1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright(c) 2013 - 2018 Intel Corporation. */ 3 4 #include <linux/etherdevice.h> 5 #include <linux/of_net.h> 6 #include <linux/pci.h> 7 #include <linux/bpf.h> 8 9 /* Local includes */ 10 #include "i40e.h" 11 #include "i40e_diag.h" 12 #include "i40e_xsk.h" 13 #include <net/udp_tunnel.h> 14 #include <net/xdp_sock.h> 15 /* All i40e tracepoints are defined by the include below, which 16 * must be included exactly once across the whole kernel with 17 * CREATE_TRACE_POINTS defined 18 */ 19 #define CREATE_TRACE_POINTS 20 #include "i40e_trace.h" 21 22 const char i40e_driver_name[] = "i40e"; 23 static const char i40e_driver_string[] = 24 "Intel(R) Ethernet Connection XL710 Network Driver"; 25 26 #define DRV_KERN "-k" 27 28 #define DRV_VERSION_MAJOR 2 29 #define DRV_VERSION_MINOR 8 30 #define DRV_VERSION_BUILD 20 31 #define DRV_VERSION __stringify(DRV_VERSION_MAJOR) "." \ 32 __stringify(DRV_VERSION_MINOR) "." \ 33 __stringify(DRV_VERSION_BUILD) DRV_KERN 34 const char i40e_driver_version_str[] = DRV_VERSION; 35 static const char i40e_copyright[] = "Copyright (c) 2013 - 2014 Intel Corporation."; 36 37 /* a bit of forward declarations */ 38 static void i40e_vsi_reinit_locked(struct i40e_vsi *vsi); 39 static void i40e_handle_reset_warning(struct i40e_pf *pf, bool lock_acquired); 40 static int i40e_add_vsi(struct i40e_vsi *vsi); 41 static int i40e_add_veb(struct i40e_veb *veb, struct i40e_vsi *vsi); 42 static int i40e_setup_pf_switch(struct i40e_pf *pf, bool reinit); 43 static int i40e_setup_misc_vector(struct i40e_pf *pf); 44 static void i40e_determine_queue_usage(struct i40e_pf *pf); 45 static int i40e_setup_pf_filter_control(struct i40e_pf *pf); 46 static void i40e_prep_for_reset(struct i40e_pf *pf, bool lock_acquired); 47 static int i40e_reset(struct i40e_pf *pf); 48 static void i40e_rebuild(struct i40e_pf *pf, bool reinit, bool lock_acquired); 49 static int i40e_setup_misc_vector_for_recovery_mode(struct i40e_pf *pf); 50 static int i40e_restore_interrupt_scheme(struct i40e_pf *pf); 51 static bool i40e_check_recovery_mode(struct i40e_pf *pf); 52 static int i40e_init_recovery_mode(struct i40e_pf *pf, struct i40e_hw *hw); 53 static void i40e_fdir_sb_setup(struct i40e_pf *pf); 54 static int i40e_veb_get_bw_info(struct i40e_veb *veb); 55 static int i40e_get_capabilities(struct i40e_pf *pf, 56 enum i40e_admin_queue_opc list_type); 57 58 59 /* i40e_pci_tbl - PCI Device ID Table 60 * 61 * Last entry must be all 0s 62 * 63 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID, 64 * Class, Class Mask, private data (not used) } 65 */ 66 static const struct pci_device_id i40e_pci_tbl[] = { 67 {PCI_VDEVICE(INTEL, I40E_DEV_ID_SFP_XL710), 0}, 68 {PCI_VDEVICE(INTEL, I40E_DEV_ID_QEMU), 0}, 69 {PCI_VDEVICE(INTEL, I40E_DEV_ID_KX_B), 0}, 70 {PCI_VDEVICE(INTEL, I40E_DEV_ID_KX_C), 0}, 71 {PCI_VDEVICE(INTEL, I40E_DEV_ID_QSFP_A), 0}, 72 {PCI_VDEVICE(INTEL, I40E_DEV_ID_QSFP_B), 0}, 73 {PCI_VDEVICE(INTEL, I40E_DEV_ID_QSFP_C), 0}, 74 {PCI_VDEVICE(INTEL, I40E_DEV_ID_10G_BASE_T), 0}, 75 {PCI_VDEVICE(INTEL, I40E_DEV_ID_10G_BASE_T4), 0}, 76 {PCI_VDEVICE(INTEL, I40E_DEV_ID_10G_SFP), 0}, 77 {PCI_VDEVICE(INTEL, I40E_DEV_ID_10G_B), 0}, 78 {PCI_VDEVICE(INTEL, I40E_DEV_ID_KX_X722), 0}, 79 {PCI_VDEVICE(INTEL, I40E_DEV_ID_QSFP_X722), 0}, 80 {PCI_VDEVICE(INTEL, I40E_DEV_ID_SFP_X722), 0}, 81 {PCI_VDEVICE(INTEL, I40E_DEV_ID_1G_BASE_T_X722), 0}, 82 {PCI_VDEVICE(INTEL, I40E_DEV_ID_10G_BASE_T_X722), 0}, 83 {PCI_VDEVICE(INTEL, I40E_DEV_ID_SFP_I_X722), 0}, 84 {PCI_VDEVICE(INTEL, I40E_DEV_ID_20G_KR2), 0}, 85 {PCI_VDEVICE(INTEL, I40E_DEV_ID_20G_KR2_A), 0}, 86 {PCI_VDEVICE(INTEL, I40E_DEV_ID_X710_N3000), 0}, 87 {PCI_VDEVICE(INTEL, I40E_DEV_ID_XXV710_N3000), 0}, 88 {PCI_VDEVICE(INTEL, I40E_DEV_ID_25G_B), 0}, 89 {PCI_VDEVICE(INTEL, I40E_DEV_ID_25G_SFP28), 0}, 90 /* required last entry */ 91 {0, } 92 }; 93 MODULE_DEVICE_TABLE(pci, i40e_pci_tbl); 94 95 #define I40E_MAX_VF_COUNT 128 96 static int debug = -1; 97 module_param(debug, uint, 0); 98 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all), Debug mask (0x8XXXXXXX)"); 99 100 MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>"); 101 MODULE_DESCRIPTION("Intel(R) Ethernet Connection XL710 Network Driver"); 102 MODULE_LICENSE("GPL v2"); 103 MODULE_VERSION(DRV_VERSION); 104 105 static struct workqueue_struct *i40e_wq; 106 107 /** 108 * i40e_allocate_dma_mem_d - OS specific memory alloc for shared code 109 * @hw: pointer to the HW structure 110 * @mem: ptr to mem struct to fill out 111 * @size: size of memory requested 112 * @alignment: what to align the allocation to 113 **/ 114 int i40e_allocate_dma_mem_d(struct i40e_hw *hw, struct i40e_dma_mem *mem, 115 u64 size, u32 alignment) 116 { 117 struct i40e_pf *pf = (struct i40e_pf *)hw->back; 118 119 mem->size = ALIGN(size, alignment); 120 mem->va = dma_alloc_coherent(&pf->pdev->dev, mem->size, &mem->pa, 121 GFP_KERNEL); 122 if (!mem->va) 123 return -ENOMEM; 124 125 return 0; 126 } 127 128 /** 129 * i40e_free_dma_mem_d - OS specific memory free for shared code 130 * @hw: pointer to the HW structure 131 * @mem: ptr to mem struct to free 132 **/ 133 int i40e_free_dma_mem_d(struct i40e_hw *hw, struct i40e_dma_mem *mem) 134 { 135 struct i40e_pf *pf = (struct i40e_pf *)hw->back; 136 137 dma_free_coherent(&pf->pdev->dev, mem->size, mem->va, mem->pa); 138 mem->va = NULL; 139 mem->pa = 0; 140 mem->size = 0; 141 142 return 0; 143 } 144 145 /** 146 * i40e_allocate_virt_mem_d - OS specific memory alloc for shared code 147 * @hw: pointer to the HW structure 148 * @mem: ptr to mem struct to fill out 149 * @size: size of memory requested 150 **/ 151 int i40e_allocate_virt_mem_d(struct i40e_hw *hw, struct i40e_virt_mem *mem, 152 u32 size) 153 { 154 mem->size = size; 155 mem->va = kzalloc(size, GFP_KERNEL); 156 157 if (!mem->va) 158 return -ENOMEM; 159 160 return 0; 161 } 162 163 /** 164 * i40e_free_virt_mem_d - OS specific memory free for shared code 165 * @hw: pointer to the HW structure 166 * @mem: ptr to mem struct to free 167 **/ 168 int i40e_free_virt_mem_d(struct i40e_hw *hw, struct i40e_virt_mem *mem) 169 { 170 /* it's ok to kfree a NULL pointer */ 171 kfree(mem->va); 172 mem->va = NULL; 173 mem->size = 0; 174 175 return 0; 176 } 177 178 /** 179 * i40e_get_lump - find a lump of free generic resource 180 * @pf: board private structure 181 * @pile: the pile of resource to search 182 * @needed: the number of items needed 183 * @id: an owner id to stick on the items assigned 184 * 185 * Returns the base item index of the lump, or negative for error 186 * 187 * The search_hint trick and lack of advanced fit-finding only work 188 * because we're highly likely to have all the same size lump requests. 189 * Linear search time and any fragmentation should be minimal. 190 **/ 191 static int i40e_get_lump(struct i40e_pf *pf, struct i40e_lump_tracking *pile, 192 u16 needed, u16 id) 193 { 194 int ret = -ENOMEM; 195 int i, j; 196 197 if (!pile || needed == 0 || id >= I40E_PILE_VALID_BIT) { 198 dev_info(&pf->pdev->dev, 199 "param err: pile=%s needed=%d id=0x%04x\n", 200 pile ? "<valid>" : "<null>", needed, id); 201 return -EINVAL; 202 } 203 204 /* start the linear search with an imperfect hint */ 205 i = pile->search_hint; 206 while (i < pile->num_entries) { 207 /* skip already allocated entries */ 208 if (pile->list[i] & I40E_PILE_VALID_BIT) { 209 i++; 210 continue; 211 } 212 213 /* do we have enough in this lump? */ 214 for (j = 0; (j < needed) && ((i+j) < pile->num_entries); j++) { 215 if (pile->list[i+j] & I40E_PILE_VALID_BIT) 216 break; 217 } 218 219 if (j == needed) { 220 /* there was enough, so assign it to the requestor */ 221 for (j = 0; j < needed; j++) 222 pile->list[i+j] = id | I40E_PILE_VALID_BIT; 223 ret = i; 224 pile->search_hint = i + j; 225 break; 226 } 227 228 /* not enough, so skip over it and continue looking */ 229 i += j; 230 } 231 232 return ret; 233 } 234 235 /** 236 * i40e_put_lump - return a lump of generic resource 237 * @pile: the pile of resource to search 238 * @index: the base item index 239 * @id: the owner id of the items assigned 240 * 241 * Returns the count of items in the lump 242 **/ 243 static int i40e_put_lump(struct i40e_lump_tracking *pile, u16 index, u16 id) 244 { 245 int valid_id = (id | I40E_PILE_VALID_BIT); 246 int count = 0; 247 int i; 248 249 if (!pile || index >= pile->num_entries) 250 return -EINVAL; 251 252 for (i = index; 253 i < pile->num_entries && pile->list[i] == valid_id; 254 i++) { 255 pile->list[i] = 0; 256 count++; 257 } 258 259 if (count && index < pile->search_hint) 260 pile->search_hint = index; 261 262 return count; 263 } 264 265 /** 266 * i40e_find_vsi_from_id - searches for the vsi with the given id 267 * @pf: the pf structure to search for the vsi 268 * @id: id of the vsi it is searching for 269 **/ 270 struct i40e_vsi *i40e_find_vsi_from_id(struct i40e_pf *pf, u16 id) 271 { 272 int i; 273 274 for (i = 0; i < pf->num_alloc_vsi; i++) 275 if (pf->vsi[i] && (pf->vsi[i]->id == id)) 276 return pf->vsi[i]; 277 278 return NULL; 279 } 280 281 /** 282 * i40e_service_event_schedule - Schedule the service task to wake up 283 * @pf: board private structure 284 * 285 * If not already scheduled, this puts the task into the work queue 286 **/ 287 void i40e_service_event_schedule(struct i40e_pf *pf) 288 { 289 if ((!test_bit(__I40E_DOWN, pf->state) && 290 !test_bit(__I40E_RESET_RECOVERY_PENDING, pf->state)) || 291 test_bit(__I40E_RECOVERY_MODE, pf->state)) 292 queue_work(i40e_wq, &pf->service_task); 293 } 294 295 /** 296 * i40e_tx_timeout - Respond to a Tx Hang 297 * @netdev: network interface device structure 298 * 299 * If any port has noticed a Tx timeout, it is likely that the whole 300 * device is munged, not just the one netdev port, so go for the full 301 * reset. 302 **/ 303 static void i40e_tx_timeout(struct net_device *netdev) 304 { 305 struct i40e_netdev_priv *np = netdev_priv(netdev); 306 struct i40e_vsi *vsi = np->vsi; 307 struct i40e_pf *pf = vsi->back; 308 struct i40e_ring *tx_ring = NULL; 309 unsigned int i, hung_queue = 0; 310 u32 head, val; 311 312 pf->tx_timeout_count++; 313 314 /* find the stopped queue the same way the stack does */ 315 for (i = 0; i < netdev->num_tx_queues; i++) { 316 struct netdev_queue *q; 317 unsigned long trans_start; 318 319 q = netdev_get_tx_queue(netdev, i); 320 trans_start = q->trans_start; 321 if (netif_xmit_stopped(q) && 322 time_after(jiffies, 323 (trans_start + netdev->watchdog_timeo))) { 324 hung_queue = i; 325 break; 326 } 327 } 328 329 if (i == netdev->num_tx_queues) { 330 netdev_info(netdev, "tx_timeout: no netdev hung queue found\n"); 331 } else { 332 /* now that we have an index, find the tx_ring struct */ 333 for (i = 0; i < vsi->num_queue_pairs; i++) { 334 if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc) { 335 if (hung_queue == 336 vsi->tx_rings[i]->queue_index) { 337 tx_ring = vsi->tx_rings[i]; 338 break; 339 } 340 } 341 } 342 } 343 344 if (time_after(jiffies, (pf->tx_timeout_last_recovery + HZ*20))) 345 pf->tx_timeout_recovery_level = 1; /* reset after some time */ 346 else if (time_before(jiffies, 347 (pf->tx_timeout_last_recovery + netdev->watchdog_timeo))) 348 return; /* don't do any new action before the next timeout */ 349 350 /* don't kick off another recovery if one is already pending */ 351 if (test_and_set_bit(__I40E_TIMEOUT_RECOVERY_PENDING, pf->state)) 352 return; 353 354 if (tx_ring) { 355 head = i40e_get_head(tx_ring); 356 /* Read interrupt register */ 357 if (pf->flags & I40E_FLAG_MSIX_ENABLED) 358 val = rd32(&pf->hw, 359 I40E_PFINT_DYN_CTLN(tx_ring->q_vector->v_idx + 360 tx_ring->vsi->base_vector - 1)); 361 else 362 val = rd32(&pf->hw, I40E_PFINT_DYN_CTL0); 363 364 netdev_info(netdev, "tx_timeout: VSI_seid: %d, Q %d, NTC: 0x%x, HWB: 0x%x, NTU: 0x%x, TAIL: 0x%x, INT: 0x%x\n", 365 vsi->seid, hung_queue, tx_ring->next_to_clean, 366 head, tx_ring->next_to_use, 367 readl(tx_ring->tail), val); 368 } 369 370 pf->tx_timeout_last_recovery = jiffies; 371 netdev_info(netdev, "tx_timeout recovery level %d, hung_queue %d\n", 372 pf->tx_timeout_recovery_level, hung_queue); 373 374 switch (pf->tx_timeout_recovery_level) { 375 case 1: 376 set_bit(__I40E_PF_RESET_REQUESTED, pf->state); 377 break; 378 case 2: 379 set_bit(__I40E_CORE_RESET_REQUESTED, pf->state); 380 break; 381 case 3: 382 set_bit(__I40E_GLOBAL_RESET_REQUESTED, pf->state); 383 break; 384 default: 385 netdev_err(netdev, "tx_timeout recovery unsuccessful\n"); 386 break; 387 } 388 389 i40e_service_event_schedule(pf); 390 pf->tx_timeout_recovery_level++; 391 } 392 393 /** 394 * i40e_get_vsi_stats_struct - Get System Network Statistics 395 * @vsi: the VSI we care about 396 * 397 * Returns the address of the device statistics structure. 398 * The statistics are actually updated from the service task. 399 **/ 400 struct rtnl_link_stats64 *i40e_get_vsi_stats_struct(struct i40e_vsi *vsi) 401 { 402 return &vsi->net_stats; 403 } 404 405 /** 406 * i40e_get_netdev_stats_struct_tx - populate stats from a Tx ring 407 * @ring: Tx ring to get statistics from 408 * @stats: statistics entry to be updated 409 **/ 410 static void i40e_get_netdev_stats_struct_tx(struct i40e_ring *ring, 411 struct rtnl_link_stats64 *stats) 412 { 413 u64 bytes, packets; 414 unsigned int start; 415 416 do { 417 start = u64_stats_fetch_begin_irq(&ring->syncp); 418 packets = ring->stats.packets; 419 bytes = ring->stats.bytes; 420 } while (u64_stats_fetch_retry_irq(&ring->syncp, start)); 421 422 stats->tx_packets += packets; 423 stats->tx_bytes += bytes; 424 } 425 426 /** 427 * i40e_get_netdev_stats_struct - Get statistics for netdev interface 428 * @netdev: network interface device structure 429 * @stats: data structure to store statistics 430 * 431 * Returns the address of the device statistics structure. 432 * The statistics are actually updated from the service task. 433 **/ 434 static void i40e_get_netdev_stats_struct(struct net_device *netdev, 435 struct rtnl_link_stats64 *stats) 436 { 437 struct i40e_netdev_priv *np = netdev_priv(netdev); 438 struct i40e_vsi *vsi = np->vsi; 439 struct rtnl_link_stats64 *vsi_stats = i40e_get_vsi_stats_struct(vsi); 440 struct i40e_ring *ring; 441 int i; 442 443 if (test_bit(__I40E_VSI_DOWN, vsi->state)) 444 return; 445 446 if (!vsi->tx_rings) 447 return; 448 449 rcu_read_lock(); 450 for (i = 0; i < vsi->num_queue_pairs; i++) { 451 u64 bytes, packets; 452 unsigned int start; 453 454 ring = READ_ONCE(vsi->tx_rings[i]); 455 if (!ring) 456 continue; 457 i40e_get_netdev_stats_struct_tx(ring, stats); 458 459 if (i40e_enabled_xdp_vsi(vsi)) { 460 ring++; 461 i40e_get_netdev_stats_struct_tx(ring, stats); 462 } 463 464 ring++; 465 do { 466 start = u64_stats_fetch_begin_irq(&ring->syncp); 467 packets = ring->stats.packets; 468 bytes = ring->stats.bytes; 469 } while (u64_stats_fetch_retry_irq(&ring->syncp, start)); 470 471 stats->rx_packets += packets; 472 stats->rx_bytes += bytes; 473 474 } 475 rcu_read_unlock(); 476 477 /* following stats updated by i40e_watchdog_subtask() */ 478 stats->multicast = vsi_stats->multicast; 479 stats->tx_errors = vsi_stats->tx_errors; 480 stats->tx_dropped = vsi_stats->tx_dropped; 481 stats->rx_errors = vsi_stats->rx_errors; 482 stats->rx_dropped = vsi_stats->rx_dropped; 483 stats->rx_crc_errors = vsi_stats->rx_crc_errors; 484 stats->rx_length_errors = vsi_stats->rx_length_errors; 485 } 486 487 /** 488 * i40e_vsi_reset_stats - Resets all stats of the given vsi 489 * @vsi: the VSI to have its stats reset 490 **/ 491 void i40e_vsi_reset_stats(struct i40e_vsi *vsi) 492 { 493 struct rtnl_link_stats64 *ns; 494 int i; 495 496 if (!vsi) 497 return; 498 499 ns = i40e_get_vsi_stats_struct(vsi); 500 memset(ns, 0, sizeof(*ns)); 501 memset(&vsi->net_stats_offsets, 0, sizeof(vsi->net_stats_offsets)); 502 memset(&vsi->eth_stats, 0, sizeof(vsi->eth_stats)); 503 memset(&vsi->eth_stats_offsets, 0, sizeof(vsi->eth_stats_offsets)); 504 if (vsi->rx_rings && vsi->rx_rings[0]) { 505 for (i = 0; i < vsi->num_queue_pairs; i++) { 506 memset(&vsi->rx_rings[i]->stats, 0, 507 sizeof(vsi->rx_rings[i]->stats)); 508 memset(&vsi->rx_rings[i]->rx_stats, 0, 509 sizeof(vsi->rx_rings[i]->rx_stats)); 510 memset(&vsi->tx_rings[i]->stats, 0, 511 sizeof(vsi->tx_rings[i]->stats)); 512 memset(&vsi->tx_rings[i]->tx_stats, 0, 513 sizeof(vsi->tx_rings[i]->tx_stats)); 514 } 515 } 516 vsi->stat_offsets_loaded = false; 517 } 518 519 /** 520 * i40e_pf_reset_stats - Reset all of the stats for the given PF 521 * @pf: the PF to be reset 522 **/ 523 void i40e_pf_reset_stats(struct i40e_pf *pf) 524 { 525 int i; 526 527 memset(&pf->stats, 0, sizeof(pf->stats)); 528 memset(&pf->stats_offsets, 0, sizeof(pf->stats_offsets)); 529 pf->stat_offsets_loaded = false; 530 531 for (i = 0; i < I40E_MAX_VEB; i++) { 532 if (pf->veb[i]) { 533 memset(&pf->veb[i]->stats, 0, 534 sizeof(pf->veb[i]->stats)); 535 memset(&pf->veb[i]->stats_offsets, 0, 536 sizeof(pf->veb[i]->stats_offsets)); 537 pf->veb[i]->stat_offsets_loaded = false; 538 } 539 } 540 pf->hw_csum_rx_error = 0; 541 } 542 543 /** 544 * i40e_stat_update48 - read and update a 48 bit stat from the chip 545 * @hw: ptr to the hardware info 546 * @hireg: the high 32 bit reg to read 547 * @loreg: the low 32 bit reg to read 548 * @offset_loaded: has the initial offset been loaded yet 549 * @offset: ptr to current offset value 550 * @stat: ptr to the stat 551 * 552 * Since the device stats are not reset at PFReset, they likely will not 553 * be zeroed when the driver starts. We'll save the first values read 554 * and use them as offsets to be subtracted from the raw values in order 555 * to report stats that count from zero. In the process, we also manage 556 * the potential roll-over. 557 **/ 558 static void i40e_stat_update48(struct i40e_hw *hw, u32 hireg, u32 loreg, 559 bool offset_loaded, u64 *offset, u64 *stat) 560 { 561 u64 new_data; 562 563 if (hw->device_id == I40E_DEV_ID_QEMU) { 564 new_data = rd32(hw, loreg); 565 new_data |= ((u64)(rd32(hw, hireg) & 0xFFFF)) << 32; 566 } else { 567 new_data = rd64(hw, loreg); 568 } 569 if (!offset_loaded) 570 *offset = new_data; 571 if (likely(new_data >= *offset)) 572 *stat = new_data - *offset; 573 else 574 *stat = (new_data + BIT_ULL(48)) - *offset; 575 *stat &= 0xFFFFFFFFFFFFULL; 576 } 577 578 /** 579 * i40e_stat_update32 - read and update a 32 bit stat from the chip 580 * @hw: ptr to the hardware info 581 * @reg: the hw reg to read 582 * @offset_loaded: has the initial offset been loaded yet 583 * @offset: ptr to current offset value 584 * @stat: ptr to the stat 585 **/ 586 static void i40e_stat_update32(struct i40e_hw *hw, u32 reg, 587 bool offset_loaded, u64 *offset, u64 *stat) 588 { 589 u32 new_data; 590 591 new_data = rd32(hw, reg); 592 if (!offset_loaded) 593 *offset = new_data; 594 if (likely(new_data >= *offset)) 595 *stat = (u32)(new_data - *offset); 596 else 597 *stat = (u32)((new_data + BIT_ULL(32)) - *offset); 598 } 599 600 /** 601 * i40e_stat_update_and_clear32 - read and clear hw reg, update a 32 bit stat 602 * @hw: ptr to the hardware info 603 * @reg: the hw reg to read and clear 604 * @stat: ptr to the stat 605 **/ 606 static void i40e_stat_update_and_clear32(struct i40e_hw *hw, u32 reg, u64 *stat) 607 { 608 u32 new_data = rd32(hw, reg); 609 610 wr32(hw, reg, 1); /* must write a nonzero value to clear register */ 611 *stat += new_data; 612 } 613 614 /** 615 * i40e_update_eth_stats - Update VSI-specific ethernet statistics counters. 616 * @vsi: the VSI to be updated 617 **/ 618 void i40e_update_eth_stats(struct i40e_vsi *vsi) 619 { 620 int stat_idx = le16_to_cpu(vsi->info.stat_counter_idx); 621 struct i40e_pf *pf = vsi->back; 622 struct i40e_hw *hw = &pf->hw; 623 struct i40e_eth_stats *oes; 624 struct i40e_eth_stats *es; /* device's eth stats */ 625 626 es = &vsi->eth_stats; 627 oes = &vsi->eth_stats_offsets; 628 629 /* Gather up the stats that the hw collects */ 630 i40e_stat_update32(hw, I40E_GLV_TEPC(stat_idx), 631 vsi->stat_offsets_loaded, 632 &oes->tx_errors, &es->tx_errors); 633 i40e_stat_update32(hw, I40E_GLV_RDPC(stat_idx), 634 vsi->stat_offsets_loaded, 635 &oes->rx_discards, &es->rx_discards); 636 i40e_stat_update32(hw, I40E_GLV_RUPP(stat_idx), 637 vsi->stat_offsets_loaded, 638 &oes->rx_unknown_protocol, &es->rx_unknown_protocol); 639 i40e_stat_update32(hw, I40E_GLV_TEPC(stat_idx), 640 vsi->stat_offsets_loaded, 641 &oes->tx_errors, &es->tx_errors); 642 643 i40e_stat_update48(hw, I40E_GLV_GORCH(stat_idx), 644 I40E_GLV_GORCL(stat_idx), 645 vsi->stat_offsets_loaded, 646 &oes->rx_bytes, &es->rx_bytes); 647 i40e_stat_update48(hw, I40E_GLV_UPRCH(stat_idx), 648 I40E_GLV_UPRCL(stat_idx), 649 vsi->stat_offsets_loaded, 650 &oes->rx_unicast, &es->rx_unicast); 651 i40e_stat_update48(hw, I40E_GLV_MPRCH(stat_idx), 652 I40E_GLV_MPRCL(stat_idx), 653 vsi->stat_offsets_loaded, 654 &oes->rx_multicast, &es->rx_multicast); 655 i40e_stat_update48(hw, I40E_GLV_BPRCH(stat_idx), 656 I40E_GLV_BPRCL(stat_idx), 657 vsi->stat_offsets_loaded, 658 &oes->rx_broadcast, &es->rx_broadcast); 659 660 i40e_stat_update48(hw, I40E_GLV_GOTCH(stat_idx), 661 I40E_GLV_GOTCL(stat_idx), 662 vsi->stat_offsets_loaded, 663 &oes->tx_bytes, &es->tx_bytes); 664 i40e_stat_update48(hw, I40E_GLV_UPTCH(stat_idx), 665 I40E_GLV_UPTCL(stat_idx), 666 vsi->stat_offsets_loaded, 667 &oes->tx_unicast, &es->tx_unicast); 668 i40e_stat_update48(hw, I40E_GLV_MPTCH(stat_idx), 669 I40E_GLV_MPTCL(stat_idx), 670 vsi->stat_offsets_loaded, 671 &oes->tx_multicast, &es->tx_multicast); 672 i40e_stat_update48(hw, I40E_GLV_BPTCH(stat_idx), 673 I40E_GLV_BPTCL(stat_idx), 674 vsi->stat_offsets_loaded, 675 &oes->tx_broadcast, &es->tx_broadcast); 676 vsi->stat_offsets_loaded = true; 677 } 678 679 /** 680 * i40e_update_veb_stats - Update Switch component statistics 681 * @veb: the VEB being updated 682 **/ 683 static void i40e_update_veb_stats(struct i40e_veb *veb) 684 { 685 struct i40e_pf *pf = veb->pf; 686 struct i40e_hw *hw = &pf->hw; 687 struct i40e_eth_stats *oes; 688 struct i40e_eth_stats *es; /* device's eth stats */ 689 struct i40e_veb_tc_stats *veb_oes; 690 struct i40e_veb_tc_stats *veb_es; 691 int i, idx = 0; 692 693 idx = veb->stats_idx; 694 es = &veb->stats; 695 oes = &veb->stats_offsets; 696 veb_es = &veb->tc_stats; 697 veb_oes = &veb->tc_stats_offsets; 698 699 /* Gather up the stats that the hw collects */ 700 i40e_stat_update32(hw, I40E_GLSW_TDPC(idx), 701 veb->stat_offsets_loaded, 702 &oes->tx_discards, &es->tx_discards); 703 if (hw->revision_id > 0) 704 i40e_stat_update32(hw, I40E_GLSW_RUPP(idx), 705 veb->stat_offsets_loaded, 706 &oes->rx_unknown_protocol, 707 &es->rx_unknown_protocol); 708 i40e_stat_update48(hw, I40E_GLSW_GORCH(idx), I40E_GLSW_GORCL(idx), 709 veb->stat_offsets_loaded, 710 &oes->rx_bytes, &es->rx_bytes); 711 i40e_stat_update48(hw, I40E_GLSW_UPRCH(idx), I40E_GLSW_UPRCL(idx), 712 veb->stat_offsets_loaded, 713 &oes->rx_unicast, &es->rx_unicast); 714 i40e_stat_update48(hw, I40E_GLSW_MPRCH(idx), I40E_GLSW_MPRCL(idx), 715 veb->stat_offsets_loaded, 716 &oes->rx_multicast, &es->rx_multicast); 717 i40e_stat_update48(hw, I40E_GLSW_BPRCH(idx), I40E_GLSW_BPRCL(idx), 718 veb->stat_offsets_loaded, 719 &oes->rx_broadcast, &es->rx_broadcast); 720 721 i40e_stat_update48(hw, I40E_GLSW_GOTCH(idx), I40E_GLSW_GOTCL(idx), 722 veb->stat_offsets_loaded, 723 &oes->tx_bytes, &es->tx_bytes); 724 i40e_stat_update48(hw, I40E_GLSW_UPTCH(idx), I40E_GLSW_UPTCL(idx), 725 veb->stat_offsets_loaded, 726 &oes->tx_unicast, &es->tx_unicast); 727 i40e_stat_update48(hw, I40E_GLSW_MPTCH(idx), I40E_GLSW_MPTCL(idx), 728 veb->stat_offsets_loaded, 729 &oes->tx_multicast, &es->tx_multicast); 730 i40e_stat_update48(hw, I40E_GLSW_BPTCH(idx), I40E_GLSW_BPTCL(idx), 731 veb->stat_offsets_loaded, 732 &oes->tx_broadcast, &es->tx_broadcast); 733 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 734 i40e_stat_update48(hw, I40E_GLVEBTC_RPCH(i, idx), 735 I40E_GLVEBTC_RPCL(i, idx), 736 veb->stat_offsets_loaded, 737 &veb_oes->tc_rx_packets[i], 738 &veb_es->tc_rx_packets[i]); 739 i40e_stat_update48(hw, I40E_GLVEBTC_RBCH(i, idx), 740 I40E_GLVEBTC_RBCL(i, idx), 741 veb->stat_offsets_loaded, 742 &veb_oes->tc_rx_bytes[i], 743 &veb_es->tc_rx_bytes[i]); 744 i40e_stat_update48(hw, I40E_GLVEBTC_TPCH(i, idx), 745 I40E_GLVEBTC_TPCL(i, idx), 746 veb->stat_offsets_loaded, 747 &veb_oes->tc_tx_packets[i], 748 &veb_es->tc_tx_packets[i]); 749 i40e_stat_update48(hw, I40E_GLVEBTC_TBCH(i, idx), 750 I40E_GLVEBTC_TBCL(i, idx), 751 veb->stat_offsets_loaded, 752 &veb_oes->tc_tx_bytes[i], 753 &veb_es->tc_tx_bytes[i]); 754 } 755 veb->stat_offsets_loaded = true; 756 } 757 758 /** 759 * i40e_update_vsi_stats - Update the vsi statistics counters. 760 * @vsi: the VSI to be updated 761 * 762 * There are a few instances where we store the same stat in a 763 * couple of different structs. This is partly because we have 764 * the netdev stats that need to be filled out, which is slightly 765 * different from the "eth_stats" defined by the chip and used in 766 * VF communications. We sort it out here. 767 **/ 768 static void i40e_update_vsi_stats(struct i40e_vsi *vsi) 769 { 770 struct i40e_pf *pf = vsi->back; 771 struct rtnl_link_stats64 *ons; 772 struct rtnl_link_stats64 *ns; /* netdev stats */ 773 struct i40e_eth_stats *oes; 774 struct i40e_eth_stats *es; /* device's eth stats */ 775 u32 tx_restart, tx_busy; 776 struct i40e_ring *p; 777 u32 rx_page, rx_buf; 778 u64 bytes, packets; 779 unsigned int start; 780 u64 tx_linearize; 781 u64 tx_force_wb; 782 u64 rx_p, rx_b; 783 u64 tx_p, tx_b; 784 u16 q; 785 786 if (test_bit(__I40E_VSI_DOWN, vsi->state) || 787 test_bit(__I40E_CONFIG_BUSY, pf->state)) 788 return; 789 790 ns = i40e_get_vsi_stats_struct(vsi); 791 ons = &vsi->net_stats_offsets; 792 es = &vsi->eth_stats; 793 oes = &vsi->eth_stats_offsets; 794 795 /* Gather up the netdev and vsi stats that the driver collects 796 * on the fly during packet processing 797 */ 798 rx_b = rx_p = 0; 799 tx_b = tx_p = 0; 800 tx_restart = tx_busy = tx_linearize = tx_force_wb = 0; 801 rx_page = 0; 802 rx_buf = 0; 803 rcu_read_lock(); 804 for (q = 0; q < vsi->num_queue_pairs; q++) { 805 /* locate Tx ring */ 806 p = READ_ONCE(vsi->tx_rings[q]); 807 808 do { 809 start = u64_stats_fetch_begin_irq(&p->syncp); 810 packets = p->stats.packets; 811 bytes = p->stats.bytes; 812 } while (u64_stats_fetch_retry_irq(&p->syncp, start)); 813 tx_b += bytes; 814 tx_p += packets; 815 tx_restart += p->tx_stats.restart_queue; 816 tx_busy += p->tx_stats.tx_busy; 817 tx_linearize += p->tx_stats.tx_linearize; 818 tx_force_wb += p->tx_stats.tx_force_wb; 819 820 /* Rx queue is part of the same block as Tx queue */ 821 p = &p[1]; 822 do { 823 start = u64_stats_fetch_begin_irq(&p->syncp); 824 packets = p->stats.packets; 825 bytes = p->stats.bytes; 826 } while (u64_stats_fetch_retry_irq(&p->syncp, start)); 827 rx_b += bytes; 828 rx_p += packets; 829 rx_buf += p->rx_stats.alloc_buff_failed; 830 rx_page += p->rx_stats.alloc_page_failed; 831 } 832 rcu_read_unlock(); 833 vsi->tx_restart = tx_restart; 834 vsi->tx_busy = tx_busy; 835 vsi->tx_linearize = tx_linearize; 836 vsi->tx_force_wb = tx_force_wb; 837 vsi->rx_page_failed = rx_page; 838 vsi->rx_buf_failed = rx_buf; 839 840 ns->rx_packets = rx_p; 841 ns->rx_bytes = rx_b; 842 ns->tx_packets = tx_p; 843 ns->tx_bytes = tx_b; 844 845 /* update netdev stats from eth stats */ 846 i40e_update_eth_stats(vsi); 847 ons->tx_errors = oes->tx_errors; 848 ns->tx_errors = es->tx_errors; 849 ons->multicast = oes->rx_multicast; 850 ns->multicast = es->rx_multicast; 851 ons->rx_dropped = oes->rx_discards; 852 ns->rx_dropped = es->rx_discards; 853 ons->tx_dropped = oes->tx_discards; 854 ns->tx_dropped = es->tx_discards; 855 856 /* pull in a couple PF stats if this is the main vsi */ 857 if (vsi == pf->vsi[pf->lan_vsi]) { 858 ns->rx_crc_errors = pf->stats.crc_errors; 859 ns->rx_errors = pf->stats.crc_errors + pf->stats.illegal_bytes; 860 ns->rx_length_errors = pf->stats.rx_length_errors; 861 } 862 } 863 864 /** 865 * i40e_update_pf_stats - Update the PF statistics counters. 866 * @pf: the PF to be updated 867 **/ 868 static void i40e_update_pf_stats(struct i40e_pf *pf) 869 { 870 struct i40e_hw_port_stats *osd = &pf->stats_offsets; 871 struct i40e_hw_port_stats *nsd = &pf->stats; 872 struct i40e_hw *hw = &pf->hw; 873 u32 val; 874 int i; 875 876 i40e_stat_update48(hw, I40E_GLPRT_GORCH(hw->port), 877 I40E_GLPRT_GORCL(hw->port), 878 pf->stat_offsets_loaded, 879 &osd->eth.rx_bytes, &nsd->eth.rx_bytes); 880 i40e_stat_update48(hw, I40E_GLPRT_GOTCH(hw->port), 881 I40E_GLPRT_GOTCL(hw->port), 882 pf->stat_offsets_loaded, 883 &osd->eth.tx_bytes, &nsd->eth.tx_bytes); 884 i40e_stat_update32(hw, I40E_GLPRT_RDPC(hw->port), 885 pf->stat_offsets_loaded, 886 &osd->eth.rx_discards, 887 &nsd->eth.rx_discards); 888 i40e_stat_update48(hw, I40E_GLPRT_UPRCH(hw->port), 889 I40E_GLPRT_UPRCL(hw->port), 890 pf->stat_offsets_loaded, 891 &osd->eth.rx_unicast, 892 &nsd->eth.rx_unicast); 893 i40e_stat_update48(hw, I40E_GLPRT_MPRCH(hw->port), 894 I40E_GLPRT_MPRCL(hw->port), 895 pf->stat_offsets_loaded, 896 &osd->eth.rx_multicast, 897 &nsd->eth.rx_multicast); 898 i40e_stat_update48(hw, I40E_GLPRT_BPRCH(hw->port), 899 I40E_GLPRT_BPRCL(hw->port), 900 pf->stat_offsets_loaded, 901 &osd->eth.rx_broadcast, 902 &nsd->eth.rx_broadcast); 903 i40e_stat_update48(hw, I40E_GLPRT_UPTCH(hw->port), 904 I40E_GLPRT_UPTCL(hw->port), 905 pf->stat_offsets_loaded, 906 &osd->eth.tx_unicast, 907 &nsd->eth.tx_unicast); 908 i40e_stat_update48(hw, I40E_GLPRT_MPTCH(hw->port), 909 I40E_GLPRT_MPTCL(hw->port), 910 pf->stat_offsets_loaded, 911 &osd->eth.tx_multicast, 912 &nsd->eth.tx_multicast); 913 i40e_stat_update48(hw, I40E_GLPRT_BPTCH(hw->port), 914 I40E_GLPRT_BPTCL(hw->port), 915 pf->stat_offsets_loaded, 916 &osd->eth.tx_broadcast, 917 &nsd->eth.tx_broadcast); 918 919 i40e_stat_update32(hw, I40E_GLPRT_TDOLD(hw->port), 920 pf->stat_offsets_loaded, 921 &osd->tx_dropped_link_down, 922 &nsd->tx_dropped_link_down); 923 924 i40e_stat_update32(hw, I40E_GLPRT_CRCERRS(hw->port), 925 pf->stat_offsets_loaded, 926 &osd->crc_errors, &nsd->crc_errors); 927 928 i40e_stat_update32(hw, I40E_GLPRT_ILLERRC(hw->port), 929 pf->stat_offsets_loaded, 930 &osd->illegal_bytes, &nsd->illegal_bytes); 931 932 i40e_stat_update32(hw, I40E_GLPRT_MLFC(hw->port), 933 pf->stat_offsets_loaded, 934 &osd->mac_local_faults, 935 &nsd->mac_local_faults); 936 i40e_stat_update32(hw, I40E_GLPRT_MRFC(hw->port), 937 pf->stat_offsets_loaded, 938 &osd->mac_remote_faults, 939 &nsd->mac_remote_faults); 940 941 i40e_stat_update32(hw, I40E_GLPRT_RLEC(hw->port), 942 pf->stat_offsets_loaded, 943 &osd->rx_length_errors, 944 &nsd->rx_length_errors); 945 946 i40e_stat_update32(hw, I40E_GLPRT_LXONRXC(hw->port), 947 pf->stat_offsets_loaded, 948 &osd->link_xon_rx, &nsd->link_xon_rx); 949 i40e_stat_update32(hw, I40E_GLPRT_LXONTXC(hw->port), 950 pf->stat_offsets_loaded, 951 &osd->link_xon_tx, &nsd->link_xon_tx); 952 i40e_stat_update32(hw, I40E_GLPRT_LXOFFRXC(hw->port), 953 pf->stat_offsets_loaded, 954 &osd->link_xoff_rx, &nsd->link_xoff_rx); 955 i40e_stat_update32(hw, I40E_GLPRT_LXOFFTXC(hw->port), 956 pf->stat_offsets_loaded, 957 &osd->link_xoff_tx, &nsd->link_xoff_tx); 958 959 for (i = 0; i < 8; i++) { 960 i40e_stat_update32(hw, I40E_GLPRT_PXOFFRXC(hw->port, i), 961 pf->stat_offsets_loaded, 962 &osd->priority_xoff_rx[i], 963 &nsd->priority_xoff_rx[i]); 964 i40e_stat_update32(hw, I40E_GLPRT_PXONRXC(hw->port, i), 965 pf->stat_offsets_loaded, 966 &osd->priority_xon_rx[i], 967 &nsd->priority_xon_rx[i]); 968 i40e_stat_update32(hw, I40E_GLPRT_PXONTXC(hw->port, i), 969 pf->stat_offsets_loaded, 970 &osd->priority_xon_tx[i], 971 &nsd->priority_xon_tx[i]); 972 i40e_stat_update32(hw, I40E_GLPRT_PXOFFTXC(hw->port, i), 973 pf->stat_offsets_loaded, 974 &osd->priority_xoff_tx[i], 975 &nsd->priority_xoff_tx[i]); 976 i40e_stat_update32(hw, 977 I40E_GLPRT_RXON2OFFCNT(hw->port, i), 978 pf->stat_offsets_loaded, 979 &osd->priority_xon_2_xoff[i], 980 &nsd->priority_xon_2_xoff[i]); 981 } 982 983 i40e_stat_update48(hw, I40E_GLPRT_PRC64H(hw->port), 984 I40E_GLPRT_PRC64L(hw->port), 985 pf->stat_offsets_loaded, 986 &osd->rx_size_64, &nsd->rx_size_64); 987 i40e_stat_update48(hw, I40E_GLPRT_PRC127H(hw->port), 988 I40E_GLPRT_PRC127L(hw->port), 989 pf->stat_offsets_loaded, 990 &osd->rx_size_127, &nsd->rx_size_127); 991 i40e_stat_update48(hw, I40E_GLPRT_PRC255H(hw->port), 992 I40E_GLPRT_PRC255L(hw->port), 993 pf->stat_offsets_loaded, 994 &osd->rx_size_255, &nsd->rx_size_255); 995 i40e_stat_update48(hw, I40E_GLPRT_PRC511H(hw->port), 996 I40E_GLPRT_PRC511L(hw->port), 997 pf->stat_offsets_loaded, 998 &osd->rx_size_511, &nsd->rx_size_511); 999 i40e_stat_update48(hw, I40E_GLPRT_PRC1023H(hw->port), 1000 I40E_GLPRT_PRC1023L(hw->port), 1001 pf->stat_offsets_loaded, 1002 &osd->rx_size_1023, &nsd->rx_size_1023); 1003 i40e_stat_update48(hw, I40E_GLPRT_PRC1522H(hw->port), 1004 I40E_GLPRT_PRC1522L(hw->port), 1005 pf->stat_offsets_loaded, 1006 &osd->rx_size_1522, &nsd->rx_size_1522); 1007 i40e_stat_update48(hw, I40E_GLPRT_PRC9522H(hw->port), 1008 I40E_GLPRT_PRC9522L(hw->port), 1009 pf->stat_offsets_loaded, 1010 &osd->rx_size_big, &nsd->rx_size_big); 1011 1012 i40e_stat_update48(hw, I40E_GLPRT_PTC64H(hw->port), 1013 I40E_GLPRT_PTC64L(hw->port), 1014 pf->stat_offsets_loaded, 1015 &osd->tx_size_64, &nsd->tx_size_64); 1016 i40e_stat_update48(hw, I40E_GLPRT_PTC127H(hw->port), 1017 I40E_GLPRT_PTC127L(hw->port), 1018 pf->stat_offsets_loaded, 1019 &osd->tx_size_127, &nsd->tx_size_127); 1020 i40e_stat_update48(hw, I40E_GLPRT_PTC255H(hw->port), 1021 I40E_GLPRT_PTC255L(hw->port), 1022 pf->stat_offsets_loaded, 1023 &osd->tx_size_255, &nsd->tx_size_255); 1024 i40e_stat_update48(hw, I40E_GLPRT_PTC511H(hw->port), 1025 I40E_GLPRT_PTC511L(hw->port), 1026 pf->stat_offsets_loaded, 1027 &osd->tx_size_511, &nsd->tx_size_511); 1028 i40e_stat_update48(hw, I40E_GLPRT_PTC1023H(hw->port), 1029 I40E_GLPRT_PTC1023L(hw->port), 1030 pf->stat_offsets_loaded, 1031 &osd->tx_size_1023, &nsd->tx_size_1023); 1032 i40e_stat_update48(hw, I40E_GLPRT_PTC1522H(hw->port), 1033 I40E_GLPRT_PTC1522L(hw->port), 1034 pf->stat_offsets_loaded, 1035 &osd->tx_size_1522, &nsd->tx_size_1522); 1036 i40e_stat_update48(hw, I40E_GLPRT_PTC9522H(hw->port), 1037 I40E_GLPRT_PTC9522L(hw->port), 1038 pf->stat_offsets_loaded, 1039 &osd->tx_size_big, &nsd->tx_size_big); 1040 1041 i40e_stat_update32(hw, I40E_GLPRT_RUC(hw->port), 1042 pf->stat_offsets_loaded, 1043 &osd->rx_undersize, &nsd->rx_undersize); 1044 i40e_stat_update32(hw, I40E_GLPRT_RFC(hw->port), 1045 pf->stat_offsets_loaded, 1046 &osd->rx_fragments, &nsd->rx_fragments); 1047 i40e_stat_update32(hw, I40E_GLPRT_ROC(hw->port), 1048 pf->stat_offsets_loaded, 1049 &osd->rx_oversize, &nsd->rx_oversize); 1050 i40e_stat_update32(hw, I40E_GLPRT_RJC(hw->port), 1051 pf->stat_offsets_loaded, 1052 &osd->rx_jabber, &nsd->rx_jabber); 1053 1054 /* FDIR stats */ 1055 i40e_stat_update_and_clear32(hw, 1056 I40E_GLQF_PCNT(I40E_FD_ATR_STAT_IDX(hw->pf_id)), 1057 &nsd->fd_atr_match); 1058 i40e_stat_update_and_clear32(hw, 1059 I40E_GLQF_PCNT(I40E_FD_SB_STAT_IDX(hw->pf_id)), 1060 &nsd->fd_sb_match); 1061 i40e_stat_update_and_clear32(hw, 1062 I40E_GLQF_PCNT(I40E_FD_ATR_TUNNEL_STAT_IDX(hw->pf_id)), 1063 &nsd->fd_atr_tunnel_match); 1064 1065 val = rd32(hw, I40E_PRTPM_EEE_STAT); 1066 nsd->tx_lpi_status = 1067 (val & I40E_PRTPM_EEE_STAT_TX_LPI_STATUS_MASK) >> 1068 I40E_PRTPM_EEE_STAT_TX_LPI_STATUS_SHIFT; 1069 nsd->rx_lpi_status = 1070 (val & I40E_PRTPM_EEE_STAT_RX_LPI_STATUS_MASK) >> 1071 I40E_PRTPM_EEE_STAT_RX_LPI_STATUS_SHIFT; 1072 i40e_stat_update32(hw, I40E_PRTPM_TLPIC, 1073 pf->stat_offsets_loaded, 1074 &osd->tx_lpi_count, &nsd->tx_lpi_count); 1075 i40e_stat_update32(hw, I40E_PRTPM_RLPIC, 1076 pf->stat_offsets_loaded, 1077 &osd->rx_lpi_count, &nsd->rx_lpi_count); 1078 1079 if (pf->flags & I40E_FLAG_FD_SB_ENABLED && 1080 !test_bit(__I40E_FD_SB_AUTO_DISABLED, pf->state)) 1081 nsd->fd_sb_status = true; 1082 else 1083 nsd->fd_sb_status = false; 1084 1085 if (pf->flags & I40E_FLAG_FD_ATR_ENABLED && 1086 !test_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state)) 1087 nsd->fd_atr_status = true; 1088 else 1089 nsd->fd_atr_status = false; 1090 1091 pf->stat_offsets_loaded = true; 1092 } 1093 1094 /** 1095 * i40e_update_stats - Update the various statistics counters. 1096 * @vsi: the VSI to be updated 1097 * 1098 * Update the various stats for this VSI and its related entities. 1099 **/ 1100 void i40e_update_stats(struct i40e_vsi *vsi) 1101 { 1102 struct i40e_pf *pf = vsi->back; 1103 1104 if (vsi == pf->vsi[pf->lan_vsi]) 1105 i40e_update_pf_stats(pf); 1106 1107 i40e_update_vsi_stats(vsi); 1108 } 1109 1110 /** 1111 * i40e_find_filter - Search VSI filter list for specific mac/vlan filter 1112 * @vsi: the VSI to be searched 1113 * @macaddr: the MAC address 1114 * @vlan: the vlan 1115 * 1116 * Returns ptr to the filter object or NULL 1117 **/ 1118 static struct i40e_mac_filter *i40e_find_filter(struct i40e_vsi *vsi, 1119 const u8 *macaddr, s16 vlan) 1120 { 1121 struct i40e_mac_filter *f; 1122 u64 key; 1123 1124 if (!vsi || !macaddr) 1125 return NULL; 1126 1127 key = i40e_addr_to_hkey(macaddr); 1128 hash_for_each_possible(vsi->mac_filter_hash, f, hlist, key) { 1129 if ((ether_addr_equal(macaddr, f->macaddr)) && 1130 (vlan == f->vlan)) 1131 return f; 1132 } 1133 return NULL; 1134 } 1135 1136 /** 1137 * i40e_find_mac - Find a mac addr in the macvlan filters list 1138 * @vsi: the VSI to be searched 1139 * @macaddr: the MAC address we are searching for 1140 * 1141 * Returns the first filter with the provided MAC address or NULL if 1142 * MAC address was not found 1143 **/ 1144 struct i40e_mac_filter *i40e_find_mac(struct i40e_vsi *vsi, const u8 *macaddr) 1145 { 1146 struct i40e_mac_filter *f; 1147 u64 key; 1148 1149 if (!vsi || !macaddr) 1150 return NULL; 1151 1152 key = i40e_addr_to_hkey(macaddr); 1153 hash_for_each_possible(vsi->mac_filter_hash, f, hlist, key) { 1154 if ((ether_addr_equal(macaddr, f->macaddr))) 1155 return f; 1156 } 1157 return NULL; 1158 } 1159 1160 /** 1161 * i40e_is_vsi_in_vlan - Check if VSI is in vlan mode 1162 * @vsi: the VSI to be searched 1163 * 1164 * Returns true if VSI is in vlan mode or false otherwise 1165 **/ 1166 bool i40e_is_vsi_in_vlan(struct i40e_vsi *vsi) 1167 { 1168 /* If we have a PVID, always operate in VLAN mode */ 1169 if (vsi->info.pvid) 1170 return true; 1171 1172 /* We need to operate in VLAN mode whenever we have any filters with 1173 * a VLAN other than I40E_VLAN_ALL. We could check the table each 1174 * time, incurring search cost repeatedly. However, we can notice two 1175 * things: 1176 * 1177 * 1) the only place where we can gain a VLAN filter is in 1178 * i40e_add_filter. 1179 * 1180 * 2) the only place where filters are actually removed is in 1181 * i40e_sync_filters_subtask. 1182 * 1183 * Thus, we can simply use a boolean value, has_vlan_filters which we 1184 * will set to true when we add a VLAN filter in i40e_add_filter. Then 1185 * we have to perform the full search after deleting filters in 1186 * i40e_sync_filters_subtask, but we already have to search 1187 * filters here and can perform the check at the same time. This 1188 * results in avoiding embedding a loop for VLAN mode inside another 1189 * loop over all the filters, and should maintain correctness as noted 1190 * above. 1191 */ 1192 return vsi->has_vlan_filter; 1193 } 1194 1195 /** 1196 * i40e_correct_mac_vlan_filters - Correct non-VLAN filters if necessary 1197 * @vsi: the VSI to configure 1198 * @tmp_add_list: list of filters ready to be added 1199 * @tmp_del_list: list of filters ready to be deleted 1200 * @vlan_filters: the number of active VLAN filters 1201 * 1202 * Update VLAN=0 and VLAN=-1 (I40E_VLAN_ANY) filters properly so that they 1203 * behave as expected. If we have any active VLAN filters remaining or about 1204 * to be added then we need to update non-VLAN filters to be marked as VLAN=0 1205 * so that they only match against untagged traffic. If we no longer have any 1206 * active VLAN filters, we need to make all non-VLAN filters marked as VLAN=-1 1207 * so that they match against both tagged and untagged traffic. In this way, 1208 * we ensure that we correctly receive the desired traffic. This ensures that 1209 * when we have an active VLAN we will receive only untagged traffic and 1210 * traffic matching active VLANs. If we have no active VLANs then we will 1211 * operate in non-VLAN mode and receive all traffic, tagged or untagged. 1212 * 1213 * Finally, in a similar fashion, this function also corrects filters when 1214 * there is an active PVID assigned to this VSI. 1215 * 1216 * In case of memory allocation failure return -ENOMEM. Otherwise, return 0. 1217 * 1218 * This function is only expected to be called from within 1219 * i40e_sync_vsi_filters. 1220 * 1221 * NOTE: This function expects to be called while under the 1222 * mac_filter_hash_lock 1223 */ 1224 static int i40e_correct_mac_vlan_filters(struct i40e_vsi *vsi, 1225 struct hlist_head *tmp_add_list, 1226 struct hlist_head *tmp_del_list, 1227 int vlan_filters) 1228 { 1229 s16 pvid = le16_to_cpu(vsi->info.pvid); 1230 struct i40e_mac_filter *f, *add_head; 1231 struct i40e_new_mac_filter *new; 1232 struct hlist_node *h; 1233 int bkt, new_vlan; 1234 1235 /* To determine if a particular filter needs to be replaced we 1236 * have the three following conditions: 1237 * 1238 * a) if we have a PVID assigned, then all filters which are 1239 * not marked as VLAN=PVID must be replaced with filters that 1240 * are. 1241 * b) otherwise, if we have any active VLANS, all filters 1242 * which are marked as VLAN=-1 must be replaced with 1243 * filters marked as VLAN=0 1244 * c) finally, if we do not have any active VLANS, all filters 1245 * which are marked as VLAN=0 must be replaced with filters 1246 * marked as VLAN=-1 1247 */ 1248 1249 /* Update the filters about to be added in place */ 1250 hlist_for_each_entry(new, tmp_add_list, hlist) { 1251 if (pvid && new->f->vlan != pvid) 1252 new->f->vlan = pvid; 1253 else if (vlan_filters && new->f->vlan == I40E_VLAN_ANY) 1254 new->f->vlan = 0; 1255 else if (!vlan_filters && new->f->vlan == 0) 1256 new->f->vlan = I40E_VLAN_ANY; 1257 } 1258 1259 /* Update the remaining active filters */ 1260 hash_for_each_safe(vsi->mac_filter_hash, bkt, h, f, hlist) { 1261 /* Combine the checks for whether a filter needs to be changed 1262 * and then determine the new VLAN inside the if block, in 1263 * order to avoid duplicating code for adding the new filter 1264 * then deleting the old filter. 1265 */ 1266 if ((pvid && f->vlan != pvid) || 1267 (vlan_filters && f->vlan == I40E_VLAN_ANY) || 1268 (!vlan_filters && f->vlan == 0)) { 1269 /* Determine the new vlan we will be adding */ 1270 if (pvid) 1271 new_vlan = pvid; 1272 else if (vlan_filters) 1273 new_vlan = 0; 1274 else 1275 new_vlan = I40E_VLAN_ANY; 1276 1277 /* Create the new filter */ 1278 add_head = i40e_add_filter(vsi, f->macaddr, new_vlan); 1279 if (!add_head) 1280 return -ENOMEM; 1281 1282 /* Create a temporary i40e_new_mac_filter */ 1283 new = kzalloc(sizeof(*new), GFP_ATOMIC); 1284 if (!new) 1285 return -ENOMEM; 1286 1287 new->f = add_head; 1288 new->state = add_head->state; 1289 1290 /* Add the new filter to the tmp list */ 1291 hlist_add_head(&new->hlist, tmp_add_list); 1292 1293 /* Put the original filter into the delete list */ 1294 f->state = I40E_FILTER_REMOVE; 1295 hash_del(&f->hlist); 1296 hlist_add_head(&f->hlist, tmp_del_list); 1297 } 1298 } 1299 1300 vsi->has_vlan_filter = !!vlan_filters; 1301 1302 return 0; 1303 } 1304 1305 /** 1306 * i40e_rm_default_mac_filter - Remove the default MAC filter set by NVM 1307 * @vsi: the PF Main VSI - inappropriate for any other VSI 1308 * @macaddr: the MAC address 1309 * 1310 * Remove whatever filter the firmware set up so the driver can manage 1311 * its own filtering intelligently. 1312 **/ 1313 static void i40e_rm_default_mac_filter(struct i40e_vsi *vsi, u8 *macaddr) 1314 { 1315 struct i40e_aqc_remove_macvlan_element_data element; 1316 struct i40e_pf *pf = vsi->back; 1317 1318 /* Only appropriate for the PF main VSI */ 1319 if (vsi->type != I40E_VSI_MAIN) 1320 return; 1321 1322 memset(&element, 0, sizeof(element)); 1323 ether_addr_copy(element.mac_addr, macaddr); 1324 element.vlan_tag = 0; 1325 /* Ignore error returns, some firmware does it this way... */ 1326 element.flags = I40E_AQC_MACVLAN_DEL_PERFECT_MATCH; 1327 i40e_aq_remove_macvlan(&pf->hw, vsi->seid, &element, 1, NULL); 1328 1329 memset(&element, 0, sizeof(element)); 1330 ether_addr_copy(element.mac_addr, macaddr); 1331 element.vlan_tag = 0; 1332 /* ...and some firmware does it this way. */ 1333 element.flags = I40E_AQC_MACVLAN_DEL_PERFECT_MATCH | 1334 I40E_AQC_MACVLAN_DEL_IGNORE_VLAN; 1335 i40e_aq_remove_macvlan(&pf->hw, vsi->seid, &element, 1, NULL); 1336 } 1337 1338 /** 1339 * i40e_add_filter - Add a mac/vlan filter to the VSI 1340 * @vsi: the VSI to be searched 1341 * @macaddr: the MAC address 1342 * @vlan: the vlan 1343 * 1344 * Returns ptr to the filter object or NULL when no memory available. 1345 * 1346 * NOTE: This function is expected to be called with mac_filter_hash_lock 1347 * being held. 1348 **/ 1349 struct i40e_mac_filter *i40e_add_filter(struct i40e_vsi *vsi, 1350 const u8 *macaddr, s16 vlan) 1351 { 1352 struct i40e_mac_filter *f; 1353 u64 key; 1354 1355 if (!vsi || !macaddr) 1356 return NULL; 1357 1358 f = i40e_find_filter(vsi, macaddr, vlan); 1359 if (!f) { 1360 f = kzalloc(sizeof(*f), GFP_ATOMIC); 1361 if (!f) 1362 return NULL; 1363 1364 /* Update the boolean indicating if we need to function in 1365 * VLAN mode. 1366 */ 1367 if (vlan >= 0) 1368 vsi->has_vlan_filter = true; 1369 1370 ether_addr_copy(f->macaddr, macaddr); 1371 f->vlan = vlan; 1372 f->state = I40E_FILTER_NEW; 1373 INIT_HLIST_NODE(&f->hlist); 1374 1375 key = i40e_addr_to_hkey(macaddr); 1376 hash_add(vsi->mac_filter_hash, &f->hlist, key); 1377 1378 vsi->flags |= I40E_VSI_FLAG_FILTER_CHANGED; 1379 set_bit(__I40E_MACVLAN_SYNC_PENDING, vsi->back->state); 1380 } 1381 1382 /* If we're asked to add a filter that has been marked for removal, it 1383 * is safe to simply restore it to active state. __i40e_del_filter 1384 * will have simply deleted any filters which were previously marked 1385 * NEW or FAILED, so if it is currently marked REMOVE it must have 1386 * previously been ACTIVE. Since we haven't yet run the sync filters 1387 * task, just restore this filter to the ACTIVE state so that the 1388 * sync task leaves it in place 1389 */ 1390 if (f->state == I40E_FILTER_REMOVE) 1391 f->state = I40E_FILTER_ACTIVE; 1392 1393 return f; 1394 } 1395 1396 /** 1397 * __i40e_del_filter - Remove a specific filter from the VSI 1398 * @vsi: VSI to remove from 1399 * @f: the filter to remove from the list 1400 * 1401 * This function should be called instead of i40e_del_filter only if you know 1402 * the exact filter you will remove already, such as via i40e_find_filter or 1403 * i40e_find_mac. 1404 * 1405 * NOTE: This function is expected to be called with mac_filter_hash_lock 1406 * being held. 1407 * ANOTHER NOTE: This function MUST be called from within the context of 1408 * the "safe" variants of any list iterators, e.g. list_for_each_entry_safe() 1409 * instead of list_for_each_entry(). 1410 **/ 1411 void __i40e_del_filter(struct i40e_vsi *vsi, struct i40e_mac_filter *f) 1412 { 1413 if (!f) 1414 return; 1415 1416 /* If the filter was never added to firmware then we can just delete it 1417 * directly and we don't want to set the status to remove or else an 1418 * admin queue command will unnecessarily fire. 1419 */ 1420 if ((f->state == I40E_FILTER_FAILED) || 1421 (f->state == I40E_FILTER_NEW)) { 1422 hash_del(&f->hlist); 1423 kfree(f); 1424 } else { 1425 f->state = I40E_FILTER_REMOVE; 1426 } 1427 1428 vsi->flags |= I40E_VSI_FLAG_FILTER_CHANGED; 1429 set_bit(__I40E_MACVLAN_SYNC_PENDING, vsi->back->state); 1430 } 1431 1432 /** 1433 * i40e_del_filter - Remove a MAC/VLAN filter from the VSI 1434 * @vsi: the VSI to be searched 1435 * @macaddr: the MAC address 1436 * @vlan: the VLAN 1437 * 1438 * NOTE: This function is expected to be called with mac_filter_hash_lock 1439 * being held. 1440 * ANOTHER NOTE: This function MUST be called from within the context of 1441 * the "safe" variants of any list iterators, e.g. list_for_each_entry_safe() 1442 * instead of list_for_each_entry(). 1443 **/ 1444 void i40e_del_filter(struct i40e_vsi *vsi, const u8 *macaddr, s16 vlan) 1445 { 1446 struct i40e_mac_filter *f; 1447 1448 if (!vsi || !macaddr) 1449 return; 1450 1451 f = i40e_find_filter(vsi, macaddr, vlan); 1452 __i40e_del_filter(vsi, f); 1453 } 1454 1455 /** 1456 * i40e_add_mac_filter - Add a MAC filter for all active VLANs 1457 * @vsi: the VSI to be searched 1458 * @macaddr: the mac address to be filtered 1459 * 1460 * If we're not in VLAN mode, just add the filter to I40E_VLAN_ANY. Otherwise, 1461 * go through all the macvlan filters and add a macvlan filter for each 1462 * unique vlan that already exists. If a PVID has been assigned, instead only 1463 * add the macaddr to that VLAN. 1464 * 1465 * Returns last filter added on success, else NULL 1466 **/ 1467 struct i40e_mac_filter *i40e_add_mac_filter(struct i40e_vsi *vsi, 1468 const u8 *macaddr) 1469 { 1470 struct i40e_mac_filter *f, *add = NULL; 1471 struct hlist_node *h; 1472 int bkt; 1473 1474 if (vsi->info.pvid) 1475 return i40e_add_filter(vsi, macaddr, 1476 le16_to_cpu(vsi->info.pvid)); 1477 1478 if (!i40e_is_vsi_in_vlan(vsi)) 1479 return i40e_add_filter(vsi, macaddr, I40E_VLAN_ANY); 1480 1481 hash_for_each_safe(vsi->mac_filter_hash, bkt, h, f, hlist) { 1482 if (f->state == I40E_FILTER_REMOVE) 1483 continue; 1484 add = i40e_add_filter(vsi, macaddr, f->vlan); 1485 if (!add) 1486 return NULL; 1487 } 1488 1489 return add; 1490 } 1491 1492 /** 1493 * i40e_del_mac_filter - Remove a MAC filter from all VLANs 1494 * @vsi: the VSI to be searched 1495 * @macaddr: the mac address to be removed 1496 * 1497 * Removes a given MAC address from a VSI regardless of what VLAN it has been 1498 * associated with. 1499 * 1500 * Returns 0 for success, or error 1501 **/ 1502 int i40e_del_mac_filter(struct i40e_vsi *vsi, const u8 *macaddr) 1503 { 1504 struct i40e_mac_filter *f; 1505 struct hlist_node *h; 1506 bool found = false; 1507 int bkt; 1508 1509 lockdep_assert_held(&vsi->mac_filter_hash_lock); 1510 hash_for_each_safe(vsi->mac_filter_hash, bkt, h, f, hlist) { 1511 if (ether_addr_equal(macaddr, f->macaddr)) { 1512 __i40e_del_filter(vsi, f); 1513 found = true; 1514 } 1515 } 1516 1517 if (found) 1518 return 0; 1519 else 1520 return -ENOENT; 1521 } 1522 1523 /** 1524 * i40e_set_mac - NDO callback to set mac address 1525 * @netdev: network interface device structure 1526 * @p: pointer to an address structure 1527 * 1528 * Returns 0 on success, negative on failure 1529 **/ 1530 static int i40e_set_mac(struct net_device *netdev, void *p) 1531 { 1532 struct i40e_netdev_priv *np = netdev_priv(netdev); 1533 struct i40e_vsi *vsi = np->vsi; 1534 struct i40e_pf *pf = vsi->back; 1535 struct i40e_hw *hw = &pf->hw; 1536 struct sockaddr *addr = p; 1537 1538 if (!is_valid_ether_addr(addr->sa_data)) 1539 return -EADDRNOTAVAIL; 1540 1541 if (ether_addr_equal(netdev->dev_addr, addr->sa_data)) { 1542 netdev_info(netdev, "already using mac address %pM\n", 1543 addr->sa_data); 1544 return 0; 1545 } 1546 1547 if (test_bit(__I40E_DOWN, pf->state) || 1548 test_bit(__I40E_RESET_RECOVERY_PENDING, pf->state)) 1549 return -EADDRNOTAVAIL; 1550 1551 if (ether_addr_equal(hw->mac.addr, addr->sa_data)) 1552 netdev_info(netdev, "returning to hw mac address %pM\n", 1553 hw->mac.addr); 1554 else 1555 netdev_info(netdev, "set new mac address %pM\n", addr->sa_data); 1556 1557 /* Copy the address first, so that we avoid a possible race with 1558 * .set_rx_mode(). 1559 * - Remove old address from MAC filter 1560 * - Copy new address 1561 * - Add new address to MAC filter 1562 */ 1563 spin_lock_bh(&vsi->mac_filter_hash_lock); 1564 i40e_del_mac_filter(vsi, netdev->dev_addr); 1565 ether_addr_copy(netdev->dev_addr, addr->sa_data); 1566 i40e_add_mac_filter(vsi, netdev->dev_addr); 1567 spin_unlock_bh(&vsi->mac_filter_hash_lock); 1568 1569 if (vsi->type == I40E_VSI_MAIN) { 1570 i40e_status ret; 1571 1572 ret = i40e_aq_mac_address_write(hw, I40E_AQC_WRITE_TYPE_LAA_WOL, 1573 addr->sa_data, NULL); 1574 if (ret) 1575 netdev_info(netdev, "Ignoring error from firmware on LAA update, status %s, AQ ret %s\n", 1576 i40e_stat_str(hw, ret), 1577 i40e_aq_str(hw, hw->aq.asq_last_status)); 1578 } 1579 1580 /* schedule our worker thread which will take care of 1581 * applying the new filter changes 1582 */ 1583 i40e_service_event_schedule(pf); 1584 return 0; 1585 } 1586 1587 /** 1588 * i40e_config_rss_aq - Prepare for RSS using AQ commands 1589 * @vsi: vsi structure 1590 * @seed: RSS hash seed 1591 **/ 1592 static int i40e_config_rss_aq(struct i40e_vsi *vsi, const u8 *seed, 1593 u8 *lut, u16 lut_size) 1594 { 1595 struct i40e_pf *pf = vsi->back; 1596 struct i40e_hw *hw = &pf->hw; 1597 int ret = 0; 1598 1599 if (seed) { 1600 struct i40e_aqc_get_set_rss_key_data *seed_dw = 1601 (struct i40e_aqc_get_set_rss_key_data *)seed; 1602 ret = i40e_aq_set_rss_key(hw, vsi->id, seed_dw); 1603 if (ret) { 1604 dev_info(&pf->pdev->dev, 1605 "Cannot set RSS key, err %s aq_err %s\n", 1606 i40e_stat_str(hw, ret), 1607 i40e_aq_str(hw, hw->aq.asq_last_status)); 1608 return ret; 1609 } 1610 } 1611 if (lut) { 1612 bool pf_lut = vsi->type == I40E_VSI_MAIN ? true : false; 1613 1614 ret = i40e_aq_set_rss_lut(hw, vsi->id, pf_lut, lut, lut_size); 1615 if (ret) { 1616 dev_info(&pf->pdev->dev, 1617 "Cannot set RSS lut, err %s aq_err %s\n", 1618 i40e_stat_str(hw, ret), 1619 i40e_aq_str(hw, hw->aq.asq_last_status)); 1620 return ret; 1621 } 1622 } 1623 return ret; 1624 } 1625 1626 /** 1627 * i40e_vsi_config_rss - Prepare for VSI(VMDq) RSS if used 1628 * @vsi: VSI structure 1629 **/ 1630 static int i40e_vsi_config_rss(struct i40e_vsi *vsi) 1631 { 1632 struct i40e_pf *pf = vsi->back; 1633 u8 seed[I40E_HKEY_ARRAY_SIZE]; 1634 u8 *lut; 1635 int ret; 1636 1637 if (!(pf->hw_features & I40E_HW_RSS_AQ_CAPABLE)) 1638 return 0; 1639 if (!vsi->rss_size) 1640 vsi->rss_size = min_t(int, pf->alloc_rss_size, 1641 vsi->num_queue_pairs); 1642 if (!vsi->rss_size) 1643 return -EINVAL; 1644 lut = kzalloc(vsi->rss_table_size, GFP_KERNEL); 1645 if (!lut) 1646 return -ENOMEM; 1647 1648 /* Use the user configured hash keys and lookup table if there is one, 1649 * otherwise use default 1650 */ 1651 if (vsi->rss_lut_user) 1652 memcpy(lut, vsi->rss_lut_user, vsi->rss_table_size); 1653 else 1654 i40e_fill_rss_lut(pf, lut, vsi->rss_table_size, vsi->rss_size); 1655 if (vsi->rss_hkey_user) 1656 memcpy(seed, vsi->rss_hkey_user, I40E_HKEY_ARRAY_SIZE); 1657 else 1658 netdev_rss_key_fill((void *)seed, I40E_HKEY_ARRAY_SIZE); 1659 ret = i40e_config_rss_aq(vsi, seed, lut, vsi->rss_table_size); 1660 kfree(lut); 1661 return ret; 1662 } 1663 1664 /** 1665 * i40e_vsi_setup_queue_map_mqprio - Prepares mqprio based tc_config 1666 * @vsi: the VSI being configured, 1667 * @ctxt: VSI context structure 1668 * @enabled_tc: number of traffic classes to enable 1669 * 1670 * Prepares VSI tc_config to have queue configurations based on MQPRIO options. 1671 **/ 1672 static int i40e_vsi_setup_queue_map_mqprio(struct i40e_vsi *vsi, 1673 struct i40e_vsi_context *ctxt, 1674 u8 enabled_tc) 1675 { 1676 u16 qcount = 0, max_qcount, qmap, sections = 0; 1677 int i, override_q, pow, num_qps, ret; 1678 u8 netdev_tc = 0, offset = 0; 1679 1680 if (vsi->type != I40E_VSI_MAIN) 1681 return -EINVAL; 1682 sections = I40E_AQ_VSI_PROP_QUEUE_MAP_VALID; 1683 sections |= I40E_AQ_VSI_PROP_SCHED_VALID; 1684 vsi->tc_config.numtc = vsi->mqprio_qopt.qopt.num_tc; 1685 vsi->tc_config.enabled_tc = enabled_tc ? enabled_tc : 1; 1686 num_qps = vsi->mqprio_qopt.qopt.count[0]; 1687 1688 /* find the next higher power-of-2 of num queue pairs */ 1689 pow = ilog2(num_qps); 1690 if (!is_power_of_2(num_qps)) 1691 pow++; 1692 qmap = (offset << I40E_AQ_VSI_TC_QUE_OFFSET_SHIFT) | 1693 (pow << I40E_AQ_VSI_TC_QUE_NUMBER_SHIFT); 1694 1695 /* Setup queue offset/count for all TCs for given VSI */ 1696 max_qcount = vsi->mqprio_qopt.qopt.count[0]; 1697 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 1698 /* See if the given TC is enabled for the given VSI */ 1699 if (vsi->tc_config.enabled_tc & BIT(i)) { 1700 offset = vsi->mqprio_qopt.qopt.offset[i]; 1701 qcount = vsi->mqprio_qopt.qopt.count[i]; 1702 if (qcount > max_qcount) 1703 max_qcount = qcount; 1704 vsi->tc_config.tc_info[i].qoffset = offset; 1705 vsi->tc_config.tc_info[i].qcount = qcount; 1706 vsi->tc_config.tc_info[i].netdev_tc = netdev_tc++; 1707 } else { 1708 /* TC is not enabled so set the offset to 1709 * default queue and allocate one queue 1710 * for the given TC. 1711 */ 1712 vsi->tc_config.tc_info[i].qoffset = 0; 1713 vsi->tc_config.tc_info[i].qcount = 1; 1714 vsi->tc_config.tc_info[i].netdev_tc = 0; 1715 } 1716 } 1717 1718 /* Set actual Tx/Rx queue pairs */ 1719 vsi->num_queue_pairs = offset + qcount; 1720 1721 /* Setup queue TC[0].qmap for given VSI context */ 1722 ctxt->info.tc_mapping[0] = cpu_to_le16(qmap); 1723 ctxt->info.mapping_flags |= cpu_to_le16(I40E_AQ_VSI_QUE_MAP_CONTIG); 1724 ctxt->info.queue_mapping[0] = cpu_to_le16(vsi->base_queue); 1725 ctxt->info.valid_sections |= cpu_to_le16(sections); 1726 1727 /* Reconfigure RSS for main VSI with max queue count */ 1728 vsi->rss_size = max_qcount; 1729 ret = i40e_vsi_config_rss(vsi); 1730 if (ret) { 1731 dev_info(&vsi->back->pdev->dev, 1732 "Failed to reconfig rss for num_queues (%u)\n", 1733 max_qcount); 1734 return ret; 1735 } 1736 vsi->reconfig_rss = true; 1737 dev_dbg(&vsi->back->pdev->dev, 1738 "Reconfigured rss with num_queues (%u)\n", max_qcount); 1739 1740 /* Find queue count available for channel VSIs and starting offset 1741 * for channel VSIs 1742 */ 1743 override_q = vsi->mqprio_qopt.qopt.count[0]; 1744 if (override_q && override_q < vsi->num_queue_pairs) { 1745 vsi->cnt_q_avail = vsi->num_queue_pairs - override_q; 1746 vsi->next_base_queue = override_q; 1747 } 1748 return 0; 1749 } 1750 1751 /** 1752 * i40e_vsi_setup_queue_map - Setup a VSI queue map based on enabled_tc 1753 * @vsi: the VSI being setup 1754 * @ctxt: VSI context structure 1755 * @enabled_tc: Enabled TCs bitmap 1756 * @is_add: True if called before Add VSI 1757 * 1758 * Setup VSI queue mapping for enabled traffic classes. 1759 **/ 1760 static void i40e_vsi_setup_queue_map(struct i40e_vsi *vsi, 1761 struct i40e_vsi_context *ctxt, 1762 u8 enabled_tc, 1763 bool is_add) 1764 { 1765 struct i40e_pf *pf = vsi->back; 1766 u16 sections = 0; 1767 u8 netdev_tc = 0; 1768 u16 numtc = 1; 1769 u16 qcount; 1770 u8 offset; 1771 u16 qmap; 1772 int i; 1773 u16 num_tc_qps = 0; 1774 1775 sections = I40E_AQ_VSI_PROP_QUEUE_MAP_VALID; 1776 offset = 0; 1777 1778 /* Number of queues per enabled TC */ 1779 num_tc_qps = vsi->alloc_queue_pairs; 1780 if (enabled_tc && (vsi->back->flags & I40E_FLAG_DCB_ENABLED)) { 1781 /* Find numtc from enabled TC bitmap */ 1782 for (i = 0, numtc = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 1783 if (enabled_tc & BIT(i)) /* TC is enabled */ 1784 numtc++; 1785 } 1786 if (!numtc) { 1787 dev_warn(&pf->pdev->dev, "DCB is enabled but no TC enabled, forcing TC0\n"); 1788 numtc = 1; 1789 } 1790 num_tc_qps = num_tc_qps / numtc; 1791 num_tc_qps = min_t(int, num_tc_qps, 1792 i40e_pf_get_max_q_per_tc(pf)); 1793 } 1794 1795 vsi->tc_config.numtc = numtc; 1796 vsi->tc_config.enabled_tc = enabled_tc ? enabled_tc : 1; 1797 1798 /* Do not allow use more TC queue pairs than MSI-X vectors exist */ 1799 if (pf->flags & I40E_FLAG_MSIX_ENABLED) 1800 num_tc_qps = min_t(int, num_tc_qps, pf->num_lan_msix); 1801 1802 /* Setup queue offset/count for all TCs for given VSI */ 1803 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 1804 /* See if the given TC is enabled for the given VSI */ 1805 if (vsi->tc_config.enabled_tc & BIT(i)) { 1806 /* TC is enabled */ 1807 int pow, num_qps; 1808 1809 switch (vsi->type) { 1810 case I40E_VSI_MAIN: 1811 if (!