tc)) { 7435 if (!filter->dst_port) { 7436 dev_err(&vsi->back->pdev->dev, 7437 "Specify destination port to direct to traffic class that is not default\n"); 7438 return -EINVAL; 7439 } 7440 if (list_empty(&vsi->ch_list)) 7441 return -EINVAL; 7442 list_for_each_entry_safe(ch, ch_tmp, &vsi->ch_list, 7443 list) { 7444 if (ch->seid == vsi->tc_seid_map[tc]) 7445 filter->seid = ch->seid; 7446 } 7447 return 0; 7448 } 7449 dev_err(&vsi->back->pdev->dev, "TC is not enabled\n"); 7450 return -EINVAL; 7451 } 7452 7453 /** 7454 * i40e_configure_clsflower - Configure tc flower filters 7455 * @vsi: Pointer to VSI 7456 * @cls_flower: Pointer to struct tc_cls_flower_offload 7457 * 7458 **/ 7459 static int i40e_configure_clsflower(struct i40e_vsi *vsi, 7460 struct tc_cls_flower_offload *cls_flower) 7461 { 7462 int tc = tc_classid_to_hwtc(vsi->netdev, cls_flower->classid); 7463 struct i40e_cloud_filter *filter = NULL; 7464 struct i40e_pf *pf = vsi->back; 7465 int err = 0; 7466 7467 if (tc < 0) { 7468 dev_err(&vsi->back->pdev->dev, "Invalid traffic class\n"); 7469 return -EOPNOTSUPP; 7470 } 7471 7472 if (test_bit(__I40E_RESET_RECOVERY_PENDING, pf->state) || 7473 test_bit(__I40E_RESET_INTR_RECEIVED, pf->state)) 7474 return -EBUSY; 7475 7476 if (pf->fdir_pf_active_filters || 7477 (!hlist_empty(&pf->fdir_filter_list))) { 7478 dev_err(&vsi->back->pdev->dev, 7479 "Flow Director Sideband filters exists, turn ntuple off to configure cloud filters\n"); 7480 return -EINVAL; 7481 } 7482 7483 if (vsi->back->flags & I40E_FLAG_FD_SB_ENABLED) { 7484 dev_err(&vsi->back->pdev->dev, 7485 "Disable Flow Director Sideband, configuring Cloud filters via tc-flower\n"); 7486 vsi->back->flags &= ~I40E_FLAG_FD_SB_ENABLED; 7487 vsi->back->flags |= I40E_FLAG_FD_SB_TO_CLOUD_FILTER; 7488 } 7489 7490 filter = kzalloc(sizeof(*filter), GFP_KERNEL); 7491 if (!filter) 7492 return -ENOMEM; 7493 7494 filter->cookie = cls_flower->cookie; 7495 7496 err = i40e_parse_cls_flower(vsi, cls_flower, filter); 7497 if (err < 0) 7498 goto err; 7499 7500 err = i40e_handle_tclass(vsi, tc, filter); 7501 if (err < 0) 7502 goto err; 7503 7504 /* Add cloud filter */ 7505 if (filter->dst_port) 7506 err = i40e_add_del_cloud_filter_big_buf(vsi, filter, true); 7507 else 7508 err = i40e_add_del_cloud_filter(vsi, filter, true); 7509 7510 if (err) { 7511 dev_err(&pf->pdev->dev, 7512 "Failed to add cloud filter, err %s\n", 7513 i40e_stat_str(&pf->hw, err)); 7514 goto err; 7515 } 7516 7517 /* add filter to the ordered list */ 7518 INIT_HLIST_NODE(&filter->cloud_node); 7519 7520 hlist_add_head(&filter->cloud_node, &pf->cloud_filter_list); 7521 7522 pf->num_cloud_filters++; 7523 7524 return err; 7525 err: 7526 kfree(filter); 7527 return err; 7528 } 7529 7530 /** 7531 * i40e_find_cloud_filter - Find the could filter in the list 7532 * @vsi: Pointer to VSI 7533 * @cookie: filter specific cookie 7534 * 7535 **/ 7536 static struct i40e_cloud_filter *i40e_find_cloud_filter(struct i40e_vsi *vsi, 7537 unsigned long *cookie) 7538 { 7539 struct i40e_cloud_filter *filter = NULL; 7540 struct hlist_node *node2; 7541 7542 hlist_for_each_entry_safe(filter, node2, 7543 &vsi->back->cloud_filter_list, cloud_node) 7544 if (!memcmp(cookie, &filter->cookie, sizeof(filter->cookie))) 7545 return filter; 7546 return NULL; 7547 } 7548 7549 /** 7550 * i40e_delete_clsflower - Remove tc flower filters 7551 * @vsi: Pointer to VSI 7552 * @cls_flower: Pointer to struct tc_cls_flower_offload 7553 * 7554 **/ 7555 static int i40e_delete_clsflower(struct i40e_vsi *vsi, 7556 struct tc_cls_flower_offload *cls_flower) 7557 { 7558 struct i40e_cloud_filter *filter = NULL; 7559 struct i40e_pf *pf = vsi->back; 7560 int err = 0; 7561 7562 filter = i40e_find_cloud_filter(vsi, &cls_flower->cookie); 7563 7564 if (!filter) 7565 return -EINVAL; 7566 7567 hash_del(&filter->cloud_node); 7568 7569 if (filter->dst_port) 7570 err = i40e_add_del_cloud_filter_big_buf(vsi, filter, false); 7571 else 7572 err = i40e_add_del_cloud_filter(vsi, filter, false); 7573 7574 kfree(filter); 7575 if (err) { 7576 dev_err(&pf->pdev->dev, 7577 "Failed to delete cloud filter, err %s\n", 7578 i40e_stat_str(&pf->hw, err)); 7579 return i40e_aq_rc_to_posix(err, pf->hw.aq.asq_last_status); 7580 } 7581 7582 pf->num_cloud_filters--; 7583 if (!pf->num_cloud_filters) 7584 if ((pf->flags & I40E_FLAG_FD_SB_TO_CLOUD_FILTER) && 7585 !(pf->flags & I40E_FLAG_FD_SB_INACTIVE)) { 7586 pf->flags |= I40E_FLAG_FD_SB_ENABLED; 7587 pf->flags &= ~I40E_FLAG_FD_SB_TO_CLOUD_FILTER; 7588 pf->flags &= ~I40E_FLAG_FD_SB_INACTIVE; 7589 } 7590 return 0; 7591 } 7592 7593 /** 7594 * i40e_setup_tc_cls_flower - flower classifier offloads 7595 * @netdev: net device to configure 7596 * @type_data: offload data 7597 **/ 7598 static int i40e_setup_tc_cls_flower(struct i40e_netdev_priv *np, 7599 struct tc_cls_flower_offload *cls_flower) 7600 { 7601 struct i40e_vsi *vsi = np->vsi; 7602 7603 switch (cls_flower->command) { 7604 case TC_CLSFLOWER_REPLACE: 7605 return i40e_configure_clsflower(vsi, cls_flower); 7606 case TC_CLSFLOWER_DESTROY: 7607 return i40e_delete_clsflower(vsi, cls_flower); 7608 case TC_CLSFLOWER_STATS: 7609 return -EOPNOTSUPP; 7610 default: 7611 return -EOPNOTSUPP; 7612 } 7613 } 7614 7615 static int i40e_setup_tc_block_cb(enum tc_setup_type type, void *type_data, 7616 void *cb_priv) 7617 { 7618 struct i40e_netdev_priv *np = cb_priv; 7619 7620 if (!tc_cls_can_offload_and_chain0(np->vsi->netdev, type_data)) 7621 return -EOPNOTSUPP; 7622 7623 switch (type) { 7624 case TC_SETUP_CLSFLOWER: 7625 return i40e_setup_tc_cls_flower(np, type_data); 7626 7627 default: 7628 return -EOPNOTSUPP; 7629 } 7630 } 7631 7632 static int i40e_setup_tc_block(struct net_device *dev, 7633 struct tc_block_offload *f) 7634 { 7635 struct i40e_netdev_priv *np = netdev_priv(dev); 7636 7637 if (f->binder_type != TCF_BLOCK_BINDER_TYPE_CLSACT_INGRESS) 7638 return -EOPNOTSUPP; 7639 7640 switch (f->command) { 7641 case TC_BLOCK_BIND: 7642 return tcf_block_cb_register(f->block, i40e_setup_tc_block_cb, 7643 np, np, f->extack); 7644 case TC_BLOCK_UNBIND: 7645 tcf_block_cb_unregister(f->block, i40e_setup_tc_block_cb, np); 7646 return 0; 7647 default: 7648 return -EOPNOTSUPP; 7649 } 7650 } 7651 7652 static int __i40e_setup_tc(struct net_device *netdev, enum tc_setup_type type, 7653 void *type_data) 7654 { 7655 switch (type) { 7656 case TC_SETUP_QDISC_MQPRIO: 7657 return i40e_setup_tc(netdev, type_data); 7658 case TC_SETUP_BLOCK: 7659 return i40e_setup_tc_block(netdev, type_data); 7660 default: 7661 return -EOPNOTSUPP; 7662 } 7663 } 7664 7665 /** 7666 * i40e_open - Called when a network interface is made active 7667 * @netdev: network interface device structure 7668 * 7669 * The open entry point is called when a network interface is made 7670 * active by the system (IFF_UP). At this point all resources needed 7671 * for transmit and receive operations are allocated, the interrupt 7672 * handler is registered with the OS, the netdev watchdog subtask is 7673 * enabled, and the stack is notified that the interface is ready. 7674 * 7675 * Returns 0 on success, negative value on failure 7676 **/ 7677 int i40e_open(struct net_device *netdev) 7678 { 7679 struct i40e_netdev_priv *np = netdev_priv(netdev); 7680 struct i40e_vsi *vsi = np->vsi; 7681 struct i40e_pf *pf = vsi->back; 7682 int err; 7683 7684 /* disallow open during test or if eeprom is broken */ 7685 if (test_bit(__I40E_TESTING, pf->state) || 7686 test_bit(__I40E_BAD_EEPROM, pf->state)) 7687 return -EBUSY; 7688 7689 netif_carrier_off(netdev); 7690 7691 if (i40e_force_link_state(pf, true)) 7692 return -EAGAIN; 7693 7694 err = i40e_vsi_open(vsi); 7695 if (err) 7696 return err; 7697 7698 /* configure global TSO hardware offload settings */ 7699 wr32(&pf->hw, I40E_GLLAN_TSOMSK_F, be32_to_cpu(TCP_FLAG_PSH | 7700 TCP_FLAG_FIN) >> 16); 7701 wr32(&pf->hw, I40E_GLLAN_TSOMSK_M, be32_to_cpu(TCP_FLAG_PSH | 7702 TCP_FLAG_FIN | 7703 TCP_FLAG_CWR) >> 16); 7704 wr32(&pf->hw, I40E_GLLAN_TSOMSK_L, be32_to_cpu(TCP_FLAG_CWR) >> 16); 7705 7706 udp_tunnel_get_rx_info(netdev); 7707 7708 return 0; 7709 } 7710 7711 /** 7712 * i40e_vsi_open - 7713 * @vsi: the VSI to open 7714 * 7715 * Finish initialization of the VSI. 7716 * 7717 * Returns 0 on success, negative value on failure 7718 * 7719 * Note: expects to be called while under rtnl_lock() 7720 **/ 7721 int i40e_vsi_open(struct i40e_vsi *vsi) 7722 { 7723 struct i40e_pf *pf = vsi->back; 7724 char int_name[I40E_INT_NAME_STR_LEN]; 7725 int err; 7726 7727 /* allocate descriptors */ 7728 err = i40e_vsi_setup_tx_resources(vsi); 7729 if (err) 7730 goto err_setup_tx; 7731 err = i40e_vsi_setup_rx_resources(vsi); 7732 if (err) 7733 goto err_setup_rx; 7734 7735 err = i40e_vsi_configure(vsi); 7736 if (err) 7737 goto err_setup_rx; 7738 7739 if (vsi->netdev) { 7740 snprintf(int_name, sizeof(int_name) - 1, "%s-%s", 7741 dev_driver_string(&pf->pdev->dev), vsi->netdev->name); 7742 err = i40e_vsi_request_irq(vsi, int_name); 7743 if (err) 7744 goto err_setup_rx; 7745 7746 /* Notify the stack of the actual queue counts. */ 7747 err = netif_set_real_num_tx_queues(vsi->netdev, 7748 vsi->num_queue_pairs); 7749 if (err) 7750 goto err_set_queues; 7751 7752 err = netif_set_real_num_rx_queues(vsi->netdev, 7753 vsi->num_queue_pairs); 7754 if (err) 7755 goto err_set_queues; 7756 7757 } else if (vsi->type == I40E_VSI_FDIR) { 7758 snprintf(int_name, sizeof(int_name) - 1, "%s-%s:fdir", 7759 dev_driver_string(&pf->pdev->dev), 7760 dev_name(&pf->pdev->dev)); 7761 err = i40e_vsi_request_irq(vsi, int_name); 7762 7763 } else { 7764 err = -EINVAL; 7765 goto err_setup_rx; 7766 } 7767 7768 err = i40e_up_complete(vsi); 7769 if (err) 7770 goto err_up_complete; 7771 7772 return 0; 7773 7774 err_up_complete: 7775 i40e_down(vsi); 7776 err_set_queues: 7777 i40e_vsi_free_irq(vsi); 7778 err_setup_rx: 7779 i40e_vsi_free_rx_resources(vsi); 7780 err_setup_tx: 7781 i40e_vsi_free_tx_resources(vsi); 7782 if (vsi == pf->vsi[pf->lan_vsi]) 7783 i40e_do_reset(pf, I40E_PF_RESET_FLAG, true); 7784 7785 return err; 7786 } 7787 7788 /** 7789 * i40e_fdir_filter_exit - Cleans up the Flow Director accounting 7790 * @pf: Pointer to PF 7791 * 7792 * This function destroys the hlist where all the Flow Director 7793 * filters were saved. 7794 **/ 7795 static void i40e_fdir_filter_exit(struct i40e_pf *pf) 7796 { 7797 struct i40e_fdir_filter *filter; 7798 struct i40e_flex_pit *pit_entry, *tmp; 7799 struct hlist_node *node2; 7800 7801 hlist_for_each_entry_safe(filter, node2, 7802 &pf->fdir_filter_list, fdir_node) { 7803 hlist_del(&filter->fdir_node); 7804 kfree(filter); 7805 } 7806 7807 list_for_each_entry_safe(pit_entry, tmp, &pf->l3_flex_pit_list, list) { 7808 list_del(&pit_entry->list); 7809 kfree(pit_entry); 7810 } 7811 INIT_LIST_HEAD(&pf->l3_flex_pit_list); 7812 7813 list_for_each_entry_safe(pit_entry, tmp, &pf->l4_flex_pit_list, list) { 7814 list_del(&pit_entry->list); 7815 kfree(pit_entry); 7816 } 7817 INIT_LIST_HEAD(&pf->l4_flex_pit_list); 7818 7819 pf->fdir_pf_active_filters = 0; 7820 pf->fd_tcp4_filter_cnt = 0; 7821 pf->fd_udp4_filter_cnt = 0; 7822 pf->fd_sctp4_filter_cnt = 0; 7823 pf->fd_ip4_filter_cnt = 0; 7824 7825 /* Reprogram the default input set for TCP/IPv4 */ 7826 i40e_write_fd_input_set(pf, I40E_FILTER_PCTYPE_NONF_IPV4_TCP, 7827 I40E_L3_SRC_MASK | I40E_L3_DST_MASK | 7828 I40E_L4_SRC_MASK | I40E_L4_DST_MASK); 7829 7830 /* Reprogram the default input set for UDP/IPv4 */ 7831 i40e_write_fd_input_set(pf, I40E_FILTER_PCTYPE_NONF_IPV4_UDP, 7832 I40E_L3_SRC_MASK | I40E_L3_DST_MASK | 7833 I40E_L4_SRC_MASK | I40E_L4_DST_MASK); 7834 7835 /* Reprogram the default input set for SCTP/IPv4 */ 7836 i40e_write_fd_input_set(pf, I40E_FILTER_PCTYPE_NONF_IPV4_SCTP, 7837 I40E_L3_SRC_MASK | I40E_L3_DST_MASK | 7838 I40E_L4_SRC_MASK | I40E_L4_DST_MASK); 7839 7840 /* Reprogram the default input set for Other/IPv4 */ 7841 i40e_write_fd_input_set(pf, I40E_FILTER_PCTYPE_NONF_IPV4_OTHER, 7842 I40E_L3_SRC_MASK | I40E_L3_DST_MASK); 7843 7844 i40e_write_fd_input_set(pf, I40E_FILTER_PCTYPE_FRAG_IPV4, 7845 I40E_L3_SRC_MASK | I40E_L3_DST_MASK); 7846 } 7847 7848 /** 7849 * i40e_cloud_filter_exit - Cleans up the cloud filters 7850 * @pf: Pointer to PF 7851 * 7852 * This function destroys the hlist where all the cloud filters 7853 * were saved. 7854 **/ 7855 static void i40e_cloud_filter_exit(struct i40e_pf *pf) 7856 { 7857 struct i40e_cloud_filter *cfilter; 7858 struct hlist_node *node; 7859 7860 hlist_for_each_entry_safe(cfilter, node, 7861 &pf->cloud_filter_list, cloud_node) { 7862 hlist_del(&cfilter->cloud_node); 7863 kfree(cfilter); 7864 } 7865 pf->num_cloud_filters = 0; 7866 7867 if ((pf->flags & I40E_FLAG_FD_SB_TO_CLOUD_FILTER) && 7868 !(pf->flags & I40E_FLAG_FD_SB_INACTIVE)) { 7869 pf->flags |= I40E_FLAG_FD_SB_ENABLED; 7870 pf->flags &= ~I40E_FLAG_FD_SB_TO_CLOUD_FILTER; 7871 pf->flags &= ~I40E_FLAG_FD_SB_INACTIVE; 7872 } 7873 } 7874 7875 /** 7876 * i40e_close - Disables a network interface 7877 * @netdev: network interface device structure 7878 * 7879 * The close entry point is called when an interface is de-activated 7880 * by the OS. The hardware is still under the driver's control, but 7881 * this netdev interface is disabled. 7882 * 7883 * Returns 0, this is not allowed to fail 7884 **/ 7885 int i40e_close(struct net_device *netdev) 7886 { 7887 struct i40e_netdev_priv *np = netdev_priv(netdev); 7888 struct i40e_vsi *vsi = np->vsi; 7889 7890 i40e_vsi_close(vsi); 7891 7892 return 0; 7893 } 7894 7895 /** 7896 * i40e_do_reset - Start a PF or Core Reset sequence 7897 * @pf: board private structure 7898 * @reset_flags: which reset is requested 7899 * @lock_acquired: indicates whether or not the lock has been acquired 7900 * before this function was called. 7901 * 7902 * The essential difference in resets is that the PF Reset 7903 * doesn't clear the packet buffers, doesn't reset the PE 7904 * firmware, and doesn't bother the other PFs on the chip. 7905 **/ 7906 void i40e_do_reset(struct i40e_pf *pf, u32 reset_flags, bool lock_acquired) 7907 { 7908 u32 val; 7909 7910 WARN_ON(in_interrupt()); 7911 7912 7913 /* do the biggest reset indicated */ 7914 if (reset_flags & BIT_ULL(__I40E_GLOBAL_RESET_REQUESTED)) { 7915 7916 /* Request a Global Reset 7917 * 7918 * This will start the chip's countdown to the actual full 7919 * chip reset event, and a warning interrupt to be sent 7920 * to all PFs, including the requestor. Our handler 7921 * for the warning interrupt will deal with the shutdown 7922 * and recovery of the switch setup. 7923 */ 7924 dev_dbg(&pf->pdev->dev, "GlobalR requested\n"); 7925 val = rd32(&pf->hw, I40E_GLGEN_RTRIG); 7926 val |= I40E_GLGEN_RTRIG_GLOBR_MASK; 7927 wr32(&pf->hw, I40E_GLGEN_RTRIG, val); 7928 7929 } else if (reset_flags & BIT_ULL(__I40E_CORE_RESET_REQUESTED)) { 7930 7931 /* Request a Core Reset 7932 * 7933 * Same as Global Reset, except does *not* include the MAC/PHY 7934 */ 7935 dev_dbg(&pf->pdev->dev, "CoreR requested\n"); 7936 val = rd32(&pf->hw, I40E_GLGEN_RTRIG); 7937 val |= I40E_GLGEN_RTRIG_CORER_MASK; 7938 wr32(&pf->hw, I40E_GLGEN_RTRIG, val); 7939 i40e_flush(&pf->hw); 7940 7941 } else if (reset_flags & I40E_PF_RESET_FLAG) { 7942 7943 /* Request a PF Reset 7944 * 7945 * Resets only the PF-specific registers 7946 * 7947 * This goes directly to the tear-down and rebuild of 7948 * the switch, since we need to do all the recovery as 7949 * for the Core Reset. 7950 */ 7951 dev_dbg(&pf->pdev->dev, "PFR requested\n"); 7952 i40e_handle_reset_warning(pf, lock_acquired); 7953 7954 } else if (reset_flags & BIT_ULL(__I40E_REINIT_REQUESTED)) { 7955 int v; 7956 7957 /* Find the VSI(s) that requested a re-init */ 7958 dev_info(&pf->pdev->dev, 7959 "VSI reinit requested\n"); 7960 for (v = 0; v < pf->num_alloc_vsi; v++) { 7961 struct i40e_vsi *vsi = pf->vsi[v]; 7962 7963 if (vsi != NULL && 7964 test_and_clear_bit(__I40E_VSI_REINIT_REQUESTED, 7965 vsi->state)) 7966 i40e_vsi_reinit_locked(pf->vsi[v]); 7967 } 7968 } else if (reset_flags & BIT_ULL(__I40E_DOWN_REQUESTED)) { 7969 int v; 7970 7971 /* Find the VSI(s) that needs to be brought down */ 7972 dev_info(&pf->pdev->dev, "VSI down requested\n"); 7973 for (v = 0; v < pf->num_alloc_vsi; v++) { 7974 struct i40e_vsi *vsi = pf->vsi[v]; 7975 7976 if (vsi != NULL && 7977 test_and_clear_bit(__I40E_VSI_DOWN_REQUESTED, 7978 vsi->state)) { 7979 set_bit(__I40E_VSI_DOWN, vsi->state); 7980 i40e_down(vsi); 7981 } 7982 } 7983 } else { 7984 dev_info(&pf->pdev->dev, 7985 "bad reset request 0x%08x\n", reset_flags); 7986 } 7987 } 7988 7989 #ifdef CONFIG_I40E_DCB 7990 /** 7991 * i40e_dcb_need_reconfig - Check if DCB needs reconfig 7992 * @pf: board private structure 7993 * @old_cfg: current DCB config 7994 * @new_cfg: new DCB config 7995 **/ 7996 bool i40e_dcb_need_reconfig(struct i40e_pf *pf, 7997 struct i40e_dcbx_config *old_cfg, 7998 struct i40e_dcbx_config *new_cfg) 7999 { 8000 bool need_reconfig = false; 8001 8002 /* Check if ETS configuration has changed */ 8003 if (memcmp(&new_cfg->etscfg, 8004 &old_cfg->etscfg, 8005 sizeof(new_cfg->etscfg))) { 8006 /* If Priority Table has changed reconfig is needed */ 8007 if (memcmp(&new_cfg->etscfg.prioritytable, 8008 &old_cfg->etscfg.prioritytable, 8009 sizeof(new_cfg->etscfg.prioritytable))) { 8010 need_reconfig = true; 8011 dev_dbg(&pf->pdev->dev, "ETS UP2TC changed.\n"); 8012 } 8013 8014 if (memcmp(&new_cfg->etscfg.tcbwtable, 8015 &old_cfg->etscfg.tcbwtable, 8016 sizeof(new_cfg->etscfg.tcbwtable))) 8017 dev_dbg(&pf->pdev->dev, "ETS TC BW Table changed.\n"); 8018 8019 if (memcmp(&new_cfg->etscfg.tsatable, 8020 &old_cfg->etscfg.tsatable, 8021 sizeof(new_cfg->etscfg.tsatable))) 8022 dev_dbg(&pf->pdev->dev, "ETS TSA Table changed.\n"); 8023 } 8024 8025 /* Check if PFC configuration has changed */ 8026 if (memcmp(&new_cfg->pfc, 8027 &old_cfg->pfc, 8028 sizeof(new_cfg->pfc))) { 8029 need_reconfig = true; 8030 dev_dbg(&pf->pdev->dev, "PFC config change detected.\n"); 8031 } 8032 8033 /* Check if APP Table has changed */ 8034 if (memcmp(&new_cfg->app, 8035 &old_cfg->app, 8036 sizeof(new_cfg->app))) { 8037 need_reconfig = true; 8038 dev_dbg(&pf->pdev->dev, "APP Table change detected.\n"); 8039 } 8040 8041 dev_dbg(&pf->pdev->dev, "dcb need_reconfig=%d\n", need_reconfig); 8042 return need_reconfig; 8043 } 8044 8045 /** 8046 * i40e_handle_lldp_event - Handle LLDP Change MIB event 8047 * @pf: board private structure 8048 * @e: event info posted on ARQ 8049 **/ 8050 static int i40e_handle_lldp_event(struct i40e_pf *pf, 8051 struct i40e_arq_event_info *e) 8052 { 8053 struct i40e_aqc_lldp_get_mib *mib = 8054 (struct i40e_aqc_lldp_get_mib *)&e->desc.params.raw; 8055 struct i40e_hw *hw = &pf->hw; 8056 struct i40e_dcbx_config tmp_dcbx_cfg; 8057 bool need_reconfig = false; 8058 int ret = 0; 8059 u8 type; 8060 8061 /* Not DCB capable or capability disabled */ 8062 if (!(pf->flags & I40E_FLAG_DCB_CAPABLE)) 8063 return ret; 8064 8065 /* Ignore if event is not for Nearest Bridge */ 8066 type = ((mib->type >> I40E_AQ_LLDP_BRIDGE_TYPE_SHIFT) 8067 & I40E_AQ_LLDP_BRIDGE_TYPE_MASK); 8068 dev_dbg(&pf->pdev->dev, "LLDP event mib bridge type 0x%x\n", type); 8069 if (type != I40E_AQ_LLDP_BRIDGE_TYPE_NEAREST_BRIDGE) 8070 return ret; 8071 8072 /* Check MIB Type and return if event for Remote MIB update */ 8073 type = mib->type & I40E_AQ_LLDP_MIB_TYPE_MASK; 8074 dev_dbg(&pf->pdev->dev, 8075 "LLDP event mib type %s\n", type ? "remote" : "local"); 8076 if (type == I40E_AQ_LLDP_MIB_REMOTE) { 8077 /* Update the remote cached instance and return */ 8078 ret = i40e_aq_get_dcb_config(hw, I40E_AQ_LLDP_MIB_REMOTE, 8079 I40E_AQ_LLDP_BRIDGE_TYPE_NEAREST_BRIDGE, 8080 &hw->remote_dcbx_config); 8081 goto exit; 8082 } 8083 8084 /* Store the old configuration */ 8085 tmp_dcbx_cfg = hw->local_dcbx_config; 8086 8087 /* Reset the old DCBx configuration data */ 8088 memset(&hw->local_dcbx_config, 0, sizeof(hw->local_dcbx_config)); 8089 /* Get updated DCBX data from firmware */ 8090 ret = i40e_get_dcb_config(&pf->hw); 8091 if (ret) { 8092 dev_info(&pf->pdev->dev, 8093 "Failed querying DCB configuration data from firmware, err %s aq_err %s\n", 8094 i40e_stat_str(&pf->hw, ret), 8095 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 8096 goto exit; 8097 } 8098 8099 /* No change detected in DCBX configs */ 8100 if (!memcmp(&tmp_dcbx_cfg, &hw->local_dcbx_config, 8101 sizeof(tmp_dcbx_cfg))) { 8102 dev_dbg(&pf->pdev->dev, "No change detected in DCBX configuration.\n"); 8103 goto exit; 8104 } 8105 8106 need_reconfig = i40e_dcb_need_reconfig(pf, &tmp_dcbx_cfg, 8107 &hw->local_dcbx_config); 8108 8109 i40e_dcbnl_flush_apps(pf, &tmp_dcbx_cfg, &hw->local_dcbx_config); 8110 8111 if (!need_reconfig) 8112 goto exit; 8113 8114 /* Enable DCB tagging only when more than one TC */ 8115 if (i40e_dcb_get_num_tc(&hw->local_dcbx_config) > 1) 8116 pf->flags |= I40E_FLAG_DCB_ENABLED; 8117 else 8118 pf->flags &= ~I40E_FLAG_DCB_ENABLED; 8119 8120 set_bit(__I40E_PORT_SUSPENDED, pf->state); 8121 /* Reconfiguration needed quiesce all VSIs */ 8122 i40e_pf_quiesce_all_vsi(pf); 8123 8124 /* Changes in configuration update VEB/VSI */ 8125 i40e_dcb_reconfigure(pf); 8126 8127 ret = i40e_resume_port_tx(pf); 8128 8129 clear_bit(__I40E_PORT_SUSPENDED, pf->state); 8130 /* In case of error no point in resuming VSIs */ 8131 if (ret) 8132 goto exit; 8133 8134 /* Wait for the PF's queues to be disabled */ 8135 ret = i40e_pf_wait_queues_disabled(pf); 8136 if (ret) { 8137 /* Schedule PF reset to recover */ 8138 set_bit(__I40E_PF_RESET_REQUESTED, pf->state); 8139 i40e_service_event_schedule(pf); 8140 } else { 8141 i40e_pf_unquiesce_all_vsi(pf); 8142 set_bit(__I40E_CLIENT_SERVICE_REQUESTED, pf->state); 8143 set_bit(__I40E_CLIENT_L2_CHANGE, pf->state); 8144 } 8145 8146 exit: 8147 return ret; 8148 } 8149 #endif /* CONFIG_I40E_DCB */ 8150 8151 /** 8152 * i40e_do_reset_safe - Protected reset path for userland calls. 8153 * @pf: board private structure 8154 * @reset_flags: which reset is requested 8155 * 8156 **/ 8157 void i40e_do_reset_safe(struct i40e_pf *pf, u32 reset_flags) 8158 { 8159 rtnl_lock(); 8160 i40e_do_reset(pf, reset_flags, true); 8161 rtnl_unlock(); 8162 } 8163 8164 /** 8165 * i40e_handle_lan_overflow_event - Handler for LAN queue overflow event 8166 * @pf: board private structure 8167 * @e: event info posted on ARQ 8168 * 8169 * Handler for LAN Queue Overflow Event generated by the firmware for PF 8170 * and VF queues 8171 **/ 8172 static void i40e_handle_lan_overflow_event(struct i40e_pf *pf, 8173 struct i40e_arq_event_info *e) 8174 { 8175 struct i40e_aqc_lan_overflow *data = 8176 (struct i40e_aqc_lan_overflow *)&e->desc.params.raw; 8177 u32 queue = le32_to_cpu(data->prtdcb_rupto); 8178 u32 qtx_ctl = le32_to_cpu(data->otx_ctl); 8179 struct i40e_hw *hw = &pf->hw; 8180 struct i40e_vf *vf; 8181 u16 vf_id; 8182 8183 dev_dbg(&pf->pdev->dev, "overflow Rx Queue Number = %d QTX_CTL=0x%08x\n", 8184 queue, qtx_ctl); 8185 8186 /* Queue belongs to VF, find the VF and issue VF reset */ 8187 if (((qtx_ctl & I40E_QTX_CTL_PFVF_Q_MASK) 8188 >> I40E_QTX_CTL_PFVF_Q_SHIFT) == I40E_QTX_CTL_VF_QUEUE) { 8189 vf_id = (u16)((qtx_ctl & I40E_QTX_CTL_VFVM_INDX_MASK) 8190 >> I40E_QTX_CTL_VFVM_INDX_SHIFT); 8191 vf_id -= hw->func_caps.vf_base_id; 8192 vf = &pf->vf[vf_id]; 8193 i40e_vc_notify_vf_reset(vf); 8194 /* Allow VF to process pending reset notification */ 8195 msleep(20); 8196 i40e_reset_vf(vf, false); 8197 } 8198 } 8199 8200 /** 8201 * i40e_get_cur_guaranteed_fd_count - Get the consumed guaranteed FD filters 8202 * @pf: board private structure 8203 **/ 8204 u32 i40e_get_cur_guaranteed_fd_count(struct i40e_pf *pf) 8205 { 8206 u32 val, fcnt_prog; 8207 8208 val = rd32(&pf->hw, I40E_PFQF_FDSTAT); 8209 fcnt_prog = (val & I40E_PFQF_FDSTAT_GUARANT_CNT_MASK); 8210 return fcnt_prog; 8211 } 8212 8213 /** 8214 * i40e_get_current_fd_count - Get total FD filters programmed for this PF 8215 * @pf: board private structure 8216 **/ 8217 u32 i40e_get_current_fd_count(struct i40e_pf *pf) 8218 { 8219 u32 val, fcnt_prog; 8220 8221 val = rd32(&pf->hw, I40E_PFQF_FDSTAT); 8222 fcnt_prog = (val & I40E_PFQF_FDSTAT_GUARANT_CNT_MASK) + 8223 ((val & I40E_PFQF_FDSTAT_BEST_CNT_MASK) >> 8224 I40E_PFQF_FDSTAT_BEST_CNT_SHIFT); 8225 return fcnt_prog; 8226 } 8227 8228 /** 8229 * i40e_get_global_fd_count - Get total FD filters programmed on device 8230 * @pf: board private structure 8231 **/ 8232 u32 i40e_get_global_fd_count(struct i40e_pf *pf) 8233 { 8234 u32 val, fcnt_prog; 8235 8236 val = rd32(&pf->hw, I40E_GLQF_FDCNT_0); 8237 fcnt_prog = (val & I40E_GLQF_FDCNT_0_GUARANT_CNT_MASK) + 8238 ((val & I40E_GLQF_FDCNT_0_BESTCNT_MASK) >> 8239 I40E_GLQF_FDCNT_0_BESTCNT_SHIFT); 8240 return fcnt_prog; 8241 } 8242 8243 /** 8244 * i40e_reenable_fdir_sb - Restore FDir SB capability 8245 * @pf: board private structure 8246 **/ 8247 static void i40e_reenable_fdir_sb(struct i40e_pf *pf) 8248 { 8249 if (test_and_clear_bit(__I40E_FD_SB_AUTO_DISABLED, pf->state)) 8250 if ((pf->flags & I40E_FLAG_FD_SB_ENABLED) && 8251 (I40E_DEBUG_FD & pf->hw.debug_mask)) 8252 dev_info(&pf->pdev->dev, "FD Sideband/ntuple is being enabled since we have space in the table now\n"); 8253 } 8254 8255 /** 8256 * i40e_reenable_fdir_atr - Restore FDir ATR capability 8257 * @pf: board private structure 8258 **/ 8259 static void i40e_reenable_fdir_atr(struct i40e_pf *pf) 8260 { 8261 if (test_and_clear_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state)) { 8262 /* ATR uses the same filtering logic as SB rules. It only 8263 * functions properly if the input set mask is at the default 8264 * settings. It is safe to restore the default input set 8265 * because there are no active TCPv4 filter rules. 8266 */ 8267 i40e_write_fd_input_set(pf, I40E_FILTER_PCTYPE_NONF_IPV4_TCP, 8268 I40E_L3_SRC_MASK | I40E_L3_DST_MASK | 8269 I40E_L4_SRC_MASK | I40E_L4_DST_MASK); 8270 8271 if ((pf->flags & I40E_FLAG_FD_ATR_ENABLED) && 8272 (I40E_DEBUG_FD & pf->hw.debug_mask)) 8273 dev_info(&pf->pdev->dev, "ATR is being enabled since we have space in the table and there are no conflicting ntuple rules\n"); 8274 } 8275 } 8276 8277 /** 8278 * i40e_delete_invalid_filter - Delete an invalid FDIR filter 8279 * @pf: board private structure 8280 * @filter: FDir filter to remove 8281 */ 8282 static void i40e_delete_invalid_filter(struct i40e_pf *pf, 8283 struct i40e_fdir_filter *filter) 8284 { 8285 /* Update counters */ 8286 pf->fdir_pf_active_filters--; 8287 pf->fd_inv = 0; 8288 8289 switch (filter->flow_type) { 8290 case TCP_V4_FLOW: 8291 pf->fd_tcp4_filter_cnt--; 8292 break; 8293 case UDP_V4_FLOW: 8294 pf->fd_udp4_filter_cnt--; 8295 break; 8296 case SCTP_V4_FLOW: 8297 pf->fd_sctp4_filter_cnt--; 8298 break; 8299 case IP_USER_FLOW: 8300 switch (filter->ip4_proto) { 8301 case IPPROTO_TCP: 8302 pf->fd_tcp4_filter_cnt--; 8303 break; 8304 case IPPROTO_UDP: 8305 pf->fd_udp4_filter_cnt--; 8306 break; 8307 case IPPROTO_SCTP: 8308 pf->fd_sctp4_filter_cnt--; 8309 break; 8310 case IPPROTO_IP: 8311 pf->fd_ip4_filter_cnt--; 8312 break; 8313 } 8314 break; 8315 } 8316 8317 /* Remove the filter from the list and free memory */ 8318 hlist_del(&filter->fdir_node); 8319 kfree(filter); 8320 } 8321 8322 /** 8323 * i40e_fdir_check_and_reenable - Function to reenabe FD ATR or SB if disabled 8324 * @pf: board private structure 8325 **/ 8326 void i40e_fdir_check_and_reenable(struct i40e_pf *pf) 8327 { 8328 struct i40e_fdir_filter *filter; 8329 u32 fcnt_prog, fcnt_avail; 8330 struct hlist_node *node; 8331 8332 if (test_bit(__I40E_FD_FLUSH_REQUESTED, pf->state)) 8333 return; 8334 8335 /* Check if we have enough room to re-enable FDir SB capability. */ 8336 fcnt_prog = i40e_get_global_fd_count(pf); 8337 fcnt_avail = pf->fdir_pf_filter_count; 8338 if ((fcnt_prog < (fcnt_avail - I40E_FDIR_BUFFER_HEAD_ROOM)) || 8339 (pf->fd_add_err == 0) || 8340 (i40e_get_current_atr_cnt(pf) < pf->fd_atr_cnt)) 8341 i40e_reenable_fdir_sb(pf); 8342 8343 /* We should wait for even more space before re-enabling ATR. 8344 * Additionally, we cannot enable ATR as long as we still have TCP SB 8345 * rules active. 8346 */ 8347 if ((fcnt_prog < (fcnt_avail - I40E_FDIR_BUFFER_HEAD_ROOM_FOR_ATR)) && 8348 (pf->fd_tcp4_filter_cnt == 0)) 8349 i40e_reenable_fdir_atr(pf); 8350 8351 /* if hw had a problem adding a filter, delete it */ 8352 if (pf->fd_inv > 0) { 8353 hlist_for_each_entry_safe(filter, node, 8354 &pf->fdir_filter_list, fdir_node) 8355 if (filter->fd_id == pf->fd_inv) 8356 i40e_delete_invalid_filter(pf, filter); 8357 } 8358 } 8359 8360 #define I40E_MIN_FD_FLUSH_INTERVAL 10 8361 #define I40E_MIN_FD_FLUSH_SB_ATR_UNSTABLE 30 8362 /** 8363 * i40e_fdir_flush_and_replay - Function to flush all FD filters and replay SB 8364 * @pf: board private structure 8365 **/ 8366 static void i40e_fdir_flush_and_replay(struct i40e_pf *pf) 8367 { 8368 unsigned long min_flush_time; 8369 int flush_wait_retry = 50; 8370 bool disable_atr = false; 8371 int fd_room; 8372 int reg; 8373 8374 if (!time_after(jiffies, pf->fd_flush_timestamp + 8375 (I40E_MIN_FD_FLUSH_INTERVAL * HZ))) 8376 return; 8377 8378 /* If the flush is happening too quick and we have mostly SB rules we 8379 * should not re-enable ATR for some time. 8380 */ 8381 min_flush_time = pf->fd_flush_timestamp + 8382 (I40E_MIN_FD_FLUSH_SB_ATR_UNSTABLE * HZ); 8383 fd_room = pf->fdir_pf_filter_count - pf->fdir_pf_active_filters; 8384 8385 if (!(time_after(jiffies, min_flush_time)) && 8386 (fd_room < I40E_FDIR_BUFFER_HEAD_ROOM_FOR_ATR)) { 8387 if (I40E_DEBUG_FD & pf->hw.debug_mask) 8388 dev_info(&pf->pdev->dev, "ATR disabled, not enough FD filter space.\n"); 8389 disable_atr = true; 8390 } 8391 8392 pf->fd_flush_timestamp = jiffies; 8393 set_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state); 8394 /* flush all filters */ 8395 wr32(&pf->hw, I40E_PFQF_CTL_1, 8396 I40E_PFQF_CTL_1_CLEARFDTABLE_MASK); 8397 i40e_flush(&pf->hw); 8398 pf->fd_flush_cnt++; 8399 pf->fd_add_err = 0; 8400 do { 8401 /* Check FD flush status every 5-6msec */ 8402 usleep_range(5000, 6000); 8403 reg = rd32(&pf->hw, I40E_PFQF_CTL_1); 8404 if (!