1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright(c) 2013 - 2021 Intel Corporation. */ 3 4 #include <linux/etherdevice.h> 5 #include <linux/of_net.h> 6 #include <linux/pci.h> 7 #include <linux/bpf.h> 8 #include <generated/utsrelease.h> 9 #include <linux/crash_dump.h> 10 11 /* Local includes */ 12 #include "i40e.h" 13 #include "i40e_diag.h" 14 #include "i40e_xsk.h" 15 #include <net/udp_tunnel.h> 16 #include <net/xdp_sock_drv.h> 17 /* All i40e tracepoints are defined by the include below, which 18 * must be included exactly once across the whole kernel with 19 * CREATE_TRACE_POINTS defined 20 */ 21 #define CREATE_TRACE_POINTS 22 #include "i40e_trace.h" 23 24 const char i40e_driver_name[] = "i40e"; 25 static const char i40e_driver_string[] = 26 "Intel(R) Ethernet Connection XL710 Network Driver"; 27 28 static const char i40e_copyright[] = "Copyright (c) 2013 - 2019 Intel Corporation."; 29 30 /* a bit of forward declarations */ 31 static void i40e_vsi_reinit_locked(struct i40e_vsi *vsi); 32 static void i40e_handle_reset_warning(struct i40e_pf *pf, bool lock_acquired); 33 static int i40e_add_vsi(struct i40e_vsi *vsi); 34 static int i40e_add_veb(struct i40e_veb *veb, struct i40e_vsi *vsi); 35 static int i40e_setup_pf_switch(struct i40e_pf *pf, bool reinit, bool lock_acquired); 36 static int i40e_setup_misc_vector(struct i40e_pf *pf); 37 static void i40e_determine_queue_usage(struct i40e_pf *pf); 38 static int i40e_setup_pf_filter_control(struct i40e_pf *pf); 39 static void i40e_prep_for_reset(struct i40e_pf *pf); 40 static void i40e_reset_and_rebuild(struct i40e_pf *pf, bool reinit, 41 bool lock_acquired); 42 static int i40e_reset(struct i40e_pf *pf); 43 static void i40e_rebuild(struct i40e_pf *pf, bool reinit, bool lock_acquired); 44 static int i40e_setup_misc_vector_for_recovery_mode(struct i40e_pf *pf); 45 static int i40e_restore_interrupt_scheme(struct i40e_pf *pf); 46 static bool i40e_check_recovery_mode(struct i40e_pf *pf); 47 static int i40e_init_recovery_mode(struct i40e_pf *pf, struct i40e_hw *hw); 48 static void i40e_fdir_sb_setup(struct i40e_pf *pf); 49 static int i40e_veb_get_bw_info(struct i40e_veb *veb); 50 static int i40e_get_capabilities(struct i40e_pf *pf, 51 enum i40e_admin_queue_opc list_type); 52 static bool i40e_is_total_port_shutdown_enabled(struct i40e_pf *pf); 53 54 /* i40e_pci_tbl - PCI Device ID Table 55 * 56 * Last entry must be all 0s 57 * 58 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID, 59 * Class, Class Mask, private data (not used) } 60 */ 61 static const struct pci_device_id i40e_pci_tbl[] = { 62 {PCI_VDEVICE(INTEL, I40E_DEV_ID_SFP_XL710), 0}, 63 {PCI_VDEVICE(INTEL, I40E_DEV_ID_QEMU), 0}, 64 {PCI_VDEVICE(INTEL, I40E_DEV_ID_KX_B), 0}, 65 {PCI_VDEVICE(INTEL, I40E_DEV_ID_KX_C), 0}, 66 {PCI_VDEVICE(INTEL, I40E_DEV_ID_QSFP_A), 0}, 67 {PCI_VDEVICE(INTEL, I40E_DEV_ID_QSFP_B), 0}, 68 {PCI_VDEVICE(INTEL, I40E_DEV_ID_QSFP_C), 0}, 69 {PCI_VDEVICE(INTEL, I40E_DEV_ID_10G_BASE_T), 0}, 70 {PCI_VDEVICE(INTEL, I40E_DEV_ID_10G_BASE_T4), 0}, 71 {PCI_VDEVICE(INTEL, I40E_DEV_ID_10G_BASE_T_BC), 0}, 72 {PCI_VDEVICE(INTEL, I40E_DEV_ID_10G_SFP), 0}, 73 {PCI_VDEVICE(INTEL, I40E_DEV_ID_10G_B), 0}, 74 {PCI_VDEVICE(INTEL, I40E_DEV_ID_KX_X722), 0}, 75 {PCI_VDEVICE(INTEL, I40E_DEV_ID_QSFP_X722), 0}, 76 {PCI_VDEVICE(INTEL, I40E_DEV_ID_SFP_X722), 0}, 77 {PCI_VDEVICE(INTEL, I40E_DEV_ID_1G_BASE_T_X722), 0}, 78 {PCI_VDEVICE(INTEL, I40E_DEV_ID_10G_BASE_T_X722), 0}, 79 {PCI_VDEVICE(INTEL, I40E_DEV_ID_SFP_I_X722), 0}, 80 {PCI_VDEVICE(INTEL, I40E_DEV_ID_20G_KR2), 0}, 81 {PCI_VDEVICE(INTEL, I40E_DEV_ID_20G_KR2_A), 0}, 82 {PCI_VDEVICE(INTEL, I40E_DEV_ID_X710_N3000), 0}, 83 {PCI_VDEVICE(INTEL, I40E_DEV_ID_XXV710_N3000), 0}, 84 {PCI_VDEVICE(INTEL, I40E_DEV_ID_25G_B), 0}, 85 {PCI_VDEVICE(INTEL, I40E_DEV_ID_25G_SFP28), 0}, 86 /* required last entry */ 87 {0, } 88 }; 89 MODULE_DEVICE_TABLE(pci, i40e_pci_tbl); 90 91 #define I40E_MAX_VF_COUNT 128 92 static int debug = -1; 93 module_param(debug, uint, 0); 94 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all), Debug mask (0x8XXXXXXX)"); 95 96 MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>"); 97 MODULE_DESCRIPTION("Intel(R) Ethernet Connection XL710 Network Driver"); 98 MODULE_LICENSE("GPL v2"); 99 100 static struct workqueue_struct *i40e_wq; 101 102 /** 103 * i40e_allocate_dma_mem_d - OS specific memory alloc for shared code 104 * @hw: pointer to the HW structure 105 * @mem: ptr to mem struct to fill out 106 * @size: size of memory requested 107 * @alignment: what to align the allocation to 108 **/ 109 int i40e_allocate_dma_mem_d(struct i40e_hw *hw, struct i40e_dma_mem *mem, 110 u64 size, u32 alignment) 111 { 112 struct i40e_pf *pf = (struct i40e_pf *)hw->back; 113 114 mem->size = ALIGN(size, alignment); 115 mem->va = dma_alloc_coherent(&pf->pdev->dev, mem->size, &mem->pa, 116 GFP_KERNEL); 117 if (!mem->va) 118 return -ENOMEM; 119 120 return 0; 121 } 122 123 /** 124 * i40e_free_dma_mem_d - OS specific memory free for shared code 125 * @hw: pointer to the HW structure 126 * @mem: ptr to mem struct to free 127 **/ 128 int i40e_free_dma_mem_d(struct i40e_hw *hw, struct i40e_dma_mem *mem) 129 { 130 struct i40e_pf *pf = (struct i40e_pf *)hw->back; 131 132 dma_free_coherent(&pf->pdev->dev, mem->size, mem->va, mem->pa); 133 mem->va = NULL; 134 mem->pa = 0; 135 mem->size = 0; 136 137 return 0; 138 } 139 140 /** 141 * i40e_allocate_virt_mem_d - OS specific memory alloc for shared code 142 * @hw: pointer to the HW structure 143 * @mem: ptr to mem struct to fill out 144 * @size: size of memory requested 145 **/ 146 int i40e_allocate_virt_mem_d(struct i40e_hw *hw, struct i40e_virt_mem *mem, 147 u32 size) 148 { 149 mem->size = size; 150 mem->va = kzalloc(size, GFP_KERNEL); 151 152 if (!mem->va) 153 return -ENOMEM; 154 155 return 0; 156 } 157 158 /** 159 * i40e_free_virt_mem_d - OS specific memory free for shared code 160 * @hw: pointer to the HW structure 161 * @mem: ptr to mem struct to free 162 **/ 163 int i40e_free_virt_mem_d(struct i40e_hw *hw, struct i40e_virt_mem *mem) 164 { 165 /* it's ok to kfree a NULL pointer */ 166 kfree(mem->va); 167 mem->va = NULL; 168 mem->size = 0; 169 170 return 0; 171 } 172 173 /** 174 * i40e_get_lump - find a lump of free generic resource 175 * @pf: board private structure 176 * @pile: the pile of resource to search 177 * @needed: the number of items needed 178 * @id: an owner id to stick on the items assigned 179 * 180 * Returns the base item index of the lump, or negative for error 181 * 182 * The search_hint trick and lack of advanced fit-finding only work 183 * because we're highly likely to have all the same size lump requests. 184 * Linear search time and any fragmentation should be minimal. 185 **/ 186 static int i40e_get_lump(struct i40e_pf *pf, struct i40e_lump_tracking *pile, 187 u16 needed, u16 id) 188 { 189 int ret = -ENOMEM; 190 int i, j; 191 192 if (!pile || needed == 0 || id >= I40E_PILE_VALID_BIT) { 193 dev_info(&pf->pdev->dev, 194 "param err: pile=%s needed=%d id=0x%04x\n", 195 pile ? "<valid>" : "<null>", needed, id); 196 return -EINVAL; 197 } 198 199 /* start the linear search with an imperfect hint */ 200 i = pile->search_hint; 201 while (i < pile->num_entries) { 202 /* skip already allocated entries */ 203 if (pile->list[i] & I40E_PILE_VALID_BIT) { 204 i++; 205 continue; 206 } 207 208 /* do we have enough in this lump? */ 209 for (j = 0; (j < needed) && ((i+j) < pile->num_entries); j++) { 210 if (pile->list[i+j] & I40E_PILE_VALID_BIT) 211 break; 212 } 213 214 if (j == needed) { 215 /* there was enough, so assign it to the requestor */ 216 for (j = 0; j < needed; j++) 217 pile->list[i+j] = id | I40E_PILE_VALID_BIT; 218 ret = i; 219 pile->search_hint = i + j; 220 break; 221 } 222 223 /* not enough, so skip over it and continue looking */ 224 i += j; 225 } 226 227 return ret; 228 } 229 230 /** 231 * i40e_put_lump - return a lump of generic resource 232 * @pile: the pile of resource to search 233 * @index: the base item index 234 * @id: the owner id of the items assigned 235 * 236 * Returns the count of items in the lump 237 **/ 238 static int i40e_put_lump(struct i40e_lump_tracking *pile, u16 index, u16 id) 239 { 240 int valid_id = (id | I40E_PILE_VALID_BIT); 241 int count = 0; 242 int i; 243 244 if (!pile || index >= pile->num_entries) 245 return -EINVAL; 246 247 for (i = index; 248 i < pile->num_entries && pile->list[i] == valid_id; 249 i++) { 250 pile->list[i] = 0; 251 count++; 252 } 253 254 if (count && index < pile->search_hint) 255 pile->search_hint = index; 256 257 return count; 258 } 259 260 /** 261 * i40e_find_vsi_from_id - searches for the vsi with the given id 262 * @pf: the pf structure to search for the vsi 263 * @id: id of the vsi it is searching for 264 **/ 265 struct i40e_vsi *i40e_find_vsi_from_id(struct i40e_pf *pf, u16 id) 266 { 267 int i; 268 269 for (i = 0; i < pf->num_alloc_vsi; i++) 270 if (pf->vsi[i] && (pf->vsi[i]->id == id)) 271 return pf->vsi[i]; 272 273 return NULL; 274 } 275 276 /** 277 * i40e_service_event_schedule - Schedule the service task to wake up 278 * @pf: board private structure 279 * 280 * If not already scheduled, this puts the task into the work queue 281 **/ 282 void i40e_service_event_schedule(struct i40e_pf *pf) 283 { 284 if ((!test_bit(__I40E_DOWN, pf->state) && 285 !test_bit(__I40E_RESET_RECOVERY_PENDING, pf->state)) || 286 test_bit(__I40E_RECOVERY_MODE, pf->state)) 287 queue_work(i40e_wq, &pf->service_task); 288 } 289 290 /** 291 * i40e_tx_timeout - Respond to a Tx Hang 292 * @netdev: network interface device structure 293 * @txqueue: queue number timing out 294 * 295 * If any port has noticed a Tx timeout, it is likely that the whole 296 * device is munged, not just the one netdev port, so go for the full 297 * reset. 298 **/ 299 static void i40e_tx_timeout(struct net_device *netdev, unsigned int txqueue) 300 { 301 struct i40e_netdev_priv *np = netdev_priv(netdev); 302 struct i40e_vsi *vsi = np->vsi; 303 struct i40e_pf *pf = vsi->back; 304 struct i40e_ring *tx_ring = NULL; 305 unsigned int i; 306 u32 head, val; 307 308 pf->tx_timeout_count++; 309 310 /* with txqueue index, find the tx_ring struct */ 311 for (i = 0; i < vsi->num_queue_pairs; i++) { 312 if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc) { 313 if (txqueue == 314 vsi->tx_rings[i]->queue_index) { 315 tx_ring = vsi->tx_rings[i]; 316 break; 317 } 318 } 319 } 320 321 if (time_after(jiffies, (pf->tx_timeout_last_recovery + HZ*20))) 322 pf->tx_timeout_recovery_level = 1; /* reset after some time */ 323 else if (time_before(jiffies, 324 (pf->tx_timeout_last_recovery + netdev->watchdog_timeo))) 325 return; /* don't do any new action before the next timeout */ 326 327 /* don't kick off another recovery if one is already pending */ 328 if (test_and_set_bit(__I40E_TIMEOUT_RECOVERY_PENDING, pf->state)) 329 return; 330 331 if (tx_ring) { 332 head = i40e_get_head(tx_ring); 333 /* Read interrupt register */ 334 if (pf->flags & I40E_FLAG_MSIX_ENABLED) 335 val = rd32(&pf->hw, 336 I40E_PFINT_DYN_CTLN(tx_ring->q_vector->v_idx + 337 tx_ring->vsi->base_vector - 1)); 338 else 339 val = rd32(&pf->hw, I40E_PFINT_DYN_CTL0); 340 341 netdev_info(netdev, "tx_timeout: VSI_seid: %d, Q %d, NTC: 0x%x, HWB: 0x%x, NTU: 0x%x, TAIL: 0x%x, INT: 0x%x\n", 342 vsi->seid, txqueue, tx_ring->next_to_clean, 343 head, tx_ring->next_to_use, 344 readl(tx_ring->tail), val); 345 } 346 347 pf->tx_timeout_last_recovery = jiffies; 348 netdev_info(netdev, "tx_timeout recovery level %d, txqueue %d\n", 349 pf->tx_timeout_recovery_level, txqueue); 350 351 switch (pf->tx_timeout_recovery_level) { 352 case 1: 353 set_bit(__I40E_PF_RESET_REQUESTED, pf->state); 354 break; 355 case 2: 356 set_bit(__I40E_CORE_RESET_REQUESTED, pf->state); 357 break; 358 case 3: 359 set_bit(__I40E_GLOBAL_RESET_REQUESTED, pf->state); 360 break; 361 default: 362 netdev_err(netdev, "tx_timeout recovery unsuccessful\n"); 363 break; 364 } 365 366 i40e_service_event_schedule(pf); 367 pf->tx_timeout_recovery_level++; 368 } 369 370 /** 371 * i40e_get_vsi_stats_struct - Get System Network Statistics 372 * @vsi: the VSI we care about 373 * 374 * Returns the address of the device statistics structure. 375 * The statistics are actually updated from the service task. 376 **/ 377 struct rtnl_link_stats64 *i40e_get_vsi_stats_struct(struct i40e_vsi *vsi) 378 { 379 return &vsi->net_stats; 380 } 381 382 /** 383 * i40e_get_netdev_stats_struct_tx - populate stats from a Tx ring 384 * @ring: Tx ring to get statistics from 385 * @stats: statistics entry to be updated 386 **/ 387 static void i40e_get_netdev_stats_struct_tx(struct i40e_ring *ring, 388 struct rtnl_link_stats64 *stats) 389 { 390 u64 bytes, packets; 391 unsigned int start; 392 393 do { 394 start = u64_stats_fetch_begin_irq(&ring->syncp); 395 packets = ring->stats.packets; 396 bytes = ring->stats.bytes; 397 } while (u64_stats_fetch_retry_irq(&ring->syncp, start)); 398 399 stats->tx_packets += packets; 400 stats->tx_bytes += bytes; 401 } 402 403 /** 404 * i40e_get_netdev_stats_struct - Get statistics for netdev interface 405 * @netdev: network interface device structure 406 * @stats: data structure to store statistics 407 * 408 * Returns the address of the device statistics structure. 409 * The statistics are actually updated from the service task. 410 **/ 411 static void i40e_get_netdev_stats_struct(struct net_device *netdev, 412 struct rtnl_link_stats64 *stats) 413 { 414 struct i40e_netdev_priv *np = netdev_priv(netdev); 415 struct i40e_vsi *vsi = np->vsi; 416 struct rtnl_link_stats64 *vsi_stats = i40e_get_vsi_stats_struct(vsi); 417 struct i40e_ring *ring; 418 int i; 419 420 if (test_bit(__I40E_VSI_DOWN, vsi->state)) 421 return; 422 423 if (!vsi->tx_rings) 424 return; 425 426 rcu_read_lock(); 427 for (i = 0; i < vsi->num_queue_pairs; i++) { 428 u64 bytes, packets; 429 unsigned int start; 430 431 ring = READ_ONCE(vsi->tx_rings[i]); 432 if (!ring) 433 continue; 434 i40e_get_netdev_stats_struct_tx(ring, stats); 435 436 if (i40e_enabled_xdp_vsi(vsi)) { 437 ring = READ_ONCE(vsi->xdp_rings[i]); 438 if (!ring) 439 continue; 440 i40e_get_netdev_stats_struct_tx(ring, stats); 441 } 442 443 ring = READ_ONCE(vsi->rx_rings[i]); 444 if (!ring) 445 continue; 446 do { 447 start = u64_stats_fetch_begin_irq(&ring->syncp); 448 packets = ring->stats.packets; 449 bytes = ring->stats.bytes; 450 } while (u64_stats_fetch_retry_irq(&ring->syncp, start)); 451 452 stats->rx_packets += packets; 453 stats->rx_bytes += bytes; 454 455 } 456 rcu_read_unlock(); 457 458 /* following stats updated by i40e_watchdog_subtask() */ 459 stats->multicast = vsi_stats->multicast; 460 stats->tx_errors = vsi_stats->tx_errors; 461 stats->tx_dropped = vsi_stats->tx_dropped; 462 stats->rx_errors = vsi_stats->rx_errors; 463 stats->rx_dropped = vsi_stats->rx_dropped; 464 stats->rx_crc_errors = vsi_stats->rx_crc_errors; 465 stats->rx_length_errors = vsi_stats->rx_length_errors; 466 } 467 468 /** 469 * i40e_vsi_reset_stats - Resets all stats of the given vsi 470 * @vsi: the VSI to have its stats reset 471 **/ 472 void i40e_vsi_reset_stats(struct i40e_vsi *vsi) 473 { 474 struct rtnl_link_stats64 *ns; 475 int i; 476 477 if (!vsi) 478 return; 479 480 ns = i40e_get_vsi_stats_struct(vsi); 481 memset(ns, 0, sizeof(*ns)); 482 memset(&vsi->net_stats_offsets, 0, sizeof(vsi->net_stats_offsets)); 483 memset(&vsi->eth_stats, 0, sizeof(vsi->eth_stats)); 484 memset(&vsi->eth_stats_offsets, 0, sizeof(vsi->eth_stats_offsets)); 485 if (vsi->rx_rings && vsi->rx_rings[0]) { 486 for (i = 0; i < vsi->num_queue_pairs; i++) { 487 memset(&vsi->rx_rings[i]->stats, 0, 488 sizeof(vsi->rx_rings[i]->stats)); 489 memset(&vsi->rx_rings[i]->rx_stats, 0, 490 sizeof(vsi->rx_rings[i]->rx_stats)); 491 memset(&vsi->tx_rings[i]->stats, 0, 492 sizeof(vsi->tx_rings[i]->stats)); 493 memset(&vsi->tx_rings[i]->tx_stats, 0, 494 sizeof(vsi->tx_rings[i]->tx_stats)); 495 } 496 } 497 vsi->stat_offsets_loaded = false; 498 } 499 500 /** 501 * i40e_pf_reset_stats - Reset all of the stats for the given PF 502 * @pf: the PF to be reset 503 **/ 504 void i40e_pf_reset_stats(struct i40e_pf *pf) 505 { 506 int i; 507 508 memset(&pf->stats, 0, sizeof(pf->stats)); 509 memset(&pf->stats_offsets, 0, sizeof(pf->stats_offsets)); 510 pf->stat_offsets_loaded = false; 511 512 for (i = 0; i < I40E_MAX_VEB; i++) { 513 if (pf->veb[i]) { 514 memset(&pf->veb[i]->stats, 0, 515 sizeof(pf->veb[i]->stats)); 516 memset(&pf->veb[i]->stats_offsets, 0, 517 sizeof(pf->veb[i]->stats_offsets)); 518 memset(&pf->veb[i]->tc_stats, 0, 519 sizeof(pf->veb[i]->tc_stats)); 520 memset(&pf->veb[i]->tc_stats_offsets, 0, 521 sizeof(pf->veb[i]->tc_stats_offsets)); 522 pf->veb[i]->stat_offsets_loaded = false; 523 } 524 } 525 pf->hw_csum_rx_error = 0; 526 } 527 528 /** 529 * i40e_stat_update48 - read and update a 48 bit stat from the chip 530 * @hw: ptr to the hardware info 531 * @hireg: the high 32 bit reg to read 532 * @loreg: the low 32 bit reg to read 533 * @offset_loaded: has the initial offset been loaded yet 534 * @offset: ptr to current offset value 535 * @stat: ptr to the stat 536 * 537 * Since the device stats are not reset at PFReset, they likely will not 538 * be zeroed when the driver starts. We'll save the first values read 539 * and use them as offsets to be subtracted from the raw values in order 540 * to report stats that count from zero. In the process, we also manage 541 * the potential roll-over. 542 **/ 543 static void i40e_stat_update48(struct i40e_hw *hw, u32 hireg, u32 loreg, 544 bool offset_loaded, u64 *offset, u64 *stat) 545 { 546 u64 new_data; 547 548 if (hw->device_id == I40E_DEV_ID_QEMU) { 549 new_data = rd32(hw, loreg); 550 new_data |= ((u64)(rd32(hw, hireg) & 0xFFFF)) << 32; 551 } else { 552 new_data = rd64(hw, loreg); 553 } 554 if (!offset_loaded) 555 *offset = new_data; 556 if (likely(new_data >= *offset)) 557 *stat = new_data - *offset; 558 else 559 *stat = (new_data + BIT_ULL(48)) - *offset; 560 *stat &= 0xFFFFFFFFFFFFULL; 561 } 562 563 /** 564 * i40e_stat_update32 - read and update a 32 bit stat from the chip 565 * @hw: ptr to the hardware info 566 * @reg: the hw reg to read 567 * @offset_loaded: has the initial offset been loaded yet 568 * @offset: ptr to current offset value 569 * @stat: ptr to the stat 570 **/ 571 static void i40e_stat_update32(struct i40e_hw *hw, u32 reg, 572 bool offset_loaded, u64 *offset, u64 *stat) 573 { 574 u32 new_data; 575 576 new_data = rd32(hw, reg); 577 if (!offset_loaded) 578 *offset = new_data; 579 if (likely(new_data >= *offset)) 580 *stat = (u32)(new_data - *offset); 581 else 582 *stat = (u32)((new_data + BIT_ULL(32)) - *offset); 583 } 584 585 /** 586 * i40e_stat_update_and_clear32 - read and clear hw reg, update a 32 bit stat 587 * @hw: ptr to the hardware info 588 * @reg: the hw reg to read and clear 589 * @stat: ptr to the stat 590 **/ 591 static void i40e_stat_update_and_clear32(struct i40e_hw *hw, u32 reg, u64 *stat) 592 { 593 u32 new_data = rd32(hw, reg); 594 595 wr32(hw, reg, 1); /* must write a nonzero value to clear register */ 596 *stat += new_data; 597 } 598 599 /** 600 * i40e_update_eth_stats - Update VSI-specific ethernet statistics counters. 601 * @vsi: the VSI to be updated 602 **/ 603 void i40e_update_eth_stats(struct i40e_vsi *vsi) 604 { 605 int stat_idx = le16_to_cpu(vsi->info.stat_counter_idx); 606 struct i40e_pf *pf = vsi->back; 607 struct i40e_hw *hw = &pf->hw; 608 struct i40e_eth_stats *oes; 609 struct i40e_eth_stats *es; /* device's eth stats */ 610 611 es = &vsi->eth_stats; 612 oes = &vsi->eth_stats_offsets; 613 614 /* Gather up the stats that the hw collects */ 615 i40e_stat_update32(hw, I40E_GLV_TEPC(stat_idx), 616 vsi->stat_offsets_loaded, 617 &oes->tx_errors, &es->tx_errors); 618 i40e_stat_update32(hw, I40E_GLV_RDPC(stat_idx), 619 vsi->stat_offsets_loaded, 620 &oes->rx_discards, &es->rx_discards); 621 i40e_stat_update32(hw, I40E_GLV_RUPP(stat_idx), 622 vsi->stat_offsets_loaded, 623 &oes->rx_unknown_protocol, &es->rx_unknown_protocol); 624 625 i40e_stat_update48(hw, I40E_GLV_GORCH(stat_idx), 626 I40E_GLV_GORCL(stat_idx), 627 vsi->stat_offsets_loaded, 628 &oes->rx_bytes, &es->rx_bytes); 629 i40e_stat_update48(hw, I40E_GLV_UPRCH(stat_idx), 630 I40E_GLV_UPRCL(stat_idx), 631 vsi->stat_offsets_loaded, 632 &oes->rx_unicast, &es->rx_unicast); 633 i40e_stat_update48(hw, I40E_GLV_MPRCH(stat_idx), 634 I40E_GLV_MPRCL(stat_idx), 635 vsi->stat_offsets_loaded, 636 &oes->rx_multicast, &es->rx_multicast); 637 i40e_stat_update48(hw, I40E_GLV_BPRCH(stat_idx), 638 I40E_GLV_BPRCL(stat_idx), 639 vsi->stat_offsets_loaded, 640 &oes->rx_broadcast, &es->rx_broadcast); 641 642 i40e_stat_update48(hw, I40E_GLV_GOTCH(stat_idx), 643 I40E_GLV_GOTCL(stat_idx), 644 vsi->stat_offsets_loaded, 645 &oes->tx_bytes, &es->tx_bytes); 646 i40e_stat_update48(hw, I40E_GLV_UPTCH(stat_idx), 647 I40E_GLV_UPTCL(stat_idx), 648 vsi->stat_offsets_loaded, 649 &oes->tx_unicast, &es->tx_unicast); 650 i40e_stat_update48(hw, I40E_GLV_MPTCH(stat_idx), 651 I40E_GLV_MPTCL(stat_idx), 652 vsi->stat_offsets_loaded, 653 &oes->tx_multicast, &es->tx_multicast); 654 i40e_stat_update48(hw, I40E_GLV_BPTCH(stat_idx), 655 I40E_GLV_BPTCL(stat_idx), 656 vsi->stat_offsets_loaded, 657 &oes->tx_broadcast, &es->tx_broadcast); 658 vsi->stat_offsets_loaded = true; 659 } 660 661 /** 662 * i40e_update_veb_stats - Update Switch component statistics 663 * @veb: the VEB being updated 664 **/ 665 void i40e_update_veb_stats(struct i40e_veb *veb) 666 { 667 struct i40e_pf *pf = veb->pf; 668 struct i40e_hw *hw = &pf->hw; 669 struct i40e_eth_stats *oes; 670 struct i40e_eth_stats *es; /* device's eth stats */ 671 struct i40e_veb_tc_stats *veb_oes; 672 struct i40e_veb_tc_stats *veb_es; 673 int i, idx = 0; 674 675 idx = veb->stats_idx; 676 es = &veb->stats; 677 oes = &veb->stats_offsets; 678 veb_es = &veb->tc_stats; 679 veb_oes = &veb->tc_stats_offsets; 680 681 /* Gather up the stats that the hw collects */ 682 i40e_stat_update32(hw, I40E_GLSW_TDPC(idx), 683 veb->stat_offsets_loaded, 684 &oes->tx_discards, &es->tx_discards); 685 if (hw->revision_id > 0) 686 i40e_stat_update32(hw, I40E_GLSW_RUPP(idx), 687 veb->stat_offsets_loaded, 688 &oes->rx_unknown_protocol, 689 &es->rx_unknown_protocol); 690 i40e_stat_update48(hw, I40E_GLSW_GORCH(idx), I40E_GLSW_GORCL(idx), 691 veb->stat_offsets_loaded, 692 &oes->rx_bytes, &es->rx_bytes); 693 i40e_stat_update48(hw, I40E_GLSW_UPRCH(idx), I40E_GLSW_UPRCL(idx), 694 veb->stat_offsets_loaded, 695 &oes->rx_unicast, &es->rx_unicast); 696 i40e_stat_update48(hw, I40E_GLSW_MPRCH(idx), I40E_GLSW_MPRCL(idx), 697 veb->stat_offsets_loaded, 698 &oes->rx_multicast, &es->rx_multicast); 699 i40e_stat_update48(hw, I40E_GLSW_BPRCH(idx), I40E_GLSW_BPRCL(idx), 700 veb->stat_offsets_loaded, 701 &oes->rx_broadcast, &es->rx_broadcast); 702 703 i40e_stat_update48(hw, I40E_GLSW_GOTCH(idx), I40E_GLSW_GOTCL(idx), 704 veb->stat_offsets_loaded, 705 &oes->tx_bytes, &es->tx_bytes); 706 i40e_stat_update48(hw, I40E_GLSW_UPTCH(idx), I40E_GLSW_UPTCL(idx), 707 veb->stat_offsets_loaded, 708 &oes->tx_unicast, &es->tx_unicast); 709 i40e_stat_update48(hw, I40E_GLSW_MPTCH(idx), I40E_GLSW_MPTCL(idx), 710 veb->stat_offsets_loaded, 711 &oes->tx_multicast, &es->tx_multicast); 712 i40e_stat_update48(hw, I40E_GLSW_BPTCH(idx), I40E_GLSW_BPTCL(idx), 713 veb->stat_offsets_loaded, 714 &oes->tx_broadcast, &es->tx_broadcast); 715 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 716 i40e_stat_update48(hw, I40E_GLVEBTC_RPCH(i, idx), 717 I40E_GLVEBTC_RPCL(i, idx), 718 veb->stat_offsets_loaded, 719 &veb_oes->tc_rx_packets[i], 720 &veb_es->tc_rx_packets[i]); 721 i40e_stat_update48(hw, I40E_GLVEBTC_RBCH(i, idx), 722 I40E_GLVEBTC_RBCL(i, idx), 723 veb->stat_offsets_loaded, 724 &veb_oes->tc_rx_bytes[i], 725 &veb_es->tc_rx_bytes[i]); 726 i40e_stat_update48(hw, I40E_GLVEBTC_TPCH(i, idx), 727 I40E_GLVEBTC_TPCL(i, idx), 728 veb->stat_offsets_loaded, 729 &veb_oes->tc_tx_packets[i], 730 &veb_es->tc_tx_packets[i]); 731 i40e_stat_update48(hw, I40E_GLVEBTC_TBCH(i, idx), 732 I40E_GLVEBTC_TBCL(i, idx), 733 veb->stat_offsets_loaded, 734 &veb_oes->tc_tx_bytes[i], 735 &veb_es->tc_tx_bytes[i]); 736 } 737 veb->stat_offsets_loaded = true; 738 } 739 740 /** 741 * i40e_update_vsi_stats - Update the vsi statistics counters. 742 * @vsi: the VSI to be updated 743 * 744 * There are a few instances where we store the same stat in a 745 * couple of different structs. This is partly because we have 746 * the netdev stats that need to be filled out, which is slightly 747 * different from the "eth_stats" defined by the chip and used in 748 * VF communications. We sort it out here. 749 **/ 750 static void i40e_update_vsi_stats(struct i40e_vsi *vsi) 751 { 752 struct i40e_pf *pf = vsi->back; 753 struct rtnl_link_stats64 *ons; 754 struct rtnl_link_stats64 *ns; /* netdev stats */ 755 struct i40e_eth_stats *oes; 756 struct i40e_eth_stats *es; /* device's eth stats */ 757 u32 tx_restart, tx_busy; 758 struct i40e_ring *p; 759 u32 rx_page, rx_buf; 760 u64 bytes, packets; 761 unsigned int start; 762 u64 tx_linearize; 763 u64 tx_force_wb; 764 u64 rx_p, rx_b; 765 u64 tx_p, tx_b; 766 u16 q; 767 768 if (test_bit(__I40E_VSI_DOWN, vsi->state) || 769 test_bit(__I40E_CONFIG_BUSY, pf->state)) 770 return; 771 772 ns = i40e_get_vsi_stats_struct(vsi); 773 ons = &vsi->net_stats_offsets; 774 es = &vsi->eth_stats; 775 oes = &vsi->eth_stats_offsets; 776 777 /* Gather up the netdev and vsi stats that the driver collects 778 * on the fly during packet processing 779 */ 780 rx_b = rx_p = 0; 781 tx_b = tx_p = 0; 782 tx_restart = tx_busy = tx_linearize = tx_force_wb = 0; 783 rx_page = 0; 784 rx_buf = 0; 785 rcu_read_lock(); 786 for (q = 0; q < vsi->num_queue_pairs; q++) { 787 /* locate Tx ring */ 788 p = READ_ONCE(vsi->tx_rings[q]); 789 if (!p) 790 continue; 791 792 do { 793 start = u64_stats_fetch_begin_irq(&p->syncp); 794 packets = p->stats.packets; 795 bytes = p->stats.bytes; 796 } while (u64_stats_fetch_retry_irq(&p->syncp, start)); 797 tx_b += bytes; 798 tx_p += packets; 799 tx_restart += p->tx_stats.restart_queue; 800 tx_busy += p->tx_stats.tx_busy; 801 tx_linearize += p->tx_stats.tx_linearize; 802 tx_force_wb += p->tx_stats.tx_force_wb; 803 804 /* locate Rx ring */ 805 p = READ_ONCE(vsi->rx_rings[q]); 806 if (!p) 807 continue; 808 809 do { 810 start = u64_stats_fetch_begin_irq(&p->syncp); 811 packets = p->stats.packets; 812 bytes = p->stats.bytes; 813 } while (u64_stats_fetch_retry_irq(&p->syncp, start)); 814 rx_b += bytes; 815 rx_p += packets; 816 rx_buf += p->rx_stats.alloc_buff_failed; 817 rx_page += p->rx_stats.alloc_page_failed; 818 819 if (i40e_enabled_xdp_vsi(vsi)) { 820 /* locate XDP ring */ 821 p = READ_ONCE(vsi->xdp_rings[q]); 822 if (!p) 823 continue; 824 825 do { 826 start = u64_stats_fetch_begin_irq(&p->syncp); 827 packets = p->stats.packets; 828 bytes = p->stats.bytes; 829 } while (u64_stats_fetch_retry_irq(&p->syncp, start)); 830 tx_b += bytes; 831 tx_p += packets; 832 tx_restart += p->tx_stats.restart_queue; 833 tx_busy += p->tx_stats.tx_busy; 834 tx_linearize += p->tx_stats.tx_linearize; 835 tx_force_wb += p->tx_stats.tx_force_wb; 836 } 837 } 838 rcu_read_unlock(); 839 vsi->tx_restart = tx_restart; 840 vsi->tx_busy = tx_busy; 841 vsi->tx_linearize = tx_linearize; 842 vsi->tx_force_wb = tx_force_wb; 843 vsi->rx_page_failed = rx_page; 844 vsi->rx_buf_failed = rx_buf; 845 846 ns->rx_packets = rx_p; 847 ns->rx_bytes = rx_b; 848 ns->tx_packets = tx_p; 849 ns->tx_bytes = tx_b; 850 851 /* update netdev stats from eth stats */ 852 i40e_update_eth_stats(vsi); 853 ons->tx_errors = oes->tx_errors; 854 ns->tx_errors = es->tx_errors; 855 ons->multicast = oes->rx_multicast; 856 ns->multicast = es->rx_multicast; 857 ons->rx_dropped = oes->rx_discards; 858 ns->rx_dropped = es->rx_discards; 859 ons->tx_dropped = oes->tx_discards; 860 ns->tx_dropped = es->tx_discards; 861 862 /* pull in a couple PF stats if this is the main vsi */ 863 if (vsi == pf->vsi[pf->lan_vsi]) { 864 ns->rx_crc_errors = pf->stats.crc_errors; 865 ns->rx_errors = pf->stats.crc_errors + pf->stats.illegal_bytes; 866 ns->rx_length_errors = pf->stats.rx_length_errors; 867 } 868 } 869 870 /** 871 * i40e_update_pf_stats - Update the PF statistics counters. 872 * @pf: the PF to be updated 873 **/ 874 static void i40e_update_pf_stats(struct i40e_pf *pf) 875 { 876 struct i40e_hw_port_stats *osd = &pf->stats_offsets; 877 struct i40e_hw_port_stats *nsd = &pf->stats; 878 struct i40e_hw *hw = &pf->hw; 879 u32 val; 880 int i; 881 882 i40e_stat_update48(hw, I40E_GLPRT_GORCH(hw->port), 883 I40E_GLPRT_GORCL(hw->port), 884 pf->stat_offsets_loaded, 885 &osd->eth.rx_bytes, &nsd->eth.rx_bytes); 886 i40e_stat_update48(hw, I40E_GLPRT_GOTCH(hw->port), 887 I40E_GLPRT_GOTCL(hw->port), 888 pf->stat_offsets_loaded, 889 &osd->eth.tx_bytes, &nsd->eth.tx_bytes); 890 i40e_stat_update32(hw, I40E_GLPRT_RDPC(hw->port), 891 pf->stat_offsets_loaded, 892 &osd->eth.rx_discards, 893 &nsd->eth.rx_discards); 894 i40e_stat_update48(hw, I40E_GLPRT_UPRCH(hw->port), 895 I40E_GLPRT_UPRCL(hw->port), 896 pf->stat_offsets_loaded, 897 &osd->eth.rx_unicast, 898 &nsd->eth.rx_unicast); 899 i40e_stat_update48(hw, I40E_GLPRT_MPRCH(hw->port), 900 I40E_GLPRT_MPRCL(hw->port), 901 pf->stat_offsets_loaded, 902 &osd->eth.rx_multicast, 903 &nsd->eth.rx_multicast); 904 i40e_stat_update48(hw, I40E_GLPRT_BPRCH(hw->port), 905 I40E_GLPRT_BPRCL(hw->port), 906 pf->stat_offsets_loaded, 907 &osd->eth.rx_broadcast, 908 &nsd->eth.rx_broadcast); 909 i40e_stat_update48(hw, I40E_GLPRT_UPTCH(hw->port), 910 I40E_GLPRT_UPTCL(hw->port), 911 pf->stat_offsets_loaded, 912 &osd->eth.tx_unicast, 913 &nsd->eth.tx_unicast); 914 i40e_stat_update48(hw, I40E_GLPRT_MPTCH(hw->port), 915 I40E_GLPRT_MPTCL(hw->port), 916 pf->stat_offsets_loaded, 917 &osd->eth.tx_multicast, 918 &nsd->eth.tx_multicast); 919 i40e_stat_update48(hw, I40E_GLPRT_BPTCH(hw->port), 920 I40E_GLPRT_BPTCL(hw->port), 921 pf->stat_offsets_loaded, 922 &osd->eth.tx_broadcast, 923 &nsd->eth.tx_broadcast); 924 925 i40e_stat_update32(hw, I40E_GLPRT_TDOLD(hw->port), 926 pf->stat_offsets_loaded, 927 &osd->tx_dropped_link_down, 928 &nsd->tx_dropped_link_down); 929 930 i40e_stat_update32(hw, I40E_GLPRT_CRCERRS(hw->port), 931 pf->stat_offsets_loaded, 932 &osd->crc_errors, &nsd->crc_errors); 933 934 i40e_stat_update32(hw, I40E_GLPRT_ILLERRC(hw->port), 935 pf->stat_offsets_loaded, 936 &osd->illegal_bytes, &nsd->illegal_bytes); 937 938 i40e_stat_update32(hw, I40E_GLPRT_MLFC(hw->port), 939 pf->stat_offsets_loaded, 940 &osd->mac_local_faults, 941 &nsd->mac_local_faults); 942 i40e_stat_update32(hw, I40E_GLPRT_MRFC(hw->port), 943 pf->stat_offsets_loaded, 944 &osd->mac_remote_faults, 945 &nsd->mac_remote_faults); 946 947 i40e_stat_update32(hw, I40E_GLPRT_RLEC(hw->port), 948 pf->stat_offsets_loaded, 949 &osd->rx_length_errors, 950 &nsd->rx_length_errors); 951 952 i40e_stat_update32(hw, I40E_GLPRT_LXONRXC(hw->port), 953 pf->stat_offsets_loaded, 954 &osd->link_xon_rx, &nsd->link_xon_rx); 955 i40e_stat_update32(hw, I40E_GLPRT_LXONTXC(hw->port), 956 pf->stat_offsets_loaded, 957 &osd->link_xon_tx, &nsd->link_xon_tx); 958 i40e_stat_update32(hw, I40E_GLPRT_LXOFFRXC(hw->port), 959 pf->stat_offsets_loaded, 960 &osd->link_xoff_rx, &nsd->link_xoff_rx); 961 i40e_stat_update32(hw, I40E_GLPRT_LXOFFTXC(hw->port), 962 pf->stat_offsets_loaded, 963 &osd->link_xoff_tx, &nsd->link_xoff_tx); 964 965 for (i = 0; i < 8; i++) { 966 i40e_stat_update32(hw, I40E_GLPRT_PXOFFRXC(hw->port, i), 967 pf->stat_offsets_loaded, 968 &osd->priority_xoff_rx[i], 969 &nsd->priority_xoff_rx[i]); 970 i40e_stat_update32(hw, I40E_GLPRT_PXONRXC(hw->port, i), 971 pf->stat_offsets_loaded, 972 &osd->priority_xon_rx[i], 973 &nsd->priority_xon_rx[i]); 974 i40e_stat_update32(hw, I40E_GLPRT_PXONTXC(hw->port, i), 975 pf->stat_offsets_loaded, 976 &osd->priority_xon_tx[i], 977 &nsd->priority_xon_tx[i]); 978 i40e_stat_update32(hw, I40E_GLPRT_PXOFFTXC(hw->port, i), 979 pf->stat_offsets_loaded, 980 &osd->priority_xoff_tx[i], 981 &nsd->priority_xoff_tx[i]); 982 i40e_stat_update32(hw, 983 I40E_GLPRT_RXON2OFFCNT(hw->port, i), 984 pf->stat_offsets_loaded, 985 &osd->priority_xon_2_xoff[i], 986 &nsd->priority_xon_2_xoff[i]); 987 } 988 989 i40e_stat_update48(hw, I40E_GLPRT_PRC64H(hw->port), 990 I40E_GLPRT_PRC64L(hw->port), 991 pf->stat_offsets_loaded, 992 &osd->rx_size_64, &nsd->rx_size_64); 993 i40e_stat_update48(hw, I40E_GLPRT_PRC127H(hw->port), 994 I40E_GLPRT_PRC127L(hw->port), 995 pf->stat_offsets_loaded, 996 &osd->rx_size_127, &nsd->rx_size_127); 997 i40e_stat_update48(hw, I40E_GLPRT_PRC255H(hw->port), 998 I40E_GLPRT_PRC255L(hw->port), 999 pf->stat_offsets_loaded, 1000 &osd->rx_size_255, &nsd->rx_size_255); 1001 i40e_stat_update48(hw, I40E_GLPRT_PRC511H(hw->port), 1002 I40E_GLPRT_PRC511L(hw->port), 1003 pf->stat_offsets_loaded, 1004 &osd->rx_size_511, &nsd->rx_size_511); 1005 i40e_stat_update48(hw, I40E_GLPRT_PRC1023H(hw->port), 1006 I40E_GLPRT_PRC1023L(hw->port), 1007 pf->stat_offsets_loaded, 1008 &osd->rx_size_1023, &nsd->rx_size_1023); 1009 i40e_stat_update48(hw, I40E_GLPRT_PRC1522H(hw->port), 1010 I40E_GLPRT_PRC1522L(hw->port), 1011 pf->stat_offsets_loaded, 1012 &osd->rx_size_1522, &nsd->rx_size_1522); 1013 i40e_stat_update48(hw, I40E_GLPRT_PRC9522H(hw->port), 1014 I40E_GLPRT_PRC9522L(hw->port), 1015 pf->stat_offsets_loaded, 1016 &osd->rx_size_big, &nsd->rx_size_big); 1017 1018 i40e_stat_update48(hw, I40E_GLPRT_PTC64H(hw->port), 1019 I40E_GLPRT_PTC64L(hw->port), 1020 pf->stat_offsets_loaded, 1021 &osd->tx_size_64, &nsd->tx_size_64); 1022 i40e_stat_update48(hw, I40E_GLPRT_PTC127H(hw->port), 1023 I40E_GLPRT_PTC127L(hw->port), 1024 pf->stat_offsets_loaded, 1025 &osd->tx_size_127, &nsd->tx_size_127); 1026 i40e_stat_update48(hw, I40E_GLPRT_PTC255H(hw->port), 1027 I40E_GLPRT_PTC255L(hw->port), 1028 pf->stat_offsets_loaded, 1029 &osd->tx_size_255, &nsd->tx_size_255); 1030 i40e_stat_update48(hw, I40E_GLPRT_PTC511H(hw->port), 1031 I40E_GLPRT_PTC511L(hw->port), 1032 pf->stat_offsets_loaded, 1033 &osd->tx_size_511, &nsd->tx_size_511); 1034 i40e_stat_update48(hw, I40E_GLPRT_PTC1023H(hw->port), 1035 I40E_GLPRT_PTC1023L(hw->port), 1036 pf->stat_offsets_loaded, 1037 &osd->tx_size_1023, &nsd->tx_size_1023); 1038 i40e_stat_update48(hw, I40E_GLPRT_PTC1522H(hw->port), 1039 I40E_GLPRT_PTC1522L(hw->port), 1040 pf->stat_offsets_loaded, 1041 &osd->tx_size_1522, &nsd->tx_size_1522); 1042 i40e_stat_update48(hw, I40E_GLPRT_PTC9522H(hw->port), 1043 I40E_GLPRT_PTC9522L(hw->port), 1044 pf->stat_offsets_loaded, 1045 &osd->tx_size_big, &nsd->tx_size_big); 1046 1047 i40e_stat_update32(hw, I40E_GLPRT_RUC(hw->port), 1048 pf->stat_offsets_loaded, 1049 &osd->rx_undersize, &nsd->rx_undersize); 1050 i40e_stat_update32(hw, I40E_GLPRT_RFC(hw->port), 1051 pf->stat_offsets_loaded, 1052 &osd->rx_fragments, &nsd->rx_fragments); 1053 i40e_stat_update32(hw, I40E_GLPRT_ROC(hw->port), 1054 pf->stat_offsets_loaded, 1055 &osd->rx_oversize, &nsd->rx_oversize); 1056 i40e_stat_update32(hw, I40E_GLPRT_RJC(hw->port), 1057 pf->stat_offsets_loaded, 1058 &osd->rx_jabber, &nsd->rx_jabber); 1059 1060 /* FDIR stats */ 1061 i40e_stat_update_and_clear32(hw, 1062 I40E_GLQF_PCNT(I40E_FD_ATR_STAT_IDX(hw->pf_id)), 1063 &nsd->fd_atr_match); 1064 i40e_stat_update_and_clear32(hw, 1065 I40E_GLQF_PCNT(I40E_FD_SB_STAT_IDX(hw->pf_id)), 1066 &nsd->fd_sb_match); 1067 i40e_stat_update_and_clear32(hw, 1068 I40E_GLQF_PCNT(I40E_FD_ATR_TUNNEL_STAT_IDX(hw->pf_id)), 1069 &nsd->fd_atr_tunnel_match); 1070 1071 val = rd32(hw, I40E_PRTPM_EEE_STAT); 1072 nsd->tx_lpi_status = 1073 (val & I40E_PRTPM_EEE_STAT_TX_LPI_STATUS_MASK) >> 1074 I40E_PRTPM_EEE_STAT_TX_LPI_STATUS_SHIFT; 1075 nsd->rx_lpi_status = 1076 (val & I40E_PRTPM_EEE_STAT_RX_LPI_STATUS_MASK) >> 1077 I40E_PRTPM_EEE_STAT_RX_LPI_STATUS_SHIFT; 1078 i40e_stat_update32(hw, I40E_PRTPM_TLPIC, 1079 pf->stat_offsets_loaded, 1080 &osd->tx_lpi_count, &nsd->tx_lpi_count); 1081 i40e_stat_update32(hw, I40E_PRTPM_RLPIC, 1082 pf->stat_offsets_loaded, 1083 &osd->rx_lpi_count, &nsd->rx_lpi_count); 1084 1085 if (pf->flags & I40E_FLAG_FD_SB_ENABLED && 1086 !test_bit(__I40E_FD_SB_AUTO_DISABLED, pf->state)) 1087 nsd->fd_sb_status = true; 1088 else 1089 nsd->fd_sb_status = false; 1090 1091 if (pf->flags & I40E_FLAG_FD_ATR_ENABLED && 1092 !test_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state)) 1093 nsd->fd_atr_status = true; 1094 else 1095 nsd->fd_atr_status = false; 1096 1097 pf->stat_offsets_loaded = true; 1098 } 1099 1100 /** 1101 * i40e_update_stats - Update the various statistics counters. 1102 * @vsi: the VSI to be updated 1103 * 1104 * Update the various stats for this VSI and its related entities. 1105 **/ 1106 void i40e_update_stats(struct i40e_vsi *vsi) 1107 { 1108 struct i40e_pf *pf = vsi->back; 1109 1110 if (vsi == pf->vsi[pf->lan_vsi]) 1111 i40e_update_pf_stats(pf); 1112 1113 i40e_update_vsi_stats(vsi); 1114 } 1115 1116 /** 1117 * i40e_count_filters - counts VSI mac filters 1118 * @vsi: the VSI to be searched 1119 * 1120 * Returns count of mac filters 1121 **/ 1122 int i40e_count_filters(struct i40e_vsi *vsi) 1123 { 1124 struct i40e_mac_filter *f; 1125 struct hlist_node *h; 1126 int bkt; 1127 int cnt = 0; 1128 1129 hash_for_each_safe(vsi->mac_filter_hash, bkt, h, f, hlist) 1130 ++cnt; 1131 1132 return cnt; 1133 } 1134 1135 /** 1136 * i40e_find_filter - Search VSI filter list for specific mac/vlan filter 1137 * @vsi: the VSI to be searched 1138 * @macaddr: the MAC address 1139 * @vlan: the vlan 1140 * 1141 * Returns ptr to the filter object or NULL 1142 **/ 1143 static struct i40e_mac_filter *i40e_find_filter(struct i40e_vsi *vsi, 1144 const u8 *macaddr, s16 vlan) 1145 { 1146 struct i40e_mac_filter *f; 1147 u64 key; 1148 1149 if (!vsi || !macaddr) 1150 return NULL; 1151 1152 key = i40e_addr_to_hkey(macaddr); 1153 hash_for_each_possible(vsi->mac_filter_hash, f, hlist, key) { 1154 if ((ether_addr_equal(macaddr, f->macaddr)) && 1155 (vlan == f->vlan)) 1156 return f; 1157 } 1158 return NULL; 1159 } 1160 1161 /** 1162 * i40e_find_mac - Find a mac addr in the macvlan filters list 1163 * @vsi: the VSI to be searched 1164 * @macaddr: the MAC address we are searching for 1165 * 1166 * Returns the first filter with the provided MAC address or NULL if 1167 * MAC address was not found 1168 **/ 1169 struct i40e_mac_filter *i40e_find_mac(struct i40e_vsi *vsi, const u8 *macaddr) 1170 { 1171 struct i40e_mac_filter *f; 1172 u64 key; 1173 1174 if (!vsi || !macaddr) 1175 return NULL; 1176 1177 key = i40e_addr_to_hkey(macaddr); 1178 hash_for_each_possible(vsi->mac_filter_hash, f, hlist, key) { 1179 if ((ether_addr_equal(macaddr, f->macaddr))) 1180 return f; 1181 } 1182 return NULL; 1183 } 1184 1185 /** 1186 * i40e_is_vsi_in_vlan - Check if VSI is in vlan mode 1187 * @vsi: the VSI to be searched 1188 * 1189 * Returns true if VSI is in vlan mode or false otherwise 1190 **/ 1191 bool i40e_is_vsi_in_vlan(struct i40e_vsi *vsi) 1192 { 1193 /* If we have a PVID, always operate in VLAN mode */ 1194 if (vsi->info.pvid) 1195 return true; 1196 1197 /* We need to operate in VLAN mode whenever we have any filters with 1198 * a VLAN other than I40E_VLAN_ALL. We could check the table each 1199 * time, incurring search cost repeatedly. However, we can notice two 1200 * things: 1201 * 1202 * 1) the only place where we can gain a VLAN filter is in 1203 * i40e_add_filter. 1204 * 1205 * 2) the only place where filters are actually removed is in 1206 * i40e_sync_filters_subtask. 1207 * 1208 * Thus, we can simply use a boolean value, has_vlan_filters which we 1209 * will set to true when we add a VLAN filter in i40e_add_filter. Then 1210 * we have to perform the full search after deleting filters in 1211 * i40e_sync_filters_subtask, but we already have to search 1212 * filters here and can perform the check at the same time. This 1213 * results in avoiding embedding a loop for VLAN mode inside another 1214 * loop over all the filters, and should maintain correctness as noted 1215 * above. 1216 */ 1217 return vsi->has_vlan_filter; 1218 } 1219 1220 /** 1221 * i40e_correct_mac_vlan_filters - Correct non-VLAN filters if necessary 1222 * @vsi: the VSI to configure 1223 * @tmp_add_list: list of filters ready to be added 1224 * @tmp_del_list: list of filters ready to be deleted 1225 * @vlan_filters: the number of active VLAN filters 1226 * 1227 * Update VLAN=0 and VLAN=-1 (I40E_VLAN_ANY) filters properly so that they 1228 * behave as expected. If we have any active VLAN filters remaining or about 1229 * to be added then we need to update non-VLAN filters to be marked as VLAN=0 1230 * so that they only match against untagged traffic. If we no longer have any 1231 * active VLAN filters, we need to make all non-VLAN filters marked as VLAN=-1 1232 * so that they match against both tagged and untagged traffic. In this way, 1233 * we ensure that we correctly receive the desired traffic. This ensures that 1234 * when we have an active VLAN we will receive only untagged traffic and 1235 * traffic matching active VLANs. If we have no active VLANs then we will 1236 * operate in non-VLAN mode and receive all traffic, tagged or untagged. 1237 * 1238 * Finally, in a similar fashion, this function also corrects filters when 1239 * there is an active PVID assigned to this VSI. 1240 * 1241 * In case of memory allocation failure return -ENOMEM. Otherwise, return 0. 1242 * 1243 * This function is only expected to be called from within 1244 * i40e_sync_vsi_filters. 1245 * 1246 * NOTE: This function expects to be called while under the 1247 * mac_filter_hash_lock 1248 */ 1249 static int i40e_correct_mac_vlan_filters(struct i40e_vsi *vsi, 1250 struct hlist_head *tmp_add_list, 1251 struct hlist_head *tmp_del_list, 1252 int vlan_filters) 1253 { 1254 s16 pvid = le16_to_cpu(vsi->info.pvid); 1255 struct i40e_mac_filter *f, *add_head; 1256 struct i40e_new_mac_filter *new; 1257 struct hlist_node *h; 1258 int bkt, new_vlan; 1259 1260 /* To determine if a particular filter needs to be replaced we 1261 * have the three following conditions: 1262 * 1263 * a) if we have a PVID assigned, then all filters which are 1264 * not marked as VLAN=PVID must be replaced with filters that 1265 * are. 1266 * b) otherwise, if we have any active VLANS, all filters 1267 * which are marked as VLAN=-1 must be replaced with 1268 * filters marked as VLAN=0 1269 * c) finally, if we do not have any active VLANS, all filters 1270 * which are marked as VLAN=0 must be replaced with filters 1271 * marked as VLAN=-1 1272 */ 1273 1274 /* Update the filters about to be added in place */ 1275 hlist_for_each_entry(new, tmp_add_list, hlist) { 1276 if (pvid && new->f->vlan != pvid) 1277 new->f->vlan = pvid; 1278 else if (vlan_filters && new->f->vlan == I40E_VLAN_ANY) 1279 new->f->vlan = 0; 1280 else if (!vlan_filters && new->f->vlan == 0) 1281 new->f->vlan = I40E_VLAN_ANY; 1282 } 1283 1284 /* Update the remaining active filters */ 1285 hash_for_each_safe(vsi->mac_filter_hash, bkt, h, f, hlist) { 1286 /* Combine the checks for whether a filter needs to be changed 1287 * and then determine the new VLAN inside the if block, in 1288 * order to avoid duplicating code for adding the new filter 1289 * then deleting the old filter. 1290 */ 1291 if ((pvid && f->vlan != pvid) || 1292 (vlan_filters && f->vlan == I40E_VLAN_ANY) || 1293 (!vlan_filters && f->vlan == 0)) { 1294 /* Determine the new vlan we will be adding */ 1295 if (pvid) 1296 new_vlan = pvid; 1297 else if (vlan_filters) 1298 new_vlan = 0; 1299 else 1300 new_vlan = I40E_VLAN_ANY; 1301 1302 /* Create the new filter */ 1303 add_head = i40e_add_filter(vsi, f->macaddr, new_vlan); 1304 if (!add_head) 1305 return -ENOMEM; 1306 1307 /* Create a temporary i40e_new_mac_filter */ 1308 new = kzalloc(sizeof(*new), GFP_ATOMIC); 1309 if (!new) 1310 return -ENOMEM; 1311 1312 new->f = add_head; 1313 new->state = add_head->state; 1314 1315 /* Add the new filter to the tmp list */ 1316 hlist_add_head(&new->hlist, tmp_add_list); 1317 1318 /* Put the original filter into the delete list */ 1319 f->state = I40E_FILTER_REMOVE; 1320 hash_del(&f->hlist); 1321 hlist_add_head(&f->hlist, tmp_del_list); 1322 } 1323 } 1324 1325 vsi->has_vlan_filter = !!vlan_filters; 1326 1327 return 0; 1328 } 1329 1330 /** 1331 * i40e_rm_default_mac_filter - Remove the default MAC filter set by NVM 1332 * @vsi: the PF Main VSI - inappropriate for any other VSI 1333 * @macaddr: the MAC address 1334 * 1335 * Remove whatever filter the firmware set up so the driver can manage 1336 * its own filtering intelligently. 1337 **/ 1338 static void i40e_rm_default_mac_filter(struct i40e_vsi *vsi, u8 *macaddr) 1339 { 1340 struct i40e_aqc_remove_macvlan_element_data element; 1341 struct i40e_pf *pf = vsi->back; 1342 1343 /* Only appropriate for the PF main VSI */ 1344 if (vsi->type != I40E_VSI_MAIN) 1345 return; 1346 1347 memset(&element, 0, sizeof(element)); 1348 ether_addr_copy(element.mac_addr, macaddr); 1349 element.vlan_tag = 0; 1350 /* Ignore error returns, some firmware does it this way... */ 1351 element.flags = I40E_AQC_MACVLAN_DEL_PERFECT_MATCH; 1352 i40e_aq_remove_macvlan(&pf->hw, vsi->seid, &element, 1, NULL); 1353 1354 memset(&element, 0, sizeof(element)); 1355 ether_addr_copy(element.mac_addr, macaddr); 1356 element.vlan_tag = 0; 1357 /* ...and some firmware does it this way. */ 1358 element.flags = I40E_AQC_MACVLAN_DEL_PERFECT_MATCH | 1359 I40E_AQC_MACVLAN_DEL_IGNORE_VLAN; 1360 i40e_aq_remove_macvlan(&pf->hw, vsi->seid, &element, 1, NULL); 1361 } 1362 1363 /** 1364 * i40e_add_filter - Add a mac/vlan filter to the VSI 1365 * @vsi: the VSI to be searched 1366 * @macaddr: the MAC address 1367 * @vlan: the vlan 1368 * 1369 * Returns ptr to the filter object or NULL when no memory available. 1370 * 1371 * NOTE: This function is expected to be called with mac_filter_hash_lock 1372 * being held. 1373 **/ 1374 struct i40e_mac_filter *i40e_add_filter(struct i40e_vsi *vsi, 1375 const u8 *macaddr, s16 vlan) 1376 { 1377 struct i40e_mac_filter *f; 1378 u64 key; 1379 1380 if (!vsi || !macaddr) 1381 return NULL; 1382 1383 f = i40e_find_filter(vsi, macaddr, vlan); 1384 if (!f) { 1385 f = kzalloc(sizeof(*f), GFP_ATOMIC); 1386 if (!f) 1387 return NULL; 1388 1389 /* Update the boolean indicating if we need to function in 1390 * VLAN mode. 1391 */ 1392 if (vlan >= 0) 1393 vsi->has_vlan_filter = true; 1394 1395 ether_addr_copy(f->macaddr, macaddr); 1396 f->vlan = vlan; 1397 f->state = I40E_FILTER_NEW; 1398 INIT_HLIST_NODE(&f->hlist); 1399 1400 key = i40e_addr_to_hkey(macaddr); 1401 hash_add(vsi->mac_filter_hash, &f->hlist, key); 1402 1403 vsi->flags |= I40E_VSI_FLAG_FILTER_CHANGED; 1404 set_bit(__I40E_MACVLAN_SYNC_PENDING, vsi->back->state); 1405 } 1406 1407 /* If we're asked to add a filter that has been marked for removal, it 1408 * is safe to simply restore it to active state. __i40e_del_filter 1409 * will have simply deleted any filters which were previously marked 1410 * NEW or FAILED, so if it is currently marked REMOVE it must have 1411 * previously been ACTIVE. Since we haven't yet run the sync filters 1412 * task, just restore this filter to the ACTIVE state so that the 1413 * sync task leaves it in place 1414 */ 1415 if (f->state == I40E_FILTER_REMOVE) 1416 f->state = I40E_FILTER_ACTIVE; 1417 1418 return f; 1419 } 1420 1421 /** 1422 * __i40e_del_filter - Remove a specific filter from the VSI 1423 * @vsi: VSI to remove from 1424 * @f: the filter to remove from the list 1425 * 1426 * This function should be called instead of i40e_del_filter only if you know 1427 * the exact filter you will remove already, such as via i40e_find_filter or 1428 * i40e_find_mac. 1429 * 1430 * NOTE: This function is expected to be called with mac_filter_hash_lock 1431 * being held. 1432 * ANOTHER NOTE: This function MUST be called from within the context of 1433 * the "safe" variants of any list iterators, e.g. list_for_each_entry_safe() 1434 * instead of list_for_each_entry(). 1435 **/ 1436 void __i40e_del_filter(struct i40e_vsi *vsi, struct i40e_mac_filter *f) 1437 { 1438 if (!f) 1439 return; 1440 1441 /* If the filter was never added to firmware then we can just delete it 1442 * directly and we don't want to set the status to remove or else an 1443 * admin queue command will unnecessarily fire. 1444 */ 1445 if ((f->state == I40E_FILTER_FAILED) || 1446 (f->state == I40E_FILTER_NEW)) { 1447 hash_del(&f->hlist); 1448 kfree(f); 1449 } else { 1450 f->state = I40E_FILTER_REMOVE; 1451 } 1452 1453 vsi->flags |= I40E_VSI_FLAG_FILTER_CHANGED; 1454 set_bit(__I40E_MACVLAN_SYNC_PENDING, vsi->back->state); 1455 } 1456 1457 /** 1458 * i40e_del_filter - Remove a MAC/VLAN filter from the VSI 1459 * @vsi: the VSI to be searched 1460 * @macaddr: the MAC address 1461 * @vlan: the VLAN 1462 * 1463 * NOTE: This function is expected to be called with mac_filter_hash_lock 1464 * being held. 1465 * ANOTHER NOTE: This function MUST be called from within the context of 1466 * the "safe" variants of any list iterators, e.g. list_for_each_entry_safe() 1467 * instead of list_for_each_entry(). 1468 **/ 1469 void i40e_del_filter(struct i40e_vsi *vsi, const u8 *macaddr, s16 vlan) 1470 { 1471 struct i40e_mac_filter *f; 1472 1473 if (!vsi || !macaddr) 1474 return; 1475 1476 f = i40e_find_filter(vsi, macaddr, vlan); 1477 __i40e_del_filter(vsi, f); 1478 } 1479 1480 /** 1481 * i40e_add_mac_filter - Add a MAC filter for all active VLANs 1482 * @vsi: the VSI to be searched 1483 * @macaddr: the mac address to be filtered 1484 * 1485 * If we're not in VLAN mode, just add the filter to I40E_VLAN_ANY. Otherwise, 1486 * go through all the macvlan filters and add a macvlan filter for each 1487 * unique vlan that already exists. If a PVID has been assigned, instead only 1488 * add the macaddr to that VLAN. 1489 * 1490 * Returns last filter added on success, else NULL 1491 **/ 1492 struct i40e_mac_filter *i40e_add_mac_filter(struct i40e_vsi *vsi, 1493 const u8 *macaddr) 1494 { 1495 struct i40e_mac_filter *f, *add = NULL; 1496 struct hlist_node *h; 1497 int bkt; 1498 1499 if (vsi->info.pvid) 1500 return i40e_add_filter(vsi, macaddr, 1501 le16_to_cpu(vsi->info.pvid)); 1502 1503 if (!i40e_is_vsi_in_vlan(vsi)) 1504 return i40e_add_filter(vsi, macaddr, I40E_VLAN_ANY); 1505 1506 hash_for_each_safe(vsi->mac_filter_hash, bkt, h, f, hlist) { 1507 if (f->state == I40E_FILTER_REMOVE) 1508 continue; 1509 add = i40e_add_filter(vsi, macaddr, f->vlan); 1510 if (!add) 1511 return NULL; 1512 } 1513 1514 return add; 1515 } 1516 1517 /** 1518 * i40e_del_mac_filter - Remove a MAC filter from all VLANs 1519 * @vsi: the VSI to be searched 1520 * @macaddr: the mac address to be removed 1521 * 1522 * Removes a given MAC address from a VSI regardless of what VLAN it has been 1523 * associated with. 1524 * 1525 * Returns 0 for success, or error 1526 **/ 1527 int i40e_del_mac_filter(struct i40e_vsi *vsi, const u8 *macaddr) 1528 { 1529 struct i40e_mac_filter *f; 1530 struct hlist_node *h; 1531 bool found = false; 1532 int bkt; 1533 1534 lockdep_assert_held(&vsi->mac_filter_hash_lock); 1535 hash_for_each_safe(vsi->mac_filter_hash, bkt, h, f, hlist) { 1536 if (ether_addr_equal(macaddr, f->macaddr)) { 1537 __i40e_del_filter(vsi, f); 1538 found = true; 1539 } 1540 } 1541 1542 if (found) 1543 return 0; 1544 else 1545 return -ENOENT; 1546 } 1547 1548 /** 1549 * i40e_set_mac - NDO callback to set mac address 1550 * @netdev: network interface device structure 1551 * @p: pointer to an address structure 1552 * 1553 * Returns 0 on success, negative on failure 1554 **/ 1555 static int i40e_set_mac(struct net_device *netdev, void *p) 1556 { 1557 struct i40e_netdev_priv *np = netdev_priv(netdev); 1558 struct i40e_vsi *vsi = np->vsi; 1559 struct i40e_pf *pf = vsi->back; 1560 struct i40e_hw *hw = &pf->hw; 1561 struct sockaddr *addr = p; 1562 1563 if (!is_valid_ether_addr(addr->sa_data)) 1564 return -EADDRNOTAVAIL; 1565 1566 if (ether_addr_equal(netdev->dev_addr, addr->sa_data)) { 1567 netdev_info(netdev, "already using mac address %pM\n", 1568 addr->sa_data); 1569 return 0; 1570 } 1571 1572 if (test_bit(__I40E_DOWN, pf->state) || 1573 test_bit(__I40E_RESET_RECOVERY_PENDING, pf->state)) 1574 return -EADDRNOTAVAIL; 1575 1576 if (ether_addr_equal(hw->mac.addr, addr->sa_data)) 1577 netdev_info(netdev, "returning to hw mac address %pM\n", 1578 hw->mac.addr); 1579 else 1580 netdev_info(netdev, "set new mac address %pM\n", addr->sa_data); 1581 1582 /* Copy the address first, so that we avoid a possible race with 1583 * .set_rx_mode(). 1584 * - Remove old address from MAC filter 1585 * - Copy new address 1586 * - Add new address to MAC filter 1587 */ 1588 spin_lock_bh(&vsi->mac_filter_hash_lock); 1589 i40e_del_mac_filter(vsi, netdev->dev_addr); 1590 ether_addr_copy(netdev->dev_addr, addr->sa_data); 1591 i40e_add_mac_filter(vsi, netdev->dev_addr); 1592 spin_unlock_bh(&vsi->mac_filter_hash_lock); 1593 1594 if (vsi->type == I40E_VSI_MAIN) { 1595 i40e_status ret; 1596 1597 ret = i40e_aq_mac_address_write(hw, I40E_AQC_WRITE_TYPE_LAA_WOL, 1598 addr->sa_data, NULL); 1599 if (ret) 1600 netdev_info(netdev, "Ignoring error from firmware on LAA update, status %s, AQ ret %s\n", 1601 i40e_stat_str(hw, ret), 1602 i40e_aq_str(hw, hw->aq.asq_last_status)); 1603 } 1604 1605 /* schedule our worker thread which will take care of 1606 * applying the new filter changes 1607 */ 1608 i40e_service_event_schedule(pf); 1609 return 0; 1610 } 1611 1612 /** 1613 * i40e_config_rss_aq - Prepare for RSS using AQ commands 1614 * @vsi: vsi structure 1615 * @seed: RSS hash seed 1616 * @lut: pointer to lookup table of lut_size 1617 * @lut_size: size of the lookup table 1618 **/ 1619 static int i40e_config_rss_aq(struct i40e_vsi *vsi, const u8 *seed, 1620 u8 *lut, u16 lut_size) 1621 { 1622 struct i40e_pf *pf = vsi->back; 1623 struct i40e_hw *hw = &pf->hw; 1624 int ret = 0; 1625 1626 if (seed) { 1627 struct i40e_aqc_get_set_rss_key_data *seed_dw = 1628 (struct i40e_aqc_get_set_rss_key_data *)seed; 1629 ret = i40e_aq_set_rss_key(hw, vsi->id, seed_dw); 1630 if (ret) { 1631 dev_info(&pf->pdev->dev, 1632 "Cannot set RSS key, err %s aq_err %s\n", 1633 i40e_stat_str(hw, ret), 1634 i40e_aq_str(hw, hw->aq.asq_last_status)); 1635 return ret; 1636 } 1637 } 1638 if (lut) { 1639 bool pf_lut = vsi->type == I40E_VSI_MAIN; 1640 1641 ret = i40e_aq_set_rss_lut(hw, vsi->id, pf_lut, lut, lut_size); 1642 if (ret) { 1643 dev_info(&pf->pdev->dev, 1644 "Cannot set RSS lut, err %s aq_err %s\n", 1645 i40e_stat_str(hw, ret), 1646 i40e_aq_str(hw, hw->aq.asq_last_status)); 1647 return ret; 1648 } 1649 } 1650 return ret; 1651 } 1652 1653 /** 1654 * i40e_vsi_config_rss - Prepare for VSI(VMDq) RSS if used 1655 * @vsi: VSI structure 1656 **/ 1657 static int i40e_vsi_config_rss(struct i40e_vsi *vsi) 1658 { 1659 struct i40e_pf *pf = vsi->back; 1660 u8 seed[I40E_HKEY_ARRAY_SIZE]; 1661 u8 *lut; 1662 int ret; 1663 1664 if (!(pf->hw_features & I40E_HW_RSS_AQ_CAPABLE)) 1665 return 0; 1666 if (!vsi->rss_size) 1667 vsi->rss_size = min_t(int, pf->alloc_rss_size, 1668 vsi->num_queue_pairs); 1669 if (!vsi->rss_size) 1670 return -EINVAL; 1671 lut = kzalloc(vsi->rss_table_size, GFP_KERNEL); 1672 if (!lut) 1673 return -ENOMEM; 1674 1675 /* Use the user configured hash keys and lookup table if there is one, 1676 * otherwise use default 1677 */ 1678 if (vsi->rss_lut_user) 1679 memcpy(lut, vsi->rss_lut_user, vsi->rss_table_size); 1680 else 1681 i40e_fill_rss_lut(pf, lut, vsi->rss_table_size, vsi->rss_size); 1682 if (vsi->rss_hkey_user) 1683 memcpy(seed, vsi->rss_hkey_user, I40E_HKEY_ARRAY_SIZE); 1684 else 1685 netdev_rss_key_fill((void *)seed, I40E_HKEY_ARRAY_SIZE); 1686 ret = i40e_config_rss_aq(vsi, seed, lut, vsi->rss_table_size); 1687 kfree(lut); 1688 return ret; 1689 } 1690 1691 /** 1692 * i40e_vsi_setup_queue_map_mqprio - Prepares mqprio based tc_config 1693 * @vsi: the VSI being configured, 1694 * @ctxt: VSI context structure 1695 * @enabled_tc: number of traffic classes to enable 1696 * 1697 * Prepares VSI tc_config to have queue configurations based on MQPRIO options. 1698 **/ 1699 static int i40e_vsi_setup_queue_map_mqprio(struct i40e_vsi *vsi, 1700 struct i40e_vsi_context *ctxt, 1701 u8 enabled_tc) 1702 { 1703 u16 qcount = 0, max_qcount, qmap, sections = 0; 1704 int i, override_q, pow, num_qps, ret; 1705 u8 netdev_tc = 0, offset = 0; 1706 1707 if (vsi->type != I40E_VSI_MAIN) 1708 return -EINVAL; 1709 sections = I40E_AQ_VSI_PROP_QUEUE_MAP_VALID; 1710 sections |= I40E_AQ_VSI_PROP_SCHED_VALID; 1711 vsi->tc_config.numtc = vsi->mqprio_qopt.qopt.num_tc; 1712 vsi->tc_config.enabled_tc = enabled_tc ? enabled_tc : 1; 1713 num_qps = vsi->mqprio_qopt.qopt.count[0]; 1714 1715 /* find the next higher power-of-2 of num queue pairs */ 1716 pow = ilog2(num_qps); 1717 if (!is_power_of_2(num_qps)) 1718 pow++; 1719 qmap = (offset << I40E_AQ_VSI_TC_QUE_OFFSET_SHIFT) | 1720 (pow << I40E_AQ_VSI_TC_QUE_NUMBER_SHIFT); 1721 1722 /* Setup queue offset/count for all TCs for given VSI */ 1723 max_qcount = vsi->mqprio_qopt.qopt.count[0]; 1724 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 1725 /* See if the given TC is enabled for the given VSI */ 1726 if (vsi->tc_config.enabled_tc & BIT(i)) { 1727 offset = vsi->mqprio_qopt.qopt.offset[i]; 1728 qcount = vsi->mqprio_qopt.qopt.count[i]; 1729 if (qcount > max_qcount) 1730 max_qcount = qcount; 1731 vsi->tc_config.tc_info[i].qoffset = offset; 1732 vsi->tc_config.tc_info[i].qcount = qcount; 1733 vsi->tc_config.tc_info[i].netdev_tc = netdev_tc++; 1734 } else { 1735 /* TC is not enabled so set the offset to 1736 * default queue and allocate one queue 1737 * for the given TC. 1738 */ 1739 vsi->tc_config.tc_info[i].qoffset = 0; 1740 vsi->tc_config.tc_info[i].qcount = 1; 1741 vsi->tc_config.tc_info[i].netdev_tc = 0; 1742 } 1743 } 1744 1745 /* Set actual Tx/Rx queue pairs */ 1746 vsi->num_queue_pairs = offset + qcount; 1747 1748 /* Setup queue TC[0].qmap for given VSI context */ 1749 ctxt->info.tc_mapping[0] = cpu_to_le16(qmap); 1750 ctxt->info.mapping_flags |= cpu_to_le16(I40E_AQ_VSI_QUE_MAP_CONTIG); 1751 ctxt->info.queue_mapping[0] = cpu_to_le16(vsi->base_queue); 1752 ctxt->info.valid_sections |= cpu_to_le16(sections); 1753 1754 /* Reconfigure RSS for main VSI with max queue count */ 1755 vsi->rss_size = max_qcount; 1756 ret = i40e_vsi_config_rss(vsi); 1757 if (ret) { 1758 dev_info(&vsi->back->pdev->dev, 1759 "Failed to reconfig rss for num_queues (%u)\n", 1760 max_qcount); 1761 return ret; 1762 } 1763 vsi->reconfig_rss = true; 1764 dev_dbg(&vsi->back->pdev->dev, 1765 "Reconfigured rss with num_queues (%u)\n", max_qcount); 1766 1767 /* Find queue count available for channel VSIs and starting offset 1768 * for channel VSIs 1769 */ 1770 override_q = vsi->mqprio_qopt.qopt.count[0]; 1771 if (override_q && override_q < vsi->num_queue_pairs) { 1772 vsi->cnt_q_avail = vsi->num_queue_pairs - override_q; 1773 vsi->next_base_queue = override_q; 1774 } 1775 return 0; 1776 } 1777 1778 /** 1779 * i40e_vsi_setup_queue_map - Setup a VSI queue map based on enabled_tc 1780 * @vsi: the VSI being setup 1781 * @ctxt: VSI context structure 1782 * @enabled_tc: Enabled TCs bitmap 1783 * @is_add: True if called before Add VSI 1784 * 1785 * Setup VSI queue mapping for enabled traffic classes. 1786 **/ 1787 static void i40e_vsi_setup_queue_map(struct i40e_vsi *vsi, 1788 struct i40e_vsi_context *ctxt, 1789 u8 enabled_tc, 1790 bool is_add) 1791 { 1792 struct i40e_pf *pf = vsi->back; 1793 u16 sections = 0; 1794 u8 netdev_tc = 0; 1795 u16 numtc = 1; 1796 u16 qcount; 1797 u8 offset; 1798 u16 qmap; 1799 int i; 1800 u16 num_tc_qps = 0; 1801 1802 sections = I40E_AQ_VSI_PROP_QUEUE_MAP_VALID; 1803 offset = 0; 1804 1805 /* Number of queues per enabled TC */ 1806 num_tc_qps = vsi->alloc_queue_pairs; 1807 if (enabled_tc && (vsi->back->flags & I40E_FLAG_DCB_ENABLED)) { 1808 /* Find numtc from enabled TC bitmap */ 1809 for (i = 0, numtc = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 1810 if (enabled_tc & BIT(i)) /* TC is enabled */ 1811 numtc++; 1812 } 1813 if (!numtc) { 1814 dev_warn(&pf->pdev->dev, "DCB is enabled but no TC enabled, forcing TC0\n"); 1815 numtc = 1; 1816 } 1817 num_tc_qps = num_tc_qps / numtc; 1818 num_tc_qps = min_t(int, num_tc_qps, 1819 i40e_pf_get_max_q_per_tc(pf)); 1820 } 1821 1822 vsi->tc_config.numtc = numtc; 1823 vsi->tc_config.enabled_tc = enabled_tc ? enabled_tc : 1; 1824 1825 /* Do not allow use more TC queue pairs than MSI-X vectors exist */ 1826 if (pf->flags & I40E_FLAG_MSIX_ENABLED) 1827 num_tc_qps = min_t(int, num_tc_qps, pf->num_lan_msix); 1828 1829 /* Setup queue offset/count for all TCs for given VSI */ 1830 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 1831 /* See if the given TC is enabled for the given VSI */ 1832 if (vsi->tc_config.enabled_tc & BIT(i)) { 1833 /* TC is enabled */ 1834 int pow, num_qps; 1835 1836 switch (vsi->type) { 1837 case I40E_VSI_MAIN: 1838 if (!(pf->flags & (I40E_FLAG_FD_SB_ENABLED | 1839 I40E_FLAG_FD_ATR_ENABLED)) || 1840 vsi->tc_config.enabled_tc != 1) { 1841 qcount = min_t(int, pf->alloc_rss_size, 1842 num_tc_qps); 1843 break; 1844 } 1845 fallthrough; 1846 case I40E_VSI_FDIR: 1847 case I40E_VSI_SRIOV: 1848 case I40E_VSI_VMDQ2: 1849 default: 1850 qcount = num_tc_qps; 1851 WARN_ON(i != 0); 1852 break; 1853 } 1854 vsi->tc_config.tc_info[i].qoffset = offset; 1855 vsi->tc_config.tc_info[i].qcount = qcount; 1856 1857 /* find the next higher power-of-2 of num queue pairs */ 1858 num_qps = qcount; 1859 pow = 0; 1860 while (num_qps && (BIT_ULL(pow) < qcount)) { 1861 pow++; 1862 num_qps >>= 1; 1863 } 1864 1865 vsi->tc_config.tc_info[i].netdev_tc = netdev_tc++; 1866 qmap = 1867 (offset << I40E_AQ_VSI_TC_QUE_OFFSET_SHIFT) | 1868 (pow << I40E_AQ_VSI_TC_QUE_NUMBER_SHIFT); 1869 1870 offset += qcount; 1871 } else { 1872 /* TC is not enabled so set the offset to 1873 * default queue and allocate one queue 1874 * for the given TC. 1875 */ 1876 vsi->tc_config.tc_info[i].qoffset = 0; 1877 vsi->tc_config.tc_info[i].qcount = 1; 1878 vsi->tc_config.tc_info[i].netdev_tc = 0; 1879 1880 qmap = 0; 1881 } 1882 ctxt->info.tc_mapping[i] = cpu_to_le16(qmap); 1883 } 1884 1885 /* Set actual Tx/Rx queue pairs */ 1886 vsi->num_queue_pairs = offset; 1887 if ((vsi->type == I40E_VSI_MAIN) && (numtc == 1)) { 1888 if (vsi->req_queue_pairs > 0) 1889 vsi->num_queue_pairs = vsi->req_queue_pairs; 1890 else if (pf->flags & I40E_FLAG_MSIX_ENABLED) 1891 vsi->num_queue_pairs = pf->num_lan_msix; 1892 } 1893 1894 /* Scheduler section valid can only be set for ADD VSI */ 1895 if (is_add) { 1896 sections |= I40E_AQ_VSI_PROP_SCHED_VALID; 1897 1898 ctxt->info.up_enable_bits = enabled_tc; 1899 } 1900 if (vsi->type == I40E_VSI_SRIOV) { 1901 ctxt->info.mapping_flags |= 1902 cpu_to_le16(I40E_AQ_VSI_QUE_MAP_NONCONTIG); 1903 for (i = 0; i < vsi->num_queue_pairs; i++) 1904 ctxt->info.queue_mapping[i] = 1905 cpu_to_le16(vsi->base_queue + i); 1906 } else { 1907 ctxt->info.mapping_flags |= 1908 cpu_to_le16(I40E_AQ_VSI_QUE_MAP_CONTIG); 1909 ctxt->info.queue_mapping[0] = cpu_to_le16(vsi->base_queue); 1910 } 1911 ctxt->info.valid_sections |= cpu_to_le16(sections); 1912 } 1913 1914 /** 1915 * i40e_addr_sync - Callback for dev_(mc|uc)_sync to add address 1916 * @netdev: the netdevice 1917 * @addr: address to add 1918 * 1919 * Called by __dev_(mc|uc)_sync when an address needs to be added. We call 1920 * __dev_(uc|mc)_sync from .set_rx_mode and guarantee to hold the hash lock. 1921 */ 1922 static int i40e_addr_sync(struct net_device *netdev, const u8 *addr) 1923 { 1924 struct i40e_netdev_priv *np = netdev_priv(netdev); 1925 struct i40e_vsi *vsi = np->vsi; 1926 1927 if (i40e_add_mac_filter(vsi, addr)) 1928 return 0; 1929 else 1930 return -ENOMEM; 1931 } 1932 1933 /** 1934 * i40e_addr_unsync - Callback for dev_(mc|uc)_sync to remove address 1935 * @netdev: the netdevice 1936 * @addr: address to add 1937 * 1938 * Called by __dev_(mc|uc)_sync when an address needs to be removed. We call 1939 * __dev_(uc|mc)_sync from .set_rx_mode and guarantee to hold the hash lock. 1940 */ 1941 static int i40e_addr_unsync(struct net_device *netdev, const u8 *addr) 1942 { 1943 struct i40e_netdev_priv *np = netdev_priv(netdev); 1944 struct i40e_vsi *vsi = np->vsi; 1945 1946 /* Under some circumstances, we might receive a request to delete 1947 * our own device address from our uc list. Because we store the 1948 * device address in the VSI's MAC/VLAN filter list, we need to ignore 1949 * such requests and not delete our device address from this list. 1950 */ 1951 if (ether_addr_equal(addr, netdev->dev_addr)) 1952 return 0; 1953 1954 i40e_del_mac_filter(vsi, addr); 1955 1956 return 0; 1957 } 1958 1959 /** 1960 * i40e_set_rx_mode - NDO callback to set the netdev filters 1961 * @netdev: network interface device structure 1962 **/ 1963 static void i40e_set_rx_mode(struct net_device *netdev) 1964 { 1965 struct i40e_netdev_priv *np = netdev_priv(netdev); 1966 struct i40e_vsi *vsi = np->vsi; 1967 1968 spin_lock_bh(&vsi->mac_filter_hash_lock); 1969 1970 __dev_uc_sync(netdev, i40e_addr_sync, i40e_addr_unsync); 1971 __dev_mc_sync(netdev, i40e_addr_sync, i40e_addr_unsync); 1972 1973 spin_unlock_bh(&vsi->mac_filter_hash_lock); 1974 1975 /* check for other flag changes */ 1976 if (vsi->current_netdev_flags != vsi->netdev->flags) { 1977 vsi->flags |= I40E_VSI_FLAG_FILTER_CHANGED; 1978 set_bit(__I40E_MACVLAN_SYNC_PENDING, vsi->back->state); 1979 } 1980 } 1981 1982 /** 1983 * i40e_undo_del_filter_entries - Undo the changes made to MAC filter entries 1984 * @vsi: Pointer to VSI struct 1985 * @from: Pointer to list which contains MAC filter entries - changes to 1986 * those entries needs to be undone. 