1 /* Intel Ethernet Switch Host Interface Driver
2  * Copyright(c) 2013 - 2015 Intel Corporation.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms and conditions of the GNU General Public License,
6  * version 2, as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope it will be useful, but WITHOUT
9  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
11  * more details.
12  *
13  * The full GNU General Public License is included in this distribution in
14  * the file called "COPYING".
15  *
16  * Contact Information:
17  * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
18  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
19  */
20 
21 #include "fm10k_pf.h"
22 #include "fm10k_vf.h"
23 
24 /**
25  *  fm10k_reset_hw_pf - PF hardware reset
26  *  @hw: pointer to hardware structure
27  *
28  *  This function should return the hardware to a state similar to the
29  *  one it is in after being powered on.
30  **/
31 static s32 fm10k_reset_hw_pf(struct fm10k_hw *hw)
32 {
33 	s32 err;
34 	u32 reg;
35 	u16 i;
36 
37 	/* Disable interrupts */
38 	fm10k_write_reg(hw, FM10K_EIMR, FM10K_EIMR_DISABLE(ALL));
39 
40 	/* Lock ITR2 reg 0 into itself and disable interrupt moderation */
41 	fm10k_write_reg(hw, FM10K_ITR2(0), 0);
42 	fm10k_write_reg(hw, FM10K_INT_CTRL, 0);
43 
44 	/* We assume here Tx and Rx queue 0 are owned by the PF */
45 
46 	/* Shut off VF access to their queues forcing them to queue 0 */
47 	for (i = 0; i < FM10K_TQMAP_TABLE_SIZE; i++) {
48 		fm10k_write_reg(hw, FM10K_TQMAP(i), 0);
49 		fm10k_write_reg(hw, FM10K_RQMAP(i), 0);
50 	}
51 
52 	/* shut down all rings */
53 	err = fm10k_disable_queues_generic(hw, FM10K_MAX_QUEUES);
54 	if (err)
55 		return err;
56 
57 	/* Verify that DMA is no longer active */
58 	reg = fm10k_read_reg(hw, FM10K_DMA_CTRL);
59 	if (reg & (FM10K_DMA_CTRL_TX_ACTIVE | FM10K_DMA_CTRL_RX_ACTIVE))
60 		return FM10K_ERR_DMA_PENDING;
61 
62 	/* verify the switch is ready for reset */
63 	reg = fm10k_read_reg(hw, FM10K_DMA_CTRL2);
64 	if (!(reg & FM10K_DMA_CTRL2_SWITCH_READY))
65 		goto out;
66 
67 	/* Inititate data path reset */
68 	reg |= FM10K_DMA_CTRL_DATAPATH_RESET;
69 	fm10k_write_reg(hw, FM10K_DMA_CTRL, reg);
70 
71 	/* Flush write and allow 100us for reset to complete */
72 	fm10k_write_flush(hw);
73 	udelay(FM10K_RESET_TIMEOUT);
74 
75 	/* Verify we made it out of reset */
76 	reg = fm10k_read_reg(hw, FM10K_IP);
77 	if (!(reg & FM10K_IP_NOTINRESET))
78 		err = FM10K_ERR_RESET_FAILED;
79 
80 out:
81 	return err;
82 }
83 
84 /**
85  *  fm10k_is_ari_hierarchy_pf - Indicate ARI hierarchy support
86  *  @hw: pointer to hardware structure
87  *
88  *  Looks at the ARI hierarchy bit to determine whether ARI is supported or not.
89  **/
90 static bool fm10k_is_ari_hierarchy_pf(struct fm10k_hw *hw)
91 {
92 	u16 sriov_ctrl = fm10k_read_pci_cfg_word(hw, FM10K_PCIE_SRIOV_CTRL);
93 
94 	return !!(sriov_ctrl & FM10K_PCIE_SRIOV_CTRL_VFARI);
95 }
96 
97 /**
98  *  fm10k_init_hw_pf - PF hardware initialization
99  *  @hw: pointer to hardware structure
100  *
101  **/
102 static s32 fm10k_init_hw_pf(struct fm10k_hw *hw)
103 {
104 	u32 dma_ctrl, txqctl;
105 	u16 i;
106 
107 	/* Establish default VSI as valid */
108 	fm10k_write_reg(hw, FM10K_DGLORTDEC(fm10k_dglort_default), 0);
109 	fm10k_write_reg(hw, FM10K_DGLORTMAP(fm10k_dglort_default),
110 			FM10K_DGLORTMAP_ANY);
111 
112 	/* Invalidate all other GLORT entries */
113 	for (i = 1; i < FM10K_DGLORT_COUNT; i++)
114 		fm10k_write_reg(hw, FM10K_DGLORTMAP(i), FM10K_DGLORTMAP_NONE);
115 
116 	/* reset ITR2(0) to point to itself */
117 	fm10k_write_reg(hw, FM10K_ITR2(0), 0);
118 
119 	/* reset VF ITR2(0) to point to 0 avoid PF registers */
120 	fm10k_write_reg(hw, FM10K_ITR2(FM10K_ITR_REG_COUNT_PF), 0);
121 
122 	/* loop through all PF ITR2 registers pointing them to the previous */
123 	for (i = 1; i < FM10K_ITR_REG_COUNT_PF; i++)
124 		fm10k_write_reg(hw, FM10K_ITR2(i), i - 1);
125 
126 	/* Enable interrupt moderator if not already enabled */
127 	fm10k_write_reg(hw, FM10K_INT_CTRL, FM10K_INT_CTRL_ENABLEMODERATOR);
128 
129 	/* compute the default txqctl configuration */
130 	txqctl = FM10K_TXQCTL_PF | FM10K_TXQCTL_UNLIMITED_BW |
131 		 (hw->mac.default_vid << FM10K_TXQCTL_VID_SHIFT);
132 
133 	for (i = 0; i < FM10K_MAX_QUEUES; i++) {
134 		/* configure rings for 256 Queue / 32 Descriptor cache mode */
135 		fm10k_write_reg(hw, FM10K_TQDLOC(i),
136 				(i * FM10K_TQDLOC_BASE_32_DESC) |
137 				FM10K_TQDLOC_SIZE_32_DESC);
138 		fm10k_write_reg(hw, FM10K_TXQCTL(i), txqctl);
139 
140 		/* configure rings to provide TPH processing hints */
141 		fm10k_write_reg(hw, FM10K_TPH_TXCTRL(i),
142 				FM10K_TPH_TXCTRL_DESC_TPHEN |
143 				FM10K_TPH_TXCTRL_DESC_RROEN |
144 				FM10K_TPH_TXCTRL_DESC_WROEN |
145 				FM10K_TPH_TXCTRL_DATA_RROEN);
146 		fm10k_write_reg(hw, FM10K_TPH_RXCTRL(i),
147 				FM10K_TPH_RXCTRL_DESC_TPHEN |
148 				FM10K_TPH_RXCTRL_DESC_RROEN |
149 				FM10K_TPH_RXCTRL_DATA_WROEN |
150 				FM10K_TPH_RXCTRL_HDR_WROEN);
151 	}
152 
153 	/* set max hold interval to align with 1.024 usec in all modes and
154 	 * store ITR scale
155 	 */
156 	switch (hw->bus.speed) {
157 	case fm10k_bus_speed_2500:
158 		dma_ctrl = FM10K_DMA_CTRL_MAX_HOLD_1US_GEN1;
159 		hw->mac.itr_scale = FM10K_TDLEN_ITR_SCALE_GEN1;
160 		break;
161 	case fm10k_bus_speed_5000:
162 		dma_ctrl = FM10K_DMA_CTRL_MAX_HOLD_1US_GEN2;
163 		hw->mac.itr_scale = FM10K_TDLEN_ITR_SCALE_GEN2;
164 		break;
165 	case fm10k_bus_speed_8000:
166 		dma_ctrl = FM10K_DMA_CTRL_MAX_HOLD_1US_GEN3;
167 		hw->mac.itr_scale = FM10K_TDLEN_ITR_SCALE_GEN3;
168 		break;
169 	default:
170 		dma_ctrl = 0;
171 		/* just in case, assume Gen3 ITR scale */
172 		hw->mac.itr_scale = FM10K_TDLEN_ITR_SCALE_GEN3;
173 		break;
174 	}
175 
176 	/* Configure TSO flags */
177 	fm10k_write_reg(hw, FM10K_DTXTCPFLGL, FM10K_TSO_FLAGS_LOW);
178 	fm10k_write_reg(hw, FM10K_DTXTCPFLGH, FM10K_TSO_FLAGS_HI);
179 
180 	/* Enable DMA engine
181 	 * Set Rx Descriptor size to 32
182 	 * Set Minimum MSS to 64
183 	 * Set Maximum number of Rx queues to 256 / 32 Descriptor
184 	 */
185 	dma_ctrl |= FM10K_DMA_CTRL_TX_ENABLE | FM10K_DMA_CTRL_RX_ENABLE |
186 		    FM10K_DMA_CTRL_RX_DESC_SIZE | FM10K_DMA_CTRL_MINMSS_64 |
187 		    FM10K_DMA_CTRL_32_DESC;
188 
189 	fm10k_write_reg(hw, FM10K_DMA_CTRL, dma_ctrl);
190 
191 	/* record maximum queue count, we limit ourselves to 128 */
192 	hw->mac.max_queues = FM10K_MAX_QUEUES_PF;
193 
194 	/* We support either 64 VFs or 7 VFs depending on if we have ARI */
195 	hw->iov.total_vfs = fm10k_is_ari_hierarchy_pf(hw) ? 64 : 7;
196 
197 	return 0;
198 }
199 
200 /**
201  *  fm10k_update_vlan_pf - Update status of VLAN ID in VLAN filter table
202  *  @hw: pointer to hardware structure
203  *  @vid: VLAN ID to add to table
204  *  @vsi: Index indicating VF ID or PF ID in table
205  *  @set: Indicates if this is a set or clear operation
206  *
207  *  This function adds or removes the corresponding VLAN ID from the VLAN
208  *  filter table for the corresponding function.  In addition to the
209  *  standard set/clear that supports one bit a multi-bit write is
210  *  supported to set 64 bits at a time.
211  **/
212 static s32 fm10k_update_vlan_pf(struct fm10k_hw *hw, u32 vid, u8 vsi, bool set)
213 {
214 	u32 vlan_table, reg, mask, bit, len;
215 
216 	/* verify the VSI index is valid */
217 	if (vsi > FM10K_VLAN_TABLE_VSI_MAX)
218 		return FM10K_ERR_PARAM;
219 
220 	/* VLAN multi-bit write:
221 	 * The multi-bit write has several parts to it.
222 	 *    3			  2		      1			  0
223 	 *  1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
224 	 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
225 	 * | RSVD0 |         Length        |C|RSVD0|        VLAN ID        |
226 	 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
227 	 *
228 	 * VLAN ID: Vlan Starting value
229 	 * RSVD0: Reserved section, must be 0
230 	 * C: Flag field, 0 is set, 1 is clear (Used in VF VLAN message)
231 	 * Length: Number of times to repeat the bit being set
232 	 */
233 	len = vid >> 16;
234 	vid = (vid << 17) >> 17;
235 
236 	/* verify the reserved 0 fields are 0 */
237 	if (len >= FM10K_VLAN_TABLE_VID_MAX || vid >= FM10K_VLAN_TABLE_VID_MAX)
238 		return FM10K_ERR_PARAM;
239 
240 	/* Loop through the table updating all required VLANs */
241 	for (reg = FM10K_VLAN_TABLE(vsi, vid / 32), bit = vid % 32;
242 	     len < FM10K_VLAN_TABLE_VID_MAX;
243 	     len -= 32 - bit, reg++, bit = 0) {
244 		/* record the initial state of the register */
245 		vlan_table = fm10k_read_reg(hw, reg);
246 
247 		/* truncate mask if we are at the start or end of the run */
248 		mask = (~(u32)0 >> ((len < 31) ? 31 - len : 0)) << bit;
249 
250 		/* make necessary modifications to the register */
251 		mask &= set ? ~vlan_table : vlan_table;
252 		if (mask)
253 			fm10k_write_reg(hw, reg, vlan_table ^ mask);
254 	}
255 
256 	return 0;
257 }
258 
259 /**
260  *  fm10k_read_mac_addr_pf - Read device MAC address
261  *  @hw: pointer to the HW structure
262  *
263  *  Reads the device MAC address from the SM_AREA and stores the value.