(reg & I40E_PFQF_CTL_1_CLEARFDTABLE_MASK)) 8405 break; 8406 } while (flush_wait_retry--); 8407 if (reg & I40E_PFQF_CTL_1_CLEARFDTABLE_MASK) { 8408 dev_warn(&pf->pdev->dev, "FD table did not flush, needs more time\n"); 8409 } else { 8410 /* replay sideband filters */ 8411 i40e_fdir_filter_restore(pf->vsi[pf->lan_vsi]); 8412 if (!disable_atr && !pf->fd_tcp4_filter_cnt) 8413 clear_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state); 8414 clear_bit(__I40E_FD_FLUSH_REQUESTED, pf->state); 8415 if (I40E_DEBUG_FD & pf->hw.debug_mask) 8416 dev_info(&pf->pdev->dev, "FD Filter table flushed and FD-SB replayed.\n"); 8417 } 8418 } 8419 8420 /** 8421 * i40e_get_current_atr_count - Get the count of total FD ATR filters programmed 8422 * @pf: board private structure 8423 **/ 8424 u32 i40e_get_current_atr_cnt(struct i40e_pf *pf) 8425 { 8426 return i40e_get_current_fd_count(pf) - pf->fdir_pf_active_filters; 8427 } 8428 8429 /* We can see up to 256 filter programming desc in transit if the filters are 8430 * being applied really fast; before we see the first 8431 * filter miss error on Rx queue 0. Accumulating enough error messages before 8432 * reacting will make sure we don't cause flush too often. 8433 */ 8434 #define I40E_MAX_FD_PROGRAM_ERROR 256 8435 8436 /** 8437 * i40e_fdir_reinit_subtask - Worker thread to reinit FDIR filter table 8438 * @pf: board private structure 8439 **/ 8440 static void i40e_fdir_reinit_subtask(struct i40e_pf *pf) 8441 { 8442 8443 /* if interface is down do nothing */ 8444 if (test_bit(__I40E_DOWN, pf->state)) 8445 return; 8446 8447 if (test_bit(__I40E_FD_FLUSH_REQUESTED, pf->state)) 8448 i40e_fdir_flush_and_replay(pf); 8449 8450 i40e_fdir_check_and_reenable(pf); 8451 8452 } 8453 8454 /** 8455 * i40e_vsi_link_event - notify VSI of a link event 8456 * @vsi: vsi to be notified 8457 * @link_up: link up or down 8458 **/ 8459 static void i40e_vsi_link_event(struct i40e_vsi *vsi, bool link_up) 8460 { 8461 if (!vsi || test_bit(__I40E_VSI_DOWN, vsi->state)) 8462 return; 8463 8464 switch (vsi->type) { 8465 case I40E_VSI_MAIN: 8466 if (!vsi->netdev || !vsi->netdev_registered) 8467 break; 8468 8469 if (link_up) { 8470 netif_carrier_on(vsi->netdev); 8471 netif_tx_wake_all_queues(vsi->netdev); 8472 } else { 8473 netif_carrier_off(vsi->netdev); 8474 netif_tx_stop_all_queues(vsi->netdev); 8475 } 8476 break; 8477 8478 case I40E_VSI_SRIOV: 8479 case I40E_VSI_VMDQ2: 8480 case I40E_VSI_CTRL: 8481 case I40E_VSI_IWARP: 8482 case I40E_VSI_MIRROR: 8483 default: 8484 /* there is no notification for other VSIs */ 8485 break; 8486 } 8487 } 8488 8489 /** 8490 * i40e_veb_link_event - notify elements on the veb of a link event 8491 * @veb: veb to be notified 8492 * @link_up: link up or down 8493 **/ 8494 static void i40e_veb_link_event(struct i40e_veb *veb, bool link_up) 8495 { 8496 struct i40e_pf *pf; 8497 int i; 8498 8499 if (!veb || !veb->pf) 8500 return; 8501 pf = veb->pf; 8502 8503 /* depth first... */ 8504 for (i = 0; i < I40E_MAX_VEB; i++) 8505 if (pf->veb[i] && (pf->veb[i]->uplink_seid == veb->seid)) 8506 i40e_veb_link_event(pf->veb[i], link_up); 8507 8508 /* ... now the local VSIs */ 8509 for (i = 0; i < pf->num_alloc_vsi; i++) 8510 if (pf->vsi[i] && (pf->vsi[i]->uplink_seid == veb->seid)) 8511 i40e_vsi_link_event(pf->vsi[i], link_up); 8512 } 8513 8514 /** 8515 * i40e_link_event - Update netif_carrier status 8516 * @pf: board private structure 8517 **/ 8518 static void i40e_link_event(struct i40e_pf *pf) 8519 { 8520 struct i40e_vsi *vsi = pf->vsi[pf->lan_vsi]; 8521 u8 new_link_speed, old_link_speed; 8522 i40e_status status; 8523 bool new_link, old_link; 8524 8525 /* set this to force the get_link_status call to refresh state */ 8526 pf->hw.phy.get_link_info = true; 8527 old_link = (pf->hw.phy.link_info_old.link_info & I40E_AQ_LINK_UP); 8528 status = i40e_get_link_status(&pf->hw, &new_link); 8529 8530 /* On success, disable temp link polling */ 8531 if (status == I40E_SUCCESS) { 8532 clear_bit(__I40E_TEMP_LINK_POLLING, pf->state); 8533 } else { 8534 /* Enable link polling temporarily until i40e_get_link_status 8535 * returns I40E_SUCCESS 8536 */ 8537 set_bit(__I40E_TEMP_LINK_POLLING, pf->state); 8538 dev_dbg(&pf->pdev->dev, "couldn't get link state, status: %d\n", 8539 status); 8540 return; 8541 } 8542 8543 old_link_speed = pf->hw.phy.link_info_old.link_speed; 8544 new_link_speed = pf->hw.phy.link_info.link_speed; 8545 8546 if (new_link == old_link && 8547 new_link_speed == old_link_speed && 8548 (test_bit(__I40E_VSI_DOWN, vsi->state) || 8549 new_link == netif_carrier_ok(vsi->netdev))) 8550 return; 8551 8552 i40e_print_link_message(vsi, new_link); 8553 8554 /* Notify the base of the switch tree connected to 8555 * the link. Floating VEBs are not notified. 8556 */ 8557 if (pf->lan_veb != I40E_NO_VEB && pf->veb[pf->lan_veb]) 8558 i40e_veb_link_event(pf->veb[pf->lan_veb], new_link); 8559 else 8560 i40e_vsi_link_event(vsi, new_link); 8561 8562 if (pf->vf) 8563 i40e_vc_notify_link_state(pf); 8564 8565 if (pf->flags & I40E_FLAG_PTP) 8566 i40e_ptp_set_increment(pf); 8567 } 8568 8569 /** 8570 * i40e_watchdog_subtask - periodic checks not using event driven response 8571 * @pf: board private structure 8572 **/ 8573 static void i40e_watchdog_subtask(struct i40e_pf *pf) 8574 { 8575 int i; 8576 8577 /* if interface is down do nothing */ 8578 if (test_bit(__I40E_DOWN, pf->state) || 8579 test_bit(__I40E_CONFIG_BUSY, pf->state)) 8580 return; 8581 8582 /* make sure we don't do these things too often */ 8583 if (time_before(jiffies, (pf->service_timer_previous + 8584 pf->service_timer_period))) 8585 return; 8586 pf->service_timer_previous = jiffies; 8587 8588 if ((pf->flags & I40E_FLAG_LINK_POLLING_ENABLED) || 8589 test_bit(__I40E_TEMP_LINK_POLLING, pf->state)) 8590 i40e_link_event(pf); 8591 8592 /* Update the stats for active netdevs so the network stack 8593 * can look at updated numbers whenever it cares to 8594 */ 8595 for (i = 0; i < pf->num_alloc_vsi; i++) 8596 if (pf->vsi[i] && pf->vsi[i]->netdev) 8597 i40e_update_stats(pf->vsi[i]); 8598 8599 if (pf->flags & I40E_FLAG_VEB_STATS_ENABLED) { 8600 /* Update the stats for the active switching components */ 8601 for (i = 0; i < I40E_MAX_VEB; i++) 8602 if (pf->veb[i]) 8603 i40e_update_veb_stats(pf->veb[i]); 8604 } 8605 8606 i40e_ptp_rx_hang(pf); 8607 i40e_ptp_tx_hang(pf); 8608 } 8609 8610 /** 8611 * i40e_reset_subtask - Set up for resetting the device and driver 8612 * @pf: board private structure 8613 **/ 8614 static void i40e_reset_subtask(struct i40e_pf *pf) 8615 { 8616 u32 reset_flags = 0; 8617 8618 if (test_bit(__I40E_REINIT_REQUESTED, pf->state)) { 8619 reset_flags |= BIT(__I40E_REINIT_REQUESTED); 8620 clear_bit(__I40E_REINIT_REQUESTED, pf->state); 8621 } 8622 if (test_bit(__I40E_PF_RESET_REQUESTED, pf->state)) { 8623 reset_flags |= BIT(__I40E_PF_RESET_REQUESTED); 8624 clear_bit(__I40E_PF_RESET_REQUESTED, pf->state); 8625 } 8626 if (test_bit(__I40E_CORE_RESET_REQUESTED, pf->state)) { 8627 reset_flags |= BIT(__I40E_CORE_RESET_REQUESTED); 8628 clear_bit(__I40E_CORE_RESET_REQUESTED, pf->state); 8629 } 8630 if (test_bit(__I40E_GLOBAL_RESET_REQUESTED, pf->state)) { 8631 reset_flags |= BIT(__I40E_GLOBAL_RESET_REQUESTED); 8632 clear_bit(__I40E_GLOBAL_RESET_REQUESTED, pf->state); 8633 } 8634 if (test_bit(__I40E_DOWN_REQUESTED, pf->state)) { 8635 reset_flags |= BIT(__I40E_DOWN_REQUESTED); 8636 clear_bit(__I40E_DOWN_REQUESTED, pf->state); 8637 } 8638 8639 /* If there's a recovery already waiting, it takes 8640 * precedence before starting a new reset sequence. 8641 */ 8642 if (test_bit(__I40E_RESET_INTR_RECEIVED, pf->state)) { 8643 i40e_prep_for_reset(pf, false); 8644 i40e_reset(pf); 8645 i40e_rebuild(pf, false, false); 8646 } 8647 8648 /* If we're already down or resetting, just bail */ 8649 if (reset_flags && 8650 !test_bit(__I40E_DOWN, pf->state) && 8651 !test_bit(__I40E_CONFIG_BUSY, pf->state)) { 8652 i40e_do_reset(pf, reset_flags, false); 8653 } 8654 } 8655 8656 /** 8657 * i40e_handle_link_event - Handle link event 8658 * @pf: board private structure 8659 * @e: event info posted on ARQ 8660 **/ 8661 static void i40e_handle_link_event(struct i40e_pf *pf, 8662 struct i40e_arq_event_info *e) 8663 { 8664 struct i40e_aqc_get_link_status *status = 8665 (struct i40e_aqc_get_link_status *)&e->desc.params.raw; 8666 8667 /* Do a new status request to re-enable LSE reporting 8668 * and load new status information into the hw struct 8669 * This completely ignores any state information 8670 * in the ARQ event info, instead choosing to always 8671 * issue the AQ update link status command. 8672 */ 8673 i40e_link_event(pf); 8674 8675 /* Check if module meets thermal requirements */ 8676 if (status->phy_type == I40E_PHY_TYPE_NOT_SUPPORTED_HIGH_TEMP) { 8677 dev_err(&pf->pdev->dev, 8678 "Rx/Tx is disabled on this device because the module does not meet thermal requirements.\n"); 8679 dev_err(&pf->pdev->dev, 8680 "Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules.\n"); 8681 } else { 8682 /* check for unqualified module, if link is down, suppress 8683 * the message if link was forced to be down. 8684 */ 8685 if ((status->link_info & I40E_AQ_MEDIA_AVAILABLE) && 8686 (!(status->an_info & I40E_AQ_QUALIFIED_MODULE)) && 8687 (!(status->link_info & I40E_AQ_LINK_UP)) && 8688 (!(pf->flags & I40E_FLAG_LINK_DOWN_ON_CLOSE_ENABLED))) { 8689 dev_err(&pf->pdev->dev, 8690 "Rx/Tx is disabled on this device because an unsupported SFP module type was detected.\n"); 8691 dev_err(&pf->pdev->dev, 8692 "Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules.\n"); 8693 } 8694 } 8695 } 8696 8697 /** 8698 * i40e_clean_adminq_subtask - Clean the AdminQ rings 8699 * @pf: board private structure 8700 **/ 8701 static void i40e_clean_adminq_subtask(struct i40e_pf *pf) 8702 { 8703 struct i40e_arq_event_info event; 8704 struct i40e_hw *hw = &pf->hw; 8705 u16 pending, i = 0; 8706 i40e_status ret; 8707 u16 opcode; 8708 u32 oldval; 8709 u32 val; 8710 8711 /* Do not run clean AQ when PF reset fails */ 8712 if (test_bit(__I40E_RESET_FAILED, pf->state)) 8713 return; 8714 8715 /* check for error indications */ 8716 val = rd32(&pf->hw, pf->hw.aq.arq.len); 8717 oldval = val; 8718 if (val & I40E_PF_ARQLEN_ARQVFE_MASK) { 8719 if (hw->debug_mask & I40E_DEBUG_AQ) 8720 dev_info(&pf->pdev->dev, "ARQ VF Error detected\n"); 8721 val &= ~I40E_PF_ARQLEN_ARQVFE_MASK; 8722 } 8723 if (val & I40E_PF_ARQLEN_ARQOVFL_MASK) { 8724 if (hw->debug_mask & I40E_DEBUG_AQ) 8725 dev_info(&pf->pdev->dev, "ARQ Overflow Error detected\n"); 8726 val &= ~I40E_PF_ARQLEN_ARQOVFL_MASK; 8727 pf->arq_overflows++; 8728 } 8729 if (val & I40E_PF_ARQLEN_ARQCRIT_MASK) { 8730 if (hw->debug_mask & I40E_DEBUG_AQ) 8731 dev_info(&pf->pdev->dev, "ARQ Critical Error detected\n"); 8732 val &= ~I40E_PF_ARQLEN_ARQCRIT_MASK; 8733 } 8734 if (oldval != val) 8735 wr32(&pf->hw, pf->hw.aq.arq.len, val); 8736 8737 val = rd32(&pf->hw, pf->hw.aq.asq.len); 8738 oldval = val; 8739 if (val & I40E_PF_ATQLEN_ATQVFE_MASK) { 8740 if (pf->hw.debug_mask & I40E_DEBUG_AQ) 8741 dev_info(&pf->pdev->dev, "ASQ VF Error detected\n"); 8742 val &= ~I40E_PF_ATQLEN_ATQVFE_MASK; 8743 } 8744 if (val & I40E_PF_ATQLEN_ATQOVFL_MASK) { 8745 if (pf->hw.debug_mask & I40E_DEBUG_AQ) 8746 dev_info(&pf->pdev->dev, "ASQ Overflow Error detected\n"); 8747 val &= ~I40E_PF_ATQLEN_ATQOVFL_MASK; 8748 } 8749 if (val & I40E_PF_ATQLEN_ATQCRIT_MASK) { 8750 if (pf->hw.debug_mask & I40E_DEBUG_AQ) 8751 dev_info(&pf->pdev->dev, "ASQ Critical Error detected\n"); 8752 val &= ~I40E_PF_ATQLEN_ATQCRIT_MASK; 8753 } 8754 if (oldval != val) 8755 wr32(&pf->hw, pf->hw.aq.asq.len, val); 8756 8757 event.buf_len = I40E_MAX_AQ_BUF_SIZE; 8758 event.msg_buf = kzalloc(event.buf_len, GFP_KERNEL); 8759 if (!event.msg_buf) 8760 return; 8761 8762 do { 8763 ret = i40e_clean_arq_element(hw, &event, &pending); 8764 if (ret == I40E_ERR_ADMIN_QUEUE_NO_WORK) 8765 break; 8766 else if (ret) { 8767 dev_info(&pf->pdev->dev, "ARQ event error %d\n", ret); 8768 break; 8769 } 8770 8771 opcode = le16_to_cpu(event.desc.opcode); 8772 switch (opcode) { 8773 8774 case i40e_aqc_opc_get_link_status: 8775 i40e_handle_link_event(pf, &event); 8776 break; 8777 case i40e_aqc_opc_send_msg_to_pf: 8778 ret = i40e_vc_process_vf_msg(pf, 8779 le16_to_cpu(event.desc.retval), 8780 le32_to_cpu(event.desc.cookie_high), 8781 le32_to_cpu(event.desc.cookie_low), 8782 event.msg_buf, 8783 event.msg_len); 8784 break; 8785 case i40e_aqc_opc_lldp_update_mib: 8786 dev_dbg(&pf->pdev->dev, "ARQ: Update LLDP MIB event received\n"); 8787 #ifdef CONFIG_I40E_DCB 8788 rtnl_lock(); 8789 ret = i40e_handle_lldp_event(pf, &event); 8790 rtnl_unlock(); 8791 #endif /* CONFIG_I40E_DCB */ 8792 break; 8793 case i40e_aqc_opc_event_lan_overflow: 8794 dev_dbg(&pf->pdev->dev, "ARQ LAN queue overflow event received\n"); 8795 i40e_handle_lan_overflow_event(pf, &event); 8796 break; 8797 case i40e_aqc_opc_send_msg_to_peer: 8798 dev_info(&pf->pdev->dev, "ARQ: Msg from other pf\n"); 8799 break; 8800 case i40e_aqc_opc_nvm_erase: 8801 case i40e_aqc_opc_nvm_update: 8802 case i40e_aqc_opc_oem_post_update: 8803 i40e_debug(&pf->hw, I40E_DEBUG_NVM, 8804 "ARQ NVM operation 0x%04x completed\n", 8805 opcode); 8806 break; 8807 default: 8808 dev_info(&pf->pdev->dev, 8809 "ARQ: Unknown event 0x%04x ignored\n", 8810 opcode); 8811 break; 8812 } 8813 } while (i++ < pf->adminq_work_limit); 8814 8815 if (i < pf->adminq_work_limit) 8816 clear_bit(__I40E_ADMINQ_EVENT_PENDING, pf->state); 8817 8818 /* re-enable Admin queue interrupt cause */ 8819 val = rd32(hw, I40E_PFINT_ICR0_ENA); 8820 val |= I40E_PFINT_ICR0_ENA_ADMINQ_MASK; 8821 wr32(hw, I40E_PFINT_ICR0_ENA, val); 8822 i40e_flush(hw); 8823 8824 kfree(event.msg_buf); 8825 } 8826 8827 /** 8828 * i40e_verify_eeprom - make sure eeprom is good to use 8829 * @pf: board private structure 8830 **/ 8831 static void i40e_verify_eeprom(struct i40e_pf *pf) 8832 { 8833 int err; 8834 8835 err = i40e_diag_eeprom_test(&pf->hw); 8836 if (err) { 8837 /* retry in case of garbage read */ 8838 err = i40e_diag_eeprom_test(&pf->hw); 8839 if (err) { 8840 dev_info(&pf->pdev->dev, "eeprom check failed (%d), Tx/Rx traffic disabled\n", 8841 err); 8842 set_bit(__I40E_BAD_EEPROM, pf->state); 8843 } 8844 } 8845 8846 if (!err && test_bit(__I40E_BAD_EEPROM, pf->state)) { 8847 dev_info(&pf->pdev->dev, "eeprom check passed, Tx/Rx traffic enabled\n"); 8848 clear_bit(__I40E_BAD_EEPROM, pf->state); 8849 } 8850 } 8851 8852 /** 8853 * i40e_enable_pf_switch_lb 8854 * @pf: pointer to the PF structure 8855 * 8856 * enable switch loop back or die - no point in a return value 8857 **/ 8858 static void i40e_enable_pf_switch_lb(struct i40e_pf *pf) 8859 { 8860 struct i40e_vsi *vsi = pf->vsi[pf->lan_vsi]; 8861 struct i40e_vsi_context ctxt; 8862 int ret; 8863 8864 ctxt.seid = pf->main_vsi_seid; 8865 ctxt.pf_num = pf->hw.pf_id; 8866 ctxt.vf_num = 0; 8867 ret = i40e_aq_get_vsi_params(&pf->hw, &ctxt, NULL); 8868 if (ret) { 8869 dev_info(&pf->pdev->dev, 8870 "couldn't get PF vsi config, err %s aq_err %s\n", 8871 i40e_stat_str(&pf->hw, ret), 8872 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 8873 return; 8874 } 8875 ctxt.flags = I40E_AQ_VSI_TYPE_PF; 8876 ctxt.info.valid_sections = cpu_to_le16(I40E_AQ_VSI_PROP_SWITCH_VALID); 8877 ctxt.info.switch_id |= cpu_to_le16(I40E_AQ_VSI_SW_ID_FLAG_ALLOW_LB); 8878 8879 ret = i40e_aq_update_vsi_params(&vsi->back->hw, &ctxt, NULL); 8880 if (ret) { 8881 dev_info(&pf->pdev->dev, 8882 "update vsi switch failed, err %s aq_err %s\n", 8883 i40e_stat_str(&pf->hw, ret), 8884 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 8885 } 8886 } 8887 8888 /** 8889 * i40e_disable_pf_switch_lb 8890 * @pf: pointer to the PF structure 8891 * 8892 * disable switch loop back or die - no point in a return value 8893 **/ 8894 static void i40e_disable_pf_switch_lb(struct i40e_pf *pf) 8895 { 8896 struct i40e_vsi *vsi = pf->vsi[pf->lan_vsi]; 8897 struct i40e_vsi_context ctxt; 8898 int ret; 8899 8900 ctxt.seid = pf->main_vsi_seid; 8901 ctxt.pf_num = pf->hw.pf_id; 8902 ctxt.vf_num = 0; 8903 ret = i40e_aq_get_vsi_params(&pf->hw, &ctxt, NULL); 8904 if (ret) { 8905 dev_info(&pf->pdev->dev, 8906 "couldn't get PF vsi config, err %s aq_err %s\n", 8907 i40e_stat_str(&pf->hw, ret), 8908 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 8909 return; 8910 } 8911 ctxt.flags = I40E_AQ_VSI_TYPE_PF; 8912 ctxt.info.valid_sections = cpu_to_le16(I40E_AQ_VSI_PROP_SWITCH_VALID); 8913 ctxt.info.switch_id &= ~cpu_to_le16(I40E_AQ_VSI_SW_ID_FLAG_ALLOW_LB); 8914 8915 ret = i40e_aq_update_vsi_params(&vsi->back->hw, &ctxt, NULL); 8916 if (ret) { 8917 dev_info(&pf->pdev->dev, 8918 "update vsi switch failed, err %s aq_err %s\n", 8919 i40e_stat_str(&pf->hw, ret), 8920 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 8921 } 8922 } 8923 8924 /** 8925 * i40e_config_bridge_mode - Configure the HW bridge mode 8926 * @veb: pointer to the bridge instance 8927 * 8928 * Configure the loop back mode for the LAN VSI that is downlink to the 8929 * specified HW bridge instance. It is expected this function is called 8930 * when a new HW bridge is instantiated. 8931 **/ 8932 static void i40e_config_bridge_mode(struct i40e_veb *veb) 8933 { 8934 struct i40e_pf *pf = veb->pf; 8935 8936 if (pf->hw.debug_mask & I40E_DEBUG_LAN) 8937 dev_info(&pf->pdev->dev, "enabling bridge mode: %s\n", 8938 veb->bridge_mode == BRIDGE_MODE_VEPA ? "VEPA" : "VEB"); 8939 if (veb->bridge_mode & BRIDGE_MODE_VEPA) 8940 i40e_disable_pf_switch_lb(pf); 8941 else 8942 i40e_enable_pf_switch_lb(pf); 8943 } 8944 8945 /** 8946 * i40e_reconstitute_veb - rebuild the VEB and anything connected to it 8947 * @veb: pointer to the VEB instance 8948 * 8949 * This is a recursive function that first builds the attached VSIs then 8950 * recurses in to build the next layer of VEB. We track the connections 8951 * through our own index numbers because the seid's from the HW could 8952 * change across the reset. 8953 **/ 8954 static int i40e_reconstitute_veb(struct i40e_veb *veb) 8955 { 8956 struct i40e_vsi *ctl_vsi = NULL; 8957 struct i40e_pf *pf = veb->pf; 8958 int v, veb_idx; 8959 int ret; 8960 8961 /* build VSI that owns this VEB, temporarily attached to base VEB */ 8962 for (v = 0; v < pf->num_alloc_vsi && !ctl_vsi; v++) { 8963 if (pf->vsi[v] && 8964 pf->vsi[v]->veb_idx == veb->idx && 8965 pf->vsi[v]->flags & I40E_VSI_FLAG_VEB_OWNER) { 8966 ctl_vsi = pf->vsi[v]; 8967 break; 8968 } 8969 } 8970 if (!ctl_vsi) { 8971 dev_info(&pf->pdev->dev, 8972 "missing owner VSI for veb_idx %d\n", veb->idx); 8973 ret = -ENOENT; 8974 goto end_reconstitute; 8975 } 8976 if (ctl_vsi != pf->vsi[pf->lan_vsi]) 8977 ctl_vsi->uplink_seid = pf->vsi[pf->lan_vsi]->uplink_seid; 8978 ret = i40e_add_vsi(ctl_vsi); 8979 if (ret) { 8980 dev_info(&pf->pdev->dev, 8981 "rebuild of veb_idx %d owner VSI failed: %d\n", 8982 veb->idx, ret); 8983 goto end_reconstitute; 8984 } 8985 i40e_vsi_reset_stats(ctl_vsi); 8986 8987 /* create the VEB in the switch and move the VSI onto the VEB */ 8988 ret = i40e_add_veb(veb, ctl_vsi); 8989 if (ret) 8990 goto end_reconstitute; 8991 8992 if (pf->flags & I40E_FLAG_VEB_MODE_ENABLED) 8993 veb->bridge_mode = BRIDGE_MODE_VEB; 8994 else 8995 veb->bridge_mode = BRIDGE_MODE_VEPA; 8996 i40e_config_bridge_mode(veb); 8997 8998 /* create the remaining VSIs attached to this VEB */ 8999 for (v = 0; v < pf->num_alloc_vsi; v++) { 9000 if (!pf->vsi[v] || pf->vsi[v] == ctl_vsi) 9001 continue; 9002 9003 if (pf->vsi[v]->veb_idx == veb->idx) { 9004 struct i40e_vsi *vsi = pf->vsi[v]; 9005 9006 vsi->uplink_seid = veb->seid; 9007 ret = i40e_add_vsi(vsi); 9008 if (ret) { 9009 dev_info(&pf->pdev->dev, 9010 "rebuild of vsi_idx %d failed: %d\n", 9011 v, ret); 9012 goto end_reconstitute; 9013 } 9014 i40e_vsi_reset_stats(vsi); 9015 } 9016 } 9017 9018 /* create any VEBs attached to this VEB - RECURSION */ 9019 for (veb_idx = 0; veb_idx < I40E_MAX_VEB; veb_idx++) { 9020 if (pf->veb[veb_idx] && pf->veb[veb_idx]->veb_idx == veb->idx) { 9021 pf->veb[veb_idx]->uplink_seid = veb->seid; 9022 ret = i40e_reconstitute_veb(pf->veb[veb_idx]); 9023 if (ret) 9024 break; 9025 } 9026 } 9027 9028 end_reconstitute: 9029 return ret; 9030 } 9031 9032 /** 9033 * i40e_get_capabilities - get info about the HW 9034 * @pf: the PF struct 9035 **/ 9036 static int i40e_get_capabilities(struct i40e_pf *pf, 9037 enum i40e_admin_queue_opc list_type) 9038 { 9039 struct i40e_aqc_list_capabilities_element_resp *cap_buf; 9040 u16 data_size; 9041 int buf_len; 9042 int err; 9043 9044 buf_len = 40 * sizeof(struct i40e_aqc_list_capabilities_element_resp); 9045 do { 9046 cap_buf = kzalloc(buf_len, GFP_KERNEL); 9047 if (!cap_buf) 9048 return -ENOMEM; 9049 9050 /* this loads the data into the hw struct for us */ 9051 err = i40e_aq_discover_capabilities(&pf->hw, cap_buf, buf_len, 9052 &data_size, list_type, 9053 NULL); 9054 /* data loaded, buffer no longer needed */ 9055 kfree(cap_buf); 9056 9057 if (pf->hw.aq.asq_last_status == I40E_AQ_RC_ENOMEM) { 9058 /* retry with a larger buffer */ 9059 buf_len = data_size; 9060 } else if (pf->hw.aq.asq_last_status != I40E_AQ_RC_OK) { 9061 dev_info(&pf->pdev->dev, 9062 "capability discovery failed, err %s aq_err %s\n", 9063 i40e_stat_str(&pf->hw, err), 9064 i40e_aq_str(&pf->hw, 9065 pf->hw.aq.asq_last_status)); 9066 return -ENODEV; 9067 } 9068 } while (err); 9069 9070 if (pf->hw.debug_mask & I40E_DEBUG_USER) { 9071 if (list_type == i40e_aqc_opc_list_func_capabilities) { 9072 dev_info(&pf->pdev->dev, 9073 "pf=%d, num_vfs=%d, msix_pf=%d, msix_vf=%d, fd_g=%d, fd_b=%d, pf_max_q=%d num_vsi=%d\n", 9074 pf->hw.pf_id, pf->hw.func_caps.num_vfs, 9075 pf->hw.func_caps.num_msix_vectors, 9076 pf->hw.func_caps.num_msix_vectors_vf, 9077 pf->hw.func_caps.fd_filters_guaranteed, 9078 pf->hw.func_caps.fd_filters_best_effort, 9079 pf->hw.func_caps.num_tx_qp, 9080 pf->hw.func_caps.num_vsis); 9081 } else if (list_type == i40e_aqc_opc_list_dev_capabilities) { 9082 dev_info(&pf->pdev->dev, 9083 "switch_mode=0x%04x, function_valid=0x%08x\n", 9084 pf->hw.dev_caps.switch_mode, 9085 pf->hw.dev_caps.valid_functions); 9086 dev_info(&pf->pdev->dev, 9087 "SR-IOV=%d, num_vfs for all function=%u\n", 9088 pf->hw.dev_caps.sr_iov_1_1, 9089 pf->hw.dev_caps.num_vfs); 9090 dev_info(&pf->pdev->dev, 9091 "num_vsis=%u, num_rx:%u, num_tx=%u\n", 9092 pf->hw.dev_caps.num_vsis, 9093 pf->hw.dev_caps.num_rx_qp, 9094 pf->hw.dev_caps.num_tx_qp); 9095 } 9096 } 9097 if (list_type == i40e_aqc_opc_list_func_capabilities) { 9098 #define DEF_NUM_VSI (1 + (pf->hw.func_caps.fcoe ? 1 : 0) \ 9099 + pf->hw.func_caps.num_vfs) 9100 if (pf->hw.revision_id == 0 && 9101 pf->hw.func_caps.num_vsis < DEF_NUM_VSI) { 9102 dev_info(&pf->pdev->dev, 9103 "got num_vsis %d, setting num_vsis to %d\n", 9104 pf->hw.func_caps.num_vsis, DEF_NUM_VSI); 9105 pf->hw.func_caps.num_vsis = DEF_NUM_VSI; 9106 } 9107 } 9108 return 0; 9109 } 9110 9111 static int i40e_vsi_clear(struct i40e_vsi *vsi); 9112 9113 /** 9114 * i40e_fdir_sb_setup - initialize the Flow Director resources for Sideband 9115 * @pf: board private structure 9116 **/ 9117 static void i40e_fdir_sb_setup(struct i40e_pf *pf) 9118 { 9119 struct i40e_vsi *vsi; 9120 9121 /* quick workaround for an NVM issue that leaves a critical register 9122 * uninitialized 9123 */ 9124 if (!rd32(&pf->hw, I40E_GLQF_HKEY(0))) { 9125 static const u32 hkey[] = { 9126 0xe640d33f, 0xcdfe98ab, 0x73fa7161, 0x0d7a7d36, 9127 0xeacb7d61, 0xaa4f05b6, 0x9c5c89ed, 0xfc425ddb, 9128 0xa4654832, 0xfc7461d4, 0x8f827619, 0xf5c63c21, 9129 0x95b3a76d}; 9130 int i; 9131 9132 for (i = 0; i <= I40E_GLQF_HKEY_MAX_INDEX; i++) 9133 wr32(&pf->hw, I40E_GLQF_HKEY(i), hkey[i]); 9134 } 9135 9136 if (!(pf->flags & I40E_FLAG_FD_SB_ENABLED)) 9137 return; 9138 9139 /* find existing VSI and see if it needs configuring */ 9140 vsi = i40e_find_vsi_by_type(pf, I40E_VSI_FDIR); 9141 9142 /* create a new VSI if none exists */ 9143 if (!vsi) { 9144 vsi = i40e_vsi_setup(pf, I40E_VSI_FDIR, 9145 pf->vsi[pf->lan_vsi]->seid, 0); 9146 if (!vsi) { 9147 dev_info(&pf->pdev->dev, "Couldn't create FDir VSI\n"); 9148 pf->flags &= ~I40E_FLAG_FD_SB_ENABLED; 9149 pf->flags |= I40E_FLAG_FD_SB_INACTIVE; 9150 return; 9151 } 9152 } 9153 9154 i40e_vsi_setup_irqhandler(vsi, i40e_fdir_clean_ring); 9155 } 9156 9157 /** 9158 * i40e_fdir_teardown - release the Flow Director resources 9159 * @pf: board private structure 9160 **/ 9161 static void i40e_fdir_teardown(struct i40e_pf *pf) 9162 { 9163 struct i40e_vsi *vsi; 9164 9165 i40e_fdir_filter_exit(pf); 9166 vsi = i40e_find_vsi_by_type(pf, I40E_VSI_FDIR); 9167 if (vsi) 9168 i40e_vsi_release(vsi); 9169 } 9170 9171 /** 9172 * i40e_rebuild_cloud_filters - Rebuilds cloud filters for VSIs 9173 * @vsi: PF main vsi 9174 * @seid: seid of main or channel VSIs 9175 * 9176 * Rebuilds cloud filters associated with main VSI and channel VSIs if they 9177 * existed before reset 9178 **/ 9179 static int i40e_rebuild_cloud_filters(struct i40e_vsi *vsi, u16 seid) 9180 { 9181 struct i40e_cloud_filter *cfilter; 9182 struct i40e_pf *pf = vsi->back; 9183 struct hlist_node *node; 9184 i40e_status ret; 9185 9186 /* Add cloud filters back if they exist */ 9187 hlist_for_each_entry_safe(cfilter, node, &pf->cloud_filter_list, 9188 cloud_node) { 9189 if (cfilter->seid != seid) 9190 continue; 9191 9192 if (cfilter->dst_port) 9193 ret = i40e_add_del_cloud_filter_big_buf(vsi, cfilter, 9194 true); 9195 else 9196 ret = i40e_add_del_cloud_filter(vsi, cfilter, true); 9197 9198 if (ret) { 9199 dev_dbg(&pf->pdev->dev, 9200 "Failed to rebuild cloud filter, err %s aq_err %s\n", 9201 i40e_stat_str(&pf->hw, ret), 9202 i40e_aq_str(&pf->hw, 9203 pf->hw.aq.asq_last_status)); 9204 return ret; 9205 } 9206 } 9207 return 0; 9208 } 9209 9210 /** 9211 * i40e_rebuild_channels - Rebuilds channel VSIs if they existed before reset 9212 * @vsi: PF main vsi 9213 * 9214 * Rebuilds channel VSIs if they existed before reset 9215 **/ 9216 static int i40e_rebuild_channels(struct i40e_vsi *vsi) 9217 { 9218 struct i40e_channel *ch, *ch_tmp; 9219 i40e_status ret; 9220 9221 if (list_empty(&vsi->ch_list)) 9222 return 0; 9223 9224 list_for_each_entry_safe(ch, ch_tmp, &vsi->ch_list, list) { 9225 if (!ch->initialized) 9226 break; 9227 /* Proceed with creation of channel (VMDq2) VSI */ 9228 ret = i40e_add_channel(vsi->back, vsi->uplink_seid, ch); 9229 if (ret) { 9230 dev_info(&vsi->back->pdev->dev, 9231 "failed to rebuild channels using uplink_seid %u\n", 9232 vsi->uplink_seid); 9233 return ret; 9234 } 9235 /* Reconfigure TX queues using QTX_CTL register */ 9236 ret = i40e_channel_config_tx_ring(vsi->back, vsi, ch); 9237 if (ret) { 9238 dev_info(&vsi->back->pdev->dev, 9239 "failed to configure TX rings for channel %u\n", 9240 ch->seid); 9241 return ret; 9242 } 9243 /* update 'next_base_queue' */ 9244 vsi->next_base_queue = vsi->next_base_queue + 9245 ch->num_queue_pairs; 9246 if (ch->max_tx_rate) { 9247 u64 credits = ch->max_tx_rate; 9248 9249 if (i40e_set_bw_limit(vsi, ch->seid, 9250 ch->max_tx_rate)) 9251 return -EINVAL; 9252 9253 do_div(credits, I40E_BW_CREDIT_DIVISOR); 9254 dev_dbg(&vsi->back->pdev->dev, 9255 "Set tx rate of %llu Mbps (count of 50Mbps %llu) for vsi->seid %u\n", 9256 ch->max_tx_rate, 9257 credits, 9258 ch->seid); 9259 } 9260 ret = i40e_rebuild_cloud_filters(vsi, ch->seid); 9261 if (ret) { 9262 dev_dbg(&vsi->back->pdev->dev, 9263 "Failed to rebuild cloud filters for channel VSI %u\n", 9264 ch->seid); 9265 return ret; 9266 } 9267 } 9268 return 0; 9269 } 9270 9271 /** 9272 * i40e_prep_for_reset - prep for the core to reset 9273 * @pf: board private structure 9274 * @lock_acquired: indicates whether or not the lock has been acquired 9275 * before this function was called. 9276 * 9277 * Close up the VFs and other things in prep for PF Reset. 9278 **/ 9279 static void i40e_prep_for_reset(struct i40e_pf *pf, bool lock_acquired) 9280 { 9281 struct i40e_hw *hw = &pf->hw; 9282 i40e_status ret = 0; 9283 u32 v; 9284 9285 clear_bit(__I40E_RESET_INTR_RECEIVED, pf->state); 9286 if (test_and_set_bit(__I40E_RESET_RECOVERY_PENDING, pf->state)) 9287 return; 9288 if (i40e_check_asq_alive(&pf->hw)) 9289 i40e_vc_notify_reset(pf); 9290 9291 dev_dbg(&pf->pdev->dev, "Tearing down internal switch for reset\n"); 9292 9293 /* quiesce the VSIs and their queues that are not already DOWN */ 9294 /* pf_quiesce_all_vsi modifies netdev structures -rtnl_lock needed */ 9295 if (!lock_acquired) 9296 rtnl_lock(); 9297 i40e_pf_quiesce_all_vsi(pf); 9298 if (!lock_acquired) 9299 rtnl_unlock(); 9300 9301 for (v = 0; v < pf->num_alloc_vsi; v++) { 9302 if (pf->vsi[v]) 9303 pf->vsi[v]->seid = 0; 9304 } 9305 9306 i40e_shutdown_adminq(&pf->hw); 9307 9308 /* call shutdown HMC */ 9309 if (hw->hmc.hmc_obj) { 9310 ret = i40e_shutdown_lan_hmc(hw); 9311 if (ret) 9312 dev_warn(&pf->pdev->dev, 9313 "shutdown_lan_hmc failed: %d\n", ret); 9314 } 9315 9316 /* Save the current PTP time so that we can restore the time after the 9317 * reset completes. 9318 */ 9319 i40e_ptp_save_hw_time(pf); 9320 } 9321 9322 /** 9323 * i40e_send_version - update firmware with driver version 9324 * @pf: PF struct 9325 */ 9326 static void i40e_send_version(struct i40e_pf *pf) 9327 { 9328 struct i40e_driver_version dv; 9329 9330 dv.major_version = DRV_VERSION_MAJOR; 9331 dv.minor_version = DRV_VERSION_MINOR; 9332 dv.build_version = DRV_VERSION_BUILD; 9333 dv.subbuild_version = 0; 9334 strlcpy(dv.driver_string, DRV_VERSION, sizeof(dv.driver_string)); 9335 i40e_aq_send_driver_version(&pf->hw, &dv, NULL); 9336 } 9337 9338 /** 9339 * i40e_get_oem_version - get OEM specific version information 9340 * @hw: pointer to the hardware structure 9341 **/ 9342 static void i40e_get_oem_version(struct i40e_hw *hw) 9343 { 9344 u16 block_offset = 0xffff; 9345 u16 block_length = 0; 9346 u16 capabilities = 0; 9347 u16 gen_snap = 0; 9348 u16 release = 0; 9349 9350 #define I40E_SR_NVM_OEM_VERSION_PTR 0x1B 9351 #define I40E_NVM_OEM_LENGTH_OFFSET 0x00 9352 #define I40E_NVM_OEM_CAPABILITIES_OFFSET 0x01 9353 #define I40E_NVM_OEM_GEN_OFFSET 0x02 9354 #define I40E_NVM_OEM_RELEASE_OFFSET 0x03 9355 #define I40E_NVM_OEM_CAPABILITIES_MASK 0x000F 9356 #define I40E_NVM_OEM_LENGTH 3 9357 9358 /* Check if pointer to OEM version block is valid. */ 9359 i40e_read_nvm_word(hw, I40E_SR_NVM_OEM_VERSION_PTR, &block_offset); 9360 if (block_offset == 0xffff) 9361 return; 9362 9363 /* Check if OEM version block has correct length. */ 9364 i40e_read_nvm_word(hw, block_offset + I40E_NVM_OEM_LENGTH_OFFSET, 9365 &block_length); 9366 if (block_length < I40E_NVM_OEM_LENGTH) 9367 return; 9368 9369 /* Check if OEM version format is as expected. */ 9370 i40e_read_nvm_word(hw, block_offset + I40E_NVM_OEM_CAPABILITIES_OFFSET, 9371 &capabilities); 9372 if ((capabilities & I40E_NVM_OEM_CAPABILITIES_MASK) != 0) 9373 return; 9374 9375 i40e_read_nvm_word(hw, block_offset + I40E_NVM_OEM_GEN_OFFSET, 9376 &gen_snap); 9377 i40e_read_nvm_word(hw, block_offset + I40E_NVM_OEM_RELEASE_OFFSET, 9378 &release); 9379 hw->nvm.oem_ver = (gen_snap << I40E_OEM_SNAP_SHIFT) | release; 9380 hw->nvm.eetrack = I40E_OEM_EETRACK_ID; 9381 } 9382 9383 /** 9384 * i40e_reset - wait for core reset to finish reset, reset pf if corer not seen 9385 * @pf: board private structure 9386 **/ 9387 static int i40e_reset(struct i40e_pf *pf) 9388 { 9389 struct i40e_hw *hw = &pf->hw; 9390 i40e_status ret; 9391 9392 ret = i40e_pf_reset(hw); 9393 if (ret) { 9394 dev_info(&pf->pdev->dev, "PF reset failed, %d\n", ret); 9395 set_bit(__I40E_RESET_FAILED, pf->state); 9396 clear_bit(__I40E_RESET_RECOVERY_PENDING, pf->state); 9397 } else { 9398 pf->pfr_count++; 9399 } 9400 return ret; 9401 } 9402 9403 /** 9404 * i40e_rebuild - rebuild using a saved config 9405 * @pf: board private structure 9406 * @reinit: if the Main VSI needs to re-initialized. 