1 /* Intel(R) Ethernet Switch Host Interface Driver
2  * Copyright(c) 2013 - 2016 Intel Corporation.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms and conditions of the GNU General Public License,
6  * version 2, as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope it will be useful, but WITHOUT
9  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
11  * more details.
12  *
13  * The full GNU General Public License is included in this distribution in
14  * the file called "COPYING".
15  *
16  * Contact Information:
17  * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
18  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
19  */
20 
21 #include "fm10k_pf.h"
22 #include "fm10k_vf.h"
23 
24 /**
25  *  fm10k_reset_hw_pf - PF hardware reset
26  *  @hw: pointer to hardware structure
27  *
28  *  This function should return the hardware to a state similar to the
29  *  one it is in after being powered on.
30  **/
31 static s32 fm10k_reset_hw_pf(struct fm10k_hw *hw)
32 {
33 	s32 err;
34 	u32 reg;
35 	u16 i;
36 
37 	/* Disable interrupts */
38 	fm10k_write_reg(hw, FM10K_EIMR, FM10K_EIMR_DISABLE(ALL));
39 
40 	/* Lock ITR2 reg 0 into itself and disable interrupt moderation */
41 	fm10k_write_reg(hw, FM10K_ITR2(0), 0);
42 	fm10k_write_reg(hw, FM10K_INT_CTRL, 0);
43 
44 	/* We assume here Tx and Rx queue 0 are owned by the PF */
45 
46 	/* Shut off VF access to their queues forcing them to queue 0 */
47 	for (i = 0; i < FM10K_TQMAP_TABLE_SIZE; i++) {
48 		fm10k_write_reg(hw, FM10K_TQMAP(i), 0);
49 		fm10k_write_reg(hw, FM10K_RQMAP(i), 0);
50 	}
51 
52 	/* shut down all rings */
53 	err = fm10k_disable_queues_generic(hw, FM10K_MAX_QUEUES);
54 	if (err == FM10K_ERR_REQUESTS_PENDING) {
55 		hw->mac.reset_while_pending++;
56 		goto force_reset;
57 	} else if (err) {
58 		return err;
59 	}
60 
61 	/* Verify that DMA is no longer active */
62 	reg = fm10k_read_reg(hw, FM10K_DMA_CTRL);
63 	if (reg & (FM10K_DMA_CTRL_TX_ACTIVE | FM10K_DMA_CTRL_RX_ACTIVE))
64 		return FM10K_ERR_DMA_PENDING;
65 
66 force_reset:
67 	/* Inititate data path reset */
68 	reg = FM10K_DMA_CTRL_DATAPATH_RESET;
69 	fm10k_write_reg(hw, FM10K_DMA_CTRL, reg);
70 
71 	/* Flush write and allow 100us for reset to complete */
72 	fm10k_write_flush(hw);
73 	udelay(FM10K_RESET_TIMEOUT);
74 
75 	/* Reset mailbox global interrupts */
76 	reg = FM10K_MBX_GLOBAL_REQ_INTERRUPT | FM10K_MBX_GLOBAL_ACK_INTERRUPT;
77 	fm10k_write_reg(hw, FM10K_GMBX, reg);
78 
79 	/* Verify we made it out of reset */
80 	reg = fm10k_read_reg(hw, FM10K_IP);
81 	if (!(reg & FM10K_IP_NOTINRESET))
82 		return FM10K_ERR_RESET_FAILED;
83 
84 	return 0;
85 }
86 
87 /**
88  *  fm10k_is_ari_hierarchy_pf - Indicate ARI hierarchy support
89  *  @hw: pointer to hardware structure
90  *
91  *  Looks at the ARI hierarchy bit to determine whether ARI is supported or not.
92  **/
93 static bool fm10k_is_ari_hierarchy_pf(struct fm10k_hw *hw)
94 {
95 	u16 sriov_ctrl = fm10k_read_pci_cfg_word(hw, FM10K_PCIE_SRIOV_CTRL);
96 
97 	return !!(sriov_ctrl & FM10K_PCIE_SRIOV_CTRL_VFARI);
98 }
99 
100 /**
101  *  fm10k_init_hw_pf - PF hardware initialization
102  *  @hw: pointer to hardware structure
103  *
104  **/
105 static s32 fm10k_init_hw_pf(struct fm10k_hw *hw)
106 {
107 	u32 dma_ctrl, txqctl;
108 	u16 i;
109 
110 	/* Establish default VSI as valid */
111 	fm10k_write_reg(hw, FM10K_DGLORTDEC(fm10k_dglort_default), 0);
112 	fm10k_write_reg(hw, FM10K_DGLORTMAP(fm10k_dglort_default),
113 			FM10K_DGLORTMAP_ANY);
114 
115 	/* Invalidate all other GLORT entries */
116 	for (i = 1; i < FM10K_DGLORT_COUNT; i++)
117 		fm10k_write_reg(hw, FM10K_DGLORTMAP(i), FM10K_DGLORTMAP_NONE);
118 
119 	/* reset ITR2(0) to point to itself */
120 	fm10k_write_reg(hw, FM10K_ITR2(0), 0);
121 
122 	/* reset VF ITR2(0) to point to 0 avoid PF registers */
123 	fm10k_write_reg(hw, FM10K_ITR2(FM10K_ITR_REG_COUNT_PF), 0);
124 
125 	/* loop through all PF ITR2 registers pointing them to the previous */
126 	for (i = 1; i < FM10K_ITR_REG_COUNT_PF; i++)
127 		fm10k_write_reg(hw, FM10K_ITR2(i), i - 1);
128 
129 	/* Enable interrupt moderator if not already enabled */
130 	fm10k_write_reg(hw, FM10K_INT_CTRL, FM10K_INT_CTRL_ENABLEMODERATOR);
131 
132 	/* compute the default txqctl configuration */
133 	txqctl = FM10K_TXQCTL_PF | FM10K_TXQCTL_UNLIMITED_BW |
134 		 (hw->mac.default_vid << FM10K_TXQCTL_VID_SHIFT);
135 
136 	for (i = 0; i < FM10K_MAX_QUEUES; i++) {
137 		/* configure rings for 256 Queue / 32 Descriptor cache mode */
138 		fm10k_write_reg(hw, FM10K_TQDLOC(i),
139 				(i * FM10K_TQDLOC_BASE_32_DESC) |
140 				FM10K_TQDLOC_SIZE_32_DESC);
141 		fm10k_write_reg(hw, FM10K_TXQCTL(i), txqctl);
142 
143 		/* configure rings to provide TPH processing hints */
144 		fm10k_write_reg(hw, FM10K_TPH_TXCTRL(i),
145 				FM10K_TPH_TXCTRL_DESC_TPHEN |
146 				FM10K_TPH_TXCTRL_DESC_RROEN |
147 				FM10K_TPH_TXCTRL_DESC_WROEN |
148 				FM10K_TPH_TXCTRL_DATA_RROEN);
149 		fm10k_write_reg(hw, FM10K_TPH_RXCTRL(i),
150 				FM10K_TPH_RXCTRL_DESC_TPHEN |
151 				FM10K_TPH_RXCTRL_DESC_RROEN |
152 				FM10K_TPH_RXCTRL_DATA_WROEN |
153 				FM10K_TPH_RXCTRL_HDR_WROEN);
154 	}
155 
156 	/* set max hold interval to align with 1.024 usec in all modes and
157 	 * store ITR scale
158 	 */
159 	switch (hw->bus.speed) {
160 	case fm10k_bus_speed_2500:
161 		dma_ctrl = FM10K_DMA_CTRL_MAX_HOLD_1US_GEN1;
162 		hw->mac.itr_scale = FM10K_TDLEN_ITR_SCALE_GEN1;
163 		break;
164 	case fm10k_bus_speed_5000:
165 		dma_ctrl = FM10K_DMA_CTRL_MAX_HOLD_1US_GEN2;
166 		hw->mac.itr_scale = FM10K_TDLEN_ITR_SCALE_GEN2;
167 		break;
168 	case fm10k_bus_speed_8000:
169 		dma_ctrl = FM10K_DMA_CTRL_MAX_HOLD_1US_GEN3;
170 		hw->mac.itr_scale = FM10K_TDLEN_ITR_SCALE_GEN3;
171 		break;
172 	default:
173 		dma_ctrl = 0;
174 		/* just in case, assume Gen3 ITR scale */
175 		hw->mac.itr_scale = FM10K_TDLEN_ITR_SCALE_GEN3;
176 		break;
177 	}
178 
179 	/* Configure TSO flags */
180 	fm10k_write_reg(hw, FM10K_DTXTCPFLGL, FM10K_TSO_FLAGS_LOW);
181 	fm10k_write_reg(hw, FM10K_DTXTCPFLGH, FM10K_TSO_FLAGS_HI);
182 
183 	/* Enable DMA engine
184 	 * Set Rx Descriptor size to 32
185 	 * Set Minimum MSS to 64
186 	 * Set Maximum number of Rx queues to 256 / 32 Descriptor
187 	 */
188 	dma_ctrl |= FM10K_DMA_CTRL_TX_ENABLE | FM10K_DMA_CTRL_RX_ENABLE |
189 		    FM10K_DMA_CTRL_RX_DESC_SIZE | FM10K_DMA_CTRL_MINMSS_64 |
190 		    FM10K_DMA_CTRL_32_DESC;
191 
192 	fm10k_write_reg(hw, FM10K_DMA_CTRL, dma_ctrl);
193 
194 	/* record maximum queue count, we limit ourselves to 128 */
195 	hw->mac.max_queues = FM10K_MAX_QUEUES_PF;
196 
197 	/* We support either 64 VFs or 7 VFs depending on if we have ARI */
198 	hw->iov.total_vfs = fm10k_is_ari_hierarchy_pf(hw) ? 64 : 7;
199 
200 	return 0;
201 }
202 
203 /**
204  *  fm10k_update_vlan_pf - Update status of VLAN ID in VLAN filter table
205  *  @hw: pointer to hardware structure
206  *  @vid: VLAN ID to add to table
207  *  @vsi: Index indicating VF ID or PF ID in table
208  *  @set: Indicates if this is a set or clear operation
209  *
210  *  This function adds or removes the corresponding VLAN ID from the VLAN
211  *  filter table for the corresponding function.  In addition to the
212  *  standard set/clear that supports one bit a multi-bit write is
213  *  supported to set 64 bits at a time.
214  **/
215 static s32 fm10k_update_vlan_pf(struct fm10k_hw *hw, u32 vid, u8 vsi, bool set)
216 {
217 	u32 vlan_table, reg, mask, bit, len;
218 
219 	/* verify the VSI index is valid */
220 	if (vsi > FM10K_VLAN_TABLE_VSI_MAX)
221 		return FM10K_ERR_PARAM;
222 
223 	/* VLAN multi-bit write:
224 	 * The multi-bit write has several parts to it.