(pf->flags & (I40E_FLAG_FD_SB_ENABLED | 1812 I40E_FLAG_FD_ATR_ENABLED)) || 1813 vsi->tc_config.enabled_tc != 1) { 1814 qcount = min_t(int, pf->alloc_rss_size, 1815 num_tc_qps); 1816 break; 1817 } 1818 /* fall through */ 1819 case I40E_VSI_FDIR: 1820 case I40E_VSI_SRIOV: 1821 case I40E_VSI_VMDQ2: 1822 default: 1823 qcount = num_tc_qps; 1824 WARN_ON(i != 0); 1825 break; 1826 } 1827 vsi->tc_config.tc_info[i].qoffset = offset; 1828 vsi->tc_config.tc_info[i].qcount = qcount; 1829 1830 /* find the next higher power-of-2 of num queue pairs */ 1831 num_qps = qcount; 1832 pow = 0; 1833 while (num_qps && (BIT_ULL(pow) < qcount)) { 1834 pow++; 1835 num_qps >>= 1; 1836 } 1837 1838 vsi->tc_config.tc_info[i].netdev_tc = netdev_tc++; 1839 qmap = 1840 (offset << I40E_AQ_VSI_TC_QUE_OFFSET_SHIFT) | 1841 (pow << I40E_AQ_VSI_TC_QUE_NUMBER_SHIFT); 1842 1843 offset += qcount; 1844 } else { 1845 /* TC is not enabled so set the offset to 1846 * default queue and allocate one queue 1847 * for the given TC. 1848 */ 1849 vsi->tc_config.tc_info[i].qoffset = 0; 1850 vsi->tc_config.tc_info[i].qcount = 1; 1851 vsi->tc_config.tc_info[i].netdev_tc = 0; 1852 1853 qmap = 0; 1854 } 1855 ctxt->info.tc_mapping[i] = cpu_to_le16(qmap); 1856 } 1857 1858 /* Set actual Tx/Rx queue pairs */ 1859 vsi->num_queue_pairs = offset; 1860 if ((vsi->type == I40E_VSI_MAIN) && (numtc == 1)) { 1861 if (vsi->req_queue_pairs > 0) 1862 vsi->num_queue_pairs = vsi->req_queue_pairs; 1863 else if (pf->flags & I40E_FLAG_MSIX_ENABLED) 1864 vsi->num_queue_pairs = pf->num_lan_msix; 1865 } 1866 1867 /* Scheduler section valid can only be set for ADD VSI */ 1868 if (is_add) { 1869 sections |= I40E_AQ_VSI_PROP_SCHED_VALID; 1870 1871 ctxt->info.up_enable_bits = enabled_tc; 1872 } 1873 if (vsi->type == I40E_VSI_SRIOV) { 1874 ctxt->info.mapping_flags |= 1875 cpu_to_le16(I40E_AQ_VSI_QUE_MAP_NONCONTIG); 1876 for (i = 0; i < vsi->num_queue_pairs; i++) 1877 ctxt->info.queue_mapping[i] = 1878 cpu_to_le16(vsi->base_queue + i); 1879 } else { 1880 ctxt->info.mapping_flags |= 1881 cpu_to_le16(I40E_AQ_VSI_QUE_MAP_CONTIG); 1882 ctxt->info.queue_mapping[0] = cpu_to_le16(vsi->base_queue); 1883 } 1884 ctxt->info.valid_sections |= cpu_to_le16(sections); 1885 } 1886 1887 /** 1888 * i40e_addr_sync - Callback for dev_(mc|uc)_sync to add address 1889 * @netdev: the netdevice 1890 * @addr: address to add 1891 * 1892 * Called by __dev_(mc|uc)_sync when an address needs to be added. We call 1893 * __dev_(uc|mc)_sync from .set_rx_mode and guarantee to hold the hash lock. 1894 */ 1895 static int i40e_addr_sync(struct net_device *netdev, const u8 *addr) 1896 { 1897 struct i40e_netdev_priv *np = netdev_priv(netdev); 1898 struct i40e_vsi *vsi = np->vsi; 1899 1900 if (i40e_add_mac_filter(vsi, addr)) 1901 return 0; 1902 else 1903 return -ENOMEM; 1904 } 1905 1906 /** 1907 * i40e_addr_unsync - Callback for dev_(mc|uc)_sync to remove address 1908 * @netdev: the netdevice 1909 * @addr: address to add 1910 * 1911 * Called by __dev_(mc|uc)_sync when an address needs to be removed. We call 1912 * __dev_(uc|mc)_sync from .set_rx_mode and guarantee to hold the hash lock. 1913 */ 1914 static int i40e_addr_unsync(struct net_device *netdev, const u8 *addr) 1915 { 1916 struct i40e_netdev_priv *np = netdev_priv(netdev); 1917 struct i40e_vsi *vsi = np->vsi; 1918 1919 /* Under some circumstances, we might receive a request to delete 1920 * our own device address from our uc list. Because we store the 1921 * device address in the VSI's MAC/VLAN filter list, we need to ignore 1922 * such requests and not delete our device address from this list. 1923 */ 1924 if (ether_addr_equal(addr, netdev->dev_addr)) 1925 return 0; 1926 1927 i40e_del_mac_filter(vsi, addr); 1928 1929 return 0; 1930 } 1931 1932 /** 1933 * i40e_set_rx_mode - NDO callback to set the netdev filters 1934 * @netdev: network interface device structure 1935 **/ 1936 static void i40e_set_rx_mode(struct net_device *netdev) 1937 { 1938 struct i40e_netdev_priv *np = netdev_priv(netdev); 1939 struct i40e_vsi *vsi = np->vsi; 1940 1941 spin_lock_bh(&vsi->mac_filter_hash_lock); 1942 1943 __dev_uc_sync(netdev, i40e_addr_sync, i40e_addr_unsync); 1944 __dev_mc_sync(netdev, i40e_addr_sync, i40e_addr_unsync); 1945 1946 spin_unlock_bh(&vsi->mac_filter_hash_lock); 1947 1948 /* check for other flag changes */ 1949 if (vsi->current_netdev_flags != vsi->netdev->flags) { 1950 vsi->flags |= I40E_VSI_FLAG_FILTER_CHANGED; 1951 set_bit(__I40E_MACVLAN_SYNC_PENDING, vsi->back->state); 1952 } 1953 } 1954 1955 /** 1956 * i40e_undo_del_filter_entries - Undo the changes made to MAC filter entries 1957 * @vsi: Pointer to VSI struct 1958 * @from: Pointer to list which contains MAC filter entries - changes to 1959 * those entries needs to be undone. 1960 * 1961 * MAC filter entries from this list were slated for deletion. 1962 **/ 1963 static void i40e_undo_del_filter_entries(struct i40e_vsi *vsi, 1964 struct hlist_head *from) 1965 { 1966 struct i40e_mac_filter *f; 1967 struct hlist_node *h; 1968 1969 hlist_for_each_entry_safe(f, h, from, hlist) { 1970 u64 key = i40e_addr_to_hkey(f->macaddr); 1971 1972 /* Move the element back into MAC filter list*/ 1973 hlist_del(&f->hlist); 1974 hash_add(vsi->mac_filter_hash, &f->hlist, key); 1975 } 1976 } 1977 1978 /** 1979 * i40e_undo_add_filter_entries - Undo the changes made to MAC filter entries 1980 * @vsi: Pointer to vsi struct 1981 * @from: Pointer to list which contains MAC filter entries - changes to 1982 * those entries needs to be undone. 1983 * 1984 * MAC filter entries from this list were slated for addition. 1985 **/ 1986 static void i40e_undo_add_filter_entries(struct i40e_vsi *vsi, 1987 struct hlist_head *from) 1988 { 1989 struct i40e_new_mac_filter *new; 1990 struct hlist_node *h; 1991 1992 hlist_for_each_entry_safe(new, h, from, hlist) { 1993 /* We can simply free the wrapper structure */ 1994 hlist_del(&new->hlist); 1995 kfree(new); 1996 } 1997 } 1998 1999 /** 2000 * i40e_next_entry - Get the next non-broadcast filter from a list 2001 * @next: pointer to filter in list 2002 * 2003 * Returns the next non-broadcast filter in the list. Required so that we 2004 * ignore broadcast filters within the list, since these are not handled via 2005 * the normal firmware update path. 2006 */ 2007 static 2008 struct i40e_new_mac_filter *i40e_next_filter(struct i40e_new_mac_filter *next) 2009 { 2010 hlist_for_each_entry_continue(next, hlist) { 2011 if (!is_broadcast_ether_addr(next->f->macaddr)) 2012 return next; 2013 } 2014 2015 return NULL; 2016 } 2017 2018 /** 2019 * i40e_update_filter_state - Update filter state based on return data 2020 * from firmware 2021 * @count: Number of filters added 2022 * @add_list: return data from fw 2023 * @add_head: pointer to first filter in current batch 2024 * 2025 * MAC filter entries from list were slated to be added to device. Returns 2026 * number of successful filters. Note that 0 does NOT mean success! 2027 **/ 2028 static int 2029 i40e_update_filter_state(int count, 2030 struct i40e_aqc_add_macvlan_element_data *add_list, 2031 struct i40e_new_mac_filter *add_head) 2032 { 2033 int retval = 0; 2034 int i; 2035 2036 for (i = 0; i < count; i++) { 2037 /* Always check status of each filter. We don't need to check 2038 * the firmware return status because we pre-set the filter 2039 * status to I40E_AQC_MM_ERR_NO_RES when sending the filter 2040 * request to the adminq. Thus, if it no longer matches then 2041 * we know the filter is active. 2042 */ 2043 if (add_list[i].match_method == I40E_AQC_MM_ERR_NO_RES) { 2044 add_head->state = I40E_FILTER_FAILED; 2045 } else { 2046 add_head->state = I40E_FILTER_ACTIVE; 2047 retval++; 2048 } 2049 2050 add_head = i40e_next_filter(add_head); 2051 if (!add_head) 2052 break; 2053 } 2054 2055 return retval; 2056 } 2057 2058 /** 2059 * i40e_aqc_del_filters - Request firmware to delete a set of filters 2060 * @vsi: ptr to the VSI 2061 * @vsi_name: name to display in messages 2062 * @list: the list of filters to send to firmware 2063 * @num_del: the number of filters to delete 2064 * @retval: Set to -EIO on failure to delete 2065 * 2066 * Send a request to firmware via AdminQ to delete a set of filters. Uses 2067 * *retval instead of a return value so that success does not force ret_val to 2068 * be set to 0. This ensures that a sequence of calls to this function 2069 * preserve the previous value of *retval on successful delete. 2070 */ 2071 static 2072 void i40e_aqc_del_filters(struct i40e_vsi *vsi, const char *vsi_name, 2073 struct i40e_aqc_remove_macvlan_element_data *list, 2074 int num_del, int *retval) 2075 { 2076 struct i40e_hw *hw = &vsi->back->hw; 2077 i40e_status aq_ret; 2078 int aq_err; 2079 2080 aq_ret = i40e_aq_remove_macvlan(hw, vsi->seid, list, num_del, NULL); 2081 aq_err = hw->aq.asq_last_status; 2082 2083 /* Explicitly ignore and do not report when firmware returns ENOENT */ 2084 if (aq_ret && !(aq_err == I40E_AQ_RC_ENOENT)) { 2085 *retval = -EIO; 2086 dev_info(&vsi->back->pdev->dev, 2087 "ignoring delete macvlan error on %s, err %s, aq_err %s\n", 2088 vsi_name, i40e_stat_str(hw, aq_ret), 2089 i40e_aq_str(hw, aq_err)); 2090 } 2091 } 2092 2093 /** 2094 * i40e_aqc_add_filters - Request firmware to add a set of filters 2095 * @vsi: ptr to the VSI 2096 * @vsi_name: name to display in messages 2097 * @list: the list of filters to send to firmware 2098 * @add_head: Position in the add hlist 2099 * @num_add: the number of filters to add 2100 * 2101 * Send a request to firmware via AdminQ to add a chunk of filters. Will set 2102 * __I40E_VSI_OVERFLOW_PROMISC bit in vsi->state if the firmware has run out of 2103 * space for more filters. 2104 */ 2105 static 2106 void i40e_aqc_add_filters(struct i40e_vsi *vsi, const char *vsi_name, 2107 struct i40e_aqc_add_macvlan_element_data *list, 2108 struct i40e_new_mac_filter *add_head, 2109 int num_add) 2110 { 2111 struct i40e_hw *hw = &vsi->back->hw; 2112 int aq_err, fcnt; 2113 2114 i40e_aq_add_macvlan(hw, vsi->seid, list, num_add, NULL); 2115 aq_err = hw->aq.asq_last_status; 2116 fcnt = i40e_update_filter_state(num_add, list, add_head); 2117 2118 if (fcnt != num_add) { 2119 if (vsi->type == I40E_VSI_MAIN) { 2120 set_bit(__I40E_VSI_OVERFLOW_PROMISC, vsi->state); 2121 dev_warn(&vsi->back->pdev->dev, 2122 "Error %s adding RX filters on %s, promiscuous mode forced on\n", 2123 i40e_aq_str(hw, aq_err), vsi_name); 2124 } else if (vsi->type == I40E_VSI_SRIOV || 2125 vsi->type == I40E_VSI_VMDQ1 || 2126 vsi->type == I40E_VSI_VMDQ2) { 2127 dev_warn(&vsi->back->pdev->dev, 2128 "Error %s adding RX filters on %s, please set promiscuous on manually for %s\n", 2129 i40e_aq_str(hw, aq_err), vsi_name, vsi_name); 2130 } else { 2131 dev_warn(&vsi->back->pdev->dev, 2132 "Error %s adding RX filters on %s, incorrect VSI type: %i.\n", 2133 i40e_aq_str(hw, aq_err), vsi_name, vsi->type); 2134 } 2135 } 2136 } 2137 2138 /** 2139 * i40e_aqc_broadcast_filter - Set promiscuous broadcast flags 2140 * @vsi: pointer to the VSI 2141 * @vsi_name: the VSI name 2142 * @f: filter data 2143 * 2144 * This function sets or clears the promiscuous broadcast flags for VLAN 2145 * filters in order to properly receive broadcast frames. Assumes that only 2146 * broadcast filters are passed. 2147 * 2148 * Returns status indicating success or failure; 2149 **/ 2150 static i40e_status 2151 i40e_aqc_broadcast_filter(struct i40e_vsi *vsi, const char *vsi_name, 2152 struct i40e_mac_filter *f) 2153 { 2154 bool enable = f->state == I40E_FILTER_NEW; 2155 struct i40e_hw *hw = &vsi->back->hw; 2156 i40e_status aq_ret; 2157 2158 if (f->vlan == I40E_VLAN_ANY) { 2159 aq_ret = i40e_aq_set_vsi_broadcast(hw, 2160 vsi->seid, 2161 enable, 2162 NULL); 2163 } else { 2164 aq_ret = i40e_aq_set_vsi_bc_promisc_on_vlan(hw, 2165 vsi->seid, 2166 enable, 2167 f->vlan, 2168 NULL); 2169 } 2170 2171 if (aq_ret) { 2172 set_bit(__I40E_VSI_OVERFLOW_PROMISC, vsi->state); 2173 dev_warn(&vsi->back->pdev->dev, 2174 "Error %s, forcing overflow promiscuous on %s\n", 2175 i40e_aq_str(hw, hw->aq.asq_last_status), 2176 vsi_name); 2177 } 2178 2179 return aq_ret; 2180 } 2181 2182 /** 2183 * i40e_set_promiscuous - set promiscuous mode 2184 * @pf: board private structure 2185 * @promisc: promisc on or off 2186 * 2187 * There are different ways of setting promiscuous mode on a PF depending on 2188 * what state/environment we're in. This identifies and sets it appropriately. 2189 * Returns 0 on success. 2190 **/ 2191 static int i40e_set_promiscuous(struct i40e_pf *pf, bool promisc) 2192 { 2193 struct i40e_vsi *vsi = pf->vsi[pf->lan_vsi]; 2194 struct i40e_hw *hw = &pf->hw; 2195 i40e_status aq_ret; 2196 2197 if (vsi->type == I40E_VSI_MAIN && 2198 pf->lan_veb != I40E_NO_VEB && 2199 !(pf->flags & I40E_FLAG_MFP_ENABLED)) { 2200 /* set defport ON for Main VSI instead of true promisc 2201 * this way we will get all unicast/multicast and VLAN 2202 * promisc behavior but will not get VF or VMDq traffic 2203 * replicated on the Main VSI. 2204 */ 2205 if (promisc) 2206 aq_ret = i40e_aq_set_default_vsi(hw, 2207 vsi->seid, 2208 NULL); 2209 else 2210 aq_ret = i40e_aq_clear_default_vsi(hw, 2211 vsi->seid, 2212 NULL); 2213 if (aq_ret) { 2214 dev_info(&pf->pdev->dev, 2215 "Set default VSI failed, err %s, aq_err %s\n", 2216 i40e_stat_str(hw, aq_ret), 2217 i40e_aq_str(hw, hw->aq.asq_last_status)); 2218 } 2219 } else { 2220 aq_ret = i40e_aq_set_vsi_unicast_promiscuous( 2221 hw, 2222 vsi->seid, 2223 promisc, NULL, 2224 true); 2225 if (aq_ret) { 2226 dev_info(&pf->pdev->dev, 2227 "set unicast promisc failed, err %s, aq_err %s\n", 2228 i40e_stat_str(hw, aq_ret), 2229 i40e_aq_str(hw, hw->aq.asq_last_status)); 2230 } 2231 aq_ret = i40e_aq_set_vsi_multicast_promiscuous( 2232 hw, 2233 vsi->seid, 2234 promisc, NULL); 2235 if (aq_ret) { 2236 dev_info(&pf->pdev->dev, 2237 "set multicast promisc failed, err %s, aq_err %s\n", 2238 i40e_stat_str(hw, aq_ret), 2239 i40e_aq_str(hw, hw->aq.asq_last_status)); 2240 } 2241 } 2242 2243 if (!aq_ret) 2244 pf->cur_promisc = promisc; 2245 2246 return aq_ret; 2247 } 2248 2249 /** 2250 * i40e_sync_vsi_filters - Update the VSI filter list to the HW 2251 * @vsi: ptr to the VSI 2252 * 2253 * Push any outstanding VSI filter changes through the AdminQ. 2254 * 2255 * Returns 0 or error value 2256 **/ 2257 int i40e_sync_vsi_filters(struct i40e_vsi *vsi) 2258 { 2259 struct hlist_head tmp_add_list, tmp_del_list; 2260 struct i40e_mac_filter *f; 2261 struct i40e_new_mac_filter *new, *add_head = NULL; 2262 struct i40e_hw *hw = &vsi->back->hw; 2263 bool old_overflow, new_overflow; 2264 unsigned int failed_filters = 0; 2265 unsigned int vlan_filters = 0; 2266 char vsi_name[16] = "PF"; 2267 int filter_list_len = 0; 2268 i40e_status aq_ret = 0; 2269 u32 changed_flags = 0; 2270 struct hlist_node *h; 2271 struct i40e_pf *pf; 2272 int num_add = 0; 2273 int num_del = 0; 2274 int retval = 0; 2275 u16 cmd_flags; 2276 int list_size; 2277 int bkt; 2278 2279 /* empty array typed pointers, kcalloc later */ 2280 struct i40e_aqc_add_macvlan_element_data *add_list; 2281 struct i40e_aqc_remove_macvlan_element_data *del_list; 2282 2283 while (test_and_set_bit(__I40E_VSI_SYNCING_FILTERS, vsi->state)) 2284 usleep_range(1000, 2000); 2285 pf = vsi->back; 2286 2287 old_overflow = test_bit(__I40E_VSI_OVERFLOW_PROMISC, vsi->state); 2288 2289 if (vsi->netdev) { 2290 changed_flags = vsi->current_netdev_flags ^ vsi->netdev->flags; 2291 vsi->current_netdev_flags = vsi->netdev->flags; 2292 } 2293 2294 INIT_HLIST_HEAD(&tmp_add_list); 2295 INIT_HLIST_HEAD(&tmp_del_list); 2296 2297 if (vsi->type == I40E_VSI_SRIOV) 2298 snprintf(vsi_name, sizeof(vsi_name) - 1, "VF %d", vsi->vf_id); 2299 else if (vsi->type != I40E_VSI_MAIN) 2300 snprintf(vsi_name, sizeof(vsi_name) - 1, "vsi %d", vsi->seid); 2301 2302 if (vsi->flags & I40E_VSI_FLAG_FILTER_CHANGED) { 2303 vsi->flags &= ~I40E_VSI_FLAG_FILTER_CHANGED; 2304 2305 spin_lock_bh(&vsi->mac_filter_hash_lock); 2306 /* Create a list of filters to delete. */ 2307 hash_for_each_safe(vsi->mac_filter_hash, bkt, h, f, hlist) { 2308 if (f->state == I40E_FILTER_REMOVE) { 2309 /* Move the element into temporary del_list */ 2310 hash_del(&f->hlist); 2311 hlist_add_head(&f->hlist, &tmp_del_list); 2312 2313 /* Avoid counting removed filters */ 2314 continue; 2315 } 2316 if (f->state == I40E_FILTER_NEW) { 2317 /* Create a temporary i40e_new_mac_filter */ 2318 new = kzalloc(sizeof(*new), GFP_ATOMIC); 2319 if (!new) 2320 goto err_no_memory_locked; 2321 2322 /* Store pointer to the real filter */ 2323 new->f = f; 2324 new->state = f->state; 2325 2326 /* Add it to the hash list */ 2327 hlist_add_head(&new->hlist, &tmp_add_list); 2328 } 2329 2330 /* Count the number of active (current and new) VLAN 2331 * filters we have now. Does not count filters which 2332 * are marked for deletion. 2333 */ 2334 if (f->vlan > 0) 2335 vlan_filters++; 2336 } 2337 2338 retval = i40e_correct_mac_vlan_filters(vsi, 2339 &tmp_add_list, 2340 &tmp_del_list, 2341 vlan_filters); 2342 if (retval) 2343 goto err_no_memory_locked; 2344 2345 spin_unlock_bh(&vsi->mac_filter_hash_lock); 2346 } 2347 2348 /* Now process 'del_list' outside the lock */ 2349 if (!hlist_empty(&tmp_del_list)) { 2350 filter_list_len = hw->aq.asq_buf_size / 2351 sizeof(struct i40e_aqc_remove_macvlan_element_data); 2352 list_size = filter_list_len * 2353 sizeof(struct i40e_aqc_remove_macvlan_element_data); 2354 del_list = kzalloc(list_size, GFP_ATOMIC); 2355 if (!del_list) 2356 goto err_no_memory; 2357 2358 hlist_for_each_entry_safe(f, h, &tmp_del_list, hlist) { 2359 cmd_flags = 0; 2360 2361 /* handle broadcast filters by updating the broadcast 2362 * promiscuous flag and release filter list. 2363 */ 2364 if (is_broadcast_ether_addr(f->macaddr)) { 2365 i40e_aqc_broadcast_filter(vsi, vsi_name, f); 2366 2367 hlist_del(&f->hlist); 2368 kfree(f); 2369 continue; 2370 } 2371 2372 /* add to delete list */ 2373 ether_addr_copy(del_list[num_del].mac_addr, f->macaddr); 2374 if (f->vlan == I40E_VLAN_ANY) { 2375 del_list[num_del].vlan_tag = 0; 2376 cmd_flags |= I40E_AQC_MACVLAN_DEL_IGNORE_VLAN; 2377 } else { 2378 del_list[num_del].vlan_tag = 2379 cpu_to_le16((u16)(f->vlan)); 2380 } 2381 2382 cmd_flags |= I40E_AQC_MACVLAN_DEL_PERFECT_MATCH; 2383 del_list[num_del].flags = cmd_flags; 2384 num_del++; 2385 2386 /* flush a full buffer */ 2387 if (num_del == filter_list_len) { 2388 i40e_aqc_del_filters(vsi, vsi_name, del_list, 2389 num_del, &retval); 2390 memset(del_list, 0, list_size); 2391 num_del = 0; 2392 } 2393 /* Release memory for MAC filter entries which were 2394 * synced up with HW. 2395 */ 2396 hlist_del(&f->hlist); 2397 kfree(f); 2398 } 2399 2400 if (num_del) { 2401 i40e_aqc_del_filters(vsi, vsi_name, del_list, 2402 num_del, &retval); 2403 } 2404 2405 kfree(del_list); 2406 del_list = NULL; 2407 } 2408 2409 if (!hlist_empty(&tmp_add_list)) { 2410 /* Do all the adds now. */ 2411 filter_list_len = hw->aq.asq_buf_size / 2412 sizeof(struct i40e_aqc_add_macvlan_element_data); 2413 list_size = filter_list_len * 2414 sizeof(struct i40e_aqc_add_macvlan_element_data); 2415 add_list = kzalloc(list_size, GFP_ATOMIC); 2416 if (!add_list) 2417 goto err_no_memory; 2418 2419 num_add = 0; 2420 hlist_for_each_entry_safe(new, h, &tmp_add_list, hlist) { 2421 /* handle broadcast filters by updating the broadcast 2422 * promiscuous flag instead of adding a MAC filter. 2423 */ 2424 if (is_broadcast_ether_addr(new->f->macaddr)) { 2425 if (i40e_aqc_broadcast_filter(vsi, vsi_name, 2426 new->f)) 2427 new->state = I40E_FILTER_FAILED; 2428 else 2429 new->state = I40E_FILTER_ACTIVE; 2430 continue; 2431 } 2432 2433 /* add to add array */ 2434 if (num_add == 0) 2435 add_head = new; 2436 cmd_flags = 0; 2437 ether_addr_copy(add_list[num_add].mac_addr, 2438 new->f->macaddr); 2439 if (new->f->vlan == I40E_VLAN_ANY) { 2440 add_list[num_add].vlan_tag = 0; 2441 cmd_flags |= I40E_AQC_MACVLAN_ADD_IGNORE_VLAN; 2442 } else { 2443 add_list[num_add].vlan_tag = 2444 cpu_to_le16((u16)(new->f->vlan)); 2445 } 2446 add_list[num_add].queue_number = 0; 2447 /* set invalid match method for later detection */ 2448 add_list[num_add].match_method = I40E_AQC_MM_ERR_NO_RES; 2449 cmd_flags |= I40E_AQC_MACVLAN_ADD_PERFECT_MATCH; 2450 add_list[num_add].flags = cpu_to_le16(cmd_flags); 2451 num_add++; 2452 2453 /* flush a full buffer */ 2454 if (num_add == filter_list_len) { 2455 i40e_aqc_add_filters(vsi, vsi_name, add_list, 2456 add_head, num_add); 2457 memset(add_list, 0, list_size); 2458 num_add = 0; 2459 } 2460 } 2461 if (num_add) { 2462 i40e_aqc_add_filters(vsi, vsi_name, add_list, add_head, 2463 num_add); 2464 } 2465 /* Now move all of the filters from the temp add list back to 2466 * the VSI's list. 2467 */ 2468 spin_lock_bh(&vsi->mac_filter_hash_lock); 2469 hlist_for_each_entry_safe(new, h, &tmp_add_list, hlist) { 2470 /* Only update the state if we're still NEW */ 2471 if (new->f->state == I40E_FILTER_NEW) 2472 new->f->state = new->state; 2473 hlist_del(&new->hlist); 2474 kfree(new); 2475 } 2476 spin_unlock_bh(&vsi->mac_filter_hash_lock); 2477 kfree(add_list); 2478 add_list = NULL; 2479 } 2480 2481 /* Determine the number of active and failed filters. */ 2482 spin_lock_bh(&vsi->mac_filter_hash_lock); 2483 vsi->active_filters = 0; 2484 hash_for_each(vsi->mac_filter_hash, bkt, f, hlist) { 2485 if (f->state == I40E_FILTER_ACTIVE) 2486 vsi->active_filters++; 2487 else if (f->state == I40E_FILTER_FAILED) 2488 failed_filters++; 2489 } 2490 spin_unlock_bh(&vsi->mac_filter_hash_lock); 2491 2492 /* Check if we are able to exit overflow promiscuous mode. We can 2493 * safely exit if we didn't just enter, we no longer have any failed 2494 * filters, and we have reduced filters below the threshold value. 2495 */ 2496 if (old_overflow && !failed_filters && 2497 vsi->active_filters < vsi->promisc_threshold) { 2498 dev_info(&pf->pdev->dev, 2499 "filter logjam cleared on %s, leaving overflow promiscuous mode\n", 2500 vsi_name); 2501 clear_bit(__I40E_VSI_OVERFLOW_PROMISC, vsi->state); 2502 vsi->promisc_threshold = 0; 2503 } 2504 2505 /* if the VF is not trusted do not do promisc */ 2506 if ((vsi->type == I40E_VSI_SRIOV) && !pf->vf[vsi->vf_id].trusted) { 2507 clear_bit(__I40E_VSI_OVERFLOW_PROMISC, vsi->state); 2508 goto out; 2509 } 2510 2511 new_overflow = test_bit(__I40E_VSI_OVERFLOW_PROMISC, vsi->state); 2512 2513 /* If we are entering overflow promiscuous, we need to calculate a new 2514 * threshold for when we are safe to exit 2515 */ 2516 if (!old_overflow && new_overflow) 2517 vsi->promisc_threshold = (vsi->active_filters * 3) / 4; 2518 2519 /* check for changes in promiscuous modes */ 2520 if (changed_flags & IFF_ALLMULTI) { 2521 bool cur_multipromisc; 2522 2523 cur_multipromisc = !!(vsi->current_netdev_flags & IFF_ALLMULTI); 2524 aq_ret = i40e_aq_set_vsi_multicast_promiscuous(&vsi->back->hw, 2525 vsi->seid, 2526 cur_multipromisc, 2527 NULL); 2528 if (aq_ret) { 2529 retval = i40e_aq_rc_to_posix(aq_ret, 2530 hw->aq.asq_last_status); 2531 dev_info(&pf->pdev->dev, 2532 "set multi promisc failed on %s, err %s aq_err %s\n", 2533 vsi_name, 2534 i40e_stat_str(hw, aq_ret), 2535 i40e_aq_str(hw, hw->aq.asq_last_status)); 2536 } 2537 } 2538 2539 if ((changed_flags & IFF_PROMISC) || old_overflow != new_overflow) { 2540 bool cur_promisc; 2541 2542 cur_promisc = (!!(vsi->current_netdev_flags & IFF_PROMISC) || 2543 new_overflow); 2544 aq_ret = i40e_set_promiscuous(pf, cur_promisc); 2545 if (aq_ret) { 2546 retval = i40e_aq_rc_to_posix(aq_ret, 2547 hw->aq.asq_last_status); 2548 dev_info(&pf->pdev->dev, 2549 "Setting promiscuous %s failed on %s, err %s aq_err %s\n", 2550 cur_promisc ? "on" : "off", 2551 vsi_name, 2552 i40e_stat_str(hw, aq_ret), 2553 i40e_aq_str(hw, hw->aq.asq_last_status)); 2554 } 2555 } 2556 out: 2557 /* if something went wrong then set the changed flag so we try again */ 2558 if (retval) 2559 vsi->flags |= I40E_VSI_FLAG_FILTER_CHANGED; 2560 2561 clear_bit(__I40E_VSI_SYNCING_FILTERS, vsi->state); 2562 return retval; 2563 2564 err_no_memory: 2565 /* Restore elements on the temporary add and delete lists */ 2566 spin_lock_bh(&vsi->mac_filter_hash_lock); 2567 err_no_memory_locked: 2568 i40e_undo_del_filter_entries(vsi, &tmp_del_list); 2569 i40e_undo_add_filter_entries(vsi, &tmp_add_list); 2570 spin_unlock_bh(&vsi->mac_filter_hash_lock); 2571 2572 vsi->flags |= I40E_VSI_FLAG_FILTER_CHANGED; 2573 clear_bit(__I40E_VSI_SYNCING_FILTERS, vsi->state); 2574 return -ENOMEM; 2575 } 2576 2577 /** 2578 * i40e_sync_filters_subtask - Sync the VSI filter list with HW 2579 * @pf: board private structure 2580 **/ 2581 static void i40e_sync_filters_subtask(struct i40e_pf *pf) 2582 { 2583 int v; 2584 2585 if (!pf) 2586 return; 2587 if (!test_and_clear_bit(__I40E_MACVLAN_SYNC_PENDING, pf->state)) 2588 return; 2589 2590 for (v = 0; v < pf->num_alloc_vsi; v++) { 2591 if (pf->vsi[v] && 2592 (pf->vsi[v]->flags & I40E_VSI_FLAG_FILTER_CHANGED)) { 2593 int ret = i40e_sync_vsi_filters(pf->vsi[v]); 2594 2595 if (ret) { 2596 /* come back and try again later */ 2597 set_bit(__I40E_MACVLAN_SYNC_PENDING, 2598 pf->state); 2599 break; 2600 } 2601 } 2602 } 2603 } 2604 2605 /** 2606 * i40e_max_xdp_frame_size - returns the maximum allowed frame size for XDP 2607 * @vsi: the vsi 2608 **/ 2609 static int i40e_max_xdp_frame_size(struct i40e_vsi *vsi) 2610 { 2611 if (PAGE_SIZE >= 8192 || (vsi->back->flags & I40E_FLAG_LEGACY_RX)) 2612 return I40E_RXBUFFER_2048; 2613 else 2614 return I40E_RXBUFFER_3072; 2615 } 2616 2617 /** 2618 * i40e_change_mtu - NDO callback to change the Maximum Transfer Unit 2619 * @netdev: network interface device structure 2620 * @new_mtu: new value for maximum frame size 2621 * 2622 * Returns 0 on success, negative on failure 2623 **/ 2624 static int i40e_change_mtu(struct net_device *netdev, int new_mtu) 2625 { 2626 struct i40e_netdev_priv *np = netdev_priv(netdev); 2627 struct i40e_vsi *vsi = np->vsi; 2628 struct i40e_pf *pf = vsi->back; 2629 2630 if (i40e_enabled_xdp_vsi(vsi)) { 2631 int frame_size = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN; 2632 2633 if (frame_size > i40e_max_xdp_frame_size(vsi)) 2634 return -EINVAL; 2635 } 2636 2637 netdev_info(netdev, "changing MTU from %d to %d\n", 2638 netdev->mtu, new_mtu); 2639 netdev->mtu = new_mtu; 2640 if (netif_running(netdev)) 2641 i40e_vsi_reinit_locked(vsi); 2642 set_bit(__I40E_CLIENT_SERVICE_REQUESTED, pf->state); 2643 set_bit(__I40E_CLIENT_L2_CHANGE, pf->state); 2644 return 0; 2645 } 2646 2647 /** 2648 * i40e_ioctl - Access the hwtstamp interface 2649 * @netdev: network interface device structure 2650 * @ifr: interface request data 2651 * @cmd: ioctl command 2652 **/ 2653 int i40e_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) 2654 { 2655 struct i40e_netdev_priv *np = netdev_priv(netdev); 2656 struct i40e_pf *pf = np->vsi->back; 2657 2658 switch (cmd) { 2659 case SIOCGHWTSTAMP: 2660 return i40e_ptp_get_ts_config(pf, ifr); 2661 case SIOCSHWTSTAMP: 2662 return i40e_ptp_set_ts_config(pf, ifr); 2663 default: 2664 return -EOPNOTSUPP; 2665 } 2666 } 2667 2668 /** 2669 * i40e_vlan_stripping_enable - Turn on vlan stripping for the VSI 2670 * @vsi: the vsi being adjusted 2671 **/ 2672 void i40e_vlan_stripping_enable(struct i40e_vsi *vsi) 2673 { 2674 struct i40e_vsi_context ctxt; 2675 i40e_status ret; 2676 2677 /* Don't modify stripping options if a port VLAN is active */ 2678 if (vsi->info.pvid) 2679 return; 2680 2681 if ((vsi->info.valid_sections & 2682 cpu_to_le16(I40E_AQ_VSI_PROP_VLAN_VALID)) && 2683 ((vsi->info.port_vlan_flags & I40E_AQ_VSI_PVLAN_MODE_MASK) == 0)) 2684 return; /* already enabled */ 2685 2686 vsi->info.valid_sections = cpu_to_le16(I40E_AQ_VSI_PROP_VLAN_VALID); 2687 vsi->info.port_vlan_flags = I40E_AQ_VSI_PVLAN_MODE_ALL | 2688 I40E_AQ_VSI_PVLAN_EMOD_STR_BOTH; 2689 2690 ctxt.seid = vsi->seid; 2691 ctxt.info = vsi->info; 2692 ret = i40e_aq_update_vsi_params(&vsi->back->hw, &ctxt, NULL); 2693 if (ret) { 2694 dev_info(&vsi->back->pdev->dev, 2695 "update vlan stripping failed, err %s aq_err %s\n", 2696 i40e_stat_str(&vsi->back->hw, ret), 2697 i40e_aq_str(&vsi->back->hw, 2698 vsi->back->hw.aq.asq_last_status)); 2699 } 2700 } 2701 2702 /** 2703 * i40e_vlan_stripping_disable - Turn off vlan stripping for the VSI 2704 * @vsi: the vsi being adjusted 2705 **/ 2706 void i40e_vlan_stripping_disable(struct i40e_vsi *vsi) 2707 { 2708 struct i40e_vsi_context ctxt; 2709 i40e_status ret; 2710 2711 /* Don't modify stripping options if a port VLAN is active */ 2712 if (vsi->info.pvid) 2713 return; 2714 2715 if ((vsi->info.valid_sections & 2716 cpu_to_le16(I40E_AQ_VSI_PROP_VLAN_VALID)) && 2717 ((vsi->info.port_vlan_flags & I40E_AQ_VSI_PVLAN_EMOD_MASK) == 2718 I40E_AQ_VSI_PVLAN_EMOD_MASK)) 2719 return; /* already disabled */ 2720 2721 vsi->info.valid_sections = cpu_to_le16(I40E_AQ_VSI_PROP_VLAN_VALID); 2722 vsi->info.port_vlan_flags = I40E_AQ_VSI_PVLAN_MODE_ALL | 2723 I40E_AQ_VSI_PVLAN_EMOD_NOTHING; 2724 2725 ctxt.seid = vsi->seid; 2726 ctxt.info = vsi->info; 2727 ret = i40e_aq_update_vsi_params(&vsi->back->hw, &ctxt, NULL); 2728 if (ret) { 2729 dev_info(&vsi->back->pdev->dev, 2730 "update vlan stripping failed, err %s aq_err %s\n", 2731 i40e_stat_str(&vsi->back->hw, ret), 2732 i40e_aq_str(&vsi->back->hw, 2733 vsi->back->hw.aq.asq_last_status)); 2734 } 2735 } 2736 2737 /** 2738 * i40e_add_vlan_all_mac - Add a MAC/VLAN filter for each existing MAC address 2739 * @vsi: the vsi being configured 2740 * @vid: vlan id to be added (0 = untagged only , -1 = any) 2741 * 2742 * This is a helper function for adding a new MAC/VLAN filter with the 2743 * specified VLAN for each existing MAC address already in the hash table. 2744 * This function does *not* perform any accounting to update filters based on 2745 * VLAN mode. 2746 * 2747 * NOTE: this function expects to be called while under the 2748 * mac_filter_hash_lock 2749 **/ 2750 int i40e_add_vlan_all_mac(struct i40e_vsi *vsi, s16 vid) 2751 { 2752 struct i40e_mac_filter *f, *add_f; 2753 struct hlist_node *h; 2754 int bkt; 2755 2756 hash_for_each_safe(vsi->mac_filter_hash, bkt, h, f, hlist) { 2757 if (f->state == I40E_FILTER_REMOVE) 2758 continue; 2759 add_f = i40e_add_filter(vsi, f->macaddr, vid); 2760 if (!add_f) { 2761 dev_info(&vsi->back->pdev->dev, 2762 "Could not add vlan filter %d for %pM\n", 2763 vid, f->macaddr); 2764 return -ENOMEM; 2765 } 2766 } 2767 2768 return 0; 2769 } 2770 2771 /** 2772 * i40e_vsi_add_vlan - Add VSI membership for given VLAN 2773 * @vsi: the VSI being configured 2774 * @vid: VLAN id to be added 2775 **/ 2776 int i40e_vsi_add_vlan(struct i40e_vsi *vsi, u16 vid) 2777 { 2778 int err; 2779 2780 if (vsi->info.pvid) 2781 return -EINVAL; 2782 2783 /* The network stack will attempt to add VID=0, with the intention to 2784 * receive priority tagged packets with a VLAN of 0. Our HW receives 2785 * these packets by default when configured to receive untagged 2786 * packets, so we don't need to add a filter for this case. 2787 * Additionally, HW interprets adding a VID=0 filter as meaning to 2788 * receive *only* tagged traffic and stops receiving untagged traffic. 2789 * Thus, we do not want to actually add a filter for VID=0 2790 */ 2791 if (!vid) 2792 return 0; 2793 2794 /* Locked once because all functions invoked below iterates list*/ 2795 spin_lock_bh(&vsi->mac_filter_hash_lock); 2796 err = i40e_add_vlan_all_mac(vsi, vid); 2797 spin_unlock_bh(&vsi->mac_filter_hash_lock); 2798 if (err) 2799 return err; 2800 2801 /* schedule our worker thread which will take care of 2802 * applying the new filter changes 2803 */ 2804 i40e_service_event_schedule(vsi->back); 2805 return 0; 2806 } 2807 2808 /** 2809 * i40e_rm_vlan_all_mac - Remove MAC/VLAN pair for all MAC with the given VLAN 2810 * @vsi: the vsi being configured 2811 * @vid: vlan id to be removed (0 = untagged only , -1 = any) 2812 * 2813 * This function should be used to remove all VLAN filters which match the 2814 * given VID. It does not schedule the service event and does not take the 2815 * mac_filter_hash_lock so it may be combined with other operations under 2816 * a single invocation of the mac_filter_hash_lock. 2817 * 2818 * NOTE: this function expects to be called while under the 2819 * mac_filter_hash_lock 2820 */ 2821 void i40e_rm_vlan_all_mac(struct i40e_vsi *vsi, s16 vid) 2822 { 2823 struct i40e_mac_filter *f; 2824 struct hlist_node *h; 2825 int bkt; 2826 2827 hash_for_each_safe(vsi->mac_filter_hash, bkt, h, f, hlist) { 2828 if (f->vlan == vid) 2829 __i40e_del_filter(vsi, f); 2830 } 2831 } 2832 2833 /** 2834 * i40e_vsi_kill_vlan - Remove VSI membership for given VLAN 2835 * @vsi: the VSI being configured 2836 * @vid: VLAN id to be removed 2837 **/ 2838 void i40e_vsi_kill_vlan(struct i40e_vsi *vsi, u16 vid) 2839 { 2840 if (!vid || vsi->info.pvid) 2841 return; 2842 2843 spin_lock_bh(&vsi->mac_filter_hash_lock); 2844 i40e_rm_vlan_all_mac(vsi, vid); 2845 spin_unlock_bh(&vsi->mac_filter_hash_lock); 2846 2847 /* schedule our worker thread which will take care of 2848 * applying the new filter changes 2849 */ 2850 i40e_service_event_schedule(vsi->back); 2851 } 2852 2853 /** 2854 * i40e_vlan_rx_add_vid - Add a vlan id filter to HW offload 2855 * @netdev: network interface to be adjusted 2856 * @proto: unused protocol value 2857 * @vid: vlan id to be added 2858 * 2859 * net_device_ops implementation for adding vlan ids 2860 **/ 2861 static int i40e_vlan_rx_add_vid(struct net_device *netdev, 2862 __always_unused __be16 proto, u16 vid) 2863 { 2864 struct i40e_netdev_priv *np = netdev_priv(netdev); 2865 struct i40e_vsi *vsi = np->vsi; 2866 int ret = 0; 2867 2868 if (vid >= VLAN_N_VID) 2869 return -EINVAL; 2870 2871 ret = i40e_vsi_add_vlan(vsi, vid); 2872 if (!ret) 2873 set_bit(vid, vsi->active_vlans); 2874 2875 return ret; 2876 } 2877 2878 /** 2879 * i40e_vlan_rx_add_vid_up - Add a vlan id filter to HW offload in UP path 2880 * @netdev: network interface to be adjusted 2881 * @proto: unused protocol value 2882 * @vid: vlan id to be added 2883 **/ 2884 static void i40e_vlan_rx_add_vid_up(struct net_device *netdev, 2885 __always_unused __be16 proto, u16 vid) 2886 { 2887 struct i40e_netdev_priv *np = netdev_priv(netdev); 2888 struct i40e_vsi *vsi = np->vsi; 2889 2890 if (vid >= VLAN_N_VID) 2891 return; 2892 set_bit(vid, vsi->active_vlans); 2893 } 2894 2895 /** 2896 * i40e_vlan_rx_kill_vid - Remove a vlan id filter from HW offload 2897 * @netdev: network interface to be adjusted 2898 * @proto: unused protocol value 2899 * @vid: vlan id to be removed 2900 * 2901 * net_device_ops implementation for removing vlan ids 2902 **/ 2903 static int i40e_vlan_rx_kill_vid(struct net_device *netdev, 2904 __always_unused __be16 proto, u16 vid) 2905 { 2906 struct i40e_netdev_priv *np = netdev_priv(netdev); 2907 struct i40e_vsi *vsi = np->vsi; 2908 2909 /* return code is ignored as there is nothing a user 2910 * can do about failure to remove and a log message was 2911 * already printed from the other function 2912 */ 2913 i40e_vsi_kill_vlan(vsi, vid); 2914 2915 clear_bit(vid, vsi->active_vlans); 2916 2917 return 0; 2918 } 2919 2920 /** 2921 * i40e_restore_vlan - Reinstate vlans when vsi/netdev comes back up 2922 * @vsi: the vsi being brought back up 2923 **/ 2924 static void i40e_restore_vlan(struct i40e_vsi *vsi) 2925 { 2926 u16 vid; 2927 2928 if (!vsi->netdev) 2929 return; 2930 2931 if (vsi->netdev->features & NETIF_F_HW_VLAN_CTAG_RX) 2932 i40e_vlan_stripping_enable(vsi); 2933 else 2934 i40e_vlan_stripping_disable(vsi); 2935 2936 for_each_set_bit(vid, vsi->active_vlans, VLAN_N_VID) 2937 i40e_vlan_rx_add_vid_up(vsi->netdev, htons(ETH_P_8021Q), 2938 vid); 2939 } 2940 2941 /** 2942 * i40e_vsi_add_pvid - Add pvid for the VSI 2943 * @vsi: the vsi being adjusted 2944 * @vid: the vlan id to set as a PVID 2945 **/ 2946 int i40e_vsi_add_pvid(struct i40e_vsi *vsi, u16 vid) 2947 { 2948 struct i40e_vsi_context ctxt; 2949 i40e_status ret; 2950 2951 vsi->info.valid_sections = cpu_to_le16(I40E_AQ_VSI_PROP_VLAN_VALID); 2952 vsi->info.pvid = cpu_to_le16(vid); 2953 vsi->info.port_vlan_flags = I40E_AQ_VSI_PVLAN_MODE_TAGGED | 2954 I40E_AQ_VSI_PVLAN_INSERT_PVID | 2955 I40E_AQ_VSI_PVLAN_EMOD_STR; 2956 2957 ctxt.seid = vsi->seid; 2958 ctxt.info = vsi->info; 2959 ret = i40e_aq_update_vsi_params(&vsi->back->hw, &ctxt, NULL); 2960 if (ret) { 2961 dev_info(&vsi->back->pdev->dev, 2962 "add pvid failed, err %s aq_err %s\n", 2963 i40e_stat_str(&vsi->back->hw, ret), 2964 i40e_aq_str(&vsi->back->hw, 2965 vsi->back->hw.aq.asq_last_status)); 2966 return -ENOENT; 2967 } 2968 2969 return 0; 2970 } 2971 2972 /** 2973 * i40e_vsi_remove_pvid - Remove the pvid from the VSI 2974 * @vsi: the vsi being adjusted 2975 * 2976 * Just use the vlan_rx_register() service to put it back to normal 2977 **/ 2978 void i40e_vsi_remove_pvid(struct i40e_vsi *vsi) 2979 { 2980 vsi->info.pvid = 0; 2981 2982 i40e_vlan_stripping_disable(vsi); 2983 } 2984 2985 /** 2986 * i40e_vsi_setup_tx_resources - Allocate VSI Tx queue resources 2987 * @vsi: ptr to the VSI 2988 * 2989 * If this function returns with an error, then it's possible one or 2990 * more of the rings is populated (while the rest are not). It is the 2991 * callers duty to clean those orphaned rings. 2992 * 2993 * Return 0 on success, negative on failure 2994 **/ 2995 static int i40e_vsi_setup_tx_resources(struct i40e_vsi *vsi) 2996 { 2997 int i, err = 0; 2998 2999 for (i = 0; i < vsi->num_queue_pairs && !err; i++) 3000 err = i40e_setup_tx_descriptors(vsi->tx_rings[i]); 3001 3002 if (!i40e_enabled_xdp_vsi(vsi)) 3003 return err; 3004 3005 for (i = 0; i < vsi->num_queue_pairs && !err; i++) 3006 err = i40e_setup_tx_descriptors(vsi->xdp_rings[i]); 3007 3008 return err; 3009 } 3010 3011 /** 3012 * i40e_vsi_free_tx_resources - Free Tx resources for VSI queues 3013 * @vsi: ptr to the VSI 3014 * 3015 * Free VSI's transmit software resources 3016 **/ 3017 static void i40e_vsi_free_tx_resources(struct i40e_vsi *vsi) 3018 { 3019 int i; 3020 3021 if (vsi->tx_rings) { 3022 for (i = 0; i < vsi->num_queue_pairs; i++) 3023 if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc) 3024 i40e_free_tx_resources(vsi->tx_rings[i]); 3025 } 3026 3027 if (vsi->xdp_rings) { 3028 for (i = 0; i < vsi->num_queue_pairs; i++) 3029 if (vsi->xdp_rings[i] && vsi->xdp_rings[i]->desc) 3030 i40e_free_tx_resources(vsi->xdp_rings[i]); 3031 } 3032 } 3033 3034 /** 3035 * i40e_vsi_setup_rx_resources - Allocate VSI queues Rx resources 3036 * @vsi: ptr to the VSI 3037 * 3038 * If this function returns with an error, then it's possible one or 3039 * more of the rings is populated (while the rest are not). It is the 3040 * callers duty to clean those orphaned rings. 3041 * 3042 * Return 0 on success, negative on failure 3043 **/ 3044 static int i40e_vsi_setup_rx_resources(struct i40e_vsi *vsi) 3045 { 3046 int i, err = 0; 3047 3048 for (i = 0; i < vsi->num_queue_pairs && !err; i++) 3049 err = i40e_setup_rx_descriptors(vsi->rx_rings[i]); 3050 return err; 3051 } 3052 3053 /** 3054 * i40e_vsi_free_rx_resources - Free Rx Resources for VSI queues 3055 * @vsi: ptr to the VSI 3056 * 3057 * Free all receive software resources 3058 **/ 3059 static void i40e_vsi_free_rx_resources(struct i40e_vsi *vsi) 3060 { 3061 int i; 3062 3063 if (!vsi->rx_rings) 3064 return; 3065 3066 for (i = 0; i < vsi->num_queue_pairs; i++) 3067 if (vsi->rx_rings[i] && vsi->rx_rings[i]->desc) 3068 i40e_free_rx_resources(vsi->rx_rings[i]); 3069 } 3070 3071 /** 3072 * i40e_config_xps_tx_ring - Configure XPS for a Tx ring 3073 * @ring: The Tx ring to configure 3074 * 3075 * This enables/disables XPS for a given Tx descriptor ring 3076 * based on the TCs enabled for the VSI that ring belongs to. 3077 **/ 3078 static void i40e_config_xps_tx_ring(struct i40e_ring *ring) 3079 { 3080 int cpu; 3081 3082 if (!ring->q_vector || !ring->netdev || ring->ch) 3083 return; 3084 3085 /* We only initialize XPS once, so as not to overwrite user settings */ 3086 if (test_and_set_bit(__I40E_TX_XPS_INIT_DONE, ring->state)) 3087 return; 3088 3089 cpu = cpumask_local_spread(ring->q_vector->v_idx, -1); 3090 netif_set_xps_queue(ring->netdev, get_cpu_mask(cpu), 3091 ring->queue_index); 3092 } 3093 3094 /** 3095 * i40e_xsk_umem - Retrieve the AF_XDP ZC if XDP and ZC is enabled 3096 * @ring: The Tx or Rx ring 3097 * 3098 * Returns the UMEM or NULL. 3099 **/ 3100 static struct xdp_umem *i40e_xsk_umem(struct i40e_ring *ring) 3101 { 3102 bool xdp_on = i40e_enabled_xdp_vsi(ring->vsi); 3103 int qid = ring->queue_index; 3104 3105 if (ring_is_xdp(ring)) 3106 qid -= ring->vsi->alloc_queue_pairs; 3107 3108 if (!xdp_on || !test_bit(qid, ring->vsi->af_xdp_zc_qps)) 3109 return NULL; 3110 3111 return xdp_get_umem_from_qid(ring->vsi->netdev, qid); 3112 } 3113 3114 /** 3115 * i40e_configure_tx_ring - Configure a transmit ring context and rest 3116 * @ring: The Tx ring to configure 3117 * 3118 * Configure the Tx descriptor ring in the HMC context. 3119 **/ 3120 static int i40e_configure_tx_ring(struct i40e_ring *ring) 3121 { 3122 struct i40e_vsi *vsi = ring->vsi; 3123 u16 pf_q = vsi->base_queue + ring->queue_index; 3124 struct i40e_hw *hw = &vsi->back->hw; 3125 struct i40e_hmc_obj_txq tx_ctx; 3126 i40e_status err = 0; 3127 u32 qtx_ctl = 0; 3128 3129 if (ring_is_xdp(ring)) 3130 ring->xsk_umem = i40e_xsk_umem(ring); 3131 3132 /* some ATR related tx ring init */ 3133 if (vsi->back->flags & I40E_FLAG_FD_ATR_ENABLED) { 3134 ring->atr_sample_rate = vsi->back->atr_sample_rate; 3135 ring->atr_count = 0; 3136 } else { 3137 ring->atr_sample_rate = 0; 3138 } 3139 3140 /* configure XPS */ 3141 i40e_config_xps_tx_ring(ring); 3142 3143 /* clear the context structure first */ 3144 memset(&tx_ctx, 0, sizeof(tx_ctx)); 3145 3146 tx_ctx.new_context = 1; 3147 tx_ctx.base = (ring->dma / 128); 3148 tx_ctx.qlen = ring->count; 3149 tx_ctx.fd_ena = !!(vsi->back->flags & (I40E_FLAG_FD_SB_ENABLED | 3150 I40E_FLAG_FD_ATR_ENABLED)); 3151 tx_ctx.timesync_ena = !!(vsi->back->flags & I40E_FLAG_PTP); 3152 /* FDIR VSI tx ring can still use RS bit and writebacks */ 3153 if (vsi->type != I40E_VSI_FDIR) 3154 tx_ctx.head_wb_ena = 1; 3155 tx_ctx.head_wb_addr = ring->dma + 3156 (ring->count * sizeof(struct i40e_tx_desc)); 3157 3158 /* As part of VSI creation/update, FW allocates certain 3159 * Tx arbitration queue sets for each TC enabled for 3160 * the VSI. The FW returns the handles to these queue 3161 * sets as part of the response buffer to Add VSI, 3162 * Update VSI, etc. AQ commands. It is expected that 3163 * these queue set handles be associated with the Tx 3164 * queues by the driver as part of the TX queue context 3165 * initialization. This has to be done regardless of 3166 * DCB as by default everything is mapped to TC0. 3167 */ 3168 3169 if (ring->ch) 3170 tx_ctx.rdylist = 3171 le16_to_cpu(ring->ch->info.qs_handle[ring->dcb_tc]); 3172 3173 else 3174 tx_ctx.rdylist = le16_to_cpu(vsi->info.qs_handle[ring->dcb_tc]); 3175 3176 tx_ctx.rdylist_act = 0; 3177 3178 /* clear the context in the HMC */ 3179 err = i40e_clear_lan_tx_queue_context(hw, pf_q); 3180 if (err) { 3181 dev_info(&vsi->back->pdev->dev, 3182 "Failed to clear LAN Tx queue context on Tx ring %d (pf_q %d), error: %d\n", 3183 ring->queue_index, pf_q, err); 3184 return -ENOMEM; 3185 } 3186 3187 /* set the context in the HMC */ 3188 err = i40e_set_lan_tx_queue_context(hw, pf_q, &tx_ctx); 3189 if (err) { 3190 dev_info(&vsi->back->pdev->dev, 3191 "Failed to set LAN Tx queue context on Tx ring %d (pf_q %d, error: %d\n", 3192 ring->queue_index, pf_q, err); 3193 return -ENOMEM; 3194 } 3195 3196 /* Now associate this queue with this PCI function */ 3197 if (ring->ch) { 3198 if (ring->ch->type == I40E_VSI_VMDQ2) 3199 qtx_ctl = I40E_QTX_CTL_VM_QUEUE; 3200 else 3201 return -EINVAL; 3202 3203 qtx_ctl |= (ring->ch->vsi_number << 3204 I40E_QTX_CTL_VFVM_INDX_SHIFT) & 3205 I40E_QTX_CTL_VFVM_INDX_MASK; 3206 } else { 3207 if (vsi->type == I40E_VSI_VMDQ2) { 3208 qtx_ctl = I40E_QTX_CTL_VM_QUEUE; 3209 qtx_ctl |= ((vsi->id) << I40E_QTX_CTL_VFVM_INDX_SHIFT) & 3210 I40E_QTX_CTL_VFVM_INDX_MASK; 3211 } else { 3212 qtx_ctl = I40E_QTX_CTL_PF_QUEUE; 3213 } 3214 } 3215 3216 qtx_ctl |= ((hw->pf_id << I40E_QTX_CTL_PF_INDX_SHIFT) & 3217 I40E_QTX_CTL_PF_INDX_MASK); 3218 wr32(hw, I40E_QTX_CTL(pf_q), qtx_ctl); 3219 i40e_flush(hw); 3220 3221 /* cache tail off for easier writes later */ 3222 ring->tail = hw->hw_addr + I40E_QTX_TAIL(pf_q); 3223 3224 return 0; 3225 } 3226 3227 /** 3228 * i40e_configure_rx_ring - Configure a receive ring context 3229 * @ring: The Rx ring to configure 3230 * 3231 * Configure the Rx descriptor ring in the HMC context. 3232 **/ 3233 static int i40e_configure_rx_ring(struct i40e_ring *ring) 3234 { 3235 struct i40e_vsi *vsi = ring->vsi; 3236 u32 chain_len = vsi->back->hw.func_caps.rx_buf_chain_len; 3237 u16 pf_q = vsi->base_queue + ring->queue_index; 3238 struct i40e_hw *hw = &vsi->back->hw; 3239 struct i40e_hmc_obj_rxq rx_ctx; 3240 i40e_status err = 0; 3241 bool ok; 3242 int ret; 3243 3244 bitmap_zero(ring->state, __I40E_RING_STATE_NBITS); 3245 3246 /* clear the context structure first */ 3247 memset(&rx_ctx, 0, sizeof(rx_ctx)); 3248 3249 if (ring->vsi->type == I40E_VSI_MAIN) 3250 xdp_rxq_info_unreg_mem_model(&ring->xdp_rxq); 3251 3252 ring->xsk_umem = i40e_xsk_umem(ring); 3253 if (ring->xsk_umem) { 3254 ring->rx_buf_len = ring->xsk_umem->chunk_size_nohr - 3255 XDP_PACKET_HEADROOM; 3256 /* For AF_XDP ZC, we disallow packets to span on 3257 * multiple buffers, thus letting us skip that 3258 * handling in the fast-path. 3259 */ 3260 chain_len = 1; 3261 ring->zca.free = i40e_zca_free; 3262 ret = xdp_rxq_info_reg_mem_model(&ring->xdp_rxq, 3263 MEM_TYPE_ZERO_COPY, 3264 &ring->zca); 3265 if (ret) 3266 return ret; 3267 dev_info(&vsi->back->pdev->dev, 3268 "Registered XDP mem model MEM_TYPE_ZERO_COPY on Rx ring %d\n", 3269 ring->queue_index); 3270 3271 } else { 3272 ring->rx_buf_len = vsi->rx_buf_len; 3273 if (ring->vsi->type == I40E_VSI_MAIN) { 3274 ret = xdp_rxq_info_reg_mem_model(&ring->xdp_rxq, 3275 MEM_TYPE_PAGE_SHARED, 3276 NULL); 3277 if (ret) 3278 return ret; 3279 } 3280 } 3281 3282 rx_ctx.dbuff = DIV_ROUND_UP(ring->rx_buf_len, 3283 BIT_ULL(I40E_RXQ_CTX_DBUFF_SHIFT)); 3284 3285 rx_ctx.base = (ring->dma / 128); 3286 rx_ctx.qlen = ring->count; 3287 3288 /* use 32 byte descriptors */ 3289 rx_ctx.dsize = 1; 3290 3291 /* descriptor type is always zero 3292 * rx_ctx.dtype = 0; 3293 */ 3294 rx_ctx.hsplit_0 = 0; 3295 3296 rx_ctx.rxmax = min_t(u16, vsi->max_frame, chain_len * ring->rx_buf_len); 3297 if (hw->revision_id == 0) 3298 rx_ctx.lrxqthresh = 0; 3299 else 3300 rx_ctx.lrxqthresh = 1; 3301 rx_ctx.crcstrip = 1; 3302 rx_ctx.l2tsel = 1; 3303 /* this controls whether VLAN is stripped from inner headers */ 3304 rx_ctx.showiv = 0; 3305 /* set the prefena field to 1 because the manual says to */ 3306 rx_ctx.prefena = 1; 3307 3308 /* clear the context in the HMC */ 3309 err = i40e_clear_lan_rx_queue_context(hw, pf_q); 3310 if (err) { 3311 dev_info(&vsi->back->pdev->dev, 3312 "Failed to clear LAN Rx queue context on Rx ring %d (pf_q %d), error: %d\n", 3313 ring->queue_index, pf_q, err); 3314 return -ENOMEM; 3315 } 3316 3317 /* set the context in the HMC */ 3318 err = i40e_set_lan_rx_queue_context(hw, pf_q, &rx_ctx); 3319 if (err) { 3320 dev_info(&vsi->back->pdev->dev, 3321 "Failed to set LAN Rx queue context on Rx ring %d (pf_q %d), error: %d\n", 3322 ring->queue_index, pf_q, err); 3323 return -ENOMEM; 3324 } 3325 3326 /* configure Rx buffer alignment */ 3327 if (!vsi->netdev || (vsi->back->flags & I40E_FLAG_LEGACY_RX)) 3328 clear_ring_build_skb_enabled(ring); 3329 else 3330 set_ring_build_skb_enabled(ring); 3331 3332 /* cache tail for quicker writes, and clear the reg before use */ 3333 ring->tail = hw->hw_addr + I40E_QRX_TAIL(pf_q); 3334 writel(0, ring->tail); 3335 3336 ok = ring->xsk_umem ? 3337 i40e_alloc_rx_buffers_zc(ring, I40E_DESC_UNUSED(ring)) : 3338 !i40e_alloc_rx_buffers(ring, I40E_DESC_UNUSED(ring)); 3339 if (!ok) { 3340 /* Log this in case the user has forgotten to give the kernel 3341 * any buffers, even later in the application. 3342 */ 3343 dev_info(&vsi->back->pdev->dev, 3344 "Failed to allocate some buffers on %sRx ring %d (pf_q %d)\n", 3345 ring->xsk_umem ? "UMEM enabled " : "", 3346 ring->queue_index, pf_q); 3347 } 3348 3349 return 0; 3350 } 3351 3352 /** 3353 * i40e_vsi_configure_tx - Configure the VSI for Tx 3354 * @vsi: VSI structure describing this set of rings and resources 3355 * 3356 * Configure the Tx VSI for operation. 3357 **/ 3358 static int i40e_vsi_configure_tx(struct i40e_vsi *vsi) 3359 { 3360 int err = 0; 3361 u16 i; 3362 3363 for (i = 0; (i < vsi->num_queue_pairs) && !err; i++) 3364 err = i40e_configure_tx_ring(vsi->tx_rings[i]); 3365 3366 if (!i40e_enabled_xdp_vsi(vsi)) 3367 return err; 3368 3369 for (i = 0; (i < vsi->num_queue_pairs) && !err; i++) 3370 err = i40e_configure_tx_ring(vsi->xdp_rings[i]); 3371 3372 return err; 3373 } 3374 3375 /** 3376 * i40e_vsi_configure_rx - Configure the VSI for Rx 3377 * @vsi: the VSI being configured 3378 * 3379 * Configure the Rx VSI for operation. 3380 **/ 3381 static int i40e_vsi_configure_rx(struct i40e_vsi *vsi) 3382 { 3383 int err = 0; 3384 u16 i; 3385 3386 if (!vsi->netdev || (vsi->back->flags & I40E_FLAG_LEGACY_RX)) { 3387 vsi->max_frame = I40E_MAX_RXBUFFER; 3388 vsi->rx_buf_len = I40E_RXBUFFER_2048; 3389 #if (PAGE_SIZE < 8192) 3390 } else if (!I40E_2K_TOO_SMALL_WITH_PADDING && 3391 (vsi->netdev->mtu <= ETH_DATA_LEN)) { 3392 vsi->max_frame = I40E_RXBUFFER_1536 - NET_IP_ALIGN; 3393 vsi->rx_buf_len = I40E_RXBUFFER_1536 - NET_IP_ALIGN; 3394 #endif 3395 } else { 3396 vsi->max_frame = I40E_MAX_RXBUFFER; 3397 vsi->rx_buf_len = (PAGE_SIZE < 8192) ? I40E_RXBUFFER_3072 : 3398 I40E_RXBUFFER_2048; 3399 } 3400 3401 /* set up individual rings */ 3402 for (i = 0; i < vsi->num_queue_pairs && !err; i++) 3403 err = i40e_configure_rx_ring(vsi->rx_rings[i]); 3404 3405 return err; 3406 } 3407 3408 /** 3409 * i40e_vsi_config_dcb_rings - Update rings to reflect DCB TC 3410 * @vsi: ptr to the VSI 3411 **/ 3412 static void i40e_vsi_config_dcb_rings(struct i40e_vsi *vsi) 3413 { 3414 struct i40e_ring *tx_ring, *rx_ring; 3415 u16 qoffset, qcount; 3416 int i, n; 3417 3418 if (!(vsi->back->flags & I40E_FLAG_DCB_ENABLED)) { 3419 /* Reset the TC information */ 3420 for (i = 0; i < vsi->num_queue_pairs; i++) { 3421 rx_ring = vsi->rx_rings[i]; 3422 tx_ring = vsi->tx_rings[i]; 3423 rx_ring->dcb_tc = 0; 3424 tx_ring->dcb_tc = 0; 3425 } 3426 return; 3427 } 3428 3429 for (n = 0; n < I40E_MAX_TRAFFIC_CLASS; n++) { 3430 if (!(vsi->tc_config.enabled_tc & BIT_ULL(n))) 3431 continue; 3432 3433 qoffset = vsi->tc_config.tc_info[n].qoffset; 3434 qcount = vsi->tc_config.tc_info[n].qcount; 3435 for (i = qoffset; i < (qoffset + qcount); i++) { 3436 rx_ring = vsi->rx_rings[i]; 3437 tx_ring = vsi->tx_rings[i]; 3438 rx_ring->dcb_tc = n; 3439 tx_ring->dcb_tc = n; 3440 } 3441 } 3442 } 3443 3444 /** 3445 * i40e_set_vsi_rx_mode - Call set_rx_mode on a VSI 3446 * @vsi: ptr to the VSI 3447 **/ 3448 static void i40e_set_vsi_rx_mode(struct i40e_vsi *vsi) 3449 { 3450 if (vsi->netdev) 3451 i40e_set_rx_mode(vsi->netdev); 3452 } 3453 3454 /** 3455 * i40e_fdir_filter_restore - Restore the Sideband Flow Director filters 3456 * @vsi: Pointer to the targeted VSI 3457 * 3458 * This function replays the hlist on the hw where all the SB Flow Director 3459 * filters were saved. 3460 **/ 3461 static void i40e_fdir_filter_restore(struct i40e_vsi *vsi) 3462 { 3463 struct i40e_fdir_filter *filter; 3464 struct i40e_pf *pf = vsi->back; 3465 struct hlist_node *node; 3466 3467 if (!(pf->flags & I40E_FLAG_FD_SB_ENABLED)) 3468 return; 3469 3470 /* Reset FDir counters as we're replaying all existing filters */ 3471 pf->fd_tcp4_filter_cnt = 0; 3472 pf->fd_udp4_filter_cnt = 0; 3473 pf->fd_sctp4_filter_cnt = 0; 3474 pf->fd_ip4_filter_cnt = 0; 3475 3476 hlist_for_each_entry_safe(filter, node, 3477 &pf->fdir_filter_list, fdir_node) { 3478 i40e_add_del_fdir(vsi, filter, true); 3479 } 3480 } 3481 3482 /** 3483 * i40e_vsi_configure - Set up the VSI for action 3484 * @vsi: the VSI being configured 3485 **/ 3486 static int i40e_vsi_configure(struct i40e_vsi *vsi) 3487 { 3488 int err; 3489 3490 i40e_set_vsi_rx_mode(vsi); 3491 i40e_restore_vlan(vsi); 3492 i40e_vsi_config_dcb_rings(vsi); 3493 err = i40e_vsi_configure_tx(vsi); 3494 if (!err) 3495 err = i40e_vsi_configure_rx(vsi); 3496 3497 return err; 3498 } 3499 3500 /** 3501 * i40e_vsi_configure_msix - MSIX mode Interrupt Config in the HW 3502 * @vsi: the VSI being configured 3503 **/ 3504 static void i40e_vsi_configure_msix(struct i40e_vsi *vsi) 3505 { 3506 bool has_xdp = i40e_enabled_xdp_vsi(vsi); 3507 struct i40e_pf *pf = vsi->back; 3508 struct i40e_hw *hw = &pf->hw; 3509 u16 vector; 3510 int i, q; 3511 u32 qp; 3512 3513 /* The interrupt indexing is offset by 1 in the PFINT_ITRn 3514 * and PFINT_LNKLSTn registers, e.g.: 3515 * PFINT_ITRn[0..n-1] gets msix-1..msix-n (qpair interrupts) 3516 */ 3517 qp = vsi->base_queue; 3518 vector = vsi->base_vector; 3519 for (i = 0; i < vsi->num_q_vectors; i++, vector++) { 3520 struct i40e_q_vector *q_vector = vsi->q_vectors[i]; 3521 3522 q_vector->rx.next_update = jiffies + 1; 3523 q_vector->rx.target_itr = 3524 ITR_TO_REG(vsi->rx_rings[i]->itr_setting); 3525 wr32(hw, I40E_PFINT_ITRN(I40E_RX_ITR, vector - 1), 3526 q_vector->rx.target_itr); 3527 q_vector->rx.current_itr = q_vector->rx.target_itr; 3528 3529 q_vector->tx.next_update = jiffies + 1; 3530 q_vector->tx.target_itr = 3531 ITR_TO_REG(vsi->tx_rings[i]->itr_setting); 3532 wr32(hw, I40E_PFINT_ITRN(I40E_TX_ITR, vector - 1), 3533 q_vector->tx.target_itr); 3534 q_vector->tx.current_itr = q_vector->tx.target_itr; 3535 3536 wr32(hw, I40E_PFINT_RATEN(vector - 1), 3537 i40e_intrl_usec_to_reg(vsi->int_rate_limit)); 3538 3539 /* Linked list for the queuepairs assigned to this vector */ 3540 wr32(hw, I40E_PFINT_LNKLSTN(vector - 1), qp); 3541 for (q = 0; q < q_vector->num_ringpairs; q++) { 3542 u32 nextqp = has_xdp ? qp + vsi->alloc_queue_pairs : qp; 3543 u32 val; 3544 3545 val = I40E_QINT_RQCTL_CAUSE_ENA_MASK | 3546 (I40E_RX_ITR << I40E_QINT_RQCTL_ITR_INDX_SHIFT) | 3547 (vector << I40E_QINT_RQCTL_MSIX_INDX_SHIFT) | 3548 (nextqp << I40E_QINT_RQCTL_NEXTQ_INDX_SHIFT) | 3549 (I40E_QUEUE_TYPE_TX << 3550 I40E_QINT_RQCTL_NEXTQ_TYPE_SHIFT); 3551 3552 wr32(hw, I40E_QINT_RQCTL(qp), val); 3553 3554 if (has_xdp) { 3555 val = I40E_QINT_TQCTL_CAUSE_ENA_MASK | 3556 (I40E_TX_ITR << I40E_QINT_TQCTL_ITR_INDX_SHIFT) | 3557 (vector << I40E_QINT_TQCTL_MSIX_INDX_SHIFT) | 3558 (qp << I40E_QINT_TQCTL_NEXTQ_INDX_SHIFT) | 3559 (I40E_QUEUE_TYPE_TX << 3560 I40E_QINT_TQCTL_NEXTQ_TYPE_SHIFT); 3561 3562 wr32(hw, I40E_QINT_TQCTL(nextqp), val); 3563 } 3564 3565 val = I40E_QINT_TQCTL_CAUSE_ENA_MASK | 3566 (I40E_TX_ITR << I40E_QINT_TQCTL_ITR_INDX_SHIFT) | 3567 (vector << I40E_QINT_TQCTL_MSIX_INDX_SHIFT) | 3568 ((qp + 1) << I40E_QINT_TQCTL_NEXTQ_INDX_SHIFT) | 3569 (I40E_QUEUE_TYPE_RX << 3570 I40E_QINT_TQCTL_NEXTQ_TYPE_SHIFT); 3571 3572 /* Terminate the linked list */ 3573 if (q == (q_vector->num_ringpairs - 1)) 3574 val |= (I40E_QUEUE_END_OF_LIST << 3575 I40E_QINT_TQCTL_NEXTQ_INDX_SHIFT); 3576 3577 wr32(hw, I40E_QINT_TQCTL(qp), val); 3578 qp++; 3579 } 3580 } 3581 3582 i40e_flush(hw); 3583 } 3584 3585 /** 3586 * i40e_enable_misc_int_causes - enable the non-queue interrupts 3587 * @pf: pointer to private device data structure 3588 **/ 3589 static void i40e_enable_misc_int_causes(struct i40e_pf *pf) 3590 { 3591 struct i40e_hw *hw = &pf->hw; 3592 u32 val; 3593 3594 /* clear things first */ 3595 wr32(hw, I40E_PFINT_ICR0_ENA, 0); /* disable all */ 3596 rd32(hw, I40E_PFINT_ICR0); /* read to clear */ 3597 3598 val = I40E_PFINT_ICR0_ENA_ECC_ERR_MASK | 3599 I40E_PFINT_ICR0_ENA_MAL_DETECT_MASK | 3600 I40E_PFINT_ICR0_ENA_GRST_MASK | 3601 I40E_PFINT_ICR0_ENA_PCI_EXCEPTION_MASK | 3602 I40E_PFINT_ICR0_ENA_GPIO_MASK | 3603 I40E_PFINT_ICR0_ENA_HMC_ERR_MASK | 3604 I40E_PFINT_ICR0_ENA_VFLR_MASK | 3605 I40E_PFINT_ICR0_ENA_ADMINQ_MASK; 3606 3607 if (pf->flags & I40E_FLAG_IWARP_ENABLED) 3608 val |= I40E_PFINT_ICR0_ENA_PE_CRITERR_MASK; 3609 3610 if (pf->flags & I40E_FLAG_PTP) 3611 val |= I40E_PFINT_ICR0_ENA_TIMESYNC_MASK; 3612 3613 wr32(hw, I40E_PFINT_ICR0_ENA, val); 3614 3615 /* SW_ITR_IDX = 0, but don't change INTENA */ 3616 wr32(hw, I40E_PFINT_DYN_CTL0, I40E_PFINT_DYN_CTL0_SW_ITR_INDX_MASK | 3617 I40E_PFINT_DYN_CTL0_INTENA_MSK_MASK); 3618 3619 /* OTHER_ITR_IDX = 0 */ 3620 wr32(hw, I40E_PFINT_STAT_CTL0, 0); 3621 } 3622 3623 /** 3624 * i40e_configure_msi_and_legacy - Legacy mode interrupt config in the HW 3625 * @vsi: the VSI being configured 3626 **/ 3627 static void i40e_configure_msi_and_legacy(struct i40e_vsi *vsi) 3628 { 3629 u32 nextqp = i40e_enabled_xdp_vsi(vsi) ? vsi->alloc_queue_pairs : 0; 3630 struct i40e_q_vector *q_vector = vsi->q_vectors[0]; 3631 struct i40e_pf *pf = vsi->back; 3632 struct i40e_hw *hw = &pf->hw; 3633 u32 val; 3634 3635 /* set the ITR configuration */ 3636 q_vector->rx.next_update = jiffies + 1; 3637 q_vector->rx.target_itr = ITR_TO_REG(vsi->rx_rings[0]->itr_setting); 3638 wr32(hw, I40E_PFINT_ITR0(I40E_RX_ITR), q_vector->rx.target_itr); 3639 q_vector->rx.current_itr = q_vector->rx.target_itr; 3640 q_vector->tx.next_update = jiffies + 1; 3641 q_vector->tx.target_itr = ITR_TO_REG(vsi->tx_rings[0]->itr_setting); 3642 wr32(hw, I40E_PFINT_ITR0(I40E_TX_ITR), q_vector->tx.target_itr); 3643 q_vector->tx.current_itr = q_vector->tx.target_itr; 3644 3645 i40e_enable_misc_int_causes(pf); 3646 3647 /* FIRSTQ_INDX = 0, FIRSTQ_TYPE = 0 (rx) */ 3648 wr32(hw, I40E_PFINT_LNKLST0, 0); 3649 3650 /* Associate the queue pair to the vector and enable the queue int */ 3651 val = I40E_QINT_RQCTL_CAUSE_ENA_MASK | 3652 (I40E_RX_ITR << I40E_QINT_RQCTL_ITR_INDX_SHIFT) | 3653 (nextqp << I40E_QINT_RQCTL_NEXTQ_INDX_SHIFT)| 3654 (I40E_QUEUE_TYPE_TX << I40E_QINT_TQCTL_NEXTQ_TYPE_SHIFT); 3655 3656 wr32(hw, I40E_QINT_RQCTL(0), val); 3657 3658 if (i40e_enabled_xdp_vsi(vsi)) { 3659 val = I40E_QINT_TQCTL_CAUSE_ENA_MASK | 3660 (I40E_TX_ITR << I40E_QINT_TQCTL_ITR_INDX_SHIFT)| 3661 (I40E_QUEUE_TYPE_TX 3662 << I40E_QINT_TQCTL_NEXTQ_TYPE_SHIFT); 3663 3664 wr32(hw, I40E_QINT_TQCTL(nextqp), val); 3665 } 3666 3667 val = I40E_QINT_TQCTL_CAUSE_ENA_MASK | 3668 (I40E_TX_ITR << I40E_QINT_TQCTL_ITR_INDX_SHIFT) | 3669 (I40E_QUEUE_END_OF_LIST << I40E_QINT_TQCTL_NEXTQ_INDX_SHIFT); 3670 3671 wr32(hw, I40E_QINT_TQCTL(0), val); 3672 i40e_flush(hw); 3673 } 3674 3675 /** 3676 * i40e_irq_dynamic_disable_icr0 - Disable default interrupt generation for icr0 3677 * @pf: board private structure 3678 **/ 3679 void i40e_irq_dynamic_disable_icr0(struct i40e_pf *pf) 3680 { 3681 struct i40e_hw *hw = &pf->hw; 3682 3683 wr32(hw, I40E_PFINT_DYN_CTL0, 3684 I40E_ITR_NONE << I40E_PFINT_DYN_CTLN_ITR_INDX_SHIFT); 3685 i40e_flush(hw); 3686 } 3687 3688 /** 3689 * i40e_irq_dynamic_enable_icr0 - Enable default interrupt generation for icr0 3690 * @pf: board private structure 3691 **/ 3692 void i40e_irq_dynamic_enable_icr0(struct i40e_pf *pf) 3693 { 3694 struct i40e_hw *hw = &pf->hw; 3695 u32 val; 3696 3697 val = I40E_PFINT_DYN_CTL0_INTENA_MASK | 3698 I40E_PFINT_DYN_CTL0_CLEARPBA_MASK | 3699 (I40E_ITR_NONE << I40E_PFINT_DYN_CTL0_ITR_INDX_SHIFT); 3700 3701 wr32(hw, I40E_PFINT_DYN_CTL0, val); 3702 i40e_flush(hw); 3703 } 3704 3705 /** 3706 * i40e_msix_clean_rings - MSIX mode Interrupt Handler 3707 * @irq: interrupt number 3708 * @data: pointer to a q_vector 3709 **/ 3710 static irqreturn_t i40e_msix_clean_rings(int irq, void *data) 3711 { 3712 struct i40e_q_vector *q_vector = data; 3713 3714 if (!q_vector->tx.ring && !q_vector->rx.ring) 3715 return IRQ_HANDLED; 3716 3717 napi_schedule_irqoff(&q_vector->napi); 3718 3719 return IRQ_HANDLED; 3720 } 3721 3722 /** 3723 * i40e_irq_affinity_notify - Callback for affinity changes 3724 * @notify: context as to what irq was changed 3725 * @mask: the new affinity mask 3726 * 3727 * This is a callback function used by the irq_set_affinity_notifier function 3728 * so that we may register to receive changes to the irq affinity masks. 3729 **/ 3730 static void i40e_irq_affinity_notify(struct irq_affinity_notify *notify, 3731 const cpumask_t *mask) 3732 { 3733 struct i40e_q_vector *q_vector = 3734 container_of(notify, struct i40e_q_vector, affinity_notify); 3735 3736 cpumask_copy(&q_vector->affinity_mask, mask); 3737 } 3738 3739 /** 3740 * i40e_irq_affinity_release - Callback for affinity notifier release 3741 * @ref: internal core kernel usage 3742 * 3743 * This is a callback function used by the irq_set_affinity_notifier function 3744 * to inform the current notification subscriber that they will no longer 3745 * receive notifications. 