9407 * @lock_acquired: indicates whether or not the lock has been acquired 9408 * before this function was called. 9409 **/ 9410 static void i40e_rebuild(struct i40e_pf *pf, bool reinit, bool lock_acquired) 9411 { 9412 struct i40e_vsi *vsi = pf->vsi[pf->lan_vsi]; 9413 struct i40e_hw *hw = &pf->hw; 9414 u8 set_fc_aq_fail = 0; 9415 i40e_status ret; 9416 u32 val; 9417 int v; 9418 9419 if (test_bit(__I40E_DOWN, pf->state)) 9420 goto clear_recovery; 9421 dev_dbg(&pf->pdev->dev, "Rebuilding internal switch\n"); 9422 9423 /* rebuild the basics for the AdminQ, HMC, and initial HW switch */ 9424 ret = i40e_init_adminq(&pf->hw); 9425 if (ret) { 9426 dev_info(&pf->pdev->dev, "Rebuild AdminQ failed, err %s aq_err %s\n", 9427 i40e_stat_str(&pf->hw, ret), 9428 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 9429 goto clear_recovery; 9430 } 9431 i40e_get_oem_version(&pf->hw); 9432 9433 if (test_bit(__I40E_EMP_RESET_INTR_RECEIVED, pf->state) && 9434 ((hw->aq.fw_maj_ver == 4 && hw->aq.fw_min_ver <= 33) || 9435 hw->aq.fw_maj_ver < 4) && hw->mac.type == I40E_MAC_XL710) { 9436 /* The following delay is necessary for 4.33 firmware and older 9437 * to recover after EMP reset. 200 ms should suffice but we 9438 * put here 300 ms to be sure that FW is ready to operate 9439 * after reset. 9440 */ 9441 mdelay(300); 9442 } 9443 9444 /* re-verify the eeprom if we just had an EMP reset */ 9445 if (test_and_clear_bit(__I40E_EMP_RESET_INTR_RECEIVED, pf->state)) 9446 i40e_verify_eeprom(pf); 9447 9448 i40e_clear_pxe_mode(hw); 9449 ret = i40e_get_capabilities(pf, i40e_aqc_opc_list_func_capabilities); 9450 if (ret) 9451 goto end_core_reset; 9452 9453 ret = i40e_init_lan_hmc(hw, hw->func_caps.num_tx_qp, 9454 hw->func_caps.num_rx_qp, 0, 0); 9455 if (ret) { 9456 dev_info(&pf->pdev->dev, "init_lan_hmc failed: %d\n", ret); 9457 goto end_core_reset; 9458 } 9459 ret = i40e_configure_lan_hmc(hw, I40E_HMC_MODEL_DIRECT_ONLY); 9460 if (ret) { 9461 dev_info(&pf->pdev->dev, "configure_lan_hmc failed: %d\n", ret); 9462 goto end_core_reset; 9463 } 9464 9465 /* Enable FW to write a default DCB config on link-up */ 9466 i40e_aq_set_dcb_parameters(hw, true, NULL); 9467 9468 #ifdef CONFIG_I40E_DCB 9469 ret = i40e_init_pf_dcb(pf); 9470 if (ret) { 9471 dev_info(&pf->pdev->dev, "DCB init failed %d, disabled\n", ret); 9472 pf->flags &= ~I40E_FLAG_DCB_CAPABLE; 9473 /* Continue without DCB enabled */ 9474 } 9475 #endif /* CONFIG_I40E_DCB */ 9476 /* do basic switch setup */ 9477 if (!lock_acquired) 9478 rtnl_lock(); 9479 ret = i40e_setup_pf_switch(pf, reinit); 9480 if (ret) 9481 goto end_unlock; 9482 9483 /* The driver only wants link up/down and module qualification 9484 * reports from firmware. Note the negative logic. 9485 */ 9486 ret = i40e_aq_set_phy_int_mask(&pf->hw, 9487 ~(I40E_AQ_EVENT_LINK_UPDOWN | 9488 I40E_AQ_EVENT_MEDIA_NA | 9489 I40E_AQ_EVENT_MODULE_QUAL_FAIL), NULL); 9490 if (ret) 9491 dev_info(&pf->pdev->dev, "set phy mask fail, err %s aq_err %s\n", 9492 i40e_stat_str(&pf->hw, ret), 9493 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 9494 9495 /* make sure our flow control settings are restored */ 9496 ret = i40e_set_fc(&pf->hw, &set_fc_aq_fail, true); 9497 if (ret) 9498 dev_dbg(&pf->pdev->dev, "setting flow control: ret = %s last_status = %s\n", 9499 i40e_stat_str(&pf->hw, ret), 9500 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 9501 9502 /* Rebuild the VSIs and VEBs that existed before reset. 9503 * They are still in our local switch element arrays, so only 9504 * need to rebuild the switch model in the HW. 9505 * 9506 * If there were VEBs but the reconstitution failed, we'll try 9507 * try to recover minimal use by getting the basic PF VSI working. 9508 */ 9509 if (vsi->uplink_seid != pf->mac_seid) { 9510 dev_dbg(&pf->pdev->dev, "attempting to rebuild switch\n"); 9511 /* find the one VEB connected to the MAC, and find orphans */ 9512 for (v = 0; v < I40E_MAX_VEB; v++) { 9513 if (!pf->veb[v]) 9514 continue; 9515 9516 if (pf->veb[v]->uplink_seid == pf->mac_seid || 9517 pf->veb[v]->uplink_seid == 0) { 9518 ret = i40e_reconstitute_veb(pf->veb[v]); 9519 9520 if (!ret) 9521 continue; 9522 9523 /* If Main VEB failed, we're in deep doodoo, 9524 * so give up rebuilding the switch and set up 9525 * for minimal rebuild of PF VSI. 9526 * If orphan failed, we'll report the error 9527 * but try to keep going. 9528 */ 9529 if (pf->veb[v]->uplink_seid == pf->mac_seid) { 9530 dev_info(&pf->pdev->dev, 9531 "rebuild of switch failed: %d, will try to set up simple PF connection\n", 9532 ret); 9533 vsi->uplink_seid = pf->mac_seid; 9534 break; 9535 } else if (pf->veb[v]->uplink_seid == 0) { 9536 dev_info(&pf->pdev->dev, 9537 "rebuild of orphan VEB failed: %d\n", 9538 ret); 9539 } 9540 } 9541 } 9542 } 9543 9544 if (vsi->uplink_seid == pf->mac_seid) { 9545 dev_dbg(&pf->pdev->dev, "attempting to rebuild PF VSI\n"); 9546 /* no VEB, so rebuild only the Main VSI */ 9547 ret = i40e_add_vsi(vsi); 9548 if (ret) { 9549 dev_info(&pf->pdev->dev, 9550 "rebuild of Main VSI failed: %d\n", ret); 9551 goto end_unlock; 9552 } 9553 } 9554 9555 if (vsi->mqprio_qopt.max_rate[0]) { 9556 u64 max_tx_rate = vsi->mqprio_qopt.max_rate[0]; 9557 u64 credits = 0; 9558 9559 do_div(max_tx_rate, I40E_BW_MBPS_DIVISOR); 9560 ret = i40e_set_bw_limit(vsi, vsi->seid, max_tx_rate); 9561 if (ret) 9562 goto end_unlock; 9563 9564 credits = max_tx_rate; 9565 do_div(credits, I40E_BW_CREDIT_DIVISOR); 9566 dev_dbg(&vsi->back->pdev->dev, 9567 "Set tx rate of %llu Mbps (count of 50Mbps %llu) for vsi->seid %u\n", 9568 max_tx_rate, 9569 credits, 9570 vsi->seid); 9571 } 9572 9573 ret = i40e_rebuild_cloud_filters(vsi, vsi->seid); 9574 if (ret) 9575 goto end_unlock; 9576 9577 /* PF Main VSI is rebuild by now, go ahead and rebuild channel VSIs 9578 * for this main VSI if they exist 9579 */ 9580 ret = i40e_rebuild_channels(vsi); 9581 if (ret) 9582 goto end_unlock; 9583 9584 /* Reconfigure hardware for allowing smaller MSS in the case 9585 * of TSO, so that we avoid the MDD being fired and causing 9586 * a reset in the case of small MSS+TSO. 9587 */ 9588 #define I40E_REG_MSS 0x000E64DC 9589 #define I40E_REG_MSS_MIN_MASK 0x3FF0000 9590 #define I40E_64BYTE_MSS 0x400000 9591 val = rd32(hw, I40E_REG_MSS); 9592 if ((val & I40E_REG_MSS_MIN_MASK) > I40E_64BYTE_MSS) { 9593 val &= ~I40E_REG_MSS_MIN_MASK; 9594 val |= I40E_64BYTE_MSS; 9595 wr32(hw, I40E_REG_MSS, val); 9596 } 9597 9598 if (pf->hw_features & I40E_HW_RESTART_AUTONEG) { 9599 msleep(75); 9600 ret = i40e_aq_set_link_restart_an(&pf->hw, true, NULL); 9601 if (ret) 9602 dev_info(&pf->pdev->dev, "link restart failed, err %s aq_err %s\n", 9603 i40e_stat_str(&pf->hw, ret), 9604 i40e_aq_str(&pf->hw, 9605 pf->hw.aq.asq_last_status)); 9606 } 9607 /* reinit the misc interrupt */ 9608 if (pf->flags & I40E_FLAG_MSIX_ENABLED) 9609 ret = i40e_setup_misc_vector(pf); 9610 9611 /* Add a filter to drop all Flow control frames from any VSI from being 9612 * transmitted. By doing so we stop a malicious VF from sending out 9613 * PAUSE or PFC frames and potentially controlling traffic for other 9614 * PF/VF VSIs. 9615 * The FW can still send Flow control frames if enabled. 9616 */ 9617 i40e_add_filter_to_drop_tx_flow_control_frames(&pf->hw, 9618 pf->main_vsi_seid); 9619 9620 /* restart the VSIs that were rebuilt and running before the reset */ 9621 i40e_pf_unquiesce_all_vsi(pf); 9622 9623 /* Release the RTNL lock before we start resetting VFs */ 9624 if (!lock_acquired) 9625 rtnl_unlock(); 9626 9627 /* Restore promiscuous settings */ 9628 ret = i40e_set_promiscuous(pf, pf->cur_promisc); 9629 if (ret) 9630 dev_warn(&pf->pdev->dev, 9631 "Failed to restore promiscuous setting: %s, err %s aq_err %s\n", 9632 pf->cur_promisc ? "on" : "off", 9633 i40e_stat_str(&pf->hw, ret), 9634 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 9635 9636 i40e_reset_all_vfs(pf, true); 9637 9638 /* tell the firmware that we're starting */ 9639 i40e_send_version(pf); 9640 9641 /* We've already released the lock, so don't do it again */ 9642 goto end_core_reset; 9643 9644 end_unlock: 9645 if (!lock_acquired) 9646 rtnl_unlock(); 9647 end_core_reset: 9648 clear_bit(__I40E_RESET_FAILED, pf->state); 9649 clear_recovery: 9650 clear_bit(__I40E_RESET_RECOVERY_PENDING, pf->state); 9651 clear_bit(__I40E_TIMEOUT_RECOVERY_PENDING, pf->state); 9652 } 9653 9654 /** 9655 * i40e_reset_and_rebuild - reset and rebuild using a saved config 9656 * @pf: board private structure 9657 * @reinit: if the Main VSI needs to re-initialized. 9658 * @lock_acquired: indicates whether or not the lock has been acquired 9659 * before this function was called. 9660 **/ 9661 static void i40e_reset_and_rebuild(struct i40e_pf *pf, bool reinit, 9662 bool lock_acquired) 9663 { 9664 int ret; 9665 /* Now we wait for GRST to settle out. 9666 * We don't have to delete the VEBs or VSIs from the hw switch 9667 * because the reset will make them disappear. 9668 */ 9669 ret = i40e_reset(pf); 9670 if (!ret) 9671 i40e_rebuild(pf, reinit, lock_acquired); 9672 } 9673 9674 /** 9675 * i40e_handle_reset_warning - prep for the PF to reset, reset and rebuild 9676 * @pf: board private structure 9677 * 9678 * Close up the VFs and other things in prep for a Core Reset, 9679 * then get ready to rebuild the world. 9680 * @lock_acquired: indicates whether or not the lock has been acquired 9681 * before this function was called. 9682 **/ 9683 static void i40e_handle_reset_warning(struct i40e_pf *pf, bool lock_acquired) 9684 { 9685 i40e_prep_for_reset(pf, lock_acquired); 9686 i40e_reset_and_rebuild(pf, false, lock_acquired); 9687 } 9688 9689 /** 9690 * i40e_handle_mdd_event 9691 * @pf: pointer to the PF structure 9692 * 9693 * Called from the MDD irq handler to identify possibly malicious vfs 9694 **/ 9695 static void i40e_handle_mdd_event(struct i40e_pf *pf) 9696 { 9697 struct i40e_hw *hw = &pf->hw; 9698 bool mdd_detected = false; 9699 bool pf_mdd_detected = false; 9700 struct i40e_vf *vf; 9701 u32 reg; 9702 int i; 9703 9704 if (!test_bit(__I40E_MDD_EVENT_PENDING, pf->state)) 9705 return; 9706 9707 /* find what triggered the MDD event */ 9708 reg = rd32(hw, I40E_GL_MDET_TX); 9709 if (reg & I40E_GL_MDET_TX_VALID_MASK) { 9710 u8 pf_num = (reg & I40E_GL_MDET_TX_PF_NUM_MASK) >> 9711 I40E_GL_MDET_TX_PF_NUM_SHIFT; 9712 u16 vf_num = (reg & I40E_GL_MDET_TX_VF_NUM_MASK) >> 9713 I40E_GL_MDET_TX_VF_NUM_SHIFT; 9714 u8 event = (reg & I40E_GL_MDET_TX_EVENT_MASK) >> 9715 I40E_GL_MDET_TX_EVENT_SHIFT; 9716 u16 queue = ((reg & I40E_GL_MDET_TX_QUEUE_MASK) >> 9717 I40E_GL_MDET_TX_QUEUE_SHIFT) - 9718 pf->hw.func_caps.base_queue; 9719 if (netif_msg_tx_err(pf)) 9720 dev_info(&pf->pdev->dev, "Malicious Driver Detection event 0x%02x on TX queue %d PF number 0x%02x VF number 0x%02x\n", 9721 event, queue, pf_num, vf_num); 9722 wr32(hw, I40E_GL_MDET_TX, 0xffffffff); 9723 mdd_detected = true; 9724 } 9725 reg = rd32(hw, I40E_GL_MDET_RX); 9726 if (reg & I40E_GL_MDET_RX_VALID_MASK) { 9727 u8 func = (reg & I40E_GL_MDET_RX_FUNCTION_MASK) >> 9728 I40E_GL_MDET_RX_FUNCTION_SHIFT; 9729 u8 event = (reg & I40E_GL_MDET_RX_EVENT_MASK) >> 9730 I40E_GL_MDET_RX_EVENT_SHIFT; 9731 u16 queue = ((reg & I40E_GL_MDET_RX_QUEUE_MASK) >> 9732 I40E_GL_MDET_RX_QUEUE_SHIFT) - 9733 pf->hw.func_caps.base_queue; 9734 if (netif_msg_rx_err(pf)) 9735 dev_info(&pf->pdev->dev, "Malicious Driver Detection event 0x%02x on RX queue %d of function 0x%02x\n", 9736 event, queue, func); 9737 wr32(hw, I40E_GL_MDET_RX, 0xffffffff); 9738 mdd_detected = true; 9739 } 9740 9741 if (mdd_detected) { 9742 reg = rd32(hw, I40E_PF_MDET_TX); 9743 if (reg & I40E_PF_MDET_TX_VALID_MASK) { 9744 wr32(hw, I40E_PF_MDET_TX, 0xFFFF); 9745 dev_info(&pf->pdev->dev, "TX driver issue detected, PF reset issued\n"); 9746 pf_mdd_detected = true; 9747 } 9748 reg = rd32(hw, I40E_PF_MDET_RX); 9749 if (reg & I40E_PF_MDET_RX_VALID_MASK) { 9750 wr32(hw, I40E_PF_MDET_RX, 0xFFFF); 9751 dev_info(&pf->pdev->dev, "RX driver issue detected, PF reset issued\n"); 9752 pf_mdd_detected = true; 9753 } 9754 /* Queue belongs to the PF, initiate a reset */ 9755 if (pf_mdd_detected) { 9756 set_bit(__I40E_PF_RESET_REQUESTED, pf->state); 9757 i40e_service_event_schedule(pf); 9758 } 9759 } 9760 9761 /* see if one of the VFs needs its hand slapped */ 9762 for (i = 0; i < pf->num_alloc_vfs && mdd_detected; i++) { 9763 vf = &(pf->vf[i]); 9764 reg = rd32(hw, I40E_VP_MDET_TX(i)); 9765 if (reg & I40E_VP_MDET_TX_VALID_MASK) { 9766 wr32(hw, I40E_VP_MDET_TX(i), 0xFFFF); 9767 vf->num_mdd_events++; 9768 dev_info(&pf->pdev->dev, "TX driver issue detected on VF %d\n", 9769 i); 9770 } 9771 9772 reg = rd32(hw, I40E_VP_MDET_RX(i)); 9773 if (reg & I40E_VP_MDET_RX_VALID_MASK) { 9774 wr32(hw, I40E_VP_MDET_RX(i), 0xFFFF); 9775 vf->num_mdd_events++; 9776 dev_info(&pf->pdev->dev, "RX driver issue detected on VF %d\n", 9777 i); 9778 } 9779 9780 if (vf->num_mdd_events > I40E_DEFAULT_NUM_MDD_EVENTS_ALLOWED) { 9781 dev_info(&pf->pdev->dev, 9782 "Too many MDD events on VF %d, disabled\n", i); 9783 dev_info(&pf->pdev->dev, 9784 "Use PF Control I/F to re-enable the VF\n"); 9785 set_bit(I40E_VF_STATE_DISABLED, &vf->vf_states); 9786 } 9787 } 9788 9789 /* re-enable mdd interrupt cause */ 9790 clear_bit(__I40E_MDD_EVENT_PENDING, pf->state); 9791 reg = rd32(hw, I40E_PFINT_ICR0_ENA); 9792 reg |= I40E_PFINT_ICR0_ENA_MAL_DETECT_MASK; 9793 wr32(hw, I40E_PFINT_ICR0_ENA, reg); 9794 i40e_flush(hw); 9795 } 9796 9797 static const char *i40e_tunnel_name(u8 type) 9798 { 9799 switch (type) { 9800 case UDP_TUNNEL_TYPE_VXLAN: 9801 return "vxlan"; 9802 case UDP_TUNNEL_TYPE_GENEVE: 9803 return "geneve"; 9804 default: 9805 return "unknown"; 9806 } 9807 } 9808 9809 /** 9810 * i40e_sync_udp_filters - Trigger a sync event for existing UDP filters 9811 * @pf: board private structure 9812 **/ 9813 static void i40e_sync_udp_filters(struct i40e_pf *pf) 9814 { 9815 int i; 9816 9817 /* loop through and set pending bit for all active UDP filters */ 9818 for (i = 0; i < I40E_MAX_PF_UDP_OFFLOAD_PORTS; i++) { 9819 if (pf->udp_ports[i].port) 9820 pf->pending_udp_bitmap |= BIT_ULL(i); 9821 } 9822 9823 set_bit(__I40E_UDP_FILTER_SYNC_PENDING, pf->state); 9824 } 9825 9826 /** 9827 * i40e_sync_udp_filters_subtask - Sync the VSI filter list with HW 9828 * @pf: board private structure 9829 **/ 9830 static void i40e_sync_udp_filters_subtask(struct i40e_pf *pf) 9831 { 9832 struct i40e_hw *hw = &pf->hw; 9833 u8 filter_index, type; 9834 u16 port; 9835 int i; 9836 9837 if (!test_and_clear_bit(__I40E_UDP_FILTER_SYNC_PENDING, pf->state)) 9838 return; 9839 9840 /* acquire RTNL to maintain state of flags and port requests */ 9841 rtnl_lock(); 9842 9843 for (i = 0; i < I40E_MAX_PF_UDP_OFFLOAD_PORTS; i++) { 9844 if (pf->pending_udp_bitmap & BIT_ULL(i)) { 9845 struct i40e_udp_port_config *udp_port; 9846 i40e_status ret = 0; 9847 9848 udp_port = &pf->udp_ports[i]; 9849 pf->pending_udp_bitmap &= ~BIT_ULL(i); 9850 9851 port = READ_ONCE(udp_port->port); 9852 type = READ_ONCE(udp_port->type); 9853 filter_index = READ_ONCE(udp_port->filter_index); 9854 9855 /* release RTNL while we wait on AQ command */ 9856 rtnl_unlock(); 9857 9858 if (port) 9859 ret = i40e_aq_add_udp_tunnel(hw, port, 9860 type, 9861 &filter_index, 9862 NULL); 9863 else if (filter_index != I40E_UDP_PORT_INDEX_UNUSED) 9864 ret = i40e_aq_del_udp_tunnel(hw, filter_index, 9865 NULL); 9866 9867 /* reacquire RTNL so we can update filter_index */ 9868 rtnl_lock(); 9869 9870 if (ret) { 9871 dev_info(&pf->pdev->dev, 9872 "%s %s port %d, index %d failed, err %s aq_err %s\n", 9873 i40e_tunnel_name(type), 9874 port ? "add" : "delete", 9875 port, 9876 filter_index, 9877 i40e_stat_str(&pf->hw, ret), 9878 i40e_aq_str(&pf->hw, 9879 pf->hw.aq.asq_last_status)); 9880 if (port) { 9881 /* failed to add, just reset port, 9882 * drop pending bit for any deletion 9883 */ 9884 udp_port->port = 0; 9885 pf->pending_udp_bitmap &= ~BIT_ULL(i); 9886 } 9887 } else if (port) { 9888 /* record filter index on success */ 9889 udp_port->filter_index = filter_index; 9890 } 9891 } 9892 } 9893 9894 rtnl_unlock(); 9895 } 9896 9897 /** 9898 * i40e_service_task - Run the driver's async subtasks 9899 * @work: pointer to work_struct containing our data 9900 **/ 9901 static void i40e_service_task(struct work_struct *work) 9902 { 9903 struct i40e_pf *pf = container_of(work, 9904 struct i40e_pf, 9905 service_task); 9906 unsigned long start_time = jiffies; 9907 9908 /* don't bother with service tasks if a reset is in progress */ 9909 if (test_bit(__I40E_RESET_RECOVERY_PENDING, pf->state)) 9910 return; 9911 9912 if (test_and_set_bit(__I40E_SERVICE_SCHED, pf->state)) 9913 return; 9914 9915 i40e_detect_recover_hung(pf->vsi[pf->lan_vsi]); 9916 i40e_sync_filters_subtask(pf); 9917 i40e_reset_subtask(pf); 9918 i40e_handle_mdd_event(pf); 9919 i40e_vc_process_vflr_event(pf); 9920 i40e_watchdog_subtask(pf); 9921 i40e_fdir_reinit_subtask(pf); 9922 if (test_and_clear_bit(__I40E_CLIENT_RESET, pf->state)) { 9923 /* Client subtask will reopen next time through. */ 9924 i40e_notify_client_of_netdev_close(pf->vsi[pf->lan_vsi], true); 9925 } else { 9926 i40e_client_subtask(pf); 9927 if (test_and_clear_bit(__I40E_CLIENT_L2_CHANGE, 9928 pf->state)) 9929 i40e_notify_client_of_l2_param_changes( 9930 pf->vsi[pf->lan_vsi]); 9931 } 9932 i40e_sync_filters_subtask(pf); 9933 i40e_sync_udp_filters_subtask(pf); 9934 i40e_clean_adminq_subtask(pf); 9935 9936 /* flush memory to make sure state is correct before next watchdog */ 9937 smp_mb__before_atomic(); 9938 clear_bit(__I40E_SERVICE_SCHED, pf->state); 9939 9940 /* If the tasks have taken longer than one timer cycle or there 9941 * is more work to be done, reschedule the service task now 9942 * rather than wait for the timer to tick again. 9943 */ 9944 if (time_after(jiffies, (start_time + pf->service_timer_period)) || 9945 test_bit(__I40E_ADMINQ_EVENT_PENDING, pf->state) || 9946 test_bit(__I40E_MDD_EVENT_PENDING, pf->state) || 9947 test_bit(__I40E_VFLR_EVENT_PENDING, pf->state)) 9948 i40e_service_event_schedule(pf); 9949 } 9950 9951 /** 9952 * i40e_service_timer - timer callback 9953 * @data: pointer to PF struct 9954 **/ 9955 static void i40e_service_timer(struct timer_list *t) 9956 { 9957 struct i40e_pf *pf = from_timer(pf, t, service_timer); 9958 9959 mod_timer(&pf->service_timer, 9960 round_jiffies(jiffies + pf->service_timer_period)); 9961 i40e_service_event_schedule(pf); 9962 } 9963 9964 /** 9965 * i40e_set_num_rings_in_vsi - Determine number of rings in the VSI 9966 * @vsi: the VSI being configured 9967 **/ 9968 static int i40e_set_num_rings_in_vsi(struct i40e_vsi *vsi) 9969 { 9970 struct i40e_pf *pf = vsi->back; 9971 9972 switch (vsi->type) { 9973 case I40E_VSI_MAIN: 9974 vsi->alloc_queue_pairs = pf->num_lan_qps; 9975 vsi->num_desc = ALIGN(I40E_DEFAULT_NUM_DESCRIPTORS, 9976 I40E_REQ_DESCRIPTOR_MULTIPLE); 9977 if (pf->flags & I40E_FLAG_MSIX_ENABLED) 9978 vsi->num_q_vectors = pf->num_lan_msix; 9979 else 9980 vsi->num_q_vectors = 1; 9981 9982 break; 9983 9984 case I40E_VSI_FDIR: 9985 vsi->alloc_queue_pairs = 1; 9986 vsi->num_desc = ALIGN(I40E_FDIR_RING_COUNT, 9987 I40E_REQ_DESCRIPTOR_MULTIPLE); 9988 vsi->num_q_vectors = pf->num_fdsb_msix; 9989 break; 9990 9991 case I40E_VSI_VMDQ2: 9992 vsi->alloc_queue_pairs = pf->num_vmdq_qps; 9993 vsi->num_desc = ALIGN(I40E_DEFAULT_NUM_DESCRIPTORS, 9994 I40E_REQ_DESCRIPTOR_MULTIPLE); 9995 vsi->num_q_vectors = pf->num_vmdq_msix; 9996 break; 9997 9998 case I40E_VSI_SRIOV: 9999 vsi->alloc_queue_pairs = pf->num_vf_qps; 10000 vsi->num_desc = ALIGN(I40E_DEFAULT_NUM_DESCRIPTORS, 10001 I40E_REQ_DESCRIPTOR_MULTIPLE); 10002 break; 10003 10004 default: 10005 WARN_ON(1); 10006 return -ENODATA; 10007 } 10008 10009 return 0; 10010 } 10011 10012 /** 10013 * i40e_vsi_alloc_arrays - Allocate queue and vector pointer arrays for the vsi 10014 * @vsi: VSI pointer 10015 * @alloc_qvectors: a bool to specify if q_vectors need to be allocated. 10016 * 10017 * On error: returns error code (negative) 10018 * On success: returns 0 10019 **/ 10020 static int i40e_vsi_alloc_arrays(struct i40e_vsi *vsi, bool alloc_qvectors) 10021 { 10022 struct i40e_ring **next_rings; 10023 int size; 10024 int ret = 0; 10025 10026 /* allocate memory for both Tx, XDP Tx and Rx ring pointers */ 10027 size = sizeof(struct i40e_ring *) * vsi->alloc_queue_pairs * 10028 (i40e_enabled_xdp_vsi(vsi) ? 3 : 2); 10029 vsi->tx_rings = kzalloc(size, GFP_KERNEL); 10030 if (!vsi->tx_rings) 10031 return -ENOMEM; 10032 next_rings = vsi->tx_rings + vsi->alloc_queue_pairs; 10033 if (i40e_enabled_xdp_vsi(vsi)) { 10034 vsi->xdp_rings = next_rings; 10035 next_rings += vsi->alloc_queue_pairs; 10036 } 10037 vsi->rx_rings = next_rings; 10038 10039 if (alloc_qvectors) { 10040 /* allocate memory for q_vector pointers */ 10041 size = sizeof(struct i40e_q_vector *) * vsi->num_q_vectors; 10042 vsi->q_vectors = kzalloc(size, GFP_KERNEL); 10043 if (!vsi->q_vectors) { 10044 ret = -ENOMEM; 10045 goto err_vectors; 10046 } 10047 } 10048 return ret; 10049 10050 err_vectors: 10051 kfree(vsi->tx_rings); 10052 return ret; 10053 } 10054 10055 /** 10056 * i40e_vsi_mem_alloc - Allocates the next available struct vsi in the PF 10057 * @pf: board private structure 10058 * @type: type of VSI 10059 * 10060 * On error: returns error code (negative) 10061 * On success: returns vsi index in PF (positive) 10062 **/ 10063 static int i40e_vsi_mem_alloc(struct i40e_pf *pf, enum i40e_vsi_type type) 10064 { 10065 int ret = -ENODEV; 10066 struct i40e_vsi *vsi; 10067 int vsi_idx; 10068 int i; 10069 10070 /* Need to protect the allocation of the VSIs at the PF level */ 10071 mutex_lock(&pf->switch_mutex); 10072 10073 /* VSI list may be fragmented if VSI creation/destruction has 10074 * been happening. We can afford to do a quick scan to look 10075 * for any free VSIs in the list. 10076 * 10077 * find next empty vsi slot, looping back around if necessary 10078 */ 10079 i = pf->next_vsi; 10080 while (i < pf->num_alloc_vsi && pf->vsi[i]) 10081 i++; 10082 if (i >= pf->num_alloc_vsi) { 10083 i = 0; 10084 while (i < pf->next_vsi && pf->vsi[i]) 10085 i++; 10086 } 10087 10088 if (i < pf->num_alloc_vsi && !pf->vsi[i]) { 10089 vsi_idx = i; /* Found one! */ 10090 } else { 10091 ret = -ENODEV; 10092 goto unlock_pf; /* out of VSI slots! */ 10093 } 10094 pf->next_vsi = ++i; 10095 10096 vsi = kzalloc(sizeof(*vsi), GFP_KERNEL); 10097 if (!vsi) { 10098 ret = -ENOMEM; 10099 goto unlock_pf; 10100 } 10101 vsi->type = type; 10102 vsi->back = pf; 10103 set_bit(__I40E_VSI_DOWN, vsi->state); 10104 vsi->flags = 0; 10105 vsi->idx = vsi_idx; 10106 vsi->int_rate_limit = 0; 10107 vsi->rss_table_size = (vsi->type == I40E_VSI_MAIN) ? 10108 pf->rss_table_size : 64; 10109 vsi->netdev_registered = false; 10110 vsi->work_limit = I40E_DEFAULT_IRQ_WORK; 10111 hash_init(vsi->mac_filter_hash); 10112 vsi->irqs_ready = false; 10113 10114 if (type == I40E_VSI_MAIN) { 10115 vsi->af_xdp_zc_qps = bitmap_zalloc(pf->num_lan_qps, GFP_KERNEL); 10116 if (!vsi->af_xdp_zc_qps) 10117 goto err_rings; 10118 } 10119 10120 ret = i40e_set_num_rings_in_vsi(vsi); 10121 if (ret) 10122 goto err_rings; 10123 10124 ret = i40e_vsi_alloc_arrays(vsi, true); 10125 if (ret) 10126 goto err_rings; 10127 10128 /* Setup default MSIX irq handler for VSI */ 10129 i40e_vsi_setup_irqhandler(vsi, i40e_msix_clean_rings); 10130 10131 /* Initialize VSI lock */ 10132 spin_lock_init(&vsi->mac_filter_hash_lock); 10133 pf->vsi[vsi_idx] = vsi; 10134 ret = vsi_idx; 10135 goto unlock_pf; 10136 10137 err_rings: 10138 bitmap_free(vsi->af_xdp_zc_qps); 10139 pf->next_vsi = i - 1; 10140 kfree(vsi); 10141 unlock_pf: 10142 mutex_unlock(&pf->switch_mutex); 10143 return ret; 10144 } 10145 10146 /** 10147 * i40e_vsi_free_arrays - Free queue and vector pointer arrays for the VSI 10148 * @vsi: VSI pointer 10149 * @free_qvectors: a bool to specify if q_vectors need to be freed. 10150 * 10151 * On error: returns error code (negative) 10152 * On success: returns 0 10153 **/ 10154 static void i40e_vsi_free_arrays(struct i40e_vsi *vsi, bool free_qvectors) 10155 { 10156 /* free the ring and vector containers */ 10157 if (free_qvectors) { 10158 kfree(vsi->q_vectors); 10159 vsi->q_vectors = NULL; 10160 } 10161 kfree(vsi->tx_rings); 10162 vsi->tx_rings = NULL; 10163 vsi->rx_rings = NULL; 10164 vsi->xdp_rings = NULL; 10165 } 10166 10167 /** 10168 * i40e_clear_rss_config_user - clear the user configured RSS hash keys 10169 * and lookup table 10170 * @vsi: Pointer to VSI structure 10171 */ 10172 static void i40e_clear_rss_config_user(struct i40e_vsi *vsi) 10173 { 10174 if (!vsi) 10175 return; 10176 10177 kfree(vsi->rss_hkey_user); 10178 vsi->rss_hkey_user = NULL; 10179 10180 kfree(vsi->rss_lut_user); 10181 vsi->rss_lut_user = NULL; 10182 } 10183 10184 /** 10185 * i40e_vsi_clear - Deallocate the VSI provided 10186 * @vsi: the VSI being un-configured 10187 **/ 10188 static int i40e_vsi_clear(struct i40e_vsi *vsi) 10189 { 10190 struct i40e_pf *pf; 10191 10192 if (!vsi) 10193 return 0; 10194 10195 if (!vsi->back) 10196 goto free_vsi; 10197 pf = vsi->back; 10198 10199 mutex_lock(&pf->switch_mutex); 10200 if (!pf->vsi[vsi->idx]) { 10201 dev_err(&pf->pdev->dev, "pf->vsi[%d] is NULL, just free vsi[%d](type %d)\n", 10202 vsi->idx, vsi->idx, vsi->type); 10203 goto unlock_vsi; 10204 } 10205 10206 if (pf->vsi[vsi->idx] != vsi) { 10207 dev_err(&pf->pdev->dev, 10208 "pf->vsi[%d](type %d) != vsi[%d](type %d): no free!\n", 10209 pf->vsi[vsi->idx]->idx, 10210 pf->vsi[vsi->idx]->type, 10211 vsi->idx, vsi->type); 10212 goto unlock_vsi; 10213 } 10214 10215 /* updates the PF for this cleared vsi */ 10216 i40e_put_lump(pf->qp_pile, vsi->base_queue, vsi->idx); 10217 i40e_put_lump(pf->irq_pile, vsi->base_vector, vsi->idx); 10218 10219 bitmap_free(vsi->af_xdp_zc_qps); 10220 i40e_vsi_free_arrays(vsi, true); 10221 i40e_clear_rss_config_user(vsi); 10222 10223 pf->vsi[vsi->idx] = NULL; 10224 if (vsi->idx < pf->next_vsi) 10225 pf->next_vsi = vsi->idx; 10226 10227 unlock_vsi: 10228 mutex_unlock(&pf->switch_mutex); 10229 free_vsi: 10230 kfree(vsi); 10231 10232 return 0; 10233 } 10234 10235 /** 10236 * i40e_vsi_clear_rings - Deallocates the Rx and Tx rings for the provided VSI 10237 * @vsi: the VSI being cleaned 10238 **/ 10239 static void i40e_vsi_clear_rings(struct i40e_vsi *vsi) 10240 { 10241 int i; 10242 10243 if (vsi->tx_rings && vsi->tx_rings[0]) { 10244 for (i = 0; i < vsi->alloc_queue_pairs; i++) { 10245 kfree_rcu(vsi->tx_rings[i], rcu); 10246 vsi->tx_rings[i] = NULL; 10247 vsi->rx_rings[i] = NULL; 10248 if (vsi->xdp_rings) 10249 vsi->xdp_rings[i] = NULL; 10250 } 10251 } 10252 } 10253 10254 /** 10255 * i40e_alloc_rings - Allocates the Rx and Tx rings for the provided VSI 10256 * @vsi: the VSI being configured 10257 **/ 10258 static int i40e_alloc_rings(struct i40e_vsi *vsi) 10259 { 10260 int i, qpv = i40e_enabled_xdp_vsi(vsi) ? 3 : 2; 10261 struct i40e_pf *pf = vsi->back; 10262 struct i40e_ring *ring; 10263 10264 /* Set basic values in the rings to be used later during open() */ 10265 for (i = 0; i < vsi->alloc_queue_pairs; i++) { 10266 /* allocate space for both Tx and Rx in one shot */ 10267 ring = kcalloc(qpv, sizeof(struct i40e_ring), GFP_KERNEL); 10268 if (!ring) 10269 goto err_out; 10270 10271 ring->queue_index = i; 10272 ring->reg_idx = vsi->base_queue + i; 10273 ring->ring_active = false; 10274 ring->vsi = vsi; 10275 ring->netdev = vsi->netdev; 10276 ring->dev = &pf->pdev->dev; 10277 ring->count = vsi->num_desc; 10278 ring->size = 0; 10279 ring->dcb_tc = 0; 10280 if (vsi->back->hw_features & I40E_HW_WB_ON_ITR_CAPABLE) 10281 ring->flags = I40E_TXR_FLAGS_WB_ON_ITR; 10282 ring->itr_setting = pf->tx_itr_default; 10283 vsi->tx_rings[i] = ring++; 10284 10285 if (!i40e_enabled_xdp_vsi(vsi)) 10286 goto setup_rx; 10287 10288 ring->queue_index = vsi->alloc_queue_pairs + i; 10289 ring->reg_idx = vsi->base_queue + ring->queue_index; 10290 ring->ring_active = false; 10291 ring->vsi = vsi; 10292 ring->netdev = NULL; 10293 ring->dev = &pf->pdev->dev; 10294 ring->count = vsi->num_desc; 10295 ring->size = 0; 10296 ring->dcb_tc = 0; 10297 if (vsi->back->hw_features & I40E_HW_WB_ON_ITR_CAPABLE) 10298 ring->flags = I40E_TXR_FLAGS_WB_ON_ITR; 10299 set_ring_xdp(ring); 10300 ring->itr_setting = pf->tx_itr_default; 10301 vsi->xdp_rings[i] = ring++; 10302 10303 setup_rx: 10304 ring->queue_index = i; 10305 ring->reg_idx = vsi->base_queue + i; 10306 ring->ring_active = false; 10307 ring->vsi = vsi; 10308 ring->netdev = vsi->netdev; 10309 ring->dev = &pf->pdev->dev; 10310 ring->count = vsi->num_desc; 10311 ring->size = 0; 10312 ring->dcb_tc = 0; 10313 ring->itr_setting = pf->rx_itr_default; 10314 vsi->rx_rings[i] = ring; 10315 } 10316 10317 return 0; 10318 10319 err_out: 10320 i40e_vsi_clear_rings(vsi); 10321 return -ENOMEM; 10322 } 10323 10324 /** 10325 * i40e_reserve_msix_vectors - Reserve MSI-X vectors in the kernel 10326 * @pf: board private structure 10327 * @vectors: the number of MSI-X vectors to request 10328 * 10329 * Returns the number of vectors reserved, or error 10330 **/ 10331 static int i40e_reserve_msix_vectors(struct i40e_pf *pf, int vectors) 10332 { 10333 vectors = pci_enable_msix_range(pf->pdev, pf->msix_entries, 10334 I40E_MIN_MSIX, vectors); 10335 if (vectors < 0) { 10336 dev_info(&pf->pdev->dev, 10337 "MSI-X vector reservation failed: %d\n", vectors); 10338 vectors = 0; 10339 } 10340 10341 return vectors; 10342 } 10343 10344 /** 10345 * i40e_init_msix - Setup the MSIX capability 10346 * @pf: board private structure 10347 * 10348 * Work with the OS to set up the MSIX vectors needed. 