xref: /openbmc/linux/drivers/net/ethernet/intel/i40e/i40e_common.c (revision 72ed5d5624af384eaf74d84915810d54486a75e2)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 2013 - 2021 Intel Corporation. */
3 
4 #include "i40e.h"
5 #include "i40e_type.h"
6 #include "i40e_adminq.h"
7 #include "i40e_prototype.h"
8 #include <linux/avf/virtchnl.h>
9 
10 /**
11  * i40e_set_mac_type - Sets MAC type
12  * @hw: pointer to the HW structure
13  *
14  * This function sets the mac type of the adapter based on the
15  * vendor ID and device ID stored in the hw structure.
16  **/
17 int i40e_set_mac_type(struct i40e_hw *hw)
18 {
19 	int status = 0;
20 
21 	if (hw->vendor_id == PCI_VENDOR_ID_INTEL) {
22 		switch (hw->device_id) {
23 		case I40E_DEV_ID_SFP_XL710:
24 		case I40E_DEV_ID_QEMU:
25 		case I40E_DEV_ID_KX_B:
26 		case I40E_DEV_ID_KX_C:
27 		case I40E_DEV_ID_QSFP_A:
28 		case I40E_DEV_ID_QSFP_B:
29 		case I40E_DEV_ID_QSFP_C:
30 		case I40E_DEV_ID_1G_BASE_T_BC:
31 		case I40E_DEV_ID_5G_BASE_T_BC:
32 		case I40E_DEV_ID_10G_BASE_T:
33 		case I40E_DEV_ID_10G_BASE_T4:
34 		case I40E_DEV_ID_10G_BASE_T_BC:
35 		case I40E_DEV_ID_10G_B:
36 		case I40E_DEV_ID_10G_SFP:
37 		case I40E_DEV_ID_20G_KR2:
38 		case I40E_DEV_ID_20G_KR2_A:
39 		case I40E_DEV_ID_25G_B:
40 		case I40E_DEV_ID_25G_SFP28:
41 		case I40E_DEV_ID_X710_N3000:
42 		case I40E_DEV_ID_XXV710_N3000:
43 			hw->mac.type = I40E_MAC_XL710;
44 			break;
45 		case I40E_DEV_ID_KX_X722:
46 		case I40E_DEV_ID_QSFP_X722:
47 		case I40E_DEV_ID_SFP_X722:
48 		case I40E_DEV_ID_1G_BASE_T_X722:
49 		case I40E_DEV_ID_10G_BASE_T_X722:
50 		case I40E_DEV_ID_SFP_I_X722:
51 		case I40E_DEV_ID_SFP_X722_A:
52 			hw->mac.type = I40E_MAC_X722;
53 			break;
54 		default:
55 			hw->mac.type = I40E_MAC_GENERIC;
56 			break;
57 		}
58 	} else {
59 		status = I40E_ERR_DEVICE_NOT_SUPPORTED;
60 	}
61 
62 	hw_dbg(hw, "i40e_set_mac_type found mac: %d, returns: %d\n",
63 		  hw->mac.type, status);
64 	return status;
65 }
66 
67 /**
68  * i40e_aq_str - convert AQ err code to a string
69  * @hw: pointer to the HW structure
70  * @aq_err: the AQ error code to convert
71  **/
72 const char *i40e_aq_str(struct i40e_hw *hw, enum i40e_admin_queue_err aq_err)
73 {
74 	switch (aq_err) {
75 	case I40E_AQ_RC_OK:
76 		return "OK";
77 	case I40E_AQ_RC_EPERM:
78 		return "I40E_AQ_RC_EPERM";
79 	case I40E_AQ_RC_ENOENT:
80 		return "I40E_AQ_RC_ENOENT";
81 	case I40E_AQ_RC_ESRCH:
82 		return "I40E_AQ_RC_ESRCH";
83 	case I40E_AQ_RC_EINTR:
84 		return "I40E_AQ_RC_EINTR";
85 	case I40E_AQ_RC_EIO:
86 		return "I40E_AQ_RC_EIO";
87 	case I40E_AQ_RC_ENXIO:
88 		return "I40E_AQ_RC_ENXIO";
89 	case I40E_AQ_RC_E2BIG:
90 		return "I40E_AQ_RC_E2BIG";
91 	case I40E_AQ_RC_EAGAIN:
92 		return "I40E_AQ_RC_EAGAIN";
93 	case I40E_AQ_RC_ENOMEM:
94 		return "I40E_AQ_RC_ENOMEM";
95 	case I40E_AQ_RC_EACCES:
96 		return "I40E_AQ_RC_EACCES";
97 	case I40E_AQ_RC_EFAULT:
98 		return "I40E_AQ_RC_EFAULT";
99 	case I40E_AQ_RC_EBUSY:
100 		return "I40E_AQ_RC_EBUSY";
101 	case I40E_AQ_RC_EEXIST:
102 		return "I40E_AQ_RC_EEXIST";
103 	case I40E_AQ_RC_EINVAL:
104 		return "I40E_AQ_RC_EINVAL";
105 	case I40E_AQ_RC_ENOTTY:
106 		return "I40E_AQ_RC_ENOTTY";
107 	case I40E_AQ_RC_ENOSPC:
108 		return "I40E_AQ_RC_ENOSPC";
109 	case I40E_AQ_RC_ENOSYS:
110 		return "I40E_AQ_RC_ENOSYS";
111 	case I40E_AQ_RC_ERANGE:
112 		return "I40E_AQ_RC_ERANGE";
113 	case I40E_AQ_RC_EFLUSHED:
114 		return "I40E_AQ_RC_EFLUSHED";
115 	case I40E_AQ_RC_BAD_ADDR:
116 		return "I40E_AQ_RC_BAD_ADDR";
117 	case I40E_AQ_RC_EMODE:
118 		return "I40E_AQ_RC_EMODE";
119 	case I40E_AQ_RC_EFBIG:
120 		return "I40E_AQ_RC_EFBIG";
121 	}
122 
123 	snprintf(hw->err_str, sizeof(hw->err_str), "%d", aq_err);
124 	return hw->err_str;
125 }
126 
127 /**
128  * i40e_debug_aq
129  * @hw: debug mask related to admin queue
130  * @mask: debug mask
131  * @desc: pointer to admin queue descriptor
132  * @buffer: pointer to command buffer
133  * @buf_len: max length of buffer
134  *
135  * Dumps debug log about adminq command with descriptor contents.
136  **/
137 void i40e_debug_aq(struct i40e_hw *hw, enum i40e_debug_mask mask, void *desc,
138 		   void *buffer, u16 buf_len)
139 {
140 	struct i40e_aq_desc *aq_desc = (struct i40e_aq_desc *)desc;
141 	u32 effective_mask = hw->debug_mask & mask;
142 	char prefix[27];
143 	u16 len;
144 	u8 *buf = (u8 *)buffer;
145 
146 	if (!effective_mask || !desc)
147 		return;
148 
149 	len = le16_to_cpu(aq_desc->datalen);
150 
151 	i40e_debug(hw, mask & I40E_DEBUG_AQ_DESCRIPTOR,
152 		   "AQ CMD: opcode 0x%04X, flags 0x%04X, datalen 0x%04X, retval 0x%04X\n",
153 		   le16_to_cpu(aq_desc->opcode),
154 		   le16_to_cpu(aq_desc->flags),
155 		   le16_to_cpu(aq_desc->datalen),
156 		   le16_to_cpu(aq_desc->retval));
157 	i40e_debug(hw, mask & I40E_DEBUG_AQ_DESCRIPTOR,
158 		   "\tcookie (h,l) 0x%08X 0x%08X\n",
159 		   le32_to_cpu(aq_desc->cookie_high),
160 		   le32_to_cpu(aq_desc->cookie_low));
161 	i40e_debug(hw, mask & I40E_DEBUG_AQ_DESCRIPTOR,
162 		   "\tparam (0,1)  0x%08X 0x%08X\n",
163 		   le32_to_cpu(aq_desc->params.internal.param0),
164 		   le32_to_cpu(aq_desc->params.internal.param1));
165 	i40e_debug(hw, mask & I40E_DEBUG_AQ_DESCRIPTOR,
166 		   "\taddr (h,l)   0x%08X 0x%08X\n",
167 		   le32_to_cpu(aq_desc->params.external.addr_high),
168 		   le32_to_cpu(aq_desc->params.external.addr_low));
169 
170 	if (buffer && buf_len != 0 && len != 0 &&
171 	    (effective_mask & I40E_DEBUG_AQ_DESC_BUFFER)) {
172 		i40e_debug(hw, mask, "AQ CMD Buffer:\n");
173 		if (buf_len < len)
174 			len = buf_len;
175 
176 		snprintf(prefix, sizeof(prefix),
177 			 "i40e %02x:%02x.%x: \t0x",
178 			 hw->bus.bus_id,
179 			 hw->bus.device,
180 			 hw->bus.func);
181 
182 		print_hex_dump(KERN_INFO, prefix, DUMP_PREFIX_OFFSET,
183 			       16, 1, buf, len, false);
184 	}
185 }
186 
187 /**
188  * i40e_check_asq_alive
189  * @hw: pointer to the hw struct
190  *
191  * Returns true if Queue is enabled else false.
192  **/
193 bool i40e_check_asq_alive(struct i40e_hw *hw)
194 {
195 	if (hw->aq.asq.len)
196 		return !!(rd32(hw, hw->aq.asq.len) &
197 			  I40E_PF_ATQLEN_ATQENABLE_MASK);
198 	else
199 		return false;
200 }
201 
202 /**
203  * i40e_aq_queue_shutdown
204  * @hw: pointer to the hw struct
205  * @unloading: is the driver unloading itself
206  *
207  * Tell the Firmware that we're shutting down the AdminQ and whether
208  * or not the driver is unloading as well.
209  **/
210 int i40e_aq_queue_shutdown(struct i40e_hw *hw,
211 			   bool unloading)
212 {
213 	struct i40e_aq_desc desc;
214 	struct i40e_aqc_queue_shutdown *cmd =
215 		(struct i40e_aqc_queue_shutdown *)&desc.params.raw;
216 	int status;
217 
218 	i40e_fill_default_direct_cmd_desc(&desc,
219 					  i40e_aqc_opc_queue_shutdown);
220 
221 	if (unloading)
222 		cmd->driver_unloading = cpu_to_le32(I40E_AQ_DRIVER_UNLOADING);
223 	status = i40e_asq_send_command(hw, &desc, NULL, 0, NULL);
224 
225 	return status;
226 }
227 
228 /**
229  * i40e_aq_get_set_rss_lut
230  * @hw: pointer to the hardware structure
231  * @vsi_id: vsi fw index
232  * @pf_lut: for PF table set true, for VSI table set false
233  * @lut: pointer to the lut buffer provided by the caller
234  * @lut_size: size of the lut buffer
235  * @set: set true to set the table, false to get the table
236  *
237  * Internal function to get or set RSS look up table
238  **/
239 static int i40e_aq_get_set_rss_lut(struct i40e_hw *hw,
240 				   u16 vsi_id, bool pf_lut,
241 				   u8 *lut, u16 lut_size,
242 				   bool set)
243 {
244 	struct i40e_aq_desc desc;
245 	struct i40e_aqc_get_set_rss_lut *cmd_resp =
246 		   (struct i40e_aqc_get_set_rss_lut *)&desc.params.raw;
247 	int status;
248 
249 	if (set)
250 		i40e_fill_default_direct_cmd_desc(&desc,
251 						  i40e_aqc_opc_set_rss_lut);
252 	else
253 		i40e_fill_default_direct_cmd_desc(&desc,
254 						  i40e_aqc_opc_get_rss_lut);
255 
256 	/* Indirect command */
257 	desc.flags |= cpu_to_le16((u16)I40E_AQ_FLAG_BUF);
258 	desc.flags |= cpu_to_le16((u16)I40E_AQ_FLAG_RD);
259 
260 	cmd_resp->vsi_id =
261 			cpu_to_le16((u16)((vsi_id <<
262 					  I40E_AQC_SET_RSS_LUT_VSI_ID_SHIFT) &
263 					  I40E_AQC_SET_RSS_LUT_VSI_ID_MASK));
264 	cmd_resp->vsi_id |= cpu_to_le16((u16)I40E_AQC_SET_RSS_LUT_VSI_VALID);
265 
266 	if (pf_lut)
267 		cmd_resp->flags |= cpu_to_le16((u16)
268 					((I40E_AQC_SET_RSS_LUT_TABLE_TYPE_PF <<
269 					I40E_AQC_SET_RSS_LUT_TABLE_TYPE_SHIFT) &
270 					I40E_AQC_SET_RSS_LUT_TABLE_TYPE_MASK));
271 	else
272 		cmd_resp->flags |= cpu_to_le16((u16)
273 					((I40E_AQC_SET_RSS_LUT_TABLE_TYPE_VSI <<
274 					I40E_AQC_SET_RSS_LUT_TABLE_TYPE_SHIFT) &
275 					I40E_AQC_SET_RSS_LUT_TABLE_TYPE_MASK));
276 
277 	status = i40e_asq_send_command(hw, &desc, lut, lut_size, NULL);
278 
279 	return status;
280 }
281 
282 /**
283  * i40e_aq_get_rss_lut
284  * @hw: pointer to the hardware structure
285  * @vsi_id: vsi fw index
286  * @pf_lut: for PF table set true, for VSI table set false
287  * @lut: pointer to the lut buffer provided by the caller
288  * @lut_size: size of the lut buffer
289  *
290  * get the RSS lookup table, PF or VSI type
291  **/
292 int i40e_aq_get_rss_lut(struct i40e_hw *hw, u16 vsi_id,
293 			bool pf_lut, u8 *lut, u16 lut_size)
294 {
295 	return i40e_aq_get_set_rss_lut(hw, vsi_id, pf_lut, lut, lut_size,
296 				       false);
297 }
298 
299 /**
300  * i40e_aq_set_rss_lut
301  * @hw: pointer to the hardware structure
302  * @vsi_id: vsi fw index
303  * @pf_lut: for PF table set true, for VSI table set false
304  * @lut: pointer to the lut buffer provided by the caller
305  * @lut_size: size of the lut buffer
306  *
307  * set the RSS lookup table, PF or VSI type
308  **/
309 int i40e_aq_set_rss_lut(struct i40e_hw *hw, u16 vsi_id,
310 			bool pf_lut, u8 *lut, u16 lut_size)
311 {
312 	return i40e_aq_get_set_rss_lut(hw, vsi_id, pf_lut, lut, lut_size, true);
313 }
314 
315 /**
316  * i40e_aq_get_set_rss_key
317  * @hw: pointer to the hw struct
318  * @vsi_id: vsi fw index
319  * @key: pointer to key info struct
320  * @set: set true to set the key, false to get the key
321  *
322  * get the RSS key per VSI
323  **/
324 static int i40e_aq_get_set_rss_key(struct i40e_hw *hw,
325 				   u16 vsi_id,
326 				   struct i40e_aqc_get_set_rss_key_data *key,
327 				   bool set)
328 {
329 	struct i40e_aq_desc desc;
330 	struct i40e_aqc_get_set_rss_key *cmd_resp =
331 			(struct i40e_aqc_get_set_rss_key *)&desc.params.raw;
332 	u16 key_size = sizeof(struct i40e_aqc_get_set_rss_key_data);
333 	int status;
334 
335 	if (set)
336 		i40e_fill_default_direct_cmd_desc(&desc,
337 						  i40e_aqc_opc_set_rss_key);
338 	else
339 		i40e_fill_default_direct_cmd_desc(&desc,
340 						  i40e_aqc_opc_get_rss_key);
341 
342 	/* Indirect command */
343 	desc.flags |= cpu_to_le16((u16)I40E_AQ_FLAG_BUF);
344 	desc.flags |= cpu_to_le16((u16)I40E_AQ_FLAG_RD);
345 
346 	cmd_resp->vsi_id =
347 			cpu_to_le16((u16)((vsi_id <<
348 					  I40E_AQC_SET_RSS_KEY_VSI_ID_SHIFT) &
349 					  I40E_AQC_SET_RSS_KEY_VSI_ID_MASK));
350 	cmd_resp->vsi_id |= cpu_to_le16((u16)I40E_AQC_SET_RSS_KEY_VSI_VALID);
351 
352 	status = i40e_asq_send_command(hw, &desc, key, key_size, NULL);
353 
354 	return status;
355 }
356 
357 /**
358  * i40e_aq_get_rss_key
359  * @hw: pointer to the hw struct
360  * @vsi_id: vsi fw index
361  * @key: pointer to key info struct
362  *
363  **/
364 int i40e_aq_get_rss_key(struct i40e_hw *hw,
365 			u16 vsi_id,
366 			struct i40e_aqc_get_set_rss_key_data *key)
367 {
368 	return i40e_aq_get_set_rss_key(hw, vsi_id, key, false);
369 }
370 
371 /**
372  * i40e_aq_set_rss_key
373  * @hw: pointer to the hw struct
374  * @vsi_id: vsi fw index
375  * @key: pointer to key info struct
376  *
377  * set the RSS key per VSI
378  **/
379 int i40e_aq_set_rss_key(struct i40e_hw *hw,
380 			u16 vsi_id,
381 			struct i40e_aqc_get_set_rss_key_data *key)
382 {
383 	return i40e_aq_get_set_rss_key(hw, vsi_id, key, true);
384 }
385 
386 /* The i40e_ptype_lookup table is used to convert from the 8-bit ptype in the
387  * hardware to a bit-field that can be used by SW to more easily determine the
388  * packet type.
389  *
390  * Macros are used to shorten the table lines and make this table human
391  * readable.
392  *
393  * We store the PTYPE in the top byte of the bit field - this is just so that
394  * we can check that the table doesn't have a row missing, as the index into
395  * the table should be the PTYPE.
396  *
397  * Typical work flow:
398  *
399  * IF NOT i40e_ptype_lookup[ptype].known
400  * THEN
401  *      Packet is unknown
402  * ELSE IF i40e_ptype_lookup[ptype].outer_ip == I40E_RX_PTYPE_OUTER_IP
403  *      Use the rest of the fields to look at the tunnels, inner protocols, etc
404  * ELSE
405  *      Use the enum i40e_rx_l2_ptype to decode the packet type
406  * ENDIF
407  */
408 
409 /* macro to make the table lines short, use explicit indexing with [PTYPE] */
410 #define I40E_PTT(PTYPE, OUTER_IP, OUTER_IP_VER, OUTER_FRAG, T, TE, TEF, I, PL)\
411 	[PTYPE] = { \
412 		1, \
413 		I40E_RX_PTYPE_OUTER_##OUTER_IP, \
414 		I40E_RX_PTYPE_OUTER_##OUTER_IP_VER, \
415 		I40E_RX_PTYPE_##OUTER_FRAG, \
416 		I40E_RX_PTYPE_TUNNEL_##T, \
417 		I40E_RX_PTYPE_TUNNEL_END_##TE, \
418 		I40E_RX_PTYPE_##TEF, \
419 		I40E_RX_PTYPE_INNER_PROT_##I, \
420 		I40E_RX_PTYPE_PAYLOAD_LAYER_##PL }
421 
422 #define I40E_PTT_UNUSED_ENTRY(PTYPE) [PTYPE] = { 0, 0, 0, 0, 0, 0, 0, 0, 0 }
423 
424 /* shorter macros makes the table fit but are terse */
425 #define I40E_RX_PTYPE_NOF		I40E_RX_PTYPE_NOT_FRAG
426 #define I40E_RX_PTYPE_FRG		I40E_RX_PTYPE_FRAG
427 #define I40E_RX_PTYPE_INNER_PROT_TS	I40E_RX_PTYPE_INNER_PROT_TIMESYNC
428 
429 /* Lookup table mapping in the 8-bit HW PTYPE to the bit field for decoding */
430 struct i40e_rx_ptype_decoded i40e_ptype_lookup[BIT(8)] = {
431 	/* L2 Packet types */
432 	I40E_PTT_UNUSED_ENTRY(0),
433 	I40E_PTT(1,  L2, NONE, NOF, NONE, NONE, NOF, NONE, PAY2),
434 	I40E_PTT(2,  L2, NONE, NOF, NONE, NONE, NOF, TS,   PAY2),
435 	I40E_PTT(3,  L2, NONE, NOF, NONE, NONE, NOF, NONE, PAY2),
436 	I40E_PTT_UNUSED_ENTRY(4),
437 	I40E_PTT_UNUSED_ENTRY(5),
438 	I40E_PTT(6,  L2, NONE, NOF, NONE, NONE, NOF, NONE, PAY2),
439 	I40E_PTT(7,  L2, NONE, NOF, NONE, NONE, NOF, NONE, PAY2),
440 	I40E_PTT_UNUSED_ENTRY(8),
441 	I40E_PTT_UNUSED_ENTRY(9),
442 	I40E_PTT(10, L2, NONE, NOF, NONE, NONE, NOF, NONE, PAY2),
443 	I40E_PTT(11, L2, NONE, NOF, NONE, NONE, NOF, NONE, NONE),
444 	I40E_PTT(12, L2, NONE, NOF, NONE, NONE, NOF, NONE, PAY3),
445 	I40E_PTT(13, L2, NONE, NOF, NONE, NONE, NOF, NONE, PAY3),
446 	I40E_PTT(14, L2, NONE, NOF, NONE, NONE, NOF, NONE, PAY3),
447 	I40E_PTT(15, L2, NONE, NOF, NONE, NONE, NOF, NONE, PAY3),
448 	I40E_PTT(16, L2, NONE, NOF, NONE, NONE, NOF, NONE, PAY3),
449 	I40E_PTT(17, L2, NONE, NOF, NONE, NONE, NOF, NONE, PAY3),
450 	I40E_PTT(18, L2, NONE, NOF, NONE, NONE, NOF, NONE, PAY3),
451 	I40E_PTT(19, L2, NONE, NOF, NONE, NONE, NOF, NONE, PAY3),
452 	I40E_PTT(20, L2, NONE, NOF, NONE, NONE, NOF, NONE, PAY3),
453 	I40E_PTT(21, L2, NONE, NOF, NONE, NONE, NOF, NONE, PAY3),
454 
455 	/* Non Tunneled IPv4 */
456 	I40E_PTT(22, IP, IPV4, FRG, NONE, NONE, NOF, NONE, PAY3),
457 	I40E_PTT(23, IP, IPV4, NOF, NONE, NONE, NOF, NONE, PAY3),
458 	I40E_PTT(24, IP, IPV4, NOF, NONE, NONE, NOF, UDP,  PAY4),
459 	I40E_PTT_UNUSED_ENTRY(25),
460 	I40E_PTT(26, IP, IPV4, NOF, NONE, NONE, NOF, TCP,  PAY4),
461 	I40E_PTT(27, IP, IPV4, NOF, NONE, NONE, NOF, SCTP, PAY4),
462 	I40E_PTT(28, IP, IPV4, NOF, NONE, NONE, NOF, ICMP, PAY4),
463 
464 	/* IPv4 --> IPv4 */
465 	I40E_PTT(29, IP, IPV4, NOF, IP_IP, IPV4, FRG, NONE, PAY3),
466 	I40E_PTT(30, IP, IPV4, NOF, IP_IP, IPV4, NOF, NONE, PAY3),
467 	I40E_PTT(31, IP, IPV4, NOF, IP_IP, IPV4, NOF, UDP,  PAY4),
468 	I40E_PTT_UNUSED_ENTRY(32),
469 	I40E_PTT(33, IP, IPV4, NOF, IP_IP, IPV4, NOF, TCP,  PAY4),
470 	I40E_PTT(34, IP, IPV4, NOF, IP_IP, IPV4, NOF, SCTP, PAY4),
471 	I40E_PTT(35, IP, IPV4, NOF, IP_IP, IPV4, NOF, ICMP, PAY4),
472 
473 	/* IPv4 --> IPv6 */
474 	I40E_PTT(36, IP, IPV4, NOF, IP_IP, IPV6, FRG, NONE, PAY3),
475 	I40E_PTT(37, IP, IPV4, NOF, IP_IP, IPV6, NOF, NONE, PAY3),
476 	I40E_PTT(38, IP, IPV4, NOF, IP_IP, IPV6, NOF, UDP,  PAY4),
477 	I40E_PTT_UNUSED_ENTRY(39),
478 	I40E_PTT(40, IP, IPV4, NOF, IP_IP, IPV6, NOF, TCP,  PAY4),
479 	I40E_PTT(41, IP, IPV4, NOF, IP_IP, IPV6, NOF, SCTP, PAY4),
480 	I40E_PTT(42, IP, IPV4, NOF, IP_IP, IPV6, NOF, ICMP, PAY4),
481 
482 	/* IPv4 --> GRE/NAT */
483 	I40E_PTT(43, IP, IPV4, NOF, IP_GRENAT, NONE, NOF, NONE, PAY3),
484 
485 	/* IPv4 --> GRE/NAT --> IPv4 */
486 	I40E_PTT(44, IP, IPV4, NOF, IP_GRENAT, IPV4, FRG, NONE, PAY3),
487 	I40E_PTT(45, IP, IPV4, NOF, IP_GRENAT, IPV4, NOF, NONE, PAY3),
488 	I40E_PTT(46, IP, IPV4, NOF, IP_GRENAT, IPV4, NOF, UDP,  PAY4),
489 	I40E_PTT_UNUSED_ENTRY(47),
490 	I40E_PTT(48, IP, IPV4, NOF, IP_GRENAT, IPV4, NOF, TCP,  PAY4),
491 	I40E_PTT(49, IP, IPV4, NOF, IP_GRENAT, IPV4, NOF, SCTP, PAY4),
492 	I40E_PTT(50, IP, IPV4, NOF, IP_GRENAT, IPV4, NOF, ICMP, PAY4),
493 
494 	/* IPv4 --> GRE/NAT --> IPv6 */
495 	I40E_PTT(51, IP, IPV4, NOF, IP_GRENAT, IPV6, FRG, NONE, PAY3),
496 	I40E_PTT(52, IP, IPV4, NOF, IP_GRENAT, IPV6, NOF, NONE, PAY3),
497 	I40E_PTT(53, IP, IPV4, NOF, IP_GRENAT, IPV6, NOF, UDP,  PAY4),
498 	I40E_PTT_UNUSED_ENTRY(54),
499 	I40E_PTT(55, IP, IPV4, NOF, IP_GRENAT, IPV6, NOF, TCP,  PAY4),
500 	I40E_PTT(56, IP, IPV4, NOF, IP_GRENAT, IPV6, NOF, SCTP, PAY4),
501 	I40E_PTT(57, IP, IPV4, NOF, IP_GRENAT, IPV6, NOF, ICMP, PAY4),
502 
503 	/* IPv4 --> GRE/NAT --> MAC */
504 	I40E_PTT(58, IP, IPV4, NOF, IP_GRENAT_MAC, NONE, NOF, NONE, PAY3),
505 
506 	/* IPv4 --> GRE/NAT --> MAC --> IPv4 */
507 	I40E_PTT(59, IP, IPV4, NOF, IP_GRENAT_MAC, IPV4, FRG, NONE, PAY3),
508 	I40E_PTT(60, IP, IPV4, NOF, IP_GRENAT_MAC, IPV4, NOF, NONE, PAY3),
509 	I40E_PTT(61, IP, IPV4, NOF, IP_GRENAT_MAC, IPV4, NOF, UDP,  PAY4),
510 	I40E_PTT_UNUSED_ENTRY(62),
511 	I40E_PTT(63, IP, IPV4, NOF, IP_GRENAT_MAC, IPV4, NOF, TCP,  PAY4),
512 	I40E_PTT(64, IP, IPV4, NOF, IP_GRENAT_MAC, IPV4, NOF, SCTP, PAY4),
513 	I40E_PTT(65, IP, IPV4, NOF, IP_GRENAT_MAC, IPV4, NOF, ICMP, PAY4),
514 
515 	/* IPv4 --> GRE/NAT -> MAC --> IPv6 */
516 	I40E_PTT(66, IP, IPV4, NOF, IP_GRENAT_MAC, IPV6, FRG, NONE, PAY3),
517 	I40E_PTT(67, IP, IPV4, NOF, IP_GRENAT_MAC, IPV6, NOF, NONE, PAY3),
518 	I40E_PTT(68, IP, IPV4, NOF, IP_GRENAT_MAC, IPV6, NOF, UDP,  PAY4),
519 	I40E_PTT_UNUSED_ENTRY(69),
520 	I40E_PTT(70, IP, IPV4, NOF, IP_GRENAT_MAC, IPV6, NOF, TCP,  PAY4),
521 	I40E_PTT(71, IP, IPV4, NOF, IP_GRENAT_MAC, IPV6, NOF, SCTP, PAY4),
522 	I40E_PTT(72, IP, IPV4, NOF, IP_GRENAT_MAC, IPV6, NOF, ICMP, PAY4),
523 
524 	/* IPv4 --> GRE/NAT --> MAC/VLAN */
525 	I40E_PTT(73, IP, IPV4, NOF, IP_GRENAT_MAC_VLAN, NONE, NOF, NONE, PAY3),
526 
527 	/* IPv4 ---> GRE/NAT -> MAC/VLAN --> IPv4 */
528 	I40E_PTT(74, IP, IPV4, NOF, IP_GRENAT_MAC_VLAN, IPV4, FRG, NONE, PAY3),
529 	I40E_PTT(75, IP, IPV4, NOF, IP_GRENAT_MAC_VLAN, IPV4, NOF, NONE, PAY3),
530 	I40E_PTT(76, IP, IPV4, NOF, IP_GRENAT_MAC_VLAN, IPV4, NOF, UDP,  PAY4),
531 	I40E_PTT_UNUSED_ENTRY(77),
532 	I40E_PTT(78, IP, IPV4, NOF, IP_GRENAT_MAC_VLAN, IPV4, NOF, TCP,  PAY4),
533 	I40E_PTT(79, IP, IPV4, NOF, IP_GRENAT_MAC_VLAN, IPV4, NOF, SCTP, PAY4),
534 	I40E_PTT(80, IP, IPV4, NOF, IP_GRENAT_MAC_VLAN, IPV4, NOF, ICMP, PAY4),
535 
536 	/* IPv4 -> GRE/NAT -> MAC/VLAN --> IPv6 */
537 	I40E_PTT(81, IP, IPV4, NOF, IP_GRENAT_MAC_VLAN, IPV6, FRG, NONE, PAY3),
538 	I40E_PTT(82, IP, IPV4, NOF, IP_GRENAT_MAC_VLAN, IPV6, NOF, NONE, PAY3),
539 	I40E_PTT(83, IP, IPV4, NOF, IP_GRENAT_MAC_VLAN, IPV6, NOF, UDP,  PAY4),
540 	I40E_PTT_UNUSED_ENTRY(84),
541 	I40E_PTT(85, IP, IPV4, NOF, IP_GRENAT_MAC_VLAN, IPV6, NOF, TCP,  PAY4),
542 	I40E_PTT(86, IP, IPV4, NOF, IP_GRENAT_MAC_VLAN, IPV6, NOF, SCTP, PAY4),
543 	I40E_PTT(87, IP, IPV4, NOF, IP_GRENAT_MAC_VLAN, IPV6, NOF, ICMP, PAY4),
544 
545 	/* Non Tunneled IPv6 */
546 	I40E_PTT(88, IP, IPV6, FRG, NONE, NONE, NOF, NONE, PAY3),
547 	I40E_PTT(89, IP, IPV6, NOF, NONE, NONE, NOF, NONE, PAY3),
548 	I40E_PTT(90, IP, IPV6, NOF, NONE, NONE, NOF, UDP,  PAY4),
549 	I40E_PTT_UNUSED_ENTRY(91),
550 	I40E_PTT(92, IP, IPV6, NOF, NONE, NONE, NOF, TCP,  PAY4),
551 	I40E_PTT(93, IP, IPV6, NOF, NONE, NONE, NOF, SCTP, PAY4),
552 	I40E_PTT(94, IP, IPV6, NOF, NONE, NONE, NOF, ICMP, PAY4),
553 
554 	/* IPv6 --> IPv4 */
555 	I40E_PTT(95,  IP, IPV6, NOF, IP_IP, IPV4, FRG, NONE, PAY3),
556 	I40E_PTT(96,  IP, IPV6, NOF, IP_IP, IPV4, NOF, NONE, PAY3),
557 	I40E_PTT(97,  IP, IPV6, NOF, IP_IP, IPV4, NOF, UDP,  PAY4),
558 	I40E_PTT_UNUSED_ENTRY(98),
559 	I40E_PTT(99,  IP, IPV6, NOF, IP_IP, IPV4, NOF, TCP,  PAY4),
560 	I40E_PTT(100, IP, IPV6, NOF, IP_IP, IPV4, NOF, SCTP, PAY4),
561 	I40E_PTT(101, IP, IPV6, NOF, IP_IP, IPV4, NOF, ICMP, PAY4),
562 
563 	/* IPv6 --> IPv6 */
564 	I40E_PTT(102, IP, IPV6, NOF, IP_IP, IPV6, FRG, NONE, PAY3),
565 	I40E_PTT(103, IP, IPV6, NOF, IP_IP, IPV6, NOF, NONE, PAY3),
566 	I40E_PTT(104, IP, IPV6, NOF, IP_IP, IPV6, NOF, UDP,  PAY4),
567 	I40E_PTT_UNUSED_ENTRY(105),
568 	I40E_PTT(106, IP, IPV6, NOF, IP_IP, IPV6, NOF, TCP,  PAY4),
569 	I40E_PTT(107, IP, IPV6, NOF, IP_IP, IPV6, NOF, SCTP, PAY4),
570 	I40E_PTT(108, IP, IPV6, NOF, IP_IP, IPV6, NOF, ICMP, PAY4),
571 
572 	/* IPv6 --> GRE/NAT */
573 	I40E_PTT(109, IP, IPV6, NOF, IP_GRENAT, NONE, NOF, NONE, PAY3),
574 
575 	/* IPv6 --> GRE/NAT -> IPv4 */
576 	I40E_PTT(110, IP, IPV6, NOF, IP_GRENAT, IPV4, FRG, NONE, PAY3),
577 	I40E_PTT(111, IP, IPV6, NOF, IP_GRENAT, IPV4, NOF, NONE, PAY3),
578 	I40E_PTT(112, IP, IPV6, NOF, IP_GRENAT, IPV4, NOF, UDP,  PAY4),
579 	I40E_PTT_UNUSED_ENTRY(113),
580 	I40E_PTT(114, IP, IPV6, NOF, IP_GRENAT, IPV4, NOF, TCP,  PAY4),
581 	I40E_PTT(115, IP, IPV6, NOF, IP_GRENAT, IPV4, NOF, SCTP, PAY4),
582 	I40E_PTT(116, IP, IPV6, NOF, IP_GRENAT, IPV4, NOF, ICMP, PAY4),
583 
584 	/* IPv6 --> GRE/NAT -> IPv6 */
585 	I40E_PTT(117, IP, IPV6, NOF, IP_GRENAT, IPV6, FRG, NONE, PAY3),
586 	I40E_PTT(118, IP, IPV6, NOF, IP_GRENAT, IPV6, NOF, NONE, PAY3),
587 	I40E_PTT(119, IP, IPV6, NOF, IP_GRENAT, IPV6, NOF, UDP,  PAY4),
588 	I40E_PTT_UNUSED_ENTRY(120),
589 	I40E_PTT(121, IP, IPV6, NOF, IP_GRENAT, IPV6, NOF, TCP,  PAY4),
590 	I40E_PTT(122, IP, IPV6, NOF, IP_GRENAT, IPV6, NOF, SCTP, PAY4),
591 	I40E_PTT(123, IP, IPV6, NOF, IP_GRENAT, IPV6, NOF, ICMP, PAY4),
592 
593 	/* IPv6 --> GRE/NAT -> MAC */
594 	I40E_PTT(124, IP, IPV6, NOF, IP_GRENAT_MAC, NONE, NOF, NONE, PAY3),
595 
596 	/* IPv6 --> GRE/NAT -> MAC -> IPv4 */
597 	I40E_PTT(125, IP, IPV6, NOF, IP_GRENAT_MAC, IPV4, FRG, NONE, PAY3),
598 	I40E_PTT(126, IP, IPV6, NOF, IP_GRENAT_MAC, IPV4, NOF, NONE, PAY3),
599 	I40E_PTT(127, IP, IPV6, NOF, IP_GRENAT_MAC, IPV4, NOF, UDP,  PAY4),
600 	I40E_PTT_UNUSED_ENTRY(128),
601 	I40E_PTT(129, IP, IPV6, NOF, IP_GRENAT_MAC, IPV4, NOF, TCP,  PAY4),
602 	I40E_PTT(130, IP, IPV6, NOF, IP_GRENAT_MAC, IPV4, NOF, SCTP, PAY4),
603 	I40E_PTT(131, IP, IPV6, NOF, IP_GRENAT_MAC, IPV4, NOF, ICMP, PAY4),
604 
605 	/* IPv6 --> GRE/NAT -> MAC -> IPv6 */
606 	I40E_PTT(132, IP, IPV6, NOF, IP_GRENAT_MAC, IPV6, FRG, NONE, PAY3),
607 	I40E_PTT(133, IP, IPV6, NOF, IP_GRENAT_MAC, IPV6, NOF, NONE, PAY3),
608 	I40E_PTT(134, IP, IPV6, NOF, IP_GRENAT_MAC, IPV6, NOF, UDP,  PAY4),
609 	I40E_PTT_UNUSED_ENTRY(135),
610 	I40E_PTT(136, IP, IPV6, NOF, IP_GRENAT_MAC, IPV6, NOF, TCP,  PAY4),
611 	I40E_PTT(137, IP, IPV6, NOF, IP_GRENAT_MAC, IPV6, NOF, SCTP, PAY4),
612 	I40E_PTT(138, IP, IPV6, NOF, IP_GRENAT_MAC, IPV6, NOF, ICMP, PAY4),
613 
614 	/* IPv6 --> GRE/NAT -> MAC/VLAN */
615 	I40E_PTT(139, IP, IPV6, NOF, IP_GRENAT_MAC_VLAN, NONE, NOF, NONE, PAY3),
616 
617 	/* IPv6 --> GRE/NAT -> MAC/VLAN --> IPv4 */
618 	I40E_PTT(140, IP, IPV6, NOF, IP_GRENAT_MAC_VLAN, IPV4, FRG, NONE, PAY3),
619 	I40E_PTT(141, IP, IPV6, NOF, IP_GRENAT_MAC_VLAN, IPV4, NOF, NONE, PAY3),
620 	I40E_PTT(142, IP, IPV6, NOF, IP_GRENAT_MAC_VLAN, IPV4, NOF, UDP,  PAY4),
621 	I40E_PTT_UNUSED_ENTRY(143),
622 	I40E_PTT(144, IP, IPV6, NOF, IP_GRENAT_MAC_VLAN, IPV4, NOF, TCP,  PAY4),
623 	I40E_PTT(145, IP, IPV6, NOF, IP_GRENAT_MAC_VLAN, IPV4, NOF, SCTP, PAY4),
624 	I40E_PTT(146, IP, IPV6, NOF, IP_GRENAT_MAC_VLAN, IPV4, NOF, ICMP, PAY4),
625 
626 	/* IPv6 --> GRE/NAT -> MAC/VLAN --> IPv6 */
627 	I40E_PTT(147, IP, IPV6, NOF, IP_GRENAT_MAC_VLAN, IPV6, FRG, NONE, PAY3),
628 	I40E_PTT(148, IP, IPV6, NOF, IP_GRENAT_MAC_VLAN, IPV6, NOF, NONE, PAY3),
629 	I40E_PTT(149, IP, IPV6, NOF, IP_GRENAT_MAC_VLAN, IPV6, NOF, UDP,  PAY4),
630 	I40E_PTT_UNUSED_ENTRY(150),
631 	I40E_PTT(151, IP, IPV6, NOF, IP_GRENAT_MAC_VLAN, IPV6, NOF, TCP,  PAY4),
632 	I40E_PTT(152, IP, IPV6, NOF, IP_GRENAT_MAC_VLAN, IPV6, NOF, SCTP, PAY4),
633 	I40E_PTT(153, IP, IPV6, NOF, IP_GRENAT_MAC_VLAN, IPV6, NOF, ICMP, PAY4),
634 
635 	/* unused entries */
636 	[154 ... 255] = { 0, 0, 0, 0, 0, 0, 0, 0, 0 }
637 };
638 
639 /**
640  * i40e_init_shared_code - Initialize the shared code
641  * @hw: pointer to hardware structure
642  *
643  * This assigns the MAC type and PHY code and inits the NVM.