3746 **/ 3747 static void i40e_irq_affinity_release(struct kref *ref) {} 3748 3749 /** 3750 * i40e_vsi_request_irq_msix - Initialize MSI-X interrupts 3751 * @vsi: the VSI being configured 3752 * @basename: name for the vector 3753 * 3754 * Allocates MSI-X vectors and requests interrupts from the kernel. 3755 **/ 3756 static int i40e_vsi_request_irq_msix(struct i40e_vsi *vsi, char *basename) 3757 { 3758 int q_vectors = vsi->num_q_vectors; 3759 struct i40e_pf *pf = vsi->back; 3760 int base = vsi->base_vector; 3761 int rx_int_idx = 0; 3762 int tx_int_idx = 0; 3763 int vector, err; 3764 int irq_num; 3765 int cpu; 3766 3767 for (vector = 0; vector < q_vectors; vector++) { 3768 struct i40e_q_vector *q_vector = vsi->q_vectors[vector]; 3769 3770 irq_num = pf->msix_entries[base + vector].vector; 3771 3772 if (q_vector->tx.ring && q_vector->rx.ring) { 3773 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 3774 "%s-%s-%d", basename, "TxRx", rx_int_idx++); 3775 tx_int_idx++; 3776 } else if (q_vector->rx.ring) { 3777 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 3778 "%s-%s-%d", basename, "rx", rx_int_idx++); 3779 } else if (q_vector->tx.ring) { 3780 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 3781 "%s-%s-%d", basename, "tx", tx_int_idx++); 3782 } else { 3783 /* skip this unused q_vector */ 3784 continue; 3785 } 3786 err = request_irq(irq_num, 3787 vsi->irq_handler, 3788 0, 3789 q_vector->name, 3790 q_vector); 3791 if (err) { 3792 dev_info(&pf->pdev->dev, 3793 "MSIX request_irq failed, error: %d\n", err); 3794 goto free_queue_irqs; 3795 } 3796 3797 /* register for affinity change notifications */ 3798 q_vector->affinity_notify.notify = i40e_irq_affinity_notify; 3799 q_vector->affinity_notify.release = i40e_irq_affinity_release; 3800 irq_set_affinity_notifier(irq_num, &q_vector->affinity_notify); 3801 /* Spread affinity hints out across online CPUs. 3802 * 3803 * get_cpu_mask returns a static constant mask with 3804 * a permanent lifetime so it's ok to pass to 3805 * irq_set_affinity_hint without making a copy. 3806 */ 3807 cpu = cpumask_local_spread(q_vector->v_idx, -1); 3808 irq_set_affinity_hint(irq_num, get_cpu_mask(cpu)); 3809 } 3810 3811 vsi->irqs_ready = true; 3812 return 0; 3813 3814 free_queue_irqs: 3815 while (vector) { 3816 vector--; 3817 irq_num = pf->msix_entries[base + vector].vector; 3818 irq_set_affinity_notifier(irq_num, NULL); 3819 irq_set_affinity_hint(irq_num, NULL); 3820 free_irq(irq_num, &vsi->q_vectors[vector]); 3821 } 3822 return err; 3823 } 3824 3825 /** 3826 * i40e_vsi_disable_irq - Mask off queue interrupt generation on the VSI 3827 * @vsi: the VSI being un-configured 3828 **/ 3829 static void i40e_vsi_disable_irq(struct i40e_vsi *vsi) 3830 { 3831 struct i40e_pf *pf = vsi->back; 3832 struct i40e_hw *hw = &pf->hw; 3833 int base = vsi->base_vector; 3834 int i; 3835 3836 /* disable interrupt causation from each queue */ 3837 for (i = 0; i < vsi->num_queue_pairs; i++) { 3838 u32 val; 3839 3840 val = rd32(hw, I40E_QINT_TQCTL(vsi->tx_rings[i]->reg_idx)); 3841 val &= ~I40E_QINT_TQCTL_CAUSE_ENA_MASK; 3842 wr32(hw, I40E_QINT_TQCTL(vsi->tx_rings[i]->reg_idx), val); 3843 3844 val = rd32(hw, I40E_QINT_RQCTL(vsi->rx_rings[i]->reg_idx)); 3845 val &= ~I40E_QINT_RQCTL_CAUSE_ENA_MASK; 3846 wr32(hw, I40E_QINT_RQCTL(vsi->rx_rings[i]->reg_idx), val); 3847 3848 if (!i40e_enabled_xdp_vsi(vsi)) 3849 continue; 3850 wr32(hw, I40E_QINT_TQCTL(vsi->xdp_rings[i]->reg_idx), 0); 3851 } 3852 3853 /* disable each interrupt */ 3854 if (pf->flags & I40E_FLAG_MSIX_ENABLED) { 3855 for (i = vsi->base_vector; 3856 i < (vsi->num_q_vectors + vsi->base_vector); i++) 3857 wr32(hw, I40E_PFINT_DYN_CTLN(i - 1), 0); 3858 3859 i40e_flush(hw); 3860 for (i = 0; i < vsi->num_q_vectors; i++) 3861 synchronize_irq(pf->msix_entries[i + base].vector); 3862 } else { 3863 /* Legacy and MSI mode - this stops all interrupt handling */ 3864 wr32(hw, I40E_PFINT_ICR0_ENA, 0); 3865 wr32(hw, I40E_PFINT_DYN_CTL0, 0); 3866 i40e_flush(hw); 3867 synchronize_irq(pf->pdev->irq); 3868 } 3869 } 3870 3871 /** 3872 * i40e_vsi_enable_irq - Enable IRQ for the given VSI 3873 * @vsi: the VSI being configured 3874 **/ 3875 static int i40e_vsi_enable_irq(struct i40e_vsi *vsi) 3876 { 3877 struct i40e_pf *pf = vsi->back; 3878 int i; 3879 3880 if (pf->flags & I40E_FLAG_MSIX_ENABLED) { 3881 for (i = 0; i < vsi->num_q_vectors; i++) 3882 i40e_irq_dynamic_enable(vsi, i); 3883 } else { 3884 i40e_irq_dynamic_enable_icr0(pf); 3885 } 3886 3887 i40e_flush(&pf->hw); 3888 return 0; 3889 } 3890 3891 /** 3892 * i40e_free_misc_vector - Free the vector that handles non-queue events 3893 * @pf: board private structure 3894 **/ 3895 static void i40e_free_misc_vector(struct i40e_pf *pf) 3896 { 3897 /* Disable ICR 0 */ 3898 wr32(&pf->hw, I40E_PFINT_ICR0_ENA, 0); 3899 i40e_flush(&pf->hw); 3900 3901 if (pf->flags & I40E_FLAG_MSIX_ENABLED && pf->msix_entries) { 3902 synchronize_irq(pf->msix_entries[0].vector); 3903 free_irq(pf->msix_entries[0].vector, pf); 3904 clear_bit(__I40E_MISC_IRQ_REQUESTED, pf->state); 3905 } 3906 } 3907 3908 /** 3909 * i40e_intr - MSI/Legacy and non-queue interrupt handler 3910 * @irq: interrupt number 3911 * @data: pointer to a q_vector 3912 * 3913 * This is the handler used for all MSI/Legacy interrupts, and deals 3914 * with both queue and non-queue interrupts. This is also used in 3915 * MSIX mode to handle the non-queue interrupts. 3916 **/ 3917 static irqreturn_t i40e_intr(int irq, void *data) 3918 { 3919 struct i40e_pf *pf = (struct i40e_pf *)data; 3920 struct i40e_hw *hw = &pf->hw; 3921 irqreturn_t ret = IRQ_NONE; 3922 u32 icr0, icr0_remaining; 3923 u32 val, ena_mask; 3924 3925 icr0 = rd32(hw, I40E_PFINT_ICR0); 3926 ena_mask = rd32(hw, I40E_PFINT_ICR0_ENA); 3927 3928 /* if sharing a legacy IRQ, we might get called w/o an intr pending */ 3929 if ((icr0 & I40E_PFINT_ICR0_INTEVENT_MASK) == 0) 3930 goto enable_intr; 3931 3932 /* if interrupt but no bits showing, must be SWINT */ 3933 if (((icr0 & ~I40E_PFINT_ICR0_INTEVENT_MASK) == 0) || 3934 (icr0 & I40E_PFINT_ICR0_SWINT_MASK)) 3935 pf->sw_int_count++; 3936 3937 if ((pf->flags & I40E_FLAG_IWARP_ENABLED) && 3938 (icr0 & I40E_PFINT_ICR0_ENA_PE_CRITERR_MASK)) { 3939 ena_mask &= ~I40E_PFINT_ICR0_ENA_PE_CRITERR_MASK; 3940 dev_dbg(&pf->pdev->dev, "cleared PE_CRITERR\n"); 3941 set_bit(__I40E_CORE_RESET_REQUESTED, pf->state); 3942 } 3943 3944 /* only q0 is used in MSI/Legacy mode, and none are used in MSIX */ 3945 if (icr0 & I40E_PFINT_ICR0_QUEUE_0_MASK) { 3946 struct i40e_vsi *vsi = pf->vsi[pf->lan_vsi]; 3947 struct i40e_q_vector *q_vector = vsi->q_vectors[0]; 3948 3949 /* We do not have a way to disarm Queue causes while leaving 3950 * interrupt enabled for all other causes, ideally 3951 * interrupt should be disabled while we are in NAPI but 3952 * this is not a performance path and napi_schedule() 3953 * can deal with rescheduling. 3954 */ 3955 if (!test_bit(__I40E_DOWN, pf->state)) 3956 napi_schedule_irqoff(&q_vector->napi); 3957 } 3958 3959 if (icr0 & I40E_PFINT_ICR0_ADMINQ_MASK) { 3960 ena_mask &= ~I40E_PFINT_ICR0_ENA_ADMINQ_MASK; 3961 set_bit(__I40E_ADMINQ_EVENT_PENDING, pf->state); 3962 i40e_debug(&pf->hw, I40E_DEBUG_NVM, "AdminQ event\n"); 3963 } 3964 3965 if (icr0 & I40E_PFINT_ICR0_MAL_DETECT_MASK) { 3966 ena_mask &= ~I40E_PFINT_ICR0_ENA_MAL_DETECT_MASK; 3967 set_bit(__I40E_MDD_EVENT_PENDING, pf->state); 3968 } 3969 3970 if (icr0 & I40E_PFINT_ICR0_VFLR_MASK) { 3971 ena_mask &= ~I40E_PFINT_ICR0_ENA_VFLR_MASK; 3972 set_bit(__I40E_VFLR_EVENT_PENDING, pf->state); 3973 } 3974 3975 if (icr0 & I40E_PFINT_ICR0_GRST_MASK) { 3976 if (!test_bit(__I40E_RESET_RECOVERY_PENDING, pf->state)) 3977 set_bit(__I40E_RESET_INTR_RECEIVED, pf->state); 3978 ena_mask &= ~I40E_PFINT_ICR0_ENA_GRST_MASK; 3979 val = rd32(hw, I40E_GLGEN_RSTAT); 3980 val = (val & I40E_GLGEN_RSTAT_RESET_TYPE_MASK) 3981 >> I40E_GLGEN_RSTAT_RESET_TYPE_SHIFT; 3982 if (val == I40E_RESET_CORER) { 3983 pf->corer_count++; 3984 } else if (val == I40E_RESET_GLOBR) { 3985 pf->globr_count++; 3986 } else if (val == I40E_RESET_EMPR) { 3987 pf->empr_count++; 3988 set_bit(__I40E_EMP_RESET_INTR_RECEIVED, pf->state); 3989 } 3990 } 3991 3992 if (icr0 & I40E_PFINT_ICR0_HMC_ERR_MASK) { 3993 icr0 &= ~I40E_PFINT_ICR0_HMC_ERR_MASK; 3994 dev_info(&pf->pdev->dev, "HMC error interrupt\n"); 3995 dev_info(&pf->pdev->dev, "HMC error info 0x%x, HMC error data 0x%x\n", 3996 rd32(hw, I40E_PFHMC_ERRORINFO), 3997 rd32(hw, I40E_PFHMC_ERRORDATA)); 3998 } 3999 4000 if (icr0 & I40E_PFINT_ICR0_TIMESYNC_MASK) { 4001 u32 prttsyn_stat = rd32(hw, I40E_PRTTSYN_STAT_0); 4002 4003 if (prttsyn_stat & I40E_PRTTSYN_STAT_0_TXTIME_MASK) { 4004 icr0 &= ~I40E_PFINT_ICR0_ENA_TIMESYNC_MASK; 4005 i40e_ptp_tx_hwtstamp(pf); 4006 } 4007 } 4008 4009 /* If a critical error is pending we have no choice but to reset the 4010 * device. 4011 * Report and mask out any remaining unexpected interrupts. 4012 */ 4013 icr0_remaining = icr0 & ena_mask; 4014 if (icr0_remaining) { 4015 dev_info(&pf->pdev->dev, "unhandled interrupt icr0=0x%08x\n", 4016 icr0_remaining); 4017 if ((icr0_remaining & I40E_PFINT_ICR0_PE_CRITERR_MASK) || 4018 (icr0_remaining & I40E_PFINT_ICR0_PCI_EXCEPTION_MASK) || 4019 (icr0_remaining & I40E_PFINT_ICR0_ECC_ERR_MASK)) { 4020 dev_info(&pf->pdev->dev, "device will be reset\n"); 4021 set_bit(__I40E_PF_RESET_REQUESTED, pf->state); 4022 i40e_service_event_schedule(pf); 4023 } 4024 ena_mask &= ~icr0_remaining; 4025 } 4026 ret = IRQ_HANDLED; 4027 4028 enable_intr: 4029 /* re-enable interrupt causes */ 4030 wr32(hw, I40E_PFINT_ICR0_ENA, ena_mask); 4031 if (!test_bit(__I40E_DOWN, pf->state) || 4032 test_bit(__I40E_RECOVERY_MODE, pf->state)) { 4033 i40e_service_event_schedule(pf); 4034 i40e_irq_dynamic_enable_icr0(pf); 4035 } 4036 4037 return ret; 4038 } 4039 4040 /** 4041 * i40e_clean_fdir_tx_irq - Reclaim resources after transmit completes 4042 * @tx_ring: tx ring to clean 4043 * @budget: how many cleans we're allowed 4044 * 4045 * Returns true if there's any budget left (e.g. the clean is finished) 4046 **/ 4047 static bool i40e_clean_fdir_tx_irq(struct i40e_ring *tx_ring, int budget) 4048 { 4049 struct i40e_vsi *vsi = tx_ring->vsi; 4050 u16 i = tx_ring->next_to_clean; 4051 struct i40e_tx_buffer *tx_buf; 4052 struct i40e_tx_desc *tx_desc; 4053 4054 tx_buf = &tx_ring->tx_bi[i]; 4055 tx_desc = I40E_TX_DESC(tx_ring, i); 4056 i -= tx_ring->count; 4057 4058 do { 4059 struct i40e_tx_desc *eop_desc = tx_buf->next_to_watch; 4060 4061 /* if next_to_watch is not set then there is no work pending */ 4062 if (!eop_desc) 4063 break; 4064 4065 /* prevent any other reads prior to eop_desc */ 4066 smp_rmb(); 4067 4068 /* if the descriptor isn't done, no work yet to do */ 4069 if (!(eop_desc->cmd_type_offset_bsz & 4070 cpu_to_le64(I40E_TX_DESC_DTYPE_DESC_DONE))) 4071 break; 4072 4073 /* clear next_to_watch to prevent false hangs */ 4074 tx_buf->next_to_watch = NULL; 4075 4076 tx_desc->buffer_addr = 0; 4077 tx_desc->cmd_type_offset_bsz = 0; 4078 /* move past filter desc */ 4079 tx_buf++; 4080 tx_desc++; 4081 i++; 4082 if (unlikely(!i)) { 4083 i -= tx_ring->count; 4084 tx_buf = tx_ring->tx_bi; 4085 tx_desc = I40E_TX_DESC(tx_ring, 0); 4086 } 4087 /* unmap skb header data */ 4088 dma_unmap_single(tx_ring->dev, 4089 dma_unmap_addr(tx_buf, dma), 4090 dma_unmap_len(tx_buf, len), 4091 DMA_TO_DEVICE); 4092 if (tx_buf->tx_flags & I40E_TX_FLAGS_FD_SB) 4093 kfree(tx_buf->raw_buf); 4094 4095 tx_buf->raw_buf = NULL; 4096 tx_buf->tx_flags = 0; 4097 tx_buf->next_to_watch = NULL; 4098 dma_unmap_len_set(tx_buf, len, 0); 4099 tx_desc->buffer_addr = 0; 4100 tx_desc->cmd_type_offset_bsz = 0; 4101 4102 /* move us past the eop_desc for start of next FD desc */ 4103 tx_buf++; 4104 tx_desc++; 4105 i++; 4106 if (unlikely(!i)) { 4107 i -= tx_ring->count; 4108 tx_buf = tx_ring->tx_bi; 4109 tx_desc = I40E_TX_DESC(tx_ring, 0); 4110 } 4111 4112 /* update budget accounting */ 4113 budget--; 4114 } while (likely(budget)); 4115 4116 i += tx_ring->count; 4117 tx_ring->next_to_clean = i; 4118 4119 if (vsi->back->flags & I40E_FLAG_MSIX_ENABLED) 4120 i40e_irq_dynamic_enable(vsi, tx_ring->q_vector->v_idx); 4121 4122 return budget > 0; 4123 } 4124 4125 /** 4126 * i40e_fdir_clean_ring - Interrupt Handler for FDIR SB ring 4127 * @irq: interrupt number 4128 * @data: pointer to a q_vector 4129 **/ 4130 static irqreturn_t i40e_fdir_clean_ring(int irq, void *data) 4131 { 4132 struct i40e_q_vector *q_vector = data; 4133 struct i40e_vsi *vsi; 4134 4135 if (!q_vector->tx.ring) 4136 return IRQ_HANDLED; 4137 4138 vsi = q_vector->tx.ring->vsi; 4139 i40e_clean_fdir_tx_irq(q_vector->tx.ring, vsi->work_limit); 4140 4141 return IRQ_HANDLED; 4142 } 4143 4144 /** 4145 * i40e_map_vector_to_qp - Assigns the queue pair to the vector 4146 * @vsi: the VSI being configured 4147 * @v_idx: vector index 4148 * @qp_idx: queue pair index 4149 **/ 4150 static void i40e_map_vector_to_qp(struct i40e_vsi *vsi, int v_idx, int qp_idx) 4151 { 4152 struct i40e_q_vector *q_vector = vsi->q_vectors[v_idx]; 4153 struct i40e_ring *tx_ring = vsi->tx_rings[qp_idx]; 4154 struct i40e_ring *rx_ring = vsi->rx_rings[qp_idx]; 4155 4156 tx_ring->q_vector = q_vector; 4157 tx_ring->next = q_vector->tx.ring; 4158 q_vector->tx.ring = tx_ring; 4159 q_vector->tx.count++; 4160 4161 /* Place XDP Tx ring in the same q_vector ring list as regular Tx */ 4162 if (i40e_enabled_xdp_vsi(vsi)) { 4163 struct i40e_ring *xdp_ring = vsi->xdp_rings[qp_idx]; 4164 4165 xdp_ring->q_vector = q_vector; 4166 xdp_ring->next = q_vector->tx.ring; 4167 q_vector->tx.ring = xdp_ring; 4168 q_vector->tx.count++; 4169 } 4170 4171 rx_ring->q_vector = q_vector; 4172 rx_ring->next = q_vector->rx.ring; 4173 q_vector->rx.ring = rx_ring; 4174 q_vector->rx.count++; 4175 } 4176 4177 /** 4178 * i40e_vsi_map_rings_to_vectors - Maps descriptor rings to vectors 4179 * @vsi: the VSI being configured 4180 * 4181 * This function maps descriptor rings to the queue-specific vectors 4182 * we were allotted through the MSI-X enabling code. Ideally, we'd have 4183 * one vector per queue pair, but on a constrained vector budget, we 4184 * group the queue pairs as "efficiently" as possible. 4185 **/ 4186 static void i40e_vsi_map_rings_to_vectors(struct i40e_vsi *vsi) 4187 { 4188 int qp_remaining = vsi->num_queue_pairs; 4189 int q_vectors = vsi->num_q_vectors; 4190 int num_ringpairs; 4191 int v_start = 0; 4192 int qp_idx = 0; 4193 4194 /* If we don't have enough vectors for a 1-to-1 mapping, we'll have to 4195 * group them so there are multiple queues per vector. 4196 * It is also important to go through all the vectors available to be 4197 * sure that if we don't use all the vectors, that the remaining vectors 4198 * are cleared. This is especially important when decreasing the 4199 * number of queues in use. 4200 */ 4201 for (; v_start < q_vectors; v_start++) { 4202 struct i40e_q_vector *q_vector = vsi->q_vectors[v_start]; 4203 4204 num_ringpairs = DIV_ROUND_UP(qp_remaining, q_vectors - v_start); 4205 4206 q_vector->num_ringpairs = num_ringpairs; 4207 q_vector->reg_idx = q_vector->v_idx + vsi->base_vector - 1; 4208 4209 q_vector->rx.count = 0; 4210 q_vector->tx.count = 0; 4211 q_vector->rx.ring = NULL; 4212 q_vector->tx.ring = NULL; 4213 4214 while (num_ringpairs--) { 4215 i40e_map_vector_to_qp(vsi, v_start, qp_idx); 4216 qp_idx++; 4217 qp_remaining--; 4218 } 4219 } 4220 } 4221 4222 /** 4223 * i40e_vsi_request_irq - Request IRQ from the OS 4224 * @vsi: the VSI being configured 4225 * @basename: name for the vector 4226 **/ 4227 static int i40e_vsi_request_irq(struct i40e_vsi *vsi, char *basename) 4228 { 4229 struct i40e_pf *pf = vsi->back; 4230 int err; 4231 4232 if (pf->flags & I40E_FLAG_MSIX_ENABLED) 4233 err = i40e_vsi_request_irq_msix(vsi, basename); 4234 else if (pf->flags & I40E_FLAG_MSI_ENABLED) 4235 err = request_irq(pf->pdev->irq, i40e_intr, 0, 4236 pf->int_name, pf); 4237 else 4238 err = request_irq(pf->pdev->irq, i40e_intr, IRQF_SHARED, 4239 pf->int_name, pf); 4240 4241 if (err) 4242 dev_info(&pf->pdev->dev, "request_irq failed, Error %d\n", err); 4243 4244 return err; 4245 } 4246 4247 #ifdef CONFIG_NET_POLL_CONTROLLER 4248 /** 4249 * i40e_netpoll - A Polling 'interrupt' handler 4250 * @netdev: network interface device structure 4251 * 4252 * This is used by netconsole to send skbs without having to re-enable 4253 * interrupts. It's not called while the normal interrupt routine is executing. 4254 **/ 4255 static void i40e_netpoll(struct net_device *netdev) 4256 { 4257 struct i40e_netdev_priv *np = netdev_priv(netdev); 4258 struct i40e_vsi *vsi = np->vsi; 4259 struct i40e_pf *pf = vsi->back; 4260 int i; 4261 4262 /* if interface is down do nothing */ 4263 if (test_bit(__I40E_VSI_DOWN, vsi->state)) 4264 return; 4265 4266 if (pf->flags & I40E_FLAG_MSIX_ENABLED) { 4267 for (i = 0; i < vsi->num_q_vectors; i++) 4268 i40e_msix_clean_rings(0, vsi->q_vectors[i]); 4269 } else { 4270 i40e_intr(pf->pdev->irq, netdev); 4271 } 4272 } 4273 #endif 4274 4275 #define I40E_QTX_ENA_WAIT_COUNT 50 4276 4277 /** 4278 * i40e_pf_txq_wait - Wait for a PF's Tx queue to be enabled or disabled 4279 * @pf: the PF being configured 4280 * @pf_q: the PF queue 4281 * @enable: enable or disable state of the queue 4282 * 4283 * This routine will wait for the given Tx queue of the PF to reach the 4284 * enabled or disabled state. 4285 * Returns -ETIMEDOUT in case of failing to reach the requested state after 4286 * multiple retries; else will return 0 in case of success. 4287 **/ 4288 static int i40e_pf_txq_wait(struct i40e_pf *pf, int pf_q, bool enable) 4289 { 4290 int i; 4291 u32 tx_reg; 4292 4293 for (i = 0; i < I40E_QUEUE_WAIT_RETRY_LIMIT; i++) { 4294 tx_reg = rd32(&pf->hw, I40E_QTX_ENA(pf_q)); 4295 if (enable == !!(tx_reg & I40E_QTX_ENA_QENA_STAT_MASK)) 4296 break; 4297 4298 usleep_range(10, 20); 4299 } 4300 if (i >= I40E_QUEUE_WAIT_RETRY_LIMIT) 4301 return -ETIMEDOUT; 4302 4303 return 0; 4304 } 4305 4306 /** 4307 * i40e_control_tx_q - Start or stop a particular Tx queue 4308 * @pf: the PF structure 4309 * @pf_q: the PF queue to configure 4310 * @enable: start or stop the queue 4311 * 4312 * This function enables or disables a single queue. Note that any delay 4313 * required after the operation is expected to be handled by the caller of 4314 * this function. 4315 **/ 4316 static void i40e_control_tx_q(struct i40e_pf *pf, int pf_q, bool enable) 4317 { 4318 struct i40e_hw *hw = &pf->hw; 4319 u32 tx_reg; 4320 int i; 4321 4322 /* warn the TX unit of coming changes */ 4323 i40e_pre_tx_queue_cfg(&pf->hw, pf_q, enable); 4324 if (!enable) 4325 usleep_range(10, 20); 4326 4327 for (i = 0; i < I40E_QTX_ENA_WAIT_COUNT; i++) { 4328 tx_reg = rd32(hw, I40E_QTX_ENA(pf_q)); 4329 if (((tx_reg >> I40E_QTX_ENA_QENA_REQ_SHIFT) & 1) == 4330 ((tx_reg >> I40E_QTX_ENA_QENA_STAT_SHIFT) & 1)) 4331 break; 4332 usleep_range(1000, 2000); 4333 } 4334 4335 /* Skip if the queue is already in the requested state */ 4336 if (enable == !!(tx_reg & I40E_QTX_ENA_QENA_STAT_MASK)) 4337 return; 4338 4339 /* turn on/off the queue */ 4340 if (enable) { 4341 wr32(hw, I40E_QTX_HEAD(pf_q), 0); 4342 tx_reg |= I40E_QTX_ENA_QENA_REQ_MASK; 4343 } else { 4344 tx_reg &= ~I40E_QTX_ENA_QENA_REQ_MASK; 4345 } 4346 4347 wr32(hw, I40E_QTX_ENA(pf_q), tx_reg); 4348 } 4349 4350 /** 4351 * i40e_control_wait_tx_q - Start/stop Tx queue and wait for completion 4352 * @seid: VSI SEID 4353 * @pf: the PF structure 4354 * @pf_q: the PF queue to configure 4355 * @is_xdp: true if the queue is used for XDP 4356 * @enable: start or stop the queue 4357 **/ 4358 int i40e_control_wait_tx_q(int seid, struct i40e_pf *pf, int pf_q, 4359 bool is_xdp, bool enable) 4360 { 4361 int ret; 4362 4363 i40e_control_tx_q(pf, pf_q, enable); 4364 4365 /* wait for the change to finish */ 4366 ret = i40e_pf_txq_wait(pf, pf_q, enable); 4367 if (ret) { 4368 dev_info(&pf->pdev->dev, 4369 "VSI seid %d %sTx ring %d %sable timeout\n", 4370 seid, (is_xdp ? "XDP " : ""), pf_q, 4371 (enable ? "en" : "dis")); 4372 } 4373 4374 return ret; 4375 } 4376 4377 /** 4378 * i40e_vsi_control_tx - Start or stop a VSI's rings 4379 * @vsi: the VSI being configured 4380 * @enable: start or stop the rings 4381 **/ 4382 static int i40e_vsi_control_tx(struct i40e_vsi *vsi, bool enable) 4383 { 4384 struct i40e_pf *pf = vsi->back; 4385 int i, pf_q, ret = 0; 4386 4387 pf_q = vsi->base_queue; 4388 for (i = 0; i < vsi->num_queue_pairs; i++, pf_q++) { 4389 ret = i40e_control_wait_tx_q(vsi->seid, pf, 4390 pf_q, 4391 false /*is xdp*/, enable); 4392 if (ret) 4393 break; 4394 4395 if (!i40e_enabled_xdp_vsi(vsi)) 4396 continue; 4397 4398 ret = i40e_control_wait_tx_q(vsi->seid, pf, 4399 pf_q + vsi->alloc_queue_pairs, 4400 true /*is xdp*/, enable); 4401 if (ret) 4402 break; 4403 } 4404 return ret; 4405 } 4406 4407 /** 4408 * i40e_pf_rxq_wait - Wait for a PF's Rx queue to be enabled or disabled 4409 * @pf: the PF being configured 4410 * @pf_q: the PF queue 4411 * @enable: enable or disable state of the queue 4412 * 4413 * This routine will wait for the given Rx queue of the PF to reach the 4414 * enabled or disabled state. 4415 * Returns -ETIMEDOUT in case of failing to reach the requested state after 4416 * multiple retries; else will return 0 in case of success. 4417 **/ 4418 static int i40e_pf_rxq_wait(struct i40e_pf *pf, int pf_q, bool enable) 4419 { 4420 int i; 4421 u32 rx_reg; 4422 4423 for (i = 0; i < I40E_QUEUE_WAIT_RETRY_LIMIT; i++) { 4424 rx_reg = rd32(&pf->hw, I40E_QRX_ENA(pf_q)); 4425 if (enable == !!(rx_reg & I40E_QRX_ENA_QENA_STAT_MASK)) 4426 break; 4427 4428 usleep_range(10, 20); 4429 } 4430 if (i >= I40E_QUEUE_WAIT_RETRY_LIMIT) 4431 return -ETIMEDOUT; 4432 4433 return 0; 4434 } 4435 4436 /** 4437 * i40e_control_rx_q - Start or stop a particular Rx queue 4438 * @pf: the PF structure 4439 * @pf_q: the PF queue to configure 4440 * @enable: start or stop the queue 4441 * 4442 * This function enables or disables a single queue. Note that 4443 * any delay required after the operation is expected to be 4444 * handled by the caller of this function. 4445 **/ 4446 static void i40e_control_rx_q(struct i40e_pf *pf, int pf_q, bool enable) 4447 { 4448 struct i40e_hw *hw = &pf->hw; 4449 u32 rx_reg; 4450 int i; 4451 4452 for (i = 0; i < I40E_QTX_ENA_WAIT_COUNT; i++) { 4453 rx_reg = rd32(hw, I40E_QRX_ENA(pf_q)); 4454 if (((rx_reg >> I40E_QRX_ENA_QENA_REQ_SHIFT) & 1) == 4455 ((rx_reg >> I40E_QRX_ENA_QENA_STAT_SHIFT) & 1)) 4456 break; 4457 usleep_range(1000, 2000); 4458 } 4459 4460 /* Skip if the queue is already in the requested state */ 4461 if (enable == !!(rx_reg & I40E_QRX_ENA_QENA_STAT_MASK)) 4462 return; 4463 4464 /* turn on/off the queue */ 4465 if (enable) 4466 rx_reg |= I40E_QRX_ENA_QENA_REQ_MASK; 4467 else 4468 rx_reg &= ~I40E_QRX_ENA_QENA_REQ_MASK; 4469 4470 wr32(hw, I40E_QRX_ENA(pf_q), rx_reg); 4471 } 4472 4473 /** 4474 * i40e_control_wait_rx_q 4475 * @pf: the PF structure 4476 * @pf_q: queue being configured 4477 * @enable: start or stop the rings 4478 * 4479 * This function enables or disables a single queue along with waiting 4480 * for the change to finish. The caller of this function should handle 4481 * the delays needed in the case of disabling queues. 4482 **/ 4483 int i40e_control_wait_rx_q(struct i40e_pf *pf, int pf_q, bool enable) 4484 { 4485 int ret = 0; 4486 4487 i40e_control_rx_q(pf, pf_q, enable); 4488 4489 /* wait for the change to finish */ 4490 ret = i40e_pf_rxq_wait(pf, pf_q, enable); 4491 if (ret) 4492 return ret; 4493 4494 return ret; 4495 } 4496 4497 /** 4498 * i40e_vsi_control_rx - Start or stop a VSI's rings 4499 * @vsi: the VSI being configured 4500 * @enable: start or stop the rings 4501 **/ 4502 static int i40e_vsi_control_rx(struct i40e_vsi *vsi, bool enable) 4503 { 4504 struct i40e_pf *pf = vsi->back; 4505 int i, pf_q, ret = 0; 4506 4507 pf_q = vsi->base_queue; 4508 for (i = 0; i < vsi->num_queue_pairs; i++, pf_q++) { 4509 ret = i40e_control_wait_rx_q(pf, pf_q, enable); 4510 if (ret) { 4511 dev_info(&pf->pdev->dev, 4512 "VSI seid %d Rx ring %d %sable timeout\n", 4513 vsi->seid, pf_q, (enable ? "en" : "dis")); 4514 break; 4515 } 4516 } 4517 4518 /* Due to HW errata, on Rx disable only, the register can indicate done 4519 * before it really is. Needs 50ms to be sure 4520 */ 4521 if (!enable) 4522 mdelay(50); 4523 4524 return ret; 4525 } 4526 4527 /** 4528 * i40e_vsi_start_rings - Start a VSI's rings 4529 * @vsi: the VSI being configured 4530 **/ 4531 int i40e_vsi_start_rings(struct i40e_vsi *vsi) 4532 { 4533 int ret = 0; 4534 4535 /* do rx first for enable and last for disable */ 4536 ret = i40e_vsi_control_rx(vsi, true); 4537 if (ret) 4538 return ret; 4539 ret = i40e_vsi_control_tx(vsi, true); 4540 4541 return ret; 4542 } 4543 4544 /** 4545 * i40e_vsi_stop_rings - Stop a VSI's rings 4546 * @vsi: the VSI being configured 4547 **/ 4548 void i40e_vsi_stop_rings(struct i40e_vsi *vsi) 4549 { 4550 /* When port TX is suspended, don't wait */ 4551 if (test_bit(__I40E_PORT_SUSPENDED, vsi->back->state)) 4552 return i40e_vsi_stop_rings_no_wait(vsi); 4553 4554 /* do rx first for enable and last for disable 4555 * Ignore return value, we need to shutdown whatever we can 4556 */ 4557 i40e_vsi_control_tx(vsi, false); 4558 i40e_vsi_control_rx(vsi, false); 4559 } 4560 4561 /** 4562 * i40e_vsi_stop_rings_no_wait - Stop a VSI's rings and do not delay 4563 * @vsi: the VSI being shutdown 4564 * 4565 * This function stops all the rings for a VSI but does not delay to verify 4566 * that rings have been disabled. It is expected that the caller is shutting 4567 * down multiple VSIs at once and will delay together for all the VSIs after 4568 * initiating the shutdown. This is particularly useful for shutting down lots 4569 * of VFs together. Otherwise, a large delay can be incurred while configuring 4570 * each VSI in serial. 4571 **/ 4572 void i40e_vsi_stop_rings_no_wait(struct i40e_vsi *vsi) 4573 { 4574 struct i40e_pf *pf = vsi->back; 4575 int i, pf_q; 4576 4577 pf_q = vsi->base_queue; 4578 for (i = 0; i < vsi->num_queue_pairs; i++, pf_q++) { 4579 i40e_control_tx_q(pf, pf_q, false); 4580 i40e_control_rx_q(pf, pf_q, false); 4581 } 4582 } 4583 4584 /** 4585 * i40e_vsi_free_irq - Free the irq association with the OS 4586 * @vsi: the VSI being configured 4587 **/ 4588 static void i40e_vsi_free_irq(struct i40e_vsi *vsi) 4589 { 4590 struct i40e_pf *pf = vsi->back; 4591 struct i40e_hw *hw = &pf->hw; 4592 int base = vsi->base_vector; 4593 u32 val, qp; 4594 int i; 4595 4596 if (pf->flags & I40E_FLAG_MSIX_ENABLED) { 4597 if (!vsi->q_vectors) 4598 return; 4599 4600 if (!vsi->irqs_ready) 4601 return; 4602 4603 vsi->irqs_ready = false; 4604 for (i = 0; i < vsi->num_q_vectors; i++) { 4605 int irq_num; 4606 u16 vector; 4607 4608 vector = i + base; 4609 irq_num = pf->msix_entries[vector].vector; 4610 4611 /* free only the irqs that were actually requested */ 4612 if (!vsi->q_vectors[i] || 4613 !vsi->q_vectors[i]->num_ringpairs) 4614 continue; 4615 4616 /* clear the affinity notifier in the IRQ descriptor */ 4617 irq_set_affinity_notifier(irq_num, NULL); 4618 /* remove our suggested affinity mask for this IRQ */ 4619 irq_set_affinity_hint(irq_num, NULL); 4620 synchronize_irq(irq_num); 4621 free_irq(irq_num, vsi->q_vectors[i]); 4622 4623 /* Tear down the interrupt queue link list 4624 * 4625 * We know that they come in pairs and always 4626 * the Rx first, then the Tx. To clear the 4627 * link list, stick the EOL value into the 4628 * next_q field of the registers. 4629 */ 4630 val = rd32(hw, I40E_PFINT_LNKLSTN(vector - 1)); 4631 qp = (val & I40E_PFINT_LNKLSTN_FIRSTQ_INDX_MASK) 4632 >> I40E_PFINT_LNKLSTN_FIRSTQ_INDX_SHIFT; 4633 val |= I40E_QUEUE_END_OF_LIST 4634 << I40E_PFINT_LNKLSTN_FIRSTQ_INDX_SHIFT; 4635 wr32(hw, I40E_PFINT_LNKLSTN(vector - 1), val); 4636 4637 while (qp != I40E_QUEUE_END_OF_LIST) { 4638 u32 next; 4639 4640 val = rd32(hw, I40E_QINT_RQCTL(qp)); 4641 4642 val &= ~(I40E_QINT_RQCTL_MSIX_INDX_MASK | 4643 I40E_QINT_RQCTL_MSIX0_INDX_MASK | 4644 I40E_QINT_RQCTL_CAUSE_ENA_MASK | 4645 I40E_QINT_RQCTL_INTEVENT_MASK); 4646 4647 val |= (I40E_QINT_RQCTL_ITR_INDX_MASK | 4648 I40E_QINT_RQCTL_NEXTQ_INDX_MASK); 4649 4650 wr32(hw, I40E_QINT_RQCTL(qp), val); 4651 4652 val = rd32(hw, I40E_QINT_TQCTL(qp)); 4653 4654 next = (val & I40E_QINT_TQCTL_NEXTQ_INDX_MASK) 4655 >> I40E_QINT_TQCTL_NEXTQ_INDX_SHIFT; 4656 4657 val &= ~(I40E_QINT_TQCTL_MSIX_INDX_MASK | 4658 I40E_QINT_TQCTL_MSIX0_INDX_MASK | 4659 I40E_QINT_TQCTL_CAUSE_ENA_MASK | 4660 I40E_QINT_TQCTL_INTEVENT_MASK); 4661 4662 val |= (I40E_QINT_TQCTL_ITR_INDX_MASK | 4663 I40E_QINT_TQCTL_NEXTQ_INDX_MASK); 4664 4665 wr32(hw, I40E_QINT_TQCTL(qp), val); 4666 qp = next; 4667 } 4668 } 4669 } else { 4670 free_irq(pf->pdev->irq, pf); 4671 4672 val = rd32(hw, I40E_PFINT_LNKLST0); 4673 qp = (val & I40E_PFINT_LNKLSTN_FIRSTQ_INDX_MASK) 4674 >> I40E_PFINT_LNKLSTN_FIRSTQ_INDX_SHIFT; 4675 val |= I40E_QUEUE_END_OF_LIST 4676 << I40E_PFINT_LNKLST0_FIRSTQ_INDX_SHIFT; 4677 wr32(hw, I40E_PFINT_LNKLST0, val); 4678 4679 val = rd32(hw, I40E_QINT_RQCTL(qp)); 4680 val &= ~(I40E_QINT_RQCTL_MSIX_INDX_MASK | 4681 I40E_QINT_RQCTL_MSIX0_INDX_MASK | 4682 I40E_QINT_RQCTL_CAUSE_ENA_MASK | 4683 I40E_QINT_RQCTL_INTEVENT_MASK); 4684 4685 val |= (I40E_QINT_RQCTL_ITR_INDX_MASK | 4686 I40E_QINT_RQCTL_NEXTQ_INDX_MASK); 4687 4688 wr32(hw, I40E_QINT_RQCTL(qp), val); 4689 4690 val = rd32(hw, I40E_QINT_TQCTL(qp)); 4691 4692 val &= ~(I40E_QINT_TQCTL_MSIX_INDX_MASK | 4693 I40E_QINT_TQCTL_MSIX0_INDX_MASK | 4694 I40E_QINT_TQCTL_CAUSE_ENA_MASK | 4695 I40E_QINT_TQCTL_INTEVENT_MASK); 4696 4697 val |= (I40E_QINT_TQCTL_ITR_INDX_MASK | 4698 I40E_QINT_TQCTL_NEXTQ_INDX_MASK); 4699 4700 wr32(hw, I40E_QINT_TQCTL(qp), val); 4701 } 4702 } 4703 4704 /** 4705 * i40e_free_q_vector - Free memory allocated for specific interrupt vector 4706 * @vsi: the VSI being configured 4707 * @v_idx: Index of vector to be freed 4708 * 4709 * This function frees the memory allocated to the q_vector. In addition if 4710 * NAPI is enabled it will delete any references to the NAPI struct prior 4711 * to freeing the q_vector. 4712 **/ 4713 static void i40e_free_q_vector(struct i40e_vsi *vsi, int v_idx) 4714 { 4715 struct i40e_q_vector *q_vector = vsi->q_vectors[v_idx]; 4716 struct i40e_ring *ring; 4717 4718 if (!q_vector) 4719 return; 4720 4721 /* disassociate q_vector from rings */ 4722 i40e_for_each_ring(ring, q_vector->tx) 4723 ring->q_vector = NULL; 4724 4725 i40e_for_each_ring(ring, q_vector->rx) 4726 ring->q_vector = NULL; 4727 4728 /* only VSI w/ an associated netdev is set up w/ NAPI */ 4729 if (vsi->netdev) 4730 netif_napi_del(&q_vector->napi); 4731 4732 vsi->q_vectors[v_idx] = NULL; 4733 4734 kfree_rcu(q_vector, rcu); 4735 } 4736 4737 /** 4738 * i40e_vsi_free_q_vectors - Free memory allocated for interrupt vectors 4739 * @vsi: the VSI being un-configured 4740 * 4741 * This frees the memory allocated to the q_vectors and 4742 * deletes references to the NAPI struct. 4743 **/ 4744 static void i40e_vsi_free_q_vectors(struct i40e_vsi *vsi) 4745 { 4746 int v_idx; 4747 4748 for (v_idx = 0; v_idx < vsi->num_q_vectors; v_idx++) 4749 i40e_free_q_vector(vsi, v_idx); 4750 } 4751 4752 /** 4753 * i40e_reset_interrupt_capability - Disable interrupt setup in OS 4754 * @pf: board private structure 4755 **/ 4756 static void i40e_reset_interrupt_capability(struct i40e_pf *pf) 4757 { 4758 /* If we're in Legacy mode, the interrupt was cleaned in vsi_close */ 4759 if (pf->flags & I40E_FLAG_MSIX_ENABLED) { 4760 pci_disable_msix(pf->pdev); 4761 kfree(pf->msix_entries); 4762 pf->msix_entries = NULL; 4763 kfree(pf->irq_pile); 4764 pf->irq_pile = NULL; 4765 } else if (pf->flags & I40E_FLAG_MSI_ENABLED) { 4766 pci_disable_msi(pf->pdev); 4767 } 4768 pf->flags &= ~(I40E_FLAG_MSIX_ENABLED | I40E_FLAG_MSI_ENABLED); 4769 } 4770 4771 /** 4772 * i40e_clear_interrupt_scheme - Clear the current interrupt scheme settings 4773 * @pf: board private structure 4774 * 4775 * We go through and clear interrupt specific resources and reset the structure 4776 * to pre-load conditions 4777 **/ 4778 static void i40e_clear_interrupt_scheme(struct i40e_pf *pf) 4779 { 4780 int i; 4781 4782 i40e_free_misc_vector(pf); 4783 4784 i40e_put_lump(pf->irq_pile, pf->iwarp_base_vector, 4785 I40E_IWARP_IRQ_PILE_ID); 4786 4787 i40e_put_lump(pf->irq_pile, 0, I40E_PILE_VALID_BIT-1); 4788 for (i = 0; i < pf->num_alloc_vsi; i++) 4789 if (pf->vsi[i]) 4790 i40e_vsi_free_q_vectors(pf->vsi[i]); 4791 i40e_reset_interrupt_capability(pf); 4792 } 4793 4794 /** 4795 * i40e_napi_enable_all - Enable NAPI for all q_vectors in the VSI 4796 * @vsi: the VSI being configured 4797 **/ 4798 static void i40e_napi_enable_all(struct i40e_vsi *vsi) 4799 { 4800 int q_idx; 4801 4802 if (!vsi->netdev) 4803 return; 4804 4805 for (q_idx = 0; q_idx < vsi->num_q_vectors; q_idx++) { 4806 struct i40e_q_vector *q_vector = vsi->q_vectors[q_idx]; 4807 4808 if (q_vector->rx.ring || q_vector->tx.ring) 4809 napi_enable(&q_vector->napi); 4810 } 4811 } 4812 4813 /** 4814 * i40e_napi_disable_all - Disable NAPI for all q_vectors in the VSI 4815 * @vsi: the VSI being configured 4816 **/ 4817 static void i40e_napi_disable_all(struct i40e_vsi *vsi) 4818 { 4819 int q_idx; 4820 4821 if (!vsi->netdev) 4822 return; 4823 4824 for (q_idx = 0; q_idx < vsi->num_q_vectors; q_idx++) { 4825 struct i40e_q_vector *q_vector = vsi->q_vectors[q_idx]; 4826 4827 if (q_vector->rx.ring || q_vector->tx.ring) 4828 napi_disable(&q_vector->napi); 4829 } 4830 } 4831 4832 /** 4833 * i40e_vsi_close - Shut down a VSI 4834 * @vsi: the vsi to be quelled 4835 **/ 4836 static void i40e_vsi_close(struct i40e_vsi *vsi) 4837 { 4838 struct i40e_pf *pf = vsi->back; 4839 if (!test_and_set_bit(__I40E_VSI_DOWN, vsi->state)) 4840 i40e_down(vsi); 4841 i40e_vsi_free_irq(vsi); 4842 i40e_vsi_free_tx_resources(vsi); 4843 i40e_vsi_free_rx_resources(vsi); 4844 vsi->current_netdev_flags = 0; 4845 set_bit(__I40E_CLIENT_SERVICE_REQUESTED, pf->state); 4846 if (test_bit(__I40E_RESET_RECOVERY_PENDING, pf->state)) 4847 set_bit(__I40E_CLIENT_RESET, pf->state); 4848 } 4849 4850 /** 4851 * i40e_quiesce_vsi - Pause a given VSI 4852 * @vsi: the VSI being paused 4853 **/ 4854 static void i40e_quiesce_vsi(struct i40e_vsi *vsi) 4855 { 4856 if (test_bit(__I40E_VSI_DOWN, vsi->state)) 4857 return; 4858 4859 set_bit(__I40E_VSI_NEEDS_RESTART, vsi->state); 4860 if (vsi->netdev && netif_running(vsi->netdev)) 4861 vsi->netdev->netdev_ops->ndo_stop(vsi->netdev); 4862 else 4863 i40e_vsi_close(vsi); 4864 } 4865 4866 /** 4867 * i40e_unquiesce_vsi - Resume a given VSI 4868 * @vsi: the VSI being resumed 4869 **/ 4870 static void i40e_unquiesce_vsi(struct i40e_vsi *vsi) 4871 { 4872 if (!test_and_clear_bit(__I40E_VSI_NEEDS_RESTART, vsi->state)) 4873 return; 4874 4875 if (vsi->netdev && netif_running(vsi->netdev)) 4876 vsi->netdev->netdev_ops->ndo_open(vsi->netdev); 4877 else 4878 i40e_vsi_open(vsi); /* this clears the DOWN bit */ 4879 } 4880 4881 /** 4882 * i40e_pf_quiesce_all_vsi - Pause all VSIs on a PF 4883 * @pf: the PF 4884 **/ 4885 static void i40e_pf_quiesce_all_vsi(struct i40e_pf *pf) 4886 { 4887 int v; 4888 4889 for (v = 0; v < pf->num_alloc_vsi; v++) { 4890 if (pf->vsi[v]) 4891 i40e_quiesce_vsi(pf->vsi[v]); 4892 } 4893 } 4894 4895 /** 4896 * i40e_pf_unquiesce_all_vsi - Resume all VSIs on a PF 4897 * @pf: the PF 4898 **/ 4899 static void i40e_pf_unquiesce_all_vsi(struct i40e_pf *pf) 4900 { 4901 int v; 4902 4903 for (v = 0; v < pf->num_alloc_vsi; v++) { 4904 if (pf->vsi[v]) 4905 i40e_unquiesce_vsi(pf->vsi[v]); 4906 } 4907 } 4908 4909 /** 4910 * i40e_vsi_wait_queues_disabled - Wait for VSI's queues to be disabled 4911 * @vsi: the VSI being configured 4912 * 4913 * Wait until all queues on a given VSI have been disabled. 4914 **/ 4915 int i40e_vsi_wait_queues_disabled(struct i40e_vsi *vsi) 4916 { 4917 struct i40e_pf *pf = vsi->back; 4918 int i, pf_q, ret; 4919 4920 pf_q = vsi->base_queue; 4921 for (i = 0; i < vsi->num_queue_pairs; i++, pf_q++) { 4922 /* Check and wait for the Tx queue */ 4923 ret = i40e_pf_txq_wait(pf, pf_q, false); 4924 if (ret) { 4925 dev_info(&pf->pdev->dev, 4926 "VSI seid %d Tx ring %d disable timeout\n", 4927 vsi->seid, pf_q); 4928 return ret; 4929 } 4930 4931 if (!i40e_enabled_xdp_vsi(vsi)) 4932 goto wait_rx; 4933 4934 /* Check and wait for the XDP Tx queue */ 4935 ret = i40e_pf_txq_wait(pf, pf_q + vsi->alloc_queue_pairs, 4936 false); 4937 if (ret) { 4938 dev_info(&pf->pdev->dev, 4939 "VSI seid %d XDP Tx ring %d disable timeout\n", 4940 vsi->seid, pf_q); 4941 return ret; 4942 } 4943 wait_rx: 4944 /* Check and wait for the Rx queue */ 4945 ret = i40e_pf_rxq_wait(pf, pf_q, false); 4946 if (ret) { 4947 dev_info(&pf->pdev->dev, 4948 "VSI seid %d Rx ring %d disable timeout\n", 4949 vsi->seid, pf_q); 4950 return ret; 4951 } 4952 } 4953 4954 return 0; 4955 } 4956 4957 #ifdef CONFIG_I40E_DCB 4958 /** 4959 * i40e_pf_wait_queues_disabled - Wait for all queues of PF VSIs to be disabled 4960 * @pf: the PF 4961 * 4962 * This function waits for the queues to be in disabled state for all the 4963 * VSIs that are managed by this PF. 4964 **/ 4965 static int i40e_pf_wait_queues_disabled(struct i40e_pf *pf) 4966 { 4967 int v, ret = 0; 4968 4969 for (v = 0; v < pf->hw.func_caps.num_vsis; v++) { 4970 if (pf->vsi[v]) { 4971 ret = i40e_vsi_wait_queues_disabled(pf->vsi[v]); 4972 if (ret) 4973 break; 4974 } 4975 } 4976 4977 return ret; 4978 } 4979 4980 #endif 4981 4982 /** 4983 * i40e_get_iscsi_tc_map - Return TC map for iSCSI APP 4984 * @pf: pointer to PF 4985 * 4986 * Get TC map for ISCSI PF type that will include iSCSI TC 4987 * and LAN TC. 4988 **/ 4989 static u8 i40e_get_iscsi_tc_map(struct i40e_pf *pf) 4990 { 4991 struct i40e_dcb_app_priority_table app; 4992 struct i40e_hw *hw = &pf->hw; 4993 u8 enabled_tc = 1; /* TC0 is always enabled */ 4994 u8 tc, i; 4995 /* Get the iSCSI APP TLV */ 4996 struct i40e_dcbx_config *dcbcfg = &hw->local_dcbx_config; 4997 4998 for (i = 0; i < dcbcfg->numapps; i++) { 4999 app = dcbcfg->app[i]; 5000 if (app.selector == I40E_APP_SEL_TCPIP && 5001 app.protocolid == I40E_APP_PROTOID_ISCSI) { 5002 tc = dcbcfg->etscfg.prioritytable[app.priority]; 5003 enabled_tc |= BIT(tc); 5004 break; 5005 } 5006 } 5007 5008 return enabled_tc; 5009 } 5010 5011 /** 5012 * i40e_dcb_get_num_tc - Get the number of TCs from DCBx config 5013 * @dcbcfg: the corresponding DCBx configuration structure 5014 * 5015 * Return the number of TCs from given DCBx configuration 5016 **/ 5017 static u8 i40e_dcb_get_num_tc(struct i40e_dcbx_config *dcbcfg) 5018 { 5019 int i, tc_unused = 0; 5020 u8 num_tc = 0; 5021 u8 ret = 0; 5022 5023 /* Scan the ETS Config Priority Table to find 5024 * traffic class enabled for a given priority 5025 * and create a bitmask of enabled TCs 5026 */ 5027 for (i = 0; i < I40E_MAX_USER_PRIORITY; i++) 5028 num_tc |= BIT(dcbcfg->etscfg.prioritytable[i]); 5029 5030 /* Now scan the bitmask to check for 5031 * contiguous TCs starting with TC0 5032 */ 5033 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 5034 if (num_tc & BIT(i)) { 5035 if (!tc_unused) { 5036 ret++; 5037 } else { 5038 pr_err("Non-contiguous TC - Disabling DCB\n"); 5039 return 1; 5040 } 5041 } else { 5042 tc_unused = 1; 5043 } 5044 } 5045 5046 /* There is always at least TC0 */ 5047 if (!ret) 5048 ret = 1; 5049 5050 return ret; 5051 } 5052 5053 /** 5054 * i40e_dcb_get_enabled_tc - Get enabled traffic classes 5055 * @dcbcfg: the corresponding DCBx configuration structure 5056 * 5057 * Query the current DCB configuration and return the number of 5058 * traffic classes enabled from the given DCBX config 5059 **/ 5060 static u8 i40e_dcb_get_enabled_tc(struct i40e_dcbx_config *dcbcfg) 5061 { 5062 u8 num_tc = i40e_dcb_get_num_tc(dcbcfg); 5063 u8 enabled_tc = 1; 5064 u8 i; 5065 5066 for (i = 0; i < num_tc; i++) 5067 enabled_tc |= BIT(i); 5068 5069 return enabled_tc; 5070 } 5071 5072 /** 5073 * i40e_mqprio_get_enabled_tc - Get enabled traffic classes 5074 * @pf: PF being queried 5075 * 5076 * Query the current MQPRIO configuration and return the number of 5077 * traffic classes enabled. 5078 **/ 5079 static u8 i40e_mqprio_get_enabled_tc(struct i40e_pf *pf) 5080 { 5081 struct i40e_vsi *vsi = pf->vsi[pf->lan_vsi]; 5082 u8 num_tc = vsi->mqprio_qopt.qopt.num_tc; 5083 u8 enabled_tc = 1, i; 5084 5085 for (i = 1; i < num_tc; i++) 5086 enabled_tc |= BIT(i); 5087 return enabled_tc; 5088 } 5089 5090 /** 5091 * i40e_pf_get_num_tc - Get enabled traffic classes for PF 5092 * @pf: PF being queried 5093 * 5094 * Return number of traffic classes enabled for the given PF 5095 **/ 5096 static u8 i40e_pf_get_num_tc(struct i40e_pf *pf) 5097 { 5098 struct i40e_hw *hw = &pf->hw; 5099 u8 i, enabled_tc = 1; 5100 u8 num_tc = 0; 5101 struct i40e_dcbx_config *dcbcfg = &hw->local_dcbx_config; 5102 5103 if (pf->flags & I40E_FLAG_TC_MQPRIO) 5104 return pf->vsi[pf->lan_vsi]->mqprio_qopt.qopt.num_tc; 5105 5106 /* If neither MQPRIO nor DCB is enabled, then always use single TC */ 5107 if (!(pf->flags & I40E_FLAG_DCB_ENABLED)) 5108 return 1; 5109 5110 /* SFP mode will be enabled for all TCs on port */ 5111 if (!(pf->flags & I40E_FLAG_MFP_ENABLED)) 5112 return i40e_dcb_get_num_tc(dcbcfg); 5113 5114 /* MFP mode return count of enabled TCs for this PF */ 5115 if (pf->hw.func_caps.iscsi) 5116 enabled_tc = i40e_get_iscsi_tc_map(pf); 5117 else 5118 return 1; /* Only TC0 */ 5119 5120 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 5121 if (enabled_tc & BIT(i)) 5122 num_tc++; 5123 } 5124 return num_tc; 5125 } 5126 5127 /** 5128 * i40e_pf_get_pf_tc_map - Get bitmap for enabled traffic classes 5129 * @pf: PF being queried 5130 * 5131 * Return a bitmap for enabled traffic classes for this PF. 5132 **/ 5133 static u8 i40e_pf_get_tc_map(struct i40e_pf *pf) 5134 { 5135 if (pf->flags & I40E_FLAG_TC_MQPRIO) 5136 return i40e_mqprio_get_enabled_tc(pf); 5137 5138 /* If neither MQPRIO nor DCB is enabled for this PF then just return 5139 * default TC 5140 */ 5141 if (!(pf->flags & I40E_FLAG_DCB_ENABLED)) 5142 return I40E_DEFAULT_TRAFFIC_CLASS; 5143 5144 /* SFP mode we want PF to be enabled for all TCs */ 5145 if (!(pf->flags & I40E_FLAG_MFP_ENABLED)) 5146 return i40e_dcb_get_enabled_tc(&pf->hw.local_dcbx_config); 5147 5148 /* MFP enabled and iSCSI PF type */ 5149 if (pf->hw.func_caps.iscsi) 5150 return i40e_get_iscsi_tc_map(pf); 5151 else 5152 return I40E_DEFAULT_TRAFFIC_CLASS; 5153 } 5154 5155 /** 5156 * i40e_vsi_get_bw_info - Query VSI BW Information 5157 * @vsi: the VSI being queried 5158 * 5159 * Returns 0 on success, negative value on failure 5160 **/ 5161 static int i40e_vsi_get_bw_info(struct i40e_vsi *vsi) 5162 { 5163 struct i40e_aqc_query_vsi_ets_sla_config_resp bw_ets_config = {0}; 5164 struct i40e_aqc_query_vsi_bw_config_resp bw_config = {0}; 5165 struct i40e_pf *pf = vsi->back; 5166 struct i40e_hw *hw = &pf->hw; 5167 i40e_status ret; 5168 u32 tc_bw_max; 5169 int i; 5170 5171 /* Get the VSI level BW configuration */ 5172 ret = i40e_aq_query_vsi_bw_config(hw, vsi->seid, &bw_config, NULL); 5173 if (ret) { 5174 dev_info(&pf->pdev->dev, 5175 "couldn't get PF vsi bw config, err %s aq_err %s\n", 5176 i40e_stat_str(&pf->hw, ret), 5177 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 5178 return -EINVAL; 5179 } 5180 5181 /* Get the VSI level BW configuration per TC */ 5182 ret = i40e_aq_query_vsi_ets_sla_config(hw, vsi->seid, &bw_ets_config, 5183 NULL); 5184 if (ret) { 5185 dev_info(&pf->pdev->dev, 5186 "couldn't get PF vsi ets bw config, err %s aq_err %s\n", 5187 i40e_stat_str(&pf->hw, ret), 5188 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 5189 return -EINVAL; 5190 } 5191 5192 if (bw_config.tc_valid_bits != bw_ets_config.tc_valid_bits) { 5193 dev_info(&pf->pdev->dev, 5194 "Enabled TCs mismatch from querying VSI BW info 0x%08x 0x%08x\n", 5195 bw_config.tc_valid_bits, 5196 bw_ets_config.tc_valid_bits); 5197 /* Still continuing */ 5198 } 5199 5200 vsi->bw_limit = le16_to_cpu(bw_config.port_bw_limit); 5201 vsi->bw_max_quanta = bw_config.max_bw; 5202 tc_bw_max = le16_to_cpu(bw_ets_config.tc_bw_max[0]) | 5203 (le16_to_cpu(bw_ets_config.tc_bw_max[1]) << 16); 5204 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 5205 vsi->bw_ets_share_credits[i] = bw_ets_config.share_credits[i]; 5206 vsi->bw_ets_limit_credits[i] = 5207 le16_to_cpu(bw_ets_config.credits[i]); 5208 /* 3 bits out of 4 for each TC */ 5209 vsi->bw_ets_max_quanta[i] = (u8)((tc_bw_max >> (i*4)) & 0x7); 5210 } 5211 5212 return 0; 5213 } 5214 5215 /** 5216 * i40e_vsi_configure_bw_alloc - Configure VSI BW allocation per TC 5217 * @vsi: the VSI being configured 5218 * @enabled_tc: TC bitmap 5219 * @bw_share: BW shared credits per TC 5220 * 5221 * Returns 0 on success, negative value on failure 5222 **/ 5223 static int i40e_vsi_configure_bw_alloc(struct i40e_vsi *vsi, u8 enabled_tc, 5224 u8 *bw_share) 5225 { 5226 struct i40e_aqc_configure_vsi_tc_bw_data bw_data; 5227 struct i40e_pf *pf = vsi->back; 5228 i40e_status ret; 5229 int i; 5230 5231 /* There is no need to reset BW when mqprio mode is on. */ 5232 if (pf->flags & I40E_FLAG_TC_MQPRIO) 5233 return 0; 5234 if (!vsi->mqprio_qopt.qopt.hw && !(pf->flags & I40E_FLAG_DCB_ENABLED)) { 5235 ret = i40e_set_bw_limit(vsi, vsi->seid, 0); 5236 if (ret) 5237 dev_info(&pf->pdev->dev, 5238 "Failed to reset tx rate for vsi->seid %u\n", 5239 vsi->seid); 5240 return ret; 5241 } 5242 bw_data.tc_valid_bits = enabled_tc; 5243 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) 5244 bw_data.tc_bw_credits[i] = bw_share[i]; 5245 5246 ret = i40e_aq_config_vsi_tc_bw(&pf->hw, vsi->seid, &bw_data, NULL); 5247 if (ret) { 5248 dev_info(&pf->pdev->dev, 5249 "AQ command Config VSI BW allocation per TC failed = %d\n", 5250 pf->hw.aq.asq_last_status); 5251 return -EINVAL; 5252 } 5253 5254 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) 5255 vsi->info.qs_handle[i] = bw_data.qs_handles[i]; 5256 5257 return 0; 5258 } 5259 5260 /** 5261 * i40e_vsi_config_netdev_tc - Setup the netdev TC configuration 5262 * @vsi: the VSI being configured 5263 * @enabled_tc: TC map to be enabled 5264 * 5265 **/ 5266 static void i40e_vsi_config_netdev_tc(struct i40e_vsi *vsi, u8 enabled_tc) 5267 { 5268 struct net_device *netdev = vsi->netdev; 5269 struct i40e_pf *pf = vsi->back; 5270 struct i40e_hw *hw = &pf->hw; 5271 u8 netdev_tc = 0; 5272 int i; 5273 struct i40e_dcbx_config *dcbcfg = &hw->local_dcbx_config; 5274 5275 if (!netdev) 5276 return; 5277 5278 if (!enabled_tc) { 5279 netdev_reset_tc(netdev); 5280 return; 5281 } 5282 5283 /* Set up actual enabled TCs on the VSI */ 5284 if (netdev_set_num_tc(netdev, vsi->tc_config.numtc)) 5285 return; 5286 5287 /* set per TC queues for the VSI */ 5288 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 5289 /* Only set TC queues for enabled tcs 5290 * 5291 * e.g. For a VSI that has TC0 and TC3 enabled the 5292 * enabled_tc bitmap would be 0x00001001; the driver 5293 * will set the numtc for netdev as 2 that will be 5294 * referenced by the netdev layer as TC 0 and 1. 5295 */ 5296 if (vsi->tc_config.enabled_tc & BIT(i)) 5297 netdev_set_tc_queue(netdev, 5298 vsi->tc_config.tc_info[i].netdev_tc, 5299 vsi->tc_config.tc_info[i].qcount, 5300 vsi->tc_config.tc_info[i].qoffset); 5301 } 5302 5303 if (pf->flags & I40E_FLAG_TC_MQPRIO) 5304 return; 5305 5306 /* Assign UP2TC map for the VSI */ 5307 for (i = 0; i < I40E_MAX_USER_PRIORITY; i++) { 5308 /* Get the actual TC# for the UP */ 5309 u8 ets_tc = dcbcfg->etscfg.prioritytable[i]; 5310 /* Get the mapped netdev TC# for the UP */ 5311 netdev_tc = vsi->tc_config.tc_info[ets_tc].netdev_tc; 5312 netdev_set_prio_tc_map(netdev, i, netdev_tc); 5313 } 5314 } 5315 5316 /** 5317 * i40e_vsi_update_queue_map - Update our copy of VSi info with new queue map 5318 * @vsi: the VSI being configured 5319 * @ctxt: the ctxt buffer returned from AQ VSI update param command 5320 **/ 5321 static void i40e_vsi_update_queue_map(struct i40e_vsi *vsi, 5322 struct i40e_vsi_context *ctxt) 5323 { 5324 /* copy just the sections touched not the entire info 5325 * since not all sections are valid as returned by 5326 * update vsi params 5327 */ 5328 vsi->info.mapping_flags = ctxt->info.mapping_flags; 5329 memcpy(&vsi->info.queue_mapping, 5330 &ctxt->info.queue_mapping, sizeof(vsi->info.queue_mapping)); 5331 memcpy(&vsi->info.tc_mapping, ctxt->info.tc_mapping, 5332 sizeof(vsi->info.tc_mapping)); 5333 } 5334 5335 /** 5336 * i40e_vsi_config_tc - Configure VSI Tx Scheduler for given TC map 5337 * @vsi: VSI to be configured 5338 * @enabled_tc: TC bitmap 5339 * 5340 * This configures a particular VSI for TCs that are mapped to the 5341 * given TC bitmap. It uses default bandwidth share for TCs across 5342 * VSIs to configure TC for a particular VSI. 5343 * 5344 * NOTE: 5345 * It is expected that the VSI queues have been quisced before calling 5346 * this function. 5347 **/ 5348 static int i40e_vsi_config_tc(struct i40e_vsi *vsi, u8 enabled_tc) 5349 { 5350 u8 bw_share[I40E_MAX_TRAFFIC_CLASS] = {0}; 5351 struct i40e_pf *pf = vsi->back; 5352 struct i40e_hw *hw = &pf->hw; 5353 struct i40e_vsi_context ctxt; 5354 int ret = 0; 5355 int i; 5356 5357 /* Check if enabled_tc is same as existing or new TCs */ 5358 if (vsi->tc_config.enabled_tc == enabled_tc && 5359 vsi->mqprio_qopt.mode != TC_MQPRIO_MODE_CHANNEL) 5360 return ret; 5361 5362 /* Enable ETS TCs with equal BW Share for now across all VSIs */ 5363 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 5364 if (enabled_tc & BIT(i)) 5365 bw_share[i] = 1; 5366 } 5367 5368 ret = i40e_vsi_configure_bw_alloc(vsi, enabled_tc, bw_share); 5369 if (ret) { 5370 struct i40e_aqc_query_vsi_bw_config_resp bw_config = {0}; 5371 5372 dev_info(&pf->pdev->dev, 5373 "Failed configuring TC map %d for VSI %d\n", 5374 enabled_tc, vsi->seid); 5375 ret = i40e_aq_query_vsi_bw_config(hw, vsi->seid, 5376 &bw_config, NULL); 5377 if (ret) { 5378 dev_info(&pf->pdev->dev, 5379 "Failed querying vsi bw info, err %s aq_err %s\n", 5380 i40e_stat_str(hw, ret), 5381 i40e_aq_str(hw, hw->aq.asq_last_status)); 5382 goto out; 5383 } 5384 if ((bw_config.tc_valid_bits & enabled_tc) != enabled_tc) { 5385 u8 valid_tc = bw_config.tc_valid_bits & enabled_tc; 5386 5387 if (!valid_tc) 5388 valid_tc = bw_config.tc_valid_bits; 5389 /* Always enable TC0, no matter what */ 5390 valid_tc |= 1; 5391 dev_info(&pf->pdev->dev, 5392 "Requested tc 0x%x, but FW reports 0x%x as valid. Attempting to use 0x%x.\n", 5393 enabled_tc, bw_config.tc_valid_bits, valid_tc); 5394 enabled_tc = valid_tc; 5395 } 5396 5397 ret = i40e_vsi_configure_bw_alloc(vsi, enabled_tc, bw_share); 5398 if (ret) { 5399 dev_err(&pf->pdev->dev, 5400 "Unable to configure TC map %d for VSI %d\n", 5401 enabled_tc, vsi->seid); 5402 goto out; 5403 } 5404 } 5405 5406 /* Update Queue Pairs Mapping for currently enabled UPs */ 5407 ctxt.seid = vsi->seid; 5408 ctxt.pf_num = vsi->back->hw.pf_id; 5409 ctxt.vf_num = 0; 5410 ctxt.uplink_seid = vsi->uplink_seid; 5411 ctxt.info = vsi->info; 5412 if (vsi->back->flags & I40E_FLAG_TC_MQPRIO) { 5413 ret = i40e_vsi_setup_queue_map_mqprio(vsi, &ctxt, enabled_tc); 5414 if (ret) 5415 goto out; 5416 } else { 5417 i40e_vsi_setup_queue_map(vsi, &ctxt, enabled_tc, false); 5418 } 5419 5420 /* On destroying the qdisc, reset vsi->rss_size, as number of enabled 5421 * queues changed. 5422 */ 5423 if (!vsi->mqprio_qopt.qopt.hw && vsi->reconfig_rss) { 5424 vsi->rss_size = min_t(int, vsi->back->alloc_rss_size, 5425 vsi->num_queue_pairs); 5426 ret = i40e_vsi_config_rss(vsi); 5427 if (ret) { 5428 dev_info(&vsi->back->pdev->dev, 5429 "Failed to reconfig rss for num_queues\n"); 5430 return ret; 5431 } 5432 vsi->reconfig_rss = false; 5433 } 5434 if (vsi->back->flags & I40E_FLAG_IWARP_ENABLED) { 5435 ctxt.info.valid_sections |= 5436 cpu_to_le16(I40E_AQ_VSI_PROP_QUEUE_OPT_VALID); 5437 ctxt.info.queueing_opt_flags |= I40E_AQ_VSI_QUE_OPT_TCP_ENA; 5438 } 5439 5440 /* Update the VSI after updating the VSI queue-mapping 5441 * information 5442 */ 5443 ret = i40e_aq_update_vsi_params(hw, &ctxt, NULL); 5444 if (ret) { 5445 dev_info(&pf->pdev->dev, 5446 "Update vsi tc config failed, err %s aq_err %s\n", 5447 i40e_stat_str(hw, ret), 5448 i40e_aq_str(hw, hw->aq.asq_last_status)); 5449 goto out; 5450 } 5451 /* update the local VSI info with updated queue map */ 5452 i40e_vsi_update_queue_map(vsi, &ctxt); 5453 vsi->info.valid_sections = 0; 5454 5455 /* Update current VSI BW information */ 5456 ret = i40e_vsi_get_bw_info(vsi); 5457 if (ret) { 5458 dev_info(&pf->pdev->dev, 5459 "Failed updating vsi bw info, err %s aq_err %s\n", 5460 i40e_stat_str(hw, ret), 5461 i40e_aq_str(hw, hw->aq.asq_last_status)); 5462 goto out; 5463 } 5464 5465 /* Update the netdev TC setup */ 5466 i40e_vsi_config_netdev_tc(vsi, enabled_tc); 5467 out: 5468 return ret; 5469 } 5470 5471 /** 5472 * i40e_get_link_speed - Returns link speed for the interface 5473 * @vsi: VSI to be configured 5474 * 5475 **/ 5476 static int i40e_get_link_speed(struct i40e_vsi *vsi) 5477 { 5478 struct i40e_pf *pf = vsi->back; 5479 5480 switch (pf->hw.phy.link_info.link_speed) { 5481 case I40E_LINK_SPEED_40GB: 5482 return 40000; 5483 case I40E_LINK_SPEED_25GB: 5484 return 25000; 5485 case I40E_LINK_SPEED_20GB: 5486 return 20000; 5487 case I40E_LINK_SPEED_10GB: 5488 return 10000; 5489 case I40E_LINK_SPEED_1GB: 5490 return 1000; 5491 default: 5492 return -EINVAL; 5493 } 5494 } 5495 5496 /** 5497 * i40e_set_bw_limit - setup BW limit for Tx traffic based on max_tx_rate 5498 * @vsi: VSI to be configured 5499 * @seid: seid of the channel/VSI 5500 * @max_tx_rate: max TX rate to be configured as BW limit 5501 * 5502 * Helper function to set BW limit for a given VSI 5503 **/ 5504 int i40e_set_bw_limit(struct i40e_vsi *vsi, u16 seid, u64 max_tx_rate) 5505 { 5506 struct i40e_pf *pf = vsi->back; 5507 u64 credits = 0; 5508 int speed = 0; 5509 int ret = 0; 5510 5511 speed = i40e_get_link_speed(vsi); 5512 if (max_tx_rate > speed) { 5513 dev_err(&pf->pdev->dev, 5514 "Invalid max tx rate %llu specified for VSI seid %d.", 5515 max_tx_rate, seid); 5516 return -EINVAL; 5517 } 5518 if (max_tx_rate && max_tx_rate < 50) { 5519 dev_warn(&pf->pdev->dev, 5520 "Setting max tx rate to minimum usable value of 50Mbps.\n"); 5521 max_tx_rate = 50; 5522 } 5523 5524 /* Tx rate credits are in values of 50Mbps, 0 is disabled */ 5525 credits = max_tx_rate; 5526 do_div(credits, I40E_BW_CREDIT_DIVISOR); 5527 ret = i40e_aq_config_vsi_bw_limit(&pf->hw, seid, credits, 5528 I40E_MAX_BW_INACTIVE_ACCUM, NULL); 5529 if (ret) 5530 dev_err(&pf->pdev->dev, 5531 "Failed set tx rate (%llu Mbps) for vsi->seid %u, err %s aq_err %s\n", 5532 max_tx_rate, seid, i40e_stat_str(&pf->hw, ret), 5533 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 5534 return ret; 5535 } 5536 5537 /** 5538 * i40e_remove_queue_channels - Remove queue channels for the TCs 5539 * @vsi: VSI to be configured 5540 * 5541 * Remove queue channels for the TCs 5542 **/ 5543 static void i40e_remove_queue_channels(struct i40e_vsi *vsi) 5544 { 5545 enum i40e_admin_queue_err last_aq_status; 5546 struct i40e_cloud_filter *cfilter; 5547 struct i40e_channel *ch, *ch_tmp; 5548 struct i40e_pf *pf = vsi->back; 5549 struct hlist_node *node; 5550 int ret, i; 5551 5552 /* Reset rss size that was stored when reconfiguring rss for 5553 * channel VSIs with non-power-of-2 queue count. 5554 */ 5555 vsi->current_rss_size = 0; 5556 5557 /* perform cleanup for channels if they exist */ 5558 if (list_empty(&vsi->ch_list)) 5559 return; 5560 5561 list_for_each_entry_safe(ch, ch_tmp, &vsi->ch_list, list) { 5562 struct i40e_vsi *p_vsi; 5563 5564 list_del(&ch->list); 5565 p_vsi = ch->parent_vsi; 5566 if (!p_vsi || !ch->initialized) { 5567 kfree(ch); 5568 continue; 5569 } 5570 /* Reset queue contexts */ 5571 for (i = 0; i < ch->num_queue_pairs; i++) { 5572 struct i40e_ring *tx_ring, *rx_ring; 5573 u16 pf_q; 5574 5575 pf_q = ch->base_queue + i; 5576 tx_ring = vsi->tx_rings[pf_q]; 5577 tx_ring->ch = NULL; 5578 5579 rx_ring = vsi->rx_rings[pf_q]; 5580 rx_ring->ch = NULL; 5581 } 5582 5583 /* Reset BW configured for this VSI via mqprio */ 5584 ret = i40e_set_bw_limit(vsi, ch->seid, 0); 5585 if (ret) 5586 dev_info(&vsi->back->pdev->dev, 5587 "Failed to reset tx rate for ch->seid %u\n", 5588 ch->seid); 5589 5590 /* delete cloud filters associated with this channel */ 5591 hlist_for_each_entry_safe(cfilter, node, 5592 &pf->cloud_filter_list, cloud_node) { 5593 if (cfilter->seid != ch->seid) 5594 continue; 5595 5596 hash_del(&cfilter->cloud_node); 5597 if (cfilter->dst_port) 5598 ret = i40e_add_del_cloud_filter_big_buf(vsi, 5599 cfilter, 5600 false); 5601 else 5602 ret = i40e_add_del_cloud_filter(vsi, cfilter, 5603 false); 5604 last_aq_status = pf->hw.aq.asq_last_status; 5605 if (ret) 5606 dev_info(&pf->pdev->dev, 5607 "Failed to delete cloud filter, err %s aq_err %s\n", 5608 i40e_stat_str(&pf->hw, ret), 5609 i40e_aq_str(&pf->hw, last_aq_status)); 5610 kfree(cfilter); 5611 } 5612 5613 /* delete VSI from FW */ 5614 ret = i40e_aq_delete_element(&vsi->back->hw, ch->seid, 5615 NULL); 5616 if (ret) 5617 dev_err(&vsi->back->pdev->dev, 5618 "unable to remove channel (%d) for parent VSI(%d)\n", 5619 ch->seid, p_vsi->seid); 5620 kfree(ch); 5621 } 5622 INIT_LIST_HEAD(&vsi->ch_list); 5623 } 5624 5625 /** 5626 * i40e_is_any_channel - channel exist or not 5627 * @vsi: ptr to VSI to which channels are associated with 5628 * 5629 * Returns true or false if channel(s) exist for associated VSI or not 5630 **/ 5631 static bool i40e_is_any_channel(struct i40e_vsi *vsi) 5632 { 5633 struct i40e_channel *ch, *ch_tmp; 5634 5635 list_for_each_entry_safe(ch, ch_tmp, &vsi->ch_list, list) { 5636 if (ch->initialized) 5637 return true; 5638 } 5639 5640 return false; 5641 } 5642 5643 /** 5644 * i40e_get_max_queues_for_channel 5645 * @vsi: ptr to VSI to which channels are associated with 5646 * 5647 * Helper function which returns max value among the queue counts set on the 5648 * channels/TCs created. 5649 **/ 5650 static int i40e_get_max_queues_for_channel(struct i40e_vsi *vsi) 5651 { 5652 struct i40e_channel *ch, *ch_tmp; 5653 int max = 0; 5654 5655 list_for_each_entry_safe(ch, ch_tmp, &vsi->ch_list, list) { 5656 if (!ch->initialized) 5657 continue; 5658 if (ch->num_queue_pairs > max) 5659 max = ch->num_queue_pairs; 5660 } 5661 5662 return max; 5663 } 5664 5665 /** 5666 * i40e_validate_num_queues - validate num_queues w.r.t channel 5667 * @pf: ptr to PF device 5668 * @num_queues: number of queues 5669 * @vsi: the parent VSI 5670 * @reconfig_rss: indicates should the RSS be reconfigured or not 5671 * 5672 * This function validates number of queues in the context of new channel 5673 * which is being established and determines if RSS should be reconfigured 5674 * or not for parent VSI. 5675 **/ 5676 static int i40e_validate_num_queues(struct i40e_pf *pf, int num_queues, 5677 struct i40e_vsi *vsi, bool *reconfig_rss) 5678 { 5679 int max_ch_queues; 5680 5681 if (!reconfig_rss) 5682 return -EINVAL; 5683 5684 *reconfig_rss = false; 5685 if (vsi->current_rss_size) { 5686 if (num_queues > vsi->current_rss_size) { 5687 dev_dbg(&pf->pdev->dev, 5688 "Error: num_queues (%d) > vsi's current_size(%d)\n", 5689 num_queues, vsi->current_rss_size); 5690 return -EINVAL; 5691 } else if ((num_queues < vsi->current_rss_size) && 5692 (!is_power_of_2(num_queues))) { 5693 dev_dbg(&pf->pdev->dev, 5694 "Error: num_queues (%d) < vsi's current_size(%d), but not power of 2\n", 5695 num_queues, vsi->current_rss_size); 5696 return -EINVAL; 5697 } 5698 } 5699 5700 if (!is_power_of_2(num_queues)) { 5701 /* Find the max num_queues configured for channel if channel 5702 * exist. 5703 * if channel exist, then enforce 'num_queues' to be more than 5704 * max ever queues configured for channel. 