10349 * 10350 * Returns the number of vectors reserved or negative on failure 10351 **/ 10352 static int i40e_init_msix(struct i40e_pf *pf) 10353 { 10354 struct i40e_hw *hw = &pf->hw; 10355 int cpus, extra_vectors; 10356 int vectors_left; 10357 int v_budget, i; 10358 int v_actual; 10359 int iwarp_requested = 0; 10360 10361 if (!(pf->flags & I40E_FLAG_MSIX_ENABLED)) 10362 return -ENODEV; 10363 10364 /* The number of vectors we'll request will be comprised of: 10365 * - Add 1 for "other" cause for Admin Queue events, etc. 10366 * - The number of LAN queue pairs 10367 * - Queues being used for RSS. 10368 * We don't need as many as max_rss_size vectors. 10369 * use rss_size instead in the calculation since that 10370 * is governed by number of cpus in the system. 10371 * - assumes symmetric Tx/Rx pairing 10372 * - The number of VMDq pairs 10373 * - The CPU count within the NUMA node if iWARP is enabled 10374 * Once we count this up, try the request. 10375 * 10376 * If we can't get what we want, we'll simplify to nearly nothing 10377 * and try again. If that still fails, we punt. 10378 */ 10379 vectors_left = hw->func_caps.num_msix_vectors; 10380 v_budget = 0; 10381 10382 /* reserve one vector for miscellaneous handler */ 10383 if (vectors_left) { 10384 v_budget++; 10385 vectors_left--; 10386 } 10387 10388 /* reserve some vectors for the main PF traffic queues. Initially we 10389 * only reserve at most 50% of the available vectors, in the case that 10390 * the number of online CPUs is large. This ensures that we can enable 10391 * extra features as well. Once we've enabled the other features, we 10392 * will use any remaining vectors to reach as close as we can to the 10393 * number of online CPUs. 10394 */ 10395 cpus = num_online_cpus(); 10396 pf->num_lan_msix = min_t(int, cpus, vectors_left / 2); 10397 vectors_left -= pf->num_lan_msix; 10398 10399 /* reserve one vector for sideband flow director */ 10400 if (pf->flags & I40E_FLAG_FD_SB_ENABLED) { 10401 if (vectors_left) { 10402 pf->num_fdsb_msix = 1; 10403 v_budget++; 10404 vectors_left--; 10405 } else { 10406 pf->num_fdsb_msix = 0; 10407 } 10408 } 10409 10410 /* can we reserve enough for iWARP? */ 10411 if (pf->flags & I40E_FLAG_IWARP_ENABLED) { 10412 iwarp_requested = pf->num_iwarp_msix; 10413 10414 if (!vectors_left) 10415 pf->num_iwarp_msix = 0; 10416 else if (vectors_left < pf->num_iwarp_msix) 10417 pf->num_iwarp_msix = 1; 10418 v_budget += pf->num_iwarp_msix; 10419 vectors_left -= pf->num_iwarp_msix; 10420 } 10421 10422 /* any vectors left over go for VMDq support */ 10423 if (pf->flags & I40E_FLAG_VMDQ_ENABLED) { 10424 if (!vectors_left) { 10425 pf->num_vmdq_msix = 0; 10426 pf->num_vmdq_qps = 0; 10427 } else { 10428 int vmdq_vecs_wanted = 10429 pf->num_vmdq_vsis * pf->num_vmdq_qps; 10430 int vmdq_vecs = 10431 min_t(int, vectors_left, vmdq_vecs_wanted); 10432 10433 /* if we're short on vectors for what's desired, we limit 10434 * the queues per vmdq. If this is still more than are 10435 * available, the user will need to change the number of 10436 * queues/vectors used by the PF later with the ethtool 10437 * channels command 10438 */ 10439 if (vectors_left < vmdq_vecs_wanted) { 10440 pf->num_vmdq_qps = 1; 10441 vmdq_vecs_wanted = pf->num_vmdq_vsis; 10442 vmdq_vecs = min_t(int, 10443 vectors_left, 10444 vmdq_vecs_wanted); 10445 } 10446 pf->num_vmdq_msix = pf->num_vmdq_qps; 10447 10448 v_budget += vmdq_vecs; 10449 vectors_left -= vmdq_vecs; 10450 } 10451 } 10452 10453 /* On systems with a large number of SMP cores, we previously limited 10454 * the number of vectors for num_lan_msix to be at most 50% of the 10455 * available vectors, to allow for other features. Now, we add back 10456 * the remaining vectors. However, we ensure that the total 10457 * num_lan_msix will not exceed num_online_cpus(). To do this, we 10458 * calculate the number of vectors we can add without going over the 10459 * cap of CPUs. For systems with a small number of CPUs this will be 10460 * zero. 10461 */ 10462 extra_vectors = min_t(int, cpus - pf->num_lan_msix, vectors_left); 10463 pf->num_lan_msix += extra_vectors; 10464 vectors_left -= extra_vectors; 10465 10466 WARN(vectors_left < 0, 10467 "Calculation of remaining vectors underflowed. This is an accounting bug when determining total MSI-X vectors.\n"); 10468 10469 v_budget += pf->num_lan_msix; 10470 pf->msix_entries = kcalloc(v_budget, sizeof(struct msix_entry), 10471 GFP_KERNEL); 10472 if (!pf->msix_entries) 10473 return -ENOMEM; 10474 10475 for (i = 0; i < v_budget; i++) 10476 pf->msix_entries[i].entry = i; 10477 v_actual = i40e_reserve_msix_vectors(pf, v_budget); 10478 10479 if (v_actual < I40E_MIN_MSIX) { 10480 pf->flags &= ~I40E_FLAG_MSIX_ENABLED; 10481 kfree(pf->msix_entries); 10482 pf->msix_entries = NULL; 10483 pci_disable_msix(pf->pdev); 10484 return -ENODEV; 10485 10486 } else if (v_actual == I40E_MIN_MSIX) { 10487 /* Adjust for minimal MSIX use */ 10488 pf->num_vmdq_vsis = 0; 10489 pf->num_vmdq_qps = 0; 10490 pf->num_lan_qps = 1; 10491 pf->num_lan_msix = 1; 10492 10493 } else if (v_actual != v_budget) { 10494 /* If we have limited resources, we will start with no vectors 10495 * for the special features and then allocate vectors to some 10496 * of these features based on the policy and at the end disable 10497 * the features that did not get any vectors. 10498 */ 10499 int vec; 10500 10501 dev_info(&pf->pdev->dev, 10502 "MSI-X vector limit reached with %d, wanted %d, attempting to redistribute vectors\n", 10503 v_actual, v_budget); 10504 /* reserve the misc vector */ 10505 vec = v_actual - 1; 10506 10507 /* Scale vector usage down */ 10508 pf->num_vmdq_msix = 1; /* force VMDqs to only one vector */ 10509 pf->num_vmdq_vsis = 1; 10510 pf->num_vmdq_qps = 1; 10511 10512 /* partition out the remaining vectors */ 10513 switch (vec) { 10514 case 2: 10515 pf->num_lan_msix = 1; 10516 break; 10517 case 3: 10518 if (pf->flags & I40E_FLAG_IWARP_ENABLED) { 10519 pf->num_lan_msix = 1; 10520 pf->num_iwarp_msix = 1; 10521 } else { 10522 pf->num_lan_msix = 2; 10523 } 10524 break; 10525 default: 10526 if (pf->flags & I40E_FLAG_IWARP_ENABLED) { 10527 pf->num_iwarp_msix = min_t(int, (vec / 3), 10528 iwarp_requested); 10529 pf->num_vmdq_vsis = min_t(int, (vec / 3), 10530 I40E_DEFAULT_NUM_VMDQ_VSI); 10531 } else { 10532 pf->num_vmdq_vsis = min_t(int, (vec / 2), 10533 I40E_DEFAULT_NUM_VMDQ_VSI); 10534 } 10535 if (pf->flags & I40E_FLAG_FD_SB_ENABLED) { 10536 pf->num_fdsb_msix = 1; 10537 vec--; 10538 } 10539 pf->num_lan_msix = min_t(int, 10540 (vec - (pf->num_iwarp_msix + pf->num_vmdq_vsis)), 10541 pf->num_lan_msix); 10542 pf->num_lan_qps = pf->num_lan_msix; 10543 break; 10544 } 10545 } 10546 10547 if ((pf->flags & I40E_FLAG_FD_SB_ENABLED) && 10548 (pf->num_fdsb_msix == 0)) { 10549 dev_info(&pf->pdev->dev, "Sideband Flowdir disabled, not enough MSI-X vectors\n"); 10550 pf->flags &= ~I40E_FLAG_FD_SB_ENABLED; 10551 pf->flags |= I40E_FLAG_FD_SB_INACTIVE; 10552 } 10553 if ((pf->flags & I40E_FLAG_VMDQ_ENABLED) && 10554 (pf->num_vmdq_msix == 0)) { 10555 dev_info(&pf->pdev->dev, "VMDq disabled, not enough MSI-X vectors\n"); 10556 pf->flags &= ~I40E_FLAG_VMDQ_ENABLED; 10557 } 10558 10559 if ((pf->flags & I40E_FLAG_IWARP_ENABLED) && 10560 (pf->num_iwarp_msix == 0)) { 10561 dev_info(&pf->pdev->dev, "IWARP disabled, not enough MSI-X vectors\n"); 10562 pf->flags &= ~I40E_FLAG_IWARP_ENABLED; 10563 } 10564 i40e_debug(&pf->hw, I40E_DEBUG_INIT, 10565 "MSI-X vector distribution: PF %d, VMDq %d, FDSB %d, iWARP %d\n", 10566 pf->num_lan_msix, 10567 pf->num_vmdq_msix * pf->num_vmdq_vsis, 10568 pf->num_fdsb_msix, 10569 pf->num_iwarp_msix); 10570 10571 return v_actual; 10572 } 10573 10574 /** 10575 * i40e_vsi_alloc_q_vector - Allocate memory for a single interrupt vector 10576 * @vsi: the VSI being configured 10577 * @v_idx: index of the vector in the vsi struct 10578 * @cpu: cpu to be used on affinity_mask 10579 * 10580 * We allocate one q_vector. If allocation fails we return -ENOMEM. 10581 **/ 10582 static int i40e_vsi_alloc_q_vector(struct i40e_vsi *vsi, int v_idx, int cpu) 10583 { 10584 struct i40e_q_vector *q_vector; 10585 10586 /* allocate q_vector */ 10587 q_vector = kzalloc(sizeof(struct i40e_q_vector), GFP_KERNEL); 10588 if (!q_vector) 10589 return -ENOMEM; 10590 10591 q_vector->vsi = vsi; 10592 q_vector->v_idx = v_idx; 10593 cpumask_copy(&q_vector->affinity_mask, cpu_possible_mask); 10594 10595 if (vsi->netdev) 10596 netif_napi_add(vsi->netdev, &q_vector->napi, 10597 i40e_napi_poll, NAPI_POLL_WEIGHT); 10598 10599 /* tie q_vector and vsi together */ 10600 vsi->q_vectors[v_idx] = q_vector; 10601 10602 return 0; 10603 } 10604 10605 /** 10606 * i40e_vsi_alloc_q_vectors - Allocate memory for interrupt vectors 10607 * @vsi: the VSI being configured 10608 * 10609 * We allocate one q_vector per queue interrupt. If allocation fails we 10610 * return -ENOMEM. 10611 **/ 10612 static int i40e_vsi_alloc_q_vectors(struct i40e_vsi *vsi) 10613 { 10614 struct i40e_pf *pf = vsi->back; 10615 int err, v_idx, num_q_vectors, current_cpu; 10616 10617 /* if not MSIX, give the one vector only to the LAN VSI */ 10618 if (pf->flags & I40E_FLAG_MSIX_ENABLED) 10619 num_q_vectors = vsi->num_q_vectors; 10620 else if (vsi == pf->vsi[pf->lan_vsi]) 10621 num_q_vectors = 1; 10622 else 10623 return -EINVAL; 10624 10625 current_cpu = cpumask_first(cpu_online_mask); 10626 10627 for (v_idx = 0; v_idx < num_q_vectors; v_idx++) { 10628 err = i40e_vsi_alloc_q_vector(vsi, v_idx, current_cpu); 10629 if (err) 10630 goto err_out; 10631 current_cpu = cpumask_next(current_cpu, cpu_online_mask); 10632 if (unlikely(current_cpu >= nr_cpu_ids)) 10633 current_cpu = cpumask_first(cpu_online_mask); 10634 } 10635 10636 return 0; 10637 10638 err_out: 10639 while (v_idx--) 10640 i40e_free_q_vector(vsi, v_idx); 10641 10642 return err; 10643 } 10644 10645 /** 10646 * i40e_init_interrupt_scheme - Determine proper interrupt scheme 10647 * @pf: board private structure to initialize 10648 **/ 10649 static int i40e_init_interrupt_scheme(struct i40e_pf *pf) 10650 { 10651 int vectors = 0; 10652 ssize_t size; 10653 10654 if (pf->flags & I40E_FLAG_MSIX_ENABLED) { 10655 vectors = i40e_init_msix(pf); 10656 if (vectors < 0) { 10657 pf->flags &= ~(I40E_FLAG_MSIX_ENABLED | 10658 I40E_FLAG_IWARP_ENABLED | 10659 I40E_FLAG_RSS_ENABLED | 10660 I40E_FLAG_DCB_CAPABLE | 10661 I40E_FLAG_DCB_ENABLED | 10662 I40E_FLAG_SRIOV_ENABLED | 10663 I40E_FLAG_FD_SB_ENABLED | 10664 I40E_FLAG_FD_ATR_ENABLED | 10665 I40E_FLAG_VMDQ_ENABLED); 10666 pf->flags |= I40E_FLAG_FD_SB_INACTIVE; 10667 10668 /* rework the queue expectations without MSIX */ 10669 i40e_determine_queue_usage(pf); 10670 } 10671 } 10672 10673 if (!(pf->flags & I40E_FLAG_MSIX_ENABLED) && 10674 (pf->flags & I40E_FLAG_MSI_ENABLED)) { 10675 dev_info(&pf->pdev->dev, "MSI-X not available, trying MSI\n"); 10676 vectors = pci_enable_msi(pf->pdev); 10677 if (vectors < 0) { 10678 dev_info(&pf->pdev->dev, "MSI init failed - %d\n", 10679 vectors); 10680 pf->flags &= ~I40E_FLAG_MSI_ENABLED; 10681 } 10682 vectors = 1; /* one MSI or Legacy vector */ 10683 } 10684 10685 if (!(pf->flags & (I40E_FLAG_MSIX_ENABLED | I40E_FLAG_MSI_ENABLED))) 10686 dev_info(&pf->pdev->dev, "MSI-X and MSI not available, falling back to Legacy IRQ\n"); 10687 10688 /* set up vector assignment tracking */ 10689 size = sizeof(struct i40e_lump_tracking) + (sizeof(u16) * vectors); 10690 pf->irq_pile = kzalloc(size, GFP_KERNEL); 10691 if (!pf->irq_pile) 10692 return -ENOMEM; 10693 10694 pf->irq_pile->num_entries = vectors; 10695 pf->irq_pile->search_hint = 0; 10696 10697 /* track first vector for misc interrupts, ignore return */ 10698 (void)i40e_get_lump(pf, pf->irq_pile, 1, I40E_PILE_VALID_BIT - 1); 10699 10700 return 0; 10701 } 10702 10703 /** 10704 * i40e_restore_interrupt_scheme - Restore the interrupt scheme 10705 * @pf: private board data structure 10706 * 10707 * Restore the interrupt scheme that was cleared when we suspended the 10708 * device. This should be called during resume to re-allocate the q_vectors 10709 * and reacquire IRQs. 10710 */ 10711 static int i40e_restore_interrupt_scheme(struct i40e_pf *pf) 10712 { 10713 int err, i; 10714 10715 /* We cleared the MSI and MSI-X flags when disabling the old interrupt 10716 * scheme. We need to re-enabled them here in order to attempt to 10717 * re-acquire the MSI or MSI-X vectors 10718 */ 10719 pf->flags |= (I40E_FLAG_MSIX_ENABLED | I40E_FLAG_MSI_ENABLED); 10720 10721 err = i40e_init_interrupt_scheme(pf); 10722 if (err) 10723 return err; 10724 10725 /* Now that we've re-acquired IRQs, we need to remap the vectors and 10726 * rings together again. 10727 */ 10728 for (i = 0; i < pf->num_alloc_vsi; i++) { 10729 if (pf->vsi[i]) { 10730 err = i40e_vsi_alloc_q_vectors(pf->vsi[i]); 10731 if (err) 10732 goto err_unwind; 10733 i40e_vsi_map_rings_to_vectors(pf->vsi[i]); 10734 } 10735 } 10736 10737 err = i40e_setup_misc_vector(pf); 10738 if (err) 10739 goto err_unwind; 10740 10741 if (pf->flags & I40E_FLAG_IWARP_ENABLED) 10742 i40e_client_update_msix_info(pf); 10743 10744 return 0; 10745 10746 err_unwind: 10747 while (i--) { 10748 if (pf->vsi[i]) 10749 i40e_vsi_free_q_vectors(pf->vsi[i]); 10750 } 10751 10752 return err; 10753 } 10754 10755 /** 10756 * i40e_setup_misc_vector - Setup the misc vector to handle non queue events 10757 * @pf: board private structure 10758 * 10759 * This sets up the handler for MSIX 0, which is used to manage the 10760 * non-queue interrupts, e.g. AdminQ and errors. This is not used 10761 * when in MSI or Legacy interrupt mode. 10762 **/ 10763 static int i40e_setup_misc_vector(struct i40e_pf *pf) 10764 { 10765 struct i40e_hw *hw = &pf->hw; 10766 int err = 0; 10767 10768 /* Only request the IRQ once, the first time through. */ 10769 if (!test_and_set_bit(__I40E_MISC_IRQ_REQUESTED, pf->state)) { 10770 err = request_irq(pf->msix_entries[0].vector, 10771 i40e_intr, 0, pf->int_name, pf); 10772 if (err) { 10773 clear_bit(__I40E_MISC_IRQ_REQUESTED, pf->state); 10774 dev_info(&pf->pdev->dev, 10775 "request_irq for %s failed: %d\n", 10776 pf->int_name, err); 10777 return -EFAULT; 10778 } 10779 } 10780 10781 i40e_enable_misc_int_causes(pf); 10782 10783 /* associate no queues to the misc vector */ 10784 wr32(hw, I40E_PFINT_LNKLST0, I40E_QUEUE_END_OF_LIST); 10785 wr32(hw, I40E_PFINT_ITR0(I40E_RX_ITR), I40E_ITR_8K); 10786 10787 i40e_flush(hw); 10788 10789 i40e_irq_dynamic_enable_icr0(pf); 10790 10791 return err; 10792 } 10793 10794 /** 10795 * i40e_get_rss_aq - Get RSS keys and lut by using AQ commands 10796 * @vsi: Pointer to vsi structure 10797 * @seed: Buffter to store the hash keys 10798 * @lut: Buffer to store the lookup table entries 10799 * @lut_size: Size of buffer to store the lookup table entries 10800 * 10801 * Return 0 on success, negative on failure 10802 */ 10803 static int i40e_get_rss_aq(struct i40e_vsi *vsi, const u8 *seed, 10804 u8 *lut, u16 lut_size) 10805 { 10806 struct i40e_pf *pf = vsi->back; 10807 struct i40e_hw *hw = &pf->hw; 10808 int ret = 0; 10809 10810 if (seed) { 10811 ret = i40e_aq_get_rss_key(hw, vsi->id, 10812 (struct i40e_aqc_get_set_rss_key_data *)seed); 10813 if (ret) { 10814 dev_info(&pf->pdev->dev, 10815 "Cannot get RSS key, err %s aq_err %s\n", 10816 i40e_stat_str(&pf->hw, ret), 10817 i40e_aq_str(&pf->hw, 10818 pf->hw.aq.asq_last_status)); 10819 return ret; 10820 } 10821 } 10822 10823 if (lut) { 10824 bool pf_lut = vsi->type == I40E_VSI_MAIN ? true : false; 10825 10826 ret = i40e_aq_get_rss_lut(hw, vsi->id, pf_lut, lut, lut_size); 10827 if (ret) { 10828 dev_info(&pf->pdev->dev, 10829 "Cannot get RSS lut, err %s aq_err %s\n", 10830 i40e_stat_str(&pf->hw, ret), 10831 i40e_aq_str(&pf->hw, 10832 pf->hw.aq.asq_last_status)); 10833 return ret; 10834 } 10835 } 10836 10837 return ret; 10838 } 10839 10840 /** 10841 * i40e_config_rss_reg - Configure RSS keys and lut by writing registers 10842 * @vsi: Pointer to vsi structure 10843 * @seed: RSS hash seed 10844 * @lut: Lookup table 10845 * @lut_size: Lookup table size 10846 * 10847 * Returns 0 on success, negative on failure 10848 **/ 10849 static int i40e_config_rss_reg(struct i40e_vsi *vsi, const u8 *seed, 10850 const u8 *lut, u16 lut_size) 10851 { 10852 struct i40e_pf *pf = vsi->back; 10853 struct i40e_hw *hw = &pf->hw; 10854 u16 vf_id = vsi->vf_id; 10855 u8 i; 10856 10857 /* Fill out hash function seed */ 10858 if (seed) { 10859 u32 *seed_dw = (u32 *)seed; 10860 10861 if (vsi->type == I40E_VSI_MAIN) { 10862 for (i = 0; i <= I40E_PFQF_HKEY_MAX_INDEX; i++) 10863 wr32(hw, I40E_PFQF_HKEY(i), seed_dw[i]); 10864 } else if (vsi->type == I40E_VSI_SRIOV) { 10865 for (i = 0; i <= I40E_VFQF_HKEY1_MAX_INDEX; i++) 10866 wr32(hw, I40E_VFQF_HKEY1(i, vf_id), seed_dw[i]); 10867 } else { 10868 dev_err(&pf->pdev->dev, "Cannot set RSS seed - invalid VSI type\n"); 10869 } 10870 } 10871 10872 if (lut) { 10873 u32 *lut_dw = (u32 *)lut; 10874 10875 if (vsi->type == I40E_VSI_MAIN) { 10876 if (lut_size != I40E_HLUT_ARRAY_SIZE) 10877 return -EINVAL; 10878 for (i = 0; i <= I40E_PFQF_HLUT_MAX_INDEX; i++) 10879 wr32(hw, I40E_PFQF_HLUT(i), lut_dw[i]); 10880 } else if (vsi->type == I40E_VSI_SRIOV) { 10881 if (lut_size != I40E_VF_HLUT_ARRAY_SIZE) 10882 return -EINVAL; 10883 for (i = 0; i <= I40E_VFQF_HLUT_MAX_INDEX; i++) 10884 wr32(hw, I40E_VFQF_HLUT1(i, vf_id), lut_dw[i]); 10885 } else { 10886 dev_err(&pf->pdev->dev, "Cannot set RSS LUT - invalid VSI type\n"); 10887 } 10888 } 10889 i40e_flush(hw); 10890 10891 return 0; 10892 } 10893 10894 /** 10895 * i40e_get_rss_reg - Get the RSS keys and lut by reading registers 10896 * @vsi: Pointer to VSI structure 10897 * @seed: Buffer to store the keys 10898 * @lut: Buffer to store the lookup table entries 10899 * @lut_size: Size of buffer to store the lookup table entries 10900 * 10901 * Returns 0 on success, negative on failure 10902 */ 10903 static int i40e_get_rss_reg(struct i40e_vsi *vsi, u8 *seed, 10904 u8 *lut, u16 lut_size) 10905 { 10906 struct i40e_pf *pf = vsi->back; 10907 struct i40e_hw *hw = &pf->hw; 10908 u16 i; 10909 10910 if (seed) { 10911 u32 *seed_dw = (u32 *)seed; 10912 10913 for (i = 0; i <= I40E_PFQF_HKEY_MAX_INDEX; i++) 10914 seed_dw[i] = i40e_read_rx_ctl(hw, I40E_PFQF_HKEY(i)); 10915 } 10916 if (lut) { 10917 u32 *lut_dw = (u32 *)lut; 10918 10919 if (lut_size != I40E_HLUT_ARRAY_SIZE) 10920 return -EINVAL; 10921 for (i = 0; i <= I40E_PFQF_HLUT_MAX_INDEX; i++) 10922 lut_dw[i] = rd32(hw, I40E_PFQF_HLUT(i)); 10923 } 10924 10925 return 0; 10926 } 10927 10928 /** 10929 * i40e_config_rss - Configure RSS keys and lut 10930 * @vsi: Pointer to VSI structure 10931 * @seed: RSS hash seed 10932 * @lut: Lookup table 10933 * @lut_size: Lookup table size 10934 * 10935 * Returns 0 on success, negative on failure 10936 */ 10937 int i40e_config_rss(struct i40e_vsi *vsi, u8 *seed, u8 *lut, u16 lut_size) 10938 { 10939 struct i40e_pf *pf = vsi->back; 10940 10941 if (pf->hw_features & I40E_HW_RSS_AQ_CAPABLE) 10942 return i40e_config_rss_aq(vsi, seed, lut, lut_size); 10943 else 10944 return i40e_config_rss_reg(vsi, seed, lut, lut_size); 10945 } 10946 10947 /** 10948 * i40e_get_rss - Get RSS keys and lut 10949 * @vsi: Pointer to VSI structure 10950 * @seed: Buffer to store the keys 10951 * @lut: Buffer to store the lookup table entries 10952 * @lut_size: Size of buffer to store the lookup table entries 10953 * 10954 * Returns 0 on success, negative on failure 10955 */ 10956 int i40e_get_rss(struct i40e_vsi *vsi, u8 *seed, u8 *lut, u16 lut_size) 10957 { 10958 struct i40e_pf *pf = vsi->back; 10959 10960 if (pf->hw_features & I40E_HW_RSS_AQ_CAPABLE) 10961 return i40e_get_rss_aq(vsi, seed, lut, lut_size); 10962 else 10963 return i40e_get_rss_reg(vsi, seed, lut, lut_size); 10964 } 10965 10966 /** 10967 * i40e_fill_rss_lut - Fill the RSS lookup table with default values 10968 * @pf: Pointer to board private structure 10969 * @lut: Lookup table 10970 * @rss_table_size: Lookup table size 10971 * @rss_size: Range of queue number for hashing 10972 */ 10973 void i40e_fill_rss_lut(struct i40e_pf *pf, u8 *lut, 10974 u16 rss_table_size, u16 rss_size) 10975 { 10976 u16 i; 10977 10978 for (i = 0; i < rss_table_size; i++) 10979 lut[i] = i % rss_size; 10980 } 10981 10982 /** 10983 * i40e_pf_config_rss - Prepare for RSS if used 10984 * @pf: board private structure 10985 **/ 10986 static int i40e_pf_config_rss(struct i40e_pf *pf) 10987 { 10988 struct i40e_vsi *vsi = pf->vsi[pf->lan_vsi]; 10989 u8 seed[I40E_HKEY_ARRAY_SIZE]; 10990 u8 *lut; 10991 struct i40e_hw *hw = &pf->hw; 10992 u32 reg_val; 10993 u64 hena; 10994 int ret; 10995 10996 /* By default we enable TCP/UDP with IPv4/IPv6 ptypes */ 10997 hena = (u64)i40e_read_rx_ctl(hw, I40E_PFQF_HENA(0)) | 10998 ((u64)i40e_read_rx_ctl(hw, I40E_PFQF_HENA(1)) << 32); 10999 hena |= i40e_pf_get_default_rss_hena(pf); 11000 11001 i40e_write_rx_ctl(hw, I40E_PFQF_HENA(0), (u32)hena); 11002 i40e_write_rx_ctl(hw, I40E_PFQF_HENA(1), (u32)(hena >> 32)); 11003 11004 /* Determine the RSS table size based on the hardware capabilities */ 11005 reg_val = i40e_read_rx_ctl(hw, I40E_PFQF_CTL_0); 11006 reg_val = (pf->rss_table_size == 512) ? 11007 (reg_val | I40E_PFQF_CTL_0_HASHLUTSIZE_512) : 11008 (reg_val & ~I40E_PFQF_CTL_0_HASHLUTSIZE_512); 11009 i40e_write_rx_ctl(hw, I40E_PFQF_CTL_0, reg_val); 11010 11011 /* Determine the RSS size of the VSI */ 11012 if (!vsi->rss_size) { 11013 u16 qcount; 11014 /* If the firmware does something weird during VSI init, we 11015 * could end up with zero TCs. Check for that to avoid 11016 * divide-by-zero. It probably won't pass traffic, but it also 11017 * won't panic. 11018 */ 11019 qcount = vsi->num_queue_pairs / 11020 (vsi->tc_config.numtc ? vsi->tc_config.numtc : 1); 11021 vsi->rss_size = min_t(int, pf->alloc_rss_size, qcount); 11022 } 11023 if (!vsi->rss_size) 11024 return -EINVAL; 11025 11026 lut = kzalloc(vsi->rss_table_size, GFP_KERNEL); 11027 if (!lut) 11028 return -ENOMEM; 11029 11030 /* Use user configured lut if there is one, otherwise use default */ 11031 if (vsi->rss_lut_user) 11032 memcpy(lut, vsi->rss_lut_user, vsi->rss_table_size); 11033 else 11034 i40e_fill_rss_lut(pf, lut, vsi->rss_table_size, vsi->rss_size); 11035 11036 /* Use user configured hash key if there is one, otherwise 11037 * use default. 11038 */ 11039 if (vsi->rss_hkey_user) 11040 memcpy(seed, vsi->rss_hkey_user, I40E_HKEY_ARRAY_SIZE); 11041 else 11042 netdev_rss_key_fill((void *)seed, I40E_HKEY_ARRAY_SIZE); 11043 ret = i40e_config_rss(vsi, seed, lut, vsi->rss_table_size); 11044 kfree(lut); 11045 11046 return ret; 11047 } 11048 11049 /** 11050 * i40e_reconfig_rss_queues - change number of queues for rss and rebuild 11051 * @pf: board private structure 11052 * @queue_count: the requested queue count for rss. 11053 * 11054 * returns 0 if rss is not enabled, if enabled returns the final rss queue 11055 * count which may be different from the requested queue count. 11056 * Note: expects to be called while under rtnl_lock() 11057 **/ 11058 int i40e_reconfig_rss_queues(struct i40e_pf *pf, int queue_count) 11059 { 11060 struct i40e_vsi *vsi = pf->vsi[pf->lan_vsi]; 11061 int new_rss_size; 11062 11063 if (!(pf->flags & I40E_FLAG_RSS_ENABLED)) 11064 return 0; 11065 11066 queue_count = min_t(int, queue_count, num_online_cpus()); 11067 new_rss_size = min_t(int, queue_count, pf->rss_size_max); 11068 11069 if (queue_count != vsi->num_queue_pairs) { 11070 u16 qcount; 11071 11072 vsi->req_queue_pairs = queue_count; 11073 i40e_prep_for_reset(pf, true); 11074 11075 pf->alloc_rss_size = new_rss_size; 11076 11077 i40e_reset_and_rebuild(pf, true, true); 11078 11079 /* Discard the user configured hash keys and lut, if less 11080 * queues are enabled. 11081 */ 11082 if (queue_count < vsi->rss_size) { 11083 i40e_clear_rss_config_user(vsi); 11084 dev_dbg(&pf->pdev->dev, 11085 "discard user configured hash keys and lut\n"); 11086 } 11087 11088 /* Reset vsi->rss_size, as number of enabled queues changed */ 11089 qcount = vsi->num_queue_pairs / vsi->tc_config.numtc; 11090 vsi->rss_size = min_t(int, pf->alloc_rss_size, qcount); 11091 11092 i40e_pf_config_rss(pf); 11093 } 11094 dev_info(&pf->pdev->dev, "User requested queue count/HW max RSS count: %d/%d\n", 11095 vsi->req_queue_pairs, pf->rss_size_max); 11096 return pf->alloc_rss_size; 11097 } 11098 11099 /** 11100 * i40e_get_partition_bw_setting - Retrieve BW settings for this PF partition 11101 * @pf: board private structure 11102 **/ 11103 i40e_status i40e_get_partition_bw_setting(struct i40e_pf *pf) 11104 { 11105 i40e_status status; 11106 bool min_valid, max_valid; 11107 u32 max_bw, min_bw; 11108 11109 status = i40e_read_bw_from_alt_ram(&pf->hw, &max_bw, &min_bw, 11110 &min_valid, &max_valid); 11111 11112 if (!status) { 11113 if (min_valid) 11114 pf->min_bw = min_bw; 11115 if (max_valid) 11116 pf->max_bw = max_bw; 11117 } 11118 11119 return status; 11120 } 11121 11122 /** 11123 * i40e_set_partition_bw_setting - Set BW settings for this PF partition 11124 * @pf: board private structure 11125 **/ 11126 i40e_status i40e_set_partition_bw_setting(struct i40e_pf *pf) 11127 { 11128 struct i40e_aqc_configure_partition_bw_data bw_data; 11129 i40e_status status; 11130 11131 /* Set the valid bit for this PF */ 11132 bw_data.pf_valid_bits = cpu_to_le16(BIT(pf->hw.pf_id)); 11133 bw_data.max_bw[pf->hw.pf_id] = pf->max_bw & I40E_ALT_BW_VALUE_MASK; 11134 bw_data.min_bw[pf->hw.pf_id] = pf->min_bw & I40E_ALT_BW_VALUE_MASK; 11135 11136 /* Set the new bandwidths */ 11137 status = i40e_aq_configure_partition_bw(&pf->hw, &bw_data, NULL); 11138 11139 return status; 11140 } 11141 11142 /** 11143 * i40e_commit_partition_bw_setting - Commit BW settings for this PF partition 11144 * @pf: board private structure 11145 **/ 11146 i40e_status i40e_commit_partition_bw_setting(struct i40e_pf *pf) 11147 { 11148 /* Commit temporary BW setting to permanent NVM image */ 11149 enum i40e_admin_queue_err last_aq_status; 11150 i40e_status ret; 11151 u16 nvm_word; 11152 11153 if (pf->hw.partition_id != 1) { 11154 dev_info(&pf->pdev->dev, 11155 "Commit BW only works on partition 1! This is partition %d", 11156 pf->hw.partition_id); 11157 ret = I40E_NOT_SUPPORTED; 11158 goto bw_commit_out; 11159 } 11160 11161 /* Acquire NVM for read access */ 11162 ret = i40e_acquire_nvm(&pf->hw, I40E_RESOURCE_READ); 11163 last_aq_status = pf->hw.aq.asq_last_status; 11164 if (ret) { 11165 dev_info(&pf->pdev->dev, 11166 "Cannot acquire NVM for read access, err %s aq_err %s\n", 11167 i40e_stat_str(&pf->hw, ret), 11168 i40e_aq_str(&pf->hw, last_aq_status)); 11169 goto bw_commit_out; 11170 } 11171 11172 /* Read word 0x10 of NVM - SW compatibility word 1 */ 11173 ret = i40e_aq_read_nvm(&pf->hw, 11174 I40E_SR_NVM_CONTROL_WORD, 11175 0x10, sizeof(nvm_word), &nvm_word, 11176 false, NULL); 11177 /* Save off last admin queue command status before releasing 11178 * the NVM 11179 */ 11180 last_aq_status = pf->hw.aq.asq_last_status; 11181 i40e_release_nvm(&pf->hw); 11182 if (ret) { 11183 dev_info(&pf->pdev->dev, "NVM read error, err %s aq_err %s\n", 11184 i40e_stat_str(&pf->hw, ret), 11185 i40e_aq_str(&pf->hw, last_aq_status)); 11186 goto bw_commit_out; 11187 } 11188 11189 /* Wait a bit for NVM release to complete */ 11190 msleep(50); 11191 11192 /* Acquire NVM for write access */ 11193 ret = i40e_acquire_nvm(&pf->hw, I40E_RESOURCE_WRITE); 11194 last_aq_status = pf->hw.aq.asq_last_status; 11195 if (ret) { 11196 dev_info(&pf->pdev->dev, 11197 "Cannot acquire NVM for write access, err %s aq_err %s\n", 11198 i40e_stat_str(&pf->hw, ret), 11199 i40e_aq_str(&pf->hw, last_aq_status)); 11200 goto bw_commit_out; 11201 } 11202 /* Write it back out unchanged to initiate update NVM, 11203 * which will force a write of the shadow (alt) RAM to 11204 * the NVM - thus storing the bandwidth values permanently. 11205 */ 11206 ret = i40e_aq_update_nvm(&pf->hw, 11207 I40E_SR_NVM_CONTROL_WORD, 11208 0x10, sizeof(nvm_word), 11209 &nvm_word, true, 0, NULL); 11210 /* Save off last admin queue command status before releasing 11211 * the NVM 11212 */ 11213 last_aq_status = pf->hw.aq.asq_last_status; 11214 i40e_release_nvm(&pf->hw); 11215 if (ret) 11216 dev_info(&pf->pdev->dev, 11217 "BW settings NOT SAVED, err %s aq_err %s\n", 11218 i40e_stat_str(&pf->hw, ret), 11219 i40e_aq_str(&pf->hw, last_aq_status)); 11220 bw_commit_out: 11221 11222 return ret; 11223 } 11224 11225 /** 11226 * i40e_sw_init - Initialize general software structures (struct i40e_pf) 11227 * @pf: board private structure to initialize 11228 * 11229 * i40e_sw_init initializes the Adapter private data structure. 11230 * Fields are initialized based on PCI device information and 11231 * OS network device settings (MTU size). 