1987 * 1988 * MAC filter entries from this list were slated for deletion. 1989 **/ 1990 static void i40e_undo_del_filter_entries(struct i40e_vsi *vsi, 1991 struct hlist_head *from) 1992 { 1993 struct i40e_mac_filter *f; 1994 struct hlist_node *h; 1995 1996 hlist_for_each_entry_safe(f, h, from, hlist) { 1997 u64 key = i40e_addr_to_hkey(f->macaddr); 1998 1999 /* Move the element back into MAC filter list*/ 2000 hlist_del(&f->hlist); 2001 hash_add(vsi->mac_filter_hash, &f->hlist, key); 2002 } 2003 } 2004 2005 /** 2006 * i40e_undo_add_filter_entries - Undo the changes made to MAC filter entries 2007 * @vsi: Pointer to vsi struct 2008 * @from: Pointer to list which contains MAC filter entries - changes to 2009 * those entries needs to be undone. 2010 * 2011 * MAC filter entries from this list were slated for addition. 2012 **/ 2013 static void i40e_undo_add_filter_entries(struct i40e_vsi *vsi, 2014 struct hlist_head *from) 2015 { 2016 struct i40e_new_mac_filter *new; 2017 struct hlist_node *h; 2018 2019 hlist_for_each_entry_safe(new, h, from, hlist) { 2020 /* We can simply free the wrapper structure */ 2021 hlist_del(&new->hlist); 2022 kfree(new); 2023 } 2024 } 2025 2026 /** 2027 * i40e_next_filter - Get the next non-broadcast filter from a list 2028 * @next: pointer to filter in list 2029 * 2030 * Returns the next non-broadcast filter in the list. Required so that we 2031 * ignore broadcast filters within the list, since these are not handled via 2032 * the normal firmware update path. 2033 */ 2034 static 2035 struct i40e_new_mac_filter *i40e_next_filter(struct i40e_new_mac_filter *next) 2036 { 2037 hlist_for_each_entry_continue(next, hlist) { 2038 if (!is_broadcast_ether_addr(next->f->macaddr)) 2039 return next; 2040 } 2041 2042 return NULL; 2043 } 2044 2045 /** 2046 * i40e_update_filter_state - Update filter state based on return data 2047 * from firmware 2048 * @count: Number of filters added 2049 * @add_list: return data from fw 2050 * @add_head: pointer to first filter in current batch 2051 * 2052 * MAC filter entries from list were slated to be added to device. Returns 2053 * number of successful filters. Note that 0 does NOT mean success! 2054 **/ 2055 static int 2056 i40e_update_filter_state(int count, 2057 struct i40e_aqc_add_macvlan_element_data *add_list, 2058 struct i40e_new_mac_filter *add_head) 2059 { 2060 int retval = 0; 2061 int i; 2062 2063 for (i = 0; i < count; i++) { 2064 /* Always check status of each filter. We don't need to check 2065 * the firmware return status because we pre-set the filter 2066 * status to I40E_AQC_MM_ERR_NO_RES when sending the filter 2067 * request to the adminq. Thus, if it no longer matches then 2068 * we know the filter is active. 2069 */ 2070 if (add_list[i].match_method == I40E_AQC_MM_ERR_NO_RES) { 2071 add_head->state = I40E_FILTER_FAILED; 2072 } else { 2073 add_head->state = I40E_FILTER_ACTIVE; 2074 retval++; 2075 } 2076 2077 add_head = i40e_next_filter(add_head); 2078 if (!add_head) 2079 break; 2080 } 2081 2082 return retval; 2083 } 2084 2085 /** 2086 * i40e_aqc_del_filters - Request firmware to delete a set of filters 2087 * @vsi: ptr to the VSI 2088 * @vsi_name: name to display in messages 2089 * @list: the list of filters to send to firmware 2090 * @num_del: the number of filters to delete 2091 * @retval: Set to -EIO on failure to delete 2092 * 2093 * Send a request to firmware via AdminQ to delete a set of filters. Uses 2094 * *retval instead of a return value so that success does not force ret_val to 2095 * be set to 0. This ensures that a sequence of calls to this function 2096 * preserve the previous value of *retval on successful delete. 2097 */ 2098 static 2099 void i40e_aqc_del_filters(struct i40e_vsi *vsi, const char *vsi_name, 2100 struct i40e_aqc_remove_macvlan_element_data *list, 2101 int num_del, int *retval) 2102 { 2103 struct i40e_hw *hw = &vsi->back->hw; 2104 i40e_status aq_ret; 2105 int aq_err; 2106 2107 aq_ret = i40e_aq_remove_macvlan(hw, vsi->seid, list, num_del, NULL); 2108 aq_err = hw->aq.asq_last_status; 2109 2110 /* Explicitly ignore and do not report when firmware returns ENOENT */ 2111 if (aq_ret && !(aq_err == I40E_AQ_RC_ENOENT)) { 2112 *retval = -EIO; 2113 dev_info(&vsi->back->pdev->dev, 2114 "ignoring delete macvlan error on %s, err %s, aq_err %s\n", 2115 vsi_name, i40e_stat_str(hw, aq_ret), 2116 i40e_aq_str(hw, aq_err)); 2117 } 2118 } 2119 2120 /** 2121 * i40e_aqc_add_filters - Request firmware to add a set of filters 2122 * @vsi: ptr to the VSI 2123 * @vsi_name: name to display in messages 2124 * @list: the list of filters to send to firmware 2125 * @add_head: Position in the add hlist 2126 * @num_add: the number of filters to add 2127 * 2128 * Send a request to firmware via AdminQ to add a chunk of filters. Will set 2129 * __I40E_VSI_OVERFLOW_PROMISC bit in vsi->state if the firmware has run out of 2130 * space for more filters. 2131 */ 2132 static 2133 void i40e_aqc_add_filters(struct i40e_vsi *vsi, const char *vsi_name, 2134 struct i40e_aqc_add_macvlan_element_data *list, 2135 struct i40e_new_mac_filter *add_head, 2136 int num_add) 2137 { 2138 struct i40e_hw *hw = &vsi->back->hw; 2139 int aq_err, fcnt; 2140 2141 i40e_aq_add_macvlan(hw, vsi->seid, list, num_add, NULL); 2142 aq_err = hw->aq.asq_last_status; 2143 fcnt = i40e_update_filter_state(num_add, list, add_head); 2144 2145 if (fcnt != num_add) { 2146 if (vsi->type == I40E_VSI_MAIN) { 2147 set_bit(__I40E_VSI_OVERFLOW_PROMISC, vsi->state); 2148 dev_warn(&vsi->back->pdev->dev, 2149 "Error %s adding RX filters on %s, promiscuous mode forced on\n", 2150 i40e_aq_str(hw, aq_err), vsi_name); 2151 } else if (vsi->type == I40E_VSI_SRIOV || 2152 vsi->type == I40E_VSI_VMDQ1 || 2153 vsi->type == I40E_VSI_VMDQ2) { 2154 dev_warn(&vsi->back->pdev->dev, 2155 "Error %s adding RX filters on %s, please set promiscuous on manually for %s\n", 2156 i40e_aq_str(hw, aq_err), vsi_name, vsi_name); 2157 } else { 2158 dev_warn(&vsi->back->pdev->dev, 2159 "Error %s adding RX filters on %s, incorrect VSI type: %i.\n", 2160 i40e_aq_str(hw, aq_err), vsi_name, vsi->type); 2161 } 2162 } 2163 } 2164 2165 /** 2166 * i40e_aqc_broadcast_filter - Set promiscuous broadcast flags 2167 * @vsi: pointer to the VSI 2168 * @vsi_name: the VSI name 2169 * @f: filter data 2170 * 2171 * This function sets or clears the promiscuous broadcast flags for VLAN 2172 * filters in order to properly receive broadcast frames. Assumes that only 2173 * broadcast filters are passed. 2174 * 2175 * Returns status indicating success or failure; 2176 **/ 2177 static i40e_status 2178 i40e_aqc_broadcast_filter(struct i40e_vsi *vsi, const char *vsi_name, 2179 struct i40e_mac_filter *f) 2180 { 2181 bool enable = f->state == I40E_FILTER_NEW; 2182 struct i40e_hw *hw = &vsi->back->hw; 2183 i40e_status aq_ret; 2184 2185 if (f->vlan == I40E_VLAN_ANY) { 2186 aq_ret = i40e_aq_set_vsi_broadcast(hw, 2187 vsi->seid, 2188 enable, 2189 NULL); 2190 } else { 2191 aq_ret = i40e_aq_set_vsi_bc_promisc_on_vlan(hw, 2192 vsi->seid, 2193 enable, 2194 f->vlan, 2195 NULL); 2196 } 2197 2198 if (aq_ret) { 2199 set_bit(__I40E_VSI_OVERFLOW_PROMISC, vsi->state); 2200 dev_warn(&vsi->back->pdev->dev, 2201 "Error %s, forcing overflow promiscuous on %s\n", 2202 i40e_aq_str(hw, hw->aq.asq_last_status), 2203 vsi_name); 2204 } 2205 2206 return aq_ret; 2207 } 2208 2209 /** 2210 * i40e_set_promiscuous - set promiscuous mode 2211 * @pf: board private structure 2212 * @promisc: promisc on or off 2213 * 2214 * There are different ways of setting promiscuous mode on a PF depending on 2215 * what state/environment we're in. This identifies and sets it appropriately. 2216 * Returns 0 on success. 2217 **/ 2218 static int i40e_set_promiscuous(struct i40e_pf *pf, bool promisc) 2219 { 2220 struct i40e_vsi *vsi = pf->vsi[pf->lan_vsi]; 2221 struct i40e_hw *hw = &pf->hw; 2222 i40e_status aq_ret; 2223 2224 if (vsi->type == I40E_VSI_MAIN && 2225 pf->lan_veb != I40E_NO_VEB && 2226 !(pf->flags & I40E_FLAG_MFP_ENABLED)) { 2227 /* set defport ON for Main VSI instead of true promisc 2228 * this way we will get all unicast/multicast and VLAN 2229 * promisc behavior but will not get VF or VMDq traffic 2230 * replicated on the Main VSI. 2231 */ 2232 if (promisc) 2233 aq_ret = i40e_aq_set_default_vsi(hw, 2234 vsi->seid, 2235 NULL); 2236 else 2237 aq_ret = i40e_aq_clear_default_vsi(hw, 2238 vsi->seid, 2239 NULL); 2240 if (aq_ret) { 2241 dev_info(&pf->pdev->dev, 2242 "Set default VSI failed, err %s, aq_err %s\n", 2243 i40e_stat_str(hw, aq_ret), 2244 i40e_aq_str(hw, hw->aq.asq_last_status)); 2245 } 2246 } else { 2247 aq_ret = i40e_aq_set_vsi_unicast_promiscuous( 2248 hw, 2249 vsi->seid, 2250 promisc, NULL, 2251 true); 2252 if (aq_ret) { 2253 dev_info(&pf->pdev->dev, 2254 "set unicast promisc failed, err %s, aq_err %s\n", 2255 i40e_stat_str(hw, aq_ret), 2256 i40e_aq_str(hw, hw->aq.asq_last_status)); 2257 } 2258 aq_ret = i40e_aq_set_vsi_multicast_promiscuous( 2259 hw, 2260 vsi->seid, 2261 promisc, NULL); 2262 if (aq_ret) { 2263 dev_info(&pf->pdev->dev, 2264 "set multicast promisc failed, err %s, aq_err %s\n", 2265 i40e_stat_str(hw, aq_ret), 2266 i40e_aq_str(hw, hw->aq.asq_last_status)); 2267 } 2268 } 2269 2270 if (!aq_ret) 2271 pf->cur_promisc = promisc; 2272 2273 return aq_ret; 2274 } 2275 2276 /** 2277 * i40e_sync_vsi_filters - Update the VSI filter list to the HW 2278 * @vsi: ptr to the VSI 2279 * 2280 * Push any outstanding VSI filter changes through the AdminQ. 2281 * 2282 * Returns 0 or error value 2283 **/ 2284 int i40e_sync_vsi_filters(struct i40e_vsi *vsi) 2285 { 2286 struct hlist_head tmp_add_list, tmp_del_list; 2287 struct i40e_mac_filter *f; 2288 struct i40e_new_mac_filter *new, *add_head = NULL; 2289 struct i40e_hw *hw = &vsi->back->hw; 2290 bool old_overflow, new_overflow; 2291 unsigned int failed_filters = 0; 2292 unsigned int vlan_filters = 0; 2293 char vsi_name[16] = "PF"; 2294 int filter_list_len = 0; 2295 i40e_status aq_ret = 0; 2296 u32 changed_flags = 0; 2297 struct hlist_node *h; 2298 struct i40e_pf *pf; 2299 int num_add = 0; 2300 int num_del = 0; 2301 int retval = 0; 2302 u16 cmd_flags; 2303 int list_size; 2304 int bkt; 2305 2306 /* empty array typed pointers, kcalloc later */ 2307 struct i40e_aqc_add_macvlan_element_data *add_list; 2308 struct i40e_aqc_remove_macvlan_element_data *del_list; 2309 2310 while (test_and_set_bit(__I40E_VSI_SYNCING_FILTERS, vsi->state)) 2311 usleep_range(1000, 2000); 2312 pf = vsi->back; 2313 2314 old_overflow = test_bit(__I40E_VSI_OVERFLOW_PROMISC, vsi->state); 2315 2316 if (vsi->netdev) { 2317 changed_flags = vsi->current_netdev_flags ^ vsi->netdev->flags; 2318 vsi->current_netdev_flags = vsi->netdev->flags; 2319 } 2320 2321 INIT_HLIST_HEAD(&tmp_add_list); 2322 INIT_HLIST_HEAD(&tmp_del_list); 2323 2324 if (vsi->type == I40E_VSI_SRIOV) 2325 snprintf(vsi_name, sizeof(vsi_name) - 1, "VF %d", vsi->vf_id); 2326 else if (vsi->type != I40E_VSI_MAIN) 2327 snprintf(vsi_name, sizeof(vsi_name) - 1, "vsi %d", vsi->seid); 2328 2329 if (vsi->flags & I40E_VSI_FLAG_FILTER_CHANGED) { 2330 vsi->flags &= ~I40E_VSI_FLAG_FILTER_CHANGED; 2331 2332 spin_lock_bh(&vsi->mac_filter_hash_lock); 2333 /* Create a list of filters to delete. */ 2334 hash_for_each_safe(vsi->mac_filter_hash, bkt, h, f, hlist) { 2335 if (f->state == I40E_FILTER_REMOVE) { 2336 /* Move the element into temporary del_list */ 2337 hash_del(&f->hlist); 2338 hlist_add_head(&f->hlist, &tmp_del_list); 2339 2340 /* Avoid counting removed filters */ 2341 continue; 2342 } 2343 if (f->state == I40E_FILTER_NEW) { 2344 /* Create a temporary i40e_new_mac_filter */ 2345 new = kzalloc(sizeof(*new), GFP_ATOMIC); 2346 if (!new) 2347 goto err_no_memory_locked; 2348 2349 /* Store pointer to the real filter */ 2350 new->f = f; 2351 new->state = f->state; 2352 2353 /* Add it to the hash list */ 2354 hlist_add_head(&new->hlist, &tmp_add_list); 2355 } 2356 2357 /* Count the number of active (current and new) VLAN 2358 * filters we have now. Does not count filters which 2359 * are marked for deletion. 2360 */ 2361 if (f->vlan > 0) 2362 vlan_filters++; 2363 } 2364 2365 retval = i40e_correct_mac_vlan_filters(vsi, 2366 &tmp_add_list, 2367 &tmp_del_list, 2368 vlan_filters); 2369 if (retval) 2370 goto err_no_memory_locked; 2371 2372 spin_unlock_bh(&vsi->mac_filter_hash_lock); 2373 } 2374 2375 /* Now process 'del_list' outside the lock */ 2376 if (!hlist_empty(&tmp_del_list)) { 2377 filter_list_len = hw->aq.asq_buf_size / 2378 sizeof(struct i40e_aqc_remove_macvlan_element_data); 2379 list_size = filter_list_len * 2380 sizeof(struct i40e_aqc_remove_macvlan_element_data); 2381 del_list = kzalloc(list_size, GFP_ATOMIC); 2382 if (!del_list) 2383 goto err_no_memory; 2384 2385 hlist_for_each_entry_safe(f, h, &tmp_del_list, hlist) { 2386 cmd_flags = 0; 2387 2388 /* handle broadcast filters by updating the broadcast 2389 * promiscuous flag and release filter list. 2390 */ 2391 if (is_broadcast_ether_addr(f->macaddr)) { 2392 i40e_aqc_broadcast_filter(vsi, vsi_name, f); 2393 2394 hlist_del(&f->hlist); 2395 kfree(f); 2396 continue; 2397 } 2398 2399 /* add to delete list */ 2400 ether_addr_copy(del_list[num_del].mac_addr, f->macaddr); 2401 if (f->vlan == I40E_VLAN_ANY) { 2402 del_list[num_del].vlan_tag = 0; 2403 cmd_flags |= I40E_AQC_MACVLAN_DEL_IGNORE_VLAN; 2404 } else { 2405 del_list[num_del].vlan_tag = 2406 cpu_to_le16((u16)(f->vlan)); 2407 } 2408 2409 cmd_flags |= I40E_AQC_MACVLAN_DEL_PERFECT_MATCH; 2410 del_list[num_del].flags = cmd_flags; 2411 num_del++; 2412 2413 /* flush a full buffer */ 2414 if (num_del == filter_list_len) { 2415 i40e_aqc_del_filters(vsi, vsi_name, del_list, 2416 num_del, &retval); 2417 memset(del_list, 0, list_size); 2418 num_del = 0; 2419 } 2420 /* Release memory for MAC filter entries which were 2421 * synced up with HW. 2422 */ 2423 hlist_del(&f->hlist); 2424 kfree(f); 2425 } 2426 2427 if (num_del) { 2428 i40e_aqc_del_filters(vsi, vsi_name, del_list, 2429 num_del, &retval); 2430 } 2431 2432 kfree(del_list); 2433 del_list = NULL; 2434 } 2435 2436 if (!hlist_empty(&tmp_add_list)) { 2437 /* Do all the adds now. */ 2438 filter_list_len = hw->aq.asq_buf_size / 2439 sizeof(struct i40e_aqc_add_macvlan_element_data); 2440 list_size = filter_list_len * 2441 sizeof(struct i40e_aqc_add_macvlan_element_data); 2442 add_list = kzalloc(list_size, GFP_ATOMIC); 2443 if (!add_list) 2444 goto err_no_memory; 2445 2446 num_add = 0; 2447 hlist_for_each_entry_safe(new, h, &tmp_add_list, hlist) { 2448 /* handle broadcast filters by updating the broadcast 2449 * promiscuous flag instead of adding a MAC filter. 2450 */ 2451 if (is_broadcast_ether_addr(new->f->macaddr)) { 2452 if (i40e_aqc_broadcast_filter(vsi, vsi_name, 2453 new->f)) 2454 new->state = I40E_FILTER_FAILED; 2455 else 2456 new->state = I40E_FILTER_ACTIVE; 2457 continue; 2458 } 2459 2460 /* add to add array */ 2461 if (num_add == 0) 2462 add_head = new; 2463 cmd_flags = 0; 2464 ether_addr_copy(add_list[num_add].mac_addr, 2465 new->f->macaddr); 2466 if (new->f->vlan == I40E_VLAN_ANY) { 2467 add_list[num_add].vlan_tag = 0; 2468 cmd_flags |= I40E_AQC_MACVLAN_ADD_IGNORE_VLAN; 2469 } else { 2470 add_list[num_add].vlan_tag = 2471 cpu_to_le16((u16)(new->f->vlan)); 2472 } 2473 add_list[num_add].queue_number = 0; 2474 /* set invalid match method for later detection */ 2475 add_list[num_add].match_method = I40E_AQC_MM_ERR_NO_RES; 2476 cmd_flags |= I40E_AQC_MACVLAN_ADD_PERFECT_MATCH; 2477 add_list[num_add].flags = cpu_to_le16(cmd_flags); 2478 num_add++; 2479 2480 /* flush a full buffer */ 2481 if (num_add == filter_list_len) { 2482 i40e_aqc_add_filters(vsi, vsi_name, add_list, 2483 add_head, num_add); 2484 memset(add_list, 0, list_size); 2485 num_add = 0; 2486 } 2487 } 2488 if (num_add) { 2489 i40e_aqc_add_filters(vsi, vsi_name, add_list, add_head, 2490 num_add); 2491 } 2492 /* Now move all of the filters from the temp add list back to 2493 * the VSI's list. 2494 */ 2495 spin_lock_bh(&vsi->mac_filter_hash_lock); 2496 hlist_for_each_entry_safe(new, h, &tmp_add_list, hlist) { 2497 /* Only update the state if we're still NEW */ 2498 if (new->f->state == I40E_FILTER_NEW) 2499 new->f->state = new->state; 2500 hlist_del(&new->hlist); 2501 kfree(new); 2502 } 2503 spin_unlock_bh(&vsi->mac_filter_hash_lock); 2504 kfree(add_list); 2505 add_list = NULL; 2506 } 2507 2508 /* Determine the number of active and failed filters. */ 2509 spin_lock_bh(&vsi->mac_filter_hash_lock); 2510 vsi->active_filters = 0; 2511 hash_for_each(vsi->mac_filter_hash, bkt, f, hlist) { 2512 if (f->state == I40E_FILTER_ACTIVE) 2513 vsi->active_filters++; 2514 else if (f->state == I40E_FILTER_FAILED) 2515 failed_filters++; 2516 } 2517 spin_unlock_bh(&vsi->mac_filter_hash_lock); 2518 2519 /* Check if we are able to exit overflow promiscuous mode. We can 2520 * safely exit if we didn't just enter, we no longer have any failed 2521 * filters, and we have reduced filters below the threshold value. 2522 */ 2523 if (old_overflow && !failed_filters && 2524 vsi->active_filters < vsi->promisc_threshold) { 2525 dev_info(&pf->pdev->dev, 2526 "filter logjam cleared on %s, leaving overflow promiscuous mode\n", 2527 vsi_name); 2528 clear_bit(__I40E_VSI_OVERFLOW_PROMISC, vsi->state); 2529 vsi->promisc_threshold = 0; 2530 } 2531 2532 /* if the VF is not trusted do not do promisc */ 2533 if ((vsi->type == I40E_VSI_SRIOV) && !pf->vf[vsi->vf_id].trusted) { 2534 clear_bit(__I40E_VSI_OVERFLOW_PROMISC, vsi->state); 2535 goto out; 2536 } 2537 2538 new_overflow = test_bit(__I40E_VSI_OVERFLOW_PROMISC, vsi->state); 2539 2540 /* If we are entering overflow promiscuous, we need to calculate a new 2541 * threshold for when we are safe to exit 2542 */ 2543 if (!old_overflow && new_overflow) 2544 vsi->promisc_threshold = (vsi->active_filters * 3) / 4; 2545 2546 /* check for changes in promiscuous modes */ 2547 if (changed_flags & IFF_ALLMULTI) { 2548 bool cur_multipromisc; 2549 2550 cur_multipromisc = !!(vsi->current_netdev_flags & IFF_ALLMULTI); 2551 aq_ret = i40e_aq_set_vsi_multicast_promiscuous(&vsi->back->hw, 2552 vsi->seid, 2553 cur_multipromisc, 2554 NULL); 2555 if (aq_ret) { 2556 retval = i40e_aq_rc_to_posix(aq_ret, 2557 hw->aq.asq_last_status); 2558 dev_info(&pf->pdev->dev, 2559 "set multi promisc failed on %s, err %s aq_err %s\n", 2560 vsi_name, 2561 i40e_stat_str(hw, aq_ret), 2562 i40e_aq_str(hw, hw->aq.asq_last_status)); 2563 } else { 2564 dev_info(&pf->pdev->dev, "%s allmulti mode.\n", 2565 cur_multipromisc ? "entering" : "leaving"); 2566 } 2567 } 2568 2569 if ((changed_flags & IFF_PROMISC) || old_overflow != new_overflow) { 2570 bool cur_promisc; 2571 2572 cur_promisc = (!!(vsi->current_netdev_flags & IFF_PROMISC) || 2573 new_overflow); 2574 aq_ret = i40e_set_promiscuous(pf, cur_promisc); 2575 if (aq_ret) { 2576 retval = i40e_aq_rc_to_posix(aq_ret, 2577 hw->aq.asq_last_status); 2578 dev_info(&pf->pdev->dev, 2579 "Setting promiscuous %s failed on %s, err %s aq_err %s\n", 2580 cur_promisc ? "on" : "off", 2581 vsi_name, 2582 i40e_stat_str(hw, aq_ret), 2583 i40e_aq_str(hw, hw->aq.asq_last_status)); 2584 } 2585 } 2586 out: 2587 /* if something went wrong then set the changed flag so we try again */ 2588 if (retval) 2589 vsi->flags |= I40E_VSI_FLAG_FILTER_CHANGED; 2590 2591 clear_bit(__I40E_VSI_SYNCING_FILTERS, vsi->state); 2592 return retval; 2593 2594 err_no_memory: 2595 /* Restore elements on the temporary add and delete lists */ 2596 spin_lock_bh(&vsi->mac_filter_hash_lock); 2597 err_no_memory_locked: 2598 i40e_undo_del_filter_entries(vsi, &tmp_del_list); 2599 i40e_undo_add_filter_entries(vsi, &tmp_add_list); 2600 spin_unlock_bh(&vsi->mac_filter_hash_lock); 2601 2602 vsi->flags |= I40E_VSI_FLAG_FILTER_CHANGED; 2603 clear_bit(__I40E_VSI_SYNCING_FILTERS, vsi->state); 2604 return -ENOMEM; 2605 } 2606 2607 /** 2608 * i40e_sync_filters_subtask - Sync the VSI filter list with HW 2609 * @pf: board private structure 2610 **/ 2611 static void i40e_sync_filters_subtask(struct i40e_pf *pf) 2612 { 2613 int v; 2614 2615 if (!pf) 2616 return; 2617 if (!test_and_clear_bit(__I40E_MACVLAN_SYNC_PENDING, pf->state)) 2618 return; 2619 if (test_bit(__I40E_VF_DISABLE, pf->state)) { 2620 set_bit(__I40E_MACVLAN_SYNC_PENDING, pf->state); 2621 return; 2622 } 2623 2624 for (v = 0; v < pf->num_alloc_vsi; v++) { 2625 if (pf->vsi[v] && 2626 (pf->vsi[v]->flags & I40E_VSI_FLAG_FILTER_CHANGED)) { 2627 int ret = i40e_sync_vsi_filters(pf->vsi[v]); 2628 2629 if (ret) { 2630 /* come back and try again later */ 2631 set_bit(__I40E_MACVLAN_SYNC_PENDING, 2632 pf->state); 2633 break; 2634 } 2635 } 2636 } 2637 } 2638 2639 /** 2640 * i40e_max_xdp_frame_size - returns the maximum allowed frame size for XDP 2641 * @vsi: the vsi 2642 **/ 2643 static int i40e_max_xdp_frame_size(struct i40e_vsi *vsi) 2644 { 2645 if (PAGE_SIZE >= 8192 || (vsi->back->flags & I40E_FLAG_LEGACY_RX)) 2646 return I40E_RXBUFFER_2048; 2647 else 2648 return I40E_RXBUFFER_3072; 2649 } 2650 2651 /** 2652 * i40e_change_mtu - NDO callback to change the Maximum Transfer Unit 2653 * @netdev: network interface device structure 2654 * @new_mtu: new value for maximum frame size 2655 * 2656 * Returns 0 on success, negative on failure 2657 **/ 2658 static int i40e_change_mtu(struct net_device *netdev, int new_mtu) 2659 { 2660 struct i40e_netdev_priv *np = netdev_priv(netdev); 2661 struct i40e_vsi *vsi = np->vsi; 2662 struct i40e_pf *pf = vsi->back; 2663 2664 if (i40e_enabled_xdp_vsi(vsi)) { 2665 int frame_size = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN; 2666 2667 if (frame_size > i40e_max_xdp_frame_size(vsi)) 2668 return -EINVAL; 2669 } 2670 2671 netdev_dbg(netdev, "changing MTU from %d to %d\n", 2672 netdev->mtu, new_mtu); 2673 netdev->mtu = new_mtu; 2674 if (netif_running(netdev)) 2675 i40e_vsi_reinit_locked(vsi); 2676 set_bit(__I40E_CLIENT_SERVICE_REQUESTED, pf->state); 2677 set_bit(__I40E_CLIENT_L2_CHANGE, pf->state); 2678 return 0; 2679 } 2680 2681 /** 2682 * i40e_ioctl - Access the hwtstamp interface 2683 * @netdev: network interface device structure 2684 * @ifr: interface request data 2685 * @cmd: ioctl command 2686 **/ 2687 int i40e_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) 2688 { 2689 struct i40e_netdev_priv *np = netdev_priv(netdev); 2690 struct i40e_pf *pf = np->vsi->back; 2691 2692 switch (cmd) { 2693 case SIOCGHWTSTAMP: 2694 return i40e_ptp_get_ts_config(pf, ifr); 2695 case SIOCSHWTSTAMP: 2696 return i40e_ptp_set_ts_config(pf, ifr); 2697 default: 2698 return -EOPNOTSUPP; 2699 } 2700 } 2701 2702 /** 2703 * i40e_vlan_stripping_enable - Turn on vlan stripping for the VSI 2704 * @vsi: the vsi being adjusted 2705 **/ 2706 void i40e_vlan_stripping_enable(struct i40e_vsi *vsi) 2707 { 2708 struct i40e_vsi_context ctxt; 2709 i40e_status ret; 2710 2711 /* Don't modify stripping options if a port VLAN is active */ 2712 if (vsi->info.pvid) 2713 return; 2714 2715 if ((vsi->info.valid_sections & 2716 cpu_to_le16(I40E_AQ_VSI_PROP_VLAN_VALID)) && 2717 ((vsi->info.port_vlan_flags & I40E_AQ_VSI_PVLAN_MODE_MASK) == 0)) 2718 return; /* already enabled */ 2719 2720 vsi->info.valid_sections = cpu_to_le16(I40E_AQ_VSI_PROP_VLAN_VALID); 2721 vsi->info.port_vlan_flags = I40E_AQ_VSI_PVLAN_MODE_ALL | 2722 I40E_AQ_VSI_PVLAN_EMOD_STR_BOTH; 2723 2724 ctxt.seid = vsi->seid; 2725 ctxt.info = vsi->info; 2726 ret = i40e_aq_update_vsi_params(&vsi->back->hw, &ctxt, NULL); 2727 if (ret) { 2728 dev_info(&vsi->back->pdev->dev, 2729 "update vlan stripping failed, err %s aq_err %s\n", 2730 i40e_stat_str(&vsi->back->hw, ret), 2731 i40e_aq_str(&vsi->back->hw, 2732 vsi->back->hw.aq.asq_last_status)); 2733 } 2734 } 2735 2736 /** 2737 * i40e_vlan_stripping_disable - Turn off vlan stripping for the VSI 2738 * @vsi: the vsi being adjusted 2739 **/ 2740 void i40e_vlan_stripping_disable(struct i40e_vsi *vsi) 2741 { 2742 struct i40e_vsi_context ctxt; 2743 i40e_status ret; 2744 2745 /* Don't modify stripping options if a port VLAN is active */ 2746 if (vsi->info.pvid) 2747 return; 2748 2749 if ((vsi->info.valid_sections & 2750 cpu_to_le16(I40E_AQ_VSI_PROP_VLAN_VALID)) && 2751 ((vsi->info.port_vlan_flags & I40E_AQ_VSI_PVLAN_EMOD_MASK) == 2752 I40E_AQ_VSI_PVLAN_EMOD_MASK)) 2753 return; /* already disabled */ 2754 2755 vsi->info.valid_sections = cpu_to_le16(I40E_AQ_VSI_PROP_VLAN_VALID); 2756 vsi->info.port_vlan_flags = I40E_AQ_VSI_PVLAN_MODE_ALL | 2757 I40E_AQ_VSI_PVLAN_EMOD_NOTHING; 2758 2759 ctxt.seid = vsi->seid; 2760 ctxt.info = vsi->info; 2761 ret = i40e_aq_update_vsi_params(&vsi->back->hw, &ctxt, NULL); 2762 if (ret) { 2763 dev_info(&vsi->back->pdev->dev, 2764 "update vlan stripping failed, err %s aq_err %s\n", 2765 i40e_stat_str(&vsi->back->hw, ret), 2766 i40e_aq_str(&vsi->back->hw, 2767 vsi->back->hw.aq.asq_last_status)); 2768 } 2769 } 2770 2771 /** 2772 * i40e_add_vlan_all_mac - Add a MAC/VLAN filter for each existing MAC address 2773 * @vsi: the vsi being configured 2774 * @vid: vlan id to be added (0 = untagged only , -1 = any) 2775 * 2776 * This is a helper function for adding a new MAC/VLAN filter with the 2777 * specified VLAN for each existing MAC address already in the hash table. 2778 * This function does *not* perform any accounting to update filters based on 2779 * VLAN mode. 2780 * 2781 * NOTE: this function expects to be called while under the 2782 * mac_filter_hash_lock 2783 **/ 2784 int i40e_add_vlan_all_mac(struct i40e_vsi *vsi, s16 vid) 2785 { 2786 struct i40e_mac_filter *f, *add_f; 2787 struct hlist_node *h; 2788 int bkt; 2789 2790 hash_for_each_safe(vsi->mac_filter_hash, bkt, h, f, hlist) { 2791 if (f->state == I40E_FILTER_REMOVE) 2792 continue; 2793 add_f = i40e_add_filter(vsi, f->macaddr, vid); 2794 if (!add_f) { 2795 dev_info(&vsi->back->pdev->dev, 2796 "Could not add vlan filter %d for %pM\n", 2797 vid, f->macaddr); 2798 return -ENOMEM; 2799 } 2800 } 2801 2802 return 0; 2803 } 2804 2805 /** 2806 * i40e_vsi_add_vlan - Add VSI membership for given VLAN 2807 * @vsi: the VSI being configured 2808 * @vid: VLAN id to be added 2809 **/ 2810 int i40e_vsi_add_vlan(struct i40e_vsi *vsi, u16 vid) 2811 { 2812 int err; 2813 2814 if (vsi->info.pvid) 2815 return -EINVAL; 2816 2817 /* The network stack will attempt to add VID=0, with the intention to 2818 * receive priority tagged packets with a VLAN of 0. Our HW receives 2819 * these packets by default when configured to receive untagged 2820 * packets, so we don't need to add a filter for this case. 2821 * Additionally, HW interprets adding a VID=0 filter as meaning to 2822 * receive *only* tagged traffic and stops receiving untagged traffic. 2823 * Thus, we do not want to actually add a filter for VID=0 2824 */ 2825 if (!vid) 2826 return 0; 2827 2828 /* Locked once because all functions invoked below iterates list*/ 2829 spin_lock_bh(&vsi->mac_filter_hash_lock); 2830 err = i40e_add_vlan_all_mac(vsi, vid); 2831 spin_unlock_bh(&vsi->mac_filter_hash_lock); 2832 if (err) 2833 return err; 2834 2835 /* schedule our worker thread which will take care of 2836 * applying the new filter changes 2837 */ 2838 i40e_service_event_schedule(vsi->back); 2839 return 0; 2840 } 2841 2842 /** 2843 * i40e_rm_vlan_all_mac - Remove MAC/VLAN pair for all MAC with the given VLAN 2844 * @vsi: the vsi being configured 2845 * @vid: vlan id to be removed (0 = untagged only , -1 = any) 2846 * 2847 * This function should be used to remove all VLAN filters which match the 2848 * given VID. It does not schedule the service event and does not take the 2849 * mac_filter_hash_lock so it may be combined with other operations under 2850 * a single invocation of the mac_filter_hash_lock. 2851 * 2852 * NOTE: this function expects to be called while under the 2853 * mac_filter_hash_lock 2854 */ 2855 void i40e_rm_vlan_all_mac(struct i40e_vsi *vsi, s16 vid) 2856 { 2857 struct i40e_mac_filter *f; 2858 struct hlist_node *h; 2859 int bkt; 2860 2861 hash_for_each_safe(vsi->mac_filter_hash, bkt, h, f, hlist) { 2862 if (f->vlan == vid) 2863 __i40e_del_filter(vsi, f); 2864 } 2865 } 2866 2867 /** 2868 * i40e_vsi_kill_vlan - Remove VSI membership for given VLAN 2869 * @vsi: the VSI being configured 2870 * @vid: VLAN id to be removed 2871 **/ 2872 void i40e_vsi_kill_vlan(struct i40e_vsi *vsi, u16 vid) 2873 { 2874 if (!vid || vsi->info.pvid) 2875 return; 2876 2877 spin_lock_bh(&vsi->mac_filter_hash_lock); 2878 i40e_rm_vlan_all_mac(vsi, vid); 2879 spin_unlock_bh(&vsi->mac_filter_hash_lock); 2880 2881 /* schedule our worker thread which will take care of 2882 * applying the new filter changes 2883 */ 2884 i40e_service_event_schedule(vsi->back); 2885 } 2886 2887 /** 2888 * i40e_vlan_rx_add_vid - Add a vlan id filter to HW offload 2889 * @netdev: network interface to be adjusted 2890 * @proto: unused protocol value 2891 * @vid: vlan id to be added 2892 * 2893 * net_device_ops implementation for adding vlan ids 2894 **/ 2895 static int i40e_vlan_rx_add_vid(struct net_device *netdev, 2896 __always_unused __be16 proto, u16 vid) 2897 { 2898 struct i40e_netdev_priv *np = netdev_priv(netdev); 2899 struct i40e_vsi *vsi = np->vsi; 2900 int ret = 0; 2901 2902 if (vid >= VLAN_N_VID) 2903 return -EINVAL; 2904 2905 ret = i40e_vsi_add_vlan(vsi, vid); 2906 if (!ret) 2907 set_bit(vid, vsi->active_vlans); 2908 2909 return ret; 2910 } 2911 2912 /** 2913 * i40e_vlan_rx_add_vid_up - Add a vlan id filter to HW offload in UP path 2914 * @netdev: network interface to be adjusted 2915 * @proto: unused protocol value 2916 * @vid: vlan id to be added 2917 **/ 2918 static void i40e_vlan_rx_add_vid_up(struct net_device *netdev, 2919 __always_unused __be16 proto, u16 vid) 2920 { 2921 struct i40e_netdev_priv *np = netdev_priv(netdev); 2922 struct i40e_vsi *vsi = np->vsi; 2923 2924 if (vid >= VLAN_N_VID) 2925 return; 2926 set_bit(vid, vsi->active_vlans); 2927 } 2928 2929 /** 2930 * i40e_vlan_rx_kill_vid - Remove a vlan id filter from HW offload 2931 * @netdev: network interface to be adjusted 2932 * @proto: unused protocol value 2933 * @vid: vlan id to be removed 2934 * 2935 * net_device_ops implementation for removing vlan ids 2936 **/ 2937 static int i40e_vlan_rx_kill_vid(struct net_device *netdev, 2938 __always_unused __be16 proto, u16 vid) 2939 { 2940 struct i40e_netdev_priv *np = netdev_priv(netdev); 2941 struct i40e_vsi *vsi = np->vsi; 2942 2943 /* return code is ignored as there is nothing a user 2944 * can do about failure to remove and a log message was 2945 * already printed from the other function 2946 */ 2947 i40e_vsi_kill_vlan(vsi, vid); 2948 2949 clear_bit(vid, vsi->active_vlans); 2950 2951 return 0; 2952 } 2953 2954 /** 2955 * i40e_restore_vlan - Reinstate vlans when vsi/netdev comes back up 2956 * @vsi: the vsi being brought back up 2957 **/ 2958 static void i40e_restore_vlan(struct i40e_vsi *vsi) 2959 { 2960 u16 vid; 2961 2962 if (!vsi->netdev) 2963 return; 2964 2965 if (vsi->netdev->features & NETIF_F_HW_VLAN_CTAG_RX) 2966 i40e_vlan_stripping_enable(vsi); 2967 else 2968 i40e_vlan_stripping_disable(vsi); 2969 2970 for_each_set_bit(vid, vsi->active_vlans, VLAN_N_VID) 2971 i40e_vlan_rx_add_vid_up(vsi->netdev, htons(ETH_P_8021Q), 2972 vid); 2973 } 2974 2975 /** 2976 * i40e_vsi_add_pvid - Add pvid for the VSI 2977 * @vsi: the vsi being adjusted 2978 * @vid: the vlan id to set as a PVID 2979 **/ 2980 int i40e_vsi_add_pvid(struct i40e_vsi *vsi, u16 vid) 2981 { 2982 struct i40e_vsi_context ctxt; 2983 i40e_status ret; 2984 2985 vsi->info.valid_sections = cpu_to_le16(I40E_AQ_VSI_PROP_VLAN_VALID); 2986 vsi->info.pvid = cpu_to_le16(vid); 2987 vsi->info.port_vlan_flags = I40E_AQ_VSI_PVLAN_MODE_TAGGED | 2988 I40E_AQ_VSI_PVLAN_INSERT_PVID | 2989 I40E_AQ_VSI_PVLAN_EMOD_STR; 2990 2991 ctxt.seid = vsi->seid; 2992 ctxt.info = vsi->info; 2993 ret = i40e_aq_update_vsi_params(&vsi->back->hw, &ctxt, NULL); 2994 if (ret) { 2995 dev_info(&vsi->back->pdev->dev, 2996 "add pvid failed, err %s aq_err %s\n", 2997 i40e_stat_str(&vsi->back->hw, ret), 2998 i40e_aq_str(&vsi->back->hw, 2999 vsi->back->hw.aq.asq_last_status)); 3000 return -ENOENT; 3001 } 3002 3003 return 0; 3004 } 3005 3006 /** 3007 * i40e_vsi_remove_pvid - Remove the pvid from the VSI 3008 * @vsi: the vsi being adjusted 3009 * 3010 * Just use the vlan_rx_register() service to put it back to normal 3011 **/ 3012 void i40e_vsi_remove_pvid(struct i40e_vsi *vsi) 3013 { 3014 vsi->info.pvid = 0; 3015 3016 i40e_vlan_stripping_disable(vsi); 3017 } 3018 3019 /** 3020 * i40e_vsi_setup_tx_resources - Allocate VSI Tx queue resources 3021 * @vsi: ptr to the VSI 3022 * 3023 * If this function returns with an error, then it's possible one or 3024 * more of the rings is populated (while the rest are not). It is the 3025 * callers duty to clean those orphaned rings. 3026 * 3027 * Return 0 on success, negative on failure 3028 **/ 3029 static int i40e_vsi_setup_tx_resources(struct i40e_vsi *vsi) 3030 { 3031 int i, err = 0; 3032 3033 for (i = 0; i < vsi->num_queue_pairs && !err; i++) 3034 err = i40e_setup_tx_descriptors(vsi->tx_rings[i]); 3035 3036 if (!i40e_enabled_xdp_vsi(vsi)) 3037 return err; 3038 3039 for (i = 0; i < vsi->num_queue_pairs && !err; i++) 3040 err = i40e_setup_tx_descriptors(vsi->xdp_rings[i]); 3041 3042 return err; 3043 } 3044 3045 /** 3046 * i40e_vsi_free_tx_resources - Free Tx resources for VSI queues 3047 * @vsi: ptr to the VSI 3048 * 3049 * Free VSI's transmit software resources 3050 **/ 3051 static void i40e_vsi_free_tx_resources(struct i40e_vsi *vsi) 3052 { 3053 int i; 3054 3055 if (vsi->tx_rings) { 3056 for (i = 0; i < vsi->num_queue_pairs; i++) 3057 if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc) 3058 i40e_free_tx_resources(vsi->tx_rings[i]); 3059 } 3060 3061 if (vsi->xdp_rings) { 3062 for (i = 0; i < vsi->num_queue_pairs; i++) 3063 if (vsi->xdp_rings[i] && vsi->xdp_rings[i]->desc) 3064 i40e_free_tx_resources(vsi->xdp_rings[i]); 3065 } 3066 } 3067 3068 /** 3069 * i40e_vsi_setup_rx_resources - Allocate VSI queues Rx resources 3070 * @vsi: ptr to the VSI 3071 * 3072 * If this function returns with an error, then it's possible one or 3073 * more of the rings is populated (while the rest are not). It is the 3074 * callers duty to clean those orphaned rings. 3075 * 3076 * Return 0 on success, negative on failure 3077 **/ 3078 static int i40e_vsi_setup_rx_resources(struct i40e_vsi *vsi) 3079 { 3080 int i, err = 0; 3081 3082 for (i = 0; i < vsi->num_queue_pairs && !err; i++) 3083 err = i40e_setup_rx_descriptors(vsi->rx_rings[i]); 3084 return err; 3085 } 3086 3087 /** 3088 * i40e_vsi_free_rx_resources - Free Rx Resources for VSI queues 3089 * @vsi: ptr to the VSI 3090 * 3091 * Free all receive software resources 3092 **/ 3093 static void i40e_vsi_free_rx_resources(struct i40e_vsi *vsi) 3094 { 3095 int i; 3096 3097 if (!vsi->rx_rings) 3098 return; 3099 3100 for (i = 0; i < vsi->num_queue_pairs; i++) 3101 if (vsi->rx_rings[i] && vsi->rx_rings[i]->desc) 3102 i40e_free_rx_resources(vsi->rx_rings[i]); 3103 } 3104 3105 /** 3106 * i40e_config_xps_tx_ring - Configure XPS for a Tx ring 3107 * @ring: The Tx ring to configure 3108 * 3109 * This enables/disables XPS for a given Tx descriptor ring 3110 * based on the TCs enabled for the VSI that ring belongs to. 3111 **/ 3112 static void i40e_config_xps_tx_ring(struct i40e_ring *ring) 3113 { 3114 int cpu; 3115 3116 if (!ring->q_vector || !ring->netdev || ring->ch) 3117 return; 3118 3119 /* We only initialize XPS once, so as not to overwrite user settings */ 3120 if (test_and_set_bit(__I40E_TX_XPS_INIT_DONE, ring->state)) 3121 return; 3122 3123 cpu = cpumask_local_spread(ring->q_vector->v_idx, -1); 3124 netif_set_xps_queue(ring->netdev, get_cpu_mask(cpu), 3125 ring->queue_index); 3126 } 3127 3128 /** 3129 * i40e_xsk_pool - Retrieve the AF_XDP buffer pool if XDP and ZC is enabled 3130 * @ring: The Tx or Rx ring 3131 * 3132 * Returns the AF_XDP buffer pool or NULL. 3133 **/ 3134 static struct xsk_buff_pool *i40e_xsk_pool(struct i40e_ring *ring) 3135 { 3136 bool xdp_on = i40e_enabled_xdp_vsi(ring->vsi); 3137 int qid = ring->queue_index; 3138 3139 if (ring_is_xdp(ring)) 3140 qid -= ring->vsi->alloc_queue_pairs; 3141 3142 if (!xdp_on || !test_bit(qid, ring->vsi->af_xdp_zc_qps)) 3143 return NULL; 3144 3145 return xsk_get_pool_from_qid(ring->vsi->netdev, qid); 3146 } 3147 3148 /** 3149 * i40e_configure_tx_ring - Configure a transmit ring context and rest 3150 * @ring: The Tx ring to configure 3151 * 3152 * Configure the Tx descriptor ring in the HMC context. 3153 **/ 3154 static int i40e_configure_tx_ring(struct i40e_ring *ring) 3155 { 3156 struct i40e_vsi *vsi = ring->vsi; 3157 u16 pf_q = vsi->base_queue + ring->queue_index; 3158 struct i40e_hw *hw = &vsi->back->hw; 3159 struct i40e_hmc_obj_txq tx_ctx; 3160 i40e_status err = 0; 3161 u32 qtx_ctl = 0; 3162 3163 if (ring_is_xdp(ring)) 3164 ring->xsk_pool = i40e_xsk_pool(ring); 3165 3166 /* some ATR related tx ring init */ 3167 if (vsi->back->flags & I40E_FLAG_FD_ATR_ENABLED) { 3168 ring->atr_sample_rate = vsi->back->atr_sample_rate; 3169 ring->atr_count = 0; 3170 } else { 3171 ring->atr_sample_rate = 0; 3172 } 3173 3174 /* configure XPS */ 3175 i40e_config_xps_tx_ring(ring); 3176 3177 /* clear the context structure first */ 3178 memset(&tx_ctx, 0, sizeof(tx_ctx)); 3179 3180 tx_ctx.new_context = 1; 3181 tx_ctx.base = (ring->dma / 128); 3182 tx_ctx.qlen = ring->count; 3183 tx_ctx.fd_ena = !!(vsi->back->flags & (I40E_FLAG_FD_SB_ENABLED | 3184 I40E_FLAG_FD_ATR_ENABLED)); 3185 tx_ctx.timesync_ena = !!(vsi->back->flags & I40E_FLAG_PTP); 3186 /* FDIR VSI tx ring can still use RS bit and writebacks */ 3187 if (vsi->type != I40E_VSI_FDIR) 3188 tx_ctx.head_wb_ena = 1; 3189 tx_ctx.head_wb_addr = ring->dma + 3190 (ring->count * sizeof(struct i40e_tx_desc)); 3191 3192 /* As part of VSI creation/update, FW allocates certain 3193 * Tx arbitration queue sets for each TC enabled for 3194 * the VSI. The FW returns the handles to these queue 3195 * sets as part of the response buffer to Add VSI, 3196 * Update VSI, etc. AQ commands. It is expected that 3197 * these queue set handles be associated with the Tx 3198 * queues by the driver as part of the TX queue context 3199 * initialization. This has to be done regardless of 3200 * DCB as by default everything is mapped to TC0. 3201 */ 3202 3203 if (ring->ch) 3204 tx_ctx.rdylist = 3205 le16_to_cpu(ring->ch->info.qs_handle[ring->dcb_tc]); 3206 3207 else 3208 tx_ctx.rdylist = le16_to_cpu(vsi->info.qs_handle[ring->dcb_tc]); 3209 3210 tx_ctx.rdylist_act = 0; 3211 3212 /* clear the context in the HMC */ 3213 err = i40e_clear_lan_tx_queue_context(hw, pf_q); 3214 if (err) { 3215 dev_info(&vsi->back->pdev->dev, 3216 "Failed to clear LAN Tx queue context on Tx ring %d (pf_q %d), error: %d\n", 3217 ring->queue_index, pf_q, err); 3218 return -ENOMEM; 3219 } 3220 3221 /* set the context in the HMC */ 3222 err = i40e_set_lan_tx_queue_context(hw, pf_q, &tx_ctx); 3223 if (err) { 3224 dev_info(&vsi->back->pdev->dev, 3225 "Failed to set LAN Tx queue context on Tx ring %d (pf_q %d, error: %d\n", 3226 ring->queue_index, pf_q, err); 3227 return -ENOMEM; 3228 } 3229 3230 /* Now associate this queue with this PCI function */ 3231 if (ring->ch) { 3232 if (ring->ch->type == I40E_VSI_VMDQ2) 3233 qtx_ctl = I40E_QTX_CTL_VM_QUEUE; 3234 else 3235 return -EINVAL; 3236 3237 qtx_ctl |= (ring->ch->vsi_number << 3238 I40E_QTX_CTL_VFVM_INDX_SHIFT) & 3239 I40E_QTX_CTL_VFVM_INDX_MASK; 3240 } else { 3241 if (vsi->type == I40E_VSI_VMDQ2) { 3242 qtx_ctl = I40E_QTX_CTL_VM_QUEUE; 3243 qtx_ctl |= ((vsi->id) << I40E_QTX_CTL_VFVM_INDX_SHIFT) & 3244 I40E_QTX_CTL_VFVM_INDX_MASK; 3245 } else { 3246 qtx_ctl = I40E_QTX_CTL_PF_QUEUE; 3247 } 3248 } 3249 3250 qtx_ctl |= ((hw->pf_id << I40E_QTX_CTL_PF_INDX_SHIFT) & 3251 I40E_QTX_CTL_PF_INDX_MASK); 3252 wr32(hw, I40E_QTX_CTL(pf_q), qtx_ctl); 3253 i40e_flush(hw); 3254 3255 /* cache tail off for easier writes later */ 3256 ring->tail = hw->hw_addr + I40E_QTX_TAIL(pf_q); 3257 3258 return 0; 3259 } 3260 3261 /** 3262 * i40e_rx_offset - Return expected offset into page to access data 3263 * @rx_ring: Ring we are requesting offset of 3264 * 3265 * Returns the offset value for ring into the data buffer. 3266 */ 3267 static unsigned int i40e_rx_offset(struct i40e_ring *rx_ring) 3268 { 3269 return ring_uses_build_skb(rx_ring) ? I40E_SKB_PAD : 0; 3270 } 3271 3272 /** 3273 * i40e_configure_rx_ring - Configure a receive ring context 3274 * @ring: The Rx ring to configure 3275 * 3276 * Configure the Rx descriptor ring in the HMC context. 3277 **/ 3278 static int i40e_configure_rx_ring(struct i40e_ring *ring) 3279 { 3280 struct i40e_vsi *vsi = ring->vsi; 3281 u32 chain_len = vsi->back->hw.func_caps.rx_buf_chain_len; 3282 u16 pf_q = vsi->base_queue + ring->queue_index; 3283 struct i40e_hw *hw = &vsi->back->hw; 3284 struct i40e_hmc_obj_rxq rx_ctx; 3285 i40e_status err = 0; 3286 bool ok; 3287 int ret; 3288 3289 bitmap_zero(ring->state, __I40E_RING_STATE_NBITS); 3290 3291 /* clear the context structure first */ 3292 memset(&rx_ctx, 0, sizeof(rx_ctx)); 3293 3294 if (ring->vsi->type == I40E_VSI_MAIN) 3295 xdp_rxq_info_unreg_mem_model(&ring->xdp_rxq); 3296 3297 kfree(ring->rx_bi); 3298 ring->xsk_pool = i40e_xsk_pool(ring); 3299 if (ring->xsk_pool) { 3300 ret = i40e_alloc_rx_bi_zc(ring); 3301 if (ret) 3302 return ret; 3303 ring->rx_buf_len = 3304 xsk_pool_get_rx_frame_size(ring->xsk_pool); 3305 /* For AF_XDP ZC, we disallow packets to span on 3306 * multiple buffers, thus letting us skip that 3307 * handling in the fast-path. 3308 */ 3309 chain_len = 1; 3310 ret = xdp_rxq_info_reg_mem_model(&ring->xdp_rxq, 3311 MEM_TYPE_XSK_BUFF_POOL, 3312 NULL); 3313 if (ret) 3314 return ret; 3315 dev_info(&vsi->back->pdev->dev, 3316 "Registered XDP mem model MEM_TYPE_XSK_BUFF_POOL on Rx ring %d\n", 3317 ring->queue_index); 3318 3319 } else { 3320 ret = i40e_alloc_rx_bi(ring); 3321 if (ret) 3322 return ret; 3323 ring->rx_buf_len = vsi->rx_buf_len; 3324 if (ring->vsi->type == I40E_VSI_MAIN) { 3325 ret = xdp_rxq_info_reg_mem_model(&ring->xdp_rxq, 3326 MEM_TYPE_PAGE_SHARED, 3327 NULL); 3328 if (ret) 3329 return ret; 3330 } 3331 } 3332 3333 rx_ctx.dbuff = DIV_ROUND_UP(ring->rx_buf_len, 3334 BIT_ULL(I40E_RXQ_CTX_DBUFF_SHIFT)); 3335 3336 rx_ctx.base = (ring->dma / 128); 3337 rx_ctx.qlen = ring->count; 3338 3339 /* use 16 byte descriptors */ 3340 rx_ctx.dsize = 0; 3341 3342 /* descriptor type is always zero 3343 * rx_ctx.dtype = 0; 3344 */ 3345 rx_ctx.hsplit_0 = 0; 3346 3347 rx_ctx.rxmax = min_t(u16, vsi->max_frame, chain_len * ring->rx_buf_len); 3348 if (hw->revision_id == 0) 3349 rx_ctx.lrxqthresh = 0; 3350 else 3351 rx_ctx.lrxqthresh = 1; 3352 rx_ctx.crcstrip = 1; 3353 rx_ctx.l2tsel = 1; 3354 /* this controls whether VLAN is stripped from inner headers */ 3355 rx_ctx.showiv = 0; 3356 /* set the prefena field to 1 because the manual says to */ 3357 rx_ctx.prefena = 1; 3358 3359 /* clear the context in the HMC */ 3360 err = i40e_clear_lan_rx_queue_context(hw, pf_q); 3361 if (err) { 3362 dev_info(&vsi->back->pdev->dev, 3363 "Failed to clear LAN Rx queue context on Rx ring %d (pf_q %d), error: %d\n", 3364 ring->queue_index, pf_q, err); 3365 return -ENOMEM; 3366 } 3367 3368 /* set the context in the HMC */ 3369 err = i40e_set_lan_rx_queue_context(hw, pf_q, &rx_ctx); 3370 if (err) { 3371 dev_info(&vsi->back->pdev->dev, 3372 "Failed to set LAN Rx queue context on Rx ring %d (pf_q %d), error: %d\n", 3373 ring->queue_index, pf_q, err); 3374 return -ENOMEM; 3375 } 3376 3377 /* configure Rx buffer alignment */ 3378 if (!vsi->netdev || (vsi->back->flags & I40E_FLAG_LEGACY_RX)) 3379 clear_ring_build_skb_enabled(ring); 3380 else 3381 set_ring_build_skb_enabled(ring); 3382 3383 ring->rx_offset = i40e_rx_offset(ring); 3384 3385 /* cache tail for quicker writes, and clear the reg before use */ 3386 ring->tail = hw->hw_addr + I40E_QRX_TAIL(pf_q); 3387 writel(0, ring->tail); 3388 3389 if (ring->xsk_pool) { 3390 xsk_pool_set_rxq_info(ring->xsk_pool, &ring->xdp_rxq); 3391 ok = i40e_alloc_rx_buffers_zc(ring, I40E_DESC_UNUSED(ring)); 3392 } else { 3393 ok = !i40e_alloc_rx_buffers(ring, I40E_DESC_UNUSED(ring)); 3394 } 3395 if (!ok) { 3396 /* Log this in case the user has forgotten to give the kernel 3397 * any buffers, even later in the application. 3398 */ 3399 dev_info(&vsi->back->pdev->dev, 3400 "Failed to allocate some buffers on %sRx ring %d (pf_q %d)\n", 3401 ring->xsk_pool ? "AF_XDP ZC enabled " : "", 3402 ring->queue_index, pf_q); 3403 } 3404 3405 return 0; 3406 } 3407 3408 /** 3409 * i40e_vsi_configure_tx - Configure the VSI for Tx 3410 * @vsi: VSI structure describing this set of rings and resources 3411 * 3412 * Configure the Tx VSI for operation. 3413 **/ 3414 static int i40e_vsi_configure_tx(struct i40e_vsi *vsi) 3415 { 3416 int err = 0; 3417 u16 i; 3418 3419 for (i = 0; (i < vsi->num_queue_pairs) && !err; i++) 3420 err = i40e_configure_tx_ring(vsi->tx_rings[i]); 3421 3422 if (err || !i40e_enabled_xdp_vsi(vsi)) 3423 return err; 3424 3425 for (i = 0; (i < vsi->num_queue_pairs) && !err; i++) 3426 err = i40e_configure_tx_ring(vsi->xdp_rings[i]); 3427 3428 return err; 3429 } 3430 3431 /** 3432 * i40e_vsi_configure_rx - Configure the VSI for Rx 3433 * @vsi: the VSI being configured 3434 * 3435 * Configure the Rx VSI for operation. 3436 **/ 3437 static int i40e_vsi_configure_rx(struct i40e_vsi *vsi) 3438 { 3439 int err = 0; 3440 u16 i; 3441 3442 if (!vsi->netdev || (vsi->back->flags & I40E_FLAG_LEGACY_RX)) { 3443 vsi->max_frame = I40E_MAX_RXBUFFER; 3444 vsi->rx_buf_len = I40E_RXBUFFER_2048; 3445 #if (PAGE_SIZE < 8192) 3446 } else if (!I40E_2K_TOO_SMALL_WITH_PADDING && 3447 (vsi->netdev->mtu <= ETH_DATA_LEN)) { 3448 vsi->max_frame = I40E_RXBUFFER_1536 - NET_IP_ALIGN; 3449 vsi->rx_buf_len = I40E_RXBUFFER_1536 - NET_IP_ALIGN; 3450 #endif 3451 } else { 3452 vsi->max_frame = I40E_MAX_RXBUFFER; 3453 vsi->rx_buf_len = (PAGE_SIZE < 8192) ? I40E_RXBUFFER_3072 : 3454 I40E_RXBUFFER_2048; 3455 } 3456 3457 /* set up individual rings */ 3458 for (i = 0; i < vsi->num_queue_pairs && !err; i++) 3459 err = i40e_configure_rx_ring(vsi->rx_rings[i]); 3460 3461 return err; 3462 } 3463 3464 /** 3465 * i40e_vsi_config_dcb_rings - Update rings to reflect DCB TC 3466 * @vsi: ptr to the VSI 3467 **/ 3468 static void i40e_vsi_config_dcb_rings(struct i40e_vsi *vsi) 3469 { 3470 struct i40e_ring *tx_ring, *rx_ring; 3471 u16 qoffset, qcount; 3472 int i, n; 3473 3474 if (!(vsi->back->flags & I40E_FLAG_DCB_ENABLED)) { 3475 /* Reset the TC information */ 3476 for (i = 0; i < vsi->num_queue_pairs; i++) { 3477 rx_ring = vsi->rx_rings[i]; 3478 tx_ring = vsi->tx_rings[i]; 3479 rx_ring->dcb_tc = 0; 3480 tx_ring->dcb_tc = 0; 3481 } 3482 return; 3483 } 3484 3485 for (n = 0; n < I40E_MAX_TRAFFIC_CLASS; n++) { 3486 if (!(vsi->tc_config.enabled_tc & BIT_ULL(n))) 3487 continue; 3488 3489 qoffset = vsi->tc_config.tc_info[n].qoffset; 3490 qcount = vsi->tc_config.tc_info[n].qcount; 3491 for (i = qoffset; i < (qoffset + qcount); i++) { 3492 rx_ring = vsi->rx_rings[i]; 3493 tx_ring = vsi->tx_rings[i]; 3494 rx_ring->dcb_tc = n; 3495 tx_ring->dcb_tc = n; 3496 } 3497 } 3498 } 3499 3500 /** 3501 * i40e_set_vsi_rx_mode - Call set_rx_mode on a VSI 3502 * @vsi: ptr to the VSI 3503 **/ 3504 static void i40e_set_vsi_rx_mode(struct i40e_vsi *vsi) 3505 { 3506 if (vsi->netdev) 3507 i40e_set_rx_mode(vsi->netdev); 3508 } 3509 3510 /** 3511 * i40e_reset_fdir_filter_cnt - Reset flow director filter counters 3512 * @pf: Pointer to the targeted PF 3513 * 3514 * Set all flow director counters to 0. 3515 */ 3516 static void i40e_reset_fdir_filter_cnt(struct i40e_pf *pf) 3517 { 3518 pf->fd_tcp4_filter_cnt = 0; 3519 pf->fd_udp4_filter_cnt = 0; 3520 pf->fd_sctp4_filter_cnt = 0; 3521 pf->fd_ip4_filter_cnt = 0; 3522 pf->fd_tcp6_filter_cnt = 0; 3523 pf->fd_udp6_filter_cnt = 0; 3524 pf->fd_sctp6_filter_cnt = 0; 3525 pf->fd_ip6_filter_cnt = 0; 3526 } 3527 3528 /** 3529 * i40e_fdir_filter_restore - Restore the Sideband Flow Director filters 3530 * @vsi: Pointer to the targeted VSI 3531 * 3532 * This function replays the hlist on the hw where all the SB Flow Director 3533 * filters were saved. 3534 **/ 3535 static void i40e_fdir_filter_restore(struct i40e_vsi *vsi) 3536 { 3537 struct i40e_fdir_filter *filter; 3538 struct i40e_pf *pf = vsi->back; 3539 struct hlist_node *node; 3540 3541 if (!(pf->flags & I40E_FLAG_FD_SB_ENABLED)) 3542 return; 3543 3544 /* Reset FDir counters as we're replaying all existing filters */ 3545 i40e_reset_fdir_filter_cnt(pf); 3546 3547 hlist_for_each_entry_safe(filter, node, 3548 &pf->fdir_filter_list, fdir_node) { 3549 i40e_add_del_fdir(vsi, filter, true); 3550 } 3551 } 3552 3553 /** 3554 * i40e_vsi_configure - Set up the VSI for action 3555 * @vsi: the VSI being configured 3556 **/ 3557 static int i40e_vsi_configure(struct i40e_vsi *vsi) 3558 { 3559 int err; 3560 3561 i40e_set_vsi_rx_mode(vsi); 3562 i40e_restore_vlan(vsi); 3563 i40e_vsi_config_dcb_rings(vsi); 3564 err = i40e_vsi_configure_tx(vsi); 3565 if (!err) 3566 err = i40e_vsi_configure_rx(vsi); 3567 3568 return err; 3569 } 3570 3571 /** 3572 * i40e_vsi_configure_msix - MSIX mode Interrupt Config in the HW 3573 * @vsi: the VSI being configured 3574 **/ 3575 static void i40e_vsi_configure_msix(struct i40e_vsi *vsi) 3576 { 3577 bool has_xdp = i40e_enabled_xdp_vsi(vsi); 3578 struct i40e_pf *pf = vsi->back; 3579 struct i40e_hw *hw = &pf->hw; 3580 u16 vector; 3581 int i, q; 3582 u32 qp; 3583 3584 /* The interrupt indexing is offset by 1 in the PFINT_ITRn 3585 * and PFINT_LNKLSTn registers, e.g.: 3586 * PFINT_ITRn[0..n-1] gets msix-1..msix-n (qpair interrupts) 3587 */ 3588 qp = vsi->base_queue; 3589 vector = vsi->base_vector; 3590 for (i = 0; i < vsi->num_q_vectors; i++, vector++) { 3591 struct i40e_q_vector *q_vector = vsi->q_vectors[i]; 3592 3593 q_vector->rx.next_update = jiffies + 1; 3594 q_vector->rx.target_itr = 3595 ITR_TO_REG(vsi->rx_rings[i]->itr_setting); 3596 wr32(hw, I40E_PFINT_ITRN(I40E_RX_ITR, vector - 1), 3597 q_vector->rx.target_itr >> 1); 3598 q_vector->rx.current_itr = q_vector->rx.target_itr; 3599 3600 q_vector->tx.next_update = jiffies + 1; 3601 q_vector->tx.target_itr = 3602 ITR_TO_REG(vsi->tx_rings[i]->itr_setting); 3603 wr32(hw, I40E_PFINT_ITRN(I40E_TX_ITR, vector - 1), 3604 q_vector->tx.target_itr >> 1); 3605 q_vector->tx.current_itr = q_vector->tx.target_itr; 3606 3607 wr32(hw, I40E_PFINT_RATEN(vector - 1), 3608 i40e_intrl_usec_to_reg(vsi->int_rate_limit)); 3609 3610 /* Linked list for the queuepairs assigned to this vector */ 3611 wr32(hw, I40E_PFINT_LNKLSTN(vector - 1), qp); 3612 for (q = 0; q < q_vector->num_ringpairs; q++) { 3613 u32 nextqp = has_xdp ? qp + vsi->alloc_queue_pairs : qp; 3614 u32 val; 3615 3616 val = I40E_QINT_RQCTL_CAUSE_ENA_MASK | 3617 (I40E_RX_ITR << I40E_QINT_RQCTL_ITR_INDX_SHIFT) | 3618 (vector << I40E_QINT_RQCTL_MSIX_INDX_SHIFT) | 3619 (nextqp << I40E_QINT_RQCTL_NEXTQ_INDX_SHIFT) | 3620 (I40E_QUEUE_TYPE_TX << 3621 I40E_QINT_RQCTL_NEXTQ_TYPE_SHIFT); 3622 3623 wr32(hw, I40E_QINT_RQCTL(qp), val); 3624 3625 if (has_xdp) { 3626 val = I40E_QINT_TQCTL_CAUSE_ENA_MASK | 3627 (I40E_TX_ITR << I40E_QINT_TQCTL_ITR_INDX_SHIFT) | 3628 (vector << I40E_QINT_TQCTL_MSIX_INDX_SHIFT) | 3629 (qp << I40E_QINT_TQCTL_NEXTQ_INDX_SHIFT) | 3630 (I40E_QUEUE_TYPE_TX << 3631 I40E_QINT_TQCTL_NEXTQ_TYPE_SHIFT); 3632 3633 wr32(hw, I40E_QINT_TQCTL(nextqp), val); 3634 } 3635 3636 val = I40E_QINT_TQCTL_CAUSE_ENA_MASK | 3637 (I40E_TX_ITR << I40E_QINT_TQCTL_ITR_INDX_SHIFT) | 3638 (vector << I40E_QINT_TQCTL_MSIX_INDX_SHIFT) | 3639 ((qp + 1) << I40E_QINT_TQCTL_NEXTQ_INDX_SHIFT) | 3640 (I40E_QUEUE_TYPE_RX << 3641 I40E_QINT_TQCTL_NEXTQ_TYPE_SHIFT); 3642 3643 /* Terminate the linked list */ 3644 if (q == (q_vector->num_ringpairs - 1)) 3645 val |= (I40E_QUEUE_END_OF_LIST << 3646 I40E_QINT_TQCTL_NEXTQ_INDX_SHIFT); 3647 3648 wr32(hw, I40E_QINT_TQCTL(qp), val); 3649 qp++; 3650 } 3651 } 3652 3653 i40e_flush(hw); 3654 } 3655 3656 /** 3657 * i40e_enable_misc_int_causes - enable the non-queue interrupts 3658 * @pf: pointer to private device data structure 3659 **/ 3660 static void i40e_enable_misc_int_causes(struct i40e_pf *pf) 3661 { 3662 struct i40e_hw *hw = &pf->hw; 3663 u32 val; 3664 3665 /* clear things first */ 3666 wr32(hw, I40E_PFINT_ICR0_ENA, 0); /* disable all */ 3667 rd32(hw, I40E_PFINT_ICR0); /* read to clear */ 3668 3669 val = I40E_PFINT_ICR0_ENA_ECC_ERR_MASK | 3670 I40E_PFINT_ICR0_ENA_MAL_DETECT_MASK | 3671 I40E_PFINT_ICR0_ENA_GRST_MASK | 3672 I40E_PFINT_ICR0_ENA_PCI_EXCEPTION_MASK | 3673 I40E_PFINT_ICR0_ENA_GPIO_MASK | 3674 I40E_PFINT_ICR0_ENA_HMC_ERR_MASK | 3675 I40E_PFINT_ICR0_ENA_VFLR_MASK | 3676 I40E_PFINT_ICR0_ENA_ADMINQ_MASK; 3677 3678 if (pf->flags & I40E_FLAG_IWARP_ENABLED) 3679 val |= I40E_PFINT_ICR0_ENA_PE_CRITERR_MASK; 3680 3681 if (pf->flags & I40E_FLAG_PTP) 3682 val |= I40E_PFINT_ICR0_ENA_TIMESYNC_MASK; 3683 3684 wr32(hw, I40E_PFINT_ICR0_ENA, val); 3685 3686 /* SW_ITR_IDX = 0, but don't change INTENA */ 3687 wr32(hw, I40E_PFINT_DYN_CTL0, I40E_PFINT_DYN_CTL0_SW_ITR_INDX_MASK | 3688 I40E_PFINT_DYN_CTL0_INTENA_MSK_MASK); 3689 3690 /* OTHER_ITR_IDX = 0 */ 3691 wr32(hw, I40E_PFINT_STAT_CTL0, 0); 3692 } 3693 3694 /** 3695 * i40e_configure_msi_and_legacy - Legacy mode interrupt config in the HW 3696 * @vsi: the VSI being configured 3697 **/ 3698 static void i40e_configure_msi_and_legacy(struct i40e_vsi *vsi) 3699 { 3700 u32 nextqp = i40e_enabled_xdp_vsi(vsi) ? vsi->alloc_queue_pairs : 0; 3701 struct i40e_q_vector *q_vector = vsi->q_vectors[0]; 3702 struct i40e_pf *pf = vsi->back; 3703 struct i40e_hw *hw = &pf->hw; 3704 u32 val; 3705 3706 /* set the ITR configuration */ 3707 q_vector->rx.next_update = jiffies + 1; 3708 q_vector->rx.target_itr = ITR_TO_REG(vsi->rx_rings[0]->itr_setting); 3709 wr32(hw, I40E_PFINT_ITR0(I40E_RX_ITR), q_vector->rx.target_itr >> 1); 3710 q_vector->rx.current_itr = q_vector->rx.target_itr; 3711 q_vector->tx.next_update = jiffies + 1; 3712 q_vector->tx.target_itr = ITR_TO_REG(vsi->tx_rings[0]->itr_setting); 3713 wr32(hw, I40E_PFINT_ITR0(I40E_TX_ITR), q_vector->tx.target_itr >> 1); 3714 q_vector->tx.current_itr = q_vector->tx.target_itr; 3715 3716 i40e_enable_misc_int_causes(pf); 3717 3718 /* FIRSTQ_INDX = 0, FIRSTQ_TYPE = 0 (rx) */ 3719 wr32(hw, I40E_PFINT_LNKLST0, 0); 3720 3721 /* Associate the queue pair to the vector and enable the queue int */ 3722 val = I40E_QINT_RQCTL_CAUSE_ENA_MASK | 3723 (I40E_RX_ITR << I40E_QINT_RQCTL_ITR_INDX_SHIFT) | 3724 (nextqp << I40E_QINT_RQCTL_NEXTQ_INDX_SHIFT)| 3725 (I40E_QUEUE_TYPE_TX << I40E_QINT_TQCTL_NEXTQ_TYPE_SHIFT); 3726 3727 wr32(hw, I40E_QINT_RQCTL(0), val); 3728 3729 if (i40e_enabled_xdp_vsi(vsi)) { 3730 val = I40E_QINT_TQCTL_CAUSE_ENA_MASK | 3731 (I40E_TX_ITR << I40E_QINT_TQCTL_ITR_INDX_SHIFT)| 3732 (I40E_QUEUE_TYPE_TX 3733 << I40E_QINT_TQCTL_NEXTQ_TYPE_SHIFT); 3734 3735 wr32(hw, I40E_QINT_TQCTL(nextqp), val); 3736 } 3737 3738 val = I40E_QINT_TQCTL_CAUSE_ENA_MASK | 3739 (I40E_TX_ITR << I40E_QINT_TQCTL_ITR_INDX_SHIFT) | 3740 (I40E_QUEUE_END_OF_LIST << I40E_QINT_TQCTL_NEXTQ_INDX_SHIFT); 3741 3742 wr32(hw, I40E_QINT_TQCTL(0), val); 3743 i40e_flush(hw); 3744 } 3745 3746 /** 3747 * i40e_irq_dynamic_disable_icr0 - Disable default interrupt generation for icr0 3748 * @pf: board private structure 3749 **/ 3750 void i40e_irq_dynamic_disable_icr0(struct i40e_pf *pf) 3751 { 3752 struct i40e_hw *hw = &pf->hw; 3753 3754 wr32(hw, I40E_PFINT_DYN_CTL0, 3755 I40E_ITR_NONE << I40E_PFINT_DYN_CTLN_ITR_INDX_SHIFT); 3756 i40e_flush(hw); 3757 } 3758 3759 /** 3760 * i40e_irq_dynamic_enable_icr0 - Enable default interrupt generation for icr0 3761 * @pf: board private structure 3762 **/ 3763 void i40e_irq_dynamic_enable_icr0(struct i40e_pf *pf) 3764 { 3765 struct i40e_hw *hw = &pf->hw; 3766 u32 val; 3767 3768 val = I40E_PFINT_DYN_CTL0_INTENA_MASK | 3769 I40E_PFINT_DYN_CTL0_CLEARPBA_MASK | 3770 (I40E_ITR_NONE << I40E_PFINT_DYN_CTL0_ITR_INDX_SHIFT); 3771 3772 wr32(hw, I40E_PFINT_DYN_CTL0, val); 3773 i40e_flush(hw); 3774 } 3775 3776 /** 3777 * i40e_msix_clean_rings - MSIX mode Interrupt Handler 3778 * @irq: interrupt number 3779 * @data: pointer to a q_vector 3780 **/ 3781 static irqreturn_t i40e_msix_clean_rings(int irq, void *data) 3782 { 3783 struct i40e_q_vector *q_vector = data; 3784 3785 if (!q_vector->tx.ring && !q_vector->rx.ring) 3786 return IRQ_HANDLED; 3787 3788 napi_schedule_irqoff(&q_vector->napi); 3789 3790 return IRQ_HANDLED; 3791 } 3792 3793 /** 3794 * i40e_irq_affinity_notify - Callback for affinity changes 3795 * @notify: context as to what irq was changed 3796 * @mask: the new affinity mask 3797 * 3798 * This is a callback function used by the irq_set_affinity_notifier function 3799 * so that we may register to receive changes to the irq affinity masks. 3800 **/ 3801 static void i40e_irq_affinity_notify(struct irq_affinity_notify *notify, 3802 const cpumask_t *mask) 3803 { 3804 struct i40e_q_vector *q_vector = 3805 container_of(notify, struct i40e_q_vector, affinity_notify); 3806 3807 cpumask_copy(&q_vector->affinity_mask, mask); 3808 } 3809 3810 /** 3811 * i40e_irq_affinity_release - Callback for affinity notifier release 3812 * @ref: internal core kernel usage 3813 * 3814 * This is a callback function used by the irq_set_affinity_notifier function 3815 * to inform the current notification subscriber that they will no longer 3816 * receive notifications. 3817 **/ 3818 static void i40e_irq_affinity_release(struct kref *ref) {} 3819 3820 /** 3821 * i40e_vsi_request_irq_msix - Initialize MSI-X interrupts 3822 * @vsi: the VSI being configured 3823 * @basename: name for the vector 3824 * 3825 * Allocates MSI-X vectors and requests interrupts from the kernel. 3826 **/ 3827 static int i40e_vsi_request_irq_msix(struct i40e_vsi *vsi, char *basename) 3828 { 3829 int q_vectors = vsi->num_q_vectors; 3830 struct i40e_pf *pf = vsi->back; 3831 int base = vsi->base_vector; 3832 int rx_int_idx = 0; 3833 int tx_int_idx = 0; 3834 int vector, err; 3835 int irq_num; 3836 int cpu; 3837 3838 for (vector = 0; vector < q_vectors; vector++) { 3839 struct i40e_q_vector *q_vector = vsi->q_vectors[vector]; 3840 3841 irq_num = pf->msix_entries[base + vector].vector; 3842 3843 if (q_vector->tx.ring && q_vector->rx.ring) { 3844 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 3845 "%s-%s-%d", basename, "TxRx", rx_int_idx++); 3846 tx_int_idx++; 3847 } else if (q_vector->rx.ring) { 3848 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 3849 "%s-%s-%d", basename, "rx", rx_int_idx++); 3850 } else if (q_vector->tx.ring) { 3851 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 3852 "%s-%s-%d", basename, "tx", tx_int_idx++); 3853 } else { 3854 /* skip this unused q_vector */ 3855 continue; 3856 } 3857 err = request_irq(irq_num, 3858 vsi->irq_handler, 3859 0, 3860 q_vector->name, 3861 q_vector); 3862 if (err) { 3863 dev_info(&pf->pdev->dev, 3864 "MSIX request_irq failed, error: %d\n", err); 3865 goto free_queue_irqs; 3866 } 3867 3868 /* register for affinity change notifications */ 3869 q_vector->affinity_notify.notify = i40e_irq_affinity_notify; 3870 q_vector->affinity_notify.release = i40e_irq_affinity_release; 3871 irq_set_affinity_notifier(irq_num, &q_vector->affinity_notify); 3872 /* Spread affinity hints out across online CPUs. 3873 * 3874 * get_cpu_mask returns a static constant mask with 3875 * a permanent lifetime so it's ok to pass to 3876 * irq_set_affinity_hint without making a copy. 3877 */ 3878 cpu = cpumask_local_spread(q_vector->v_idx, -1); 3879 irq_set_affinity_hint(irq_num, get_cpu_mask(cpu)); 3880 } 3881 3882 vsi->irqs_ready = true; 3883 return 0; 3884 3885 free_queue_irqs: 3886 while (vector) { 3887 vector--; 3888 irq_num = pf->msix_entries[base + vector].vector; 3889 irq_set_affinity_notifier(irq_num, NULL); 3890 irq_set_affinity_hint(irq_num, NULL); 3891 free_irq(irq_num, &vsi->q_vectors[vector]); 3892 } 3893 return err; 3894 } 3895 3896 /** 3897 * i40e_vsi_disable_irq - Mask off queue interrupt generation on the VSI 3898 * @vsi: the VSI being un-configured 3899 **/ 3900 static void i40e_vsi_disable_irq(struct i40e_vsi *vsi) 3901 { 3902 struct i40e_pf *pf = vsi->back; 3903 struct i40e_hw *hw = &pf->hw; 3904 int base = vsi->base_vector; 3905 int i; 3906 3907 /* disable interrupt causation from each queue */ 3908 for (i = 0; i < vsi->num_queue_pairs; i++) { 3909 u32 val; 3910 3911 val = rd32(hw, I40E_QINT_TQCTL(vsi->tx_rings[i]->reg_idx)); 3912 val &= ~I40E_QINT_TQCTL_CAUSE_ENA_MASK; 3913 wr32(hw, I40E_QINT_TQCTL(vsi->tx_rings[i]->reg_idx), val); 3914 3915 val = rd32(hw, I40E_QINT_RQCTL(vsi->rx_rings[i]->reg_idx)); 3916 val &= ~I40E_QINT_RQCTL_CAUSE_ENA_MASK; 3917 wr32(hw, I40E_QINT_RQCTL(vsi->rx_rings[i]->reg_idx), val); 3918 3919 if (!i40e_enabled_xdp_vsi(vsi)) 3920 continue; 3921 wr32(hw, I40E_QINT_TQCTL(vsi->xdp_rings[i]->reg_idx), 0); 3922 } 3923 3924 /* disable each interrupt */ 3925 if (pf->flags & I40E_FLAG_MSIX_ENABLED) { 3926 for (i = vsi->base_vector; 3927 i < (vsi->num_q_vectors + vsi->base_vector); i++) 3928 wr32(hw, I40E_PFINT_DYN_CTLN(i - 1), 0); 3929 3930 i40e_flush(hw); 3931 for (i = 0; i < vsi->num_q_vectors; i++) 3932 synchronize_irq(pf->msix_entries[i + base].vector); 3933 } else { 3934 /* Legacy and MSI mode - this stops all interrupt handling */ 3935 wr32(hw, I40E_PFINT_ICR0_ENA, 0); 3936 wr32(hw, I40E_PFINT_DYN_CTL0, 0); 3937 i40e_flush(hw); 3938 synchronize_irq(pf->pdev->irq); 3939 } 3940 } 3941 3942 /** 3943 * i40e_vsi_enable_irq - Enable IRQ for the given VSI 3944 * @vsi: the VSI being configured 3945 **/ 3946 static int i40e_vsi_enable_irq(struct i40e_vsi *vsi) 3947 { 3948 struct i40e_pf *pf = vsi->back; 3949 int i; 3950 3951 if (pf->flags & I40E_FLAG_MSIX_ENABLED) { 3952 for (i = 0; i < vsi->num_q_vectors; i++) 3953 i40e_irq_dynamic_enable(vsi, i); 3954 } else { 3955 i40e_irq_dynamic_enable_icr0(pf); 3956 } 3957 3958 i40e_flush(&pf->hw); 3959 return 0; 3960 } 3961 3962 /** 3963 * i40e_free_misc_vector - Free the vector that handles non-queue events 3964 * @pf: board private structure 3965 **/ 3966 static void i40e_free_misc_vector(struct i40e_pf *pf) 3967 { 3968 /* Disable ICR 0 */ 3969 wr32(&pf->hw, I40E_PFINT_ICR0_ENA, 0); 3970 i40e_flush(&pf->hw); 3971 3972 if (pf->flags & I40E_FLAG_MSIX_ENABLED && pf->msix_entries) { 3973 synchronize_irq(pf->msix_entries[0].vector); 3974 free_irq(pf->msix_entries[0].vector, pf); 3975 clear_bit(__I40E_MISC_IRQ_REQUESTED, pf->state); 3976 } 3977 } 3978 3979 /** 3980 * i40e_intr - MSI/Legacy and non-queue interrupt handler 3981 * @irq: interrupt number 3982 * @data: pointer to a q_vector 3983 * 3984 * This is the handler used for all MSI/Legacy interrupts, and deals 3985 * with both queue and non-queue interrupts. This is also used in 3986 * MSIX mode to handle the non-queue interrupts. 3987 **/ 3988 static irqreturn_t i40e_intr(int irq, void *data) 3989 { 3990 struct i40e_pf *pf = (struct i40e_pf *)data; 3991 struct i40e_hw *hw = &pf->hw; 3992 irqreturn_t ret = IRQ_NONE; 3993 u32 icr0, icr0_remaining; 3994 u32 val, ena_mask; 3995 3996 icr0 = rd32(hw, I40E_PFINT_ICR0); 3997 ena_mask = rd32(hw, I40E_PFINT_ICR0_ENA); 3998 3999 /* if sharing a legacy IRQ, we might get called w/o an intr pending */ 4000 if ((icr0 & I40E_PFINT_ICR0_INTEVENT_MASK) == 0) 4001 goto enable_intr; 4002 4003 /* if interrupt but no bits showing, must be SWINT */ 4004 if (((icr0 & ~I40E_PFINT_ICR0_INTEVENT_MASK) == 0) || 4005 (icr0 & I40E_PFINT_ICR0_SWINT_MASK)) 4006 pf->sw_int_count++; 4007 4008 if ((pf->flags & I40E_FLAG_IWARP_ENABLED) && 4009 (icr0 & I40E_PFINT_ICR0_ENA_PE_CRITERR_MASK)) { 4010 ena_mask &= ~I40E_PFINT_ICR0_ENA_PE_CRITERR_MASK; 4011 dev_dbg(&pf->pdev->dev, "cleared PE_CRITERR\n"); 4012 set_bit(__I40E_CORE_RESET_REQUESTED, pf->state); 4013 } 4014 4015 /* only q0 is used in MSI/Legacy mode, and none are used in MSIX */ 4016 if (icr0 & I40E_PFINT_ICR0_QUEUE_0_MASK) { 4017 struct i40e_vsi *vsi = pf->vsi[pf->lan_vsi]; 4018 struct i40e_q_vector *q_vector = vsi->q_vectors[0]; 4019 4020 /* We do not have a way to disarm Queue causes while leaving 4021 * interrupt enabled for all other causes, ideally 4022 * interrupt should be disabled while we are in NAPI but 4023 * this is not a performance path and napi_schedule() 4024 * can deal with rescheduling. 