5705 */ 5706 max_ch_queues = i40e_get_max_queues_for_channel(vsi); 5707 if (num_queues < max_ch_queues) { 5708 dev_dbg(&pf->pdev->dev, 5709 "Error: num_queues (%d) < max queues configured for channel(%d)\n", 5710 num_queues, max_ch_queues); 5711 return -EINVAL; 5712 } 5713 *reconfig_rss = true; 5714 } 5715 5716 return 0; 5717 } 5718 5719 /** 5720 * i40e_vsi_reconfig_rss - reconfig RSS based on specified rss_size 5721 * @vsi: the VSI being setup 5722 * @rss_size: size of RSS, accordingly LUT gets reprogrammed 5723 * 5724 * This function reconfigures RSS by reprogramming LUTs using 'rss_size' 5725 **/ 5726 static int i40e_vsi_reconfig_rss(struct i40e_vsi *vsi, u16 rss_size) 5727 { 5728 struct i40e_pf *pf = vsi->back; 5729 u8 seed[I40E_HKEY_ARRAY_SIZE]; 5730 struct i40e_hw *hw = &pf->hw; 5731 int local_rss_size; 5732 u8 *lut; 5733 int ret; 5734 5735 if (!vsi->rss_size) 5736 return -EINVAL; 5737 5738 if (rss_size > vsi->rss_size) 5739 return -EINVAL; 5740 5741 local_rss_size = min_t(int, vsi->rss_size, rss_size); 5742 lut = kzalloc(vsi->rss_table_size, GFP_KERNEL); 5743 if (!lut) 5744 return -ENOMEM; 5745 5746 /* Ignoring user configured lut if there is one */ 5747 i40e_fill_rss_lut(pf, lut, vsi->rss_table_size, local_rss_size); 5748 5749 /* Use user configured hash key if there is one, otherwise 5750 * use default. 5751 */ 5752 if (vsi->rss_hkey_user) 5753 memcpy(seed, vsi->rss_hkey_user, I40E_HKEY_ARRAY_SIZE); 5754 else 5755 netdev_rss_key_fill((void *)seed, I40E_HKEY_ARRAY_SIZE); 5756 5757 ret = i40e_config_rss(vsi, seed, lut, vsi->rss_table_size); 5758 if (ret) { 5759 dev_info(&pf->pdev->dev, 5760 "Cannot set RSS lut, err %s aq_err %s\n", 5761 i40e_stat_str(hw, ret), 5762 i40e_aq_str(hw, hw->aq.asq_last_status)); 5763 kfree(lut); 5764 return ret; 5765 } 5766 kfree(lut); 5767 5768 /* Do the update w.r.t. storing rss_size */ 5769 if (!vsi->orig_rss_size) 5770 vsi->orig_rss_size = vsi->rss_size; 5771 vsi->current_rss_size = local_rss_size; 5772 5773 return ret; 5774 } 5775 5776 /** 5777 * i40e_channel_setup_queue_map - Setup a channel queue map 5778 * @pf: ptr to PF device 5779 * @vsi: the VSI being setup 5780 * @ctxt: VSI context structure 5781 * @ch: ptr to channel structure 5782 * 5783 * Setup queue map for a specific channel 5784 **/ 5785 static void i40e_channel_setup_queue_map(struct i40e_pf *pf, 5786 struct i40e_vsi_context *ctxt, 5787 struct i40e_channel *ch) 5788 { 5789 u16 qcount, qmap, sections = 0; 5790 u8 offset = 0; 5791 int pow; 5792 5793 sections = I40E_AQ_VSI_PROP_QUEUE_MAP_VALID; 5794 sections |= I40E_AQ_VSI_PROP_SCHED_VALID; 5795 5796 qcount = min_t(int, ch->num_queue_pairs, pf->num_lan_msix); 5797 ch->num_queue_pairs = qcount; 5798 5799 /* find the next higher power-of-2 of num queue pairs */ 5800 pow = ilog2(qcount); 5801 if (!is_power_of_2(qcount)) 5802 pow++; 5803 5804 qmap = (offset << I40E_AQ_VSI_TC_QUE_OFFSET_SHIFT) | 5805 (pow << I40E_AQ_VSI_TC_QUE_NUMBER_SHIFT); 5806 5807 /* Setup queue TC[0].qmap for given VSI context */ 5808 ctxt->info.tc_mapping[0] = cpu_to_le16(qmap); 5809 5810 ctxt->info.up_enable_bits = 0x1; /* TC0 enabled */ 5811 ctxt->info.mapping_flags |= cpu_to_le16(I40E_AQ_VSI_QUE_MAP_CONTIG); 5812 ctxt->info.queue_mapping[0] = cpu_to_le16(ch->base_queue); 5813 ctxt->info.valid_sections |= cpu_to_le16(sections); 5814 } 5815 5816 /** 5817 * i40e_add_channel - add a channel by adding VSI 5818 * @pf: ptr to PF device 5819 * @uplink_seid: underlying HW switching element (VEB) ID 5820 * @ch: ptr to channel structure 5821 * 5822 * Add a channel (VSI) using add_vsi and queue_map 5823 **/ 5824 static int i40e_add_channel(struct i40e_pf *pf, u16 uplink_seid, 5825 struct i40e_channel *ch) 5826 { 5827 struct i40e_hw *hw = &pf->hw; 5828 struct i40e_vsi_context ctxt; 5829 u8 enabled_tc = 0x1; /* TC0 enabled */ 5830 int ret; 5831 5832 if (ch->type != I40E_VSI_VMDQ2) { 5833 dev_info(&pf->pdev->dev, 5834 "add new vsi failed, ch->type %d\n", ch->type); 5835 return -EINVAL; 5836 } 5837 5838 memset(&ctxt, 0, sizeof(ctxt)); 5839 ctxt.pf_num = hw->pf_id; 5840 ctxt.vf_num = 0; 5841 ctxt.uplink_seid = uplink_seid; 5842 ctxt.connection_type = I40E_AQ_VSI_CONN_TYPE_NORMAL; 5843 if (ch->type == I40E_VSI_VMDQ2) 5844 ctxt.flags = I40E_AQ_VSI_TYPE_VMDQ2; 5845 5846 if (pf->flags & I40E_FLAG_VEB_MODE_ENABLED) { 5847 ctxt.info.valid_sections |= 5848 cpu_to_le16(I40E_AQ_VSI_PROP_SWITCH_VALID); 5849 ctxt.info.switch_id = 5850 cpu_to_le16(I40E_AQ_VSI_SW_ID_FLAG_ALLOW_LB); 5851 } 5852 5853 /* Set queue map for a given VSI context */ 5854 i40e_channel_setup_queue_map(pf, &ctxt, ch); 5855 5856 /* Now time to create VSI */ 5857 ret = i40e_aq_add_vsi(hw, &ctxt, NULL); 5858 if (ret) { 5859 dev_info(&pf->pdev->dev, 5860 "add new vsi failed, err %s aq_err %s\n", 5861 i40e_stat_str(&pf->hw, ret), 5862 i40e_aq_str(&pf->hw, 5863 pf->hw.aq.asq_last_status)); 5864 return -ENOENT; 5865 } 5866 5867 /* Success, update channel */ 5868 ch->enabled_tc = enabled_tc; 5869 ch->seid = ctxt.seid; 5870 ch->vsi_number = ctxt.vsi_number; 5871 ch->stat_counter_idx = cpu_to_le16(ctxt.info.stat_counter_idx); 5872 5873 /* copy just the sections touched not the entire info 5874 * since not all sections are valid as returned by 5875 * update vsi params 5876 */ 5877 ch->info.mapping_flags = ctxt.info.mapping_flags; 5878 memcpy(&ch->info.queue_mapping, 5879 &ctxt.info.queue_mapping, sizeof(ctxt.info.queue_mapping)); 5880 memcpy(&ch->info.tc_mapping, ctxt.info.tc_mapping, 5881 sizeof(ctxt.info.tc_mapping)); 5882 5883 return 0; 5884 } 5885 5886 static int i40e_channel_config_bw(struct i40e_vsi *vsi, struct i40e_channel *ch, 5887 u8 *bw_share) 5888 { 5889 struct i40e_aqc_configure_vsi_tc_bw_data bw_data; 5890 i40e_status ret; 5891 int i; 5892 5893 bw_data.tc_valid_bits = ch->enabled_tc; 5894 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) 5895 bw_data.tc_bw_credits[i] = bw_share[i]; 5896 5897 ret = i40e_aq_config_vsi_tc_bw(&vsi->back->hw, ch->seid, 5898 &bw_data, NULL); 5899 if (ret) { 5900 dev_info(&vsi->back->pdev->dev, 5901 "Config VSI BW allocation per TC failed, aq_err: %d for new_vsi->seid %u\n", 5902 vsi->back->hw.aq.asq_last_status, ch->seid); 5903 return -EINVAL; 5904 } 5905 5906 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) 5907 ch->info.qs_handle[i] = bw_data.qs_handles[i]; 5908 5909 return 0; 5910 } 5911 5912 /** 5913 * i40e_channel_config_tx_ring - config TX ring associated with new channel 5914 * @pf: ptr to PF device 5915 * @vsi: the VSI being setup 5916 * @ch: ptr to channel structure 5917 * 5918 * Configure TX rings associated with channel (VSI) since queues are being 5919 * from parent VSI. 5920 **/ 5921 static int i40e_channel_config_tx_ring(struct i40e_pf *pf, 5922 struct i40e_vsi *vsi, 5923 struct i40e_channel *ch) 5924 { 5925 i40e_status ret; 5926 int i; 5927 u8 bw_share[I40E_MAX_TRAFFIC_CLASS] = {0}; 5928 5929 /* Enable ETS TCs with equal BW Share for now across all VSIs */ 5930 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 5931 if (ch->enabled_tc & BIT(i)) 5932 bw_share[i] = 1; 5933 } 5934 5935 /* configure BW for new VSI */ 5936 ret = i40e_channel_config_bw(vsi, ch, bw_share); 5937 if (ret) { 5938 dev_info(&vsi->back->pdev->dev, 5939 "Failed configuring TC map %d for channel (seid %u)\n", 5940 ch->enabled_tc, ch->seid); 5941 return ret; 5942 } 5943 5944 for (i = 0; i < ch->num_queue_pairs; i++) { 5945 struct i40e_ring *tx_ring, *rx_ring; 5946 u16 pf_q; 5947 5948 pf_q = ch->base_queue + i; 5949 5950 /* Get to TX ring ptr of main VSI, for re-setup TX queue 5951 * context 5952 */ 5953 tx_ring = vsi->tx_rings[pf_q]; 5954 tx_ring->ch = ch; 5955 5956 /* Get the RX ring ptr */ 5957 rx_ring = vsi->rx_rings[pf_q]; 5958 rx_ring->ch = ch; 5959 } 5960 5961 return 0; 5962 } 5963 5964 /** 5965 * i40e_setup_hw_channel - setup new channel 5966 * @pf: ptr to PF device 5967 * @vsi: the VSI being setup 5968 * @ch: ptr to channel structure 5969 * @uplink_seid: underlying HW switching element (VEB) ID 5970 * @type: type of channel to be created (VMDq2/VF) 5971 * 5972 * Setup new channel (VSI) based on specified type (VMDq2/VF) 5973 * and configures TX rings accordingly 5974 **/ 5975 static inline int i40e_setup_hw_channel(struct i40e_pf *pf, 5976 struct i40e_vsi *vsi, 5977 struct i40e_channel *ch, 5978 u16 uplink_seid, u8 type) 5979 { 5980 int ret; 5981 5982 ch->initialized = false; 5983 ch->base_queue = vsi->next_base_queue; 5984 ch->type = type; 5985 5986 /* Proceed with creation of channel (VMDq2) VSI */ 5987 ret = i40e_add_channel(pf, uplink_seid, ch); 5988 if (ret) { 5989 dev_info(&pf->pdev->dev, 5990 "failed to add_channel using uplink_seid %u\n", 5991 uplink_seid); 5992 return ret; 5993 } 5994 5995 /* Mark the successful creation of channel */ 5996 ch->initialized = true; 5997 5998 /* Reconfigure TX queues using QTX_CTL register */ 5999 ret = i40e_channel_config_tx_ring(pf, vsi, ch); 6000 if (ret) { 6001 dev_info(&pf->pdev->dev, 6002 "failed to configure TX rings for channel %u\n", 6003 ch->seid); 6004 return ret; 6005 } 6006 6007 /* update 'next_base_queue' */ 6008 vsi->next_base_queue = vsi->next_base_queue + ch->num_queue_pairs; 6009 dev_dbg(&pf->pdev->dev, 6010 "Added channel: vsi_seid %u, vsi_number %u, stat_counter_idx %u, num_queue_pairs %u, pf->next_base_queue %d\n", 6011 ch->seid, ch->vsi_number, ch->stat_counter_idx, 6012 ch->num_queue_pairs, 6013 vsi->next_base_queue); 6014 return ret; 6015 } 6016 6017 /** 6018 * i40e_setup_channel - setup new channel using uplink element 6019 * @pf: ptr to PF device 6020 * @type: type of channel to be created (VMDq2/VF) 6021 * @uplink_seid: underlying HW switching element (VEB) ID 6022 * @ch: ptr to channel structure 6023 * 6024 * Setup new channel (VSI) based on specified type (VMDq2/VF) 6025 * and uplink switching element (uplink_seid) 6026 **/ 6027 static bool i40e_setup_channel(struct i40e_pf *pf, struct i40e_vsi *vsi, 6028 struct i40e_channel *ch) 6029 { 6030 u8 vsi_type; 6031 u16 seid; 6032 int ret; 6033 6034 if (vsi->type == I40E_VSI_MAIN) { 6035 vsi_type = I40E_VSI_VMDQ2; 6036 } else { 6037 dev_err(&pf->pdev->dev, "unsupported parent vsi type(%d)\n", 6038 vsi->type); 6039 return false; 6040 } 6041 6042 /* underlying switching element */ 6043 seid = pf->vsi[pf->lan_vsi]->uplink_seid; 6044 6045 /* create channel (VSI), configure TX rings */ 6046 ret = i40e_setup_hw_channel(pf, vsi, ch, seid, vsi_type); 6047 if (ret) { 6048 dev_err(&pf->pdev->dev, "failed to setup hw_channel\n"); 6049 return false; 6050 } 6051 6052 return ch->initialized ? true : false; 6053 } 6054 6055 /** 6056 * i40e_validate_and_set_switch_mode - sets up switch mode correctly 6057 * @vsi: ptr to VSI which has PF backing 6058 * 6059 * Sets up switch mode correctly if it needs to be changed and perform 6060 * what are allowed modes. 6061 **/ 6062 static int i40e_validate_and_set_switch_mode(struct i40e_vsi *vsi) 6063 { 6064 u8 mode; 6065 struct i40e_pf *pf = vsi->back; 6066 struct i40e_hw *hw = &pf->hw; 6067 int ret; 6068 6069 ret = i40e_get_capabilities(pf, i40e_aqc_opc_list_dev_capabilities); 6070 if (ret) 6071 return -EINVAL; 6072 6073 if (hw->dev_caps.switch_mode) { 6074 /* if switch mode is set, support mode2 (non-tunneled for 6075 * cloud filter) for now 6076 */ 6077 u32 switch_mode = hw->dev_caps.switch_mode & 6078 I40E_SWITCH_MODE_MASK; 6079 if (switch_mode >= I40E_CLOUD_FILTER_MODE1) { 6080 if (switch_mode == I40E_CLOUD_FILTER_MODE2) 6081 return 0; 6082 dev_err(&pf->pdev->dev, 6083 "Invalid switch_mode (%d), only non-tunneled mode for cloud filter is supported\n", 6084 hw->dev_caps.switch_mode); 6085 return -EINVAL; 6086 } 6087 } 6088 6089 /* Set Bit 7 to be valid */ 6090 mode = I40E_AQ_SET_SWITCH_BIT7_VALID; 6091 6092 /* Set L4type for TCP support */ 6093 mode |= I40E_AQ_SET_SWITCH_L4_TYPE_TCP; 6094 6095 /* Set cloud filter mode */ 6096 mode |= I40E_AQ_SET_SWITCH_MODE_NON_TUNNEL; 6097 6098 /* Prep mode field for set_switch_config */ 6099 ret = i40e_aq_set_switch_config(hw, pf->last_sw_conf_flags, 6100 pf->last_sw_conf_valid_flags, 6101 mode, NULL); 6102 if (ret && hw->aq.asq_last_status != I40E_AQ_RC_ESRCH) 6103 dev_err(&pf->pdev->dev, 6104 "couldn't set switch config bits, err %s aq_err %s\n", 6105 i40e_stat_str(hw, ret), 6106 i40e_aq_str(hw, 6107 hw->aq.asq_last_status)); 6108 6109 return ret; 6110 } 6111 6112 /** 6113 * i40e_create_queue_channel - function to create channel 6114 * @vsi: VSI to be configured 6115 * @ch: ptr to channel (it contains channel specific params) 6116 * 6117 * This function creates channel (VSI) using num_queues specified by user, 6118 * reconfigs RSS if needed. 6119 **/ 6120 int i40e_create_queue_channel(struct i40e_vsi *vsi, 6121 struct i40e_channel *ch) 6122 { 6123 struct i40e_pf *pf = vsi->back; 6124 bool reconfig_rss; 6125 int err; 6126 6127 if (!ch) 6128 return -EINVAL; 6129 6130 if (!ch->num_queue_pairs) { 6131 dev_err(&pf->pdev->dev, "Invalid num_queues requested: %d\n", 6132 ch->num_queue_pairs); 6133 return -EINVAL; 6134 } 6135 6136 /* validate user requested num_queues for channel */ 6137 err = i40e_validate_num_queues(pf, ch->num_queue_pairs, vsi, 6138 &reconfig_rss); 6139 if (err) { 6140 dev_info(&pf->pdev->dev, "Failed to validate num_queues (%d)\n", 6141 ch->num_queue_pairs); 6142 return -EINVAL; 6143 } 6144 6145 /* By default we are in VEPA mode, if this is the first VF/VMDq 6146 * VSI to be added switch to VEB mode. 6147 */ 6148 if ((!(pf->flags & I40E_FLAG_VEB_MODE_ENABLED)) || 6149 (!i40e_is_any_channel(vsi))) { 6150 if (!is_power_of_2(vsi->tc_config.tc_info[0].qcount)) { 6151 dev_dbg(&pf->pdev->dev, 6152 "Failed to create channel. Override queues (%u) not power of 2\n", 6153 vsi->tc_config.tc_info[0].qcount); 6154 return -EINVAL; 6155 } 6156 6157 if (!(pf->flags & I40E_FLAG_VEB_MODE_ENABLED)) { 6158 pf->flags |= I40E_FLAG_VEB_MODE_ENABLED; 6159 6160 if (vsi->type == I40E_VSI_MAIN) { 6161 if (pf->flags & I40E_FLAG_TC_MQPRIO) 6162 i40e_do_reset(pf, I40E_PF_RESET_FLAG, 6163 true); 6164 else 6165 i40e_do_reset_safe(pf, 6166 I40E_PF_RESET_FLAG); 6167 } 6168 } 6169 /* now onwards for main VSI, number of queues will be value 6170 * of TC0's queue count 6171 */ 6172 } 6173 6174 /* By this time, vsi->cnt_q_avail shall be set to non-zero and 6175 * it should be more than num_queues 6176 */ 6177 if (!vsi->cnt_q_avail || vsi->cnt_q_avail < ch->num_queue_pairs) { 6178 dev_dbg(&pf->pdev->dev, 6179 "Error: cnt_q_avail (%u) less than num_queues %d\n", 6180 vsi->cnt_q_avail, ch->num_queue_pairs); 6181 return -EINVAL; 6182 } 6183 6184 /* reconfig_rss only if vsi type is MAIN_VSI */ 6185 if (reconfig_rss && (vsi->type == I40E_VSI_MAIN)) { 6186 err = i40e_vsi_reconfig_rss(vsi, ch->num_queue_pairs); 6187 if (err) { 6188 dev_info(&pf->pdev->dev, 6189 "Error: unable to reconfig rss for num_queues (%u)\n", 6190 ch->num_queue_pairs); 6191 return -EINVAL; 6192 } 6193 } 6194 6195 if (!i40e_setup_channel(pf, vsi, ch)) { 6196 dev_info(&pf->pdev->dev, "Failed to setup channel\n"); 6197 return -EINVAL; 6198 } 6199 6200 dev_info(&pf->pdev->dev, 6201 "Setup channel (id:%u) utilizing num_queues %d\n", 6202 ch->seid, ch->num_queue_pairs); 6203 6204 /* configure VSI for BW limit */ 6205 if (ch->max_tx_rate) { 6206 u64 credits = ch->max_tx_rate; 6207 6208 if (i40e_set_bw_limit(vsi, ch->seid, ch->max_tx_rate)) 6209 return -EINVAL; 6210 6211 do_div(credits, I40E_BW_CREDIT_DIVISOR); 6212 dev_dbg(&pf->pdev->dev, 6213 "Set tx rate of %llu Mbps (count of 50Mbps %llu) for vsi->seid %u\n", 6214 ch->max_tx_rate, 6215 credits, 6216 ch->seid); 6217 } 6218 6219 /* in case of VF, this will be main SRIOV VSI */ 6220 ch->parent_vsi = vsi; 6221 6222 /* and update main_vsi's count for queue_available to use */ 6223 vsi->cnt_q_avail -= ch->num_queue_pairs; 6224 6225 return 0; 6226 } 6227 6228 /** 6229 * i40e_configure_queue_channels - Add queue channel for the given TCs 6230 * @vsi: VSI to be configured 6231 * 6232 * Configures queue channel mapping to the given TCs 6233 **/ 6234 static int i40e_configure_queue_channels(struct i40e_vsi *vsi) 6235 { 6236 struct i40e_channel *ch; 6237 u64 max_rate = 0; 6238 int ret = 0, i; 6239 6240 /* Create app vsi with the TCs. Main VSI with TC0 is already set up */ 6241 vsi->tc_seid_map[0] = vsi->seid; 6242 for (i = 1; i < I40E_MAX_TRAFFIC_CLASS; i++) { 6243 if (vsi->tc_config.enabled_tc & BIT(i)) { 6244 ch = kzalloc(sizeof(*ch), GFP_KERNEL); 6245 if (!ch) { 6246 ret = -ENOMEM; 6247 goto err_free; 6248 } 6249 6250 INIT_LIST_HEAD(&ch->list); 6251 ch->num_queue_pairs = 6252 vsi->tc_config.tc_info[i].qcount; 6253 ch->base_queue = 6254 vsi->tc_config.tc_info[i].qoffset; 6255 6256 /* Bandwidth limit through tc interface is in bytes/s, 6257 * change to Mbit/s 6258 */ 6259 max_rate = vsi->mqprio_qopt.max_rate[i]; 6260 do_div(max_rate, I40E_BW_MBPS_DIVISOR); 6261 ch->max_tx_rate = max_rate; 6262 6263 list_add_tail(&ch->list, &vsi->ch_list); 6264 6265 ret = i40e_create_queue_channel(vsi, ch); 6266 if (ret) { 6267 dev_err(&vsi->back->pdev->dev, 6268 "Failed creating queue channel with TC%d: queues %d\n", 6269 i, ch->num_queue_pairs); 6270 goto err_free; 6271 } 6272 vsi->tc_seid_map[i] = ch->seid; 6273 } 6274 } 6275 return ret; 6276 6277 err_free: 6278 i40e_remove_queue_channels(vsi); 6279 return ret; 6280 } 6281 6282 /** 6283 * i40e_veb_config_tc - Configure TCs for given VEB 6284 * @veb: given VEB 6285 * @enabled_tc: TC bitmap 6286 * 6287 * Configures given TC bitmap for VEB (switching) element 6288 **/ 6289 int i40e_veb_config_tc(struct i40e_veb *veb, u8 enabled_tc) 6290 { 6291 struct i40e_aqc_configure_switching_comp_bw_config_data bw_data = {0}; 6292 struct i40e_pf *pf = veb->pf; 6293 int ret = 0; 6294 int i; 6295 6296 /* No TCs or already enabled TCs just return */ 6297 if (!enabled_tc || veb->enabled_tc == enabled_tc) 6298 return ret; 6299 6300 bw_data.tc_valid_bits = enabled_tc; 6301 /* bw_data.absolute_credits is not set (relative) */ 6302 6303 /* Enable ETS TCs with equal BW Share for now */ 6304 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 6305 if (enabled_tc & BIT(i)) 6306 bw_data.tc_bw_share_credits[i] = 1; 6307 } 6308 6309 ret = i40e_aq_config_switch_comp_bw_config(&pf->hw, veb->seid, 6310 &bw_data, NULL); 6311 if (ret) { 6312 dev_info(&pf->pdev->dev, 6313 "VEB bw config failed, err %s aq_err %s\n", 6314 i40e_stat_str(&pf->hw, ret), 6315 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 6316 goto out; 6317 } 6318 6319 /* Update the BW information */ 6320 ret = i40e_veb_get_bw_info(veb); 6321 if (ret) { 6322 dev_info(&pf->pdev->dev, 6323 "Failed getting veb bw config, err %s aq_err %s\n", 6324 i40e_stat_str(&pf->hw, ret), 6325 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 6326 } 6327 6328 out: 6329 return ret; 6330 } 6331 6332 #ifdef CONFIG_I40E_DCB 6333 /** 6334 * i40e_dcb_reconfigure - Reconfigure all VEBs and VSIs 6335 * @pf: PF struct 6336 * 6337 * Reconfigure VEB/VSIs on a given PF; it is assumed that 6338 * the caller would've quiesce all the VSIs before calling 6339 * this function 6340 **/ 6341 static void i40e_dcb_reconfigure(struct i40e_pf *pf) 6342 { 6343 u8 tc_map = 0; 6344 int ret; 6345 u8 v; 6346 6347 /* Enable the TCs available on PF to all VEBs */ 6348 tc_map = i40e_pf_get_tc_map(pf); 6349 for (v = 0; v < I40E_MAX_VEB; v++) { 6350 if (!pf->veb[v]) 6351 continue; 6352 ret = i40e_veb_config_tc(pf->veb[v], tc_map); 6353 if (ret) { 6354 dev_info(&pf->pdev->dev, 6355 "Failed configuring TC for VEB seid=%d\n", 6356 pf->veb[v]->seid); 6357 /* Will try to configure as many components */ 6358 } 6359 } 6360 6361 /* Update each VSI */ 6362 for (v = 0; v < pf->num_alloc_vsi; v++) { 6363 if (!pf->vsi[v]) 6364 continue; 6365 6366 /* - Enable all TCs for the LAN VSI 6367 * - For all others keep them at TC0 for now 6368 */ 6369 if (v == pf->lan_vsi) 6370 tc_map = i40e_pf_get_tc_map(pf); 6371 else 6372 tc_map = I40E_DEFAULT_TRAFFIC_CLASS; 6373 6374 ret = i40e_vsi_config_tc(pf->vsi[v], tc_map); 6375 if (ret) { 6376 dev_info(&pf->pdev->dev, 6377 "Failed configuring TC for VSI seid=%d\n", 6378 pf->vsi[v]->seid); 6379 /* Will try to configure as many components */ 6380 } else { 6381 /* Re-configure VSI vectors based on updated TC map */ 6382 i40e_vsi_map_rings_to_vectors(pf->vsi[v]); 6383 if (pf->vsi[v]->netdev) 6384 i40e_dcbnl_set_all(pf->vsi[v]); 6385 } 6386 } 6387 } 6388 6389 /** 6390 * i40e_resume_port_tx - Resume port Tx 6391 * @pf: PF struct 6392 * 6393 * Resume a port's Tx and issue a PF reset in case of failure to 6394 * resume. 6395 **/ 6396 static int i40e_resume_port_tx(struct i40e_pf *pf) 6397 { 6398 struct i40e_hw *hw = &pf->hw; 6399 int ret; 6400 6401 ret = i40e_aq_resume_port_tx(hw, NULL); 6402 if (ret) { 6403 dev_info(&pf->pdev->dev, 6404 "Resume Port Tx failed, err %s aq_err %s\n", 6405 i40e_stat_str(&pf->hw, ret), 6406 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 6407 /* Schedule PF reset to recover */ 6408 set_bit(__I40E_PF_RESET_REQUESTED, pf->state); 6409 i40e_service_event_schedule(pf); 6410 } 6411 6412 return ret; 6413 } 6414 6415 /** 6416 * i40e_init_pf_dcb - Initialize DCB configuration 6417 * @pf: PF being configured 6418 * 6419 * Query the current DCB configuration and cache it 6420 * in the hardware structure 6421 **/ 6422 static int i40e_init_pf_dcb(struct i40e_pf *pf) 6423 { 6424 struct i40e_hw *hw = &pf->hw; 6425 int err = 0; 6426 6427 /* Do not enable DCB for SW1 and SW2 images even if the FW is capable 6428 * Also do not enable DCBx if FW LLDP agent is disabled 6429 */ 6430 if ((pf->hw_features & I40E_HW_NO_DCB_SUPPORT) || 6431 (pf->flags & I40E_FLAG_DISABLE_FW_LLDP)) 6432 goto out; 6433 6434 /* Get the initial DCB configuration */ 6435 err = i40e_init_dcb(hw, true); 6436 if (!err) { 6437 /* Device/Function is not DCBX capable */ 6438 if ((!hw->func_caps.dcb) || 6439 (hw->dcbx_status == I40E_DCBX_STATUS_DISABLED)) { 6440 dev_info(&pf->pdev->dev, 6441 "DCBX offload is not supported or is disabled for this PF.\n"); 6442 } else { 6443 /* When status is not DISABLED then DCBX in FW */ 6444 pf->dcbx_cap = DCB_CAP_DCBX_LLD_MANAGED | 6445 DCB_CAP_DCBX_VER_IEEE; 6446 6447 pf->flags |= I40E_FLAG_DCB_CAPABLE; 6448 /* Enable DCB tagging only when more than one TC 6449 * or explicitly disable if only one TC 6450 */ 6451 if (i40e_dcb_get_num_tc(&hw->local_dcbx_config) > 1) 6452 pf->flags |= I40E_FLAG_DCB_ENABLED; 6453 else 6454 pf->flags &= ~I40E_FLAG_DCB_ENABLED; 6455 dev_dbg(&pf->pdev->dev, 6456 "DCBX offload is supported for this PF.\n"); 6457 } 6458 } else if (pf->hw.aq.asq_last_status == I40E_AQ_RC_EPERM) { 6459 dev_info(&pf->pdev->dev, "FW LLDP disabled for this PF.\n"); 6460 pf->flags |= I40E_FLAG_DISABLE_FW_LLDP; 6461 } else { 6462 dev_info(&pf->pdev->dev, 6463 "Query for DCB configuration failed, err %s aq_err %s\n", 6464 i40e_stat_str(&pf->hw, err), 6465 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 6466 } 6467 6468 out: 6469 return err; 6470 } 6471 #endif /* CONFIG_I40E_DCB */ 6472 #define SPEED_SIZE 14 6473 #define FC_SIZE 8 6474 /** 6475 * i40e_print_link_message - print link up or down 6476 * @vsi: the VSI for which link needs a message 6477 * @isup: true of link is up, false otherwise 6478 */ 6479 void i40e_print_link_message(struct i40e_vsi *vsi, bool isup) 6480 { 6481 enum i40e_aq_link_speed new_speed; 6482 struct i40e_pf *pf = vsi->back; 6483 char *speed = "Unknown"; 6484 char *fc = "Unknown"; 6485 char *fec = ""; 6486 char *req_fec = ""; 6487 char *an = ""; 6488 6489 if (isup) 6490 new_speed = pf->hw.phy.link_info.link_speed; 6491 else 6492 new_speed = I40E_LINK_SPEED_UNKNOWN; 6493 6494 if ((vsi->current_isup == isup) && (vsi->current_speed == new_speed)) 6495 return; 6496 vsi->current_isup = isup; 6497 vsi->current_speed = new_speed; 6498 if (!isup) { 6499 netdev_info(vsi->netdev, "NIC Link is Down\n"); 6500 return; 6501 } 6502 6503 /* Warn user if link speed on NPAR enabled partition is not at 6504 * least 10GB 6505 */ 6506 if (pf->hw.func_caps.npar_enable && 6507 (pf->hw.phy.link_info.link_speed == I40E_LINK_SPEED_1GB || 6508 pf->hw.phy.link_info.link_speed == I40E_LINK_SPEED_100MB)) 6509 netdev_warn(vsi->netdev, 6510 "The partition detected link speed that is less than 10Gbps\n"); 6511 6512 switch (pf->hw.phy.link_info.link_speed) { 6513 case I40E_LINK_SPEED_40GB: 6514 speed = "40 G"; 6515 break; 6516 case I40E_LINK_SPEED_20GB: 6517 speed = "20 G"; 6518 break; 6519 case I40E_LINK_SPEED_25GB: 6520 speed = "25 G"; 6521 break; 6522 case I40E_LINK_SPEED_10GB: 6523 speed = "10 G"; 6524 break; 6525 case I40E_LINK_SPEED_5GB: 6526 speed = "5 G"; 6527 break; 6528 case I40E_LINK_SPEED_2_5GB: 6529 speed = "2.5 G"; 6530 break; 6531 case I40E_LINK_SPEED_1GB: 6532 speed = "1000 M"; 6533 break; 6534 case I40E_LINK_SPEED_100MB: 6535 speed = "100 M"; 6536 break; 6537 default: 6538 break; 6539 } 6540 6541 switch (pf->hw.fc.current_mode) { 6542 case I40E_FC_FULL: 6543 fc = "RX/TX"; 6544 break; 6545 case I40E_FC_TX_PAUSE: 6546 fc = "TX"; 6547 break; 6548 case I40E_FC_RX_PAUSE: 6549 fc = "RX"; 6550 break; 6551 default: 6552 fc = "None"; 6553 break; 6554 } 6555 6556 if (pf->hw.phy.link_info.link_speed == I40E_LINK_SPEED_25GB) { 6557 req_fec = ", Requested FEC: None"; 6558 fec = ", FEC: None"; 6559 an = ", Autoneg: False"; 6560 6561 if (pf->hw.phy.link_info.an_info & I40E_AQ_AN_COMPLETED) 6562 an = ", Autoneg: True"; 6563 6564 if (pf->hw.phy.link_info.fec_info & 6565 I40E_AQ_CONFIG_FEC_KR_ENA) 6566 fec = ", FEC: CL74 FC-FEC/BASE-R"; 6567 else if (pf->hw.phy.link_info.fec_info & 6568 I40E_AQ_CONFIG_FEC_RS_ENA) 6569 fec = ", FEC: CL108 RS-FEC"; 6570 6571 /* 'CL108 RS-FEC' should be displayed when RS is requested, or 6572 * both RS and FC are requested 6573 */ 6574 if (vsi->back->hw.phy.link_info.req_fec_info & 6575 (I40E_AQ_REQUEST_FEC_KR | I40E_AQ_REQUEST_FEC_RS)) { 6576 if (vsi->back->hw.phy.link_info.req_fec_info & 6577 I40E_AQ_REQUEST_FEC_RS) 6578 req_fec = ", Requested FEC: CL108 RS-FEC"; 6579 else 6580 req_fec = ", Requested FEC: CL74 FC-FEC/BASE-R"; 6581 } 6582 } 6583 6584 netdev_info(vsi->netdev, "NIC Link is Up, %sbps Full Duplex%s%s%s, Flow Control: %s\n", 6585 speed, req_fec, fec, an, fc); 6586 } 6587 6588 /** 6589 * i40e_up_complete - Finish the last steps of bringing up a connection 6590 * @vsi: the VSI being configured 6591 **/ 6592 static int i40e_up_complete(struct i40e_vsi *vsi) 6593 { 6594 struct i40e_pf *pf = vsi->back; 6595 int err; 6596 6597 if (pf->flags & I40E_FLAG_MSIX_ENABLED) 6598 i40e_vsi_configure_msix(vsi); 6599 else 6600 i40e_configure_msi_and_legacy(vsi); 6601 6602 /* start rings */ 6603 err = i40e_vsi_start_rings(vsi); 6604 if (err) 6605 return err; 6606 6607 clear_bit(__I40E_VSI_DOWN, vsi->state); 6608 i40e_napi_enable_all(vsi); 6609 i40e_vsi_enable_irq(vsi); 6610 6611 if ((pf->hw.phy.link_info.link_info & I40E_AQ_LINK_UP) && 6612 (vsi->netdev)) { 6613 i40e_print_link_message(vsi, true); 6614 netif_tx_start_all_queues(vsi->netdev); 6615 netif_carrier_on(vsi->netdev); 6616 } 6617 6618 /* replay FDIR SB filters */ 6619 if (vsi->type == I40E_VSI_FDIR) { 6620 /* reset fd counters */ 6621 pf->fd_add_err = 0; 6622 pf->fd_atr_cnt = 0; 6623 i40e_fdir_filter_restore(vsi); 6624 } 6625 6626 /* On the next run of the service_task, notify any clients of the new 6627 * opened netdev 6628 */ 6629 set_bit(__I40E_CLIENT_SERVICE_REQUESTED, pf->state); 6630 i40e_service_event_schedule(pf); 6631 6632 return 0; 6633 } 6634 6635 /** 6636 * i40e_vsi_reinit_locked - Reset the VSI 6637 * @vsi: the VSI being configured 6638 * 6639 * Rebuild the ring structs after some configuration 6640 * has changed, e.g. MTU size. 6641 **/ 6642 static void i40e_vsi_reinit_locked(struct i40e_vsi *vsi) 6643 { 6644 struct i40e_pf *pf = vsi->back; 6645 6646 WARN_ON(in_interrupt()); 6647 while (test_and_set_bit(__I40E_CONFIG_BUSY, pf->state)) 6648 usleep_range(1000, 2000); 6649 i40e_down(vsi); 6650 6651 i40e_up(vsi); 6652 clear_bit(__I40E_CONFIG_BUSY, pf->state); 6653 } 6654 6655 /** 6656 * i40e_up - Bring the connection back up after being down 6657 * @vsi: the VSI being configured 6658 **/ 6659 int i40e_up(struct i40e_vsi *vsi) 6660 { 6661 int err; 6662 6663 err = i40e_vsi_configure(vsi); 6664 if (!err) 6665 err = i40e_up_complete(vsi); 6666 6667 return err; 6668 } 6669 6670 /** 6671 * i40e_force_link_state - Force the link status 6672 * @pf: board private structure 6673 * @is_up: whether the link state should be forced up or down 6674 **/ 6675 static i40e_status i40e_force_link_state(struct i40e_pf *pf, bool is_up) 6676 { 6677 struct i40e_aq_get_phy_abilities_resp abilities; 6678 struct i40e_aq_set_phy_config config = {0}; 6679 struct i40e_hw *hw = &pf->hw; 6680 i40e_status err; 6681 u64 mask; 6682 u8 speed; 6683 6684 /* Card might've been put in an unstable state by other drivers 6685 * and applications, which causes incorrect speed values being 6686 * set on startup. In order to clear speed registers, we call 6687 * get_phy_capabilities twice, once to get initial state of 6688 * available speeds, and once to get current PHY config. 6689 */ 6690 err = i40e_aq_get_phy_capabilities(hw, false, true, &abilities, 6691 NULL); 6692 if (err) { 6693 dev_err(&pf->pdev->dev, 6694 "failed to get phy cap., ret = %s last_status = %s\n", 6695 i40e_stat_str(hw, err), 6696 i40e_aq_str(hw, hw->aq.asq_last_status)); 6697 return err; 6698 } 6699 speed = abilities.link_speed; 6700 6701 /* Get the current phy config */ 6702 err = i40e_aq_get_phy_capabilities(hw, false, false, &abilities, 6703 NULL); 6704 if (err) { 6705 dev_err(&pf->pdev->dev, 6706 "failed to get phy cap., ret = %s last_status = %s\n", 6707 i40e_stat_str(hw, err), 6708 i40e_aq_str(hw, hw->aq.asq_last_status)); 6709 return err; 6710 } 6711 6712 /* If link needs to go up, but was not forced to go down, 6713 * and its speed values are OK, no need for a flap 6714 */ 6715 if (is_up && abilities.phy_type != 0 && abilities.link_speed != 0) 6716 return I40E_SUCCESS; 6717 6718 /* To force link we need to set bits for all supported PHY types, 6719 * but there are now more than 32, so we need to split the bitmap 6720 * across two fields. 6721 */ 6722 mask = I40E_PHY_TYPES_BITMASK; 6723 config.phy_type = is_up ? cpu_to_le32((u32)(mask & 0xffffffff)) : 0; 6724 config.phy_type_ext = is_up ? (u8)((mask >> 32) & 0xff) : 0; 6725 /* Copy the old settings, except of phy_type */ 6726 config.abilities = abilities.abilities; 6727 if (abilities.link_speed != 0) 6728 config.link_speed = abilities.link_speed; 6729 else 6730 config.link_speed = speed; 6731 config.eee_capability = abilities.eee_capability; 6732 config.eeer = abilities.eeer_val; 6733 config.low_power_ctrl = abilities.d3_lpan; 6734 config.fec_config = abilities.fec_cfg_curr_mod_ext_info & 6735 I40E_AQ_PHY_FEC_CONFIG_MASK; 6736 err = i40e_aq_set_phy_config(hw, &config, NULL); 6737 6738 if (err) { 6739 dev_err(&pf->pdev->dev, 6740 "set phy config ret = %s last_status = %s\n", 6741 i40e_stat_str(&pf->hw, err), 6742 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 6743 return err; 6744 } 6745 6746 /* Update the link info */ 6747 err = i40e_update_link_info(hw); 6748 if (err) { 6749 /* Wait a little bit (on 40G cards it sometimes takes a really 6750 * long time for link to come back from the atomic reset) 6751 * and try once more 6752 */ 6753 msleep(1000); 6754 i40e_update_link_info(hw); 6755 } 6756 6757 i40e_aq_set_link_restart_an(hw, true, NULL); 6758 6759 return I40E_SUCCESS; 6760 } 6761 6762 /** 6763 * i40e_down - Shutdown the connection processing 6764 * @vsi: the VSI being stopped 6765 **/ 6766 void i40e_down(struct i40e_vsi *vsi) 6767 { 6768 int i; 6769 6770 /* It is assumed that the caller of this function 6771 * sets the vsi->state __I40E_VSI_DOWN bit. 6772 */ 6773 if (vsi->netdev) { 6774 netif_carrier_off(vsi->netdev); 6775 netif_tx_disable(vsi->netdev); 6776 } 6777 i40e_vsi_disable_irq(vsi); 6778 i40e_vsi_stop_rings(vsi); 6779 if (vsi->type == I40E_VSI_MAIN && 6780 vsi->back->flags & I40E_FLAG_LINK_DOWN_ON_CLOSE_ENABLED) 6781 i40e_force_link_state(vsi->back, false); 6782 i40e_napi_disable_all(vsi); 6783 6784 for (i = 0; i < vsi->num_queue_pairs; i++) { 6785 i40e_clean_tx_ring(vsi->tx_rings[i]); 6786 if (i40e_enabled_xdp_vsi(vsi)) { 6787 /* Make sure that in-progress ndo_xdp_xmit 6788 * calls are completed. 6789 */ 6790 synchronize_rcu(); 6791 i40e_clean_tx_ring(vsi->xdp_rings[i]); 6792 } 6793 i40e_clean_rx_ring(vsi->rx_rings[i]); 6794 } 6795 6796 } 6797 6798 /** 6799 * i40e_validate_mqprio_qopt- validate queue mapping info 6800 * @vsi: the VSI being configured 6801 * @mqprio_qopt: queue parametrs 6802 **/ 6803 static int i40e_validate_mqprio_qopt(struct i40e_vsi *vsi, 6804 struct tc_mqprio_qopt_offload *mqprio_qopt) 6805 { 6806 u64 sum_max_rate = 0; 6807 u64 max_rate = 0; 6808 int i; 6809 6810 if (mqprio_qopt->qopt.offset[0] != 0 || 6811 mqprio_qopt->qopt.num_tc < 1 || 6812 mqprio_qopt->qopt.num_tc > I40E_MAX_TRAFFIC_CLASS) 6813 return -EINVAL; 6814 for (i = 0; ; i++) { 6815 if (!mqprio_qopt->qopt.count[i]) 6816 return -EINVAL; 6817 if (mqprio_qopt->min_rate[i]) { 6818 dev_err(&vsi->back->pdev->dev, 6819 "Invalid min tx rate (greater than 0) specified\n"); 6820 return -EINVAL; 6821 } 6822 max_rate = mqprio_qopt->max_rate[i]; 6823 do_div(max_rate, I40E_BW_MBPS_DIVISOR); 6824 sum_max_rate += max_rate; 6825 6826 if (i >= mqprio_qopt->qopt.num_tc - 1) 6827 break; 6828 if (mqprio_qopt->qopt.offset[i + 1] != 6829 (mqprio_qopt->qopt.offset[i] + mqprio_qopt->qopt.count[i])) 6830 return -EINVAL; 6831 } 6832 if (vsi->num_queue_pairs < 6833 (mqprio_qopt->qopt.offset[i] + mqprio_qopt->qopt.count[i])) { 6834 return -EINVAL; 6835 } 6836 if (sum_max_rate > i40e_get_link_speed(vsi)) { 6837 dev_err(&vsi->back->pdev->dev, 6838 "Invalid max tx rate specified\n"); 6839 return -EINVAL; 6840 } 6841 return 0; 6842 } 6843 6844 /** 6845 * i40e_vsi_set_default_tc_config - set default values for tc configuration 6846 * @vsi: the VSI being configured 6847 **/ 6848 static void i40e_vsi_set_default_tc_config(struct i40e_vsi *vsi) 6849 { 6850 u16 qcount; 6851 int i; 6852 6853 /* Only TC0 is enabled */ 6854 vsi->tc_config.numtc = 1; 6855 vsi->tc_config.enabled_tc = 1; 6856 qcount = min_t(int, vsi->alloc_queue_pairs, 6857 i40e_pf_get_max_q_per_tc(vsi->back)); 6858 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 6859 /* For the TC that is not enabled set the offset to to default 6860 * queue and allocate one queue for the given TC. 6861 */ 6862 vsi->tc_config.tc_info[i].qoffset = 0; 6863 if (i == 0) 6864 vsi->tc_config.tc_info[i].qcount = qcount; 6865 else 6866 vsi->tc_config.tc_info[i].qcount = 1; 6867 vsi->tc_config.tc_info[i].netdev_tc = 0; 6868 } 6869 } 6870 6871 /** 6872 * i40e_setup_tc - configure multiple traffic classes 6873 * @netdev: net device to configure 6874 * @type_data: tc offload data 6875 **/ 6876 static int i40e_setup_tc(struct net_device *netdev, void *type_data) 6877 { 6878 struct tc_mqprio_qopt_offload *mqprio_qopt = type_data; 6879 struct i40e_netdev_priv *np = netdev_priv(netdev); 6880 struct i40e_vsi *vsi = np->vsi; 6881 struct i40e_pf *pf = vsi->back; 6882 u8 enabled_tc = 0, num_tc, hw; 6883 bool need_reset = false; 6884 int old_queue_pairs; 6885 int ret = -EINVAL; 6886 u16 mode; 6887 int i; 6888 6889 old_queue_pairs = vsi->num_queue_pairs; 6890 num_tc = mqprio_qopt->qopt.num_tc; 6891 hw = mqprio_qopt->qopt.hw; 6892 mode = mqprio_qopt->mode; 6893 if (!hw) { 6894 pf->flags &= ~I40E_FLAG_TC_MQPRIO; 6895 memcpy(&vsi->mqprio_qopt, mqprio_qopt, sizeof(*mqprio_qopt)); 6896 goto config_tc; 6897 } 6898 6899 /* Check if MFP enabled */ 6900 if (pf->flags & I40E_FLAG_MFP_ENABLED) { 6901 netdev_info(netdev, 6902 "Configuring TC not supported in MFP mode\n"); 6903 return ret; 6904 } 6905 switch (mode) { 6906 case TC_MQPRIO_MODE_DCB: 6907 pf->flags &= ~I40E_FLAG_TC_MQPRIO; 6908 6909 /* Check if DCB enabled to continue */ 6910 if (!(pf->flags & I40E_FLAG_DCB_ENABLED)) { 6911 netdev_info(netdev, 6912 "DCB is not enabled for adapter\n"); 6913 return ret; 6914 } 6915 6916 /* Check whether tc count is within enabled limit */ 6917 if (num_tc > i40e_pf_get_num_tc(pf)) { 6918 netdev_info(netdev, 6919 "TC count greater than enabled on link for adapter\n"); 6920 return ret; 6921 } 6922 break; 6923 case TC_MQPRIO_MODE_CHANNEL: 6924 if (pf->flags & I40E_FLAG_DCB_ENABLED) { 6925 netdev_info(netdev, 6926 "Full offload of TC Mqprio options is not supported when DCB is enabled\n"); 6927 return ret; 6928 } 6929 if (!(pf->flags & I40E_FLAG_MSIX_ENABLED)) 6930 return ret; 6931 ret = i40e_validate_mqprio_qopt(vsi, mqprio_qopt); 6932 if (ret) 6933 return ret; 6934 memcpy(&vsi->mqprio_qopt, mqprio_qopt, 6935 sizeof(*mqprio_qopt)); 6936 pf->flags |= I40E_FLAG_TC_MQPRIO; 6937 pf->flags &= ~I40E_FLAG_DCB_ENABLED; 6938 break; 6939 default: 6940 return -EINVAL; 6941 } 6942 6943 config_tc: 6944 /* Generate TC map for number of tc requested */ 6945 for (i = 0; i < num_tc; i++) 6946 enabled_tc |= BIT(i); 6947 6948 /* Requesting same TC configuration as already enabled */ 6949 if (enabled_tc == vsi->tc_config.enabled_tc && 6950 mode != TC_MQPRIO_MODE_CHANNEL) 6951 return 0; 6952 6953 /* Quiesce VSI queues */ 6954 i40e_quiesce_vsi(vsi); 6955 6956 if (!hw && !(pf->flags & I40E_FLAG_TC_MQPRIO)) 6957 i40e_remove_queue_channels(vsi); 6958 6959 /* Configure VSI for enabled TCs */ 6960 ret = i40e_vsi_config_tc(vsi, enabled_tc); 6961 if (ret) { 6962 netdev_info(netdev, "Failed configuring TC for VSI seid=%d\n", 6963 vsi->seid); 6964 need_reset = true; 6965 goto exit; 6966 } 6967 6968 if (pf->flags & I40E_FLAG_TC_MQPRIO) { 6969 if (vsi->mqprio_qopt.max_rate[0]) { 6970 u64 max_tx_rate = vsi->mqprio_qopt.max_rate[0]; 6971 6972 do_div(max_tx_rate, I40E_BW_MBPS_DIVISOR); 6973 ret = i40e_set_bw_limit(vsi, vsi->seid, max_tx_rate); 6974 if (!ret) { 6975 u64 credits = max_tx_rate; 6976 6977 do_div(credits, I40E_BW_CREDIT_DIVISOR); 6978 dev_dbg(&vsi->back->pdev->dev, 6979 "Set tx rate of %llu Mbps (count of 50Mbps %llu) for vsi->seid %u\n", 6980 max_tx_rate, 6981 credits, 6982 vsi->seid); 6983 } else { 6984 need_reset = true; 6985 goto exit; 6986 } 6987 } 6988 ret = i40e_configure_queue_channels(vsi); 6989 if (ret) { 6990 vsi->num_queue_pairs = old_queue_pairs; 6991 netdev_info(netdev, 6992 "Failed configuring queue channels\n"); 6993 need_reset = true; 6994 goto exit; 6995 } 6996 } 6997 6998 exit: 6999 /* Reset the configuration data to defaults, only TC0 is enabled */ 7000 if (need_reset) { 7001 i40e_vsi_set_default_tc_config(vsi); 7002 need_reset = false; 7003 } 7004 7005 /* Unquiesce VSI */ 7006 i40e_unquiesce_vsi(vsi); 7007 return ret; 7008 } 7009 7010 /** 7011 * i40e_set_cld_element - sets cloud filter element data 7012 * @filter: cloud filter rule 7013 * @cld: ptr to cloud filter element data 7014 * 7015 * This is helper function to copy data into cloud filter element 7016 **/ 7017 static inline void 7018 i40e_set_cld_element(struct i40e_cloud_filter *filter, 7019 struct i40e_aqc_cloud_filters_element_data *cld) 7020 { 7021 int i, j; 7022 u32 ipa; 7023 7024 memset(cld, 0, sizeof(*cld)); 7025 ether_addr_copy(cld->outer_mac, filter->dst_mac); 7026 ether_addr_copy(cld->inner_mac, filter->src_mac); 7027 7028 if (filter->n_proto != ETH_P_IP && filter->n_proto != ETH_P_IPV6) 7029 return; 7030 7031 if (filter->n_proto == ETH_P_IPV6) { 7032 #define IPV6_MAX_INDEX (ARRAY_SIZE(filter->dst_ipv6) - 1) 7033 for (i = 0, j = 0; i < ARRAY_SIZE(filter->dst_ipv6); 7034 i++, j += 2) { 7035 ipa = be32_to_cpu(filter->dst_ipv6[IPV6_MAX_INDEX - i]); 7036 ipa = cpu_to_le32(ipa); 7037 memcpy(&cld->ipaddr.raw_v6.data[j], &ipa, sizeof(ipa)); 7038 } 7039 } else { 7040 ipa = be32_to_cpu(filter->dst_ipv4); 7041 memcpy(&cld->ipaddr.v4.data, &ipa, sizeof(ipa)); 7042 } 7043 7044 cld->inner_vlan = cpu_to_le16(ntohs(filter->vlan_id)); 7045 7046 /* tenant_id is not supported by FW now, once the support is enabled 7047 * fill the cld->tenant_id with cpu_to_le32(filter->tenant_id) 7048 */ 7049 if (filter->tenant_id) 7050 return; 7051 } 7052 7053 /** 7054 * i40e_add_del_cloud_filter - Add/del cloud filter 7055 * @vsi: pointer to VSI 7056 * @filter: cloud filter rule 7057 * @add: if true, add, if false, delete 7058 * 7059 * Add or delete a cloud filter for a specific flow spec. 7060 * Returns 0 if the filter were successfully added. 7061 **/ 7062 int i40e_add_del_cloud_filter(struct i40e_vsi *vsi, 7063 struct i40e_cloud_filter *filter, bool add) 7064 { 7065 struct i40e_aqc_cloud_filters_element_data cld_filter; 7066 struct i40e_pf *pf = vsi->back; 7067 int ret; 7068 static const u16 flag_table[128] = { 7069 [I40E_CLOUD_FILTER_FLAGS_OMAC] = 7070 I40E_AQC_ADD_CLOUD_FILTER_OMAC, 7071 [I40E_CLOUD_FILTER_FLAGS_IMAC] = 7072 I40E_AQC_ADD_CLOUD_FILTER_IMAC, 7073 [I40E_CLOUD_FILTER_FLAGS_IMAC_IVLAN] = 7074 I40E_AQC_ADD_CLOUD_FILTER_IMAC_IVLAN, 7075 [I40E_CLOUD_FILTER_FLAGS_IMAC_TEN_ID] = 7076 I40E_AQC_ADD_CLOUD_FILTER_IMAC_TEN_ID, 7077 [I40E_CLOUD_FILTER_FLAGS_OMAC_TEN_ID_IMAC] = 7078 I40E_AQC_ADD_CLOUD_FILTER_OMAC_TEN_ID_IMAC, 7079 [I40E_CLOUD_FILTER_FLAGS_IMAC_IVLAN_TEN_ID] = 7080 I40E_AQC_ADD_CLOUD_FILTER_IMAC_IVLAN_TEN_ID, 7081 [I40E_CLOUD_FILTER_FLAGS_IIP] = 7082 I40E_AQC_ADD_CLOUD_FILTER_IIP, 7083 }; 7084 7085 if (filter->flags >= ARRAY_SIZE(flag_table)) 7086 return I40E_ERR_CONFIG; 7087 7088 /* copy element needed to add cloud filter from filter */ 7089 i40e_set_cld_element(filter, &cld_filter); 7090 7091 if (filter->tunnel_type != I40E_CLOUD_TNL_TYPE_NONE) 7092 cld_filter.flags = cpu_to_le16(filter->tunnel_type << 7093 I40E_AQC_ADD_CLOUD_TNL_TYPE_SHIFT); 7094 7095 if (filter->n_proto == ETH_P_IPV6) 7096 cld_filter.flags |= cpu_to_le16(flag_table[filter->flags] | 7097 I40E_AQC_ADD_CLOUD_FLAGS_IPV6); 7098 else 7099 cld_filter.flags |= cpu_to_le16(flag_table[filter->flags] | 7100 I40E_AQC_ADD_CLOUD_FLAGS_IPV4); 7101 7102 if (add) 7103 ret = i40e_aq_add_cloud_filters(&pf->hw, filter->seid, 7104 &cld_filter, 1); 7105 else 7106 ret = i40e_aq_rem_cloud_filters(&pf->hw, filter->seid, 7107 &cld_filter, 1); 7108 if (ret) 7109 dev_dbg(&pf->pdev->dev, 7110 "Failed to %s cloud filter using l4 port %u, err %d aq_err %d\n", 7111 add ? "add" : "delete", filter->dst_port, ret, 7112 pf->hw.aq.asq_last_status); 7113 else 7114 dev_info(&pf->pdev->dev, 7115 "%s cloud filter for VSI: %d\n", 7116 add ? "Added" : "Deleted", filter->seid); 7117 return ret; 7118 } 7119 7120 /** 7121 * i40e_add_del_cloud_filter_big_buf - Add/del cloud filter using big_buf 7122 * @vsi: pointer to VSI 7123 * @filter: cloud filter rule 7124 * @add: if true, add, if false, delete 7125 * 7126 * Add or delete a cloud filter for a specific flow spec using big buffer. 7127 * Returns 0 if the filter were successfully added. 7128 **/ 7129 int i40e_add_del_cloud_filter_big_buf(struct i40e_vsi *vsi, 7130 struct i40e_cloud_filter *filter, 7131 bool add) 7132 { 7133 struct i40e_aqc_cloud_filters_element_bb cld_filter; 7134 struct i40e_pf *pf = vsi->back; 7135 int ret; 7136 7137 /* Both (src/dst) valid mac_addr are not supported */ 7138 if ((is_valid_ether_addr(filter->dst_mac) && 7139 is_valid_ether_addr(filter->src_mac)) || 7140 (is_multicast_ether_addr(filter->dst_mac) && 7141 is_multicast_ether_addr(filter->src_mac))) 7142 return -EOPNOTSUPP; 7143 7144 /* Big buffer cloud filter needs 'L4 port' to be non-zero. Also, UDP 7145 * ports are not supported via big buffer now. 7146 */ 7147 if (!filter->dst_port || filter->ip_proto == IPPROTO_UDP) 7148 return -EOPNOTSUPP; 7149 7150 /* adding filter using src_port/src_ip is not supported at this stage */ 7151 if (filter->src_port || filter->src_ipv4 || 7152 !ipv6_addr_any(&filter->ip.v6.src_ip6)) 7153 return -EOPNOTSUPP; 7154 7155 /* copy element needed to add cloud filter from filter */ 7156 i40e_set_cld_element(filter, &cld_filter.element); 7157 7158 if (is_valid_ether_addr(filter->dst_mac) || 7159 is_valid_ether_addr(filter->src_mac) || 7160 is_multicast_ether_addr(filter->dst_mac) || 7161 is_multicast_ether_addr(filter->src_mac)) { 7162 /* MAC + IP : unsupported mode */ 7163 if (filter->dst_ipv4) 7164 return -EOPNOTSUPP; 7165 7166 /* since we validated that L4 port must be valid before 7167 * we get here, start with respective "flags" value 7168 * and update if vlan is present or not 7169 */ 7170 cld_filter.element.flags = 7171 cpu_to_le16(I40E_AQC_ADD_CLOUD_FILTER_MAC_PORT); 7172 7173 if (filter->vlan_id) { 7174 cld_filter.element.flags = 7175 cpu_to_le16(I40E_AQC_ADD_CLOUD_FILTER_MAC_VLAN_PORT); 7176 } 7177 7178 } else if (filter->dst_ipv4 || 7179 !ipv6_addr_any(&filter->ip.v6.dst_ip6)) { 7180 cld_filter.element.flags = 7181 cpu_to_le16(I40E_AQC_ADD_CLOUD_FILTER_IP_PORT); 7182 if (filter->n_proto == ETH_P_IPV6) 7183 cld_filter.element.flags |= 7184 cpu_to_le16(I40E_AQC_ADD_CLOUD_FLAGS_IPV6); 7185 else 7186 cld_filter.element.flags |= 7187 cpu_to_le16(I40E_AQC_ADD_CLOUD_FLAGS_IPV4); 7188 } else { 7189 dev_err(&pf->pdev->dev, 7190 "either mac or ip has to be valid for cloud filter\n"); 7191 return -EINVAL; 7192 } 7193 7194 /* Now copy L4 port in Byte 6..7 in general fields */ 7195 cld_filter.general_fields[I40E_AQC_ADD_CLOUD_FV_FLU_0X16_WORD0] = 7196 be16_to_cpu(filter->dst_port); 7197 7198 if (add) { 7199 /* Validate current device switch mode, change if necessary */ 7200 ret = i40e_validate_and_set_switch_mode(vsi); 7201 if (ret) { 7202 dev_err(&pf->pdev->dev, 7203 "failed to set switch mode, ret %d\n", 7204 ret); 7205 return ret; 7206 } 7207 7208 ret = i40e_aq_add_cloud_filters_bb(&pf->hw, filter->seid, 7209 &cld_filter, 1); 7210 } else { 7211 ret = i40e_aq_rem_cloud_filters_bb(&pf->hw, filter->seid, 7212 &cld_filter, 1); 7213 } 7214 7215 if (ret) 7216 dev_dbg(&pf->pdev->dev, 7217 "Failed to %s cloud filter(big buffer) err %d aq_err %d\n", 7218 add ? "add" : "delete", ret, pf->hw.aq.asq_last_status); 7219 else 7220 dev_info(&pf->pdev->dev, 7221 "%s cloud filter for VSI: %d, L4 port: %d\n", 7222 add ? "add" : "delete", filter->seid, 7223 ntohs(filter->dst_port)); 7224 return ret; 7225 } 7226 7227 /** 7228 * i40e_parse_cls_flower - Parse tc flower filters provided by kernel 7229 * @vsi: Pointer to VSI 7230 * @cls_flower: Pointer to struct tc_cls_flower_offload 7231 * @filter: Pointer to cloud filter structure 7232 * 7233 **/ 7234 static int i40e_parse_cls_flower(struct i40e_vsi *vsi, 7235 struct tc_cls_flower_offload *f, 7236 struct i40e_cloud_filter *filter) 7237 { 7238 struct flow_rule *rule = tc_cls_flower_offload_flow_rule(f); 7239 struct flow_dissector *dissector = rule->match.dissector; 7240 u16 n_proto_mask = 0, n_proto_key = 0, addr_type = 0; 7241 struct i40e_pf *pf = vsi->back; 7242 u8 field_flags = 0; 7243 7244 if (dissector->used_keys & 7245 ~(BIT(FLOW_DISSECTOR_KEY_CONTROL) | 7246 BIT(FLOW_DISSECTOR_KEY_BASIC) | 7247 BIT(FLOW_DISSECTOR_KEY_ETH_ADDRS) | 7248 BIT(FLOW_DISSECTOR_KEY_VLAN) | 7249 BIT(FLOW_DISSECTOR_KEY_IPV4_ADDRS) | 7250 BIT(FLOW_DISSECTOR_KEY_IPV6_ADDRS) | 7251 BIT(FLOW_DISSECTOR_KEY_PORTS) | 7252 BIT(FLOW_DISSECTOR_KEY_ENC_KEYID))) { 7253 dev_err(&pf->pdev->dev, "Unsupported key used: 0x%x\n", 7254 dissector->used_keys); 7255 return -EOPNOTSUPP; 7256 } 7257 7258 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ENC_KEYID)) { 7259 struct flow_match_enc_keyid match; 7260 7261 flow_rule_match_enc_keyid(rule, &match); 7262 if (match.mask->keyid != 0) 7263 field_flags |= I40E_CLOUD_FIELD_TEN_ID; 7264 7265 filter->tenant_id = be32_to_cpu(match.key->keyid); 7266 } 7267 7268 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_BASIC)) { 7269 struct flow_match_basic match; 7270 7271 flow_rule_match_basic(rule, &match); 7272 n_proto_key = ntohs(match.key->n_proto); 7273 n_proto_mask = ntohs(match.mask->n_proto); 7274 7275 if (n_proto_key == ETH_P_ALL) { 7276 n_proto_key = 0; 7277 n_proto_mask = 0; 7278 } 7279 filter->n_proto = n_proto_key & n_proto_mask; 7280 filter->ip_proto = match.key->ip_proto; 7281 } 7282 7283 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ETH_ADDRS)) { 7284 struct flow_match_eth_addrs match; 7285 7286 flow_rule_match_eth_addrs(rule, &match); 7287 7288 /* use is_broadcast and is_zero to check for all 0xf or 0 */ 7289 if (!is_zero_ether_addr(match.mask->dst)) { 7290 if (is_broadcast_ether_addr(match.mask->dst)) { 7291 field_flags |= I40E_CLOUD_FIELD_OMAC; 7292 } else { 7293 dev_err(&pf->pdev->dev, "Bad ether dest mask %pM\n", 7294 match.mask->dst); 7295 return I40E_ERR_CONFIG; 7296 } 7297 } 7298 7299 if (!is_zero_ether_addr(match.mask->src)) { 7300 if (is_broadcast_ether_addr(match.mask->src)) { 7301 field_flags |= I40E_CLOUD_FIELD_IMAC; 7302 } else { 7303 dev_err(&pf->pdev->dev, "Bad ether src mask %pM\n", 7304 match.mask->src); 7305 return I40E_ERR_CONFIG; 7306 } 7307 } 7308 ether_addr_copy(filter->dst_mac, match.key->dst); 7309 ether_addr_copy(filter->src_mac, match.key->src); 7310 } 7311 7312 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_VLAN)) { 7313 struct flow_match_vlan match; 7314 7315 flow_rule_match_vlan(rule, &match); 7316 if (match.mask->vlan_id) { 7317 if (match.mask->vlan_id == VLAN_VID_MASK) { 7318 field_flags |= I40E_CLOUD_FIELD_IVLAN; 7319 7320 } else { 7321 dev_err(&pf->pdev->dev, "Bad vlan mask 0x%04x\n", 7322 match.mask->vlan_id); 7323 return I40E_ERR_CONFIG; 7324 } 7325 } 7326 7327 filter->vlan_id = cpu_to_be16(match.key->vlan_id); 7328 } 7329 7330 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_CONTROL)) { 7331 struct flow_match_control match; 7332 7333 flow_rule_match_control(rule, &match); 7334 addr_type = match.key->addr_type; 7335 } 7336 7337 if (addr_type == FLOW_DISSECTOR_KEY_IPV4_ADDRS) { 7338 struct flow_match_ipv4_addrs match; 7339 7340 flow_rule_match_ipv4_addrs(rule, &match); 7341 if (match.mask->dst) { 7342 if (match.mask->dst == cpu_to_be32(0xffffffff)) { 7343 field_flags |= I40E_CLOUD_FIELD_IIP; 7344 } else { 7345 dev_err(&pf->pdev->dev, "Bad ip dst mask %pI4b\n", 7346 &match.mask->dst); 7347 return I40E_ERR_CONFIG; 7348 } 7349 } 7350 7351 if (match.mask->src) { 7352 if (match.mask->src == cpu_to_be32(0xffffffff)) { 7353 field_flags |= I40E_CLOUD_FIELD_IIP; 7354 } else { 7355 dev_err(&pf->pdev->dev, "Bad ip src mask %pI4b\n", 7356 &match.mask->src); 7357 return I40E_ERR_CONFIG; 7358 } 7359 } 7360 7361 if (field_flags & I40E_CLOUD_FIELD_TEN_ID) { 7362 dev_err(&pf->pdev->dev, "Tenant id not allowed for ip filter\n"); 7363 return I40E_ERR_CONFIG; 7364 } 7365 filter->dst_ipv4 = match.key->dst; 7366 filter->src_ipv4 = match.key->src; 7367 } 7368 7369 if (addr_type == FLOW_DISSECTOR_KEY_IPV6_ADDRS) { 7370 struct flow_match_ipv6_addrs match; 7371 7372 flow_rule_match_ipv6_addrs(rule, &match); 7373 7374 /* src and dest IPV6 address should not be LOOPBACK 7375 * (0:0:0:0:0:0:0:1), which can be represented as ::1 7376 */ 7377 if (ipv6_addr_loopback(&match.key->dst) || 7378 ipv6_addr_loopback(&match.key->src)) { 7379 dev_err(&pf->pdev->dev, 7380 "Bad ipv6, addr is LOOPBACK\n"); 7381 return I40E_ERR_CONFIG; 7382 } 7383 if (!ipv6_addr_any(&match.mask->dst) || 7384 !ipv6_addr_any(&match.mask->src)) 7385 field_flags |= I40E_CLOUD_FIELD_IIP; 7386 7387 memcpy(&filter->src_ipv6, &match.key->src.s6_addr32, 7388 sizeof(filter->src_ipv6)); 7389 memcpy(&filter->dst_ipv6, &match.key->dst.s6_addr32, 7390 sizeof(filter->dst_ipv6)); 7391 } 7392 7393 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_PORTS)) { 7394 struct flow_match_ports match; 7395 7396 flow_rule_match_ports(rule, &match); 7397 if (match.mask->src) { 7398 if (match.mask->src == cpu_to_be16(0xffff)) { 7399 field_flags |= I40E_CLOUD_FIELD_IIP; 7400 } else { 7401 dev_err(&pf->pdev->dev, "Bad src port mask 0x%04x\n", 7402 be16_to_cpu(match.mask->src)); 7403 return I40E_ERR_CONFIG; 7404 } 7405 } 7406 7407 if (match.mask->dst) { 7408 if (match.mask->dst == cpu_to_be16(0xffff)) { 7409 field_flags |= I40E_CLOUD_FIELD_IIP; 7410 } else { 7411 dev_err(&pf->pdev->dev, "Bad dst port mask 0x%04x\n", 7412 be16_to_cpu(match.mask->dst)); 7413 return I40E_ERR_CONFIG; 7414 } 7415 } 7416 7417 filter->dst_port = match.key->dst; 7418 filter->src_port = match.key->src; 7419 7420 switch (filter->ip_proto) { 7421 case IPPROTO_TCP: 7422 case IPPROTO_UDP: 7423 break; 7424 default: 7425 dev_err(&pf->pdev->dev, 7426 "Only UDP and TCP transport are supported\n"); 7427 return -EINVAL; 7428 } 7429 } 7430 filter->flags = field_flags; 7431 return 0; 7432 } 7433 7434 /** 7435 * i40e_handle_tclass: Forward to a traffic class on the device 7436 * @vsi: Pointer to VSI 7437 * @tc: traffic class index on the device 7438 * @filter: Pointer to cloud filter structure 7439 * 7440 **/ 7441 static int i40e_handle_tclass(struct i40e_vsi *vsi, u32 tc, 7442 struct i40e_cloud_filter *filter) 7443 { 7444 struct i40e_channel *ch, *ch_tmp; 7445 7446 /* direct to a traffic class on the same device */ 7447 if (tc == 0) { 7448 filter->seid = vsi->seid; 7449 return 0; 7450 } else if (vsi->tc_config.enabled_tc & BIT(tc)) { 7451 if (!filter->dst_port) { 7452 dev_err(&vsi->back->pdev->dev, 7453 "Specify destination port to direct to traffic class that is not default\n"); 7454 return -EINVAL; 7455 } 7456 if (list_empty(&vsi->ch_list)) 7457 return -EINVAL; 7458 list_for_each_entry_safe(ch, ch_tmp, &vsi->ch_list, 7459 list) { 7460 if (ch->seid == vsi->tc_seid_map[tc]) 7461 filter->seid = ch->seid; 7462 } 7463 return 0; 7464 } 7465 dev_err(&vsi->back->pdev->dev, "TC is not enabled\n"); 7466 return -EINVAL; 7467 } 7468 7469 /** 7470 * i40e_configure_clsflower - Configure tc flower filters 7471 * @vsi: Pointer to VSI 7472 * @cls_flower: Pointer to struct tc_cls_flower_offload 7473 * 7474 **/ 7475 static int i40e_configure_clsflower(struct i40e_vsi *vsi, 7476 struct tc_cls_flower_offload *cls_flower) 7477 { 7478 int tc = tc_classid_to_hwtc(vsi->netdev, cls_flower->classid); 7479 struct i40e_cloud_filter *filter = NULL; 7480 struct i40e_pf *pf = vsi->back; 7481 int err = 0; 7482 7483 if (tc < 0) { 7484 dev_err(&vsi->back->pdev->dev, "Invalid traffic class\n"); 7485 return -EOPNOTSUPP; 7486 } 7487 7488 if (test_bit(__I40E_RESET_RECOVERY_PENDING, pf->state) || 7489 test_bit(__I40E_RESET_INTR_RECEIVED, pf->state)) 7490 return -EBUSY; 7491 7492 if (pf->fdir_pf_active_filters || 7493 (!hlist_empty(&pf->fdir_filter_list))) { 7494 dev_err(&vsi->back->pdev->dev, 7495 "Flow Director Sideband filters exists, turn ntuple off to configure cloud filters\n"); 7496 return -EINVAL; 7497 } 7498 7499 if (vsi->back->flags & I40E_FLAG_FD_SB_ENABLED) { 7500 dev_err(&vsi->back->pdev->dev, 7501 "Disable Flow Director Sideband, configuring Cloud filters via tc-flower\n"); 7502 vsi->back->flags &= ~I40E_FLAG_FD_SB_ENABLED; 7503 vsi->back->flags |= I40E_FLAG_FD_SB_TO_CLOUD_FILTER; 7504 } 7505 7506 filter = kzalloc(sizeof(*filter), GFP_KERNEL); 7507 if (!filter) 7508 return -ENOMEM; 7509 7510 filter->cookie = cls_flower->cookie; 7511 7512 err = i40e_parse_cls_flower(vsi, cls_flower, filter); 7513 if (err < 0) 7514 goto err; 7515 7516 err = i40e_handle_tclass(vsi, tc, filter); 7517 if (err < 0) 7518 goto err; 7519 7520 /* Add cloud filter */ 7521 if (filter->dst_port) 7522 err = i40e_add_del_cloud_filter_big_buf(vsi, filter, true); 7523 else 7524 err = i40e_add_del_cloud_filter(vsi, filter, true); 7525 7526 if (err) { 7527 dev_err(&pf->pdev->dev, 7528 "Failed to add cloud filter, err %s\n", 7529 i40e_stat_str(&pf->hw, err)); 7530 goto err; 7531 } 7532 7533 /* add filter to the ordered list */ 7534 INIT_HLIST_NODE(&filter->cloud_node); 7535 7536 hlist_add_head(&filter->cloud_node, &pf->cloud_filter_list); 7537 7538 pf->num_cloud_filters++; 7539 7540 return err; 7541 err: 7542 kfree(filter); 7543 return err; 7544 } 7545 7546 /** 7547 * i40e_find_cloud_filter - Find the could filter in the list 7548 * @vsi: Pointer to VSI 7549 * @cookie: filter specific cookie 7550 * 7551 **/ 7552 static struct i40e_cloud_filter *i40e_find_cloud_filter(struct i40e_vsi *vsi, 7553 unsigned long *cookie) 7554 { 7555 struct i40e_cloud_filter *filter = NULL; 7556 struct hlist_node *node2; 7557 7558 hlist_for_each_entry_safe(filter, node2, 7559 &vsi->back->cloud_filter_list, cloud_node) 7560 if (!memcmp(cookie, &filter->cookie, sizeof(filter->cookie))) 7561 return filter; 7562 return NULL; 7563 } 7564 7565 /** 7566 * i40e_delete_clsflower - Remove tc flower filters 7567 * @vsi: Pointer to VSI 7568 * @cls_flower: Pointer to struct tc_cls_flower_offload 7569 * 7570 **/ 7571 static int i40e_delete_clsflower(struct i40e_vsi *vsi, 7572 struct tc_cls_flower_offload *cls_flower) 7573 { 7574 struct i40e_cloud_filter *filter = NULL; 7575 struct i40e_pf *pf = vsi->back; 7576 int err = 0; 7577 7578 filter = i40e_find_cloud_filter(vsi, &cls_flower->cookie); 7579 7580 if (!filter) 7581 return -EINVAL; 7582 7583 hash_del(&filter->cloud_node); 7584 7585 if (filter->dst_port) 7586 err = i40e_add_del_cloud_filter_big_buf(vsi, filter, false); 7587 else 7588 err = i40e_add_del_cloud_filter(vsi, filter, false); 7589 7590 kfree(filter); 7591 if (err) { 7592 dev_err(&pf->pdev->dev, 7593 "Failed to delete cloud filter, err %s\n", 7594 i40e_stat_str(&pf->hw, err)); 7595 return i40e_aq_rc_to_posix(err, pf->hw.aq.asq_last_status); 7596 } 7597 7598 pf->num_cloud_filters--; 7599 if (!pf->num_cloud_filters) 7600 if ((pf->flags & I40E_FLAG_FD_SB_TO_CLOUD_FILTER) && 7601 !(pf->flags & I40E_FLAG_FD_SB_INACTIVE)) { 7602 pf->flags |= I40E_FLAG_FD_SB_ENABLED; 7603 pf->flags &= ~I40E_FLAG_FD_SB_TO_CLOUD_FILTER; 7604 pf->flags &= ~I40E_FLAG_FD_SB_INACTIVE; 7605 } 7606 return 0; 7607 } 7608 7609 /** 7610 * i40e_setup_tc_cls_flower - flower classifier offloads 7611 * @netdev: net device to configure 7612 * @type_data: offload data 7613 **/ 7614 static int i40e_setup_tc_cls_flower(struct i40e_netdev_priv *np, 7615 struct tc_cls_flower_offload *cls_flower) 7616 { 7617 struct i40e_vsi *vsi = np->vsi; 7618 7619 switch (cls_flower->command) { 7620 case TC_CLSFLOWER_REPLACE: 7621 return i40e_configure_clsflower(vsi, cls_flower); 7622 case TC_CLSFLOWER_DESTROY: 7623 return i40e_delete_clsflower(vsi, cls_flower); 7624 case TC_CLSFLOWER_STATS: 7625 return -EOPNOTSUPP; 7626 default: 7627 return -EOPNOTSUPP; 7628 } 7629 } 7630 7631 static int i40e_setup_tc_block_cb(enum tc_setup_type type, void *type_data, 7632 void *cb_priv) 7633 { 7634 struct i40e_netdev_priv *np = cb_priv; 7635 7636 if (!tc_cls_can_offload_and_chain0(np->vsi->netdev, type_data)) 7637 return -EOPNOTSUPP; 7638 7639 switch (type) { 7640 case TC_SETUP_CLSFLOWER: 7641 return i40e_setup_tc_cls_flower(np, type_data); 7642 7643 default: 7644 return -EOPNOTSUPP; 7645 } 7646 } 7647 7648 static int i40e_setup_tc_block(struct net_device *dev, 7649 struct tc_block_offload *f) 7650 { 7651 struct i40e_netdev_priv *np = netdev_priv(dev); 7652 7653 if (f->binder_type != TCF_BLOCK_BINDER_TYPE_CLSACT_INGRESS) 7654 return -EOPNOTSUPP; 7655 7656 switch (f->command) { 7657 case TC_BLOCK_BIND: 7658 return tcf_block_cb_register(f->block, i40e_setup_tc_block_cb, 7659 np, np, f->extack); 7660 case TC_BLOCK_UNBIND: 7661 tcf_block_cb_unregister(f->block, i40e_setup_tc_block_cb, np); 7662 return 0; 7663 default: 7664 return -EOPNOTSUPP; 7665 } 7666 } 7667 7668 static int __i40e_setup_tc(struct net_device *netdev, enum tc_setup_type type, 7669 void *type_data) 7670 { 7671 switch (type) { 7672 case TC_SETUP_QDISC_MQPRIO: 7673 return i40e_setup_tc(netdev, type_data); 7674 case TC_SETUP_BLOCK: 7675 return i40e_setup_tc_block(netdev, type_data); 7676 default: 7677 return -EOPNOTSUPP; 7678 } 7679 } 7680 7681 /** 7682 * i40e_open - Called when a network interface is made active 7683 * @netdev: network interface device structure 7684 * 7685 * The open entry point is called when a network interface is made 7686 * active by the system (IFF_UP). At this point all resources needed 7687 * for transmit and receive operations are allocated, the interrupt 7688 * handler is registered with the OS, the netdev watchdog subtask is 7689 * enabled, and the stack is notified that the interface is ready. 