1 /*******************************************************************************
2  *
3  * Intel Ethernet Controller XL710 Family Linux Driver
4  * Copyright(c) 2013 - 2016 Intel Corporation.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms and conditions of the GNU General Public License,
8  * version 2, as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along
16  * with this program.  If not, see <http://www.gnu.org/licenses/>.
17  *
18  * The full GNU General Public License is included in this distribution in
19  * the file called "COPYING".
20  *
21  * Contact Information:
22  * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
23  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
24  *
25  ******************************************************************************/
26 
27 #include "i40e_type.h"
28 #include "i40e_adminq.h"
29 #include "i40e_prototype.h"
30 #include "i40e_virtchnl.h"
31 
32 /**
33  * i40e_set_mac_type - Sets MAC type
34  * @hw: pointer to the HW structure
35  *
36  * This function sets the mac type of the adapter based on the
37  * vendor ID and device ID stored in the hw structure.
38  **/
39 static i40e_status i40e_set_mac_type(struct i40e_hw *hw)
40 {
41 	i40e_status status = 0;
42 
43 	if (hw->vendor_id == PCI_VENDOR_ID_INTEL) {
44 		switch (hw->device_id) {
45 		case I40E_DEV_ID_SFP_XL710:
46 		case I40E_DEV_ID_QEMU:
47 		case I40E_DEV_ID_KX_B:
48 		case I40E_DEV_ID_KX_C:
49 		case I40E_DEV_ID_QSFP_A:
50 		case I40E_DEV_ID_QSFP_B:
51 		case I40E_DEV_ID_QSFP_C:
52 		case I40E_DEV_ID_10G_BASE_T:
53 		case I40E_DEV_ID_10G_BASE_T4:
54 		case I40E_DEV_ID_20G_KR2:
55 		case I40E_DEV_ID_20G_KR2_A:
56 			hw->mac.type = I40E_MAC_XL710;
57 			break;
58 		case I40E_DEV_ID_KX_X722:
59 		case I40E_DEV_ID_QSFP_X722:
60 		case I40E_DEV_ID_SFP_X722:
61 		case I40E_DEV_ID_1G_BASE_T_X722:
62 		case I40E_DEV_ID_10G_BASE_T_X722:
63 		case I40E_DEV_ID_SFP_I_X722:
64 			hw->mac.type = I40E_MAC_X722;
65 			break;
66 		default:
67 			hw->mac.type = I40E_MAC_GENERIC;
68 			break;
69 		}
70 	} else {
71 		status = I40E_ERR_DEVICE_NOT_SUPPORTED;
72 	}
73 
74 	hw_dbg(hw, "i40e_set_mac_type found mac: %d, returns: %d\n",
75 		  hw->mac.type, status);
76 	return status;
77 }
78 
79 /**
80  * i40e_aq_str - convert AQ err code to a string
81  * @hw: pointer to the HW structure
82  * @aq_err: the AQ error code to convert
83  **/
84 const char *i40e_aq_str(struct i40e_hw *hw, enum i40e_admin_queue_err aq_err)
85 {
86 	switch (aq_err) {
87 	case I40E_AQ_RC_OK:
88 		return "OK";
89 	case I40E_AQ_RC_EPERM:
90 		return "I40E_AQ_RC_EPERM";
91 	case I40E_AQ_RC_ENOENT:
92 		return "I40E_AQ_RC_ENOENT";
93 	case I40E_AQ_RC_ESRCH:
94 		return "I40E_AQ_RC_ESRCH";
95 	case I40E_AQ_RC_EINTR:
96 		return "I40E_AQ_RC_EINTR";
97 	case I40E_AQ_RC_EIO:
98 		return "I40E_AQ_RC_EIO";
99 	case I40E_AQ_RC_ENXIO:
100 		return "I40E_AQ_RC_ENXIO";
101 	case I40E_AQ_RC_E2BIG:
102 		return "I40E_AQ_RC_E2BIG";
103 	case I40E_AQ_RC_EAGAIN:
104 		return "I40E_AQ_RC_EAGAIN";
105 	case I40E_AQ_RC_ENOMEM:
106 		return "I40E_AQ_RC_ENOMEM";
107 	case I40E_AQ_RC_EACCES:
108 		return "I40E_AQ_RC_EACCES";
109 	case I40E_AQ_RC_EFAULT:
110 		return "I40E_AQ_RC_EFAULT";
111 	case I40E_AQ_RC_EBUSY:
112 		return "I40E_AQ_RC_EBUSY";
113 	case I40E_AQ_RC_EEXIST:
114 		return "I40E_AQ_RC_EEXIST";
115 	case I40E_AQ_RC_EINVAL:
116 		return "I40E_AQ_RC_EINVAL";
117 	case I40E_AQ_RC_ENOTTY:
118 		return "I40E_AQ_RC_ENOTTY";
119 	case I40E_AQ_RC_ENOSPC:
120 		return "I40E_AQ_RC_ENOSPC";
121 	case I40E_AQ_RC_ENOSYS:
122 		return "I40E_AQ_RC_ENOSYS";
123 	case I40E_AQ_RC_ERANGE:
124 		return "I40E_AQ_RC_ERANGE";
125 	case I40E_AQ_RC_EFLUSHED:
126 		return "I40E_AQ_RC_EFLUSHED";
127 	case I40E_AQ_RC_BAD_ADDR:
128 		return "I40E_AQ_RC_BAD_ADDR";
129 	case I40E_AQ_RC_EMODE:
130 		return "I40E_AQ_RC_EMODE";
131 	case I40E_AQ_RC_EFBIG:
132 		return "I40E_AQ_RC_EFBIG";
133 	}
134 
135 	snprintf(hw->err_str, sizeof(hw->err_str), "%d", aq_err);
136 	return hw->err_str;
137 }
138 
139 /**
140  * i40e_stat_str - convert status err code to a string
141  * @hw: pointer to the HW structure
142  * @stat_err: the status error code to convert
143  **/
144 const char *i40e_stat_str(struct i40e_hw *hw, i40e_status stat_err)
145 {
146 	switch (stat_err) {
147 	case 0:
148 		return "OK";
149 	case I40E_ERR_NVM:
150 		return "I40E_ERR_NVM";
151 	case I40E_ERR_NVM_CHECKSUM:
152 		return "I40E_ERR_NVM_CHECKSUM";
153 	case I40E_ERR_PHY:
154 		return "I40E_ERR_PHY";
155 	case I40E_ERR_CONFIG:
156 		return "I40E_ERR_CONFIG";
157 	case I40E_ERR_PARAM:
158 		return "I40E_ERR_PARAM";
159 	case I40E_ERR_MAC_TYPE:
160 		return "I40E_ERR_MAC_TYPE";
161 	case I40E_ERR_UNKNOWN_PHY:
162 		return "I40E_ERR_UNKNOWN_PHY";
163 	case I40E_ERR_LINK_SETUP:
164 		return "I40E_ERR_LINK_SETUP";
165 	case I40E_ERR_ADAPTER_STOPPED:
166 		return "I40E_ERR_ADAPTER_STOPPED";
167 	case I40E_ERR_INVALID_MAC_ADDR:
168 		return "I40E_ERR_INVALID_MAC_ADDR";
169 	case I40E_ERR_DEVICE_NOT_SUPPORTED:
170 		return "I40E_ERR_DEVICE_NOT_SUPPORTED";
171 	case I40E_ERR_MASTER_REQUESTS_PENDING:
172 		return "I40E_ERR_MASTER_REQUESTS_PENDING";
173 	case I40E_ERR_INVALID_LINK_SETTINGS:
174 		return "I40E_ERR_INVALID_LINK_SETTINGS";
175 	case I40E_ERR_AUTONEG_NOT_COMPLETE:
176 		return "I40E_ERR_AUTONEG_NOT_COMPLETE";
177 	case I40E_ERR_RESET_FAILED:
178 		return "I40E_ERR_RESET_FAILED";
179 	case I40E_ERR_SWFW_SYNC:
180 		return "I40E_ERR_SWFW_SYNC";
181 	case I40E_ERR_NO_AVAILABLE_VSI:
182 		return "I40E_ERR_NO_AVAILABLE_VSI";
183 	case I40E_ERR_NO_MEMORY:
184 		return "I40E_ERR_NO_MEMORY";
185 	case I40E_ERR_BAD_PTR:
186 		return "I40E_ERR_BAD_PTR";
187 	case I40E_ERR_RING_FULL:
188 		return "I40E_ERR_RING_FULL";
189 	case I40E_ERR_INVALID_PD_ID:
190 		return "I40E_ERR_INVALID_PD_ID";
191 	case I40E_ERR_INVALID_QP_ID:
192 		return "I40E_ERR_INVALID_QP_ID";
193 	case I40E_ERR_INVALID_CQ_ID:
194 		return "I40E_ERR_INVALID_CQ_ID";
195 	case I40E_ERR_INVALID_CEQ_ID:
196 		return "I40E_ERR_INVALID_CEQ_ID";
197 	case I40E_ERR_INVALID_AEQ_ID:
198 		return "I40E_ERR_INVALID_AEQ_ID";
199 	case I40E_ERR_INVALID_SIZE:
200 		return "I40E_ERR_INVALID_SIZE";
201 	case I40E_ERR_INVALID_ARP_INDEX:
202 		return "I40E_ERR_INVALID_ARP_INDEX";
203 	case I40E_ERR_INVALID_FPM_FUNC_ID:
204 		return "I40E_ERR_INVALID_FPM_FUNC_ID";
205 	case I40E_ERR_QP_INVALID_MSG_SIZE:
206 		return "I40E_ERR_QP_INVALID_MSG_SIZE";
207 	case I40E_ERR_QP_TOOMANY_WRS_POSTED:
208 		return "I40E_ERR_QP_TOOMANY_WRS_POSTED";
209 	case I40E_ERR_INVALID_FRAG_COUNT:
210 		return "I40E_ERR_INVALID_FRAG_COUNT";
211 	case I40E_ERR_QUEUE_EMPTY:
212 		return "I40E_ERR_QUEUE_EMPTY";
213 	case I40E_ERR_INVALID_ALIGNMENT:
214 		return "I40E_ERR_INVALID_ALIGNMENT";
215 	case I40E_ERR_FLUSHED_QUEUE:
216 		return "I40E_ERR_FLUSHED_QUEUE";
217 	case I40E_ERR_INVALID_PUSH_PAGE_INDEX:
218 		return "I40E_ERR_INVALID_PUSH_PAGE_INDEX";
219 	case I40E_ERR_INVALID_IMM_DATA_SIZE:
220 		return "I40E_ERR_INVALID_IMM_DATA_SIZE";
221 	case I40E_ERR_TIMEOUT:
222 		return "I40E_ERR_TIMEOUT";
223 	case I40E_ERR_OPCODE_MISMATCH:
224 		return "I40E_ERR_OPCODE_MISMATCH";
225 	case I40E_ERR_CQP_COMPL_ERROR:
226 		return "I40E_ERR_CQP_COMPL_ERROR";
227 	case I40E_ERR_INVALID_VF_ID:
228 		return "I40E_ERR_INVALID_VF_ID";
229 	case I40E_ERR_INVALID_HMCFN_ID:
230 		return "I40E_ERR_INVALID_HMCFN_ID";
231 	case I40E_ERR_BACKING_PAGE_ERROR:
232 		return "I40E_ERR_BACKING_PAGE_ERROR";
233 	case I40E_ERR_NO_PBLCHUNKS_AVAILABLE:
234 		return "I40E_ERR_NO_PBLCHUNKS_AVAILABLE";
235 	case I40E_ERR_INVALID_PBLE_INDEX:
236 		return "I40E_ERR_INVALID_PBLE_INDEX";
237 	case I40E_ERR_INVALID_SD_INDEX:
238 		return "I40E_ERR_INVALID_SD_INDEX";
239 	case I40E_ERR_INVALID_PAGE_DESC_INDEX:
240 		return "I40E_ERR_INVALID_PAGE_DESC_INDEX";
241 	case I40E_ERR_INVALID_SD_TYPE:
242 		return "I40E_ERR_INVALID_SD_TYPE";
243 	case I40E_ERR_MEMCPY_FAILED:
244 		return "I40E_ERR_MEMCPY_FAILED";
245 	case I40E_ERR_INVALID_HMC_OBJ_INDEX:
246 		return "I40E_ERR_INVALID_HMC_OBJ_INDEX";
247 	case I40E_ERR_INVALID_HMC_OBJ_COUNT:
248 		return "I40E_ERR_INVALID_HMC_OBJ_COUNT";
249 	case I40E_ERR_INVALID_SRQ_ARM_LIMIT:
250 		return "I40E_ERR_INVALID_SRQ_ARM_LIMIT";
251 	case I40E_ERR_SRQ_ENABLED:
252 		return "I40E_ERR_SRQ_ENABLED";
253 	case I40E_ERR_ADMIN_QUEUE_ERROR:
254 		return "I40E_ERR_ADMIN_QUEUE_ERROR";
255 	case I40E_ERR_ADMIN_QUEUE_TIMEOUT:
256 		return "I40E_ERR_ADMIN_QUEUE_TIMEOUT";
257 	case I40E_ERR_BUF_TOO_SHORT:
258 		return "I40E_ERR_BUF_TOO_SHORT";
259 	case I40E_ERR_ADMIN_QUEUE_FULL:
260 		return "I40E_ERR_ADMIN_QUEUE_FULL";
261 	case I40E_ERR_ADMIN_QUEUE_NO_WORK:
262 		return "I40E_ERR_ADMIN_QUEUE_NO_WORK";
263 	case I40E_ERR_BAD_IWARP_CQE:
264 		return "I40E_ERR_BAD_IWARP_CQE";
265 	case I40E_ERR_NVM_BLANK_MODE:
266 		return "I40E_ERR_NVM_BLANK_MODE";
267 	case I40E_ERR_NOT_IMPLEMENTED:
268 		return "I40E_ERR_NOT_IMPLEMENTED";
269 	case I40E_ERR_PE_DOORBELL_NOT_ENABLED:
270 		return "I40E_ERR_PE_DOORBELL_NOT_ENABLED";
271 	case I40E_ERR_DIAG_TEST_FAILED:
272 		return "I40E_ERR_DIAG_TEST_FAILED";
273 	case I40E_ERR_NOT_READY:
274 		return "I40E_ERR_NOT_READY";
275 	case I40E_NOT_SUPPORTED:
276 		return "I40E_NOT_SUPPORTED";
277 	case I40E_ERR_FIRMWARE_API_VERSION:
278 		return "I40E_ERR_FIRMWARE_API_VERSION";
279 	}
280 
281 	snprintf(hw->err_str, sizeof(hw->err_str), "%d", stat_err);
282 	return hw->err_str;
283 }
284 
285 /**
286  * i40e_debug_aq
287  * @hw: debug mask related to admin queue
288  * @mask: debug mask
289  * @desc: pointer to admin queue descriptor
290  * @buffer: pointer to command buffer
291  * @buf_len: max length of buffer
292  *
293  * Dumps debug log about adminq command with descriptor contents.
294  **/
295 void i40e_debug_aq(struct i40e_hw *hw, enum i40e_debug_mask mask, void *desc,
296 		   void *buffer, u16 buf_len)
297 {
298 	struct i40e_aq_desc *aq_desc = (struct i40e_aq_desc *)desc;
299 	u16 len;
300 	u8 *buf = (u8 *)buffer;
301 	u16 i = 0;
302 
303 	if ((!(mask & hw->debug_mask)) || (desc == NULL))
304 		return;
305 
306 	len = le16_to_cpu(aq_desc->datalen);
307 
308 	i40e_debug(hw, mask,
309 		   "AQ CMD: opcode 0x%04X, flags 0x%04X, datalen 0x%04X, retval 0x%04X\n",
310 		   le16_to_cpu(aq_desc->opcode),
311 		   le16_to_cpu(aq_desc->flags),
312 		   le16_to_cpu(aq_desc->datalen),
313 		   le16_to_cpu(aq_desc->retval));
314 	i40e_debug(hw, mask, "\tcookie (h,l) 0x%08X 0x%08X\n",
315 		   le32_to_cpu(aq_desc->cookie_high),
316 		   le32_to_cpu(aq_desc->cookie_low));
317 	i40e_debug(hw, mask, "\tparam (0,1)  0x%08X 0x%08X\n",
318 		   le32_to_cpu(aq_desc->params.internal.param0),
319 		   le32_to_cpu(aq_desc->params.internal.param1));
320 	i40e_debug(hw, mask, "\taddr (h,l)   0x%08X 0x%08X\n",
321 		   le32_to_cpu(aq_desc->params.external.addr_high),
322 		   le32_to_cpu(aq_desc->params.external.addr_low));
323 
324 	if ((buffer != NULL) && (aq_desc->datalen != 0)) {
325 		i40e_debug(hw, mask, "AQ CMD Buffer:\n");
326 		if (buf_len < len)
327 			len = buf_len;
328 		/* write the full 16-byte chunks */
329 		for (i = 0; i < (len - 16); i += 16)
330 			i40e_debug(hw, mask, "\t0x%04X  %16ph\n", i, buf + i);
331 		/* write whatever's left over without overrunning the buffer */
332 		if (i < len)
333 			i40e_debug(hw, mask, "\t0x%04X  %*ph\n",
334 					     i, len - i, buf + i);
335 	}
336 }
337 
338 /**
339  * i40e_check_asq_alive
340  * @hw: pointer to the hw struct
341  *
342  * Returns true if Queue is enabled else false.
343  **/
344 bool i40e_check_asq_alive(struct i40e_hw *hw)
345 {
346 	if (hw->aq.asq.len)
347 		return !!(rd32(hw, hw->aq.asq.len) &
348 			  I40E_PF_ATQLEN_ATQENABLE_MASK);
349 	else
350 		return false;
351 }
352 
353 /**
354  * i40e_aq_queue_shutdown
355  * @hw: pointer to the hw struct
356  * @unloading: is the driver unloading itself
357  *
358  * Tell the Firmware that we're shutting down the AdminQ and whether
359  * or not the driver is unloading as well.
360  **/
361 i40e_status i40e_aq_queue_shutdown(struct i40e_hw *hw,
362 					     bool unloading)
363 {
364 	struct i40e_aq_desc desc;
365 	struct i40e_aqc_queue_shutdown *cmd =
366 		(struct i40e_aqc_queue_shutdown *)&desc.params.raw;
367 	i40e_status status;
368 
369 	i40e_fill_default_direct_cmd_desc(&desc,
370 					  i40e_aqc_opc_queue_shutdown);
371 
372 	if (unloading)
373 		cmd->driver_unloading = cpu_to_le32(I40E_AQ_DRIVER_UNLOADING);
374 	status = i40e_asq_send_command(hw, &desc, NULL, 0, NULL);
375 
376 	return status;
377 }
378 
379 /**
380  * i40e_aq_get_set_rss_lut
381  * @hw: pointer to the hardware structure
382  * @vsi_id: vsi fw index
383  * @pf_lut: for PF table set true, for VSI table set false
384  * @lut: pointer to the lut buffer provided by the caller
385  * @lut_size: size of the lut buffer
386  * @set: set true to set the table, false to get the table
387  *
388  * Internal function to get or set RSS look up table
389  **/
390 static i40e_status i40e_aq_get_set_rss_lut(struct i40e_hw *hw,
391 					   u16 vsi_id, bool pf_lut,
392 					   u8 *lut, u16 lut_size,
393 					   bool set)
394 {
395 	i40e_status status;
396 	struct i40e_aq_desc desc;
397 	struct i40e_aqc_get_set_rss_lut *cmd_resp =
398 		   (struct i40e_aqc_get_set_rss_lut *)&desc.params.raw;
399 
400 	if (set)
401 		i40e_fill_default_direct_cmd_desc(&desc,
402 						  i40e_aqc_opc_set_rss_lut);
403 	else
404 		i40e_fill_default_direct_cmd_desc(&desc,
405 						  i40e_aqc_opc_get_rss_lut);
406 
407 	/* Indirect command */
408 	desc.flags |= cpu_to_le16((u16)I40E_AQ_FLAG_BUF);
409 	desc.flags |= cpu_to_le16((u16)I40E_AQ_FLAG_RD);
410 
411 	cmd_resp->vsi_id =
412 			cpu_to_le16((u16)((vsi_id <<
413 					  I40E_AQC_SET_RSS_LUT_VSI_ID_SHIFT) &
414 					  I40E_AQC_SET_RSS_LUT_VSI_ID_MASK));
415 	cmd_resp->vsi_id |= cpu_to_le16((u16)I40E_AQC_SET_RSS_LUT_VSI_VALID);
416 
417 	if (pf_lut)
418 		cmd_resp->flags |= cpu_to_le16((u16)
419 					((I40E_AQC_SET_RSS_LUT_TABLE_TYPE_PF <<
420 					I40E_AQC_SET_RSS_LUT_TABLE_TYPE_SHIFT) &
421 					I40E_AQC_SET_RSS_LUT_TABLE_TYPE_MASK));
422 	else
423 		cmd_resp->flags |= cpu_to_le16((u16)
424 					((I40E_AQC_SET_RSS_LUT_TABLE_TYPE_VSI <<
425 					I40E_AQC_SET_RSS_LUT_TABLE_TYPE_SHIFT) &
426 					I40E_AQC_SET_RSS_LUT_TABLE_TYPE_MASK));
427 
428 	status = i40e_asq_send_command(hw, &desc, lut, lut_size, NULL);
429 
430 	return status;
431 }
432 
433 /**
434  * i40e_aq_get_rss_lut
435  * @hw: pointer to the hardware structure
436  * @vsi_id: vsi fw index
437  * @pf_lut: for PF table set true, for VSI table set false
438  * @lut: pointer to the lut buffer provided by the caller
439  * @lut_size: size of the lut buffer
440  *
441  * get the RSS lookup table, PF or VSI type
442  **/
443 i40e_status i40e_aq_get_rss_lut(struct i40e_hw *hw, u16 vsi_id,
444 				bool pf_lut, u8 *lut, u16 lut_size)
445 {
446 	return i40e_aq_get_set_rss_lut(hw, vsi_id, pf_lut, lut, lut_size,
447 				       false);
448 }
449 
450 /**
451  * i40e_aq_set_rss_lut
452  * @hw: pointer to the hardware structure
453  * @vsi_id: vsi fw index
454  * @pf_lut: for PF table set true, for VSI table set false
455  * @lut: pointer to the lut buffer provided by the caller
456  * @lut_size: size of the lut buffer
457  *
458  * set the RSS lookup table, PF or VSI type
459  **/
460 i40e_status i40e_aq_set_rss_lut(struct i40e_hw *hw, u16 vsi_id,
461 				bool pf_lut, u8 *lut, u16 lut_size)
462 {
463 	return i40e_aq_get_set_rss_lut(hw, vsi_id, pf_lut, lut, lut_size, true);
464 }
465 
466 /**
467  * i40e_aq_get_set_rss_key
468  * @hw: pointer to the hw struct
469  * @vsi_id: vsi fw index
470  * @key: pointer to key info struct
471  * @set: set true to set the key, false to get the key
472  *
473  * get the RSS key per VSI
474  **/
475 static i40e_status i40e_aq_get_set_rss_key(struct i40e_hw *hw,
476 				      u16 vsi_id,
477 				      struct i40e_aqc_get_set_rss_key_data *key,
478 				      bool set)
479 {
480 	i40e_status status;
481 	struct i40e_aq_desc desc;
482 	struct i40e_aqc_get_set_rss_key *cmd_resp =
483 			(struct i40e_aqc_get_set_rss_key *)&desc.params.raw;
484 	u16 key_size = sizeof(struct i40e_aqc_get_set_rss_key_data);
485 
486 	if (set)
487 		i40e_fill_default_direct_cmd_desc(&desc,
488 						  i40e_aqc_opc_set_rss_key);
489 	else
490 		i40e_fill_default_direct_cmd_desc(&desc,
491 						  i40e_aqc_opc_get_rss_key);
492 
493 	/* Indirect command */
494 	desc.flags |= cpu_to_le16((u16)I40E_AQ_FLAG_BUF);
495 	desc.flags |= cpu_to_le16((u16)I40E_AQ_FLAG_RD);
496 
497 	cmd_resp->vsi_id =
498 			cpu_to_le16((u16)((vsi_id <<
499 					  I40E_AQC_SET_RSS_KEY_VSI_ID_SHIFT) &
500 					  I40E_AQC_SET_RSS_KEY_VSI_ID_MASK));
501 	cmd_resp->vsi_id |= cpu_to_le16((u16)I40E_AQC_SET_RSS_KEY_VSI_VALID);
502 
503 	status = i40e_asq_send_command(hw, &desc, key, key_size, NULL);
504 
505 	return status;
506 }
507 
508 /**
509  * i40e_aq_get_rss_key
510  * @hw: pointer to the hw struct
511  * @vsi_id: vsi fw index
512  * @key: pointer to key info struct
513  *
514  **/
515 i40e_status i40e_aq_get_rss_key(struct i40e_hw *hw,
516 				u16 vsi_id,
517 				struct i40e_aqc_get_set_rss_key_data *key)
518 {
519 	return i40e_aq_get_set_rss_key(hw, vsi_id, key, false);
520 }
521 
522 /**
523  * i40e_aq_set_rss_key
524  * @hw: pointer to the hw struct
525  * @vsi_id: vsi fw index
526  * @key: pointer to key info struct
527  *
528  * set the RSS key per VSI
529  **/
530 i40e_status i40e_aq_set_rss_key(struct i40e_hw *hw,
531 				u16 vsi_id,
532 				struct i40e_aqc_get_set_rss_key_data *key)
533 {
534 	return i40e_aq_get_set_rss_key(hw, vsi_id, key, true);
535 }
536 
537 /* The i40e_ptype_lookup table is used to convert from the 8-bit ptype in the
538  * hardware to a bit-field that can be used by SW to more easily determine the
539  * packet type.
540  *
541  * Macros are used to shorten the table lines and make this table human
542  * readable.
543  *
544  * We store the PTYPE in the top byte of the bit field - this is just so that
545  * we can check that the table doesn't have a row missing, as the index into
546  * the table should be the PTYPE.