225 	 *               24              16               8               0
226 	 *  7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0
227 	 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
228 	 * | RSVD0 |         Length        |C|RSVD0|        VLAN ID        |
229 	 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
230 	 *
231 	 * VLAN ID: Vlan Starting value
232 	 * RSVD0: Reserved section, must be 0
233 	 * C: Flag field, 0 is set, 1 is clear (Used in VF VLAN message)
234 	 * Length: Number of times to repeat the bit being set
235 	 */
236 	len = vid >> 16;
237 	vid = (vid << 17) >> 17;
238 
239 	/* verify the reserved 0 fields are 0 */
240 	if (len >= FM10K_VLAN_TABLE_VID_MAX || vid >= FM10K_VLAN_TABLE_VID_MAX)
241 		return FM10K_ERR_PARAM;
242 
243 	/* Loop through the table updating all required VLANs */
244 	for (reg = FM10K_VLAN_TABLE(vsi, vid / 32), bit = vid % 32;
245 	     len < FM10K_VLAN_TABLE_VID_MAX;
246 	     len -= 32 - bit, reg++, bit = 0) {
247 		/* record the initial state of the register */
248 		vlan_table = fm10k_read_reg(hw, reg);
249 
250 		/* truncate mask if we are at the start or end of the run */
251 		mask = (~(u32)0 >> ((len < 31) ? 31 - len : 0)) << bit;
252 
253 		/* make necessary modifications to the register */
254 		mask &= set ? ~vlan_table : vlan_table;
255 		if (mask)
256 			fm10k_write_reg(hw, reg, vlan_table ^ mask);
257 	}
258 
259 	return 0;
260 }
261 
262 /**
263  *  fm10k_read_mac_addr_pf - Read device MAC address
264  *  @hw: pointer to the HW structure
265  *
266  *  Reads the device MAC address from the SM_AREA and stores the value.
267  **/
268 static s32 fm10k_read_mac_addr_pf(struct fm10k_hw *hw)
269 {
270 	u8 perm_addr[ETH_ALEN];
271 	u32 serial_num;
272 
273 	serial_num = fm10k_read_reg(hw, FM10K_SM_AREA(1));
274 
275 	/* last byte should be all 1's */
276 	if ((~serial_num) << 24)
277 		return  FM10K_ERR_INVALID_MAC_ADDR;
278 
279 	perm_addr[0] = (u8)(serial_num >> 24);
280 	perm_addr[1] = (u8)(serial_num >> 16);
281 	perm_addr[2] = (u8)(serial_num >> 8);
282 
283 	serial_num = fm10k_read_reg(hw, FM10K_SM_AREA(0));
284 
285 	/* first byte should be all 1's */
286 	if ((~serial_num) >> 24)
287 		return  FM10K_ERR_INVALID_MAC_ADDR;
288 
289 	perm_addr[3] = (u8)(serial_num >> 16);
290 	perm_addr[4] = (u8)(serial_num >> 8);
291 	perm_addr[5] = (u8)(serial_num);
292 
293 	ether_addr_copy(hw->mac.perm_addr, perm_addr);
294 	ether_addr_copy(hw->mac.addr, perm_addr);
295 
296 	return 0;
297 }
298 
299 /**
300  *  fm10k_glort_valid_pf - Validate that the provided glort is valid
301  *  @hw: pointer to the HW structure
302  *  @glort: base glort to be validated
303  *
304  *  This function will return an error if the provided glort is invalid
305  **/
306 bool fm10k_glort_valid_pf(struct fm10k_hw *hw, u16 glort)
307 {
308 	glort &= hw->mac.dglort_map >> FM10K_DGLORTMAP_MASK_SHIFT;
309 
310 	return glort == (hw->mac.dglort_map & FM10K_DGLORTMAP_NONE);
311 }
312 
313 /**
314  *  fm10k_update_xc_addr_pf - Update device addresses
315  *  @hw: pointer to the HW structure
316  *  @glort: base resource tag for this request
317  *  @mac: MAC address to add/remove from table
318  *  @vid: VLAN ID to add/remove from table
319  *  @add: Indicates if this is an add or remove operation
320  *  @flags: flags field to indicate add and secure
321  *
322  *  This function generates a message to the Switch API requesting
323  *  that the given logical port add/remove the given L2 MAC/VLAN address.
324  **/
325 static s32 fm10k_update_xc_addr_pf(struct fm10k_hw *hw, u16 glort,
326 				   const u8 *mac, u16 vid, bool add, u8 flags)
327 {
328 	struct fm10k_mbx_info *mbx = &hw->mbx;
329 	struct fm10k_mac_update mac_update;
330 	u32 msg[5];
331 
332 	/* clear set bit from VLAN ID */
333 	vid &= ~FM10K_VLAN_CLEAR;
334 
335 	/* if glort or VLAN are not valid return error */
336 	if (!fm10k_glort_valid_pf(hw, glort) || vid >= FM10K_VLAN_TABLE_VID_MAX)
337 		return FM10K_ERR_PARAM;
338 
339 	/* record fields */
340 	mac_update.mac_lower = cpu_to_le32(((u32)mac[2] << 24) |
341 						 ((u32)mac[3] << 16) |
342 						 ((u32)mac[4] << 8) |
343 						 ((u32)mac[5]));
344 	mac_update.mac_upper = cpu_to_le16(((u16)mac[0] << 8) |
345 					   ((u16)mac[1]));
346 	mac_update.vlan = cpu_to_le16(vid);
347 	mac_update.glort = cpu_to_le16(glort);
348 	mac_update.action = add ? 0 : 1;
349 	mac_update.flags = flags;
350 
351 	/* populate mac_update fields */
352 	fm10k_tlv_msg_init(msg, FM10K_PF_MSG_ID_UPDATE_MAC_FWD_RULE);
353 	fm10k_tlv_attr_put_le_struct(msg, FM10K_PF_ATTR_ID_MAC_UPDATE,
354 				     &mac_update, sizeof(mac_update));
355 
356 	/* load onto outgoing mailbox */
357 	return mbx->ops.enqueue_tx(hw, mbx, msg);
358 }
359 
360 /**
361  *  fm10k_update_uc_addr_pf - Update device unicast addresses
362  *  @hw: pointer to the HW structure
363  *  @glort: base resource tag for this request
364  *  @mac: MAC address to add/remove from table
365  *  @vid: VLAN ID to add/remove from table
366  *  @add: Indicates if this is an add or remove operation
367  *  @flags: flags field to indicate add and secure
368  *
369  *  This function is used to add or remove unicast addresses for
370  *  the PF.
371  **/
372 static s32 fm10k_update_uc_addr_pf(struct fm10k_hw *hw, u16 glort,
373 				   const u8 *mac, u16 vid, bool add, u8 flags)
374 {
375 	/* verify MAC address is valid */
376 	if (!is_valid_ether_addr(mac))
377 		return FM10K_ERR_PARAM;
378 
379 	return fm10k_update_xc_addr_pf(hw, glort, mac, vid, add, flags);
380 }
381 
382 /**
383  *  fm10k_update_mc_addr_pf - Update device multicast addresses
384  *  @hw: pointer to the HW structure
385  *  @glort: base resource tag for this request
386  *  @mac: MAC address to add/remove from table
387  *  @vid: VLAN ID to add/remove from table
388  *  @add: Indicates if this is an add or remove operation
389  *
390  *  This function is used to add or remove multicast MAC addresses for
391  *  the PF.
392  **/
393 static s32 fm10k_update_mc_addr_pf(struct fm10k_hw *hw, u16 glort,
394 				   const u8 *mac, u16 vid, bool add)
395 {
396 	/* verify multicast address is valid */
397 	if (!is_multicast_ether_addr(mac))
398 		return FM10K_ERR_PARAM;
399 
400 	return fm10k_update_xc_addr_pf(hw, glort, mac, vid, add, 0);
401 }
402 
403 /**
404  *  fm10k_update_xcast_mode_pf - Request update of multicast mode
405  *  @hw: pointer to hardware structure
406  *  @glort: base resource tag for this request
407  *  @mode: integer value indicating mode being requested
408  *
409  *  This function will attempt to request a higher mode for the port
410  *  so that it can enable either multicast, multicast promiscuous, or
411  *  promiscuous mode of operation.
412  **/
413 static s32 fm10k_update_xcast_mode_pf(struct fm10k_hw *hw, u16 glort, u8 mode)
414 {
415 	struct fm10k_mbx_info *mbx = &hw->mbx;
416 	u32 msg[3], xcast_mode;
417 
418 	if (mode > FM10K_XCAST_MODE_NONE)
419 		return FM10K_ERR_PARAM;
420 
421 	/* if glort is not valid return error */
422 	if (!fm10k_glort_valid_pf(hw, glort))
423 		return FM10K_ERR_PARAM;
424 
425 	/* write xcast mode as a single u32 value,
426 	 * lower 16 bits: glort
427 	 * upper 16 bits: mode
428 	 */
429 	xcast_mode = ((u32)mode << 16) | glort;
430 
431 	/* generate message requesting to change xcast mode */
432 	fm10k_tlv_msg_init(msg, FM10K_PF_MSG_ID_XCAST_MODES);
433 	fm10k_tlv_attr_put_u32(msg, FM10K_PF_ATTR_ID_XCAST_MODE, xcast_mode);
434 
435 	/* load onto outgoing mailbox */
436 	return mbx->ops.enqueue_tx(hw, mbx, msg);
437 }
438 
439 /**
440  *  fm10k_update_int_moderator_pf - Update interrupt moderator linked list
441  *  @hw: pointer to hardware structure
442  *
443  *  This function walks through the MSI-X vector table to determine the
444  *  number of active interrupts and based on that information updates the
445  *  interrupt moderator linked list.
446  **/
447 static void fm10k_update_int_moderator_pf(struct fm10k_hw *hw)
448 {
449 	u32 i;
450 
451 	/* Disable interrupt moderator */
452 	fm10k_write_reg(hw, FM10K_INT_CTRL, 0);
453 
454 	/* loop through PF from last to first looking enabled vectors */
455 	for (i = FM10K_ITR_REG_COUNT_PF - 1; i; i--) {
456 		if (!fm10k_read_reg(hw, FM10K_MSIX_VECTOR_MASK(i)))
457 			break;
458 	}
459 
460 	/* always reset VFITR2[0] to point to last enabled PF vector */
461 	fm10k_write_reg(hw, FM10K_ITR2(FM10K_ITR_REG_COUNT_PF), i);
462 
463 	/* reset ITR2[0] to point to last enabled PF vector */
464 	if (!hw->iov.num_vfs)
465 		fm10k_write_reg(hw, FM10K_ITR2(0), i);
466 
467 	/* Enable interrupt moderator */
468 	fm10k_write_reg(hw, FM10K_INT_CTRL, FM10K_INT_CTRL_ENABLEMODERATOR);
469 }
470 
471 /**
472  *  fm10k_update_lport_state_pf - Notify the switch of a change in port state
473  *  @hw: pointer to the HW structure
474  *  @glort: base resource tag for this request
475  *  @count: number of logical ports being updated
476  *  @enable: boolean value indicating enable or disable
477  *
478  *  This function is used to add/remove a logical port from the switch.
