1 /* Intel Ethernet Switch Host Interface Driver 2 * Copyright(c) 2013 - 2015 Intel Corporation. 3 * 4 * This program is free software; you can redistribute it and/or modify it 5 * under the terms and conditions of the GNU General Public License, 6 * version 2, as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope it will be useful, but WITHOUT 9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 11 * more details. 12 * 13 * The full GNU General Public License is included in this distribution in 14 * the file called "COPYING". 15 * 16 * Contact Information: 17 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> 18 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 19 */ 20 21 #include "fm10k_pf.h" 22 #include "fm10k_vf.h" 23 24 /** 25 * fm10k_reset_hw_pf - PF hardware reset 26 * @hw: pointer to hardware structure 27 * 28 * This function should return the hardware to a state similar to the 29 * one it is in after being powered on. 30 **/ 31 static s32 fm10k_reset_hw_pf(struct fm10k_hw *hw) 32 { 33 s32 err; 34 u32 reg; 35 u16 i; 36 37 /* Disable interrupts */ 38 fm10k_write_reg(hw, FM10K_EIMR, FM10K_EIMR_DISABLE(ALL)); 39 40 /* Lock ITR2 reg 0 into itself and disable interrupt moderation */ 41 fm10k_write_reg(hw, FM10K_ITR2(0), 0); 42 fm10k_write_reg(hw, FM10K_INT_CTRL, 0); 43 44 /* We assume here Tx and Rx queue 0 are owned by the PF */ 45 46 /* Shut off VF access to their queues forcing them to queue 0 */ 47 for (i = 0; i < FM10K_TQMAP_TABLE_SIZE; i++) { 48 fm10k_write_reg(hw, FM10K_TQMAP(i), 0); 49 fm10k_write_reg(hw, FM10K_RQMAP(i), 0); 50 } 51 52 /* shut down all rings */ 53 err = fm10k_disable_queues_generic(hw, FM10K_MAX_QUEUES); 54 if (err) 55 return err; 56 57 /* Verify that DMA is no longer active */ 58 reg = fm10k_read_reg(hw, FM10K_DMA_CTRL); 59 if (reg & (FM10K_DMA_CTRL_TX_ACTIVE | FM10K_DMA_CTRL_RX_ACTIVE)) 60 return FM10K_ERR_DMA_PENDING; 61 62 /* verify the switch is ready for reset */ 63 reg = fm10k_read_reg(hw, FM10K_DMA_CTRL2); 64 if (!(reg & FM10K_DMA_CTRL2_SWITCH_READY)) 65 goto out; 66 67 /* Inititate data path reset */ 68 reg |= FM10K_DMA_CTRL_DATAPATH_RESET; 69 fm10k_write_reg(hw, FM10K_DMA_CTRL, reg); 70 71 /* Flush write and allow 100us for reset to complete */ 72 fm10k_write_flush(hw); 73 udelay(FM10K_RESET_TIMEOUT); 74 75 /* Verify we made it out of reset */ 76 reg = fm10k_read_reg(hw, FM10K_IP); 77 if (!(reg & FM10K_IP_NOTINRESET)) 78 err = FM10K_ERR_RESET_FAILED; 79 80 out: 81 return err; 82 } 83 84 /** 85 * fm10k_is_ari_hierarchy_pf - Indicate ARI hierarchy support 86 * @hw: pointer to hardware structure 87 * 88 * Looks at the ARI hierarchy bit to determine whether ARI is supported or not. 89 **/ 90 static bool fm10k_is_ari_hierarchy_pf(struct fm10k_hw *hw) 91 { 92 u16 sriov_ctrl = fm10k_read_pci_cfg_word(hw, FM10K_PCIE_SRIOV_CTRL); 93 94 return !!