547  *
548  * Typical work flow:
549  *
550  * IF NOT i40e_ptype_lookup[ptype].known
551  * THEN
552  *      Packet is unknown
553  * ELSE IF i40e_ptype_lookup[ptype].outer_ip == I40E_RX_PTYPE_OUTER_IP
554  *      Use the rest of the fields to look at the tunnels, inner protocols, etc
555  * ELSE
556  *      Use the enum i40e_rx_l2_ptype to decode the packet type
557  * ENDIF
558  */
559 
560 /* macro to make the table lines short */
561 #define I40E_PTT(PTYPE, OUTER_IP, OUTER_IP_VER, OUTER_FRAG, T, TE, TEF, I, PL)\
562 	{	PTYPE, \
563 		1, \
564 		I40E_RX_PTYPE_OUTER_##OUTER_IP, \
565 		I40E_RX_PTYPE_OUTER_##OUTER_IP_VER, \
566 		I40E_RX_PTYPE_##OUTER_FRAG, \
567 		I40E_RX_PTYPE_TUNNEL_##T, \
568 		I40E_RX_PTYPE_TUNNEL_END_##TE, \
569 		I40E_RX_PTYPE_##TEF, \
570 		I40E_RX_PTYPE_INNER_PROT_##I, \
571 		I40E_RX_PTYPE_PAYLOAD_LAYER_##PL }
572 
573 #define I40E_PTT_UNUSED_ENTRY(PTYPE) \
574 		{ PTYPE, 0, 0, 0, 0, 0, 0, 0, 0, 0 }
575 
576 /* shorter macros makes the table fit but are terse */
577 #define I40E_RX_PTYPE_NOF		I40E_RX_PTYPE_NOT_FRAG
578 #define I40E_RX_PTYPE_FRG		I40E_RX_PTYPE_FRAG
579 #define I40E_RX_PTYPE_INNER_PROT_TS	I40E_RX_PTYPE_INNER_PROT_TIMESYNC
580 
581 /* Lookup table mapping the HW PTYPE to the bit field for decoding */
582 struct i40e_rx_ptype_decoded i40e_ptype_lookup[] = {
583 	/* L2 Packet types */
584 	I40E_PTT_UNUSED_ENTRY(0),
585 	I40E_PTT(1,  L2, NONE, NOF, NONE, NONE, NOF, NONE, PAY2),
586 	I40E_PTT(2,  L2, NONE, NOF, NONE, NONE, NOF, TS,   PAY2),
587 	I40E_PTT(3,  L2, NONE, NOF, NONE, NONE, NOF, NONE, PAY2),
588 	I40E_PTT_UNUSED_ENTRY(4),
589 	I40E_PTT_UNUSED_ENTRY(5),
590 	I40E_PTT(6,  L2, NONE, NOF, NONE, NONE, NOF, NONE, PAY2),
591 	I40E_PTT(7,  L2, NONE, NOF, NONE, NONE, NOF, NONE, PAY2),
592 	I40E_PTT_UNUSED_ENTRY(8),
593 	I40E_PTT_UNUSED_ENTRY(9),
594 	I40E_PTT(10, L2, NONE, NOF, NONE, NONE, NOF, NONE, PAY2),
595 	I40E_PTT(11, L2, NONE, NOF, NONE, NONE, NOF, NONE, NONE),
596 	I40E_PTT(12, L2, NONE, NOF, NONE, NONE, NOF, NONE, PAY3),
597 	I40E_PTT(13, L2, NONE, NOF, NONE, NONE, NOF, NONE, PAY3),
598 	I40E_PTT(14, L2, NONE, NOF, NONE, NONE, NOF, NONE, PAY3),
599 	I40E_PTT(15, L2, NONE, NOF, NONE, NONE, NOF, NONE, PAY3),
600 	I40E_PTT(16, L2, NONE, NOF, NONE, NONE, NOF, NONE, PAY3),
601 	I40E_PTT(17, L2, NONE, NOF, NONE, NONE, NOF, NONE, PAY3),
602 	I40E_PTT(18, L2, NONE, NOF, NONE, NONE, NOF, NONE, PAY3),
603 	I40E_PTT(19, L2, NONE, NOF, NONE, NONE, NOF, NONE, PAY3),
604 	I40E_PTT(20, L2, NONE, NOF, NONE, NONE, NOF, NONE, PAY3),
605 	I40E_PTT(21, L2, NONE, NOF, NONE, NONE, NOF, NONE, PAY3),
606 
607 	/* Non Tunneled IPv4 */
608 	I40E_PTT(22, IP, IPV4, FRG, NONE, NONE, NOF, NONE, PAY3),
609 	I40E_PTT(23, IP, IPV4, NOF, NONE, NONE, NOF, NONE, PAY3),
610 	I40E_PTT(24, IP, IPV4, NOF, NONE, NONE, NOF, UDP,  PAY4),
611 	I40E_PTT_UNUSED_ENTRY(25),
612 	I40E_PTT(26, IP, IPV4, NOF, NONE, NONE, NOF, TCP,  PAY4),
613 	I40E_PTT(27, IP, IPV4, NOF, NONE, NONE, NOF, SCTP, PAY4),
614 	I40E_PTT(28, IP, IPV4, NOF, NONE, NONE, NOF, ICMP, PAY4),
615 
616 	/* IPv4 --> IPv4 */
617 	I40E_PTT(29, IP, IPV4, NOF, IP_IP, IPV4, FRG, NONE, PAY3),
618 	I40E_PTT(30, IP, IPV4, NOF, IP_IP, IPV4, NOF, NONE, PAY3),
619 	I40E_PTT(31, IP, IPV4, NOF, IP_IP, IPV4, NOF, UDP,  PAY4),
620 	I40E_PTT_UNUSED_ENTRY(32),
621 	I40E_PTT(33, IP, IPV4, NOF, IP_IP, IPV4, NOF, TCP,  PAY4),
622 	I40E_PTT(34, IP, IPV4, NOF, IP_IP, IPV4, NOF, SCTP, PAY4),
623 	I40E_PTT(35, IP, IPV4, NOF, IP_IP, IPV4, NOF, ICMP, PAY4),
624 
625 	/* IPv4 --> IPv6 */
626 	I40E_PTT(36, IP, IPV4, NOF, IP_IP, IPV6, FRG, NONE, PAY3),
627 	I40E_PTT(37, IP, IPV4, NOF, IP_IP, IPV6, NOF, NONE, PAY3),
628 	I40E_PTT(38, IP, IPV4, NOF, IP_IP, IPV6, NOF, UDP,  PAY4),
629 	I40E_PTT_UNUSED_ENTRY(39),
630 	I40E_PTT(40, IP, IPV4, NOF, IP_IP, IPV6, NOF, TCP,  PAY4),
631 	I40E_PTT(41, IP, IPV4, NOF, IP_IP, IPV6, NOF, SCTP, PAY4),
632 	I40E_PTT(42, IP, IPV4, NOF, IP_IP, IPV6, NOF, ICMP, PAY4),
633 
634 	/* IPv4 --> GRE/NAT */
635 	I40E_PTT(43, IP, IPV4, NOF, IP_GRENAT, NONE, NOF, NONE, PAY3),
636 
637 	/* IPv4 --> GRE/NAT --> IPv4 */
638 	I40E_PTT(44, IP, IPV4, NOF, IP_GRENAT, IPV4, FRG, NONE, PAY3),
639 	I40E_PTT(45, IP, IPV4, NOF, IP_GRENAT, IPV4, NOF, NONE, PAY3),
640 	I40E_PTT(46, IP, IPV4, NOF, IP_GRENAT, IPV4, NOF, UDP,  PAY4),
641 	I40E_PTT_UNUSED_ENTRY(47),
642 	I40E_PTT(48, IP, IPV4, NOF, IP_GRENAT, IPV4, NOF, TCP,  PAY4),
643 	I40E_PTT(49, IP, IPV4, NOF, IP_GRENAT, IPV4, NOF, SCTP, PAY4),
644 	I40E_PTT(50, IP, IPV4, NOF, IP_GRENAT, IPV4, NOF, ICMP, PAY4),
645 
646 	/* IPv4 --> GRE/NAT --> IPv6 */
647 	I40E_PTT(51, IP, IPV4, NOF, IP_GRENAT, IPV6, FRG, NONE, PAY3),
648 	I40E_PTT(52, IP, IPV4, NOF, IP_GRENAT, IPV6, NOF, NONE, PAY3),
649 	I40E_PTT(53, IP, IPV4, NOF, IP_GRENAT, IPV6, NOF, UDP,  PAY4),
650 	I40E_PTT_UNUSED_ENTRY(54),
651 	I40E_PTT(55, IP, IPV4, NOF, IP_GRENAT, IPV6, NOF, TCP,  PAY4),
652 	I40E_PTT(56, IP, IPV4, NOF, IP_GRENAT, IPV6, NOF, SCTP, PAY4),
653 	I40E_PTT(57, IP, IPV4, NOF, IP_GRENAT, IPV6, NOF, ICMP, PAY4),
654 
655 	/* IPv4 --> GRE/NAT --> MAC */
656 	I40E_PTT(58, IP, IPV4, NOF, IP_GRENAT_MAC, NONE, NOF, NONE, PAY3),
657 
658 	/* IPv4 --> GRE/NAT --> MAC --> IPv4 */
659 	I40E_PTT(59, IP, IPV4, NOF, IP_GRENAT_MAC, IPV4, FRG, NONE, PAY3),
660 	I40E_PTT(60, IP, IPV4, NOF, IP_GRENAT_MAC, IPV4, NOF, NONE, PAY3),
661 	I40E_PTT(61, IP, IPV4, NOF, IP_GRENAT_MAC, IPV4, NOF, UDP,  PAY4),
662 	I40E_PTT_UNUSED_ENTRY(62),
663 	I40E_PTT(63, IP, IPV4, NOF, IP_GRENAT_MAC, IPV4, NOF, TCP,  PAY4),
664 	I40E_PTT(64, IP, IPV4, NOF, IP_GRENAT_MAC, IPV4, NOF, SCTP, PAY4),
665 	I40E_PTT(65, IP, IPV4, NOF, IP_GRENAT_MAC, IPV4, NOF, ICMP, PAY4),
666 
667 	/* IPv4 --> GRE/NAT -> MAC --> IPv6 */
668 	I40E_PTT(66, IP, IPV4, NOF, IP_GRENAT_MAC, IPV6, FRG, NONE, PAY3),
669 	I40E_PTT(67, IP, IPV4, NOF, IP_GRENAT_MAC, IPV6, NOF, NONE, PAY3),
670 	I40E_PTT(68, IP, IPV4, NOF, IP_GRENAT_MAC, IPV6, NOF, UDP,  PAY4),
671 	I40E_PTT_UNUSED_ENTRY(69),
672 	I40E_PTT(70, IP, IPV4, NOF, IP_GRENAT_MAC, IPV6, NOF, TCP,  PAY4),
673 	I40E_PTT(71, IP, IPV4, NOF, IP_GRENAT_MAC, IPV6, NOF, SCTP, PAY4),
674 	I40E_PTT(72, IP, IPV4, NOF, IP_GRENAT_MAC, IPV6, NOF, ICMP, PAY4),
675 
676 	/* IPv4 --> GRE/NAT --> MAC/VLAN */
677 	I40E_PTT(73, IP, IPV4, NOF, IP_GRENAT_MAC_VLAN, NONE, NOF, NONE, PAY3),
678 
679 	/* IPv4 ---> GRE/NAT -> MAC/VLAN --> IPv4 */
680 	I40E_PTT(74, IP, IPV4, NOF, IP_GRENAT_MAC_VLAN, IPV4, FRG, NONE, PAY3),
681 	I40E_PTT(75, IP, IPV4, NOF, IP_GRENAT_MAC_VLAN, IPV4, NOF, NONE, PAY3),
682 	I40E_PTT(76, IP, IPV4, NOF, IP_GRENAT_MAC_VLAN, IPV4, NOF, UDP,  PAY4),
683 	I40E_PTT_UNUSED_ENTRY(77),
684 	I40E_PTT(78, IP, IPV4, NOF, IP_GRENAT_MAC_VLAN, IPV4, NOF, TCP,  PAY4),
685 	I40E_PTT(79, IP, IPV4, NOF, IP_GRENAT_MAC_VLAN, IPV4, NOF, SCTP, PAY4),
686 	I40E_PTT(80, IP, IPV4, NOF, IP_GRENAT_MAC_VLAN, IPV4, NOF, ICMP, PAY4),
687 
688 	/* IPv4 -> GRE/NAT -> MAC/VLAN --> IPv6 */
689 	I40E_PTT(81, IP, IPV4, NOF, IP_GRENAT_MAC_VLAN, IPV6, FRG, NONE, PAY3),
690 	I40E_PTT(82, IP, IPV4, NOF, IP_GRENAT_MAC_VLAN, IPV6, NOF, NONE, PAY3),
691 	I40E_PTT(83, IP, IPV4, NOF, IP_GRENAT_MAC_VLAN, IPV6, NOF, UDP,  PAY4),
692 	I40E_PTT_UNUSED_ENTRY(84),
693 	I40E_PTT(85, IP, IPV4, NOF, IP_GRENAT_MAC_VLAN, IPV6, NOF, TCP,  PAY4),
694 	I40E_PTT(86, IP, IPV4, NOF, IP_GRENAT_MAC_VLAN, IPV6, NOF, SCTP, PAY4),
695 	I40E_PTT(87, IP, IPV4, NOF, IP_GRENAT_MAC_VLAN, IPV6, NOF, ICMP, PAY4),
696 
697 	/* Non Tunneled IPv6 */
698 	I40E_PTT(88, IP, IPV6, FRG, NONE, NONE, NOF, NONE, PAY3),
699 	I40E_PTT(89, IP, IPV6, NOF, NONE, NONE, NOF, NONE, PAY3),
700 	I40E_PTT(90, IP, IPV6, NOF, NONE, NONE, NOF, UDP,  PAY4),
701 	I40E_PTT_UNUSED_ENTRY(91),
702 	I40E_PTT(92, IP, IPV6, NOF, NONE, NONE, NOF, TCP,  PAY4),
703 	I40E_PTT(93, IP, IPV6, NOF, NONE, NONE, NOF, SCTP, PAY4),
704 	I40E_PTT(94, IP, IPV6, NOF, NONE, NONE, NOF, ICMP, PAY4),
705 
706 	/* IPv6 --> IPv4 */
707 	I40E_PTT(95,  IP, IPV6, NOF, IP_IP, IPV4, FRG, NONE, PAY3),
708 	I40E_PTT(96,  IP, IPV6, NOF, IP_IP, IPV4, NOF, NONE, PAY3),
709 	I40E_PTT(97,  IP, IPV6, NOF, IP_IP, IPV4, NOF, UDP,  PAY4),
710 	I40E_PTT_UNUSED_ENTRY(98),
711 	I40E_PTT(99,  IP, IPV6, NOF, IP_IP, IPV4, NOF, TCP,  PAY4),
712 	I40E_PTT(100, IP, IPV6, NOF, IP_IP, IPV4, NOF, SCTP, PAY4),
713 	I40E_PTT(101, IP, IPV6, NOF, IP_IP, IPV4, NOF, ICMP, PAY4),
714 
715 	/* IPv6 --> IPv6 */
716 	I40E_PTT(102, IP, IPV6, NOF, IP_IP, IPV6, FRG, NONE, PAY3),
717 	I40E_PTT(103, IP, IPV6, NOF, IP_IP, IPV6, NOF, NONE, PAY3),
718 	I40E_PTT(104, IP, IPV6, NOF, IP_IP, IPV6, NOF, UDP,  PAY4),
719 	I40E_PTT_UNUSED_ENTRY(105),
720 	I40E_PTT(106, IP, IPV6, NOF, IP_IP, IPV6, NOF, TCP,  PAY4),
721 	I40E_PTT(107, IP, IPV6, NOF, IP_IP, IPV6, NOF, SCTP, PAY4),
722 	I40E_PTT(108, IP, IPV6, NOF, IP_IP, IPV6, NOF, ICMP, PAY4),
723 
724 	/* IPv6 --> GRE/NAT */
725 	I40E_PTT(109, IP, IPV6, NOF, IP_GRENAT, NONE, NOF, NONE, PAY3),
726 
727 	/* IPv6 --> GRE/NAT -> IPv4 */
728 	I40E_PTT(110, IP, IPV6, NOF, IP_GRENAT, IPV4, FRG, NONE, PAY3),
729 	I40E_PTT(111, IP, IPV6, NOF, IP_GRENAT, IPV4, NOF, NONE, PAY3),
730 	I40E_PTT(112, IP, IPV6, NOF, IP_GRENAT, IPV4, NOF, UDP,  PAY4),
731 	I40E_PTT_UNUSED_ENTRY(113),
732 	I40E_PTT(114, IP, IPV6, NOF, IP_GRENAT, IPV4, NOF, TCP,  PAY4),
733 	I40E_PTT(115, IP, IPV6, NOF, IP_GRENAT, IPV4, NOF, SCTP, PAY4),
734 	I40E_PTT(116, IP, IPV6, NOF, IP_GRENAT, IPV4, NOF, ICMP, PAY4),
735 
736 	/* IPv6 --> GRE/NAT -> IPv6 */
737 	I40E_PTT(117, IP, IPV6, NOF, IP_GRENAT, IPV6, FRG, NONE, PAY3),
738 	I40E_PTT(118, IP, IPV6, NOF, IP_GRENAT, IPV6, NOF, NONE, PAY3),
739 	I40E_PTT(119, IP, IPV6, NOF, IP_GRENAT, IPV6, NOF, UDP,  PAY4),
740 	I40E_PTT_UNUSED_ENTRY(120),
741 	I40E_PTT(121, IP, IPV6, NOF, IP_GRENAT, IPV6, NOF, TCP,  PAY4),
742 	I40E_PTT(122, IP, IPV6, NOF, IP_GRENAT, IPV6, NOF, SCTP, PAY4),
743 	I40E_PTT(123, IP, IPV6, NOF, IP_GRENAT, IPV6, NOF, ICMP, PAY4),
744 
745 	/* IPv6 --> GRE/NAT -> MAC */
746 	I40E_PTT(124, IP, IPV6, NOF, IP_GRENAT_MAC, NONE, NOF, NONE, PAY3),
747 
748 	/* IPv6 --> GRE/NAT -> MAC -> IPv4 */
749 	I40E_PTT(125, IP, IPV6, NOF, IP_GRENAT_MAC, IPV4, FRG, NONE, PAY3),
750 	I40E_PTT(126, IP, IPV6, NOF, IP_GRENAT_MAC, IPV4, NOF, NONE, PAY3),
751 	I40E_PTT(127, IP, IPV6, NOF, IP_GRENAT_MAC, IPV4, NOF, UDP,  PAY4),
752 	I40E_PTT_UNUSED_ENTRY(128),
753 	I40E_PTT(129, IP, IPV6, NOF, IP_GRENAT_MAC, IPV4, NOF, TCP,  PAY4),
754 	I40E_PTT(130, IP, IPV6, NOF, IP_GRENAT_MAC, IPV4, NOF, SCTP, PAY4),
755 	I40E_PTT(131, IP, IPV6, NOF, IP_GRENAT_MAC, IPV4, NOF, ICMP, PAY4),
756 
757 	/* IPv6 --> GRE/NAT -> MAC -> IPv6 */
758 	I40E_PTT(132, IP, IPV6, NOF, IP_GRENAT_MAC, IPV6, FRG, NONE, PAY3),
759 	I40E_PTT(133, IP, IPV6, NOF, IP_GRENAT_MAC, IPV6, NOF, NONE, PAY3),
760 	I40E_PTT(134, IP, IPV6, NOF, IP_GRENAT_MAC, IPV6, NOF, UDP,  PAY4),
761 	I40E_PTT_UNUSED_ENTRY(135),
762 	I40E_PTT(136, IP, IPV6, NOF, IP_GRENAT_MAC, IPV6, NOF, TCP,  PAY4),
763 	I40E_PTT(137, IP, IPV6, NOF, IP_GRENAT_MAC, IPV6, NOF, SCTP, PAY4),
764 	I40E_PTT(138, IP, IPV6, NOF, IP_GRENAT_MAC, IPV6, NOF, ICMP, PAY4),
765 
766 	/* IPv6 --> GRE/NAT -> MAC/VLAN */
767 	I40E_PTT(139, IP, IPV6, NOF, IP_GRENAT_MAC_VLAN, NONE, NOF, NONE, PAY3),
768 
769 	/* IPv6 --> GRE/NAT -> MAC/VLAN --> IPv4 */
770 	I40E_PTT(140, IP, IPV6, NOF, IP_GRENAT_MAC_VLAN, IPV4, FRG, NONE, PAY3),
771 	I40E_PTT(141, IP, IPV6, NOF, IP_GRENAT_MAC_VLAN, IPV4, NOF, NONE, PAY3),
772 	I40E_PTT(142, IP, IPV6, NOF, IP_GRENAT_MAC_VLAN, IPV4, NOF, UDP,  PAY4),
773 	I40E_PTT_UNUSED_ENTRY(143),
774 	I40E_PTT(144, IP, IPV6, NOF, IP_GRENAT_MAC_VLAN, IPV4, NOF, TCP,  PAY4),
775 	I40E_PTT(145, IP, IPV6, NOF, IP_GRENAT_MAC_VLAN, IPV4, NOF, SCTP, PAY4),
776 	I40E_PTT(146, IP, IPV6, NOF, IP_GRENAT_MAC_VLAN, IPV4, NOF, ICMP, PAY4),
777 
778 	/* IPv6 --> GRE/NAT -> MAC/VLAN --> IPv6 */
779 	I40E_PTT(147, IP, IPV6, NOF, IP_GRENAT_MAC_VLAN, IPV6, FRG, NONE, PAY3),
780 	I40E_PTT(148, IP, IPV6, NOF, IP_GRENAT_MAC_VLAN, IPV6, NOF, NONE, PAY3),
781 	I40E_PTT(149, IP, IPV6, NOF, IP_GRENAT_MAC_VLAN, IPV6, NOF, UDP,  PAY4),
782 	I40E_PTT_UNUSED_ENTRY(150),
783 	I40E_PTT(151, IP, IPV6, NOF, IP_GRENAT_MAC_VLAN, IPV6, NOF, TCP,  PAY4),
784 	I40E_PTT(152, IP, IPV6, NOF, IP_GRENAT_MAC_VLAN, IPV6, NOF, SCTP, PAY4),
785 	I40E_PTT(153, IP, IPV6, NOF, IP_GRENAT_MAC_VLAN, IPV6, NOF, ICMP, PAY4),
786 
787 	/* unused entries */
788 	I40E_PTT_UNUSED_ENTRY(154),
789 	I40E_PTT_UNUSED_ENTRY(155),
790 	I40E_PTT_UNUSED_ENTRY(156),
791 	I40E_PTT_UNUSED_ENTRY(157),
792 	I40E_PTT_UNUSED_ENTRY(158),
793 	I40E_PTT_UNUSED_ENTRY(159),
794 
795 	I40E_PTT_UNUSED_ENTRY(160),
796 	I40E_PTT_UNUSED_ENTRY(161),
797 	I40E_PTT_UNUSED_ENTRY(162),
798 	I40E_PTT_UNUSED_ENTRY(163),
799 	I40E_PTT_UNUSED_ENTRY(164),
800 	I40E_PTT_UNUSED_ENTRY(165),
801 	I40E_PTT_UNUSED_ENTRY(166),
802 	I40E_PTT_UNUSED_ENTRY(167),
803 	I40E_PTT_UNUSED_ENTRY(168),
804 	I40E_PTT_UNUSED_ENTRY(169),
805 
806 	I40E_PTT_UNUSED_ENTRY(170),
807 	I40E_PTT_UNUSED_ENTRY(171),
808 	I40E_PTT_UNUSED_ENTRY(172),
809 	I40E_PTT_UNUSED_ENTRY(173),
810 	I40E_PTT_UNUSED_ENTRY(174),
811 	I40E_PTT_UNUSED_ENTRY(175),
812 	I40E_PTT_UNUSED_ENTRY(176),
813 	I40E_PTT_UNUSED_ENTRY(177),
814 	I40E_PTT_UNUSED_ENTRY(178),
815 	I40E_PTT_UNUSED_ENTRY(179),
816 
817 	I40E_PTT_UNUSED_ENTRY(180),
818 	I40E_PTT_UNUSED_ENTRY(181),
819 	I40E_PTT_UNUSED_ENTRY(182),
820 	I40E_PTT_UNUSED_ENTRY(183),
821 	I40E_PTT_UNUSED_ENTRY(184),
822 	I40E_PTT_UNUSED_ENTRY(185),
823 	I40E_PTT_UNUSED_ENTRY(186),
824 	I40E_PTT_UNUSED_ENTRY(187),
825 	I40E_PTT_UNUSED_ENTRY(188),
826 	I40E_PTT_UNUSED_ENTRY(189),
827 
828 	I40E_PTT_UNUSED_ENTRY(190),
829 	I40E_PTT_UNUSED_ENTRY(191),
830 	I40E_PTT_UNUSED_ENTRY(192),
831 	I40E_PTT_UNUSED_ENTRY(193),
832 	I40E_PTT_UNUSED_ENTRY(194),
833 	I40E_PTT_UNUSED_ENTRY(195),
834 	I40E_PTT_UNUSED_ENTRY(196),
835 	I40E_PTT_UNUSED_ENTRY(197),
836 	I40E_PTT_UNUSED_ENTRY(198),
837 	I40E_PTT_UNUSED_ENTRY(199),
838 
839 	I40E_PTT_UNUSED_ENTRY(200),
840 	I40E_PTT_UNUSED_ENTRY(201),
841 	I40E_PTT_UNUSED_ENTRY(202),
842 	I40E_PTT_UNUSED_ENTRY(203),
843 	I40E_PTT_UNUSED_ENTRY(204),
844 	I40E_PTT_UNUSED_ENTRY(205),
845 	I40E_PTT_UNUSED_ENTRY(206),
846 	I40E_PTT_UNUSED_ENTRY(207),
847 	I40E_PTT_UNUSED_ENTRY(208),
848 	I40E_PTT_UNUSED_ENTRY(209),
849 
850 	I40E_PTT_UNUSED_ENTRY(210),
851 	I40E_PTT_UNUSED_ENTRY(211),
852 	I40E_PTT_UNUSED_ENTRY(212),
853 	I40E_PTT_UNUSED_ENTRY(213),
854 	I40E_PTT_UNUSED_ENTRY(214),
855 	I40E_PTT_UNUSED_ENTRY(215),
856 	I40E_PTT_UNUSED_ENTRY(216),
857 	I40E_PTT_UNUSED_ENTRY(217),
858 	I40E_PTT_UNUSED_ENTRY(218),
859 	I40E_PTT_UNUSED_ENTRY(219),
860 
861 	I40E_PTT_UNUSED_ENTRY(220),
862 	I40E_PTT_UNUSED_ENTRY(221),
863 	I40E_PTT_UNUSED_ENTRY(222),
864 	I40E_PTT_UNUSED_ENTRY(223),
865 	I40E_PTT_UNUSED_ENTRY(224),
866 	I40E_PTT_UNUSED_ENTRY(225),
867 	I40E_PTT_UNUSED_ENTRY(226),
868 	I40E_PTT_UNUSED_ENTRY(227),
869 	I40E_PTT_UNUSED_ENTRY(228),
870 	I40E_PTT_UNUSED_ENTRY(229),
871 
872 	I40E_PTT_UNUSED_ENTRY(230),
873 	I40E_PTT_UNUSED_ENTRY(231),
874 	I40E_PTT_UNUSED_ENTRY(232),
875 	I40E_PTT_UNUSED_ENTRY(233),
876 	I40E_PTT_UNUSED_ENTRY(234),
877 	I40E_PTT_UNUSED_ENTRY(235),
878 	I40E_PTT_UNUSED_ENTRY(236),
879 	I40E_PTT_UNUSED_ENTRY(237),
880 	I40E_PTT_UNUSED_ENTRY(238),
881 	I40E_PTT_UNUSED_ENTRY(239),
882 
883 	I40E_PTT_UNUSED_ENTRY(240),
884 	I40E_PTT_UNUSED_ENTRY(241),
885 	I40E_PTT_UNUSED_ENTRY(242),
886 	I40E_PTT_UNUSED_ENTRY(243),
887 	I40E_PTT_UNUSED_ENTRY(244),
888 	I40E_PTT_UNUSED_ENTRY(245),
889 	I40E_PTT_UNUSED_ENTRY(246),
890 	I40E_PTT_UNUSED_ENTRY(247),
891 	I40E_PTT_UNUSED_ENTRY(248),
892 	I40E_PTT_UNUSED_ENTRY(249),
893 
894 	I40E_PTT_UNUSED_ENTRY(250),
895 	I40E_PTT_UNUSED_ENTRY(251),
896 	I40E_PTT_UNUSED_ENTRY(252),
897 	I40E_PTT_UNUSED_ENTRY(253),
898 	I40E_PTT_UNUSED_ENTRY(254),
899 	I40E_PTT_UNUSED_ENTRY(255)
900 };
901 
902 /**
903  * i40e_init_shared_code - Initialize the shared code
904  * @hw: pointer to hardware structure
905  *
906  * This assigns the MAC type and PHY code and inits the NVM.
907  * Does not touch the hardware. This function must be called prior to any
908  * other function in the shared code. The i40e_hw structure should be
909  * memset to 0 prior to calling this function.  The following fields in
910  * hw structure should be filled in prior to calling this function:
911  * hw_addr, back, device_id, vendor_id, subsystem_device_id,
912  * subsystem_vendor_id, and revision_id
913  **/
914 i40e_status i40e_init_shared_code(struct i40e_hw *hw)
915 {
916 	i40e_status status = 0;
917 	u32 port, ari, func_rid;
918 
919 	i40e_set_mac_type(hw);
920 
921 	switch (hw->mac.type) {
922 	case I40E_MAC_XL710:
923 	case I40E_MAC_X722:
924 		break;
925 	default:
926 		return I40E_ERR_DEVICE_NOT_SUPPORTED;
927 	}
928 
929 	hw->phy.get_link_info = true;
930 
931 	/* Determine port number and PF number*/
932 	port = (rd32(hw, I40E_PFGEN_PORTNUM) & I40E_PFGEN_PORTNUM_PORT_NUM_MASK)
933 					   >> I40E_PFGEN_PORTNUM_PORT_NUM_SHIFT;
934 	hw->port = (u8)port;
935 	ari = (rd32(hw, I40E_GLPCI_CAPSUP) & I40E_GLPCI_CAPSUP_ARI_EN_MASK) >>
936 						 I40E_GLPCI_CAPSUP_ARI_EN_SHIFT;
937 	func_rid = rd32(hw, I40E_PF_FUNC_RID);
938 	if (ari)
939 		hw->pf_id = (u8)(func_rid & 0xff);
940 	else
941 		hw->pf_id = (u8)(func_rid & 0x7);
942 
943 	if (hw->mac.type == I40E_MAC_X722)
944 		hw->flags |= I40E_HW_FLAG_AQ_SRCTL_ACCESS_ENABLE;
945 
946 	status = i40e_init_nvm(hw);
947 	return status;
948 }
949 
950 /**
951  * i40e_aq_mac_address_read - Retrieve the MAC addresses
952  * @hw: pointer to the hw struct
953  * @flags: a return indicator of what addresses were added to the addr store
954  * @addrs: the requestor's mac addr store
955  * @cmd_details: pointer to command details structure or NULL
956  **/
957 static i40e_status i40e_aq_mac_address_read(struct i40e_hw *hw,
958 				   u16 *flags,
959 				   struct i40e_aqc_mac_address_read_data *addrs,
960 				   struct i40e_asq_cmd_details *cmd_details)
961 {
962 	struct i40e_aq_desc desc;
963 	struct i40e_aqc_mac_address_read *cmd_data =
964 		(struct i40e_aqc_mac_address_read *)&desc.params.raw;
965 	i40e_status status;
966 
967 	i40e_fill_default_direct_cmd_desc(&desc, i40e_aqc_opc_mac_address_read);
968 	desc.flags |= cpu_to_le16(I40E_AQ_FLAG_BUF);
969 
970 	status = i40e_asq_send_command(hw, &desc, addrs,
971 				       sizeof(*addrs), cmd_details);
972 	*flags = le16_to_cpu(cmd_data->command_flags);
973 
974 	return status;
975 }
976 
977 /**
978  * i40e_aq_mac_address_write - Change the MAC addresses
979  * @hw: pointer to the hw struct
980  * @flags: indicates which MAC to be written
981  * @mac_addr: address to write
982  * @cmd_details: pointer to command details structure or NULL
983  **/
984 i40e_status i40e_aq_mac_address_write(struct i40e_hw *hw,
985 				    u16 flags, u8 *mac_addr,
986 				    struct i40e_asq_cmd_details *cmd_details)
987 {
988 	struct i40e_aq_desc desc;
989 	struct i40e_aqc_mac_address_write *cmd_data =
990 		(struct i40e_aqc_mac_address_write *)&desc.params.raw;
991 	i40e_status status;
992 
993 	i40e_fill_default_direct_cmd_desc(&desc,
994 					  i40e_aqc_opc_mac_address_write);
995 	cmd_data->command_flags = cpu_to_le16(flags);
996 	cmd_data->mac_sah = cpu_to_le16((u16)mac_addr[0] << 8 | mac_addr[1]);
997 	cmd_data->mac_sal = cpu_to_le32(((u32)mac_addr[2] << 24) |
998 					((u32)mac_addr[3] << 16) |
999 					((u32)mac_addr[4] << 8) |
1000 					mac_addr[5]);
1001 
1002 	status = i40e_asq_send_command(hw, &desc, NULL, 0, cmd_details);
1003 
1004 	return status;
1005 }
1006 
1007 /**
1008  * i40e_get_mac_addr - get MAC address
1009  * @hw: pointer to the HW structure
1010  * @mac_addr: pointer to MAC address
1011  *
1012  * Reads the adapter's MAC address from register
1013  **/
1014 i40e_status i40e_get_mac_addr(struct i40e_hw *hw, u8 *mac_addr)
1015 {
1016 	struct i40e_aqc_mac_address_read_data addrs;
1017 	i40e_status status;
1018 	u16 flags = 0;
1019 
1020 	status = i40e_aq_mac_address_read(hw, &flags, &addrs, NULL);
1021 
1022 	if (flags & I40E_AQC_LAN_ADDR_VALID)
1023 		ether_addr_copy(mac_addr, addrs.pf_lan_mac);
1024 
1025 	return status;
1026 }
1027 
1028 /**
1029  * i40e_get_port_mac_addr - get Port MAC address
1030  * @hw: pointer to the HW structure
1031  * @mac_addr: pointer to Port MAC address
1032  *
1033  * Reads the adapter's Port MAC address
1034  **/
1035 i40e_status i40e_get_port_mac_addr(struct i40e_hw *hw, u8 *mac_addr)
1036 {
1037 	struct i40e_aqc_mac_address_read_data addrs;
1038 	i40e_status status;
1039 	u16 flags = 0;
1040 
1041 	status = i40e_aq_mac_address_read(hw, &flags, &addrs, NULL);
1042 	if (status)
1043 		return status;
1044 
1045 	if (flags & I40E_AQC_PORT_ADDR_VALID)
1046 		ether_addr_copy(mac_addr, addrs.port_mac);
1047 	else
1048 		status = I40E_ERR_INVALID_MAC_ADDR;
1049 
1050 	return status;
1051 }
1052 
1053 /**
1054  * i40e_pre_tx_queue_cfg - pre tx queue configure
1055  * @hw: pointer to the HW structure
1056  * @queue: target PF queue index
1057  * @enable: state change request
1058  *
1059  * Handles hw requirement to indicate intention to enable
1060  * or disable target queue.