11232 **/ 11233 static int i40e_sw_init(struct i40e_pf *pf) 11234 { 11235 int err = 0; 11236 int size; 11237 11238 /* Set default capability flags */ 11239 pf->flags = I40E_FLAG_RX_CSUM_ENABLED | 11240 I40E_FLAG_MSI_ENABLED | 11241 I40E_FLAG_MSIX_ENABLED; 11242 11243 /* Set default ITR */ 11244 pf->rx_itr_default = I40E_ITR_RX_DEF; 11245 pf->tx_itr_default = I40E_ITR_TX_DEF; 11246 11247 /* Depending on PF configurations, it is possible that the RSS 11248 * maximum might end up larger than the available queues 11249 */ 11250 pf->rss_size_max = BIT(pf->hw.func_caps.rss_table_entry_width); 11251 pf->alloc_rss_size = 1; 11252 pf->rss_table_size = pf->hw.func_caps.rss_table_size; 11253 pf->rss_size_max = min_t(int, pf->rss_size_max, 11254 pf->hw.func_caps.num_tx_qp); 11255 if (pf->hw.func_caps.rss) { 11256 pf->flags |= I40E_FLAG_RSS_ENABLED; 11257 pf->alloc_rss_size = min_t(int, pf->rss_size_max, 11258 num_online_cpus()); 11259 } 11260 11261 /* MFP mode enabled */ 11262 if (pf->hw.func_caps.npar_enable || pf->hw.func_caps.flex10_enable) { 11263 pf->flags |= I40E_FLAG_MFP_ENABLED; 11264 dev_info(&pf->pdev->dev, "MFP mode Enabled\n"); 11265 if (i40e_get_partition_bw_setting(pf)) { 11266 dev_warn(&pf->pdev->dev, 11267 "Could not get partition bw settings\n"); 11268 } else { 11269 dev_info(&pf->pdev->dev, 11270 "Partition BW Min = %8.8x, Max = %8.8x\n", 11271 pf->min_bw, pf->max_bw); 11272 11273 /* nudge the Tx scheduler */ 11274 i40e_set_partition_bw_setting(pf); 11275 } 11276 } 11277 11278 if ((pf->hw.func_caps.fd_filters_guaranteed > 0) || 11279 (pf->hw.func_caps.fd_filters_best_effort > 0)) { 11280 pf->flags |= I40E_FLAG_FD_ATR_ENABLED; 11281 pf->atr_sample_rate = I40E_DEFAULT_ATR_SAMPLE_RATE; 11282 if (pf->flags & I40E_FLAG_MFP_ENABLED && 11283 pf->hw.num_partitions > 1) 11284 dev_info(&pf->pdev->dev, 11285 "Flow Director Sideband mode Disabled in MFP mode\n"); 11286 else 11287 pf->flags |= I40E_FLAG_FD_SB_ENABLED; 11288 pf->fdir_pf_filter_count = 11289 pf->hw.func_caps.fd_filters_guaranteed; 11290 pf->hw.fdir_shared_filter_count = 11291 pf->hw.func_caps.fd_filters_best_effort; 11292 } 11293 11294 if (pf->hw.mac.type == I40E_MAC_X722) { 11295 pf->hw_features |= (I40E_HW_RSS_AQ_CAPABLE | 11296 I40E_HW_128_QP_RSS_CAPABLE | 11297 I40E_HW_ATR_EVICT_CAPABLE | 11298 I40E_HW_WB_ON_ITR_CAPABLE | 11299 I40E_HW_MULTIPLE_TCP_UDP_RSS_PCTYPE | 11300 I40E_HW_NO_PCI_LINK_CHECK | 11301 I40E_HW_USE_SET_LLDP_MIB | 11302 I40E_HW_GENEVE_OFFLOAD_CAPABLE | 11303 I40E_HW_PTP_L4_CAPABLE | 11304 I40E_HW_WOL_MC_MAGIC_PKT_WAKE | 11305 I40E_HW_OUTER_UDP_CSUM_CAPABLE); 11306 11307 #define I40E_FDEVICT_PCTYPE_DEFAULT 0xc03 11308 if (rd32(&pf->hw, I40E_GLQF_FDEVICTENA(1)) != 11309 I40E_FDEVICT_PCTYPE_DEFAULT) { 11310 dev_warn(&pf->pdev->dev, 11311 "FD EVICT PCTYPES are not right, disable FD HW EVICT\n"); 11312 pf->hw_features &= ~I40E_HW_ATR_EVICT_CAPABLE; 11313 } 11314 } else if ((pf->hw.aq.api_maj_ver > 1) || 11315 ((pf->hw.aq.api_maj_ver == 1) && 11316 (pf->hw.aq.api_min_ver > 4))) { 11317 /* Supported in FW API version higher than 1.4 */ 11318 pf->hw_features |= I40E_HW_GENEVE_OFFLOAD_CAPABLE; 11319 } 11320 11321 /* Enable HW ATR eviction if possible */ 11322 if (pf->hw_features & I40E_HW_ATR_EVICT_CAPABLE) 11323 pf->flags |= I40E_FLAG_HW_ATR_EVICT_ENABLED; 11324 11325 if ((pf->hw.mac.type == I40E_MAC_XL710) && 11326 (((pf->hw.aq.fw_maj_ver == 4) && (pf->hw.aq.fw_min_ver < 33)) || 11327 (pf->hw.aq.fw_maj_ver < 4))) { 11328 pf->hw_features |= I40E_HW_RESTART_AUTONEG; 11329 /* No DCB support for FW < v4.33 */ 11330 pf->hw_features |= I40E_HW_NO_DCB_SUPPORT; 11331 } 11332 11333 /* Disable FW LLDP if FW < v4.3 */ 11334 if ((pf->hw.mac.type == I40E_MAC_XL710) && 11335 (((pf->hw.aq.fw_maj_ver == 4) && (pf->hw.aq.fw_min_ver < 3)) || 11336 (pf->hw.aq.fw_maj_ver < 4))) 11337 pf->hw_features |= I40E_HW_STOP_FW_LLDP; 11338 11339 /* Use the FW Set LLDP MIB API if FW > v4.40 */ 11340 if ((pf->hw.mac.type == I40E_MAC_XL710) && 11341 (((pf->hw.aq.fw_maj_ver == 4) && (pf->hw.aq.fw_min_ver >= 40)) || 11342 (pf->hw.aq.fw_maj_ver >= 5))) 11343 pf->hw_features |= I40E_HW_USE_SET_LLDP_MIB; 11344 11345 /* Enable PTP L4 if FW > v6.0 */ 11346 if (pf->hw.mac.type == I40E_MAC_XL710 && 11347 pf->hw.aq.fw_maj_ver >= 6) 11348 pf->hw_features |= I40E_HW_PTP_L4_CAPABLE; 11349 11350 if (pf->hw.func_caps.vmdq && num_online_cpus() != 1) { 11351 pf->num_vmdq_vsis = I40E_DEFAULT_NUM_VMDQ_VSI; 11352 pf->flags |= I40E_FLAG_VMDQ_ENABLED; 11353 pf->num_vmdq_qps = i40e_default_queues_per_vmdq(pf); 11354 } 11355 11356 if (pf->hw.func_caps.iwarp && num_online_cpus() != 1) { 11357 pf->flags |= I40E_FLAG_IWARP_ENABLED; 11358 /* IWARP needs one extra vector for CQP just like MISC.*/ 11359 pf->num_iwarp_msix = (int)num_online_cpus() + 1; 11360 } 11361 /* Stopping FW LLDP engine is supported on XL710 and X722 11362 * starting from FW versions determined in i40e_init_adminq. 11363 * Stopping the FW LLDP engine is not supported on XL710 11364 * if NPAR is functioning so unset this hw flag in this case. 11365 */ 11366 if (pf->hw.mac.type == I40E_MAC_XL710 && 11367 pf->hw.func_caps.npar_enable && 11368 (pf->hw.flags & I40E_HW_FLAG_FW_LLDP_STOPPABLE)) 11369 pf->hw.flags &= ~I40E_HW_FLAG_FW_LLDP_STOPPABLE; 11370 11371 #ifdef CONFIG_PCI_IOV 11372 if (pf->hw.func_caps.num_vfs && pf->hw.partition_id == 1) { 11373 pf->num_vf_qps = I40E_DEFAULT_QUEUES_PER_VF; 11374 pf->flags |= I40E_FLAG_SRIOV_ENABLED; 11375 pf->num_req_vfs = min_t(int, 11376 pf->hw.func_caps.num_vfs, 11377 I40E_MAX_VF_COUNT); 11378 } 11379 #endif /* CONFIG_PCI_IOV */ 11380 pf->eeprom_version = 0xDEAD; 11381 pf->lan_veb = I40E_NO_VEB; 11382 pf->lan_vsi = I40E_NO_VSI; 11383 11384 /* By default FW has this off for performance reasons */ 11385 pf->flags &= ~I40E_FLAG_VEB_STATS_ENABLED; 11386 11387 /* set up queue assignment tracking */ 11388 size = sizeof(struct i40e_lump_tracking) 11389 + (sizeof(u16) * pf->hw.func_caps.num_tx_qp); 11390 pf->qp_pile = kzalloc(size, GFP_KERNEL); 11391 if (!pf->qp_pile) { 11392 err = -ENOMEM; 11393 goto sw_init_done; 11394 } 11395 pf->qp_pile->num_entries = pf->hw.func_caps.num_tx_qp; 11396 pf->qp_pile->search_hint = 0; 11397 11398 pf->tx_timeout_recovery_level = 1; 11399 11400 mutex_init(&pf->switch_mutex); 11401 11402 sw_init_done: 11403 return err; 11404 } 11405 11406 /** 11407 * i40e_set_ntuple - set the ntuple feature flag and take action 11408 * @pf: board private structure to initialize 11409 * @features: the feature set that the stack is suggesting 11410 * 11411 * returns a bool to indicate if reset needs to happen 11412 **/ 11413 bool i40e_set_ntuple(struct i40e_pf *pf, netdev_features_t features) 11414 { 11415 bool need_reset = false; 11416 11417 /* Check if Flow Director n-tuple support was enabled or disabled. If 11418 * the state changed, we need to reset. 11419 */ 11420 if (features & NETIF_F_NTUPLE) { 11421 /* Enable filters and mark for reset */ 11422 if (!(pf->flags & I40E_FLAG_FD_SB_ENABLED)) 11423 need_reset = true; 11424 /* enable FD_SB only if there is MSI-X vector and no cloud 11425 * filters exist 11426 */ 11427 if (pf->num_fdsb_msix > 0 && !pf->num_cloud_filters) { 11428 pf->flags |= I40E_FLAG_FD_SB_ENABLED; 11429 pf->flags &= ~I40E_FLAG_FD_SB_INACTIVE; 11430 } 11431 } else { 11432 /* turn off filters, mark for reset and clear SW filter list */ 11433 if (pf->flags & I40E_FLAG_FD_SB_ENABLED) { 11434 need_reset = true; 11435 i40e_fdir_filter_exit(pf); 11436 } 11437 pf->flags &= ~I40E_FLAG_FD_SB_ENABLED; 11438 clear_bit(__I40E_FD_SB_AUTO_DISABLED, pf->state); 11439 pf->flags |= I40E_FLAG_FD_SB_INACTIVE; 11440 11441 /* reset fd counters */ 11442 pf->fd_add_err = 0; 11443 pf->fd_atr_cnt = 0; 11444 /* if ATR was auto disabled it can be re-enabled. */ 11445 if (test_and_clear_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state)) 11446 if ((pf->flags & I40E_FLAG_FD_ATR_ENABLED) && 11447 (I40E_DEBUG_FD & pf->hw.debug_mask)) 11448 dev_info(&pf->pdev->dev, "ATR re-enabled.\n"); 11449 } 11450 return need_reset; 11451 } 11452 11453 /** 11454 * i40e_clear_rss_lut - clear the rx hash lookup table 11455 * @vsi: the VSI being configured 11456 **/ 11457 static void i40e_clear_rss_lut(struct i40e_vsi *vsi) 11458 { 11459 struct i40e_pf *pf = vsi->back; 11460 struct i40e_hw *hw = &pf->hw; 11461 u16 vf_id = vsi->vf_id; 11462 u8 i; 11463 11464 if (vsi->type == I40E_VSI_MAIN) { 11465 for (i = 0; i <= I40E_PFQF_HLUT_MAX_INDEX; i++) 11466 wr32(hw, I40E_PFQF_HLUT(i), 0); 11467 } else if (vsi->type == I40E_VSI_SRIOV) { 11468 for (i = 0; i <= I40E_VFQF_HLUT_MAX_INDEX; i++) 11469 i40e_write_rx_ctl(hw, I40E_VFQF_HLUT1(i, vf_id), 0); 11470 } else { 11471 dev_err(&pf->pdev->dev, "Cannot set RSS LUT - invalid VSI type\n"); 11472 } 11473 } 11474 11475 /** 11476 * i40e_set_features - set the netdev feature flags 11477 * @netdev: ptr to the netdev being adjusted 11478 * @features: the feature set that the stack is suggesting 11479 * Note: expects to be called while under rtnl_lock() 11480 **/ 11481 static int i40e_set_features(struct net_device *netdev, 11482 netdev_features_t features) 11483 { 11484 struct i40e_netdev_priv *np = netdev_priv(netdev); 11485 struct i40e_vsi *vsi = np->vsi; 11486 struct i40e_pf *pf = vsi->back; 11487 bool need_reset; 11488 11489 if (features & NETIF_F_RXHASH && !(netdev->features & NETIF_F_RXHASH)) 11490 i40e_pf_config_rss(pf); 11491 else if (!(features & NETIF_F_RXHASH) && 11492 netdev->features & NETIF_F_RXHASH) 11493 i40e_clear_rss_lut(vsi); 11494 11495 if (features & NETIF_F_HW_VLAN_CTAG_RX) 11496 i40e_vlan_stripping_enable(vsi); 11497 else 11498 i40e_vlan_stripping_disable(vsi); 11499 11500 if (!(features & NETIF_F_HW_TC) && pf->num_cloud_filters) { 11501 dev_err(&pf->pdev->dev, 11502 "Offloaded tc filters active, can't turn hw_tc_offload off"); 11503 return -EINVAL; 11504 } 11505 11506 need_reset = i40e_set_ntuple(pf, features); 11507 11508 if (need_reset) 11509 i40e_do_reset(pf, I40E_PF_RESET_FLAG, true); 11510 11511 return 0; 11512 } 11513 11514 /** 11515 * i40e_get_udp_port_idx - Lookup a possibly offloaded for Rx UDP port 11516 * @pf: board private structure 11517 * @port: The UDP port to look up 11518 * 11519 * Returns the index number or I40E_MAX_PF_UDP_OFFLOAD_PORTS if port not found 11520 **/ 11521 static u8 i40e_get_udp_port_idx(struct i40e_pf *pf, u16 port) 11522 { 11523 u8 i; 11524 11525 for (i = 0; i < I40E_MAX_PF_UDP_OFFLOAD_PORTS; i++) { 11526 /* Do not report ports with pending deletions as 11527 * being available. 11528 */ 11529 if (!port && (pf->pending_udp_bitmap & BIT_ULL(i))) 11530 continue; 11531 if (pf->udp_ports[i].port == port) 11532 return i; 11533 } 11534 11535 return i; 11536 } 11537 11538 /** 11539 * i40e_udp_tunnel_add - Get notifications about UDP tunnel ports that come up 11540 * @netdev: This physical port's netdev 11541 * @ti: Tunnel endpoint information 11542 **/ 11543 static void i40e_udp_tunnel_add(struct net_device *netdev, 11544 struct udp_tunnel_info *ti) 11545 { 11546 struct i40e_netdev_priv *np = netdev_priv(netdev); 11547 struct i40e_vsi *vsi = np->vsi; 11548 struct i40e_pf *pf = vsi->back; 11549 u16 port = ntohs(ti->port); 11550 u8 next_idx; 11551 u8 idx; 11552 11553 idx = i40e_get_udp_port_idx(pf, port); 11554 11555 /* Check if port already exists */ 11556 if (idx < I40E_MAX_PF_UDP_OFFLOAD_PORTS) { 11557 netdev_info(netdev, "port %d already offloaded\n", port); 11558 return; 11559 } 11560 11561 /* Now check if there is space to add the new port */ 11562 next_idx = i40e_get_udp_port_idx(pf, 0); 11563 11564 if (next_idx == I40E_MAX_PF_UDP_OFFLOAD_PORTS) { 11565 netdev_info(netdev, "maximum number of offloaded UDP ports reached, not adding port %d\n", 11566 port); 11567 return; 11568 } 11569 11570 switch (ti->type) { 11571 case UDP_TUNNEL_TYPE_VXLAN: 11572 pf->udp_ports[next_idx].type = I40E_AQC_TUNNEL_TYPE_VXLAN; 11573 break; 11574 case UDP_TUNNEL_TYPE_GENEVE: 11575 if (!(pf->hw_features & I40E_HW_GENEVE_OFFLOAD_CAPABLE)) 11576 return; 11577 pf->udp_ports[next_idx].type = I40E_AQC_TUNNEL_TYPE_NGE; 11578 break; 11579 default: 11580 return; 11581 } 11582 11583 /* New port: add it and mark its index in the bitmap */ 11584 pf->udp_ports[next_idx].port = port; 11585 pf->udp_ports[next_idx].filter_index = I40E_UDP_PORT_INDEX_UNUSED; 11586 pf->pending_udp_bitmap |= BIT_ULL(next_idx); 11587 set_bit(__I40E_UDP_FILTER_SYNC_PENDING, pf->state); 11588 } 11589 11590 /** 11591 * i40e_udp_tunnel_del - Get notifications about UDP tunnel ports that go away 11592 * @netdev: This physical port's netdev 11593 * @ti: Tunnel endpoint information 11594 **/ 11595 static void i40e_udp_tunnel_del(struct net_device *netdev, 11596 struct udp_tunnel_info *ti) 11597 { 11598 struct i40e_netdev_priv *np = netdev_priv(netdev); 11599 struct i40e_vsi *vsi = np->vsi; 11600 struct i40e_pf *pf = vsi->back; 11601 u16 port = ntohs(ti->port); 11602 u8 idx; 11603 11604 idx = i40e_get_udp_port_idx(pf, port); 11605 11606 /* Check if port already exists */ 11607 if (idx >= I40E_MAX_PF_UDP_OFFLOAD_PORTS) 11608 goto not_found; 11609 11610 switch (ti->type) { 11611 case UDP_TUNNEL_TYPE_VXLAN: 11612 if (pf->udp_ports[idx].type != I40E_AQC_TUNNEL_TYPE_VXLAN) 11613 goto not_found; 11614 break; 11615 case UDP_TUNNEL_TYPE_GENEVE: 11616 if (pf->udp_ports[idx].type != I40E_AQC_TUNNEL_TYPE_NGE) 11617 goto not_found; 11618 break; 11619 default: 11620 goto not_found; 11621 } 11622 11623 /* if port exists, set it to 0 (mark for deletion) 11624 * and make it pending 11625 */ 11626 pf->udp_ports[idx].port = 0; 11627 11628 /* Toggle pending bit instead of setting it. This way if we are 11629 * deleting a port that has yet to be added we just clear the pending 11630 * bit and don't have to worry about it. 11631 */ 11632 pf->pending_udp_bitmap ^= BIT_ULL(idx); 11633 set_bit(__I40E_UDP_FILTER_SYNC_PENDING, pf->state); 11634 11635 return; 11636 not_found: 11637 netdev_warn(netdev, "UDP port %d was not found, not deleting\n", 11638 port); 11639 } 11640 11641 static int i40e_get_phys_port_id(struct net_device *netdev, 11642 struct netdev_phys_item_id *ppid) 11643 { 11644 struct i40e_netdev_priv *np = netdev_priv(netdev); 11645 struct i40e_pf *pf = np->vsi->back; 11646 struct i40e_hw *hw = &pf->hw; 11647 11648 if (!(pf->hw_features & I40E_HW_PORT_ID_VALID)) 11649 return -EOPNOTSUPP; 11650 11651 ppid->id_len = min_t(int, sizeof(hw->mac.port_addr), sizeof(ppid->id)); 11652 memcpy(ppid->id, hw->mac.port_addr, ppid->id_len); 11653 11654 return 0; 11655 } 11656 11657 /** 11658 * i40e_ndo_fdb_add - add an entry to the hardware database 11659 * @ndm: the input from the stack 11660 * @tb: pointer to array of nladdr (unused) 11661 * @dev: the net device pointer 11662 * @addr: the MAC address entry being added 11663 * @vid: VLAN ID 11664 * @flags: instructions from stack about fdb operation 11665 */ 11666 static int i40e_ndo_fdb_add(struct ndmsg *ndm, struct nlattr *tb[], 11667 struct net_device *dev, 11668 const unsigned char *addr, u16 vid, 11669 u16 flags, 11670 struct netlink_ext_ack *extack) 11671 { 11672 struct i40e_netdev_priv *np = netdev_priv(dev); 11673 struct i40e_pf *pf = np->vsi->back; 11674 int err = 0; 11675 11676 if (!(pf->flags & I40E_FLAG_SRIOV_ENABLED)) 11677 return -EOPNOTSUPP; 11678 11679 if (vid) { 11680 pr_info("%s: vlans aren't supported yet for dev_uc|mc_add()\n", dev->name); 11681 return -EINVAL; 11682 } 11683 11684 /* Hardware does not support aging addresses so if a 11685 * ndm_state is given only allow permanent addresses 11686 */ 11687 if (ndm->ndm_state && !(ndm->ndm_state & NUD_PERMANENT)) { 11688 netdev_info(dev, "FDB only supports static addresses\n"); 11689 return -EINVAL; 11690 } 11691 11692 if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr)) 11693 err = dev_uc_add_excl(dev, addr); 11694 else if (is_multicast_ether_addr(addr)) 11695 err = dev_mc_add_excl(dev, addr); 11696 else 11697 err = -EINVAL; 11698 11699 /* Only return duplicate errors if NLM_F_EXCL is set */ 11700 if (err == -EEXIST && !(flags & NLM_F_EXCL)) 11701 err = 0; 11702 11703 return err; 11704 } 11705 11706 /** 11707 * i40e_ndo_bridge_setlink - Set the hardware bridge mode 11708 * @dev: the netdev being configured 11709 * @nlh: RTNL message 11710 * @flags: bridge flags 11711 * @extack: netlink extended ack 11712 * 11713 * Inserts a new hardware bridge if not already created and 11714 * enables the bridging mode requested (VEB or VEPA). If the 11715 * hardware bridge has already been inserted and the request 11716 * is to change the mode then that requires a PF reset to 11717 * allow rebuild of the components with required hardware 11718 * bridge mode enabled. 11719 * 11720 * Note: expects to be called while under rtnl_lock() 11721 **/ 11722 static int i40e_ndo_bridge_setlink(struct net_device *dev, 11723 struct nlmsghdr *nlh, 11724 u16 flags, 11725 struct netlink_ext_ack *extack) 11726 { 11727 struct i40e_netdev_priv *np = netdev_priv(dev); 11728 struct i40e_vsi *vsi = np->vsi; 11729 struct i40e_pf *pf = vsi->back; 11730 struct i40e_veb *veb = NULL; 11731 struct nlattr *attr, *br_spec; 11732 int i, rem; 11733 11734 /* Only for PF VSI for now */ 11735 if (vsi->seid != pf->vsi[pf->lan_vsi]->seid) 11736 return -EOPNOTSUPP; 11737 11738 /* Find the HW bridge for PF VSI */ 11739 for (i = 0; i < I40E_MAX_VEB && !veb; i++) { 11740 if (pf->veb[i] && pf->veb[i]->seid == vsi->uplink_seid) 11741 veb = pf->veb[i]; 11742 } 11743 11744 br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC); 11745 11746 nla_for_each_nested(attr, br_spec, rem) { 11747 __u16 mode; 11748 11749 if (nla_type(attr) != IFLA_BRIDGE_MODE) 11750 continue; 11751 11752 mode = nla_get_u16(attr); 11753 if ((mode != BRIDGE_MODE_VEPA) && 11754 (mode != BRIDGE_MODE_VEB)) 11755 return -EINVAL; 11756 11757 /* Insert a new HW bridge */ 11758 if (!veb) { 11759 veb = i40e_veb_setup(pf, 0, vsi->uplink_seid, vsi->seid, 11760 vsi->tc_config.enabled_tc); 11761 if (veb) { 11762 veb->bridge_mode = mode; 11763 i40e_config_bridge_mode(veb); 11764 } else { 11765 /* No Bridge HW offload available */ 11766 return -ENOENT; 11767 } 11768 break; 11769 } else if (mode != veb->bridge_mode) { 11770 /* Existing HW bridge but different mode needs reset */ 11771 veb->bridge_mode = mode; 11772 /* TODO: If no VFs or VMDq VSIs, disallow VEB mode */ 11773 if (mode == BRIDGE_MODE_VEB) 11774 pf->flags |= I40E_FLAG_VEB_MODE_ENABLED; 11775 else 11776 pf->flags &= ~I40E_FLAG_VEB_MODE_ENABLED; 11777 i40e_do_reset(pf, I40E_PF_RESET_FLAG, true); 11778 break; 11779 } 11780 } 11781 11782 return 0; 11783 } 11784 11785 /** 11786 * i40e_ndo_bridge_getlink - Get the hardware bridge mode 11787 * @skb: skb buff 11788 * @pid: process id 11789 * @seq: RTNL message seq # 11790 * @dev: the netdev being configured 11791 * @filter_mask: unused 11792 * @nlflags: netlink flags passed in 11793 * 11794 * Return the mode in which the hardware bridge is operating in 11795 * i.e VEB or VEPA. 11796 **/ 11797 static int i40e_ndo_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq, 11798 struct net_device *dev, 11799 u32 __always_unused filter_mask, 11800 int nlflags) 11801 { 11802 struct i40e_netdev_priv *np = netdev_priv(dev); 11803 struct i40e_vsi *vsi = np->vsi; 11804 struct i40e_pf *pf = vsi->back; 11805 struct i40e_veb *veb = NULL; 11806 int i; 11807 11808 /* Only for PF VSI for now */ 11809 if (vsi->seid != pf->vsi[pf->lan_vsi]->seid) 11810 return -EOPNOTSUPP; 11811 11812 /* Find the HW bridge for the PF VSI */ 11813 for (i = 0; i < I40E_MAX_VEB && !veb; i++) { 11814 if (pf->veb[i] && pf->veb[i]->seid == vsi->uplink_seid) 11815 veb = pf->veb[i]; 11816 } 11817 11818 if (!veb) 11819 return 0; 11820 11821 return ndo_dflt_bridge_getlink(skb, pid, seq, dev, veb->bridge_mode, 11822 0, 0, nlflags, filter_mask, NULL); 11823 } 11824 11825 /** 11826 * i40e_features_check - Validate encapsulated packet conforms to limits 11827 * @skb: skb buff 11828 * @dev: This physical port's netdev 11829 * @features: Offload features that the stack believes apply 11830 **/ 11831 static netdev_features_t i40e_features_check(struct sk_buff *skb, 11832 struct net_device *dev, 11833 netdev_features_t features) 11834 { 11835 size_t len; 11836 11837 /* No point in doing any of this if neither checksum nor GSO are 11838 * being requested for this frame. We can rule out both by just 11839 * checking for CHECKSUM_PARTIAL 11840 */ 11841 if (skb->ip_summed != CHECKSUM_PARTIAL) 11842 return features; 11843 11844 /* We cannot support GSO if the MSS is going to be less than 11845 * 64 bytes. If it is then we need to drop support for GSO. 11846 */ 11847 if (skb_is_gso(skb) && (skb_shinfo(skb)->gso_size < 64)) 11848 features &= ~NETIF_F_GSO_MASK; 11849 11850 /* MACLEN can support at most 63 words */ 11851 len = skb_network_header(skb) - skb->data; 11852 if (len & ~(63 * 2)) 11853 goto out_err; 11854 11855 /* IPLEN and EIPLEN can support at most 127 dwords */ 11856 len = skb_transport_header(skb) - skb_network_header(skb); 11857 if (len & ~(127 * 4)) 11858 goto out_err; 11859 11860 if (skb->encapsulation) { 11861 /* L4TUNLEN can support 127 words */ 11862 len = skb_inner_network_header(skb) - skb_transport_header(skb); 11863 if (len & ~(127 * 2)) 11864 goto out_err; 11865 11866 /* IPLEN can support at most 127 dwords */ 11867 len = skb_inner_transport_header(skb) - 11868 skb_inner_network_header(skb); 11869 if (len & ~(127 * 4)) 11870 goto out_err; 11871 } 11872 11873 /* No need to validate L4LEN as TCP is the only protocol with a 11874 * a flexible value and we support all possible values supported 11875 * by TCP, which is at most 15 dwords 11876 */ 11877 11878 return features; 11879 out_err: 11880 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 11881 } 11882 11883 /** 11884 * i40e_xdp_setup - add/remove an XDP program 11885 * @vsi: VSI to changed 11886 * @prog: XDP program 11887 **/ 11888 static int i40e_xdp_setup(struct i40e_vsi *vsi, 11889 struct bpf_prog *prog) 11890 { 11891 int frame_size = vsi->netdev->mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN; 11892 struct i40e_pf *pf = vsi->back; 11893 struct bpf_prog *old_prog; 11894 bool need_reset; 11895 int i; 11896 11897 /* Don't allow frames that span over multiple buffers */ 11898 if (frame_size > vsi->rx_buf_len) 11899 return -EINVAL; 11900 11901 if (!i40e_enabled_xdp_vsi(vsi) && !prog) 11902 return 0; 11903 11904 /* When turning XDP on->off/off->on we reset and rebuild the rings. */ 11905 need_reset = (i40e_enabled_xdp_vsi(vsi) != !!prog); 11906 11907 if (need_reset) 11908 i40e_prep_for_reset(pf, true); 11909 11910 old_prog = xchg(&vsi->xdp_prog, prog); 11911 11912 if (need_reset) 11913 i40e_reset_and_rebuild(pf, true, true); 11914 11915 for (i = 0; i < vsi->num_queue_pairs; i++) 11916 WRITE_ONCE(vsi->rx_rings[i]->xdp_prog, vsi->xdp_prog); 11917 11918 if (old_prog) 11919 bpf_prog_put(old_prog); 11920 11921 /* Kick start the NAPI context if there is an AF_XDP socket open 11922 * on that queue id. This so that receiving will start. 11923 */ 11924 if (need_reset && prog) 11925 for (i = 0; i < vsi->num_queue_pairs; i++) 11926 if (vsi->xdp_rings[i]->xsk_umem) 11927 (void)i40e_xsk_async_xmit(vsi->netdev, i); 11928 11929 return 0; 11930 } 11931 11932 /** 11933 * i40e_enter_busy_conf - Enters busy config state 11934 * @vsi: vsi 11935 * 11936 * Returns 0 on success, <0 for failure. 11937 **/ 11938 static int i40e_enter_busy_conf(struct i40e_vsi *vsi) 11939 { 11940 struct i40e_pf *pf = vsi->back; 11941 int timeout = 50; 11942 11943 while (test_and_set_bit(__I40E_CONFIG_BUSY, pf->state)) { 11944 timeout--; 11945 if (!timeout) 11946 return -EBUSY; 11947 usleep_range(1000, 2000); 11948 } 11949 11950 return 0; 11951 } 11952 11953 /** 11954 * i40e_exit_busy_conf - Exits busy config state 11955 * @vsi: vsi 11956 **/ 11957 static void i40e_exit_busy_conf(struct i40e_vsi *vsi) 11958 { 11959 struct i40e_pf *pf = vsi->back; 11960 11961 clear_bit(__I40E_CONFIG_BUSY, pf->state); 11962 } 11963 11964 /** 11965 * i40e_queue_pair_reset_stats - Resets all statistics for a queue pair 11966 * @vsi: vsi 11967 * @queue_pair: queue pair 11968 **/ 11969 static void i40e_queue_pair_reset_stats(struct i40e_vsi *vsi, int queue_pair) 11970 { 11971 memset(&vsi->rx_rings[queue_pair]->rx_stats, 0, 11972 sizeof(vsi->rx_rings[queue_pair]->rx_stats)); 11973 memset(&vsi->tx_rings[queue_pair]->stats, 0, 11974 sizeof(vsi->tx_rings[queue_pair]->stats)); 11975 if (i40e_enabled_xdp_vsi(vsi)) { 11976 memset(&vsi->xdp_rings[queue_pair]->stats, 0, 11977 sizeof(vsi->xdp_rings[queue_pair]->stats)); 11978 } 11979 } 11980 11981 /** 11982 * i40e_queue_pair_clean_rings - Cleans all the rings of a queue pair 11983 * @vsi: vsi 11984 * @queue_pair: queue pair 11985 **/ 11986 static void i40e_queue_pair_clean_rings(struct i40e_vsi *vsi, int queue_pair) 11987 { 11988 i40e_clean_tx_ring(vsi->tx_rings[queue_pair]); 11989 if (i40e_enabled_xdp_vsi(vsi)) { 11990 /* Make sure that in-progress ndo_xdp_xmit calls are 11991 * completed. 11992 */ 11993 synchronize_rcu(); 11994 i40e_clean_tx_ring(vsi->xdp_rings[queue_pair]); 11995 } 11996 i40e_clean_rx_ring(vsi->rx_rings[queue_pair]); 11997 } 11998 11999 /** 12000 * i40e_queue_pair_toggle_napi - Enables/disables NAPI for a queue pair 12001 * @vsi: vsi 12002 * @queue_pair: queue pair 12003 * @enable: true for enable, false for disable 12004 **/ 12005 static void i40e_queue_pair_toggle_napi(struct i40e_vsi *vsi, int queue_pair, 12006 bool enable) 12007 { 12008 struct i40e_ring *rxr = vsi->rx_rings[queue_pair]; 12009 struct i40e_q_vector *q_vector = rxr->q_vector; 12010 12011 if (!vsi->netdev) 12012 return; 12013 12014 /* All rings in a qp belong to the same qvector. */ 12015 if (q_vector->rx.ring || q_vector->tx.ring) { 12016 if (enable) 12017 napi_enable(&q_vector->napi); 12018 else 12019 napi_disable(&q_vector->napi); 12020 } 12021 } 12022 12023 /** 12024 * i40e_queue_pair_toggle_rings - Enables/disables all rings for a queue pair 12025 * @vsi: vsi 12026 * @queue_pair: queue pair 12027 * @enable: true for enable, false for disable 12028 * 12029 * Returns 0 on success, <0 on failure. 12030 **/ 12031 static int i40e_queue_pair_toggle_rings(struct i40e_vsi *vsi, int queue_pair, 12032 bool enable) 12033 { 12034 struct i40e_pf *pf = vsi->back; 12035 int pf_q, ret = 0; 12036 12037 pf_q = vsi->base_queue + queue_pair; 12038 ret = i40e_control_wait_tx_q(vsi->seid, pf, pf_q, 12039 false /*is xdp*/, enable); 12040 if (ret) { 12041 dev_info(&pf->pdev->dev, 12042 "VSI seid %d Tx ring %d %sable timeout\n", 12043 vsi->seid, pf_q, (enable ? "en" : "dis")); 12044 return ret; 12045 } 12046 12047 i40e_control_rx_q(pf, pf_q, enable); 12048 ret = i40e_pf_rxq_wait(pf, pf_q, enable); 12049 if (ret) { 12050 dev_info(&pf->pdev->dev, 12051 "VSI seid %d Rx ring %d %sable timeout\n", 12052 vsi->seid, pf_q, (enable ? "en" : "dis")); 12053 return ret; 12054 } 12055 12056 /* Due to HW errata, on Rx disable only, the register can 12057 * indicate done before it really is. Needs 50ms to be sure 12058 */ 12059 if (!enable) 12060 mdelay(50); 12061 12062 if (!i40e_enabled_xdp_vsi(vsi)) 12063 return ret; 12064 12065 ret = i40e_control_wait_tx_q(vsi->seid, pf, 12066 pf_q + vsi->alloc_queue_pairs, 12067 true /*is xdp*/, enable); 12068 if (ret) { 12069 dev_info(&pf->pdev->dev, 12070 "VSI seid %d XDP Tx ring %d %sable timeout\n", 12071 vsi->seid, pf_q, (enable ? "en" : "dis")); 12072 } 12073 12074 return ret; 12075 } 12076 12077 /** 12078 * i40e_queue_pair_enable_irq - Enables interrupts for a queue pair 12079 * @vsi: vsi 12080 * @queue_pair: queue_pair 12081 **/ 12082 static void i40e_queue_pair_enable_irq(struct i40e_vsi *vsi, int queue_pair) 12083 { 12084 struct i40e_ring *rxr = vsi->rx_rings[queue_pair]; 12085 struct i40e_pf *pf = vsi->back; 12086 struct i40e_hw *hw = &pf->hw; 12087 12088 /* All rings in a qp belong to the same qvector. */ 12089 if (pf->flags & I40E_FLAG_MSIX_ENABLED) 12090 i40e_irq_dynamic_enable(vsi, rxr->q_vector->v_idx); 12091 else 12092 i40e_irq_dynamic_enable_icr0(pf); 12093 12094 i40e_flush(hw); 12095 } 12096 12097 /** 12098 * i40e_queue_pair_disable_irq - Disables interrupts for a queue pair 12099 * @vsi: vsi 12100 * @queue_pair: queue_pair 12101 **/ 12102 static void i40e_queue_pair_disable_irq(struct i40e_vsi *vsi, int queue_pair) 12103 { 12104 struct i40e_ring *rxr = vsi->rx_rings[queue_pair]; 12105 struct i40e_pf *pf = vsi->back; 12106 struct i40e_hw *hw = &pf->hw; 12107 12108 /* For simplicity, instead of removing the qp interrupt causes 12109 * from the interrupt linked list, we simply disable the interrupt, and 12110 * leave the list intact. 12111 * 12112 * All rings in a qp belong to the same qvector. 12113 */ 12114 if (pf->flags & I40E_FLAG_MSIX_ENABLED) { 12115 u32 intpf = vsi->base_vector + rxr->q_vector->v_idx; 12116 12117 wr32(hw, I40E_PFINT_DYN_CTLN(intpf - 1), 0); 12118 i40e_flush(hw); 12119 synchronize_irq(pf->msix_entries[intpf].vector); 12120 } else { 12121 /* Legacy and MSI mode - this stops all interrupt handling */ 12122 wr32(hw, I40E_PFINT_ICR0_ENA, 0); 12123 wr32(hw, I40E_PFINT_DYN_CTL0, 0); 12124 i40e_flush(hw); 12125 synchronize_irq(pf->pdev->irq); 12126 } 12127 } 12128 12129 /** 12130 * i40e_queue_pair_disable - Disables a queue pair 12131 * @vsi: vsi 12132 * @queue_pair: queue pair 12133 * 12134 * Returns 0 on success, <0 on failure. 12135 **/ 12136 int i40e_queue_pair_disable(struct i40e_vsi *vsi, int queue_pair) 12137 { 12138 int err; 12139 12140 err = i40e_enter_busy_conf(vsi); 12141 if (err) 12142 return err; 12143 12144 i40e_queue_pair_disable_irq(vsi, queue_pair); 12145 err = i40e_queue_pair_toggle_rings(vsi, queue_pair, false /* off */); 12146 i40e_queue_pair_toggle_napi(vsi, queue_pair, false /* off */); 12147 i40e_queue_pair_clean_rings(vsi, queue_pair); 12148 i40e_queue_pair_reset_stats(vsi, queue_pair); 12149 12150 return err; 12151 } 12152 12153 /** 12154 * i40e_queue_pair_enable - Enables a queue pair 12155 * @vsi: vsi 12156 * @queue_pair: queue pair 12157 * 12158 * Returns 0 on success, <0 on failure. 