264  **/
265 static s32 fm10k_read_mac_addr_pf(struct fm10k_hw *hw)
266 {
267 	u8 perm_addr[ETH_ALEN];
268 	u32 serial_num;
269 
270 	serial_num = fm10k_read_reg(hw, FM10K_SM_AREA(1));
271 
272 	/* last byte should be all 1's */
273 	if ((~serial_num) << 24)
274 		return  FM10K_ERR_INVALID_MAC_ADDR;
275 
276 	perm_addr[0] = (u8)(serial_num >> 24);
277 	perm_addr[1] = (u8)(serial_num >> 16);
278 	perm_addr[2] = (u8)(serial_num >> 8);
279 
280 	serial_num = fm10k_read_reg(hw, FM10K_SM_AREA(0));
281 
282 	/* first byte should be all 1's */
283 	if ((~serial_num) >> 24)
284 		return  FM10K_ERR_INVALID_MAC_ADDR;
285 
286 	perm_addr[3] = (u8)(serial_num >> 16);
287 	perm_addr[4] = (u8)(serial_num >> 8);
288 	perm_addr[5] = (u8)(serial_num);
289 
290 	ether_addr_copy(hw->mac.perm_addr, perm_addr);
291 	ether_addr_copy(hw->mac.addr, perm_addr);
292 
293 	return 0;
294 }
295 
296 /**
297  *  fm10k_glort_valid_pf - Validate that the provided glort is valid
298  *  @hw: pointer to the HW structure
299  *  @glort: base glort to be validated
300  *
301  *  This function will return an error if the provided glort is invalid
302  **/
303 bool fm10k_glort_valid_pf(struct fm10k_hw *hw, u16 glort)
304 {
305 	glort &= hw->mac.dglort_map >> FM10K_DGLORTMAP_MASK_SHIFT;
306 
307 	return glort == (hw->mac.dglort_map & FM10K_DGLORTMAP_NONE);
308 }
309 
310 /**
311  *  fm10k_update_xc_addr_pf - Update device addresses
312  *  @hw: pointer to the HW structure
313  *  @glort: base resource tag for this request
314  *  @mac: MAC address to add/remove from table
315  *  @vid: VLAN ID to add/remove from table
316  *  @add: Indicates if this is an add or remove operation
317  *  @flags: flags field to indicate add and secure
318  *
319  *  This function generates a message to the Switch API requesting
320  *  that the given logical port add/remove the given L2 MAC/VLAN address.
321  **/
322 static s32 fm10k_update_xc_addr_pf(struct fm10k_hw *hw, u16 glort,
323 				   const u8 *mac, u16 vid, bool add, u8 flags)
324 {
325 	struct fm10k_mbx_info *mbx = &hw->mbx;
326 	struct fm10k_mac_update mac_update;
327 	u32 msg[5];
328 
329 	/* clear set bit from VLAN ID */
330 	vid &= ~FM10K_VLAN_CLEAR;
331 
332 	/* if glort or vlan are not valid return error */
333 	if (!fm10k_glort_valid_pf(hw, glort) || vid >= FM10K_VLAN_TABLE_VID_MAX)
334 		return FM10K_ERR_PARAM;
335 
336 	/* record fields */
337 	mac_update.mac_lower = cpu_to_le32(((u32)mac[2] << 24) |
338 						 ((u32)mac[3] << 16) |
339 						 ((u32)mac[4] << 8) |
340 						 ((u32)mac[5]));
341 	mac_update.mac_upper = cpu_to_le16(((u16)mac[0] << 8) |
342 					   ((u16)mac[1]));
343 	mac_update.vlan = cpu_to_le16(vid);
344 	mac_update.glort = cpu_to_le16(glort);
345 	mac_update.action = add ? 0 : 1;
346 	mac_update.flags = flags;
347 
348 	/* populate mac_update fields */
349 	fm10k_tlv_msg_init(msg, FM10K_PF_MSG_ID_UPDATE_MAC_FWD_RULE);
350 	fm10k_tlv_attr_put_le_struct(msg, FM10K_PF_ATTR_ID_MAC_UPDATE,
351 				     &mac_update, sizeof(mac_update));
352 
353 	/* load onto outgoing mailbox */
354 	return mbx->ops.enqueue_tx(hw, mbx, msg);
355 }
356 
357 /**
358  *  fm10k_update_uc_addr_pf - Update device unicast addresses
359  *  @hw: pointer to the HW structure
360  *  @glort: base resource tag for this request
361  *  @mac: MAC address to add/remove from table
362  *  @vid: VLAN ID to add/remove from table
363  *  @add: Indicates if this is an add or remove operation
364  *  @flags: flags field to indicate add and secure
365  *
366  *  This function is used to add or remove unicast addresses for
367  *  the PF.
368  **/
369 static s32 fm10k_update_uc_addr_pf(struct fm10k_hw *hw, u16 glort,
370 				   const u8 *mac, u16 vid, bool add, u8 flags)
371 {
372 	/* verify MAC address is valid */
373 	if (!is_valid_ether_addr(mac))
374 		return FM10K_ERR_PARAM;
375 
376 	return fm10k_update_xc_addr_pf(hw, glort, mac, vid, add, flags);
377 }
378 
379 /**
380  *  fm10k_update_mc_addr_pf - Update device multicast addresses
381  *  @hw: pointer to the HW structure
382  *  @glort: base resource tag for this request
383  *  @mac: MAC address to add/remove from table
384  *  @vid: VLAN ID to add/remove from table
385  *  @add: Indicates if this is an add or remove operation
386  *
387  *  This function is used to add or remove multicast MAC addresses for
388  *  the PF.
389  **/
390 static s32 fm10k_update_mc_addr_pf(struct fm10k_hw *hw, u16 glort,
391 				   const u8 *mac, u16 vid, bool add)
392 {
393 	/* verify multicast address is valid */
394 	if (!is_multicast_ether_addr(mac))
395 		return FM10K_ERR_PARAM;
396 
397 	return fm10k_update_xc_addr_pf(hw, glort, mac, vid, add, 0);
398 }
399 
400 /**
401  *  fm10k_update_xcast_mode_pf - Request update of multicast mode
402  *  @hw: pointer to hardware structure
403  *  @glort: base resource tag for this request
404  *  @mode: integer value indicating mode being requested
405  *
406  *  This function will attempt to request a higher mode for the port
407  *  so that it can enable either multicast, multicast promiscuous, or
408  *  promiscuous mode of operation.
409  **/
410 static s32 fm10k_update_xcast_mode_pf(struct fm10k_hw *hw, u16 glort, u8 mode)
411 {
412 	struct fm10k_mbx_info *mbx = &hw->mbx;
413 	u32 msg[3], xcast_mode;
414 
415 	if (mode > FM10K_XCAST_MODE_NONE)
416 		return FM10K_ERR_PARAM;
417 	/* if glort is not valid return error */
418 	if (!fm10k_glort_valid_pf(hw, glort))
419 		return FM10K_ERR_PARAM;
420 
421 	/* write xcast mode as a single u32 value,
422 	 * lower 16 bits: glort
423 	 * upper 16 bits: mode
424 	 */
425 	xcast_mode = ((u32)mode << 16) | glort;
426 
427 	/* generate message requesting to change xcast mode */
428 	fm10k_tlv_msg_init(msg, FM10K_PF_MSG_ID_XCAST_MODES);
429 	fm10k_tlv_attr_put_u32(msg, FM10K_PF_ATTR_ID_XCAST_MODE, xcast_mode);
430 
431 	/* load onto outgoing mailbox */
432 	return mbx->ops.enqueue_tx(hw, mbx, msg);
433 }
434 
435 /**
436  *  fm10k_update_int_moderator_pf - Update interrupt moderator linked list
437  *  @hw: pointer to hardware structure
438  *
439  *  This function walks through the MSI-X vector table to determine the
440  *  number of active interrupts and based on that information updates the
441  *  interrupt moderator linked list.
442  **/
443 static void fm10k_update_int_moderator_pf(struct fm10k_hw *hw)
444 {
445 	u32 i;
446 
447 	/* Disable interrupt moderator */
448 	fm10k_write_reg(hw, FM10K_INT_CTRL, 0);
449 
450 	/* loop through PF from last to first looking enabled vectors */
451 	for (i = FM10K_ITR_REG_COUNT_PF - 1; i; i--) {
452 		if (!fm10k_read_reg(hw, FM10K_MSIX_VECTOR_MASK(i)))
453 			break;
454 	}
455 
456 	/* always reset VFITR2[0] to point to last enabled PF vector */
457 	fm10k_write_reg(hw, FM10K_ITR2(FM10K_ITR_REG_COUNT_PF), i);
458 
459 	/* reset ITR2[0] to point to last enabled PF vector */
460 	if (!hw->iov.num_vfs)
461 		fm10k_write_reg(hw, FM10K_ITR2(0), i);
462 
463 	/* Enable interrupt moderator */
464 	fm10k_write_reg(hw, FM10K_INT_CTRL, FM10K_INT_CTRL_ENABLEMODERATOR);
465 }
466 
467 /**
468  *  fm10k_update_lport_state_pf - Notify the switch of a change in port state
469  *  @hw: pointer to the HW structure
470  *  @glort: base resource tag for this request
471  *  @count: number of logical ports being updated
472  *  @enable: boolean value indicating enable or disable
473  *
474  *  This function is used to add/remove a logical port from the switch.
475  **/
476 static s32 fm10k_update_lport_state_pf(struct fm10k_hw *hw, u16 glort,
477 				       u16 count, bool enable)
478 {
479 	struct fm10k_mbx_info *mbx = &hw->mbx;
480 	u32 msg[3], lport_msg;
481 
482 	/* do nothing if we are being asked to create or destroy 0 ports */
483 	if (!count)
484 		return 0;
485 
486 	/* if glort is not valid return error */
487 	if (!fm10k_glort_valid_pf(hw, glort))
488 		return FM10K_ERR_PARAM;
489 
490 	/* construct the lport message from the 2 pieces of data we have */
491 	lport_msg = ((u32)count << 16) | glort;
492 
493 	/* generate lport create/delete message */
494 	fm10k_tlv_msg_init(msg, enable ? FM10K_PF_MSG_ID_LPORT_CREATE :
495 					 FM10K_PF_MSG_ID_LPORT_DELETE);
496 	fm10k_tlv_attr_put_u32(msg, FM10K_PF_ATTR_ID_PORT, lport_msg);
497 
498 	/* load onto outgoing mailbox */
499 	return mbx->ops.enqueue_tx(hw, mbx, msg);
500 }
501 
502 /**
503  *  fm10k_configure_dglort_map_pf - Configures GLORT entry and queues
504  *  @hw: pointer to hardware structure
505  *  @dglort: pointer to dglort configuration structure
506  *
507  *  Reads the configuration structure contained in dglort_cfg and uses
508  *  that information to then populate a DGLORTMAP/DEC entry and the queues
509  *  to which it has been assigned.
