1 /******************************************************************************* 2 * 3 * Intel Ethernet Controller XL710 Family Linux Driver 4 * Copyright(c) 2013 - 2017 Intel Corporation. 5 * 6 * This program is free software; you can redistribute it and/or modify it 7 * under the terms and conditions of the GNU General Public License, 8 * version 2, as published by the Free Software Foundation. 9 * 10 * This program is distributed in the hope it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 13 * more details. 14 * 15 * You should have received a copy of the GNU General Public License along 16 * with this program. If not, see <http://www.gnu.org/licenses/>. 17 * 18 * The full GNU General Public License is included in this distribution in 19 * the file called "COPYING". 20 * 21 * Contact Information: 22 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> 23 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 24 * 25 ******************************************************************************/ 26 27 #include <linux/etherdevice.h> 28 #include <linux/of_net.h> 29 #include <linux/pci.h> 30 #include <linux/bpf.h> 31 32 /* Local includes */ 33 #include "i40e.h" 34 #include "i40e_diag.h" 35 #include <net/udp_tunnel.h> 36 /* All i40e tracepoints are defined by the include below, which 37 * must be included exactly once across the whole kernel with 38 * CREATE_TRACE_POINTS defined 39 */ 40 #define CREATE_TRACE_POINTS 41 #include "i40e_trace.h" 42 43 const char i40e_driver_name[] = "i40e"; 44 static const char i40e_driver_string[] = 45 "Intel(R) Ethernet Connection XL710 Network Driver"; 46 47 #define DRV_KERN "-k" 48 49 #define DRV_VERSION_MAJOR 2 50 #define DRV_VERSION_MINOR 1 51 #define DRV_VERSION_BUILD 14 52 #define DRV_VERSION __stringify(DRV_VERSION_MAJOR) "." \ 53 __stringify(DRV_VERSION_MINOR) "." \ 54 __stringify(DRV_VERSION_BUILD) DRV_KERN 55 const char i40e_driver_version_str[] = DRV_VERSION; 56 static const char i40e_copyright[] = "Copyright (c) 2013 - 2014 Intel Corporation."; 57 58 /* a bit of forward declarations */ 59 static void i40e_vsi_reinit_locked(struct i40e_vsi *vsi); 60 static void i40e_handle_reset_warning(struct i40e_pf *pf, bool lock_acquired); 61 static int i40e_add_vsi(struct i40e_vsi *vsi); 62 static int i40e_add_veb(struct i40e_veb *veb, struct i40e_vsi *vsi); 63 static int i40e_setup_pf_switch(struct i40e_pf *pf, bool reinit); 64 static int i40e_setup_misc_vector(struct i40e_pf *pf); 65 static void i40e_determine_queue_usage(struct i40e_pf *pf); 66 static int i40e_setup_pf_filter_control(struct i40e_pf *pf); 67 static void i40e_prep_for_reset(struct i40e_pf *pf, bool lock_acquired); 68 static int i40e_reset(struct i40e_pf *pf); 69 static void i40e_rebuild(struct i40e_pf *pf, bool reinit, bool lock_acquired); 70 static void i40e_fdir_sb_setup(struct i40e_pf *pf); 71 static int i40e_veb_get_bw_info(struct i40e_veb *veb); 72 static int i40e_add_del_cloud_filter(struct i40e_vsi *vsi, 73 struct i40e_cloud_filter *filter, 74 bool add); 75 static int i40e_add_del_cloud_filter_big_buf(struct i40e_vsi *vsi, 76 struct i40e_cloud_filter *filter, 77 bool add); 78 static int i40e_get_capabilities(struct i40e_pf *pf, 79 enum i40e_admin_queue_opc list_type); 80 81 82 /* i40e_pci_tbl - PCI Device ID Table 83 * 84 * Last entry must be all 0s 85 * 86 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID, 87 * Class, Class Mask, private data (not used) } 88 */ 89 static const struct pci_device_id i40e_pci_tbl[] = { 90 {PCI_VDEVICE(INTEL, I40E_DEV_ID_SFP_XL710), 0}, 91 {PCI_VDEVICE(INTEL, I40E_DEV_ID_QEMU), 0}, 92 {PCI_VDEVICE(INTEL, I40E_DEV_ID_KX_B), 0}, 93 {PCI_VDEVICE(INTEL, I40E_DEV_ID_KX_C), 0}, 94 {PCI_VDEVICE(INTEL, I40E_DEV_ID_QSFP_A), 0}, 95 {PCI_VDEVICE(INTEL, I40E_DEV_ID_QSFP_B), 0}, 96 {PCI_VDEVICE(INTEL, I40E_DEV_ID_QSFP_C), 0}, 97 {PCI_VDEVICE(INTEL, I40E_DEV_ID_10G_BASE_T), 0}, 98 {PCI_VDEVICE(INTEL, I40E_DEV_ID_10G_BASE_T4), 0}, 99 {PCI_VDEVICE(INTEL, I40E_DEV_ID_KX_X722), 0}, 100 {PCI_VDEVICE(INTEL, I40E_DEV_ID_QSFP_X722), 0}, 101 {PCI_VDEVICE(INTEL, I40E_DEV_ID_SFP_X722), 0}, 102 {PCI_VDEVICE(INTEL, I40E_DEV_ID_1G_BASE_T_X722), 0}, 103 {PCI_VDEVICE(INTEL, I40E_DEV_ID_10G_BASE_T_X722), 0}, 104 {PCI_VDEVICE(INTEL, I40E_DEV_ID_SFP_I_X722), 0}, 105 {PCI_VDEVICE(INTEL, I40E_DEV_ID_20G_KR2), 0}, 106 {PCI_VDEVICE(INTEL, I40E_DEV_ID_20G_KR2_A), 0}, 107 {PCI_VDEVICE(INTEL, I40E_DEV_ID_25G_B), 0}, 108 {PCI_VDEVICE(INTEL, I40E_DEV_ID_25G_SFP28), 0}, 109 /* required last entry */ 110 {0, } 111 }; 112 MODULE_DEVICE_TABLE(pci, i40e_pci_tbl); 113 114 #define I40E_MAX_VF_COUNT 128 115 static int debug = -1; 116 module_param(debug, uint, 0); 117 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all), Debug mask (0x8XXXXXXX)"); 118 119 MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>"); 120 MODULE_DESCRIPTION("Intel(R) Ethernet Connection XL710 Network Driver"); 121 MODULE_LICENSE("GPL"); 122 MODULE_VERSION(DRV_VERSION); 123 124 static struct workqueue_struct *i40e_wq; 125 126 /** 127 * i40e_allocate_dma_mem_d - OS specific memory alloc for shared code 128 * @hw: pointer to the HW structure 129 * @mem: ptr to mem struct to fill out 130 * @size: size of memory requested 131 * @alignment: what to align the allocation to 132 **/ 133 int i40e_allocate_dma_mem_d(struct i40e_hw *hw, struct i40e_dma_mem *mem, 134 u64 size, u32 alignment) 135 { 136 struct i40e_pf *pf = (struct i40e_pf *)hw->back; 137 138 mem->size = ALIGN(size, alignment); 139 mem->va = dma_zalloc_coherent(&pf->pdev->dev, mem->size, 140 &mem->pa, GFP_KERNEL); 141 if (!mem->va) 142 return -ENOMEM; 143 144 return 0; 145 } 146 147 /** 148 * i40e_free_dma_mem_d - OS specific memory free for shared code 149 * @hw: pointer to the HW structure 150 * @mem: ptr to mem struct to free 151 **/ 152 int i40e_free_dma_mem_d(struct i40e_hw *hw, struct i40e_dma_mem *mem) 153 { 154 struct i40e_pf *pf = (struct i40e_pf *)hw->back; 155 156 dma_free_coherent(&pf->pdev->dev, mem->size, mem->va, mem->pa); 157 mem->va = NULL; 158 mem->pa = 0; 159 mem->size = 0; 160 161 return 0; 162 } 163 164 /** 165 * i40e_allocate_virt_mem_d - OS specific memory alloc for shared code 166 * @hw: pointer to the HW structure 167 * @mem: ptr to mem struct to fill out 168 * @size: size of memory requested 169 **/ 170 int i40e_allocate_virt_mem_d(struct i40e_hw *hw, struct i40e_virt_mem *mem, 171 u32 size) 172 { 173 mem->size = size; 174 mem->va = kzalloc(size, GFP_KERNEL); 175 176 if (!mem->va) 177 return -ENOMEM; 178 179 return 0; 180 } 181 182 /** 183 * i40e_free_virt_mem_d - OS specific memory free for shared code 184 * @hw: pointer to the HW structure 185 * @mem: ptr to mem struct to free 186 **/ 187 int i40e_free_virt_mem_d(struct i40e_hw *hw, struct i40e_virt_mem *mem) 188 { 189 /* it's ok to kfree a NULL pointer */ 190 kfree(mem->va); 191 mem->va = NULL; 192 mem->size = 0; 193 194 return 0; 195 } 196 197 /** 198 * i40e_get_lump - find a lump of free generic resource 199 * @pf: board private structure 200 * @pile: the pile of resource to search 201 * @needed: the number of items needed 202 * @id: an owner id to stick on the items assigned 203 * 204 * Returns the base item index of the lump, or negative for error 205 * 206 * The search_hint trick and lack of advanced fit-finding only work 207 * because we're highly likely to have all the same size lump requests. 208 * Linear search time and any fragmentation should be minimal. 209 **/ 210 static int i40e_get_lump(struct i40e_pf *pf, struct i40e_lump_tracking *pile, 211 u16 needed, u16 id) 212 { 213 int ret = -ENOMEM; 214 int i, j; 215 216 if (!pile || needed == 0 || id >= I40E_PILE_VALID_BIT) { 217 dev_info(&pf->pdev->dev, 218 "param err: pile=%p needed=%d id=0x%04x\n", 219 pile, needed, id); 220 return -EINVAL; 221 } 222 223 /* start the linear search with an imperfect hint */ 224 i = pile->search_hint; 225 while (i < pile->num_entries) { 226 /* skip already allocated entries */ 227 if (pile->list[i] & I40E_PILE_VALID_BIT) { 228 i++; 229 continue; 230 } 231 232 /* do we have enough in this lump? */ 233 for (j = 0; (j < needed) && ((i+j) < pile->num_entries); j++) { 234 if (pile->list[i+j] & I40E_PILE_VALID_BIT) 235 break; 236 } 237 238 if (j == needed) { 239 /* there was enough, so assign it to the requestor */ 240 for (j = 0; j < needed; j++) 241 pile->list[i+j] = id | I40E_PILE_VALID_BIT; 242 ret = i; 243 pile->search_hint = i + j; 244 break; 245 } 246 247 /* not enough, so skip over it and continue looking */ 248 i += j; 249 } 250 251 return ret; 252 } 253 254 /** 255 * i40e_put_lump - return a lump of generic resource 256 * @pile: the pile of resource to search 257 * @index: the base item index 258 * @id: the owner id of the items assigned 259 * 260 * Returns the count of items in the lump 261 **/ 262 static int i40e_put_lump(struct i40e_lump_tracking *pile, u16 index, u16 id) 263 { 264 int valid_id = (id | I40E_PILE_VALID_BIT); 265 int count = 0; 266 int i; 267 268 if (!pile || index >= pile->num_entries) 269 return -EINVAL; 270 271 for (i = index; 272 i < pile->num_entries && pile->list[i] == valid_id; 273 i++) { 274 pile->list[i] = 0; 275 count++; 276 } 277 278 if (count && index < pile->search_hint) 279 pile->search_hint = index; 280 281 return count; 282 } 283 284 /** 285 * i40e_find_vsi_from_id - searches for the vsi with the given id 286 * @pf - the pf structure to search for the vsi 287 * @id - id of the vsi it is searching for 288 **/ 289 struct i40e_vsi *i40e_find_vsi_from_id(struct i40e_pf *pf, u16 id) 290 { 291 int i; 292 293 for (i = 0; i < pf->num_alloc_vsi; i++) 294 if (pf->vsi[i] && (pf->vsi[i]->id == id)) 295 return pf->vsi[i]; 296 297 return NULL; 298 } 299 300 /** 301 * i40e_service_event_schedule - Schedule the service task to wake up 302 * @pf: board private structure 303 * 304 * If not already scheduled, this puts the task into the work queue 305 **/ 306 void i40e_service_event_schedule(struct i40e_pf *pf) 307 { 308 if (!test_bit(__I40E_DOWN, pf->state) && 309 !test_bit(__I40E_RESET_RECOVERY_PENDING, pf->state)) 310 queue_work(i40e_wq, &pf->service_task); 311 } 312 313 /** 314 * i40e_tx_timeout - Respond to a Tx Hang 315 * @netdev: network interface device structure 316 * 317 * If any port has noticed a Tx timeout, it is likely that the whole 318 * device is munged, not just the one netdev port, so go for the full 319 * reset. 320 **/ 321 static void i40e_tx_timeout(struct net_device *netdev) 322 { 323 struct i40e_netdev_priv *np = netdev_priv(netdev); 324 struct i40e_vsi *vsi = np->vsi; 325 struct i40e_pf *pf = vsi->back; 326 struct i40e_ring *tx_ring = NULL; 327 unsigned int i, hung_queue = 0; 328 u32 head, val; 329 330 pf->tx_timeout_count++; 331 332 /* find the stopped queue the same way the stack does */ 333 for (i = 0; i < netdev->num_tx_queues; i++) { 334 struct netdev_queue *q; 335 unsigned long trans_start; 336 337 q = netdev_get_tx_queue(netdev, i); 338 trans_start = q->trans_start; 339 if (netif_xmit_stopped(q) && 340 time_after(jiffies, 341 (trans_start + netdev->watchdog_timeo))) { 342 hung_queue = i; 343 break; 344 } 345 } 346 347 if (i == netdev->num_tx_queues) { 348 netdev_info(netdev, "tx_timeout: no netdev hung queue found\n"); 349 } else { 350 /* now that we have an index, find the tx_ring struct */ 351 for (i = 0; i < vsi->num_queue_pairs; i++) { 352 if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc) { 353 if (hung_queue == 354 vsi->tx_rings[i]->queue_index) { 355 tx_ring = vsi->tx_rings[i]; 356 break; 357 } 358 } 359 } 360 } 361 362 if (time_after(jiffies, (pf->tx_timeout_last_recovery + HZ*20))) 363 pf->tx_timeout_recovery_level = 1; /* reset after some time */ 364 else if (time_before(jiffies, 365 (pf->tx_timeout_last_recovery + netdev->watchdog_timeo))) 366 return; /* don't do any new action before the next timeout */ 367 368 if (tx_ring) { 369 head = i40e_get_head(tx_ring); 370 /* Read interrupt register */ 371 if (pf->flags & I40E_FLAG_MSIX_ENABLED) 372 val = rd32(&pf->hw, 373 I40E_PFINT_DYN_CTLN(tx_ring->q_vector->v_idx + 374 tx_ring->vsi->base_vector - 1)); 375 else 376 val = rd32(&pf->hw, I40E_PFINT_DYN_CTL0); 377 378 netdev_info(netdev, "tx_timeout: VSI_seid: %d, Q %d, NTC: 0x%x, HWB: 0x%x, NTU: 0x%x, TAIL: 0x%x, INT: 0x%x\n", 379 vsi->seid, hung_queue, tx_ring->next_to_clean, 380 head, tx_ring->next_to_use, 381 readl(tx_ring->tail), val); 382 } 383 384 pf->tx_timeout_last_recovery = jiffies; 385 netdev_info(netdev, "tx_timeout recovery level %d, hung_queue %d\n", 386 pf->tx_timeout_recovery_level, hung_queue); 387 388 switch (pf->tx_timeout_recovery_level) { 389 case 1: 390 set_bit(__I40E_PF_RESET_REQUESTED, pf->state); 391 break; 392 case 2: 393 set_bit(__I40E_CORE_RESET_REQUESTED, pf->state); 394 break; 395 case 3: 396 set_bit(__I40E_GLOBAL_RESET_REQUESTED, pf->state); 397 break; 398 default: 399 netdev_err(netdev, "tx_timeout recovery unsuccessful\n"); 400 break; 401 } 402 403 i40e_service_event_schedule(pf); 404 pf->tx_timeout_recovery_level++; 405 } 406 407 /** 408 * i40e_get_vsi_stats_struct - Get System Network Statistics 409 * @vsi: the VSI we care about 410 * 411 * Returns the address of the device statistics structure. 412 * The statistics are actually updated from the service task. 413 **/ 414 struct rtnl_link_stats64 *i40e_get_vsi_stats_struct(struct i40e_vsi *vsi) 415 { 416 return &vsi->net_stats; 417 } 418 419 /** 420 * i40e_get_netdev_stats_struct_tx - populate stats from a Tx ring 421 * @ring: Tx ring to get statistics from 422 * @stats: statistics entry to be updated 423 **/ 424 static void i40e_get_netdev_stats_struct_tx(struct i40e_ring *ring, 425 struct rtnl_link_stats64 *stats) 426 { 427 u64 bytes, packets; 428 unsigned int start; 429 430 do { 431 start = u64_stats_fetch_begin_irq(&ring->syncp); 432 packets = ring->stats.packets; 433 bytes = ring->stats.bytes; 434 } while (u64_stats_fetch_retry_irq(&ring->syncp, start)); 435 436 stats->tx_packets += packets; 437 stats->tx_bytes += bytes; 438 } 439 440 /** 441 * i40e_get_netdev_stats_struct - Get statistics for netdev interface 442 * @netdev: network interface device structure 443 * 444 * Returns the address of the device statistics structure. 445 * The statistics are actually updated from the service task. 446 **/ 447 static void i40e_get_netdev_stats_struct(struct net_device *netdev, 448 struct rtnl_link_stats64 *stats) 449 { 450 struct i40e_netdev_priv *np = netdev_priv(netdev); 451 struct i40e_ring *tx_ring, *rx_ring; 452 struct i40e_vsi *vsi = np->vsi; 453 struct rtnl_link_stats64 *vsi_stats = i40e_get_vsi_stats_struct(vsi); 454 int i; 455 456 if (test_bit(__I40E_VSI_DOWN, vsi->state)) 457 return; 458 459 if (!vsi->tx_rings) 460 return; 461 462 rcu_read_lock(); 463 for (i = 0; i < vsi->num_queue_pairs; i++) { 464 u64 bytes, packets; 465 unsigned int start; 466 467 tx_ring = READ_ONCE(vsi->tx_rings[i]); 468 if (!tx_ring) 469 continue; 470 i40e_get_netdev_stats_struct_tx(tx_ring, stats); 471 472 rx_ring = &tx_ring[1]; 473 474 do { 475 start = u64_stats_fetch_begin_irq(&rx_ring->syncp); 476 packets = rx_ring->stats.packets; 477 bytes = rx_ring->stats.bytes; 478 } while (u64_stats_fetch_retry_irq(&rx_ring->syncp, start)); 479 480 stats->rx_packets += packets; 481 stats->rx_bytes += bytes; 482 483 if (i40e_enabled_xdp_vsi(vsi)) 484 i40e_get_netdev_stats_struct_tx(&rx_ring[1], stats); 485 } 486 rcu_read_unlock(); 487 488 /* following stats updated by i40e_watchdog_subtask() */ 489 stats->multicast = vsi_stats->multicast; 490 stats->tx_errors = vsi_stats->tx_errors; 491 stats->tx_dropped = vsi_stats->tx_dropped; 492 stats->rx_errors = vsi_stats->rx_errors; 493 stats->rx_dropped = vsi_stats->rx_dropped; 494 stats->rx_crc_errors = vsi_stats->rx_crc_errors; 495 stats->rx_length_errors = vsi_stats->rx_length_errors; 496 } 497 498 /** 499 * i40e_vsi_reset_stats - Resets all stats of the given vsi 500 * @vsi: the VSI to have its stats reset 501 **/ 502 void i40e_vsi_reset_stats(struct i40e_vsi *vsi) 503 { 504 struct rtnl_link_stats64 *ns; 505 int i; 506 507 if (!vsi) 508 return; 509 510 ns = i40e_get_vsi_stats_struct(vsi); 511 memset(ns, 0, sizeof(*ns)); 512 memset(&vsi->net_stats_offsets, 0, sizeof(vsi->net_stats_offsets)); 513 memset(&vsi->eth_stats, 0, sizeof(vsi->eth_stats)); 514 memset(&vsi->eth_stats_offsets, 0, sizeof(vsi->eth_stats_offsets)); 515 if (vsi->rx_rings && vsi->rx_rings[0]) { 516 for (i = 0; i < vsi->num_queue_pairs; i++) { 517 memset(&vsi->rx_rings[i]->stats, 0, 518 sizeof(vsi->rx_rings[i]->stats)); 519 memset(&vsi->rx_rings[i]->rx_stats, 0, 520 sizeof(vsi->rx_rings[i]->rx_stats)); 521 memset(&vsi->tx_rings[i]->stats, 0, 522 sizeof(vsi->tx_rings[i]->stats)); 523 memset(&vsi->tx_rings[i]->tx_stats, 0, 524 sizeof(vsi->tx_rings[i]->tx_stats)); 525 } 526 } 527 vsi->stat_offsets_loaded = false; 528 } 529 530 /** 531 * i40e_pf_reset_stats - Reset all of the stats for the given PF 532 * @pf: the PF to be reset 533 **/ 534 void i40e_pf_reset_stats(struct i40e_pf *pf) 535 { 536 int i; 537 538 memset(&pf->stats, 0, sizeof(pf->stats)); 539 memset(&pf->stats_offsets, 0, sizeof(pf->stats_offsets)); 540 pf->stat_offsets_loaded = false; 541 542 for (i = 0; i < I40E_MAX_VEB; i++) { 543 if (pf->veb[i]) { 544 memset(&pf->veb[i]->stats, 0, 545 sizeof(pf->veb[i]->stats)); 546 memset(&pf->veb[i]->stats_offsets, 0, 547 sizeof(pf->veb[i]->stats_offsets)); 548 pf->veb[i]->stat_offsets_loaded = false; 549 } 550 } 551 pf->hw_csum_rx_error = 0; 552 } 553 554 /** 555 * i40e_stat_update48 - read and update a 48 bit stat from the chip 556 * @hw: ptr to the hardware info 557 * @hireg: the high 32 bit reg to read 558 * @loreg: the low 32 bit reg to read 559 * @offset_loaded: has the initial offset been loaded yet 560 * @offset: ptr to current offset value 561 * @stat: ptr to the stat 562 * 563 * Since the device stats are not reset at PFReset, they likely will not 564 * be zeroed when the driver starts. We'll save the first values read 565 * and use them as offsets to be subtracted from the raw values in order 566 * to report stats that count from zero. In the process, we also manage 567 * the potential roll-over. 568 **/ 569 static void i40e_stat_update48(struct i40e_hw *hw, u32 hireg, u32 loreg, 570 bool offset_loaded, u64 *offset, u64 *stat) 571 { 572 u64 new_data; 573 574 if (hw->device_id == I40E_DEV_ID_QEMU) { 575 new_data = rd32(hw, loreg); 576 new_data |= ((u64)(rd32(hw, hireg) & 0xFFFF)) << 32; 577 } else { 578 new_data = rd64(hw, loreg); 579 } 580 if (!offset_loaded) 581 *offset = new_data; 582 if (likely(new_data >= *offset)) 583 *stat = new_data - *offset; 584 else 585 *stat = (new_data + BIT_ULL(48)) - *offset; 586 *stat &= 0xFFFFFFFFFFFFULL; 587 } 588 589 /** 590 * i40e_stat_update32 - read and update a 32 bit stat from the chip 591 * @hw: ptr to the hardware info 592 * @reg: the hw reg to read 593 * @offset_loaded: has the initial offset been loaded yet 594 * @offset: ptr to current offset value 595 * @stat: ptr to the stat 596 **/ 597 static void i40e_stat_update32(struct i40e_hw *hw, u32 reg, 598 bool offset_loaded, u64 *offset, u64 *stat) 599 { 600 u32 new_data; 601 602 new_data = rd32(hw, reg); 603 if (!offset_loaded) 604 *offset = new_data; 605 if (likely(new_data >= *offset)) 606 *stat = (u32)(new_data - *offset); 607 else 608 *stat = (u32)((new_data + BIT_ULL(32)) - *offset); 609 } 610 611 /** 612 * i40e_stat_update_and_clear32 - read and clear hw reg, update a 32 bit stat 613 * @hw: ptr to the hardware info 614 * @reg: the hw reg to read and clear 615 * @stat: ptr to the stat 616 **/ 617 static void i40e_stat_update_and_clear32(struct i40e_hw *hw, u32 reg, u64 *stat) 618 { 619 u32 new_data = rd32(hw, reg); 620 621 wr32(hw, reg, 1); /* must write a nonzero value to clear register */ 622 *stat += new_data; 623 } 624 625 /** 626 * i40e_update_eth_stats - Update VSI-specific ethernet statistics counters. 627 * @vsi: the VSI to be updated 628 **/ 629 void i40e_update_eth_stats(struct i40e_vsi *vsi) 630 { 631 int stat_idx = le16_to_cpu(vsi->info.stat_counter_idx); 632 struct i40e_pf *pf = vsi->back; 633 struct i40e_hw *hw = &pf->hw; 634 struct i40e_eth_stats *oes; 635 struct i40e_eth_stats *es; /* device's eth stats */ 636 637 es = &vsi->eth_stats; 638 oes = &vsi->eth_stats_offsets; 639 640 /* Gather up the stats that the hw collects */ 641 i40e_stat_update32(hw, I40E_GLV_TEPC(stat_idx), 642 vsi->stat_offsets_loaded, 643 &oes->tx_errors, &es->tx_errors); 644 i40e_stat_update32(hw, I40E_GLV_RDPC(stat_idx), 645 vsi->stat_offsets_loaded, 646 &oes->rx_discards, &es->rx_discards); 647 i40e_stat_update32(hw, I40E_GLV_RUPP(stat_idx), 648 vsi->stat_offsets_loaded, 649 &oes->rx_unknown_protocol, &es->rx_unknown_protocol); 650 i40e_stat_update32(hw, I40E_GLV_TEPC(stat_idx), 651 vsi->stat_offsets_loaded, 652 &oes->tx_errors, &es->tx_errors); 653 654 i40e_stat_update48(hw, I40E_GLV_GORCH(stat_idx), 655 I40E_GLV_GORCL(stat_idx), 656 vsi->stat_offsets_loaded, 657 &oes->rx_bytes, &es->rx_bytes); 658 i40e_stat_update48(hw, I40E_GLV_UPRCH(stat_idx), 659 I40E_GLV_UPRCL(stat_idx), 660 vsi->stat_offsets_loaded, 661 &oes->rx_unicast, &es->rx_unicast); 662 i40e_stat_update48(hw, I40E_GLV_MPRCH(stat_idx), 663 I40E_GLV_MPRCL(stat_idx), 664 vsi->stat_offsets_loaded, 665 &oes->rx_multicast, &es->rx_multicast); 666 i40e_stat_update48(hw, I40E_GLV_BPRCH(stat_idx), 667 I40E_GLV_BPRCL(stat_idx), 668 vsi->stat_offsets_loaded, 669 &oes->rx_broadcast, &es->rx_broadcast); 670 671 i40e_stat_update48(hw, I40E_GLV_GOTCH(stat_idx), 672 I40E_GLV_GOTCL(stat_idx), 673 vsi->stat_offsets_loaded, 674 &oes->tx_bytes, &es->tx_bytes); 675 i40e_stat_update48(hw, I40E_GLV_UPTCH(stat_idx), 676 I40E_GLV_UPTCL(stat_idx), 677 vsi->stat_offsets_loaded, 678 &oes->tx_unicast, &es->tx_unicast); 679 i40e_stat_update48(hw, I40E_GLV_MPTCH(stat_idx), 680 I40E_GLV_MPTCL(stat_idx), 681 vsi->stat_offsets_loaded, 682 &oes->tx_multicast, &es->tx_multicast); 683 i40e_stat_update48(hw, I40E_GLV_BPTCH(stat_idx), 684 I40E_GLV_BPTCL(stat_idx), 685 vsi->stat_offsets_loaded, 686 &oes->tx_broadcast, &es->tx_broadcast); 687 vsi->stat_offsets_loaded = true; 688 } 689 690 /** 691 * i40e_update_veb_stats - Update Switch component statistics 692 * @veb: the VEB being updated 693 **/ 694 static void i40e_update_veb_stats(struct i40e_veb *veb) 695 { 696 struct i40e_pf *pf = veb->pf; 697 struct i40e_hw *hw = &pf->hw; 698 struct i40e_eth_stats *oes; 699 struct i40e_eth_stats *es; /* device's eth stats */ 700 struct i40e_veb_tc_stats *veb_oes; 701 struct i40e_veb_tc_stats *veb_es; 702 int i, idx = 0; 703 704 idx = veb->stats_idx; 705 es = &veb->stats; 706 oes = &veb->stats_offsets; 707 veb_es = &veb->tc_stats; 708 veb_oes = &veb->tc_stats_offsets; 709 710 /* Gather up the stats that the hw collects */ 711 i40e_stat_update32(hw, I40E_GLSW_TDPC(idx), 712 veb->stat_offsets_loaded, 713 &oes->tx_discards, &es->tx_discards); 714 if (hw->revision_id > 0) 715 i40e_stat_update32(hw, I40E_GLSW_RUPP(idx), 716 veb->stat_offsets_loaded, 717 &oes->rx_unknown_protocol, 718 &es->rx_unknown_protocol); 719 i40e_stat_update48(hw, I40E_GLSW_GORCH(idx), I40E_GLSW_GORCL(idx), 720 veb->stat_offsets_loaded, 721 &oes->rx_bytes, &es->rx_bytes); 722 i40e_stat_update48(hw, I40E_GLSW_UPRCH(idx), I40E_GLSW_UPRCL(idx), 723 veb->stat_offsets_loaded, 724 &oes->rx_unicast, &es->rx_unicast); 725 i40e_stat_update48(hw, I40E_GLSW_MPRCH(idx), I40E_GLSW_MPRCL(idx), 726 veb->stat_offsets_loaded, 727 &oes->rx_multicast, &es->rx_multicast); 728 i40e_stat_update48(hw, I40E_GLSW_BPRCH(idx), I40E_GLSW_BPRCL(idx), 729 veb->stat_offsets_loaded, 730 &oes->rx_broadcast, &es->rx_broadcast); 731 732 i40e_stat_update48(hw, I40E_GLSW_GOTCH(idx), I40E_GLSW_GOTCL(idx), 733 veb->stat_offsets_loaded, 734 &oes->tx_bytes, &es->tx_bytes); 735 i40e_stat_update48(hw, I40E_GLSW_UPTCH(idx), I40E_GLSW_UPTCL(idx), 736 veb->stat_offsets_loaded, 737 &oes->tx_unicast, &es->tx_unicast); 738 i40e_stat_update48(hw, I40E_GLSW_MPTCH(idx), I40E_GLSW_MPTCL(idx), 739 veb->stat_offsets_loaded, 740 &oes->tx_multicast, &es->tx_multicast); 741 i40e_stat_update48(hw, I40E_GLSW_BPTCH(idx), I40E_GLSW_BPTCL(idx), 742 veb->stat_offsets_loaded, 743 &oes->tx_broadcast, &es->tx_broadcast); 744 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 745 i40e_stat_update48(hw, I40E_GLVEBTC_RPCH(i, idx), 746 I40E_GLVEBTC_RPCL(i, idx), 747 veb->stat_offsets_loaded, 748 &veb_oes->tc_rx_packets[i], 749 &veb_es->tc_rx_packets[i]); 750 i40e_stat_update48(hw, I40E_GLVEBTC_RBCH(i, idx), 751 I40E_GLVEBTC_RBCL(i, idx), 752 veb->stat_offsets_loaded, 753 &veb_oes->tc_rx_bytes[i], 754 &veb_es->tc_rx_bytes[i]); 755 i40e_stat_update48(hw, I40E_GLVEBTC_TPCH(i, idx), 756 I40E_GLVEBTC_TPCL(i, idx), 757 veb->stat_offsets_loaded, 758 &veb_oes->tc_tx_packets[i], 759 &veb_es->tc_tx_packets[i]); 760 i40e_stat_update48(hw, I40E_GLVEBTC_TBCH(i, idx), 761 I40E_GLVEBTC_TBCL(i, idx), 762 veb->stat_offsets_loaded, 763 &veb_oes->tc_tx_bytes[i], 764 &veb_es->tc_tx_bytes[i]); 765 } 766 veb->stat_offsets_loaded = true; 767 } 768 769 /** 770 * i40e_update_vsi_stats - Update the vsi statistics counters. 771 * @vsi: the VSI to be updated 772 * 773 * There are a few instances where we store the same stat in a 774 * couple of different structs. This is partly because we have 775 * the netdev stats that need to be filled out, which is slightly 776 * different from the "eth_stats" defined by the chip and used in 777 * VF communications. We sort it out here. 778 **/ 779 static void i40e_update_vsi_stats(struct i40e_vsi *vsi) 780 { 781 struct i40e_pf *pf = vsi->back; 782 struct rtnl_link_stats64 *ons; 783 struct rtnl_link_stats64 *ns; /* netdev stats */ 784 struct i40e_eth_stats *oes; 785 struct i40e_eth_stats *es; /* device's eth stats */ 786 u32 tx_restart, tx_busy; 787 struct i40e_ring *p; 788 u32 rx_page, rx_buf; 789 u64 bytes, packets; 790 unsigned int start; 791 u64 tx_linearize; 792 u64 tx_force_wb; 793 u64 rx_p, rx_b; 794 u64 tx_p, tx_b; 795 u16 q; 796 797 if (test_bit(__I40E_VSI_DOWN, vsi->state) || 798 test_bit(__I40E_CONFIG_BUSY, pf->state)) 799 return; 800 801 ns = i40e_get_vsi_stats_struct(vsi); 802 ons = &vsi->net_stats_offsets; 803 es = &vsi->eth_stats; 804 oes = &vsi->eth_stats_offsets; 805 806 /* Gather up the netdev and vsi stats that the driver collects 807 * on the fly during packet processing 808 */ 809 rx_b = rx_p = 0; 810 tx_b = tx_p = 0; 811 tx_restart = tx_busy = tx_linearize = tx_force_wb = 0; 812 rx_page = 0; 813 rx_buf = 0; 814 rcu_read_lock(); 815 for (q = 0; q < vsi->num_queue_pairs; q++) { 816 /* locate Tx ring */ 817 p = READ_ONCE(vsi->tx_rings[q]); 818 819 do { 820 start = u64_stats_fetch_begin_irq(&p->syncp); 821 packets = p->stats.packets; 822 bytes = p->stats.bytes; 823 } while (u64_stats_fetch_retry_irq(&p->syncp, start)); 824 tx_b += bytes; 825 tx_p += packets; 826 tx_restart += p->tx_stats.restart_queue; 827 tx_busy += p->tx_stats.tx_busy; 828 tx_linearize += p->tx_stats.tx_linearize; 829 tx_force_wb += p->tx_stats.tx_force_wb; 830 831 /* Rx queue is part of the same block as Tx queue */ 832 p = &p[1]; 833 do { 834 start = u64_stats_fetch_begin_irq(&p->syncp); 835 packets = p->stats.packets; 836 bytes = p->stats.bytes; 837 } while (u64_stats_fetch_retry_irq(&p->syncp, start)); 838 rx_b += bytes; 839 rx_p += packets; 840 rx_buf += p->rx_stats.alloc_buff_failed; 841 rx_page += p->rx_stats.alloc_page_failed; 842 } 843 rcu_read_unlock(); 844 vsi->tx_restart = tx_restart; 845 vsi->tx_busy = tx_busy; 846 vsi->tx_linearize = tx_linearize; 847 vsi->tx_force_wb = tx_force_wb; 848 vsi->rx_page_failed = rx_page; 849 vsi->rx_buf_failed = rx_buf; 850 851 ns->rx_packets = rx_p; 852 ns->rx_bytes = rx_b; 853 ns->tx_packets = tx_p; 854 ns->tx_bytes = tx_b; 855 856 /* update netdev stats from eth stats */ 857 i40e_update_eth_stats(vsi); 858 ons->tx_errors = oes->tx_errors; 859 ns->tx_errors = es->tx_errors; 860 ons->multicast = oes->rx_multicast; 861 ns->multicast = es->rx_multicast; 862 ons->rx_dropped = oes->rx_discards; 863 ns->rx_dropped = es->rx_discards; 864 ons->tx_dropped = oes->tx_discards; 865 ns->tx_dropped = es->tx_discards; 866 867 /* pull in a couple PF stats if this is the main vsi */ 868 if (vsi == pf->vsi[pf->lan_vsi]) { 869 ns->rx_crc_errors = pf->stats.crc_errors; 870 ns->rx_errors = pf->stats.crc_errors + pf->stats.illegal_bytes; 871 ns->rx_length_errors = pf->stats.rx_length_errors; 872 } 873 } 874 875 /** 876 * i40e_update_pf_stats - Update the PF statistics counters. 877 * @pf: the PF to be updated 878 **/ 879 static void i40e_update_pf_stats(struct i40e_pf *pf) 880 { 881 struct i40e_hw_port_stats *osd = &pf->stats_offsets; 882 struct i40e_hw_port_stats *nsd = &pf->stats; 883 struct i40e_hw *hw = &pf->hw; 884 u32 val; 885 int i; 886 887 i40e_stat_update48(hw, I40E_GLPRT_GORCH(hw->port), 888 I40E_GLPRT_GORCL(hw->port), 889 pf->stat_offsets_loaded, 890 &osd->eth.rx_bytes, &nsd->eth.rx_bytes); 891 i40e_stat_update48(hw, I40E_GLPRT_GOTCH(hw->port), 892 I40E_GLPRT_GOTCL(hw->port), 893 pf->stat_offsets_loaded, 894 &osd->eth.tx_bytes, &nsd->eth.tx_bytes); 895 i40e_stat_update32(hw, I40E_GLPRT_RDPC(hw->port), 896 pf->stat_offsets_loaded, 897 &osd->eth.rx_discards, 898 &nsd->eth.rx_discards); 899 i40e_stat_update48(hw, I40E_GLPRT_UPRCH(hw->port), 900 I40E_GLPRT_UPRCL(hw->port), 901 pf->stat_offsets_loaded, 902 &osd->eth.rx_unicast, 903 &nsd->eth.rx_unicast); 904 i40e_stat_update48(hw, I40E_GLPRT_MPRCH(hw->port), 905 I40E_GLPRT_MPRCL(hw->port), 906 pf->stat_offsets_loaded, 907 &osd->eth.rx_multicast, 908 &nsd->eth.rx_multicast); 909 i40e_stat_update48(hw, I40E_GLPRT_BPRCH(hw->port), 910 I40E_GLPRT_BPRCL(hw->port), 911 pf->stat_offsets_loaded, 912 &osd->eth.rx_broadcast, 913 &nsd->eth.rx_broadcast); 914 i40e_stat_update48(hw, I40E_GLPRT_UPTCH(hw->port), 915 I40E_GLPRT_UPTCL(hw->port), 916 pf->stat_offsets_loaded, 917 &osd->eth.tx_unicast, 918 &nsd->eth.tx_unicast); 919 i40e_stat_update48(hw, I40E_GLPRT_MPTCH(hw->port), 920 I40E_GLPRT_MPTCL(hw->port), 921 pf->stat_offsets_loaded, 922 &osd->eth.tx_multicast, 923 &nsd->eth.tx_multicast); 924 i40e_stat_update48(hw, I40E_GLPRT_BPTCH(hw->port), 925 I40E_GLPRT_BPTCL(hw->port), 926 pf->stat_offsets_loaded, 927 &osd->eth.tx_broadcast, 928 &nsd->eth.tx_broadcast); 929 930 i40e_stat_update32(hw, I40E_GLPRT_TDOLD(hw->port), 931 pf->stat_offsets_loaded, 932 &osd->tx_dropped_link_down, 933 &nsd->tx_dropped_link_down); 934 935 i40e_stat_update32(hw, I40E_GLPRT_CRCERRS(hw->port), 936 pf->stat_offsets_loaded, 937 &osd->crc_errors, &nsd->crc_errors); 938 939 i40e_stat_update32(hw, I40E_GLPRT_ILLERRC(hw->port), 940 pf->stat_offsets_loaded, 941 &osd->illegal_bytes, &nsd->illegal_bytes); 942 943 i40e_stat_update32(hw, I40E_GLPRT_MLFC(hw->port), 944 pf->stat_offsets_loaded, 945 &osd->mac_local_faults, 946 &nsd->mac_local_faults); 947 i40e_stat_update32(hw, I40E_GLPRT_MRFC(hw->port), 948 pf->stat_offsets_loaded, 949 &osd->mac_remote_faults, 950 &nsd->mac_remote_faults); 951 952 i40e_stat_update32(hw, I40E_GLPRT_RLEC(hw->port), 953 pf->stat_offsets_loaded, 954 &osd->rx_length_errors, 955 &nsd->rx_length_errors); 956 957 i40e_stat_update32(hw, I40E_GLPRT_LXONRXC(hw->port), 958 pf->stat_offsets_loaded, 959 &osd->link_xon_rx, &nsd->link_xon_rx); 960 i40e_stat_update32(hw, I40E_GLPRT_LXONTXC(hw->port), 961 pf->stat_offsets_loaded, 962 &osd->link_xon_tx, &nsd->link_xon_tx); 963 i40e_stat_update32(hw, I40E_GLPRT_LXOFFRXC(hw->port), 964 pf->stat_offsets_loaded, 965 &osd->link_xoff_rx, &nsd->link_xoff_rx); 966 i40e_stat_update32(hw, I40E_GLPRT_LXOFFTXC(hw->port), 967 pf->stat_offsets_loaded, 968 &osd->link_xoff_tx, &nsd->link_xoff_tx); 969 970 for (i = 0; i < 8; i++) { 971 i40e_stat_update32(hw, I40E_GLPRT_PXOFFRXC(hw->port, i), 972 pf->stat_offsets_loaded, 973 &osd->priority_xoff_rx[i], 974 &nsd->priority_xoff_rx[i]); 975 i40e_stat_update32(hw, I40E_GLPRT_PXONRXC(hw->port, i), 976 pf->stat_offsets_loaded, 977 &osd->priority_xon_rx[i], 978 &nsd->priority_xon_rx[i]); 979 i40e_stat_update32(hw, I40E_GLPRT_PXONTXC(hw->port, i), 980 pf->stat_offsets_loaded, 981 &osd->priority_xon_tx[i], 982 &nsd->priority_xon_tx[i]); 983 i40e_stat_update32(hw, I40E_GLPRT_PXOFFTXC(hw->port, i), 984 pf->stat_offsets_loaded, 985 &osd->priority_xoff_tx[i], 986 &nsd->priority_xoff_tx[i]); 987 i40e_stat_update32(hw, 988 I40E_GLPRT_RXON2OFFCNT(hw->port, i), 989 pf->stat_offsets_loaded, 990 &osd->priority_xon_2_xoff[i], 991 &nsd->priority_xon_2_xoff[i]); 992 } 993 994 i40e_stat_update48(hw, I40E_GLPRT_PRC64H(hw->port), 995 I40E_GLPRT_PRC64L(hw->port), 996 pf->stat_offsets_loaded, 997 &osd->rx_size_64, &nsd->rx_size_64); 998 i40e_stat_update48(hw, I40E_GLPRT_PRC127H(hw->port), 999 I40E_GLPRT_PRC127L(hw->port), 1000 pf->stat_offsets_loaded, 1001 &osd->rx_size_127, &nsd->rx_size_127); 1002 i40e_stat_update48(hw, I40E_GLPRT_PRC255H(hw->port), 1003 I40E_GLPRT_PRC255L(hw->port), 1004 pf->stat_offsets_loaded, 1005 &osd->rx_size_255, &nsd->rx_size_255); 1006 i40e_stat_update48(hw, I40E_GLPRT_PRC511H(hw->port), 1007 I40E_GLPRT_PRC511L(hw->port), 1008 pf->stat_offsets_loaded, 1009 &osd->rx_size_511, &nsd->rx_size_511); 1010 i40e_stat_update48(hw, I40E_GLPRT_PRC1023H(hw->port), 1011 I40E_GLPRT_PRC1023L(hw->port), 1012 pf->stat_offsets_loaded, 1013 &osd->rx_size_1023, &nsd->rx_size_1023); 1014 i40e_stat_update48(hw, I40E_GLPRT_PRC1522H(hw->port), 1015 I40E_GLPRT_PRC1522L(hw->port), 1016 pf->stat_offsets_loaded, 1017 &osd->rx_size_1522, &nsd->rx_size_1522); 1018 i40e_stat_update48(hw, I40E_GLPRT_PRC9522H(hw->port), 1019 I40E_GLPRT_PRC9522L(hw->port), 1020 pf->stat_offsets_loaded, 1021 &osd->rx_size_big, &nsd->rx_size_big); 1022 1023 i40e_stat_update48(hw, I40E_GLPRT_PTC64H(hw->port), 1024 I40E_GLPRT_PTC64L(hw->port), 1025 pf->stat_offsets_loaded, 1026 &osd->tx_size_64, &nsd->tx_size_64); 1027 i40e_stat_update48(hw, I40E_GLPRT_PTC127H(hw->port), 1028 I40E_GLPRT_PTC127L(hw->port), 1029 pf->stat_offsets_loaded, 1030 &osd->tx_size_127, &nsd->tx_size_127); 1031 i40e_stat_update48(hw, I40E_GLPRT_PTC255H(hw->port), 1032 I40E_GLPRT_PTC255L(hw->port), 1033 pf->stat_offsets_loaded, 1034 &osd->tx_size_255, &nsd->tx_size_255); 1035 i40e_stat_update48(hw, I40E_GLPRT_PTC511H(hw->port), 1036 I40E_GLPRT_PTC511L(hw->port), 1037 pf->stat_offsets_loaded, 1038 &osd->tx_size_511, &nsd->tx_size_511); 1039 i40e_stat_update48(hw, I40E_GLPRT_PTC1023H(hw->port), 1040 I40E_GLPRT_PTC1023L(hw->port), 1041 pf->stat_offsets_loaded, 1042 &osd->tx_size_1023, &nsd->tx_size_1023); 1043 i40e_stat_update48(hw, I40E_GLPRT_PTC1522H(hw->port), 1044 I40E_GLPRT_PTC1522L(hw->port), 1045 pf->stat_offsets_loaded, 1046 &osd->tx_size_1522, &nsd->tx_size_1522); 1047 i40e_stat_update48(hw, I40E_GLPRT_PTC9522H(hw->port), 1048 I40E_GLPRT_PTC9522L(hw->port), 1049 pf->stat_offsets_loaded, 1050 &osd->tx_size_big, &nsd->tx_size_big); 1051 1052 i40e_stat_update32(hw, I40E_GLPRT_RUC(hw->port), 1053 pf->stat_offsets_loaded, 1054 &osd->rx_undersize, &nsd->rx_undersize); 1055 i40e_stat_update32(hw, I40E_GLPRT_RFC(hw->port), 1056 pf->stat_offsets_loaded, 1057 &osd->rx_fragments, &nsd->rx_fragments); 1058 i40e_stat_update32(hw, I40E_GLPRT_ROC(hw->port), 1059 pf->stat_offsets_loaded, 1060 &osd->rx_oversize, &nsd->rx_oversize); 1061 i40e_stat_update32(hw, I40E_GLPRT_RJC(hw->port), 1062 pf->stat_offsets_loaded, 1063 &osd->rx_jabber, &nsd->rx_jabber); 1064 1065 /* FDIR stats */ 1066 i40e_stat_update_and_clear32(hw, 1067 I40E_GLQF_PCNT(I40E_FD_ATR_STAT_IDX(hw->pf_id)), 1068 &nsd->fd_atr_match); 1069 i40e_stat_update_and_clear32(hw, 1070 I40E_GLQF_PCNT(I40E_FD_SB_STAT_IDX(hw->pf_id)), 1071 &nsd->fd_sb_match); 1072 i40e_stat_update_and_clear32(hw, 1073 I40E_GLQF_PCNT(I40E_FD_ATR_TUNNEL_STAT_IDX(hw->pf_id)), 1074 &nsd->fd_atr_tunnel_match); 1075 1076 val = rd32(hw, I40E_PRTPM_EEE_STAT); 1077 nsd->tx_lpi_status = 1078 (val & I40E_PRTPM_EEE_STAT_TX_LPI_STATUS_MASK) >> 1079 I40E_PRTPM_EEE_STAT_TX_LPI_STATUS_SHIFT; 1080 nsd->rx_lpi_status = 1081 (val & I40E_PRTPM_EEE_STAT_RX_LPI_STATUS_MASK) >> 1082 I40E_PRTPM_EEE_STAT_RX_LPI_STATUS_SHIFT; 1083 i40e_stat_update32(hw, I40E_PRTPM_TLPIC, 1084 pf->stat_offsets_loaded, 1085 &osd->tx_lpi_count, &nsd->tx_lpi_count); 1086 i40e_stat_update32(hw, I40E_PRTPM_RLPIC, 1087 pf->stat_offsets_loaded, 1088 &osd->rx_lpi_count, &nsd->rx_lpi_count); 1089 1090 if (pf->flags & I40E_FLAG_FD_SB_ENABLED && 1091 !(pf->flags & I40E_FLAG_FD_SB_AUTO_DISABLED)) 1092 nsd->fd_sb_status = true; 1093 else 1094 nsd->fd_sb_status = false; 1095 1096 if (pf->flags & I40E_FLAG_FD_ATR_ENABLED && 1097 !(pf->flags & I40E_FLAG_FD_ATR_AUTO_DISABLED)) 1098 nsd->fd_atr_status = true; 1099 else 1100 nsd->fd_atr_status = false; 1101 1102 pf->stat_offsets_loaded = true; 1103 } 1104 1105 /** 1106 * i40e_update_stats - Update the various statistics counters. 1107 * @vsi: the VSI to be updated 1108 * 1109 * Update the various stats for this VSI and its related entities. 1110 **/ 1111 void i40e_update_stats(struct i40e_vsi *vsi) 1112 { 1113 struct i40e_pf *pf = vsi->back; 1114 1115 if (vsi == pf->vsi[pf->lan_vsi]) 1116 i40e_update_pf_stats(pf); 1117 1118 i40e_update_vsi_stats(vsi); 1119 } 1120 1121 /** 1122 * i40e_find_filter - Search VSI filter list for specific mac/vlan filter 1123 * @vsi: the VSI to be searched 1124 * @macaddr: the MAC address 1125 * @vlan: the vlan 1126 * 1127 * Returns ptr to the filter object or NULL 1128 **/ 1129 static struct i40e_mac_filter *i40e_find_filter(struct i40e_vsi *vsi, 1130 const u8 *macaddr, s16 vlan) 1131 { 1132 struct i40e_mac_filter *f; 1133 u64 key; 1134 1135 if (!vsi || !macaddr) 1136 return NULL; 1137 1138 key = i40e_addr_to_hkey(macaddr); 1139 hash_for_each_possible(vsi->mac_filter_hash, f, hlist, key) { 1140 if ((ether_addr_equal(macaddr, f->macaddr)) && 1141 (vlan == f->vlan)) 1142 return f; 1143 } 1144 return NULL; 1145 } 1146 1147 /** 1148 * i40e_find_mac - Find a mac addr in the macvlan filters list 1149 * @vsi: the VSI to be searched 1150 * @macaddr: the MAC address we are searching for 1151 * 1152 * Returns the first filter with the provided MAC address or NULL if 1153 * MAC address was not found 1154 **/ 1155 struct i40e_mac_filter *i40e_find_mac(struct i40e_vsi *vsi, const u8 *macaddr) 1156 { 1157 struct i40e_mac_filter *f; 1158 u64 key; 1159 1160 if (!vsi || !macaddr) 1161 return NULL; 1162 1163 key = i40e_addr_to_hkey(macaddr); 1164 hash_for_each_possible(vsi->mac_filter_hash, f, hlist, key) { 1165 if ((ether_addr_equal(macaddr, f->macaddr))) 1166 return f; 1167 } 1168 return NULL; 1169 } 1170 1171 /** 1172 * i40e_is_vsi_in_vlan - Check if VSI is in vlan mode 1173 * @vsi: the VSI to be searched 1174 * 1175 * Returns true if VSI is in vlan mode or false otherwise 1176 **/ 1177 bool i40e_is_vsi_in_vlan(struct i40e_vsi *vsi) 1178 { 1179 /* If we have a PVID, always operate in VLAN mode */ 1180 if (vsi->info.pvid) 1181 return true; 1182 1183 /* We need to operate in VLAN mode whenever we have any filters with 1184 * a VLAN other than I40E_VLAN_ALL. We could check the table each 1185 * time, incurring search cost repeatedly. However, we can notice two 1186 * things: 1187 * 1188 * 1) the only place where we can gain a VLAN filter is in 1189 * i40e_add_filter. 1190 * 1191 * 2) the only place where filters are actually removed is in 1192 * i40e_sync_filters_subtask. 1193 * 1194 * Thus, we can simply use a boolean value, has_vlan_filters which we 1195 * will set to true when we add a VLAN filter in i40e_add_filter. Then 1196 * we have to perform the full search after deleting filters in 1197 * i40e_sync_filters_subtask, but we already have to search 1198 * filters here and can perform the check at the same time. This 1199 * results in avoiding embedding a loop for VLAN mode inside another 1200 * loop over all the filters, and should maintain correctness as noted 1201 * above. 1202 */ 1203 return vsi->has_vlan_filter; 1204 } 1205 1206 /** 1207 * i40e_correct_mac_vlan_filters - Correct non-VLAN filters if necessary 1208 * @vsi: the VSI to configure 1209 * @tmp_add_list: list of filters ready to be added 1210 * @tmp_del_list: list of filters ready to be deleted 1211 * @vlan_filters: the number of active VLAN filters 1212 * 1213 * Update VLAN=0 and VLAN=-1 (I40E_VLAN_ANY) filters properly so that they 1214 * behave as expected. If we have any active VLAN filters remaining or about 1215 * to be added then we need to update non-VLAN filters to be marked as VLAN=0 1216 * so that they only match against untagged traffic. If we no longer have any 1217 * active VLAN filters, we need to make all non-VLAN filters marked as VLAN=-1 1218 * so that they match against both tagged and untagged traffic. In this way, 1219 * we ensure that we correctly receive the desired traffic. This ensures that 1220 * when we have an active VLAN we will receive only untagged traffic and 1221 * traffic matching active VLANs. If we have no active VLANs then we will 1222 * operate in non-VLAN mode and receive all traffic, tagged or untagged. 1223 * 1224 * Finally, in a similar fashion, this function also corrects filters when 1225 * there is an active PVID assigned to this VSI. 1226 * 1227 * In case of memory allocation failure return -ENOMEM. Otherwise, return 0. 1228 * 1229 * This function is only expected to be called from within 1230 * i40e_sync_vsi_filters. 1231 * 1232 * NOTE: This function expects to be called while under the 1233 * mac_filter_hash_lock 1234 */ 1235 static int i40e_correct_mac_vlan_filters(struct i40e_vsi *vsi, 1236 struct hlist_head *tmp_add_list, 1237 struct hlist_head *tmp_del_list, 1238 int vlan_filters) 1239 { 1240 s16 pvid = le16_to_cpu(vsi->info.pvid); 1241 struct i40e_mac_filter *f, *add_head; 1242 struct i40e_new_mac_filter *new; 1243 struct hlist_node *h; 1244 int bkt, new_vlan; 1245 1246 /* To determine if a particular filter needs to be replaced we 1247 * have the three following conditions: 1248 * 1249 * a) if we have a PVID assigned, then all filters which are 1250 * not marked as VLAN=PVID must be replaced with filters that 1251 * are. 1252 * b) otherwise, if we have any active VLANS, all filters 1253 * which are marked as VLAN=-1 must be replaced with 1254 * filters marked as VLAN=0 1255 * c) finally, if we do not have any active VLANS, all filters 1256 * which are marked as VLAN=0 must be replaced with filters 1257 * marked as VLAN=-1 1258 */ 1259 1260 /* Update the filters about to be added in place */ 1261 hlist_for_each_entry(new, tmp_add_list, hlist) { 1262 if (pvid && new->f->vlan != pvid) 1263 new->f->vlan = pvid; 1264 else if (vlan_filters && new->f->vlan == I40E_VLAN_ANY) 1265 new->f->vlan = 0; 1266 else if (!vlan_filters && new->f->vlan == 0) 1267 new->f->vlan = I40E_VLAN_ANY; 1268 } 1269 1270 /* Update the remaining active filters */ 1271 hash_for_each_safe(vsi->mac_filter_hash, bkt, h, f, hlist) { 1272 /* Combine the checks for whether a filter needs to be changed 1273 * and then determine the new VLAN inside the if block, in 1274 * order to avoid duplicating code for adding the new filter 1275 * then deleting the old filter. 1276 */ 1277 if ((pvid && f->vlan != pvid) || 1278 (vlan_filters && f->vlan == I40E_VLAN_ANY) || 1279 (!vlan_filters && f->vlan == 0)) { 1280 /* Determine the new vlan we will be adding */ 1281 if (pvid) 1282 new_vlan = pvid; 1283 else if (vlan_filters) 1284 new_vlan = 0; 1285 else 1286 new_vlan = I40E_VLAN_ANY; 1287 1288 /* Create the new filter */ 1289 add_head = i40e_add_filter(vsi, f->macaddr, new_vlan); 1290 if (!add_head) 1291 return -ENOMEM; 1292 1293 /* Create a temporary i40e_new_mac_filter */ 1294 new = kzalloc(sizeof(*new), GFP_ATOMIC); 1295 if (!new) 1296 return -ENOMEM; 1297 1298 new->f = add_head; 1299 new->state = add_head->state; 1300 1301 /* Add the new filter to the tmp list */ 1302 hlist_add_head(&new->hlist, tmp_add_list); 1303 1304 /* Put the original filter into the delete list */ 1305 f->state = I40E_FILTER_REMOVE; 1306 hash_del(&f->hlist); 1307 hlist_add_head(&f->hlist, tmp_del_list); 1308 } 1309 } 1310 1311 vsi->has_vlan_filter = !!vlan_filters; 1312 1313 return 0; 1314 } 1315 1316 /** 1317 * i40e_rm_default_mac_filter - Remove the default MAC filter set by NVM 1318 * @vsi: the PF Main VSI - inappropriate for any other VSI 1319 * @macaddr: the MAC address 1320 * 1321 * Remove whatever filter the firmware set up so the driver can manage 1322 * its own filtering intelligently. 1323 **/ 1324 static void i40e_rm_default_mac_filter(struct i40e_vsi *vsi, u8 *macaddr) 1325 { 1326 struct i40e_aqc_remove_macvlan_element_data element; 1327 struct i40e_pf *pf = vsi->back; 1328 1329 /* Only appropriate for the PF main VSI */ 1330 if (vsi->type != I40E_VSI_MAIN) 1331 return; 1332 1333 memset(&element, 0, sizeof(element)); 1334 ether_addr_copy(element.mac_addr, macaddr); 1335 element.vlan_tag = 0; 1336 /* Ignore error returns, some firmware does it this way... */ 1337 element.flags = I40E_AQC_MACVLAN_DEL_PERFECT_MATCH; 1338 i40e_aq_remove_macvlan(&pf->hw, vsi->seid, &element, 1, NULL); 1339 1340 memset(&element, 0, sizeof(element)); 1341 ether_addr_copy(element.mac_addr, macaddr); 1342 element.vlan_tag = 0; 1343 /* ...and some firmware does it this way. */ 1344 element.flags = I40E_AQC_MACVLAN_DEL_PERFECT_MATCH | 1345 I40E_AQC_MACVLAN_DEL_IGNORE_VLAN; 1346 i40e_aq_remove_macvlan(&pf->hw, vsi->seid, &element, 1, NULL); 1347 } 1348 1349 /** 1350 * i40e_add_filter - Add a mac/vlan filter to the VSI 1351 * @vsi: the VSI to be searched 1352 * @macaddr: the MAC address 1353 * @vlan: the vlan 1354 * 1355 * Returns ptr to the filter object or NULL when no memory available. 1356 * 1357 * NOTE: This function is expected to be called with mac_filter_hash_lock 1358 * being held. 1359 **/ 1360 struct i40e_mac_filter *i40e_add_filter(struct i40e_vsi *vsi, 1361 const u8 *macaddr, s16 vlan) 1362 { 1363 struct i40e_mac_filter *f; 1364 u64 key; 1365 1366 if (!vsi || !macaddr) 1367 return NULL; 1368 1369 f = i40e_find_filter(vsi, macaddr, vlan); 1370 if (!f) { 1371 f = kzalloc(sizeof(*f), GFP_ATOMIC); 1372 if (!f) 1373 return NULL; 1374 1375 /* Update the boolean indicating if we need to function in 1376 * VLAN mode. 1377 */ 1378 if (vlan >= 0) 1379 vsi->has_vlan_filter = true; 1380 1381 ether_addr_copy(f->macaddr, macaddr); 1382 f->vlan = vlan; 1383 /* If we're in overflow promisc mode, set the state directly 1384 * to failed, so we don't bother to try sending the filter 1385 * to the hardware. 1386 */ 1387 if (test_bit(__I40E_VSI_OVERFLOW_PROMISC, vsi->state)) 1388 f->state = I40E_FILTER_FAILED; 1389 else 1390 f->state = I40E_FILTER_NEW; 1391 INIT_HLIST_NODE(&f->hlist); 1392 1393 key = i40e_addr_to_hkey(macaddr); 1394 hash_add(vsi->mac_filter_hash, &f->hlist, key); 1395 1396 vsi->flags |= I40E_VSI_FLAG_FILTER_CHANGED; 1397 vsi->back->flags |= I40E_FLAG_FILTER_SYNC; 1398 } 1399 1400 /* If we're asked to add a filter that has been marked for removal, it 1401 * is safe to simply restore it to active state. __i40e_del_filter 1402 * will have simply deleted any filters which were previously marked 1403 * NEW or FAILED, so if it is currently marked REMOVE it must have 1404 * previously been ACTIVE. Since we haven't yet run the sync filters 1405 * task, just restore this filter to the ACTIVE state so that the 1406 * sync task leaves it in place 1407 */ 1408 if (f->state == I40E_FILTER_REMOVE) 1409 f->state = I40E_FILTER_ACTIVE; 1410 1411 return f; 1412 } 1413 1414 /** 1415 * __i40e_del_filter - Remove a specific filter from the VSI 1416 * @vsi: VSI to remove from 1417 * @f: the filter to remove from the list 1418 * 1419 * This function should be called instead of i40e_del_filter only if you know 1420 * the exact filter you will remove already, such as via i40e_find_filter or 1421 * i40e_find_mac. 1422 * 1423 * NOTE: This function is expected to be called with mac_filter_hash_lock 1424 * being held. 1425 * ANOTHER NOTE: This function MUST be called from within the context of 1426 * the "safe" variants of any list iterators, e.g. list_for_each_entry_safe() 1427 * instead of list_for_each_entry(). 1428 **/ 1429 void __i40e_del_filter(struct i40e_vsi *vsi, struct i40e_mac_filter *f) 1430 { 1431 if (!f) 1432 return; 1433 1434 /* If the filter was never added to firmware then we can just delete it 1435 * directly and we don't want to set the status to remove or else an 1436 * admin queue command will unnecessarily fire. 1437 */ 1438 if ((f->state == I40E_FILTER_FAILED) || 1439 (f->state == I40E_FILTER_NEW)) { 1440 hash_del(&f->hlist); 1441 kfree(f); 1442 } else { 1443 f->state = I40E_FILTER_REMOVE; 1444 } 1445 1446 vsi->flags |= I40E_VSI_FLAG_FILTER_CHANGED; 1447 vsi->back->flags |= I40E_FLAG_FILTER_SYNC; 1448 } 1449 1450 /** 1451 * i40e_del_filter - Remove a MAC/VLAN filter from the VSI 1452 * @vsi: the VSI to be searched 1453 * @macaddr: the MAC address 1454 * @vlan: the VLAN 1455 * 1456 * NOTE: This function is expected to be called with mac_filter_hash_lock 1457 * being held. 1458 * ANOTHER NOTE: This function MUST be called from within the context of 1459 * the "safe" variants of any list iterators, e.g. list_for_each_entry_safe() 1460 * instead of list_for_each_entry(). 1461 **/ 1462 void i40e_del_filter(struct i40e_vsi *vsi, const u8 *macaddr, s16 vlan) 1463 { 1464 struct i40e_mac_filter *f; 1465 1466 if (!vsi || !macaddr) 1467 return; 1468 1469 f = i40e_find_filter(vsi, macaddr, vlan); 1470 __i40e_del_filter(vsi, f); 1471 } 1472 1473 /** 1474 * i40e_add_mac_filter - Add a MAC filter for all active VLANs 1475 * @vsi: the VSI to be searched 1476 * @macaddr: the mac address to be filtered 1477 * 1478 * If we're not in VLAN mode, just add the filter to I40E_VLAN_ANY. Otherwise, 1479 * go through all the macvlan filters and add a macvlan filter for each 1480 * unique vlan that already exists. If a PVID has been assigned, instead only 1481 * add the macaddr to that VLAN. 1482 * 1483 * Returns last filter added on success, else NULL 1484 **/ 1485 struct i40e_mac_filter *i40e_add_mac_filter(struct i40e_vsi *vsi, 1486 const u8 *macaddr) 1487 { 1488 struct i40e_mac_filter *f, *add = NULL; 1489 struct hlist_node *h; 1490 int bkt; 1491 1492 if (vsi->info.pvid) 1493 return i40e_add_filter(vsi, macaddr, 1494 le16_to_cpu(vsi->info.pvid)); 1495 1496 if (!i40e_is_vsi_in_vlan(vsi)) 1497 return i40e_add_filter(vsi, macaddr, I40E_VLAN_ANY); 1498 1499 hash_for_each_safe(vsi->mac_filter_hash, bkt, h, f, hlist) { 1500 if (f->state == I40E_FILTER_REMOVE) 1501 continue; 1502 add = i40e_add_filter(vsi, macaddr, f->vlan); 1503 if (!add) 1504 return NULL; 1505 } 1506 1507 return add; 1508 } 1509 1510 /** 1511 * i40e_del_mac_filter - Remove a MAC filter from all VLANs 1512 * @vsi: the VSI to be searched 1513 * @macaddr: the mac address to be removed 1514 * 1515 * Removes a given MAC address from a VSI regardless of what VLAN it has been 1516 * associated with. 1517 * 1518 * Returns 0 for success, or error 1519 **/ 1520 int i40e_del_mac_filter(struct i40e_vsi *vsi, const u8 *macaddr) 1521 { 1522 struct i40e_mac_filter *f; 1523 struct hlist_node *h; 1524 bool found = false; 1525 int bkt; 1526 1527 WARN(!spin_is_locked(&vsi->mac_filter_hash_lock), 1528 "Missing mac_filter_hash_lock\n"); 1529 hash_for_each_safe(vsi->mac_filter_hash, bkt, h, f, hlist) { 1530 if (ether_addr_equal(macaddr, f->macaddr)) { 1531 __i40e_del_filter(vsi, f); 1532 found = true; 1533 } 1534 } 1535 1536 if (found) 1537 return 0; 1538 else 1539 return -ENOENT; 1540 } 1541 1542 /** 1543 * i40e_set_mac - NDO callback to set mac address 1544 * @netdev: network interface device structure 1545 * @p: pointer to an address structure 1546 * 1547 * Returns 0 on success, negative on failure 1548 **/ 1549 static int i40e_set_mac(struct net_device *netdev, void *p) 1550 { 1551 struct i40e_netdev_priv *np = netdev_priv(netdev); 1552 struct i40e_vsi *vsi = np->vsi; 1553 struct i40e_pf *pf = vsi->back; 1554 struct i40e_hw *hw = &pf->hw; 1555 struct sockaddr *addr = p; 1556 1557 if (!is_valid_ether_addr(addr->sa_data)) 1558 return -EADDRNOTAVAIL; 1559 1560 if (ether_addr_equal(netdev->dev_addr, addr->sa_data)) { 1561 netdev_info(netdev, "already using mac address %pM\n", 1562 addr->sa_data); 1563 return 0; 1564 } 1565 1566 if (test_bit(__I40E_VSI_DOWN, vsi->back->state) || 1567 test_bit(__I40E_RESET_RECOVERY_PENDING, vsi->back->state)) 1568 return -EADDRNOTAVAIL; 1569 1570 if (ether_addr_equal(hw->mac.addr, addr->sa_data)) 1571 netdev_info(netdev, "returning to hw mac address %pM\n", 1572 hw->mac.addr); 1573 else 1574 netdev_info(netdev, "set new mac address %pM\n", addr->sa_data); 1575 1576 spin_lock_bh(&vsi->mac_filter_hash_lock); 1577 i40e_del_mac_filter(vsi, netdev->dev_addr); 1578 i40e_add_mac_filter(vsi, addr->sa_data); 1579 spin_unlock_bh(&vsi->mac_filter_hash_lock); 1580 ether_addr_copy(netdev->dev_addr, addr->sa_data); 1581 if (vsi->type == I40E_VSI_MAIN) { 1582 i40e_status ret; 1583 1584 ret = i40e_aq_mac_address_write(&vsi->back->hw, 1585 I40E_AQC_WRITE_TYPE_LAA_WOL, 1586 addr->sa_data, NULL); 1587 if (ret) 1588 netdev_info(netdev, "Ignoring error from firmware on LAA update, status %s, AQ ret %s\n", 1589 i40e_stat_str(hw, ret), 1590 i40e_aq_str(hw, hw->aq.asq_last_status)); 1591 } 1592 1593 /* schedule our worker thread which will take care of 1594 * applying the new filter changes 1595 */ 1596 i40e_service_event_schedule(vsi->back); 1597 return 0; 1598 } 1599 1600 /** 1601 * i40e_config_rss_aq - Prepare for RSS using AQ commands 1602 * @vsi: vsi structure 1603 * @seed: RSS hash seed 1604 **/ 1605 static int i40e_config_rss_aq(struct i40e_vsi *vsi, const u8 *seed, 1606 u8 *lut, u16 lut_size) 1607 { 1608 struct i40e_pf *pf = vsi->back; 1609 struct i40e_hw *hw = &pf->hw; 1610 int ret = 0; 1611 1612 if (seed) { 1613 struct i40e_aqc_get_set_rss_key_data *seed_dw = 1614 (struct i40e_aqc_get_set_rss_key_data *)seed; 1615 ret = i40e_aq_set_rss_key(hw, vsi->id, seed_dw); 1616 if (ret) { 1617 dev_info(&pf->pdev->dev, 1618 "Cannot set RSS key, err %s aq_err %s\n", 1619 i40e_stat_str(hw, ret), 1620 i40e_aq_str(hw, hw->aq.asq_last_status)); 1621 return ret; 1622 } 1623 } 1624 if (lut) { 1625 bool pf_lut = vsi->type == I40E_VSI_MAIN ? true : false; 1626 1627 ret = i40e_aq_set_rss_lut(hw, vsi->id, pf_lut, lut, lut_size); 1628 if (ret) { 1629 dev_info(&pf->pdev->dev, 1630 "Cannot set RSS lut, err %s aq_err %s\n", 1631 i40e_stat_str(hw, ret), 1632 i40e_aq_str(hw, hw->aq.asq_last_status)); 1633 return ret; 1634 } 1635 } 1636 return ret; 1637 } 1638 1639 /** 1640 * i40e_vsi_config_rss - Prepare for VSI(VMDq) RSS if used 1641 * @vsi: VSI structure 1642 **/ 1643 static int i40e_vsi_config_rss(struct i40e_vsi *vsi) 1644 { 1645 struct i40e_pf *pf = vsi->back; 1646 u8 seed[I40E_HKEY_ARRAY_SIZE]; 1647 u8 *lut; 1648 int ret; 1649 1650 if (!(pf->hw_features & I40E_HW_RSS_AQ_CAPABLE)) 1651 return 0; 1652 if (!vsi->rss_size) 1653 vsi->rss_size = min_t(int, pf->alloc_rss_size, 1654 vsi->num_queue_pairs); 1655 if (!vsi->rss_size) 1656 return -EINVAL; 1657 lut = kzalloc(vsi->rss_table_size, GFP_KERNEL); 1658 if (!lut) 1659 return -ENOMEM; 1660 1661 /* Use the user configured hash keys and lookup table if there is one, 1662 * otherwise use default 1663 */ 1664 if (vsi->rss_lut_user) 1665 memcpy(lut, vsi->rss_lut_user, vsi->rss_table_size); 1666 else 1667 i40e_fill_rss_lut(pf, lut, vsi->rss_table_size, vsi->rss_size); 1668 if (vsi->rss_hkey_user) 1669 memcpy(seed, vsi->rss_hkey_user, I40E_HKEY_ARRAY_SIZE); 1670 else 1671 netdev_rss_key_fill((void *)seed, I40E_HKEY_ARRAY_SIZE); 1672 ret = i40e_config_rss_aq(vsi, seed, lut, vsi->rss_table_size); 1673 kfree(lut); 1674 return ret; 1675 } 1676 1677 /** 1678 * i40e_vsi_setup_queue_map_mqprio - Prepares mqprio based tc_config 1679 * @vsi: the VSI being configured, 1680 * @ctxt: VSI context structure 1681 * @enabled_tc: number of traffic classes to enable 1682 * 1683 * Prepares VSI tc_config to have queue configurations based on MQPRIO options. 