12159 **/ 12160 int i40e_queue_pair_enable(struct i40e_vsi *vsi, int queue_pair) 12161 { 12162 int err; 12163 12164 err = i40e_configure_tx_ring(vsi->tx_rings[queue_pair]); 12165 if (err) 12166 return err; 12167 12168 if (i40e_enabled_xdp_vsi(vsi)) { 12169 err = i40e_configure_tx_ring(vsi->xdp_rings[queue_pair]); 12170 if (err) 12171 return err; 12172 } 12173 12174 err = i40e_configure_rx_ring(vsi->rx_rings[queue_pair]); 12175 if (err) 12176 return err; 12177 12178 err = i40e_queue_pair_toggle_rings(vsi, queue_pair, true /* on */); 12179 i40e_queue_pair_toggle_napi(vsi, queue_pair, true /* on */); 12180 i40e_queue_pair_enable_irq(vsi, queue_pair); 12181 12182 i40e_exit_busy_conf(vsi); 12183 12184 return err; 12185 } 12186 12187 /** 12188 * i40e_xdp - implements ndo_bpf for i40e 12189 * @dev: netdevice 12190 * @xdp: XDP command 12191 **/ 12192 static int i40e_xdp(struct net_device *dev, 12193 struct netdev_bpf *xdp) 12194 { 12195 struct i40e_netdev_priv *np = netdev_priv(dev); 12196 struct i40e_vsi *vsi = np->vsi; 12197 12198 if (vsi->type != I40E_VSI_MAIN) 12199 return -EINVAL; 12200 12201 switch (xdp->command) { 12202 case XDP_SETUP_PROG: 12203 return i40e_xdp_setup(vsi, xdp->prog); 12204 case XDP_QUERY_PROG: 12205 xdp->prog_id = vsi->xdp_prog ? vsi->xdp_prog->aux->id : 0; 12206 return 0; 12207 case XDP_SETUP_XSK_UMEM: 12208 return i40e_xsk_umem_setup(vsi, xdp->xsk.umem, 12209 xdp->xsk.queue_id); 12210 default: 12211 return -EINVAL; 12212 } 12213 } 12214 12215 static const struct net_device_ops i40e_netdev_ops = { 12216 .ndo_open = i40e_open, 12217 .ndo_stop = i40e_close, 12218 .ndo_start_xmit = i40e_lan_xmit_frame, 12219 .ndo_get_stats64 = i40e_get_netdev_stats_struct, 12220 .ndo_set_rx_mode = i40e_set_rx_mode, 12221 .ndo_validate_addr = eth_validate_addr, 12222 .ndo_set_mac_address = i40e_set_mac, 12223 .ndo_change_mtu = i40e_change_mtu, 12224 .ndo_do_ioctl = i40e_ioctl, 12225 .ndo_tx_timeout = i40e_tx_timeout, 12226 .ndo_vlan_rx_add_vid = i40e_vlan_rx_add_vid, 12227 .ndo_vlan_rx_kill_vid = i40e_vlan_rx_kill_vid, 12228 #ifdef CONFIG_NET_POLL_CONTROLLER 12229 .ndo_poll_controller = i40e_netpoll, 12230 #endif 12231 .ndo_setup_tc = __i40e_setup_tc, 12232 .ndo_set_features = i40e_set_features, 12233 .ndo_set_vf_mac = i40e_ndo_set_vf_mac, 12234 .ndo_set_vf_vlan = i40e_ndo_set_vf_port_vlan, 12235 .ndo_set_vf_rate = i40e_ndo_set_vf_bw, 12236 .ndo_get_vf_config = i40e_ndo_get_vf_config, 12237 .ndo_set_vf_link_state = i40e_ndo_set_vf_link_state, 12238 .ndo_set_vf_spoofchk = i40e_ndo_set_vf_spoofchk, 12239 .ndo_set_vf_trust = i40e_ndo_set_vf_trust, 12240 .ndo_udp_tunnel_add = i40e_udp_tunnel_add, 12241 .ndo_udp_tunnel_del = i40e_udp_tunnel_del, 12242 .ndo_get_phys_port_id = i40e_get_phys_port_id, 12243 .ndo_fdb_add = i40e_ndo_fdb_add, 12244 .ndo_features_check = i40e_features_check, 12245 .ndo_bridge_getlink = i40e_ndo_bridge_getlink, 12246 .ndo_bridge_setlink = i40e_ndo_bridge_setlink, 12247 .ndo_bpf = i40e_xdp, 12248 .ndo_xdp_xmit = i40e_xdp_xmit, 12249 .ndo_xsk_async_xmit = i40e_xsk_async_xmit, 12250 }; 12251 12252 /** 12253 * i40e_config_netdev - Setup the netdev flags 12254 * @vsi: the VSI being configured 12255 * 12256 * Returns 0 on success, negative value on failure 12257 **/ 12258 static int i40e_config_netdev(struct i40e_vsi *vsi) 12259 { 12260 struct i40e_pf *pf = vsi->back; 12261 struct i40e_hw *hw = &pf->hw; 12262 struct i40e_netdev_priv *np; 12263 struct net_device *netdev; 12264 u8 broadcast[ETH_ALEN]; 12265 u8 mac_addr[ETH_ALEN]; 12266 int etherdev_size; 12267 netdev_features_t hw_enc_features; 12268 netdev_features_t hw_features; 12269 12270 etherdev_size = sizeof(struct i40e_netdev_priv); 12271 netdev = alloc_etherdev_mq(etherdev_size, vsi->alloc_queue_pairs); 12272 if (!netdev) 12273 return -ENOMEM; 12274 12275 vsi->netdev = netdev; 12276 np = netdev_priv(netdev); 12277 np->vsi = vsi; 12278 12279 hw_enc_features = NETIF_F_SG | 12280 NETIF_F_IP_CSUM | 12281 NETIF_F_IPV6_CSUM | 12282 NETIF_F_HIGHDMA | 12283 NETIF_F_SOFT_FEATURES | 12284 NETIF_F_TSO | 12285 NETIF_F_TSO_ECN | 12286 NETIF_F_TSO6 | 12287 NETIF_F_GSO_GRE | 12288 NETIF_F_GSO_GRE_CSUM | 12289 NETIF_F_GSO_PARTIAL | 12290 NETIF_F_GSO_IPXIP4 | 12291 NETIF_F_GSO_IPXIP6 | 12292 NETIF_F_GSO_UDP_TUNNEL | 12293 NETIF_F_GSO_UDP_TUNNEL_CSUM | 12294 NETIF_F_SCTP_CRC | 12295 NETIF_F_RXHASH | 12296 NETIF_F_RXCSUM | 12297 0; 12298 12299 if (!(pf->hw_features & I40E_HW_OUTER_UDP_CSUM_CAPABLE)) 12300 netdev->gso_partial_features |= NETIF_F_GSO_UDP_TUNNEL_CSUM; 12301 12302 netdev->gso_partial_features |= NETIF_F_GSO_GRE_CSUM; 12303 12304 netdev->hw_enc_features |= hw_enc_features; 12305 12306 /* record features VLANs can make use of */ 12307 netdev->vlan_features |= hw_enc_features | NETIF_F_TSO_MANGLEID; 12308 12309 hw_features = hw_enc_features | 12310 NETIF_F_HW_VLAN_CTAG_TX | 12311 NETIF_F_HW_VLAN_CTAG_RX; 12312 12313 if (!(pf->flags & I40E_FLAG_MFP_ENABLED)) 12314 hw_features |= NETIF_F_NTUPLE | NETIF_F_HW_TC; 12315 12316 netdev->hw_features |= hw_features; 12317 12318 netdev->features |= hw_features | NETIF_F_HW_VLAN_CTAG_FILTER; 12319 netdev->hw_enc_features |= NETIF_F_TSO_MANGLEID; 12320 12321 if (vsi->type == I40E_VSI_MAIN) { 12322 SET_NETDEV_DEV(netdev, &pf->pdev->dev); 12323 ether_addr_copy(mac_addr, hw->mac.perm_addr); 12324 /* The following steps are necessary for two reasons. First, 12325 * some older NVM configurations load a default MAC-VLAN 12326 * filter that will accept any tagged packet, and we want to 12327 * replace this with a normal filter. Additionally, it is 12328 * possible our MAC address was provided by the platform using 12329 * Open Firmware or similar. 12330 * 12331 * Thus, we need to remove the default filter and install one 12332 * specific to the MAC address. 12333 */ 12334 i40e_rm_default_mac_filter(vsi, mac_addr); 12335 spin_lock_bh(&vsi->mac_filter_hash_lock); 12336 i40e_add_mac_filter(vsi, mac_addr); 12337 spin_unlock_bh(&vsi->mac_filter_hash_lock); 12338 } else { 12339 /* Relate the VSI_VMDQ name to the VSI_MAIN name. Note that we 12340 * are still limited by IFNAMSIZ, but we're adding 'v%d\0' to 12341 * the end, which is 4 bytes long, so force truncation of the 12342 * original name by IFNAMSIZ - 4 12343 */ 12344 snprintf(netdev->name, IFNAMSIZ, "%.*sv%%d", 12345 IFNAMSIZ - 4, 12346 pf->vsi[pf->lan_vsi]->netdev->name); 12347 eth_random_addr(mac_addr); 12348 12349 spin_lock_bh(&vsi->mac_filter_hash_lock); 12350 i40e_add_mac_filter(vsi, mac_addr); 12351 spin_unlock_bh(&vsi->mac_filter_hash_lock); 12352 } 12353 12354 /* Add the broadcast filter so that we initially will receive 12355 * broadcast packets. Note that when a new VLAN is first added the 12356 * driver will convert all filters marked I40E_VLAN_ANY into VLAN 12357 * specific filters as part of transitioning into "vlan" operation. 12358 * When more VLANs are added, the driver will copy each existing MAC 12359 * filter and add it for the new VLAN. 12360 * 12361 * Broadcast filters are handled specially by 12362 * i40e_sync_filters_subtask, as the driver must to set the broadcast 12363 * promiscuous bit instead of adding this directly as a MAC/VLAN 12364 * filter. The subtask will update the correct broadcast promiscuous 12365 * bits as VLANs become active or inactive. 12366 */ 12367 eth_broadcast_addr(broadcast); 12368 spin_lock_bh(&vsi->mac_filter_hash_lock); 12369 i40e_add_mac_filter(vsi, broadcast); 12370 spin_unlock_bh(&vsi->mac_filter_hash_lock); 12371 12372 ether_addr_copy(netdev->dev_addr, mac_addr); 12373 ether_addr_copy(netdev->perm_addr, mac_addr); 12374 12375 /* i40iw_net_event() reads 16 bytes from neigh->primary_key */ 12376 netdev->neigh_priv_len = sizeof(u32) * 4; 12377 12378 netdev->priv_flags |= IFF_UNICAST_FLT; 12379 netdev->priv_flags |= IFF_SUPP_NOFCS; 12380 /* Setup netdev TC information */ 12381 i40e_vsi_config_netdev_tc(vsi, vsi->tc_config.enabled_tc); 12382 12383 netdev->netdev_ops = &i40e_netdev_ops; 12384 netdev->watchdog_timeo = 5 * HZ; 12385 i40e_set_ethtool_ops(netdev); 12386 12387 /* MTU range: 68 - 9706 */ 12388 netdev->min_mtu = ETH_MIN_MTU; 12389 netdev->max_mtu = I40E_MAX_RXBUFFER - I40E_PACKET_HDR_PAD; 12390 12391 return 0; 12392 } 12393 12394 /** 12395 * i40e_vsi_delete - Delete a VSI from the switch 12396 * @vsi: the VSI being removed 12397 * 12398 * Returns 0 on success, negative value on failure 12399 **/ 12400 static void i40e_vsi_delete(struct i40e_vsi *vsi) 12401 { 12402 /* remove default VSI is not allowed */ 12403 if (vsi == vsi->back->vsi[vsi->back->lan_vsi]) 12404 return; 12405 12406 i40e_aq_delete_element(&vsi->back->hw, vsi->seid, NULL); 12407 } 12408 12409 /** 12410 * i40e_is_vsi_uplink_mode_veb - Check if the VSI's uplink bridge mode is VEB 12411 * @vsi: the VSI being queried 12412 * 12413 * Returns 1 if HW bridge mode is VEB and return 0 in case of VEPA mode 12414 **/ 12415 int i40e_is_vsi_uplink_mode_veb(struct i40e_vsi *vsi) 12416 { 12417 struct i40e_veb *veb; 12418 struct i40e_pf *pf = vsi->back; 12419 12420 /* Uplink is not a bridge so default to VEB */ 12421 if (vsi->veb_idx == I40E_NO_VEB) 12422 return 1; 12423 12424 veb = pf->veb[vsi->veb_idx]; 12425 if (!veb) { 12426 dev_info(&pf->pdev->dev, 12427 "There is no veb associated with the bridge\n"); 12428 return -ENOENT; 12429 } 12430 12431 /* Uplink is a bridge in VEPA mode */ 12432 if (veb->bridge_mode & BRIDGE_MODE_VEPA) { 12433 return 0; 12434 } else { 12435 /* Uplink is a bridge in VEB mode */ 12436 return 1; 12437 } 12438 12439 /* VEPA is now default bridge, so return 0 */ 12440 return 0; 12441 } 12442 12443 /** 12444 * i40e_add_vsi - Add a VSI to the switch 12445 * @vsi: the VSI being configured 12446 * 12447 * This initializes a VSI context depending on the VSI type to be added and 12448 * passes it down to the add_vsi aq command. 12449 **/ 12450 static int i40e_add_vsi(struct i40e_vsi *vsi) 12451 { 12452 int ret = -ENODEV; 12453 struct i40e_pf *pf = vsi->back; 12454 struct i40e_hw *hw = &pf->hw; 12455 struct i40e_vsi_context ctxt; 12456 struct i40e_mac_filter *f; 12457 struct hlist_node *h; 12458 int bkt; 12459 12460 u8 enabled_tc = 0x1; /* TC0 enabled */ 12461 int f_count = 0; 12462 12463 memset(&ctxt, 0, sizeof(ctxt)); 12464 switch (vsi->type) { 12465 case I40E_VSI_MAIN: 12466 /* The PF's main VSI is already setup as part of the 12467 * device initialization, so we'll not bother with 12468 * the add_vsi call, but we will retrieve the current 12469 * VSI context. 12470 */ 12471 ctxt.seid = pf->main_vsi_seid; 12472 ctxt.pf_num = pf->hw.pf_id; 12473 ctxt.vf_num = 0; 12474 ret = i40e_aq_get_vsi_params(&pf->hw, &ctxt, NULL); 12475 ctxt.flags = I40E_AQ_VSI_TYPE_PF; 12476 if (ret) { 12477 dev_info(&pf->pdev->dev, 12478 "couldn't get PF vsi config, err %s aq_err %s\n", 12479 i40e_stat_str(&pf->hw, ret), 12480 i40e_aq_str(&pf->hw, 12481 pf->hw.aq.asq_last_status)); 12482 return -ENOENT; 12483 } 12484 vsi->info = ctxt.info; 12485 vsi->info.valid_sections = 0; 12486 12487 vsi->seid = ctxt.seid; 12488 vsi->id = ctxt.vsi_number; 12489 12490 enabled_tc = i40e_pf_get_tc_map(pf); 12491 12492 /* Source pruning is enabled by default, so the flag is 12493 * negative logic - if it's set, we need to fiddle with 12494 * the VSI to disable source pruning. 12495 */ 12496 if (pf->flags & I40E_FLAG_SOURCE_PRUNING_DISABLED) { 12497 memset(&ctxt, 0, sizeof(ctxt)); 12498 ctxt.seid = pf->main_vsi_seid; 12499 ctxt.pf_num = pf->hw.pf_id; 12500 ctxt.vf_num = 0; 12501 ctxt.info.valid_sections |= 12502 cpu_to_le16(I40E_AQ_VSI_PROP_SWITCH_VALID); 12503 ctxt.info.switch_id = 12504 cpu_to_le16(I40E_AQ_VSI_SW_ID_FLAG_LOCAL_LB); 12505 ret = i40e_aq_update_vsi_params(hw, &ctxt, NULL); 12506 if (ret) { 12507 dev_info(&pf->pdev->dev, 12508 "update vsi failed, err %s aq_err %s\n", 12509 i40e_stat_str(&pf->hw, ret), 12510 i40e_aq_str(&pf->hw, 12511 pf->hw.aq.asq_last_status)); 12512 ret = -ENOENT; 12513 goto err; 12514 } 12515 } 12516 12517 /* MFP mode setup queue map and update VSI */ 12518 if ((pf->flags & I40E_FLAG_MFP_ENABLED) && 12519 !(pf->hw.func_caps.iscsi)) { /* NIC type PF */ 12520 memset(&ctxt, 0, sizeof(ctxt)); 12521 ctxt.seid = pf->main_vsi_seid; 12522 ctxt.pf_num = pf->hw.pf_id; 12523 ctxt.vf_num = 0; 12524 i40e_vsi_setup_queue_map(vsi, &ctxt, enabled_tc, false); 12525 ret = i40e_aq_update_vsi_params(hw, &ctxt, NULL); 12526 if (ret) { 12527 dev_info(&pf->pdev->dev, 12528 "update vsi failed, err %s aq_err %s\n", 12529 i40e_stat_str(&pf->hw, ret), 12530 i40e_aq_str(&pf->hw, 12531 pf->hw.aq.asq_last_status)); 12532 ret = -ENOENT; 12533 goto err; 12534 } 12535 /* update the local VSI info queue map */ 12536 i40e_vsi_update_queue_map(vsi, &ctxt); 12537 vsi->info.valid_sections = 0; 12538 } else { 12539 /* Default/Main VSI is only enabled for TC0 12540 * reconfigure it to enable all TCs that are 12541 * available on the port in SFP mode. 12542 * For MFP case the iSCSI PF would use this 12543 * flow to enable LAN+iSCSI TC. 12544 */ 12545 ret = i40e_vsi_config_tc(vsi, enabled_tc); 12546 if (ret) { 12547 /* Single TC condition is not fatal, 12548 * message and continue 12549 */ 12550 dev_info(&pf->pdev->dev, 12551 "failed to configure TCs for main VSI tc_map 0x%08x, err %s aq_err %s\n", 12552 enabled_tc, 12553 i40e_stat_str(&pf->hw, ret), 12554 i40e_aq_str(&pf->hw, 12555 pf->hw.aq.asq_last_status)); 12556 } 12557 } 12558 break; 12559 12560 case I40E_VSI_FDIR: 12561 ctxt.pf_num = hw->pf_id; 12562 ctxt.vf_num = 0; 12563 ctxt.uplink_seid = vsi->uplink_seid; 12564 ctxt.connection_type = I40E_AQ_VSI_CONN_TYPE_NORMAL; 12565 ctxt.flags = I40E_AQ_VSI_TYPE_PF; 12566 if ((pf->flags & I40E_FLAG_VEB_MODE_ENABLED) && 12567 (i40e_is_vsi_uplink_mode_veb(vsi))) { 12568 ctxt.info.valid_sections |= 12569 cpu_to_le16(I40E_AQ_VSI_PROP_SWITCH_VALID); 12570 ctxt.info.switch_id = 12571 cpu_to_le16(I40E_AQ_VSI_SW_ID_FLAG_ALLOW_LB); 12572 } 12573 i40e_vsi_setup_queue_map(vsi, &ctxt, enabled_tc, true); 12574 break; 12575 12576 case I40E_VSI_VMDQ2: 12577 ctxt.pf_num = hw->pf_id; 12578 ctxt.vf_num = 0; 12579 ctxt.uplink_seid = vsi->uplink_seid; 12580 ctxt.connection_type = I40E_AQ_VSI_CONN_TYPE_NORMAL; 12581 ctxt.flags = I40E_AQ_VSI_TYPE_VMDQ2; 12582 12583 /* This VSI is connected to VEB so the switch_id 12584 * should be set to zero by default. 12585 */ 12586 if (i40e_is_vsi_uplink_mode_veb(vsi)) { 12587 ctxt.info.valid_sections |= 12588 cpu_to_le16(I40E_AQ_VSI_PROP_SWITCH_VALID); 12589 ctxt.info.switch_id = 12590 cpu_to_le16(I40E_AQ_VSI_SW_ID_FLAG_ALLOW_LB); 12591 } 12592 12593 /* Setup the VSI tx/rx queue map for TC0 only for now */ 12594 i40e_vsi_setup_queue_map(vsi, &ctxt, enabled_tc, true); 12595 break; 12596 12597 case I40E_VSI_SRIOV: 12598 ctxt.pf_num = hw->pf_id; 12599 ctxt.vf_num = vsi->vf_id + hw->func_caps.vf_base_id; 12600 ctxt.uplink_seid = vsi->uplink_seid; 12601 ctxt.connection_type = I40E_AQ_VSI_CONN_TYPE_NORMAL; 12602 ctxt.flags = I40E_AQ_VSI_TYPE_VF; 12603 12604 /* This VSI is connected to VEB so the switch_id 12605 * should be set to zero by default. 12606 */ 12607 if (i40e_is_vsi_uplink_mode_veb(vsi)) { 12608 ctxt.info.valid_sections |= 12609 cpu_to_le16(I40E_AQ_VSI_PROP_SWITCH_VALID); 12610 ctxt.info.switch_id = 12611 cpu_to_le16(I40E_AQ_VSI_SW_ID_FLAG_ALLOW_LB); 12612 } 12613 12614 if (vsi->back->flags & I40E_FLAG_IWARP_ENABLED) { 12615 ctxt.info.valid_sections |= 12616 cpu_to_le16(I40E_AQ_VSI_PROP_QUEUE_OPT_VALID); 12617 ctxt.info.queueing_opt_flags |= 12618 (I40E_AQ_VSI_QUE_OPT_TCP_ENA | 12619 I40E_AQ_VSI_QUE_OPT_RSS_LUT_VSI); 12620 } 12621 12622 ctxt.info.valid_sections |= cpu_to_le16(I40E_AQ_VSI_PROP_VLAN_VALID); 12623 ctxt.info.port_vlan_flags |= I40E_AQ_VSI_PVLAN_MODE_ALL; 12624 if (pf->vf[vsi->vf_id].spoofchk) { 12625 ctxt.info.valid_sections |= 12626 cpu_to_le16(I40E_AQ_VSI_PROP_SECURITY_VALID); 12627 ctxt.info.sec_flags |= 12628 (I40E_AQ_VSI_SEC_FLAG_ENABLE_VLAN_CHK | 12629 I40E_AQ_VSI_SEC_FLAG_ENABLE_MAC_CHK); 12630 } 12631 /* Setup the VSI tx/rx queue map for TC0 only for now */ 12632 i40e_vsi_setup_queue_map(vsi, &ctxt, enabled_tc, true); 12633 break; 12634 12635 case I40E_VSI_IWARP: 12636 /* send down message to iWARP */ 12637 break; 12638 12639 default: 12640 return -ENODEV; 12641 } 12642 12643 if (vsi->type != I40E_VSI_MAIN) { 12644 ret = i40e_aq_add_vsi(hw, &ctxt, NULL); 12645 if (ret) { 12646 dev_info(&vsi->back->pdev->dev, 12647 "add vsi failed, err %s aq_err %s\n", 12648 i40e_stat_str(&pf->hw, ret), 12649 i40e_aq_str(&pf->hw, 12650 pf->hw.aq.asq_last_status)); 12651 ret = -ENOENT; 12652 goto err; 12653 } 12654 vsi->info = ctxt.info; 12655 vsi->info.valid_sections = 0; 12656 vsi->seid = ctxt.seid; 12657 vsi->id = ctxt.vsi_number; 12658 } 12659 12660 vsi->active_filters = 0; 12661 clear_bit(__I40E_VSI_OVERFLOW_PROMISC, vsi->state); 12662 spin_lock_bh(&vsi->mac_filter_hash_lock); 12663 /* If macvlan filters already exist, force them to get loaded */ 12664 hash_for_each_safe(vsi->mac_filter_hash, bkt, h, f, hlist) { 12665 f->state = I40E_FILTER_NEW; 12666 f_count++; 12667 } 12668 spin_unlock_bh(&vsi->mac_filter_hash_lock); 12669 12670 if (f_count) { 12671 vsi->flags |= I40E_VSI_FLAG_FILTER_CHANGED; 12672 set_bit(__I40E_MACVLAN_SYNC_PENDING, pf->state); 12673 } 12674 12675 /* Update VSI BW information */ 12676 ret = i40e_vsi_get_bw_info(vsi); 12677 if (ret) { 12678 dev_info(&pf->pdev->dev, 12679 "couldn't get vsi bw info, err %s aq_err %s\n", 12680 i40e_stat_str(&pf->hw, ret), 12681 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 12682 /* VSI is already added so not tearing that up */ 12683 ret = 0; 12684 } 12685 12686 err: 12687 return ret; 12688 } 12689 12690 /** 12691 * i40e_vsi_release - Delete a VSI and free its resources 12692 * @vsi: the VSI being removed 12693 * 12694 * Returns 0 on success or < 0 on error 12695 **/ 12696 int i40e_vsi_release(struct i40e_vsi *vsi) 12697 { 12698 struct i40e_mac_filter *f; 12699 struct hlist_node *h; 12700 struct i40e_veb *veb = NULL; 12701 struct i40e_pf *pf; 12702 u16 uplink_seid; 12703 int i, n, bkt; 12704 12705 pf = vsi->back; 12706 12707 /* release of a VEB-owner or last VSI is not allowed */ 12708 if (vsi->flags & I40E_VSI_FLAG_VEB_OWNER) { 12709 dev_info(&pf->pdev->dev, "VSI %d has existing VEB %d\n", 12710 vsi->seid, vsi->uplink_seid); 12711 return -ENODEV; 12712 } 12713 if (vsi == pf->vsi[pf->lan_vsi] && 12714 !test_bit(__I40E_DOWN, pf->state)) { 12715 dev_info(&pf->pdev->dev, "Can't remove PF VSI\n"); 12716 return -ENODEV; 12717 } 12718 12719 uplink_seid = vsi->uplink_seid; 12720 if (vsi->type != I40E_VSI_SRIOV) { 12721 if (vsi->netdev_registered) { 12722 vsi->netdev_registered = false; 12723 if (vsi->netdev) { 12724 /* results in a call to i40e_close() */ 12725 unregister_netdev(vsi->netdev); 12726 } 12727 } else { 12728 i40e_vsi_close(vsi); 12729 } 12730 i40e_vsi_disable_irq(vsi); 12731 } 12732 12733 spin_lock_bh(&vsi->mac_filter_hash_lock); 12734 12735 /* clear the sync flag on all filters */ 12736 if (vsi->netdev) { 12737 __dev_uc_unsync(vsi->netdev, NULL); 12738 __dev_mc_unsync(vsi->netdev, NULL); 12739 } 12740 12741 /* make sure any remaining filters are marked for deletion */ 12742 hash_for_each_safe(vsi->mac_filter_hash, bkt, h, f, hlist) 12743 __i40e_del_filter(vsi, f); 12744 12745 spin_unlock_bh(&vsi->mac_filter_hash_lock); 12746 12747 i40e_sync_vsi_filters(vsi); 12748 12749 i40e_vsi_delete(vsi); 12750 i40e_vsi_free_q_vectors(vsi); 12751 if (vsi->netdev) { 12752 free_netdev(vsi->netdev); 12753 vsi->netdev = NULL; 12754 } 12755 i40e_vsi_clear_rings(vsi); 12756 i40e_vsi_clear(vsi); 12757 12758 /* If this was the last thing on the VEB, except for the 12759 * controlling VSI, remove the VEB, which puts the controlling 12760 * VSI onto the next level down in the switch. 12761 * 12762 * Well, okay, there's one more exception here: don't remove 12763 * the orphan VEBs yet. We'll wait for an explicit remove request 12764 * from up the network stack. 12765 */ 12766 for (n = 0, i = 0; i < pf->num_alloc_vsi; i++) { 12767 if (pf->vsi[i] && 12768 pf->vsi[i]->uplink_seid == uplink_seid && 12769 (pf->vsi[i]->flags & I40E_VSI_FLAG_VEB_OWNER) == 0) { 12770 n++; /* count the VSIs */ 12771 } 12772 } 12773 for (i = 0; i < I40E_MAX_VEB; i++) { 12774 if (!pf->veb[i]) 12775 continue; 12776 if (pf->veb[i]->uplink_seid == uplink_seid) 12777 n++; /* count the VEBs */ 12778 if (pf->veb[i]->seid == uplink_seid) 12779 veb = pf->veb[i]; 12780 } 12781 if (n == 0 && veb && veb->uplink_seid != 0) 12782 i40e_veb_release(veb); 12783 12784 return 0; 12785 } 12786 12787 /** 12788 * i40e_vsi_setup_vectors - Set up the q_vectors for the given VSI 12789 * @vsi: ptr to the VSI 12790 * 12791 * This should only be called after i40e_vsi_mem_alloc() which allocates the 12792 * corresponding SW VSI structure and initializes num_queue_pairs for the 12793 * newly allocated VSI. 12794 * 12795 * Returns 0 on success or negative on failure 12796 **/ 12797 static int i40e_vsi_setup_vectors(struct i40e_vsi *vsi) 12798 { 12799 int ret = -ENOENT; 12800 struct i40e_pf *pf = vsi->back; 12801 12802 if (vsi->q_vectors[0]) { 12803 dev_info(&pf->pdev->dev, "VSI %d has existing q_vectors\n", 12804 vsi->seid); 12805 return -EEXIST; 12806 } 12807 12808 if (vsi->base_vector) { 12809 dev_info(&pf->pdev->dev, "VSI %d has non-zero base vector %d\n", 12810 vsi->seid, vsi->base_vector); 12811 return -EEXIST; 12812 } 12813 12814 ret = i40e_vsi_alloc_q_vectors(vsi); 12815 if (ret) { 12816 dev_info(&pf->pdev->dev, 12817 "failed to allocate %d q_vector for VSI %d, ret=%d\n", 12818 vsi->num_q_vectors, vsi->seid, ret); 12819 vsi->num_q_vectors = 0; 12820 goto vector_setup_out; 12821 } 12822 12823 /* In Legacy mode, we do not have to get any other vector since we 12824 * piggyback on the misc/ICR0 for queue interrupts. 12825 */ 12826 if (!(pf->flags & I40E_FLAG_MSIX_ENABLED)) 12827 return ret; 12828 if (vsi->num_q_vectors) 12829 vsi->base_vector = i40e_get_lump(pf, pf->irq_pile, 12830 vsi->num_q_vectors, vsi->idx); 12831 if (vsi->base_vector < 0) { 12832 dev_info(&pf->pdev->dev, 12833 "failed to get tracking for %d vectors for VSI %d, err=%d\n", 12834 vsi->num_q_vectors, vsi->seid, vsi->base_vector); 12835 i40e_vsi_free_q_vectors(vsi); 12836 ret = -ENOENT; 12837 goto vector_setup_out; 12838 } 12839 12840 vector_setup_out: 12841 return ret; 12842 } 12843 12844 /** 12845 * i40e_vsi_reinit_setup - return and reallocate resources for a VSI 12846 * @vsi: pointer to the vsi. 12847 * 12848 * This re-allocates a vsi's queue resources. 12849 * 12850 * Returns pointer to the successfully allocated and configured VSI sw struct 12851 * on success, otherwise returns NULL on failure. 12852 **/ 12853 static struct i40e_vsi *i40e_vsi_reinit_setup(struct i40e_vsi *vsi) 12854 { 12855 u16 alloc_queue_pairs; 12856 struct i40e_pf *pf; 12857 u8 enabled_tc; 12858 int ret; 12859 12860 if (!vsi) 12861 return NULL; 12862 12863 pf = vsi->back; 12864 12865 i40e_put_lump(pf->qp_pile, vsi->base_queue, vsi->idx); 12866 i40e_vsi_clear_rings(vsi); 12867 12868 i40e_vsi_free_arrays(vsi, false); 12869 i40e_set_num_rings_in_vsi(vsi); 12870 ret = i40e_vsi_alloc_arrays(vsi, false); 12871 if (ret) 12872 goto err_vsi; 12873 12874 alloc_queue_pairs = vsi->alloc_queue_pairs * 12875 (i40e_enabled_xdp_vsi(vsi) ? 2 : 1); 12876 12877 ret = i40e_get_lump(pf, pf->qp_pile, alloc_queue_pairs, vsi->idx); 12878 if (ret < 0) { 12879 dev_info(&pf->pdev->dev, 12880 "failed to get tracking for %d queues for VSI %d err %d\n", 12881 alloc_queue_pairs, vsi->seid, ret); 12882 goto err_vsi; 12883 } 12884 vsi->base_queue = ret; 12885 12886 /* Update the FW view of the VSI. Force a reset of TC and queue 12887 * layout configurations. 12888 */ 12889 enabled_tc = pf->vsi[pf->lan_vsi]->tc_config.enabled_tc; 12890 pf->vsi[pf->lan_vsi]->tc_config.enabled_tc = 0; 12891 pf->vsi[pf->lan_vsi]->seid = pf->main_vsi_seid; 12892 i40e_vsi_config_tc(pf->vsi[pf->lan_vsi], enabled_tc); 12893 if (vsi->type == I40E_VSI_MAIN) 12894 i40e_rm_default_mac_filter(vsi, pf->hw.mac.perm_addr); 12895 12896 /* assign it some queues */ 12897 ret = i40e_alloc_rings(vsi); 12898 if (ret) 12899 goto err_rings; 12900 12901 /* map all of the rings to the q_vectors */ 12902 i40e_vsi_map_rings_to_vectors(vsi); 12903 return vsi; 12904 12905 err_rings: 12906 i40e_vsi_free_q_vectors(vsi); 12907 if (vsi->netdev_registered) { 12908 vsi->netdev_registered = false; 12909 unregister_netdev(vsi->netdev); 12910 free_netdev(vsi->netdev); 12911 vsi->netdev = NULL; 12912 } 12913 i40e_aq_delete_element(&pf->hw, vsi->seid, NULL); 12914 err_vsi: 12915 i40e_vsi_clear(vsi); 12916 return NULL; 12917 } 12918 12919 /** 12920 * i40e_vsi_setup - Set up a VSI by a given type 12921 * @pf: board private structure 12922 * @type: VSI type 12923 * @uplink_seid: the switch element to link to 12924 * @param1: usage depends upon VSI type. For VF types, indicates VF id 12925 * 12926 * This allocates the sw VSI structure and its queue resources, then add a VSI 12927 * to the identified VEB. 12928 * 12929 * Returns pointer to the successfully allocated and configure VSI sw struct on 12930 * success, otherwise returns NULL on failure. 12931 **/ 12932 struct i40e_vsi *i40e_vsi_setup(struct i40e_pf *pf, u8 type, 12933 u16 uplink_seid, u32 param1) 12934 { 12935 struct i40e_vsi *vsi = NULL; 12936 struct i40e_veb *veb = NULL; 12937 u16 alloc_queue_pairs; 12938 int ret, i; 12939 int v_idx; 12940 12941 /* The requested uplink_seid must be either 12942 * - the PF's port seid 12943 * no VEB is needed because this is the PF 12944 * or this is a Flow Director special case VSI 12945 * - seid of an existing VEB 12946 * - seid of a VSI that owns an existing VEB 12947 * - seid of a VSI that doesn't own a VEB 12948 * a new VEB is created and the VSI becomes the owner 12949 * - seid of the PF VSI, which is what creates the first VEB 12950 * this is a special case of the previous 12951 * 12952 * Find which uplink_seid we were given and create a new VEB if needed 12953 */ 12954 for (i = 0; i < I40E_MAX_VEB; i++) { 12955 if (pf->veb[i] && pf->veb[i]->seid == uplink_seid) { 12956 veb = pf->veb[i]; 12957 break; 12958 } 12959 } 12960 12961 if (!veb && uplink_seid != pf->mac_seid) { 12962 12963 for (i = 0; i < pf->num_alloc_vsi; i++) { 12964 if (pf->vsi[i] && pf->vsi[i]->seid == uplink_seid) { 12965 vsi = pf->vsi[i]; 12966 break; 12967 } 12968 } 12969 if (!vsi) { 12970 dev_info(&pf->pdev->dev, "no such uplink_seid %d\n", 12971 uplink_seid); 12972 return NULL; 12973 } 12974 12975 if (vsi->uplink_seid == pf->mac_seid) 12976 veb = i40e_veb_setup(pf, 0, pf->mac_seid, vsi->seid, 12977 vsi->tc_config.enabled_tc); 12978 else if ((vsi->flags & I40E_VSI_FLAG_VEB_OWNER) == 0) 12979 veb = i40e_veb_setup(pf, 0, vsi->uplink_seid, vsi->seid, 12980 vsi->tc_config.enabled_tc); 12981 if (veb) { 12982 if (vsi->seid != pf->vsi[pf->lan_vsi]->seid) { 12983 dev_info(&vsi->back->pdev->dev, 12984 "New VSI creation error, uplink seid of LAN VSI expected.\n"); 12985 return NULL; 12986 } 12987 /* We come up by default in VEPA mode if SRIOV is not 12988 * already enabled, in which case we can't force VEPA 12989 * mode. 12990 */ 12991 if (!(pf->flags & I40E_FLAG_VEB_MODE_ENABLED)) { 12992 veb->bridge_mode = BRIDGE_MODE_VEPA; 12993 pf->flags &= ~I40E_FLAG_VEB_MODE_ENABLED; 12994 } 12995 i40e_config_bridge_mode(veb); 12996 } 12997 for (i = 0; i < I40E_MAX_VEB && !veb; i++) { 12998 if (pf->veb[i] && pf->veb[i]->seid == vsi->uplink_seid) 12999 veb = pf->veb[i]; 13000 } 13001 if (!veb) { 13002 dev_info(&pf->pdev->dev, "couldn't add VEB\n"); 13003 return NULL; 13004 } 13005 13006 vsi->flags |= I40E_VSI_FLAG_VEB_OWNER; 13007 uplink_seid = veb->seid; 13008 } 13009 13010 /* get vsi sw struct */ 13011 v_idx = i40e_vsi_mem_alloc(pf, type); 13012 if (v_idx < 0) 13013 goto err_alloc; 13014 vsi = pf->vsi[v_idx]; 13015 if (!vsi) 13016 goto err_alloc; 13017 vsi->type = type; 13018 vsi->veb_idx = (veb ? veb->idx : I40E_NO_VEB); 13019 13020 if (type == I40E_VSI_MAIN) 13021 pf->lan_vsi = v_idx; 13022 else if (type == I40E_VSI_SRIOV) 13023 vsi->vf_id = param1; 13024 /* assign it some queues */ 13025 alloc_queue_pairs = vsi->alloc_queue_pairs * 13026 (i40e_enabled_xdp_vsi(vsi) ? 