(sriov_ctrl & FM10K_PCIE_SRIOV_CTRL_VFARI); 95 } 96 97 /** 98 * fm10k_init_hw_pf - PF hardware initialization 99 * @hw: pointer to hardware structure 100 * 101 **/ 102 static s32 fm10k_init_hw_pf(struct fm10k_hw *hw) 103 { 104 u32 dma_ctrl, txqctl; 105 u16 i; 106 107 /* Establish default VSI as valid */ 108 fm10k_write_reg(hw, FM10K_DGLORTDEC(fm10k_dglort_default), 0); 109 fm10k_write_reg(hw, FM10K_DGLORTMAP(fm10k_dglort_default), 110 FM10K_DGLORTMAP_ANY); 111 112 /* Invalidate all other GLORT entries */ 113 for (i = 1; i < FM10K_DGLORT_COUNT; i++) 114 fm10k_write_reg(hw, FM10K_DGLORTMAP(i), FM10K_DGLORTMAP_NONE); 115 116 /* reset ITR2(0) to point to itself */ 117 fm10k_write_reg(hw, FM10K_ITR2(0), 0); 118 119 /* reset VF ITR2(0) to point to 0 avoid PF registers */ 120 fm10k_write_reg(hw, FM10K_ITR2(FM10K_ITR_REG_COUNT_PF), 0); 121 122 /* loop through all PF ITR2 registers pointing them to the previous */ 123 for (i = 1; i < FM10K_ITR_REG_COUNT_PF; i++) 124 fm10k_write_reg(hw, FM10K_ITR2(i), i - 1); 125 126 /* Enable interrupt moderator if not already enabled */ 127 fm10k_write_reg(hw, FM10K_INT_CTRL, FM10K_INT_CTRL_ENABLEMODERATOR); 128 129 /* compute the default txqctl configuration */ 130 txqctl = FM10K_TXQCTL_PF | FM10K_TXQCTL_UNLIMITED_BW | 131 (hw->mac.default_vid << FM10K_TXQCTL_VID_SHIFT); 132 133 for (i = 0; i < FM10K_MAX_QUEUES; i++) { 134 /* configure rings for 256 Queue / 32 Descriptor cache mode */ 135 fm10k_write_reg(hw, FM10K_TQDLOC(i), 136 (i * FM10K_TQDLOC_BASE_32_DESC) | 137 FM10K_TQDLOC_SIZE_32_DESC); 138 fm10k_write_reg(hw, FM10K_TXQCTL(i), txqctl); 139 140 /* configure rings to provide TPH processing hints */ 141 fm10k_write_reg(hw, FM10K_TPH_TXCTRL(i), 142 FM10K_TPH_TXCTRL_DESC_TPHEN | 143 FM10K_TPH_TXCTRL_DESC_RROEN | 144 FM10K_TPH_TXCTRL_DESC_WROEN | 145 FM10K_TPH_TXCTRL_DATA_RROEN); 146 fm10k_write_reg(hw, FM10K_TPH_RXCTRL(i), 147 FM10K_TPH_RXCTRL_DESC_TPHEN | 148 FM10K_TPH_RXCTRL_DESC_RROEN | 149 FM10K_TPH_RXCTRL_DATA_WROEN | 150 FM10K_TPH_RXCTRL_HDR_WROEN); 151 } 152 153 /* set max hold interval to align with 1.024 usec in all modes and 154 * store ITR scale 155 */ 156 switch (hw->bus.speed) { 157 case fm10k_bus_speed_2500: 158 dma_ctrl = FM10K_DMA_CTRL_MAX_HOLD_1US_GEN1; 159 hw->mac.itr_scale = FM10K_TDLEN_ITR_SCALE_GEN1; 160 break; 161 case fm10k_bus_speed_5000: 162 dma_ctrl = FM10K_DMA_CTRL_MAX_HOLD_1US_GEN2; 163 hw->mac.itr_scale = FM10K_TDLEN_ITR_SCALE_GEN2; 164 break; 165 case fm10k_bus_speed_8000: 166 dma_ctrl = FM10K_DMA_CTRL_MAX_HOLD_1US_GEN3; 167 hw->mac.itr_scale = FM10K_TDLEN_ITR_SCALE_GEN3; 168 break; 169 default: 170 dma_ctrl = 0; 171 /* just in case, assume Gen3 ITR scale */ 172 hw->mac.itr_scale = FM10K_TDLEN_ITR_SCALE_GEN3; 173 break; 174 } 175 176 /* Configure TSO flags */ 177 fm10k_write_reg(hw, FM10K_DTXTCPFLGL, FM10K_TSO_FLAGS_LOW); 178 fm10k_write_reg(hw, FM10K_DTXTCPFLGH, FM10K_TSO_FLAGS_HI); 179 180 /* Enable DMA engine 181 * Set Rx Descriptor size to 32 182 * Set Minimum MSS to 64 183 * Set Maximum number of Rx queues to 256 / 32 Descriptor 184 */ 185 dma_ctrl |= FM10K_DMA_CTRL_TX_ENABLE | FM10K_DMA_CTRL_RX_ENABLE | 186 FM10K_DMA_CTRL_RX_DESC_SIZE | FM10K_DMA_CTRL_MINMSS_64 | 187 FM10K_DMA_CTRL_32_DESC; 188 189 fm10k_write_reg(hw, FM10K_DMA_CTRL, dma_ctrl); 190 191 /* record maximum queue count, we limit ourselves to 128 */ 192 hw->mac.max_queues = FM10K_MAX_QUEUES_PF; 193 194 /* We support either 64 VFs or 7 VFs depending on if we have ARI */ 195 hw->iov.total_vfs = fm10k_is_ari_hierarchy_pf(hw) ? 