1684 **/ 1685 static int i40e_vsi_setup_queue_map_mqprio(struct i40e_vsi *vsi, 1686 struct i40e_vsi_context *ctxt, 1687 u8 enabled_tc) 1688 { 1689 u16 qcount = 0, max_qcount, qmap, sections = 0; 1690 int i, override_q, pow, num_qps, ret; 1691 u8 netdev_tc = 0, offset = 0; 1692 1693 if (vsi->type != I40E_VSI_MAIN) 1694 return -EINVAL; 1695 sections = I40E_AQ_VSI_PROP_QUEUE_MAP_VALID; 1696 sections |= I40E_AQ_VSI_PROP_SCHED_VALID; 1697 vsi->tc_config.numtc = vsi->mqprio_qopt.qopt.num_tc; 1698 vsi->tc_config.enabled_tc = enabled_tc ? enabled_tc : 1; 1699 num_qps = vsi->mqprio_qopt.qopt.count[0]; 1700 1701 /* find the next higher power-of-2 of num queue pairs */ 1702 pow = ilog2(num_qps); 1703 if (!is_power_of_2(num_qps)) 1704 pow++; 1705 qmap = (offset << I40E_AQ_VSI_TC_QUE_OFFSET_SHIFT) | 1706 (pow << I40E_AQ_VSI_TC_QUE_NUMBER_SHIFT); 1707 1708 /* Setup queue offset/count for all TCs for given VSI */ 1709 max_qcount = vsi->mqprio_qopt.qopt.count[0]; 1710 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 1711 /* See if the given TC is enabled for the given VSI */ 1712 if (vsi->tc_config.enabled_tc & BIT(i)) { 1713 offset = vsi->mqprio_qopt.qopt.offset[i]; 1714 qcount = vsi->mqprio_qopt.qopt.count[i]; 1715 if (qcount > max_qcount) 1716 max_qcount = qcount; 1717 vsi->tc_config.tc_info[i].qoffset = offset; 1718 vsi->tc_config.tc_info[i].qcount = qcount; 1719 vsi->tc_config.tc_info[i].netdev_tc = netdev_tc++; 1720 } else { 1721 /* TC is not enabled so set the offset to 1722 * default queue and allocate one queue 1723 * for the given TC. 1724 */ 1725 vsi->tc_config.tc_info[i].qoffset = 0; 1726 vsi->tc_config.tc_info[i].qcount = 1; 1727 vsi->tc_config.tc_info[i].netdev_tc = 0; 1728 } 1729 } 1730 1731 /* Set actual Tx/Rx queue pairs */ 1732 vsi->num_queue_pairs = offset + qcount; 1733 1734 /* Setup queue TC[0].qmap for given VSI context */ 1735 ctxt->info.tc_mapping[0] = cpu_to_le16(qmap); 1736 ctxt->info.mapping_flags |= cpu_to_le16(I40E_AQ_VSI_QUE_MAP_CONTIG); 1737 ctxt->info.queue_mapping[0] = cpu_to_le16(vsi->base_queue); 1738 ctxt->info.valid_sections |= cpu_to_le16(sections); 1739 1740 /* Reconfigure RSS for main VSI with max queue count */ 1741 vsi->rss_size = max_qcount; 1742 ret = i40e_vsi_config_rss(vsi); 1743 if (ret) { 1744 dev_info(&vsi->back->pdev->dev, 1745 "Failed to reconfig rss for num_queues (%u)\n", 1746 max_qcount); 1747 return ret; 1748 } 1749 vsi->reconfig_rss = true; 1750 dev_dbg(&vsi->back->pdev->dev, 1751 "Reconfigured rss with num_queues (%u)\n", max_qcount); 1752 1753 /* Find queue count available for channel VSIs and starting offset 1754 * for channel VSIs 1755 */ 1756 override_q = vsi->mqprio_qopt.qopt.count[0]; 1757 if (override_q && override_q < vsi->num_queue_pairs) { 1758 vsi->cnt_q_avail = vsi->num_queue_pairs - override_q; 1759 vsi->next_base_queue = override_q; 1760 } 1761 return 0; 1762 } 1763 1764 /** 1765 * i40e_vsi_setup_queue_map - Setup a VSI queue map based on enabled_tc 1766 * @vsi: the VSI being setup 1767 * @ctxt: VSI context structure 1768 * @enabled_tc: Enabled TCs bitmap 1769 * @is_add: True if called before Add VSI 1770 * 1771 * Setup VSI queue mapping for enabled traffic classes. 1772 **/ 1773 static void i40e_vsi_setup_queue_map(struct i40e_vsi *vsi, 1774 struct i40e_vsi_context *ctxt, 1775 u8 enabled_tc, 1776 bool is_add) 1777 { 1778 struct i40e_pf *pf = vsi->back; 1779 u16 sections = 0; 1780 u8 netdev_tc = 0; 1781 u16 numtc = 0; 1782 u16 qcount; 1783 u8 offset; 1784 u16 qmap; 1785 int i; 1786 u16 num_tc_qps = 0; 1787 1788 sections = I40E_AQ_VSI_PROP_QUEUE_MAP_VALID; 1789 offset = 0; 1790 1791 if (enabled_tc && (vsi->back->flags & I40E_FLAG_DCB_ENABLED)) { 1792 /* Find numtc from enabled TC bitmap */ 1793 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 1794 if (enabled_tc & BIT(i)) /* TC is enabled */ 1795 numtc++; 1796 } 1797 if (!numtc) { 1798 dev_warn(&pf->pdev->dev, "DCB is enabled but no TC enabled, forcing TC0\n"); 1799 numtc = 1; 1800 } 1801 } else { 1802 /* At least TC0 is enabled in non-DCB, non-MQPRIO case */ 1803 numtc = 1; 1804 } 1805 1806 vsi->tc_config.numtc = numtc; 1807 vsi->tc_config.enabled_tc = enabled_tc ? enabled_tc : 1; 1808 /* Number of queues per enabled TC */ 1809 qcount = vsi->alloc_queue_pairs; 1810 1811 num_tc_qps = qcount / numtc; 1812 num_tc_qps = min_t(int, num_tc_qps, i40e_pf_get_max_q_per_tc(pf)); 1813 1814 /* Setup queue offset/count for all TCs for given VSI */ 1815 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 1816 /* See if the given TC is enabled for the given VSI */ 1817 if (vsi->tc_config.enabled_tc & BIT(i)) { 1818 /* TC is enabled */ 1819 int pow, num_qps; 1820 1821 switch (vsi->type) { 1822 case I40E_VSI_MAIN: 1823 qcount = min_t(int, pf->alloc_rss_size, 1824 num_tc_qps); 1825 break; 1826 case I40E_VSI_FDIR: 1827 case I40E_VSI_SRIOV: 1828 case I40E_VSI_VMDQ2: 1829 default: 1830 qcount = num_tc_qps; 1831 WARN_ON(i != 0); 1832 break; 1833 } 1834 vsi->tc_config.tc_info[i].qoffset = offset; 1835 vsi->tc_config.tc_info[i].qcount = qcount; 1836 1837 /* find the next higher power-of-2 of num queue pairs */ 1838 num_qps = qcount; 1839 pow = 0; 1840 while (num_qps && (BIT_ULL(pow) < qcount)) { 1841 pow++; 1842 num_qps >>= 1; 1843 } 1844 1845 vsi->tc_config.tc_info[i].netdev_tc = netdev_tc++; 1846 qmap = 1847 (offset << I40E_AQ_VSI_TC_QUE_OFFSET_SHIFT) | 1848 (pow << I40E_AQ_VSI_TC_QUE_NUMBER_SHIFT); 1849 1850 offset += qcount; 1851 } else { 1852 /* TC is not enabled so set the offset to 1853 * default queue and allocate one queue 1854 * for the given TC. 1855 */ 1856 vsi->tc_config.tc_info[i].qoffset = 0; 1857 vsi->tc_config.tc_info[i].qcount = 1; 1858 vsi->tc_config.tc_info[i].netdev_tc = 0; 1859 1860 qmap = 0; 1861 } 1862 ctxt->info.tc_mapping[i] = cpu_to_le16(qmap); 1863 } 1864 1865 /* Set actual Tx/Rx queue pairs */ 1866 vsi->num_queue_pairs = offset; 1867 if ((vsi->type == I40E_VSI_MAIN) && (numtc == 1)) { 1868 if (vsi->req_queue_pairs > 0) 1869 vsi->num_queue_pairs = vsi->req_queue_pairs; 1870 else if (pf->flags & I40E_FLAG_MSIX_ENABLED) 1871 vsi->num_queue_pairs = pf->num_lan_msix; 1872 } 1873 1874 /* Scheduler section valid can only be set for ADD VSI */ 1875 if (is_add) { 1876 sections |= I40E_AQ_VSI_PROP_SCHED_VALID; 1877 1878 ctxt->info.up_enable_bits = enabled_tc; 1879 } 1880 if (vsi->type == I40E_VSI_SRIOV) { 1881 ctxt->info.mapping_flags |= 1882 cpu_to_le16(I40E_AQ_VSI_QUE_MAP_NONCONTIG); 1883 for (i = 0; i < vsi->num_queue_pairs; i++) 1884 ctxt->info.queue_mapping[i] = 1885 cpu_to_le16(vsi->base_queue + i); 1886 } else { 1887 ctxt->info.mapping_flags |= 1888 cpu_to_le16(I40E_AQ_VSI_QUE_MAP_CONTIG); 1889 ctxt->info.queue_mapping[0] = cpu_to_le16(vsi->base_queue); 1890 } 1891 ctxt->info.valid_sections |= cpu_to_le16(sections); 1892 } 1893 1894 /** 1895 * i40e_addr_sync - Callback for dev_(mc|uc)_sync to add address 1896 * @netdev: the netdevice 1897 * @addr: address to add 1898 * 1899 * Called by __dev_(mc|uc)_sync when an address needs to be added. We call 1900 * __dev_(uc|mc)_sync from .set_rx_mode and guarantee to hold the hash lock. 1901 */ 1902 static int i40e_addr_sync(struct net_device *netdev, const u8 *addr) 1903 { 1904 struct i40e_netdev_priv *np = netdev_priv(netdev); 1905 struct i40e_vsi *vsi = np->vsi; 1906 1907 if (i40e_add_mac_filter(vsi, addr)) 1908 return 0; 1909 else 1910 return -ENOMEM; 1911 } 1912 1913 /** 1914 * i40e_addr_unsync - Callback for dev_(mc|uc)_sync to remove address 1915 * @netdev: the netdevice 1916 * @addr: address to add 1917 * 1918 * Called by __dev_(mc|uc)_sync when an address needs to be removed. We call 1919 * __dev_(uc|mc)_sync from .set_rx_mode and guarantee to hold the hash lock. 1920 */ 1921 static int i40e_addr_unsync(struct net_device *netdev, const u8 *addr) 1922 { 1923 struct i40e_netdev_priv *np = netdev_priv(netdev); 1924 struct i40e_vsi *vsi = np->vsi; 1925 1926 i40e_del_mac_filter(vsi, addr); 1927 1928 return 0; 1929 } 1930 1931 /** 1932 * i40e_set_rx_mode - NDO callback to set the netdev filters 1933 * @netdev: network interface device structure 1934 **/ 1935 static void i40e_set_rx_mode(struct net_device *netdev) 1936 { 1937 struct i40e_netdev_priv *np = netdev_priv(netdev); 1938 struct i40e_vsi *vsi = np->vsi; 1939 1940 spin_lock_bh(&vsi->mac_filter_hash_lock); 1941 1942 __dev_uc_sync(netdev, i40e_addr_sync, i40e_addr_unsync); 1943 __dev_mc_sync(netdev, i40e_addr_sync, i40e_addr_unsync); 1944 1945 spin_unlock_bh(&vsi->mac_filter_hash_lock); 1946 1947 /* check for other flag changes */ 1948 if (vsi->current_netdev_flags != vsi->netdev->flags) { 1949 vsi->flags |= I40E_VSI_FLAG_FILTER_CHANGED; 1950 vsi->back->flags |= I40E_FLAG_FILTER_SYNC; 1951 } 1952 } 1953 1954 /** 1955 * i40e_undo_del_filter_entries - Undo the changes made to MAC filter entries 1956 * @vsi: Pointer to VSI struct 1957 * @from: Pointer to list which contains MAC filter entries - changes to 1958 * those entries needs to be undone. 1959 * 1960 * MAC filter entries from this list were slated for deletion. 1961 **/ 1962 static void i40e_undo_del_filter_entries(struct i40e_vsi *vsi, 1963 struct hlist_head *from) 1964 { 1965 struct i40e_mac_filter *f; 1966 struct hlist_node *h; 1967 1968 hlist_for_each_entry_safe(f, h, from, hlist) { 1969 u64 key = i40e_addr_to_hkey(f->macaddr); 1970 1971 /* Move the element back into MAC filter list*/ 1972 hlist_del(&f->hlist); 1973 hash_add(vsi->mac_filter_hash, &f->hlist, key); 1974 } 1975 } 1976 1977 /** 1978 * i40e_undo_add_filter_entries - Undo the changes made to MAC filter entries 1979 * @vsi: Pointer to vsi struct 1980 * @from: Pointer to list which contains MAC filter entries - changes to 1981 * those entries needs to be undone. 1982 * 1983 * MAC filter entries from this list were slated for addition. 1984 **/ 1985 static void i40e_undo_add_filter_entries(struct i40e_vsi *vsi, 1986 struct hlist_head *from) 1987 { 1988 struct i40e_new_mac_filter *new; 1989 struct hlist_node *h; 1990 1991 hlist_for_each_entry_safe(new, h, from, hlist) { 1992 /* We can simply free the wrapper structure */ 1993 hlist_del(&new->hlist); 1994 kfree(new); 1995 } 1996 } 1997 1998 /** 1999 * i40e_next_entry - Get the next non-broadcast filter from a list 2000 * @next: pointer to filter in list 2001 * 2002 * Returns the next non-broadcast filter in the list. Required so that we 2003 * ignore broadcast filters within the list, since these are not handled via 2004 * the normal firmware update path. 2005 */ 2006 static 2007 struct i40e_new_mac_filter *i40e_next_filter(struct i40e_new_mac_filter *next) 2008 { 2009 hlist_for_each_entry_continue(next, hlist) { 2010 if (!is_broadcast_ether_addr(next->f->macaddr)) 2011 return next; 2012 } 2013 2014 return NULL; 2015 } 2016 2017 /** 2018 * i40e_update_filter_state - Update filter state based on return data 2019 * from firmware 2020 * @count: Number of filters added 2021 * @add_list: return data from fw 2022 * @head: pointer to first filter in current batch 2023 * 2024 * MAC filter entries from list were slated to be added to device. Returns 2025 * number of successful filters. Note that 0 does NOT mean success! 2026 **/ 2027 static int 2028 i40e_update_filter_state(int count, 2029 struct i40e_aqc_add_macvlan_element_data *add_list, 2030 struct i40e_new_mac_filter *add_head) 2031 { 2032 int retval = 0; 2033 int i; 2034 2035 for (i = 0; i < count; i++) { 2036 /* Always check status of each filter. We don't need to check 2037 * the firmware return status because we pre-set the filter 2038 * status to I40E_AQC_MM_ERR_NO_RES when sending the filter 2039 * request to the adminq. Thus, if it no longer matches then 2040 * we know the filter is active. 2041 */ 2042 if (add_list[i].match_method == I40E_AQC_MM_ERR_NO_RES) { 2043 add_head->state = I40E_FILTER_FAILED; 2044 } else { 2045 add_head->state = I40E_FILTER_ACTIVE; 2046 retval++; 2047 } 2048 2049 add_head = i40e_next_filter(add_head); 2050 if (!add_head) 2051 break; 2052 } 2053 2054 return retval; 2055 } 2056 2057 /** 2058 * i40e_aqc_del_filters - Request firmware to delete a set of filters 2059 * @vsi: ptr to the VSI 2060 * @vsi_name: name to display in messages 2061 * @list: the list of filters to send to firmware 2062 * @num_del: the number of filters to delete 2063 * @retval: Set to -EIO on failure to delete 2064 * 2065 * Send a request to firmware via AdminQ to delete a set of filters. Uses 2066 * *retval instead of a return value so that success does not force ret_val to 2067 * be set to 0. This ensures that a sequence of calls to this function 2068 * preserve the previous value of *retval on successful delete. 2069 */ 2070 static 2071 void i40e_aqc_del_filters(struct i40e_vsi *vsi, const char *vsi_name, 2072 struct i40e_aqc_remove_macvlan_element_data *list, 2073 int num_del, int *retval) 2074 { 2075 struct i40e_hw *hw = &vsi->back->hw; 2076 i40e_status aq_ret; 2077 int aq_err; 2078 2079 aq_ret = i40e_aq_remove_macvlan(hw, vsi->seid, list, num_del, NULL); 2080 aq_err = hw->aq.asq_last_status; 2081 2082 /* Explicitly ignore and do not report when firmware returns ENOENT */ 2083 if (aq_ret && !(aq_err == I40E_AQ_RC_ENOENT)) { 2084 *retval = -EIO; 2085 dev_info(&vsi->back->pdev->dev, 2086 "ignoring delete macvlan error on %s, err %s, aq_err %s\n", 2087 vsi_name, i40e_stat_str(hw, aq_ret), 2088 i40e_aq_str(hw, aq_err)); 2089 } 2090 } 2091 2092 /** 2093 * i40e_aqc_add_filters - Request firmware to add a set of filters 2094 * @vsi: ptr to the VSI 2095 * @vsi_name: name to display in messages 2096 * @list: the list of filters to send to firmware 2097 * @add_head: Position in the add hlist 2098 * @num_add: the number of filters to add 2099 * @promisc_change: set to true on exit if promiscuous mode was forced on 2100 * 2101 * Send a request to firmware via AdminQ to add a chunk of filters. Will set 2102 * promisc_changed to true if the firmware has run out of space for more 2103 * filters. 2104 */ 2105 static 2106 void i40e_aqc_add_filters(struct i40e_vsi *vsi, const char *vsi_name, 2107 struct i40e_aqc_add_macvlan_element_data *list, 2108 struct i40e_new_mac_filter *add_head, 2109 int num_add, bool *promisc_changed) 2110 { 2111 struct i40e_hw *hw = &vsi->back->hw; 2112 int aq_err, fcnt; 2113 2114 i40e_aq_add_macvlan(hw, vsi->seid, list, num_add, NULL); 2115 aq_err = hw->aq.asq_last_status; 2116 fcnt = i40e_update_filter_state(num_add, list, add_head); 2117 2118 if (fcnt != num_add) { 2119 *promisc_changed = true; 2120 set_bit(__I40E_VSI_OVERFLOW_PROMISC, vsi->state); 2121 dev_warn(&vsi->back->pdev->dev, 2122 "Error %s adding RX filters on %s, promiscuous mode forced on\n", 2123 i40e_aq_str(hw, aq_err), 2124 vsi_name); 2125 } 2126 } 2127 2128 /** 2129 * i40e_aqc_broadcast_filter - Set promiscuous broadcast flags 2130 * @vsi: pointer to the VSI 2131 * @f: filter data 2132 * 2133 * This function sets or clears the promiscuous broadcast flags for VLAN 2134 * filters in order to properly receive broadcast frames. Assumes that only 2135 * broadcast filters are passed. 2136 * 2137 * Returns status indicating success or failure; 2138 **/ 2139 static i40e_status 2140 i40e_aqc_broadcast_filter(struct i40e_vsi *vsi, const char *vsi_name, 2141 struct i40e_mac_filter *f) 2142 { 2143 bool enable = f->state == I40E_FILTER_NEW; 2144 struct i40e_hw *hw = &vsi->back->hw; 2145 i40e_status aq_ret; 2146 2147 if (f->vlan == I40E_VLAN_ANY) { 2148 aq_ret = i40e_aq_set_vsi_broadcast(hw, 2149 vsi->seid, 2150 enable, 2151 NULL); 2152 } else { 2153 aq_ret = i40e_aq_set_vsi_bc_promisc_on_vlan(hw, 2154 vsi->seid, 2155 enable, 2156 f->vlan, 2157 NULL); 2158 } 2159 2160 if (aq_ret) 2161 dev_warn(&vsi->back->pdev->dev, 2162 "Error %s setting broadcast promiscuous mode on %s\n", 2163 i40e_aq_str(hw, hw->aq.asq_last_status), 2164 vsi_name); 2165 2166 return aq_ret; 2167 } 2168 2169 /** 2170 * i40e_set_promiscuous - set promiscuous mode 2171 * @pf: board private structure 2172 * @promisc: promisc on or off 2173 * 2174 * There are different ways of setting promiscuous mode on a PF depending on 2175 * what state/environment we're in. This identifies and sets it appropriately. 2176 * Returns 0 on success. 2177 **/ 2178 static int i40e_set_promiscuous(struct i40e_pf *pf, bool promisc) 2179 { 2180 struct i40e_vsi *vsi = pf->vsi[pf->lan_vsi]; 2181 struct i40e_hw *hw = &pf->hw; 2182 i40e_status aq_ret; 2183 2184 if (vsi->type == I40E_VSI_MAIN && 2185 pf->lan_veb != I40E_NO_VEB && 2186 !(pf->flags & I40E_FLAG_MFP_ENABLED)) { 2187 /* set defport ON for Main VSI instead of true promisc 2188 * this way we will get all unicast/multicast and VLAN 2189 * promisc behavior but will not get VF or VMDq traffic 2190 * replicated on the Main VSI. 2191 */ 2192 if (promisc) 2193 aq_ret = i40e_aq_set_default_vsi(hw, 2194 vsi->seid, 2195 NULL); 2196 else 2197 aq_ret = i40e_aq_clear_default_vsi(hw, 2198 vsi->seid, 2199 NULL); 2200 if (aq_ret) { 2201 dev_info(&pf->pdev->dev, 2202 "Set default VSI failed, err %s, aq_err %s\n", 2203 i40e_stat_str(hw, aq_ret), 2204 i40e_aq_str(hw, hw->aq.asq_last_status)); 2205 } 2206 } else { 2207 aq_ret = i40e_aq_set_vsi_unicast_promiscuous( 2208 hw, 2209 vsi->seid, 2210 promisc, NULL, 2211 true); 2212 if (aq_ret) { 2213 dev_info(&pf->pdev->dev, 2214 "set unicast promisc failed, err %s, aq_err %s\n", 2215 i40e_stat_str(hw, aq_ret), 2216 i40e_aq_str(hw, hw->aq.asq_last_status)); 2217 } 2218 aq_ret = i40e_aq_set_vsi_multicast_promiscuous( 2219 hw, 2220 vsi->seid, 2221 promisc, NULL); 2222 if (aq_ret) { 2223 dev_info(&pf->pdev->dev, 2224 "set multicast promisc failed, err %s, aq_err %s\n", 2225 i40e_stat_str(hw, aq_ret), 2226 i40e_aq_str(hw, hw->aq.asq_last_status)); 2227 } 2228 } 2229 2230 if (!aq_ret) 2231 pf->cur_promisc = promisc; 2232 2233 return aq_ret; 2234 } 2235 2236 /** 2237 * i40e_sync_vsi_filters - Update the VSI filter list to the HW 2238 * @vsi: ptr to the VSI 2239 * 2240 * Push any outstanding VSI filter changes through the AdminQ. 2241 * 2242 * Returns 0 or error value 2243 **/ 2244 int i40e_sync_vsi_filters(struct i40e_vsi *vsi) 2245 { 2246 struct hlist_head tmp_add_list, tmp_del_list; 2247 struct i40e_mac_filter *f; 2248 struct i40e_new_mac_filter *new, *add_head = NULL; 2249 struct i40e_hw *hw = &vsi->back->hw; 2250 unsigned int failed_filters = 0; 2251 unsigned int vlan_filters = 0; 2252 bool promisc_changed = false; 2253 char vsi_name[16] = "PF"; 2254 int filter_list_len = 0; 2255 i40e_status aq_ret = 0; 2256 u32 changed_flags = 0; 2257 struct hlist_node *h; 2258 struct i40e_pf *pf; 2259 int num_add = 0; 2260 int num_del = 0; 2261 int retval = 0; 2262 u16 cmd_flags; 2263 int list_size; 2264 int bkt; 2265 2266 /* empty array typed pointers, kcalloc later */ 2267 struct i40e_aqc_add_macvlan_element_data *add_list; 2268 struct i40e_aqc_remove_macvlan_element_data *del_list; 2269 2270 while (test_and_set_bit(__I40E_VSI_SYNCING_FILTERS, vsi->state)) 2271 usleep_range(1000, 2000); 2272 pf = vsi->back; 2273 2274 if (vsi->netdev) { 2275 changed_flags = vsi->current_netdev_flags ^ vsi->netdev->flags; 2276 vsi->current_netdev_flags = vsi->netdev->flags; 2277 } 2278 2279 INIT_HLIST_HEAD(&tmp_add_list); 2280 INIT_HLIST_HEAD(&tmp_del_list); 2281 2282 if (vsi->type == I40E_VSI_SRIOV) 2283 snprintf(vsi_name, sizeof(vsi_name) - 1, "VF %d", vsi->vf_id); 2284 else if (vsi->type != I40E_VSI_MAIN) 2285 snprintf(vsi_name, sizeof(vsi_name) - 1, "vsi %d", vsi->seid); 2286 2287 if (vsi->flags & I40E_VSI_FLAG_FILTER_CHANGED) { 2288 vsi->flags &= ~I40E_VSI_FLAG_FILTER_CHANGED; 2289 2290 spin_lock_bh(&vsi->mac_filter_hash_lock); 2291 /* Create a list of filters to delete. */ 2292 hash_for_each_safe(vsi->mac_filter_hash, bkt, h, f, hlist) { 2293 if (f->state == I40E_FILTER_REMOVE) { 2294 /* Move the element into temporary del_list */ 2295 hash_del(&f->hlist); 2296 hlist_add_head(&f->hlist, &tmp_del_list); 2297 2298 /* Avoid counting removed filters */ 2299 continue; 2300 } 2301 if (f->state == I40E_FILTER_NEW) { 2302 /* Create a temporary i40e_new_mac_filter */ 2303 new = kzalloc(sizeof(*new), GFP_ATOMIC); 2304 if (!new) 2305 goto err_no_memory_locked; 2306 2307 /* Store pointer to the real filter */ 2308 new->f = f; 2309 new->state = f->state; 2310 2311 /* Add it to the hash list */ 2312 hlist_add_head(&new->hlist, &tmp_add_list); 2313 } 2314 2315 /* Count the number of active (current and new) VLAN 2316 * filters we have now. Does not count filters which 2317 * are marked for deletion. 2318 */ 2319 if (f->vlan > 0) 2320 vlan_filters++; 2321 } 2322 2323 retval = i40e_correct_mac_vlan_filters(vsi, 2324 &tmp_add_list, 2325 &tmp_del_list, 2326 vlan_filters); 2327 if (retval) 2328 goto err_no_memory_locked; 2329 2330 spin_unlock_bh(&vsi->mac_filter_hash_lock); 2331 } 2332 2333 /* Now process 'del_list' outside the lock */ 2334 if (!hlist_empty(&tmp_del_list)) { 2335 filter_list_len = hw->aq.asq_buf_size / 2336 sizeof(struct i40e_aqc_remove_macvlan_element_data); 2337 list_size = filter_list_len * 2338 sizeof(struct i40e_aqc_remove_macvlan_element_data); 2339 del_list = kzalloc(list_size, GFP_ATOMIC); 2340 if (!del_list) 2341 goto err_no_memory; 2342 2343 hlist_for_each_entry_safe(f, h, &tmp_del_list, hlist) { 2344 cmd_flags = 0; 2345 2346 /* handle broadcast filters by updating the broadcast 2347 * promiscuous flag and release filter list. 2348 */ 2349 if (is_broadcast_ether_addr(f->macaddr)) { 2350 i40e_aqc_broadcast_filter(vsi, vsi_name, f); 2351 2352 hlist_del(&f->hlist); 2353 kfree(f); 2354 continue; 2355 } 2356 2357 /* add to delete list */ 2358 ether_addr_copy(del_list[num_del].mac_addr, f->macaddr); 2359 if (f->vlan == I40E_VLAN_ANY) { 2360 del_list[num_del].vlan_tag = 0; 2361 cmd_flags |= I40E_AQC_MACVLAN_DEL_IGNORE_VLAN; 2362 } else { 2363 del_list[num_del].vlan_tag = 2364 cpu_to_le16((u16)(f->vlan)); 2365 } 2366 2367 cmd_flags |= I40E_AQC_MACVLAN_DEL_PERFECT_MATCH; 2368 del_list[num_del].flags = cmd_flags; 2369 num_del++; 2370 2371 /* flush a full buffer */ 2372 if (num_del == filter_list_len) { 2373 i40e_aqc_del_filters(vsi, vsi_name, del_list, 2374 num_del, &retval); 2375 memset(del_list, 0, list_size); 2376 num_del = 0; 2377 } 2378 /* Release memory for MAC filter entries which were 2379 * synced up with HW. 2380 */ 2381 hlist_del(&f->hlist); 2382 kfree(f); 2383 } 2384 2385 if (num_del) { 2386 i40e_aqc_del_filters(vsi, vsi_name, del_list, 2387 num_del, &retval); 2388 } 2389 2390 kfree(del_list); 2391 del_list = NULL; 2392 } 2393 2394 if (!hlist_empty(&tmp_add_list)) { 2395 /* Do all the adds now. */ 2396 filter_list_len = hw->aq.asq_buf_size / 2397 sizeof(struct i40e_aqc_add_macvlan_element_data); 2398 list_size = filter_list_len * 2399 sizeof(struct i40e_aqc_add_macvlan_element_data); 2400 add_list = kzalloc(list_size, GFP_ATOMIC); 2401 if (!add_list) 2402 goto err_no_memory; 2403 2404 num_add = 0; 2405 hlist_for_each_entry_safe(new, h, &tmp_add_list, hlist) { 2406 if (test_bit(__I40E_VSI_OVERFLOW_PROMISC, 2407 vsi->state)) { 2408 new->state = I40E_FILTER_FAILED; 2409 continue; 2410 } 2411 2412 /* handle broadcast filters by updating the broadcast 2413 * promiscuous flag instead of adding a MAC filter. 2414 */ 2415 if (is_broadcast_ether_addr(new->f->macaddr)) { 2416 if (i40e_aqc_broadcast_filter(vsi, vsi_name, 2417 new->f)) 2418 new->state = I40E_FILTER_FAILED; 2419 else 2420 new->state = I40E_FILTER_ACTIVE; 2421 continue; 2422 } 2423 2424 /* add to add array */ 2425 if (num_add == 0) 2426 add_head = new; 2427 cmd_flags = 0; 2428 ether_addr_copy(add_list[num_add].mac_addr, 2429 new->f->macaddr); 2430 if (new->f->vlan == I40E_VLAN_ANY) { 2431 add_list[num_add].vlan_tag = 0; 2432 cmd_flags |= I40E_AQC_MACVLAN_ADD_IGNORE_VLAN; 2433 } else { 2434 add_list[num_add].vlan_tag = 2435 cpu_to_le16((u16)(new->f->vlan)); 2436 } 2437 add_list[num_add].queue_number = 0; 2438 /* set invalid match method for later detection */ 2439 add_list[num_add].match_method = I40E_AQC_MM_ERR_NO_RES; 2440 cmd_flags |= I40E_AQC_MACVLAN_ADD_PERFECT_MATCH; 2441 add_list[num_add].flags = cpu_to_le16(cmd_flags); 2442 num_add++; 2443 2444 /* flush a full buffer */ 2445 if (num_add == filter_list_len) { 2446 i40e_aqc_add_filters(vsi, vsi_name, add_list, 2447 add_head, num_add, 2448 &promisc_changed); 2449 memset(add_list, 0, list_size); 2450 num_add = 0; 2451 } 2452 } 2453 if (num_add) { 2454 i40e_aqc_add_filters(vsi, vsi_name, add_list, add_head, 2455 num_add, &promisc_changed); 2456 } 2457 /* Now move all of the filters from the temp add list back to 2458 * the VSI's list. 2459 */ 2460 spin_lock_bh(&vsi->mac_filter_hash_lock); 2461 hlist_for_each_entry_safe(new, h, &tmp_add_list, hlist) { 2462 /* Only update the state if we're still NEW */ 2463 if (new->f->state == I40E_FILTER_NEW) 2464 new->f->state = new->state; 2465 hlist_del(&new->hlist); 2466 kfree(new); 2467 } 2468 spin_unlock_bh(&vsi->mac_filter_hash_lock); 2469 kfree(add_list); 2470 add_list = NULL; 2471 } 2472 2473 /* Determine the number of active and failed filters. */ 2474 spin_lock_bh(&vsi->mac_filter_hash_lock); 2475 vsi->active_filters = 0; 2476 hash_for_each(vsi->mac_filter_hash, bkt, f, hlist) { 2477 if (f->state == I40E_FILTER_ACTIVE) 2478 vsi->active_filters++; 2479 else if (f->state == I40E_FILTER_FAILED) 2480 failed_filters++; 2481 } 2482 spin_unlock_bh(&vsi->mac_filter_hash_lock); 2483 2484 /* If promiscuous mode has changed, we need to calculate a new 2485 * threshold for when we are safe to exit 2486 */ 2487 if (promisc_changed) 2488 vsi->promisc_threshold = (vsi->active_filters * 3) / 4; 2489 2490 /* Check if we are able to exit overflow promiscuous mode. We can 2491 * safely exit if we didn't just enter, we no longer have any failed 2492 * filters, and we have reduced filters below the threshold value. 2493 */ 2494 if (test_bit(__I40E_VSI_OVERFLOW_PROMISC, vsi->state) && 2495 !promisc_changed && !failed_filters && 2496 (vsi->active_filters < vsi->promisc_threshold)) { 2497 dev_info(&pf->pdev->dev, 2498 "filter logjam cleared on %s, leaving overflow promiscuous mode\n", 2499 vsi_name); 2500 clear_bit(__I40E_VSI_OVERFLOW_PROMISC, vsi->state); 2501 promisc_changed = true; 2502 vsi->promisc_threshold = 0; 2503 } 2504 2505 /* if the VF is not trusted do not do promisc */ 2506 if ((vsi->type == I40E_VSI_SRIOV) && !pf->vf[vsi->vf_id].trusted) { 2507 clear_bit(__I40E_VSI_OVERFLOW_PROMISC, vsi->state); 2508 goto out; 2509 } 2510 2511 /* check for changes in promiscuous modes */ 2512 if (changed_flags & IFF_ALLMULTI) { 2513 bool cur_multipromisc; 2514 2515 cur_multipromisc = !!(vsi->current_netdev_flags & IFF_ALLMULTI); 2516 aq_ret = i40e_aq_set_vsi_multicast_promiscuous(&vsi->back->hw, 2517 vsi->seid, 2518 cur_multipromisc, 2519 NULL); 2520 if (aq_ret) { 2521 retval = i40e_aq_rc_to_posix(aq_ret, 2522 hw->aq.asq_last_status); 2523 dev_info(&pf->pdev->dev, 2524 "set multi promisc failed on %s, err %s aq_err %s\n", 2525 vsi_name, 2526 i40e_stat_str(hw, aq_ret), 2527 i40e_aq_str(hw, hw->aq.asq_last_status)); 2528 } 2529 } 2530 2531 if ((changed_flags & IFF_PROMISC) || promisc_changed) { 2532 bool cur_promisc; 2533 2534 cur_promisc = (!!(vsi->current_netdev_flags & IFF_PROMISC) || 2535 test_bit(__I40E_VSI_OVERFLOW_PROMISC, 2536 vsi->state)); 2537 aq_ret = i40e_set_promiscuous(pf, cur_promisc); 2538 if (aq_ret) { 2539 retval = i40e_aq_rc_to_posix(aq_ret, 2540 hw->aq.asq_last_status); 2541 dev_info(&pf->pdev->dev, 2542 "Setting promiscuous %s failed on %s, err %s aq_err %s\n", 2543 cur_promisc ? "on" : "off", 2544 vsi_name, 2545 i40e_stat_str(hw, aq_ret), 2546 i40e_aq_str(hw, hw->aq.asq_last_status)); 2547 } 2548 } 2549 out: 2550 /* if something went wrong then set the changed flag so we try again */ 2551 if (retval) 2552 vsi->flags |= I40E_VSI_FLAG_FILTER_CHANGED; 2553 2554 clear_bit(__I40E_VSI_SYNCING_FILTERS, vsi->state); 2555 return retval; 2556 2557 err_no_memory: 2558 /* Restore elements on the temporary add and delete lists */ 2559 spin_lock_bh(&vsi->mac_filter_hash_lock); 2560 err_no_memory_locked: 2561 i40e_undo_del_filter_entries(vsi, &tmp_del_list); 2562 i40e_undo_add_filter_entries(vsi, &tmp_add_list); 2563 spin_unlock_bh(&vsi->mac_filter_hash_lock); 2564 2565 vsi->flags |= I40E_VSI_FLAG_FILTER_CHANGED; 2566 clear_bit(__I40E_VSI_SYNCING_FILTERS, vsi->state); 2567 return -ENOMEM; 2568 } 2569 2570 /** 2571 * i40e_sync_filters_subtask - Sync the VSI filter list with HW 2572 * @pf: board private structure 2573 **/ 2574 static void i40e_sync_filters_subtask(struct i40e_pf *pf) 2575 { 2576 int v; 2577 2578 if (!pf || !(pf->flags & I40E_FLAG_FILTER_SYNC)) 2579 return; 2580 pf->flags &= ~I40E_FLAG_FILTER_SYNC; 2581 2582 for (v = 0; v < pf->num_alloc_vsi; v++) { 2583 if (pf->vsi[v] && 2584 (pf->vsi[v]->flags & I40E_VSI_FLAG_FILTER_CHANGED)) { 2585 int ret = i40e_sync_vsi_filters(pf->vsi[v]); 2586 2587 if (ret) { 2588 /* come back and try again later */ 2589 pf->flags |= I40E_FLAG_FILTER_SYNC; 2590 break; 2591 } 2592 } 2593 } 2594 } 2595 2596 /** 2597 * i40e_max_xdp_frame_size - returns the maximum allowed frame size for XDP 2598 * @vsi: the vsi 2599 **/ 2600 static int i40e_max_xdp_frame_size(struct i40e_vsi *vsi) 2601 { 2602 if (PAGE_SIZE >= 8192 || (vsi->back->flags & I40E_FLAG_LEGACY_RX)) 2603 return I40E_RXBUFFER_2048; 2604 else 2605 return I40E_RXBUFFER_3072; 2606 } 2607 2608 /** 2609 * i40e_change_mtu - NDO callback to change the Maximum Transfer Unit 2610 * @netdev: network interface device structure 2611 * @new_mtu: new value for maximum frame size 2612 * 2613 * Returns 0 on success, negative on failure 2614 **/ 2615 static int i40e_change_mtu(struct net_device *netdev, int new_mtu) 2616 { 2617 struct i40e_netdev_priv *np = netdev_priv(netdev); 2618 struct i40e_vsi *vsi = np->vsi; 2619 struct i40e_pf *pf = vsi->back; 2620 2621 if (i40e_enabled_xdp_vsi(vsi)) { 2622 int frame_size = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN; 2623 2624 if (frame_size > i40e_max_xdp_frame_size(vsi)) 2625 return -EINVAL; 2626 } 2627 2628 netdev_info(netdev, "changing MTU from %d to %d\n", 2629 netdev->mtu, new_mtu); 2630 netdev->mtu = new_mtu; 2631 if (netif_running(netdev)) 2632 i40e_vsi_reinit_locked(vsi); 2633 pf->flags |= (I40E_FLAG_SERVICE_CLIENT_REQUESTED | 2634 I40E_FLAG_CLIENT_L2_CHANGE); 2635 return 0; 2636 } 2637 2638 /** 2639 * i40e_ioctl - Access the hwtstamp interface 2640 * @netdev: network interface device structure 2641 * @ifr: interface request data 2642 * @cmd: ioctl command 2643 **/ 2644 int i40e_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) 2645 { 2646 struct i40e_netdev_priv *np = netdev_priv(netdev); 2647 struct i40e_pf *pf = np->vsi->back; 2648 2649 switch (cmd) { 2650 case SIOCGHWTSTAMP: 2651 return i40e_ptp_get_ts_config(pf, ifr); 2652 case SIOCSHWTSTAMP: 2653 return i40e_ptp_set_ts_config(pf, ifr); 2654 default: 2655 return -EOPNOTSUPP; 2656 } 2657 } 2658 2659 /** 2660 * i40e_vlan_stripping_enable - Turn on vlan stripping for the VSI 2661 * @vsi: the vsi being adjusted 2662 **/ 2663 void i40e_vlan_stripping_enable(struct i40e_vsi *vsi) 2664 { 2665 struct i40e_vsi_context ctxt; 2666 i40e_status ret; 2667 2668 if ((vsi->info.valid_sections & 2669 cpu_to_le16(I40E_AQ_VSI_PROP_VLAN_VALID)) && 2670 ((vsi->info.port_vlan_flags & I40E_AQ_VSI_PVLAN_MODE_MASK) == 0)) 2671 return; /* already enabled */ 2672 2673 vsi->info.valid_sections = cpu_to_le16(I40E_AQ_VSI_PROP_VLAN_VALID); 2674 vsi->info.port_vlan_flags = I40E_AQ_VSI_PVLAN_MODE_ALL | 2675 I40E_AQ_VSI_PVLAN_EMOD_STR_BOTH; 2676 2677 ctxt.seid = vsi->seid; 2678 ctxt.info = vsi->info; 2679 ret = i40e_aq_update_vsi_params(&vsi->back->hw, &ctxt, NULL); 2680 if (ret) { 2681 dev_info(&vsi->back->pdev->dev, 2682 "update vlan stripping failed, err %s aq_err %s\n", 2683 i40e_stat_str(&vsi->back->hw, ret), 2684 i40e_aq_str(&vsi->back->hw, 2685 vsi->back->hw.aq.asq_last_status)); 2686 } 2687 } 2688 2689 /** 2690 * i40e_vlan_stripping_disable - Turn off vlan stripping for the VSI 2691 * @vsi: the vsi being adjusted 2692 **/ 2693 void i40e_vlan_stripping_disable(struct i40e_vsi *vsi) 2694 { 2695 struct i40e_vsi_context ctxt; 2696 i40e_status ret; 2697 2698 if ((vsi->info.valid_sections & 2699 cpu_to_le16(I40E_AQ_VSI_PROP_VLAN_VALID)) && 2700 ((vsi->info.port_vlan_flags & I40E_AQ_VSI_PVLAN_EMOD_MASK) == 2701 I40E_AQ_VSI_PVLAN_EMOD_MASK)) 2702 return; /* already disabled */ 2703 2704 vsi->info.valid_sections = cpu_to_le16(I40E_AQ_VSI_PROP_VLAN_VALID); 2705 vsi->info.port_vlan_flags = I40E_AQ_VSI_PVLAN_MODE_ALL | 2706 I40E_AQ_VSI_PVLAN_EMOD_NOTHING; 2707 2708 ctxt.seid = vsi->seid; 2709 ctxt.info = vsi->info; 2710 ret = i40e_aq_update_vsi_params(&vsi->back->hw, &ctxt, NULL); 2711 if (ret) { 2712 dev_info(&vsi->back->pdev->dev, 2713 "update vlan stripping failed, err %s aq_err %s\n", 2714 i40e_stat_str(&vsi->back->hw, ret), 2715 i40e_aq_str(&vsi->back->hw, 2716 vsi->back->hw.aq.asq_last_status)); 2717 } 2718 } 2719 2720 /** 2721 * i40e_vlan_rx_register - Setup or shutdown vlan offload 2722 * @netdev: network interface to be adjusted 2723 * @features: netdev features to test if VLAN offload is enabled or not 2724 **/ 2725 static void i40e_vlan_rx_register(struct net_device *netdev, u32 features) 2726 { 2727 struct i40e_netdev_priv *np = netdev_priv(netdev); 2728 struct i40e_vsi *vsi = np->vsi; 2729 2730 if (features & NETIF_F_HW_VLAN_CTAG_RX) 2731 i40e_vlan_stripping_enable(vsi); 2732 else 2733 i40e_vlan_stripping_disable(vsi); 2734 } 2735 2736 /** 2737 * i40e_add_vlan_all_mac - Add a MAC/VLAN filter for each existing MAC address 2738 * @vsi: the vsi being configured 2739 * @vid: vlan id to be added (0 = untagged only , -1 = any) 2740 * 2741 * This is a helper function for adding a new MAC/VLAN filter with the 2742 * specified VLAN for each existing MAC address already in the hash table. 2743 * This function does *not* perform any accounting to update filters based on 2744 * VLAN mode. 2745 * 2746 * NOTE: this function expects to be called while under the 2747 * mac_filter_hash_lock 2748 **/ 2749 int i40e_add_vlan_all_mac(struct i40e_vsi *vsi, s16 vid) 2750 { 2751 struct i40e_mac_filter *f, *add_f; 2752 struct hlist_node *h; 2753 int bkt; 2754 2755 hash_for_each_safe(vsi->mac_filter_hash, bkt, h, f, hlist) { 2756 if (f->state == I40E_FILTER_REMOVE) 2757 continue; 2758 add_f = i40e_add_filter(vsi, f->macaddr, vid); 2759 if (!add_f) { 2760 dev_info(&vsi->back->pdev->dev, 2761 "Could not add vlan filter %d for %pM\n", 2762 vid, f->macaddr); 2763 return -ENOMEM; 2764 } 2765 } 2766 2767 return 0; 2768 } 2769 2770 /** 2771 * i40e_vsi_add_vlan - Add VSI membership for given VLAN 2772 * @vsi: the VSI being configured 2773 * @vid: VLAN id to be added 2774 **/ 2775 int i40e_vsi_add_vlan(struct i40e_vsi *vsi, u16 vid) 2776 { 2777 int err; 2778 2779 if (vsi->info.pvid) 2780 return -EINVAL; 2781 2782 /* The network stack will attempt to add VID=0, with the intention to 2783 * receive priority tagged packets with a VLAN of 0. Our HW receives 2784 * these packets by default when configured to receive untagged 2785 * packets, so we don't need to add a filter for this case. 2786 * Additionally, HW interprets adding a VID=0 filter as meaning to 2787 * receive *only* tagged traffic and stops receiving untagged traffic. 2788 * Thus, we do not want to actually add a filter for VID=0 2789 */ 2790 if (!vid) 2791 return 0; 2792 2793 /* Locked once because all functions invoked below iterates list*/ 2794 spin_lock_bh(&vsi->mac_filter_hash_lock); 2795 err = i40e_add_vlan_all_mac(vsi, vid); 2796 spin_unlock_bh(&vsi->mac_filter_hash_lock); 2797 if (err) 2798 return err; 2799 2800 /* schedule our worker thread which will take care of 2801 * applying the new filter changes 2802 */ 2803 i40e_service_event_schedule(vsi->back); 2804 return 0; 2805 } 2806 2807 /** 2808 * i40e_rm_vlan_all_mac - Remove MAC/VLAN pair for all MAC with the given VLAN 2809 * @vsi: the vsi being configured 2810 * @vid: vlan id to be removed (0 = untagged only , -1 = any) 2811 * 2812 * This function should be used to remove all VLAN filters which match the 2813 * given VID. It does not schedule the service event and does not take the 2814 * mac_filter_hash_lock so it may be combined with other operations under 2815 * a single invocation of the mac_filter_hash_lock. 2816 * 2817 * NOTE: this function expects to be called while under the 2818 * mac_filter_hash_lock 2819 */ 2820 void i40e_rm_vlan_all_mac(struct i40e_vsi *vsi, s16 vid) 2821 { 2822 struct i40e_mac_filter *f; 2823 struct hlist_node *h; 2824 int bkt; 2825 2826 hash_for_each_safe(vsi->mac_filter_hash, bkt, h, f, hlist) { 2827 if (f->vlan == vid) 2828 __i40e_del_filter(vsi, f); 2829 } 2830 } 2831 2832 /** 2833 * i40e_vsi_kill_vlan - Remove VSI membership for given VLAN 2834 * @vsi: the VSI being configured 2835 * @vid: VLAN id to be removed 2836 **/ 2837 void i40e_vsi_kill_vlan(struct i40e_vsi *vsi, u16 vid) 2838 { 2839 if (!vid || vsi->info.pvid) 2840 return; 2841 2842 spin_lock_bh(&vsi->mac_filter_hash_lock); 2843 i40e_rm_vlan_all_mac(vsi, vid); 2844 spin_unlock_bh(&vsi->mac_filter_hash_lock); 2845 2846 /* schedule our worker thread which will take care of 2847 * applying the new filter changes 2848 */ 2849 i40e_service_event_schedule(vsi->back); 2850 } 2851 2852 /** 2853 * i40e_vlan_rx_add_vid - Add a vlan id filter to HW offload 2854 * @netdev: network interface to be adjusted 2855 * @vid: vlan id to be added 2856 * 2857 * net_device_ops implementation for adding vlan ids 2858 **/ 2859 static int i40e_vlan_rx_add_vid(struct net_device *netdev, 2860 __always_unused __be16 proto, u16 vid) 2861 { 2862 struct i40e_netdev_priv *np = netdev_priv(netdev); 2863 struct i40e_vsi *vsi = np->vsi; 2864 int ret = 0; 2865 2866 if (vid >= VLAN_N_VID) 2867 return -EINVAL; 2868 2869 ret = i40e_vsi_add_vlan(vsi, vid); 2870 if (!ret) 2871 set_bit(vid, vsi->active_vlans); 2872 2873 return ret; 2874 } 2875 2876 /** 2877 * i40e_vlan_rx_kill_vid - Remove a vlan id filter from HW offload 2878 * @netdev: network interface to be adjusted 2879 * @vid: vlan id to be removed 2880 * 2881 * net_device_ops implementation for removing vlan ids 2882 **/ 2883 static int i40e_vlan_rx_kill_vid(struct net_device *netdev, 2884 __always_unused __be16 proto, u16 vid) 2885 { 2886 struct i40e_netdev_priv *np = netdev_priv(netdev); 2887 struct i40e_vsi *vsi = np->vsi; 2888 2889 /* return code is ignored as there is nothing a user 2890 * can do about failure to remove and a log message was 2891 * already printed from the other function 2892 */ 2893 i40e_vsi_kill_vlan(vsi, vid); 2894 2895 clear_bit(vid, vsi->active_vlans); 2896 2897 return 0; 2898 } 2899 2900 /** 2901 * i40e_restore_vlan - Reinstate vlans when vsi/netdev comes back up 2902 * @vsi: the vsi being brought back up 2903 **/ 2904 static void i40e_restore_vlan(struct i40e_vsi *vsi) 2905 { 2906 u16 vid; 2907 2908 if (!vsi->netdev) 2909 return; 2910 2911 i40e_vlan_rx_register(vsi->netdev, vsi->netdev->features); 2912 2913 for_each_set_bit(vid, vsi->active_vlans, VLAN_N_VID) 2914 i40e_vlan_rx_add_vid(vsi->netdev, htons(ETH_P_8021Q), 2915 vid); 2916 } 2917 2918 /** 2919 * i40e_vsi_add_pvid - Add pvid for the VSI 2920 * @vsi: the vsi being adjusted 2921 * @vid: the vlan id to set as a PVID 2922 **/ 2923 int i40e_vsi_add_pvid(struct i40e_vsi *vsi, u16 vid) 2924 { 2925 struct i40e_vsi_context ctxt; 2926 i40e_status ret; 2927 2928 vsi->info.valid_sections = cpu_to_le16(I40E_AQ_VSI_PROP_VLAN_VALID); 2929 vsi->info.pvid = cpu_to_le16(vid); 2930 vsi->info.port_vlan_flags = I40E_AQ_VSI_PVLAN_MODE_TAGGED | 2931 I40E_AQ_VSI_PVLAN_INSERT_PVID | 2932 I40E_AQ_VSI_PVLAN_EMOD_STR; 2933 2934 ctxt.seid = vsi->seid; 2935 ctxt.info = vsi->info; 2936 ret = i40e_aq_update_vsi_params(&vsi->back->hw, &ctxt, NULL); 2937 if (ret) { 2938 dev_info(&vsi->back->pdev->dev, 2939 "add pvid failed, err %s aq_err %s\n", 2940 i40e_stat_str(&vsi->back->hw, ret), 2941 i40e_aq_str(&vsi->back->hw, 2942 vsi->back->hw.aq.asq_last_status)); 2943 return -ENOENT; 2944 } 2945 2946 return 0; 2947 } 2948 2949 /** 2950 * i40e_vsi_remove_pvid - Remove the pvid from the VSI 2951 * @vsi: the vsi being adjusted 2952 * 2953 * Just use the vlan_rx_register() service to put it back to normal 2954 **/ 2955 void i40e_vsi_remove_pvid(struct i40e_vsi *vsi) 2956 { 2957 i40e_vlan_stripping_disable(vsi); 2958 2959 vsi->info.pvid = 0; 2960 } 2961 2962 /** 2963 * i40e_vsi_setup_tx_resources - Allocate VSI Tx queue resources 2964 * @vsi: ptr to the VSI 2965 * 2966 * If this function returns with an error, then it's possible one or 2967 * more of the rings is populated (while the rest are not). It is the 2968 * callers duty to clean those orphaned rings. 2969 * 2970 * Return 0 on success, negative on failure 2971 **/ 2972 static int i40e_vsi_setup_tx_resources(struct i40e_vsi *vsi) 2973 { 2974 int i, err = 0; 2975 2976 for (i = 0; i < vsi->num_queue_pairs && !err; i++) 2977 err = i40e_setup_tx_descriptors(vsi->tx_rings[i]); 2978 2979 if (!i40e_enabled_xdp_vsi(vsi)) 2980 return err; 2981 2982 for (i = 0; i < vsi->num_queue_pairs && !err; i++) 2983 err = i40e_setup_tx_descriptors(vsi->xdp_rings[i]); 2984 2985 return err; 2986 } 2987 2988 /** 2989 * i40e_vsi_free_tx_resources - Free Tx resources for VSI queues 2990 * @vsi: ptr to the VSI 2991 * 2992 * Free VSI's transmit software resources 2993 **/ 2994 static void i40e_vsi_free_tx_resources(struct i40e_vsi *vsi) 2995 { 2996 int i; 2997 2998 if (vsi->tx_rings) { 2999 for (i = 0; i < vsi->num_queue_pairs; i++) 3000 if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc) 3001 i40e_free_tx_resources(vsi->tx_rings[i]); 3002 } 3003 3004 if (vsi->xdp_rings) { 3005 for (i = 0; i < vsi->num_queue_pairs; i++) 3006 if (vsi->xdp_rings[i] && vsi->xdp_rings[i]->desc) 3007 i40e_free_tx_resources(vsi->xdp_rings[i]); 3008 } 3009 } 3010 3011 /** 3012 * i40e_vsi_setup_rx_resources - Allocate VSI queues Rx resources 3013 * @vsi: ptr to the VSI 3014 * 3015 * If this function returns with an error, then it's possible one or 3016 * more of the rings is populated (while the rest are not). It is the 3017 * callers duty to clean those orphaned rings. 3018 * 3019 * Return 0 on success, negative on failure 3020 **/ 3021 static int i40e_vsi_setup_rx_resources(struct i40e_vsi *vsi) 3022 { 3023 int i, err = 0; 3024 3025 for (i = 0; i < vsi->num_queue_pairs && !err; i++) 3026 err = i40e_setup_rx_descriptors(vsi->rx_rings[i]); 3027 return err; 3028 } 3029 3030 /** 3031 * i40e_vsi_free_rx_resources - Free Rx Resources for VSI queues 3032 * @vsi: ptr to the VSI 3033 * 3034 * Free all receive software resources 3035 **/ 3036 static void i40e_vsi_free_rx_resources(struct i40e_vsi *vsi) 3037 { 3038 int i; 3039 3040 if (!vsi->rx_rings) 3041 return; 3042 3043 for (i = 0; i < vsi->num_queue_pairs; i++) 3044 if (vsi->rx_rings[i] && vsi->rx_rings[i]->desc) 3045 i40e_free_rx_resources(vsi->rx_rings[i]); 3046 } 3047 3048 /** 3049 * i40e_config_xps_tx_ring - Configure XPS for a Tx ring 3050 * @ring: The Tx ring to configure 3051 * 3052 * This enables/disables XPS for a given Tx descriptor ring 3053 * based on the TCs enabled for the VSI that ring belongs to. 3054 **/ 3055 static void i40e_config_xps_tx_ring(struct i40e_ring *ring) 3056 { 3057 int cpu; 3058 3059 if (!ring->q_vector || !ring->netdev || ring->ch) 3060 return; 3061 3062 /* We only initialize XPS once, so as not to overwrite user settings */ 3063 if (test_and_set_bit(__I40E_TX_XPS_INIT_DONE, ring->state)) 3064 return; 3065 3066 cpu = cpumask_local_spread(ring->q_vector->v_idx, -1); 3067 netif_set_xps_queue(ring->netdev, get_cpu_mask(cpu), 3068 ring->queue_index); 3069 } 3070 3071 /** 3072 * i40e_configure_tx_ring - Configure a transmit ring context and rest 3073 * @ring: The Tx ring to configure 3074 * 3075 * Configure the Tx descriptor ring in the HMC context. 3076 **/ 3077 static int i40e_configure_tx_ring(struct i40e_ring *ring) 3078 { 3079 struct i40e_vsi *vsi = ring->vsi; 3080 u16 pf_q = vsi->base_queue + ring->queue_index; 3081 struct i40e_hw *hw = &vsi->back->hw; 3082 struct i40e_hmc_obj_txq tx_ctx; 3083 i40e_status err = 0; 3084 u32 qtx_ctl = 0; 3085 3086 /* some ATR related tx ring init */ 3087 if (vsi->back->flags & I40E_FLAG_FD_ATR_ENABLED) { 3088 ring->atr_sample_rate = vsi->back->atr_sample_rate; 3089 ring->atr_count = 0; 3090 } else { 3091 ring->atr_sample_rate = 0; 3092 } 3093 3094 /* configure XPS */ 3095 i40e_config_xps_tx_ring(ring); 3096 3097 /* clear the context structure first */ 3098 memset(&tx_ctx, 0, sizeof(tx_ctx)); 3099 3100 tx_ctx.new_context = 1; 3101 tx_ctx.base = (ring->dma / 128); 3102 tx_ctx.qlen = ring->count; 3103 tx_ctx.fd_ena = !!(vsi->back->flags & (I40E_FLAG_FD_SB_ENABLED | 3104 I40E_FLAG_FD_ATR_ENABLED)); 3105 tx_ctx.timesync_ena = !!(vsi->back->flags & I40E_FLAG_PTP); 3106 /* FDIR VSI tx ring can still use RS bit and writebacks */ 3107 if (vsi->type != I40E_VSI_FDIR) 3108 tx_ctx.head_wb_ena = 1; 3109 tx_ctx.head_wb_addr = ring->dma + 3110 (ring->count * sizeof(struct i40e_tx_desc)); 3111 3112 /* As part of VSI creation/update, FW allocates certain 3113 * Tx arbitration queue sets for each TC enabled for 3114 * the VSI. The FW returns the handles to these queue 3115 * sets as part of the response buffer to Add VSI, 3116 * Update VSI, etc. AQ commands. It is expected that 3117 * these queue set handles be associated with the Tx 3118 * queues by the driver as part of the TX queue context 3119 * initialization. This has to be done regardless of 3120 * DCB as by default everything is mapped to TC0. 3121 */ 3122 3123 if (ring->ch) 3124 tx_ctx.rdylist = 3125 le16_to_cpu(ring->ch->info.qs_handle[ring->dcb_tc]); 3126 3127 else 3128 tx_ctx.rdylist = le16_to_cpu(vsi->info.qs_handle[ring->dcb_tc]); 3129 3130 tx_ctx.rdylist_act = 0; 3131 3132 /* clear the context in the HMC */ 3133 err = i40e_clear_lan_tx_queue_context(hw, pf_q); 3134 if (err) { 3135 dev_info(&vsi->back->pdev->dev, 3136 "Failed to clear LAN Tx queue context on Tx ring %d (pf_q %d), error: %d\n", 3137 ring->queue_index, pf_q, err); 3138 return -ENOMEM; 3139 } 3140 3141 /* set the context in the HMC */ 3142 err = i40e_set_lan_tx_queue_context(hw, pf_q, &tx_ctx); 3143 if (err) { 3144 dev_info(&vsi->back->pdev->dev, 3145 "Failed to set LAN Tx queue context on Tx ring %d (pf_q %d, error: %d\n", 3146 ring->queue_index, pf_q, err); 3147 return -ENOMEM; 3148 } 3149 3150 /* Now associate this queue with this PCI function */ 3151 if (ring->ch) { 3152 if (ring->ch->type == I40E_VSI_VMDQ2) 3153 qtx_ctl = I40E_QTX_CTL_VM_QUEUE; 3154 else 3155 return -EINVAL; 3156 3157 qtx_ctl |= (ring->ch->vsi_number << 3158 I40E_QTX_CTL_VFVM_INDX_SHIFT) & 3159 I40E_QTX_CTL_VFVM_INDX_MASK; 3160 } else { 3161 if (vsi->type == I40E_VSI_VMDQ2) { 3162 qtx_ctl = I40E_QTX_CTL_VM_QUEUE; 3163 qtx_ctl |= ((vsi->id) << I40E_QTX_CTL_VFVM_INDX_SHIFT) & 3164 I40E_QTX_CTL_VFVM_INDX_MASK; 3165 } else { 3166 qtx_ctl = I40E_QTX_CTL_PF_QUEUE; 3167 } 3168 } 3169 3170 qtx_ctl |= ((hw->pf_id << I40E_QTX_CTL_PF_INDX_SHIFT) & 3171 I40E_QTX_CTL_PF_INDX_MASK); 3172 wr32(hw, I40E_QTX_CTL(pf_q), qtx_ctl); 3173 i40e_flush(hw); 3174 3175 /* cache tail off for easier writes later */ 3176 ring->tail = hw->hw_addr + I40E_QTX_TAIL(pf_q); 3177 3178 return 0; 3179 } 3180 3181 /** 3182 * i40e_configure_rx_ring - Configure a receive ring context 3183 * @ring: The Rx ring to configure 3184 * 3185 * Configure the Rx descriptor ring in the HMC context. 3186 **/ 3187 static int i40e_configure_rx_ring(struct i40e_ring *ring) 3188 { 3189 struct i40e_vsi *vsi = ring->vsi; 3190 u32 chain_len = vsi->back->hw.func_caps.rx_buf_chain_len; 3191 u16 pf_q = vsi->base_queue + ring->queue_index; 3192 struct i40e_hw *hw = &vsi->back->hw; 3193 struct i40e_hmc_obj_rxq rx_ctx; 3194 i40e_status err = 0; 3195 3196 bitmap_zero(ring->state, __I40E_RING_STATE_NBITS); 3197 3198 /* clear the context structure first */ 3199 memset(&rx_ctx, 0, sizeof(rx_ctx)); 3200 3201 ring->rx_buf_len = vsi->rx_buf_len; 3202 3203 rx_ctx.dbuff = DIV_ROUND_UP(ring->rx_buf_len, 3204 BIT_ULL(I40E_RXQ_CTX_DBUFF_SHIFT)); 3205 3206 rx_ctx.base = (ring->dma / 128); 3207 rx_ctx.qlen = ring->count; 3208 3209 /* use 32 byte descriptors */ 3210 rx_ctx.dsize = 1; 3211 3212 /* descriptor type is always zero 3213 * rx_ctx.dtype = 0; 3214 */ 3215 rx_ctx.hsplit_0 = 0; 3216 3217 rx_ctx.rxmax = min_t(u16, vsi->max_frame, chain_len * ring->rx_buf_len); 3218 if (hw->revision_id == 0) 3219 rx_ctx.lrxqthresh = 0; 3220 else 3221 rx_ctx.lrxqthresh = 1; 3222 rx_ctx.crcstrip = 1; 3223 rx_ctx.l2tsel = 1; 3224 /* this controls whether VLAN is stripped from inner headers */ 3225 rx_ctx.showiv = 0; 3226 /* set the prefena field to 1 because the manual says to */ 3227 rx_ctx.prefena = 1; 3228 3229 /* clear the context in the HMC */ 3230 err = i40e_clear_lan_rx_queue_context(hw, pf_q); 3231 if (err) { 3232 dev_info(&vsi->back->pdev->dev, 3233 "Failed to clear LAN Rx queue context on Rx ring %d (pf_q %d), error: %d\n", 3234 ring->queue_index, pf_q, err); 3235 return -ENOMEM; 3236 } 3237 3238 /* set the context in the HMC */ 3239 err = i40e_set_lan_rx_queue_context(hw, pf_q, &rx_ctx); 3240 if (err) { 3241 dev_info(&vsi->back->pdev->dev, 3242 "Failed to set LAN Rx queue context on Rx ring %d (pf_q %d), error: %d\n", 3243 ring->queue_index, pf_q, err); 3244 return -ENOMEM; 3245 } 3246 3247 /* configure Rx buffer alignment */ 3248 if (!vsi->netdev || (vsi->back->flags & I40E_FLAG_LEGACY_RX)) 3249 clear_ring_build_skb_enabled(ring); 3250 else 3251 set_ring_build_skb_enabled(ring); 3252 3253 /* cache tail for quicker writes, and clear the reg before use */ 3254 ring->tail = hw->hw_addr + I40E_QRX_TAIL(pf_q); 3255 writel(0, ring->tail); 3256 3257 i40e_alloc_rx_buffers(ring, I40E_DESC_UNUSED(ring)); 3258 3259 return 0; 3260 } 3261 3262 /** 3263 * i40e_vsi_configure_tx - Configure the VSI for Tx 3264 * @vsi: VSI structure describing this set of rings and resources 3265 * 3266 * Configure the Tx VSI for operation. 3267 **/ 3268 static int i40e_vsi_configure_tx(struct i40e_vsi *vsi) 3269 { 3270 int err = 0; 3271 u16 i; 3272 3273 for (i = 0; (i < vsi->num_queue_pairs) && !err; i++) 3274 err = i40e_configure_tx_ring(vsi->tx_rings[i]); 3275 3276 if (!i40e_enabled_xdp_vsi(vsi)) 3277 return err; 3278 3279 for (i = 0; (i < vsi->num_queue_pairs) && !err; i++) 3280 err = i40e_configure_tx_ring(vsi->xdp_rings[i]); 3281 3282 return err; 3283 } 3284 3285 /** 3286 * i40e_vsi_configure_rx - Configure the VSI for Rx 3287 * @vsi: the VSI being configured 3288 * 3289 * Configure the Rx VSI for operation. 3290 **/ 3291 static int i40e_vsi_configure_rx(struct i40e_vsi *vsi) 3292 { 3293 int err = 0; 3294 u16 i; 3295 3296 if (!vsi->netdev || (vsi->back->flags & I40E_FLAG_LEGACY_RX)) { 3297 vsi->max_frame = I40E_MAX_RXBUFFER; 3298 vsi->rx_buf_len = I40E_RXBUFFER_2048; 3299 #if (PAGE_SIZE < 8192) 3300 } else if (!I40E_2K_TOO_SMALL_WITH_PADDING && 3301 (vsi->netdev->mtu <= ETH_DATA_LEN)) { 3302 vsi->max_frame = I40E_RXBUFFER_1536 - NET_IP_ALIGN; 3303 vsi->rx_buf_len = I40E_RXBUFFER_1536 - NET_IP_ALIGN; 3304 #endif 3305 } else { 3306 vsi->max_frame = I40E_MAX_RXBUFFER; 3307 vsi->rx_buf_len = (PAGE_SIZE < 8192) ? I40E_RXBUFFER_3072 : 3308 I40E_RXBUFFER_2048; 3309 } 3310 3311 /* set up individual rings */ 3312 for (i = 0; i < vsi->num_queue_pairs && !err; i++) 3313 err = i40e_configure_rx_ring(vsi->rx_rings[i]); 3314 3315 return err; 3316 } 3317 3318 /** 3319 * i40e_vsi_config_dcb_rings - Update rings to reflect DCB TC 3320 * @vsi: ptr to the VSI 3321 **/ 3322 static void i40e_vsi_config_dcb_rings(struct i40e_vsi *vsi) 3323 { 3324 struct i40e_ring *tx_ring, *rx_ring; 3325 u16 qoffset, qcount; 3326 int i, n; 3327 3328 if (!(vsi->back->flags & I40E_FLAG_DCB_ENABLED)) { 3329 /* Reset the TC information */ 3330 for (i = 0; i < vsi->num_queue_pairs; i++) { 3331 rx_ring = vsi->rx_rings[i]; 3332 tx_ring = vsi->tx_rings[i]; 3333 rx_ring->dcb_tc = 0; 3334 tx_ring->dcb_tc = 0; 3335 } 3336 return; 3337 } 3338 3339 for (n = 0; n < I40E_MAX_TRAFFIC_CLASS; n++) { 3340 if (!(vsi->tc_config.enabled_tc & BIT_ULL(n))) 3341 continue; 3342 3343 qoffset = vsi->tc_config.tc_info[n].qoffset; 3344 qcount = vsi->tc_config.tc_info[n].qcount; 3345 for (i = qoffset; i < (qoffset + qcount); i++) { 3346 rx_ring = vsi->rx_rings[i]; 3347 tx_ring = vsi->tx_rings[i]; 3348 rx_ring->dcb_tc = n; 3349 tx_ring->dcb_tc = n; 3350 } 3351 } 3352 } 3353 3354 /** 3355 * i40e_set_vsi_rx_mode - Call set_rx_mode on a VSI 3356 * @vsi: ptr to the VSI 3357 **/ 3358 static void i40e_set_vsi_rx_mode(struct i40e_vsi *vsi) 3359 { 3360 if (vsi->netdev) 3361 i40e_set_rx_mode(vsi->netdev); 3362 } 3363 3364 /** 3365 * i40e_fdir_filter_restore - Restore the Sideband Flow Director filters 3366 * @vsi: Pointer to the targeted VSI 3367 * 3368 * This function replays the hlist on the hw where all the SB Flow Director 3369 * filters were saved. 3370 **/ 3371 static void i40e_fdir_filter_restore(struct i40e_vsi *vsi) 3372 { 3373 struct i40e_fdir_filter *filter; 3374 struct i40e_pf *pf = vsi->back; 3375 struct hlist_node *node; 3376 3377 if (!(pf->flags & I40E_FLAG_FD_SB_ENABLED)) 3378 return; 3379 3380 /* Reset FDir counters as we're replaying all existing filters */ 3381 pf->fd_tcp4_filter_cnt = 0; 3382 pf->fd_udp4_filter_cnt = 0; 3383 pf->fd_sctp4_filter_cnt = 0; 3384 pf->fd_ip4_filter_cnt = 0; 3385 3386 hlist_for_each_entry_safe(filter, node, 3387 &pf->fdir_filter_list, fdir_node) { 3388 i40e_add_del_fdir(vsi, filter, true); 3389 } 3390 } 3391 3392 /** 3393 * i40e_vsi_configure - Set up the VSI for action 3394 * @vsi: the VSI being configured 3395 **/ 3396 static int i40e_vsi_configure(struct i40e_vsi *vsi) 3397 { 3398 int err; 3399 3400 i40e_set_vsi_rx_mode(vsi); 3401 i40e_restore_vlan(vsi); 3402 i40e_vsi_config_dcb_rings(vsi); 3403 err = i40e_vsi_configure_tx(vsi); 3404 if (!err) 3405 err = i40e_vsi_configure_rx(vsi); 3406 3407 return err; 3408 } 3409 3410 /** 3411 * i40e_vsi_configure_msix - MSIX mode Interrupt Config in the HW 3412 * @vsi: the VSI being configured 3413 **/ 3414 static void i40e_vsi_configure_msix(struct i40e_vsi *vsi) 3415 { 3416 bool has_xdp = i40e_enabled_xdp_vsi(vsi); 3417 struct i40e_pf *pf = vsi->back; 3418 struct i40e_hw *hw = &pf->hw; 3419 u16 vector; 3420 int i, q; 3421 u32 qp; 3422 3423 /* The interrupt indexing is offset by 1 in the PFINT_ITRn 3424 * and PFINT_LNKLSTn registers, e.g.: 3425 * PFINT_ITRn[0..n-1] gets msix-1..msix-n (qpair interrupts) 3426 */ 3427 qp = vsi->base_queue; 3428 vector = vsi->base_vector; 3429 for (i = 0; i < vsi->num_q_vectors; i++, vector++) { 3430 struct i40e_q_vector *q_vector = vsi->q_vectors[i]; 3431 3432 q_vector->itr_countdown = ITR_COUNTDOWN_START; 3433 q_vector->rx.itr = ITR_TO_REG(vsi->rx_rings[i]->rx_itr_setting); 3434 q_vector->rx.latency_range = I40E_LOW_LATENCY; 3435 wr32(hw, I40E_PFINT_ITRN(I40E_RX_ITR, vector - 1), 3436 q_vector->rx.itr); 3437 q_vector->tx.itr = ITR_TO_REG(vsi->tx_rings[i]->tx_itr_setting); 3438 q_vector->tx.latency_range = I40E_LOW_LATENCY; 3439 wr32(hw, I40E_PFINT_ITRN(I40E_TX_ITR, vector - 1), 3440 q_vector->tx.itr); 3441 wr32(hw, I40E_PFINT_RATEN(vector - 1), 3442 i40e_intrl_usec_to_reg(vsi->int_rate_limit)); 3443 3444 /* Linked list for the queuepairs assigned to this vector */ 3445 wr32(hw, I40E_PFINT_LNKLSTN(vector - 1), qp); 3446 for (q = 0; q < q_vector->num_ringpairs; q++) { 3447 u32 nextqp = has_xdp ? qp + vsi->alloc_queue_pairs : qp; 3448 u32 val; 3449 3450 val = I40E_QINT_RQCTL_CAUSE_ENA_MASK | 3451 (I40E_RX_ITR << I40E_QINT_RQCTL_ITR_INDX_SHIFT) | 3452 (vector << I40E_QINT_RQCTL_MSIX_INDX_SHIFT) | 3453 (nextqp << I40E_QINT_RQCTL_NEXTQ_INDX_SHIFT) | 3454 (I40E_QUEUE_TYPE_TX << 3455 I40E_QINT_RQCTL_NEXTQ_TYPE_SHIFT); 3456 3457 wr32(hw, I40E_QINT_RQCTL(qp), val); 3458 3459 if (has_xdp) { 3460 val = I40E_QINT_TQCTL_CAUSE_ENA_MASK | 3461 (I40E_TX_ITR << I40E_QINT_TQCTL_ITR_INDX_SHIFT) | 3462 (vector << I40E_QINT_TQCTL_MSIX_INDX_SHIFT) | 3463 (qp << I40E_QINT_TQCTL_NEXTQ_INDX_SHIFT) | 3464 (I40E_QUEUE_TYPE_TX << 3465 I40E_QINT_TQCTL_NEXTQ_TYPE_SHIFT); 3466 3467 wr32(hw, I40E_QINT_TQCTL(nextqp), val); 3468 } 3469 3470 val = I40E_QINT_TQCTL_CAUSE_ENA_MASK | 3471 (I40E_TX_ITR << I40E_QINT_TQCTL_ITR_INDX_SHIFT) | 3472 (vector << I40E_QINT_TQCTL_MSIX_INDX_SHIFT) | 3473 ((qp + 1) << I40E_QINT_TQCTL_NEXTQ_INDX_SHIFT) | 3474 (I40E_QUEUE_TYPE_RX << 3475 I40E_QINT_TQCTL_NEXTQ_TYPE_SHIFT); 3476 3477 /* Terminate the linked list */ 3478 if (q == (q_vector->num_ringpairs - 1)) 3479 val |= (I40E_QUEUE_END_OF_LIST << 3480 I40E_QINT_TQCTL_NEXTQ_INDX_SHIFT); 3481 3482 wr32(hw, I40E_QINT_TQCTL(qp), val); 3483 qp++; 3484 } 3485 } 3486 3487 i40e_flush(hw); 3488 } 3489 3490 /** 3491 * i40e_enable_misc_int_causes - enable the non-queue interrupts 3492 * @hw: ptr to the hardware info 3493 **/ 3494 static void i40e_enable_misc_int_causes(struct i40e_pf *pf) 3495 { 3496 struct i40e_hw *hw = &pf->hw; 3497 u32 val; 3498 3499 /* clear things first */ 3500 wr32(hw, I40E_PFINT_ICR0_ENA, 0); /* disable all */ 3501 rd32(hw, I40E_PFINT_ICR0); /* read to clear */ 3502 3503 val = I40E_PFINT_ICR0_ENA_ECC_ERR_MASK | 3504 I40E_PFINT_ICR0_ENA_MAL_DETECT_MASK | 3505 I40E_PFINT_ICR0_ENA_GRST_MASK | 3506 I40E_PFINT_ICR0_ENA_PCI_EXCEPTION_MASK | 3507 I40E_PFINT_ICR0_ENA_GPIO_MASK | 3508 I40E_PFINT_ICR0_ENA_HMC_ERR_MASK | 3509 I40E_PFINT_ICR0_ENA_VFLR_MASK | 3510 I40E_PFINT_ICR0_ENA_ADMINQ_MASK; 3511 3512 if (pf->flags & I40E_FLAG_IWARP_ENABLED) 3513 val |= I40E_PFINT_ICR0_ENA_PE_CRITERR_MASK; 3514 3515 if (pf->flags & I40E_FLAG_PTP) 3516 val |= I40E_PFINT_ICR0_ENA_TIMESYNC_MASK; 3517 3518 wr32(hw, I40E_PFINT_ICR0_ENA, val); 3519 3520 /* SW_ITR_IDX = 0, but don't change INTENA */ 3521 wr32(hw, I40E_PFINT_DYN_CTL0, I40E_PFINT_DYN_CTL0_SW_ITR_INDX_MASK | 3522 I40E_PFINT_DYN_CTL0_INTENA_MSK_MASK); 3523 3524 /* OTHER_ITR_IDX = 0 */ 3525 wr32(hw, I40E_PFINT_STAT_CTL0, 0); 3526 } 3527 3528 /** 3529 * i40e_configure_msi_and_legacy - Legacy mode interrupt config in the HW 3530 * @vsi: the VSI being configured 3531 **/ 3532 static void i40e_configure_msi_and_legacy(struct i40e_vsi *vsi) 3533 { 3534 u32 nextqp = i40e_enabled_xdp_vsi(vsi) ? vsi->alloc_queue_pairs : 0; 3535 struct i40e_q_vector *q_vector = vsi->q_vectors[0]; 3536 struct i40e_pf *pf = vsi->back; 3537 struct i40e_hw *hw = &pf->hw; 3538 u32 val; 3539 3540 /* set the ITR configuration */ 3541 q_vector->itr_countdown = ITR_COUNTDOWN_START; 3542 q_vector->rx.itr = ITR_TO_REG(vsi->rx_rings[0]->rx_itr_setting); 3543 q_vector->rx.latency_range = I40E_LOW_LATENCY; 3544 wr32(hw, I40E_PFINT_ITR0(I40E_RX_ITR), q_vector->rx.itr); 3545 q_vector->tx.itr = ITR_TO_REG(vsi->tx_rings[0]->tx_itr_setting); 3546 q_vector->tx.latency_range = I40E_LOW_LATENCY; 3547 wr32(hw, I40E_PFINT_ITR0(I40E_TX_ITR), q_vector->tx.itr); 3548 3549 i40e_enable_misc_int_causes(pf); 3550 3551 /* FIRSTQ_INDX = 0, FIRSTQ_TYPE = 0 (rx) */ 3552 wr32(hw, I40E_PFINT_LNKLST0, 0); 3553 3554 /* Associate the queue pair to the vector and enable the queue int */ 3555 val = I40E_QINT_RQCTL_CAUSE_ENA_MASK | 3556 (I40E_RX_ITR << I40E_QINT_RQCTL_ITR_INDX_SHIFT) | 3557 (nextqp << I40E_QINT_RQCTL_NEXTQ_INDX_SHIFT)| 3558 (I40E_QUEUE_TYPE_TX << I40E_QINT_TQCTL_NEXTQ_TYPE_SHIFT); 3559 3560 wr32(hw, I40E_QINT_RQCTL(0), val); 3561 3562 if (i40e_enabled_xdp_vsi(vsi)) { 3563 val = I40E_QINT_TQCTL_CAUSE_ENA_MASK | 3564 (I40E_TX_ITR << I40E_QINT_TQCTL_ITR_INDX_SHIFT)| 3565 (I40E_QUEUE_TYPE_TX 3566 << I40E_QINT_TQCTL_NEXTQ_TYPE_SHIFT); 3567 3568 wr32(hw, I40E_QINT_TQCTL(nextqp), val); 3569 } 3570 3571 val = I40E_QINT_TQCTL_CAUSE_ENA_MASK | 3572 (I40E_TX_ITR << I40E_QINT_TQCTL_ITR_INDX_SHIFT) | 3573 (I40E_QUEUE_END_OF_LIST << I40E_QINT_TQCTL_NEXTQ_INDX_SHIFT); 3574 3575 wr32(hw, I40E_QINT_TQCTL(0), val); 3576 i40e_flush(hw); 3577 } 3578 3579 /** 3580 * i40e_irq_dynamic_disable_icr0 - Disable default interrupt generation for icr0 3581 * @pf: board private structure 3582 **/ 3583 void i40e_irq_dynamic_disable_icr0(struct i40e_pf *pf) 3584 { 3585 struct i40e_hw *hw = &pf->hw; 3586 3587 wr32(hw, I40E_PFINT_DYN_CTL0, 3588 I40E_ITR_NONE << I40E_PFINT_DYN_CTLN_ITR_INDX_SHIFT); 3589 i40e_flush(hw); 3590 } 3591 3592 /** 3593 * i40e_irq_dynamic_enable_icr0 - Enable default interrupt generation for icr0 3594 * @pf: board private structure 3595 **/ 3596 void i40e_irq_dynamic_enable_icr0(struct i40e_pf *pf) 3597 { 3598 struct i40e_hw *hw = &pf->hw; 3599 u32 val; 3600 3601 val = I40E_PFINT_DYN_CTL0_INTENA_MASK | 3602 I40E_PFINT_DYN_CTL0_CLEARPBA_MASK | 3603 (I40E_ITR_NONE << I40E_PFINT_DYN_CTL0_ITR_INDX_SHIFT); 3604 3605 wr32(hw, I40E_PFINT_DYN_CTL0, val); 3606 i40e_flush(hw); 3607 } 3608 3609 /** 3610 * i40e_msix_clean_rings - MSIX mode Interrupt Handler 3611 * @irq: interrupt number 3612 * @data: pointer to a q_vector 3613 **/ 3614 static irqreturn_t i40e_msix_clean_rings(int irq, void *data) 3615 { 3616 struct i40e_q_vector *q_vector = data; 3617 3618 if (!q_vector->tx.ring && !q_vector->rx.ring) 3619 return IRQ_HANDLED; 3620 3621 napi_schedule_irqoff(&q_vector->napi); 3622 3623 return IRQ_HANDLED; 3624 } 3625 3626 /** 3627 * i40e_irq_affinity_notify - Callback for affinity changes 3628 * @notify: context as to what irq was changed 3629 * @mask: the new affinity mask 3630 * 3631 * This is a callback function used by the irq_set_affinity_notifier function 3632 * so that we may register to receive changes to the irq affinity masks. 