1061  **/
1062 void i40e_pre_tx_queue_cfg(struct i40e_hw *hw, u32 queue, bool enable)
1063 {
1064 	u32 abs_queue_idx = hw->func_caps.base_queue + queue;
1065 	u32 reg_block = 0;
1066 	u32 reg_val;
1067 
1068 	if (abs_queue_idx >= 128) {
1069 		reg_block = abs_queue_idx / 128;
1070 		abs_queue_idx %= 128;
1071 	}
1072 
1073 	reg_val = rd32(hw, I40E_GLLAN_TXPRE_QDIS(reg_block));
1074 	reg_val &= ~I40E_GLLAN_TXPRE_QDIS_QINDX_MASK;
1075 	reg_val |= (abs_queue_idx << I40E_GLLAN_TXPRE_QDIS_QINDX_SHIFT);
1076 
1077 	if (enable)
1078 		reg_val |= I40E_GLLAN_TXPRE_QDIS_CLEAR_QDIS_MASK;
1079 	else
1080 		reg_val |= I40E_GLLAN_TXPRE_QDIS_SET_QDIS_MASK;
1081 
1082 	wr32(hw, I40E_GLLAN_TXPRE_QDIS(reg_block), reg_val);
1083 }
1084 #ifdef I40E_FCOE
1085 
1086 /**
1087  * i40e_get_san_mac_addr - get SAN MAC address
1088  * @hw: pointer to the HW structure
1089  * @mac_addr: pointer to SAN MAC address
1090  *
1091  * Reads the adapter's SAN MAC address from NVM
1092  **/
1093 i40e_status i40e_get_san_mac_addr(struct i40e_hw *hw, u8 *mac_addr)
1094 {
1095 	struct i40e_aqc_mac_address_read_data addrs;
1096 	i40e_status status;
1097 	u16 flags = 0;
1098 
1099 	status = i40e_aq_mac_address_read(hw, &flags, &addrs, NULL);
1100 	if (status)
1101 		return status;
1102 
1103 	if (flags & I40E_AQC_SAN_ADDR_VALID)
1104 		ether_addr_copy(mac_addr, addrs.pf_san_mac);
1105 	else
1106 		status = I40E_ERR_INVALID_MAC_ADDR;
1107 
1108 	return status;
1109 }
1110 #endif
1111 
1112 /**
1113  *  i40e_read_pba_string - Reads part number string from EEPROM
1114  *  @hw: pointer to hardware structure
1115  *  @pba_num: stores the part number string from the EEPROM
1116  *  @pba_num_size: part number string buffer length
1117  *
1118  *  Reads the part number string from the EEPROM.
1119  **/
1120 i40e_status i40e_read_pba_string(struct i40e_hw *hw, u8 *pba_num,
1121 				 u32 pba_num_size)
1122 {
1123 	i40e_status status = 0;
1124 	u16 pba_word = 0;
1125 	u16 pba_size = 0;
1126 	u16 pba_ptr = 0;
1127 	u16 i = 0;
1128 
1129 	status = i40e_read_nvm_word(hw, I40E_SR_PBA_FLAGS, &pba_word);
1130 	if (status || (pba_word != 0xFAFA)) {
1131 		hw_dbg(hw, "Failed to read PBA flags or flag is invalid.\n");
1132 		return status;
1133 	}
1134 
1135 	status = i40e_read_nvm_word(hw, I40E_SR_PBA_BLOCK_PTR, &pba_ptr);
1136 	if (status) {
1137 		hw_dbg(hw, "Failed to read PBA Block pointer.\n");
1138 		return status;
1139 	}
1140 
1141 	status = i40e_read_nvm_word(hw, pba_ptr, &pba_size);
1142 	if (status) {
1143 		hw_dbg(hw, "Failed to read PBA Block size.\n");
1144 		return status;
1145 	}
1146 
1147 	/* Subtract one to get PBA word count (PBA Size word is included in
1148 	 * total size)
1149 	 */
1150 	pba_size--;
1151 	if (pba_num_size < (((u32)pba_size * 2) + 1)) {
1152 		hw_dbg(hw, "Buffer to small for PBA data.\n");
1153 		return I40E_ERR_PARAM;
1154 	}
1155 
1156 	for (i = 0; i < pba_size; i++) {
1157 		status = i40e_read_nvm_word(hw, (pba_ptr + 1) + i, &pba_word);
1158 		if (status) {
1159 			hw_dbg(hw, "Failed to read PBA Block word %d.\n", i);
1160 			return status;
1161 		}
1162 
1163 		pba_num[(i * 2)] = (pba_word >> 8) & 0xFF;
1164 		pba_num[(i * 2) + 1] = pba_word & 0xFF;
1165 	}
1166 	pba_num[(pba_size * 2)] = '\0';
1167 
1168 	return status;
1169 }
1170 
1171 /**
1172  * i40e_get_media_type - Gets media type
1173  * @hw: pointer to the hardware structure
1174  **/
1175 static enum i40e_media_type i40e_get_media_type(struct i40e_hw *hw)
1176 {
1177 	enum i40e_media_type media;
1178 
1179 	switch (hw->phy.link_info.phy_type) {
1180 	case I40E_PHY_TYPE_10GBASE_SR:
1181 	case I40E_PHY_TYPE_10GBASE_LR:
1182 	case I40E_PHY_TYPE_1000BASE_SX:
1183 	case I40E_PHY_TYPE_1000BASE_LX:
1184 	case I40E_PHY_TYPE_40GBASE_SR4:
1185 	case I40E_PHY_TYPE_40GBASE_LR4:
1186 		media = I40E_MEDIA_TYPE_FIBER;
1187 		break;
1188 	case I40E_PHY_TYPE_100BASE_TX:
1189 	case I40E_PHY_TYPE_1000BASE_T:
1190 	case I40E_PHY_TYPE_10GBASE_T:
1191 		media = I40E_MEDIA_TYPE_BASET;
1192 		break;
1193 	case I40E_PHY_TYPE_10GBASE_CR1_CU:
1194 	case I40E_PHY_TYPE_40GBASE_CR4_CU:
1195 	case I40E_PHY_TYPE_10GBASE_CR1:
1196 	case I40E_PHY_TYPE_40GBASE_CR4:
1197 	case I40E_PHY_TYPE_10GBASE_SFPP_CU:
1198 	case I40E_PHY_TYPE_40GBASE_AOC:
1199 	case I40E_PHY_TYPE_10GBASE_AOC:
1200 		media = I40E_MEDIA_TYPE_DA;
1201 		break;
1202 	case I40E_PHY_TYPE_1000BASE_KX:
1203 	case I40E_PHY_TYPE_10GBASE_KX4:
1204 	case I40E_PHY_TYPE_10GBASE_KR:
1205 	case I40E_PHY_TYPE_40GBASE_KR4:
1206 	case I40E_PHY_TYPE_20GBASE_KR2:
1207 		media = I40E_MEDIA_TYPE_BACKPLANE;
1208 		break;
1209 	case I40E_PHY_TYPE_SGMII:
1210 	case I40E_PHY_TYPE_XAUI:
1211 	case I40E_PHY_TYPE_XFI:
1212 	case I40E_PHY_TYPE_XLAUI:
1213 	case I40E_PHY_TYPE_XLPPI:
1214 	default:
1215 		media = I40E_MEDIA_TYPE_UNKNOWN;
1216 		break;
1217 	}
1218 
1219 	return media;
1220 }
1221 
1222 #define I40E_PF_RESET_WAIT_COUNT_A0	200
1223 #define I40E_PF_RESET_WAIT_COUNT	200
1224 /**
1225  * i40e_pf_reset - Reset the PF
1226  * @hw: pointer to the hardware structure
1227  *
1228  * Assuming someone else has triggered a global reset,
1229  * assure the global reset is complete and then reset the PF
1230  **/
1231 i40e_status i40e_pf_reset(struct i40e_hw *hw)
1232 {
1233 	u32 cnt = 0;
1234 	u32 cnt1 = 0;
1235 	u32 reg = 0;
1236 	u32 grst_del;
1237 
1238 	/* Poll for Global Reset steady state in case of recent GRST.
1239 	 * The grst delay value is in 100ms units, and we'll wait a
1240 	 * couple counts longer to be sure we don't just miss the end.
1241 	 */
1242 	grst_del = (rd32(hw, I40E_GLGEN_RSTCTL) &
1243 		    I40E_GLGEN_RSTCTL_GRSTDEL_MASK) >>
1244 		    I40E_GLGEN_RSTCTL_GRSTDEL_SHIFT;
1245 
1246 	/* It can take upto 15 secs for GRST steady state.
1247 	 * Bump it to 16 secs max to be safe.
1248 	 */
1249 	grst_del = grst_del * 20;
1250 
1251 	for (cnt = 0; cnt < grst_del; cnt++) {
1252 		reg = rd32(hw, I40E_GLGEN_RSTAT);
1253 		if (!(reg & I40E_GLGEN_RSTAT_DEVSTATE_MASK))
1254 			break;
1255 		msleep(100);
1256 	}
1257 	if (reg & I40E_GLGEN_RSTAT_DEVSTATE_MASK) {
1258 		hw_dbg(hw, "Global reset polling failed to complete.\n");
1259 		return I40E_ERR_RESET_FAILED;
1260 	}
1261 
1262 	/* Now Wait for the FW to be ready */
1263 	for (cnt1 = 0; cnt1 < I40E_PF_RESET_WAIT_COUNT; cnt1++) {
1264 		reg = rd32(hw, I40E_GLNVM_ULD);
1265 		reg &= (I40E_GLNVM_ULD_CONF_CORE_DONE_MASK |
1266 			I40E_GLNVM_ULD_CONF_GLOBAL_DONE_MASK);
1267 		if (reg == (I40E_GLNVM_ULD_CONF_CORE_DONE_MASK |
1268 			    I40E_GLNVM_ULD_CONF_GLOBAL_DONE_MASK)) {
1269 			hw_dbg(hw, "Core and Global modules ready %d\n", cnt1);
1270 			break;
1271 		}
1272 		usleep_range(10000, 20000);
1273 	}
1274 	if (!(reg & (I40E_GLNVM_ULD_CONF_CORE_DONE_MASK |
1275 		     I40E_GLNVM_ULD_CONF_GLOBAL_DONE_MASK))) {
1276 		hw_dbg(hw, "wait for FW Reset complete timedout\n");
1277 		hw_dbg(hw, "I40E_GLNVM_ULD = 0x%x\n", reg);
1278 		return I40E_ERR_RESET_FAILED;
1279 	}
1280 
1281 	/* If there was a Global Reset in progress when we got here,
1282 	 * we don't need to do the PF Reset
1283 	 */
1284 	if (!cnt) {
1285 		if (hw->revision_id == 0)
1286 			cnt = I40E_PF_RESET_WAIT_COUNT_A0;
1287 		else
1288 			cnt = I40E_PF_RESET_WAIT_COUNT;
1289 		reg = rd32(hw, I40E_PFGEN_CTRL);
1290 		wr32(hw, I40E_PFGEN_CTRL,
1291 		     (reg | I40E_PFGEN_CTRL_PFSWR_MASK));
1292 		for (; cnt; cnt--) {
1293 			reg = rd32(hw, I40E_PFGEN_CTRL);
1294 			if (!(reg & I40E_PFGEN_CTRL_PFSWR_MASK))
1295 				break;
1296 			usleep_range(1000, 2000);
1297 		}
1298 		if (reg & I40E_PFGEN_CTRL_PFSWR_MASK) {
1299 			hw_dbg(hw, "PF reset polling failed to complete.\n");
1300 			return I40E_ERR_RESET_FAILED;
1301 		}
1302 	}
1303 
1304 	i40e_clear_pxe_mode(hw);
1305 
1306 	return 0;
1307 }
1308 
1309 /**
1310  * i40e_clear_hw - clear out any left over hw state
1311  * @hw: pointer to the hw struct
1312  *
1313  * Clear queues and interrupts, typically called at init time,
1314  * but after the capabilities have been found so we know how many
1315  * queues and msix vectors have been allocated.
1316  **/
1317 void i40e_clear_hw(struct i40e_hw *hw)
1318 {
1319 	u32 num_queues, base_queue;
1320 	u32 num_pf_int;
1321 	u32 num_vf_int;
1322 	u32 num_vfs;
1323 	u32 i, j;
1324 	u32 val;
1325 	u32 eol = 0x7ff;
1326 
1327 	/* get number of interrupts, queues, and VFs */
1328 	val = rd32(hw, I40E_GLPCI_CNF2);
1329 	num_pf_int = (val & I40E_GLPCI_CNF2_MSI_X_PF_N_MASK) >>
1330 		     I40E_GLPCI_CNF2_MSI_X_PF_N_SHIFT;
1331 	num_vf_int = (val & I40E_GLPCI_CNF2_MSI_X_VF_N_MASK) >>
1332 		     I40E_GLPCI_CNF2_MSI_X_VF_N_SHIFT;
1333 
1334 	val = rd32(hw, I40E_PFLAN_QALLOC);
1335 	base_queue = (val & I40E_PFLAN_QALLOC_FIRSTQ_MASK) >>
1336 		     I40E_PFLAN_QALLOC_FIRSTQ_SHIFT;
1337 	j = (val & I40E_PFLAN_QALLOC_LASTQ_MASK) >>
1338 	    I40E_PFLAN_QALLOC_LASTQ_SHIFT;
1339 	if (val & I40E_PFLAN_QALLOC_VALID_MASK)
1340 		num_queues = (j - base_queue) + 1;
1341 	else
1342 		num_queues = 0;
1343 
1344 	val = rd32(hw, I40E_PF_VT_PFALLOC);
1345 	i = (val & I40E_PF_VT_PFALLOC_FIRSTVF_MASK) >>
1346 	    I40E_PF_VT_PFALLOC_FIRSTVF_SHIFT;
1347 	j = (val & I40E_PF_VT_PFALLOC_LASTVF_MASK) >>
1348 	    I40E_PF_VT_PFALLOC_LASTVF_SHIFT;
1349 	if (val & I40E_PF_VT_PFALLOC_VALID_MASK)
1350 		num_vfs = (j - i) + 1;
1351 	else
1352 		num_vfs = 0;
1353 
1354 	/* stop all the interrupts */
1355 	wr32(hw, I40E_PFINT_ICR0_ENA, 0);
1356 	val = 0x3 << I40E_PFINT_DYN_CTLN_ITR_INDX_SHIFT;
1357 	for (i = 0; i < num_pf_int - 2; i++)
1358 		wr32(hw, I40E_PFINT_DYN_CTLN(i), val);
1359 
1360 	/* Set the FIRSTQ_INDX field to 0x7FF in PFINT_LNKLSTx */
1361 	val = eol << I40E_PFINT_LNKLST0_FIRSTQ_INDX_SHIFT;
1362 	wr32(hw, I40E_PFINT_LNKLST0, val);
1363 	for (i = 0; i < num_pf_int - 2; i++)
1364 		wr32(hw, I40E_PFINT_LNKLSTN(i), val);
1365 	val = eol << I40E_VPINT_LNKLST0_FIRSTQ_INDX_SHIFT;
1366 	for (i = 0; i < num_vfs; i++)
1367 		wr32(hw, I40E_VPINT_LNKLST0(i), val);
1368 	for (i = 0; i < num_vf_int - 2; i++)
1369 		wr32(hw, I40E_VPINT_LNKLSTN(i), val);
1370 
1371 	/* warn the HW of the coming Tx disables */
1372 	for (i = 0; i < num_queues; i++) {
1373 		u32 abs_queue_idx = base_queue + i;
1374 		u32 reg_block = 0;
1375 
1376 		if (abs_queue_idx >= 128) {
1377 			reg_block = abs_queue_idx / 128;
1378 			abs_queue_idx %= 128;
1379 		}
1380 
1381 		val = rd32(hw, I40E_GLLAN_TXPRE_QDIS(reg_block));
1382 		val &= ~I40E_GLLAN_TXPRE_QDIS_QINDX_MASK;
1383 		val |= (abs_queue_idx << I40E_GLLAN_TXPRE_QDIS_QINDX_SHIFT);
1384 		val |= I40E_GLLAN_TXPRE_QDIS_SET_QDIS_MASK;
1385 
1386 		wr32(hw, I40E_GLLAN_TXPRE_QDIS(reg_block), val);
1387 	}
1388 	udelay(400);
1389 
1390 	/* stop all the queues */
1391 	for (i = 0; i < num_queues; i++) {
1392 		wr32(hw, I40E_QINT_TQCTL(i), 0);
1393 		wr32(hw, I40E_QTX_ENA(i), 0);
1394 		wr32(hw, I40E_QINT_RQCTL(i), 0);
1395 		wr32(hw, I40E_QRX_ENA(i), 0);
1396 	}
1397 
1398 	/* short wait for all queue disables to settle */
1399 	udelay(50);
1400 }
1401 
1402 /**
1403  * i40e_clear_pxe_mode - clear pxe operations mode
1404  * @hw: pointer to the hw struct
1405  *
1406  * Make sure all PXE mode settings are cleared, including things
1407  * like descriptor fetch/write-back mode.
1408  **/
1409 void i40e_clear_pxe_mode(struct i40e_hw *hw)
1410 {
1411 	u32 reg;
1412 
1413 	if (i40e_check_asq_alive(hw))
1414 		i40e_aq_clear_pxe_mode(hw, NULL);
1415 
1416 	/* Clear single descriptor fetch/write-back mode */
1417 	reg = rd32(hw, I40E_GLLAN_RCTL_0);
1418 
1419 	if (hw->revision_id == 0) {
1420 		/* As a work around clear PXE_MODE instead of setting it */
1421 		wr32(hw, I40E_GLLAN_RCTL_0, (reg & (~I40E_GLLAN_RCTL_0_PXE_MODE_MASK)));
1422 	} else {
1423 		wr32(hw, I40E_GLLAN_RCTL_0, (reg | I40E_GLLAN_RCTL_0_PXE_MODE_MASK));
1424 	}
1425 }
1426 
1427 /**
1428  * i40e_led_is_mine - helper to find matching led
1429  * @hw: pointer to the hw struct
1430  * @idx: index into GPIO registers
1431  *
1432  * returns: 0 if no match, otherwise the value of the GPIO_CTL register
1433  */
1434 static u32 i40e_led_is_mine(struct i40e_hw *hw, int idx)
1435 {
1436 	u32 gpio_val = 0;
1437 	u32 port;
1438 
1439 	if (!hw->func_caps.led[idx])
1440 		return 0;
1441 
1442 	gpio_val = rd32(hw, I40E_GLGEN_GPIO_CTL(idx));
1443 	port = (gpio_val & I40E_GLGEN_GPIO_CTL_PRT_NUM_MASK) >>
1444 		I40E_GLGEN_GPIO_CTL_PRT_NUM_SHIFT;
1445 
1446 	/* if PRT_NUM_NA is 1 then this LED is not port specific, OR
1447 	 * if it is not our port then ignore
1448 	 */
1449 	if ((gpio_val & I40E_GLGEN_GPIO_CTL_PRT_NUM_NA_MASK) ||
1450 	    (port != hw->port))
1451 		return 0;
1452 
1453 	return gpio_val;
1454 }
1455 
1456 #define I40E_COMBINED_ACTIVITY 0xA
1457 #define I40E_FILTER_ACTIVITY 0xE
1458 #define I40E_LINK_ACTIVITY 0xC
1459 #define I40E_MAC_ACTIVITY 0xD
1460 #define I40E_LED0 22
1461 
1462 /**
1463  * i40e_led_get - return current on/off mode
1464  * @hw: pointer to the hw struct
1465  *
1466  * The value returned is the 'mode' field as defined in the
1467  * GPIO register definitions: 0x0 = off, 0xf = on, and other
1468  * values are variations of possible behaviors relating to
1469  * blink, link, and wire.
1470  **/
1471 u32 i40e_led_get(struct i40e_hw *hw)
1472 {
1473 	u32 current_mode = 0;
1474 	u32 mode = 0;
1475 	int i;
1476 
1477 	/* as per the documentation GPIO 22-29 are the LED
1478 	 * GPIO pins named LED0..LED7
1479 	 */
1480 	for (i = I40E_LED0; i <= I40E_GLGEN_GPIO_CTL_MAX_INDEX; i++) {
1481 		u32 gpio_val = i40e_led_is_mine(hw, i);
1482 
1483 		if (!gpio_val)
1484 			continue;
1485 
1486 		/* ignore gpio LED src mode entries related to the activity
1487 		 * LEDs
1488 		 */
1489 		current_mode = ((gpio_val & I40E_GLGEN_GPIO_CTL_LED_MODE_MASK)
1490 				>> I40E_GLGEN_GPIO_CTL_LED_MODE_SHIFT);
1491 		switch (current_mode) {
1492 		case I40E_COMBINED_ACTIVITY:
1493 		case I40E_FILTER_ACTIVITY:
1494 		case I40E_MAC_ACTIVITY:
1495 			continue;
1496 		default:
1497 			break;
1498 		}
1499 
1500 		mode = (gpio_val & I40E_GLGEN_GPIO_CTL_LED_MODE_MASK) >>
1501 			I40E_GLGEN_GPIO_CTL_LED_MODE_SHIFT;
1502 		break;
1503 	}
1504 
1505 	return mode;
1506 }
1507 
1508 /**
1509  * i40e_led_set - set new on/off mode
1510  * @hw: pointer to the hw struct
1511  * @mode: 0=off, 0xf=on (else see manual for mode details)
1512  * @blink: true if the LED should blink when on, false if steady
1513  *
1514  * if this function is used to turn on the blink it should
1515  * be used to disable the blink when restoring the original state.
1516  **/
1517 void i40e_led_set(struct i40e_hw *hw, u32 mode, bool blink)
1518 {
1519 	u32 current_mode = 0;
1520 	int i;
1521 
1522 	if (mode & 0xfffffff0)
1523 		hw_dbg(hw, "invalid mode passed in %X\n", mode);
1524 
1525 	/* as per the documentation GPIO 22-29 are the LED
1526 	 * GPIO pins named LED0..LED7
1527 	 */
1528 	for (i = I40E_LED0; i <= I40E_GLGEN_GPIO_CTL_MAX_INDEX; i++) {
1529 		u32 gpio_val = i40e_led_is_mine(hw, i);
1530 
1531 		if (!gpio_val)
1532 			continue;
1533 
1534 		/* ignore gpio LED src mode entries related to the activity
1535 		 * LEDs
1536 		 */
1537 		current_mode = ((gpio_val & I40E_GLGEN_GPIO_CTL_LED_MODE_MASK)
1538 				>> I40E_GLGEN_GPIO_CTL_LED_MODE_SHIFT);
1539 		switch (current_mode) {
1540 		case I40E_COMBINED_ACTIVITY:
1541 		case I40E_FILTER_ACTIVITY:
1542 		case I40E_MAC_ACTIVITY:
1543 			continue;
1544 		default:
1545 			break;
1546 		}
1547 
1548 		gpio_val &= ~I40E_GLGEN_GPIO_CTL_LED_MODE_MASK;
1549 		/* this & is a bit of paranoia, but serves as a range check */
1550 		gpio_val |= ((mode << I40E_GLGEN_GPIO_CTL_LED_MODE_SHIFT) &
1551 			     I40E_GLGEN_GPIO_CTL_LED_MODE_MASK);
1552 
1553 		if (mode == I40E_LINK_ACTIVITY)
1554 			blink = false;
1555 
1556 		if (blink)
1557 			gpio_val |= BIT(I40E_GLGEN_GPIO_CTL_LED_BLINK_SHIFT);
1558 		else
1559 			gpio_val &= ~BIT(I40E_GLGEN_GPIO_CTL_LED_BLINK_SHIFT);
1560 
1561 		wr32(hw, I40E_GLGEN_GPIO_CTL(i), gpio_val);
1562 		break;
1563 	}
1564 }
1565 
1566 /* Admin command wrappers */
1567 
1568 /**
1569  * i40e_aq_get_phy_capabilities
1570  * @hw: pointer to the hw struct
1571  * @abilities: structure for PHY capabilities to be filled
1572  * @qualified_modules: report Qualified Modules
1573  * @report_init: report init capabilities (active are default)
1574  * @cmd_details: pointer to command details structure or NULL
1575  *
1576  * Returns the various PHY abilities supported on the Port.
1577  **/
1578 i40e_status i40e_aq_get_phy_capabilities(struct i40e_hw *hw,
1579 			bool qualified_modules, bool report_init,
1580 			struct i40e_aq_get_phy_abilities_resp *abilities,
1581 			struct i40e_asq_cmd_details *cmd_details)
1582 {
1583 	struct i40e_aq_desc desc;
1584 	i40e_status status;
1585 	u16 abilities_size = sizeof(struct i40e_aq_get_phy_abilities_resp);
1586 
1587 	if (!abilities)
1588 		return I40E_ERR_PARAM;
1589 
1590 	i40e_fill_default_direct_cmd_desc(&desc,
1591 					  i40e_aqc_opc_get_phy_abilities);
1592 
1593 	desc.flags |= cpu_to_le16((u16)I40E_AQ_FLAG_BUF);
1594 	if (abilities_size > I40E_AQ_LARGE_BUF)
1595 		desc.flags |= cpu_to_le16((u16)I40E_AQ_FLAG_LB);
1596 
1597 	if (qualified_modules)
1598 		desc.params.external.param0 |=
1599 			cpu_to_le32(I40E_AQ_PHY_REPORT_QUALIFIED_MODULES);
1600 
1601 	if (report_init)
1602 		desc.params.external.param0 |=
1603 			cpu_to_le32(I40E_AQ_PHY_REPORT_INITIAL_VALUES);
1604 
1605 	status = i40e_asq_send_command(hw, &desc, abilities, abilities_size,
1606 				       cmd_details);
1607 
1608 	if (hw->aq.asq_last_status == I40E_AQ_RC_EIO)
1609 		status = I40E_ERR_UNKNOWN_PHY;
1610 
1611 	if (report_init)
1612 		hw->phy.phy_types = le32_to_cpu(abilities->phy_type);
1613 
1614 	return status;
1615 }
1616 
1617 /**
1618  * i40e_aq_set_phy_config
1619  * @hw: pointer to the hw struct
1620  * @config: structure with PHY configuration to be set
1621  * @cmd_details: pointer to command details structure or NULL
1622  *
1623  * Set the various PHY configuration parameters
1624  * supported on the Port.One or more of the Set PHY config parameters may be
1625  * ignored in an MFP mode as the PF may not have the privilege to set some
1626  * of the PHY Config parameters. This status will be indicated by the
1627  * command response.