7690 * 7691 * Returns 0 on success, negative value on failure 7692 **/ 7693 int i40e_open(struct net_device *netdev) 7694 { 7695 struct i40e_netdev_priv *np = netdev_priv(netdev); 7696 struct i40e_vsi *vsi = np->vsi; 7697 struct i40e_pf *pf = vsi->back; 7698 int err; 7699 7700 /* disallow open during test or if eeprom is broken */ 7701 if (test_bit(__I40E_TESTING, pf->state) || 7702 test_bit(__I40E_BAD_EEPROM, pf->state)) 7703 return -EBUSY; 7704 7705 netif_carrier_off(netdev); 7706 7707 if (i40e_force_link_state(pf, true)) 7708 return -EAGAIN; 7709 7710 err = i40e_vsi_open(vsi); 7711 if (err) 7712 return err; 7713 7714 /* configure global TSO hardware offload settings */ 7715 wr32(&pf->hw, I40E_GLLAN_TSOMSK_F, be32_to_cpu(TCP_FLAG_PSH | 7716 TCP_FLAG_FIN) >> 16); 7717 wr32(&pf->hw, I40E_GLLAN_TSOMSK_M, be32_to_cpu(TCP_FLAG_PSH | 7718 TCP_FLAG_FIN | 7719 TCP_FLAG_CWR) >> 16); 7720 wr32(&pf->hw, I40E_GLLAN_TSOMSK_L, be32_to_cpu(TCP_FLAG_CWR) >> 16); 7721 7722 udp_tunnel_get_rx_info(netdev); 7723 7724 return 0; 7725 } 7726 7727 /** 7728 * i40e_vsi_open - 7729 * @vsi: the VSI to open 7730 * 7731 * Finish initialization of the VSI. 7732 * 7733 * Returns 0 on success, negative value on failure 7734 * 7735 * Note: expects to be called while under rtnl_lock() 7736 **/ 7737 int i40e_vsi_open(struct i40e_vsi *vsi) 7738 { 7739 struct i40e_pf *pf = vsi->back; 7740 char int_name[I40E_INT_NAME_STR_LEN]; 7741 int err; 7742 7743 /* allocate descriptors */ 7744 err = i40e_vsi_setup_tx_resources(vsi); 7745 if (err) 7746 goto err_setup_tx; 7747 err = i40e_vsi_setup_rx_resources(vsi); 7748 if (err) 7749 goto err_setup_rx; 7750 7751 err = i40e_vsi_configure(vsi); 7752 if (err) 7753 goto err_setup_rx; 7754 7755 if (vsi->netdev) { 7756 snprintf(int_name, sizeof(int_name) - 1, "%s-%s", 7757 dev_driver_string(&pf->pdev->dev), vsi->netdev->name); 7758 err = i40e_vsi_request_irq(vsi, int_name); 7759 if (err) 7760 goto err_setup_rx; 7761 7762 /* Notify the stack of the actual queue counts. */ 7763 err = netif_set_real_num_tx_queues(vsi->netdev, 7764 vsi->num_queue_pairs); 7765 if (err) 7766 goto err_set_queues; 7767 7768 err = netif_set_real_num_rx_queues(vsi->netdev, 7769 vsi->num_queue_pairs); 7770 if (err) 7771 goto err_set_queues; 7772 7773 } else if (vsi->type == I40E_VSI_FDIR) { 7774 snprintf(int_name, sizeof(int_name) - 1, "%s-%s:fdir", 7775 dev_driver_string(&pf->pdev->dev), 7776 dev_name(&pf->pdev->dev)); 7777 err = i40e_vsi_request_irq(vsi, int_name); 7778 7779 } else { 7780 err = -EINVAL; 7781 goto err_setup_rx; 7782 } 7783 7784 err = i40e_up_complete(vsi); 7785 if (err) 7786 goto err_up_complete; 7787 7788 return 0; 7789 7790 err_up_complete: 7791 i40e_down(vsi); 7792 err_set_queues: 7793 i40e_vsi_free_irq(vsi); 7794 err_setup_rx: 7795 i40e_vsi_free_rx_resources(vsi); 7796 err_setup_tx: 7797 i40e_vsi_free_tx_resources(vsi); 7798 if (vsi == pf->vsi[pf->lan_vsi]) 7799 i40e_do_reset(pf, I40E_PF_RESET_FLAG, true); 7800 7801 return err; 7802 } 7803 7804 /** 7805 * i40e_fdir_filter_exit - Cleans up the Flow Director accounting 7806 * @pf: Pointer to PF 7807 * 7808 * This function destroys the hlist where all the Flow Director 7809 * filters were saved. 7810 **/ 7811 static void i40e_fdir_filter_exit(struct i40e_pf *pf) 7812 { 7813 struct i40e_fdir_filter *filter; 7814 struct i40e_flex_pit *pit_entry, *tmp; 7815 struct hlist_node *node2; 7816 7817 hlist_for_each_entry_safe(filter, node2, 7818 &pf->fdir_filter_list, fdir_node) { 7819 hlist_del(&filter->fdir_node); 7820 kfree(filter); 7821 } 7822 7823 list_for_each_entry_safe(pit_entry, tmp, &pf->l3_flex_pit_list, list) { 7824 list_del(&pit_entry->list); 7825 kfree(pit_entry); 7826 } 7827 INIT_LIST_HEAD(&pf->l3_flex_pit_list); 7828 7829 list_for_each_entry_safe(pit_entry, tmp, &pf->l4_flex_pit_list, list) { 7830 list_del(&pit_entry->list); 7831 kfree(pit_entry); 7832 } 7833 INIT_LIST_HEAD(&pf->l4_flex_pit_list); 7834 7835 pf->fdir_pf_active_filters = 0; 7836 pf->fd_tcp4_filter_cnt = 0; 7837 pf->fd_udp4_filter_cnt = 0; 7838 pf->fd_sctp4_filter_cnt = 0; 7839 pf->fd_ip4_filter_cnt = 0; 7840 7841 /* Reprogram the default input set for TCP/IPv4 */ 7842 i40e_write_fd_input_set(pf, I40E_FILTER_PCTYPE_NONF_IPV4_TCP, 7843 I40E_L3_SRC_MASK | I40E_L3_DST_MASK | 7844 I40E_L4_SRC_MASK | I40E_L4_DST_MASK); 7845 7846 /* Reprogram the default input set for UDP/IPv4 */ 7847 i40e_write_fd_input_set(pf, I40E_FILTER_PCTYPE_NONF_IPV4_UDP, 7848 I40E_L3_SRC_MASK | I40E_L3_DST_MASK | 7849 I40E_L4_SRC_MASK | I40E_L4_DST_MASK); 7850 7851 /* Reprogram the default input set for SCTP/IPv4 */ 7852 i40e_write_fd_input_set(pf, I40E_FILTER_PCTYPE_NONF_IPV4_SCTP, 7853 I40E_L3_SRC_MASK | I40E_L3_DST_MASK | 7854 I40E_L4_SRC_MASK | I40E_L4_DST_MASK); 7855 7856 /* Reprogram the default input set for Other/IPv4 */ 7857 i40e_write_fd_input_set(pf, I40E_FILTER_PCTYPE_NONF_IPV4_OTHER, 7858 I40E_L3_SRC_MASK | I40E_L3_DST_MASK); 7859 7860 i40e_write_fd_input_set(pf, I40E_FILTER_PCTYPE_FRAG_IPV4, 7861 I40E_L3_SRC_MASK | I40E_L3_DST_MASK); 7862 } 7863 7864 /** 7865 * i40e_cloud_filter_exit - Cleans up the cloud filters 7866 * @pf: Pointer to PF 7867 * 7868 * This function destroys the hlist where all the cloud filters 7869 * were saved. 7870 **/ 7871 static void i40e_cloud_filter_exit(struct i40e_pf *pf) 7872 { 7873 struct i40e_cloud_filter *cfilter; 7874 struct hlist_node *node; 7875 7876 hlist_for_each_entry_safe(cfilter, node, 7877 &pf->cloud_filter_list, cloud_node) { 7878 hlist_del(&cfilter->cloud_node); 7879 kfree(cfilter); 7880 } 7881 pf->num_cloud_filters = 0; 7882 7883 if ((pf->flags & I40E_FLAG_FD_SB_TO_CLOUD_FILTER) && 7884 !(pf->flags & I40E_FLAG_FD_SB_INACTIVE)) { 7885 pf->flags |= I40E_FLAG_FD_SB_ENABLED; 7886 pf->flags &= ~I40E_FLAG_FD_SB_TO_CLOUD_FILTER; 7887 pf->flags &= ~I40E_FLAG_FD_SB_INACTIVE; 7888 } 7889 } 7890 7891 /** 7892 * i40e_close - Disables a network interface 7893 * @netdev: network interface device structure 7894 * 7895 * The close entry point is called when an interface is de-activated 7896 * by the OS. The hardware is still under the driver's control, but 7897 * this netdev interface is disabled. 7898 * 7899 * Returns 0, this is not allowed to fail 7900 **/ 7901 int i40e_close(struct net_device *netdev) 7902 { 7903 struct i40e_netdev_priv *np = netdev_priv(netdev); 7904 struct i40e_vsi *vsi = np->vsi; 7905 7906 i40e_vsi_close(vsi); 7907 7908 return 0; 7909 } 7910 7911 /** 7912 * i40e_do_reset - Start a PF or Core Reset sequence 7913 * @pf: board private structure 7914 * @reset_flags: which reset is requested 7915 * @lock_acquired: indicates whether or not the lock has been acquired 7916 * before this function was called. 7917 * 7918 * The essential difference in resets is that the PF Reset 7919 * doesn't clear the packet buffers, doesn't reset the PE 7920 * firmware, and doesn't bother the other PFs on the chip. 7921 **/ 7922 void i40e_do_reset(struct i40e_pf *pf, u32 reset_flags, bool lock_acquired) 7923 { 7924 u32 val; 7925 7926 WARN_ON(in_interrupt()); 7927 7928 7929 /* do the biggest reset indicated */ 7930 if (reset_flags & BIT_ULL(__I40E_GLOBAL_RESET_REQUESTED)) { 7931 7932 /* Request a Global Reset 7933 * 7934 * This will start the chip's countdown to the actual full 7935 * chip reset event, and a warning interrupt to be sent 7936 * to all PFs, including the requestor. Our handler 7937 * for the warning interrupt will deal with the shutdown 7938 * and recovery of the switch setup. 7939 */ 7940 dev_dbg(&pf->pdev->dev, "GlobalR requested\n"); 7941 val = rd32(&pf->hw, I40E_GLGEN_RTRIG); 7942 val |= I40E_GLGEN_RTRIG_GLOBR_MASK; 7943 wr32(&pf->hw, I40E_GLGEN_RTRIG, val); 7944 7945 } else if (reset_flags & BIT_ULL(__I40E_CORE_RESET_REQUESTED)) { 7946 7947 /* Request a Core Reset 7948 * 7949 * Same as Global Reset, except does *not* include the MAC/PHY 7950 */ 7951 dev_dbg(&pf->pdev->dev, "CoreR requested\n"); 7952 val = rd32(&pf->hw, I40E_GLGEN_RTRIG); 7953 val |= I40E_GLGEN_RTRIG_CORER_MASK; 7954 wr32(&pf->hw, I40E_GLGEN_RTRIG, val); 7955 i40e_flush(&pf->hw); 7956 7957 } else if (reset_flags & I40E_PF_RESET_FLAG) { 7958 7959 /* Request a PF Reset 7960 * 7961 * Resets only the PF-specific registers 7962 * 7963 * This goes directly to the tear-down and rebuild of 7964 * the switch, since we need to do all the recovery as 7965 * for the Core Reset. 7966 */ 7967 dev_dbg(&pf->pdev->dev, "PFR requested\n"); 7968 i40e_handle_reset_warning(pf, lock_acquired); 7969 7970 } else if (reset_flags & BIT_ULL(__I40E_REINIT_REQUESTED)) { 7971 int v; 7972 7973 /* Find the VSI(s) that requested a re-init */ 7974 dev_info(&pf->pdev->dev, 7975 "VSI reinit requested\n"); 7976 for (v = 0; v < pf->num_alloc_vsi; v++) { 7977 struct i40e_vsi *vsi = pf->vsi[v]; 7978 7979 if (vsi != NULL && 7980 test_and_clear_bit(__I40E_VSI_REINIT_REQUESTED, 7981 vsi->state)) 7982 i40e_vsi_reinit_locked(pf->vsi[v]); 7983 } 7984 } else if (reset_flags & BIT_ULL(__I40E_DOWN_REQUESTED)) { 7985 int v; 7986 7987 /* Find the VSI(s) that needs to be brought down */ 7988 dev_info(&pf->pdev->dev, "VSI down requested\n"); 7989 for (v = 0; v < pf->num_alloc_vsi; v++) { 7990 struct i40e_vsi *vsi = pf->vsi[v]; 7991 7992 if (vsi != NULL && 7993 test_and_clear_bit(__I40E_VSI_DOWN_REQUESTED, 7994 vsi->state)) { 7995 set_bit(__I40E_VSI_DOWN, vsi->state); 7996 i40e_down(vsi); 7997 } 7998 } 7999 } else { 8000 dev_info(&pf->pdev->dev, 8001 "bad reset request 0x%08x\n", reset_flags); 8002 } 8003 } 8004 8005 #ifdef CONFIG_I40E_DCB 8006 /** 8007 * i40e_dcb_need_reconfig - Check if DCB needs reconfig 8008 * @pf: board private structure 8009 * @old_cfg: current DCB config 8010 * @new_cfg: new DCB config 8011 **/ 8012 bool i40e_dcb_need_reconfig(struct i40e_pf *pf, 8013 struct i40e_dcbx_config *old_cfg, 8014 struct i40e_dcbx_config *new_cfg) 8015 { 8016 bool need_reconfig = false; 8017 8018 /* Check if ETS configuration has changed */ 8019 if (memcmp(&new_cfg->etscfg, 8020 &old_cfg->etscfg, 8021 sizeof(new_cfg->etscfg))) { 8022 /* If Priority Table has changed reconfig is needed */ 8023 if (memcmp(&new_cfg->etscfg.prioritytable, 8024 &old_cfg->etscfg.prioritytable, 8025 sizeof(new_cfg->etscfg.prioritytable))) { 8026 need_reconfig = true; 8027 dev_dbg(&pf->pdev->dev, "ETS UP2TC changed.\n"); 8028 } 8029 8030 if (memcmp(&new_cfg->etscfg.tcbwtable, 8031 &old_cfg->etscfg.tcbwtable, 8032 sizeof(new_cfg->etscfg.tcbwtable))) 8033 dev_dbg(&pf->pdev->dev, "ETS TC BW Table changed.\n"); 8034 8035 if (memcmp(&new_cfg->etscfg.tsatable, 8036 &old_cfg->etscfg.tsatable, 8037 sizeof(new_cfg->etscfg.tsatable))) 8038 dev_dbg(&pf->pdev->dev, "ETS TSA Table changed.\n"); 8039 } 8040 8041 /* Check if PFC configuration has changed */ 8042 if (memcmp(&new_cfg->pfc, 8043 &old_cfg->pfc, 8044 sizeof(new_cfg->pfc))) { 8045 need_reconfig = true; 8046 dev_dbg(&pf->pdev->dev, "PFC config change detected.\n"); 8047 } 8048 8049 /* Check if APP Table has changed */ 8050 if (memcmp(&new_cfg->app, 8051 &old_cfg->app, 8052 sizeof(new_cfg->app))) { 8053 need_reconfig = true; 8054 dev_dbg(&pf->pdev->dev, "APP Table change detected.\n"); 8055 } 8056 8057 dev_dbg(&pf->pdev->dev, "dcb need_reconfig=%d\n", need_reconfig); 8058 return need_reconfig; 8059 } 8060 8061 /** 8062 * i40e_handle_lldp_event - Handle LLDP Change MIB event 8063 * @pf: board private structure 8064 * @e: event info posted on ARQ 8065 **/ 8066 static int i40e_handle_lldp_event(struct i40e_pf *pf, 8067 struct i40e_arq_event_info *e) 8068 { 8069 struct i40e_aqc_lldp_get_mib *mib = 8070 (struct i40e_aqc_lldp_get_mib *)&e->desc.params.raw; 8071 struct i40e_hw *hw = &pf->hw; 8072 struct i40e_dcbx_config tmp_dcbx_cfg; 8073 bool need_reconfig = false; 8074 int ret = 0; 8075 u8 type; 8076 8077 /* Not DCB capable or capability disabled */ 8078 if (!(pf->flags & I40E_FLAG_DCB_CAPABLE)) 8079 return ret; 8080 8081 /* Ignore if event is not for Nearest Bridge */ 8082 type = ((mib->type >> I40E_AQ_LLDP_BRIDGE_TYPE_SHIFT) 8083 & I40E_AQ_LLDP_BRIDGE_TYPE_MASK); 8084 dev_dbg(&pf->pdev->dev, "LLDP event mib bridge type 0x%x\n", type); 8085 if (type != I40E_AQ_LLDP_BRIDGE_TYPE_NEAREST_BRIDGE) 8086 return ret; 8087 8088 /* Check MIB Type and return if event for Remote MIB update */ 8089 type = mib->type & I40E_AQ_LLDP_MIB_TYPE_MASK; 8090 dev_dbg(&pf->pdev->dev, 8091 "LLDP event mib type %s\n", type ? "remote" : "local"); 8092 if (type == I40E_AQ_LLDP_MIB_REMOTE) { 8093 /* Update the remote cached instance and return */ 8094 ret = i40e_aq_get_dcb_config(hw, I40E_AQ_LLDP_MIB_REMOTE, 8095 I40E_AQ_LLDP_BRIDGE_TYPE_NEAREST_BRIDGE, 8096 &hw->remote_dcbx_config); 8097 goto exit; 8098 } 8099 8100 /* Store the old configuration */ 8101 tmp_dcbx_cfg = hw->local_dcbx_config; 8102 8103 /* Reset the old DCBx configuration data */ 8104 memset(&hw->local_dcbx_config, 0, sizeof(hw->local_dcbx_config)); 8105 /* Get updated DCBX data from firmware */ 8106 ret = i40e_get_dcb_config(&pf->hw); 8107 if (ret) { 8108 dev_info(&pf->pdev->dev, 8109 "Failed querying DCB configuration data from firmware, err %s aq_err %s\n", 8110 i40e_stat_str(&pf->hw, ret), 8111 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 8112 goto exit; 8113 } 8114 8115 /* No change detected in DCBX configs */ 8116 if (!memcmp(&tmp_dcbx_cfg, &hw->local_dcbx_config, 8117 sizeof(tmp_dcbx_cfg))) { 8118 dev_dbg(&pf->pdev->dev, "No change detected in DCBX configuration.\n"); 8119 goto exit; 8120 } 8121 8122 need_reconfig = i40e_dcb_need_reconfig(pf, &tmp_dcbx_cfg, 8123 &hw->local_dcbx_config); 8124 8125 i40e_dcbnl_flush_apps(pf, &tmp_dcbx_cfg, &hw->local_dcbx_config); 8126 8127 if (!need_reconfig) 8128 goto exit; 8129 8130 /* Enable DCB tagging only when more than one TC */ 8131 if (i40e_dcb_get_num_tc(&hw->local_dcbx_config) > 1) 8132 pf->flags |= I40E_FLAG_DCB_ENABLED; 8133 else 8134 pf->flags &= ~I40E_FLAG_DCB_ENABLED; 8135 8136 set_bit(__I40E_PORT_SUSPENDED, pf->state); 8137 /* Reconfiguration needed quiesce all VSIs */ 8138 i40e_pf_quiesce_all_vsi(pf); 8139 8140 /* Changes in configuration update VEB/VSI */ 8141 i40e_dcb_reconfigure(pf); 8142 8143 ret = i40e_resume_port_tx(pf); 8144 8145 clear_bit(__I40E_PORT_SUSPENDED, pf->state); 8146 /* In case of error no point in resuming VSIs */ 8147 if (ret) 8148 goto exit; 8149 8150 /* Wait for the PF's queues to be disabled */ 8151 ret = i40e_pf_wait_queues_disabled(pf); 8152 if (ret) { 8153 /* Schedule PF reset to recover */ 8154 set_bit(__I40E_PF_RESET_REQUESTED, pf->state); 8155 i40e_service_event_schedule(pf); 8156 } else { 8157 i40e_pf_unquiesce_all_vsi(pf); 8158 set_bit(__I40E_CLIENT_SERVICE_REQUESTED, pf->state); 8159 set_bit(__I40E_CLIENT_L2_CHANGE, pf->state); 8160 } 8161 8162 exit: 8163 return ret; 8164 } 8165 #endif /* CONFIG_I40E_DCB */ 8166 8167 /** 8168 * i40e_do_reset_safe - Protected reset path for userland calls. 8169 * @pf: board private structure 8170 * @reset_flags: which reset is requested 8171 * 8172 **/ 8173 void i40e_do_reset_safe(struct i40e_pf *pf, u32 reset_flags) 8174 { 8175 rtnl_lock(); 8176 i40e_do_reset(pf, reset_flags, true); 8177 rtnl_unlock(); 8178 } 8179 8180 /** 8181 * i40e_handle_lan_overflow_event - Handler for LAN queue overflow event 8182 * @pf: board private structure 8183 * @e: event info posted on ARQ 8184 * 8185 * Handler for LAN Queue Overflow Event generated by the firmware for PF 8186 * and VF queues 8187 **/ 8188 static void i40e_handle_lan_overflow_event(struct i40e_pf *pf, 8189 struct i40e_arq_event_info *e) 8190 { 8191 struct i40e_aqc_lan_overflow *data = 8192 (struct i40e_aqc_lan_overflow *)&e->desc.params.raw; 8193 u32 queue = le32_to_cpu(data->prtdcb_rupto); 8194 u32 qtx_ctl = le32_to_cpu(data->otx_ctl); 8195 struct i40e_hw *hw = &pf->hw; 8196 struct i40e_vf *vf; 8197 u16 vf_id; 8198 8199 dev_dbg(&pf->pdev->dev, "overflow Rx Queue Number = %d QTX_CTL=0x%08x\n", 8200 queue, qtx_ctl); 8201 8202 /* Queue belongs to VF, find the VF and issue VF reset */ 8203 if (((qtx_ctl & I40E_QTX_CTL_PFVF_Q_MASK) 8204 >> I40E_QTX_CTL_PFVF_Q_SHIFT) == I40E_QTX_CTL_VF_QUEUE) { 8205 vf_id = (u16)((qtx_ctl & I40E_QTX_CTL_VFVM_INDX_MASK) 8206 >> I40E_QTX_CTL_VFVM_INDX_SHIFT); 8207 vf_id -= hw->func_caps.vf_base_id; 8208 vf = &pf->vf[vf_id]; 8209 i40e_vc_notify_vf_reset(vf); 8210 /* Allow VF to process pending reset notification */ 8211 msleep(20); 8212 i40e_reset_vf(vf, false); 8213 } 8214 } 8215 8216 /** 8217 * i40e_get_cur_guaranteed_fd_count - Get the consumed guaranteed FD filters 8218 * @pf: board private structure 8219 **/ 8220 u32 i40e_get_cur_guaranteed_fd_count(struct i40e_pf *pf) 8221 { 8222 u32 val, fcnt_prog; 8223 8224 val = rd32(&pf->hw, I40E_PFQF_FDSTAT); 8225 fcnt_prog = (val & I40E_PFQF_FDSTAT_GUARANT_CNT_MASK); 8226 return fcnt_prog; 8227 } 8228 8229 /** 8230 * i40e_get_current_fd_count - Get total FD filters programmed for this PF 8231 * @pf: board private structure 8232 **/ 8233 u32 i40e_get_current_fd_count(struct i40e_pf *pf) 8234 { 8235 u32 val, fcnt_prog; 8236 8237 val = rd32(&pf->hw, I40E_PFQF_FDSTAT); 8238 fcnt_prog = (val & I40E_PFQF_FDSTAT_GUARANT_CNT_MASK) + 8239 ((val & I40E_PFQF_FDSTAT_BEST_CNT_MASK) >> 8240 I40E_PFQF_FDSTAT_BEST_CNT_SHIFT); 8241 return fcnt_prog; 8242 } 8243 8244 /** 8245 * i40e_get_global_fd_count - Get total FD filters programmed on device 8246 * @pf: board private structure 8247 **/ 8248 u32 i40e_get_global_fd_count(struct i40e_pf *pf) 8249 { 8250 u32 val, fcnt_prog; 8251 8252 val = rd32(&pf->hw, I40E_GLQF_FDCNT_0); 8253 fcnt_prog = (val & I40E_GLQF_FDCNT_0_GUARANT_CNT_MASK) + 8254 ((val & I40E_GLQF_FDCNT_0_BESTCNT_MASK) >> 8255 I40E_GLQF_FDCNT_0_BESTCNT_SHIFT); 8256 return fcnt_prog; 8257 } 8258 8259 /** 8260 * i40e_reenable_fdir_sb - Restore FDir SB capability 8261 * @pf: board private structure 8262 **/ 8263 static void i40e_reenable_fdir_sb(struct i40e_pf *pf) 8264 { 8265 if (test_and_clear_bit(__I40E_FD_SB_AUTO_DISABLED, pf->state)) 8266 if ((pf->flags & I40E_FLAG_FD_SB_ENABLED) && 8267 (I40E_DEBUG_FD & pf->hw.debug_mask)) 8268 dev_info(&pf->pdev->dev, "FD Sideband/ntuple is being enabled since we have space in the table now\n"); 8269 } 8270 8271 /** 8272 * i40e_reenable_fdir_atr - Restore FDir ATR capability 8273 * @pf: board private structure 8274 **/ 8275 static void i40e_reenable_fdir_atr(struct i40e_pf *pf) 8276 { 8277 if (test_and_clear_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state)) { 8278 /* ATR uses the same filtering logic as SB rules. It only 8279 * functions properly if the input set mask is at the default 8280 * settings. It is safe to restore the default input set 8281 * because there are no active TCPv4 filter rules. 8282 */ 8283 i40e_write_fd_input_set(pf, I40E_FILTER_PCTYPE_NONF_IPV4_TCP, 8284 I40E_L3_SRC_MASK | I40E_L3_DST_MASK | 8285 I40E_L4_SRC_MASK | I40E_L4_DST_MASK); 8286 8287 if ((pf->flags & I40E_FLAG_FD_ATR_ENABLED) && 8288 (I40E_DEBUG_FD & pf->hw.debug_mask)) 8289 dev_info(&pf->pdev->dev, "ATR is being enabled since we have space in the table and there are no conflicting ntuple rules\n"); 8290 } 8291 } 8292 8293 /** 8294 * i40e_delete_invalid_filter - Delete an invalid FDIR filter 8295 * @pf: board private structure 8296 * @filter: FDir filter to remove 8297 */ 8298 static void i40e_delete_invalid_filter(struct i40e_pf *pf, 8299 struct i40e_fdir_filter *filter) 8300 { 8301 /* Update counters */ 8302 pf->fdir_pf_active_filters--; 8303 pf->fd_inv = 0; 8304 8305 switch (filter->flow_type) { 8306 case TCP_V4_FLOW: 8307 pf->fd_tcp4_filter_cnt--; 8308 break; 8309 case UDP_V4_FLOW: 8310 pf->fd_udp4_filter_cnt--; 8311 break; 8312 case SCTP_V4_FLOW: 8313 pf->fd_sctp4_filter_cnt--; 8314 break; 8315 case IP_USER_FLOW: 8316 switch (filter->ip4_proto) { 8317 case IPPROTO_TCP: 8318 pf->fd_tcp4_filter_cnt--; 8319 break; 8320 case IPPROTO_UDP: 8321 pf->fd_udp4_filter_cnt--; 8322 break; 8323 case IPPROTO_SCTP: 8324 pf->fd_sctp4_filter_cnt--; 8325 break; 8326 case IPPROTO_IP: 8327 pf->fd_ip4_filter_cnt--; 8328 break; 8329 } 8330 break; 8331 } 8332 8333 /* Remove the filter from the list and free memory */ 8334 hlist_del(&filter->fdir_node); 8335 kfree(filter); 8336 } 8337 8338 /** 8339 * i40e_fdir_check_and_reenable - Function to reenabe FD ATR or SB if disabled 8340 * @pf: board private structure 8341 **/ 8342 void i40e_fdir_check_and_reenable(struct i40e_pf *pf) 8343 { 8344 struct i40e_fdir_filter *filter; 8345 u32 fcnt_prog, fcnt_avail; 8346 struct hlist_node *node; 8347 8348 if (test_bit(__I40E_FD_FLUSH_REQUESTED, pf->state)) 8349 return; 8350 8351 /* Check if we have enough room to re-enable FDir SB capability. */ 8352 fcnt_prog = i40e_get_global_fd_count(pf); 8353 fcnt_avail = pf->fdir_pf_filter_count; 8354 if ((fcnt_prog < (fcnt_avail - I40E_FDIR_BUFFER_HEAD_ROOM)) || 8355 (pf->fd_add_err == 0) || 8356 (i40e_get_current_atr_cnt(pf) < pf->fd_atr_cnt)) 8357 i40e_reenable_fdir_sb(pf); 8358 8359 /* We should wait for even more space before re-enabling ATR. 8360 * Additionally, we cannot enable ATR as long as we still have TCP SB 8361 * rules active. 8362 */ 8363 if ((fcnt_prog < (fcnt_avail - I40E_FDIR_BUFFER_HEAD_ROOM_FOR_ATR)) && 8364 (pf->fd_tcp4_filter_cnt == 0)) 8365 i40e_reenable_fdir_atr(pf); 8366 8367 /* if hw had a problem adding a filter, delete it */ 8368 if (pf->fd_inv > 0) { 8369 hlist_for_each_entry_safe(filter, node, 8370 &pf->fdir_filter_list, fdir_node) 8371 if (filter->fd_id == pf->fd_inv) 8372 i40e_delete_invalid_filter(pf, filter); 8373 } 8374 } 8375 8376 #define I40E_MIN_FD_FLUSH_INTERVAL 10 8377 #define I40E_MIN_FD_FLUSH_SB_ATR_UNSTABLE 30 8378 /** 8379 * i40e_fdir_flush_and_replay - Function to flush all FD filters and replay SB 8380 * @pf: board private structure 8381 **/ 8382 static void i40e_fdir_flush_and_replay(struct i40e_pf *pf) 8383 { 8384 unsigned long min_flush_time; 8385 int flush_wait_retry = 50; 8386 bool disable_atr = false; 8387 int fd_room; 8388 int reg; 8389 8390 if (!time_after(jiffies, pf->fd_flush_timestamp + 8391 (I40E_MIN_FD_FLUSH_INTERVAL * HZ))) 8392 return; 8393 8394 /* If the flush is happening too quick and we have mostly SB rules we 8395 * should not re-enable ATR for some time. 8396 */ 8397 min_flush_time = pf->fd_flush_timestamp + 8398 (I40E_MIN_FD_FLUSH_SB_ATR_UNSTABLE * HZ); 8399 fd_room = pf->fdir_pf_filter_count - pf->fdir_pf_active_filters; 8400 8401 if (!(time_after(jiffies, min_flush_time)) && 8402 (fd_room < I40E_FDIR_BUFFER_HEAD_ROOM_FOR_ATR)) { 8403 if (I40E_DEBUG_FD & pf->hw.debug_mask) 8404 dev_info(&pf->pdev->dev, "ATR disabled, not enough FD filter space.\n"); 8405 disable_atr = true; 8406 } 8407 8408 pf->fd_flush_timestamp = jiffies; 8409 set_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state); 8410 /* flush all filters */ 8411 wr32(&pf->hw, I40E_PFQF_CTL_1, 8412 I40E_PFQF_CTL_1_CLEARFDTABLE_MASK); 8413 i40e_flush(&pf->hw); 8414 pf->fd_flush_cnt++; 8415 pf->fd_add_err = 0; 8416 do { 8417 /* Check FD flush status every 5-6msec */ 8418 usleep_range(5000, 6000); 8419 reg = rd32(&pf->hw, I40E_PFQF_CTL_1); 8420 if (!(reg & I40E_PFQF_CTL_1_CLEARFDTABLE_MASK)) 8421 break; 8422 } while (flush_wait_retry--); 8423 if (reg & I40E_PFQF_CTL_1_CLEARFDTABLE_MASK) { 8424 dev_warn(&pf->pdev->dev, "FD table did not flush, needs more time\n"); 8425 } else { 8426 /* replay sideband filters */ 8427 i40e_fdir_filter_restore(pf->vsi[pf->lan_vsi]); 8428 if (!disable_atr && !pf->fd_tcp4_filter_cnt) 8429 clear_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state); 8430 clear_bit(__I40E_FD_FLUSH_REQUESTED, pf->state); 8431 if (I40E_DEBUG_FD & pf->hw.debug_mask) 8432 dev_info(&pf->pdev->dev, "FD Filter table flushed and FD-SB replayed.\n"); 8433 } 8434 } 8435 8436 /** 8437 * i40e_get_current_atr_count - Get the count of total FD ATR filters programmed 8438 * @pf: board private structure 8439 **/ 8440 u32 i40e_get_current_atr_cnt(struct i40e_pf *pf) 8441 { 8442 return i40e_get_current_fd_count(pf) - pf->fdir_pf_active_filters; 8443 } 8444 8445 /* We can see up to 256 filter programming desc in transit if the filters are 8446 * being applied really fast; before we see the first 8447 * filter miss error on Rx queue 0. Accumulating enough error messages before 8448 * reacting will make sure we don't cause flush too often. 8449 */ 8450 #define I40E_MAX_FD_PROGRAM_ERROR 256 8451 8452 /** 8453 * i40e_fdir_reinit_subtask - Worker thread to reinit FDIR filter table 8454 * @pf: board private structure 8455 **/ 8456 static void i40e_fdir_reinit_subtask(struct i40e_pf *pf) 8457 { 8458 8459 /* if interface is down do nothing */ 8460 if (test_bit(__I40E_DOWN, pf->state)) 8461 return; 8462 8463 if (test_bit(__I40E_FD_FLUSH_REQUESTED, pf->state)) 8464 i40e_fdir_flush_and_replay(pf); 8465 8466 i40e_fdir_check_and_reenable(pf); 8467 8468 } 8469 8470 /** 8471 * i40e_vsi_link_event - notify VSI of a link event 8472 * @vsi: vsi to be notified 8473 * @link_up: link up or down 8474 **/ 8475 static void i40e_vsi_link_event(struct i40e_vsi *vsi, bool link_up) 8476 { 8477 if (!vsi || test_bit(__I40E_VSI_DOWN, vsi->state)) 8478 return; 8479 8480 switch (vsi->type) { 8481 case I40E_VSI_MAIN: 8482 if (!vsi->netdev || !vsi->netdev_registered) 8483 break; 8484 8485 if (link_up) { 8486 netif_carrier_on(vsi->netdev); 8487 netif_tx_wake_all_queues(vsi->netdev); 8488 } else { 8489 netif_carrier_off(vsi->netdev); 8490 netif_tx_stop_all_queues(vsi->netdev); 8491 } 8492 break; 8493 8494 case I40E_VSI_SRIOV: 8495 case I40E_VSI_VMDQ2: 8496 case I40E_VSI_CTRL: 8497 case I40E_VSI_IWARP: 8498 case I40E_VSI_MIRROR: 8499 default: 8500 /* there is no notification for other VSIs */ 8501 break; 8502 } 8503 } 8504 8505 /** 8506 * i40e_veb_link_event - notify elements on the veb of a link event 8507 * @veb: veb to be notified 8508 * @link_up: link up or down 8509 **/ 8510 static void i40e_veb_link_event(struct i40e_veb *veb, bool link_up) 8511 { 8512 struct i40e_pf *pf; 8513 int i; 8514 8515 if (!veb || !veb->pf) 8516 return; 8517 pf = veb->pf; 8518 8519 /* depth first... */ 8520 for (i = 0; i < I40E_MAX_VEB; i++) 8521 if (pf->veb[i] && (pf->veb[i]->uplink_seid == veb->seid)) 8522 i40e_veb_link_event(pf->veb[i], link_up); 8523 8524 /* ... now the local VSIs */ 8525 for (i = 0; i < pf->num_alloc_vsi; i++) 8526 if (pf->vsi[i] && (pf->vsi[i]->uplink_seid == veb->seid)) 8527 i40e_vsi_link_event(pf->vsi[i], link_up); 8528 } 8529 8530 /** 8531 * i40e_link_event - Update netif_carrier status 8532 * @pf: board private structure 8533 **/ 8534 static void i40e_link_event(struct i40e_pf *pf) 8535 { 8536 struct i40e_vsi *vsi = pf->vsi[pf->lan_vsi]; 8537 u8 new_link_speed, old_link_speed; 8538 i40e_status status; 8539 bool new_link, old_link; 8540 8541 /* set this to force the get_link_status call to refresh state */ 8542 pf->hw.phy.get_link_info = true; 8543 old_link = (pf->hw.phy.link_info_old.link_info & I40E_AQ_LINK_UP); 8544 status = i40e_get_link_status(&pf->hw, &new_link); 8545 8546 /* On success, disable temp link polling */ 8547 if (status == I40E_SUCCESS) { 8548 clear_bit(__I40E_TEMP_LINK_POLLING, pf->state); 8549 } else { 8550 /* Enable link polling temporarily until i40e_get_link_status 8551 * returns I40E_SUCCESS 8552 */ 8553 set_bit(__I40E_TEMP_LINK_POLLING, pf->state); 8554 dev_dbg(&pf->pdev->dev, "couldn't get link state, status: %d\n", 8555 status); 8556 return; 8557 } 8558 8559 old_link_speed = pf->hw.phy.link_info_old.link_speed; 8560 new_link_speed = pf->hw.phy.link_info.link_speed; 8561 8562 if (new_link == old_link && 8563 new_link_speed == old_link_speed && 8564 (test_bit(__I40E_VSI_DOWN, vsi->state) || 8565 new_link == netif_carrier_ok(vsi->netdev))) 8566 return; 8567 8568 i40e_print_link_message(vsi, new_link); 8569 8570 /* Notify the base of the switch tree connected to 8571 * the link. Floating VEBs are not notified. 8572 */ 8573 if (pf->lan_veb != I40E_NO_VEB && pf->veb[pf->lan_veb]) 8574 i40e_veb_link_event(pf->veb[pf->lan_veb], new_link); 8575 else 8576 i40e_vsi_link_event(vsi, new_link); 8577 8578 if (pf->vf) 8579 i40e_vc_notify_link_state(pf); 8580 8581 if (pf->flags & I40E_FLAG_PTP) 8582 i40e_ptp_set_increment(pf); 8583 } 8584 8585 /** 8586 * i40e_watchdog_subtask - periodic checks not using event driven response 8587 * @pf: board private structure 8588 **/ 8589 static void i40e_watchdog_subtask(struct i40e_pf *pf) 8590 { 8591 int i; 8592 8593 /* if interface is down do nothing */ 8594 if (test_bit(__I40E_DOWN, pf->state) || 8595 test_bit(__I40E_CONFIG_BUSY, pf->state)) 8596 return; 8597 8598 /* make sure we don't do these things too often */ 8599 if (time_before(jiffies, (pf->service_timer_previous + 8600 pf->service_timer_period))) 8601 return; 8602 pf->service_timer_previous = jiffies; 8603 8604 if ((pf->flags & I40E_FLAG_LINK_POLLING_ENABLED) || 8605 test_bit(__I40E_TEMP_LINK_POLLING, pf->state)) 8606 i40e_link_event(pf); 8607 8608 /* Update the stats for active netdevs so the network stack 8609 * can look at updated numbers whenever it cares to 8610 */ 8611 for (i = 0; i < pf->num_alloc_vsi; i++) 8612 if (pf->vsi[i] && pf->vsi[i]->netdev) 8613 i40e_update_stats(pf->vsi[i]); 8614 8615 if (pf->flags & I40E_FLAG_VEB_STATS_ENABLED) { 8616 /* Update the stats for the active switching components */ 8617 for (i = 0; i < I40E_MAX_VEB; i++) 8618 if (pf->veb[i]) 8619 i40e_update_veb_stats(pf->veb[i]); 8620 } 8621 8622 i40e_ptp_rx_hang(pf); 8623 i40e_ptp_tx_hang(pf); 8624 } 8625 8626 /** 8627 * i40e_reset_subtask - Set up for resetting the device and driver 8628 * @pf: board private structure 8629 **/ 8630 static void i40e_reset_subtask(struct i40e_pf *pf) 8631 { 8632 u32 reset_flags = 0; 8633 8634 if (test_bit(__I40E_REINIT_REQUESTED, pf->state)) { 8635 reset_flags |= BIT(__I40E_REINIT_REQUESTED); 8636 clear_bit(__I40E_REINIT_REQUESTED, pf->state); 8637 } 8638 if (test_bit(__I40E_PF_RESET_REQUESTED, pf->state)) { 8639 reset_flags |= BIT(__I40E_PF_RESET_REQUESTED); 8640 clear_bit(__I40E_PF_RESET_REQUESTED, pf->state); 8641 } 8642 if (test_bit(__I40E_CORE_RESET_REQUESTED, pf->state)) { 8643 reset_flags |= BIT(__I40E_CORE_RESET_REQUESTED); 8644 clear_bit(__I40E_CORE_RESET_REQUESTED, pf->state); 8645 } 8646 if (test_bit(__I40E_GLOBAL_RESET_REQUESTED, pf->state)) { 8647 reset_flags |= BIT(__I40E_GLOBAL_RESET_REQUESTED); 8648 clear_bit(__I40E_GLOBAL_RESET_REQUESTED, pf->state); 8649 } 8650 if (test_bit(__I40E_DOWN_REQUESTED, pf->state)) { 8651 reset_flags |= BIT(__I40E_DOWN_REQUESTED); 8652 clear_bit(__I40E_DOWN_REQUESTED, pf->state); 8653 } 8654 8655 /* If there's a recovery already waiting, it takes 8656 * precedence before starting a new reset sequence. 8657 */ 8658 if (test_bit(__I40E_RESET_INTR_RECEIVED, pf->state)) { 8659 i40e_prep_for_reset(pf, false); 8660 i40e_reset(pf); 8661 i40e_rebuild(pf, false, false); 8662 } 8663 8664 /* If we're already down or resetting, just bail */ 8665 if (reset_flags && 8666 !test_bit(__I40E_DOWN, pf->state) && 8667 !test_bit(__I40E_CONFIG_BUSY, pf->state)) { 8668 i40e_do_reset(pf, reset_flags, false); 8669 } 8670 } 8671 8672 /** 8673 * i40e_handle_link_event - Handle link event 8674 * @pf: board private structure 8675 * @e: event info posted on ARQ 8676 **/ 8677 static void i40e_handle_link_event(struct i40e_pf *pf, 8678 struct i40e_arq_event_info *e) 8679 { 8680 struct i40e_aqc_get_link_status *status = 8681 (struct i40e_aqc_get_link_status *)&e->desc.params.raw; 8682 8683 /* Do a new status request to re-enable LSE reporting 8684 * and load new status information into the hw struct 8685 * This completely ignores any state information 8686 * in the ARQ event info, instead choosing to always 8687 * issue the AQ update link status command. 8688 */ 8689 i40e_link_event(pf); 8690 8691 /* Check if module meets thermal requirements */ 8692 if (status->phy_type == I40E_PHY_TYPE_NOT_SUPPORTED_HIGH_TEMP) { 8693 dev_err(&pf->pdev->dev, 8694 "Rx/Tx is disabled on this device because the module does not meet thermal requirements.\n"); 8695 dev_err(&pf->pdev->dev, 8696 "Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules.\n"); 8697 } else { 8698 /* check for unqualified module, if link is down, suppress 8699 * the message if link was forced to be down. 8700 */ 8701 if ((status->link_info & I40E_AQ_MEDIA_AVAILABLE) && 8702 (!(status->an_info & I40E_AQ_QUALIFIED_MODULE)) && 8703 (!(status->link_info & I40E_AQ_LINK_UP)) && 8704 (!(pf->flags & I40E_FLAG_LINK_DOWN_ON_CLOSE_ENABLED))) { 8705 dev_err(&pf->pdev->dev, 8706 "Rx/Tx is disabled on this device because an unsupported SFP module type was detected.\n"); 8707 dev_err(&pf->pdev->dev, 8708 "Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules.\n"); 8709 } 8710 } 8711 } 8712 8713 /** 8714 * i40e_clean_adminq_subtask - Clean the AdminQ rings 8715 * @pf: board private structure 8716 **/ 8717 static void i40e_clean_adminq_subtask(struct i40e_pf *pf) 8718 { 8719 struct i40e_arq_event_info event; 8720 struct i40e_hw *hw = &pf->hw; 8721 u16 pending, i = 0; 8722 i40e_status ret; 8723 u16 opcode; 8724 u32 oldval; 8725 u32 val; 8726 8727 /* Do not run clean AQ when PF reset fails */ 8728 if (test_bit(__I40E_RESET_FAILED, pf->state)) 8729 return; 8730 8731 /* check for error indications */ 8732 val = rd32(&pf->hw, pf->hw.aq.arq.len); 8733 oldval = val; 8734 if (val & I40E_PF_ARQLEN_ARQVFE_MASK) { 8735 if (hw->debug_mask & I40E_DEBUG_AQ) 8736 dev_info(&pf->pdev->dev, "ARQ VF Error detected\n"); 8737 val &= ~I40E_PF_ARQLEN_ARQVFE_MASK; 8738 } 8739 if (val & I40E_PF_ARQLEN_ARQOVFL_MASK) { 8740 if (hw->debug_mask & I40E_DEBUG_AQ) 8741 dev_info(&pf->pdev->dev, "ARQ Overflow Error detected\n"); 8742 val &= ~I40E_PF_ARQLEN_ARQOVFL_MASK; 8743 pf->arq_overflows++; 8744 } 8745 if (val & I40E_PF_ARQLEN_ARQCRIT_MASK) { 8746 if (hw->debug_mask & I40E_DEBUG_AQ) 8747 dev_info(&pf->pdev->dev, "ARQ Critical Error detected\n"); 8748 val &= ~I40E_PF_ARQLEN_ARQCRIT_MASK; 8749 } 8750 if (oldval != val) 8751 wr32(&pf->hw, pf->hw.aq.arq.len, val); 8752 8753 val = rd32(&pf->hw, pf->hw.aq.asq.len); 8754 oldval = val; 8755 if (val & I40E_PF_ATQLEN_ATQVFE_MASK) { 8756 if (pf->hw.debug_mask & I40E_DEBUG_AQ) 8757 dev_info(&pf->pdev->dev, "ASQ VF Error detected\n"); 8758 val &= ~I40E_PF_ATQLEN_ATQVFE_MASK; 8759 } 8760 if (val & I40E_PF_ATQLEN_ATQOVFL_MASK) { 8761 if (pf->hw.debug_mask & I40E_DEBUG_AQ) 8762 dev_info(&pf->pdev->dev, "ASQ Overflow Error detected\n"); 8763 val &= ~I40E_PF_ATQLEN_ATQOVFL_MASK; 8764 } 8765 if (val & I40E_PF_ATQLEN_ATQCRIT_MASK) { 8766 if (pf->hw.debug_mask & I40E_DEBUG_AQ) 8767 dev_info(&pf->pdev->dev, "ASQ Critical Error detected\n"); 8768 val &= ~I40E_PF_ATQLEN_ATQCRIT_MASK; 8769 } 8770 if (oldval != val) 8771 wr32(&pf->hw, pf->hw.aq.asq.len, val); 8772 8773 event.buf_len = I40E_MAX_AQ_BUF_SIZE; 8774 event.msg_buf = kzalloc(event.buf_len, GFP_KERNEL); 8775 if (!event.msg_buf) 8776 return; 8777 8778 do { 8779 ret = i40e_clean_arq_element(hw, &event, &pending); 8780 if (ret == I40E_ERR_ADMIN_QUEUE_NO_WORK) 8781 break; 8782 else if (ret) { 8783 dev_info(&pf->pdev->dev, "ARQ event error %d\n", ret); 8784 break; 8785 } 8786 8787 opcode = le16_to_cpu(event.desc.opcode); 8788 switch (opcode) { 8789 8790 case i40e_aqc_opc_get_link_status: 8791 i40e_handle_link_event(pf, &event); 8792 break; 8793 case i40e_aqc_opc_send_msg_to_pf: 8794 ret = i40e_vc_process_vf_msg(pf, 8795 le16_to_cpu(event.desc.retval), 8796 le32_to_cpu(event.desc.cookie_high), 8797 le32_to_cpu(event.desc.cookie_low), 8798 event.msg_buf, 8799 event.msg_len); 8800 break; 8801 case i40e_aqc_opc_lldp_update_mib: 8802 dev_dbg(&pf->pdev->dev, "ARQ: Update LLDP MIB event received\n"); 8803 #ifdef CONFIG_I40E_DCB 8804 rtnl_lock(); 8805 ret = i40e_handle_lldp_event(pf, &event); 8806 rtnl_unlock(); 8807 #endif /* CONFIG_I40E_DCB */ 8808 break; 8809 case i40e_aqc_opc_event_lan_overflow: 8810 dev_dbg(&pf->pdev->dev, "ARQ LAN queue overflow event received\n"); 8811 i40e_handle_lan_overflow_event(pf, &event); 8812 break; 8813 case i40e_aqc_opc_send_msg_to_peer: 8814 dev_info(&pf->pdev->dev, "ARQ: Msg from other pf\n"); 8815 break; 8816 case i40e_aqc_opc_nvm_erase: 8817 case i40e_aqc_opc_nvm_update: 8818 case i40e_aqc_opc_oem_post_update: 8819 i40e_debug(&pf->hw, I40E_DEBUG_NVM, 8820 "ARQ NVM operation 0x%04x completed\n", 8821 opcode); 8822 break; 8823 default: 8824 dev_info(&pf->pdev->dev, 8825 "ARQ: Unknown event 0x%04x ignored\n", 8826 opcode); 8827 break; 8828 } 8829 } while (i++ < pf->adminq_work_limit); 8830 8831 if (i < pf->adminq_work_limit) 8832 clear_bit(__I40E_ADMINQ_EVENT_PENDING, pf->state); 8833 8834 /* re-enable Admin queue interrupt cause */ 8835 val = rd32(hw, I40E_PFINT_ICR0_ENA); 8836 val |= I40E_PFINT_ICR0_ENA_ADMINQ_MASK; 8837 wr32(hw, I40E_PFINT_ICR0_ENA, val); 8838 i40e_flush(hw); 8839 8840 kfree(event.msg_buf); 8841 } 8842 8843 /** 8844 * i40e_verify_eeprom - make sure eeprom is good to use 8845 * @pf: board private structure 8846 **/ 8847 static void i40e_verify_eeprom(struct i40e_pf *pf) 8848 { 8849 int err; 8850 8851 err = i40e_diag_eeprom_test(&pf->hw); 8852 if (err) { 8853 /* retry in case of garbage read */ 8854 err = i40e_diag_eeprom_test(&pf->hw); 8855 if (err) { 8856 dev_info(&pf->pdev->dev, "eeprom check failed (%d), Tx/Rx traffic disabled\n", 8857 err); 8858 set_bit(__I40E_BAD_EEPROM, pf->state); 8859 } 8860 } 8861 8862 if (!err && test_bit(__I40E_BAD_EEPROM, pf->state)) { 8863 dev_info(&pf->pdev->dev, "eeprom check passed, Tx/Rx traffic enabled\n"); 8864 clear_bit(__I40E_BAD_EEPROM, pf->state); 8865 } 8866 } 8867 8868 /** 8869 * i40e_enable_pf_switch_lb 8870 * @pf: pointer to the PF structure 8871 * 8872 * enable switch loop back or die - no point in a return value 8873 **/ 8874 static void i40e_enable_pf_switch_lb(struct i40e_pf *pf) 8875 { 8876 struct i40e_vsi *vsi = pf->vsi[pf->lan_vsi]; 8877 struct i40e_vsi_context ctxt; 8878 int ret; 8879 8880 ctxt.seid = pf->main_vsi_seid; 8881 ctxt.pf_num = pf->hw.pf_id; 8882 ctxt.vf_num = 0; 8883 ret = i40e_aq_get_vsi_params(&pf->hw, &ctxt, NULL); 8884 if (ret) { 8885 dev_info(&pf->pdev->dev, 8886 "couldn't get PF vsi config, err %s aq_err %s\n", 8887 i40e_stat_str(&pf->hw, ret), 8888 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 8889 return; 8890 } 8891 ctxt.flags = I40E_AQ_VSI_TYPE_PF; 8892 ctxt.info.valid_sections = cpu_to_le16(I40E_AQ_VSI_PROP_SWITCH_VALID); 8893 ctxt.info.switch_id |= cpu_to_le16(I40E_AQ_VSI_SW_ID_FLAG_ALLOW_LB); 8894 8895 ret = i40e_aq_update_vsi_params(&vsi->back->hw, &ctxt, NULL); 8896 if (ret) { 8897 dev_info(&pf->pdev->dev, 8898 "update vsi switch failed, err %s aq_err %s\n", 8899 i40e_stat_str(&pf->hw, ret), 8900 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 8901 } 8902 } 8903 8904 /** 8905 * i40e_disable_pf_switch_lb 8906 * @pf: pointer to the PF structure 8907 * 8908 * disable switch loop back or die - no point in a return value 8909 **/ 8910 static void i40e_disable_pf_switch_lb(struct i40e_pf *pf) 8911 { 8912 struct i40e_vsi *vsi = pf->vsi[pf->lan_vsi]; 8913 struct i40e_vsi_context ctxt; 8914 int ret; 8915 8916 ctxt.seid = pf->main_vsi_seid; 8917 ctxt.pf_num = pf->hw.pf_id; 8918 ctxt.vf_num = 0; 8919 ret = i40e_aq_get_vsi_params(&pf->hw, &ctxt, NULL); 8920 if (ret) { 8921 dev_info(&pf->pdev->dev, 8922 "couldn't get PF vsi config, err %s aq_err %s\n", 8923 i40e_stat_str(&pf->hw, ret), 8924 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 8925 return; 8926 } 8927 ctxt.flags = I40E_AQ_VSI_TYPE_PF; 8928 ctxt.info.valid_sections = cpu_to_le16(I40E_AQ_VSI_PROP_SWITCH_VALID); 8929 ctxt.info.switch_id &= ~cpu_to_le16(I40E_AQ_VSI_SW_ID_FLAG_ALLOW_LB); 8930 8931 ret = i40e_aq_update_vsi_params(&vsi->back->hw, &ctxt, NULL); 8932 if (ret) { 8933 dev_info(&pf->pdev->dev, 8934 "update vsi switch failed, err %s aq_err %s\n", 8935 i40e_stat_str(&pf->hw, ret), 8936 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 8937 } 8938 } 8939 8940 /** 8941 * i40e_config_bridge_mode - Configure the HW bridge mode 8942 * @veb: pointer to the bridge instance 8943 * 8944 * Configure the loop back mode for the LAN VSI that is downlink to the 8945 * specified HW bridge instance. It is expected this function is called 8946 * when a new HW bridge is instantiated. 8947 **/ 8948 static void i40e_config_bridge_mode(struct i40e_veb *veb) 8949 { 8950 struct i40e_pf *pf = veb->pf; 8951 8952 if (pf->hw.debug_mask & I40E_DEBUG_LAN) 8953 dev_info(&pf->pdev->dev, "enabling bridge mode: %s\n", 8954 veb->bridge_mode == BRIDGE_MODE_VEPA ? "VEPA" : "VEB"); 8955 if (veb->bridge_mode & BRIDGE_MODE_VEPA) 8956 i40e_disable_pf_switch_lb(pf); 8957 else 8958 i40e_enable_pf_switch_lb(pf); 8959 } 8960 8961 /** 8962 * i40e_reconstitute_veb - rebuild the VEB and anything connected to it 8963 * @veb: pointer to the VEB instance 8964 * 8965 * This is a recursive function that first builds the attached VSIs then 8966 * recurses in to build the next layer of VEB. We track the connections 8967 * through our own index numbers because the seid's from the HW could 8968 * change across the reset. 8969 **/ 8970 static int i40e_reconstitute_veb(struct i40e_veb *veb) 8971 { 8972 struct i40e_vsi *ctl_vsi = NULL; 8973 struct i40e_pf *pf = veb->pf; 8974 int v, veb_idx; 8975 int ret; 8976 8977 /* build VSI that owns this VEB, temporarily attached to base VEB */ 8978 for (v = 0; v < pf->num_alloc_vsi && !ctl_vsi; v++) { 8979 if (pf->vsi[v] && 8980 pf->vsi[v]->veb_idx == veb->idx && 8981 pf->vsi[v]->flags & I40E_VSI_FLAG_VEB_OWNER) { 8982 ctl_vsi = pf->vsi[v]; 8983 break; 8984 } 8985 } 8986 if (!ctl_vsi) { 8987 dev_info(&pf->pdev->dev, 8988 "missing owner VSI for veb_idx %d\n", veb->idx); 8989 ret = -ENOENT; 8990 goto end_reconstitute; 8991 } 8992 if (ctl_vsi != pf->vsi[pf->lan_vsi]) 8993 ctl_vsi->uplink_seid = pf->vsi[pf->lan_vsi]->uplink_seid; 8994 ret = i40e_add_vsi(ctl_vsi); 8995 if (ret) { 8996 dev_info(&pf->pdev->dev, 8997 "rebuild of veb_idx %d owner VSI failed: %d\n", 8998 veb->idx, ret); 8999 goto end_reconstitute; 9000 } 9001 i40e_vsi_reset_stats(ctl_vsi); 9002 9003 /* create the VEB in the switch and move the VSI onto the VEB */ 9004 ret = i40e_add_veb(veb, ctl_vsi); 9005 if (ret) 9006 goto end_reconstitute; 9007 9008 if (pf->flags & I40E_FLAG_VEB_MODE_ENABLED) 9009 veb->bridge_mode = BRIDGE_MODE_VEB; 9010 else 9011 veb->bridge_mode = BRIDGE_MODE_VEPA; 9012 i40e_config_bridge_mode(veb); 9013 9014 /* create the remaining VSIs attached to this VEB */ 9015 for (v = 0; v < pf->num_alloc_vsi; v++) { 9016 if (!pf->vsi[v] || pf->vsi[v] == ctl_vsi) 9017 continue; 9018 9019 if (pf->vsi[v]->veb_idx == veb->idx) { 9020 struct i40e_vsi *vsi = pf->vsi[v]; 9021 9022 vsi->uplink_seid = veb->seid; 9023 ret = i40e_add_vsi(vsi); 9024 if (ret) { 9025 dev_info(&pf->pdev->dev, 9026 "rebuild of vsi_idx %d failed: %d\n", 9027 v, ret); 9028 goto end_reconstitute; 9029 } 9030 i40e_vsi_reset_stats(vsi); 9031 } 9032 } 9033 9034 /* create any VEBs attached to this VEB - RECURSION */ 9035 for (veb_idx = 0; veb_idx < I40E_MAX_VEB; veb_idx++) { 9036 if (pf->veb[veb_idx] && pf->veb[veb_idx]->veb_idx == veb->idx) { 9037 pf->veb[veb_idx]->uplink_seid = veb->seid; 9038 ret = i40e_reconstitute_veb(pf->veb[veb_idx]); 9039 if (ret) 9040 break; 9041 } 9042 } 9043 9044 end_reconstitute: 9045 return ret; 9046 } 9047 9048 /** 9049 * i40e_get_capabilities - get info about the HW 9050 * @pf: the PF struct 9051 **/ 9052 static int i40e_get_capabilities(struct i40e_pf *pf, 9053 enum i40e_admin_queue_opc list_type) 9054 { 9055 struct i40e_aqc_list_capabilities_element_resp *cap_buf; 9056 u16 data_size; 9057 int buf_len; 9058 int err; 9059 9060 buf_len = 40 * sizeof(struct i40e_aqc_list_capabilities_element_resp); 9061 do { 9062 cap_buf = kzalloc(buf_len, GFP_KERNEL); 9063 if (!cap_buf) 9064 return -ENOMEM; 9065 9066 /* this loads the data into the hw struct for us */ 9067 err = i40e_aq_discover_capabilities(&pf->hw, cap_buf, buf_len, 9068 &data_size, list_type, 9069 NULL); 9070 /* data loaded, buffer no longer needed */ 9071 kfree(cap_buf); 9072 9073 if (pf->hw.aq.asq_last_status == I40E_AQ_RC_ENOMEM) { 9074 /* retry with a larger buffer */ 9075 buf_len = data_size; 9076 } else if (pf->hw.aq.asq_last_status != I40E_AQ_RC_OK) { 9077 dev_info(&pf->pdev->dev, 9078 "capability discovery failed, err %s aq_err %s\n", 9079 i40e_stat_str(&pf->hw, err), 9080 i40e_aq_str(&pf->hw, 9081 pf->hw.aq.asq_last_status)); 9082 return -ENODEV; 9083 } 9084 } while (err); 9085 9086 if (pf->hw.debug_mask & I40E_DEBUG_USER) { 9087 if (list_type == i40e_aqc_opc_list_func_capabilities) { 9088 dev_info(&pf->pdev->dev, 9089 "pf=%d, num_vfs=%d, msix_pf=%d, msix_vf=%d, fd_g=%d, fd_b=%d, pf_max_q=%d num_vsi=%d\n", 9090 pf->hw.pf_id, pf->hw.func_caps.num_vfs, 9091 pf->hw.func_caps.num_msix_vectors, 9092 pf->hw.func_caps.num_msix_vectors_vf, 9093 pf->hw.func_caps.fd_filters_guaranteed, 9094 pf->hw.func_caps.fd_filters_best_effort, 9095 pf->hw.func_caps.num_tx_qp, 9096 pf->hw.func_caps.num_vsis); 9097 } else if (list_type == i40e_aqc_opc_list_dev_capabilities) { 9098 dev_info(&pf->pdev->dev, 9099 "switch_mode=0x%04x, function_valid=0x%08x\n", 9100 pf->hw.dev_caps.switch_mode, 9101 pf->hw.dev_caps.valid_functions); 9102 dev_info(&pf->pdev->dev, 9103 "SR-IOV=%d, num_vfs for all function=%u\n", 9104 pf->hw.dev_caps.sr_iov_1_1, 9105 pf->hw.dev_caps.num_vfs); 9106 dev_info(&pf->pdev->dev, 9107 "num_vsis=%u, num_rx:%u, num_tx=%u\n", 9108 pf->hw.dev_caps.num_vsis, 9109 pf->hw.dev_caps.num_rx_qp, 9110 pf->hw.dev_caps.num_tx_qp); 9111 } 9112 } 9113 if (list_type == i40e_aqc_opc_list_func_capabilities) { 9114 #define DEF_NUM_VSI (1 + (pf->hw.func_caps.fcoe ? 1 : 0) \ 9115 + pf->hw.func_caps.num_vfs) 9116 if (pf->hw.revision_id == 0 && 9117 pf->hw.func_caps.num_vsis < DEF_NUM_VSI) { 9118 dev_info(&pf->pdev->dev, 9119 "got num_vsis %d, setting num_vsis to %d\n", 9120 pf->hw.func_caps.num_vsis, DEF_NUM_VSI); 9121 pf->hw.func_caps.num_vsis = DEF_NUM_VSI; 9122 } 9123 } 9124 return 0; 9125 } 9126 9127 static int i40e_vsi_clear(struct i40e_vsi *vsi); 9128 9129 /** 9130 * i40e_fdir_sb_setup - initialize the Flow Director resources for Sideband 9131 * @pf: board private structure 9132 **/ 9133 static void i40e_fdir_sb_setup(struct i40e_pf *pf) 9134 { 9135 struct i40e_vsi *vsi; 9136 9137 /* quick workaround for an NVM issue that leaves a critical register 9138 * uninitialized 9139 */ 9140 if (!rd32(&pf->hw, I40E_GLQF_HKEY(0))) { 9141 static const u32 hkey[] = { 9142 0xe640d33f, 0xcdfe98ab, 0x73fa7161, 0x0d7a7d36, 9143 0xeacb7d61, 0xaa4f05b6, 0x9c5c89ed, 0xfc425ddb, 9144 0xa4654832, 0xfc7461d4, 0x8f827619, 0xf5c63c21, 9145 0x95b3a76d}; 9146 int i; 9147 9148 for (i = 0; i <= I40E_GLQF_HKEY_MAX_INDEX; i++) 9149 wr32(&pf->hw, I40E_GLQF_HKEY(i), hkey[i]); 9150 } 9151 9152 if (!(pf->flags & I40E_FLAG_FD_SB_ENABLED)) 9153 return; 9154 9155 /* find existing VSI and see if it needs configuring */ 9156 vsi = i40e_find_vsi_by_type(pf, I40E_VSI_FDIR); 9157 9158 /* create a new VSI if none exists */ 9159 if (!vsi) { 9160 vsi = i40e_vsi_setup(pf, I40E_VSI_FDIR, 9161 pf->vsi[pf->lan_vsi]->seid, 0); 9162 if (!vsi) { 9163 dev_info(&pf->pdev->dev, "Couldn't create FDir VSI\n"); 9164 pf->flags &= ~I40E_FLAG_FD_SB_ENABLED; 9165 pf->flags |= I40E_FLAG_FD_SB_INACTIVE; 9166 return; 9167 } 9168 } 9169 9170 i40e_vsi_setup_irqhandler(vsi, i40e_fdir_clean_ring); 9171 } 9172 9173 /** 9174 * i40e_fdir_teardown - release the Flow Director resources 9175 * @pf: board private structure 9176 **/ 9177 static void i40e_fdir_teardown(struct i40e_pf *pf) 9178 { 9179 struct i40e_vsi *vsi; 9180 9181 i40e_fdir_filter_exit(pf); 9182 vsi = i40e_find_vsi_by_type(pf, I40E_VSI_FDIR); 9183 if (vsi) 9184 i40e_vsi_release(vsi); 9185 } 9186 9187 /** 9188 * i40e_rebuild_cloud_filters - Rebuilds cloud filters for VSIs 9189 * @vsi: PF main vsi 9190 * @seid: seid of main or channel VSIs 9191 * 9192 * Rebuilds cloud filters associated with main VSI and channel VSIs if they 9193 * existed before reset 9194 **/ 9195 static int i40e_rebuild_cloud_filters(struct i40e_vsi *vsi, u16 seid) 9196 { 9197 struct i40e_cloud_filter *cfilter; 9198 struct i40e_pf *pf = vsi->back; 9199 struct hlist_node *node; 9200 i40e_status ret; 9201 9202 /* Add cloud filters back if they exist */ 9203 hlist_for_each_entry_safe(cfilter, node, &pf->cloud_filter_list, 9204 cloud_node) { 9205 if (cfilter->seid != seid) 9206 continue; 9207 9208 if (cfilter->dst_port) 9209 ret = i40e_add_del_cloud_filter_big_buf(vsi, cfilter, 9210 true); 9211 else 9212 ret = i40e_add_del_cloud_filter(vsi, cfilter, true); 9213 9214 if (ret) { 9215 dev_dbg(&pf->pdev->dev, 9216 "Failed to rebuild cloud filter, err %s aq_err %s\n", 9217 i40e_stat_str(&pf->hw, ret), 9218 i40e_aq_str(&pf->hw, 9219 pf->hw.aq.asq_last_status)); 9220 return ret; 9221 } 9222 } 9223 return 0; 9224 } 9225 9226 /** 9227 * i40e_rebuild_channels - Rebuilds channel VSIs if they existed before reset 9228 * @vsi: PF main vsi 9229 * 9230 * Rebuilds channel VSIs if they existed before reset 9231 **/ 9232 static int i40e_rebuild_channels(struct i40e_vsi *vsi) 9233 { 9234 struct i40e_channel *ch, *ch_tmp; 9235 i40e_status ret; 9236 9237 if (list_empty(&vsi->ch_list)) 9238 return 0; 9239 9240 list_for_each_entry_safe(ch, ch_tmp, &vsi->ch_list, list) { 9241 if (!ch->initialized) 9242 break; 9243 /* Proceed with creation of channel (VMDq2) VSI */ 9244 ret = i40e_add_channel(vsi->back, vsi->uplink_seid, ch); 9245 if (ret) { 9246 dev_info(&vsi->back->pdev->dev, 9247 "failed to rebuild channels using uplink_seid %u\n", 9248 vsi->uplink_seid); 9249 return ret; 9250 } 9251 /* Reconfigure TX queues using QTX_CTL register */ 9252 ret = i40e_channel_config_tx_ring(vsi->back, vsi, ch); 9253 if (ret) { 9254 dev_info(&vsi->back->pdev->dev, 9255 "failed to configure TX rings for channel %u\n", 9256 ch->seid); 9257 return ret; 9258 } 9259 /* update 'next_base_queue' */ 9260 vsi->next_base_queue = vsi->next_base_queue + 9261 ch->num_queue_pairs; 9262 if (ch->max_tx_rate) { 9263 u64 credits = ch->max_tx_rate; 9264 9265 if (i40e_set_bw_limit(vsi, ch->seid, 9266 ch->max_tx_rate)) 9267 return -EINVAL; 9268 9269 do_div(credits, I40E_BW_CREDIT_DIVISOR); 9270 dev_dbg(&vsi->back->pdev->dev, 9271 "Set tx rate of %llu Mbps (count of 50Mbps %llu) for vsi->seid %u\n", 9272 ch->max_tx_rate, 9273 credits, 9274 ch->seid); 9275 } 9276 ret = i40e_rebuild_cloud_filters(vsi, ch->seid); 9277 if (ret) { 9278 dev_dbg(&vsi->back->pdev->dev, 9279 "Failed to rebuild cloud filters for channel VSI %u\n", 9280 ch->seid); 9281 return ret; 9282 } 9283 } 9284 return 0; 9285 } 9286 9287 /** 9288 * i40e_prep_for_reset - prep for the core to reset 9289 * @pf: board private structure 9290 * @lock_acquired: indicates whether or not the lock has been acquired 9291 * before this function was called. 9292 * 9293 * Close up the VFs and other things in prep for PF Reset. 9294 **/ 9295 static void i40e_prep_for_reset(struct i40e_pf *pf, bool lock_acquired) 9296 { 9297 struct i40e_hw *hw = &pf->hw; 9298 i40e_status ret = 0; 9299 u32 v; 9300 9301 clear_bit(__I40E_RESET_INTR_RECEIVED, pf->state); 9302 if (test_and_set_bit(__I40E_RESET_RECOVERY_PENDING, pf->state)) 9303 return; 9304 if (i40e_check_asq_alive(&pf->hw)) 9305 i40e_vc_notify_reset(pf); 9306 9307 dev_dbg(&pf->pdev->dev, "Tearing down internal switch for reset\n"); 9308 9309 /* quiesce the VSIs and their queues that are not already DOWN */ 9310 /* pf_quiesce_all_vsi modifies netdev structures -rtnl_lock needed */ 9311 if (!lock_acquired) 9312 rtnl_lock(); 9313 i40e_pf_quiesce_all_vsi(pf); 9314 if (!lock_acquired) 9315 rtnl_unlock(); 9316 9317 for (v = 0; v < pf->num_alloc_vsi; v++) { 9318 if (pf->vsi[v]) 9319 pf->vsi[v]->seid = 0; 9320 } 9321 9322 i40e_shutdown_adminq(&pf->hw); 9323 9324 /* call shutdown HMC */ 9325 if (hw->hmc.hmc_obj) { 9326 ret = i40e_shutdown_lan_hmc(hw); 9327 if (ret) 9328 dev_warn(&pf->pdev->dev, 9329 "shutdown_lan_hmc failed: %d\n", ret); 9330 } 9331 9332 /* Save the current PTP time so that we can restore the time after the 9333 * reset completes. 9334 */ 9335 i40e_ptp_save_hw_time(pf); 9336 } 9337 9338 /** 9339 * i40e_send_version - update firmware with driver version 9340 * @pf: PF struct 9341 */ 9342 static void i40e_send_version(struct i40e_pf *pf) 9343 { 9344 struct i40e_driver_version dv; 9345 9346 dv.major_version = DRV_VERSION_MAJOR; 9347 dv.minor_version = DRV_VERSION_MINOR; 9348 dv.build_version = DRV_VERSION_BUILD; 9349 dv.subbuild_version = 0; 9350 strlcpy(dv.driver_string, DRV_VERSION, sizeof(dv.driver_string)); 9351 i40e_aq_send_driver_version(&pf->hw, &dv, NULL); 9352 } 9353 9354 /** 9355 * i40e_get_oem_version - get OEM specific version information 9356 * @hw: pointer to the hardware structure 9357 **/ 9358 static void i40e_get_oem_version(struct i40e_hw *hw) 9359 { 9360 u16 block_offset = 0xffff; 9361 u16 block_length = 0; 9362 u16 capabilities = 0; 9363 u16 gen_snap = 0; 9364 u16 release = 0; 9365 9366 #define I40E_SR_NVM_OEM_VERSION_PTR 0x1B 9367 #define I40E_NVM_OEM_LENGTH_OFFSET 0x00 9368 #define I40E_NVM_OEM_CAPABILITIES_OFFSET 0x01 9369 #define I40E_NVM_OEM_GEN_OFFSET 0x02 9370 #define I40E_NVM_OEM_RELEASE_OFFSET 0x03 9371 #define I40E_NVM_OEM_CAPABILITIES_MASK 0x000F 9372 #define I40E_NVM_OEM_LENGTH 3 9373 9374 /* Check if pointer to OEM version block is valid. */ 9375 i40e_read_nvm_word(hw, I40E_SR_NVM_OEM_VERSION_PTR, &block_offset); 9376 if (block_offset == 0xffff) 9377 return; 9378 9379 /* Check if OEM version block has correct length. */ 9380 i40e_read_nvm_word(hw, block_offset + I40E_NVM_OEM_LENGTH_OFFSET, 9381 &block_length); 9382 if (block_length < I40E_NVM_OEM_LENGTH) 9383 return; 9384 9385 /* Check if OEM version format is as expected. */ 9386 i40e_read_nvm_word(hw, block_offset + I40E_NVM_OEM_CAPABILITIES_OFFSET, 9387 &capabilities); 9388 if ((capabilities & I40E_NVM_OEM_CAPABILITIES_MASK) != 0) 9389 return; 9390 9391 i40e_read_nvm_word(hw, block_offset + I40E_NVM_OEM_GEN_OFFSET, 9392 &gen_snap); 9393 i40e_read_nvm_word(hw, block_offset + I40E_NVM_OEM_RELEASE_OFFSET, 9394 &release); 9395 hw->nvm.oem_ver = (gen_snap << I40E_OEM_SNAP_SHIFT) | release; 9396 hw->nvm.eetrack = I40E_OEM_EETRACK_ID; 9397 } 9398 9399 /** 9400 * i40e_reset - wait for core reset to finish reset, reset pf if corer not seen 9401 * @pf: board private structure 9402 **/ 9403 static int i40e_reset(struct i40e_pf *pf) 9404 { 9405 struct i40e_hw *hw = &pf->hw; 9406 i40e_status ret; 9407 9408 ret = i40e_pf_reset(hw); 9409 if (ret) { 9410 dev_info(&pf->pdev->dev, "PF reset failed, %d\n", ret); 9411 set_bit(__I40E_RESET_FAILED, pf->state); 9412 clear_bit(__I40E_RESET_RECOVERY_PENDING, pf->state); 9413 } else { 9414 pf->pfr_count++; 9415 } 9416 return ret; 9417 } 9418 9419 /** 9420 * i40e_rebuild - rebuild using a saved config 9421 * @pf: board private structure 9422 * @reinit: if the Main VSI needs to re-initialized. 9423 * @lock_acquired: indicates whether or not the lock has been acquired 9424 * before this function was called. 9425 **/ 9426 static void i40e_rebuild(struct i40e_pf *pf, bool reinit, bool lock_acquired) 9427 { 9428 int old_recovery_mode_bit = test_bit(__I40E_RECOVERY_MODE, pf->state); 9429 struct i40e_vsi *vsi = pf->vsi[pf->lan_vsi]; 9430 struct i40e_hw *hw = &pf->hw; 9431 u8 set_fc_aq_fail = 0; 9432 i40e_status ret; 9433 u32 val; 9434 int v; 9435 9436 if (test_bit(__I40E_EMP_RESET_INTR_RECEIVED, pf->state) && 9437 i40e_check_recovery_mode(pf)) { 9438 i40e_set_ethtool_ops(pf->vsi[pf->lan_vsi]->netdev); 9439 } 9440 9441 if (test_bit(__I40E_DOWN, pf->state) && 9442 !test_bit(__I40E_RECOVERY_MODE, pf->state) && 9443 !old_recovery_mode_bit) 9444 goto clear_recovery; 9445 dev_dbg(&pf->pdev->dev, "Rebuilding internal switch\n"); 9446 9447 /* rebuild the basics for the AdminQ, HMC, and initial HW switch */ 9448 ret = i40e_init_adminq(&pf->hw); 9449 if (ret) { 9450 dev_info(&pf->pdev->dev, "Rebuild AdminQ failed, err %s aq_err %s\n", 9451 i40e_stat_str(&pf->hw, ret), 9452 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 9453 goto clear_recovery; 9454 } 9455 i40e_get_oem_version(&pf->hw); 9456 9457 if (test_bit(__I40E_EMP_RESET_INTR_RECEIVED, pf->state) && 9458 ((hw->aq.fw_maj_ver == 4 && hw->aq.fw_min_ver <= 33) || 9459 hw->aq.fw_maj_ver < 4) && hw->mac.type == I40E_MAC_XL710) { 9460 /* The following delay is necessary for 4.33 firmware and older 9461 * to recover after EMP reset. 200 ms should suffice but we 9462 * put here 300 ms to be sure that FW is ready to operate 9463 * after reset. 9464 */ 9465 mdelay(300); 9466 } 9467 9468 /* re-verify the eeprom if we just had an EMP reset */ 9469 if (test_and_clear_bit(__I40E_EMP_RESET_INTR_RECEIVED, pf->state)) 9470 i40e_verify_eeprom(pf); 9471 9472 /* if we are going out of or into recovery mode we have to act 9473 * accordingly with regard to resources initialization 9474 * and deinitialization 9475 */ 9476 if (test_bit(__I40E_RECOVERY_MODE, pf->state) || 9477 old_recovery_mode_bit) { 9478 if (i40e_get_capabilities(pf, 9479 i40e_aqc_opc_list_func_capabilities)) 9480 goto end_unlock; 9481 9482 if (test_bit(__I40E_RECOVERY_MODE, pf->state)) { 9483 /* we're staying in recovery mode so we'll reinitialize 9484 * misc vector here 9485 */ 9486 if (i40e_setup_misc_vector_for_recovery_mode(pf)) 9487 goto end_unlock; 9488 } else { 9489 if (!lock_acquired) 9490 rtnl_lock(); 9491 /* we're going out of recovery mode so we'll free 9492 * the IRQ allocated specifically for recovery mode 9493 * and restore the interrupt scheme 9494 */ 9495 free_irq(pf->pdev->irq, pf); 9496 i40e_clear_interrupt_scheme(pf); 9497 if (i40e_restore_interrupt_scheme(pf)) 9498 goto end_unlock; 9499 } 9500 9501 /* tell the firmware that we're starting */ 9502 i40e_send_version(pf); 9503 9504 /* bail out in case recovery mode was detected, as there is 9505 * no need for further configuration. 9506 */ 9507 goto end_unlock; 9508 } 9509 9510 i40e_clear_pxe_mode(hw); 9511 ret = i40e_get_capabilities(pf, i40e_aqc_opc_list_func_capabilities); 9512 if (ret) 9513 goto end_core_reset; 9514 9515 ret = i40e_init_lan_hmc(hw, hw->func_caps.num_tx_qp, 9516 hw->func_caps.num_rx_qp, 0, 0); 9517 if (ret) { 9518 dev_info(&pf->pdev->dev, "init_lan_hmc failed: %d\n", ret); 9519 goto end_core_reset; 9520 } 9521 ret = i40e_configure_lan_hmc(hw, I40E_HMC_MODEL_DIRECT_ONLY); 9522 if (ret) { 9523 dev_info(&pf->pdev->dev, "configure_lan_hmc failed: %d\n", ret); 9524 goto end_core_reset; 9525 } 9526 9527 /* Enable FW to write a default DCB config on link-up */ 9528 i40e_aq_set_dcb_parameters(hw, true, NULL); 9529 9530 #ifdef CONFIG_I40E_DCB 9531 ret = i40e_init_pf_dcb(pf); 9532 if (ret) { 9533 dev_info(&pf->pdev->dev, "DCB init failed %d, disabled\n", ret); 9534 pf->flags &= ~I40E_FLAG_DCB_CAPABLE; 9535 /* Continue without DCB enabled */ 9536 } 9537 #endif /* CONFIG_I40E_DCB */ 9538 /* do basic switch setup */ 9539 if (!lock_acquired) 9540 rtnl_lock(); 9541 ret = i40e_setup_pf_switch(pf, reinit); 9542 if (ret) 9543 goto end_unlock; 9544 9545 /* The driver only wants link up/down and module qualification 9546 * reports from firmware. Note the negative logic. 9547 */ 9548 ret = i40e_aq_set_phy_int_mask(&pf->hw, 9549 ~(I40E_AQ_EVENT_LINK_UPDOWN | 9550 I40E_AQ_EVENT_MEDIA_NA | 9551 I40E_AQ_EVENT_MODULE_QUAL_FAIL), NULL); 9552 if (ret) 9553 dev_info(&pf->pdev->dev, "set phy mask fail, err %s aq_err %s\n", 9554 i40e_stat_str(&pf->hw, ret), 9555 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 9556 9557 /* make sure our flow control settings are restored */ 9558 ret = i40e_set_fc(&pf->hw, &set_fc_aq_fail, true); 9559 if (ret) 9560 dev_dbg(&pf->pdev->dev, "setting flow control: ret = %s last_status = %s\n", 9561 i40e_stat_str(&pf->hw, ret), 9562 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 9563 9564 /* Rebuild the VSIs and VEBs that existed before reset. 9565 * They are still in our local switch element arrays, so only 9566 * need to rebuild the switch model in the HW. 9567 * 9568 * If there were VEBs but the reconstitution failed, we'll try 9569 * try to recover minimal use by getting the basic PF VSI working. 9570 */ 9571 if (vsi->uplink_seid != pf->mac_seid) { 9572 dev_dbg(&pf->pdev->dev, "attempting to rebuild switch\n"); 9573 /* find the one VEB connected to the MAC, and find orphans */ 9574 for (v = 0; v < I40E_MAX_VEB; v++) { 9575 if (!pf->veb[v]) 9576 continue; 9577 9578 if (pf->veb[v]->uplink_seid == pf->mac_seid || 9579 pf->veb[v]->uplink_seid == 0) { 9580 ret = i40e_reconstitute_veb(pf->veb[v]); 9581 9582 if (!ret) 9583 continue; 9584 9585 /* If Main VEB failed, we're in deep doodoo, 9586 * so give up rebuilding the switch and set up 9587 * for minimal rebuild of PF VSI. 9588 * If orphan failed, we'll report the error 9589 * but try to keep going. 