4025 */ 4026 if (!test_bit(__I40E_DOWN, pf->state)) 4027 napi_schedule_irqoff(&q_vector->napi); 4028 } 4029 4030 if (icr0 & I40E_PFINT_ICR0_ADMINQ_MASK) { 4031 ena_mask &= ~I40E_PFINT_ICR0_ENA_ADMINQ_MASK; 4032 set_bit(__I40E_ADMINQ_EVENT_PENDING, pf->state); 4033 i40e_debug(&pf->hw, I40E_DEBUG_NVM, "AdminQ event\n"); 4034 } 4035 4036 if (icr0 & I40E_PFINT_ICR0_MAL_DETECT_MASK) { 4037 ena_mask &= ~I40E_PFINT_ICR0_ENA_MAL_DETECT_MASK; 4038 set_bit(__I40E_MDD_EVENT_PENDING, pf->state); 4039 } 4040 4041 if (icr0 & I40E_PFINT_ICR0_VFLR_MASK) { 4042 /* disable any further VFLR event notifications */ 4043 if (test_bit(__I40E_VF_RESETS_DISABLED, pf->state)) { 4044 u32 reg = rd32(hw, I40E_PFINT_ICR0_ENA); 4045 4046 reg &= ~I40E_PFINT_ICR0_VFLR_MASK; 4047 wr32(hw, I40E_PFINT_ICR0_ENA, reg); 4048 } else { 4049 ena_mask &= ~I40E_PFINT_ICR0_ENA_VFLR_MASK; 4050 set_bit(__I40E_VFLR_EVENT_PENDING, pf->state); 4051 } 4052 } 4053 4054 if (icr0 & I40E_PFINT_ICR0_GRST_MASK) { 4055 if (!test_bit(__I40E_RESET_RECOVERY_PENDING, pf->state)) 4056 set_bit(__I40E_RESET_INTR_RECEIVED, pf->state); 4057 ena_mask &= ~I40E_PFINT_ICR0_ENA_GRST_MASK; 4058 val = rd32(hw, I40E_GLGEN_RSTAT); 4059 val = (val & I40E_GLGEN_RSTAT_RESET_TYPE_MASK) 4060 >> I40E_GLGEN_RSTAT_RESET_TYPE_SHIFT; 4061 if (val == I40E_RESET_CORER) { 4062 pf->corer_count++; 4063 } else if (val == I40E_RESET_GLOBR) { 4064 pf->globr_count++; 4065 } else if (val == I40E_RESET_EMPR) { 4066 pf->empr_count++; 4067 set_bit(__I40E_EMP_RESET_INTR_RECEIVED, pf->state); 4068 } 4069 } 4070 4071 if (icr0 & I40E_PFINT_ICR0_HMC_ERR_MASK) { 4072 icr0 &= ~I40E_PFINT_ICR0_HMC_ERR_MASK; 4073 dev_info(&pf->pdev->dev, "HMC error interrupt\n"); 4074 dev_info(&pf->pdev->dev, "HMC error info 0x%x, HMC error data 0x%x\n", 4075 rd32(hw, I40E_PFHMC_ERRORINFO), 4076 rd32(hw, I40E_PFHMC_ERRORDATA)); 4077 } 4078 4079 if (icr0 & I40E_PFINT_ICR0_TIMESYNC_MASK) { 4080 u32 prttsyn_stat = rd32(hw, I40E_PRTTSYN_STAT_0); 4081 4082 if (prttsyn_stat & I40E_PRTTSYN_STAT_0_EVENT0_MASK) 4083 schedule_work(&pf->ptp_extts0_work); 4084 4085 if (prttsyn_stat & I40E_PRTTSYN_STAT_0_TXTIME_MASK) 4086 i40e_ptp_tx_hwtstamp(pf); 4087 4088 icr0 &= ~I40E_PFINT_ICR0_ENA_TIMESYNC_MASK; 4089 } 4090 4091 /* If a critical error is pending we have no choice but to reset the 4092 * device. 4093 * Report and mask out any remaining unexpected interrupts. 4094 */ 4095 icr0_remaining = icr0 & ena_mask; 4096 if (icr0_remaining) { 4097 dev_info(&pf->pdev->dev, "unhandled interrupt icr0=0x%08x\n", 4098 icr0_remaining); 4099 if ((icr0_remaining & I40E_PFINT_ICR0_PE_CRITERR_MASK) || 4100 (icr0_remaining & I40E_PFINT_ICR0_PCI_EXCEPTION_MASK) || 4101 (icr0_remaining & I40E_PFINT_ICR0_ECC_ERR_MASK)) { 4102 dev_info(&pf->pdev->dev, "device will be reset\n"); 4103 set_bit(__I40E_PF_RESET_REQUESTED, pf->state); 4104 i40e_service_event_schedule(pf); 4105 } 4106 ena_mask &= ~icr0_remaining; 4107 } 4108 ret = IRQ_HANDLED; 4109 4110 enable_intr: 4111 /* re-enable interrupt causes */ 4112 wr32(hw, I40E_PFINT_ICR0_ENA, ena_mask); 4113 if (!test_bit(__I40E_DOWN, pf->state) || 4114 test_bit(__I40E_RECOVERY_MODE, pf->state)) { 4115 i40e_service_event_schedule(pf); 4116 i40e_irq_dynamic_enable_icr0(pf); 4117 } 4118 4119 return ret; 4120 } 4121 4122 /** 4123 * i40e_clean_fdir_tx_irq - Reclaim resources after transmit completes 4124 * @tx_ring: tx ring to clean 4125 * @budget: how many cleans we're allowed 4126 * 4127 * Returns true if there's any budget left (e.g. the clean is finished) 4128 **/ 4129 static bool i40e_clean_fdir_tx_irq(struct i40e_ring *tx_ring, int budget) 4130 { 4131 struct i40e_vsi *vsi = tx_ring->vsi; 4132 u16 i = tx_ring->next_to_clean; 4133 struct i40e_tx_buffer *tx_buf; 4134 struct i40e_tx_desc *tx_desc; 4135 4136 tx_buf = &tx_ring->tx_bi[i]; 4137 tx_desc = I40E_TX_DESC(tx_ring, i); 4138 i -= tx_ring->count; 4139 4140 do { 4141 struct i40e_tx_desc *eop_desc = tx_buf->next_to_watch; 4142 4143 /* if next_to_watch is not set then there is no work pending */ 4144 if (!eop_desc) 4145 break; 4146 4147 /* prevent any other reads prior to eop_desc */ 4148 smp_rmb(); 4149 4150 /* if the descriptor isn't done, no work yet to do */ 4151 if (!(eop_desc->cmd_type_offset_bsz & 4152 cpu_to_le64(I40E_TX_DESC_DTYPE_DESC_DONE))) 4153 break; 4154 4155 /* clear next_to_watch to prevent false hangs */ 4156 tx_buf->next_to_watch = NULL; 4157 4158 tx_desc->buffer_addr = 0; 4159 tx_desc->cmd_type_offset_bsz = 0; 4160 /* move past filter desc */ 4161 tx_buf++; 4162 tx_desc++; 4163 i++; 4164 if (unlikely(!i)) { 4165 i -= tx_ring->count; 4166 tx_buf = tx_ring->tx_bi; 4167 tx_desc = I40E_TX_DESC(tx_ring, 0); 4168 } 4169 /* unmap skb header data */ 4170 dma_unmap_single(tx_ring->dev, 4171 dma_unmap_addr(tx_buf, dma), 4172 dma_unmap_len(tx_buf, len), 4173 DMA_TO_DEVICE); 4174 if (tx_buf->tx_flags & I40E_TX_FLAGS_FD_SB) 4175 kfree(tx_buf->raw_buf); 4176 4177 tx_buf->raw_buf = NULL; 4178 tx_buf->tx_flags = 0; 4179 tx_buf->next_to_watch = NULL; 4180 dma_unmap_len_set(tx_buf, len, 0); 4181 tx_desc->buffer_addr = 0; 4182 tx_desc->cmd_type_offset_bsz = 0; 4183 4184 /* move us past the eop_desc for start of next FD desc */ 4185 tx_buf++; 4186 tx_desc++; 4187 i++; 4188 if (unlikely(!i)) { 4189 i -= tx_ring->count; 4190 tx_buf = tx_ring->tx_bi; 4191 tx_desc = I40E_TX_DESC(tx_ring, 0); 4192 } 4193 4194 /* update budget accounting */ 4195 budget--; 4196 } while (likely(budget)); 4197 4198 i += tx_ring->count; 4199 tx_ring->next_to_clean = i; 4200 4201 if (vsi->back->flags & I40E_FLAG_MSIX_ENABLED) 4202 i40e_irq_dynamic_enable(vsi, tx_ring->q_vector->v_idx); 4203 4204 return budget > 0; 4205 } 4206 4207 /** 4208 * i40e_fdir_clean_ring - Interrupt Handler for FDIR SB ring 4209 * @irq: interrupt number 4210 * @data: pointer to a q_vector 4211 **/ 4212 static irqreturn_t i40e_fdir_clean_ring(int irq, void *data) 4213 { 4214 struct i40e_q_vector *q_vector = data; 4215 struct i40e_vsi *vsi; 4216 4217 if (!q_vector->tx.ring) 4218 return IRQ_HANDLED; 4219 4220 vsi = q_vector->tx.ring->vsi; 4221 i40e_clean_fdir_tx_irq(q_vector->tx.ring, vsi->work_limit); 4222 4223 return IRQ_HANDLED; 4224 } 4225 4226 /** 4227 * i40e_map_vector_to_qp - Assigns the queue pair to the vector 4228 * @vsi: the VSI being configured 4229 * @v_idx: vector index 4230 * @qp_idx: queue pair index 4231 **/ 4232 static void i40e_map_vector_to_qp(struct i40e_vsi *vsi, int v_idx, int qp_idx) 4233 { 4234 struct i40e_q_vector *q_vector = vsi->q_vectors[v_idx]; 4235 struct i40e_ring *tx_ring = vsi->tx_rings[qp_idx]; 4236 struct i40e_ring *rx_ring = vsi->rx_rings[qp_idx]; 4237 4238 tx_ring->q_vector = q_vector; 4239 tx_ring->next = q_vector->tx.ring; 4240 q_vector->tx.ring = tx_ring; 4241 q_vector->tx.count++; 4242 4243 /* Place XDP Tx ring in the same q_vector ring list as regular Tx */ 4244 if (i40e_enabled_xdp_vsi(vsi)) { 4245 struct i40e_ring *xdp_ring = vsi->xdp_rings[qp_idx]; 4246 4247 xdp_ring->q_vector = q_vector; 4248 xdp_ring->next = q_vector->tx.ring; 4249 q_vector->tx.ring = xdp_ring; 4250 q_vector->tx.count++; 4251 } 4252 4253 rx_ring->q_vector = q_vector; 4254 rx_ring->next = q_vector->rx.ring; 4255 q_vector->rx.ring = rx_ring; 4256 q_vector->rx.count++; 4257 } 4258 4259 /** 4260 * i40e_vsi_map_rings_to_vectors - Maps descriptor rings to vectors 4261 * @vsi: the VSI being configured 4262 * 4263 * This function maps descriptor rings to the queue-specific vectors 4264 * we were allotted through the MSI-X enabling code. Ideally, we'd have 4265 * one vector per queue pair, but on a constrained vector budget, we 4266 * group the queue pairs as "efficiently" as possible. 4267 **/ 4268 static void i40e_vsi_map_rings_to_vectors(struct i40e_vsi *vsi) 4269 { 4270 int qp_remaining = vsi->num_queue_pairs; 4271 int q_vectors = vsi->num_q_vectors; 4272 int num_ringpairs; 4273 int v_start = 0; 4274 int qp_idx = 0; 4275 4276 /* If we don't have enough vectors for a 1-to-1 mapping, we'll have to 4277 * group them so there are multiple queues per vector. 4278 * It is also important to go through all the vectors available to be 4279 * sure that if we don't use all the vectors, that the remaining vectors 4280 * are cleared. This is especially important when decreasing the 4281 * number of queues in use. 4282 */ 4283 for (; v_start < q_vectors; v_start++) { 4284 struct i40e_q_vector *q_vector = vsi->q_vectors[v_start]; 4285 4286 num_ringpairs = DIV_ROUND_UP(qp_remaining, q_vectors - v_start); 4287 4288 q_vector->num_ringpairs = num_ringpairs; 4289 q_vector->reg_idx = q_vector->v_idx + vsi->base_vector - 1; 4290 4291 q_vector->rx.count = 0; 4292 q_vector->tx.count = 0; 4293 q_vector->rx.ring = NULL; 4294 q_vector->tx.ring = NULL; 4295 4296 while (num_ringpairs--) { 4297 i40e_map_vector_to_qp(vsi, v_start, qp_idx); 4298 qp_idx++; 4299 qp_remaining--; 4300 } 4301 } 4302 } 4303 4304 /** 4305 * i40e_vsi_request_irq - Request IRQ from the OS 4306 * @vsi: the VSI being configured 4307 * @basename: name for the vector 4308 **/ 4309 static int i40e_vsi_request_irq(struct i40e_vsi *vsi, char *basename) 4310 { 4311 struct i40e_pf *pf = vsi->back; 4312 int err; 4313 4314 if (pf->flags & I40E_FLAG_MSIX_ENABLED) 4315 err = i40e_vsi_request_irq_msix(vsi, basename); 4316 else if (pf->flags & I40E_FLAG_MSI_ENABLED) 4317 err = request_irq(pf->pdev->irq, i40e_intr, 0, 4318 pf->int_name, pf); 4319 else 4320 err = request_irq(pf->pdev->irq, i40e_intr, IRQF_SHARED, 4321 pf->int_name, pf); 4322 4323 if (err) 4324 dev_info(&pf->pdev->dev, "request_irq failed, Error %d\n", err); 4325 4326 return err; 4327 } 4328 4329 #ifdef CONFIG_NET_POLL_CONTROLLER 4330 /** 4331 * i40e_netpoll - A Polling 'interrupt' handler 4332 * @netdev: network interface device structure 4333 * 4334 * This is used by netconsole to send skbs without having to re-enable 4335 * interrupts. It's not called while the normal interrupt routine is executing. 4336 **/ 4337 static void i40e_netpoll(struct net_device *netdev) 4338 { 4339 struct i40e_netdev_priv *np = netdev_priv(netdev); 4340 struct i40e_vsi *vsi = np->vsi; 4341 struct i40e_pf *pf = vsi->back; 4342 int i; 4343 4344 /* if interface is down do nothing */ 4345 if (test_bit(__I40E_VSI_DOWN, vsi->state)) 4346 return; 4347 4348 if (pf->flags & I40E_FLAG_MSIX_ENABLED) { 4349 for (i = 0; i < vsi->num_q_vectors; i++) 4350 i40e_msix_clean_rings(0, vsi->q_vectors[i]); 4351 } else { 4352 i40e_intr(pf->pdev->irq, netdev); 4353 } 4354 } 4355 #endif 4356 4357 #define I40E_QTX_ENA_WAIT_COUNT 50 4358 4359 /** 4360 * i40e_pf_txq_wait - Wait for a PF's Tx queue to be enabled or disabled 4361 * @pf: the PF being configured 4362 * @pf_q: the PF queue 4363 * @enable: enable or disable state of the queue 4364 * 4365 * This routine will wait for the given Tx queue of the PF to reach the 4366 * enabled or disabled state. 4367 * Returns -ETIMEDOUT in case of failing to reach the requested state after 4368 * multiple retries; else will return 0 in case of success. 4369 **/ 4370 static int i40e_pf_txq_wait(struct i40e_pf *pf, int pf_q, bool enable) 4371 { 4372 int i; 4373 u32 tx_reg; 4374 4375 for (i = 0; i < I40E_QUEUE_WAIT_RETRY_LIMIT; i++) { 4376 tx_reg = rd32(&pf->hw, I40E_QTX_ENA(pf_q)); 4377 if (enable == !!(tx_reg & I40E_QTX_ENA_QENA_STAT_MASK)) 4378 break; 4379 4380 usleep_range(10, 20); 4381 } 4382 if (i >= I40E_QUEUE_WAIT_RETRY_LIMIT) 4383 return -ETIMEDOUT; 4384 4385 return 0; 4386 } 4387 4388 /** 4389 * i40e_control_tx_q - Start or stop a particular Tx queue 4390 * @pf: the PF structure 4391 * @pf_q: the PF queue to configure 4392 * @enable: start or stop the queue 4393 * 4394 * This function enables or disables a single queue. Note that any delay 4395 * required after the operation is expected to be handled by the caller of 4396 * this function. 4397 **/ 4398 static void i40e_control_tx_q(struct i40e_pf *pf, int pf_q, bool enable) 4399 { 4400 struct i40e_hw *hw = &pf->hw; 4401 u32 tx_reg; 4402 int i; 4403 4404 /* warn the TX unit of coming changes */ 4405 i40e_pre_tx_queue_cfg(&pf->hw, pf_q, enable); 4406 if (!enable) 4407 usleep_range(10, 20); 4408 4409 for (i = 0; i < I40E_QTX_ENA_WAIT_COUNT; i++) { 4410 tx_reg = rd32(hw, I40E_QTX_ENA(pf_q)); 4411 if (((tx_reg >> I40E_QTX_ENA_QENA_REQ_SHIFT) & 1) == 4412 ((tx_reg >> I40E_QTX_ENA_QENA_STAT_SHIFT) & 1)) 4413 break; 4414 usleep_range(1000, 2000); 4415 } 4416 4417 /* Skip if the queue is already in the requested state */ 4418 if (enable == !!(tx_reg & I40E_QTX_ENA_QENA_STAT_MASK)) 4419 return; 4420 4421 /* turn on/off the queue */ 4422 if (enable) { 4423 wr32(hw, I40E_QTX_HEAD(pf_q), 0); 4424 tx_reg |= I40E_QTX_ENA_QENA_REQ_MASK; 4425 } else { 4426 tx_reg &= ~I40E_QTX_ENA_QENA_REQ_MASK; 4427 } 4428 4429 wr32(hw, I40E_QTX_ENA(pf_q), tx_reg); 4430 } 4431 4432 /** 4433 * i40e_control_wait_tx_q - Start/stop Tx queue and wait for completion 4434 * @seid: VSI SEID 4435 * @pf: the PF structure 4436 * @pf_q: the PF queue to configure 4437 * @is_xdp: true if the queue is used for XDP 4438 * @enable: start or stop the queue 4439 **/ 4440 int i40e_control_wait_tx_q(int seid, struct i40e_pf *pf, int pf_q, 4441 bool is_xdp, bool enable) 4442 { 4443 int ret; 4444 4445 i40e_control_tx_q(pf, pf_q, enable); 4446 4447 /* wait for the change to finish */ 4448 ret = i40e_pf_txq_wait(pf, pf_q, enable); 4449 if (ret) { 4450 dev_info(&pf->pdev->dev, 4451 "VSI seid %d %sTx ring %d %sable timeout\n", 4452 seid, (is_xdp ? "XDP " : ""), pf_q, 4453 (enable ? "en" : "dis")); 4454 } 4455 4456 return ret; 4457 } 4458 4459 /** 4460 * i40e_vsi_enable_tx - Start a VSI's rings 4461 * @vsi: the VSI being configured 4462 **/ 4463 static int i40e_vsi_enable_tx(struct i40e_vsi *vsi) 4464 { 4465 struct i40e_pf *pf = vsi->back; 4466 int i, pf_q, ret = 0; 4467 4468 pf_q = vsi->base_queue; 4469 for (i = 0; i < vsi->num_queue_pairs; i++, pf_q++) { 4470 ret = i40e_control_wait_tx_q(vsi->seid, pf, 4471 pf_q, 4472 false /*is xdp*/, true); 4473 if (ret) 4474 break; 4475 4476 if (!i40e_enabled_xdp_vsi(vsi)) 4477 continue; 4478 4479 ret = i40e_control_wait_tx_q(vsi->seid, pf, 4480 pf_q + vsi->alloc_queue_pairs, 4481 true /*is xdp*/, true); 4482 if (ret) 4483 break; 4484 } 4485 return ret; 4486 } 4487 4488 /** 4489 * i40e_pf_rxq_wait - Wait for a PF's Rx queue to be enabled or disabled 4490 * @pf: the PF being configured 4491 * @pf_q: the PF queue 4492 * @enable: enable or disable state of the queue 4493 * 4494 * This routine will wait for the given Rx queue of the PF to reach the 4495 * enabled or disabled state. 4496 * Returns -ETIMEDOUT in case of failing to reach the requested state after 4497 * multiple retries; else will return 0 in case of success. 4498 **/ 4499 static int i40e_pf_rxq_wait(struct i40e_pf *pf, int pf_q, bool enable) 4500 { 4501 int i; 4502 u32 rx_reg; 4503 4504 for (i = 0; i < I40E_QUEUE_WAIT_RETRY_LIMIT; i++) { 4505 rx_reg = rd32(&pf->hw, I40E_QRX_ENA(pf_q)); 4506 if (enable == !!(rx_reg & I40E_QRX_ENA_QENA_STAT_MASK)) 4507 break; 4508 4509 usleep_range(10, 20); 4510 } 4511 if (i >= I40E_QUEUE_WAIT_RETRY_LIMIT) 4512 return -ETIMEDOUT; 4513 4514 return 0; 4515 } 4516 4517 /** 4518 * i40e_control_rx_q - Start or stop a particular Rx queue 4519 * @pf: the PF structure 4520 * @pf_q: the PF queue to configure 4521 * @enable: start or stop the queue 4522 * 4523 * This function enables or disables a single queue. Note that 4524 * any delay required after the operation is expected to be 4525 * handled by the caller of this function. 4526 **/ 4527 static void i40e_control_rx_q(struct i40e_pf *pf, int pf_q, bool enable) 4528 { 4529 struct i40e_hw *hw = &pf->hw; 4530 u32 rx_reg; 4531 int i; 4532 4533 for (i = 0; i < I40E_QTX_ENA_WAIT_COUNT; i++) { 4534 rx_reg = rd32(hw, I40E_QRX_ENA(pf_q)); 4535 if (((rx_reg >> I40E_QRX_ENA_QENA_REQ_SHIFT) & 1) == 4536 ((rx_reg >> I40E_QRX_ENA_QENA_STAT_SHIFT) & 1)) 4537 break; 4538 usleep_range(1000, 2000); 4539 } 4540 4541 /* Skip if the queue is already in the requested state */ 4542 if (enable == !!(rx_reg & I40E_QRX_ENA_QENA_STAT_MASK)) 4543 return; 4544 4545 /* turn on/off the queue */ 4546 if (enable) 4547 rx_reg |= I40E_QRX_ENA_QENA_REQ_MASK; 4548 else 4549 rx_reg &= ~I40E_QRX_ENA_QENA_REQ_MASK; 4550 4551 wr32(hw, I40E_QRX_ENA(pf_q), rx_reg); 4552 } 4553 4554 /** 4555 * i40e_control_wait_rx_q 4556 * @pf: the PF structure 4557 * @pf_q: queue being configured 4558 * @enable: start or stop the rings 4559 * 4560 * This function enables or disables a single queue along with waiting 4561 * for the change to finish. The caller of this function should handle 4562 * the delays needed in the case of disabling queues. 4563 **/ 4564 int i40e_control_wait_rx_q(struct i40e_pf *pf, int pf_q, bool enable) 4565 { 4566 int ret = 0; 4567 4568 i40e_control_rx_q(pf, pf_q, enable); 4569 4570 /* wait for the change to finish */ 4571 ret = i40e_pf_rxq_wait(pf, pf_q, enable); 4572 if (ret) 4573 return ret; 4574 4575 return ret; 4576 } 4577 4578 /** 4579 * i40e_vsi_enable_rx - Start a VSI's rings 4580 * @vsi: the VSI being configured 4581 **/ 4582 static int i40e_vsi_enable_rx(struct i40e_vsi *vsi) 4583 { 4584 struct i40e_pf *pf = vsi->back; 4585 int i, pf_q, ret = 0; 4586 4587 pf_q = vsi->base_queue; 4588 for (i = 0; i < vsi->num_queue_pairs; i++, pf_q++) { 4589 ret = i40e_control_wait_rx_q(pf, pf_q, true); 4590 if (ret) { 4591 dev_info(&pf->pdev->dev, 4592 "VSI seid %d Rx ring %d enable timeout\n", 4593 vsi->seid, pf_q); 4594 break; 4595 } 4596 } 4597 4598 return ret; 4599 } 4600 4601 /** 4602 * i40e_vsi_start_rings - Start a VSI's rings 4603 * @vsi: the VSI being configured 4604 **/ 4605 int i40e_vsi_start_rings(struct i40e_vsi *vsi) 4606 { 4607 int ret = 0; 4608 4609 /* do rx first for enable and last for disable */ 4610 ret = i40e_vsi_enable_rx(vsi); 4611 if (ret) 4612 return ret; 4613 ret = i40e_vsi_enable_tx(vsi); 4614 4615 return ret; 4616 } 4617 4618 #define I40E_DISABLE_TX_GAP_MSEC 50 4619 4620 /** 4621 * i40e_vsi_stop_rings - Stop a VSI's rings 4622 * @vsi: the VSI being configured 4623 **/ 4624 void i40e_vsi_stop_rings(struct i40e_vsi *vsi) 4625 { 4626 struct i40e_pf *pf = vsi->back; 4627 int pf_q, err, q_end; 4628 4629 /* When port TX is suspended, don't wait */ 4630 if (test_bit(__I40E_PORT_SUSPENDED, vsi->back->state)) 4631 return i40e_vsi_stop_rings_no_wait(vsi); 4632 4633 q_end = vsi->base_queue + vsi->num_queue_pairs; 4634 for (pf_q = vsi->base_queue; pf_q < q_end; pf_q++) 4635 i40e_pre_tx_queue_cfg(&pf->hw, (u32)pf_q, false); 4636 4637 for (pf_q = vsi->base_queue; pf_q < q_end; pf_q++) { 4638 err = i40e_control_wait_rx_q(pf, pf_q, false); 4639 if (err) 4640 dev_info(&pf->pdev->dev, 4641 "VSI seid %d Rx ring %d disable timeout\n", 4642 vsi->seid, pf_q); 4643 } 4644 4645 msleep(I40E_DISABLE_TX_GAP_MSEC); 4646 pf_q = vsi->base_queue; 4647 for (pf_q = vsi->base_queue; pf_q < q_end; pf_q++) 4648 wr32(&pf->hw, I40E_QTX_ENA(pf_q), 0); 4649 4650 i40e_vsi_wait_queues_disabled(vsi); 4651 } 4652 4653 /** 4654 * i40e_vsi_stop_rings_no_wait - Stop a VSI's rings and do not delay 4655 * @vsi: the VSI being shutdown 4656 * 4657 * This function stops all the rings for a VSI but does not delay to verify 4658 * that rings have been disabled. It is expected that the caller is shutting 4659 * down multiple VSIs at once and will delay together for all the VSIs after 4660 * initiating the shutdown. This is particularly useful for shutting down lots 4661 * of VFs together. Otherwise, a large delay can be incurred while configuring 4662 * each VSI in serial. 4663 **/ 4664 void i40e_vsi_stop_rings_no_wait(struct i40e_vsi *vsi) 4665 { 4666 struct i40e_pf *pf = vsi->back; 4667 int i, pf_q; 4668 4669 pf_q = vsi->base_queue; 4670 for (i = 0; i < vsi->num_queue_pairs; i++, pf_q++) { 4671 i40e_control_tx_q(pf, pf_q, false); 4672 i40e_control_rx_q(pf, pf_q, false); 4673 } 4674 } 4675 4676 /** 4677 * i40e_vsi_free_irq - Free the irq association with the OS 4678 * @vsi: the VSI being configured 4679 **/ 4680 static void i40e_vsi_free_irq(struct i40e_vsi *vsi) 4681 { 4682 struct i40e_pf *pf = vsi->back; 4683 struct i40e_hw *hw = &pf->hw; 4684 int base = vsi->base_vector; 4685 u32 val, qp; 4686 int i; 4687 4688 if (pf->flags & I40E_FLAG_MSIX_ENABLED) { 4689 if (!vsi->q_vectors) 4690 return; 4691 4692 if (!vsi->irqs_ready) 4693 return; 4694 4695 vsi->irqs_ready = false; 4696 for (i = 0; i < vsi->num_q_vectors; i++) { 4697 int irq_num; 4698 u16 vector; 4699 4700 vector = i + base; 4701 irq_num = pf->msix_entries[vector].vector; 4702 4703 /* free only the irqs that were actually requested */ 4704 if (!vsi->q_vectors[i] || 4705 !vsi->q_vectors[i]->num_ringpairs) 4706 continue; 4707 4708 /* clear the affinity notifier in the IRQ descriptor */ 4709 irq_set_affinity_notifier(irq_num, NULL); 4710 /* remove our suggested affinity mask for this IRQ */ 4711 irq_set_affinity_hint(irq_num, NULL); 4712 synchronize_irq(irq_num); 4713 free_irq(irq_num, vsi->q_vectors[i]); 4714 4715 /* Tear down the interrupt queue link list 4716 * 4717 * We know that they come in pairs and always 4718 * the Rx first, then the Tx. To clear the 4719 * link list, stick the EOL value into the 4720 * next_q field of the registers. 4721 */ 4722 val = rd32(hw, I40E_PFINT_LNKLSTN(vector - 1)); 4723 qp = (val & I40E_PFINT_LNKLSTN_FIRSTQ_INDX_MASK) 4724 >> I40E_PFINT_LNKLSTN_FIRSTQ_INDX_SHIFT; 4725 val |= I40E_QUEUE_END_OF_LIST 4726 << I40E_PFINT_LNKLSTN_FIRSTQ_INDX_SHIFT; 4727 wr32(hw, I40E_PFINT_LNKLSTN(vector - 1), val); 4728 4729 while (qp != I40E_QUEUE_END_OF_LIST) { 4730 u32 next; 4731 4732 val = rd32(hw, I40E_QINT_RQCTL(qp)); 4733 4734 val &= ~(I40E_QINT_RQCTL_MSIX_INDX_MASK | 4735 I40E_QINT_RQCTL_MSIX0_INDX_MASK | 4736 I40E_QINT_RQCTL_CAUSE_ENA_MASK | 4737 I40E_QINT_RQCTL_INTEVENT_MASK); 4738 4739 val |= (I40E_QINT_RQCTL_ITR_INDX_MASK | 4740 I40E_QINT_RQCTL_NEXTQ_INDX_MASK); 4741 4742 wr32(hw, I40E_QINT_RQCTL(qp), val); 4743 4744 val = rd32(hw, I40E_QINT_TQCTL(qp)); 4745 4746 next = (val & I40E_QINT_TQCTL_NEXTQ_INDX_MASK) 4747 >> I40E_QINT_TQCTL_NEXTQ_INDX_SHIFT; 4748 4749 val &= ~(I40E_QINT_TQCTL_MSIX_INDX_MASK | 4750 I40E_QINT_TQCTL_MSIX0_INDX_MASK | 4751 I40E_QINT_TQCTL_CAUSE_ENA_MASK | 4752 I40E_QINT_TQCTL_INTEVENT_MASK); 4753 4754 val |= (I40E_QINT_TQCTL_ITR_INDX_MASK | 4755 I40E_QINT_TQCTL_NEXTQ_INDX_MASK); 4756 4757 wr32(hw, I40E_QINT_TQCTL(qp), val); 4758 qp = next; 4759 } 4760 } 4761 } else { 4762 free_irq(pf->pdev->irq, pf); 4763 4764 val = rd32(hw, I40E_PFINT_LNKLST0); 4765 qp = (val & I40E_PFINT_LNKLSTN_FIRSTQ_INDX_MASK) 4766 >> I40E_PFINT_LNKLSTN_FIRSTQ_INDX_SHIFT; 4767 val |= I40E_QUEUE_END_OF_LIST 4768 << I40E_PFINT_LNKLST0_FIRSTQ_INDX_SHIFT; 4769 wr32(hw, I40E_PFINT_LNKLST0, val); 4770 4771 val = rd32(hw, I40E_QINT_RQCTL(qp)); 4772 val &= ~(I40E_QINT_RQCTL_MSIX_INDX_MASK | 4773 I40E_QINT_RQCTL_MSIX0_INDX_MASK | 4774 I40E_QINT_RQCTL_CAUSE_ENA_MASK | 4775 I40E_QINT_RQCTL_INTEVENT_MASK); 4776 4777 val |= (I40E_QINT_RQCTL_ITR_INDX_MASK | 4778 I40E_QINT_RQCTL_NEXTQ_INDX_MASK); 4779 4780 wr32(hw, I40E_QINT_RQCTL(qp), val); 4781 4782 val = rd32(hw, I40E_QINT_TQCTL(qp)); 4783 4784 val &= ~(I40E_QINT_TQCTL_MSIX_INDX_MASK | 4785 I40E_QINT_TQCTL_MSIX0_INDX_MASK | 4786 I40E_QINT_TQCTL_CAUSE_ENA_MASK | 4787 I40E_QINT_TQCTL_INTEVENT_MASK); 4788 4789 val |= (I40E_QINT_TQCTL_ITR_INDX_MASK | 4790 I40E_QINT_TQCTL_NEXTQ_INDX_MASK); 4791 4792 wr32(hw, I40E_QINT_TQCTL(qp), val); 4793 } 4794 } 4795 4796 /** 4797 * i40e_free_q_vector - Free memory allocated for specific interrupt vector 4798 * @vsi: the VSI being configured 4799 * @v_idx: Index of vector to be freed 4800 * 4801 * This function frees the memory allocated to the q_vector. In addition if 4802 * NAPI is enabled it will delete any references to the NAPI struct prior 4803 * to freeing the q_vector. 4804 **/ 4805 static void i40e_free_q_vector(struct i40e_vsi *vsi, int v_idx) 4806 { 4807 struct i40e_q_vector *q_vector = vsi->q_vectors[v_idx]; 4808 struct i40e_ring *ring; 4809 4810 if (!q_vector) 4811 return; 4812 4813 /* disassociate q_vector from rings */ 4814 i40e_for_each_ring(ring, q_vector->tx) 4815 ring->q_vector = NULL; 4816 4817 i40e_for_each_ring(ring, q_vector->rx) 4818 ring->q_vector = NULL; 4819 4820 /* only VSI w/ an associated netdev is set up w/ NAPI */ 4821 if (vsi->netdev) 4822 netif_napi_del(&q_vector->napi); 4823 4824 vsi->q_vectors[v_idx] = NULL; 4825 4826 kfree_rcu(q_vector, rcu); 4827 } 4828 4829 /** 4830 * i40e_vsi_free_q_vectors - Free memory allocated for interrupt vectors 4831 * @vsi: the VSI being un-configured 4832 * 4833 * This frees the memory allocated to the q_vectors and 4834 * deletes references to the NAPI struct. 4835 **/ 4836 static void i40e_vsi_free_q_vectors(struct i40e_vsi *vsi) 4837 { 4838 int v_idx; 4839 4840 for (v_idx = 0; v_idx < vsi->num_q_vectors; v_idx++) 4841 i40e_free_q_vector(vsi, v_idx); 4842 } 4843 4844 /** 4845 * i40e_reset_interrupt_capability - Disable interrupt setup in OS 4846 * @pf: board private structure 4847 **/ 4848 static void i40e_reset_interrupt_capability(struct i40e_pf *pf) 4849 { 4850 /* If we're in Legacy mode, the interrupt was cleaned in vsi_close */ 4851 if (pf->flags & I40E_FLAG_MSIX_ENABLED) { 4852 pci_disable_msix(pf->pdev); 4853 kfree(pf->msix_entries); 4854 pf->msix_entries = NULL; 4855 kfree(pf->irq_pile); 4856 pf->irq_pile = NULL; 4857 } else if (pf->flags & I40E_FLAG_MSI_ENABLED) { 4858 pci_disable_msi(pf->pdev); 4859 } 4860 pf->flags &= ~(I40E_FLAG_MSIX_ENABLED | I40E_FLAG_MSI_ENABLED); 4861 } 4862 4863 /** 4864 * i40e_clear_interrupt_scheme - Clear the current interrupt scheme settings 4865 * @pf: board private structure 4866 * 4867 * We go through and clear interrupt specific resources and reset the structure 4868 * to pre-load conditions 4869 **/ 4870 static void i40e_clear_interrupt_scheme(struct i40e_pf *pf) 4871 { 4872 int i; 4873 4874 i40e_free_misc_vector(pf); 4875 4876 i40e_put_lump(pf->irq_pile, pf->iwarp_base_vector, 4877 I40E_IWARP_IRQ_PILE_ID); 4878 4879 i40e_put_lump(pf->irq_pile, 0, I40E_PILE_VALID_BIT-1); 4880 for (i = 0; i < pf->num_alloc_vsi; i++) 4881 if (pf->vsi[i]) 4882 i40e_vsi_free_q_vectors(pf->vsi[i]); 4883 i40e_reset_interrupt_capability(pf); 4884 } 4885 4886 /** 4887 * i40e_napi_enable_all - Enable NAPI for all q_vectors in the VSI 4888 * @vsi: the VSI being configured 4889 **/ 4890 static void i40e_napi_enable_all(struct i40e_vsi *vsi) 4891 { 4892 int q_idx; 4893 4894 if (!vsi->netdev) 4895 return; 4896 4897 for (q_idx = 0; q_idx < vsi->num_q_vectors; q_idx++) { 4898 struct i40e_q_vector *q_vector = vsi->q_vectors[q_idx]; 4899 4900 if (q_vector->rx.ring || q_vector->tx.ring) 4901 napi_enable(&q_vector->napi); 4902 } 4903 } 4904 4905 /** 4906 * i40e_napi_disable_all - Disable NAPI for all q_vectors in the VSI 4907 * @vsi: the VSI being configured 4908 **/ 4909 static void i40e_napi_disable_all(struct i40e_vsi *vsi) 4910 { 4911 int q_idx; 4912 4913 if (!vsi->netdev) 4914 return; 4915 4916 for (q_idx = 0; q_idx < vsi->num_q_vectors; q_idx++) { 4917 struct i40e_q_vector *q_vector = vsi->q_vectors[q_idx]; 4918 4919 if (q_vector->rx.ring || q_vector->tx.ring) 4920 napi_disable(&q_vector->napi); 4921 } 4922 } 4923 4924 /** 4925 * i40e_vsi_close - Shut down a VSI 4926 * @vsi: the vsi to be quelled 4927 **/ 4928 static void i40e_vsi_close(struct i40e_vsi *vsi) 4929 { 4930 struct i40e_pf *pf = vsi->back; 4931 if (!test_and_set_bit(__I40E_VSI_DOWN, vsi->state)) 4932 i40e_down(vsi); 4933 i40e_vsi_free_irq(vsi); 4934 i40e_vsi_free_tx_resources(vsi); 4935 i40e_vsi_free_rx_resources(vsi); 4936 vsi->current_netdev_flags = 0; 4937 set_bit(__I40E_CLIENT_SERVICE_REQUESTED, pf->state); 4938 if (test_bit(__I40E_RESET_RECOVERY_PENDING, pf->state)) 4939 set_bit(__I40E_CLIENT_RESET, pf->state); 4940 } 4941 4942 /** 4943 * i40e_quiesce_vsi - Pause a given VSI 4944 * @vsi: the VSI being paused 4945 **/ 4946 static void i40e_quiesce_vsi(struct i40e_vsi *vsi) 4947 { 4948 if (test_bit(__I40E_VSI_DOWN, vsi->state)) 4949 return; 4950 4951 set_bit(__I40E_VSI_NEEDS_RESTART, vsi->state); 4952 if (vsi->netdev && netif_running(vsi->netdev)) 4953 vsi->netdev->netdev_ops->ndo_stop(vsi->netdev); 4954 else 4955 i40e_vsi_close(vsi); 4956 } 4957 4958 /** 4959 * i40e_unquiesce_vsi - Resume a given VSI 4960 * @vsi: the VSI being resumed 4961 **/ 4962 static void i40e_unquiesce_vsi(struct i40e_vsi *vsi) 4963 { 4964 if (!test_and_clear_bit(__I40E_VSI_NEEDS_RESTART, vsi->state)) 4965 return; 4966 4967 if (vsi->netdev && netif_running(vsi->netdev)) 4968 vsi->netdev->netdev_ops->ndo_open(vsi->netdev); 4969 else 4970 i40e_vsi_open(vsi); /* this clears the DOWN bit */ 4971 } 4972 4973 /** 4974 * i40e_pf_quiesce_all_vsi - Pause all VSIs on a PF 4975 * @pf: the PF 4976 **/ 4977 static void i40e_pf_quiesce_all_vsi(struct i40e_pf *pf) 4978 { 4979 int v; 4980 4981 for (v = 0; v < pf->num_alloc_vsi; v++) { 4982 if (pf->vsi[v]) 4983 i40e_quiesce_vsi(pf->vsi[v]); 4984 } 4985 } 4986 4987 /** 4988 * i40e_pf_unquiesce_all_vsi - Resume all VSIs on a PF 4989 * @pf: the PF 4990 **/ 4991 static void i40e_pf_unquiesce_all_vsi(struct i40e_pf *pf) 4992 { 4993 int v; 4994 4995 for (v = 0; v < pf->num_alloc_vsi; v++) { 4996 if (pf->vsi[v]) 4997 i40e_unquiesce_vsi(pf->vsi[v]); 4998 } 4999 } 5000 5001 /** 5002 * i40e_vsi_wait_queues_disabled - Wait for VSI's queues to be disabled 5003 * @vsi: the VSI being configured 5004 * 5005 * Wait until all queues on a given VSI have been disabled. 5006 **/ 5007 int i40e_vsi_wait_queues_disabled(struct i40e_vsi *vsi) 5008 { 5009 struct i40e_pf *pf = vsi->back; 5010 int i, pf_q, ret; 5011 5012 pf_q = vsi->base_queue; 5013 for (i = 0; i < vsi->num_queue_pairs; i++, pf_q++) { 5014 /* Check and wait for the Tx queue */ 5015 ret = i40e_pf_txq_wait(pf, pf_q, false); 5016 if (ret) { 5017 dev_info(&pf->pdev->dev, 5018 "VSI seid %d Tx ring %d disable timeout\n", 5019 vsi->seid, pf_q); 5020 return ret; 5021 } 5022 5023 if (!i40e_enabled_xdp_vsi(vsi)) 5024 goto wait_rx; 5025 5026 /* Check and wait for the XDP Tx queue */ 5027 ret = i40e_pf_txq_wait(pf, pf_q + vsi->alloc_queue_pairs, 5028 false); 5029 if (ret) { 5030 dev_info(&pf->pdev->dev, 5031 "VSI seid %d XDP Tx ring %d disable timeout\n", 5032 vsi->seid, pf_q); 5033 return ret; 5034 } 5035 wait_rx: 5036 /* Check and wait for the Rx queue */ 5037 ret = i40e_pf_rxq_wait(pf, pf_q, false); 5038 if (ret) { 5039 dev_info(&pf->pdev->dev, 5040 "VSI seid %d Rx ring %d disable timeout\n", 5041 vsi->seid, pf_q); 5042 return ret; 5043 } 5044 } 5045 5046 return 0; 5047 } 5048 5049 #ifdef CONFIG_I40E_DCB 5050 /** 5051 * i40e_pf_wait_queues_disabled - Wait for all queues of PF VSIs to be disabled 5052 * @pf: the PF 5053 * 5054 * This function waits for the queues to be in disabled state for all the 5055 * VSIs that are managed by this PF. 5056 **/ 5057 static int i40e_pf_wait_queues_disabled(struct i40e_pf *pf) 5058 { 5059 int v, ret = 0; 5060 5061 for (v = 0; v < pf->hw.func_caps.num_vsis; v++) { 5062 if (pf->vsi[v]) { 5063 ret = i40e_vsi_wait_queues_disabled(pf->vsi[v]); 5064 if (ret) 5065 break; 5066 } 5067 } 5068 5069 return ret; 5070 } 5071 5072 #endif 5073 5074 /** 5075 * i40e_get_iscsi_tc_map - Return TC map for iSCSI APP 5076 * @pf: pointer to PF 5077 * 5078 * Get TC map for ISCSI PF type that will include iSCSI TC 5079 * and LAN TC. 5080 **/ 5081 static u8 i40e_get_iscsi_tc_map(struct i40e_pf *pf) 5082 { 5083 struct i40e_dcb_app_priority_table app; 5084 struct i40e_hw *hw = &pf->hw; 5085 u8 enabled_tc = 1; /* TC0 is always enabled */ 5086 u8 tc, i; 5087 /* Get the iSCSI APP TLV */ 5088 struct i40e_dcbx_config *dcbcfg = &hw->local_dcbx_config; 5089 5090 for (i = 0; i < dcbcfg->numapps; i++) { 5091 app = dcbcfg->app[i]; 5092 if (app.selector == I40E_APP_SEL_TCPIP && 5093 app.protocolid == I40E_APP_PROTOID_ISCSI) { 5094 tc = dcbcfg->etscfg.prioritytable[app.priority]; 5095 enabled_tc |= BIT(tc); 5096 break; 5097 } 5098 } 5099 5100 return enabled_tc; 5101 } 5102 5103 /** 5104 * i40e_dcb_get_num_tc - Get the number of TCs from DCBx config 5105 * @dcbcfg: the corresponding DCBx configuration structure 5106 * 5107 * Return the number of TCs from given DCBx configuration 5108 **/ 5109 static u8 i40e_dcb_get_num_tc(struct i40e_dcbx_config *dcbcfg) 5110 { 5111 int i, tc_unused = 0; 5112 u8 num_tc = 0; 5113 u8 ret = 0; 5114 5115 /* Scan the ETS Config Priority Table to find 5116 * traffic class enabled for a given priority 5117 * and create a bitmask of enabled TCs 5118 */ 5119 for (i = 0; i < I40E_MAX_USER_PRIORITY; i++) 5120 num_tc |= BIT(dcbcfg->etscfg.prioritytable[i]); 5121 5122 /* Now scan the bitmask to check for 5123 * contiguous TCs starting with TC0 5124 */ 5125 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 5126 if (num_tc & BIT(i)) { 5127 if (!tc_unused) { 5128 ret++; 5129 } else { 5130 pr_err("Non-contiguous TC - Disabling DCB\n"); 5131 return 1; 5132 } 5133 } else { 5134 tc_unused = 1; 5135 } 5136 } 5137 5138 /* There is always at least TC0 */ 5139 if (!ret) 5140 ret = 1; 5141 5142 return ret; 5143 } 5144 5145 /** 5146 * i40e_dcb_get_enabled_tc - Get enabled traffic classes 5147 * @dcbcfg: the corresponding DCBx configuration structure 5148 * 5149 * Query the current DCB configuration and return the number of 5150 * traffic classes enabled from the given DCBX config 5151 **/ 5152 static u8 i40e_dcb_get_enabled_tc(struct i40e_dcbx_config *dcbcfg) 5153 { 5154 u8 num_tc = i40e_dcb_get_num_tc(dcbcfg); 5155 u8 enabled_tc = 1; 5156 u8 i; 5157 5158 for (i = 0; i < num_tc; i++) 5159 enabled_tc |= BIT(i); 5160 5161 return enabled_tc; 5162 } 5163 5164 /** 5165 * i40e_mqprio_get_enabled_tc - Get enabled traffic classes 5166 * @pf: PF being queried 5167 * 5168 * Query the current MQPRIO configuration and return the number of 5169 * traffic classes enabled. 5170 **/ 5171 static u8 i40e_mqprio_get_enabled_tc(struct i40e_pf *pf) 5172 { 5173 struct i40e_vsi *vsi = pf->vsi[pf->lan_vsi]; 5174 u8 num_tc = vsi->mqprio_qopt.qopt.num_tc; 5175 u8 enabled_tc = 1, i; 5176 5177 for (i = 1; i < num_tc; i++) 5178 enabled_tc |= BIT(i); 5179 return enabled_tc; 5180 } 5181 5182 /** 5183 * i40e_pf_get_num_tc - Get enabled traffic classes for PF 5184 * @pf: PF being queried 5185 * 5186 * Return number of traffic classes enabled for the given PF 5187 **/ 5188 static u8 i40e_pf_get_num_tc(struct i40e_pf *pf) 5189 { 5190 struct i40e_hw *hw = &pf->hw; 5191 u8 i, enabled_tc = 1; 5192 u8 num_tc = 0; 5193 struct i40e_dcbx_config *dcbcfg = &hw->local_dcbx_config; 5194 5195 if (pf->flags & I40E_FLAG_TC_MQPRIO) 5196 return pf->vsi[pf->lan_vsi]->mqprio_qopt.qopt.num_tc; 5197 5198 /* If neither MQPRIO nor DCB is enabled, then always use single TC */ 5199 if (!(pf->flags & I40E_FLAG_DCB_ENABLED)) 5200 return 1; 5201 5202 /* SFP mode will be enabled for all TCs on port */ 5203 if (!(pf->flags & I40E_FLAG_MFP_ENABLED)) 5204 return i40e_dcb_get_num_tc(dcbcfg); 5205 5206 /* MFP mode return count of enabled TCs for this PF */ 5207 if (pf->hw.func_caps.iscsi) 5208 enabled_tc = i40e_get_iscsi_tc_map(pf); 5209 else 5210 return 1; /* Only TC0 */ 5211 5212 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 5213 if (enabled_tc & BIT(i)) 5214 num_tc++; 5215 } 5216 return num_tc; 5217 } 5218 5219 /** 5220 * i40e_pf_get_tc_map - Get bitmap for enabled traffic classes 5221 * @pf: PF being queried 5222 * 5223 * Return a bitmap for enabled traffic classes for this PF. 5224 **/ 5225 static u8 i40e_pf_get_tc_map(struct i40e_pf *pf) 5226 { 5227 if (pf->flags & I40E_FLAG_TC_MQPRIO) 5228 return i40e_mqprio_get_enabled_tc(pf); 5229 5230 /* If neither MQPRIO nor DCB is enabled for this PF then just return 5231 * default TC 5232 */ 5233 if (!(pf->flags & I40E_FLAG_DCB_ENABLED)) 5234 return I40E_DEFAULT_TRAFFIC_CLASS; 5235 5236 /* SFP mode we want PF to be enabled for all TCs */ 5237 if (!(pf->flags & I40E_FLAG_MFP_ENABLED)) 5238 return i40e_dcb_get_enabled_tc(&pf->hw.local_dcbx_config); 5239 5240 /* MFP enabled and iSCSI PF type */ 5241 if (pf->hw.func_caps.iscsi) 5242 return i40e_get_iscsi_tc_map(pf); 5243 else 5244 return I40E_DEFAULT_TRAFFIC_CLASS; 5245 } 5246 5247 /** 5248 * i40e_vsi_get_bw_info - Query VSI BW Information 5249 * @vsi: the VSI being queried 5250 * 5251 * Returns 0 on success, negative value on failure 5252 **/ 5253 static int i40e_vsi_get_bw_info(struct i40e_vsi *vsi) 5254 { 5255 struct i40e_aqc_query_vsi_ets_sla_config_resp bw_ets_config = {0}; 5256 struct i40e_aqc_query_vsi_bw_config_resp bw_config = {0}; 5257 struct i40e_pf *pf = vsi->back; 5258 struct i40e_hw *hw = &pf->hw; 5259 i40e_status ret; 5260 u32 tc_bw_max; 5261 int i; 5262 5263 /* Get the VSI level BW configuration */ 5264 ret = i40e_aq_query_vsi_bw_config(hw, vsi->seid, &bw_config, NULL); 5265 if (ret) { 5266 dev_info(&pf->pdev->dev, 5267 "couldn't get PF vsi bw config, err %s aq_err %s\n", 5268 i40e_stat_str(&pf->hw, ret), 5269 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 5270 return -EINVAL; 5271 } 5272 5273 /* Get the VSI level BW configuration per TC */ 5274 ret = i40e_aq_query_vsi_ets_sla_config(hw, vsi->seid, &bw_ets_config, 5275 NULL); 5276 if (ret) { 5277 dev_info(&pf->pdev->dev, 5278 "couldn't get PF vsi ets bw config, err %s aq_err %s\n", 5279 i40e_stat_str(&pf->hw, ret), 5280 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 5281 return -EINVAL; 5282 } 5283 5284 if (bw_config.tc_valid_bits != bw_ets_config.tc_valid_bits) { 5285 dev_info(&pf->pdev->dev, 5286 "Enabled TCs mismatch from querying VSI BW info 0x%08x 0x%08x\n", 5287 bw_config.tc_valid_bits, 5288 bw_ets_config.tc_valid_bits); 5289 /* Still continuing */ 5290 } 5291 5292 vsi->bw_limit = le16_to_cpu(bw_config.port_bw_limit); 5293 vsi->bw_max_quanta = bw_config.max_bw; 5294 tc_bw_max = le16_to_cpu(bw_ets_config.tc_bw_max[0]) | 5295 (le16_to_cpu(bw_ets_config.tc_bw_max[1]) << 16); 5296 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 5297 vsi->bw_ets_share_credits[i] = bw_ets_config.share_credits[i]; 5298 vsi->bw_ets_limit_credits[i] = 5299 le16_to_cpu(bw_ets_config.credits[i]); 5300 /* 3 bits out of 4 for each TC */ 5301 vsi->bw_ets_max_quanta[i] = (u8)((tc_bw_max >> (i*4)) & 0x7); 5302 } 5303 5304 return 0; 5305 } 5306 5307 /** 5308 * i40e_vsi_configure_bw_alloc - Configure VSI BW allocation per TC 5309 * @vsi: the VSI being configured 5310 * @enabled_tc: TC bitmap 5311 * @bw_share: BW shared credits per TC 5312 * 5313 * Returns 0 on success, negative value on failure 5314 **/ 5315 static int i40e_vsi_configure_bw_alloc(struct i40e_vsi *vsi, u8 enabled_tc, 5316 u8 *bw_share) 5317 { 5318 struct i40e_aqc_configure_vsi_tc_bw_data bw_data; 5319 struct i40e_pf *pf = vsi->back; 5320 i40e_status ret; 5321 int i; 5322 5323 /* There is no need to reset BW when mqprio mode is on. */ 5324 if (pf->flags & I40E_FLAG_TC_MQPRIO) 5325 return 0; 5326 if (!vsi->mqprio_qopt.qopt.hw && !(pf->flags & I40E_FLAG_DCB_ENABLED)) { 5327 ret = i40e_set_bw_limit(vsi, vsi->seid, 0); 5328 if (ret) 5329 dev_info(&pf->pdev->dev, 5330 "Failed to reset tx rate for vsi->seid %u\n", 5331 vsi->seid); 5332 return ret; 5333 } 5334 memset(&bw_data, 0, sizeof(bw_data)); 5335 bw_data.tc_valid_bits = enabled_tc; 5336 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) 5337 bw_data.tc_bw_credits[i] = bw_share[i]; 5338 5339 ret = i40e_aq_config_vsi_tc_bw(&pf->hw, vsi->seid, &bw_data, NULL); 5340 if (ret) { 5341 dev_info(&pf->pdev->dev, 5342 "AQ command Config VSI BW allocation per TC failed = %d\n", 5343 pf->hw.aq.asq_last_status); 5344 return -EINVAL; 5345 } 5346 5347 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) 5348 vsi->info.qs_handle[i] = bw_data.qs_handles[i]; 5349 5350 return 0; 5351 } 5352 5353 /** 5354 * i40e_vsi_config_netdev_tc - Setup the netdev TC configuration 5355 * @vsi: the VSI being configured 5356 * @enabled_tc: TC map to be enabled 5357 * 5358 **/ 5359 static void i40e_vsi_config_netdev_tc(struct i40e_vsi *vsi, u8 enabled_tc) 5360 { 5361 struct net_device *netdev = vsi->netdev; 5362 struct i40e_pf *pf = vsi->back; 5363 struct i40e_hw *hw = &pf->hw; 5364 u8 netdev_tc = 0; 5365 int i; 5366 struct i40e_dcbx_config *dcbcfg = &hw->local_dcbx_config; 5367 5368 if (!netdev) 5369 return; 5370 5371 if (!enabled_tc) { 5372 netdev_reset_tc(netdev); 5373 return; 5374 } 5375 5376 /* Set up actual enabled TCs on the VSI */ 5377 if (netdev_set_num_tc(netdev, vsi->tc_config.numtc)) 5378 return; 5379 5380 /* set per TC queues for the VSI */ 5381 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 5382 /* Only set TC queues for enabled tcs 5383 * 5384 * e.g. For a VSI that has TC0 and TC3 enabled the 5385 * enabled_tc bitmap would be 0x00001001; the driver 5386 * will set the numtc for netdev as 2 that will be 5387 * referenced by the netdev layer as TC 0 and 1. 5388 */ 5389 if (vsi->tc_config.enabled_tc & BIT(i)) 5390 netdev_set_tc_queue(netdev, 5391 vsi->tc_config.tc_info[i].netdev_tc, 5392 vsi->tc_config.tc_info[i].qcount, 5393 vsi->tc_config.tc_info[i].qoffset); 5394 } 5395 5396 if (pf->flags & I40E_FLAG_TC_MQPRIO) 5397 return; 5398 5399 /* Assign UP2TC map for the VSI */ 5400 for (i = 0; i < I40E_MAX_USER_PRIORITY; i++) { 5401 /* Get the actual TC# for the UP */ 5402 u8 ets_tc = dcbcfg->etscfg.prioritytable[i]; 5403 /* Get the mapped netdev TC# for the UP */ 5404 netdev_tc = vsi->tc_config.tc_info[ets_tc].netdev_tc; 5405 netdev_set_prio_tc_map(netdev, i, netdev_tc); 5406 } 5407 } 5408 5409 /** 5410 * i40e_vsi_update_queue_map - Update our copy of VSi info with new queue map 5411 * @vsi: the VSI being configured 5412 * @ctxt: the ctxt buffer returned from AQ VSI update param command 5413 **/ 5414 static void i40e_vsi_update_queue_map(struct i40e_vsi *vsi, 5415 struct i40e_vsi_context *ctxt) 5416 { 5417 /* copy just the sections touched not the entire info 5418 * since not all sections are valid as returned by 5419 * update vsi params 5420 */ 5421 vsi->info.mapping_flags = ctxt->info.mapping_flags; 5422 memcpy(&vsi->info.queue_mapping, 5423 &ctxt->info.queue_mapping, sizeof(vsi->info.queue_mapping)); 5424 memcpy(&vsi->info.tc_mapping, ctxt->info.tc_mapping, 5425 sizeof(vsi->info.tc_mapping)); 5426 } 5427 5428 /** 5429 * i40e_vsi_config_tc - Configure VSI Tx Scheduler for given TC map 5430 * @vsi: VSI to be configured 5431 * @enabled_tc: TC bitmap 5432 * 5433 * This configures a particular VSI for TCs that are mapped to the 5434 * given TC bitmap. It uses default bandwidth share for TCs across 5435 * VSIs to configure TC for a particular VSI. 5436 * 5437 * NOTE: 5438 * It is expected that the VSI queues have been quisced before calling 5439 * this function. 5440 **/ 5441 static int i40e_vsi_config_tc(struct i40e_vsi *vsi, u8 enabled_tc) 5442 { 5443 u8 bw_share[I40E_MAX_TRAFFIC_CLASS] = {0}; 5444 struct i40e_pf *pf = vsi->back; 5445 struct i40e_hw *hw = &pf->hw; 5446 struct i40e_vsi_context ctxt; 5447 int ret = 0; 5448 int i; 5449 5450 /* Check if enabled_tc is same as existing or new TCs */ 5451 if (vsi->tc_config.enabled_tc == enabled_tc && 5452 vsi->mqprio_qopt.mode != TC_MQPRIO_MODE_CHANNEL) 5453 return ret; 5454 5455 /* Enable ETS TCs with equal BW Share for now across all VSIs */ 5456 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 5457 if (enabled_tc & BIT(i)) 5458 bw_share[i] = 1; 5459 } 5460 5461 ret = i40e_vsi_configure_bw_alloc(vsi, enabled_tc, bw_share); 5462 if (ret) { 5463 struct i40e_aqc_query_vsi_bw_config_resp bw_config = {0}; 5464 5465 dev_info(&pf->pdev->dev, 5466 "Failed configuring TC map %d for VSI %d\n", 5467 enabled_tc, vsi->seid); 5468 ret = i40e_aq_query_vsi_bw_config(hw, vsi->seid, 5469 &bw_config, NULL); 5470 if (ret) { 5471 dev_info(&pf->pdev->dev, 5472 "Failed querying vsi bw info, err %s aq_err %s\n", 5473 i40e_stat_str(hw, ret), 5474 i40e_aq_str(hw, hw->aq.asq_last_status)); 5475 goto out; 5476 } 5477 if ((bw_config.tc_valid_bits & enabled_tc) != enabled_tc) { 5478 u8 valid_tc = bw_config.tc_valid_bits & enabled_tc; 5479 5480 if (!valid_tc) 5481 valid_tc = bw_config.tc_valid_bits; 5482 /* Always enable TC0, no matter what */ 5483 valid_tc |= 1; 5484 dev_info(&pf->pdev->dev, 5485 "Requested tc 0x%x, but FW reports 0x%x as valid. Attempting to use 0x%x.\n", 5486 enabled_tc, bw_config.tc_valid_bits, valid_tc); 5487 enabled_tc = valid_tc; 5488 } 5489 5490 ret = i40e_vsi_configure_bw_alloc(vsi, enabled_tc, bw_share); 5491 if (ret) { 5492 dev_err(&pf->pdev->dev, 5493 "Unable to configure TC map %d for VSI %d\n", 5494 enabled_tc, vsi->seid); 5495 goto out; 5496 } 5497 } 5498 5499 /* Update Queue Pairs Mapping for currently enabled UPs */ 5500 ctxt.seid = vsi->seid; 5501 ctxt.pf_num = vsi->back->hw.pf_id; 5502 ctxt.vf_num = 0; 5503 ctxt.uplink_seid = vsi->uplink_seid; 5504 ctxt.info = vsi->info; 5505 if (vsi->back->flags & I40E_FLAG_TC_MQPRIO) { 5506 ret = i40e_vsi_setup_queue_map_mqprio(vsi, &ctxt, enabled_tc); 5507 if (ret) 5508 goto out; 5509 } else { 5510 i40e_vsi_setup_queue_map(vsi, &ctxt, enabled_tc, false); 5511 } 5512 5513 /* On destroying the qdisc, reset vsi->rss_size, as number of enabled 5514 * queues changed. 5515 */ 5516 if (!vsi->mqprio_qopt.qopt.hw && vsi->reconfig_rss) { 5517 vsi->rss_size = min_t(int, vsi->back->alloc_rss_size, 5518 vsi->num_queue_pairs); 5519 ret = i40e_vsi_config_rss(vsi); 5520 if (ret) { 5521 dev_info(&vsi->back->pdev->dev, 5522 "Failed to reconfig rss for num_queues\n"); 5523 return ret; 5524 } 5525 vsi->reconfig_rss = false; 5526 } 5527 if (vsi->back->flags & I40E_FLAG_IWARP_ENABLED) { 5528 ctxt.info.valid_sections |= 5529 cpu_to_le16(I40E_AQ_VSI_PROP_QUEUE_OPT_VALID); 5530 ctxt.info.queueing_opt_flags |= I40E_AQ_VSI_QUE_OPT_TCP_ENA; 5531 } 5532 5533 /* Update the VSI after updating the VSI queue-mapping 5534 * information 5535 */ 5536 ret = i40e_aq_update_vsi_params(hw, &ctxt, NULL); 5537 if (ret) { 5538 dev_info(&pf->pdev->dev, 5539 "Update vsi tc config failed, err %s aq_err %s\n", 5540 i40e_stat_str(hw, ret), 5541 i40e_aq_str(hw, hw->aq.asq_last_status)); 5542 goto out; 5543 } 5544 /* update the local VSI info with updated queue map */ 5545 i40e_vsi_update_queue_map(vsi, &ctxt); 5546 vsi->info.valid_sections = 0; 5547 5548 /* Update current VSI BW information */ 5549 ret = i40e_vsi_get_bw_info(vsi); 5550 if (ret) { 5551 dev_info(&pf->pdev->dev, 5552 "Failed updating vsi bw info, err %s aq_err %s\n", 5553 i40e_stat_str(hw, ret), 5554 i40e_aq_str(hw, hw->aq.asq_last_status)); 5555 goto out; 5556 } 5557 5558 /* Update the netdev TC setup */ 5559 i40e_vsi_config_netdev_tc(vsi, enabled_tc); 5560 out: 5561 return ret; 5562 } 5563 5564 /** 5565 * i40e_get_link_speed - Returns link speed for the interface 5566 * @vsi: VSI to be configured 5567 * 5568 **/ 5569 static int i40e_get_link_speed(struct i40e_vsi *vsi) 5570 { 5571 struct i40e_pf *pf = vsi->back; 5572 5573 switch (pf->hw.phy.link_info.link_speed) { 5574 case I40E_LINK_SPEED_40GB: 5575 return 40000; 5576 case I40E_LINK_SPEED_25GB: 5577 return 25000; 5578 case I40E_LINK_SPEED_20GB: 5579 return 20000; 5580 case I40E_LINK_SPEED_10GB: 5581 return 10000; 5582 case I40E_LINK_SPEED_1GB: 5583 return 1000; 5584 default: 5585 return -EINVAL; 5586 } 5587 } 5588 5589 /** 5590 * i40e_set_bw_limit - setup BW limit for Tx traffic based on max_tx_rate 5591 * @vsi: VSI to be configured 5592 * @seid: seid of the channel/VSI 5593 * @max_tx_rate: max TX rate to be configured as BW limit 5594 * 5595 * Helper function to set BW limit for a given VSI 5596 **/ 5597 int i40e_set_bw_limit(struct i40e_vsi *vsi, u16 seid, u64 max_tx_rate) 5598 { 5599 struct i40e_pf *pf = vsi->back; 5600 u64 credits = 0; 5601 int speed = 0; 5602 int ret = 0; 5603 5604 speed = i40e_get_link_speed(vsi); 5605 if (max_tx_rate > speed) { 5606 dev_err(&pf->pdev->dev, 5607 "Invalid max tx rate %llu specified for VSI seid %d.", 5608 max_tx_rate, seid); 5609 return -EINVAL; 5610 } 5611 if (max_tx_rate && max_tx_rate < 50) { 5612 dev_warn(&pf->pdev->dev, 5613 "Setting max tx rate to minimum usable value of 50Mbps.\n"); 5614 max_tx_rate = 50; 5615 } 5616 5617 /* Tx rate credits are in values of 50Mbps, 0 is disabled */ 5618 credits = max_tx_rate; 5619 do_div(credits, I40E_BW_CREDIT_DIVISOR); 5620 ret = i40e_aq_config_vsi_bw_limit(&pf->hw, seid, credits, 5621 I40E_MAX_BW_INACTIVE_ACCUM, NULL); 5622 if (ret) 5623 dev_err(&pf->pdev->dev, 5624 "Failed set tx rate (%llu Mbps) for vsi->seid %u, err %s aq_err %s\n", 5625 max_tx_rate, seid, i40e_stat_str(&pf->hw, ret), 5626 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 5627 return ret; 5628 } 5629 5630 /** 5631 * i40e_remove_queue_channels - Remove queue channels for the TCs 5632 * @vsi: VSI to be configured 5633 * 5634 * Remove queue channels for the TCs 5635 **/ 5636 static void i40e_remove_queue_channels(struct i40e_vsi *vsi) 5637 { 5638 enum i40e_admin_queue_err last_aq_status; 5639 struct i40e_cloud_filter *cfilter; 5640 struct i40e_channel *ch, *ch_tmp; 5641 struct i40e_pf *pf = vsi->back; 5642 struct hlist_node *node; 5643 int ret, i; 5644 5645 /* Reset rss size that was stored when reconfiguring rss for 5646 * channel VSIs with non-power-of-2 queue count. 5647 */ 5648 vsi->current_rss_size = 0; 5649 5650 /* perform cleanup for channels if they exist */ 5651 if (list_empty(&vsi->ch_list)) 5652 return; 5653 5654 list_for_each_entry_safe(ch, ch_tmp, &vsi->ch_list, list) { 5655 struct i40e_vsi *p_vsi; 5656 5657 list_del(&ch->list); 5658 p_vsi = ch->parent_vsi; 5659 if (!p_vsi || !ch->initialized) { 5660 kfree(ch); 5661 continue; 5662 } 5663 /* Reset queue contexts */ 5664 for (i = 0; i < ch->num_queue_pairs; i++) { 5665 struct i40e_ring *tx_ring, *rx_ring; 5666 u16 pf_q; 5667 5668 pf_q = ch->base_queue + i; 5669 tx_ring = vsi->tx_rings[pf_q]; 5670 tx_ring->ch = NULL; 5671 5672 rx_ring = vsi->rx_rings[pf_q]; 5673 rx_ring->ch = NULL; 5674 } 5675 5676 /* Reset BW configured for this VSI via mqprio */ 5677 ret = i40e_set_bw_limit(vsi, ch->seid, 0); 5678 if (ret) 5679 dev_info(&vsi->back->pdev->dev, 5680 "Failed to reset tx rate for ch->seid %u\n", 5681 ch->seid); 5682 5683 /* delete cloud filters associated with this channel */ 5684 hlist_for_each_entry_safe(cfilter, node, 5685 &pf->cloud_filter_list, cloud_node) { 5686 if (cfilter->seid != ch->seid) 5687 continue; 5688 5689 hash_del(&cfilter->cloud_node); 5690 if (cfilter->dst_port) 5691 ret = i40e_add_del_cloud_filter_big_buf(vsi, 5692 cfilter, 5693 false); 5694 else 5695 ret = i40e_add_del_cloud_filter(vsi, cfilter, 5696 false); 5697 last_aq_status = pf->hw.aq.asq_last_status; 5698 if (ret) 5699 dev_info(&pf->pdev->dev, 5700 "Failed to delete cloud filter, err %s aq_err %s\n", 5701 i40e_stat_str(&pf->hw, ret), 5702 i40e_aq_str(&pf->hw, last_aq_status)); 5703 kfree(cfilter); 5704 } 5705 5706 /* delete VSI from FW */ 5707 ret = i40e_aq_delete_element(&vsi->back->hw, ch->seid, 5708 NULL); 5709 if (ret) 5710 dev_err(&vsi->back->pdev->dev, 5711 "unable to remove channel (%d) for parent VSI(%d)\n", 5712 ch->seid, p_vsi->seid); 5713 kfree(ch); 5714 } 5715 INIT_LIST_HEAD(&vsi->ch_list); 5716 } 5717 5718 /** 5719 * i40e_is_any_channel - channel exist or not 5720 * @vsi: ptr to VSI to which channels are associated with 5721 * 5722 * Returns true or false if channel(s) exist for associated VSI or not 5723 **/ 5724 static bool i40e_is_any_channel(struct i40e_vsi *vsi) 5725 { 5726 struct i40e_channel *ch, *ch_tmp; 5727 5728 list_for_each_entry_safe(ch, ch_tmp, &vsi->ch_list, list) { 5729 if (ch->initialized) 5730 return true; 5731 } 5732 5733 return false; 5734 } 5735 5736 /** 5737 * i40e_get_max_queues_for_channel 5738 * @vsi: ptr to VSI to which channels are associated with 5739 * 5740 * Helper function which returns max value among the queue counts set on the 5741 * channels/TCs created. 5742 **/ 5743 static int i40e_get_max_queues_for_channel(struct i40e_vsi *vsi) 5744 { 5745 struct i40e_channel *ch, *ch_tmp; 5746 int max = 0; 5747 5748 list_for_each_entry_safe(ch, ch_tmp, &vsi->ch_list, list) { 5749 if (!ch->initialized) 5750 continue; 5751 if (ch->num_queue_pairs > max) 5752 max = ch->num_queue_pairs; 5753 } 5754 5755 return max; 5756 } 5757 5758 /** 5759 * i40e_validate_num_queues - validate num_queues w.r.t channel 5760 * @pf: ptr to PF device 5761 * @num_queues: number of queues 5762 * @vsi: the parent VSI 5763 * @reconfig_rss: indicates should the RSS be reconfigured or not 5764 * 5765 * This function validates number of queues in the context of new channel 5766 * which is being established and determines if RSS should be reconfigured 5767 * or not for parent VSI. 5768 **/ 5769 static int i40e_validate_num_queues(struct i40e_pf *pf, int num_queues, 5770 struct i40e_vsi *vsi, bool *reconfig_rss) 5771 { 5772 int max_ch_queues; 5773 5774 if (!reconfig_rss) 5775 return -EINVAL; 5776 5777 *reconfig_rss = false; 5778 if (vsi->current_rss_size) { 5779 if (num_queues > vsi->current_rss_size) { 5780 dev_dbg(&pf->pdev->dev, 5781 "Error: num_queues (%d) > vsi's current_size(%d)\n", 5782 num_queues, vsi->current_rss_size); 5783 return -EINVAL; 5784 } else if ((num_queues < vsi->current_rss_size) && 5785 (!is_power_of_2(num_queues))) { 5786 dev_dbg(&pf->pdev->dev, 5787 "Error: num_queues (%d) < vsi's current_size(%d), but not power of 2\n", 5788 num_queues, vsi->current_rss_size); 5789 return -EINVAL; 5790 } 5791 } 5792 5793 if (!is_power_of_2(num_queues)) { 5794 /* Find the max num_queues configured for channel if channel 5795 * exist. 5796 * if channel exist, then enforce 'num_queues' to be more than 5797 * max ever queues configured for channel. 5798 */ 5799 max_ch_queues = i40e_get_max_queues_for_channel(vsi); 5800 if (num_queues < max_ch_queues) { 5801 dev_dbg(&pf->pdev->dev, 5802 "Error: num_queues (%d) < max queues configured for channel(%d)\n", 5803 num_queues, max_ch_queues); 5804 return -EINVAL; 5805 } 5806 *reconfig_rss = true; 5807 } 5808 5809 return 0; 5810 } 5811 5812 /** 5813 * i40e_vsi_reconfig_rss - reconfig RSS based on specified rss_size 5814 * @vsi: the VSI being setup 5815 * @rss_size: size of RSS, accordingly LUT gets reprogrammed 5816 * 5817 * This function reconfigures RSS by reprogramming LUTs using 'rss_size' 5818 **/ 5819 static int i40e_vsi_reconfig_rss(struct i40e_vsi *vsi, u16 rss_size) 5820 { 5821 struct i40e_pf *pf = vsi->back; 5822 u8 seed[I40E_HKEY_ARRAY_SIZE]; 5823 struct i40e_hw *hw = &pf->hw; 5824 int local_rss_size; 5825 u8 *lut; 5826 int ret; 5827 5828 if (!vsi->rss_size) 5829 return -EINVAL; 5830 5831 if (rss_size > vsi->rss_size) 5832 return -EINVAL; 5833 5834 local_rss_size = min_t(int, vsi->rss_size, rss_size); 5835 lut = kzalloc(vsi->rss_table_size, GFP_KERNEL); 5836 if (!lut) 5837 return -ENOMEM; 5838 5839 /* Ignoring user configured lut if there is one */ 5840 i40e_fill_rss_lut(pf, lut, vsi->rss_table_size, local_rss_size); 5841 5842 /* Use user configured hash key if there is one, otherwise 5843 * use default. 5844 */ 5845 if (vsi->rss_hkey_user) 5846 memcpy(seed, vsi->rss_hkey_user, I40E_HKEY_ARRAY_SIZE); 5847 else 5848 netdev_rss_key_fill((void *)seed, I40E_HKEY_ARRAY_SIZE); 5849 5850 ret = i40e_config_rss(vsi, seed, lut, vsi->rss_table_size); 5851 if (ret) { 5852 dev_info(&pf->pdev->dev, 5853 "Cannot set RSS lut, err %s aq_err %s\n", 5854 i40e_stat_str(hw, ret), 5855 i40e_aq_str(hw, hw->aq.asq_last_status)); 5856 kfree(lut); 5857 return ret; 5858 } 5859 kfree(lut); 5860 5861 /* Do the update w.r.t. storing rss_size */ 5862 if (!vsi->orig_rss_size) 5863 vsi->orig_rss_size = vsi->rss_size; 5864 vsi->current_rss_size = local_rss_size; 5865 5866 return ret; 5867 } 5868 5869 /** 5870 * i40e_channel_setup_queue_map - Setup a channel queue map 5871 * @pf: ptr to PF device 5872 * @ctxt: VSI context structure 5873 * @ch: ptr to channel structure 5874 * 5875 * Setup queue map for a specific channel 5876 **/ 5877 static void i40e_channel_setup_queue_map(struct i40e_pf *pf, 5878 struct i40e_vsi_context *ctxt, 5879 struct i40e_channel *ch) 5880 { 5881 u16 qcount, qmap, sections = 0; 5882 u8 offset = 0; 5883 int pow; 5884 5885 sections = I40E_AQ_VSI_PROP_QUEUE_MAP_VALID; 5886 sections |= I40E_AQ_VSI_PROP_SCHED_VALID; 5887 5888 qcount = min_t(int, ch->num_queue_pairs, pf->num_lan_msix); 5889 ch->num_queue_pairs = qcount; 5890 5891 /* find the next higher power-of-2 of num queue pairs */ 5892 pow = ilog2(qcount); 5893 if (!is_power_of_2(qcount)) 5894 pow++; 5895 5896 qmap = (offset << I40E_AQ_VSI_TC_QUE_OFFSET_SHIFT) | 5897 (pow << I40E_AQ_VSI_TC_QUE_NUMBER_SHIFT); 5898 5899 /* Setup queue TC[0].qmap for given VSI context */ 5900 ctxt->info.tc_mapping[0] = cpu_to_le16(qmap); 5901 5902 ctxt->info.up_enable_bits = 0x1; /* TC0 enabled */ 5903 ctxt->info.mapping_flags |= cpu_to_le16(I40E_AQ_VSI_QUE_MAP_CONTIG); 5904 ctxt->info.queue_mapping[0] = cpu_to_le16(ch->base_queue); 5905 ctxt->info.valid_sections |= cpu_to_le16(sections); 5906 } 5907 5908 /** 5909 * i40e_add_channel - add a channel by adding VSI 5910 * @pf: ptr to PF device 5911 * @uplink_seid: underlying HW switching element (VEB) ID 5912 * @ch: ptr to channel structure 5913 * 5914 * Add a channel (VSI) using add_vsi and queue_map 5915 **/ 5916 static int i40e_add_channel(struct i40e_pf *pf, u16 uplink_seid, 5917 struct i40e_channel *ch) 5918 { 5919 struct i40e_hw *hw = &pf->hw; 5920 struct i40e_vsi_context ctxt; 5921 u8 enabled_tc = 0x1; /* TC0 enabled */ 5922 int ret; 5923 5924 if (ch->type != I40E_VSI_VMDQ2) { 5925 dev_info(&pf->pdev->dev, 5926 "add new vsi failed, ch->type %d\n", ch->type); 5927 return -EINVAL; 5928 } 5929 5930 memset(&ctxt, 0, sizeof(ctxt)); 5931 ctxt.pf_num = hw->pf_id; 5932 ctxt.vf_num = 0; 5933 ctxt.uplink_seid = uplink_seid; 5934 ctxt.connection_type = I40E_AQ_VSI_CONN_TYPE_NORMAL; 5935 if (ch->type == I40E_VSI_VMDQ2) 5936 ctxt.flags = I40E_AQ_VSI_TYPE_VMDQ2; 5937 5938 if (pf->flags & I40E_FLAG_VEB_MODE_ENABLED) { 5939 ctxt.info.valid_sections |= 5940 cpu_to_le16(I40E_AQ_VSI_PROP_SWITCH_VALID); 5941 ctxt.info.switch_id = 5942 cpu_to_le16(I40E_AQ_VSI_SW_ID_FLAG_ALLOW_LB); 5943 } 5944 5945 /* Set queue map for a given VSI context */ 5946 i40e_channel_setup_queue_map(pf, &ctxt, ch); 5947 5948 /* Now time to create VSI */ 5949 ret = i40e_aq_add_vsi(hw, &ctxt, NULL); 5950 if (ret) { 5951 dev_info(&pf->pdev->dev, 5952 "add new vsi failed, err %s aq_err %s\n", 5953 i40e_stat_str(&pf->hw, ret), 5954 i40e_aq_str(&pf->hw, 5955 pf->hw.aq.asq_last_status)); 5956 return -ENOENT; 5957 } 5958 5959 /* Success, update channel, set enabled_tc only if the channel 5960 * is not a macvlan 5961 */ 5962 ch->enabled_tc = !i40e_is_channel_macvlan(ch) && enabled_tc; 5963 ch->seid = ctxt.seid; 5964 ch->vsi_number = ctxt.vsi_number; 5965 ch->stat_counter_idx = le16_to_cpu(ctxt.info.stat_counter_idx); 5966 5967 /* copy just the sections touched not the entire info 5968 * since not all sections are valid as returned by 5969 * update vsi params 5970 */ 5971 ch->info.mapping_flags = ctxt.info.mapping_flags; 5972 memcpy(&ch->info.queue_mapping, 5973 &ctxt.info.queue_mapping, sizeof(ctxt.info.queue_mapping)); 5974 memcpy(&ch->info.tc_mapping, ctxt.info.tc_mapping, 5975 sizeof(ctxt.info.tc_mapping)); 5976 5977 return 0; 5978 } 5979 5980 static int i40e_channel_config_bw(struct i40e_vsi *vsi, struct i40e_channel *ch, 5981 u8 *bw_share) 5982 { 5983 struct i40e_aqc_configure_vsi_tc_bw_data bw_data; 5984 i40e_status ret; 5985 int i; 5986 5987 memset(&bw_data, 0, sizeof(bw_data)); 5988 bw_data.tc_valid_bits = ch->enabled_tc; 5989 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) 5990 bw_data.tc_bw_credits[i] = bw_share[i]; 5991 5992 ret = i40e_aq_config_vsi_tc_bw(&vsi->back->hw, ch->seid, 5993 &bw_data, NULL); 5994 if (ret) { 5995 dev_info(&vsi->back->pdev->dev, 5996 "Config VSI BW allocation per TC failed, aq_err: %d for new_vsi->seid %u\n", 5997 vsi->back->hw.aq.asq_last_status, ch->seid); 5998 return -EINVAL; 5999 } 6000 6001 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) 6002 ch->info.qs_handle[i] = bw_data.qs_handles[i]; 6003 6004 return 0; 6005 } 6006 6007 /** 6008 * i40e_channel_config_tx_ring - config TX ring associated with new channel 6009 * @pf: ptr to PF device 6010 * @vsi: the VSI being setup 6011 * @ch: ptr to channel structure 6012 * 6013 * Configure TX rings associated with channel (VSI) since queues are being 6014 * from parent VSI. 6015 **/ 6016 static int i40e_channel_config_tx_ring(struct i40e_pf *pf, 6017 struct i40e_vsi *vsi, 6018 struct i40e_channel *ch) 6019 { 6020 i40e_status ret; 6021 int i; 6022 u8 bw_share[I40E_MAX_TRAFFIC_CLASS] = {0}; 6023 6024 /* Enable ETS TCs with equal BW Share for now across all VSIs */ 6025 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 6026 if (ch->enabled_tc & BIT(i)) 6027 bw_share[i] = 1; 6028 } 6029 6030 /* configure BW for new VSI */ 6031 ret = i40e_channel_config_bw(vsi, ch, bw_share); 6032 if (ret) { 6033 dev_info(&vsi->back->pdev->dev, 6034 "Failed configuring TC map %d for channel (seid %u)\n", 6035 ch->enabled_tc, ch->seid); 6036 return ret; 6037 } 6038 6039 for (i = 0; i < ch->num_queue_pairs; i++) { 6040 struct i40e_ring *tx_ring, *rx_ring; 6041 u16 pf_q; 6042 6043 pf_q = ch->base_queue + i; 6044 6045 /* Get to TX ring ptr of main VSI, for re-setup TX queue 6046 * context 6047 */ 6048 tx_ring = vsi->tx_rings[pf_q]; 6049 tx_ring->ch = ch; 6050 6051 /* Get the RX ring ptr */ 6052 rx_ring = vsi->rx_rings[pf_q]; 6053 rx_ring->ch = ch; 6054 } 6055 6056 return 0; 6057 } 6058 6059 /** 6060 * i40e_setup_hw_channel - setup new channel 6061 * @pf: ptr to PF device 6062 * @vsi: the VSI being setup 6063 * @ch: ptr to channel structure 6064 * @uplink_seid: underlying HW switching element (VEB) ID 6065 * @type: type of channel to be created (VMDq2/VF) 6066 * 6067 * Setup new channel (VSI) based on specified type (VMDq2/VF) 6068 * and configures TX rings accordingly 6069 **/ 6070 static inline int i40e_setup_hw_channel(struct i40e_pf *pf, 6071 struct i40e_vsi *vsi, 6072 struct i40e_channel *ch, 6073 u16 uplink_seid, u8 type) 6074 { 6075 int ret; 6076 6077 ch->initialized = false; 6078 ch->base_queue = vsi->next_base_queue; 6079 ch->type = type; 6080 6081 /* Proceed with creation of channel (VMDq2) VSI */ 6082 ret = i40e_add_channel(pf, uplink_seid, ch); 6083 if (ret) { 6084 dev_info(&pf->pdev->dev, 6085 "failed to add_channel using uplink_seid %u\n", 6086 uplink_seid); 6087 return ret; 6088 } 6089 6090 /* Mark the successful creation of channel */ 6091 ch->initialized = true; 6092 6093 /* Reconfigure TX queues using QTX_CTL register */ 6094 ret = i40e_channel_config_tx_ring(pf, vsi, ch); 6095 if (ret) { 6096 dev_info(&pf->pdev->dev, 6097 "failed to configure TX rings for channel %u\n", 6098 ch->seid); 6099 return ret; 6100 } 6101 6102 /* update 'next_base_queue' */ 6103 vsi->next_base_queue = vsi->next_base_queue + ch->num_queue_pairs; 6104 dev_dbg(&pf->pdev->dev, 6105 "Added channel: vsi_seid %u, vsi_number %u, stat_counter_idx %u, num_queue_pairs %u, pf->next_base_queue %d\n", 6106 ch->seid, ch->vsi_number, ch->stat_counter_idx, 6107 ch->num_queue_pairs, 6108 vsi->next_base_queue); 6109 return ret; 6110 } 6111 6112 /** 6113 * i40e_setup_channel - setup new channel using uplink element 6114 * @pf: ptr to PF device 6115 * @vsi: pointer to the VSI to set up the channel within 6116 * @ch: ptr to channel structure 6117 * 6118 * Setup new channel (VSI) based on specified type (VMDq2/VF) 6119 * and uplink switching element (uplink_seid) 6120 **/ 6121 static bool i40e_setup_channel(struct i40e_pf *pf, struct i40e_vsi *vsi, 6122 struct i40e_channel *ch) 6123 { 6124 u8 vsi_type; 6125 u16 seid; 6126 int ret; 6127 6128 if (vsi->type == I40E_VSI_MAIN) { 6129 vsi_type = I40E_VSI_VMDQ2; 6130 } else { 6131 dev_err(&pf->pdev->dev, "unsupported parent vsi type(%d)\n", 6132 vsi->type); 6133 return false; 6134 } 6135 6136 /* underlying switching element */ 6137 seid = pf->vsi[pf->lan_vsi]->uplink_seid; 6138 6139 /* create channel (VSI), configure TX rings */ 6140 ret = i40e_setup_hw_channel(pf, vsi, ch, seid, vsi_type); 6141 if (ret) { 6142 dev_err(&pf->pdev->dev, "failed to setup hw_channel\n"); 6143 return false; 6144 } 6145 6146 return ch->initialized ? true : false; 6147 } 6148 6149 /** 6150 * i40e_validate_and_set_switch_mode - sets up switch mode correctly 6151 * @vsi: ptr to VSI which has PF backing 6152 * 6153 * Sets up switch mode correctly if it needs to be changed and perform 6154 * what are allowed modes. 6155 **/ 6156 static int i40e_validate_and_set_switch_mode(struct i40e_vsi *vsi) 6157 { 6158 u8 mode; 6159 struct i40e_pf *pf = vsi->back; 6160 struct i40e_hw *hw = &pf->hw; 6161 int ret; 6162 6163 ret = i40e_get_capabilities(pf, i40e_aqc_opc_list_dev_capabilities); 6164 if (ret) 6165 return -EINVAL; 6166 6167 if (hw->dev_caps.switch_mode) { 6168 /* if switch mode is set, support mode2 (non-tunneled for 6169 * cloud filter) for now 6170 */ 6171 u32 switch_mode = hw->dev_caps.switch_mode & 6172 I40E_SWITCH_MODE_MASK; 6173 if (switch_mode >= I40E_CLOUD_FILTER_MODE1) { 6174 if (switch_mode == I40E_CLOUD_FILTER_MODE2) 6175 return 0; 6176 dev_err(&pf->pdev->dev, 6177 "Invalid switch_mode (%d), only non-tunneled mode for cloud filter is supported\n", 6178 hw->dev_caps.switch_mode); 6179 return -EINVAL; 6180 } 6181 } 6182 6183 /* Set Bit 7 to be valid */ 6184 mode = I40E_AQ_SET_SWITCH_BIT7_VALID; 6185 6186 /* Set L4type for TCP support */ 6187 mode |= I40E_AQ_SET_SWITCH_L4_TYPE_TCP; 6188 6189 /* Set cloud filter mode */ 6190 mode |= I40E_AQ_SET_SWITCH_MODE_NON_TUNNEL; 6191 6192 /* Prep mode field for set_switch_config */ 6193 ret = i40e_aq_set_switch_config(hw, pf->last_sw_conf_flags, 6194 pf->last_sw_conf_valid_flags, 6195 mode, NULL); 6196 if (ret && hw->aq.asq_last_status != I40E_AQ_RC_ESRCH) 6197 dev_err(&pf->pdev->dev, 6198 "couldn't set switch config bits, err %s aq_err %s\n", 6199 i40e_stat_str(hw, ret), 6200 i40e_aq_str(hw, 6201 hw->aq.asq_last_status)); 6202 6203 return ret; 6204 } 6205 6206 /** 6207 * i40e_create_queue_channel - function to create channel 6208 * @vsi: VSI to be configured 6209 * @ch: ptr to channel (it contains channel specific params) 6210 * 6211 * This function creates channel (VSI) using num_queues specified by user, 6212 * reconfigs RSS if needed. 