1628  **/
1629 enum i40e_status_code i40e_aq_set_phy_config(struct i40e_hw *hw,
1630 				struct i40e_aq_set_phy_config *config,
1631 				struct i40e_asq_cmd_details *cmd_details)
1632 {
1633 	struct i40e_aq_desc desc;
1634 	struct i40e_aq_set_phy_config *cmd =
1635 			(struct i40e_aq_set_phy_config *)&desc.params.raw;
1636 	enum i40e_status_code status;
1637 
1638 	if (!config)
1639 		return I40E_ERR_PARAM;
1640 
1641 	i40e_fill_default_direct_cmd_desc(&desc,
1642 					  i40e_aqc_opc_set_phy_config);
1643 
1644 	*cmd = *config;
1645 
1646 	status = i40e_asq_send_command(hw, &desc, NULL, 0, cmd_details);
1647 
1648 	return status;
1649 }
1650 
1651 /**
1652  * i40e_set_fc
1653  * @hw: pointer to the hw struct
1654  *
1655  * Set the requested flow control mode using set_phy_config.
1656  **/
1657 enum i40e_status_code i40e_set_fc(struct i40e_hw *hw, u8 *aq_failures,
1658 				  bool atomic_restart)
1659 {
1660 	enum i40e_fc_mode fc_mode = hw->fc.requested_mode;
1661 	struct i40e_aq_get_phy_abilities_resp abilities;
1662 	struct i40e_aq_set_phy_config config;
1663 	enum i40e_status_code status;
1664 	u8 pause_mask = 0x0;
1665 
1666 	*aq_failures = 0x0;
1667 
1668 	switch (fc_mode) {
1669 	case I40E_FC_FULL:
1670 		pause_mask |= I40E_AQ_PHY_FLAG_PAUSE_TX;
1671 		pause_mask |= I40E_AQ_PHY_FLAG_PAUSE_RX;
1672 		break;
1673 	case I40E_FC_RX_PAUSE:
1674 		pause_mask |= I40E_AQ_PHY_FLAG_PAUSE_RX;
1675 		break;
1676 	case I40E_FC_TX_PAUSE:
1677 		pause_mask |= I40E_AQ_PHY_FLAG_PAUSE_TX;
1678 		break;
1679 	default:
1680 		break;
1681 	}
1682 
1683 	/* Get the current phy config */
1684 	status = i40e_aq_get_phy_capabilities(hw, false, false, &abilities,
1685 					      NULL);
1686 	if (status) {
1687 		*aq_failures |= I40E_SET_FC_AQ_FAIL_GET;
1688 		return status;
1689 	}
1690 
1691 	memset(&config, 0, sizeof(struct i40e_aq_set_phy_config));
1692 	/* clear the old pause settings */
1693 	config.abilities = abilities.abilities & ~(I40E_AQ_PHY_FLAG_PAUSE_TX) &
1694 			   ~(I40E_AQ_PHY_FLAG_PAUSE_RX);
1695 	/* set the new abilities */
1696 	config.abilities |= pause_mask;
1697 	/* If the abilities have changed, then set the new config */
1698 	if (config.abilities != abilities.abilities) {
1699 		/* Auto restart link so settings take effect */
1700 		if (atomic_restart)
1701 			config.abilities |= I40E_AQ_PHY_ENABLE_ATOMIC_LINK;
1702 		/* Copy over all the old settings */
1703 		config.phy_type = abilities.phy_type;
1704 		config.link_speed = abilities.link_speed;
1705 		config.eee_capability = abilities.eee_capability;
1706 		config.eeer = abilities.eeer_val;
1707 		config.low_power_ctrl = abilities.d3_lpan;
1708 		status = i40e_aq_set_phy_config(hw, &config, NULL);
1709 
1710 		if (status)
1711 			*aq_failures |= I40E_SET_FC_AQ_FAIL_SET;
1712 	}
1713 	/* Update the link info */
1714 	status = i40e_update_link_info(hw);
1715 	if (status) {
1716 		/* Wait a little bit (on 40G cards it sometimes takes a really
1717 		 * long time for link to come back from the atomic reset)
1718 		 * and try once more
1719 		 */
1720 		msleep(1000);
1721 		status = i40e_update_link_info(hw);
1722 	}
1723 	if (status)
1724 		*aq_failures |= I40E_SET_FC_AQ_FAIL_UPDATE;
1725 
1726 	return status;
1727 }
1728 
1729 /**
1730  * i40e_aq_clear_pxe_mode
1731  * @hw: pointer to the hw struct
1732  * @cmd_details: pointer to command details structure or NULL
1733  *
1734  * Tell the firmware that the driver is taking over from PXE
1735  **/
1736 i40e_status i40e_aq_clear_pxe_mode(struct i40e_hw *hw,
1737 				struct i40e_asq_cmd_details *cmd_details)
1738 {
1739 	i40e_status status;
1740 	struct i40e_aq_desc desc;
1741 	struct i40e_aqc_clear_pxe *cmd =
1742 		(struct i40e_aqc_clear_pxe *)&desc.params.raw;
1743 
1744 	i40e_fill_default_direct_cmd_desc(&desc,
1745 					  i40e_aqc_opc_clear_pxe_mode);
1746 
1747 	cmd->rx_cnt = 0x2;
1748 
1749 	status = i40e_asq_send_command(hw, &desc, NULL, 0, cmd_details);
1750 
1751 	wr32(hw, I40E_GLLAN_RCTL_0, 0x1);
1752 
1753 	return status;
1754 }
1755 
1756 /**
1757  * i40e_aq_set_link_restart_an
1758  * @hw: pointer to the hw struct
1759  * @enable_link: if true: enable link, if false: disable link
1760  * @cmd_details: pointer to command details structure or NULL
1761  *
1762  * Sets up the link and restarts the Auto-Negotiation over the link.
1763  **/
1764 i40e_status i40e_aq_set_link_restart_an(struct i40e_hw *hw,
1765 					bool enable_link,
1766 					struct i40e_asq_cmd_details *cmd_details)
1767 {
1768 	struct i40e_aq_desc desc;
1769 	struct i40e_aqc_set_link_restart_an *cmd =
1770 		(struct i40e_aqc_set_link_restart_an *)&desc.params.raw;
1771 	i40e_status status;
1772 
1773 	i40e_fill_default_direct_cmd_desc(&desc,
1774 					  i40e_aqc_opc_set_link_restart_an);
1775 
1776 	cmd->command = I40E_AQ_PHY_RESTART_AN;
1777 	if (enable_link)
1778 		cmd->command |= I40E_AQ_PHY_LINK_ENABLE;
1779 	else
1780 		cmd->command &= ~I40E_AQ_PHY_LINK_ENABLE;
1781 
1782 	status = i40e_asq_send_command(hw, &desc, NULL, 0, cmd_details);
1783 
1784 	return status;
1785 }
1786 
1787 /**
1788  * i40e_aq_get_link_info
1789  * @hw: pointer to the hw struct
1790  * @enable_lse: enable/disable LinkStatusEvent reporting
1791  * @link: pointer to link status structure - optional
1792  * @cmd_details: pointer to command details structure or NULL
1793  *
1794  * Returns the link status of the adapter.
1795  **/
1796 i40e_status i40e_aq_get_link_info(struct i40e_hw *hw,
1797 				bool enable_lse, struct i40e_link_status *link,
1798 				struct i40e_asq_cmd_details *cmd_details)
1799 {
1800 	struct i40e_aq_desc desc;
1801 	struct i40e_aqc_get_link_status *resp =
1802 		(struct i40e_aqc_get_link_status *)&desc.params.raw;
1803 	struct i40e_link_status *hw_link_info = &hw->phy.link_info;
1804 	i40e_status status;
1805 	bool tx_pause, rx_pause;
1806 	u16 command_flags;
1807 
1808 	i40e_fill_default_direct_cmd_desc(&desc, i40e_aqc_opc_get_link_status);
1809 
1810 	if (enable_lse)
1811 		command_flags = I40E_AQ_LSE_ENABLE;
1812 	else
1813 		command_flags = I40E_AQ_LSE_DISABLE;
1814 	resp->command_flags = cpu_to_le16(command_flags);
1815 
1816 	status = i40e_asq_send_command(hw, &desc, NULL, 0, cmd_details);
1817 
1818 	if (status)
1819 		goto aq_get_link_info_exit;
1820 
1821 	/* save off old link status information */
1822 	hw->phy.link_info_old = *hw_link_info;
1823 
1824 	/* update link status */
1825 	hw_link_info->phy_type = (enum i40e_aq_phy_type)resp->phy_type;
1826 	hw->phy.media_type = i40e_get_media_type(hw);
1827 	hw_link_info->link_speed = (enum i40e_aq_link_speed)resp->link_speed;
1828 	hw_link_info->link_info = resp->link_info;
1829 	hw_link_info->an_info = resp->an_info;
1830 	hw_link_info->ext_info = resp->ext_info;
1831 	hw_link_info->loopback = resp->loopback;
1832 	hw_link_info->max_frame_size = le16_to_cpu(resp->max_frame_size);
1833 	hw_link_info->pacing = resp->config & I40E_AQ_CONFIG_PACING_MASK;
1834 
1835 	/* update fc info */
1836 	tx_pause = !!(resp->an_info & I40E_AQ_LINK_PAUSE_TX);
1837 	rx_pause = !!(resp->an_info & I40E_AQ_LINK_PAUSE_RX);
1838 	if (tx_pause & rx_pause)
1839 		hw->fc.current_mode = I40E_FC_FULL;
1840 	else if (tx_pause)
1841 		hw->fc.current_mode = I40E_FC_TX_PAUSE;
1842 	else if (rx_pause)
1843 		hw->fc.current_mode = I40E_FC_RX_PAUSE;
1844 	else
1845 		hw->fc.current_mode = I40E_FC_NONE;
1846 
1847 	if (resp->config & I40E_AQ_CONFIG_CRC_ENA)
1848 		hw_link_info->crc_enable = true;
1849 	else
1850 		hw_link_info->crc_enable = false;
1851 
1852 	if (resp->command_flags & cpu_to_le16(I40E_AQ_LSE_ENABLE))
1853 		hw_link_info->lse_enable = true;
1854 	else
1855 		hw_link_info->lse_enable = false;
1856 
1857 	if ((hw->aq.fw_maj_ver < 4 || (hw->aq.fw_maj_ver == 4 &&
1858 	     hw->aq.fw_min_ver < 40)) && hw_link_info->phy_type == 0xE)
1859 		hw_link_info->phy_type = I40E_PHY_TYPE_10GBASE_SFPP_CU;
1860 
1861 	/* save link status information */
1862 	if (link)
1863 		*link = *hw_link_info;
1864 
1865 	/* flag cleared so helper functions don't call AQ again */
1866 	hw->phy.get_link_info = false;
1867 
1868 aq_get_link_info_exit:
1869 	return status;
1870 }
1871 
1872 /**
1873  * i40e_aq_set_phy_int_mask
1874  * @hw: pointer to the hw struct
1875  * @mask: interrupt mask to be set
1876  * @cmd_details: pointer to command details structure or NULL
1877  *
1878  * Set link interrupt mask.
1879  **/
1880 i40e_status i40e_aq_set_phy_int_mask(struct i40e_hw *hw,
1881 				     u16 mask,
1882 				     struct i40e_asq_cmd_details *cmd_details)
1883 {
1884 	struct i40e_aq_desc desc;
1885 	struct i40e_aqc_set_phy_int_mask *cmd =
1886 		(struct i40e_aqc_set_phy_int_mask *)&desc.params.raw;
1887 	i40e_status status;
1888 
1889 	i40e_fill_default_direct_cmd_desc(&desc,
1890 					  i40e_aqc_opc_set_phy_int_mask);
1891 
1892 	cmd->event_mask = cpu_to_le16(mask);
1893 
1894 	status = i40e_asq_send_command(hw, &desc, NULL, 0, cmd_details);
1895 
1896 	return status;
1897 }
1898 
1899 /**
1900  * i40e_aq_set_phy_debug
1901  * @hw: pointer to the hw struct
1902  * @cmd_flags: debug command flags
1903  * @cmd_details: pointer to command details structure or NULL
1904  *
1905  * Reset the external PHY.
1906  **/
1907 i40e_status i40e_aq_set_phy_debug(struct i40e_hw *hw, u8 cmd_flags,
1908 				  struct i40e_asq_cmd_details *cmd_details)
1909 {
1910 	struct i40e_aq_desc desc;
1911 	struct i40e_aqc_set_phy_debug *cmd =
1912 		(struct i40e_aqc_set_phy_debug *)&desc.params.raw;
1913 	i40e_status status;
1914 
1915 	i40e_fill_default_direct_cmd_desc(&desc,
1916 					  i40e_aqc_opc_set_phy_debug);
1917 
1918 	cmd->command_flags = cmd_flags;
1919 
1920 	status = i40e_asq_send_command(hw, &desc, NULL, 0, cmd_details);
1921 
1922 	return status;
1923 }
1924 
1925 /**
1926  * i40e_aq_add_vsi
1927  * @hw: pointer to the hw struct
1928  * @vsi_ctx: pointer to a vsi context struct
1929  * @cmd_details: pointer to command details structure or NULL
1930  *
1931  * Add a VSI context to the hardware.
1932 **/
1933 i40e_status i40e_aq_add_vsi(struct i40e_hw *hw,
1934 				struct i40e_vsi_context *vsi_ctx,
1935 				struct i40e_asq_cmd_details *cmd_details)
1936 {
1937 	struct i40e_aq_desc desc;
1938 	struct i40e_aqc_add_get_update_vsi *cmd =
1939 		(struct i40e_aqc_add_get_update_vsi *)&desc.params.raw;
1940 	struct i40e_aqc_add_get_update_vsi_completion *resp =
1941 		(struct i40e_aqc_add_get_update_vsi_completion *)
1942 		&desc.params.raw;
1943 	i40e_status status;
1944 
1945 	i40e_fill_default_direct_cmd_desc(&desc,
1946 					  i40e_aqc_opc_add_vsi);
1947 
1948 	cmd->uplink_seid = cpu_to_le16(vsi_ctx->uplink_seid);
1949 	cmd->connection_type = vsi_ctx->connection_type;
1950 	cmd->vf_id = vsi_ctx->vf_num;
1951 	cmd->vsi_flags = cpu_to_le16(vsi_ctx->flags);
1952 
1953 	desc.flags |= cpu_to_le16((u16)(I40E_AQ_FLAG_BUF | I40E_AQ_FLAG_RD));
1954 
1955 	status = i40e_asq_send_command(hw, &desc, &vsi_ctx->info,
1956 				    sizeof(vsi_ctx->info), cmd_details);
1957 
1958 	if (status)
1959 		goto aq_add_vsi_exit;
1960 
1961 	vsi_ctx->seid = le16_to_cpu(resp->seid);
1962 	vsi_ctx->vsi_number = le16_to_cpu(resp->vsi_number);
1963 	vsi_ctx->vsis_allocated = le16_to_cpu(resp->vsi_used);
1964 	vsi_ctx->vsis_unallocated = le16_to_cpu(resp->vsi_free);
1965 
1966 aq_add_vsi_exit:
1967 	return status;
1968 }
1969 
1970 /**
1971  * i40e_aq_set_default_vsi
1972  * @hw: pointer to the hw struct
1973  * @seid: vsi number
1974  * @cmd_details: pointer to command details structure or NULL
1975  **/
1976 i40e_status i40e_aq_set_default_vsi(struct i40e_hw *hw,
1977 				    u16 seid,
1978 				    struct i40e_asq_cmd_details *cmd_details)
1979 {
1980 	struct i40e_aq_desc desc;
1981 	struct i40e_aqc_set_vsi_promiscuous_modes *cmd =
1982 		(struct i40e_aqc_set_vsi_promiscuous_modes *)
1983 		&desc.params.raw;
1984 	i40e_status status;
1985 
1986 	i40e_fill_default_direct_cmd_desc(&desc,
1987 					  i40e_aqc_opc_set_vsi_promiscuous_modes);
1988 
1989 	cmd->promiscuous_flags = cpu_to_le16(I40E_AQC_SET_VSI_DEFAULT);
1990 	cmd->valid_flags = cpu_to_le16(I40E_AQC_SET_VSI_DEFAULT);
1991 	cmd->seid = cpu_to_le16(seid);
1992 
1993 	status = i40e_asq_send_command(hw, &desc, NULL, 0, cmd_details);
1994 
1995 	return status;
1996 }
1997 
1998 /**
1999  * i40e_aq_clear_default_vsi
2000  * @hw: pointer to the hw struct
2001  * @seid: vsi number
2002  * @cmd_details: pointer to command details structure or NULL
2003  **/
2004 i40e_status i40e_aq_clear_default_vsi(struct i40e_hw *hw,
2005 				      u16 seid,
2006 				      struct i40e_asq_cmd_details *cmd_details)
2007 {
2008 	struct i40e_aq_desc desc;
2009 	struct i40e_aqc_set_vsi_promiscuous_modes *cmd =
2010 		(struct i40e_aqc_set_vsi_promiscuous_modes *)
2011 		&desc.params.raw;
2012 	i40e_status status;
2013 
2014 	i40e_fill_default_direct_cmd_desc(&desc,
2015 					  i40e_aqc_opc_set_vsi_promiscuous_modes);
2016 
2017 	cmd->promiscuous_flags = cpu_to_le16(0);
2018 	cmd->valid_flags = cpu_to_le16(I40E_AQC_SET_VSI_DEFAULT);
2019 	cmd->seid = cpu_to_le16(seid);
2020 
2021 	status = i40e_asq_send_command(hw, &desc, NULL, 0, cmd_details);
2022 
2023 	return status;
2024 }
2025 
2026 /**
2027  * i40e_aq_set_vsi_unicast_promiscuous
2028  * @hw: pointer to the hw struct
2029  * @seid: vsi number
2030  * @set: set unicast promiscuous enable/disable
2031  * @cmd_details: pointer to command details structure or NULL
2032  * @rx_only_promisc: flag to decide if egress traffic gets mirrored in promisc
2033  **/
2034 i40e_status i40e_aq_set_vsi_unicast_promiscuous(struct i40e_hw *hw,
2035 				u16 seid, bool set,
2036 				struct i40e_asq_cmd_details *cmd_details,
2037 				bool rx_only_promisc)
2038 {
2039 	struct i40e_aq_desc desc;
2040 	struct i40e_aqc_set_vsi_promiscuous_modes *cmd =
2041 		(struct i40e_aqc_set_vsi_promiscuous_modes *)&desc.params.raw;
2042 	i40e_status status;
2043 	u16 flags = 0;
2044 
2045 	i40e_fill_default_direct_cmd_desc(&desc,
2046 					i40e_aqc_opc_set_vsi_promiscuous_modes);
2047 
2048 	if (set) {
2049 		flags |= I40E_AQC_SET_VSI_PROMISC_UNICAST;
2050 		if (rx_only_promisc &&
2051 		    (((hw->aq.api_maj_ver == 1) && (hw->aq.api_min_ver >= 5)) ||
2052 		     (hw->aq.api_maj_ver > 1)))
2053 			flags |= I40E_AQC_SET_VSI_PROMISC_TX;
2054 	}
2055 
2056 	cmd->promiscuous_flags = cpu_to_le16(flags);
2057 
2058 	cmd->valid_flags = cpu_to_le16(I40E_AQC_SET_VSI_PROMISC_UNICAST);
2059 	if (((hw->aq.api_maj_ver >= 1) && (hw->aq.api_min_ver >= 5)) ||
2060 	    (hw->aq.api_maj_ver > 1))
2061 		cmd->valid_flags |= cpu_to_le16(I40E_AQC_SET_VSI_PROMISC_TX);
2062 
2063 	cmd->seid = cpu_to_le16(seid);
2064 	status = i40e_asq_send_command(hw, &desc, NULL, 0, cmd_details);
2065 
2066 	return status;
2067 }
2068 
2069 /**
2070  * i40e_aq_set_vsi_multicast_promiscuous
2071  * @hw: pointer to the hw struct
2072  * @seid: vsi number
2073  * @set: set multicast promiscuous enable/disable
2074  * @cmd_details: pointer to command details structure or NULL
2075  **/
2076 i40e_status i40e_aq_set_vsi_multicast_promiscuous(struct i40e_hw *hw,
2077 				u16 seid, bool set, struct i40e_asq_cmd_details *cmd_details)
2078 {
2079 	struct i40e_aq_desc desc;
2080 	struct i40e_aqc_set_vsi_promiscuous_modes *cmd =
2081 		(struct i40e_aqc_set_vsi_promiscuous_modes *)&desc.params.raw;
2082 	i40e_status status;
2083 	u16 flags = 0;
2084 
2085 	i40e_fill_default_direct_cmd_desc(&desc,
2086 					i40e_aqc_opc_set_vsi_promiscuous_modes);
2087 
2088 	if (set)
2089 		flags |= I40E_AQC_SET_VSI_PROMISC_MULTICAST;
2090 
2091 	cmd->promiscuous_flags = cpu_to_le16(flags);
2092 
2093 	cmd->valid_flags = cpu_to_le16(I40E_AQC_SET_VSI_PROMISC_MULTICAST);
2094 
2095 	cmd->seid = cpu_to_le16(seid);
2096 	status = i40e_asq_send_command(hw, &desc, NULL, 0, cmd_details);
2097 
2098 	return status;
2099 }
2100 
2101 /**
2102  * i40e_aq_set_vsi_mc_promisc_on_vlan
2103  * @hw: pointer to the hw struct
2104  * @seid: vsi number
2105  * @enable: set MAC L2 layer unicast promiscuous enable/disable for a given VLAN
2106  * @vid: The VLAN tag filter - capture any multicast packet with this VLAN tag
2107  * @cmd_details: pointer to command details structure or NULL
2108  **/
2109 enum i40e_status_code i40e_aq_set_vsi_mc_promisc_on_vlan(struct i40e_hw *hw,
2110 							 u16 seid, bool enable,
2111 							 u16 vid,
2112 				struct i40e_asq_cmd_details *cmd_details)
2113 {
2114 	struct i40e_aq_desc desc;
2115 	struct i40e_aqc_set_vsi_promiscuous_modes *cmd =
2116 		(struct i40e_aqc_set_vsi_promiscuous_modes *)&desc.params.raw;
2117 	enum i40e_status_code status;
2118 	u16 flags = 0;
2119 
2120 	i40e_fill_default_direct_cmd_desc(&desc,
2121 					  i40e_aqc_opc_set_vsi_promiscuous_modes);
2122 
2123 	if (enable)
2124 		flags |= I40E_AQC_SET_VSI_PROMISC_MULTICAST;
2125 
2126 	cmd->promiscuous_flags = cpu_to_le16(flags);
2127 	cmd->valid_flags = cpu_to_le16(I40E_AQC_SET_VSI_PROMISC_MULTICAST);
2128 	cmd->seid = cpu_to_le16(seid);
2129 	cmd->vlan_tag = cpu_to_le16(vid | I40E_AQC_SET_VSI_VLAN_VALID);
2130 
2131 	status = i40e_asq_send_command(hw, &desc, NULL, 0, cmd_details);
2132 
2133 	return status;
2134 }
2135 
2136 /**
2137  * i40e_aq_set_vsi_uc_promisc_on_vlan
2138  * @hw: pointer to the hw struct
2139  * @seid: vsi number
2140  * @enable: set MAC L2 layer unicast promiscuous enable/disable for a given VLAN
2141  * @vid: The VLAN tag filter - capture any unicast packet with this VLAN tag
2142  * @cmd_details: pointer to command details structure or NULL
2143  **/
2144 enum i40e_status_code i40e_aq_set_vsi_uc_promisc_on_vlan(struct i40e_hw *hw,
2145 							 u16 seid, bool enable,
2146 							 u16 vid,
2147 				struct i40e_asq_cmd_details *cmd_details)
2148 {
2149 	struct i40e_aq_desc desc;
2150 	struct i40e_aqc_set_vsi_promiscuous_modes *cmd =
2151 		(struct i40e_aqc_set_vsi_promiscuous_modes *)&desc.params.raw;
2152 	enum i40e_status_code status;
2153 	u16 flags = 0;
2154 
2155 	i40e_fill_default_direct_cmd_desc(&desc,
2156 					  i40e_aqc_opc_set_vsi_promiscuous_modes);
2157 
2158 	if (enable)
2159 		flags |= I40E_AQC_SET_VSI_PROMISC_UNICAST;
2160 
2161 	cmd->promiscuous_flags = cpu_to_le16(flags);
2162 	cmd->valid_flags = cpu_to_le16(I40E_AQC_SET_VSI_PROMISC_UNICAST);
2163 	cmd->seid = cpu_to_le16(seid);
2164 	cmd->vlan_tag = cpu_to_le16(vid | I40E_AQC_SET_VSI_VLAN_VALID);
2165 
2166 	status = i40e_asq_send_command(hw, &desc, NULL, 0, cmd_details);
2167 
2168 	return status;
2169 }
2170 
2171 /**
2172  * i40e_aq_set_vsi_broadcast
2173  * @hw: pointer to the hw struct
2174  * @seid: vsi number
2175  * @set_filter: true to set filter, false to clear filter
2176  * @cmd_details: pointer to command details structure or NULL
2177  *
2178  * Set or clear the broadcast promiscuous flag (filter) for a given VSI.
2179  **/
2180 i40e_status i40e_aq_set_vsi_broadcast(struct i40e_hw *hw,
2181 				u16 seid, bool set_filter,
2182 				struct i40e_asq_cmd_details *cmd_details)
2183 {
2184 	struct i40e_aq_desc desc;
2185 	struct i40e_aqc_set_vsi_promiscuous_modes *cmd =
2186 		(struct i40e_aqc_set_vsi_promiscuous_modes *)&desc.params.raw;
2187 	i40e_status status;
2188 
2189 	i40e_fill_default_direct_cmd_desc(&desc,
2190 					i40e_aqc_opc_set_vsi_promiscuous_modes);
2191 
2192 	if (set_filter)
2193 		cmd->promiscuous_flags
2194 			    |= cpu_to_le16(I40E_AQC_SET_VSI_PROMISC_BROADCAST);
2195 	else
2196 		cmd->promiscuous_flags
2197 			    &= cpu_to_le16(~I40E_AQC_SET_VSI_PROMISC_BROADCAST);
2198 
2199 	cmd->valid_flags = cpu_to_le16(I40E_AQC_SET_VSI_PROMISC_BROADCAST);
2200 	cmd->seid = cpu_to_le16(seid);
2201 	status = i40e_asq_send_command(hw, &desc, NULL, 0, cmd_details);
2202 
2203 	return status;
2204 }
2205 
2206 /**
2207  * i40e_aq_set_vsi_vlan_promisc - control the VLAN promiscuous setting
2208  * @hw: pointer to the hw struct
2209  * @seid: vsi number
2210  * @enable: set MAC L2 layer unicast promiscuous enable/disable for a given VLAN
2211  * @cmd_details: pointer to command details structure or NULL
2212  **/
2213 i40e_status i40e_aq_set_vsi_vlan_promisc(struct i40e_hw *hw,
2214 				       u16 seid, bool enable,
2215 				       struct i40e_asq_cmd_details *cmd_details)
2216 {
2217 	struct i40e_aq_desc desc;
2218 	struct i40e_aqc_set_vsi_promiscuous_modes *cmd =
2219 		(struct i40e_aqc_set_vsi_promiscuous_modes *)&desc.params.raw;
2220 	i40e_status status;
2221 	u16 flags = 0;
2222 
2223 	i40e_fill_default_direct_cmd_desc(&desc,
2224 					i40e_aqc_opc_set_vsi_promiscuous_modes);
2225 	if (enable)
2226 		flags |= I40E_AQC_SET_VSI_PROMISC_VLAN;
2227 
2228 	cmd->promiscuous_flags = cpu_to_le16(flags);
2229 	cmd->valid_flags = cpu_to_le16(I40E_AQC_SET_VSI_PROMISC_VLAN);
2230 	cmd->seid = cpu_to_le16(seid);
2231 
2232 	status = i40e_asq_send_command(hw, &desc, NULL, 0, cmd_details);
2233 
2234 	return status;
2235 }
2236 
2237 /**
2238  * i40e_get_vsi_params - get VSI configuration info
2239  * @hw: pointer to the hw struct
2240  * @vsi_ctx: pointer to a vsi context struct
2241  * @cmd_details: pointer to command details structure or NULL
2242  **/
2243 i40e_status i40e_aq_get_vsi_params(struct i40e_hw *hw,
2244 				struct i40e_vsi_context *vsi_ctx,
2245 				struct i40e_asq_cmd_details *cmd_details)
2246 {
2247 	struct i40e_aq_desc desc;
2248 	struct i40e_aqc_add_get_update_vsi *cmd =
2249 		(struct i40e_aqc_add_get_update_vsi *)&desc.params.raw;
2250 	struct i40e_aqc_add_get_update_vsi_completion *resp =
2251 		(struct i40e_aqc_add_get_update_vsi_completion *)
2252 		&desc.params.raw;
2253 	i40e_status status;
2254 
2255 	i40e_fill_default_direct_cmd_desc(&desc,
2256 					  i40e_aqc_opc_get_vsi_parameters);
2257 
2258 	cmd->uplink_seid = cpu_to_le16(vsi_ctx->seid);
2259 
2260 	desc.flags |= cpu_to_le16((u16)I40E_AQ_FLAG_BUF);
2261 
2262 	status = i40e_asq_send_command(hw, &desc, &vsi_ctx->info,
2263 				    sizeof(vsi_ctx->info), NULL);
2264 
2265 	if (status)
2266 		goto aq_get_vsi_params_exit;
2267 
2268 	vsi_ctx->seid = le16_to_cpu(resp->seid);
2269 	vsi_ctx->vsi_number = le16_to_cpu(resp->vsi_number);
2270 	vsi_ctx->vsis_allocated = le16_to_cpu(resp->vsi_used);
2271 	vsi_ctx->vsis_unallocated = le16_to_cpu(resp->vsi_free);
2272 
2273 aq_get_vsi_params_exit:
2274 	return status;
2275 }
2276 
2277 /**
2278  * i40e_aq_update_vsi_params
2279  * @hw: pointer to the hw struct
2280  * @vsi_ctx: pointer to a vsi context struct
2281  * @cmd_details: pointer to command details structure or NULL
2282  *
2283  * Update a VSI context.