644  * Does not touch the hardware. This function must be called prior to any
645  * other function in the shared code. The i40e_hw structure should be
646  * memset to 0 prior to calling this function.  The following fields in
647  * hw structure should be filled in prior to calling this function:
648  * hw_addr, back, device_id, vendor_id, subsystem_device_id,
649  * subsystem_vendor_id, and revision_id
650  **/
651 int i40e_init_shared_code(struct i40e_hw *hw)
652 {
653 	u32 port, ari, func_rid;
654 	int status = 0;
655 
656 	i40e_set_mac_type(hw);
657 
658 	switch (hw->mac.type) {
659 	case I40E_MAC_XL710:
660 	case I40E_MAC_X722:
661 		break;
662 	default:
663 		return I40E_ERR_DEVICE_NOT_SUPPORTED;
664 	}
665 
666 	hw->phy.get_link_info = true;
667 
668 	/* Determine port number and PF number*/
669 	port = (rd32(hw, I40E_PFGEN_PORTNUM) & I40E_PFGEN_PORTNUM_PORT_NUM_MASK)
670 					   >> I40E_PFGEN_PORTNUM_PORT_NUM_SHIFT;
671 	hw->port = (u8)port;
672 	ari = (rd32(hw, I40E_GLPCI_CAPSUP) & I40E_GLPCI_CAPSUP_ARI_EN_MASK) >>
673 						 I40E_GLPCI_CAPSUP_ARI_EN_SHIFT;
674 	func_rid = rd32(hw, I40E_PF_FUNC_RID);
675 	if (ari)
676 		hw->pf_id = (u8)(func_rid & 0xff);
677 	else
678 		hw->pf_id = (u8)(func_rid & 0x7);
679 
680 	status = i40e_init_nvm(hw);
681 	return status;
682 }
683 
684 /**
685  * i40e_aq_mac_address_read - Retrieve the MAC addresses
686  * @hw: pointer to the hw struct
687  * @flags: a return indicator of what addresses were added to the addr store
688  * @addrs: the requestor's mac addr store
689  * @cmd_details: pointer to command details structure or NULL
690  **/
691 static int
692 i40e_aq_mac_address_read(struct i40e_hw *hw,
693 			 u16 *flags,
694 			 struct i40e_aqc_mac_address_read_data *addrs,
695 			 struct i40e_asq_cmd_details *cmd_details)
696 {
697 	struct i40e_aq_desc desc;
698 	struct i40e_aqc_mac_address_read *cmd_data =
699 		(struct i40e_aqc_mac_address_read *)&desc.params.raw;
700 	int status;
701 
702 	i40e_fill_default_direct_cmd_desc(&desc, i40e_aqc_opc_mac_address_read);
703 	desc.flags |= cpu_to_le16(I40E_AQ_FLAG_BUF);
704 
705 	status = i40e_asq_send_command(hw, &desc, addrs,
706 				       sizeof(*addrs), cmd_details);
707 	*flags = le16_to_cpu(cmd_data->command_flags);
708 
709 	return status;
710 }
711 
712 /**
713  * i40e_aq_mac_address_write - Change the MAC addresses
714  * @hw: pointer to the hw struct
715  * @flags: indicates which MAC to be written
716  * @mac_addr: address to write
717  * @cmd_details: pointer to command details structure or NULL
718  **/
719 int i40e_aq_mac_address_write(struct i40e_hw *hw,
720 			      u16 flags, u8 *mac_addr,
721 			      struct i40e_asq_cmd_details *cmd_details)
722 {
723 	struct i40e_aq_desc desc;
724 	struct i40e_aqc_mac_address_write *cmd_data =
725 		(struct i40e_aqc_mac_address_write *)&desc.params.raw;
726 	int status;
727 
728 	i40e_fill_default_direct_cmd_desc(&desc,
729 					  i40e_aqc_opc_mac_address_write);
730 	cmd_data->command_flags = cpu_to_le16(flags);
731 	cmd_data->mac_sah = cpu_to_le16((u16)mac_addr[0] << 8 | mac_addr[1]);
732 	cmd_data->mac_sal = cpu_to_le32(((u32)mac_addr[2] << 24) |
733 					((u32)mac_addr[3] << 16) |
734 					((u32)mac_addr[4] << 8) |
735 					mac_addr[5]);
736 
737 	status = i40e_asq_send_command(hw, &desc, NULL, 0, cmd_details);
738 
739 	return status;
740 }
741 
742 /**
743  * i40e_get_mac_addr - get MAC address
744  * @hw: pointer to the HW structure
745  * @mac_addr: pointer to MAC address
746  *
747  * Reads the adapter's MAC address from register
748  **/
749 int i40e_get_mac_addr(struct i40e_hw *hw, u8 *mac_addr)
750 {
751 	struct i40e_aqc_mac_address_read_data addrs;
752 	u16 flags = 0;
753 	int status;
754 
755 	status = i40e_aq_mac_address_read(hw, &flags, &addrs, NULL);
756 
757 	if (flags & I40E_AQC_LAN_ADDR_VALID)
758 		ether_addr_copy(mac_addr, addrs.pf_lan_mac);
759 
760 	return status;
761 }
762 
763 /**
764  * i40e_get_port_mac_addr - get Port MAC address
765  * @hw: pointer to the HW structure
766  * @mac_addr: pointer to Port MAC address
767  *
768  * Reads the adapter's Port MAC address
769  **/
770 int i40e_get_port_mac_addr(struct i40e_hw *hw, u8 *mac_addr)
771 {
772 	struct i40e_aqc_mac_address_read_data addrs;
773 	u16 flags = 0;
774 	int status;
775 
776 	status = i40e_aq_mac_address_read(hw, &flags, &addrs, NULL);
777 	if (status)
778 		return status;
779 
780 	if (flags & I40E_AQC_PORT_ADDR_VALID)
781 		ether_addr_copy(mac_addr, addrs.port_mac);
782 	else
783 		status = I40E_ERR_INVALID_MAC_ADDR;
784 
785 	return status;
786 }
787 
788 /**
789  * i40e_pre_tx_queue_cfg - pre tx queue configure
790  * @hw: pointer to the HW structure
791  * @queue: target PF queue index
792  * @enable: state change request
793  *
794  * Handles hw requirement to indicate intention to enable
795  * or disable target queue.
796  **/
797 void i40e_pre_tx_queue_cfg(struct i40e_hw *hw, u32 queue, bool enable)
798 {
799 	u32 abs_queue_idx = hw->func_caps.base_queue + queue;
800 	u32 reg_block = 0;
801 	u32 reg_val;
802 
803 	if (abs_queue_idx >= 128) {
804 		reg_block = abs_queue_idx / 128;
805 		abs_queue_idx %= 128;
806 	}
807 
808 	reg_val = rd32(hw, I40E_GLLAN_TXPRE_QDIS(reg_block));
809 	reg_val &= ~I40E_GLLAN_TXPRE_QDIS_QINDX_MASK;
810 	reg_val |= (abs_queue_idx << I40E_GLLAN_TXPRE_QDIS_QINDX_SHIFT);
811 
812 	if (enable)
813 		reg_val |= I40E_GLLAN_TXPRE_QDIS_CLEAR_QDIS_MASK;
814 	else
815 		reg_val |= I40E_GLLAN_TXPRE_QDIS_SET_QDIS_MASK;
816 
817 	wr32(hw, I40E_GLLAN_TXPRE_QDIS(reg_block), reg_val);
818 }
819 
820 /**
821  *  i40e_read_pba_string - Reads part number string from EEPROM
822  *  @hw: pointer to hardware structure
823  *  @pba_num: stores the part number string from the EEPROM
824  *  @pba_num_size: part number string buffer length
825  *
826  *  Reads the part number string from the EEPROM.
827  **/
828 int i40e_read_pba_string(struct i40e_hw *hw, u8 *pba_num,
829 			 u32 pba_num_size)
830 {
831 	u16 pba_word = 0;
832 	u16 pba_size = 0;
833 	u16 pba_ptr = 0;
834 	int status = 0;
835 	u16 i = 0;
836 
837 	status = i40e_read_nvm_word(hw, I40E_SR_PBA_FLAGS, &pba_word);
838 	if (status || (pba_word != 0xFAFA)) {
839 		hw_dbg(hw, "Failed to read PBA flags or flag is invalid.\n");
840 		return status;
841 	}
842 
843 	status = i40e_read_nvm_word(hw, I40E_SR_PBA_BLOCK_PTR, &pba_ptr);
844 	if (status) {
845 		hw_dbg(hw, "Failed to read PBA Block pointer.\n");
846 		return status;
847 	}
848 
849 	status = i40e_read_nvm_word(hw, pba_ptr, &pba_size);
850 	if (status) {
851 		hw_dbg(hw, "Failed to read PBA Block size.\n");
852 		return status;
853 	}
854 
855 	/* Subtract one to get PBA word count (PBA Size word is included in
856 	 * total size)
857 	 */
858 	pba_size--;
859 	if (pba_num_size < (((u32)pba_size * 2) + 1)) {
860 		hw_dbg(hw, "Buffer too small for PBA data.\n");
861 		return I40E_ERR_PARAM;
862 	}
863 
864 	for (i = 0; i < pba_size; i++) {
865 		status = i40e_read_nvm_word(hw, (pba_ptr + 1) + i, &pba_word);
866 		if (status) {
867 			hw_dbg(hw, "Failed to read PBA Block word %d.\n", i);
868 			return status;
869 		}
870 
871 		pba_num[(i * 2)] = (pba_word >> 8) & 0xFF;
872 		pba_num[(i * 2) + 1] = pba_word & 0xFF;
873 	}
874 	pba_num[(pba_size * 2)] = '\0';
875 
876 	return status;
877 }
878 
879 /**
880  * i40e_get_media_type - Gets media type
881  * @hw: pointer to the hardware structure
882  **/
883 static enum i40e_media_type i40e_get_media_type(struct i40e_hw *hw)
884 {
885 	enum i40e_media_type media;
886 
887 	switch (hw->phy.link_info.phy_type) {
888 	case I40E_PHY_TYPE_10GBASE_SR:
889 	case I40E_PHY_TYPE_10GBASE_LR:
890 	case I40E_PHY_TYPE_1000BASE_SX:
891 	case I40E_PHY_TYPE_1000BASE_LX:
892 	case I40E_PHY_TYPE_40GBASE_SR4:
893 	case I40E_PHY_TYPE_40GBASE_LR4:
894 	case I40E_PHY_TYPE_25GBASE_LR:
895 	case I40E_PHY_TYPE_25GBASE_SR:
896 		media = I40E_MEDIA_TYPE_FIBER;
897 		break;
898 	case I40E_PHY_TYPE_100BASE_TX:
899 	case I40E_PHY_TYPE_1000BASE_T:
900 	case I40E_PHY_TYPE_2_5GBASE_T_LINK_STATUS:
901 	case I40E_PHY_TYPE_5GBASE_T_LINK_STATUS:
902 	case I40E_PHY_TYPE_10GBASE_T:
903 		media = I40E_MEDIA_TYPE_BASET;
904 		break;
905 	case I40E_PHY_TYPE_10GBASE_CR1_CU:
906 	case I40E_PHY_TYPE_40GBASE_CR4_CU:
907 	case I40E_PHY_TYPE_10GBASE_CR1:
908 	case I40E_PHY_TYPE_40GBASE_CR4:
909 	case I40E_PHY_TYPE_10GBASE_SFPP_CU:
910 	case I40E_PHY_TYPE_40GBASE_AOC:
911 	case I40E_PHY_TYPE_10GBASE_AOC:
912 	case I40E_PHY_TYPE_25GBASE_CR:
913 	case I40E_PHY_TYPE_25GBASE_AOC:
914 	case I40E_PHY_TYPE_25GBASE_ACC:
915 		media = I40E_MEDIA_TYPE_DA;
916 		break;
917 	case I40E_PHY_TYPE_1000BASE_KX:
918 	case I40E_PHY_TYPE_10GBASE_KX4:
919 	case I40E_PHY_TYPE_10GBASE_KR:
920 	case I40E_PHY_TYPE_40GBASE_KR4:
921 	case I40E_PHY_TYPE_20GBASE_KR2:
922 	case I40E_PHY_TYPE_25GBASE_KR:
923 		media = I40E_MEDIA_TYPE_BACKPLANE;
924 		break;
925 	case I40E_PHY_TYPE_SGMII:
926 	case I40E_PHY_TYPE_XAUI:
927 	case I40E_PHY_TYPE_XFI:
928 	case I40E_PHY_TYPE_XLAUI:
929 	case I40E_PHY_TYPE_XLPPI:
930 	default:
931 		media = I40E_MEDIA_TYPE_UNKNOWN;
932 		break;
933 	}
934 
935 	return media;
936 }
937 
938 /**
939  * i40e_poll_globr - Poll for Global Reset completion
940  * @hw: pointer to the hardware structure
941  * @retry_limit: how many times to retry before failure
942  **/
943 static int i40e_poll_globr(struct i40e_hw *hw,
944 			   u32 retry_limit)
945 {
946 	u32 cnt, reg = 0;
947 
948 	for (cnt = 0; cnt < retry_limit; cnt++) {
949 		reg = rd32(hw, I40E_GLGEN_RSTAT);
950 		if (!(reg & I40E_GLGEN_RSTAT_DEVSTATE_MASK))
951 			return 0;
952 		msleep(100);
953 	}
954 
955 	hw_dbg(hw, "Global reset failed.\n");
956 	hw_dbg(hw, "I40E_GLGEN_RSTAT = 0x%x\n", reg);
957 
958 	return I40E_ERR_RESET_FAILED;
959 }
960 
961 #define I40E_PF_RESET_WAIT_COUNT_A0	200
962 #define I40E_PF_RESET_WAIT_COUNT	200
963 /**
964  * i40e_pf_reset - Reset the PF
965  * @hw: pointer to the hardware structure
966  *
967  * Assuming someone else has triggered a global reset,
968  * assure the global reset is complete and then reset the PF
969  **/
970 int i40e_pf_reset(struct i40e_hw *hw)
971 {
972 	u32 cnt = 0;
973 	u32 cnt1 = 0;
974 	u32 reg = 0;
975 	u32 grst_del;
976 
977 	/* Poll for Global Reset steady state in case of recent GRST.
978 	 * The grst delay value is in 100ms units, and we'll wait a
979 	 * couple counts longer to be sure we don't just miss the end.
980 	 */
981 	grst_del = (rd32(hw, I40E_GLGEN_RSTCTL) &
982 		    I40E_GLGEN_RSTCTL_GRSTDEL_MASK) >>
983 		    I40E_GLGEN_RSTCTL_GRSTDEL_SHIFT;
984 
985 	/* It can take upto 15 secs for GRST steady state.
986 	 * Bump it to 16 secs max to be safe.
987 	 */
988 	grst_del = grst_del * 20;
989 
990 	for (cnt = 0; cnt < grst_del; cnt++) {
991 		reg = rd32(hw, I40E_GLGEN_RSTAT);
992 		if (!(reg & I40E_GLGEN_RSTAT_DEVSTATE_MASK))
993 			break;
994 		msleep(100);
995 	}
996 	if (reg & I40E_GLGEN_RSTAT_DEVSTATE_MASK) {
997 		hw_dbg(hw, "Global reset polling failed to complete.\n");
998 		return I40E_ERR_RESET_FAILED;
999 	}
1000 
1001 	/* Now Wait for the FW to be ready */
1002 	for (cnt1 = 0; cnt1 < I40E_PF_RESET_WAIT_COUNT; cnt1++) {
1003 		reg = rd32(hw, I40E_GLNVM_ULD);
1004 		reg &= (I40E_GLNVM_ULD_CONF_CORE_DONE_MASK |
1005 			I40E_GLNVM_ULD_CONF_GLOBAL_DONE_MASK);
1006 		if (reg == (I40E_GLNVM_ULD_CONF_CORE_DONE_MASK |
1007 			    I40E_GLNVM_ULD_CONF_GLOBAL_DONE_MASK)) {
1008 			hw_dbg(hw, "Core and Global modules ready %d\n", cnt1);
1009 			break;
1010 		}
1011 		usleep_range(10000, 20000);
1012 	}
1013 	if (!(reg & (I40E_GLNVM_ULD_CONF_CORE_DONE_MASK |
1014 		     I40E_GLNVM_ULD_CONF_GLOBAL_DONE_MASK))) {
1015 		hw_dbg(hw, "wait for FW Reset complete timedout\n");
1016 		hw_dbg(hw, "I40E_GLNVM_ULD = 0x%x\n", reg);
1017 		return I40E_ERR_RESET_FAILED;
1018 	}
1019 
1020 	/* If there was a Global Reset in progress when we got here,
1021 	 * we don't need to do the PF Reset
1022 	 */
1023 	if (!cnt) {
1024 		u32 reg2 = 0;
1025 		if (hw->revision_id == 0)
1026 			cnt = I40E_PF_RESET_WAIT_COUNT_A0;
1027 		else
1028 			cnt = I40E_PF_RESET_WAIT_COUNT;
1029 		reg = rd32(hw, I40E_PFGEN_CTRL);
1030 		wr32(hw, I40E_PFGEN_CTRL,
1031 		     (reg | I40E_PFGEN_CTRL_PFSWR_MASK));
1032 		for (; cnt; cnt--) {
1033 			reg = rd32(hw, I40E_PFGEN_CTRL);
1034 			if (!(reg & I40E_PFGEN_CTRL_PFSWR_MASK))
1035 				break;
1036 			reg2 = rd32(hw, I40E_GLGEN_RSTAT);
1037 			if (reg2 & I40E_GLGEN_RSTAT_DEVSTATE_MASK)
1038 				break;
1039 			usleep_range(1000, 2000);
1040 		}
1041 		if (reg2 & I40E_GLGEN_RSTAT_DEVSTATE_MASK) {
1042 			if (i40e_poll_globr(hw, grst_del))
1043 				return I40E_ERR_RESET_FAILED;
1044 		} else if (reg & I40E_PFGEN_CTRL_PFSWR_MASK) {
1045 			hw_dbg(hw, "PF reset polling failed to complete.\n");
1046 			return I40E_ERR_RESET_FAILED;
1047 		}
1048 	}
1049 
1050 	i40e_clear_pxe_mode(hw);
1051 
1052 	return 0;
1053 }
1054 
1055 /**
1056  * i40e_clear_hw - clear out any left over hw state
1057  * @hw: pointer to the hw struct
1058  *
1059  * Clear queues and interrupts, typically called at init time,
1060  * but after the capabilities have been found so we know how many
1061  * queues and msix vectors have been allocated.
1062  **/
1063 void i40e_clear_hw(struct i40e_hw *hw)
1064 {
1065 	u32 num_queues, base_queue;
1066 	u32 num_pf_int;
1067 	u32 num_vf_int;
1068 	u32 num_vfs;
1069 	u32 i, j;
1070 	u32 val;
1071 	u32 eol = 0x7ff;
1072 
1073 	/* get number of interrupts, queues, and VFs */
1074 	val = rd32(hw, I40E_GLPCI_CNF2);
1075 	num_pf_int = (val & I40E_GLPCI_CNF2_MSI_X_PF_N_MASK) >>
1076 		     I40E_GLPCI_CNF2_MSI_X_PF_N_SHIFT;
1077 	num_vf_int = (val & I40E_GLPCI_CNF2_MSI_X_VF_N_MASK) >>
1078 		     I40E_GLPCI_CNF2_MSI_X_VF_N_SHIFT;
1079 
1080 	val = rd32(hw, I40E_PFLAN_QALLOC);
1081 	base_queue = (val & I40E_PFLAN_QALLOC_FIRSTQ_MASK) >>
1082 		     I40E_PFLAN_QALLOC_FIRSTQ_SHIFT;
1083 	j = (val & I40E_PFLAN_QALLOC_LASTQ_MASK) >>
1084 	    I40E_PFLAN_QALLOC_LASTQ_SHIFT;
1085 	if (val & I40E_PFLAN_QALLOC_VALID_MASK)
1086 		num_queues = (j - base_queue) + 1;
1087 	else
1088 		num_queues = 0;
1089 
1090 	val = rd32(hw, I40E_PF_VT_PFALLOC);
1091 	i = (val & I40E_PF_VT_PFALLOC_FIRSTVF_MASK) >>
1092 	    I40E_PF_VT_PFALLOC_FIRSTVF_SHIFT;
1093 	j = (val & I40E_PF_VT_PFALLOC_LASTVF_MASK) >>
1094 	    I40E_PF_VT_PFALLOC_LASTVF_SHIFT;
1095 	if (val & I40E_PF_VT_PFALLOC_VALID_MASK)
1096 		num_vfs = (j - i) + 1;
1097 	else
1098 		num_vfs = 0;
1099 
1100 	/* stop all the interrupts */
1101 	wr32(hw, I40E_PFINT_ICR0_ENA, 0);
1102 	val = 0x3 << I40E_PFINT_DYN_CTLN_ITR_INDX_SHIFT;
1103 	for (i = 0; i < num_pf_int - 2; i++)
1104 		wr32(hw, I40E_PFINT_DYN_CTLN(i), val);
1105 
1106 	/* Set the FIRSTQ_INDX field to 0x7FF in PFINT_LNKLSTx */
1107 	val = eol << I40E_PFINT_LNKLST0_FIRSTQ_INDX_SHIFT;
1108 	wr32(hw, I40E_PFINT_LNKLST0, val);
1109 	for (i = 0; i < num_pf_int - 2; i++)
1110 		wr32(hw, I40E_PFINT_LNKLSTN(i), val);
1111 	val = eol << I40E_VPINT_LNKLST0_FIRSTQ_INDX_SHIFT;
1112 	for (i = 0; i < num_vfs; i++)
1113 		wr32(hw, I40E_VPINT_LNKLST0(i), val);
1114 	for (i = 0; i < num_vf_int - 2; i++)
1115 		wr32(hw, I40E_VPINT_LNKLSTN(i), val);
1116 
1117 	/* warn the HW of the coming Tx disables */
1118 	for (i = 0; i < num_queues; i++) {
1119 		u32 abs_queue_idx = base_queue + i;
1120 		u32 reg_block = 0;
1121 
1122 		if (abs_queue_idx >= 128) {
1123 			reg_block = abs_queue_idx / 128;
1124 			abs_queue_idx %= 128;
1125 		}
1126 
1127 		val = rd32(hw, I40E_GLLAN_TXPRE_QDIS(reg_block));
1128 		val &= ~I40E_GLLAN_TXPRE_QDIS_QINDX_MASK;
1129 		val |= (abs_queue_idx << I40E_GLLAN_TXPRE_QDIS_QINDX_SHIFT);
1130 		val |= I40E_GLLAN_TXPRE_QDIS_SET_QDIS_MASK;
1131 
1132 		wr32(hw, I40E_GLLAN_TXPRE_QDIS(reg_block), val);
1133 	}
1134 	udelay(400);
1135 
1136 	/* stop all the queues */
1137 	for (i = 0; i < num_queues; i++) {
1138 		wr32(hw, I40E_QINT_TQCTL(i), 0);
1139 		wr32(hw, I40E_QTX_ENA(i), 0);
1140 		wr32(hw, I40E_QINT_RQCTL(i), 0);
1141 		wr32(hw, I40E_QRX_ENA(i), 0);
1142 	}
1143 
1144 	/* short wait for all queue disables to settle */
1145 	udelay(50);
1146 }
1147 
1148 /**
1149  * i40e_clear_pxe_mode - clear pxe operations mode
1150  * @hw: pointer to the hw struct
1151  *
1152  * Make sure all PXE mode settings are cleared, including things
1153  * like descriptor fetch/write-back mode.
1154  **/
1155 void i40e_clear_pxe_mode(struct i40e_hw *hw)
1156 {
1157 	u32 reg;
1158 
1159 	if (i40e_check_asq_alive(hw))
1160 		i40e_aq_clear_pxe_mode(hw, NULL);
1161 
1162 	/* Clear single descriptor fetch/write-back mode */
1163 	reg = rd32(hw, I40E_GLLAN_RCTL_0);
1164 
1165 	if (hw->revision_id == 0) {
1166 		/* As a work around clear PXE_MODE instead of setting it */
1167 		wr32(hw, I40E_GLLAN_RCTL_0, (reg & (~I40E_GLLAN_RCTL_0_PXE_MODE_MASK)));
1168 	} else {
1169 		wr32(hw, I40E_GLLAN_RCTL_0, (reg | I40E_GLLAN_RCTL_0_PXE_MODE_MASK));
1170 	}
1171 }
1172 
1173 /**
1174  * i40e_led_is_mine - helper to find matching led
1175  * @hw: pointer to the hw struct
1176  * @idx: index into GPIO registers
1177  *
1178  * returns: 0 if no match, otherwise the value of the GPIO_CTL register
1179  */
1180 static u32 i40e_led_is_mine(struct i40e_hw *hw, int idx)
1181 {
1182 	u32 gpio_val = 0;
1183 	u32 port;
1184 
1185 	if (!I40E_IS_X710TL_DEVICE(hw->device_id) &&
1186 	    !hw->func_caps.led[idx])
1187 		return 0;
1188 	gpio_val = rd32(hw, I40E_GLGEN_GPIO_CTL(idx));
1189 	port = (gpio_val & I40E_GLGEN_GPIO_CTL_PRT_NUM_MASK) >>
1190 		I40E_GLGEN_GPIO_CTL_PRT_NUM_SHIFT;
1191 
1192 	/* if PRT_NUM_NA is 1 then this LED is not port specific, OR
1193 	 * if it is not our port then ignore
1194 	 */
1195 	if ((gpio_val & I40E_GLGEN_GPIO_CTL_PRT_NUM_NA_MASK) ||
1196 	    (port != hw->port))
1197 		return 0;
1198 
1199 	return gpio_val;
1200 }
1201 
1202 #define I40E_FW_LED BIT(4)
1203 #define I40E_LED_MODE_VALID (I40E_GLGEN_GPIO_CTL_LED_MODE_MASK >> \
1204 			     I40E_GLGEN_GPIO_CTL_LED_MODE_SHIFT)
1205 
1206 #define I40E_LED0 22
1207 
1208 #define I40E_PIN_FUNC_SDP 0x0
1209 #define I40E_PIN_FUNC_LED 0x1
1210 
1211 /**
1212  * i40e_led_get - return current on/off mode
1213  * @hw: pointer to the hw struct
1214  *
1215  * The value returned is the 'mode' field as defined in the
1216  * GPIO register definitions: 0x0 = off, 0xf = on, and other
1217  * values are variations of possible behaviors relating to
1218  * blink, link, and wire.
1219  **/
1220 u32 i40e_led_get(struct i40e_hw *hw)
1221 {
1222 	u32 mode = 0;
1223 	int i;
1224 
1225 	/* as per the documentation GPIO 22-29 are the LED
1226 	 * GPIO pins named LED0..LED7
1227 	 */
1228 	for (i = I40E_LED0; i <= I40E_GLGEN_GPIO_CTL_MAX_INDEX; i++) {
1229 		u32 gpio_val = i40e_led_is_mine(hw, i);
1230 
1231 		if (!gpio_val)
1232 			continue;
1233 
1234 		mode = (gpio_val & I40E_GLGEN_GPIO_CTL_LED_MODE_MASK) >>
1235 			I40E_GLGEN_GPIO_CTL_LED_MODE_SHIFT;
1236 		break;
1237 	}
1238 
1239 	return mode;
1240 }
1241 
1242 /**
1243  * i40e_led_set - set new on/off mode
1244  * @hw: pointer to the hw struct
1245  * @mode: 0=off, 0xf=on (else see manual for mode details)
1246  * @blink: true if the LED should blink when on, false if steady
1247  *
1248  * if this function is used to turn on the blink it should
1249  * be used to disable the blink when restoring the original state.
1250  **/
1251 void i40e_led_set(struct i40e_hw *hw, u32 mode, bool blink)
1252 {
1253 	int i;
1254 
1255 	if (mode & ~I40E_LED_MODE_VALID) {
1256 		hw_dbg(hw, "invalid mode passed in %X\n", mode);
1257 		return;
1258 	}
1259 
1260 	/* as per the documentation GPIO 22-29 are the LED
1261 	 * GPIO pins named LED0..LED7
1262 	 */
1263 	for (i = I40E_LED0; i <= I40E_GLGEN_GPIO_CTL_MAX_INDEX; i++) {
1264 		u32 gpio_val = i40e_led_is_mine(hw, i);
1265 
1266 		if (!gpio_val)
1267 			continue;
1268 
1269 		if (I40E_IS_X710TL_DEVICE(hw->device_id)) {
1270 			u32 pin_func = 0;
1271 
1272 			if (mode & I40E_FW_LED)
1273 				pin_func = I40E_PIN_FUNC_SDP;
1274 			else
1275 				pin_func = I40E_PIN_FUNC_LED;
1276 
1277 			gpio_val &= ~I40E_GLGEN_GPIO_CTL_PIN_FUNC_MASK;
1278 			gpio_val |= ((pin_func <<
1279 				     I40E_GLGEN_GPIO_CTL_PIN_FUNC_SHIFT) &
1280 				     I40E_GLGEN_GPIO_CTL_PIN_FUNC_MASK);
1281 		}
1282 		gpio_val &= ~I40E_GLGEN_GPIO_CTL_LED_MODE_MASK;
1283 		/* this & is a bit of paranoia, but serves as a range check */
1284 		gpio_val |= ((mode << I40E_GLGEN_GPIO_CTL_LED_MODE_SHIFT) &
1285 			     I40E_GLGEN_GPIO_CTL_LED_MODE_MASK);
1286 
1287 		if (blink)
1288 			gpio_val |= BIT(I40E_GLGEN_GPIO_CTL_LED_BLINK_SHIFT);
1289 		else
1290 			gpio_val &= ~BIT(I40E_GLGEN_GPIO_CTL_LED_BLINK_SHIFT);
1291 
1292 		wr32(hw, I40E_GLGEN_GPIO_CTL(i), gpio_val);
1293 		break;
1294 	}
1295 }
1296 
1297 /* Admin command wrappers */
1298 
1299 /**
1300  * i40e_aq_get_phy_capabilities
1301  * @hw: pointer to the hw struct
1302  * @abilities: structure for PHY capabilities to be filled
1303  * @qualified_modules: report Qualified Modules
1304  * @report_init: report init capabilities (active are default)
1305  * @cmd_details: pointer to command details structure or NULL
1306  *
1307  * Returns the various PHY abilities supported on the Port.