6213 **/ 6214 int i40e_create_queue_channel(struct i40e_vsi *vsi, 6215 struct i40e_channel *ch) 6216 { 6217 struct i40e_pf *pf = vsi->back; 6218 bool reconfig_rss; 6219 int err; 6220 6221 if (!ch) 6222 return -EINVAL; 6223 6224 if (!ch->num_queue_pairs) { 6225 dev_err(&pf->pdev->dev, "Invalid num_queues requested: %d\n", 6226 ch->num_queue_pairs); 6227 return -EINVAL; 6228 } 6229 6230 /* validate user requested num_queues for channel */ 6231 err = i40e_validate_num_queues(pf, ch->num_queue_pairs, vsi, 6232 &reconfig_rss); 6233 if (err) { 6234 dev_info(&pf->pdev->dev, "Failed to validate num_queues (%d)\n", 6235 ch->num_queue_pairs); 6236 return -EINVAL; 6237 } 6238 6239 /* By default we are in VEPA mode, if this is the first VF/VMDq 6240 * VSI to be added switch to VEB mode. 6241 */ 6242 if ((!(pf->flags & I40E_FLAG_VEB_MODE_ENABLED)) || 6243 (!i40e_is_any_channel(vsi))) { 6244 if (!is_power_of_2(vsi->tc_config.tc_info[0].qcount)) { 6245 dev_dbg(&pf->pdev->dev, 6246 "Failed to create channel. Override queues (%u) not power of 2\n", 6247 vsi->tc_config.tc_info[0].qcount); 6248 return -EINVAL; 6249 } 6250 6251 if (!(pf->flags & I40E_FLAG_VEB_MODE_ENABLED)) { 6252 pf->flags |= I40E_FLAG_VEB_MODE_ENABLED; 6253 6254 if (vsi->type == I40E_VSI_MAIN) { 6255 if (pf->flags & I40E_FLAG_TC_MQPRIO) 6256 i40e_do_reset(pf, I40E_PF_RESET_FLAG, 6257 true); 6258 else 6259 i40e_do_reset_safe(pf, 6260 I40E_PF_RESET_FLAG); 6261 } 6262 } 6263 /* now onwards for main VSI, number of queues will be value 6264 * of TC0's queue count 6265 */ 6266 } 6267 6268 /* By this time, vsi->cnt_q_avail shall be set to non-zero and 6269 * it should be more than num_queues 6270 */ 6271 if (!vsi->cnt_q_avail || vsi->cnt_q_avail < ch->num_queue_pairs) { 6272 dev_dbg(&pf->pdev->dev, 6273 "Error: cnt_q_avail (%u) less than num_queues %d\n", 6274 vsi->cnt_q_avail, ch->num_queue_pairs); 6275 return -EINVAL; 6276 } 6277 6278 /* reconfig_rss only if vsi type is MAIN_VSI */ 6279 if (reconfig_rss && (vsi->type == I40E_VSI_MAIN)) { 6280 err = i40e_vsi_reconfig_rss(vsi, ch->num_queue_pairs); 6281 if (err) { 6282 dev_info(&pf->pdev->dev, 6283 "Error: unable to reconfig rss for num_queues (%u)\n", 6284 ch->num_queue_pairs); 6285 return -EINVAL; 6286 } 6287 } 6288 6289 if (!i40e_setup_channel(pf, vsi, ch)) { 6290 dev_info(&pf->pdev->dev, "Failed to setup channel\n"); 6291 return -EINVAL; 6292 } 6293 6294 dev_info(&pf->pdev->dev, 6295 "Setup channel (id:%u) utilizing num_queues %d\n", 6296 ch->seid, ch->num_queue_pairs); 6297 6298 /* configure VSI for BW limit */ 6299 if (ch->max_tx_rate) { 6300 u64 credits = ch->max_tx_rate; 6301 6302 if (i40e_set_bw_limit(vsi, ch->seid, ch->max_tx_rate)) 6303 return -EINVAL; 6304 6305 do_div(credits, I40E_BW_CREDIT_DIVISOR); 6306 dev_dbg(&pf->pdev->dev, 6307 "Set tx rate of %llu Mbps (count of 50Mbps %llu) for vsi->seid %u\n", 6308 ch->max_tx_rate, 6309 credits, 6310 ch->seid); 6311 } 6312 6313 /* in case of VF, this will be main SRIOV VSI */ 6314 ch->parent_vsi = vsi; 6315 6316 /* and update main_vsi's count for queue_available to use */ 6317 vsi->cnt_q_avail -= ch->num_queue_pairs; 6318 6319 return 0; 6320 } 6321 6322 /** 6323 * i40e_configure_queue_channels - Add queue channel for the given TCs 6324 * @vsi: VSI to be configured 6325 * 6326 * Configures queue channel mapping to the given TCs 6327 **/ 6328 static int i40e_configure_queue_channels(struct i40e_vsi *vsi) 6329 { 6330 struct i40e_channel *ch; 6331 u64 max_rate = 0; 6332 int ret = 0, i; 6333 6334 /* Create app vsi with the TCs. Main VSI with TC0 is already set up */ 6335 vsi->tc_seid_map[0] = vsi->seid; 6336 for (i = 1; i < I40E_MAX_TRAFFIC_CLASS; i++) { 6337 if (vsi->tc_config.enabled_tc & BIT(i)) { 6338 ch = kzalloc(sizeof(*ch), GFP_KERNEL); 6339 if (!ch) { 6340 ret = -ENOMEM; 6341 goto err_free; 6342 } 6343 6344 INIT_LIST_HEAD(&ch->list); 6345 ch->num_queue_pairs = 6346 vsi->tc_config.tc_info[i].qcount; 6347 ch->base_queue = 6348 vsi->tc_config.tc_info[i].qoffset; 6349 6350 /* Bandwidth limit through tc interface is in bytes/s, 6351 * change to Mbit/s 6352 */ 6353 max_rate = vsi->mqprio_qopt.max_rate[i]; 6354 do_div(max_rate, I40E_BW_MBPS_DIVISOR); 6355 ch->max_tx_rate = max_rate; 6356 6357 list_add_tail(&ch->list, &vsi->ch_list); 6358 6359 ret = i40e_create_queue_channel(vsi, ch); 6360 if (ret) { 6361 dev_err(&vsi->back->pdev->dev, 6362 "Failed creating queue channel with TC%d: queues %d\n", 6363 i, ch->num_queue_pairs); 6364 goto err_free; 6365 } 6366 vsi->tc_seid_map[i] = ch->seid; 6367 } 6368 } 6369 return ret; 6370 6371 err_free: 6372 i40e_remove_queue_channels(vsi); 6373 return ret; 6374 } 6375 6376 /** 6377 * i40e_veb_config_tc - Configure TCs for given VEB 6378 * @veb: given VEB 6379 * @enabled_tc: TC bitmap 6380 * 6381 * Configures given TC bitmap for VEB (switching) element 6382 **/ 6383 int i40e_veb_config_tc(struct i40e_veb *veb, u8 enabled_tc) 6384 { 6385 struct i40e_aqc_configure_switching_comp_bw_config_data bw_data = {0}; 6386 struct i40e_pf *pf = veb->pf; 6387 int ret = 0; 6388 int i; 6389 6390 /* No TCs or already enabled TCs just return */ 6391 if (!enabled_tc || veb->enabled_tc == enabled_tc) 6392 return ret; 6393 6394 bw_data.tc_valid_bits = enabled_tc; 6395 /* bw_data.absolute_credits is not set (relative) */ 6396 6397 /* Enable ETS TCs with equal BW Share for now */ 6398 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 6399 if (enabled_tc & BIT(i)) 6400 bw_data.tc_bw_share_credits[i] = 1; 6401 } 6402 6403 ret = i40e_aq_config_switch_comp_bw_config(&pf->hw, veb->seid, 6404 &bw_data, NULL); 6405 if (ret) { 6406 dev_info(&pf->pdev->dev, 6407 "VEB bw config failed, err %s aq_err %s\n", 6408 i40e_stat_str(&pf->hw, ret), 6409 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 6410 goto out; 6411 } 6412 6413 /* Update the BW information */ 6414 ret = i40e_veb_get_bw_info(veb); 6415 if (ret) { 6416 dev_info(&pf->pdev->dev, 6417 "Failed getting veb bw config, err %s aq_err %s\n", 6418 i40e_stat_str(&pf->hw, ret), 6419 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 6420 } 6421 6422 out: 6423 return ret; 6424 } 6425 6426 #ifdef CONFIG_I40E_DCB 6427 /** 6428 * i40e_dcb_reconfigure - Reconfigure all VEBs and VSIs 6429 * @pf: PF struct 6430 * 6431 * Reconfigure VEB/VSIs on a given PF; it is assumed that 6432 * the caller would've quiesce all the VSIs before calling 6433 * this function 6434 **/ 6435 static void i40e_dcb_reconfigure(struct i40e_pf *pf) 6436 { 6437 u8 tc_map = 0; 6438 int ret; 6439 u8 v; 6440 6441 /* Enable the TCs available on PF to all VEBs */ 6442 tc_map = i40e_pf_get_tc_map(pf); 6443 if (tc_map == I40E_DEFAULT_TRAFFIC_CLASS) 6444 return; 6445 6446 for (v = 0; v < I40E_MAX_VEB; v++) { 6447 if (!pf->veb[v]) 6448 continue; 6449 ret = i40e_veb_config_tc(pf->veb[v], tc_map); 6450 if (ret) { 6451 dev_info(&pf->pdev->dev, 6452 "Failed configuring TC for VEB seid=%d\n", 6453 pf->veb[v]->seid); 6454 /* Will try to configure as many components */ 6455 } 6456 } 6457 6458 /* Update each VSI */ 6459 for (v = 0; v < pf->num_alloc_vsi; v++) { 6460 if (!pf->vsi[v]) 6461 continue; 6462 6463 /* - Enable all TCs for the LAN VSI 6464 * - For all others keep them at TC0 for now 6465 */ 6466 if (v == pf->lan_vsi) 6467 tc_map = i40e_pf_get_tc_map(pf); 6468 else 6469 tc_map = I40E_DEFAULT_TRAFFIC_CLASS; 6470 6471 ret = i40e_vsi_config_tc(pf->vsi[v], tc_map); 6472 if (ret) { 6473 dev_info(&pf->pdev->dev, 6474 "Failed configuring TC for VSI seid=%d\n", 6475 pf->vsi[v]->seid); 6476 /* Will try to configure as many components */ 6477 } else { 6478 /* Re-configure VSI vectors based on updated TC map */ 6479 i40e_vsi_map_rings_to_vectors(pf->vsi[v]); 6480 if (pf->vsi[v]->netdev) 6481 i40e_dcbnl_set_all(pf->vsi[v]); 6482 } 6483 } 6484 } 6485 6486 /** 6487 * i40e_resume_port_tx - Resume port Tx 6488 * @pf: PF struct 6489 * 6490 * Resume a port's Tx and issue a PF reset in case of failure to 6491 * resume. 6492 **/ 6493 static int i40e_resume_port_tx(struct i40e_pf *pf) 6494 { 6495 struct i40e_hw *hw = &pf->hw; 6496 int ret; 6497 6498 ret = i40e_aq_resume_port_tx(hw, NULL); 6499 if (ret) { 6500 dev_info(&pf->pdev->dev, 6501 "Resume Port Tx failed, err %s aq_err %s\n", 6502 i40e_stat_str(&pf->hw, ret), 6503 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 6504 /* Schedule PF reset to recover */ 6505 set_bit(__I40E_PF_RESET_REQUESTED, pf->state); 6506 i40e_service_event_schedule(pf); 6507 } 6508 6509 return ret; 6510 } 6511 6512 /** 6513 * i40e_suspend_port_tx - Suspend port Tx 6514 * @pf: PF struct 6515 * 6516 * Suspend a port's Tx and issue a PF reset in case of failure. 6517 **/ 6518 static int i40e_suspend_port_tx(struct i40e_pf *pf) 6519 { 6520 struct i40e_hw *hw = &pf->hw; 6521 int ret; 6522 6523 ret = i40e_aq_suspend_port_tx(hw, pf->mac_seid, NULL); 6524 if (ret) { 6525 dev_info(&pf->pdev->dev, 6526 "Suspend Port Tx failed, err %s aq_err %s\n", 6527 i40e_stat_str(&pf->hw, ret), 6528 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 6529 /* Schedule PF reset to recover */ 6530 set_bit(__I40E_PF_RESET_REQUESTED, pf->state); 6531 i40e_service_event_schedule(pf); 6532 } 6533 6534 return ret; 6535 } 6536 6537 /** 6538 * i40e_hw_set_dcb_config - Program new DCBX settings into HW 6539 * @pf: PF being configured 6540 * @new_cfg: New DCBX configuration 6541 * 6542 * Program DCB settings into HW and reconfigure VEB/VSIs on 6543 * given PF. Uses "Set LLDP MIB" AQC to program the hardware. 6544 **/ 6545 static int i40e_hw_set_dcb_config(struct i40e_pf *pf, 6546 struct i40e_dcbx_config *new_cfg) 6547 { 6548 struct i40e_dcbx_config *old_cfg = &pf->hw.local_dcbx_config; 6549 int ret; 6550 6551 /* Check if need reconfiguration */ 6552 if (!memcmp(&new_cfg, &old_cfg, sizeof(new_cfg))) { 6553 dev_dbg(&pf->pdev->dev, "No Change in DCB Config required.\n"); 6554 return 0; 6555 } 6556 6557 /* Config change disable all VSIs */ 6558 i40e_pf_quiesce_all_vsi(pf); 6559 6560 /* Copy the new config to the current config */ 6561 *old_cfg = *new_cfg; 6562 old_cfg->etsrec = old_cfg->etscfg; 6563 ret = i40e_set_dcb_config(&pf->hw); 6564 if (ret) { 6565 dev_info(&pf->pdev->dev, 6566 "Set DCB Config failed, err %s aq_err %s\n", 6567 i40e_stat_str(&pf->hw, ret), 6568 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 6569 goto out; 6570 } 6571 6572 /* Changes in configuration update VEB/VSI */ 6573 i40e_dcb_reconfigure(pf); 6574 out: 6575 /* In case of reset do not try to resume anything */ 6576 if (!test_bit(__I40E_RESET_RECOVERY_PENDING, pf->state)) { 6577 /* Re-start the VSIs if disabled */ 6578 ret = i40e_resume_port_tx(pf); 6579 /* In case of error no point in resuming VSIs */ 6580 if (ret) 6581 goto err; 6582 i40e_pf_unquiesce_all_vsi(pf); 6583 } 6584 err: 6585 return ret; 6586 } 6587 6588 /** 6589 * i40e_hw_dcb_config - Program new DCBX settings into HW 6590 * @pf: PF being configured 6591 * @new_cfg: New DCBX configuration 6592 * 6593 * Program DCB settings into HW and reconfigure VEB/VSIs on 6594 * given PF 6595 **/ 6596 int i40e_hw_dcb_config(struct i40e_pf *pf, struct i40e_dcbx_config *new_cfg) 6597 { 6598 struct i40e_aqc_configure_switching_comp_ets_data ets_data; 6599 u8 prio_type[I40E_MAX_TRAFFIC_CLASS] = {0}; 6600 u32 mfs_tc[I40E_MAX_TRAFFIC_CLASS]; 6601 struct i40e_dcbx_config *old_cfg; 6602 u8 mode[I40E_MAX_TRAFFIC_CLASS]; 6603 struct i40e_rx_pb_config pb_cfg; 6604 struct i40e_hw *hw = &pf->hw; 6605 u8 num_ports = hw->num_ports; 6606 bool need_reconfig; 6607 int ret = -EINVAL; 6608 u8 lltc_map = 0; 6609 u8 tc_map = 0; 6610 u8 new_numtc; 6611 u8 i; 6612 6613 dev_dbg(&pf->pdev->dev, "Configuring DCB registers directly\n"); 6614 /* Un-pack information to Program ETS HW via shared API 6615 * numtc, tcmap 6616 * LLTC map 6617 * ETS/NON-ETS arbiter mode 6618 * max exponent (credit refills) 6619 * Total number of ports 6620 * PFC priority bit-map 6621 * Priority Table 6622 * BW % per TC 6623 * Arbiter mode between UPs sharing same TC 6624 * TSA table (ETS or non-ETS) 6625 * EEE enabled or not 6626 * MFS TC table 6627 */ 6628 6629 new_numtc = i40e_dcb_get_num_tc(new_cfg); 6630 6631 memset(&ets_data, 0, sizeof(ets_data)); 6632 for (i = 0; i < new_numtc; i++) { 6633 tc_map |= BIT(i); 6634 switch (new_cfg->etscfg.tsatable[i]) { 6635 case I40E_IEEE_TSA_ETS: 6636 prio_type[i] = I40E_DCB_PRIO_TYPE_ETS; 6637 ets_data.tc_bw_share_credits[i] = 6638 new_cfg->etscfg.tcbwtable[i]; 6639 break; 6640 case I40E_IEEE_TSA_STRICT: 6641 prio_type[i] = I40E_DCB_PRIO_TYPE_STRICT; 6642 lltc_map |= BIT(i); 6643 ets_data.tc_bw_share_credits[i] = 6644 I40E_DCB_STRICT_PRIO_CREDITS; 6645 break; 6646 default: 6647 /* Invalid TSA type */ 6648 need_reconfig = false; 6649 goto out; 6650 } 6651 } 6652 6653 old_cfg = &hw->local_dcbx_config; 6654 /* Check if need reconfiguration */ 6655 need_reconfig = i40e_dcb_need_reconfig(pf, old_cfg, new_cfg); 6656 6657 /* If needed, enable/disable frame tagging, disable all VSIs 6658 * and suspend port tx 6659 */ 6660 if (need_reconfig) { 6661 /* Enable DCB tagging only when more than one TC */ 6662 if (new_numtc > 1) 6663 pf->flags |= I40E_FLAG_DCB_ENABLED; 6664 else 6665 pf->flags &= ~I40E_FLAG_DCB_ENABLED; 6666 6667 set_bit(__I40E_PORT_SUSPENDED, pf->state); 6668 /* Reconfiguration needed quiesce all VSIs */ 6669 i40e_pf_quiesce_all_vsi(pf); 6670 ret = i40e_suspend_port_tx(pf); 6671 if (ret) 6672 goto err; 6673 } 6674 6675 /* Configure Port ETS Tx Scheduler */ 6676 ets_data.tc_valid_bits = tc_map; 6677 ets_data.tc_strict_priority_flags = lltc_map; 6678 ret = i40e_aq_config_switch_comp_ets 6679 (hw, pf->mac_seid, &ets_data, 6680 i40e_aqc_opc_modify_switching_comp_ets, NULL); 6681 if (ret) { 6682 dev_info(&pf->pdev->dev, 6683 "Modify Port ETS failed, err %s aq_err %s\n", 6684 i40e_stat_str(&pf->hw, ret), 6685 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 6686 goto out; 6687 } 6688 6689 /* Configure Rx ETS HW */ 6690 memset(&mode, I40E_DCB_ARB_MODE_ROUND_ROBIN, sizeof(mode)); 6691 i40e_dcb_hw_set_num_tc(hw, new_numtc); 6692 i40e_dcb_hw_rx_fifo_config(hw, I40E_DCB_ARB_MODE_ROUND_ROBIN, 6693 I40E_DCB_ARB_MODE_STRICT_PRIORITY, 6694 I40E_DCB_DEFAULT_MAX_EXPONENT, 6695 lltc_map); 6696 i40e_dcb_hw_rx_cmd_monitor_config(hw, new_numtc, num_ports); 6697 i40e_dcb_hw_rx_ets_bw_config(hw, new_cfg->etscfg.tcbwtable, mode, 6698 prio_type); 6699 i40e_dcb_hw_pfc_config(hw, new_cfg->pfc.pfcenable, 6700 new_cfg->etscfg.prioritytable); 6701 i40e_dcb_hw_rx_up2tc_config(hw, new_cfg->etscfg.prioritytable); 6702 6703 /* Configure Rx Packet Buffers in HW */ 6704 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 6705 mfs_tc[i] = pf->vsi[pf->lan_vsi]->netdev->mtu; 6706 mfs_tc[i] += I40E_PACKET_HDR_PAD; 6707 } 6708 6709 i40e_dcb_hw_calculate_pool_sizes(hw, num_ports, 6710 false, new_cfg->pfc.pfcenable, 6711 mfs_tc, &pb_cfg); 6712 i40e_dcb_hw_rx_pb_config(hw, &pf->pb_cfg, &pb_cfg); 6713 6714 /* Update the local Rx Packet buffer config */ 6715 pf->pb_cfg = pb_cfg; 6716 6717 /* Inform the FW about changes to DCB configuration */ 6718 ret = i40e_aq_dcb_updated(&pf->hw, NULL); 6719 if (ret) { 6720 dev_info(&pf->pdev->dev, 6721 "DCB Updated failed, err %s aq_err %s\n", 6722 i40e_stat_str(&pf->hw, ret), 6723 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 6724 goto out; 6725 } 6726 6727 /* Update the port DCBx configuration */ 6728 *old_cfg = *new_cfg; 6729 6730 /* Changes in configuration update VEB/VSI */ 6731 i40e_dcb_reconfigure(pf); 6732 out: 6733 /* Re-start the VSIs if disabled */ 6734 if (need_reconfig) { 6735 ret = i40e_resume_port_tx(pf); 6736 6737 clear_bit(__I40E_PORT_SUSPENDED, pf->state); 6738 /* In case of error no point in resuming VSIs */ 6739 if (ret) 6740 goto err; 6741 6742 /* Wait for the PF's queues to be disabled */ 6743 ret = i40e_pf_wait_queues_disabled(pf); 6744 if (ret) { 6745 /* Schedule PF reset to recover */ 6746 set_bit(__I40E_PF_RESET_REQUESTED, pf->state); 6747 i40e_service_event_schedule(pf); 6748 goto err; 6749 } else { 6750 i40e_pf_unquiesce_all_vsi(pf); 6751 set_bit(__I40E_CLIENT_SERVICE_REQUESTED, pf->state); 6752 set_bit(__I40E_CLIENT_L2_CHANGE, pf->state); 6753 } 6754 /* registers are set, lets apply */ 6755 if (pf->hw_features & I40E_HW_USE_SET_LLDP_MIB) 6756 ret = i40e_hw_set_dcb_config(pf, new_cfg); 6757 } 6758 6759 err: 6760 return ret; 6761 } 6762 6763 /** 6764 * i40e_dcb_sw_default_config - Set default DCB configuration when DCB in SW 6765 * @pf: PF being queried 6766 * 6767 * Set default DCB configuration in case DCB is to be done in SW. 6768 **/ 6769 int i40e_dcb_sw_default_config(struct i40e_pf *pf) 6770 { 6771 struct i40e_dcbx_config *dcb_cfg = &pf->hw.local_dcbx_config; 6772 struct i40e_aqc_configure_switching_comp_ets_data ets_data; 6773 struct i40e_hw *hw = &pf->hw; 6774 int err; 6775 6776 if (pf->hw_features & I40E_HW_USE_SET_LLDP_MIB) { 6777 /* Update the local cached instance with TC0 ETS */ 6778 memset(&pf->tmp_cfg, 0, sizeof(struct i40e_dcbx_config)); 6779 pf->tmp_cfg.etscfg.willing = I40E_IEEE_DEFAULT_ETS_WILLING; 6780 pf->tmp_cfg.etscfg.maxtcs = 0; 6781 pf->tmp_cfg.etscfg.tcbwtable[0] = I40E_IEEE_DEFAULT_ETS_TCBW; 6782 pf->tmp_cfg.etscfg.tsatable[0] = I40E_IEEE_TSA_ETS; 6783 pf->tmp_cfg.pfc.willing = I40E_IEEE_DEFAULT_PFC_WILLING; 6784 pf->tmp_cfg.pfc.pfccap = I40E_MAX_TRAFFIC_CLASS; 6785 /* FW needs one App to configure HW */ 6786 pf->tmp_cfg.numapps = I40E_IEEE_DEFAULT_NUM_APPS; 6787 pf->tmp_cfg.app[0].selector = I40E_APP_SEL_ETHTYPE; 6788 pf->tmp_cfg.app[0].priority = I40E_IEEE_DEFAULT_APP_PRIO; 6789 pf->tmp_cfg.app[0].protocolid = I40E_APP_PROTOID_FCOE; 6790 6791 return i40e_hw_set_dcb_config(pf, &pf->tmp_cfg); 6792 } 6793 6794 memset(&ets_data, 0, sizeof(ets_data)); 6795 ets_data.tc_valid_bits = I40E_DEFAULT_TRAFFIC_CLASS; /* TC0 only */ 6796 ets_data.tc_strict_priority_flags = 0; /* ETS */ 6797 ets_data.tc_bw_share_credits[0] = I40E_IEEE_DEFAULT_ETS_TCBW; /* 100% to TC0 */ 6798 6799 /* Enable ETS on the Physical port */ 6800 err = i40e_aq_config_switch_comp_ets 6801 (hw, pf->mac_seid, &ets_data, 6802 i40e_aqc_opc_enable_switching_comp_ets, NULL); 6803 if (err) { 6804 dev_info(&pf->pdev->dev, 6805 "Enable Port ETS failed, err %s aq_err %s\n", 6806 i40e_stat_str(&pf->hw, err), 6807 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 6808 err = -ENOENT; 6809 goto out; 6810 } 6811 6812 /* Update the local cached instance with TC0 ETS */ 6813 dcb_cfg->etscfg.willing = I40E_IEEE_DEFAULT_ETS_WILLING; 6814 dcb_cfg->etscfg.cbs = 0; 6815 dcb_cfg->etscfg.maxtcs = I40E_MAX_TRAFFIC_CLASS; 6816 dcb_cfg->etscfg.tcbwtable[0] = I40E_IEEE_DEFAULT_ETS_TCBW; 6817 6818 out: 6819 return err; 6820 } 6821 6822 /** 6823 * i40e_init_pf_dcb - Initialize DCB configuration 6824 * @pf: PF being configured 6825 * 6826 * Query the current DCB configuration and cache it 6827 * in the hardware structure 6828 **/ 6829 static int i40e_init_pf_dcb(struct i40e_pf *pf) 6830 { 6831 struct i40e_hw *hw = &pf->hw; 6832 int err; 6833 6834 /* Do not enable DCB for SW1 and SW2 images even if the FW is capable 6835 * Also do not enable DCBx if FW LLDP agent is disabled 6836 */ 6837 if (pf->hw_features & I40E_HW_NO_DCB_SUPPORT) { 6838 dev_info(&pf->pdev->dev, "DCB is not supported.\n"); 6839 err = I40E_NOT_SUPPORTED; 6840 goto out; 6841 } 6842 if (pf->flags & I40E_FLAG_DISABLE_FW_LLDP) { 6843 dev_info(&pf->pdev->dev, "FW LLDP is disabled, attempting SW DCB\n"); 6844 err = i40e_dcb_sw_default_config(pf); 6845 if (err) { 6846 dev_info(&pf->pdev->dev, "Could not initialize SW DCB\n"); 6847 goto out; 6848 } 6849 dev_info(&pf->pdev->dev, "SW DCB initialization succeeded.\n"); 6850 pf->dcbx_cap = DCB_CAP_DCBX_HOST | 6851 DCB_CAP_DCBX_VER_IEEE; 6852 /* at init capable but disabled */ 6853 pf->flags |= I40E_FLAG_DCB_CAPABLE; 6854 pf->flags &= ~I40E_FLAG_DCB_ENABLED; 6855 goto out; 6856 } 6857 err = i40e_init_dcb(hw, true); 6858 if (!err) { 6859 /* Device/Function is not DCBX capable */ 6860 if ((!hw->func_caps.dcb) || 6861 (hw->dcbx_status == I40E_DCBX_STATUS_DISABLED)) { 6862 dev_info(&pf->pdev->dev, 6863 "DCBX offload is not supported or is disabled for this PF.\n"); 6864 } else { 6865 /* When status is not DISABLED then DCBX in FW */ 6866 pf->dcbx_cap = DCB_CAP_DCBX_LLD_MANAGED | 6867 DCB_CAP_DCBX_VER_IEEE; 6868 6869 pf->flags |= I40E_FLAG_DCB_CAPABLE; 6870 /* Enable DCB tagging only when more than one TC 6871 * or explicitly disable if only one TC 6872 */ 6873 if (i40e_dcb_get_num_tc(&hw->local_dcbx_config) > 1) 6874 pf->flags |= I40E_FLAG_DCB_ENABLED; 6875 else 6876 pf->flags &= ~I40E_FLAG_DCB_ENABLED; 6877 dev_dbg(&pf->pdev->dev, 6878 "DCBX offload is supported for this PF.\n"); 6879 } 6880 } else if (pf->hw.aq.asq_last_status == I40E_AQ_RC_EPERM) { 6881 dev_info(&pf->pdev->dev, "FW LLDP disabled for this PF.\n"); 6882 pf->flags |= I40E_FLAG_DISABLE_FW_LLDP; 6883 } else { 6884 dev_info(&pf->pdev->dev, 6885 "Query for DCB configuration failed, err %s aq_err %s\n", 6886 i40e_stat_str(&pf->hw, err), 6887 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 6888 } 6889 6890 out: 6891 return err; 6892 } 6893 #endif /* CONFIG_I40E_DCB */ 6894 6895 /** 6896 * i40e_print_link_message - print link up or down 6897 * @vsi: the VSI for which link needs a message 6898 * @isup: true of link is up, false otherwise 6899 */ 6900 void i40e_print_link_message(struct i40e_vsi *vsi, bool isup) 6901 { 6902 enum i40e_aq_link_speed new_speed; 6903 struct i40e_pf *pf = vsi->back; 6904 char *speed = "Unknown"; 6905 char *fc = "Unknown"; 6906 char *fec = ""; 6907 char *req_fec = ""; 6908 char *an = ""; 6909 6910 if (isup) 6911 new_speed = pf->hw.phy.link_info.link_speed; 6912 else 6913 new_speed = I40E_LINK_SPEED_UNKNOWN; 6914 6915 if ((vsi->current_isup == isup) && (vsi->current_speed == new_speed)) 6916 return; 6917 vsi->current_isup = isup; 6918 vsi->current_speed = new_speed; 6919 if (!isup) { 6920 netdev_info(vsi->netdev, "NIC Link is Down\n"); 6921 return; 6922 } 6923 6924 /* Warn user if link speed on NPAR enabled partition is not at 6925 * least 10GB 6926 */ 6927 if (pf->hw.func_caps.npar_enable && 6928 (pf->hw.phy.link_info.link_speed == I40E_LINK_SPEED_1GB || 6929 pf->hw.phy.link_info.link_speed == I40E_LINK_SPEED_100MB)) 6930 netdev_warn(vsi->netdev, 6931 "The partition detected link speed that is less than 10Gbps\n"); 6932 6933 switch (pf->hw.phy.link_info.link_speed) { 6934 case I40E_LINK_SPEED_40GB: 6935 speed = "40 G"; 6936 break; 6937 case I40E_LINK_SPEED_20GB: 6938 speed = "20 G"; 6939 break; 6940 case I40E_LINK_SPEED_25GB: 6941 speed = "25 G"; 6942 break; 6943 case I40E_LINK_SPEED_10GB: 6944 speed = "10 G"; 6945 break; 6946 case I40E_LINK_SPEED_5GB: 6947 speed = "5 G"; 6948 break; 6949 case I40E_LINK_SPEED_2_5GB: 6950 speed = "2.5 G"; 6951 break; 6952 case I40E_LINK_SPEED_1GB: 6953 speed = "1000 M"; 6954 break; 6955 case I40E_LINK_SPEED_100MB: 6956 speed = "100 M"; 6957 break; 6958 default: 6959 break; 6960 } 6961 6962 switch (pf->hw.fc.current_mode) { 6963 case I40E_FC_FULL: 6964 fc = "RX/TX"; 6965 break; 6966 case I40E_FC_TX_PAUSE: 6967 fc = "TX"; 6968 break; 6969 case I40E_FC_RX_PAUSE: 6970 fc = "RX"; 6971 break; 6972 default: 6973 fc = "None"; 6974 break; 6975 } 6976 6977 if (pf->hw.phy.link_info.link_speed == I40E_LINK_SPEED_25GB) { 6978 req_fec = "None"; 6979 fec = "None"; 6980 an = "False"; 6981 6982 if (pf->hw.phy.link_info.an_info & I40E_AQ_AN_COMPLETED) 6983 an = "True"; 6984 6985 if (pf->hw.phy.link_info.fec_info & 6986 I40E_AQ_CONFIG_FEC_KR_ENA) 6987 fec = "CL74 FC-FEC/BASE-R"; 6988 else if (pf->hw.phy.link_info.fec_info & 6989 I40E_AQ_CONFIG_FEC_RS_ENA) 6990 fec = "CL108 RS-FEC"; 6991 6992 /* 'CL108 RS-FEC' should be displayed when RS is requested, or 6993 * both RS and FC are requested 6994 */ 6995 if (vsi->back->hw.phy.link_info.req_fec_info & 6996 (I40E_AQ_REQUEST_FEC_KR | I40E_AQ_REQUEST_FEC_RS)) { 6997 if (vsi->back->hw.phy.link_info.req_fec_info & 6998 I40E_AQ_REQUEST_FEC_RS) 6999 req_fec = "CL108 RS-FEC"; 7000 else 7001 req_fec = "CL74 FC-FEC/BASE-R"; 7002 } 7003 netdev_info(vsi->netdev, 7004 "NIC Link is Up, %sbps Full Duplex, Requested FEC: %s, Negotiated FEC: %s, Autoneg: %s, Flow Control: %s\n", 7005 speed, req_fec, fec, an, fc); 7006 } else if (pf->hw.device_id == I40E_DEV_ID_KX_X722) { 7007 req_fec = "None"; 7008 fec = "None"; 7009 an = "False"; 7010 7011 if (pf->hw.phy.link_info.an_info & I40E_AQ_AN_COMPLETED) 7012 an = "True"; 7013 7014 if (pf->hw.phy.link_info.fec_info & 7015 I40E_AQ_CONFIG_FEC_KR_ENA) 7016 fec = "CL74 FC-FEC/BASE-R"; 7017 7018 if (pf->hw.phy.link_info.req_fec_info & 7019 I40E_AQ_REQUEST_FEC_KR) 7020 req_fec = "CL74 FC-FEC/BASE-R"; 7021 7022 netdev_info(vsi->netdev, 7023 "NIC Link is Up, %sbps Full Duplex, Requested FEC: %s, Negotiated FEC: %s, Autoneg: %s, Flow Control: %s\n", 7024 speed, req_fec, fec, an, fc); 7025 } else { 7026 netdev_info(vsi->netdev, 7027 "NIC Link is Up, %sbps Full Duplex, Flow Control: %s\n", 7028 speed, fc); 7029 } 7030 7031 } 7032 7033 /** 7034 * i40e_up_complete - Finish the last steps of bringing up a connection 7035 * @vsi: the VSI being configured 7036 **/ 7037 static int i40e_up_complete(struct i40e_vsi *vsi) 7038 { 7039 struct i40e_pf *pf = vsi->back; 7040 int err; 7041 7042 if (pf->flags & I40E_FLAG_MSIX_ENABLED) 7043 i40e_vsi_configure_msix(vsi); 7044 else 7045 i40e_configure_msi_and_legacy(vsi); 7046 7047 /* start rings */ 7048 err = i40e_vsi_start_rings(vsi); 7049 if (err) 7050 return err; 7051 7052 clear_bit(__I40E_VSI_DOWN, vsi->state); 7053 i40e_napi_enable_all(vsi); 7054 i40e_vsi_enable_irq(vsi); 7055 7056 if ((pf->hw.phy.link_info.link_info & I40E_AQ_LINK_UP) && 7057 (vsi->netdev)) { 7058 i40e_print_link_message(vsi, true); 7059 netif_tx_start_all_queues(vsi->netdev); 7060 netif_carrier_on(vsi->netdev); 7061 } 7062 7063 /* replay FDIR SB filters */ 7064 if (vsi->type == I40E_VSI_FDIR) { 7065 /* reset fd counters */ 7066 pf->fd_add_err = 0; 7067 pf->fd_atr_cnt = 0; 7068 i40e_fdir_filter_restore(vsi); 7069 } 7070 7071 /* On the next run of the service_task, notify any clients of the new 7072 * opened netdev 7073 */ 7074 set_bit(__I40E_CLIENT_SERVICE_REQUESTED, pf->state); 7075 i40e_service_event_schedule(pf); 7076 7077 return 0; 7078 } 7079 7080 /** 7081 * i40e_vsi_reinit_locked - Reset the VSI 7082 * @vsi: the VSI being configured 7083 * 7084 * Rebuild the ring structs after some configuration 7085 * has changed, e.g. MTU size. 7086 **/ 7087 static void i40e_vsi_reinit_locked(struct i40e_vsi *vsi) 7088 { 7089 struct i40e_pf *pf = vsi->back; 7090 7091 while (test_and_set_bit(__I40E_CONFIG_BUSY, pf->state)) 7092 usleep_range(1000, 2000); 7093 i40e_down(vsi); 7094 7095 i40e_up(vsi); 7096 clear_bit(__I40E_CONFIG_BUSY, pf->state); 7097 } 7098 7099 /** 7100 * i40e_force_link_state - Force the link status 7101 * @pf: board private structure 7102 * @is_up: whether the link state should be forced up or down 7103 **/ 7104 static i40e_status i40e_force_link_state(struct i40e_pf *pf, bool is_up) 7105 { 7106 struct i40e_aq_get_phy_abilities_resp abilities; 7107 struct i40e_aq_set_phy_config config = {0}; 7108 bool non_zero_phy_type = is_up; 7109 struct i40e_hw *hw = &pf->hw; 7110 i40e_status err; 7111 u64 mask; 7112 u8 speed; 7113 7114 /* Card might've been put in an unstable state by other drivers 7115 * and applications, which causes incorrect speed values being 7116 * set on startup. In order to clear speed registers, we call 7117 * get_phy_capabilities twice, once to get initial state of 7118 * available speeds, and once to get current PHY config. 7119 */ 7120 err = i40e_aq_get_phy_capabilities(hw, false, true, &abilities, 7121 NULL); 7122 if (err) { 7123 dev_err(&pf->pdev->dev, 7124 "failed to get phy cap., ret = %s last_status = %s\n", 7125 i40e_stat_str(hw, err), 7126 i40e_aq_str(hw, hw->aq.asq_last_status)); 7127 return err; 7128 } 7129 speed = abilities.link_speed; 7130 7131 /* Get the current phy config */ 7132 err = i40e_aq_get_phy_capabilities(hw, false, false, &abilities, 7133 NULL); 7134 if (err) { 7135 dev_err(&pf->pdev->dev, 7136 "failed to get phy cap., ret = %s last_status = %s\n", 7137 i40e_stat_str(hw, err), 7138 i40e_aq_str(hw, hw->aq.asq_last_status)); 7139 return err; 7140 } 7141 7142 /* If link needs to go up, but was not forced to go down, 7143 * and its speed values are OK, no need for a flap 7144 * if non_zero_phy_type was set, still need to force up 7145 */ 7146 if (pf->flags & I40E_FLAG_TOTAL_PORT_SHUTDOWN_ENABLED) 7147 non_zero_phy_type = true; 7148 else if (is_up && abilities.phy_type != 0 && abilities.link_speed != 0) 7149 return I40E_SUCCESS; 7150 7151 /* To force link we need to set bits for all supported PHY types, 7152 * but there are now more than 32, so we need to split the bitmap 7153 * across two fields. 7154 */ 7155 mask = I40E_PHY_TYPES_BITMASK; 7156 config.phy_type = 7157 non_zero_phy_type ? cpu_to_le32((u32)(mask & 0xffffffff)) : 0; 7158 config.phy_type_ext = 7159 non_zero_phy_type ? (u8)((mask >> 32) & 0xff) : 0; 7160 /* Copy the old settings, except of phy_type */ 7161 config.abilities = abilities.abilities; 7162 if (pf->flags & I40E_FLAG_TOTAL_PORT_SHUTDOWN_ENABLED) { 7163 if (is_up) 7164 config.abilities |= I40E_AQ_PHY_ENABLE_LINK; 7165 else 7166 config.abilities &= ~(I40E_AQ_PHY_ENABLE_LINK); 7167 } 7168 if (abilities.link_speed != 0) 7169 config.link_speed = abilities.link_speed; 7170 else 7171 config.link_speed = speed; 7172 config.eee_capability = abilities.eee_capability; 7173 config.eeer = abilities.eeer_val; 7174 config.low_power_ctrl = abilities.d3_lpan; 7175 config.fec_config = abilities.fec_cfg_curr_mod_ext_info & 7176 I40E_AQ_PHY_FEC_CONFIG_MASK; 7177 err = i40e_aq_set_phy_config(hw, &config, NULL); 7178 7179 if (err) { 7180 dev_err(&pf->pdev->dev, 7181 "set phy config ret = %s last_status = %s\n", 7182 i40e_stat_str(&pf->hw, err), 7183 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 7184 return err; 7185 } 7186 7187 /* Update the link info */ 7188 err = i40e_update_link_info(hw); 7189 if (err) { 7190 /* Wait a little bit (on 40G cards it sometimes takes a really 7191 * long time for link to come back from the atomic reset) 7192 * and try once more 7193 */ 7194 msleep(1000); 7195 i40e_update_link_info(hw); 7196 } 7197 7198 i40e_aq_set_link_restart_an(hw, is_up, NULL); 7199 7200 return I40E_SUCCESS; 7201 } 7202 7203 /** 7204 * i40e_up - Bring the connection back up after being down 7205 * @vsi: the VSI being configured 7206 **/ 7207 int i40e_up(struct i40e_vsi *vsi) 7208 { 7209 int err; 7210 7211 if (vsi->type == I40E_VSI_MAIN && 7212 (vsi->back->flags & I40E_FLAG_LINK_DOWN_ON_CLOSE_ENABLED || 7213 vsi->back->flags & I40E_FLAG_TOTAL_PORT_SHUTDOWN_ENABLED)) 7214 i40e_force_link_state(vsi->back, true); 7215 7216 err = i40e_vsi_configure(vsi); 7217 if (!err) 7218 err = i40e_up_complete(vsi); 7219 7220 return err; 7221 } 7222 7223 /** 7224 * i40e_down - Shutdown the connection processing 7225 * @vsi: the VSI being stopped 7226 **/ 7227 void i40e_down(struct i40e_vsi *vsi) 7228 { 7229 int i; 7230 7231 /* It is assumed that the caller of this function 7232 * sets the vsi->state __I40E_VSI_DOWN bit. 7233 */ 7234 if (vsi->netdev) { 7235 netif_carrier_off(vsi->netdev); 7236 netif_tx_disable(vsi->netdev); 7237 } 7238 i40e_vsi_disable_irq(vsi); 7239 i40e_vsi_stop_rings(vsi); 7240 if (vsi->type == I40E_VSI_MAIN && 7241 (vsi->back->flags & I40E_FLAG_LINK_DOWN_ON_CLOSE_ENABLED || 7242 vsi->back->flags & I40E_FLAG_TOTAL_PORT_SHUTDOWN_ENABLED)) 7243 i40e_force_link_state(vsi->back, false); 7244 i40e_napi_disable_all(vsi); 7245 7246 for (i = 0; i < vsi->num_queue_pairs; i++) { 7247 i40e_clean_tx_ring(vsi->tx_rings[i]); 7248 if (i40e_enabled_xdp_vsi(vsi)) { 7249 /* Make sure that in-progress ndo_xdp_xmit and 7250 * ndo_xsk_wakeup calls are completed. 7251 */ 7252 synchronize_rcu(); 7253 i40e_clean_tx_ring(vsi->xdp_rings[i]); 7254 } 7255 i40e_clean_rx_ring(vsi->rx_rings[i]); 7256 } 7257 7258 } 7259 7260 /** 7261 * i40e_validate_mqprio_qopt- validate queue mapping info 7262 * @vsi: the VSI being configured 7263 * @mqprio_qopt: queue parametrs 7264 **/ 7265 static int i40e_validate_mqprio_qopt(struct i40e_vsi *vsi, 7266 struct tc_mqprio_qopt_offload *mqprio_qopt) 7267 { 7268 u64 sum_max_rate = 0; 7269 u64 max_rate = 0; 7270 int i; 7271 7272 if (mqprio_qopt->qopt.offset[0] != 0 || 7273 mqprio_qopt->qopt.num_tc < 1 || 7274 mqprio_qopt->qopt.num_tc > I40E_MAX_TRAFFIC_CLASS) 7275 return -EINVAL; 7276 for (i = 0; ; i++) { 7277 if (!mqprio_qopt->qopt.count[i]) 7278 return -EINVAL; 7279 if (mqprio_qopt->min_rate[i]) { 7280 dev_err(&vsi->back->pdev->dev, 7281 "Invalid min tx rate (greater than 0) specified\n"); 7282 return -EINVAL; 7283 } 7284 max_rate = mqprio_qopt->max_rate[i]; 7285 do_div(max_rate, I40E_BW_MBPS_DIVISOR); 7286 sum_max_rate += max_rate; 7287 7288 if (i >= mqprio_qopt->qopt.num_tc - 1) 7289 break; 7290 if (mqprio_qopt->qopt.offset[i + 1] != 7291 (mqprio_qopt->qopt.offset[i] + mqprio_qopt->qopt.count[i])) 7292 return -EINVAL; 7293 } 7294 if (vsi->num_queue_pairs < 7295 (mqprio_qopt->qopt.offset[i] + mqprio_qopt->qopt.count[i])) { 7296 dev_err(&vsi->back->pdev->dev, 7297 "Failed to create traffic channel, insufficient number of queues.\n"); 7298 return -EINVAL; 7299 } 7300 if (sum_max_rate > i40e_get_link_speed(vsi)) { 7301 dev_err(&vsi->back->pdev->dev, 7302 "Invalid max tx rate specified\n"); 7303 return -EINVAL; 7304 } 7305 return 0; 7306 } 7307 7308 /** 7309 * i40e_vsi_set_default_tc_config - set default values for tc configuration 7310 * @vsi: the VSI being configured 7311 **/ 7312 static void i40e_vsi_set_default_tc_config(struct i40e_vsi *vsi) 7313 { 7314 u16 qcount; 7315 int i; 7316 7317 /* Only TC0 is enabled */ 7318 vsi->tc_config.numtc = 1; 7319 vsi->tc_config.enabled_tc = 1; 7320 qcount = min_t(int, vsi->alloc_queue_pairs, 7321 i40e_pf_get_max_q_per_tc(vsi->back)); 7322 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 7323 /* For the TC that is not enabled set the offset to default 7324 * queue and allocate one queue for the given TC. 7325 */ 7326 vsi->tc_config.tc_info[i].qoffset = 0; 7327 if (i == 0) 7328 vsi->tc_config.tc_info[i].qcount = qcount; 7329 else 7330 vsi->tc_config.tc_info[i].qcount = 1; 7331 vsi->tc_config.tc_info[i].netdev_tc = 0; 7332 } 7333 } 7334 7335 /** 7336 * i40e_del_macvlan_filter 7337 * @hw: pointer to the HW structure 7338 * @seid: seid of the channel VSI 7339 * @macaddr: the mac address to apply as a filter 7340 * @aq_err: store the admin Q error 7341 * 7342 * This function deletes a mac filter on the channel VSI which serves as the 7343 * macvlan. Returns 0 on success. 7344 **/ 7345 static i40e_status i40e_del_macvlan_filter(struct i40e_hw *hw, u16 seid, 7346 const u8 *macaddr, int *aq_err) 7347 { 7348 struct i40e_aqc_remove_macvlan_element_data element; 7349 i40e_status status; 7350 7351 memset(&element, 0, sizeof(element)); 7352 ether_addr_copy(element.mac_addr, macaddr); 7353 element.vlan_tag = 0; 7354 element.flags = I40E_AQC_MACVLAN_DEL_PERFECT_MATCH; 7355 status = i40e_aq_remove_macvlan(hw, seid, &element, 1, NULL); 7356 *aq_err = hw->aq.asq_last_status; 7357 7358 return status; 7359 } 7360 7361 /** 7362 * i40e_add_macvlan_filter 7363 * @hw: pointer to the HW structure 7364 * @seid: seid of the channel VSI 7365 * @macaddr: the mac address to apply as a filter 7366 * @aq_err: store the admin Q error 7367 * 7368 * This function adds a mac filter on the channel VSI which serves as the 7369 * macvlan. Returns 0 on success. 7370 **/ 7371 static i40e_status i40e_add_macvlan_filter(struct i40e_hw *hw, u16 seid, 7372 const u8 *macaddr, int *aq_err) 7373 { 7374 struct i40e_aqc_add_macvlan_element_data element; 7375 i40e_status status; 7376 u16 cmd_flags = 0; 7377 7378 ether_addr_copy(element.mac_addr, macaddr); 7379 element.vlan_tag = 0; 7380 element.queue_number = 0; 7381 element.match_method = I40E_AQC_MM_ERR_NO_RES; 7382 cmd_flags |= I40E_AQC_MACVLAN_ADD_PERFECT_MATCH; 7383 element.flags = cpu_to_le16(cmd_flags); 7384 status = i40e_aq_add_macvlan(hw, seid, &element, 1, NULL); 7385 *aq_err = hw->aq.asq_last_status; 7386 7387 return status; 7388 } 7389 7390 /** 7391 * i40e_reset_ch_rings - Reset the queue contexts in a channel 7392 * @vsi: the VSI we want to access 7393 * @ch: the channel we want to access 7394 */ 7395 static void i40e_reset_ch_rings(struct i40e_vsi *vsi, struct i40e_channel *ch) 7396 { 7397 struct i40e_ring *tx_ring, *rx_ring; 7398 u16 pf_q; 7399 int i; 7400 7401 for (i = 0; i < ch->num_queue_pairs; i++) { 7402 pf_q = ch->base_queue + i; 7403 tx_ring = vsi->tx_rings[pf_q]; 7404 tx_ring->ch = NULL; 7405 rx_ring = vsi->rx_rings[pf_q]; 7406 rx_ring->ch = NULL; 7407 } 7408 } 7409 7410 /** 7411 * i40e_free_macvlan_channels 7412 * @vsi: the VSI we want to access 7413 * 7414 * This function frees the Qs of the channel VSI from 7415 * the stack and also deletes the channel VSIs which 7416 * serve as macvlans. 7417 */ 7418 static void i40e_free_macvlan_channels(struct i40e_vsi *vsi) 7419 { 7420 struct i40e_channel *ch, *ch_tmp; 7421 int ret; 7422 7423 if (list_empty(&vsi->macvlan_list)) 7424 return; 7425 7426 list_for_each_entry_safe(ch, ch_tmp, &vsi->macvlan_list, list) { 7427 struct i40e_vsi *parent_vsi; 7428 7429 if (i40e_is_channel_macvlan(ch)) { 7430 i40e_reset_ch_rings(vsi, ch); 7431 clear_bit(ch->fwd->bit_no, vsi->fwd_bitmask); 7432 netdev_unbind_sb_channel(vsi->netdev, ch->fwd->netdev); 7433 netdev_set_sb_channel(ch->fwd->netdev, 0); 7434 kfree(ch->fwd); 7435 ch->fwd = NULL; 7436 } 7437 7438 list_del(&ch->list); 7439 parent_vsi = ch->parent_vsi; 7440 if (!parent_vsi || !ch->initialized) { 7441 kfree(ch); 7442 continue; 7443 } 7444 7445 /* remove the VSI */ 7446 ret = i40e_aq_delete_element(&vsi->back->hw, ch->seid, 7447 NULL); 7448 if (ret) 7449 dev_err(&vsi->back->pdev->dev, 7450 "unable to remove channel (%d) for parent VSI(%d)\n", 7451 ch->seid, parent_vsi->seid); 7452 kfree(ch); 7453 } 7454 vsi->macvlan_cnt = 0; 7455 } 7456 7457 /** 7458 * i40e_fwd_ring_up - bring the macvlan device up 7459 * @vsi: the VSI we want to access 7460 * @vdev: macvlan netdevice 7461 * @fwd: the private fwd structure 7462 */ 7463 static int i40e_fwd_ring_up(struct i40e_vsi *vsi, struct net_device *vdev, 7464 struct i40e_fwd_adapter *fwd) 7465 { 7466 int ret = 0, num_tc = 1, i, aq_err; 7467 struct i40e_channel *ch, *ch_tmp; 7468 struct i40e_pf *pf = vsi->back; 7469 struct i40e_hw *hw = &pf->hw; 7470 7471 if (list_empty(&vsi->macvlan_list)) 7472 return -EINVAL; 7473 7474 /* Go through the list and find an available channel */ 7475 list_for_each_entry_safe(ch, ch_tmp, &vsi->macvlan_list, list) { 7476 if (!i40e_is_channel_macvlan(ch)) { 7477 ch->fwd = fwd; 7478 /* record configuration for macvlan interface in vdev */ 7479 for (i = 0; i < num_tc; i++) 7480 netdev_bind_sb_channel_queue(vsi->netdev, vdev, 7481 i, 7482 ch->num_queue_pairs, 7483 ch->base_queue); 7484 for (i = 0; i < ch->num_queue_pairs; i++) { 7485 struct i40e_ring *tx_ring, *rx_ring; 7486 u16 pf_q; 7487 7488 pf_q = ch->base_queue + i; 7489 7490 /* Get to TX ring ptr */ 7491 tx_ring = vsi->tx_rings[pf_q]; 7492 tx_ring->ch = ch; 7493 7494 /* Get the RX ring ptr */ 7495 rx_ring = vsi->rx_rings[pf_q]; 7496 rx_ring->ch = ch; 7497 } 7498 break; 7499 } 7500 } 7501 7502 /* Guarantee all rings are updated before we update the 7503 * MAC address filter. 7504 */ 7505 wmb(); 7506 7507 /* Add a mac filter */ 7508 ret = i40e_add_macvlan_filter(hw, ch->seid, vdev->dev_addr, &aq_err); 7509 if (ret) { 7510 /* if we cannot add the MAC rule then disable the offload */ 7511 macvlan_release_l2fw_offload(vdev); 7512 for (i = 0; i < ch->num_queue_pairs; i++) { 7513 struct i40e_ring *rx_ring; 7514 u16 pf_q; 7515 7516 pf_q = ch->base_queue + i; 7517 rx_ring = vsi->rx_rings[pf_q]; 7518 rx_ring->netdev = NULL; 7519 } 7520 dev_info(&pf->pdev->dev, 7521 "Error adding mac filter on macvlan err %s, aq_err %s\n", 7522 i40e_stat_str(hw, ret), 7523 i40e_aq_str(hw, aq_err)); 7524 netdev_err(vdev, "L2fwd offload disabled to L2 filter error\n"); 7525 } 7526 7527 return ret; 7528 } 7529 7530 /** 7531 * i40e_setup_macvlans - create the channels which will be macvlans 7532 * @vsi: the VSI we want to access 7533 * @macvlan_cnt: no. of macvlans to be setup 7534 * @qcnt: no. of Qs per macvlan 7535 * @vdev: macvlan netdevice 7536 */ 7537 static int i40e_setup_macvlans(struct i40e_vsi *vsi, u16 macvlan_cnt, u16 qcnt, 7538 struct net_device *vdev) 7539 { 7540 struct i40e_pf *pf = vsi->back; 7541 struct i40e_hw *hw = &pf->hw; 7542 struct i40e_vsi_context ctxt; 7543 u16 sections, qmap, num_qps; 7544 struct i40e_channel *ch; 7545 int i, pow, ret = 0; 7546 u8 offset = 0; 7547 7548 if (vsi->type != I40E_VSI_MAIN || !macvlan_cnt) 7549 return -EINVAL; 7550 7551 num_qps = vsi->num_queue_pairs - (macvlan_cnt * qcnt); 7552 7553 /* find the next higher power-of-2 of num queue pairs */ 7554 pow = fls(roundup_pow_of_two(num_qps) - 1); 7555 7556 qmap = (offset << I40E_AQ_VSI_TC_QUE_OFFSET_SHIFT) | 7557 (pow << I40E_AQ_VSI_TC_QUE_NUMBER_SHIFT); 7558 7559 /* Setup context bits for the main VSI */ 7560 sections = I40E_AQ_VSI_PROP_QUEUE_MAP_VALID; 7561 sections |= I40E_AQ_VSI_PROP_SCHED_VALID; 7562 memset(&ctxt, 0, sizeof(ctxt)); 7563 ctxt.seid = vsi->seid; 7564 ctxt.pf_num = vsi->back->hw.pf_id; 7565 ctxt.vf_num = 0; 7566 ctxt.uplink_seid = vsi->uplink_seid; 7567 ctxt.info = vsi->info; 7568 ctxt.info.tc_mapping[0] = cpu_to_le16(qmap); 7569 ctxt.info.mapping_flags |= cpu_to_le16(I40E_AQ_VSI_QUE_MAP_CONTIG); 7570 ctxt.info.queue_mapping[0] = cpu_to_le16(vsi->base_queue); 7571 ctxt.info.valid_sections |= cpu_to_le16(sections); 7572 7573 /* Reconfigure RSS for main VSI with new max queue count */ 7574 vsi->rss_size = max_t(u16, num_qps, qcnt); 7575 ret = i40e_vsi_config_rss(vsi); 7576 if (ret) { 7577 dev_info(&pf->pdev->dev, 7578 "Failed to reconfig RSS for num_queues (%u)\n", 7579 vsi->rss_size); 7580 return ret; 7581 } 7582 vsi->reconfig_rss = true; 7583 dev_dbg(&vsi->back->pdev->dev, 7584 "Reconfigured RSS with num_queues (%u)\n", vsi->rss_size); 7585 vsi->next_base_queue = num_qps; 7586 vsi->cnt_q_avail = vsi->num_queue_pairs - num_qps; 7587 7588 /* Update the VSI after updating the VSI queue-mapping 7589 * information 7590 */ 7591 ret = i40e_aq_update_vsi_params(hw, &ctxt, NULL); 7592 if (ret) { 7593 dev_info(&pf->pdev->dev, 7594 "Update vsi tc config failed, err %s aq_err %s\n", 7595 i40e_stat_str(hw, ret), 7596 i40e_aq_str(hw, hw->aq.asq_last_status)); 7597 return ret; 7598 } 7599 /* update the local VSI info with updated queue map */ 7600 i40e_vsi_update_queue_map(vsi, &ctxt); 7601 vsi->info.valid_sections = 0; 7602 7603 /* Create channels for macvlans */ 7604 INIT_LIST_HEAD(&vsi->macvlan_list); 7605 for (i = 0; i < macvlan_cnt; i++) { 7606 ch = kzalloc(sizeof(*ch), GFP_KERNEL); 7607 if (!ch) { 7608 ret = -ENOMEM; 7609 goto err_free; 7610 } 7611 INIT_LIST_HEAD(&ch->list); 7612 ch->num_queue_pairs = qcnt; 7613 if (!i40e_setup_channel(pf, vsi, ch)) { 7614 ret = -EINVAL; 7615 kfree(ch); 7616 goto err_free; 7617 } 7618 ch->parent_vsi = vsi; 7619 vsi->cnt_q_avail -= ch->num_queue_pairs; 7620 vsi->macvlan_cnt++; 7621 list_add_tail(&ch->list, &vsi->macvlan_list); 7622 } 7623 7624 return ret; 7625 7626 err_free: 7627 dev_info(&pf->pdev->dev, "Failed to setup macvlans\n"); 7628 i40e_free_macvlan_channels(vsi); 7629 7630 return ret; 7631 } 7632 7633 /** 7634 * i40e_fwd_add - configure macvlans 7635 * @netdev: net device to configure 7636 * @vdev: macvlan netdevice 7637 **/ 7638 static void *i40e_fwd_add(struct net_device *netdev, struct net_device *vdev) 7639 { 7640 struct i40e_netdev_priv *np = netdev_priv(netdev); 7641 u16 q_per_macvlan = 0, macvlan_cnt = 0, vectors; 7642 struct i40e_vsi *vsi = np->vsi; 7643 struct i40e_pf *pf = vsi->back; 7644 struct i40e_fwd_adapter *fwd; 7645 int avail_macvlan, ret; 7646 7647 if ((pf->flags & I40E_FLAG_DCB_ENABLED)) { 7648 netdev_info(netdev, "Macvlans are not supported when DCB is enabled\n"); 7649 return ERR_PTR(-EINVAL); 7650 } 7651 if ((pf->flags & I40E_FLAG_TC_MQPRIO)) { 7652 netdev_info(netdev, "Macvlans are not supported when HW TC offload is on\n"); 7653 return ERR_PTR(-EINVAL); 7654 } 7655 if (pf->num_lan_msix < I40E_MIN_MACVLAN_VECTORS) { 7656 netdev_info(netdev, "Not enough vectors available to support macvlans\n"); 7657 return ERR_PTR(-EINVAL); 7658 } 7659 7660 /* The macvlan device has to be a single Q device so that the 7661 * tc_to_txq field can be reused to pick the tx queue. 7662 */ 7663 if (netif_is_multiqueue(vdev)) 7664 return ERR_PTR(-ERANGE); 7665 7666 if (!vsi->macvlan_cnt) { 7667 /* reserve bit 0 for the pf device */ 7668 set_bit(0, vsi->fwd_bitmask); 7669 7670 /* Try to reserve as many queues as possible for macvlans. First 7671 * reserve 3/4th of max vectors, then half, then quarter and 7672 * calculate Qs per macvlan as you go 7673 */ 7674 vectors = pf->num_lan_msix; 7675 if (vectors <= I40E_MAX_MACVLANS && vectors > 64) { 7676 /* allocate 4 Qs per macvlan and 32 Qs to the PF*/ 7677 q_per_macvlan = 4; 7678 macvlan_cnt = (vectors - 32) / 4; 7679 } else if (vectors <= 64 && vectors > 32) { 7680 /* allocate 2 Qs per macvlan and 16 Qs to the PF*/ 7681 q_per_macvlan = 2; 7682 macvlan_cnt = (vectors - 16) / 2; 7683 } else if (vectors <= 32 && vectors > 16) { 7684 /* allocate 1 Q per macvlan and 16 Qs to the PF*/ 7685 q_per_macvlan = 1; 7686 macvlan_cnt = vectors - 16; 7687 } else if (vectors <= 16 && vectors > 8) { 7688 /* allocate 1 Q per macvlan and 8 Qs to the PF */ 7689 q_per_macvlan = 1; 7690 macvlan_cnt = vectors - 8; 7691 } else { 7692 /* allocate 1 Q per macvlan and 1 Q to the PF */ 7693 q_per_macvlan = 1; 7694 macvlan_cnt = vectors - 1; 7695 } 7696 7697 if (macvlan_cnt == 0) 7698 return ERR_PTR(-EBUSY); 7699 7700 /* Quiesce VSI queues */ 7701 i40e_quiesce_vsi(vsi); 7702 7703 /* sets up the macvlans but does not "enable" them */ 7704 ret = i40e_setup_macvlans(vsi, macvlan_cnt, q_per_macvlan, 7705 vdev); 7706 if (ret) 7707 return ERR_PTR(ret); 7708 7709 /* Unquiesce VSI */ 7710 i40e_unquiesce_vsi(vsi); 7711 } 7712 avail_macvlan = find_first_zero_bit(vsi->fwd_bitmask, 7713 vsi->macvlan_cnt); 7714 if (avail_macvlan >= I40E_MAX_MACVLANS) 7715 return ERR_PTR(-EBUSY); 7716 7717 /* create the fwd struct */ 7718 fwd = kzalloc(sizeof(*fwd), GFP_KERNEL); 7719 if (!fwd) 7720 return ERR_PTR(-ENOMEM); 7721 7722 set_bit(avail_macvlan, vsi->fwd_bitmask); 7723 fwd->bit_no = avail_macvlan; 7724 netdev_set_sb_channel(vdev, avail_macvlan); 7725 fwd->netdev = vdev; 7726 7727 if (!netif_running(netdev)) 7728 return fwd; 7729 7730 /* Set fwd ring up */ 7731 ret = i40e_fwd_ring_up(vsi, vdev, fwd); 7732 if (ret) { 7733 /* unbind the queues and drop the subordinate channel config */ 7734 netdev_unbind_sb_channel(netdev, vdev); 7735 netdev_set_sb_channel(vdev, 0); 7736 7737 kfree(fwd); 7738 return ERR_PTR(-EINVAL); 7739 } 7740 7741 return fwd; 7742 } 7743 7744 /** 7745 * i40e_del_all_macvlans - Delete all the mac filters on the channels 7746 * @vsi: the VSI we want to access 7747 */ 7748 static void i40e_del_all_macvlans(struct i40e_vsi *vsi) 7749 { 7750 struct i40e_channel *ch, *ch_tmp; 7751 struct i40e_pf *pf = vsi->back; 7752 struct i40e_hw *hw = &pf->hw; 7753 int aq_err, ret = 0; 7754 7755 if (list_empty(&vsi->macvlan_list)) 7756 return; 7757 7758 list_for_each_entry_safe(ch, ch_tmp, &vsi->macvlan_list, list) { 7759 if (i40e_is_channel_macvlan(ch)) { 7760 ret = i40e_del_macvlan_filter(hw, ch->seid, 7761 i40e_channel_mac(ch), 7762 &aq_err); 7763 if (!ret) { 7764 /* Reset queue contexts */ 7765 i40e_reset_ch_rings(vsi, ch); 7766 clear_bit(ch->fwd->bit_no, vsi->fwd_bitmask); 7767 netdev_unbind_sb_channel(vsi->netdev, 7768 ch->fwd->netdev); 7769 netdev_set_sb_channel(ch->fwd->netdev, 0); 7770 kfree(ch->fwd); 7771 ch->fwd = NULL; 7772 } 7773 } 7774 } 7775 } 7776 7777 /** 7778 * i40e_fwd_del - delete macvlan interfaces 7779 * @netdev: net device to configure 7780 * @vdev: macvlan netdevice 7781 */ 7782 static void i40e_fwd_del(struct net_device *netdev, void *vdev) 7783 { 7784 struct i40e_netdev_priv *np = netdev_priv(netdev); 7785 struct i40e_fwd_adapter *fwd = vdev; 7786 struct i40e_channel *ch, *ch_tmp; 7787 struct i40e_vsi *vsi = np->vsi; 7788 struct i40e_pf *pf = vsi->back; 7789 struct i40e_hw *hw = &pf->hw; 7790 int aq_err, ret = 0; 7791 7792 /* Find the channel associated with the macvlan and del mac filter */ 7793 list_for_each_entry_safe(ch, ch_tmp, &vsi->macvlan_list, list) { 7794 if (i40e_is_channel_macvlan(ch) && 7795 ether_addr_equal(i40e_channel_mac(ch), 7796 fwd->netdev->dev_addr)) { 7797 ret = i40e_del_macvlan_filter(hw, ch->seid, 7798 i40e_channel_mac(ch), 7799 &aq_err); 7800 if (!ret) { 7801 /* Reset queue contexts */ 7802 i40e_reset_ch_rings(vsi, ch); 7803 clear_bit(ch->fwd->bit_no, vsi->fwd_bitmask); 7804 netdev_unbind_sb_channel(netdev, fwd->netdev); 7805 netdev_set_sb_channel(fwd->netdev, 0); 7806 kfree(ch->fwd); 7807 ch->fwd = NULL; 7808 } else { 7809 dev_info(&pf->pdev->dev, 7810 "Error deleting mac filter on macvlan err %s, aq_err %s\n", 7811 i40e_stat_str(hw, ret), 7812 i40e_aq_str(hw, aq_err)); 7813 } 7814 break; 7815 } 7816 } 7817 } 7818 7819 /** 7820 * i40e_setup_tc - configure multiple traffic classes 7821 * @netdev: net device to configure 7822 * @type_data: tc offload data 7823 **/ 7824 static int i40e_setup_tc(struct net_device *netdev, void *type_data) 7825 { 7826 struct tc_mqprio_qopt_offload *mqprio_qopt = type_data; 7827 struct i40e_netdev_priv *np = netdev_priv(netdev); 7828 struct i40e_vsi *vsi = np->vsi; 7829 struct i40e_pf *pf = vsi->back; 7830 u8 enabled_tc = 0, num_tc, hw; 7831 bool need_reset = false; 7832 int old_queue_pairs; 7833 int ret = -EINVAL; 7834 u16 mode; 7835 int i; 7836 7837 old_queue_pairs = vsi->num_queue_pairs; 7838 num_tc = mqprio_qopt->qopt.num_tc; 7839 hw = mqprio_qopt->qopt.hw; 7840 mode = mqprio_qopt->mode; 7841 if (!hw) { 7842 pf->flags &= ~I40E_FLAG_TC_MQPRIO; 7843 memcpy(&vsi->mqprio_qopt, mqprio_qopt, sizeof(*mqprio_qopt)); 7844 goto config_tc; 7845 } 7846 7847 /* Check if MFP enabled */ 7848 if (pf->flags & I40E_FLAG_MFP_ENABLED) { 7849 netdev_info(netdev, 7850 "Configuring TC not supported in MFP mode\n"); 7851 return ret; 7852 } 7853 switch (mode) { 7854 case TC_MQPRIO_MODE_DCB: 7855 pf->flags &= ~I40E_FLAG_TC_MQPRIO; 7856 7857 /* Check if DCB enabled to continue */ 7858 if (!(pf->flags & I40E_FLAG_DCB_ENABLED)) { 7859 netdev_info(netdev, 7860 "DCB is not enabled for adapter\n"); 7861 return ret; 7862 } 7863 7864 /* Check whether tc count is within enabled limit */ 7865 if (num_tc > i40e_pf_get_num_tc(pf)) { 7866 netdev_info(netdev, 7867 "TC count greater than enabled on link for adapter\n"); 7868 return ret; 7869 } 7870 break; 7871 case TC_MQPRIO_MODE_CHANNEL: 7872 if (pf->flags & I40E_FLAG_DCB_ENABLED) { 7873 netdev_info(netdev, 7874 "Full offload of TC Mqprio options is not supported when DCB is enabled\n"); 7875 return ret; 7876 } 7877 if (!(pf->flags & I40E_FLAG_MSIX_ENABLED)) 7878 return ret; 7879 ret = i40e_validate_mqprio_qopt(vsi, mqprio_qopt); 7880 if (ret) 7881 return ret; 7882 memcpy(&vsi->mqprio_qopt, mqprio_qopt, 7883 sizeof(*mqprio_qopt)); 7884 pf->flags |= I40E_FLAG_TC_MQPRIO; 7885 pf->flags &= ~I40E_FLAG_DCB_ENABLED; 7886 break; 7887 default: 7888 return -EINVAL; 7889 } 7890 7891 config_tc: 7892 /* Generate TC map for number of tc requested */ 7893 for (i = 0; i < num_tc; i++) 7894 enabled_tc |= BIT(i); 7895 7896 /* Requesting same TC configuration as already enabled */ 7897 if (enabled_tc == vsi->tc_config.enabled_tc && 7898 mode != TC_MQPRIO_MODE_CHANNEL) 7899 return 0; 7900 7901 /* Quiesce VSI queues */ 7902 i40e_quiesce_vsi(vsi); 7903 7904 if (!hw && !(pf->flags & I40E_FLAG_TC_MQPRIO)) 7905 i40e_remove_queue_channels(vsi); 7906 7907 /* Configure VSI for enabled TCs */ 7908 ret = i40e_vsi_config_tc(vsi, enabled_tc); 7909 if (ret) { 7910 netdev_info(netdev, "Failed configuring TC for VSI seid=%d\n", 7911 vsi->seid); 7912 need_reset = true; 7913 goto exit; 7914 } else { 7915 dev_info(&vsi->back->pdev->dev, 7916 "Setup channel (id:%u) utilizing num_queues %d\n", 7917 vsi->seid, vsi->tc_config.tc_info[0].qcount); 7918 } 7919 7920 if (pf->flags & I40E_FLAG_TC_MQPRIO) { 7921 if (vsi->mqprio_qopt.max_rate[0]) { 7922 u64 max_tx_rate = vsi->mqprio_qopt.max_rate[0]; 7923 7924 do_div(max_tx_rate, I40E_BW_MBPS_DIVISOR); 7925 ret = i40e_set_bw_limit(vsi, vsi->seid, max_tx_rate); 7926 if (!ret) { 7927 u64 credits = max_tx_rate; 7928 7929 do_div(credits, I40E_BW_CREDIT_DIVISOR); 7930 dev_dbg(&vsi->back->pdev->dev, 7931 "Set tx rate of %llu Mbps (count of 50Mbps %llu) for vsi->seid %u\n", 7932 max_tx_rate, 7933 credits, 7934 vsi->seid); 7935 } else { 7936 need_reset = true; 7937 goto exit; 7938 } 7939 } 7940 ret = i40e_configure_queue_channels(vsi); 7941 if (ret) { 7942 vsi->num_queue_pairs = old_queue_pairs; 7943 netdev_info(netdev, 7944 "Failed configuring queue channels\n"); 7945 need_reset = true; 7946 goto exit; 7947 } 7948 } 7949 7950 exit: 7951 /* Reset the configuration data to defaults, only TC0 is enabled */ 7952 if (need_reset) { 7953 i40e_vsi_set_default_tc_config(vsi); 7954 need_reset = false; 7955 } 7956 7957 /* Unquiesce VSI */ 7958 i40e_unquiesce_vsi(vsi); 7959 return ret; 7960 } 7961 7962 /** 7963 * i40e_set_cld_element - sets cloud filter element data 7964 * @filter: cloud filter rule 7965 * @cld: ptr to cloud filter element data 7966 * 7967 * This is helper function to copy data into cloud filter element 7968 **/ 7969 static inline void 7970 i40e_set_cld_element(struct i40e_cloud_filter *filter, 7971 struct i40e_aqc_cloud_filters_element_data *cld) 7972 { 7973 u32 ipa; 7974 int i; 7975 7976 memset(cld, 0, sizeof(*cld)); 7977 ether_addr_copy(cld->outer_mac, filter->dst_mac); 7978 ether_addr_copy(cld->inner_mac, filter->src_mac); 7979 7980 if (filter->n_proto != ETH_P_IP && filter->n_proto != ETH_P_IPV6) 7981 return; 7982 7983 if (filter->n_proto == ETH_P_IPV6) { 7984 #define IPV6_MAX_INDEX (ARRAY_SIZE(filter->dst_ipv6) - 1) 7985 for (i = 0; i < ARRAY_SIZE(filter->dst_ipv6); i++) { 7986 ipa = be32_to_cpu(filter->dst_ipv6[IPV6_MAX_INDEX - i]); 7987 7988 *(__le32 *)&cld->ipaddr.raw_v6.data[i * 2] = cpu_to_le32(ipa); 7989 } 7990 } else { 7991 ipa = be32_to_cpu(filter->dst_ipv4); 7992 7993 memcpy(&cld->ipaddr.v4.data, &ipa, sizeof(ipa)); 7994 } 7995 7996 cld->inner_vlan = cpu_to_le16(ntohs(filter->vlan_id)); 7997 7998 /* tenant_id is not supported by FW now, once the support is enabled 7999 * fill the cld->tenant_id with cpu_to_le32(filter->tenant_id) 8000 */ 8001 if (filter->tenant_id) 8002 return; 8003 } 8004 8005 /** 8006 * i40e_add_del_cloud_filter - Add/del cloud filter 8007 * @vsi: pointer to VSI 8008 * @filter: cloud filter rule 8009 * @add: if true, add, if false, delete 8010 * 8011 * Add or delete a cloud filter for a specific flow spec. 8012 * Returns 0 if the filter were successfully added. 8013 **/ 8014 int i40e_add_del_cloud_filter(struct i40e_vsi *vsi, 8015 struct i40e_cloud_filter *filter, bool add) 8016 { 8017 struct i40e_aqc_cloud_filters_element_data cld_filter; 8018 struct i40e_pf *pf = vsi->back; 8019 int ret; 8020 static const u16 flag_table[128] = { 8021 [I40E_CLOUD_FILTER_FLAGS_OMAC] = 8022 I40E_AQC_ADD_CLOUD_FILTER_OMAC, 8023 [I40E_CLOUD_FILTER_FLAGS_IMAC] = 8024 I40E_AQC_ADD_CLOUD_FILTER_IMAC, 8025 [I40E_CLOUD_FILTER_FLAGS_IMAC_IVLAN] = 8026 I40E_AQC_ADD_CLOUD_FILTER_IMAC_IVLAN, 8027 [I40E_CLOUD_FILTER_FLAGS_IMAC_TEN_ID] = 8028 I40E_AQC_ADD_CLOUD_FILTER_IMAC_TEN_ID, 8029 [I40E_CLOUD_FILTER_FLAGS_OMAC_TEN_ID_IMAC] = 8030 I40E_AQC_ADD_CLOUD_FILTER_OMAC_TEN_ID_IMAC, 8031 [I40E_CLOUD_FILTER_FLAGS_IMAC_IVLAN_TEN_ID] = 8032 I40E_AQC_ADD_CLOUD_FILTER_IMAC_IVLAN_TEN_ID, 8033 [I40E_CLOUD_FILTER_FLAGS_IIP] = 8034 I40E_AQC_ADD_CLOUD_FILTER_IIP, 8035 }; 8036 8037 if (filter->flags >= ARRAY_SIZE(flag_table)) 8038 return I40E_ERR_CONFIG; 8039 8040 memset(&cld_filter, 0, sizeof(cld_filter)); 8041 8042 /* copy element needed to add cloud filter from filter */ 8043 i40e_set_cld_element(filter, &cld_filter); 8044 8045 if (filter->tunnel_type != I40E_CLOUD_TNL_TYPE_NONE) 8046 cld_filter.flags = cpu_to_le16(filter->tunnel_type << 8047 I40E_AQC_ADD_CLOUD_TNL_TYPE_SHIFT); 8048 8049 if (filter->n_proto == ETH_P_IPV6) 8050 cld_filter.flags |= cpu_to_le16(flag_table[filter->flags] | 8051 I40E_AQC_ADD_CLOUD_FLAGS_IPV6); 8052 else 8053 cld_filter.flags |= cpu_to_le16(flag_table[filter->flags] | 8054 I40E_AQC_ADD_CLOUD_FLAGS_IPV4); 8055 8056 if (add) 8057 ret = i40e_aq_add_cloud_filters(&pf->hw, filter->seid, 8058 &cld_filter, 1); 8059 else 8060 ret = i40e_aq_rem_cloud_filters(&pf->hw, filter->seid, 8061 &cld_filter, 1); 8062 if (ret) 8063 dev_dbg(&pf->pdev->dev, 8064 "Failed to %s cloud filter using l4 port %u, err %d aq_err %d\n", 8065 add ? "add" : "delete", filter->dst_port, ret, 8066 pf->hw.aq.asq_last_status); 8067 else 8068 dev_info(&pf->pdev->dev, 8069 "%s cloud filter for VSI: %d\n", 8070 add ? "Added" : "Deleted", filter->seid); 8071 return ret; 8072 } 8073 8074 /** 8075 * i40e_add_del_cloud_filter_big_buf - Add/del cloud filter using big_buf 8076 * @vsi: pointer to VSI 8077 * @filter: cloud filter rule 8078 * @add: if true, add, if false, delete 8079 * 8080 * Add or delete a cloud filter for a specific flow spec using big buffer. 8081 * Returns 0 if the filter were successfully added. 