2284  **/
2285 i40e_status i40e_aq_update_vsi_params(struct i40e_hw *hw,
2286 				struct i40e_vsi_context *vsi_ctx,
2287 				struct i40e_asq_cmd_details *cmd_details)
2288 {
2289 	struct i40e_aq_desc desc;
2290 	struct i40e_aqc_add_get_update_vsi *cmd =
2291 		(struct i40e_aqc_add_get_update_vsi *)&desc.params.raw;
2292 	struct i40e_aqc_add_get_update_vsi_completion *resp =
2293 		(struct i40e_aqc_add_get_update_vsi_completion *)
2294 		&desc.params.raw;
2295 	i40e_status status;
2296 
2297 	i40e_fill_default_direct_cmd_desc(&desc,
2298 					  i40e_aqc_opc_update_vsi_parameters);
2299 	cmd->uplink_seid = cpu_to_le16(vsi_ctx->seid);
2300 
2301 	desc.flags |= cpu_to_le16((u16)(I40E_AQ_FLAG_BUF | I40E_AQ_FLAG_RD));
2302 
2303 	status = i40e_asq_send_command(hw, &desc, &vsi_ctx->info,
2304 				    sizeof(vsi_ctx->info), cmd_details);
2305 
2306 	vsi_ctx->vsis_allocated = le16_to_cpu(resp->vsi_used);
2307 	vsi_ctx->vsis_unallocated = le16_to_cpu(resp->vsi_free);
2308 
2309 	return status;
2310 }
2311 
2312 /**
2313  * i40e_aq_get_switch_config
2314  * @hw: pointer to the hardware structure
2315  * @buf: pointer to the result buffer
2316  * @buf_size: length of input buffer
2317  * @start_seid: seid to start for the report, 0 == beginning
2318  * @cmd_details: pointer to command details structure or NULL
2319  *
2320  * Fill the buf with switch configuration returned from AdminQ command
2321  **/
2322 i40e_status i40e_aq_get_switch_config(struct i40e_hw *hw,
2323 				struct i40e_aqc_get_switch_config_resp *buf,
2324 				u16 buf_size, u16 *start_seid,
2325 				struct i40e_asq_cmd_details *cmd_details)
2326 {
2327 	struct i40e_aq_desc desc;
2328 	struct i40e_aqc_switch_seid *scfg =
2329 		(struct i40e_aqc_switch_seid *)&desc.params.raw;
2330 	i40e_status status;
2331 
2332 	i40e_fill_default_direct_cmd_desc(&desc,
2333 					  i40e_aqc_opc_get_switch_config);
2334 	desc.flags |= cpu_to_le16((u16)I40E_AQ_FLAG_BUF);
2335 	if (buf_size > I40E_AQ_LARGE_BUF)
2336 		desc.flags |= cpu_to_le16((u16)I40E_AQ_FLAG_LB);
2337 	scfg->seid = cpu_to_le16(*start_seid);
2338 
2339 	status = i40e_asq_send_command(hw, &desc, buf, buf_size, cmd_details);
2340 	*start_seid = le16_to_cpu(scfg->seid);
2341 
2342 	return status;
2343 }
2344 
2345 /**
2346  * i40e_aq_set_switch_config
2347  * @hw: pointer to the hardware structure
2348  * @flags: bit flag values to set
2349  * @valid_flags: which bit flags to set
2350  * @cmd_details: pointer to command details structure or NULL
2351  *
2352  * Set switch configuration bits
2353  **/
2354 enum i40e_status_code i40e_aq_set_switch_config(struct i40e_hw *hw,
2355 						u16 flags,
2356 						u16 valid_flags,
2357 				struct i40e_asq_cmd_details *cmd_details)
2358 {
2359 	struct i40e_aq_desc desc;
2360 	struct i40e_aqc_set_switch_config *scfg =
2361 		(struct i40e_aqc_set_switch_config *)&desc.params.raw;
2362 	enum i40e_status_code status;
2363 
2364 	i40e_fill_default_direct_cmd_desc(&desc,
2365 					  i40e_aqc_opc_set_switch_config);
2366 	scfg->flags = cpu_to_le16(flags);
2367 	scfg->valid_flags = cpu_to_le16(valid_flags);
2368 
2369 	status = i40e_asq_send_command(hw, &desc, NULL, 0, cmd_details);
2370 
2371 	return status;
2372 }
2373 
2374 /**
2375  * i40e_aq_get_firmware_version
2376  * @hw: pointer to the hw struct
2377  * @fw_major_version: firmware major version
2378  * @fw_minor_version: firmware minor version
2379  * @fw_build: firmware build number
2380  * @api_major_version: major queue version
2381  * @api_minor_version: minor queue version
2382  * @cmd_details: pointer to command details structure or NULL
2383  *
2384  * Get the firmware version from the admin queue commands
2385  **/
2386 i40e_status i40e_aq_get_firmware_version(struct i40e_hw *hw,
2387 				u16 *fw_major_version, u16 *fw_minor_version,
2388 				u32 *fw_build,
2389 				u16 *api_major_version, u16 *api_minor_version,
2390 				struct i40e_asq_cmd_details *cmd_details)
2391 {
2392 	struct i40e_aq_desc desc;
2393 	struct i40e_aqc_get_version *resp =
2394 		(struct i40e_aqc_get_version *)&desc.params.raw;
2395 	i40e_status status;
2396 
2397 	i40e_fill_default_direct_cmd_desc(&desc, i40e_aqc_opc_get_version);
2398 
2399 	status = i40e_asq_send_command(hw, &desc, NULL, 0, cmd_details);
2400 
2401 	if (!status) {
2402 		if (fw_major_version)
2403 			*fw_major_version = le16_to_cpu(resp->fw_major);
2404 		if (fw_minor_version)
2405 			*fw_minor_version = le16_to_cpu(resp->fw_minor);
2406 		if (fw_build)
2407 			*fw_build = le32_to_cpu(resp->fw_build);
2408 		if (api_major_version)
2409 			*api_major_version = le16_to_cpu(resp->api_major);
2410 		if (api_minor_version)
2411 			*api_minor_version = le16_to_cpu(resp->api_minor);
2412 	}
2413 
2414 	return status;
2415 }
2416 
2417 /**
2418  * i40e_aq_send_driver_version
2419  * @hw: pointer to the hw struct
2420  * @dv: driver's major, minor version
2421  * @cmd_details: pointer to command details structure or NULL
2422  *
2423  * Send the driver version to the firmware
2424  **/
2425 i40e_status i40e_aq_send_driver_version(struct i40e_hw *hw,
2426 				struct i40e_driver_version *dv,
2427 				struct i40e_asq_cmd_details *cmd_details)
2428 {
2429 	struct i40e_aq_desc desc;
2430 	struct i40e_aqc_driver_version *cmd =
2431 		(struct i40e_aqc_driver_version *)&desc.params.raw;
2432 	i40e_status status;
2433 	u16 len;
2434 
2435 	if (dv == NULL)
2436 		return I40E_ERR_PARAM;
2437 
2438 	i40e_fill_default_direct_cmd_desc(&desc, i40e_aqc_opc_driver_version);
2439 
2440 	desc.flags |= cpu_to_le16(I40E_AQ_FLAG_BUF | I40E_AQ_FLAG_RD);
2441 	cmd->driver_major_ver = dv->major_version;
2442 	cmd->driver_minor_ver = dv->minor_version;
2443 	cmd->driver_build_ver = dv->build_version;
2444 	cmd->driver_subbuild_ver = dv->subbuild_version;
2445 
2446 	len = 0;
2447 	while (len < sizeof(dv->driver_string) &&
2448 	       (dv->driver_string[len] < 0x80) &&
2449 	       dv->driver_string[len])
2450 		len++;
2451 	status = i40e_asq_send_command(hw, &desc, dv->driver_string,
2452 				       len, cmd_details);
2453 
2454 	return status;
2455 }
2456 
2457 /**
2458  * i40e_get_link_status - get status of the HW network link
2459  * @hw: pointer to the hw struct
2460  * @link_up: pointer to bool (true/false = linkup/linkdown)
2461  *
2462  * Variable link_up true if link is up, false if link is down.
2463  * The variable link_up is invalid if returned value of status != 0
2464  *
2465  * Side effect: LinkStatusEvent reporting becomes enabled
2466  **/
2467 i40e_status i40e_get_link_status(struct i40e_hw *hw, bool *link_up)
2468 {
2469 	i40e_status status = 0;
2470 
2471 	if (hw->phy.get_link_info) {
2472 		status = i40e_update_link_info(hw);
2473 
2474 		if (status)
2475 			i40e_debug(hw, I40E_DEBUG_LINK, "get link failed: status %d\n",
2476 				   status);
2477 	}
2478 
2479 	*link_up = hw->phy.link_info.link_info & I40E_AQ_LINK_UP;
2480 
2481 	return status;
2482 }
2483 
2484 /**
2485  * i40e_updatelink_status - update status of the HW network link
2486  * @hw: pointer to the hw struct
2487  **/
2488 i40e_status i40e_update_link_info(struct i40e_hw *hw)
2489 {
2490 	struct i40e_aq_get_phy_abilities_resp abilities;
2491 	i40e_status status = 0;
2492 
2493 	status = i40e_aq_get_link_info(hw, true, NULL, NULL);
2494 	if (status)
2495 		return status;
2496 
2497 	if (hw->phy.link_info.link_info & I40E_AQ_MEDIA_AVAILABLE) {
2498 		status = i40e_aq_get_phy_capabilities(hw, false, false,
2499 						      &abilities, NULL);
2500 		if (status)
2501 			return status;
2502 
2503 		memcpy(hw->phy.link_info.module_type, &abilities.module_type,
2504 		       sizeof(hw->phy.link_info.module_type));
2505 	}
2506 
2507 	return status;
2508 }
2509 
2510 /**
2511  * i40e_aq_add_veb - Insert a VEB between the VSI and the MAC
2512  * @hw: pointer to the hw struct
2513  * @uplink_seid: the MAC or other gizmo SEID
2514  * @downlink_seid: the VSI SEID
2515  * @enabled_tc: bitmap of TCs to be enabled
2516  * @default_port: true for default port VSI, false for control port
2517  * @veb_seid: pointer to where to put the resulting VEB SEID
2518  * @enable_stats: true to turn on VEB stats
2519  * @cmd_details: pointer to command details structure or NULL
2520  *
2521  * This asks the FW to add a VEB between the uplink and downlink
2522  * elements.  If the uplink SEID is 0, this will be a floating VEB.
2523  **/
2524 i40e_status i40e_aq_add_veb(struct i40e_hw *hw, u16 uplink_seid,
2525 				u16 downlink_seid, u8 enabled_tc,
2526 				bool default_port, u16 *veb_seid,
2527 				bool enable_stats,
2528 				struct i40e_asq_cmd_details *cmd_details)
2529 {
2530 	struct i40e_aq_desc desc;
2531 	struct i40e_aqc_add_veb *cmd =
2532 		(struct i40e_aqc_add_veb *)&desc.params.raw;
2533 	struct i40e_aqc_add_veb_completion *resp =
2534 		(struct i40e_aqc_add_veb_completion *)&desc.params.raw;
2535 	i40e_status status;
2536 	u16 veb_flags = 0;
2537 
2538 	/* SEIDs need to either both be set or both be 0 for floating VEB */
2539 	if (!!uplink_seid != !!downlink_seid)
2540 		return I40E_ERR_PARAM;
2541 
2542 	i40e_fill_default_direct_cmd_desc(&desc, i40e_aqc_opc_add_veb);
2543 
2544 	cmd->uplink_seid = cpu_to_le16(uplink_seid);
2545 	cmd->downlink_seid = cpu_to_le16(downlink_seid);
2546 	cmd->enable_tcs = enabled_tc;
2547 	if (!uplink_seid)
2548 		veb_flags |= I40E_AQC_ADD_VEB_FLOATING;
2549 	if (default_port)
2550 		veb_flags |= I40E_AQC_ADD_VEB_PORT_TYPE_DEFAULT;
2551 	else
2552 		veb_flags |= I40E_AQC_ADD_VEB_PORT_TYPE_DATA;
2553 
2554 	/* reverse logic here: set the bitflag to disable the stats */
2555 	if (!enable_stats)
2556 		veb_flags |= I40E_AQC_ADD_VEB_ENABLE_DISABLE_STATS;
2557 
2558 	cmd->veb_flags = cpu_to_le16(veb_flags);
2559 
2560 	status = i40e_asq_send_command(hw, &desc, NULL, 0, cmd_details);
2561 
2562 	if (!status && veb_seid)
2563 		*veb_seid = le16_to_cpu(resp->veb_seid);
2564 
2565 	return status;
2566 }
2567 
2568 /**
2569  * i40e_aq_get_veb_parameters - Retrieve VEB parameters
2570  * @hw: pointer to the hw struct
2571  * @veb_seid: the SEID of the VEB to query
2572  * @switch_id: the uplink switch id
2573  * @floating: set to true if the VEB is floating
2574  * @statistic_index: index of the stats counter block for this VEB
2575  * @vebs_used: number of VEB's used by function
2576  * @vebs_free: total VEB's not reserved by any function
2577  * @cmd_details: pointer to command details structure or NULL
2578  *
2579  * This retrieves the parameters for a particular VEB, specified by
2580  * uplink_seid, and returns them to the caller.
2581  **/
2582 i40e_status i40e_aq_get_veb_parameters(struct i40e_hw *hw,
2583 				u16 veb_seid, u16 *switch_id,
2584 				bool *floating, u16 *statistic_index,
2585 				u16 *vebs_used, u16 *vebs_free,
2586 				struct i40e_asq_cmd_details *cmd_details)
2587 {
2588 	struct i40e_aq_desc desc;
2589 	struct i40e_aqc_get_veb_parameters_completion *cmd_resp =
2590 		(struct i40e_aqc_get_veb_parameters_completion *)
2591 		&desc.params.raw;
2592 	i40e_status status;
2593 
2594 	if (veb_seid == 0)
2595 		return I40E_ERR_PARAM;
2596 
2597 	i40e_fill_default_direct_cmd_desc(&desc,
2598 					  i40e_aqc_opc_get_veb_parameters);
2599 	cmd_resp->seid = cpu_to_le16(veb_seid);
2600 
2601 	status = i40e_asq_send_command(hw, &desc, NULL, 0, cmd_details);
2602 	if (status)
2603 		goto get_veb_exit;
2604 
2605 	if (switch_id)
2606 		*switch_id = le16_to_cpu(cmd_resp->switch_id);
2607 	if (statistic_index)
2608 		*statistic_index = le16_to_cpu(cmd_resp->statistic_index);
2609 	if (vebs_used)
2610 		*vebs_used = le16_to_cpu(cmd_resp->vebs_used);
2611 	if (vebs_free)
2612 		*vebs_free = le16_to_cpu(cmd_resp->vebs_free);
2613 	if (floating) {
2614 		u16 flags = le16_to_cpu(cmd_resp->veb_flags);
2615 
2616 		if (flags & I40E_AQC_ADD_VEB_FLOATING)
2617 			*floating = true;
2618 		else
2619 			*floating = false;
2620 	}
2621 
2622 get_veb_exit:
2623 	return status;
2624 }
2625 
2626 /**
2627  * i40e_aq_add_macvlan
2628  * @hw: pointer to the hw struct
2629  * @seid: VSI for the mac address
2630  * @mv_list: list of macvlans to be added
2631  * @count: length of the list
2632  * @cmd_details: pointer to command details structure or NULL
2633  *
2634  * Add MAC/VLAN addresses to the HW filtering
2635  **/
2636 i40e_status i40e_aq_add_macvlan(struct i40e_hw *hw, u16 seid,
2637 			struct i40e_aqc_add_macvlan_element_data *mv_list,
2638 			u16 count, struct i40e_asq_cmd_details *cmd_details)
2639 {
2640 	struct i40e_aq_desc desc;
2641 	struct i40e_aqc_macvlan *cmd =
2642 		(struct i40e_aqc_macvlan *)&desc.params.raw;
2643 	i40e_status status;
2644 	u16 buf_size;
2645 	int i;
2646 
2647 	if (count == 0 || !mv_list || !hw)
2648 		return I40E_ERR_PARAM;
2649 
2650 	buf_size = count * sizeof(*mv_list);
2651 
2652 	/* prep the rest of the request */
2653 	i40e_fill_default_direct_cmd_desc(&desc, i40e_aqc_opc_add_macvlan);
2654 	cmd->num_addresses = cpu_to_le16(count);
2655 	cmd->seid[0] = cpu_to_le16(I40E_AQC_MACVLAN_CMD_SEID_VALID | seid);
2656 	cmd->seid[1] = 0;
2657 	cmd->seid[2] = 0;
2658 
2659 	for (i = 0; i < count; i++)
2660 		if (is_multicast_ether_addr(mv_list[i].mac_addr))
2661 			mv_list[i].flags |=
2662 			       cpu_to_le16(I40E_AQC_MACVLAN_ADD_USE_SHARED_MAC);
2663 
2664 	desc.flags |= cpu_to_le16((u16)(I40E_AQ_FLAG_BUF | I40E_AQ_FLAG_RD));
2665 	if (buf_size > I40E_AQ_LARGE_BUF)
2666 		desc.flags |= cpu_to_le16((u16)I40E_AQ_FLAG_LB);
2667 
2668 	status = i40e_asq_send_command(hw, &desc, mv_list, buf_size,
2669 				       cmd_details);
2670 
2671 	return status;
2672 }
2673 
2674 /**
2675  * i40e_aq_remove_macvlan
2676  * @hw: pointer to the hw struct
2677  * @seid: VSI for the mac address
2678  * @mv_list: list of macvlans to be removed
2679  * @count: length of the list
2680  * @cmd_details: pointer to command details structure or NULL
2681  *
2682  * Remove MAC/VLAN addresses from the HW filtering
2683  **/
2684 i40e_status i40e_aq_remove_macvlan(struct i40e_hw *hw, u16 seid,
2685 			struct i40e_aqc_remove_macvlan_element_data *mv_list,
2686 			u16 count, struct i40e_asq_cmd_details *cmd_details)
2687 {
2688 	struct i40e_aq_desc desc;
2689 	struct i40e_aqc_macvlan *cmd =
2690 		(struct i40e_aqc_macvlan *)&desc.params.raw;
2691 	i40e_status status;
2692 	u16 buf_size;
2693 
2694 	if (count == 0 || !mv_list || !hw)
2695 		return I40E_ERR_PARAM;
2696 
2697 	buf_size = count * sizeof(*mv_list);
2698 
2699 	/* prep the rest of the request */
2700 	i40e_fill_default_direct_cmd_desc(&desc, i40e_aqc_opc_remove_macvlan);
2701 	cmd->num_addresses = cpu_to_le16(count);
2702 	cmd->seid[0] = cpu_to_le16(I40E_AQC_MACVLAN_CMD_SEID_VALID | seid);
2703 	cmd->seid[1] = 0;
2704 	cmd->seid[2] = 0;
2705 
2706 	desc.flags |= cpu_to_le16((u16)(I40E_AQ_FLAG_BUF | I40E_AQ_FLAG_RD));
2707 	if (buf_size > I40E_AQ_LARGE_BUF)
2708 		desc.flags |= cpu_to_le16((u16)I40E_AQ_FLAG_LB);
2709 
2710 	status = i40e_asq_send_command(hw, &desc, mv_list, buf_size,
2711 				       cmd_details);
2712 
2713 	return status;
2714 }
2715 
2716 /**
2717  * i40e_mirrorrule_op - Internal helper function to add/delete mirror rule
2718  * @hw: pointer to the hw struct
2719  * @opcode: AQ opcode for add or delete mirror rule
2720  * @sw_seid: Switch SEID (to which rule refers)
2721  * @rule_type: Rule Type (ingress/egress/VLAN)
2722  * @id: Destination VSI SEID or Rule ID
2723  * @count: length of the list
2724  * @mr_list: list of mirrored VSI SEIDs or VLAN IDs
2725  * @cmd_details: pointer to command details structure or NULL
2726  * @rule_id: Rule ID returned from FW
2727  * @rule_used: Number of rules used in internal switch
2728  * @rule_free: Number of rules free in internal switch
2729  *
2730  * Add/Delete a mirror rule to a specific switch. Mirror rules are supported for
2731  * VEBs/VEPA elements only
2732  **/
2733 static i40e_status i40e_mirrorrule_op(struct i40e_hw *hw,
2734 				u16 opcode, u16 sw_seid, u16 rule_type, u16 id,
2735 				u16 count, __le16 *mr_list,
2736 				struct i40e_asq_cmd_details *cmd_details,
2737 				u16 *rule_id, u16 *rules_used, u16 *rules_free)
2738 {
2739 	struct i40e_aq_desc desc;
2740 	struct i40e_aqc_add_delete_mirror_rule *cmd =
2741 		(struct i40e_aqc_add_delete_mirror_rule *)&desc.params.raw;
2742 	struct i40e_aqc_add_delete_mirror_rule_completion *resp =
2743 	(struct i40e_aqc_add_delete_mirror_rule_completion *)&desc.params.raw;
2744 	i40e_status status;
2745 	u16 buf_size;
2746 
2747 	buf_size = count * sizeof(*mr_list);
2748 
2749 	/* prep the rest of the request */
2750 	i40e_fill_default_direct_cmd_desc(&desc, opcode);
2751 	cmd->seid = cpu_to_le16(sw_seid);
2752 	cmd->rule_type = cpu_to_le16(rule_type &
2753 				     I40E_AQC_MIRROR_RULE_TYPE_MASK);
2754 	cmd->num_entries = cpu_to_le16(count);
2755 	/* Dest VSI for add, rule_id for delete */
2756 	cmd->destination = cpu_to_le16(id);
2757 	if (mr_list) {
2758 		desc.flags |= cpu_to_le16((u16)(I40E_AQ_FLAG_BUF |
2759 						I40E_AQ_FLAG_RD));
2760 		if (buf_size > I40E_AQ_LARGE_BUF)
2761 			desc.flags |= cpu_to_le16((u16)I40E_AQ_FLAG_LB);
2762 	}
2763 
2764 	status = i40e_asq_send_command(hw, &desc, mr_list, buf_size,
2765 				       cmd_details);
2766 	if (!status ||
2767 	    hw->aq.asq_last_status == I40E_AQ_RC_ENOSPC) {
2768 		if (rule_id)
2769 			*rule_id = le16_to_cpu(resp->rule_id);
2770 		if (rules_used)
2771 			*rules_used = le16_to_cpu(resp->mirror_rules_used);
2772 		if (rules_free)
2773 			*rules_free = le16_to_cpu(resp->mirror_rules_free);
2774 	}
2775 	return status;
2776 }
2777 
2778 /**
2779  * i40e_aq_add_mirrorrule - add a mirror rule
2780  * @hw: pointer to the hw struct
2781  * @sw_seid: Switch SEID (to which rule refers)
2782  * @rule_type: Rule Type (ingress/egress/VLAN)
2783  * @dest_vsi: SEID of VSI to which packets will be mirrored
2784  * @count: length of the list
2785  * @mr_list: list of mirrored VSI SEIDs or VLAN IDs
2786  * @cmd_details: pointer to command details structure or NULL
2787  * @rule_id: Rule ID returned from FW
2788  * @rule_used: Number of rules used in internal switch
2789  * @rule_free: Number of rules free in internal switch
2790  *
2791  * Add mirror rule. Mirror rules are supported for VEBs or VEPA elements only
2792  **/
2793 i40e_status i40e_aq_add_mirrorrule(struct i40e_hw *hw, u16 sw_seid,
2794 			u16 rule_type, u16 dest_vsi, u16 count, __le16 *mr_list,
2795 			struct i40e_asq_cmd_details *cmd_details,
2796 			u16 *rule_id, u16 *rules_used, u16 *rules_free)
2797 {
2798 	if (!(rule_type == I40E_AQC_MIRROR_RULE_TYPE_ALL_INGRESS ||
2799 	    rule_type == I40E_AQC_MIRROR_RULE_TYPE_ALL_EGRESS)) {
2800 		if (count == 0 || !mr_list)
2801 			return I40E_ERR_PARAM;
2802 	}
2803 
2804 	return i40e_mirrorrule_op(hw, i40e_aqc_opc_add_mirror_rule, sw_seid,
2805 				  rule_type, dest_vsi, count, mr_list,
2806 				  cmd_details, rule_id, rules_used, rules_free);
2807 }
2808 
2809 /**
2810  * i40e_aq_delete_mirrorrule - delete a mirror rule
2811  * @hw: pointer to the hw struct
2812  * @sw_seid: Switch SEID (to which rule refers)
2813  * @rule_type: Rule Type (ingress/egress/VLAN)
2814  * @count: length of the list
2815  * @rule_id: Rule ID that is returned in the receive desc as part of
2816  *		add_mirrorrule.
2817  * @mr_list: list of mirrored VLAN IDs to be removed
2818  * @cmd_details: pointer to command details structure or NULL
2819  * @rule_used: Number of rules used in internal switch
2820  * @rule_free: Number of rules free in internal switch
2821  *
2822  * Delete a mirror rule. Mirror rules are supported for VEBs/VEPA elements only
2823  **/
2824 i40e_status i40e_aq_delete_mirrorrule(struct i40e_hw *hw, u16 sw_seid,
2825 			u16 rule_type, u16 rule_id, u16 count, __le16 *mr_list,
2826 			struct i40e_asq_cmd_details *cmd_details,
2827 			u16 *rules_used, u16 *rules_free)
2828 {
2829 	/* Rule ID has to be valid except rule_type: INGRESS VLAN mirroring */
2830 	if (rule_type == I40E_AQC_MIRROR_RULE_TYPE_VLAN) {
2831 		/* count and mr_list shall be valid for rule_type INGRESS VLAN
2832 		 * mirroring. For other rule_type, count and rule_type should
2833 		 * not matter.