64 : 7; 196 197 return 0; 198 } 199 200 /** 201 * fm10k_update_vlan_pf - Update status of VLAN ID in VLAN filter table 202 * @hw: pointer to hardware structure 203 * @vid: VLAN ID to add to table 204 * @vsi: Index indicating VF ID or PF ID in table 205 * @set: Indicates if this is a set or clear operation 206 * 207 * This function adds or removes the corresponding VLAN ID from the VLAN 208 * filter table for the corresponding function. In addition to the 209 * standard set/clear that supports one bit a multi-bit write is 210 * supported to set 64 bits at a time. 211 **/ 212 static s32 fm10k_update_vlan_pf(struct fm10k_hw *hw, u32 vid, u8 vsi, bool set) 213 { 214 u32 vlan_table, reg, mask, bit, len; 215 216 /* verify the VSI index is valid */ 217 if (vsi > FM10K_VLAN_TABLE_VSI_MAX) 218 return FM10K_ERR_PARAM; 219 220 /* VLAN multi-bit write: 221 * The multi-bit write has several parts to it. 222 * 3 2 1 0 223 * 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 224 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 225 * | RSVD0 | Length |C|RSVD0| VLAN ID | 226 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 227 * 228 * VLAN ID: Vlan Starting value 229 * RSVD0: Reserved section, must be 0 230 * C: Flag field, 0 is set, 1 is clear (Used in VF VLAN message) 231 * Length: Number of times to repeat the bit being set 232 */ 233 len = vid >> 16; 234 vid = (vid << 17) >> 17; 235 236 /* verify the reserved 0 fields are 0 */ 237 if (len >= FM10K_VLAN_TABLE_VID_MAX || vid >= FM10K_VLAN_TABLE_VID_MAX) 238 return FM10K_ERR_PARAM; 239 240 /* Loop through the table updating all required VLANs */ 241 for (reg = FM10K_VLAN_TABLE(vsi, vid / 32), bit = vid % 32; 242 len < FM10K_VLAN_TABLE_VID_MAX; 243 len -= 32 - bit, reg++, bit = 0) { 244 /* record the initial state of the register */ 245 vlan_table = fm10k_read_reg(hw, reg); 246 247 /* truncate mask if we are at the start or end of the run */ 248 mask = (~(u32)0 >> ((len < 31) ? 31 - len : 0)) << bit; 249 250 /* make necessary modifications to the register */ 251 mask &= set ? ~vlan_table : vlan_table; 252 if (mask) 253 fm10k_write_reg(hw, reg, vlan_table ^ mask); 254 } 255 256 return 0; 257 } 258 259 /** 260 * fm10k_read_mac_addr_pf - Read device MAC address 261 * @hw: pointer to the HW structure 262 * 263 * Reads the device MAC address from the SM_AREA and stores the value. 264 **/ 265 static s32 fm10k_read_mac_addr_pf(struct fm10k_hw *hw) 266 { 267 u8 perm_addr[ETH_ALEN]; 268 u32 serial_num; 269 270 serial_num = fm10k_read_reg(hw, FM10K_SM_AREA(1)); 271 272 /* last byte should be all 1's */ 273 if ((~serial_num) << 24) 274 return FM10K_ERR_INVALID_MAC_ADDR; 275 276 perm_addr[0] = (u8)(serial_num >> 24); 277 perm_addr[1] = (u8)(serial_num >> 16); 278 perm_addr[2] = (u8)(serial_num >> 8); 279 280 serial_num = fm10k_read_reg(hw, FM10K_SM_AREA(0)); 