1308  **/
1309 int
1310 i40e_aq_get_phy_capabilities(struct i40e_hw *hw,
1311 			     bool qualified_modules, bool report_init,
1312 			     struct i40e_aq_get_phy_abilities_resp *abilities,
1313 			     struct i40e_asq_cmd_details *cmd_details)
1314 {
1315 	u16 abilities_size = sizeof(struct i40e_aq_get_phy_abilities_resp);
1316 	u16 max_delay = I40E_MAX_PHY_TIMEOUT, total_delay = 0;
1317 	struct i40e_aq_desc desc;
1318 	int status;
1319 
1320 	if (!abilities)
1321 		return I40E_ERR_PARAM;
1322 
1323 	do {
1324 		i40e_fill_default_direct_cmd_desc(&desc,
1325 					       i40e_aqc_opc_get_phy_abilities);
1326 
1327 		desc.flags |= cpu_to_le16((u16)I40E_AQ_FLAG_BUF);
1328 		if (abilities_size > I40E_AQ_LARGE_BUF)
1329 			desc.flags |= cpu_to_le16((u16)I40E_AQ_FLAG_LB);
1330 
1331 		if (qualified_modules)
1332 			desc.params.external.param0 |=
1333 			cpu_to_le32(I40E_AQ_PHY_REPORT_QUALIFIED_MODULES);
1334 
1335 		if (report_init)
1336 			desc.params.external.param0 |=
1337 			cpu_to_le32(I40E_AQ_PHY_REPORT_INITIAL_VALUES);
1338 
1339 		status = i40e_asq_send_command(hw, &desc, abilities,
1340 					       abilities_size, cmd_details);
1341 
1342 		switch (hw->aq.asq_last_status) {
1343 		case I40E_AQ_RC_EIO:
1344 			status = I40E_ERR_UNKNOWN_PHY;
1345 			break;
1346 		case I40E_AQ_RC_EAGAIN:
1347 			usleep_range(1000, 2000);
1348 			total_delay++;
1349 			status = I40E_ERR_TIMEOUT;
1350 			break;
1351 		/* also covers I40E_AQ_RC_OK */
1352 		default:
1353 			break;
1354 		}
1355 
1356 	} while ((hw->aq.asq_last_status == I40E_AQ_RC_EAGAIN) &&
1357 		(total_delay < max_delay));
1358 
1359 	if (status)
1360 		return status;
1361 
1362 	if (report_init) {
1363 		if (hw->mac.type ==  I40E_MAC_XL710 &&
1364 		    hw->aq.api_maj_ver == I40E_FW_API_VERSION_MAJOR &&
1365 		    hw->aq.api_min_ver >= I40E_MINOR_VER_GET_LINK_INFO_XL710) {
1366 			status = i40e_aq_get_link_info(hw, true, NULL, NULL);
1367 		} else {
1368 			hw->phy.phy_types = le32_to_cpu(abilities->phy_type);
1369 			hw->phy.phy_types |=
1370 					((u64)abilities->phy_type_ext << 32);
1371 		}
1372 	}
1373 
1374 	return status;
1375 }
1376 
1377 /**
1378  * i40e_aq_set_phy_config
1379  * @hw: pointer to the hw struct
1380  * @config: structure with PHY configuration to be set
1381  * @cmd_details: pointer to command details structure or NULL
1382  *
1383  * Set the various PHY configuration parameters
1384  * supported on the Port.One or more of the Set PHY config parameters may be
1385  * ignored in an MFP mode as the PF may not have the privilege to set some
1386  * of the PHY Config parameters. This status will be indicated by the
1387  * command response.
1388  **/
1389 int i40e_aq_set_phy_config(struct i40e_hw *hw,
1390 			   struct i40e_aq_set_phy_config *config,
1391 			   struct i40e_asq_cmd_details *cmd_details)
1392 {
1393 	struct i40e_aq_desc desc;
1394 	struct i40e_aq_set_phy_config *cmd =
1395 			(struct i40e_aq_set_phy_config *)&desc.params.raw;
1396 	int status;
1397 
1398 	if (!config)
1399 		return I40E_ERR_PARAM;
1400 
1401 	i40e_fill_default_direct_cmd_desc(&desc,
1402 					  i40e_aqc_opc_set_phy_config);
1403 
1404 	*cmd = *config;
1405 
1406 	status = i40e_asq_send_command(hw, &desc, NULL, 0, cmd_details);
1407 
1408 	return status;
1409 }
1410 
1411 static noinline_for_stack int
1412 i40e_set_fc_status(struct i40e_hw *hw,
1413 		   struct i40e_aq_get_phy_abilities_resp *abilities,
1414 		   bool atomic_restart)
1415 {
1416 	struct i40e_aq_set_phy_config config;
1417 	enum i40e_fc_mode fc_mode = hw->fc.requested_mode;
1418 	u8 pause_mask = 0x0;
1419 
1420 	switch (fc_mode) {
1421 	case I40E_FC_FULL:
1422 		pause_mask |= I40E_AQ_PHY_FLAG_PAUSE_TX;
1423 		pause_mask |= I40E_AQ_PHY_FLAG_PAUSE_RX;
1424 		break;
1425 	case I40E_FC_RX_PAUSE:
1426 		pause_mask |= I40E_AQ_PHY_FLAG_PAUSE_RX;
1427 		break;
1428 	case I40E_FC_TX_PAUSE:
1429 		pause_mask |= I40E_AQ_PHY_FLAG_PAUSE_TX;
1430 		break;
1431 	default:
1432 		break;
1433 	}
1434 
1435 	memset(&config, 0, sizeof(struct i40e_aq_set_phy_config));
1436 	/* clear the old pause settings */
1437 	config.abilities = abilities->abilities & ~(I40E_AQ_PHY_FLAG_PAUSE_TX) &
1438 			   ~(I40E_AQ_PHY_FLAG_PAUSE_RX);
1439 	/* set the new abilities */
1440 	config.abilities |= pause_mask;
1441 	/* If the abilities have changed, then set the new config */
1442 	if (config.abilities == abilities->abilities)
1443 		return 0;
1444 
1445 	/* Auto restart link so settings take effect */
1446 	if (atomic_restart)
1447 		config.abilities |= I40E_AQ_PHY_ENABLE_ATOMIC_LINK;
1448 	/* Copy over all the old settings */
1449 	config.phy_type = abilities->phy_type;
1450 	config.phy_type_ext = abilities->phy_type_ext;
1451 	config.link_speed = abilities->link_speed;
1452 	config.eee_capability = abilities->eee_capability;
1453 	config.eeer = abilities->eeer_val;
1454 	config.low_power_ctrl = abilities->d3_lpan;
1455 	config.fec_config = abilities->fec_cfg_curr_mod_ext_info &
1456 			    I40E_AQ_PHY_FEC_CONFIG_MASK;
1457 
1458 	return i40e_aq_set_phy_config(hw, &config, NULL);
1459 }
1460 
1461 /**
1462  * i40e_set_fc
1463  * @hw: pointer to the hw struct
1464  * @aq_failures: buffer to return AdminQ failure information
1465  * @atomic_restart: whether to enable atomic link restart
1466  *
1467  * Set the requested flow control mode using set_phy_config.
1468  **/
1469 int i40e_set_fc(struct i40e_hw *hw, u8 *aq_failures,
1470 		bool atomic_restart)
1471 {
1472 	struct i40e_aq_get_phy_abilities_resp abilities;
1473 	int status;
1474 
1475 	*aq_failures = 0x0;
1476 
1477 	/* Get the current phy config */
1478 	status = i40e_aq_get_phy_capabilities(hw, false, false, &abilities,
1479 					      NULL);
1480 	if (status) {
1481 		*aq_failures |= I40E_SET_FC_AQ_FAIL_GET;
1482 		return status;
1483 	}
1484 
1485 	status = i40e_set_fc_status(hw, &abilities, atomic_restart);
1486 	if (status)
1487 		*aq_failures |= I40E_SET_FC_AQ_FAIL_SET;
1488 
1489 	/* Update the link info */
1490 	status = i40e_update_link_info(hw);
1491 	if (status) {
1492 		/* Wait a little bit (on 40G cards it sometimes takes a really
1493 		 * long time for link to come back from the atomic reset)
1494 		 * and try once more
1495 		 */
1496 		msleep(1000);
1497 		status = i40e_update_link_info(hw);
1498 	}
1499 	if (status)
1500 		*aq_failures |= I40E_SET_FC_AQ_FAIL_UPDATE;
1501 
1502 	return status;
1503 }
1504 
1505 /**
1506  * i40e_aq_clear_pxe_mode
1507  * @hw: pointer to the hw struct
1508  * @cmd_details: pointer to command details structure or NULL
1509  *
1510  * Tell the firmware that the driver is taking over from PXE
1511  **/
1512 int i40e_aq_clear_pxe_mode(struct i40e_hw *hw,
1513 			   struct i40e_asq_cmd_details *cmd_details)
1514 {
1515 	struct i40e_aq_desc desc;
1516 	struct i40e_aqc_clear_pxe *cmd =
1517 		(struct i40e_aqc_clear_pxe *)&desc.params.raw;
1518 	int status;
1519 
1520 	i40e_fill_default_direct_cmd_desc(&desc,
1521 					  i40e_aqc_opc_clear_pxe_mode);
1522 
1523 	cmd->rx_cnt = 0x2;
1524 
1525 	status = i40e_asq_send_command(hw, &desc, NULL, 0, cmd_details);
1526 
1527 	wr32(hw, I40E_GLLAN_RCTL_0, 0x1);
1528 
1529 	return status;
1530 }
1531 
1532 /**
1533  * i40e_aq_set_link_restart_an
1534  * @hw: pointer to the hw struct
1535  * @enable_link: if true: enable link, if false: disable link
1536  * @cmd_details: pointer to command details structure or NULL
1537  *
1538  * Sets up the link and restarts the Auto-Negotiation over the link.
1539  **/
1540 int i40e_aq_set_link_restart_an(struct i40e_hw *hw,
1541 				bool enable_link,
1542 				struct i40e_asq_cmd_details *cmd_details)
1543 {
1544 	struct i40e_aq_desc desc;
1545 	struct i40e_aqc_set_link_restart_an *cmd =
1546 		(struct i40e_aqc_set_link_restart_an *)&desc.params.raw;
1547 	int status;
1548 
1549 	i40e_fill_default_direct_cmd_desc(&desc,
1550 					  i40e_aqc_opc_set_link_restart_an);
1551 
1552 	cmd->command = I40E_AQ_PHY_RESTART_AN;
1553 	if (enable_link)
1554 		cmd->command |= I40E_AQ_PHY_LINK_ENABLE;
1555 	else
1556 		cmd->command &= ~I40E_AQ_PHY_LINK_ENABLE;
1557 
1558 	status = i40e_asq_send_command(hw, &desc, NULL, 0, cmd_details);
1559 
1560 	return status;
1561 }
1562 
1563 /**
1564  * i40e_aq_get_link_info
1565  * @hw: pointer to the hw struct
1566  * @enable_lse: enable/disable LinkStatusEvent reporting
1567  * @link: pointer to link status structure - optional
1568  * @cmd_details: pointer to command details structure or NULL
1569  *
1570  * Returns the link status of the adapter.
1571  **/
1572 int i40e_aq_get_link_info(struct i40e_hw *hw,
1573 			  bool enable_lse, struct i40e_link_status *link,
1574 			  struct i40e_asq_cmd_details *cmd_details)
1575 {
1576 	struct i40e_aq_desc desc;
1577 	struct i40e_aqc_get_link_status *resp =
1578 		(struct i40e_aqc_get_link_status *)&desc.params.raw;
1579 	struct i40e_link_status *hw_link_info = &hw->phy.link_info;
1580 	bool tx_pause, rx_pause;
1581 	u16 command_flags;
1582 	int status;
1583 
1584 	i40e_fill_default_direct_cmd_desc(&desc, i40e_aqc_opc_get_link_status);
1585 
1586 	if (enable_lse)
1587 		command_flags = I40E_AQ_LSE_ENABLE;
1588 	else
1589 		command_flags = I40E_AQ_LSE_DISABLE;
1590 	resp->command_flags = cpu_to_le16(command_flags);
1591 
1592 	status = i40e_asq_send_command(hw, &desc, NULL, 0, cmd_details);
1593 
1594 	if (status)
1595 		goto aq_get_link_info_exit;
1596 
1597 	/* save off old link status information */
1598 	hw->phy.link_info_old = *hw_link_info;
1599 
1600 	/* update link status */
1601 	hw_link_info->phy_type = (enum i40e_aq_phy_type)resp->phy_type;
1602 	hw->phy.media_type = i40e_get_media_type(hw);
1603 	hw_link_info->link_speed = (enum i40e_aq_link_speed)resp->link_speed;
1604 	hw_link_info->link_info = resp->link_info;
1605 	hw_link_info->an_info = resp->an_info;
1606 	hw_link_info->fec_info = resp->config & (I40E_AQ_CONFIG_FEC_KR_ENA |
1607 						 I40E_AQ_CONFIG_FEC_RS_ENA);
1608 	hw_link_info->ext_info = resp->ext_info;
1609 	hw_link_info->loopback = resp->loopback & I40E_AQ_LOOPBACK_MASK;
1610 	hw_link_info->max_frame_size = le16_to_cpu(resp->max_frame_size);
1611 	hw_link_info->pacing = resp->config & I40E_AQ_CONFIG_PACING_MASK;
1612 
1613 	/* update fc info */
1614 	tx_pause = !!(resp->an_info & I40E_AQ_LINK_PAUSE_TX);
1615 	rx_pause = !!(resp->an_info & I40E_AQ_LINK_PAUSE_RX);
1616 	if (tx_pause & rx_pause)
1617 		hw->fc.current_mode = I40E_FC_FULL;
1618 	else if (tx_pause)
1619 		hw->fc.current_mode = I40E_FC_TX_PAUSE;
1620 	else if (rx_pause)
1621 		hw->fc.current_mode = I40E_FC_RX_PAUSE;
1622 	else
1623 		hw->fc.current_mode = I40E_FC_NONE;
1624 
1625 	if (resp->config & I40E_AQ_CONFIG_CRC_ENA)
1626 		hw_link_info->crc_enable = true;
1627 	else
1628 		hw_link_info->crc_enable = false;
1629 
1630 	if (resp->command_flags & cpu_to_le16(I40E_AQ_LSE_IS_ENABLED))
1631 		hw_link_info->lse_enable = true;
1632 	else
1633 		hw_link_info->lse_enable = false;
1634 
1635 	if ((hw->mac.type == I40E_MAC_XL710) &&
1636 	    (hw->aq.fw_maj_ver < 4 || (hw->aq.fw_maj_ver == 4 &&
1637 	     hw->aq.fw_min_ver < 40)) && hw_link_info->phy_type == 0xE)
1638 		hw_link_info->phy_type = I40E_PHY_TYPE_10GBASE_SFPP_CU;
1639 
1640 	if (hw->flags & I40E_HW_FLAG_AQ_PHY_ACCESS_CAPABLE &&
1641 	    hw->mac.type != I40E_MAC_X722) {
1642 		__le32 tmp;
1643 
1644 		memcpy(&tmp, resp->link_type, sizeof(tmp));
1645 		hw->phy.phy_types = le32_to_cpu(tmp);
1646 		hw->phy.phy_types |= ((u64)resp->link_type_ext << 32);
1647 	}
1648 
1649 	/* save link status information */
1650 	if (link)
1651 		*link = *hw_link_info;
1652 
1653 	/* flag cleared so helper functions don't call AQ again */
1654 	hw->phy.get_link_info = false;
1655 
1656 aq_get_link_info_exit:
1657 	return status;
1658 }
1659 
1660 /**
1661  * i40e_aq_set_phy_int_mask
1662  * @hw: pointer to the hw struct
1663  * @mask: interrupt mask to be set
1664  * @cmd_details: pointer to command details structure or NULL
1665  *
1666  * Set link interrupt mask.
1667  **/
1668 int i40e_aq_set_phy_int_mask(struct i40e_hw *hw,
1669 			     u16 mask,
1670 			     struct i40e_asq_cmd_details *cmd_details)
1671 {
1672 	struct i40e_aq_desc desc;
1673 	struct i40e_aqc_set_phy_int_mask *cmd =
1674 		(struct i40e_aqc_set_phy_int_mask *)&desc.params.raw;
1675 	int status;
1676 
1677 	i40e_fill_default_direct_cmd_desc(&desc,
1678 					  i40e_aqc_opc_set_phy_int_mask);
1679 
1680 	cmd->event_mask = cpu_to_le16(mask);
1681 
1682 	status = i40e_asq_send_command(hw, &desc, NULL, 0, cmd_details);
1683 
1684 	return status;
1685 }
1686 
1687 /**
1688  * i40e_aq_set_mac_loopback
1689  * @hw: pointer to the HW struct
1690  * @ena_lpbk: Enable or Disable loopback
1691  * @cmd_details: pointer to command details structure or NULL
1692  *
1693  * Enable/disable loopback on a given port
1694  */
1695 int i40e_aq_set_mac_loopback(struct i40e_hw *hw, bool ena_lpbk,
1696 			     struct i40e_asq_cmd_details *cmd_details)
1697 {
1698 	struct i40e_aq_desc desc;
1699 	struct i40e_aqc_set_lb_mode *cmd =
1700 		(struct i40e_aqc_set_lb_mode *)&desc.params.raw;
1701 
1702 	i40e_fill_default_direct_cmd_desc(&desc, i40e_aqc_opc_set_lb_modes);
1703 	if (ena_lpbk) {
1704 		if (hw->nvm.version <= I40E_LEGACY_LOOPBACK_NVM_VER)
1705 			cmd->lb_mode = cpu_to_le16(I40E_AQ_LB_MAC_LOCAL_LEGACY);
1706 		else
1707 			cmd->lb_mode = cpu_to_le16(I40E_AQ_LB_MAC_LOCAL);
1708 	}
1709 
1710 	return i40e_asq_send_command(hw, &desc, NULL, 0, cmd_details);
1711 }
1712 
1713 /**
1714  * i40e_aq_set_phy_debug
1715  * @hw: pointer to the hw struct
1716  * @cmd_flags: debug command flags
1717  * @cmd_details: pointer to command details structure or NULL
1718  *
1719  * Reset the external PHY.
1720  **/
1721 int i40e_aq_set_phy_debug(struct i40e_hw *hw, u8 cmd_flags,
1722 			  struct i40e_asq_cmd_details *cmd_details)
1723 {
1724 	struct i40e_aq_desc desc;
1725 	struct i40e_aqc_set_phy_debug *cmd =
1726 		(struct i40e_aqc_set_phy_debug *)&desc.params.raw;
1727 	int status;
1728 
1729 	i40e_fill_default_direct_cmd_desc(&desc,
1730 					  i40e_aqc_opc_set_phy_debug);
1731 
1732 	cmd->command_flags = cmd_flags;
1733 
1734 	status = i40e_asq_send_command(hw, &desc, NULL, 0, cmd_details);
1735 
1736 	return status;
1737 }
1738 
1739 /**
1740  * i40e_is_aq_api_ver_ge
1741  * @aq: pointer to AdminQ info containing HW API version to compare
1742  * @maj: API major value
1743  * @min: API minor value
1744  *
1745  * Assert whether current HW API version is greater/equal than provided.
1746  **/
1747 static bool i40e_is_aq_api_ver_ge(struct i40e_adminq_info *aq, u16 maj,
1748 				  u16 min)
1749 {
1750 	return (aq->api_maj_ver > maj ||
1751 		(aq->api_maj_ver == maj && aq->api_min_ver >= min));
1752 }
1753 
1754 /**
1755  * i40e_aq_add_vsi
1756  * @hw: pointer to the hw struct
1757  * @vsi_ctx: pointer to a vsi context struct
1758  * @cmd_details: pointer to command details structure or NULL
1759  *
1760  * Add a VSI context to the hardware.
1761 **/
1762 int i40e_aq_add_vsi(struct i40e_hw *hw,
1763 		    struct i40e_vsi_context *vsi_ctx,
1764 		    struct i40e_asq_cmd_details *cmd_details)
1765 {
1766 	struct i40e_aq_desc desc;
1767 	struct i40e_aqc_add_get_update_vsi *cmd =
1768 		(struct i40e_aqc_add_get_update_vsi *)&desc.params.raw;
1769 	struct i40e_aqc_add_get_update_vsi_completion *resp =
1770 		(struct i40e_aqc_add_get_update_vsi_completion *)
1771 		&desc.params.raw;
1772 	int status;
1773 
1774 	i40e_fill_default_direct_cmd_desc(&desc,
1775 					  i40e_aqc_opc_add_vsi);
1776 
1777 	cmd->uplink_seid = cpu_to_le16(vsi_ctx->uplink_seid);
1778 	cmd->connection_type = vsi_ctx->connection_type;
1779 	cmd->vf_id = vsi_ctx->vf_num;
1780 	cmd->vsi_flags = cpu_to_le16(vsi_ctx->flags);
1781 
1782 	desc.flags |= cpu_to_le16((u16)(I40E_AQ_FLAG_BUF | I40E_AQ_FLAG_RD));
1783 
1784 	status = i40e_asq_send_command_atomic(hw, &desc, &vsi_ctx->info,
1785 					      sizeof(vsi_ctx->info),
1786 					      cmd_details, true);
1787 
1788 	if (status)
1789 		goto aq_add_vsi_exit;
1790 
1791 	vsi_ctx->seid = le16_to_cpu(resp->seid);
1792 	vsi_ctx->vsi_number = le16_to_cpu(resp->vsi_number);
1793 	vsi_ctx->vsis_allocated = le16_to_cpu(resp->vsi_used);
1794 	vsi_ctx->vsis_unallocated = le16_to_cpu(resp->vsi_free);
1795 
1796 aq_add_vsi_exit:
1797 	return status;
1798 }
1799 
1800 /**
1801  * i40e_aq_set_default_vsi
1802  * @hw: pointer to the hw struct
1803  * @seid: vsi number
1804  * @cmd_details: pointer to command details structure or NULL
1805  **/
1806 int i40e_aq_set_default_vsi(struct i40e_hw *hw,
1807 			    u16 seid,
1808 			    struct i40e_asq_cmd_details *cmd_details)
1809 {
1810 	struct i40e_aq_desc desc;
1811 	struct i40e_aqc_set_vsi_promiscuous_modes *cmd =
1812 		(struct i40e_aqc_set_vsi_promiscuous_modes *)
1813 		&desc.params.raw;
1814 	int status;
1815 
1816 	i40e_fill_default_direct_cmd_desc(&desc,
1817 					  i40e_aqc_opc_set_vsi_promiscuous_modes);
1818 
1819 	cmd->promiscuous_flags = cpu_to_le16(I40E_AQC_SET_VSI_DEFAULT);
1820 	cmd->valid_flags = cpu_to_le16(I40E_AQC_SET_VSI_DEFAULT);
1821 	cmd->seid = cpu_to_le16(seid);
1822 
1823 	status = i40e_asq_send_command(hw, &desc, NULL, 0, cmd_details);
1824 
1825 	return status;
1826 }
1827 
1828 /**
1829  * i40e_aq_clear_default_vsi
1830  * @hw: pointer to the hw struct
1831  * @seid: vsi number
1832  * @cmd_details: pointer to command details structure or NULL
1833  **/
1834 int i40e_aq_clear_default_vsi(struct i40e_hw *hw,
1835 			      u16 seid,
1836 			      struct i40e_asq_cmd_details *cmd_details)
1837 {
1838 	struct i40e_aq_desc desc;
1839 	struct i40e_aqc_set_vsi_promiscuous_modes *cmd =
1840 		(struct i40e_aqc_set_vsi_promiscuous_modes *)
1841 		&desc.params.raw;
1842 	int status;
1843 
1844 	i40e_fill_default_direct_cmd_desc(&desc,
1845 					  i40e_aqc_opc_set_vsi_promiscuous_modes);
1846 
1847 	cmd->promiscuous_flags = cpu_to_le16(0);
1848 	cmd->valid_flags = cpu_to_le16(I40E_AQC_SET_VSI_DEFAULT);
1849 	cmd->seid = cpu_to_le16(seid);
1850 
1851 	status = i40e_asq_send_command(hw, &desc, NULL, 0, cmd_details);
1852 
1853 	return status;
1854 }
1855 
1856 /**
1857  * i40e_aq_set_vsi_unicast_promiscuous
1858  * @hw: pointer to the hw struct
1859  * @seid: vsi number
1860  * @set: set unicast promiscuous enable/disable
1861  * @cmd_details: pointer to command details structure or NULL
1862  * @rx_only_promisc: flag to decide if egress traffic gets mirrored in promisc
1863  **/
1864 int i40e_aq_set_vsi_unicast_promiscuous(struct i40e_hw *hw,
1865 					u16 seid, bool set,
1866 					struct i40e_asq_cmd_details *cmd_details,
1867 					bool rx_only_promisc)
1868 {
1869 	struct i40e_aq_desc desc;
1870 	struct i40e_aqc_set_vsi_promiscuous_modes *cmd =
1871 		(struct i40e_aqc_set_vsi_promiscuous_modes *)&desc.params.raw;
1872 	u16 flags = 0;
1873 	int status;
1874 
1875 	i40e_fill_default_direct_cmd_desc(&desc,
1876 					i40e_aqc_opc_set_vsi_promiscuous_modes);
1877 
1878 	if (set) {
1879 		flags |= I40E_AQC_SET_VSI_PROMISC_UNICAST;
1880 		if (rx_only_promisc && i40e_is_aq_api_ver_ge(&hw->aq, 1, 5))
1881 			flags |= I40E_AQC_SET_VSI_PROMISC_RX_ONLY;
1882 	}
1883 
1884 	cmd->promiscuous_flags = cpu_to_le16(flags);
1885 
1886 	cmd->valid_flags = cpu_to_le16(I40E_AQC_SET_VSI_PROMISC_UNICAST);
1887 	if (i40e_is_aq_api_ver_ge(&hw->aq, 1, 5))
1888 		cmd->valid_flags |=
1889 			cpu_to_le16(I40E_AQC_SET_VSI_PROMISC_RX_ONLY);
1890 
1891 	cmd->seid = cpu_to_le16(seid);
1892 	status = i40e_asq_send_command(hw, &desc, NULL, 0, cmd_details);
1893 
1894 	return status;
1895 }
1896 
1897 /**
1898  * i40e_aq_set_vsi_multicast_promiscuous
1899  * @hw: pointer to the hw struct
1900  * @seid: vsi number
1901  * @set: set multicast promiscuous enable/disable
1902  * @cmd_details: pointer to command details structure or NULL
1903  **/
1904 int i40e_aq_set_vsi_multicast_promiscuous(struct i40e_hw *hw,
1905 					  u16 seid, bool set,
1906 					  struct i40e_asq_cmd_details *cmd_details)
1907 {
1908 	struct i40e_aq_desc desc;
1909 	struct i40e_aqc_set_vsi_promiscuous_modes *cmd =
1910 		(struct i40e_aqc_set_vsi_promiscuous_modes *)&desc.params.raw;
1911 	u16 flags = 0;
1912 	int status;
1913 
1914 	i40e_fill_default_direct_cmd_desc(&desc,
1915 					i40e_aqc_opc_set_vsi_promiscuous_modes);
1916 
1917 	if (set)
1918 		flags |= I40E_AQC_SET_VSI_PROMISC_MULTICAST;
1919 
1920 	cmd->promiscuous_flags = cpu_to_le16(flags);
1921 
1922 	cmd->valid_flags = cpu_to_le16(I40E_AQC_SET_VSI_PROMISC_MULTICAST);
1923 
1924 	cmd->seid = cpu_to_le16(seid);
1925 	status = i40e_asq_send_command(hw, &desc, NULL, 0, cmd_details);
1926 
1927 	return status;
1928 }
1929 
1930 /**
1931  * i40e_aq_set_vsi_mc_promisc_on_vlan
1932  * @hw: pointer to the hw struct
1933  * @seid: vsi number
1934  * @enable: set MAC L2 layer unicast promiscuous enable/disable for a given VLAN
1935  * @vid: The VLAN tag filter - capture any multicast packet with this VLAN tag
1936  * @cmd_details: pointer to command details structure or NULL
1937  **/
1938 int i40e_aq_set_vsi_mc_promisc_on_vlan(struct i40e_hw *hw,
1939 				       u16 seid, bool enable,
1940 				       u16 vid,
1941 				       struct i40e_asq_cmd_details *cmd_details)
1942 {
1943 	struct i40e_aq_desc desc;
1944 	struct i40e_aqc_set_vsi_promiscuous_modes *cmd =
1945 		(struct i40e_aqc_set_vsi_promiscuous_modes *)&desc.params.raw;
1946 	u16 flags = 0;
1947 	int status;
1948 
1949 	i40e_fill_default_direct_cmd_desc(&desc,
1950 					  i40e_aqc_opc_set_vsi_promiscuous_modes);
1951 
1952 	if (enable)
1953 		flags |= I40E_AQC_SET_VSI_PROMISC_MULTICAST;
1954 
1955 	cmd->promiscuous_flags = cpu_to_le16(flags);
1956 	cmd->valid_flags = cpu_to_le16(I40E_AQC_SET_VSI_PROMISC_MULTICAST);
1957 	cmd->seid = cpu_to_le16(seid);
1958 	cmd->vlan_tag = cpu_to_le16(vid | I40E_AQC_SET_VSI_VLAN_VALID);
1959 
1960 	status = i40e_asq_send_command_atomic(hw, &desc, NULL, 0,
1961 					      cmd_details, true);
1962 
1963 	return status;
1964 }
1965 
1966 /**
1967  * i40e_aq_set_vsi_uc_promisc_on_vlan
1968  * @hw: pointer to the hw struct
1969  * @seid: vsi number
1970  * @enable: set MAC L2 layer unicast promiscuous enable/disable for a given VLAN
1971  * @vid: The VLAN tag filter - capture any unicast packet with this VLAN tag
1972  * @cmd_details: pointer to command details structure or NULL
1973  **/
1974 int i40e_aq_set_vsi_uc_promisc_on_vlan(struct i40e_hw *hw,
1975 				       u16 seid, bool enable,
1976 				       u16 vid,
1977 				       struct i40e_asq_cmd_details *cmd_details)
1978 {
1979 	struct i40e_aq_desc desc;
1980 	struct i40e_aqc_set_vsi_promiscuous_modes *cmd =
1981 		(struct i40e_aqc_set_vsi_promiscuous_modes *)&desc.params.raw;
1982 	u16 flags = 0;
1983 	int status;
1984 
1985 	i40e_fill_default_direct_cmd_desc(&desc,
1986 					  i40e_aqc_opc_set_vsi_promiscuous_modes);
1987 
1988 	if (enable) {
1989 		flags |= I40E_AQC_SET_VSI_PROMISC_UNICAST;
1990 		if (i40e_is_aq_api_ver_ge(&hw->aq, 1, 5))
1991 			flags |= I40E_AQC_SET_VSI_PROMISC_RX_ONLY;
1992 	}
1993 
1994 	cmd->promiscuous_flags = cpu_to_le16(flags);
1995 	cmd->valid_flags = cpu_to_le16(I40E_AQC_SET_VSI_PROMISC_UNICAST);
1996 	if (i40e_is_aq_api_ver_ge(&hw->aq, 1, 5))
1997 		cmd->valid_flags |=
1998 			cpu_to_le16(I40E_AQC_SET_VSI_PROMISC_RX_ONLY);
1999 	cmd->seid = cpu_to_le16(seid);
2000 	cmd->vlan_tag = cpu_to_le16(vid | I40E_AQC_SET_VSI_VLAN_VALID);
2001 
2002 	status = i40e_asq_send_command_atomic(hw, &desc, NULL, 0,
2003 					      cmd_details, true);
2004 
2005 	return status;
2006 }
2007 
2008 /**
2009  * i40e_aq_set_vsi_bc_promisc_on_vlan
2010  * @hw: pointer to the hw struct
2011  * @seid: vsi number
2012  * @enable: set broadcast promiscuous enable/disable for a given VLAN
2013  * @vid: The VLAN tag filter - capture any broadcast packet with this VLAN tag
2014  * @cmd_details: pointer to command details structure or NULL
2015  **/
2016 int i40e_aq_set_vsi_bc_promisc_on_vlan(struct i40e_hw *hw,
2017 				       u16 seid, bool enable, u16 vid,
2018 				       struct i40e_asq_cmd_details *cmd_details)
2019 {
2020 	struct i40e_aq_desc desc;
2021 	struct i40e_aqc_set_vsi_promiscuous_modes *cmd =
2022 		(struct i40e_aqc_set_vsi_promiscuous_modes *)&desc.params.raw;
2023 	u16 flags = 0;
2024 	int status;
2025 
2026 	i40e_fill_default_direct_cmd_desc(&desc,
2027 					i40e_aqc_opc_set_vsi_promiscuous_modes);
2028 
2029 	if (enable)
2030 		flags |= I40E_AQC_SET_VSI_PROMISC_BROADCAST;
2031 
2032 	cmd->promiscuous_flags = cpu_to_le16(flags);
2033 	cmd->valid_flags = cpu_to_le16(I40E_AQC_SET_VSI_PROMISC_BROADCAST);
2034 	cmd->seid = cpu_to_le16(seid);
2035 	cmd->vlan_tag = cpu_to_le16(vid | I40E_AQC_SET_VSI_VLAN_VALID);
2036 
2037 	status = i40e_asq_send_command(hw, &desc, NULL, 0, cmd_details);
2038 
2039 	return status;
2040 }
2041 
2042 /**
2043  * i40e_aq_set_vsi_broadcast
2044  * @hw: pointer to the hw struct
2045  * @seid: vsi number
2046  * @set_filter: true to set filter, false to clear filter
2047  * @cmd_details: pointer to command details structure or NULL
2048  *
2049  * Set or clear the broadcast promiscuous flag (filter) for a given VSI.