510  **/
511 static s32 fm10k_configure_dglort_map_pf(struct fm10k_hw *hw,
512 					 struct fm10k_dglort_cfg *dglort)
513 {
514 	u16 glort, queue_count, vsi_count, pc_count;
515 	u16 vsi, queue, pc, q_idx;
516 	u32 txqctl, dglortdec, dglortmap;
517 
518 	/* verify the dglort pointer */
519 	if (!dglort)
520 		return FM10K_ERR_PARAM;
521 
522 	/* verify the dglort values */
523 	if ((dglort->idx > 7) || (dglort->rss_l > 7) || (dglort->pc_l > 3) ||
524 	    (dglort->vsi_l > 6) || (dglort->vsi_b > 64) ||
525 	    (dglort->queue_l > 8) || (dglort->queue_b >= 256))
526 		return FM10K_ERR_PARAM;
527 
528 	/* determine count of VSIs and queues */
529 	queue_count = 1 << (dglort->rss_l + dglort->pc_l);
530 	vsi_count = 1 << (dglort->vsi_l + dglort->queue_l);
531 	glort = dglort->glort;
532 	q_idx = dglort->queue_b;
533 
534 	/* configure SGLORT for queues */
535 	for (vsi = 0; vsi < vsi_count; vsi++, glort++) {
536 		for (queue = 0; queue < queue_count; queue++, q_idx++) {
537 			if (q_idx >= FM10K_MAX_QUEUES)
538 				break;
539 
540 			fm10k_write_reg(hw, FM10K_TX_SGLORT(q_idx), glort);
541 			fm10k_write_reg(hw, FM10K_RX_SGLORT(q_idx), glort);
542 		}
543 	}
544 
545 	/* determine count of PCs and queues */
546 	queue_count = 1 << (dglort->queue_l + dglort->rss_l + dglort->vsi_l);
547 	pc_count = 1 << dglort->pc_l;
548 
549 	/* configure PC for Tx queues */
550 	for (pc = 0; pc < pc_count; pc++) {
551 		q_idx = pc + dglort->queue_b;
552 		for (queue = 0; queue < queue_count; queue++) {
553 			if (q_idx >= FM10K_MAX_QUEUES)
554 				break;
555 
556 			txqctl = fm10k_read_reg(hw, FM10K_TXQCTL(q_idx));
557 			txqctl &= ~FM10K_TXQCTL_PC_MASK;
558 			txqctl |= pc << FM10K_TXQCTL_PC_SHIFT;
559 			fm10k_write_reg(hw, FM10K_TXQCTL(q_idx), txqctl);
560 
561 			q_idx += pc_count;
562 		}
563 	}
564 
565 	/* configure DGLORTDEC */
566 	dglortdec = ((u32)(dglort->rss_l) << FM10K_DGLORTDEC_RSSLENGTH_SHIFT) |
567 		    ((u32)(dglort->queue_b) << FM10K_DGLORTDEC_QBASE_SHIFT) |
568 		    ((u32)(dglort->pc_l) << FM10K_DGLORTDEC_PCLENGTH_SHIFT) |
569 		    ((u32)(dglort->vsi_b) << FM10K_DGLORTDEC_VSIBASE_SHIFT) |
570 		    ((u32)(dglort->vsi_l) << FM10K_DGLORTDEC_VSILENGTH_SHIFT) |
571 		    ((u32)(dglort->queue_l));
572 	if (dglort->inner_rss)
573 		dglortdec |=  FM10K_DGLORTDEC_INNERRSS_ENABLE;
574 
575 	/* configure DGLORTMAP */
576 	dglortmap = (dglort->idx == fm10k_dglort_default) ?
577 			FM10K_DGLORTMAP_ANY : FM10K_DGLORTMAP_ZERO;
578 	dglortmap <<= dglort->vsi_l + dglort->queue_l + dglort->shared_l;
579 	dglortmap |= dglort->glort;
580 
581 	/* write values to hardware */
582 	fm10k_write_reg(hw, FM10K_DGLORTDEC(dglort->idx), dglortdec);
583 	fm10k_write_reg(hw, FM10K_DGLORTMAP(dglort->idx), dglortmap);
584 
585 	return 0;
586 }
587 
588 u16 fm10k_queues_per_pool(struct fm10k_hw *hw)
589 {
590 	u16 num_pools = hw->iov.num_pools;
591 
592 	return (num_pools > 32) ? 2 : (num_pools > 16) ? 4 : (num_pools > 8) ?
593 	       8 : FM10K_MAX_QUEUES_POOL;
594 }
595 
596 u16 fm10k_vf_queue_index(struct fm10k_hw *hw, u16 vf_idx)
597 {
598 	u16 num_vfs = hw->iov.num_vfs;
599 	u16 vf_q_idx = FM10K_MAX_QUEUES;
600 
601 	vf_q_idx -= fm10k_queues_per_pool(hw) * (num_vfs - vf_idx);
602 
603 	return vf_q_idx;
604 }
605 
606 static u16 fm10k_vectors_per_pool(struct fm10k_hw *hw)
607 {
608 	u16 num_pools = hw->iov.num_pools;
609 
610 	return (num_pools > 32) ? 8 : (num_pools > 16) ? 16 :
611 	       FM10K_MAX_VECTORS_POOL;
612 }
613 
614 static u16 fm10k_vf_vector_index(struct fm10k_hw *hw, u16 vf_idx)
615 {
616 	u16 vf_v_idx = FM10K_MAX_VECTORS_PF;
617 
618 	vf_v_idx += fm10k_vectors_per_pool(hw) * vf_idx;
619 
620 	return vf_v_idx;
621 }
622 
623 /**
624  *  fm10k_iov_assign_resources_pf - Assign pool resources for virtualization
625  *  @hw: pointer to the HW structure
626  *  @num_vfs: number of VFs to be allocated
627  *  @num_pools: number of virtualization pools to be allocated
628  *
629  *  Allocates queues and traffic classes to virtualization entities to prepare
630  *  the PF for SR-IOV and VMDq
631  **/
632 static s32 fm10k_iov_assign_resources_pf(struct fm10k_hw *hw, u16 num_vfs,
633 					 u16 num_pools)
634 {
635 	u16 qmap_stride, qpp, vpp, vf_q_idx, vf_q_idx0, qmap_idx;
636 	u32 vid = hw->mac.default_vid << FM10K_TXQCTL_VID_SHIFT;
637 	int i, j;
638 
639 	/* hardware only supports up to 64 pools */
640 	if (num_pools > 64)
641 		return FM10K_ERR_PARAM;
642 
643 	/* the number of VFs cannot exceed the number of pools */
644 	if ((num_vfs > num_pools) || (num_vfs > hw->iov.total_vfs))
645 		return FM10K_ERR_PARAM;
646 
647 	/* record number of virtualization entities */
648 	hw->iov.num_vfs = num_vfs;
649 	hw->iov.num_pools = num_pools;
650 
651 	/* determine qmap offsets and counts */
652 	qmap_stride = (num_vfs > 8) ? 32 : 256;
653 	qpp = fm10k_queues_per_pool(hw);
654 	vpp = fm10k_vectors_per_pool(hw);
655 
656 	/* calculate starting index for queues */
657 	vf_q_idx = fm10k_vf_queue_index(hw, 0);
658 	qmap_idx = 0;
659 
660 	/* establish TCs with -1 credits and no quanta to prevent transmit */
661 	for (i = 0; i < num_vfs; i++) {
662 		fm10k_write_reg(hw, FM10K_TC_MAXCREDIT(i), 0);
663 		fm10k_write_reg(hw, FM10K_TC_RATE(i), 0);
664 		fm10k_write_reg(hw, FM10K_TC_CREDIT(i),
665 				FM10K_TC_CREDIT_CREDIT_MASK);
666 	}
667 
668 	/* zero out all mbmem registers */
669 	for (i = FM10K_VFMBMEM_LEN * num_vfs; i--;)
670 		fm10k_write_reg(hw, FM10K_MBMEM(i), 0);
671 
672 	/* clear event notification of VF FLR */
673 	fm10k_write_reg(hw, FM10K_PFVFLREC(0), ~0);
674 	fm10k_write_reg(hw, FM10K_PFVFLREC(1), ~0);
675 
676 	/* loop through unallocated rings assigning them back to PF */
677 	for (i = FM10K_MAX_QUEUES_PF; i < vf_q_idx; i++) {
678 		fm10k_write_reg(hw, FM10K_TXDCTL(i), 0);
679 		fm10k_write_reg(hw, FM10K_TXQCTL(i), FM10K_TXQCTL_PF |
680 				FM10K_TXQCTL_UNLIMITED_BW | vid);
681 		fm10k_write_reg(hw, FM10K_RXQCTL(i), FM10K_RXQCTL_PF);
682 	}
683 
684 	/* PF should have already updated VFITR2[0] */
685 
686 	/* update all ITR registers to flow to VFITR2[0] */
687 	for (i = FM10K_ITR_REG_COUNT_PF + 1; i < FM10K_ITR_REG_COUNT; i++) {
688 		if (!(i & (vpp - 1)))
689 			fm10k_write_reg(hw, FM10K_ITR2(i), i - vpp);
690 		else
691 			fm10k_write_reg(hw, FM10K_ITR2(i), i - 1);
692 	}
693 
694 	/* update PF ITR2[0] to reference the last vector */
695 	fm10k_write_reg(hw, FM10K_ITR2(0),
696 			fm10k_vf_vector_index(hw, num_vfs - 1));
697 
698 	/* loop through rings populating rings and TCs */
699 	for (i = 0; i < num_vfs; i++) {
700 		/* record index for VF queue 0 for use in end of loop */
701 		vf_q_idx0 = vf_q_idx;
702 
703 		for (j = 0; j < qpp; j++, qmap_idx++, vf_q_idx++) {
704 			/* assign VF and locked TC to queues */
705 			fm10k_write_reg(hw, FM10K_TXDCTL(vf_q_idx), 0);
706 			fm10k_write_reg(hw, FM10K_TXQCTL(vf_q_idx),
707 					(i << FM10K_TXQCTL_TC_SHIFT) | i |
708 					FM10K_TXQCTL_VF | vid);
709 			fm10k_write_reg(hw, FM10K_RXDCTL(vf_q_idx),
710 					FM10K_RXDCTL_WRITE_BACK_MIN_DELAY |
711 					FM10K_RXDCTL_DROP_ON_EMPTY);
712 			fm10k_write_reg(hw, FM10K_RXQCTL(vf_q_idx),
713 					FM10K_RXQCTL_VF |
714 					(i << FM10K_RXQCTL_VF_SHIFT));
715 
716 			/* map queue pair to VF */
717 			fm10k_write_reg(hw, FM10K_TQMAP(qmap_idx), vf_q_idx);
718 			fm10k_write_reg(hw, FM10K_RQMAP(qmap_idx), vf_q_idx);
719 		}
720 
721 		/* repeat the first ring for all of the remaining VF rings */
722 		for (; j < qmap_stride; j++, qmap_idx++) {
723 			fm10k_write_reg(hw, FM10K_TQMAP(qmap_idx), vf_q_idx0);
724 			fm10k_write_reg(hw, FM10K_RQMAP(qmap_idx), vf_q_idx0);
725 		}
726 	}
727 
728 	/* loop through remaining indexes assigning all to queue 0 */
729 	while (qmap_idx < FM10K_TQMAP_TABLE_SIZE) {
730 		fm10k_write_reg(hw, FM10K_TQMAP(qmap_idx), 0);
731 		fm10k_write_reg(hw, FM10K_RQMAP(qmap_idx), 0);
732 		qmap_idx++;
733 	}
734 
735 	return 0;
736 }
737 
738 /**
739  *  fm10k_iov_configure_tc_pf - Configure the shaping group for VF
740  *  @hw: pointer to the HW structure
741  *  @vf_idx: index of VF receiving GLORT
742  *  @rate: Rate indicated in Mb/s
743  *
744  *  Configured the TC for a given VF to allow only up to a given number
745  *  of Mb/s of outgoing Tx throughput.