9590 */ 9591 if (pf->veb[v]->uplink_seid == pf->mac_seid) { 9592 dev_info(&pf->pdev->dev, 9593 "rebuild of switch failed: %d, will try to set up simple PF connection\n", 9594 ret); 9595 vsi->uplink_seid = pf->mac_seid; 9596 break; 9597 } else if (pf->veb[v]->uplink_seid == 0) { 9598 dev_info(&pf->pdev->dev, 9599 "rebuild of orphan VEB failed: %d\n", 9600 ret); 9601 } 9602 } 9603 } 9604 } 9605 9606 if (vsi->uplink_seid == pf->mac_seid) { 9607 dev_dbg(&pf->pdev->dev, "attempting to rebuild PF VSI\n"); 9608 /* no VEB, so rebuild only the Main VSI */ 9609 ret = i40e_add_vsi(vsi); 9610 if (ret) { 9611 dev_info(&pf->pdev->dev, 9612 "rebuild of Main VSI failed: %d\n", ret); 9613 goto end_unlock; 9614 } 9615 } 9616 9617 if (vsi->mqprio_qopt.max_rate[0]) { 9618 u64 max_tx_rate = vsi->mqprio_qopt.max_rate[0]; 9619 u64 credits = 0; 9620 9621 do_div(max_tx_rate, I40E_BW_MBPS_DIVISOR); 9622 ret = i40e_set_bw_limit(vsi, vsi->seid, max_tx_rate); 9623 if (ret) 9624 goto end_unlock; 9625 9626 credits = max_tx_rate; 9627 do_div(credits, I40E_BW_CREDIT_DIVISOR); 9628 dev_dbg(&vsi->back->pdev->dev, 9629 "Set tx rate of %llu Mbps (count of 50Mbps %llu) for vsi->seid %u\n", 9630 max_tx_rate, 9631 credits, 9632 vsi->seid); 9633 } 9634 9635 ret = i40e_rebuild_cloud_filters(vsi, vsi->seid); 9636 if (ret) 9637 goto end_unlock; 9638 9639 /* PF Main VSI is rebuild by now, go ahead and rebuild channel VSIs 9640 * for this main VSI if they exist 9641 */ 9642 ret = i40e_rebuild_channels(vsi); 9643 if (ret) 9644 goto end_unlock; 9645 9646 /* Reconfigure hardware for allowing smaller MSS in the case 9647 * of TSO, so that we avoid the MDD being fired and causing 9648 * a reset in the case of small MSS+TSO. 9649 */ 9650 #define I40E_REG_MSS 0x000E64DC 9651 #define I40E_REG_MSS_MIN_MASK 0x3FF0000 9652 #define I40E_64BYTE_MSS 0x400000 9653 val = rd32(hw, I40E_REG_MSS); 9654 if ((val & I40E_REG_MSS_MIN_MASK) > I40E_64BYTE_MSS) { 9655 val &= ~I40E_REG_MSS_MIN_MASK; 9656 val |= I40E_64BYTE_MSS; 9657 wr32(hw, I40E_REG_MSS, val); 9658 } 9659 9660 if (pf->hw_features & I40E_HW_RESTART_AUTONEG) { 9661 msleep(75); 9662 ret = i40e_aq_set_link_restart_an(&pf->hw, true, NULL); 9663 if (ret) 9664 dev_info(&pf->pdev->dev, "link restart failed, err %s aq_err %s\n", 9665 i40e_stat_str(&pf->hw, ret), 9666 i40e_aq_str(&pf->hw, 9667 pf->hw.aq.asq_last_status)); 9668 } 9669 /* reinit the misc interrupt */ 9670 if (pf->flags & I40E_FLAG_MSIX_ENABLED) 9671 ret = i40e_setup_misc_vector(pf); 9672 9673 /* Add a filter to drop all Flow control frames from any VSI from being 9674 * transmitted. By doing so we stop a malicious VF from sending out 9675 * PAUSE or PFC frames and potentially controlling traffic for other 9676 * PF/VF VSIs. 9677 * The FW can still send Flow control frames if enabled. 9678 */ 9679 i40e_add_filter_to_drop_tx_flow_control_frames(&pf->hw, 9680 pf->main_vsi_seid); 9681 9682 /* restart the VSIs that were rebuilt and running before the reset */ 9683 i40e_pf_unquiesce_all_vsi(pf); 9684 9685 /* Release the RTNL lock before we start resetting VFs */ 9686 if (!lock_acquired) 9687 rtnl_unlock(); 9688 9689 /* Restore promiscuous settings */ 9690 ret = i40e_set_promiscuous(pf, pf->cur_promisc); 9691 if (ret) 9692 dev_warn(&pf->pdev->dev, 9693 "Failed to restore promiscuous setting: %s, err %s aq_err %s\n", 9694 pf->cur_promisc ? "on" : "off", 9695 i40e_stat_str(&pf->hw, ret), 9696 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 9697 9698 i40e_reset_all_vfs(pf, true); 9699 9700 /* tell the firmware that we're starting */ 9701 i40e_send_version(pf); 9702 9703 /* We've already released the lock, so don't do it again */ 9704 goto end_core_reset; 9705 9706 end_unlock: 9707 if (!lock_acquired) 9708 rtnl_unlock(); 9709 end_core_reset: 9710 clear_bit(__I40E_RESET_FAILED, pf->state); 9711 clear_recovery: 9712 clear_bit(__I40E_RESET_RECOVERY_PENDING, pf->state); 9713 clear_bit(__I40E_TIMEOUT_RECOVERY_PENDING, pf->state); 9714 } 9715 9716 /** 9717 * i40e_reset_and_rebuild - reset and rebuild using a saved config 9718 * @pf: board private structure 9719 * @reinit: if the Main VSI needs to re-initialized. 9720 * @lock_acquired: indicates whether or not the lock has been acquired 9721 * before this function was called. 9722 **/ 9723 static void i40e_reset_and_rebuild(struct i40e_pf *pf, bool reinit, 9724 bool lock_acquired) 9725 { 9726 int ret; 9727 /* Now we wait for GRST to settle out. 9728 * We don't have to delete the VEBs or VSIs from the hw switch 9729 * because the reset will make them disappear. 9730 */ 9731 ret = i40e_reset(pf); 9732 if (!ret) 9733 i40e_rebuild(pf, reinit, lock_acquired); 9734 } 9735 9736 /** 9737 * i40e_handle_reset_warning - prep for the PF to reset, reset and rebuild 9738 * @pf: board private structure 9739 * 9740 * Close up the VFs and other things in prep for a Core Reset, 9741 * then get ready to rebuild the world. 9742 * @lock_acquired: indicates whether or not the lock has been acquired 9743 * before this function was called. 9744 **/ 9745 static void i40e_handle_reset_warning(struct i40e_pf *pf, bool lock_acquired) 9746 { 9747 i40e_prep_for_reset(pf, lock_acquired); 9748 i40e_reset_and_rebuild(pf, false, lock_acquired); 9749 } 9750 9751 /** 9752 * i40e_handle_mdd_event 9753 * @pf: pointer to the PF structure 9754 * 9755 * Called from the MDD irq handler to identify possibly malicious vfs 9756 **/ 9757 static void i40e_handle_mdd_event(struct i40e_pf *pf) 9758 { 9759 struct i40e_hw *hw = &pf->hw; 9760 bool mdd_detected = false; 9761 struct i40e_vf *vf; 9762 u32 reg; 9763 int i; 9764 9765 if (!test_bit(__I40E_MDD_EVENT_PENDING, pf->state)) 9766 return; 9767 9768 /* find what triggered the MDD event */ 9769 reg = rd32(hw, I40E_GL_MDET_TX); 9770 if (reg & I40E_GL_MDET_TX_VALID_MASK) { 9771 u8 pf_num = (reg & I40E_GL_MDET_TX_PF_NUM_MASK) >> 9772 I40E_GL_MDET_TX_PF_NUM_SHIFT; 9773 u16 vf_num = (reg & I40E_GL_MDET_TX_VF_NUM_MASK) >> 9774 I40E_GL_MDET_TX_VF_NUM_SHIFT; 9775 u8 event = (reg & I40E_GL_MDET_TX_EVENT_MASK) >> 9776 I40E_GL_MDET_TX_EVENT_SHIFT; 9777 u16 queue = ((reg & I40E_GL_MDET_TX_QUEUE_MASK) >> 9778 I40E_GL_MDET_TX_QUEUE_SHIFT) - 9779 pf->hw.func_caps.base_queue; 9780 if (netif_msg_tx_err(pf)) 9781 dev_info(&pf->pdev->dev, "Malicious Driver Detection event 0x%02x on TX queue %d PF number 0x%02x VF number 0x%02x\n", 9782 event, queue, pf_num, vf_num); 9783 wr32(hw, I40E_GL_MDET_TX, 0xffffffff); 9784 mdd_detected = true; 9785 } 9786 reg = rd32(hw, I40E_GL_MDET_RX); 9787 if (reg & I40E_GL_MDET_RX_VALID_MASK) { 9788 u8 func = (reg & I40E_GL_MDET_RX_FUNCTION_MASK) >> 9789 I40E_GL_MDET_RX_FUNCTION_SHIFT; 9790 u8 event = (reg & I40E_GL_MDET_RX_EVENT_MASK) >> 9791 I40E_GL_MDET_RX_EVENT_SHIFT; 9792 u16 queue = ((reg & I40E_GL_MDET_RX_QUEUE_MASK) >> 9793 I40E_GL_MDET_RX_QUEUE_SHIFT) - 9794 pf->hw.func_caps.base_queue; 9795 if (netif_msg_rx_err(pf)) 9796 dev_info(&pf->pdev->dev, "Malicious Driver Detection event 0x%02x on RX queue %d of function 0x%02x\n", 9797 event, queue, func); 9798 wr32(hw, I40E_GL_MDET_RX, 0xffffffff); 9799 mdd_detected = true; 9800 } 9801 9802 if (mdd_detected) { 9803 reg = rd32(hw, I40E_PF_MDET_TX); 9804 if (reg & I40E_PF_MDET_TX_VALID_MASK) { 9805 wr32(hw, I40E_PF_MDET_TX, 0xFFFF); 9806 dev_dbg(&pf->pdev->dev, "TX driver issue detected on PF\n"); 9807 } 9808 reg = rd32(hw, I40E_PF_MDET_RX); 9809 if (reg & I40E_PF_MDET_RX_VALID_MASK) { 9810 wr32(hw, I40E_PF_MDET_RX, 0xFFFF); 9811 dev_dbg(&pf->pdev->dev, "RX driver issue detected on PF\n"); 9812 } 9813 } 9814 9815 /* see if one of the VFs needs its hand slapped */ 9816 for (i = 0; i < pf->num_alloc_vfs && mdd_detected; i++) { 9817 vf = &(pf->vf[i]); 9818 reg = rd32(hw, I40E_VP_MDET_TX(i)); 9819 if (reg & I40E_VP_MDET_TX_VALID_MASK) { 9820 wr32(hw, I40E_VP_MDET_TX(i), 0xFFFF); 9821 vf->num_mdd_events++; 9822 dev_info(&pf->pdev->dev, "TX driver issue detected on VF %d\n", 9823 i); 9824 dev_info(&pf->pdev->dev, 9825 "Use PF Control I/F to re-enable the VF\n"); 9826 set_bit(I40E_VF_STATE_DISABLED, &vf->vf_states); 9827 } 9828 9829 reg = rd32(hw, I40E_VP_MDET_RX(i)); 9830 if (reg & I40E_VP_MDET_RX_VALID_MASK) { 9831 wr32(hw, I40E_VP_MDET_RX(i), 0xFFFF); 9832 vf->num_mdd_events++; 9833 dev_info(&pf->pdev->dev, "RX driver issue detected on VF %d\n", 9834 i); 9835 dev_info(&pf->pdev->dev, 9836 "Use PF Control I/F to re-enable the VF\n"); 9837 set_bit(I40E_VF_STATE_DISABLED, &vf->vf_states); 9838 } 9839 } 9840 9841 /* re-enable mdd interrupt cause */ 9842 clear_bit(__I40E_MDD_EVENT_PENDING, pf->state); 9843 reg = rd32(hw, I40E_PFINT_ICR0_ENA); 9844 reg |= I40E_PFINT_ICR0_ENA_MAL_DETECT_MASK; 9845 wr32(hw, I40E_PFINT_ICR0_ENA, reg); 9846 i40e_flush(hw); 9847 } 9848 9849 static const char *i40e_tunnel_name(u8 type) 9850 { 9851 switch (type) { 9852 case UDP_TUNNEL_TYPE_VXLAN: 9853 return "vxlan"; 9854 case UDP_TUNNEL_TYPE_GENEVE: 9855 return "geneve"; 9856 default: 9857 return "unknown"; 9858 } 9859 } 9860 9861 /** 9862 * i40e_sync_udp_filters - Trigger a sync event for existing UDP filters 9863 * @pf: board private structure 9864 **/ 9865 static void i40e_sync_udp_filters(struct i40e_pf *pf) 9866 { 9867 int i; 9868 9869 /* loop through and set pending bit for all active UDP filters */ 9870 for (i = 0; i < I40E_MAX_PF_UDP_OFFLOAD_PORTS; i++) { 9871 if (pf->udp_ports[i].port) 9872 pf->pending_udp_bitmap |= BIT_ULL(i); 9873 } 9874 9875 set_bit(__I40E_UDP_FILTER_SYNC_PENDING, pf->state); 9876 } 9877 9878 /** 9879 * i40e_sync_udp_filters_subtask - Sync the VSI filter list with HW 9880 * @pf: board private structure 9881 **/ 9882 static void i40e_sync_udp_filters_subtask(struct i40e_pf *pf) 9883 { 9884 struct i40e_hw *hw = &pf->hw; 9885 u8 filter_index, type; 9886 u16 port; 9887 int i; 9888 9889 if (!test_and_clear_bit(__I40E_UDP_FILTER_SYNC_PENDING, pf->state)) 9890 return; 9891 9892 /* acquire RTNL to maintain state of flags and port requests */ 9893 rtnl_lock(); 9894 9895 for (i = 0; i < I40E_MAX_PF_UDP_OFFLOAD_PORTS; i++) { 9896 if (pf->pending_udp_bitmap & BIT_ULL(i)) { 9897 struct i40e_udp_port_config *udp_port; 9898 i40e_status ret = 0; 9899 9900 udp_port = &pf->udp_ports[i]; 9901 pf->pending_udp_bitmap &= ~BIT_ULL(i); 9902 9903 port = READ_ONCE(udp_port->port); 9904 type = READ_ONCE(udp_port->type); 9905 filter_index = READ_ONCE(udp_port->filter_index); 9906 9907 /* release RTNL while we wait on AQ command */ 9908 rtnl_unlock(); 9909 9910 if (port) 9911 ret = i40e_aq_add_udp_tunnel(hw, port, 9912 type, 9913 &filter_index, 9914 NULL); 9915 else if (filter_index != I40E_UDP_PORT_INDEX_UNUSED) 9916 ret = i40e_aq_del_udp_tunnel(hw, filter_index, 9917 NULL); 9918 9919 /* reacquire RTNL so we can update filter_index */ 9920 rtnl_lock(); 9921 9922 if (ret) { 9923 dev_info(&pf->pdev->dev, 9924 "%s %s port %d, index %d failed, err %s aq_err %s\n", 9925 i40e_tunnel_name(type), 9926 port ? "add" : "delete", 9927 port, 9928 filter_index, 9929 i40e_stat_str(&pf->hw, ret), 9930 i40e_aq_str(&pf->hw, 9931 pf->hw.aq.asq_last_status)); 9932 if (port) { 9933 /* failed to add, just reset port, 9934 * drop pending bit for any deletion 9935 */ 9936 udp_port->port = 0; 9937 pf->pending_udp_bitmap &= ~BIT_ULL(i); 9938 } 9939 } else if (port) { 9940 /* record filter index on success */ 9941 udp_port->filter_index = filter_index; 9942 } 9943 } 9944 } 9945 9946 rtnl_unlock(); 9947 } 9948 9949 /** 9950 * i40e_service_task - Run the driver's async subtasks 9951 * @work: pointer to work_struct containing our data 9952 **/ 9953 static void i40e_service_task(struct work_struct *work) 9954 { 9955 struct i40e_pf *pf = container_of(work, 9956 struct i40e_pf, 9957 service_task); 9958 unsigned long start_time = jiffies; 9959 9960 /* don't bother with service tasks if a reset is in progress */ 9961 if (test_bit(__I40E_RESET_RECOVERY_PENDING, pf->state) || 9962 test_bit(__I40E_SUSPENDED, pf->state)) 9963 return; 9964 9965 if (test_and_set_bit(__I40E_SERVICE_SCHED, pf->state)) 9966 return; 9967 9968 if (!test_bit(__I40E_RECOVERY_MODE, pf->state)) { 9969 i40e_detect_recover_hung(pf->vsi[pf->lan_vsi]); 9970 i40e_sync_filters_subtask(pf); 9971 i40e_reset_subtask(pf); 9972 i40e_handle_mdd_event(pf); 9973 i40e_vc_process_vflr_event(pf); 9974 i40e_watchdog_subtask(pf); 9975 i40e_fdir_reinit_subtask(pf); 9976 if (test_and_clear_bit(__I40E_CLIENT_RESET, pf->state)) { 9977 /* Client subtask will reopen next time through. */ 9978 i40e_notify_client_of_netdev_close(pf->vsi[pf->lan_vsi], 9979 true); 9980 } else { 9981 i40e_client_subtask(pf); 9982 if (test_and_clear_bit(__I40E_CLIENT_L2_CHANGE, 9983 pf->state)) 9984 i40e_notify_client_of_l2_param_changes( 9985 pf->vsi[pf->lan_vsi]); 9986 } 9987 i40e_sync_filters_subtask(pf); 9988 i40e_sync_udp_filters_subtask(pf); 9989 } else { 9990 i40e_reset_subtask(pf); 9991 } 9992 9993 i40e_clean_adminq_subtask(pf); 9994 9995 /* flush memory to make sure state is correct before next watchdog */ 9996 smp_mb__before_atomic(); 9997 clear_bit(__I40E_SERVICE_SCHED, pf->state); 9998 9999 /* If the tasks have taken longer than one timer cycle or there 10000 * is more work to be done, reschedule the service task now 10001 * rather than wait for the timer to tick again. 10002 */ 10003 if (time_after(jiffies, (start_time + pf->service_timer_period)) || 10004 test_bit(__I40E_ADMINQ_EVENT_PENDING, pf->state) || 10005 test_bit(__I40E_MDD_EVENT_PENDING, pf->state) || 10006 test_bit(__I40E_VFLR_EVENT_PENDING, pf->state)) 10007 i40e_service_event_schedule(pf); 10008 } 10009 10010 /** 10011 * i40e_service_timer - timer callback 10012 * @data: pointer to PF struct 10013 **/ 10014 static void i40e_service_timer(struct timer_list *t) 10015 { 10016 struct i40e_pf *pf = from_timer(pf, t, service_timer); 10017 10018 mod_timer(&pf->service_timer, 10019 round_jiffies(jiffies + pf->service_timer_period)); 10020 i40e_service_event_schedule(pf); 10021 } 10022 10023 /** 10024 * i40e_set_num_rings_in_vsi - Determine number of rings in the VSI 10025 * @vsi: the VSI being configured 10026 **/ 10027 static int i40e_set_num_rings_in_vsi(struct i40e_vsi *vsi) 10028 { 10029 struct i40e_pf *pf = vsi->back; 10030 10031 switch (vsi->type) { 10032 case I40E_VSI_MAIN: 10033 vsi->alloc_queue_pairs = pf->num_lan_qps; 10034 vsi->num_desc = ALIGN(I40E_DEFAULT_NUM_DESCRIPTORS, 10035 I40E_REQ_DESCRIPTOR_MULTIPLE); 10036 if (pf->flags & I40E_FLAG_MSIX_ENABLED) 10037 vsi->num_q_vectors = pf->num_lan_msix; 10038 else 10039 vsi->num_q_vectors = 1; 10040 10041 break; 10042 10043 case I40E_VSI_FDIR: 10044 vsi->alloc_queue_pairs = 1; 10045 vsi->num_desc = ALIGN(I40E_FDIR_RING_COUNT, 10046 I40E_REQ_DESCRIPTOR_MULTIPLE); 10047 vsi->num_q_vectors = pf->num_fdsb_msix; 10048 break; 10049 10050 case I40E_VSI_VMDQ2: 10051 vsi->alloc_queue_pairs = pf->num_vmdq_qps; 10052 vsi->num_desc = ALIGN(I40E_DEFAULT_NUM_DESCRIPTORS, 10053 I40E_REQ_DESCRIPTOR_MULTIPLE); 10054 vsi->num_q_vectors = pf->num_vmdq_msix; 10055 break; 10056 10057 case I40E_VSI_SRIOV: 10058 vsi->alloc_queue_pairs = pf->num_vf_qps; 10059 vsi->num_desc = ALIGN(I40E_DEFAULT_NUM_DESCRIPTORS, 10060 I40E_REQ_DESCRIPTOR_MULTIPLE); 10061 break; 10062 10063 default: 10064 WARN_ON(1); 10065 return -ENODATA; 10066 } 10067 10068 return 0; 10069 } 10070 10071 /** 10072 * i40e_vsi_alloc_arrays - Allocate queue and vector pointer arrays for the vsi 10073 * @vsi: VSI pointer 10074 * @alloc_qvectors: a bool to specify if q_vectors need to be allocated. 10075 * 10076 * On error: returns error code (negative) 10077 * On success: returns 0 10078 **/ 10079 static int i40e_vsi_alloc_arrays(struct i40e_vsi *vsi, bool alloc_qvectors) 10080 { 10081 struct i40e_ring **next_rings; 10082 int size; 10083 int ret = 0; 10084 10085 /* allocate memory for both Tx, XDP Tx and Rx ring pointers */ 10086 size = sizeof(struct i40e_ring *) * vsi->alloc_queue_pairs * 10087 (i40e_enabled_xdp_vsi(vsi) ? 3 : 2); 10088 vsi->tx_rings = kzalloc(size, GFP_KERNEL); 10089 if (!vsi->tx_rings) 10090 return -ENOMEM; 10091 next_rings = vsi->tx_rings + vsi->alloc_queue_pairs; 10092 if (i40e_enabled_xdp_vsi(vsi)) { 10093 vsi->xdp_rings = next_rings; 10094 next_rings += vsi->alloc_queue_pairs; 10095 } 10096 vsi->rx_rings = next_rings; 10097 10098 if (alloc_qvectors) { 10099 /* allocate memory for q_vector pointers */ 10100 size = sizeof(struct i40e_q_vector *) * vsi->num_q_vectors; 10101 vsi->q_vectors = kzalloc(size, GFP_KERNEL); 10102 if (!vsi->q_vectors) { 10103 ret = -ENOMEM; 10104 goto err_vectors; 10105 } 10106 } 10107 return ret; 10108 10109 err_vectors: 10110 kfree(vsi->tx_rings); 10111 return ret; 10112 } 10113 10114 /** 10115 * i40e_vsi_mem_alloc - Allocates the next available struct vsi in the PF 10116 * @pf: board private structure 10117 * @type: type of VSI 10118 * 10119 * On error: returns error code (negative) 10120 * On success: returns vsi index in PF (positive) 10121 **/ 10122 static int i40e_vsi_mem_alloc(struct i40e_pf *pf, enum i40e_vsi_type type) 10123 { 10124 int ret = -ENODEV; 10125 struct i40e_vsi *vsi; 10126 int vsi_idx; 10127 int i; 10128 10129 /* Need to protect the allocation of the VSIs at the PF level */ 10130 mutex_lock(&pf->switch_mutex); 10131 10132 /* VSI list may be fragmented if VSI creation/destruction has 10133 * been happening. We can afford to do a quick scan to look 10134 * for any free VSIs in the list. 10135 * 10136 * find next empty vsi slot, looping back around if necessary 10137 */ 10138 i = pf->next_vsi; 10139 while (i < pf->num_alloc_vsi && pf->vsi[i]) 10140 i++; 10141 if (i >= pf->num_alloc_vsi) { 10142 i = 0; 10143 while (i < pf->next_vsi && pf->vsi[i]) 10144 i++; 10145 } 10146 10147 if (i < pf->num_alloc_vsi && !pf->vsi[i]) { 10148 vsi_idx = i; /* Found one! */ 10149 } else { 10150 ret = -ENODEV; 10151 goto unlock_pf; /* out of VSI slots! */ 10152 } 10153 pf->next_vsi = ++i; 10154 10155 vsi = kzalloc(sizeof(*vsi), GFP_KERNEL); 10156 if (!vsi) { 10157 ret = -ENOMEM; 10158 goto unlock_pf; 10159 } 10160 vsi->type = type; 10161 vsi->back = pf; 10162 set_bit(__I40E_VSI_DOWN, vsi->state); 10163 vsi->flags = 0; 10164 vsi->idx = vsi_idx; 10165 vsi->int_rate_limit = 0; 10166 vsi->rss_table_size = (vsi->type == I40E_VSI_MAIN) ? 10167 pf->rss_table_size : 64; 10168 vsi->netdev_registered = false; 10169 vsi->work_limit = I40E_DEFAULT_IRQ_WORK; 10170 hash_init(vsi->mac_filter_hash); 10171 vsi->irqs_ready = false; 10172 10173 if (type == I40E_VSI_MAIN) { 10174 vsi->af_xdp_zc_qps = bitmap_zalloc(pf->num_lan_qps, GFP_KERNEL); 10175 if (!vsi->af_xdp_zc_qps) 10176 goto err_rings; 10177 } 10178 10179 ret = i40e_set_num_rings_in_vsi(vsi); 10180 if (ret) 10181 goto err_rings; 10182 10183 ret = i40e_vsi_alloc_arrays(vsi, true); 10184 if (ret) 10185 goto err_rings; 10186 10187 /* Setup default MSIX irq handler for VSI */ 10188 i40e_vsi_setup_irqhandler(vsi, i40e_msix_clean_rings); 10189 10190 /* Initialize VSI lock */ 10191 spin_lock_init(&vsi->mac_filter_hash_lock); 10192 pf->vsi[vsi_idx] = vsi; 10193 ret = vsi_idx; 10194 goto unlock_pf; 10195 10196 err_rings: 10197 bitmap_free(vsi->af_xdp_zc_qps); 10198 pf->next_vsi = i - 1; 10199 kfree(vsi); 10200 unlock_pf: 10201 mutex_unlock(&pf->switch_mutex); 10202 return ret; 10203 } 10204 10205 /** 10206 * i40e_vsi_free_arrays - Free queue and vector pointer arrays for the VSI 10207 * @vsi: VSI pointer 10208 * @free_qvectors: a bool to specify if q_vectors need to be freed. 10209 * 10210 * On error: returns error code (negative) 10211 * On success: returns 0 10212 **/ 10213 static void i40e_vsi_free_arrays(struct i40e_vsi *vsi, bool free_qvectors) 10214 { 10215 /* free the ring and vector containers */ 10216 if (free_qvectors) { 10217 kfree(vsi->q_vectors); 10218 vsi->q_vectors = NULL; 10219 } 10220 kfree(vsi->tx_rings); 10221 vsi->tx_rings = NULL; 10222 vsi->rx_rings = NULL; 10223 vsi->xdp_rings = NULL; 10224 } 10225 10226 /** 10227 * i40e_clear_rss_config_user - clear the user configured RSS hash keys 10228 * and lookup table 10229 * @vsi: Pointer to VSI structure 10230 */ 10231 static void i40e_clear_rss_config_user(struct i40e_vsi *vsi) 10232 { 10233 if (!vsi) 10234 return; 10235 10236 kfree(vsi->rss_hkey_user); 10237 vsi->rss_hkey_user = NULL; 10238 10239 kfree(vsi->rss_lut_user); 10240 vsi->rss_lut_user = NULL; 10241 } 10242 10243 /** 10244 * i40e_vsi_clear - Deallocate the VSI provided 10245 * @vsi: the VSI being un-configured 10246 **/ 10247 static int i40e_vsi_clear(struct i40e_vsi *vsi) 10248 { 10249 struct i40e_pf *pf; 10250 10251 if (!vsi) 10252 return 0; 10253 10254 if (!vsi->back) 10255 goto free_vsi; 10256 pf = vsi->back; 10257 10258 mutex_lock(&pf->switch_mutex); 10259 if (!pf->vsi[vsi->idx]) { 10260 dev_err(&pf->pdev->dev, "pf->vsi[%d] is NULL, just free vsi[%d](type %d)\n", 10261 vsi->idx, vsi->idx, vsi->type); 10262 goto unlock_vsi; 10263 } 10264 10265 if (pf->vsi[vsi->idx] != vsi) { 10266 dev_err(&pf->pdev->dev, 10267 "pf->vsi[%d](type %d) != vsi[%d](type %d): no free!\n", 10268 pf->vsi[vsi->idx]->idx, 10269 pf->vsi[vsi->idx]->type, 10270 vsi->idx, vsi->type); 10271 goto unlock_vsi; 10272 } 10273 10274 /* updates the PF for this cleared vsi */ 10275 i40e_put_lump(pf->qp_pile, vsi->base_queue, vsi->idx); 10276 i40e_put_lump(pf->irq_pile, vsi->base_vector, vsi->idx); 10277 10278 bitmap_free(vsi->af_xdp_zc_qps); 10279 i40e_vsi_free_arrays(vsi, true); 10280 i40e_clear_rss_config_user(vsi); 10281 10282 pf->vsi[vsi->idx] = NULL; 10283 if (vsi->idx < pf->next_vsi) 10284 pf->next_vsi = vsi->idx; 10285 10286 unlock_vsi: 10287 mutex_unlock(&pf->switch_mutex); 10288 free_vsi: 10289 kfree(vsi); 10290 10291 return 0; 10292 } 10293 10294 /** 10295 * i40e_vsi_clear_rings - Deallocates the Rx and Tx rings for the provided VSI 10296 * @vsi: the VSI being cleaned 10297 **/ 10298 static void i40e_vsi_clear_rings(struct i40e_vsi *vsi) 10299 { 10300 int i; 10301 10302 if (vsi->tx_rings && vsi->tx_rings[0]) { 10303 for (i = 0; i < vsi->alloc_queue_pairs; i++) { 10304 kfree_rcu(vsi->tx_rings[i], rcu); 10305 vsi->tx_rings[i] = NULL; 10306 vsi->rx_rings[i] = NULL; 10307 if (vsi->xdp_rings) 10308 vsi->xdp_rings[i] = NULL; 10309 } 10310 } 10311 } 10312 10313 /** 10314 * i40e_alloc_rings - Allocates the Rx and Tx rings for the provided VSI 10315 * @vsi: the VSI being configured 10316 **/ 10317 static int i40e_alloc_rings(struct i40e_vsi *vsi) 10318 { 10319 int i, qpv = i40e_enabled_xdp_vsi(vsi) ? 3 : 2; 10320 struct i40e_pf *pf = vsi->back; 10321 struct i40e_ring *ring; 10322 10323 /* Set basic values in the rings to be used later during open() */ 10324 for (i = 0; i < vsi->alloc_queue_pairs; i++) { 10325 /* allocate space for both Tx and Rx in one shot */ 10326 ring = kcalloc(qpv, sizeof(struct i40e_ring), GFP_KERNEL); 10327 if (!ring) 10328 goto err_out; 10329 10330 ring->queue_index = i; 10331 ring->reg_idx = vsi->base_queue + i; 10332 ring->ring_active = false; 10333 ring->vsi = vsi; 10334 ring->netdev = vsi->netdev; 10335 ring->dev = &pf->pdev->dev; 10336 ring->count = vsi->num_desc; 10337 ring->size = 0; 10338 ring->dcb_tc = 0; 10339 if (vsi->back->hw_features & I40E_HW_WB_ON_ITR_CAPABLE) 10340 ring->flags = I40E_TXR_FLAGS_WB_ON_ITR; 10341 ring->itr_setting = pf->tx_itr_default; 10342 vsi->tx_rings[i] = ring++; 10343 10344 if (!i40e_enabled_xdp_vsi(vsi)) 10345 goto setup_rx; 10346 10347 ring->queue_index = vsi->alloc_queue_pairs + i; 10348 ring->reg_idx = vsi->base_queue + ring->queue_index; 10349 ring->ring_active = false; 10350 ring->vsi = vsi; 10351 ring->netdev = NULL; 10352 ring->dev = &pf->pdev->dev; 10353 ring->count = vsi->num_desc; 10354 ring->size = 0; 10355 ring->dcb_tc = 0; 10356 if (vsi->back->hw_features & I40E_HW_WB_ON_ITR_CAPABLE) 10357 ring->flags = I40E_TXR_FLAGS_WB_ON_ITR; 10358 set_ring_xdp(ring); 10359 ring->itr_setting = pf->tx_itr_default; 10360 vsi->xdp_rings[i] = ring++; 10361 10362 setup_rx: 10363 ring->queue_index = i; 10364 ring->reg_idx = vsi->base_queue + i; 10365 ring->ring_active = false; 10366 ring->vsi = vsi; 10367 ring->netdev = vsi->netdev; 10368 ring->dev = &pf->pdev->dev; 10369 ring->count = vsi->num_desc; 10370 ring->size = 0; 10371 ring->dcb_tc = 0; 10372 ring->itr_setting = pf->rx_itr_default; 10373 vsi->rx_rings[i] = ring; 10374 } 10375 10376 return 0; 10377 10378 err_out: 10379 i40e_vsi_clear_rings(vsi); 10380 return -ENOMEM; 10381 } 10382 10383 /** 10384 * i40e_reserve_msix_vectors - Reserve MSI-X vectors in the kernel 10385 * @pf: board private structure 10386 * @vectors: the number of MSI-X vectors to request 10387 * 10388 * Returns the number of vectors reserved, or error 10389 **/ 10390 static int i40e_reserve_msix_vectors(struct i40e_pf *pf, int vectors) 10391 { 10392 vectors = pci_enable_msix_range(pf->pdev, pf->msix_entries, 10393 I40E_MIN_MSIX, vectors); 10394 if (vectors < 0) { 10395 dev_info(&pf->pdev->dev, 10396 "MSI-X vector reservation failed: %d\n", vectors); 10397 vectors = 0; 10398 } 10399 10400 return vectors; 10401 } 10402 10403 /** 10404 * i40e_init_msix - Setup the MSIX capability 10405 * @pf: board private structure 10406 * 10407 * Work with the OS to set up the MSIX vectors needed. 10408 * 10409 * Returns the number of vectors reserved or negative on failure 10410 **/ 10411 static int i40e_init_msix(struct i40e_pf *pf) 10412 { 10413 struct i40e_hw *hw = &pf->hw; 10414 int cpus, extra_vectors; 10415 int vectors_left; 10416 int v_budget, i; 10417 int v_actual; 10418 int iwarp_requested = 0; 10419 10420 if (!(pf->flags & I40E_FLAG_MSIX_ENABLED)) 10421 return -ENODEV; 10422 10423 /* The number of vectors we'll request will be comprised of: 10424 * - Add 1 for "other" cause for Admin Queue events, etc. 10425 * - The number of LAN queue pairs 10426 * - Queues being used for RSS. 10427 * We don't need as many as max_rss_size vectors. 10428 * use rss_size instead in the calculation since that 10429 * is governed by number of cpus in the system. 10430 * - assumes symmetric Tx/Rx pairing 10431 * - The number of VMDq pairs 10432 * - The CPU count within the NUMA node if iWARP is enabled 10433 * Once we count this up, try the request. 10434 * 10435 * If we can't get what we want, we'll simplify to nearly nothing 10436 * and try again. If that still fails, we punt. 10437 */ 10438 vectors_left = hw->func_caps.num_msix_vectors; 10439 v_budget = 0; 10440 10441 /* reserve one vector for miscellaneous handler */ 10442 if (vectors_left) { 10443 v_budget++; 10444 vectors_left--; 10445 } 10446 10447 /* reserve some vectors for the main PF traffic queues. Initially we 10448 * only reserve at most 50% of the available vectors, in the case that 10449 * the number of online CPUs is large. This ensures that we can enable 10450 * extra features as well. Once we've enabled the other features, we 10451 * will use any remaining vectors to reach as close as we can to the 10452 * number of online CPUs. 10453 */ 10454 cpus = num_online_cpus(); 10455 pf->num_lan_msix = min_t(int, cpus, vectors_left / 2); 10456 vectors_left -= pf->num_lan_msix; 10457 10458 /* reserve one vector for sideband flow director */ 10459 if (pf->flags & I40E_FLAG_FD_SB_ENABLED) { 10460 if (vectors_left) { 10461 pf->num_fdsb_msix = 1; 10462 v_budget++; 10463 vectors_left--; 10464 } else { 10465 pf->num_fdsb_msix = 0; 10466 } 10467 } 10468 10469 /* can we reserve enough for iWARP? */ 10470 if (pf->flags & I40E_FLAG_IWARP_ENABLED) { 10471 iwarp_requested = pf->num_iwarp_msix; 10472 10473 if (!vectors_left) 10474 pf->num_iwarp_msix = 0; 10475 else if (vectors_left < pf->num_iwarp_msix) 10476 pf->num_iwarp_msix = 1; 10477 v_budget += pf->num_iwarp_msix; 10478 vectors_left -= pf->num_iwarp_msix; 10479 } 10480 10481 /* any vectors left over go for VMDq support */ 10482 if (pf->flags & I40E_FLAG_VMDQ_ENABLED) { 10483 if (!vectors_left) { 10484 pf->num_vmdq_msix = 0; 10485 pf->num_vmdq_qps = 0; 10486 } else { 10487 int vmdq_vecs_wanted = 10488 pf->num_vmdq_vsis * pf->num_vmdq_qps; 10489 int vmdq_vecs = 10490 min_t(int, vectors_left, vmdq_vecs_wanted); 10491 10492 /* if we're short on vectors for what's desired, we limit 10493 * the queues per vmdq. If this is still more than are 10494 * available, the user will need to change the number of 10495 * queues/vectors used by the PF later with the ethtool 10496 * channels command 10497 */ 10498 if (vectors_left < vmdq_vecs_wanted) { 10499 pf->num_vmdq_qps = 1; 10500 vmdq_vecs_wanted = pf->num_vmdq_vsis; 10501 vmdq_vecs = min_t(int, 10502 vectors_left, 10503 vmdq_vecs_wanted); 10504 } 10505 pf->num_vmdq_msix = pf->num_vmdq_qps; 10506 10507 v_budget += vmdq_vecs; 10508 vectors_left -= vmdq_vecs; 10509 } 10510 } 10511 10512 /* On systems with a large number of SMP cores, we previously limited 10513 * the number of vectors for num_lan_msix to be at most 50% of the 10514 * available vectors, to allow for other features. Now, we add back 10515 * the remaining vectors. However, we ensure that the total 10516 * num_lan_msix will not exceed num_online_cpus(). To do this, we 10517 * calculate the number of vectors we can add without going over the 10518 * cap of CPUs. For systems with a small number of CPUs this will be 10519 * zero. 10520 */ 10521 extra_vectors = min_t(int, cpus - pf->num_lan_msix, vectors_left); 10522 pf->num_lan_msix += extra_vectors; 10523 vectors_left -= extra_vectors; 10524 10525 WARN(vectors_left < 0, 10526 "Calculation of remaining vectors underflowed. This is an accounting bug when determining total MSI-X vectors.\n"); 10527 10528 v_budget += pf->num_lan_msix; 10529 pf->msix_entries = kcalloc(v_budget, sizeof(struct msix_entry), 10530 GFP_KERNEL); 10531 if (!pf->msix_entries) 10532 return -ENOMEM; 10533 10534 for (i = 0; i < v_budget; i++) 10535 pf->msix_entries[i].entry = i; 10536 v_actual = i40e_reserve_msix_vectors(pf, v_budget); 10537 10538 if (v_actual < I40E_MIN_MSIX) { 10539 pf->flags &= ~I40E_FLAG_MSIX_ENABLED; 10540 kfree(pf->msix_entries); 10541 pf->msix_entries = NULL; 10542 pci_disable_msix(pf->pdev); 10543 return -ENODEV; 10544 10545 } else if (v_actual == I40E_MIN_MSIX) { 10546 /* Adjust for minimal MSIX use */ 10547 pf->num_vmdq_vsis = 0; 10548 pf->num_vmdq_qps = 0; 10549 pf->num_lan_qps = 1; 10550 pf->num_lan_msix = 1; 10551 10552 } else if (v_actual != v_budget) { 10553 /* If we have limited resources, we will start with no vectors 10554 * for the special features and then allocate vectors to some 10555 * of these features based on the policy and at the end disable 10556 * the features that did not get any vectors. 10557 */ 10558 int vec; 10559 10560 dev_info(&pf->pdev->dev, 10561 "MSI-X vector limit reached with %d, wanted %d, attempting to redistribute vectors\n", 10562 v_actual, v_budget); 10563 /* reserve the misc vector */ 10564 vec = v_actual - 1; 10565 10566 /* Scale vector usage down */ 10567 pf->num_vmdq_msix = 1; /* force VMDqs to only one vector */ 10568 pf->num_vmdq_vsis = 1; 10569 pf->num_vmdq_qps = 1; 10570 10571 /* partition out the remaining vectors */ 10572 switch (vec) { 10573 case 2: 10574 pf->num_lan_msix = 1; 10575 break; 10576 case 3: 10577 if (pf->flags & I40E_FLAG_IWARP_ENABLED) { 10578 pf->num_lan_msix = 1; 10579 pf->num_iwarp_msix = 1; 10580 } else { 10581 pf->num_lan_msix = 2; 10582 } 10583 break; 10584 default: 10585 if (pf->flags & I40E_FLAG_IWARP_ENABLED) { 10586 pf->num_iwarp_msix = min_t(int, (vec / 3), 10587 iwarp_requested); 10588 pf->num_vmdq_vsis = min_t(int, (vec / 3), 10589 I40E_DEFAULT_NUM_VMDQ_VSI); 10590 } else { 10591 pf->num_vmdq_vsis = min_t(int, (vec / 2), 10592 I40E_DEFAULT_NUM_VMDQ_VSI); 10593 } 10594 if (pf->flags & I40E_FLAG_FD_SB_ENABLED) { 10595 pf->num_fdsb_msix = 1; 10596 vec--; 10597 } 10598 pf->num_lan_msix = min_t(int, 10599 (vec - (pf->num_iwarp_msix + pf->num_vmdq_vsis)), 10600 pf->num_lan_msix); 10601 pf->num_lan_qps = pf->num_lan_msix; 10602 break; 10603 } 10604 } 10605 10606 if ((pf->flags & I40E_FLAG_FD_SB_ENABLED) && 10607 (pf->num_fdsb_msix == 0)) { 10608 dev_info(&pf->pdev->dev, "Sideband Flowdir disabled, not enough MSI-X vectors\n"); 10609 pf->flags &= ~I40E_FLAG_FD_SB_ENABLED; 10610 pf->flags |= I40E_FLAG_FD_SB_INACTIVE; 10611 } 10612 if ((pf->flags & I40E_FLAG_VMDQ_ENABLED) && 10613 (pf->num_vmdq_msix == 0)) { 10614 dev_info(&pf->pdev->dev, "VMDq disabled, not enough MSI-X vectors\n"); 10615 pf->flags &= ~I40E_FLAG_VMDQ_ENABLED; 10616 } 10617 10618 if ((pf->flags & I40E_FLAG_IWARP_ENABLED) && 10619 (pf->num_iwarp_msix == 0)) { 10620 dev_info(&pf->pdev->dev, "IWARP disabled, not enough MSI-X vectors\n"); 10621 pf->flags &= ~I40E_FLAG_IWARP_ENABLED; 10622 } 10623 i40e_debug(&pf->hw, I40E_DEBUG_INIT, 10624 "MSI-X vector distribution: PF %d, VMDq %d, FDSB %d, iWARP %d\n", 10625 pf->num_lan_msix, 10626 pf->num_vmdq_msix * pf->num_vmdq_vsis, 10627 pf->num_fdsb_msix, 10628 pf->num_iwarp_msix); 10629 10630 return v_actual; 10631 } 10632 10633 /** 10634 * i40e_vsi_alloc_q_vector - Allocate memory for a single interrupt vector 10635 * @vsi: the VSI being configured 10636 * @v_idx: index of the vector in the vsi struct 10637 * @cpu: cpu to be used on affinity_mask 10638 * 10639 * We allocate one q_vector. If allocation fails we return -ENOMEM. 10640 **/ 10641 static int i40e_vsi_alloc_q_vector(struct i40e_vsi *vsi, int v_idx, int cpu) 10642 { 10643 struct i40e_q_vector *q_vector; 10644 10645 /* allocate q_vector */ 10646 q_vector = kzalloc(sizeof(struct i40e_q_vector), GFP_KERNEL); 10647 if (!q_vector) 10648 return -ENOMEM; 10649 10650 q_vector->vsi = vsi; 10651 q_vector->v_idx = v_idx; 10652 cpumask_copy(&q_vector->affinity_mask, cpu_possible_mask); 10653 10654 if (vsi->netdev) 10655 netif_napi_add(vsi->netdev, &q_vector->napi, 10656 i40e_napi_poll, NAPI_POLL_WEIGHT); 10657 10658 /* tie q_vector and vsi together */ 10659 vsi->q_vectors[v_idx] = q_vector; 10660 10661 return 0; 10662 } 10663 10664 /** 10665 * i40e_vsi_alloc_q_vectors - Allocate memory for interrupt vectors 10666 * @vsi: the VSI being configured 10667 * 10668 * We allocate one q_vector per queue interrupt. If allocation fails we 10669 * return -ENOMEM. 10670 **/ 10671 static int i40e_vsi_alloc_q_vectors(struct i40e_vsi *vsi) 10672 { 10673 struct i40e_pf *pf = vsi->back; 10674 int err, v_idx, num_q_vectors, current_cpu; 10675 10676 /* if not MSIX, give the one vector only to the LAN VSI */ 10677 if (pf->flags & I40E_FLAG_MSIX_ENABLED) 10678 num_q_vectors = vsi->num_q_vectors; 10679 else if (vsi == pf->vsi[pf->lan_vsi]) 10680 num_q_vectors = 1; 10681 else 10682 return -EINVAL; 10683 10684 current_cpu = cpumask_first(cpu_online_mask); 10685 10686 for (v_idx = 0; v_idx < num_q_vectors; v_idx++) { 10687 err = i40e_vsi_alloc_q_vector(vsi, v_idx, current_cpu); 10688 if (err) 10689 goto err_out; 10690 current_cpu = cpumask_next(current_cpu, cpu_online_mask); 10691 if (unlikely(current_cpu >= nr_cpu_ids)) 10692 current_cpu = cpumask_first(cpu_online_mask); 10693 } 10694 10695 return 0; 10696 10697 err_out: 10698 while (v_idx--) 10699 i40e_free_q_vector(vsi, v_idx); 10700 10701 return err; 10702 } 10703 10704 /** 10705 * i40e_init_interrupt_scheme - Determine proper interrupt scheme 10706 * @pf: board private structure to initialize 10707 **/ 10708 static int i40e_init_interrupt_scheme(struct i40e_pf *pf) 10709 { 10710 int vectors = 0; 10711 ssize_t size; 10712 10713 if (pf->flags & I40E_FLAG_MSIX_ENABLED) { 10714 vectors = i40e_init_msix(pf); 10715 if (vectors < 0) { 10716 pf->flags &= ~(I40E_FLAG_MSIX_ENABLED | 10717 I40E_FLAG_IWARP_ENABLED | 10718 I40E_FLAG_RSS_ENABLED | 10719 I40E_FLAG_DCB_CAPABLE | 10720 I40E_FLAG_DCB_ENABLED | 10721 I40E_FLAG_SRIOV_ENABLED | 10722 I40E_FLAG_FD_SB_ENABLED | 10723 I40E_FLAG_FD_ATR_ENABLED | 10724 I40E_FLAG_VMDQ_ENABLED); 10725 pf->flags |= I40E_FLAG_FD_SB_INACTIVE; 10726 10727 /* rework the queue expectations without MSIX */ 10728 i40e_determine_queue_usage(pf); 10729 } 10730 } 10731 10732 if (!(pf->flags & I40E_FLAG_MSIX_ENABLED) && 10733 (pf->flags & I40E_FLAG_MSI_ENABLED)) { 10734 dev_info(&pf->pdev->dev, "MSI-X not available, trying MSI\n"); 10735 vectors = pci_enable_msi(pf->pdev); 10736 if (vectors < 0) { 10737 dev_info(&pf->pdev->dev, "MSI init failed - %d\n", 10738 vectors); 10739 pf->flags &= ~I40E_FLAG_MSI_ENABLED; 10740 } 10741 vectors = 1; /* one MSI or Legacy vector */ 10742 } 10743 10744 if (!(pf->flags & (I40E_FLAG_MSIX_ENABLED | I40E_FLAG_MSI_ENABLED))) 10745 dev_info(&pf->pdev->dev, "MSI-X and MSI not available, falling back to Legacy IRQ\n"); 10746 10747 /* set up vector assignment tracking */ 10748 size = sizeof(struct i40e_lump_tracking) + (sizeof(u16) * vectors); 10749 pf->irq_pile = kzalloc(size, GFP_KERNEL); 10750 if (!pf->irq_pile) 10751 return -ENOMEM; 10752 10753 pf->irq_pile->num_entries = vectors; 10754 pf->irq_pile->search_hint = 0; 10755 10756 /* track first vector for misc interrupts, ignore return */ 10757 (void)i40e_get_lump(pf, pf->irq_pile, 1, I40E_PILE_VALID_BIT - 1); 10758 10759 return 0; 10760 } 10761 10762 /** 10763 * i40e_restore_interrupt_scheme - Restore the interrupt scheme 10764 * @pf: private board data structure 10765 * 10766 * Restore the interrupt scheme that was cleared when we suspended the 10767 * device. This should be called during resume to re-allocate the q_vectors 10768 * and reacquire IRQs. 10769 */ 10770 static int i40e_restore_interrupt_scheme(struct i40e_pf *pf) 10771 { 10772 int err, i; 10773 10774 /* We cleared the MSI and MSI-X flags when disabling the old interrupt 10775 * scheme. We need to re-enabled them here in order to attempt to 10776 * re-acquire the MSI or MSI-X vectors 10777 */ 10778 pf->flags |= (I40E_FLAG_MSIX_ENABLED | I40E_FLAG_MSI_ENABLED); 10779 10780 err = i40e_init_interrupt_scheme(pf); 10781 if (err) 10782 return err; 10783 10784 /* Now that we've re-acquired IRQs, we need to remap the vectors and 10785 * rings together again. 10786 */ 10787 for (i = 0; i < pf->num_alloc_vsi; i++) { 10788 if (pf->vsi[i]) { 10789 err = i40e_vsi_alloc_q_vectors(pf->vsi[i]); 10790 if (err) 10791 goto err_unwind; 10792 i40e_vsi_map_rings_to_vectors(pf->vsi[i]); 10793 } 10794 } 10795 10796 err = i40e_setup_misc_vector(pf); 10797 if (err) 10798 goto err_unwind; 10799 10800 if (pf->flags & I40E_FLAG_IWARP_ENABLED) 10801 i40e_client_update_msix_info(pf); 10802 10803 return 0; 10804 10805 err_unwind: 10806 while (i--) { 10807 if (pf->vsi[i]) 10808 i40e_vsi_free_q_vectors(pf->vsi[i]); 10809 } 10810 10811 return err; 10812 } 10813 10814 /** 10815 * i40e_setup_misc_vector_for_recovery_mode - Setup the misc vector to handle 10816 * non queue events in recovery mode 10817 * @pf: board private structure 10818 * 10819 * This sets up the handler for MSIX 0 or MSI/legacy, which is used to manage 10820 * the non-queue interrupts, e.g. AdminQ and errors in recovery mode. 10821 * This is handled differently than in recovery mode since no Tx/Rx resources 10822 * are being allocated. 10823 **/ 10824 static int i40e_setup_misc_vector_for_recovery_mode(struct i40e_pf *pf) 10825 { 10826 int err; 10827 10828 if (pf->flags & I40E_FLAG_MSIX_ENABLED) { 10829 err = i40e_setup_misc_vector(pf); 10830 10831 if (err) { 10832 dev_info(&pf->pdev->dev, 10833 "MSI-X misc vector request failed, error %d\n", 10834 err); 10835 return err; 10836 } 10837 } else { 10838 u32 flags = pf->flags & I40E_FLAG_MSI_ENABLED ? 0 : IRQF_SHARED; 10839 10840 err = request_irq(pf->pdev->irq, i40e_intr, flags, 10841 pf->int_name, pf); 10842 10843 if (err) { 10844 dev_info(&pf->pdev->dev, 10845 "MSI/legacy misc vector request failed, error %d\n", 10846 err); 10847 return err; 10848 } 10849 i40e_enable_misc_int_causes(pf); 10850 i40e_irq_dynamic_enable_icr0(pf); 10851 } 10852 10853 return 0; 10854 } 10855 10856 /** 10857 * i40e_setup_misc_vector - Setup the misc vector to handle non queue events 10858 * @pf: board private structure 10859 * 10860 * This sets up the handler for MSIX 0, which is used to manage the 10861 * non-queue interrupts, e.g. AdminQ and errors. This is not used 10862 * when in MSI or Legacy interrupt mode. 10863 **/ 10864 static int i40e_setup_misc_vector(struct i40e_pf *pf) 10865 { 10866 struct i40e_hw *hw = &pf->hw; 10867 int err = 0; 10868 10869 /* Only request the IRQ once, the first time through. */ 10870 if (!test_and_set_bit(__I40E_MISC_IRQ_REQUESTED, pf->state)) { 10871 err = request_irq(pf->msix_entries[0].vector, 10872 i40e_intr, 0, pf->int_name, pf); 10873 if (err) { 10874 clear_bit(__I40E_MISC_IRQ_REQUESTED, pf->state); 10875 dev_info(&pf->pdev->dev, 10876 "request_irq for %s failed: %d\n", 10877 pf->int_name, err); 10878 return -EFAULT; 10879 } 10880 } 10881 10882 i40e_enable_misc_int_causes(pf); 10883 10884 /* associate no queues to the misc vector */ 10885 wr32(hw, I40E_PFINT_LNKLST0, I40E_QUEUE_END_OF_LIST); 10886 wr32(hw, I40E_PFINT_ITR0(I40E_RX_ITR), I40E_ITR_8K); 10887 10888 i40e_flush(hw); 10889 10890 i40e_irq_dynamic_enable_icr0(pf); 10891 10892 return err; 10893 } 10894 10895 /** 10896 * i40e_get_rss_aq - Get RSS keys and lut by using AQ commands 10897 * @vsi: Pointer to vsi structure 10898 * @seed: Buffter to store the hash keys 10899 * @lut: Buffer to store the lookup table entries 10900 * @lut_size: Size of buffer to store the lookup table entries 10901 * 10902 * Return 0 on success, negative on failure 10903 */ 10904 static int i40e_get_rss_aq(struct i40e_vsi *vsi, const u8 *seed, 10905 u8 *lut, u16 lut_size) 10906 { 10907 struct i40e_pf *pf = vsi->back; 10908 struct i40e_hw *hw = &pf->hw; 10909 int ret = 0; 10910 10911 if (seed) { 10912 ret = i40e_aq_get_rss_key(hw, vsi->id, 10913 (struct i40e_aqc_get_set_rss_key_data *)seed); 10914 if (ret) { 10915 dev_info(&pf->pdev->dev, 10916 "Cannot get RSS key, err %s aq_err %s\n", 10917 i40e_stat_str(&pf->hw, ret), 10918 i40e_aq_str(&pf->hw, 10919 pf->hw.aq.asq_last_status)); 10920 return ret; 10921 } 10922 } 10923 10924 if (lut) { 10925 bool pf_lut = vsi->type == I40E_VSI_MAIN ? true : false; 10926 10927 ret = i40e_aq_get_rss_lut(hw, vsi->id, pf_lut, lut, lut_size); 10928 if (ret) { 10929 dev_info(&pf->pdev->dev, 10930 "Cannot get RSS lut, err %s aq_err %s\n", 10931 i40e_stat_str(&pf->hw, ret), 10932 i40e_aq_str(&pf->hw, 10933 pf->hw.aq.asq_last_status)); 10934 return ret; 10935 } 10936 } 10937 10938 return ret; 10939 } 10940 10941 /** 10942 * i40e_config_rss_reg - Configure RSS keys and lut by writing registers 10943 * @vsi: Pointer to vsi structure 10944 * @seed: RSS hash seed 10945 * @lut: Lookup table 10946 * @lut_size: Lookup table size 10947 * 10948 * Returns 0 on success, negative on failure 10949 **/ 10950 static int i40e_config_rss_reg(struct i40e_vsi *vsi, const u8 *seed, 10951 const u8 *lut, u16 lut_size) 10952 { 10953 struct i40e_pf *pf = vsi->back; 10954 struct i40e_hw *hw = &pf->hw; 10955 u16 vf_id = vsi->vf_id; 10956 u8 i; 10957 10958 /* Fill out hash function seed */ 10959 if (seed) { 10960 u32 *seed_dw = (u32 *)seed; 10961 10962 if (vsi->type == I40E_VSI_MAIN) { 10963 for (i = 0; i <= I40E_PFQF_HKEY_MAX_INDEX; i++) 10964 wr32(hw, I40E_PFQF_HKEY(i), seed_dw[i]); 10965 } else if (vsi->type == I40E_VSI_SRIOV) { 10966 for (i = 0; i <= I40E_VFQF_HKEY1_MAX_INDEX; i++) 10967 wr32(hw, I40E_VFQF_HKEY1(i, vf_id), seed_dw[i]); 10968 } else { 10969 dev_err(&pf->pdev->dev, "Cannot set RSS seed - invalid VSI type\n"); 10970 } 10971 } 10972 10973 if (lut) { 10974 u32 *lut_dw = (u32 *)lut; 10975 10976 if (vsi->type == I40E_VSI_MAIN) { 10977 if (lut_size != I40E_HLUT_ARRAY_SIZE) 10978 return -EINVAL; 10979 for (i = 0; i <= I40E_PFQF_HLUT_MAX_INDEX; i++) 10980 wr32(hw, I40E_PFQF_HLUT(i), lut_dw[i]); 10981 } else if (vsi->type == I40E_VSI_SRIOV) { 10982 if (lut_size != I40E_VF_HLUT_ARRAY_SIZE) 10983 return -EINVAL; 10984 for (i = 0; i <= I40E_VFQF_HLUT_MAX_INDEX; i++) 10985 wr32(hw, I40E_VFQF_HLUT1(i, vf_id), lut_dw[i]); 10986 } else { 10987 dev_err(&pf->pdev->dev, "Cannot set RSS LUT - invalid VSI type\n"); 10988 } 10989 } 10990 i40e_flush(hw); 10991 10992 return 0; 10993 } 10994 10995 /** 10996 * i40e_get_rss_reg - Get the RSS keys and lut by reading registers 10997 * @vsi: Pointer to VSI structure 10998 * @seed: Buffer to store the keys 10999 * @lut: Buffer to store the lookup table entries 11000 * @lut_size: Size of buffer to store the lookup table entries 11001 * 11002 * Returns 0 on success, negative on failure 11003 */ 11004 static int i40e_get_rss_reg(struct i40e_vsi *vsi, u8 *seed, 11005 u8 *lut, u16 lut_size) 11006 { 11007 struct i40e_pf *pf = vsi->back; 11008 struct i40e_hw *hw = &pf->hw; 11009 u16 i; 11010 11011 if (seed) { 11012 u32 *seed_dw = (u32 *)seed; 11013 11014 for (i = 0; i <= I40E_PFQF_HKEY_MAX_INDEX; i++) 11015 seed_dw[i] = i40e_read_rx_ctl(hw, I40E_PFQF_HKEY(i)); 11016 } 11017 if (lut) { 11018 u32 *lut_dw = (u32 *)lut; 11019 11020 if (lut_size != I40E_HLUT_ARRAY_SIZE) 11021 return -EINVAL; 11022 for (i = 0; i <= I40E_PFQF_HLUT_MAX_INDEX; i++) 11023 lut_dw[i] = rd32(hw, I40E_PFQF_HLUT(i)); 11024 } 11025 11026 return 0; 11027 } 11028 11029 /** 11030 * i40e_config_rss - Configure RSS keys and lut 11031 * @vsi: Pointer to VSI structure 11032 * @seed: RSS hash seed 11033 * @lut: Lookup table 11034 * @lut_size: Lookup table size 11035 * 11036 * Returns 0 on success, negative on failure 11037 */ 11038 int i40e_config_rss(struct i40e_vsi *vsi, u8 *seed, u8 *lut, u16 lut_size) 11039 { 11040 struct i40e_pf *pf = vsi->back; 11041 11042 if (pf->hw_features & I40E_HW_RSS_AQ_CAPABLE) 11043 return i40e_config_rss_aq(vsi, seed, lut, lut_size); 11044 else 11045 return i40e_config_rss_reg(vsi, seed, lut, lut_size); 11046 } 11047 11048 /** 11049 * i40e_get_rss - Get RSS keys and lut 11050 * @vsi: Pointer to VSI structure 11051 * @seed: Buffer to store the keys 11052 * @lut: Buffer to store the lookup table entries 11053 * @lut_size: Size of buffer to store the lookup table entries 11054 * 11055 * Returns 0 on success, negative on failure 11056 */ 11057 int i40e_get_rss(struct i40e_vsi *vsi, u8 *seed, u8 *lut, u16 lut_size) 11058 { 11059 struct i40e_pf *pf = vsi->back; 11060 11061 if (pf->hw_features & I40E_HW_RSS_AQ_CAPABLE) 11062 return i40e_get_rss_aq(vsi, seed, lut, lut_size); 11063 else 11064 return i40e_get_rss_reg(vsi, seed, lut, lut_size); 11065 } 11066 11067 /** 11068 * i40e_fill_rss_lut - Fill the RSS lookup table with default values 11069 * @pf: Pointer to board private structure 11070 * @lut: Lookup table 11071 * @rss_table_size: Lookup table size 11072 * @rss_size: Range of queue number for hashing 11073 */ 11074 void i40e_fill_rss_lut(struct i40e_pf *pf, u8 *lut, 11075 u16 rss_table_size, u16 rss_size) 11076 { 11077 u16 i; 11078 11079 for (i = 0; i < rss_table_size; i++) 11080 lut[i] = i % rss_size; 11081 } 11082 11083 /** 11084 * i40e_pf_config_rss - Prepare for RSS if used 11085 * @pf: board private structure 11086 **/ 11087 static int i40e_pf_config_rss(struct i40e_pf *pf) 11088 { 11089 struct i40e_vsi *vsi = pf->vsi[pf->lan_vsi]; 11090 u8 seed[I40E_HKEY_ARRAY_SIZE]; 11091 u8 *lut; 11092 struct i40e_hw *hw = &pf->hw; 11093 u32 reg_val; 11094 u64 hena; 11095 int ret; 11096 11097 /* By default we enable TCP/UDP with IPv4/IPv6 ptypes */ 11098 hena = (u64)i40e_read_rx_ctl(hw, I40E_PFQF_HENA(0)) | 11099 ((u64)i40e_read_rx_ctl(hw, I40E_PFQF_HENA(1)) << 32); 11100 hena |= i40e_pf_get_default_rss_hena(pf); 11101 11102 i40e_write_rx_ctl(hw, I40E_PFQF_HENA(0), (u32)hena); 11103 i40e_write_rx_ctl(hw, I40E_PFQF_HENA(1), (u32)(hena >> 32)); 11104 11105 /* Determine the RSS table size based on the hardware capabilities */ 11106 reg_val = i40e_read_rx_ctl(hw, I40E_PFQF_CTL_0); 11107 reg_val = (pf->rss_table_size == 512) ? 11108 (reg_val | I40E_PFQF_CTL_0_HASHLUTSIZE_512) : 11109 (reg_val & ~I40E_PFQF_CTL_0_HASHLUTSIZE_512); 11110 i40e_write_rx_ctl(hw, I40E_PFQF_CTL_0, reg_val); 11111 11112 /* Determine the RSS size of the VSI */ 11113 if (!vsi->rss_size) { 11114 u16 qcount; 11115 /* If the firmware does something weird during VSI init, we 11116 * could end up with zero TCs. Check for that to avoid 11117 * divide-by-zero. It probably won't pass traffic, but it also 11118 * won't panic. 11119 */ 11120 qcount = vsi->num_queue_pairs / 11121 (vsi->tc_config.numtc ? vsi->tc_config.numtc : 1); 11122 vsi->rss_size = min_t(int, pf->alloc_rss_size, qcount); 11123 } 11124 if (!vsi->rss_size) 11125 return -EINVAL; 11126 11127 lut = kzalloc(vsi->rss_table_size, GFP_KERNEL); 11128 if (!lut) 11129 return -ENOMEM; 11130 11131 /* Use user configured lut if there is one, otherwise use default */ 11132 if (vsi->rss_lut_user) 11133 memcpy(lut, vsi->rss_lut_user, vsi->rss_table_size); 11134 else 11135 i40e_fill_rss_lut(pf, lut, vsi->rss_table_size, vsi->rss_size); 11136 11137 /* Use user configured hash key if there is one, otherwise 11138 * use default. 11139 */ 11140 if (vsi->rss_hkey_user) 11141 memcpy(seed, vsi->rss_hkey_user, I40E_HKEY_ARRAY_SIZE); 11142 else 11143 netdev_rss_key_fill((void *)seed, I40E_HKEY_ARRAY_SIZE); 11144 ret = i40e_config_rss(vsi, seed, lut, vsi->rss_table_size); 11145 kfree(lut); 11146 11147 return ret; 11148 } 11149 11150 /** 11151 * i40e_reconfig_rss_queues - change number of queues for rss and rebuild 11152 * @pf: board private structure 11153 * @queue_count: the requested queue count for rss. 11154 * 11155 * returns 0 if rss is not enabled, if enabled returns the final rss queue 11156 * count which may be different from the requested queue count. 11157 * Note: expects to be called while under rtnl_lock() 11158 **/ 11159 int i40e_reconfig_rss_queues(struct i40e_pf *pf, int queue_count) 11160 { 11161 struct i40e_vsi *vsi = pf->vsi[pf->lan_vsi]; 11162 int new_rss_size; 11163 11164 if (!(pf->flags & I40E_FLAG_RSS_ENABLED)) 11165 return 0; 11166 11167 queue_count = min_t(int, queue_count, num_online_cpus()); 11168 new_rss_size = min_t(int, queue_count, pf->rss_size_max); 11169 11170 if (queue_count != vsi->num_queue_pairs) { 11171 u16 qcount; 11172 11173 vsi->req_queue_pairs = queue_count; 11174 i40e_prep_for_reset(pf, true); 11175 11176 pf->alloc_rss_size = new_rss_size; 11177 11178 i40e_reset_and_rebuild(pf, true, true); 11179 11180 /* Discard the user configured hash keys and lut, if less 11181 * queues are enabled. 11182 */ 11183 if (queue_count < vsi->rss_size) { 11184 i40e_clear_rss_config_user(vsi); 11185 dev_dbg(&pf->pdev->dev, 11186 "discard user configured hash keys and lut\n"); 11187 } 11188 11189 /* Reset vsi->rss_size, as number of enabled queues changed */ 11190 qcount = vsi->num_queue_pairs / vsi->tc_config.numtc; 11191 vsi->rss_size = min_t(int, pf->alloc_rss_size, qcount); 11192 11193 i40e_pf_config_rss(pf); 11194 } 11195 dev_info(&pf->pdev->dev, "User requested queue count/HW max RSS count: %d/%d\n", 11196 vsi->req_queue_pairs, pf->rss_size_max); 11197 return pf->alloc_rss_size; 11198 } 11199 11200 /** 11201 * i40e_get_partition_bw_setting - Retrieve BW settings for this PF partition 11202 * @pf: board private structure 11203 **/ 11204 i40e_status i40e_get_partition_bw_setting(struct i40e_pf *pf) 11205 { 11206 i40e_status status; 11207 bool min_valid, max_valid; 11208 u32 max_bw, min_bw; 11209 11210 status = i40e_read_bw_from_alt_ram(&pf->hw, &max_bw, &min_bw, 11211 &min_valid, &max_valid); 11212 11213 if (!status) { 11214 if (min_valid) 11215 pf->min_bw = min_bw; 11216 if (max_valid) 11217 pf->max_bw = max_bw; 11218 } 11219 11220 return status; 11221 } 11222 11223 /** 11224 * i40e_set_partition_bw_setting - Set BW settings for this PF partition 11225 * @pf: board private structure 11226 **/ 11227 i40e_status i40e_set_partition_bw_setting(struct i40e_pf *pf) 11228 { 11229 struct i40e_aqc_configure_partition_bw_data bw_data; 11230 i40e_status status; 11231 11232 /* Set the valid bit for this PF */ 11233 bw_data.pf_valid_bits = cpu_to_le16(BIT(pf->hw.pf_id)); 11234 bw_data.max_bw[pf->hw.pf_id] = pf->max_bw & I40E_ALT_BW_VALUE_MASK; 11235 bw_data.min_bw[pf->hw.pf_id] = pf->min_bw & I40E_ALT_BW_VALUE_MASK; 11236 11237 /* Set the new bandwidths */ 11238 status = i40e_aq_configure_partition_bw(&pf->hw, &bw_data, NULL); 11239 11240 return status; 11241 } 11242 11243 /** 11244 * i40e_commit_partition_bw_setting - Commit BW settings for this PF partition 11245 * @pf: board private structure 11246 **/ 11247 i40e_status i40e_commit_partition_bw_setting(struct i40e_pf *pf) 11248 { 11249 /* Commit temporary BW setting to permanent NVM image */ 11250 enum i40e_admin_queue_err last_aq_status; 11251 i40e_status ret; 11252 u16 nvm_word; 11253 11254 if (pf->hw.partition_id != 1) { 11255 dev_info(&pf->pdev->dev, 11256 "Commit BW only works on partition 1! This is partition %d", 11257 pf->hw.partition_id); 11258 ret = I40E_NOT_SUPPORTED; 11259 goto bw_commit_out; 11260 } 11261 11262 /* Acquire NVM for read access */ 11263 ret = i40e_acquire_nvm(&pf->hw, I40E_RESOURCE_READ); 11264 last_aq_status = pf->hw.aq.asq_last_status; 11265 if (ret) { 11266 dev_info(&pf->pdev->dev, 11267 "Cannot acquire NVM for read access, err %s aq_err %s\n", 11268 i40e_stat_str(&pf->hw, ret), 11269 i40e_aq_str(&pf->hw, last_aq_status)); 11270 goto bw_commit_out; 11271 } 11272 11273 /* Read word 0x10 of NVM - SW compatibility word 1 */ 11274 ret = i40e_aq_read_nvm(&pf->hw, 11275 I40E_SR_NVM_CONTROL_WORD, 11276 0x10, sizeof(nvm_word), &nvm_word, 11277 false, NULL); 11278 /* Save off last admin queue command status before releasing 11279 * the NVM 11280 */ 11281 last_aq_status = pf->hw.aq.asq_last_status; 11282 i40e_release_nvm(&pf->hw); 11283 if (ret) { 11284 dev_info(&pf->pdev->dev, "NVM read error, err %s aq_err %s\n", 11285 i40e_stat_str(&pf->hw, ret), 11286 i40e_aq_str(&pf->hw, last_aq_status)); 11287 goto bw_commit_out; 11288 } 11289 11290 /* Wait a bit for NVM release to complete */ 11291 msleep(50); 11292 11293 /* Acquire NVM for write access */ 11294 ret = i40e_acquire_nvm(&pf->hw, I40E_RESOURCE_WRITE); 11295 last_aq_status = pf->hw.aq.asq_last_status; 11296 if (ret) { 11297 dev_info(&pf->pdev->dev, 11298 "Cannot acquire NVM for write access, err %s aq_err %s\n", 11299 i40e_stat_str(&pf->hw, ret), 11300 i40e_aq_str(&pf->hw, last_aq_status)); 11301 goto bw_commit_out; 11302 } 11303 /* Write it back out unchanged to initiate update NVM, 11304 * which will force a write of the shadow (alt) RAM to 11305 * the NVM - thus storing the bandwidth values permanently. 11306 */ 11307 ret = i40e_aq_update_nvm(&pf->hw, 11308 I40E_SR_NVM_CONTROL_WORD, 11309 0x10, sizeof(nvm_word), 11310 &nvm_word, true, 0, NULL); 11311 /* Save off last admin queue command status before releasing 11312 * the NVM 11313 */ 11314 last_aq_status = pf->hw.aq.asq_last_status; 11315 i40e_release_nvm(&pf->hw); 11316 if (ret) 11317 dev_info(&pf->pdev->dev, 11318 "BW settings NOT SAVED, err %s aq_err %s\n", 11319 i40e_stat_str(&pf->hw, ret), 11320 i40e_aq_str(&pf->hw, last_aq_status)); 11321 bw_commit_out: 11322 11323 return ret; 11324 } 11325 11326 /** 11327 * i40e_sw_init - Initialize general software structures (struct i40e_pf) 11328 * @pf: board private structure to initialize 11329 * 11330 * i40e_sw_init initializes the Adapter private data structure. 11331 * Fields are initialized based on PCI device information and 11332 * OS network device settings (MTU size). 11333 **/ 11334 static int i40e_sw_init(struct i40e_pf *pf) 11335 { 11336 int err = 0; 11337 int size; 11338 11339 /* Set default capability flags */ 11340 pf->flags = I40E_FLAG_RX_CSUM_ENABLED | 11341 I40E_FLAG_MSI_ENABLED | 11342 I40E_FLAG_MSIX_ENABLED; 11343 11344 /* Set default ITR */ 11345 pf->rx_itr_default = I40E_ITR_RX_DEF; 11346 pf->tx_itr_default = I40E_ITR_TX_DEF; 11347 11348 /* Depending on PF configurations, it is possible that the RSS 11349 * maximum might end up larger than the available queues 11350 */ 11351 pf->rss_size_max = BIT(pf->hw.func_caps.rss_table_entry_width); 11352 pf->alloc_rss_size = 1; 11353 pf->rss_table_size = pf->hw.func_caps.rss_table_size; 11354 pf->rss_size_max = min_t(int, pf->rss_size_max, 11355 pf->hw.func_caps.num_tx_qp); 11356 if (pf->hw.func_caps.rss) { 11357 pf->flags |= I40E_FLAG_RSS_ENABLED; 11358 pf->alloc_rss_size = min_t(int, pf->rss_size_max, 11359 num_online_cpus()); 11360 } 11361 11362 /* MFP mode enabled */ 11363 if (pf->hw.func_caps.npar_enable || pf->hw.func_caps.flex10_enable) { 11364 pf->flags |= I40E_FLAG_MFP_ENABLED; 11365 dev_info(&pf->pdev->dev, "MFP mode Enabled\n"); 11366 if (i40e_get_partition_bw_setting(pf)) { 11367 dev_warn(&pf->pdev->dev, 11368 "Could not get partition bw settings\n"); 11369 } else { 11370 dev_info(&pf->pdev->dev, 11371 "Partition BW Min = %8.8x, Max = %8.8x\n", 11372 pf->min_bw, pf->max_bw); 11373 11374 /* nudge the Tx scheduler */ 11375 i40e_set_partition_bw_setting(pf); 11376 } 11377 } 11378 11379 if ((pf->hw.func_caps.fd_filters_guaranteed > 0) || 11380 (pf->hw.func_caps.fd_filters_best_effort > 0)) { 11381 pf->flags |= I40E_FLAG_FD_ATR_ENABLED; 11382 pf->atr_sample_rate = I40E_DEFAULT_ATR_SAMPLE_RATE; 11383 if (pf->flags & I40E_FLAG_MFP_ENABLED && 11384 pf->hw.num_partitions > 1) 11385 dev_info(&pf->pdev->dev, 11386 "Flow Director Sideband mode Disabled in MFP mode\n"); 11387 else 11388 pf->flags |= I40E_FLAG_FD_SB_ENABLED; 11389 pf->fdir_pf_filter_count = 11390 pf->hw.func_caps.fd_filters_guaranteed; 11391 pf->hw.fdir_shared_filter_count = 11392 pf->hw.func_caps.fd_filters_best_effort; 11393 } 11394 11395 if (pf->hw.mac.type == I40E_MAC_X722) { 11396 pf->hw_features |= (I40E_HW_RSS_AQ_CAPABLE | 11397 I40E_HW_128_QP_RSS_CAPABLE | 11398 I40E_HW_ATR_EVICT_CAPABLE | 11399 I40E_HW_WB_ON_ITR_CAPABLE | 11400 I40E_HW_MULTIPLE_TCP_UDP_RSS_PCTYPE | 11401 I40E_HW_NO_PCI_LINK_CHECK | 11402 I40E_HW_USE_SET_LLDP_MIB | 11403 I40E_HW_GENEVE_OFFLOAD_CAPABLE | 11404 I40E_HW_PTP_L4_CAPABLE | 11405 I40E_HW_WOL_MC_MAGIC_PKT_WAKE | 11406 I40E_HW_OUTER_UDP_CSUM_CAPABLE); 11407 11408 #define I40E_FDEVICT_PCTYPE_DEFAULT 0xc03 11409 if (rd32(&pf->hw, I40E_GLQF_FDEVICTENA(1)) != 11410 I40E_FDEVICT_PCTYPE_DEFAULT) { 11411 dev_warn(&pf->pdev->dev, 11412 "FD EVICT PCTYPES are not right, disable FD HW EVICT\n"); 11413 pf->hw_features &= ~I40E_HW_ATR_EVICT_CAPABLE; 11414 } 11415 } else if ((pf->hw.aq.api_maj_ver > 1) || 11416 ((pf->hw.aq.api_maj_ver == 1) && 11417 (pf->hw.aq.api_min_ver > 4))) { 11418 /* Supported in FW API version higher than 1.4 */ 11419 pf->hw_features |= I40E_HW_GENEVE_OFFLOAD_CAPABLE; 11420 } 11421 11422 /* Enable HW ATR eviction if possible */ 11423 if (pf->hw_features & I40E_HW_ATR_EVICT_CAPABLE) 11424 pf->flags |= I40E_FLAG_HW_ATR_EVICT_ENABLED; 11425 11426 if ((pf->hw.mac.type == I40E_MAC_XL710) && 11427 (((pf->hw.aq.fw_maj_ver == 4) && (pf->hw.aq.fw_min_ver < 33)) || 11428 (pf->hw.aq.fw_maj_ver < 4))) { 11429 pf->hw_features |= I40E_HW_RESTART_AUTONEG; 11430 /* No DCB support for FW < v4.33 */ 11431 pf->hw_features |= I40E_HW_NO_DCB_SUPPORT; 11432 } 11433 11434 /* Disable FW LLDP if FW < v4.3 */ 11435 if ((pf->hw.mac.type == I40E_MAC_XL710) && 11436 (((pf->hw.aq.fw_maj_ver == 4) && (pf->hw.aq.fw_min_ver < 3)) || 11437 (pf->hw.aq.fw_maj_ver < 4))) 11438 pf->hw_features |= I40E_HW_STOP_FW_LLDP; 11439 11440 /* Use the FW Set LLDP MIB API if FW > v4.40 */ 11441 if ((pf->hw.mac.type == I40E_MAC_XL710) && 11442 (((pf->hw.aq.fw_maj_ver == 4) && (pf->hw.aq.fw_min_ver >= 40)) || 11443 (pf->hw.aq.fw_maj_ver >= 5))) 11444 pf->hw_features |= I40E_HW_USE_SET_LLDP_MIB; 11445 11446 /* Enable PTP L4 if FW > v6.0 */ 11447 if (pf->hw.mac.type == I40E_MAC_XL710 && 11448 pf->hw.aq.fw_maj_ver >= 6) 11449 pf->hw_features |= I40E_HW_PTP_L4_CAPABLE; 11450 11451 if (pf->hw.func_caps.vmdq && num_online_cpus() != 1) { 11452 pf->num_vmdq_vsis = I40E_DEFAULT_NUM_VMDQ_VSI; 11453 pf->flags |= I40E_FLAG_VMDQ_ENABLED; 11454 pf->num_vmdq_qps = i40e_default_queues_per_vmdq(pf); 11455 } 11456 11457 if (pf->hw.func_caps.iwarp && num_online_cpus() != 1) { 11458 pf->flags |= I40E_FLAG_IWARP_ENABLED; 11459 /* IWARP needs one extra vector for CQP just like MISC.*/ 11460 pf->num_iwarp_msix = (int)num_online_cpus() + 1; 11461 } 11462 /* Stopping FW LLDP engine is supported on XL710 and X722 11463 * starting from FW versions determined in i40e_init_adminq. 11464 * Stopping the FW LLDP engine is not supported on XL710 11465 * if NPAR is functioning so unset this hw flag in this case. 11466 */ 11467 if (pf->hw.mac.type == I40E_MAC_XL710 && 11468 pf->hw.func_caps.npar_enable && 11469 (pf->hw.flags & I40E_HW_FLAG_FW_LLDP_STOPPABLE)) 11470 pf->hw.flags &= ~I40E_HW_FLAG_FW_LLDP_STOPPABLE; 11471 11472 #ifdef CONFIG_PCI_IOV 11473 if (pf->hw.func_caps.num_vfs && pf->hw.partition_id == 1) { 11474 pf->num_vf_qps = I40E_DEFAULT_QUEUES_PER_VF; 11475 pf->flags |= I40E_FLAG_SRIOV_ENABLED; 11476 pf->num_req_vfs = min_t(int, 11477 pf->hw.func_caps.num_vfs, 11478 I40E_MAX_VF_COUNT); 11479 } 11480 #endif /* CONFIG_PCI_IOV */ 11481 pf->eeprom_version = 0xDEAD; 11482 pf->lan_veb = I40E_NO_VEB; 11483 pf->lan_vsi = I40E_NO_VSI; 11484 11485 /* By default FW has this off for performance reasons */ 11486 pf->flags &= ~I40E_FLAG_VEB_STATS_ENABLED; 11487 11488 /* set up queue assignment tracking */ 11489 size = sizeof(struct i40e_lump_tracking) 11490 + (sizeof(u16) * pf->hw.func_caps.num_tx_qp); 11491 pf->qp_pile = kzalloc(size, GFP_KERNEL); 11492 if (!pf->qp_pile) { 11493 err = -ENOMEM; 11494 goto sw_init_done; 11495 } 11496 pf->qp_pile->num_entries = pf->hw.func_caps.num_tx_qp; 11497 pf->qp_pile->search_hint = 0; 11498 11499 pf->tx_timeout_recovery_level = 1; 11500 11501 mutex_init(&pf->switch_mutex); 11502 11503 sw_init_done: 11504 return err; 11505 } 11506 11507 /** 11508 * i40e_set_ntuple - set the ntuple feature flag and take action 11509 * @pf: board private structure to initialize 11510 * @features: the feature set that the stack is suggesting 11511 * 11512 * returns a bool to indicate if reset needs to happen 11513 **/ 11514 bool i40e_set_ntuple(struct i40e_pf *pf, netdev_features_t features) 11515 { 11516 bool need_reset = false; 11517 11518 /* Check if Flow Director n-tuple support was enabled or disabled. If 11519 * the state changed, we need to reset. 