3633 **/ 3634 static void i40e_irq_affinity_notify(struct irq_affinity_notify *notify, 3635 const cpumask_t *mask) 3636 { 3637 struct i40e_q_vector *q_vector = 3638 container_of(notify, struct i40e_q_vector, affinity_notify); 3639 3640 cpumask_copy(&q_vector->affinity_mask, mask); 3641 } 3642 3643 /** 3644 * i40e_irq_affinity_release - Callback for affinity notifier release 3645 * @ref: internal core kernel usage 3646 * 3647 * This is a callback function used by the irq_set_affinity_notifier function 3648 * to inform the current notification subscriber that they will no longer 3649 * receive notifications. 3650 **/ 3651 static void i40e_irq_affinity_release(struct kref *ref) {} 3652 3653 /** 3654 * i40e_vsi_request_irq_msix - Initialize MSI-X interrupts 3655 * @vsi: the VSI being configured 3656 * @basename: name for the vector 3657 * 3658 * Allocates MSI-X vectors and requests interrupts from the kernel. 3659 **/ 3660 static int i40e_vsi_request_irq_msix(struct i40e_vsi *vsi, char *basename) 3661 { 3662 int q_vectors = vsi->num_q_vectors; 3663 struct i40e_pf *pf = vsi->back; 3664 int base = vsi->base_vector; 3665 int rx_int_idx = 0; 3666 int tx_int_idx = 0; 3667 int vector, err; 3668 int irq_num; 3669 int cpu; 3670 3671 for (vector = 0; vector < q_vectors; vector++) { 3672 struct i40e_q_vector *q_vector = vsi->q_vectors[vector]; 3673 3674 irq_num = pf->msix_entries[base + vector].vector; 3675 3676 if (q_vector->tx.ring && q_vector->rx.ring) { 3677 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 3678 "%s-%s-%d", basename, "TxRx", rx_int_idx++); 3679 tx_int_idx++; 3680 } else if (q_vector->rx.ring) { 3681 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 3682 "%s-%s-%d", basename, "rx", rx_int_idx++); 3683 } else if (q_vector->tx.ring) { 3684 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 3685 "%s-%s-%d", basename, "tx", tx_int_idx++); 3686 } else { 3687 /* skip this unused q_vector */ 3688 continue; 3689 } 3690 err = request_irq(irq_num, 3691 vsi->irq_handler, 3692 0, 3693 q_vector->name, 3694 q_vector); 3695 if (err) { 3696 dev_info(&pf->pdev->dev, 3697 "MSIX request_irq failed, error: %d\n", err); 3698 goto free_queue_irqs; 3699 } 3700 3701 /* register for affinity change notifications */ 3702 q_vector->affinity_notify.notify = i40e_irq_affinity_notify; 3703 q_vector->affinity_notify.release = i40e_irq_affinity_release; 3704 irq_set_affinity_notifier(irq_num, &q_vector->affinity_notify); 3705 /* Spread affinity hints out across online CPUs. 3706 * 3707 * get_cpu_mask returns a static constant mask with 3708 * a permanent lifetime so it's ok to pass to 3709 * irq_set_affinity_hint without making a copy. 3710 */ 3711 cpu = cpumask_local_spread(q_vector->v_idx, -1); 3712 irq_set_affinity_hint(irq_num, get_cpu_mask(cpu)); 3713 } 3714 3715 vsi->irqs_ready = true; 3716 return 0; 3717 3718 free_queue_irqs: 3719 while (vector) { 3720 vector--; 3721 irq_num = pf->msix_entries[base + vector].vector; 3722 irq_set_affinity_notifier(irq_num, NULL); 3723 irq_set_affinity_hint(irq_num, NULL); 3724 free_irq(irq_num, &vsi->q_vectors[vector]); 3725 } 3726 return err; 3727 } 3728 3729 /** 3730 * i40e_vsi_disable_irq - Mask off queue interrupt generation on the VSI 3731 * @vsi: the VSI being un-configured 3732 **/ 3733 static void i40e_vsi_disable_irq(struct i40e_vsi *vsi) 3734 { 3735 struct i40e_pf *pf = vsi->back; 3736 struct i40e_hw *hw = &pf->hw; 3737 int base = vsi->base_vector; 3738 int i; 3739 3740 /* disable interrupt causation from each queue */ 3741 for (i = 0; i < vsi->num_queue_pairs; i++) { 3742 u32 val; 3743 3744 val = rd32(hw, I40E_QINT_TQCTL(vsi->tx_rings[i]->reg_idx)); 3745 val &= ~I40E_QINT_TQCTL_CAUSE_ENA_MASK; 3746 wr32(hw, I40E_QINT_TQCTL(vsi->tx_rings[i]->reg_idx), val); 3747 3748 val = rd32(hw, I40E_QINT_RQCTL(vsi->rx_rings[i]->reg_idx)); 3749 val &= ~I40E_QINT_RQCTL_CAUSE_ENA_MASK; 3750 wr32(hw, I40E_QINT_RQCTL(vsi->rx_rings[i]->reg_idx), val); 3751 3752 if (!i40e_enabled_xdp_vsi(vsi)) 3753 continue; 3754 wr32(hw, I40E_QINT_TQCTL(vsi->xdp_rings[i]->reg_idx), 0); 3755 } 3756 3757 /* disable each interrupt */ 3758 if (pf->flags & I40E_FLAG_MSIX_ENABLED) { 3759 for (i = vsi->base_vector; 3760 i < (vsi->num_q_vectors + vsi->base_vector); i++) 3761 wr32(hw, I40E_PFINT_DYN_CTLN(i - 1), 0); 3762 3763 i40e_flush(hw); 3764 for (i = 0; i < vsi->num_q_vectors; i++) 3765 synchronize_irq(pf->msix_entries[i + base].vector); 3766 } else { 3767 /* Legacy and MSI mode - this stops all interrupt handling */ 3768 wr32(hw, I40E_PFINT_ICR0_ENA, 0); 3769 wr32(hw, I40E_PFINT_DYN_CTL0, 0); 3770 i40e_flush(hw); 3771 synchronize_irq(pf->pdev->irq); 3772 } 3773 } 3774 3775 /** 3776 * i40e_vsi_enable_irq - Enable IRQ for the given VSI 3777 * @vsi: the VSI being configured 3778 **/ 3779 static int i40e_vsi_enable_irq(struct i40e_vsi *vsi) 3780 { 3781 struct i40e_pf *pf = vsi->back; 3782 int i; 3783 3784 if (pf->flags & I40E_FLAG_MSIX_ENABLED) { 3785 for (i = 0; i < vsi->num_q_vectors; i++) 3786 i40e_irq_dynamic_enable(vsi, i); 3787 } else { 3788 i40e_irq_dynamic_enable_icr0(pf); 3789 } 3790 3791 i40e_flush(&pf->hw); 3792 return 0; 3793 } 3794 3795 /** 3796 * i40e_free_misc_vector - Free the vector that handles non-queue events 3797 * @pf: board private structure 3798 **/ 3799 static void i40e_free_misc_vector(struct i40e_pf *pf) 3800 { 3801 /* Disable ICR 0 */ 3802 wr32(&pf->hw, I40E_PFINT_ICR0_ENA, 0); 3803 i40e_flush(&pf->hw); 3804 3805 if (pf->flags & I40E_FLAG_MSIX_ENABLED && pf->msix_entries) { 3806 synchronize_irq(pf->msix_entries[0].vector); 3807 free_irq(pf->msix_entries[0].vector, pf); 3808 clear_bit(__I40E_MISC_IRQ_REQUESTED, pf->state); 3809 } 3810 } 3811 3812 /** 3813 * i40e_intr - MSI/Legacy and non-queue interrupt handler 3814 * @irq: interrupt number 3815 * @data: pointer to a q_vector 3816 * 3817 * This is the handler used for all MSI/Legacy interrupts, and deals 3818 * with both queue and non-queue interrupts. This is also used in 3819 * MSIX mode to handle the non-queue interrupts. 3820 **/ 3821 static irqreturn_t i40e_intr(int irq, void *data) 3822 { 3823 struct i40e_pf *pf = (struct i40e_pf *)data; 3824 struct i40e_hw *hw = &pf->hw; 3825 irqreturn_t ret = IRQ_NONE; 3826 u32 icr0, icr0_remaining; 3827 u32 val, ena_mask; 3828 3829 icr0 = rd32(hw, I40E_PFINT_ICR0); 3830 ena_mask = rd32(hw, I40E_PFINT_ICR0_ENA); 3831 3832 /* if sharing a legacy IRQ, we might get called w/o an intr pending */ 3833 if ((icr0 & I40E_PFINT_ICR0_INTEVENT_MASK) == 0) 3834 goto enable_intr; 3835 3836 /* if interrupt but no bits showing, must be SWINT */ 3837 if (((icr0 & ~I40E_PFINT_ICR0_INTEVENT_MASK) == 0) || 3838 (icr0 & I40E_PFINT_ICR0_SWINT_MASK)) 3839 pf->sw_int_count++; 3840 3841 if ((pf->flags & I40E_FLAG_IWARP_ENABLED) && 3842 (icr0 & I40E_PFINT_ICR0_ENA_PE_CRITERR_MASK)) { 3843 ena_mask &= ~I40E_PFINT_ICR0_ENA_PE_CRITERR_MASK; 3844 dev_dbg(&pf->pdev->dev, "cleared PE_CRITERR\n"); 3845 set_bit(__I40E_CORE_RESET_REQUESTED, pf->state); 3846 } 3847 3848 /* only q0 is used in MSI/Legacy mode, and none are used in MSIX */ 3849 if (icr0 & I40E_PFINT_ICR0_QUEUE_0_MASK) { 3850 struct i40e_vsi *vsi = pf->vsi[pf->lan_vsi]; 3851 struct i40e_q_vector *q_vector = vsi->q_vectors[0]; 3852 3853 /* We do not have a way to disarm Queue causes while leaving 3854 * interrupt enabled for all other causes, ideally 3855 * interrupt should be disabled while we are in NAPI but 3856 * this is not a performance path and napi_schedule() 3857 * can deal with rescheduling. 3858 */ 3859 if (!test_bit(__I40E_DOWN, pf->state)) 3860 napi_schedule_irqoff(&q_vector->napi); 3861 } 3862 3863 if (icr0 & I40E_PFINT_ICR0_ADMINQ_MASK) { 3864 ena_mask &= ~I40E_PFINT_ICR0_ENA_ADMINQ_MASK; 3865 set_bit(__I40E_ADMINQ_EVENT_PENDING, pf->state); 3866 i40e_debug(&pf->hw, I40E_DEBUG_NVM, "AdminQ event\n"); 3867 } 3868 3869 if (icr0 & I40E_PFINT_ICR0_MAL_DETECT_MASK) { 3870 ena_mask &= ~I40E_PFINT_ICR0_ENA_MAL_DETECT_MASK; 3871 set_bit(__I40E_MDD_EVENT_PENDING, pf->state); 3872 } 3873 3874 if (icr0 & I40E_PFINT_ICR0_VFLR_MASK) { 3875 ena_mask &= ~I40E_PFINT_ICR0_ENA_VFLR_MASK; 3876 set_bit(__I40E_VFLR_EVENT_PENDING, pf->state); 3877 } 3878 3879 if (icr0 & I40E_PFINT_ICR0_GRST_MASK) { 3880 if (!test_bit(__I40E_RESET_RECOVERY_PENDING, pf->state)) 3881 set_bit(__I40E_RESET_INTR_RECEIVED, pf->state); 3882 ena_mask &= ~I40E_PFINT_ICR0_ENA_GRST_MASK; 3883 val = rd32(hw, I40E_GLGEN_RSTAT); 3884 val = (val & I40E_GLGEN_RSTAT_RESET_TYPE_MASK) 3885 >> I40E_GLGEN_RSTAT_RESET_TYPE_SHIFT; 3886 if (val == I40E_RESET_CORER) { 3887 pf->corer_count++; 3888 } else if (val == I40E_RESET_GLOBR) { 3889 pf->globr_count++; 3890 } else if (val == I40E_RESET_EMPR) { 3891 pf->empr_count++; 3892 set_bit(__I40E_EMP_RESET_INTR_RECEIVED, pf->state); 3893 } 3894 } 3895 3896 if (icr0 & I40E_PFINT_ICR0_HMC_ERR_MASK) { 3897 icr0 &= ~I40E_PFINT_ICR0_HMC_ERR_MASK; 3898 dev_info(&pf->pdev->dev, "HMC error interrupt\n"); 3899 dev_info(&pf->pdev->dev, "HMC error info 0x%x, HMC error data 0x%x\n", 3900 rd32(hw, I40E_PFHMC_ERRORINFO), 3901 rd32(hw, I40E_PFHMC_ERRORDATA)); 3902 } 3903 3904 if (icr0 & I40E_PFINT_ICR0_TIMESYNC_MASK) { 3905 u32 prttsyn_stat = rd32(hw, I40E_PRTTSYN_STAT_0); 3906 3907 if (prttsyn_stat & I40E_PRTTSYN_STAT_0_TXTIME_MASK) { 3908 icr0 &= ~I40E_PFINT_ICR0_ENA_TIMESYNC_MASK; 3909 i40e_ptp_tx_hwtstamp(pf); 3910 } 3911 } 3912 3913 /* If a critical error is pending we have no choice but to reset the 3914 * device. 3915 * Report and mask out any remaining unexpected interrupts. 3916 */ 3917 icr0_remaining = icr0 & ena_mask; 3918 if (icr0_remaining) { 3919 dev_info(&pf->pdev->dev, "unhandled interrupt icr0=0x%08x\n", 3920 icr0_remaining); 3921 if ((icr0_remaining & I40E_PFINT_ICR0_PE_CRITERR_MASK) || 3922 (icr0_remaining & I40E_PFINT_ICR0_PCI_EXCEPTION_MASK) || 3923 (icr0_remaining & I40E_PFINT_ICR0_ECC_ERR_MASK)) { 3924 dev_info(&pf->pdev->dev, "device will be reset\n"); 3925 set_bit(__I40E_PF_RESET_REQUESTED, pf->state); 3926 i40e_service_event_schedule(pf); 3927 } 3928 ena_mask &= ~icr0_remaining; 3929 } 3930 ret = IRQ_HANDLED; 3931 3932 enable_intr: 3933 /* re-enable interrupt causes */ 3934 wr32(hw, I40E_PFINT_ICR0_ENA, ena_mask); 3935 if (!test_bit(__I40E_DOWN, pf->state)) { 3936 i40e_service_event_schedule(pf); 3937 i40e_irq_dynamic_enable_icr0(pf); 3938 } 3939 3940 return ret; 3941 } 3942 3943 /** 3944 * i40e_clean_fdir_tx_irq - Reclaim resources after transmit completes 3945 * @tx_ring: tx ring to clean 3946 * @budget: how many cleans we're allowed 3947 * 3948 * Returns true if there's any budget left (e.g. the clean is finished) 3949 **/ 3950 static bool i40e_clean_fdir_tx_irq(struct i40e_ring *tx_ring, int budget) 3951 { 3952 struct i40e_vsi *vsi = tx_ring->vsi; 3953 u16 i = tx_ring->next_to_clean; 3954 struct i40e_tx_buffer *tx_buf; 3955 struct i40e_tx_desc *tx_desc; 3956 3957 tx_buf = &tx_ring->tx_bi[i]; 3958 tx_desc = I40E_TX_DESC(tx_ring, i); 3959 i -= tx_ring->count; 3960 3961 do { 3962 struct i40e_tx_desc *eop_desc = tx_buf->next_to_watch; 3963 3964 /* if next_to_watch is not set then there is no work pending */ 3965 if (!eop_desc) 3966 break; 3967 3968 /* prevent any other reads prior to eop_desc */ 3969 smp_rmb(); 3970 3971 /* if the descriptor isn't done, no work yet to do */ 3972 if (!(eop_desc->cmd_type_offset_bsz & 3973 cpu_to_le64(I40E_TX_DESC_DTYPE_DESC_DONE))) 3974 break; 3975 3976 /* clear next_to_watch to prevent false hangs */ 3977 tx_buf->next_to_watch = NULL; 3978 3979 tx_desc->buffer_addr = 0; 3980 tx_desc->cmd_type_offset_bsz = 0; 3981 /* move past filter desc */ 3982 tx_buf++; 3983 tx_desc++; 3984 i++; 3985 if (unlikely(!i)) { 3986 i -= tx_ring->count; 3987 tx_buf = tx_ring->tx_bi; 3988 tx_desc = I40E_TX_DESC(tx_ring, 0); 3989 } 3990 /* unmap skb header data */ 3991 dma_unmap_single(tx_ring->dev, 3992 dma_unmap_addr(tx_buf, dma), 3993 dma_unmap_len(tx_buf, len), 3994 DMA_TO_DEVICE); 3995 if (tx_buf->tx_flags & I40E_TX_FLAGS_FD_SB) 3996 kfree(tx_buf->raw_buf); 3997 3998 tx_buf->raw_buf = NULL; 3999 tx_buf->tx_flags = 0; 4000 tx_buf->next_to_watch = NULL; 4001 dma_unmap_len_set(tx_buf, len, 0); 4002 tx_desc->buffer_addr = 0; 4003 tx_desc->cmd_type_offset_bsz = 0; 4004 4005 /* move us past the eop_desc for start of next FD desc */ 4006 tx_buf++; 4007 tx_desc++; 4008 i++; 4009 if (unlikely(!i)) { 4010 i -= tx_ring->count; 4011 tx_buf = tx_ring->tx_bi; 4012 tx_desc = I40E_TX_DESC(tx_ring, 0); 4013 } 4014 4015 /* update budget accounting */ 4016 budget--; 4017 } while (likely(budget)); 4018 4019 i += tx_ring->count; 4020 tx_ring->next_to_clean = i; 4021 4022 if (vsi->back->flags & I40E_FLAG_MSIX_ENABLED) 4023 i40e_irq_dynamic_enable(vsi, tx_ring->q_vector->v_idx); 4024 4025 return budget > 0; 4026 } 4027 4028 /** 4029 * i40e_fdir_clean_ring - Interrupt Handler for FDIR SB ring 4030 * @irq: interrupt number 4031 * @data: pointer to a q_vector 4032 **/ 4033 static irqreturn_t i40e_fdir_clean_ring(int irq, void *data) 4034 { 4035 struct i40e_q_vector *q_vector = data; 4036 struct i40e_vsi *vsi; 4037 4038 if (!q_vector->tx.ring) 4039 return IRQ_HANDLED; 4040 4041 vsi = q_vector->tx.ring->vsi; 4042 i40e_clean_fdir_tx_irq(q_vector->tx.ring, vsi->work_limit); 4043 4044 return IRQ_HANDLED; 4045 } 4046 4047 /** 4048 * i40e_map_vector_to_qp - Assigns the queue pair to the vector 4049 * @vsi: the VSI being configured 4050 * @v_idx: vector index 4051 * @qp_idx: queue pair index 4052 **/ 4053 static void i40e_map_vector_to_qp(struct i40e_vsi *vsi, int v_idx, int qp_idx) 4054 { 4055 struct i40e_q_vector *q_vector = vsi->q_vectors[v_idx]; 4056 struct i40e_ring *tx_ring = vsi->tx_rings[qp_idx]; 4057 struct i40e_ring *rx_ring = vsi->rx_rings[qp_idx]; 4058 4059 tx_ring->q_vector = q_vector; 4060 tx_ring->next = q_vector->tx.ring; 4061 q_vector->tx.ring = tx_ring; 4062 q_vector->tx.count++; 4063 4064 /* Place XDP Tx ring in the same q_vector ring list as regular Tx */ 4065 if (i40e_enabled_xdp_vsi(vsi)) { 4066 struct i40e_ring *xdp_ring = vsi->xdp_rings[qp_idx]; 4067 4068 xdp_ring->q_vector = q_vector; 4069 xdp_ring->next = q_vector->tx.ring; 4070 q_vector->tx.ring = xdp_ring; 4071 q_vector->tx.count++; 4072 } 4073 4074 rx_ring->q_vector = q_vector; 4075 rx_ring->next = q_vector->rx.ring; 4076 q_vector->rx.ring = rx_ring; 4077 q_vector->rx.count++; 4078 } 4079 4080 /** 4081 * i40e_vsi_map_rings_to_vectors - Maps descriptor rings to vectors 4082 * @vsi: the VSI being configured 4083 * 4084 * This function maps descriptor rings to the queue-specific vectors 4085 * we were allotted through the MSI-X enabling code. Ideally, we'd have 4086 * one vector per queue pair, but on a constrained vector budget, we 4087 * group the queue pairs as "efficiently" as possible. 4088 **/ 4089 static void i40e_vsi_map_rings_to_vectors(struct i40e_vsi *vsi) 4090 { 4091 int qp_remaining = vsi->num_queue_pairs; 4092 int q_vectors = vsi->num_q_vectors; 4093 int num_ringpairs; 4094 int v_start = 0; 4095 int qp_idx = 0; 4096 4097 /* If we don't have enough vectors for a 1-to-1 mapping, we'll have to 4098 * group them so there are multiple queues per vector. 4099 * It is also important to go through all the vectors available to be 4100 * sure that if we don't use all the vectors, that the remaining vectors 4101 * are cleared. This is especially important when decreasing the 4102 * number of queues in use. 4103 */ 4104 for (; v_start < q_vectors; v_start++) { 4105 struct i40e_q_vector *q_vector = vsi->q_vectors[v_start]; 4106 4107 num_ringpairs = DIV_ROUND_UP(qp_remaining, q_vectors - v_start); 4108 4109 q_vector->num_ringpairs = num_ringpairs; 4110 4111 q_vector->rx.count = 0; 4112 q_vector->tx.count = 0; 4113 q_vector->rx.ring = NULL; 4114 q_vector->tx.ring = NULL; 4115 4116 while (num_ringpairs--) { 4117 i40e_map_vector_to_qp(vsi, v_start, qp_idx); 4118 qp_idx++; 4119 qp_remaining--; 4120 } 4121 } 4122 } 4123 4124 /** 4125 * i40e_vsi_request_irq - Request IRQ from the OS 4126 * @vsi: the VSI being configured 4127 * @basename: name for the vector 4128 **/ 4129 static int i40e_vsi_request_irq(struct i40e_vsi *vsi, char *basename) 4130 { 4131 struct i40e_pf *pf = vsi->back; 4132 int err; 4133 4134 if (pf->flags & I40E_FLAG_MSIX_ENABLED) 4135 err = i40e_vsi_request_irq_msix(vsi, basename); 4136 else if (pf->flags & I40E_FLAG_MSI_ENABLED) 4137 err = request_irq(pf->pdev->irq, i40e_intr, 0, 4138 pf->int_name, pf); 4139 else 4140 err = request_irq(pf->pdev->irq, i40e_intr, IRQF_SHARED, 4141 pf->int_name, pf); 4142 4143 if (err) 4144 dev_info(&pf->pdev->dev, "request_irq failed, Error %d\n", err); 4145 4146 return err; 4147 } 4148 4149 #ifdef CONFIG_NET_POLL_CONTROLLER 4150 /** 4151 * i40e_netpoll - A Polling 'interrupt' handler 4152 * @netdev: network interface device structure 4153 * 4154 * This is used by netconsole to send skbs without having to re-enable 4155 * interrupts. It's not called while the normal interrupt routine is executing. 4156 **/ 4157 static void i40e_netpoll(struct net_device *netdev) 4158 { 4159 struct i40e_netdev_priv *np = netdev_priv(netdev); 4160 struct i40e_vsi *vsi = np->vsi; 4161 struct i40e_pf *pf = vsi->back; 4162 int i; 4163 4164 /* if interface is down do nothing */ 4165 if (test_bit(__I40E_VSI_DOWN, vsi->state)) 4166 return; 4167 4168 if (pf->flags & I40E_FLAG_MSIX_ENABLED) { 4169 for (i = 0; i < vsi->num_q_vectors; i++) 4170 i40e_msix_clean_rings(0, vsi->q_vectors[i]); 4171 } else { 4172 i40e_intr(pf->pdev->irq, netdev); 4173 } 4174 } 4175 #endif 4176 4177 #define I40E_QTX_ENA_WAIT_COUNT 50 4178 4179 /** 4180 * i40e_pf_txq_wait - Wait for a PF's Tx queue to be enabled or disabled 4181 * @pf: the PF being configured 4182 * @pf_q: the PF queue 4183 * @enable: enable or disable state of the queue 4184 * 4185 * This routine will wait for the given Tx queue of the PF to reach the 4186 * enabled or disabled state. 4187 * Returns -ETIMEDOUT in case of failing to reach the requested state after 4188 * multiple retries; else will return 0 in case of success. 4189 **/ 4190 static int i40e_pf_txq_wait(struct i40e_pf *pf, int pf_q, bool enable) 4191 { 4192 int i; 4193 u32 tx_reg; 4194 4195 for (i = 0; i < I40E_QUEUE_WAIT_RETRY_LIMIT; i++) { 4196 tx_reg = rd32(&pf->hw, I40E_QTX_ENA(pf_q)); 4197 if (enable == !!(tx_reg & I40E_QTX_ENA_QENA_STAT_MASK)) 4198 break; 4199 4200 usleep_range(10, 20); 4201 } 4202 if (i >= I40E_QUEUE_WAIT_RETRY_LIMIT) 4203 return -ETIMEDOUT; 4204 4205 return 0; 4206 } 4207 4208 /** 4209 * i40e_control_tx_q - Start or stop a particular Tx queue 4210 * @pf: the PF structure 4211 * @pf_q: the PF queue to configure 4212 * @enable: start or stop the queue 4213 * 4214 * This function enables or disables a single queue. Note that any delay 4215 * required after the operation is expected to be handled by the caller of 4216 * this function. 4217 **/ 4218 static void i40e_control_tx_q(struct i40e_pf *pf, int pf_q, bool enable) 4219 { 4220 struct i40e_hw *hw = &pf->hw; 4221 u32 tx_reg; 4222 int i; 4223 4224 /* warn the TX unit of coming changes */ 4225 i40e_pre_tx_queue_cfg(&pf->hw, pf_q, enable); 4226 if (!enable) 4227 usleep_range(10, 20); 4228 4229 for (i = 0; i < I40E_QTX_ENA_WAIT_COUNT; i++) { 4230 tx_reg = rd32(hw, I40E_QTX_ENA(pf_q)); 4231 if (((tx_reg >> I40E_QTX_ENA_QENA_REQ_SHIFT) & 1) == 4232 ((tx_reg >> I40E_QTX_ENA_QENA_STAT_SHIFT) & 1)) 4233 break; 4234 usleep_range(1000, 2000); 4235 } 4236 4237 /* Skip if the queue is already in the requested state */ 4238 if (enable == !!(tx_reg & I40E_QTX_ENA_QENA_STAT_MASK)) 4239 return; 4240 4241 /* turn on/off the queue */ 4242 if (enable) { 4243 wr32(hw, I40E_QTX_HEAD(pf_q), 0); 4244 tx_reg |= I40E_QTX_ENA_QENA_REQ_MASK; 4245 } else { 4246 tx_reg &= ~I40E_QTX_ENA_QENA_REQ_MASK; 4247 } 4248 4249 wr32(hw, I40E_QTX_ENA(pf_q), tx_reg); 4250 } 4251 4252 /** 4253 * i40e_control_wait_tx_q - Start/stop Tx queue and wait for completion 4254 * @seid: VSI SEID 4255 * @pf: the PF structure 4256 * @pf_q: the PF queue to configure 4257 * @is_xdp: true if the queue is used for XDP 4258 * @enable: start or stop the queue 4259 **/ 4260 static int i40e_control_wait_tx_q(int seid, struct i40e_pf *pf, int pf_q, 4261 bool is_xdp, bool enable) 4262 { 4263 int ret; 4264 4265 i40e_control_tx_q(pf, pf_q, enable); 4266 4267 /* wait for the change to finish */ 4268 ret = i40e_pf_txq_wait(pf, pf_q, enable); 4269 if (ret) { 4270 dev_info(&pf->pdev->dev, 4271 "VSI seid %d %sTx ring %d %sable timeout\n", 4272 seid, (is_xdp ? "XDP " : ""), pf_q, 4273 (enable ? "en" : "dis")); 4274 } 4275 4276 return ret; 4277 } 4278 4279 /** 4280 * i40e_vsi_control_tx - Start or stop a VSI's rings 4281 * @vsi: the VSI being configured 4282 * @enable: start or stop the rings 4283 **/ 4284 static int i40e_vsi_control_tx(struct i40e_vsi *vsi, bool enable) 4285 { 4286 struct i40e_pf *pf = vsi->back; 4287 int i, pf_q, ret = 0; 4288 4289 pf_q = vsi->base_queue; 4290 for (i = 0; i < vsi->num_queue_pairs; i++, pf_q++) { 4291 ret = i40e_control_wait_tx_q(vsi->seid, pf, 4292 pf_q, 4293 false /*is xdp*/, enable); 4294 if (ret) 4295 break; 4296 4297 if (!i40e_enabled_xdp_vsi(vsi)) 4298 continue; 4299 4300 ret = i40e_control_wait_tx_q(vsi->seid, pf, 4301 pf_q + vsi->alloc_queue_pairs, 4302 true /*is xdp*/, enable); 4303 if (ret) 4304 break; 4305 } 4306 4307 return ret; 4308 } 4309 4310 /** 4311 * i40e_pf_rxq_wait - Wait for a PF's Rx queue to be enabled or disabled 4312 * @pf: the PF being configured 4313 * @pf_q: the PF queue 4314 * @enable: enable or disable state of the queue 4315 * 4316 * This routine will wait for the given Rx queue of the PF to reach the 4317 * enabled or disabled state. 4318 * Returns -ETIMEDOUT in case of failing to reach the requested state after 4319 * multiple retries; else will return 0 in case of success. 4320 **/ 4321 static int i40e_pf_rxq_wait(struct i40e_pf *pf, int pf_q, bool enable) 4322 { 4323 int i; 4324 u32 rx_reg; 4325 4326 for (i = 0; i < I40E_QUEUE_WAIT_RETRY_LIMIT; i++) { 4327 rx_reg = rd32(&pf->hw, I40E_QRX_ENA(pf_q)); 4328 if (enable == !!(rx_reg & I40E_QRX_ENA_QENA_STAT_MASK)) 4329 break; 4330 4331 usleep_range(10, 20); 4332 } 4333 if (i >= I40E_QUEUE_WAIT_RETRY_LIMIT) 4334 return -ETIMEDOUT; 4335 4336 return 0; 4337 } 4338 4339 /** 4340 * i40e_control_rx_q - Start or stop a particular Rx queue 4341 * @pf: the PF structure 4342 * @pf_q: the PF queue to configure 4343 * @enable: start or stop the queue 4344 * 4345 * This function enables or disables a single queue. Note that any delay 4346 * required after the operation is expected to be handled by the caller of 4347 * this function. 4348 **/ 4349 static void i40e_control_rx_q(struct i40e_pf *pf, int pf_q, bool enable) 4350 { 4351 struct i40e_hw *hw = &pf->hw; 4352 u32 rx_reg; 4353 int i; 4354 4355 for (i = 0; i < I40E_QTX_ENA_WAIT_COUNT; i++) { 4356 rx_reg = rd32(hw, I40E_QRX_ENA(pf_q)); 4357 if (((rx_reg >> I40E_QRX_ENA_QENA_REQ_SHIFT) & 1) == 4358 ((rx_reg >> I40E_QRX_ENA_QENA_STAT_SHIFT) & 1)) 4359 break; 4360 usleep_range(1000, 2000); 4361 } 4362 4363 /* Skip if the queue is already in the requested state */ 4364 if (enable == !!(rx_reg & I40E_QRX_ENA_QENA_STAT_MASK)) 4365 return; 4366 4367 /* turn on/off the queue */ 4368 if (enable) 4369 rx_reg |= I40E_QRX_ENA_QENA_REQ_MASK; 4370 else 4371 rx_reg &= ~I40E_QRX_ENA_QENA_REQ_MASK; 4372 4373 wr32(hw, I40E_QRX_ENA(pf_q), rx_reg); 4374 } 4375 4376 /** 4377 * i40e_vsi_control_rx - Start or stop a VSI's rings 4378 * @vsi: the VSI being configured 4379 * @enable: start or stop the rings 4380 **/ 4381 static int i40e_vsi_control_rx(struct i40e_vsi *vsi, bool enable) 4382 { 4383 struct i40e_pf *pf = vsi->back; 4384 int i, pf_q, ret = 0; 4385 4386 pf_q = vsi->base_queue; 4387 for (i = 0; i < vsi->num_queue_pairs; i++, pf_q++) { 4388 i40e_control_rx_q(pf, pf_q, enable); 4389 4390 /* wait for the change to finish */ 4391 ret = i40e_pf_rxq_wait(pf, pf_q, enable); 4392 if (ret) { 4393 dev_info(&pf->pdev->dev, 4394 "VSI seid %d Rx ring %d %sable timeout\n", 4395 vsi->seid, pf_q, (enable ? "en" : "dis")); 4396 break; 4397 } 4398 } 4399 4400 /* Due to HW errata, on Rx disable only, the register can indicate done 4401 * before it really is. Needs 50ms to be sure 4402 */ 4403 if (!enable) 4404 mdelay(50); 4405 4406 return ret; 4407 } 4408 4409 /** 4410 * i40e_vsi_start_rings - Start a VSI's rings 4411 * @vsi: the VSI being configured 4412 **/ 4413 int i40e_vsi_start_rings(struct i40e_vsi *vsi) 4414 { 4415 int ret = 0; 4416 4417 /* do rx first for enable and last for disable */ 4418 ret = i40e_vsi_control_rx(vsi, true); 4419 if (ret) 4420 return ret; 4421 ret = i40e_vsi_control_tx(vsi, true); 4422 4423 return ret; 4424 } 4425 4426 /** 4427 * i40e_vsi_stop_rings - Stop a VSI's rings 4428 * @vsi: the VSI being configured 4429 **/ 4430 void i40e_vsi_stop_rings(struct i40e_vsi *vsi) 4431 { 4432 /* When port TX is suspended, don't wait */ 4433 if (test_bit(__I40E_PORT_SUSPENDED, vsi->back->state)) 4434 return i40e_vsi_stop_rings_no_wait(vsi); 4435 4436 /* do rx first for enable and last for disable 4437 * Ignore return value, we need to shutdown whatever we can 4438 */ 4439 i40e_vsi_control_tx(vsi, false); 4440 i40e_vsi_control_rx(vsi, false); 4441 } 4442 4443 /** 4444 * i40e_vsi_stop_rings_no_wait - Stop a VSI's rings and do not delay 4445 * @vsi: the VSI being shutdown 4446 * 4447 * This function stops all the rings for a VSI but does not delay to verify 4448 * that rings have been disabled. It is expected that the caller is shutting 4449 * down multiple VSIs at once and will delay together for all the VSIs after 4450 * initiating the shutdown. This is particularly useful for shutting down lots 4451 * of VFs together. Otherwise, a large delay can be incurred while configuring 4452 * each VSI in serial. 4453 **/ 4454 void i40e_vsi_stop_rings_no_wait(struct i40e_vsi *vsi) 4455 { 4456 struct i40e_pf *pf = vsi->back; 4457 int i, pf_q; 4458 4459 pf_q = vsi->base_queue; 4460 for (i = 0; i < vsi->num_queue_pairs; i++, pf_q++) { 4461 i40e_control_tx_q(pf, pf_q, false); 4462 i40e_control_rx_q(pf, pf_q, false); 4463 } 4464 } 4465 4466 /** 4467 * i40e_vsi_free_irq - Free the irq association with the OS 4468 * @vsi: the VSI being configured 4469 **/ 4470 static void i40e_vsi_free_irq(struct i40e_vsi *vsi) 4471 { 4472 struct i40e_pf *pf = vsi->back; 4473 struct i40e_hw *hw = &pf->hw; 4474 int base = vsi->base_vector; 4475 u32 val, qp; 4476 int i; 4477 4478 if (pf->flags & I40E_FLAG_MSIX_ENABLED) { 4479 if (!vsi->q_vectors) 4480 return; 4481 4482 if (!vsi->irqs_ready) 4483 return; 4484 4485 vsi->irqs_ready = false; 4486 for (i = 0; i < vsi->num_q_vectors; i++) { 4487 int irq_num; 4488 u16 vector; 4489 4490 vector = i + base; 4491 irq_num = pf->msix_entries[vector].vector; 4492 4493 /* free only the irqs that were actually requested */ 4494 if (!vsi->q_vectors[i] || 4495 !vsi->q_vectors[i]->num_ringpairs) 4496 continue; 4497 4498 /* clear the affinity notifier in the IRQ descriptor */ 4499 irq_set_affinity_notifier(irq_num, NULL); 4500 /* remove our suggested affinity mask for this IRQ */ 4501 irq_set_affinity_hint(irq_num, NULL); 4502 synchronize_irq(irq_num); 4503 free_irq(irq_num, vsi->q_vectors[i]); 4504 4505 /* Tear down the interrupt queue link list 4506 * 4507 * We know that they come in pairs and always 4508 * the Rx first, then the Tx. To clear the 4509 * link list, stick the EOL value into the 4510 * next_q field of the registers. 4511 */ 4512 val = rd32(hw, I40E_PFINT_LNKLSTN(vector - 1)); 4513 qp = (val & I40E_PFINT_LNKLSTN_FIRSTQ_INDX_MASK) 4514 >> I40E_PFINT_LNKLSTN_FIRSTQ_INDX_SHIFT; 4515 val |= I40E_QUEUE_END_OF_LIST 4516 << I40E_PFINT_LNKLSTN_FIRSTQ_INDX_SHIFT; 4517 wr32(hw, I40E_PFINT_LNKLSTN(vector - 1), val); 4518 4519 while (qp != I40E_QUEUE_END_OF_LIST) { 4520 u32 next; 4521 4522 val = rd32(hw, I40E_QINT_RQCTL(qp)); 4523 4524 val &= ~(I40E_QINT_RQCTL_MSIX_INDX_MASK | 4525 I40E_QINT_RQCTL_MSIX0_INDX_MASK | 4526 I40E_QINT_RQCTL_CAUSE_ENA_MASK | 4527 I40E_QINT_RQCTL_INTEVENT_MASK); 4528 4529 val |= (I40E_QINT_RQCTL_ITR_INDX_MASK | 4530 I40E_QINT_RQCTL_NEXTQ_INDX_MASK); 4531 4532 wr32(hw, I40E_QINT_RQCTL(qp), val); 4533 4534 val = rd32(hw, I40E_QINT_TQCTL(qp)); 4535 4536 next = (val & I40E_QINT_TQCTL_NEXTQ_INDX_MASK) 4537 >> I40E_QINT_TQCTL_NEXTQ_INDX_SHIFT; 4538 4539 val &= ~(I40E_QINT_TQCTL_MSIX_INDX_MASK | 4540 I40E_QINT_TQCTL_MSIX0_INDX_MASK | 4541 I40E_QINT_TQCTL_CAUSE_ENA_MASK | 4542 I40E_QINT_TQCTL_INTEVENT_MASK); 4543 4544 val |= (I40E_QINT_TQCTL_ITR_INDX_MASK | 4545 I40E_QINT_TQCTL_NEXTQ_INDX_MASK); 4546 4547 wr32(hw, I40E_QINT_TQCTL(qp), val); 4548 qp = next; 4549 } 4550 } 4551 } else { 4552 free_irq(pf->pdev->irq, pf); 4553 4554 val = rd32(hw, I40E_PFINT_LNKLST0); 4555 qp = (val & I40E_PFINT_LNKLSTN_FIRSTQ_INDX_MASK) 4556 >> I40E_PFINT_LNKLSTN_FIRSTQ_INDX_SHIFT; 4557 val |= I40E_QUEUE_END_OF_LIST 4558 << I40E_PFINT_LNKLST0_FIRSTQ_INDX_SHIFT; 4559 wr32(hw, I40E_PFINT_LNKLST0, val); 4560 4561 val = rd32(hw, I40E_QINT_RQCTL(qp)); 4562 val &= ~(I40E_QINT_RQCTL_MSIX_INDX_MASK | 4563 I40E_QINT_RQCTL_MSIX0_INDX_MASK | 4564 I40E_QINT_RQCTL_CAUSE_ENA_MASK | 4565 I40E_QINT_RQCTL_INTEVENT_MASK); 4566 4567 val |= (I40E_QINT_RQCTL_ITR_INDX_MASK | 4568 I40E_QINT_RQCTL_NEXTQ_INDX_MASK); 4569 4570 wr32(hw, I40E_QINT_RQCTL(qp), val); 4571 4572 val = rd32(hw, I40E_QINT_TQCTL(qp)); 4573 4574 val &= ~(I40E_QINT_TQCTL_MSIX_INDX_MASK | 4575 I40E_QINT_TQCTL_MSIX0_INDX_MASK | 4576 I40E_QINT_TQCTL_CAUSE_ENA_MASK | 4577 I40E_QINT_TQCTL_INTEVENT_MASK); 4578 4579 val |= (I40E_QINT_TQCTL_ITR_INDX_MASK | 4580 I40E_QINT_TQCTL_NEXTQ_INDX_MASK); 4581 4582 wr32(hw, I40E_QINT_TQCTL(qp), val); 4583 } 4584 } 4585 4586 /** 4587 * i40e_free_q_vector - Free memory allocated for specific interrupt vector 4588 * @vsi: the VSI being configured 4589 * @v_idx: Index of vector to be freed 4590 * 4591 * This function frees the memory allocated to the q_vector. In addition if 4592 * NAPI is enabled it will delete any references to the NAPI struct prior 4593 * to freeing the q_vector. 4594 **/ 4595 static void i40e_free_q_vector(struct i40e_vsi *vsi, int v_idx) 4596 { 4597 struct i40e_q_vector *q_vector = vsi->q_vectors[v_idx]; 4598 struct i40e_ring *ring; 4599 4600 if (!q_vector) 4601 return; 4602 4603 /* disassociate q_vector from rings */ 4604 i40e_for_each_ring(ring, q_vector->tx) 4605 ring->q_vector = NULL; 4606 4607 i40e_for_each_ring(ring, q_vector->rx) 4608 ring->q_vector = NULL; 4609 4610 /* only VSI w/ an associated netdev is set up w/ NAPI */ 4611 if (vsi->netdev) 4612 netif_napi_del(&q_vector->napi); 4613 4614 vsi->q_vectors[v_idx] = NULL; 4615 4616 kfree_rcu(q_vector, rcu); 4617 } 4618 4619 /** 4620 * i40e_vsi_free_q_vectors - Free memory allocated for interrupt vectors 4621 * @vsi: the VSI being un-configured 4622 * 4623 * This frees the memory allocated to the q_vectors and 4624 * deletes references to the NAPI struct. 4625 **/ 4626 static void i40e_vsi_free_q_vectors(struct i40e_vsi *vsi) 4627 { 4628 int v_idx; 4629 4630 for (v_idx = 0; v_idx < vsi->num_q_vectors; v_idx++) 4631 i40e_free_q_vector(vsi, v_idx); 4632 } 4633 4634 /** 4635 * i40e_reset_interrupt_capability - Disable interrupt setup in OS 4636 * @pf: board private structure 4637 **/ 4638 static void i40e_reset_interrupt_capability(struct i40e_pf *pf) 4639 { 4640 /* If we're in Legacy mode, the interrupt was cleaned in vsi_close */ 4641 if (pf->flags & I40E_FLAG_MSIX_ENABLED) { 4642 pci_disable_msix(pf->pdev); 4643 kfree(pf->msix_entries); 4644 pf->msix_entries = NULL; 4645 kfree(pf->irq_pile); 4646 pf->irq_pile = NULL; 4647 } else if (pf->flags & I40E_FLAG_MSI_ENABLED) { 4648 pci_disable_msi(pf->pdev); 4649 } 4650 pf->flags &= ~(I40E_FLAG_MSIX_ENABLED | I40E_FLAG_MSI_ENABLED); 4651 } 4652 4653 /** 4654 * i40e_clear_interrupt_scheme - Clear the current interrupt scheme settings 4655 * @pf: board private structure 4656 * 4657 * We go through and clear interrupt specific resources and reset the structure 4658 * to pre-load conditions 4659 **/ 4660 static void i40e_clear_interrupt_scheme(struct i40e_pf *pf) 4661 { 4662 int i; 4663 4664 i40e_free_misc_vector(pf); 4665 4666 i40e_put_lump(pf->irq_pile, pf->iwarp_base_vector, 4667 I40E_IWARP_IRQ_PILE_ID); 4668 4669 i40e_put_lump(pf->irq_pile, 0, I40E_PILE_VALID_BIT-1); 4670 for (i = 0; i < pf->num_alloc_vsi; i++) 4671 if (pf->vsi[i]) 4672 i40e_vsi_free_q_vectors(pf->vsi[i]); 4673 i40e_reset_interrupt_capability(pf); 4674 } 4675 4676 /** 4677 * i40e_napi_enable_all - Enable NAPI for all q_vectors in the VSI 4678 * @vsi: the VSI being configured 4679 **/ 4680 static void i40e_napi_enable_all(struct i40e_vsi *vsi) 4681 { 4682 int q_idx; 4683 4684 if (!vsi->netdev) 4685 return; 4686 4687 for (q_idx = 0; q_idx < vsi->num_q_vectors; q_idx++) { 4688 struct i40e_q_vector *q_vector = vsi->q_vectors[q_idx]; 4689 4690 if (q_vector->rx.ring || q_vector->tx.ring) 4691 napi_enable(&q_vector->napi); 4692 } 4693 } 4694 4695 /** 4696 * i40e_napi_disable_all - Disable NAPI for all q_vectors in the VSI 4697 * @vsi: the VSI being configured 4698 **/ 4699 static void i40e_napi_disable_all(struct i40e_vsi *vsi) 4700 { 4701 int q_idx; 4702 4703 if (!vsi->netdev) 4704 return; 4705 4706 for (q_idx = 0; q_idx < vsi->num_q_vectors; q_idx++) { 4707 struct i40e_q_vector *q_vector = vsi->q_vectors[q_idx]; 4708 4709 if (q_vector->rx.ring || q_vector->tx.ring) 4710 napi_disable(&q_vector->napi); 4711 } 4712 } 4713 4714 /** 4715 * i40e_vsi_close - Shut down a VSI 4716 * @vsi: the vsi to be quelled 4717 **/ 4718 static void i40e_vsi_close(struct i40e_vsi *vsi) 4719 { 4720 struct i40e_pf *pf = vsi->back; 4721 if (!test_and_set_bit(__I40E_VSI_DOWN, vsi->state)) 4722 i40e_down(vsi); 4723 i40e_vsi_free_irq(vsi); 4724 i40e_vsi_free_tx_resources(vsi); 4725 i40e_vsi_free_rx_resources(vsi); 4726 vsi->current_netdev_flags = 0; 4727 pf->flags |= I40E_FLAG_SERVICE_CLIENT_REQUESTED; 4728 if (test_bit(__I40E_RESET_RECOVERY_PENDING, pf->state)) 4729 pf->flags |= I40E_FLAG_CLIENT_RESET; 4730 } 4731 4732 /** 4733 * i40e_quiesce_vsi - Pause a given VSI 4734 * @vsi: the VSI being paused 4735 **/ 4736 static void i40e_quiesce_vsi(struct i40e_vsi *vsi) 4737 { 4738 if (test_bit(__I40E_VSI_DOWN, vsi->state)) 4739 return; 4740 4741 set_bit(__I40E_VSI_NEEDS_RESTART, vsi->state); 4742 if (vsi->netdev && netif_running(vsi->netdev)) 4743 vsi->netdev->netdev_ops->ndo_stop(vsi->netdev); 4744 else 4745 i40e_vsi_close(vsi); 4746 } 4747 4748 /** 4749 * i40e_unquiesce_vsi - Resume a given VSI 4750 * @vsi: the VSI being resumed 4751 **/ 4752 static void i40e_unquiesce_vsi(struct i40e_vsi *vsi) 4753 { 4754 if (!test_and_clear_bit(__I40E_VSI_NEEDS_RESTART, vsi->state)) 4755 return; 4756 4757 if (vsi->netdev && netif_running(vsi->netdev)) 4758 vsi->netdev->netdev_ops->ndo_open(vsi->netdev); 4759 else 4760 i40e_vsi_open(vsi); /* this clears the DOWN bit */ 4761 } 4762 4763 /** 4764 * i40e_pf_quiesce_all_vsi - Pause all VSIs on a PF 4765 * @pf: the PF 4766 **/ 4767 static void i40e_pf_quiesce_all_vsi(struct i40e_pf *pf) 4768 { 4769 int v; 4770 4771 for (v = 0; v < pf->num_alloc_vsi; v++) { 4772 if (pf->vsi[v]) 4773 i40e_quiesce_vsi(pf->vsi[v]); 4774 } 4775 } 4776 4777 /** 4778 * i40e_pf_unquiesce_all_vsi - Resume all VSIs on a PF 4779 * @pf: the PF 4780 **/ 4781 static void i40e_pf_unquiesce_all_vsi(struct i40e_pf *pf) 4782 { 4783 int v; 4784 4785 for (v = 0; v < pf->num_alloc_vsi; v++) { 4786 if (pf->vsi[v]) 4787 i40e_unquiesce_vsi(pf->vsi[v]); 4788 } 4789 } 4790 4791 /** 4792 * i40e_vsi_wait_queues_disabled - Wait for VSI's queues to be disabled 4793 * @vsi: the VSI being configured 4794 * 4795 * Wait until all queues on a given VSI have been disabled. 4796 **/ 4797 int i40e_vsi_wait_queues_disabled(struct i40e_vsi *vsi) 4798 { 4799 struct i40e_pf *pf = vsi->back; 4800 int i, pf_q, ret; 4801 4802 pf_q = vsi->base_queue; 4803 for (i = 0; i < vsi->num_queue_pairs; i++, pf_q++) { 4804 /* Check and wait for the Tx queue */ 4805 ret = i40e_pf_txq_wait(pf, pf_q, false); 4806 if (ret) { 4807 dev_info(&pf->pdev->dev, 4808 "VSI seid %d Tx ring %d disable timeout\n", 4809 vsi->seid, pf_q); 4810 return ret; 4811 } 4812 4813 if (!i40e_enabled_xdp_vsi(vsi)) 4814 goto wait_rx; 4815 4816 /* Check and wait for the XDP Tx queue */ 4817 ret = i40e_pf_txq_wait(pf, pf_q + vsi->alloc_queue_pairs, 4818 false); 4819 if (ret) { 4820 dev_info(&pf->pdev->dev, 4821 "VSI seid %d XDP Tx ring %d disable timeout\n", 4822 vsi->seid, pf_q); 4823 return ret; 4824 } 4825 wait_rx: 4826 /* Check and wait for the Rx queue */ 4827 ret = i40e_pf_rxq_wait(pf, pf_q, false); 4828 if (ret) { 4829 dev_info(&pf->pdev->dev, 4830 "VSI seid %d Rx ring %d disable timeout\n", 4831 vsi->seid, pf_q); 4832 return ret; 4833 } 4834 } 4835 4836 return 0; 4837 } 4838 4839 #ifdef CONFIG_I40E_DCB 4840 /** 4841 * i40e_pf_wait_queues_disabled - Wait for all queues of PF VSIs to be disabled 4842 * @pf: the PF 4843 * 4844 * This function waits for the queues to be in disabled state for all the 4845 * VSIs that are managed by this PF. 4846 **/ 4847 static int i40e_pf_wait_queues_disabled(struct i40e_pf *pf) 4848 { 4849 int v, ret = 0; 4850 4851 for (v = 0; v < pf->hw.func_caps.num_vsis; v++) { 4852 if (pf->vsi[v]) { 4853 ret = i40e_vsi_wait_queues_disabled(pf->vsi[v]); 4854 if (ret) 4855 break; 4856 } 4857 } 4858 4859 return ret; 4860 } 4861 4862 #endif 4863 4864 /** 4865 * i40e_detect_recover_hung_queue - Function to detect and recover hung_queue 4866 * @q_idx: TX queue number 4867 * @vsi: Pointer to VSI struct 4868 * 4869 * This function checks specified queue for given VSI. Detects hung condition. 4870 * We proactively detect hung TX queues by checking if interrupts are disabled 4871 * but there are pending descriptors. If it appears hung, attempt to recover 4872 * by triggering a SW interrupt. 4873 **/ 4874 static void i40e_detect_recover_hung_queue(int q_idx, struct i40e_vsi *vsi) 4875 { 4876 struct i40e_ring *tx_ring = NULL; 4877 struct i40e_pf *pf; 4878 u32 val, tx_pending; 4879 int i; 4880 4881 pf = vsi->back; 4882 4883 /* now that we have an index, find the tx_ring struct */ 4884 for (i = 0; i < vsi->num_queue_pairs; i++) { 4885 if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc) { 4886 if (q_idx == vsi->tx_rings[i]->queue_index) { 4887 tx_ring = vsi->tx_rings[i]; 4888 break; 4889 } 4890 } 4891 } 4892 4893 if (!tx_ring) 4894 return; 4895 4896 /* Read interrupt register */ 4897 if (pf->flags & I40E_FLAG_MSIX_ENABLED) 4898 val = rd32(&pf->hw, 4899 I40E_PFINT_DYN_CTLN(tx_ring->q_vector->v_idx + 4900 tx_ring->vsi->base_vector - 1)); 4901 else 4902 val = rd32(&pf->hw, I40E_PFINT_DYN_CTL0); 4903 4904 tx_pending = i40e_get_tx_pending(tx_ring); 4905 4906 /* Interrupts are disabled and TX pending is non-zero, 4907 * trigger the SW interrupt (don't wait). Worst case 4908 * there will be one extra interrupt which may result 4909 * into not cleaning any queues because queues are cleaned. 4910 */ 4911 if (tx_pending && (!(val & I40E_PFINT_DYN_CTLN_INTENA_MASK))) 4912 i40e_force_wb(vsi, tx_ring->q_vector); 4913 } 4914 4915 /** 4916 * i40e_detect_recover_hung - Function to detect and recover hung_queues 4917 * @pf: pointer to PF struct 4918 * 4919 * LAN VSI has netdev and netdev has TX queues. This function is to check 4920 * each of those TX queues if they are hung, trigger recovery by issuing 4921 * SW interrupt. 4922 **/ 4923 static void i40e_detect_recover_hung(struct i40e_pf *pf) 4924 { 4925 struct net_device *netdev; 4926 struct i40e_vsi *vsi; 4927 unsigned int i; 4928 4929 /* Only for LAN VSI */ 4930 vsi = pf->vsi[pf->lan_vsi]; 4931 4932 if (!vsi) 4933 return; 4934 4935 /* Make sure, VSI state is not DOWN/RECOVERY_PENDING */ 4936 if (test_bit(__I40E_VSI_DOWN, vsi->back->state) || 4937 test_bit(__I40E_RESET_RECOVERY_PENDING, vsi->back->state)) 4938 return; 4939 4940 /* Make sure type is MAIN VSI */ 4941 if (vsi->type != I40E_VSI_MAIN) 4942 return; 4943 4944 netdev = vsi->netdev; 4945 if (!netdev) 4946 return; 4947 4948 /* Bail out if netif_carrier is not OK */ 4949 if (!netif_carrier_ok(netdev)) 4950 return; 4951 4952 /* Go thru' TX queues for netdev */ 4953 for (i = 0; i < netdev->num_tx_queues; i++) { 4954 struct netdev_queue *q; 4955 4956 q = netdev_get_tx_queue(netdev, i); 4957 if (q) 4958 i40e_detect_recover_hung_queue(i, vsi); 4959 } 4960 } 4961 4962 /** 4963 * i40e_get_iscsi_tc_map - Return TC map for iSCSI APP 4964 * @pf: pointer to PF 4965 * 4966 * Get TC map for ISCSI PF type that will include iSCSI TC 4967 * and LAN TC. 4968 **/ 4969 static u8 i40e_get_iscsi_tc_map(struct i40e_pf *pf) 4970 { 4971 struct i40e_dcb_app_priority_table app; 4972 struct i40e_hw *hw = &pf->hw; 4973 u8 enabled_tc = 1; /* TC0 is always enabled */ 4974 u8 tc, i; 4975 /* Get the iSCSI APP TLV */ 4976 struct i40e_dcbx_config *dcbcfg = &hw->local_dcbx_config; 4977 4978 for (i = 0; i < dcbcfg->numapps; i++) { 4979 app = dcbcfg->app[i]; 4980 if (app.selector == I40E_APP_SEL_TCPIP && 4981 app.protocolid == I40E_APP_PROTOID_ISCSI) { 4982 tc = dcbcfg->etscfg.prioritytable[app.priority]; 4983 enabled_tc |= BIT(tc); 4984 break; 4985 } 4986 } 4987 4988 return enabled_tc; 4989 } 4990 4991 /** 4992 * i40e_dcb_get_num_tc - Get the number of TCs from DCBx config 4993 * @dcbcfg: the corresponding DCBx configuration structure 4994 * 4995 * Return the number of TCs from given DCBx configuration 4996 **/ 4997 static u8 i40e_dcb_get_num_tc(struct i40e_dcbx_config *dcbcfg) 4998 { 4999 int i, tc_unused = 0; 5000 u8 num_tc = 0; 5001 u8 ret = 0; 5002 5003 /* Scan the ETS Config Priority Table to find 5004 * traffic class enabled for a given priority 5005 * and create a bitmask of enabled TCs 5006 */ 5007 for (i = 0; i < I40E_MAX_USER_PRIORITY; i++) 5008 num_tc |= BIT(dcbcfg->etscfg.prioritytable[i]); 5009 5010 /* Now scan the bitmask to check for 5011 * contiguous TCs starting with TC0 5012 */ 5013 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 5014 if (num_tc & BIT(i)) { 5015 if (!tc_unused) { 5016 ret++; 5017 } else { 5018 pr_err("Non-contiguous TC - Disabling DCB\n"); 5019 return 1; 5020 } 5021 } else { 5022 tc_unused = 1; 5023 } 5024 } 5025 5026 /* There is always at least TC0 */ 5027 if (!ret) 5028 ret = 1; 5029 5030 return ret; 5031 } 5032 5033 /** 5034 * i40e_dcb_get_enabled_tc - Get enabled traffic classes 5035 * @dcbcfg: the corresponding DCBx configuration structure 5036 * 5037 * Query the current DCB configuration and return the number of 5038 * traffic classes enabled from the given DCBX config 5039 **/ 5040 static u8 i40e_dcb_get_enabled_tc(struct i40e_dcbx_config *dcbcfg) 5041 { 5042 u8 num_tc = i40e_dcb_get_num_tc(dcbcfg); 5043 u8 enabled_tc = 1; 5044 u8 i; 5045 5046 for (i = 0; i < num_tc; i++) 5047 enabled_tc |= BIT(i); 5048 5049 return enabled_tc; 5050 } 5051 5052 /** 5053 * i40e_mqprio_get_enabled_tc - Get enabled traffic classes 5054 * @pf: PF being queried 5055 * 5056 * Query the current MQPRIO configuration and return the number of 5057 * traffic classes enabled. 5058 **/ 5059 static u8 i40e_mqprio_get_enabled_tc(struct i40e_pf *pf) 5060 { 5061 struct i40e_vsi *vsi = pf->vsi[pf->lan_vsi]; 5062 u8 num_tc = vsi->mqprio_qopt.qopt.num_tc; 5063 u8 enabled_tc = 1, i; 5064 5065 for (i = 1; i < num_tc; i++) 5066 enabled_tc |= BIT(i); 5067 return enabled_tc; 5068 } 5069 5070 /** 5071 * i40e_pf_get_num_tc - Get enabled traffic classes for PF 5072 * @pf: PF being queried 5073 * 5074 * Return number of traffic classes enabled for the given PF 5075 **/ 5076 static u8 i40e_pf_get_num_tc(struct i40e_pf *pf) 5077 { 5078 struct i40e_hw *hw = &pf->hw; 5079 u8 i, enabled_tc = 1; 5080 u8 num_tc = 0; 5081 struct i40e_dcbx_config *dcbcfg = &hw->local_dcbx_config; 5082 5083 if (pf->flags & I40E_FLAG_TC_MQPRIO) 5084 return pf->vsi[pf->lan_vsi]->mqprio_qopt.qopt.num_tc; 5085 5086 /* If neither MQPRIO nor DCB is enabled, then always use single TC */ 5087 if (!(pf->flags & I40E_FLAG_DCB_ENABLED)) 5088 return 1; 5089 5090 /* SFP mode will be enabled for all TCs on port */ 5091 if (!(pf->flags & I40E_FLAG_MFP_ENABLED)) 5092 return i40e_dcb_get_num_tc(dcbcfg); 5093 5094 /* MFP mode return count of enabled TCs for this PF */ 5095 if (pf->hw.func_caps.iscsi) 5096 enabled_tc = i40e_get_iscsi_tc_map(pf); 5097 else 5098 return 1; /* Only TC0 */ 5099 5100 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 5101 if (enabled_tc & BIT(i)) 5102 num_tc++; 5103 } 5104 return num_tc; 5105 } 5106 5107 /** 5108 * i40e_pf_get_pf_tc_map - Get bitmap for enabled traffic classes 5109 * @pf: PF being queried 5110 * 5111 * Return a bitmap for enabled traffic classes for this PF. 5112 **/ 5113 static u8 i40e_pf_get_tc_map(struct i40e_pf *pf) 5114 { 5115 if (pf->flags & I40E_FLAG_TC_MQPRIO) 5116 return i40e_mqprio_get_enabled_tc(pf); 5117 5118 /* If neither MQPRIO nor DCB is enabled for this PF then just return 5119 * default TC 5120 */ 5121 if (!(pf->flags & I40E_FLAG_DCB_ENABLED)) 5122 return I40E_DEFAULT_TRAFFIC_CLASS; 5123 5124 /* SFP mode we want PF to be enabled for all TCs */ 5125 if (!(pf->flags & I40E_FLAG_MFP_ENABLED)) 5126 return i40e_dcb_get_enabled_tc(&pf->hw.local_dcbx_config); 5127 5128 /* MFP enabled and iSCSI PF type */ 5129 if (pf->hw.func_caps.iscsi) 5130 return i40e_get_iscsi_tc_map(pf); 5131 else 5132 return I40E_DEFAULT_TRAFFIC_CLASS; 5133 } 5134 5135 /** 5136 * i40e_vsi_get_bw_info - Query VSI BW Information 5137 * @vsi: the VSI being queried 5138 * 5139 * Returns 0 on success, negative value on failure 5140 **/ 5141 static int i40e_vsi_get_bw_info(struct i40e_vsi *vsi) 5142 { 5143 struct i40e_aqc_query_vsi_ets_sla_config_resp bw_ets_config = {0}; 5144 struct i40e_aqc_query_vsi_bw_config_resp bw_config = {0}; 5145 struct i40e_pf *pf = vsi->back; 5146 struct i40e_hw *hw = &pf->hw; 5147 i40e_status ret; 5148 u32 tc_bw_max; 5149 int i; 5150 5151 /* Get the VSI level BW configuration */ 5152 ret = i40e_aq_query_vsi_bw_config(hw, vsi->seid, &bw_config, NULL); 5153 if (ret) { 5154 dev_info(&pf->pdev->dev, 5155 "couldn't get PF vsi bw config, err %s aq_err %s\n", 5156 i40e_stat_str(&pf->hw, ret), 5157 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 5158 return -EINVAL; 5159 } 5160 5161 /* Get the VSI level BW configuration per TC */ 5162 ret = i40e_aq_query_vsi_ets_sla_config(hw, vsi->seid, &bw_ets_config, 5163 NULL); 5164 if (ret) { 5165 dev_info(&pf->pdev->dev, 5166 "couldn't get PF vsi ets bw config, err %s aq_err %s\n", 5167 i40e_stat_str(&pf->hw, ret), 5168 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 5169 return -EINVAL; 5170 } 5171 5172 if (bw_config.tc_valid_bits != bw_ets_config.tc_valid_bits) { 5173 dev_info(&pf->pdev->dev, 5174 "Enabled TCs mismatch from querying VSI BW info 0x%08x 0x%08x\n", 5175 bw_config.tc_valid_bits, 5176 bw_ets_config.tc_valid_bits); 5177 /* Still continuing */ 5178 } 5179 5180 vsi->bw_limit = le16_to_cpu(bw_config.port_bw_limit); 5181 vsi->bw_max_quanta = bw_config.max_bw; 5182 tc_bw_max = le16_to_cpu(bw_ets_config.tc_bw_max[0]) | 5183 (le16_to_cpu(bw_ets_config.tc_bw_max[1]) << 16); 5184 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 5185 vsi->bw_ets_share_credits[i] = bw_ets_config.share_credits[i]; 5186 vsi->bw_ets_limit_credits[i] = 5187 le16_to_cpu(bw_ets_config.credits[i]); 5188 /* 3 bits out of 4 for each TC */ 5189 vsi->bw_ets_max_quanta[i] = (u8)((tc_bw_max >> (i*4)) & 0x7); 5190 } 5191 5192 return 0; 5193 } 5194 5195 /** 5196 * i40e_vsi_configure_bw_alloc - Configure VSI BW allocation per TC 5197 * @vsi: the VSI being configured 5198 * @enabled_tc: TC bitmap 5199 * @bw_credits: BW shared credits per TC 5200 * 5201 * Returns 0 on success, negative value on failure 5202 **/ 5203 static int i40e_vsi_configure_bw_alloc(struct i40e_vsi *vsi, u8 enabled_tc, 5204 u8 *bw_share) 5205 { 5206 struct i40e_aqc_configure_vsi_tc_bw_data bw_data; 5207 i40e_status ret; 5208 int i; 5209 5210 if (vsi->back->flags & I40E_FLAG_TC_MQPRIO) 5211 return 0; 5212 if (!vsi->mqprio_qopt.qopt.hw) { 5213 ret = i40e_set_bw_limit(vsi, vsi->seid, 0); 5214 if (ret) 5215 dev_info(&vsi->back->pdev->dev, 5216 "Failed to reset tx rate for vsi->seid %u\n", 5217 vsi->seid); 5218 return ret; 5219 } 5220 bw_data.tc_valid_bits = enabled_tc; 5221 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) 5222 bw_data.tc_bw_credits[i] = bw_share[i]; 5223 5224 ret = i40e_aq_config_vsi_tc_bw(&vsi->back->hw, vsi->seid, &bw_data, 5225 NULL); 5226 if (ret) { 5227 dev_info(&vsi->back->pdev->dev, 5228 "AQ command Config VSI BW allocation per TC failed = %d\n", 5229 vsi->back->hw.aq.asq_last_status); 5230 return -EINVAL; 5231 } 5232 5233 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) 5234 vsi->info.qs_handle[i] = bw_data.qs_handles[i]; 5235 5236 return 0; 5237 } 5238 5239 /** 5240 * i40e_vsi_config_netdev_tc - Setup the netdev TC configuration 5241 * @vsi: the VSI being configured 5242 * @enabled_tc: TC map to be enabled 5243 * 5244 **/ 5245 static void i40e_vsi_config_netdev_tc(struct i40e_vsi *vsi, u8 enabled_tc) 5246 { 5247 struct net_device *netdev = vsi->netdev; 5248 struct i40e_pf *pf = vsi->back; 5249 struct i40e_hw *hw = &pf->hw; 5250 u8 netdev_tc = 0; 5251 int i; 5252 struct i40e_dcbx_config *dcbcfg = &hw->local_dcbx_config; 5253 5254 if (!netdev) 5255 return; 5256 5257 if (!enabled_tc) { 5258 netdev_reset_tc(netdev); 5259 return; 5260 } 5261 5262 /* Set up actual enabled TCs on the VSI */ 5263 if (netdev_set_num_tc(netdev, vsi->tc_config.numtc)) 5264 return; 5265 5266 /* set per TC queues for the VSI */ 5267 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 5268 /* Only set TC queues for enabled tcs 5269 * 5270 * e.g. For a VSI that has TC0 and TC3 enabled the 5271 * enabled_tc bitmap would be 0x00001001; the driver 5272 * will set the numtc for netdev as 2 that will be 5273 * referenced by the netdev layer as TC 0 and 1. 5274 */ 5275 if (vsi->tc_config.enabled_tc & BIT(i)) 5276 netdev_set_tc_queue(netdev, 5277 vsi->tc_config.tc_info[i].netdev_tc, 5278 vsi->tc_config.tc_info[i].qcount, 5279 vsi->tc_config.tc_info[i].qoffset); 5280 } 5281 5282 if (pf->flags & I40E_FLAG_TC_MQPRIO) 5283 return; 5284 5285 /* Assign UP2TC map for the VSI */ 5286 for (i = 0; i < I40E_MAX_USER_PRIORITY; i++) { 5287 /* Get the actual TC# for the UP */ 5288 u8 ets_tc = dcbcfg->etscfg.prioritytable[i]; 5289 /* Get the mapped netdev TC# for the UP */ 5290 netdev_tc = vsi->tc_config.tc_info[ets_tc].netdev_tc; 5291 netdev_set_prio_tc_map(netdev, i, netdev_tc); 5292 } 5293 } 5294 5295 /** 5296 * i40e_vsi_update_queue_map - Update our copy of VSi info with new queue map 5297 * @vsi: the VSI being configured 5298 * @ctxt: the ctxt buffer returned from AQ VSI update param command 5299 **/ 5300 static void i40e_vsi_update_queue_map(struct i40e_vsi *vsi, 5301 struct i40e_vsi_context *ctxt) 5302 { 5303 /* copy just the sections touched not the entire info 5304 * since not all sections are valid as returned by 5305 * update vsi params 5306 */ 5307 vsi->info.mapping_flags = ctxt->info.mapping_flags; 5308 memcpy(&vsi->info.queue_mapping, 5309 &ctxt->info.queue_mapping, sizeof(vsi->info.queue_mapping)); 5310 memcpy(&vsi->info.tc_mapping, ctxt->info.tc_mapping, 5311 sizeof(vsi->info.tc_mapping)); 5312 } 5313 5314 /** 5315 * i40e_vsi_config_tc - Configure VSI Tx Scheduler for given TC map 5316 * @vsi: VSI to be configured 5317 * @enabled_tc: TC bitmap 5318 * 5319 * This configures a particular VSI for TCs that are mapped to the 5320 * given TC bitmap. It uses default bandwidth share for TCs across 5321 * VSIs to configure TC for a particular VSI. 5322 * 5323 * NOTE: 5324 * It is expected that the VSI queues have been quisced before calling 5325 * this function. 5326 **/ 5327 static int i40e_vsi_config_tc(struct i40e_vsi *vsi, u8 enabled_tc) 5328 { 5329 u8 bw_share[I40E_MAX_TRAFFIC_CLASS] = {0}; 5330 struct i40e_vsi_context ctxt; 5331 int ret = 0; 5332 int i; 5333 5334 /* Check if enabled_tc is same as existing or new TCs */ 5335 if (vsi->tc_config.enabled_tc == enabled_tc && 5336 vsi->mqprio_qopt.mode != TC_MQPRIO_MODE_CHANNEL) 5337 return ret; 5338 5339 /* Enable ETS TCs with equal BW Share for now across all VSIs */ 5340 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 5341 if (enabled_tc & BIT(i)) 5342 bw_share[i] = 1; 5343 } 5344 5345 ret = i40e_vsi_configure_bw_alloc(vsi, enabled_tc, bw_share); 5346 if (ret) { 5347 dev_info(&vsi->back->pdev->dev, 5348 "Failed configuring TC map %d for VSI %d\n", 5349 enabled_tc, vsi->seid); 5350 goto out; 5351 } 5352 5353 /* Update Queue Pairs Mapping for currently enabled UPs */ 5354 ctxt.seid = vsi->seid; 5355 ctxt.pf_num = vsi->back->hw.pf_id; 5356 ctxt.vf_num = 0; 5357 ctxt.uplink_seid = vsi->uplink_seid; 5358 ctxt.info = vsi->info; 5359 if (vsi->back->flags & I40E_FLAG_TC_MQPRIO) { 5360 ret = i40e_vsi_setup_queue_map_mqprio(vsi, &ctxt, enabled_tc); 5361 if (ret) 5362 goto out; 5363 } else { 5364 i40e_vsi_setup_queue_map(vsi, &ctxt, enabled_tc, false); 5365 } 5366 5367 /* On destroying the qdisc, reset vsi->rss_size, as number of enabled 5368 * queues changed. 