746  **/
747 static s32 fm10k_iov_configure_tc_pf(struct fm10k_hw *hw, u16 vf_idx, int rate)
748 {
749 	/* configure defaults */
750 	u32 interval = FM10K_TC_RATE_INTERVAL_4US_GEN3;
751 	u32 tc_rate = FM10K_TC_RATE_QUANTA_MASK;
752 
753 	/* verify vf is in range */
754 	if (vf_idx >= hw->iov.num_vfs)
755 		return FM10K_ERR_PARAM;
756 
757 	/* set interval to align with 4.096 usec in all modes */
758 	switch (hw->bus.speed) {
759 	case fm10k_bus_speed_2500:
760 		interval = FM10K_TC_RATE_INTERVAL_4US_GEN1;
761 		break;
762 	case fm10k_bus_speed_5000:
763 		interval = FM10K_TC_RATE_INTERVAL_4US_GEN2;
764 		break;
765 	default:
766 		break;
767 	}
768 
769 	if (rate) {
770 		if (rate > FM10K_VF_TC_MAX || rate < FM10K_VF_TC_MIN)
771 			return FM10K_ERR_PARAM;
772 
773 		/* The quanta is measured in Bytes per 4.096 or 8.192 usec
774 		 * The rate is provided in Mbits per second
775 		 * To tralslate from rate to quanta we need to multiply the
776 		 * rate by 8.192 usec and divide by 8 bits/byte.  To avoid
777 		 * dealing with floating point we can round the values up
778 		 * to the nearest whole number ratio which gives us 128 / 125.
779 		 */
780 		tc_rate = (rate * 128) / 125;
781 
782 		/* try to keep the rate limiting accurate by increasing
783 		 * the number of credits and interval for rates less than 4Gb/s
784 		 */
785 		if (rate < 4000)
786 			interval <<= 1;
787 		else
788 			tc_rate >>= 1;
789 	}
790 
791 	/* update rate limiter with new values */
792 	fm10k_write_reg(hw, FM10K_TC_RATE(vf_idx), tc_rate | interval);
793 	fm10k_write_reg(hw, FM10K_TC_MAXCREDIT(vf_idx), FM10K_TC_MAXCREDIT_64K);
794 	fm10k_write_reg(hw, FM10K_TC_CREDIT(vf_idx), FM10K_TC_MAXCREDIT_64K);
795 
796 	return 0;
797 }
798 
799 /**
800  *  fm10k_iov_assign_int_moderator_pf - Add VF interrupts to moderator list
801  *  @hw: pointer to the HW structure
802  *  @vf_idx: index of VF receiving GLORT
803  *
804  *  Update the interrupt moderator linked list to include any MSI-X
805  *  interrupts which the VF has enabled in the MSI-X vector table.
806  **/
807 static s32 fm10k_iov_assign_int_moderator_pf(struct fm10k_hw *hw, u16 vf_idx)
808 {
809 	u16 vf_v_idx, vf_v_limit, i;
810 
811 	/* verify vf is in range */
812 	if (vf_idx >= hw->iov.num_vfs)
813 		return FM10K_ERR_PARAM;
814 
815 	/* determine vector offset and count */
816 	vf_v_idx = fm10k_vf_vector_index(hw, vf_idx);
817 	vf_v_limit = vf_v_idx + fm10k_vectors_per_pool(hw);
818 
819 	/* search for first vector that is not masked */
820 	for (i = vf_v_limit - 1; i > vf_v_idx; i--) {
821 		if (!fm10k_read_reg(hw, FM10K_MSIX_VECTOR_MASK(i)))
822 			break;
823 	}
824 
825 	/* reset linked list so it now includes our active vectors */
826 	if (vf_idx == (hw->iov.num_vfs - 1))
827 		fm10k_write_reg(hw, FM10K_ITR2(0), i);
828 	else
829 		fm10k_write_reg(hw, FM10K_ITR2(vf_v_limit), i);
830 
831 	return 0;
832 }
833 
834 /**
835  *  fm10k_iov_assign_default_mac_vlan_pf - Assign a MAC and VLAN to VF
836  *  @hw: pointer to the HW structure
837  *  @vf_info: pointer to VF information structure
838  *
839  *  Assign a MAC address and default VLAN to a VF and notify it of the update
840  **/
841 static s32 fm10k_iov_assign_default_mac_vlan_pf(struct fm10k_hw *hw,
842 						struct fm10k_vf_info *vf_info)
843 {
844 	u16 qmap_stride, queues_per_pool, vf_q_idx, timeout, qmap_idx, i;
845 	u32 msg[4], txdctl, txqctl, tdbal = 0, tdbah = 0;
846 	s32 err = 0;
847 	u16 vf_idx, vf_vid;
848 
849 	/* verify vf is in range */
850 	if (!vf_info || vf_info->vf_idx >= hw->iov.num_vfs)
851 		return FM10K_ERR_PARAM;
852 
853 	/* determine qmap offsets and counts */
854 	qmap_stride = (hw->iov.num_vfs > 8) ? 32 : 256;
855 	queues_per_pool = fm10k_queues_per_pool(hw);
856 
857 	/* calculate starting index for queues */
858 	vf_idx = vf_info->vf_idx;
859 	vf_q_idx = fm10k_vf_queue_index(hw, vf_idx);
860 	qmap_idx = qmap_stride * vf_idx;
861 
862 	/* MAP Tx queue back to 0 temporarily, and disable it */
863 	fm10k_write_reg(hw, FM10K_TQMAP(qmap_idx), 0);
864 	fm10k_write_reg(hw, FM10K_TXDCTL(vf_q_idx), 0);
865 
866 	/* determine correct default VLAN ID */
867 	if (vf_info->pf_vid)
868 		vf_vid = vf_info->pf_vid | FM10K_VLAN_CLEAR;
869 	else
870 		vf_vid = vf_info->sw_vid;
871 
872 	/* generate MAC_ADDR request */
873 	fm10k_tlv_msg_init(msg, FM10K_VF_MSG_ID_MAC_VLAN);
874 	fm10k_tlv_attr_put_mac_vlan(msg, FM10K_MAC_VLAN_MSG_DEFAULT_MAC,
875 				    vf_info->mac, vf_vid);
876 
877 	/* load onto outgoing mailbox, ignore any errors on enqueue */
878 	if (vf_info->mbx.ops.enqueue_tx)
879 		vf_info->mbx.ops.enqueue_tx(hw, &vf_info->mbx, msg);
880 
881 	/* verify ring has disabled before modifying base address registers */
882 	txdctl = fm10k_read_reg(hw, FM10K_TXDCTL(vf_q_idx));
883 	for (timeout = 0; txdctl & FM10K_TXDCTL_ENABLE; timeout++) {
884 		/* limit ourselves to a 1ms timeout */
885 		if (timeout == 10) {
886 			err = FM10K_ERR_DMA_PENDING;
887 			goto err_out;
888 		}
889 
890 		usleep_range(100, 200);
891 		txdctl = fm10k_read_reg(hw, FM10K_TXDCTL(vf_q_idx));
892 	}
893 
894 	/* Update base address registers to contain MAC address */
895 	if (is_valid_ether_addr(vf_info->mac)) {
896 		tdbal = (((u32)vf_info->mac[3]) << 24) |
897 			(((u32)vf_info->mac[4]) << 16) |
898 			(((u32)vf_info->mac[5]) << 8);
899 
900 		tdbah = (((u32)0xFF)	        << 24) |
901 			(((u32)vf_info->mac[0]) << 16) |
902 			(((u32)vf_info->mac[1]) << 8) |
903 			((u32)vf_info->mac[2]);
904 	}
905 
906 	/* Record the base address into queue 0 */
907 	fm10k_write_reg(hw, FM10K_TDBAL(vf_q_idx), tdbal);
908 	fm10k_write_reg(hw, FM10K_TDBAH(vf_q_idx), tdbah);
909 
910 	/* Provide the VF the ITR scale, using software-defined fields in TDLEN
911 	 * to pass the information during VF initialization. See definition of
912 	 * FM10K_TDLEN_ITR_SCALE_SHIFT for more details.