11520 */ 11521 if (features & NETIF_F_NTUPLE) { 11522 /* Enable filters and mark for reset */ 11523 if (!(pf->flags & I40E_FLAG_FD_SB_ENABLED)) 11524 need_reset = true; 11525 /* enable FD_SB only if there is MSI-X vector and no cloud 11526 * filters exist 11527 */ 11528 if (pf->num_fdsb_msix > 0 && !pf->num_cloud_filters) { 11529 pf->flags |= I40E_FLAG_FD_SB_ENABLED; 11530 pf->flags &= ~I40E_FLAG_FD_SB_INACTIVE; 11531 } 11532 } else { 11533 /* turn off filters, mark for reset and clear SW filter list */ 11534 if (pf->flags & I40E_FLAG_FD_SB_ENABLED) { 11535 need_reset = true; 11536 i40e_fdir_filter_exit(pf); 11537 } 11538 pf->flags &= ~I40E_FLAG_FD_SB_ENABLED; 11539 clear_bit(__I40E_FD_SB_AUTO_DISABLED, pf->state); 11540 pf->flags |= I40E_FLAG_FD_SB_INACTIVE; 11541 11542 /* reset fd counters */ 11543 pf->fd_add_err = 0; 11544 pf->fd_atr_cnt = 0; 11545 /* if ATR was auto disabled it can be re-enabled. */ 11546 if (test_and_clear_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state)) 11547 if ((pf->flags & I40E_FLAG_FD_ATR_ENABLED) && 11548 (I40E_DEBUG_FD & pf->hw.debug_mask)) 11549 dev_info(&pf->pdev->dev, "ATR re-enabled.\n"); 11550 } 11551 return need_reset; 11552 } 11553 11554 /** 11555 * i40e_clear_rss_lut - clear the rx hash lookup table 11556 * @vsi: the VSI being configured 11557 **/ 11558 static void i40e_clear_rss_lut(struct i40e_vsi *vsi) 11559 { 11560 struct i40e_pf *pf = vsi->back; 11561 struct i40e_hw *hw = &pf->hw; 11562 u16 vf_id = vsi->vf_id; 11563 u8 i; 11564 11565 if (vsi->type == I40E_VSI_MAIN) { 11566 for (i = 0; i <= I40E_PFQF_HLUT_MAX_INDEX; i++) 11567 wr32(hw, I40E_PFQF_HLUT(i), 0); 11568 } else if (vsi->type == I40E_VSI_SRIOV) { 11569 for (i = 0; i <= I40E_VFQF_HLUT_MAX_INDEX; i++) 11570 i40e_write_rx_ctl(hw, I40E_VFQF_HLUT1(i, vf_id), 0); 11571 } else { 11572 dev_err(&pf->pdev->dev, "Cannot set RSS LUT - invalid VSI type\n"); 11573 } 11574 } 11575 11576 /** 11577 * i40e_set_features - set the netdev feature flags 11578 * @netdev: ptr to the netdev being adjusted 11579 * @features: the feature set that the stack is suggesting 11580 * Note: expects to be called while under rtnl_lock() 11581 **/ 11582 static int i40e_set_features(struct net_device *netdev, 11583 netdev_features_t features) 11584 { 11585 struct i40e_netdev_priv *np = netdev_priv(netdev); 11586 struct i40e_vsi *vsi = np->vsi; 11587 struct i40e_pf *pf = vsi->back; 11588 bool need_reset; 11589 11590 if (features & NETIF_F_RXHASH && !(netdev->features & NETIF_F_RXHASH)) 11591 i40e_pf_config_rss(pf); 11592 else if (!(features & NETIF_F_RXHASH) && 11593 netdev->features & NETIF_F_RXHASH) 11594 i40e_clear_rss_lut(vsi); 11595 11596 if (features & NETIF_F_HW_VLAN_CTAG_RX) 11597 i40e_vlan_stripping_enable(vsi); 11598 else 11599 i40e_vlan_stripping_disable(vsi); 11600 11601 if (!(features & NETIF_F_HW_TC) && pf->num_cloud_filters) { 11602 dev_err(&pf->pdev->dev, 11603 "Offloaded tc filters active, can't turn hw_tc_offload off"); 11604 return -EINVAL; 11605 } 11606 11607 need_reset = i40e_set_ntuple(pf, features); 11608 11609 if (need_reset) 11610 i40e_do_reset(pf, I40E_PF_RESET_FLAG, true); 11611 11612 return 0; 11613 } 11614 11615 /** 11616 * i40e_get_udp_port_idx - Lookup a possibly offloaded for Rx UDP port 11617 * @pf: board private structure 11618 * @port: The UDP port to look up 11619 * 11620 * Returns the index number or I40E_MAX_PF_UDP_OFFLOAD_PORTS if port not found 11621 **/ 11622 static u8 i40e_get_udp_port_idx(struct i40e_pf *pf, u16 port) 11623 { 11624 u8 i; 11625 11626 for (i = 0; i < I40E_MAX_PF_UDP_OFFLOAD_PORTS; i++) { 11627 /* Do not report ports with pending deletions as 11628 * being available. 11629 */ 11630 if (!port && (pf->pending_udp_bitmap & BIT_ULL(i))) 11631 continue; 11632 if (pf->udp_ports[i].port == port) 11633 return i; 11634 } 11635 11636 return i; 11637 } 11638 11639 /** 11640 * i40e_udp_tunnel_add - Get notifications about UDP tunnel ports that come up 11641 * @netdev: This physical port's netdev 11642 * @ti: Tunnel endpoint information 11643 **/ 11644 static void i40e_udp_tunnel_add(struct net_device *netdev, 11645 struct udp_tunnel_info *ti) 11646 { 11647 struct i40e_netdev_priv *np = netdev_priv(netdev); 11648 struct i40e_vsi *vsi = np->vsi; 11649 struct i40e_pf *pf = vsi->back; 11650 u16 port = ntohs(ti->port); 11651 u8 next_idx; 11652 u8 idx; 11653 11654 idx = i40e_get_udp_port_idx(pf, port); 11655 11656 /* Check if port already exists */ 11657 if (idx < I40E_MAX_PF_UDP_OFFLOAD_PORTS) { 11658 netdev_info(netdev, "port %d already offloaded\n", port); 11659 return; 11660 } 11661 11662 /* Now check if there is space to add the new port */ 11663 next_idx = i40e_get_udp_port_idx(pf, 0); 11664 11665 if (next_idx == I40E_MAX_PF_UDP_OFFLOAD_PORTS) { 11666 netdev_info(netdev, "maximum number of offloaded UDP ports reached, not adding port %d\n", 11667 port); 11668 return; 11669 } 11670 11671 switch (ti->type) { 11672 case UDP_TUNNEL_TYPE_VXLAN: 11673 pf->udp_ports[next_idx].type = I40E_AQC_TUNNEL_TYPE_VXLAN; 11674 break; 11675 case UDP_TUNNEL_TYPE_GENEVE: 11676 if (!(pf->hw_features & I40E_HW_GENEVE_OFFLOAD_CAPABLE)) 11677 return; 11678 pf->udp_ports[next_idx].type = I40E_AQC_TUNNEL_TYPE_NGE; 11679 break; 11680 default: 11681 return; 11682 } 11683 11684 /* New port: add it and mark its index in the bitmap */ 11685 pf->udp_ports[next_idx].port = port; 11686 pf->udp_ports[next_idx].filter_index = I40E_UDP_PORT_INDEX_UNUSED; 11687 pf->pending_udp_bitmap |= BIT_ULL(next_idx); 11688 set_bit(__I40E_UDP_FILTER_SYNC_PENDING, pf->state); 11689 } 11690 11691 /** 11692 * i40e_udp_tunnel_del - Get notifications about UDP tunnel ports that go away 11693 * @netdev: This physical port's netdev 11694 * @ti: Tunnel endpoint information 11695 **/ 11696 static void i40e_udp_tunnel_del(struct net_device *netdev, 11697 struct udp_tunnel_info *ti) 11698 { 11699 struct i40e_netdev_priv *np = netdev_priv(netdev); 11700 struct i40e_vsi *vsi = np->vsi; 11701 struct i40e_pf *pf = vsi->back; 11702 u16 port = ntohs(ti->port); 11703 u8 idx; 11704 11705 idx = i40e_get_udp_port_idx(pf, port); 11706 11707 /* Check if port already exists */ 11708 if (idx >= I40E_MAX_PF_UDP_OFFLOAD_PORTS) 11709 goto not_found; 11710 11711 switch (ti->type) { 11712 case UDP_TUNNEL_TYPE_VXLAN: 11713 if (pf->udp_ports[idx].type != I40E_AQC_TUNNEL_TYPE_VXLAN) 11714 goto not_found; 11715 break; 11716 case UDP_TUNNEL_TYPE_GENEVE: 11717 if (pf->udp_ports[idx].type != I40E_AQC_TUNNEL_TYPE_NGE) 11718 goto not_found; 11719 break; 11720 default: 11721 goto not_found; 11722 } 11723 11724 /* if port exists, set it to 0 (mark for deletion) 11725 * and make it pending 11726 */ 11727 pf->udp_ports[idx].port = 0; 11728 11729 /* Toggle pending bit instead of setting it. This way if we are 11730 * deleting a port that has yet to be added we just clear the pending 11731 * bit and don't have to worry about it. 11732 */ 11733 pf->pending_udp_bitmap ^= BIT_ULL(idx); 11734 set_bit(__I40E_UDP_FILTER_SYNC_PENDING, pf->state); 11735 11736 return; 11737 not_found: 11738 netdev_warn(netdev, "UDP port %d was not found, not deleting\n", 11739 port); 11740 } 11741 11742 static int i40e_get_phys_port_id(struct net_device *netdev, 11743 struct netdev_phys_item_id *ppid) 11744 { 11745 struct i40e_netdev_priv *np = netdev_priv(netdev); 11746 struct i40e_pf *pf = np->vsi->back; 11747 struct i40e_hw *hw = &pf->hw; 11748 11749 if (!(pf->hw_features & I40E_HW_PORT_ID_VALID)) 11750 return -EOPNOTSUPP; 11751 11752 ppid->id_len = min_t(int, sizeof(hw->mac.port_addr), sizeof(ppid->id)); 11753 memcpy(ppid->id, hw->mac.port_addr, ppid->id_len); 11754 11755 return 0; 11756 } 11757 11758 /** 11759 * i40e_ndo_fdb_add - add an entry to the hardware database 11760 * @ndm: the input from the stack 11761 * @tb: pointer to array of nladdr (unused) 11762 * @dev: the net device pointer 11763 * @addr: the MAC address entry being added 11764 * @vid: VLAN ID 11765 * @flags: instructions from stack about fdb operation 11766 */ 11767 static int i40e_ndo_fdb_add(struct ndmsg *ndm, struct nlattr *tb[], 11768 struct net_device *dev, 11769 const unsigned char *addr, u16 vid, 11770 u16 flags, 11771 struct netlink_ext_ack *extack) 11772 { 11773 struct i40e_netdev_priv *np = netdev_priv(dev); 11774 struct i40e_pf *pf = np->vsi->back; 11775 int err = 0; 11776 11777 if (!(pf->flags & I40E_FLAG_SRIOV_ENABLED)) 11778 return -EOPNOTSUPP; 11779 11780 if (vid) { 11781 pr_info("%s: vlans aren't supported yet for dev_uc|mc_add()\n", dev->name); 11782 return -EINVAL; 11783 } 11784 11785 /* Hardware does not support aging addresses so if a 11786 * ndm_state is given only allow permanent addresses 11787 */ 11788 if (ndm->ndm_state && !(ndm->ndm_state & NUD_PERMANENT)) { 11789 netdev_info(dev, "FDB only supports static addresses\n"); 11790 return -EINVAL; 11791 } 11792 11793 if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr)) 11794 err = dev_uc_add_excl(dev, addr); 11795 else if (is_multicast_ether_addr(addr)) 11796 err = dev_mc_add_excl(dev, addr); 11797 else 11798 err = -EINVAL; 11799 11800 /* Only return duplicate errors if NLM_F_EXCL is set */ 11801 if (err == -EEXIST && !(flags & NLM_F_EXCL)) 11802 err = 0; 11803 11804 return err; 11805 } 11806 11807 /** 11808 * i40e_ndo_bridge_setlink - Set the hardware bridge mode 11809 * @dev: the netdev being configured 11810 * @nlh: RTNL message 11811 * @flags: bridge flags 11812 * @extack: netlink extended ack 11813 * 11814 * Inserts a new hardware bridge if not already created and 11815 * enables the bridging mode requested (VEB or VEPA). If the 11816 * hardware bridge has already been inserted and the request 11817 * is to change the mode then that requires a PF reset to 11818 * allow rebuild of the components with required hardware 11819 * bridge mode enabled. 11820 * 11821 * Note: expects to be called while under rtnl_lock() 11822 **/ 11823 static int i40e_ndo_bridge_setlink(struct net_device *dev, 11824 struct nlmsghdr *nlh, 11825 u16 flags, 11826 struct netlink_ext_ack *extack) 11827 { 11828 struct i40e_netdev_priv *np = netdev_priv(dev); 11829 struct i40e_vsi *vsi = np->vsi; 11830 struct i40e_pf *pf = vsi->back; 11831 struct i40e_veb *veb = NULL; 11832 struct nlattr *attr, *br_spec; 11833 int i, rem; 11834 11835 /* Only for PF VSI for now */ 11836 if (vsi->seid != pf->vsi[pf->lan_vsi]->seid) 11837 return -EOPNOTSUPP; 11838 11839 /* Find the HW bridge for PF VSI */ 11840 for (i = 0; i < I40E_MAX_VEB && !veb; i++) { 11841 if (pf->veb[i] && pf->veb[i]->seid == vsi->uplink_seid) 11842 veb = pf->veb[i]; 11843 } 11844 11845 br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC); 11846 11847 nla_for_each_nested(attr, br_spec, rem) { 11848 __u16 mode; 11849 11850 if (nla_type(attr) != IFLA_BRIDGE_MODE) 11851 continue; 11852 11853 mode = nla_get_u16(attr); 11854 if ((mode != BRIDGE_MODE_VEPA) && 11855 (mode != BRIDGE_MODE_VEB)) 11856 return -EINVAL; 11857 11858 /* Insert a new HW bridge */ 11859 if (!veb) { 11860 veb = i40e_veb_setup(pf, 0, vsi->uplink_seid, vsi->seid, 11861 vsi->tc_config.enabled_tc); 11862 if (veb) { 11863 veb->bridge_mode = mode; 11864 i40e_config_bridge_mode(veb); 11865 } else { 11866 /* No Bridge HW offload available */ 11867 return -ENOENT; 11868 } 11869 break; 11870 } else if (mode != veb->bridge_mode) { 11871 /* Existing HW bridge but different mode needs reset */ 11872 veb->bridge_mode = mode; 11873 /* TODO: If no VFs or VMDq VSIs, disallow VEB mode */ 11874 if (mode == BRIDGE_MODE_VEB) 11875 pf->flags |= I40E_FLAG_VEB_MODE_ENABLED; 11876 else 11877 pf->flags &= ~I40E_FLAG_VEB_MODE_ENABLED; 11878 i40e_do_reset(pf, I40E_PF_RESET_FLAG, true); 11879 break; 11880 } 11881 } 11882 11883 return 0; 11884 } 11885 11886 /** 11887 * i40e_ndo_bridge_getlink - Get the hardware bridge mode 11888 * @skb: skb buff 11889 * @pid: process id 11890 * @seq: RTNL message seq # 11891 * @dev: the netdev being configured 11892 * @filter_mask: unused 11893 * @nlflags: netlink flags passed in 11894 * 11895 * Return the mode in which the hardware bridge is operating in 11896 * i.e VEB or VEPA. 11897 **/ 11898 static int i40e_ndo_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq, 11899 struct net_device *dev, 11900 u32 __always_unused filter_mask, 11901 int nlflags) 11902 { 11903 struct i40e_netdev_priv *np = netdev_priv(dev); 11904 struct i40e_vsi *vsi = np->vsi; 11905 struct i40e_pf *pf = vsi->back; 11906 struct i40e_veb *veb = NULL; 11907 int i; 11908 11909 /* Only for PF VSI for now */ 11910 if (vsi->seid != pf->vsi[pf->lan_vsi]->seid) 11911 return -EOPNOTSUPP; 11912 11913 /* Find the HW bridge for the PF VSI */ 11914 for (i = 0; i < I40E_MAX_VEB && !veb; i++) { 11915 if (pf->veb[i] && pf->veb[i]->seid == vsi->uplink_seid) 11916 veb = pf->veb[i]; 11917 } 11918 11919 if (!veb) 11920 return 0; 11921 11922 return ndo_dflt_bridge_getlink(skb, pid, seq, dev, veb->bridge_mode, 11923 0, 0, nlflags, filter_mask, NULL); 11924 } 11925 11926 /** 11927 * i40e_features_check - Validate encapsulated packet conforms to limits 11928 * @skb: skb buff 11929 * @dev: This physical port's netdev 11930 * @features: Offload features that the stack believes apply 11931 **/ 11932 static netdev_features_t i40e_features_check(struct sk_buff *skb, 11933 struct net_device *dev, 11934 netdev_features_t features) 11935 { 11936 size_t len; 11937 11938 /* No point in doing any of this if neither checksum nor GSO are 11939 * being requested for this frame. We can rule out both by just 11940 * checking for CHECKSUM_PARTIAL 11941 */ 11942 if (skb->ip_summed != CHECKSUM_PARTIAL) 11943 return features; 11944 11945 /* We cannot support GSO if the MSS is going to be less than 11946 * 64 bytes. If it is then we need to drop support for GSO. 11947 */ 11948 if (skb_is_gso(skb) && (skb_shinfo(skb)->gso_size < 64)) 11949 features &= ~NETIF_F_GSO_MASK; 11950 11951 /* MACLEN can support at most 63 words */ 11952 len = skb_network_header(skb) - skb->data; 11953 if (len & ~(63 * 2)) 11954 goto out_err; 11955 11956 /* IPLEN and EIPLEN can support at most 127 dwords */ 11957 len = skb_transport_header(skb) - skb_network_header(skb); 11958 if (len & ~(127 * 4)) 11959 goto out_err; 11960 11961 if (skb->encapsulation) { 11962 /* L4TUNLEN can support 127 words */ 11963 len = skb_inner_network_header(skb) - skb_transport_header(skb); 11964 if (len & ~(127 * 2)) 11965 goto out_err; 11966 11967 /* IPLEN can support at most 127 dwords */ 11968 len = skb_inner_transport_header(skb) - 11969 skb_inner_network_header(skb); 11970 if (len & ~(127 * 4)) 11971 goto out_err; 11972 } 11973 11974 /* No need to validate L4LEN as TCP is the only protocol with a 11975 * a flexible value and we support all possible values supported 11976 * by TCP, which is at most 15 dwords 11977 */ 11978 11979 return features; 11980 out_err: 11981 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 11982 } 11983 11984 /** 11985 * i40e_xdp_setup - add/remove an XDP program 11986 * @vsi: VSI to changed 11987 * @prog: XDP program 11988 **/ 11989 static int i40e_xdp_setup(struct i40e_vsi *vsi, 11990 struct bpf_prog *prog) 11991 { 11992 int frame_size = vsi->netdev->mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN; 11993 struct i40e_pf *pf = vsi->back; 11994 struct bpf_prog *old_prog; 11995 bool need_reset; 11996 int i; 11997 11998 /* Don't allow frames that span over multiple buffers */ 11999 if (frame_size > vsi->rx_buf_len) 12000 return -EINVAL; 12001 12002 if (!i40e_enabled_xdp_vsi(vsi) && !prog) 12003 return 0; 12004 12005 /* When turning XDP on->off/off->on we reset and rebuild the rings. */ 12006 need_reset = (i40e_enabled_xdp_vsi(vsi) != !!prog); 12007 12008 if (need_reset) 12009 i40e_prep_for_reset(pf, true); 12010 12011 old_prog = xchg(&vsi->xdp_prog, prog); 12012 12013 if (need_reset) 12014 i40e_reset_and_rebuild(pf, true, true); 12015 12016 for (i = 0; i < vsi->num_queue_pairs; i++) 12017 WRITE_ONCE(vsi->rx_rings[i]->xdp_prog, vsi->xdp_prog); 12018 12019 if (old_prog) 12020 bpf_prog_put(old_prog); 12021 12022 /* Kick start the NAPI context if there is an AF_XDP socket open 12023 * on that queue id. This so that receiving will start. 12024 */ 12025 if (need_reset && prog) 12026 for (i = 0; i < vsi->num_queue_pairs; i++) 12027 if (vsi->xdp_rings[i]->xsk_umem) 12028 (void)i40e_xsk_async_xmit(vsi->netdev, i); 12029 12030 return 0; 12031 } 12032 12033 /** 12034 * i40e_enter_busy_conf - Enters busy config state 12035 * @vsi: vsi 12036 * 12037 * Returns 0 on success, <0 for failure. 12038 **/ 12039 static int i40e_enter_busy_conf(struct i40e_vsi *vsi) 12040 { 12041 struct i40e_pf *pf = vsi->back; 12042 int timeout = 50; 12043 12044 while (test_and_set_bit(__I40E_CONFIG_BUSY, pf->state)) { 12045 timeout--; 12046 if (!timeout) 12047 return -EBUSY; 12048 usleep_range(1000, 2000); 12049 } 12050 12051 return 0; 12052 } 12053 12054 /** 12055 * i40e_exit_busy_conf - Exits busy config state 12056 * @vsi: vsi 12057 **/ 12058 static void i40e_exit_busy_conf(struct i40e_vsi *vsi) 12059 { 12060 struct i40e_pf *pf = vsi->back; 12061 12062 clear_bit(__I40E_CONFIG_BUSY, pf->state); 12063 } 12064 12065 /** 12066 * i40e_queue_pair_reset_stats - Resets all statistics for a queue pair 12067 * @vsi: vsi 12068 * @queue_pair: queue pair 12069 **/ 12070 static void i40e_queue_pair_reset_stats(struct i40e_vsi *vsi, int queue_pair) 12071 { 12072 memset(&vsi->rx_rings[queue_pair]->rx_stats, 0, 12073 sizeof(vsi->rx_rings[queue_pair]->rx_stats)); 12074 memset(&vsi->tx_rings[queue_pair]->stats, 0, 12075 sizeof(vsi->tx_rings[queue_pair]->stats)); 12076 if (i40e_enabled_xdp_vsi(vsi)) { 12077 memset(&vsi->xdp_rings[queue_pair]->stats, 0, 12078 sizeof(vsi->xdp_rings[queue_pair]->stats)); 12079 } 12080 } 12081 12082 /** 12083 * i40e_queue_pair_clean_rings - Cleans all the rings of a queue pair 12084 * @vsi: vsi 12085 * @queue_pair: queue pair 12086 **/ 12087 static void i40e_queue_pair_clean_rings(struct i40e_vsi *vsi, int queue_pair) 12088 { 12089 i40e_clean_tx_ring(vsi->tx_rings[queue_pair]); 12090 if (i40e_enabled_xdp_vsi(vsi)) { 12091 /* Make sure that in-progress ndo_xdp_xmit calls are 12092 * completed. 12093 */ 12094 synchronize_rcu(); 12095 i40e_clean_tx_ring(vsi->xdp_rings[queue_pair]); 12096 } 12097 i40e_clean_rx_ring(vsi->rx_rings[queue_pair]); 12098 } 12099 12100 /** 12101 * i40e_queue_pair_toggle_napi - Enables/disables NAPI for a queue pair 12102 * @vsi: vsi 12103 * @queue_pair: queue pair 12104 * @enable: true for enable, false for disable 12105 **/ 12106 static void i40e_queue_pair_toggle_napi(struct i40e_vsi *vsi, int queue_pair, 12107 bool enable) 12108 { 12109 struct i40e_ring *rxr = vsi->rx_rings[queue_pair]; 12110 struct i40e_q_vector *q_vector = rxr->q_vector; 12111 12112 if (!vsi->netdev) 12113 return; 12114 12115 /* All rings in a qp belong to the same qvector. */ 12116 if (q_vector->rx.ring || q_vector->tx.ring) { 12117 if (enable) 12118 napi_enable(&q_vector->napi); 12119 else 12120 napi_disable(&q_vector->napi); 12121 } 12122 } 12123 12124 /** 12125 * i40e_queue_pair_toggle_rings - Enables/disables all rings for a queue pair 12126 * @vsi: vsi 12127 * @queue_pair: queue pair 12128 * @enable: true for enable, false for disable 12129 * 12130 * Returns 0 on success, <0 on failure. 12131 **/ 12132 static int i40e_queue_pair_toggle_rings(struct i40e_vsi *vsi, int queue_pair, 12133 bool enable) 12134 { 12135 struct i40e_pf *pf = vsi->back; 12136 int pf_q, ret = 0; 12137 12138 pf_q = vsi->base_queue + queue_pair; 12139 ret = i40e_control_wait_tx_q(vsi->seid, pf, pf_q, 12140 false /*is xdp*/, enable); 12141 if (ret) { 12142 dev_info(&pf->pdev->dev, 12143 "VSI seid %d Tx ring %d %sable timeout\n", 12144 vsi->seid, pf_q, (enable ? "en" : "dis")); 12145 return ret; 12146 } 12147 12148 i40e_control_rx_q(pf, pf_q, enable); 12149 ret = i40e_pf_rxq_wait(pf, pf_q, enable); 12150 if (ret) { 12151 dev_info(&pf->pdev->dev, 12152 "VSI seid %d Rx ring %d %sable timeout\n", 12153 vsi->seid, pf_q, (enable ? "en" : "dis")); 12154 return ret; 12155 } 12156 12157 /* Due to HW errata, on Rx disable only, the register can 12158 * indicate done before it really is. Needs 50ms to be sure 12159 */ 12160 if (!enable) 12161 mdelay(50); 12162 12163 if (!i40e_enabled_xdp_vsi(vsi)) 12164 return ret; 12165 12166 ret = i40e_control_wait_tx_q(vsi->seid, pf, 12167 pf_q + vsi->alloc_queue_pairs, 12168 true /*is xdp*/, enable); 12169 if (ret) { 12170 dev_info(&pf->pdev->dev, 12171 "VSI seid %d XDP Tx ring %d %sable timeout\n", 12172 vsi->seid, pf_q, (enable ? "en" : "dis")); 12173 } 12174 12175 return ret; 12176 } 12177 12178 /** 12179 * i40e_queue_pair_enable_irq - Enables interrupts for a queue pair 12180 * @vsi: vsi 12181 * @queue_pair: queue_pair 12182 **/ 12183 static void i40e_queue_pair_enable_irq(struct i40e_vsi *vsi, int queue_pair) 12184 { 12185 struct i40e_ring *rxr = vsi->rx_rings[queue_pair]; 12186 struct i40e_pf *pf = vsi->back; 12187 struct i40e_hw *hw = &pf->hw; 12188 12189 /* All rings in a qp belong to the same qvector. */ 12190 if (pf->flags & I40E_FLAG_MSIX_ENABLED) 12191 i40e_irq_dynamic_enable(vsi, rxr->q_vector->v_idx); 12192 else 12193 i40e_irq_dynamic_enable_icr0(pf); 12194 12195 i40e_flush(hw); 12196 } 12197 12198 /** 12199 * i40e_queue_pair_disable_irq - Disables interrupts for a queue pair 12200 * @vsi: vsi 12201 * @queue_pair: queue_pair 12202 **/ 12203 static void i40e_queue_pair_disable_irq(struct i40e_vsi *vsi, int queue_pair) 12204 { 12205 struct i40e_ring *rxr = vsi->rx_rings[queue_pair]; 12206 struct i40e_pf *pf = vsi->back; 12207 struct i40e_hw *hw = &pf->hw; 12208 12209 /* For simplicity, instead of removing the qp interrupt causes 12210 * from the interrupt linked list, we simply disable the interrupt, and 12211 * leave the list intact. 12212 * 12213 * All rings in a qp belong to the same qvector. 12214 */ 12215 if (pf->flags & I40E_FLAG_MSIX_ENABLED) { 12216 u32 intpf = vsi->base_vector + rxr->q_vector->v_idx; 12217 12218 wr32(hw, I40E_PFINT_DYN_CTLN(intpf - 1), 0); 12219 i40e_flush(hw); 12220 synchronize_irq(pf->msix_entries[intpf].vector); 12221 } else { 12222 /* Legacy and MSI mode - this stops all interrupt handling */ 12223 wr32(hw, I40E_PFINT_ICR0_ENA, 0); 12224 wr32(hw, I40E_PFINT_DYN_CTL0, 0); 12225 i40e_flush(hw); 12226 synchronize_irq(pf->pdev->irq); 12227 } 12228 } 12229 12230 /** 12231 * i40e_queue_pair_disable - Disables a queue pair 12232 * @vsi: vsi 12233 * @queue_pair: queue pair 12234 * 12235 * Returns 0 on success, <0 on failure. 12236 **/ 12237 int i40e_queue_pair_disable(struct i40e_vsi *vsi, int queue_pair) 12238 { 12239 int err; 12240 12241 err = i40e_enter_busy_conf(vsi); 12242 if (err) 12243 return err; 12244 12245 i40e_queue_pair_disable_irq(vsi, queue_pair); 12246 err = i40e_queue_pair_toggle_rings(vsi, queue_pair, false /* off */); 12247 i40e_queue_pair_toggle_napi(vsi, queue_pair, false /* off */); 12248 i40e_queue_pair_clean_rings(vsi, queue_pair); 12249 i40e_queue_pair_reset_stats(vsi, queue_pair); 12250 12251 return err; 12252 } 12253 12254 /** 12255 * i40e_queue_pair_enable - Enables a queue pair 12256 * @vsi: vsi 12257 * @queue_pair: queue pair 12258 * 12259 * Returns 0 on success, <0 on failure. 12260 **/ 12261 int i40e_queue_pair_enable(struct i40e_vsi *vsi, int queue_pair) 12262 { 12263 int err; 12264 12265 err = i40e_configure_tx_ring(vsi->tx_rings[queue_pair]); 12266 if (err) 12267 return err; 12268 12269 if (i40e_enabled_xdp_vsi(vsi)) { 12270 err = i40e_configure_tx_ring(vsi->xdp_rings[queue_pair]); 12271 if (err) 12272 return err; 12273 } 12274 12275 err = i40e_configure_rx_ring(vsi->rx_rings[queue_pair]); 12276 if (err) 12277 return err; 12278 12279 err = i40e_queue_pair_toggle_rings(vsi, queue_pair, true /* on */); 12280 i40e_queue_pair_toggle_napi(vsi, queue_pair, true /* on */); 12281 i40e_queue_pair_enable_irq(vsi, queue_pair); 12282 12283 i40e_exit_busy_conf(vsi); 12284 12285 return err; 12286 } 12287 12288 /** 12289 * i40e_xdp - implements ndo_bpf for i40e 12290 * @dev: netdevice 12291 * @xdp: XDP command 12292 **/ 12293 static int i40e_xdp(struct net_device *dev, 12294 struct netdev_bpf *xdp) 12295 { 12296 struct i40e_netdev_priv *np = netdev_priv(dev); 12297 struct i40e_vsi *vsi = np->vsi; 12298 12299 if (vsi->type != I40E_VSI_MAIN) 12300 return -EINVAL; 12301 12302 switch (xdp->command) { 12303 case XDP_SETUP_PROG: 12304 return i40e_xdp_setup(vsi, xdp->prog); 12305 case XDP_QUERY_PROG: 12306 xdp->prog_id = vsi->xdp_prog ? vsi->xdp_prog->aux->id : 0; 12307 return 0; 12308 case XDP_SETUP_XSK_UMEM: 12309 return i40e_xsk_umem_setup(vsi, xdp->xsk.umem, 12310 xdp->xsk.queue_id); 12311 default: 12312 return -EINVAL; 12313 } 12314 } 12315 12316 static const struct net_device_ops i40e_netdev_ops = { 12317 .ndo_open = i40e_open, 12318 .ndo_stop = i40e_close, 12319 .ndo_start_xmit = i40e_lan_xmit_frame, 12320 .ndo_get_stats64 = i40e_get_netdev_stats_struct, 12321 .ndo_set_rx_mode = i40e_set_rx_mode, 12322 .ndo_validate_addr = eth_validate_addr, 12323 .ndo_set_mac_address = i40e_set_mac, 12324 .ndo_change_mtu = i40e_change_mtu, 12325 .ndo_do_ioctl = i40e_ioctl, 12326 .ndo_tx_timeout = i40e_tx_timeout, 12327 .ndo_vlan_rx_add_vid = i40e_vlan_rx_add_vid, 12328 .ndo_vlan_rx_kill_vid = i40e_vlan_rx_kill_vid, 12329 #ifdef CONFIG_NET_POLL_CONTROLLER 12330 .ndo_poll_controller = i40e_netpoll, 12331 #endif 12332 .ndo_setup_tc = __i40e_setup_tc, 12333 .ndo_set_features = i40e_set_features, 12334 .ndo_set_vf_mac = i40e_ndo_set_vf_mac, 12335 .ndo_set_vf_vlan = i40e_ndo_set_vf_port_vlan, 12336 .ndo_set_vf_rate = i40e_ndo_set_vf_bw, 12337 .ndo_get_vf_config = i40e_ndo_get_vf_config, 12338 .ndo_set_vf_link_state = i40e_ndo_set_vf_link_state, 12339 .ndo_set_vf_spoofchk = i40e_ndo_set_vf_spoofchk, 12340 .ndo_set_vf_trust = i40e_ndo_set_vf_trust, 12341 .ndo_udp_tunnel_add = i40e_udp_tunnel_add, 12342 .ndo_udp_tunnel_del = i40e_udp_tunnel_del, 12343 .ndo_get_phys_port_id = i40e_get_phys_port_id, 12344 .ndo_fdb_add = i40e_ndo_fdb_add, 12345 .ndo_features_check = i40e_features_check, 12346 .ndo_bridge_getlink = i40e_ndo_bridge_getlink, 12347 .ndo_bridge_setlink = i40e_ndo_bridge_setlink, 12348 .ndo_bpf = i40e_xdp, 12349 .ndo_xdp_xmit = i40e_xdp_xmit, 12350 .ndo_xsk_async_xmit = i40e_xsk_async_xmit, 12351 }; 12352 12353 /** 12354 * i40e_config_netdev - Setup the netdev flags 12355 * @vsi: the VSI being configured 12356 * 12357 * Returns 0 on success, negative value on failure 12358 **/ 12359 static int i40e_config_netdev(struct i40e_vsi *vsi) 12360 { 12361 struct i40e_pf *pf = vsi->back; 12362 struct i40e_hw *hw = &pf->hw; 12363 struct i40e_netdev_priv *np; 12364 struct net_device *netdev; 12365 u8 broadcast[ETH_ALEN]; 12366 u8 mac_addr[ETH_ALEN]; 12367 int etherdev_size; 12368 netdev_features_t hw_enc_features; 12369 netdev_features_t hw_features; 12370 12371 etherdev_size = sizeof(struct i40e_netdev_priv); 12372 netdev = alloc_etherdev_mq(etherdev_size, vsi->alloc_queue_pairs); 12373 if (!netdev) 12374 return -ENOMEM; 12375 12376 vsi->netdev = netdev; 12377 np = netdev_priv(netdev); 12378 np->vsi = vsi; 12379 12380 hw_enc_features = NETIF_F_SG | 12381 NETIF_F_IP_CSUM | 12382 NETIF_F_IPV6_CSUM | 12383 NETIF_F_HIGHDMA | 12384 NETIF_F_SOFT_FEATURES | 12385 NETIF_F_TSO | 12386 NETIF_F_TSO_ECN | 12387 NETIF_F_TSO6 | 12388 NETIF_F_GSO_GRE | 12389 NETIF_F_GSO_GRE_CSUM | 12390 NETIF_F_GSO_PARTIAL | 12391 NETIF_F_GSO_IPXIP4 | 12392 NETIF_F_GSO_IPXIP6 | 12393 NETIF_F_GSO_UDP_TUNNEL | 12394 NETIF_F_GSO_UDP_TUNNEL_CSUM | 12395 NETIF_F_SCTP_CRC | 12396 NETIF_F_RXHASH | 12397 NETIF_F_RXCSUM | 12398 0; 12399 12400 if (!(pf->hw_features & I40E_HW_OUTER_UDP_CSUM_CAPABLE)) 12401 netdev->gso_partial_features |= NETIF_F_GSO_UDP_TUNNEL_CSUM; 12402 12403 netdev->gso_partial_features |= NETIF_F_GSO_GRE_CSUM; 12404 12405 netdev->hw_enc_features |= hw_enc_features; 12406 12407 /* record features VLANs can make use of */ 12408 netdev->vlan_features |= hw_enc_features | NETIF_F_TSO_MANGLEID; 12409 12410 hw_features = hw_enc_features | 12411 NETIF_F_HW_VLAN_CTAG_TX | 12412 NETIF_F_HW_VLAN_CTAG_RX; 12413 12414 if (!(pf->flags & I40E_FLAG_MFP_ENABLED)) 12415 hw_features |= NETIF_F_NTUPLE | NETIF_F_HW_TC; 12416 12417 netdev->hw_features |= hw_features; 12418 12419 netdev->features |= hw_features | NETIF_F_HW_VLAN_CTAG_FILTER; 12420 netdev->hw_enc_features |= NETIF_F_TSO_MANGLEID; 12421 12422 if (vsi->type == I40E_VSI_MAIN) { 12423 SET_NETDEV_DEV(netdev, &pf->pdev->dev); 12424 ether_addr_copy(mac_addr, hw->mac.perm_addr); 12425 /* The following steps are necessary for two reasons. First, 12426 * some older NVM configurations load a default MAC-VLAN 12427 * filter that will accept any tagged packet, and we want to 12428 * replace this with a normal filter. Additionally, it is 12429 * possible our MAC address was provided by the platform using 12430 * Open Firmware or similar. 12431 * 12432 * Thus, we need to remove the default filter and install one 12433 * specific to the MAC address. 12434 */ 12435 i40e_rm_default_mac_filter(vsi, mac_addr); 12436 spin_lock_bh(&vsi->mac_filter_hash_lock); 12437 i40e_add_mac_filter(vsi, mac_addr); 12438 spin_unlock_bh(&vsi->mac_filter_hash_lock); 12439 } else { 12440 /* Relate the VSI_VMDQ name to the VSI_MAIN name. Note that we 12441 * are still limited by IFNAMSIZ, but we're adding 'v%d\0' to 12442 * the end, which is 4 bytes long, so force truncation of the 12443 * original name by IFNAMSIZ - 4 12444 */ 12445 snprintf(netdev->name, IFNAMSIZ, "%.*sv%%d", 12446 IFNAMSIZ - 4, 12447 pf->vsi[pf->lan_vsi]->netdev->name); 12448 eth_random_addr(mac_addr); 12449 12450 spin_lock_bh(&vsi->mac_filter_hash_lock); 12451 i40e_add_mac_filter(vsi, mac_addr); 12452 spin_unlock_bh(&vsi->mac_filter_hash_lock); 12453 } 12454 12455 /* Add the broadcast filter so that we initially will receive 12456 * broadcast packets. Note that when a new VLAN is first added the 12457 * driver will convert all filters marked I40E_VLAN_ANY into VLAN 12458 * specific filters as part of transitioning into "vlan" operation. 12459 * When more VLANs are added, the driver will copy each existing MAC 12460 * filter and add it for the new VLAN. 12461 * 12462 * Broadcast filters are handled specially by 12463 * i40e_sync_filters_subtask, as the driver must to set the broadcast 12464 * promiscuous bit instead of adding this directly as a MAC/VLAN 12465 * filter. The subtask will update the correct broadcast promiscuous 12466 * bits as VLANs become active or inactive. 12467 */ 12468 eth_broadcast_addr(broadcast); 12469 spin_lock_bh(&vsi->mac_filter_hash_lock); 12470 i40e_add_mac_filter(vsi, broadcast); 12471 spin_unlock_bh(&vsi->mac_filter_hash_lock); 12472 12473 ether_addr_copy(netdev->dev_addr, mac_addr); 12474 ether_addr_copy(netdev->perm_addr, mac_addr); 12475 12476 /* i40iw_net_event() reads 16 bytes from neigh->primary_key */ 12477 netdev->neigh_priv_len = sizeof(u32) * 4; 12478 12479 netdev->priv_flags |= IFF_UNICAST_FLT; 12480 netdev->priv_flags |= IFF_SUPP_NOFCS; 12481 /* Setup netdev TC information */ 12482 i40e_vsi_config_netdev_tc(vsi, vsi->tc_config.enabled_tc); 12483 12484 netdev->netdev_ops = &i40e_netdev_ops; 12485 netdev->watchdog_timeo = 5 * HZ; 12486 i40e_set_ethtool_ops(netdev); 12487 12488 /* MTU range: 68 - 9706 */ 12489 netdev->min_mtu = ETH_MIN_MTU; 12490 netdev->max_mtu = I40E_MAX_RXBUFFER - I40E_PACKET_HDR_PAD; 12491 12492 return 0; 12493 } 12494 12495 /** 12496 * i40e_vsi_delete - Delete a VSI from the switch 12497 * @vsi: the VSI being removed 12498 * 12499 * Returns 0 on success, negative value on failure 12500 **/ 12501 static void i40e_vsi_delete(struct i40e_vsi *vsi) 12502 { 12503 /* remove default VSI is not allowed */ 12504 if (vsi == vsi->back->vsi[vsi->back->lan_vsi]) 12505 return; 12506 12507 i40e_aq_delete_element(&vsi->back->hw, vsi->seid, NULL); 12508 } 12509 12510 /** 12511 * i40e_is_vsi_uplink_mode_veb - Check if the VSI's uplink bridge mode is VEB 12512 * @vsi: the VSI being queried 12513 * 12514 * Returns 1 if HW bridge mode is VEB and return 0 in case of VEPA mode 12515 **/ 12516 int i40e_is_vsi_uplink_mode_veb(struct i40e_vsi *vsi) 12517 { 12518 struct i40e_veb *veb; 12519 struct i40e_pf *pf = vsi->back; 12520 12521 /* Uplink is not a bridge so default to VEB */ 12522 if (vsi->veb_idx == I40E_NO_VEB) 12523 return 1; 12524 12525 veb = pf->veb[vsi->veb_idx]; 12526 if (!veb) { 12527 dev_info(&pf->pdev->dev, 12528 "There is no veb associated with the bridge\n"); 12529 return -ENOENT; 12530 } 12531 12532 /* Uplink is a bridge in VEPA mode */ 12533 if (veb->bridge_mode & BRIDGE_MODE_VEPA) { 12534 return 0; 12535 } else { 12536 /* Uplink is a bridge in VEB mode */ 12537 return 1; 12538 } 12539 12540 /* VEPA is now default bridge, so return 0 */ 12541 return 0; 12542 } 12543 12544 /** 12545 * i40e_add_vsi - Add a VSI to the switch 12546 * @vsi: the VSI being configured 12547 * 12548 * This initializes a VSI context depending on the VSI type to be added and 12549 * passes it down to the add_vsi aq command. 12550 **/ 12551 static int i40e_add_vsi(struct i40e_vsi *vsi) 12552 { 12553 int ret = -ENODEV; 12554 struct i40e_pf *pf = vsi->back; 12555 struct i40e_hw *hw = &pf->hw; 12556 struct i40e_vsi_context ctxt; 12557 struct i40e_mac_filter *f; 12558 struct hlist_node *h; 12559 int bkt; 12560 12561 u8 enabled_tc = 0x1; /* TC0 enabled */ 12562 int f_count = 0; 12563 12564 memset(&ctxt, 0, sizeof(ctxt)); 12565 switch (vsi->type) { 12566 case I40E_VSI_MAIN: 12567 /* The PF's main VSI is already setup as part of the 12568 * device initialization, so we'll not bother with 12569 * the add_vsi call, but we will retrieve the current 12570 * VSI context. 12571 */ 12572 ctxt.seid = pf->main_vsi_seid; 12573 ctxt.pf_num = pf->hw.pf_id; 12574 ctxt.vf_num = 0; 12575 ret = i40e_aq_get_vsi_params(&pf->hw, &ctxt, NULL); 12576 ctxt.flags = I40E_AQ_VSI_TYPE_PF; 12577 if (ret) { 12578 dev_info(&pf->pdev->dev, 12579 "couldn't get PF vsi config, err %s aq_err %s\n", 12580 i40e_stat_str(&pf->hw, ret), 12581 i40e_aq_str(&pf->hw, 12582 pf->hw.aq.asq_last_status)); 12583 return -ENOENT; 12584 } 12585 vsi->info = ctxt.info; 12586 vsi->info.valid_sections = 0; 12587 12588 vsi->seid = ctxt.seid; 12589 vsi->id = ctxt.vsi_number; 12590 12591 enabled_tc = i40e_pf_get_tc_map(pf); 12592 12593 /* Source pruning is enabled by default, so the flag is 12594 * negative logic - if it's set, we need to fiddle with 12595 * the VSI to disable source pruning. 12596 */ 12597 if (pf->flags & I40E_FLAG_SOURCE_PRUNING_DISABLED) { 12598 memset(&ctxt, 0, sizeof(ctxt)); 12599 ctxt.seid = pf->main_vsi_seid; 12600 ctxt.pf_num = pf->hw.pf_id; 12601 ctxt.vf_num = 0; 12602 ctxt.info.valid_sections |= 12603 cpu_to_le16(I40E_AQ_VSI_PROP_SWITCH_VALID); 12604 ctxt.info.switch_id = 12605 cpu_to_le16(I40E_AQ_VSI_SW_ID_FLAG_LOCAL_LB); 12606 ret = i40e_aq_update_vsi_params(hw, &ctxt, NULL); 12607 if (ret) { 12608 dev_info(&pf->pdev->dev, 12609 "update vsi failed, err %s aq_err %s\n", 12610 i40e_stat_str(&pf->hw, ret), 12611 i40e_aq_str(&pf->hw, 12612 pf->hw.aq.asq_last_status)); 12613 ret = -ENOENT; 12614 goto err; 12615 } 12616 } 12617 12618 /* MFP mode setup queue map and update VSI */ 12619 if ((pf->flags & I40E_FLAG_MFP_ENABLED) && 12620 !(pf->hw.func_caps.iscsi)) { /* NIC type PF */ 12621 memset(&ctxt, 0, sizeof(ctxt)); 12622 ctxt.seid = pf->main_vsi_seid; 12623 ctxt.pf_num = pf->hw.pf_id; 12624 ctxt.vf_num = 0; 12625 i40e_vsi_setup_queue_map(vsi, &ctxt, enabled_tc, false); 12626 ret = i40e_aq_update_vsi_params(hw, &ctxt, NULL); 12627 if (ret) { 12628 dev_info(&pf->pdev->dev, 12629 "update vsi failed, err %s aq_err %s\n", 12630 i40e_stat_str(&pf->hw, ret), 12631 i40e_aq_str(&pf->hw, 12632 pf->hw.aq.asq_last_status)); 12633 ret = -ENOENT; 12634 goto err; 12635 } 12636 /* update the local VSI info queue map */ 12637 i40e_vsi_update_queue_map(vsi, &ctxt); 12638 vsi->info.valid_sections = 0; 12639 } else { 12640 /* Default/Main VSI is only enabled for TC0 12641 * reconfigure it to enable all TCs that are 12642 * available on the port in SFP mode. 12643 * For MFP case the iSCSI PF would use this 12644 * flow to enable LAN+iSCSI TC. 12645 */ 12646 ret = i40e_vsi_config_tc(vsi, enabled_tc); 12647 if (ret) { 12648 /* Single TC condition is not fatal, 12649 * message and continue 12650 */ 12651 dev_info(&pf->pdev->dev, 12652 "failed to configure TCs for main VSI tc_map 0x%08x, err %s aq_err %s\n", 12653 enabled_tc, 12654 i40e_stat_str(&pf->hw, ret), 12655 i40e_aq_str(&pf->hw, 12656 pf->hw.aq.asq_last_status)); 12657 } 12658 } 12659 break; 12660 12661 case I40E_VSI_FDIR: 12662 ctxt.pf_num = hw->pf_id; 12663 ctxt.vf_num = 0; 12664 ctxt.uplink_seid = vsi->uplink_seid; 12665 ctxt.connection_type = I40E_AQ_VSI_CONN_TYPE_NORMAL; 12666 ctxt.flags = I40E_AQ_VSI_TYPE_PF; 12667 if ((pf->flags & I40E_FLAG_VEB_MODE_ENABLED) && 12668 (i40e_is_vsi_uplink_mode_veb(vsi))) { 12669 ctxt.info.valid_sections |= 12670 cpu_to_le16(I40E_AQ_VSI_PROP_SWITCH_VALID); 12671 ctxt.info.switch_id = 12672 cpu_to_le16(I40E_AQ_VSI_SW_ID_FLAG_ALLOW_LB); 12673 } 12674 i40e_vsi_setup_queue_map(vsi, &ctxt, enabled_tc, true); 12675 break; 12676 12677 case I40E_VSI_VMDQ2: 12678 ctxt.pf_num = hw->pf_id; 12679 ctxt.vf_num = 0; 12680 ctxt.uplink_seid = vsi->uplink_seid; 12681 ctxt.connection_type = I40E_AQ_VSI_CONN_TYPE_NORMAL; 12682 ctxt.flags = I40E_AQ_VSI_TYPE_VMDQ2; 12683 12684 /* This VSI is connected to VEB so the switch_id 12685 * should be set to zero by default. 12686 */ 12687 if (i40e_is_vsi_uplink_mode_veb(vsi)) { 12688 ctxt.info.valid_sections |= 12689 cpu_to_le16(I40E_AQ_VSI_PROP_SWITCH_VALID); 12690 ctxt.info.switch_id = 12691 cpu_to_le16(I40E_AQ_VSI_SW_ID_FLAG_ALLOW_LB); 12692 } 12693 12694 /* Setup the VSI tx/rx queue map for TC0 only for now */ 12695 i40e_vsi_setup_queue_map(vsi, &ctxt, enabled_tc, true); 12696 break; 12697 12698 case I40E_VSI_SRIOV: 12699 ctxt.pf_num = hw->pf_id; 12700 ctxt.vf_num = vsi->vf_id + hw->func_caps.vf_base_id; 12701 ctxt.uplink_seid = vsi->uplink_seid; 12702 ctxt.connection_type = I40E_AQ_VSI_CONN_TYPE_NORMAL; 12703 ctxt.flags = I40E_AQ_VSI_TYPE_VF; 12704 12705 /* This VSI is connected to VEB so the switch_id 12706 * should be set to zero by default. 12707 */ 12708 if (i40e_is_vsi_uplink_mode_veb(vsi)) { 12709 ctxt.info.valid_sections |= 12710 cpu_to_le16(I40E_AQ_VSI_PROP_SWITCH_VALID); 12711 ctxt.info.switch_id = 12712 cpu_to_le16(I40E_AQ_VSI_SW_ID_FLAG_ALLOW_LB); 12713 } 12714 12715 if (vsi->back->flags & I40E_FLAG_IWARP_ENABLED) { 12716 ctxt.info.valid_sections |= 12717 cpu_to_le16(I40E_AQ_VSI_PROP_QUEUE_OPT_VALID); 12718 ctxt.info.queueing_opt_flags |= 12719 (I40E_AQ_VSI_QUE_OPT_TCP_ENA | 12720 I40E_AQ_VSI_QUE_OPT_RSS_LUT_VSI); 12721 } 12722 12723 ctxt.info.valid_sections |= cpu_to_le16(I40E_AQ_VSI_PROP_VLAN_VALID); 12724 ctxt.info.port_vlan_flags |= I40E_AQ_VSI_PVLAN_MODE_ALL; 12725 if (pf->vf[vsi->vf_id].spoofchk) { 12726 ctxt.info.valid_sections |= 12727 cpu_to_le16(I40E_AQ_VSI_PROP_SECURITY_VALID); 12728 ctxt.info.sec_flags |= 12729 (I40E_AQ_VSI_SEC_FLAG_ENABLE_VLAN_CHK | 12730 I40E_AQ_VSI_SEC_FLAG_ENABLE_MAC_CHK); 12731 } 12732 /* Setup the VSI tx/rx queue map for TC0 only for now */ 12733 i40e_vsi_setup_queue_map(vsi, &ctxt, enabled_tc, true); 12734 break; 12735 12736 case I40E_VSI_IWARP: 12737 /* send down message to iWARP */ 12738 break; 12739 12740 default: 12741 return -ENODEV; 12742 } 12743 12744 if (vsi->type != I40E_VSI_MAIN) { 12745 ret = i40e_aq_add_vsi(hw, &ctxt, NULL); 12746 if (ret) { 12747 dev_info(&vsi->back->pdev->dev, 12748 "add vsi failed, err %s aq_err %s\n", 12749 i40e_stat_str(&pf->hw, ret), 12750 i40e_aq_str(&pf->hw, 12751 pf->hw.aq.asq_last_status)); 12752 ret = -ENOENT; 12753 goto err; 12754 } 12755 vsi->info = ctxt.info; 12756 vsi->info.valid_sections = 0; 12757 vsi->seid = ctxt.seid; 12758 vsi->id = ctxt.vsi_number; 12759 } 12760 12761 vsi->active_filters = 0; 12762 clear_bit(__I40E_VSI_OVERFLOW_PROMISC, vsi->state); 12763 spin_lock_bh(&vsi->mac_filter_hash_lock); 12764 /* If macvlan filters already exist, force them to get loaded */ 12765 hash_for_each_safe(vsi->mac_filter_hash, bkt, h, f, hlist) { 12766 f->state = I40E_FILTER_NEW; 12767 f_count++; 12768 } 12769 spin_unlock_bh(&vsi->mac_filter_hash_lock); 12770 12771 if (f_count) { 12772 vsi->flags |= I40E_VSI_FLAG_FILTER_CHANGED; 12773 set_bit(__I40E_MACVLAN_SYNC_PENDING, pf->state); 12774 } 12775 12776 /* Update VSI BW information */ 12777 ret = i40e_vsi_get_bw_info(vsi); 12778 if (ret) { 12779 dev_info(&pf->pdev->dev, 12780 "couldn't get vsi bw info, err %s aq_err %s\n", 12781 i40e_stat_str(&pf->hw, ret), 12782 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 12783 /* VSI is already added so not tearing that up */ 12784 ret = 0; 12785 } 12786 12787 err: 12788 return ret; 12789 } 12790 12791 /** 12792 * i40e_vsi_release - Delete a VSI and free its resources 12793 * @vsi: the VSI being removed 12794 * 12795 * Returns 0 on success or < 0 on error 12796 **/ 12797 int i40e_vsi_release(struct i40e_vsi *vsi) 12798 { 12799 struct i40e_mac_filter *f; 12800 struct hlist_node *h; 12801 struct i40e_veb *veb = NULL; 12802 struct i40e_pf *pf; 12803 u16 uplink_seid; 12804 int i, n, bkt; 12805 12806 pf = vsi->back; 12807 12808 /* release of a VEB-owner or last VSI is not allowed */ 12809 if (vsi->flags & I40E_VSI_FLAG_VEB_OWNER) { 12810 dev_info(&pf->pdev->dev, "VSI %d has existing VEB %d\n", 12811 vsi->seid, vsi->uplink_seid); 12812 return -ENODEV; 12813 } 12814 if (vsi == pf->vsi[pf->lan_vsi] && 12815 !test_bit(__I40E_DOWN, pf->state)) { 12816 dev_info(&pf->pdev->dev, "Can't remove PF VSI\n"); 12817 return -ENODEV; 12818 } 12819 12820 uplink_seid = vsi->uplink_seid; 12821 if (vsi->type != I40E_VSI_SRIOV) { 12822 if (vsi->netdev_registered) { 12823 vsi->netdev_registered = false; 12824 if (vsi->netdev) { 12825 /* results in a call to i40e_close() */ 12826 unregister_netdev(vsi->netdev); 12827 } 12828 } else { 12829 i40e_vsi_close(vsi); 12830 } 12831 i40e_vsi_disable_irq(vsi); 12832 } 12833 12834 spin_lock_bh(&vsi->mac_filter_hash_lock); 12835 12836 /* clear the sync flag on all filters */ 12837 if (vsi->netdev) { 12838 __dev_uc_unsync(vsi->netdev, NULL); 12839 __dev_mc_unsync(vsi->netdev, NULL); 12840 } 12841 12842 /* make sure any remaining filters are marked for deletion */ 12843 hash_for_each_safe(vsi->mac_filter_hash, bkt, h, f, hlist) 12844 __i40e_del_filter(vsi, f); 12845 12846 spin_unlock_bh(&vsi->mac_filter_hash_lock); 12847 12848 i40e_sync_vsi_filters(vsi); 12849 12850 i40e_vsi_delete(vsi); 12851 i40e_vsi_free_q_vectors(vsi); 12852 if (vsi->netdev) { 12853 free_netdev(vsi->netdev); 12854 vsi->netdev = NULL; 12855 } 12856 i40e_vsi_clear_rings(vsi); 12857 i40e_vsi_clear(vsi); 12858 12859 /* If this was the last thing on the VEB, except for the 12860 * controlling VSI, remove the VEB, which puts the controlling 12861 * VSI onto the next level down in the switch. 12862 * 12863 * Well, okay, there's one more exception here: don't remove 12864 * the orphan VEBs yet. We'll wait for an explicit remove request 12865 * from up the network stack. 12866 */ 12867 for (n = 0, i = 0; i < pf->num_alloc_vsi; i++) { 12868 if (pf->vsi[i] && 12869 pf->vsi[i]->uplink_seid == uplink_seid && 12870 (pf->vsi[i]->flags & I40E_VSI_FLAG_VEB_OWNER) == 0) { 12871 n++; /* count the VSIs */ 12872 } 12873 } 12874 for (i = 0; i < I40E_MAX_VEB; i++) { 12875 if (!pf->veb[i]) 12876 continue; 12877 if (pf->veb[i]->uplink_seid == uplink_seid) 12878 n++; /* count the VEBs */ 12879 if (pf->veb[i]->seid == uplink_seid) 12880 veb = pf->veb[i]; 12881 } 12882 if (n == 0 && veb && veb->uplink_seid != 0) 12883 i40e_veb_release(veb); 12884 12885 return 0; 12886 } 12887 12888 /** 12889 * i40e_vsi_setup_vectors - Set up the q_vectors for the given VSI 12890 * @vsi: ptr to the VSI 12891 * 12892 * This should only be called after i40e_vsi_mem_alloc() which allocates the 12893 * corresponding SW VSI structure and initializes num_queue_pairs for the 12894 * newly allocated VSI. 12895 * 12896 * Returns 0 on success or negative on failure 12897 **/ 12898 static int i40e_vsi_setup_vectors(struct i40e_vsi *vsi) 12899 { 12900 int ret = -ENOENT; 12901 struct i40e_pf *pf = vsi->back; 12902 12903 if (vsi->q_vectors[0]) { 12904 dev_info(&pf->pdev->dev, "VSI %d has existing q_vectors\n", 12905 vsi->seid); 12906 return -EEXIST; 12907 } 12908 12909 if (vsi->base_vector) { 12910 dev_info(&pf->pdev->dev, "VSI %d has non-zero base vector %d\n", 12911 vsi->seid, vsi->base_vector); 12912 return -EEXIST; 12913 } 12914 12915 ret = i40e_vsi_alloc_q_vectors(vsi); 12916 if (ret) { 12917 dev_info(&pf->pdev->dev, 12918 "failed to allocate %d q_vector for VSI %d, ret=%d\n", 12919 vsi->num_q_vectors, vsi->seid, ret); 12920 vsi->num_q_vectors = 0; 12921 goto vector_setup_out; 12922 } 12923 12924 /* In Legacy mode, we do not have to get any other vector since we 12925 * piggyback on the misc/ICR0 for queue interrupts. 12926 */ 12927 if (!(pf->flags & I40E_FLAG_MSIX_ENABLED)) 12928 return ret; 12929 if (vsi->num_q_vectors) 12930 vsi->base_vector = i40e_get_lump(pf, pf->irq_pile, 12931 vsi->num_q_vectors, vsi->idx); 12932 if (vsi->base_vector < 0) { 12933 dev_info(&pf->pdev->dev, 12934 "failed to get tracking for %d vectors for VSI %d, err=%d\n", 12935 vsi->num_q_vectors, vsi->seid, vsi->base_vector); 12936 i40e_vsi_free_q_vectors(vsi); 12937 ret = -ENOENT; 12938 goto vector_setup_out; 12939 } 12940 12941 vector_setup_out: 12942 return ret; 12943 } 12944 12945 /** 12946 * i40e_vsi_reinit_setup - return and reallocate resources for a VSI 12947 * @vsi: pointer to the vsi. 12948 * 12949 * This re-allocates a vsi's queue resources. 12950 * 12951 * Returns pointer to the successfully allocated and configured VSI sw struct 12952 * on success, otherwise returns NULL on failure. 12953 **/ 12954 static struct i40e_vsi *i40e_vsi_reinit_setup(struct i40e_vsi *vsi) 12955 { 12956 u16 alloc_queue_pairs; 12957 struct i40e_pf *pf; 12958 u8 enabled_tc; 12959 int ret; 12960 12961 if (!vsi) 12962 return NULL; 12963 12964 pf = vsi->back; 12965 12966 i40e_put_lump(pf->qp_pile, vsi->base_queue, vsi->idx); 12967 i40e_vsi_clear_rings(vsi); 12968 12969 i40e_vsi_free_arrays(vsi, false); 12970 i40e_set_num_rings_in_vsi(vsi); 12971 ret = i40e_vsi_alloc_arrays(vsi, false); 12972 if (ret) 12973 goto err_vsi; 12974 12975 alloc_queue_pairs = vsi->alloc_queue_pairs * 12976 (i40e_enabled_xdp_vsi(vsi) ? 2 : 1); 12977 12978 ret = i40e_get_lump(pf, pf->qp_pile, alloc_queue_pairs, vsi->idx); 12979 if (ret < 0) { 12980 dev_info(&pf->pdev->dev, 12981 "failed to get tracking for %d queues for VSI %d err %d\n", 12982 alloc_queue_pairs, vsi->seid, ret); 12983 goto err_vsi; 12984 } 12985 vsi->base_queue = ret; 12986 12987 /* Update the FW view of the VSI. Force a reset of TC and queue 12988 * layout configurations. 12989 */ 12990 enabled_tc = pf->vsi[pf->lan_vsi]->tc_config.enabled_tc; 12991 pf->vsi[pf->lan_vsi]->tc_config.enabled_tc = 0; 12992 pf->vsi[pf->lan_vsi]->seid = pf->main_vsi_seid; 12993 i40e_vsi_config_tc(pf->vsi[pf->lan_vsi], enabled_tc); 12994 if (vsi->type == I40E_VSI_MAIN) 12995 i40e_rm_default_mac_filter(vsi, pf->hw.mac.perm_addr); 12996 12997 /* assign it some queues */ 12998 ret = i40e_alloc_rings(vsi); 12999 if (ret) 13000 goto err_rings; 13001 13002 /* map all of the rings to the q_vectors */ 13003 i40e_vsi_map_rings_to_vectors(vsi); 13004 return vsi; 13005 13006 err_rings: 13007 i40e_vsi_free_q_vectors(vsi); 13008 if (vsi->netdev_registered) { 13009 vsi->netdev_registered = false; 13010 unregister_netdev(vsi->netdev); 13011 free_netdev(vsi->netdev); 13012 vsi->netdev = NULL; 13013 } 13014 i40e_aq_delete_element(&pf->hw, vsi->seid, NULL); 13015 err_vsi: 13016 i40e_vsi_clear(vsi); 13017 return NULL; 13018 } 13019 13020 /** 13021 * i40e_vsi_setup - Set up a VSI by a given type 13022 * @pf: board private structure 13023 * @type: VSI type 13024 * @uplink_seid: the switch element to link to 13025 * @param1: usage depends upon VSI type. For VF types, indicates VF id 13026 * 13027 * This allocates the sw VSI structure and its queue resources, then add a VSI 13028 * to the identified VEB. 13029 * 13030 * Returns pointer to the successfully allocated and configure VSI sw struct on 13031 * success, otherwise returns NULL on failure. 13032 **/ 13033 struct i40e_vsi *i40e_vsi_setup(struct i40e_pf *pf, u8 type, 13034 u16 uplink_seid, u32 param1) 13035 { 13036 struct i40e_vsi *vsi = NULL; 13037 struct i40e_veb *veb = NULL; 13038 u16 alloc_queue_pairs; 13039 int ret, i; 13040 int v_idx; 13041 13042 /* The requested uplink_seid must be either 13043 * - the PF's port seid 13044 * no VEB is needed because this is the PF 13045 * or this is a Flow Director special case VSI 13046 * - seid of an existing VEB 13047 * - seid of a VSI that owns an existing VEB 13048 * - seid of a VSI that doesn't own a VEB 13049 * a new VEB is created and the VSI becomes the owner 13050 * - seid of the PF VSI, which is what creates the first VEB 13051 * this is a special case of the previous 13052 * 13053 * Find which uplink_seid we were given and create a new VEB if needed 13054 */ 13055 for (i = 0; i < I40E_MAX_VEB; i++) { 13056 if (pf->veb[i] && pf->veb[i]->seid == uplink_seid) { 13057 veb = pf->veb[i]; 13058 break; 13059 } 13060 } 13061 13062 if (!veb && uplink_seid != pf->mac_seid) { 13063 13064 for (i = 0; i < pf->num_alloc_vsi; i++) { 13065 if (pf->vsi[i] && pf->vsi[i]->seid == uplink_seid) { 13066 vsi = pf->vsi[i]; 13067 break; 13068 } 13069 } 13070 if (!vsi) { 13071 dev_info(&pf->pdev->dev, "no such uplink_seid %d\n", 13072 uplink_seid); 13073 return NULL; 13074 } 13075 13076 if (vsi->uplink_seid == pf->mac_seid) 13077 veb = i40e_veb_setup(pf, 0, pf->mac_seid, vsi->seid, 13078 vsi->tc_config.enabled_tc); 13079 else if ((vsi->flags & I40E_VSI_FLAG_VEB_OWNER) == 0) 13080 veb = i40e_veb_setup(pf, 0, vsi->uplink_seid, vsi->seid, 13081 vsi->tc_config.enabled_tc); 13082 if (veb) { 13083 if (vsi->seid != pf->vsi[pf->lan_vsi]->seid) { 13084 dev_info(&vsi->back->pdev->dev, 13085 "New VSI creation error, uplink seid of LAN VSI expected.\n"); 13086 return NULL; 13087 } 13088 /* We come up by default in VEPA mode if SRIOV is not 13089 * already enabled, in which case we can't force VEPA 13090 * mode. 13091 */ 13092 if (!(pf->flags & I40E_FLAG_VEB_MODE_ENABLED)) { 13093 veb->bridge_mode = BRIDGE_MODE_VEPA; 13094 pf->flags &= ~I40E_FLAG_VEB_MODE_ENABLED; 13095 } 13096 i40e_config_bridge_mode(veb); 13097 } 13098 for (i = 0; i < I40E_MAX_VEB && !veb; i++) { 13099 if (pf->veb[i] && pf->veb[i]->seid == vsi->uplink_seid) 13100 veb = pf->veb[i]; 13101 } 13102 if (!veb) { 13103 dev_info(&pf->pdev->dev, "couldn't add VEB\n"); 13104 return NULL; 13105 } 13106 13107 vsi->flags |= I40E_VSI_FLAG_VEB_OWNER; 13108 uplink_seid = veb->seid; 13109 } 13110 13111 /* get vsi sw struct */ 13112 v_idx = i40e_vsi_mem_alloc(pf, type); 13113 if (v_idx < 0) 13114 goto err_alloc; 13115 vsi = pf->vsi[v_idx]; 13116 if (!vsi) 13117 goto err_alloc; 13118 vsi->type = type; 13119 vsi->veb_idx = (veb ? veb->idx : I40E_NO_VEB); 13120 13121 if (type == I40E_VSI_MAIN) 13122 pf->lan_vsi = v_idx; 13123 else if (type == I40E_VSI_SRIOV) 13124 vsi->vf_id = param1; 13125 /* assign it some queues */ 13126 alloc_queue_pairs = vsi->alloc_queue_pairs * 13127 (i40e_enabled_xdp_vsi(vsi) ? 2 : 1); 13128 13129 ret = i40e_get_lump(pf, pf->qp_pile, alloc_queue_pairs, vsi->idx); 13130 if (ret < 0) { 13131 dev_info(&pf->pdev->dev, 13132 "failed to get tracking for %d queues for VSI %d err=%d\n", 13133 alloc_queue_pairs, vsi->seid, ret); 13134 goto err_vsi; 13135 } 13136 vsi->base_queue = ret; 13137 13138 /* get a VSI from the hardware */ 13139 vsi->uplink_seid = uplink_seid; 13140 ret = i40e_add_vsi(vsi); 13141 if (ret) 13142 goto err_vsi; 13143 13144 switch (vsi->type) { 13145 /* setup the netdev if needed */ 13146 case I40E_VSI_MAIN: 13147 case I40E_VSI_VMDQ2: 13148 ret = i40e_config_netdev(vsi); 13149 if (ret) 13150 goto err_netdev; 13151 ret = register_netdev(vsi->netdev); 13152 if (ret) 13153 goto err_netdev; 13154 vsi->netdev_registered = true; 13155 netif_carrier_off(vsi->netdev); 13156 #ifdef CONFIG_I40E_DCB 13157 /* Setup DCB netlink interface */ 13158 i40e_dcbnl_setup(vsi); 13159 #endif /* CONFIG_I40E_DCB */ 13160 /* fall through */ 13161 13162 case I40E_VSI_FDIR: 13163 /* set up vectors and rings if needed */ 13164 ret = i40e_vsi_setup_vectors(vsi); 13165 if (ret) 13166 goto err_msix; 13167 13168 ret = i40e_alloc_rings(vsi); 13169 if (ret) 13170 goto err_rings; 13171 13172 /* map all of the rings to the q_vectors */ 13173 i40e_vsi_map_rings_to_vectors(vsi); 13174 13175 i40e_vsi_reset_stats(vsi); 13176 break; 13177 13178 default: 13179 /* no netdev or rings for the other VSI types */ 13180 break; 13181 } 13182 13183 if ((pf->hw_features & I40E_HW_RSS_AQ_CAPABLE) && 13184 (vsi->type == I40E_VSI_VMDQ2)) { 13185 ret = i40e_vsi_config_rss(vsi); 13186 } 13187 return vsi; 13188 13189 err_rings: 13190 i40e_vsi_free_q_vectors(vsi); 13191 err_msix: 13192 if (vsi->netdev_registered) { 13193 vsi->netdev_registered = false; 13194 unregister_netdev(vsi->netdev); 13195 free_netdev(vsi->netdev); 13196 vsi->netdev = NULL; 13197 } 13198 err_netdev: 13199 i40e_aq_delete_element(&pf->hw, vsi->seid, NULL); 13200 err_vsi: 13201 i40e_vsi_clear(vsi); 13202 err_alloc: 13203 return NULL; 13204 } 13205 13206 /** 13207 * i40e_veb_get_bw_info - Query VEB BW information 13208 * @veb: the veb to query 13209 * 13210 * Query the Tx scheduler BW configuration data for given VEB 13211 **/ 13212 static int i40e_veb_get_bw_info(struct i40e_veb *veb) 13213 { 13214 struct i40e_aqc_query_switching_comp_ets_config_resp ets_data; 13215 struct i40e_aqc_query_switching_comp_bw_config_resp bw_data; 13216 struct i40e_pf *pf = veb->pf; 13217 struct i40e_hw *hw = &pf->hw; 13218 u32 tc_bw_max; 13219 int ret = 0; 13220 int i; 13221 13222 ret = i40e_aq_query_switch_comp_bw_config(hw, veb->seid, 13223 &bw_data, NULL); 13224 if (ret) { 13225 dev_info(&pf->pdev->dev, 13226 "query veb bw config failed, err %s aq_err %s\n", 13227 i40e_stat_str(&pf->hw, ret), 13228 i40e_aq_str(&pf->hw, hw->aq.asq_last_status)); 13229 goto out; 13230 } 13231 13232 ret = i40e_aq_query_switch_comp_ets_config(hw, veb->seid, 13233 &ets_data, NULL); 13234 if (ret) { 13235 dev_info(&pf->pdev->dev, 13236 "query veb bw ets config failed, err %s aq_err %s\n", 13237 i40e_stat_str(&pf->hw, ret), 13238 i40e_aq_str(&pf->hw, hw->aq.asq_last_status)); 13239 goto out; 13240 } 13241 13242 veb->bw_limit = le16_to_cpu(ets_data.port_bw_limit); 13243 veb->bw_max_quanta = ets_data.tc_bw_max; 13244 veb->is_abs_credits = bw_data.absolute_credits_enable; 13245 veb->enabled_tc = ets_data.tc_valid_bits; 13246 tc_bw_max = le16_to_cpu(bw_data.tc_bw_max[0]) | 13247 (le16_to_cpu(bw_data.tc_bw_max[1]) << 16); 13248 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 13249 veb->bw_tc_share_credits[i] = bw_data.tc_bw_share_credits[i]; 13250 veb->bw_tc_limit_credits[i] = 13251 le16_to_cpu(bw_data.tc_bw_limits[i]); 13252 veb->bw_tc_max_quanta[i] = ((tc_bw_max >> (i*4)) & 0x7); 13253 } 13254 13255 out: 13256 return ret; 13257 } 13258 13259 /** 13260 * i40e_veb_mem_alloc - Allocates the next available struct veb in the PF 13261 * @pf: board private structure 13262 * 13263 * On error: returns error code (negative) 13264 * On success: returns vsi index in PF (positive) 13265 **/ 13266 static int i40e_veb_mem_alloc(struct i40e_pf *pf) 13267 { 13268 int ret = -ENOENT; 13269 struct i40e_veb *veb; 13270 int i; 13271 13272 /* Need to protect the allocation of switch elements at the PF level */ 13273 mutex_lock(&pf->switch_mutex); 13274 13275 /* VEB list may be fragmented if VEB creation/destruction has 13276 * been happening. We can afford to do a quick scan to look 13277 * for any free slots in the list. 13278 * 13279 * find next empty veb slot, looping back around if necessary 13280 */ 13281 i = 0; 13282 while ((i < I40E_MAX_VEB) && (pf->veb[i] != NULL)) 13283 i++; 13284 if (i >= I40E_MAX_VEB) { 13285 ret = -ENOMEM; 13286 goto err_alloc_veb; /* out of VEB slots! */ 13287 } 13288 13289 veb = kzalloc(sizeof(*veb), GFP_KERNEL); 13290 if (!veb) { 13291 ret = -ENOMEM; 13292 goto err_alloc_veb; 13293 } 13294 veb->pf = pf; 13295 veb->idx = i; 13296 veb->enabled_tc = 1; 13297 13298 pf->veb[i] = veb; 13299 ret = i; 13300 err_alloc_veb: 13301 mutex_unlock(&pf->switch_mutex); 13302 return ret; 13303 } 13304 13305 /** 13306 * i40e_switch_branch_release - Delete a branch of the switch tree 13307 * @branch: where to start deleting 13308 * 13309 * This uses recursion to find the tips of the branch to be 13310 * removed, deleting until we get back to and can delete this VEB. 13311 **/ 13312 static void i40e_switch_branch_release(struct i40e_veb *branch) 13313 { 13314 struct i40e_pf *pf = branch->pf; 13315 u16 branch_seid = branch->seid; 13316 u16 veb_idx = branch->idx; 13317 int i; 13318 13319 /* release any VEBs on this VEB - RECURSION */ 13320 for (i = 0; i < I40E_MAX_VEB; i++) { 13321 if (!pf->veb[i]) 13322 continue; 13323 if (pf->veb[i]->uplink_seid == branch->seid) 13324 i40e_switch_branch_release(pf->veb[i]); 13325 } 13326 13327 /* Release the VSIs on this VEB, but not the owner VSI. 13328 * 13329 * NOTE: Removing the last VSI on a VEB has the SIDE EFFECT of removing 13330 * the VEB itself, so don't use (*branch) after this loop. 13331 */ 13332 for (i = 0; i < pf->num_alloc_vsi; i++) { 13333 if (!pf->vsi[i]) 13334 continue; 13335 if (pf->vsi[i]->uplink_seid == branch_seid && 13336 (pf->vsi[i]->flags & I40E_VSI_FLAG_VEB_OWNER) == 0) { 13337 i40e_vsi_release(pf->vsi[i]); 13338 } 13339 } 13340 13341 /* There's one corner case where the VEB might not have been 13342 * removed, so double check it here and remove it if needed. 13343 * This case happens if the veb was created from the debugfs 13344 * commands and no VSIs were added to it. 13345 */ 13346 if (pf->veb[veb_idx]) 13347 i40e_veb_release(pf->veb[veb_idx]); 13348 } 13349 13350 /** 13351 * i40e_veb_clear - remove veb struct 13352 * @veb: the veb to remove 13353 **/ 13354 static void i40e_veb_clear(struct i40e_veb *veb) 13355 { 13356 if (!veb) 13357 return; 13358 13359 if (veb->pf) { 13360 struct i40e_pf *pf = veb->pf; 13361 13362 mutex_lock(&pf->switch_mutex); 13363 if (pf->veb[veb->idx] == veb) 13364 pf->veb[veb->idx] = NULL; 13365 mutex_unlock(&pf->switch_mutex); 13366 } 13367 13368 kfree(veb); 13369 } 13370 13371 /** 13372 * i40e_veb_release - Delete a VEB and free its resources 13373 * @veb: the VEB being removed 13374 **/ 13375 void i40e_veb_release(struct i40e_veb *veb) 13376 { 13377 struct i40e_vsi *vsi = NULL; 13378 struct i40e_pf *pf; 13379 int i, n = 0; 13380 13381 pf = veb->pf; 13382 13383 /* find the remaining VSI and check for extras */ 13384 for (i = 0; i < pf->num_alloc_vsi; i++) { 13385 if (pf->vsi[i] && pf->vsi[i]->uplink_seid == veb->seid) { 13386 n++; 13387 vsi = pf->vsi[i]; 13388 } 13389 } 13390 if (n != 1) { 13391 dev_info(&pf->pdev->dev, 13392 "can't remove VEB %d with %d VSIs left\n", 13393 veb->seid, n); 13394 return; 13395 } 13396 13397 /* move the remaining VSI to uplink veb */ 13398 vsi->flags &= ~I40E_VSI_FLAG_VEB_OWNER; 13399 if (veb->uplink_seid) { 13400 vsi->uplink_seid = veb->uplink_seid; 13401 if (veb->uplink_seid == pf->mac_seid) 13402 vsi->veb_idx = I40E_NO_VEB; 13403 else 13404 vsi->veb_idx = veb->veb_idx; 13405 } else { 13406 /* floating VEB */ 13407 vsi->uplink_seid = pf->vsi[pf->lan_vsi]->uplink_seid; 13408 vsi->veb_idx = pf->vsi[pf->lan_vsi]->veb_idx; 13409 } 13410 13411 i40e_aq_delete_element(&pf->hw, veb->seid, NULL); 13412 i40e_veb_clear(veb); 13413 } 13414 13415 /** 13416 * i40e_add_veb - create the VEB in the switch 13417 * @veb: the VEB to be instantiated 13418 * @vsi: the controlling VSI 13419 **/ 13420 static int i40e_add_veb(struct i40e_veb *veb, struct i40e_vsi *vsi) 13421 { 13422 struct i40e_pf *pf = veb->pf; 13423 bool enable_stats = !!