2834 		 */
2835 		if (count == 0 || !mr_list)
2836 			return I40E_ERR_PARAM;
2837 	}
2838 
2839 	return i40e_mirrorrule_op(hw, i40e_aqc_opc_delete_mirror_rule, sw_seid,
2840 				  rule_type, rule_id, count, mr_list,
2841 				  cmd_details, NULL, rules_used, rules_free);
2842 }
2843 
2844 /**
2845  * i40e_aq_send_msg_to_vf
2846  * @hw: pointer to the hardware structure
2847  * @vfid: VF id to send msg
2848  * @v_opcode: opcodes for VF-PF communication
2849  * @v_retval: return error code
2850  * @msg: pointer to the msg buffer
2851  * @msglen: msg length
2852  * @cmd_details: pointer to command details
2853  *
2854  * send msg to vf
2855  **/
2856 i40e_status i40e_aq_send_msg_to_vf(struct i40e_hw *hw, u16 vfid,
2857 				u32 v_opcode, u32 v_retval, u8 *msg, u16 msglen,
2858 				struct i40e_asq_cmd_details *cmd_details)
2859 {
2860 	struct i40e_aq_desc desc;
2861 	struct i40e_aqc_pf_vf_message *cmd =
2862 		(struct i40e_aqc_pf_vf_message *)&desc.params.raw;
2863 	i40e_status status;
2864 
2865 	i40e_fill_default_direct_cmd_desc(&desc, i40e_aqc_opc_send_msg_to_vf);
2866 	cmd->id = cpu_to_le32(vfid);
2867 	desc.cookie_high = cpu_to_le32(v_opcode);
2868 	desc.cookie_low = cpu_to_le32(v_retval);
2869 	desc.flags |= cpu_to_le16((u16)I40E_AQ_FLAG_SI);
2870 	if (msglen) {
2871 		desc.flags |= cpu_to_le16((u16)(I40E_AQ_FLAG_BUF |
2872 						I40E_AQ_FLAG_RD));
2873 		if (msglen > I40E_AQ_LARGE_BUF)
2874 			desc.flags |= cpu_to_le16((u16)I40E_AQ_FLAG_LB);
2875 		desc.datalen = cpu_to_le16(msglen);
2876 	}
2877 	status = i40e_asq_send_command(hw, &desc, msg, msglen, cmd_details);
2878 
2879 	return status;
2880 }
2881 
2882 /**
2883  * i40e_aq_debug_read_register
2884  * @hw: pointer to the hw struct
2885  * @reg_addr: register address
2886  * @reg_val: register value
2887  * @cmd_details: pointer to command details structure or NULL
2888  *
2889  * Read the register using the admin queue commands
2890  **/
2891 i40e_status i40e_aq_debug_read_register(struct i40e_hw *hw,
2892 				u32 reg_addr, u64 *reg_val,
2893 				struct i40e_asq_cmd_details *cmd_details)
2894 {
2895 	struct i40e_aq_desc desc;
2896 	struct i40e_aqc_debug_reg_read_write *cmd_resp =
2897 		(struct i40e_aqc_debug_reg_read_write *)&desc.params.raw;
2898 	i40e_status status;
2899 
2900 	if (reg_val == NULL)
2901 		return I40E_ERR_PARAM;
2902 
2903 	i40e_fill_default_direct_cmd_desc(&desc, i40e_aqc_opc_debug_read_reg);
2904 
2905 	cmd_resp->address = cpu_to_le32(reg_addr);
2906 
2907 	status = i40e_asq_send_command(hw, &desc, NULL, 0, cmd_details);
2908 
2909 	if (!status) {
2910 		*reg_val = ((u64)le32_to_cpu(cmd_resp->value_high) << 32) |
2911 			   (u64)le32_to_cpu(cmd_resp->value_low);
2912 	}
2913 
2914 	return status;
2915 }
2916 
2917 /**
2918  * i40e_aq_debug_write_register
2919  * @hw: pointer to the hw struct
2920  * @reg_addr: register address
2921  * @reg_val: register value
2922  * @cmd_details: pointer to command details structure or NULL
2923  *
2924  * Write to a register using the admin queue commands
2925  **/
2926 i40e_status i40e_aq_debug_write_register(struct i40e_hw *hw,
2927 					u32 reg_addr, u64 reg_val,
2928 					struct i40e_asq_cmd_details *cmd_details)
2929 {
2930 	struct i40e_aq_desc desc;
2931 	struct i40e_aqc_debug_reg_read_write *cmd =
2932 		(struct i40e_aqc_debug_reg_read_write *)&desc.params.raw;
2933 	i40e_status status;
2934 
2935 	i40e_fill_default_direct_cmd_desc(&desc, i40e_aqc_opc_debug_write_reg);
2936 
2937 	cmd->address = cpu_to_le32(reg_addr);
2938 	cmd->value_high = cpu_to_le32((u32)(reg_val >> 32));
2939 	cmd->value_low = cpu_to_le32((u32)(reg_val & 0xFFFFFFFF));
2940 
2941 	status = i40e_asq_send_command(hw, &desc, NULL, 0, cmd_details);
2942 
2943 	return status;
2944 }
2945 
2946 /**
2947  * i40e_aq_request_resource
2948  * @hw: pointer to the hw struct
2949  * @resource: resource id
2950  * @access: access type
2951  * @sdp_number: resource number
2952  * @timeout: the maximum time in ms that the driver may hold the resource
2953  * @cmd_details: pointer to command details structure or NULL
2954  *
2955  * requests common resource using the admin queue commands
2956  **/
2957 i40e_status i40e_aq_request_resource(struct i40e_hw *hw,
2958 				enum i40e_aq_resources_ids resource,
2959 				enum i40e_aq_resource_access_type access,
2960 				u8 sdp_number, u64 *timeout,
2961 				struct i40e_asq_cmd_details *cmd_details)
2962 {
2963 	struct i40e_aq_desc desc;
2964 	struct i40e_aqc_request_resource *cmd_resp =
2965 		(struct i40e_aqc_request_resource *)&desc.params.raw;
2966 	i40e_status status;
2967 
2968 	i40e_fill_default_direct_cmd_desc(&desc, i40e_aqc_opc_request_resource);
2969 
2970 	cmd_resp->resource_id = cpu_to_le16(resource);
2971 	cmd_resp->access_type = cpu_to_le16(access);
2972 	cmd_resp->resource_number = cpu_to_le32(sdp_number);
2973 
2974 	status = i40e_asq_send_command(hw, &desc, NULL, 0, cmd_details);
2975 	/* The completion specifies the maximum time in ms that the driver
2976 	 * may hold the resource in the Timeout field.
2977 	 * If the resource is held by someone else, the command completes with
2978 	 * busy return value and the timeout field indicates the maximum time
2979 	 * the current owner of the resource has to free it.
2980 	 */
2981 	if (!status || hw->aq.asq_last_status == I40E_AQ_RC_EBUSY)
2982 		*timeout = le32_to_cpu(cmd_resp->timeout);
2983 
2984 	return status;
2985 }
2986 
2987 /**
2988  * i40e_aq_release_resource
2989  * @hw: pointer to the hw struct
2990  * @resource: resource id
2991  * @sdp_number: resource number
2992  * @cmd_details: pointer to command details structure or NULL
2993  *
2994  * release common resource using the admin queue commands
2995  **/
2996 i40e_status i40e_aq_release_resource(struct i40e_hw *hw,
2997 				enum i40e_aq_resources_ids resource,
2998 				u8 sdp_number,
2999 				struct i40e_asq_cmd_details *cmd_details)
3000 {
3001 	struct i40e_aq_desc desc;
3002 	struct i40e_aqc_request_resource *cmd =
3003 		(struct i40e_aqc_request_resource *)&desc.params.raw;
3004 	i40e_status status;
3005 
3006 	i40e_fill_default_direct_cmd_desc(&desc, i40e_aqc_opc_release_resource);
3007 
3008 	cmd->resource_id = cpu_to_le16(resource);
3009 	cmd->resource_number = cpu_to_le32(sdp_number);
3010 
3011 	status = i40e_asq_send_command(hw, &desc, NULL, 0, cmd_details);
3012 
3013 	return status;
3014 }
3015 
3016 /**
3017  * i40e_aq_read_nvm
3018  * @hw: pointer to the hw struct
3019  * @module_pointer: module pointer location in words from the NVM beginning
3020  * @offset: byte offset from the module beginning
3021  * @length: length of the section to be read (in bytes from the offset)
3022  * @data: command buffer (size [bytes] = length)
3023  * @last_command: tells if this is the last command in a series
3024  * @cmd_details: pointer to command details structure or NULL
3025  *
3026  * Read the NVM using the admin queue commands
3027  **/
3028 i40e_status i40e_aq_read_nvm(struct i40e_hw *hw, u8 module_pointer,
3029 				u32 offset, u16 length, void *data,
3030 				bool last_command,
3031 				struct i40e_asq_cmd_details *cmd_details)
3032 {
3033 	struct i40e_aq_desc desc;
3034 	struct i40e_aqc_nvm_update *cmd =
3035 		(struct i40e_aqc_nvm_update *)&desc.params.raw;
3036 	i40e_status status;
3037 
3038 	/* In offset the highest byte must be zeroed. */
3039 	if (offset & 0xFF000000) {
3040 		status = I40E_ERR_PARAM;
3041 		goto i40e_aq_read_nvm_exit;
3042 	}
3043 
3044 	i40e_fill_default_direct_cmd_desc(&desc, i40e_aqc_opc_nvm_read);
3045 
3046 	/* If this is the last command in a series, set the proper flag. */
3047 	if (last_command)
3048 		cmd->command_flags |= I40E_AQ_NVM_LAST_CMD;
3049 	cmd->module_pointer = module_pointer;
3050 	cmd->offset = cpu_to_le32(offset);
3051 	cmd->length = cpu_to_le16(length);
3052 
3053 	desc.flags |= cpu_to_le16((u16)I40E_AQ_FLAG_BUF);
3054 	if (length > I40E_AQ_LARGE_BUF)
3055 		desc.flags |= cpu_to_le16((u16)I40E_AQ_FLAG_LB);
3056 
3057 	status = i40e_asq_send_command(hw, &desc, data, length, cmd_details);
3058 
3059 i40e_aq_read_nvm_exit:
3060 	return status;
3061 }
3062 
3063 /**
3064  * i40e_aq_erase_nvm
3065  * @hw: pointer to the hw struct
3066  * @module_pointer: module pointer location in words from the NVM beginning
3067  * @offset: offset in the module (expressed in 4 KB from module's beginning)
3068  * @length: length of the section to be erased (expressed in 4 KB)
3069  * @last_command: tells if this is the last command in a series
3070  * @cmd_details: pointer to command details structure or NULL
3071  *
3072  * Erase the NVM sector using the admin queue commands
3073  **/
3074 i40e_status i40e_aq_erase_nvm(struct i40e_hw *hw, u8 module_pointer,
3075 			      u32 offset, u16 length, bool last_command,
3076 			      struct i40e_asq_cmd_details *cmd_details)
3077 {
3078 	struct i40e_aq_desc desc;
3079 	struct i40e_aqc_nvm_update *cmd =
3080 		(struct i40e_aqc_nvm_update *)&desc.params.raw;
3081 	i40e_status status;
3082 
3083 	/* In offset the highest byte must be zeroed. */
3084 	if (offset & 0xFF000000) {
3085 		status = I40E_ERR_PARAM;
3086 		goto i40e_aq_erase_nvm_exit;
3087 	}
3088 
3089 	i40e_fill_default_direct_cmd_desc(&desc, i40e_aqc_opc_nvm_erase);
3090 
3091 	/* If this is the last command in a series, set the proper flag. */
3092 	if (last_command)
3093 		cmd->command_flags |= I40E_AQ_NVM_LAST_CMD;
3094 	cmd->module_pointer = module_pointer;
3095 	cmd->offset = cpu_to_le32(offset);
3096 	cmd->length = cpu_to_le16(length);
3097 
3098 	status = i40e_asq_send_command(hw, &desc, NULL, 0, cmd_details);
3099 
3100 i40e_aq_erase_nvm_exit:
3101 	return status;
3102 }
3103 
3104 /**
3105  * i40e_parse_discover_capabilities
3106  * @hw: pointer to the hw struct
3107  * @buff: pointer to a buffer containing device/function capability records
3108  * @cap_count: number of capability records in the list
3109  * @list_type_opc: type of capabilities list to parse
3110  *
3111  * Parse the device/function capabilities list.
3112  **/
3113 static void i40e_parse_discover_capabilities(struct i40e_hw *hw, void *buff,
3114 				     u32 cap_count,
3115 				     enum i40e_admin_queue_opc list_type_opc)
3116 {
3117 	struct i40e_aqc_list_capabilities_element_resp *cap;
3118 	u32 valid_functions, num_functions;
3119 	u32 number, logical_id, phys_id;
3120 	struct i40e_hw_capabilities *p;
3121 	u8 major_rev;
3122 	u32 i = 0;
3123 	u16 id;
3124 
3125 	cap = (struct i40e_aqc_list_capabilities_element_resp *) buff;
3126 
3127 	if (list_type_opc == i40e_aqc_opc_list_dev_capabilities)
3128 		p = &hw->dev_caps;
3129 	else if (list_type_opc == i40e_aqc_opc_list_func_capabilities)
3130 		p = &hw->func_caps;
3131 	else
3132 		return;
3133 
3134 	for (i = 0; i < cap_count; i++, cap++) {
3135 		id = le16_to_cpu(cap->id);
3136 		number = le32_to_cpu(cap->number);
3137 		logical_id = le32_to_cpu(cap->logical_id);
3138 		phys_id = le32_to_cpu(cap->phys_id);
3139 		major_rev = cap->major_rev;
3140 
3141 		switch (id) {
3142 		case I40E_AQ_CAP_ID_SWITCH_MODE:
3143 			p->switch_mode = number;
3144 			break;
3145 		case I40E_AQ_CAP_ID_MNG_MODE:
3146 			p->management_mode = number;
3147 			break;
3148 		case I40E_AQ_CAP_ID_NPAR_ACTIVE:
3149 			p->npar_enable = number;
3150 			break;
3151 		case I40E_AQ_CAP_ID_OS2BMC_CAP:
3152 			p->os2bmc = number;
3153 			break;
3154 		case I40E_AQ_CAP_ID_FUNCTIONS_VALID:
3155 			p->valid_functions = number;
3156 			break;
3157 		case I40E_AQ_CAP_ID_SRIOV:
3158 			if (number == 1)
3159 				p->sr_iov_1_1 = true;
3160 			break;
3161 		case I40E_AQ_CAP_ID_VF:
3162 			p->num_vfs = number;
3163 			p->vf_base_id = logical_id;
3164 			break;
3165 		case I40E_AQ_CAP_ID_VMDQ:
3166 			if (number == 1)
3167 				p->vmdq = true;
3168 			break;
3169 		case I40E_AQ_CAP_ID_8021QBG:
3170 			if (number == 1)
3171 				p->evb_802_1_qbg = true;
3172 			break;
3173 		case I40E_AQ_CAP_ID_8021QBR:
3174 			if (number == 1)
3175 				p->evb_802_1_qbh = true;
3176 			break;
3177 		case I40E_AQ_CAP_ID_VSI:
3178 			p->num_vsis = number;
3179 			break;
3180 		case I40E_AQ_CAP_ID_DCB:
3181 			if (number == 1) {
3182 				p->dcb = true;
3183 				p->enabled_tcmap = logical_id;
3184 				p->maxtc = phys_id;
3185 			}
3186 			break;
3187 		case I40E_AQ_CAP_ID_FCOE:
3188 			if (number == 1)
3189 				p->fcoe = true;
3190 			break;
3191 		case I40E_AQ_CAP_ID_ISCSI:
3192 			if (number == 1)
3193 				p->iscsi = true;
3194 			break;
3195 		case I40E_AQ_CAP_ID_RSS:
3196 			p->rss = true;
3197 			p->rss_table_size = number;
3198 			p->rss_table_entry_width = logical_id;
3199 			break;
3200 		case I40E_AQ_CAP_ID_RXQ:
3201 			p->num_rx_qp = number;
3202 			p->base_queue = phys_id;
3203 			break;
3204 		case I40E_AQ_CAP_ID_TXQ:
3205 			p->num_tx_qp = number;
3206 			p->base_queue = phys_id;
3207 			break;
3208 		case I40E_AQ_CAP_ID_MSIX:
3209 			p->num_msix_vectors = number;
3210 			i40e_debug(hw, I40E_DEBUG_INIT,
3211 				   "HW Capability: MSIX vector count = %d\n",
3212 				   p->num_msix_vectors);
3213 			break;
3214 		case I40E_AQ_CAP_ID_VF_MSIX:
3215 			p->num_msix_vectors_vf = number;
3216 			break;
3217 		case I40E_AQ_CAP_ID_FLEX10:
3218 			if (major_rev == 1) {
3219 				if (number == 1) {
3220 					p->flex10_enable = true;
3221 					p->flex10_capable = true;
3222 				}
3223 			} else {
3224 				/* Capability revision >= 2 */
3225 				if (number & 1)
3226 					p->flex10_enable = true;
3227 				if (number & 2)
3228 					p->flex10_capable = true;
3229 			}
3230 			p->flex10_mode = logical_id;
3231 			p->flex10_status = phys_id;
3232 			break;
3233 		case I40E_AQ_CAP_ID_CEM:
3234 			if (number == 1)
3235 				p->mgmt_cem = true;
3236 			break;
3237 		case I40E_AQ_CAP_ID_IWARP:
3238 			if (number == 1)
3239 				p->iwarp = true;
3240 			break;
3241 		case I40E_AQ_CAP_ID_LED:
3242 			if (phys_id < I40E_HW_CAP_MAX_GPIO)
3243 				p->led[phys_id] = true;
3244 			break;
3245 		case I40E_AQ_CAP_ID_SDP:
3246 			if (phys_id < I40E_HW_CAP_MAX_GPIO)
3247 				p->sdp[phys_id] = true;
3248 			break;
3249 		case I40E_AQ_CAP_ID_MDIO:
3250 			if (number == 1) {
3251 				p->mdio_port_num = phys_id;
3252 				p->mdio_port_mode = logical_id;
3253 			}
3254 			break;
3255 		case I40E_AQ_CAP_ID_1588:
3256 			if (number == 1)
3257 				p->ieee_1588 = true;
3258 			break;
3259 		case I40E_AQ_CAP_ID_FLOW_DIRECTOR:
3260 			p->fd = true;
3261 			p->fd_filters_guaranteed = number;
3262 			p->fd_filters_best_effort = logical_id;
3263 			break;
3264 		case I40E_AQ_CAP_ID_WSR_PROT:
3265 			p->wr_csr_prot = (u64)number;
3266 			p->wr_csr_prot |= (u64)logical_id << 32;
3267 			break;
3268 		case I40E_AQ_CAP_ID_NVM_MGMT:
3269 			if (number & I40E_NVM_MGMT_SEC_REV_DISABLED)
3270 				p->sec_rev_disabled = true;
3271 			if (number & I40E_NVM_MGMT_UPDATE_DISABLED)
3272 				p->update_disabled = true;
3273 			break;
3274 		default:
3275 			break;
3276 		}
3277 	}
3278 
3279 	if (p->fcoe)
3280 		i40e_debug(hw, I40E_DEBUG_ALL, "device is FCoE capable\n");
3281 
3282 	/* Software override ensuring FCoE is disabled if npar or mfp
3283 	 * mode because it is not supported in these modes.
3284 	 */
3285 	if (p->npar_enable || p->flex10_enable)
3286 		p->fcoe = false;
3287 
3288 	/* count the enabled ports (aka the "not disabled" ports) */
3289 	hw->num_ports = 0;
3290 	for (i = 0; i < 4; i++) {
3291 		u32 port_cfg_reg = I40E_PRTGEN_CNF + (4 * i);
3292 		u64 port_cfg = 0;
3293 
3294 		/* use AQ read to get the physical register offset instead
3295 		 * of the port relative offset
3296 		 */
3297 		i40e_aq_debug_read_register(hw, port_cfg_reg, &port_cfg, NULL);
3298 		if (!(port_cfg & I40E_PRTGEN_CNF_PORT_DIS_MASK))
3299 			hw->num_ports++;
3300 	}
3301 
3302 	valid_functions = p->valid_functions;
3303 	num_functions = 0;
3304 	while (valid_functions) {
3305 		if (valid_functions & 1)
3306 			num_functions++;
3307 		valid_functions >>= 1;
3308 	}
3309 
3310 	/* partition id is 1-based, and functions are evenly spread
3311 	 * across the ports as partitions
3312 	 */
3313 	hw->partition_id = (hw->pf_id / hw->num_ports) + 1;
3314 	hw->num_partitions = num_functions / hw->num_ports;
3315 
3316 	/* additional HW specific goodies that might
3317 	 * someday be HW version specific
3318 	 */
3319 	p->rx_buf_chain_len = I40E_MAX_CHAINED_RX_BUFFERS;
3320 }
3321 
3322 /**
3323  * i40e_aq_discover_capabilities
3324  * @hw: pointer to the hw struct
3325  * @buff: a virtual buffer to hold the capabilities
3326  * @buff_size: Size of the virtual buffer
3327  * @data_size: Size of the returned data, or buff size needed if AQ err==ENOMEM
3328  * @list_type_opc: capabilities type to discover - pass in the command opcode
3329  * @cmd_details: pointer to command details structure or NULL
3330  *
3331  * Get the device capabilities descriptions from the firmware
3332  **/
3333 i40e_status i40e_aq_discover_capabilities(struct i40e_hw *hw,
3334 				void *buff, u16 buff_size, u16 *data_size,
3335 				enum i40e_admin_queue_opc list_type_opc,
3336 				struct i40e_asq_cmd_details *cmd_details)
3337 {
3338 	struct i40e_aqc_list_capabilites *cmd;
3339 	struct i40e_aq_desc desc;
3340 	i40e_status status = 0;
3341 
3342 	cmd = (struct i40e_aqc_list_capabilites *)&desc.params.raw;
3343 
3344 	if (list_type_opc != i40e_aqc_opc_list_func_capabilities &&
3345 		list_type_opc != i40e_aqc_opc_list_dev_capabilities) {
3346 		status = I40E_ERR_PARAM;
3347 		goto exit;
3348 	}
3349 
3350 	i40e_fill_default_direct_cmd_desc(&desc, list_type_opc);
3351 
3352 	desc.flags |= cpu_to_le16((u16)I40E_AQ_FLAG_BUF);
3353 	if (buff_size > I40E_AQ_LARGE_BUF)
3354 		desc.flags |= cpu_to_le16((u16)I40E_AQ_FLAG_LB);
3355 
3356 	status = i40e_asq_send_command(hw, &desc, buff, buff_size, cmd_details);
3357 	*data_size = le16_to_cpu(desc.datalen);
3358 
3359 	if (status)
3360 		goto exit;
3361 
3362 	i40e_parse_discover_capabilities(hw, buff, le32_to_cpu(cmd->count),
3363 					 list_type_opc);
3364 
3365 exit:
3366 	return status;
3367 }
3368 
3369 /**
3370  * i40e_aq_update_nvm
3371  * @hw: pointer to the hw struct
3372  * @module_pointer: module pointer location in words from the NVM beginning
3373  * @offset: byte offset from the module beginning
3374  * @length: length of the section to be written (in bytes from the offset)
3375  * @data: command buffer (size [bytes] = length)
3376  * @last_command: tells if this is the last command in a series
3377  * @cmd_details: pointer to command details structure or NULL
3378  *
3379  * Update the NVM using the admin queue commands
3380  **/
3381 i40e_status i40e_aq_update_nvm(struct i40e_hw *hw, u8 module_pointer,
3382 			       u32 offset, u16 length, void *data,
3383 			       bool last_command,
3384 			       struct i40e_asq_cmd_details *cmd_details)
3385 {
3386 	struct i40e_aq_desc desc;
3387 	struct i40e_aqc_nvm_update *cmd =
3388 		(struct i40e_aqc_nvm_update *)&desc.params.raw;
3389 	i40e_status status;
3390 
3391 	/* In offset the highest byte must be zeroed. */
3392 	if (offset & 0xFF000000) {
3393 		status = I40E_ERR_PARAM;
3394 		goto i40e_aq_update_nvm_exit;
3395 	}
3396 
3397 	i40e_fill_default_direct_cmd_desc(&desc, i40e_aqc_opc_nvm_update);
3398 
3399 	/* If this is the last command in a series, set the proper flag. */
3400 	if (last_command)
3401 		cmd->command_flags |= I40E_AQ_NVM_LAST_CMD;
3402 	cmd->module_pointer = module_pointer;
3403 	cmd->offset = cpu_to_le32(offset);
3404 	cmd->length = cpu_to_le16(length);
3405 
3406 	desc.flags |= cpu_to_le16((u16)(I40E_AQ_FLAG_BUF | I40E_AQ_FLAG_RD));
3407 	if (length > I40E_AQ_LARGE_BUF)
3408 		desc.flags |= cpu_to_le16((u16)I40E_AQ_FLAG_LB);
3409 
3410 	status = i40e_asq_send_command(hw, &desc, data, length, cmd_details);
3411 
3412 i40e_aq_update_nvm_exit:
3413 	return status;
3414 }
3415 
3416 /**
3417  * i40e_aq_get_lldp_mib
3418  * @hw: pointer to the hw struct
3419  * @bridge_type: type of bridge requested
3420  * @mib_type: Local, Remote or both Local and Remote MIBs
3421  * @buff: pointer to a user supplied buffer to store the MIB block
3422  * @buff_size: size of the buffer (in bytes)
3423  * @local_len : length of the returned Local LLDP MIB
3424  * @remote_len: length of the returned Remote LLDP MIB
3425  * @cmd_details: pointer to command details structure or NULL
3426  *
3427  * Requests the complete LLDP MIB (entire packet).
3428  **/
3429 i40e_status i40e_aq_get_lldp_mib(struct i40e_hw *hw, u8 bridge_type,
3430 				u8 mib_type, void *buff, u16 buff_size,
3431 				u16 *local_len, u16 *remote_len,
3432 				struct i40e_asq_cmd_details *cmd_details)
3433 {
3434 	struct i40e_aq_desc desc;
3435 	struct i40e_aqc_lldp_get_mib *cmd =
3436 		(struct i40e_aqc_lldp_get_mib *)&desc.params.raw;
3437 	struct i40e_aqc_lldp_get_mib *resp =
3438 		(struct i40e_aqc_lldp_get_mib *)&desc.params.raw;
3439 	i40e_status status;
3440 
3441 	if (buff_size == 0 || !buff)
3442 		return I40E_ERR_PARAM;
3443 
3444 	i40e_fill_default_direct_cmd_desc(&desc, i40e_aqc_opc_lldp_get_mib);
3445 	/* Indirect Command */
3446 	desc.flags |= cpu_to_le16((u16)I40E_AQ_FLAG_BUF);
3447 
3448 	cmd->type = mib_type & I40E_AQ_LLDP_MIB_TYPE_MASK;
3449 	cmd->type |= ((bridge_type << I40E_AQ_LLDP_BRIDGE_TYPE_SHIFT) &
3450 		       I40E_AQ_LLDP_BRIDGE_TYPE_MASK);
3451 
3452 	desc.datalen = cpu_to_le16(buff_size);
3453 
3454 	desc.flags |= cpu_to_le16((u16)I40E_AQ_FLAG_BUF);
3455 	if (buff_size > I40E_AQ_LARGE_BUF)
3456 		desc.flags |= cpu_to_le16((u16)I40E_AQ_FLAG_LB);
3457 
3458 	status = i40e_asq_send_command(hw, &desc, buff, buff_size, cmd_details);
3459 	if (!status) {
3460 		if (local_len != NULL)
3461 			*local_len = le16_to_cpu(resp->local_len);
3462 		if (remote_len != NULL)
3463 			*remote_len = le16_to_cpu(resp->remote_len);
3464 	}
3465 
3466 	return status;
3467 }
3468 
3469 /**
3470  * i40e_aq_cfg_lldp_mib_change_event
3471  * @hw: pointer to the hw struct
3472  * @enable_update: Enable or Disable event posting
3473  * @cmd_details: pointer to command details structure or NULL
3474  *
3475  * Enable or Disable posting of an event on ARQ when LLDP MIB
3476  * associated with the interface changes
3477  **/
3478 i40e_status i40e_aq_cfg_lldp_mib_change_event(struct i40e_hw *hw,
3479 				bool enable_update,
3480 				struct i40e_asq_cmd_details *cmd_details)
3481 {
3482 	struct i40e_aq_desc desc;
3483 	struct i40e_aqc_lldp_update_mib *cmd =
3484 		(struct i40e_aqc_lldp_update_mib *)&desc.params.raw;
3485 	i40e_status status;
3486 
3487 	i40e_fill_default_direct_cmd_desc(&desc, i40e_aqc_opc_lldp_update_mib);
3488 
3489 	if (!enable_update)
3490 		cmd->command |= I40E_AQ_LLDP_MIB_UPDATE_DISABLE;
3491 
3492 	status = i40e_asq_send_command(hw, &desc, NULL, 0, cmd_details);
3493 
3494 	return status;
3495 }
3496 
3497 /**
3498  * i40e_aq_stop_lldp
3499  * @hw: pointer to the hw struct
3500  * @shutdown_agent: True if LLDP Agent needs to be Shutdown
3501  * @cmd_details: pointer to command details structure or NULL
3502  *
3503  * Stop or Shutdown the embedded LLDP Agent
3504  **/
3505 i40e_status i40e_aq_stop_lldp(struct i40e_hw *hw, bool shutdown_agent,
3506 				struct i40e_asq_cmd_details *cmd_details)
3507 {
3508 	struct i40e_aq_desc desc;
3509 	struct i40e_aqc_lldp_stop *cmd =
3510 		(struct i40e_aqc_lldp_stop *)&desc.params.raw;
3511 	i40e_status status;
3512 
3513 	i40e_fill_default_direct_cmd_desc(&desc, i40e_aqc_opc_lldp_stop);
3514 
3515 	if (shutdown_agent)
3516 		cmd->command |= I40E_AQ_LLDP_AGENT_SHUTDOWN;
3517 
3518 	status = i40e_asq_send_command(hw, &desc, NULL, 0, cmd_details);
3519 
3520 	return status;
3521 }
3522 
3523 /**
3524  * i40e_aq_start_lldp
3525  * @hw: pointer to the hw struct
3526  * @cmd_details: pointer to command details structure or NULL
3527  *
3528  * Start the embedded LLDP Agent on all ports.