479  **/
480 static s32 fm10k_update_lport_state_pf(struct fm10k_hw *hw, u16 glort,
481 				       u16 count, bool enable)
482 {
483 	struct fm10k_mbx_info *mbx = &hw->mbx;
484 	u32 msg[3], lport_msg;
485 
486 	/* do nothing if we are being asked to create or destroy 0 ports */
487 	if (!count)
488 		return 0;
489 
490 	/* if glort is not valid return error */
491 	if (!fm10k_glort_valid_pf(hw, glort))
492 		return FM10K_ERR_PARAM;
493 
494 	/* reset multicast mode if deleting lport */
495 	if (!enable)
496 		fm10k_update_xcast_mode_pf(hw, glort, FM10K_XCAST_MODE_NONE);
497 
498 	/* construct the lport message from the 2 pieces of data we have */
499 	lport_msg = ((u32)count << 16) | glort;
500 
501 	/* generate lport create/delete message */
502 	fm10k_tlv_msg_init(msg, enable ? FM10K_PF_MSG_ID_LPORT_CREATE :
503 					 FM10K_PF_MSG_ID_LPORT_DELETE);
504 	fm10k_tlv_attr_put_u32(msg, FM10K_PF_ATTR_ID_PORT, lport_msg);
505 
506 	/* load onto outgoing mailbox */
507 	return mbx->ops.enqueue_tx(hw, mbx, msg);
508 }
509 
510 /**
511  *  fm10k_configure_dglort_map_pf - Configures GLORT entry and queues
512  *  @hw: pointer to hardware structure
513  *  @dglort: pointer to dglort configuration structure
514  *
515  *  Reads the configuration structure contained in dglort_cfg and uses
516  *  that information to then populate a DGLORTMAP/DEC entry and the queues
517  *  to which it has been assigned.
518  **/
519 static s32 fm10k_configure_dglort_map_pf(struct fm10k_hw *hw,
520 					 struct fm10k_dglort_cfg *dglort)
521 {
522 	u16 glort, queue_count, vsi_count, pc_count;
523 	u16 vsi, queue, pc, q_idx;
524 	u32 txqctl, dglortdec, dglortmap;
525 
526 	/* verify the dglort pointer */
527 	if (!dglort)
528 		return FM10K_ERR_PARAM;
529 
530 	/* verify the dglort values */
531 	if ((dglort->idx > 7) || (dglort->rss_l > 7) || (dglort->pc_l > 3) ||
532 	    (dglort->vsi_l > 6) || (dglort->vsi_b > 64) ||
533 	    (dglort->queue_l > 8) || (dglort->queue_b >= 256))
534 		return FM10K_ERR_PARAM;
535 
536 	/* determine count of VSIs and queues */
537 	queue_count = BIT(dglort->rss_l + dglort->pc_l);
538 	vsi_count = BIT(dglort->vsi_l + dglort->queue_l);
539 	glort = dglort->glort;
540 	q_idx = dglort->queue_b;
541 
542 	/* configure SGLORT for queues */
543 	for (vsi = 0; vsi < vsi_count; vsi++, glort++) {
544 		for (queue = 0; queue < queue_count; queue++, q_idx++) {
545 			if (q_idx >= FM10K_MAX_QUEUES)
546 				break;
547 
548 			fm10k_write_reg(hw, FM10K_TX_SGLORT(q_idx), glort);
549 			fm10k_write_reg(hw, FM10K_RX_SGLORT(q_idx), glort);
550 		}
551 	}
552 
553 	/* determine count of PCs and queues */
554 	queue_count = BIT(dglort->queue_l + dglort->rss_l + dglort->vsi_l);
555 	pc_count = BIT(dglort->pc_l);
556 
557 	/* configure PC for Tx queues */
558 	for (pc = 0; pc < pc_count; pc++) {
559 		q_idx = pc + dglort->queue_b;
560 		for (queue = 0; queue < queue_count; queue++) {
561 			if (q_idx >= FM10K_MAX_QUEUES)
562 				break;
563 
564 			txqctl = fm10k_read_reg(hw, FM10K_TXQCTL(q_idx));
565 			txqctl &= ~FM10K_TXQCTL_PC_MASK;
566 			txqctl |= pc << FM10K_TXQCTL_PC_SHIFT;
567 			fm10k_write_reg(hw, FM10K_TXQCTL(q_idx), txqctl);
568 
569 			q_idx += pc_count;
570 		}
571 	}
572 
573 	/* configure DGLORTDEC */
574 	dglortdec = ((u32)(dglort->rss_l) << FM10K_DGLORTDEC_RSSLENGTH_SHIFT) |
575 		    ((u32)(dglort->queue_b) << FM10K_DGLORTDEC_QBASE_SHIFT) |
576 		    ((u32)(dglort->pc_l) << FM10K_DGLORTDEC_PCLENGTH_SHIFT) |
577 		    ((u32)(dglort->vsi_b) << FM10K_DGLORTDEC_VSIBASE_SHIFT) |
578 		    ((u32)(dglort->vsi_l) << FM10K_DGLORTDEC_VSILENGTH_SHIFT) |
579 		    ((u32)(dglort->queue_l));
580 	if (dglort->inner_rss)
581 		dglortdec |=  FM10K_DGLORTDEC_INNERRSS_ENABLE;
582 
583 	/* configure DGLORTMAP */
584 	dglortmap = (dglort->idx == fm10k_dglort_default) ?
585 			FM10K_DGLORTMAP_ANY : FM10K_DGLORTMAP_ZERO;
586 	dglortmap <<= dglort->vsi_l + dglort->queue_l + dglort->shared_l;
587 	dglortmap |= dglort->glort;
588 
589 	/* write values to hardware */
590 	fm10k_write_reg(hw, FM10K_DGLORTDEC(dglort->idx), dglortdec);
591 	fm10k_write_reg(hw, FM10K_DGLORTMAP(dglort->idx), dglortmap);
592 
593 	return 0;
594 }
595 
596 u16 fm10k_queues_per_pool(struct fm10k_hw *hw)
597 {
598 	u16 num_pools = hw->iov.num_pools;
599 
600 	return (num_pools > 32) ? 2 : (num_pools > 16) ? 4 : (num_pools > 8) ?
601 	       8 : FM10K_MAX_QUEUES_POOL;
602 }
603 
604 u16 fm10k_vf_queue_index(struct fm10k_hw *hw, u16 vf_idx)
605 {
606 	u16 num_vfs = hw->iov.num_vfs;
607 	u16 vf_q_idx = FM10K_MAX_QUEUES;
608 
609 	vf_q_idx -= fm10k_queues_per_pool(hw) * (num_vfs - vf_idx);
610 
611 	return vf_q_idx;
612 }
613 
614 static u16 fm10k_vectors_per_pool(struct fm10k_hw *hw)
615 {
616 	u16 num_pools = hw->iov.num_pools;
617 
618 	return (num_pools > 32) ? 8 : (num_pools > 16) ? 16 :
619 	       FM10K_MAX_VECTORS_POOL;
620 }
621 
622 static u16 fm10k_vf_vector_index(struct fm10k_hw *hw, u16 vf_idx)
623 {
624 	u16 vf_v_idx = FM10K_MAX_VECTORS_PF;
625 
626 	vf_v_idx += fm10k_vectors_per_pool(hw) * vf_idx;
627 
628 	return vf_v_idx;
629 }
630 
631 /**
632  *  fm10k_iov_assign_resources_pf - Assign pool resources for virtualization
633  *  @hw: pointer to the HW structure
634  *  @num_vfs: number of VFs to be allocated
635  *  @num_pools: number of virtualization pools to be allocated
636  *
637  *  Allocates queues and traffic classes to virtualization entities to prepare
638  *  the PF for SR-IOV and VMDq
639  **/
640 static s32 fm10k_iov_assign_resources_pf(struct fm10k_hw *hw, u16 num_vfs,
641 					 u16 num_pools)
642 {
643 	u16 qmap_stride, qpp, vpp, vf_q_idx, vf_q_idx0, qmap_idx;
644 	u32 vid = hw->mac.default_vid << FM10K_TXQCTL_VID_SHIFT;
645 	int i, j;
646 
647 	/* hardware only supports up to 64 pools */
648 	if (num_pools > 64)
649 		return FM10K_ERR_PARAM;
650 
651 	/* the number of VFs cannot exceed the number of pools */
652 	if ((num_vfs > num_pools) || (num_vfs > hw->iov.total_vfs))
653 		return FM10K_ERR_PARAM;
654 
655 	/* record number of virtualization entities */
656 	hw->iov.num_vfs = num_vfs;
657 	hw->iov.num_pools = num_pools;
658 
659 	/* determine qmap offsets and counts */
660 	qmap_stride = (num_vfs > 8) ? 32 : 256;
661 	qpp = fm10k_queues_per_pool(hw);
662 	vpp = fm10k_vectors_per_pool(hw);
663 
664 	/* calculate starting index for queues */
665 	vf_q_idx = fm10k_vf_queue_index(hw, 0);
666 	qmap_idx = 0;
667 
668 	/* establish TCs with -1 credits and no quanta to prevent transmit */
669 	for (i = 0; i < num_vfs; i++) {
670 		fm10k_write_reg(hw, FM10K_TC_MAXCREDIT(i), 0);
671 		fm10k_write_reg(hw, FM10K_TC_RATE(i), 0);
672 		fm10k_write_reg(hw, FM10K_TC_CREDIT(i),
673 				FM10K_TC_CREDIT_CREDIT_MASK);
674 	}
675 
676 	/* zero out all mbmem registers */
677 	for (i = FM10K_VFMBMEM_LEN * num_vfs; i--;)
678 		fm10k_write_reg(hw, FM10K_MBMEM(i), 0);
679 
680 	/* clear event notification of VF FLR */
681 	fm10k_write_reg(hw, FM10K_PFVFLREC(0), ~0);
682 	fm10k_write_reg(hw, FM10K_PFVFLREC(1), ~0);
683 
684 	/* loop through unallocated rings assigning them back to PF */
685 	for (i = FM10K_MAX_QUEUES_PF; i < vf_q_idx; i++) {
686 		fm10k_write_reg(hw, FM10K_TXDCTL(i), 0);
687 		fm10k_write_reg(hw, FM10K_TXQCTL(i), FM10K_TXQCTL_PF |
688 				FM10K_TXQCTL_UNLIMITED_BW | vid);
689 		fm10k_write_reg(hw, FM10K_RXQCTL(i), FM10K_RXQCTL_PF);
690 	}
691 
692 	/* PF should have already updated VFITR2[0] */
693 
694 	/* update all ITR registers to flow to VFITR2[0] */
695 	for (i = FM10K_ITR_REG_COUNT_PF + 1; i < FM10K_ITR_REG_COUNT; i++) {
696 		if (!(i & (vpp - 1)))
697 			fm10k_write_reg(hw, FM10K_ITR2(i), i - vpp);
698 		else
699 			fm10k_write_reg(hw, FM10K_ITR2(i), i - 1);
700 	}
701 
702 	/* update PF ITR2[0] to reference the last vector */
703 	fm10k_write_reg(hw, FM10K_ITR2(0),
704 			fm10k_vf_vector_index(hw, num_vfs - 1));
705 
706 	/* loop through rings populating rings and TCs */
707 	for (i = 0; i < num_vfs; i++) {
708 		/* record index for VF queue 0 for use in end of loop */
709 		vf_q_idx0 = vf_q_idx;
710 
711 		for (j = 0; j < qpp; j++, qmap_idx++, vf_q_idx++) {
712 			/* assign VF and locked TC to queues */
713 			fm10k_write_reg(hw, FM10K_TXDCTL(vf_q_idx), 0);
714 			fm10k_write_reg(hw, FM10K_TXQCTL(vf_q_idx),
715 					(i << FM10K_TXQCTL_TC_SHIFT) | i |
716 					FM10K_TXQCTL_VF | vid);
717 			fm10k_write_reg(hw, FM10K_RXDCTL(vf_q_idx),
718 					FM10K_RXDCTL_WRITE_BACK_MIN_DELAY |
719 					FM10K_RXDCTL_DROP_ON_EMPTY);
720 			fm10k_write_reg(hw, FM10K_RXQCTL(vf_q_idx),
721 					(i << FM10K_RXQCTL_VF_SHIFT) |
722 					FM10K_RXQCTL_VF);
723 
724 			/* map queue pair to VF */
725 			fm10k_write_reg(hw, FM10K_TQMAP(qmap_idx), vf_q_idx);
726 			fm10k_write_reg(hw, FM10K_RQMAP(qmap_idx), vf_q_idx);
727 		}
728 
729 		/* repeat the first ring for all of the remaining VF rings */
730 		for (; j < qmap_stride; j++, qmap_idx++) {
731 			fm10k_write_reg(hw, FM10K_TQMAP(qmap_idx), vf_q_idx0);
732 			fm10k_write_reg(hw, FM10K_RQMAP(qmap_idx), vf_q_idx0);
733 		}
734 	}
735 
736 	/* loop through remaining indexes assigning all to queue 0 */
737 	while (qmap_idx < FM10K_TQMAP_TABLE_SIZE) {
738 		fm10k_write_reg(hw, FM10K_TQMAP(qmap_idx), 0);
739 		fm10k_write_reg(hw, FM10K_RQMAP(qmap_idx), 0);
740 		qmap_idx++;
741 	}
742 
743 	return 0;
744 }
745 
746 /**
747  *  fm10k_iov_configure_tc_pf - Configure the shaping group for VF
748  *  @hw: pointer to the HW structure
749  *  @vf_idx: index of VF receiving GLORT
750  *  @rate: Rate indicated in Mb/s
751  *
752  *  Configured the TC for a given VF to allow only up to a given number
753  *  of Mb/s of outgoing Tx throughput.