5369 */ 5370 if (!vsi->mqprio_qopt.qopt.hw && vsi->reconfig_rss) { 5371 vsi->rss_size = min_t(int, vsi->back->alloc_rss_size, 5372 vsi->num_queue_pairs); 5373 ret = i40e_vsi_config_rss(vsi); 5374 if (ret) { 5375 dev_info(&vsi->back->pdev->dev, 5376 "Failed to reconfig rss for num_queues\n"); 5377 return ret; 5378 } 5379 vsi->reconfig_rss = false; 5380 } 5381 if (vsi->back->flags & I40E_FLAG_IWARP_ENABLED) { 5382 ctxt.info.valid_sections |= 5383 cpu_to_le16(I40E_AQ_VSI_PROP_QUEUE_OPT_VALID); 5384 ctxt.info.queueing_opt_flags |= I40E_AQ_VSI_QUE_OPT_TCP_ENA; 5385 } 5386 5387 /* Update the VSI after updating the VSI queue-mapping 5388 * information 5389 */ 5390 ret = i40e_aq_update_vsi_params(&vsi->back->hw, &ctxt, NULL); 5391 if (ret) { 5392 dev_info(&vsi->back->pdev->dev, 5393 "Update vsi tc config failed, err %s aq_err %s\n", 5394 i40e_stat_str(&vsi->back->hw, ret), 5395 i40e_aq_str(&vsi->back->hw, 5396 vsi->back->hw.aq.asq_last_status)); 5397 goto out; 5398 } 5399 /* update the local VSI info with updated queue map */ 5400 i40e_vsi_update_queue_map(vsi, &ctxt); 5401 vsi->info.valid_sections = 0; 5402 5403 /* Update current VSI BW information */ 5404 ret = i40e_vsi_get_bw_info(vsi); 5405 if (ret) { 5406 dev_info(&vsi->back->pdev->dev, 5407 "Failed updating vsi bw info, err %s aq_err %s\n", 5408 i40e_stat_str(&vsi->back->hw, ret), 5409 i40e_aq_str(&vsi->back->hw, 5410 vsi->back->hw.aq.asq_last_status)); 5411 goto out; 5412 } 5413 5414 /* Update the netdev TC setup */ 5415 i40e_vsi_config_netdev_tc(vsi, enabled_tc); 5416 out: 5417 return ret; 5418 } 5419 5420 /** 5421 * i40e_get_link_speed - Returns link speed for the interface 5422 * @vsi: VSI to be configured 5423 * 5424 **/ 5425 int i40e_get_link_speed(struct i40e_vsi *vsi) 5426 { 5427 struct i40e_pf *pf = vsi->back; 5428 5429 switch (pf->hw.phy.link_info.link_speed) { 5430 case I40E_LINK_SPEED_40GB: 5431 return 40000; 5432 case I40E_LINK_SPEED_25GB: 5433 return 25000; 5434 case I40E_LINK_SPEED_20GB: 5435 return 20000; 5436 case I40E_LINK_SPEED_10GB: 5437 return 10000; 5438 case I40E_LINK_SPEED_1GB: 5439 return 1000; 5440 default: 5441 return -EINVAL; 5442 } 5443 } 5444 5445 /** 5446 * i40e_set_bw_limit - setup BW limit for Tx traffic based on max_tx_rate 5447 * @vsi: VSI to be configured 5448 * @seid: seid of the channel/VSI 5449 * @max_tx_rate: max TX rate to be configured as BW limit 5450 * 5451 * Helper function to set BW limit for a given VSI 5452 **/ 5453 int i40e_set_bw_limit(struct i40e_vsi *vsi, u16 seid, u64 max_tx_rate) 5454 { 5455 struct i40e_pf *pf = vsi->back; 5456 u64 credits = 0; 5457 int speed = 0; 5458 int ret = 0; 5459 5460 speed = i40e_get_link_speed(vsi); 5461 if (max_tx_rate > speed) { 5462 dev_err(&pf->pdev->dev, 5463 "Invalid max tx rate %llu specified for VSI seid %d.", 5464 max_tx_rate, seid); 5465 return -EINVAL; 5466 } 5467 if (max_tx_rate && max_tx_rate < 50) { 5468 dev_warn(&pf->pdev->dev, 5469 "Setting max tx rate to minimum usable value of 50Mbps.\n"); 5470 max_tx_rate = 50; 5471 } 5472 5473 /* Tx rate credits are in values of 50Mbps, 0 is disabled */ 5474 credits = max_tx_rate; 5475 do_div(credits, I40E_BW_CREDIT_DIVISOR); 5476 ret = i40e_aq_config_vsi_bw_limit(&pf->hw, seid, credits, 5477 I40E_MAX_BW_INACTIVE_ACCUM, NULL); 5478 if (ret) 5479 dev_err(&pf->pdev->dev, 5480 "Failed set tx rate (%llu Mbps) for vsi->seid %u, err %s aq_err %s\n", 5481 max_tx_rate, seid, i40e_stat_str(&pf->hw, ret), 5482 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 5483 return ret; 5484 } 5485 5486 /** 5487 * i40e_remove_queue_channels - Remove queue channels for the TCs 5488 * @vsi: VSI to be configured 5489 * 5490 * Remove queue channels for the TCs 5491 **/ 5492 static void i40e_remove_queue_channels(struct i40e_vsi *vsi) 5493 { 5494 enum i40e_admin_queue_err last_aq_status; 5495 struct i40e_cloud_filter *cfilter; 5496 struct i40e_channel *ch, *ch_tmp; 5497 struct i40e_pf *pf = vsi->back; 5498 struct hlist_node *node; 5499 int ret, i; 5500 5501 /* Reset rss size that was stored when reconfiguring rss for 5502 * channel VSIs with non-power-of-2 queue count. 5503 */ 5504 vsi->current_rss_size = 0; 5505 5506 /* perform cleanup for channels if they exist */ 5507 if (list_empty(&vsi->ch_list)) 5508 return; 5509 5510 list_for_each_entry_safe(ch, ch_tmp, &vsi->ch_list, list) { 5511 struct i40e_vsi *p_vsi; 5512 5513 list_del(&ch->list); 5514 p_vsi = ch->parent_vsi; 5515 if (!p_vsi || !ch->initialized) { 5516 kfree(ch); 5517 continue; 5518 } 5519 /* Reset queue contexts */ 5520 for (i = 0; i < ch->num_queue_pairs; i++) { 5521 struct i40e_ring *tx_ring, *rx_ring; 5522 u16 pf_q; 5523 5524 pf_q = ch->base_queue + i; 5525 tx_ring = vsi->tx_rings[pf_q]; 5526 tx_ring->ch = NULL; 5527 5528 rx_ring = vsi->rx_rings[pf_q]; 5529 rx_ring->ch = NULL; 5530 } 5531 5532 /* Reset BW configured for this VSI via mqprio */ 5533 ret = i40e_set_bw_limit(vsi, ch->seid, 0); 5534 if (ret) 5535 dev_info(&vsi->back->pdev->dev, 5536 "Failed to reset tx rate for ch->seid %u\n", 5537 ch->seid); 5538 5539 /* delete cloud filters associated with this channel */ 5540 hlist_for_each_entry_safe(cfilter, node, 5541 &pf->cloud_filter_list, cloud_node) { 5542 if (cfilter->seid != ch->seid) 5543 continue; 5544 5545 hash_del(&cfilter->cloud_node); 5546 if (cfilter->dst_port) 5547 ret = i40e_add_del_cloud_filter_big_buf(vsi, 5548 cfilter, 5549 false); 5550 else 5551 ret = i40e_add_del_cloud_filter(vsi, cfilter, 5552 false); 5553 last_aq_status = pf->hw.aq.asq_last_status; 5554 if (ret) 5555 dev_info(&pf->pdev->dev, 5556 "Failed to delete cloud filter, err %s aq_err %s\n", 5557 i40e_stat_str(&pf->hw, ret), 5558 i40e_aq_str(&pf->hw, last_aq_status)); 5559 kfree(cfilter); 5560 } 5561 5562 /* delete VSI from FW */ 5563 ret = i40e_aq_delete_element(&vsi->back->hw, ch->seid, 5564 NULL); 5565 if (ret) 5566 dev_err(&vsi->back->pdev->dev, 5567 "unable to remove channel (%d) for parent VSI(%d)\n", 5568 ch->seid, p_vsi->seid); 5569 kfree(ch); 5570 } 5571 INIT_LIST_HEAD(&vsi->ch_list); 5572 } 5573 5574 /** 5575 * i40e_is_any_channel - channel exist or not 5576 * @vsi: ptr to VSI to which channels are associated with 5577 * 5578 * Returns true or false if channel(s) exist for associated VSI or not 5579 **/ 5580 static bool i40e_is_any_channel(struct i40e_vsi *vsi) 5581 { 5582 struct i40e_channel *ch, *ch_tmp; 5583 5584 list_for_each_entry_safe(ch, ch_tmp, &vsi->ch_list, list) { 5585 if (ch->initialized) 5586 return true; 5587 } 5588 5589 return false; 5590 } 5591 5592 /** 5593 * i40e_get_max_queues_for_channel 5594 * @vsi: ptr to VSI to which channels are associated with 5595 * 5596 * Helper function which returns max value among the queue counts set on the 5597 * channels/TCs created. 5598 **/ 5599 static int i40e_get_max_queues_for_channel(struct i40e_vsi *vsi) 5600 { 5601 struct i40e_channel *ch, *ch_tmp; 5602 int max = 0; 5603 5604 list_for_each_entry_safe(ch, ch_tmp, &vsi->ch_list, list) { 5605 if (!ch->initialized) 5606 continue; 5607 if (ch->num_queue_pairs > max) 5608 max = ch->num_queue_pairs; 5609 } 5610 5611 return max; 5612 } 5613 5614 /** 5615 * i40e_validate_num_queues - validate num_queues w.r.t channel 5616 * @pf: ptr to PF device 5617 * @num_queues: number of queues 5618 * @vsi: the parent VSI 5619 * @reconfig_rss: indicates should the RSS be reconfigured or not 5620 * 5621 * This function validates number of queues in the context of new channel 5622 * which is being established and determines if RSS should be reconfigured 5623 * or not for parent VSI. 5624 **/ 5625 static int i40e_validate_num_queues(struct i40e_pf *pf, int num_queues, 5626 struct i40e_vsi *vsi, bool *reconfig_rss) 5627 { 5628 int max_ch_queues; 5629 5630 if (!reconfig_rss) 5631 return -EINVAL; 5632 5633 *reconfig_rss = false; 5634 if (vsi->current_rss_size) { 5635 if (num_queues > vsi->current_rss_size) { 5636 dev_dbg(&pf->pdev->dev, 5637 "Error: num_queues (%d) > vsi's current_size(%d)\n", 5638 num_queues, vsi->current_rss_size); 5639 return -EINVAL; 5640 } else if ((num_queues < vsi->current_rss_size) && 5641 (!is_power_of_2(num_queues))) { 5642 dev_dbg(&pf->pdev->dev, 5643 "Error: num_queues (%d) < vsi's current_size(%d), but not power of 2\n", 5644 num_queues, vsi->current_rss_size); 5645 return -EINVAL; 5646 } 5647 } 5648 5649 if (!is_power_of_2(num_queues)) { 5650 /* Find the max num_queues configured for channel if channel 5651 * exist. 5652 * if channel exist, then enforce 'num_queues' to be more than 5653 * max ever queues configured for channel. 5654 */ 5655 max_ch_queues = i40e_get_max_queues_for_channel(vsi); 5656 if (num_queues < max_ch_queues) { 5657 dev_dbg(&pf->pdev->dev, 5658 "Error: num_queues (%d) < max queues configured for channel(%d)\n", 5659 num_queues, max_ch_queues); 5660 return -EINVAL; 5661 } 5662 *reconfig_rss = true; 5663 } 5664 5665 return 0; 5666 } 5667 5668 /** 5669 * i40e_vsi_reconfig_rss - reconfig RSS based on specified rss_size 5670 * @vsi: the VSI being setup 5671 * @rss_size: size of RSS, accordingly LUT gets reprogrammed 5672 * 5673 * This function reconfigures RSS by reprogramming LUTs using 'rss_size' 5674 **/ 5675 static int i40e_vsi_reconfig_rss(struct i40e_vsi *vsi, u16 rss_size) 5676 { 5677 struct i40e_pf *pf = vsi->back; 5678 u8 seed[I40E_HKEY_ARRAY_SIZE]; 5679 struct i40e_hw *hw = &pf->hw; 5680 int local_rss_size; 5681 u8 *lut; 5682 int ret; 5683 5684 if (!vsi->rss_size) 5685 return -EINVAL; 5686 5687 if (rss_size > vsi->rss_size) 5688 return -EINVAL; 5689 5690 local_rss_size = min_t(int, vsi->rss_size, rss_size); 5691 lut = kzalloc(vsi->rss_table_size, GFP_KERNEL); 5692 if (!lut) 5693 return -ENOMEM; 5694 5695 /* Ignoring user configured lut if there is one */ 5696 i40e_fill_rss_lut(pf, lut, vsi->rss_table_size, local_rss_size); 5697 5698 /* Use user configured hash key if there is one, otherwise 5699 * use default. 5700 */ 5701 if (vsi->rss_hkey_user) 5702 memcpy(seed, vsi->rss_hkey_user, I40E_HKEY_ARRAY_SIZE); 5703 else 5704 netdev_rss_key_fill((void *)seed, I40E_HKEY_ARRAY_SIZE); 5705 5706 ret = i40e_config_rss(vsi, seed, lut, vsi->rss_table_size); 5707 if (ret) { 5708 dev_info(&pf->pdev->dev, 5709 "Cannot set RSS lut, err %s aq_err %s\n", 5710 i40e_stat_str(hw, ret), 5711 i40e_aq_str(hw, hw->aq.asq_last_status)); 5712 kfree(lut); 5713 return ret; 5714 } 5715 kfree(lut); 5716 5717 /* Do the update w.r.t. storing rss_size */ 5718 if (!vsi->orig_rss_size) 5719 vsi->orig_rss_size = vsi->rss_size; 5720 vsi->current_rss_size = local_rss_size; 5721 5722 return ret; 5723 } 5724 5725 /** 5726 * i40e_channel_setup_queue_map - Setup a channel queue map 5727 * @pf: ptr to PF device 5728 * @vsi: the VSI being setup 5729 * @ctxt: VSI context structure 5730 * @ch: ptr to channel structure 5731 * 5732 * Setup queue map for a specific channel 5733 **/ 5734 static void i40e_channel_setup_queue_map(struct i40e_pf *pf, 5735 struct i40e_vsi_context *ctxt, 5736 struct i40e_channel *ch) 5737 { 5738 u16 qcount, qmap, sections = 0; 5739 u8 offset = 0; 5740 int pow; 5741 5742 sections = I40E_AQ_VSI_PROP_QUEUE_MAP_VALID; 5743 sections |= I40E_AQ_VSI_PROP_SCHED_VALID; 5744 5745 qcount = min_t(int, ch->num_queue_pairs, pf->num_lan_msix); 5746 ch->num_queue_pairs = qcount; 5747 5748 /* find the next higher power-of-2 of num queue pairs */ 5749 pow = ilog2(qcount); 5750 if (!is_power_of_2(qcount)) 5751 pow++; 5752 5753 qmap = (offset << I40E_AQ_VSI_TC_QUE_OFFSET_SHIFT) | 5754 (pow << I40E_AQ_VSI_TC_QUE_NUMBER_SHIFT); 5755 5756 /* Setup queue TC[0].qmap for given VSI context */ 5757 ctxt->info.tc_mapping[0] = cpu_to_le16(qmap); 5758 5759 ctxt->info.up_enable_bits = 0x1; /* TC0 enabled */ 5760 ctxt->info.mapping_flags |= cpu_to_le16(I40E_AQ_VSI_QUE_MAP_CONTIG); 5761 ctxt->info.queue_mapping[0] = cpu_to_le16(ch->base_queue); 5762 ctxt->info.valid_sections |= cpu_to_le16(sections); 5763 } 5764 5765 /** 5766 * i40e_add_channel - add a channel by adding VSI 5767 * @pf: ptr to PF device 5768 * @uplink_seid: underlying HW switching element (VEB) ID 5769 * @ch: ptr to channel structure 5770 * 5771 * Add a channel (VSI) using add_vsi and queue_map 5772 **/ 5773 static int i40e_add_channel(struct i40e_pf *pf, u16 uplink_seid, 5774 struct i40e_channel *ch) 5775 { 5776 struct i40e_hw *hw = &pf->hw; 5777 struct i40e_vsi_context ctxt; 5778 u8 enabled_tc = 0x1; /* TC0 enabled */ 5779 int ret; 5780 5781 if (ch->type != I40E_VSI_VMDQ2) { 5782 dev_info(&pf->pdev->dev, 5783 "add new vsi failed, ch->type %d\n", ch->type); 5784 return -EINVAL; 5785 } 5786 5787 memset(&ctxt, 0, sizeof(ctxt)); 5788 ctxt.pf_num = hw->pf_id; 5789 ctxt.vf_num = 0; 5790 ctxt.uplink_seid = uplink_seid; 5791 ctxt.connection_type = I40E_AQ_VSI_CONN_TYPE_NORMAL; 5792 if (ch->type == I40E_VSI_VMDQ2) 5793 ctxt.flags = I40E_AQ_VSI_TYPE_VMDQ2; 5794 5795 if (pf->flags & I40E_FLAG_VEB_MODE_ENABLED) { 5796 ctxt.info.valid_sections |= 5797 cpu_to_le16(I40E_AQ_VSI_PROP_SWITCH_VALID); 5798 ctxt.info.switch_id = 5799 cpu_to_le16(I40E_AQ_VSI_SW_ID_FLAG_ALLOW_LB); 5800 } 5801 5802 /* Set queue map for a given VSI context */ 5803 i40e_channel_setup_queue_map(pf, &ctxt, ch); 5804 5805 /* Now time to create VSI */ 5806 ret = i40e_aq_add_vsi(hw, &ctxt, NULL); 5807 if (ret) { 5808 dev_info(&pf->pdev->dev, 5809 "add new vsi failed, err %s aq_err %s\n", 5810 i40e_stat_str(&pf->hw, ret), 5811 i40e_aq_str(&pf->hw, 5812 pf->hw.aq.asq_last_status)); 5813 return -ENOENT; 5814 } 5815 5816 /* Success, update channel */ 5817 ch->enabled_tc = enabled_tc; 5818 ch->seid = ctxt.seid; 5819 ch->vsi_number = ctxt.vsi_number; 5820 ch->stat_counter_idx = cpu_to_le16(ctxt.info.stat_counter_idx); 5821 5822 /* copy just the sections touched not the entire info 5823 * since not all sections are valid as returned by 5824 * update vsi params 5825 */ 5826 ch->info.mapping_flags = ctxt.info.mapping_flags; 5827 memcpy(&ch->info.queue_mapping, 5828 &ctxt.info.queue_mapping, sizeof(ctxt.info.queue_mapping)); 5829 memcpy(&ch->info.tc_mapping, ctxt.info.tc_mapping, 5830 sizeof(ctxt.info.tc_mapping)); 5831 5832 return 0; 5833 } 5834 5835 static int i40e_channel_config_bw(struct i40e_vsi *vsi, struct i40e_channel *ch, 5836 u8 *bw_share) 5837 { 5838 struct i40e_aqc_configure_vsi_tc_bw_data bw_data; 5839 i40e_status ret; 5840 int i; 5841 5842 bw_data.tc_valid_bits = ch->enabled_tc; 5843 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) 5844 bw_data.tc_bw_credits[i] = bw_share[i]; 5845 5846 ret = i40e_aq_config_vsi_tc_bw(&vsi->back->hw, ch->seid, 5847 &bw_data, NULL); 5848 if (ret) { 5849 dev_info(&vsi->back->pdev->dev, 5850 "Config VSI BW allocation per TC failed, aq_err: %d for new_vsi->seid %u\n", 5851 vsi->back->hw.aq.asq_last_status, ch->seid); 5852 return -EINVAL; 5853 } 5854 5855 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) 5856 ch->info.qs_handle[i] = bw_data.qs_handles[i]; 5857 5858 return 0; 5859 } 5860 5861 /** 5862 * i40e_channel_config_tx_ring - config TX ring associated with new channel 5863 * @pf: ptr to PF device 5864 * @vsi: the VSI being setup 5865 * @ch: ptr to channel structure 5866 * 5867 * Configure TX rings associated with channel (VSI) since queues are being 5868 * from parent VSI. 5869 **/ 5870 static int i40e_channel_config_tx_ring(struct i40e_pf *pf, 5871 struct i40e_vsi *vsi, 5872 struct i40e_channel *ch) 5873 { 5874 i40e_status ret; 5875 int i; 5876 u8 bw_share[I40E_MAX_TRAFFIC_CLASS] = {0}; 5877 5878 /* Enable ETS TCs with equal BW Share for now across all VSIs */ 5879 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 5880 if (ch->enabled_tc & BIT(i)) 5881 bw_share[i] = 1; 5882 } 5883 5884 /* configure BW for new VSI */ 5885 ret = i40e_channel_config_bw(vsi, ch, bw_share); 5886 if (ret) { 5887 dev_info(&vsi->back->pdev->dev, 5888 "Failed configuring TC map %d for channel (seid %u)\n", 5889 ch->enabled_tc, ch->seid); 5890 return ret; 5891 } 5892 5893 for (i = 0; i < ch->num_queue_pairs; i++) { 5894 struct i40e_ring *tx_ring, *rx_ring; 5895 u16 pf_q; 5896 5897 pf_q = ch->base_queue + i; 5898 5899 /* Get to TX ring ptr of main VSI, for re-setup TX queue 5900 * context 5901 */ 5902 tx_ring = vsi->tx_rings[pf_q]; 5903 tx_ring->ch = ch; 5904 5905 /* Get the RX ring ptr */ 5906 rx_ring = vsi->rx_rings[pf_q]; 5907 rx_ring->ch = ch; 5908 } 5909 5910 return 0; 5911 } 5912 5913 /** 5914 * i40e_setup_hw_channel - setup new channel 5915 * @pf: ptr to PF device 5916 * @vsi: the VSI being setup 5917 * @ch: ptr to channel structure 5918 * @uplink_seid: underlying HW switching element (VEB) ID 5919 * @type: type of channel to be created (VMDq2/VF) 5920 * 5921 * Setup new channel (VSI) based on specified type (VMDq2/VF) 5922 * and configures TX rings accordingly 5923 **/ 5924 static inline int i40e_setup_hw_channel(struct i40e_pf *pf, 5925 struct i40e_vsi *vsi, 5926 struct i40e_channel *ch, 5927 u16 uplink_seid, u8 type) 5928 { 5929 int ret; 5930 5931 ch->initialized = false; 5932 ch->base_queue = vsi->next_base_queue; 5933 ch->type = type; 5934 5935 /* Proceed with creation of channel (VMDq2) VSI */ 5936 ret = i40e_add_channel(pf, uplink_seid, ch); 5937 if (ret) { 5938 dev_info(&pf->pdev->dev, 5939 "failed to add_channel using uplink_seid %u\n", 5940 uplink_seid); 5941 return ret; 5942 } 5943 5944 /* Mark the successful creation of channel */ 5945 ch->initialized = true; 5946 5947 /* Reconfigure TX queues using QTX_CTL register */ 5948 ret = i40e_channel_config_tx_ring(pf, vsi, ch); 5949 if (ret) { 5950 dev_info(&pf->pdev->dev, 5951 "failed to configure TX rings for channel %u\n", 5952 ch->seid); 5953 return ret; 5954 } 5955 5956 /* update 'next_base_queue' */ 5957 vsi->next_base_queue = vsi->next_base_queue + ch->num_queue_pairs; 5958 dev_dbg(&pf->pdev->dev, 5959 "Added channel: vsi_seid %u, vsi_number %u, stat_counter_idx %u, num_queue_pairs %u, pf->next_base_queue %d\n", 5960 ch->seid, ch->vsi_number, ch->stat_counter_idx, 5961 ch->num_queue_pairs, 5962 vsi->next_base_queue); 5963 return ret; 5964 } 5965 5966 /** 5967 * i40e_setup_channel - setup new channel using uplink element 5968 * @pf: ptr to PF device 5969 * @type: type of channel to be created (VMDq2/VF) 5970 * @uplink_seid: underlying HW switching element (VEB) ID 5971 * @ch: ptr to channel structure 5972 * 5973 * Setup new channel (VSI) based on specified type (VMDq2/VF) 5974 * and uplink switching element (uplink_seid) 5975 **/ 5976 static bool i40e_setup_channel(struct i40e_pf *pf, struct i40e_vsi *vsi, 5977 struct i40e_channel *ch) 5978 { 5979 u8 vsi_type; 5980 u16 seid; 5981 int ret; 5982 5983 if (vsi->type == I40E_VSI_MAIN) { 5984 vsi_type = I40E_VSI_VMDQ2; 5985 } else { 5986 dev_err(&pf->pdev->dev, "unsupported parent vsi type(%d)\n", 5987 vsi->type); 5988 return false; 5989 } 5990 5991 /* underlying switching element */ 5992 seid = pf->vsi[pf->lan_vsi]->uplink_seid; 5993 5994 /* create channel (VSI), configure TX rings */ 5995 ret = i40e_setup_hw_channel(pf, vsi, ch, seid, vsi_type); 5996 if (ret) { 5997 dev_err(&pf->pdev->dev, "failed to setup hw_channel\n"); 5998 return false; 5999 } 6000 6001 return ch->initialized ? true : false; 6002 } 6003 6004 /** 6005 * i40e_validate_and_set_switch_mode - sets up switch mode correctly 6006 * @vsi: ptr to VSI which has PF backing 6007 * 6008 * Sets up switch mode correctly if it needs to be changed and perform 6009 * what are allowed modes. 6010 **/ 6011 static int i40e_validate_and_set_switch_mode(struct i40e_vsi *vsi) 6012 { 6013 u8 mode; 6014 struct i40e_pf *pf = vsi->back; 6015 struct i40e_hw *hw = &pf->hw; 6016 int ret; 6017 6018 ret = i40e_get_capabilities(pf, i40e_aqc_opc_list_dev_capabilities); 6019 if (ret) 6020 return -EINVAL; 6021 6022 if (hw->dev_caps.switch_mode) { 6023 /* if switch mode is set, support mode2 (non-tunneled for 6024 * cloud filter) for now 6025 */ 6026 u32 switch_mode = hw->dev_caps.switch_mode & 6027 I40E_SWITCH_MODE_MASK; 6028 if (switch_mode >= I40E_CLOUD_FILTER_MODE1) { 6029 if (switch_mode == I40E_CLOUD_FILTER_MODE2) 6030 return 0; 6031 dev_err(&pf->pdev->dev, 6032 "Invalid switch_mode (%d), only non-tunneled mode for cloud filter is supported\n", 6033 hw->dev_caps.switch_mode); 6034 return -EINVAL; 6035 } 6036 } 6037 6038 /* Set Bit 7 to be valid */ 6039 mode = I40E_AQ_SET_SWITCH_BIT7_VALID; 6040 6041 /* Set L4type to both TCP and UDP support */ 6042 mode |= I40E_AQ_SET_SWITCH_L4_TYPE_BOTH; 6043 6044 /* Set cloud filter mode */ 6045 mode |= I40E_AQ_SET_SWITCH_MODE_NON_TUNNEL; 6046 6047 /* Prep mode field for set_switch_config */ 6048 ret = i40e_aq_set_switch_config(hw, pf->last_sw_conf_flags, 6049 pf->last_sw_conf_valid_flags, 6050 mode, NULL); 6051 if (ret && hw->aq.asq_last_status != I40E_AQ_RC_ESRCH) 6052 dev_err(&pf->pdev->dev, 6053 "couldn't set switch config bits, err %s aq_err %s\n", 6054 i40e_stat_str(hw, ret), 6055 i40e_aq_str(hw, 6056 hw->aq.asq_last_status)); 6057 6058 return ret; 6059 } 6060 6061 /** 6062 * i40e_create_queue_channel - function to create channel 6063 * @vsi: VSI to be configured 6064 * @ch: ptr to channel (it contains channel specific params) 6065 * 6066 * This function creates channel (VSI) using num_queues specified by user, 6067 * reconfigs RSS if needed. 6068 **/ 6069 int i40e_create_queue_channel(struct i40e_vsi *vsi, 6070 struct i40e_channel *ch) 6071 { 6072 struct i40e_pf *pf = vsi->back; 6073 bool reconfig_rss; 6074 int err; 6075 6076 if (!ch) 6077 return -EINVAL; 6078 6079 if (!ch->num_queue_pairs) { 6080 dev_err(&pf->pdev->dev, "Invalid num_queues requested: %d\n", 6081 ch->num_queue_pairs); 6082 return -EINVAL; 6083 } 6084 6085 /* validate user requested num_queues for channel */ 6086 err = i40e_validate_num_queues(pf, ch->num_queue_pairs, vsi, 6087 &reconfig_rss); 6088 if (err) { 6089 dev_info(&pf->pdev->dev, "Failed to validate num_queues (%d)\n", 6090 ch->num_queue_pairs); 6091 return -EINVAL; 6092 } 6093 6094 /* By default we are in VEPA mode, if this is the first VF/VMDq 6095 * VSI to be added switch to VEB mode. 6096 */ 6097 if ((!(pf->flags & I40E_FLAG_VEB_MODE_ENABLED)) || 6098 (!i40e_is_any_channel(vsi))) { 6099 if (!is_power_of_2(vsi->tc_config.tc_info[0].qcount)) { 6100 dev_dbg(&pf->pdev->dev, 6101 "Failed to create channel. Override queues (%u) not power of 2\n", 6102 vsi->tc_config.tc_info[0].qcount); 6103 return -EINVAL; 6104 } 6105 6106 if (!(pf->flags & I40E_FLAG_VEB_MODE_ENABLED)) { 6107 pf->flags |= I40E_FLAG_VEB_MODE_ENABLED; 6108 6109 if (vsi->type == I40E_VSI_MAIN) { 6110 if (pf->flags & I40E_FLAG_TC_MQPRIO) 6111 i40e_do_reset(pf, I40E_PF_RESET_FLAG, 6112 true); 6113 else 6114 i40e_do_reset_safe(pf, 6115 I40E_PF_RESET_FLAG); 6116 } 6117 } 6118 /* now onwards for main VSI, number of queues will be value 6119 * of TC0's queue count 6120 */ 6121 } 6122 6123 /* By this time, vsi->cnt_q_avail shall be set to non-zero and 6124 * it should be more than num_queues 6125 */ 6126 if (!vsi->cnt_q_avail || vsi->cnt_q_avail < ch->num_queue_pairs) { 6127 dev_dbg(&pf->pdev->dev, 6128 "Error: cnt_q_avail (%u) less than num_queues %d\n", 6129 vsi->cnt_q_avail, ch->num_queue_pairs); 6130 return -EINVAL; 6131 } 6132 6133 /* reconfig_rss only if vsi type is MAIN_VSI */ 6134 if (reconfig_rss && (vsi->type == I40E_VSI_MAIN)) { 6135 err = i40e_vsi_reconfig_rss(vsi, ch->num_queue_pairs); 6136 if (err) { 6137 dev_info(&pf->pdev->dev, 6138 "Error: unable to reconfig rss for num_queues (%u)\n", 6139 ch->num_queue_pairs); 6140 return -EINVAL; 6141 } 6142 } 6143 6144 if (!i40e_setup_channel(pf, vsi, ch)) { 6145 dev_info(&pf->pdev->dev, "Failed to setup channel\n"); 6146 return -EINVAL; 6147 } 6148 6149 dev_info(&pf->pdev->dev, 6150 "Setup channel (id:%u) utilizing num_queues %d\n", 6151 ch->seid, ch->num_queue_pairs); 6152 6153 /* configure VSI for BW limit */ 6154 if (ch->max_tx_rate) { 6155 u64 credits = ch->max_tx_rate; 6156 6157 if (i40e_set_bw_limit(vsi, ch->seid, ch->max_tx_rate)) 6158 return -EINVAL; 6159 6160 do_div(credits, I40E_BW_CREDIT_DIVISOR); 6161 dev_dbg(&pf->pdev->dev, 6162 "Set tx rate of %llu Mbps (count of 50Mbps %llu) for vsi->seid %u\n", 6163 ch->max_tx_rate, 6164 credits, 6165 ch->seid); 6166 } 6167 6168 /* in case of VF, this will be main SRIOV VSI */ 6169 ch->parent_vsi = vsi; 6170 6171 /* and update main_vsi's count for queue_available to use */ 6172 vsi->cnt_q_avail -= ch->num_queue_pairs; 6173 6174 return 0; 6175 } 6176 6177 /** 6178 * i40e_configure_queue_channels - Add queue channel for the given TCs 6179 * @vsi: VSI to be configured 6180 * 6181 * Configures queue channel mapping to the given TCs 6182 **/ 6183 static int i40e_configure_queue_channels(struct i40e_vsi *vsi) 6184 { 6185 struct i40e_channel *ch; 6186 u64 max_rate = 0; 6187 int ret = 0, i; 6188 6189 /* Create app vsi with the TCs. Main VSI with TC0 is already set up */ 6190 vsi->tc_seid_map[0] = vsi->seid; 6191 for (i = 1; i < I40E_MAX_TRAFFIC_CLASS; i++) { 6192 if (vsi->tc_config.enabled_tc & BIT(i)) { 6193 ch = kzalloc(sizeof(*ch), GFP_KERNEL); 6194 if (!ch) { 6195 ret = -ENOMEM; 6196 goto err_free; 6197 } 6198 6199 INIT_LIST_HEAD(&ch->list); 6200 ch->num_queue_pairs = 6201 vsi->tc_config.tc_info[i].qcount; 6202 ch->base_queue = 6203 vsi->tc_config.tc_info[i].qoffset; 6204 6205 /* Bandwidth limit through tc interface is in bytes/s, 6206 * change to Mbit/s 6207 */ 6208 max_rate = vsi->mqprio_qopt.max_rate[i]; 6209 do_div(max_rate, I40E_BW_MBPS_DIVISOR); 6210 ch->max_tx_rate = max_rate; 6211 6212 list_add_tail(&ch->list, &vsi->ch_list); 6213 6214 ret = i40e_create_queue_channel(vsi, ch); 6215 if (ret) { 6216 dev_err(&vsi->back->pdev->dev, 6217 "Failed creating queue channel with TC%d: queues %d\n", 6218 i, ch->num_queue_pairs); 6219 goto err_free; 6220 } 6221 vsi->tc_seid_map[i] = ch->seid; 6222 } 6223 } 6224 return ret; 6225 6226 err_free: 6227 i40e_remove_queue_channels(vsi); 6228 return ret; 6229 } 6230 6231 /** 6232 * i40e_veb_config_tc - Configure TCs for given VEB 6233 * @veb: given VEB 6234 * @enabled_tc: TC bitmap 6235 * 6236 * Configures given TC bitmap for VEB (switching) element 6237 **/ 6238 int i40e_veb_config_tc(struct i40e_veb *veb, u8 enabled_tc) 6239 { 6240 struct i40e_aqc_configure_switching_comp_bw_config_data bw_data = {0}; 6241 struct i40e_pf *pf = veb->pf; 6242 int ret = 0; 6243 int i; 6244 6245 /* No TCs or already enabled TCs just return */ 6246 if (!enabled_tc || veb->enabled_tc == enabled_tc) 6247 return ret; 6248 6249 bw_data.tc_valid_bits = enabled_tc; 6250 /* bw_data.absolute_credits is not set (relative) */ 6251 6252 /* Enable ETS TCs with equal BW Share for now */ 6253 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 6254 if (enabled_tc & BIT(i)) 6255 bw_data.tc_bw_share_credits[i] = 1; 6256 } 6257 6258 ret = i40e_aq_config_switch_comp_bw_config(&pf->hw, veb->seid, 6259 &bw_data, NULL); 6260 if (ret) { 6261 dev_info(&pf->pdev->dev, 6262 "VEB bw config failed, err %s aq_err %s\n", 6263 i40e_stat_str(&pf->hw, ret), 6264 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 6265 goto out; 6266 } 6267 6268 /* Update the BW information */ 6269 ret = i40e_veb_get_bw_info(veb); 6270 if (ret) { 6271 dev_info(&pf->pdev->dev, 6272 "Failed getting veb bw config, err %s aq_err %s\n", 6273 i40e_stat_str(&pf->hw, ret), 6274 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 6275 } 6276 6277 out: 6278 return ret; 6279 } 6280 6281 #ifdef CONFIG_I40E_DCB 6282 /** 6283 * i40e_dcb_reconfigure - Reconfigure all VEBs and VSIs 6284 * @pf: PF struct 6285 * 6286 * Reconfigure VEB/VSIs on a given PF; it is assumed that 6287 * the caller would've quiesce all the VSIs before calling 6288 * this function 6289 **/ 6290 static void i40e_dcb_reconfigure(struct i40e_pf *pf) 6291 { 6292 u8 tc_map = 0; 6293 int ret; 6294 u8 v; 6295 6296 /* Enable the TCs available on PF to all VEBs */ 6297 tc_map = i40e_pf_get_tc_map(pf); 6298 for (v = 0; v < I40E_MAX_VEB; v++) { 6299 if (!pf->veb[v]) 6300 continue; 6301 ret = i40e_veb_config_tc(pf->veb[v], tc_map); 6302 if (ret) { 6303 dev_info(&pf->pdev->dev, 6304 "Failed configuring TC for VEB seid=%d\n", 6305 pf->veb[v]->seid); 6306 /* Will try to configure as many components */ 6307 } 6308 } 6309 6310 /* Update each VSI */ 6311 for (v = 0; v < pf->num_alloc_vsi; v++) { 6312 if (!pf->vsi[v]) 6313 continue; 6314 6315 /* - Enable all TCs for the LAN VSI 6316 * - For all others keep them at TC0 for now 6317 */ 6318 if (v == pf->lan_vsi) 6319 tc_map = i40e_pf_get_tc_map(pf); 6320 else 6321 tc_map = I40E_DEFAULT_TRAFFIC_CLASS; 6322 6323 ret = i40e_vsi_config_tc(pf->vsi[v], tc_map); 6324 if (ret) { 6325 dev_info(&pf->pdev->dev, 6326 "Failed configuring TC for VSI seid=%d\n", 6327 pf->vsi[v]->seid); 6328 /* Will try to configure as many components */ 6329 } else { 6330 /* Re-configure VSI vectors based on updated TC map */ 6331 i40e_vsi_map_rings_to_vectors(pf->vsi[v]); 6332 if (pf->vsi[v]->netdev) 6333 i40e_dcbnl_set_all(pf->vsi[v]); 6334 } 6335 } 6336 } 6337 6338 /** 6339 * i40e_resume_port_tx - Resume port Tx 6340 * @pf: PF struct 6341 * 6342 * Resume a port's Tx and issue a PF reset in case of failure to 6343 * resume. 6344 **/ 6345 static int i40e_resume_port_tx(struct i40e_pf *pf) 6346 { 6347 struct i40e_hw *hw = &pf->hw; 6348 int ret; 6349 6350 ret = i40e_aq_resume_port_tx(hw, NULL); 6351 if (ret) { 6352 dev_info(&pf->pdev->dev, 6353 "Resume Port Tx failed, err %s aq_err %s\n", 6354 i40e_stat_str(&pf->hw, ret), 6355 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 6356 /* Schedule PF reset to recover */ 6357 set_bit(__I40E_PF_RESET_REQUESTED, pf->state); 6358 i40e_service_event_schedule(pf); 6359 } 6360 6361 return ret; 6362 } 6363 6364 /** 6365 * i40e_init_pf_dcb - Initialize DCB configuration 6366 * @pf: PF being configured 6367 * 6368 * Query the current DCB configuration and cache it 6369 * in the hardware structure 6370 **/ 6371 static int i40e_init_pf_dcb(struct i40e_pf *pf) 6372 { 6373 struct i40e_hw *hw = &pf->hw; 6374 int err = 0; 6375 6376 /* Do not enable DCB for SW1 and SW2 images even if the FW is capable */ 6377 if (pf->hw_features & I40E_HW_NO_DCB_SUPPORT) 6378 goto out; 6379 6380 /* Get the initial DCB configuration */ 6381 err = i40e_init_dcb(hw); 6382 if (!err) { 6383 /* Device/Function is not DCBX capable */ 6384 if ((!hw->func_caps.dcb) || 6385 (hw->dcbx_status == I40E_DCBX_STATUS_DISABLED)) { 6386 dev_info(&pf->pdev->dev, 6387 "DCBX offload is not supported or is disabled for this PF.\n"); 6388 } else { 6389 /* When status is not DISABLED then DCBX in FW */ 6390 pf->dcbx_cap = DCB_CAP_DCBX_LLD_MANAGED | 6391 DCB_CAP_DCBX_VER_IEEE; 6392 6393 pf->flags |= I40E_FLAG_DCB_CAPABLE; 6394 /* Enable DCB tagging only when more than one TC 6395 * or explicitly disable if only one TC 6396 */ 6397 if (i40e_dcb_get_num_tc(&hw->local_dcbx_config) > 1) 6398 pf->flags |= I40E_FLAG_DCB_ENABLED; 6399 else 6400 pf->flags &= ~I40E_FLAG_DCB_ENABLED; 6401 dev_dbg(&pf->pdev->dev, 6402 "DCBX offload is supported for this PF.\n"); 6403 } 6404 } else { 6405 dev_info(&pf->pdev->dev, 6406 "Query for DCB configuration failed, err %s aq_err %s\n", 6407 i40e_stat_str(&pf->hw, err), 6408 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 6409 } 6410 6411 out: 6412 return err; 6413 } 6414 #endif /* CONFIG_I40E_DCB */ 6415 #define SPEED_SIZE 14 6416 #define FC_SIZE 8 6417 /** 6418 * i40e_print_link_message - print link up or down 6419 * @vsi: the VSI for which link needs a message 6420 */ 6421 void i40e_print_link_message(struct i40e_vsi *vsi, bool isup) 6422 { 6423 enum i40e_aq_link_speed new_speed; 6424 struct i40e_pf *pf = vsi->back; 6425 char *speed = "Unknown"; 6426 char *fc = "Unknown"; 6427 char *fec = ""; 6428 char *req_fec = ""; 6429 char *an = ""; 6430 6431 new_speed = pf->hw.phy.link_info.link_speed; 6432 6433 if ((vsi->current_isup == isup) && (vsi->current_speed == new_speed)) 6434 return; 6435 vsi->current_isup = isup; 6436 vsi->current_speed = new_speed; 6437 if (!isup) { 6438 netdev_info(vsi->netdev, "NIC Link is Down\n"); 6439 return; 6440 } 6441 6442 /* Warn user if link speed on NPAR enabled partition is not at 6443 * least 10GB 6444 */ 6445 if (pf->hw.func_caps.npar_enable && 6446 (pf->hw.phy.link_info.link_speed == I40E_LINK_SPEED_1GB || 6447 pf->hw.phy.link_info.link_speed == I40E_LINK_SPEED_100MB)) 6448 netdev_warn(vsi->netdev, 6449 "The partition detected link speed that is less than 10Gbps\n"); 6450 6451 switch (pf->hw.phy.link_info.link_speed) { 6452 case I40E_LINK_SPEED_40GB: 6453 speed = "40 G"; 6454 break; 6455 case I40E_LINK_SPEED_20GB: 6456 speed = "20 G"; 6457 break; 6458 case I40E_LINK_SPEED_25GB: 6459 speed = "25 G"; 6460 break; 6461 case I40E_LINK_SPEED_10GB: 6462 speed = "10 G"; 6463 break; 6464 case I40E_LINK_SPEED_1GB: 6465 speed = "1000 M"; 6466 break; 6467 case I40E_LINK_SPEED_100MB: 6468 speed = "100 M"; 6469 break; 6470 default: 6471 break; 6472 } 6473 6474 switch (pf->hw.fc.current_mode) { 6475 case I40E_FC_FULL: 6476 fc = "RX/TX"; 6477 break; 6478 case I40E_FC_TX_PAUSE: 6479 fc = "TX"; 6480 break; 6481 case I40E_FC_RX_PAUSE: 6482 fc = "RX"; 6483 break; 6484 default: 6485 fc = "None"; 6486 break; 6487 } 6488 6489 if (pf->hw.phy.link_info.link_speed == I40E_LINK_SPEED_25GB) { 6490 req_fec = ", Requested FEC: None"; 6491 fec = ", FEC: None"; 6492 an = ", Autoneg: False"; 6493 6494 if (pf->hw.phy.link_info.an_info & I40E_AQ_AN_COMPLETED) 6495 an = ", Autoneg: True"; 6496 6497 if (pf->hw.phy.link_info.fec_info & 6498 I40E_AQ_CONFIG_FEC_KR_ENA) 6499 fec = ", FEC: CL74 FC-FEC/BASE-R"; 6500 else if (pf->hw.phy.link_info.fec_info & 6501 I40E_AQ_CONFIG_FEC_RS_ENA) 6502 fec = ", FEC: CL108 RS-FEC"; 6503 6504 /* 'CL108 RS-FEC' should be displayed when RS is requested, or 6505 * both RS and FC are requested 6506 */ 6507 if (vsi->back->hw.phy.link_info.req_fec_info & 6508 (I40E_AQ_REQUEST_FEC_KR | I40E_AQ_REQUEST_FEC_RS)) { 6509 if (vsi->back->hw.phy.link_info.req_fec_info & 6510 I40E_AQ_REQUEST_FEC_RS) 6511 req_fec = ", Requested FEC: CL108 RS-FEC"; 6512 else 6513 req_fec = ", Requested FEC: CL74 FC-FEC/BASE-R"; 6514 } 6515 } 6516 6517 netdev_info(vsi->netdev, "NIC Link is Up, %sbps Full Duplex%s%s%s, Flow Control: %s\n", 6518 speed, req_fec, fec, an, fc); 6519 } 6520 6521 /** 6522 * i40e_up_complete - Finish the last steps of bringing up a connection 6523 * @vsi: the VSI being configured 6524 **/ 6525 static int i40e_up_complete(struct i40e_vsi *vsi) 6526 { 6527 struct i40e_pf *pf = vsi->back; 6528 int err; 6529 6530 if (pf->flags & I40E_FLAG_MSIX_ENABLED) 6531 i40e_vsi_configure_msix(vsi); 6532 else 6533 i40e_configure_msi_and_legacy(vsi); 6534 6535 /* start rings */ 6536 err = i40e_vsi_start_rings(vsi); 6537 if (err) 6538 return err; 6539 6540 clear_bit(__I40E_VSI_DOWN, vsi->state); 6541 i40e_napi_enable_all(vsi); 6542 i40e_vsi_enable_irq(vsi); 6543 6544 if ((pf->hw.phy.link_info.link_info & I40E_AQ_LINK_UP) && 6545 (vsi->netdev)) { 6546 i40e_print_link_message(vsi, true); 6547 netif_tx_start_all_queues(vsi->netdev); 6548 netif_carrier_on(vsi->netdev); 6549 } 6550 6551 /* replay FDIR SB filters */ 6552 if (vsi->type == I40E_VSI_FDIR) { 6553 /* reset fd counters */ 6554 pf->fd_add_err = 0; 6555 pf->fd_atr_cnt = 0; 6556 i40e_fdir_filter_restore(vsi); 6557 } 6558 6559 /* On the next run of the service_task, notify any clients of the new 6560 * opened netdev 6561 */ 6562 pf->flags |= I40E_FLAG_SERVICE_CLIENT_REQUESTED; 6563 i40e_service_event_schedule(pf); 6564 6565 return 0; 6566 } 6567 6568 /** 6569 * i40e_vsi_reinit_locked - Reset the VSI 6570 * @vsi: the VSI being configured 6571 * 6572 * Rebuild the ring structs after some configuration 6573 * has changed, e.g. MTU size. 6574 **/ 6575 static void i40e_vsi_reinit_locked(struct i40e_vsi *vsi) 6576 { 6577 struct i40e_pf *pf = vsi->back; 6578 6579 WARN_ON(in_interrupt()); 6580 while (test_and_set_bit(__I40E_CONFIG_BUSY, pf->state)) 6581 usleep_range(1000, 2000); 6582 i40e_down(vsi); 6583 6584 i40e_up(vsi); 6585 clear_bit(__I40E_CONFIG_BUSY, pf->state); 6586 } 6587 6588 /** 6589 * i40e_up - Bring the connection back up after being down 6590 * @vsi: the VSI being configured 6591 **/ 6592 int i40e_up(struct i40e_vsi *vsi) 6593 { 6594 int err; 6595 6596 err = i40e_vsi_configure(vsi); 6597 if (!err) 6598 err = i40e_up_complete(vsi); 6599 6600 return err; 6601 } 6602 6603 /** 6604 * i40e_down - Shutdown the connection processing 6605 * @vsi: the VSI being stopped 6606 **/ 6607 void i40e_down(struct i40e_vsi *vsi) 6608 { 6609 int i; 6610 6611 /* It is assumed that the caller of this function 6612 * sets the vsi->state __I40E_VSI_DOWN bit. 6613 */ 6614 if (vsi->netdev) { 6615 netif_carrier_off(vsi->netdev); 6616 netif_tx_disable(vsi->netdev); 6617 } 6618 i40e_vsi_disable_irq(vsi); 6619 i40e_vsi_stop_rings(vsi); 6620 i40e_napi_disable_all(vsi); 6621 6622 for (i = 0; i < vsi->num_queue_pairs; i++) { 6623 i40e_clean_tx_ring(vsi->tx_rings[i]); 6624 if (i40e_enabled_xdp_vsi(vsi)) 6625 i40e_clean_tx_ring(vsi->xdp_rings[i]); 6626 i40e_clean_rx_ring(vsi->rx_rings[i]); 6627 } 6628 6629 } 6630 6631 /** 6632 * i40e_validate_mqprio_qopt- validate queue mapping info 6633 * @vsi: the VSI being configured 6634 * @mqprio_qopt: queue parametrs 6635 **/ 6636 static int i40e_validate_mqprio_qopt(struct i40e_vsi *vsi, 6637 struct tc_mqprio_qopt_offload *mqprio_qopt) 6638 { 6639 u64 sum_max_rate = 0; 6640 u64 max_rate = 0; 6641 int i; 6642 6643 if (mqprio_qopt->qopt.offset[0] != 0 || 6644 mqprio_qopt->qopt.num_tc < 1 || 6645 mqprio_qopt->qopt.num_tc > I40E_MAX_TRAFFIC_CLASS) 6646 return -EINVAL; 6647 for (i = 0; ; i++) { 6648 if (!mqprio_qopt->qopt.count[i]) 6649 return -EINVAL; 6650 if (mqprio_qopt->min_rate[i]) { 6651 dev_err(&vsi->back->pdev->dev, 6652 "Invalid min tx rate (greater than 0) specified\n"); 6653 return -EINVAL; 6654 } 6655 max_rate = mqprio_qopt->max_rate[i]; 6656 do_div(max_rate, I40E_BW_MBPS_DIVISOR); 6657 sum_max_rate += max_rate; 6658 6659 if (i >= mqprio_qopt->qopt.num_tc - 1) 6660 break; 6661 if (mqprio_qopt->qopt.offset[i + 1] != 6662 (mqprio_qopt->qopt.offset[i] + mqprio_qopt->qopt.count[i])) 6663 return -EINVAL; 6664 } 6665 if (vsi->num_queue_pairs < 6666 (mqprio_qopt->qopt.offset[i] + mqprio_qopt->qopt.count[i])) { 6667 return -EINVAL; 6668 } 6669 if (sum_max_rate > i40e_get_link_speed(vsi)) { 6670 dev_err(&vsi->back->pdev->dev, 6671 "Invalid max tx rate specified\n"); 6672 return -EINVAL; 6673 } 6674 return 0; 6675 } 6676 6677 /** 6678 * i40e_vsi_set_default_tc_config - set default values for tc configuration 6679 * @vsi: the VSI being configured 6680 **/ 6681 static void i40e_vsi_set_default_tc_config(struct i40e_vsi *vsi) 6682 { 6683 u16 qcount; 6684 int i; 6685 6686 /* Only TC0 is enabled */ 6687 vsi->tc_config.numtc = 1; 6688 vsi->tc_config.enabled_tc = 1; 6689 qcount = min_t(int, vsi->alloc_queue_pairs, 6690 i40e_pf_get_max_q_per_tc(vsi->back)); 6691 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 6692 /* For the TC that is not enabled set the offset to to default 6693 * queue and allocate one queue for the given TC. 6694 */ 6695 vsi->tc_config.tc_info[i].qoffset = 0; 6696 if (i == 0) 6697 vsi->tc_config.tc_info[i].qcount = qcount; 6698 else 6699 vsi->tc_config.tc_info[i].qcount = 1; 6700 vsi->tc_config.tc_info[i].netdev_tc = 0; 6701 } 6702 } 6703 6704 /** 6705 * i40e_setup_tc - configure multiple traffic classes 6706 * @netdev: net device to configure 6707 * @type_data: tc offload data 6708 **/ 6709 static int i40e_setup_tc(struct net_device *netdev, void *type_data) 6710 { 6711 struct tc_mqprio_qopt_offload *mqprio_qopt = type_data; 6712 struct i40e_netdev_priv *np = netdev_priv(netdev); 6713 struct i40e_vsi *vsi = np->vsi; 6714 struct i40e_pf *pf = vsi->back; 6715 u8 enabled_tc = 0, num_tc, hw; 6716 bool need_reset = false; 6717 int ret = -EINVAL; 6718 u16 mode; 6719 int i; 6720 6721 num_tc = mqprio_qopt->qopt.num_tc; 6722 hw = mqprio_qopt->qopt.hw; 6723 mode = mqprio_qopt->mode; 6724 if (!hw) { 6725 pf->flags &= ~I40E_FLAG_TC_MQPRIO; 6726 memcpy(&vsi->mqprio_qopt, mqprio_qopt, sizeof(*mqprio_qopt)); 6727 goto config_tc; 6728 } 6729 6730 /* Check if MFP enabled */ 6731 if (pf->flags & I40E_FLAG_MFP_ENABLED) { 6732 netdev_info(netdev, 6733 "Configuring TC not supported in MFP mode\n"); 6734 return ret; 6735 } 6736 switch (mode) { 6737 case TC_MQPRIO_MODE_DCB: 6738 pf->flags &= ~I40E_FLAG_TC_MQPRIO; 6739 6740 /* Check if DCB enabled to continue */ 6741 if (!(pf->flags & I40E_FLAG_DCB_ENABLED)) { 6742 netdev_info(netdev, 6743 "DCB is not enabled for adapter\n"); 6744 return ret; 6745 } 6746 6747 /* Check whether tc count is within enabled limit */ 6748 if (num_tc > i40e_pf_get_num_tc(pf)) { 6749 netdev_info(netdev, 6750 "TC count greater than enabled on link for adapter\n"); 6751 return ret; 6752 } 6753 break; 6754 case TC_MQPRIO_MODE_CHANNEL: 6755 if (pf->flags & I40E_FLAG_DCB_ENABLED) { 6756 netdev_info(netdev, 6757 "Full offload of TC Mqprio options is not supported when DCB is enabled\n"); 6758 return ret; 6759 } 6760 if (!(pf->flags & I40E_FLAG_MSIX_ENABLED)) 6761 return ret; 6762 ret = i40e_validate_mqprio_qopt(vsi, mqprio_qopt); 6763 if (ret) 6764 return ret; 6765 memcpy(&vsi->mqprio_qopt, mqprio_qopt, 6766 sizeof(*mqprio_qopt)); 6767 pf->flags |= I40E_FLAG_TC_MQPRIO; 6768 pf->flags &= ~I40E_FLAG_DCB_ENABLED; 6769 break; 6770 default: 6771 return -EINVAL; 6772 } 6773 6774 config_tc: 6775 /* Generate TC map for number of tc requested */ 6776 for (i = 0; i < num_tc; i++) 6777 enabled_tc |= BIT(i); 6778 6779 /* Requesting same TC configuration as already enabled */ 6780 if (enabled_tc == vsi->tc_config.enabled_tc && 6781 mode != TC_MQPRIO_MODE_CHANNEL) 6782 return 0; 6783 6784 /* Quiesce VSI queues */ 6785 i40e_quiesce_vsi(vsi); 6786 6787 if (!hw && !(pf->flags & I40E_FLAG_TC_MQPRIO)) 6788 i40e_remove_queue_channels(vsi); 6789 6790 /* Configure VSI for enabled TCs */ 6791 ret = i40e_vsi_config_tc(vsi, enabled_tc); 6792 if (ret) { 6793 netdev_info(netdev, "Failed configuring TC for VSI seid=%d\n", 6794 vsi->seid); 6795 need_reset = true; 6796 goto exit; 6797 } 6798 6799 if (pf->flags & I40E_FLAG_TC_MQPRIO) { 6800 if (vsi->mqprio_qopt.max_rate[0]) { 6801 u64 max_tx_rate = vsi->mqprio_qopt.max_rate[0]; 6802 6803 do_div(max_tx_rate, I40E_BW_MBPS_DIVISOR); 6804 ret = i40e_set_bw_limit(vsi, vsi->seid, max_tx_rate); 6805 if (!ret) { 6806 u64 credits = max_tx_rate; 6807 6808 do_div(credits, I40E_BW_CREDIT_DIVISOR); 6809 dev_dbg(&vsi->back->pdev->dev, 6810 "Set tx rate of %llu Mbps (count of 50Mbps %llu) for vsi->seid %u\n", 6811 max_tx_rate, 6812 credits, 6813 vsi->seid); 6814 } else { 6815 need_reset = true; 6816 goto exit; 6817 } 6818 } 6819 ret = i40e_configure_queue_channels(vsi); 6820 if (ret) { 6821 netdev_info(netdev, 6822 "Failed configuring queue channels\n"); 6823 need_reset = true; 6824 goto exit; 6825 } 6826 } 6827 6828 exit: 6829 /* Reset the configuration data to defaults, only TC0 is enabled */ 6830 if (need_reset) { 6831 i40e_vsi_set_default_tc_config(vsi); 6832 need_reset = false; 6833 } 6834 6835 /* Unquiesce VSI */ 6836 i40e_unquiesce_vsi(vsi); 6837 return ret; 6838 } 6839 6840 /** 6841 * i40e_set_cld_element - sets cloud filter element data 6842 * @filter: cloud filter rule 6843 * @cld: ptr to cloud filter element data 6844 * 6845 * This is helper function to copy data into cloud filter element 6846 **/ 6847 static inline void 6848 i40e_set_cld_element(struct i40e_cloud_filter *filter, 6849 struct i40e_aqc_cloud_filters_element_data *cld) 6850 { 6851 int i, j; 6852 u32 ipa; 6853 6854 memset(cld, 0, sizeof(*cld)); 6855 ether_addr_copy(cld->outer_mac, filter->dst_mac); 6856 ether_addr_copy(cld->inner_mac, filter->src_mac); 6857 6858 if (filter->n_proto != ETH_P_IP && filter->n_proto != ETH_P_IPV6) 6859 return; 6860 6861 if (filter->n_proto == ETH_P_IPV6) { 6862 #define IPV6_MAX_INDEX (ARRAY_SIZE(filter->dst_ipv6) - 1) 6863 for (i = 0, j = 0; i < ARRAY_SIZE(filter->dst_ipv6); 6864 i++, j += 2) { 6865 ipa = be32_to_cpu(filter->dst_ipv6[IPV6_MAX_INDEX - i]); 6866 ipa = cpu_to_le32(ipa); 6867 memcpy(&cld->ipaddr.raw_v6.data[j], &ipa, sizeof(ipa)); 6868 } 6869 } else { 6870 ipa = be32_to_cpu(filter->dst_ipv4); 6871 memcpy(&cld->ipaddr.v4.data, &ipa, sizeof(ipa)); 6872 } 6873 6874 cld->inner_vlan = cpu_to_le16(ntohs(filter->vlan_id)); 6875 6876 /* tenant_id is not supported by FW now, once the support is enabled 6877 * fill the cld->tenant_id with cpu_to_le32(filter->tenant_id) 6878 */ 6879 if (filter->tenant_id) 6880 return; 6881 } 6882 6883 /** 6884 * i40e_add_del_cloud_filter - Add/del cloud filter 6885 * @vsi: pointer to VSI 6886 * @filter: cloud filter rule 6887 * @add: if true, add, if false, delete 6888 * 6889 * Add or delete a cloud filter for a specific flow spec. 6890 * Returns 0 if the filter were successfully added. 6891 **/ 6892 static int i40e_add_del_cloud_filter(struct i40e_vsi *vsi, 6893 struct i40e_cloud_filter *filter, bool add) 6894 { 6895 struct i40e_aqc_cloud_filters_element_data cld_filter; 6896 struct i40e_pf *pf = vsi->back; 6897 int ret; 6898 static const u16 flag_table[128] = { 6899 [I40E_CLOUD_FILTER_FLAGS_OMAC] = 6900 I40E_AQC_ADD_CLOUD_FILTER_OMAC, 6901 [I40E_CLOUD_FILTER_FLAGS_IMAC] = 6902 I40E_AQC_ADD_CLOUD_FILTER_IMAC, 6903 [I40E_CLOUD_FILTER_FLAGS_IMAC_IVLAN] = 6904 I40E_AQC_ADD_CLOUD_FILTER_IMAC_IVLAN, 6905 [I40E_CLOUD_FILTER_FLAGS_IMAC_TEN_ID] = 6906 I40E_AQC_ADD_CLOUD_FILTER_IMAC_TEN_ID, 6907 [I40E_CLOUD_FILTER_FLAGS_OMAC_TEN_ID_IMAC] = 6908 I40E_AQC_ADD_CLOUD_FILTER_OMAC_TEN_ID_IMAC, 6909 [I40E_CLOUD_FILTER_FLAGS_IMAC_IVLAN_TEN_ID] = 6910 I40E_AQC_ADD_CLOUD_FILTER_IMAC_IVLAN_TEN_ID, 6911 [I40E_CLOUD_FILTER_FLAGS_IIP] = 6912 I40E_AQC_ADD_CLOUD_FILTER_IIP, 6913 }; 6914 6915 if (filter->flags >= ARRAY_SIZE(flag_table)) 6916 return I40E_ERR_CONFIG; 6917 6918 /* copy element needed to add cloud filter from filter */ 6919 i40e_set_cld_element(filter, &cld_filter); 6920 6921 if (filter->tunnel_type != I40E_CLOUD_TNL_TYPE_NONE) 6922 cld_filter.flags = cpu_to_le16(filter->tunnel_type << 6923 I40E_AQC_ADD_CLOUD_TNL_TYPE_SHIFT); 6924 6925 if (filter->n_proto == ETH_P_IPV6) 6926 cld_filter.flags |= cpu_to_le16(flag_table[filter->flags] | 6927 I40E_AQC_ADD_CLOUD_FLAGS_IPV6); 6928 else 6929 cld_filter.flags |= cpu_to_le16(flag_table[filter->flags] | 6930 I40E_AQC_ADD_CLOUD_FLAGS_IPV4); 6931 6932 if (add) 6933 ret = i40e_aq_add_cloud_filters(&pf->hw, filter->seid, 6934 &cld_filter, 1); 6935 else 6936 ret = i40e_aq_rem_cloud_filters(&pf->hw, filter->seid, 6937 &cld_filter, 1); 6938 if (ret) 6939 dev_dbg(&pf->pdev->dev, 6940 "Failed to %s cloud filter using l4 port %u, err %d aq_err %d\n", 6941 add ? "add" : "delete", filter->dst_port, ret, 6942 pf->hw.aq.asq_last_status); 6943 else 6944 dev_info(&pf->pdev->dev, 6945 "%s cloud filter for VSI: %d\n", 6946 add ? "Added" : "Deleted", filter->seid); 6947 return ret; 6948 } 6949 6950 /** 6951 * i40e_add_del_cloud_filter_big_buf - Add/del cloud filter using big_buf 6952 * @vsi: pointer to VSI 6953 * @filter: cloud filter rule 6954 * @add: if true, add, if false, delete 6955 * 6956 * Add or delete a cloud filter for a specific flow spec using big buffer. 6957 * Returns 0 if the filter were successfully added. 6958 **/ 6959 static int i40e_add_del_cloud_filter_big_buf(struct i40e_vsi *vsi, 6960 struct i40e_cloud_filter *filter, 6961 bool add) 6962 { 6963 struct i40e_aqc_cloud_filters_element_bb cld_filter; 6964 struct i40e_pf *pf = vsi->back; 6965 int ret; 6966 6967 /* Both (src/dst) valid mac_addr are not supported */ 6968 if ((is_valid_ether_addr(filter->dst_mac) && 6969 is_valid_ether_addr(filter->src_mac)) || 6970 (is_multicast_ether_addr(filter->dst_mac) && 6971 is_multicast_ether_addr(filter->src_mac))) 6972 return -EINVAL; 6973 6974 /* Make sure port is specified, otherwise bail out, for channel 6975 * specific cloud filter needs 'L4 port' to be non-zero 6976 */ 6977 if (!filter->dst_port) 6978 return -EINVAL; 6979 6980 /* adding filter using src_port/src_ip is not supported at this stage */ 6981 if (filter->src_port || filter->src_ipv4 || 6982 !ipv6_addr_any(&filter->ip.v6.src_ip6)) 6983 return -EINVAL; 6984 6985 /* copy element needed to add cloud filter from filter */ 6986 i40e_set_cld_element(filter, &cld_filter.element); 6987 6988 if (is_valid_ether_addr(filter->dst_mac) || 6989 is_valid_ether_addr(filter->src_mac) || 6990 is_multicast_ether_addr(filter->dst_mac) || 6991 is_multicast_ether_addr(filter->src_mac)) { 6992 /* MAC + IP : unsupported mode */ 6993 if (filter->dst_ipv4) 6994 return -EINVAL; 6995 6996 /* since we validated that L4 port must be valid before 6997 * we get here, start with respective "flags" value 6998 * and update if vlan is present or not 6999 */ 7000 cld_filter.element.flags = 7001 cpu_to_le16(I40E_AQC_ADD_CLOUD_FILTER_MAC_PORT); 7002 7003 if (filter->vlan_id) { 7004 cld_filter.element.flags = 7005 cpu_to_le16(I40E_AQC_ADD_CLOUD_FILTER_MAC_VLAN_PORT); 7006 } 7007 7008 } else if (filter->dst_ipv4 || 7009 !ipv6_addr_any(&filter->ip.v6.dst_ip6)) { 7010 cld_filter.element.flags = 7011 cpu_to_le16(I40E_AQC_ADD_CLOUD_FILTER_IP_PORT); 7012 if (filter->n_proto == ETH_P_IPV6) 7013 cld_filter.element.flags |= 7014 cpu_to_le16(I40E_AQC_ADD_CLOUD_FLAGS_IPV6); 7015 else 7016 cld_filter.element.flags |= 7017 cpu_to_le16(I40E_AQC_ADD_CLOUD_FLAGS_IPV4); 7018 } else { 7019 dev_err(&pf->pdev->dev, 7020 "either mac or ip has to be valid for cloud filter\n"); 7021 return -EINVAL; 7022 } 7023 7024 /* Now copy L4 port in Byte 6..7 in general fields */ 7025 cld_filter.general_fields[I40E_AQC_ADD_CLOUD_FV_FLU_0X16_WORD0] = 7026 be16_to_cpu(filter->dst_port); 7027 7028 if (add) { 7029 /* Validate current device switch mode, change if necessary */ 7030 ret = i40e_validate_and_set_switch_mode(vsi); 7031 if (ret) { 7032 dev_err(&pf->pdev->dev, 7033 "failed to set switch mode, ret %d\n", 7034 ret); 7035 return ret; 7036 } 7037 7038 ret = i40e_aq_add_cloud_filters_bb(&pf->hw, filter->seid, 7039 &cld_filter, 1); 7040 } else { 7041 ret = i40e_aq_rem_cloud_filters_bb(&pf->hw, filter->seid, 7042 &cld_filter, 1); 7043 } 7044 7045 if (ret) 7046 dev_dbg(&pf->pdev->dev, 7047 "Failed to %s cloud filter(big buffer) err %d aq_err %d\n", 7048 add ? "add" : "delete", ret, pf->hw.aq.asq_last_status); 7049 else 7050 dev_info(&pf->pdev->dev, 7051 "%s cloud filter for VSI: %d, L4 port: %d\n", 7052 add ? "add" : "delete", filter->seid, 7053 ntohs(filter->dst_port)); 7054 return ret; 7055 } 7056 7057 /** 7058 * i40e_parse_cls_flower - Parse tc flower filters provided by kernel 7059 * @vsi: Pointer to VSI 7060 * @cls_flower: Pointer to struct tc_cls_flower_offload 7061 * @filter: Pointer to cloud filter structure 7062 * 7063 **/ 7064 static int i40e_parse_cls_flower(struct i40e_vsi *vsi, 7065 struct tc_cls_flower_offload *f, 7066 struct i40e_cloud_filter *filter) 7067 { 7068 u16 n_proto_mask = 0, n_proto_key = 0, addr_type = 0; 7069 struct i40e_pf *pf = vsi->back; 7070 u8 field_flags = 0; 7071 7072 if (f->dissector->used_keys & 7073 ~(BIT(FLOW_DISSECTOR_KEY_CONTROL) | 7074 BIT(FLOW_DISSECTOR_KEY_BASIC) | 7075 BIT(FLOW_DISSECTOR_KEY_ETH_ADDRS) | 7076 BIT(FLOW_DISSECTOR_KEY_VLAN) | 7077 BIT(FLOW_DISSECTOR_KEY_IPV4_ADDRS) | 7078 BIT(FLOW_DISSECTOR_KEY_IPV6_ADDRS) | 7079 BIT(FLOW_DISSECTOR_KEY_PORTS) | 7080 BIT(FLOW_DISSECTOR_KEY_ENC_KEYID))) { 7081 dev_err(&pf->pdev->dev, "Unsupported key used: 0x%x\n", 7082 f->dissector->used_keys); 7083 return -EOPNOTSUPP; 7084 } 7085 7086 if (dissector_uses_key(f->dissector, FLOW_DISSECTOR_KEY_ENC_KEYID)) { 7087 struct flow_dissector_key_keyid *key = 7088 skb_flow_dissector_target(f->dissector, 7089 FLOW_DISSECTOR_KEY_ENC_KEYID, 7090 f->key); 7091 7092 struct flow_dissector_key_keyid *mask = 7093 skb_flow_dissector_target(f->dissector, 7094 FLOW_DISSECTOR_KEY_ENC_KEYID, 7095 f->mask); 7096 7097 if (mask->keyid != 0) 7098 field_flags |= I40E_CLOUD_FIELD_TEN_ID; 7099 7100 filter->tenant_id = be32_to_cpu(key->keyid); 7101 } 7102 7103 if (dissector_uses_key(f->dissector, FLOW_DISSECTOR_KEY_BASIC)) { 7104 struct flow_dissector_key_basic *key = 7105 skb_flow_dissector_target(f->dissector, 7106 FLOW_DISSECTOR_KEY_BASIC, 7107 f->key); 7108 7109 struct flow_dissector_key_basic *mask = 7110 skb_flow_dissector_target(f->dissector, 7111 FLOW_DISSECTOR_KEY_BASIC, 7112 f->mask); 7113 7114 n_proto_key = ntohs(key->n_proto); 7115 n_proto_mask = ntohs(mask->n_proto); 7116 7117 if (n_proto_key == ETH_P_ALL) { 7118 n_proto_key = 0; 7119 n_proto_mask = 0; 7120 } 7121 filter->n_proto = n_proto_key & n_proto_mask; 7122 filter->ip_proto = key->ip_proto; 7123 } 7124 7125 if (dissector_uses_key(f->dissector, FLOW_DISSECTOR_KEY_ETH_ADDRS)) { 7126 struct flow_dissector_key_eth_addrs *key = 7127 skb_flow_dissector_target(f->dissector, 7128 FLOW_DISSECTOR_KEY_ETH_ADDRS, 7129 f->key); 7130 7131 struct flow_dissector_key_eth_addrs *mask = 7132 skb_flow_dissector_target(f->dissector, 7133 FLOW_DISSECTOR_KEY_ETH_ADDRS, 7134 f->mask); 7135 7136 /* use is_broadcast and is_zero to check for all 0xf or 0 */ 7137 if (!is_zero_ether_addr(mask->dst)) { 7138 if (is_broadcast_ether_addr(mask->dst)) { 7139 field_flags |= I40E_CLOUD_FIELD_OMAC; 7140 } else { 7141 dev_err(&pf->pdev->dev, "Bad ether dest mask %pM\n", 7142 mask->dst); 7143 return I40E_ERR_CONFIG; 7144 } 7145 } 7146 7147 if (!is_zero_ether_addr(mask->src)) { 7148 if (is_broadcast_ether_addr(mask->src)) { 7149 field_flags |= I40E_CLOUD_FIELD_IMAC; 7150 } else { 7151 dev_err(&pf->pdev->dev, "Bad ether src mask %pM\n", 7152 mask->src); 7153 return I40E_ERR_CONFIG; 7154 } 7155 } 7156 ether_addr_copy(filter->dst_mac, key->dst); 7157 ether_addr_copy(filter->src_mac, key->src); 7158 } 7159 7160 if (dissector_uses_key(f->dissector, FLOW_DISSECTOR_KEY_VLAN)) { 7161 struct flow_dissector_key_vlan *key = 7162 skb_flow_dissector_target(f->dissector, 7163 FLOW_DISSECTOR_KEY_VLAN, 7164 f->key); 7165 struct flow_dissector_key_vlan *mask = 7166 skb_flow_dissector_target(f->dissector, 7167 FLOW_DISSECTOR_KEY_VLAN, 7168 f->mask); 7169 7170 if (mask->vlan_id) { 7171 if (mask->vlan_id == VLAN_VID_MASK) { 7172 field_flags |= I40E_CLOUD_FIELD_IVLAN; 7173 7174 } else { 7175 dev_err(&pf->pdev->dev, "Bad vlan mask 0x%04x\n", 7176 mask->vlan_id); 7177 return I40E_ERR_CONFIG; 7178 } 7179 } 7180 7181 filter->vlan_id = cpu_to_be16(key->vlan_id); 7182 } 7183 7184 if (dissector_uses_key(f->dissector, FLOW_DISSECTOR_KEY_CONTROL)) { 7185 struct flow_dissector_key_control *key = 7186 skb_flow_dissector_target(f->dissector, 7187 FLOW_DISSECTOR_KEY_CONTROL, 7188 f->key); 7189 7190 addr_type = key->addr_type; 7191 } 7192 7193 if (addr_type == FLOW_DISSECTOR_KEY_IPV4_ADDRS) { 7194 struct flow_dissector_key_ipv4_addrs *key = 7195 skb_flow_dissector_target(f->dissector, 7196 FLOW_DISSECTOR_KEY_IPV4_ADDRS, 7197 f->key); 7198 struct flow_dissector_key_ipv4_addrs *mask = 7199 skb_flow_dissector_target(f->dissector, 7200 FLOW_DISSECTOR_KEY_IPV4_ADDRS, 7201 f->mask); 7202 7203 if (mask->dst) { 7204 if (mask->dst == cpu_to_be32(0xffffffff)) { 7205 field_flags |= I40E_CLOUD_FIELD_IIP; 7206 } else { 7207 mask->dst = be32_to_cpu(mask->dst); 7208 dev_err(&pf->pdev->dev, "Bad ip dst mask %pI4\n", 7209 &mask->dst); 7210 return I40E_ERR_CONFIG; 7211 } 7212 } 7213 7214 if (mask->src) { 7215 if (mask->src == cpu_to_be32(0xffffffff)) { 7216 field_flags |= I40E_CLOUD_FIELD_IIP; 7217 } else { 7218 mask->src = be32_to_cpu(mask->src); 7219 dev_err(&pf->pdev->dev, "Bad ip src mask %pI4\n", 7220 &mask->src); 7221 return I40E_ERR_CONFIG; 7222 } 7223 } 7224 7225 if (field_flags & I40E_CLOUD_FIELD_TEN_ID) { 7226 dev_err(&pf->pdev->dev, "Tenant id not allowed for ip filter\n"); 7227 return I40E_ERR_CONFIG; 7228 } 7229 filter->dst_ipv4 = key->dst; 7230 filter->src_ipv4 = key->src; 7231 } 7232 7233 if (addr_type == FLOW_DISSECTOR_KEY_IPV6_ADDRS) { 7234 struct flow_dissector_key_ipv6_addrs *key = 7235 skb_flow_dissector_target(f->dissector, 7236 FLOW_DISSECTOR_KEY_IPV6_ADDRS, 7237 f->key); 7238 struct flow_dissector_key_ipv6_addrs *mask = 7239 skb_flow_dissector_target(f->dissector, 7240 FLOW_DISSECTOR_KEY_IPV6_ADDRS, 7241 f->mask); 7242 7243 /* src and dest IPV6 address should not be LOOPBACK 7244 * (0:0:0:0:0:0:0:1), which can be represented as ::1 7245 */ 7246 if (ipv6_addr_loopback(&key->dst) || 7247 ipv6_addr_loopback(&key->src)) { 7248 dev_err(&pf->pdev->dev, 7249 "Bad ipv6, addr is LOOPBACK\n"); 7250 return I40E_ERR_CONFIG; 7251 } 7252 if (!ipv6_addr_any(&mask->dst) || !ipv6_addr_any(&mask->src)) 7253 field_flags |= I40E_CLOUD_FIELD_IIP; 7254 7255 memcpy(&filter->src_ipv6, &key->src.s6_addr32, 7256 sizeof(filter->src_ipv6)); 7257 memcpy(&filter->dst_ipv6, &key->dst.s6_addr32, 7258 sizeof(filter->dst_ipv6)); 7259 } 7260 7261 if (dissector_uses_key(f->dissector, FLOW_DISSECTOR_KEY_PORTS)) { 7262 struct flow_dissector_key_ports *key = 7263 skb_flow_dissector_target(f->dissector, 7264 FLOW_DISSECTOR_KEY_PORTS, 7265 f->key); 7266 struct flow_dissector_key_ports *mask = 7267 skb_flow_dissector_target(f->dissector, 7268 FLOW_DISSECTOR_KEY_PORTS, 7269 f->mask); 7270 7271 if (mask->src) { 7272 if (mask->src == cpu_to_be16(0xffff)) { 7273 field_flags |= I40E_CLOUD_FIELD_IIP; 7274 } else { 7275 dev_err(&pf->pdev->dev, "Bad src port mask 0x%04x\n", 7276 be16_to_cpu(mask->src)); 7277 return I40E_ERR_CONFIG; 7278 } 7279 } 7280 7281 if (mask->dst) { 7282 if (mask->dst == cpu_to_be16(0xffff)) { 7283 field_flags |= I40E_CLOUD_FIELD_IIP; 7284 } else { 7285 dev_err(&pf->pdev->dev, "Bad dst port mask 0x%04x\n", 7286 be16_to_cpu(mask->dst)); 7287 return I40E_ERR_CONFIG; 7288 } 7289 } 7290 7291 filter->dst_port = key->dst; 7292 filter->src_port = key->src; 7293 7294 switch (filter->ip_proto) { 7295 case IPPROTO_TCP: 7296 case IPPROTO_UDP: 7297 break; 7298 default: 7299 dev_err(&pf->pdev->dev, 7300 "Only UDP and TCP transport are supported\n"); 7301 return -EINVAL; 7302 } 7303 } 7304 filter->flags = field_flags; 7305 return 0; 7306 } 7307 7308 /** 7309 * i40e_handle_tclass: Forward to a traffic class on the device 7310 * @vsi: Pointer to VSI 7311 * @tc: traffic class index on the device 7312 * @filter: Pointer to cloud filter structure 7313 * 7314 **/ 7315 static int i40e_handle_tclass(struct i40e_vsi *vsi, u32 tc, 7316 struct i40e_cloud_filter *filter) 7317 { 7318 struct i40e_channel *ch, *ch_tmp; 7319 7320 /* direct to a traffic class on the same device */ 7321 if (tc == 0) { 7322 filter->seid = vsi->seid; 7323 return 0; 7324 } else if (vsi->tc_config.enabled_tc & BIT(tc)) { 7325 if (!filter->dst_port) { 7326 dev_err(&vsi->back->pdev->dev, 7327 "Specify destination port to direct to traffic class that is not default\n"); 7328 return -EINVAL; 7329 } 7330 if (list_empty(&vsi->ch_list)) 7331 return -EINVAL; 7332 list_for_each_entry_safe(ch, ch_tmp, &vsi->ch_list, 7333 list) { 7334 if (ch->seid == vsi->tc_seid_map[tc]) 7335 filter->seid = ch->seid; 7336 } 7337 return 0; 7338 } 7339 dev_err(&vsi->back->pdev->dev, "TC is not enabled\n"); 7340 return -EINVAL; 7341 } 7342 7343 /** 7344 * i40e_configure_clsflower - Configure tc flower filters 7345 * @vsi: Pointer to VSI 7346 * @cls_flower: Pointer to struct tc_cls_flower_offload 7347 * 7348 **/ 7349 static int i40e_configure_clsflower(struct i40e_vsi *vsi, 7350 struct tc_cls_flower_offload *cls_flower) 7351 { 7352 int tc = tc_classid_to_hwtc(vsi->netdev, cls_flower->classid); 7353 struct i40e_cloud_filter *filter = NULL; 7354 struct i40e_pf *pf = vsi->back; 7355 int err = 0; 7356 7357 if (tc < 0) { 7358 dev_err(&vsi->back->pdev->dev, "Invalid traffic class\n"); 7359 return -EINVAL; 7360 } 7361 7362 if (test_bit(__I40E_RESET_RECOVERY_PENDING, pf->state) || 7363 test_bit(__I40E_RESET_INTR_RECEIVED, pf->state)) 7364 return -EBUSY; 7365 7366 if (pf->fdir_pf_active_filters || 7367 (!hlist_empty(&pf->fdir_filter_list))) { 7368 dev_err(&vsi->back->pdev->dev, 7369 "Flow Director Sideband filters exists, turn ntuple off to configure cloud filters\n"); 7370 return -EINVAL; 7371 } 7372 7373 if (vsi->back->flags & I40E_FLAG_FD_SB_ENABLED) { 7374 dev_err(&vsi->back->pdev->dev, 7375 "Disable Flow Director Sideband, configuring Cloud filters via tc-flower\n"); 7376 vsi->back->flags &= ~I40E_FLAG_FD_SB_ENABLED; 7377 vsi->back->flags |= I40E_FLAG_FD_SB_TO_CLOUD_FILTER; 7378 } 7379 7380 filter = kzalloc(sizeof(*filter), GFP_KERNEL); 7381 if (!filter) 7382 return -ENOMEM; 7383 7384 filter->cookie = cls_flower->cookie; 7385 7386 err = i40e_parse_cls_flower(vsi, cls_flower, filter); 7387 if (err < 0) 7388 goto err; 7389 7390 err = i40e_handle_tclass(vsi, tc, filter); 7391 if (err < 0) 7392 goto err; 7393 7394 /* Add cloud filter */ 7395 if (filter->dst_port) 7396 err = i40e_add_del_cloud_filter_big_buf(vsi, filter, true); 7397 else 7398 err = i40e_add_del_cloud_filter(vsi, filter, true); 7399 7400 if (err) { 7401 dev_err(&pf->pdev->dev, 7402 "Failed to add cloud filter, err %s\n", 7403 i40e_stat_str(&pf->hw, err)); 7404 err = i40e_aq_rc_to_posix(err, pf->hw.aq.asq_last_status); 7405 goto err; 7406 } 7407 7408 /* add filter to the ordered list */ 7409 INIT_HLIST_NODE(&filter->cloud_node); 7410 7411 hlist_add_head(&filter->cloud_node, &pf->cloud_filter_list); 7412 7413 pf->num_cloud_filters++; 7414 7415 return err; 7416 err: 7417 kfree(filter); 7418 return err; 7419 } 7420 7421 /** 7422 * i40e_find_cloud_filter - Find the could filter in the list 7423 * @vsi: Pointer to VSI 7424 * @cookie: filter specific cookie 7425 * 7426 **/ 7427 static struct i40e_cloud_filter *i40e_find_cloud_filter(struct i40e_vsi *vsi, 7428 unsigned long *cookie) 7429 { 7430 struct i40e_cloud_filter *filter = NULL; 7431 struct hlist_node *node2; 7432 7433 hlist_for_each_entry_safe(filter, node2, 7434 &vsi->back->cloud_filter_list, cloud_node) 7435 if (!memcmp(cookie, &filter->cookie, sizeof(filter->cookie))) 7436 return filter; 7437 return NULL; 7438 } 7439 7440 /** 7441 * i40e_delete_clsflower - Remove tc flower filters 7442 * @vsi: Pointer to VSI 7443 * @cls_flower: Pointer to struct tc_cls_flower_offload 7444 * 7445 **/ 7446 static int i40e_delete_clsflower(struct i40e_vsi *vsi, 7447 struct tc_cls_flower_offload *cls_flower) 7448 { 7449 struct i40e_cloud_filter *filter = NULL; 7450 struct i40e_pf *pf = vsi->back; 7451 int err = 0; 7452 7453 filter = i40e_find_cloud_filter(vsi, &cls_flower->cookie); 7454 7455 if (!filter) 7456 return -EINVAL; 7457 7458 hash_del(&filter->cloud_node); 7459 7460 if (filter->dst_port) 7461 err = i40e_add_del_cloud_filter_big_buf(vsi, filter, false); 7462 else 7463 err = i40e_add_del_cloud_filter(vsi, filter, false); 7464 7465 kfree(filter); 7466 if (err) { 7467 dev_err(&pf->pdev->dev, 7468 "Failed to delete cloud filter, err %s\n", 7469 i40e_stat_str(&pf->hw, err)); 7470 return i40e_aq_rc_to_posix(err, pf->hw.aq.asq_last_status); 7471 } 7472 7473 pf->num_cloud_filters--; 7474 if (!pf->num_cloud_filters) 7475 if ((pf->flags & I40E_FLAG_FD_SB_TO_CLOUD_FILTER) && 7476 !