2050  **/
2051 int i40e_aq_set_vsi_broadcast(struct i40e_hw *hw,
2052 			      u16 seid, bool set_filter,
2053 			      struct i40e_asq_cmd_details *cmd_details)
2054 {
2055 	struct i40e_aq_desc desc;
2056 	struct i40e_aqc_set_vsi_promiscuous_modes *cmd =
2057 		(struct i40e_aqc_set_vsi_promiscuous_modes *)&desc.params.raw;
2058 	int status;
2059 
2060 	i40e_fill_default_direct_cmd_desc(&desc,
2061 					i40e_aqc_opc_set_vsi_promiscuous_modes);
2062 
2063 	if (set_filter)
2064 		cmd->promiscuous_flags
2065 			    |= cpu_to_le16(I40E_AQC_SET_VSI_PROMISC_BROADCAST);
2066 	else
2067 		cmd->promiscuous_flags
2068 			    &= cpu_to_le16(~I40E_AQC_SET_VSI_PROMISC_BROADCAST);
2069 
2070 	cmd->valid_flags = cpu_to_le16(I40E_AQC_SET_VSI_PROMISC_BROADCAST);
2071 	cmd->seid = cpu_to_le16(seid);
2072 	status = i40e_asq_send_command(hw, &desc, NULL, 0, cmd_details);
2073 
2074 	return status;
2075 }
2076 
2077 /**
2078  * i40e_aq_set_vsi_vlan_promisc - control the VLAN promiscuous setting
2079  * @hw: pointer to the hw struct
2080  * @seid: vsi number
2081  * @enable: set MAC L2 layer unicast promiscuous enable/disable for a given VLAN
2082  * @cmd_details: pointer to command details structure or NULL
2083  **/
2084 int i40e_aq_set_vsi_vlan_promisc(struct i40e_hw *hw,
2085 				 u16 seid, bool enable,
2086 				 struct i40e_asq_cmd_details *cmd_details)
2087 {
2088 	struct i40e_aq_desc desc;
2089 	struct i40e_aqc_set_vsi_promiscuous_modes *cmd =
2090 		(struct i40e_aqc_set_vsi_promiscuous_modes *)&desc.params.raw;
2091 	u16 flags = 0;
2092 	int status;
2093 
2094 	i40e_fill_default_direct_cmd_desc(&desc,
2095 					i40e_aqc_opc_set_vsi_promiscuous_modes);
2096 	if (enable)
2097 		flags |= I40E_AQC_SET_VSI_PROMISC_VLAN;
2098 
2099 	cmd->promiscuous_flags = cpu_to_le16(flags);
2100 	cmd->valid_flags = cpu_to_le16(I40E_AQC_SET_VSI_PROMISC_VLAN);
2101 	cmd->seid = cpu_to_le16(seid);
2102 
2103 	status = i40e_asq_send_command(hw, &desc, NULL, 0, cmd_details);
2104 
2105 	return status;
2106 }
2107 
2108 /**
2109  * i40e_aq_get_vsi_params - get VSI configuration info
2110  * @hw: pointer to the hw struct
2111  * @vsi_ctx: pointer to a vsi context struct
2112  * @cmd_details: pointer to command details structure or NULL
2113  **/
2114 int i40e_aq_get_vsi_params(struct i40e_hw *hw,
2115 			   struct i40e_vsi_context *vsi_ctx,
2116 			   struct i40e_asq_cmd_details *cmd_details)
2117 {
2118 	struct i40e_aq_desc desc;
2119 	struct i40e_aqc_add_get_update_vsi *cmd =
2120 		(struct i40e_aqc_add_get_update_vsi *)&desc.params.raw;
2121 	struct i40e_aqc_add_get_update_vsi_completion *resp =
2122 		(struct i40e_aqc_add_get_update_vsi_completion *)
2123 		&desc.params.raw;
2124 	int status;
2125 
2126 	i40e_fill_default_direct_cmd_desc(&desc,
2127 					  i40e_aqc_opc_get_vsi_parameters);
2128 
2129 	cmd->uplink_seid = cpu_to_le16(vsi_ctx->seid);
2130 
2131 	desc.flags |= cpu_to_le16((u16)I40E_AQ_FLAG_BUF);
2132 
2133 	status = i40e_asq_send_command(hw, &desc, &vsi_ctx->info,
2134 				    sizeof(vsi_ctx->info), NULL);
2135 
2136 	if (status)
2137 		goto aq_get_vsi_params_exit;
2138 
2139 	vsi_ctx->seid = le16_to_cpu(resp->seid);
2140 	vsi_ctx->vsi_number = le16_to_cpu(resp->vsi_number);
2141 	vsi_ctx->vsis_allocated = le16_to_cpu(resp->vsi_used);
2142 	vsi_ctx->vsis_unallocated = le16_to_cpu(resp->vsi_free);
2143 
2144 aq_get_vsi_params_exit:
2145 	return status;
2146 }
2147 
2148 /**
2149  * i40e_aq_update_vsi_params
2150  * @hw: pointer to the hw struct
2151  * @vsi_ctx: pointer to a vsi context struct
2152  * @cmd_details: pointer to command details structure or NULL
2153  *
2154  * Update a VSI context.
2155  **/
2156 int i40e_aq_update_vsi_params(struct i40e_hw *hw,
2157 			      struct i40e_vsi_context *vsi_ctx,
2158 			      struct i40e_asq_cmd_details *cmd_details)
2159 {
2160 	struct i40e_aq_desc desc;
2161 	struct i40e_aqc_add_get_update_vsi *cmd =
2162 		(struct i40e_aqc_add_get_update_vsi *)&desc.params.raw;
2163 	struct i40e_aqc_add_get_update_vsi_completion *resp =
2164 		(struct i40e_aqc_add_get_update_vsi_completion *)
2165 		&desc.params.raw;
2166 	int status;
2167 
2168 	i40e_fill_default_direct_cmd_desc(&desc,
2169 					  i40e_aqc_opc_update_vsi_parameters);
2170 	cmd->uplink_seid = cpu_to_le16(vsi_ctx->seid);
2171 
2172 	desc.flags |= cpu_to_le16((u16)(I40E_AQ_FLAG_BUF | I40E_AQ_FLAG_RD));
2173 
2174 	status = i40e_asq_send_command_atomic(hw, &desc, &vsi_ctx->info,
2175 					      sizeof(vsi_ctx->info),
2176 					      cmd_details, true);
2177 
2178 	vsi_ctx->vsis_allocated = le16_to_cpu(resp->vsi_used);
2179 	vsi_ctx->vsis_unallocated = le16_to_cpu(resp->vsi_free);
2180 
2181 	return status;
2182 }
2183 
2184 /**
2185  * i40e_aq_get_switch_config
2186  * @hw: pointer to the hardware structure
2187  * @buf: pointer to the result buffer
2188  * @buf_size: length of input buffer
2189  * @start_seid: seid to start for the report, 0 == beginning
2190  * @cmd_details: pointer to command details structure or NULL
2191  *
2192  * Fill the buf with switch configuration returned from AdminQ command
2193  **/
2194 int i40e_aq_get_switch_config(struct i40e_hw *hw,
2195 			      struct i40e_aqc_get_switch_config_resp *buf,
2196 			      u16 buf_size, u16 *start_seid,
2197 			      struct i40e_asq_cmd_details *cmd_details)
2198 {
2199 	struct i40e_aq_desc desc;
2200 	struct i40e_aqc_switch_seid *scfg =
2201 		(struct i40e_aqc_switch_seid *)&desc.params.raw;
2202 	int status;
2203 
2204 	i40e_fill_default_direct_cmd_desc(&desc,
2205 					  i40e_aqc_opc_get_switch_config);
2206 	desc.flags |= cpu_to_le16((u16)I40E_AQ_FLAG_BUF);
2207 	if (buf_size > I40E_AQ_LARGE_BUF)
2208 		desc.flags |= cpu_to_le16((u16)I40E_AQ_FLAG_LB);
2209 	scfg->seid = cpu_to_le16(*start_seid);
2210 
2211 	status = i40e_asq_send_command(hw, &desc, buf, buf_size, cmd_details);
2212 	*start_seid = le16_to_cpu(scfg->seid);
2213 
2214 	return status;
2215 }
2216 
2217 /**
2218  * i40e_aq_set_switch_config
2219  * @hw: pointer to the hardware structure
2220  * @flags: bit flag values to set
2221  * @mode: cloud filter mode
2222  * @valid_flags: which bit flags to set
2223  * @mode: cloud filter mode
2224  * @cmd_details: pointer to command details structure or NULL
2225  *
2226  * Set switch configuration bits
2227  **/
2228 int i40e_aq_set_switch_config(struct i40e_hw *hw,
2229 			      u16 flags,
2230 			      u16 valid_flags, u8 mode,
2231 			      struct i40e_asq_cmd_details *cmd_details)
2232 {
2233 	struct i40e_aq_desc desc;
2234 	struct i40e_aqc_set_switch_config *scfg =
2235 		(struct i40e_aqc_set_switch_config *)&desc.params.raw;
2236 	int status;
2237 
2238 	i40e_fill_default_direct_cmd_desc(&desc,
2239 					  i40e_aqc_opc_set_switch_config);
2240 	scfg->flags = cpu_to_le16(flags);
2241 	scfg->valid_flags = cpu_to_le16(valid_flags);
2242 	scfg->mode = mode;
2243 	if (hw->flags & I40E_HW_FLAG_802_1AD_CAPABLE) {
2244 		scfg->switch_tag = cpu_to_le16(hw->switch_tag);
2245 		scfg->first_tag = cpu_to_le16(hw->first_tag);
2246 		scfg->second_tag = cpu_to_le16(hw->second_tag);
2247 	}
2248 	status = i40e_asq_send_command(hw, &desc, NULL, 0, cmd_details);
2249 
2250 	return status;
2251 }
2252 
2253 /**
2254  * i40e_aq_get_firmware_version
2255  * @hw: pointer to the hw struct
2256  * @fw_major_version: firmware major version
2257  * @fw_minor_version: firmware minor version
2258  * @fw_build: firmware build number
2259  * @api_major_version: major queue version
2260  * @api_minor_version: minor queue version
2261  * @cmd_details: pointer to command details structure or NULL
2262  *
2263  * Get the firmware version from the admin queue commands
2264  **/
2265 int i40e_aq_get_firmware_version(struct i40e_hw *hw,
2266 				 u16 *fw_major_version, u16 *fw_minor_version,
2267 				 u32 *fw_build,
2268 				 u16 *api_major_version, u16 *api_minor_version,
2269 				 struct i40e_asq_cmd_details *cmd_details)
2270 {
2271 	struct i40e_aq_desc desc;
2272 	struct i40e_aqc_get_version *resp =
2273 		(struct i40e_aqc_get_version *)&desc.params.raw;
2274 	int status;
2275 
2276 	i40e_fill_default_direct_cmd_desc(&desc, i40e_aqc_opc_get_version);
2277 
2278 	status = i40e_asq_send_command(hw, &desc, NULL, 0, cmd_details);
2279 
2280 	if (!status) {
2281 		if (fw_major_version)
2282 			*fw_major_version = le16_to_cpu(resp->fw_major);
2283 		if (fw_minor_version)
2284 			*fw_minor_version = le16_to_cpu(resp->fw_minor);
2285 		if (fw_build)
2286 			*fw_build = le32_to_cpu(resp->fw_build);
2287 		if (api_major_version)
2288 			*api_major_version = le16_to_cpu(resp->api_major);
2289 		if (api_minor_version)
2290 			*api_minor_version = le16_to_cpu(resp->api_minor);
2291 	}
2292 
2293 	return status;
2294 }
2295 
2296 /**
2297  * i40e_aq_send_driver_version
2298  * @hw: pointer to the hw struct
2299  * @dv: driver's major, minor version
2300  * @cmd_details: pointer to command details structure or NULL
2301  *
2302  * Send the driver version to the firmware
2303  **/
2304 int i40e_aq_send_driver_version(struct i40e_hw *hw,
2305 				struct i40e_driver_version *dv,
2306 				struct i40e_asq_cmd_details *cmd_details)
2307 {
2308 	struct i40e_aq_desc desc;
2309 	struct i40e_aqc_driver_version *cmd =
2310 		(struct i40e_aqc_driver_version *)&desc.params.raw;
2311 	int status;
2312 	u16 len;
2313 
2314 	if (dv == NULL)
2315 		return I40E_ERR_PARAM;
2316 
2317 	i40e_fill_default_direct_cmd_desc(&desc, i40e_aqc_opc_driver_version);
2318 
2319 	desc.flags |= cpu_to_le16(I40E_AQ_FLAG_BUF | I40E_AQ_FLAG_RD);
2320 	cmd->driver_major_ver = dv->major_version;
2321 	cmd->driver_minor_ver = dv->minor_version;
2322 	cmd->driver_build_ver = dv->build_version;
2323 	cmd->driver_subbuild_ver = dv->subbuild_version;
2324 
2325 	len = 0;
2326 	while (len < sizeof(dv->driver_string) &&
2327 	       (dv->driver_string[len] < 0x80) &&
2328 	       dv->driver_string[len])
2329 		len++;
2330 	status = i40e_asq_send_command(hw, &desc, dv->driver_string,
2331 				       len, cmd_details);
2332 
2333 	return status;
2334 }
2335 
2336 /**
2337  * i40e_get_link_status - get status of the HW network link
2338  * @hw: pointer to the hw struct
2339  * @link_up: pointer to bool (true/false = linkup/linkdown)
2340  *
2341  * Variable link_up true if link is up, false if link is down.
2342  * The variable link_up is invalid if returned value of status != 0
2343  *
2344  * Side effect: LinkStatusEvent reporting becomes enabled
2345  **/
2346 int i40e_get_link_status(struct i40e_hw *hw, bool *link_up)
2347 {
2348 	int status = 0;
2349 
2350 	if (hw->phy.get_link_info) {
2351 		status = i40e_update_link_info(hw);
2352 
2353 		if (status)
2354 			i40e_debug(hw, I40E_DEBUG_LINK, "get link failed: status %d\n",
2355 				   status);
2356 	}
2357 
2358 	*link_up = hw->phy.link_info.link_info & I40E_AQ_LINK_UP;
2359 
2360 	return status;
2361 }
2362 
2363 /**
2364  * i40e_update_link_info - update status of the HW network link
2365  * @hw: pointer to the hw struct
2366  **/
2367 noinline_for_stack int i40e_update_link_info(struct i40e_hw *hw)
2368 {
2369 	struct i40e_aq_get_phy_abilities_resp abilities;
2370 	int status = 0;
2371 
2372 	status = i40e_aq_get_link_info(hw, true, NULL, NULL);
2373 	if (status)
2374 		return status;
2375 
2376 	/* extra checking needed to ensure link info to user is timely */
2377 	if ((hw->phy.link_info.link_info & I40E_AQ_MEDIA_AVAILABLE) &&
2378 	    ((hw->phy.link_info.link_info & I40E_AQ_LINK_UP) ||
2379 	     !(hw->phy.link_info_old.link_info & I40E_AQ_LINK_UP))) {
2380 		status = i40e_aq_get_phy_capabilities(hw, false, false,
2381 						      &abilities, NULL);
2382 		if (status)
2383 			return status;
2384 
2385 		if (abilities.fec_cfg_curr_mod_ext_info &
2386 		    I40E_AQ_ENABLE_FEC_AUTO)
2387 			hw->phy.link_info.req_fec_info =
2388 				(I40E_AQ_REQUEST_FEC_KR |
2389 				 I40E_AQ_REQUEST_FEC_RS);
2390 		else
2391 			hw->phy.link_info.req_fec_info =
2392 				abilities.fec_cfg_curr_mod_ext_info &
2393 				(I40E_AQ_REQUEST_FEC_KR |
2394 				 I40E_AQ_REQUEST_FEC_RS);
2395 
2396 		memcpy(hw->phy.link_info.module_type, &abilities.module_type,
2397 		       sizeof(hw->phy.link_info.module_type));
2398 	}
2399 
2400 	return status;
2401 }
2402 
2403 /**
2404  * i40e_aq_add_veb - Insert a VEB between the VSI and the MAC
2405  * @hw: pointer to the hw struct
2406  * @uplink_seid: the MAC or other gizmo SEID
2407  * @downlink_seid: the VSI SEID
2408  * @enabled_tc: bitmap of TCs to be enabled
2409  * @default_port: true for default port VSI, false for control port
2410  * @veb_seid: pointer to where to put the resulting VEB SEID
2411  * @enable_stats: true to turn on VEB stats
2412  * @cmd_details: pointer to command details structure or NULL
2413  *
2414  * This asks the FW to add a VEB between the uplink and downlink
2415  * elements.  If the uplink SEID is 0, this will be a floating VEB.
2416  **/
2417 int i40e_aq_add_veb(struct i40e_hw *hw, u16 uplink_seid,
2418 		    u16 downlink_seid, u8 enabled_tc,
2419 		    bool default_port, u16 *veb_seid,
2420 		    bool enable_stats,
2421 		    struct i40e_asq_cmd_details *cmd_details)
2422 {
2423 	struct i40e_aq_desc desc;
2424 	struct i40e_aqc_add_veb *cmd =
2425 		(struct i40e_aqc_add_veb *)&desc.params.raw;
2426 	struct i40e_aqc_add_veb_completion *resp =
2427 		(struct i40e_aqc_add_veb_completion *)&desc.params.raw;
2428 	u16 veb_flags = 0;
2429 	int status;
2430 
2431 	/* SEIDs need to either both be set or both be 0 for floating VEB */
2432 	if (!!uplink_seid != !!downlink_seid)
2433 		return I40E_ERR_PARAM;
2434 
2435 	i40e_fill_default_direct_cmd_desc(&desc, i40e_aqc_opc_add_veb);
2436 
2437 	cmd->uplink_seid = cpu_to_le16(uplink_seid);
2438 	cmd->downlink_seid = cpu_to_le16(downlink_seid);
2439 	cmd->enable_tcs = enabled_tc;
2440 	if (!uplink_seid)
2441 		veb_flags |= I40E_AQC_ADD_VEB_FLOATING;
2442 	if (default_port)
2443 		veb_flags |= I40E_AQC_ADD_VEB_PORT_TYPE_DEFAULT;
2444 	else
2445 		veb_flags |= I40E_AQC_ADD_VEB_PORT_TYPE_DATA;
2446 
2447 	/* reverse logic here: set the bitflag to disable the stats */
2448 	if (!enable_stats)
2449 		veb_flags |= I40E_AQC_ADD_VEB_ENABLE_DISABLE_STATS;
2450 
2451 	cmd->veb_flags = cpu_to_le16(veb_flags);
2452 
2453 	status = i40e_asq_send_command(hw, &desc, NULL, 0, cmd_details);
2454 
2455 	if (!status && veb_seid)
2456 		*veb_seid = le16_to_cpu(resp->veb_seid);
2457 
2458 	return status;
2459 }
2460 
2461 /**
2462  * i40e_aq_get_veb_parameters - Retrieve VEB parameters
2463  * @hw: pointer to the hw struct
2464  * @veb_seid: the SEID of the VEB to query
2465  * @switch_id: the uplink switch id
2466  * @floating: set to true if the VEB is floating
2467  * @statistic_index: index of the stats counter block for this VEB
2468  * @vebs_used: number of VEB's used by function
2469  * @vebs_free: total VEB's not reserved by any function
2470  * @cmd_details: pointer to command details structure or NULL
2471  *
2472  * This retrieves the parameters for a particular VEB, specified by
2473  * uplink_seid, and returns them to the caller.
2474  **/
2475 int i40e_aq_get_veb_parameters(struct i40e_hw *hw,
2476 			       u16 veb_seid, u16 *switch_id,
2477 			       bool *floating, u16 *statistic_index,
2478 			       u16 *vebs_used, u16 *vebs_free,
2479 			       struct i40e_asq_cmd_details *cmd_details)
2480 {
2481 	struct i40e_aq_desc desc;
2482 	struct i40e_aqc_get_veb_parameters_completion *cmd_resp =
2483 		(struct i40e_aqc_get_veb_parameters_completion *)
2484 		&desc.params.raw;
2485 	int status;
2486 
2487 	if (veb_seid == 0)
2488 		return I40E_ERR_PARAM;
2489 
2490 	i40e_fill_default_direct_cmd_desc(&desc,
2491 					  i40e_aqc_opc_get_veb_parameters);
2492 	cmd_resp->seid = cpu_to_le16(veb_seid);
2493 
2494 	status = i40e_asq_send_command(hw, &desc, NULL, 0, cmd_details);
2495 	if (status)
2496 		goto get_veb_exit;
2497 
2498 	if (switch_id)
2499 		*switch_id = le16_to_cpu(cmd_resp->switch_id);
2500 	if (statistic_index)
2501 		*statistic_index = le16_to_cpu(cmd_resp->statistic_index);
2502 	if (vebs_used)
2503 		*vebs_used = le16_to_cpu(cmd_resp->vebs_used);
2504 	if (vebs_free)
2505 		*vebs_free = le16_to_cpu(cmd_resp->vebs_free);
2506 	if (floating) {
2507 		u16 flags = le16_to_cpu(cmd_resp->veb_flags);
2508 
2509 		if (flags & I40E_AQC_ADD_VEB_FLOATING)
2510 			*floating = true;
2511 		else
2512 			*floating = false;
2513 	}
2514 
2515 get_veb_exit:
2516 	return status;
2517 }
2518 
2519 /**
2520  * i40e_prepare_add_macvlan
2521  * @mv_list: list of macvlans to be added
2522  * @desc: pointer to AQ descriptor structure
2523  * @count: length of the list
2524  * @seid: VSI for the mac address
2525  *
2526  * Internal helper function that prepares the add macvlan request
2527  * and returns the buffer size.
2528  **/
2529 static u16
2530 i40e_prepare_add_macvlan(struct i40e_aqc_add_macvlan_element_data *mv_list,
2531 			 struct i40e_aq_desc *desc, u16 count, u16 seid)
2532 {
2533 	struct i40e_aqc_macvlan *cmd =
2534 		(struct i40e_aqc_macvlan *)&desc->params.raw;
2535 	u16 buf_size;
2536 	int i;
2537 
2538 	buf_size = count * sizeof(*mv_list);
2539 
2540 	/* prep the rest of the request */
2541 	i40e_fill_default_direct_cmd_desc(desc, i40e_aqc_opc_add_macvlan);
2542 	cmd->num_addresses = cpu_to_le16(count);
2543 	cmd->seid[0] = cpu_to_le16(I40E_AQC_MACVLAN_CMD_SEID_VALID | seid);
2544 	cmd->seid[1] = 0;
2545 	cmd->seid[2] = 0;
2546 
2547 	for (i = 0; i < count; i++)
2548 		if (is_multicast_ether_addr(mv_list[i].mac_addr))
2549 			mv_list[i].flags |=
2550 			       cpu_to_le16(I40E_AQC_MACVLAN_ADD_USE_SHARED_MAC);
2551 
2552 	desc->flags |= cpu_to_le16((u16)(I40E_AQ_FLAG_BUF | I40E_AQ_FLAG_RD));
2553 	if (buf_size > I40E_AQ_LARGE_BUF)
2554 		desc->flags |= cpu_to_le16((u16)I40E_AQ_FLAG_LB);
2555 
2556 	return buf_size;
2557 }
2558 
2559 /**
2560  * i40e_aq_add_macvlan
2561  * @hw: pointer to the hw struct
2562  * @seid: VSI for the mac address
2563  * @mv_list: list of macvlans to be added
2564  * @count: length of the list
2565  * @cmd_details: pointer to command details structure or NULL
2566  *
2567  * Add MAC/VLAN addresses to the HW filtering
2568  **/
2569 int
2570 i40e_aq_add_macvlan(struct i40e_hw *hw, u16 seid,
2571 		    struct i40e_aqc_add_macvlan_element_data *mv_list,
2572 		    u16 count, struct i40e_asq_cmd_details *cmd_details)
2573 {
2574 	struct i40e_aq_desc desc;
2575 	u16 buf_size;
2576 
2577 	if (count == 0 || !mv_list || !hw)
2578 		return I40E_ERR_PARAM;
2579 
2580 	buf_size = i40e_prepare_add_macvlan(mv_list, &desc, count, seid);
2581 
2582 	return i40e_asq_send_command_atomic(hw, &desc, mv_list, buf_size,
2583 					    cmd_details, true);
2584 }
2585 
2586 /**
2587  * i40e_aq_add_macvlan_v2
2588  * @hw: pointer to the hw struct
2589  * @seid: VSI for the mac address
2590  * @mv_list: list of macvlans to be added
2591  * @count: length of the list
2592  * @cmd_details: pointer to command details structure or NULL
2593  * @aq_status: pointer to Admin Queue status return value
2594  *
2595  * Add MAC/VLAN addresses to the HW filtering.
2596  * The _v2 version returns the last Admin Queue status in aq_status
2597  * to avoid race conditions in access to hw->aq.asq_last_status.
2598  * It also calls _v2 versions of asq_send_command functions to
2599  * get the aq_status on the stack.
2600  **/
2601 int
2602 i40e_aq_add_macvlan_v2(struct i40e_hw *hw, u16 seid,
2603 		       struct i40e_aqc_add_macvlan_element_data *mv_list,
2604 		       u16 count, struct i40e_asq_cmd_details *cmd_details,
2605 		       enum i40e_admin_queue_err *aq_status)
2606 {
2607 	struct i40e_aq_desc desc;
2608 	u16 buf_size;
2609 
2610 	if (count == 0 || !mv_list || !hw)
2611 		return I40E_ERR_PARAM;
2612 
2613 	buf_size = i40e_prepare_add_macvlan(mv_list, &desc, count, seid);
2614 
2615 	return i40e_asq_send_command_atomic_v2(hw, &desc, mv_list, buf_size,
2616 					       cmd_details, true, aq_status);
2617 }
2618 
2619 /**
2620  * i40e_aq_remove_macvlan
2621  * @hw: pointer to the hw struct
2622  * @seid: VSI for the mac address
2623  * @mv_list: list of macvlans to be removed
2624  * @count: length of the list
2625  * @cmd_details: pointer to command details structure or NULL
2626  *
2627  * Remove MAC/VLAN addresses from the HW filtering
2628  **/
2629 int
2630 i40e_aq_remove_macvlan(struct i40e_hw *hw, u16 seid,
2631 		       struct i40e_aqc_remove_macvlan_element_data *mv_list,
2632 		       u16 count, struct i40e_asq_cmd_details *cmd_details)
2633 {
2634 	struct i40e_aq_desc desc;
2635 	struct i40e_aqc_macvlan *cmd =
2636 		(struct i40e_aqc_macvlan *)&desc.params.raw;
2637 	u16 buf_size;
2638 	int status;
2639 
2640 	if (count == 0 || !mv_list || !hw)
2641 		return I40E_ERR_PARAM;
2642 
2643 	buf_size = count * sizeof(*mv_list);
2644 
2645 	/* prep the rest of the request */
2646 	i40e_fill_default_direct_cmd_desc(&desc, i40e_aqc_opc_remove_macvlan);
2647 	cmd->num_addresses = cpu_to_le16(count);
2648 	cmd->seid[0] = cpu_to_le16(I40E_AQC_MACVLAN_CMD_SEID_VALID | seid);
2649 	cmd->seid[1] = 0;
2650 	cmd->seid[2] = 0;
2651 
2652 	desc.flags |= cpu_to_le16((u16)(I40E_AQ_FLAG_BUF | I40E_AQ_FLAG_RD));
2653 	if (buf_size > I40E_AQ_LARGE_BUF)
2654 		desc.flags |= cpu_to_le16((u16)I40E_AQ_FLAG_LB);
2655 
2656 	status = i40e_asq_send_command_atomic(hw, &desc, mv_list, buf_size,
2657 					      cmd_details, true);
2658 
2659 	return status;
2660 }
2661 
2662 /**
2663  * i40e_aq_remove_macvlan_v2
2664  * @hw: pointer to the hw struct
2665  * @seid: VSI for the mac address
2666  * @mv_list: list of macvlans to be removed
2667  * @count: length of the list
2668  * @cmd_details: pointer to command details structure or NULL
2669  * @aq_status: pointer to Admin Queue status return value
2670  *
2671  * Remove MAC/VLAN addresses from the HW filtering.
2672  * The _v2 version returns the last Admin Queue status in aq_status
2673  * to avoid race conditions in access to hw->aq.asq_last_status.
2674  * It also calls _v2 versions of asq_send_command functions to
2675  * get the aq_status on the stack.
2676  **/
2677 int
2678 i40e_aq_remove_macvlan_v2(struct i40e_hw *hw, u16 seid,
2679 			  struct i40e_aqc_remove_macvlan_element_data *mv_list,
2680 			  u16 count, struct i40e_asq_cmd_details *cmd_details,
2681 			  enum i40e_admin_queue_err *aq_status)
2682 {
2683 	struct i40e_aqc_macvlan *cmd;
2684 	struct i40e_aq_desc desc;
2685 	u16 buf_size;
2686 
2687 	if (count == 0 || !mv_list || !hw)
2688 		return I40E_ERR_PARAM;
2689 
2690 	buf_size = count * sizeof(*mv_list);
2691 
2692 	/* prep the rest of the request */
2693 	i40e_fill_default_direct_cmd_desc(&desc, i40e_aqc_opc_remove_macvlan);
2694 	cmd = (struct i40e_aqc_macvlan *)&desc.params.raw;
2695 	cmd->num_addresses = cpu_to_le16(count);
2696 	cmd->seid[0] = cpu_to_le16(I40E_AQC_MACVLAN_CMD_SEID_VALID | seid);
2697 	cmd->seid[1] = 0;
2698 	cmd->seid[2] = 0;
2699 
2700 	desc.flags |= cpu_to_le16((u16)(I40E_AQ_FLAG_BUF | I40E_AQ_FLAG_RD));
2701 	if (buf_size > I40E_AQ_LARGE_BUF)
2702 		desc.flags |= cpu_to_le16((u16)I40E_AQ_FLAG_LB);
2703 
2704 	return i40e_asq_send_command_atomic_v2(hw, &desc, mv_list, buf_size,
2705 						 cmd_details, true, aq_status);
2706 }
2707 
2708 /**
2709  * i40e_mirrorrule_op - Internal helper function to add/delete mirror rule
2710  * @hw: pointer to the hw struct
2711  * @opcode: AQ opcode for add or delete mirror rule
2712  * @sw_seid: Switch SEID (to which rule refers)
2713  * @rule_type: Rule Type (ingress/egress/VLAN)
2714  * @id: Destination VSI SEID or Rule ID
2715  * @count: length of the list
2716  * @mr_list: list of mirrored VSI SEIDs or VLAN IDs
2717  * @cmd_details: pointer to command details structure or NULL
2718  * @rule_id: Rule ID returned from FW
2719  * @rules_used: Number of rules used in internal switch
2720  * @rules_free: Number of rules free in internal switch
2721  *
2722  * Add/Delete a mirror rule to a specific switch. Mirror rules are supported for
2723  * VEBs/VEPA elements only
2724  **/
2725 static int i40e_mirrorrule_op(struct i40e_hw *hw,
2726 			      u16 opcode, u16 sw_seid, u16 rule_type, u16 id,
2727 			      u16 count, __le16 *mr_list,
2728 			      struct i40e_asq_cmd_details *cmd_details,
2729 			      u16 *rule_id, u16 *rules_used, u16 *rules_free)
2730 {
2731 	struct i40e_aq_desc desc;
2732 	struct i40e_aqc_add_delete_mirror_rule *cmd =
2733 		(struct i40e_aqc_add_delete_mirror_rule *)&desc.params.raw;
2734 	struct i40e_aqc_add_delete_mirror_rule_completion *resp =
2735 	(struct i40e_aqc_add_delete_mirror_rule_completion *)&desc.params.raw;
2736 	u16 buf_size;
2737 	int status;
2738 
2739 	buf_size = count * sizeof(*mr_list);
2740 
2741 	/* prep the rest of the request */
2742 	i40e_fill_default_direct_cmd_desc(&desc, opcode);
2743 	cmd->seid = cpu_to_le16(sw_seid);
2744 	cmd->rule_type = cpu_to_le16(rule_type &
2745 				     I40E_AQC_MIRROR_RULE_TYPE_MASK);
2746 	cmd->num_entries = cpu_to_le16(count);
2747 	/* Dest VSI for add, rule_id for delete */
2748 	cmd->destination = cpu_to_le16(id);
2749 	if (mr_list) {
2750 		desc.flags |= cpu_to_le16((u16)(I40E_AQ_FLAG_BUF |
2751 						I40E_AQ_FLAG_RD));
2752 		if (buf_size > I40E_AQ_LARGE_BUF)
2753 			desc.flags |= cpu_to_le16((u16)I40E_AQ_FLAG_LB);
2754 	}
2755 
2756 	status = i40e_asq_send_command(hw, &desc, mr_list, buf_size,
2757 				       cmd_details);
2758 	if (!status ||
2759 	    hw->aq.asq_last_status == I40E_AQ_RC_ENOSPC) {
2760 		if (rule_id)
2761 			*rule_id = le16_to_cpu(resp->rule_id);
2762 		if (rules_used)
2763 			*rules_used = le16_to_cpu(resp->mirror_rules_used);
2764 		if (rules_free)
2765 			*rules_free = le16_to_cpu(resp->mirror_rules_free);
2766 	}
2767 	return status;
2768 }
2769 
2770 /**
2771  * i40e_aq_add_mirrorrule - add a mirror rule
2772  * @hw: pointer to the hw struct
2773  * @sw_seid: Switch SEID (to which rule refers)
2774  * @rule_type: Rule Type (ingress/egress/VLAN)
2775  * @dest_vsi: SEID of VSI to which packets will be mirrored
2776  * @count: length of the list
2777  * @mr_list: list of mirrored VSI SEIDs or VLAN IDs
2778  * @cmd_details: pointer to command details structure or NULL
2779  * @rule_id: Rule ID returned from FW
2780  * @rules_used: Number of rules used in internal switch
2781  * @rules_free: Number of rules free in internal switch
2782  *
2783  * Add mirror rule. Mirror rules are supported for VEBs or VEPA elements only
2784  **/
2785 int i40e_aq_add_mirrorrule(struct i40e_hw *hw, u16 sw_seid,
2786 			   u16 rule_type, u16 dest_vsi, u16 count,
2787 			   __le16 *mr_list,
2788 			   struct i40e_asq_cmd_details *cmd_details,
2789 			   u16 *rule_id, u16 *rules_used, u16 *rules_free)
2790 {
2791 	if (!(rule_type == I40E_AQC_MIRROR_RULE_TYPE_ALL_INGRESS ||
2792 	    rule_type == I40E_AQC_MIRROR_RULE_TYPE_ALL_EGRESS)) {
2793 		if (count == 0 || !mr_list)
2794 			return I40E_ERR_PARAM;
2795 	}
2796 
2797 	return i40e_mirrorrule_op(hw, i40e_aqc_opc_add_mirror_rule, sw_seid,
2798 				  rule_type, dest_vsi, count, mr_list,
2799 				  cmd_details, rule_id, rules_used, rules_free);
2800 }
2801 
2802 /**
2803  * i40e_aq_delete_mirrorrule - delete a mirror rule
2804  * @hw: pointer to the hw struct
2805  * @sw_seid: Switch SEID (to which rule refers)
2806  * @rule_type: Rule Type (ingress/egress/VLAN)
2807  * @count: length of the list
2808  * @rule_id: Rule ID that is returned in the receive desc as part of
2809  *		add_mirrorrule.
2810  * @mr_list: list of mirrored VLAN IDs to be removed
2811  * @cmd_details: pointer to command details structure or NULL
2812  * @rules_used: Number of rules used in internal switch
2813  * @rules_free: Number of rules free in internal switch
2814  *
2815  * Delete a mirror rule. Mirror rules are supported for VEBs/VEPA elements only
2816  **/
2817 int i40e_aq_delete_mirrorrule(struct i40e_hw *hw, u16 sw_seid,
2818 			      u16 rule_type, u16 rule_id, u16 count,
2819 			      __le16 *mr_list,
2820 			      struct i40e_asq_cmd_details *cmd_details,
2821 			      u16 *rules_used, u16 *rules_free)
2822 {
2823 	/* Rule ID has to be valid except rule_type: INGRESS VLAN mirroring */
2824 	if (rule_type == I40E_AQC_MIRROR_RULE_TYPE_VLAN) {
2825 		/* count and mr_list shall be valid for rule_type INGRESS VLAN
2826 		 * mirroring. For other rule_type, count and rule_type should
2827 		 * not matter.