754  **/
755 static s32 fm10k_iov_configure_tc_pf(struct fm10k_hw *hw, u16 vf_idx, int rate)
756 {
757 	/* configure defaults */
758 	u32 interval = FM10K_TC_RATE_INTERVAL_4US_GEN3;
759 	u32 tc_rate = FM10K_TC_RATE_QUANTA_MASK;
760 
761 	/* verify vf is in range */
762 	if (vf_idx >= hw->iov.num_vfs)
763 		return FM10K_ERR_PARAM;
764 
765 	/* set interval to align with 4.096 usec in all modes */
766 	switch (hw->bus.speed) {
767 	case fm10k_bus_speed_2500:
768 		interval = FM10K_TC_RATE_INTERVAL_4US_GEN1;
769 		break;
770 	case fm10k_bus_speed_5000:
771 		interval = FM10K_TC_RATE_INTERVAL_4US_GEN2;
772 		break;
773 	default:
774 		break;
775 	}
776 
777 	if (rate) {
778 		if (rate > FM10K_VF_TC_MAX || rate < FM10K_VF_TC_MIN)
779 			return FM10K_ERR_PARAM;
780 
781 		/* The quanta is measured in Bytes per 4.096 or 8.192 usec
782 		 * The rate is provided in Mbits per second
783 		 * To tralslate from rate to quanta we need to multiply the
784 		 * rate by 8.192 usec and divide by 8 bits/byte.  To avoid
785 		 * dealing with floating point we can round the values up
786 		 * to the nearest whole number ratio which gives us 128 / 125.
787 		 */
788 		tc_rate = (rate * 128) / 125;
789 
790 		/* try to keep the rate limiting accurate by increasing
791 		 * the number of credits and interval for rates less than 4Gb/s
792 		 */
793 		if (rate < 4000)
794 			interval <<= 1;
795 		else
796 			tc_rate >>= 1;
797 	}
798 
799 	/* update rate limiter with new values */
800 	fm10k_write_reg(hw, FM10K_TC_RATE(vf_idx), tc_rate | interval);
801 	fm10k_write_reg(hw, FM10K_TC_MAXCREDIT(vf_idx), FM10K_TC_MAXCREDIT_64K);
802 	fm10k_write_reg(hw, FM10K_TC_CREDIT(vf_idx), FM10K_TC_MAXCREDIT_64K);
803 
804 	return 0;
805 }
806 
807 /**
808  *  fm10k_iov_assign_int_moderator_pf - Add VF interrupts to moderator list
809  *  @hw: pointer to the HW structure
810  *  @vf_idx: index of VF receiving GLORT
811  *
812  *  Update the interrupt moderator linked list to include any MSI-X
813  *  interrupts which the VF has enabled in the MSI-X vector table.
814  **/
815 static s32 fm10k_iov_assign_int_moderator_pf(struct fm10k_hw *hw, u16 vf_idx)
816 {
817 	u16 vf_v_idx, vf_v_limit, i;
818 
819 	/* verify vf is in range */
820 	if (vf_idx >= hw->iov.num_vfs)
821 		return FM10K_ERR_PARAM;
822 
823 	/* determine vector offset and count */
824 	vf_v_idx = fm10k_vf_vector_index(hw, vf_idx);
825 	vf_v_limit = vf_v_idx + fm10k_vectors_per_pool(hw);
826 
827 	/* search for first vector that is not masked */
828 	for (i = vf_v_limit - 1; i > vf_v_idx; i--) {
829 		if (!fm10k_read_reg(hw, FM10K_MSIX_VECTOR_MASK(i)))
830 			break;
831 	}
832 
833 	/* reset linked list so it now includes our active vectors */
834 	if (vf_idx == (hw->iov.num_vfs - 1))
835 		fm10k_write_reg(hw, FM10K_ITR2(0), i);
836 	else
837 		fm10k_write_reg(hw, FM10K_ITR2(vf_v_limit), i);
838 
839 	return 0;
840 }
841 
842 /**
843  *  fm10k_iov_assign_default_mac_vlan_pf - Assign a MAC and VLAN to VF
844  *  @hw: pointer to the HW structure
845  *  @vf_info: pointer to VF information structure
846  *
847  *  Assign a MAC address and default VLAN to a VF and notify it of the update
848  **/
849 static s32 fm10k_iov_assign_default_mac_vlan_pf(struct fm10k_hw *hw,
850 						struct fm10k_vf_info *vf_info)
851 {
852 	u16 qmap_stride, queues_per_pool, vf_q_idx, timeout, qmap_idx, i;
853 	u32 msg[4], txdctl, txqctl, tdbal = 0, tdbah = 0;
854 	s32 err = 0;
855 	u16 vf_idx, vf_vid;
856 
857 	/* verify vf is in range */
858 	if (!vf_info || vf_info->vf_idx >= hw->iov.num_vfs)
859 		return FM10K_ERR_PARAM;
860 
861 	/* determine qmap offsets and counts */
862 	qmap_stride = (hw->iov.num_vfs > 8) ? 32 : 256;
863 	queues_per_pool = fm10k_queues_per_pool(hw);
864 
865 	/* calculate starting index for queues */
866 	vf_idx = vf_info->vf_idx;
867 	vf_q_idx = fm10k_vf_queue_index(hw, vf_idx);
868 	qmap_idx = qmap_stride * vf_idx;
869 
870 	/* Determine correct default VLAN ID. The FM10K_VLAN_OVERRIDE bit is
871 	 * used here to indicate to the VF that it will not have privilege to
872 	 * write VLAN_TABLE. All policy is enforced on the PF but this allows
873 	 * the VF to correctly report errors to userspace rqeuests.
874 	 */
875 	if (vf_info->pf_vid)
876 		vf_vid = vf_info->pf_vid | FM10K_VLAN_OVERRIDE;
877 	else
878 		vf_vid = vf_info->sw_vid;
879 
880 	/* generate MAC_ADDR request */
881 	fm10k_tlv_msg_init(msg, FM10K_VF_MSG_ID_MAC_VLAN);
882 	fm10k_tlv_attr_put_mac_vlan(msg, FM10K_MAC_VLAN_MSG_DEFAULT_MAC,
883 				    vf_info->mac, vf_vid);
884 
885 	/* Configure Queue control register with new VLAN ID. The TXQCTL
886 	 * register is RO from the VF, so the PF must do this even in the
887 	 * case of notifying the VF of a new VID via the mailbox.
888 	 */
889 	txqctl = ((u32)vf_vid << FM10K_TXQCTL_VID_SHIFT) &
890 		 FM10K_TXQCTL_VID_MASK;
891 	txqctl |= (vf_idx << FM10K_TXQCTL_TC_SHIFT) |
892 		  FM10K_TXQCTL_VF | vf_idx;
893 
894 	for (i = 0; i < queues_per_pool; i++)
895 		fm10k_write_reg(hw, FM10K_TXQCTL(vf_q_idx + i), txqctl);
896 
897 	/* try loading a message onto outgoing mailbox first */
898 	if (vf_info->mbx.ops.enqueue_tx) {
899 		err = vf_info->mbx.ops.enqueue_tx(hw, &vf_info->mbx, msg);
900 		if (err != FM10K_MBX_ERR_NO_MBX)
901 			return err;
902 		err = 0;
903 	}
904 
905 	/* If we aren't connected to a mailbox, this is most likely because
906 	 * the VF driver is not running. It should thus be safe to re-map
907 	 * queues and use the registers to pass the MAC address so that the VF
908 	 * driver gets correct information during its initialization.
909 	 */
910 
911 	/* MAP Tx queue back to 0 temporarily, and disable it */
912 	fm10k_write_reg(hw, FM10K_TQMAP(qmap_idx), 0);
913 	fm10k_write_reg(hw, FM10K_TXDCTL(vf_q_idx), 0);
914 
915 	/* verify ring has disabled before modifying base address registers */
916 	txdctl = fm10k_read_reg(hw, FM10K_TXDCTL(vf_q_idx));
917 	for (timeout = 0; txdctl & FM10K_TXDCTL_ENABLE; timeout++) {
918 		/* limit ourselves to a 1ms timeout */
919 		if (timeout == 10) {
920 			err = FM10K_ERR_DMA_PENDING;
921 			goto err_out;
922 		}
923 
924 		usleep_range(100, 200);
925 		txdctl = fm10k_read_reg(hw, FM10K_TXDCTL(vf_q_idx));
926 	}
927 
928 	/* Update base address registers to contain MAC address */
929 	if (is_valid_ether_addr(vf_info->mac)) {
930 		tdbal = (((u32)vf_info->mac[3]) << 24) |
931 			(((u32)vf_info->mac[4]) << 16) |
932 			(((u32)vf_info->mac[5]) << 8);
933 
934 		tdbah = (((u32)0xFF)	        << 24) |
935 			(((u32)vf_info->mac[0]) << 16) |
936 			(((u32)vf_info->mac[1]) << 8) |
937 			((u32)vf_info->mac[2]);
938 	}
939 
940 	/* Record the base address into queue 0 */
941 	fm10k_write_reg(hw, FM10K_TDBAL(vf_q_idx), tdbal);
942 	fm10k_write_reg(hw, FM10K_TDBAH(vf_q_idx), tdbah);
943 
944 	/* Provide the VF the ITR scale, using software-defined fields in TDLEN
945 	 * to pass the information during VF initialization. See definition of
946 	 * FM10K_TDLEN_ITR_SCALE_SHIFT for more details.