(pf->flags & I40E_FLAG_FD_SB_INACTIVE)) { 7477 pf->flags |= I40E_FLAG_FD_SB_ENABLED; 7478 pf->flags &= ~I40E_FLAG_FD_SB_TO_CLOUD_FILTER; 7479 pf->flags &= ~I40E_FLAG_FD_SB_INACTIVE; 7480 } 7481 return 0; 7482 } 7483 7484 /** 7485 * i40e_setup_tc_cls_flower - flower classifier offloads 7486 * @netdev: net device to configure 7487 * @type_data: offload data 7488 **/ 7489 static int i40e_setup_tc_cls_flower(struct i40e_netdev_priv *np, 7490 struct tc_cls_flower_offload *cls_flower) 7491 { 7492 struct i40e_vsi *vsi = np->vsi; 7493 7494 if (cls_flower->common.chain_index) 7495 return -EOPNOTSUPP; 7496 7497 switch (cls_flower->command) { 7498 case TC_CLSFLOWER_REPLACE: 7499 return i40e_configure_clsflower(vsi, cls_flower); 7500 case TC_CLSFLOWER_DESTROY: 7501 return i40e_delete_clsflower(vsi, cls_flower); 7502 case TC_CLSFLOWER_STATS: 7503 return -EOPNOTSUPP; 7504 default: 7505 return -EINVAL; 7506 } 7507 } 7508 7509 static int i40e_setup_tc_block_cb(enum tc_setup_type type, void *type_data, 7510 void *cb_priv) 7511 { 7512 struct i40e_netdev_priv *np = cb_priv; 7513 7514 switch (type) { 7515 case TC_SETUP_CLSFLOWER: 7516 return i40e_setup_tc_cls_flower(np, type_data); 7517 7518 default: 7519 return -EOPNOTSUPP; 7520 } 7521 } 7522 7523 static int i40e_setup_tc_block(struct net_device *dev, 7524 struct tc_block_offload *f) 7525 { 7526 struct i40e_netdev_priv *np = netdev_priv(dev); 7527 7528 if (f->binder_type != TCF_BLOCK_BINDER_TYPE_CLSACT_INGRESS) 7529 return -EOPNOTSUPP; 7530 7531 switch (f->command) { 7532 case TC_BLOCK_BIND: 7533 return tcf_block_cb_register(f->block, i40e_setup_tc_block_cb, 7534 np, np); 7535 case TC_BLOCK_UNBIND: 7536 tcf_block_cb_unregister(f->block, i40e_setup_tc_block_cb, np); 7537 return 0; 7538 default: 7539 return -EOPNOTSUPP; 7540 } 7541 } 7542 7543 static int __i40e_setup_tc(struct net_device *netdev, enum tc_setup_type type, 7544 void *type_data) 7545 { 7546 switch (type) { 7547 case TC_SETUP_QDISC_MQPRIO: 7548 return i40e_setup_tc(netdev, type_data); 7549 case TC_SETUP_BLOCK: 7550 return i40e_setup_tc_block(netdev, type_data); 7551 default: 7552 return -EOPNOTSUPP; 7553 } 7554 } 7555 7556 /** 7557 * i40e_open - Called when a network interface is made active 7558 * @netdev: network interface device structure 7559 * 7560 * The open entry point is called when a network interface is made 7561 * active by the system (IFF_UP). At this point all resources needed 7562 * for transmit and receive operations are allocated, the interrupt 7563 * handler is registered with the OS, the netdev watchdog subtask is 7564 * enabled, and the stack is notified that the interface is ready. 7565 * 7566 * Returns 0 on success, negative value on failure 7567 **/ 7568 int i40e_open(struct net_device *netdev) 7569 { 7570 struct i40e_netdev_priv *np = netdev_priv(netdev); 7571 struct i40e_vsi *vsi = np->vsi; 7572 struct i40e_pf *pf = vsi->back; 7573 int err; 7574 7575 /* disallow open during test or if eeprom is broken */ 7576 if (test_bit(__I40E_TESTING, pf->state) || 7577 test_bit(__I40E_BAD_EEPROM, pf->state)) 7578 return -EBUSY; 7579 7580 netif_carrier_off(netdev); 7581 7582 err = i40e_vsi_open(vsi); 7583 if (err) 7584 return err; 7585 7586 /* configure global TSO hardware offload settings */ 7587 wr32(&pf->hw, I40E_GLLAN_TSOMSK_F, be32_to_cpu(TCP_FLAG_PSH | 7588 TCP_FLAG_FIN) >> 16); 7589 wr32(&pf->hw, I40E_GLLAN_TSOMSK_M, be32_to_cpu(TCP_FLAG_PSH | 7590 TCP_FLAG_FIN | 7591 TCP_FLAG_CWR) >> 16); 7592 wr32(&pf->hw, I40E_GLLAN_TSOMSK_L, be32_to_cpu(TCP_FLAG_CWR) >> 16); 7593 7594 udp_tunnel_get_rx_info(netdev); 7595 7596 return 0; 7597 } 7598 7599 /** 7600 * i40e_vsi_open - 7601 * @vsi: the VSI to open 7602 * 7603 * Finish initialization of the VSI. 7604 * 7605 * Returns 0 on success, negative value on failure 7606 * 7607 * Note: expects to be called while under rtnl_lock() 7608 **/ 7609 int i40e_vsi_open(struct i40e_vsi *vsi) 7610 { 7611 struct i40e_pf *pf = vsi->back; 7612 char int_name[I40E_INT_NAME_STR_LEN]; 7613 int err; 7614 7615 /* allocate descriptors */ 7616 err = i40e_vsi_setup_tx_resources(vsi); 7617 if (err) 7618 goto err_setup_tx; 7619 err = i40e_vsi_setup_rx_resources(vsi); 7620 if (err) 7621 goto err_setup_rx; 7622 7623 err = i40e_vsi_configure(vsi); 7624 if (err) 7625 goto err_setup_rx; 7626 7627 if (vsi->netdev) { 7628 snprintf(int_name, sizeof(int_name) - 1, "%s-%s", 7629 dev_driver_string(&pf->pdev->dev), vsi->netdev->name); 7630 err = i40e_vsi_request_irq(vsi, int_name); 7631 if (err) 7632 goto err_setup_rx; 7633 7634 /* Notify the stack of the actual queue counts. */ 7635 err = netif_set_real_num_tx_queues(vsi->netdev, 7636 vsi->num_queue_pairs); 7637 if (err) 7638 goto err_set_queues; 7639 7640 err = netif_set_real_num_rx_queues(vsi->netdev, 7641 vsi->num_queue_pairs); 7642 if (err) 7643 goto err_set_queues; 7644 7645 } else if (vsi->type == I40E_VSI_FDIR) { 7646 snprintf(int_name, sizeof(int_name) - 1, "%s-%s:fdir", 7647 dev_driver_string(&pf->pdev->dev), 7648 dev_name(&pf->pdev->dev)); 7649 err = i40e_vsi_request_irq(vsi, int_name); 7650 7651 } else { 7652 err = -EINVAL; 7653 goto err_setup_rx; 7654 } 7655 7656 err = i40e_up_complete(vsi); 7657 if (err) 7658 goto err_up_complete; 7659 7660 return 0; 7661 7662 err_up_complete: 7663 i40e_down(vsi); 7664 err_set_queues: 7665 i40e_vsi_free_irq(vsi); 7666 err_setup_rx: 7667 i40e_vsi_free_rx_resources(vsi); 7668 err_setup_tx: 7669 i40e_vsi_free_tx_resources(vsi); 7670 if (vsi == pf->vsi[pf->lan_vsi]) 7671 i40e_do_reset(pf, I40E_PF_RESET_FLAG, true); 7672 7673 return err; 7674 } 7675 7676 /** 7677 * i40e_fdir_filter_exit - Cleans up the Flow Director accounting 7678 * @pf: Pointer to PF 7679 * 7680 * This function destroys the hlist where all the Flow Director 7681 * filters were saved. 7682 **/ 7683 static void i40e_fdir_filter_exit(struct i40e_pf *pf) 7684 { 7685 struct i40e_fdir_filter *filter; 7686 struct i40e_flex_pit *pit_entry, *tmp; 7687 struct hlist_node *node2; 7688 7689 hlist_for_each_entry_safe(filter, node2, 7690 &pf->fdir_filter_list, fdir_node) { 7691 hlist_del(&filter->fdir_node); 7692 kfree(filter); 7693 } 7694 7695 list_for_each_entry_safe(pit_entry, tmp, &pf->l3_flex_pit_list, list) { 7696 list_del(&pit_entry->list); 7697 kfree(pit_entry); 7698 } 7699 INIT_LIST_HEAD(&pf->l3_flex_pit_list); 7700 7701 list_for_each_entry_safe(pit_entry, tmp, &pf->l4_flex_pit_list, list) { 7702 list_del(&pit_entry->list); 7703 kfree(pit_entry); 7704 } 7705 INIT_LIST_HEAD(&pf->l4_flex_pit_list); 7706 7707 pf->fdir_pf_active_filters = 0; 7708 pf->fd_tcp4_filter_cnt = 0; 7709 pf->fd_udp4_filter_cnt = 0; 7710 pf->fd_sctp4_filter_cnt = 0; 7711 pf->fd_ip4_filter_cnt = 0; 7712 7713 /* Reprogram the default input set for TCP/IPv4 */ 7714 i40e_write_fd_input_set(pf, I40E_FILTER_PCTYPE_NONF_IPV4_TCP, 7715 I40E_L3_SRC_MASK | I40E_L3_DST_MASK | 7716 I40E_L4_SRC_MASK | I40E_L4_DST_MASK); 7717 7718 /* Reprogram the default input set for UDP/IPv4 */ 7719 i40e_write_fd_input_set(pf, I40E_FILTER_PCTYPE_NONF_IPV4_UDP, 7720 I40E_L3_SRC_MASK | I40E_L3_DST_MASK | 7721 I40E_L4_SRC_MASK | I40E_L4_DST_MASK); 7722 7723 /* Reprogram the default input set for SCTP/IPv4 */ 7724 i40e_write_fd_input_set(pf, I40E_FILTER_PCTYPE_NONF_IPV4_SCTP, 7725 I40E_L3_SRC_MASK | I40E_L3_DST_MASK | 7726 I40E_L4_SRC_MASK | I40E_L4_DST_MASK); 7727 7728 /* Reprogram the default input set for Other/IPv4 */ 7729 i40e_write_fd_input_set(pf, I40E_FILTER_PCTYPE_NONF_IPV4_OTHER, 7730 I40E_L3_SRC_MASK | I40E_L3_DST_MASK); 7731 } 7732 7733 /** 7734 * i40e_cloud_filter_exit - Cleans up the cloud filters 7735 * @pf: Pointer to PF 7736 * 7737 * This function destroys the hlist where all the cloud filters 7738 * were saved. 7739 **/ 7740 static void i40e_cloud_filter_exit(struct i40e_pf *pf) 7741 { 7742 struct i40e_cloud_filter *cfilter; 7743 struct hlist_node *node; 7744 7745 hlist_for_each_entry_safe(cfilter, node, 7746 &pf->cloud_filter_list, cloud_node) { 7747 hlist_del(&cfilter->cloud_node); 7748 kfree(cfilter); 7749 } 7750 pf->num_cloud_filters = 0; 7751 7752 if ((pf->flags & I40E_FLAG_FD_SB_TO_CLOUD_FILTER) && 7753 !(pf->flags & I40E_FLAG_FD_SB_INACTIVE)) { 7754 pf->flags |= I40E_FLAG_FD_SB_ENABLED; 7755 pf->flags &= ~I40E_FLAG_FD_SB_TO_CLOUD_FILTER; 7756 pf->flags &= ~I40E_FLAG_FD_SB_INACTIVE; 7757 } 7758 } 7759 7760 /** 7761 * i40e_close - Disables a network interface 7762 * @netdev: network interface device structure 7763 * 7764 * The close entry point is called when an interface is de-activated 7765 * by the OS. The hardware is still under the driver's control, but 7766 * this netdev interface is disabled. 7767 * 7768 * Returns 0, this is not allowed to fail 7769 **/ 7770 int i40e_close(struct net_device *netdev) 7771 { 7772 struct i40e_netdev_priv *np = netdev_priv(netdev); 7773 struct i40e_vsi *vsi = np->vsi; 7774 7775 i40e_vsi_close(vsi); 7776 7777 return 0; 7778 } 7779 7780 /** 7781 * i40e_do_reset - Start a PF or Core Reset sequence 7782 * @pf: board private structure 7783 * @reset_flags: which reset is requested 7784 * @lock_acquired: indicates whether or not the lock has been acquired 7785 * before this function was called. 7786 * 7787 * The essential difference in resets is that the PF Reset 7788 * doesn't clear the packet buffers, doesn't reset the PE 7789 * firmware, and doesn't bother the other PFs on the chip. 7790 **/ 7791 void i40e_do_reset(struct i40e_pf *pf, u32 reset_flags, bool lock_acquired) 7792 { 7793 u32 val; 7794 7795 WARN_ON(in_interrupt()); 7796 7797 7798 /* do the biggest reset indicated */ 7799 if (reset_flags & BIT_ULL(__I40E_GLOBAL_RESET_REQUESTED)) { 7800 7801 /* Request a Global Reset 7802 * 7803 * This will start the chip's countdown to the actual full 7804 * chip reset event, and a warning interrupt to be sent 7805 * to all PFs, including the requestor. Our handler 7806 * for the warning interrupt will deal with the shutdown 7807 * and recovery of the switch setup. 7808 */ 7809 dev_dbg(&pf->pdev->dev, "GlobalR requested\n"); 7810 val = rd32(&pf->hw, I40E_GLGEN_RTRIG); 7811 val |= I40E_GLGEN_RTRIG_GLOBR_MASK; 7812 wr32(&pf->hw, I40E_GLGEN_RTRIG, val); 7813 7814 } else if (reset_flags & BIT_ULL(__I40E_CORE_RESET_REQUESTED)) { 7815 7816 /* Request a Core Reset 7817 * 7818 * Same as Global Reset, except does *not* include the MAC/PHY 7819 */ 7820 dev_dbg(&pf->pdev->dev, "CoreR requested\n"); 7821 val = rd32(&pf->hw, I40E_GLGEN_RTRIG); 7822 val |= I40E_GLGEN_RTRIG_CORER_MASK; 7823 wr32(&pf->hw, I40E_GLGEN_RTRIG, val); 7824 i40e_flush(&pf->hw); 7825 7826 } else if (reset_flags & I40E_PF_RESET_FLAG) { 7827 7828 /* Request a PF Reset 7829 * 7830 * Resets only the PF-specific registers 7831 * 7832 * This goes directly to the tear-down and rebuild of 7833 * the switch, since we need to do all the recovery as 7834 * for the Core Reset. 7835 */ 7836 dev_dbg(&pf->pdev->dev, "PFR requested\n"); 7837 i40e_handle_reset_warning(pf, lock_acquired); 7838 7839 } else if (reset_flags & BIT_ULL(__I40E_REINIT_REQUESTED)) { 7840 int v; 7841 7842 /* Find the VSI(s) that requested a re-init */ 7843 dev_info(&pf->pdev->dev, 7844 "VSI reinit requested\n"); 7845 for (v = 0; v < pf->num_alloc_vsi; v++) { 7846 struct i40e_vsi *vsi = pf->vsi[v]; 7847 7848 if (vsi != NULL && 7849 test_and_clear_bit(__I40E_VSI_REINIT_REQUESTED, 7850 vsi->state)) 7851 i40e_vsi_reinit_locked(pf->vsi[v]); 7852 } 7853 } else if (reset_flags & BIT_ULL(__I40E_DOWN_REQUESTED)) { 7854 int v; 7855 7856 /* Find the VSI(s) that needs to be brought down */ 7857 dev_info(&pf->pdev->dev, "VSI down requested\n"); 7858 for (v = 0; v < pf->num_alloc_vsi; v++) { 7859 struct i40e_vsi *vsi = pf->vsi[v]; 7860 7861 if (vsi != NULL && 7862 test_and_clear_bit(__I40E_VSI_DOWN_REQUESTED, 7863 vsi->state)) { 7864 set_bit(__I40E_VSI_DOWN, vsi->state); 7865 i40e_down(vsi); 7866 } 7867 } 7868 } else { 7869 dev_info(&pf->pdev->dev, 7870 "bad reset request 0x%08x\n", reset_flags); 7871 } 7872 } 7873 7874 #ifdef CONFIG_I40E_DCB 7875 /** 7876 * i40e_dcb_need_reconfig - Check if DCB needs reconfig 7877 * @pf: board private structure 7878 * @old_cfg: current DCB config 7879 * @new_cfg: new DCB config 7880 **/ 7881 bool i40e_dcb_need_reconfig(struct i40e_pf *pf, 7882 struct i40e_dcbx_config *old_cfg, 7883 struct i40e_dcbx_config *new_cfg) 7884 { 7885 bool need_reconfig = false; 7886 7887 /* Check if ETS configuration has changed */ 7888 if (memcmp(&new_cfg->etscfg, 7889 &old_cfg->etscfg, 7890 sizeof(new_cfg->etscfg))) { 7891 /* If Priority Table has changed reconfig is needed */ 7892 if (memcmp(&new_cfg->etscfg.prioritytable, 7893 &old_cfg->etscfg.prioritytable, 7894 sizeof(new_cfg->etscfg.prioritytable))) { 7895 need_reconfig = true; 7896 dev_dbg(&pf->pdev->dev, "ETS UP2TC changed.\n"); 7897 } 7898 7899 if (memcmp(&new_cfg->etscfg.tcbwtable, 7900 &old_cfg->etscfg.tcbwtable, 7901 sizeof(new_cfg->etscfg.tcbwtable))) 7902 dev_dbg(&pf->pdev->dev, "ETS TC BW Table changed.\n"); 7903 7904 if (memcmp(&new_cfg->etscfg.tsatable, 7905 &old_cfg->etscfg.tsatable, 7906 sizeof(new_cfg->etscfg.tsatable))) 7907 dev_dbg(&pf->pdev->dev, "ETS TSA Table changed.\n"); 7908 } 7909 7910 /* Check if PFC configuration has changed */ 7911 if (memcmp(&new_cfg->pfc, 7912 &old_cfg->pfc, 7913 sizeof(new_cfg->pfc))) { 7914 need_reconfig = true; 7915 dev_dbg(&pf->pdev->dev, "PFC config change detected.\n"); 7916 } 7917 7918 /* Check if APP Table has changed */ 7919 if (memcmp(&new_cfg->app, 7920 &old_cfg->app, 7921 sizeof(new_cfg->app))) { 7922 need_reconfig = true; 7923 dev_dbg(&pf->pdev->dev, "APP Table change detected.\n"); 7924 } 7925 7926 dev_dbg(&pf->pdev->dev, "dcb need_reconfig=%d\n", need_reconfig); 7927 return need_reconfig; 7928 } 7929 7930 /** 7931 * i40e_handle_lldp_event - Handle LLDP Change MIB event 7932 * @pf: board private structure 7933 * @e: event info posted on ARQ 7934 **/ 7935 static int i40e_handle_lldp_event(struct i40e_pf *pf, 7936 struct i40e_arq_event_info *e) 7937 { 7938 struct i40e_aqc_lldp_get_mib *mib = 7939 (struct i40e_aqc_lldp_get_mib *)&e->desc.params.raw; 7940 struct i40e_hw *hw = &pf->hw; 7941 struct i40e_dcbx_config tmp_dcbx_cfg; 7942 bool need_reconfig = false; 7943 int ret = 0; 7944 u8 type; 7945 7946 /* Not DCB capable or capability disabled */ 7947 if (!(pf->flags & I40E_FLAG_DCB_CAPABLE)) 7948 return ret; 7949 7950 /* Ignore if event is not for Nearest Bridge */ 7951 type = ((mib->type >> I40E_AQ_LLDP_BRIDGE_TYPE_SHIFT) 7952 & I40E_AQ_LLDP_BRIDGE_TYPE_MASK); 7953 dev_dbg(&pf->pdev->dev, "LLDP event mib bridge type 0x%x\n", type); 7954 if (type != I40E_AQ_LLDP_BRIDGE_TYPE_NEAREST_BRIDGE) 7955 return ret; 7956 7957 /* Check MIB Type and return if event for Remote MIB update */ 7958 type = mib->type & I40E_AQ_LLDP_MIB_TYPE_MASK; 7959 dev_dbg(&pf->pdev->dev, 7960 "LLDP event mib type %s\n", type ? "remote" : "local"); 7961 if (type == I40E_AQ_LLDP_MIB_REMOTE) { 7962 /* Update the remote cached instance and return */ 7963 ret = i40e_aq_get_dcb_config(hw, I40E_AQ_LLDP_MIB_REMOTE, 7964 I40E_AQ_LLDP_BRIDGE_TYPE_NEAREST_BRIDGE, 7965 &hw->remote_dcbx_config); 7966 goto exit; 7967 } 7968 7969 /* Store the old configuration */ 7970 tmp_dcbx_cfg = hw->local_dcbx_config; 7971 7972 /* Reset the old DCBx configuration data */ 7973 memset(&hw->local_dcbx_config, 0, sizeof(hw->local_dcbx_config)); 7974 /* Get updated DCBX data from firmware */ 7975 ret = i40e_get_dcb_config(&pf->hw); 7976 if (ret) { 7977 dev_info(&pf->pdev->dev, 7978 "Failed querying DCB configuration data from firmware, err %s aq_err %s\n", 7979 i40e_stat_str(&pf->hw, ret), 7980 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 7981 goto exit; 7982 } 7983 7984 /* No change detected in DCBX configs */ 7985 if (!memcmp(&tmp_dcbx_cfg, &hw->local_dcbx_config, 7986 sizeof(tmp_dcbx_cfg))) { 7987 dev_dbg(&pf->pdev->dev, "No change detected in DCBX configuration.\n"); 7988 goto exit; 7989 } 7990 7991 need_reconfig = i40e_dcb_need_reconfig(pf, &tmp_dcbx_cfg, 7992 &hw->local_dcbx_config); 7993 7994 i40e_dcbnl_flush_apps(pf, &tmp_dcbx_cfg, &hw->local_dcbx_config); 7995 7996 if (!need_reconfig) 7997 goto exit; 7998 7999 /* Enable DCB tagging only when more than one TC */ 8000 if (i40e_dcb_get_num_tc(&hw->local_dcbx_config) > 1) 8001 pf->flags |= I40E_FLAG_DCB_ENABLED; 8002 else 8003 pf->flags &= ~I40E_FLAG_DCB_ENABLED; 8004 8005 set_bit(__I40E_PORT_SUSPENDED, pf->state); 8006 /* Reconfiguration needed quiesce all VSIs */ 8007 i40e_pf_quiesce_all_vsi(pf); 8008 8009 /* Changes in configuration update VEB/VSI */ 8010 i40e_dcb_reconfigure(pf); 8011 8012 ret = i40e_resume_port_tx(pf); 8013 8014 clear_bit(__I40E_PORT_SUSPENDED, pf->state); 8015 /* In case of error no point in resuming VSIs */ 8016 if (ret) 8017 goto exit; 8018 8019 /* Wait for the PF's queues to be disabled */ 8020 ret = i40e_pf_wait_queues_disabled(pf); 8021 if (ret) { 8022 /* Schedule PF reset to recover */ 8023 set_bit(__I40E_PF_RESET_REQUESTED, pf->state); 8024 i40e_service_event_schedule(pf); 8025 } else { 8026 i40e_pf_unquiesce_all_vsi(pf); 8027 pf->flags |= (I40E_FLAG_SERVICE_CLIENT_REQUESTED | 8028 I40E_FLAG_CLIENT_L2_CHANGE); 8029 } 8030 8031 exit: 8032 return ret; 8033 } 8034 #endif /* CONFIG_I40E_DCB */ 8035 8036 /** 8037 * i40e_do_reset_safe - Protected reset path for userland calls. 8038 * @pf: board private structure 8039 * @reset_flags: which reset is requested 8040 * 8041 **/ 8042 void i40e_do_reset_safe(struct i40e_pf *pf, u32 reset_flags) 8043 { 8044 rtnl_lock(); 8045 i40e_do_reset(pf, reset_flags, true); 8046 rtnl_unlock(); 8047 } 8048 8049 /** 8050 * i40e_handle_lan_overflow_event - Handler for LAN queue overflow event 8051 * @pf: board private structure 8052 * @e: event info posted on ARQ 8053 * 8054 * Handler for LAN Queue Overflow Event generated by the firmware for PF 8055 * and VF queues 8056 **/ 8057 static void i40e_handle_lan_overflow_event(struct i40e_pf *pf, 8058 struct i40e_arq_event_info *e) 8059 { 8060 struct i40e_aqc_lan_overflow *data = 8061 (struct i40e_aqc_lan_overflow *)&e->desc.params.raw; 8062 u32 queue = le32_to_cpu(data->prtdcb_rupto); 8063 u32 qtx_ctl = le32_to_cpu(data->otx_ctl); 8064 struct i40e_hw *hw = &pf->hw; 8065 struct i40e_vf *vf; 8066 u16 vf_id; 8067 8068 dev_dbg(&pf->pdev->dev, "overflow Rx Queue Number = %d QTX_CTL=0x%08x\n", 8069 queue, qtx_ctl); 8070 8071 /* Queue belongs to VF, find the VF and issue VF reset */ 8072 if (((qtx_ctl & I40E_QTX_CTL_PFVF_Q_MASK) 8073 >> I40E_QTX_CTL_PFVF_Q_SHIFT) == I40E_QTX_CTL_VF_QUEUE) { 8074 vf_id = (u16)((qtx_ctl & I40E_QTX_CTL_VFVM_INDX_MASK) 8075 >> I40E_QTX_CTL_VFVM_INDX_SHIFT); 8076 vf_id -= hw->func_caps.vf_base_id; 8077 vf = &pf->vf[vf_id]; 8078 i40e_vc_notify_vf_reset(vf); 8079 /* Allow VF to process pending reset notification */ 8080 msleep(20); 8081 i40e_reset_vf(vf, false); 8082 } 8083 } 8084 8085 /** 8086 * i40e_get_cur_guaranteed_fd_count - Get the consumed guaranteed FD filters 8087 * @pf: board private structure 8088 **/ 8089 u32 i40e_get_cur_guaranteed_fd_count(struct i40e_pf *pf) 8090 { 8091 u32 val, fcnt_prog; 8092 8093 val = rd32(&pf->hw, I40E_PFQF_FDSTAT); 8094 fcnt_prog = (val & I40E_PFQF_FDSTAT_GUARANT_CNT_MASK); 8095 return fcnt_prog; 8096 } 8097 8098 /** 8099 * i40e_get_current_fd_count - Get total FD filters programmed for this PF 8100 * @pf: board private structure 8101 **/ 8102 u32 i40e_get_current_fd_count(struct i40e_pf *pf) 8103 { 8104 u32 val, fcnt_prog; 8105 8106 val = rd32(&pf->hw, I40E_PFQF_FDSTAT); 8107 fcnt_prog = (val & I40E_PFQF_FDSTAT_GUARANT_CNT_MASK) + 8108 ((val & I40E_PFQF_FDSTAT_BEST_CNT_MASK) >> 8109 I40E_PFQF_FDSTAT_BEST_CNT_SHIFT); 8110 return fcnt_prog; 8111 } 8112 8113 /** 8114 * i40e_get_global_fd_count - Get total FD filters programmed on device 8115 * @pf: board private structure 8116 **/ 8117 u32 i40e_get_global_fd_count(struct i40e_pf *pf) 8118 { 8119 u32 val, fcnt_prog; 8120 8121 val = rd32(&pf->hw, I40E_GLQF_FDCNT_0); 8122 fcnt_prog = (val & I40E_GLQF_FDCNT_0_GUARANT_CNT_MASK) + 8123 ((val & I40E_GLQF_FDCNT_0_BESTCNT_MASK) >> 8124 I40E_GLQF_FDCNT_0_BESTCNT_SHIFT); 8125 return fcnt_prog; 8126 } 8127 8128 /** 8129 * i40e_fdir_check_and_reenable - Function to reenabe FD ATR or SB if disabled 8130 * @pf: board private structure 8131 **/ 8132 void i40e_fdir_check_and_reenable(struct i40e_pf *pf) 8133 { 8134 struct i40e_fdir_filter *filter; 8135 u32 fcnt_prog, fcnt_avail; 8136 struct hlist_node *node; 8137 8138 if (test_bit(__I40E_FD_FLUSH_REQUESTED, pf->state)) 8139 return; 8140 8141 /* Check if we have enough room to re-enable FDir SB capability. */ 8142 fcnt_prog = i40e_get_global_fd_count(pf); 8143 fcnt_avail = pf->fdir_pf_filter_count; 8144 if ((fcnt_prog < (fcnt_avail - I40E_FDIR_BUFFER_HEAD_ROOM)) || 8145 (pf->fd_add_err == 0) || 8146 (i40e_get_current_atr_cnt(pf) < pf->fd_atr_cnt)) { 8147 if (pf->flags & I40E_FLAG_FD_SB_AUTO_DISABLED) { 8148 pf->flags &= ~I40E_FLAG_FD_SB_AUTO_DISABLED; 8149 if ((pf->flags & I40E_FLAG_FD_SB_ENABLED) && 8150 (I40E_DEBUG_FD & pf->hw.debug_mask)) 8151 dev_info(&pf->pdev->dev, "FD Sideband/ntuple is being enabled since we have space in the table now\n"); 8152 } 8153 } 8154 8155 /* We should wait for even more space before re-enabling ATR. 8156 * Additionally, we cannot enable ATR as long as we still have TCP SB 8157 * rules active. 8158 */ 8159 if ((fcnt_prog < (fcnt_avail - I40E_FDIR_BUFFER_HEAD_ROOM_FOR_ATR)) && 8160 (pf->fd_tcp4_filter_cnt == 0)) { 8161 if (pf->flags & I40E_FLAG_FD_ATR_AUTO_DISABLED) { 8162 pf->flags &= ~I40E_FLAG_FD_ATR_AUTO_DISABLED; 8163 if ((pf->flags & I40E_FLAG_FD_ATR_ENABLED) && 8164 (I40E_DEBUG_FD & pf->hw.debug_mask)) 8165 dev_info(&pf->pdev->dev, "ATR is being enabled since we have space in the table and there are no conflicting ntuple rules\n"); 8166 } 8167 } 8168 8169 /* if hw had a problem adding a filter, delete it */ 8170 if (pf->fd_inv > 0) { 8171 hlist_for_each_entry_safe(filter, node, 8172 &pf->fdir_filter_list, fdir_node) { 8173 if (filter->fd_id == pf->fd_inv) { 8174 hlist_del(&filter->fdir_node); 8175 kfree(filter); 8176 pf->fdir_pf_active_filters--; 8177 pf->fd_inv = 0; 8178 } 8179 } 8180 } 8181 } 8182 8183 #define I40E_MIN_FD_FLUSH_INTERVAL 10 8184 #define I40E_MIN_FD_FLUSH_SB_ATR_UNSTABLE 30 8185 /** 8186 * i40e_fdir_flush_and_replay - Function to flush all FD filters and replay SB 8187 * @pf: board private structure 8188 **/ 8189 static void i40e_fdir_flush_and_replay(struct i40e_pf *pf) 8190 { 8191 unsigned long min_flush_time; 8192 int flush_wait_retry = 50; 8193 bool disable_atr = false; 8194 int fd_room; 8195 int reg; 8196 8197 if (!time_after(jiffies, pf->fd_flush_timestamp + 8198 (I40E_MIN_FD_FLUSH_INTERVAL * HZ))) 8199 return; 8200 8201 /* If the flush is happening too quick and we have mostly SB rules we 8202 * should not re-enable ATR for some time. 8203 */ 8204 min_flush_time = pf->fd_flush_timestamp + 8205 (I40E_MIN_FD_FLUSH_SB_ATR_UNSTABLE * HZ); 8206 fd_room = pf->fdir_pf_filter_count - pf->fdir_pf_active_filters; 8207 8208 if (!(time_after(jiffies, min_flush_time)) && 8209 (fd_room < I40E_FDIR_BUFFER_HEAD_ROOM_FOR_ATR)) { 8210 if (I40E_DEBUG_FD & pf->hw.debug_mask) 8211 dev_info(&pf->pdev->dev, "ATR disabled, not enough FD filter space.\n"); 8212 disable_atr = true; 8213 } 8214 8215 pf->fd_flush_timestamp = jiffies; 8216 pf->flags |= I40E_FLAG_FD_ATR_AUTO_DISABLED; 8217 /* flush all filters */ 8218 wr32(&pf->hw, I40E_PFQF_CTL_1, 8219 I40E_PFQF_CTL_1_CLEARFDTABLE_MASK); 8220 i40e_flush(&pf->hw); 8221 pf->fd_flush_cnt++; 8222 pf->fd_add_err = 0; 8223 do { 8224 /* Check FD flush status every 5-6msec */ 8225 usleep_range(5000, 6000); 8226 reg = rd32(&pf->hw, I40E_PFQF_CTL_1); 8227 if (!(reg & I40E_PFQF_CTL_1_CLEARFDTABLE_MASK)) 8228 break; 8229 } while (flush_wait_retry--); 8230 if (reg & I40E_PFQF_CTL_1_CLEARFDTABLE_MASK) { 8231 dev_warn(&pf->pdev->dev, "FD table did not flush, needs more time\n"); 8232 } else { 8233 /* replay sideband filters */ 8234 i40e_fdir_filter_restore(pf->vsi[pf->lan_vsi]); 8235 if (!disable_atr && !pf->fd_tcp4_filter_cnt) 8236 pf->flags &= ~I40E_FLAG_FD_ATR_AUTO_DISABLED; 8237 clear_bit(__I40E_FD_FLUSH_REQUESTED, pf->state); 8238 if (I40E_DEBUG_FD & pf->hw.debug_mask) 8239 dev_info(&pf->pdev->dev, "FD Filter table flushed and FD-SB replayed.\n"); 8240 } 8241 } 8242 8243 /** 8244 * i40e_get_current_atr_count - Get the count of total FD ATR filters programmed 8245 * @pf: board private structure 8246 **/ 8247 u32 i40e_get_current_atr_cnt(struct i40e_pf *pf) 8248 { 8249 return i40e_get_current_fd_count(pf) - pf->fdir_pf_active_filters; 8250 } 8251 8252 /* We can see up to 256 filter programming desc in transit if the filters are 8253 * being applied really fast; before we see the first 8254 * filter miss error on Rx queue 0. Accumulating enough error messages before 8255 * reacting will make sure we don't cause flush too often. 8256 */ 8257 #define I40E_MAX_FD_PROGRAM_ERROR 256 8258 8259 /** 8260 * i40e_fdir_reinit_subtask - Worker thread to reinit FDIR filter table 8261 * @pf: board private structure 8262 **/ 8263 static void i40e_fdir_reinit_subtask(struct i40e_pf *pf) 8264 { 8265 8266 /* if interface is down do nothing */ 8267 if (test_bit(__I40E_DOWN, pf->state)) 8268 return; 8269 8270 if (test_bit(__I40E_FD_FLUSH_REQUESTED, pf->state)) 8271 i40e_fdir_flush_and_replay(pf); 8272 8273 i40e_fdir_check_and_reenable(pf); 8274 8275 } 8276 8277 /** 8278 * i40e_vsi_link_event - notify VSI of a link event 8279 * @vsi: vsi to be notified 8280 * @link_up: link up or down 8281 **/ 8282 static void i40e_vsi_link_event(struct i40e_vsi *vsi, bool link_up) 8283 { 8284 if (!vsi || test_bit(__I40E_VSI_DOWN, vsi->state)) 8285 return; 8286 8287 switch (vsi->type) { 8288 case I40E_VSI_MAIN: 8289 if (!vsi->netdev || !vsi->netdev_registered) 8290 break; 8291 8292 if (link_up) { 8293 netif_carrier_on(vsi->netdev); 8294 netif_tx_wake_all_queues(vsi->netdev); 8295 } else { 8296 netif_carrier_off(vsi->netdev); 8297 netif_tx_stop_all_queues(vsi->netdev); 8298 } 8299 break; 8300 8301 case I40E_VSI_SRIOV: 8302 case I40E_VSI_VMDQ2: 8303 case I40E_VSI_CTRL: 8304 case I40E_VSI_IWARP: 8305 case I40E_VSI_MIRROR: 8306 default: 8307 /* there is no notification for other VSIs */ 8308 break; 8309 } 8310 } 8311 8312 /** 8313 * i40e_veb_link_event - notify elements on the veb of a link event 8314 * @veb: veb to be notified 8315 * @link_up: link up or down 8316 **/ 8317 static void i40e_veb_link_event(struct i40e_veb *veb, bool link_up) 8318 { 8319 struct i40e_pf *pf; 8320 int i; 8321 8322 if (!veb || !veb->pf) 8323 return; 8324 pf = veb->pf; 8325 8326 /* depth first... */ 8327 for (i = 0; i < I40E_MAX_VEB; i++) 8328 if (pf->veb[i] && (pf->veb[i]->uplink_seid == veb->seid)) 8329 i40e_veb_link_event(pf->veb[i], link_up); 8330 8331 /* ... now the local VSIs */ 8332 for (i = 0; i < pf->num_alloc_vsi; i++) 8333 if (pf->vsi[i] && (pf->vsi[i]->uplink_seid == veb->seid)) 8334 i40e_vsi_link_event(pf->vsi[i], link_up); 8335 } 8336 8337 /** 8338 * i40e_link_event - Update netif_carrier status 8339 * @pf: board private structure 8340 **/ 8341 static void i40e_link_event(struct i40e_pf *pf) 8342 { 8343 struct i40e_vsi *vsi = pf->vsi[pf->lan_vsi]; 8344 u8 new_link_speed, old_link_speed; 8345 i40e_status status; 8346 bool new_link, old_link; 8347 8348 /* save off old link status information */ 8349 pf->hw.phy.link_info_old = pf->hw.phy.link_info; 8350 8351 /* set this to force the get_link_status call to refresh state */ 8352 pf->hw.phy.get_link_info = true; 8353 8354 old_link = (pf->hw.phy.link_info_old.link_info & I40E_AQ_LINK_UP); 8355 8356 status = i40e_get_link_status(&pf->hw, &new_link); 8357 8358 /* On success, disable temp link polling */ 8359 if (status == I40E_SUCCESS) { 8360 if (pf->flags & I40E_FLAG_TEMP_LINK_POLLING) 8361 pf->flags &= ~I40E_FLAG_TEMP_LINK_POLLING; 8362 } else { 8363 /* Enable link polling temporarily until i40e_get_link_status 8364 * returns I40E_SUCCESS 8365 */ 8366 pf->flags |= I40E_FLAG_TEMP_LINK_POLLING; 8367 dev_dbg(&pf->pdev->dev, "couldn't get link state, status: %d\n", 8368 status); 8369 return; 8370 } 8371 8372 old_link_speed = pf->hw.phy.link_info_old.link_speed; 8373 new_link_speed = pf->hw.phy.link_info.link_speed; 8374 8375 if (new_link == old_link && 8376 new_link_speed == old_link_speed && 8377 (test_bit(__I40E_VSI_DOWN, vsi->state) || 8378 new_link == netif_carrier_ok(vsi->netdev))) 8379 return; 8380 8381 i40e_print_link_message(vsi, new_link); 8382 8383 /* Notify the base of the switch tree connected to 8384 * the link. Floating VEBs are not notified. 8385 */ 8386 if (pf->lan_veb != I40E_NO_VEB && pf->veb[pf->lan_veb]) 8387 i40e_veb_link_event(pf->veb[pf->lan_veb], new_link); 8388 else 8389 i40e_vsi_link_event(vsi, new_link); 8390 8391 if (pf->vf) 8392 i40e_vc_notify_link_state(pf); 8393 8394 if (pf->flags & I40E_FLAG_PTP) 8395 i40e_ptp_set_increment(pf); 8396 } 8397 8398 /** 8399 * i40e_watchdog_subtask - periodic checks not using event driven response 8400 * @pf: board private structure 8401 **/ 8402 static void i40e_watchdog_subtask(struct i40e_pf *pf) 8403 { 8404 int i; 8405 8406 /* if interface is down do nothing */ 8407 if (test_bit(__I40E_DOWN, pf->state) || 8408 test_bit(__I40E_CONFIG_BUSY, pf->state)) 8409 return; 8410 8411 /* make sure we don't do these things too often */ 8412 if (time_before(jiffies, (pf->service_timer_previous + 8413 pf->service_timer_period))) 8414 return; 8415 pf->service_timer_previous = jiffies; 8416 8417 if ((pf->flags & I40E_FLAG_LINK_POLLING_ENABLED) || 8418 (pf->flags & I40E_FLAG_TEMP_LINK_POLLING)) 8419 i40e_link_event(pf); 8420 8421 /* Update the stats for active netdevs so the network stack 8422 * can look at updated numbers whenever it cares to 8423 */ 8424 for (i = 0; i < pf->num_alloc_vsi; i++) 8425 if (pf->vsi[i] && pf->vsi[i]->netdev) 8426 i40e_update_stats(pf->vsi[i]); 8427 8428 if (pf->flags & I40E_FLAG_VEB_STATS_ENABLED) { 8429 /* Update the stats for the active switching components */ 8430 for (i = 0; i < I40E_MAX_VEB; i++) 8431 if (pf->veb[i]) 8432 i40e_update_veb_stats(pf->veb[i]); 8433 } 8434 8435 i40e_ptp_rx_hang(pf); 8436 i40e_ptp_tx_hang(pf); 8437 } 8438 8439 /** 8440 * i40e_reset_subtask - Set up for resetting the device and driver 8441 * @pf: board private structure 8442 **/ 8443 static void i40e_reset_subtask(struct i40e_pf *pf) 8444 { 8445 u32 reset_flags = 0; 8446 8447 if (test_bit(__I40E_REINIT_REQUESTED, pf->state)) { 8448 reset_flags |= BIT(__I40E_REINIT_REQUESTED); 8449 clear_bit(__I40E_REINIT_REQUESTED, pf->state); 8450 } 8451 if (test_bit(__I40E_PF_RESET_REQUESTED, pf->state)) { 8452 reset_flags |= BIT(__I40E_PF_RESET_REQUESTED); 8453 clear_bit(__I40E_PF_RESET_REQUESTED, pf->state); 8454 } 8455 if (test_bit(__I40E_CORE_RESET_REQUESTED, pf->state)) { 8456 reset_flags |= BIT(__I40E_CORE_RESET_REQUESTED); 8457 clear_bit(__I40E_CORE_RESET_REQUESTED, pf->state); 8458 } 8459 if (test_bit(__I40E_GLOBAL_RESET_REQUESTED, pf->state)) { 8460 reset_flags |= BIT(__I40E_GLOBAL_RESET_REQUESTED); 8461 clear_bit(__I40E_GLOBAL_RESET_REQUESTED, pf->state); 8462 } 8463 if (test_bit(__I40E_DOWN_REQUESTED, pf->state)) { 8464 reset_flags |= BIT(__I40E_DOWN_REQUESTED); 8465 clear_bit(__I40E_DOWN_REQUESTED, pf->state); 8466 } 8467 8468 /* If there's a recovery already waiting, it takes 8469 * precedence before starting a new reset sequence. 8470 */ 8471 if (test_bit(__I40E_RESET_INTR_RECEIVED, pf->state)) { 8472 i40e_prep_for_reset(pf, false); 8473 i40e_reset(pf); 8474 i40e_rebuild(pf, false, false); 8475 } 8476 8477 /* If we're already down or resetting, just bail */ 8478 if (reset_flags && 8479 !test_bit(__I40E_DOWN, pf->state) && 8480 !test_bit(__I40E_CONFIG_BUSY, pf->state)) { 8481 i40e_do_reset(pf, reset_flags, false); 8482 } 8483 } 8484 8485 /** 8486 * i40e_handle_link_event - Handle link event 8487 * @pf: board private structure 8488 * @e: event info posted on ARQ 8489 **/ 8490 static void i40e_handle_link_event(struct i40e_pf *pf, 8491 struct i40e_arq_event_info *e) 8492 { 8493 struct i40e_aqc_get_link_status *status = 8494 (struct i40e_aqc_get_link_status *)&e->desc.params.raw; 8495 8496 /* Do a new status request to re-enable LSE reporting 8497 * and load new status information into the hw struct 8498 * This completely ignores any state information 8499 * in the ARQ event info, instead choosing to always 8500 * issue the AQ update link status command. 8501 */ 8502 i40e_link_event(pf); 8503 8504 /* Check if module meets thermal requirements */ 8505 if (status->phy_type == I40E_PHY_TYPE_NOT_SUPPORTED_HIGH_TEMP) { 8506 dev_err(&pf->pdev->dev, 8507 "Rx/Tx is disabled on this device because the module does not meet thermal requirements.\n"); 8508 dev_err(&pf->pdev->dev, 8509 "Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules.\n"); 8510 } else { 8511 /* check for unqualified module, if link is down, suppress 8512 * the message if link was forced to be down. 8513 */ 8514 if ((status->link_info & I40E_AQ_MEDIA_AVAILABLE) && 8515 (!(status->an_info & I40E_AQ_QUALIFIED_MODULE)) && 8516 (!(status->link_info & I40E_AQ_LINK_UP)) && 8517 (!(pf->flags & I40E_FLAG_LINK_DOWN_ON_CLOSE_ENABLED))) { 8518 dev_err(&pf->pdev->dev, 8519 "Rx/Tx is disabled on this device because an unsupported SFP module type was detected.\n"); 8520 dev_err(&pf->pdev->dev, 8521 "Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules.\n"); 8522 } 8523 } 8524 } 8525 8526 /** 8527 * i40e_clean_adminq_subtask - Clean the AdminQ rings 8528 * @pf: board private structure 8529 **/ 8530 static void i40e_clean_adminq_subtask(struct i40e_pf *pf) 8531 { 8532 struct i40e_arq_event_info event; 8533 struct i40e_hw *hw = &pf->hw; 8534 u16 pending, i = 0; 8535 i40e_status ret; 8536 u16 opcode; 8537 u32 oldval; 8538 u32 val; 8539 8540 /* Do not run clean AQ when PF reset fails */ 8541 if (test_bit(__I40E_RESET_FAILED, pf->state)) 8542 return; 8543 8544 /* check for error indications */ 8545 val = rd32(&pf->hw, pf->hw.aq.arq.len); 8546 oldval = val; 8547 if (val & I40E_PF_ARQLEN_ARQVFE_MASK) { 8548 if (hw->debug_mask & I40E_DEBUG_AQ) 8549 dev_info(&pf->pdev->dev, "ARQ VF Error detected\n"); 8550 val &= ~I40E_PF_ARQLEN_ARQVFE_MASK; 8551 } 8552 if (val & I40E_PF_ARQLEN_ARQOVFL_MASK) { 8553 if (hw->debug_mask & I40E_DEBUG_AQ) 8554 dev_info(&pf->pdev->dev, "ARQ Overflow Error detected\n"); 8555 val &= ~I40E_PF_ARQLEN_ARQOVFL_MASK; 8556 pf->arq_overflows++; 8557 } 8558 if (val & I40E_PF_ARQLEN_ARQCRIT_MASK) { 8559 if (hw->debug_mask & I40E_DEBUG_AQ) 8560 dev_info(&pf->pdev->dev, "ARQ Critical Error detected\n"); 8561 val &= ~I40E_PF_ARQLEN_ARQCRIT_MASK; 8562 } 8563 if (oldval != val) 8564 wr32(&pf->hw, pf->hw.aq.arq.len, val); 8565 8566 val = rd32(&pf->hw, pf->hw.aq.asq.len); 8567 oldval = val; 8568 if (val & I40E_PF_ATQLEN_ATQVFE_MASK) { 8569 if (pf->hw.debug_mask & I40E_DEBUG_AQ) 8570 dev_info(&pf->pdev->dev, "ASQ VF Error detected\n"); 8571 val &= ~I40E_PF_ATQLEN_ATQVFE_MASK; 8572 } 8573 if (val & I40E_PF_ATQLEN_ATQOVFL_MASK) { 8574 if (pf->hw.debug_mask & I40E_DEBUG_AQ) 8575 dev_info(&pf->pdev->dev, "ASQ Overflow Error detected\n"); 8576 val &= ~I40E_PF_ATQLEN_ATQOVFL_MASK; 8577 } 8578 if (val & I40E_PF_ATQLEN_ATQCRIT_MASK) { 8579 if (pf->hw.debug_mask & I40E_DEBUG_AQ) 8580 dev_info(&pf->pdev->dev, "ASQ Critical Error detected\n"); 8581 val &= ~I40E_PF_ATQLEN_ATQCRIT_MASK; 8582 } 8583 if (oldval != val) 8584 wr32(&pf->hw, pf->hw.aq.asq.len, val); 8585 8586 event.buf_len = I40E_MAX_AQ_BUF_SIZE; 8587 event.msg_buf = kzalloc(event.buf_len, GFP_KERNEL); 8588 if (!event.msg_buf) 8589 return; 8590 8591 do { 8592 ret = i40e_clean_arq_element(hw, &event, &pending); 8593 if (ret == I40E_ERR_ADMIN_QUEUE_NO_WORK) 8594 break; 8595 else if (ret) { 8596 dev_info(&pf->pdev->dev, "ARQ event error %d\n", ret); 8597 break; 8598 } 8599 8600 opcode = le16_to_cpu(event.desc.opcode); 8601 switch (opcode) { 8602 8603 case i40e_aqc_opc_get_link_status: 8604 i40e_handle_link_event(pf, &event); 8605 break; 8606 case i40e_aqc_opc_send_msg_to_pf: 8607 ret = i40e_vc_process_vf_msg(pf, 8608 le16_to_cpu(event.desc.retval), 8609 le32_to_cpu(event.desc.cookie_high), 8610 le32_to_cpu(event.desc.cookie_low), 8611 event.msg_buf, 8612 event.msg_len); 8613 break; 8614 case i40e_aqc_opc_lldp_update_mib: 8615 dev_dbg(&pf->pdev->dev, "ARQ: Update LLDP MIB event received\n"); 8616 #ifdef CONFIG_I40E_DCB 8617 rtnl_lock(); 8618 ret = i40e_handle_lldp_event(pf, &event); 8619 rtnl_unlock(); 8620 #endif /* CONFIG_I40E_DCB */ 8621 break; 8622 case i40e_aqc_opc_event_lan_overflow: 8623 dev_dbg(&pf->pdev->dev, "ARQ LAN queue overflow event received\n"); 8624 i40e_handle_lan_overflow_event(pf, &event); 8625 break; 8626 case i40e_aqc_opc_send_msg_to_peer: 8627 dev_info(&pf->pdev->dev, "ARQ: Msg from other pf\n"); 8628 break; 8629 case i40e_aqc_opc_nvm_erase: 8630 case i40e_aqc_opc_nvm_update: 8631 case i40e_aqc_opc_oem_post_update: 8632 i40e_debug(&pf->hw, I40E_DEBUG_NVM, 8633 "ARQ NVM operation 0x%04x completed\n", 8634 opcode); 8635 break; 8636 default: 8637 dev_info(&pf->pdev->dev, 8638 "ARQ: Unknown event 0x%04x ignored\n", 8639 opcode); 8640 break; 8641 } 8642 } while (i++ < pf->adminq_work_limit); 8643 8644 if (i < pf->adminq_work_limit) 8645 clear_bit(__I40E_ADMINQ_EVENT_PENDING, pf->state); 8646 8647 /* re-enable Admin queue interrupt cause */ 8648 val = rd32(hw, I40E_PFINT_ICR0_ENA); 8649 val |= I40E_PFINT_ICR0_ENA_ADMINQ_MASK; 8650 wr32(hw, I40E_PFINT_ICR0_ENA, val); 8651 i40e_flush(hw); 8652 8653 kfree(event.msg_buf); 8654 } 8655 8656 /** 8657 * i40e_verify_eeprom - make sure eeprom is good to use 8658 * @pf: board private structure 8659 **/ 8660 static void i40e_verify_eeprom(struct i40e_pf *pf) 8661 { 8662 int err; 8663 8664 err = i40e_diag_eeprom_test(&pf->hw); 8665 if (err) { 8666 /* retry in case of garbage read */ 8667 err = i40e_diag_eeprom_test(&pf->hw); 8668 if (err) { 8669 dev_info(&pf->pdev->dev, "eeprom check failed (%d), Tx/Rx traffic disabled\n", 8670 err); 8671 set_bit(__I40E_BAD_EEPROM, pf->state); 8672 } 8673 } 8674 8675 if (!err && test_bit(__I40E_BAD_EEPROM, pf->state)) { 8676 dev_info(&pf->pdev->dev, "eeprom check passed, Tx/Rx traffic enabled\n"); 8677 clear_bit(__I40E_BAD_EEPROM, pf->state); 8678 } 8679 } 8680 8681 /** 8682 * i40e_enable_pf_switch_lb 8683 * @pf: pointer to the PF structure 8684 * 8685 * enable switch loop back or die - no point in a return value 8686 **/ 8687 static void i40e_enable_pf_switch_lb(struct i40e_pf *pf) 8688 { 8689 struct i40e_vsi *vsi = pf->vsi[pf->lan_vsi]; 8690 struct i40e_vsi_context ctxt; 8691 int ret; 8692 8693 ctxt.seid = pf->main_vsi_seid; 8694 ctxt.pf_num = pf->hw.pf_id; 8695 ctxt.vf_num = 0; 8696 ret = i40e_aq_get_vsi_params(&pf->hw, &ctxt, NULL); 8697 if (ret) { 8698 dev_info(&pf->pdev->dev, 8699 "couldn't get PF vsi config, err %s aq_err %s\n", 8700 i40e_stat_str(&pf->hw, ret), 8701 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 8702 return; 8703 } 8704 ctxt.flags = I40E_AQ_VSI_TYPE_PF; 8705 ctxt.info.valid_sections = cpu_to_le16(I40E_AQ_VSI_PROP_SWITCH_VALID); 8706 ctxt.info.switch_id |= cpu_to_le16(I40E_AQ_VSI_SW_ID_FLAG_ALLOW_LB); 8707 8708 ret = i40e_aq_update_vsi_params(&vsi->back->hw, &ctxt, NULL); 8709 if (ret) { 8710 dev_info(&pf->pdev->dev, 8711 "update vsi switch failed, err %s aq_err %s\n", 8712 i40e_stat_str(&pf->hw, ret), 8713 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 8714 } 8715 } 8716 8717 /** 8718 * i40e_disable_pf_switch_lb 8719 * @pf: pointer to the PF structure 8720 * 8721 * disable switch loop back or die - no point in a return value 8722 **/ 8723 static void i40e_disable_pf_switch_lb(struct i40e_pf *pf) 8724 { 8725 struct i40e_vsi *vsi = pf->vsi[pf->lan_vsi]; 8726 struct i40e_vsi_context ctxt; 8727 int ret; 8728 8729 ctxt.seid = pf->main_vsi_seid; 8730 ctxt.pf_num = pf->hw.pf_id; 8731 ctxt.vf_num = 0; 8732 ret = i40e_aq_get_vsi_params(&pf->hw, &ctxt, NULL); 8733 if (ret) { 8734 dev_info(&pf->pdev->dev, 8735 "couldn't get PF vsi config, err %s aq_err %s\n", 8736 i40e_stat_str(&pf->hw, ret), 8737 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 8738 return; 8739 } 8740 ctxt.flags = I40E_AQ_VSI_TYPE_PF; 8741 ctxt.info.valid_sections = cpu_to_le16(I40E_AQ_VSI_PROP_SWITCH_VALID); 8742 ctxt.info.switch_id &= ~cpu_to_le16(I40E_AQ_VSI_SW_ID_FLAG_ALLOW_LB); 8743 8744 ret = i40e_aq_update_vsi_params(&vsi->back->hw, &ctxt, NULL); 8745 if (ret) { 8746 dev_info(&pf->pdev->dev, 8747 "update vsi switch failed, err %s aq_err %s\n", 8748 i40e_stat_str(&pf->hw, ret), 8749 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 8750 } 8751 } 8752 8753 /** 8754 * i40e_config_bridge_mode - Configure the HW bridge mode 8755 * @veb: pointer to the bridge instance 8756 * 8757 * Configure the loop back mode for the LAN VSI that is downlink to the 8758 * specified HW bridge instance. It is expected this function is called 8759 * when a new HW bridge is instantiated. 8760 **/ 8761 static void i40e_config_bridge_mode(struct i40e_veb *veb) 8762 { 8763 struct i40e_pf *pf = veb->pf; 8764 8765 if (pf->hw.debug_mask & I40E_DEBUG_LAN) 8766 dev_info(&pf->pdev->dev, "enabling bridge mode: %s\n", 8767 veb->bridge_mode == BRIDGE_MODE_VEPA ? "VEPA" : "VEB"); 8768 if (veb->bridge_mode & BRIDGE_MODE_VEPA) 8769 i40e_disable_pf_switch_lb(pf); 8770 else 8771 i40e_enable_pf_switch_lb(pf); 8772 } 8773 8774 /** 8775 * i40e_reconstitute_veb - rebuild the VEB and anything connected to it 8776 * @veb: pointer to the VEB instance 8777 * 8778 * This is a recursive function that first builds the attached VSIs then 8779 * recurses in to build the next layer of VEB. We track the connections 8780 * through our own index numbers because the seid's from the HW could 8781 * change across the reset. 8782 **/ 8783 static int i40e_reconstitute_veb(struct i40e_veb *veb) 8784 { 8785 struct i40e_vsi *ctl_vsi = NULL; 8786 struct i40e_pf *pf = veb->pf; 8787 int v, veb_idx; 8788 int ret; 8789 8790 /* build VSI that owns this VEB, temporarily attached to base VEB */ 8791 for (v = 0; v < pf->num_alloc_vsi && !ctl_vsi; v++) { 8792 if (pf->vsi[v] && 8793 pf->vsi[v]->veb_idx == veb->idx && 8794 pf->vsi[v]->flags & I40E_VSI_FLAG_VEB_OWNER) { 8795 ctl_vsi = pf->vsi[v]; 8796 break; 8797 } 8798 } 8799 if (!ctl_vsi) { 8800 dev_info(&pf->pdev->dev, 8801 "missing owner VSI for veb_idx %d\n", veb->idx); 8802 ret = -ENOENT; 8803 goto end_reconstitute; 8804 } 8805 if (ctl_vsi != pf->vsi[pf->lan_vsi]) 8806 ctl_vsi->uplink_seid = pf->vsi[pf->lan_vsi]->uplink_seid; 8807 ret = i40e_add_vsi(ctl_vsi); 8808 if (ret) { 8809 dev_info(&pf->pdev->dev, 8810 "rebuild of veb_idx %d owner VSI failed: %d\n", 8811 veb->idx, ret); 8812 goto end_reconstitute; 8813 } 8814 i40e_vsi_reset_stats(ctl_vsi); 8815 8816 /* create the VEB in the switch and move the VSI onto the VEB */ 8817 ret = i40e_add_veb(veb, ctl_vsi); 8818 if (ret) 8819 goto end_reconstitute; 8820 8821 if (pf->flags & I40E_FLAG_VEB_MODE_ENABLED) 8822 veb->bridge_mode = BRIDGE_MODE_VEB; 8823 else 8824 veb->bridge_mode = BRIDGE_MODE_VEPA; 8825 i40e_config_bridge_mode(veb); 8826 8827 /* create the remaining VSIs attached to this VEB */ 8828 for (v = 0; v < pf->num_alloc_vsi; v++) { 8829 if (!pf->vsi[v] || pf->vsi[v] == ctl_vsi) 8830 continue; 8831 8832 if (pf->vsi[v]->veb_idx == veb->idx) { 8833 struct i40e_vsi *vsi = pf->vsi[v]; 8834 8835 vsi->uplink_seid = veb->seid; 8836 ret = i40e_add_vsi(vsi); 8837 if (ret) { 8838 dev_info(&pf->pdev->dev, 8839 "rebuild of vsi_idx %d failed: %d\n", 8840 v, ret); 8841 goto end_reconstitute; 8842 } 8843 i40e_vsi_reset_stats(vsi); 8844 } 8845 } 8846 8847 /* create any VEBs attached to this VEB - RECURSION */ 8848 for (veb_idx = 0; veb_idx < I40E_MAX_VEB; veb_idx++) { 8849 if (pf->veb[veb_idx] && pf->veb[veb_idx]->veb_idx == veb->idx) { 8850 pf->veb[veb_idx]->uplink_seid = veb->seid; 8851 ret = i40e_reconstitute_veb(pf->veb[veb_idx]); 8852 if (ret) 8853 break; 8854 } 8855 } 8856 8857 end_reconstitute: 8858 return ret; 8859 } 8860 8861 /** 8862 * i40e_get_capabilities - get info about the HW 8863 * @pf: the PF struct 8864 **/ 8865 static int i40e_get_capabilities(struct i40e_pf *pf, 8866 enum i40e_admin_queue_opc list_type) 8867 { 8868 struct i40e_aqc_list_capabilities_element_resp *cap_buf; 8869 u16 data_size; 8870 int buf_len; 8871 int err; 8872 8873 buf_len = 40 * sizeof(struct i40e_aqc_list_capabilities_element_resp); 8874 do { 8875 cap_buf = kzalloc(buf_len, GFP_KERNEL); 8876 if (!cap_buf) 8877 return -ENOMEM; 8878 8879 /* this loads the data into the hw struct for us */ 8880 err = i40e_aq_discover_capabilities(&pf->hw, cap_buf, buf_len, 8881 &data_size, list_type, 8882 NULL); 8883 /* data loaded, buffer no longer needed */ 8884 kfree(cap_buf); 8885 8886 if (pf->hw.aq.asq_last_status == I40E_AQ_RC_ENOMEM) { 8887 /* retry with a larger buffer */ 8888 buf_len = data_size; 8889 } else if (pf->hw.aq.asq_last_status != I40E_AQ_RC_OK) { 8890 dev_info(&pf->pdev->dev, 8891 "capability discovery failed, err %s aq_err %s\n", 8892 i40e_stat_str(&pf->hw, err), 8893 i40e_aq_str(&pf->hw, 8894 pf->hw.aq.asq_last_status)); 8895 return -ENODEV; 8896 } 8897 } while (err); 8898 8899 if (pf->hw.debug_mask & I40E_DEBUG_USER) { 8900 if (list_type == i40e_aqc_opc_list_func_capabilities) { 8901 dev_info(&pf->pdev->dev, 8902 "pf=%d, num_vfs=%d, msix_pf=%d, msix_vf=%d, fd_g=%d, fd_b=%d, pf_max_q=%d num_vsi=%d\n", 8903 pf->hw.pf_id, pf->hw.func_caps.num_vfs, 8904 pf->hw.func_caps.num_msix_vectors, 8905 pf->hw.func_caps.num_msix_vectors_vf, 8906 pf->hw.func_caps.fd_filters_guaranteed, 8907 pf->hw.func_caps.fd_filters_best_effort, 8908 pf->hw.func_caps.num_tx_qp, 8909 pf->hw.func_caps.num_vsis); 8910 } else if (list_type == i40e_aqc_opc_list_dev_capabilities) { 8911 dev_info(&pf->pdev->dev, 8912 "switch_mode=0x%04x, function_valid=0x%08x\n", 8913 pf->hw.dev_caps.switch_mode, 8914 pf->hw.dev_caps.valid_functions); 8915 dev_info(&pf->pdev->dev, 8916 "SR-IOV=%d, num_vfs for all function=%u\n", 8917 pf->hw.dev_caps.sr_iov_1_1, 8918 pf->hw.dev_caps.num_vfs); 8919 dev_info(&pf->pdev->dev, 8920 "num_vsis=%u, num_rx:%u, num_tx=%u\n", 8921 pf->hw.dev_caps.num_vsis, 8922 pf->hw.dev_caps.num_rx_qp, 8923 pf->hw.dev_caps.num_tx_qp); 8924 } 8925 } 8926 if (list_type == i40e_aqc_opc_list_func_capabilities) { 8927 #define DEF_NUM_VSI (1 + (pf->hw.func_caps.fcoe ? 1 : 0) \ 8928 + pf->hw.func_caps.num_vfs) 8929 if (pf->hw.revision_id == 0 && 8930 pf->hw.func_caps.num_vsis < DEF_NUM_VSI) { 8931 dev_info(&pf->pdev->dev, 8932 "got num_vsis %d, setting num_vsis to %d\n", 8933 pf->hw.func_caps.num_vsis, DEF_NUM_VSI); 8934 pf->hw.func_caps.num_vsis = DEF_NUM_VSI; 8935 } 8936 } 8937 return 0; 8938 } 8939 8940 static int i40e_vsi_clear(struct i40e_vsi *vsi); 8941 8942 /** 8943 * i40e_fdir_sb_setup - initialize the Flow Director resources for Sideband 8944 * @pf: board private structure 8945 **/ 8946 static void i40e_fdir_sb_setup(struct i40e_pf *pf) 8947 { 8948 struct i40e_vsi *vsi; 8949 8950 /* quick workaround for an NVM issue that leaves a critical register 8951 * uninitialized 8952 */ 8953 if (!rd32(&pf->hw, I40E_GLQF_HKEY(0))) { 8954 static const u32 hkey[] = { 8955 0xe640d33f, 0xcdfe98ab, 0x73fa7161, 0x0d7a7d36, 8956 0xeacb7d61, 0xaa4f05b6, 0x9c5c89ed, 0xfc425ddb, 8957 0xa4654832, 0xfc7461d4, 0x8f827619, 0xf5c63c21, 8958 0x95b3a76d}; 8959 int i; 8960 8961 for (i = 0; i <= I40E_GLQF_HKEY_MAX_INDEX; i++) 8962 wr32(&pf->hw, I40E_GLQF_HKEY(i), hkey[i]); 8963 } 8964 8965 if (!(pf->flags & I40E_FLAG_FD_SB_ENABLED)) 8966 return; 8967 8968 /* find existing VSI and see if it needs configuring */ 8969 vsi = i40e_find_vsi_by_type(pf, I40E_VSI_FDIR); 8970 8971 /* create a new VSI if none exists */ 8972 if (!vsi) { 8973 vsi = i40e_vsi_setup(pf, I40E_VSI_FDIR, 8974 pf->vsi[pf->lan_vsi]->seid, 0); 8975 if (!vsi) { 8976 dev_info(&pf->pdev->dev, "Couldn't create FDir VSI\n"); 8977 pf->flags &= ~I40E_FLAG_FD_SB_ENABLED; 8978 pf->flags |= I40E_FLAG_FD_SB_INACTIVE; 8979 return; 8980 } 8981 } 8982 8983 i40e_vsi_setup_irqhandler(vsi, i40e_fdir_clean_ring); 8984 } 8985 8986 /** 8987 * i40e_fdir_teardown - release the Flow Director resources 8988 * @pf: board private structure 8989 **/ 8990 static void i40e_fdir_teardown(struct i40e_pf *pf) 8991 { 8992 struct i40e_vsi *vsi; 8993 8994 i40e_fdir_filter_exit(pf); 8995 vsi = i40e_find_vsi_by_type(pf, I40E_VSI_FDIR); 8996 if (vsi) 8997 i40e_vsi_release(vsi); 8998 } 8999 9000 /** 9001 * i40e_rebuild_cloud_filters - Rebuilds cloud filters for VSIs 9002 * @vsi: PF main vsi 9003 * @seid: seid of main or channel VSIs 9004 * 9005 * Rebuilds cloud filters associated with main VSI and channel VSIs if they 9006 * existed before reset 9007 **/ 9008 static int i40e_rebuild_cloud_filters(struct i40e_vsi *vsi, u16 seid) 9009 { 9010 struct i40e_cloud_filter *cfilter; 9011 struct i40e_pf *pf = vsi->back; 9012 struct hlist_node *node; 9013 i40e_status ret; 9014 9015 /* Add cloud filters back if they exist */ 9016 hlist_for_each_entry_safe(cfilter, node, &pf->cloud_filter_list, 9017 cloud_node) { 9018 if (cfilter->seid != seid) 9019 continue; 9020 9021 if (cfilter->dst_port) 9022 ret = i40e_add_del_cloud_filter_big_buf(vsi, cfilter, 9023 true); 9024 else 9025 ret = i40e_add_del_cloud_filter(vsi, cfilter, true); 9026 9027 if (ret) { 9028 dev_dbg(&pf->pdev->dev, 9029 "Failed to rebuild cloud filter, err %s aq_err %s\n", 9030 i40e_stat_str(&pf->hw, ret), 9031 i40e_aq_str(&pf->hw, 9032 pf->hw.aq.asq_last_status)); 9033 return ret; 9034 } 9035 } 9036 return 0; 9037 } 9038 9039 /** 9040 * i40e_rebuild_channels - Rebuilds channel VSIs if they existed before reset 9041 * @vsi: PF main vsi 9042 * 9043 * Rebuilds channel VSIs if they existed before reset 9044 **/ 9045 static int i40e_rebuild_channels(struct i40e_vsi *vsi) 9046 { 9047 struct i40e_channel *ch, *ch_tmp; 9048 i40e_status ret; 9049 9050 if (list_empty(&vsi->ch_list)) 9051 return 0; 9052 9053 list_for_each_entry_safe(ch, ch_tmp, &vsi->ch_list, list) { 9054 if (!ch->initialized) 9055 break; 9056 /* Proceed with creation of channel (VMDq2) VSI */ 9057 ret = i40e_add_channel(vsi->back, vsi->uplink_seid, ch); 9058 if (ret) { 9059 dev_info(&vsi->back->pdev->dev, 9060 "failed to rebuild channels using uplink_seid %u\n", 9061 vsi->uplink_seid); 9062 return ret; 9063 } 9064 if (ch->max_tx_rate) { 9065 u64 credits = ch->max_tx_rate; 9066 9067 if (i40e_set_bw_limit(vsi, ch->seid, 9068 ch->max_tx_rate)) 9069 return -EINVAL; 9070 9071 do_div(credits, I40E_BW_CREDIT_DIVISOR); 9072 dev_dbg(&vsi->back->pdev->dev, 9073 "Set tx rate of %llu Mbps (count of 50Mbps %llu) for vsi->seid %u\n", 9074 ch->max_tx_rate, 9075 credits, 9076 ch->seid); 9077 } 9078 ret = i40e_rebuild_cloud_filters(vsi, ch->seid); 9079 if (ret) { 9080 dev_dbg(&vsi->back->pdev->dev, 9081 "Failed to rebuild cloud filters for channel VSI %u\n", 9082 ch->seid); 9083 return ret; 9084 } 9085 } 9086 return 0; 9087 } 9088 9089 /** 9090 * i40e_prep_for_reset - prep for the core to reset 9091 * @pf: board private structure 9092 * @lock_acquired: indicates whether or not the lock has been acquired 9093 * before this function was called. 9094 * 9095 * Close up the VFs and other things in prep for PF Reset. 