913 	 */
914 	fm10k_write_reg(hw, FM10K_TDLEN(vf_q_idx), hw->mac.itr_scale <<
915 						   FM10K_TDLEN_ITR_SCALE_SHIFT);
916 
917 err_out:
918 	/* configure Queue control register */
919 	txqctl = ((u32)vf_vid << FM10K_TXQCTL_VID_SHIFT) &
920 		 FM10K_TXQCTL_VID_MASK;
921 	txqctl |= (vf_idx << FM10K_TXQCTL_TC_SHIFT) |
922 		  FM10K_TXQCTL_VF | vf_idx;
923 
924 	/* assign VID */
925 	for (i = 0; i < queues_per_pool; i++)
926 		fm10k_write_reg(hw, FM10K_TXQCTL(vf_q_idx + i), txqctl);
927 
928 	/* restore the queue back to VF ownership */
929 	fm10k_write_reg(hw, FM10K_TQMAP(qmap_idx), vf_q_idx);
930 	return err;
931 }
932 
933 /**
934  *  fm10k_iov_reset_resources_pf - Reassign queues and interrupts to a VF
935  *  @hw: pointer to the HW structure
936  *  @vf_info: pointer to VF information structure
937  *
938  *  Reassign the interrupts and queues to a VF following an FLR
939  **/
940 static s32 fm10k_iov_reset_resources_pf(struct fm10k_hw *hw,
941 					struct fm10k_vf_info *vf_info)
942 {
943 	u16 qmap_stride, queues_per_pool, vf_q_idx, qmap_idx;
944 	u32 tdbal = 0, tdbah = 0, txqctl, rxqctl;
945 	u16 vf_v_idx, vf_v_limit, vf_vid;
946 	u8 vf_idx = vf_info->vf_idx;
947 	int i;
948 
949 	/* verify vf is in range */
950 	if (vf_idx >= hw->iov.num_vfs)
951 		return FM10K_ERR_PARAM;
952 
953 	/* clear event notification of VF FLR */
954 	fm10k_write_reg(hw, FM10K_PFVFLREC(vf_idx / 32), 1 << (vf_idx % 32));
955 
956 	/* force timeout and then disconnect the mailbox */
957 	vf_info->mbx.timeout = 0;
958 	if (vf_info->mbx.ops.disconnect)
959 		vf_info->mbx.ops.disconnect(hw, &vf_info->mbx);
960 
961 	/* determine vector offset and count */
962 	vf_v_idx = fm10k_vf_vector_index(hw, vf_idx);
963 	vf_v_limit = vf_v_idx + fm10k_vectors_per_pool(hw);
964 
965 	/* determine qmap offsets and counts */
966 	qmap_stride = (hw->iov.num_vfs > 8) ? 32 : 256;
967 	queues_per_pool = fm10k_queues_per_pool(hw);
968 	qmap_idx = qmap_stride * vf_idx;
969 
970 	/* make all the queues inaccessible to the VF */
971 	for (i = qmap_idx; i < (qmap_idx + qmap_stride); i++) {
972 		fm10k_write_reg(hw, FM10K_TQMAP(i), 0);
973 		fm10k_write_reg(hw, FM10K_RQMAP(i), 0);
974 	}
975 
976 	/* calculate starting index for queues */
977 	vf_q_idx = fm10k_vf_queue_index(hw, vf_idx);
978 
979 	/* determine correct default VLAN ID */
980 	if (vf_info->pf_vid)
981 		vf_vid = vf_info->pf_vid;
982 	else
983 		vf_vid = vf_info->sw_vid;
984 
985 	/* configure Queue control register */
986 	txqctl = ((u32)vf_vid << FM10K_TXQCTL_VID_SHIFT) |
987 		 (vf_idx << FM10K_TXQCTL_TC_SHIFT) |
988 		 FM10K_TXQCTL_VF | vf_idx;
989 	rxqctl = FM10K_RXQCTL_VF | (vf_idx << FM10K_RXQCTL_VF_SHIFT);
990 
991 	/* stop further DMA and reset queue ownership back to VF */
992 	for (i = vf_q_idx; i < (queues_per_pool + vf_q_idx); i++) {
993 		fm10k_write_reg(hw, FM10K_TXDCTL(i), 0);
994 		fm10k_write_reg(hw, FM10K_TXQCTL(i), txqctl);
995 		fm10k_write_reg(hw, FM10K_RXDCTL(i),
996 				FM10K_RXDCTL_WRITE_BACK_MIN_DELAY |
997 				FM10K_RXDCTL_DROP_ON_EMPTY);
998 		fm10k_write_reg(hw, FM10K_RXQCTL(i), rxqctl);
999 	}
1000 
1001 	/* reset TC with -1 credits and no quanta to prevent transmit */
1002 	fm10k_write_reg(hw, FM10K_TC_MAXCREDIT(vf_idx), 0);
1003 	fm10k_write_reg(hw, FM10K_TC_RATE(vf_idx), 0);
1004 	fm10k_write_reg(hw, FM10K_TC_CREDIT(vf_idx),
1005 			FM10K_TC_CREDIT_CREDIT_MASK);
1006 
1007 	/* update our first entry in the table based on previous VF */
1008 	if (!vf_idx)
1009 		hw->mac.ops.update_int_moderator(hw);
1010 	else
1011 		hw->iov.ops.assign_int_moderator(hw, vf_idx - 1);
1012 
1013 	/* reset linked list so it now includes our active vectors */
1014 	if (vf_idx == (hw->iov.num_vfs - 1))
1015 		fm10k_write_reg(hw, FM10K_ITR2(0), vf_v_idx);
1016 	else
1017 		fm10k_write_reg(hw, FM10K_ITR2(vf_v_limit), vf_v_idx);
1018 
1019 	/* link remaining vectors so that next points to previous */
1020 	for (vf_v_idx++; vf_v_idx < vf_v_limit; vf_v_idx++)
1021 		fm10k_write_reg(hw, FM10K_ITR2(vf_v_idx), vf_v_idx - 1);
1022 
1023 	/* zero out MBMEM, VLAN_TABLE, RETA, RSSRK, and MRQC registers */
1024 	for (i = FM10K_VFMBMEM_LEN; i--;)
1025 		fm10k_write_reg(hw, FM10K_MBMEM_VF(vf_idx, i), 0);
1026 	for (i = FM10K_VLAN_TABLE_SIZE; i--;)
1027 		fm10k_write_reg(hw, FM10K_VLAN_TABLE(vf_info->vsi, i), 0);
1028 	for (i = FM10K_RETA_SIZE; i--;)
1029 		fm10k_write_reg(hw, FM10K_RETA(vf_info->vsi, i), 0);
1030 	for (i = FM10K_RSSRK_SIZE; i--;)
1031 		fm10k_write_reg(hw, FM10K_RSSRK(vf_info->vsi, i), 0);
1032 	fm10k_write_reg(hw, FM10K_MRQC(vf_info->vsi), 0);
1033 
1034 	/* Update base address registers to contain MAC address */
1035 	if (is_valid_ether_addr(vf_info->mac)) {
1036 		tdbal = (((u32)vf_info->mac[3]) << 24) |
1037 			(((u32)vf_info->mac[4]) << 16) |
1038 			(((u32)vf_info->mac[5]) << 8);
1039 		tdbah = (((u32)0xFF)	   << 24) |
1040 			(((u32)vf_info->mac[0]) << 16) |
1041 			(((u32)vf_info->mac[1]) << 8) |
1042 			((u32)vf_info->mac[2]);
1043 	}
1044 
1045 	/* map queue pairs back to VF from last to first */
1046 	for (i = queues_per_pool; i--;) {
1047 		fm10k_write_reg(hw, FM10K_TDBAL(vf_q_idx + i), tdbal);
1048 		fm10k_write_reg(hw, FM10K_TDBAH(vf_q_idx + i), tdbah);
1049 		/* See definition of FM10K_TDLEN_ITR_SCALE_SHIFT for an
1050 		 * explanation of how TDLEN is used.
1051 		 */
1052 		fm10k_write_reg(hw, FM10K_TDLEN(vf_q_idx + i),
1053 				hw->mac.itr_scale <<
1054 				FM10K_TDLEN_ITR_SCALE_SHIFT);
1055 		fm10k_write_reg(hw, FM10K_TQMAP(qmap_idx + i), vf_q_idx + i);
1056 		fm10k_write_reg(hw, FM10K_RQMAP(qmap_idx + i), vf_q_idx + i);
1057 	}
1058 
1059 	/* repeat the first ring for all the remaining VF rings */
1060 	for (i = queues_per_pool; i < qmap_stride; i++) {
1061 		fm10k_write_reg(hw, FM10K_TQMAP(qmap_idx + i), vf_q_idx);
1062 		fm10k_write_reg(hw, FM10K_RQMAP(qmap_idx + i), vf_q_idx);
1063 	}
1064 
1065 	return 0;
1066 }
1067 
1068 /**
1069  *  fm10k_iov_set_lport_pf - Assign and enable a logical port for a given VF
1070  *  @hw: pointer to hardware structure
1071  *  @vf_info: pointer to VF information structure
1072  *  @lport_idx: Logical port offset from the hardware glort
1073  *  @flags: Set of capability flags to extend port beyond basic functionality
1074  *
1075  *  This function allows enabling a VF port by assigning it a GLORT and
1076  *  setting the flags so that it can enable an Rx mode.
1077  **/
1078 static s32 fm10k_iov_set_lport_pf(struct fm10k_hw *hw,
1079 				  struct fm10k_vf_info *vf_info,
1080 				  u16 lport_idx, u8 flags)
1081 {
1082 	u16 glort = (hw->mac.dglort_map + lport_idx) & FM10K_DGLORTMAP_NONE;
1083 
1084 	/* if glort is not valid return error */
1085 	if (!fm10k_glort_valid_pf(hw, glort))
1086 		return FM10K_ERR_PARAM;
1087 
1088 	vf_info->vf_flags = flags | FM10K_VF_FLAG_NONE_CAPABLE;
1089 	vf_info->glort = glort;
1090 
1091 	return 0;
1092 }
1093 
1094 /**
1095  *  fm10k_iov_reset_lport_pf - Disable a logical port for a given VF
1096  *  @hw: pointer to hardware structure
1097  *  @vf_info: pointer to VF information structure
1098  *
1099  *  This function disables a VF port by stripping it of a GLORT and
1100  *  setting the flags so that it cannot enable any Rx mode.
1101  **/
1102 static void fm10k_iov_reset_lport_pf(struct fm10k_hw *hw,
1103 				     struct fm10k_vf_info *vf_info)
1104 {
1105 	u32 msg[1];
1106 
1107 	/* need to disable the port if it is already enabled */
1108 	if (FM10K_VF_FLAG_ENABLED(vf_info)) {
1109 		/* notify switch that this port has been disabled */
1110 		fm10k_update_lport_state_pf(hw, vf_info->glort, 1, false);
1111 
1112 		/* generate port state response to notify VF it is not ready */
1113 		fm10k_tlv_msg_init(msg, FM10K_VF_MSG_ID_LPORT_STATE);
1114 		vf_info->mbx.ops.enqueue_tx(hw, &vf_info->mbx, msg);
1115 	}
1116 
1117 	/* clear flags and glort if it exists */
1118 	vf_info->vf_flags = 0;
1119 	vf_info->glort = 0;
1120 }
1121 
1122 /**
1123  *  fm10k_iov_update_stats_pf - Updates hardware related statistics for VFs
1124  *  @hw: pointer to hardware structure
1125  *  @q: stats for all queues of a VF
1126  *  @vf_idx: index of VF
1127  *
1128  *  This function collects queue stats for VFs.
1129  **/
1130 static void fm10k_iov_update_stats_pf(struct fm10k_hw *hw,
1131 				      struct fm10k_hw_stats_q *q,
1132 				      u16 vf_idx)
1133 {
1134 	u32 idx, qpp;
1135 
1136 	/* get stats for all of the queues */
1137 	qpp = fm10k_queues_per_pool(hw);
1138 	idx = fm10k_vf_queue_index(hw, vf_idx);
1139 	fm10k_update_hw_stats_q(hw, q, idx, qpp);
1140 }
1141 
1142 static s32 fm10k_iov_report_timestamp_pf(struct fm10k_hw *hw,
1143 					 struct fm10k_vf_info *vf_info,
1144 					 u64 timestamp)
1145 {
1146 	u32 msg[4];
1147 
1148 	/* generate port state response to notify VF it is not ready */
1149 	fm10k_tlv_msg_init(msg, FM10K_VF_MSG_ID_1588);
1150 	fm10k_tlv_attr_put_u64(msg, FM10K_1588_MSG_TIMESTAMP, timestamp);
1151 
1152 	return vf_info->mbx.ops.enqueue_tx(hw, &vf_info->mbx, msg);
1153 }
1154 
1155 /**
1156  *  fm10k_iov_msg_msix_pf - Message handler for MSI-X request from VF
1157  *  @hw: Pointer to hardware structure
1158  *  @results: Pointer array to message, results[0] is pointer to message
1159  *  @mbx: Pointer to mailbox information structure
1160  *
1161  *  This function is a default handler for MSI-X requests from the VF.  The
1162  *  assumption is that in this case it is acceptable to just directly
1163  *  hand off the message from the VF to the underlying shared code.
1164  **/
1165 s32 fm10k_iov_msg_msix_pf(struct fm10k_hw *hw, u32 **results,
1166 			  struct fm10k_mbx_info *mbx)
1167 {
1168 	struct fm10k_vf_info *vf_info = (struct fm10k_vf_info *)mbx;
1169 	u8 vf_idx = vf_info->vf_idx;
1170 
1171 	return hw->iov.ops.assign_int_moderator(hw, vf_idx);
1172 }
1173 
1174 /**
1175  * fm10k_iov_select_vid - Select correct default VID
1176  * @hw: Pointer to hardware structure
1177  * @vid: VID to correct
1178  *
1179  * Will report an error if VID is out of range. For VID = 0, it will return
1180  * either the pf_vid or sw_vid depending on which one is set.
1181  */
1182 static inline s32 fm10k_iov_select_vid(struct fm10k_vf_info *vf_info, u16 vid)
1183 {
1184 	if (!vid)
1185 		return vf_info->pf_vid ? vf_info->pf_vid : vf_info->sw_vid;
1186 	else if (vf_info->pf_vid && vid != vf_info->pf_vid)
1187 		return FM10K_ERR_PARAM;
1188 	else
1189 		return vid;
1190 }
1191 
1192 /**
1193  *  fm10k_iov_msg_mac_vlan_pf - Message handler for MAC/VLAN request from VF
1194  *  @hw: Pointer to hardware structure
1195  *  @results: Pointer array to message, results[0] is pointer to message
1196  *  @mbx: Pointer to mailbox information structure
1197  *
1198  *  This function is a default handler for MAC/VLAN requests from the VF.