947 	 */
948 	fm10k_write_reg(hw, FM10K_TDLEN(vf_q_idx), hw->mac.itr_scale <<
949 						   FM10K_TDLEN_ITR_SCALE_SHIFT);
950 
951 err_out:
952 	/* restore the queue back to VF ownership */
953 	fm10k_write_reg(hw, FM10K_TQMAP(qmap_idx), vf_q_idx);
954 	return err;
955 }
956 
957 /**
958  *  fm10k_iov_reset_resources_pf - Reassign queues and interrupts to a VF
959  *  @hw: pointer to the HW structure
960  *  @vf_info: pointer to VF information structure
961  *
962  *  Reassign the interrupts and queues to a VF following an FLR
963  **/
964 static s32 fm10k_iov_reset_resources_pf(struct fm10k_hw *hw,
965 					struct fm10k_vf_info *vf_info)
966 {
967 	u16 qmap_stride, queues_per_pool, vf_q_idx, qmap_idx;
968 	u32 tdbal = 0, tdbah = 0, txqctl, rxqctl;
969 	u16 vf_v_idx, vf_v_limit, vf_vid;
970 	u8 vf_idx = vf_info->vf_idx;
971 	int i;
972 
973 	/* verify vf is in range */
974 	if (vf_idx >= hw->iov.num_vfs)
975 		return FM10K_ERR_PARAM;
976 
977 	/* clear event notification of VF FLR */
978 	fm10k_write_reg(hw, FM10K_PFVFLREC(vf_idx / 32), BIT(vf_idx % 32));
979 
980 	/* force timeout and then disconnect the mailbox */
981 	vf_info->mbx.timeout = 0;
982 	if (vf_info->mbx.ops.disconnect)
983 		vf_info->mbx.ops.disconnect(hw, &vf_info->mbx);
984 
985 	/* determine vector offset and count */
986 	vf_v_idx = fm10k_vf_vector_index(hw, vf_idx);
987 	vf_v_limit = vf_v_idx + fm10k_vectors_per_pool(hw);
988 
989 	/* determine qmap offsets and counts */
990 	qmap_stride = (hw->iov.num_vfs > 8) ? 32 : 256;
991 	queues_per_pool = fm10k_queues_per_pool(hw);
992 	qmap_idx = qmap_stride * vf_idx;
993 
994 	/* make all the queues inaccessible to the VF */
995 	for (i = qmap_idx; i < (qmap_idx + qmap_stride); i++) {
996 		fm10k_write_reg(hw, FM10K_TQMAP(i), 0);
997 		fm10k_write_reg(hw, FM10K_RQMAP(i), 0);
998 	}
999 
1000 	/* calculate starting index for queues */
1001 	vf_q_idx = fm10k_vf_queue_index(hw, vf_idx);
1002 
1003 	/* determine correct default VLAN ID */
1004 	if (vf_info->pf_vid)
1005 		vf_vid = vf_info->pf_vid;
1006 	else
1007 		vf_vid = vf_info->sw_vid;
1008 
1009 	/* configure Queue control register */
1010 	txqctl = ((u32)vf_vid << FM10K_TXQCTL_VID_SHIFT) |
1011 		 (vf_idx << FM10K_TXQCTL_TC_SHIFT) |
1012 		 FM10K_TXQCTL_VF | vf_idx;
1013 	rxqctl = (vf_idx << FM10K_RXQCTL_VF_SHIFT) | FM10K_RXQCTL_VF;
1014 
1015 	/* stop further DMA and reset queue ownership back to VF */
1016 	for (i = vf_q_idx; i < (queues_per_pool + vf_q_idx); i++) {
1017 		fm10k_write_reg(hw, FM10K_TXDCTL(i), 0);
1018 		fm10k_write_reg(hw, FM10K_TXQCTL(i), txqctl);
1019 		fm10k_write_reg(hw, FM10K_RXDCTL(i),
1020 				FM10K_RXDCTL_WRITE_BACK_MIN_DELAY |
1021 				FM10K_RXDCTL_DROP_ON_EMPTY);
1022 		fm10k_write_reg(hw, FM10K_RXQCTL(i), rxqctl);
1023 	}
1024 
1025 	/* reset TC with -1 credits and no quanta to prevent transmit */
1026 	fm10k_write_reg(hw, FM10K_TC_MAXCREDIT(vf_idx), 0);
1027 	fm10k_write_reg(hw, FM10K_TC_RATE(vf_idx), 0);
1028 	fm10k_write_reg(hw, FM10K_TC_CREDIT(vf_idx),
1029 			FM10K_TC_CREDIT_CREDIT_MASK);
1030 
1031 	/* update our first entry in the table based on previous VF */
1032 	if (!vf_idx)
1033 		hw->mac.ops.update_int_moderator(hw);
1034 	else
1035 		hw->iov.ops.assign_int_moderator(hw, vf_idx - 1);
1036 
1037 	/* reset linked list so it now includes our active vectors */
1038 	if (vf_idx == (hw->iov.num_vfs - 1))
1039 		fm10k_write_reg(hw, FM10K_ITR2(0), vf_v_idx);
1040 	else
1041 		fm10k_write_reg(hw, FM10K_ITR2(vf_v_limit), vf_v_idx);
1042 
1043 	/* link remaining vectors so that next points to previous */
1044 	for (vf_v_idx++; vf_v_idx < vf_v_limit; vf_v_idx++)
1045 		fm10k_write_reg(hw, FM10K_ITR2(vf_v_idx), vf_v_idx - 1);
1046 
1047 	/* zero out MBMEM, VLAN_TABLE, RETA, RSSRK, and MRQC registers */
1048 	for (i = FM10K_VFMBMEM_LEN; i--;)
1049 		fm10k_write_reg(hw, FM10K_MBMEM_VF(vf_idx, i), 0);
1050 	for (i = FM10K_VLAN_TABLE_SIZE; i--;)
1051 		fm10k_write_reg(hw, FM10K_VLAN_TABLE(vf_info->vsi, i), 0);
1052 	for (i = FM10K_RETA_SIZE; i--;)
1053 		fm10k_write_reg(hw, FM10K_RETA(vf_info->vsi, i), 0);
1054 	for (i = FM10K_RSSRK_SIZE; i--;)
1055 		fm10k_write_reg(hw, FM10K_RSSRK(vf_info->vsi, i), 0);
1056 	fm10k_write_reg(hw, FM10K_MRQC(vf_info->vsi), 0);
1057 
1058 	/* Update base address registers to contain MAC address */
1059 	if (is_valid_ether_addr(vf_info->mac)) {
1060 		tdbal = (((u32)vf_info->mac[3]) << 24) |
1061 			(((u32)vf_info->mac[4]) << 16) |
1062 			(((u32)vf_info->mac[5]) << 8);
1063 		tdbah = (((u32)0xFF)	   << 24) |
1064 			(((u32)vf_info->mac[0]) << 16) |
1065 			(((u32)vf_info->mac[1]) << 8) |
1066 			((u32)vf_info->mac[2]);
1067 	}
1068 
1069 	/* map queue pairs back to VF from last to first */
1070 	for (i = queues_per_pool; i--;) {
1071 		fm10k_write_reg(hw, FM10K_TDBAL(vf_q_idx + i), tdbal);
1072 		fm10k_write_reg(hw, FM10K_TDBAH(vf_q_idx + i), tdbah);
1073 		/* See definition of FM10K_TDLEN_ITR_SCALE_SHIFT for an
1074 		 * explanation of how TDLEN is used.
1075 		 */
1076 		fm10k_write_reg(hw, FM10K_TDLEN(vf_q_idx + i),
1077 				hw->mac.itr_scale <<
1078 				FM10K_TDLEN_ITR_SCALE_SHIFT);
1079 		fm10k_write_reg(hw, FM10K_TQMAP(qmap_idx + i), vf_q_idx + i);
1080 		fm10k_write_reg(hw, FM10K_RQMAP(qmap_idx + i), vf_q_idx + i);
1081 	}
1082 
1083 	/* repeat the first ring for all the remaining VF rings */
1084 	for (i = queues_per_pool; i < qmap_stride; i++) {
1085 		fm10k_write_reg(hw, FM10K_TQMAP(qmap_idx + i), vf_q_idx);
1086 		fm10k_write_reg(hw, FM10K_RQMAP(qmap_idx + i), vf_q_idx);
1087 	}
1088 
1089 	return 0;
1090 }
1091 
1092 /**
1093  *  fm10k_iov_set_lport_pf - Assign and enable a logical port for a given VF
1094  *  @hw: pointer to hardware structure
1095  *  @vf_info: pointer to VF information structure
1096  *  @lport_idx: Logical port offset from the hardware glort
1097  *  @flags: Set of capability flags to extend port beyond basic functionality
1098  *
1099  *  This function allows enabling a VF port by assigning it a GLORT and
1100  *  setting the flags so that it can enable an Rx mode.
1101  **/
1102 static s32 fm10k_iov_set_lport_pf(struct fm10k_hw *hw,
1103 				  struct fm10k_vf_info *vf_info,
1104 				  u16 lport_idx, u8 flags)
1105 {
1106 	u16 glort = (hw->mac.dglort_map + lport_idx) & FM10K_DGLORTMAP_NONE;
1107 
1108 	/* if glort is not valid return error */
1109 	if (!fm10k_glort_valid_pf(hw, glort))
1110 		return FM10K_ERR_PARAM;
1111 
1112 	vf_info->vf_flags = flags | FM10K_VF_FLAG_NONE_CAPABLE;
1113 	vf_info->glort = glort;
1114 
1115 	return 0;
1116 }
1117 
1118 /**
1119  *  fm10k_iov_reset_lport_pf - Disable a logical port for a given VF
1120  *  @hw: pointer to hardware structure
1121  *  @vf_info: pointer to VF information structure
1122  *
1123  *  This function disables a VF port by stripping it of a GLORT and
1124  *  setting the flags so that it cannot enable any Rx mode.
1125  **/
1126 static void fm10k_iov_reset_lport_pf(struct fm10k_hw *hw,
1127 				     struct fm10k_vf_info *vf_info)
1128 {
1129 	u32 msg[1];
1130 
1131 	/* need to disable the port if it is already enabled */
1132 	if (FM10K_VF_FLAG_ENABLED(vf_info)) {
1133 		/* notify switch that this port has been disabled */
1134 		fm10k_update_lport_state_pf(hw, vf_info->glort, 1, false);
1135 
1136 		/* generate port state response to notify VF it is not ready */
1137 		fm10k_tlv_msg_init(msg, FM10K_VF_MSG_ID_LPORT_STATE);
1138 		vf_info->mbx.ops.enqueue_tx(hw, &vf_info->mbx, msg);
1139 	}
1140 
1141 	/* clear flags and glort if it exists */
1142 	vf_info->vf_flags = 0;
1143 	vf_info->glort = 0;
1144 }
1145 
1146 /**
1147  *  fm10k_iov_update_stats_pf - Updates hardware related statistics for VFs
1148  *  @hw: pointer to hardware structure
1149  *  @q: stats for all queues of a VF
1150  *  @vf_idx: index of VF
1151  *
1152  *  This function collects queue stats for VFs.