2828 		 */
2829 		if (count == 0 || !mr_list)
2830 			return I40E_ERR_PARAM;
2831 	}
2832 
2833 	return i40e_mirrorrule_op(hw, i40e_aqc_opc_delete_mirror_rule, sw_seid,
2834 				  rule_type, rule_id, count, mr_list,
2835 				  cmd_details, NULL, rules_used, rules_free);
2836 }
2837 
2838 /**
2839  * i40e_aq_send_msg_to_vf
2840  * @hw: pointer to the hardware structure
2841  * @vfid: VF id to send msg
2842  * @v_opcode: opcodes for VF-PF communication
2843  * @v_retval: return error code
2844  * @msg: pointer to the msg buffer
2845  * @msglen: msg length
2846  * @cmd_details: pointer to command details
2847  *
2848  * send msg to vf
2849  **/
2850 int i40e_aq_send_msg_to_vf(struct i40e_hw *hw, u16 vfid,
2851 			   u32 v_opcode, u32 v_retval, u8 *msg, u16 msglen,
2852 			   struct i40e_asq_cmd_details *cmd_details)
2853 {
2854 	struct i40e_aq_desc desc;
2855 	struct i40e_aqc_pf_vf_message *cmd =
2856 		(struct i40e_aqc_pf_vf_message *)&desc.params.raw;
2857 	int status;
2858 
2859 	i40e_fill_default_direct_cmd_desc(&desc, i40e_aqc_opc_send_msg_to_vf);
2860 	cmd->id = cpu_to_le32(vfid);
2861 	desc.cookie_high = cpu_to_le32(v_opcode);
2862 	desc.cookie_low = cpu_to_le32(v_retval);
2863 	desc.flags |= cpu_to_le16((u16)I40E_AQ_FLAG_SI);
2864 	if (msglen) {
2865 		desc.flags |= cpu_to_le16((u16)(I40E_AQ_FLAG_BUF |
2866 						I40E_AQ_FLAG_RD));
2867 		if (msglen > I40E_AQ_LARGE_BUF)
2868 			desc.flags |= cpu_to_le16((u16)I40E_AQ_FLAG_LB);
2869 		desc.datalen = cpu_to_le16(msglen);
2870 	}
2871 	status = i40e_asq_send_command(hw, &desc, msg, msglen, cmd_details);
2872 
2873 	return status;
2874 }
2875 
2876 /**
2877  * i40e_aq_debug_read_register
2878  * @hw: pointer to the hw struct
2879  * @reg_addr: register address
2880  * @reg_val: register value
2881  * @cmd_details: pointer to command details structure or NULL
2882  *
2883  * Read the register using the admin queue commands
2884  **/
2885 int i40e_aq_debug_read_register(struct i40e_hw *hw,
2886 				u32 reg_addr, u64 *reg_val,
2887 				struct i40e_asq_cmd_details *cmd_details)
2888 {
2889 	struct i40e_aq_desc desc;
2890 	struct i40e_aqc_debug_reg_read_write *cmd_resp =
2891 		(struct i40e_aqc_debug_reg_read_write *)&desc.params.raw;
2892 	int status;
2893 
2894 	if (reg_val == NULL)
2895 		return I40E_ERR_PARAM;
2896 
2897 	i40e_fill_default_direct_cmd_desc(&desc, i40e_aqc_opc_debug_read_reg);
2898 
2899 	cmd_resp->address = cpu_to_le32(reg_addr);
2900 
2901 	status = i40e_asq_send_command(hw, &desc, NULL, 0, cmd_details);
2902 
2903 	if (!status) {
2904 		*reg_val = ((u64)le32_to_cpu(cmd_resp->value_high) << 32) |
2905 			   (u64)le32_to_cpu(cmd_resp->value_low);
2906 	}
2907 
2908 	return status;
2909 }
2910 
2911 /**
2912  * i40e_aq_debug_write_register
2913  * @hw: pointer to the hw struct
2914  * @reg_addr: register address
2915  * @reg_val: register value
2916  * @cmd_details: pointer to command details structure or NULL
2917  *
2918  * Write to a register using the admin queue commands
2919  **/
2920 int i40e_aq_debug_write_register(struct i40e_hw *hw,
2921 				 u32 reg_addr, u64 reg_val,
2922 				 struct i40e_asq_cmd_details *cmd_details)
2923 {
2924 	struct i40e_aq_desc desc;
2925 	struct i40e_aqc_debug_reg_read_write *cmd =
2926 		(struct i40e_aqc_debug_reg_read_write *)&desc.params.raw;
2927 	int status;
2928 
2929 	i40e_fill_default_direct_cmd_desc(&desc, i40e_aqc_opc_debug_write_reg);
2930 
2931 	cmd->address = cpu_to_le32(reg_addr);
2932 	cmd->value_high = cpu_to_le32((u32)(reg_val >> 32));
2933 	cmd->value_low = cpu_to_le32((u32)(reg_val & 0xFFFFFFFF));
2934 
2935 	status = i40e_asq_send_command(hw, &desc, NULL, 0, cmd_details);
2936 
2937 	return status;
2938 }
2939 
2940 /**
2941  * i40e_aq_request_resource
2942  * @hw: pointer to the hw struct
2943  * @resource: resource id
2944  * @access: access type
2945  * @sdp_number: resource number
2946  * @timeout: the maximum time in ms that the driver may hold the resource
2947  * @cmd_details: pointer to command details structure or NULL
2948  *
2949  * requests common resource using the admin queue commands
2950  **/
2951 int i40e_aq_request_resource(struct i40e_hw *hw,
2952 			     enum i40e_aq_resources_ids resource,
2953 			     enum i40e_aq_resource_access_type access,
2954 			     u8 sdp_number, u64 *timeout,
2955 			     struct i40e_asq_cmd_details *cmd_details)
2956 {
2957 	struct i40e_aq_desc desc;
2958 	struct i40e_aqc_request_resource *cmd_resp =
2959 		(struct i40e_aqc_request_resource *)&desc.params.raw;
2960 	int status;
2961 
2962 	i40e_fill_default_direct_cmd_desc(&desc, i40e_aqc_opc_request_resource);
2963 
2964 	cmd_resp->resource_id = cpu_to_le16(resource);
2965 	cmd_resp->access_type = cpu_to_le16(access);
2966 	cmd_resp->resource_number = cpu_to_le32(sdp_number);
2967 
2968 	status = i40e_asq_send_command(hw, &desc, NULL, 0, cmd_details);
2969 	/* The completion specifies the maximum time in ms that the driver
2970 	 * may hold the resource in the Timeout field.
2971 	 * If the resource is held by someone else, the command completes with
2972 	 * busy return value and the timeout field indicates the maximum time
2973 	 * the current owner of the resource has to free it.
2974 	 */
2975 	if (!status || hw->aq.asq_last_status == I40E_AQ_RC_EBUSY)
2976 		*timeout = le32_to_cpu(cmd_resp->timeout);
2977 
2978 	return status;
2979 }
2980 
2981 /**
2982  * i40e_aq_release_resource
2983  * @hw: pointer to the hw struct
2984  * @resource: resource id
2985  * @sdp_number: resource number
2986  * @cmd_details: pointer to command details structure or NULL
2987  *
2988  * release common resource using the admin queue commands
2989  **/
2990 int i40e_aq_release_resource(struct i40e_hw *hw,
2991 			     enum i40e_aq_resources_ids resource,
2992 			     u8 sdp_number,
2993 			     struct i40e_asq_cmd_details *cmd_details)
2994 {
2995 	struct i40e_aq_desc desc;
2996 	struct i40e_aqc_request_resource *cmd =
2997 		(struct i40e_aqc_request_resource *)&desc.params.raw;
2998 	int status;
2999 
3000 	i40e_fill_default_direct_cmd_desc(&desc, i40e_aqc_opc_release_resource);
3001 
3002 	cmd->resource_id = cpu_to_le16(resource);
3003 	cmd->resource_number = cpu_to_le32(sdp_number);
3004 
3005 	status = i40e_asq_send_command(hw, &desc, NULL, 0, cmd_details);
3006 
3007 	return status;
3008 }
3009 
3010 /**
3011  * i40e_aq_read_nvm
3012  * @hw: pointer to the hw struct
3013  * @module_pointer: module pointer location in words from the NVM beginning
3014  * @offset: byte offset from the module beginning
3015  * @length: length of the section to be read (in bytes from the offset)
3016  * @data: command buffer (size [bytes] = length)
3017  * @last_command: tells if this is the last command in a series
3018  * @cmd_details: pointer to command details structure or NULL
3019  *
3020  * Read the NVM using the admin queue commands
3021  **/
3022 int i40e_aq_read_nvm(struct i40e_hw *hw, u8 module_pointer,
3023 		     u32 offset, u16 length, void *data,
3024 		     bool last_command,
3025 		     struct i40e_asq_cmd_details *cmd_details)
3026 {
3027 	struct i40e_aq_desc desc;
3028 	struct i40e_aqc_nvm_update *cmd =
3029 		(struct i40e_aqc_nvm_update *)&desc.params.raw;
3030 	int status;
3031 
3032 	/* In offset the highest byte must be zeroed. */
3033 	if (offset & 0xFF000000) {
3034 		status = I40E_ERR_PARAM;
3035 		goto i40e_aq_read_nvm_exit;
3036 	}
3037 
3038 	i40e_fill_default_direct_cmd_desc(&desc, i40e_aqc_opc_nvm_read);
3039 
3040 	/* If this is the last command in a series, set the proper flag. */
3041 	if (last_command)
3042 		cmd->command_flags |= I40E_AQ_NVM_LAST_CMD;
3043 	cmd->module_pointer = module_pointer;
3044 	cmd->offset = cpu_to_le32(offset);
3045 	cmd->length = cpu_to_le16(length);
3046 
3047 	desc.flags |= cpu_to_le16((u16)I40E_AQ_FLAG_BUF);
3048 	if (length > I40E_AQ_LARGE_BUF)
3049 		desc.flags |= cpu_to_le16((u16)I40E_AQ_FLAG_LB);
3050 
3051 	status = i40e_asq_send_command(hw, &desc, data, length, cmd_details);
3052 
3053 i40e_aq_read_nvm_exit:
3054 	return status;
3055 }
3056 
3057 /**
3058  * i40e_aq_erase_nvm
3059  * @hw: pointer to the hw struct
3060  * @module_pointer: module pointer location in words from the NVM beginning
3061  * @offset: offset in the module (expressed in 4 KB from module's beginning)
3062  * @length: length of the section to be erased (expressed in 4 KB)
3063  * @last_command: tells if this is the last command in a series
3064  * @cmd_details: pointer to command details structure or NULL
3065  *
3066  * Erase the NVM sector using the admin queue commands
3067  **/
3068 int i40e_aq_erase_nvm(struct i40e_hw *hw, u8 module_pointer,
3069 		      u32 offset, u16 length, bool last_command,
3070 		      struct i40e_asq_cmd_details *cmd_details)
3071 {
3072 	struct i40e_aq_desc desc;
3073 	struct i40e_aqc_nvm_update *cmd =
3074 		(struct i40e_aqc_nvm_update *)&desc.params.raw;
3075 	int status;
3076 
3077 	/* In offset the highest byte must be zeroed. */
3078 	if (offset & 0xFF000000) {
3079 		status = I40E_ERR_PARAM;
3080 		goto i40e_aq_erase_nvm_exit;
3081 	}
3082 
3083 	i40e_fill_default_direct_cmd_desc(&desc, i40e_aqc_opc_nvm_erase);
3084 
3085 	/* If this is the last command in a series, set the proper flag. */
3086 	if (last_command)
3087 		cmd->command_flags |= I40E_AQ_NVM_LAST_CMD;
3088 	cmd->module_pointer = module_pointer;
3089 	cmd->offset = cpu_to_le32(offset);
3090 	cmd->length = cpu_to_le16(length);
3091 
3092 	status = i40e_asq_send_command(hw, &desc, NULL, 0, cmd_details);
3093 
3094 i40e_aq_erase_nvm_exit:
3095 	return status;
3096 }
3097 
3098 /**
3099  * i40e_parse_discover_capabilities
3100  * @hw: pointer to the hw struct
3101  * @buff: pointer to a buffer containing device/function capability records
3102  * @cap_count: number of capability records in the list
3103  * @list_type_opc: type of capabilities list to parse
3104  *
3105  * Parse the device/function capabilities list.
3106  **/
3107 static void i40e_parse_discover_capabilities(struct i40e_hw *hw, void *buff,
3108 				     u32 cap_count,
3109 				     enum i40e_admin_queue_opc list_type_opc)
3110 {
3111 	struct i40e_aqc_list_capabilities_element_resp *cap;
3112 	u32 valid_functions, num_functions;
3113 	u32 number, logical_id, phys_id;
3114 	struct i40e_hw_capabilities *p;
3115 	u16 id, ocp_cfg_word0;
3116 	u8 major_rev;
3117 	int status;
3118 	u32 i = 0;
3119 
3120 	cap = (struct i40e_aqc_list_capabilities_element_resp *) buff;
3121 
3122 	if (list_type_opc == i40e_aqc_opc_list_dev_capabilities)
3123 		p = &hw->dev_caps;
3124 	else if (list_type_opc == i40e_aqc_opc_list_func_capabilities)
3125 		p = &hw->func_caps;
3126 	else
3127 		return;
3128 
3129 	for (i = 0; i < cap_count; i++, cap++) {
3130 		id = le16_to_cpu(cap->id);
3131 		number = le32_to_cpu(cap->number);
3132 		logical_id = le32_to_cpu(cap->logical_id);
3133 		phys_id = le32_to_cpu(cap->phys_id);
3134 		major_rev = cap->major_rev;
3135 
3136 		switch (id) {
3137 		case I40E_AQ_CAP_ID_SWITCH_MODE:
3138 			p->switch_mode = number;
3139 			break;
3140 		case I40E_AQ_CAP_ID_MNG_MODE:
3141 			p->management_mode = number;
3142 			if (major_rev > 1) {
3143 				p->mng_protocols_over_mctp = logical_id;
3144 				i40e_debug(hw, I40E_DEBUG_INIT,
3145 					   "HW Capability: Protocols over MCTP = %d\n",
3146 					   p->mng_protocols_over_mctp);
3147 			} else {
3148 				p->mng_protocols_over_mctp = 0;
3149 			}
3150 			break;
3151 		case I40E_AQ_CAP_ID_NPAR_ACTIVE:
3152 			p->npar_enable = number;
3153 			break;
3154 		case I40E_AQ_CAP_ID_OS2BMC_CAP:
3155 			p->os2bmc = number;
3156 			break;
3157 		case I40E_AQ_CAP_ID_FUNCTIONS_VALID:
3158 			p->valid_functions = number;
3159 			break;
3160 		case I40E_AQ_CAP_ID_SRIOV:
3161 			if (number == 1)
3162 				p->sr_iov_1_1 = true;
3163 			break;
3164 		case I40E_AQ_CAP_ID_VF:
3165 			p->num_vfs = number;
3166 			p->vf_base_id = logical_id;
3167 			break;
3168 		case I40E_AQ_CAP_ID_VMDQ:
3169 			if (number == 1)
3170 				p->vmdq = true;
3171 			break;
3172 		case I40E_AQ_CAP_ID_8021QBG:
3173 			if (number == 1)
3174 				p->evb_802_1_qbg = true;
3175 			break;
3176 		case I40E_AQ_CAP_ID_8021QBR:
3177 			if (number == 1)
3178 				p->evb_802_1_qbh = true;
3179 			break;
3180 		case I40E_AQ_CAP_ID_VSI:
3181 			p->num_vsis = number;
3182 			break;
3183 		case I40E_AQ_CAP_ID_DCB:
3184 			if (number == 1) {
3185 				p->dcb = true;
3186 				p->enabled_tcmap = logical_id;
3187 				p->maxtc = phys_id;
3188 			}
3189 			break;
3190 		case I40E_AQ_CAP_ID_FCOE:
3191 			if (number == 1)
3192 				p->fcoe = true;
3193 			break;
3194 		case I40E_AQ_CAP_ID_ISCSI:
3195 			if (number == 1)
3196 				p->iscsi = true;
3197 			break;
3198 		case I40E_AQ_CAP_ID_RSS:
3199 			p->rss = true;
3200 			p->rss_table_size = number;
3201 			p->rss_table_entry_width = logical_id;
3202 			break;
3203 		case I40E_AQ_CAP_ID_RXQ:
3204 			p->num_rx_qp = number;
3205 			p->base_queue = phys_id;
3206 			break;
3207 		case I40E_AQ_CAP_ID_TXQ:
3208 			p->num_tx_qp = number;
3209 			p->base_queue = phys_id;
3210 			break;
3211 		case I40E_AQ_CAP_ID_MSIX:
3212 			p->num_msix_vectors = number;
3213 			i40e_debug(hw, I40E_DEBUG_INIT,
3214 				   "HW Capability: MSIX vector count = %d\n",
3215 				   p->num_msix_vectors);
3216 			break;
3217 		case I40E_AQ_CAP_ID_VF_MSIX:
3218 			p->num_msix_vectors_vf = number;
3219 			break;
3220 		case I40E_AQ_CAP_ID_FLEX10:
3221 			if (major_rev == 1) {
3222 				if (number == 1) {
3223 					p->flex10_enable = true;
3224 					p->flex10_capable = true;
3225 				}
3226 			} else {
3227 				/* Capability revision >= 2 */
3228 				if (number & 1)
3229 					p->flex10_enable = true;
3230 				if (number & 2)
3231 					p->flex10_capable = true;
3232 			}
3233 			p->flex10_mode = logical_id;
3234 			p->flex10_status = phys_id;
3235 			break;
3236 		case I40E_AQ_CAP_ID_CEM:
3237 			if (number == 1)
3238 				p->mgmt_cem = true;
3239 			break;
3240 		case I40E_AQ_CAP_ID_IWARP:
3241 			if (number == 1)
3242 				p->iwarp = true;
3243 			break;
3244 		case I40E_AQ_CAP_ID_LED:
3245 			if (phys_id < I40E_HW_CAP_MAX_GPIO)
3246 				p->led[phys_id] = true;
3247 			break;
3248 		case I40E_AQ_CAP_ID_SDP:
3249 			if (phys_id < I40E_HW_CAP_MAX_GPIO)
3250 				p->sdp[phys_id] = true;
3251 			break;
3252 		case I40E_AQ_CAP_ID_MDIO:
3253 			if (number == 1) {
3254 				p->mdio_port_num = phys_id;
3255 				p->mdio_port_mode = logical_id;
3256 			}
3257 			break;
3258 		case I40E_AQ_CAP_ID_1588:
3259 			if (number == 1)
3260 				p->ieee_1588 = true;
3261 			break;
3262 		case I40E_AQ_CAP_ID_FLOW_DIRECTOR:
3263 			p->fd = true;
3264 			p->fd_filters_guaranteed = number;
3265 			p->fd_filters_best_effort = logical_id;
3266 			break;
3267 		case I40E_AQ_CAP_ID_WSR_PROT:
3268 			p->wr_csr_prot = (u64)number;
3269 			p->wr_csr_prot |= (u64)logical_id << 32;
3270 			break;
3271 		case I40E_AQ_CAP_ID_NVM_MGMT:
3272 			if (number & I40E_NVM_MGMT_SEC_REV_DISABLED)
3273 				p->sec_rev_disabled = true;
3274 			if (number & I40E_NVM_MGMT_UPDATE_DISABLED)
3275 				p->update_disabled = true;
3276 			break;
3277 		default:
3278 			break;
3279 		}
3280 	}
3281 
3282 	if (p->fcoe)
3283 		i40e_debug(hw, I40E_DEBUG_ALL, "device is FCoE capable\n");
3284 
3285 	/* Software override ensuring FCoE is disabled if npar or mfp
3286 	 * mode because it is not supported in these modes.
3287 	 */
3288 	if (p->npar_enable || p->flex10_enable)
3289 		p->fcoe = false;
3290 
3291 	/* count the enabled ports (aka the "not disabled" ports) */
3292 	hw->num_ports = 0;
3293 	for (i = 0; i < 4; i++) {
3294 		u32 port_cfg_reg = I40E_PRTGEN_CNF + (4 * i);
3295 		u64 port_cfg = 0;
3296 
3297 		/* use AQ read to get the physical register offset instead
3298 		 * of the port relative offset
3299 		 */
3300 		i40e_aq_debug_read_register(hw, port_cfg_reg, &port_cfg, NULL);
3301 		if (!(port_cfg & I40E_PRTGEN_CNF_PORT_DIS_MASK))
3302 			hw->num_ports++;
3303 	}
3304 
3305 	/* OCP cards case: if a mezz is removed the Ethernet port is at
3306 	 * disabled state in PRTGEN_CNF register. Additional NVM read is
3307 	 * needed in order to check if we are dealing with OCP card.
3308 	 * Those cards have 4 PFs at minimum, so using PRTGEN_CNF for counting
3309 	 * physical ports results in wrong partition id calculation and thus
3310 	 * not supporting WoL.
3311 	 */
3312 	if (hw->mac.type == I40E_MAC_X722) {
3313 		if (!i40e_acquire_nvm(hw, I40E_RESOURCE_READ)) {
3314 			status = i40e_aq_read_nvm(hw, I40E_SR_EMP_MODULE_PTR,
3315 						  2 * I40E_SR_OCP_CFG_WORD0,
3316 						  sizeof(ocp_cfg_word0),
3317 						  &ocp_cfg_word0, true, NULL);
3318 			if (!status &&
3319 			    (ocp_cfg_word0 & I40E_SR_OCP_ENABLED))
3320 				hw->num_ports = 4;
3321 			i40e_release_nvm(hw);
3322 		}
3323 	}
3324 
3325 	valid_functions = p->valid_functions;
3326 	num_functions = 0;
3327 	while (valid_functions) {
3328 		if (valid_functions & 1)
3329 			num_functions++;
3330 		valid_functions >>= 1;
3331 	}
3332 
3333 	/* partition id is 1-based, and functions are evenly spread
3334 	 * across the ports as partitions
3335 	 */
3336 	if (hw->num_ports != 0) {
3337 		hw->partition_id = (hw->pf_id / hw->num_ports) + 1;
3338 		hw->num_partitions = num_functions / hw->num_ports;
3339 	}
3340 
3341 	/* additional HW specific goodies that might
3342 	 * someday be HW version specific
3343 	 */
3344 	p->rx_buf_chain_len = I40E_MAX_CHAINED_RX_BUFFERS;
3345 }
3346 
3347 /**
3348  * i40e_aq_discover_capabilities
3349  * @hw: pointer to the hw struct
3350  * @buff: a virtual buffer to hold the capabilities
3351  * @buff_size: Size of the virtual buffer
3352  * @data_size: Size of the returned data, or buff size needed if AQ err==ENOMEM
3353  * @list_type_opc: capabilities type to discover - pass in the command opcode
3354  * @cmd_details: pointer to command details structure or NULL
3355  *
3356  * Get the device capabilities descriptions from the firmware
3357  **/
3358 int i40e_aq_discover_capabilities(struct i40e_hw *hw,
3359 				  void *buff, u16 buff_size, u16 *data_size,
3360 				  enum i40e_admin_queue_opc list_type_opc,
3361 				  struct i40e_asq_cmd_details *cmd_details)
3362 {
3363 	struct i40e_aqc_list_capabilites *cmd;
3364 	struct i40e_aq_desc desc;
3365 	int status = 0;
3366 
3367 	cmd = (struct i40e_aqc_list_capabilites *)&desc.params.raw;
3368 
3369 	if (list_type_opc != i40e_aqc_opc_list_func_capabilities &&
3370 		list_type_opc != i40e_aqc_opc_list_dev_capabilities) {
3371 		status = I40E_ERR_PARAM;
3372 		goto exit;
3373 	}
3374 
3375 	i40e_fill_default_direct_cmd_desc(&desc, list_type_opc);
3376 
3377 	desc.flags |= cpu_to_le16((u16)I40E_AQ_FLAG_BUF);
3378 	if (buff_size > I40E_AQ_LARGE_BUF)
3379 		desc.flags |= cpu_to_le16((u16)I40E_AQ_FLAG_LB);
3380 
3381 	status = i40e_asq_send_command(hw, &desc, buff, buff_size, cmd_details);
3382 	*data_size = le16_to_cpu(desc.datalen);
3383 
3384 	if (status)
3385 		goto exit;
3386 
3387 	i40e_parse_discover_capabilities(hw, buff, le32_to_cpu(cmd->count),
3388 					 list_type_opc);
3389 
3390 exit:
3391 	return status;
3392 }
3393 
3394 /**
3395  * i40e_aq_update_nvm
3396  * @hw: pointer to the hw struct
3397  * @module_pointer: module pointer location in words from the NVM beginning
3398  * @offset: byte offset from the module beginning
3399  * @length: length of the section to be written (in bytes from the offset)
3400  * @data: command buffer (size [bytes] = length)
3401  * @last_command: tells if this is the last command in a series
3402  * @preservation_flags: Preservation mode flags
3403  * @cmd_details: pointer to command details structure or NULL
3404  *
3405  * Update the NVM using the admin queue commands
3406  **/
3407 int i40e_aq_update_nvm(struct i40e_hw *hw, u8 module_pointer,
3408 		       u32 offset, u16 length, void *data,
3409 		       bool last_command, u8 preservation_flags,
3410 		       struct i40e_asq_cmd_details *cmd_details)
3411 {
3412 	struct i40e_aq_desc desc;
3413 	struct i40e_aqc_nvm_update *cmd =
3414 		(struct i40e_aqc_nvm_update *)&desc.params.raw;
3415 	int status;
3416 
3417 	/* In offset the highest byte must be zeroed. */
3418 	if (offset & 0xFF000000) {
3419 		status = I40E_ERR_PARAM;
3420 		goto i40e_aq_update_nvm_exit;
3421 	}
3422 
3423 	i40e_fill_default_direct_cmd_desc(&desc, i40e_aqc_opc_nvm_update);
3424 
3425 	/* If this is the last command in a series, set the proper flag. */
3426 	if (last_command)
3427 		cmd->command_flags |= I40E_AQ_NVM_LAST_CMD;
3428 	if (hw->mac.type == I40E_MAC_X722) {
3429 		if (preservation_flags == I40E_NVM_PRESERVATION_FLAGS_SELECTED)
3430 			cmd->command_flags |=
3431 				(I40E_AQ_NVM_PRESERVATION_FLAGS_SELECTED <<
3432 				 I40E_AQ_NVM_PRESERVATION_FLAGS_SHIFT);
3433 		else if (preservation_flags == I40E_NVM_PRESERVATION_FLAGS_ALL)
3434 			cmd->command_flags |=
3435 				(I40E_AQ_NVM_PRESERVATION_FLAGS_ALL <<
3436 				 I40E_AQ_NVM_PRESERVATION_FLAGS_SHIFT);
3437 	}
3438 	cmd->module_pointer = module_pointer;
3439 	cmd->offset = cpu_to_le32(offset);
3440 	cmd->length = cpu_to_le16(length);
3441 
3442 	desc.flags |= cpu_to_le16((u16)(I40E_AQ_FLAG_BUF | I40E_AQ_FLAG_RD));
3443 	if (length > I40E_AQ_LARGE_BUF)
3444 		desc.flags |= cpu_to_le16((u16)I40E_AQ_FLAG_LB);
3445 
3446 	status = i40e_asq_send_command(hw, &desc, data, length, cmd_details);
3447 
3448 i40e_aq_update_nvm_exit:
3449 	return status;
3450 }
3451 
3452 /**
3453  * i40e_aq_rearrange_nvm
3454  * @hw: pointer to the hw struct
3455  * @rearrange_nvm: defines direction of rearrangement
3456  * @cmd_details: pointer to command details structure or NULL
3457  *
3458  * Rearrange NVM structure, available only for transition FW
3459  **/
3460 int i40e_aq_rearrange_nvm(struct i40e_hw *hw,
3461 			  u8 rearrange_nvm,
3462 			  struct i40e_asq_cmd_details *cmd_details)
3463 {
3464 	struct i40e_aqc_nvm_update *cmd;
3465 	struct i40e_aq_desc desc;
3466 	int status;
3467 
3468 	cmd = (struct i40e_aqc_nvm_update *)&desc.params.raw;
3469 
3470 	i40e_fill_default_direct_cmd_desc(&desc, i40e_aqc_opc_nvm_update);
3471 
3472 	rearrange_nvm &= (I40E_AQ_NVM_REARRANGE_TO_FLAT |
3473 			 I40E_AQ_NVM_REARRANGE_TO_STRUCT);
3474 
3475 	if (!rearrange_nvm) {
3476 		status = I40E_ERR_PARAM;
3477 		goto i40e_aq_rearrange_nvm_exit;
3478 	}
3479 
3480 	cmd->command_flags |= rearrange_nvm;
3481 	status = i40e_asq_send_command(hw, &desc, NULL, 0, cmd_details);
3482 
3483 i40e_aq_rearrange_nvm_exit:
3484 	return status;
3485 }
3486 
3487 /**
3488  * i40e_aq_get_lldp_mib
3489  * @hw: pointer to the hw struct
3490  * @bridge_type: type of bridge requested
3491  * @mib_type: Local, Remote or both Local and Remote MIBs
3492  * @buff: pointer to a user supplied buffer to store the MIB block
3493  * @buff_size: size of the buffer (in bytes)
3494  * @local_len : length of the returned Local LLDP MIB
3495  * @remote_len: length of the returned Remote LLDP MIB
3496  * @cmd_details: pointer to command details structure or NULL
3497  *
3498  * Requests the complete LLDP MIB (entire packet).
3499  **/
3500 int i40e_aq_get_lldp_mib(struct i40e_hw *hw, u8 bridge_type,
3501 			 u8 mib_type, void *buff, u16 buff_size,
3502 			 u16 *local_len, u16 *remote_len,
3503 			 struct i40e_asq_cmd_details *cmd_details)
3504 {
3505 	struct i40e_aq_desc desc;
3506 	struct i40e_aqc_lldp_get_mib *cmd =
3507 		(struct i40e_aqc_lldp_get_mib *)&desc.params.raw;
3508 	struct i40e_aqc_lldp_get_mib *resp =
3509 		(struct i40e_aqc_lldp_get_mib *)&desc.params.raw;
3510 	int status;
3511 
3512 	if (buff_size == 0 || !buff)
3513 		return I40E_ERR_PARAM;
3514 
3515 	i40e_fill_default_direct_cmd_desc(&desc, i40e_aqc_opc_lldp_get_mib);
3516 	/* Indirect Command */
3517 	desc.flags |= cpu_to_le16((u16)I40E_AQ_FLAG_BUF);
3518 
3519 	cmd->type = mib_type & I40E_AQ_LLDP_MIB_TYPE_MASK;
3520 	cmd->type |= ((bridge_type << I40E_AQ_LLDP_BRIDGE_TYPE_SHIFT) &
3521 		       I40E_AQ_LLDP_BRIDGE_TYPE_MASK);
3522 
3523 	desc.datalen = cpu_to_le16(buff_size);
3524 
3525 	desc.flags |= cpu_to_le16((u16)I40E_AQ_FLAG_BUF);
3526 	if (buff_size > I40E_AQ_LARGE_BUF)
3527 		desc.flags |= cpu_to_le16((u16)I40E_AQ_FLAG_LB);
3528 
3529 	status = i40e_asq_send_command(hw, &desc, buff, buff_size, cmd_details);
3530 	if (!status) {
3531 		if (local_len != NULL)
3532 			*local_len = le16_to_cpu(resp->local_len);
3533 		if (remote_len != NULL)
3534 			*remote_len = le16_to_cpu(resp->remote_len);
3535 	}
3536 
3537 	return status;
3538 }
3539 
3540 /**
3541  * i40e_aq_set_lldp_mib - Set the LLDP MIB
3542  * @hw: pointer to the hw struct
3543  * @mib_type: Local, Remote or both Local and Remote MIBs
3544  * @buff: pointer to a user supplied buffer to store the MIB block
3545  * @buff_size: size of the buffer (in bytes)
3546  * @cmd_details: pointer to command details structure or NULL
3547  *
3548  * Set the LLDP MIB.
3549  **/
3550 int
3551 i40e_aq_set_lldp_mib(struct i40e_hw *hw,
3552 		     u8 mib_type, void *buff, u16 buff_size,
3553 		     struct i40e_asq_cmd_details *cmd_details)
3554 {
3555 	struct i40e_aqc_lldp_set_local_mib *cmd;
3556 	struct i40e_aq_desc desc;
3557 	int status;
3558 
3559 	cmd = (struct i40e_aqc_lldp_set_local_mib *)&desc.params.raw;
3560 	if (buff_size == 0 || !buff)
3561 		return I40E_ERR_PARAM;
3562 
3563 	i40e_fill_default_direct_cmd_desc(&desc,
3564 					  i40e_aqc_opc_lldp_set_local_mib);
3565 	/* Indirect Command */
3566 	desc.flags |= cpu_to_le16((u16)(I40E_AQ_FLAG_BUF | I40E_AQ_FLAG_RD));
3567 	if (buff_size > I40E_AQ_LARGE_BUF)
3568 		desc.flags |= cpu_to_le16((u16)I40E_AQ_FLAG_LB);
3569 	desc.datalen = cpu_to_le16(buff_size);
3570 
3571 	cmd->type = mib_type;
3572 	cmd->length = cpu_to_le16(buff_size);
3573 	cmd->address_high = cpu_to_le32(upper_32_bits((uintptr_t)buff));
3574 	cmd->address_low = cpu_to_le32(lower_32_bits((uintptr_t)buff));
3575 
3576 	status = i40e_asq_send_command(hw, &desc, buff, buff_size, cmd_details);
3577 	return status;
3578 }
3579 
3580 /**
3581  * i40e_aq_cfg_lldp_mib_change_event
3582  * @hw: pointer to the hw struct
3583  * @enable_update: Enable or Disable event posting
3584  * @cmd_details: pointer to command details structure or NULL
3585  *
3586  * Enable or Disable posting of an event on ARQ when LLDP MIB
3587  * associated with the interface changes
3588  **/
3589 int i40e_aq_cfg_lldp_mib_change_event(struct i40e_hw *hw,
3590 				      bool enable_update,
3591 				      struct i40e_asq_cmd_details *cmd_details)
3592 {
3593 	struct i40e_aq_desc desc;
3594 	struct i40e_aqc_lldp_update_mib *cmd =
3595 		(struct i40e_aqc_lldp_update_mib *)&desc.params.raw;
3596 	int status;
3597 
3598 	i40e_fill_default_direct_cmd_desc(&desc, i40e_aqc_opc_lldp_update_mib);
3599 
3600 	if (!enable_update)
3601 		cmd->command |= I40E_AQ_LLDP_MIB_UPDATE_DISABLE;
3602 
3603 	status = i40e_asq_send_command(hw, &desc, NULL, 0, cmd_details);
3604 
3605 	return status;
3606 }
3607 
3608 /**
3609  * i40e_aq_restore_lldp
3610  * @hw: pointer to the hw struct
3611  * @setting: pointer to factory setting variable or NULL
3612  * @restore: True if factory settings should be restored
3613  * @cmd_details: pointer to command details structure or NULL
3614  *
3615  * Restore LLDP Agent factory settings if @restore set to True. In other case
3616  * only returns factory setting in AQ response.