3529  **/
3530 i40e_status i40e_aq_start_lldp(struct i40e_hw *hw,
3531 				struct i40e_asq_cmd_details *cmd_details)
3532 {
3533 	struct i40e_aq_desc desc;
3534 	struct i40e_aqc_lldp_start *cmd =
3535 		(struct i40e_aqc_lldp_start *)&desc.params.raw;
3536 	i40e_status status;
3537 
3538 	i40e_fill_default_direct_cmd_desc(&desc, i40e_aqc_opc_lldp_start);
3539 
3540 	cmd->command = I40E_AQ_LLDP_AGENT_START;
3541 
3542 	status = i40e_asq_send_command(hw, &desc, NULL, 0, cmd_details);
3543 
3544 	return status;
3545 }
3546 
3547 /**
3548  * i40e_aq_get_cee_dcb_config
3549  * @hw: pointer to the hw struct
3550  * @buff: response buffer that stores CEE operational configuration
3551  * @buff_size: size of the buffer passed
3552  * @cmd_details: pointer to command details structure or NULL
3553  *
3554  * Get CEE DCBX mode operational configuration from firmware
3555  **/
3556 i40e_status i40e_aq_get_cee_dcb_config(struct i40e_hw *hw,
3557 				       void *buff, u16 buff_size,
3558 				       struct i40e_asq_cmd_details *cmd_details)
3559 {
3560 	struct i40e_aq_desc desc;
3561 	i40e_status status;
3562 
3563 	if (buff_size == 0 || !buff)
3564 		return I40E_ERR_PARAM;
3565 
3566 	i40e_fill_default_direct_cmd_desc(&desc, i40e_aqc_opc_get_cee_dcb_cfg);
3567 
3568 	desc.flags |= cpu_to_le16((u16)I40E_AQ_FLAG_BUF);
3569 	status = i40e_asq_send_command(hw, &desc, (void *)buff, buff_size,
3570 				       cmd_details);
3571 
3572 	return status;
3573 }
3574 
3575 /**
3576  * i40e_aq_add_udp_tunnel
3577  * @hw: pointer to the hw struct
3578  * @udp_port: the UDP port to add
3579  * @header_len: length of the tunneling header length in DWords
3580  * @protocol_index: protocol index type
3581  * @filter_index: pointer to filter index
3582  * @cmd_details: pointer to command details structure or NULL
3583  **/
3584 i40e_status i40e_aq_add_udp_tunnel(struct i40e_hw *hw,
3585 				u16 udp_port, u8 protocol_index,
3586 				u8 *filter_index,
3587 				struct i40e_asq_cmd_details *cmd_details)
3588 {
3589 	struct i40e_aq_desc desc;
3590 	struct i40e_aqc_add_udp_tunnel *cmd =
3591 		(struct i40e_aqc_add_udp_tunnel *)&desc.params.raw;
3592 	struct i40e_aqc_del_udp_tunnel_completion *resp =
3593 		(struct i40e_aqc_del_udp_tunnel_completion *)&desc.params.raw;
3594 	i40e_status status;
3595 
3596 	i40e_fill_default_direct_cmd_desc(&desc, i40e_aqc_opc_add_udp_tunnel);
3597 
3598 	cmd->udp_port = cpu_to_le16(udp_port);
3599 	cmd->protocol_type = protocol_index;
3600 
3601 	status = i40e_asq_send_command(hw, &desc, NULL, 0, cmd_details);
3602 
3603 	if (!status && filter_index)
3604 		*filter_index = resp->index;
3605 
3606 	return status;
3607 }
3608 
3609 /**
3610  * i40e_aq_del_udp_tunnel
3611  * @hw: pointer to the hw struct
3612  * @index: filter index
3613  * @cmd_details: pointer to command details structure or NULL
3614  **/
3615 i40e_status i40e_aq_del_udp_tunnel(struct i40e_hw *hw, u8 index,
3616 				struct i40e_asq_cmd_details *cmd_details)
3617 {
3618 	struct i40e_aq_desc desc;
3619 	struct i40e_aqc_remove_udp_tunnel *cmd =
3620 		(struct i40e_aqc_remove_udp_tunnel *)&desc.params.raw;
3621 	i40e_status status;
3622 
3623 	i40e_fill_default_direct_cmd_desc(&desc, i40e_aqc_opc_del_udp_tunnel);
3624 
3625 	cmd->index = index;
3626 
3627 	status = i40e_asq_send_command(hw, &desc, NULL, 0, cmd_details);
3628 
3629 	return status;
3630 }
3631 
3632 /**
3633  * i40e_aq_delete_element - Delete switch element
3634  * @hw: pointer to the hw struct
3635  * @seid: the SEID to delete from the switch
3636  * @cmd_details: pointer to command details structure or NULL
3637  *
3638  * This deletes a switch element from the switch.
3639  **/
3640 i40e_status i40e_aq_delete_element(struct i40e_hw *hw, u16 seid,
3641 				struct i40e_asq_cmd_details *cmd_details)
3642 {
3643 	struct i40e_aq_desc desc;
3644 	struct i40e_aqc_switch_seid *cmd =
3645 		(struct i40e_aqc_switch_seid *)&desc.params.raw;
3646 	i40e_status status;
3647 
3648 	if (seid == 0)
3649 		return I40E_ERR_PARAM;
3650 
3651 	i40e_fill_default_direct_cmd_desc(&desc, i40e_aqc_opc_delete_element);
3652 
3653 	cmd->seid = cpu_to_le16(seid);
3654 
3655 	status = i40e_asq_send_command(hw, &desc, NULL, 0, cmd_details);
3656 
3657 	return status;
3658 }
3659 
3660 /**
3661  * i40e_aq_dcb_updated - DCB Updated Command
3662  * @hw: pointer to the hw struct
3663  * @cmd_details: pointer to command details structure or NULL
3664  *
3665  * EMP will return when the shared RPB settings have been
3666  * recomputed and modified. The retval field in the descriptor
3667  * will be set to 0 when RPB is modified.
3668  **/
3669 i40e_status i40e_aq_dcb_updated(struct i40e_hw *hw,
3670 				struct i40e_asq_cmd_details *cmd_details)
3671 {
3672 	struct i40e_aq_desc desc;
3673 	i40e_status status;
3674 
3675 	i40e_fill_default_direct_cmd_desc(&desc, i40e_aqc_opc_dcb_updated);
3676 
3677 	status = i40e_asq_send_command(hw, &desc, NULL, 0, cmd_details);
3678 
3679 	return status;
3680 }
3681 
3682 /**
3683  * i40e_aq_tx_sched_cmd - generic Tx scheduler AQ command handler
3684  * @hw: pointer to the hw struct
3685  * @seid: seid for the physical port/switching component/vsi
3686  * @buff: Indirect buffer to hold data parameters and response
3687  * @buff_size: Indirect buffer size
3688  * @opcode: Tx scheduler AQ command opcode
3689  * @cmd_details: pointer to command details structure or NULL
3690  *
3691  * Generic command handler for Tx scheduler AQ commands
3692  **/
3693 static i40e_status i40e_aq_tx_sched_cmd(struct i40e_hw *hw, u16 seid,
3694 				void *buff, u16 buff_size,
3695 				 enum i40e_admin_queue_opc opcode,
3696 				struct i40e_asq_cmd_details *cmd_details)
3697 {
3698 	struct i40e_aq_desc desc;
3699 	struct i40e_aqc_tx_sched_ind *cmd =
3700 		(struct i40e_aqc_tx_sched_ind *)&desc.params.raw;
3701 	i40e_status status;
3702 	bool cmd_param_flag = false;
3703 
3704 	switch (opcode) {
3705 	case i40e_aqc_opc_configure_vsi_ets_sla_bw_limit:
3706 	case i40e_aqc_opc_configure_vsi_tc_bw:
3707 	case i40e_aqc_opc_enable_switching_comp_ets:
3708 	case i40e_aqc_opc_modify_switching_comp_ets:
3709 	case i40e_aqc_opc_disable_switching_comp_ets:
3710 	case i40e_aqc_opc_configure_switching_comp_ets_bw_limit:
3711 	case i40e_aqc_opc_configure_switching_comp_bw_config:
3712 		cmd_param_flag = true;
3713 		break;
3714 	case i40e_aqc_opc_query_vsi_bw_config:
3715 	case i40e_aqc_opc_query_vsi_ets_sla_config:
3716 	case i40e_aqc_opc_query_switching_comp_ets_config:
3717 	case i40e_aqc_opc_query_port_ets_config:
3718 	case i40e_aqc_opc_query_switching_comp_bw_config:
3719 		cmd_param_flag = false;
3720 		break;
3721 	default:
3722 		return I40E_ERR_PARAM;
3723 	}
3724 
3725 	i40e_fill_default_direct_cmd_desc(&desc, opcode);
3726 
3727 	/* Indirect command */
3728 	desc.flags |= cpu_to_le16((u16)I40E_AQ_FLAG_BUF);
3729 	if (cmd_param_flag)
3730 		desc.flags |= cpu_to_le16((u16)I40E_AQ_FLAG_RD);
3731 	if (buff_size > I40E_AQ_LARGE_BUF)
3732 		desc.flags |= cpu_to_le16((u16)I40E_AQ_FLAG_LB);
3733 
3734 	desc.datalen = cpu_to_le16(buff_size);
3735 
3736 	cmd->vsi_seid = cpu_to_le16(seid);
3737 
3738 	status = i40e_asq_send_command(hw, &desc, buff, buff_size, cmd_details);
3739 
3740 	return status;
3741 }
3742 
3743 /**
3744  * i40e_aq_config_vsi_bw_limit - Configure VSI BW Limit
3745  * @hw: pointer to the hw struct
3746  * @seid: VSI seid
3747  * @credit: BW limit credits (0 = disabled)
3748  * @max_credit: Max BW limit credits
3749  * @cmd_details: pointer to command details structure or NULL
3750  **/
3751 i40e_status i40e_aq_config_vsi_bw_limit(struct i40e_hw *hw,
3752 				u16 seid, u16 credit, u8 max_credit,
3753 				struct i40e_asq_cmd_details *cmd_details)
3754 {
3755 	struct i40e_aq_desc desc;
3756 	struct i40e_aqc_configure_vsi_bw_limit *cmd =
3757 		(struct i40e_aqc_configure_vsi_bw_limit *)&desc.params.raw;
3758 	i40e_status status;
3759 
3760 	i40e_fill_default_direct_cmd_desc(&desc,
3761 					  i40e_aqc_opc_configure_vsi_bw_limit);
3762 
3763 	cmd->vsi_seid = cpu_to_le16(seid);
3764 	cmd->credit = cpu_to_le16(credit);
3765 	cmd->max_credit = max_credit;
3766 
3767 	status = i40e_asq_send_command(hw, &desc, NULL, 0, cmd_details);
3768 
3769 	return status;
3770 }
3771 
3772 /**
3773  * i40e_aq_config_vsi_tc_bw - Config VSI BW Allocation per TC
3774  * @hw: pointer to the hw struct
3775  * @seid: VSI seid
3776  * @bw_data: Buffer holding enabled TCs, relative TC BW limit/credits
3777  * @cmd_details: pointer to command details structure or NULL
3778  **/
3779 i40e_status i40e_aq_config_vsi_tc_bw(struct i40e_hw *hw,
3780 			u16 seid,
3781 			struct i40e_aqc_configure_vsi_tc_bw_data *bw_data,
3782 			struct i40e_asq_cmd_details *cmd_details)
3783 {
3784 	return i40e_aq_tx_sched_cmd(hw, seid, (void *)bw_data, sizeof(*bw_data),
3785 				    i40e_aqc_opc_configure_vsi_tc_bw,
3786 				    cmd_details);
3787 }
3788 
3789 /**
3790  * i40e_aq_config_switch_comp_ets - Enable/Disable/Modify ETS on the port
3791  * @hw: pointer to the hw struct
3792  * @seid: seid of the switching component connected to Physical Port
3793  * @ets_data: Buffer holding ETS parameters
3794  * @cmd_details: pointer to command details structure or NULL
3795  **/
3796 i40e_status i40e_aq_config_switch_comp_ets(struct i40e_hw *hw,
3797 		u16 seid,
3798 		struct i40e_aqc_configure_switching_comp_ets_data *ets_data,
3799 		enum i40e_admin_queue_opc opcode,
3800 		struct i40e_asq_cmd_details *cmd_details)
3801 {
3802 	return i40e_aq_tx_sched_cmd(hw, seid, (void *)ets_data,
3803 				    sizeof(*ets_data), opcode, cmd_details);
3804 }
3805 
3806 /**
3807  * i40e_aq_config_switch_comp_bw_config - Config Switch comp BW Alloc per TC
3808  * @hw: pointer to the hw struct
3809  * @seid: seid of the switching component
3810  * @bw_data: Buffer holding enabled TCs, relative/absolute TC BW limit/credits
3811  * @cmd_details: pointer to command details structure or NULL
3812  **/
3813 i40e_status i40e_aq_config_switch_comp_bw_config(struct i40e_hw *hw,
3814 	u16 seid,
3815 	struct i40e_aqc_configure_switching_comp_bw_config_data *bw_data,
3816 	struct i40e_asq_cmd_details *cmd_details)
3817 {
3818 	return i40e_aq_tx_sched_cmd(hw, seid, (void *)bw_data, sizeof(*bw_data),
3819 			    i40e_aqc_opc_configure_switching_comp_bw_config,
3820 			    cmd_details);
3821 }
3822 
3823 /**
3824  * i40e_aq_query_vsi_bw_config - Query VSI BW configuration
3825  * @hw: pointer to the hw struct
3826  * @seid: seid of the VSI
3827  * @bw_data: Buffer to hold VSI BW configuration
3828  * @cmd_details: pointer to command details structure or NULL
3829  **/
3830 i40e_status i40e_aq_query_vsi_bw_config(struct i40e_hw *hw,
3831 			u16 seid,
3832 			struct i40e_aqc_query_vsi_bw_config_resp *bw_data,
3833 			struct i40e_asq_cmd_details *cmd_details)
3834 {
3835 	return i40e_aq_tx_sched_cmd(hw, seid, (void *)bw_data, sizeof(*bw_data),
3836 				    i40e_aqc_opc_query_vsi_bw_config,
3837 				    cmd_details);
3838 }
3839 
3840 /**
3841  * i40e_aq_query_vsi_ets_sla_config - Query VSI BW configuration per TC
3842  * @hw: pointer to the hw struct
3843  * @seid: seid of the VSI
3844  * @bw_data: Buffer to hold VSI BW configuration per TC
3845  * @cmd_details: pointer to command details structure or NULL
3846  **/
3847 i40e_status i40e_aq_query_vsi_ets_sla_config(struct i40e_hw *hw,
3848 			u16 seid,
3849 			struct i40e_aqc_query_vsi_ets_sla_config_resp *bw_data,
3850 			struct i40e_asq_cmd_details *cmd_details)
3851 {
3852 	return i40e_aq_tx_sched_cmd(hw, seid, (void *)bw_data, sizeof(*bw_data),
3853 				    i40e_aqc_opc_query_vsi_ets_sla_config,
3854 				    cmd_details);
3855 }
3856 
3857 /**
3858  * i40e_aq_query_switch_comp_ets_config - Query Switch comp BW config per TC
3859  * @hw: pointer to the hw struct
3860  * @seid: seid of the switching component
3861  * @bw_data: Buffer to hold switching component's per TC BW config
3862  * @cmd_details: pointer to command details structure or NULL
3863  **/
3864 i40e_status i40e_aq_query_switch_comp_ets_config(struct i40e_hw *hw,
3865 		u16 seid,
3866 		struct i40e_aqc_query_switching_comp_ets_config_resp *bw_data,
3867 		struct i40e_asq_cmd_details *cmd_details)
3868 {
3869 	return i40e_aq_tx_sched_cmd(hw, seid, (void *)bw_data, sizeof(*bw_data),
3870 				   i40e_aqc_opc_query_switching_comp_ets_config,
3871 				   cmd_details);
3872 }
3873 
3874 /**
3875  * i40e_aq_query_port_ets_config - Query Physical Port ETS configuration
3876  * @hw: pointer to the hw struct
3877  * @seid: seid of the VSI or switching component connected to Physical Port
3878  * @bw_data: Buffer to hold current ETS configuration for the Physical Port
3879  * @cmd_details: pointer to command details structure or NULL
3880  **/
3881 i40e_status i40e_aq_query_port_ets_config(struct i40e_hw *hw,
3882 			u16 seid,
3883 			struct i40e_aqc_query_port_ets_config_resp *bw_data,
3884 			struct i40e_asq_cmd_details *cmd_details)
3885 {
3886 	return i40e_aq_tx_sched_cmd(hw, seid, (void *)bw_data, sizeof(*bw_data),
3887 				    i40e_aqc_opc_query_port_ets_config,
3888 				    cmd_details);
3889 }
3890 
3891 /**
3892  * i40e_aq_query_switch_comp_bw_config - Query Switch comp BW configuration
3893  * @hw: pointer to the hw struct
3894  * @seid: seid of the switching component
3895  * @bw_data: Buffer to hold switching component's BW configuration
3896  * @cmd_details: pointer to command details structure or NULL
3897  **/
3898 i40e_status i40e_aq_query_switch_comp_bw_config(struct i40e_hw *hw,
3899 		u16 seid,
3900 		struct i40e_aqc_query_switching_comp_bw_config_resp *bw_data,
3901 		struct i40e_asq_cmd_details *cmd_details)
3902 {
3903 	return i40e_aq_tx_sched_cmd(hw, seid, (void *)bw_data, sizeof(*bw_data),
3904 				    i40e_aqc_opc_query_switching_comp_bw_config,
3905 				    cmd_details);
3906 }
3907 
3908 /**
3909  * i40e_validate_filter_settings
3910  * @hw: pointer to the hardware structure
3911  * @settings: Filter control settings
3912  *
3913  * Check and validate the filter control settings passed.
3914  * The function checks for the valid filter/context sizes being
3915  * passed for FCoE and PE.
3916  *
3917  * Returns 0 if the values passed are valid and within
3918  * range else returns an error.
3919  **/
3920 static i40e_status i40e_validate_filter_settings(struct i40e_hw *hw,
3921 				struct i40e_filter_control_settings *settings)
3922 {
3923 	u32 fcoe_cntx_size, fcoe_filt_size;
3924 	u32 pe_cntx_size, pe_filt_size;
3925 	u32 fcoe_fmax;
3926 	u32 val;
3927 
3928 	/* Validate FCoE settings passed */
3929 	switch (settings->fcoe_filt_num) {
3930 	case I40E_HASH_FILTER_SIZE_1K:
3931 	case I40E_HASH_FILTER_SIZE_2K:
3932 	case I40E_HASH_FILTER_SIZE_4K:
3933 	case I40E_HASH_FILTER_SIZE_8K:
3934 	case I40E_HASH_FILTER_SIZE_16K:
3935 	case I40E_HASH_FILTER_SIZE_32K:
3936 		fcoe_filt_size = I40E_HASH_FILTER_BASE_SIZE;
3937 		fcoe_filt_size <<= (u32)settings->fcoe_filt_num;
3938 		break;
3939 	default:
3940 		return I40E_ERR_PARAM;
3941 	}
3942 
3943 	switch (settings->fcoe_cntx_num) {
3944 	case I40E_DMA_CNTX_SIZE_512:
3945 	case I40E_DMA_CNTX_SIZE_1K:
3946 	case I40E_DMA_CNTX_SIZE_2K:
3947 	case I40E_DMA_CNTX_SIZE_4K:
3948 		fcoe_cntx_size = I40E_DMA_CNTX_BASE_SIZE;
3949 		fcoe_cntx_size <<= (u32)settings->fcoe_cntx_num;
3950 		break;
3951 	default:
3952 		return I40E_ERR_PARAM;
3953 	}
3954 
3955 	/* Validate PE settings passed */
3956 	switch (settings->pe_filt_num) {
3957 	case I40E_HASH_FILTER_SIZE_1K:
3958 	case I40E_HASH_FILTER_SIZE_2K:
3959 	case I40E_HASH_FILTER_SIZE_4K:
3960 	case I40E_HASH_FILTER_SIZE_8K:
3961 	case I40E_HASH_FILTER_SIZE_16K:
3962 	case I40E_HASH_FILTER_SIZE_32K:
3963 	case I40E_HASH_FILTER_SIZE_64K:
3964 	case I40E_HASH_FILTER_SIZE_128K:
3965 	case I40E_HASH_FILTER_SIZE_256K:
3966 	case I40E_HASH_FILTER_SIZE_512K:
3967 	case I40E_HASH_FILTER_SIZE_1M:
3968 		pe_filt_size = I40E_HASH_FILTER_BASE_SIZE;
3969 		pe_filt_size <<= (u32)settings->pe_filt_num;
3970 		break;
3971 	default:
3972 		return I40E_ERR_PARAM;
3973 	}
3974 
3975 	switch (settings->pe_cntx_num) {
3976 	case I40E_DMA_CNTX_SIZE_512:
3977 	case I40E_DMA_CNTX_SIZE_1K:
3978 	case I40E_DMA_CNTX_SIZE_2K:
3979 	case I40E_DMA_CNTX_SIZE_4K:
3980 	case I40E_DMA_CNTX_SIZE_8K:
3981 	case I40E_DMA_CNTX_SIZE_16K:
3982 	case I40E_DMA_CNTX_SIZE_32K:
3983 	case I40E_DMA_CNTX_SIZE_64K:
3984 	case I40E_DMA_CNTX_SIZE_128K:
3985 	case I40E_DMA_CNTX_SIZE_256K:
3986 		pe_cntx_size = I40E_DMA_CNTX_BASE_SIZE;
3987 		pe_cntx_size <<= (u32)settings->pe_cntx_num;
3988 		break;
3989 	default:
3990 		return I40E_ERR_PARAM;
3991 	}
3992 
3993 	/* FCHSIZE + FCDSIZE should not be greater than PMFCOEFMAX */
3994 	val = rd32(hw, I40E_GLHMC_FCOEFMAX);
3995 	fcoe_fmax = (val & I40E_GLHMC_FCOEFMAX_PMFCOEFMAX_MASK)
3996 		     >> I40E_GLHMC_FCOEFMAX_PMFCOEFMAX_SHIFT;
3997 	if (fcoe_filt_size + fcoe_cntx_size >  fcoe_fmax)
3998 		return I40E_ERR_INVALID_SIZE;
3999 
4000 	return 0;
4001 }
4002 
4003 /**
4004  * i40e_set_filter_control
4005  * @hw: pointer to the hardware structure
4006  * @settings: Filter control settings
4007  *
4008  * Set the Queue Filters for PE/FCoE and enable filters required
4009  * for a single PF. It is expected that these settings are programmed
4010  * at the driver initialization time.
4011  **/
4012 i40e_status i40e_set_filter_control(struct i40e_hw *hw,
4013 				struct i40e_filter_control_settings *settings)
4014 {
4015 	i40e_status ret = 0;
4016 	u32 hash_lut_size = 0;
4017 	u32 val;
4018 
4019 	if (!settings)
4020 		return I40E_ERR_PARAM;
4021 
4022 	/* Validate the input settings */
4023 	ret = i40e_validate_filter_settings(hw, settings);
4024 	if (ret)
4025 		return ret;
4026 
4027 	/* Read the PF Queue Filter control register */
4028 	val = i40e_read_rx_ctl(hw, I40E_PFQF_CTL_0);
4029 
4030 	/* Program required PE hash buckets for the PF */
4031 	val &= ~I40E_PFQF_CTL_0_PEHSIZE_MASK;
4032 	val |= ((u32)settings->pe_filt_num << I40E_PFQF_CTL_0_PEHSIZE_SHIFT) &
4033 		I40E_PFQF_CTL_0_PEHSIZE_MASK;
4034 	/* Program required PE contexts for the PF */
4035 	val &= ~I40E_PFQF_CTL_0_PEDSIZE_MASK;
4036 	val |= ((u32)settings->pe_cntx_num << I40E_PFQF_CTL_0_PEDSIZE_SHIFT) &
4037 		I40E_PFQF_CTL_0_PEDSIZE_MASK;
4038 
4039 	/* Program required FCoE hash buckets for the PF */
4040 	val &= ~I40E_PFQF_CTL_0_PFFCHSIZE_MASK;
4041 	val |= ((u32)settings->fcoe_filt_num <<
4042 			I40E_PFQF_CTL_0_PFFCHSIZE_SHIFT) &
4043 		I40E_PFQF_CTL_0_PFFCHSIZE_MASK;
4044 	/* Program required FCoE DDP contexts for the PF */
4045 	val &= ~I40E_PFQF_CTL_0_PFFCDSIZE_MASK;
4046 	val |= ((u32)settings->fcoe_cntx_num <<
4047 			I40E_PFQF_CTL_0_PFFCDSIZE_SHIFT) &
4048 		I40E_PFQF_CTL_0_PFFCDSIZE_MASK;
4049 
4050 	/* Program Hash LUT size for the PF */
4051 	val &= ~I40E_PFQF_CTL_0_HASHLUTSIZE_MASK;
4052 	if (settings->hash_lut_size == I40E_HASH_LUT_SIZE_512)
4053 		hash_lut_size = 1;
4054 	val |= (hash_lut_size << I40E_PFQF_CTL_0_HASHLUTSIZE_SHIFT) &
4055 		I40E_PFQF_CTL_0_HASHLUTSIZE_MASK;
4056 
4057 	/* Enable FDIR, Ethertype and MACVLAN filters for PF and VFs */
4058 	if (settings->enable_fdir)
4059 		val |= I40E_PFQF_CTL_0_FD_ENA_MASK;
4060 	if (settings->enable_ethtype)
4061 		val |= I40E_PFQF_CTL_0_ETYPE_ENA_MASK;
4062 	if (settings->enable_macvlan)
4063 		val |= I40E_PFQF_CTL_0_MACVLAN_ENA_MASK;
4064 
4065 	i40e_write_rx_ctl(hw, I40E_PFQF_CTL_0, val);
4066 
4067 	return 0;
4068 }
4069 
4070 /**
4071  * i40e_aq_add_rem_control_packet_filter - Add or Remove Control Packet Filter
4072  * @hw: pointer to the hw struct
4073  * @mac_addr: MAC address to use in the filter
4074  * @ethtype: Ethertype to use in the filter
4075  * @flags: Flags that needs to be applied to the filter
4076  * @vsi_seid: seid of the control VSI
4077  * @queue: VSI queue number to send the packet to
4078  * @is_add: Add control packet filter if True else remove
4079  * @stats: Structure to hold information on control filter counts
4080  * @cmd_details: pointer to command details structure or NULL
4081  *
4082  * This command will Add or Remove control packet filter for a control VSI.
4083  * In return it will update the total number of perfect filter count in
4084  * the stats member.
4085  **/
4086 i40e_status i40e_aq_add_rem_control_packet_filter(struct i40e_hw *hw,
4087 				u8 *mac_addr, u16 ethtype, u16 flags,
4088 				u16 vsi_seid, u16 queue, bool is_add,
4089 				struct i40e_control_filter_stats *stats,
4090 				struct i40e_asq_cmd_details *cmd_details)
4091 {
4092 	struct i40e_aq_desc desc;
4093 	struct i40e_aqc_add_remove_control_packet_filter *cmd =
4094 		(struct i40e_aqc_add_remove_control_packet_filter *)
4095 		&desc.params.raw;
4096 	struct i40e_aqc_add_remove_control_packet_filter_completion *resp =
4097 		(struct i40e_aqc_add_remove_control_packet_filter_completion *)
4098 		&desc.params.raw;
4099 	i40e_status status;
4100 
4101 	if (vsi_seid == 0)
4102 		return I40E_ERR_PARAM;
4103 
4104 	if (is_add) {
4105 		i40e_fill_default_direct_cmd_desc(&desc,
4106 				i40e_aqc_opc_add_control_packet_filter);
4107 		cmd->queue = cpu_to_le16(queue);
4108 	} else {
4109 		i40e_fill_default_direct_cmd_desc(&desc,
4110 				i40e_aqc_opc_remove_control_packet_filter);
4111 	}
4112 
4113 	if (mac_addr)
4114 		ether_addr_copy(cmd->mac, mac_addr);
4115 
4116 	cmd->etype = cpu_to_le16(ethtype);
4117 	cmd->flags = cpu_to_le16(flags);
4118 	cmd->seid = cpu_to_le16(vsi_seid);
4119 
4120 	status = i40e_asq_send_command(hw, &desc, NULL, 0, cmd_details);
4121 
4122 	if (!status && stats) {
4123 		stats->mac_etype_used = le16_to_cpu(resp->mac_etype_used);
4124 		stats->etype_used = le16_to_cpu(resp->etype_used);
4125 		stats->mac_etype_free = le16_to_cpu(resp->mac_etype_free);
4126 		stats->etype_free = le16_to_cpu(resp->etype_free);
4127 	}
4128 
4129 	return status;
4130 }
4131 
4132 /**
4133  * i40e_add_filter_to_drop_tx_flow_control_frames- filter to drop flow control
4134  * @hw: pointer to the hw struct
4135  * @seid: VSI seid to add ethertype filter from
4136  **/
4137 #define I40E_FLOW_CONTROL_ETHTYPE 0x8808
4138 void i40e_add_filter_to_drop_tx_flow_control_frames(struct i40e_hw *hw,
4139 						    u16 seid)
4140 {
4141 	u16 flag = I40E_AQC_ADD_CONTROL_PACKET_FLAGS_IGNORE_MAC |
4142 		   I40E_AQC_ADD_CONTROL_PACKET_FLAGS_DROP |
4143 		   I40E_AQC_ADD_CONTROL_PACKET_FLAGS_TX;
4144 	u16 ethtype = I40E_FLOW_CONTROL_ETHTYPE;
4145 	i40e_status status;
4146 
4147 	status = i40e_aq_add_rem_control_packet_filter(hw, NULL, ethtype, flag,
4148 						       seid, 0, true, NULL,
4149 						       NULL);
4150 	if (status)
4151 		hw_dbg(hw, "Ethtype Filter Add failed: Error pruning Tx flow control frames\n");
4152 }
4153 
4154 /**
4155  * i40e_aq_alternate_read
4156  * @hw: pointer to the hardware structure
4157  * @reg_addr0: address of first dword to be read
4158  * @reg_val0: pointer for data read from 'reg_addr0'
4159  * @reg_addr1: address of second dword to be read
4160  * @reg_val1: pointer for data read from 'reg_addr1'
4161  *
4162  * Read one or two dwords from alternate structure. Fields are indicated
4163  * by 'reg_addr0' and 'reg_addr1' register numbers. If 'reg_val1' pointer
4164  * is not passed then only register at 'reg_addr0' is read.