1153  **/
1154 static void fm10k_iov_update_stats_pf(struct fm10k_hw *hw,
1155 				      struct fm10k_hw_stats_q *q,
1156 				      u16 vf_idx)
1157 {
1158 	u32 idx, qpp;
1159 
1160 	/* get stats for all of the queues */
1161 	qpp = fm10k_queues_per_pool(hw);
1162 	idx = fm10k_vf_queue_index(hw, vf_idx);
1163 	fm10k_update_hw_stats_q(hw, q, idx, qpp);
1164 }
1165 
1166 /**
1167  *  fm10k_iov_msg_msix_pf - Message handler for MSI-X request from VF
1168  *  @hw: Pointer to hardware structure
1169  *  @results: Pointer array to message, results[0] is pointer to message
1170  *  @mbx: Pointer to mailbox information structure
1171  *
1172  *  This function is a default handler for MSI-X requests from the VF.  The
1173  *  assumption is that in this case it is acceptable to just directly
1174  *  hand off the message from the VF to the underlying shared code.
1175  **/
1176 s32 fm10k_iov_msg_msix_pf(struct fm10k_hw *hw, u32 **results,
1177 			  struct fm10k_mbx_info *mbx)
1178 {
1179 	struct fm10k_vf_info *vf_info = (struct fm10k_vf_info *)mbx;
1180 	u8 vf_idx = vf_info->vf_idx;
1181 
1182 	return hw->iov.ops.assign_int_moderator(hw, vf_idx);
1183 }
1184 
1185 /**
1186  * fm10k_iov_select_vid - Select correct default VLAN ID
1187  * @hw: Pointer to hardware structure
1188  * @vid: VLAN ID to correct
1189  *
1190  * Will report an error if the VLAN ID is out of range. For VID = 0, it will
1191  * return either the pf_vid or sw_vid depending on which one is set.
1192  */
1193 static s32 fm10k_iov_select_vid(struct fm10k_vf_info *vf_info, u16 vid)
1194 {
1195 	if (!vid)
1196 		return vf_info->pf_vid ? vf_info->pf_vid : vf_info->sw_vid;
1197 	else if (vf_info->pf_vid && vid != vf_info->pf_vid)
1198 		return FM10K_ERR_PARAM;
1199 	else
1200 		return vid;
1201 }
1202 
1203 /**
1204  *  fm10k_iov_msg_mac_vlan_pf - Message handler for MAC/VLAN request from VF
1205  *  @hw: Pointer to hardware structure
1206  *  @results: Pointer array to message, results[0] is pointer to message
1207  *  @mbx: Pointer to mailbox information structure
1208  *
1209  *  This function is a default handler for MAC/VLAN requests from the VF.
1210  *  The assumption is that in this case it is acceptable to just directly
1211  *  hand off the message from the VF to the underlying shared code.
1212  **/
1213 s32 fm10k_iov_msg_mac_vlan_pf(struct fm10k_hw *hw, u32 **results,
1214 			      struct fm10k_mbx_info *mbx)
1215 {
1216 	struct fm10k_vf_info *vf_info = (struct fm10k_vf_info *)mbx;
1217 	u8 mac[ETH_ALEN];
1218 	u32 *result;
1219 	int err = 0;
1220 	bool set;
1221 	u16 vlan;
1222 	u32 vid;
1223 
1224 	/* we shouldn't be updating rules on a disabled interface */
1225 	if (!FM10K_VF_FLAG_ENABLED(vf_info))
1226 		err = FM10K_ERR_PARAM;
1227 
1228 	if (!err && !!results[FM10K_MAC_VLAN_MSG_VLAN]) {
1229 		result = results[FM10K_MAC_VLAN_MSG_VLAN];
1230 
1231 		/* record VLAN id requested */
1232 		err = fm10k_tlv_attr_get_u32(result, &vid);
1233 		if (err)
1234 			return err;
1235 
1236 		set = !(vid & FM10K_VLAN_CLEAR);
1237 		vid &= ~FM10K_VLAN_CLEAR;
1238 
1239 		/* if the length field has been set, this is a multi-bit
1240 		 * update request. For multi-bit requests, simply disallow
1241 		 * them when the pf_vid has been set. In this case, the PF
1242 		 * should have already cleared the VLAN_TABLE, and if we
1243 		 * allowed them, it could allow a rogue VF to receive traffic
1244 		 * on a VLAN it was not assigned. In the single-bit case, we
1245 		 * need to modify requests for VLAN 0 to use the default PF or
1246 		 * SW vid when assigned.
1247 		 */
1248 
1249 		if (vid >> 16) {
1250 			/* prevent multi-bit requests when PF has
1251 			 * administratively set the VLAN for this VF
1252 			 */
1253 			if (vf_info->pf_vid)
1254 				return FM10K_ERR_PARAM;
1255 		} else {
1256 			err = fm10k_iov_select_vid(vf_info, (u16)vid);
1257 			if (err < 0)
1258 				return err;
1259 
1260 			vid = err;
1261 		}
1262 
1263 		/* update VSI info for VF in regards to VLAN table */
1264 		err = hw->mac.ops.update_vlan(hw, vid, vf_info->vsi, set);
1265 	}
1266 
1267 	if (!err && !!results[FM10K_MAC_VLAN_MSG_MAC]) {
1268 		result = results[FM10K_MAC_VLAN_MSG_MAC];
1269 
1270 		/* record unicast MAC address requested */
1271 		err = fm10k_tlv_attr_get_mac_vlan(result, mac, &vlan);
1272 		if (err)
1273 			return err;
1274 
1275 		/* block attempts to set MAC for a locked device */
1276 		if (is_valid_ether_addr(vf_info->mac) &&
1277 		    !ether_addr_equal(mac, vf_info->mac))
1278 			return FM10K_ERR_PARAM;
1279 
1280 		set = !(vlan & FM10K_VLAN_CLEAR);
1281 		vlan &= ~FM10K_VLAN_CLEAR;
1282 
1283 		err = fm10k_iov_select_vid(vf_info, vlan);
1284 		if (err < 0)
1285 			return err;
1286 
1287 		vlan = (u16)err;
1288 
1289 		/* notify switch of request for new unicast address */
1290 		err = hw->mac.ops.update_uc_addr(hw, vf_info->glort,
1291 						 mac, vlan, set, 0);
1292 	}
1293 
1294 	if (!err && !!results[FM10K_MAC_VLAN_MSG_MULTICAST]) {
1295 		result = results[FM10K_MAC_VLAN_MSG_MULTICAST];
1296 
1297 		/* record multicast MAC address requested */
1298 		err = fm10k_tlv_attr_get_mac_vlan(result, mac, &vlan);
1299 		if (err)
1300 			return err;
1301 
1302 		/* verify that the VF is allowed to request multicast */
1303 		if (!(vf_info->vf_flags & FM10K_VF_FLAG_MULTI_ENABLED))
1304 			return FM10K_ERR_PARAM;
1305 
1306 		set = !(vlan & FM10K_VLAN_CLEAR);
1307 		vlan &= ~FM10K_VLAN_CLEAR;
1308 
1309 		err = fm10k_iov_select_vid(vf_info, vlan);
1310 		if (err < 0)
1311 			return err;
1312 
1313 		vlan = (u16)err;
1314 
1315 		/* notify switch of request for new multicast address */
1316 		err = hw->mac.ops.update_mc_addr(hw, vf_info->glort,
1317 						 mac, vlan, set);
1318 	}
1319 
1320 	return err;
1321 }
1322 
1323 /**
1324  *  fm10k_iov_supported_xcast_mode_pf - Determine best match for xcast mode
1325  *  @vf_info: VF info structure containing capability flags
1326  *  @mode: Requested xcast mode
1327  *
1328  *  This function outputs the mode that most closely matches the requested
1329  *  mode.  If not modes match it will request we disable the port
1330  **/
1331 static u8 fm10k_iov_supported_xcast_mode_pf(struct fm10k_vf_info *vf_info,
1332 					    u8 mode)
1333 {
1334 	u8 vf_flags = vf_info->vf_flags;
1335 
1336 	/* match up mode to capabilities as best as possible */
1337 	switch (mode) {
1338 	case FM10K_XCAST_MODE_PROMISC:
1339 		if (vf_flags & FM10K_VF_FLAG_PROMISC_CAPABLE)
1340 			return FM10K_XCAST_MODE_PROMISC;
1341 		/* fallthough */
1342 	case FM10K_XCAST_MODE_ALLMULTI:
1343 		if (vf_flags & FM10K_VF_FLAG_ALLMULTI_CAPABLE)
1344 			return FM10K_XCAST_MODE_ALLMULTI;
1345 		/* fallthough */
1346 	case FM10K_XCAST_MODE_MULTI:
1347 		if (vf_flags & FM10K_VF_FLAG_MULTI_CAPABLE)
1348 			return FM10K_XCAST_MODE_MULTI;
1349 		/* fallthough */
1350 	case FM10K_XCAST_MODE_NONE:
1351 		if (vf_flags & FM10K_VF_FLAG_NONE_CAPABLE)
1352 			return FM10K_XCAST_MODE_NONE;
1353 		/* fallthough */
1354 	default:
1355 		break;
1356 	}
1357 
1358 	/* disable interface as it should not be able to request any */
1359 	return FM10K_XCAST_MODE_DISABLE;
1360 }
1361 
1362 /**
1363  *  fm10k_iov_msg_lport_state_pf - Message handler for port state requests
1364  *  @hw: Pointer to hardware structure
1365  *  @results: Pointer array to message, results[0] is pointer to message
1366  *  @mbx: Pointer to mailbox information structure
1367  *
1368  *  This function is a default handler for port state requests.  The port
1369  *  state requests for now are basic and consist of enabling or disabling
1370  *  the port.
1371  **/
1372 s32 fm10k_iov_msg_lport_state_pf(struct fm10k_hw *hw, u32 **results,
1373 				 struct fm10k_mbx_info *mbx)
1374 {
1375 	struct fm10k_vf_info *vf_info = (struct fm10k_vf_info *)mbx;
1376 	u32 *result;
1377 	s32 err = 0;
1378 	u32 msg[2];
1379 	u8 mode = 0;
1380 
1381 	/* verify VF is allowed to enable even minimal mode */
1382 	if (!(vf_info->vf_flags & FM10K_VF_FLAG_NONE_CAPABLE))
1383 		return FM10K_ERR_PARAM;
1384 
1385 	if (!!results[FM10K_LPORT_STATE_MSG_XCAST_MODE]) {
1386 		result = results[FM10K_LPORT_STATE_MSG_XCAST_MODE];
1387 
1388 		/* XCAST mode update requested */
1389 		err = fm10k_tlv_attr_get_u8(result, &mode);
1390 		if (err)
1391 			return FM10K_ERR_PARAM;
1392 
1393 		/* prep for possible demotion depending on capabilities */
1394 		mode = fm10k_iov_supported_xcast_mode_pf(vf_info, mode);
1395 
1396 		/* if mode is not currently enabled, enable it */
1397 		if (!(FM10K_VF_FLAG_ENABLED(vf_info) & BIT(mode)))
1398 			fm10k_update_xcast_mode_pf(hw, vf_info->glort, mode);
1399 
1400 		/* swap mode back to a bit flag */
1401 		mode = FM10K_VF_FLAG_SET_MODE(mode);
1402 	} else if (!results[FM10K_LPORT_STATE_MSG_DISABLE]) {
1403 		/* need to disable the port if it is already enabled */
1404 		if (FM10K_VF_FLAG_ENABLED(vf_info))
1405 			err = fm10k_update_lport_state_pf(hw, vf_info->glort,
1406 							  1, false);
1407 
1408 		/* we need to clear VF_FLAG_ENABLED flags in order to ensure
1409 		 * that we actually re-enable the LPORT state below. Note that
1410 		 * this has no impact if the VF is already disabled, as the
1411 		 * flags are already cleared.