(pf->flags & I40E_FLAG_VEB_STATS_ENABLED); 13424 int ret; 13425 13426 ret = i40e_aq_add_veb(&pf->hw, veb->uplink_seid, vsi->seid, 13427 veb->enabled_tc, false, 13428 &veb->seid, enable_stats, NULL); 13429 13430 /* get a VEB from the hardware */ 13431 if (ret) { 13432 dev_info(&pf->pdev->dev, 13433 "couldn't add VEB, err %s aq_err %s\n", 13434 i40e_stat_str(&pf->hw, ret), 13435 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 13436 return -EPERM; 13437 } 13438 13439 /* get statistics counter */ 13440 ret = i40e_aq_get_veb_parameters(&pf->hw, veb->seid, NULL, NULL, 13441 &veb->stats_idx, NULL, NULL, NULL); 13442 if (ret) { 13443 dev_info(&pf->pdev->dev, 13444 "couldn't get VEB statistics idx, err %s aq_err %s\n", 13445 i40e_stat_str(&pf->hw, ret), 13446 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 13447 return -EPERM; 13448 } 13449 ret = i40e_veb_get_bw_info(veb); 13450 if (ret) { 13451 dev_info(&pf->pdev->dev, 13452 "couldn't get VEB bw info, err %s aq_err %s\n", 13453 i40e_stat_str(&pf->hw, ret), 13454 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 13455 i40e_aq_delete_element(&pf->hw, veb->seid, NULL); 13456 return -ENOENT; 13457 } 13458 13459 vsi->uplink_seid = veb->seid; 13460 vsi->veb_idx = veb->idx; 13461 vsi->flags |= I40E_VSI_FLAG_VEB_OWNER; 13462 13463 return 0; 13464 } 13465 13466 /** 13467 * i40e_veb_setup - Set up a VEB 13468 * @pf: board private structure 13469 * @flags: VEB setup flags 13470 * @uplink_seid: the switch element to link to 13471 * @vsi_seid: the initial VSI seid 13472 * @enabled_tc: Enabled TC bit-map 13473 * 13474 * This allocates the sw VEB structure and links it into the switch 13475 * It is possible and legal for this to be a duplicate of an already 13476 * existing VEB. It is also possible for both uplink and vsi seids 13477 * to be zero, in order to create a floating VEB. 13478 * 13479 * Returns pointer to the successfully allocated VEB sw struct on 13480 * success, otherwise returns NULL on failure. 13481 **/ 13482 struct i40e_veb *i40e_veb_setup(struct i40e_pf *pf, u16 flags, 13483 u16 uplink_seid, u16 vsi_seid, 13484 u8 enabled_tc) 13485 { 13486 struct i40e_veb *veb, *uplink_veb = NULL; 13487 int vsi_idx, veb_idx; 13488 int ret; 13489 13490 /* if one seid is 0, the other must be 0 to create a floating relay */ 13491 if ((uplink_seid == 0 || vsi_seid == 0) && 13492 (uplink_seid + vsi_seid != 0)) { 13493 dev_info(&pf->pdev->dev, 13494 "one, not both seid's are 0: uplink=%d vsi=%d\n", 13495 uplink_seid, vsi_seid); 13496 return NULL; 13497 } 13498 13499 /* make sure there is such a vsi and uplink */ 13500 for (vsi_idx = 0; vsi_idx < pf->num_alloc_vsi; vsi_idx++) 13501 if (pf->vsi[vsi_idx] && pf->vsi[vsi_idx]->seid == vsi_seid) 13502 break; 13503 if (vsi_idx == pf->num_alloc_vsi && vsi_seid != 0) { 13504 dev_info(&pf->pdev->dev, "vsi seid %d not found\n", 13505 vsi_seid); 13506 return NULL; 13507 } 13508 13509 if (uplink_seid && uplink_seid != pf->mac_seid) { 13510 for (veb_idx = 0; veb_idx < I40E_MAX_VEB; veb_idx++) { 13511 if (pf->veb[veb_idx] && 13512 pf->veb[veb_idx]->seid == uplink_seid) { 13513 uplink_veb = pf->veb[veb_idx]; 13514 break; 13515 } 13516 } 13517 if (!uplink_veb) { 13518 dev_info(&pf->pdev->dev, 13519 "uplink seid %d not found\n", uplink_seid); 13520 return NULL; 13521 } 13522 } 13523 13524 /* get veb sw struct */ 13525 veb_idx = i40e_veb_mem_alloc(pf); 13526 if (veb_idx < 0) 13527 goto err_alloc; 13528 veb = pf->veb[veb_idx]; 13529 veb->flags = flags; 13530 veb->uplink_seid = uplink_seid; 13531 veb->veb_idx = (uplink_veb ? uplink_veb->idx : I40E_NO_VEB); 13532 veb->enabled_tc = (enabled_tc ? enabled_tc : 0x1); 13533 13534 /* create the VEB in the switch */ 13535 ret = i40e_add_veb(veb, pf->vsi[vsi_idx]); 13536 if (ret) 13537 goto err_veb; 13538 if (vsi_idx == pf->lan_vsi) 13539 pf->lan_veb = veb->idx; 13540 13541 return veb; 13542 13543 err_veb: 13544 i40e_veb_clear(veb); 13545 err_alloc: 13546 return NULL; 13547 } 13548 13549 /** 13550 * i40e_setup_pf_switch_element - set PF vars based on switch type 13551 * @pf: board private structure 13552 * @ele: element we are building info from 13553 * @num_reported: total number of elements 13554 * @printconfig: should we print the contents 13555 * 13556 * helper function to assist in extracting a few useful SEID values. 13557 **/ 13558 static void i40e_setup_pf_switch_element(struct i40e_pf *pf, 13559 struct i40e_aqc_switch_config_element_resp *ele, 13560 u16 num_reported, bool printconfig) 13561 { 13562 u16 downlink_seid = le16_to_cpu(ele->downlink_seid); 13563 u16 uplink_seid = le16_to_cpu(ele->uplink_seid); 13564 u8 element_type = ele->element_type; 13565 u16 seid = le16_to_cpu(ele->seid); 13566 13567 if (printconfig) 13568 dev_info(&pf->pdev->dev, 13569 "type=%d seid=%d uplink=%d downlink=%d\n", 13570 element_type, seid, uplink_seid, downlink_seid); 13571 13572 switch (element_type) { 13573 case I40E_SWITCH_ELEMENT_TYPE_MAC: 13574 pf->mac_seid = seid; 13575 break; 13576 case I40E_SWITCH_ELEMENT_TYPE_VEB: 13577 /* Main VEB? */ 13578 if (uplink_seid != pf->mac_seid) 13579 break; 13580 if (pf->lan_veb == I40E_NO_VEB) { 13581 int v; 13582 13583 /* find existing or else empty VEB */ 13584 for (v = 0; v < I40E_MAX_VEB; v++) { 13585 if (pf->veb[v] && (pf->veb[v]->seid == seid)) { 13586 pf->lan_veb = v; 13587 break; 13588 } 13589 } 13590 if (pf->lan_veb == I40E_NO_VEB) { 13591 v = i40e_veb_mem_alloc(pf); 13592 if (v < 0) 13593 break; 13594 pf->lan_veb = v; 13595 } 13596 } 13597 13598 pf->veb[pf->lan_veb]->seid = seid; 13599 pf->veb[pf->lan_veb]->uplink_seid = pf->mac_seid; 13600 pf->veb[pf->lan_veb]->pf = pf; 13601 pf->veb[pf->lan_veb]->veb_idx = I40E_NO_VEB; 13602 break; 13603 case I40E_SWITCH_ELEMENT_TYPE_VSI: 13604 if (num_reported != 1) 13605 break; 13606 /* This is immediately after a reset so we can assume this is 13607 * the PF's VSI 13608 */ 13609 pf->mac_seid = uplink_seid; 13610 pf->pf_seid = downlink_seid; 13611 pf->main_vsi_seid = seid; 13612 if (printconfig) 13613 dev_info(&pf->pdev->dev, 13614 "pf_seid=%d main_vsi_seid=%d\n", 13615 pf->pf_seid, pf->main_vsi_seid); 13616 break; 13617 case I40E_SWITCH_ELEMENT_TYPE_PF: 13618 case I40E_SWITCH_ELEMENT_TYPE_VF: 13619 case I40E_SWITCH_ELEMENT_TYPE_EMP: 13620 case I40E_SWITCH_ELEMENT_TYPE_BMC: 13621 case I40E_SWITCH_ELEMENT_TYPE_PE: 13622 case I40E_SWITCH_ELEMENT_TYPE_PA: 13623 /* ignore these for now */ 13624 break; 13625 default: 13626 dev_info(&pf->pdev->dev, "unknown element type=%d seid=%d\n", 13627 element_type, seid); 13628 break; 13629 } 13630 } 13631 13632 /** 13633 * i40e_fetch_switch_configuration - Get switch config from firmware 13634 * @pf: board private structure 13635 * @printconfig: should we print the contents 13636 * 13637 * Get the current switch configuration from the device and 13638 * extract a few useful SEID values. 13639 **/ 13640 int i40e_fetch_switch_configuration(struct i40e_pf *pf, bool printconfig) 13641 { 13642 struct i40e_aqc_get_switch_config_resp *sw_config; 13643 u16 next_seid = 0; 13644 int ret = 0; 13645 u8 *aq_buf; 13646 int i; 13647 13648 aq_buf = kzalloc(I40E_AQ_LARGE_BUF, GFP_KERNEL); 13649 if (!aq_buf) 13650 return -ENOMEM; 13651 13652 sw_config = (struct i40e_aqc_get_switch_config_resp *)aq_buf; 13653 do { 13654 u16 num_reported, num_total; 13655 13656 ret = i40e_aq_get_switch_config(&pf->hw, sw_config, 13657 I40E_AQ_LARGE_BUF, 13658 &next_seid, NULL); 13659 if (ret) { 13660 dev_info(&pf->pdev->dev, 13661 "get switch config failed err %s aq_err %s\n", 13662 i40e_stat_str(&pf->hw, ret), 13663 i40e_aq_str(&pf->hw, 13664 pf->hw.aq.asq_last_status)); 13665 kfree(aq_buf); 13666 return -ENOENT; 13667 } 13668 13669 num_reported = le16_to_cpu(sw_config->header.num_reported); 13670 num_total = le16_to_cpu(sw_config->header.num_total); 13671 13672 if (printconfig) 13673 dev_info(&pf->pdev->dev, 13674 "header: %d reported %d total\n", 13675 num_reported, num_total); 13676 13677 for (i = 0; i < num_reported; i++) { 13678 struct i40e_aqc_switch_config_element_resp *ele = 13679 &sw_config->element[i]; 13680 13681 i40e_setup_pf_switch_element(pf, ele, num_reported, 13682 printconfig); 13683 } 13684 } while (next_seid != 0); 13685 13686 kfree(aq_buf); 13687 return ret; 13688 } 13689 13690 /** 13691 * i40e_setup_pf_switch - Setup the HW switch on startup or after reset 13692 * @pf: board private structure 13693 * @reinit: if the Main VSI needs to re-initialized. 13694 * 13695 * Returns 0 on success, negative value on failure 13696 **/ 13697 static int i40e_setup_pf_switch(struct i40e_pf *pf, bool reinit) 13698 { 13699 u16 flags = 0; 13700 int ret; 13701 13702 /* find out what's out there already */ 13703 ret = i40e_fetch_switch_configuration(pf, false); 13704 if (ret) { 13705 dev_info(&pf->pdev->dev, 13706 "couldn't fetch switch config, err %s aq_err %s\n", 13707 i40e_stat_str(&pf->hw, ret), 13708 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 13709 return ret; 13710 } 13711 i40e_pf_reset_stats(pf); 13712 13713 /* set the switch config bit for the whole device to 13714 * support limited promisc or true promisc 13715 * when user requests promisc. The default is limited 13716 * promisc. 13717 */ 13718 13719 if ((pf->hw.pf_id == 0) && 13720 !(pf->flags & I40E_FLAG_TRUE_PROMISC_SUPPORT)) { 13721 flags = I40E_AQ_SET_SWITCH_CFG_PROMISC; 13722 pf->last_sw_conf_flags = flags; 13723 } 13724 13725 if (pf->hw.pf_id == 0) { 13726 u16 valid_flags; 13727 13728 valid_flags = I40E_AQ_SET_SWITCH_CFG_PROMISC; 13729 ret = i40e_aq_set_switch_config(&pf->hw, flags, valid_flags, 0, 13730 NULL); 13731 if (ret && pf->hw.aq.asq_last_status != I40E_AQ_RC_ESRCH) { 13732 dev_info(&pf->pdev->dev, 13733 "couldn't set switch config bits, err %s aq_err %s\n", 13734 i40e_stat_str(&pf->hw, ret), 13735 i40e_aq_str(&pf->hw, 13736 pf->hw.aq.asq_last_status)); 13737 /* not a fatal problem, just keep going */ 13738 } 13739 pf->last_sw_conf_valid_flags = valid_flags; 13740 } 13741 13742 /* first time setup */ 13743 if (pf->lan_vsi == I40E_NO_VSI || reinit) { 13744 struct i40e_vsi *vsi = NULL; 13745 u16 uplink_seid; 13746 13747 /* Set up the PF VSI associated with the PF's main VSI 13748 * that is already in the HW switch 13749 */ 13750 if (pf->lan_veb != I40E_NO_VEB && pf->veb[pf->lan_veb]) 13751 uplink_seid = pf->veb[pf->lan_veb]->seid; 13752 else 13753 uplink_seid = pf->mac_seid; 13754 if (pf->lan_vsi == I40E_NO_VSI) 13755 vsi = i40e_vsi_setup(pf, I40E_VSI_MAIN, uplink_seid, 0); 13756 else if (reinit) 13757 vsi = i40e_vsi_reinit_setup(pf->vsi[pf->lan_vsi]); 13758 if (!vsi) { 13759 dev_info(&pf->pdev->dev, "setup of MAIN VSI failed\n"); 13760 i40e_cloud_filter_exit(pf); 13761 i40e_fdir_teardown(pf); 13762 return -EAGAIN; 13763 } 13764 } else { 13765 /* force a reset of TC and queue layout configurations */ 13766 u8 enabled_tc = pf->vsi[pf->lan_vsi]->tc_config.enabled_tc; 13767 13768 pf->vsi[pf->lan_vsi]->tc_config.enabled_tc = 0; 13769 pf->vsi[pf->lan_vsi]->seid = pf->main_vsi_seid; 13770 i40e_vsi_config_tc(pf->vsi[pf->lan_vsi], enabled_tc); 13771 } 13772 i40e_vlan_stripping_disable(pf->vsi[pf->lan_vsi]); 13773 13774 i40e_fdir_sb_setup(pf); 13775 13776 /* Setup static PF queue filter control settings */ 13777 ret = i40e_setup_pf_filter_control(pf); 13778 if (ret) { 13779 dev_info(&pf->pdev->dev, "setup_pf_filter_control failed: %d\n", 13780 ret); 13781 /* Failure here should not stop continuing other steps */ 13782 } 13783 13784 /* enable RSS in the HW, even for only one queue, as the stack can use 13785 * the hash 13786 */ 13787 if ((pf->flags & I40E_FLAG_RSS_ENABLED)) 13788 i40e_pf_config_rss(pf); 13789 13790 /* fill in link information and enable LSE reporting */ 13791 i40e_link_event(pf); 13792 13793 /* Initialize user-specific link properties */ 13794 pf->fc_autoneg_status = ((pf->hw.phy.link_info.an_info & 13795 I40E_AQ_AN_COMPLETED) ? true : false); 13796 13797 i40e_ptp_init(pf); 13798 13799 /* repopulate tunnel port filters */ 13800 i40e_sync_udp_filters(pf); 13801 13802 return ret; 13803 } 13804 13805 /** 13806 * i40e_determine_queue_usage - Work out queue distribution 13807 * @pf: board private structure 13808 **/ 13809 static void i40e_determine_queue_usage(struct i40e_pf *pf) 13810 { 13811 int queues_left; 13812 int q_max; 13813 13814 pf->num_lan_qps = 0; 13815 13816 /* Find the max queues to be put into basic use. We'll always be 13817 * using TC0, whether or not DCB is running, and TC0 will get the 13818 * big RSS set. 13819 */ 13820 queues_left = pf->hw.func_caps.num_tx_qp; 13821 13822 if ((queues_left == 1) || 13823 !(pf->flags & I40E_FLAG_MSIX_ENABLED)) { 13824 /* one qp for PF, no queues for anything else */ 13825 queues_left = 0; 13826 pf->alloc_rss_size = pf->num_lan_qps = 1; 13827 13828 /* make sure all the fancies are disabled */ 13829 pf->flags &= ~(I40E_FLAG_RSS_ENABLED | 13830 I40E_FLAG_IWARP_ENABLED | 13831 I40E_FLAG_FD_SB_ENABLED | 13832 I40E_FLAG_FD_ATR_ENABLED | 13833 I40E_FLAG_DCB_CAPABLE | 13834 I40E_FLAG_DCB_ENABLED | 13835 I40E_FLAG_SRIOV_ENABLED | 13836 I40E_FLAG_VMDQ_ENABLED); 13837 pf->flags |= I40E_FLAG_FD_SB_INACTIVE; 13838 } else if (!(pf->flags & (I40E_FLAG_RSS_ENABLED | 13839 I40E_FLAG_FD_SB_ENABLED | 13840 I40E_FLAG_FD_ATR_ENABLED | 13841 I40E_FLAG_DCB_CAPABLE))) { 13842 /* one qp for PF */ 13843 pf->alloc_rss_size = pf->num_lan_qps = 1; 13844 queues_left -= pf->num_lan_qps; 13845 13846 pf->flags &= ~(I40E_FLAG_RSS_ENABLED | 13847 I40E_FLAG_IWARP_ENABLED | 13848 I40E_FLAG_FD_SB_ENABLED | 13849 I40E_FLAG_FD_ATR_ENABLED | 13850 I40E_FLAG_DCB_ENABLED | 13851 I40E_FLAG_VMDQ_ENABLED); 13852 pf->flags |= I40E_FLAG_FD_SB_INACTIVE; 13853 } else { 13854 /* Not enough queues for all TCs */ 13855 if ((pf->flags & I40E_FLAG_DCB_CAPABLE) && 13856 (queues_left < I40E_MAX_TRAFFIC_CLASS)) { 13857 pf->flags &= ~(I40E_FLAG_DCB_CAPABLE | 13858 I40E_FLAG_DCB_ENABLED); 13859 dev_info(&pf->pdev->dev, "not enough queues for DCB. DCB is disabled.\n"); 13860 } 13861 13862 /* limit lan qps to the smaller of qps, cpus or msix */ 13863 q_max = max_t(int, pf->rss_size_max, num_online_cpus()); 13864 q_max = min_t(int, q_max, pf->hw.func_caps.num_tx_qp); 13865 q_max = min_t(int, q_max, pf->hw.func_caps.num_msix_vectors); 13866 pf->num_lan_qps = q_max; 13867 13868 queues_left -= pf->num_lan_qps; 13869 } 13870 13871 if (pf->flags & I40E_FLAG_FD_SB_ENABLED) { 13872 if (queues_left > 1) { 13873 queues_left -= 1; /* save 1 queue for FD */ 13874 } else { 13875 pf->flags &= ~I40E_FLAG_FD_SB_ENABLED; 13876 pf->flags |= I40E_FLAG_FD_SB_INACTIVE; 13877 dev_info(&pf->pdev->dev, "not enough queues for Flow Director. Flow Director feature is disabled\n"); 13878 } 13879 } 13880 13881 if ((pf->flags & I40E_FLAG_SRIOV_ENABLED) && 13882 pf->num_vf_qps && pf->num_req_vfs && queues_left) { 13883 pf->num_req_vfs = min_t(int, pf->num_req_vfs, 13884 (queues_left / pf->num_vf_qps)); 13885 queues_left -= (pf->num_req_vfs * pf->num_vf_qps); 13886 } 13887 13888 if ((pf->flags & I40E_FLAG_VMDQ_ENABLED) && 13889 pf->num_vmdq_vsis && pf->num_vmdq_qps && queues_left) { 13890 pf->num_vmdq_vsis = min_t(int, pf->num_vmdq_vsis, 13891 (queues_left / pf->num_vmdq_qps)); 13892 queues_left -= (pf->num_vmdq_vsis * pf->num_vmdq_qps); 13893 } 13894 13895 pf->queues_left = queues_left; 13896 dev_dbg(&pf->pdev->dev, 13897 "qs_avail=%d FD SB=%d lan_qs=%d lan_tc0=%d vf=%d*%d vmdq=%d*%d, remaining=%d\n", 13898 pf->hw.func_caps.num_tx_qp, 13899 !!(pf->flags & I40E_FLAG_FD_SB_ENABLED), 13900 pf->num_lan_qps, pf->alloc_rss_size, pf->num_req_vfs, 13901 pf->num_vf_qps, pf->num_vmdq_vsis, pf->num_vmdq_qps, 13902 queues_left); 13903 } 13904 13905 /** 13906 * i40e_setup_pf_filter_control - Setup PF static filter control 13907 * @pf: PF to be setup 13908 * 13909 * i40e_setup_pf_filter_control sets up a PF's initial filter control 13910 * settings. If PE/FCoE are enabled then it will also set the per PF 13911 * based filter sizes required for them. It also enables Flow director, 13912 * ethertype and macvlan type filter settings for the pf. 13913 * 13914 * Returns 0 on success, negative on failure 13915 **/ 13916 static int i40e_setup_pf_filter_control(struct i40e_pf *pf) 13917 { 13918 struct i40e_filter_control_settings *settings = &pf->filter_settings; 13919 13920 settings->hash_lut_size = I40E_HASH_LUT_SIZE_128; 13921 13922 /* Flow Director is enabled */ 13923 if (pf->flags & (I40E_FLAG_FD_SB_ENABLED | I40E_FLAG_FD_ATR_ENABLED)) 13924 settings->enable_fdir = true; 13925 13926 /* Ethtype and MACVLAN filters enabled for PF */ 13927 settings->enable_ethtype = true; 13928 settings->enable_macvlan = true; 13929 13930 if (i40e_set_filter_control(&pf->hw, settings)) 13931 return -ENOENT; 13932 13933 return 0; 13934 } 13935 13936 #define INFO_STRING_LEN 255 13937 #define REMAIN(__x) (INFO_STRING_LEN - (__x)) 13938 static void i40e_print_features(struct i40e_pf *pf) 13939 { 13940 struct i40e_hw *hw = &pf->hw; 13941 char *buf; 13942 int i; 13943 13944 buf = kmalloc(INFO_STRING_LEN, GFP_KERNEL); 13945 if (!buf) 13946 return; 13947 13948 i = snprintf(buf, INFO_STRING_LEN, "Features: PF-id[%d]", hw->pf_id); 13949 #ifdef CONFIG_PCI_IOV 13950 i += snprintf(&buf[i], REMAIN(i), " VFs: %d", pf->num_req_vfs); 13951 #endif 13952 i += snprintf(&buf[i], REMAIN(i), " VSIs: %d QP: %d", 13953 pf->hw.func_caps.num_vsis, 13954 pf->vsi[pf->lan_vsi]->num_queue_pairs); 13955 if (pf->flags & I40E_FLAG_RSS_ENABLED) 13956 i += snprintf(&buf[i], REMAIN(i), " RSS"); 13957 if (pf->flags & I40E_FLAG_FD_ATR_ENABLED) 13958 i += snprintf(&buf[i], REMAIN(i), " FD_ATR"); 13959 if (pf->flags & I40E_FLAG_FD_SB_ENABLED) { 13960 i += snprintf(&buf[i], REMAIN(i), " FD_SB"); 13961 i += snprintf(&buf[i], REMAIN(i), " NTUPLE"); 13962 } 13963 if (pf->flags & I40E_FLAG_DCB_CAPABLE) 13964 i += snprintf(&buf[i], REMAIN(i), " DCB"); 13965 i += snprintf(&buf[i], REMAIN(i), " VxLAN"); 13966 i += snprintf(&buf[i], REMAIN(i), " Geneve"); 13967 if (pf->flags & I40E_FLAG_PTP) 13968 i += snprintf(&buf[i], REMAIN(i), " PTP"); 13969 if (pf->flags & I40E_FLAG_VEB_MODE_ENABLED) 13970 i += snprintf(&buf[i], REMAIN(i), " VEB"); 13971 else 13972 i += snprintf(&buf[i], REMAIN(i), " VEPA"); 13973 13974 dev_info(&pf->pdev->dev, "%s\n", buf); 13975 kfree(buf); 13976 WARN_ON(i > INFO_STRING_LEN); 13977 } 13978 13979 /** 13980 * i40e_get_platform_mac_addr - get platform-specific MAC address 13981 * @pdev: PCI device information struct 13982 * @pf: board private structure 13983 * 13984 * Look up the MAC address for the device. First we'll try 13985 * eth_platform_get_mac_address, which will check Open Firmware, or arch 13986 * specific fallback. Otherwise, we'll default to the stored value in 13987 * firmware. 13988 **/ 13989 static void i40e_get_platform_mac_addr(struct pci_dev *pdev, struct i40e_pf *pf) 13990 { 13991 if (eth_platform_get_mac_address(&pdev->dev, pf->hw.mac.addr)) 13992 i40e_get_mac_addr(&pf->hw, pf->hw.mac.addr); 13993 } 13994 13995 /** 13996 * i40e_set_fec_in_flags - helper function for setting FEC options in flags 13997 * @fec_cfg: FEC option to set in flags 13998 * @flags: ptr to flags in which we set FEC option 13999 **/ 14000 void i40e_set_fec_in_flags(u8 fec_cfg, u32 *flags) 14001 { 14002 if (fec_cfg & I40E_AQ_SET_FEC_AUTO) 14003 *flags |= I40E_FLAG_RS_FEC | I40E_FLAG_BASE_R_FEC; 14004 if ((fec_cfg & I40E_AQ_SET_FEC_REQUEST_RS) || 14005 (fec_cfg & I40E_AQ_SET_FEC_ABILITY_RS)) { 14006 *flags |= I40E_FLAG_RS_FEC; 14007 *flags &= ~I40E_FLAG_BASE_R_FEC; 14008 } 14009 if ((fec_cfg & I40E_AQ_SET_FEC_REQUEST_KR) || 14010 (fec_cfg & I40E_AQ_SET_FEC_ABILITY_KR)) { 14011 *flags |= I40E_FLAG_BASE_R_FEC; 14012 *flags &= ~I40E_FLAG_RS_FEC; 14013 } 14014 if (fec_cfg == 0) 14015 *flags &= ~(I40E_FLAG_RS_FEC | I40E_FLAG_BASE_R_FEC); 14016 } 14017 14018 /** 14019 * i40e_check_recovery_mode - check if we are running transition firmware 14020 * @pf: board private structure 14021 * 14022 * Check registers indicating the firmware runs in recovery mode. Sets the 14023 * appropriate driver state. 14024 * 14025 * Returns true if the recovery mode was detected, false otherwise 14026 **/ 14027 static bool i40e_check_recovery_mode(struct i40e_pf *pf) 14028 { 14029 u32 val = rd32(&pf->hw, I40E_GL_FWSTS); 14030 14031 if (val & I40E_GL_FWSTS_FWS1B_MASK) { 14032 dev_notice(&pf->pdev->dev, "Firmware recovery mode detected. Limiting functionality.\n"); 14033 dev_notice(&pf->pdev->dev, "Refer to the Intel(R) Ethernet Adapters and Devices User Guide for details on firmware recovery mode.\n"); 14034 set_bit(__I40E_RECOVERY_MODE, pf->state); 14035 14036 return true; 14037 } 14038 if (test_and_clear_bit(__I40E_RECOVERY_MODE, pf->state)) 14039 dev_info(&pf->pdev->dev, "Reinitializing in normal mode with full functionality.\n"); 14040 14041 return false; 14042 } 14043 14044 /** 14045 * i40e_init_recovery_mode - initialize subsystems needed in recovery mode 14046 * @pf: board private structure 14047 * @hw: ptr to the hardware info 14048 * 14049 * This function does a minimal setup of all subsystems needed for running 14050 * recovery mode. 14051 * 14052 * Returns 0 on success, negative on failure 14053 **/ 14054 static int i40e_init_recovery_mode(struct i40e_pf *pf, struct i40e_hw *hw) 14055 { 14056 struct i40e_vsi *vsi; 14057 int err; 14058 int v_idx; 14059 14060 pci_save_state(pf->pdev); 14061 14062 /* set up periodic task facility */ 14063 timer_setup(&pf->service_timer, i40e_service_timer, 0); 14064 pf->service_timer_period = HZ; 14065 14066 INIT_WORK(&pf->service_task, i40e_service_task); 14067 clear_bit(__I40E_SERVICE_SCHED, pf->state); 14068 14069 err = i40e_init_interrupt_scheme(pf); 14070 if (err) 14071 goto err_switch_setup; 14072 14073 /* The number of VSIs reported by the FW is the minimum guaranteed 14074 * to us; HW supports far more and we share the remaining pool with 14075 * the other PFs. We allocate space for more than the guarantee with 14076 * the understanding that we might not get them all later. 14077 */ 14078 if (pf->hw.func_caps.num_vsis < I40E_MIN_VSI_ALLOC) 14079 pf->num_alloc_vsi = I40E_MIN_VSI_ALLOC; 14080 else 14081 pf->num_alloc_vsi = pf->hw.func_caps.num_vsis; 14082 14083 /* Set up the vsi struct and our local tracking of the MAIN PF vsi. */ 14084 pf->vsi = kcalloc(pf->num_alloc_vsi, sizeof(struct i40e_vsi *), 14085 GFP_KERNEL); 14086 if (!pf->vsi) { 14087 err = -ENOMEM; 14088 goto err_switch_setup; 14089 } 14090 14091 /* We allocate one VSI which is needed as absolute minimum 14092 * in order to register the netdev 14093 */ 14094 v_idx = i40e_vsi_mem_alloc(pf, I40E_VSI_MAIN); 14095 if (v_idx < 0) 14096 goto err_switch_setup; 14097 pf->lan_vsi = v_idx; 14098 vsi = pf->vsi[v_idx]; 14099 if (!vsi) 14100 goto err_switch_setup; 14101 vsi->alloc_queue_pairs = 1; 14102 err = i40e_config_netdev(vsi); 14103 if (err) 14104 goto err_switch_setup; 14105 err = register_netdev(vsi->netdev); 14106 if (err) 14107 goto err_switch_setup; 14108 vsi->netdev_registered = true; 14109 i40e_dbg_pf_init(pf); 14110 14111 err = i40e_setup_misc_vector_for_recovery_mode(pf); 14112 if (err) 14113 goto err_switch_setup; 14114 14115 /* tell the firmware that we're starting */ 14116 i40e_send_version(pf); 14117 14118 /* since everything's happy, start the service_task timer */ 14119 mod_timer(&pf->service_timer, 14120 round_jiffies(jiffies + pf->service_timer_period)); 14121 14122 return 0; 14123 14124 err_switch_setup: 14125 i40e_reset_interrupt_capability(pf); 14126 del_timer_sync(&pf->service_timer); 14127 i40e_shutdown_adminq(hw); 14128 iounmap(hw->hw_addr); 14129 pci_disable_pcie_error_reporting(pf->pdev); 14130 pci_release_mem_regions(pf->pdev); 14131 pci_disable_device(pf->pdev); 14132 kfree(pf); 14133 14134 return err; 14135 } 14136 14137 /** 14138 * i40e_probe - Device initialization routine 14139 * @pdev: PCI device information struct 14140 * @ent: entry in i40e_pci_tbl 14141 * 14142 * i40e_probe initializes a PF identified by a pci_dev structure. 14143 * The OS initialization, configuring of the PF private structure, 14144 * and a hardware reset occur. 14145 * 14146 * Returns 0 on success, negative on failure 14147 **/ 14148 static int i40e_probe(struct pci_dev *pdev, const struct pci_device_id *ent) 14149 { 14150 struct i40e_aq_get_phy_abilities_resp abilities; 14151 struct i40e_pf *pf; 14152 struct i40e_hw *hw; 14153 static u16 pfs_found; 14154 u16 wol_nvm_bits; 14155 u16 link_status; 14156 int err; 14157 u32 val; 14158 u32 i; 14159 u8 set_fc_aq_fail; 14160 14161 err = pci_enable_device_mem(pdev); 14162 if (err) 14163 return err; 14164 14165 /* set up for high or low dma */ 14166 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)); 14167 if (err) { 14168 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)); 14169 if (err) { 14170 dev_err(&pdev->dev, 14171 "DMA configuration failed: 0x%x\n", err); 14172 goto err_dma; 14173 } 14174 } 14175 14176 /* set up pci connections */ 14177 err = pci_request_mem_regions(pdev, i40e_driver_name); 14178 if (err) { 14179 dev_info(&pdev->dev, 14180 "pci_request_selected_regions failed %d\n", err); 14181 goto err_pci_reg; 14182 } 14183 14184 pci_enable_pcie_error_reporting(pdev); 14185 pci_set_master(pdev); 14186 14187 /* Now that we have a PCI connection, we need to do the 14188 * low level device setup. This is primarily setting up 14189 * the Admin Queue structures and then querying for the 14190 * device's current profile information. 14191 */ 14192 pf = kzalloc(sizeof(*pf), GFP_KERNEL); 14193 if (!pf) { 14194 err = -ENOMEM; 14195 goto err_pf_alloc; 14196 } 14197 pf->next_vsi = 0; 14198 pf->pdev = pdev; 14199 set_bit(__I40E_DOWN, pf->state); 14200 14201 hw = &pf->hw; 14202 hw->back = pf; 14203 14204 pf->ioremap_len = min_t(int, pci_resource_len(pdev, 0), 14205 I40E_MAX_CSR_SPACE); 14206 14207 hw->hw_addr = ioremap(pci_resource_start(pdev, 0), pf->ioremap_len); 14208 if (!hw->hw_addr) { 14209 err = -EIO; 14210 dev_info(&pdev->dev, "ioremap(0x%04x, 0x%04x) failed: 0x%x\n", 14211 (unsigned int)pci_resource_start(pdev, 0), 14212 pf->ioremap_len, err); 14213 goto err_ioremap; 14214 } 14215 hw->vendor_id = pdev->vendor; 14216 hw->device_id = pdev->device; 14217 pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id); 14218 hw->subsystem_vendor_id = pdev->subsystem_vendor; 14219 hw->subsystem_device_id = pdev->subsystem_device; 14220 hw->bus.device = PCI_SLOT(pdev->devfn); 14221 hw->bus.func = PCI_FUNC(pdev->devfn); 14222 hw->bus.bus_id = pdev->bus->number; 14223 pf->instance = pfs_found; 14224 14225 /* Select something other than the 802.1ad ethertype for the 14226 * switch to use internally and drop on ingress. 14227 */ 14228 hw->switch_tag = 0xffff; 14229 hw->first_tag = ETH_P_8021AD; 14230 hw->second_tag = ETH_P_8021Q; 14231 14232 INIT_LIST_HEAD(&pf->l3_flex_pit_list); 14233 INIT_LIST_HEAD(&pf->l4_flex_pit_list); 14234 INIT_LIST_HEAD(&pf->ddp_old_prof); 14235 14236 /* set up the locks for the AQ, do this only once in probe 14237 * and destroy them only once in remove 14238 */ 14239 mutex_init(&hw->aq.asq_mutex); 14240 mutex_init(&hw->aq.arq_mutex); 14241 14242 pf->msg_enable = netif_msg_init(debug, 14243 NETIF_MSG_DRV | 14244 NETIF_MSG_PROBE | 14245 NETIF_MSG_LINK); 14246 if (debug < -1) 14247 pf->hw.debug_mask = debug; 14248 14249 /* do a special CORER for clearing PXE mode once at init */ 14250 if (hw->revision_id == 0 && 14251 (rd32(hw, I40E_GLLAN_RCTL_0) & I40E_GLLAN_RCTL_0_PXE_MODE_MASK)) { 14252 wr32(hw, I40E_GLGEN_RTRIG, I40E_GLGEN_RTRIG_CORER_MASK); 14253 i40e_flush(hw); 14254 msleep(200); 14255 pf->corer_count++; 14256 14257 i40e_clear_pxe_mode(hw); 14258 } 14259 14260 /* Reset here to make sure all is clean and to define PF 'n' */ 14261 i40e_clear_hw(hw); 14262 if (!i40e_check_recovery_mode(pf)) { 14263 err = i40e_pf_reset(hw); 14264 if (err) { 14265 dev_info(&pdev->dev, "Initial pf_reset failed: %d\n", err); 14266 goto err_pf_reset; 14267 } 14268 pf->pfr_count++; 14269 } 14270 hw->aq.num_arq_entries = I40E_AQ_LEN; 14271 hw->aq.num_asq_entries = I40E_AQ_LEN; 14272 hw->aq.arq_buf_size = I40E_MAX_AQ_BUF_SIZE; 14273 hw->aq.asq_buf_size = I40E_MAX_AQ_BUF_SIZE; 14274 pf->adminq_work_limit = I40E_AQ_WORK_LIMIT; 14275 14276 snprintf(pf->int_name, sizeof(pf->int_name) - 1, 14277 "%s-%s:misc", 14278 dev_driver_string(&pf->pdev->dev), dev_name(&pdev->dev)); 14279 14280 err = i40e_init_shared_code(hw); 14281 if (err) { 14282 dev_warn(&pdev->dev, "unidentified MAC or BLANK NVM: %d\n", 14283 err); 14284 goto err_pf_reset; 14285 } 14286 14287 /* set up a default setting for link flow control */ 14288 pf->hw.fc.requested_mode = I40E_FC_NONE; 14289 14290 err = i40e_init_adminq(hw); 14291 if (err) { 14292 if (err == I40E_ERR_FIRMWARE_API_VERSION) 14293 dev_info(&pdev->dev, 14294 "The driver for the device stopped because the NVM image v%u.%u is newer than expected v%u.%u. You must install the most recent version of the network driver.\n", 14295 hw->aq.api_maj_ver, 14296 hw->aq.api_min_ver, 14297 I40E_FW_API_VERSION_MAJOR, 14298 I40E_FW_MINOR_VERSION(hw)); 14299 else 14300 dev_info(&pdev->dev, 14301 "The driver for the device stopped because the device firmware failed to init. Try updating your NVM image.\n"); 14302 14303 goto err_pf_reset; 14304 } 14305 i40e_get_oem_version(hw); 14306 14307 /* provide nvm, fw, api versions, vendor:device id, subsys vendor:device id */ 14308 dev_info(&pdev->dev, "fw %d.%d.%05d api %d.%d nvm %s [%04x:%04x] [%04x:%04x]\n", 14309 hw->aq.fw_maj_ver, hw->aq.fw_min_ver, hw->aq.fw_build, 14310 hw->aq.api_maj_ver, hw->aq.api_min_ver, 14311 i40e_nvm_version_str(hw), hw->vendor_id, hw->device_id, 14312 hw->subsystem_vendor_id, hw->subsystem_device_id); 14313 14314 if (hw->aq.api_maj_ver == I40E_FW_API_VERSION_MAJOR && 14315 hw->aq.api_min_ver > I40E_FW_MINOR_VERSION(hw)) 14316 dev_info(&pdev->dev, 14317 "The driver for the device detected a newer version of the NVM image v%u.%u than expected v%u.%u. Please install the most recent version of the network driver.\n", 14318 hw->aq.api_maj_ver, 14319 hw->aq.api_min_ver, 14320 I40E_FW_API_VERSION_MAJOR, 14321 I40E_FW_MINOR_VERSION(hw)); 14322 else if (hw->aq.api_maj_ver == 1 && hw->aq.api_min_ver < 4) 14323 dev_info(&pdev->dev, 14324 "The driver for the device detected an older version of the NVM image v%u.%u than expected v%u.%u. Please update the NVM image.\n", 14325 hw->aq.api_maj_ver, 14326 hw->aq.api_min_ver, 14327 I40E_FW_API_VERSION_MAJOR, 14328 I40E_FW_MINOR_VERSION(hw)); 14329 14330 i40e_verify_eeprom(pf); 14331 14332 /* Rev 0 hardware was never productized */ 14333 if (hw->revision_id < 1) 14334 dev_warn(&pdev->dev, "This device is a pre-production adapter/LOM. Please be aware there may be issues with your hardware. If you are experiencing problems please contact your Intel or hardware representative who provided you with this hardware.\n"); 14335 14336 i40e_clear_pxe_mode(hw); 14337 14338 err = i40e_get_capabilities(pf, i40e_aqc_opc_list_func_capabilities); 14339 if (err) 14340 goto err_adminq_setup; 14341 14342 err = i40e_sw_init(pf); 14343 if (err) { 14344 dev_info(&pdev->dev, "sw_init failed: %d\n", err); 14345 goto err_sw_init; 14346 } 14347 14348 if (test_bit(__I40E_RECOVERY_MODE, pf->state)) 14349 return i40e_init_recovery_mode(pf, hw); 14350 14351 err = i40e_init_lan_hmc(hw, hw->func_caps.num_tx_qp, 14352 hw->func_caps.num_rx_qp, 0, 0); 14353 if (err) { 14354 dev_info(&pdev->dev, "init_lan_hmc failed: %d\n", err); 14355 goto err_init_lan_hmc; 14356 } 14357 14358 err = i40e_configure_lan_hmc(hw, I40E_HMC_MODEL_DIRECT_ONLY); 14359 if (err) { 14360 dev_info(&pdev->dev, "configure_lan_hmc failed: %d\n", err); 14361 err = -ENOENT; 14362 goto err_configure_lan_hmc; 14363 } 14364 14365 /* Disable LLDP for NICs that have firmware versions lower than v4.3. 14366 * Ignore error return codes because if it was already disabled via 14367 * hardware settings this will fail 14368 */ 14369 if (pf->hw_features & I40E_HW_STOP_FW_LLDP) { 14370 dev_info(&pdev->dev, "Stopping firmware LLDP agent.\n"); 14371 i40e_aq_stop_lldp(hw, true, false, NULL); 14372 } 14373 14374 /* allow a platform config to override the HW addr */ 14375 i40e_get_platform_mac_addr(pdev, pf); 14376 14377 if (!is_valid_ether_addr(hw->mac.addr)) { 14378 dev_info(&pdev->dev, "invalid MAC address %pM\n", hw->mac.addr); 14379 err = -EIO; 14380 goto err_mac_addr; 14381 } 14382 dev_info(&pdev->dev, "MAC address: %pM\n", hw->mac.addr); 14383 ether_addr_copy(hw->mac.perm_addr, hw->mac.addr); 14384 i40e_get_port_mac_addr(hw, hw->mac.port_addr); 14385 if (is_valid_ether_addr(hw->mac.port_addr)) 14386 pf->hw_features |= I40E_HW_PORT_ID_VALID; 14387 14388 pci_set_drvdata(pdev, pf); 14389 pci_save_state(pdev); 14390 14391 /* Enable FW to write default DCB config on link-up */ 14392 i40e_aq_set_dcb_parameters(hw, true, NULL); 14393 14394 #ifdef CONFIG_I40E_DCB 14395 err = i40e_init_pf_dcb(pf); 14396 if (err) { 14397 dev_info(&pdev->dev, "DCB init failed %d, disabled\n", err); 14398 pf->flags &= ~(I40E_FLAG_DCB_CAPABLE | I40E_FLAG_DCB_ENABLED); 14399 /* Continue without DCB enabled */ 14400 } 14401 #endif /* CONFIG_I40E_DCB */ 14402 14403 /* set up periodic task facility */ 14404 timer_setup(&pf->service_timer, i40e_service_timer, 0); 14405 pf->service_timer_period = HZ; 14406 14407 INIT_WORK(&pf->service_task, i40e_service_task); 14408 clear_bit(__I40E_SERVICE_SCHED, pf->state); 14409 14410 /* NVM bit on means WoL disabled for the port */ 14411 i40e_read_nvm_word(hw, I40E_SR_NVM_WAKE_ON_LAN, &wol_nvm_bits); 14412 if (BIT (hw->port) & wol_nvm_bits || hw->partition_id != 1) 14413 pf->wol_en = false; 14414 else 14415 pf->wol_en = true; 14416 device_set_wakeup_enable(&pf->pdev->dev, pf->wol_en); 14417 14418 /* set up the main switch operations */ 14419 i40e_determine_queue_usage(pf); 14420 err = i40e_init_interrupt_scheme(pf); 14421 if (err) 14422 goto err_switch_setup; 14423 14424 /* The number of VSIs reported by the FW is the minimum guaranteed 14425 * to us; HW supports far more and we share the remaining pool with 14426 * the other PFs. We allocate space for more than the guarantee with 14427 * the understanding that we might not get them all later. 14428 */ 14429 if (pf->hw.func_caps.num_vsis < I40E_MIN_VSI_ALLOC) 14430 pf->num_alloc_vsi = I40E_MIN_VSI_ALLOC; 14431 else 14432 pf->num_alloc_vsi = pf->hw.func_caps.num_vsis; 14433 14434 /* Set up the *vsi struct and our local tracking of the MAIN PF vsi. */ 14435 pf->vsi = kcalloc(pf->num_alloc_vsi, sizeof(struct i40e_vsi *), 14436 GFP_KERNEL); 14437 if (!pf->vsi) { 14438 err = -ENOMEM; 14439 goto err_switch_setup; 14440 } 14441 14442 #ifdef CONFIG_PCI_IOV 14443 /* prep for VF support */ 14444 if ((pf->flags & I40E_FLAG_SRIOV_ENABLED) && 14445 (pf->flags & I40E_FLAG_MSIX_ENABLED) && 14446 !test_bit(__I40E_BAD_EEPROM, pf->state)) { 14447 if (pci_num_vf(pdev)) 14448 pf->flags |= I40E_FLAG_VEB_MODE_ENABLED; 14449 } 14450 #endif 14451 err = i40e_setup_pf_switch(pf, false); 14452 if (err) { 14453 dev_info(&pdev->dev, "setup_pf_switch failed: %d\n", err); 14454 goto err_vsis; 14455 } 14456 INIT_LIST_HEAD(&pf->vsi[pf->lan_vsi]->ch_list); 14457 14458 /* Make sure flow control is set according to current settings */ 14459 err = i40e_set_fc(hw, &set_fc_aq_fail, true); 14460 if (set_fc_aq_fail & I40E_SET_FC_AQ_FAIL_GET) 14461 dev_dbg(&pf->pdev->dev, 14462 "Set fc with err %s aq_err %s on get_phy_cap\n", 14463 i40e_stat_str(hw, err), 14464 i40e_aq_str(hw, hw->aq.asq_last_status)); 14465 if (set_fc_aq_fail & I40E_SET_FC_AQ_FAIL_SET) 14466 dev_dbg(&pf->pdev->dev, 14467 "Set fc with err %s aq_err %s on set_phy_config\n", 14468 i40e_stat_str(hw, err), 14469 i40e_aq_str(hw, hw->aq.asq_last_status)); 14470 if (set_fc_aq_fail & I40E_SET_FC_AQ_FAIL_UPDATE) 14471 dev_dbg(&pf->pdev->dev, 14472 "Set fc with err %s aq_err %s on get_link_info\n", 14473 i40e_stat_str(hw, err), 14474 i40e_aq_str(hw, hw->aq.asq_last_status)); 14475 14476 /* if FDIR VSI was set up, start it now */ 14477 for (i = 0; i < pf->num_alloc_vsi; i++) { 14478 if (pf->vsi[i] && pf->vsi[i]->type == I40E_VSI_FDIR) { 14479 i40e_vsi_open(pf->vsi[i]); 14480 break; 14481 } 14482 } 14483 14484 /* The driver only wants link up/down and module qualification 14485 * reports from firmware. Note the negative logic. 14486 */ 14487 err = i40e_aq_set_phy_int_mask(&pf->hw, 14488 ~(I40E_AQ_EVENT_LINK_UPDOWN | 14489 I40E_AQ_EVENT_MEDIA_NA | 14490 I40E_AQ_EVENT_MODULE_QUAL_FAIL), NULL); 14491 if (err) 14492 dev_info(&pf->pdev->dev, "set phy mask fail, err %s aq_err %s\n", 14493 i40e_stat_str(&pf->hw, err), 14494 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 14495 14496 /* Reconfigure hardware for allowing smaller MSS in the case 14497 * of TSO, so that we avoid the MDD being fired and causing 14498 * a reset in the case of small MSS+TSO. 14499 */ 14500 val = rd32(hw, I40E_REG_MSS); 14501 if ((val & I40E_REG_MSS_MIN_MASK) > I40E_64BYTE_MSS) { 14502 val &= ~I40E_REG_MSS_MIN_MASK; 14503 val |= I40E_64BYTE_MSS; 14504 wr32(hw, I40E_REG_MSS, val); 14505 } 14506 14507 if (pf->hw_features & I40E_HW_RESTART_AUTONEG) { 14508 msleep(75); 14509 err = i40e_aq_set_link_restart_an(&pf->hw, true, NULL); 14510 if (err) 14511 dev_info(&pf->pdev->dev, "link restart failed, err %s aq_err %s\n", 14512 i40e_stat_str(&pf->hw, err), 14513 i40e_aq_str(&pf->hw, 14514 pf->hw.aq.asq_last_status)); 14515 } 14516 /* The main driver is (mostly) up and happy. We need to set this state 14517 * before setting up the misc vector or we get a race and the vector 14518 * ends up disabled forever. 14519 */ 14520 clear_bit(__I40E_DOWN, pf->state); 14521 14522 /* In case of MSIX we are going to setup the misc vector right here 14523 * to handle admin queue events etc. In case of legacy and MSI 14524 * the misc functionality and queue processing is combined in 14525 * the same vector and that gets setup at open. 14526 */ 14527 if (pf->flags & I40E_FLAG_MSIX_ENABLED) { 14528 err = i40e_setup_misc_vector(pf); 14529 if (err) { 14530 dev_info(&pdev->dev, 14531 "setup of misc vector failed: %d\n", err); 14532 goto err_vsis; 14533 } 14534 } 14535 14536 #ifdef CONFIG_PCI_IOV 14537 /* prep for VF support */ 14538 if ((pf->flags & I40E_FLAG_SRIOV_ENABLED) && 14539 (pf->flags & I40E_FLAG_MSIX_ENABLED) && 14540 !test_bit(__I40E_BAD_EEPROM, pf->state)) { 14541 /* disable link interrupts for VFs */ 14542 val = rd32(hw, I40E_PFGEN_PORTMDIO_NUM); 14543 val &= ~I40E_PFGEN_PORTMDIO_NUM_VFLINK_STAT_ENA_MASK; 14544 wr32(hw, I40E_PFGEN_PORTMDIO_NUM, val); 14545 i40e_flush(hw); 14546 14547 if (pci_num_vf(pdev)) { 14548 dev_info(&pdev->dev, 14549 "Active VFs found, allocating resources.\n"); 14550 err = i40e_alloc_vfs(pf, pci_num_vf(pdev)); 14551 if (err) 14552 dev_info(&pdev->dev, 14553 "Error %d allocating resources for existing VFs\n", 14554 err); 14555 } 14556 } 14557 #endif /* CONFIG_PCI_IOV */ 14558 14559 if (pf->flags & I40E_FLAG_IWARP_ENABLED) { 14560 pf->iwarp_base_vector = i40e_get_lump(pf, pf->irq_pile, 14561 pf->num_iwarp_msix, 14562 I40E_IWARP_IRQ_PILE_ID); 14563 if (pf->iwarp_base_vector < 0) { 14564 dev_info(&pdev->dev, 14565 "failed to get tracking for %d vectors for IWARP err=%d\n", 14566 pf->num_iwarp_msix, pf->iwarp_base_vector); 14567 pf->flags &= ~I40E_FLAG_IWARP_ENABLED; 14568 } 14569 } 14570 14571 i40e_dbg_pf_init(pf); 14572 14573 /* tell the firmware that we're starting */ 14574 i40e_send_version(pf); 14575 14576 /* since everything's happy, start the service_task timer */ 14577 mod_timer(&pf->service_timer, 14578 round_jiffies(jiffies + pf->service_timer_period)); 14579 14580 /* add this PF to client device list and launch a client service task */ 14581 if (pf->flags & I40E_FLAG_IWARP_ENABLED) { 14582 err = i40e_lan_add_device(pf); 14583 if (err) 14584 dev_info(&pdev->dev, "Failed to add PF to client API service list: %d\n", 14585 err); 14586 } 14587 14588 #define PCI_SPEED_SIZE 8 14589 #define PCI_WIDTH_SIZE 8 14590 /* Devices on the IOSF bus do not have this information 14591 * and will report PCI Gen 1 x 1 by default so don't bother 14592 * checking them. 14593 */ 14594 if (!(pf->hw_features & I40E_HW_NO_PCI_LINK_CHECK)) { 14595 char speed[PCI_SPEED_SIZE] = "Unknown"; 14596 char width[PCI_WIDTH_SIZE] = "Unknown"; 14597 14598 /* Get the negotiated link width and speed from PCI config 14599 * space 14600 */ 14601 pcie_capability_read_word(pf->pdev, PCI_EXP_LNKSTA, 14602 &link_status); 14603 14604 i40e_set_pci_config_data(hw, link_status); 14605 14606 switch (hw->bus.speed) { 14607 case i40e_bus_speed_8000: 14608 strlcpy(speed, "8.0", PCI_SPEED_SIZE); break; 14609 case i40e_bus_speed_5000: 14610 strlcpy(speed, "5.0", PCI_SPEED_SIZE); break; 14611 case i40e_bus_speed_2500: 14612 strlcpy(speed, "2.5", PCI_SPEED_SIZE); break; 14613 default: 14614 break; 14615 } 14616 switch (hw->bus.width) { 14617 case i40e_bus_width_pcie_x8: 14618 strlcpy(width, "8", PCI_WIDTH_SIZE); break; 14619 case i40e_bus_width_pcie_x4: 14620 strlcpy(width, "4", PCI_WIDTH_SIZE); break; 14621 case i40e_bus_width_pcie_x2: 14622 strlcpy(width, "2", PCI_WIDTH_SIZE); break; 14623 case i40e_bus_width_pcie_x1: 14624 strlcpy(width, "1", PCI_WIDTH_SIZE); break; 14625 default: 14626 break; 14627 } 14628 14629 dev_info(&pdev->dev, "PCI-Express: Speed %sGT/s Width x%s\n", 14630 speed, width); 14631 14632 if (hw->bus.width < i40e_bus_width_pcie_x8 || 14633 hw->bus.speed < i40e_bus_speed_8000) { 14634 dev_warn(&pdev->dev, "PCI-Express bandwidth available for this device may be insufficient for optimal performance.\n"); 14635 dev_warn(&pdev->dev, "Please move the device to a different PCI-e link with more lanes and/or higher transfer rate.\n"); 14636 } 14637 } 14638 14639 /* get the requested speeds from the fw */ 14640 err = i40e_aq_get_phy_capabilities(hw, false, false, &abilities, NULL); 14641 if (err) 14642 dev_dbg(&pf->pdev->dev, "get requested speeds ret = %s last_status = %s\n", 14643 i40e_stat_str(&pf->hw, err), 14644 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 14645 pf->hw.phy.link_info.requested_speeds = abilities.link_speed; 14646 14647 /* set the FEC config due to the board capabilities */ 14648 i40e_set_fec_in_flags(abilities.fec_cfg_curr_mod_ext_info, &pf->flags); 14649 14650 /* get the supported phy types from the fw */ 14651 err = i40e_aq_get_phy_capabilities(hw, false, true, &abilities, NULL); 14652 if (err) 14653 dev_dbg(&pf->pdev->dev, "get supported phy types ret = %s last_status = %s\n", 14654 i40e_stat_str(&pf->hw, err), 14655 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 14656 14657 /* Add a filter to drop all Flow control frames from any VSI from being 14658 * transmitted. By doing so we stop a malicious VF from sending out 14659 * PAUSE or PFC frames and potentially controlling traffic for other 14660 * PF/VF VSIs. 14661 * The FW can still send Flow control frames if enabled. 14662 */ 14663 i40e_add_filter_to_drop_tx_flow_control_frames(&pf->hw, 14664 pf->main_vsi_seid); 14665 14666 if ((pf->hw.device_id == I40E_DEV_ID_10G_BASE_T) || 14667 (pf->hw.device_id == I40E_DEV_ID_10G_BASE_T4)) 14668 pf->hw_features |= I40E_HW_PHY_CONTROLS_LEDS; 14669 if (pf->hw.device_id == I40E_DEV_ID_SFP_I_X722) 14670 pf->hw_features |= I40E_HW_HAVE_CRT_RETIMER; 14671 /* print a string summarizing features */ 14672 i40e_print_features(pf); 14673 14674 return 0; 14675 14676 /* Unwind what we've done if something failed in the setup */ 14677 err_vsis: 14678 set_bit(__I40E_DOWN, pf->state); 14679 i40e_clear_interrupt_scheme(pf); 14680 kfree(pf->vsi); 14681 err_switch_setup: 14682 i40e_reset_interrupt_capability(pf); 14683 del_timer_sync(&pf->service_timer); 14684 err_mac_addr: 14685 err_configure_lan_hmc: 14686 (void)i40e_shutdown_lan_hmc(hw); 14687 err_init_lan_hmc: 14688 kfree(pf->qp_pile); 14689 err_sw_init: 14690 err_adminq_setup: 14691 err_pf_reset: 14692 iounmap(hw->hw_addr); 14693 err_ioremap: 14694 kfree(pf); 14695 err_pf_alloc: 14696 pci_disable_pcie_error_reporting(pdev); 14697 pci_release_mem_regions(pdev); 14698 err_pci_reg: 14699 err_dma: 14700 pci_disable_device(pdev); 14701 return err; 14702 } 14703 14704 /** 14705 * i40e_remove - Device removal routine 14706 * @pdev: PCI device information struct 14707 * 14708 * i40e_remove is called by the PCI subsystem to alert the driver 14709 * that is should release a PCI device. This could be caused by a 14710 * Hot-Plug event, or because the driver is going to be removed from 14711 * memory. 14712 **/ 14713 static void i40e_remove(struct pci_dev *pdev) 14714 { 14715 struct i40e_pf *pf = pci_get_drvdata(pdev); 14716 struct i40e_hw *hw = &pf->hw; 14717 i40e_status ret_code; 14718 int i; 14719 14720 i40e_dbg_pf_exit(pf); 14721 14722 i40e_ptp_stop(pf); 14723 14724 /* Disable RSS in hw */ 14725 i40e_write_rx_ctl(hw, I40E_PFQF_HENA(0), 0); 14726 i40e_write_rx_ctl(hw, I40E_PFQF_HENA(1), 0); 14727 14728 /* no more scheduling of any task */ 14729 set_bit(__I40E_SUSPENDED, pf->state); 14730 set_bit(__I40E_DOWN, pf->state); 14731 if (pf->service_timer.function) 14732 del_timer_sync(&pf->service_timer); 14733 if (pf->service_task.func) 14734 cancel_work_sync(&pf->service_task); 14735 14736 if (test_bit(__I40E_RECOVERY_MODE, pf->state)) { 14737 struct i40e_vsi *vsi = pf->vsi[0]; 14738 14739 /* We know that we have allocated only one vsi for this PF, 14740 * it was just for registering netdevice, so the interface 14741 * could be visible in the 'ifconfig' output 14742 */ 14743 unregister_netdev(vsi->netdev); 14744 free_netdev(vsi->netdev); 14745 14746 goto unmap; 14747 } 14748 14749 /* Client close must be called explicitly here because the timer 14750 * has been stopped. 14751 */ 14752 i40e_notify_client_of_netdev_close(pf->vsi[pf->lan_vsi], false); 14753 14754 if (pf->flags & I40E_FLAG_SRIOV_ENABLED) { 14755 i40e_free_vfs(pf); 14756 pf->flags &= ~I40E_FLAG_SRIOV_ENABLED; 14757 } 14758 14759 i40e_fdir_teardown(pf); 14760 14761 /* If there is a switch structure or any orphans, remove them. 14762 * This will leave only the PF's VSI remaining. 14763 */ 14764 for (i = 0; i < I40E_MAX_VEB; i++) { 14765 if (!pf->veb[i]) 14766 continue; 14767 14768 if (pf->veb[i]->uplink_seid == pf->mac_seid || 14769 pf->veb[i]->uplink_seid == 0) 14770 i40e_switch_branch_release(pf->veb[i]); 14771 } 14772 14773 /* Now we can shutdown the PF's VSI, just before we kill 14774 * adminq and hmc. 14775 */ 14776 if (pf->vsi[pf->lan_vsi]) 14777 i40e_vsi_release(pf->vsi[pf->lan_vsi]); 14778 14779 i40e_cloud_filter_exit(pf); 14780 14781 /* remove attached clients */ 14782 if (pf->flags & I40E_FLAG_IWARP_ENABLED) { 14783 ret_code = i40e_lan_del_device(pf); 14784 if (ret_code) 14785 dev_warn(&pdev->dev, "Failed to delete client device: %d\n", 14786 ret_code); 14787 } 14788 14789 /* shutdown and destroy the HMC */ 14790 if (hw->hmc.hmc_obj) { 14791 ret_code = i40e_shutdown_lan_hmc(hw); 14792 if (ret_code) 14793 dev_warn(&pdev->dev, 14794 "Failed to destroy the HMC resources: %d\n", 14795 ret_code); 14796 } 14797 14798 unmap: 14799 /* Free MSI/legacy interrupt 0 when in recovery mode. */ 14800 if (test_bit(__I40E_RECOVERY_MODE, pf->state) && 14801 !(pf->flags & I40E_FLAG_MSIX_ENABLED)) 14802 free_irq(pf->pdev->irq, pf); 14803 14804 /* shutdown the adminq */ 14805 i40e_shutdown_adminq(hw); 14806 14807 /* destroy the locks only once, here */ 14808 mutex_destroy(&hw->aq.arq_mutex); 14809 mutex_destroy(&hw->aq.asq_mutex); 14810 14811 /* Clear all dynamic memory lists of rings, q_vectors, and VSIs */ 14812 rtnl_lock(); 14813 i40e_clear_interrupt_scheme(pf); 14814 for (i = 0; i < pf->num_alloc_vsi; i++) { 14815 if (pf->vsi[i]) { 14816 if (!test_bit(__I40E_RECOVERY_MODE, pf->state)) 14817 i40e_vsi_clear_rings(pf->vsi[i]); 14818 i40e_vsi_clear(pf->vsi[i]); 14819 pf->vsi[i] = NULL; 14820 } 14821 } 14822 rtnl_unlock(); 14823 14824 for (i = 0; i < I40E_MAX_VEB; i++) { 14825 kfree(pf->veb[i]); 14826 pf->veb[i] = NULL; 14827 } 14828 14829 kfree(pf->qp_pile); 14830 kfree(pf->vsi); 14831 14832 iounmap(hw->hw_addr); 14833 kfree(pf); 14834 pci_release_mem_regions(pdev); 14835 14836 pci_disable_pcie_error_reporting(pdev); 14837 pci_disable_device(pdev); 14838 } 14839 14840 /** 14841 * i40e_pci_error_detected - warning that something funky happened in PCI land 14842 * @pdev: PCI device information struct 14843 * @error: the type of PCI error 14844 * 14845 * Called to warn that something happened and the error handling steps 14846 * are in progress. Allows the driver to quiesce things, be ready for 14847 * remediation. 14848 **/ 14849 static pci_ers_result_t i40e_pci_error_detected(struct pci_dev *pdev, 14850 enum pci_channel_state error) 14851 { 14852 struct i40e_pf *pf = pci_get_drvdata(pdev); 14853 14854 dev_info(&pdev->dev, "%s: error %d\n", __func__, error); 14855 14856 if (!pf) { 14857 dev_info(&pdev->dev, 14858 "Cannot recover - error happened during device probe\n"); 14859 return PCI_ERS_RESULT_DISCONNECT; 14860 } 14861 14862 /* shutdown all operations */ 14863 if (!test_bit(__I40E_SUSPENDED, pf->state)) 14864 i40e_prep_for_reset(pf, false); 14865 14866 /* Request a slot reset */ 14867 return PCI_ERS_RESULT_NEED_RESET; 14868 } 14869 14870 /** 14871 * i40e_pci_error_slot_reset - a PCI slot reset just happened 14872 * @pdev: PCI device information struct 14873 * 14874 * Called to find if the driver can work with the device now that 14875 * the pci slot has been reset. If a basic connection seems good 14876 * (registers are readable and have sane content) then return a 14877 * happy little PCI_ERS_RESULT_xxx. 14878 **/ 14879 static pci_ers_result_t i40e_pci_error_slot_reset(struct pci_dev *pdev) 14880 { 14881 struct i40e_pf *pf = pci_get_drvdata(pdev); 14882 pci_ers_result_t result; 14883 u32 reg; 14884 14885 dev_dbg(&pdev->dev, "%s\n", __func__); 14886 if (pci_enable_device_mem(pdev)) { 14887 dev_info(&pdev->dev, 14888 "Cannot re-enable PCI device after reset.\n"); 14889 result = PCI_ERS_RESULT_DISCONNECT; 14890 } else { 14891 pci_set_master(pdev); 14892 pci_restore_state(pdev); 14893 pci_save_state(pdev); 14894 pci_wake_from_d3(pdev, false); 14895 14896 reg = rd32(&pf->hw, I40E_GLGEN_RTRIG); 14897 if (reg == 0) 14898 result = PCI_ERS_RESULT_RECOVERED; 14899 else 14900 result = PCI_ERS_RESULT_DISCONNECT; 14901 } 14902 14903 return result; 14904 } 14905 14906 /** 14907 * i40e_pci_error_reset_prepare - prepare device driver for pci reset 14908 * @pdev: PCI device information struct 14909 */ 14910 static void i40e_pci_error_reset_prepare(struct pci_dev *pdev) 14911 { 14912 struct i40e_pf *pf = pci_get_drvdata(pdev); 14913 14914 i40e_prep_for_reset(pf, false); 14915 } 14916 14917 /** 14918 * i40e_pci_error_reset_done - pci reset done, device driver reset can begin 14919 * @pdev: PCI device information struct 14920 */ 14921 static void i40e_pci_error_reset_done(struct pci_dev *pdev) 14922 { 14923 struct i40e_pf *pf = pci_get_drvdata(pdev); 14924 14925 i40e_reset_and_rebuild(pf, false, false); 14926 } 14927 14928 /** 14929 * i40e_pci_error_resume - restart operations after PCI error recovery 14930 * @pdev: PCI device information struct 14931 * 14932 * Called to allow the driver to bring things back up after PCI error 14933 * and/or reset recovery has finished. 14934 **/ 14935 static void i40e_pci_error_resume(struct pci_dev *pdev) 14936 { 14937 struct i40e_pf *pf = pci_get_drvdata(pdev); 14938 14939 dev_dbg(&pdev->dev, "%s\n", __func__); 14940 if (test_bit(__I40E_SUSPENDED, pf->state)) 14941 return; 14942 14943 i40e_handle_reset_warning(pf, false); 14944 } 14945 14946 /** 14947 * i40e_enable_mc_magic_wake - enable multicast magic packet wake up 14948 * using the mac_address_write admin q function 14949 * @pf: pointer to i40e_pf struct 14950 **/ 14951 static void i40e_enable_mc_magic_wake(struct i40e_pf *pf) 14952 { 14953 struct i40e_hw *hw = &pf->hw; 14954 i40e_status ret; 14955 u8 mac_addr[6]; 14956 u16 flags = 0; 14957 14958 /* Get current MAC address in case it's an LAA */ 14959 if (pf->vsi[pf->lan_vsi] && pf->vsi[pf->lan_vsi]->netdev) { 14960 ether_addr_copy(mac_addr, 14961 pf->vsi[pf->lan_vsi]->netdev->dev_addr); 14962 } else { 14963 dev_err(&pf->pdev->dev, 14964 "Failed to retrieve MAC address; using default\n"); 14965 ether_addr_copy(mac_addr, hw->mac.addr); 14966 } 14967 14968 /* The FW expects the mac address write cmd to first be called with 14969 * one of these flags before calling it again with the multicast 14970 * enable flags. 14971 */ 14972 flags = I40E_AQC_WRITE_TYPE_LAA_WOL; 14973 14974 if (hw->func_caps.flex10_enable && hw->partition_id != 1) 14975 flags = I40E_AQC_WRITE_TYPE_LAA_ONLY; 14976 14977 ret = i40e_aq_mac_address_write(hw, flags, mac_addr, NULL); 14978 if (ret) { 14979 dev_err(&pf->pdev->dev, 14980 "Failed to update MAC address registers; cannot enable Multicast Magic packet wake up"); 14981 return; 14982 } 14983 14984 flags = I40E_AQC_MC_MAG_EN 14985 | I40E_AQC_WOL_PRESERVE_ON_PFR 14986 | I40E_AQC_WRITE_TYPE_UPDATE_MC_MAG; 14987 ret = i40e_aq_mac_address_write(hw, flags, mac_addr, NULL); 14988 if (ret) 14989 dev_err(&pf->pdev->dev, 14990 "Failed to enable Multicast Magic Packet wake up\n"); 14991 } 14992 14993 /** 14994 * i40e_shutdown - PCI callback for shutting down 14995 * @pdev: PCI device information struct 14996 **/ 14997 static void i40e_shutdown(struct pci_dev *pdev) 14998 { 14999 struct i40e_pf *pf = pci_get_drvdata(pdev); 15000 struct i40e_hw *hw = &pf->hw; 15001 15002 set_bit(__I40E_SUSPENDED, pf->state); 15003 set_bit(__I40E_DOWN, pf->state); 15004 15005 del_timer_sync(&pf->service_timer); 15006 cancel_work_sync(&pf->service_task); 15007 i40e_cloud_filter_exit(pf); 15008 i40e_fdir_teardown(pf); 15009 15010 /* Client close must be called explicitly here because the timer 15011 * has been stopped. 15012 */ 15013 i40e_notify_client_of_netdev_close(pf->vsi[pf->lan_vsi], false); 15014 15015 if (pf->wol_en && (pf->hw_features & I40E_HW_WOL_MC_MAGIC_PKT_WAKE)) 15016 i40e_enable_mc_magic_wake(pf); 15017 15018 i40e_prep_for_reset(pf, false); 15019 15020 wr32(hw, I40E_PFPM_APM, 15021 (pf->wol_en ? I40E_PFPM_APM_APME_MASK : 0)); 15022 wr32(hw, I40E_PFPM_WUFC, 15023 (pf->wol_en ? I40E_PFPM_WUFC_MAG_MASK : 0)); 15024 15025 /* Free MSI/legacy interrupt 0 when in recovery mode. */ 15026 if (test_bit(__I40E_RECOVERY_MODE, pf->state) && 15027 !(pf->flags & I40E_FLAG_MSIX_ENABLED)) 15028 free_irq(pf->pdev->irq, pf); 15029 15030 /* Since we're going to destroy queues during the 15031 * i40e_clear_interrupt_scheme() we should hold the RTNL lock for this 15032 * whole section 15033 */ 15034 rtnl_lock(); 15035 i40e_clear_interrupt_scheme(pf); 15036 rtnl_unlock(); 15037 15038 if (system_state == SYSTEM_POWER_OFF) { 15039 pci_wake_from_d3(pdev, pf->wol_en); 15040 pci_set_power_state(pdev, PCI_D3hot); 15041 } 15042 } 15043 15044 /** 15045 * i40e_suspend - PM callback for moving to D3 15046 * @dev: generic device information structure 15047 **/ 15048 static int __maybe_unused i40e_suspend(struct device *dev) 15049 { 15050 struct pci_dev *pdev = to_pci_dev(dev); 15051 struct i40e_pf *pf = pci_get_drvdata(pdev); 15052 struct i40e_hw *hw = &pf->hw; 15053 15054 /* If we're already suspended, then there is nothing to do */ 15055 if (test_and_set_bit(__I40E_SUSPENDED, pf->state)) 15056 return 0; 15057 15058 set_bit(__I40E_DOWN, pf->state); 15059 15060 /* Ensure service task will not be running */ 15061 del_timer_sync(&pf->service_timer); 15062 cancel_work_sync(&pf->service_task); 15063 15064 /* Client close must be called explicitly here because the timer 15065 * has been stopped. 15066 */ 15067 i40e_notify_client_of_netdev_close(pf->vsi[pf->lan_vsi], false); 15068 15069 if (pf->wol_en && (pf->hw_features & I40E_HW_WOL_MC_MAGIC_PKT_WAKE)) 15070 i40e_enable_mc_magic_wake(pf); 15071 15072 /* Since we're going to destroy queues during the 15073 * i40e_clear_interrupt_scheme() we should hold the RTNL lock for this 15074 * whole section 15075 */ 15076 rtnl_lock(); 15077 15078 i40e_prep_for_reset(pf, true); 15079 15080 wr32(hw, I40E_PFPM_APM, (pf->wol_en ? I40E_PFPM_APM_APME_MASK : 0)); 15081 wr32(hw, I40E_PFPM_WUFC, (pf->wol_en ? I40E_PFPM_WUFC_MAG_MASK : 0)); 15082 15083 /* Clear the interrupt scheme and release our IRQs so that the system 15084 * can safely hibernate even when there are a large number of CPUs. 15085 * Otherwise hibernation might fail when mapping all the vectors back 15086 * to CPU0. 15087 */ 15088 i40e_clear_interrupt_scheme(pf); 15089 15090 rtnl_unlock(); 15091 15092 return 0; 15093 } 15094 15095 /** 15096 * i40e_resume - PM callback for waking up from D3 15097 * @dev: generic device information structure 15098 **/ 15099 static int __maybe_unused i40e_resume(struct device *dev) 15100 { 15101 struct pci_dev *pdev = to_pci_dev(dev); 15102 struct i40e_pf *pf = pci_get_drvdata(pdev); 15103 int err; 15104 15105 /* If we're not suspended, then there is nothing to do */ 15106 if (!test_bit(__I40E_SUSPENDED, pf->state)) 15107 return 0; 15108 15109 /* We need to hold the RTNL lock prior to restoring interrupt schemes, 15110 * since we're going to be restoring queues 15111 */ 15112 rtnl_lock(); 15113 15114 /* We cleared the interrupt scheme when we suspended, so we need to 15115 * restore it now to resume device functionality. 15116 */ 15117 err = i40e_restore_interrupt_scheme(pf); 15118 if (err) { 15119 dev_err(&pdev->dev, "Cannot restore interrupt scheme: %d\n", 15120 err); 15121 } 15122 15123 clear_bit(__I40E_DOWN, pf->state); 15124 i40e_reset_and_rebuild(pf, false, true); 15125 15126 rtnl_unlock(); 15127 15128 /* Clear suspended state last after everything is recovered */ 15129 clear_bit(__I40E_SUSPENDED, pf->state); 15130 15131 /* Restart the service task */ 15132 mod_timer(&pf->service_timer, 15133 round_jiffies(jiffies + pf->service_timer_period)); 15134 15135 return 0; 15136 } 15137 15138 static const struct pci_error_handlers i40e_err_handler = { 15139 .error_detected = i40e_pci_error_detected, 15140 .slot_reset = i40e_pci_error_slot_reset, 15141 .reset_prepare = i40e_pci_error_reset_prepare, 15142 .reset_done = i40e_pci_error_reset_done, 15143 .resume = i40e_pci_error_resume, 15144 }; 15145 15146 static SIMPLE_DEV_PM_OPS(i40e_pm_ops, i40e_suspend, i40e_resume); 15147 15148 static struct pci_driver i40e_driver = { 15149 .name = i40e_driver_name, 15150 .id_table = i40e_pci_tbl, 15151 .probe = i40e_probe, 15152 .remove = i40e_remove, 15153 .driver = { 15154 .pm = &i40e_pm_ops, 15155 }, 15156 .shutdown = i40e_shutdown, 15157 .err_handler = &i40e_err_handler, 15158 .sriov_configure = i40e_pci_sriov_configure, 15159 }; 15160 15161 /** 15162 * i40e_init_module - Driver registration routine 15163 * 15164 * i40e_init_module is the first routine called when the driver is 15165 * loaded. All it does is register with the PCI subsystem. 15166 **/ 15167 static int __init i40e_init_module(void) 15168 { 15169 pr_info("%s: %s - version %s\n", i40e_driver_name, 15170 i40e_driver_string, i40e_driver_version_str); 15171 pr_info("%s: %s\n", i40e_driver_name, i40e_copyright); 15172 15173 /* There is no need to throttle the number of active tasks because 15174 * each device limits its own task using a state bit for scheduling 15175 * the service task, and the device tasks do not interfere with each 15176 * other, so we don't set a max task limit. We must set WQ_MEM_RECLAIM 15177 * since we need to be able to guarantee forward progress even under 15178 * memory pressure. 15179 */ 15180 i40e_wq = alloc_workqueue("%s", WQ_MEM_RECLAIM, 0, i40e_driver_name); 15181 if (!i40e_wq) { 15182 pr_err("%s: Failed to create workqueue\n", i40e_driver_name); 15183 return -ENOMEM; 15184 } 15185 15186 i40e_dbg_init(); 15187 return pci_register_driver(&i40e_driver); 15188 } 15189 module_init(i40e_init_module); 15190 15191 /** 15192 * i40e_exit_module - Driver exit cleanup routine 15193 * 15194 * i40e_exit_module is called just before the driver is removed 15195 * from memory. 15196 **/ 15197 static void __exit i40e_exit_module(void) 15198 { 15199 pci_unregister_driver(&i40e_driver); 15200 destroy_workqueue(i40e_wq); 15201 i40e_dbg_exit(); 15202 } 15203 module_exit(i40e_exit_module); 15204