2 : 1); 13027 13028 ret = i40e_get_lump(pf, pf->qp_pile, alloc_queue_pairs, vsi->idx); 13029 if (ret < 0) { 13030 dev_info(&pf->pdev->dev, 13031 "failed to get tracking for %d queues for VSI %d err=%d\n", 13032 alloc_queue_pairs, vsi->seid, ret); 13033 goto err_vsi; 13034 } 13035 vsi->base_queue = ret; 13036 13037 /* get a VSI from the hardware */ 13038 vsi->uplink_seid = uplink_seid; 13039 ret = i40e_add_vsi(vsi); 13040 if (ret) 13041 goto err_vsi; 13042 13043 switch (vsi->type) { 13044 /* setup the netdev if needed */ 13045 case I40E_VSI_MAIN: 13046 case I40E_VSI_VMDQ2: 13047 ret = i40e_config_netdev(vsi); 13048 if (ret) 13049 goto err_netdev; 13050 ret = register_netdev(vsi->netdev); 13051 if (ret) 13052 goto err_netdev; 13053 vsi->netdev_registered = true; 13054 netif_carrier_off(vsi->netdev); 13055 #ifdef CONFIG_I40E_DCB 13056 /* Setup DCB netlink interface */ 13057 i40e_dcbnl_setup(vsi); 13058 #endif /* CONFIG_I40E_DCB */ 13059 /* fall through */ 13060 13061 case I40E_VSI_FDIR: 13062 /* set up vectors and rings if needed */ 13063 ret = i40e_vsi_setup_vectors(vsi); 13064 if (ret) 13065 goto err_msix; 13066 13067 ret = i40e_alloc_rings(vsi); 13068 if (ret) 13069 goto err_rings; 13070 13071 /* map all of the rings to the q_vectors */ 13072 i40e_vsi_map_rings_to_vectors(vsi); 13073 13074 i40e_vsi_reset_stats(vsi); 13075 break; 13076 13077 default: 13078 /* no netdev or rings for the other VSI types */ 13079 break; 13080 } 13081 13082 if ((pf->hw_features & I40E_HW_RSS_AQ_CAPABLE) && 13083 (vsi->type == I40E_VSI_VMDQ2)) { 13084 ret = i40e_vsi_config_rss(vsi); 13085 } 13086 return vsi; 13087 13088 err_rings: 13089 i40e_vsi_free_q_vectors(vsi); 13090 err_msix: 13091 if (vsi->netdev_registered) { 13092 vsi->netdev_registered = false; 13093 unregister_netdev(vsi->netdev); 13094 free_netdev(vsi->netdev); 13095 vsi->netdev = NULL; 13096 } 13097 err_netdev: 13098 i40e_aq_delete_element(&pf->hw, vsi->seid, NULL); 13099 err_vsi: 13100 i40e_vsi_clear(vsi); 13101 err_alloc: 13102 return NULL; 13103 } 13104 13105 /** 13106 * i40e_veb_get_bw_info - Query VEB BW information 13107 * @veb: the veb to query 13108 * 13109 * Query the Tx scheduler BW configuration data for given VEB 13110 **/ 13111 static int i40e_veb_get_bw_info(struct i40e_veb *veb) 13112 { 13113 struct i40e_aqc_query_switching_comp_ets_config_resp ets_data; 13114 struct i40e_aqc_query_switching_comp_bw_config_resp bw_data; 13115 struct i40e_pf *pf = veb->pf; 13116 struct i40e_hw *hw = &pf->hw; 13117 u32 tc_bw_max; 13118 int ret = 0; 13119 int i; 13120 13121 ret = i40e_aq_query_switch_comp_bw_config(hw, veb->seid, 13122 &bw_data, NULL); 13123 if (ret) { 13124 dev_info(&pf->pdev->dev, 13125 "query veb bw config failed, err %s aq_err %s\n", 13126 i40e_stat_str(&pf->hw, ret), 13127 i40e_aq_str(&pf->hw, hw->aq.asq_last_status)); 13128 goto out; 13129 } 13130 13131 ret = i40e_aq_query_switch_comp_ets_config(hw, veb->seid, 13132 &ets_data, NULL); 13133 if (ret) { 13134 dev_info(&pf->pdev->dev, 13135 "query veb bw ets config failed, err %s aq_err %s\n", 13136 i40e_stat_str(&pf->hw, ret), 13137 i40e_aq_str(&pf->hw, hw->aq.asq_last_status)); 13138 goto out; 13139 } 13140 13141 veb->bw_limit = le16_to_cpu(ets_data.port_bw_limit); 13142 veb->bw_max_quanta = ets_data.tc_bw_max; 13143 veb->is_abs_credits = bw_data.absolute_credits_enable; 13144 veb->enabled_tc = ets_data.tc_valid_bits; 13145 tc_bw_max = le16_to_cpu(bw_data.tc_bw_max[0]) | 13146 (le16_to_cpu(bw_data.tc_bw_max[1]) << 16); 13147 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 13148 veb->bw_tc_share_credits[i] = bw_data.tc_bw_share_credits[i]; 13149 veb->bw_tc_limit_credits[i] = 13150 le16_to_cpu(bw_data.tc_bw_limits[i]); 13151 veb->bw_tc_max_quanta[i] = ((tc_bw_max >> (i*4)) & 0x7); 13152 } 13153 13154 out: 13155 return ret; 13156 } 13157 13158 /** 13159 * i40e_veb_mem_alloc - Allocates the next available struct veb in the PF 13160 * @pf: board private structure 13161 * 13162 * On error: returns error code (negative) 13163 * On success: returns vsi index in PF (positive) 13164 **/ 13165 static int i40e_veb_mem_alloc(struct i40e_pf *pf) 13166 { 13167 int ret = -ENOENT; 13168 struct i40e_veb *veb; 13169 int i; 13170 13171 /* Need to protect the allocation of switch elements at the PF level */ 13172 mutex_lock(&pf->switch_mutex); 13173 13174 /* VEB list may be fragmented if VEB creation/destruction has 13175 * been happening. We can afford to do a quick scan to look 13176 * for any free slots in the list. 13177 * 13178 * find next empty veb slot, looping back around if necessary 13179 */ 13180 i = 0; 13181 while ((i < I40E_MAX_VEB) && (pf->veb[i] != NULL)) 13182 i++; 13183 if (i >= I40E_MAX_VEB) { 13184 ret = -ENOMEM; 13185 goto err_alloc_veb; /* out of VEB slots! */ 13186 } 13187 13188 veb = kzalloc(sizeof(*veb), GFP_KERNEL); 13189 if (!veb) { 13190 ret = -ENOMEM; 13191 goto err_alloc_veb; 13192 } 13193 veb->pf = pf; 13194 veb->idx = i; 13195 veb->enabled_tc = 1; 13196 13197 pf->veb[i] = veb; 13198 ret = i; 13199 err_alloc_veb: 13200 mutex_unlock(&pf->switch_mutex); 13201 return ret; 13202 } 13203 13204 /** 13205 * i40e_switch_branch_release - Delete a branch of the switch tree 13206 * @branch: where to start deleting 13207 * 13208 * This uses recursion to find the tips of the branch to be 13209 * removed, deleting until we get back to and can delete this VEB. 13210 **/ 13211 static void i40e_switch_branch_release(struct i40e_veb *branch) 13212 { 13213 struct i40e_pf *pf = branch->pf; 13214 u16 branch_seid = branch->seid; 13215 u16 veb_idx = branch->idx; 13216 int i; 13217 13218 /* release any VEBs on this VEB - RECURSION */ 13219 for (i = 0; i < I40E_MAX_VEB; i++) { 13220 if (!pf->veb[i]) 13221 continue; 13222 if (pf->veb[i]->uplink_seid == branch->seid) 13223 i40e_switch_branch_release(pf->veb[i]); 13224 } 13225 13226 /* Release the VSIs on this VEB, but not the owner VSI. 13227 * 13228 * NOTE: Removing the last VSI on a VEB has the SIDE EFFECT of removing 13229 * the VEB itself, so don't use (*branch) after this loop. 13230 */ 13231 for (i = 0; i < pf->num_alloc_vsi; i++) { 13232 if (!pf->vsi[i]) 13233 continue; 13234 if (pf->vsi[i]->uplink_seid == branch_seid && 13235 (pf->vsi[i]->flags & I40E_VSI_FLAG_VEB_OWNER) == 0) { 13236 i40e_vsi_release(pf->vsi[i]); 13237 } 13238 } 13239 13240 /* There's one corner case where the VEB might not have been 13241 * removed, so double check it here and remove it if needed. 13242 * This case happens if the veb was created from the debugfs 13243 * commands and no VSIs were added to it. 13244 */ 13245 if (pf->veb[veb_idx]) 13246 i40e_veb_release(pf->veb[veb_idx]); 13247 } 13248 13249 /** 13250 * i40e_veb_clear - remove veb struct 13251 * @veb: the veb to remove 13252 **/ 13253 static void i40e_veb_clear(struct i40e_veb *veb) 13254 { 13255 if (!veb) 13256 return; 13257 13258 if (veb->pf) { 13259 struct i40e_pf *pf = veb->pf; 13260 13261 mutex_lock(&pf->switch_mutex); 13262 if (pf->veb[veb->idx] == veb) 13263 pf->veb[veb->idx] = NULL; 13264 mutex_unlock(&pf->switch_mutex); 13265 } 13266 13267 kfree(veb); 13268 } 13269 13270 /** 13271 * i40e_veb_release - Delete a VEB and free its resources 13272 * @veb: the VEB being removed 13273 **/ 13274 void i40e_veb_release(struct i40e_veb *veb) 13275 { 13276 struct i40e_vsi *vsi = NULL; 13277 struct i40e_pf *pf; 13278 int i, n = 0; 13279 13280 pf = veb->pf; 13281 13282 /* find the remaining VSI and check for extras */ 13283 for (i = 0; i < pf->num_alloc_vsi; i++) { 13284 if (pf->vsi[i] && pf->vsi[i]->uplink_seid == veb->seid) { 13285 n++; 13286 vsi = pf->vsi[i]; 13287 } 13288 } 13289 if (n != 1) { 13290 dev_info(&pf->pdev->dev, 13291 "can't remove VEB %d with %d VSIs left\n", 13292 veb->seid, n); 13293 return; 13294 } 13295 13296 /* move the remaining VSI to uplink veb */ 13297 vsi->flags &= ~I40E_VSI_FLAG_VEB_OWNER; 13298 if (veb->uplink_seid) { 13299 vsi->uplink_seid = veb->uplink_seid; 13300 if (veb->uplink_seid == pf->mac_seid) 13301 vsi->veb_idx = I40E_NO_VEB; 13302 else 13303 vsi->veb_idx = veb->veb_idx; 13304 } else { 13305 /* floating VEB */ 13306 vsi->uplink_seid = pf->vsi[pf->lan_vsi]->uplink_seid; 13307 vsi->veb_idx = pf->vsi[pf->lan_vsi]->veb_idx; 13308 } 13309 13310 i40e_aq_delete_element(&pf->hw, veb->seid, NULL); 13311 i40e_veb_clear(veb); 13312 } 13313 13314 /** 13315 * i40e_add_veb - create the VEB in the switch 13316 * @veb: the VEB to be instantiated 13317 * @vsi: the controlling VSI 13318 **/ 13319 static int i40e_add_veb(struct i40e_veb *veb, struct i40e_vsi *vsi) 13320 { 13321 struct i40e_pf *pf = veb->pf; 13322 bool enable_stats = !!(pf->flags & I40E_FLAG_VEB_STATS_ENABLED); 13323 int ret; 13324 13325 ret = i40e_aq_add_veb(&pf->hw, veb->uplink_seid, vsi->seid, 13326 veb->enabled_tc, false, 13327 &veb->seid, enable_stats, NULL); 13328 13329 /* get a VEB from the hardware */ 13330 if (ret) { 13331 dev_info(&pf->pdev->dev, 13332 "couldn't add VEB, err %s aq_err %s\n", 13333 i40e_stat_str(&pf->hw, ret), 13334 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 13335 return -EPERM; 13336 } 13337 13338 /* get statistics counter */ 13339 ret = i40e_aq_get_veb_parameters(&pf->hw, veb->seid, NULL, NULL, 13340 &veb->stats_idx, NULL, NULL, NULL); 13341 if (ret) { 13342 dev_info(&pf->pdev->dev, 13343 "couldn't get VEB statistics idx, err %s aq_err %s\n", 13344 i40e_stat_str(&pf->hw, ret), 13345 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 13346 return -EPERM; 13347 } 13348 ret = i40e_veb_get_bw_info(veb); 13349 if (ret) { 13350 dev_info(&pf->pdev->dev, 13351 "couldn't get VEB bw info, err %s aq_err %s\n", 13352 i40e_stat_str(&pf->hw, ret), 13353 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 13354 i40e_aq_delete_element(&pf->hw, veb->seid, NULL); 13355 return -ENOENT; 13356 } 13357 13358 vsi->uplink_seid = veb->seid; 13359 vsi->veb_idx = veb->idx; 13360 vsi->flags |= I40E_VSI_FLAG_VEB_OWNER; 13361 13362 return 0; 13363 } 13364 13365 /** 13366 * i40e_veb_setup - Set up a VEB 13367 * @pf: board private structure 13368 * @flags: VEB setup flags 13369 * @uplink_seid: the switch element to link to 13370 * @vsi_seid: the initial VSI seid 13371 * @enabled_tc: Enabled TC bit-map 13372 * 13373 * This allocates the sw VEB structure and links it into the switch 13374 * It is possible and legal for this to be a duplicate of an already 13375 * existing VEB. It is also possible for both uplink and vsi seids 13376 * to be zero, in order to create a floating VEB. 13377 * 13378 * Returns pointer to the successfully allocated VEB sw struct on 13379 * success, otherwise returns NULL on failure. 13380 **/ 13381 struct i40e_veb *i40e_veb_setup(struct i40e_pf *pf, u16 flags, 13382 u16 uplink_seid, u16 vsi_seid, 13383 u8 enabled_tc) 13384 { 13385 struct i40e_veb *veb, *uplink_veb = NULL; 13386 int vsi_idx, veb_idx; 13387 int ret; 13388 13389 /* if one seid is 0, the other must be 0 to create a floating relay */ 13390 if ((uplink_seid == 0 || vsi_seid == 0) && 13391 (uplink_seid + vsi_seid != 0)) { 13392 dev_info(&pf->pdev->dev, 13393 "one, not both seid's are 0: uplink=%d vsi=%d\n", 13394 uplink_seid, vsi_seid); 13395 return NULL; 13396 } 13397 13398 /* make sure there is such a vsi and uplink */ 13399 for (vsi_idx = 0; vsi_idx < pf->num_alloc_vsi; vsi_idx++) 13400 if (pf->vsi[vsi_idx] && pf->vsi[vsi_idx]->seid == vsi_seid) 13401 break; 13402 if (vsi_idx == pf->num_alloc_vsi && vsi_seid != 0) { 13403 dev_info(&pf->pdev->dev, "vsi seid %d not found\n", 13404 vsi_seid); 13405 return NULL; 13406 } 13407 13408 if (uplink_seid && uplink_seid != pf->mac_seid) { 13409 for (veb_idx = 0; veb_idx < I40E_MAX_VEB; veb_idx++) { 13410 if (pf->veb[veb_idx] && 13411 pf->veb[veb_idx]->seid == uplink_seid) { 13412 uplink_veb = pf->veb[veb_idx]; 13413 break; 13414 } 13415 } 13416 if (!uplink_veb) { 13417 dev_info(&pf->pdev->dev, 13418 "uplink seid %d not found\n", uplink_seid); 13419 return NULL; 13420 } 13421 } 13422 13423 /* get veb sw struct */ 13424 veb_idx = i40e_veb_mem_alloc(pf); 13425 if (veb_idx < 0) 13426 goto err_alloc; 13427 veb = pf->veb[veb_idx]; 13428 veb->flags = flags; 13429 veb->uplink_seid = uplink_seid; 13430 veb->veb_idx = (uplink_veb ? uplink_veb->idx : I40E_NO_VEB); 13431 veb->enabled_tc = (enabled_tc ? enabled_tc : 0x1); 13432 13433 /* create the VEB in the switch */ 13434 ret = i40e_add_veb(veb, pf->vsi[vsi_idx]); 13435 if (ret) 13436 goto err_veb; 13437 if (vsi_idx == pf->lan_vsi) 13438 pf->lan_veb = veb->idx; 13439 13440 return veb; 13441 13442 err_veb: 13443 i40e_veb_clear(veb); 13444 err_alloc: 13445 return NULL; 13446 } 13447 13448 /** 13449 * i40e_setup_pf_switch_element - set PF vars based on switch type 13450 * @pf: board private structure 13451 * @ele: element we are building info from 13452 * @num_reported: total number of elements 13453 * @printconfig: should we print the contents 13454 * 13455 * helper function to assist in extracting a few useful SEID values. 13456 **/ 13457 static void i40e_setup_pf_switch_element(struct i40e_pf *pf, 13458 struct i40e_aqc_switch_config_element_resp *ele, 13459 u16 num_reported, bool printconfig) 13460 { 13461 u16 downlink_seid = le16_to_cpu(ele->downlink_seid); 13462 u16 uplink_seid = le16_to_cpu(ele->uplink_seid); 13463 u8 element_type = ele->element_type; 13464 u16 seid = le16_to_cpu(ele->seid); 13465 13466 if (printconfig) 13467 dev_info(&pf->pdev->dev, 13468 "type=%d seid=%d uplink=%d downlink=%d\n", 13469 element_type, seid, uplink_seid, downlink_seid); 13470 13471 switch (element_type) { 13472 case I40E_SWITCH_ELEMENT_TYPE_MAC: 13473 pf->mac_seid = seid; 13474 break; 13475 case I40E_SWITCH_ELEMENT_TYPE_VEB: 13476 /* Main VEB? */ 13477 if (uplink_seid != pf->mac_seid) 13478 break; 13479 if (pf->lan_veb == I40E_NO_VEB) { 13480 int v; 13481 13482 /* find existing or else empty VEB */ 13483 for (v = 0; v < I40E_MAX_VEB; v++) { 13484 if (pf->veb[v] && (pf->veb[v]->seid == seid)) { 13485 pf->lan_veb = v; 13486 break; 13487 } 13488 } 13489 if (pf->lan_veb == I40E_NO_VEB) { 13490 v = i40e_veb_mem_alloc(pf); 13491 if (v < 0) 13492 break; 13493 pf->lan_veb = v; 13494 } 13495 } 13496 13497 pf->veb[pf->lan_veb]->seid = seid; 13498 pf->veb[pf->lan_veb]->uplink_seid = pf->mac_seid; 13499 pf->veb[pf->lan_veb]->pf = pf; 13500 pf->veb[pf->lan_veb]->veb_idx = I40E_NO_VEB; 13501 break; 13502 case I40E_SWITCH_ELEMENT_TYPE_VSI: 13503 if (num_reported != 1) 13504 break; 13505 /* This is immediately after a reset so we can assume this is 13506 * the PF's VSI 13507 */ 13508 pf->mac_seid = uplink_seid; 13509 pf->pf_seid = downlink_seid; 13510 pf->main_vsi_seid = seid; 13511 if (printconfig) 13512 dev_info(&pf->pdev->dev, 13513 "pf_seid=%d main_vsi_seid=%d\n", 13514 pf->pf_seid, pf->main_vsi_seid); 13515 break; 13516 case I40E_SWITCH_ELEMENT_TYPE_PF: 13517 case I40E_SWITCH_ELEMENT_TYPE_VF: 13518 case I40E_SWITCH_ELEMENT_TYPE_EMP: 13519 case I40E_SWITCH_ELEMENT_TYPE_BMC: 13520 case I40E_SWITCH_ELEMENT_TYPE_PE: 13521 case I40E_SWITCH_ELEMENT_TYPE_PA: 13522 /* ignore these for now */ 13523 break; 13524 default: 13525 dev_info(&pf->pdev->dev, "unknown element type=%d seid=%d\n", 13526 element_type, seid); 13527 break; 13528 } 13529 } 13530 13531 /** 13532 * i40e_fetch_switch_configuration - Get switch config from firmware 13533 * @pf: board private structure 13534 * @printconfig: should we print the contents 13535 * 13536 * Get the current switch configuration from the device and 13537 * extract a few useful SEID values. 13538 **/ 13539 int i40e_fetch_switch_configuration(struct i40e_pf *pf, bool printconfig) 13540 { 13541 struct i40e_aqc_get_switch_config_resp *sw_config; 13542 u16 next_seid = 0; 13543 int ret = 0; 13544 u8 *aq_buf; 13545 int i; 13546 13547 aq_buf = kzalloc(I40E_AQ_LARGE_BUF, GFP_KERNEL); 13548 if (!aq_buf) 13549 return -ENOMEM; 13550 13551 sw_config = (struct i40e_aqc_get_switch_config_resp *)aq_buf; 13552 do { 13553 u16 num_reported, num_total; 13554 13555 ret = i40e_aq_get_switch_config(&pf->hw, sw_config, 13556 I40E_AQ_LARGE_BUF, 13557 &next_seid, NULL); 13558 if (ret) { 13559 dev_info(&pf->pdev->dev, 13560 "get switch config failed err %s aq_err %s\n", 13561 i40e_stat_str(&pf->hw, ret), 13562 i40e_aq_str(&pf->hw, 13563 pf->hw.aq.asq_last_status)); 13564 kfree(aq_buf); 13565 return -ENOENT; 13566 } 13567 13568 num_reported = le16_to_cpu(sw_config->header.num_reported); 13569 num_total = le16_to_cpu(sw_config->header.num_total); 13570 13571 if (printconfig) 13572 dev_info(&pf->pdev->dev, 13573 "header: %d reported %d total\n", 13574 num_reported, num_total); 13575 13576 for (i = 0; i < num_reported; i++) { 13577 struct i40e_aqc_switch_config_element_resp *ele = 13578 &sw_config->element[i]; 13579 13580 i40e_setup_pf_switch_element(pf, ele, num_reported, 13581 printconfig); 13582 } 13583 } while (next_seid != 0); 13584 13585 kfree(aq_buf); 13586 return ret; 13587 } 13588 13589 /** 13590 * i40e_setup_pf_switch - Setup the HW switch on startup or after reset 13591 * @pf: board private structure 13592 * @reinit: if the Main VSI needs to re-initialized. 13593 * 13594 * Returns 0 on success, negative value on failure 13595 **/ 13596 static int i40e_setup_pf_switch(struct i40e_pf *pf, bool reinit) 13597 { 13598 u16 flags = 0; 13599 int ret; 13600 13601 /* find out what's out there already */ 13602 ret = i40e_fetch_switch_configuration(pf, false); 13603 if (ret) { 13604 dev_info(&pf->pdev->dev, 13605 "couldn't fetch switch config, err %s aq_err %s\n", 13606 i40e_stat_str(&pf->hw, ret), 13607 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 13608 return ret; 13609 } 13610 i40e_pf_reset_stats(pf); 13611 13612 /* set the switch config bit for the whole device to 13613 * support limited promisc or true promisc 13614 * when user requests promisc. The default is limited 13615 * promisc. 13616 */ 13617 13618 if ((pf->hw.pf_id == 0) && 13619 !(pf->flags & I40E_FLAG_TRUE_PROMISC_SUPPORT)) { 13620 flags = I40E_AQ_SET_SWITCH_CFG_PROMISC; 13621 pf->last_sw_conf_flags = flags; 13622 } 13623 13624 if (pf->hw.pf_id == 0) { 13625 u16 valid_flags; 13626 13627 valid_flags = I40E_AQ_SET_SWITCH_CFG_PROMISC; 13628 ret = i40e_aq_set_switch_config(&pf->hw, flags, valid_flags, 0, 13629 NULL); 13630 if (ret && pf->hw.aq.asq_last_status != I40E_AQ_RC_ESRCH) { 13631 dev_info(&pf->pdev->dev, 13632 "couldn't set switch config bits, err %s aq_err %s\n", 13633 i40e_stat_str(&pf->hw, ret), 13634 i40e_aq_str(&pf->hw, 13635 pf->hw.aq.asq_last_status)); 13636 /* not a fatal problem, just keep going */ 13637 } 13638 pf->last_sw_conf_valid_flags = valid_flags; 13639 } 13640 13641 /* first time setup */ 13642 if (pf->lan_vsi == I40E_NO_VSI || reinit) { 13643 struct i40e_vsi *vsi = NULL; 13644 u16 uplink_seid; 13645 13646 /* Set up the PF VSI associated with the PF's main VSI 13647 * that is already in the HW switch 13648 */ 13649 if (pf->lan_veb != I40E_NO_VEB && pf->veb[pf->lan_veb]) 13650 uplink_seid = pf->veb[pf->lan_veb]->seid; 13651 else 13652 uplink_seid = pf->mac_seid; 13653 if (pf->lan_vsi == I40E_NO_VSI) 13654 vsi = i40e_vsi_setup(pf, I40E_VSI_MAIN, uplink_seid, 0); 13655 else if (reinit) 13656 vsi = i40e_vsi_reinit_setup(pf->vsi[pf->lan_vsi]); 13657 if (!vsi) { 13658 dev_info(&pf->pdev->dev, "setup of MAIN VSI failed\n"); 13659 i40e_cloud_filter_exit(pf); 13660 i40e_fdir_teardown(pf); 13661 return -EAGAIN; 13662 } 13663 } else { 13664 /* force a reset of TC and queue layout configurations */ 13665 u8 enabled_tc = pf->vsi[pf->lan_vsi]->tc_config.enabled_tc; 13666 13667 pf->vsi[pf->lan_vsi]->tc_config.enabled_tc = 0; 13668 pf->vsi[pf->lan_vsi]->seid = pf->main_vsi_seid; 13669 i40e_vsi_config_tc(pf->vsi[pf->lan_vsi], enabled_tc); 13670 } 13671 i40e_vlan_stripping_disable(pf->vsi[pf->lan_vsi]); 13672 13673 i40e_fdir_sb_setup(pf); 13674 13675 /* Setup static PF queue filter control settings */ 13676 ret = i40e_setup_pf_filter_control(pf); 13677 if (ret) { 13678 dev_info(&pf->pdev->dev, "setup_pf_filter_control failed: %d\n", 13679 ret); 13680 /* Failure here should not stop continuing other steps */ 13681 } 13682 13683 /* enable RSS in the HW, even for only one queue, as the stack can use 13684 * the hash 13685 */ 13686 if ((pf->flags & I40E_FLAG_RSS_ENABLED)) 13687 i40e_pf_config_rss(pf); 13688 13689 /* fill in link information and enable LSE reporting */ 13690 i40e_link_event(pf); 13691 13692 /* Initialize user-specific link properties */ 13693 pf->fc_autoneg_status = ((pf->hw.phy.link_info.an_info & 13694 I40E_AQ_AN_COMPLETED) ? true : false); 13695 13696 i40e_ptp_init(pf); 13697 13698 /* repopulate tunnel port filters */ 13699 i40e_sync_udp_filters(pf); 13700 13701 return ret; 13702 } 13703 13704 /** 13705 * i40e_determine_queue_usage - Work out queue distribution 13706 * @pf: board private structure 13707 **/ 13708 static void i40e_determine_queue_usage(struct i40e_pf *pf) 13709 { 13710 int queues_left; 13711 int q_max; 13712 13713 pf->num_lan_qps = 0; 13714 13715 /* Find the max queues to be put into basic use. We'll always be 13716 * using TC0, whether or not DCB is running, and TC0 will get the 13717 * big RSS set. 13718 */ 13719 queues_left = pf->hw.func_caps.num_tx_qp; 13720 13721 if ((queues_left == 1) || 13722 !(pf->flags & I40E_FLAG_MSIX_ENABLED)) { 13723 /* one qp for PF, no queues for anything else */ 13724 queues_left = 0; 13725 pf->alloc_rss_size = pf->num_lan_qps = 1; 13726 13727 /* make sure all the fancies are disabled */ 13728 pf->flags &= ~(I40E_FLAG_RSS_ENABLED | 13729 I40E_FLAG_IWARP_ENABLED | 13730 I40E_FLAG_FD_SB_ENABLED | 13731 I40E_FLAG_FD_ATR_ENABLED | 13732 I40E_FLAG_DCB_CAPABLE | 13733 I40E_FLAG_DCB_ENABLED | 13734 I40E_FLAG_SRIOV_ENABLED | 13735 I40E_FLAG_VMDQ_ENABLED); 13736 pf->flags |= I40E_FLAG_FD_SB_INACTIVE; 13737 } else if (!(pf->flags & (I40E_FLAG_RSS_ENABLED | 13738 I40E_FLAG_FD_SB_ENABLED | 13739 I40E_FLAG_FD_ATR_ENABLED | 13740 I40E_FLAG_DCB_CAPABLE))) { 13741 /* one qp for PF */ 13742 pf->alloc_rss_size = pf->num_lan_qps = 1; 13743 queues_left -= pf->num_lan_qps; 13744 13745 pf->flags &= ~(I40E_FLAG_RSS_ENABLED | 13746 I40E_FLAG_IWARP_ENABLED | 13747 I40E_FLAG_FD_SB_ENABLED | 13748 I40E_FLAG_FD_ATR_ENABLED | 13749 I40E_FLAG_DCB_ENABLED | 13750 I40E_FLAG_VMDQ_ENABLED); 13751 pf->flags |= I40E_FLAG_FD_SB_INACTIVE; 13752 } else { 13753 /* Not enough queues for all TCs */ 13754 if ((pf->flags & I40E_FLAG_DCB_CAPABLE) && 13755 (queues_left < I40E_MAX_TRAFFIC_CLASS)) { 13756 pf->flags &= ~(I40E_FLAG_DCB_CAPABLE | 13757 I40E_FLAG_DCB_ENABLED); 13758 dev_info(&pf->pdev->dev, "not enough queues for DCB. DCB is disabled.\n"); 13759 } 13760 13761 /* limit lan qps to the smaller of qps, cpus or msix */ 13762 q_max = max_t(int, pf->rss_size_max, num_online_cpus()); 13763 q_max = min_t(int, q_max, pf->hw.func_caps.num_tx_qp); 13764 q_max = min_t(int, q_max, pf->hw.func_caps.num_msix_vectors); 13765 pf->num_lan_qps = q_max; 13766 13767 queues_left -= pf->num_lan_qps; 13768 } 13769 13770 if (pf->flags & I40E_FLAG_FD_SB_ENABLED) { 13771 if (queues_left > 1) { 13772 queues_left -= 1; /* save 1 queue for FD */ 13773 } else { 13774 pf->flags &= ~I40E_FLAG_FD_SB_ENABLED; 13775 pf->flags |= I40E_FLAG_FD_SB_INACTIVE; 13776 dev_info(&pf->pdev->dev, "not enough queues for Flow Director. Flow Director feature is disabled\n"); 13777 } 13778 } 13779 13780 if ((pf->flags & I40E_FLAG_SRIOV_ENABLED) && 13781 pf->num_vf_qps && pf->num_req_vfs && queues_left) { 13782 pf->num_req_vfs = min_t(int, pf->num_req_vfs, 13783 (queues_left / pf->num_vf_qps)); 13784 queues_left -= (pf->num_req_vfs * pf->num_vf_qps); 13785 } 13786 13787 if ((pf->flags & I40E_FLAG_VMDQ_ENABLED) && 13788 pf->num_vmdq_vsis && pf->num_vmdq_qps && queues_left) { 13789 pf->num_vmdq_vsis = min_t(int, pf->num_vmdq_vsis, 13790 (queues_left / pf->num_vmdq_qps)); 13791 queues_left -= (pf->num_vmdq_vsis * pf->num_vmdq_qps); 13792 } 13793 13794 pf->queues_left = queues_left; 13795 dev_dbg(&pf->pdev->dev, 13796 "qs_avail=%d FD SB=%d lan_qs=%d lan_tc0=%d vf=%d*%d vmdq=%d*%d, remaining=%d\n", 13797 pf->hw.func_caps.num_tx_qp, 13798 !!(pf->flags & I40E_FLAG_FD_SB_ENABLED), 13799 pf->num_lan_qps, pf->alloc_rss_size, pf->num_req_vfs, 13800 pf->num_vf_qps, pf->num_vmdq_vsis, pf->num_vmdq_qps, 13801 queues_left); 13802 } 13803 13804 /** 13805 * i40e_setup_pf_filter_control - Setup PF static filter control 13806 * @pf: PF to be setup 13807 * 13808 * i40e_setup_pf_filter_control sets up a PF's initial filter control 13809 * settings. If PE/FCoE are enabled then it will also set the per PF 13810 * based filter sizes required for them. It also enables Flow director, 13811 * ethertype and macvlan type filter settings for the pf. 13812 * 13813 * Returns 0 on success, negative on failure 13814 **/ 13815 static int i40e_setup_pf_filter_control(struct i40e_pf *pf) 13816 { 13817 struct i40e_filter_control_settings *settings = &pf->filter_settings; 13818 13819 settings->hash_lut_size = I40E_HASH_LUT_SIZE_128; 13820 13821 /* Flow Director is enabled */ 13822 if (pf->flags & (I40E_FLAG_FD_SB_ENABLED | I40E_FLAG_FD_ATR_ENABLED)) 13823 settings->enable_fdir = true; 13824 13825 /* Ethtype and MACVLAN filters enabled for PF */ 13826 settings->enable_ethtype = true; 13827 settings->enable_macvlan = true; 13828 13829 if (i40e_set_filter_control(&pf->hw, settings)) 13830 return -ENOENT; 13831 13832 return 0; 13833 } 13834 13835 #define INFO_STRING_LEN 255 13836 #define REMAIN(__x) (INFO_STRING_LEN - (__x)) 13837 static void i40e_print_features(struct i40e_pf *pf) 13838 { 13839 struct i40e_hw *hw = &pf->hw; 13840 char *buf; 13841 int i; 13842 13843 buf = kmalloc(INFO_STRING_LEN, GFP_KERNEL); 13844 if (!buf) 13845 return; 13846 13847 i = snprintf(buf, INFO_STRING_LEN, "Features: PF-id[%d]", hw->pf_id); 13848 #ifdef CONFIG_PCI_IOV 13849 i += snprintf(&buf[i], REMAIN(i), " VFs: %d", pf->num_req_vfs); 13850 #endif 13851 i += snprintf(&buf[i], REMAIN(i), " VSIs: %d QP: %d", 13852 pf->hw.func_caps.num_vsis, 13853 pf->vsi[pf->lan_vsi]->num_queue_pairs); 13854 if (pf->flags & I40E_FLAG_RSS_ENABLED) 13855 i += snprintf(&buf[i], REMAIN(i), " RSS"); 13856 if (pf->flags & I40E_FLAG_FD_ATR_ENABLED) 13857 i += snprintf(&buf[i], REMAIN(i), " FD_ATR"); 13858 if (pf->flags & I40E_FLAG_FD_SB_ENABLED) { 13859 i += snprintf(&buf[i], REMAIN(i), " FD_SB"); 13860 i += snprintf(&buf[i], REMAIN(i), " NTUPLE"); 13861 } 13862 if (pf->flags & I40E_FLAG_DCB_CAPABLE) 13863 i += snprintf(&buf[i], REMAIN(i), " DCB"); 13864 i += snprintf(&buf[i], REMAIN(i), " VxLAN"); 13865 i += snprintf(&buf[i], REMAIN(i), " Geneve"); 13866 if (pf->flags & I40E_FLAG_PTP) 13867 i += snprintf(&buf[i], REMAIN(i), " PTP"); 13868 if (pf->flags & I40E_FLAG_VEB_MODE_ENABLED) 13869 i += snprintf(&buf[i], REMAIN(i), " VEB"); 13870 else 13871 i += snprintf(&buf[i], REMAIN(i), " VEPA"); 13872 13873 dev_info(&pf->pdev->dev, "%s\n", buf); 13874 kfree(buf); 13875 WARN_ON(i > INFO_STRING_LEN); 13876 } 13877 13878 /** 13879 * i40e_get_platform_mac_addr - get platform-specific MAC address 13880 * @pdev: PCI device information struct 13881 * @pf: board private structure 13882 * 13883 * Look up the MAC address for the device. First we'll try 13884 * eth_platform_get_mac_address, which will check Open Firmware, or arch 13885 * specific fallback. Otherwise, we'll default to the stored value in 13886 * firmware. 13887 **/ 13888 static void i40e_get_platform_mac_addr(struct pci_dev *pdev, struct i40e_pf *pf) 13889 { 13890 if (eth_platform_get_mac_address(&pdev->dev, pf->hw.mac.addr)) 13891 i40e_get_mac_addr(&pf->hw, pf->hw.mac.addr); 13892 } 13893 13894 /** 13895 * i40e_set_fec_in_flags - helper function for setting FEC options in flags 13896 * @fec_cfg: FEC option to set in flags 13897 * @flags: ptr to flags in which we set FEC option 13898 **/ 13899 void i40e_set_fec_in_flags(u8 fec_cfg, u32 *flags) 13900 { 13901 if (fec_cfg & I40E_AQ_SET_FEC_AUTO) 13902 *flags |= I40E_FLAG_RS_FEC | I40E_FLAG_BASE_R_FEC; 13903 if ((fec_cfg & I40E_AQ_SET_FEC_REQUEST_RS) || 13904 (fec_cfg & I40E_AQ_SET_FEC_ABILITY_RS)) { 13905 *flags |= I40E_FLAG_RS_FEC; 13906 *flags &= ~I40E_FLAG_BASE_R_FEC; 13907 } 13908 if ((fec_cfg & I40E_AQ_SET_FEC_REQUEST_KR) || 13909 (fec_cfg & I40E_AQ_SET_FEC_ABILITY_KR)) { 13910 *flags |= I40E_FLAG_BASE_R_FEC; 13911 *flags &= ~I40E_FLAG_RS_FEC; 13912 } 13913 if (fec_cfg == 0) 13914 *flags &= ~(I40E_FLAG_RS_FEC | I40E_FLAG_BASE_R_FEC); 13915 } 13916 13917 /** 13918 * i40e_probe - Device initialization routine 13919 * @pdev: PCI device information struct 13920 * @ent: entry in i40e_pci_tbl 13921 * 13922 * i40e_probe initializes a PF identified by a pci_dev structure. 13923 * The OS initialization, configuring of the PF private structure, 13924 * and a hardware reset occur. 13925 * 13926 * Returns 0 on success, negative on failure 13927 **/ 13928 static int i40e_probe(struct pci_dev *pdev, const struct pci_device_id *ent) 13929 { 13930 struct i40e_aq_get_phy_abilities_resp abilities; 13931 struct i40e_pf *pf; 13932 struct i40e_hw *hw; 13933 static u16 pfs_found; 13934 u16 wol_nvm_bits; 13935 u16 link_status; 13936 int err; 13937 u32 val; 13938 u32 i; 13939 u8 set_fc_aq_fail; 13940 13941 err = pci_enable_device_mem(pdev); 13942 if (err) 13943 return err; 13944 13945 /* set up for high or low dma */ 13946 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)); 13947 if (err) { 13948 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)); 13949 if (err) { 13950 dev_err(&pdev->dev, 13951 "DMA configuration failed: 0x%x\n", err); 13952 goto err_dma; 13953 } 13954 } 13955 13956 /* set up pci connections */ 13957 err = pci_request_mem_regions(pdev, i40e_driver_name); 13958 if (err) { 13959 dev_info(&pdev->dev, 13960 "pci_request_selected_regions failed %d\n", err); 13961 goto err_pci_reg; 13962 } 13963 13964 pci_enable_pcie_error_reporting(pdev); 13965 pci_set_master(pdev); 13966 13967 /* Now that we have a PCI connection, we need to do the 13968 * low level device setup. This is primarily setting up 13969 * the Admin Queue structures and then querying for the 13970 * device's current profile information. 13971 */ 13972 pf = kzalloc(sizeof(*pf), GFP_KERNEL); 13973 if (!pf) { 13974 err = -ENOMEM; 13975 goto err_pf_alloc; 13976 } 13977 pf->next_vsi = 0; 13978 pf->pdev = pdev; 13979 set_bit(__I40E_DOWN, pf->state); 13980 13981 hw = &pf->hw; 13982 hw->back = pf; 13983 13984 pf->ioremap_len = min_t(int, pci_resource_len(pdev, 0), 13985 I40E_MAX_CSR_SPACE); 13986 13987 hw->hw_addr = ioremap(pci_resource_start(pdev, 0), pf->ioremap_len); 13988 if (!hw->hw_addr) { 13989 err = -EIO; 13990 dev_info(&pdev->dev, "ioremap(0x%04x, 0x%04x) failed: 0x%x\n", 13991 (unsigned int)pci_resource_start(pdev, 0), 13992 pf->ioremap_len, err); 13993 goto err_ioremap; 13994 } 13995 hw->vendor_id = pdev->vendor; 13996 hw->device_id = pdev->device; 13997 pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id); 13998 hw->subsystem_vendor_id = pdev->subsystem_vendor; 13999 hw->subsystem_device_id = pdev->subsystem_device; 14000 hw->bus.device = PCI_SLOT(pdev->devfn); 14001 hw->bus.func = PCI_FUNC(pdev->devfn); 14002 hw->bus.bus_id = pdev->bus->number; 14003 pf->instance = pfs_found; 14004 14005 /* Select something other than the 802.1ad ethertype for the 14006 * switch to use internally and drop on ingress. 14007 */ 14008 hw->switch_tag = 0xffff; 14009 hw->first_tag = ETH_P_8021AD; 14010 hw->second_tag = ETH_P_8021Q; 14011 14012 INIT_LIST_HEAD(&pf->l3_flex_pit_list); 14013 INIT_LIST_HEAD(&pf->l4_flex_pit_list); 14014 INIT_LIST_HEAD(&pf->ddp_old_prof); 14015 14016 /* set up the locks for the AQ, do this only once in probe 14017 * and destroy them only once in remove 14018 */ 14019 mutex_init(&hw->aq.asq_mutex); 14020 mutex_init(&hw->aq.arq_mutex); 14021 14022 pf->msg_enable = netif_msg_init(debug, 14023 NETIF_MSG_DRV | 14024 NETIF_MSG_PROBE | 14025 NETIF_MSG_LINK); 14026 if (debug < -1) 14027 pf->hw.debug_mask = debug; 14028 14029 /* do a special CORER for clearing PXE mode once at init */ 14030 if (hw->revision_id == 0 && 14031 (rd32(hw, I40E_GLLAN_RCTL_0) & I40E_GLLAN_RCTL_0_PXE_MODE_MASK)) { 14032 wr32(hw, I40E_GLGEN_RTRIG, I40E_GLGEN_RTRIG_CORER_MASK); 14033 i40e_flush(hw); 14034 msleep(200); 14035 pf->corer_count++; 14036 14037 i40e_clear_pxe_mode(hw); 14038 } 14039 14040 /* Reset here to make sure all is clean and to define PF 'n' */ 14041 i40e_clear_hw(hw); 14042 err = i40e_pf_reset(hw); 14043 if (err) { 14044 dev_info(&pdev->dev, "Initial pf_reset failed: %d\n", err); 14045 goto err_pf_reset; 14046 } 14047 pf->pfr_count++; 14048 14049 hw->aq.num_arq_entries = I40E_AQ_LEN; 14050 hw->aq.num_asq_entries = I40E_AQ_LEN; 14051 hw->aq.arq_buf_size = I40E_MAX_AQ_BUF_SIZE; 14052 hw->aq.asq_buf_size = I40E_MAX_AQ_BUF_SIZE; 14053 pf->adminq_work_limit = I40E_AQ_WORK_LIMIT; 14054 14055 snprintf(pf->int_name, sizeof(pf->int_name) - 1, 14056 "%s-%s:misc", 14057 dev_driver_string(&pf->pdev->dev), dev_name(&pdev->dev)); 14058 14059 err = i40e_init_shared_code(hw); 14060 if (err) { 14061 dev_warn(&pdev->dev, "unidentified MAC or BLANK NVM: %d\n", 14062 err); 14063 goto err_pf_reset; 14064 } 14065 14066 /* set up a default setting for link flow control */ 14067 pf->hw.fc.requested_mode = I40E_FC_NONE; 14068 14069 err = i40e_init_adminq(hw); 14070 if (err) { 14071 if (err == I40E_ERR_FIRMWARE_API_VERSION) 14072 dev_info(&pdev->dev, 14073 "The driver for the device stopped because the NVM image v%u.