3617  **/
3618 int
3619 i40e_aq_restore_lldp(struct i40e_hw *hw, u8 *setting, bool restore,
3620 		     struct i40e_asq_cmd_details *cmd_details)
3621 {
3622 	struct i40e_aq_desc desc;
3623 	struct i40e_aqc_lldp_restore *cmd =
3624 		(struct i40e_aqc_lldp_restore *)&desc.params.raw;
3625 	int status;
3626 
3627 	if (!(hw->flags & I40E_HW_FLAG_FW_LLDP_PERSISTENT)) {
3628 		i40e_debug(hw, I40E_DEBUG_ALL,
3629 			   "Restore LLDP not supported by current FW version.\n");
3630 		return I40E_ERR_DEVICE_NOT_SUPPORTED;
3631 	}
3632 
3633 	i40e_fill_default_direct_cmd_desc(&desc, i40e_aqc_opc_lldp_restore);
3634 
3635 	if (restore)
3636 		cmd->command |= I40E_AQ_LLDP_AGENT_RESTORE;
3637 
3638 	status = i40e_asq_send_command(hw, &desc, NULL, 0, cmd_details);
3639 
3640 	if (setting)
3641 		*setting = cmd->command & 1;
3642 
3643 	return status;
3644 }
3645 
3646 /**
3647  * i40e_aq_stop_lldp
3648  * @hw: pointer to the hw struct
3649  * @shutdown_agent: True if LLDP Agent needs to be Shutdown
3650  * @persist: True if stop of LLDP should be persistent across power cycles
3651  * @cmd_details: pointer to command details structure or NULL
3652  *
3653  * Stop or Shutdown the embedded LLDP Agent
3654  **/
3655 int i40e_aq_stop_lldp(struct i40e_hw *hw, bool shutdown_agent,
3656 		      bool persist,
3657 		      struct i40e_asq_cmd_details *cmd_details)
3658 {
3659 	struct i40e_aq_desc desc;
3660 	struct i40e_aqc_lldp_stop *cmd =
3661 		(struct i40e_aqc_lldp_stop *)&desc.params.raw;
3662 	int status;
3663 
3664 	i40e_fill_default_direct_cmd_desc(&desc, i40e_aqc_opc_lldp_stop);
3665 
3666 	if (shutdown_agent)
3667 		cmd->command |= I40E_AQ_LLDP_AGENT_SHUTDOWN;
3668 
3669 	if (persist) {
3670 		if (hw->flags & I40E_HW_FLAG_FW_LLDP_PERSISTENT)
3671 			cmd->command |= I40E_AQ_LLDP_AGENT_STOP_PERSIST;
3672 		else
3673 			i40e_debug(hw, I40E_DEBUG_ALL,
3674 				   "Persistent Stop LLDP not supported by current FW version.\n");
3675 	}
3676 
3677 	status = i40e_asq_send_command(hw, &desc, NULL, 0, cmd_details);
3678 
3679 	return status;
3680 }
3681 
3682 /**
3683  * i40e_aq_start_lldp
3684  * @hw: pointer to the hw struct
3685  * @persist: True if start of LLDP should be persistent across power cycles
3686  * @cmd_details: pointer to command details structure or NULL
3687  *
3688  * Start the embedded LLDP Agent on all ports.
3689  **/
3690 int i40e_aq_start_lldp(struct i40e_hw *hw, bool persist,
3691 		       struct i40e_asq_cmd_details *cmd_details)
3692 {
3693 	struct i40e_aq_desc desc;
3694 	struct i40e_aqc_lldp_start *cmd =
3695 		(struct i40e_aqc_lldp_start *)&desc.params.raw;
3696 	int status;
3697 
3698 	i40e_fill_default_direct_cmd_desc(&desc, i40e_aqc_opc_lldp_start);
3699 
3700 	cmd->command = I40E_AQ_LLDP_AGENT_START;
3701 
3702 	if (persist) {
3703 		if (hw->flags & I40E_HW_FLAG_FW_LLDP_PERSISTENT)
3704 			cmd->command |= I40E_AQ_LLDP_AGENT_START_PERSIST;
3705 		else
3706 			i40e_debug(hw, I40E_DEBUG_ALL,
3707 				   "Persistent Start LLDP not supported by current FW version.\n");
3708 	}
3709 
3710 	status = i40e_asq_send_command(hw, &desc, NULL, 0, cmd_details);
3711 
3712 	return status;
3713 }
3714 
3715 /**
3716  * i40e_aq_set_dcb_parameters
3717  * @hw: pointer to the hw struct
3718  * @cmd_details: pointer to command details structure or NULL
3719  * @dcb_enable: True if DCB configuration needs to be applied
3720  *
3721  **/
3722 int
3723 i40e_aq_set_dcb_parameters(struct i40e_hw *hw, bool dcb_enable,
3724 			   struct i40e_asq_cmd_details *cmd_details)
3725 {
3726 	struct i40e_aq_desc desc;
3727 	struct i40e_aqc_set_dcb_parameters *cmd =
3728 		(struct i40e_aqc_set_dcb_parameters *)&desc.params.raw;
3729 	int status;
3730 
3731 	if (!(hw->flags & I40E_HW_FLAG_FW_LLDP_STOPPABLE))
3732 		return I40E_ERR_DEVICE_NOT_SUPPORTED;
3733 
3734 	i40e_fill_default_direct_cmd_desc(&desc,
3735 					  i40e_aqc_opc_set_dcb_parameters);
3736 
3737 	if (dcb_enable) {
3738 		cmd->valid_flags = I40E_DCB_VALID;
3739 		cmd->command = I40E_AQ_DCB_SET_AGENT;
3740 	}
3741 	status = i40e_asq_send_command(hw, &desc, NULL, 0, cmd_details);
3742 
3743 	return status;
3744 }
3745 
3746 /**
3747  * i40e_aq_get_cee_dcb_config
3748  * @hw: pointer to the hw struct
3749  * @buff: response buffer that stores CEE operational configuration
3750  * @buff_size: size of the buffer passed
3751  * @cmd_details: pointer to command details structure or NULL
3752  *
3753  * Get CEE DCBX mode operational configuration from firmware
3754  **/
3755 int i40e_aq_get_cee_dcb_config(struct i40e_hw *hw,
3756 			       void *buff, u16 buff_size,
3757 			       struct i40e_asq_cmd_details *cmd_details)
3758 {
3759 	struct i40e_aq_desc desc;
3760 	int status;
3761 
3762 	if (buff_size == 0 || !buff)
3763 		return I40E_ERR_PARAM;
3764 
3765 	i40e_fill_default_direct_cmd_desc(&desc, i40e_aqc_opc_get_cee_dcb_cfg);
3766 
3767 	desc.flags |= cpu_to_le16((u16)I40E_AQ_FLAG_BUF);
3768 	status = i40e_asq_send_command(hw, &desc, (void *)buff, buff_size,
3769 				       cmd_details);
3770 
3771 	return status;
3772 }
3773 
3774 /**
3775  * i40e_aq_add_udp_tunnel
3776  * @hw: pointer to the hw struct
3777  * @udp_port: the UDP port to add in Host byte order
3778  * @protocol_index: protocol index type
3779  * @filter_index: pointer to filter index
3780  * @cmd_details: pointer to command details structure or NULL
3781  *
3782  * Note: Firmware expects the udp_port value to be in Little Endian format,
3783  * and this function will call cpu_to_le16 to convert from Host byte order to
3784  * Little Endian order.
3785  **/
3786 int i40e_aq_add_udp_tunnel(struct i40e_hw *hw,
3787 			   u16 udp_port, u8 protocol_index,
3788 			   u8 *filter_index,
3789 			   struct i40e_asq_cmd_details *cmd_details)
3790 {
3791 	struct i40e_aq_desc desc;
3792 	struct i40e_aqc_add_udp_tunnel *cmd =
3793 		(struct i40e_aqc_add_udp_tunnel *)&desc.params.raw;
3794 	struct i40e_aqc_del_udp_tunnel_completion *resp =
3795 		(struct i40e_aqc_del_udp_tunnel_completion *)&desc.params.raw;
3796 	int status;
3797 
3798 	i40e_fill_default_direct_cmd_desc(&desc, i40e_aqc_opc_add_udp_tunnel);
3799 
3800 	cmd->udp_port = cpu_to_le16(udp_port);
3801 	cmd->protocol_type = protocol_index;
3802 
3803 	status = i40e_asq_send_command(hw, &desc, NULL, 0, cmd_details);
3804 
3805 	if (!status && filter_index)
3806 		*filter_index = resp->index;
3807 
3808 	return status;
3809 }
3810 
3811 /**
3812  * i40e_aq_del_udp_tunnel
3813  * @hw: pointer to the hw struct
3814  * @index: filter index
3815  * @cmd_details: pointer to command details structure or NULL
3816  **/
3817 int i40e_aq_del_udp_tunnel(struct i40e_hw *hw, u8 index,
3818 			   struct i40e_asq_cmd_details *cmd_details)
3819 {
3820 	struct i40e_aq_desc desc;
3821 	struct i40e_aqc_remove_udp_tunnel *cmd =
3822 		(struct i40e_aqc_remove_udp_tunnel *)&desc.params.raw;
3823 	int status;
3824 
3825 	i40e_fill_default_direct_cmd_desc(&desc, i40e_aqc_opc_del_udp_tunnel);
3826 
3827 	cmd->index = index;
3828 
3829 	status = i40e_asq_send_command(hw, &desc, NULL, 0, cmd_details);
3830 
3831 	return status;
3832 }
3833 
3834 /**
3835  * i40e_aq_delete_element - Delete switch element
3836  * @hw: pointer to the hw struct
3837  * @seid: the SEID to delete from the switch
3838  * @cmd_details: pointer to command details structure or NULL
3839  *
3840  * This deletes a switch element from the switch.
3841  **/
3842 int i40e_aq_delete_element(struct i40e_hw *hw, u16 seid,
3843 			   struct i40e_asq_cmd_details *cmd_details)
3844 {
3845 	struct i40e_aq_desc desc;
3846 	struct i40e_aqc_switch_seid *cmd =
3847 		(struct i40e_aqc_switch_seid *)&desc.params.raw;
3848 	int status;
3849 
3850 	if (seid == 0)
3851 		return I40E_ERR_PARAM;
3852 
3853 	i40e_fill_default_direct_cmd_desc(&desc, i40e_aqc_opc_delete_element);
3854 
3855 	cmd->seid = cpu_to_le16(seid);
3856 
3857 	status = i40e_asq_send_command_atomic(hw, &desc, NULL, 0,
3858 					      cmd_details, true);
3859 
3860 	return status;
3861 }
3862 
3863 /**
3864  * i40e_aq_dcb_updated - DCB Updated Command
3865  * @hw: pointer to the hw struct
3866  * @cmd_details: pointer to command details structure or NULL
3867  *
3868  * EMP will return when the shared RPB settings have been
3869  * recomputed and modified. The retval field in the descriptor
3870  * will be set to 0 when RPB is modified.
3871  **/
3872 int i40e_aq_dcb_updated(struct i40e_hw *hw,
3873 			struct i40e_asq_cmd_details *cmd_details)
3874 {
3875 	struct i40e_aq_desc desc;
3876 	int status;
3877 
3878 	i40e_fill_default_direct_cmd_desc(&desc, i40e_aqc_opc_dcb_updated);
3879 
3880 	status = i40e_asq_send_command(hw, &desc, NULL, 0, cmd_details);
3881 
3882 	return status;
3883 }
3884 
3885 /**
3886  * i40e_aq_tx_sched_cmd - generic Tx scheduler AQ command handler
3887  * @hw: pointer to the hw struct
3888  * @seid: seid for the physical port/switching component/vsi
3889  * @buff: Indirect buffer to hold data parameters and response
3890  * @buff_size: Indirect buffer size
3891  * @opcode: Tx scheduler AQ command opcode
3892  * @cmd_details: pointer to command details structure or NULL
3893  *
3894  * Generic command handler for Tx scheduler AQ commands
3895  **/
3896 static int i40e_aq_tx_sched_cmd(struct i40e_hw *hw, u16 seid,
3897 				void *buff, u16 buff_size,
3898 				enum i40e_admin_queue_opc opcode,
3899 				struct i40e_asq_cmd_details *cmd_details)
3900 {
3901 	struct i40e_aq_desc desc;
3902 	struct i40e_aqc_tx_sched_ind *cmd =
3903 		(struct i40e_aqc_tx_sched_ind *)&desc.params.raw;
3904 	int status;
3905 	bool cmd_param_flag = false;
3906 
3907 	switch (opcode) {
3908 	case i40e_aqc_opc_configure_vsi_ets_sla_bw_limit:
3909 	case i40e_aqc_opc_configure_vsi_tc_bw:
3910 	case i40e_aqc_opc_enable_switching_comp_ets:
3911 	case i40e_aqc_opc_modify_switching_comp_ets:
3912 	case i40e_aqc_opc_disable_switching_comp_ets:
3913 	case i40e_aqc_opc_configure_switching_comp_ets_bw_limit:
3914 	case i40e_aqc_opc_configure_switching_comp_bw_config:
3915 		cmd_param_flag = true;
3916 		break;
3917 	case i40e_aqc_opc_query_vsi_bw_config:
3918 	case i40e_aqc_opc_query_vsi_ets_sla_config:
3919 	case i40e_aqc_opc_query_switching_comp_ets_config:
3920 	case i40e_aqc_opc_query_port_ets_config:
3921 	case i40e_aqc_opc_query_switching_comp_bw_config:
3922 		cmd_param_flag = false;
3923 		break;
3924 	default:
3925 		return I40E_ERR_PARAM;
3926 	}
3927 
3928 	i40e_fill_default_direct_cmd_desc(&desc, opcode);
3929 
3930 	/* Indirect command */
3931 	desc.flags |= cpu_to_le16((u16)I40E_AQ_FLAG_BUF);
3932 	if (cmd_param_flag)
3933 		desc.flags |= cpu_to_le16((u16)I40E_AQ_FLAG_RD);
3934 	if (buff_size > I40E_AQ_LARGE_BUF)
3935 		desc.flags |= cpu_to_le16((u16)I40E_AQ_FLAG_LB);
3936 
3937 	desc.datalen = cpu_to_le16(buff_size);
3938 
3939 	cmd->vsi_seid = cpu_to_le16(seid);
3940 
3941 	status = i40e_asq_send_command(hw, &desc, buff, buff_size, cmd_details);
3942 
3943 	return status;
3944 }
3945 
3946 /**
3947  * i40e_aq_config_vsi_bw_limit - Configure VSI BW Limit
3948  * @hw: pointer to the hw struct
3949  * @seid: VSI seid
3950  * @credit: BW limit credits (0 = disabled)
3951  * @max_credit: Max BW limit credits
3952  * @cmd_details: pointer to command details structure or NULL
3953  **/
3954 int i40e_aq_config_vsi_bw_limit(struct i40e_hw *hw,
3955 				u16 seid, u16 credit, u8 max_credit,
3956 				struct i40e_asq_cmd_details *cmd_details)
3957 {
3958 	struct i40e_aq_desc desc;
3959 	struct i40e_aqc_configure_vsi_bw_limit *cmd =
3960 		(struct i40e_aqc_configure_vsi_bw_limit *)&desc.params.raw;
3961 	int status;
3962 
3963 	i40e_fill_default_direct_cmd_desc(&desc,
3964 					  i40e_aqc_opc_configure_vsi_bw_limit);
3965 
3966 	cmd->vsi_seid = cpu_to_le16(seid);
3967 	cmd->credit = cpu_to_le16(credit);
3968 	cmd->max_credit = max_credit;
3969 
3970 	status = i40e_asq_send_command(hw, &desc, NULL, 0, cmd_details);
3971 
3972 	return status;
3973 }
3974 
3975 /**
3976  * i40e_aq_config_vsi_tc_bw - Config VSI BW Allocation per TC
3977  * @hw: pointer to the hw struct
3978  * @seid: VSI seid
3979  * @bw_data: Buffer holding enabled TCs, relative TC BW limit/credits
3980  * @cmd_details: pointer to command details structure or NULL
3981  **/
3982 int i40e_aq_config_vsi_tc_bw(struct i40e_hw *hw,
3983 			     u16 seid,
3984 			     struct i40e_aqc_configure_vsi_tc_bw_data *bw_data,
3985 			     struct i40e_asq_cmd_details *cmd_details)
3986 {
3987 	return i40e_aq_tx_sched_cmd(hw, seid, (void *)bw_data, sizeof(*bw_data),
3988 				    i40e_aqc_opc_configure_vsi_tc_bw,
3989 				    cmd_details);
3990 }
3991 
3992 /**
3993  * i40e_aq_config_switch_comp_ets - Enable/Disable/Modify ETS on the port
3994  * @hw: pointer to the hw struct
3995  * @seid: seid of the switching component connected to Physical Port
3996  * @ets_data: Buffer holding ETS parameters
3997  * @opcode: Tx scheduler AQ command opcode
3998  * @cmd_details: pointer to command details structure or NULL
3999  **/
4000 int
4001 i40e_aq_config_switch_comp_ets(struct i40e_hw *hw,
4002 			       u16 seid,
4003 			       struct i40e_aqc_configure_switching_comp_ets_data *ets_data,
4004 			       enum i40e_admin_queue_opc opcode,
4005 			       struct i40e_asq_cmd_details *cmd_details)
4006 {
4007 	return i40e_aq_tx_sched_cmd(hw, seid, (void *)ets_data,
4008 				    sizeof(*ets_data), opcode, cmd_details);
4009 }
4010 
4011 /**
4012  * i40e_aq_config_switch_comp_bw_config - Config Switch comp BW Alloc per TC
4013  * @hw: pointer to the hw struct
4014  * @seid: seid of the switching component
4015  * @bw_data: Buffer holding enabled TCs, relative/absolute TC BW limit/credits
4016  * @cmd_details: pointer to command details structure or NULL
4017  **/
4018 int
4019 i40e_aq_config_switch_comp_bw_config(struct i40e_hw *hw,
4020 	u16 seid,
4021 	struct i40e_aqc_configure_switching_comp_bw_config_data *bw_data,
4022 	struct i40e_asq_cmd_details *cmd_details)
4023 {
4024 	return i40e_aq_tx_sched_cmd(hw, seid, (void *)bw_data, sizeof(*bw_data),
4025 			    i40e_aqc_opc_configure_switching_comp_bw_config,
4026 			    cmd_details);
4027 }
4028 
4029 /**
4030  * i40e_aq_query_vsi_bw_config - Query VSI BW configuration
4031  * @hw: pointer to the hw struct
4032  * @seid: seid of the VSI
4033  * @bw_data: Buffer to hold VSI BW configuration
4034  * @cmd_details: pointer to command details structure or NULL
4035  **/
4036 int
4037 i40e_aq_query_vsi_bw_config(struct i40e_hw *hw,
4038 			    u16 seid,
4039 			    struct i40e_aqc_query_vsi_bw_config_resp *bw_data,
4040 			    struct i40e_asq_cmd_details *cmd_details)
4041 {
4042 	return i40e_aq_tx_sched_cmd(hw, seid, (void *)bw_data, sizeof(*bw_data),
4043 				    i40e_aqc_opc_query_vsi_bw_config,
4044 				    cmd_details);
4045 }
4046 
4047 /**
4048  * i40e_aq_query_vsi_ets_sla_config - Query VSI BW configuration per TC
4049  * @hw: pointer to the hw struct
4050  * @seid: seid of the VSI
4051  * @bw_data: Buffer to hold VSI BW configuration per TC
4052  * @cmd_details: pointer to command details structure or NULL
4053  **/
4054 int
4055 i40e_aq_query_vsi_ets_sla_config(struct i40e_hw *hw,
4056 				 u16 seid,
4057 				 struct i40e_aqc_query_vsi_ets_sla_config_resp *bw_data,
4058 				 struct i40e_asq_cmd_details *cmd_details)
4059 {
4060 	return i40e_aq_tx_sched_cmd(hw, seid, (void *)bw_data, sizeof(*bw_data),
4061 				    i40e_aqc_opc_query_vsi_ets_sla_config,
4062 				    cmd_details);
4063 }
4064 
4065 /**
4066  * i40e_aq_query_switch_comp_ets_config - Query Switch comp BW config per TC
4067  * @hw: pointer to the hw struct
4068  * @seid: seid of the switching component
4069  * @bw_data: Buffer to hold switching component's per TC BW config
4070  * @cmd_details: pointer to command details structure or NULL
4071  **/
4072 int
4073 i40e_aq_query_switch_comp_ets_config(struct i40e_hw *hw,
4074 				     u16 seid,
4075 				     struct i40e_aqc_query_switching_comp_ets_config_resp *bw_data,
4076 				     struct i40e_asq_cmd_details *cmd_details)
4077 {
4078 	return i40e_aq_tx_sched_cmd(hw, seid, (void *)bw_data, sizeof(*bw_data),
4079 				   i40e_aqc_opc_query_switching_comp_ets_config,
4080 				   cmd_details);
4081 }
4082 
4083 /**
4084  * i40e_aq_query_port_ets_config - Query Physical Port ETS configuration
4085  * @hw: pointer to the hw struct
4086  * @seid: seid of the VSI or switching component connected to Physical Port
4087  * @bw_data: Buffer to hold current ETS configuration for the Physical Port
4088  * @cmd_details: pointer to command details structure or NULL
4089  **/
4090 int
4091 i40e_aq_query_port_ets_config(struct i40e_hw *hw,
4092 			      u16 seid,
4093 			      struct i40e_aqc_query_port_ets_config_resp *bw_data,
4094 			      struct i40e_asq_cmd_details *cmd_details)
4095 {
4096 	return i40e_aq_tx_sched_cmd(hw, seid, (void *)bw_data, sizeof(*bw_data),
4097 				    i40e_aqc_opc_query_port_ets_config,
4098 				    cmd_details);
4099 }
4100 
4101 /**
4102  * i40e_aq_query_switch_comp_bw_config - Query Switch comp BW configuration
4103  * @hw: pointer to the hw struct
4104  * @seid: seid of the switching component
4105  * @bw_data: Buffer to hold switching component's BW configuration
4106  * @cmd_details: pointer to command details structure or NULL
4107  **/
4108 int
4109 i40e_aq_query_switch_comp_bw_config(struct i40e_hw *hw,
4110 				    u16 seid,
4111 				    struct i40e_aqc_query_switching_comp_bw_config_resp *bw_data,
4112 				    struct i40e_asq_cmd_details *cmd_details)
4113 {
4114 	return i40e_aq_tx_sched_cmd(hw, seid, (void *)bw_data, sizeof(*bw_data),
4115 				    i40e_aqc_opc_query_switching_comp_bw_config,
4116 				    cmd_details);
4117 }
4118 
4119 /**
4120  * i40e_validate_filter_settings
4121  * @hw: pointer to the hardware structure
4122  * @settings: Filter control settings
4123  *
4124  * Check and validate the filter control settings passed.
4125  * The function checks for the valid filter/context sizes being
4126  * passed for FCoE and PE.
4127  *
4128  * Returns 0 if the values passed are valid and within
4129  * range else returns an error.
4130  **/
4131 static int
4132 i40e_validate_filter_settings(struct i40e_hw *hw,
4133 			      struct i40e_filter_control_settings *settings)
4134 {
4135 	u32 fcoe_cntx_size, fcoe_filt_size;
4136 	u32 fcoe_fmax;
4137 	u32 val;
4138 
4139 	/* Validate FCoE settings passed */
4140 	switch (settings->fcoe_filt_num) {
4141 	case I40E_HASH_FILTER_SIZE_1K:
4142 	case I40E_HASH_FILTER_SIZE_2K:
4143 	case I40E_HASH_FILTER_SIZE_4K:
4144 	case I40E_HASH_FILTER_SIZE_8K:
4145 	case I40E_HASH_FILTER_SIZE_16K:
4146 	case I40E_HASH_FILTER_SIZE_32K:
4147 		fcoe_filt_size = I40E_HASH_FILTER_BASE_SIZE;
4148 		fcoe_filt_size <<= (u32)settings->fcoe_filt_num;
4149 		break;
4150 	default:
4151 		return I40E_ERR_PARAM;
4152 	}
4153 
4154 	switch (settings->fcoe_cntx_num) {
4155 	case I40E_DMA_CNTX_SIZE_512:
4156 	case I40E_DMA_CNTX_SIZE_1K:
4157 	case I40E_DMA_CNTX_SIZE_2K:
4158 	case I40E_DMA_CNTX_SIZE_4K:
4159 		fcoe_cntx_size = I40E_DMA_CNTX_BASE_SIZE;
4160 		fcoe_cntx_size <<= (u32)settings->fcoe_cntx_num;
4161 		break;
4162 	default:
4163 		return I40E_ERR_PARAM;
4164 	}
4165 
4166 	/* Validate PE settings passed */
4167 	switch (settings->pe_filt_num) {
4168 	case I40E_HASH_FILTER_SIZE_1K:
4169 	case I40E_HASH_FILTER_SIZE_2K:
4170 	case I40E_HASH_FILTER_SIZE_4K:
4171 	case I40E_HASH_FILTER_SIZE_8K:
4172 	case I40E_HASH_FILTER_SIZE_16K:
4173 	case I40E_HASH_FILTER_SIZE_32K:
4174 	case I40E_HASH_FILTER_SIZE_64K:
4175 	case I40E_HASH_FILTER_SIZE_128K:
4176 	case I40E_HASH_FILTER_SIZE_256K:
4177 	case I40E_HASH_FILTER_SIZE_512K:
4178 	case I40E_HASH_FILTER_SIZE_1M:
4179 		break;
4180 	default:
4181 		return I40E_ERR_PARAM;
4182 	}
4183 
4184 	switch (settings->pe_cntx_num) {
4185 	case I40E_DMA_CNTX_SIZE_512:
4186 	case I40E_DMA_CNTX_SIZE_1K:
4187 	case I40E_DMA_CNTX_SIZE_2K:
4188 	case I40E_DMA_CNTX_SIZE_4K:
4189 	case I40E_DMA_CNTX_SIZE_8K:
4190 	case I40E_DMA_CNTX_SIZE_16K:
4191 	case I40E_DMA_CNTX_SIZE_32K:
4192 	case I40E_DMA_CNTX_SIZE_64K:
4193 	case I40E_DMA_CNTX_SIZE_128K:
4194 	case I40E_DMA_CNTX_SIZE_256K:
4195 		break;
4196 	default:
4197 		return I40E_ERR_PARAM;
4198 	}
4199 
4200 	/* FCHSIZE + FCDSIZE should not be greater than PMFCOEFMAX */
4201 	val = rd32(hw, I40E_GLHMC_FCOEFMAX);
4202 	fcoe_fmax = (val & I40E_GLHMC_FCOEFMAX_PMFCOEFMAX_MASK)
4203 		     >> I40E_GLHMC_FCOEFMAX_PMFCOEFMAX_SHIFT;
4204 	if (fcoe_filt_size + fcoe_cntx_size >  fcoe_fmax)
4205 		return I40E_ERR_INVALID_SIZE;
4206 
4207 	return 0;
4208 }
4209 
4210 /**
4211  * i40e_set_filter_control
4212  * @hw: pointer to the hardware structure
4213  * @settings: Filter control settings
4214  *
4215  * Set the Queue Filters for PE/FCoE and enable filters required
4216  * for a single PF. It is expected that these settings are programmed
4217  * at the driver initialization time.
4218  **/
4219 int i40e_set_filter_control(struct i40e_hw *hw,
4220 			    struct i40e_filter_control_settings *settings)
4221 {
4222 	u32 hash_lut_size = 0;
4223 	int ret = 0;
4224 	u32 val;
4225 
4226 	if (!settings)
4227 		return I40E_ERR_PARAM;
4228 
4229 	/* Validate the input settings */
4230 	ret = i40e_validate_filter_settings(hw, settings);
4231 	if (ret)
4232 		return ret;
4233 
4234 	/* Read the PF Queue Filter control register */
4235 	val = i40e_read_rx_ctl(hw, I40E_PFQF_CTL_0);
4236 
4237 	/* Program required PE hash buckets for the PF */
4238 	val &= ~I40E_PFQF_CTL_0_PEHSIZE_MASK;
4239 	val |= ((u32)settings->pe_filt_num << I40E_PFQF_CTL_0_PEHSIZE_SHIFT) &
4240 		I40E_PFQF_CTL_0_PEHSIZE_MASK;
4241 	/* Program required PE contexts for the PF */
4242 	val &= ~I40E_PFQF_CTL_0_PEDSIZE_MASK;
4243 	val |= ((u32)settings->pe_cntx_num << I40E_PFQF_CTL_0_PEDSIZE_SHIFT) &
4244 		I40E_PFQF_CTL_0_PEDSIZE_MASK;
4245 
4246 	/* Program required FCoE hash buckets for the PF */
4247 	val &= ~I40E_PFQF_CTL_0_PFFCHSIZE_MASK;
4248 	val |= ((u32)settings->fcoe_filt_num <<
4249 			I40E_PFQF_CTL_0_PFFCHSIZE_SHIFT) &
4250 		I40E_PFQF_CTL_0_PFFCHSIZE_MASK;
4251 	/* Program required FCoE DDP contexts for the PF */
4252 	val &= ~I40E_PFQF_CTL_0_PFFCDSIZE_MASK;
4253 	val |= ((u32)settings->fcoe_cntx_num <<
4254 			I40E_PFQF_CTL_0_PFFCDSIZE_SHIFT) &
4255 		I40E_PFQF_CTL_0_PFFCDSIZE_MASK;
4256 
4257 	/* Program Hash LUT size for the PF */
4258 	val &= ~I40E_PFQF_CTL_0_HASHLUTSIZE_MASK;
4259 	if (settings->hash_lut_size == I40E_HASH_LUT_SIZE_512)
4260 		hash_lut_size = 1;
4261 	val |= (hash_lut_size << I40E_PFQF_CTL_0_HASHLUTSIZE_SHIFT) &
4262 		I40E_PFQF_CTL_0_HASHLUTSIZE_MASK;
4263 
4264 	/* Enable FDIR, Ethertype and MACVLAN filters for PF and VFs */
4265 	if (settings->enable_fdir)
4266 		val |= I40E_PFQF_CTL_0_FD_ENA_MASK;
4267 	if (settings->enable_ethtype)
4268 		val |= I40E_PFQF_CTL_0_ETYPE_ENA_MASK;
4269 	if (settings->enable_macvlan)
4270 		val |= I40E_PFQF_CTL_0_MACVLAN_ENA_MASK;
4271 
4272 	i40e_write_rx_ctl(hw, I40E_PFQF_CTL_0, val);
4273 
4274 	return 0;
4275 }
4276 
4277 /**
4278  * i40e_aq_add_rem_control_packet_filter - Add or Remove Control Packet Filter
4279  * @hw: pointer to the hw struct
4280  * @mac_addr: MAC address to use in the filter
4281  * @ethtype: Ethertype to use in the filter
4282  * @flags: Flags that needs to be applied to the filter
4283  * @vsi_seid: seid of the control VSI
4284  * @queue: VSI queue number to send the packet to
4285  * @is_add: Add control packet filter if True else remove
4286  * @stats: Structure to hold information on control filter counts
4287  * @cmd_details: pointer to command details structure or NULL
4288  *
4289  * This command will Add or Remove control packet filter for a control VSI.
4290  * In return it will update the total number of perfect filter count in
4291  * the stats member.
4292  **/
4293 int i40e_aq_add_rem_control_packet_filter(struct i40e_hw *hw,
4294 					  u8 *mac_addr, u16 ethtype, u16 flags,
4295 					  u16 vsi_seid, u16 queue, bool is_add,
4296 					  struct i40e_control_filter_stats *stats,
4297 					  struct i40e_asq_cmd_details *cmd_details)
4298 {
4299 	struct i40e_aq_desc desc;
4300 	struct i40e_aqc_add_remove_control_packet_filter *cmd =
4301 		(struct i40e_aqc_add_remove_control_packet_filter *)
4302 		&desc.params.raw;
4303 	struct i40e_aqc_add_remove_control_packet_filter_completion *resp =
4304 		(struct i40e_aqc_add_remove_control_packet_filter_completion *)
4305 		&desc.params.raw;
4306 	int status;
4307 
4308 	if (vsi_seid == 0)
4309 		return I40E_ERR_PARAM;
4310 
4311 	if (is_add) {
4312 		i40e_fill_default_direct_cmd_desc(&desc,
4313 				i40e_aqc_opc_add_control_packet_filter);
4314 		cmd->queue = cpu_to_le16(queue);
4315 	} else {
4316 		i40e_fill_default_direct_cmd_desc(&desc,
4317 				i40e_aqc_opc_remove_control_packet_filter);
4318 	}
4319 
4320 	if (mac_addr)
4321 		ether_addr_copy(cmd->mac, mac_addr);
4322 
4323 	cmd->etype = cpu_to_le16(ethtype);
4324 	cmd->flags = cpu_to_le16(flags);
4325 	cmd->seid = cpu_to_le16(vsi_seid);
4326 
4327 	status = i40e_asq_send_command(hw, &desc, NULL, 0, cmd_details);
4328 
4329 	if (!status && stats) {
4330 		stats->mac_etype_used = le16_to_cpu(resp->mac_etype_used);
4331 		stats->etype_used = le16_to_cpu(resp->etype_used);
4332 		stats->mac_etype_free = le16_to_cpu(resp->mac_etype_free);
4333 		stats->etype_free = le16_to_cpu(resp->etype_free);
4334 	}
4335 
4336 	return status;
4337 }
4338 
4339 /**
4340  * i40e_add_filter_to_drop_tx_flow_control_frames- filter to drop flow control
4341  * @hw: pointer to the hw struct
4342  * @seid: VSI seid to add ethertype filter from
4343  **/
4344 void i40e_add_filter_to_drop_tx_flow_control_frames(struct i40e_hw *hw,
4345 						    u16 seid)
4346 {
4347 #define I40E_FLOW_CONTROL_ETHTYPE 0x8808
4348 	u16 flag = I40E_AQC_ADD_CONTROL_PACKET_FLAGS_IGNORE_MAC |
4349 		   I40E_AQC_ADD_CONTROL_PACKET_FLAGS_DROP |
4350 		   I40E_AQC_ADD_CONTROL_PACKET_FLAGS_TX;
4351 	u16 ethtype = I40E_FLOW_CONTROL_ETHTYPE;
4352 	int status;
4353 
4354 	status = i40e_aq_add_rem_control_packet_filter(hw, NULL, ethtype, flag,
4355 						       seid, 0, true, NULL,
4356 						       NULL);
4357 	if (status)
4358 		hw_dbg(hw, "Ethtype Filter Add failed: Error pruning Tx flow control frames\n");
4359 }
4360 
4361 /**
4362  * i40e_aq_alternate_read
4363  * @hw: pointer to the hardware structure
4364  * @reg_addr0: address of first dword to be read
4365  * @reg_val0: pointer for data read from 'reg_addr0'
4366  * @reg_addr1: address of second dword to be read
4367  * @reg_val1: pointer for data read from 'reg_addr1'
4368  *
4369  * Read one or two dwords from alternate structure. Fields are indicated
4370  * by 'reg_addr0' and 'reg_addr1' register numbers. If 'reg_val1' pointer
4371  * is not passed then only register at 'reg_addr0' is read.