8082 **/ 8083 int i40e_add_del_cloud_filter_big_buf(struct i40e_vsi *vsi, 8084 struct i40e_cloud_filter *filter, 8085 bool add) 8086 { 8087 struct i40e_aqc_cloud_filters_element_bb cld_filter; 8088 struct i40e_pf *pf = vsi->back; 8089 int ret; 8090 8091 /* Both (src/dst) valid mac_addr are not supported */ 8092 if ((is_valid_ether_addr(filter->dst_mac) && 8093 is_valid_ether_addr(filter->src_mac)) || 8094 (is_multicast_ether_addr(filter->dst_mac) && 8095 is_multicast_ether_addr(filter->src_mac))) 8096 return -EOPNOTSUPP; 8097 8098 /* Big buffer cloud filter needs 'L4 port' to be non-zero. Also, UDP 8099 * ports are not supported via big buffer now. 8100 */ 8101 if (!filter->dst_port || filter->ip_proto == IPPROTO_UDP) 8102 return -EOPNOTSUPP; 8103 8104 /* adding filter using src_port/src_ip is not supported at this stage */ 8105 if (filter->src_port || 8106 (filter->src_ipv4 && filter->n_proto != ETH_P_IPV6) || 8107 !ipv6_addr_any(&filter->ip.v6.src_ip6)) 8108 return -EOPNOTSUPP; 8109 8110 memset(&cld_filter, 0, sizeof(cld_filter)); 8111 8112 /* copy element needed to add cloud filter from filter */ 8113 i40e_set_cld_element(filter, &cld_filter.element); 8114 8115 if (is_valid_ether_addr(filter->dst_mac) || 8116 is_valid_ether_addr(filter->src_mac) || 8117 is_multicast_ether_addr(filter->dst_mac) || 8118 is_multicast_ether_addr(filter->src_mac)) { 8119 /* MAC + IP : unsupported mode */ 8120 if (filter->dst_ipv4) 8121 return -EOPNOTSUPP; 8122 8123 /* since we validated that L4 port must be valid before 8124 * we get here, start with respective "flags" value 8125 * and update if vlan is present or not 8126 */ 8127 cld_filter.element.flags = 8128 cpu_to_le16(I40E_AQC_ADD_CLOUD_FILTER_MAC_PORT); 8129 8130 if (filter->vlan_id) { 8131 cld_filter.element.flags = 8132 cpu_to_le16(I40E_AQC_ADD_CLOUD_FILTER_MAC_VLAN_PORT); 8133 } 8134 8135 } else if ((filter->dst_ipv4 && filter->n_proto != ETH_P_IPV6) || 8136 !ipv6_addr_any(&filter->ip.v6.dst_ip6)) { 8137 cld_filter.element.flags = 8138 cpu_to_le16(I40E_AQC_ADD_CLOUD_FILTER_IP_PORT); 8139 if (filter->n_proto == ETH_P_IPV6) 8140 cld_filter.element.flags |= 8141 cpu_to_le16(I40E_AQC_ADD_CLOUD_FLAGS_IPV6); 8142 else 8143 cld_filter.element.flags |= 8144 cpu_to_le16(I40E_AQC_ADD_CLOUD_FLAGS_IPV4); 8145 } else { 8146 dev_err(&pf->pdev->dev, 8147 "either mac or ip has to be valid for cloud filter\n"); 8148 return -EINVAL; 8149 } 8150 8151 /* Now copy L4 port in Byte 6..7 in general fields */ 8152 cld_filter.general_fields[I40E_AQC_ADD_CLOUD_FV_FLU_0X16_WORD0] = 8153 be16_to_cpu(filter->dst_port); 8154 8155 if (add) { 8156 /* Validate current device switch mode, change if necessary */ 8157 ret = i40e_validate_and_set_switch_mode(vsi); 8158 if (ret) { 8159 dev_err(&pf->pdev->dev, 8160 "failed to set switch mode, ret %d\n", 8161 ret); 8162 return ret; 8163 } 8164 8165 ret = i40e_aq_add_cloud_filters_bb(&pf->hw, filter->seid, 8166 &cld_filter, 1); 8167 } else { 8168 ret = i40e_aq_rem_cloud_filters_bb(&pf->hw, filter->seid, 8169 &cld_filter, 1); 8170 } 8171 8172 if (ret) 8173 dev_dbg(&pf->pdev->dev, 8174 "Failed to %s cloud filter(big buffer) err %d aq_err %d\n", 8175 add ? "add" : "delete", ret, pf->hw.aq.asq_last_status); 8176 else 8177 dev_info(&pf->pdev->dev, 8178 "%s cloud filter for VSI: %d, L4 port: %d\n", 8179 add ? "add" : "delete", filter->seid, 8180 ntohs(filter->dst_port)); 8181 return ret; 8182 } 8183 8184 /** 8185 * i40e_parse_cls_flower - Parse tc flower filters provided by kernel 8186 * @vsi: Pointer to VSI 8187 * @f: Pointer to struct flow_cls_offload 8188 * @filter: Pointer to cloud filter structure 8189 * 8190 **/ 8191 static int i40e_parse_cls_flower(struct i40e_vsi *vsi, 8192 struct flow_cls_offload *f, 8193 struct i40e_cloud_filter *filter) 8194 { 8195 struct flow_rule *rule = flow_cls_offload_flow_rule(f); 8196 struct flow_dissector *dissector = rule->match.dissector; 8197 u16 n_proto_mask = 0, n_proto_key = 0, addr_type = 0; 8198 struct i40e_pf *pf = vsi->back; 8199 u8 field_flags = 0; 8200 8201 if (dissector->used_keys & 8202 ~(BIT(FLOW_DISSECTOR_KEY_CONTROL) | 8203 BIT(FLOW_DISSECTOR_KEY_BASIC) | 8204 BIT(FLOW_DISSECTOR_KEY_ETH_ADDRS) | 8205 BIT(FLOW_DISSECTOR_KEY_VLAN) | 8206 BIT(FLOW_DISSECTOR_KEY_IPV4_ADDRS) | 8207 BIT(FLOW_DISSECTOR_KEY_IPV6_ADDRS) | 8208 BIT(FLOW_DISSECTOR_KEY_PORTS) | 8209 BIT(FLOW_DISSECTOR_KEY_ENC_KEYID))) { 8210 dev_err(&pf->pdev->dev, "Unsupported key used: 0x%x\n", 8211 dissector->used_keys); 8212 return -EOPNOTSUPP; 8213 } 8214 8215 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ENC_KEYID)) { 8216 struct flow_match_enc_keyid match; 8217 8218 flow_rule_match_enc_keyid(rule, &match); 8219 if (match.mask->keyid != 0) 8220 field_flags |= I40E_CLOUD_FIELD_TEN_ID; 8221 8222 filter->tenant_id = be32_to_cpu(match.key->keyid); 8223 } 8224 8225 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_BASIC)) { 8226 struct flow_match_basic match; 8227 8228 flow_rule_match_basic(rule, &match); 8229 n_proto_key = ntohs(match.key->n_proto); 8230 n_proto_mask = ntohs(match.mask->n_proto); 8231 8232 if (n_proto_key == ETH_P_ALL) { 8233 n_proto_key = 0; 8234 n_proto_mask = 0; 8235 } 8236 filter->n_proto = n_proto_key & n_proto_mask; 8237 filter->ip_proto = match.key->ip_proto; 8238 } 8239 8240 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ETH_ADDRS)) { 8241 struct flow_match_eth_addrs match; 8242 8243 flow_rule_match_eth_addrs(rule, &match); 8244 8245 /* use is_broadcast and is_zero to check for all 0xf or 0 */ 8246 if (!is_zero_ether_addr(match.mask->dst)) { 8247 if (is_broadcast_ether_addr(match.mask->dst)) { 8248 field_flags |= I40E_CLOUD_FIELD_OMAC; 8249 } else { 8250 dev_err(&pf->pdev->dev, "Bad ether dest mask %pM\n", 8251 match.mask->dst); 8252 return I40E_ERR_CONFIG; 8253 } 8254 } 8255 8256 if (!is_zero_ether_addr(match.mask->src)) { 8257 if (is_broadcast_ether_addr(match.mask->src)) { 8258 field_flags |= I40E_CLOUD_FIELD_IMAC; 8259 } else { 8260 dev_err(&pf->pdev->dev, "Bad ether src mask %pM\n", 8261 match.mask->src); 8262 return I40E_ERR_CONFIG; 8263 } 8264 } 8265 ether_addr_copy(filter->dst_mac, match.key->dst); 8266 ether_addr_copy(filter->src_mac, match.key->src); 8267 } 8268 8269 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_VLAN)) { 8270 struct flow_match_vlan match; 8271 8272 flow_rule_match_vlan(rule, &match); 8273 if (match.mask->vlan_id) { 8274 if (match.mask->vlan_id == VLAN_VID_MASK) { 8275 field_flags |= I40E_CLOUD_FIELD_IVLAN; 8276 8277 } else { 8278 dev_err(&pf->pdev->dev, "Bad vlan mask 0x%04x\n", 8279 match.mask->vlan_id); 8280 return I40E_ERR_CONFIG; 8281 } 8282 } 8283 8284 filter->vlan_id = cpu_to_be16(match.key->vlan_id); 8285 } 8286 8287 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_CONTROL)) { 8288 struct flow_match_control match; 8289 8290 flow_rule_match_control(rule, &match); 8291 addr_type = match.key->addr_type; 8292 } 8293 8294 if (addr_type == FLOW_DISSECTOR_KEY_IPV4_ADDRS) { 8295 struct flow_match_ipv4_addrs match; 8296 8297 flow_rule_match_ipv4_addrs(rule, &match); 8298 if (match.mask->dst) { 8299 if (match.mask->dst == cpu_to_be32(0xffffffff)) { 8300 field_flags |= I40E_CLOUD_FIELD_IIP; 8301 } else { 8302 dev_err(&pf->pdev->dev, "Bad ip dst mask %pI4b\n", 8303 &match.mask->dst); 8304 return I40E_ERR_CONFIG; 8305 } 8306 } 8307 8308 if (match.mask->src) { 8309 if (match.mask->src == cpu_to_be32(0xffffffff)) { 8310 field_flags |= I40E_CLOUD_FIELD_IIP; 8311 } else { 8312 dev_err(&pf->pdev->dev, "Bad ip src mask %pI4b\n", 8313 &match.mask->src); 8314 return I40E_ERR_CONFIG; 8315 } 8316 } 8317 8318 if (field_flags & I40E_CLOUD_FIELD_TEN_ID) { 8319 dev_err(&pf->pdev->dev, "Tenant id not allowed for ip filter\n"); 8320 return I40E_ERR_CONFIG; 8321 } 8322 filter->dst_ipv4 = match.key->dst; 8323 filter->src_ipv4 = match.key->src; 8324 } 8325 8326 if (addr_type == FLOW_DISSECTOR_KEY_IPV6_ADDRS) { 8327 struct flow_match_ipv6_addrs match; 8328 8329 flow_rule_match_ipv6_addrs(rule, &match); 8330 8331 /* src and dest IPV6 address should not be LOOPBACK 8332 * (0:0:0:0:0:0:0:1), which can be represented as ::1 8333 */ 8334 if (ipv6_addr_loopback(&match.key->dst) || 8335 ipv6_addr_loopback(&match.key->src)) { 8336 dev_err(&pf->pdev->dev, 8337 "Bad ipv6, addr is LOOPBACK\n"); 8338 return I40E_ERR_CONFIG; 8339 } 8340 if (!ipv6_addr_any(&match.mask->dst) || 8341 !ipv6_addr_any(&match.mask->src)) 8342 field_flags |= I40E_CLOUD_FIELD_IIP; 8343 8344 memcpy(&filter->src_ipv6, &match.key->src.s6_addr32, 8345 sizeof(filter->src_ipv6)); 8346 memcpy(&filter->dst_ipv6, &match.key->dst.s6_addr32, 8347 sizeof(filter->dst_ipv6)); 8348 } 8349 8350 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_PORTS)) { 8351 struct flow_match_ports match; 8352 8353 flow_rule_match_ports(rule, &match); 8354 if (match.mask->src) { 8355 if (match.mask->src == cpu_to_be16(0xffff)) { 8356 field_flags |= I40E_CLOUD_FIELD_IIP; 8357 } else { 8358 dev_err(&pf->pdev->dev, "Bad src port mask 0x%04x\n", 8359 be16_to_cpu(match.mask->src)); 8360 return I40E_ERR_CONFIG; 8361 } 8362 } 8363 8364 if (match.mask->dst) { 8365 if (match.mask->dst == cpu_to_be16(0xffff)) { 8366 field_flags |= I40E_CLOUD_FIELD_IIP; 8367 } else { 8368 dev_err(&pf->pdev->dev, "Bad dst port mask 0x%04x\n", 8369 be16_to_cpu(match.mask->dst)); 8370 return I40E_ERR_CONFIG; 8371 } 8372 } 8373 8374 filter->dst_port = match.key->dst; 8375 filter->src_port = match.key->src; 8376 8377 switch (filter->ip_proto) { 8378 case IPPROTO_TCP: 8379 case IPPROTO_UDP: 8380 break; 8381 default: 8382 dev_err(&pf->pdev->dev, 8383 "Only UDP and TCP transport are supported\n"); 8384 return -EINVAL; 8385 } 8386 } 8387 filter->flags = field_flags; 8388 return 0; 8389 } 8390 8391 /** 8392 * i40e_handle_tclass: Forward to a traffic class on the device 8393 * @vsi: Pointer to VSI 8394 * @tc: traffic class index on the device 8395 * @filter: Pointer to cloud filter structure 8396 * 8397 **/ 8398 static int i40e_handle_tclass(struct i40e_vsi *vsi, u32 tc, 8399 struct i40e_cloud_filter *filter) 8400 { 8401 struct i40e_channel *ch, *ch_tmp; 8402 8403 /* direct to a traffic class on the same device */ 8404 if (tc == 0) { 8405 filter->seid = vsi->seid; 8406 return 0; 8407 } else if (vsi->tc_config.enabled_tc & BIT(tc)) { 8408 if (!filter->dst_port) { 8409 dev_err(&vsi->back->pdev->dev, 8410 "Specify destination port to direct to traffic class that is not default\n"); 8411 return -EINVAL; 8412 } 8413 if (list_empty(&vsi->ch_list)) 8414 return -EINVAL; 8415 list_for_each_entry_safe(ch, ch_tmp, &vsi->ch_list, 8416 list) { 8417 if (ch->seid == vsi->tc_seid_map[tc]) 8418 filter->seid = ch->seid; 8419 } 8420 return 0; 8421 } 8422 dev_err(&vsi->back->pdev->dev, "TC is not enabled\n"); 8423 return -EINVAL; 8424 } 8425 8426 /** 8427 * i40e_configure_clsflower - Configure tc flower filters 8428 * @vsi: Pointer to VSI 8429 * @cls_flower: Pointer to struct flow_cls_offload 8430 * 8431 **/ 8432 static int i40e_configure_clsflower(struct i40e_vsi *vsi, 8433 struct flow_cls_offload *cls_flower) 8434 { 8435 int tc = tc_classid_to_hwtc(vsi->netdev, cls_flower->classid); 8436 struct i40e_cloud_filter *filter = NULL; 8437 struct i40e_pf *pf = vsi->back; 8438 int err = 0; 8439 8440 if (tc < 0) { 8441 dev_err(&vsi->back->pdev->dev, "Invalid traffic class\n"); 8442 return -EOPNOTSUPP; 8443 } 8444 8445 if (test_bit(__I40E_RESET_RECOVERY_PENDING, pf->state) || 8446 test_bit(__I40E_RESET_INTR_RECEIVED, pf->state)) 8447 return -EBUSY; 8448 8449 if (pf->fdir_pf_active_filters || 8450 (!hlist_empty(&pf->fdir_filter_list))) { 8451 dev_err(&vsi->back->pdev->dev, 8452 "Flow Director Sideband filters exists, turn ntuple off to configure cloud filters\n"); 8453 return -EINVAL; 8454 } 8455 8456 if (vsi->back->flags & I40E_FLAG_FD_SB_ENABLED) { 8457 dev_err(&vsi->back->pdev->dev, 8458 "Disable Flow Director Sideband, configuring Cloud filters via tc-flower\n"); 8459 vsi->back->flags &= ~I40E_FLAG_FD_SB_ENABLED; 8460 vsi->back->flags |= I40E_FLAG_FD_SB_TO_CLOUD_FILTER; 8461 } 8462 8463 filter = kzalloc(sizeof(*filter), GFP_KERNEL); 8464 if (!filter) 8465 return -ENOMEM; 8466 8467 filter->cookie = cls_flower->cookie; 8468 8469 err = i40e_parse_cls_flower(vsi, cls_flower, filter); 8470 if (err < 0) 8471 goto err; 8472 8473 err = i40e_handle_tclass(vsi, tc, filter); 8474 if (err < 0) 8475 goto err; 8476 8477 /* Add cloud filter */ 8478 if (filter->dst_port) 8479 err = i40e_add_del_cloud_filter_big_buf(vsi, filter, true); 8480 else 8481 err = i40e_add_del_cloud_filter(vsi, filter, true); 8482 8483 if (err) { 8484 dev_err(&pf->pdev->dev, 8485 "Failed to add cloud filter, err %s\n", 8486 i40e_stat_str(&pf->hw, err)); 8487 goto err; 8488 } 8489 8490 /* add filter to the ordered list */ 8491 INIT_HLIST_NODE(&filter->cloud_node); 8492 8493 hlist_add_head(&filter->cloud_node, &pf->cloud_filter_list); 8494 8495 pf->num_cloud_filters++; 8496 8497 return err; 8498 err: 8499 kfree(filter); 8500 return err; 8501 } 8502 8503 /** 8504 * i40e_find_cloud_filter - Find the could filter in the list 8505 * @vsi: Pointer to VSI 8506 * @cookie: filter specific cookie 8507 * 8508 **/ 8509 static struct i40e_cloud_filter *i40e_find_cloud_filter(struct i40e_vsi *vsi, 8510 unsigned long *cookie) 8511 { 8512 struct i40e_cloud_filter *filter = NULL; 8513 struct hlist_node *node2; 8514 8515 hlist_for_each_entry_safe(filter, node2, 8516 &vsi->back->cloud_filter_list, cloud_node) 8517 if (!memcmp(cookie, &filter->cookie, sizeof(filter->cookie))) 8518 return filter; 8519 return NULL; 8520 } 8521 8522 /** 8523 * i40e_delete_clsflower - Remove tc flower filters 8524 * @vsi: Pointer to VSI 8525 * @cls_flower: Pointer to struct flow_cls_offload 8526 * 8527 **/ 8528 static int i40e_delete_clsflower(struct i40e_vsi *vsi, 8529 struct flow_cls_offload *cls_flower) 8530 { 8531 struct i40e_cloud_filter *filter = NULL; 8532 struct i40e_pf *pf = vsi->back; 8533 int err = 0; 8534 8535 filter = i40e_find_cloud_filter(vsi, &cls_flower->cookie); 8536 8537 if (!filter) 8538 return -EINVAL; 8539 8540 hash_del(&filter->cloud_node); 8541 8542 if (filter->dst_port) 8543 err = i40e_add_del_cloud_filter_big_buf(vsi, filter, false); 8544 else 8545 err = i40e_add_del_cloud_filter(vsi, filter, false); 8546 8547 kfree(filter); 8548 if (err) { 8549 dev_err(&pf->pdev->dev, 8550 "Failed to delete cloud filter, err %s\n", 8551 i40e_stat_str(&pf->hw, err)); 8552 return i40e_aq_rc_to_posix(err, pf->hw.aq.asq_last_status); 8553 } 8554 8555 pf->num_cloud_filters--; 8556 if (!pf->num_cloud_filters) 8557 if ((pf->flags & I40E_FLAG_FD_SB_TO_CLOUD_FILTER) && 8558 !(pf->flags & I40E_FLAG_FD_SB_INACTIVE)) { 8559 pf->flags |= I40E_FLAG_FD_SB_ENABLED; 8560 pf->flags &= ~I40E_FLAG_FD_SB_TO_CLOUD_FILTER; 8561 pf->flags &= ~I40E_FLAG_FD_SB_INACTIVE; 8562 } 8563 return 0; 8564 } 8565 8566 /** 8567 * i40e_setup_tc_cls_flower - flower classifier offloads 8568 * @np: net device to configure 8569 * @cls_flower: offload data 8570 **/ 8571 static int i40e_setup_tc_cls_flower(struct i40e_netdev_priv *np, 8572 struct flow_cls_offload *cls_flower) 8573 { 8574 struct i40e_vsi *vsi = np->vsi; 8575 8576 switch (cls_flower->command) { 8577 case FLOW_CLS_REPLACE: 8578 return i40e_configure_clsflower(vsi, cls_flower); 8579 case FLOW_CLS_DESTROY: 8580 return i40e_delete_clsflower(vsi, cls_flower); 8581 case FLOW_CLS_STATS: 8582 return -EOPNOTSUPP; 8583 default: 8584 return -EOPNOTSUPP; 8585 } 8586 } 8587 8588 static int i40e_setup_tc_block_cb(enum tc_setup_type type, void *type_data, 8589 void *cb_priv) 8590 { 8591 struct i40e_netdev_priv *np = cb_priv; 8592 8593 if (!tc_cls_can_offload_and_chain0(np->vsi->netdev, type_data)) 8594 return -EOPNOTSUPP; 8595 8596 switch (type) { 8597 case TC_SETUP_CLSFLOWER: 8598 return i40e_setup_tc_cls_flower(np, type_data); 8599 8600 default: 8601 return -EOPNOTSUPP; 8602 } 8603 } 8604 8605 static LIST_HEAD(i40e_block_cb_list); 8606 8607 static int __i40e_setup_tc(struct net_device *netdev, enum tc_setup_type type, 8608 void *type_data) 8609 { 8610 struct i40e_netdev_priv *np = netdev_priv(netdev); 8611 8612 switch (type) { 8613 case TC_SETUP_QDISC_MQPRIO: 8614 return i40e_setup_tc(netdev, type_data); 8615 case TC_SETUP_BLOCK: 8616 return flow_block_cb_setup_simple(type_data, 8617 &i40e_block_cb_list, 8618 i40e_setup_tc_block_cb, 8619 np, np, true); 8620 default: 8621 return -EOPNOTSUPP; 8622 } 8623 } 8624 8625 /** 8626 * i40e_open - Called when a network interface is made active 8627 * @netdev: network interface device structure 8628 * 8629 * The open entry point is called when a network interface is made 8630 * active by the system (IFF_UP). At this point all resources needed 8631 * for transmit and receive operations are allocated, the interrupt 8632 * handler is registered with the OS, the netdev watchdog subtask is 8633 * enabled, and the stack is notified that the interface is ready. 8634 * 8635 * Returns 0 on success, negative value on failure 8636 **/ 8637 int i40e_open(struct net_device *netdev) 8638 { 8639 struct i40e_netdev_priv *np = netdev_priv(netdev); 8640 struct i40e_vsi *vsi = np->vsi; 8641 struct i40e_pf *pf = vsi->back; 8642 int err; 8643 8644 /* disallow open during test or if eeprom is broken */ 8645 if (test_bit(__I40E_TESTING, pf->state) || 8646 test_bit(__I40E_BAD_EEPROM, pf->state)) 8647 return -EBUSY; 8648 8649 netif_carrier_off(netdev); 8650 8651 if (i40e_force_link_state(pf, true)) 8652 return -EAGAIN; 8653 8654 err = i40e_vsi_open(vsi); 8655 if (err) 8656 return err; 8657 8658 /* configure global TSO hardware offload settings */ 8659 wr32(&pf->hw, I40E_GLLAN_TSOMSK_F, be32_to_cpu(TCP_FLAG_PSH | 8660 TCP_FLAG_FIN) >> 16); 8661 wr32(&pf->hw, I40E_GLLAN_TSOMSK_M, be32_to_cpu(TCP_FLAG_PSH | 8662 TCP_FLAG_FIN | 8663 TCP_FLAG_CWR) >> 16); 8664 wr32(&pf->hw, I40E_GLLAN_TSOMSK_L, be32_to_cpu(TCP_FLAG_CWR) >> 16); 8665 udp_tunnel_get_rx_info(netdev); 8666 8667 return 0; 8668 } 8669 8670 /** 8671 * i40e_vsi_open - 8672 * @vsi: the VSI to open 8673 * 8674 * Finish initialization of the VSI. 8675 * 8676 * Returns 0 on success, negative value on failure 8677 * 8678 * Note: expects to be called while under rtnl_lock() 8679 **/ 8680 int i40e_vsi_open(struct i40e_vsi *vsi) 8681 { 8682 struct i40e_pf *pf = vsi->back; 8683 char int_name[I40E_INT_NAME_STR_LEN]; 8684 int err; 8685 8686 /* allocate descriptors */ 8687 err = i40e_vsi_setup_tx_resources(vsi); 8688 if (err) 8689 goto err_setup_tx; 8690 err = i40e_vsi_setup_rx_resources(vsi); 8691 if (err) 8692 goto err_setup_rx; 8693 8694 err = i40e_vsi_configure(vsi); 8695 if (err) 8696 goto err_setup_rx; 8697 8698 if (vsi->netdev) { 8699 snprintf(int_name, sizeof(int_name) - 1, "%s-%s", 8700 dev_driver_string(&pf->pdev->dev), vsi->netdev->name); 8701 err = i40e_vsi_request_irq(vsi, int_name); 8702 if (err) 8703 goto err_setup_rx; 8704 8705 /* Notify the stack of the actual queue counts. */ 8706 err = netif_set_real_num_tx_queues(vsi->netdev, 8707 vsi->num_queue_pairs); 8708 if (err) 8709 goto err_set_queues; 8710 8711 err = netif_set_real_num_rx_queues(vsi->netdev, 8712 vsi->num_queue_pairs); 8713 if (err) 8714 goto err_set_queues; 8715 8716 } else if (vsi->type == I40E_VSI_FDIR) { 8717 snprintf(int_name, sizeof(int_name) - 1, "%s-%s:fdir", 8718 dev_driver_string(&pf->pdev->dev), 8719 dev_name(&pf->pdev->dev)); 8720 err = i40e_vsi_request_irq(vsi, int_name); 8721 if (err) 8722 goto err_setup_rx; 8723 8724 } else { 8725 err = -EINVAL; 8726 goto err_setup_rx; 8727 } 8728 8729 err = i40e_up_complete(vsi); 8730 if (err) 8731 goto err_up_complete; 8732 8733 return 0; 8734 8735 err_up_complete: 8736 i40e_down(vsi); 8737 err_set_queues: 8738 i40e_vsi_free_irq(vsi); 8739 err_setup_rx: 8740 i40e_vsi_free_rx_resources(vsi); 8741 err_setup_tx: 8742 i40e_vsi_free_tx_resources(vsi); 8743 if (vsi == pf->vsi[pf->lan_vsi]) 8744 i40e_do_reset(pf, I40E_PF_RESET_FLAG, true); 8745 8746 return err; 8747 } 8748 8749 /** 8750 * i40e_fdir_filter_exit - Cleans up the Flow Director accounting 8751 * @pf: Pointer to PF 8752 * 8753 * This function destroys the hlist where all the Flow Director 8754 * filters were saved. 8755 **/ 8756 static void i40e_fdir_filter_exit(struct i40e_pf *pf) 8757 { 8758 struct i40e_fdir_filter *filter; 8759 struct i40e_flex_pit *pit_entry, *tmp; 8760 struct hlist_node *node2; 8761 8762 hlist_for_each_entry_safe(filter, node2, 8763 &pf->fdir_filter_list, fdir_node) { 8764 hlist_del(&filter->fdir_node); 8765 kfree(filter); 8766 } 8767 8768 list_for_each_entry_safe(pit_entry, tmp, &pf->l3_flex_pit_list, list) { 8769 list_del(&pit_entry->list); 8770 kfree(pit_entry); 8771 } 8772 INIT_LIST_HEAD(&pf->l3_flex_pit_list); 8773 8774 list_for_each_entry_safe(pit_entry, tmp, &pf->l4_flex_pit_list, list) { 8775 list_del(&pit_entry->list); 8776 kfree(pit_entry); 8777 } 8778 INIT_LIST_HEAD(&pf->l4_flex_pit_list); 8779 8780 pf->fdir_pf_active_filters = 0; 8781 i40e_reset_fdir_filter_cnt(pf); 8782 8783 /* Reprogram the default input set for TCP/IPv4 */ 8784 i40e_write_fd_input_set(pf, I40E_FILTER_PCTYPE_NONF_IPV4_TCP, 8785 I40E_L3_SRC_MASK | I40E_L3_DST_MASK | 8786 I40E_L4_SRC_MASK | I40E_L4_DST_MASK); 8787 8788 /* Reprogram the default input set for TCP/IPv6 */ 8789 i40e_write_fd_input_set(pf, I40E_FILTER_PCTYPE_NONF_IPV6_TCP, 8790 I40E_L3_V6_SRC_MASK | I40E_L3_V6_DST_MASK | 8791 I40E_L4_SRC_MASK | I40E_L4_DST_MASK); 8792 8793 /* Reprogram the default input set for UDP/IPv4 */ 8794 i40e_write_fd_input_set(pf, I40E_FILTER_PCTYPE_NONF_IPV4_UDP, 8795 I40E_L3_SRC_MASK | I40E_L3_DST_MASK | 8796 I40E_L4_SRC_MASK | I40E_L4_DST_MASK); 8797 8798 /* Reprogram the default input set for UDP/IPv6 */ 8799 i40e_write_fd_input_set(pf, I40E_FILTER_PCTYPE_NONF_IPV6_UDP, 8800 I40E_L3_V6_SRC_MASK | I40E_L3_V6_DST_MASK | 8801 I40E_L4_SRC_MASK | I40E_L4_DST_MASK); 8802 8803 /* Reprogram the default input set for SCTP/IPv4 */ 8804 i40e_write_fd_input_set(pf, I40E_FILTER_PCTYPE_NONF_IPV4_SCTP, 8805 I40E_L3_SRC_MASK | I40E_L3_DST_MASK | 8806 I40E_L4_SRC_MASK | I40E_L4_DST_MASK); 8807 8808 /* Reprogram the default input set for SCTP/IPv6 */ 8809 i40e_write_fd_input_set(pf, I40E_FILTER_PCTYPE_NONF_IPV6_SCTP, 8810 I40E_L3_V6_SRC_MASK | I40E_L3_V6_DST_MASK | 8811 I40E_L4_SRC_MASK | I40E_L4_DST_MASK); 8812 8813 /* Reprogram the default input set for Other/IPv4 */ 8814 i40e_write_fd_input_set(pf, I40E_FILTER_PCTYPE_NONF_IPV4_OTHER, 8815 I40E_L3_SRC_MASK | I40E_L3_DST_MASK); 8816 8817 i40e_write_fd_input_set(pf, I40E_FILTER_PCTYPE_FRAG_IPV4, 8818 I40E_L3_SRC_MASK | I40E_L3_DST_MASK); 8819 8820 /* Reprogram the default input set for Other/IPv6 */ 8821 i40e_write_fd_input_set(pf, I40E_FILTER_PCTYPE_NONF_IPV6_OTHER, 8822 I40E_L3_SRC_MASK | I40E_L3_DST_MASK); 8823 8824 i40e_write_fd_input_set(pf, I40E_FILTER_PCTYPE_FRAG_IPV6, 8825 I40E_L3_SRC_MASK | I40E_L3_DST_MASK); 8826 } 8827 8828 /** 8829 * i40e_cloud_filter_exit - Cleans up the cloud filters 8830 * @pf: Pointer to PF 8831 * 8832 * This function destroys the hlist where all the cloud filters 8833 * were saved. 8834 **/ 8835 static void i40e_cloud_filter_exit(struct i40e_pf *pf) 8836 { 8837 struct i40e_cloud_filter *cfilter; 8838 struct hlist_node *node; 8839 8840 hlist_for_each_entry_safe(cfilter, node, 8841 &pf->cloud_filter_list, cloud_node) { 8842 hlist_del(&cfilter->cloud_node); 8843 kfree(cfilter); 8844 } 8845 pf->num_cloud_filters = 0; 8846 8847 if ((pf->flags & I40E_FLAG_FD_SB_TO_CLOUD_FILTER) && 8848 !(pf->flags & I40E_FLAG_FD_SB_INACTIVE)) { 8849 pf->flags |= I40E_FLAG_FD_SB_ENABLED; 8850 pf->flags &= ~I40E_FLAG_FD_SB_TO_CLOUD_FILTER; 8851 pf->flags &= ~I40E_FLAG_FD_SB_INACTIVE; 8852 } 8853 } 8854 8855 /** 8856 * i40e_close - Disables a network interface 8857 * @netdev: network interface device structure 8858 * 8859 * The close entry point is called when an interface is de-activated 8860 * by the OS. The hardware is still under the driver's control, but 8861 * this netdev interface is disabled. 8862 * 8863 * Returns 0, this is not allowed to fail 8864 **/ 8865 int i40e_close(struct net_device *netdev) 8866 { 8867 struct i40e_netdev_priv *np = netdev_priv(netdev); 8868 struct i40e_vsi *vsi = np->vsi; 8869 8870 i40e_vsi_close(vsi); 8871 8872 return 0; 8873 } 8874 8875 /** 8876 * i40e_do_reset - Start a PF or Core Reset sequence 8877 * @pf: board private structure 8878 * @reset_flags: which reset is requested 8879 * @lock_acquired: indicates whether or not the lock has been acquired 8880 * before this function was called. 8881 * 8882 * The essential difference in resets is that the PF Reset 8883 * doesn't clear the packet buffers, doesn't reset the PE 8884 * firmware, and doesn't bother the other PFs on the chip. 8885 **/ 8886 void i40e_do_reset(struct i40e_pf *pf, u32 reset_flags, bool lock_acquired) 8887 { 8888 u32 val; 8889 8890 /* do the biggest reset indicated */ 8891 if (reset_flags & BIT_ULL(__I40E_GLOBAL_RESET_REQUESTED)) { 8892 8893 /* Request a Global Reset 8894 * 8895 * This will start the chip's countdown to the actual full 8896 * chip reset event, and a warning interrupt to be sent 8897 * to all PFs, including the requestor. Our handler 8898 * for the warning interrupt will deal with the shutdown 8899 * and recovery of the switch setup. 8900 */ 8901 dev_dbg(&pf->pdev->dev, "GlobalR requested\n"); 8902 val = rd32(&pf->hw, I40E_GLGEN_RTRIG); 8903 val |= I40E_GLGEN_RTRIG_GLOBR_MASK; 8904 wr32(&pf->hw, I40E_GLGEN_RTRIG, val); 8905 8906 } else if (reset_flags & BIT_ULL(__I40E_CORE_RESET_REQUESTED)) { 8907 8908 /* Request a Core Reset 8909 * 8910 * Same as Global Reset, except does *not* include the MAC/PHY 8911 */ 8912 dev_dbg(&pf->pdev->dev, "CoreR requested\n"); 8913 val = rd32(&pf->hw, I40E_GLGEN_RTRIG); 8914 val |= I40E_GLGEN_RTRIG_CORER_MASK; 8915 wr32(&pf->hw, I40E_GLGEN_RTRIG, val); 8916 i40e_flush(&pf->hw); 8917 8918 } else if (reset_flags & I40E_PF_RESET_FLAG) { 8919 8920 /* Request a PF Reset 8921 * 8922 * Resets only the PF-specific registers 8923 * 8924 * This goes directly to the tear-down and rebuild of 8925 * the switch, since we need to do all the recovery as 8926 * for the Core Reset. 8927 */ 8928 dev_dbg(&pf->pdev->dev, "PFR requested\n"); 8929 i40e_handle_reset_warning(pf, lock_acquired); 8930 8931 } else if (reset_flags & I40E_PF_RESET_AND_REBUILD_FLAG) { 8932 /* Request a PF Reset 8933 * 8934 * Resets PF and reinitializes PFs VSI. 8935 */ 8936 i40e_prep_for_reset(pf); 8937 i40e_reset_and_rebuild(pf, true, lock_acquired); 8938 dev_info(&pf->pdev->dev, 8939 pf->flags & I40E_FLAG_DISABLE_FW_LLDP ? 8940 "FW LLDP is disabled\n" : 8941 "FW LLDP is enabled\n"); 8942 8943 } else if (reset_flags & BIT_ULL(__I40E_REINIT_REQUESTED)) { 8944 int v; 8945 8946 /* Find the VSI(s) that requested a re-init */ 8947 dev_info(&pf->pdev->dev, 8948 "VSI reinit requested\n"); 8949 for (v = 0; v < pf->num_alloc_vsi; v++) { 8950 struct i40e_vsi *vsi = pf->vsi[v]; 8951 8952 if (vsi != NULL && 8953 test_and_clear_bit(__I40E_VSI_REINIT_REQUESTED, 8954 vsi->state)) 8955 i40e_vsi_reinit_locked(pf->vsi[v]); 8956 } 8957 } else if (reset_flags & BIT_ULL(__I40E_DOWN_REQUESTED)) { 8958 int v; 8959 8960 /* Find the VSI(s) that needs to be brought down */ 8961 dev_info(&pf->pdev->dev, "VSI down requested\n"); 8962 for (v = 0; v < pf->num_alloc_vsi; v++) { 8963 struct i40e_vsi *vsi = pf->vsi[v]; 8964 8965 if (vsi != NULL && 8966 test_and_clear_bit(__I40E_VSI_DOWN_REQUESTED, 8967 vsi->state)) { 8968 set_bit(__I40E_VSI_DOWN, vsi->state); 8969 i40e_down(vsi); 8970 } 8971 } 8972 } else { 8973 dev_info(&pf->pdev->dev, 8974 "bad reset request 0x%08x\n", reset_flags); 8975 } 8976 } 8977 8978 #ifdef CONFIG_I40E_DCB 8979 /** 8980 * i40e_dcb_need_reconfig - Check if DCB needs reconfig 8981 * @pf: board private structure 8982 * @old_cfg: current DCB config 8983 * @new_cfg: new DCB config 8984 **/ 8985 bool i40e_dcb_need_reconfig(struct i40e_pf *pf, 8986 struct i40e_dcbx_config *old_cfg, 8987 struct i40e_dcbx_config *new_cfg) 8988 { 8989 bool need_reconfig = false; 8990 8991 /* Check if ETS configuration has changed */ 8992 if (memcmp(&new_cfg->etscfg, 8993 &old_cfg->etscfg, 8994 sizeof(new_cfg->etscfg))) { 8995 /* If Priority Table has changed reconfig is needed */ 8996 if (memcmp(&new_cfg->etscfg.prioritytable, 8997 &old_cfg->etscfg.prioritytable, 8998 sizeof(new_cfg->etscfg.prioritytable))) { 8999 need_reconfig = true; 9000 dev_dbg(&pf->pdev->dev, "ETS UP2TC changed.\n"); 9001 } 9002 9003 if (memcmp(&new_cfg->etscfg.tcbwtable, 9004 &old_cfg->etscfg.tcbwtable, 9005 sizeof(new_cfg->etscfg.tcbwtable))) 9006 dev_dbg(&pf->pdev->dev, "ETS TC BW Table changed.\n"); 9007 9008 if (memcmp(&new_cfg->etscfg.tsatable, 9009 &old_cfg->etscfg.tsatable, 9010 sizeof(new_cfg->etscfg.tsatable))) 9011 dev_dbg(&pf->pdev->dev, "ETS TSA Table changed.\n"); 9012 } 9013 9014 /* Check if PFC configuration has changed */ 9015 if (memcmp(&new_cfg->pfc, 9016 &old_cfg->pfc, 9017 sizeof(new_cfg->pfc))) { 9018 need_reconfig = true; 9019 dev_dbg(&pf->pdev->dev, "PFC config change detected.\n"); 9020 } 9021 9022 /* Check if APP Table has changed */ 9023 if (memcmp(&new_cfg->app, 9024 &old_cfg->app, 9025 sizeof(new_cfg->app))) { 9026 need_reconfig = true; 9027 dev_dbg(&pf->pdev->dev, "APP Table change detected.\n"); 9028 } 9029 9030 dev_dbg(&pf->pdev->dev, "dcb need_reconfig=%d\n", need_reconfig); 9031 return need_reconfig; 9032 } 9033 9034 /** 9035 * i40e_handle_lldp_event - Handle LLDP Change MIB event 9036 * @pf: board private structure 9037 * @e: event info posted on ARQ 9038 **/ 9039 static int i40e_handle_lldp_event(struct i40e_pf *pf, 9040 struct i40e_arq_event_info *e) 9041 { 9042 struct i40e_aqc_lldp_get_mib *mib = 9043 (struct i40e_aqc_lldp_get_mib *)&e->desc.params.raw; 9044 struct i40e_hw *hw = &pf->hw; 9045 struct i40e_dcbx_config tmp_dcbx_cfg; 9046 bool need_reconfig = false; 9047 int ret = 0; 9048 u8 type; 9049 9050 /* X710-T*L 2.5G and 5G speeds don't support DCB */ 9051 if (I40E_IS_X710TL_DEVICE(hw->device_id) && 9052 (hw->phy.link_info.link_speed & 9053 ~(I40E_LINK_SPEED_2_5GB | I40E_LINK_SPEED_5GB)) && 9054 !(pf->flags & I40E_FLAG_DCB_CAPABLE)) 9055 /* let firmware decide if the DCB should be disabled */ 9056 pf->flags |= I40E_FLAG_DCB_CAPABLE; 9057 9058 /* Not DCB capable or capability disabled */ 9059 if (!(pf->flags & I40E_FLAG_DCB_CAPABLE)) 9060 return ret; 9061 9062 /* Ignore if event is not for Nearest Bridge */ 9063 type = ((mib->type >> I40E_AQ_LLDP_BRIDGE_TYPE_SHIFT) 9064 & I40E_AQ_LLDP_BRIDGE_TYPE_MASK); 9065 dev_dbg(&pf->pdev->dev, "LLDP event mib bridge type 0x%x\n", type); 9066 if (type != I40E_AQ_LLDP_BRIDGE_TYPE_NEAREST_BRIDGE) 9067 return ret; 9068 9069 /* Check MIB Type and return if event for Remote MIB update */ 9070 type = mib->type & I40E_AQ_LLDP_MIB_TYPE_MASK; 9071 dev_dbg(&pf->pdev->dev, 9072 "LLDP event mib type %s\n", type ? "remote" : "local"); 9073 if (type == I40E_AQ_LLDP_MIB_REMOTE) { 9074 /* Update the remote cached instance and return */ 9075 ret = i40e_aq_get_dcb_config(hw, I40E_AQ_LLDP_MIB_REMOTE, 9076 I40E_AQ_LLDP_BRIDGE_TYPE_NEAREST_BRIDGE, 9077 &hw->remote_dcbx_config); 9078 goto exit; 9079 } 9080 9081 /* Store the old configuration */ 9082 tmp_dcbx_cfg = hw->local_dcbx_config; 9083 9084 /* Reset the old DCBx configuration data */ 9085 memset(&hw->local_dcbx_config, 0, sizeof(hw->local_dcbx_config)); 9086 /* Get updated DCBX data from firmware */ 9087 ret = i40e_get_dcb_config(&pf->hw); 9088 if (ret) { 9089 /* X710-T*L 2.5G and 5G speeds don't support DCB */ 9090 if (I40E_IS_X710TL_DEVICE(hw->device_id) && 9091 (hw->phy.link_info.link_speed & 9092 (I40E_LINK_SPEED_2_5GB | I40E_LINK_SPEED_5GB))) { 9093 dev_warn(&pf->pdev->dev, 9094 "DCB is not supported for X710-T*L 2.5/5G speeds\n"); 9095 pf->flags &= ~I40E_FLAG_DCB_CAPABLE; 9096 } else { 9097 dev_info(&pf->pdev->dev, 9098 "Failed querying DCB configuration data from firmware, err %s aq_err %s\n", 9099 i40e_stat_str(&pf->hw, ret), 9100 i40e_aq_str(&pf->hw, 9101 pf->hw.aq.asq_last_status)); 9102 } 9103 goto exit; 9104 } 9105 9106 /* No change detected in DCBX configs */ 9107 if (!memcmp(&tmp_dcbx_cfg, &hw->local_dcbx_config, 9108 sizeof(tmp_dcbx_cfg))) { 9109 dev_dbg(&pf->pdev->dev, "No change detected in DCBX configuration.\n"); 9110 goto exit; 9111 } 9112 9113 need_reconfig = i40e_dcb_need_reconfig(pf, &tmp_dcbx_cfg, 9114 &hw->local_dcbx_config); 9115 9116 i40e_dcbnl_flush_apps(pf, &tmp_dcbx_cfg, &hw->local_dcbx_config); 9117 9118 if (!need_reconfig) 9119 goto exit; 9120 9121 /* Enable DCB tagging only when more than one TC */ 9122 if (i40e_dcb_get_num_tc(&hw->local_dcbx_config) > 1) 9123 pf->flags |= I40E_FLAG_DCB_ENABLED; 9124 else 9125 pf->flags &= ~I40E_FLAG_DCB_ENABLED; 9126 9127 set_bit(__I40E_PORT_SUSPENDED, pf->state); 9128 /* Reconfiguration needed quiesce all VSIs */ 9129 i40e_pf_quiesce_all_vsi(pf); 9130 9131 /* Changes in configuration update VEB/VSI */ 9132 i40e_dcb_reconfigure(pf); 9133 9134 ret = i40e_resume_port_tx(pf); 9135 9136 clear_bit(__I40E_PORT_SUSPENDED, pf->state); 9137 /* In case of error no point in resuming VSIs */ 9138 if (ret) 9139 goto exit; 9140 9141 /* Wait for the PF's queues to be disabled */ 9142 ret = i40e_pf_wait_queues_disabled(pf); 9143 if (ret) { 9144 /* Schedule PF reset to recover */ 9145 set_bit(__I40E_PF_RESET_REQUESTED, pf->state); 9146 i40e_service_event_schedule(pf); 9147 } else { 9148 i40e_pf_unquiesce_all_vsi(pf); 9149 set_bit(__I40E_CLIENT_SERVICE_REQUESTED, pf->state); 9150 set_bit(__I40E_CLIENT_L2_CHANGE, pf->state); 9151 } 9152 9153 exit: 9154 return ret; 9155 } 9156 #endif /* CONFIG_I40E_DCB */ 9157 9158 /** 9159 * i40e_do_reset_safe - Protected reset path for userland calls. 9160 * @pf: board private structure 9161 * @reset_flags: which reset is requested 9162 * 9163 **/ 9164 void i40e_do_reset_safe(struct i40e_pf *pf, u32 reset_flags) 9165 { 9166 rtnl_lock(); 9167 i40e_do_reset(pf, reset_flags, true); 9168 rtnl_unlock(); 9169 } 9170 9171 /** 9172 * i40e_handle_lan_overflow_event - Handler for LAN queue overflow event 9173 * @pf: board private structure 9174 * @e: event info posted on ARQ 9175 * 9176 * Handler for LAN Queue Overflow Event generated by the firmware for PF 9177 * and VF queues 9178 **/ 9179 static void i40e_handle_lan_overflow_event(struct i40e_pf *pf, 9180 struct i40e_arq_event_info *e) 9181 { 9182 struct i40e_aqc_lan_overflow *data = 9183 (struct i40e_aqc_lan_overflow *)&e->desc.params.raw; 9184 u32 queue = le32_to_cpu(data->prtdcb_rupto); 9185 u32 qtx_ctl = le32_to_cpu(data->otx_ctl); 9186 struct i40e_hw *hw = &pf->hw; 9187 struct i40e_vf *vf; 9188 u16 vf_id; 9189 9190 dev_dbg(&pf->pdev->dev, "overflow Rx Queue Number = %d QTX_CTL=0x%08x\n", 9191 queue, qtx_ctl); 9192 9193 /* Queue belongs to VF, find the VF and issue VF reset */ 9194 if (((qtx_ctl & I40E_QTX_CTL_PFVF_Q_MASK) 9195 >> I40E_QTX_CTL_PFVF_Q_SHIFT) == I40E_QTX_CTL_VF_QUEUE) { 9196 vf_id = (u16)((qtx_ctl & I40E_QTX_CTL_VFVM_INDX_MASK) 9197 >> I40E_QTX_CTL_VFVM_INDX_SHIFT); 9198 vf_id -= hw->func_caps.vf_base_id; 9199 vf = &pf->vf[vf_id]; 9200 i40e_vc_notify_vf_reset(vf); 9201 /* Allow VF to process pending reset notification */ 9202 msleep(20); 9203 i40e_reset_vf(vf, false); 9204 } 9205 } 9206 9207 /** 9208 * i40e_get_cur_guaranteed_fd_count - Get the consumed guaranteed FD filters 9209 * @pf: board private structure 9210 **/ 9211 u32 i40e_get_cur_guaranteed_fd_count(struct i40e_pf *pf) 9212 { 9213 u32 val, fcnt_prog; 9214 9215 val = rd32(&pf->hw, I40E_PFQF_FDSTAT); 9216 fcnt_prog = (val & I40E_PFQF_FDSTAT_GUARANT_CNT_MASK); 9217 return fcnt_prog; 9218 } 9219 9220 /** 9221 * i40e_get_current_fd_count - Get total FD filters programmed for this PF 9222 * @pf: board private structure 9223 **/ 9224 u32 i40e_get_current_fd_count(struct i40e_pf *pf) 9225 { 9226 u32 val, fcnt_prog; 9227 9228 val = rd32(&pf->hw, I40E_PFQF_FDSTAT); 9229 fcnt_prog = (val & I40E_PFQF_FDSTAT_GUARANT_CNT_MASK) + 9230 ((val & I40E_PFQF_FDSTAT_BEST_CNT_MASK) >> 9231 I40E_PFQF_FDSTAT_BEST_CNT_SHIFT); 9232 return fcnt_prog; 9233 } 9234 9235 /** 9236 * i40e_get_global_fd_count - Get total FD filters programmed on device 9237 * @pf: board private structure 9238 **/ 9239 u32 i40e_get_global_fd_count(struct i40e_pf *pf) 9240 { 9241 u32 val, fcnt_prog; 9242 9243 val = rd32(&pf->hw, I40E_GLQF_FDCNT_0); 9244 fcnt_prog = (val & I40E_GLQF_FDCNT_0_GUARANT_CNT_MASK) + 9245 ((val & I40E_GLQF_FDCNT_0_BESTCNT_MASK) >> 9246 I40E_GLQF_FDCNT_0_BESTCNT_SHIFT); 9247 return fcnt_prog; 9248 } 9249 9250 /** 9251 * i40e_reenable_fdir_sb - Restore FDir SB capability 9252 * @pf: board private structure 9253 **/ 9254 static void i40e_reenable_fdir_sb(struct i40e_pf *pf) 9255 { 9256 if (test_and_clear_bit(__I40E_FD_SB_AUTO_DISABLED, pf->state)) 9257 if ((pf->flags & I40E_FLAG_FD_SB_ENABLED) && 9258 (I40E_DEBUG_FD & pf->hw.debug_mask)) 9259 dev_info(&pf->pdev->dev, "FD Sideband/ntuple is being enabled since we have space in the table now\n"); 9260 } 9261 9262 /** 9263 * i40e_reenable_fdir_atr - Restore FDir ATR capability 9264 * @pf: board private structure 9265 **/ 9266 static void i40e_reenable_fdir_atr(struct i40e_pf *pf) 9267 { 9268 if (test_and_clear_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state)) { 9269 /* ATR uses the same filtering logic as SB rules. It only 9270 * functions properly if the input set mask is at the default 9271 * settings. It is safe to restore the default input set 9272 * because there are no active TCPv4 filter rules. 9273 */ 9274 i40e_write_fd_input_set(pf, I40E_FILTER_PCTYPE_NONF_IPV4_TCP, 9275 I40E_L3_SRC_MASK | I40E_L3_DST_MASK | 9276 I40E_L4_SRC_MASK | I40E_L4_DST_MASK); 9277 9278 if ((pf->flags & I40E_FLAG_FD_ATR_ENABLED) && 9279 (I40E_DEBUG_FD & pf->hw.debug_mask)) 9280 dev_info(&pf->pdev->dev, "ATR is being enabled since we have space in the table and there are no conflicting ntuple rules\n"); 9281 } 9282 } 9283 9284 /** 9285 * i40e_delete_invalid_filter - Delete an invalid FDIR filter 9286 * @pf: board private structure 9287 * @filter: FDir filter to remove 9288 */ 9289 static void i40e_delete_invalid_filter(struct i40e_pf *pf, 9290 struct i40e_fdir_filter *filter) 9291 { 9292 /* Update counters */ 9293 pf->fdir_pf_active_filters--; 9294 pf->fd_inv = 0; 9295 9296 switch (filter->flow_type) { 9297 case TCP_V4_FLOW: 9298 pf->fd_tcp4_filter_cnt--; 9299 break; 9300 case UDP_V4_FLOW: 9301 pf->fd_udp4_filter_cnt--; 9302 break; 9303 case SCTP_V4_FLOW: 9304 pf->fd_sctp4_filter_cnt--; 9305 break; 9306 case TCP_V6_FLOW: 9307 pf->fd_tcp6_filter_cnt--; 9308 break; 9309 case UDP_V6_FLOW: 9310 pf->fd_udp6_filter_cnt--; 9311 break; 9312 case SCTP_V6_FLOW: 9313 pf->fd_udp6_filter_cnt--; 9314 break; 9315 case IP_USER_FLOW: 9316 switch (filter->ipl4_proto) { 9317 case IPPROTO_TCP: 9318 pf->fd_tcp4_filter_cnt--; 9319 break; 9320 case IPPROTO_UDP: 9321 pf->fd_udp4_filter_cnt--; 9322 break; 9323 case IPPROTO_SCTP: 9324 pf->fd_sctp4_filter_cnt--; 9325 break; 9326 case IPPROTO_IP: 9327 pf->fd_ip4_filter_cnt--; 9328 break; 9329 } 9330 break; 9331 case IPV6_USER_FLOW: 9332 switch (filter->ipl4_proto) { 9333 case IPPROTO_TCP: 9334 pf->fd_tcp6_filter_cnt--; 9335 break; 9336 case IPPROTO_UDP: 9337 pf->fd_udp6_filter_cnt--; 9338 break; 9339 case IPPROTO_SCTP: 9340 pf->fd_sctp6_filter_cnt--; 9341 break; 9342 case IPPROTO_IP: 9343 pf->fd_ip6_filter_cnt--; 9344 break; 9345 } 9346 break; 9347 } 9348 9349 /* Remove the filter from the list and free memory */ 9350 hlist_del(&filter->fdir_node); 9351 kfree(filter); 9352 } 9353 9354 /** 9355 * i40e_fdir_check_and_reenable - Function to reenabe FD ATR or SB if disabled 9356 * @pf: board private structure 9357 **/ 9358 void i40e_fdir_check_and_reenable(struct i40e_pf *pf) 9359 { 9360 struct i40e_fdir_filter *filter; 9361 u32 fcnt_prog, fcnt_avail; 9362 struct hlist_node *node; 9363 9364 if (test_bit(__I40E_FD_FLUSH_REQUESTED, pf->state)) 9365 return; 9366 9367 /* Check if we have enough room to re-enable FDir SB capability. */ 9368 fcnt_prog = i40e_get_global_fd_count(pf); 9369 fcnt_avail = pf->fdir_pf_filter_count; 9370 if ((fcnt_prog < (fcnt_avail - I40E_FDIR_BUFFER_HEAD_ROOM)) || 9371 (pf->fd_add_err == 0) || 9372 (i40e_get_current_atr_cnt(pf) < pf->fd_atr_cnt)) 9373 i40e_reenable_fdir_sb(pf); 9374 9375 /* We should wait for even more space before re-enabling ATR. 9376 * Additionally, we cannot enable ATR as long as we still have TCP SB 9377 * rules active. 9378 */ 9379 if ((fcnt_prog < (fcnt_avail - I40E_FDIR_BUFFER_HEAD_ROOM_FOR_ATR)) && 9380 pf->fd_tcp4_filter_cnt == 0 && pf->fd_tcp6_filter_cnt == 0) 9381 i40e_reenable_fdir_atr(pf); 9382 9383 /* if hw had a problem adding a filter, delete it */ 9384 if (pf->fd_inv > 0) { 9385 hlist_for_each_entry_safe(filter, node, 9386 &pf->fdir_filter_list, fdir_node) 9387 if (filter->fd_id == pf->fd_inv) 9388 i40e_delete_invalid_filter(pf, filter); 9389 } 9390 } 9391 9392 #define I40E_MIN_FD_FLUSH_INTERVAL 10 9393 #define I40E_MIN_FD_FLUSH_SB_ATR_UNSTABLE 30 9394 /** 9395 * i40e_fdir_flush_and_replay - Function to flush all FD filters and replay SB 9396 * @pf: board private structure 9397 **/ 9398 static void i40e_fdir_flush_and_replay(struct i40e_pf *pf) 9399 { 9400 unsigned long min_flush_time; 9401 int flush_wait_retry = 50; 9402 bool disable_atr = false; 9403 int fd_room; 9404 int reg; 9405 9406 if (!time_after(jiffies, pf->fd_flush_timestamp + 9407 (I40E_MIN_FD_FLUSH_INTERVAL * HZ))) 9408 return; 9409 9410 /* If the flush is happening too quick and we have mostly SB rules we 9411 * should not re-enable ATR for some time. 9412 */ 9413 min_flush_time = pf->fd_flush_timestamp + 9414 (I40E_MIN_FD_FLUSH_SB_ATR_UNSTABLE * HZ); 9415 fd_room = pf->fdir_pf_filter_count - pf->fdir_pf_active_filters; 9416 9417 if (!(time_after(jiffies, min_flush_time)) && 9418 (fd_room < I40E_FDIR_BUFFER_HEAD_ROOM_FOR_ATR)) { 9419 if (I40E_DEBUG_FD & pf->hw.debug_mask) 9420 dev_info(&pf->pdev->dev, "ATR disabled, not enough FD filter space.\n"); 9421 disable_atr = true; 9422 } 9423 9424 pf->fd_flush_timestamp = jiffies; 9425 set_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state); 9426 /* flush all filters */ 9427 wr32(&pf->hw, I40E_PFQF_CTL_1, 9428 I40E_PFQF_CTL_1_CLEARFDTABLE_MASK); 9429 i40e_flush(&pf->hw); 9430 pf->fd_flush_cnt++; 9431 pf->fd_add_err = 0; 9432 do { 9433 /* Check FD flush status every 5-6msec */ 9434 usleep_range(5000, 6000); 9435 reg = rd32(&pf->hw, I40E_PFQF_CTL_1); 9436 if (!(reg & I40E_PFQF_CTL_1_CLEARFDTABLE_MASK)) 9437 break; 9438 } while (flush_wait_retry--); 9439 if (reg & I40E_PFQF_CTL_1_CLEARFDTABLE_MASK) { 9440 dev_warn(&pf->pdev->dev, "FD table did not flush, needs more time\n"); 9441 } else { 9442 /* replay sideband filters */ 9443 i40e_fdir_filter_restore(pf->vsi[pf->lan_vsi]); 9444 if (!disable_atr && !pf->fd_tcp4_filter_cnt) 9445 clear_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state); 9446 clear_bit(__I40E_FD_FLUSH_REQUESTED, pf->state); 9447 if (I40E_DEBUG_FD & pf->hw.debug_mask) 9448 dev_info(&pf->pdev->dev, "FD Filter table flushed and FD-SB replayed.\n"); 9449 } 9450 } 9451 9452 /** 9453 * i40e_get_current_atr_cnt - Get the count of total FD ATR filters programmed 9454 * @pf: board private structure 9455 **/ 9456 u32 i40e_get_current_atr_cnt(struct i40e_pf *pf) 9457 { 9458 return i40e_get_current_fd_count(pf) - pf->fdir_pf_active_filters; 9459 } 9460 9461 /** 9462 * i40e_fdir_reinit_subtask - Worker thread to reinit FDIR filter table 9463 * @pf: board private structure 9464 **/ 9465 static void i40e_fdir_reinit_subtask(struct i40e_pf *pf) 9466 { 9467 9468 /* if interface is down do nothing */ 9469 if (test_bit(__I40E_DOWN, pf->state)) 9470 return; 9471 9472 if (test_bit(__I40E_FD_FLUSH_REQUESTED, pf->state)) 9473 i40e_fdir_flush_and_replay(pf); 9474 9475 i40e_fdir_check_and_reenable(pf); 9476 9477 } 9478 9479 /** 9480 * i40e_vsi_link_event - notify VSI of a link event 9481 * @vsi: vsi to be notified 9482 * @link_up: link up or down 9483 **/ 9484 static void i40e_vsi_link_event(struct i40e_vsi *vsi, bool link_up) 9485 { 9486 if (!vsi || test_bit(__I40E_VSI_DOWN, vsi->state)) 9487 return; 9488 9489 switch (vsi->type) { 9490 case I40E_VSI_MAIN: 9491 if (!vsi->netdev || !vsi->netdev_registered) 9492 break; 9493 9494 if (link_up) { 9495 netif_carrier_on(vsi->netdev); 9496 netif_tx_wake_all_queues(vsi->netdev); 9497 } else { 9498 netif_carrier_off(vsi->netdev); 9499 netif_tx_stop_all_queues(vsi->netdev); 9500 } 9501 break; 9502 9503 case I40E_VSI_SRIOV: 9504 case I40E_VSI_VMDQ2: 9505 case I40E_VSI_CTRL: 9506 case I40E_VSI_IWARP: 9507 case I40E_VSI_MIRROR: 9508 default: 9509 /* there is no notification for other VSIs */ 9510 break; 9511 } 9512 } 9513 9514 /** 9515 * i40e_veb_link_event - notify elements on the veb of a link event 9516 * @veb: veb to be notified 9517 * @link_up: link up or down 9518 **/ 9519 static void i40e_veb_link_event(struct i40e_veb *veb, bool link_up) 9520 { 9521 struct i40e_pf *pf; 9522 int i; 9523 9524 if (!veb || !veb->pf) 9525 return; 9526 pf = veb->pf; 9527 9528 /* depth first... */ 9529 for (i = 0; i < I40E_MAX_VEB; i++) 9530 if (pf->veb[i] && (pf->veb[i]->uplink_seid == veb->seid)) 9531 i40e_veb_link_event(pf->veb[i], link_up); 9532 9533 /* ... now the local VSIs */ 9534 for (i = 0; i < pf->num_alloc_vsi; i++) 9535 if (pf->vsi[i] && (pf->vsi[i]->uplink_seid == veb->seid)) 9536 i40e_vsi_link_event(pf->vsi[i], link_up); 9537 } 9538 9539 /** 9540 * i40e_link_event - Update netif_carrier status 9541 * @pf: board private structure 9542 **/ 9543 static void i40e_link_event(struct i40e_pf *pf) 9544 { 9545 struct i40e_vsi *vsi = pf->vsi[pf->lan_vsi]; 9546 u8 new_link_speed, old_link_speed; 9547 i40e_status status; 9548 bool new_link, old_link; 9549 #ifdef CONFIG_I40E_DCB 9550 int err; 9551 #endif /* CONFIG_I40E_DCB */ 9552 9553 /* set this to force the get_link_status call to refresh state */ 9554 pf->hw.phy.get_link_info = true; 9555 old_link = (pf->hw.phy.link_info_old.link_info & I40E_AQ_LINK_UP); 9556 status = i40e_get_link_status(&pf->hw, &new_link); 9557 9558 /* On success, disable temp link polling */ 9559 if (status == I40E_SUCCESS) { 9560 clear_bit(__I40E_TEMP_LINK_POLLING, pf->state); 9561 } else { 9562 /* Enable link polling temporarily until i40e_get_link_status 9563 * returns I40E_SUCCESS 9564 */ 9565 set_bit(__I40E_TEMP_LINK_POLLING, pf->state); 9566 dev_dbg(&pf->pdev->dev, "couldn't get link state, status: %d\n", 9567 status); 9568 return; 9569 } 9570 9571 old_link_speed = pf->hw.phy.link_info_old.link_speed; 9572 new_link_speed = pf->hw.phy.link_info.link_speed; 9573 9574 if (new_link == old_link && 9575 new_link_speed == old_link_speed && 9576 (test_bit(__I40E_VSI_DOWN, vsi->state) || 9577 new_link == netif_carrier_ok(vsi->netdev))) 9578 return; 9579 9580 i40e_print_link_message(vsi, new_link); 9581 9582 /* Notify the base of the switch tree connected to 9583 * the link. Floating VEBs are not notified. 9584 */ 9585 if (pf->lan_veb < I40E_MAX_VEB && pf->veb[pf->lan_veb]) 9586 i40e_veb_link_event(pf->veb[pf->lan_veb], new_link); 9587 else 9588 i40e_vsi_link_event(vsi, new_link); 9589 9590 if (pf->vf) 9591 i40e_vc_notify_link_state(pf); 9592 9593 if (pf->flags & I40E_FLAG_PTP) 9594 i40e_ptp_set_increment(pf); 9595 #ifdef CONFIG_I40E_DCB 9596 if (new_link == old_link) 9597 return; 9598 /* Not SW DCB so firmware will take care of default settings */ 9599 if (pf->dcbx_cap & DCB_CAP_DCBX_LLD_MANAGED) 9600 return; 9601 9602 /* We cover here only link down, as after link up in case of SW DCB 9603 * SW LLDP agent will take care of setting it up 9604 */ 9605 if (!new_link) { 9606 dev_dbg(&pf->pdev->dev, "Reconfig DCB to single TC as result of Link Down\n"); 9607 memset(&pf->tmp_cfg, 0, sizeof(pf->tmp_cfg)); 9608 err = i40e_dcb_sw_default_config(pf); 9609 if (err) { 9610 pf->flags &= ~(I40E_FLAG_DCB_CAPABLE | 9611 I40E_FLAG_DCB_ENABLED); 9612 } else { 9613 pf->dcbx_cap = DCB_CAP_DCBX_HOST | 9614 DCB_CAP_DCBX_VER_IEEE; 9615 pf->flags |= I40E_FLAG_DCB_CAPABLE; 9616 pf->flags &= ~I40E_FLAG_DCB_ENABLED; 9617 } 9618 } 9619 #endif /* CONFIG_I40E_DCB */ 9620 } 9621 9622 /** 9623 * i40e_watchdog_subtask - periodic checks not using event driven response 9624 * @pf: board private structure 9625 **/ 9626 static void i40e_watchdog_subtask(struct i40e_pf *pf) 9627 { 9628 int i; 9629 9630 /* if interface is down do nothing */ 9631 if (test_bit(__I40E_DOWN, pf->state) || 9632 test_bit(__I40E_CONFIG_BUSY, pf->state)) 9633 return; 9634 9635 /* make sure we don't do these things too often */ 9636 if (time_before(jiffies, (pf->service_timer_previous + 9637 pf->service_timer_period))) 9638 return; 9639 pf->service_timer_previous = jiffies; 9640 9641 if ((pf->flags & I40E_FLAG_LINK_POLLING_ENABLED) || 9642 test_bit(__I40E_TEMP_LINK_POLLING, pf->state)) 9643 i40e_link_event(pf); 9644 9645 /* Update the stats for active netdevs so the network stack 9646 * can look at updated numbers whenever it cares to 9647 */ 9648 for (i = 0; i < pf->num_alloc_vsi; i++) 9649 if (pf->vsi[i] && pf->vsi[i]->netdev) 9650 i40e_update_stats(pf->vsi[i]); 9651 9652 if (pf->flags & I40E_FLAG_VEB_STATS_ENABLED) { 9653 /* Update the stats for the active switching components */ 9654 for (i = 0; i < I40E_MAX_VEB; i++) 9655 if (pf->veb[i]) 9656 i40e_update_veb_stats(pf->veb[i]); 9657 } 9658 9659 i40e_ptp_rx_hang(pf); 9660 i40e_ptp_tx_hang(pf); 9661 } 9662 9663 /** 9664 * i40e_reset_subtask - Set up for resetting the device and driver 9665 * @pf: board private structure 9666 **/ 9667 static void i40e_reset_subtask(struct i40e_pf *pf) 9668 { 9669 u32 reset_flags = 0; 9670 9671 if (test_bit(__I40E_REINIT_REQUESTED, pf->state)) { 9672 reset_flags |= BIT(__I40E_REINIT_REQUESTED); 9673 clear_bit(__I40E_REINIT_REQUESTED, pf->state); 9674 } 9675 if (test_bit(__I40E_PF_RESET_REQUESTED, pf->state)) { 9676 reset_flags |= BIT(__I40E_PF_RESET_REQUESTED); 9677 clear_bit(__I40E_PF_RESET_REQUESTED, pf->state); 9678 } 9679 if (test_bit(__I40E_CORE_RESET_REQUESTED, pf->state)) { 9680 reset_flags |= BIT(__I40E_CORE_RESET_REQUESTED); 9681 clear_bit(__I40E_CORE_RESET_REQUESTED, pf->state); 9682 } 9683 if (test_bit(__I40E_GLOBAL_RESET_REQUESTED, pf->state)) { 9684 reset_flags |= BIT(__I40E_GLOBAL_RESET_REQUESTED); 9685 clear_bit(__I40E_GLOBAL_RESET_REQUESTED, pf->state); 9686 } 9687 if (test_bit(__I40E_DOWN_REQUESTED, pf->state)) { 9688 reset_flags |= BIT(__I40E_DOWN_REQUESTED); 9689 clear_bit(__I40E_DOWN_REQUESTED, pf->state); 9690 } 9691 9692 /* If there's a recovery already waiting, it takes 9693 * precedence before starting a new reset sequence. 9694 */ 9695 if (test_bit(__I40E_RESET_INTR_RECEIVED, pf->state)) { 9696 i40e_prep_for_reset(pf); 9697 i40e_reset(pf); 9698 i40e_rebuild(pf, false, false); 9699 } 9700 9701 /* If we're already down or resetting, just bail */ 9702 if (reset_flags && 9703 !test_bit(__I40E_DOWN, pf->state) && 9704 !test_bit(__I40E_CONFIG_BUSY, pf->state)) { 9705 i40e_do_reset(pf, reset_flags, false); 9706 } 9707 } 9708 9709 /** 9710 * i40e_handle_link_event - Handle link event 9711 * @pf: board private structure 9712 * @e: event info posted on ARQ 9713 **/ 9714 static void i40e_handle_link_event(struct i40e_pf *pf, 9715 struct i40e_arq_event_info *e) 9716 { 9717 struct i40e_aqc_get_link_status *status = 9718 (struct i40e_aqc_get_link_status *)&e->desc.params.raw; 9719 9720 /* Do a new status request to re-enable LSE reporting 9721 * and load new status information into the hw struct 9722 * This completely ignores any state information 9723 * in the ARQ event info, instead choosing to always 9724 * issue the AQ update link status command. 9725 */ 9726 i40e_link_event(pf); 9727 9728 /* Check if module meets thermal requirements */ 9729 if (status->phy_type == I40E_PHY_TYPE_NOT_SUPPORTED_HIGH_TEMP) { 9730 dev_err(&pf->pdev->dev, 9731 "Rx/Tx is disabled on this device because the module does not meet thermal requirements.\n"); 9732 dev_err(&pf->pdev->dev, 9733 "Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules.\n"); 9734 } else { 9735 /* check for unqualified module, if link is down, suppress 9736 * the message if link was forced to be down. 9737 */ 9738 if ((status->link_info & I40E_AQ_MEDIA_AVAILABLE) && 9739 (!(status->an_info & I40E_AQ_QUALIFIED_MODULE)) && 9740 (!(status->link_info & I40E_AQ_LINK_UP)) && 9741 (!(pf->flags & I40E_FLAG_LINK_DOWN_ON_CLOSE_ENABLED))) { 9742 dev_err(&pf->pdev->dev, 9743 "Rx/Tx is disabled on this device because an unsupported SFP module type was detected.\n"); 9744 dev_err(&pf->pdev->dev, 9745 "Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules.\n"); 9746 } 9747 } 9748 } 9749 9750 /** 9751 * i40e_clean_adminq_subtask - Clean the AdminQ rings 9752 * @pf: board private structure 9753 **/ 9754 static void i40e_clean_adminq_subtask(struct i40e_pf *pf) 9755 { 9756 struct i40e_arq_event_info event; 9757 struct i40e_hw *hw = &pf->hw; 9758 u16 pending, i = 0; 9759 i40e_status ret; 9760 u16 opcode; 9761 u32 oldval; 9762 u32 val; 9763 9764 /* Do not run clean AQ when PF reset fails */ 9765 if (test_bit(__I40E_RESET_FAILED, pf->state)) 9766 return; 9767 9768 /* check for error indications */ 9769 val = rd32(&pf->hw, pf->hw.aq.arq.len); 9770 oldval = val; 9771 if (val & I40E_PF_ARQLEN_ARQVFE_MASK) { 9772 if (hw->debug_mask & I40E_DEBUG_AQ) 9773 dev_info(&pf->pdev->dev, "ARQ VF Error detected\n"); 9774 val &= ~I40E_PF_ARQLEN_ARQVFE_MASK; 9775 } 9776 if (val & I40E_PF_ARQLEN_ARQOVFL_MASK) { 9777 if (hw->debug_mask & I40E_DEBUG_AQ) 9778 dev_info(&pf->pdev->dev, "ARQ Overflow Error detected\n"); 9779 val &= ~I40E_PF_ARQLEN_ARQOVFL_MASK; 9780 pf->arq_overflows++; 9781 } 9782 if (val & I40E_PF_ARQLEN_ARQCRIT_MASK) { 9783 if (hw->debug_mask & I40E_DEBUG_AQ) 9784 dev_info(&pf->pdev->dev, "ARQ Critical Error detected\n"); 9785 val &= ~I40E_PF_ARQLEN_ARQCRIT_MASK; 9786 } 9787 if (oldval != val) 9788 wr32(&pf->hw, pf->hw.aq.arq.len, val); 9789 9790 val = rd32(&pf->hw, pf->hw.aq.asq.len); 9791 oldval = val; 9792 if (val & I40E_PF_ATQLEN_ATQVFE_MASK) { 9793 if (pf->hw.debug_mask & I40E_DEBUG_AQ) 9794 dev_info(&pf->pdev->dev, "ASQ VF Error detected\n"); 9795 val &= ~I40E_PF_ATQLEN_ATQVFE_MASK; 9796 } 9797 if (val & I40E_PF_ATQLEN_ATQOVFL_MASK) { 9798 if (pf->hw.debug_mask & I40E_DEBUG_AQ) 9799 dev_info(&pf->pdev->dev, "ASQ Overflow Error detected\n"); 9800 val &= ~I40E_PF_ATQLEN_ATQOVFL_MASK; 9801 } 9802 if (val & I40E_PF_ATQLEN_ATQCRIT_MASK) { 9803 if (pf->hw.debug_mask & I40E_DEBUG_AQ) 9804 dev_info(&pf->pdev->dev, "ASQ Critical Error detected\n"); 9805 val &= ~I40E_PF_ATQLEN_ATQCRIT_MASK; 9806 } 9807 if (oldval != val) 9808 wr32(&pf->hw, pf->hw.aq.asq.len, val); 9809 9810 event.buf_len = I40E_MAX_AQ_BUF_SIZE; 9811 event.msg_buf = kzalloc(event.buf_len, GFP_KERNEL); 9812 if (!event.msg_buf) 9813 return; 9814 9815 do { 9816 ret = i40e_clean_arq_element(hw, &event, &pending); 9817 if (ret == I40E_ERR_ADMIN_QUEUE_NO_WORK) 9818 break; 9819 else if (ret) { 9820 dev_info(&pf->pdev->dev, "ARQ event error %d\n", ret); 9821 break; 9822 } 9823 9824 opcode = le16_to_cpu(event.desc.opcode); 9825 switch (opcode) { 9826 9827 case i40e_aqc_opc_get_link_status: 9828 rtnl_lock(); 9829 i40e_handle_link_event(pf, &event); 9830 rtnl_unlock(); 9831 break; 9832 case i40e_aqc_opc_send_msg_to_pf: 9833 ret = i40e_vc_process_vf_msg(pf, 9834 le16_to_cpu(event.desc.retval), 9835 le32_to_cpu(event.desc.cookie_high), 9836 le32_to_cpu(event.desc.cookie_low), 9837 event.msg_buf, 9838 event.msg_len); 9839 break; 9840 case i40e_aqc_opc_lldp_update_mib: 9841 dev_dbg(&pf->pdev->dev, "ARQ: Update LLDP MIB event received\n"); 9842 #ifdef CONFIG_I40E_DCB 9843 rtnl_lock(); 9844 i40e_handle_lldp_event(pf, &event); 9845 rtnl_unlock(); 9846 #endif /* CONFIG_I40E_DCB */ 9847 break; 9848 case i40e_aqc_opc_event_lan_overflow: 9849 dev_dbg(&pf->pdev->dev, "ARQ LAN queue overflow event received\n"); 9850 i40e_handle_lan_overflow_event(pf, &event); 9851 break; 9852 case i40e_aqc_opc_send_msg_to_peer: 9853 dev_info(&pf->pdev->dev, "ARQ: Msg from other pf\n"); 9854 break; 9855 case i40e_aqc_opc_nvm_erase: 9856 case i40e_aqc_opc_nvm_update: 9857 case i40e_aqc_opc_oem_post_update: 9858 i40e_debug(&pf->hw, I40E_DEBUG_NVM, 9859 "ARQ NVM operation 0x%04x completed\n", 9860 opcode); 9861 break; 9862 default: 9863 dev_info(&pf->pdev->dev, 9864 "ARQ: Unknown event 0x%04x ignored\n", 9865 opcode); 9866 break; 9867 } 9868 } while (i++ < pf->adminq_work_limit); 9869 9870 if (i < pf->adminq_work_limit) 9871 clear_bit(__I40E_ADMINQ_EVENT_PENDING, pf->state); 9872 9873 /* re-enable Admin queue interrupt cause */ 9874 val = rd32(hw, I40E_PFINT_ICR0_ENA); 9875 val |= I40E_PFINT_ICR0_ENA_ADMINQ_MASK; 9876 wr32(hw, I40E_PFINT_ICR0_ENA, val); 9877 i40e_flush(hw); 9878 9879 kfree(event.msg_buf); 9880 } 9881 9882 /** 9883 * i40e_verify_eeprom - make sure eeprom is good to use 9884 * @pf: board private structure 9885 **/ 9886 static void i40e_verify_eeprom(struct i40e_pf *pf) 9887 { 9888 int err; 9889 9890 err = i40e_diag_eeprom_test(&pf->hw); 9891 if (err) { 9892 /* retry in case of garbage read */ 9893 err = i40e_diag_eeprom_test(&pf->hw); 9894 if (err) { 9895 dev_info(&pf->pdev->dev, "eeprom check failed (%d), Tx/Rx traffic disabled\n", 9896 err); 9897 set_bit(__I40E_BAD_EEPROM, pf->state); 9898 } 9899 } 9900 9901 if (!err && test_bit(__I40E_BAD_EEPROM, pf->state)) { 9902 dev_info(&pf->pdev->dev, "eeprom check passed, Tx/Rx traffic enabled\n"); 9903 clear_bit(__I40E_BAD_EEPROM, pf->state); 9904 } 9905 } 9906 9907 /** 9908 * i40e_enable_pf_switch_lb 9909 * @pf: pointer to the PF structure 9910 * 9911 * enable switch loop back or die - no point in a return value 9912 **/ 9913 static void i40e_enable_pf_switch_lb(struct i40e_pf *pf) 9914 { 9915 struct i40e_vsi *vsi = pf->vsi[pf->lan_vsi]; 9916 struct i40e_vsi_context ctxt; 9917 int ret; 9918 9919 ctxt.seid = pf->main_vsi_seid; 9920 ctxt.pf_num = pf->hw.pf_id; 9921 ctxt.vf_num = 0; 9922 ret = i40e_aq_get_vsi_params(&pf->hw, &ctxt, NULL); 9923 if (ret) { 9924 dev_info(&pf->pdev->dev, 9925 "couldn't get PF vsi config, err %s aq_err %s\n", 9926 i40e_stat_str(&pf->hw, ret), 9927 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 9928 return; 9929 } 9930 ctxt.flags = I40E_AQ_VSI_TYPE_PF; 9931 ctxt.info.valid_sections = cpu_to_le16(I40E_AQ_VSI_PROP_SWITCH_VALID); 9932 ctxt.info.switch_id |= cpu_to_le16(I40E_AQ_VSI_SW_ID_FLAG_ALLOW_LB); 9933 9934 ret = i40e_aq_update_vsi_params(&vsi->back->hw, &ctxt, NULL); 9935 if (ret) { 9936 dev_info(&pf->pdev->dev, 9937 "update vsi switch failed, err %s aq_err %s\n", 9938 i40e_stat_str(&pf->hw, ret), 9939 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 9940 } 9941 } 9942 9943 /** 9944 * i40e_disable_pf_switch_lb 9945 * @pf: pointer to the PF structure 9946 * 9947 * disable switch loop back or die - no point in a return value 9948 **/ 9949 static void i40e_disable_pf_switch_lb(struct i40e_pf *pf) 9950 { 9951 struct i40e_vsi *vsi = pf->vsi[pf->lan_vsi]; 9952 struct i40e_vsi_context ctxt; 9953 int ret; 9954 9955 ctxt.seid = pf->main_vsi_seid; 9956 ctxt.pf_num = pf->hw.pf_id; 9957 ctxt.vf_num = 0; 9958 ret = i40e_aq_get_vsi_params(&pf->hw, &ctxt, NULL); 9959 if (ret) { 9960 dev_info(&pf->pdev->dev, 9961 "couldn't get PF vsi config, err %s aq_err %s\n", 9962 i40e_stat_str(&pf->hw, ret), 9963 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 9964 return; 9965 } 9966 ctxt.flags = I40E_AQ_VSI_TYPE_PF; 9967 ctxt.info.valid_sections = cpu_to_le16(I40E_AQ_VSI_PROP_SWITCH_VALID); 9968 ctxt.info.switch_id &= ~cpu_to_le16(I40E_AQ_VSI_SW_ID_FLAG_ALLOW_LB); 9969 9970 ret = i40e_aq_update_vsi_params(&vsi->back->hw, &ctxt, NULL); 9971 if (ret) { 9972 dev_info(&pf->pdev->dev, 9973 "update vsi switch failed, err %s aq_err %s\n", 9974 i40e_stat_str(&pf->hw, ret), 9975 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 9976 } 9977 } 9978 9979 /** 9980 * i40e_config_bridge_mode - Configure the HW bridge mode 9981 * @veb: pointer to the bridge instance 9982 * 9983 * Configure the loop back mode for the LAN VSI that is downlink to the 9984 * specified HW bridge instance. It is expected this function is called 9985 * when a new HW bridge is instantiated. 9986 **/ 9987 static void i40e_config_bridge_mode(struct i40e_veb *veb) 9988 { 9989 struct i40e_pf *pf = veb->pf; 9990 9991 if (pf->hw.debug_mask & I40E_DEBUG_LAN) 9992 dev_info(&pf->pdev->dev, "enabling bridge mode: %s\n", 9993 veb->bridge_mode == BRIDGE_MODE_VEPA ? "VEPA" : "VEB"); 9994 if (veb->bridge_mode & BRIDGE_MODE_VEPA) 9995 i40e_disable_pf_switch_lb(pf); 9996 else 9997 i40e_enable_pf_switch_lb(pf); 9998 } 9999 10000 /** 10001 * i40e_reconstitute_veb - rebuild the VEB and anything connected to it 10002 * @veb: pointer to the VEB instance 10003 * 10004 * This is a recursive function that first builds the attached VSIs then 10005 * recurses in to build the next layer of VEB. We track the connections 10006 * through our own index numbers because the seid's from the HW could 10007 * change across the reset. 10008 **/ 10009 static int i40e_reconstitute_veb(struct i40e_veb *veb) 10010 { 10011 struct i40e_vsi *ctl_vsi = NULL; 10012 struct i40e_pf *pf = veb->pf; 10013 int v, veb_idx; 10014 int ret; 10015 10016 /* build VSI that owns this VEB, temporarily attached to base VEB */ 10017 for (v = 0; v < pf->num_alloc_vsi && !ctl_vsi; v++) { 10018 if (pf->vsi[v] && 10019 pf->vsi[v]->veb_idx == veb->idx && 10020 pf->vsi[v]->flags & I40E_VSI_FLAG_VEB_OWNER) { 10021 ctl_vsi = pf->vsi[v]; 10022 break; 10023 } 10024 } 10025 if (!ctl_vsi) { 10026 dev_info(&pf->pdev->dev, 10027 "missing owner VSI for veb_idx %d\n", veb->idx); 10028 ret = -ENOENT; 10029 goto end_reconstitute; 10030 } 10031 if (ctl_vsi != pf->vsi[pf->lan_vsi]) 10032 ctl_vsi->uplink_seid = pf->vsi[pf->lan_vsi]->uplink_seid; 10033 ret = i40e_add_vsi(ctl_vsi); 10034 if (ret) { 10035 dev_info(&pf->pdev->dev, 10036 "rebuild of veb_idx %d owner VSI failed: %d\n", 10037 veb->idx, ret); 10038 goto end_reconstitute; 10039 } 10040 i40e_vsi_reset_stats(ctl_vsi); 10041 10042 /* create the VEB in the switch and move the VSI onto the VEB */ 10043 ret = i40e_add_veb(veb, ctl_vsi); 10044 if (ret) 10045 goto end_reconstitute; 10046 10047 if (pf->flags & I40E_FLAG_VEB_MODE_ENABLED) 10048 veb->bridge_mode = BRIDGE_MODE_VEB; 10049 else 10050 veb->bridge_mode = BRIDGE_MODE_VEPA; 10051 i40e_config_bridge_mode(veb); 10052 10053 /* create the remaining VSIs attached to this VEB */ 10054 for (v = 0; v < pf->num_alloc_vsi; v++) { 10055 if (!pf->vsi[v] || pf->vsi[v] == ctl_vsi) 10056 continue; 10057 10058 if (pf->vsi[v]->veb_idx == veb->idx) { 10059 struct i40e_vsi *vsi = pf->vsi[v]; 10060 10061 vsi->uplink_seid = veb->seid; 10062 ret = i40e_add_vsi(vsi); 10063 if (ret) { 10064 dev_info(&pf->pdev->dev, 10065 "rebuild of vsi_idx %d failed: %d\n", 10066 v, ret); 10067 goto end_reconstitute; 10068 } 10069 i40e_vsi_reset_stats(vsi); 10070 } 10071 } 10072 10073 /* create any VEBs attached to this VEB - RECURSION */ 10074 for (veb_idx = 0; veb_idx < I40E_MAX_VEB; veb_idx++) { 10075 if (pf->veb[veb_idx] && pf->veb[veb_idx]->veb_idx == veb->idx) { 10076 pf->veb[veb_idx]->uplink_seid = veb->seid; 10077 ret = i40e_reconstitute_veb(pf->veb[veb_idx]); 10078 if (ret) 10079 break; 10080 } 10081 } 10082 10083 end_reconstitute: 10084 return ret; 10085 } 10086 10087 /** 10088 * i40e_get_capabilities - get info about the HW 10089 * @pf: the PF struct 10090 * @list_type: AQ capability to be queried 10091 **/ 10092 static int i40e_get_capabilities(struct i40e_pf *pf, 10093 enum i40e_admin_queue_opc list_type) 10094 { 10095 struct i40e_aqc_list_capabilities_element_resp *cap_buf; 10096 u16 data_size; 10097 int buf_len; 10098 int err; 10099 10100 buf_len = 40 * sizeof(struct i40e_aqc_list_capabilities_element_resp); 10101 do { 10102 cap_buf = kzalloc(buf_len, GFP_KERNEL); 10103 if (!cap_buf) 10104 return -ENOMEM; 10105 10106 /* this loads the data into the hw struct for us */ 10107 err = i40e_aq_discover_capabilities(&pf->hw, cap_buf, buf_len, 10108 &data_size, list_type, 10109 NULL); 10110 /* data loaded, buffer no longer needed */ 10111 kfree(cap_buf); 10112 10113 if (pf->hw.aq.asq_last_status == I40E_AQ_RC_ENOMEM) { 10114 /* retry with a larger buffer */ 10115 buf_len = data_size; 10116 } else if (pf->hw.aq.asq_last_status != I40E_AQ_RC_OK) { 10117 dev_info(&pf->pdev->dev, 10118 "capability discovery failed, err %s aq_err %s\n", 10119 i40e_stat_str(&pf->hw, err), 10120 i40e_aq_str(&pf->hw, 10121 pf->hw.aq.asq_last_status)); 10122 return -ENODEV; 10123 } 10124 } while (err); 10125 10126 if (pf->hw.debug_mask & I40E_DEBUG_USER) { 10127 if (list_type == i40e_aqc_opc_list_func_capabilities) { 10128 dev_info(&pf->pdev->dev, 10129 "pf=%d, num_vfs=%d, msix_pf=%d, msix_vf=%d, fd_g=%d, fd_b=%d, pf_max_q=%d num_vsi=%d\n", 10130 pf->hw.pf_id, pf->hw.func_caps.num_vfs, 10131 pf->hw.func_caps.num_msix_vectors, 10132 pf->hw.func_caps.num_msix_vectors_vf, 10133 pf->hw.func_caps.fd_filters_guaranteed, 10134 pf->hw.func_caps.fd_filters_best_effort, 10135 pf->hw.func_caps.num_tx_qp, 10136 pf->hw.func_caps.num_vsis); 10137 } else if (list_type == i40e_aqc_opc_list_dev_capabilities) { 10138 dev_info(&pf->pdev->dev, 10139 "switch_mode=0x%04x, function_valid=0x%08x\n", 10140 pf->hw.dev_caps.switch_mode, 10141 pf->hw.dev_caps.valid_functions); 10142 dev_info(&pf->pdev->dev, 10143 "SR-IOV=%d, num_vfs for all function=%u\n", 10144 pf->hw.dev_caps.sr_iov_1_1, 10145 pf->hw.dev_caps.num_vfs); 10146 dev_info(&pf->pdev->dev, 10147 "num_vsis=%u, num_rx:%u, num_tx=%u\n", 10148 pf->hw.dev_caps.num_vsis, 10149 pf->hw.dev_caps.num_rx_qp, 10150 pf->hw.dev_caps.num_tx_qp); 10151 } 10152 } 10153 if (list_type == i40e_aqc_opc_list_func_capabilities) { 10154 #define DEF_NUM_VSI (1 + (pf->hw.func_caps.fcoe ? 1 : 0) \ 10155 + pf->hw.func_caps.num_vfs) 10156 if (pf->hw.revision_id == 0 && 10157 pf->hw.func_caps.num_vsis < DEF_NUM_VSI) { 10158 dev_info(&pf->pdev->dev, 10159 "got num_vsis %d, setting num_vsis to %d\n", 10160 pf->hw.func_caps.num_vsis, DEF_NUM_VSI); 10161 pf->hw.func_caps.num_vsis = DEF_NUM_VSI; 10162 } 10163 } 10164 return 0; 10165 } 10166 10167 static int i40e_vsi_clear(struct i40e_vsi *vsi); 10168 10169 /** 10170 * i40e_fdir_sb_setup - initialize the Flow Director resources for Sideband 10171 * @pf: board private structure 10172 **/ 10173 static void i40e_fdir_sb_setup(struct i40e_pf *pf) 10174 { 10175 struct i40e_vsi *vsi; 10176 10177 /* quick workaround for an NVM issue that leaves a critical register 10178 * uninitialized 10179 */ 10180 if (!rd32(&pf->hw, I40E_GLQF_HKEY(0))) { 10181 static const u32 hkey[] = { 10182 0xe640d33f, 0xcdfe98ab, 0x73fa7161, 0x0d7a7d36, 10183 0xeacb7d61, 0xaa4f05b6, 0x9c5c89ed, 0xfc425ddb, 10184 0xa4654832, 0xfc7461d4, 0x8f827619, 0xf5c63c21, 10185 0x95b3a76d}; 10186 int i; 10187 10188 for (i = 0; i <= I40E_GLQF_HKEY_MAX_INDEX; i++) 10189 wr32(&pf->hw, I40E_GLQF_HKEY(i), hkey[i]); 10190 } 10191 10192 if (!(pf->flags & I40E_FLAG_FD_SB_ENABLED)) 10193 return; 10194 10195 /* find existing VSI and see if it needs configuring */ 10196 vsi = i40e_find_vsi_by_type(pf, I40E_VSI_FDIR); 10197 10198 /* create a new VSI if none exists */ 10199 if (!vsi) { 10200 vsi = i40e_vsi_setup(pf, I40E_VSI_FDIR, 10201 pf->vsi[pf->lan_vsi]->seid, 0); 10202 if (!vsi) { 10203 dev_info(&pf->pdev->dev, "Couldn't create FDir VSI\n"); 10204 pf->flags &= ~I40E_FLAG_FD_SB_ENABLED; 10205 pf->flags |= I40E_FLAG_FD_SB_INACTIVE; 10206 return; 10207 } 10208 } 10209 10210 i40e_vsi_setup_irqhandler(vsi, i40e_fdir_clean_ring); 10211 } 10212 10213 /** 10214 * i40e_fdir_teardown - release the Flow Director resources 10215 * @pf: board private structure 10216 **/ 10217 static void i40e_fdir_teardown(struct i40e_pf *pf) 10218 { 10219 struct i40e_vsi *vsi; 10220 10221 i40e_fdir_filter_exit(pf); 10222 vsi = i40e_find_vsi_by_type(pf, I40E_VSI_FDIR); 10223 if (vsi) 10224 i40e_vsi_release(vsi); 10225 } 10226 10227 /** 10228 * i40e_rebuild_cloud_filters - Rebuilds cloud filters for VSIs 10229 * @vsi: PF main vsi 10230 * @seid: seid of main or channel VSIs 10231 * 10232 * Rebuilds cloud filters associated with main VSI and channel VSIs if they 10233 * existed before reset 10234 **/ 10235 static int i40e_rebuild_cloud_filters(struct i40e_vsi *vsi, u16 seid) 10236 { 10237 struct i40e_cloud_filter *cfilter; 10238 struct i40e_pf *pf = vsi->back; 10239 struct hlist_node *node; 10240 i40e_status ret; 10241 10242 /* Add cloud filters back if they exist */ 10243 hlist_for_each_entry_safe(cfilter, node, &pf->cloud_filter_list, 10244 cloud_node) { 10245 if (cfilter->seid != seid) 10246 continue; 10247 10248 if (cfilter->dst_port) 10249 ret = i40e_add_del_cloud_filter_big_buf(vsi, cfilter, 10250 true); 10251 else 10252 ret = i40e_add_del_cloud_filter(vsi, cfilter, true); 10253 10254 if (ret) { 10255 dev_dbg(&pf->pdev->dev, 10256 "Failed to rebuild cloud filter, err %s aq_err %s\n", 10257 i40e_stat_str(&pf->hw, ret), 10258 i40e_aq_str(&pf->hw, 10259 pf->hw.aq.asq_last_status)); 10260 return ret; 10261 } 10262 } 10263 return 0; 10264 } 10265 10266 /** 10267 * i40e_rebuild_channels - Rebuilds channel VSIs if they existed before reset 10268 * @vsi: PF main vsi 10269 * 10270 * Rebuilds channel VSIs if they existed before reset 10271 **/ 10272 static int i40e_rebuild_channels(struct i40e_vsi *vsi) 10273 { 10274 struct i40e_channel *ch, *ch_tmp; 10275 i40e_status ret; 10276 10277 if (list_empty(&vsi->ch_list)) 10278 return 0; 10279 10280 list_for_each_entry_safe(ch, ch_tmp, &vsi->ch_list, list) { 10281 if (!ch->initialized) 10282 break; 10283 /* Proceed with creation of channel (VMDq2) VSI */ 10284 ret = i40e_add_channel(vsi->back, vsi->uplink_seid, ch); 10285 if (ret) { 10286 dev_info(&vsi->back->pdev->dev, 10287 "failed to rebuild channels using uplink_seid %u\n", 10288 vsi->uplink_seid); 10289 return ret; 10290 } 10291 /* Reconfigure TX queues using QTX_CTL register */ 10292 ret = i40e_channel_config_tx_ring(vsi->back, vsi, ch); 10293 if (ret) { 10294 dev_info(&vsi->back->pdev->dev, 10295 "failed to configure TX rings for channel %u\n", 10296 ch->seid); 10297 return ret; 10298 } 10299 /* update 'next_base_queue' */ 10300 vsi->next_base_queue = vsi->next_base_queue + 10301 ch->num_queue_pairs; 10302 if (ch->max_tx_rate) { 10303 u64 credits = ch->max_tx_rate; 10304 10305 if (i40e_set_bw_limit(vsi, ch->seid, 10306 ch->max_tx_rate)) 10307 return -EINVAL; 10308 10309 do_div(credits, I40E_BW_CREDIT_DIVISOR); 10310 dev_dbg(&vsi->back->pdev->dev, 10311 "Set tx rate of %llu Mbps (count of 50Mbps %llu) for vsi->seid %u\n", 10312 ch->max_tx_rate, 10313 credits, 10314 ch->seid); 10315 } 10316 ret = i40e_rebuild_cloud_filters(vsi, ch->seid); 10317 if (ret) { 10318 dev_dbg(&vsi->back->pdev->dev, 10319 "Failed to rebuild cloud filters for channel VSI %u\n", 10320 ch->seid); 10321 return ret; 10322 } 10323 } 10324 return 0; 10325 } 10326 10327 /** 10328 * i40e_prep_for_reset - prep for the core to reset 10329 * @pf: board private structure 10330 * 10331 * Close up the VFs and other things in prep for PF Reset. 10332 **/ 10333 static void i40e_prep_for_reset(struct i40e_pf *pf) 10334 { 10335 struct i40e_hw *hw = &pf->hw; 10336 i40e_status ret = 0; 10337 u32 v; 10338 10339 clear_bit(__I40E_RESET_INTR_RECEIVED, pf->state); 10340 if (test_and_set_bit(__I40E_RESET_RECOVERY_PENDING, pf->state)) 10341 return; 10342 if (i40e_check_asq_alive(&pf->hw)) 10343 i40e_vc_notify_reset(pf); 10344 10345 dev_dbg(&pf->pdev->dev, "Tearing down internal switch for reset\n"); 10346 10347 /* quiesce the VSIs and their queues that are not already DOWN */ 10348 i40e_pf_quiesce_all_vsi(pf); 10349 10350 for (v = 0; v < pf->num_alloc_vsi; v++) { 10351 if (pf->vsi[v]) 10352 pf->vsi[v]->seid = 0; 10353 } 10354 10355 i40e_shutdown_adminq(&pf->hw); 10356 10357 /* call shutdown HMC */ 10358 if (hw->hmc.hmc_obj) { 10359 ret = i40e_shutdown_lan_hmc(hw); 10360 if (ret) 10361 dev_warn(&pf->pdev->dev, 10362 "shutdown_lan_hmc failed: %d\n", ret); 10363 } 10364 10365 /* Save the current PTP time so that we can restore the time after the 10366 * reset completes. 