281 282 /* first byte should be all 1's */ 283 if ((~serial_num) >> 24) 284 return FM10K_ERR_INVALID_MAC_ADDR; 285 286 perm_addr[3] = (u8)(serial_num >> 16); 287 perm_addr[4] = (u8)(serial_num >> 8); 288 perm_addr[5] = (u8)(serial_num); 289 290 ether_addr_copy(hw->mac.perm_addr, perm_addr); 291 ether_addr_copy(hw->mac.addr, perm_addr); 292 293 return 0; 294 } 295 296 /** 297 * fm10k_glort_valid_pf - Validate that the provided glort is valid 298 * @hw: pointer to the HW structure 299 * @glort: base glort to be validated 300 * 301 * This function will return an error if the provided glort is invalid 302 **/ 303 bool fm10k_glort_valid_pf(struct fm10k_hw *hw, u16 glort) 304 { 305 glort &= hw->mac.dglort_map >> FM10K_DGLORTMAP_MASK_SHIFT; 306 307 return glort == (hw->mac.dglort_map & FM10K_DGLORTMAP_NONE); 308 } 309 310 /** 311 * fm10k_update_xc_addr_pf - Update device addresses 312 * @hw: pointer to the HW structure 313 * @glort: base resource tag for this request 314 * @mac: MAC address to add/remove from table 315 * @vid: VLAN ID to add/remove from table 316 * @add: Indicates if this is an add or remove operation 317 * @flags: flags field to indicate add and secure 318 * 319 * This function generates a message to the Switch API requesting 320 * that the given logical port add/remove the given L2 MAC/VLAN address. 321 **/ 322 static s32 fm10k_update_xc_addr_pf(struct fm10k_hw *hw, u16 glort, 323 const u8 *mac, u16 vid, bool add, u8 flags) 324 { 325 struct fm10k_mbx_info *mbx = &hw->mbx; 326 struct fm10k_mac_update mac_update; 327 u32 msg[5]; 328 329 /* clear set bit from VLAN ID */ 330 vid &= ~FM10K_VLAN_CLEAR; 331 332 /* if glort or VLAN are not valid return error */ 333 if (!fm10k_glort_valid_pf(hw, glort) || vid >= FM10K_VLAN_TABLE_VID_MAX) 334 return FM10K_ERR_PARAM; 335 336 /* record fields */ 337 mac_update.mac_lower = cpu_to_le32(((u32)mac[2] << 24) | 338 ((u32)mac[3] << 16) | 339 ((u32)mac[4] << 8) | 340 ((u32)mac[5])); 341 mac_update.mac_upper = cpu_to_le16(((u16)mac[0] << 8) | 342 ((u16)mac[1])); 343 mac_update.vlan = cpu_to_le16(vid); 344 mac_update.glort = cpu_to_le16(glort); 345 mac_update.action = add ? 0 : 1; 346 mac_update.flags = flags; 347 348 /* populate mac_update fields */ 349 fm10k_tlv_msg_init(msg, FM10K_PF_MSG_ID_UPDATE_MAC_FWD_RULE); 350 fm10k_tlv_attr_put_le_struct(msg, FM10K_PF_ATTR_ID_MAC_UPDATE, 351 &mac_update, sizeof(mac_update)); 352 353 /* load onto outgoing mailbox */ 354 return mbx->ops.enqueue_tx(hw, mbx, msg); 355 } 356 357 /** 358 * fm10k_update_uc_addr_pf - Update device unicast addresses 359 * @hw: pointer to the HW structure 360 * @glort: base resource tag for this request 361 * @mac: MAC address to add/remove from table 362 * @vid: VLAN ID to add/remove from table 363 * @add: Indicates if this is an add or remove operation 364 * @flags: flags field to indicate add and secure 365 * 366 * This function is used to add or remove unicast addresses for 367 * the PF. 368 **/ 369 static s32 fm10k_update_uc_addr_pf(struct fm10k_hw *hw, u16 glort, 370 const