1199  *  The assumption is that in this case it is acceptable to just directly
1200  *  hand off the message from the VF to the underlying shared code.
1201  **/
1202 s32 fm10k_iov_msg_mac_vlan_pf(struct fm10k_hw *hw, u32 **results,
1203 			      struct fm10k_mbx_info *mbx)
1204 {
1205 	struct fm10k_vf_info *vf_info = (struct fm10k_vf_info *)mbx;
1206 	u8 mac[ETH_ALEN];
1207 	u32 *result;
1208 	int err = 0;
1209 	bool set;
1210 	u16 vlan;
1211 	u32 vid;
1212 
1213 	/* we shouldn't be updating rules on a disabled interface */
1214 	if (!FM10K_VF_FLAG_ENABLED(vf_info))
1215 		err = FM10K_ERR_PARAM;
1216 
1217 	if (!err && !!results[FM10K_MAC_VLAN_MSG_VLAN]) {
1218 		result = results[FM10K_MAC_VLAN_MSG_VLAN];
1219 
1220 		/* record VLAN id requested */
1221 		err = fm10k_tlv_attr_get_u32(result, &vid);
1222 		if (err)
1223 			return err;
1224 
1225 		/* verify upper 16 bits are zero */
1226 		if (vid >> 16)
1227 			return FM10K_ERR_PARAM;
1228 
1229 		set = !(vid & FM10K_VLAN_CLEAR);
1230 		vid &= ~FM10K_VLAN_CLEAR;
1231 
1232 		err = fm10k_iov_select_vid(vf_info, (u16)vid);
1233 		if (err < 0)
1234 			return err;
1235 
1236 		vid = err;
1237 
1238 		/* update VSI info for VF in regards to VLAN table */
1239 		err = hw->mac.ops.update_vlan(hw, vid, vf_info->vsi, set);
1240 	}
1241 
1242 	if (!err && !!results[FM10K_MAC_VLAN_MSG_MAC]) {
1243 		result = results[FM10K_MAC_VLAN_MSG_MAC];
1244 
1245 		/* record unicast MAC address requested */
1246 		err = fm10k_tlv_attr_get_mac_vlan(result, mac, &vlan);
1247 		if (err)
1248 			return err;
1249 
1250 		/* block attempts to set MAC for a locked device */
1251 		if (is_valid_ether_addr(vf_info->mac) &&
1252 		    memcmp(mac, vf_info->mac, ETH_ALEN))
1253 			return FM10K_ERR_PARAM;
1254 
1255 		set = !(vlan & FM10K_VLAN_CLEAR);
1256 		vlan &= ~FM10K_VLAN_CLEAR;
1257 
1258 		err = fm10k_iov_select_vid(vf_info, vlan);
1259 		if (err < 0)
1260 			return err;
1261 
1262 		vlan = (u16)err;
1263 
1264 		/* notify switch of request for new unicast address */
1265 		err = hw->mac.ops.update_uc_addr(hw, vf_info->glort,
1266 						 mac, vlan, set, 0);
1267 	}
1268 
1269 	if (!err && !!results[FM10K_MAC_VLAN_MSG_MULTICAST]) {
1270 		result = results[FM10K_MAC_VLAN_MSG_MULTICAST];
1271 
1272 		/* record multicast MAC address requested */
1273 		err = fm10k_tlv_attr_get_mac_vlan(result, mac, &vlan);
1274 		if (err)
1275 			return err;
1276 
1277 		/* verify that the VF is allowed to request multicast */
1278 		if (!(vf_info->vf_flags & FM10K_VF_FLAG_MULTI_ENABLED))
1279 			return FM10K_ERR_PARAM;
1280 
1281 		set = !(vlan & FM10K_VLAN_CLEAR);
1282 		vlan &= ~FM10K_VLAN_CLEAR;
1283 
1284 		err = fm10k_iov_select_vid(vf_info, vlan);
1285 		if (err < 0)
1286 			return err;
1287 
1288 		vlan = (u16)err;
1289 
1290 		/* notify switch of request for new multicast address */
1291 		err = hw->mac.ops.update_mc_addr(hw, vf_info->glort,
1292 						 mac, vlan, set);
1293 	}
1294 
1295 	return err;
1296 }
1297 
1298 /**
1299  *  fm10k_iov_supported_xcast_mode_pf - Determine best match for xcast mode
1300  *  @vf_info: VF info structure containing capability flags
1301  *  @mode: Requested xcast mode
1302  *
1303  *  This function outputs the mode that most closely matches the requested
1304  *  mode.  If not modes match it will request we disable the port
1305  **/
1306 static u8 fm10k_iov_supported_xcast_mode_pf(struct fm10k_vf_info *vf_info,
1307 					    u8 mode)
1308 {
1309 	u8 vf_flags = vf_info->vf_flags;
1310 
1311 	/* match up mode to capabilities as best as possible */
1312 	switch (mode) {
1313 	case FM10K_XCAST_MODE_PROMISC:
1314 		if (vf_flags & FM10K_VF_FLAG_PROMISC_CAPABLE)
1315 			return FM10K_XCAST_MODE_PROMISC;
1316 		/* fallthough */
1317 	case FM10K_XCAST_MODE_ALLMULTI:
1318 		if (vf_flags & FM10K_VF_FLAG_ALLMULTI_CAPABLE)
1319 			return FM10K_XCAST_MODE_ALLMULTI;
1320 		/* fallthough */
1321 	case FM10K_XCAST_MODE_MULTI:
1322 		if (vf_flags & FM10K_VF_FLAG_MULTI_CAPABLE)
1323 			return FM10K_XCAST_MODE_MULTI;
1324 		/* fallthough */
1325 	case FM10K_XCAST_MODE_NONE:
1326 		if (vf_flags & FM10K_VF_FLAG_NONE_CAPABLE)
1327 			return FM10K_XCAST_MODE_NONE;
1328 		/* fallthough */
1329 	default:
1330 		break;
1331 	}
1332 
1333 	/* disable interface as it should not be able to request any */
1334 	return FM10K_XCAST_MODE_DISABLE;
1335 }
1336 
1337 /**
1338  *  fm10k_iov_msg_lport_state_pf - Message handler for port state requests
1339  *  @hw: Pointer to hardware structure
1340  *  @results: Pointer array to message, results[0] is pointer to message
1341  *  @mbx: Pointer to mailbox information structure
1342  *
1343  *  This function is a default handler for port state requests.  The port
1344  *  state requests for now are basic and consist of enabling or disabling
1345  *  the port.
1346  **/
1347 s32 fm10k_iov_msg_lport_state_pf(struct fm10k_hw *hw, u32 **results,
1348 				 struct fm10k_mbx_info *mbx)
1349 {
1350 	struct fm10k_vf_info *vf_info = (struct fm10k_vf_info *)mbx;
1351 	u32 *result;
1352 	s32 err = 0;
1353 	u32 msg[2];
1354 	u8 mode = 0;
1355 
1356 	/* verify VF is allowed to enable even minimal mode */
1357 	if (!(vf_info->vf_flags & FM10K_VF_FLAG_NONE_CAPABLE))
1358 		return FM10K_ERR_PARAM;
1359 
1360 	if (!!results[FM10K_LPORT_STATE_MSG_XCAST_MODE]) {
1361 		result = results[FM10K_LPORT_STATE_MSG_XCAST_MODE];
1362 
1363 		/* XCAST mode update requested */
1364 		err = fm10k_tlv_attr_get_u8(result, &mode);
1365 		if (err)
1366 			return FM10K_ERR_PARAM;
1367 
1368 		/* prep for possible demotion depending on capabilities */
1369 		mode = fm10k_iov_supported_xcast_mode_pf(vf_info, mode);
1370 
1371 		/* if mode is not currently enabled, enable it */
1372 		if (!(FM10K_VF_FLAG_ENABLED(vf_info) & (1 << mode)))
1373 			fm10k_update_xcast_mode_pf(hw, vf_info->glort, mode);
1374 
1375 		/* swap mode back to a bit flag */
1376 		mode = FM10K_VF_FLAG_SET_MODE(mode);
1377 	} else if (!results[FM10K_LPORT_STATE_MSG_DISABLE]) {
1378 		/* need to disable the port if it is already enabled */
1379 		if (FM10K_VF_FLAG_ENABLED(vf_info))
1380 			err = fm10k_update_lport_state_pf(hw, vf_info->glort,
1381 							  1, false);
1382 
1383 		/* we need to clear VF_FLAG_ENABLED flags in order to ensure
1384 		 * that we actually re-enable the LPORT state below. Note that
1385 		 * this has no impact if the VF is already disabled, as the
1386 		 * flags are already cleared.
1387 		 */
1388 		if (!err)
1389 			vf_info->vf_flags = FM10K_VF_FLAG_CAPABLE(vf_info);
1390 
1391 		/* when enabling the port we should reset the rate limiters */
1392 		hw->iov.ops.configure_tc(hw, vf_info->vf_idx, vf_info->rate);
1393 
1394 		/* set mode for minimal functionality */
1395 		mode = FM10K_VF_FLAG_SET_MODE_NONE;
1396 
1397 		/* generate port state response to notify VF it is ready */
1398 		fm10k_tlv_msg_init(msg, FM10K_VF_MSG_ID_LPORT_STATE);
1399 		fm10k_tlv_attr_put_bool(msg, FM10K_LPORT_STATE_MSG_READY);
1400 		mbx->ops.enqueue_tx(hw, mbx, msg);
1401 	}
1402 
1403 	/* if enable state toggled note the update */
1404 	if (!err && (!FM10K_VF_FLAG_ENABLED(vf_info) != !mode))
1405 		err = fm10k_update_lport_state_pf(hw, vf_info->glort, 1,
1406 						  !!mode);
1407 
1408 	/* if state change succeeded, then update our stored state */
1409 	mode |= FM10K_VF_FLAG_CAPABLE(vf_info);
1410 	if (!err)
1411 		vf_info->vf_flags = mode;
1412 
1413 	return err;
1414 }
1415 
1416 /**
1417  *  fm10k_update_stats_hw_pf - Updates hardware related statistics of PF
1418  *  @hw: pointer to hardware structure
1419  *  @stats: pointer to the stats structure to update
1420  *
1421  *  This function collects and aggregates global and per queue hardware
1422  *  statistics.