10367 */ 10368 i40e_ptp_save_hw_time(pf); 10369 } 10370 10371 /** 10372 * i40e_send_version - update firmware with driver version 10373 * @pf: PF struct 10374 */ 10375 static void i40e_send_version(struct i40e_pf *pf) 10376 { 10377 struct i40e_driver_version dv; 10378 10379 dv.major_version = 0xff; 10380 dv.minor_version = 0xff; 10381 dv.build_version = 0xff; 10382 dv.subbuild_version = 0; 10383 strlcpy(dv.driver_string, UTS_RELEASE, sizeof(dv.driver_string)); 10384 i40e_aq_send_driver_version(&pf->hw, &dv, NULL); 10385 } 10386 10387 /** 10388 * i40e_get_oem_version - get OEM specific version information 10389 * @hw: pointer to the hardware structure 10390 **/ 10391 static void i40e_get_oem_version(struct i40e_hw *hw) 10392 { 10393 u16 block_offset = 0xffff; 10394 u16 block_length = 0; 10395 u16 capabilities = 0; 10396 u16 gen_snap = 0; 10397 u16 release = 0; 10398 10399 #define I40E_SR_NVM_OEM_VERSION_PTR 0x1B 10400 #define I40E_NVM_OEM_LENGTH_OFFSET 0x00 10401 #define I40E_NVM_OEM_CAPABILITIES_OFFSET 0x01 10402 #define I40E_NVM_OEM_GEN_OFFSET 0x02 10403 #define I40E_NVM_OEM_RELEASE_OFFSET 0x03 10404 #define I40E_NVM_OEM_CAPABILITIES_MASK 0x000F 10405 #define I40E_NVM_OEM_LENGTH 3 10406 10407 /* Check if pointer to OEM version block is valid. */ 10408 i40e_read_nvm_word(hw, I40E_SR_NVM_OEM_VERSION_PTR, &block_offset); 10409 if (block_offset == 0xffff) 10410 return; 10411 10412 /* Check if OEM version block has correct length. */ 10413 i40e_read_nvm_word(hw, block_offset + I40E_NVM_OEM_LENGTH_OFFSET, 10414 &block_length); 10415 if (block_length < I40E_NVM_OEM_LENGTH) 10416 return; 10417 10418 /* Check if OEM version format is as expected. */ 10419 i40e_read_nvm_word(hw, block_offset + I40E_NVM_OEM_CAPABILITIES_OFFSET, 10420 &capabilities); 10421 if ((capabilities & I40E_NVM_OEM_CAPABILITIES_MASK) != 0) 10422 return; 10423 10424 i40e_read_nvm_word(hw, block_offset + I40E_NVM_OEM_GEN_OFFSET, 10425 &gen_snap); 10426 i40e_read_nvm_word(hw, block_offset + I40E_NVM_OEM_RELEASE_OFFSET, 10427 &release); 10428 hw->nvm.oem_ver = (gen_snap << I40E_OEM_SNAP_SHIFT) | release; 10429 hw->nvm.eetrack = I40E_OEM_EETRACK_ID; 10430 } 10431 10432 /** 10433 * i40e_reset - wait for core reset to finish reset, reset pf if corer not seen 10434 * @pf: board private structure 10435 **/ 10436 static int i40e_reset(struct i40e_pf *pf) 10437 { 10438 struct i40e_hw *hw = &pf->hw; 10439 i40e_status ret; 10440 10441 ret = i40e_pf_reset(hw); 10442 if (ret) { 10443 dev_info(&pf->pdev->dev, "PF reset failed, %d\n", ret); 10444 set_bit(__I40E_RESET_FAILED, pf->state); 10445 clear_bit(__I40E_RESET_RECOVERY_PENDING, pf->state); 10446 } else { 10447 pf->pfr_count++; 10448 } 10449 return ret; 10450 } 10451 10452 /** 10453 * i40e_rebuild - rebuild using a saved config 10454 * @pf: board private structure 10455 * @reinit: if the Main VSI needs to re-initialized. 10456 * @lock_acquired: indicates whether or not the lock has been acquired 10457 * before this function was called. 10458 **/ 10459 static void i40e_rebuild(struct i40e_pf *pf, bool reinit, bool lock_acquired) 10460 { 10461 int old_recovery_mode_bit = test_bit(__I40E_RECOVERY_MODE, pf->state); 10462 struct i40e_vsi *vsi = pf->vsi[pf->lan_vsi]; 10463 struct i40e_hw *hw = &pf->hw; 10464 i40e_status ret; 10465 u32 val; 10466 int v; 10467 10468 if (test_bit(__I40E_EMP_RESET_INTR_RECEIVED, pf->state) && 10469 i40e_check_recovery_mode(pf)) { 10470 i40e_set_ethtool_ops(pf->vsi[pf->lan_vsi]->netdev); 10471 } 10472 10473 if (test_bit(__I40E_DOWN, pf->state) && 10474 !test_bit(__I40E_RECOVERY_MODE, pf->state) && 10475 !old_recovery_mode_bit) 10476 goto clear_recovery; 10477 dev_dbg(&pf->pdev->dev, "Rebuilding internal switch\n"); 10478 10479 /* rebuild the basics for the AdminQ, HMC, and initial HW switch */ 10480 ret = i40e_init_adminq(&pf->hw); 10481 if (ret) { 10482 dev_info(&pf->pdev->dev, "Rebuild AdminQ failed, err %s aq_err %s\n", 10483 i40e_stat_str(&pf->hw, ret), 10484 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 10485 goto clear_recovery; 10486 } 10487 i40e_get_oem_version(&pf->hw); 10488 10489 if (test_bit(__I40E_EMP_RESET_INTR_RECEIVED, pf->state) && 10490 ((hw->aq.fw_maj_ver == 4 && hw->aq.fw_min_ver <= 33) || 10491 hw->aq.fw_maj_ver < 4) && hw->mac.type == I40E_MAC_XL710) { 10492 /* The following delay is necessary for 4.33 firmware and older 10493 * to recover after EMP reset. 200 ms should suffice but we 10494 * put here 300 ms to be sure that FW is ready to operate 10495 * after reset. 10496 */ 10497 mdelay(300); 10498 } 10499 10500 /* re-verify the eeprom if we just had an EMP reset */ 10501 if (test_and_clear_bit(__I40E_EMP_RESET_INTR_RECEIVED, pf->state)) 10502 i40e_verify_eeprom(pf); 10503 10504 /* if we are going out of or into recovery mode we have to act 10505 * accordingly with regard to resources initialization 10506 * and deinitialization 10507 */ 10508 if (test_bit(__I40E_RECOVERY_MODE, pf->state) || 10509 old_recovery_mode_bit) { 10510 if (i40e_get_capabilities(pf, 10511 i40e_aqc_opc_list_func_capabilities)) 10512 goto end_unlock; 10513 10514 if (test_bit(__I40E_RECOVERY_MODE, pf->state)) { 10515 /* we're staying in recovery mode so we'll reinitialize 10516 * misc vector here 10517 */ 10518 if (i40e_setup_misc_vector_for_recovery_mode(pf)) 10519 goto end_unlock; 10520 } else { 10521 if (!lock_acquired) 10522 rtnl_lock(); 10523 /* we're going out of recovery mode so we'll free 10524 * the IRQ allocated specifically for recovery mode 10525 * and restore the interrupt scheme 10526 */ 10527 free_irq(pf->pdev->irq, pf); 10528 i40e_clear_interrupt_scheme(pf); 10529 if (i40e_restore_interrupt_scheme(pf)) 10530 goto end_unlock; 10531 } 10532 10533 /* tell the firmware that we're starting */ 10534 i40e_send_version(pf); 10535 10536 /* bail out in case recovery mode was detected, as there is 10537 * no need for further configuration. 10538 */ 10539 goto end_unlock; 10540 } 10541 10542 i40e_clear_pxe_mode(hw); 10543 ret = i40e_get_capabilities(pf, i40e_aqc_opc_list_func_capabilities); 10544 if (ret) 10545 goto end_core_reset; 10546 10547 ret = i40e_init_lan_hmc(hw, hw->func_caps.num_tx_qp, 10548 hw->func_caps.num_rx_qp, 0, 0); 10549 if (ret) { 10550 dev_info(&pf->pdev->dev, "init_lan_hmc failed: %d\n", ret); 10551 goto end_core_reset; 10552 } 10553 ret = i40e_configure_lan_hmc(hw, I40E_HMC_MODEL_DIRECT_ONLY); 10554 if (ret) { 10555 dev_info(&pf->pdev->dev, "configure_lan_hmc failed: %d\n", ret); 10556 goto end_core_reset; 10557 } 10558 10559 #ifdef CONFIG_I40E_DCB 10560 /* Enable FW to write a default DCB config on link-up 10561 * unless I40E_FLAG_TC_MQPRIO was enabled or DCB 10562 * is not supported with new link speed 10563 */ 10564 if (pf->flags & I40E_FLAG_TC_MQPRIO) { 10565 i40e_aq_set_dcb_parameters(hw, false, NULL); 10566 } else { 10567 if (I40E_IS_X710TL_DEVICE(hw->device_id) && 10568 (hw->phy.link_info.link_speed & 10569 (I40E_LINK_SPEED_2_5GB | I40E_LINK_SPEED_5GB))) { 10570 i40e_aq_set_dcb_parameters(hw, false, NULL); 10571 dev_warn(&pf->pdev->dev, 10572 "DCB is not supported for X710-T*L 2.5/5G speeds\n"); 10573 pf->flags &= ~I40E_FLAG_DCB_CAPABLE; 10574 } else { 10575 i40e_aq_set_dcb_parameters(hw, true, NULL); 10576 ret = i40e_init_pf_dcb(pf); 10577 if (ret) { 10578 dev_info(&pf->pdev->dev, "DCB init failed %d, disabled\n", 10579 ret); 10580 pf->flags &= ~I40E_FLAG_DCB_CAPABLE; 10581 /* Continue without DCB enabled */ 10582 } 10583 } 10584 } 10585 10586 #endif /* CONFIG_I40E_DCB */ 10587 if (!lock_acquired) 10588 rtnl_lock(); 10589 ret = i40e_setup_pf_switch(pf, reinit, true); 10590 if (ret) 10591 goto end_unlock; 10592 10593 /* The driver only wants link up/down and module qualification 10594 * reports from firmware. Note the negative logic. 10595 */ 10596 ret = i40e_aq_set_phy_int_mask(&pf->hw, 10597 ~(I40E_AQ_EVENT_LINK_UPDOWN | 10598 I40E_AQ_EVENT_MEDIA_NA | 10599 I40E_AQ_EVENT_MODULE_QUAL_FAIL), NULL); 10600 if (ret) 10601 dev_info(&pf->pdev->dev, "set phy mask fail, err %s aq_err %s\n", 10602 i40e_stat_str(&pf->hw, ret), 10603 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 10604 10605 /* Rebuild the VSIs and VEBs that existed before reset. 10606 * They are still in our local switch element arrays, so only 10607 * need to rebuild the switch model in the HW. 10608 * 10609 * If there were VEBs but the reconstitution failed, we'll try 10610 * to recover minimal use by getting the basic PF VSI working. 10611 */ 10612 if (vsi->uplink_seid != pf->mac_seid) { 10613 dev_dbg(&pf->pdev->dev, "attempting to rebuild switch\n"); 10614 /* find the one VEB connected to the MAC, and find orphans */ 10615 for (v = 0; v < I40E_MAX_VEB; v++) { 10616 if (!pf->veb[v]) 10617 continue; 10618 10619 if (pf->veb[v]->uplink_seid == pf->mac_seid || 10620 pf->veb[v]->uplink_seid == 0) { 10621 ret = i40e_reconstitute_veb(pf->veb[v]); 10622 10623 if (!ret) 10624 continue; 10625 10626 /* If Main VEB failed, we're in deep doodoo, 10627 * so give up rebuilding the switch and set up 10628 * for minimal rebuild of PF VSI. 10629 * If orphan failed, we'll report the error 10630 * but try to keep going. 10631 */ 10632 if (pf->veb[v]->uplink_seid == pf->mac_seid) { 10633 dev_info(&pf->pdev->dev, 10634 "rebuild of switch failed: %d, will try to set up simple PF connection\n", 10635 ret); 10636 vsi->uplink_seid = pf->mac_seid; 10637 break; 10638 } else if (pf->veb[v]->uplink_seid == 0) { 10639 dev_info(&pf->pdev->dev, 10640 "rebuild of orphan VEB failed: %d\n", 10641 ret); 10642 } 10643 } 10644 } 10645 } 10646 10647 if (vsi->uplink_seid == pf->mac_seid) { 10648 dev_dbg(&pf->pdev->dev, "attempting to rebuild PF VSI\n"); 10649 /* no VEB, so rebuild only the Main VSI */ 10650 ret = i40e_add_vsi(vsi); 10651 if (ret) { 10652 dev_info(&pf->pdev->dev, 10653 "rebuild of Main VSI failed: %d\n", ret); 10654 goto end_unlock; 10655 } 10656 } 10657 10658 if (vsi->mqprio_qopt.max_rate[0]) { 10659 u64 max_tx_rate = vsi->mqprio_qopt.max_rate[0]; 10660 u64 credits = 0; 10661 10662 do_div(max_tx_rate, I40E_BW_MBPS_DIVISOR); 10663 ret = i40e_set_bw_limit(vsi, vsi->seid, max_tx_rate); 10664 if (ret) 10665 goto end_unlock; 10666 10667 credits = max_tx_rate; 10668 do_div(credits, I40E_BW_CREDIT_DIVISOR); 10669 dev_dbg(&vsi->back->pdev->dev, 10670 "Set tx rate of %llu Mbps (count of 50Mbps %llu) for vsi->seid %u\n", 10671 max_tx_rate, 10672 credits, 10673 vsi->seid); 10674 } 10675 10676 ret = i40e_rebuild_cloud_filters(vsi, vsi->seid); 10677 if (ret) 10678 goto end_unlock; 10679 10680 /* PF Main VSI is rebuild by now, go ahead and rebuild channel VSIs 10681 * for this main VSI if they exist 10682 */ 10683 ret = i40e_rebuild_channels(vsi); 10684 if (ret) 10685 goto end_unlock; 10686 10687 /* Reconfigure hardware for allowing smaller MSS in the case 10688 * of TSO, so that we avoid the MDD being fired and causing 10689 * a reset in the case of small MSS+TSO. 10690 */ 10691 #define I40E_REG_MSS 0x000E64DC 10692 #define I40E_REG_MSS_MIN_MASK 0x3FF0000 10693 #define I40E_64BYTE_MSS 0x400000 10694 val = rd32(hw, I40E_REG_MSS); 10695 if ((val & I40E_REG_MSS_MIN_MASK) > I40E_64BYTE_MSS) { 10696 val &= ~I40E_REG_MSS_MIN_MASK; 10697 val |= I40E_64BYTE_MSS; 10698 wr32(hw, I40E_REG_MSS, val); 10699 } 10700 10701 if (pf->hw_features & I40E_HW_RESTART_AUTONEG) { 10702 msleep(75); 10703 ret = i40e_aq_set_link_restart_an(&pf->hw, true, NULL); 10704 if (ret) 10705 dev_info(&pf->pdev->dev, "link restart failed, err %s aq_err %s\n", 10706 i40e_stat_str(&pf->hw, ret), 10707 i40e_aq_str(&pf->hw, 10708 pf->hw.aq.asq_last_status)); 10709 } 10710 /* reinit the misc interrupt */ 10711 if (pf->flags & I40E_FLAG_MSIX_ENABLED) 10712 ret = i40e_setup_misc_vector(pf); 10713 10714 /* Add a filter to drop all Flow control frames from any VSI from being 10715 * transmitted. By doing so we stop a malicious VF from sending out 10716 * PAUSE or PFC frames and potentially controlling traffic for other 10717 * PF/VF VSIs. 10718 * The FW can still send Flow control frames if enabled. 10719 */ 10720 i40e_add_filter_to_drop_tx_flow_control_frames(&pf->hw, 10721 pf->main_vsi_seid); 10722 10723 /* restart the VSIs that were rebuilt and running before the reset */ 10724 i40e_pf_unquiesce_all_vsi(pf); 10725 10726 /* Release the RTNL lock before we start resetting VFs */ 10727 if (!lock_acquired) 10728 rtnl_unlock(); 10729 10730 /* Restore promiscuous settings */ 10731 ret = i40e_set_promiscuous(pf, pf->cur_promisc); 10732 if (ret) 10733 dev_warn(&pf->pdev->dev, 10734 "Failed to restore promiscuous setting: %s, err %s aq_err %s\n", 10735 pf->cur_promisc ? "on" : "off", 10736 i40e_stat_str(&pf->hw, ret), 10737 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 10738 10739 i40e_reset_all_vfs(pf, true); 10740 10741 /* tell the firmware that we're starting */ 10742 i40e_send_version(pf); 10743 10744 /* We've already released the lock, so don't do it again */ 10745 goto end_core_reset; 10746 10747 end_unlock: 10748 if (!lock_acquired) 10749 rtnl_unlock(); 10750 end_core_reset: 10751 clear_bit(__I40E_RESET_FAILED, pf->state); 10752 clear_recovery: 10753 clear_bit(__I40E_RESET_RECOVERY_PENDING, pf->state); 10754 clear_bit(__I40E_TIMEOUT_RECOVERY_PENDING, pf->state); 10755 } 10756 10757 /** 10758 * i40e_reset_and_rebuild - reset and rebuild using a saved config 10759 * @pf: board private structure 10760 * @reinit: if the Main VSI needs to re-initialized. 10761 * @lock_acquired: indicates whether or not the lock has been acquired 10762 * before this function was called. 10763 **/ 10764 static void i40e_reset_and_rebuild(struct i40e_pf *pf, bool reinit, 10765 bool lock_acquired) 10766 { 10767 int ret; 10768 /* Now we wait for GRST to settle out. 10769 * We don't have to delete the VEBs or VSIs from the hw switch 10770 * because the reset will make them disappear. 10771 */ 10772 ret = i40e_reset(pf); 10773 if (!ret) 10774 i40e_rebuild(pf, reinit, lock_acquired); 10775 } 10776 10777 /** 10778 * i40e_handle_reset_warning - prep for the PF to reset, reset and rebuild 10779 * @pf: board private structure 10780 * 10781 * Close up the VFs and other things in prep for a Core Reset, 10782 * then get ready to rebuild the world. 10783 * @lock_acquired: indicates whether or not the lock has been acquired 10784 * before this function was called. 10785 **/ 10786 static void i40e_handle_reset_warning(struct i40e_pf *pf, bool lock_acquired) 10787 { 10788 i40e_prep_for_reset(pf); 10789 i40e_reset_and_rebuild(pf, false, lock_acquired); 10790 } 10791 10792 /** 10793 * i40e_handle_mdd_event 10794 * @pf: pointer to the PF structure 10795 * 10796 * Called from the MDD irq handler to identify possibly malicious vfs 10797 **/ 10798 static void i40e_handle_mdd_event(struct i40e_pf *pf) 10799 { 10800 struct i40e_hw *hw = &pf->hw; 10801 bool mdd_detected = false; 10802 struct i40e_vf *vf; 10803 u32 reg; 10804 int i; 10805 10806 if (!test_bit(__I40E_MDD_EVENT_PENDING, pf->state)) 10807 return; 10808 10809 /* find what triggered the MDD event */ 10810 reg = rd32(hw, I40E_GL_MDET_TX); 10811 if (reg & I40E_GL_MDET_TX_VALID_MASK) { 10812 u8 pf_num = (reg & I40E_GL_MDET_TX_PF_NUM_MASK) >> 10813 I40E_GL_MDET_TX_PF_NUM_SHIFT; 10814 u16 vf_num = (reg & I40E_GL_MDET_TX_VF_NUM_MASK) >> 10815 I40E_GL_MDET_TX_VF_NUM_SHIFT; 10816 u8 event = (reg & I40E_GL_MDET_TX_EVENT_MASK) >> 10817 I40E_GL_MDET_TX_EVENT_SHIFT; 10818 u16 queue = ((reg & I40E_GL_MDET_TX_QUEUE_MASK) >> 10819 I40E_GL_MDET_TX_QUEUE_SHIFT) - 10820 pf->hw.func_caps.base_queue; 10821 if (netif_msg_tx_err(pf)) 10822 dev_info(&pf->pdev->dev, "Malicious Driver Detection event 0x%02x on TX queue %d PF number 0x%02x VF number 0x%02x\n", 10823 event, queue, pf_num, vf_num); 10824 wr32(hw, I40E_GL_MDET_TX, 0xffffffff); 10825 mdd_detected = true; 10826 } 10827 reg = rd32(hw, I40E_GL_MDET_RX); 10828 if (reg & I40E_GL_MDET_RX_VALID_MASK) { 10829 u8 func = (reg & I40E_GL_MDET_RX_FUNCTION_MASK) >> 10830 I40E_GL_MDET_RX_FUNCTION_SHIFT; 10831 u8 event = (reg & I40E_GL_MDET_RX_EVENT_MASK) >> 10832 I40E_GL_MDET_RX_EVENT_SHIFT; 10833 u16 queue = ((reg & I40E_GL_MDET_RX_QUEUE_MASK) >> 10834 I40E_GL_MDET_RX_QUEUE_SHIFT) - 10835 pf->hw.func_caps.base_queue; 10836 if (netif_msg_rx_err(pf)) 10837 dev_info(&pf->pdev->dev, "Malicious Driver Detection event 0x%02x on RX queue %d of function 0x%02x\n", 10838 event, queue, func); 10839 wr32(hw, I40E_GL_MDET_RX, 0xffffffff); 10840 mdd_detected = true; 10841 } 10842 10843 if (mdd_detected) { 10844 reg = rd32(hw, I40E_PF_MDET_TX); 10845 if (reg & I40E_PF_MDET_TX_VALID_MASK) { 10846 wr32(hw, I40E_PF_MDET_TX, 0xFFFF); 10847 dev_dbg(&pf->pdev->dev, "TX driver issue detected on PF\n"); 10848 } 10849 reg = rd32(hw, I40E_PF_MDET_RX); 10850 if (reg & I40E_PF_MDET_RX_VALID_MASK) { 10851 wr32(hw, I40E_PF_MDET_RX, 0xFFFF); 10852 dev_dbg(&pf->pdev->dev, "RX driver issue detected on PF\n"); 10853 } 10854 } 10855 10856 /* see if one of the VFs needs its hand slapped */ 10857 for (i = 0; i < pf->num_alloc_vfs && mdd_detected; i++) { 10858 vf = &(pf->vf[i]); 10859 reg = rd32(hw, I40E_VP_MDET_TX(i)); 10860 if (reg & I40E_VP_MDET_TX_VALID_MASK) { 10861 wr32(hw, I40E_VP_MDET_TX(i), 0xFFFF); 10862 vf->num_mdd_events++; 10863 dev_info(&pf->pdev->dev, "TX driver issue detected on VF %d\n", 10864 i); 10865 dev_info(&pf->pdev->dev, 10866 "Use PF Control I/F to re-enable the VF\n"); 10867 set_bit(I40E_VF_STATE_DISABLED, &vf->vf_states); 10868 } 10869 10870 reg = rd32(hw, I40E_VP_MDET_RX(i)); 10871 if (reg & I40E_VP_MDET_RX_VALID_MASK) { 10872 wr32(hw, I40E_VP_MDET_RX(i), 0xFFFF); 10873 vf->num_mdd_events++; 10874 dev_info(&pf->pdev->dev, "RX driver issue detected on VF %d\n", 10875 i); 10876 dev_info(&pf->pdev->dev, 10877 "Use PF Control I/F to re-enable the VF\n"); 10878 set_bit(I40E_VF_STATE_DISABLED, &vf->vf_states); 10879 } 10880 } 10881 10882 /* re-enable mdd interrupt cause */ 10883 clear_bit(__I40E_MDD_EVENT_PENDING, pf->state); 10884 reg = rd32(hw, I40E_PFINT_ICR0_ENA); 10885 reg |= I40E_PFINT_ICR0_ENA_MAL_DETECT_MASK; 10886 wr32(hw, I40E_PFINT_ICR0_ENA, reg); 10887 i40e_flush(hw); 10888 } 10889 10890 /** 10891 * i40e_service_task - Run the driver's async subtasks 10892 * @work: pointer to work_struct containing our data 10893 **/ 10894 static void i40e_service_task(struct work_struct *work) 10895 { 10896 struct i40e_pf *pf = container_of(work, 10897 struct i40e_pf, 10898 service_task); 10899 unsigned long start_time = jiffies; 10900 10901 /* don't bother with service tasks if a reset is in progress */ 10902 if (test_bit(__I40E_RESET_RECOVERY_PENDING, pf->state) || 10903 test_bit(__I40E_SUSPENDED, pf->state)) 10904 return; 10905 10906 if (test_and_set_bit(__I40E_SERVICE_SCHED, pf->state)) 10907 return; 10908 10909 if (!test_bit(__I40E_RECOVERY_MODE, pf->state)) { 10910 i40e_detect_recover_hung(pf->vsi[pf->lan_vsi]); 10911 i40e_sync_filters_subtask(pf); 10912 i40e_reset_subtask(pf); 10913 i40e_handle_mdd_event(pf); 10914 i40e_vc_process_vflr_event(pf); 10915 i40e_watchdog_subtask(pf); 10916 i40e_fdir_reinit_subtask(pf); 10917 if (test_and_clear_bit(__I40E_CLIENT_RESET, pf->state)) { 10918 /* Client subtask will reopen next time through. */ 10919 i40e_notify_client_of_netdev_close(pf->vsi[pf->lan_vsi], 10920 true); 10921 } else { 10922 i40e_client_subtask(pf); 10923 if (test_and_clear_bit(__I40E_CLIENT_L2_CHANGE, 10924 pf->state)) 10925 i40e_notify_client_of_l2_param_changes( 10926 pf->vsi[pf->lan_vsi]); 10927 } 10928 i40e_sync_filters_subtask(pf); 10929 } else { 10930 i40e_reset_subtask(pf); 10931 } 10932 10933 i40e_clean_adminq_subtask(pf); 10934 10935 /* flush memory to make sure state is correct before next watchdog */ 10936 smp_mb__before_atomic(); 10937 clear_bit(__I40E_SERVICE_SCHED, pf->state); 10938 10939 /* If the tasks have taken longer than one timer cycle or there 10940 * is more work to be done, reschedule the service task now 10941 * rather than wait for the timer to tick again. 10942 */ 10943 if (time_after(jiffies, (start_time + pf->service_timer_period)) || 10944 test_bit(__I40E_ADMINQ_EVENT_PENDING, pf->state) || 10945 test_bit(__I40E_MDD_EVENT_PENDING, pf->state) || 10946 test_bit(__I40E_VFLR_EVENT_PENDING, pf->state)) 10947 i40e_service_event_schedule(pf); 10948 } 10949 10950 /** 10951 * i40e_service_timer - timer callback 10952 * @t: timer list pointer 10953 **/ 10954 static void i40e_service_timer(struct timer_list *t) 10955 { 10956 struct i40e_pf *pf = from_timer(pf, t, service_timer); 10957 10958 mod_timer(&pf->service_timer, 10959 round_jiffies(jiffies + pf->service_timer_period)); 10960 i40e_service_event_schedule(pf); 10961 } 10962 10963 /** 10964 * i40e_set_num_rings_in_vsi - Determine number of rings in the VSI 10965 * @vsi: the VSI being configured 10966 **/ 10967 static int i40e_set_num_rings_in_vsi(struct i40e_vsi *vsi) 10968 { 10969 struct i40e_pf *pf = vsi->back; 10970 10971 switch (vsi->type) { 10972 case I40E_VSI_MAIN: 10973 vsi->alloc_queue_pairs = pf->num_lan_qps; 10974 if (!vsi->num_tx_desc) 10975 vsi->num_tx_desc = ALIGN(I40E_DEFAULT_NUM_DESCRIPTORS, 10976 I40E_REQ_DESCRIPTOR_MULTIPLE); 10977 if (!vsi->num_rx_desc) 10978 vsi->num_rx_desc = ALIGN(I40E_DEFAULT_NUM_DESCRIPTORS, 10979 I40E_REQ_DESCRIPTOR_MULTIPLE); 10980 if (pf->flags & I40E_FLAG_MSIX_ENABLED) 10981 vsi->num_q_vectors = pf->num_lan_msix; 10982 else 10983 vsi->num_q_vectors = 1; 10984 10985 break; 10986 10987 case I40E_VSI_FDIR: 10988 vsi->alloc_queue_pairs = 1; 10989 vsi->num_tx_desc = ALIGN(I40E_FDIR_RING_COUNT, 10990 I40E_REQ_DESCRIPTOR_MULTIPLE); 10991 vsi->num_rx_desc = ALIGN(I40E_FDIR_RING_COUNT, 10992 I40E_REQ_DESCRIPTOR_MULTIPLE); 10993 vsi->num_q_vectors = pf->num_fdsb_msix; 10994 break; 10995 10996 case I40E_VSI_VMDQ2: 10997 vsi->alloc_queue_pairs = pf->num_vmdq_qps; 10998 if (!vsi->num_tx_desc) 10999 vsi->num_tx_desc = ALIGN(I40E_DEFAULT_NUM_DESCRIPTORS, 11000 I40E_REQ_DESCRIPTOR_MULTIPLE); 11001 if (!vsi->num_rx_desc) 11002 vsi->num_rx_desc = ALIGN(I40E_DEFAULT_NUM_DESCRIPTORS, 11003 I40E_REQ_DESCRIPTOR_MULTIPLE); 11004 vsi->num_q_vectors = pf->num_vmdq_msix; 11005 break; 11006 11007 case I40E_VSI_SRIOV: 11008 vsi->alloc_queue_pairs = pf->num_vf_qps; 11009 if (!vsi->num_tx_desc) 11010 vsi->num_tx_desc = ALIGN(I40E_DEFAULT_NUM_DESCRIPTORS, 11011 I40E_REQ_DESCRIPTOR_MULTIPLE); 11012 if (!vsi->num_rx_desc) 11013 vsi->num_rx_desc = ALIGN(I40E_DEFAULT_NUM_DESCRIPTORS, 11014 I40E_REQ_DESCRIPTOR_MULTIPLE); 11015 break; 11016 11017 default: 11018 WARN_ON(1); 11019 return -ENODATA; 11020 } 11021 11022 if (is_kdump_kernel()) { 11023 vsi->num_tx_desc = I40E_MIN_NUM_DESCRIPTORS; 11024 vsi->num_rx_desc = I40E_MIN_NUM_DESCRIPTORS; 11025 } 11026 11027 return 0; 11028 } 11029 11030 /** 11031 * i40e_vsi_alloc_arrays - Allocate queue and vector pointer arrays for the vsi 11032 * @vsi: VSI pointer 11033 * @alloc_qvectors: a bool to specify if q_vectors need to be allocated. 11034 * 11035 * On error: returns error code (negative) 11036 * On success: returns 0 11037 **/ 11038 static int i40e_vsi_alloc_arrays(struct i40e_vsi *vsi, bool alloc_qvectors) 11039 { 11040 struct i40e_ring **next_rings; 11041 int size; 11042 int ret = 0; 11043 11044 /* allocate memory for both Tx, XDP Tx and Rx ring pointers */ 11045 size = sizeof(struct i40e_ring *) * vsi->alloc_queue_pairs * 11046 (i40e_enabled_xdp_vsi(vsi) ? 3 : 2); 11047 vsi->tx_rings = kzalloc(size, GFP_KERNEL); 11048 if (!vsi->tx_rings) 11049 return -ENOMEM; 11050 next_rings = vsi->tx_rings + vsi->alloc_queue_pairs; 11051 if (i40e_enabled_xdp_vsi(vsi)) { 11052 vsi->xdp_rings = next_rings; 11053 next_rings += vsi->alloc_queue_pairs; 11054 } 11055 vsi->rx_rings = next_rings; 11056 11057 if (alloc_qvectors) { 11058 /* allocate memory for q_vector pointers */ 11059 size = sizeof(struct i40e_q_vector *) * vsi->num_q_vectors; 11060 vsi->q_vectors = kzalloc(size, GFP_KERNEL); 11061 if (!vsi->q_vectors) { 11062 ret = -ENOMEM; 11063 goto err_vectors; 11064 } 11065 } 11066 return ret; 11067 11068 err_vectors: 11069 kfree(vsi->tx_rings); 11070 return ret; 11071 } 11072 11073 /** 11074 * i40e_vsi_mem_alloc - Allocates the next available struct vsi in the PF 11075 * @pf: board private structure 11076 * @type: type of VSI 11077 * 11078 * On error: returns error code (negative) 11079 * On success: returns vsi index in PF (positive) 11080 **/ 11081 static int i40e_vsi_mem_alloc(struct i40e_pf *pf, enum i40e_vsi_type type) 11082 { 11083 int ret = -ENODEV; 11084 struct i40e_vsi *vsi; 11085 int vsi_idx; 11086 int i; 11087 11088 /* Need to protect the allocation of the VSIs at the PF level */ 11089 mutex_lock(&pf->switch_mutex); 11090 11091 /* VSI list may be fragmented if VSI creation/destruction has 11092 * been happening. We can afford to do a quick scan to look 11093 * for any free VSIs in the list. 11094 * 11095 * find next empty vsi slot, looping back around if necessary 11096 */ 11097 i = pf->next_vsi; 11098 while (i < pf->num_alloc_vsi && pf->vsi[i]) 11099 i++; 11100 if (i >= pf->num_alloc_vsi) { 11101 i = 0; 11102 while (i < pf->next_vsi && pf->vsi[i]) 11103 i++; 11104 } 11105 11106 if (i < pf->num_alloc_vsi && !pf->vsi[i]) { 11107 vsi_idx = i; /* Found one! */ 11108 } else { 11109 ret = -ENODEV; 11110 goto unlock_pf; /* out of VSI slots! */ 11111 } 11112 pf->next_vsi = ++i; 11113 11114 vsi = kzalloc(sizeof(*vsi), GFP_KERNEL); 11115 if (!vsi) { 11116 ret = -ENOMEM; 11117 goto unlock_pf; 11118 } 11119 vsi->type = type; 11120 vsi->back = pf; 11121 set_bit(__I40E_VSI_DOWN, vsi->state); 11122 vsi->flags = 0; 11123 vsi->idx = vsi_idx; 11124 vsi->int_rate_limit = 0; 11125 vsi->rss_table_size = (vsi->type == I40E_VSI_MAIN) ? 11126 pf->rss_table_size : 64; 11127 vsi->netdev_registered = false; 11128 vsi->work_limit = I40E_DEFAULT_IRQ_WORK; 11129 hash_init(vsi->mac_filter_hash); 11130 vsi->irqs_ready = false; 11131 11132 if (type == I40E_VSI_MAIN) { 11133 vsi->af_xdp_zc_qps = bitmap_zalloc(pf->num_lan_qps, GFP_KERNEL); 11134 if (!vsi->af_xdp_zc_qps) 11135 goto err_rings; 11136 } 11137 11138 ret = i40e_set_num_rings_in_vsi(vsi); 11139 if (ret) 11140 goto err_rings; 11141 11142 ret = i40e_vsi_alloc_arrays(vsi, true); 11143 if (ret) 11144 goto err_rings; 11145 11146 /* Setup default MSIX irq handler for VSI */ 11147 i40e_vsi_setup_irqhandler(vsi, i40e_msix_clean_rings); 11148 11149 /* Initialize VSI lock */ 11150 spin_lock_init(&vsi->mac_filter_hash_lock); 11151 pf->vsi[vsi_idx] = vsi; 11152 ret = vsi_idx; 11153 goto unlock_pf; 11154 11155 err_rings: 11156 bitmap_free(vsi->af_xdp_zc_qps); 11157 pf->next_vsi = i - 1; 11158 kfree(vsi); 11159 unlock_pf: 11160 mutex_unlock(&pf->switch_mutex); 11161 return ret; 11162 } 11163 11164 /** 11165 * i40e_vsi_free_arrays - Free queue and vector pointer arrays for the VSI 11166 * @vsi: VSI pointer 11167 * @free_qvectors: a bool to specify if q_vectors need to be freed. 11168 * 11169 * On error: returns error code (negative) 11170 * On success: returns 0 11171 **/ 11172 static void i40e_vsi_free_arrays(struct i40e_vsi *vsi, bool free_qvectors) 11173 { 11174 /* free the ring and vector containers */ 11175 if (free_qvectors) { 11176 kfree(vsi->q_vectors); 11177 vsi->q_vectors = NULL; 11178 } 11179 kfree(vsi->tx_rings); 11180 vsi->tx_rings = NULL; 11181 vsi->rx_rings = NULL; 11182 vsi->xdp_rings = NULL; 11183 } 11184 11185 /** 11186 * i40e_clear_rss_config_user - clear the user configured RSS hash keys 11187 * and lookup table 11188 * @vsi: Pointer to VSI structure 11189 */ 11190 static void i40e_clear_rss_config_user(struct i40e_vsi *vsi) 11191 { 11192 if (!vsi) 11193 return; 11194 11195 kfree(vsi->rss_hkey_user); 11196 vsi->rss_hkey_user = NULL; 11197 11198 kfree(vsi->rss_lut_user); 11199 vsi->rss_lut_user = NULL; 11200 } 11201 11202 /** 11203 * i40e_vsi_clear - Deallocate the VSI provided 11204 * @vsi: the VSI being un-configured 11205 **/ 11206 static int i40e_vsi_clear(struct i40e_vsi *vsi) 11207 { 11208 struct i40e_pf *pf; 11209 11210 if (!vsi) 11211 return 0; 11212 11213 if (!vsi->back) 11214 goto free_vsi; 11215 pf = vsi->back; 11216 11217 mutex_lock(&pf->switch_mutex); 11218 if (!pf->vsi[vsi->idx]) { 11219 dev_err(&pf->pdev->dev, "pf->vsi[%d] is NULL, just free vsi[%d](type %d)\n", 11220 vsi->idx, vsi->idx, vsi->type); 11221 goto unlock_vsi; 11222 } 11223 11224 if (pf->vsi[vsi->idx] != vsi) { 11225 dev_err(&pf->pdev->dev, 11226 "pf->vsi[%d](type %d) != vsi[%d](type %d): no free!\n", 11227 pf->vsi[vsi->idx]->idx, 11228 pf->vsi[vsi->idx]->type, 11229 vsi->idx, vsi->type); 11230 goto unlock_vsi; 11231 } 11232 11233 /* updates the PF for this cleared vsi */ 11234 i40e_put_lump(pf->qp_pile, vsi->base_queue, vsi->idx); 11235 i40e_put_lump(pf->irq_pile, vsi->base_vector, vsi->idx); 11236 11237 bitmap_free(vsi->af_xdp_zc_qps); 11238 i40e_vsi_free_arrays(vsi, true); 11239 i40e_clear_rss_config_user(vsi); 11240 11241 pf->vsi[vsi->idx] = NULL; 11242 if (vsi->idx < pf->next_vsi) 11243 pf->next_vsi = vsi->idx; 11244 11245 unlock_vsi: 11246 mutex_unlock(&pf->switch_mutex); 11247 free_vsi: 11248 kfree(vsi); 11249 11250 return 0; 11251 } 11252 11253 /** 11254 * i40e_vsi_clear_rings - Deallocates the Rx and Tx rings for the provided VSI 11255 * @vsi: the VSI being cleaned 11256 **/ 11257 static void i40e_vsi_clear_rings(struct i40e_vsi *vsi) 11258 { 11259 int i; 11260 11261 if (vsi->tx_rings && vsi->tx_rings[0]) { 11262 for (i = 0; i < vsi->alloc_queue_pairs; i++) { 11263 kfree_rcu(vsi->tx_rings[i], rcu); 11264 WRITE_ONCE(vsi->tx_rings[i], NULL); 11265 WRITE_ONCE(vsi->rx_rings[i], NULL); 11266 if (vsi->xdp_rings) 11267 WRITE_ONCE(vsi->xdp_rings[i], NULL); 11268 } 11269 } 11270 } 11271 11272 /** 11273 * i40e_alloc_rings - Allocates the Rx and Tx rings for the provided VSI 11274 * @vsi: the VSI being configured 11275 **/ 11276 static int i40e_alloc_rings(struct i40e_vsi *vsi) 11277 { 11278 int i, qpv = i40e_enabled_xdp_vsi(vsi) ? 3 : 2; 11279 struct i40e_pf *pf = vsi->back; 11280 struct i40e_ring *ring; 11281 11282 /* Set basic values in the rings to be used later during open() */ 11283 for (i = 0; i < vsi->alloc_queue_pairs; i++) { 11284 /* allocate space for both Tx and Rx in one shot */ 11285 ring = kcalloc(qpv, sizeof(struct i40e_ring), GFP_KERNEL); 11286 if (!ring) 11287 goto err_out; 11288 11289 ring->queue_index = i; 11290 ring->reg_idx = vsi->base_queue + i; 11291 ring->ring_active = false; 11292 ring->vsi = vsi; 11293 ring->netdev = vsi->netdev; 11294 ring->dev = &pf->pdev->dev; 11295 ring->count = vsi->num_tx_desc; 11296 ring->size = 0; 11297 ring->dcb_tc = 0; 11298 if (vsi->back->hw_features & I40E_HW_WB_ON_ITR_CAPABLE) 11299 ring->flags = I40E_TXR_FLAGS_WB_ON_ITR; 11300 ring->itr_setting = pf->tx_itr_default; 11301 WRITE_ONCE(vsi->tx_rings[i], ring++); 11302 11303 if (!i40e_enabled_xdp_vsi(vsi)) 11304 goto setup_rx; 11305 11306 ring->queue_index = vsi->alloc_queue_pairs + i; 11307 ring->reg_idx = vsi->base_queue + ring->queue_index; 11308 ring->ring_active = false; 11309 ring->vsi = vsi; 11310 ring->netdev = NULL; 11311 ring->dev = &pf->pdev->dev; 11312 ring->count = vsi->num_tx_desc; 11313 ring->size = 0; 11314 ring->dcb_tc = 0; 11315 if (vsi->back->hw_features & I40E_HW_WB_ON_ITR_CAPABLE) 11316 ring->flags = I40E_TXR_FLAGS_WB_ON_ITR; 11317 set_ring_xdp(ring); 11318 ring->itr_setting = pf->tx_itr_default; 11319 WRITE_ONCE(vsi->xdp_rings[i], ring++); 11320 11321 setup_rx: 11322 ring->queue_index = i; 11323 ring->reg_idx = vsi->base_queue + i; 11324 ring->ring_active = false; 11325 ring->vsi = vsi; 11326 ring->netdev = vsi->netdev; 11327 ring->dev = &pf->pdev->dev; 11328 ring->count = vsi->num_rx_desc; 11329 ring->size = 0; 11330 ring->dcb_tc = 0; 11331 ring->itr_setting = pf->rx_itr_default; 11332 WRITE_ONCE(vsi->rx_rings[i], ring); 11333 } 11334 11335 return 0; 11336 11337 err_out: 11338 i40e_vsi_clear_rings(vsi); 11339 return -ENOMEM; 11340 } 11341 11342 /** 11343 * i40e_reserve_msix_vectors - Reserve MSI-X vectors in the kernel 11344 * @pf: board private structure 11345 * @vectors: the number of MSI-X vectors to request 11346 * 11347 * Returns the number of vectors reserved, or error 11348 **/ 11349 static int i40e_reserve_msix_vectors(struct i40e_pf *pf, int vectors) 11350 { 11351 vectors = pci_enable_msix_range(pf->pdev, pf->msix_entries, 11352 I40E_MIN_MSIX, vectors); 11353 if (vectors < 0) { 11354 dev_info(&pf->pdev->dev, 11355 "MSI-X vector reservation failed: %d\n", vectors); 11356 vectors = 0; 11357 } 11358 11359 return vectors; 11360 } 11361 11362 /** 11363 * i40e_init_msix - Setup the MSIX capability 11364 * @pf: board private structure 11365 * 11366 * Work with the OS to set up the MSIX vectors needed. 11367 * 11368 * Returns the number of vectors reserved or negative on failure 11369 **/ 11370 static int i40e_init_msix(struct i40e_pf *pf) 11371 { 11372 struct i40e_hw *hw = &pf->hw; 11373 int cpus, extra_vectors; 11374 int vectors_left; 11375 int v_budget, i; 11376 int v_actual; 11377 int iwarp_requested = 0; 11378 11379 if (!(pf->flags & I40E_FLAG_MSIX_ENABLED)) 11380 return -ENODEV; 11381 11382 /* The number of vectors we'll request will be comprised of: 11383 * - Add 1 for "other" cause for Admin Queue events, etc. 11384 * - The number of LAN queue pairs 11385 * - Queues being used for RSS. 11386 * We don't need as many as max_rss_size vectors. 11387 * use rss_size instead in the calculation since that 11388 * is governed by number of cpus in the system. 11389 * - assumes symmetric Tx/Rx pairing 11390 * - The number of VMDq pairs 11391 * - The CPU count within the NUMA node if iWARP is enabled 11392 * Once we count this up, try the request. 11393 * 11394 * If we can't get what we want, we'll simplify to nearly nothing 11395 * and try again. If that still fails, we punt. 11396 */ 11397 vectors_left = hw->func_caps.num_msix_vectors; 11398 v_budget = 0; 11399 11400 /* reserve one vector for miscellaneous handler */ 11401 if (vectors_left) { 11402 v_budget++; 11403 vectors_left--; 11404 } 11405 11406 /* reserve some vectors for the main PF traffic queues. Initially we 11407 * only reserve at most 50% of the available vectors, in the case that 11408 * the number of online CPUs is large. This ensures that we can enable 11409 * extra features as well. Once we've enabled the other features, we 11410 * will use any remaining vectors to reach as close as we can to the 11411 * number of online CPUs. 11412 */ 11413 cpus = num_online_cpus(); 11414 pf->num_lan_msix = min_t(int, cpus, vectors_left / 2); 11415 vectors_left -= pf->num_lan_msix; 11416 11417 /* reserve one vector for sideband flow director */ 11418 if (pf->flags & I40E_FLAG_FD_SB_ENABLED) { 11419 if (vectors_left) { 11420 pf->num_fdsb_msix = 1; 11421 v_budget++; 11422 vectors_left--; 11423 } else { 11424 pf->num_fdsb_msix = 0; 11425 } 11426 } 11427 11428 /* can we reserve enough for iWARP? */ 11429 if (pf->flags & I40E_FLAG_IWARP_ENABLED) { 11430 iwarp_requested = pf->num_iwarp_msix; 11431 11432 if (!vectors_left) 11433 pf->num_iwarp_msix = 0; 11434 else if (vectors_left < pf->num_iwarp_msix) 11435 pf->num_iwarp_msix = 1; 11436 v_budget += pf->num_iwarp_msix; 11437 vectors_left -= pf->num_iwarp_msix; 11438 } 11439 11440 /* any vectors left over go for VMDq support */ 11441 if (pf->flags & I40E_FLAG_VMDQ_ENABLED) { 11442 if (!vectors_left) { 11443 pf->num_vmdq_msix = 0; 11444 pf->num_vmdq_qps = 0; 11445 } else { 11446 int vmdq_vecs_wanted = 11447 pf->num_vmdq_vsis * pf->num_vmdq_qps; 11448 int vmdq_vecs = 11449 min_t(int, vectors_left, vmdq_vecs_wanted); 11450 11451 /* if we're short on vectors for what's desired, we limit 11452 * the queues per vmdq. If this is still more than are 11453 * available, the user will need to change the number of 11454 * queues/vectors used by the PF later with the ethtool 11455 * channels command 11456 */ 11457 if (vectors_left < vmdq_vecs_wanted) { 11458 pf->num_vmdq_qps = 1; 11459 vmdq_vecs_wanted = pf->num_vmdq_vsis; 11460 vmdq_vecs = min_t(int, 11461 vectors_left, 11462 vmdq_vecs_wanted); 11463 } 11464 pf->num_vmdq_msix = pf->num_vmdq_qps; 11465 11466 v_budget += vmdq_vecs; 11467 vectors_left -= vmdq_vecs; 11468 } 11469 } 11470 11471 /* On systems with a large number of SMP cores, we previously limited 11472 * the number of vectors for num_lan_msix to be at most 50% of the 11473 * available vectors, to allow for other features. Now, we add back 11474 * the remaining vectors. However, we ensure that the total 11475 * num_lan_msix will not exceed num_online_cpus(). To do this, we 11476 * calculate the number of vectors we can add without going over the 11477 * cap of CPUs. For systems with a small number of CPUs this will be 11478 * zero. 11479 */ 11480 extra_vectors = min_t(int, cpus - pf->num_lan_msix, vectors_left); 11481 pf->num_lan_msix += extra_vectors; 11482 vectors_left -= extra_vectors; 11483 11484 WARN(vectors_left < 0, 11485 "Calculation of remaining vectors underflowed. This is an accounting bug when determining total MSI-X vectors.\n"); 11486 11487 v_budget += pf->num_lan_msix; 11488 pf->msix_entries = kcalloc(v_budget, sizeof(struct msix_entry), 11489 GFP_KERNEL); 11490 if (!pf->msix_entries) 11491 return -ENOMEM; 11492 11493 for (i = 0; i < v_budget; i++) 11494 pf->msix_entries[i].entry = i; 11495 v_actual = i40e_reserve_msix_vectors(pf, v_budget); 11496 11497 if (v_actual < I40E_MIN_MSIX) { 11498 pf->flags &= ~I40E_FLAG_MSIX_ENABLED; 11499 kfree(pf->msix_entries); 11500 pf->msix_entries = NULL; 11501 pci_disable_msix(pf->pdev); 11502 return -ENODEV; 11503 11504 } else if (v_actual == I40E_MIN_MSIX) { 11505 /* Adjust for minimal MSIX use */ 11506 pf->num_vmdq_vsis = 0; 11507 pf->num_vmdq_qps = 0; 11508 pf->num_lan_qps = 1; 11509 pf->num_lan_msix = 1; 11510 11511 } else if (v_actual != v_budget) { 11512 /* If we have limited resources, we will start with no vectors 11513 * for the special features and then allocate vectors to some 11514 * of these features based on the policy and at the end disable 11515 * the features that did not get any vectors. 11516 */ 11517 int vec; 11518 11519 dev_info(&pf->pdev->dev, 11520 "MSI-X vector limit reached with %d, wanted %d, attempting to redistribute vectors\n", 11521 v_actual, v_budget); 11522 /* reserve the misc vector */ 11523 vec = v_actual - 1; 11524 11525 /* Scale vector usage down */ 11526 pf->num_vmdq_msix = 1; /* force VMDqs to only one vector */ 11527 pf->num_vmdq_vsis = 1; 11528 pf->num_vmdq_qps = 1; 11529 11530 /* partition out the remaining vectors */ 11531 switch (vec) { 11532 case 2: 11533 pf->num_lan_msix = 1; 11534 break; 11535 case 3: 11536 if (pf->flags & I40E_FLAG_IWARP_ENABLED) { 11537 pf->num_lan_msix = 1; 11538 pf->num_iwarp_msix = 1; 11539 } else { 11540 pf->num_lan_msix = 2; 11541 } 11542 break; 11543 default: 11544 if (pf->flags & I40E_FLAG_IWARP_ENABLED) { 11545 pf->num_iwarp_msix = min_t(int, (vec / 3), 11546 iwarp_requested); 11547 pf->num_vmdq_vsis = min_t(int, (vec / 3), 11548 I40E_DEFAULT_NUM_VMDQ_VSI); 11549 } else { 11550 pf->num_vmdq_vsis = min_t(int, (vec / 2), 11551 I40E_DEFAULT_NUM_VMDQ_VSI); 11552 } 11553 if (pf->flags & I40E_FLAG_FD_SB_ENABLED) { 11554 pf->num_fdsb_msix = 1; 11555 vec--; 11556 } 11557 pf->num_lan_msix = min_t(int, 11558 (vec - (pf->num_iwarp_msix + pf->num_vmdq_vsis)), 11559 pf->num_lan_msix); 11560 pf->num_lan_qps = pf->num_lan_msix; 11561 break; 11562 } 11563 } 11564 11565 if ((pf->flags & I40E_FLAG_FD_SB_ENABLED) && 11566 (pf->num_fdsb_msix == 0)) { 11567 dev_info(&pf->pdev->dev, "Sideband Flowdir disabled, not enough MSI-X vectors\n"); 11568 pf->flags &= ~I40E_FLAG_FD_SB_ENABLED; 11569 pf->flags |= I40E_FLAG_FD_SB_INACTIVE; 11570 } 11571 if ((pf->flags & I40E_FLAG_VMDQ_ENABLED) && 11572 (pf->num_vmdq_msix == 0)) { 11573 dev_info(&pf->pdev->dev, "VMDq disabled, not enough MSI-X vectors\n"); 11574 pf->flags &= ~I40E_FLAG_VMDQ_ENABLED; 11575 } 11576 11577 if ((pf->flags & I40E_FLAG_IWARP_ENABLED) && 11578 (pf->num_iwarp_msix == 0)) { 11579 dev_info(&pf->pdev->dev, "IWARP disabled, not enough MSI-X vectors\n"); 11580 pf->flags &= ~I40E_FLAG_IWARP_ENABLED; 11581 } 11582 i40e_debug(&pf->hw, I40E_DEBUG_INIT, 11583 "MSI-X vector distribution: PF %d, VMDq %d, FDSB %d, iWARP %d\n", 11584 pf->num_lan_msix, 11585 pf->num_vmdq_msix * pf->num_vmdq_vsis, 11586 pf->num_fdsb_msix, 11587 pf->num_iwarp_msix); 11588 11589 return v_actual; 11590 } 11591 11592 /** 11593 * i40e_vsi_alloc_q_vector - Allocate memory for a single interrupt vector 11594 * @vsi: the VSI being configured 11595 * @v_idx: index of the vector in the vsi struct 11596 * 11597 * We allocate one q_vector. If allocation fails we return -ENOMEM. 11598 **/ 11599 static int i40e_vsi_alloc_q_vector(struct i40e_vsi *vsi, int v_idx) 11600 { 11601 struct i40e_q_vector *q_vector; 11602 11603 /* allocate q_vector */ 11604 q_vector = kzalloc(sizeof(struct i40e_q_vector), GFP_KERNEL); 11605 if (!q_vector) 11606 return -ENOMEM; 11607 11608 q_vector->vsi = vsi; 11609 q_vector->v_idx = v_idx; 11610 cpumask_copy(&q_vector->affinity_mask, cpu_possible_mask); 11611 11612 if (vsi->netdev) 11613 netif_napi_add(vsi->netdev, &q_vector->napi, 11614 i40e_napi_poll, NAPI_POLL_WEIGHT); 11615 11616 /* tie q_vector and vsi together */ 11617 vsi->q_vectors[v_idx] = q_vector; 11618 11619 return 0; 11620 } 11621 11622 /** 11623 * i40e_vsi_alloc_q_vectors - Allocate memory for interrupt vectors 11624 * @vsi: the VSI being configured 11625 * 11626 * We allocate one q_vector per queue interrupt. If allocation fails we 11627 * return -ENOMEM. 11628 **/ 11629 static int i40e_vsi_alloc_q_vectors(struct i40e_vsi *vsi) 11630 { 11631 struct i40e_pf *pf = vsi->back; 11632 int err, v_idx, num_q_vectors; 11633 11634 /* if not MSIX, give the one vector only to the LAN VSI */ 11635 if (pf->flags & I40E_FLAG_MSIX_ENABLED) 11636 num_q_vectors = vsi->num_q_vectors; 11637 else if (vsi == pf->vsi[pf->lan_vsi]) 11638 num_q_vectors = 1; 11639 else 11640 return -EINVAL; 11641 11642 for (v_idx = 0; v_idx < num_q_vectors; v_idx++) { 11643 err = i40e_vsi_alloc_q_vector(vsi, v_idx); 11644 if (err) 11645 goto err_out; 11646 } 11647 11648 return 0; 11649 11650 err_out: 11651 while (v_idx--) 11652 i40e_free_q_vector(vsi, v_idx); 11653 11654 return err; 11655 } 11656 11657 /** 11658 * i40e_init_interrupt_scheme - Determine proper interrupt scheme 11659 * @pf: board private structure to initialize 11660 **/ 11661 static int i40e_init_interrupt_scheme(struct i40e_pf *pf) 11662 { 11663 int vectors = 0; 11664 ssize_t size; 11665 11666 if (pf->flags & I40E_FLAG_MSIX_ENABLED) { 11667 vectors = i40e_init_msix(pf); 11668 if (vectors < 0) { 11669 pf->flags &= ~(I40E_FLAG_MSIX_ENABLED | 11670 I40E_FLAG_IWARP_ENABLED | 11671 I40E_FLAG_RSS_ENABLED | 11672 I40E_FLAG_DCB_CAPABLE | 11673 I40E_FLAG_DCB_ENABLED | 11674 I40E_FLAG_SRIOV_ENABLED | 11675 I40E_FLAG_FD_SB_ENABLED | 11676 I40E_FLAG_FD_ATR_ENABLED | 11677 I40E_FLAG_VMDQ_ENABLED); 11678 pf->flags |= I40E_FLAG_FD_SB_INACTIVE; 11679 11680 /* rework the queue expectations without MSIX */ 11681 i40e_determine_queue_usage(pf); 11682 } 11683 } 11684 11685 if (!(pf->flags & I40E_FLAG_MSIX_ENABLED) && 11686 (pf->flags & I40E_FLAG_MSI_ENABLED)) { 11687 dev_info(&pf->pdev->dev, "MSI-X not available, trying MSI\n"); 11688 vectors = pci_enable_msi(pf->pdev); 11689 if (vectors < 0) { 11690 dev_info(&pf->pdev->dev, "MSI init failed - %d\n", 11691 vectors); 11692 pf->flags &= ~I40E_FLAG_MSI_ENABLED; 11693 } 11694 vectors = 1; /* one MSI or Legacy vector */ 11695 } 11696 11697 if (!(pf->flags & (I40E_FLAG_MSIX_ENABLED | I40E_FLAG_MSI_ENABLED))) 11698 dev_info(&pf->pdev->dev, "MSI-X and MSI not available, falling back to Legacy IRQ\n"); 11699 11700 /* set up vector assignment tracking */ 11701 size = sizeof(struct i40e_lump_tracking) + (sizeof(u16) * vectors); 11702 pf->irq_pile = kzalloc(size, GFP_KERNEL); 11703 if (!pf->irq_pile) 11704 return -ENOMEM; 11705 11706 pf->irq_pile->num_entries = vectors; 11707 pf->irq_pile->search_hint = 0; 11708 11709 /* track first vector for misc interrupts, ignore return */ 11710 (void)i40e_get_lump(pf, pf->irq_pile, 1, I40E_PILE_VALID_BIT - 1); 11711 11712 return 0; 11713 } 11714 11715 /** 11716 * i40e_restore_interrupt_scheme - Restore the interrupt scheme 11717 * @pf: private board data structure 11718 * 11719 * Restore the interrupt scheme that was cleared when we suspended the 11720 * device. This should be called during resume to re-allocate the q_vectors 11721 * and reacquire IRQs. 11722 */ 11723 static int i40e_restore_interrupt_scheme(struct i40e_pf *pf) 11724 { 11725 int err, i; 11726 11727 /* We cleared the MSI and MSI-X flags when disabling the old interrupt 11728 * scheme. We need to re-enabled them here in order to attempt to 11729 * re-acquire the MSI or MSI-X vectors 11730 */ 11731 pf->flags |= (I40E_FLAG_MSIX_ENABLED | I40E_FLAG_MSI_ENABLED); 11732 11733 err = i40e_init_interrupt_scheme(pf); 11734 if (err) 11735 return err; 11736 11737 /* Now that we've re-acquired IRQs, we need to remap the vectors and 11738 * rings together again. 11739 */ 11740 for (i = 0; i < pf->num_alloc_vsi; i++) { 11741 if (pf->vsi[i]) { 11742 err = i40e_vsi_alloc_q_vectors(pf->vsi[i]); 11743 if (err) 11744 goto err_unwind; 11745 i40e_vsi_map_rings_to_vectors(pf->vsi[i]); 11746 } 11747 } 11748 11749 err = i40e_setup_misc_vector(pf); 11750 if (err) 11751 goto err_unwind; 11752 11753 if (pf->flags & I40E_FLAG_IWARP_ENABLED) 11754 i40e_client_update_msix_info(pf); 11755 11756 return 0; 11757 11758 err_unwind: 11759 while (i--) { 11760 if (pf->vsi[i]) 11761 i40e_vsi_free_q_vectors(pf->vsi[i]); 11762 } 11763 11764 return err; 11765 } 11766 11767 /** 11768 * i40e_setup_misc_vector_for_recovery_mode - Setup the misc vector to handle 11769 * non queue events in recovery mode 11770 * @pf: board private structure 11771 * 11772 * This sets up the handler for MSIX 0 or MSI/legacy, which is used to manage 11773 * the non-queue interrupts, e.g. AdminQ and errors in recovery mode. 11774 * This is handled differently than in recovery mode since no Tx/Rx resources 11775 * are being allocated. 11776 **/ 11777 static int i40e_setup_misc_vector_for_recovery_mode(struct i40e_pf *pf) 11778 { 11779 int err; 11780 11781 if (pf->flags & I40E_FLAG_MSIX_ENABLED) { 11782 err = i40e_setup_misc_vector(pf); 11783 11784 if (err) { 11785 dev_info(&pf->pdev->dev, 11786 "MSI-X misc vector request failed, error %d\n", 11787 err); 11788 return err; 11789 } 11790 } else { 11791 u32 flags = pf->flags & I40E_FLAG_MSI_ENABLED ? 0 : IRQF_SHARED; 11792 11793 err = request_irq(pf->pdev->irq, i40e_intr, flags, 11794 pf->int_name, pf); 11795 11796 if (err) { 11797 dev_info(&pf->pdev->dev, 11798 "MSI/legacy misc vector request failed, error %d\n", 11799 err); 11800 return err; 11801 } 11802 i40e_enable_misc_int_causes(pf); 11803 i40e_irq_dynamic_enable_icr0(pf); 11804 } 11805 11806 return 0; 11807 } 11808 11809 /** 11810 * i40e_setup_misc_vector - Setup the misc vector to handle non queue events 11811 * @pf: board private structure 11812 * 11813 * This sets up the handler for MSIX 0, which is used to manage the 11814 * non-queue interrupts, e.g. AdminQ and errors. This is not used 11815 * when in MSI or Legacy interrupt mode. 11816 **/ 11817 static int i40e_setup_misc_vector(struct i40e_pf *pf) 11818 { 11819 struct i40e_hw *hw = &pf->hw; 11820 int err = 0; 11821 11822 /* Only request the IRQ once, the first time through. */ 11823 if (!test_and_set_bit(__I40E_MISC_IRQ_REQUESTED, pf->state)) { 11824 err = request_irq(pf->msix_entries[0].vector, 11825 i40e_intr, 0, pf->int_name, pf); 11826 if (err) { 11827 clear_bit(__I40E_MISC_IRQ_REQUESTED, pf->state); 11828 dev_info(&pf->pdev->dev, 11829 "request_irq for %s failed: %d\n", 11830 pf->int_name, err); 11831 return -EFAULT; 11832 } 11833 } 11834 11835 i40e_enable_misc_int_causes(pf); 11836 11837 /* associate no queues to the misc vector */ 11838 wr32(hw, I40E_PFINT_LNKLST0, I40E_QUEUE_END_OF_LIST); 11839 wr32(hw, I40E_PFINT_ITR0(I40E_RX_ITR), I40E_ITR_8K >> 1); 11840 11841 i40e_flush(hw); 11842 11843 i40e_irq_dynamic_enable_icr0(pf); 11844 11845 return err; 11846 } 11847 11848 /** 11849 * i40e_get_rss_aq - Get RSS keys and lut by using AQ commands 11850 * @vsi: Pointer to vsi structure 11851 * @seed: Buffter to store the hash keys 11852 * @lut: Buffer to store the lookup table entries 11853 * @lut_size: Size of buffer to store the lookup table entries 11854 * 11855 * Return 0 on success, negative on failure 11856 */ 11857 static int i40e_get_rss_aq(struct i40e_vsi *vsi, const u8 *seed, 11858 u8 *lut, u16 lut_size) 11859 { 11860 struct i40e_pf *pf = vsi->back; 11861 struct i40e_hw *hw = &pf->hw; 11862 int ret = 0; 11863 11864 if (seed) { 11865 ret = i40e_aq_get_rss_key(hw, vsi->id, 11866 (struct i40e_aqc_get_set_rss_key_data *)seed); 11867 if (ret) { 11868 dev_info(&pf->pdev->dev, 11869 "Cannot get RSS key, err %s aq_err %s\n", 11870 i40e_stat_str(&pf->hw, ret), 11871 i40e_aq_str(&pf->hw, 11872 pf->hw.aq.asq_last_status)); 11873 return ret; 11874 } 11875 } 11876 11877 if (lut) { 11878 bool pf_lut = vsi->type == I40E_VSI_MAIN; 11879 11880 ret = i40e_aq_get_rss_lut(hw, vsi->id, pf_lut, lut, lut_size); 11881 if (ret) { 11882 dev_info(&pf->pdev->dev, 11883 "Cannot get RSS lut, err %s aq_err %s\n", 11884 i40e_stat_str(&pf->hw, ret), 11885 i40e_aq_str(&pf->hw, 11886 pf->hw.aq.asq_last_status)); 11887 return ret; 11888 } 11889 } 11890 11891 return ret; 11892 } 11893 11894 /** 11895 * i40e_config_rss_reg - Configure RSS keys and lut by writing registers 11896 * @vsi: Pointer to vsi structure 11897 * @seed: RSS hash seed 11898 * @lut: Lookup table 11899 * @lut_size: Lookup table size 11900 * 11901 * Returns 0 on success, negative on failure 11902 **/ 11903 static int i40e_config_rss_reg(struct i40e_vsi *vsi, const u8 *seed, 11904 const u8 *lut, u16 lut_size) 11905 { 11906 struct i40e_pf *pf = vsi->back; 11907 struct i40e_hw *hw = &pf->hw; 11908 u16 vf_id = vsi->vf_id; 11909 u8 i; 11910 11911 /* Fill out hash function seed */ 11912 if (seed) { 11913 u32 *seed_dw = (u32 *)seed; 11914 11915 if (vsi->type == I40E_VSI_MAIN) { 11916 for (i = 0; i <= I40E_PFQF_HKEY_MAX_INDEX; i++) 11917 wr32(hw, I40E_PFQF_HKEY(i), seed_dw[i]); 11918 } else if (vsi->type == I40E_VSI_SRIOV) { 11919 for (i = 0; i <= I40E_VFQF_HKEY1_MAX_INDEX; i++) 11920 wr32(hw, I40E_VFQF_HKEY1(i, vf_id), seed_dw[i]); 11921 } else { 11922 dev_err(&pf->pdev->dev, "Cannot set RSS seed - invalid VSI type\n"); 11923 } 11924 } 11925 11926 if (lut) { 11927 u32 *lut_dw = (u32 *)lut; 11928 11929 if (vsi->type == I40E_VSI_MAIN) { 11930 if (lut_size != I40E_HLUT_ARRAY_SIZE) 11931 return -EINVAL; 11932 for (i = 0; i <= I40E_PFQF_HLUT_MAX_INDEX; i++) 11933 wr32(hw, I40E_PFQF_HLUT(i), lut_dw[i]); 11934 } else if (vsi->type == I40E_VSI_SRIOV) { 11935 if (lut_size != I40E_VF_HLUT_ARRAY_SIZE) 11936 return -EINVAL; 11937 for (i = 0; i <= I40E_VFQF_HLUT_MAX_INDEX; i++) 11938 wr32(hw, I40E_VFQF_HLUT1(i, vf_id), lut_dw[i]); 11939 } else { 11940 dev_err(&pf->pdev->dev, "Cannot set RSS LUT - invalid VSI type\n"); 11941 } 11942 } 11943 i40e_flush(hw); 11944 11945 return 0; 11946 } 11947 11948 /** 11949 * i40e_get_rss_reg - Get the RSS keys and lut by reading registers 11950 * @vsi: Pointer to VSI structure 11951 * @seed: Buffer to store the keys 11952 * @lut: Buffer to store the lookup table entries 11953 * @lut_size: Size of buffer to store the lookup table entries 11954 * 11955 * Returns 0 on success, negative on failure 11956 */ 11957 static int i40e_get_rss_reg(struct i40e_vsi *vsi, u8 *seed, 11958 u8 *lut, u16 lut_size) 11959 { 11960 struct i40e_pf *pf = vsi->back; 11961 struct i40e_hw *hw = &pf->hw; 11962 u16 i; 11963 11964 if (seed) { 11965 u32 *seed_dw = (u32 *)seed; 11966 11967 for (i = 0; i <= I40E_PFQF_HKEY_MAX_INDEX; i++) 11968 seed_dw[i] = i40e_read_rx_ctl(hw, I40E_PFQF_HKEY(i)); 11969 } 11970 if (lut) { 11971 u32 *lut_dw = (u32 *)lut; 11972 11973 if (lut_size != I40E_HLUT_ARRAY_SIZE) 11974 return -EINVAL; 11975 for (i = 0; i <= I40E_PFQF_HLUT_MAX_INDEX; i++) 11976 lut_dw[i] = rd32(hw, I40E_PFQF_HLUT(i)); 11977 } 11978 11979 return 0; 11980 } 11981 11982 /** 11983 * i40e_config_rss - Configure RSS keys and lut 11984 * @vsi: Pointer to VSI structure 11985 * @seed: RSS hash seed 11986 * @lut: Lookup table 11987 * @lut_size: Lookup table size 11988 * 11989 * Returns 0 on success, negative on failure 11990 */ 11991 int i40e_config_rss(struct i40e_vsi *vsi, u8 *seed, u8 *lut, u16 lut_size) 11992 { 11993 struct i40e_pf *pf = vsi->back; 11994 11995 if (pf->hw_features & I40E_HW_RSS_AQ_CAPABLE) 11996 return i40e_config_rss_aq(vsi, seed, lut, lut_size); 11997 else 11998 return i40e_config_rss_reg(vsi, seed, lut, lut_size); 11999 } 12000 12001 /** 12002 * i40e_get_rss - Get RSS keys and lut 12003 * @vsi: Pointer to VSI structure 12004 * @seed: Buffer to store the keys 12005 * @lut: Buffer to store the lookup table entries 12006 * @lut_size: Size of buffer to store the lookup table entries 12007 * 12008 * Returns 0 on success, negative on failure 12009 */ 12010 int i40e_get_rss(struct i40e_vsi *vsi, u8 *seed, u8 *lut, u16 lut_size) 12011 { 12012 struct i40e_pf *pf = vsi->back; 12013 12014 if (pf->hw_features & I40E_HW_RSS_AQ_CAPABLE) 12015 return i40e_get_rss_aq(vsi, seed, lut, lut_size); 12016 else 12017 return i40e_get_rss_reg(vsi, seed, lut, lut_size); 12018 } 12019 12020 /** 12021 * i40e_fill_rss_lut - Fill the RSS lookup table with default values 12022 * @pf: Pointer to board private structure 12023 * @lut: Lookup table 12024 * @rss_table_size: Lookup table size 12025 * @rss_size: Range of queue number for hashing 12026 */ 12027 void i40e_fill_rss_lut(struct i40e_pf *pf, u8 *lut, 12028 u16 rss_table_size, u16 rss_size) 12029 { 12030 u16 i; 12031 12032 for (i = 0; i < rss_table_size; i++) 12033 lut[i] = i % rss_size; 12034 } 12035 12036 /** 12037 * i40e_pf_config_rss - Prepare for RSS if used 12038 * @pf: board private structure 12039 **/ 12040 static int i40e_pf_config_rss(struct i40e_pf *pf) 12041 { 12042 struct i40e_vsi *vsi = pf->vsi[pf->lan_vsi]; 12043 u8 seed[I40E_HKEY_ARRAY_SIZE]; 12044 u8 *lut; 12045 struct i40e_hw *hw = &pf->hw; 12046 u32 reg_val; 12047 u64 hena; 12048 int ret; 12049 12050 /* By default we enable TCP/UDP with IPv4/IPv6 ptypes */ 12051 hena = (u64)i40e_read_rx_ctl(hw, I40E_PFQF_HENA(0)) | 12052 ((u64)i40e_read_rx_ctl(hw, I40E_PFQF_HENA(1)) << 32); 12053 hena |= i40e_pf_get_default_rss_hena(pf); 12054 12055 i40e_write_rx_ctl(hw, I40E_PFQF_HENA(0), (u32)hena); 12056 i40e_write_rx_ctl(hw, I40E_PFQF_HENA(1), (u32)(hena >> 32)); 12057 12058 /* Determine the RSS table size based on the hardware capabilities */ 12059 reg_val = i40e_read_rx_ctl(hw, I40E_PFQF_CTL_0); 12060 reg_val = (pf->rss_table_size == 512) ? 12061 (reg_val | I40E_PFQF_CTL_0_HASHLUTSIZE_512) : 12062 (reg_val & ~I40E_PFQF_CTL_0_HASHLUTSIZE_512); 12063 i40e_write_rx_ctl(hw, I40E_PFQF_CTL_0, reg_val); 12064 12065 /* Determine the RSS size of the VSI */ 12066 if (!vsi->rss_size) { 12067 u16 qcount; 12068 /* If the firmware does something weird during VSI init, we 12069 * could end up with zero TCs. Check for that to avoid 12070 * divide-by-zero. It probably won't pass traffic, but it also 12071 * won't panic. 12072 */ 12073 qcount = vsi->num_queue_pairs / 12074 (vsi->tc_config.numtc ? vsi->tc_config.numtc : 1); 12075 vsi->rss_size = min_t(int, pf->alloc_rss_size, qcount); 12076 } 12077 if (!vsi->rss_size) 12078 return -EINVAL; 12079 12080 lut = kzalloc(vsi->rss_table_size, GFP_KERNEL); 12081 if (!lut) 12082 return -ENOMEM; 12083 12084 /* Use user configured lut if there is one, otherwise use default */ 12085 if (vsi->rss_lut_user) 12086 memcpy(lut, vsi->rss_lut_user, vsi->rss_table_size); 12087 else 12088 i40e_fill_rss_lut(pf, lut, vsi->rss_table_size, vsi->rss_size); 12089 12090 /* Use user configured hash key if there is one, otherwise 12091 * use default. 12092 */ 12093 if (vsi->rss_hkey_user) 12094 memcpy(seed, vsi->rss_hkey_user, I40E_HKEY_ARRAY_SIZE); 12095 else 12096 netdev_rss_key_fill((void *)seed, I40E_HKEY_ARRAY_SIZE); 12097 ret = i40e_config_rss(vsi, seed, lut, vsi->rss_table_size); 12098 kfree(lut); 12099 12100 return ret; 12101 } 12102 12103 /** 12104 * i40e_reconfig_rss_queues - change number of queues for rss and rebuild 12105 * @pf: board private structure 12106 * @queue_count: the requested queue count for rss. 12107 * 12108 * returns 0 if rss is not enabled, if enabled returns the final rss queue 12109 * count which may be different from the requested queue count. 12110 * Note: expects to be called while under rtnl_lock() 12111 **/ 12112 int i40e_reconfig_rss_queues(struct i40e_pf *pf, int queue_count) 12113 { 12114 struct i40e_vsi *vsi = pf->vsi[pf->lan_vsi]; 12115 int new_rss_size; 12116 12117 if (!(pf->flags & I40E_FLAG_RSS_ENABLED)) 12118 return 0; 12119 12120 queue_count = min_t(int, queue_count, num_online_cpus()); 12121 new_rss_size = min_t(int, queue_count, pf->rss_size_max); 12122 12123 if (queue_count != vsi->num_queue_pairs) { 12124 u16 qcount; 12125 12126 vsi->req_queue_pairs = queue_count; 12127 i40e_prep_for_reset(pf); 12128 12129 pf->alloc_rss_size = new_rss_size; 12130 12131 i40e_reset_and_rebuild(pf, true, true); 12132 12133 /* Discard the user configured hash keys and lut, if less 12134 * queues are enabled. 12135 */ 12136 if (queue_count < vsi->rss_size) { 12137 i40e_clear_rss_config_user(vsi); 12138 dev_dbg(&pf->pdev->dev, 12139 "discard user configured hash keys and lut\n"); 12140 } 12141 12142 /* Reset vsi->rss_size, as number of enabled queues changed */ 12143 qcount = vsi->num_queue_pairs / vsi->tc_config.numtc; 12144 vsi->rss_size = min_t(int, pf->alloc_rss_size, qcount); 12145 12146 i40e_pf_config_rss(pf); 12147 } 12148 dev_info(&pf->pdev->dev, "User requested queue count/HW max RSS count: %d/%d\n", 12149 vsi->req_queue_pairs, pf->rss_size_max); 12150 return pf->alloc_rss_size; 12151 } 12152 12153 /** 12154 * i40e_get_partition_bw_setting - Retrieve BW settings for this PF partition 12155 * @pf: board private structure 12156 **/ 12157 i40e_status i40e_get_partition_bw_setting(struct i40e_pf *pf) 12158 { 12159 i40e_status status; 12160 bool min_valid, max_valid; 12161 u32 max_bw, min_bw; 12162 12163 status = i40e_read_bw_from_alt_ram(&pf->hw, &max_bw, &min_bw, 12164 &min_valid, &max_valid); 12165 12166 if (!status) { 12167 if (min_valid) 12168 pf->min_bw = min_bw; 12169 if (max_valid) 12170 pf->max_bw = max_bw; 12171 } 12172 12173 return status; 12174 } 12175 12176 /** 12177 * i40e_set_partition_bw_setting - Set BW settings for this PF partition 12178 * @pf: board private structure 12179 **/ 12180 i40e_status i40e_set_partition_bw_setting(struct i40e_pf *pf) 12181 { 12182 struct i40e_aqc_configure_partition_bw_data bw_data; 12183 i40e_status status; 12184 12185 memset(&bw_data, 0, sizeof(bw_data)); 12186 12187 /* Set the valid bit for this PF */ 12188 bw_data.pf_valid_bits = cpu_to_le16(BIT(pf->hw.pf_id)); 12189 bw_data.max_bw[pf->hw.pf_id] = pf->max_bw & I40E_ALT_BW_VALUE_MASK; 12190 bw_data.min_bw[pf->hw.pf_id] = pf->min_bw & I40E_ALT_BW_VALUE_MASK; 12191 12192 /* Set the new bandwidths */ 12193 status = i40e_aq_configure_partition_bw(&pf->hw, &bw_data, NULL); 12194 12195 return status; 12196 } 12197 12198 /** 12199 * i40e_commit_partition_bw_setting - Commit BW settings for this PF partition 12200 * @pf: board private structure 12201 **/ 12202 i40e_status i40e_commit_partition_bw_setting(struct i40e_pf *pf) 12203 { 12204 /* Commit temporary BW setting to permanent NVM image */ 12205 enum i40e_admin_queue_err last_aq_status; 12206 i40e_status ret; 12207 u16 nvm_word; 12208 12209 if (pf->hw.partition_id != 1) { 12210 dev_info(&pf->pdev->dev, 12211 "Commit BW only works on partition 1! This is partition %d", 12212 pf->hw.partition_id); 12213 ret = I40E_NOT_SUPPORTED; 12214 goto bw_commit_out; 12215 } 12216 12217 /* Acquire NVM for read access */ 12218 ret = i40e_acquire_nvm(&pf->hw, I40E_RESOURCE_READ); 12219 last_aq_status = pf->hw.aq.asq_last_status; 12220 if (ret) { 12221 dev_info(&pf->pdev->dev, 12222 "Cannot acquire NVM for read access, err %s aq_err %s\n", 12223 i40e_stat_str(&pf->hw, ret), 12224 i40e_aq_str(&pf->hw, last_aq_status)); 12225 goto bw_commit_out; 12226 } 12227 12228 /* Read word 0x10 of NVM - SW compatibility word 1 */ 12229 ret = i40e_aq_read_nvm(&pf->hw, 12230 I40E_SR_NVM_CONTROL_WORD, 12231 0x10, sizeof(nvm_word), &nvm_word, 12232 false, NULL); 12233 /* Save off last admin queue command status before releasing 12234 * the NVM 12235 */ 12236 last_aq_status = pf->hw.aq.asq_last_status; 12237 i40e_release_nvm(&pf->hw); 12238 if (ret) { 12239 dev_info(&pf->pdev->dev, "NVM read error, err %s aq_err %s\n", 12240 i40e_stat_str(&pf->hw, ret), 12241 i40e_aq_str(&pf->hw, last_aq_status)); 12242 goto bw_commit_out; 12243 } 12244 12245 /* Wait a bit for NVM release to complete */ 12246 msleep(50); 12247 12248 /* Acquire NVM for write access */ 12249 ret = i40e_acquire_nvm(&pf->hw, I40E_RESOURCE_WRITE); 12250 last_aq_status = pf->hw.aq.asq_last_status; 12251 if (ret) { 12252 dev_info(&pf->pdev->dev, 12253 "Cannot acquire NVM for write access, err %s aq_err %s\n", 12254 i40e_stat_str(&pf->hw, ret), 12255 i40e_aq_str(&pf->hw, last_aq_status)); 12256 goto bw_commit_out; 12257 } 12258 /* Write it back out unchanged to initiate update NVM, 12259 * which will force a write of the shadow (alt) RAM to 12260 * the NVM - thus storing the bandwidth values permanently. 12261 */ 12262 ret = i40e_aq_update_nvm(&pf->hw, 12263 I40E_SR_NVM_CONTROL_WORD, 12264 0x10, sizeof(nvm_word), 12265 &nvm_word, true, 0, NULL); 12266 /* Save off last admin queue command status before releasing 12267 * the NVM 12268 */ 12269 last_aq_status = pf->hw.aq.asq_last_status; 12270 i40e_release_nvm(&pf->hw); 12271 if (ret) 12272 dev_info(&pf->pdev->dev, 12273 "BW settings NOT SAVED, err %s aq_err %s\n", 12274 i40e_stat_str(&pf->hw, ret), 12275 i40e_aq_str(&pf->hw, last_aq_status)); 12276 bw_commit_out: 12277 12278 return ret; 12279 } 12280 12281 /** 12282 * i40e_is_total_port_shutdown_enabled - read NVM and return value 12283 * if total port shutdown feature is enabled for this PF 12284 * @pf: board private structure 12285 **/ 12286 static bool i40e_is_total_port_shutdown_enabled(struct i40e_pf *pf) 12287 { 12288 #define I40E_TOTAL_PORT_SHUTDOWN_ENABLED BIT(4) 12289 #define I40E_FEATURES_ENABLE_PTR 0x2A 12290 #define I40E_CURRENT_SETTING_PTR 0x2B 12291 #define I40E_LINK_BEHAVIOR_WORD_OFFSET 0x2D 12292 #define I40E_LINK_BEHAVIOR_WORD_LENGTH 0x1 12293 #define I40E_LINK_BEHAVIOR_OS_FORCED_ENABLED BIT(0) 12294 #define I40E_LINK_BEHAVIOR_PORT_BIT_LENGTH 4 12295 i40e_status read_status = I40E_SUCCESS; 12296 u16 sr_emp_sr_settings_ptr = 0; 12297 u16 features_enable = 0; 12298 u16 link_behavior = 0; 12299 bool ret = false; 12300 12301 read_status = i40e_read_nvm_word(&pf->hw, 12302 I40E_SR_EMP_SR_SETTINGS_PTR, 12303 &sr_emp_sr_settings_ptr); 12304 if (read_status) 12305 goto err_nvm; 12306 read_status = i40e_read_nvm_word(&pf->hw, 12307 sr_emp_sr_settings_ptr + 12308 I40E_FEATURES_ENABLE_PTR, 12309 &features_enable); 12310 if (read_status) 12311 goto err_nvm; 12312 if (I40E_TOTAL_PORT_SHUTDOWN_ENABLED & features_enable) { 12313 read_status = i40e_read_nvm_module_data(&pf->hw, 12314 I40E_SR_EMP_SR_SETTINGS_PTR, 12315 I40E_CURRENT_SETTING_PTR, 12316 I40E_LINK_BEHAVIOR_WORD_OFFSET, 12317 I40E_LINK_BEHAVIOR_WORD_LENGTH, 12318 &link_behavior); 12319 if (read_status) 12320 goto err_nvm; 12321 link_behavior >>= (pf->hw.port * I40E_LINK_BEHAVIOR_PORT_BIT_LENGTH); 12322 ret = I40E_LINK_BEHAVIOR_OS_FORCED_ENABLED & link_behavior; 12323 } 12324 return ret; 12325 12326 err_nvm: 12327 dev_warn(&pf->pdev->dev, 12328 "total-port-shutdown feature is off due to read nvm error: %s\n", 12329 i40e_stat_str(&pf->hw, read_status)); 12330 return ret; 12331 } 12332 12333 /** 12334 * i40e_sw_init - Initialize general software structures (struct i40e_pf) 12335 * @pf: board private structure to initialize 12336 * 12337 * i40e_sw_init initializes the Adapter private data structure. 12338 * Fields are initialized based on PCI device information and 12339 * OS network device settings (MTU size). 