u8 *mac, u16 vid, bool add, u8 flags) 371 { 372 /* verify MAC address is valid */ 373 if (!is_valid_ether_addr(mac)) 374 return FM10K_ERR_PARAM; 375 376 return fm10k_update_xc_addr_pf(hw, glort, mac, vid, add, flags); 377 } 378 379 /** 380 * fm10k_update_mc_addr_pf - Update device multicast addresses 381 * @hw: pointer to the HW structure 382 * @glort: base resource tag for this request 383 * @mac: MAC address to add/remove from table 384 * @vid: VLAN ID to add/remove from table 385 * @add: Indicates if this is an add or remove operation 386 * 387 * This function is used to add or remove multicast MAC addresses for 388 * the PF. 389 **/ 390 static s32 fm10k_update_mc_addr_pf(struct fm10k_hw *hw, u16 glort, 391 const u8 *mac, u16 vid, bool add) 392 { 393 /* verify multicast address is valid */ 394 if (!is_multicast_ether_addr(mac)) 395 return FM10K_ERR_PARAM; 396 397 return fm10k_update_xc_addr_pf(hw, glort, mac, vid, add, 0); 398 } 399 400 /** 401 * fm10k_update_xcast_mode_pf - Request update of multicast mode 402 * @hw: pointer to hardware structure 403 * @glort: base resource tag for this request 404 * @mode: integer value indicating mode being requested 405 * 406 * This function will attempt to request a higher mode for the port 407 * so that it can enable either multicast, multicast promiscuous, or 408 * promiscuous mode of operation. 409 **/ 410 static s32 fm10k_update_xcast_mode_pf(struct fm10k_hw *hw, u16 glort, u8 mode) 411 { 412 struct fm10k_mbx_info *mbx = &hw->mbx; 413 u32 msg[3], xcast_mode; 414 415 if (mode > FM10K_XCAST_MODE_NONE) 416 return FM10K_ERR_PARAM; 417 418 /* if glort is not valid return error */ 419 if (!fm10k_glort_valid_pf(hw, glort)) 420 return FM10K_ERR_PARAM; 421 422 /* write xcast mode as a single u32 value, 423 * lower 16 bits: glort 424 * upper 16 bits: mode 425 */ 426 xcast_mode = ((u32)mode << 16) | glort; 427 428 /* generate message requesting to change xcast mode */ 429 fm10k_tlv_msg_init(msg, FM10K_PF_MSG_ID_XCAST_MODES); 430 fm10k_tlv_attr_put_u32(msg, FM10K_PF_ATTR_ID_XCAST_MODE, xcast_mode); 431 432 /* load onto outgoing mailbox */ 433 return mbx->ops.enqueue_tx(hw, mbx, msg); 434 } 435 436 /** 437 * fm10k_update_int_moderator_pf - Update interrupt moderator linked list 438 * @hw: pointer to hardware structure 439 * 440 * This function walks through the MSI-X vector table to determine the 441 * number of active interrupts and based on that information updates the 442 * interrupt moderator linked list. 443 **/ 444 static void fm10k_update_int_moderator_pf(struct fm10k_hw *hw) 445 { 446 u32 i; 447 448 /* Disable interrupt moderator */ 449 fm10k_write_reg(hw, FM10K_INT_CTRL, 0); 450 451 /* loop through PF from last to first looking enabled vectors */ 452 for (i = FM10K_ITR_REG_COUNT_PF - 1; i; i--) { 453 if (!fm10k_read_reg(hw, FM10K_MSIX_VECTOR_MASK(i))) 454 break; 455 } 456 457 /* always reset VFITR2[0] to point to last enabled PF vector */ 458 fm10k_write_reg(hw, FM10K_ITR2(FM10K_ITR_REG_COUNT_PF), i); 459 460 /* reset ITR2[0] to point to last enabled PF vector */ 