9096 **/ 9097 static void i40e_prep_for_reset(struct i40e_pf *pf, bool lock_acquired) 9098 { 9099 struct i40e_hw *hw = &pf->hw; 9100 i40e_status ret = 0; 9101 u32 v; 9102 9103 clear_bit(__I40E_RESET_INTR_RECEIVED, pf->state); 9104 if (test_and_set_bit(__I40E_RESET_RECOVERY_PENDING, pf->state)) 9105 return; 9106 if (i40e_check_asq_alive(&pf->hw)) 9107 i40e_vc_notify_reset(pf); 9108 9109 dev_dbg(&pf->pdev->dev, "Tearing down internal switch for reset\n"); 9110 9111 /* quiesce the VSIs and their queues that are not already DOWN */ 9112 /* pf_quiesce_all_vsi modifies netdev structures -rtnl_lock needed */ 9113 if (!lock_acquired) 9114 rtnl_lock(); 9115 i40e_pf_quiesce_all_vsi(pf); 9116 if (!lock_acquired) 9117 rtnl_unlock(); 9118 9119 for (v = 0; v < pf->num_alloc_vsi; v++) { 9120 if (pf->vsi[v]) 9121 pf->vsi[v]->seid = 0; 9122 } 9123 9124 i40e_shutdown_adminq(&pf->hw); 9125 9126 /* call shutdown HMC */ 9127 if (hw->hmc.hmc_obj) { 9128 ret = i40e_shutdown_lan_hmc(hw); 9129 if (ret) 9130 dev_warn(&pf->pdev->dev, 9131 "shutdown_lan_hmc failed: %d\n", ret); 9132 } 9133 } 9134 9135 /** 9136 * i40e_send_version - update firmware with driver version 9137 * @pf: PF struct 9138 */ 9139 static void i40e_send_version(struct i40e_pf *pf) 9140 { 9141 struct i40e_driver_version dv; 9142 9143 dv.major_version = DRV_VERSION_MAJOR; 9144 dv.minor_version = DRV_VERSION_MINOR; 9145 dv.build_version = DRV_VERSION_BUILD; 9146 dv.subbuild_version = 0; 9147 strlcpy(dv.driver_string, DRV_VERSION, sizeof(dv.driver_string)); 9148 i40e_aq_send_driver_version(&pf->hw, &dv, NULL); 9149 } 9150 9151 /** 9152 * i40e_get_oem_version - get OEM specific version information 9153 * @hw: pointer to the hardware structure 9154 **/ 9155 static void i40e_get_oem_version(struct i40e_hw *hw) 9156 { 9157 u16 block_offset = 0xffff; 9158 u16 block_length = 0; 9159 u16 capabilities = 0; 9160 u16 gen_snap = 0; 9161 u16 release = 0; 9162 9163 #define I40E_SR_NVM_OEM_VERSION_PTR 0x1B 9164 #define I40E_NVM_OEM_LENGTH_OFFSET 0x00 9165 #define I40E_NVM_OEM_CAPABILITIES_OFFSET 0x01 9166 #define I40E_NVM_OEM_GEN_OFFSET 0x02 9167 #define I40E_NVM_OEM_RELEASE_OFFSET 0x03 9168 #define I40E_NVM_OEM_CAPABILITIES_MASK 0x000F 9169 #define I40E_NVM_OEM_LENGTH 3 9170 9171 /* Check if pointer to OEM version block is valid. */ 9172 i40e_read_nvm_word(hw, I40E_SR_NVM_OEM_VERSION_PTR, &block_offset); 9173 if (block_offset == 0xffff) 9174 return; 9175 9176 /* Check if OEM version block has correct length. */ 9177 i40e_read_nvm_word(hw, block_offset + I40E_NVM_OEM_LENGTH_OFFSET, 9178 &block_length); 9179 if (block_length < I40E_NVM_OEM_LENGTH) 9180 return; 9181 9182 /* Check if OEM version format is as expected. */ 9183 i40e_read_nvm_word(hw, block_offset + I40E_NVM_OEM_CAPABILITIES_OFFSET, 9184 &capabilities); 9185 if ((capabilities & I40E_NVM_OEM_CAPABILITIES_MASK) != 0) 9186 return; 9187 9188 i40e_read_nvm_word(hw, block_offset + I40E_NVM_OEM_GEN_OFFSET, 9189 &gen_snap); 9190 i40e_read_nvm_word(hw, block_offset + I40E_NVM_OEM_RELEASE_OFFSET, 9191 &release); 9192 hw->nvm.oem_ver = (gen_snap << I40E_OEM_SNAP_SHIFT) | release; 9193 hw->nvm.eetrack = I40E_OEM_EETRACK_ID; 9194 } 9195 9196 /** 9197 * i40e_reset - wait for core reset to finish reset, reset pf if corer not seen 9198 * @pf: board private structure 9199 **/ 9200 static int i40e_reset(struct i40e_pf *pf) 9201 { 9202 struct i40e_hw *hw = &pf->hw; 9203 i40e_status ret; 9204 9205 ret = i40e_pf_reset(hw); 9206 if (ret) { 9207 dev_info(&pf->pdev->dev, "PF reset failed, %d\n", ret); 9208 set_bit(__I40E_RESET_FAILED, pf->state); 9209 clear_bit(__I40E_RESET_RECOVERY_PENDING, pf->state); 9210 } else { 9211 pf->pfr_count++; 9212 } 9213 return ret; 9214 } 9215 9216 /** 9217 * i40e_rebuild - rebuild using a saved config 9218 * @pf: board private structure 9219 * @reinit: if the Main VSI needs to re-initialized. 9220 * @lock_acquired: indicates whether or not the lock has been acquired 9221 * before this function was called. 9222 **/ 9223 static void i40e_rebuild(struct i40e_pf *pf, bool reinit, bool lock_acquired) 9224 { 9225 struct i40e_vsi *vsi = pf->vsi[pf->lan_vsi]; 9226 struct i40e_hw *hw = &pf->hw; 9227 u8 set_fc_aq_fail = 0; 9228 i40e_status ret; 9229 u32 val; 9230 int v; 9231 9232 if (test_bit(__I40E_DOWN, pf->state)) 9233 goto clear_recovery; 9234 dev_dbg(&pf->pdev->dev, "Rebuilding internal switch\n"); 9235 9236 /* rebuild the basics for the AdminQ, HMC, and initial HW switch */ 9237 ret = i40e_init_adminq(&pf->hw); 9238 if (ret) { 9239 dev_info(&pf->pdev->dev, "Rebuild AdminQ failed, err %s aq_err %s\n", 9240 i40e_stat_str(&pf->hw, ret), 9241 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 9242 goto clear_recovery; 9243 } 9244 i40e_get_oem_version(&pf->hw); 9245 9246 /* re-verify the eeprom if we just had an EMP reset */ 9247 if (test_and_clear_bit(__I40E_EMP_RESET_INTR_RECEIVED, pf->state)) 9248 i40e_verify_eeprom(pf); 9249 9250 i40e_clear_pxe_mode(hw); 9251 ret = i40e_get_capabilities(pf, i40e_aqc_opc_list_func_capabilities); 9252 if (ret) 9253 goto end_core_reset; 9254 9255 ret = i40e_init_lan_hmc(hw, hw->func_caps.num_tx_qp, 9256 hw->func_caps.num_rx_qp, 0, 0); 9257 if (ret) { 9258 dev_info(&pf->pdev->dev, "init_lan_hmc failed: %d\n", ret); 9259 goto end_core_reset; 9260 } 9261 ret = i40e_configure_lan_hmc(hw, I40E_HMC_MODEL_DIRECT_ONLY); 9262 if (ret) { 9263 dev_info(&pf->pdev->dev, "configure_lan_hmc failed: %d\n", ret); 9264 goto end_core_reset; 9265 } 9266 9267 #ifdef CONFIG_I40E_DCB 9268 ret = i40e_init_pf_dcb(pf); 9269 if (ret) { 9270 dev_info(&pf->pdev->dev, "DCB init failed %d, disabled\n", ret); 9271 pf->flags &= ~I40E_FLAG_DCB_CAPABLE; 9272 /* Continue without DCB enabled */ 9273 } 9274 #endif /* CONFIG_I40E_DCB */ 9275 /* do basic switch setup */ 9276 if (!lock_acquired) 9277 rtnl_lock(); 9278 ret = i40e_setup_pf_switch(pf, reinit); 9279 if (ret) 9280 goto end_unlock; 9281 9282 /* The driver only wants link up/down and module qualification 9283 * reports from firmware. Note the negative logic. 9284 */ 9285 ret = i40e_aq_set_phy_int_mask(&pf->hw, 9286 ~(I40E_AQ_EVENT_LINK_UPDOWN | 9287 I40E_AQ_EVENT_MEDIA_NA | 9288 I40E_AQ_EVENT_MODULE_QUAL_FAIL), NULL); 9289 if (ret) 9290 dev_info(&pf->pdev->dev, "set phy mask fail, err %s aq_err %s\n", 9291 i40e_stat_str(&pf->hw, ret), 9292 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 9293 9294 /* make sure our flow control settings are restored */ 9295 ret = i40e_set_fc(&pf->hw, &set_fc_aq_fail, true); 9296 if (ret) 9297 dev_dbg(&pf->pdev->dev, "setting flow control: ret = %s last_status = %s\n", 9298 i40e_stat_str(&pf->hw, ret), 9299 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 9300 9301 /* Rebuild the VSIs and VEBs that existed before reset. 9302 * They are still in our local switch element arrays, so only 9303 * need to rebuild the switch model in the HW. 9304 * 9305 * If there were VEBs but the reconstitution failed, we'll try 9306 * try to recover minimal use by getting the basic PF VSI working. 9307 */ 9308 if (vsi->uplink_seid != pf->mac_seid) { 9309 dev_dbg(&pf->pdev->dev, "attempting to rebuild switch\n"); 9310 /* find the one VEB connected to the MAC, and find orphans */ 9311 for (v = 0; v < I40E_MAX_VEB; v++) { 9312 if (!pf->veb[v]) 9313 continue; 9314 9315 if (pf->veb[v]->uplink_seid == pf->mac_seid || 9316 pf->veb[v]->uplink_seid == 0) { 9317 ret = i40e_reconstitute_veb(pf->veb[v]); 9318 9319 if (!ret) 9320 continue; 9321 9322 /* If Main VEB failed, we're in deep doodoo, 9323 * so give up rebuilding the switch and set up 9324 * for minimal rebuild of PF VSI. 9325 * If orphan failed, we'll report the error 9326 * but try to keep going. 9327 */ 9328 if (pf->veb[v]->uplink_seid == pf->mac_seid) { 9329 dev_info(&pf->pdev->dev, 9330 "rebuild of switch failed: %d, will try to set up simple PF connection\n", 9331 ret); 9332 vsi->uplink_seid = pf->mac_seid; 9333 break; 9334 } else if (pf->veb[v]->uplink_seid == 0) { 9335 dev_info(&pf->pdev->dev, 9336 "rebuild of orphan VEB failed: %d\n", 9337 ret); 9338 } 9339 } 9340 } 9341 } 9342 9343 if (vsi->uplink_seid == pf->mac_seid) { 9344 dev_dbg(&pf->pdev->dev, "attempting to rebuild PF VSI\n"); 9345 /* no VEB, so rebuild only the Main VSI */ 9346 ret = i40e_add_vsi(vsi); 9347 if (ret) { 9348 dev_info(&pf->pdev->dev, 9349 "rebuild of Main VSI failed: %d\n", ret); 9350 goto end_unlock; 9351 } 9352 } 9353 9354 if (vsi->mqprio_qopt.max_rate[0]) { 9355 u64 max_tx_rate = vsi->mqprio_qopt.max_rate[0]; 9356 u64 credits = 0; 9357 9358 do_div(max_tx_rate, I40E_BW_MBPS_DIVISOR); 9359 ret = i40e_set_bw_limit(vsi, vsi->seid, max_tx_rate); 9360 if (ret) 9361 goto end_unlock; 9362 9363 credits = max_tx_rate; 9364 do_div(credits, I40E_BW_CREDIT_DIVISOR); 9365 dev_dbg(&vsi->back->pdev->dev, 9366 "Set tx rate of %llu Mbps (count of 50Mbps %llu) for vsi->seid %u\n", 9367 max_tx_rate, 9368 credits, 9369 vsi->seid); 9370 } 9371 9372 ret = i40e_rebuild_cloud_filters(vsi, vsi->seid); 9373 if (ret) 9374 goto end_unlock; 9375 9376 /* PF Main VSI is rebuild by now, go ahead and rebuild channel VSIs 9377 * for this main VSI if they exist 9378 */ 9379 ret = i40e_rebuild_channels(vsi); 9380 if (ret) 9381 goto end_unlock; 9382 9383 /* Reconfigure hardware for allowing smaller MSS in the case 9384 * of TSO, so that we avoid the MDD being fired and causing 9385 * a reset in the case of small MSS+TSO. 9386 */ 9387 #define I40E_REG_MSS 0x000E64DC 9388 #define I40E_REG_MSS_MIN_MASK 0x3FF0000 9389 #define I40E_64BYTE_MSS 0x400000 9390 val = rd32(hw, I40E_REG_MSS); 9391 if ((val & I40E_REG_MSS_MIN_MASK) > I40E_64BYTE_MSS) { 9392 val &= ~I40E_REG_MSS_MIN_MASK; 9393 val |= I40E_64BYTE_MSS; 9394 wr32(hw, I40E_REG_MSS, val); 9395 } 9396 9397 if (pf->hw_features & I40E_HW_RESTART_AUTONEG) { 9398 msleep(75); 9399 ret = i40e_aq_set_link_restart_an(&pf->hw, true, NULL); 9400 if (ret) 9401 dev_info(&pf->pdev->dev, "link restart failed, err %s aq_err %s\n", 9402 i40e_stat_str(&pf->hw, ret), 9403 i40e_aq_str(&pf->hw, 9404 pf->hw.aq.asq_last_status)); 9405 } 9406 /* reinit the misc interrupt */ 9407 if (pf->flags & I40E_FLAG_MSIX_ENABLED) 9408 ret = i40e_setup_misc_vector(pf); 9409 9410 /* Add a filter to drop all Flow control frames from any VSI from being 9411 * transmitted. By doing so we stop a malicious VF from sending out 9412 * PAUSE or PFC frames and potentially controlling traffic for other 9413 * PF/VF VSIs. 9414 * The FW can still send Flow control frames if enabled. 9415 */ 9416 i40e_add_filter_to_drop_tx_flow_control_frames(&pf->hw, 9417 pf->main_vsi_seid); 9418 9419 /* restart the VSIs that were rebuilt and running before the reset */ 9420 i40e_pf_unquiesce_all_vsi(pf); 9421 9422 /* Release the RTNL lock before we start resetting VFs */ 9423 if (!lock_acquired) 9424 rtnl_unlock(); 9425 9426 /* Restore promiscuous settings */ 9427 ret = i40e_set_promiscuous(pf, pf->cur_promisc); 9428 if (ret) 9429 dev_warn(&pf->pdev->dev, 9430 "Failed to restore promiscuous setting: %s, err %s aq_err %s\n", 9431 pf->cur_promisc ? "on" : "off", 9432 i40e_stat_str(&pf->hw, ret), 9433 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 9434 9435 i40e_reset_all_vfs(pf, true); 9436 9437 /* tell the firmware that we're starting */ 9438 i40e_send_version(pf); 9439 9440 /* We've already released the lock, so don't do it again */ 9441 goto end_core_reset; 9442 9443 end_unlock: 9444 if (!lock_acquired) 9445 rtnl_unlock(); 9446 end_core_reset: 9447 clear_bit(__I40E_RESET_FAILED, pf->state); 9448 clear_recovery: 9449 clear_bit(__I40E_RESET_RECOVERY_PENDING, pf->state); 9450 } 9451 9452 /** 9453 * i40e_reset_and_rebuild - reset and rebuild using a saved config 9454 * @pf: board private structure 9455 * @reinit: if the Main VSI needs to re-initialized. 9456 * @lock_acquired: indicates whether or not the lock has been acquired 9457 * before this function was called. 9458 **/ 9459 static void i40e_reset_and_rebuild(struct i40e_pf *pf, bool reinit, 9460 bool lock_acquired) 9461 { 9462 int ret; 9463 /* Now we wait for GRST to settle out. 9464 * We don't have to delete the VEBs or VSIs from the hw switch 9465 * because the reset will make them disappear. 9466 */ 9467 ret = i40e_reset(pf); 9468 if (!ret) 9469 i40e_rebuild(pf, reinit, lock_acquired); 9470 } 9471 9472 /** 9473 * i40e_handle_reset_warning - prep for the PF to reset, reset and rebuild 9474 * @pf: board private structure 9475 * 9476 * Close up the VFs and other things in prep for a Core Reset, 9477 * then get ready to rebuild the world. 9478 * @lock_acquired: indicates whether or not the lock has been acquired 9479 * before this function was called. 9480 **/ 9481 static void i40e_handle_reset_warning(struct i40e_pf *pf, bool lock_acquired) 9482 { 9483 i40e_prep_for_reset(pf, lock_acquired); 9484 i40e_reset_and_rebuild(pf, false, lock_acquired); 9485 } 9486 9487 /** 9488 * i40e_handle_mdd_event 9489 * @pf: pointer to the PF structure 9490 * 9491 * Called from the MDD irq handler to identify possibly malicious vfs 9492 **/ 9493 static void i40e_handle_mdd_event(struct i40e_pf *pf) 9494 { 9495 struct i40e_hw *hw = &pf->hw; 9496 bool mdd_detected = false; 9497 bool pf_mdd_detected = false; 9498 struct i40e_vf *vf; 9499 u32 reg; 9500 int i; 9501 9502 if (!test_bit(__I40E_MDD_EVENT_PENDING, pf->state)) 9503 return; 9504 9505 /* find what triggered the MDD event */ 9506 reg = rd32(hw, I40E_GL_MDET_TX); 9507 if (reg & I40E_GL_MDET_TX_VALID_MASK) { 9508 u8 pf_num = (reg & I40E_GL_MDET_TX_PF_NUM_MASK) >> 9509 I40E_GL_MDET_TX_PF_NUM_SHIFT; 9510 u16 vf_num = (reg & I40E_GL_MDET_TX_VF_NUM_MASK) >> 9511 I40E_GL_MDET_TX_VF_NUM_SHIFT; 9512 u8 event = (reg & I40E_GL_MDET_TX_EVENT_MASK) >> 9513 I40E_GL_MDET_TX_EVENT_SHIFT; 9514 u16 queue = ((reg & I40E_GL_MDET_TX_QUEUE_MASK) >> 9515 I40E_GL_MDET_TX_QUEUE_SHIFT) - 9516 pf->hw.func_caps.base_queue; 9517 if (netif_msg_tx_err(pf)) 9518 dev_info(&pf->pdev->dev, "Malicious Driver Detection event 0x%02x on TX queue %d PF number 0x%02x VF number 0x%02x\n", 9519 event, queue, pf_num, vf_num); 9520 wr32(hw, I40E_GL_MDET_TX, 0xffffffff); 9521 mdd_detected = true; 9522 } 9523 reg = rd32(hw, I40E_GL_MDET_RX); 9524 if (reg & I40E_GL_MDET_RX_VALID_MASK) { 9525 u8 func = (reg & I40E_GL_MDET_RX_FUNCTION_MASK) >> 9526 I40E_GL_MDET_RX_FUNCTION_SHIFT; 9527 u8 event = (reg & I40E_GL_MDET_RX_EVENT_MASK) >> 9528 I40E_GL_MDET_RX_EVENT_SHIFT; 9529 u16 queue = ((reg & I40E_GL_MDET_RX_QUEUE_MASK) >> 9530 I40E_GL_MDET_RX_QUEUE_SHIFT) - 9531 pf->hw.func_caps.base_queue; 9532 if (netif_msg_rx_err(pf)) 9533 dev_info(&pf->pdev->dev, "Malicious Driver Detection event 0x%02x on RX queue %d of function 0x%02x\n", 9534 event, queue, func); 9535 wr32(hw, I40E_GL_MDET_RX, 0xffffffff); 9536 mdd_detected = true; 9537 } 9538 9539 if (mdd_detected) { 9540 reg = rd32(hw, I40E_PF_MDET_TX); 9541 if (reg & I40E_PF_MDET_TX_VALID_MASK) { 9542 wr32(hw, I40E_PF_MDET_TX, 0xFFFF); 9543 dev_info(&pf->pdev->dev, "TX driver issue detected, PF reset issued\n"); 9544 pf_mdd_detected = true; 9545 } 9546 reg = rd32(hw, I40E_PF_MDET_RX); 9547 if (reg & I40E_PF_MDET_RX_VALID_MASK) { 9548 wr32(hw, I40E_PF_MDET_RX, 0xFFFF); 9549 dev_info(&pf->pdev->dev, "RX driver issue detected, PF reset issued\n"); 9550 pf_mdd_detected = true; 9551 } 9552 /* Queue belongs to the PF, initiate a reset */ 9553 if (pf_mdd_detected) { 9554 set_bit(__I40E_PF_RESET_REQUESTED, pf->state); 9555 i40e_service_event_schedule(pf); 9556 } 9557 } 9558 9559 /* see if one of the VFs needs its hand slapped */ 9560 for (i = 0; i < pf->num_alloc_vfs && mdd_detected; i++) { 9561 vf = &(pf->vf[i]); 9562 reg = rd32(hw, I40E_VP_MDET_TX(i)); 9563 if (reg & I40E_VP_MDET_TX_VALID_MASK) { 9564 wr32(hw, I40E_VP_MDET_TX(i), 0xFFFF); 9565 vf->num_mdd_events++; 9566 dev_info(&pf->pdev->dev, "TX driver issue detected on VF %d\n", 9567 i); 9568 } 9569 9570 reg = rd32(hw, I40E_VP_MDET_RX(i)); 9571 if (reg & I40E_VP_MDET_RX_VALID_MASK) { 9572 wr32(hw, I40E_VP_MDET_RX(i), 0xFFFF); 9573 vf->num_mdd_events++; 9574 dev_info(&pf->pdev->dev, "RX driver issue detected on VF %d\n", 9575 i); 9576 } 9577 9578 if (vf->num_mdd_events > I40E_DEFAULT_NUM_MDD_EVENTS_ALLOWED) { 9579 dev_info(&pf->pdev->dev, 9580 "Too many MDD events on VF %d, disabled\n", i); 9581 dev_info(&pf->pdev->dev, 9582 "Use PF Control I/F to re-enable the VF\n"); 9583 set_bit(I40E_VF_STATE_DISABLED, &vf->vf_states); 9584 } 9585 } 9586 9587 /* re-enable mdd interrupt cause */ 9588 clear_bit(__I40E_MDD_EVENT_PENDING, pf->state); 9589 reg = rd32(hw, I40E_PFINT_ICR0_ENA); 9590 reg |= I40E_PFINT_ICR0_ENA_MAL_DETECT_MASK; 9591 wr32(hw, I40E_PFINT_ICR0_ENA, reg); 9592 i40e_flush(hw); 9593 } 9594 9595 static const char *i40e_tunnel_name(struct i40e_udp_port_config *port) 9596 { 9597 switch (port->type) { 9598 case UDP_TUNNEL_TYPE_VXLAN: 9599 return "vxlan"; 9600 case UDP_TUNNEL_TYPE_GENEVE: 9601 return "geneve"; 9602 default: 9603 return "unknown"; 9604 } 9605 } 9606 9607 /** 9608 * i40e_sync_udp_filters - Trigger a sync event for existing UDP filters 9609 * @pf: board private structure 9610 **/ 9611 static void i40e_sync_udp_filters(struct i40e_pf *pf) 9612 { 9613 int i; 9614 9615 /* loop through and set pending bit for all active UDP filters */ 9616 for (i = 0; i < I40E_MAX_PF_UDP_OFFLOAD_PORTS; i++) { 9617 if (pf->udp_ports[i].port) 9618 pf->pending_udp_bitmap |= BIT_ULL(i); 9619 } 9620 9621 pf->flags |= I40E_FLAG_UDP_FILTER_SYNC; 9622 } 9623 9624 /** 9625 * i40e_sync_udp_filters_subtask - Sync the VSI filter list with HW 9626 * @pf: board private structure 9627 **/ 9628 static void i40e_sync_udp_filters_subtask(struct i40e_pf *pf) 9629 { 9630 struct i40e_hw *hw = &pf->hw; 9631 i40e_status ret; 9632 u16 port; 9633 int i; 9634 9635 if (!(pf->flags & I40E_FLAG_UDP_FILTER_SYNC)) 9636 return; 9637 9638 pf->flags &= ~I40E_FLAG_UDP_FILTER_SYNC; 9639 9640 for (i = 0; i < I40E_MAX_PF_UDP_OFFLOAD_PORTS; i++) { 9641 if (pf->pending_udp_bitmap & BIT_ULL(i)) { 9642 pf->pending_udp_bitmap &= ~BIT_ULL(i); 9643 port = pf->udp_ports[i].port; 9644 if (port) 9645 ret = i40e_aq_add_udp_tunnel(hw, port, 9646 pf->udp_ports[i].type, 9647 NULL, NULL); 9648 else 9649 ret = i40e_aq_del_udp_tunnel(hw, i, NULL); 9650 9651 if (ret) { 9652 dev_info(&pf->pdev->dev, 9653 "%s %s port %d, index %d failed, err %s aq_err %s\n", 9654 i40e_tunnel_name(&pf->udp_ports[i]), 9655 port ? "add" : "delete", 9656 port, i, 9657 i40e_stat_str(&pf->hw, ret), 9658 i40e_aq_str(&pf->hw, 9659 pf->hw.aq.asq_last_status)); 9660 pf->udp_ports[i].port = 0; 9661 } 9662 } 9663 } 9664 } 9665 9666 /** 9667 * i40e_service_task - Run the driver's async subtasks 9668 * @work: pointer to work_struct containing our data 9669 **/ 9670 static void i40e_service_task(struct work_struct *work) 9671 { 9672 struct i40e_pf *pf = container_of(work, 9673 struct i40e_pf, 9674 service_task); 9675 unsigned long start_time = jiffies; 9676 9677 /* don't bother with service tasks if a reset is in progress */ 9678 if (test_bit(__I40E_RESET_RECOVERY_PENDING, pf->state)) 9679 return; 9680 9681 if (test_and_set_bit(__I40E_SERVICE_SCHED, pf->state)) 9682 return; 9683 9684 i40e_detect_recover_hung(pf); 9685 i40e_sync_filters_subtask(pf); 9686 i40e_reset_subtask(pf); 9687 i40e_handle_mdd_event(pf); 9688 i40e_vc_process_vflr_event(pf); 9689 i40e_watchdog_subtask(pf); 9690 i40e_fdir_reinit_subtask(pf); 9691 if (pf->flags & I40E_FLAG_CLIENT_RESET) { 9692 /* Client subtask will reopen next time through. */ 9693 i40e_notify_client_of_netdev_close(pf->vsi[pf->lan_vsi], true); 9694 pf->flags &= ~I40E_FLAG_CLIENT_RESET; 9695 } else { 9696 i40e_client_subtask(pf); 9697 if (pf->flags & I40E_FLAG_CLIENT_L2_CHANGE) { 9698 i40e_notify_client_of_l2_param_changes( 9699 pf->vsi[pf->lan_vsi]); 9700 pf->flags &= ~I40E_FLAG_CLIENT_L2_CHANGE; 9701 } 9702 } 9703 i40e_sync_filters_subtask(pf); 9704 i40e_sync_udp_filters_subtask(pf); 9705 i40e_clean_adminq_subtask(pf); 9706 9707 /* flush memory to make sure state is correct before next watchdog */ 9708 smp_mb__before_atomic(); 9709 clear_bit(__I40E_SERVICE_SCHED, pf->state); 9710 9711 /* If the tasks have taken longer than one timer cycle or there 9712 * is more work to be done, reschedule the service task now 9713 * rather than wait for the timer to tick again. 9714 */ 9715 if (time_after(jiffies, (start_time + pf->service_timer_period)) || 9716 test_bit(__I40E_ADMINQ_EVENT_PENDING, pf->state) || 9717 test_bit(__I40E_MDD_EVENT_PENDING, pf->state) || 9718 test_bit(__I40E_VFLR_EVENT_PENDING, pf->state)) 9719 i40e_service_event_schedule(pf); 9720 } 9721 9722 /** 9723 * i40e_service_timer - timer callback 9724 * @data: pointer to PF struct 9725 **/ 9726 static void i40e_service_timer(struct timer_list *t) 9727 { 9728 struct i40e_pf *pf = from_timer(pf, t, service_timer); 9729 9730 mod_timer(&pf->service_timer, 9731 round_jiffies(jiffies + pf->service_timer_period)); 9732 i40e_service_event_schedule(pf); 9733 } 9734 9735 /** 9736 * i40e_set_num_rings_in_vsi - Determine number of rings in the VSI 9737 * @vsi: the VSI being configured 9738 **/ 9739 static int i40e_set_num_rings_in_vsi(struct i40e_vsi *vsi) 9740 { 9741 struct i40e_pf *pf = vsi->back; 9742 9743 switch (vsi->type) { 9744 case I40E_VSI_MAIN: 9745 vsi->alloc_queue_pairs = pf->num_lan_qps; 9746 vsi->num_desc = ALIGN(I40E_DEFAULT_NUM_DESCRIPTORS, 9747 I40E_REQ_DESCRIPTOR_MULTIPLE); 9748 if (pf->flags & I40E_FLAG_MSIX_ENABLED) 9749 vsi->num_q_vectors = pf->num_lan_msix; 9750 else 9751 vsi->num_q_vectors = 1; 9752 9753 break; 9754 9755 case I40E_VSI_FDIR: 9756 vsi->alloc_queue_pairs = 1; 9757 vsi->num_desc = ALIGN(I40E_FDIR_RING_COUNT, 9758 I40E_REQ_DESCRIPTOR_MULTIPLE); 9759 vsi->num_q_vectors = pf->num_fdsb_msix; 9760 break; 9761 9762 case I40E_VSI_VMDQ2: 9763 vsi->alloc_queue_pairs = pf->num_vmdq_qps; 9764 vsi->num_desc = ALIGN(I40E_DEFAULT_NUM_DESCRIPTORS, 9765 I40E_REQ_DESCRIPTOR_MULTIPLE); 9766 vsi->num_q_vectors = pf->num_vmdq_msix; 9767 break; 9768 9769 case I40E_VSI_SRIOV: 9770 vsi->alloc_queue_pairs = pf->num_vf_qps; 9771 vsi->num_desc = ALIGN(I40E_DEFAULT_NUM_DESCRIPTORS, 9772 I40E_REQ_DESCRIPTOR_MULTIPLE); 9773 break; 9774 9775 default: 9776 WARN_ON(1); 9777 return -ENODATA; 9778 } 9779 9780 return 0; 9781 } 9782 9783 /** 9784 * i40e_vsi_alloc_arrays - Allocate queue and vector pointer arrays for the vsi 9785 * @vsi: VSI pointer 9786 * @alloc_qvectors: a bool to specify if q_vectors need to be allocated. 9787 * 9788 * On error: returns error code (negative) 9789 * On success: returns 0 9790 **/ 9791 static int i40e_vsi_alloc_arrays(struct i40e_vsi *vsi, bool alloc_qvectors) 9792 { 9793 struct i40e_ring **next_rings; 9794 int size; 9795 int ret = 0; 9796 9797 /* allocate memory for both Tx, XDP Tx and Rx ring pointers */ 9798 size = sizeof(struct i40e_ring *) * vsi->alloc_queue_pairs * 9799 (i40e_enabled_xdp_vsi(vsi) ? 3 : 2); 9800 vsi->tx_rings = kzalloc(size, GFP_KERNEL); 9801 if (!vsi->tx_rings) 9802 return -ENOMEM; 9803 next_rings = vsi->tx_rings + vsi->alloc_queue_pairs; 9804 if (i40e_enabled_xdp_vsi(vsi)) { 9805 vsi->xdp_rings = next_rings; 9806 next_rings += vsi->alloc_queue_pairs; 9807 } 9808 vsi->rx_rings = next_rings; 9809 9810 if (alloc_qvectors) { 9811 /* allocate memory for q_vector pointers */ 9812 size = sizeof(struct i40e_q_vector *) * vsi->num_q_vectors; 9813 vsi->q_vectors = kzalloc(size, GFP_KERNEL); 9814 if (!vsi->q_vectors) { 9815 ret = -ENOMEM; 9816 goto err_vectors; 9817 } 9818 } 9819 return ret; 9820 9821 err_vectors: 9822 kfree(vsi->tx_rings); 9823 return ret; 9824 } 9825 9826 /** 9827 * i40e_vsi_mem_alloc - Allocates the next available struct vsi in the PF 9828 * @pf: board private structure 9829 * @type: type of VSI 9830 * 9831 * On error: returns error code (negative) 9832 * On success: returns vsi index in PF (positive) 9833 **/ 9834 static int i40e_vsi_mem_alloc(struct i40e_pf *pf, enum i40e_vsi_type type) 9835 { 9836 int ret = -ENODEV; 9837 struct i40e_vsi *vsi; 9838 int vsi_idx; 9839 int i; 9840 9841 /* Need to protect the allocation of the VSIs at the PF level */ 9842 mutex_lock(&pf->switch_mutex); 9843 9844 /* VSI list may be fragmented if VSI creation/destruction has 9845 * been happening. We can afford to do a quick scan to look 9846 * for any free VSIs in the list. 9847 * 9848 * find next empty vsi slot, looping back around if necessary 9849 */ 9850 i = pf->next_vsi; 9851 while (i < pf->num_alloc_vsi && pf->vsi[i]) 9852 i++; 9853 if (i >= pf->num_alloc_vsi) { 9854 i = 0; 9855 while (i < pf->next_vsi && pf->vsi[i]) 9856 i++; 9857 } 9858 9859 if (i < pf->num_alloc_vsi && !pf->vsi[i]) { 9860 vsi_idx = i; /* Found one! */ 9861 } else { 9862 ret = -ENODEV; 9863 goto unlock_pf; /* out of VSI slots! */ 9864 } 9865 pf->next_vsi = ++i; 9866 9867 vsi = kzalloc(sizeof(*vsi), GFP_KERNEL); 9868 if (!vsi) { 9869 ret = -ENOMEM; 9870 goto unlock_pf; 9871 } 9872 vsi->type = type; 9873 vsi->back = pf; 9874 set_bit(__I40E_VSI_DOWN, vsi->state); 9875 vsi->flags = 0; 9876 vsi->idx = vsi_idx; 9877 vsi->int_rate_limit = 0; 9878 vsi->rss_table_size = (vsi->type == I40E_VSI_MAIN) ? 9879 pf->rss_table_size : 64; 9880 vsi->netdev_registered = false; 9881 vsi->work_limit = I40E_DEFAULT_IRQ_WORK; 9882 hash_init(vsi->mac_filter_hash); 9883 vsi->irqs_ready = false; 9884 9885 ret = i40e_set_num_rings_in_vsi(vsi); 9886 if (ret) 9887 goto err_rings; 9888 9889 ret = i40e_vsi_alloc_arrays(vsi, true); 9890 if (ret) 9891 goto err_rings; 9892 9893 /* Setup default MSIX irq handler for VSI */ 9894 i40e_vsi_setup_irqhandler(vsi, i40e_msix_clean_rings); 9895 9896 /* Initialize VSI lock */ 9897 spin_lock_init(&vsi->mac_filter_hash_lock); 9898 pf->vsi[vsi_idx] = vsi; 9899 ret = vsi_idx; 9900 goto unlock_pf; 9901 9902 err_rings: 9903 pf->next_vsi = i - 1; 9904 kfree(vsi); 9905 unlock_pf: 9906 mutex_unlock(&pf->switch_mutex); 9907 return ret; 9908 } 9909 9910 /** 9911 * i40e_vsi_free_arrays - Free queue and vector pointer arrays for the VSI 9912 * @type: VSI pointer 9913 * @free_qvectors: a bool to specify if q_vectors need to be freed. 9914 * 9915 * On error: returns error code (negative) 9916 * On success: returns 0 9917 **/ 9918 static void i40e_vsi_free_arrays(struct i40e_vsi *vsi, bool free_qvectors) 9919 { 9920 /* free the ring and vector containers */ 9921 if (free_qvectors) { 9922 kfree(vsi->q_vectors); 9923 vsi->q_vectors = NULL; 9924 } 9925 kfree(vsi->tx_rings); 9926 vsi->tx_rings = NULL; 9927 vsi->rx_rings = NULL; 9928 vsi->xdp_rings = NULL; 9929 } 9930 9931 /** 9932 * i40e_clear_rss_config_user - clear the user configured RSS hash keys 9933 * and lookup table 9934 * @vsi: Pointer to VSI structure 9935 */ 9936 static void i40e_clear_rss_config_user(struct i40e_vsi *vsi) 9937 { 9938 if (!vsi) 9939 return; 9940 9941 kfree(vsi->rss_hkey_user); 9942 vsi->rss_hkey_user = NULL; 9943 9944 kfree(vsi->rss_lut_user); 9945 vsi->rss_lut_user = NULL; 9946 } 9947 9948 /** 9949 * i40e_vsi_clear - Deallocate the VSI provided 9950 * @vsi: the VSI being un-configured 9951 **/ 9952 static int i40e_vsi_clear(struct i40e_vsi *vsi) 9953 { 9954 struct i40e_pf *pf; 9955 9956 if (!vsi) 9957 return 0; 9958 9959 if (!vsi->back) 9960 goto free_vsi; 9961 pf = vsi->back; 9962 9963 mutex_lock(&pf->switch_mutex); 9964 if (!pf->vsi[vsi->idx]) { 9965 dev_err(&pf->pdev->dev, "pf->vsi[%d] is NULL, just free vsi[%d](%p,type %d)\n", 9966 vsi->idx, vsi->idx, vsi, vsi->type); 9967 goto unlock_vsi; 9968 } 9969 9970 if (pf->vsi[vsi->idx] != vsi) { 9971 dev_err(&pf->pdev->dev, 9972 "pf->vsi[%d](%p, type %d) != vsi[%d](%p,type %d): no free!\n", 9973 pf->vsi[vsi->idx]->idx, 9974 pf->vsi[vsi->idx], 9975 pf->vsi[vsi->idx]->type, 9976 vsi->idx, vsi, vsi->type); 9977 goto unlock_vsi; 9978 } 9979 9980 /* updates the PF for this cleared vsi */ 9981 i40e_put_lump(pf->qp_pile, vsi->base_queue, vsi->idx); 9982 i40e_put_lump(pf->irq_pile, vsi->base_vector, vsi->idx); 9983 9984 i40e_vsi_free_arrays(vsi, true); 9985 i40e_clear_rss_config_user(vsi); 9986 9987 pf->vsi[vsi->idx] = NULL; 9988 if (vsi->idx < pf->next_vsi) 9989 pf->next_vsi = vsi->idx; 9990 9991 unlock_vsi: 9992 mutex_unlock(&pf->switch_mutex); 9993 free_vsi: 9994 kfree(vsi); 9995 9996 return 0; 9997 } 9998 9999 /** 10000 * i40e_vsi_clear_rings - Deallocates the Rx and Tx rings for the provided VSI 10001 * @vsi: the VSI being cleaned 10002 **/ 10003 static void i40e_vsi_clear_rings(struct i40e_vsi *vsi) 10004 { 10005 int i; 10006 10007 if (vsi->tx_rings && vsi->tx_rings[0]) { 10008 for (i = 0; i < vsi->alloc_queue_pairs; i++) { 10009 kfree_rcu(vsi->tx_rings[i], rcu); 10010 vsi->tx_rings[i] = NULL; 10011 vsi->rx_rings[i] = NULL; 10012 if (vsi->xdp_rings) 10013 vsi->xdp_rings[i] = NULL; 10014 } 10015 } 10016 } 10017 10018 /** 10019 * i40e_alloc_rings - Allocates the Rx and Tx rings for the provided VSI 10020 * @vsi: the VSI being configured 10021 **/ 10022 static int i40e_alloc_rings(struct i40e_vsi *vsi) 10023 { 10024 int i, qpv = i40e_enabled_xdp_vsi(vsi) ? 3 : 2; 10025 struct i40e_pf *pf = vsi->back; 10026 struct i40e_ring *ring; 10027 10028 /* Set basic values in the rings to be used later during open() */ 10029 for (i = 0; i < vsi->alloc_queue_pairs; i++) { 10030 /* allocate space for both Tx and Rx in one shot */ 10031 ring = kcalloc(qpv, sizeof(struct i40e_ring), GFP_KERNEL); 10032 if (!ring) 10033 goto err_out; 10034 10035 ring->queue_index = i; 10036 ring->reg_idx = vsi->base_queue + i; 10037 ring->ring_active = false; 10038 ring->vsi = vsi; 10039 ring->netdev = vsi->netdev; 10040 ring->dev = &pf->pdev->dev; 10041 ring->count = vsi->num_desc; 10042 ring->size = 0; 10043 ring->dcb_tc = 0; 10044 if (vsi->back->hw_features & I40E_HW_WB_ON_ITR_CAPABLE) 10045 ring->flags = I40E_TXR_FLAGS_WB_ON_ITR; 10046 ring->tx_itr_setting = pf->tx_itr_default; 10047 vsi->tx_rings[i] = ring++; 10048 10049 if (!i40e_enabled_xdp_vsi(vsi)) 10050 goto setup_rx; 10051 10052 ring->queue_index = vsi->alloc_queue_pairs + i; 10053 ring->reg_idx = vsi->base_queue + ring->queue_index; 10054 ring->ring_active = false; 10055 ring->vsi = vsi; 10056 ring->netdev = NULL; 10057 ring->dev = &pf->pdev->dev; 10058 ring->count = vsi->num_desc; 10059 ring->size = 0; 10060 ring->dcb_tc = 0; 10061 if (vsi->back->hw_features & I40E_HW_WB_ON_ITR_CAPABLE) 10062 ring->flags = I40E_TXR_FLAGS_WB_ON_ITR; 10063 set_ring_xdp(ring); 10064 ring->tx_itr_setting = pf->tx_itr_default; 10065 vsi->xdp_rings[i] = ring++; 10066 10067 setup_rx: 10068 ring->queue_index = i; 10069 ring->reg_idx = vsi->base_queue + i; 10070 ring->ring_active = false; 10071 ring->vsi = vsi; 10072 ring->netdev = vsi->netdev; 10073 ring->dev = &pf->pdev->dev; 10074 ring->count = vsi->num_desc; 10075 ring->size = 0; 10076 ring->dcb_tc = 0; 10077 ring->rx_itr_setting = pf->rx_itr_default; 10078 vsi->rx_rings[i] = ring; 10079 } 10080 10081 return 0; 10082 10083 err_out: 10084 i40e_vsi_clear_rings(vsi); 10085 return -ENOMEM; 10086 } 10087 10088 /** 10089 * i40e_reserve_msix_vectors - Reserve MSI-X vectors in the kernel 10090 * @pf: board private structure 10091 * @vectors: the number of MSI-X vectors to request 10092 * 10093 * Returns the number of vectors reserved, or error 10094 **/ 10095 static int i40e_reserve_msix_vectors(struct i40e_pf *pf, int vectors) 10096 { 10097 vectors = pci_enable_msix_range(pf->pdev, pf->msix_entries, 10098 I40E_MIN_MSIX, vectors); 10099 if (vectors < 0) { 10100 dev_info(&pf->pdev->dev, 10101 "MSI-X vector reservation failed: %d\n", vectors); 10102 vectors = 0; 10103 } 10104 10105 return vectors; 10106 } 10107 10108 /** 10109 * i40e_init_msix - Setup the MSIX capability 10110 * @pf: board private structure 10111 * 10112 * Work with the OS to set up the MSIX vectors needed. 10113 * 10114 * Returns the number of vectors reserved or negative on failure 10115 **/ 10116 static int i40e_init_msix(struct i40e_pf *pf) 10117 { 10118 struct i40e_hw *hw = &pf->hw; 10119 int cpus, extra_vectors; 10120 int vectors_left; 10121 int v_budget, i; 10122 int v_actual; 10123 int iwarp_requested = 0; 10124 10125 if (!(pf->flags & I40E_FLAG_MSIX_ENABLED)) 10126 return -ENODEV; 10127 10128 /* The number of vectors we'll request will be comprised of: 10129 * - Add 1 for "other" cause for Admin Queue events, etc. 10130 * - The number of LAN queue pairs 10131 * - Queues being used for RSS. 10132 * We don't need as many as max_rss_size vectors. 10133 * use rss_size instead in the calculation since that 10134 * is governed by number of cpus in the system. 10135 * - assumes symmetric Tx/Rx pairing 10136 * - The number of VMDq pairs 10137 * - The CPU count within the NUMA node if iWARP is enabled 10138 * Once we count this up, try the request. 10139 * 10140 * If we can't get what we want, we'll simplify to nearly nothing 10141 * and try again. If that still fails, we punt. 10142 */ 10143 vectors_left = hw->func_caps.num_msix_vectors; 10144 v_budget = 0; 10145 10146 /* reserve one vector for miscellaneous handler */ 10147 if (vectors_left) { 10148 v_budget++; 10149 vectors_left--; 10150 } 10151 10152 /* reserve some vectors for the main PF traffic queues. Initially we 10153 * only reserve at most 50% of the available vectors, in the case that 10154 * the number of online CPUs is large. This ensures that we can enable 10155 * extra features as well. Once we've enabled the other features, we 10156 * will use any remaining vectors to reach as close as we can to the 10157 * number of online CPUs. 10158 */ 10159 cpus = num_online_cpus(); 10160 pf->num_lan_msix = min_t(int, cpus, vectors_left / 2); 10161 vectors_left -= pf->num_lan_msix; 10162 10163 /* reserve one vector for sideband flow director */ 10164 if (pf->flags & I40E_FLAG_FD_SB_ENABLED) { 10165 if (vectors_left) { 10166 pf->num_fdsb_msix = 1; 10167 v_budget++; 10168 vectors_left--; 10169 } else { 10170 pf->num_fdsb_msix = 0; 10171 } 10172 } 10173 10174 /* can we reserve enough for iWARP? */ 10175 if (pf->flags & I40E_FLAG_IWARP_ENABLED) { 10176 iwarp_requested = pf->num_iwarp_msix; 10177 10178 if (!vectors_left) 10179 pf->num_iwarp_msix = 0; 10180 else if (vectors_left < pf->num_iwarp_msix) 10181 pf->num_iwarp_msix = 1; 10182 v_budget += pf->num_iwarp_msix; 10183 vectors_left -= pf->num_iwarp_msix; 10184 } 10185 10186 /* any vectors left over go for VMDq support */ 10187 if (pf->flags & I40E_FLAG_VMDQ_ENABLED) { 10188 int vmdq_vecs_wanted = pf->num_vmdq_vsis * pf->num_vmdq_qps; 10189 int vmdq_vecs = min_t(int, vectors_left, vmdq_vecs_wanted); 10190 10191 if (!vectors_left) { 10192 pf->num_vmdq_msix = 0; 10193 pf->num_vmdq_qps = 0; 10194 } else { 10195 /* if we're short on vectors for what's desired, we limit 10196 * the queues per vmdq. If this is still more than are 10197 * available, the user will need to change the number of 10198 * queues/vectors used by the PF later with the ethtool 10199 * channels command 10200 */ 10201 if (vmdq_vecs < vmdq_vecs_wanted) 10202 pf->num_vmdq_qps = 1; 10203 pf->num_vmdq_msix = pf->num_vmdq_qps; 10204 10205 v_budget += vmdq_vecs; 10206 vectors_left -= vmdq_vecs; 10207 } 10208 } 10209 10210 /* On systems with a large number of SMP cores, we previously limited 10211 * the number of vectors for num_lan_msix to be at most 50% of the 10212 * available vectors, to allow for other features. Now, we add back 10213 * the remaining vectors. However, we ensure that the total 10214 * num_lan_msix will not exceed num_online_cpus(). To do this, we 10215 * calculate the number of vectors we can add without going over the 10216 * cap of CPUs. For systems with a small number of CPUs this will be 10217 * zero. 10218 */ 10219 extra_vectors = min_t(int, cpus - pf->num_lan_msix, vectors_left); 10220 pf->num_lan_msix += extra_vectors; 10221 vectors_left -= extra_vectors; 10222 10223 WARN(vectors_left < 0, 10224 "Calculation of remaining vectors underflowed. This is an accounting bug when determining total MSI-X vectors.\n"); 10225 10226 v_budget += pf->num_lan_msix; 10227 pf->msix_entries = kcalloc(v_budget, sizeof(struct msix_entry), 10228 GFP_KERNEL); 10229 if (!pf->msix_entries) 10230 return -ENOMEM; 10231 10232 for (i = 0; i < v_budget; i++) 10233 pf->msix_entries[i].entry = i; 10234 v_actual = i40e_reserve_msix_vectors(pf, v_budget); 10235 10236 if (v_actual < I40E_MIN_MSIX) { 10237 pf->flags &= ~I40E_FLAG_MSIX_ENABLED; 10238 kfree(pf->msix_entries); 10239 pf->msix_entries = NULL; 10240 pci_disable_msix(pf->pdev); 10241 return -ENODEV; 10242 10243 } else if (v_actual == I40E_MIN_MSIX) { 10244 /* Adjust for minimal MSIX use */ 10245 pf->num_vmdq_vsis = 0; 10246 pf->num_vmdq_qps = 0; 10247 pf->num_lan_qps = 1; 10248 pf->num_lan_msix = 1; 10249 10250 } else if (v_actual != v_budget) { 10251 /* If we have limited resources, we will start with no vectors 10252 * for the special features and then allocate vectors to some 10253 * of these features based on the policy and at the end disable 10254 * the features that did not get any vectors. 10255 */ 10256 int vec; 10257 10258 dev_info(&pf->pdev->dev, 10259 "MSI-X vector limit reached with %d, wanted %d, attempting to redistribute vectors\n", 10260 v_actual, v_budget); 10261 /* reserve the misc vector */ 10262 vec = v_actual - 1; 10263 10264 /* Scale vector usage down */ 10265 pf->num_vmdq_msix = 1; /* force VMDqs to only one vector */ 10266 pf->num_vmdq_vsis = 1; 10267 pf->num_vmdq_qps = 1; 10268 10269 /* partition out the remaining vectors */ 10270 switch (vec) { 10271 case 2: 10272 pf->num_lan_msix = 1; 10273 break; 10274 case 3: 10275 if (pf->flags & I40E_FLAG_IWARP_ENABLED) { 10276 pf->num_lan_msix = 1; 10277 pf->num_iwarp_msix = 1; 10278 } else { 10279 pf->num_lan_msix = 2; 10280 } 10281 break; 10282 default: 10283 if (pf->flags & I40E_FLAG_IWARP_ENABLED) { 10284 pf->num_iwarp_msix = min_t(int, (vec / 3), 10285 iwarp_requested); 10286 pf->num_vmdq_vsis = min_t(int, (vec / 3), 10287 I40E_DEFAULT_NUM_VMDQ_VSI); 10288 } else { 10289 pf->num_vmdq_vsis = min_t(int, (vec / 2), 10290 I40E_DEFAULT_NUM_VMDQ_VSI); 10291 } 10292 if (pf->flags & I40E_FLAG_FD_SB_ENABLED) { 10293 pf->num_fdsb_msix = 1; 10294 vec--; 10295 } 10296 pf->num_lan_msix = min_t(int, 10297 (vec - (pf->num_iwarp_msix + pf->num_vmdq_vsis)), 10298 pf->num_lan_msix); 10299 pf->num_lan_qps = pf->num_lan_msix; 10300 break; 10301 } 10302 } 10303 10304 if ((pf->flags & I40E_FLAG_FD_SB_ENABLED) && 10305 (pf->num_fdsb_msix == 0)) { 10306 dev_info(&pf->pdev->dev, "Sideband Flowdir disabled, not enough MSI-X vectors\n"); 10307 pf->flags &= ~I40E_FLAG_FD_SB_ENABLED; 10308 pf->flags |= I40E_FLAG_FD_SB_INACTIVE; 10309 } 10310 if ((pf->flags & I40E_FLAG_VMDQ_ENABLED) && 10311 (pf->num_vmdq_msix == 0)) { 10312 dev_info(&pf->pdev->dev, "VMDq disabled, not enough MSI-X vectors\n"); 10313 pf->flags &= ~I40E_FLAG_VMDQ_ENABLED; 10314 } 10315 10316 if ((pf->flags & I40E_FLAG_IWARP_ENABLED) && 10317 (pf->num_iwarp_msix == 0)) { 10318 dev_info(&pf->pdev->dev, "IWARP disabled, not enough MSI-X vectors\n"); 10319 pf->flags &= ~I40E_FLAG_IWARP_ENABLED; 10320 } 10321 i40e_debug(&pf->hw, I40E_DEBUG_INIT, 10322 "MSI-X vector distribution: PF %d, VMDq %d, FDSB %d, iWARP %d\n", 10323 pf->num_lan_msix, 10324 pf->num_vmdq_msix * pf->num_vmdq_vsis, 10325 pf->num_fdsb_msix, 10326 pf->num_iwarp_msix); 10327 10328 return v_actual; 10329 } 10330 10331 /** 10332 * i40e_vsi_alloc_q_vector - Allocate memory for a single interrupt vector 10333 * @vsi: the VSI being configured 10334 * @v_idx: index of the vector in the vsi struct 10335 * @cpu: cpu to be used on affinity_mask 10336 * 10337 * We allocate one q_vector. If allocation fails we return -ENOMEM. 10338 **/ 10339 static int i40e_vsi_alloc_q_vector(struct i40e_vsi *vsi, int v_idx, int cpu) 10340 { 10341 struct i40e_q_vector *q_vector; 10342 10343 /* allocate q_vector */ 10344 q_vector = kzalloc(sizeof(struct i40e_q_vector), GFP_KERNEL); 10345 if (!q_vector) 10346 return -ENOMEM; 10347 10348 q_vector->vsi = vsi; 10349 q_vector->v_idx = v_idx; 10350 cpumask_copy(&q_vector->affinity_mask, cpu_possible_mask); 10351 10352 if (vsi->netdev) 10353 netif_napi_add(vsi->netdev, &q_vector->napi, 10354 i40e_napi_poll, NAPI_POLL_WEIGHT); 10355 10356 q_vector->rx.latency_range = I40E_LOW_LATENCY; 10357 q_vector->tx.latency_range = I40E_LOW_LATENCY; 10358 10359 /* tie q_vector and vsi together */ 10360 vsi->q_vectors[v_idx] = q_vector; 10361 10362 return 0; 10363 } 10364 10365 /** 10366 * i40e_vsi_alloc_q_vectors - Allocate memory for interrupt vectors 10367 * @vsi: the VSI being configured 10368 * 10369 * We allocate one q_vector per queue interrupt. If allocation fails we 10370 * return -ENOMEM. 10371 **/ 10372 static int i40e_vsi_alloc_q_vectors(struct i40e_vsi *vsi) 10373 { 10374 struct i40e_pf *pf = vsi->back; 10375 int err, v_idx, num_q_vectors, current_cpu; 10376 10377 /* if not MSIX, give the one vector only to the LAN VSI */ 10378 if (pf->flags & I40E_FLAG_MSIX_ENABLED) 10379 num_q_vectors = vsi->num_q_vectors; 10380 else if (vsi == pf->vsi[pf->lan_vsi]) 10381 num_q_vectors = 1; 10382 else 10383 return -EINVAL; 10384 10385 current_cpu = cpumask_first(cpu_online_mask); 10386 10387 for (v_idx = 0; v_idx < num_q_vectors; v_idx++) { 10388 err = i40e_vsi_alloc_q_vector(vsi, v_idx, current_cpu); 10389 if (err) 10390 goto err_out; 10391 current_cpu = cpumask_next(current_cpu, cpu_online_mask); 10392 if (unlikely(current_cpu >= nr_cpu_ids)) 10393 current_cpu = cpumask_first(cpu_online_mask); 10394 } 10395 10396 return 0; 10397 10398 err_out: 10399 while (v_idx--) 10400 i40e_free_q_vector(vsi, v_idx); 10401 10402 return err; 10403 } 10404 10405 /** 10406 * i40e_init_interrupt_scheme - Determine proper interrupt scheme 10407 * @pf: board private structure to initialize 10408 **/ 10409 static int i40e_init_interrupt_scheme(struct i40e_pf *pf) 10410 { 10411 int vectors = 0; 10412 ssize_t size; 10413 10414 if (pf->flags & I40E_FLAG_MSIX_ENABLED) { 10415 vectors = i40e_init_msix(pf); 10416 if (vectors < 0) { 10417 pf->flags &= ~(I40E_FLAG_MSIX_ENABLED | 10418 I40E_FLAG_IWARP_ENABLED | 10419 I40E_FLAG_RSS_ENABLED | 10420 I40E_FLAG_DCB_CAPABLE | 10421 I40E_FLAG_DCB_ENABLED | 10422 I40E_FLAG_SRIOV_ENABLED | 10423 I40E_FLAG_FD_SB_ENABLED | 10424 I40E_FLAG_FD_ATR_ENABLED | 10425 I40E_FLAG_VMDQ_ENABLED); 10426 pf->flags |= I40E_FLAG_FD_SB_INACTIVE; 10427 10428 /* rework the queue expectations without MSIX */ 10429 i40e_determine_queue_usage(pf); 10430 } 10431 } 10432 10433 if (!(pf->flags & I40E_FLAG_MSIX_ENABLED) && 10434 (pf->flags & I40E_FLAG_MSI_ENABLED)) { 10435 dev_info(&pf->pdev->dev, "MSI-X not available, trying MSI\n"); 10436 vectors = pci_enable_msi(pf->pdev); 10437 if (vectors < 0) { 10438 dev_info(&pf->pdev->dev, "MSI init failed - %d\n", 10439 vectors); 10440 pf->flags &= ~I40E_FLAG_MSI_ENABLED; 10441 } 10442 vectors = 1; /* one MSI or Legacy vector */ 10443 } 10444 10445 if (!(pf->flags & (I40E_FLAG_MSIX_ENABLED | I40E_FLAG_MSI_ENABLED))) 10446 dev_info(&pf->pdev->dev, "MSI-X and MSI not available, falling back to Legacy IRQ\n"); 10447 10448 /* set up vector assignment tracking */ 10449 size = sizeof(struct i40e_lump_tracking) + (sizeof(u16) * vectors); 10450 pf->irq_pile = kzalloc(size, GFP_KERNEL); 10451 if (!pf->irq_pile) { 10452 dev_err(&pf->pdev->dev, "error allocating irq_pile memory\n"); 10453 return -ENOMEM; 10454 } 10455 pf->irq_pile->num_entries = vectors; 10456 pf->irq_pile->search_hint = 0; 10457 10458 /* track first vector for misc interrupts, ignore return */ 10459 (void)i40e_get_lump(pf, pf->irq_pile, 1, I40E_PILE_VALID_BIT - 1); 10460 10461 return 0; 10462 } 10463 10464 /** 10465 * i40e_restore_interrupt_scheme - Restore the interrupt scheme 10466 * @pf: private board data structure 10467 * 10468 * Restore the interrupt scheme that was cleared when we suspended the 10469 * device. This should be called during resume to re-allocate the q_vectors 10470 * and reacquire IRQs. 10471 */ 10472 static int i40e_restore_interrupt_scheme(struct i40e_pf *pf) 10473 { 10474 int err, i; 10475 10476 /* We cleared the MSI and MSI-X flags when disabling the old interrupt 10477 * scheme. We need to re-enabled them here in order to attempt to 10478 * re-acquire the MSI or MSI-X vectors 10479 */ 10480 pf->flags |= (I40E_FLAG_MSIX_ENABLED | I40E_FLAG_MSI_ENABLED); 10481 10482 err = i40e_init_interrupt_scheme(pf); 10483 if (err) 10484 return err; 10485 10486 /* Now that we've re-acquired IRQs, we need to remap the vectors and 10487 * rings together again. 10488 */ 10489 for (i = 0; i < pf->num_alloc_vsi; i++) { 10490 if (pf->vsi[i]) { 10491 err = i40e_vsi_alloc_q_vectors(pf->vsi[i]); 10492 if (err) 10493 goto err_unwind; 10494 i40e_vsi_map_rings_to_vectors(pf->vsi[i]); 10495 } 10496 } 10497 10498 err = i40e_setup_misc_vector(pf); 10499 if (err) 10500 goto err_unwind; 10501 10502 return 0; 10503 10504 err_unwind: 10505 while (i--) { 10506 if (pf->vsi[i]) 10507 i40e_vsi_free_q_vectors(pf->vsi[i]); 10508 } 10509 10510 return err; 10511 } 10512 10513 /** 10514 * i40e_setup_misc_vector - Setup the misc vector to handle non queue events 10515 * @pf: board private structure 10516 * 10517 * This sets up the handler for MSIX 0, which is used to manage the 10518 * non-queue interrupts, e.g. AdminQ and errors. This is not used 10519 * when in MSI or Legacy interrupt mode. 10520 **/ 10521 static int i40e_setup_misc_vector(struct i40e_pf *pf) 10522 { 10523 struct i40e_hw *hw = &pf->hw; 10524 int err = 0; 10525 10526 /* Only request the IRQ once, the first time through. */ 10527 if (!test_and_set_bit(__I40E_MISC_IRQ_REQUESTED, pf->state)) { 10528 err = request_irq(pf->msix_entries[0].vector, 10529 i40e_intr, 0, pf->int_name, pf); 10530 if (err) { 10531 clear_bit(__I40E_MISC_IRQ_REQUESTED, pf->state); 10532 dev_info(&pf->pdev->dev, 10533 "request_irq for %s failed: %d\n", 10534 pf->int_name, err); 10535 return -EFAULT; 10536 } 10537 } 10538 10539 i40e_enable_misc_int_causes(pf); 10540 10541 /* associate no queues to the misc vector */ 10542 wr32(hw, I40E_PFINT_LNKLST0, I40E_QUEUE_END_OF_LIST); 10543 wr32(hw, I40E_PFINT_ITR0(I40E_RX_ITR), I40E_ITR_8K); 10544 10545 i40e_flush(hw); 10546 10547 i40e_irq_dynamic_enable_icr0(pf); 10548 10549 return err; 10550 } 10551 10552 /** 10553 * i40e_get_rss_aq - Get RSS keys and lut by using AQ commands 10554 * @vsi: Pointer to vsi structure 10555 * @seed: Buffter to store the hash keys 10556 * @lut: Buffer to store the lookup table entries 10557 * @lut_size: Size of buffer to store the lookup table entries 10558 * 10559 * Return 0 on success, negative on failure 10560 */ 10561 static int i40e_get_rss_aq(struct i40e_vsi *vsi, const u8 *seed, 10562 u8 *lut, u16 lut_size) 10563 { 10564 struct i40e_pf *pf = vsi->back; 10565 struct i40e_hw *hw = &pf->hw; 10566 int ret = 0; 10567 10568 if (seed) { 10569 ret = i40e_aq_get_rss_key(hw, vsi->id, 10570 (struct i40e_aqc_get_set_rss_key_data *)seed); 10571 if (ret) { 10572 dev_info(&pf->pdev->dev, 10573 "Cannot get RSS key, err %s aq_err %s\n", 10574 i40e_stat_str(&pf->hw, ret), 10575 i40e_aq_str(&pf->hw, 10576 pf->hw.aq.asq_last_status)); 10577 return ret; 10578 } 10579 } 10580 10581 if (lut) { 10582 bool pf_lut = vsi->type == I40E_VSI_MAIN ? true : false; 10583 10584 ret = i40e_aq_get_rss_lut(hw, vsi->id, pf_lut, lut, lut_size); 10585 if (ret) { 10586 dev_info(&pf->pdev->dev, 10587 "Cannot get RSS lut, err %s aq_err %s\n", 10588 i40e_stat_str(&pf->hw, ret), 10589 i40e_aq_str(&pf->hw, 10590 pf->hw.aq.asq_last_status)); 10591 return ret; 10592 } 10593 } 10594 10595 return ret; 10596 } 10597 10598 /** 10599 * i40e_config_rss_reg - Configure RSS keys and lut by writing registers 10600 * @vsi: Pointer to vsi structure 10601 * @seed: RSS hash seed 10602 * @lut: Lookup table 10603 * @lut_size: Lookup table size 10604 * 10605 * Returns 0 on success, negative on failure 10606 **/ 10607 static int i40e_config_rss_reg(struct i40e_vsi *vsi, const u8 *seed, 10608 const u8 *lut, u16 lut_size) 10609 { 10610 struct i40e_pf *pf = vsi->back; 10611 struct i40e_hw *hw = &pf->hw; 10612 u16 vf_id = vsi->vf_id; 10613 u8 i; 10614 10615 /* Fill out hash function seed */ 10616 if (seed) { 10617 u32 *seed_dw = (u32 *)seed; 10618 10619 if (vsi->type == I40E_VSI_MAIN) { 10620 for (i = 0; i <= I40E_PFQF_HKEY_MAX_INDEX; i++) 10621 wr32(hw, I40E_PFQF_HKEY(i), seed_dw[i]); 10622 } else if (vsi->type == I40E_VSI_SRIOV) { 10623 for (i = 0; i <= I40E_VFQF_HKEY1_MAX_INDEX; i++) 10624 wr32(hw, I40E_VFQF_HKEY1(i, vf_id), seed_dw[i]); 10625 } else { 10626 dev_err(&pf->pdev->dev, "Cannot set RSS seed - invalid VSI type\n"); 10627 } 10628 } 10629 10630 if (lut) { 10631 u32 *lut_dw = (u32 *)lut; 10632 10633 if (vsi->type == I40E_VSI_MAIN) { 10634 if (lut_size != I40E_HLUT_ARRAY_SIZE) 10635 return -EINVAL; 10636 for (i = 0; i <= I40E_PFQF_HLUT_MAX_INDEX; i++) 10637 wr32(hw, I40E_PFQF_HLUT(i), lut_dw[i]); 10638 } else if (vsi->type == I40E_VSI_SRIOV) { 10639 if (lut_size != I40E_VF_HLUT_ARRAY_SIZE) 10640 return -EINVAL; 10641 for (i = 0; i <= I40E_VFQF_HLUT_MAX_INDEX; i++) 10642 wr32(hw, I40E_VFQF_HLUT1(i, vf_id), lut_dw[i]); 10643 } else { 10644 dev_err(&pf->pdev->dev, "Cannot set RSS LUT - invalid VSI type\n"); 10645 } 10646 } 10647 i40e_flush(hw); 10648 10649 return 0; 10650 } 10651 10652 /** 10653 * i40e_get_rss_reg - Get the RSS keys and lut by reading registers 10654 * @vsi: Pointer to VSI structure 10655 * @seed: Buffer to store the keys 10656 * @lut: Buffer to store the lookup table entries 10657 * @lut_size: Size of buffer to store the lookup table entries 10658 * 10659 * Returns 0 on success, negative on failure 10660 */ 10661 static int i40e_get_rss_reg(struct i40e_vsi *vsi, u8 *seed, 10662 u8 *lut, u16 lut_size) 10663 { 10664 struct i40e_pf *pf = vsi->back; 10665 struct i40e_hw *hw = &pf->hw; 10666 u16 i; 10667 10668 if (seed) { 10669 u32 *seed_dw = (u32 *)seed; 10670 10671 for (i = 0; i <= I40E_PFQF_HKEY_MAX_INDEX; i++) 10672 seed_dw[i] = i40e_read_rx_ctl(hw, I40E_PFQF_HKEY(i)); 10673 } 10674 if (lut) { 10675 u32 *lut_dw = (u32 *)lut; 10676 10677 if (lut_size != I40E_HLUT_ARRAY_SIZE) 10678 return -EINVAL; 10679 for (i = 0; i <= I40E_PFQF_HLUT_MAX_INDEX; i++) 10680 lut_dw[i] = rd32(hw, I40E_PFQF_HLUT(i)); 10681 } 10682 10683 return 0; 10684 } 10685 10686 /** 10687 * i40e_config_rss - Configure RSS keys and lut 10688 * @vsi: Pointer to VSI structure 10689 * @seed: RSS hash seed 10690 * @lut: Lookup table 10691 * @lut_size: Lookup table size 10692 * 10693 * Returns 0 on success, negative on failure 10694 */ 10695 int i40e_config_rss(struct i40e_vsi *vsi, u8 *seed, u8 *lut, u16 lut_size) 10696 { 10697 struct i40e_pf *pf = vsi->back; 10698 10699 if (pf->hw_features & I40E_HW_RSS_AQ_CAPABLE) 10700 return i40e_config_rss_aq(vsi, seed, lut, lut_size); 10701 else 10702 return i40e_config_rss_reg(vsi, seed, lut, lut_size); 10703 } 10704 10705 /** 10706 * i40e_get_rss - Get RSS keys and lut 10707 * @vsi: Pointer to VSI structure 10708 * @seed: Buffer to store the keys 10709 * @lut: Buffer to store the lookup table entries 10710 * lut_size: Size of buffer to store the lookup table entries 10711 * 10712 * Returns 0 on success, negative on failure 10713 */ 10714 int i40e_get_rss(struct i40e_vsi *vsi, u8 *seed, u8 *lut, u16 lut_size) 10715 { 10716 struct i40e_pf *pf = vsi->back; 10717 10718 if (pf->hw_features & I40E_HW_RSS_AQ_CAPABLE) 10719 return i40e_get_rss_aq(vsi, seed, lut, lut_size); 10720 else 10721 return i40e_get_rss_reg(vsi, seed, lut, lut_size); 10722 } 10723 10724 /** 10725 * i40e_fill_rss_lut - Fill the RSS lookup table with default values 10726 * @pf: Pointer to board private structure 10727 * @lut: Lookup table 10728 * @rss_table_size: Lookup table size 10729 * @rss_size: Range of queue number for hashing 10730 */ 10731 void i40e_fill_rss_lut(struct i40e_pf *pf, u8 *lut, 10732 u16 rss_table_size, u16 rss_size) 10733 { 10734 u16 i; 10735 10736 for (i = 0; i < rss_table_size; i++) 10737 lut[i] = i % rss_size; 10738 } 10739 10740 /** 10741 * i40e_pf_config_rss - Prepare for RSS if used 10742 * @pf: board private structure 10743 **/ 10744 static int i40e_pf_config_rss(struct i40e_pf *pf) 10745 { 10746 struct i40e_vsi *vsi = pf->vsi[pf->lan_vsi]; 10747 u8 seed[I40E_HKEY_ARRAY_SIZE]; 10748 u8 *lut; 10749 struct i40e_hw *hw = &pf->hw; 10750 u32 reg_val; 10751 u64 hena; 10752 int ret; 10753 10754 /* By default we enable TCP/UDP with IPv4/IPv6 ptypes */ 10755 hena = (u64)i40e_read_rx_ctl(hw, I40E_PFQF_HENA(0)) | 10756 ((u64)i40e_read_rx_ctl(hw, I40E_PFQF_HENA(1)) << 32); 10757 hena |= i40e_pf_get_default_rss_hena(pf); 10758 10759 i40e_write_rx_ctl(hw, I40E_PFQF_HENA(0), (u32)hena); 10760 i40e_write_rx_ctl(hw, I40E_PFQF_HENA(1), (u32)(hena >> 32)); 10761 10762 /* Determine the RSS table size based on the hardware capabilities */ 10763 reg_val = i40e_read_rx_ctl(hw, I40E_PFQF_CTL_0); 10764 reg_val = (pf->rss_table_size == 512) ? 10765 (reg_val | I40E_PFQF_CTL_0_HASHLUTSIZE_512) : 10766 (reg_val & ~I40E_PFQF_CTL_0_HASHLUTSIZE_512); 10767 i40e_write_rx_ctl(hw, I40E_PFQF_CTL_0, reg_val); 10768 10769 /* Determine the RSS size of the VSI */ 10770 if (!vsi->rss_size) { 10771 u16 qcount; 10772 10773 qcount = vsi->num_queue_pairs / vsi->tc_config.numtc; 10774 vsi->rss_size = min_t(int, pf->alloc_rss_size, qcount); 10775 } 10776 if (!vsi->rss_size) 10777 return -EINVAL; 10778 10779 lut = kzalloc(vsi->rss_table_size, GFP_KERNEL); 10780 if (!lut) 10781 return -ENOMEM; 10782 10783 /* Use user configured lut if there is one, otherwise use default */ 10784 if (vsi->rss_lut_user) 10785 memcpy(lut, vsi->rss_lut_user, vsi->rss_table_size); 10786 else 10787 i40e_fill_rss_lut(pf, lut, vsi->rss_table_size, vsi->rss_size); 10788 10789 /* Use user configured hash key if there is one, otherwise 10790 * use default. 10791 */ 10792 if (vsi->rss_hkey_user) 10793 memcpy(seed, vsi->rss_hkey_user, I40E_HKEY_ARRAY_SIZE); 10794 else 10795 netdev_rss_key_fill((void *)seed, I40E_HKEY_ARRAY_SIZE); 10796 ret = i40e_config_rss(vsi, seed, lut, vsi->rss_table_size); 10797 kfree(lut); 10798 10799 return ret; 10800 } 10801 10802 /** 10803 * i40e_reconfig_rss_queues - change number of queues for rss and rebuild 10804 * @pf: board private structure 10805 * @queue_count: the requested queue count for rss. 10806 * 10807 * returns 0 if rss is not enabled, if enabled returns the final rss queue 10808 * count which may be different from the requested queue count. 10809 * Note: expects to be called while under rtnl_lock() 10810 **/ 10811 int i40e_reconfig_rss_queues(struct i40e_pf *pf, int queue_count) 10812 { 10813 struct i40e_vsi *vsi = pf->vsi[pf->lan_vsi]; 10814 int new_rss_size; 10815 10816 if (!(pf->flags & I40E_FLAG_RSS_ENABLED)) 10817 return 0; 10818 10819 new_rss_size = min_t(int, queue_count, pf->rss_size_max); 10820 10821 if (queue_count != vsi->num_queue_pairs) { 10822 u16 qcount; 10823 10824 vsi->req_queue_pairs = queue_count; 10825 i40e_prep_for_reset(pf, true); 10826 10827 pf->alloc_rss_size = new_rss_size; 10828 10829 i40e_reset_and_rebuild(pf, true, true); 10830 10831 /* Discard the user configured hash keys and lut, if less 10832 * queues are enabled. 