12340 **/ 12341 static int i40e_sw_init(struct i40e_pf *pf) 12342 { 12343 int err = 0; 12344 int size; 12345 u16 pow; 12346 12347 /* Set default capability flags */ 12348 pf->flags = I40E_FLAG_RX_CSUM_ENABLED | 12349 I40E_FLAG_MSI_ENABLED | 12350 I40E_FLAG_MSIX_ENABLED; 12351 12352 /* Set default ITR */ 12353 pf->rx_itr_default = I40E_ITR_RX_DEF; 12354 pf->tx_itr_default = I40E_ITR_TX_DEF; 12355 12356 /* Depending on PF configurations, it is possible that the RSS 12357 * maximum might end up larger than the available queues 12358 */ 12359 pf->rss_size_max = BIT(pf->hw.func_caps.rss_table_entry_width); 12360 pf->alloc_rss_size = 1; 12361 pf->rss_table_size = pf->hw.func_caps.rss_table_size; 12362 pf->rss_size_max = min_t(int, pf->rss_size_max, 12363 pf->hw.func_caps.num_tx_qp); 12364 12365 /* find the next higher power-of-2 of num cpus */ 12366 pow = roundup_pow_of_two(num_online_cpus()); 12367 pf->rss_size_max = min_t(int, pf->rss_size_max, pow); 12368 12369 if (pf->hw.func_caps.rss) { 12370 pf->flags |= I40E_FLAG_RSS_ENABLED; 12371 pf->alloc_rss_size = min_t(int, pf->rss_size_max, 12372 num_online_cpus()); 12373 } 12374 12375 /* MFP mode enabled */ 12376 if (pf->hw.func_caps.npar_enable || pf->hw.func_caps.flex10_enable) { 12377 pf->flags |= I40E_FLAG_MFP_ENABLED; 12378 dev_info(&pf->pdev->dev, "MFP mode Enabled\n"); 12379 if (i40e_get_partition_bw_setting(pf)) { 12380 dev_warn(&pf->pdev->dev, 12381 "Could not get partition bw settings\n"); 12382 } else { 12383 dev_info(&pf->pdev->dev, 12384 "Partition BW Min = %8.8x, Max = %8.8x\n", 12385 pf->min_bw, pf->max_bw); 12386 12387 /* nudge the Tx scheduler */ 12388 i40e_set_partition_bw_setting(pf); 12389 } 12390 } 12391 12392 if ((pf->hw.func_caps.fd_filters_guaranteed > 0) || 12393 (pf->hw.func_caps.fd_filters_best_effort > 0)) { 12394 pf->flags |= I40E_FLAG_FD_ATR_ENABLED; 12395 pf->atr_sample_rate = I40E_DEFAULT_ATR_SAMPLE_RATE; 12396 if (pf->flags & I40E_FLAG_MFP_ENABLED && 12397 pf->hw.num_partitions > 1) 12398 dev_info(&pf->pdev->dev, 12399 "Flow Director Sideband mode Disabled in MFP mode\n"); 12400 else 12401 pf->flags |= I40E_FLAG_FD_SB_ENABLED; 12402 pf->fdir_pf_filter_count = 12403 pf->hw.func_caps.fd_filters_guaranteed; 12404 pf->hw.fdir_shared_filter_count = 12405 pf->hw.func_caps.fd_filters_best_effort; 12406 } 12407 12408 if (pf->hw.mac.type == I40E_MAC_X722) { 12409 pf->hw_features |= (I40E_HW_RSS_AQ_CAPABLE | 12410 I40E_HW_128_QP_RSS_CAPABLE | 12411 I40E_HW_ATR_EVICT_CAPABLE | 12412 I40E_HW_WB_ON_ITR_CAPABLE | 12413 I40E_HW_MULTIPLE_TCP_UDP_RSS_PCTYPE | 12414 I40E_HW_NO_PCI_LINK_CHECK | 12415 I40E_HW_USE_SET_LLDP_MIB | 12416 I40E_HW_GENEVE_OFFLOAD_CAPABLE | 12417 I40E_HW_PTP_L4_CAPABLE | 12418 I40E_HW_WOL_MC_MAGIC_PKT_WAKE | 12419 I40E_HW_OUTER_UDP_CSUM_CAPABLE); 12420 12421 #define I40E_FDEVICT_PCTYPE_DEFAULT 0xc03 12422 if (rd32(&pf->hw, I40E_GLQF_FDEVICTENA(1)) != 12423 I40E_FDEVICT_PCTYPE_DEFAULT) { 12424 dev_warn(&pf->pdev->dev, 12425 "FD EVICT PCTYPES are not right, disable FD HW EVICT\n"); 12426 pf->hw_features &= ~I40E_HW_ATR_EVICT_CAPABLE; 12427 } 12428 } else if ((pf->hw.aq.api_maj_ver > 1) || 12429 ((pf->hw.aq.api_maj_ver == 1) && 12430 (pf->hw.aq.api_min_ver > 4))) { 12431 /* Supported in FW API version higher than 1.4 */ 12432 pf->hw_features |= I40E_HW_GENEVE_OFFLOAD_CAPABLE; 12433 } 12434 12435 /* Enable HW ATR eviction if possible */ 12436 if (pf->hw_features & I40E_HW_ATR_EVICT_CAPABLE) 12437 pf->flags |= I40E_FLAG_HW_ATR_EVICT_ENABLED; 12438 12439 if ((pf->hw.mac.type == I40E_MAC_XL710) && 12440 (((pf->hw.aq.fw_maj_ver == 4) && (pf->hw.aq.fw_min_ver < 33)) || 12441 (pf->hw.aq.fw_maj_ver < 4))) { 12442 pf->hw_features |= I40E_HW_RESTART_AUTONEG; 12443 /* No DCB support for FW < v4.33 */ 12444 pf->hw_features |= I40E_HW_NO_DCB_SUPPORT; 12445 } 12446 12447 /* Disable FW LLDP if FW < v4.3 */ 12448 if ((pf->hw.mac.type == I40E_MAC_XL710) && 12449 (((pf->hw.aq.fw_maj_ver == 4) && (pf->hw.aq.fw_min_ver < 3)) || 12450 (pf->hw.aq.fw_maj_ver < 4))) 12451 pf->hw_features |= I40E_HW_STOP_FW_LLDP; 12452 12453 /* Use the FW Set LLDP MIB API if FW > v4.40 */ 12454 if ((pf->hw.mac.type == I40E_MAC_XL710) && 12455 (((pf->hw.aq.fw_maj_ver == 4) && (pf->hw.aq.fw_min_ver >= 40)) || 12456 (pf->hw.aq.fw_maj_ver >= 5))) 12457 pf->hw_features |= I40E_HW_USE_SET_LLDP_MIB; 12458 12459 /* Enable PTP L4 if FW > v6.0 */ 12460 if (pf->hw.mac.type == I40E_MAC_XL710 && 12461 pf->hw.aq.fw_maj_ver >= 6) 12462 pf->hw_features |= I40E_HW_PTP_L4_CAPABLE; 12463 12464 if (pf->hw.func_caps.vmdq && num_online_cpus() != 1) { 12465 pf->num_vmdq_vsis = I40E_DEFAULT_NUM_VMDQ_VSI; 12466 pf->flags |= I40E_FLAG_VMDQ_ENABLED; 12467 pf->num_vmdq_qps = i40e_default_queues_per_vmdq(pf); 12468 } 12469 12470 if (pf->hw.func_caps.iwarp && num_online_cpus() != 1) { 12471 pf->flags |= I40E_FLAG_IWARP_ENABLED; 12472 /* IWARP needs one extra vector for CQP just like MISC.*/ 12473 pf->num_iwarp_msix = (int)num_online_cpus() + 1; 12474 } 12475 /* Stopping FW LLDP engine is supported on XL710 and X722 12476 * starting from FW versions determined in i40e_init_adminq. 12477 * Stopping the FW LLDP engine is not supported on XL710 12478 * if NPAR is functioning so unset this hw flag in this case. 12479 */ 12480 if (pf->hw.mac.type == I40E_MAC_XL710 && 12481 pf->hw.func_caps.npar_enable && 12482 (pf->hw.flags & I40E_HW_FLAG_FW_LLDP_STOPPABLE)) 12483 pf->hw.flags &= ~I40E_HW_FLAG_FW_LLDP_STOPPABLE; 12484 12485 #ifdef CONFIG_PCI_IOV 12486 if (pf->hw.func_caps.num_vfs && pf->hw.partition_id == 1) { 12487 pf->num_vf_qps = I40E_DEFAULT_QUEUES_PER_VF; 12488 pf->flags |= I40E_FLAG_SRIOV_ENABLED; 12489 pf->num_req_vfs = min_t(int, 12490 pf->hw.func_caps.num_vfs, 12491 I40E_MAX_VF_COUNT); 12492 } 12493 #endif /* CONFIG_PCI_IOV */ 12494 pf->eeprom_version = 0xDEAD; 12495 pf->lan_veb = I40E_NO_VEB; 12496 pf->lan_vsi = I40E_NO_VSI; 12497 12498 /* By default FW has this off for performance reasons */ 12499 pf->flags &= ~I40E_FLAG_VEB_STATS_ENABLED; 12500 12501 /* set up queue assignment tracking */ 12502 size = sizeof(struct i40e_lump_tracking) 12503 + (sizeof(u16) * pf->hw.func_caps.num_tx_qp); 12504 pf->qp_pile = kzalloc(size, GFP_KERNEL); 12505 if (!pf->qp_pile) { 12506 err = -ENOMEM; 12507 goto sw_init_done; 12508 } 12509 pf->qp_pile->num_entries = pf->hw.func_caps.num_tx_qp; 12510 pf->qp_pile->search_hint = 0; 12511 12512 pf->tx_timeout_recovery_level = 1; 12513 12514 if (pf->hw.mac.type != I40E_MAC_X722 && 12515 i40e_is_total_port_shutdown_enabled(pf)) { 12516 /* Link down on close must be on when total port shutdown 12517 * is enabled for a given port 12518 */ 12519 pf->flags |= (I40E_FLAG_TOTAL_PORT_SHUTDOWN_ENABLED | 12520 I40E_FLAG_LINK_DOWN_ON_CLOSE_ENABLED); 12521 dev_info(&pf->pdev->dev, 12522 "total-port-shutdown was enabled, link-down-on-close is forced on\n"); 12523 } 12524 mutex_init(&pf->switch_mutex); 12525 12526 sw_init_done: 12527 return err; 12528 } 12529 12530 /** 12531 * i40e_set_ntuple - set the ntuple feature flag and take action 12532 * @pf: board private structure to initialize 12533 * @features: the feature set that the stack is suggesting 12534 * 12535 * returns a bool to indicate if reset needs to happen 12536 **/ 12537 bool i40e_set_ntuple(struct i40e_pf *pf, netdev_features_t features) 12538 { 12539 bool need_reset = false; 12540 12541 /* Check if Flow Director n-tuple support was enabled or disabled. If 12542 * the state changed, we need to reset. 12543 */ 12544 if (features & NETIF_F_NTUPLE) { 12545 /* Enable filters and mark for reset */ 12546 if (!(pf->flags & I40E_FLAG_FD_SB_ENABLED)) 12547 need_reset = true; 12548 /* enable FD_SB only if there is MSI-X vector and no cloud 12549 * filters exist 12550 */ 12551 if (pf->num_fdsb_msix > 0 && !pf->num_cloud_filters) { 12552 pf->flags |= I40E_FLAG_FD_SB_ENABLED; 12553 pf->flags &= ~I40E_FLAG_FD_SB_INACTIVE; 12554 } 12555 } else { 12556 /* turn off filters, mark for reset and clear SW filter list */ 12557 if (pf->flags & I40E_FLAG_FD_SB_ENABLED) { 12558 need_reset = true; 12559 i40e_fdir_filter_exit(pf); 12560 } 12561 pf->flags &= ~I40E_FLAG_FD_SB_ENABLED; 12562 clear_bit(__I40E_FD_SB_AUTO_DISABLED, pf->state); 12563 pf->flags |= I40E_FLAG_FD_SB_INACTIVE; 12564 12565 /* reset fd counters */ 12566 pf->fd_add_err = 0; 12567 pf->fd_atr_cnt = 0; 12568 /* if ATR was auto disabled it can be re-enabled. */ 12569 if (test_and_clear_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state)) 12570 if ((pf->flags & I40E_FLAG_FD_ATR_ENABLED) && 12571 (I40E_DEBUG_FD & pf->hw.debug_mask)) 12572 dev_info(&pf->pdev->dev, "ATR re-enabled.\n"); 12573 } 12574 return need_reset; 12575 } 12576 12577 /** 12578 * i40e_clear_rss_lut - clear the rx hash lookup table 12579 * @vsi: the VSI being configured 12580 **/ 12581 static void i40e_clear_rss_lut(struct i40e_vsi *vsi) 12582 { 12583 struct i40e_pf *pf = vsi->back; 12584 struct i40e_hw *hw = &pf->hw; 12585 u16 vf_id = vsi->vf_id; 12586 u8 i; 12587 12588 if (vsi->type == I40E_VSI_MAIN) { 12589 for (i = 0; i <= I40E_PFQF_HLUT_MAX_INDEX; i++) 12590 wr32(hw, I40E_PFQF_HLUT(i), 0); 12591 } else if (vsi->type == I40E_VSI_SRIOV) { 12592 for (i = 0; i <= I40E_VFQF_HLUT_MAX_INDEX; i++) 12593 i40e_write_rx_ctl(hw, I40E_VFQF_HLUT1(i, vf_id), 0); 12594 } else { 12595 dev_err(&pf->pdev->dev, "Cannot set RSS LUT - invalid VSI type\n"); 12596 } 12597 } 12598 12599 /** 12600 * i40e_set_features - set the netdev feature flags 12601 * @netdev: ptr to the netdev being adjusted 12602 * @features: the feature set that the stack is suggesting 12603 * Note: expects to be called while under rtnl_lock() 12604 **/ 12605 static int i40e_set_features(struct net_device *netdev, 12606 netdev_features_t features) 12607 { 12608 struct i40e_netdev_priv *np = netdev_priv(netdev); 12609 struct i40e_vsi *vsi = np->vsi; 12610 struct i40e_pf *pf = vsi->back; 12611 bool need_reset; 12612 12613 if (features & NETIF_F_RXHASH && !(netdev->features & NETIF_F_RXHASH)) 12614 i40e_pf_config_rss(pf); 12615 else if (!(features & NETIF_F_RXHASH) && 12616 netdev->features & NETIF_F_RXHASH) 12617 i40e_clear_rss_lut(vsi); 12618 12619 if (features & NETIF_F_HW_VLAN_CTAG_RX) 12620 i40e_vlan_stripping_enable(vsi); 12621 else 12622 i40e_vlan_stripping_disable(vsi); 12623 12624 if (!(features & NETIF_F_HW_TC) && pf->num_cloud_filters) { 12625 dev_err(&pf->pdev->dev, 12626 "Offloaded tc filters active, can't turn hw_tc_offload off"); 12627 return -EINVAL; 12628 } 12629 12630 if (!(features & NETIF_F_HW_L2FW_DOFFLOAD) && vsi->macvlan_cnt) 12631 i40e_del_all_macvlans(vsi); 12632 12633 need_reset = i40e_set_ntuple(pf, features); 12634 12635 if (need_reset) 12636 i40e_do_reset(pf, I40E_PF_RESET_FLAG, true); 12637 12638 return 0; 12639 } 12640 12641 static int i40e_udp_tunnel_set_port(struct net_device *netdev, 12642 unsigned int table, unsigned int idx, 12643 struct udp_tunnel_info *ti) 12644 { 12645 struct i40e_netdev_priv *np = netdev_priv(netdev); 12646 struct i40e_hw *hw = &np->vsi->back->hw; 12647 u8 type, filter_index; 12648 i40e_status ret; 12649 12650 type = ti->type == UDP_TUNNEL_TYPE_VXLAN ? I40E_AQC_TUNNEL_TYPE_VXLAN : 12651 I40E_AQC_TUNNEL_TYPE_NGE; 12652 12653 ret = i40e_aq_add_udp_tunnel(hw, ntohs(ti->port), type, &filter_index, 12654 NULL); 12655 if (ret) { 12656 netdev_info(netdev, "add UDP port failed, err %s aq_err %s\n", 12657 i40e_stat_str(hw, ret), 12658 i40e_aq_str(hw, hw->aq.asq_last_status)); 12659 return -EIO; 12660 } 12661 12662 udp_tunnel_nic_set_port_priv(netdev, table, idx, filter_index); 12663 return 0; 12664 } 12665 12666 static int i40e_udp_tunnel_unset_port(struct net_device *netdev, 12667 unsigned int table, unsigned int idx, 12668 struct udp_tunnel_info *ti) 12669 { 12670 struct i40e_netdev_priv *np = netdev_priv(netdev); 12671 struct i40e_hw *hw = &np->vsi->back->hw; 12672 i40e_status ret; 12673 12674 ret = i40e_aq_del_udp_tunnel(hw, ti->hw_priv, NULL); 12675 if (ret) { 12676 netdev_info(netdev, "delete UDP port failed, err %s aq_err %s\n", 12677 i40e_stat_str(hw, ret), 12678 i40e_aq_str(hw, hw->aq.asq_last_status)); 12679 return -EIO; 12680 } 12681 12682 return 0; 12683 } 12684 12685 static int i40e_get_phys_port_id(struct net_device *netdev, 12686 struct netdev_phys_item_id *ppid) 12687 { 12688 struct i40e_netdev_priv *np = netdev_priv(netdev); 12689 struct i40e_pf *pf = np->vsi->back; 12690 struct i40e_hw *hw = &pf->hw; 12691 12692 if (!(pf->hw_features & I40E_HW_PORT_ID_VALID)) 12693 return -EOPNOTSUPP; 12694 12695 ppid->id_len = min_t(int, sizeof(hw->mac.port_addr), sizeof(ppid->id)); 12696 memcpy(ppid->id, hw->mac.port_addr, ppid->id_len); 12697 12698 return 0; 12699 } 12700 12701 /** 12702 * i40e_ndo_fdb_add - add an entry to the hardware database 12703 * @ndm: the input from the stack 12704 * @tb: pointer to array of nladdr (unused) 12705 * @dev: the net device pointer 12706 * @addr: the MAC address entry being added 12707 * @vid: VLAN ID 12708 * @flags: instructions from stack about fdb operation 12709 * @extack: netlink extended ack, unused currently 12710 */ 12711 static int i40e_ndo_fdb_add(struct ndmsg *ndm, struct nlattr *tb[], 12712 struct net_device *dev, 12713 const unsigned char *addr, u16 vid, 12714 u16 flags, 12715 struct netlink_ext_ack *extack) 12716 { 12717 struct i40e_netdev_priv *np = netdev_priv(dev); 12718 struct i40e_pf *pf = np->vsi->back; 12719 int err = 0; 12720 12721 if (!(pf->flags & I40E_FLAG_SRIOV_ENABLED)) 12722 return -EOPNOTSUPP; 12723 12724 if (vid) { 12725 pr_info("%s: vlans aren't supported yet for dev_uc|mc_add()\n", dev->name); 12726 return -EINVAL; 12727 } 12728 12729 /* Hardware does not support aging addresses so if a 12730 * ndm_state is given only allow permanent addresses 12731 */ 12732 if (ndm->ndm_state && !(ndm->ndm_state & NUD_PERMANENT)) { 12733 netdev_info(dev, "FDB only supports static addresses\n"); 12734 return -EINVAL; 12735 } 12736 12737 if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr)) 12738 err = dev_uc_add_excl(dev, addr); 12739 else if (is_multicast_ether_addr(addr)) 12740 err = dev_mc_add_excl(dev, addr); 12741 else 12742 err = -EINVAL; 12743 12744 /* Only return duplicate errors if NLM_F_EXCL is set */ 12745 if (err == -EEXIST && !(flags & NLM_F_EXCL)) 12746 err = 0; 12747 12748 return err; 12749 } 12750 12751 /** 12752 * i40e_ndo_bridge_setlink - Set the hardware bridge mode 12753 * @dev: the netdev being configured 12754 * @nlh: RTNL message 12755 * @flags: bridge flags 12756 * @extack: netlink extended ack 12757 * 12758 * Inserts a new hardware bridge if not already created and 12759 * enables the bridging mode requested (VEB or VEPA). If the 12760 * hardware bridge has already been inserted and the request 12761 * is to change the mode then that requires a PF reset to 12762 * allow rebuild of the components with required hardware 12763 * bridge mode enabled. 12764 * 12765 * Note: expects to be called while under rtnl_lock() 12766 **/ 12767 static int i40e_ndo_bridge_setlink(struct net_device *dev, 12768 struct nlmsghdr *nlh, 12769 u16 flags, 12770 struct netlink_ext_ack *extack) 12771 { 12772 struct i40e_netdev_priv *np = netdev_priv(dev); 12773 struct i40e_vsi *vsi = np->vsi; 12774 struct i40e_pf *pf = vsi->back; 12775 struct i40e_veb *veb = NULL; 12776 struct nlattr *attr, *br_spec; 12777 int i, rem; 12778 12779 /* Only for PF VSI for now */ 12780 if (vsi->seid != pf->vsi[pf->lan_vsi]->seid) 12781 return -EOPNOTSUPP; 12782 12783 /* Find the HW bridge for PF VSI */ 12784 for (i = 0; i < I40E_MAX_VEB && !veb; i++) { 12785 if (pf->veb[i] && pf->veb[i]->seid == vsi->uplink_seid) 12786 veb = pf->veb[i]; 12787 } 12788 12789 br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC); 12790 12791 nla_for_each_nested(attr, br_spec, rem) { 12792 __u16 mode; 12793 12794 if (nla_type(attr) != IFLA_BRIDGE_MODE) 12795 continue; 12796 12797 mode = nla_get_u16(attr); 12798 if ((mode != BRIDGE_MODE_VEPA) && 12799 (mode != BRIDGE_MODE_VEB)) 12800 return -EINVAL; 12801 12802 /* Insert a new HW bridge */ 12803 if (!veb) { 12804 veb = i40e_veb_setup(pf, 0, vsi->uplink_seid, vsi->seid, 12805 vsi->tc_config.enabled_tc); 12806 if (veb) { 12807 veb->bridge_mode = mode; 12808 i40e_config_bridge_mode(veb); 12809 } else { 12810 /* No Bridge HW offload available */ 12811 return -ENOENT; 12812 } 12813 break; 12814 } else if (mode != veb->bridge_mode) { 12815 /* Existing HW bridge but different mode needs reset */ 12816 veb->bridge_mode = mode; 12817 /* TODO: If no VFs or VMDq VSIs, disallow VEB mode */ 12818 if (mode == BRIDGE_MODE_VEB) 12819 pf->flags |= I40E_FLAG_VEB_MODE_ENABLED; 12820 else 12821 pf->flags &= ~I40E_FLAG_VEB_MODE_ENABLED; 12822 i40e_do_reset(pf, I40E_PF_RESET_FLAG, true); 12823 break; 12824 } 12825 } 12826 12827 return 0; 12828 } 12829 12830 /** 12831 * i40e_ndo_bridge_getlink - Get the hardware bridge mode 12832 * @skb: skb buff 12833 * @pid: process id 12834 * @seq: RTNL message seq # 12835 * @dev: the netdev being configured 12836 * @filter_mask: unused 12837 * @nlflags: netlink flags passed in 12838 * 12839 * Return the mode in which the hardware bridge is operating in 12840 * i.e VEB or VEPA. 12841 **/ 12842 static int i40e_ndo_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq, 12843 struct net_device *dev, 12844 u32 __always_unused filter_mask, 12845 int nlflags) 12846 { 12847 struct i40e_netdev_priv *np = netdev_priv(dev); 12848 struct i40e_vsi *vsi = np->vsi; 12849 struct i40e_pf *pf = vsi->back; 12850 struct i40e_veb *veb = NULL; 12851 int i; 12852 12853 /* Only for PF VSI for now */ 12854 if (vsi->seid != pf->vsi[pf->lan_vsi]->seid) 12855 return -EOPNOTSUPP; 12856 12857 /* Find the HW bridge for the PF VSI */ 12858 for (i = 0; i < I40E_MAX_VEB && !veb; i++) { 12859 if (pf->veb[i] && pf->veb[i]->seid == vsi->uplink_seid) 12860 veb = pf->veb[i]; 12861 } 12862 12863 if (!veb) 12864 return 0; 12865 12866 return ndo_dflt_bridge_getlink(skb, pid, seq, dev, veb->bridge_mode, 12867 0, 0, nlflags, filter_mask, NULL); 12868 } 12869 12870 /** 12871 * i40e_features_check - Validate encapsulated packet conforms to limits 12872 * @skb: skb buff 12873 * @dev: This physical port's netdev 12874 * @features: Offload features that the stack believes apply 12875 **/ 12876 static netdev_features_t i40e_features_check(struct sk_buff *skb, 12877 struct net_device *dev, 12878 netdev_features_t features) 12879 { 12880 size_t len; 12881 12882 /* No point in doing any of this if neither checksum nor GSO are 12883 * being requested for this frame. We can rule out both by just 12884 * checking for CHECKSUM_PARTIAL 12885 */ 12886 if (skb->ip_summed != CHECKSUM_PARTIAL) 12887 return features; 12888 12889 /* We cannot support GSO if the MSS is going to be less than 12890 * 64 bytes. If it is then we need to drop support for GSO. 12891 */ 12892 if (skb_is_gso(skb) && (skb_shinfo(skb)->gso_size < 64)) 12893 features &= ~NETIF_F_GSO_MASK; 12894 12895 /* MACLEN can support at most 63 words */ 12896 len = skb_network_header(skb) - skb->data; 12897 if (len & ~(63 * 2)) 12898 goto out_err; 12899 12900 /* IPLEN and EIPLEN can support at most 127 dwords */ 12901 len = skb_transport_header(skb) - skb_network_header(skb); 12902 if (len & ~(127 * 4)) 12903 goto out_err; 12904 12905 if (skb->encapsulation) { 12906 /* L4TUNLEN can support 127 words */ 12907 len = skb_inner_network_header(skb) - skb_transport_header(skb); 12908 if (len & ~(127 * 2)) 12909 goto out_err; 12910 12911 /* IPLEN can support at most 127 dwords */ 12912 len = skb_inner_transport_header(skb) - 12913 skb_inner_network_header(skb); 12914 if (len & ~(127 * 4)) 12915 goto out_err; 12916 } 12917 12918 /* No need to validate L4LEN as TCP is the only protocol with a 12919 * a flexible value and we support all possible values supported 12920 * by TCP, which is at most 15 dwords 12921 */ 12922 12923 return features; 12924 out_err: 12925 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 12926 } 12927 12928 /** 12929 * i40e_xdp_setup - add/remove an XDP program 12930 * @vsi: VSI to changed 12931 * @prog: XDP program 12932 * @extack: netlink extended ack 12933 **/ 12934 static int i40e_xdp_setup(struct i40e_vsi *vsi, struct bpf_prog *prog, 12935 struct netlink_ext_ack *extack) 12936 { 12937 int frame_size = vsi->netdev->mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN; 12938 struct i40e_pf *pf = vsi->back; 12939 struct bpf_prog *old_prog; 12940 bool need_reset; 12941 int i; 12942 12943 /* Don't allow frames that span over multiple buffers */ 12944 if (frame_size > vsi->rx_buf_len) { 12945 NL_SET_ERR_MSG_MOD(extack, "MTU too large to enable XDP"); 12946 return -EINVAL; 12947 } 12948 12949 /* When turning XDP on->off/off->on we reset and rebuild the rings. */ 12950 need_reset = (i40e_enabled_xdp_vsi(vsi) != !!prog); 12951 12952 if (need_reset) 12953 i40e_prep_for_reset(pf); 12954 12955 old_prog = xchg(&vsi->xdp_prog, prog); 12956 12957 if (need_reset) { 12958 if (!prog) 12959 /* Wait until ndo_xsk_wakeup completes. */ 12960 synchronize_rcu(); 12961 i40e_reset_and_rebuild(pf, true, true); 12962 } 12963 12964 for (i = 0; i < vsi->num_queue_pairs; i++) 12965 WRITE_ONCE(vsi->rx_rings[i]->xdp_prog, vsi->xdp_prog); 12966 12967 if (old_prog) 12968 bpf_prog_put(old_prog); 12969 12970 /* Kick start the NAPI context if there is an AF_XDP socket open 12971 * on that queue id. This so that receiving will start. 12972 */ 12973 if (need_reset && prog) 12974 for (i = 0; i < vsi->num_queue_pairs; i++) 12975 if (vsi->xdp_rings[i]->xsk_pool) 12976 (void)i40e_xsk_wakeup(vsi->netdev, i, 12977 XDP_WAKEUP_RX); 12978 12979 return 0; 12980 } 12981 12982 /** 12983 * i40e_enter_busy_conf - Enters busy config state 12984 * @vsi: vsi 12985 * 12986 * Returns 0 on success, <0 for failure. 12987 **/ 12988 static int i40e_enter_busy_conf(struct i40e_vsi *vsi) 12989 { 12990 struct i40e_pf *pf = vsi->back; 12991 int timeout = 50; 12992 12993 while (test_and_set_bit(__I40E_CONFIG_BUSY, pf->state)) { 12994 timeout--; 12995 if (!timeout) 12996 return -EBUSY; 12997 usleep_range(1000, 2000); 12998 } 12999 13000 return 0; 13001 } 13002 13003 /** 13004 * i40e_exit_busy_conf - Exits busy config state 13005 * @vsi: vsi 13006 **/ 13007 static void i40e_exit_busy_conf(struct i40e_vsi *vsi) 13008 { 13009 struct i40e_pf *pf = vsi->back; 13010 13011 clear_bit(__I40E_CONFIG_BUSY, pf->state); 13012 } 13013 13014 /** 13015 * i40e_queue_pair_reset_stats - Resets all statistics for a queue pair 13016 * @vsi: vsi 13017 * @queue_pair: queue pair 13018 **/ 13019 static void i40e_queue_pair_reset_stats(struct i40e_vsi *vsi, int queue_pair) 13020 { 13021 memset(&vsi->rx_rings[queue_pair]->rx_stats, 0, 13022 sizeof(vsi->rx_rings[queue_pair]->rx_stats)); 13023 memset(&vsi->tx_rings[queue_pair]->stats, 0, 13024 sizeof(vsi->tx_rings[queue_pair]->stats)); 13025 if (i40e_enabled_xdp_vsi(vsi)) { 13026 memset(&vsi->xdp_rings[queue_pair]->stats, 0, 13027 sizeof(vsi->xdp_rings[queue_pair]->stats)); 13028 } 13029 } 13030 13031 /** 13032 * i40e_queue_pair_clean_rings - Cleans all the rings of a queue pair 13033 * @vsi: vsi 13034 * @queue_pair: queue pair 13035 **/ 13036 static void i40e_queue_pair_clean_rings(struct i40e_vsi *vsi, int queue_pair) 13037 { 13038 i40e_clean_tx_ring(vsi->tx_rings[queue_pair]); 13039 if (i40e_enabled_xdp_vsi(vsi)) { 13040 /* Make sure that in-progress ndo_xdp_xmit calls are 13041 * completed. 13042 */ 13043 synchronize_rcu(); 13044 i40e_clean_tx_ring(vsi->xdp_rings[queue_pair]); 13045 } 13046 i40e_clean_rx_ring(vsi->rx_rings[queue_pair]); 13047 } 13048 13049 /** 13050 * i40e_queue_pair_toggle_napi - Enables/disables NAPI for a queue pair 13051 * @vsi: vsi 13052 * @queue_pair: queue pair 13053 * @enable: true for enable, false for disable 13054 **/ 13055 static void i40e_queue_pair_toggle_napi(struct i40e_vsi *vsi, int queue_pair, 13056 bool enable) 13057 { 13058 struct i40e_ring *rxr = vsi->rx_rings[queue_pair]; 13059 struct i40e_q_vector *q_vector = rxr->q_vector; 13060 13061 if (!vsi->netdev) 13062 return; 13063 13064 /* All rings in a qp belong to the same qvector. */ 13065 if (q_vector->rx.ring || q_vector->tx.ring) { 13066 if (enable) 13067 napi_enable(&q_vector->napi); 13068 else 13069 napi_disable(&q_vector->napi); 13070 } 13071 } 13072 13073 /** 13074 * i40e_queue_pair_toggle_rings - Enables/disables all rings for a queue pair 13075 * @vsi: vsi 13076 * @queue_pair: queue pair 13077 * @enable: true for enable, false for disable 13078 * 13079 * Returns 0 on success, <0 on failure. 13080 **/ 13081 static int i40e_queue_pair_toggle_rings(struct i40e_vsi *vsi, int queue_pair, 13082 bool enable) 13083 { 13084 struct i40e_pf *pf = vsi->back; 13085 int pf_q, ret = 0; 13086 13087 pf_q = vsi->base_queue + queue_pair; 13088 ret = i40e_control_wait_tx_q(vsi->seid, pf, pf_q, 13089 false /*is xdp*/, enable); 13090 if (ret) { 13091 dev_info(&pf->pdev->dev, 13092 "VSI seid %d Tx ring %d %sable timeout\n", 13093 vsi->seid, pf_q, (enable ? "en" : "dis")); 13094 return ret; 13095 } 13096 13097 i40e_control_rx_q(pf, pf_q, enable); 13098 ret = i40e_pf_rxq_wait(pf, pf_q, enable); 13099 if (ret) { 13100 dev_info(&pf->pdev->dev, 13101 "VSI seid %d Rx ring %d %sable timeout\n", 13102 vsi->seid, pf_q, (enable ? "en" : "dis")); 13103 return ret; 13104 } 13105 13106 /* Due to HW errata, on Rx disable only, the register can 13107 * indicate done before it really is. Needs 50ms to be sure 13108 */ 13109 if (!enable) 13110 mdelay(50); 13111 13112 if (!i40e_enabled_xdp_vsi(vsi)) 13113 return ret; 13114 13115 ret = i40e_control_wait_tx_q(vsi->seid, pf, 13116 pf_q + vsi->alloc_queue_pairs, 13117 true /*is xdp*/, enable); 13118 if (ret) { 13119 dev_info(&pf->pdev->dev, 13120 "VSI seid %d XDP Tx ring %d %sable timeout\n", 13121 vsi->seid, pf_q, (enable ? "en" : "dis")); 13122 } 13123 13124 return ret; 13125 } 13126 13127 /** 13128 * i40e_queue_pair_enable_irq - Enables interrupts for a queue pair 13129 * @vsi: vsi 13130 * @queue_pair: queue_pair 13131 **/ 13132 static void i40e_queue_pair_enable_irq(struct i40e_vsi *vsi, int queue_pair) 13133 { 13134 struct i40e_ring *rxr = vsi->rx_rings[queue_pair]; 13135 struct i40e_pf *pf = vsi->back; 13136 struct i40e_hw *hw = &pf->hw; 13137 13138 /* All rings in a qp belong to the same qvector. */ 13139 if (pf->flags & I40E_FLAG_MSIX_ENABLED) 13140 i40e_irq_dynamic_enable(vsi, rxr->q_vector->v_idx); 13141 else 13142 i40e_irq_dynamic_enable_icr0(pf); 13143 13144 i40e_flush(hw); 13145 } 13146 13147 /** 13148 * i40e_queue_pair_disable_irq - Disables interrupts for a queue pair 13149 * @vsi: vsi 13150 * @queue_pair: queue_pair 13151 **/ 13152 static void i40e_queue_pair_disable_irq(struct i40e_vsi *vsi, int queue_pair) 13153 { 13154 struct i40e_ring *rxr = vsi->rx_rings[queue_pair]; 13155 struct i40e_pf *pf = vsi->back; 13156 struct i40e_hw *hw = &pf->hw; 13157 13158 /* For simplicity, instead of removing the qp interrupt causes 13159 * from the interrupt linked list, we simply disable the interrupt, and 13160 * leave the list intact. 13161 * 13162 * All rings in a qp belong to the same qvector. 13163 */ 13164 if (pf->flags & I40E_FLAG_MSIX_ENABLED) { 13165 u32 intpf = vsi->base_vector + rxr->q_vector->v_idx; 13166 13167 wr32(hw, I40E_PFINT_DYN_CTLN(intpf - 1), 0); 13168 i40e_flush(hw); 13169 synchronize_irq(pf->msix_entries[intpf].vector); 13170 } else { 13171 /* Legacy and MSI mode - this stops all interrupt handling */ 13172 wr32(hw, I40E_PFINT_ICR0_ENA, 0); 13173 wr32(hw, I40E_PFINT_DYN_CTL0, 0); 13174 i40e_flush(hw); 13175 synchronize_irq(pf->pdev->irq); 13176 } 13177 } 13178 13179 /** 13180 * i40e_queue_pair_disable - Disables a queue pair 13181 * @vsi: vsi 13182 * @queue_pair: queue pair 13183 * 13184 * Returns 0 on success, <0 on failure. 13185 **/ 13186 int i40e_queue_pair_disable(struct i40e_vsi *vsi, int queue_pair) 13187 { 13188 int err; 13189 13190 err = i40e_enter_busy_conf(vsi); 13191 if (err) 13192 return err; 13193 13194 i40e_queue_pair_disable_irq(vsi, queue_pair); 13195 err = i40e_queue_pair_toggle_rings(vsi, queue_pair, false /* off */); 13196 i40e_queue_pair_toggle_napi(vsi, queue_pair, false /* off */); 13197 i40e_queue_pair_clean_rings(vsi, queue_pair); 13198 i40e_queue_pair_reset_stats(vsi, queue_pair); 13199 13200 return err; 13201 } 13202 13203 /** 13204 * i40e_queue_pair_enable - Enables a queue pair 13205 * @vsi: vsi 13206 * @queue_pair: queue pair 13207 * 13208 * Returns 0 on success, <0 on failure. 13209 **/ 13210 int i40e_queue_pair_enable(struct i40e_vsi *vsi, int queue_pair) 13211 { 13212 int err; 13213 13214 err = i40e_configure_tx_ring(vsi->tx_rings[queue_pair]); 13215 if (err) 13216 return err; 13217 13218 if (i40e_enabled_xdp_vsi(vsi)) { 13219 err = i40e_configure_tx_ring(vsi->xdp_rings[queue_pair]); 13220 if (err) 13221 return err; 13222 } 13223 13224 err = i40e_configure_rx_ring(vsi->rx_rings[queue_pair]); 13225 if (err) 13226 return err; 13227 13228 err = i40e_queue_pair_toggle_rings(vsi, queue_pair, true /* on */); 13229 i40e_queue_pair_toggle_napi(vsi, queue_pair, true /* on */); 13230 i40e_queue_pair_enable_irq(vsi, queue_pair); 13231 13232 i40e_exit_busy_conf(vsi); 13233 13234 return err; 13235 } 13236 13237 /** 13238 * i40e_xdp - implements ndo_bpf for i40e 13239 * @dev: netdevice 13240 * @xdp: XDP command 13241 **/ 13242 static int i40e_xdp(struct net_device *dev, 13243 struct netdev_bpf *xdp) 13244 { 13245 struct i40e_netdev_priv *np = netdev_priv(dev); 13246 struct i40e_vsi *vsi = np->vsi; 13247 13248 if (vsi->type != I40E_VSI_MAIN) 13249 return -EINVAL; 13250 13251 switch (xdp->command) { 13252 case XDP_SETUP_PROG: 13253 return i40e_xdp_setup(vsi, xdp->prog, xdp->extack); 13254 case XDP_SETUP_XSK_POOL: 13255 return i40e_xsk_pool_setup(vsi, xdp->xsk.pool, 13256 xdp->xsk.queue_id); 13257 default: 13258 return -EINVAL; 13259 } 13260 } 13261 13262 static const struct net_device_ops i40e_netdev_ops = { 13263 .ndo_open = i40e_open, 13264 .ndo_stop = i40e_close, 13265 .ndo_start_xmit = i40e_lan_xmit_frame, 13266 .ndo_get_stats64 = i40e_get_netdev_stats_struct, 13267 .ndo_set_rx_mode = i40e_set_rx_mode, 13268 .ndo_validate_addr = eth_validate_addr, 13269 .ndo_set_mac_address = i40e_set_mac, 13270 .ndo_change_mtu = i40e_change_mtu, 13271 .ndo_eth_ioctl = i40e_ioctl, 13272 .ndo_tx_timeout = i40e_tx_timeout, 13273 .ndo_vlan_rx_add_vid = i40e_vlan_rx_add_vid, 13274 .ndo_vlan_rx_kill_vid = i40e_vlan_rx_kill_vid, 13275 #ifdef CONFIG_NET_POLL_CONTROLLER 13276 .ndo_poll_controller = i40e_netpoll, 13277 #endif 13278 .ndo_setup_tc = __i40e_setup_tc, 13279 .ndo_select_queue = i40e_lan_select_queue, 13280 .ndo_set_features = i40e_set_features, 13281 .ndo_set_vf_mac = i40e_ndo_set_vf_mac, 13282 .ndo_set_vf_vlan = i40e_ndo_set_vf_port_vlan, 13283 .ndo_get_vf_stats = i40e_get_vf_stats, 13284 .ndo_set_vf_rate = i40e_ndo_set_vf_bw, 13285 .ndo_get_vf_config = i40e_ndo_get_vf_config, 13286 .ndo_set_vf_link_state = i40e_ndo_set_vf_link_state, 13287 .ndo_set_vf_spoofchk = i40e_ndo_set_vf_spoofchk, 13288 .ndo_set_vf_trust = i40e_ndo_set_vf_trust, 13289 .ndo_get_phys_port_id = i40e_get_phys_port_id, 13290 .ndo_fdb_add = i40e_ndo_fdb_add, 13291 .ndo_features_check = i40e_features_check, 13292 .ndo_bridge_getlink = i40e_ndo_bridge_getlink, 13293 .ndo_bridge_setlink = i40e_ndo_bridge_setlink, 13294 .ndo_bpf = i40e_xdp, 13295 .ndo_xdp_xmit = i40e_xdp_xmit, 13296 .ndo_xsk_wakeup = i40e_xsk_wakeup, 13297 .ndo_dfwd_add_station = i40e_fwd_add, 13298 .ndo_dfwd_del_station = i40e_fwd_del, 13299 }; 13300 13301 /** 13302 * i40e_config_netdev - Setup the netdev flags 13303 * @vsi: the VSI being configured 13304 * 13305 * Returns 0 on success, negative value on failure 13306 **/ 13307 static int i40e_config_netdev(struct i40e_vsi *vsi) 13308 { 13309 struct i40e_pf *pf = vsi->back; 13310 struct i40e_hw *hw = &pf->hw; 13311 struct i40e_netdev_priv *np; 13312 struct net_device *netdev; 13313 u8 broadcast[ETH_ALEN]; 13314 u8 mac_addr[ETH_ALEN]; 13315 int etherdev_size; 13316 netdev_features_t hw_enc_features; 13317 netdev_features_t hw_features; 13318 13319 etherdev_size = sizeof(struct i40e_netdev_priv); 13320 netdev = alloc_etherdev_mq(etherdev_size, vsi->alloc_queue_pairs); 13321 if (!netdev) 13322 return -ENOMEM; 13323 13324 vsi->netdev = netdev; 13325 np = netdev_priv(netdev); 13326 np->vsi = vsi; 13327 13328 hw_enc_features = NETIF_F_SG | 13329 NETIF_F_IP_CSUM | 13330 NETIF_F_IPV6_CSUM | 13331 NETIF_F_HIGHDMA | 13332 NETIF_F_SOFT_FEATURES | 13333 NETIF_F_TSO | 13334 NETIF_F_TSO_ECN | 13335 NETIF_F_TSO6 | 13336 NETIF_F_GSO_GRE | 13337 NETIF_F_GSO_GRE_CSUM | 13338 NETIF_F_GSO_PARTIAL | 13339 NETIF_F_GSO_IPXIP4 | 13340 NETIF_F_GSO_IPXIP6 | 13341 NETIF_F_GSO_UDP_TUNNEL | 13342 NETIF_F_GSO_UDP_TUNNEL_CSUM | 13343 NETIF_F_GSO_UDP_L4 | 13344 NETIF_F_SCTP_CRC | 13345 NETIF_F_RXHASH | 13346 NETIF_F_RXCSUM | 13347 0; 13348 13349 if (!(pf->hw_features & I40E_HW_OUTER_UDP_CSUM_CAPABLE)) 13350 netdev->gso_partial_features |= NETIF_F_GSO_UDP_TUNNEL_CSUM; 13351 13352 netdev->udp_tunnel_nic_info = &pf->udp_tunnel_nic; 13353 13354 netdev->gso_partial_features |= NETIF_F_GSO_GRE_CSUM; 13355 13356 netdev->hw_enc_features |= hw_enc_features; 13357 13358 /* record features VLANs can make use of */ 13359 netdev->vlan_features |= hw_enc_features | NETIF_F_TSO_MANGLEID; 13360 13361 /* enable macvlan offloads */ 13362 netdev->hw_features |= NETIF_F_HW_L2FW_DOFFLOAD; 13363 13364 hw_features = hw_enc_features | 13365 NETIF_F_HW_VLAN_CTAG_TX | 13366 NETIF_F_HW_VLAN_CTAG_RX; 13367 13368 if (!(pf->flags & I40E_FLAG_MFP_ENABLED)) 13369 hw_features |= NETIF_F_NTUPLE | NETIF_F_HW_TC; 13370 13371 netdev->hw_features |= hw_features; 13372 13373 netdev->features |= hw_features | NETIF_F_HW_VLAN_CTAG_FILTER; 13374 netdev->hw_enc_features |= NETIF_F_TSO_MANGLEID; 13375 13376 if (vsi->type == I40E_VSI_MAIN) { 13377 SET_NETDEV_DEV(netdev, &pf->pdev->dev); 13378 ether_addr_copy(mac_addr, hw->mac.perm_addr); 13379 /* The following steps are necessary for two reasons. First, 13380 * some older NVM configurations load a default MAC-VLAN 13381 * filter that will accept any tagged packet, and we want to 13382 * replace this with a normal filter. Additionally, it is 13383 * possible our MAC address was provided by the platform using 13384 * Open Firmware or similar. 13385 * 13386 * Thus, we need to remove the default filter and install one 13387 * specific to the MAC address. 13388 */ 13389 i40e_rm_default_mac_filter(vsi, mac_addr); 13390 spin_lock_bh(&vsi->mac_filter_hash_lock); 13391 i40e_add_mac_filter(vsi, mac_addr); 13392 spin_unlock_bh(&vsi->mac_filter_hash_lock); 13393 } else { 13394 /* Relate the VSI_VMDQ name to the VSI_MAIN name. Note that we 13395 * are still limited by IFNAMSIZ, but we're adding 'v%d\0' to 13396 * the end, which is 4 bytes long, so force truncation of the 13397 * original name by IFNAMSIZ - 4 13398 */ 13399 snprintf(netdev->name, IFNAMSIZ, "%.*sv%%d", 13400 IFNAMSIZ - 4, 13401 pf->vsi[pf->lan_vsi]->netdev->name); 13402 eth_random_addr(mac_addr); 13403 13404 spin_lock_bh(&vsi->mac_filter_hash_lock); 13405 i40e_add_mac_filter(vsi, mac_addr); 13406 spin_unlock_bh(&vsi->mac_filter_hash_lock); 13407 } 13408 13409 /* Add the broadcast filter so that we initially will receive 13410 * broadcast packets. Note that when a new VLAN is first added the 13411 * driver will convert all filters marked I40E_VLAN_ANY into VLAN 13412 * specific filters as part of transitioning into "vlan" operation. 13413 * When more VLANs are added, the driver will copy each existing MAC 13414 * filter and add it for the new VLAN. 13415 * 13416 * Broadcast filters are handled specially by 13417 * i40e_sync_filters_subtask, as the driver must to set the broadcast 13418 * promiscuous bit instead of adding this directly as a MAC/VLAN 13419 * filter. The subtask will update the correct broadcast promiscuous 13420 * bits as VLANs become active or inactive. 13421 */ 13422 eth_broadcast_addr(broadcast); 13423 spin_lock_bh(&vsi->mac_filter_hash_lock); 13424 i40e_add_mac_filter(vsi, broadcast); 13425 spin_unlock_bh(&vsi->mac_filter_hash_lock); 13426 13427 ether_addr_copy(netdev->dev_addr, mac_addr); 13428 ether_addr_copy(netdev->perm_addr, mac_addr); 13429 13430 /* i40iw_net_event() reads 16 bytes from neigh->primary_key */ 13431 netdev->neigh_priv_len = sizeof(u32) * 4; 13432 13433 netdev->priv_flags |= IFF_UNICAST_FLT; 13434 netdev->priv_flags |= IFF_SUPP_NOFCS; 13435 /* Setup netdev TC information */ 13436 i40e_vsi_config_netdev_tc(vsi, vsi->tc_config.enabled_tc); 13437 13438 netdev->netdev_ops = &i40e_netdev_ops; 13439 netdev->watchdog_timeo = 5 * HZ; 13440 i40e_set_ethtool_ops(netdev); 13441 13442 /* MTU range: 68 - 9706 */ 13443 netdev->min_mtu = ETH_MIN_MTU; 13444 netdev->max_mtu = I40E_MAX_RXBUFFER - I40E_PACKET_HDR_PAD; 13445 13446 return 0; 13447 } 13448 13449 /** 13450 * i40e_vsi_delete - Delete a VSI from the switch 13451 * @vsi: the VSI being removed 13452 * 13453 * Returns 0 on success, negative value on failure 13454 **/ 13455 static void i40e_vsi_delete(struct i40e_vsi *vsi) 13456 { 13457 /* remove default VSI is not allowed */ 13458 if (vsi == vsi->back->vsi[vsi->back->lan_vsi]) 13459 return; 13460 13461 i40e_aq_delete_element(&vsi->back->hw, vsi->seid, NULL); 13462 } 13463 13464 /** 13465 * i40e_is_vsi_uplink_mode_veb - Check if the VSI's uplink bridge mode is VEB 13466 * @vsi: the VSI being queried 13467 * 13468 * Returns 1 if HW bridge mode is VEB and return 0 in case of VEPA mode 13469 **/ 13470 int i40e_is_vsi_uplink_mode_veb(struct i40e_vsi *vsi) 13471 { 13472 struct i40e_veb *veb; 13473 struct i40e_pf *pf = vsi->back; 13474 13475 /* Uplink is not a bridge so default to VEB */ 13476 if (vsi->veb_idx >= I40E_MAX_VEB) 13477 return 1; 13478 13479 veb = pf->veb[vsi->veb_idx]; 13480 if (!veb) { 13481 dev_info(&pf->pdev->dev, 13482 "There is no veb associated with the bridge\n"); 13483 return -ENOENT; 13484 } 13485 13486 /* Uplink is a bridge in VEPA mode */ 13487 if (veb->bridge_mode & BRIDGE_MODE_VEPA) { 13488 return 0; 13489 } else { 13490 /* Uplink is a bridge in VEB mode */ 13491 return 1; 13492 } 13493 13494 /* VEPA is now default bridge, so return 0 */ 13495 return 0; 13496 } 13497 13498 /** 13499 * i40e_add_vsi - Add a VSI to the switch 13500 * @vsi: the VSI being configured 13501 * 13502 * This initializes a VSI context depending on the VSI type to be added and 13503 * passes it down to the add_vsi aq command. 13504 **/ 13505 static int i40e_add_vsi(struct i40e_vsi *vsi) 13506 { 13507 int ret = -ENODEV; 13508 struct i40e_pf *pf = vsi->back; 13509 struct i40e_hw *hw = &pf->hw; 13510 struct i40e_vsi_context ctxt; 13511 struct i40e_mac_filter *f; 13512 struct hlist_node *h; 13513 int bkt; 13514 13515 u8 enabled_tc = 0x1; /* TC0 enabled */ 13516 int f_count = 0; 13517 13518 memset(&ctxt, 0, sizeof(ctxt)); 13519 switch (vsi->type) { 13520 case I40E_VSI_MAIN: 13521 /* The PF's main VSI is already setup as part of the 13522 * device initialization, so we'll not bother with 13523 * the add_vsi call, but we will retrieve the current 13524 * VSI context. 13525 */ 13526 ctxt.seid = pf->main_vsi_seid; 13527 ctxt.pf_num = pf->hw.pf_id; 13528 ctxt.vf_num = 0; 13529 ret = i40e_aq_get_vsi_params(&pf->hw, &ctxt, NULL); 13530 ctxt.flags = I40E_AQ_VSI_TYPE_PF; 13531 if (ret) { 13532 dev_info(&pf->pdev->dev, 13533 "couldn't get PF vsi config, err %s aq_err %s\n", 13534 i40e_stat_str(&pf->hw, ret), 13535 i40e_aq_str(&pf->hw, 13536 pf->hw.aq.asq_last_status)); 13537 return -ENOENT; 13538 } 13539 vsi->info = ctxt.info; 13540 vsi->info.valid_sections = 0; 13541 13542 vsi->seid = ctxt.seid; 13543 vsi->id = ctxt.vsi_number; 13544 13545 enabled_tc = i40e_pf_get_tc_map(pf); 13546 13547 /* Source pruning is enabled by default, so the flag is 13548 * negative logic - if it's set, we need to fiddle with 13549 * the VSI to disable source pruning. 13550 */ 13551 if (pf->flags & I40E_FLAG_SOURCE_PRUNING_DISABLED) { 13552 memset(&ctxt, 0, sizeof(ctxt)); 13553 ctxt.seid = pf->main_vsi_seid; 13554 ctxt.pf_num = pf->hw.pf_id; 13555 ctxt.vf_num = 0; 13556 ctxt.info.valid_sections |= 13557 cpu_to_le16(I40E_AQ_VSI_PROP_SWITCH_VALID); 13558 ctxt.info.switch_id = 13559 cpu_to_le16(I40E_AQ_VSI_SW_ID_FLAG_LOCAL_LB); 13560 ret = i40e_aq_update_vsi_params(hw, &ctxt, NULL); 13561 if (ret) { 13562 dev_info(&pf->pdev->dev, 13563 "update vsi failed, err %s aq_err %s\n", 13564 i40e_stat_str(&pf->hw, ret), 13565 i40e_aq_str(&pf->hw, 13566 pf->hw.aq.asq_last_status)); 13567 ret = -ENOENT; 13568 goto err; 13569 } 13570 } 13571 13572 /* MFP mode setup queue map and update VSI */ 13573 if ((pf->flags & I40E_FLAG_MFP_ENABLED) && 13574 !(pf->hw.func_caps.iscsi)) { /* NIC type PF */ 13575 memset(&ctxt, 0, sizeof(ctxt)); 13576 ctxt.seid = pf->main_vsi_seid; 13577 ctxt.pf_num = pf->hw.pf_id; 13578 ctxt.vf_num = 0; 13579 i40e_vsi_setup_queue_map(vsi, &ctxt, enabled_tc, false); 13580 ret = i40e_aq_update_vsi_params(hw, &ctxt, NULL); 13581 if (ret) { 13582 dev_info(&pf->pdev->dev, 13583 "update vsi failed, err %s aq_err %s\n", 13584 i40e_stat_str(&pf->hw, ret), 13585 i40e_aq_str(&pf->hw, 13586 pf->hw.aq.asq_last_status)); 13587 ret = -ENOENT; 13588 goto err; 13589 } 13590 /* update the local VSI info queue map */ 13591 i40e_vsi_update_queue_map(vsi, &ctxt); 13592 vsi->info.valid_sections = 0; 13593 } else { 13594 /* Default/Main VSI is only enabled for TC0 13595 * reconfigure it to enable all TCs that are 13596 * available on the port in SFP mode. 13597 * For MFP case the iSCSI PF would use this 13598 * flow to enable LAN+iSCSI TC. 13599 */ 13600 ret = i40e_vsi_config_tc(vsi, enabled_tc); 13601 if (ret) { 13602 /* Single TC condition is not fatal, 13603 * message and continue 13604 */ 13605 dev_info(&pf->pdev->dev, 13606 "failed to configure TCs for main VSI tc_map 0x%08x, err %s aq_err %s\n", 13607 enabled_tc, 13608 i40e_stat_str(&pf->hw, ret), 13609 i40e_aq_str(&pf->hw, 13610 pf->hw.aq.asq_last_status)); 13611 } 13612 } 13613 break; 13614 13615 case I40E_VSI_FDIR: 13616 ctxt.pf_num = hw->pf_id; 13617 ctxt.vf_num = 0; 13618 ctxt.uplink_seid = vsi->uplink_seid; 13619 ctxt.connection_type = I40E_AQ_VSI_CONN_TYPE_NORMAL; 13620 ctxt.flags = I40E_AQ_VSI_TYPE_PF; 13621 if ((pf->flags & I40E_FLAG_VEB_MODE_ENABLED) && 13622 (i40e_is_vsi_uplink_mode_veb(vsi))) { 13623 ctxt.info.valid_sections |= 13624 cpu_to_le16(I40E_AQ_VSI_PROP_SWITCH_VALID); 13625 ctxt.info.switch_id = 13626 cpu_to_le16(I40E_AQ_VSI_SW_ID_FLAG_ALLOW_LB); 13627 } 13628 i40e_vsi_setup_queue_map(vsi, &ctxt, enabled_tc, true); 13629 break; 13630 13631 case I40E_VSI_VMDQ2: 13632 ctxt.pf_num = hw->pf_id; 13633 ctxt.vf_num = 0; 13634 ctxt.uplink_seid = vsi->uplink_seid; 13635 ctxt.connection_type = I40E_AQ_VSI_CONN_TYPE_NORMAL; 13636 ctxt.flags = I40E_AQ_VSI_TYPE_VMDQ2; 13637 13638 /* This VSI is connected to VEB so the switch_id 13639 * should be set to zero by default. 13640 */ 13641 if (i40e_is_vsi_uplink_mode_veb(vsi)) { 13642 ctxt.info.valid_sections |= 13643 cpu_to_le16(I40E_AQ_VSI_PROP_SWITCH_VALID); 13644 ctxt.info.switch_id = 13645 cpu_to_le16(I40E_AQ_VSI_SW_ID_FLAG_ALLOW_LB); 13646 } 13647 13648 /* Setup the VSI tx/rx queue map for TC0 only for now */ 13649 i40e_vsi_setup_queue_map(vsi, &ctxt, enabled_tc, true); 13650 break; 13651 13652 case I40E_VSI_SRIOV: 13653 ctxt.pf_num = hw->pf_id; 13654 ctxt.vf_num = vsi->vf_id + hw->func_caps.vf_base_id; 13655 ctxt.uplink_seid = vsi->uplink_seid; 13656 ctxt.connection_type = I40E_AQ_VSI_CONN_TYPE_NORMAL; 13657 ctxt.flags = I40E_AQ_VSI_TYPE_VF; 13658 13659 /* This VSI is connected to VEB so the switch_id 13660 * should be set to zero by default. 13661 */ 13662 if (i40e_is_vsi_uplink_mode_veb(vsi)) { 13663 ctxt.info.valid_sections |= 13664 cpu_to_le16(I40E_AQ_VSI_PROP_SWITCH_VALID); 13665 ctxt.info.switch_id = 13666 cpu_to_le16(I40E_AQ_VSI_SW_ID_FLAG_ALLOW_LB); 13667 } 13668 13669 if (vsi->back->flags & I40E_FLAG_IWARP_ENABLED) { 13670 ctxt.info.valid_sections |= 13671 cpu_to_le16(I40E_AQ_VSI_PROP_QUEUE_OPT_VALID); 13672 ctxt.info.queueing_opt_flags |= 13673 (I40E_AQ_VSI_QUE_OPT_TCP_ENA | 13674 I40E_AQ_VSI_QUE_OPT_RSS_LUT_VSI); 13675 } 13676 13677 ctxt.info.valid_sections |= cpu_to_le16(I40E_AQ_VSI_PROP_VLAN_VALID); 13678 ctxt.info.port_vlan_flags |= I40E_AQ_VSI_PVLAN_MODE_ALL; 13679 if (pf->vf[vsi->vf_id].spoofchk) { 13680 ctxt.info.valid_sections |= 13681 cpu_to_le16(I40E_AQ_VSI_PROP_SECURITY_VALID); 13682 ctxt.info.sec_flags |= 13683 (I40E_AQ_VSI_SEC_FLAG_ENABLE_VLAN_CHK | 13684 I40E_AQ_VSI_SEC_FLAG_ENABLE_MAC_CHK); 13685 } 13686 /* Setup the VSI tx/rx queue map for TC0 only for now */ 13687 i40e_vsi_setup_queue_map(vsi, &ctxt, enabled_tc, true); 13688 break; 13689 13690 case I40E_VSI_IWARP: 13691 /* send down message to iWARP */ 13692 break; 13693 13694 default: 13695 return -ENODEV; 13696 } 13697 13698 if (vsi->type != I40E_VSI_MAIN) { 13699 ret = i40e_aq_add_vsi(hw, &ctxt, NULL); 13700 if (ret) { 13701 dev_info(&vsi->back->pdev->dev, 13702 "add vsi failed, err %s aq_err %s\n", 13703 i40e_stat_str(&pf->hw, ret), 13704 i40e_aq_str(&pf->hw, 13705 pf->hw.aq.asq_last_status)); 13706 ret = -ENOENT; 13707 goto err; 13708 } 13709 vsi->info = ctxt.info; 13710 vsi->info.valid_sections = 0; 13711 vsi->seid = ctxt.seid; 13712 vsi->id = ctxt.vsi_number; 13713 } 13714 13715 vsi->active_filters = 0; 13716 clear_bit(__I40E_VSI_OVERFLOW_PROMISC, vsi->state); 13717 spin_lock_bh(&vsi->mac_filter_hash_lock); 13718 /* If macvlan filters already exist, force them to get loaded */ 13719 hash_for_each_safe(vsi->mac_filter_hash, bkt, h, f, hlist) { 13720 f->state = I40E_FILTER_NEW; 13721 f_count++; 13722 } 13723 spin_unlock_bh(&vsi->mac_filter_hash_lock); 13724 13725 if (f_count) { 13726 vsi->flags |= I40E_VSI_FLAG_FILTER_CHANGED; 13727 set_bit(__I40E_MACVLAN_SYNC_PENDING, pf->state); 13728 } 13729 13730 /* Update VSI BW information */ 13731 ret = i40e_vsi_get_bw_info(vsi); 13732 if (ret) { 13733 dev_info(&pf->pdev->dev, 13734 "couldn't get vsi bw info, err %s aq_err %s\n", 13735 i40e_stat_str(&pf->hw, ret), 13736 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 13737 /* VSI is already added so not tearing that up */ 13738 ret = 0; 13739 } 13740 13741 err: 13742 return ret; 13743 } 13744 13745 /** 13746 * i40e_vsi_release - Delete a VSI and free its resources 13747 * @vsi: the VSI being removed 13748 * 13749 * Returns 0 on success or < 0 on error 13750 **/ 13751 int i40e_vsi_release(struct i40e_vsi *vsi) 13752 { 13753 struct i40e_mac_filter *f; 13754 struct hlist_node *h; 13755 struct i40e_veb *veb = NULL; 13756 struct i40e_pf *pf; 13757 u16 uplink_seid; 13758 int i, n, bkt; 13759 13760 pf = vsi->back; 13761 13762 /* release of a VEB-owner or last VSI is not allowed */ 13763 if (vsi->flags & I40E_VSI_FLAG_VEB_OWNER) { 13764 dev_info(&pf->pdev->dev, "VSI %d has existing VEB %d\n", 13765 vsi->seid, vsi->uplink_seid); 13766 return -ENODEV; 13767 } 13768 if (vsi == pf->vsi[pf->lan_vsi] && 13769 !test_bit(__I40E_DOWN, pf->state)) { 13770 dev_info(&pf->pdev->dev, "Can't remove PF VSI\n"); 13771 return -ENODEV; 13772 } 13773 13774 uplink_seid = vsi->uplink_seid; 13775 if (vsi->type != I40E_VSI_SRIOV) { 13776 if (vsi->netdev_registered) { 13777 vsi->netdev_registered = false; 13778 if (vsi->netdev) { 13779 /* results in a call to i40e_close() */ 13780 unregister_netdev(vsi->netdev); 13781 } 13782 } else { 13783 i40e_vsi_close(vsi); 13784 } 13785 i40e_vsi_disable_irq(vsi); 13786 } 13787 13788 spin_lock_bh(&vsi->mac_filter_hash_lock); 13789 13790 /* clear the sync flag on all filters */ 13791 if (vsi->netdev) { 13792 __dev_uc_unsync(vsi->netdev, NULL); 13793 __dev_mc_unsync(vsi->netdev, NULL); 13794 } 13795 13796 /* make sure any remaining filters are marked for deletion */ 13797 hash_for_each_safe(vsi->mac_filter_hash, bkt, h, f, hlist) 13798 __i40e_del_filter(vsi, f); 13799 13800 spin_unlock_bh(&vsi->mac_filter_hash_lock); 13801 13802 i40e_sync_vsi_filters(vsi); 13803 13804 i40e_vsi_delete(vsi); 13805 i40e_vsi_free_q_vectors(vsi); 13806 if (vsi->netdev) { 13807 free_netdev(vsi->netdev); 13808 vsi->netdev = NULL; 13809 } 13810 i40e_vsi_clear_rings(vsi); 13811 i40e_vsi_clear(vsi); 13812 13813 /* If this was the last thing on the VEB, except for the 13814 * controlling VSI, remove the VEB, which puts the controlling 13815 * VSI onto the next level down in the switch. 13816 * 13817 * Well, okay, there's one more exception here: don't remove 13818 * the orphan VEBs yet. We'll wait for an explicit remove request 13819 * from up the network stack. 13820 */ 13821 for (n = 0, i = 0; i < pf->num_alloc_vsi; i++) { 13822 if (pf->vsi[i] && 13823 pf->vsi[i]->uplink_seid == uplink_seid && 13824 (pf->vsi[i]->flags & I40E_VSI_FLAG_VEB_OWNER) == 0) { 13825 n++; /* count the VSIs */ 13826 } 13827 } 13828 for (i = 0; i < I40E_MAX_VEB; i++) { 13829 if (!pf->veb[i]) 13830 continue; 13831 if (pf->veb[i]->uplink_seid == uplink_seid) 13832 n++; /* count the VEBs */ 13833 if (pf->veb[i]->seid == uplink_seid) 13834 veb = pf->veb[i]; 13835 } 13836 if (n == 0 && veb && veb->uplink_seid != 0) 13837 i40e_veb_release(veb); 13838 13839 return 0; 13840 } 13841 13842 /** 13843 * i40e_vsi_setup_vectors - Set up the q_vectors for the given VSI 13844 * @vsi: ptr to the VSI 13845 * 13846 * This should only be called after i40e_vsi_mem_alloc() which allocates the 13847 * corresponding SW VSI structure and initializes num_queue_pairs for the 13848 * newly allocated VSI. 13849 * 13850 * Returns 0 on success or negative on failure 13851 **/ 13852 static int i40e_vsi_setup_vectors(struct i40e_vsi *vsi) 13853 { 13854 int ret = -ENOENT; 13855 struct i40e_pf *pf = vsi->back; 13856 13857 if (vsi->q_vectors[0]) { 13858 dev_info(&pf->pdev->dev, "VSI %d has existing q_vectors\n", 13859 vsi->seid); 13860 return -EEXIST; 13861 } 13862 13863 if (vsi->base_vector) { 13864 dev_info(&pf->pdev->dev, "VSI %d has non-zero base vector %d\n", 13865 vsi->seid, vsi->base_vector); 13866 return -EEXIST; 13867 } 13868 13869 ret = i40e_vsi_alloc_q_vectors(vsi); 13870 if (ret) { 13871 dev_info(&pf->pdev->dev, 13872 "failed to allocate %d q_vector for VSI %d, ret=%d\n", 13873 vsi->num_q_vectors, vsi->seid, ret); 13874 vsi->num_q_vectors = 0; 13875 goto vector_setup_out; 13876 } 13877 13878 /* In Legacy mode, we do not have to get any other vector since we 13879 * piggyback on the misc/ICR0 for queue interrupts. 13880 */ 13881 if (!(pf->flags & I40E_FLAG_MSIX_ENABLED)) 13882 return ret; 13883 if (vsi->num_q_vectors) 13884 vsi->base_vector = i40e_get_lump(pf, pf->irq_pile, 13885 vsi->num_q_vectors, vsi->idx); 13886 if (vsi->base_vector < 0) { 13887 dev_info(&pf->pdev->dev, 13888 "failed to get tracking for %d vectors for VSI %d, err=%d\n", 13889 vsi->num_q_vectors, vsi->seid, vsi->base_vector); 13890 i40e_vsi_free_q_vectors(vsi); 13891 ret = -ENOENT; 13892 goto vector_setup_out; 13893 } 13894 13895 vector_setup_out: 13896 return ret; 13897 } 13898 13899 /** 13900 * i40e_vsi_reinit_setup - return and reallocate resources for a VSI 13901 * @vsi: pointer to the vsi. 13902 * 13903 * This re-allocates a vsi's queue resources. 13904 * 13905 * Returns pointer to the successfully allocated and configured VSI sw struct 13906 * on success, otherwise returns NULL on failure. 13907 **/ 13908 static struct i40e_vsi *i40e_vsi_reinit_setup(struct i40e_vsi *vsi) 13909 { 13910 u16 alloc_queue_pairs; 13911 struct i40e_pf *pf; 13912 u8 enabled_tc; 13913 int ret; 13914 13915 if (!vsi) 13916 return NULL; 13917 13918 pf = vsi->back; 13919 13920 i40e_put_lump(pf->qp_pile, vsi->base_queue, vsi->idx); 13921 i40e_vsi_clear_rings(vsi); 13922 13923 i40e_vsi_free_arrays(vsi, false); 13924 i40e_set_num_rings_in_vsi(vsi); 13925 ret = i40e_vsi_alloc_arrays(vsi, false); 13926 if (ret) 13927 goto err_vsi; 13928 13929 alloc_queue_pairs = vsi->alloc_queue_pairs * 13930 (i40e_enabled_xdp_vsi(vsi) ? 2 : 1); 13931 13932 ret = i40e_get_lump(pf, pf->qp_pile, alloc_queue_pairs, vsi->idx); 13933 if (ret < 0) { 13934 dev_info(&pf->pdev->dev, 13935 "failed to get tracking for %d queues for VSI %d err %d\n", 13936 alloc_queue_pairs, vsi->seid, ret); 13937 goto err_vsi; 13938 } 13939 vsi->base_queue = ret; 13940 13941 /* Update the FW view of the VSI. Force a reset of TC and queue 13942 * layout configurations. 13943 */ 13944 enabled_tc = pf->vsi[pf->lan_vsi]->tc_config.enabled_tc; 13945 pf->vsi[pf->lan_vsi]->tc_config.enabled_tc = 0; 13946 pf->vsi[pf->lan_vsi]->seid = pf->main_vsi_seid; 13947 i40e_vsi_config_tc(pf->vsi[pf->lan_vsi], enabled_tc); 13948 if (vsi->type == I40E_VSI_MAIN) 13949 i40e_rm_default_mac_filter(vsi, pf->hw.mac.perm_addr); 13950 13951 /* assign it some queues */ 13952 ret = i40e_alloc_rings(vsi); 13953 if (ret) 13954 goto err_rings; 13955 13956 /* map all of the rings to the q_vectors */ 13957 i40e_vsi_map_rings_to_vectors(vsi); 13958 return vsi; 13959 13960 err_rings: 13961 i40e_vsi_free_q_vectors(vsi); 13962 if (vsi->netdev_registered) { 13963 vsi->netdev_registered = false; 13964 unregister_netdev(vsi->netdev); 13965 free_netdev(vsi->netdev); 13966 vsi->netdev = NULL; 13967 } 13968 i40e_aq_delete_element(&pf->hw, vsi->seid, NULL); 13969 err_vsi: 13970 i40e_vsi_clear(vsi); 13971 return NULL; 13972 } 13973 13974 /** 13975 * i40e_vsi_setup - Set up a VSI by a given type 13976 * @pf: board private structure 13977 * @type: VSI type 13978 * @uplink_seid: the switch element to link to 13979 * @param1: usage depends upon VSI type. For VF types, indicates VF id 13980 * 13981 * This allocates the sw VSI structure and its queue resources, then add a VSI 13982 * to the identified VEB. 13983 * 13984 * Returns pointer to the successfully allocated and configure VSI sw struct on 13985 * success, otherwise returns NULL on failure. 13986 **/ 13987 struct i40e_vsi *i40e_vsi_setup(struct i40e_pf *pf, u8 type, 13988 u16 uplink_seid, u32 param1) 13989 { 13990 struct i40e_vsi *vsi = NULL; 13991 struct i40e_veb *veb = NULL; 13992 u16 alloc_queue_pairs; 13993 int ret, i; 13994 int v_idx; 13995 13996 /* The requested uplink_seid must be either 13997 * - the PF's port seid 13998 * no VEB is needed because this is the PF 13999 * or this is a Flow Director special case VSI 14000 * - seid of an existing VEB 14001 * - seid of a VSI that owns an existing VEB 14002 * - seid of a VSI that doesn't own a VEB 14003 * a new VEB is created and the VSI becomes the owner 14004 * - seid of the PF VSI, which is what creates the first VEB 14005 * this is a special case of the previous 14006 * 14007 * Find which uplink_seid we were given and create a new VEB if needed 14008 */ 14009 for (i = 0; i < I40E_MAX_VEB; i++) { 14010 if (pf->veb[i] && pf->veb[i]->seid == uplink_seid) { 14011 veb = pf->veb[i]; 14012 break; 14013 } 14014 } 14015 14016 if (!veb && uplink_seid != pf->mac_seid) { 14017 14018 for (i = 0; i < pf->num_alloc_vsi; i++) { 14019 if (pf->vsi[i] && pf->vsi[i]->seid == uplink_seid) { 14020 vsi = pf->vsi[i]; 14021 break; 14022 } 14023 } 14024 if (!vsi) { 14025 dev_info(&pf->pdev->dev, "no such uplink_seid %d\n", 14026 uplink_seid); 14027 return NULL; 14028 } 14029 14030 if (vsi->uplink_seid == pf->mac_seid) 14031 veb = i40e_veb_setup(pf, 0, pf->mac_seid, vsi->seid, 14032 vsi->tc_config.enabled_tc); 14033 else if ((vsi->flags & I40E_VSI_FLAG_VEB_OWNER) == 0) 14034 veb = i40e_veb_setup(pf, 0, vsi->uplink_seid, vsi->seid, 14035 vsi->tc_config.enabled_tc); 14036 if (veb) { 14037 if (vsi->seid != pf->vsi[pf->lan_vsi]->seid) { 14038 dev_info(&vsi->back->pdev->dev, 14039 "New VSI creation error, uplink seid of LAN VSI expected.\n"); 14040 return NULL; 14041 } 14042 /* We come up by default in VEPA mode if SRIOV is not 14043 * already enabled, in which case we can't force VEPA 14044 * mode. 14045 */ 14046 if (!(pf->flags & I40E_FLAG_VEB_MODE_ENABLED)) { 14047 veb->bridge_mode = BRIDGE_MODE_VEPA; 14048 pf->flags &= ~I40E_FLAG_VEB_MODE_ENABLED; 14049 } 14050 i40e_config_bridge_mode(veb); 14051 } 14052 for (i = 0; i < I40E_MAX_VEB && !veb; i++) { 14053 if (pf->veb[i] && pf->veb[i]->seid == vsi->uplink_seid) 14054 veb = pf->veb[i]; 14055 } 14056 if (!veb) { 14057 dev_info(&pf->pdev->dev, "couldn't add VEB\n"); 14058 return NULL; 14059 } 14060 14061 vsi->flags |= I40E_VSI_FLAG_VEB_OWNER; 14062 uplink_seid = veb->seid; 14063 } 14064 14065 /* get vsi sw struct */ 14066 v_idx = i40e_vsi_mem_alloc(pf, type); 14067 if (v_idx < 0) 14068 goto err_alloc; 14069 vsi = pf->vsi[v_idx]; 14070 if (!vsi) 14071 goto err_alloc; 14072 vsi->type = type; 14073 vsi->veb_idx = (veb ? veb->idx : I40E_NO_VEB); 14074 14075 if (type == I40E_VSI_MAIN) 14076 pf->lan_vsi = v_idx; 14077 else if (type == I40E_VSI_SRIOV) 14078 vsi->vf_id = param1; 14079 /* assign it some queues */ 14080 alloc_queue_pairs = vsi->alloc_queue_pairs * 14081 (i40e_enabled_xdp_vsi(vsi) ? 2 : 1); 14082 14083 ret = i40e_get_lump(pf, pf->qp_pile, alloc_queue_pairs, vsi->idx); 14084 if (ret < 0) { 14085 dev_info(&pf->pdev->dev, 14086 "failed to get tracking for %d queues for VSI %d err=%d\n", 14087 alloc_queue_pairs, vsi->seid, ret); 14088 goto err_vsi; 14089 } 14090 vsi->base_queue = ret; 14091 14092 /* get a VSI from the hardware */ 14093 vsi->uplink_seid = uplink_seid; 14094 ret = i40e_add_vsi(vsi); 14095 if (ret) 14096 goto err_vsi; 14097 14098 switch (vsi->type) { 14099 /* setup the netdev if needed */ 14100 case I40E_VSI_MAIN: 14101 case I40E_VSI_VMDQ2: 14102 ret = i40e_config_netdev(vsi); 14103 if (ret) 14104 goto err_netdev; 14105 ret = register_netdev(vsi->netdev); 14106 if (ret) 14107 goto err_netdev; 14108 vsi->netdev_registered = true; 14109 netif_carrier_off(vsi->netdev); 14110 #ifdef CONFIG_I40E_DCB 14111 /* Setup DCB netlink interface */ 14112 i40e_dcbnl_setup(vsi); 14113 #endif /* CONFIG_I40E_DCB */ 14114 fallthrough; 14115 case I40E_VSI_FDIR: 14116 /* set up vectors and rings if needed */ 14117 ret = i40e_vsi_setup_vectors(vsi); 14118 if (ret) 14119 goto err_msix; 14120 14121 ret = i40e_alloc_rings(vsi); 14122 if (ret) 14123 goto err_rings; 14124 14125 /* map all of the rings to the q_vectors */ 14126 i40e_vsi_map_rings_to_vectors(vsi); 14127 14128 i40e_vsi_reset_stats(vsi); 14129 break; 14130 default: 14131 /* no netdev or rings for the other VSI types */ 14132 break; 14133 } 14134 14135 if ((pf->hw_features & I40E_HW_RSS_AQ_CAPABLE) && 14136 (vsi->type == I40E_VSI_VMDQ2)) { 14137 ret = i40e_vsi_config_rss(vsi); 14138 } 14139 return vsi; 14140 14141 err_rings: 14142 i40e_vsi_free_q_vectors(vsi); 14143 err_msix: 14144 if (vsi->netdev_registered) { 14145 vsi->netdev_registered = false; 14146 unregister_netdev(vsi->netdev); 14147 free_netdev(vsi->netdev); 14148 vsi->netdev = NULL; 14149 } 14150 err_netdev: 14151 i40e_aq_delete_element(&pf->hw, vsi->seid, NULL); 14152 err_vsi: 14153 i40e_vsi_clear(vsi); 14154 err_alloc: 14155 return NULL; 14156 } 14157 14158 /** 14159 * i40e_veb_get_bw_info - Query VEB BW information 14160 * @veb: the veb to query 14161 * 14162 * Query the Tx scheduler BW configuration data for given VEB 14163 **/ 14164 static int i40e_veb_get_bw_info(struct i40e_veb *veb) 14165 { 14166 struct i40e_aqc_query_switching_comp_ets_config_resp ets_data; 14167 struct i40e_aqc_query_switching_comp_bw_config_resp bw_data; 14168 struct i40e_pf *pf = veb->pf; 14169 struct i40e_hw *hw = &pf->hw; 14170 u32 tc_bw_max; 14171 int ret = 0; 14172 int i; 14173 14174 ret = i40e_aq_query_switch_comp_bw_config(hw, veb->seid, 14175 &bw_data, NULL); 14176 if (ret) { 14177 dev_info(&pf->pdev->dev, 14178 "query veb bw config failed, err %s aq_err %s\n", 14179 i40e_stat_str(&pf->hw, ret), 14180 i40e_aq_str(&pf->hw, hw->aq.asq_last_status)); 14181 goto out; 14182 } 14183 14184 ret = i40e_aq_query_switch_comp_ets_config(hw, veb->seid, 14185 &ets_data, NULL); 14186 if (ret) { 14187 dev_info(&pf->pdev->dev, 14188 "query veb bw ets config failed, err %s aq_err %s\n", 14189 i40e_stat_str(&pf->hw, ret), 14190 i40e_aq_str(&pf->hw, hw->aq.asq_last_status)); 14191 goto out; 14192 } 14193 14194 veb->bw_limit = le16_to_cpu(ets_data.port_bw_limit); 14195 veb->bw_max_quanta = ets_data.tc_bw_max; 14196 veb->is_abs_credits = bw_data.absolute_credits_enable; 14197 veb->enabled_tc = ets_data.tc_valid_bits; 14198 tc_bw_max = le16_to_cpu(bw_data.tc_bw_max[0]) | 14199 (le16_to_cpu(bw_data.tc_bw_max[1]) << 16); 14200 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 14201 veb->bw_tc_share_credits[i] = bw_data.tc_bw_share_credits[i]; 14202 veb->bw_tc_limit_credits[i] = 14203 le16_to_cpu(bw_data.tc_bw_limits[i]); 14204 veb->bw_tc_max_quanta[i] = ((tc_bw_max >> (i*4)) & 0x7); 14205 } 14206 14207 out: 14208 return ret; 14209 } 14210 14211 /** 14212 * i40e_veb_mem_alloc - Allocates the next available struct veb in the PF 14213 * @pf: board private structure 14214 * 14215 * On error: returns error code (negative) 14216 * On success: returns vsi index in PF (positive) 14217 **/ 14218 static int i40e_veb_mem_alloc(struct i40e_pf *pf) 14219 { 14220 int ret = -ENOENT; 14221 struct i40e_veb *veb; 14222 int i; 14223 14224 /* Need to protect the allocation of switch elements at the PF level */ 14225 mutex_lock(&pf->switch_mutex); 14226 14227 /* VEB list may be fragmented if VEB creation/destruction has 14228 * been happening. We can afford to do a quick scan to look 14229 * for any free slots in the list. 14230 * 14231 * find next empty veb slot, looping back around if necessary 14232 */ 14233 i = 0; 14234 while ((i < I40E_MAX_VEB) && (pf->veb[i] != NULL)) 14235 i++; 14236 if (i >= I40E_MAX_VEB) { 14237 ret = -ENOMEM; 14238 goto err_alloc_veb; /* out of VEB slots! */ 14239 } 14240 14241 veb = kzalloc(sizeof(*veb), GFP_KERNEL); 14242 if (!veb) { 14243 ret = -ENOMEM; 14244 goto err_alloc_veb; 14245 } 14246 veb->pf = pf; 14247 veb->idx = i; 14248 veb->enabled_tc = 1; 14249 14250 pf->veb[i] = veb; 14251 ret = i; 14252 err_alloc_veb: 14253 mutex_unlock(&pf->switch_mutex); 14254 return ret; 14255 } 14256 14257 /** 14258 * i40e_switch_branch_release - Delete a branch of the switch tree 14259 * @branch: where to start deleting 14260 * 14261 * This uses recursion to find the tips of the branch to be 14262 * removed, deleting until we get back to and can delete this VEB. 14263 **/ 14264 static void i40e_switch_branch_release(struct i40e_veb *branch) 14265 { 14266 struct i40e_pf *pf = branch->pf; 14267 u16 branch_seid = branch->seid; 14268 u16 veb_idx = branch->idx; 14269 int i; 14270 14271 /* release any VEBs on this VEB - RECURSION */ 14272 for (i = 0; i < I40E_MAX_VEB; i++) { 14273 if (!pf->veb[i]) 14274 continue; 14275 if (pf->veb[i]->uplink_seid == branch->seid) 14276 i40e_switch_branch_release(pf->veb[i]); 14277 } 14278 14279 /* Release the VSIs on this VEB, but not the owner VSI. 14280 * 14281 * NOTE: Removing the last VSI on a VEB has the SIDE EFFECT of removing 14282 * the VEB itself, so don't use (*branch) after this loop. 14283 */ 14284 for (i = 0; i < pf->num_alloc_vsi; i++) { 14285 if (!pf->vsi[i]) 14286 continue; 14287 if (pf->vsi[i]->uplink_seid == branch_seid && 14288 (pf->vsi[i]->flags & I40E_VSI_FLAG_VEB_OWNER) == 0) { 14289 i40e_vsi_release(pf->vsi[i]); 14290 } 14291 } 14292 14293 /* There's one corner case where the VEB might not have been 14294 * removed, so double check it here and remove it if needed. 14295 * This case happens if the veb was created from the debugfs 14296 * commands and no VSIs were added to it. 14297 */ 14298 if (pf->veb[veb_idx]) 14299 i40e_veb_release(pf->veb[veb_idx]); 14300 } 14301 14302 /** 14303 * i40e_veb_clear - remove veb struct 14304 * @veb: the veb to remove 14305 **/ 14306 static void i40e_veb_clear(struct i40e_veb *veb) 14307 { 14308 if (!veb) 14309 return; 14310 14311 if (veb->pf) { 14312 struct i40e_pf *pf = veb->pf; 14313 14314 mutex_lock(&pf->switch_mutex); 14315 if (pf->veb[veb->idx] == veb) 14316 pf->veb[veb->idx] = NULL; 14317 mutex_unlock(&pf->switch_mutex); 14318 } 14319 14320 kfree(veb); 14321 } 14322 14323 /** 14324 * i40e_veb_release - Delete a VEB and free its resources 14325 * @veb: the VEB being removed 14326 **/ 14327 void i40e_veb_release(struct i40e_veb *veb) 14328 { 14329 struct i40e_vsi *vsi = NULL; 14330 struct i40e_pf *pf; 14331 int i, n = 0; 14332 14333 pf = veb->pf; 14334 14335 /* find the remaining VSI and check for extras */ 14336 for (i = 0; i < pf->num_alloc_vsi; i++) { 14337 if (pf->vsi[i] && pf->vsi[i]->uplink_seid == veb->seid) { 14338 n++; 14339 vsi = pf->vsi[i]; 14340 } 14341 } 14342 if (n != 1) { 14343 dev_info(&pf->pdev->dev, 14344 "can't remove VEB %d with %d VSIs left\n", 14345 veb->seid, n); 14346 return; 14347 } 14348 14349 /* move the remaining VSI to uplink veb */ 14350 vsi->flags &= ~I40E_VSI_FLAG_VEB_OWNER; 14351 if (veb->uplink_seid) { 14352 vsi->uplink_seid = veb->uplink_seid; 14353 if (veb->uplink_seid == pf->mac_seid) 14354 vsi->veb_idx = I40E_NO_VEB; 14355 else 14356 vsi->veb_idx = veb->veb_idx; 14357 } else { 14358 /* floating VEB */ 14359 vsi->uplink_seid = pf->vsi[pf->lan_vsi]->uplink_seid; 14360 vsi->veb_idx = pf->vsi[pf->lan_vsi]->veb_idx; 14361 } 14362 14363 i40e_aq_delete_element(&pf->hw, veb->seid, NULL); 14364 i40e_veb_clear(veb); 14365 } 14366 14367 /** 14368 * i40e_add_veb - create the VEB in the switch 14369 * @veb: the VEB to be instantiated 14370 * @vsi: the controlling VSI 14371 **/ 14372 static int i40e_add_veb(struct i40e_veb *veb, struct i40e_vsi *vsi) 14373 { 14374 struct i40e_pf *pf = veb->pf; 14375 bool enable_stats = !!(pf->flags & I40E_FLAG_VEB_STATS_ENABLED); 14376 int ret; 14377 14378 ret = i40e_aq_add_veb(&pf->hw, veb->uplink_seid, vsi->seid, 14379 veb->enabled_tc, false, 14380 &veb->seid, enable_stats, NULL); 14381 14382 /* get a VEB from the hardware */ 14383 if (ret) { 14384 dev_info(&pf->pdev->dev, 14385 "couldn't add VEB, err %s aq_err %s\n", 14386 i40e_stat_str(&pf->hw, ret), 14387 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 14388 return -EPERM; 14389 } 14390 14391 /* get statistics counter */ 14392 ret = i40e_aq_get_veb_parameters(&pf->hw, veb->seid, NULL, NULL, 14393 &veb->stats_idx, NULL, NULL, NULL); 14394 if (ret) { 14395 dev_info(&pf->pdev->dev, 14396 "couldn't get VEB statistics idx, err %s aq_err %s\n", 14397 i40e_stat_str(&pf->hw, ret), 14398 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 14399 return -EPERM; 14400 } 14401 ret = i40e_veb_get_bw_info(veb); 14402 if (ret) { 14403 dev_info(&pf->pdev->dev, 14404 "couldn't get VEB bw info, err %s aq_err %s\n", 14405 i40e_stat_str(&pf->hw, ret), 14406 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 14407 i40e_aq_delete_element(&pf->hw, veb->seid, NULL); 14408 return -ENOENT; 14409 } 14410 14411 vsi->uplink_seid = veb->seid; 14412 vsi->veb_idx = veb->idx; 14413 vsi->flags |= I40E_VSI_FLAG_VEB_OWNER; 14414 14415 return 0; 14416 } 14417 14418 /** 14419 * i40e_veb_setup - Set up a VEB 14420 * @pf: board private structure 14421 * @flags: VEB setup flags 14422 * @uplink_seid: the switch element to link to 14423 * @vsi_seid: the initial VSI seid 14424 * @enabled_tc: Enabled TC bit-map 14425 * 14426 * This allocates the sw VEB structure and links it into the switch 14427 * It is possible and legal for this to be a duplicate of an already 14428 * existing VEB. It is also possible for both uplink and vsi seids 14429 * to be zero, in order to create a floating VEB. 14430 * 14431 * Returns pointer to the successfully allocated VEB sw struct on 14432 * success, otherwise returns NULL on failure. 