4372  *
4373  **/
4374 static int i40e_aq_alternate_read(struct i40e_hw *hw,
4375 				  u32 reg_addr0, u32 *reg_val0,
4376 				  u32 reg_addr1, u32 *reg_val1)
4377 {
4378 	struct i40e_aq_desc desc;
4379 	struct i40e_aqc_alternate_write *cmd_resp =
4380 		(struct i40e_aqc_alternate_write *)&desc.params.raw;
4381 	int status;
4382 
4383 	if (!reg_val0)
4384 		return I40E_ERR_PARAM;
4385 
4386 	i40e_fill_default_direct_cmd_desc(&desc, i40e_aqc_opc_alternate_read);
4387 	cmd_resp->address0 = cpu_to_le32(reg_addr0);
4388 	cmd_resp->address1 = cpu_to_le32(reg_addr1);
4389 
4390 	status = i40e_asq_send_command(hw, &desc, NULL, 0, NULL);
4391 
4392 	if (!status) {
4393 		*reg_val0 = le32_to_cpu(cmd_resp->data0);
4394 
4395 		if (reg_val1)
4396 			*reg_val1 = le32_to_cpu(cmd_resp->data1);
4397 	}
4398 
4399 	return status;
4400 }
4401 
4402 /**
4403  * i40e_aq_suspend_port_tx
4404  * @hw: pointer to the hardware structure
4405  * @seid: port seid
4406  * @cmd_details: pointer to command details structure or NULL
4407  *
4408  * Suspend port's Tx traffic
4409  **/
4410 int i40e_aq_suspend_port_tx(struct i40e_hw *hw, u16 seid,
4411 			    struct i40e_asq_cmd_details *cmd_details)
4412 {
4413 	struct i40e_aqc_tx_sched_ind *cmd;
4414 	struct i40e_aq_desc desc;
4415 	int status;
4416 
4417 	cmd = (struct i40e_aqc_tx_sched_ind *)&desc.params.raw;
4418 	i40e_fill_default_direct_cmd_desc(&desc, i40e_aqc_opc_suspend_port_tx);
4419 	cmd->vsi_seid = cpu_to_le16(seid);
4420 	status = i40e_asq_send_command(hw, &desc, NULL, 0, cmd_details);
4421 
4422 	return status;
4423 }
4424 
4425 /**
4426  * i40e_aq_resume_port_tx
4427  * @hw: pointer to the hardware structure
4428  * @cmd_details: pointer to command details structure or NULL
4429  *
4430  * Resume port's Tx traffic
4431  **/
4432 int i40e_aq_resume_port_tx(struct i40e_hw *hw,
4433 			   struct i40e_asq_cmd_details *cmd_details)
4434 {
4435 	struct i40e_aq_desc desc;
4436 	int status;
4437 
4438 	i40e_fill_default_direct_cmd_desc(&desc, i40e_aqc_opc_resume_port_tx);
4439 
4440 	status = i40e_asq_send_command(hw, &desc, NULL, 0, cmd_details);
4441 
4442 	return status;
4443 }
4444 
4445 /**
4446  * i40e_set_pci_config_data - store PCI bus info
4447  * @hw: pointer to hardware structure
4448  * @link_status: the link status word from PCI config space
4449  *
4450  * Stores the PCI bus info (speed, width, type) within the i40e_hw structure
4451  **/
4452 void i40e_set_pci_config_data(struct i40e_hw *hw, u16 link_status)
4453 {
4454 	hw->bus.type = i40e_bus_type_pci_express;
4455 
4456 	switch (link_status & PCI_EXP_LNKSTA_NLW) {
4457 	case PCI_EXP_LNKSTA_NLW_X1:
4458 		hw->bus.width = i40e_bus_width_pcie_x1;
4459 		break;
4460 	case PCI_EXP_LNKSTA_NLW_X2:
4461 		hw->bus.width = i40e_bus_width_pcie_x2;
4462 		break;
4463 	case PCI_EXP_LNKSTA_NLW_X4:
4464 		hw->bus.width = i40e_bus_width_pcie_x4;
4465 		break;
4466 	case PCI_EXP_LNKSTA_NLW_X8:
4467 		hw->bus.width = i40e_bus_width_pcie_x8;
4468 		break;
4469 	default:
4470 		hw->bus.width = i40e_bus_width_unknown;
4471 		break;
4472 	}
4473 
4474 	switch (link_status & PCI_EXP_LNKSTA_CLS) {
4475 	case PCI_EXP_LNKSTA_CLS_2_5GB:
4476 		hw->bus.speed = i40e_bus_speed_2500;
4477 		break;
4478 	case PCI_EXP_LNKSTA_CLS_5_0GB:
4479 		hw->bus.speed = i40e_bus_speed_5000;
4480 		break;
4481 	case PCI_EXP_LNKSTA_CLS_8_0GB:
4482 		hw->bus.speed = i40e_bus_speed_8000;
4483 		break;
4484 	default:
4485 		hw->bus.speed = i40e_bus_speed_unknown;
4486 		break;
4487 	}
4488 }
4489 
4490 /**
4491  * i40e_aq_debug_dump
4492  * @hw: pointer to the hardware structure
4493  * @cluster_id: specific cluster to dump
4494  * @table_id: table id within cluster
4495  * @start_index: index of line in the block to read
4496  * @buff_size: dump buffer size
4497  * @buff: dump buffer
4498  * @ret_buff_size: actual buffer size returned
4499  * @ret_next_table: next block to read
4500  * @ret_next_index: next index to read
4501  * @cmd_details: pointer to command details structure or NULL
4502  *
4503  * Dump internal FW/HW data for debug purposes.
4504  *
4505  **/
4506 int i40e_aq_debug_dump(struct i40e_hw *hw, u8 cluster_id,
4507 		       u8 table_id, u32 start_index, u16 buff_size,
4508 		       void *buff, u16 *ret_buff_size,
4509 		       u8 *ret_next_table, u32 *ret_next_index,
4510 		       struct i40e_asq_cmd_details *cmd_details)
4511 {
4512 	struct i40e_aq_desc desc;
4513 	struct i40e_aqc_debug_dump_internals *cmd =
4514 		(struct i40e_aqc_debug_dump_internals *)&desc.params.raw;
4515 	struct i40e_aqc_debug_dump_internals *resp =
4516 		(struct i40e_aqc_debug_dump_internals *)&desc.params.raw;
4517 	int status;
4518 
4519 	if (buff_size == 0 || !buff)
4520 		return I40E_ERR_PARAM;
4521 
4522 	i40e_fill_default_direct_cmd_desc(&desc,
4523 					  i40e_aqc_opc_debug_dump_internals);
4524 	/* Indirect Command */
4525 	desc.flags |= cpu_to_le16((u16)I40E_AQ_FLAG_BUF);
4526 	if (buff_size > I40E_AQ_LARGE_BUF)
4527 		desc.flags |= cpu_to_le16((u16)I40E_AQ_FLAG_LB);
4528 
4529 	cmd->cluster_id = cluster_id;
4530 	cmd->table_id = table_id;
4531 	cmd->idx = cpu_to_le32(start_index);
4532 
4533 	desc.datalen = cpu_to_le16(buff_size);
4534 
4535 	status = i40e_asq_send_command(hw, &desc, buff, buff_size, cmd_details);
4536 	if (!status) {
4537 		if (ret_buff_size)
4538 			*ret_buff_size = le16_to_cpu(desc.datalen);
4539 		if (ret_next_table)
4540 			*ret_next_table = resp->table_id;
4541 		if (ret_next_index)
4542 			*ret_next_index = le32_to_cpu(resp->idx);
4543 	}
4544 
4545 	return status;
4546 }
4547 
4548 /**
4549  * i40e_read_bw_from_alt_ram
4550  * @hw: pointer to the hardware structure
4551  * @max_bw: pointer for max_bw read
4552  * @min_bw: pointer for min_bw read
4553  * @min_valid: pointer for bool that is true if min_bw is a valid value
4554  * @max_valid: pointer for bool that is true if max_bw is a valid value
4555  *
4556  * Read bw from the alternate ram for the given pf
4557  **/
4558 int i40e_read_bw_from_alt_ram(struct i40e_hw *hw,
4559 			      u32 *max_bw, u32 *min_bw,
4560 			      bool *min_valid, bool *max_valid)
4561 {
4562 	u32 max_bw_addr, min_bw_addr;
4563 	int status;
4564 
4565 	/* Calculate the address of the min/max bw registers */
4566 	max_bw_addr = I40E_ALT_STRUCT_FIRST_PF_OFFSET +
4567 		      I40E_ALT_STRUCT_MAX_BW_OFFSET +
4568 		      (I40E_ALT_STRUCT_DWORDS_PER_PF * hw->pf_id);
4569 	min_bw_addr = I40E_ALT_STRUCT_FIRST_PF_OFFSET +
4570 		      I40E_ALT_STRUCT_MIN_BW_OFFSET +
4571 		      (I40E_ALT_STRUCT_DWORDS_PER_PF * hw->pf_id);
4572 
4573 	/* Read the bandwidths from alt ram */
4574 	status = i40e_aq_alternate_read(hw, max_bw_addr, max_bw,
4575 					min_bw_addr, min_bw);
4576 
4577 	if (*min_bw & I40E_ALT_BW_VALID_MASK)
4578 		*min_valid = true;
4579 	else
4580 		*min_valid = false;
4581 
4582 	if (*max_bw & I40E_ALT_BW_VALID_MASK)
4583 		*max_valid = true;
4584 	else
4585 		*max_valid = false;
4586 
4587 	return status;
4588 }
4589 
4590 /**
4591  * i40e_aq_configure_partition_bw
4592  * @hw: pointer to the hardware structure
4593  * @bw_data: Buffer holding valid pfs and bw limits
4594  * @cmd_details: pointer to command details
4595  *
4596  * Configure partitions guaranteed/max bw
4597  **/
4598 int
4599 i40e_aq_configure_partition_bw(struct i40e_hw *hw,
4600 			       struct i40e_aqc_configure_partition_bw_data *bw_data,
4601 			       struct i40e_asq_cmd_details *cmd_details)
4602 {
4603 	u16 bwd_size = sizeof(*bw_data);
4604 	struct i40e_aq_desc desc;
4605 	int status;
4606 
4607 	i40e_fill_default_direct_cmd_desc(&desc,
4608 					  i40e_aqc_opc_configure_partition_bw);
4609 
4610 	/* Indirect command */
4611 	desc.flags |= cpu_to_le16((u16)I40E_AQ_FLAG_BUF);
4612 	desc.flags |= cpu_to_le16((u16)I40E_AQ_FLAG_RD);
4613 
4614 	if (bwd_size > I40E_AQ_LARGE_BUF)
4615 		desc.flags |= cpu_to_le16((u16)I40E_AQ_FLAG_LB);
4616 
4617 	desc.datalen = cpu_to_le16(bwd_size);
4618 
4619 	status = i40e_asq_send_command(hw, &desc, bw_data, bwd_size,
4620 				       cmd_details);
4621 
4622 	return status;
4623 }
4624 
4625 /**
4626  * i40e_read_phy_register_clause22
4627  * @hw: pointer to the HW structure
4628  * @reg: register address in the page
4629  * @phy_addr: PHY address on MDIO interface
4630  * @value: PHY register value
4631  *
4632  * Reads specified PHY register value
4633  **/
4634 int i40e_read_phy_register_clause22(struct i40e_hw *hw,
4635 				    u16 reg, u8 phy_addr, u16 *value)
4636 {
4637 	u8 port_num = (u8)hw->func_caps.mdio_port_num;
4638 	int status = I40E_ERR_TIMEOUT;
4639 	u32 command = 0;
4640 	u16 retry = 1000;
4641 
4642 	command = (reg << I40E_GLGEN_MSCA_DEVADD_SHIFT) |
4643 		  (phy_addr << I40E_GLGEN_MSCA_PHYADD_SHIFT) |
4644 		  (I40E_MDIO_CLAUSE22_OPCODE_READ_MASK) |
4645 		  (I40E_MDIO_CLAUSE22_STCODE_MASK) |
4646 		  (I40E_GLGEN_MSCA_MDICMD_MASK);
4647 	wr32(hw, I40E_GLGEN_MSCA(port_num), command);
4648 	do {
4649 		command = rd32(hw, I40E_GLGEN_MSCA(port_num));
4650 		if (!(command & I40E_GLGEN_MSCA_MDICMD_MASK)) {
4651 			status = 0;
4652 			break;
4653 		}
4654 		udelay(10);
4655 		retry--;
4656 	} while (retry);
4657 
4658 	if (status) {
4659 		i40e_debug(hw, I40E_DEBUG_PHY,
4660 			   "PHY: Can't write command to external PHY.\n");
4661 	} else {
4662 		command = rd32(hw, I40E_GLGEN_MSRWD(port_num));
4663 		*value = (command & I40E_GLGEN_MSRWD_MDIRDDATA_MASK) >>
4664 			 I40E_GLGEN_MSRWD_MDIRDDATA_SHIFT;
4665 	}
4666 
4667 	return status;
4668 }
4669 
4670 /**
4671  * i40e_write_phy_register_clause22
4672  * @hw: pointer to the HW structure
4673  * @reg: register address in the page
4674  * @phy_addr: PHY address on MDIO interface
4675  * @value: PHY register value
4676  *
4677  * Writes specified PHY register value
4678  **/
4679 int i40e_write_phy_register_clause22(struct i40e_hw *hw,
4680 				     u16 reg, u8 phy_addr, u16 value)
4681 {
4682 	u8 port_num = (u8)hw->func_caps.mdio_port_num;
4683 	int status = I40E_ERR_TIMEOUT;
4684 	u32 command  = 0;
4685 	u16 retry = 1000;
4686 
4687 	command = value << I40E_GLGEN_MSRWD_MDIWRDATA_SHIFT;
4688 	wr32(hw, I40E_GLGEN_MSRWD(port_num), command);
4689 
4690 	command = (reg << I40E_GLGEN_MSCA_DEVADD_SHIFT) |
4691 		  (phy_addr << I40E_GLGEN_MSCA_PHYADD_SHIFT) |
4692 		  (I40E_MDIO_CLAUSE22_OPCODE_WRITE_MASK) |
4693 		  (I40E_MDIO_CLAUSE22_STCODE_MASK) |
4694 		  (I40E_GLGEN_MSCA_MDICMD_MASK);
4695 
4696 	wr32(hw, I40E_GLGEN_MSCA(port_num), command);
4697 	do {
4698 		command = rd32(hw, I40E_GLGEN_MSCA(port_num));
4699 		if (!(command & I40E_GLGEN_MSCA_MDICMD_MASK)) {
4700 			status = 0;
4701 			break;
4702 		}
4703 		udelay(10);
4704 		retry--;
4705 	} while (retry);
4706 
4707 	return status;
4708 }
4709 
4710 /**
4711  * i40e_read_phy_register_clause45
4712  * @hw: pointer to the HW structure
4713  * @page: registers page number
4714  * @reg: register address in the page
4715  * @phy_addr: PHY address on MDIO interface
4716  * @value: PHY register value
4717  *
4718  * Reads specified PHY register value
4719  **/
4720 int i40e_read_phy_register_clause45(struct i40e_hw *hw,
4721 				    u8 page, u16 reg, u8 phy_addr, u16 *value)
4722 {
4723 	u8 port_num = hw->func_caps.mdio_port_num;
4724 	int status = I40E_ERR_TIMEOUT;
4725 	u32 command = 0;
4726 	u16 retry = 1000;
4727 
4728 	command = (reg << I40E_GLGEN_MSCA_MDIADD_SHIFT) |
4729 		  (page << I40E_GLGEN_MSCA_DEVADD_SHIFT) |
4730 		  (phy_addr << I40E_GLGEN_MSCA_PHYADD_SHIFT) |
4731 		  (I40E_MDIO_CLAUSE45_OPCODE_ADDRESS_MASK) |
4732 		  (I40E_MDIO_CLAUSE45_STCODE_MASK) |
4733 		  (I40E_GLGEN_MSCA_MDICMD_MASK) |
4734 		  (I40E_GLGEN_MSCA_MDIINPROGEN_MASK);
4735 	wr32(hw, I40E_GLGEN_MSCA(port_num), command);
4736 	do {
4737 		command = rd32(hw, I40E_GLGEN_MSCA(port_num));
4738 		if (!(command & I40E_GLGEN_MSCA_MDICMD_MASK)) {
4739 			status = 0;
4740 			break;
4741 		}
4742 		usleep_range(10, 20);
4743 		retry--;
4744 	} while (retry);
4745 
4746 	if (status) {
4747 		i40e_debug(hw, I40E_DEBUG_PHY,
4748 			   "PHY: Can't write command to external PHY.\n");
4749 		goto phy_read_end;
4750 	}
4751 
4752 	command = (page << I40E_GLGEN_MSCA_DEVADD_SHIFT) |
4753 		  (phy_addr << I40E_GLGEN_MSCA_PHYADD_SHIFT) |
4754 		  (I40E_MDIO_CLAUSE45_OPCODE_READ_MASK) |
4755 		  (I40E_MDIO_CLAUSE45_STCODE_MASK) |
4756 		  (I40E_GLGEN_MSCA_MDICMD_MASK) |
4757 		  (I40E_GLGEN_MSCA_MDIINPROGEN_MASK);
4758 	status = I40E_ERR_TIMEOUT;
4759 	retry = 1000;
4760 	wr32(hw, I40E_GLGEN_MSCA(port_num), command);
4761 	do {
4762 		command = rd32(hw, I40E_GLGEN_MSCA(port_num));
4763 		if (!(command & I40E_GLGEN_MSCA_MDICMD_MASK)) {
4764 			status = 0;
4765 			break;
4766 		}
4767 		usleep_range(10, 20);
4768 		retry--;
4769 	} while (retry);
4770 
4771 	if (!status) {
4772 		command = rd32(hw, I40E_GLGEN_MSRWD(port_num));
4773 		*value = (command & I40E_GLGEN_MSRWD_MDIRDDATA_MASK) >>
4774 			 I40E_GLGEN_MSRWD_MDIRDDATA_SHIFT;
4775 	} else {
4776 		i40e_debug(hw, I40E_DEBUG_PHY,
4777 			   "PHY: Can't read register value from external PHY.\n");
4778 	}
4779 
4780 phy_read_end:
4781 	return status;
4782 }
4783 
4784 /**
4785  * i40e_write_phy_register_clause45
4786  * @hw: pointer to the HW structure
4787  * @page: registers page number
4788  * @reg: register address in the page
4789  * @phy_addr: PHY address on MDIO interface
4790  * @value: PHY register value
4791  *
4792  * Writes value to specified PHY register
4793  **/
4794 int i40e_write_phy_register_clause45(struct i40e_hw *hw,
4795 				     u8 page, u16 reg, u8 phy_addr, u16 value)
4796 {
4797 	u8 port_num = hw->func_caps.mdio_port_num;
4798 	int status = I40E_ERR_TIMEOUT;
4799 	u16 retry = 1000;
4800 	u32 command = 0;
4801 
4802 	command = (reg << I40E_GLGEN_MSCA_MDIADD_SHIFT) |
4803 		  (page << I40E_GLGEN_MSCA_DEVADD_SHIFT) |
4804 		  (phy_addr << I40E_GLGEN_MSCA_PHYADD_SHIFT) |
4805 		  (I40E_MDIO_CLAUSE45_OPCODE_ADDRESS_MASK) |
4806 		  (I40E_MDIO_CLAUSE45_STCODE_MASK) |
4807 		  (I40E_GLGEN_MSCA_MDICMD_MASK) |
4808 		  (I40E_GLGEN_MSCA_MDIINPROGEN_MASK);
4809 	wr32(hw, I40E_GLGEN_MSCA(port_num), command);
4810 	do {
4811 		command = rd32(hw, I40E_GLGEN_MSCA(port_num));
4812 		if (!(command & I40E_GLGEN_MSCA_MDICMD_MASK)) {
4813 			status = 0;
4814 			break;
4815 		}
4816 		usleep_range(10, 20);
4817 		retry--;
4818 	} while (retry);
4819 	if (status) {
4820 		i40e_debug(hw, I40E_DEBUG_PHY,
4821 			   "PHY: Can't write command to external PHY.\n");
4822 		goto phy_write_end;
4823 	}
4824 
4825 	command = value << I40E_GLGEN_MSRWD_MDIWRDATA_SHIFT;
4826 	wr32(hw, I40E_GLGEN_MSRWD(port_num), command);
4827 
4828 	command = (page << I40E_GLGEN_MSCA_DEVADD_SHIFT) |
4829 		  (phy_addr << I40E_GLGEN_MSCA_PHYADD_SHIFT) |
4830 		  (I40E_MDIO_CLAUSE45_OPCODE_WRITE_MASK) |
4831 		  (I40E_MDIO_CLAUSE45_STCODE_MASK) |
4832 		  (I40E_GLGEN_MSCA_MDICMD_MASK) |
4833 		  (I40E_GLGEN_MSCA_MDIINPROGEN_MASK);
4834 	status = I40E_ERR_TIMEOUT;
4835 	retry = 1000;
4836 	wr32(hw, I40E_GLGEN_MSCA(port_num), command);
4837 	do {
4838 		command = rd32(hw, I40E_GLGEN_MSCA(port_num));
4839 		if (!(command & I40E_GLGEN_MSCA_MDICMD_MASK)) {
4840 			status = 0;
4841 			break;
4842 		}
4843 		usleep_range(10, 20);
4844 		retry--;
4845 	} while (retry);
4846 
4847 phy_write_end:
4848 	return status;
4849 }
4850 
4851 /**
4852  * i40e_write_phy_register
4853  * @hw: pointer to the HW structure
4854  * @page: registers page number
4855  * @reg: register address in the page
4856  * @phy_addr: PHY address on MDIO interface
4857  * @value: PHY register value
4858  *
4859  * Writes value to specified PHY register
4860  **/
4861 int i40e_write_phy_register(struct i40e_hw *hw,
4862 			    u8 page, u16 reg, u8 phy_addr, u16 value)
4863 {
4864 	int status;
4865 
4866 	switch (hw->device_id) {
4867 	case I40E_DEV_ID_1G_BASE_T_X722:
4868 		status = i40e_write_phy_register_clause22(hw, reg, phy_addr,
4869 							  value);
4870 		break;
4871 	case I40E_DEV_ID_1G_BASE_T_BC:
4872 	case I40E_DEV_ID_5G_BASE_T_BC:
4873 	case I40E_DEV_ID_10G_BASE_T:
4874 	case I40E_DEV_ID_10G_BASE_T4:
4875 	case I40E_DEV_ID_10G_BASE_T_BC:
4876 	case I40E_DEV_ID_10G_BASE_T_X722:
4877 	case I40E_DEV_ID_25G_B:
4878 	case I40E_DEV_ID_25G_SFP28:
4879 		status = i40e_write_phy_register_clause45(hw, page, reg,
4880 							  phy_addr, value);
4881 		break;
4882 	default:
4883 		status = I40E_ERR_UNKNOWN_PHY;
4884 		break;
4885 	}
4886 
4887 	return status;
4888 }
4889 
4890 /**
4891  * i40e_read_phy_register
4892  * @hw: pointer to the HW structure
4893  * @page: registers page number
4894  * @reg: register address in the page
4895  * @phy_addr: PHY address on MDIO interface
4896  * @value: PHY register value
4897  *
4898  * Reads specified PHY register value
4899  **/
4900 int i40e_read_phy_register(struct i40e_hw *hw,
4901 			   u8 page, u16 reg, u8 phy_addr, u16 *value)
4902 {
4903 	int status;
4904 
4905 	switch (hw->device_id) {
4906 	case I40E_DEV_ID_1G_BASE_T_X722:
4907 		status = i40e_read_phy_register_clause22(hw, reg, phy_addr,
4908 							 value);
4909 		break;
4910 	case I40E_DEV_ID_1G_BASE_T_BC:
4911 	case I40E_DEV_ID_5G_BASE_T_BC:
4912 	case I40E_DEV_ID_10G_BASE_T:
4913 	case I40E_DEV_ID_10G_BASE_T4:
4914 	case I40E_DEV_ID_10G_BASE_T_BC:
4915 	case I40E_DEV_ID_10G_BASE_T_X722:
4916 	case I40E_DEV_ID_25G_B:
4917 	case I40E_DEV_ID_25G_SFP28:
4918 		status = i40e_read_phy_register_clause45(hw, page, reg,
4919 							 phy_addr, value);
4920 		break;
4921 	default:
4922 		status = I40E_ERR_UNKNOWN_PHY;
4923 		break;
4924 	}
4925 
4926 	return status;
4927 }
4928 
4929 /**
4930  * i40e_get_phy_address
4931  * @hw: pointer to the HW structure
4932  * @dev_num: PHY port num that address we want
4933  *
4934  * Gets PHY address for current port
4935  **/
4936 u8 i40e_get_phy_address(struct i40e_hw *hw, u8 dev_num)
4937 {
4938 	u8 port_num = hw->func_caps.mdio_port_num;
4939 	u32 reg_val = rd32(hw, I40E_GLGEN_MDIO_I2C_SEL(port_num));
4940 
4941 	return (u8)(reg_val >> ((dev_num + 1) * 5)) & 0x1f;
4942 }
4943 
4944 /**
4945  * i40e_blink_phy_link_led
4946  * @hw: pointer to the HW structure
4947  * @time: time how long led will blinks in secs
4948  * @interval: gap between LED on and off in msecs
4949  *
4950  * Blinks PHY link LED
4951  **/
4952 int i40e_blink_phy_link_led(struct i40e_hw *hw,
4953 			    u32 time, u32 interval)
4954 {
4955 	u16 led_addr = I40E_PHY_LED_PROV_REG_1;
4956 	u16 gpio_led_port;
4957 	u8 phy_addr = 0;
4958 	int status = 0;
4959 	u16 led_ctl;
4960 	u8 port_num;
4961 	u16 led_reg;
4962 	u32 i;
4963 
4964 	i = rd32(hw, I40E_PFGEN_PORTNUM);
4965 	port_num = (u8)(i & I40E_PFGEN_PORTNUM_PORT_NUM_MASK);
4966 	phy_addr = i40e_get_phy_address(hw, port_num);
4967 
4968 	for (gpio_led_port = 0; gpio_led_port < 3; gpio_led_port++,
4969 	     led_addr++) {
4970 		status = i40e_read_phy_register_clause45(hw,
4971 							 I40E_PHY_COM_REG_PAGE,
4972 							 led_addr, phy_addr,
4973 							 &led_reg);
4974 		if (status)
4975 			goto phy_blinking_end;
4976 		led_ctl = led_reg;
4977 		if (led_reg & I40E_PHY_LED_LINK_MODE_MASK) {
4978 			led_reg = 0;
4979 			status = i40e_write_phy_register_clause45(hw,
4980 							 I40E_PHY_COM_REG_PAGE,
4981 							 led_addr, phy_addr,
4982 							 led_reg);
4983 			if (status)
4984 				goto phy_blinking_end;
4985 			break;
4986 		}
4987 	}
4988 
4989 	if (time > 0 && interval > 0) {
4990 		for (i = 0; i < time * 1000; i += interval) {
4991 			status = i40e_read_phy_register_clause45(hw,
4992 						I40E_PHY_COM_REG_PAGE,
4993 						led_addr, phy_addr, &led_reg);
4994 			if (status)
4995 				goto restore_config;
4996 			if (led_reg & I40E_PHY_LED_MANUAL_ON)
4997 				led_reg = 0;
4998 			else
4999 				led_reg = I40E_PHY_LED_MANUAL_ON;
5000 			status = i40e_write_phy_register_clause45(hw,
5001 						I40E_PHY_COM_REG_PAGE,
5002 						led_addr, phy_addr, led_reg);
5003 			if (status)
5004 				goto restore_config;
5005 			msleep(interval);
5006 		}
5007 	}
5008 
5009 restore_config:
5010 	status = i40e_write_phy_register_clause45(hw,
5011 						  I40E_PHY_COM_REG_PAGE,
5012 						  led_addr, phy_addr, led_ctl);
5013 
5014 phy_blinking_end:
5015 	return status;
5016 }
5017 
5018 /**
5019  * i40e_led_get_reg - read LED register
5020  * @hw: pointer to the HW structure
5021  * @led_addr: LED register address
5022  * @reg_val: read register value
5023  **/
5024 static int i40e_led_get_reg(struct i40e_hw *hw, u16 led_addr,
5025 			    u32 *reg_val)
5026 {
5027 	u8 phy_addr = 0;
5028 	u8 port_num;
5029 	int status;
5030 	u32 i;
5031 
5032 	*reg_val = 0;
5033 	if (hw->flags & I40E_HW_FLAG_AQ_PHY_ACCESS_CAPABLE) {
5034 		status =
5035 		       i40e_aq_get_phy_register(hw,
5036 						I40E_AQ_PHY_REG_ACCESS_EXTERNAL,
5037 						I40E_PHY_COM_REG_PAGE, true,
5038 						I40E_PHY_LED_PROV_REG_1,
5039 						reg_val, NULL);
5040 	} else {
5041 		i = rd32(hw, I40E_PFGEN_PORTNUM);
5042 		port_num = (u8)(i & I40E_PFGEN_PORTNUM_PORT_NUM_MASK);
5043 		phy_addr = i40e_get_phy_address(hw, port_num);
5044 		status = i40e_read_phy_register_clause45(hw,
5045 							 I40E_PHY_COM_REG_PAGE,
5046 							 led_addr, phy_addr,
5047 							 (u16 *)reg_val);
5048 	}
5049 	return status;
5050 }
5051 
5052 /**
5053  * i40e_led_set_reg - write LED register
5054  * @hw: pointer to the HW structure
5055  * @led_addr: LED register address
5056  * @reg_val: register value to write
5057  **/
5058 static int i40e_led_set_reg(struct i40e_hw *hw, u16 led_addr,
5059 			    u32 reg_val)
5060 {
5061 	u8 phy_addr = 0;
5062 	u8 port_num;
5063 	int status;
5064 	u32 i;
5065 
5066 	if (hw->flags & I40E_HW_FLAG_AQ_PHY_ACCESS_CAPABLE) {
5067 		status =
5068 		       i40e_aq_set_phy_register(hw,
5069 						I40E_AQ_PHY_REG_ACCESS_EXTERNAL,
5070 						I40E_PHY_COM_REG_PAGE, true,
5071 						I40E_PHY_LED_PROV_REG_1,
5072 						reg_val, NULL);
5073 	} else {
5074 		i = rd32(hw, I40E_PFGEN_PORTNUM);
5075 		port_num = (u8)(i & I40E_PFGEN_PORTNUM_PORT_NUM_MASK);
5076 		phy_addr = i40e_get_phy_address(hw, port_num);
5077 		status = i40e_write_phy_register_clause45(hw,
5078 							  I40E_PHY_COM_REG_PAGE,
5079 							  led_addr, phy_addr,
5080 							  (u16)reg_val);
5081 	}
5082 
5083 	return status;
5084 }
5085 
5086 /**
5087  * i40e_led_get_phy - return current on/off mode
5088  * @hw: pointer to the hw struct
5089  * @led_addr: address of led register to use
5090  * @val: original value of register to use
5091  *
5092  **/
5093 int i40e_led_get_phy(struct i40e_hw *hw, u16 *led_addr,
5094 		     u16 *val)
5095 {
5096 	u16 gpio_led_port;
5097 	u8 phy_addr = 0;
5098 	u32 reg_val_aq;
5099 	int status = 0;
5100 	u16 temp_addr;
5101 	u16 reg_val;
5102 	u8 port_num;
5103 	u32 i;
5104 
5105 	if (hw->flags & I40E_HW_FLAG_AQ_PHY_ACCESS_CAPABLE) {
5106 		status =
5107 		      i40e_aq_get_phy_register(hw,
5108 					       I40E_AQ_PHY_REG_ACCESS_EXTERNAL,
5109 					       I40E_PHY_COM_REG_PAGE, true,
5110 					       I40E_PHY_LED_PROV_REG_1,
5111 					       &reg_val_aq, NULL);
5112 		if (status == I40E_SUCCESS)
5113 			*val = (u16)reg_val_aq;
5114 		return status;
5115 	}
5116 	temp_addr = I40E_PHY_LED_PROV_REG_1;
5117 	i = rd32(hw, I40E_PFGEN_PORTNUM);
5118 	port_num = (u8)(i & I40E_PFGEN_PORTNUM_PORT_NUM_MASK);
5119 	phy_addr = i40e_get_phy_address(hw, port_num);
5120 
5121 	for (gpio_led_port = 0; gpio_led_port < 3; gpio_led_port++,
5122 	     temp_addr++) {
5123 		status = i40e_read_phy_register_clause45(hw,
5124 							 I40E_PHY_COM_REG_PAGE,
5125 							 temp_addr, phy_addr,
5126 							 &reg_val);
5127 		if (status)
5128 			return status;
5129 		*val = reg_val;
5130 		if (reg_val & I40E_PHY_LED_LINK_MODE_MASK) {
5131 			*led_addr = temp_addr;
5132 			break;
5133 		}
5134 	}
5135 	return status;
5136 }
5137 
5138 /**
5139  * i40e_led_set_phy
5140  * @hw: pointer to the HW structure
5141  * @on: true or false
5142  * @led_addr: address of led register to use
5143  * @mode: original val plus bit for set or ignore
5144  *
5145  * Set led's on or off when controlled by the PHY
5146  *
5147  **/
5148 int i40e_led_set_phy(struct i40e_hw *hw, bool on,
5149 		     u16 led_addr, u32 mode)
5150 {
5151 	u32 led_ctl = 0;
5152 	u32 led_reg = 0;
5153 	int status = 0;
5154 
5155 	status = i40e_led_get_reg(hw, led_addr, &led_reg);
5156 	if (status)
5157 		return status;
5158 	led_ctl = led_reg;
5159 	if (led_reg & I40E_PHY_LED_LINK_MODE_MASK) {
5160 		led_reg = 0;
5161 		status = i40e_led_set_reg(hw, led_addr, led_reg);
5162 		if (status)
5163 			return status;
5164 	}
5165 	status = i40e_led_get_reg(hw, led_addr, &led_reg);
5166 	if (status)
5167 		goto restore_config;
5168 	if (on)
5169 		led_reg = I40E_PHY_LED_MANUAL_ON;
5170 	else
5171 		led_reg = 0;
5172 
5173 	status = i40e_led_set_reg(hw, led_addr, led_reg);
5174 	if (status)
5175 		goto restore_config;
5176 	if (mode & I40E_PHY_LED_MODE_ORIG) {
5177 		led_ctl = (mode & I40E_PHY_LED_MODE_MASK);
5178 		status = i40e_led_set_reg(hw, led_addr, led_ctl);
5179 	}
5180 	return status;
5181 
5182 restore_config:
5183 	status = i40e_led_set_reg(hw, led_addr, led_ctl);
5184 	return status;
5185 }
5186 
5187 /**
5188  * i40e_aq_rx_ctl_read_register - use FW to read from an Rx control register
5189  * @hw: pointer to the hw struct
5190  * @reg_addr: register address
5191  * @reg_val: ptr to register value
5192  * @cmd_details: pointer to command details structure or NULL
5193  *
5194  * Use the firmware to read the Rx control register,
5195  * especially useful if the Rx unit is under heavy pressure
5196  **/
5197 int i40e_aq_rx_ctl_read_register(struct i40e_hw *hw,
5198 				 u32 reg_addr, u32 *reg_val,
5199 				 struct i40e_asq_cmd_details *cmd_details)
5200 {
5201 	struct i40e_aq_desc desc;
5202 	struct i40e_aqc_rx_ctl_reg_read_write *cmd_resp =
5203 		(struct i40e_aqc_rx_ctl_reg_read_write *)&desc.params.raw;
5204 	int status;
5205 
5206 	if (!reg_val)
5207 		return I40E_ERR_PARAM;
5208 
5209 	i40e_fill_default_direct_cmd_desc(&desc, i40e_aqc_opc_rx_ctl_reg_read);
5210 
5211 	cmd_resp->address = cpu_to_le32(reg_addr);
5212 
5213 	status = i40e_asq_send_command(hw, &desc, NULL, 0, cmd_details);
5214 
5215 	if (status == 0)
5216 		*reg_val = le32_to_cpu(cmd_resp->value);
5217 
5218 	return status;
5219 }
5220 
5221 /**
5222  * i40e_read_rx_ctl - read from an Rx control register
5223  * @hw: pointer to the hw struct
5224  * @reg_addr: register address
5225  **/
5226 u32 i40e_read_rx_ctl(struct i40e_hw *hw, u32 reg_addr)
5227 {
5228 	bool use_register;
5229 	int status = 0;
5230 	int retry = 5;
5231 	u32 val = 0;
5232 
5233 	use_register = (((hw->aq.api_maj_ver == 1) &&
5234 			(hw->aq.api_min_ver < 5)) ||
5235 			(hw->mac.type == I40E_MAC_X722));
5236 	if (!use_register) {
5237 do_retry:
5238 		status = i40e_aq_rx_ctl_read_register(hw, reg_addr, &val, NULL);
5239 		if (hw->aq.asq_last_status == I40E_AQ_RC_EAGAIN && retry) {
5240 			usleep_range(1000, 2000);
5241 			retry--;
5242 			goto do_retry;
5243 		}
5244 	}
5245 
5246 	/* if the AQ access failed, try the old-fashioned way */
5247 	if (status || use_register)
5248 		val = rd32(hw, reg_addr);
5249 
5250 	return val;
5251 }
5252 
5253 /**
5254  * i40e_aq_rx_ctl_write_register
5255  * @hw: pointer to the hw struct
5256  * @reg_addr: register address
5257  * @reg_val: register value
5258  * @cmd_details: pointer to command details structure or NULL
5259  *
5260  * Use the firmware to write to an Rx control register,
5261  * especially useful if the Rx unit is under heavy pressure
5262  **/
5263 int i40e_aq_rx_ctl_write_register(struct i40e_hw *hw,
5264 				  u32 reg_addr, u32 reg_val,
5265 				  struct i40e_asq_cmd_details *cmd_details)
5266 {
5267 	struct i40e_aq_desc desc;
5268 	struct i40e_aqc_rx_ctl_reg_read_write *cmd =
5269 		(struct i40e_aqc_rx_ctl_reg_read_write *)&desc.params.raw;
5270 	int status;
5271 
5272 	i40e_fill_default_direct_cmd_desc(&desc, i40e_aqc_opc_rx_ctl_reg_write);
5273 
5274 	cmd->address = cpu_to_le32(reg_addr);
5275 	cmd->value = cpu_to_le32(reg_val);
5276 
5277 	status = i40e_asq_send_command(hw, &desc, NULL, 0, cmd_details);
5278 
5279 	return status;
5280 }
5281 
5282 /**
5283  * i40e_write_rx_ctl - write to an Rx control register
5284  * @hw: pointer to the hw struct
5285  * @reg_addr: register address
5286  * @reg_val: register value
5287  **/
5288 void i40e_write_rx_ctl(struct i40e_hw *hw, u32 reg_addr, u32 reg_val)
5289 {
5290 	bool use_register;
5291 	int status = 0;
5292 	int retry = 5;
5293 
5294 	use_register = (((hw->aq.api_maj_ver == 1) &&
5295 			(hw->aq.api_min_ver < 5)) ||
5296 			(hw->mac.type == I40E_MAC_X722));
5297 	if (!use_register) {
5298 do_retry:
5299 		status = i40e_aq_rx_ctl_write_register(hw, reg_addr,
5300 						       reg_val, NULL);
5301 		if (hw->aq.asq_last_status == I40E_AQ_RC_EAGAIN && retry) {
5302 			usleep_range(1000, 2000);
5303 			retry--;
5304 			goto do_retry;
5305 		}
5306 	}
5307 
5308 	/* if the AQ access failed, try the old-fashioned way */
5309 	if (status || use_register)
5310 		wr32(hw, reg_addr, reg_val);
5311 }
5312 
5313 /**
5314  * i40e_mdio_if_number_selection - MDIO I/F number selection
5315  * @hw: pointer to the hw struct
5316  * @set_mdio: use MDIO I/F number specified by mdio_num
5317  * @mdio_num: MDIO I/F number
5318  * @cmd: pointer to PHY Register command structure
5319  **/
5320 static void i40e_mdio_if_number_selection(struct i40e_hw *hw, bool set_mdio,
5321 					  u8 mdio_num,
5322 					  struct i40e_aqc_phy_register_access *cmd)
5323 {
5324 	if (set_mdio && cmd->phy_interface == I40E_AQ_PHY_REG_ACCESS_EXTERNAL) {
5325 		if (hw->flags & I40E_HW_FLAG_AQ_PHY_ACCESS_EXTENDED)
5326 			cmd->cmd_flags |=
5327 				I40E_AQ_PHY_REG_ACCESS_SET_MDIO_IF_NUMBER |
5328 				((mdio_num <<
5329 				I40E_AQ_PHY_REG_ACCESS_MDIO_IF_NUMBER_SHIFT) &
5330 				I40E_AQ_PHY_REG_ACCESS_MDIO_IF_NUMBER_MASK);
5331 		else
5332 			i40e_debug(hw, I40E_DEBUG_PHY,
5333 				   "MDIO I/F number selection not supported by current FW version.\n");
5334 	}
5335 }
5336 
5337 /**
5338  * i40e_aq_set_phy_register_ext
5339  * @hw: pointer to the hw struct
5340  * @phy_select: select which phy should be accessed
5341  * @dev_addr: PHY device address
5342  * @page_change: flag to indicate if phy page should be updated
5343  * @set_mdio: use MDIO I/F number specified by mdio_num
5344  * @mdio_num: MDIO I/F number
5345  * @reg_addr: PHY register address
5346  * @reg_val: new register value
5347  * @cmd_details: pointer to command details structure or NULL
5348  *
5349  * Write the external PHY register.