1423  **/
1424 static void fm10k_update_hw_stats_pf(struct fm10k_hw *hw,
1425 				     struct fm10k_hw_stats *stats)
1426 {
1427 	u32 timeout, ur, ca, um, xec, vlan_drop, loopback_drop, nodesc_drop;
1428 	u32 id, id_prev;
1429 
1430 	/* Use Tx queue 0 as a canary to detect a reset */
1431 	id = fm10k_read_reg(hw, FM10K_TXQCTL(0));
1432 
1433 	/* Read Global Statistics */
1434 	do {
1435 		timeout = fm10k_read_hw_stats_32b(hw, FM10K_STATS_TIMEOUT,
1436 						  &stats->timeout);
1437 		ur = fm10k_read_hw_stats_32b(hw, FM10K_STATS_UR, &stats->ur);
1438 		ca = fm10k_read_hw_stats_32b(hw, FM10K_STATS_CA, &stats->ca);
1439 		um = fm10k_read_hw_stats_32b(hw, FM10K_STATS_UM, &stats->um);
1440 		xec = fm10k_read_hw_stats_32b(hw, FM10K_STATS_XEC, &stats->xec);
1441 		vlan_drop = fm10k_read_hw_stats_32b(hw, FM10K_STATS_VLAN_DROP,
1442 						    &stats->vlan_drop);
1443 		loopback_drop = fm10k_read_hw_stats_32b(hw,
1444 							FM10K_STATS_LOOPBACK_DROP,
1445 							&stats->loopback_drop);
1446 		nodesc_drop = fm10k_read_hw_stats_32b(hw,
1447 						      FM10K_STATS_NODESC_DROP,
1448 						      &stats->nodesc_drop);
1449 
1450 		/* if value has not changed then we have consistent data */
1451 		id_prev = id;
1452 		id = fm10k_read_reg(hw, FM10K_TXQCTL(0));
1453 	} while ((id ^ id_prev) & FM10K_TXQCTL_ID_MASK);
1454 
1455 	/* drop non-ID bits and set VALID ID bit */
1456 	id &= FM10K_TXQCTL_ID_MASK;
1457 	id |= FM10K_STAT_VALID;
1458 
1459 	/* Update Global Statistics */
1460 	if (stats->stats_idx == id) {
1461 		stats->timeout.count += timeout;
1462 		stats->ur.count += ur;
1463 		stats->ca.count += ca;
1464 		stats->um.count += um;
1465 		stats->xec.count += xec;
1466 		stats->vlan_drop.count += vlan_drop;
1467 		stats->loopback_drop.count += loopback_drop;
1468 		stats->nodesc_drop.count += nodesc_drop;
1469 	}
1470 
1471 	/* Update bases and record current PF id */
1472 	fm10k_update_hw_base_32b(&stats->timeout, timeout);
1473 	fm10k_update_hw_base_32b(&stats->ur, ur);
1474 	fm10k_update_hw_base_32b(&stats->ca, ca);
1475 	fm10k_update_hw_base_32b(&stats->um, um);
1476 	fm10k_update_hw_base_32b(&stats->xec, xec);
1477 	fm10k_update_hw_base_32b(&stats->vlan_drop, vlan_drop);
1478 	fm10k_update_hw_base_32b(&stats->loopback_drop, loopback_drop);
1479 	fm10k_update_hw_base_32b(&stats->nodesc_drop, nodesc_drop);
1480 	stats->stats_idx = id;
1481 
1482 	/* Update Queue Statistics */
1483 	fm10k_update_hw_stats_q(hw, stats->q, 0, hw->mac.max_queues);
1484 }
1485 
1486 /**
1487  *  fm10k_rebind_hw_stats_pf - Resets base for hardware statistics of PF
1488  *  @hw: pointer to hardware structure
1489  *  @stats: pointer to the stats structure to update
1490  *
1491  *  This function resets the base for global and per queue hardware
1492  *  statistics.
1493  **/
1494 static void fm10k_rebind_hw_stats_pf(struct fm10k_hw *hw,
1495 				     struct fm10k_hw_stats *stats)
1496 {
1497 	/* Unbind Global Statistics */
1498 	fm10k_unbind_hw_stats_32b(&stats->timeout);
1499 	fm10k_unbind_hw_stats_32b(&stats->ur);
1500 	fm10k_unbind_hw_stats_32b(&stats->ca);
1501 	fm10k_unbind_hw_stats_32b(&stats->um);
1502 	fm10k_unbind_hw_stats_32b(&stats->xec);
1503 	fm10k_unbind_hw_stats_32b(&stats->vlan_drop);
1504 	fm10k_unbind_hw_stats_32b(&stats->loopback_drop);
1505 	fm10k_unbind_hw_stats_32b(&stats->nodesc_drop);
1506 
1507 	/* Unbind Queue Statistics */
1508 	fm10k_unbind_hw_stats_q(stats->q, 0, hw->mac.max_queues);
1509 
1510 	/* Reinitialize bases for all stats */
1511 	fm10k_update_hw_stats_pf(hw, stats);
1512 }
1513 
1514 /**
1515  *  fm10k_set_dma_mask_pf - Configures PhyAddrSpace to limit DMA to system
1516  *  @hw: pointer to hardware structure
1517  *  @dma_mask: 64 bit DMA mask required for platform
1518  *
1519  *  This function sets the PHYADDR.PhyAddrSpace bits for the endpoint in order
1520  *  to limit the access to memory beyond what is physically in the system.
1521  **/
1522 static void fm10k_set_dma_mask_pf(struct fm10k_hw *hw, u64 dma_mask)
1523 {
1524 	/* we need to write the upper 32 bits of DMA mask to PhyAddrSpace */
1525 	u32 phyaddr = (u32)(dma_mask >> 32);
1526 
1527 	fm10k_write_reg(hw, FM10K_PHYADDR, phyaddr);
1528 }
1529 
1530 /**
1531  *  fm10k_get_fault_pf - Record a fault in one of the interface units
1532  *  @hw: pointer to hardware structure
1533  *  @type: pointer to fault type register offset
1534  *  @fault: pointer to memory location to record the fault
1535  *
1536  *  Record the fault register contents to the fault data structure and
1537  *  clear the entry from the register.
1538  *
1539  *  Returns ERR_PARAM if invalid register is specified or no error is present.
1540  **/
1541 static s32 fm10k_get_fault_pf(struct fm10k_hw *hw, int type,
1542 			      struct fm10k_fault *fault)
1543 {
1544 	u32 func;
1545 
1546 	/* verify the fault register is in range and is aligned */
1547 	switch (type) {
1548 	case FM10K_PCA_FAULT:
1549 	case FM10K_THI_FAULT:
1550 	case FM10K_FUM_FAULT:
1551 		break;
1552 	default:
1553 		return FM10K_ERR_PARAM;
1554 	}
1555 
1556 	/* only service faults that are valid */
1557 	func = fm10k_read_reg(hw, type + FM10K_FAULT_FUNC);
1558 	if (!(func & FM10K_FAULT_FUNC_VALID))
1559 		return FM10K_ERR_PARAM;
1560 
1561 	/* read remaining fields */
1562 	fault->address = fm10k_read_reg(hw, type + FM10K_FAULT_ADDR_HI);
1563 	fault->address <<= 32;
1564 	fault->address = fm10k_read_reg(hw, type + FM10K_FAULT_ADDR_LO);
1565 	fault->specinfo = fm10k_read_reg(hw, type + FM10K_FAULT_SPECINFO);
1566 
1567 	/* clear valid bit to allow for next error */
1568 	fm10k_write_reg(hw, type + FM10K_FAULT_FUNC, FM10K_FAULT_FUNC_VALID);
1569 
1570 	/* Record which function triggered the error */
1571 	if (func & FM10K_FAULT_FUNC_PF)
1572 		fault->func = 0;
1573 	else
1574 		fault->func = 1 + ((func & FM10K_FAULT_FUNC_VF_MASK) >>
1575 				   FM10K_FAULT_FUNC_VF_SHIFT);
1576 
1577 	/* record fault type */
1578 	fault->type = func & FM10K_FAULT_FUNC_TYPE_MASK;
1579 
1580 	return 0;
1581 }
1582 
1583 /**
1584  *  fm10k_request_lport_map_pf - Request LPORT map from the switch API
1585  *  @hw: pointer to hardware structure
1586  *
1587  **/
1588 static s32 fm10k_request_lport_map_pf(struct fm10k_hw *hw)
1589 {
1590 	struct fm10k_mbx_info *mbx = &hw->mbx;
1591 	u32 msg[1];
1592 
1593 	/* issue request asking for LPORT map */
1594 	fm10k_tlv_msg_init(msg, FM10K_PF_MSG_ID_LPORT_MAP);
1595 
1596 	/* load onto outgoing mailbox */
1597 	return mbx->ops.enqueue_tx(hw, mbx, msg);
1598 }
1599 
1600 /**
1601  *  fm10k_get_host_state_pf - Returns the state of the switch and mailbox
1602  *  @hw: pointer to hardware structure
1603  *  @switch_ready: pointer to boolean value that will record switch state
1604  *
1605  *  This funciton will check the DMA_CTRL2 register and mailbox in order
1606  *  to determine if the switch is ready for the PF to begin requesting
1607  *  addresses and mapping traffic to the local interface.
1608  **/
1609 static s32 fm10k_get_host_state_pf(struct fm10k_hw *hw, bool *switch_ready)
1610 {
1611 	s32 ret_val = 0;
1612 	u32 dma_ctrl2;
1613 
1614 	/* verify the switch is ready for interaction */
1615 	dma_ctrl2 = fm10k_read_reg(hw, FM10K_DMA_CTRL2);
1616 	if (!(dma_ctrl2 & FM10K_DMA_CTRL2_SWITCH_READY))
1617 		goto out;
1618 
1619 	/* retrieve generic host state info */
1620 	ret_val = fm10k_get_host_state_generic(hw, switch_ready);
1621 	if (ret_val)
1622 		goto out;
1623 
1624 	/* interface cannot receive traffic without logical ports */
1625 	if (hw->mac.dglort_map == FM10K_DGLORTMAP_NONE)
1626 		ret_val = fm10k_request_lport_map_pf(hw);
1627 
1628 out:
1629 	return ret_val;
1630 }
1631 
1632 /* This structure defines the attibutes to be parsed below */
1633 const struct fm10k_tlv_attr fm10k_lport_map_msg_attr[] = {
1634 	FM10K_TLV_ATTR_U32(FM10K_PF_ATTR_ID_LPORT_MAP),
1635 	FM10K_TLV_ATTR_LAST
1636 };
1637 
1638 /**
1639  *  fm10k_msg_lport_map_pf - Message handler for lport_map message from SM
1640  *  @hw: Pointer to hardware structure
1641  *  @results: pointer array containing parsed data
1642  *  @mbx: Pointer to mailbox information structure
1643  *
1644  *  This handler configures the lport mapping based on the reply from the
1645  *  switch API.
1646  **/
1647 s32 fm10k_msg_lport_map_pf(struct fm10k_hw *hw, u32 **results,
1648 			   struct fm10k_mbx_info *mbx)
1649 {
1650 	u16 glort, mask;
1651 	u32 dglort_map;
1652 	s32 err;
1653 
1654 	err = fm10k_tlv_attr_get_u32(results[FM10K_PF_ATTR_ID_LPORT_MAP],
1655 				     &dglort_map);
1656 	if (err)
1657 		return err;
1658 
1659 	/* extract values out of the header */
1660 	glort = FM10K_MSG_HDR_FIELD_GET(dglort_map, LPORT_MAP_GLORT);
1661 	mask = FM10K_MSG_HDR_FIELD_GET(dglort_map, LPORT_MAP_MASK);
1662 
1663 	/* verify mask is set and none of the masked bits in glort are set */
1664 	if (!mask || (glort & ~mask))
1665 		return FM10K_ERR_PARAM;
1666 
1667 	/* verify the mask is contiguous, and that it is 1's followed by 0's */
1668 	if (((~(mask - 1) & mask) + mask) & FM10K_DGLORTMAP_NONE)
1669 		return FM10K_ERR_PARAM;
1670 
1671 	/* record the glort, mask, and port count */
1672 	hw->mac.dglort_map = dglort_map;
1673 
1674 	return 0;
1675 }
1676 
1677 const struct fm10k_tlv_attr fm10k_update_pvid_msg_attr[] = {
1678 	FM10K_TLV_ATTR_U32(FM10K_PF_ATTR_ID_UPDATE_PVID),
1679 	FM10K_TLV_ATTR_LAST
1680 };
1681 
1682 /**
1683  *  fm10k_msg_update_pvid_pf - Message handler for port VLAN message from SM
1684  *  @hw: Pointer to hardware structure
1685  *  @results: pointer array containing parsed data
1686  *  @mbx: Pointer to mailbox information structure
1687  *
1688  *  This handler configures the default VLAN for the PF
1689  **/
1690 s32 fm10k_msg_update_pvid_pf(struct fm10k_hw *hw, u32 **results,
1691 			     struct fm10k_mbx_info *mbx)
1692 {
1693 	u16 glort, pvid;
1694 	u32 pvid_update;
1695 	s32 err;
1696 
1697 	err = fm10k_tlv_attr_get_u32(results[FM10K_PF_ATTR_ID_UPDATE_PVID],
1698 				     &pvid_update);
1699 	if (err)
1700 		return err;
1701 
1702 	/* extract values from the pvid update */
1703 	glort = FM10K_MSG_HDR_FIELD_GET(pvid_update, UPDATE_PVID_GLORT);
1704 	pvid = FM10K_MSG_HDR_FIELD_GET(pvid_update, UPDATE_PVID_PVID);
1705 
1706 	/* if glort is not valid return error */
1707 	if (!fm10k_glort_valid_pf(hw, glort))
1708 		return FM10K_ERR_PARAM;
1709 
1710 	/* verify VID is valid */
1711 	if (pvid >= FM10K_VLAN_TABLE_VID_MAX)
1712 		return FM10K_ERR_PARAM;
1713 
1714 	/* record the port VLAN ID value */
1715 	hw->mac.default_vid = pvid;
1716 
1717 	return 0;
1718 }
1719 
1720 /**
1721  *  fm10k_record_global_table_data - Move global table data to swapi table info
1722  *  @from: pointer to source table data structure
1723  *  @to: pointer to destination table info structure
1724  *
1725  *  This function is will copy table_data to the table_info contained in
1726  *  the hw struct.