14433 **/ 14434 struct i40e_veb *i40e_veb_setup(struct i40e_pf *pf, u16 flags, 14435 u16 uplink_seid, u16 vsi_seid, 14436 u8 enabled_tc) 14437 { 14438 struct i40e_veb *veb, *uplink_veb = NULL; 14439 int vsi_idx, veb_idx; 14440 int ret; 14441 14442 /* if one seid is 0, the other must be 0 to create a floating relay */ 14443 if ((uplink_seid == 0 || vsi_seid == 0) && 14444 (uplink_seid + vsi_seid != 0)) { 14445 dev_info(&pf->pdev->dev, 14446 "one, not both seid's are 0: uplink=%d vsi=%d\n", 14447 uplink_seid, vsi_seid); 14448 return NULL; 14449 } 14450 14451 /* make sure there is such a vsi and uplink */ 14452 for (vsi_idx = 0; vsi_idx < pf->num_alloc_vsi; vsi_idx++) 14453 if (pf->vsi[vsi_idx] && pf->vsi[vsi_idx]->seid == vsi_seid) 14454 break; 14455 if (vsi_idx == pf->num_alloc_vsi && vsi_seid != 0) { 14456 dev_info(&pf->pdev->dev, "vsi seid %d not found\n", 14457 vsi_seid); 14458 return NULL; 14459 } 14460 14461 if (uplink_seid && uplink_seid != pf->mac_seid) { 14462 for (veb_idx = 0; veb_idx < I40E_MAX_VEB; veb_idx++) { 14463 if (pf->veb[veb_idx] && 14464 pf->veb[veb_idx]->seid == uplink_seid) { 14465 uplink_veb = pf->veb[veb_idx]; 14466 break; 14467 } 14468 } 14469 if (!uplink_veb) { 14470 dev_info(&pf->pdev->dev, 14471 "uplink seid %d not found\n", uplink_seid); 14472 return NULL; 14473 } 14474 } 14475 14476 /* get veb sw struct */ 14477 veb_idx = i40e_veb_mem_alloc(pf); 14478 if (veb_idx < 0) 14479 goto err_alloc; 14480 veb = pf->veb[veb_idx]; 14481 veb->flags = flags; 14482 veb->uplink_seid = uplink_seid; 14483 veb->veb_idx = (uplink_veb ? uplink_veb->idx : I40E_NO_VEB); 14484 veb->enabled_tc = (enabled_tc ? enabled_tc : 0x1); 14485 14486 /* create the VEB in the switch */ 14487 ret = i40e_add_veb(veb, pf->vsi[vsi_idx]); 14488 if (ret) 14489 goto err_veb; 14490 if (vsi_idx == pf->lan_vsi) 14491 pf->lan_veb = veb->idx; 14492 14493 return veb; 14494 14495 err_veb: 14496 i40e_veb_clear(veb); 14497 err_alloc: 14498 return NULL; 14499 } 14500 14501 /** 14502 * i40e_setup_pf_switch_element - set PF vars based on switch type 14503 * @pf: board private structure 14504 * @ele: element we are building info from 14505 * @num_reported: total number of elements 14506 * @printconfig: should we print the contents 14507 * 14508 * helper function to assist in extracting a few useful SEID values. 14509 **/ 14510 static void i40e_setup_pf_switch_element(struct i40e_pf *pf, 14511 struct i40e_aqc_switch_config_element_resp *ele, 14512 u16 num_reported, bool printconfig) 14513 { 14514 u16 downlink_seid = le16_to_cpu(ele->downlink_seid); 14515 u16 uplink_seid = le16_to_cpu(ele->uplink_seid); 14516 u8 element_type = ele->element_type; 14517 u16 seid = le16_to_cpu(ele->seid); 14518 14519 if (printconfig) 14520 dev_info(&pf->pdev->dev, 14521 "type=%d seid=%d uplink=%d downlink=%d\n", 14522 element_type, seid, uplink_seid, downlink_seid); 14523 14524 switch (element_type) { 14525 case I40E_SWITCH_ELEMENT_TYPE_MAC: 14526 pf->mac_seid = seid; 14527 break; 14528 case I40E_SWITCH_ELEMENT_TYPE_VEB: 14529 /* Main VEB? */ 14530 if (uplink_seid != pf->mac_seid) 14531 break; 14532 if (pf->lan_veb >= I40E_MAX_VEB) { 14533 int v; 14534 14535 /* find existing or else empty VEB */ 14536 for (v = 0; v < I40E_MAX_VEB; v++) { 14537 if (pf->veb[v] && (pf->veb[v]->seid == seid)) { 14538 pf->lan_veb = v; 14539 break; 14540 } 14541 } 14542 if (pf->lan_veb >= I40E_MAX_VEB) { 14543 v = i40e_veb_mem_alloc(pf); 14544 if (v < 0) 14545 break; 14546 pf->lan_veb = v; 14547 } 14548 } 14549 if (pf->lan_veb >= I40E_MAX_VEB) 14550 break; 14551 14552 pf->veb[pf->lan_veb]->seid = seid; 14553 pf->veb[pf->lan_veb]->uplink_seid = pf->mac_seid; 14554 pf->veb[pf->lan_veb]->pf = pf; 14555 pf->veb[pf->lan_veb]->veb_idx = I40E_NO_VEB; 14556 break; 14557 case I40E_SWITCH_ELEMENT_TYPE_VSI: 14558 if (num_reported != 1) 14559 break; 14560 /* This is immediately after a reset so we can assume this is 14561 * the PF's VSI 14562 */ 14563 pf->mac_seid = uplink_seid; 14564 pf->pf_seid = downlink_seid; 14565 pf->main_vsi_seid = seid; 14566 if (printconfig) 14567 dev_info(&pf->pdev->dev, 14568 "pf_seid=%d main_vsi_seid=%d\n", 14569 pf->pf_seid, pf->main_vsi_seid); 14570 break; 14571 case I40E_SWITCH_ELEMENT_TYPE_PF: 14572 case I40E_SWITCH_ELEMENT_TYPE_VF: 14573 case I40E_SWITCH_ELEMENT_TYPE_EMP: 14574 case I40E_SWITCH_ELEMENT_TYPE_BMC: 14575 case I40E_SWITCH_ELEMENT_TYPE_PE: 14576 case I40E_SWITCH_ELEMENT_TYPE_PA: 14577 /* ignore these for now */ 14578 break; 14579 default: 14580 dev_info(&pf->pdev->dev, "unknown element type=%d seid=%d\n", 14581 element_type, seid); 14582 break; 14583 } 14584 } 14585 14586 /** 14587 * i40e_fetch_switch_configuration - Get switch config from firmware 14588 * @pf: board private structure 14589 * @printconfig: should we print the contents 14590 * 14591 * Get the current switch configuration from the device and 14592 * extract a few useful SEID values. 14593 **/ 14594 int i40e_fetch_switch_configuration(struct i40e_pf *pf, bool printconfig) 14595 { 14596 struct i40e_aqc_get_switch_config_resp *sw_config; 14597 u16 next_seid = 0; 14598 int ret = 0; 14599 u8 *aq_buf; 14600 int i; 14601 14602 aq_buf = kzalloc(I40E_AQ_LARGE_BUF, GFP_KERNEL); 14603 if (!aq_buf) 14604 return -ENOMEM; 14605 14606 sw_config = (struct i40e_aqc_get_switch_config_resp *)aq_buf; 14607 do { 14608 u16 num_reported, num_total; 14609 14610 ret = i40e_aq_get_switch_config(&pf->hw, sw_config, 14611 I40E_AQ_LARGE_BUF, 14612 &next_seid, NULL); 14613 if (ret) { 14614 dev_info(&pf->pdev->dev, 14615 "get switch config failed err %s aq_err %s\n", 14616 i40e_stat_str(&pf->hw, ret), 14617 i40e_aq_str(&pf->hw, 14618 pf->hw.aq.asq_last_status)); 14619 kfree(aq_buf); 14620 return -ENOENT; 14621 } 14622 14623 num_reported = le16_to_cpu(sw_config->header.num_reported); 14624 num_total = le16_to_cpu(sw_config->header.num_total); 14625 14626 if (printconfig) 14627 dev_info(&pf->pdev->dev, 14628 "header: %d reported %d total\n", 14629 num_reported, num_total); 14630 14631 for (i = 0; i < num_reported; i++) { 14632 struct i40e_aqc_switch_config_element_resp *ele = 14633 &sw_config->element[i]; 14634 14635 i40e_setup_pf_switch_element(pf, ele, num_reported, 14636 printconfig); 14637 } 14638 } while (next_seid != 0); 14639 14640 kfree(aq_buf); 14641 return ret; 14642 } 14643 14644 /** 14645 * i40e_setup_pf_switch - Setup the HW switch on startup or after reset 14646 * @pf: board private structure 14647 * @reinit: if the Main VSI needs to re-initialized. 14648 * @lock_acquired: indicates whether or not the lock has been acquired 14649 * 14650 * Returns 0 on success, negative value on failure 14651 **/ 14652 static int i40e_setup_pf_switch(struct i40e_pf *pf, bool reinit, bool lock_acquired) 14653 { 14654 u16 flags = 0; 14655 int ret; 14656 14657 /* find out what's out there already */ 14658 ret = i40e_fetch_switch_configuration(pf, false); 14659 if (ret) { 14660 dev_info(&pf->pdev->dev, 14661 "couldn't fetch switch config, err %s aq_err %s\n", 14662 i40e_stat_str(&pf->hw, ret), 14663 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 14664 return ret; 14665 } 14666 i40e_pf_reset_stats(pf); 14667 14668 /* set the switch config bit for the whole device to 14669 * support limited promisc or true promisc 14670 * when user requests promisc. The default is limited 14671 * promisc. 14672 */ 14673 14674 if ((pf->hw.pf_id == 0) && 14675 !(pf->flags & I40E_FLAG_TRUE_PROMISC_SUPPORT)) { 14676 flags = I40E_AQ_SET_SWITCH_CFG_PROMISC; 14677 pf->last_sw_conf_flags = flags; 14678 } 14679 14680 if (pf->hw.pf_id == 0) { 14681 u16 valid_flags; 14682 14683 valid_flags = I40E_AQ_SET_SWITCH_CFG_PROMISC; 14684 ret = i40e_aq_set_switch_config(&pf->hw, flags, valid_flags, 0, 14685 NULL); 14686 if (ret && pf->hw.aq.asq_last_status != I40E_AQ_RC_ESRCH) { 14687 dev_info(&pf->pdev->dev, 14688 "couldn't set switch config bits, err %s aq_err %s\n", 14689 i40e_stat_str(&pf->hw, ret), 14690 i40e_aq_str(&pf->hw, 14691 pf->hw.aq.asq_last_status)); 14692 /* not a fatal problem, just keep going */ 14693 } 14694 pf->last_sw_conf_valid_flags = valid_flags; 14695 } 14696 14697 /* first time setup */ 14698 if (pf->lan_vsi == I40E_NO_VSI || reinit) { 14699 struct i40e_vsi *vsi = NULL; 14700 u16 uplink_seid; 14701 14702 /* Set up the PF VSI associated with the PF's main VSI 14703 * that is already in the HW switch 14704 */ 14705 if (pf->lan_veb < I40E_MAX_VEB && pf->veb[pf->lan_veb]) 14706 uplink_seid = pf->veb[pf->lan_veb]->seid; 14707 else 14708 uplink_seid = pf->mac_seid; 14709 if (pf->lan_vsi == I40E_NO_VSI) 14710 vsi = i40e_vsi_setup(pf, I40E_VSI_MAIN, uplink_seid, 0); 14711 else if (reinit) 14712 vsi = i40e_vsi_reinit_setup(pf->vsi[pf->lan_vsi]); 14713 if (!vsi) { 14714 dev_info(&pf->pdev->dev, "setup of MAIN VSI failed\n"); 14715 i40e_cloud_filter_exit(pf); 14716 i40e_fdir_teardown(pf); 14717 return -EAGAIN; 14718 } 14719 } else { 14720 /* force a reset of TC and queue layout configurations */ 14721 u8 enabled_tc = pf->vsi[pf->lan_vsi]->tc_config.enabled_tc; 14722 14723 pf->vsi[pf->lan_vsi]->tc_config.enabled_tc = 0; 14724 pf->vsi[pf->lan_vsi]->seid = pf->main_vsi_seid; 14725 i40e_vsi_config_tc(pf->vsi[pf->lan_vsi], enabled_tc); 14726 } 14727 i40e_vlan_stripping_disable(pf->vsi[pf->lan_vsi]); 14728 14729 i40e_fdir_sb_setup(pf); 14730 14731 /* Setup static PF queue filter control settings */ 14732 ret = i40e_setup_pf_filter_control(pf); 14733 if (ret) { 14734 dev_info(&pf->pdev->dev, "setup_pf_filter_control failed: %d\n", 14735 ret); 14736 /* Failure here should not stop continuing other steps */ 14737 } 14738 14739 /* enable RSS in the HW, even for only one queue, as the stack can use 14740 * the hash 14741 */ 14742 if ((pf->flags & I40E_FLAG_RSS_ENABLED)) 14743 i40e_pf_config_rss(pf); 14744 14745 /* fill in link information and enable LSE reporting */ 14746 i40e_link_event(pf); 14747 14748 /* Initialize user-specific link properties */ 14749 pf->fc_autoneg_status = ((pf->hw.phy.link_info.an_info & 14750 I40E_AQ_AN_COMPLETED) ? true : false); 14751 14752 i40e_ptp_init(pf); 14753 14754 if (!lock_acquired) 14755 rtnl_lock(); 14756 14757 /* repopulate tunnel port filters */ 14758 udp_tunnel_nic_reset_ntf(pf->vsi[pf->lan_vsi]->netdev); 14759 14760 if (!lock_acquired) 14761 rtnl_unlock(); 14762 14763 return ret; 14764 } 14765 14766 /** 14767 * i40e_determine_queue_usage - Work out queue distribution 14768 * @pf: board private structure 14769 **/ 14770 static void i40e_determine_queue_usage(struct i40e_pf *pf) 14771 { 14772 int queues_left; 14773 int q_max; 14774 14775 pf->num_lan_qps = 0; 14776 14777 /* Find the max queues to be put into basic use. We'll always be 14778 * using TC0, whether or not DCB is running, and TC0 will get the 14779 * big RSS set. 14780 */ 14781 queues_left = pf->hw.func_caps.num_tx_qp; 14782 14783 if ((queues_left == 1) || 14784 !(pf->flags & I40E_FLAG_MSIX_ENABLED)) { 14785 /* one qp for PF, no queues for anything else */ 14786 queues_left = 0; 14787 pf->alloc_rss_size = pf->num_lan_qps = 1; 14788 14789 /* make sure all the fancies are disabled */ 14790 pf->flags &= ~(I40E_FLAG_RSS_ENABLED | 14791 I40E_FLAG_IWARP_ENABLED | 14792 I40E_FLAG_FD_SB_ENABLED | 14793 I40E_FLAG_FD_ATR_ENABLED | 14794 I40E_FLAG_DCB_CAPABLE | 14795 I40E_FLAG_DCB_ENABLED | 14796 I40E_FLAG_SRIOV_ENABLED | 14797 I40E_FLAG_VMDQ_ENABLED); 14798 pf->flags |= I40E_FLAG_FD_SB_INACTIVE; 14799 } else if (!(pf->flags & (I40E_FLAG_RSS_ENABLED | 14800 I40E_FLAG_FD_SB_ENABLED | 14801 I40E_FLAG_FD_ATR_ENABLED | 14802 I40E_FLAG_DCB_CAPABLE))) { 14803 /* one qp for PF */ 14804 pf->alloc_rss_size = pf->num_lan_qps = 1; 14805 queues_left -= pf->num_lan_qps; 14806 14807 pf->flags &= ~(I40E_FLAG_RSS_ENABLED | 14808 I40E_FLAG_IWARP_ENABLED | 14809 I40E_FLAG_FD_SB_ENABLED | 14810 I40E_FLAG_FD_ATR_ENABLED | 14811 I40E_FLAG_DCB_ENABLED | 14812 I40E_FLAG_VMDQ_ENABLED); 14813 pf->flags |= I40E_FLAG_FD_SB_INACTIVE; 14814 } else { 14815 /* Not enough queues for all TCs */ 14816 if ((pf->flags & I40E_FLAG_DCB_CAPABLE) && 14817 (queues_left < I40E_MAX_TRAFFIC_CLASS)) { 14818 pf->flags &= ~(I40E_FLAG_DCB_CAPABLE | 14819 I40E_FLAG_DCB_ENABLED); 14820 dev_info(&pf->pdev->dev, "not enough queues for DCB. DCB is disabled.\n"); 14821 } 14822 14823 /* limit lan qps to the smaller of qps, cpus or msix */ 14824 q_max = max_t(int, pf->rss_size_max, num_online_cpus()); 14825 q_max = min_t(int, q_max, pf->hw.func_caps.num_tx_qp); 14826 q_max = min_t(int, q_max, pf->hw.func_caps.num_msix_vectors); 14827 pf->num_lan_qps = q_max; 14828 14829 queues_left -= pf->num_lan_qps; 14830 } 14831 14832 if (pf->flags & I40E_FLAG_FD_SB_ENABLED) { 14833 if (queues_left > 1) { 14834 queues_left -= 1; /* save 1 queue for FD */ 14835 } else { 14836 pf->flags &= ~I40E_FLAG_FD_SB_ENABLED; 14837 pf->flags |= I40E_FLAG_FD_SB_INACTIVE; 14838 dev_info(&pf->pdev->dev, "not enough queues for Flow Director. Flow Director feature is disabled\n"); 14839 } 14840 } 14841 14842 if ((pf->flags & I40E_FLAG_SRIOV_ENABLED) && 14843 pf->num_vf_qps && pf->num_req_vfs && queues_left) { 14844 pf->num_req_vfs = min_t(int, pf->num_req_vfs, 14845 (queues_left / pf->num_vf_qps)); 14846 queues_left -= (pf->num_req_vfs * pf->num_vf_qps); 14847 } 14848 14849 if ((pf->flags & I40E_FLAG_VMDQ_ENABLED) && 14850 pf->num_vmdq_vsis && pf->num_vmdq_qps && queues_left) { 14851 pf->num_vmdq_vsis = min_t(int, pf->num_vmdq_vsis, 14852 (queues_left / pf->num_vmdq_qps)); 14853 queues_left -= (pf->num_vmdq_vsis * pf->num_vmdq_qps); 14854 } 14855 14856 pf->queues_left = queues_left; 14857 dev_dbg(&pf->pdev->dev, 14858 "qs_avail=%d FD SB=%d lan_qs=%d lan_tc0=%d vf=%d*%d vmdq=%d*%d, remaining=%d\n", 14859 pf->hw.func_caps.num_tx_qp, 14860 !!(pf->flags & I40E_FLAG_FD_SB_ENABLED), 14861 pf->num_lan_qps, pf->alloc_rss_size, pf->num_req_vfs, 14862 pf->num_vf_qps, pf->num_vmdq_vsis, pf->num_vmdq_qps, 14863 queues_left); 14864 } 14865 14866 /** 14867 * i40e_setup_pf_filter_control - Setup PF static filter control 14868 * @pf: PF to be setup 14869 * 14870 * i40e_setup_pf_filter_control sets up a PF's initial filter control 14871 * settings. If PE/FCoE are enabled then it will also set the per PF 14872 * based filter sizes required for them. It also enables Flow director, 14873 * ethertype and macvlan type filter settings for the pf. 14874 * 14875 * Returns 0 on success, negative on failure 14876 **/ 14877 static int i40e_setup_pf_filter_control(struct i40e_pf *pf) 14878 { 14879 struct i40e_filter_control_settings *settings = &pf->filter_settings; 14880 14881 settings->hash_lut_size = I40E_HASH_LUT_SIZE_128; 14882 14883 /* Flow Director is enabled */ 14884 if (pf->flags & (I40E_FLAG_FD_SB_ENABLED | I40E_FLAG_FD_ATR_ENABLED)) 14885 settings->enable_fdir = true; 14886 14887 /* Ethtype and MACVLAN filters enabled for PF */ 14888 settings->enable_ethtype = true; 14889 settings->enable_macvlan = true; 14890 14891 if (i40e_set_filter_control(&pf->hw, settings)) 14892 return -ENOENT; 14893 14894 return 0; 14895 } 14896 14897 #define INFO_STRING_LEN 255 14898 #define REMAIN(__x) (INFO_STRING_LEN - (__x)) 14899 static void i40e_print_features(struct i40e_pf *pf) 14900 { 14901 struct i40e_hw *hw = &pf->hw; 14902 char *buf; 14903 int i; 14904 14905 buf = kmalloc(INFO_STRING_LEN, GFP_KERNEL); 14906 if (!buf) 14907 return; 14908 14909 i = snprintf(buf, INFO_STRING_LEN, "Features: PF-id[%d]", hw->pf_id); 14910 #ifdef CONFIG_PCI_IOV 14911 i += scnprintf(&buf[i], REMAIN(i), " VFs: %d", pf->num_req_vfs); 14912 #endif 14913 i += scnprintf(&buf[i], REMAIN(i), " VSIs: %d QP: %d", 14914 pf->hw.func_caps.num_vsis, 14915 pf->vsi[pf->lan_vsi]->num_queue_pairs); 14916 if (pf->flags & I40E_FLAG_RSS_ENABLED) 14917 i += scnprintf(&buf[i], REMAIN(i), " RSS"); 14918 if (pf->flags & I40E_FLAG_FD_ATR_ENABLED) 14919 i += scnprintf(&buf[i], REMAIN(i), " FD_ATR"); 14920 if (pf->flags & I40E_FLAG_FD_SB_ENABLED) { 14921 i += scnprintf(&buf[i], REMAIN(i), " FD_SB"); 14922 i += scnprintf(&buf[i], REMAIN(i), " NTUPLE"); 14923 } 14924 if (pf->flags & I40E_FLAG_DCB_CAPABLE) 14925 i += scnprintf(&buf[i], REMAIN(i), " DCB"); 14926 i += scnprintf(&buf[i], REMAIN(i), " VxLAN"); 14927 i += scnprintf(&buf[i], REMAIN(i), " Geneve"); 14928 if (pf->flags & I40E_FLAG_PTP) 14929 i += scnprintf(&buf[i], REMAIN(i), " PTP"); 14930 if (pf->flags & I40E_FLAG_VEB_MODE_ENABLED) 14931 i += scnprintf(&buf[i], REMAIN(i), " VEB"); 14932 else 14933 i += scnprintf(&buf[i], REMAIN(i), " VEPA"); 14934 14935 dev_info(&pf->pdev->dev, "%s\n", buf); 14936 kfree(buf); 14937 WARN_ON(i > INFO_STRING_LEN); 14938 } 14939 14940 /** 14941 * i40e_get_platform_mac_addr - get platform-specific MAC address 14942 * @pdev: PCI device information struct 14943 * @pf: board private structure 14944 * 14945 * Look up the MAC address for the device. First we'll try 14946 * eth_platform_get_mac_address, which will check Open Firmware, or arch 14947 * specific fallback. Otherwise, we'll default to the stored value in 14948 * firmware. 14949 **/ 14950 static void i40e_get_platform_mac_addr(struct pci_dev *pdev, struct i40e_pf *pf) 14951 { 14952 if (eth_platform_get_mac_address(&pdev->dev, pf->hw.mac.addr)) 14953 i40e_get_mac_addr(&pf->hw, pf->hw.mac.addr); 14954 } 14955 14956 /** 14957 * i40e_set_fec_in_flags - helper function for setting FEC options in flags 14958 * @fec_cfg: FEC option to set in flags 14959 * @flags: ptr to flags in which we set FEC option 14960 **/ 14961 void i40e_set_fec_in_flags(u8 fec_cfg, u32 *flags) 14962 { 14963 if (fec_cfg & I40E_AQ_SET_FEC_AUTO) 14964 *flags |= I40E_FLAG_RS_FEC | I40E_FLAG_BASE_R_FEC; 14965 if ((fec_cfg & I40E_AQ_SET_FEC_REQUEST_RS) || 14966 (fec_cfg & I40E_AQ_SET_FEC_ABILITY_RS)) { 14967 *flags |= I40E_FLAG_RS_FEC; 14968 *flags &= ~I40E_FLAG_BASE_R_FEC; 14969 } 14970 if ((fec_cfg & I40E_AQ_SET_FEC_REQUEST_KR) || 14971 (fec_cfg & I40E_AQ_SET_FEC_ABILITY_KR)) { 14972 *flags |= I40E_FLAG_BASE_R_FEC; 14973 *flags &= ~I40E_FLAG_RS_FEC; 14974 } 14975 if (fec_cfg == 0) 14976 *flags &= ~(I40E_FLAG_RS_FEC | I40E_FLAG_BASE_R_FEC); 14977 } 14978 14979 /** 14980 * i40e_check_recovery_mode - check if we are running transition firmware 14981 * @pf: board private structure 14982 * 14983 * Check registers indicating the firmware runs in recovery mode. Sets the 14984 * appropriate driver state. 14985 * 14986 * Returns true if the recovery mode was detected, false otherwise 14987 **/ 14988 static bool i40e_check_recovery_mode(struct i40e_pf *pf) 14989 { 14990 u32 val = rd32(&pf->hw, I40E_GL_FWSTS); 14991 14992 if (val & I40E_GL_FWSTS_FWS1B_MASK) { 14993 dev_crit(&pf->pdev->dev, "Firmware recovery mode detected. Limiting functionality.\n"); 14994 dev_crit(&pf->pdev->dev, "Refer to the Intel(R) Ethernet Adapters and Devices User Guide for details on firmware recovery mode.\n"); 14995 set_bit(__I40E_RECOVERY_MODE, pf->state); 14996 14997 return true; 14998 } 14999 if (test_bit(__I40E_RECOVERY_MODE, pf->state)) 15000 dev_info(&pf->pdev->dev, "Please do Power-On Reset to initialize adapter in normal mode with full functionality.\n"); 15001 15002 return false; 15003 } 15004 15005 /** 15006 * i40e_pf_loop_reset - perform reset in a loop. 15007 * @pf: board private structure 15008 * 15009 * This function is useful when a NIC is about to enter recovery mode. 15010 * When a NIC's internal data structures are corrupted the NIC's 15011 * firmware is going to enter recovery mode. 15012 * Right after a POR it takes about 7 minutes for firmware to enter 15013 * recovery mode. Until that time a NIC is in some kind of intermediate 15014 * state. After that time period the NIC almost surely enters 15015 * recovery mode. The only way for a driver to detect intermediate 15016 * state is to issue a series of pf-resets and check a return value. 15017 * If a PF reset returns success then the firmware could be in recovery 15018 * mode so the caller of this code needs to check for recovery mode 15019 * if this function returns success. There is a little chance that 15020 * firmware will hang in intermediate state forever. 15021 * Since waiting 7 minutes is quite a lot of time this function waits 15022 * 10 seconds and then gives up by returning an error. 15023 * 15024 * Return 0 on success, negative on failure. 15025 **/ 15026 static i40e_status i40e_pf_loop_reset(struct i40e_pf *pf) 15027 { 15028 /* wait max 10 seconds for PF reset to succeed */ 15029 const unsigned long time_end = jiffies + 10 * HZ; 15030 15031 struct i40e_hw *hw = &pf->hw; 15032 i40e_status ret; 15033 15034 ret = i40e_pf_reset(hw); 15035 while (ret != I40E_SUCCESS && time_before(jiffies, time_end)) { 15036 usleep_range(10000, 20000); 15037 ret = i40e_pf_reset(hw); 15038 } 15039 15040 if (ret == I40E_SUCCESS) 15041 pf->pfr_count++; 15042 else 15043 dev_info(&pf->pdev->dev, "PF reset failed: %d\n", ret); 15044 15045 return ret; 15046 } 15047 15048 /** 15049 * i40e_check_fw_empr - check if FW issued unexpected EMP Reset 15050 * @pf: board private structure 15051 * 15052 * Check FW registers to determine if FW issued unexpected EMP Reset. 15053 * Every time when unexpected EMP Reset occurs the FW increments 15054 * a counter of unexpected EMP Resets. When the counter reaches 10 15055 * the FW should enter the Recovery mode 15056 * 15057 * Returns true if FW issued unexpected EMP Reset 15058 **/ 15059 static bool i40e_check_fw_empr(struct i40e_pf *pf) 15060 { 15061 const u32 fw_sts = rd32(&pf->hw, I40E_GL_FWSTS) & 15062 I40E_GL_FWSTS_FWS1B_MASK; 15063 return (fw_sts > I40E_GL_FWSTS_FWS1B_EMPR_0) && 15064 (fw_sts <= I40E_GL_FWSTS_FWS1B_EMPR_10); 15065 } 15066 15067 /** 15068 * i40e_handle_resets - handle EMP resets and PF resets 15069 * @pf: board private structure 15070 * 15071 * Handle both EMP resets and PF resets and conclude whether there are 15072 * any issues regarding these resets. If there are any issues then 15073 * generate log entry. 15074 * 15075 * Return 0 if NIC is healthy or negative value when there are issues 15076 * with resets 15077 **/ 15078 static i40e_status i40e_handle_resets(struct i40e_pf *pf) 15079 { 15080 const i40e_status pfr = i40e_pf_loop_reset(pf); 15081 const bool is_empr = i40e_check_fw_empr(pf); 15082 15083 if (is_empr || pfr != I40E_SUCCESS) 15084 dev_crit(&pf->pdev->dev, "Entering recovery mode due to repeated FW resets. This may take several minutes. Refer to the Intel(R) Ethernet Adapters and Devices User Guide.\n"); 15085 15086 return is_empr ? I40E_ERR_RESET_FAILED : pfr; 15087 } 15088 15089 /** 15090 * i40e_init_recovery_mode - initialize subsystems needed in recovery mode 15091 * @pf: board private structure 15092 * @hw: ptr to the hardware info 15093 * 15094 * This function does a minimal setup of all subsystems needed for running 15095 * recovery mode. 15096 * 15097 * Returns 0 on success, negative on failure 15098 **/ 15099 static int i40e_init_recovery_mode(struct i40e_pf *pf, struct i40e_hw *hw) 15100 { 15101 struct i40e_vsi *vsi; 15102 int err; 15103 int v_idx; 15104 15105 pci_save_state(pf->pdev); 15106 15107 /* set up periodic task facility */ 15108 timer_setup(&pf->service_timer, i40e_service_timer, 0); 15109 pf->service_timer_period = HZ; 15110 15111 INIT_WORK(&pf->service_task, i40e_service_task); 15112 clear_bit(__I40E_SERVICE_SCHED, pf->state); 15113 15114 err = i40e_init_interrupt_scheme(pf); 15115 if (err) 15116 goto err_switch_setup; 15117 15118 /* The number of VSIs reported by the FW is the minimum guaranteed 15119 * to us; HW supports far more and we share the remaining pool with 15120 * the other PFs. We allocate space for more than the guarantee with 15121 * the understanding that we might not get them all later. 15122 */ 15123 if (pf->hw.func_caps.num_vsis < I40E_MIN_VSI_ALLOC) 15124 pf->num_alloc_vsi = I40E_MIN_VSI_ALLOC; 15125 else 15126 pf->num_alloc_vsi = pf->hw.func_caps.num_vsis; 15127 15128 /* Set up the vsi struct and our local tracking of the MAIN PF vsi. */ 15129 pf->vsi = kcalloc(pf->num_alloc_vsi, sizeof(struct i40e_vsi *), 15130 GFP_KERNEL); 15131 if (!pf->vsi) { 15132 err = -ENOMEM; 15133 goto err_switch_setup; 15134 } 15135 15136 /* We allocate one VSI which is needed as absolute minimum 15137 * in order to register the netdev 15138 */ 15139 v_idx = i40e_vsi_mem_alloc(pf, I40E_VSI_MAIN); 15140 if (v_idx < 0) { 15141 err = v_idx; 15142 goto err_switch_setup; 15143 } 15144 pf->lan_vsi = v_idx; 15145 vsi = pf->vsi[v_idx]; 15146 if (!vsi) { 15147 err = -EFAULT; 15148 goto err_switch_setup; 15149 } 15150 vsi->alloc_queue_pairs = 1; 15151 err = i40e_config_netdev(vsi); 15152 if (err) 15153 goto err_switch_setup; 15154 err = register_netdev(vsi->netdev); 15155 if (err) 15156 goto err_switch_setup; 15157 vsi->netdev_registered = true; 15158 i40e_dbg_pf_init(pf); 15159 15160 err = i40e_setup_misc_vector_for_recovery_mode(pf); 15161 if (err) 15162 goto err_switch_setup; 15163 15164 /* tell the firmware that we're starting */ 15165 i40e_send_version(pf); 15166 15167 /* since everything's happy, start the service_task timer */ 15168 mod_timer(&pf->service_timer, 15169 round_jiffies(jiffies + pf->service_timer_period)); 15170 15171 return 0; 15172 15173 err_switch_setup: 15174 i40e_reset_interrupt_capability(pf); 15175 del_timer_sync(&pf->service_timer); 15176 i40e_shutdown_adminq(hw); 15177 iounmap(hw->hw_addr); 15178 pci_disable_pcie_error_reporting(pf->pdev); 15179 pci_release_mem_regions(pf->pdev); 15180 pci_disable_device(pf->pdev); 15181 kfree(pf); 15182 15183 return err; 15184 } 15185 15186 /** 15187 * i40e_set_subsystem_device_id - set subsystem device id 15188 * @hw: pointer to the hardware info 15189 * 15190 * Set PCI subsystem device id either from a pci_dev structure or 15191 * a specific FW register. 15192 **/ 15193 static inline void i40e_set_subsystem_device_id(struct i40e_hw *hw) 15194 { 15195 struct pci_dev *pdev = ((struct i40e_pf *)hw->back)->pdev; 15196 15197 hw->subsystem_device_id = pdev->subsystem_device ? 15198 pdev->subsystem_device : 15199 (ushort)(rd32(hw, I40E_PFPCI_SUBSYSID) & USHRT_MAX); 15200 } 15201 15202 /** 15203 * i40e_probe - Device initialization routine 15204 * @pdev: PCI device information struct 15205 * @ent: entry in i40e_pci_tbl 15206 * 15207 * i40e_probe initializes a PF identified by a pci_dev structure. 15208 * The OS initialization, configuring of the PF private structure, 15209 * and a hardware reset occur. 15210 * 15211 * Returns 0 on success, negative on failure 15212 **/ 15213 static int i40e_probe(struct pci_dev *pdev, const struct pci_device_id *ent) 15214 { 15215 struct i40e_aq_get_phy_abilities_resp abilities; 15216 #ifdef CONFIG_I40E_DCB 15217 enum i40e_get_fw_lldp_status_resp lldp_status; 15218 i40e_status status; 15219 #endif /* CONFIG_I40E_DCB */ 15220 struct i40e_pf *pf; 15221 struct i40e_hw *hw; 15222 static u16 pfs_found; 15223 u16 wol_nvm_bits; 15224 u16 link_status; 15225 int err; 15226 u32 val; 15227 u32 i; 15228 15229 err = pci_enable_device_mem(pdev); 15230 if (err) 15231 return err; 15232 15233 /* set up for high or low dma */ 15234 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)); 15235 if (err) { 15236 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)); 15237 if (err) { 15238 dev_err(&pdev->dev, 15239 "DMA configuration failed: 0x%x\n", err); 15240 goto err_dma; 15241 } 15242 } 15243 15244 /* set up pci connections */ 15245 err = pci_request_mem_regions(pdev, i40e_driver_name); 15246 if (err) { 15247 dev_info(&pdev->dev, 15248 "pci_request_selected_regions failed %d\n", err); 15249 goto err_pci_reg; 15250 } 15251 15252 pci_enable_pcie_error_reporting(pdev); 15253 pci_set_master(pdev); 15254 15255 /* Now that we have a PCI connection, we need to do the 15256 * low level device setup. This is primarily setting up 15257 * the Admin Queue structures and then querying for the 15258 * device's current profile information. 15259 */ 15260 pf = kzalloc(sizeof(*pf), GFP_KERNEL); 15261 if (!pf) { 15262 err = -ENOMEM; 15263 goto err_pf_alloc; 15264 } 15265 pf->next_vsi = 0; 15266 pf->pdev = pdev; 15267 set_bit(__I40E_DOWN, pf->state); 15268 15269 hw = &pf->hw; 15270 hw->back = pf; 15271 15272 pf->ioremap_len = min_t(int, pci_resource_len(pdev, 0), 15273 I40E_MAX_CSR_SPACE); 15274 /* We believe that the highest register to read is 15275 * I40E_GLGEN_STAT_CLEAR, so we check if the BAR size 15276 * is not less than that before mapping to prevent a 15277 * kernel panic. 15278 */ 15279 if (pf->ioremap_len < I40E_GLGEN_STAT_CLEAR) { 15280 dev_err(&pdev->dev, "Cannot map registers, bar size 0x%X too small, aborting\n", 15281 pf->ioremap_len); 15282 err = -ENOMEM; 15283 goto err_ioremap; 15284 } 15285 hw->hw_addr = ioremap(pci_resource_start(pdev, 0), pf->ioremap_len); 15286 if (!hw->hw_addr) { 15287 err = -EIO; 15288 dev_info(&pdev->dev, "ioremap(0x%04x, 0x%04x) failed: 0x%x\n", 15289 (unsigned int)pci_resource_start(pdev, 0), 15290 pf->ioremap_len, err); 15291 goto err_ioremap; 15292 } 15293 hw->vendor_id = pdev->vendor; 15294 hw->device_id = pdev->device; 15295 pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id); 15296 hw->subsystem_vendor_id = pdev->subsystem_vendor; 15297 i40e_set_subsystem_device_id(hw); 15298 hw->bus.device = PCI_SLOT(pdev->devfn); 15299 hw->bus.func = PCI_FUNC(pdev->devfn); 15300 hw->bus.bus_id = pdev->bus->number; 15301 pf->instance = pfs_found; 15302 15303 /* Select something other than the 802.1ad ethertype for the 15304 * switch to use internally and drop on ingress. 15305 */ 15306 hw->switch_tag = 0xffff; 15307 hw->first_tag = ETH_P_8021AD; 15308 hw->second_tag = ETH_P_8021Q; 15309 15310 INIT_LIST_HEAD(&pf->l3_flex_pit_list); 15311 INIT_LIST_HEAD(&pf->l4_flex_pit_list); 15312 INIT_LIST_HEAD(&pf->ddp_old_prof); 15313 15314 /* set up the locks for the AQ, do this only once in probe 15315 * and destroy them only once in remove 15316 */ 15317 mutex_init(&hw->aq.asq_mutex); 15318 mutex_init(&hw->aq.arq_mutex); 15319 15320 pf->msg_enable = netif_msg_init(debug, 15321 NETIF_MSG_DRV | 15322 NETIF_MSG_PROBE | 15323 NETIF_MSG_LINK); 15324 if (debug < -1) 15325 pf->hw.debug_mask = debug; 15326 15327 /* do a special CORER for clearing PXE mode once at init */ 15328 if (hw->revision_id == 0 && 15329 (rd32(hw, I40E_GLLAN_RCTL_0) & I40E_GLLAN_RCTL_0_PXE_MODE_MASK)) { 15330 wr32(hw, I40E_GLGEN_RTRIG, I40E_GLGEN_RTRIG_CORER_MASK); 15331 i40e_flush(hw); 15332 msleep(200); 15333 pf->corer_count++; 15334 15335 i40e_clear_pxe_mode(hw); 15336 } 15337 15338 /* Reset here to make sure all is clean and to define PF 'n' */ 15339 i40e_clear_hw(hw); 15340 15341 err = i40e_set_mac_type(hw); 15342 if (err) { 15343 dev_warn(&pdev->dev, "unidentified MAC or BLANK NVM: %d\n", 15344 err); 15345 goto err_pf_reset; 15346 } 15347 15348 err = i40e_handle_resets(pf); 15349 if (err) 15350 goto err_pf_reset; 15351 15352 i40e_check_recovery_mode(pf); 15353 15354 if (is_kdump_kernel()) { 15355 hw->aq.num_arq_entries = I40E_MIN_ARQ_LEN; 15356 hw->aq.num_asq_entries = I40E_MIN_ASQ_LEN; 15357 } else { 15358 hw->aq.num_arq_entries = I40E_AQ_LEN; 15359 hw->aq.num_asq_entries = I40E_AQ_LEN; 15360 } 15361 hw->aq.arq_buf_size = I40E_MAX_AQ_BUF_SIZE; 15362 hw->aq.asq_buf_size = I40E_MAX_AQ_BUF_SIZE; 15363 pf->adminq_work_limit = I40E_AQ_WORK_LIMIT; 15364 15365 snprintf(pf->int_name, sizeof(pf->int_name) - 1, 15366 "%s-%s:misc", 15367 dev_driver_string(&pf->pdev->dev), dev_name(&pdev->dev)); 15368 15369 err = i40e_init_shared_code(hw); 15370 if (err) { 15371 dev_warn(&pdev->dev, "unidentified MAC or BLANK NVM: %d\n", 15372 err); 15373 goto err_pf_reset; 15374 } 15375 15376 /* set up a default setting for link flow control */ 15377 pf->hw.fc.requested_mode = I40E_FC_NONE; 15378 15379 err = i40e_init_adminq(hw); 15380 if (err) { 15381 if (err == I40E_ERR_FIRMWARE_API_VERSION) 15382 dev_info(&pdev->dev, 15383 "The driver for the device stopped because the NVM image v%u.%u is newer than expected v%u.%u. You must install the most recent version of the network driver.\n", 15384 hw->aq.api_maj_ver, 15385 hw->aq.api_min_ver, 15386 I40E_FW_API_VERSION_MAJOR, 15387 I40E_FW_MINOR_VERSION(hw)); 15388 else 15389 dev_info(&pdev->dev, 15390 "The driver for the device stopped because the device firmware failed to init. Try updating your NVM image.\n"); 15391 15392 goto err_pf_reset; 15393 } 15394 i40e_get_oem_version(hw); 15395 15396 /* provide nvm, fw, api versions, vendor:device id, subsys vendor:device id */ 15397 dev_info(&pdev->dev, "fw %d.%d.%05d api %d.%d nvm %s [%04x:%04x] [%04x:%04x]\n", 15398 hw->aq.fw_maj_ver, hw->aq.fw_min_ver, hw->aq.fw_build, 15399 hw->aq.api_maj_ver, hw->aq.api_min_ver, 15400 i40e_nvm_version_str(hw), hw->vendor_id, hw->device_id, 15401 hw->subsystem_vendor_id, hw->subsystem_device_id); 15402 15403 if (hw->aq.api_maj_ver == I40E_FW_API_VERSION_MAJOR && 15404 hw->aq.api_min_ver > I40E_FW_MINOR_VERSION(hw)) 15405 dev_info(&pdev->dev, 15406 "The driver for the device detected a newer version of the NVM image v%u.%u than expected v%u.%u. Please install the most recent version of the network driver.\n", 15407 hw->aq.api_maj_ver, 15408 hw->aq.api_min_ver, 15409 I40E_FW_API_VERSION_MAJOR, 15410 I40E_FW_MINOR_VERSION(hw)); 15411 else if (hw->aq.api_maj_ver == 1 && hw->aq.api_min_ver < 4) 15412 dev_info(&pdev->dev, 15413 "The driver for the device detected an older version of the NVM image v%u.%u than expected v%u.%u. Please update the NVM image.\n", 15414 hw->aq.api_maj_ver, 15415 hw->aq.api_min_ver, 15416 I40E_FW_API_VERSION_MAJOR, 15417 I40E_FW_MINOR_VERSION(hw)); 15418 15419 i40e_verify_eeprom(pf); 15420 15421 /* Rev 0 hardware was never productized */ 15422 if (hw->revision_id < 1) 15423 dev_warn(&pdev->dev, "This device is a pre-production adapter/LOM. Please be aware there may be issues with your hardware. If you are experiencing problems please contact your Intel or hardware representative who provided you with this hardware.\n"); 15424 15425 i40e_clear_pxe_mode(hw); 15426 15427 err = i40e_get_capabilities(pf, i40e_aqc_opc_list_func_capabilities); 15428 if (err) 15429 goto err_adminq_setup; 15430 15431 err = i40e_sw_init(pf); 15432 if (err) { 15433 dev_info(&pdev->dev, "sw_init failed: %d\n", err); 15434 goto err_sw_init; 15435 } 15436 15437 if (test_bit(__I40E_RECOVERY_MODE, pf->state)) 15438 return i40e_init_recovery_mode(pf, hw); 15439 15440 err = i40e_init_lan_hmc(hw, hw->func_caps.num_tx_qp, 15441 hw->func_caps.num_rx_qp, 0, 0); 15442 if (err) { 15443 dev_info(&pdev->dev, "init_lan_hmc failed: %d\n", err); 15444 goto err_init_lan_hmc; 15445 } 15446 15447 err = i40e_configure_lan_hmc(hw, I40E_HMC_MODEL_DIRECT_ONLY); 15448 if (err) { 15449 dev_info(&pdev->dev, "configure_lan_hmc failed: %d\n", err); 15450 err = -ENOENT; 15451 goto err_configure_lan_hmc; 15452 } 15453 15454 /* Disable LLDP for NICs that have firmware versions lower than v4.3. 15455 * Ignore error return codes because if it was already disabled via 15456 * hardware settings this will fail 15457 */ 15458 if (pf->hw_features & I40E_HW_STOP_FW_LLDP) { 15459 dev_info(&pdev->dev, "Stopping firmware LLDP agent.\n"); 15460 i40e_aq_stop_lldp(hw, true, false, NULL); 15461 } 15462 15463 /* allow a platform config to override the HW addr */ 15464 i40e_get_platform_mac_addr(pdev, pf); 15465 15466 if (!is_valid_ether_addr(hw->mac.addr)) { 15467 dev_info(&pdev->dev, "invalid MAC address %pM\n", hw->mac.addr); 15468 err = -EIO; 15469 goto err_mac_addr; 15470 } 15471 dev_info(&pdev->dev, "MAC address: %pM\n", hw->mac.addr); 15472 ether_addr_copy(hw->mac.perm_addr, hw->mac.addr); 15473 i40e_get_port_mac_addr(hw, hw->mac.port_addr); 15474 if (is_valid_ether_addr(hw->mac.port_addr)) 15475 pf->hw_features |= I40E_HW_PORT_ID_VALID; 15476 15477 i40e_ptp_alloc_pins(pf); 15478 pci_set_drvdata(pdev, pf); 15479 pci_save_state(pdev); 15480 15481 #ifdef CONFIG_I40E_DCB 15482 status = i40e_get_fw_lldp_status(&pf->hw, &lldp_status); 15483 (!status && 15484 lldp_status == I40E_GET_FW_LLDP_STATUS_ENABLED) ? 15485 (pf->flags &= ~I40E_FLAG_DISABLE_FW_LLDP) : 15486 (pf->flags |= I40E_FLAG_DISABLE_FW_LLDP); 15487 dev_info(&pdev->dev, 15488 (pf->flags & I40E_FLAG_DISABLE_FW_LLDP) ? 15489 "FW LLDP is disabled\n" : 15490 "FW LLDP is enabled\n"); 15491 15492 /* Enable FW to write default DCB config on link-up */ 15493 i40e_aq_set_dcb_parameters(hw, true, NULL); 15494 15495 err = i40e_init_pf_dcb(pf); 15496 if (err) { 15497 dev_info(&pdev->dev, "DCB init failed %d, disabled\n", err); 15498 pf->flags &= ~(I40E_FLAG_DCB_CAPABLE | I40E_FLAG_DCB_ENABLED); 15499 /* Continue without DCB enabled */ 15500 } 15501 #endif /* CONFIG_I40E_DCB */ 15502 15503 /* set up periodic task facility */ 15504 timer_setup(&pf->service_timer, i40e_service_timer, 0); 15505 pf->service_timer_period = HZ; 15506 15507 INIT_WORK(&pf->service_task, i40e_service_task); 15508 clear_bit(__I40E_SERVICE_SCHED, pf->state); 15509 15510 /* NVM bit on means WoL disabled for the port */ 15511 i40e_read_nvm_word(hw, I40E_SR_NVM_WAKE_ON_LAN, &wol_nvm_bits); 15512 if (BIT (hw->port) & wol_nvm_bits || hw->partition_id != 1) 15513 pf->wol_en = false; 15514 else 15515 pf->wol_en = true; 15516 device_set_wakeup_enable(&pf->pdev->dev, pf->wol_en); 15517 15518 /* set up the main switch operations */ 15519 i40e_determine_queue_usage(pf); 15520 err = i40e_init_interrupt_scheme(pf); 15521 if (err) 15522 goto err_switch_setup; 15523 15524 /* Reduce Tx and Rx pairs for kdump 15525 * When MSI-X is enabled, it's not allowed to use more TC queue 15526 * pairs than MSI-X vectors (pf->num_lan_msix) exist. Thus 15527 * vsi->num_queue_pairs will be equal to pf->num_lan_msix, i.e., 1. 15528 */ 15529 if (is_kdump_kernel()) 15530 pf->num_lan_msix = 1; 15531 15532 pf->udp_tunnel_nic.set_port = i40e_udp_tunnel_set_port; 15533 pf->udp_tunnel_nic.unset_port = i40e_udp_tunnel_unset_port; 15534 pf->udp_tunnel_nic.flags = UDP_TUNNEL_NIC_INFO_MAY_SLEEP; 15535 pf->udp_tunnel_nic.shared = &pf->udp_tunnel_shared; 15536 pf->udp_tunnel_nic.tables[0].n_entries = I40E_MAX_PF_UDP_OFFLOAD_PORTS; 15537 pf->udp_tunnel_nic.tables[0].tunnel_types = UDP_TUNNEL_TYPE_VXLAN | 15538 UDP_TUNNEL_TYPE_GENEVE; 15539 15540 /* The number of VSIs reported by the FW is the minimum guaranteed 15541 * to us; HW supports far more and we share the remaining pool with 15542 * the other PFs. We allocate space for more than the guarantee with 15543 * the understanding that we might not get them all later. 15544 */ 15545 if (pf->hw.func_caps.num_vsis < I40E_MIN_VSI_ALLOC) 15546 pf->num_alloc_vsi = I40E_MIN_VSI_ALLOC; 15547 else 15548 pf->num_alloc_vsi = pf->hw.func_caps.num_vsis; 15549 if (pf->num_alloc_vsi > UDP_TUNNEL_NIC_MAX_SHARING_DEVICES) { 15550 dev_warn(&pf->pdev->dev, 15551 "limiting the VSI count due to UDP tunnel limitation %d > %d\n", 15552 pf->num_alloc_vsi, UDP_TUNNEL_NIC_MAX_SHARING_DEVICES); 15553 pf->num_alloc_vsi = UDP_TUNNEL_NIC_MAX_SHARING_DEVICES; 15554 } 15555 15556 /* Set up the *vsi struct and our local tracking of the MAIN PF vsi. */ 15557 pf->vsi = kcalloc(pf->num_alloc_vsi, sizeof(struct i40e_vsi *), 15558 GFP_KERNEL); 15559 if (!pf->vsi) { 15560 err = -ENOMEM; 15561 goto err_switch_setup; 15562 } 15563 15564 #ifdef CONFIG_PCI_IOV 15565 /* prep for VF support */ 15566 if ((pf->flags & I40E_FLAG_SRIOV_ENABLED) && 15567 (pf->flags & I40E_FLAG_MSIX_ENABLED) && 15568 !test_bit(__I40E_BAD_EEPROM, pf->state)) { 15569 if (pci_num_vf(pdev)) 15570 pf->flags |= I40E_FLAG_VEB_MODE_ENABLED; 15571 } 15572 #endif 15573 err = i40e_setup_pf_switch(pf, false, false); 15574 if (err) { 15575 dev_info(&pdev->dev, "setup_pf_switch failed: %d\n", err); 15576 goto err_vsis; 15577 } 15578 INIT_LIST_HEAD(&pf->vsi[pf->lan_vsi]->ch_list); 15579 15580 /* if FDIR VSI was set up, start it now */ 15581 for (i = 0; i < pf->num_alloc_vsi; i++) { 15582 if (pf->vsi[i] && pf->vsi[i]->type == I40E_VSI_FDIR) { 15583 i40e_vsi_open(pf->vsi[i]); 15584 break; 15585 } 15586 } 15587 15588 /* The driver only wants link up/down and module qualification 15589 * reports from firmware. Note the negative logic. 15590 */ 15591 err = i40e_aq_set_phy_int_mask(&pf->hw, 15592 ~(I40E_AQ_EVENT_LINK_UPDOWN | 15593 I40E_AQ_EVENT_MEDIA_NA | 15594 I40E_AQ_EVENT_MODULE_QUAL_FAIL), NULL); 15595 if (err) 15596 dev_info(&pf->pdev->dev, "set phy mask fail, err %s aq_err %s\n", 15597 i40e_stat_str(&pf->hw, err), 15598 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 15599 15600 /* Reconfigure hardware for allowing smaller MSS in the case 15601 * of TSO, so that we avoid the MDD being fired and causing 15602 * a reset in the case of small MSS+TSO. 15603 */ 15604 val = rd32(hw, I40E_REG_MSS); 15605 if ((val & I40E_REG_MSS_MIN_MASK) > I40E_64BYTE_MSS) { 15606 val &= ~I40E_REG_MSS_MIN_MASK; 15607 val |= I40E_64BYTE_MSS; 15608 wr32(hw, I40E_REG_MSS, val); 15609 } 15610 15611 if (pf->hw_features & I40E_HW_RESTART_AUTONEG) { 15612 msleep(75); 15613 err = i40e_aq_set_link_restart_an(&pf->hw, true, NULL); 15614 if (err) 15615 dev_info(&pf->pdev->dev, "link restart failed, err %s aq_err %s\n", 15616 i40e_stat_str(&pf->hw, err), 15617 i40e_aq_str(&pf->hw, 15618 pf->hw.aq.asq_last_status)); 15619 } 15620 /* The main driver is (mostly) up and happy. We need to set this state 15621 * before setting up the misc vector or we get a race and the vector 15622 * ends up disabled forever. 15623 */ 15624 clear_bit(__I40E_DOWN, pf->state); 15625 15626 /* In case of MSIX we are going to setup the misc vector right here 15627 * to handle admin queue events etc. In case of legacy and MSI 15628 * the misc functionality and queue processing is combined in 15629 * the same vector and that gets setup at open. 15630 */ 15631 if (pf->flags & I40E_FLAG_MSIX_ENABLED) { 15632 err = i40e_setup_misc_vector(pf); 15633 if (err) { 15634 dev_info(&pdev->dev, 15635 "setup of misc vector failed: %d\n", err); 15636 i40e_cloud_filter_exit(pf); 15637 i40e_fdir_teardown(pf); 15638 goto err_vsis; 15639 } 15640 } 15641 15642 #ifdef CONFIG_PCI_IOV 15643 /* prep for VF support */ 15644 if ((pf->flags & I40E_FLAG_SRIOV_ENABLED) && 15645 (pf->flags & I40E_FLAG_MSIX_ENABLED) && 15646 !test_bit(__I40E_BAD_EEPROM, pf->state)) { 15647 /* disable link interrupts for VFs */ 15648 val = rd32(hw, I40E_PFGEN_PORTMDIO_NUM); 15649 val &= ~I40E_PFGEN_PORTMDIO_NUM_VFLINK_STAT_ENA_MASK; 15650 wr32(hw, I40E_PFGEN_PORTMDIO_NUM, val); 15651 i40e_flush(hw); 15652 15653 if (pci_num_vf(pdev)) { 15654 dev_info(&pdev->dev, 15655 "Active VFs found, allocating resources.\n"); 15656 err = i40e_alloc_vfs(pf, pci_num_vf(pdev)); 15657 if (err) 15658 dev_info(&pdev->dev, 15659 "Error %d allocating resources for existing VFs\n", 15660 err); 15661 } 15662 } 15663 #endif /* CONFIG_PCI_IOV */ 15664 15665 if (pf->flags & I40E_FLAG_IWARP_ENABLED) { 15666 pf->iwarp_base_vector = i40e_get_lump(pf, pf->irq_pile, 15667 pf->num_iwarp_msix, 15668 I40E_IWARP_IRQ_PILE_ID); 15669 if (pf->iwarp_base_vector < 0) { 15670 dev_info(&pdev->dev, 15671 "failed to get tracking for %d vectors for IWARP err=%d\n", 15672 pf->num_iwarp_msix, pf->iwarp_base_vector); 15673 pf->flags &= ~I40E_FLAG_IWARP_ENABLED; 15674 } 15675 } 15676 15677 i40e_dbg_pf_init(pf); 15678 15679 /* tell the firmware that we're starting */ 15680 i40e_send_version(pf); 15681 15682 /* since everything's happy, start the service_task timer */ 15683 mod_timer(&pf->service_timer, 15684 round_jiffies(jiffies + pf->service_timer_period)); 15685 15686 /* add this PF to client device list and launch a client service task */ 15687 if (pf->flags & I40E_FLAG_IWARP_ENABLED) { 15688 err = i40e_lan_add_device(pf); 15689 if (err) 15690 dev_info(&pdev->dev, "Failed to add PF to client API service list: %d\n", 15691 err); 15692 } 15693 15694 #define PCI_SPEED_SIZE 8 15695 #define PCI_WIDTH_SIZE 8 15696 /* Devices on the IOSF bus do not have this information 15697 * and will report PCI Gen 1 x 1 by default so don't bother 15698 * checking them. 15699 */ 15700 if (!(pf->hw_features & I40E_HW_NO_PCI_LINK_CHECK)) { 15701 char speed[PCI_SPEED_SIZE] = "Unknown"; 15702 char width[PCI_WIDTH_SIZE] = "Unknown"; 15703 15704 /* Get the negotiated link width and speed from PCI config 15705 * space 15706 */ 15707 pcie_capability_read_word(pf->pdev, PCI_EXP_LNKSTA, 15708 &link_status); 15709 15710 i40e_set_pci_config_data(hw, link_status); 15711 15712 switch (hw->bus.speed) { 15713 case i40e_bus_speed_8000: 15714 strlcpy(speed, "8.0", PCI_SPEED_SIZE); break; 15715 case i40e_bus_speed_5000: 15716 strlcpy(speed, "5.0", PCI_SPEED_SIZE); break; 15717 case i40e_bus_speed_2500: 15718 strlcpy(speed, "2.5", PCI_SPEED_SIZE); break; 15719 default: 15720 break; 15721 } 15722 switch (hw->bus.width) { 15723 case i40e_bus_width_pcie_x8: 15724 strlcpy(width, "8", PCI_WIDTH_SIZE); break; 15725 case i40e_bus_width_pcie_x4: 15726 strlcpy(width, "4", PCI_WIDTH_SIZE); break; 15727 case i40e_bus_width_pcie_x2: 15728 strlcpy(width, "2", PCI_WIDTH_SIZE); break; 15729 case i40e_bus_width_pcie_x1: 15730 strlcpy(width, "1", PCI_WIDTH_SIZE); break; 15731 default: 15732 break; 15733 } 15734 15735 dev_info(&pdev->dev, "PCI-Express: Speed %sGT/s Width x%s\n", 15736 speed, width); 15737 15738 if (hw->bus.width < i40e_bus_width_pcie_x8 || 15739 hw->bus.speed < i40e_bus_speed_8000) { 15740 dev_warn(&pdev->dev, "PCI-Express bandwidth available for this device may be insufficient for optimal performance.\n"); 15741 dev_warn(&pdev->dev, "Please move the device to a different PCI-e link with more lanes and/or higher transfer rate.\n"); 15742 } 15743 } 15744 15745 /* get the requested speeds from the fw */ 15746 err = i40e_aq_get_phy_capabilities(hw, false, false, &abilities, NULL); 15747 if (err) 15748 dev_dbg(&pf->pdev->dev, "get requested speeds ret = %s last_status = %s\n", 15749 i40e_stat_str(&pf->hw, err), 15750 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 15751 pf->hw.phy.link_info.requested_speeds = abilities.link_speed; 15752 15753 /* set the FEC config due to the board capabilities */ 15754 i40e_set_fec_in_flags(abilities.fec_cfg_curr_mod_ext_info, &pf->flags); 15755 15756 /* get the supported phy types from the fw */ 15757 err = i40e_aq_get_phy_capabilities(hw, false, true, &abilities, NULL); 15758 if (err) 15759 dev_dbg(&pf->pdev->dev, "get supported phy types ret = %s last_status = %s\n", 15760 i40e_stat_str(&pf->hw, err), 15761 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 15762 15763 /* make sure the MFS hasn't been set lower than the default */ 15764 #define MAX_FRAME_SIZE_DEFAULT 0x2600 15765 val = (rd32(&pf->hw, I40E_PRTGL_SAH) & 15766 I40E_PRTGL_SAH_MFS_MASK) >> I40E_PRTGL_SAH_MFS_SHIFT; 15767 if (val < MAX_FRAME_SIZE_DEFAULT) 15768 dev_warn(&pdev->dev, "MFS for port %x has been set below the default: %x\n", 15769 i, val); 15770 15771 /* Add a filter to drop all Flow control frames from any VSI from being 15772 * transmitted. By doing so we stop a malicious VF from sending out 15773 * PAUSE or PFC frames and potentially controlling traffic for other 15774 * PF/VF VSIs. 15775 * The FW can still send Flow control frames if enabled. 15776 */ 15777 i40e_add_filter_to_drop_tx_flow_control_frames(&pf->hw, 15778 pf->main_vsi_seid); 15779 15780 if ((pf->hw.device_id == I40E_DEV_ID_10G_BASE_T) || 15781 (pf->hw.device_id == I40E_DEV_ID_10G_BASE_T4)) 15782 pf->hw_features |= I40E_HW_PHY_CONTROLS_LEDS; 15783 if (pf->hw.device_id == I40E_DEV_ID_SFP_I_X722) 15784 pf->hw_features |= I40E_HW_HAVE_CRT_RETIMER; 15785 /* print a string summarizing features */ 15786 i40e_print_features(pf); 15787 15788 return 0; 15789 15790 /* Unwind what we've done if something failed in the setup */ 15791 err_vsis: 15792 set_bit(__I40E_DOWN, pf->state); 15793 i40e_clear_interrupt_scheme(pf); 15794 kfree(pf->vsi); 15795 err_switch_setup: 15796 i40e_reset_interrupt_capability(pf); 15797 del_timer_sync(&pf->service_timer); 15798 err_mac_addr: 15799 err_configure_lan_hmc: 15800 (void)i40e_shutdown_lan_hmc(hw); 15801 err_init_lan_hmc: 15802 kfree(pf->qp_pile); 15803 err_sw_init: 15804 err_adminq_setup: 15805 err_pf_reset: 15806 iounmap(hw->hw_addr); 15807 err_ioremap: 15808 kfree(pf); 15809 err_pf_alloc: 15810 pci_disable_pcie_error_reporting(pdev); 15811 pci_release_mem_regions(pdev); 15812 err_pci_reg: 15813 err_dma: 15814 pci_disable_device(pdev); 15815 return err; 15816 } 15817 15818 /** 15819 * i40e_remove - Device removal routine 15820 * @pdev: PCI device information struct 15821 * 15822 * i40e_remove is called by the PCI subsystem to alert the driver 15823 * that is should release a PCI device. This could be caused by a 15824 * Hot-Plug event, or because the driver is going to be removed from 15825 * memory. 15826 **/ 15827 static void i40e_remove(struct pci_dev *pdev) 15828 { 15829 struct i40e_pf *pf = pci_get_drvdata(pdev); 15830 struct i40e_hw *hw = &pf->hw; 15831 i40e_status ret_code; 15832 int i; 15833 15834 i40e_dbg_pf_exit(pf); 15835 15836 i40e_ptp_stop(pf); 15837 15838 /* Disable RSS in hw */ 15839 i40e_write_rx_ctl(hw, I40E_PFQF_HENA(0), 0); 15840 i40e_write_rx_ctl(hw, I40E_PFQF_HENA(1), 0); 15841 15842 while (test_bit(__I40E_RESET_RECOVERY_PENDING, pf->state)) 15843 usleep_range(1000, 2000); 15844 15845 if (pf->flags & I40E_FLAG_SRIOV_ENABLED) { 15846 set_bit(__I40E_VF_RESETS_DISABLED, pf->state); 15847 i40e_free_vfs(pf); 15848 pf->flags &= ~I40E_FLAG_SRIOV_ENABLED; 15849 } 15850 /* no more scheduling of any task */ 15851 set_bit(__I40E_SUSPENDED, pf->state); 15852 set_bit(__I40E_DOWN, pf->state); 15853 if (pf->service_timer.function) 15854 del_timer_sync(&pf->service_timer); 15855 if (pf->service_task.func) 15856 cancel_work_sync(&pf->service_task); 15857 15858 if (test_bit(__I40E_RECOVERY_MODE, pf->state)) { 15859 struct i40e_vsi *vsi = pf->vsi[0]; 15860 15861 /* We know that we have allocated only one vsi for this PF, 15862 * it was just for registering netdevice, so the interface 15863 * could be visible in the 'ifconfig' output 15864 */ 15865 unregister_netdev(vsi->netdev); 15866 free_netdev(vsi->netdev); 15867 15868 goto unmap; 15869 } 15870 15871 /* Client close must be called explicitly here because the timer 15872 * has been stopped. 15873 */ 15874 i40e_notify_client_of_netdev_close(pf->vsi[pf->lan_vsi], false); 15875 15876 i40e_fdir_teardown(pf); 15877 15878 /* If there is a switch structure or any orphans, remove them. 15879 * This will leave only the PF's VSI remaining. 15880 */ 15881 for (i = 0; i < I40E_MAX_VEB; i++) { 15882 if (!pf->veb[i]) 15883 continue; 15884 15885 if (pf->veb[i]->uplink_seid == pf->mac_seid || 15886 pf->veb[i]->uplink_seid == 0) 15887 i40e_switch_branch_release(pf->veb[i]); 15888 } 15889 15890 /* Now we can shutdown the PF's VSI, just before we kill 15891 * adminq and hmc. 15892 */ 15893 if (pf->vsi[pf->lan_vsi]) 15894 i40e_vsi_release(pf->vsi[pf->lan_vsi]); 15895 15896 i40e_cloud_filter_exit(pf); 15897 15898 /* remove attached clients */ 15899 if (pf->flags & I40E_FLAG_IWARP_ENABLED) { 15900 ret_code = i40e_lan_del_device(pf); 15901 if (ret_code) 15902 dev_warn(&pdev->dev, "Failed to delete client device: %d\n", 15903 ret_code); 15904 } 15905 15906 /* shutdown and destroy the HMC */ 15907 if (hw->hmc.hmc_obj) { 15908 ret_code = i40e_shutdown_lan_hmc(hw); 15909 if (ret_code) 15910 dev_warn(&pdev->dev, 15911 "Failed to destroy the HMC resources: %d\n", 15912 ret_code); 15913 } 15914 15915 unmap: 15916 /* Free MSI/legacy interrupt 0 when in recovery mode. */ 15917 if (test_bit(__I40E_RECOVERY_MODE, pf->state) && 15918 !(pf->flags & I40E_FLAG_MSIX_ENABLED)) 15919 free_irq(pf->pdev->irq, pf); 15920 15921 /* shutdown the adminq */ 15922 i40e_shutdown_adminq(hw); 15923 15924 /* destroy the locks only once, here */ 15925 mutex_destroy(&hw->aq.arq_mutex); 15926 mutex_destroy(&hw->aq.asq_mutex); 15927 15928 /* Clear all dynamic memory lists of rings, q_vectors, and VSIs */ 15929 rtnl_lock(); 15930 i40e_clear_interrupt_scheme(pf); 15931 for (i = 0; i < pf->num_alloc_vsi; i++) { 15932 if (pf->vsi[i]) { 15933 if (!test_bit(__I40E_RECOVERY_MODE, pf->state)) 15934 i40e_vsi_clear_rings(pf->vsi[i]); 15935 i40e_vsi_clear(pf->vsi[i]); 15936 pf->vsi[i] = NULL; 15937 } 15938 } 15939 rtnl_unlock(); 15940 15941 for (i = 0; i < I40E_MAX_VEB; i++) { 15942 kfree(pf->veb[i]); 15943 pf->veb[i] = NULL; 15944 } 15945 15946 kfree(pf->qp_pile); 15947 kfree(pf->vsi); 15948 15949 iounmap(hw->hw_addr); 15950 kfree(pf); 15951 pci_release_mem_regions(pdev); 15952 15953 pci_disable_pcie_error_reporting(pdev); 15954 pci_disable_device(pdev); 15955 } 15956 15957 /** 15958 * i40e_pci_error_detected - warning that something funky happened in PCI land 15959 * @pdev: PCI device information struct 15960 * @error: the type of PCI error 15961 * 15962 * Called to warn that something happened and the error handling steps 15963 * are in progress. Allows the driver to quiesce things, be ready for 15964 * remediation. 15965 **/ 15966 static pci_ers_result_t i40e_pci_error_detected(struct pci_dev *pdev, 15967 pci_channel_state_t error) 15968 { 15969 struct i40e_pf *pf = pci_get_drvdata(pdev); 15970 15971 dev_info(&pdev->dev, "%s: error %d\n", __func__, error); 15972 15973 if (!pf) { 15974 dev_info(&pdev->dev, 15975 "Cannot recover - error happened during device probe\n"); 15976 return PCI_ERS_RESULT_DISCONNECT; 15977 } 15978 15979 /* shutdown all operations */ 15980 if (!test_bit(__I40E_SUSPENDED, pf->state)) 15981 i40e_prep_for_reset(pf); 15982 15983 /* Request a slot reset */ 15984 return PCI_ERS_RESULT_NEED_RESET; 15985 } 15986 15987 /** 15988 * i40e_pci_error_slot_reset - a PCI slot reset just happened 15989 * @pdev: PCI device information struct 15990 * 15991 * Called to find if the driver can work with the device now that 15992 * the pci slot has been reset. If a basic connection seems good 15993 * (registers are readable and have sane content) then return a 15994 * happy little PCI_ERS_RESULT_xxx. 15995 **/ 15996 static pci_ers_result_t i40e_pci_error_slot_reset(struct pci_dev *pdev) 15997 { 15998 struct i40e_pf *pf = pci_get_drvdata(pdev); 15999 pci_ers_result_t result; 16000 u32 reg; 16001 16002 dev_dbg(&pdev->dev, "%s\n", __func__); 16003 if (pci_enable_device_mem(pdev)) { 16004 dev_info(&pdev->dev, 16005 "Cannot re-enable PCI device after reset.\n"); 16006 result = PCI_ERS_RESULT_DISCONNECT; 16007 } else { 16008 pci_set_master(pdev); 16009 pci_restore_state(pdev); 16010 pci_save_state(pdev); 16011 pci_wake_from_d3(pdev, false); 16012 16013 reg = rd32(&pf->hw, I40E_GLGEN_RTRIG); 16014 if (reg == 0) 16015 result = PCI_ERS_RESULT_RECOVERED; 16016 else 16017 result = PCI_ERS_RESULT_DISCONNECT; 16018 } 16019 16020 return result; 16021 } 16022 16023 /** 16024 * i40e_pci_error_reset_prepare - prepare device driver for pci reset 16025 * @pdev: PCI device information struct 16026 */ 16027 static void i40e_pci_error_reset_prepare(struct pci_dev *pdev) 16028 { 16029 struct i40e_pf *pf = pci_get_drvdata(pdev); 16030 16031 i40e_prep_for_reset(pf); 16032 } 16033 16034 /** 16035 * i40e_pci_error_reset_done - pci reset done, device driver reset can begin 16036 * @pdev: PCI device information struct 16037 */ 16038 static void i40e_pci_error_reset_done(struct pci_dev *pdev) 16039 { 16040 struct i40e_pf *pf = pci_get_drvdata(pdev); 16041 16042 i40e_reset_and_rebuild(pf, false, false); 16043 } 16044 16045 /** 16046 * i40e_pci_error_resume - restart operations after PCI error recovery 16047 * @pdev: PCI device information struct 16048 * 16049 * Called to allow the driver to bring things back up after PCI error 16050 * and/or reset recovery has finished. 16051 **/ 16052 static void i40e_pci_error_resume(struct pci_dev *pdev) 16053 { 16054 struct i40e_pf *pf = pci_get_drvdata(pdev); 16055 16056 dev_dbg(&pdev->dev, "%s\n", __func__); 16057 if (test_bit(__I40E_SUSPENDED, pf->state)) 16058 return; 16059 16060 i40e_handle_reset_warning(pf, false); 16061 } 16062 16063 /** 16064 * i40e_enable_mc_magic_wake - enable multicast magic packet wake up 16065 * using the mac_address_write admin q function 16066 * @pf: pointer to i40e_pf struct 16067 **/ 16068 static void i40e_enable_mc_magic_wake(struct i40e_pf *pf) 16069 { 16070 struct i40e_hw *hw = &pf->hw; 16071 i40e_status ret; 16072 u8 mac_addr[6]; 16073 u16 flags = 0; 16074 16075 /* Get current MAC address in case it's an LAA */ 16076 if (pf->vsi[pf->lan_vsi] && pf->vsi[pf->lan_vsi]->netdev) { 16077 ether_addr_copy(mac_addr, 16078 pf->vsi[pf->lan_vsi]->netdev->dev_addr); 16079 } else { 16080 dev_err(&pf->pdev->dev, 16081 "Failed to retrieve MAC address; using default\n"); 16082 ether_addr_copy(mac_addr, hw->mac.addr); 16083 } 16084 16085 /* The FW expects the mac address write cmd to first be called with 16086 * one of these flags before calling it again with the multicast 16087 * enable flags. 16088 */ 16089 flags = I40E_AQC_WRITE_TYPE_LAA_WOL; 16090 16091 if (hw->func_caps.flex10_enable && hw->partition_id != 1) 16092 flags = I40E_AQC_WRITE_TYPE_LAA_ONLY; 16093 16094 ret = i40e_aq_mac_address_write(hw, flags, mac_addr, NULL); 16095 if (ret) { 16096 dev_err(&pf->pdev->dev, 16097 "Failed to update MAC address registers; cannot enable Multicast Magic packet wake up"); 16098 return; 16099 } 16100 16101 flags = I40E_AQC_MC_MAG_EN 16102 | I40E_AQC_WOL_PRESERVE_ON_PFR 16103 | I40E_AQC_WRITE_TYPE_UPDATE_MC_MAG; 16104 ret = i40e_aq_mac_address_write(hw, flags, mac_addr, NULL); 16105 if (ret) 16106 dev_err(&pf->pdev->dev, 16107 "Failed to enable Multicast Magic Packet wake up\n"); 16108 } 16109 16110 /** 16111 * i40e_shutdown - PCI callback for shutting down 16112 * @pdev: PCI device information struct 16113 **/ 16114 static void i40e_shutdown(struct pci_dev *pdev) 16115 { 16116 struct i40e_pf *pf = pci_get_drvdata(pdev); 16117 struct i40e_hw *hw = &pf->hw; 16118 16119 set_bit(__I40E_SUSPENDED, pf->state); 16120 set_bit(__I40E_DOWN, pf->state); 16121 16122 del_timer_sync(&pf->service_timer); 16123 cancel_work_sync(&pf->service_task); 16124 i40e_cloud_filter_exit(pf); 16125 i40e_fdir_teardown(pf); 16126 16127 /* Client close must be called explicitly here because the timer 16128 * has been stopped. 16129 */ 16130 i40e_notify_client_of_netdev_close(pf->vsi[pf->lan_vsi], false); 16131 16132 if (pf->wol_en && (pf->hw_features & I40E_HW_WOL_MC_MAGIC_PKT_WAKE)) 16133 i40e_enable_mc_magic_wake(pf); 16134 16135 i40e_prep_for_reset(pf); 16136 16137 wr32(hw, I40E_PFPM_APM, 16138 (pf->wol_en ? I40E_PFPM_APM_APME_MASK : 0)); 16139 wr32(hw, I40E_PFPM_WUFC, 16140 (pf->wol_en ? I40E_PFPM_WUFC_MAG_MASK : 0)); 16141 16142 /* Free MSI/legacy interrupt 0 when in recovery mode. */ 16143 if (test_bit(__I40E_RECOVERY_MODE, pf->state) && 16144 !(pf->flags & I40E_FLAG_MSIX_ENABLED)) 16145 free_irq(pf->pdev->irq, pf); 16146 16147 /* Since we're going to destroy queues during the 16148 * i40e_clear_interrupt_scheme() we should hold the RTNL lock for this 16149 * whole section 16150 */ 16151 rtnl_lock(); 16152 i40e_clear_interrupt_scheme(pf); 16153 rtnl_unlock(); 16154 16155 if (system_state == SYSTEM_POWER_OFF) { 16156 pci_wake_from_d3(pdev, pf->wol_en); 16157 pci_set_power_state(pdev, PCI_D3hot); 16158 } 16159 } 16160 16161 /** 16162 * i40e_suspend - PM callback for moving to D3 16163 * @dev: generic device information structure 16164 **/ 16165 static int __maybe_unused i40e_suspend(struct device *dev) 16166 { 16167 struct i40e_pf *pf = dev_get_drvdata(dev); 16168 struct i40e_hw *hw = &pf->hw; 16169 16170 /* If we're already suspended, then there is nothing to do */ 16171 if (test_and_set_bit(__I40E_SUSPENDED, pf->state)) 16172 return 0; 16173 16174 set_bit(__I40E_DOWN, pf->state); 16175 16176 /* Ensure service task will not be running */ 16177 del_timer_sync(&pf->service_timer); 16178 cancel_work_sync(&pf->service_task); 16179 16180 /* Client close must be called explicitly here because the timer 16181 * has been stopped. 16182 */ 16183 i40e_notify_client_of_netdev_close(pf->vsi[pf->lan_vsi], false); 16184 16185 if (pf->wol_en && (pf->hw_features & I40E_HW_WOL_MC_MAGIC_PKT_WAKE)) 16186 i40e_enable_mc_magic_wake(pf); 16187 16188 /* Since we're going to destroy queues during the 16189 * i40e_clear_interrupt_scheme() we should hold the RTNL lock for this 16190 * whole section 16191 */ 16192 rtnl_lock(); 16193 16194 i40e_prep_for_reset(pf); 16195 16196 wr32(hw, I40E_PFPM_APM, (pf->wol_en ? I40E_PFPM_APM_APME_MASK : 0)); 16197 wr32(hw, I40E_PFPM_WUFC, (pf->wol_en ? I40E_PFPM_WUFC_MAG_MASK : 0)); 16198 16199 /* Clear the interrupt scheme and release our IRQs so that the system 16200 * can safely hibernate even when there are a large number of CPUs. 16201 * Otherwise hibernation might fail when mapping all the vectors back 16202 * to CPU0. 16203 */ 16204 i40e_clear_interrupt_scheme(pf); 16205 16206 rtnl_unlock(); 16207 16208 return 0; 16209 } 16210 16211 /** 16212 * i40e_resume - PM callback for waking up from D3 16213 * @dev: generic device information structure 16214 **/ 16215 static int __maybe_unused i40e_resume(struct device *dev) 16216 { 16217 struct i40e_pf *pf = dev_get_drvdata(dev); 16218 int err; 16219 16220 /* If we're not suspended, then there is nothing to do */ 16221 if (!test_bit(__I40E_SUSPENDED, pf->state)) 16222 return 0; 16223 16224 /* We need to hold the RTNL lock prior to restoring interrupt schemes, 16225 * since we're going to be restoring queues 16226 */ 16227 rtnl_lock(); 16228 16229 /* We cleared the interrupt scheme when we suspended, so we need to 16230 * restore it now to resume device functionality. 16231 */ 16232 err = i40e_restore_interrupt_scheme(pf); 16233 if (err) { 16234 dev_err(dev, "Cannot restore interrupt scheme: %d\n", 16235 err); 16236 } 16237 16238 clear_bit(__I40E_DOWN, pf->state); 16239 i40e_reset_and_rebuild(pf, false, true); 16240 16241 rtnl_unlock(); 16242 16243 /* Clear suspended state last after everything is recovered */ 16244 clear_bit(__I40E_SUSPENDED, pf->state); 16245 16246 /* Restart the service task */ 16247 mod_timer(&pf->service_timer, 16248 round_jiffies(jiffies + pf->service_timer_period)); 16249 16250 return 0; 16251 } 16252 16253 static const struct pci_error_handlers i40e_err_handler = { 16254 .error_detected = i40e_pci_error_detected, 16255 .slot_reset = i40e_pci_error_slot_reset, 16256 .reset_prepare = i40e_pci_error_reset_prepare, 16257 .reset_done = i40e_pci_error_reset_done, 16258 .resume = i40e_pci_error_resume, 16259 }; 16260 16261 static SIMPLE_DEV_PM_OPS(i40e_pm_ops, i40e_suspend, i40e_resume); 16262 16263 static struct pci_driver i40e_driver = { 16264 .name = i40e_driver_name, 16265 .id_table = i40e_pci_tbl, 16266 .probe = i40e_probe, 16267 .remove = i40e_remove, 16268 .driver = { 16269 .pm = &i40e_pm_ops, 16270 }, 16271 .shutdown = i40e_shutdown, 16272 .err_handler = &i40e_err_handler, 16273 .sriov_configure = i40e_pci_sriov_configure, 16274 }; 16275 16276 /** 16277 * i40e_init_module - Driver registration routine 16278 * 16279 * i40e_init_module is the first routine called when the driver is 16280 * loaded. All it does is register with the PCI subsystem. 16281 **/ 16282 static int __init i40e_init_module(void) 16283 { 16284 pr_info("%s: %s\n", i40e_driver_name, i40e_driver_string); 16285 pr_info("%s: %s\n", i40e_driver_name, i40e_copyright); 16286 16287 /* There is no need to throttle the number of active tasks because 16288 * each device limits its own task using a state bit for scheduling 16289 * the service task, and the device tasks do not interfere with each 16290 * other, so we don't set a max task limit. We must set WQ_MEM_RECLAIM 16291 * since we need to be able to guarantee forward progress even under 16292 * memory pressure. 16293 */ 16294 i40e_wq = alloc_workqueue("%s", WQ_MEM_RECLAIM, 0, i40e_driver_name); 16295 if (!i40e_wq) { 16296 pr_err("%s: Failed to create workqueue\n", i40e_driver_name); 16297 return -ENOMEM; 16298 } 16299 16300 i40e_dbg_init(); 16301 return pci_register_driver(&i40e_driver); 16302 } 16303 module_init(i40e_init_module); 16304 16305 /** 16306 * i40e_exit_module - Driver exit cleanup routine 16307 * 16308 * i40e_exit_module is called just before the driver is removed 16309 * from memory. 16310 **/ 16311 static void __exit i40e_exit_module(void) 16312 { 16313 pci_unregister_driver(&i40e_driver); 16314 destroy_workqueue(i40e_wq); 16315 ida_destroy(&i40e_client_ida); 16316 i40e_dbg_exit(); 16317 } 16318 module_exit(i40e_exit_module); 16319