5350  * NOTE: In common cases MDIO I/F number should not be changed, thats why you
5351  * may use simple wrapper i40e_aq_set_phy_register.
5352  **/
5353 int i40e_aq_set_phy_register_ext(struct i40e_hw *hw,
5354 				 u8 phy_select, u8 dev_addr, bool page_change,
5355 				 bool set_mdio, u8 mdio_num,
5356 				 u32 reg_addr, u32 reg_val,
5357 				 struct i40e_asq_cmd_details *cmd_details)
5358 {
5359 	struct i40e_aq_desc desc;
5360 	struct i40e_aqc_phy_register_access *cmd =
5361 		(struct i40e_aqc_phy_register_access *)&desc.params.raw;
5362 	int status;
5363 
5364 	i40e_fill_default_direct_cmd_desc(&desc,
5365 					  i40e_aqc_opc_set_phy_register);
5366 
5367 	cmd->phy_interface = phy_select;
5368 	cmd->dev_address = dev_addr;
5369 	cmd->reg_address = cpu_to_le32(reg_addr);
5370 	cmd->reg_value = cpu_to_le32(reg_val);
5371 
5372 	i40e_mdio_if_number_selection(hw, set_mdio, mdio_num, cmd);
5373 
5374 	if (!page_change)
5375 		cmd->cmd_flags = I40E_AQ_PHY_REG_ACCESS_DONT_CHANGE_QSFP_PAGE;
5376 
5377 	status = i40e_asq_send_command(hw, &desc, NULL, 0, cmd_details);
5378 
5379 	return status;
5380 }
5381 
5382 /**
5383  * i40e_aq_get_phy_register_ext
5384  * @hw: pointer to the hw struct
5385  * @phy_select: select which phy should be accessed
5386  * @dev_addr: PHY device address
5387  * @page_change: flag to indicate if phy page should be updated
5388  * @set_mdio: use MDIO I/F number specified by mdio_num
5389  * @mdio_num: MDIO I/F number
5390  * @reg_addr: PHY register address
5391  * @reg_val: read register value
5392  * @cmd_details: pointer to command details structure or NULL
5393  *
5394  * Read the external PHY register.
5395  * NOTE: In common cases MDIO I/F number should not be changed, thats why you
5396  * may use simple wrapper i40e_aq_get_phy_register.
5397  **/
5398 int i40e_aq_get_phy_register_ext(struct i40e_hw *hw,
5399 				 u8 phy_select, u8 dev_addr, bool page_change,
5400 				 bool set_mdio, u8 mdio_num,
5401 				 u32 reg_addr, u32 *reg_val,
5402 				 struct i40e_asq_cmd_details *cmd_details)
5403 {
5404 	struct i40e_aq_desc desc;
5405 	struct i40e_aqc_phy_register_access *cmd =
5406 		(struct i40e_aqc_phy_register_access *)&desc.params.raw;
5407 	int status;
5408 
5409 	i40e_fill_default_direct_cmd_desc(&desc,
5410 					  i40e_aqc_opc_get_phy_register);
5411 
5412 	cmd->phy_interface = phy_select;
5413 	cmd->dev_address = dev_addr;
5414 	cmd->reg_address = cpu_to_le32(reg_addr);
5415 
5416 	i40e_mdio_if_number_selection(hw, set_mdio, mdio_num, cmd);
5417 
5418 	if (!page_change)
5419 		cmd->cmd_flags = I40E_AQ_PHY_REG_ACCESS_DONT_CHANGE_QSFP_PAGE;
5420 
5421 	status = i40e_asq_send_command(hw, &desc, NULL, 0, cmd_details);
5422 	if (!status)
5423 		*reg_val = le32_to_cpu(cmd->reg_value);
5424 
5425 	return status;
5426 }
5427 
5428 /**
5429  * i40e_aq_write_ddp - Write dynamic device personalization (ddp)
5430  * @hw: pointer to the hw struct
5431  * @buff: command buffer (size in bytes = buff_size)
5432  * @buff_size: buffer size in bytes
5433  * @track_id: package tracking id
5434  * @error_offset: returns error offset
5435  * @error_info: returns error information
5436  * @cmd_details: pointer to command details structure or NULL
5437  **/
5438 int i40e_aq_write_ddp(struct i40e_hw *hw, void *buff,
5439 		      u16 buff_size, u32 track_id,
5440 		      u32 *error_offset, u32 *error_info,
5441 		      struct i40e_asq_cmd_details *cmd_details)
5442 {
5443 	struct i40e_aq_desc desc;
5444 	struct i40e_aqc_write_personalization_profile *cmd =
5445 		(struct i40e_aqc_write_personalization_profile *)
5446 		&desc.params.raw;
5447 	struct i40e_aqc_write_ddp_resp *resp;
5448 	int status;
5449 
5450 	i40e_fill_default_direct_cmd_desc(&desc,
5451 					  i40e_aqc_opc_write_personalization_profile);
5452 
5453 	desc.flags |= cpu_to_le16(I40E_AQ_FLAG_BUF | I40E_AQ_FLAG_RD);
5454 	if (buff_size > I40E_AQ_LARGE_BUF)
5455 		desc.flags |= cpu_to_le16((u16)I40E_AQ_FLAG_LB);
5456 
5457 	desc.datalen = cpu_to_le16(buff_size);
5458 
5459 	cmd->profile_track_id = cpu_to_le32(track_id);
5460 
5461 	status = i40e_asq_send_command(hw, &desc, buff, buff_size, cmd_details);
5462 	if (!status) {
5463 		resp = (struct i40e_aqc_write_ddp_resp *)&desc.params.raw;
5464 		if (error_offset)
5465 			*error_offset = le32_to_cpu(resp->error_offset);
5466 		if (error_info)
5467 			*error_info = le32_to_cpu(resp->error_info);
5468 	}
5469 
5470 	return status;
5471 }
5472 
5473 /**
5474  * i40e_aq_get_ddp_list - Read dynamic device personalization (ddp)
5475  * @hw: pointer to the hw struct
5476  * @buff: command buffer (size in bytes = buff_size)
5477  * @buff_size: buffer size in bytes
5478  * @flags: AdminQ command flags
5479  * @cmd_details: pointer to command details structure or NULL
5480  **/
5481 int i40e_aq_get_ddp_list(struct i40e_hw *hw, void *buff,
5482 			 u16 buff_size, u8 flags,
5483 			 struct i40e_asq_cmd_details *cmd_details)
5484 {
5485 	struct i40e_aq_desc desc;
5486 	struct i40e_aqc_get_applied_profiles *cmd =
5487 		(struct i40e_aqc_get_applied_profiles *)&desc.params.raw;
5488 	int status;
5489 
5490 	i40e_fill_default_direct_cmd_desc(&desc,
5491 					  i40e_aqc_opc_get_personalization_profile_list);
5492 
5493 	desc.flags |= cpu_to_le16((u16)I40E_AQ_FLAG_BUF);
5494 	if (buff_size > I40E_AQ_LARGE_BUF)
5495 		desc.flags |= cpu_to_le16((u16)I40E_AQ_FLAG_LB);
5496 	desc.datalen = cpu_to_le16(buff_size);
5497 
5498 	cmd->flags = flags;
5499 
5500 	status = i40e_asq_send_command(hw, &desc, buff, buff_size, cmd_details);
5501 
5502 	return status;
5503 }
5504 
5505 /**
5506  * i40e_find_segment_in_package
5507  * @segment_type: the segment type to search for (i.e., SEGMENT_TYPE_I40E)
5508  * @pkg_hdr: pointer to the package header to be searched
5509  *
5510  * This function searches a package file for a particular segment type. On
5511  * success it returns a pointer to the segment header, otherwise it will
5512  * return NULL.
5513  **/
5514 struct i40e_generic_seg_header *
5515 i40e_find_segment_in_package(u32 segment_type,
5516 			     struct i40e_package_header *pkg_hdr)
5517 {
5518 	struct i40e_generic_seg_header *segment;
5519 	u32 i;
5520 
5521 	/* Search all package segments for the requested segment type */
5522 	for (i = 0; i < pkg_hdr->segment_count; i++) {
5523 		segment =
5524 			(struct i40e_generic_seg_header *)((u8 *)pkg_hdr +
5525 			 pkg_hdr->segment_offset[i]);
5526 
5527 		if (segment->type == segment_type)
5528 			return segment;
5529 	}
5530 
5531 	return NULL;
5532 }
5533 
5534 /* Get section table in profile */
5535 #define I40E_SECTION_TABLE(profile, sec_tbl)				\
5536 	do {								\
5537 		struct i40e_profile_segment *p = (profile);		\
5538 		u32 count;						\
5539 		u32 *nvm;						\
5540 		count = p->device_table_count;				\
5541 		nvm = (u32 *)&p->device_table[count];			\
5542 		sec_tbl = (struct i40e_section_table *)&nvm[nvm[0] + 1]; \
5543 	} while (0)
5544 
5545 /* Get section header in profile */
5546 #define I40E_SECTION_HEADER(profile, offset)				\
5547 	(struct i40e_profile_section_header *)((u8 *)(profile) + (offset))
5548 
5549 /**
5550  * i40e_find_section_in_profile
5551  * @section_type: the section type to search for (i.e., SECTION_TYPE_NOTE)
5552  * @profile: pointer to the i40e segment header to be searched
5553  *
5554  * This function searches i40e segment for a particular section type. On
5555  * success it returns a pointer to the section header, otherwise it will
5556  * return NULL.
5557  **/
5558 struct i40e_profile_section_header *
5559 i40e_find_section_in_profile(u32 section_type,
5560 			     struct i40e_profile_segment *profile)
5561 {
5562 	struct i40e_profile_section_header *sec;
5563 	struct i40e_section_table *sec_tbl;
5564 	u32 sec_off;
5565 	u32 i;
5566 
5567 	if (profile->header.type != SEGMENT_TYPE_I40E)
5568 		return NULL;
5569 
5570 	I40E_SECTION_TABLE(profile, sec_tbl);
5571 
5572 	for (i = 0; i < sec_tbl->section_count; i++) {
5573 		sec_off = sec_tbl->section_offset[i];
5574 		sec = I40E_SECTION_HEADER(profile, sec_off);
5575 		if (sec->section.type == section_type)
5576 			return sec;
5577 	}
5578 
5579 	return NULL;
5580 }
5581 
5582 /**
5583  * i40e_ddp_exec_aq_section - Execute generic AQ for DDP
5584  * @hw: pointer to the hw struct
5585  * @aq: command buffer containing all data to execute AQ
5586  **/
5587 static int i40e_ddp_exec_aq_section(struct i40e_hw *hw,
5588 				    struct i40e_profile_aq_section *aq)
5589 {
5590 	struct i40e_aq_desc desc;
5591 	u8 *msg = NULL;
5592 	u16 msglen;
5593 	int status;
5594 
5595 	i40e_fill_default_direct_cmd_desc(&desc, aq->opcode);
5596 	desc.flags |= cpu_to_le16(aq->flags);
5597 	memcpy(desc.params.raw, aq->param, sizeof(desc.params.raw));
5598 
5599 	msglen = aq->datalen;
5600 	if (msglen) {
5601 		desc.flags |= cpu_to_le16((u16)(I40E_AQ_FLAG_BUF |
5602 						I40E_AQ_FLAG_RD));
5603 		if (msglen > I40E_AQ_LARGE_BUF)
5604 			desc.flags |= cpu_to_le16((u16)I40E_AQ_FLAG_LB);
5605 		desc.datalen = cpu_to_le16(msglen);
5606 		msg = &aq->data[0];
5607 	}
5608 
5609 	status = i40e_asq_send_command(hw, &desc, msg, msglen, NULL);
5610 
5611 	if (status) {
5612 		i40e_debug(hw, I40E_DEBUG_PACKAGE,
5613 			   "unable to exec DDP AQ opcode %u, error %d\n",
5614 			   aq->opcode, status);
5615 		return status;
5616 	}
5617 
5618 	/* copy returned desc to aq_buf */
5619 	memcpy(aq->param, desc.params.raw, sizeof(desc.params.raw));
5620 
5621 	return 0;
5622 }
5623 
5624 /**
5625  * i40e_validate_profile
5626  * @hw: pointer to the hardware structure
5627  * @profile: pointer to the profile segment of the package to be validated
5628  * @track_id: package tracking id
5629  * @rollback: flag if the profile is for rollback.
5630  *
5631  * Validates supported devices and profile's sections.
5632  */
5633 static int
5634 i40e_validate_profile(struct i40e_hw *hw, struct i40e_profile_segment *profile,
5635 		      u32 track_id, bool rollback)
5636 {
5637 	struct i40e_profile_section_header *sec = NULL;
5638 	struct i40e_section_table *sec_tbl;
5639 	u32 vendor_dev_id;
5640 	int status = 0;
5641 	u32 dev_cnt;
5642 	u32 sec_off;
5643 	u32 i;
5644 
5645 	if (track_id == I40E_DDP_TRACKID_INVALID) {
5646 		i40e_debug(hw, I40E_DEBUG_PACKAGE, "Invalid track_id\n");
5647 		return I40E_NOT_SUPPORTED;
5648 	}
5649 
5650 	dev_cnt = profile->device_table_count;
5651 	for (i = 0; i < dev_cnt; i++) {
5652 		vendor_dev_id = profile->device_table[i].vendor_dev_id;
5653 		if ((vendor_dev_id >> 16) == PCI_VENDOR_ID_INTEL &&
5654 		    hw->device_id == (vendor_dev_id & 0xFFFF))
5655 			break;
5656 	}
5657 	if (dev_cnt && i == dev_cnt) {
5658 		i40e_debug(hw, I40E_DEBUG_PACKAGE,
5659 			   "Device doesn't support DDP\n");
5660 		return I40E_ERR_DEVICE_NOT_SUPPORTED;
5661 	}
5662 
5663 	I40E_SECTION_TABLE(profile, sec_tbl);
5664 
5665 	/* Validate sections types */
5666 	for (i = 0; i < sec_tbl->section_count; i++) {
5667 		sec_off = sec_tbl->section_offset[i];
5668 		sec = I40E_SECTION_HEADER(profile, sec_off);
5669 		if (rollback) {
5670 			if (sec->section.type == SECTION_TYPE_MMIO ||
5671 			    sec->section.type == SECTION_TYPE_AQ ||
5672 			    sec->section.type == SECTION_TYPE_RB_AQ) {
5673 				i40e_debug(hw, I40E_DEBUG_PACKAGE,
5674 					   "Not a roll-back package\n");
5675 				return I40E_NOT_SUPPORTED;
5676 			}
5677 		} else {
5678 			if (sec->section.type == SECTION_TYPE_RB_AQ ||
5679 			    sec->section.type == SECTION_TYPE_RB_MMIO) {
5680 				i40e_debug(hw, I40E_DEBUG_PACKAGE,
5681 					   "Not an original package\n");
5682 				return I40E_NOT_SUPPORTED;
5683 			}
5684 		}
5685 	}
5686 
5687 	return status;
5688 }
5689 
5690 /**
5691  * i40e_write_profile
5692  * @hw: pointer to the hardware structure
5693  * @profile: pointer to the profile segment of the package to be downloaded
5694  * @track_id: package tracking id
5695  *
5696  * Handles the download of a complete package.
5697  */
5698 int
5699 i40e_write_profile(struct i40e_hw *hw, struct i40e_profile_segment *profile,
5700 		   u32 track_id)
5701 {
5702 	struct i40e_profile_section_header *sec = NULL;
5703 	struct i40e_profile_aq_section *ddp_aq;
5704 	struct i40e_section_table *sec_tbl;
5705 	u32 offset = 0, info = 0;
5706 	u32 section_size = 0;
5707 	int status = 0;
5708 	u32 sec_off;
5709 	u32 i;
5710 
5711 	status = i40e_validate_profile(hw, profile, track_id, false);
5712 	if (status)
5713 		return status;
5714 
5715 	I40E_SECTION_TABLE(profile, sec_tbl);
5716 
5717 	for (i = 0; i < sec_tbl->section_count; i++) {
5718 		sec_off = sec_tbl->section_offset[i];
5719 		sec = I40E_SECTION_HEADER(profile, sec_off);
5720 		/* Process generic admin command */
5721 		if (sec->section.type == SECTION_TYPE_AQ) {
5722 			ddp_aq = (struct i40e_profile_aq_section *)&sec[1];
5723 			status = i40e_ddp_exec_aq_section(hw, ddp_aq);
5724 			if (status) {
5725 				i40e_debug(hw, I40E_DEBUG_PACKAGE,
5726 					   "Failed to execute aq: section %d, opcode %u\n",
5727 					   i, ddp_aq->opcode);
5728 				break;
5729 			}
5730 			sec->section.type = SECTION_TYPE_RB_AQ;
5731 		}
5732 
5733 		/* Skip any non-mmio sections */
5734 		if (sec->section.type != SECTION_TYPE_MMIO)
5735 			continue;
5736 
5737 		section_size = sec->section.size +
5738 			sizeof(struct i40e_profile_section_header);
5739 
5740 		/* Write MMIO section */
5741 		status = i40e_aq_write_ddp(hw, (void *)sec, (u16)section_size,
5742 					   track_id, &offset, &info, NULL);
5743 		if (status) {
5744 			i40e_debug(hw, I40E_DEBUG_PACKAGE,
5745 				   "Failed to write profile: section %d, offset %d, info %d\n",
5746 				   i, offset, info);
5747 			break;
5748 		}
5749 	}
5750 	return status;
5751 }
5752 
5753 /**
5754  * i40e_rollback_profile
5755  * @hw: pointer to the hardware structure
5756  * @profile: pointer to the profile segment of the package to be removed
5757  * @track_id: package tracking id
5758  *
5759  * Rolls back previously loaded package.
5760  */
5761 int
5762 i40e_rollback_profile(struct i40e_hw *hw, struct i40e_profile_segment *profile,
5763 		      u32 track_id)
5764 {
5765 	struct i40e_profile_section_header *sec = NULL;
5766 	struct i40e_section_table *sec_tbl;
5767 	u32 offset = 0, info = 0;
5768 	u32 section_size = 0;
5769 	int status = 0;
5770 	u32 sec_off;
5771 	int i;
5772 
5773 	status = i40e_validate_profile(hw, profile, track_id, true);
5774 	if (status)
5775 		return status;
5776 
5777 	I40E_SECTION_TABLE(profile, sec_tbl);
5778 
5779 	/* For rollback write sections in reverse */
5780 	for (i = sec_tbl->section_count - 1; i >= 0; i--) {
5781 		sec_off = sec_tbl->section_offset[i];
5782 		sec = I40E_SECTION_HEADER(profile, sec_off);
5783 
5784 		/* Skip any non-rollback sections */
5785 		if (sec->section.type != SECTION_TYPE_RB_MMIO)
5786 			continue;
5787 
5788 		section_size = sec->section.size +
5789 			sizeof(struct i40e_profile_section_header);
5790 
5791 		/* Write roll-back MMIO section */
5792 		status = i40e_aq_write_ddp(hw, (void *)sec, (u16)section_size,
5793 					   track_id, &offset, &info, NULL);
5794 		if (status) {
5795 			i40e_debug(hw, I40E_DEBUG_PACKAGE,
5796 				   "Failed to write profile: section %d, offset %d, info %d\n",
5797 				   i, offset, info);
5798 			break;
5799 		}
5800 	}
5801 	return status;
5802 }
5803 
5804 /**
5805  * i40e_add_pinfo_to_list
5806  * @hw: pointer to the hardware structure
5807  * @profile: pointer to the profile segment of the package
5808  * @profile_info_sec: buffer for information section
5809  * @track_id: package tracking id
5810  *
5811  * Register a profile to the list of loaded profiles.
5812  */
5813 int
5814 i40e_add_pinfo_to_list(struct i40e_hw *hw,
5815 		       struct i40e_profile_segment *profile,
5816 		       u8 *profile_info_sec, u32 track_id)
5817 {
5818 	struct i40e_profile_section_header *sec = NULL;
5819 	struct i40e_profile_info *pinfo;
5820 	u32 offset = 0, info = 0;
5821 	int status = 0;
5822 
5823 	sec = (struct i40e_profile_section_header *)profile_info_sec;
5824 	sec->tbl_size = 1;
5825 	sec->data_end = sizeof(struct i40e_profile_section_header) +
5826 			sizeof(struct i40e_profile_info);
5827 	sec->section.type = SECTION_TYPE_INFO;
5828 	sec->section.offset = sizeof(struct i40e_profile_section_header);
5829 	sec->section.size = sizeof(struct i40e_profile_info);
5830 	pinfo = (struct i40e_profile_info *)(profile_info_sec +
5831 					     sec->section.offset);
5832 	pinfo->track_id = track_id;
5833 	pinfo->version = profile->version;
5834 	pinfo->op = I40E_DDP_ADD_TRACKID;
5835 	memcpy(pinfo->name, profile->name, I40E_DDP_NAME_SIZE);
5836 
5837 	status = i40e_aq_write_ddp(hw, (void *)sec, sec->data_end,
5838 				   track_id, &offset, &info, NULL);
5839 
5840 	return status;
5841 }
5842 
5843 /**
5844  * i40e_aq_add_cloud_filters
5845  * @hw: pointer to the hardware structure
5846  * @seid: VSI seid to add cloud filters from
5847  * @filters: Buffer which contains the filters to be added
5848  * @filter_count: number of filters contained in the buffer
5849  *
5850  * Set the cloud filters for a given VSI.  The contents of the
5851  * i40e_aqc_cloud_filters_element_data are filled in by the caller
5852  * of the function.
5853  *
5854  **/
5855 int
5856 i40e_aq_add_cloud_filters(struct i40e_hw *hw, u16 seid,
5857 			  struct i40e_aqc_cloud_filters_element_data *filters,
5858 			  u8 filter_count)
5859 {
5860 	struct i40e_aq_desc desc;
5861 	struct i40e_aqc_add_remove_cloud_filters *cmd =
5862 	(struct i40e_aqc_add_remove_cloud_filters *)&desc.params.raw;
5863 	u16 buff_len;
5864 	int status;
5865 
5866 	i40e_fill_default_direct_cmd_desc(&desc,
5867 					  i40e_aqc_opc_add_cloud_filters);
5868 
5869 	buff_len = filter_count * sizeof(*filters);
5870 	desc.datalen = cpu_to_le16(buff_len);
5871 	desc.flags |= cpu_to_le16((u16)(I40E_AQ_FLAG_BUF | I40E_AQ_FLAG_RD));
5872 	cmd->num_filters = filter_count;
5873 	cmd->seid = cpu_to_le16(seid);
5874 
5875 	status = i40e_asq_send_command(hw, &desc, filters, buff_len, NULL);
5876 
5877 	return status;
5878 }
5879 
5880 /**
5881  * i40e_aq_add_cloud_filters_bb
5882  * @hw: pointer to the hardware structure
5883  * @seid: VSI seid to add cloud filters from
5884  * @filters: Buffer which contains the filters in big buffer to be added
5885  * @filter_count: number of filters contained in the buffer
5886  *
5887  * Set the big buffer cloud filters for a given VSI.  The contents of the
5888  * i40e_aqc_cloud_filters_element_bb are filled in by the caller of the
5889  * function.
5890  *
5891  **/
5892 int
5893 i40e_aq_add_cloud_filters_bb(struct i40e_hw *hw, u16 seid,
5894 			     struct i40e_aqc_cloud_filters_element_bb *filters,
5895 			     u8 filter_count)
5896 {
5897 	struct i40e_aq_desc desc;
5898 	struct i40e_aqc_add_remove_cloud_filters *cmd =
5899 	(struct i40e_aqc_add_remove_cloud_filters *)&desc.params.raw;
5900 	u16 buff_len;
5901 	int status;
5902 	int i;
5903 
5904 	i40e_fill_default_direct_cmd_desc(&desc,
5905 					  i40e_aqc_opc_add_cloud_filters);
5906 
5907 	buff_len = filter_count * sizeof(*filters);
5908 	desc.datalen = cpu_to_le16(buff_len);
5909 	desc.flags |= cpu_to_le16((u16)(I40E_AQ_FLAG_BUF | I40E_AQ_FLAG_RD));
5910 	cmd->num_filters = filter_count;
5911 	cmd->seid = cpu_to_le16(seid);
5912 	cmd->big_buffer_flag = I40E_AQC_ADD_CLOUD_CMD_BB;
5913 
5914 	for (i = 0; i < filter_count; i++) {
5915 		u16 tnl_type;
5916 		u32 ti;
5917 
5918 		tnl_type = (le16_to_cpu(filters[i].element.flags) &
5919 			   I40E_AQC_ADD_CLOUD_TNL_TYPE_MASK) >>
5920 			   I40E_AQC_ADD_CLOUD_TNL_TYPE_SHIFT;
5921 
5922 		/* Due to hardware eccentricities, the VNI for Geneve is shifted
5923 		 * one more byte further than normally used for Tenant ID in
5924 		 * other tunnel types.
5925 		 */
5926 		if (tnl_type == I40E_AQC_ADD_CLOUD_TNL_TYPE_GENEVE) {
5927 			ti = le32_to_cpu(filters[i].element.tenant_id);
5928 			filters[i].element.tenant_id = cpu_to_le32(ti << 8);
5929 		}
5930 	}
5931 
5932 	status = i40e_asq_send_command(hw, &desc, filters, buff_len, NULL);
5933 
5934 	return status;
5935 }
5936 
5937 /**
5938  * i40e_aq_rem_cloud_filters
5939  * @hw: pointer to the hardware structure
5940  * @seid: VSI seid to remove cloud filters from
5941  * @filters: Buffer which contains the filters to be removed
5942  * @filter_count: number of filters contained in the buffer
5943  *
5944  * Remove the cloud filters for a given VSI.  The contents of the
5945  * i40e_aqc_cloud_filters_element_data are filled in by the caller
5946  * of the function.
5947  *
5948  **/
5949 int
5950 i40e_aq_rem_cloud_filters(struct i40e_hw *hw, u16 seid,
5951 			  struct i40e_aqc_cloud_filters_element_data *filters,
5952 			  u8 filter_count)
5953 {
5954 	struct i40e_aq_desc desc;
5955 	struct i40e_aqc_add_remove_cloud_filters *cmd =
5956 	(struct i40e_aqc_add_remove_cloud_filters *)&desc.params.raw;
5957 	u16 buff_len;
5958 	int status;
5959 
5960 	i40e_fill_default_direct_cmd_desc(&desc,
5961 					  i40e_aqc_opc_remove_cloud_filters);
5962 
5963 	buff_len = filter_count * sizeof(*filters);
5964 	desc.datalen = cpu_to_le16(buff_len);
5965 	desc.flags |= cpu_to_le16((u16)(I40E_AQ_FLAG_BUF | I40E_AQ_FLAG_RD));
5966 	cmd->num_filters = filter_count;
5967 	cmd->seid = cpu_to_le16(seid);
5968 
5969 	status = i40e_asq_send_command(hw, &desc, filters, buff_len, NULL);
5970 
5971 	return status;
5972 }
5973 
5974 /**
5975  * i40e_aq_rem_cloud_filters_bb
5976  * @hw: pointer to the hardware structure
5977  * @seid: VSI seid to remove cloud filters from
5978  * @filters: Buffer which contains the filters in big buffer to be removed
5979  * @filter_count: number of filters contained in the buffer
5980  *
5981  * Remove the big buffer cloud filters for a given VSI.  The contents of the
5982  * i40e_aqc_cloud_filters_element_bb are filled in by the caller of the
5983  * function.
5984  *
5985  **/
5986 int
5987 i40e_aq_rem_cloud_filters_bb(struct i40e_hw *hw, u16 seid,
5988 			     struct i40e_aqc_cloud_filters_element_bb *filters,
5989 			     u8 filter_count)
5990 {
5991 	struct i40e_aq_desc desc;
5992 	struct i40e_aqc_add_remove_cloud_filters *cmd =
5993 	(struct i40e_aqc_add_remove_cloud_filters *)&desc.params.raw;
5994 	u16 buff_len;
5995 	int status;
5996 	int i;
5997 
5998 	i40e_fill_default_direct_cmd_desc(&desc,
5999 					  i40e_aqc_opc_remove_cloud_filters);
6000 
6001 	buff_len = filter_count * sizeof(*filters);
6002 	desc.datalen = cpu_to_le16(buff_len);
6003 	desc.flags |= cpu_to_le16((u16)(I40E_AQ_FLAG_BUF | I40E_AQ_FLAG_RD));
6004 	cmd->num_filters = filter_count;
6005 	cmd->seid = cpu_to_le16(seid);
6006 	cmd->big_buffer_flag = I40E_AQC_ADD_CLOUD_CMD_BB;
6007 
6008 	for (i = 0; i < filter_count; i++) {
6009 		u16 tnl_type;
6010 		u32 ti;
6011 
6012 		tnl_type = (le16_to_cpu(filters[i].element.flags) &
6013 			   I40E_AQC_ADD_CLOUD_TNL_TYPE_MASK) >>
6014 			   I40E_AQC_ADD_CLOUD_TNL_TYPE_SHIFT;
6015 
6016 		/* Due to hardware eccentricities, the VNI for Geneve is shifted
6017 		 * one more byte further than normally used for Tenant ID in
6018 		 * other tunnel types.
6019 		 */
6020 		if (tnl_type == I40E_AQC_ADD_CLOUD_TNL_TYPE_GENEVE) {
6021 			ti = le32_to_cpu(filters[i].element.tenant_id);
6022 			filters[i].element.tenant_id = cpu_to_le32(ti << 8);
6023 		}
6024 	}
6025 
6026 	status = i40e_asq_send_command(hw, &desc, filters, buff_len, NULL);
6027 
6028 	return status;
6029 }
6030