1412 		 */
1413 		if (!err)
1414 			vf_info->vf_flags = FM10K_VF_FLAG_CAPABLE(vf_info);
1415 
1416 		/* when enabling the port we should reset the rate limiters */
1417 		hw->iov.ops.configure_tc(hw, vf_info->vf_idx, vf_info->rate);
1418 
1419 		/* set mode for minimal functionality */
1420 		mode = FM10K_VF_FLAG_SET_MODE_NONE;
1421 
1422 		/* generate port state response to notify VF it is ready */
1423 		fm10k_tlv_msg_init(msg, FM10K_VF_MSG_ID_LPORT_STATE);
1424 		fm10k_tlv_attr_put_bool(msg, FM10K_LPORT_STATE_MSG_READY);
1425 		mbx->ops.enqueue_tx(hw, mbx, msg);
1426 	}
1427 
1428 	/* if enable state toggled note the update */
1429 	if (!err && (!FM10K_VF_FLAG_ENABLED(vf_info) != !mode))
1430 		err = fm10k_update_lport_state_pf(hw, vf_info->glort, 1,
1431 						  !!mode);
1432 
1433 	/* if state change succeeded, then update our stored state */
1434 	mode |= FM10K_VF_FLAG_CAPABLE(vf_info);
1435 	if (!err)
1436 		vf_info->vf_flags = mode;
1437 
1438 	return err;
1439 }
1440 
1441 /**
1442  *  fm10k_update_stats_hw_pf - Updates hardware related statistics of PF
1443  *  @hw: pointer to hardware structure
1444  *  @stats: pointer to the stats structure to update
1445  *
1446  *  This function collects and aggregates global and per queue hardware
1447  *  statistics.
1448  **/
1449 static void fm10k_update_hw_stats_pf(struct fm10k_hw *hw,
1450 				     struct fm10k_hw_stats *stats)
1451 {
1452 	u32 timeout, ur, ca, um, xec, vlan_drop, loopback_drop, nodesc_drop;
1453 	u32 id, id_prev;
1454 
1455 	/* Use Tx queue 0 as a canary to detect a reset */
1456 	id = fm10k_read_reg(hw, FM10K_TXQCTL(0));
1457 
1458 	/* Read Global Statistics */
1459 	do {
1460 		timeout = fm10k_read_hw_stats_32b(hw, FM10K_STATS_TIMEOUT,
1461 						  &stats->timeout);
1462 		ur = fm10k_read_hw_stats_32b(hw, FM10K_STATS_UR, &stats->ur);
1463 		ca = fm10k_read_hw_stats_32b(hw, FM10K_STATS_CA, &stats->ca);
1464 		um = fm10k_read_hw_stats_32b(hw, FM10K_STATS_UM, &stats->um);
1465 		xec = fm10k_read_hw_stats_32b(hw, FM10K_STATS_XEC, &stats->xec);
1466 		vlan_drop = fm10k_read_hw_stats_32b(hw, FM10K_STATS_VLAN_DROP,
1467 						    &stats->vlan_drop);
1468 		loopback_drop =
1469 			fm10k_read_hw_stats_32b(hw,
1470 						FM10K_STATS_LOOPBACK_DROP,
1471 						&stats->loopback_drop);
1472 		nodesc_drop = fm10k_read_hw_stats_32b(hw,
1473 						      FM10K_STATS_NODESC_DROP,
1474 						      &stats->nodesc_drop);
1475 
1476 		/* if value has not changed then we have consistent data */
1477 		id_prev = id;
1478 		id = fm10k_read_reg(hw, FM10K_TXQCTL(0));
1479 	} while ((id ^ id_prev) & FM10K_TXQCTL_ID_MASK);
1480 
1481 	/* drop non-ID bits and set VALID ID bit */
1482 	id &= FM10K_TXQCTL_ID_MASK;
1483 	id |= FM10K_STAT_VALID;
1484 
1485 	/* Update Global Statistics */
1486 	if (stats->stats_idx == id) {
1487 		stats->timeout.count += timeout;
1488 		stats->ur.count += ur;
1489 		stats->ca.count += ca;
1490 		stats->um.count += um;
1491 		stats->xec.count += xec;
1492 		stats->vlan_drop.count += vlan_drop;
1493 		stats->loopback_drop.count += loopback_drop;
1494 		stats->nodesc_drop.count += nodesc_drop;
1495 	}
1496 
1497 	/* Update bases and record current PF id */
1498 	fm10k_update_hw_base_32b(&stats->timeout, timeout);
1499 	fm10k_update_hw_base_32b(&stats->ur, ur);
1500 	fm10k_update_hw_base_32b(&stats->ca, ca);
1501 	fm10k_update_hw_base_32b(&stats->um, um);
1502 	fm10k_update_hw_base_32b(&stats->xec, xec);
1503 	fm10k_update_hw_base_32b(&stats->vlan_drop, vlan_drop);
1504 	fm10k_update_hw_base_32b(&stats->loopback_drop, loopback_drop);
1505 	fm10k_update_hw_base_32b(&stats->nodesc_drop, nodesc_drop);
1506 	stats->stats_idx = id;
1507 
1508 	/* Update Queue Statistics */
1509 	fm10k_update_hw_stats_q(hw, stats->q, 0, hw->mac.max_queues);
1510 }
1511 
1512 /**
1513  *  fm10k_rebind_hw_stats_pf - Resets base for hardware statistics of PF
1514  *  @hw: pointer to hardware structure
1515  *  @stats: pointer to the stats structure to update
1516  *
1517  *  This function resets the base for global and per queue hardware
1518  *  statistics.
1519  **/
1520 static void fm10k_rebind_hw_stats_pf(struct fm10k_hw *hw,
1521 				     struct fm10k_hw_stats *stats)
1522 {
1523 	/* Unbind Global Statistics */
1524 	fm10k_unbind_hw_stats_32b(&stats->timeout);
1525 	fm10k_unbind_hw_stats_32b(&stats->ur);
1526 	fm10k_unbind_hw_stats_32b(&stats->ca);
1527 	fm10k_unbind_hw_stats_32b(&stats->um);
1528 	fm10k_unbind_hw_stats_32b(&stats->xec);
1529 	fm10k_unbind_hw_stats_32b(&stats->vlan_drop);
1530 	fm10k_unbind_hw_stats_32b(&stats->loopback_drop);
1531 	fm10k_unbind_hw_stats_32b(&stats->nodesc_drop);
1532 
1533 	/* Unbind Queue Statistics */
1534 	fm10k_unbind_hw_stats_q(stats->q, 0, hw->mac.max_queues);
1535 
1536 	/* Reinitialize bases for all stats */
1537 	fm10k_update_hw_stats_pf(hw, stats);
1538 }
1539 
1540 /**
1541  *  fm10k_set_dma_mask_pf - Configures PhyAddrSpace to limit DMA to system
1542  *  @hw: pointer to hardware structure
1543  *  @dma_mask: 64 bit DMA mask required for platform
1544  *
1545  *  This function sets the PHYADDR.PhyAddrSpace bits for the endpoint in order
1546  *  to limit the access to memory beyond what is physically in the system.
1547  **/
1548 static void fm10k_set_dma_mask_pf(struct fm10k_hw *hw, u64 dma_mask)
1549 {
1550 	/* we need to write the upper 32 bits of DMA mask to PhyAddrSpace */
1551 	u32 phyaddr = (u32)(dma_mask >> 32);
1552 
1553 	fm10k_write_reg(hw, FM10K_PHYADDR, phyaddr);
1554 }
1555 
1556 /**
1557  *  fm10k_get_fault_pf - Record a fault in one of the interface units
1558  *  @hw: pointer to hardware structure
1559  *  @type: pointer to fault type register offset
1560  *  @fault: pointer to memory location to record the fault
1561  *
1562  *  Record the fault register contents to the fault data structure and
1563  *  clear the entry from the register.
1564  *
1565  *  Returns ERR_PARAM if invalid register is specified or no error is present.
1566  **/
1567 static s32 fm10k_get_fault_pf(struct fm10k_hw *hw, int type,
1568 			      struct fm10k_fault *fault)
1569 {
1570 	u32 func;
1571 
1572 	/* verify the fault register is in range and is aligned */
1573 	switch (type) {
1574 	case FM10K_PCA_FAULT:
1575 	case FM10K_THI_FAULT:
1576 	case FM10K_FUM_FAULT:
1577 		break;
1578 	default:
1579 		return FM10K_ERR_PARAM;
1580 	}
1581 
1582 	/* only service faults that are valid */
1583 	func = fm10k_read_reg(hw, type + FM10K_FAULT_FUNC);
1584 	if (!(func & FM10K_FAULT_FUNC_VALID))
1585 		return FM10K_ERR_PARAM;
1586 
1587 	/* read remaining fields */
1588 	fault->address = fm10k_read_reg(hw, type + FM10K_FAULT_ADDR_HI);
1589 	fault->address <<= 32;
1590 	fault->address = fm10k_read_reg(hw, type + FM10K_FAULT_ADDR_LO);
1591 	fault->specinfo = fm10k_read_reg(hw, type + FM10K_FAULT_SPECINFO);
1592 
1593 	/* clear valid bit to allow for next error */
1594 	fm10k_write_reg(hw, type + FM10K_FAULT_FUNC, FM10K_FAULT_FUNC_VALID);
1595 
1596 	/* Record which function triggered the error */
1597 	if (func & FM10K_FAULT_FUNC_PF)
1598 		fault->func = 0;
1599 	else
1600 		fault->func = 1 + ((func & FM10K_FAULT_FUNC_VF_MASK) >>
1601 				   FM10K_FAULT_FUNC_VF_SHIFT);
1602 
1603 	/* record fault type */
1604 	fault->type = func & FM10K_FAULT_FUNC_TYPE_MASK;
1605 
1606 	return 0;
1607 }
1608 
1609 /**
1610  *  fm10k_request_lport_map_pf - Request LPORT map from the switch API
1611  *  @hw: pointer to hardware structure
1612  *
1613  **/
1614 static s32 fm10k_request_lport_map_pf(struct fm10k_hw *hw)
1615 {
1616 	struct fm10k_mbx_info *mbx = &hw->mbx;
1617 	u32 msg[1];
1618 
1619 	/* issue request asking for LPORT map */
1620 	fm10k_tlv_msg_init(msg, FM10K_PF_MSG_ID_LPORT_MAP);
1621 
1622 	/* load onto outgoing mailbox */
1623 	return mbx->ops.enqueue_tx(hw, mbx, msg);
1624 }
1625 
1626 /**
1627  *  fm10k_get_host_state_pf - Returns the state of the switch and mailbox
1628  *  @hw: pointer to hardware structure
1629  *  @switch_ready: pointer to boolean value that will record switch state
1630  *
1631  *  This function will check the DMA_CTRL2 register and mailbox in order
1632  *  to determine if the switch is ready for the PF to begin requesting
1633  *  addresses and mapping traffic to the local interface.