4165  *
4166  **/
4167 static i40e_status i40e_aq_alternate_read(struct i40e_hw *hw,
4168 					  u32 reg_addr0, u32 *reg_val0,
4169 					  u32 reg_addr1, u32 *reg_val1)
4170 {
4171 	struct i40e_aq_desc desc;
4172 	struct i40e_aqc_alternate_write *cmd_resp =
4173 		(struct i40e_aqc_alternate_write *)&desc.params.raw;
4174 	i40e_status status;
4175 
4176 	if (!reg_val0)
4177 		return I40E_ERR_PARAM;
4178 
4179 	i40e_fill_default_direct_cmd_desc(&desc, i40e_aqc_opc_alternate_read);
4180 	cmd_resp->address0 = cpu_to_le32(reg_addr0);
4181 	cmd_resp->address1 = cpu_to_le32(reg_addr1);
4182 
4183 	status = i40e_asq_send_command(hw, &desc, NULL, 0, NULL);
4184 
4185 	if (!status) {
4186 		*reg_val0 = le32_to_cpu(cmd_resp->data0);
4187 
4188 		if (reg_val1)
4189 			*reg_val1 = le32_to_cpu(cmd_resp->data1);
4190 	}
4191 
4192 	return status;
4193 }
4194 
4195 /**
4196  * i40e_aq_resume_port_tx
4197  * @hw: pointer to the hardware structure
4198  * @cmd_details: pointer to command details structure or NULL
4199  *
4200  * Resume port's Tx traffic
4201  **/
4202 i40e_status i40e_aq_resume_port_tx(struct i40e_hw *hw,
4203 				   struct i40e_asq_cmd_details *cmd_details)
4204 {
4205 	struct i40e_aq_desc desc;
4206 	i40e_status status;
4207 
4208 	i40e_fill_default_direct_cmd_desc(&desc, i40e_aqc_opc_resume_port_tx);
4209 
4210 	status = i40e_asq_send_command(hw, &desc, NULL, 0, cmd_details);
4211 
4212 	return status;
4213 }
4214 
4215 /**
4216  * i40e_set_pci_config_data - store PCI bus info
4217  * @hw: pointer to hardware structure
4218  * @link_status: the link status word from PCI config space
4219  *
4220  * Stores the PCI bus info (speed, width, type) within the i40e_hw structure
4221  **/
4222 void i40e_set_pci_config_data(struct i40e_hw *hw, u16 link_status)
4223 {
4224 	hw->bus.type = i40e_bus_type_pci_express;
4225 
4226 	switch (link_status & PCI_EXP_LNKSTA_NLW) {
4227 	case PCI_EXP_LNKSTA_NLW_X1:
4228 		hw->bus.width = i40e_bus_width_pcie_x1;
4229 		break;
4230 	case PCI_EXP_LNKSTA_NLW_X2:
4231 		hw->bus.width = i40e_bus_width_pcie_x2;
4232 		break;
4233 	case PCI_EXP_LNKSTA_NLW_X4:
4234 		hw->bus.width = i40e_bus_width_pcie_x4;
4235 		break;
4236 	case PCI_EXP_LNKSTA_NLW_X8:
4237 		hw->bus.width = i40e_bus_width_pcie_x8;
4238 		break;
4239 	default:
4240 		hw->bus.width = i40e_bus_width_unknown;
4241 		break;
4242 	}
4243 
4244 	switch (link_status & PCI_EXP_LNKSTA_CLS) {
4245 	case PCI_EXP_LNKSTA_CLS_2_5GB:
4246 		hw->bus.speed = i40e_bus_speed_2500;
4247 		break;
4248 	case PCI_EXP_LNKSTA_CLS_5_0GB:
4249 		hw->bus.speed = i40e_bus_speed_5000;
4250 		break;
4251 	case PCI_EXP_LNKSTA_CLS_8_0GB:
4252 		hw->bus.speed = i40e_bus_speed_8000;
4253 		break;
4254 	default:
4255 		hw->bus.speed = i40e_bus_speed_unknown;
4256 		break;
4257 	}
4258 }
4259 
4260 /**
4261  * i40e_aq_debug_dump
4262  * @hw: pointer to the hardware structure
4263  * @cluster_id: specific cluster to dump
4264  * @table_id: table id within cluster
4265  * @start_index: index of line in the block to read
4266  * @buff_size: dump buffer size
4267  * @buff: dump buffer
4268  * @ret_buff_size: actual buffer size returned
4269  * @ret_next_table: next block to read
4270  * @ret_next_index: next index to read
4271  *
4272  * Dump internal FW/HW data for debug purposes.
4273  *
4274  **/
4275 i40e_status i40e_aq_debug_dump(struct i40e_hw *hw, u8 cluster_id,
4276 			       u8 table_id, u32 start_index, u16 buff_size,
4277 			       void *buff, u16 *ret_buff_size,
4278 			       u8 *ret_next_table, u32 *ret_next_index,
4279 			       struct i40e_asq_cmd_details *cmd_details)
4280 {
4281 	struct i40e_aq_desc desc;
4282 	struct i40e_aqc_debug_dump_internals *cmd =
4283 		(struct i40e_aqc_debug_dump_internals *)&desc.params.raw;
4284 	struct i40e_aqc_debug_dump_internals *resp =
4285 		(struct i40e_aqc_debug_dump_internals *)&desc.params.raw;
4286 	i40e_status status;
4287 
4288 	if (buff_size == 0 || !buff)
4289 		return I40E_ERR_PARAM;
4290 
4291 	i40e_fill_default_direct_cmd_desc(&desc,
4292 					  i40e_aqc_opc_debug_dump_internals);
4293 	/* Indirect Command */
4294 	desc.flags |= cpu_to_le16((u16)I40E_AQ_FLAG_BUF);
4295 	if (buff_size > I40E_AQ_LARGE_BUF)
4296 		desc.flags |= cpu_to_le16((u16)I40E_AQ_FLAG_LB);
4297 
4298 	cmd->cluster_id = cluster_id;
4299 	cmd->table_id = table_id;
4300 	cmd->idx = cpu_to_le32(start_index);
4301 
4302 	desc.datalen = cpu_to_le16(buff_size);
4303 
4304 	status = i40e_asq_send_command(hw, &desc, buff, buff_size, cmd_details);
4305 	if (!status) {
4306 		if (ret_buff_size)
4307 			*ret_buff_size = le16_to_cpu(desc.datalen);
4308 		if (ret_next_table)
4309 			*ret_next_table = resp->table_id;
4310 		if (ret_next_index)
4311 			*ret_next_index = le32_to_cpu(resp->idx);
4312 	}
4313 
4314 	return status;
4315 }
4316 
4317 /**
4318  * i40e_read_bw_from_alt_ram
4319  * @hw: pointer to the hardware structure
4320  * @max_bw: pointer for max_bw read
4321  * @min_bw: pointer for min_bw read
4322  * @min_valid: pointer for bool that is true if min_bw is a valid value
4323  * @max_valid: pointer for bool that is true if max_bw is a valid value
4324  *
4325  * Read bw from the alternate ram for the given pf
4326  **/
4327 i40e_status i40e_read_bw_from_alt_ram(struct i40e_hw *hw,
4328 				      u32 *max_bw, u32 *min_bw,
4329 				      bool *min_valid, bool *max_valid)
4330 {
4331 	i40e_status status;
4332 	u32 max_bw_addr, min_bw_addr;
4333 
4334 	/* Calculate the address of the min/max bw registers */
4335 	max_bw_addr = I40E_ALT_STRUCT_FIRST_PF_OFFSET +
4336 		      I40E_ALT_STRUCT_MAX_BW_OFFSET +
4337 		      (I40E_ALT_STRUCT_DWORDS_PER_PF * hw->pf_id);
4338 	min_bw_addr = I40E_ALT_STRUCT_FIRST_PF_OFFSET +
4339 		      I40E_ALT_STRUCT_MIN_BW_OFFSET +
4340 		      (I40E_ALT_STRUCT_DWORDS_PER_PF * hw->pf_id);
4341 
4342 	/* Read the bandwidths from alt ram */
4343 	status = i40e_aq_alternate_read(hw, max_bw_addr, max_bw,
4344 					min_bw_addr, min_bw);
4345 
4346 	if (*min_bw & I40E_ALT_BW_VALID_MASK)
4347 		*min_valid = true;
4348 	else
4349 		*min_valid = false;
4350 
4351 	if (*max_bw & I40E_ALT_BW_VALID_MASK)
4352 		*max_valid = true;
4353 	else
4354 		*max_valid = false;
4355 
4356 	return status;
4357 }
4358 
4359 /**
4360  * i40e_aq_configure_partition_bw
4361  * @hw: pointer to the hardware structure
4362  * @bw_data: Buffer holding valid pfs and bw limits
4363  * @cmd_details: pointer to command details
4364  *
4365  * Configure partitions guaranteed/max bw
4366  **/
4367 i40e_status i40e_aq_configure_partition_bw(struct i40e_hw *hw,
4368 			struct i40e_aqc_configure_partition_bw_data *bw_data,
4369 			struct i40e_asq_cmd_details *cmd_details)
4370 {
4371 	i40e_status status;
4372 	struct i40e_aq_desc desc;
4373 	u16 bwd_size = sizeof(*bw_data);
4374 
4375 	i40e_fill_default_direct_cmd_desc(&desc,
4376 					  i40e_aqc_opc_configure_partition_bw);
4377 
4378 	/* Indirect command */
4379 	desc.flags |= cpu_to_le16((u16)I40E_AQ_FLAG_BUF);
4380 	desc.flags |= cpu_to_le16((u16)I40E_AQ_FLAG_RD);
4381 
4382 	if (bwd_size > I40E_AQ_LARGE_BUF)
4383 		desc.flags |= cpu_to_le16((u16)I40E_AQ_FLAG_LB);
4384 
4385 	desc.datalen = cpu_to_le16(bwd_size);
4386 
4387 	status = i40e_asq_send_command(hw, &desc, bw_data, bwd_size,
4388 				       cmd_details);
4389 
4390 	return status;
4391 }
4392 
4393 /**
4394  * i40e_read_phy_register
4395  * @hw: pointer to the HW structure
4396  * @page: registers page number
4397  * @reg: register address in the page
4398  * @phy_adr: PHY address on MDIO interface
4399  * @value: PHY register value
4400  *
4401  * Reads specified PHY register value
4402  **/
4403 i40e_status i40e_read_phy_register(struct i40e_hw *hw,
4404 				   u8 page, u16 reg, u8 phy_addr,
4405 				   u16 *value)
4406 {
4407 	i40e_status status = I40E_ERR_TIMEOUT;
4408 	u32 command = 0;
4409 	u16 retry = 1000;
4410 	u8 port_num = hw->func_caps.mdio_port_num;
4411 
4412 	command = (reg << I40E_GLGEN_MSCA_MDIADD_SHIFT) |
4413 		  (page << I40E_GLGEN_MSCA_DEVADD_SHIFT) |
4414 		  (phy_addr << I40E_GLGEN_MSCA_PHYADD_SHIFT) |
4415 		  (I40E_MDIO_OPCODE_ADDRESS) |
4416 		  (I40E_MDIO_STCODE) |
4417 		  (I40E_GLGEN_MSCA_MDICMD_MASK) |
4418 		  (I40E_GLGEN_MSCA_MDIINPROGEN_MASK);
4419 	wr32(hw, I40E_GLGEN_MSCA(port_num), command);
4420 	do {
4421 		command = rd32(hw, I40E_GLGEN_MSCA(port_num));
4422 		if (!(command & I40E_GLGEN_MSCA_MDICMD_MASK)) {
4423 			status = 0;
4424 			break;
4425 		}
4426 		usleep_range(10, 20);
4427 		retry--;
4428 	} while (retry);
4429 
4430 	if (status) {
4431 		i40e_debug(hw, I40E_DEBUG_PHY,
4432 			   "PHY: Can't write command to external PHY.\n");
4433 		goto phy_read_end;
4434 	}
4435 
4436 	command = (page << I40E_GLGEN_MSCA_DEVADD_SHIFT) |
4437 		  (phy_addr << I40E_GLGEN_MSCA_PHYADD_SHIFT) |
4438 		  (I40E_MDIO_OPCODE_READ) |
4439 		  (I40E_MDIO_STCODE) |
4440 		  (I40E_GLGEN_MSCA_MDICMD_MASK) |
4441 		  (I40E_GLGEN_MSCA_MDIINPROGEN_MASK);
4442 	status = I40E_ERR_TIMEOUT;
4443 	retry = 1000;
4444 	wr32(hw, I40E_GLGEN_MSCA(port_num), command);
4445 	do {
4446 		command = rd32(hw, I40E_GLGEN_MSCA(port_num));
4447 		if (!(command & I40E_GLGEN_MSCA_MDICMD_MASK)) {
4448 			status = 0;
4449 			break;
4450 		}
4451 		usleep_range(10, 20);
4452 		retry--;
4453 	} while (retry);
4454 
4455 	if (!status) {
4456 		command = rd32(hw, I40E_GLGEN_MSRWD(port_num));
4457 		*value = (command & I40E_GLGEN_MSRWD_MDIRDDATA_MASK) >>
4458 			 I40E_GLGEN_MSRWD_MDIRDDATA_SHIFT;
4459 	} else {
4460 		i40e_debug(hw, I40E_DEBUG_PHY,
4461 			   "PHY: Can't read register value from external PHY.\n");
4462 	}
4463 
4464 phy_read_end:
4465 	return status;
4466 }
4467 
4468 /**
4469  * i40e_write_phy_register
4470  * @hw: pointer to the HW structure
4471  * @page: registers page number
4472  * @reg: register address in the page
4473  * @phy_adr: PHY address on MDIO interface
4474  * @value: PHY register value
4475  *
4476  * Writes value to specified PHY register
4477  **/
4478 i40e_status i40e_write_phy_register(struct i40e_hw *hw,
4479 				    u8 page, u16 reg, u8 phy_addr,
4480 				    u16 value)
4481 {
4482 	i40e_status status = I40E_ERR_TIMEOUT;
4483 	u32 command = 0;
4484 	u16 retry = 1000;
4485 	u8 port_num = hw->func_caps.mdio_port_num;
4486 
4487 	command = (reg << I40E_GLGEN_MSCA_MDIADD_SHIFT) |
4488 		  (page << I40E_GLGEN_MSCA_DEVADD_SHIFT) |
4489 		  (phy_addr << I40E_GLGEN_MSCA_PHYADD_SHIFT) |
4490 		  (I40E_MDIO_OPCODE_ADDRESS) |
4491 		  (I40E_MDIO_STCODE) |
4492 		  (I40E_GLGEN_MSCA_MDICMD_MASK) |
4493 		  (I40E_GLGEN_MSCA_MDIINPROGEN_MASK);
4494 	wr32(hw, I40E_GLGEN_MSCA(port_num), command);
4495 	do {
4496 		command = rd32(hw, I40E_GLGEN_MSCA(port_num));
4497 		if (!(command & I40E_GLGEN_MSCA_MDICMD_MASK)) {
4498 			status = 0;
4499 			break;
4500 		}
4501 		usleep_range(10, 20);
4502 		retry--;
4503 	} while (retry);
4504 	if (status) {
4505 		i40e_debug(hw, I40E_DEBUG_PHY,
4506 			   "PHY: Can't write command to external PHY.\n");
4507 		goto phy_write_end;
4508 	}
4509 
4510 	command = value << I40E_GLGEN_MSRWD_MDIWRDATA_SHIFT;
4511 	wr32(hw, I40E_GLGEN_MSRWD(port_num), command);
4512 
4513 	command = (page << I40E_GLGEN_MSCA_DEVADD_SHIFT) |
4514 		  (phy_addr << I40E_GLGEN_MSCA_PHYADD_SHIFT) |
4515 		  (I40E_MDIO_OPCODE_WRITE) |
4516 		  (I40E_MDIO_STCODE) |
4517 		  (I40E_GLGEN_MSCA_MDICMD_MASK) |
4518 		  (I40E_GLGEN_MSCA_MDIINPROGEN_MASK);
4519 	status = I40E_ERR_TIMEOUT;
4520 	retry = 1000;
4521 	wr32(hw, I40E_GLGEN_MSCA(port_num), command);
4522 	do {
4523 		command = rd32(hw, I40E_GLGEN_MSCA(port_num));
4524 		if (!(command & I40E_GLGEN_MSCA_MDICMD_MASK)) {
4525 			status = 0;
4526 			break;
4527 		}
4528 		usleep_range(10, 20);
4529 		retry--;
4530 	} while (retry);
4531 
4532 phy_write_end:
4533 	return status;
4534 }
4535 
4536 /**
4537  * i40e_get_phy_address
4538  * @hw: pointer to the HW structure
4539  * @dev_num: PHY port num that address we want
4540  * @phy_addr: Returned PHY address
4541  *
4542  * Gets PHY address for current port
4543  **/
4544 u8 i40e_get_phy_address(struct i40e_hw *hw, u8 dev_num)
4545 {
4546 	u8 port_num = hw->func_caps.mdio_port_num;
4547 	u32 reg_val = rd32(hw, I40E_GLGEN_MDIO_I2C_SEL(port_num));
4548 
4549 	return (u8)(reg_val >> ((dev_num + 1) * 5)) & 0x1f;
4550 }
4551 
4552 /**
4553  * i40e_blink_phy_led
4554  * @hw: pointer to the HW structure
4555  * @time: time how long led will blinks in secs
4556  * @interval: gap between LED on and off in msecs
4557  *
4558  * Blinks PHY link LED
4559  **/
4560 i40e_status i40e_blink_phy_link_led(struct i40e_hw *hw,
4561 				    u32 time, u32 interval)
4562 {
4563 	i40e_status status = 0;
4564 	u32 i;
4565 	u16 led_ctl;
4566 	u16 gpio_led_port;
4567 	u16 led_reg;
4568 	u16 led_addr = I40E_PHY_LED_PROV_REG_1;
4569 	u8 phy_addr = 0;
4570 	u8 port_num;
4571 
4572 	i = rd32(hw, I40E_PFGEN_PORTNUM);
4573 	port_num = (u8)(i & I40E_PFGEN_PORTNUM_PORT_NUM_MASK);
4574 	phy_addr = i40e_get_phy_address(hw, port_num);
4575 
4576 	for (gpio_led_port = 0; gpio_led_port < 3; gpio_led_port++,
4577 	     led_addr++) {
4578 		status = i40e_read_phy_register(hw, I40E_PHY_COM_REG_PAGE,
4579 						led_addr, phy_addr, &led_reg);
4580 		if (status)
4581 			goto phy_blinking_end;
4582 		led_ctl = led_reg;
4583 		if (led_reg & I40E_PHY_LED_LINK_MODE_MASK) {
4584 			led_reg = 0;
4585 			status = i40e_write_phy_register(hw,
4586 							 I40E_PHY_COM_REG_PAGE,
4587 							 led_addr, phy_addr,
4588 							 led_reg);
4589 			if (status)
4590 				goto phy_blinking_end;
4591 			break;
4592 		}
4593 	}
4594 
4595 	if (time > 0 && interval > 0) {
4596 		for (i = 0; i < time * 1000; i += interval) {
4597 			status = i40e_read_phy_register(hw,
4598 							I40E_PHY_COM_REG_PAGE,
4599 							led_addr, phy_addr,
4600 							&led_reg);
4601 			if (status)
4602 				goto restore_config;
4603 			if (led_reg & I40E_PHY_LED_MANUAL_ON)
4604 				led_reg = 0;
4605 			else
4606 				led_reg = I40E_PHY_LED_MANUAL_ON;
4607 			status = i40e_write_phy_register(hw,
4608 							 I40E_PHY_COM_REG_PAGE,
4609 							 led_addr, phy_addr,
4610 							 led_reg);
4611 			if (status)
4612 				goto restore_config;
4613 			msleep(interval);
4614 		}
4615 	}
4616 
4617 restore_config:
4618 	status = i40e_write_phy_register(hw, I40E_PHY_COM_REG_PAGE, led_addr,
4619 					 phy_addr, led_ctl);
4620 
4621 phy_blinking_end:
4622 	return status;
4623 }
4624 
4625 /**
4626  * i40e_led_get_phy - return current on/off mode
4627  * @hw: pointer to the hw struct
4628  * @led_addr: address of led register to use
4629  * @val: original value of register to use
4630  *
4631  **/
4632 i40e_status i40e_led_get_phy(struct i40e_hw *hw, u16 *led_addr,
4633 			     u16 *val)
4634 {
4635 	i40e_status status = 0;
4636 	u16 gpio_led_port;
4637 	u8 phy_addr = 0;
4638 	u16 reg_val;
4639 	u16 temp_addr;
4640 	u8 port_num;
4641 	u32 i;
4642 
4643 	temp_addr = I40E_PHY_LED_PROV_REG_1;
4644 	i = rd32(hw, I40E_PFGEN_PORTNUM);
4645 	port_num = (u8)(i & I40E_PFGEN_PORTNUM_PORT_NUM_MASK);
4646 	phy_addr = i40e_get_phy_address(hw, port_num);
4647 
4648 	for (gpio_led_port = 0; gpio_led_port < 3; gpio_led_port++,
4649 	     temp_addr++) {
4650 		status = i40e_read_phy_register(hw, I40E_PHY_COM_REG_PAGE,
4651 						temp_addr, phy_addr, &reg_val);
4652 		if (status)
4653 			return status;
4654 		*val = reg_val;
4655 		if (reg_val & I40E_PHY_LED_LINK_MODE_MASK) {
4656 			*led_addr = temp_addr;
4657 			break;
4658 		}
4659 	}
4660 	return status;
4661 }
4662 
4663 /**
4664  * i40e_led_set_phy
4665  * @hw: pointer to the HW structure
4666  * @on: true or false
4667  * @mode: original val plus bit for set or ignore
4668  * Set led's on or off when controlled by the PHY
4669  *
4670  **/
4671 i40e_status i40e_led_set_phy(struct i40e_hw *hw, bool on,
4672 			     u16 led_addr, u32 mode)
4673 {
4674 	i40e_status status = 0;
4675 	u16 led_ctl = 0;
4676 	u16 led_reg = 0;
4677 	u8 phy_addr = 0;
4678 	u8 port_num;
4679 	u32 i;
4680 
4681 	i = rd32(hw, I40E_PFGEN_PORTNUM);
4682 	port_num = (u8)(i & I40E_PFGEN_PORTNUM_PORT_NUM_MASK);
4683 	phy_addr = i40e_get_phy_address(hw, port_num);
4684 
4685 	status = i40e_read_phy_register(hw, I40E_PHY_COM_REG_PAGE, led_addr,
4686 					phy_addr, &led_reg);
4687 	if (status)
4688 		return status;
4689 	led_ctl = led_reg;
4690 	if (led_reg & I40E_PHY_LED_LINK_MODE_MASK) {
4691 		led_reg = 0;
4692 		status = i40e_write_phy_register(hw, I40E_PHY_COM_REG_PAGE,
4693 						 led_addr, phy_addr, led_reg);
4694 		if (status)
4695 			return status;
4696 	}
4697 	status = i40e_read_phy_register(hw, I40E_PHY_COM_REG_PAGE,
4698 					led_addr, phy_addr, &led_reg);
4699 	if (status)
4700 		goto restore_config;
4701 	if (on)
4702 		led_reg = I40E_PHY_LED_MANUAL_ON;
4703 	else
4704 		led_reg = 0;
4705 	status = i40e_write_phy_register(hw, I40E_PHY_COM_REG_PAGE,
4706 					 led_addr, phy_addr, led_reg);
4707 	if (status)
4708 		goto restore_config;
4709 	if (mode & I40E_PHY_LED_MODE_ORIG) {
4710 		led_ctl = (mode & I40E_PHY_LED_MODE_MASK);
4711 		status = i40e_write_phy_register(hw,
4712 						 I40E_PHY_COM_REG_PAGE,
4713 						 led_addr, phy_addr, led_ctl);
4714 	}
4715 	return status;
4716 restore_config:
4717 	status = i40e_write_phy_register(hw, I40E_PHY_COM_REG_PAGE, led_addr,
4718 					 phy_addr, led_ctl);
4719 	return status;
4720 }
4721 
4722 /**
4723  * i40e_aq_rx_ctl_read_register - use FW to read from an Rx control register
4724  * @hw: pointer to the hw struct
4725  * @reg_addr: register address
4726  * @reg_val: ptr to register value
4727  * @cmd_details: pointer to command details structure or NULL
4728  *
4729  * Use the firmware to read the Rx control register,
4730  * especially useful if the Rx unit is under heavy pressure
4731  **/
4732 i40e_status i40e_aq_rx_ctl_read_register(struct i40e_hw *hw,
4733 				u32 reg_addr, u32 *reg_val,
4734 				struct i40e_asq_cmd_details *cmd_details)
4735 {
4736 	struct i40e_aq_desc desc;
4737 	struct i40e_aqc_rx_ctl_reg_read_write *cmd_resp =
4738 		(struct i40e_aqc_rx_ctl_reg_read_write *)&desc.params.raw;
4739 	i40e_status status;
4740 
4741 	if (!reg_val)
4742 		return I40E_ERR_PARAM;
4743 
4744 	i40e_fill_default_direct_cmd_desc(&desc, i40e_aqc_opc_rx_ctl_reg_read);
4745 
4746 	cmd_resp->address = cpu_to_le32(reg_addr);
4747 
4748 	status = i40e_asq_send_command(hw, &desc, NULL, 0, cmd_details);
4749 
4750 	if (status == 0)
4751 		*reg_val = le32_to_cpu(cmd_resp->value);
4752 
4753 	return status;
4754 }
4755 
4756 /**
4757  * i40e_read_rx_ctl - read from an Rx control register
4758  * @hw: pointer to the hw struct
4759  * @reg_addr: register address
4760  **/
4761 u32 i40e_read_rx_ctl(struct i40e_hw *hw, u32 reg_addr)
4762 {
4763 	i40e_status status = 0;
4764 	bool use_register;
4765 	int retry = 5;
4766 	u32 val = 0;
4767 
4768 	use_register = (hw->aq.api_maj_ver == 1) && (hw->aq.api_min_ver < 5);
4769 	if (!use_register) {
4770 do_retry:
4771 		status = i40e_aq_rx_ctl_read_register(hw, reg_addr, &val, NULL);
4772 		if (hw->aq.asq_last_status == I40E_AQ_RC_EAGAIN && retry) {
4773 			usleep_range(1000, 2000);
4774 			retry--;
4775 			goto do_retry;
4776 		}
4777 	}
4778 
4779 	/* if the AQ access failed, try the old-fashioned way */
4780 	if (status || use_register)
4781 		val = rd32(hw, reg_addr);
4782 
4783 	return val;
4784 }
4785 
4786 /**
4787  * i40e_aq_rx_ctl_write_register
4788  * @hw: pointer to the hw struct
4789  * @reg_addr: register address
4790  * @reg_val: register value
4791  * @cmd_details: pointer to command details structure or NULL
4792  *
4793  * Use the firmware to write to an Rx control register,
4794  * especially useful if the Rx unit is under heavy pressure
4795  **/
4796 i40e_status i40e_aq_rx_ctl_write_register(struct i40e_hw *hw,
4797 				u32 reg_addr, u32 reg_val,
4798 				struct i40e_asq_cmd_details *cmd_details)
4799 {
4800 	struct i40e_aq_desc desc;
4801 	struct i40e_aqc_rx_ctl_reg_read_write *cmd =
4802 		(struct i40e_aqc_rx_ctl_reg_read_write *)&desc.params.raw;
4803 	i40e_status status;
4804 
4805 	i40e_fill_default_direct_cmd_desc(&desc, i40e_aqc_opc_rx_ctl_reg_write);
4806 
4807 	cmd->address = cpu_to_le32(reg_addr);
4808 	cmd->value = cpu_to_le32(reg_val);
4809 
4810 	status = i40e_asq_send_command(hw, &desc, NULL, 0, cmd_details);
4811 
4812 	return status;
4813 }
4814 
4815 /**
4816  * i40e_write_rx_ctl - write to an Rx control register
4817  * @hw: pointer to the hw struct
4818  * @reg_addr: register address
4819  * @reg_val: register value
4820  **/
4821 void i40e_write_rx_ctl(struct i40e_hw *hw, u32 reg_addr, u32 reg_val)
4822 {
4823 	i40e_status status = 0;
4824 	bool use_register;
4825 	int retry = 5;
4826 
4827 	use_register = (hw->aq.api_maj_ver == 1) && (hw->aq.api_min_ver < 5);
4828 	if (!use_register) {
4829 do_retry:
4830 		status = i40e_aq_rx_ctl_write_register(hw, reg_addr,
4831 						       reg_val, NULL);
4832 		if (hw->aq.asq_last_status == I40E_AQ_RC_EAGAIN && retry) {
4833 			usleep_range(1000, 2000);
4834 			retry--;
4835 			goto do_retry;
4836 		}
4837 	}
4838 
4839 	/* if the AQ access failed, try the old-fashioned way */
4840 	if (status || use_register)
4841 		wr32(hw, reg_addr, reg_val);
4842 }
4843