1727  **/
1728 static void fm10k_record_global_table_data(struct fm10k_global_table_data *from,
1729 					   struct fm10k_swapi_table_info *to)
1730 {
1731 	/* convert from le32 struct to CPU byte ordered values */
1732 	to->used = le32_to_cpu(from->used);
1733 	to->avail = le32_to_cpu(from->avail);
1734 }
1735 
1736 const struct fm10k_tlv_attr fm10k_err_msg_attr[] = {
1737 	FM10K_TLV_ATTR_LE_STRUCT(FM10K_PF_ATTR_ID_ERR,
1738 				 sizeof(struct fm10k_swapi_error)),
1739 	FM10K_TLV_ATTR_LAST
1740 };
1741 
1742 /**
1743  *  fm10k_msg_err_pf - Message handler for error reply
1744  *  @hw: Pointer to hardware structure
1745  *  @results: pointer array containing parsed data
1746  *  @mbx: Pointer to mailbox information structure
1747  *
1748  *  This handler will capture the data for any error replies to previous
1749  *  messages that the PF has sent.
1750  **/
1751 s32 fm10k_msg_err_pf(struct fm10k_hw *hw, u32 **results,
1752 		     struct fm10k_mbx_info *mbx)
1753 {
1754 	struct fm10k_swapi_error err_msg;
1755 	s32 err;
1756 
1757 	/* extract structure from message */
1758 	err = fm10k_tlv_attr_get_le_struct(results[FM10K_PF_ATTR_ID_ERR],
1759 					   &err_msg, sizeof(err_msg));
1760 	if (err)
1761 		return err;
1762 
1763 	/* record table status */
1764 	fm10k_record_global_table_data(&err_msg.mac, &hw->swapi.mac);
1765 	fm10k_record_global_table_data(&err_msg.nexthop, &hw->swapi.nexthop);
1766 	fm10k_record_global_table_data(&err_msg.ffu, &hw->swapi.ffu);
1767 
1768 	/* record SW API status value */
1769 	hw->swapi.status = le32_to_cpu(err_msg.status);
1770 
1771 	return 0;
1772 }
1773 
1774 const struct fm10k_tlv_attr fm10k_1588_timestamp_msg_attr[] = {
1775 	FM10K_TLV_ATTR_LE_STRUCT(FM10K_PF_ATTR_ID_1588_TIMESTAMP,
1776 				 sizeof(struct fm10k_swapi_1588_timestamp)),
1777 	FM10K_TLV_ATTR_LAST
1778 };
1779 
1780 /* currently there is no shared 1588 timestamp handler */
1781 
1782 /**
1783  *  fm10k_adjust_systime_pf - Adjust systime frequency
1784  *  @hw: pointer to hardware structure
1785  *  @ppb: adjustment rate in parts per billion
1786  *
1787  *  This function will adjust the SYSTIME_CFG register contained in BAR 4
1788  *  if this function is supported for BAR 4 access.  The adjustment amount
1789  *  is based on the parts per billion value provided and adjusted to a
1790  *  value based on parts per 2^48 clock cycles.
1791  *
1792  *  If adjustment is not supported or the requested value is too large
1793  *  we will return an error.
1794  **/
1795 static s32 fm10k_adjust_systime_pf(struct fm10k_hw *hw, s32 ppb)
1796 {
1797 	u64 systime_adjust;
1798 
1799 	/* if sw_addr is not set we don't have switch register access */
1800 	if (!hw->sw_addr)
1801 		return ppb ? FM10K_ERR_PARAM : 0;
1802 
1803 	/* we must convert the value from parts per billion to parts per
1804 	 * 2^48 cycles.  In addition I have opted to only use the 30 most
1805 	 * significant bits of the adjustment value as the 8 least
1806 	 * significant bits are located in another register and represent
1807 	 * a value significantly less than a part per billion, the result
1808 	 * of dropping the 8 least significant bits is that the adjustment
1809 	 * value is effectively multiplied by 2^8 when we write it.
1810 	 *
1811 	 * As a result of all this the math for this breaks down as follows:
1812 	 *	ppb / 10^9 == adjust * 2^8 / 2^48
1813 	 * If we solve this for adjust, and simplify it comes out as:
1814 	 *	ppb * 2^31 / 5^9 == adjust
1815 	 */
1816 	systime_adjust = (ppb < 0) ? -ppb : ppb;
1817 	systime_adjust <<= 31;
1818 	do_div(systime_adjust, 1953125);
1819 
1820 	/* verify the requested adjustment value is in range */
1821 	if (systime_adjust > FM10K_SW_SYSTIME_ADJUST_MASK)
1822 		return FM10K_ERR_PARAM;
1823 
1824 	if (ppb > 0)
1825 		systime_adjust |= FM10K_SW_SYSTIME_ADJUST_DIR_POSITIVE;
1826 
1827 	fm10k_write_sw_reg(hw, FM10K_SW_SYSTIME_ADJUST, (u32)systime_adjust);
1828 
1829 	return 0;
1830 }
1831 
1832 /**
1833  *  fm10k_read_systime_pf - Reads value of systime registers
1834  *  @hw: pointer to the hardware structure
1835  *
1836  *  Function reads the content of 2 registers, combined to represent a 64 bit
1837  *  value measured in nanosecods.  In order to guarantee the value is accurate
1838  *  we check the 32 most significant bits both before and after reading the
1839  *  32 least significant bits to verify they didn't change as we were reading
1840  *  the registers.
1841  **/
1842 static u64 fm10k_read_systime_pf(struct fm10k_hw *hw)
1843 {
1844 	u32 systime_l, systime_h, systime_tmp;
1845 
1846 	systime_h = fm10k_read_reg(hw, FM10K_SYSTIME + 1);
1847 
1848 	do {
1849 		systime_tmp = systime_h;
1850 		systime_l = fm10k_read_reg(hw, FM10K_SYSTIME);
1851 		systime_h = fm10k_read_reg(hw, FM10K_SYSTIME + 1);
1852 	} while (systime_tmp != systime_h);
1853 
1854 	return ((u64)systime_h << 32) | systime_l;
1855 }
1856 
1857 static const struct fm10k_msg_data fm10k_msg_data_pf[] = {
1858 	FM10K_PF_MSG_ERR_HANDLER(XCAST_MODES, fm10k_msg_err_pf),
1859 	FM10K_PF_MSG_ERR_HANDLER(UPDATE_MAC_FWD_RULE, fm10k_msg_err_pf),
1860 	FM10K_PF_MSG_LPORT_MAP_HANDLER(fm10k_msg_lport_map_pf),
1861 	FM10K_PF_MSG_ERR_HANDLER(LPORT_CREATE, fm10k_msg_err_pf),
1862 	FM10K_PF_MSG_ERR_HANDLER(LPORT_DELETE, fm10k_msg_err_pf),
1863 	FM10K_PF_MSG_UPDATE_PVID_HANDLER(fm10k_msg_update_pvid_pf),
1864 	FM10K_TLV_MSG_ERROR_HANDLER(fm10k_tlv_msg_error),
1865 };
1866 
1867 static struct fm10k_mac_ops mac_ops_pf = {
1868 	.get_bus_info		= &fm10k_get_bus_info_generic,
1869 	.reset_hw		= &fm10k_reset_hw_pf,
1870 	.init_hw		= &fm10k_init_hw_pf,
1871 	.start_hw		= &fm10k_start_hw_generic,
1872 	.stop_hw		= &fm10k_stop_hw_generic,
1873 	.update_vlan		= &fm10k_update_vlan_pf,
1874 	.read_mac_addr		= &fm10k_read_mac_addr_pf,
1875 	.update_uc_addr		= &fm10k_update_uc_addr_pf,
1876 	.update_mc_addr		= &fm10k_update_mc_addr_pf,
1877 	.update_xcast_mode	= &fm10k_update_xcast_mode_pf,
1878 	.update_int_moderator	= &fm10k_update_int_moderator_pf,
1879 	.update_lport_state	= &fm10k_update_lport_state_pf,
1880 	.update_hw_stats	= &fm10k_update_hw_stats_pf,
1881 	.rebind_hw_stats	= &fm10k_rebind_hw_stats_pf,
1882 	.configure_dglort_map	= &fm10k_configure_dglort_map_pf,
1883 	.set_dma_mask		= &fm10k_set_dma_mask_pf,
1884 	.get_fault		= &fm10k_get_fault_pf,
1885 	.get_host_state		= &fm10k_get_host_state_pf,
1886 	.adjust_systime		= &fm10k_adjust_systime_pf,
1887 	.read_systime		= &fm10k_read_systime_pf,
1888 };
1889 
1890 static struct fm10k_iov_ops iov_ops_pf = {
1891 	.assign_resources		= &fm10k_iov_assign_resources_pf,
1892 	.configure_tc			= &fm10k_iov_configure_tc_pf,
1893 	.assign_int_moderator		= &fm10k_iov_assign_int_moderator_pf,
1894 	.assign_default_mac_vlan	= fm10k_iov_assign_default_mac_vlan_pf,
1895 	.reset_resources		= &fm10k_iov_reset_resources_pf,
1896 	.set_lport			= &fm10k_iov_set_lport_pf,
1897 	.reset_lport			= &fm10k_iov_reset_lport_pf,
1898 	.update_stats			= &fm10k_iov_update_stats_pf,
1899 	.report_timestamp		= &fm10k_iov_report_timestamp_pf,
1900 };
1901 
1902 static s32 fm10k_get_invariants_pf(struct fm10k_hw *hw)
1903 {
1904 	fm10k_get_invariants_generic(hw);
1905 
1906 	return fm10k_sm_mbx_init(hw, &hw->mbx, fm10k_msg_data_pf);
1907 }
1908 
1909 struct fm10k_info fm10k_pf_info = {
1910 	.mac		= fm10k_mac_pf,
1911 	.get_invariants	= &fm10k_get_invariants_pf,
1912 	.mac_ops	= &mac_ops_pf,
1913 	.iov_ops	= &iov_ops_pf,
1914 };
1915