1634  **/
1635 static s32 fm10k_get_host_state_pf(struct fm10k_hw *hw, bool *switch_ready)
1636 {
1637 	u32 dma_ctrl2;
1638 
1639 	/* verify the switch is ready for interaction */
1640 	dma_ctrl2 = fm10k_read_reg(hw, FM10K_DMA_CTRL2);
1641 	if (!(dma_ctrl2 & FM10K_DMA_CTRL2_SWITCH_READY))
1642 		return 0;
1643 
1644 	/* retrieve generic host state info */
1645 	return fm10k_get_host_state_generic(hw, switch_ready);
1646 }
1647 
1648 /* This structure defines the attibutes to be parsed below */
1649 const struct fm10k_tlv_attr fm10k_lport_map_msg_attr[] = {
1650 	FM10K_TLV_ATTR_LE_STRUCT(FM10K_PF_ATTR_ID_ERR,
1651 				 sizeof(struct fm10k_swapi_error)),
1652 	FM10K_TLV_ATTR_U32(FM10K_PF_ATTR_ID_LPORT_MAP),
1653 	FM10K_TLV_ATTR_LAST
1654 };
1655 
1656 /**
1657  *  fm10k_msg_lport_map_pf - Message handler for lport_map message from SM
1658  *  @hw: Pointer to hardware structure
1659  *  @results: pointer array containing parsed data
1660  *  @mbx: Pointer to mailbox information structure
1661  *
1662  *  This handler configures the lport mapping based on the reply from the
1663  *  switch API.
1664  **/
1665 s32 fm10k_msg_lport_map_pf(struct fm10k_hw *hw, u32 **results,
1666 			   struct fm10k_mbx_info *mbx)
1667 {
1668 	u16 glort, mask;
1669 	u32 dglort_map;
1670 	s32 err;
1671 
1672 	err = fm10k_tlv_attr_get_u32(results[FM10K_PF_ATTR_ID_LPORT_MAP],
1673 				     &dglort_map);
1674 	if (err)
1675 		return err;
1676 
1677 	/* extract values out of the header */
1678 	glort = FM10K_MSG_HDR_FIELD_GET(dglort_map, LPORT_MAP_GLORT);
1679 	mask = FM10K_MSG_HDR_FIELD_GET(dglort_map, LPORT_MAP_MASK);
1680 
1681 	/* verify mask is set and none of the masked bits in glort are set */
1682 	if (!mask || (glort & ~mask))
1683 		return FM10K_ERR_PARAM;
1684 
1685 	/* verify the mask is contiguous, and that it is 1's followed by 0's */
1686 	if (((~(mask - 1) & mask) + mask) & FM10K_DGLORTMAP_NONE)
1687 		return FM10K_ERR_PARAM;
1688 
1689 	/* record the glort, mask, and port count */
1690 	hw->mac.dglort_map = dglort_map;
1691 
1692 	return 0;
1693 }
1694 
1695 const struct fm10k_tlv_attr fm10k_update_pvid_msg_attr[] = {
1696 	FM10K_TLV_ATTR_U32(FM10K_PF_ATTR_ID_UPDATE_PVID),
1697 	FM10K_TLV_ATTR_LAST
1698 };
1699 
1700 /**
1701  *  fm10k_msg_update_pvid_pf - Message handler for port VLAN message from SM
1702  *  @hw: Pointer to hardware structure
1703  *  @results: pointer array containing parsed data
1704  *  @mbx: Pointer to mailbox information structure
1705  *
1706  *  This handler configures the default VLAN for the PF
1707  **/
1708 static s32 fm10k_msg_update_pvid_pf(struct fm10k_hw *hw, u32 **results,
1709 				    struct fm10k_mbx_info *mbx)
1710 {
1711 	u16 glort, pvid;
1712 	u32 pvid_update;
1713 	s32 err;
1714 
1715 	err = fm10k_tlv_attr_get_u32(results[FM10K_PF_ATTR_ID_UPDATE_PVID],
1716 				     &pvid_update);
1717 	if (err)
1718 		return err;
1719 
1720 	/* extract values from the pvid update */
1721 	glort = FM10K_MSG_HDR_FIELD_GET(pvid_update, UPDATE_PVID_GLORT);
1722 	pvid = FM10K_MSG_HDR_FIELD_GET(pvid_update, UPDATE_PVID_PVID);
1723 
1724 	/* if glort is not valid return error */
1725 	if (!fm10k_glort_valid_pf(hw, glort))
1726 		return FM10K_ERR_PARAM;
1727 
1728 	/* verify VLAN ID is valid */
1729 	if (pvid >= FM10K_VLAN_TABLE_VID_MAX)
1730 		return FM10K_ERR_PARAM;
1731 
1732 	/* record the port VLAN ID value */
1733 	hw->mac.default_vid = pvid;
1734 
1735 	return 0;
1736 }
1737 
1738 /**
1739  *  fm10k_record_global_table_data - Move global table data to swapi table info
1740  *  @from: pointer to source table data structure
1741  *  @to: pointer to destination table info structure
1742  *
1743  *  This function is will copy table_data to the table_info contained in
1744  *  the hw struct.
1745  **/
1746 static void fm10k_record_global_table_data(struct fm10k_global_table_data *from,
1747 					   struct fm10k_swapi_table_info *to)
1748 {
1749 	/* convert from le32 struct to CPU byte ordered values */
1750 	to->used = le32_to_cpu(from->used);
1751 	to->avail = le32_to_cpu(from->avail);
1752 }
1753 
1754 const struct fm10k_tlv_attr fm10k_err_msg_attr[] = {
1755 	FM10K_TLV_ATTR_LE_STRUCT(FM10K_PF_ATTR_ID_ERR,
1756 				 sizeof(struct fm10k_swapi_error)),
1757 	FM10K_TLV_ATTR_LAST
1758 };
1759 
1760 /**
1761  *  fm10k_msg_err_pf - Message handler for error reply
1762  *  @hw: Pointer to hardware structure
1763  *  @results: pointer array containing parsed data
1764  *  @mbx: Pointer to mailbox information structure
1765  *
1766  *  This handler will capture the data for any error replies to previous
1767  *  messages that the PF has sent.
1768  **/
1769 s32 fm10k_msg_err_pf(struct fm10k_hw *hw, u32 **results,
1770 		     struct fm10k_mbx_info *mbx)
1771 {
1772 	struct fm10k_swapi_error err_msg;
1773 	s32 err;
1774 
1775 	/* extract structure from message */
1776 	err = fm10k_tlv_attr_get_le_struct(results[FM10K_PF_ATTR_ID_ERR],
1777 					   &err_msg, sizeof(err_msg));
1778 	if (err)
1779 		return err;
1780 
1781 	/* record table status */
1782 	fm10k_record_global_table_data(&err_msg.mac, &hw->swapi.mac);
1783 	fm10k_record_global_table_data(&err_msg.nexthop, &hw->swapi.nexthop);
1784 	fm10k_record_global_table_data(&err_msg.ffu, &hw->swapi.ffu);
1785 
1786 	/* record SW API status value */
1787 	hw->swapi.status = le32_to_cpu(err_msg.status);
1788 
1789 	return 0;
1790 }
1791 
1792 static const struct fm10k_msg_data fm10k_msg_data_pf[] = {
1793 	FM10K_PF_MSG_ERR_HANDLER(XCAST_MODES, fm10k_msg_err_pf),
1794 	FM10K_PF_MSG_ERR_HANDLER(UPDATE_MAC_FWD_RULE, fm10k_msg_err_pf),
1795 	FM10K_PF_MSG_LPORT_MAP_HANDLER(fm10k_msg_lport_map_pf),
1796 	FM10K_PF_MSG_ERR_HANDLER(LPORT_CREATE, fm10k_msg_err_pf),
1797 	FM10K_PF_MSG_ERR_HANDLER(LPORT_DELETE, fm10k_msg_err_pf),
1798 	FM10K_PF_MSG_UPDATE_PVID_HANDLER(fm10k_msg_update_pvid_pf),
1799 	FM10K_TLV_MSG_ERROR_HANDLER(fm10k_tlv_msg_error),
1800 };
1801 
1802 static const struct fm10k_mac_ops mac_ops_pf = {
1803 	.get_bus_info		= fm10k_get_bus_info_generic,
1804 	.reset_hw		= fm10k_reset_hw_pf,
1805 	.init_hw		= fm10k_init_hw_pf,
1806 	.start_hw		= fm10k_start_hw_generic,
1807 	.stop_hw		= fm10k_stop_hw_generic,
1808 	.update_vlan		= fm10k_update_vlan_pf,
1809 	.read_mac_addr		= fm10k_read_mac_addr_pf,
1810 	.update_uc_addr		= fm10k_update_uc_addr_pf,
1811 	.update_mc_addr		= fm10k_update_mc_addr_pf,
1812 	.update_xcast_mode	= fm10k_update_xcast_mode_pf,
1813 	.update_int_moderator	= fm10k_update_int_moderator_pf,
1814 	.update_lport_state	= fm10k_update_lport_state_pf,
1815 	.update_hw_stats	= fm10k_update_hw_stats_pf,
1816 	.rebind_hw_stats	= fm10k_rebind_hw_stats_pf,
1817 	.configure_dglort_map	= fm10k_configure_dglort_map_pf,
1818 	.set_dma_mask		= fm10k_set_dma_mask_pf,
1819 	.get_fault		= fm10k_get_fault_pf,
1820 	.get_host_state		= fm10k_get_host_state_pf,
1821 	.request_lport_map	= fm10k_request_lport_map_pf,
1822 };
1823 
1824 static const struct fm10k_iov_ops iov_ops_pf = {
1825 	.assign_resources		= fm10k_iov_assign_resources_pf,
1826 	.configure_tc			= fm10k_iov_configure_tc_pf,
1827 	.assign_int_moderator		= fm10k_iov_assign_int_moderator_pf,
1828 	.assign_default_mac_vlan	= fm10k_iov_assign_default_mac_vlan_pf,
1829 	.reset_resources		= fm10k_iov_reset_resources_pf,
1830 	.set_lport			= fm10k_iov_set_lport_pf,
1831 	.reset_lport			= fm10k_iov_reset_lport_pf,
1832 	.update_stats			= fm10k_iov_update_stats_pf,
1833 };
1834 
1835 static s32 fm10k_get_invariants_pf(struct fm10k_hw *hw)
1836 {
1837 	fm10k_get_invariants_generic(hw);
1838 
1839 	return fm10k_sm_mbx_init(hw, &hw->mbx, fm10k_msg_data_pf);
1840 }
1841 
1842 const struct fm10k_info fm10k_pf_info = {
1843 	.mac		= fm10k_mac_pf,
1844 	.get_invariants	= fm10k_get_invariants_pf,
1845 	.mac_ops	= &mac_ops_pf,
1846 	.iov_ops	= &iov_ops_pf,
1847 };
1848