10833 */ 10834 if (queue_count < vsi->rss_size) { 10835 i40e_clear_rss_config_user(vsi); 10836 dev_dbg(&pf->pdev->dev, 10837 "discard user configured hash keys and lut\n"); 10838 } 10839 10840 /* Reset vsi->rss_size, as number of enabled queues changed */ 10841 qcount = vsi->num_queue_pairs / vsi->tc_config.numtc; 10842 vsi->rss_size = min_t(int, pf->alloc_rss_size, qcount); 10843 10844 i40e_pf_config_rss(pf); 10845 } 10846 dev_info(&pf->pdev->dev, "User requested queue count/HW max RSS count: %d/%d\n", 10847 vsi->req_queue_pairs, pf->rss_size_max); 10848 return pf->alloc_rss_size; 10849 } 10850 10851 /** 10852 * i40e_get_partition_bw_setting - Retrieve BW settings for this PF partition 10853 * @pf: board private structure 10854 **/ 10855 i40e_status i40e_get_partition_bw_setting(struct i40e_pf *pf) 10856 { 10857 i40e_status status; 10858 bool min_valid, max_valid; 10859 u32 max_bw, min_bw; 10860 10861 status = i40e_read_bw_from_alt_ram(&pf->hw, &max_bw, &min_bw, 10862 &min_valid, &max_valid); 10863 10864 if (!status) { 10865 if (min_valid) 10866 pf->min_bw = min_bw; 10867 if (max_valid) 10868 pf->max_bw = max_bw; 10869 } 10870 10871 return status; 10872 } 10873 10874 /** 10875 * i40e_set_partition_bw_setting - Set BW settings for this PF partition 10876 * @pf: board private structure 10877 **/ 10878 i40e_status i40e_set_partition_bw_setting(struct i40e_pf *pf) 10879 { 10880 struct i40e_aqc_configure_partition_bw_data bw_data; 10881 i40e_status status; 10882 10883 /* Set the valid bit for this PF */ 10884 bw_data.pf_valid_bits = cpu_to_le16(BIT(pf->hw.pf_id)); 10885 bw_data.max_bw[pf->hw.pf_id] = pf->max_bw & I40E_ALT_BW_VALUE_MASK; 10886 bw_data.min_bw[pf->hw.pf_id] = pf->min_bw & I40E_ALT_BW_VALUE_MASK; 10887 10888 /* Set the new bandwidths */ 10889 status = i40e_aq_configure_partition_bw(&pf->hw, &bw_data, NULL); 10890 10891 return status; 10892 } 10893 10894 /** 10895 * i40e_commit_partition_bw_setting - Commit BW settings for this PF partition 10896 * @pf: board private structure 10897 **/ 10898 i40e_status i40e_commit_partition_bw_setting(struct i40e_pf *pf) 10899 { 10900 /* Commit temporary BW setting to permanent NVM image */ 10901 enum i40e_admin_queue_err last_aq_status; 10902 i40e_status ret; 10903 u16 nvm_word; 10904 10905 if (pf->hw.partition_id != 1) { 10906 dev_info(&pf->pdev->dev, 10907 "Commit BW only works on partition 1! This is partition %d", 10908 pf->hw.partition_id); 10909 ret = I40E_NOT_SUPPORTED; 10910 goto bw_commit_out; 10911 } 10912 10913 /* Acquire NVM for read access */ 10914 ret = i40e_acquire_nvm(&pf->hw, I40E_RESOURCE_READ); 10915 last_aq_status = pf->hw.aq.asq_last_status; 10916 if (ret) { 10917 dev_info(&pf->pdev->dev, 10918 "Cannot acquire NVM for read access, err %s aq_err %s\n", 10919 i40e_stat_str(&pf->hw, ret), 10920 i40e_aq_str(&pf->hw, last_aq_status)); 10921 goto bw_commit_out; 10922 } 10923 10924 /* Read word 0x10 of NVM - SW compatibility word 1 */ 10925 ret = i40e_aq_read_nvm(&pf->hw, 10926 I40E_SR_NVM_CONTROL_WORD, 10927 0x10, sizeof(nvm_word), &nvm_word, 10928 false, NULL); 10929 /* Save off last admin queue command status before releasing 10930 * the NVM 10931 */ 10932 last_aq_status = pf->hw.aq.asq_last_status; 10933 i40e_release_nvm(&pf->hw); 10934 if (ret) { 10935 dev_info(&pf->pdev->dev, "NVM read error, err %s aq_err %s\n", 10936 i40e_stat_str(&pf->hw, ret), 10937 i40e_aq_str(&pf->hw, last_aq_status)); 10938 goto bw_commit_out; 10939 } 10940 10941 /* Wait a bit for NVM release to complete */ 10942 msleep(50); 10943 10944 /* Acquire NVM for write access */ 10945 ret = i40e_acquire_nvm(&pf->hw, I40E_RESOURCE_WRITE); 10946 last_aq_status = pf->hw.aq.asq_last_status; 10947 if (ret) { 10948 dev_info(&pf->pdev->dev, 10949 "Cannot acquire NVM for write access, err %s aq_err %s\n", 10950 i40e_stat_str(&pf->hw, ret), 10951 i40e_aq_str(&pf->hw, last_aq_status)); 10952 goto bw_commit_out; 10953 } 10954 /* Write it back out unchanged to initiate update NVM, 10955 * which will force a write of the shadow (alt) RAM to 10956 * the NVM - thus storing the bandwidth values permanently. 10957 */ 10958 ret = i40e_aq_update_nvm(&pf->hw, 10959 I40E_SR_NVM_CONTROL_WORD, 10960 0x10, sizeof(nvm_word), 10961 &nvm_word, true, NULL); 10962 /* Save off last admin queue command status before releasing 10963 * the NVM 10964 */ 10965 last_aq_status = pf->hw.aq.asq_last_status; 10966 i40e_release_nvm(&pf->hw); 10967 if (ret) 10968 dev_info(&pf->pdev->dev, 10969 "BW settings NOT SAVED, err %s aq_err %s\n", 10970 i40e_stat_str(&pf->hw, ret), 10971 i40e_aq_str(&pf->hw, last_aq_status)); 10972 bw_commit_out: 10973 10974 return ret; 10975 } 10976 10977 /** 10978 * i40e_sw_init - Initialize general software structures (struct i40e_pf) 10979 * @pf: board private structure to initialize 10980 * 10981 * i40e_sw_init initializes the Adapter private data structure. 10982 * Fields are initialized based on PCI device information and 10983 * OS network device settings (MTU size). 10984 **/ 10985 static int i40e_sw_init(struct i40e_pf *pf) 10986 { 10987 int err = 0; 10988 int size; 10989 10990 /* Set default capability flags */ 10991 pf->flags = I40E_FLAG_RX_CSUM_ENABLED | 10992 I40E_FLAG_MSI_ENABLED | 10993 I40E_FLAG_MSIX_ENABLED; 10994 10995 /* Set default ITR */ 10996 pf->rx_itr_default = I40E_ITR_RX_DEF; 10997 pf->tx_itr_default = I40E_ITR_TX_DEF; 10998 10999 /* Depending on PF configurations, it is possible that the RSS 11000 * maximum might end up larger than the available queues 11001 */ 11002 pf->rss_size_max = BIT(pf->hw.func_caps.rss_table_entry_width); 11003 pf->alloc_rss_size = 1; 11004 pf->rss_table_size = pf->hw.func_caps.rss_table_size; 11005 pf->rss_size_max = min_t(int, pf->rss_size_max, 11006 pf->hw.func_caps.num_tx_qp); 11007 if (pf->hw.func_caps.rss) { 11008 pf->flags |= I40E_FLAG_RSS_ENABLED; 11009 pf->alloc_rss_size = min_t(int, pf->rss_size_max, 11010 num_online_cpus()); 11011 } 11012 11013 /* MFP mode enabled */ 11014 if (pf->hw.func_caps.npar_enable || pf->hw.func_caps.flex10_enable) { 11015 pf->flags |= I40E_FLAG_MFP_ENABLED; 11016 dev_info(&pf->pdev->dev, "MFP mode Enabled\n"); 11017 if (i40e_get_partition_bw_setting(pf)) { 11018 dev_warn(&pf->pdev->dev, 11019 "Could not get partition bw settings\n"); 11020 } else { 11021 dev_info(&pf->pdev->dev, 11022 "Partition BW Min = %8.8x, Max = %8.8x\n", 11023 pf->min_bw, pf->max_bw); 11024 11025 /* nudge the Tx scheduler */ 11026 i40e_set_partition_bw_setting(pf); 11027 } 11028 } 11029 11030 if ((pf->hw.func_caps.fd_filters_guaranteed > 0) || 11031 (pf->hw.func_caps.fd_filters_best_effort > 0)) { 11032 pf->flags |= I40E_FLAG_FD_ATR_ENABLED; 11033 pf->atr_sample_rate = I40E_DEFAULT_ATR_SAMPLE_RATE; 11034 if (pf->flags & I40E_FLAG_MFP_ENABLED && 11035 pf->hw.num_partitions > 1) 11036 dev_info(&pf->pdev->dev, 11037 "Flow Director Sideband mode Disabled in MFP mode\n"); 11038 else 11039 pf->flags |= I40E_FLAG_FD_SB_ENABLED; 11040 pf->fdir_pf_filter_count = 11041 pf->hw.func_caps.fd_filters_guaranteed; 11042 pf->hw.fdir_shared_filter_count = 11043 pf->hw.func_caps.fd_filters_best_effort; 11044 } 11045 11046 if (pf->hw.mac.type == I40E_MAC_X722) { 11047 pf->hw_features |= (I40E_HW_RSS_AQ_CAPABLE | 11048 I40E_HW_128_QP_RSS_CAPABLE | 11049 I40E_HW_ATR_EVICT_CAPABLE | 11050 I40E_HW_WB_ON_ITR_CAPABLE | 11051 I40E_HW_MULTIPLE_TCP_UDP_RSS_PCTYPE | 11052 I40E_HW_NO_PCI_LINK_CHECK | 11053 I40E_HW_USE_SET_LLDP_MIB | 11054 I40E_HW_GENEVE_OFFLOAD_CAPABLE | 11055 I40E_HW_PTP_L4_CAPABLE | 11056 I40E_HW_WOL_MC_MAGIC_PKT_WAKE | 11057 I40E_HW_OUTER_UDP_CSUM_CAPABLE); 11058 11059 #define I40E_FDEVICT_PCTYPE_DEFAULT 0xc03 11060 if (rd32(&pf->hw, I40E_GLQF_FDEVICTENA(1)) != 11061 I40E_FDEVICT_PCTYPE_DEFAULT) { 11062 dev_warn(&pf->pdev->dev, 11063 "FD EVICT PCTYPES are not right, disable FD HW EVICT\n"); 11064 pf->hw_features &= ~I40E_HW_ATR_EVICT_CAPABLE; 11065 } 11066 } else if ((pf->hw.aq.api_maj_ver > 1) || 11067 ((pf->hw.aq.api_maj_ver == 1) && 11068 (pf->hw.aq.api_min_ver > 4))) { 11069 /* Supported in FW API version higher than 1.4 */ 11070 pf->hw_features |= I40E_HW_GENEVE_OFFLOAD_CAPABLE; 11071 } 11072 11073 /* Enable HW ATR eviction if possible */ 11074 if (pf->hw_features & I40E_HW_ATR_EVICT_CAPABLE) 11075 pf->flags |= I40E_FLAG_HW_ATR_EVICT_ENABLED; 11076 11077 if ((pf->hw.mac.type == I40E_MAC_XL710) && 11078 (((pf->hw.aq.fw_maj_ver == 4) && (pf->hw.aq.fw_min_ver < 33)) || 11079 (pf->hw.aq.fw_maj_ver < 4))) { 11080 pf->hw_features |= I40E_HW_RESTART_AUTONEG; 11081 /* No DCB support for FW < v4.33 */ 11082 pf->hw_features |= I40E_HW_NO_DCB_SUPPORT; 11083 } 11084 11085 /* Disable FW LLDP if FW < v4.3 */ 11086 if ((pf->hw.mac.type == I40E_MAC_XL710) && 11087 (((pf->hw.aq.fw_maj_ver == 4) && (pf->hw.aq.fw_min_ver < 3)) || 11088 (pf->hw.aq.fw_maj_ver < 4))) 11089 pf->hw_features |= I40E_HW_STOP_FW_LLDP; 11090 11091 /* Use the FW Set LLDP MIB API if FW > v4.40 */ 11092 if ((pf->hw.mac.type == I40E_MAC_XL710) && 11093 (((pf->hw.aq.fw_maj_ver == 4) && (pf->hw.aq.fw_min_ver >= 40)) || 11094 (pf->hw.aq.fw_maj_ver >= 5))) 11095 pf->hw_features |= I40E_HW_USE_SET_LLDP_MIB; 11096 11097 /* Enable PTP L4 if FW > v6.0 */ 11098 if (pf->hw.mac.type == I40E_MAC_XL710 && 11099 pf->hw.aq.fw_maj_ver >= 6) 11100 pf->hw_features |= I40E_HW_PTP_L4_CAPABLE; 11101 11102 if (pf->hw.func_caps.vmdq) { 11103 pf->num_vmdq_vsis = I40E_DEFAULT_NUM_VMDQ_VSI; 11104 pf->flags |= I40E_FLAG_VMDQ_ENABLED; 11105 pf->num_vmdq_qps = i40e_default_queues_per_vmdq(pf); 11106 } 11107 11108 if (pf->hw.func_caps.iwarp) { 11109 pf->flags |= I40E_FLAG_IWARP_ENABLED; 11110 /* IWARP needs one extra vector for CQP just like MISC.*/ 11111 pf->num_iwarp_msix = (int)num_online_cpus() + 1; 11112 } 11113 11114 #ifdef CONFIG_PCI_IOV 11115 if (pf->hw.func_caps.num_vfs && pf->hw.partition_id == 1) { 11116 pf->num_vf_qps = I40E_DEFAULT_QUEUES_PER_VF; 11117 pf->flags |= I40E_FLAG_SRIOV_ENABLED; 11118 pf->num_req_vfs = min_t(int, 11119 pf->hw.func_caps.num_vfs, 11120 I40E_MAX_VF_COUNT); 11121 } 11122 #endif /* CONFIG_PCI_IOV */ 11123 pf->eeprom_version = 0xDEAD; 11124 pf->lan_veb = I40E_NO_VEB; 11125 pf->lan_vsi = I40E_NO_VSI; 11126 11127 /* By default FW has this off for performance reasons */ 11128 pf->flags &= ~I40E_FLAG_VEB_STATS_ENABLED; 11129 11130 /* set up queue assignment tracking */ 11131 size = sizeof(struct i40e_lump_tracking) 11132 + (sizeof(u16) * pf->hw.func_caps.num_tx_qp); 11133 pf->qp_pile = kzalloc(size, GFP_KERNEL); 11134 if (!pf->qp_pile) { 11135 err = -ENOMEM; 11136 goto sw_init_done; 11137 } 11138 pf->qp_pile->num_entries = pf->hw.func_caps.num_tx_qp; 11139 pf->qp_pile->search_hint = 0; 11140 11141 pf->tx_timeout_recovery_level = 1; 11142 11143 mutex_init(&pf->switch_mutex); 11144 11145 sw_init_done: 11146 return err; 11147 } 11148 11149 /** 11150 * i40e_set_ntuple - set the ntuple feature flag and take action 11151 * @pf: board private structure to initialize 11152 * @features: the feature set that the stack is suggesting 11153 * 11154 * returns a bool to indicate if reset needs to happen 11155 **/ 11156 bool i40e_set_ntuple(struct i40e_pf *pf, netdev_features_t features) 11157 { 11158 bool need_reset = false; 11159 11160 /* Check if Flow Director n-tuple support was enabled or disabled. If 11161 * the state changed, we need to reset. 11162 */ 11163 if (features & NETIF_F_NTUPLE) { 11164 /* Enable filters and mark for reset */ 11165 if (!(pf->flags & I40E_FLAG_FD_SB_ENABLED)) 11166 need_reset = true; 11167 /* enable FD_SB only if there is MSI-X vector and no cloud 11168 * filters exist 11169 */ 11170 if (pf->num_fdsb_msix > 0 && !pf->num_cloud_filters) { 11171 pf->flags |= I40E_FLAG_FD_SB_ENABLED; 11172 pf->flags &= ~I40E_FLAG_FD_SB_INACTIVE; 11173 } 11174 } else { 11175 /* turn off filters, mark for reset and clear SW filter list */ 11176 if (pf->flags & I40E_FLAG_FD_SB_ENABLED) { 11177 need_reset = true; 11178 i40e_fdir_filter_exit(pf); 11179 } 11180 pf->flags &= ~(I40E_FLAG_FD_SB_ENABLED | 11181 I40E_FLAG_FD_SB_AUTO_DISABLED); 11182 pf->flags |= I40E_FLAG_FD_SB_INACTIVE; 11183 11184 /* reset fd counters */ 11185 pf->fd_add_err = 0; 11186 pf->fd_atr_cnt = 0; 11187 /* if ATR was auto disabled it can be re-enabled. */ 11188 if (pf->flags & I40E_FLAG_FD_ATR_AUTO_DISABLED) { 11189 pf->flags &= ~I40E_FLAG_FD_ATR_AUTO_DISABLED; 11190 if ((pf->flags & I40E_FLAG_FD_ATR_ENABLED) && 11191 (I40E_DEBUG_FD & pf->hw.debug_mask)) 11192 dev_info(&pf->pdev->dev, "ATR re-enabled.\n"); 11193 } 11194 } 11195 return need_reset; 11196 } 11197 11198 /** 11199 * i40e_clear_rss_lut - clear the rx hash lookup table 11200 * @vsi: the VSI being configured 11201 **/ 11202 static void i40e_clear_rss_lut(struct i40e_vsi *vsi) 11203 { 11204 struct i40e_pf *pf = vsi->back; 11205 struct i40e_hw *hw = &pf->hw; 11206 u16 vf_id = vsi->vf_id; 11207 u8 i; 11208 11209 if (vsi->type == I40E_VSI_MAIN) { 11210 for (i = 0; i <= I40E_PFQF_HLUT_MAX_INDEX; i++) 11211 wr32(hw, I40E_PFQF_HLUT(i), 0); 11212 } else if (vsi->type == I40E_VSI_SRIOV) { 11213 for (i = 0; i <= I40E_VFQF_HLUT_MAX_INDEX; i++) 11214 i40e_write_rx_ctl(hw, I40E_VFQF_HLUT1(i, vf_id), 0); 11215 } else { 11216 dev_err(&pf->pdev->dev, "Cannot set RSS LUT - invalid VSI type\n"); 11217 } 11218 } 11219 11220 /** 11221 * i40e_set_features - set the netdev feature flags 11222 * @netdev: ptr to the netdev being adjusted 11223 * @features: the feature set that the stack is suggesting 11224 * Note: expects to be called while under rtnl_lock() 11225 **/ 11226 static int i40e_set_features(struct net_device *netdev, 11227 netdev_features_t features) 11228 { 11229 struct i40e_netdev_priv *np = netdev_priv(netdev); 11230 struct i40e_vsi *vsi = np->vsi; 11231 struct i40e_pf *pf = vsi->back; 11232 bool need_reset; 11233 11234 if (features & NETIF_F_RXHASH && !(netdev->features & NETIF_F_RXHASH)) 11235 i40e_pf_config_rss(pf); 11236 else if (!(features & NETIF_F_RXHASH) && 11237 netdev->features & NETIF_F_RXHASH) 11238 i40e_clear_rss_lut(vsi); 11239 11240 if (features & NETIF_F_HW_VLAN_CTAG_RX) 11241 i40e_vlan_stripping_enable(vsi); 11242 else 11243 i40e_vlan_stripping_disable(vsi); 11244 11245 if (!(features & NETIF_F_HW_TC) && pf->num_cloud_filters) { 11246 dev_err(&pf->pdev->dev, 11247 "Offloaded tc filters active, can't turn hw_tc_offload off"); 11248 return -EINVAL; 11249 } 11250 11251 need_reset = i40e_set_ntuple(pf, features); 11252 11253 if (need_reset) 11254 i40e_do_reset(pf, I40E_PF_RESET_FLAG, true); 11255 11256 return 0; 11257 } 11258 11259 /** 11260 * i40e_get_udp_port_idx - Lookup a possibly offloaded for Rx UDP port 11261 * @pf: board private structure 11262 * @port: The UDP port to look up 11263 * 11264 * Returns the index number or I40E_MAX_PF_UDP_OFFLOAD_PORTS if port not found 11265 **/ 11266 static u8 i40e_get_udp_port_idx(struct i40e_pf *pf, u16 port) 11267 { 11268 u8 i; 11269 11270 for (i = 0; i < I40E_MAX_PF_UDP_OFFLOAD_PORTS; i++) { 11271 if (pf->udp_ports[i].port == port) 11272 return i; 11273 } 11274 11275 return i; 11276 } 11277 11278 /** 11279 * i40e_udp_tunnel_add - Get notifications about UDP tunnel ports that come up 11280 * @netdev: This physical port's netdev 11281 * @ti: Tunnel endpoint information 11282 **/ 11283 static void i40e_udp_tunnel_add(struct net_device *netdev, 11284 struct udp_tunnel_info *ti) 11285 { 11286 struct i40e_netdev_priv *np = netdev_priv(netdev); 11287 struct i40e_vsi *vsi = np->vsi; 11288 struct i40e_pf *pf = vsi->back; 11289 u16 port = ntohs(ti->port); 11290 u8 next_idx; 11291 u8 idx; 11292 11293 idx = i40e_get_udp_port_idx(pf, port); 11294 11295 /* Check if port already exists */ 11296 if (idx < I40E_MAX_PF_UDP_OFFLOAD_PORTS) { 11297 netdev_info(netdev, "port %d already offloaded\n", port); 11298 return; 11299 } 11300 11301 /* Now check if there is space to add the new port */ 11302 next_idx = i40e_get_udp_port_idx(pf, 0); 11303 11304 if (next_idx == I40E_MAX_PF_UDP_OFFLOAD_PORTS) { 11305 netdev_info(netdev, "maximum number of offloaded UDP ports reached, not adding port %d\n", 11306 port); 11307 return; 11308 } 11309 11310 switch (ti->type) { 11311 case UDP_TUNNEL_TYPE_VXLAN: 11312 pf->udp_ports[next_idx].type = I40E_AQC_TUNNEL_TYPE_VXLAN; 11313 break; 11314 case UDP_TUNNEL_TYPE_GENEVE: 11315 if (!(pf->hw_features & I40E_HW_GENEVE_OFFLOAD_CAPABLE)) 11316 return; 11317 pf->udp_ports[next_idx].type = I40E_AQC_TUNNEL_TYPE_NGE; 11318 break; 11319 default: 11320 return; 11321 } 11322 11323 /* New port: add it and mark its index in the bitmap */ 11324 pf->udp_ports[next_idx].port = port; 11325 pf->pending_udp_bitmap |= BIT_ULL(next_idx); 11326 pf->flags |= I40E_FLAG_UDP_FILTER_SYNC; 11327 } 11328 11329 /** 11330 * i40e_udp_tunnel_del - Get notifications about UDP tunnel ports that go away 11331 * @netdev: This physical port's netdev 11332 * @ti: Tunnel endpoint information 11333 **/ 11334 static void i40e_udp_tunnel_del(struct net_device *netdev, 11335 struct udp_tunnel_info *ti) 11336 { 11337 struct i40e_netdev_priv *np = netdev_priv(netdev); 11338 struct i40e_vsi *vsi = np->vsi; 11339 struct i40e_pf *pf = vsi->back; 11340 u16 port = ntohs(ti->port); 11341 u8 idx; 11342 11343 idx = i40e_get_udp_port_idx(pf, port); 11344 11345 /* Check if port already exists */ 11346 if (idx >= I40E_MAX_PF_UDP_OFFLOAD_PORTS) 11347 goto not_found; 11348 11349 switch (ti->type) { 11350 case UDP_TUNNEL_TYPE_VXLAN: 11351 if (pf->udp_ports[idx].type != I40E_AQC_TUNNEL_TYPE_VXLAN) 11352 goto not_found; 11353 break; 11354 case UDP_TUNNEL_TYPE_GENEVE: 11355 if (pf->udp_ports[idx].type != I40E_AQC_TUNNEL_TYPE_NGE) 11356 goto not_found; 11357 break; 11358 default: 11359 goto not_found; 11360 } 11361 11362 /* if port exists, set it to 0 (mark for deletion) 11363 * and make it pending 11364 */ 11365 pf->udp_ports[idx].port = 0; 11366 pf->pending_udp_bitmap |= BIT_ULL(idx); 11367 pf->flags |= I40E_FLAG_UDP_FILTER_SYNC; 11368 11369 return; 11370 not_found: 11371 netdev_warn(netdev, "UDP port %d was not found, not deleting\n", 11372 port); 11373 } 11374 11375 static int i40e_get_phys_port_id(struct net_device *netdev, 11376 struct netdev_phys_item_id *ppid) 11377 { 11378 struct i40e_netdev_priv *np = netdev_priv(netdev); 11379 struct i40e_pf *pf = np->vsi->back; 11380 struct i40e_hw *hw = &pf->hw; 11381 11382 if (!(pf->hw_features & I40E_HW_PORT_ID_VALID)) 11383 return -EOPNOTSUPP; 11384 11385 ppid->id_len = min_t(int, sizeof(hw->mac.port_addr), sizeof(ppid->id)); 11386 memcpy(ppid->id, hw->mac.port_addr, ppid->id_len); 11387 11388 return 0; 11389 } 11390 11391 /** 11392 * i40e_ndo_fdb_add - add an entry to the hardware database 11393 * @ndm: the input from the stack 11394 * @tb: pointer to array of nladdr (unused) 11395 * @dev: the net device pointer 11396 * @addr: the MAC address entry being added 11397 * @flags: instructions from stack about fdb operation 11398 */ 11399 static int i40e_ndo_fdb_add(struct ndmsg *ndm, struct nlattr *tb[], 11400 struct net_device *dev, 11401 const unsigned char *addr, u16 vid, 11402 u16 flags) 11403 { 11404 struct i40e_netdev_priv *np = netdev_priv(dev); 11405 struct i40e_pf *pf = np->vsi->back; 11406 int err = 0; 11407 11408 if (!(pf->flags & I40E_FLAG_SRIOV_ENABLED)) 11409 return -EOPNOTSUPP; 11410 11411 if (vid) { 11412 pr_info("%s: vlans aren't supported yet for dev_uc|mc_add()\n", dev->name); 11413 return -EINVAL; 11414 } 11415 11416 /* Hardware does not support aging addresses so if a 11417 * ndm_state is given only allow permanent addresses 11418 */ 11419 if (ndm->ndm_state && !(ndm->ndm_state & NUD_PERMANENT)) { 11420 netdev_info(dev, "FDB only supports static addresses\n"); 11421 return -EINVAL; 11422 } 11423 11424 if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr)) 11425 err = dev_uc_add_excl(dev, addr); 11426 else if (is_multicast_ether_addr(addr)) 11427 err = dev_mc_add_excl(dev, addr); 11428 else 11429 err = -EINVAL; 11430 11431 /* Only return duplicate errors if NLM_F_EXCL is set */ 11432 if (err == -EEXIST && !(flags & NLM_F_EXCL)) 11433 err = 0; 11434 11435 return err; 11436 } 11437 11438 /** 11439 * i40e_ndo_bridge_setlink - Set the hardware bridge mode 11440 * @dev: the netdev being configured 11441 * @nlh: RTNL message 11442 * 11443 * Inserts a new hardware bridge if not already created and 11444 * enables the bridging mode requested (VEB or VEPA). If the 11445 * hardware bridge has already been inserted and the request 11446 * is to change the mode then that requires a PF reset to 11447 * allow rebuild of the components with required hardware 11448 * bridge mode enabled. 11449 * 11450 * Note: expects to be called while under rtnl_lock() 11451 **/ 11452 static int i40e_ndo_bridge_setlink(struct net_device *dev, 11453 struct nlmsghdr *nlh, 11454 u16 flags) 11455 { 11456 struct i40e_netdev_priv *np = netdev_priv(dev); 11457 struct i40e_vsi *vsi = np->vsi; 11458 struct i40e_pf *pf = vsi->back; 11459 struct i40e_veb *veb = NULL; 11460 struct nlattr *attr, *br_spec; 11461 int i, rem; 11462 11463 /* Only for PF VSI for now */ 11464 if (vsi->seid != pf->vsi[pf->lan_vsi]->seid) 11465 return -EOPNOTSUPP; 11466 11467 /* Find the HW bridge for PF VSI */ 11468 for (i = 0; i < I40E_MAX_VEB && !veb; i++) { 11469 if (pf->veb[i] && pf->veb[i]->seid == vsi->uplink_seid) 11470 veb = pf->veb[i]; 11471 } 11472 11473 br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC); 11474 11475 nla_for_each_nested(attr, br_spec, rem) { 11476 __u16 mode; 11477 11478 if (nla_type(attr) != IFLA_BRIDGE_MODE) 11479 continue; 11480 11481 mode = nla_get_u16(attr); 11482 if ((mode != BRIDGE_MODE_VEPA) && 11483 (mode != BRIDGE_MODE_VEB)) 11484 return -EINVAL; 11485 11486 /* Insert a new HW bridge */ 11487 if (!veb) { 11488 veb = i40e_veb_setup(pf, 0, vsi->uplink_seid, vsi->seid, 11489 vsi->tc_config.enabled_tc); 11490 if (veb) { 11491 veb->bridge_mode = mode; 11492 i40e_config_bridge_mode(veb); 11493 } else { 11494 /* No Bridge HW offload available */ 11495 return -ENOENT; 11496 } 11497 break; 11498 } else if (mode != veb->bridge_mode) { 11499 /* Existing HW bridge but different mode needs reset */ 11500 veb->bridge_mode = mode; 11501 /* TODO: If no VFs or VMDq VSIs, disallow VEB mode */ 11502 if (mode == BRIDGE_MODE_VEB) 11503 pf->flags |= I40E_FLAG_VEB_MODE_ENABLED; 11504 else 11505 pf->flags &= ~I40E_FLAG_VEB_MODE_ENABLED; 11506 i40e_do_reset(pf, I40E_PF_RESET_FLAG, true); 11507 break; 11508 } 11509 } 11510 11511 return 0; 11512 } 11513 11514 /** 11515 * i40e_ndo_bridge_getlink - Get the hardware bridge mode 11516 * @skb: skb buff 11517 * @pid: process id 11518 * @seq: RTNL message seq # 11519 * @dev: the netdev being configured 11520 * @filter_mask: unused 11521 * @nlflags: netlink flags passed in 11522 * 11523 * Return the mode in which the hardware bridge is operating in 11524 * i.e VEB or VEPA. 11525 **/ 11526 static int i40e_ndo_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq, 11527 struct net_device *dev, 11528 u32 __always_unused filter_mask, 11529 int nlflags) 11530 { 11531 struct i40e_netdev_priv *np = netdev_priv(dev); 11532 struct i40e_vsi *vsi = np->vsi; 11533 struct i40e_pf *pf = vsi->back; 11534 struct i40e_veb *veb = NULL; 11535 int i; 11536 11537 /* Only for PF VSI for now */ 11538 if (vsi->seid != pf->vsi[pf->lan_vsi]->seid) 11539 return -EOPNOTSUPP; 11540 11541 /* Find the HW bridge for the PF VSI */ 11542 for (i = 0; i < I40E_MAX_VEB && !veb; i++) { 11543 if (pf->veb[i] && pf->veb[i]->seid == vsi->uplink_seid) 11544 veb = pf->veb[i]; 11545 } 11546 11547 if (!veb) 11548 return 0; 11549 11550 return ndo_dflt_bridge_getlink(skb, pid, seq, dev, veb->bridge_mode, 11551 0, 0, nlflags, filter_mask, NULL); 11552 } 11553 11554 /** 11555 * i40e_features_check - Validate encapsulated packet conforms to limits 11556 * @skb: skb buff 11557 * @dev: This physical port's netdev 11558 * @features: Offload features that the stack believes apply 11559 **/ 11560 static netdev_features_t i40e_features_check(struct sk_buff *skb, 11561 struct net_device *dev, 11562 netdev_features_t features) 11563 { 11564 size_t len; 11565 11566 /* No point in doing any of this if neither checksum nor GSO are 11567 * being requested for this frame. We can rule out both by just 11568 * checking for CHECKSUM_PARTIAL 11569 */ 11570 if (skb->ip_summed != CHECKSUM_PARTIAL) 11571 return features; 11572 11573 /* We cannot support GSO if the MSS is going to be less than 11574 * 64 bytes. If it is then we need to drop support for GSO. 11575 */ 11576 if (skb_is_gso(skb) && (skb_shinfo(skb)->gso_size < 64)) 11577 features &= ~NETIF_F_GSO_MASK; 11578 11579 /* MACLEN can support at most 63 words */ 11580 len = skb_network_header(skb) - skb->data; 11581 if (len & ~(63 * 2)) 11582 goto out_err; 11583 11584 /* IPLEN and EIPLEN can support at most 127 dwords */ 11585 len = skb_transport_header(skb) - skb_network_header(skb); 11586 if (len & ~(127 * 4)) 11587 goto out_err; 11588 11589 if (skb->encapsulation) { 11590 /* L4TUNLEN can support 127 words */ 11591 len = skb_inner_network_header(skb) - skb_transport_header(skb); 11592 if (len & ~(127 * 2)) 11593 goto out_err; 11594 11595 /* IPLEN can support at most 127 dwords */ 11596 len = skb_inner_transport_header(skb) - 11597 skb_inner_network_header(skb); 11598 if (len & ~(127 * 4)) 11599 goto out_err; 11600 } 11601 11602 /* No need to validate L4LEN as TCP is the only protocol with a 11603 * a flexible value and we support all possible values supported 11604 * by TCP, which is at most 15 dwords 11605 */ 11606 11607 return features; 11608 out_err: 11609 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 11610 } 11611 11612 /** 11613 * i40e_xdp_setup - add/remove an XDP program 11614 * @vsi: VSI to changed 11615 * @prog: XDP program 11616 **/ 11617 static int i40e_xdp_setup(struct i40e_vsi *vsi, 11618 struct bpf_prog *prog) 11619 { 11620 int frame_size = vsi->netdev->mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN; 11621 struct i40e_pf *pf = vsi->back; 11622 struct bpf_prog *old_prog; 11623 bool need_reset; 11624 int i; 11625 11626 /* Don't allow frames that span over multiple buffers */ 11627 if (frame_size > vsi->rx_buf_len) 11628 return -EINVAL; 11629 11630 if (!i40e_enabled_xdp_vsi(vsi) && !prog) 11631 return 0; 11632 11633 /* When turning XDP on->off/off->on we reset and rebuild the rings. */ 11634 need_reset = (i40e_enabled_xdp_vsi(vsi) != !!prog); 11635 11636 if (need_reset) 11637 i40e_prep_for_reset(pf, true); 11638 11639 old_prog = xchg(&vsi->xdp_prog, prog); 11640 11641 if (need_reset) 11642 i40e_reset_and_rebuild(pf, true, true); 11643 11644 for (i = 0; i < vsi->num_queue_pairs; i++) 11645 WRITE_ONCE(vsi->rx_rings[i]->xdp_prog, vsi->xdp_prog); 11646 11647 if (old_prog) 11648 bpf_prog_put(old_prog); 11649 11650 return 0; 11651 } 11652 11653 /** 11654 * i40e_xdp - implements ndo_bpf for i40e 11655 * @dev: netdevice 11656 * @xdp: XDP command 11657 **/ 11658 static int i40e_xdp(struct net_device *dev, 11659 struct netdev_bpf *xdp) 11660 { 11661 struct i40e_netdev_priv *np = netdev_priv(dev); 11662 struct i40e_vsi *vsi = np->vsi; 11663 11664 if (vsi->type != I40E_VSI_MAIN) 11665 return -EINVAL; 11666 11667 switch (xdp->command) { 11668 case XDP_SETUP_PROG: 11669 return i40e_xdp_setup(vsi, xdp->prog); 11670 case XDP_QUERY_PROG: 11671 xdp->prog_attached = i40e_enabled_xdp_vsi(vsi); 11672 xdp->prog_id = vsi->xdp_prog ? vsi->xdp_prog->aux->id : 0; 11673 return 0; 11674 default: 11675 return -EINVAL; 11676 } 11677 } 11678 11679 static const struct net_device_ops i40e_netdev_ops = { 11680 .ndo_open = i40e_open, 11681 .ndo_stop = i40e_close, 11682 .ndo_start_xmit = i40e_lan_xmit_frame, 11683 .ndo_get_stats64 = i40e_get_netdev_stats_struct, 11684 .ndo_set_rx_mode = i40e_set_rx_mode, 11685 .ndo_validate_addr = eth_validate_addr, 11686 .ndo_set_mac_address = i40e_set_mac, 11687 .ndo_change_mtu = i40e_change_mtu, 11688 .ndo_do_ioctl = i40e_ioctl, 11689 .ndo_tx_timeout = i40e_tx_timeout, 11690 .ndo_vlan_rx_add_vid = i40e_vlan_rx_add_vid, 11691 .ndo_vlan_rx_kill_vid = i40e_vlan_rx_kill_vid, 11692 #ifdef CONFIG_NET_POLL_CONTROLLER 11693 .ndo_poll_controller = i40e_netpoll, 11694 #endif 11695 .ndo_setup_tc = __i40e_setup_tc, 11696 .ndo_set_features = i40e_set_features, 11697 .ndo_set_vf_mac = i40e_ndo_set_vf_mac, 11698 .ndo_set_vf_vlan = i40e_ndo_set_vf_port_vlan, 11699 .ndo_set_vf_rate = i40e_ndo_set_vf_bw, 11700 .ndo_get_vf_config = i40e_ndo_get_vf_config, 11701 .ndo_set_vf_link_state = i40e_ndo_set_vf_link_state, 11702 .ndo_set_vf_spoofchk = i40e_ndo_set_vf_spoofchk, 11703 .ndo_set_vf_trust = i40e_ndo_set_vf_trust, 11704 .ndo_udp_tunnel_add = i40e_udp_tunnel_add, 11705 .ndo_udp_tunnel_del = i40e_udp_tunnel_del, 11706 .ndo_get_phys_port_id = i40e_get_phys_port_id, 11707 .ndo_fdb_add = i40e_ndo_fdb_add, 11708 .ndo_features_check = i40e_features_check, 11709 .ndo_bridge_getlink = i40e_ndo_bridge_getlink, 11710 .ndo_bridge_setlink = i40e_ndo_bridge_setlink, 11711 .ndo_bpf = i40e_xdp, 11712 }; 11713 11714 /** 11715 * i40e_config_netdev - Setup the netdev flags 11716 * @vsi: the VSI being configured 11717 * 11718 * Returns 0 on success, negative value on failure 11719 **/ 11720 static int i40e_config_netdev(struct i40e_vsi *vsi) 11721 { 11722 struct i40e_pf *pf = vsi->back; 11723 struct i40e_hw *hw = &pf->hw; 11724 struct i40e_netdev_priv *np; 11725 struct net_device *netdev; 11726 u8 broadcast[ETH_ALEN]; 11727 u8 mac_addr[ETH_ALEN]; 11728 int etherdev_size; 11729 netdev_features_t hw_enc_features; 11730 netdev_features_t hw_features; 11731 11732 etherdev_size = sizeof(struct i40e_netdev_priv); 11733 netdev = alloc_etherdev_mq(etherdev_size, vsi->alloc_queue_pairs); 11734 if (!netdev) 11735 return -ENOMEM; 11736 11737 vsi->netdev = netdev; 11738 np = netdev_priv(netdev); 11739 np->vsi = vsi; 11740 11741 hw_enc_features = NETIF_F_SG | 11742 NETIF_F_IP_CSUM | 11743 NETIF_F_IPV6_CSUM | 11744 NETIF_F_HIGHDMA | 11745 NETIF_F_SOFT_FEATURES | 11746 NETIF_F_TSO | 11747 NETIF_F_TSO_ECN | 11748 NETIF_F_TSO6 | 11749 NETIF_F_GSO_GRE | 11750 NETIF_F_GSO_GRE_CSUM | 11751 NETIF_F_GSO_PARTIAL | 11752 NETIF_F_GSO_UDP_TUNNEL | 11753 NETIF_F_GSO_UDP_TUNNEL_CSUM | 11754 NETIF_F_SCTP_CRC | 11755 NETIF_F_RXHASH | 11756 NETIF_F_RXCSUM | 11757 0; 11758 11759 if (!(pf->hw_features & I40E_HW_OUTER_UDP_CSUM_CAPABLE)) 11760 netdev->gso_partial_features |= NETIF_F_GSO_UDP_TUNNEL_CSUM; 11761 11762 netdev->gso_partial_features |= NETIF_F_GSO_GRE_CSUM; 11763 11764 netdev->hw_enc_features |= hw_enc_features; 11765 11766 /* record features VLANs can make use of */ 11767 netdev->vlan_features |= hw_enc_features | NETIF_F_TSO_MANGLEID; 11768 11769 if (!(pf->flags & I40E_FLAG_MFP_ENABLED)) 11770 netdev->hw_features |= NETIF_F_NTUPLE | NETIF_F_HW_TC; 11771 11772 hw_features = hw_enc_features | 11773 NETIF_F_HW_VLAN_CTAG_TX | 11774 NETIF_F_HW_VLAN_CTAG_RX; 11775 11776 netdev->hw_features |= hw_features; 11777 11778 netdev->features |= hw_features | NETIF_F_HW_VLAN_CTAG_FILTER; 11779 netdev->hw_enc_features |= NETIF_F_TSO_MANGLEID; 11780 11781 if (vsi->type == I40E_VSI_MAIN) { 11782 SET_NETDEV_DEV(netdev, &pf->pdev->dev); 11783 ether_addr_copy(mac_addr, hw->mac.perm_addr); 11784 /* The following steps are necessary for two reasons. First, 11785 * some older NVM configurations load a default MAC-VLAN 11786 * filter that will accept any tagged packet, and we want to 11787 * replace this with a normal filter. Additionally, it is 11788 * possible our MAC address was provided by the platform using 11789 * Open Firmware or similar. 11790 * 11791 * Thus, we need to remove the default filter and install one 11792 * specific to the MAC address. 11793 */ 11794 i40e_rm_default_mac_filter(vsi, mac_addr); 11795 spin_lock_bh(&vsi->mac_filter_hash_lock); 11796 i40e_add_mac_filter(vsi, mac_addr); 11797 spin_unlock_bh(&vsi->mac_filter_hash_lock); 11798 } else { 11799 /* Relate the VSI_VMDQ name to the VSI_MAIN name. Note that we 11800 * are still limited by IFNAMSIZ, but we're adding 'v%d\0' to 11801 * the end, which is 4 bytes long, so force truncation of the 11802 * original name by IFNAMSIZ - 4 11803 */ 11804 snprintf(netdev->name, IFNAMSIZ, "%.*sv%%d", 11805 IFNAMSIZ - 4, 11806 pf->vsi[pf->lan_vsi]->netdev->name); 11807 random_ether_addr(mac_addr); 11808 11809 spin_lock_bh(&vsi->mac_filter_hash_lock); 11810 i40e_add_mac_filter(vsi, mac_addr); 11811 spin_unlock_bh(&vsi->mac_filter_hash_lock); 11812 } 11813 11814 /* Add the broadcast filter so that we initially will receive 11815 * broadcast packets. Note that when a new VLAN is first added the 11816 * driver will convert all filters marked I40E_VLAN_ANY into VLAN 11817 * specific filters as part of transitioning into "vlan" operation. 11818 * When more VLANs are added, the driver will copy each existing MAC 11819 * filter and add it for the new VLAN. 11820 * 11821 * Broadcast filters are handled specially by 11822 * i40e_sync_filters_subtask, as the driver must to set the broadcast 11823 * promiscuous bit instead of adding this directly as a MAC/VLAN 11824 * filter. The subtask will update the correct broadcast promiscuous 11825 * bits as VLANs become active or inactive. 11826 */ 11827 eth_broadcast_addr(broadcast); 11828 spin_lock_bh(&vsi->mac_filter_hash_lock); 11829 i40e_add_mac_filter(vsi, broadcast); 11830 spin_unlock_bh(&vsi->mac_filter_hash_lock); 11831 11832 ether_addr_copy(netdev->dev_addr, mac_addr); 11833 ether_addr_copy(netdev->perm_addr, mac_addr); 11834 11835 netdev->priv_flags |= IFF_UNICAST_FLT; 11836 netdev->priv_flags |= IFF_SUPP_NOFCS; 11837 /* Setup netdev TC information */ 11838 i40e_vsi_config_netdev_tc(vsi, vsi->tc_config.enabled_tc); 11839 11840 netdev->netdev_ops = &i40e_netdev_ops; 11841 netdev->watchdog_timeo = 5 * HZ; 11842 i40e_set_ethtool_ops(netdev); 11843 11844 /* MTU range: 68 - 9706 */ 11845 netdev->min_mtu = ETH_MIN_MTU; 11846 netdev->max_mtu = I40E_MAX_RXBUFFER - I40E_PACKET_HDR_PAD; 11847 11848 return 0; 11849 } 11850 11851 /** 11852 * i40e_vsi_delete - Delete a VSI from the switch 11853 * @vsi: the VSI being removed 11854 * 11855 * Returns 0 on success, negative value on failure 11856 **/ 11857 static void i40e_vsi_delete(struct i40e_vsi *vsi) 11858 { 11859 /* remove default VSI is not allowed */ 11860 if (vsi == vsi->back->vsi[vsi->back->lan_vsi]) 11861 return; 11862 11863 i40e_aq_delete_element(&vsi->back->hw, vsi->seid, NULL); 11864 } 11865 11866 /** 11867 * i40e_is_vsi_uplink_mode_veb - Check if the VSI's uplink bridge mode is VEB 11868 * @vsi: the VSI being queried 11869 * 11870 * Returns 1 if HW bridge mode is VEB and return 0 in case of VEPA mode 11871 **/ 11872 int i40e_is_vsi_uplink_mode_veb(struct i40e_vsi *vsi) 11873 { 11874 struct i40e_veb *veb; 11875 struct i40e_pf *pf = vsi->back; 11876 11877 /* Uplink is not a bridge so default to VEB */ 11878 if (vsi->veb_idx == I40E_NO_VEB) 11879 return 1; 11880 11881 veb = pf->veb[vsi->veb_idx]; 11882 if (!veb) { 11883 dev_info(&pf->pdev->dev, 11884 "There is no veb associated with the bridge\n"); 11885 return -ENOENT; 11886 } 11887 11888 /* Uplink is a bridge in VEPA mode */ 11889 if (veb->bridge_mode & BRIDGE_MODE_VEPA) { 11890 return 0; 11891 } else { 11892 /* Uplink is a bridge in VEB mode */ 11893 return 1; 11894 } 11895 11896 /* VEPA is now default bridge, so return 0 */ 11897 return 0; 11898 } 11899 11900 /** 11901 * i40e_add_vsi - Add a VSI to the switch 11902 * @vsi: the VSI being configured 11903 * 11904 * This initializes a VSI context depending on the VSI type to be added and 11905 * passes it down to the add_vsi aq command. 11906 **/ 11907 static int i40e_add_vsi(struct i40e_vsi *vsi) 11908 { 11909 int ret = -ENODEV; 11910 struct i40e_pf *pf = vsi->back; 11911 struct i40e_hw *hw = &pf->hw; 11912 struct i40e_vsi_context ctxt; 11913 struct i40e_mac_filter *f; 11914 struct hlist_node *h; 11915 int bkt; 11916 11917 u8 enabled_tc = 0x1; /* TC0 enabled */ 11918 int f_count = 0; 11919 11920 memset(&ctxt, 0, sizeof(ctxt)); 11921 switch (vsi->type) { 11922 case I40E_VSI_MAIN: 11923 /* The PF's main VSI is already setup as part of the 11924 * device initialization, so we'll not bother with 11925 * the add_vsi call, but we will retrieve the current 11926 * VSI context. 11927 */ 11928 ctxt.seid = pf->main_vsi_seid; 11929 ctxt.pf_num = pf->hw.pf_id; 11930 ctxt.vf_num = 0; 11931 ret = i40e_aq_get_vsi_params(&pf->hw, &ctxt, NULL); 11932 ctxt.flags = I40E_AQ_VSI_TYPE_PF; 11933 if (ret) { 11934 dev_info(&pf->pdev->dev, 11935 "couldn't get PF vsi config, err %s aq_err %s\n", 11936 i40e_stat_str(&pf->hw, ret), 11937 i40e_aq_str(&pf->hw, 11938 pf->hw.aq.asq_last_status)); 11939 return -ENOENT; 11940 } 11941 vsi->info = ctxt.info; 11942 vsi->info.valid_sections = 0; 11943 11944 vsi->seid = ctxt.seid; 11945 vsi->id = ctxt.vsi_number; 11946 11947 enabled_tc = i40e_pf_get_tc_map(pf); 11948 11949 /* Source pruning is enabled by default, so the flag is 11950 * negative logic - if it's set, we need to fiddle with 11951 * the VSI to disable source pruning. 11952 */ 11953 if (pf->flags & I40E_FLAG_SOURCE_PRUNING_DISABLED) { 11954 memset(&ctxt, 0, sizeof(ctxt)); 11955 ctxt.seid = pf->main_vsi_seid; 11956 ctxt.pf_num = pf->hw.pf_id; 11957 ctxt.vf_num = 0; 11958 ctxt.info.valid_sections |= 11959 cpu_to_le16(I40E_AQ_VSI_PROP_SWITCH_VALID); 11960 ctxt.info.switch_id = 11961 cpu_to_le16(I40E_AQ_VSI_SW_ID_FLAG_LOCAL_LB); 11962 ret = i40e_aq_update_vsi_params(hw, &ctxt, NULL); 11963 if (ret) { 11964 dev_info(&pf->pdev->dev, 11965 "update vsi failed, err %s aq_err %s\n", 11966 i40e_stat_str(&pf->hw, ret), 11967 i40e_aq_str(&pf->hw, 11968 pf->hw.aq.asq_last_status)); 11969 ret = -ENOENT; 11970 goto err; 11971 } 11972 } 11973 11974 /* MFP mode setup queue map and update VSI */ 11975 if ((pf->flags & I40E_FLAG_MFP_ENABLED) && 11976 !(pf->hw.func_caps.iscsi)) { /* NIC type PF */ 11977 memset(&ctxt, 0, sizeof(ctxt)); 11978 ctxt.seid = pf->main_vsi_seid; 11979 ctxt.pf_num = pf->hw.pf_id; 11980 ctxt.vf_num = 0; 11981 i40e_vsi_setup_queue_map(vsi, &ctxt, enabled_tc, false); 11982 ret = i40e_aq_update_vsi_params(hw, &ctxt, NULL); 11983 if (ret) { 11984 dev_info(&pf->pdev->dev, 11985 "update vsi failed, err %s aq_err %s\n", 11986 i40e_stat_str(&pf->hw, ret), 11987 i40e_aq_str(&pf->hw, 11988 pf->hw.aq.asq_last_status)); 11989 ret = -ENOENT; 11990 goto err; 11991 } 11992 /* update the local VSI info queue map */ 11993 i40e_vsi_update_queue_map(vsi, &ctxt); 11994 vsi->info.valid_sections = 0; 11995 } else { 11996 /* Default/Main VSI is only enabled for TC0 11997 * reconfigure it to enable all TCs that are 11998 * available on the port in SFP mode. 11999 * For MFP case the iSCSI PF would use this 12000 * flow to enable LAN+iSCSI TC. 12001 */ 12002 ret = i40e_vsi_config_tc(vsi, enabled_tc); 12003 if (ret) { 12004 /* Single TC condition is not fatal, 12005 * message and continue 12006 */ 12007 dev_info(&pf->pdev->dev, 12008 "failed to configure TCs for main VSI tc_map 0x%08x, err %s aq_err %s\n", 12009 enabled_tc, 12010 i40e_stat_str(&pf->hw, ret), 12011 i40e_aq_str(&pf->hw, 12012 pf->hw.aq.asq_last_status)); 12013 } 12014 } 12015 break; 12016 12017 case I40E_VSI_FDIR: 12018 ctxt.pf_num = hw->pf_id; 12019 ctxt.vf_num = 0; 12020 ctxt.uplink_seid = vsi->uplink_seid; 12021 ctxt.connection_type = I40E_AQ_VSI_CONN_TYPE_NORMAL; 12022 ctxt.flags = I40E_AQ_VSI_TYPE_PF; 12023 if ((pf->flags & I40E_FLAG_VEB_MODE_ENABLED) && 12024 (i40e_is_vsi_uplink_mode_veb(vsi))) { 12025 ctxt.info.valid_sections |= 12026 cpu_to_le16(I40E_AQ_VSI_PROP_SWITCH_VALID); 12027 ctxt.info.switch_id = 12028 cpu_to_le16(I40E_AQ_VSI_SW_ID_FLAG_ALLOW_LB); 12029 } 12030 i40e_vsi_setup_queue_map(vsi, &ctxt, enabled_tc, true); 12031 break; 12032 12033 case I40E_VSI_VMDQ2: 12034 ctxt.pf_num = hw->pf_id; 12035 ctxt.vf_num = 0; 12036 ctxt.uplink_seid = vsi->uplink_seid; 12037 ctxt.connection_type = I40E_AQ_VSI_CONN_TYPE_NORMAL; 12038 ctxt.flags = I40E_AQ_VSI_TYPE_VMDQ2; 12039 12040 /* This VSI is connected to VEB so the switch_id 12041 * should be set to zero by default. 12042 */ 12043 if (i40e_is_vsi_uplink_mode_veb(vsi)) { 12044 ctxt.info.valid_sections |= 12045 cpu_to_le16(I40E_AQ_VSI_PROP_SWITCH_VALID); 12046 ctxt.info.switch_id = 12047 cpu_to_le16(I40E_AQ_VSI_SW_ID_FLAG_ALLOW_LB); 12048 } 12049 12050 /* Setup the VSI tx/rx queue map for TC0 only for now */ 12051 i40e_vsi_setup_queue_map(vsi, &ctxt, enabled_tc, true); 12052 break; 12053 12054 case I40E_VSI_SRIOV: 12055 ctxt.pf_num = hw->pf_id; 12056 ctxt.vf_num = vsi->vf_id + hw->func_caps.vf_base_id; 12057 ctxt.uplink_seid = vsi->uplink_seid; 12058 ctxt.connection_type = I40E_AQ_VSI_CONN_TYPE_NORMAL; 12059 ctxt.flags = I40E_AQ_VSI_TYPE_VF; 12060 12061 /* This VSI is connected to VEB so the switch_id 12062 * should be set to zero by default. 12063 */ 12064 if (i40e_is_vsi_uplink_mode_veb(vsi)) { 12065 ctxt.info.valid_sections |= 12066 cpu_to_le16(I40E_AQ_VSI_PROP_SWITCH_VALID); 12067 ctxt.info.switch_id = 12068 cpu_to_le16(I40E_AQ_VSI_SW_ID_FLAG_ALLOW_LB); 12069 } 12070 12071 if (vsi->back->flags & I40E_FLAG_IWARP_ENABLED) { 12072 ctxt.info.valid_sections |= 12073 cpu_to_le16(I40E_AQ_VSI_PROP_QUEUE_OPT_VALID); 12074 ctxt.info.queueing_opt_flags |= 12075 (I40E_AQ_VSI_QUE_OPT_TCP_ENA | 12076 I40E_AQ_VSI_QUE_OPT_RSS_LUT_VSI); 12077 } 12078 12079 ctxt.info.valid_sections |= cpu_to_le16(I40E_AQ_VSI_PROP_VLAN_VALID); 12080 ctxt.info.port_vlan_flags |= I40E_AQ_VSI_PVLAN_MODE_ALL; 12081 if (pf->vf[vsi->vf_id].spoofchk) { 12082 ctxt.info.valid_sections |= 12083 cpu_to_le16(I40E_AQ_VSI_PROP_SECURITY_VALID); 12084 ctxt.info.sec_flags |= 12085 (I40E_AQ_VSI_SEC_FLAG_ENABLE_VLAN_CHK | 12086 I40E_AQ_VSI_SEC_FLAG_ENABLE_MAC_CHK); 12087 } 12088 /* Setup the VSI tx/rx queue map for TC0 only for now */ 12089 i40e_vsi_setup_queue_map(vsi, &ctxt, enabled_tc, true); 12090 break; 12091 12092 case I40E_VSI_IWARP: 12093 /* send down message to iWARP */ 12094 break; 12095 12096 default: 12097 return -ENODEV; 12098 } 12099 12100 if (vsi->type != I40E_VSI_MAIN) { 12101 ret = i40e_aq_add_vsi(hw, &ctxt, NULL); 12102 if (ret) { 12103 dev_info(&vsi->back->pdev->dev, 12104 "add vsi failed, err %s aq_err %s\n", 12105 i40e_stat_str(&pf->hw, ret), 12106 i40e_aq_str(&pf->hw, 12107 pf->hw.aq.asq_last_status)); 12108 ret = -ENOENT; 12109 goto err; 12110 } 12111 vsi->info = ctxt.info; 12112 vsi->info.valid_sections = 0; 12113 vsi->seid = ctxt.seid; 12114 vsi->id = ctxt.vsi_number; 12115 } 12116 12117 vsi->active_filters = 0; 12118 clear_bit(__I40E_VSI_OVERFLOW_PROMISC, vsi->state); 12119 spin_lock_bh(&vsi->mac_filter_hash_lock); 12120 /* If macvlan filters already exist, force them to get loaded */ 12121 hash_for_each_safe(vsi->mac_filter_hash, bkt, h, f, hlist) { 12122 f->state = I40E_FILTER_NEW; 12123 f_count++; 12124 } 12125 spin_unlock_bh(&vsi->mac_filter_hash_lock); 12126 12127 if (f_count) { 12128 vsi->flags |= I40E_VSI_FLAG_FILTER_CHANGED; 12129 pf->flags |= I40E_FLAG_FILTER_SYNC; 12130 } 12131 12132 /* Update VSI BW information */ 12133 ret = i40e_vsi_get_bw_info(vsi); 12134 if (ret) { 12135 dev_info(&pf->pdev->dev, 12136 "couldn't get vsi bw info, err %s aq_err %s\n", 12137 i40e_stat_str(&pf->hw, ret), 12138 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 12139 /* VSI is already added so not tearing that up */ 12140 ret = 0; 12141 } 12142 12143 err: 12144 return ret; 12145 } 12146 12147 /** 12148 * i40e_vsi_release - Delete a VSI and free its resources 12149 * @vsi: the VSI being removed 12150 * 12151 * Returns 0 on success or < 0 on error 12152 **/ 12153 int i40e_vsi_release(struct i40e_vsi *vsi) 12154 { 12155 struct i40e_mac_filter *f; 12156 struct hlist_node *h; 12157 struct i40e_veb *veb = NULL; 12158 struct i40e_pf *pf; 12159 u16 uplink_seid; 12160 int i, n, bkt; 12161 12162 pf = vsi->back; 12163 12164 /* release of a VEB-owner or last VSI is not allowed */ 12165 if (vsi->flags & I40E_VSI_FLAG_VEB_OWNER) { 12166 dev_info(&pf->pdev->dev, "VSI %d has existing VEB %d\n", 12167 vsi->seid, vsi->uplink_seid); 12168 return -ENODEV; 12169 } 12170 if (vsi == pf->vsi[pf->lan_vsi] && 12171 !test_bit(__I40E_DOWN, pf->state)) { 12172 dev_info(&pf->pdev->dev, "Can't remove PF VSI\n"); 12173 return -ENODEV; 12174 } 12175 12176 uplink_seid = vsi->uplink_seid; 12177 if (vsi->type != I40E_VSI_SRIOV) { 12178 if (vsi->netdev_registered) { 12179 vsi->netdev_registered = false; 12180 if (vsi->netdev) { 12181 /* results in a call to i40e_close() */ 12182 unregister_netdev(vsi->netdev); 12183 } 12184 } else { 12185 i40e_vsi_close(vsi); 12186 } 12187 i40e_vsi_disable_irq(vsi); 12188 } 12189 12190 spin_lock_bh(&vsi->mac_filter_hash_lock); 12191 12192 /* clear the sync flag on all filters */ 12193 if (vsi->netdev) { 12194 __dev_uc_unsync(vsi->netdev, NULL); 12195 __dev_mc_unsync(vsi->netdev, NULL); 12196 } 12197 12198 /* make sure any remaining filters are marked for deletion */ 12199 hash_for_each_safe(vsi->mac_filter_hash, bkt, h, f, hlist) 12200 __i40e_del_filter(vsi, f); 12201 12202 spin_unlock_bh(&vsi->mac_filter_hash_lock); 12203 12204 i40e_sync_vsi_filters(vsi); 12205 12206 i40e_vsi_delete(vsi); 12207 i40e_vsi_free_q_vectors(vsi); 12208 if (vsi->netdev) { 12209 free_netdev(vsi->netdev); 12210 vsi->netdev = NULL; 12211 } 12212 i40e_vsi_clear_rings(vsi); 12213 i40e_vsi_clear(vsi); 12214 12215 /* If this was the last thing on the VEB, except for the 12216 * controlling VSI, remove the VEB, which puts the controlling 12217 * VSI onto the next level down in the switch. 12218 * 12219 * Well, okay, there's one more exception here: don't remove 12220 * the orphan VEBs yet. We'll wait for an explicit remove request 12221 * from up the network stack. 12222 */ 12223 for (n = 0, i = 0; i < pf->num_alloc_vsi; i++) { 12224 if (pf->vsi[i] && 12225 pf->vsi[i]->uplink_seid == uplink_seid && 12226 (pf->vsi[i]->flags & I40E_VSI_FLAG_VEB_OWNER) == 0) { 12227 n++; /* count the VSIs */ 12228 } 12229 } 12230 for (i = 0; i < I40E_MAX_VEB; i++) { 12231 if (!pf->veb[i]) 12232 continue; 12233 if (pf->veb[i]->uplink_seid == uplink_seid) 12234 n++; /* count the VEBs */ 12235 if (pf->veb[i]->seid == uplink_seid) 12236 veb = pf->veb[i]; 12237 } 12238 if (n == 0 && veb && veb->uplink_seid != 0) 12239 i40e_veb_release(veb); 12240 12241 return 0; 12242 } 12243 12244 /** 12245 * i40e_vsi_setup_vectors - Set up the q_vectors for the given VSI 12246 * @vsi: ptr to the VSI 12247 * 12248 * This should only be called after i40e_vsi_mem_alloc() which allocates the 12249 * corresponding SW VSI structure and initializes num_queue_pairs for the 12250 * newly allocated VSI. 12251 * 12252 * Returns 0 on success or negative on failure 12253 **/ 12254 static int i40e_vsi_setup_vectors(struct i40e_vsi *vsi) 12255 { 12256 int ret = -ENOENT; 12257 struct i40e_pf *pf = vsi->back; 12258 12259 if (vsi->q_vectors[0]) { 12260 dev_info(&pf->pdev->dev, "VSI %d has existing q_vectors\n", 12261 vsi->seid); 12262 return -EEXIST; 12263 } 12264 12265 if (vsi->base_vector) { 12266 dev_info(&pf->pdev->dev, "VSI %d has non-zero base vector %d\n", 12267 vsi->seid, vsi->base_vector); 12268 return -EEXIST; 12269 } 12270 12271 ret = i40e_vsi_alloc_q_vectors(vsi); 12272 if (ret) { 12273 dev_info(&pf->pdev->dev, 12274 "failed to allocate %d q_vector for VSI %d, ret=%d\n", 12275 vsi->num_q_vectors, vsi->seid, ret); 12276 vsi->num_q_vectors = 0; 12277 goto vector_setup_out; 12278 } 12279 12280 /* In Legacy mode, we do not have to get any other vector since we 12281 * piggyback on the misc/ICR0 for queue interrupts. 12282 */ 12283 if (!(pf->flags & I40E_FLAG_MSIX_ENABLED)) 12284 return ret; 12285 if (vsi->num_q_vectors) 12286 vsi->base_vector = i40e_get_lump(pf, pf->irq_pile, 12287 vsi->num_q_vectors, vsi->idx); 12288 if (vsi->base_vector < 0) { 12289 dev_info(&pf->pdev->dev, 12290 "failed to get tracking for %d vectors for VSI %d, err=%d\n", 12291 vsi->num_q_vectors, vsi->seid, vsi->base_vector); 12292 i40e_vsi_free_q_vectors(vsi); 12293 ret = -ENOENT; 12294 goto vector_setup_out; 12295 } 12296 12297 vector_setup_out: 12298 return ret; 12299 } 12300 12301 /** 12302 * i40e_vsi_reinit_setup - return and reallocate resources for a VSI 12303 * @vsi: pointer to the vsi. 12304 * 12305 * This re-allocates a vsi's queue resources. 12306 * 12307 * Returns pointer to the successfully allocated and configured VSI sw struct 12308 * on success, otherwise returns NULL on failure. 12309 **/ 12310 static struct i40e_vsi *i40e_vsi_reinit_setup(struct i40e_vsi *vsi) 12311 { 12312 u16 alloc_queue_pairs; 12313 struct i40e_pf *pf; 12314 u8 enabled_tc; 12315 int ret; 12316 12317 if (!vsi) 12318 return NULL; 12319 12320 pf = vsi->back; 12321 12322 i40e_put_lump(pf->qp_pile, vsi->base_queue, vsi->idx); 12323 i40e_vsi_clear_rings(vsi); 12324 12325 i40e_vsi_free_arrays(vsi, false); 12326 i40e_set_num_rings_in_vsi(vsi); 12327 ret = i40e_vsi_alloc_arrays(vsi, false); 12328 if (ret) 12329 goto err_vsi; 12330 12331 alloc_queue_pairs = vsi->alloc_queue_pairs * 12332 (i40e_enabled_xdp_vsi(vsi) ? 2 : 1); 12333 12334 ret = i40e_get_lump(pf, pf->qp_pile, alloc_queue_pairs, vsi->idx); 12335 if (ret < 0) { 12336 dev_info(&pf->pdev->dev, 12337 "failed to get tracking for %d queues for VSI %d err %d\n", 12338 alloc_queue_pairs, vsi->seid, ret); 12339 goto err_vsi; 12340 } 12341 vsi->base_queue = ret; 12342 12343 /* Update the FW view of the VSI. Force a reset of TC and queue 12344 * layout configurations. 12345 */ 12346 enabled_tc = pf->vsi[pf->lan_vsi]->tc_config.enabled_tc; 12347 pf->vsi[pf->lan_vsi]->tc_config.enabled_tc = 0; 12348 pf->vsi[pf->lan_vsi]->seid = pf->main_vsi_seid; 12349 i40e_vsi_config_tc(pf->vsi[pf->lan_vsi], enabled_tc); 12350 if (vsi->type == I40E_VSI_MAIN) 12351 i40e_rm_default_mac_filter(vsi, pf->hw.mac.perm_addr); 12352 12353 /* assign it some queues */ 12354 ret = i40e_alloc_rings(vsi); 12355 if (ret) 12356 goto err_rings; 12357 12358 /* map all of the rings to the q_vectors */ 12359 i40e_vsi_map_rings_to_vectors(vsi); 12360 return vsi; 12361 12362 err_rings: 12363 i40e_vsi_free_q_vectors(vsi); 12364 if (vsi->netdev_registered) { 12365 vsi->netdev_registered = false; 12366 unregister_netdev(vsi->netdev); 12367 free_netdev(vsi->netdev); 12368 vsi->netdev = NULL; 12369 } 12370 i40e_aq_delete_element(&pf->hw, vsi->seid, NULL); 12371 err_vsi: 12372 i40e_vsi_clear(vsi); 12373 return NULL; 12374 } 12375 12376 /** 12377 * i40e_vsi_setup - Set up a VSI by a given type 12378 * @pf: board private structure 12379 * @type: VSI type 12380 * @uplink_seid: the switch element to link to 12381 * @param1: usage depends upon VSI type. For VF types, indicates VF id 12382 * 12383 * This allocates the sw VSI structure and its queue resources, then add a VSI 12384 * to the identified VEB. 12385 * 12386 * Returns pointer to the successfully allocated and configure VSI sw struct on 12387 * success, otherwise returns NULL on failure. 12388 **/ 12389 struct i40e_vsi *i40e_vsi_setup(struct i40e_pf *pf, u8 type, 12390 u16 uplink_seid, u32 param1) 12391 { 12392 struct i40e_vsi *vsi = NULL; 12393 struct i40e_veb *veb = NULL; 12394 u16 alloc_queue_pairs; 12395 int ret, i; 12396 int v_idx; 12397 12398 /* The requested uplink_seid must be either 12399 * - the PF's port seid 12400 * no VEB is needed because this is the PF 12401 * or this is a Flow Director special case VSI 12402 * - seid of an existing VEB 12403 * - seid of a VSI that owns an existing VEB 12404 * - seid of a VSI that doesn't own a VEB 12405 * a new VEB is created and the VSI becomes the owner 12406 * - seid of the PF VSI, which is what creates the first VEB 12407 * this is a special case of the previous 12408 * 12409 * Find which uplink_seid we were given and create a new VEB if needed 12410 */ 12411 for (i = 0; i < I40E_MAX_VEB; i++) { 12412 if (pf->veb[i] && pf->veb[i]->seid == uplink_seid) { 12413 veb = pf->veb[i]; 12414 break; 12415 } 12416 } 12417 12418 if (!veb && uplink_seid != pf->mac_seid) { 12419 12420 for (i = 0; i < pf->num_alloc_vsi; i++) { 12421 if (pf->vsi[i] && pf->vsi[i]->seid == uplink_seid) { 12422 vsi = pf->vsi[i]; 12423 break; 12424 } 12425 } 12426 if (!vsi) { 12427 dev_info(&pf->pdev->dev, "no such uplink_seid %d\n", 12428 uplink_seid); 12429 return NULL; 12430 } 12431 12432 if (vsi->uplink_seid == pf->mac_seid) 12433 veb = i40e_veb_setup(pf, 0, pf->mac_seid, vsi->seid, 12434 vsi->tc_config.enabled_tc); 12435 else if ((vsi->flags & I40E_VSI_FLAG_VEB_OWNER) == 0) 12436 veb = i40e_veb_setup(pf, 0, vsi->uplink_seid, vsi->seid, 12437 vsi->tc_config.enabled_tc); 12438 if (veb) { 12439 if (vsi->seid != pf->vsi[pf->lan_vsi]->seid) { 12440 dev_info(&vsi->back->pdev->dev, 12441 "New VSI creation error, uplink seid of LAN VSI expected.\n"); 12442 return NULL; 12443 } 12444 /* We come up by default in VEPA mode if SRIOV is not 12445 * already enabled, in which case we can't force VEPA 12446 * mode. 12447 */ 12448 if (!(pf->flags & I40E_FLAG_VEB_MODE_ENABLED)) { 12449 veb->bridge_mode = BRIDGE_MODE_VEPA; 12450 pf->flags &= ~I40E_FLAG_VEB_MODE_ENABLED; 12451 } 12452 i40e_config_bridge_mode(veb); 12453 } 12454 for (i = 0; i < I40E_MAX_VEB && !veb; i++) { 12455 if (pf->veb[i] && pf->veb[i]->seid == vsi->uplink_seid) 12456 veb = pf->veb[i]; 12457 } 12458 if (!veb) { 12459 dev_info(&pf->pdev->dev, "couldn't add VEB\n"); 12460 return NULL; 12461 } 12462 12463 vsi->flags |= I40E_VSI_FLAG_VEB_OWNER; 12464 uplink_seid = veb->seid; 12465 } 12466 12467 /* get vsi sw struct */ 12468 v_idx = i40e_vsi_mem_alloc(pf, type); 12469 if (v_idx < 0) 12470 goto err_alloc; 12471 vsi = pf->vsi[v_idx]; 12472 if (!vsi) 12473 goto err_alloc; 12474 vsi->type = type; 12475 vsi->veb_idx = (veb ? veb->idx : I40E_NO_VEB); 12476 12477 if (type == I40E_VSI_MAIN) 12478 pf->lan_vsi = v_idx; 12479 else if (type == I40E_VSI_SRIOV) 12480 vsi->vf_id = param1; 12481 /* assign it some queues */ 12482 alloc_queue_pairs = vsi->alloc_queue_pairs * 12483 (i40e_enabled_xdp_vsi(vsi) ? 2 : 1); 12484 12485 ret = i40e_get_lump(pf, pf->qp_pile, alloc_queue_pairs, vsi->idx); 12486 if (ret < 0) { 12487 dev_info(&pf->pdev->dev, 12488 "failed to get tracking for %d queues for VSI %d err=%d\n", 12489 alloc_queue_pairs, vsi->seid, ret); 12490 goto err_vsi; 12491 } 12492 vsi->base_queue = ret; 12493 12494 /* get a VSI from the hardware */ 12495 vsi->uplink_seid = uplink_seid; 12496 ret = i40e_add_vsi(vsi); 12497 if (ret) 12498 goto err_vsi; 12499 12500 switch (vsi->type) { 12501 /* setup the netdev if needed */ 12502 case I40E_VSI_MAIN: 12503 case I40E_VSI_VMDQ2: 12504 ret = i40e_config_netdev(vsi); 12505 if (ret) 12506 goto err_netdev; 12507 ret = register_netdev(vsi->netdev); 12508 if (ret) 12509 goto err_netdev; 12510 vsi->netdev_registered = true; 12511 netif_carrier_off(vsi->netdev); 12512 #ifdef CONFIG_I40E_DCB 12513 /* Setup DCB netlink interface */ 12514 i40e_dcbnl_setup(vsi); 12515 #endif /* CONFIG_I40E_DCB */ 12516 /* fall through */ 12517 12518 case I40E_VSI_FDIR: 12519 /* set up vectors and rings if needed */ 12520 ret = i40e_vsi_setup_vectors(vsi); 12521 if (ret) 12522 goto err_msix; 12523 12524 ret = i40e_alloc_rings(vsi); 12525 if (ret) 12526 goto err_rings; 12527 12528 /* map all of the rings to the q_vectors */ 12529 i40e_vsi_map_rings_to_vectors(vsi); 12530 12531 i40e_vsi_reset_stats(vsi); 12532 break; 12533 12534 default: 12535 /* no netdev or rings for the other VSI types */ 12536 break; 12537 } 12538 12539 if ((pf->hw_features & I40E_HW_RSS_AQ_CAPABLE) && 12540 (vsi->type == I40E_VSI_VMDQ2)) { 12541 ret = i40e_vsi_config_rss(vsi); 12542 } 12543 return vsi; 12544 12545 err_rings: 12546 i40e_vsi_free_q_vectors(vsi); 12547 err_msix: 12548 if (vsi->netdev_registered) { 12549 vsi->netdev_registered = false; 12550 unregister_netdev(vsi->netdev); 12551 free_netdev(vsi->netdev); 12552 vsi->netdev = NULL; 12553 } 12554 err_netdev: 12555 i40e_aq_delete_element(&pf->hw, vsi->seid, NULL); 12556 err_vsi: 12557 i40e_vsi_clear(vsi); 12558 err_alloc: 12559 return NULL; 12560 } 12561 12562 /** 12563 * i40e_veb_get_bw_info - Query VEB BW information 12564 * @veb: the veb to query 12565 * 12566 * Query the Tx scheduler BW configuration data for given VEB 12567 **/ 12568 static int i40e_veb_get_bw_info(struct i40e_veb *veb) 12569 { 12570 struct i40e_aqc_query_switching_comp_ets_config_resp ets_data; 12571 struct i40e_aqc_query_switching_comp_bw_config_resp bw_data; 12572 struct i40e_pf *pf = veb->pf; 12573 struct i40e_hw *hw = &pf->hw; 12574 u32 tc_bw_max; 12575 int ret = 0; 12576 int i; 12577 12578 ret = i40e_aq_query_switch_comp_bw_config(hw, veb->seid, 12579 &bw_data, NULL); 12580 if (ret) { 12581 dev_info(&pf->pdev->dev, 12582 "query veb bw config failed, err %s aq_err %s\n", 12583 i40e_stat_str(&pf->hw, ret), 12584 i40e_aq_str(&pf->hw, hw->aq.asq_last_status)); 12585 goto out; 12586 } 12587 12588 ret = i40e_aq_query_switch_comp_ets_config(hw, veb->seid, 12589 &ets_data, NULL); 12590 if (ret) { 12591 dev_info(&pf->pdev->dev, 12592 "query veb bw ets config failed, err %s aq_err %s\n", 12593 i40e_stat_str(&pf->hw, ret), 12594 i40e_aq_str(&pf->hw, hw->aq.asq_last_status)); 12595 goto out; 12596 } 12597 12598 veb->bw_limit = le16_to_cpu(ets_data.port_bw_limit); 12599 veb->bw_max_quanta = ets_data.tc_bw_max; 12600 veb->is_abs_credits = bw_data.absolute_credits_enable; 12601 veb->enabled_tc = ets_data.tc_valid_bits; 12602 tc_bw_max = le16_to_cpu(bw_data.tc_bw_max[0]) | 12603 (le16_to_cpu(bw_data.tc_bw_max[1]) << 16); 12604 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 12605 veb->bw_tc_share_credits[i] = bw_data.tc_bw_share_credits[i]; 12606 veb->bw_tc_limit_credits[i] = 12607 le16_to_cpu(bw_data.tc_bw_limits[i]); 12608 veb->bw_tc_max_quanta[i] = ((tc_bw_max >> (i*4)) & 0x7); 12609 } 12610 12611 out: 12612 return ret; 12613 } 12614 12615 /** 12616 * i40e_veb_mem_alloc - Allocates the next available struct veb in the PF 12617 * @pf: board private structure 12618 * 12619 * On error: returns error code (negative) 12620 * On success: returns vsi index in PF (positive) 12621 **/ 12622 static int i40e_veb_mem_alloc(struct i40e_pf *pf) 12623 { 12624 int ret = -ENOENT; 12625 struct i40e_veb *veb; 12626 int i; 12627 12628 /* Need to protect the allocation of switch elements at the PF level */ 12629 mutex_lock(&pf->switch_mutex); 12630 12631 /* VEB list may be fragmented if VEB creation/destruction has 12632 * been happening. We can afford to do a quick scan to look 12633 * for any free slots in the list. 12634 * 12635 * find next empty veb slot, looping back around if necessary 12636 */ 12637 i = 0; 12638 while ((i < I40E_MAX_VEB) && (pf->veb[i] != NULL)) 12639 i++; 12640 if (i >= I40E_MAX_VEB) { 12641 ret = -ENOMEM; 12642 goto err_alloc_veb; /* out of VEB slots! */ 12643 } 12644 12645 veb = kzalloc(sizeof(*veb), GFP_KERNEL); 12646 if (!veb) { 12647 ret = -ENOMEM; 12648 goto err_alloc_veb; 12649 } 12650 veb->pf = pf; 12651 veb->idx = i; 12652 veb->enabled_tc = 1; 12653 12654 pf->veb[i] = veb; 12655 ret = i; 12656 err_alloc_veb: 12657 mutex_unlock(&pf->switch_mutex); 12658 return ret; 12659 } 12660 12661 /** 12662 * i40e_switch_branch_release - Delete a branch of the switch tree 12663 * @branch: where to start deleting 12664 * 12665 * This uses recursion to find the tips of the branch to be 12666 * removed, deleting until we get back to and can delete this VEB. 12667 **/ 12668 static void i40e_switch_branch_release(struct i40e_veb *branch) 12669 { 12670 struct i40e_pf *pf = branch->pf; 12671 u16 branch_seid = branch->seid; 12672 u16 veb_idx = branch->idx; 12673 int i; 12674 12675 /* release any VEBs on this VEB - RECURSION */ 12676 for (i = 0; i < I40E_MAX_VEB; i++) { 12677 if (!pf->veb[i]) 12678 continue; 12679 if (pf->veb[i]->uplink_seid == branch->seid) 12680 i40e_switch_branch_release(pf->veb[i]); 12681 } 12682 12683 /* Release the VSIs on this VEB, but not the owner VSI. 12684 * 12685 * NOTE: Removing the last VSI on a VEB has the SIDE EFFECT of removing 12686 * the VEB itself, so don't use (*branch) after this loop. 12687 */ 12688 for (i = 0; i < pf->num_alloc_vsi; i++) { 12689 if (!pf->vsi[i]) 12690 continue; 12691 if (pf->vsi[i]->uplink_seid == branch_seid && 12692 (pf->vsi[i]->flags & I40E_VSI_FLAG_VEB_OWNER) == 0) { 12693 i40e_vsi_release(pf->vsi[i]); 12694 } 12695 } 12696 12697 /* There's one corner case where the VEB might not have been 12698 * removed, so double check it here and remove it if needed. 