%u is newer than expected v%u.%u. You must install the most recent version of the network driver.\n", 14074 hw->aq.api_maj_ver, 14075 hw->aq.api_min_ver, 14076 I40E_FW_API_VERSION_MAJOR, 14077 I40E_FW_MINOR_VERSION(hw)); 14078 else 14079 dev_info(&pdev->dev, 14080 "The driver for the device stopped because the device firmware failed to init. Try updating your NVM image.\n"); 14081 14082 goto err_pf_reset; 14083 } 14084 i40e_get_oem_version(hw); 14085 14086 /* provide nvm, fw, api versions */ 14087 dev_info(&pdev->dev, "fw %d.%d.%05d api %d.%d nvm %s\n", 14088 hw->aq.fw_maj_ver, hw->aq.fw_min_ver, hw->aq.fw_build, 14089 hw->aq.api_maj_ver, hw->aq.api_min_ver, 14090 i40e_nvm_version_str(hw)); 14091 14092 if (hw->aq.api_maj_ver == I40E_FW_API_VERSION_MAJOR && 14093 hw->aq.api_min_ver > I40E_FW_MINOR_VERSION(hw)) 14094 dev_info(&pdev->dev, 14095 "The driver for the device detected a newer version of the NVM image v%u.%u than expected v%u.%u. Please install the most recent version of the network driver.\n", 14096 hw->aq.api_maj_ver, 14097 hw->aq.api_min_ver, 14098 I40E_FW_API_VERSION_MAJOR, 14099 I40E_FW_MINOR_VERSION(hw)); 14100 else if (hw->aq.api_maj_ver == 1 && hw->aq.api_min_ver < 4) 14101 dev_info(&pdev->dev, 14102 "The driver for the device detected an older version of the NVM image v%u.%u than expected v%u.%u. Please update the NVM image.\n", 14103 hw->aq.api_maj_ver, 14104 hw->aq.api_min_ver, 14105 I40E_FW_API_VERSION_MAJOR, 14106 I40E_FW_MINOR_VERSION(hw)); 14107 14108 i40e_verify_eeprom(pf); 14109 14110 /* Rev 0 hardware was never productized */ 14111 if (hw->revision_id < 1) 14112 dev_warn(&pdev->dev, "This device is a pre-production adapter/LOM. Please be aware there may be issues with your hardware. If you are experiencing problems please contact your Intel or hardware representative who provided you with this hardware.\n"); 14113 14114 i40e_clear_pxe_mode(hw); 14115 err = i40e_get_capabilities(pf, i40e_aqc_opc_list_func_capabilities); 14116 if (err) 14117 goto err_adminq_setup; 14118 14119 err = i40e_sw_init(pf); 14120 if (err) { 14121 dev_info(&pdev->dev, "sw_init failed: %d\n", err); 14122 goto err_sw_init; 14123 } 14124 14125 err = i40e_init_lan_hmc(hw, hw->func_caps.num_tx_qp, 14126 hw->func_caps.num_rx_qp, 0, 0); 14127 if (err) { 14128 dev_info(&pdev->dev, "init_lan_hmc failed: %d\n", err); 14129 goto err_init_lan_hmc; 14130 } 14131 14132 err = i40e_configure_lan_hmc(hw, I40E_HMC_MODEL_DIRECT_ONLY); 14133 if (err) { 14134 dev_info(&pdev->dev, "configure_lan_hmc failed: %d\n", err); 14135 err = -ENOENT; 14136 goto err_configure_lan_hmc; 14137 } 14138 14139 /* Disable LLDP for NICs that have firmware versions lower than v4.3. 14140 * Ignore error return codes because if it was already disabled via 14141 * hardware settings this will fail 14142 */ 14143 if (pf->hw_features & I40E_HW_STOP_FW_LLDP) { 14144 dev_info(&pdev->dev, "Stopping firmware LLDP agent.\n"); 14145 i40e_aq_stop_lldp(hw, true, NULL); 14146 } 14147 14148 /* allow a platform config to override the HW addr */ 14149 i40e_get_platform_mac_addr(pdev, pf); 14150 14151 if (!is_valid_ether_addr(hw->mac.addr)) { 14152 dev_info(&pdev->dev, "invalid MAC address %pM\n", hw->mac.addr); 14153 err = -EIO; 14154 goto err_mac_addr; 14155 } 14156 dev_info(&pdev->dev, "MAC address: %pM\n", hw->mac.addr); 14157 ether_addr_copy(hw->mac.perm_addr, hw->mac.addr); 14158 i40e_get_port_mac_addr(hw, hw->mac.port_addr); 14159 if (is_valid_ether_addr(hw->mac.port_addr)) 14160 pf->hw_features |= I40E_HW_PORT_ID_VALID; 14161 14162 pci_set_drvdata(pdev, pf); 14163 pci_save_state(pdev); 14164 14165 /* Enable FW to write default DCB config on link-up */ 14166 i40e_aq_set_dcb_parameters(hw, true, NULL); 14167 14168 #ifdef CONFIG_I40E_DCB 14169 err = i40e_init_pf_dcb(pf); 14170 if (err) { 14171 dev_info(&pdev->dev, "DCB init failed %d, disabled\n", err); 14172 pf->flags &= ~(I40E_FLAG_DCB_CAPABLE | I40E_FLAG_DCB_ENABLED); 14173 /* Continue without DCB enabled */ 14174 } 14175 #endif /* CONFIG_I40E_DCB */ 14176 14177 /* set up periodic task facility */ 14178 timer_setup(&pf->service_timer, i40e_service_timer, 0); 14179 pf->service_timer_period = HZ; 14180 14181 INIT_WORK(&pf->service_task, i40e_service_task); 14182 clear_bit(__I40E_SERVICE_SCHED, pf->state); 14183 14184 /* NVM bit on means WoL disabled for the port */ 14185 i40e_read_nvm_word(hw, I40E_SR_NVM_WAKE_ON_LAN, &wol_nvm_bits); 14186 if (BIT (hw->port) & wol_nvm_bits || hw->partition_id != 1) 14187 pf->wol_en = false; 14188 else 14189 pf->wol_en = true; 14190 device_set_wakeup_enable(&pf->pdev->dev, pf->wol_en); 14191 14192 /* set up the main switch operations */ 14193 i40e_determine_queue_usage(pf); 14194 err = i40e_init_interrupt_scheme(pf); 14195 if (err) 14196 goto err_switch_setup; 14197 14198 /* The number of VSIs reported by the FW is the minimum guaranteed 14199 * to us; HW supports far more and we share the remaining pool with 14200 * the other PFs. We allocate space for more than the guarantee with 14201 * the understanding that we might not get them all later. 14202 */ 14203 if (pf->hw.func_caps.num_vsis < I40E_MIN_VSI_ALLOC) 14204 pf->num_alloc_vsi = I40E_MIN_VSI_ALLOC; 14205 else 14206 pf->num_alloc_vsi = pf->hw.func_caps.num_vsis; 14207 14208 /* Set up the *vsi struct and our local tracking of the MAIN PF vsi. */ 14209 pf->vsi = kcalloc(pf->num_alloc_vsi, sizeof(struct i40e_vsi *), 14210 GFP_KERNEL); 14211 if (!pf->vsi) { 14212 err = -ENOMEM; 14213 goto err_switch_setup; 14214 } 14215 14216 #ifdef CONFIG_PCI_IOV 14217 /* prep for VF support */ 14218 if ((pf->flags & I40E_FLAG_SRIOV_ENABLED) && 14219 (pf->flags & I40E_FLAG_MSIX_ENABLED) && 14220 !test_bit(__I40E_BAD_EEPROM, pf->state)) { 14221 if (pci_num_vf(pdev)) 14222 pf->flags |= I40E_FLAG_VEB_MODE_ENABLED; 14223 } 14224 #endif 14225 err = i40e_setup_pf_switch(pf, false); 14226 if (err) { 14227 dev_info(&pdev->dev, "setup_pf_switch failed: %d\n", err); 14228 goto err_vsis; 14229 } 14230 INIT_LIST_HEAD(&pf->vsi[pf->lan_vsi]->ch_list); 14231 14232 /* Make sure flow control is set according to current settings */ 14233 err = i40e_set_fc(hw, &set_fc_aq_fail, true); 14234 if (set_fc_aq_fail & I40E_SET_FC_AQ_FAIL_GET) 14235 dev_dbg(&pf->pdev->dev, 14236 "Set fc with err %s aq_err %s on get_phy_cap\n", 14237 i40e_stat_str(hw, err), 14238 i40e_aq_str(hw, hw->aq.asq_last_status)); 14239 if (set_fc_aq_fail & I40E_SET_FC_AQ_FAIL_SET) 14240 dev_dbg(&pf->pdev->dev, 14241 "Set fc with err %s aq_err %s on set_phy_config\n", 14242 i40e_stat_str(hw, err), 14243 i40e_aq_str(hw, hw->aq.asq_last_status)); 14244 if (set_fc_aq_fail & I40E_SET_FC_AQ_FAIL_UPDATE) 14245 dev_dbg(&pf->pdev->dev, 14246 "Set fc with err %s aq_err %s on get_link_info\n", 14247 i40e_stat_str(hw, err), 14248 i40e_aq_str(hw, hw->aq.asq_last_status)); 14249 14250 /* if FDIR VSI was set up, start it now */ 14251 for (i = 0; i < pf->num_alloc_vsi; i++) { 14252 if (pf->vsi[i] && pf->vsi[i]->type == I40E_VSI_FDIR) { 14253 i40e_vsi_open(pf->vsi[i]); 14254 break; 14255 } 14256 } 14257 14258 /* The driver only wants link up/down and module qualification 14259 * reports from firmware. Note the negative logic. 14260 */ 14261 err = i40e_aq_set_phy_int_mask(&pf->hw, 14262 ~(I40E_AQ_EVENT_LINK_UPDOWN | 14263 I40E_AQ_EVENT_MEDIA_NA | 14264 I40E_AQ_EVENT_MODULE_QUAL_FAIL), NULL); 14265 if (err) 14266 dev_info(&pf->pdev->dev, "set phy mask fail, err %s aq_err %s\n", 14267 i40e_stat_str(&pf->hw, err), 14268 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 14269 14270 /* Reconfigure hardware for allowing smaller MSS in the case 14271 * of TSO, so that we avoid the MDD being fired and causing 14272 * a reset in the case of small MSS+TSO. 14273 */ 14274 val = rd32(hw, I40E_REG_MSS); 14275 if ((val & I40E_REG_MSS_MIN_MASK) > I40E_64BYTE_MSS) { 14276 val &= ~I40E_REG_MSS_MIN_MASK; 14277 val |= I40E_64BYTE_MSS; 14278 wr32(hw, I40E_REG_MSS, val); 14279 } 14280 14281 if (pf->hw_features & I40E_HW_RESTART_AUTONEG) { 14282 msleep(75); 14283 err = i40e_aq_set_link_restart_an(&pf->hw, true, NULL); 14284 if (err) 14285 dev_info(&pf->pdev->dev, "link restart failed, err %s aq_err %s\n", 14286 i40e_stat_str(&pf->hw, err), 14287 i40e_aq_str(&pf->hw, 14288 pf->hw.aq.asq_last_status)); 14289 } 14290 /* The main driver is (mostly) up and happy. We need to set this state 14291 * before setting up the misc vector or we get a race and the vector 14292 * ends up disabled forever. 14293 */ 14294 clear_bit(__I40E_DOWN, pf->state); 14295 14296 /* In case of MSIX we are going to setup the misc vector right here 14297 * to handle admin queue events etc. In case of legacy and MSI 14298 * the misc functionality and queue processing is combined in 14299 * the same vector and that gets setup at open. 14300 */ 14301 if (pf->flags & I40E_FLAG_MSIX_ENABLED) { 14302 err = i40e_setup_misc_vector(pf); 14303 if (err) { 14304 dev_info(&pdev->dev, 14305 "setup of misc vector failed: %d\n", err); 14306 goto err_vsis; 14307 } 14308 } 14309 14310 #ifdef CONFIG_PCI_IOV 14311 /* prep for VF support */ 14312 if ((pf->flags & I40E_FLAG_SRIOV_ENABLED) && 14313 (pf->flags & I40E_FLAG_MSIX_ENABLED) && 14314 !test_bit(__I40E_BAD_EEPROM, pf->state)) { 14315 /* disable link interrupts for VFs */ 14316 val = rd32(hw, I40E_PFGEN_PORTMDIO_NUM); 14317 val &= ~I40E_PFGEN_PORTMDIO_NUM_VFLINK_STAT_ENA_MASK; 14318 wr32(hw, I40E_PFGEN_PORTMDIO_NUM, val); 14319 i40e_flush(hw); 14320 14321 if (pci_num_vf(pdev)) { 14322 dev_info(&pdev->dev, 14323 "Active VFs found, allocating resources.\n"); 14324 err = i40e_alloc_vfs(pf, pci_num_vf(pdev)); 14325 if (err) 14326 dev_info(&pdev->dev, 14327 "Error %d allocating resources for existing VFs\n", 14328 err); 14329 } 14330 } 14331 #endif /* CONFIG_PCI_IOV */ 14332 14333 if (pf->flags & I40E_FLAG_IWARP_ENABLED) { 14334 pf->iwarp_base_vector = i40e_get_lump(pf, pf->irq_pile, 14335 pf->num_iwarp_msix, 14336 I40E_IWARP_IRQ_PILE_ID); 14337 if (pf->iwarp_base_vector < 0) { 14338 dev_info(&pdev->dev, 14339 "failed to get tracking for %d vectors for IWARP err=%d\n", 14340 pf->num_iwarp_msix, pf->iwarp_base_vector); 14341 pf->flags &= ~I40E_FLAG_IWARP_ENABLED; 14342 } 14343 } 14344 14345 i40e_dbg_pf_init(pf); 14346 14347 /* tell the firmware that we're starting */ 14348 i40e_send_version(pf); 14349 14350 /* since everything's happy, start the service_task timer */ 14351 mod_timer(&pf->service_timer, 14352 round_jiffies(jiffies + pf->service_timer_period)); 14353 14354 /* add this PF to client device list and launch a client service task */ 14355 if (pf->flags & I40E_FLAG_IWARP_ENABLED) { 14356 err = i40e_lan_add_device(pf); 14357 if (err) 14358 dev_info(&pdev->dev, "Failed to add PF to client API service list: %d\n", 14359 err); 14360 } 14361 14362 #define PCI_SPEED_SIZE 8 14363 #define PCI_WIDTH_SIZE 8 14364 /* Devices on the IOSF bus do not have this information 14365 * and will report PCI Gen 1 x 1 by default so don't bother 14366 * checking them. 14367 */ 14368 if (!(pf->hw_features & I40E_HW_NO_PCI_LINK_CHECK)) { 14369 char speed[PCI_SPEED_SIZE] = "Unknown"; 14370 char width[PCI_WIDTH_SIZE] = "Unknown"; 14371 14372 /* Get the negotiated link width and speed from PCI config 14373 * space 14374 */ 14375 pcie_capability_read_word(pf->pdev, PCI_EXP_LNKSTA, 14376 &link_status); 14377 14378 i40e_set_pci_config_data(hw, link_status); 14379 14380 switch (hw->bus.speed) { 14381 case i40e_bus_speed_8000: 14382 strlcpy(speed, "8.0", PCI_SPEED_SIZE); break; 14383 case i40e_bus_speed_5000: 14384 strlcpy(speed, "5.0", PCI_SPEED_SIZE); break; 14385 case i40e_bus_speed_2500: 14386 strlcpy(speed, "2.5", PCI_SPEED_SIZE); break; 14387 default: 14388 break; 14389 } 14390 switch (hw->bus.width) { 14391 case i40e_bus_width_pcie_x8: 14392 strlcpy(width, "8", PCI_WIDTH_SIZE); break; 14393 case i40e_bus_width_pcie_x4: 14394 strlcpy(width, "4", PCI_WIDTH_SIZE); break; 14395 case i40e_bus_width_pcie_x2: 14396 strlcpy(width, "2", PCI_WIDTH_SIZE); break; 14397 case i40e_bus_width_pcie_x1: 14398 strlcpy(width, "1", PCI_WIDTH_SIZE); break; 14399 default: 14400 break; 14401 } 14402 14403 dev_info(&pdev->dev, "PCI-Express: Speed %sGT/s Width x%s\n", 14404 speed, width); 14405 14406 if (hw->bus.width < i40e_bus_width_pcie_x8 || 14407 hw->bus.speed < i40e_bus_speed_8000) { 14408 dev_warn(&pdev->dev, "PCI-Express bandwidth available for this device may be insufficient for optimal performance.\n"); 14409 dev_warn(&pdev->dev, "Please move the device to a different PCI-e link with more lanes and/or higher transfer rate.\n"); 14410 } 14411 } 14412 14413 /* get the requested speeds from the fw */ 14414 err = i40e_aq_get_phy_capabilities(hw, false, false, &abilities, NULL); 14415 if (err) 14416 dev_dbg(&pf->pdev->dev, "get requested speeds ret = %s last_status = %s\n", 14417 i40e_stat_str(&pf->hw, err), 14418 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 14419 pf->hw.phy.link_info.requested_speeds = abilities.link_speed; 14420 14421 /* set the FEC config due to the board capabilities */ 14422 i40e_set_fec_in_flags(abilities.fec_cfg_curr_mod_ext_info, &pf->flags); 14423 14424 /* get the supported phy types from the fw */ 14425 err = i40e_aq_get_phy_capabilities(hw, false, true, &abilities, NULL); 14426 if (err) 14427 dev_dbg(&pf->pdev->dev, "get supported phy types ret = %s last_status = %s\n", 14428 i40e_stat_str(&pf->hw, err), 14429 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 14430 14431 /* Add a filter to drop all Flow control frames from any VSI from being 14432 * transmitted. By doing so we stop a malicious VF from sending out 14433 * PAUSE or PFC frames and potentially controlling traffic for other 14434 * PF/VF VSIs. 14435 * The FW can still send Flow control frames if enabled. 14436 */ 14437 i40e_add_filter_to_drop_tx_flow_control_frames(&pf->hw, 14438 pf->main_vsi_seid); 14439 14440 if ((pf->hw.device_id == I40E_DEV_ID_10G_BASE_T) || 14441 (pf->hw.device_id == I40E_DEV_ID_10G_BASE_T4)) 14442 pf->hw_features |= I40E_HW_PHY_CONTROLS_LEDS; 14443 if (pf->hw.device_id == I40E_DEV_ID_SFP_I_X722) 14444 pf->hw_features |= I40E_HW_HAVE_CRT_RETIMER; 14445 /* print a string summarizing features */ 14446 i40e_print_features(pf); 14447 14448 return 0; 14449 14450 /* Unwind what we've done if something failed in the setup */ 14451 err_vsis: 14452 set_bit(__I40E_DOWN, pf->state); 14453 i40e_clear_interrupt_scheme(pf); 14454 kfree(pf->vsi); 14455 err_switch_setup: 14456 i40e_reset_interrupt_capability(pf); 14457 del_timer_sync(&pf->service_timer); 14458 err_mac_addr: 14459 err_configure_lan_hmc: 14460 (void)i40e_shutdown_lan_hmc(hw); 14461 err_init_lan_hmc: 14462 kfree(pf->qp_pile); 14463 err_sw_init: 14464 err_adminq_setup: 14465 err_pf_reset: 14466 iounmap(hw->hw_addr); 14467 err_ioremap: 14468 kfree(pf); 14469 err_pf_alloc: 14470 pci_disable_pcie_error_reporting(pdev); 14471 pci_release_mem_regions(pdev); 14472 err_pci_reg: 14473 err_dma: 14474 pci_disable_device(pdev); 14475 return err; 14476 } 14477 14478 /** 14479 * i40e_remove - Device removal routine 14480 * @pdev: PCI device information struct 14481 * 14482 * i40e_remove is called by the PCI subsystem to alert the driver 14483 * that is should release a PCI device. This could be caused by a 14484 * Hot-Plug event, or because the driver is going to be removed from 14485 * memory. 14486 **/ 14487 static void i40e_remove(struct pci_dev *pdev) 14488 { 14489 struct i40e_pf *pf = pci_get_drvdata(pdev); 14490 struct i40e_hw *hw = &pf->hw; 14491 i40e_status ret_code; 14492 int i; 14493 14494 i40e_dbg_pf_exit(pf); 14495 14496 i40e_ptp_stop(pf); 14497 14498 /* Disable RSS in hw */ 14499 i40e_write_rx_ctl(hw, I40E_PFQF_HENA(0), 0); 14500 i40e_write_rx_ctl(hw, I40E_PFQF_HENA(1), 0); 14501 14502 /* no more scheduling of any task */ 14503 set_bit(__I40E_SUSPENDED, pf->state); 14504 set_bit(__I40E_DOWN, pf->state); 14505 if (pf->service_timer.function) 14506 del_timer_sync(&pf->service_timer); 14507 if (pf->service_task.func) 14508 cancel_work_sync(&pf->service_task); 14509 14510 /* Client close must be called explicitly here because the timer 14511 * has been stopped. 14512 */ 14513 i40e_notify_client_of_netdev_close(pf->vsi[pf->lan_vsi], false); 14514 14515 if (pf->flags & I40E_FLAG_SRIOV_ENABLED) { 14516 i40e_free_vfs(pf); 14517 pf->flags &= ~I40E_FLAG_SRIOV_ENABLED; 14518 } 14519 14520 i40e_fdir_teardown(pf); 14521 14522 /* If there is a switch structure or any orphans, remove them. 14523 * This will leave only the PF's VSI remaining. 14524 */ 14525 for (i = 0; i < I40E_MAX_VEB; i++) { 14526 if (!pf->veb[i]) 14527 continue; 14528 14529 if (pf->veb[i]->uplink_seid == pf->mac_seid || 14530 pf->veb[i]->uplink_seid == 0) 14531 i40e_switch_branch_release(pf->veb[i]); 14532 } 14533 14534 /* Now we can shutdown the PF's VSI, just before we kill 14535 * adminq and hmc. 14536 */ 14537 if (pf->vsi[pf->lan_vsi]) 14538 i40e_vsi_release(pf->vsi[pf->lan_vsi]); 14539 14540 i40e_cloud_filter_exit(pf); 14541 14542 /* remove attached clients */ 14543 if (pf->flags & I40E_FLAG_IWARP_ENABLED) { 14544 ret_code = i40e_lan_del_device(pf); 14545 if (ret_code) 14546 dev_warn(&pdev->dev, "Failed to delete client device: %d\n", 14547 ret_code); 14548 } 14549 14550 /* shutdown and destroy the HMC */ 14551 if (hw->hmc.hmc_obj) { 14552 ret_code = i40e_shutdown_lan_hmc(hw); 14553 if (ret_code) 14554 dev_warn(&pdev->dev, 14555 "Failed to destroy the HMC resources: %d\n", 14556 ret_code); 14557 } 14558 14559 /* shutdown the adminq */ 14560 i40e_shutdown_adminq(hw); 14561 14562 /* destroy the locks only once, here */ 14563 mutex_destroy(&hw->aq.arq_mutex); 14564 mutex_destroy(&hw->aq.asq_mutex); 14565 14566 /* Clear all dynamic memory lists of rings, q_vectors, and VSIs */ 14567 rtnl_lock(); 14568 i40e_clear_interrupt_scheme(pf); 14569 for (i = 0; i < pf->num_alloc_vsi; i++) { 14570 if (pf->vsi[i]) { 14571 i40e_vsi_clear_rings(pf->vsi[i]); 14572 i40e_vsi_clear(pf->vsi[i]); 14573 pf->vsi[i] = NULL; 14574 } 14575 } 14576 rtnl_unlock(); 14577 14578 for (i = 0; i < I40E_MAX_VEB; i++) { 14579 kfree(pf->veb[i]); 14580 pf->veb[i] = NULL; 14581 } 14582 14583 kfree(pf->qp_pile); 14584 kfree(pf->vsi); 14585 14586 iounmap(hw->hw_addr); 14587 kfree(pf); 14588 pci_release_mem_regions(pdev); 14589 14590 pci_disable_pcie_error_reporting(pdev); 14591 pci_disable_device(pdev); 14592 } 14593 14594 /** 14595 * i40e_pci_error_detected - warning that something funky happened in PCI land 14596 * @pdev: PCI device information struct 14597 * @error: the type of PCI error 14598 * 14599 * Called to warn that something happened and the error handling steps 14600 * are in progress. Allows the driver to quiesce things, be ready for 14601 * remediation. 14602 **/ 14603 static pci_ers_result_t i40e_pci_error_detected(struct pci_dev *pdev, 14604 enum pci_channel_state error) 14605 { 14606 struct i40e_pf *pf = pci_get_drvdata(pdev); 14607 14608 dev_info(&pdev->dev, "%s: error %d\n", __func__, error); 14609 14610 if (!pf) { 14611 dev_info(&pdev->dev, 14612 "Cannot recover - error happened during device probe\n"); 14613 return PCI_ERS_RESULT_DISCONNECT; 14614 } 14615 14616 /* shutdown all operations */ 14617 if (!test_bit(__I40E_SUSPENDED, pf->state)) 14618 i40e_prep_for_reset(pf, false); 14619 14620 /* Request a slot reset */ 14621 return PCI_ERS_RESULT_NEED_RESET; 14622 } 14623 14624 /** 14625 * i40e_pci_error_slot_reset - a PCI slot reset just happened 14626 * @pdev: PCI device information struct 14627 * 14628 * Called to find if the driver can work with the device now that 14629 * the pci slot has been reset. If a basic connection seems good 14630 * (registers are readable and have sane content) then return a 14631 * happy little PCI_ERS_RESULT_xxx. 14632 **/ 14633 static pci_ers_result_t i40e_pci_error_slot_reset(struct pci_dev *pdev) 14634 { 14635 struct i40e_pf *pf = pci_get_drvdata(pdev); 14636 pci_ers_result_t result; 14637 u32 reg; 14638 14639 dev_dbg(&pdev->dev, "%s\n", __func__); 14640 if (pci_enable_device_mem(pdev)) { 14641 dev_info(&pdev->dev, 14642 "Cannot re-enable PCI device after reset.\n"); 14643 result = PCI_ERS_RESULT_DISCONNECT; 14644 } else { 14645 pci_set_master(pdev); 14646 pci_restore_state(pdev); 14647 pci_save_state(pdev); 14648 pci_wake_from_d3(pdev, false); 14649 14650 reg = rd32(&pf->hw, I40E_GLGEN_RTRIG); 14651 if (reg == 0) 14652 result = PCI_ERS_RESULT_RECOVERED; 14653 else 14654 result = PCI_ERS_RESULT_DISCONNECT; 14655 } 14656 14657 return result; 14658 } 14659 14660 /** 14661 * i40e_pci_error_reset_prepare - prepare device driver for pci reset 14662 * @pdev: PCI device information struct 14663 */ 14664 static void i40e_pci_error_reset_prepare(struct pci_dev *pdev) 14665 { 14666 struct i40e_pf *pf = pci_get_drvdata(pdev); 14667 14668 i40e_prep_for_reset(pf, false); 14669 } 14670 14671 /** 14672 * i40e_pci_error_reset_done - pci reset done, device driver reset can begin 14673 * @pdev: PCI device information struct 14674 */ 14675 static void i40e_pci_error_reset_done(struct pci_dev *pdev) 14676 { 14677 struct i40e_pf *pf = pci_get_drvdata(pdev); 14678 14679 i40e_reset_and_rebuild(pf, false, false); 14680 } 14681 14682 /** 14683 * i40e_pci_error_resume - restart operations after PCI error recovery 14684 * @pdev: PCI device information struct 14685 * 14686 * Called to allow the driver to bring things back up after PCI error 14687 * and/or reset recovery has finished. 14688 **/ 14689 static void i40e_pci_error_resume(struct pci_dev *pdev) 14690 { 14691 struct i40e_pf *pf = pci_get_drvdata(pdev); 14692 14693 dev_dbg(&pdev->dev, "%s\n", __func__); 14694 if (test_bit(__I40E_SUSPENDED, pf->state)) 14695 return; 14696 14697 i40e_handle_reset_warning(pf, false); 14698 } 14699 14700 /** 14701 * i40e_enable_mc_magic_wake - enable multicast magic packet wake up 14702 * using the mac_address_write admin q function 14703 * @pf: pointer to i40e_pf struct 14704 **/ 14705 static void i40e_enable_mc_magic_wake(struct i40e_pf *pf) 14706 { 14707 struct i40e_hw *hw = &pf->hw; 14708 i40e_status ret; 14709 u8 mac_addr[6]; 14710 u16 flags = 0; 14711 14712 /* Get current MAC address in case it's an LAA */ 14713 if (pf->vsi[pf->lan_vsi] && pf->vsi[pf->lan_vsi]->netdev) { 14714 ether_addr_copy(mac_addr, 14715 pf->vsi[pf->lan_vsi]->netdev->dev_addr); 14716 } else { 14717 dev_err(&pf->pdev->dev, 14718 "Failed to retrieve MAC address; using default\n"); 14719 ether_addr_copy(mac_addr, hw->mac.addr); 14720 } 14721 14722 /* The FW expects the mac address write cmd to first be called with 14723 * one of these flags before calling it again with the multicast 14724 * enable flags. 14725 */ 14726 flags = I40E_AQC_WRITE_TYPE_LAA_WOL; 14727 14728 if (hw->func_caps.flex10_enable && hw->partition_id != 1) 14729 flags = I40E_AQC_WRITE_TYPE_LAA_ONLY; 14730 14731 ret = i40e_aq_mac_address_write(hw, flags, mac_addr, NULL); 14732 if (ret) { 14733 dev_err(&pf->pdev->dev, 14734 "Failed to update MAC address registers; cannot enable Multicast Magic packet wake up"); 14735 return; 14736 } 14737 14738 flags = I40E_AQC_MC_MAG_EN 14739 | I40E_AQC_WOL_PRESERVE_ON_PFR 14740 | I40E_AQC_WRITE_TYPE_UPDATE_MC_MAG; 14741 ret = i40e_aq_mac_address_write(hw, flags, mac_addr, NULL); 14742 if (ret) 14743 dev_err(&pf->pdev->dev, 14744 "Failed to enable Multicast Magic Packet wake up\n"); 14745 } 14746 14747 /** 14748 * i40e_shutdown - PCI callback for shutting down 14749 * @pdev: PCI device information struct 14750 **/ 14751 static void i40e_shutdown(struct pci_dev *pdev) 14752 { 14753 struct i40e_pf *pf = pci_get_drvdata(pdev); 14754 struct i40e_hw *hw = &pf->hw; 14755 14756 set_bit(__I40E_SUSPENDED, pf->state); 14757 set_bit(__I40E_DOWN, pf->state); 14758 14759 del_timer_sync(&pf->service_timer); 14760 cancel_work_sync(&pf->service_task); 14761 i40e_cloud_filter_exit(pf); 14762 i40e_fdir_teardown(pf); 14763 14764 /* Client close must be called explicitly here because the timer 14765 * has been stopped. 14766 */ 14767 i40e_notify_client_of_netdev_close(pf->vsi[pf->lan_vsi], false); 14768 14769 if (pf->wol_en && (pf->hw_features & I40E_HW_WOL_MC_MAGIC_PKT_WAKE)) 14770 i40e_enable_mc_magic_wake(pf); 14771 14772 i40e_prep_for_reset(pf, false); 14773 14774 wr32(hw, I40E_PFPM_APM, 14775 (pf->wol_en ? I40E_PFPM_APM_APME_MASK : 0)); 14776 wr32(hw, I40E_PFPM_WUFC, 14777 (pf->wol_en ? I40E_PFPM_WUFC_MAG_MASK : 0)); 14778 14779 /* Since we're going to destroy queues during the 14780 * i40e_clear_interrupt_scheme() we should hold the RTNL lock for this 14781 * whole section 14782 */ 14783 rtnl_lock(); 14784 i40e_clear_interrupt_scheme(pf); 14785 rtnl_unlock(); 14786 14787 if (system_state == SYSTEM_POWER_OFF) { 14788 pci_wake_from_d3(pdev, pf->wol_en); 14789 pci_set_power_state(pdev, PCI_D3hot); 14790 } 14791 } 14792 14793 /** 14794 * i40e_suspend - PM callback for moving to D3 14795 * @dev: generic device information structure 14796 **/ 14797 static int __maybe_unused i40e_suspend(struct device *dev) 14798 { 14799 struct pci_dev *pdev = to_pci_dev(dev); 14800 struct i40e_pf *pf = pci_get_drvdata(pdev); 14801 struct i40e_hw *hw = &pf->hw; 14802 14803 /* If we're already suspended, then there is nothing to do */ 14804 if (test_and_set_bit(__I40E_SUSPENDED, pf->state)) 14805 return 0; 14806 14807 set_bit(__I40E_DOWN, pf->state); 14808 14809 /* Ensure service task will not be running */ 14810 del_timer_sync(&pf->service_timer); 14811 cancel_work_sync(&pf->service_task); 14812 14813 /* Client close must be called explicitly here because the timer 14814 * has been stopped. 14815 */ 14816 i40e_notify_client_of_netdev_close(pf->vsi[pf->lan_vsi], false); 14817 14818 if (pf->wol_en && (pf->hw_features & I40E_HW_WOL_MC_MAGIC_PKT_WAKE)) 14819 i40e_enable_mc_magic_wake(pf); 14820 14821 /* Since we're going to destroy queues during the 14822 * i40e_clear_interrupt_scheme() we should hold the RTNL lock for this 14823 * whole section 14824 */ 14825 rtnl_lock(); 14826 14827 i40e_prep_for_reset(pf, true); 14828 14829 wr32(hw, I40E_PFPM_APM, (pf->wol_en ? I40E_PFPM_APM_APME_MASK : 0)); 14830 wr32(hw, I40E_PFPM_WUFC, (pf->wol_en ? I40E_PFPM_WUFC_MAG_MASK : 0)); 14831 14832 /* Clear the interrupt scheme and release our IRQs so that the system 14833 * can safely hibernate even when there are a large number of CPUs. 14834 * Otherwise hibernation might fail when mapping all the vectors back 14835 * to CPU0. 14836 */ 14837 i40e_clear_interrupt_scheme(pf); 14838 14839 rtnl_unlock(); 14840 14841 return 0; 14842 } 14843 14844 /** 14845 * i40e_resume - PM callback for waking up from D3 14846 * @dev: generic device information structure 14847 **/ 14848 static int __maybe_unused i40e_resume(struct device *dev) 14849 { 14850 struct pci_dev *pdev = to_pci_dev(dev); 14851 struct i40e_pf *pf = pci_get_drvdata(pdev); 14852 int err; 14853 14854 /* If we're not suspended, then there is nothing to do */ 14855 if (!test_bit(__I40E_SUSPENDED, pf->state)) 14856 return 0; 14857 14858 /* We need to hold the RTNL lock prior to restoring interrupt schemes, 14859 * since we're going to be restoring queues 14860 */ 14861 rtnl_lock(); 14862 14863 /* We cleared the interrupt scheme when we suspended, so we need to 14864 * restore it now to resume device functionality. 14865 */ 14866 err = i40e_restore_interrupt_scheme(pf); 14867 if (err) { 14868 dev_err(&pdev->dev, "Cannot restore interrupt scheme: %d\n", 14869 err); 14870 } 14871 14872 clear_bit(__I40E_DOWN, pf->state); 14873 i40e_reset_and_rebuild(pf, false, true); 14874 14875 rtnl_unlock(); 14876 14877 /* Clear suspended state last after everything is recovered */ 14878 clear_bit(__I40E_SUSPENDED, pf->state); 14879 14880 /* Restart the service task */ 14881 mod_timer(&pf->service_timer, 14882 round_jiffies(jiffies + pf->service_timer_period)); 14883 14884 return 0; 14885 } 14886 14887 static const struct pci_error_handlers i40e_err_handler = { 14888 .error_detected = i40e_pci_error_detected, 14889 .slot_reset = i40e_pci_error_slot_reset, 14890 .reset_prepare = i40e_pci_error_reset_prepare, 14891 .reset_done = i40e_pci_error_reset_done, 14892 .resume = i40e_pci_error_resume, 14893 }; 14894 14895 static SIMPLE_DEV_PM_OPS(i40e_pm_ops, i40e_suspend, i40e_resume); 14896 14897 static struct pci_driver i40e_driver = { 14898 .name = i40e_driver_name, 14899 .id_table = i40e_pci_tbl, 14900 .probe = i40e_probe, 14901 .remove = i40e_remove, 14902 .driver = { 14903 .pm = &i40e_pm_ops, 14904 }, 14905 .shutdown = i40e_shutdown, 14906 .err_handler = &i40e_err_handler, 14907 .sriov_configure = i40e_pci_sriov_configure, 14908 }; 14909 14910 /** 14911 * i40e_init_module - Driver registration routine 14912 * 14913 * i40e_init_module is the first routine called when the driver is 14914 * loaded. All it does is register with the PCI subsystem. 14915 **/ 14916 static int __init i40e_init_module(void) 14917 { 14918 pr_info("%s: %s - version %s\n", i40e_driver_name, 14919 i40e_driver_string, i40e_driver_version_str); 14920 pr_info("%s: %s\n", i40e_driver_name, i40e_copyright); 14921 14922 /* There is no need to throttle the number of active tasks because 14923 * each device limits its own task using a state bit for scheduling 14924 * the service task, and the device tasks do not interfere with each 14925 * other, so we don't set a max task limit. We must set WQ_MEM_RECLAIM 14926 * since we need to be able to guarantee forward progress even under 14927 * memory pressure. 14928 */ 14929 i40e_wq = alloc_workqueue("%s", WQ_MEM_RECLAIM, 0, i40e_driver_name); 14930 if (!i40e_wq) { 14931 pr_err("%s: Failed to create workqueue\n", i40e_driver_name); 14932 return -ENOMEM; 14933 } 14934 14935 i40e_dbg_init(); 14936 return pci_register_driver(&i40e_driver); 14937 } 14938 module_init(i40e_init_module); 14939 14940 /** 14941 * i40e_exit_module - Driver exit cleanup routine 14942 * 14943 * i40e_exit_module is called just before the driver is removed 14944 * from memory. 14945 **/ 14946 static void __exit i40e_exit_module(void) 14947 { 14948 pci_unregister_driver(&i40e_driver); 14949 destroy_workqueue(i40e_wq); 14950 i40e_dbg_exit(); 14951 } 14952 module_exit(i40e_exit_module); 14953