12699 * This case happens if the veb was created from the debugfs 12700 * commands and no VSIs were added to it. 12701 */ 12702 if (pf->veb[veb_idx]) 12703 i40e_veb_release(pf->veb[veb_idx]); 12704 } 12705 12706 /** 12707 * i40e_veb_clear - remove veb struct 12708 * @veb: the veb to remove 12709 **/ 12710 static void i40e_veb_clear(struct i40e_veb *veb) 12711 { 12712 if (!veb) 12713 return; 12714 12715 if (veb->pf) { 12716 struct i40e_pf *pf = veb->pf; 12717 12718 mutex_lock(&pf->switch_mutex); 12719 if (pf->veb[veb->idx] == veb) 12720 pf->veb[veb->idx] = NULL; 12721 mutex_unlock(&pf->switch_mutex); 12722 } 12723 12724 kfree(veb); 12725 } 12726 12727 /** 12728 * i40e_veb_release - Delete a VEB and free its resources 12729 * @veb: the VEB being removed 12730 **/ 12731 void i40e_veb_release(struct i40e_veb *veb) 12732 { 12733 struct i40e_vsi *vsi = NULL; 12734 struct i40e_pf *pf; 12735 int i, n = 0; 12736 12737 pf = veb->pf; 12738 12739 /* find the remaining VSI and check for extras */ 12740 for (i = 0; i < pf->num_alloc_vsi; i++) { 12741 if (pf->vsi[i] && pf->vsi[i]->uplink_seid == veb->seid) { 12742 n++; 12743 vsi = pf->vsi[i]; 12744 } 12745 } 12746 if (n != 1) { 12747 dev_info(&pf->pdev->dev, 12748 "can't remove VEB %d with %d VSIs left\n", 12749 veb->seid, n); 12750 return; 12751 } 12752 12753 /* move the remaining VSI to uplink veb */ 12754 vsi->flags &= ~I40E_VSI_FLAG_VEB_OWNER; 12755 if (veb->uplink_seid) { 12756 vsi->uplink_seid = veb->uplink_seid; 12757 if (veb->uplink_seid == pf->mac_seid) 12758 vsi->veb_idx = I40E_NO_VEB; 12759 else 12760 vsi->veb_idx = veb->veb_idx; 12761 } else { 12762 /* floating VEB */ 12763 vsi->uplink_seid = pf->vsi[pf->lan_vsi]->uplink_seid; 12764 vsi->veb_idx = pf->vsi[pf->lan_vsi]->veb_idx; 12765 } 12766 12767 i40e_aq_delete_element(&pf->hw, veb->seid, NULL); 12768 i40e_veb_clear(veb); 12769 } 12770 12771 /** 12772 * i40e_add_veb - create the VEB in the switch 12773 * @veb: the VEB to be instantiated 12774 * @vsi: the controlling VSI 12775 **/ 12776 static int i40e_add_veb(struct i40e_veb *veb, struct i40e_vsi *vsi) 12777 { 12778 struct i40e_pf *pf = veb->pf; 12779 bool enable_stats = !!(pf->flags & I40E_FLAG_VEB_STATS_ENABLED); 12780 int ret; 12781 12782 ret = i40e_aq_add_veb(&pf->hw, veb->uplink_seid, vsi->seid, 12783 veb->enabled_tc, false, 12784 &veb->seid, enable_stats, NULL); 12785 12786 /* get a VEB from the hardware */ 12787 if (ret) { 12788 dev_info(&pf->pdev->dev, 12789 "couldn't add VEB, err %s aq_err %s\n", 12790 i40e_stat_str(&pf->hw, ret), 12791 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 12792 return -EPERM; 12793 } 12794 12795 /* get statistics counter */ 12796 ret = i40e_aq_get_veb_parameters(&pf->hw, veb->seid, NULL, NULL, 12797 &veb->stats_idx, NULL, NULL, NULL); 12798 if (ret) { 12799 dev_info(&pf->pdev->dev, 12800 "couldn't get VEB statistics idx, err %s aq_err %s\n", 12801 i40e_stat_str(&pf->hw, ret), 12802 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 12803 return -EPERM; 12804 } 12805 ret = i40e_veb_get_bw_info(veb); 12806 if (ret) { 12807 dev_info(&pf->pdev->dev, 12808 "couldn't get VEB bw info, err %s aq_err %s\n", 12809 i40e_stat_str(&pf->hw, ret), 12810 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 12811 i40e_aq_delete_element(&pf->hw, veb->seid, NULL); 12812 return -ENOENT; 12813 } 12814 12815 vsi->uplink_seid = veb->seid; 12816 vsi->veb_idx = veb->idx; 12817 vsi->flags |= I40E_VSI_FLAG_VEB_OWNER; 12818 12819 return 0; 12820 } 12821 12822 /** 12823 * i40e_veb_setup - Set up a VEB 12824 * @pf: board private structure 12825 * @flags: VEB setup flags 12826 * @uplink_seid: the switch element to link to 12827 * @vsi_seid: the initial VSI seid 12828 * @enabled_tc: Enabled TC bit-map 12829 * 12830 * This allocates the sw VEB structure and links it into the switch 12831 * It is possible and legal for this to be a duplicate of an already 12832 * existing VEB. It is also possible for both uplink and vsi seids 12833 * to be zero, in order to create a floating VEB. 12834 * 12835 * Returns pointer to the successfully allocated VEB sw struct on 12836 * success, otherwise returns NULL on failure. 12837 **/ 12838 struct i40e_veb *i40e_veb_setup(struct i40e_pf *pf, u16 flags, 12839 u16 uplink_seid, u16 vsi_seid, 12840 u8 enabled_tc) 12841 { 12842 struct i40e_veb *veb, *uplink_veb = NULL; 12843 int vsi_idx, veb_idx; 12844 int ret; 12845 12846 /* if one seid is 0, the other must be 0 to create a floating relay */ 12847 if ((uplink_seid == 0 || vsi_seid == 0) && 12848 (uplink_seid + vsi_seid != 0)) { 12849 dev_info(&pf->pdev->dev, 12850 "one, not both seid's are 0: uplink=%d vsi=%d\n", 12851 uplink_seid, vsi_seid); 12852 return NULL; 12853 } 12854 12855 /* make sure there is such a vsi and uplink */ 12856 for (vsi_idx = 0; vsi_idx < pf->num_alloc_vsi; vsi_idx++) 12857 if (pf->vsi[vsi_idx] && pf->vsi[vsi_idx]->seid == vsi_seid) 12858 break; 12859 if (vsi_idx >= pf->num_alloc_vsi && vsi_seid != 0) { 12860 dev_info(&pf->pdev->dev, "vsi seid %d not found\n", 12861 vsi_seid); 12862 return NULL; 12863 } 12864 12865 if (uplink_seid && uplink_seid != pf->mac_seid) { 12866 for (veb_idx = 0; veb_idx < I40E_MAX_VEB; veb_idx++) { 12867 if (pf->veb[veb_idx] && 12868 pf->veb[veb_idx]->seid == uplink_seid) { 12869 uplink_veb = pf->veb[veb_idx]; 12870 break; 12871 } 12872 } 12873 if (!uplink_veb) { 12874 dev_info(&pf->pdev->dev, 12875 "uplink seid %d not found\n", uplink_seid); 12876 return NULL; 12877 } 12878 } 12879 12880 /* get veb sw struct */ 12881 veb_idx = i40e_veb_mem_alloc(pf); 12882 if (veb_idx < 0) 12883 goto err_alloc; 12884 veb = pf->veb[veb_idx]; 12885 veb->flags = flags; 12886 veb->uplink_seid = uplink_seid; 12887 veb->veb_idx = (uplink_veb ? uplink_veb->idx : I40E_NO_VEB); 12888 veb->enabled_tc = (enabled_tc ? enabled_tc : 0x1); 12889 12890 /* create the VEB in the switch */ 12891 ret = i40e_add_veb(veb, pf->vsi[vsi_idx]); 12892 if (ret) 12893 goto err_veb; 12894 if (vsi_idx == pf->lan_vsi) 12895 pf->lan_veb = veb->idx; 12896 12897 return veb; 12898 12899 err_veb: 12900 i40e_veb_clear(veb); 12901 err_alloc: 12902 return NULL; 12903 } 12904 12905 /** 12906 * i40e_setup_pf_switch_element - set PF vars based on switch type 12907 * @pf: board private structure 12908 * @ele: element we are building info from 12909 * @num_reported: total number of elements 12910 * @printconfig: should we print the contents 12911 * 12912 * helper function to assist in extracting a few useful SEID values. 12913 **/ 12914 static void i40e_setup_pf_switch_element(struct i40e_pf *pf, 12915 struct i40e_aqc_switch_config_element_resp *ele, 12916 u16 num_reported, bool printconfig) 12917 { 12918 u16 downlink_seid = le16_to_cpu(ele->downlink_seid); 12919 u16 uplink_seid = le16_to_cpu(ele->uplink_seid); 12920 u8 element_type = ele->element_type; 12921 u16 seid = le16_to_cpu(ele->seid); 12922 12923 if (printconfig) 12924 dev_info(&pf->pdev->dev, 12925 "type=%d seid=%d uplink=%d downlink=%d\n", 12926 element_type, seid, uplink_seid, downlink_seid); 12927 12928 switch (element_type) { 12929 case I40E_SWITCH_ELEMENT_TYPE_MAC: 12930 pf->mac_seid = seid; 12931 break; 12932 case I40E_SWITCH_ELEMENT_TYPE_VEB: 12933 /* Main VEB? */ 12934 if (uplink_seid != pf->mac_seid) 12935 break; 12936 if (pf->lan_veb == I40E_NO_VEB) { 12937 int v; 12938 12939 /* find existing or else empty VEB */ 12940 for (v = 0; v < I40E_MAX_VEB; v++) { 12941 if (pf->veb[v] && (pf->veb[v]->seid == seid)) { 12942 pf->lan_veb = v; 12943 break; 12944 } 12945 } 12946 if (pf->lan_veb == I40E_NO_VEB) { 12947 v = i40e_veb_mem_alloc(pf); 12948 if (v < 0) 12949 break; 12950 pf->lan_veb = v; 12951 } 12952 } 12953 12954 pf->veb[pf->lan_veb]->seid = seid; 12955 pf->veb[pf->lan_veb]->uplink_seid = pf->mac_seid; 12956 pf->veb[pf->lan_veb]->pf = pf; 12957 pf->veb[pf->lan_veb]->veb_idx = I40E_NO_VEB; 12958 break; 12959 case I40E_SWITCH_ELEMENT_TYPE_VSI: 12960 if (num_reported != 1) 12961 break; 12962 /* This is immediately after a reset so we can assume this is 12963 * the PF's VSI 12964 */ 12965 pf->mac_seid = uplink_seid; 12966 pf->pf_seid = downlink_seid; 12967 pf->main_vsi_seid = seid; 12968 if (printconfig) 12969 dev_info(&pf->pdev->dev, 12970 "pf_seid=%d main_vsi_seid=%d\n", 12971 pf->pf_seid, pf->main_vsi_seid); 12972 break; 12973 case I40E_SWITCH_ELEMENT_TYPE_PF: 12974 case I40E_SWITCH_ELEMENT_TYPE_VF: 12975 case I40E_SWITCH_ELEMENT_TYPE_EMP: 12976 case I40E_SWITCH_ELEMENT_TYPE_BMC: 12977 case I40E_SWITCH_ELEMENT_TYPE_PE: 12978 case I40E_SWITCH_ELEMENT_TYPE_PA: 12979 /* ignore these for now */ 12980 break; 12981 default: 12982 dev_info(&pf->pdev->dev, "unknown element type=%d seid=%d\n", 12983 element_type, seid); 12984 break; 12985 } 12986 } 12987 12988 /** 12989 * i40e_fetch_switch_configuration - Get switch config from firmware 12990 * @pf: board private structure 12991 * @printconfig: should we print the contents 12992 * 12993 * Get the current switch configuration from the device and 12994 * extract a few useful SEID values. 12995 **/ 12996 int i40e_fetch_switch_configuration(struct i40e_pf *pf, bool printconfig) 12997 { 12998 struct i40e_aqc_get_switch_config_resp *sw_config; 12999 u16 next_seid = 0; 13000 int ret = 0; 13001 u8 *aq_buf; 13002 int i; 13003 13004 aq_buf = kzalloc(I40E_AQ_LARGE_BUF, GFP_KERNEL); 13005 if (!aq_buf) 13006 return -ENOMEM; 13007 13008 sw_config = (struct i40e_aqc_get_switch_config_resp *)aq_buf; 13009 do { 13010 u16 num_reported, num_total; 13011 13012 ret = i40e_aq_get_switch_config(&pf->hw, sw_config, 13013 I40E_AQ_LARGE_BUF, 13014 &next_seid, NULL); 13015 if (ret) { 13016 dev_info(&pf->pdev->dev, 13017 "get switch config failed err %s aq_err %s\n", 13018 i40e_stat_str(&pf->hw, ret), 13019 i40e_aq_str(&pf->hw, 13020 pf->hw.aq.asq_last_status)); 13021 kfree(aq_buf); 13022 return -ENOENT; 13023 } 13024 13025 num_reported = le16_to_cpu(sw_config->header.num_reported); 13026 num_total = le16_to_cpu(sw_config->header.num_total); 13027 13028 if (printconfig) 13029 dev_info(&pf->pdev->dev, 13030 "header: %d reported %d total\n", 13031 num_reported, num_total); 13032 13033 for (i = 0; i < num_reported; i++) { 13034 struct i40e_aqc_switch_config_element_resp *ele = 13035 &sw_config->element[i]; 13036 13037 i40e_setup_pf_switch_element(pf, ele, num_reported, 13038 printconfig); 13039 } 13040 } while (next_seid != 0); 13041 13042 kfree(aq_buf); 13043 return ret; 13044 } 13045 13046 /** 13047 * i40e_setup_pf_switch - Setup the HW switch on startup or after reset 13048 * @pf: board private structure 13049 * @reinit: if the Main VSI needs to re-initialized. 13050 * 13051 * Returns 0 on success, negative value on failure 13052 **/ 13053 static int i40e_setup_pf_switch(struct i40e_pf *pf, bool reinit) 13054 { 13055 u16 flags = 0; 13056 int ret; 13057 13058 /* find out what's out there already */ 13059 ret = i40e_fetch_switch_configuration(pf, false); 13060 if (ret) { 13061 dev_info(&pf->pdev->dev, 13062 "couldn't fetch switch config, err %s aq_err %s\n", 13063 i40e_stat_str(&pf->hw, ret), 13064 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 13065 return ret; 13066 } 13067 i40e_pf_reset_stats(pf); 13068 13069 /* set the switch config bit for the whole device to 13070 * support limited promisc or true promisc 13071 * when user requests promisc. The default is limited 13072 * promisc. 13073 */ 13074 13075 if ((pf->hw.pf_id == 0) && 13076 !(pf->flags & I40E_FLAG_TRUE_PROMISC_SUPPORT)) { 13077 flags = I40E_AQ_SET_SWITCH_CFG_PROMISC; 13078 pf->last_sw_conf_flags = flags; 13079 } 13080 13081 if (pf->hw.pf_id == 0) { 13082 u16 valid_flags; 13083 13084 valid_flags = I40E_AQ_SET_SWITCH_CFG_PROMISC; 13085 ret = i40e_aq_set_switch_config(&pf->hw, flags, valid_flags, 0, 13086 NULL); 13087 if (ret && pf->hw.aq.asq_last_status != I40E_AQ_RC_ESRCH) { 13088 dev_info(&pf->pdev->dev, 13089 "couldn't set switch config bits, err %s aq_err %s\n", 13090 i40e_stat_str(&pf->hw, ret), 13091 i40e_aq_str(&pf->hw, 13092 pf->hw.aq.asq_last_status)); 13093 /* not a fatal problem, just keep going */ 13094 } 13095 pf->last_sw_conf_valid_flags = valid_flags; 13096 } 13097 13098 /* first time setup */ 13099 if (pf->lan_vsi == I40E_NO_VSI || reinit) { 13100 struct i40e_vsi *vsi = NULL; 13101 u16 uplink_seid; 13102 13103 /* Set up the PF VSI associated with the PF's main VSI 13104 * that is already in the HW switch 13105 */ 13106 if (pf->lan_veb != I40E_NO_VEB && pf->veb[pf->lan_veb]) 13107 uplink_seid = pf->veb[pf->lan_veb]->seid; 13108 else 13109 uplink_seid = pf->mac_seid; 13110 if (pf->lan_vsi == I40E_NO_VSI) 13111 vsi = i40e_vsi_setup(pf, I40E_VSI_MAIN, uplink_seid, 0); 13112 else if (reinit) 13113 vsi = i40e_vsi_reinit_setup(pf->vsi[pf->lan_vsi]); 13114 if (!vsi) { 13115 dev_info(&pf->pdev->dev, "setup of MAIN VSI failed\n"); 13116 i40e_cloud_filter_exit(pf); 13117 i40e_fdir_teardown(pf); 13118 return -EAGAIN; 13119 } 13120 } else { 13121 /* force a reset of TC and queue layout configurations */ 13122 u8 enabled_tc = pf->vsi[pf->lan_vsi]->tc_config.enabled_tc; 13123 13124 pf->vsi[pf->lan_vsi]->tc_config.enabled_tc = 0; 13125 pf->vsi[pf->lan_vsi]->seid = pf->main_vsi_seid; 13126 i40e_vsi_config_tc(pf->vsi[pf->lan_vsi], enabled_tc); 13127 } 13128 i40e_vlan_stripping_disable(pf->vsi[pf->lan_vsi]); 13129 13130 i40e_fdir_sb_setup(pf); 13131 13132 /* Setup static PF queue filter control settings */ 13133 ret = i40e_setup_pf_filter_control(pf); 13134 if (ret) { 13135 dev_info(&pf->pdev->dev, "setup_pf_filter_control failed: %d\n", 13136 ret); 13137 /* Failure here should not stop continuing other steps */ 13138 } 13139 13140 /* enable RSS in the HW, even for only one queue, as the stack can use 13141 * the hash 13142 */ 13143 if ((pf->flags & I40E_FLAG_RSS_ENABLED)) 13144 i40e_pf_config_rss(pf); 13145 13146 /* fill in link information and enable LSE reporting */ 13147 i40e_link_event(pf); 13148 13149 /* Initialize user-specific link properties */ 13150 pf->fc_autoneg_status = ((pf->hw.phy.link_info.an_info & 13151 I40E_AQ_AN_COMPLETED) ? true : false); 13152 13153 i40e_ptp_init(pf); 13154 13155 /* repopulate tunnel port filters */ 13156 i40e_sync_udp_filters(pf); 13157 13158 return ret; 13159 } 13160 13161 /** 13162 * i40e_determine_queue_usage - Work out queue distribution 13163 * @pf: board private structure 13164 **/ 13165 static void i40e_determine_queue_usage(struct i40e_pf *pf) 13166 { 13167 int queues_left; 13168 int q_max; 13169 13170 pf->num_lan_qps = 0; 13171 13172 /* Find the max queues to be put into basic use. We'll always be 13173 * using TC0, whether or not DCB is running, and TC0 will get the 13174 * big RSS set. 13175 */ 13176 queues_left = pf->hw.func_caps.num_tx_qp; 13177 13178 if ((queues_left == 1) || 13179 !(pf->flags & I40E_FLAG_MSIX_ENABLED)) { 13180 /* one qp for PF, no queues for anything else */ 13181 queues_left = 0; 13182 pf->alloc_rss_size = pf->num_lan_qps = 1; 13183 13184 /* make sure all the fancies are disabled */ 13185 pf->flags &= ~(I40E_FLAG_RSS_ENABLED | 13186 I40E_FLAG_IWARP_ENABLED | 13187 I40E_FLAG_FD_SB_ENABLED | 13188 I40E_FLAG_FD_ATR_ENABLED | 13189 I40E_FLAG_DCB_CAPABLE | 13190 I40E_FLAG_DCB_ENABLED | 13191 I40E_FLAG_SRIOV_ENABLED | 13192 I40E_FLAG_VMDQ_ENABLED); 13193 pf->flags |= I40E_FLAG_FD_SB_INACTIVE; 13194 } else if (!(pf->flags & (I40E_FLAG_RSS_ENABLED | 13195 I40E_FLAG_FD_SB_ENABLED | 13196 I40E_FLAG_FD_ATR_ENABLED | 13197 I40E_FLAG_DCB_CAPABLE))) { 13198 /* one qp for PF */ 13199 pf->alloc_rss_size = pf->num_lan_qps = 1; 13200 queues_left -= pf->num_lan_qps; 13201 13202 pf->flags &= ~(I40E_FLAG_RSS_ENABLED | 13203 I40E_FLAG_IWARP_ENABLED | 13204 I40E_FLAG_FD_SB_ENABLED | 13205 I40E_FLAG_FD_ATR_ENABLED | 13206 I40E_FLAG_DCB_ENABLED | 13207 I40E_FLAG_VMDQ_ENABLED); 13208 pf->flags |= I40E_FLAG_FD_SB_INACTIVE; 13209 } else { 13210 /* Not enough queues for all TCs */ 13211 if ((pf->flags & I40E_FLAG_DCB_CAPABLE) && 13212 (queues_left < I40E_MAX_TRAFFIC_CLASS)) { 13213 pf->flags &= ~(I40E_FLAG_DCB_CAPABLE | 13214 I40E_FLAG_DCB_ENABLED); 13215 dev_info(&pf->pdev->dev, "not enough queues for DCB. DCB is disabled.\n"); 13216 } 13217 13218 /* limit lan qps to the smaller of qps, cpus or msix */ 13219 q_max = max_t(int, pf->rss_size_max, num_online_cpus()); 13220 q_max = min_t(int, q_max, pf->hw.func_caps.num_tx_qp); 13221 q_max = min_t(int, q_max, pf->hw.func_caps.num_msix_vectors); 13222 pf->num_lan_qps = q_max; 13223 13224 queues_left -= pf->num_lan_qps; 13225 } 13226 13227 if (pf->flags & I40E_FLAG_FD_SB_ENABLED) { 13228 if (queues_left > 1) { 13229 queues_left -= 1; /* save 1 queue for FD */ 13230 } else { 13231 pf->flags &= ~I40E_FLAG_FD_SB_ENABLED; 13232 pf->flags |= I40E_FLAG_FD_SB_INACTIVE; 13233 dev_info(&pf->pdev->dev, "not enough queues for Flow Director. Flow Director feature is disabled\n"); 13234 } 13235 } 13236 13237 if ((pf->flags & I40E_FLAG_SRIOV_ENABLED) && 13238 pf->num_vf_qps && pf->num_req_vfs && queues_left) { 13239 pf->num_req_vfs = min_t(int, pf->num_req_vfs, 13240 (queues_left / pf->num_vf_qps)); 13241 queues_left -= (pf->num_req_vfs * pf->num_vf_qps); 13242 } 13243 13244 if ((pf->flags & I40E_FLAG_VMDQ_ENABLED) && 13245 pf->num_vmdq_vsis && pf->num_vmdq_qps && queues_left) { 13246 pf->num_vmdq_vsis = min_t(int, pf->num_vmdq_vsis, 13247 (queues_left / pf->num_vmdq_qps)); 13248 queues_left -= (pf->num_vmdq_vsis * pf->num_vmdq_qps); 13249 } 13250 13251 pf->queues_left = queues_left; 13252 dev_dbg(&pf->pdev->dev, 13253 "qs_avail=%d FD SB=%d lan_qs=%d lan_tc0=%d vf=%d*%d vmdq=%d*%d, remaining=%d\n", 13254 pf->hw.func_caps.num_tx_qp, 13255 !!(pf->flags & I40E_FLAG_FD_SB_ENABLED), 13256 pf->num_lan_qps, pf->alloc_rss_size, pf->num_req_vfs, 13257 pf->num_vf_qps, pf->num_vmdq_vsis, pf->num_vmdq_qps, 13258 queues_left); 13259 } 13260 13261 /** 13262 * i40e_setup_pf_filter_control - Setup PF static filter control 13263 * @pf: PF to be setup 13264 * 13265 * i40e_setup_pf_filter_control sets up a PF's initial filter control 13266 * settings. If PE/FCoE are enabled then it will also set the per PF 13267 * based filter sizes required for them. It also enables Flow director, 13268 * ethertype and macvlan type filter settings for the pf. 13269 * 13270 * Returns 0 on success, negative on failure 13271 **/ 13272 static int i40e_setup_pf_filter_control(struct i40e_pf *pf) 13273 { 13274 struct i40e_filter_control_settings *settings = &pf->filter_settings; 13275 13276 settings->hash_lut_size = I40E_HASH_LUT_SIZE_128; 13277 13278 /* Flow Director is enabled */ 13279 if (pf->flags & (I40E_FLAG_FD_SB_ENABLED | I40E_FLAG_FD_ATR_ENABLED)) 13280 settings->enable_fdir = true; 13281 13282 /* Ethtype and MACVLAN filters enabled for PF */ 13283 settings->enable_ethtype = true; 13284 settings->enable_macvlan = true; 13285 13286 if (i40e_set_filter_control(&pf->hw, settings)) 13287 return -ENOENT; 13288 13289 return 0; 13290 } 13291 13292 #define INFO_STRING_LEN 255 13293 #define REMAIN(__x) (INFO_STRING_LEN - (__x)) 13294 static void i40e_print_features(struct i40e_pf *pf) 13295 { 13296 struct i40e_hw *hw = &pf->hw; 13297 char *buf; 13298 int i; 13299 13300 buf = kmalloc(INFO_STRING_LEN, GFP_KERNEL); 13301 if (!buf) 13302 return; 13303 13304 i = snprintf(buf, INFO_STRING_LEN, "Features: PF-id[%d]", hw->pf_id); 13305 #ifdef CONFIG_PCI_IOV 13306 i += snprintf(&buf[i], REMAIN(i), " VFs: %d", pf->num_req_vfs); 13307 #endif 13308 i += snprintf(&buf[i], REMAIN(i), " VSIs: %d QP: %d", 13309 pf->hw.func_caps.num_vsis, 13310 pf->vsi[pf->lan_vsi]->num_queue_pairs); 13311 if (pf->flags & I40E_FLAG_RSS_ENABLED) 13312 i += snprintf(&buf[i], REMAIN(i), " RSS"); 13313 if (pf->flags & I40E_FLAG_FD_ATR_ENABLED) 13314 i += snprintf(&buf[i], REMAIN(i), " FD_ATR"); 13315 if (pf->flags & I40E_FLAG_FD_SB_ENABLED) { 13316 i += snprintf(&buf[i], REMAIN(i), " FD_SB"); 13317 i += snprintf(&buf[i], REMAIN(i), " NTUPLE"); 13318 } 13319 if (pf->flags & I40E_FLAG_DCB_CAPABLE) 13320 i += snprintf(&buf[i], REMAIN(i), " DCB"); 13321 i += snprintf(&buf[i], REMAIN(i), " VxLAN"); 13322 i += snprintf(&buf[i], REMAIN(i), " Geneve"); 13323 if (pf->flags & I40E_FLAG_PTP) 13324 i += snprintf(&buf[i], REMAIN(i), " PTP"); 13325 if (pf->flags & I40E_FLAG_VEB_MODE_ENABLED) 13326 i += snprintf(&buf[i], REMAIN(i), " VEB"); 13327 else 13328 i += snprintf(&buf[i], REMAIN(i), " VEPA"); 13329 13330 dev_info(&pf->pdev->dev, "%s\n", buf); 13331 kfree(buf); 13332 WARN_ON(i > INFO_STRING_LEN); 13333 } 13334 13335 /** 13336 * i40e_get_platform_mac_addr - get platform-specific MAC address 13337 * @pdev: PCI device information struct 13338 * @pf: board private structure 13339 * 13340 * Look up the MAC address for the device. First we'll try 13341 * eth_platform_get_mac_address, which will check Open Firmware, or arch 13342 * specific fallback. Otherwise, we'll default to the stored value in 13343 * firmware. 13344 **/ 13345 static void i40e_get_platform_mac_addr(struct pci_dev *pdev, struct i40e_pf *pf) 13346 { 13347 if (eth_platform_get_mac_address(&pdev->dev, pf->hw.mac.addr)) 13348 i40e_get_mac_addr(&pf->hw, pf->hw.mac.addr); 13349 } 13350 13351 /** 13352 * i40e_probe - Device initialization routine 13353 * @pdev: PCI device information struct 13354 * @ent: entry in i40e_pci_tbl 13355 * 13356 * i40e_probe initializes a PF identified by a pci_dev structure. 13357 * The OS initialization, configuring of the PF private structure, 13358 * and a hardware reset occur. 13359 * 13360 * Returns 0 on success, negative on failure 13361 **/ 13362 static int i40e_probe(struct pci_dev *pdev, const struct pci_device_id *ent) 13363 { 13364 struct i40e_aq_get_phy_abilities_resp abilities; 13365 struct i40e_pf *pf; 13366 struct i40e_hw *hw; 13367 static u16 pfs_found; 13368 u16 wol_nvm_bits; 13369 u16 link_status; 13370 int err; 13371 u32 val; 13372 u32 i; 13373 u8 set_fc_aq_fail; 13374 13375 err = pci_enable_device_mem(pdev); 13376 if (err) 13377 return err; 13378 13379 /* set up for high or low dma */ 13380 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)); 13381 if (err) { 13382 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)); 13383 if (err) { 13384 dev_err(&pdev->dev, 13385 "DMA configuration failed: 0x%x\n", err); 13386 goto err_dma; 13387 } 13388 } 13389 13390 /* set up pci connections */ 13391 err = pci_request_mem_regions(pdev, i40e_driver_name); 13392 if (err) { 13393 dev_info(&pdev->dev, 13394 "pci_request_selected_regions failed %d\n", err); 13395 goto err_pci_reg; 13396 } 13397 13398 pci_enable_pcie_error_reporting(pdev); 13399 pci_set_master(pdev); 13400 13401 /* Now that we have a PCI connection, we need to do the 13402 * low level device setup. This is primarily setting up 13403 * the Admin Queue structures and then querying for the 13404 * device's current profile information. 13405 */ 13406 pf = kzalloc(sizeof(*pf), GFP_KERNEL); 13407 if (!pf) { 13408 err = -ENOMEM; 13409 goto err_pf_alloc; 13410 } 13411 pf->next_vsi = 0; 13412 pf->pdev = pdev; 13413 set_bit(__I40E_DOWN, pf->state); 13414 13415 hw = &pf->hw; 13416 hw->back = pf; 13417 13418 pf->ioremap_len = min_t(int, pci_resource_len(pdev, 0), 13419 I40E_MAX_CSR_SPACE); 13420 13421 hw->hw_addr = ioremap(pci_resource_start(pdev, 0), pf->ioremap_len); 13422 if (!hw->hw_addr) { 13423 err = -EIO; 13424 dev_info(&pdev->dev, "ioremap(0x%04x, 0x%04x) failed: 0x%x\n", 13425 (unsigned int)pci_resource_start(pdev, 0), 13426 pf->ioremap_len, err); 13427 goto err_ioremap; 13428 } 13429 hw->vendor_id = pdev->vendor; 13430 hw->device_id = pdev->device; 13431 pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id); 13432 hw->subsystem_vendor_id = pdev->subsystem_vendor; 13433 hw->subsystem_device_id = pdev->subsystem_device; 13434 hw->bus.device = PCI_SLOT(pdev->devfn); 13435 hw->bus.func = PCI_FUNC(pdev->devfn); 13436 hw->bus.bus_id = pdev->bus->number; 13437 pf->instance = pfs_found; 13438 13439 /* Select something other than the 802.1ad ethertype for the 13440 * switch to use internally and drop on ingress. 13441 */ 13442 hw->switch_tag = 0xffff; 13443 hw->first_tag = ETH_P_8021AD; 13444 hw->second_tag = ETH_P_8021Q; 13445 13446 INIT_LIST_HEAD(&pf->l3_flex_pit_list); 13447 INIT_LIST_HEAD(&pf->l4_flex_pit_list); 13448 13449 /* set up the locks for the AQ, do this only once in probe 13450 * and destroy them only once in remove 13451 */ 13452 mutex_init(&hw->aq.asq_mutex); 13453 mutex_init(&hw->aq.arq_mutex); 13454 13455 pf->msg_enable = netif_msg_init(debug, 13456 NETIF_MSG_DRV | 13457 NETIF_MSG_PROBE | 13458 NETIF_MSG_LINK); 13459 if (debug < -1) 13460 pf->hw.debug_mask = debug; 13461 13462 /* do a special CORER for clearing PXE mode once at init */ 13463 if (hw->revision_id == 0 && 13464 (rd32(hw, I40E_GLLAN_RCTL_0) & I40E_GLLAN_RCTL_0_PXE_MODE_MASK)) { 13465 wr32(hw, I40E_GLGEN_RTRIG, I40E_GLGEN_RTRIG_CORER_MASK); 13466 i40e_flush(hw); 13467 msleep(200); 13468 pf->corer_count++; 13469 13470 i40e_clear_pxe_mode(hw); 13471 } 13472 13473 /* Reset here to make sure all is clean and to define PF 'n' */ 13474 i40e_clear_hw(hw); 13475 err = i40e_pf_reset(hw); 13476 if (err) { 13477 dev_info(&pdev->dev, "Initial pf_reset failed: %d\n", err); 13478 goto err_pf_reset; 13479 } 13480 pf->pfr_count++; 13481 13482 hw->aq.num_arq_entries = I40E_AQ_LEN; 13483 hw->aq.num_asq_entries = I40E_AQ_LEN; 13484 hw->aq.arq_buf_size = I40E_MAX_AQ_BUF_SIZE; 13485 hw->aq.asq_buf_size = I40E_MAX_AQ_BUF_SIZE; 13486 pf->adminq_work_limit = I40E_AQ_WORK_LIMIT; 13487 13488 snprintf(pf->int_name, sizeof(pf->int_name) - 1, 13489 "%s-%s:misc", 13490 dev_driver_string(&pf->pdev->dev), dev_name(&pdev->dev)); 13491 13492 err = i40e_init_shared_code(hw); 13493 if (err) { 13494 dev_warn(&pdev->dev, "unidentified MAC or BLANK NVM: %d\n", 13495 err); 13496 goto err_pf_reset; 13497 } 13498 13499 /* set up a default setting for link flow control */ 13500 pf->hw.fc.requested_mode = I40E_FC_NONE; 13501 13502 err = i40e_init_adminq(hw); 13503 if (err) { 13504 if (err == I40E_ERR_FIRMWARE_API_VERSION) 13505 dev_info(&pdev->dev, 13506 "The driver for the device stopped because the NVM image is newer than expected. You must install the most recent version of the network driver.\n"); 13507 else 13508 dev_info(&pdev->dev, 13509 "The driver for the device stopped because the device firmware failed to init. Try updating your NVM image.\n"); 13510 13511 goto err_pf_reset; 13512 } 13513 i40e_get_oem_version(hw); 13514 13515 /* provide nvm, fw, api versions */ 13516 dev_info(&pdev->dev, "fw %d.%d.%05d api %d.%d nvm %s\n", 13517 hw->aq.fw_maj_ver, hw->aq.fw_min_ver, hw->aq.fw_build, 13518 hw->aq.api_maj_ver, hw->aq.api_min_ver, 13519 i40e_nvm_version_str(hw)); 13520 13521 if (hw->aq.api_maj_ver == I40E_FW_API_VERSION_MAJOR && 13522 hw->aq.api_min_ver > I40E_FW_MINOR_VERSION(hw)) 13523 dev_info(&pdev->dev, 13524 "The driver for the device detected a newer version of the NVM image than expected. Please install the most recent version of the network driver.\n"); 13525 else if (hw->aq.api_maj_ver == 1 && hw->aq.api_min_ver < 4) 13526 dev_info(&pdev->dev, 13527 "The driver for the device detected an older version of the NVM image than expected. Please update the NVM image.\n"); 13528 13529 i40e_verify_eeprom(pf); 13530 13531 /* Rev 0 hardware was never productized */ 13532 if (hw->revision_id < 1) 13533 dev_warn(&pdev->dev, "This device is a pre-production adapter/LOM. Please be aware there may be issues with your hardware. If you are experiencing problems please contact your Intel or hardware representative who provided you with this hardware.\n"); 13534 13535 i40e_clear_pxe_mode(hw); 13536 err = i40e_get_capabilities(pf, i40e_aqc_opc_list_func_capabilities); 13537 if (err) 13538 goto err_adminq_setup; 13539 13540 err = i40e_sw_init(pf); 13541 if (err) { 13542 dev_info(&pdev->dev, "sw_init failed: %d\n", err); 13543 goto err_sw_init; 13544 } 13545 13546 err = i40e_init_lan_hmc(hw, hw->func_caps.num_tx_qp, 13547 hw->func_caps.num_rx_qp, 0, 0); 13548 if (err) { 13549 dev_info(&pdev->dev, "init_lan_hmc failed: %d\n", err); 13550 goto err_init_lan_hmc; 13551 } 13552 13553 err = i40e_configure_lan_hmc(hw, I40E_HMC_MODEL_DIRECT_ONLY); 13554 if (err) { 13555 dev_info(&pdev->dev, "configure_lan_hmc failed: %d\n", err); 13556 err = -ENOENT; 13557 goto err_configure_lan_hmc; 13558 } 13559 13560 /* Disable LLDP for NICs that have firmware versions lower than v4.3. 13561 * Ignore error return codes because if it was already disabled via 13562 * hardware settings this will fail 13563 */ 13564 if (pf->hw_features & I40E_HW_STOP_FW_LLDP) { 13565 dev_info(&pdev->dev, "Stopping firmware LLDP agent.\n"); 13566 i40e_aq_stop_lldp(hw, true, NULL); 13567 } 13568 13569 /* allow a platform config to override the HW addr */ 13570 i40e_get_platform_mac_addr(pdev, pf); 13571 13572 if (!is_valid_ether_addr(hw->mac.addr)) { 13573 dev_info(&pdev->dev, "invalid MAC address %pM\n", hw->mac.addr); 13574 err = -EIO; 13575 goto err_mac_addr; 13576 } 13577 dev_info(&pdev->dev, "MAC address: %pM\n", hw->mac.addr); 13578 ether_addr_copy(hw->mac.perm_addr, hw->mac.addr); 13579 i40e_get_port_mac_addr(hw, hw->mac.port_addr); 13580 if (is_valid_ether_addr(hw->mac.port_addr)) 13581 pf->hw_features |= I40E_HW_PORT_ID_VALID; 13582 13583 pci_set_drvdata(pdev, pf); 13584 pci_save_state(pdev); 13585 #ifdef CONFIG_I40E_DCB 13586 err = i40e_init_pf_dcb(pf); 13587 if (err) { 13588 dev_info(&pdev->dev, "DCB init failed %d, disabled\n", err); 13589 pf->flags &= ~(I40E_FLAG_DCB_CAPABLE | I40E_FLAG_DCB_ENABLED); 13590 /* Continue without DCB enabled */ 13591 } 13592 #endif /* CONFIG_I40E_DCB */ 13593 13594 /* set up periodic task facility */ 13595 timer_setup(&pf->service_timer, i40e_service_timer, 0); 13596 pf->service_timer_period = HZ; 13597 13598 INIT_WORK(&pf->service_task, i40e_service_task); 13599 clear_bit(__I40E_SERVICE_SCHED, pf->state); 13600 13601 /* NVM bit on means WoL disabled for the port */ 13602 i40e_read_nvm_word(hw, I40E_SR_NVM_WAKE_ON_LAN, &wol_nvm_bits); 13603 if (BIT (hw->port) & wol_nvm_bits || hw->partition_id != 1) 13604 pf->wol_en = false; 13605 else 13606 pf->wol_en = true; 13607 device_set_wakeup_enable(&pf->pdev->dev, pf->wol_en); 13608 13609 /* set up the main switch operations */ 13610 i40e_determine_queue_usage(pf); 13611 err = i40e_init_interrupt_scheme(pf); 13612 if (err) 13613 goto err_switch_setup; 13614 13615 /* The number of VSIs reported by the FW is the minimum guaranteed 13616 * to us; HW supports far more and we share the remaining pool with 13617 * the other PFs. We allocate space for more than the guarantee with 13618 * the understanding that we might not get them all later. 13619 */ 13620 if (pf->hw.func_caps.num_vsis < I40E_MIN_VSI_ALLOC) 13621 pf->num_alloc_vsi = I40E_MIN_VSI_ALLOC; 13622 else 13623 pf->num_alloc_vsi = pf->hw.func_caps.num_vsis; 13624 13625 /* Set up the *vsi struct and our local tracking of the MAIN PF vsi. */ 13626 pf->vsi = kcalloc(pf->num_alloc_vsi, sizeof(struct i40e_vsi *), 13627 GFP_KERNEL); 13628 if (!pf->vsi) { 13629 err = -ENOMEM; 13630 goto err_switch_setup; 13631 } 13632 13633 #ifdef CONFIG_PCI_IOV 13634 /* prep for VF support */ 13635 if ((pf->flags & I40E_FLAG_SRIOV_ENABLED) && 13636 (pf->flags & I40E_FLAG_MSIX_ENABLED) && 13637 !test_bit(__I40E_BAD_EEPROM, pf->state)) { 13638 if (pci_num_vf(pdev)) 13639 pf->flags |= I40E_FLAG_VEB_MODE_ENABLED; 13640 } 13641 #endif 13642 err = i40e_setup_pf_switch(pf, false); 13643 if (err) { 13644 dev_info(&pdev->dev, "setup_pf_switch failed: %d\n", err); 13645 goto err_vsis; 13646 } 13647 INIT_LIST_HEAD(&pf->vsi[pf->lan_vsi]->ch_list); 13648 13649 /* Make sure flow control is set according to current settings */ 13650 err = i40e_set_fc(hw, &set_fc_aq_fail, true); 13651 if (set_fc_aq_fail & I40E_SET_FC_AQ_FAIL_GET) 13652 dev_dbg(&pf->pdev->dev, 13653 "Set fc with err %s aq_err %s on get_phy_cap\n", 13654 i40e_stat_str(hw, err), 13655 i40e_aq_str(hw, hw->aq.asq_last_status)); 13656 if (set_fc_aq_fail & I40E_SET_FC_AQ_FAIL_SET) 13657 dev_dbg(&pf->pdev->dev, 13658 "Set fc with err %s aq_err %s on set_phy_config\n", 13659 i40e_stat_str(hw, err), 13660 i40e_aq_str(hw, hw->aq.asq_last_status)); 13661 if (set_fc_aq_fail & I40E_SET_FC_AQ_FAIL_UPDATE) 13662 dev_dbg(&pf->pdev->dev, 13663 "Set fc with err %s aq_err %s on get_link_info\n", 13664 i40e_stat_str(hw, err), 13665 i40e_aq_str(hw, hw->aq.asq_last_status)); 13666 13667 /* if FDIR VSI was set up, start it now */ 13668 for (i = 0; i < pf->num_alloc_vsi; i++) { 13669 if (pf->vsi[i] && pf->vsi[i]->type == I40E_VSI_FDIR) { 13670 i40e_vsi_open(pf->vsi[i]); 13671 break; 13672 } 13673 } 13674 13675 /* The driver only wants link up/down and module qualification 13676 * reports from firmware. Note the negative logic. 13677 */ 13678 err = i40e_aq_set_phy_int_mask(&pf->hw, 13679 ~(I40E_AQ_EVENT_LINK_UPDOWN | 13680 I40E_AQ_EVENT_MEDIA_NA | 13681 I40E_AQ_EVENT_MODULE_QUAL_FAIL), NULL); 13682 if (err) 13683 dev_info(&pf->pdev->dev, "set phy mask fail, err %s aq_err %s\n", 13684 i40e_stat_str(&pf->hw, err), 13685 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 13686 13687 /* Reconfigure hardware for allowing smaller MSS in the case 13688 * of TSO, so that we avoid the MDD being fired and causing 13689 * a reset in the case of small MSS+TSO. 13690 */ 13691 val = rd32(hw, I40E_REG_MSS); 13692 if ((val & I40E_REG_MSS_MIN_MASK) > I40E_64BYTE_MSS) { 13693 val &= ~I40E_REG_MSS_MIN_MASK; 13694 val |= I40E_64BYTE_MSS; 13695 wr32(hw, I40E_REG_MSS, val); 13696 } 13697 13698 if (pf->hw_features & I40E_HW_RESTART_AUTONEG) { 13699 msleep(75); 13700 err = i40e_aq_set_link_restart_an(&pf->hw, true, NULL); 13701 if (err) 13702 dev_info(&pf->pdev->dev, "link restart failed, err %s aq_err %s\n", 13703 i40e_stat_str(&pf->hw, err), 13704 i40e_aq_str(&pf->hw, 13705 pf->hw.aq.asq_last_status)); 13706 } 13707 /* The main driver is (mostly) up and happy. We need to set this state 13708 * before setting up the misc vector or we get a race and the vector 13709 * ends up disabled forever. 13710 */ 13711 clear_bit(__I40E_DOWN, pf->state); 13712 13713 /* In case of MSIX we are going to setup the misc vector right here 13714 * to handle admin queue events etc. In case of legacy and MSI 13715 * the misc functionality and queue processing is combined in 13716 * the same vector and that gets setup at open. 13717 */ 13718 if (pf->flags & I40E_FLAG_MSIX_ENABLED) { 13719 err = i40e_setup_misc_vector(pf); 13720 if (err) { 13721 dev_info(&pdev->dev, 13722 "setup of misc vector failed: %d\n", err); 13723 goto err_vsis; 13724 } 13725 } 13726 13727 #ifdef CONFIG_PCI_IOV 13728 /* prep for VF support */ 13729 if ((pf->flags & I40E_FLAG_SRIOV_ENABLED) && 13730 (pf->flags & I40E_FLAG_MSIX_ENABLED) && 13731 !test_bit(__I40E_BAD_EEPROM, pf->state)) { 13732 /* disable link interrupts for VFs */ 13733 val = rd32(hw, I40E_PFGEN_PORTMDIO_NUM); 13734 val &= ~I40E_PFGEN_PORTMDIO_NUM_VFLINK_STAT_ENA_MASK; 13735 wr32(hw, I40E_PFGEN_PORTMDIO_NUM, val); 13736 i40e_flush(hw); 13737 13738 if (pci_num_vf(pdev)) { 13739 dev_info(&pdev->dev, 13740 "Active VFs found, allocating resources.\n"); 13741 err = i40e_alloc_vfs(pf, pci_num_vf(pdev)); 13742 if (err) 13743 dev_info(&pdev->dev, 13744 "Error %d allocating resources for existing VFs\n", 13745 err); 13746 } 13747 } 13748 #endif /* CONFIG_PCI_IOV */ 13749 13750 if (pf->flags & I40E_FLAG_IWARP_ENABLED) { 13751 pf->iwarp_base_vector = i40e_get_lump(pf, pf->irq_pile, 13752 pf->num_iwarp_msix, 13753 I40E_IWARP_IRQ_PILE_ID); 13754 if (pf->iwarp_base_vector < 0) { 13755 dev_info(&pdev->dev, 13756 "failed to get tracking for %d vectors for IWARP err=%d\n", 13757 pf->num_iwarp_msix, pf->iwarp_base_vector); 13758 pf->flags &= ~I40E_FLAG_IWARP_ENABLED; 13759 } 13760 } 13761 13762 i40e_dbg_pf_init(pf); 13763 13764 /* tell the firmware that we're starting */ 13765 i40e_send_version(pf); 13766 13767 /* since everything's happy, start the service_task timer */ 13768 mod_timer(&pf->service_timer, 13769 round_jiffies(jiffies + pf->service_timer_period)); 13770 13771 /* add this PF to client device list and launch a client service task */ 13772 if (pf->flags & I40E_FLAG_IWARP_ENABLED) { 13773 err = i40e_lan_add_device(pf); 13774 if (err) 13775 dev_info(&pdev->dev, "Failed to add PF to client API service list: %d\n", 13776 err); 13777 } 13778 13779 #define PCI_SPEED_SIZE 8 13780 #define PCI_WIDTH_SIZE 8 13781 /* Devices on the IOSF bus do not have this information 13782 * and will report PCI Gen 1 x 1 by default so don't bother 13783 * checking them. 13784 */ 13785 if (!(pf->hw_features & I40E_HW_NO_PCI_LINK_CHECK)) { 13786 char speed[PCI_SPEED_SIZE] = "Unknown"; 13787 char width[PCI_WIDTH_SIZE] = "Unknown"; 13788 13789 /* Get the negotiated link width and speed from PCI config 13790 * space 13791 */ 13792 pcie_capability_read_word(pf->pdev, PCI_EXP_LNKSTA, 13793 &link_status); 13794 13795 i40e_set_pci_config_data(hw, link_status); 13796 13797 switch (hw->bus.speed) { 13798 case i40e_bus_speed_8000: 13799 strncpy(speed, "8.0", PCI_SPEED_SIZE); break; 13800 case i40e_bus_speed_5000: 13801 strncpy(speed, "5.0", PCI_SPEED_SIZE); break; 13802 case i40e_bus_speed_2500: 13803 strncpy(speed, "2.5", PCI_SPEED_SIZE); break; 13804 default: 13805 break; 13806 } 13807 switch (hw->bus.width) { 13808 case i40e_bus_width_pcie_x8: 13809 strncpy(width, "8", PCI_WIDTH_SIZE); break; 13810 case i40e_bus_width_pcie_x4: 13811 strncpy(width, "4", PCI_WIDTH_SIZE); break; 13812 case i40e_bus_width_pcie_x2: 13813 strncpy(width, "2", PCI_WIDTH_SIZE); break; 13814 case i40e_bus_width_pcie_x1: 13815 strncpy(width, "1", PCI_WIDTH_SIZE); break; 13816 default: 13817 break; 13818 } 13819 13820 dev_info(&pdev->dev, "PCI-Express: Speed %sGT/s Width x%s\n", 13821 speed, width); 13822 13823 if (hw->bus.width < i40e_bus_width_pcie_x8 || 13824 hw->bus.speed < i40e_bus_speed_8000) { 13825 dev_warn(&pdev->dev, "PCI-Express bandwidth available for this device may be insufficient for optimal performance.\n"); 13826 dev_warn(&pdev->dev, "Please move the device to a different PCI-e link with more lanes and/or higher transfer rate.\n"); 13827 } 13828 } 13829 13830 /* get the requested speeds from the fw */ 13831 err = i40e_aq_get_phy_capabilities(hw, false, false, &abilities, NULL); 13832 if (err) 13833 dev_dbg(&pf->pdev->dev, "get requested speeds ret = %s last_status = %s\n", 13834 i40e_stat_str(&pf->hw, err), 13835 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 13836 pf->hw.phy.link_info.requested_speeds = abilities.link_speed; 13837 13838 /* get the supported phy types from the fw */ 13839 err = i40e_aq_get_phy_capabilities(hw, false, true, &abilities, NULL); 13840 if (err) 13841 dev_dbg(&pf->pdev->dev, "get supported phy types ret = %s last_status = %s\n", 13842 i40e_stat_str(&pf->hw, err), 13843 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 13844 13845 /* Add a filter to drop all Flow control frames from any VSI from being 13846 * transmitted. By doing so we stop a malicious VF from sending out 13847 * PAUSE or PFC frames and potentially controlling traffic for other 13848 * PF/VF VSIs. 13849 * The FW can still send Flow control frames if enabled. 13850 */ 13851 i40e_add_filter_to_drop_tx_flow_control_frames(&pf->hw, 13852 pf->main_vsi_seid); 13853 13854 if ((pf->hw.device_id == I40E_DEV_ID_10G_BASE_T) || 13855 (pf->hw.device_id == I40E_DEV_ID_10G_BASE_T4)) 13856 pf->hw_features |= I40E_HW_PHY_CONTROLS_LEDS; 13857 if (pf->hw.device_id == I40E_DEV_ID_SFP_I_X722) 13858 pf->hw_features |= I40E_HW_HAVE_CRT_RETIMER; 13859 /* print a string summarizing features */ 13860 i40e_print_features(pf); 13861 13862 return 0; 13863 13864 /* Unwind what we've done if something failed in the setup */ 13865 err_vsis: 13866 set_bit(__I40E_DOWN, pf->state); 13867 i40e_clear_interrupt_scheme(pf); 13868 kfree(pf->vsi); 13869 err_switch_setup: 13870 i40e_reset_interrupt_capability(pf); 13871 del_timer_sync(&pf->service_timer); 13872 err_mac_addr: 13873 err_configure_lan_hmc: 13874 (void)i40e_shutdown_lan_hmc(hw); 13875 err_init_lan_hmc: 13876 kfree(pf->qp_pile); 13877 err_sw_init: 13878 err_adminq_setup: 13879 err_pf_reset: 13880 iounmap(hw->hw_addr); 13881 err_ioremap: 13882 kfree(pf); 13883 err_pf_alloc: 13884 pci_disable_pcie_error_reporting(pdev); 13885 pci_release_mem_regions(pdev); 13886 err_pci_reg: 13887 err_dma: 13888 pci_disable_device(pdev); 13889 return err; 13890 } 13891 13892 /** 13893 * i40e_remove - Device removal routine 13894 * @pdev: PCI device information struct 13895 * 13896 * i40e_remove is called by the PCI subsystem to alert the driver 13897 * that is should release a PCI device. This could be caused by a 13898 * Hot-Plug event, or because the driver is going to be removed from 13899 * memory. 13900 **/ 13901 static void i40e_remove(struct pci_dev *pdev) 13902 { 13903 struct i40e_pf *pf = pci_get_drvdata(pdev); 13904 struct i40e_hw *hw = &pf->hw; 13905 i40e_status ret_code; 13906 int i; 13907 13908 i40e_dbg_pf_exit(pf); 13909 13910 i40e_ptp_stop(pf); 13911 13912 /* Disable RSS in hw */ 13913 i40e_write_rx_ctl(hw, I40E_PFQF_HENA(0), 0); 13914 i40e_write_rx_ctl(hw, I40E_PFQF_HENA(1), 0); 13915 13916 /* no more scheduling of any task */ 13917 set_bit(__I40E_SUSPENDED, pf->state); 13918 set_bit(__I40E_DOWN, pf->state); 13919 if (pf->service_timer.function) 13920 del_timer_sync(&pf->service_timer); 13921 if (pf->service_task.func) 13922 cancel_work_sync(&pf->service_task); 13923 13924 /* Client close must be called explicitly here because the timer 13925 * has been stopped. 13926 */ 13927 i40e_notify_client_of_netdev_close(pf->vsi[pf->lan_vsi], false); 13928 13929 if (pf->flags & I40E_FLAG_SRIOV_ENABLED) { 13930 i40e_free_vfs(pf); 13931 pf->flags &= ~I40E_FLAG_SRIOV_ENABLED; 13932 } 13933 13934 i40e_fdir_teardown(pf); 13935 13936 /* If there is a switch structure or any orphans, remove them. 13937 * This will leave only the PF's VSI remaining. 13938 */ 13939 for (i = 0; i < I40E_MAX_VEB; i++) { 13940 if (!pf->veb[i]) 13941 continue; 13942 13943 if (pf->veb[i]->uplink_seid == pf->mac_seid || 13944 pf->veb[i]->uplink_seid == 0) 13945 i40e_switch_branch_release(pf->veb[i]); 13946 } 13947 13948 /* Now we can shutdown the PF's VSI, just before we kill 13949 * adminq and hmc. 13950 */ 13951 if (pf->vsi[pf->lan_vsi]) 13952 i40e_vsi_release(pf->vsi[pf->lan_vsi]); 13953 13954 i40e_cloud_filter_exit(pf); 13955 13956 /* remove attached clients */ 13957 if (pf->flags & I40E_FLAG_IWARP_ENABLED) { 13958 ret_code = i40e_lan_del_device(pf); 13959 if (ret_code) 13960 dev_warn(&pdev->dev, "Failed to delete client device: %d\n", 13961 ret_code); 13962 } 13963 13964 /* shutdown and destroy the HMC */ 13965 if (hw->hmc.hmc_obj) { 13966 ret_code = i40e_shutdown_lan_hmc(hw); 13967 if (ret_code) 13968 dev_warn(&pdev->dev, 13969 "Failed to destroy the HMC resources: %d\n", 13970 ret_code); 13971 } 13972 13973 /* shutdown the adminq */ 13974 i40e_shutdown_adminq(hw); 13975 13976 /* destroy the locks only once, here */ 13977 mutex_destroy(&hw->aq.arq_mutex); 13978 mutex_destroy(&hw->aq.asq_mutex); 13979 13980 /* Clear all dynamic memory lists of rings, q_vectors, and VSIs */ 13981 i40e_clear_interrupt_scheme(pf); 13982 for (i = 0; i < pf->num_alloc_vsi; i++) { 13983 if (pf->vsi[i]) { 13984 i40e_vsi_clear_rings(pf->vsi[i]); 13985 i40e_vsi_clear(pf->vsi[i]); 13986 pf->vsi[i] = NULL; 13987 } 13988 } 13989 13990 for (i = 0; i < I40E_MAX_VEB; i++) { 13991 kfree(pf->veb[i]); 13992 pf->veb[i] = NULL; 13993 } 13994 13995 kfree(pf->qp_pile); 13996 kfree(pf->vsi); 13997 13998 iounmap(hw->hw_addr); 13999 kfree(pf); 14000 pci_release_mem_regions(pdev); 14001 14002 pci_disable_pcie_error_reporting(pdev); 14003 pci_disable_device(pdev); 14004 } 14005 14006 /** 14007 * i40e_pci_error_detected - warning that something funky happened in PCI land 14008 * @pdev: PCI device information struct 14009 * 14010 * Called to warn that something happened and the error handling steps 14011 * are in progress. Allows the driver to quiesce things, be ready for 14012 * remediation. 14013 **/ 14014 static pci_ers_result_t i40e_pci_error_detected(struct pci_dev *pdev, 14015 enum pci_channel_state error) 14016 { 14017 struct i40e_pf *pf = pci_get_drvdata(pdev); 14018 14019 dev_info(&pdev->dev, "%s: error %d\n", __func__, error); 14020 14021 if (!pf) { 14022 dev_info(&pdev->dev, 14023 "Cannot recover - error happened during device probe\n"); 14024 return PCI_ERS_RESULT_DISCONNECT; 14025 } 14026 14027 /* shutdown all operations */ 14028 if (!test_bit(__I40E_SUSPENDED, pf->state)) 14029 i40e_prep_for_reset(pf, false); 14030 14031 /* Request a slot reset */ 14032 return PCI_ERS_RESULT_NEED_RESET; 14033 } 14034 14035 /** 14036 * i40e_pci_error_slot_reset - a PCI slot reset just happened 14037 * @pdev: PCI device information struct 14038 * 14039 * Called to find if the driver can work with the device now that 14040 * the pci slot has been reset. If a basic connection seems good 14041 * (registers are readable and have sane content) then return a 14042 * happy little PCI_ERS_RESULT_xxx. 14043 **/ 14044 static pci_ers_result_t i40e_pci_error_slot_reset(struct pci_dev *pdev) 14045 { 14046 struct i40e_pf *pf = pci_get_drvdata(pdev); 14047 pci_ers_result_t result; 14048 int err; 14049 u32 reg; 14050 14051 dev_dbg(&pdev->dev, "%s\n", __func__); 14052 if (pci_enable_device_mem(pdev)) { 14053 dev_info(&pdev->dev, 14054 "Cannot re-enable PCI device after reset.\n"); 14055 result = PCI_ERS_RESULT_DISCONNECT; 14056 } else { 14057 pci_set_master(pdev); 14058 pci_restore_state(pdev); 14059 pci_save_state(pdev); 14060 pci_wake_from_d3(pdev, false); 14061 14062 reg = rd32(&pf->hw, I40E_GLGEN_RTRIG); 14063 if (reg == 0) 14064 result = PCI_ERS_RESULT_RECOVERED; 14065 else 14066 result = PCI_ERS_RESULT_DISCONNECT; 14067 } 14068 14069 err = pci_cleanup_aer_uncorrect_error_status(pdev); 14070 if (err) { 14071 dev_info(&pdev->dev, 14072 "pci_cleanup_aer_uncorrect_error_status failed 0x%0x\n", 14073 err); 14074 /* non-fatal, continue */ 14075 } 14076 14077 return result; 14078 } 14079 14080 /** 14081 * i40e_pci_error_reset_prepare - prepare device driver for pci reset 14082 * @pdev: PCI device information struct 14083 */ 14084 static void i40e_pci_error_reset_prepare(struct pci_dev *pdev) 14085 { 14086 struct i40e_pf *pf = pci_get_drvdata(pdev); 14087 14088 i40e_prep_for_reset(pf, false); 14089 } 14090 14091 /** 14092 * i40e_pci_error_reset_done - pci reset done, device driver reset can begin 14093 * @pdev: PCI device information struct 14094 */ 14095 static void i40e_pci_error_reset_done(struct pci_dev *pdev) 14096 { 14097 struct i40e_pf *pf = pci_get_drvdata(pdev); 14098 14099 i40e_reset_and_rebuild(pf, false, false); 14100 } 14101 14102 /** 14103 * i40e_pci_error_resume - restart operations after PCI error recovery 14104 * @pdev: PCI device information struct 14105 * 14106 * Called to allow the driver to bring things back up after PCI error 14107 * and/or reset recovery has finished. 14108 **/ 14109 static void i40e_pci_error_resume(struct pci_dev *pdev) 14110 { 14111 struct i40e_pf *pf = pci_get_drvdata(pdev); 14112 14113 dev_dbg(&pdev->dev, "%s\n", __func__); 14114 if (test_bit(__I40E_SUSPENDED, pf->state)) 14115 return; 14116 14117 i40e_handle_reset_warning(pf, false); 14118 } 14119 14120 /** 14121 * i40e_enable_mc_magic_wake - enable multicast magic packet wake up 14122 * using the mac_address_write admin q function 14123 * @pf: pointer to i40e_pf struct 14124 **/ 14125 static void i40e_enable_mc_magic_wake(struct i40e_pf *pf) 14126 { 14127 struct i40e_hw *hw = &pf->hw; 14128 i40e_status ret; 14129 u8 mac_addr[6]; 14130 u16 flags = 0; 14131 14132 /* Get current MAC address in case it's an LAA */ 14133 if (pf->vsi[pf->lan_vsi] && pf->vsi[pf->lan_vsi]->netdev) { 14134 ether_addr_copy(mac_addr, 14135 pf->vsi[pf->lan_vsi]->netdev->dev_addr); 14136 } else { 14137 dev_err(&pf->pdev->dev, 14138 "Failed to retrieve MAC address; using default\n"); 14139 ether_addr_copy(mac_addr, hw->mac.addr); 14140 } 14141 14142 /* The FW expects the mac address write cmd to first be called with 14143 * one of these flags before calling it again with the multicast 14144 * enable flags. 14145 */ 14146 flags = I40E_AQC_WRITE_TYPE_LAA_WOL; 14147 14148 if (hw->func_caps.flex10_enable && hw->partition_id != 1) 14149 flags = I40E_AQC_WRITE_TYPE_LAA_ONLY; 14150 14151 ret = i40e_aq_mac_address_write(hw, flags, mac_addr, NULL); 14152 if (ret) { 14153 dev_err(&pf->pdev->dev, 14154 "Failed to update MAC address registers; cannot enable Multicast Magic packet wake up"); 14155 return; 14156 } 14157 14158 flags = I40E_AQC_MC_MAG_EN 14159 | I40E_AQC_WOL_PRESERVE_ON_PFR 14160 | I40E_AQC_WRITE_TYPE_UPDATE_MC_MAG; 14161 ret = i40e_aq_mac_address_write(hw, flags, mac_addr, NULL); 14162 if (ret) 14163 dev_err(&pf->pdev->dev, 14164 "Failed to enable Multicast Magic Packet wake up\n"); 14165 } 14166 14167 /** 14168 * i40e_shutdown - PCI callback for shutting down 14169 * @pdev: PCI device information struct 14170 **/ 14171 static void i40e_shutdown(struct pci_dev *pdev) 14172 { 14173 struct i40e_pf *pf = pci_get_drvdata(pdev); 14174 struct i40e_hw *hw = &pf->hw; 14175 14176 set_bit(__I40E_SUSPENDED, pf->state); 14177 set_bit(__I40E_DOWN, pf->state); 14178 rtnl_lock(); 14179 i40e_prep_for_reset(pf, true); 14180 rtnl_unlock(); 14181 14182 wr32(hw, I40E_PFPM_APM, (pf->wol_en ? I40E_PFPM_APM_APME_MASK : 0)); 14183 wr32(hw, I40E_PFPM_WUFC, (pf->wol_en ? I40E_PFPM_WUFC_MAG_MASK : 0)); 14184 14185 del_timer_sync(&pf->service_timer); 14186 cancel_work_sync(&pf->service_task); 14187 i40e_cloud_filter_exit(pf); 14188 i40e_fdir_teardown(pf); 14189 14190 /* Client close must be called explicitly here because the timer 14191 * has been stopped. 14192 */ 14193 i40e_notify_client_of_netdev_close(pf->vsi[pf->lan_vsi], false); 14194 14195 if (pf->wol_en && (pf->hw_features & I40E_HW_WOL_MC_MAGIC_PKT_WAKE)) 14196 i40e_enable_mc_magic_wake(pf); 14197 14198 i40e_prep_for_reset(pf, false); 14199 14200 wr32(hw, I40E_PFPM_APM, 14201 (pf->wol_en ? I40E_PFPM_APM_APME_MASK : 0)); 14202 wr32(hw, I40E_PFPM_WUFC, 14203 (pf->wol_en ? I40E_PFPM_WUFC_MAG_MASK : 0)); 14204 14205 i40e_clear_interrupt_scheme(pf); 14206 14207 if (system_state == SYSTEM_POWER_OFF) { 14208 pci_wake_from_d3(pdev, pf->wol_en); 14209 pci_set_power_state(pdev, PCI_D3hot); 14210 } 14211 } 14212 14213 /** 14214 * i40e_suspend - PM callback for moving to D3 14215 * @dev: generic device information structure 14216 **/ 14217 static int __maybe_unused i40e_suspend(struct device *dev) 14218 { 14219 struct pci_dev *pdev = to_pci_dev(dev); 14220 struct i40e_pf *pf = pci_get_drvdata(pdev); 14221 struct i40e_hw *hw = &pf->hw; 14222 14223 /* If we're already suspended, then there is nothing to do */ 14224 if (test_and_set_bit(__I40E_SUSPENDED, pf->state)) 14225 return 0; 14226 14227 set_bit(__I40E_DOWN, pf->state); 14228 14229 /* Ensure service task will not be running */ 14230 del_timer_sync(&pf->service_timer); 14231 cancel_work_sync(&pf->service_task); 14232 14233 if (pf->wol_en && (pf->hw_features & I40E_HW_WOL_MC_MAGIC_PKT_WAKE)) 14234 i40e_enable_mc_magic_wake(pf); 14235 14236 i40e_prep_for_reset(pf, false); 14237 14238 wr32(hw, I40E_PFPM_APM, (pf->wol_en ? I40E_PFPM_APM_APME_MASK : 0)); 14239 wr32(hw, I40E_PFPM_WUFC, (pf->wol_en ? I40E_PFPM_WUFC_MAG_MASK : 0)); 14240 14241 /* Clear the interrupt scheme and release our IRQs so that the system 14242 * can safely hibernate even when there are a large number of CPUs. 14243 * Otherwise hibernation might fail when mapping all the vectors back 14244 * to CPU0. 14245 */ 14246 i40e_clear_interrupt_scheme(pf); 14247 14248 return 0; 14249 } 14250 14251 /** 14252 * i40e_resume - PM callback for waking up from D3 14253 * @dev: generic device information structure 14254 **/ 14255 static int __maybe_unused i40e_resume(struct device *dev) 14256 { 14257 struct pci_dev *pdev = to_pci_dev(dev); 14258 struct i40e_pf *pf = pci_get_drvdata(pdev); 14259 int err; 14260 14261 /* If we're not suspended, then there is nothing to do */ 14262 if (!test_bit(__I40E_SUSPENDED, pf->state)) 14263 return 0; 14264 14265 /* We cleared the interrupt scheme when we suspended, so we need to 14266 * restore it now to resume device functionality. 14267 */ 14268 err = i40e_restore_interrupt_scheme(pf); 14269 if (err) { 14270 dev_err(&pdev->dev, "Cannot restore interrupt scheme: %d\n", 14271 err); 14272 } 14273 14274 clear_bit(__I40E_DOWN, pf->state); 14275 i40e_reset_and_rebuild(pf, false, false); 14276 14277 /* Clear suspended state last after everything is recovered */ 14278 clear_bit(__I40E_SUSPENDED, pf->state); 14279 14280 /* Restart the service task */ 14281 mod_timer(&pf->service_timer, 14282 round_jiffies(jiffies + pf->service_timer_period)); 14283 14284 return 0; 14285 } 14286 14287 static const struct pci_error_handlers i40e_err_handler = { 14288 .error_detected = i40e_pci_error_detected, 14289 .slot_reset = i40e_pci_error_slot_reset, 14290 .reset_prepare = i40e_pci_error_reset_prepare, 14291 .reset_done = i40e_pci_error_reset_done, 14292 .resume = i40e_pci_error_resume, 14293 }; 14294 14295 static SIMPLE_DEV_PM_OPS(i40e_pm_ops, i40e_suspend, i40e_resume); 14296 14297 static struct pci_driver i40e_driver = { 14298 .name = i40e_driver_name, 14299 .id_table = i40e_pci_tbl, 14300 .probe = i40e_probe, 14301 .remove = i40e_remove, 14302 .driver = { 14303 .pm = &i40e_pm_ops, 14304 }, 14305 .shutdown = i40e_shutdown, 14306 .err_handler = &i40e_err_handler, 14307 .sriov_configure = i40e_pci_sriov_configure, 14308 }; 14309 14310 /** 14311 * i40e_init_module - Driver registration routine 14312 * 14313 * i40e_init_module is the first routine called when the driver is 14314 * loaded. All it does is register with the PCI subsystem. 14315 **/ 14316 static int __init i40e_init_module(void) 14317 { 14318 pr_info("%s: %s - version %s\n", i40e_driver_name, 14319 i40e_driver_string, i40e_driver_version_str); 14320 pr_info("%s: %s\n", i40e_driver_name, i40e_copyright); 14321 14322 /* There is no need to throttle the number of active tasks because 14323 * each device limits its own task using a state bit for scheduling 14324 * the service task, and the device tasks do not interfere with each 14325 * other, so we don't set a max task limit. We must set WQ_MEM_RECLAIM 14326 * since we need to be able to guarantee forward progress even under 14327 * memory pressure. 14328 */ 14329 i40e_wq = alloc_workqueue("%s", WQ_MEM_RECLAIM, 0, i40e_driver_name); 14330 if (!i40e_wq) { 14331 pr_err("%s: Failed to create workqueue\n", i40e_driver_name); 14332 return -ENOMEM; 14333 } 14334 14335 i40e_dbg_init(); 14336 return pci_register_driver(&i40e_driver); 14337 } 14338 module_init(i40e_init_module); 14339 14340 /** 14341 * i40e_exit_module - Driver exit cleanup routine 14342 * 14343 * i40e_exit_module is called just before the driver is removed 14344 * from memory. 14345 **/ 14346 static void __exit i40e_exit_module(void) 14347 { 14348 pci_unregister_driver(&i40e_driver); 14349 destroy_workqueue(i40e_wq); 14350 i40e_dbg_exit(); 14351 } 14352 module_exit(i40e_exit_module); 14353