461 if (!hw->iov.num_vfs) 462 fm10k_write_reg(hw, FM10K_ITR2(0), i); 463 464 /* Enable interrupt moderator */ 465 fm10k_write_reg(hw, FM10K_INT_CTRL, FM10K_INT_CTRL_ENABLEMODERATOR); 466 } 467 468 /** 469 * fm10k_update_lport_state_pf - Notify the switch of a change in port state 470 * @hw: pointer to the HW structure 471 * @glort: base resource tag for this request 472 * @count: number of logical ports being updated 473 * @enable: boolean value indicating enable or disable 474 * 475 * This function is used to add/remove a logical port from the switch. 476 **/ 477 static s32 fm10k_update_lport_state_pf(struct fm10k_hw *hw, u16 glort, 478 u16 count, bool enable) 479 { 480 struct fm10k_mbx_info *mbx = &hw->mbx; 481 u32 msg[3], lport_msg; 482 483 /* do nothing if we are being asked to create or destroy 0 ports */ 484 if (!count) 485 return 0; 486 487 /* if glort is not valid return error */ 488 if (!fm10k_glort_valid_pf(hw, glort)) 489 return FM10K_ERR_PARAM; 490 491 /* construct the lport message from the 2 pieces of data we have */ 492 lport_msg = ((u32)count << 16) | glort; 493 494 /* generate lport create/delete message */ 495 fm10k_tlv_msg_init(msg, enable ? FM10K_PF_MSG_ID_LPORT_CREATE : 496 FM10K_PF_MSG_ID_LPORT_DELETE); 497 fm10k_tlv_attr_put_u32(msg, FM10K_PF_ATTR_ID_PORT, lport_msg); 498 499 /* load onto outgoing mailbox */ 500 return mbx->ops.enqueue_tx(hw, mbx, msg); 501 } 502 503 /** 504 * fm10k_configure_dglort_map_pf - Configures GLORT entry and queues 505 * @hw: pointer to hardware structure 506 * @dglort: pointer to dglort configuration structure 507 * 508 * Reads the configuration structure contained in dglort_cfg and uses 509 * that information to then populate a DGLORTMAP/DEC entry and the queues 510 * to which it has been assigned. 511 **/ 512 static s32 fm10k_configure_dglort_map_pf(struct fm10k_hw *hw, 513 struct fm10k_dglort_cfg *dglort) 514 { 515 u16 glort, queue_count, vsi_count, pc_count; 516 u16 vsi, queue, pc, q_idx; 517 u32 txqctl, dglortdec, dglortmap; 518 519 /* verify the dglort pointer */ 520 if (!dglort) 521 return FM10K_ERR_PARAM; 522 523 /* verify the dglort values */ 524 if ((dglort->idx > 7) || (dglort->rss_l > 7) || (dglort->pc_l > 3) || 525 (dglort->vsi_l > 6) || (dglort->vsi_b > 64) || 526 (dglort->queue_l > 8) || (dglort->queue_b >= 256)) 527 return FM10K_ERR_PARAM; 528 529 /* determine count of VSIs and queues */ 530 queue_count = 1 << (dglort->rss_l + dglort->pc_l); 531 vsi_count = 1 << (dglort->vsi_l + dglort->queue_l); 532 glort = dglort->glort; 533 q_idx = dglort->queue_b; 534 535 /* configure SGLORT for queues */ 536 for (vsi = 0; vsi < vsi_count; vsi++, glort++) { 537 for (queue = 0; queue < queue_count; queue++, q_idx++) { 538 if (q_idx >= FM10K_MAX_QUEUES) 539 break; 540 541 fm10k_write_reg(hw, FM10K_TX_SGLORT(q_idx), glort); 542 fm10k_write_reg(hw, FM10K_RX_SGLORT(q_idx), glort); 543 } 544 } 545 546 /* determine count of PCs and queues */ 547 queue_count = 1 << (dglort->queue_l + dglort->rss_l + dglort->vsi_l); 548 pc_count = 1 << dglort->pc_l; 549 550 /* configure PC for Tx queues */ 551 for (pc = 0; pc < pc_count; pc++) { 552 q_idx = pc + dglort->queue_b; 553 for (queue = 0; queue < queue_count; queue++) { 554 if (q_idx >= FM10K_MAX_QUEUES) 555 break; 556 557 txqctl = fm10k_read_reg(hw, FM10K_TXQCTL(q_idx)); 558 txqctl &= ~FM10K_TXQCTL_PC_MASK; 559 txqctl |= pc << FM10K_TXQCTL_PC_SHIFT; 560 fm10k_write_reg(hw, FM10K_TXQCTL(q_idx), txqctl); 561 562 q_idx += pc_count; 563 } 564 } 565 566 /* configure DGLORTDEC */ 567 dglortdec = ((u32)(dglort->rss_l) << FM10K_DGLORTDEC_RSSLENGTH_SHIFT) | 568 ((u32)(dglort->queue_b) << FM10K_DGLORTDEC_QBASE_SHIFT) | 569 ((u32)(dglort->pc_l) << FM10K_DGLORTDEC_PCLENGTH_SHIFT) | 570 ((u32)(dglort->vsi_b) << FM10K_DGLORTDEC_VSIBASE_SHIFT) | 571 ((u32)(dglort->vsi_l) << FM10K_DGLORTDEC_VSILENGTH_SHIFT) | 572 ((u32)(dglort->queue_l)); 573 if (dglort->inner_rss) 574 dglortdec |= FM10K_DGLORTDEC_INNERRSS_ENABLE; 575 576 /* configure DGLORTMAP */ 577 dglortmap = (dglort->idx == fm10k_dglort_default) ? 578 FM10K_DGLORTMAP_ANY : FM10K_DGLORTMAP_ZERO; 579 dglortmap <<= dglort->vsi_l + dglort->queue_l + dglort->shared_l; 580 dglortmap |= dglort->glort; 581 582 /* write values to hardware */ 583 fm10k_write_reg(hw, FM10K_DGLORTDEC(dglort->idx), dglortdec); 584 fm10k_write_reg(hw, FM10K_DGLORTMAP(dglort->idx), dglortmap); 585 586 return 0; 587 } 588 589 u16 fm10k_queues_per_pool(struct fm10k_hw *hw) 590 { 591 u16 num_pools = hw->iov.num_pools; 592 593 return (num_pools > 32) ? 2 : (num_pools > 16) ? 4 : (num_pools > 8) ? 594 8 : FM10K_MAX_QUEUES_POOL; 595 } 596 597 u16 fm10k_vf_queue_index(struct fm10k_hw *hw, u16 vf_idx) 598 { 599 u16 num_vfs = hw->iov.num_vfs; 600 u16 vf_q_idx = FM10K_MAX_QUEUES; 601 602 vf_q_idx -= fm10k_queues_per_pool(hw) * (num_vfs - vf_idx); 603 604 return vf_q_idx; 605 } 606 607 static u16 fm10k_vectors_per_pool(struct fm10k_hw *hw) 608 { 609 u16 num_pools = hw->iov.num_pools; 610 611 return (num_pools > 32) ? 8 : (num_pools > 16) ? 16 : 612 FM10K_MAX_VECTORS_POOL; 613 } 614 615 static u16 fm10k_vf_vector_index(struct fm10k_hw *hw, u16 vf_idx) 616 { 617 u16 vf_v_idx = FM10K_MAX_VECTORS_PF; 618 619 vf_v_idx += fm10k_vectors_per_pool(hw) * vf_idx; 620 621 return vf_v_idx; 622 } 623 624 /** 625 * fm10k_iov_assign_resources_pf - Assign pool resources for virtualization 626 * @hw: pointer to the HW structure 627 * @num_vfs: number of VFs to be allocated 628 * @num_pools: number of virtualization pools to be allocated 629 * 630 * Allocates queues and traffic classes to virtualization entities to prepare 631 * the PF for SR-IOV and VMDq 632 **/ 633 static s32 fm10k_iov_assign_resources_pf(struct fm10k_hw *hw, u16 num_vfs, 634 u16 num_pools) 635 { 636 u16 qmap_stride, qpp, vpp, vf_q_idx, vf_q_idx0, qmap_idx; 637 u32 vid = hw->mac.default_vid << FM10K_TXQCTL_VID_SHIFT; 638 int i, j; 639 640 /* hardware only supports up to 64 pools */ 641 if (num_pools > 64) 642 return FM10K_ERR_PARAM; 643 644 /* the number of VFs cannot exceed the number of pools */ 645 if ((num_vfs > num_pools) || (num_vfs > hw->iov.total_vfs)) 646 return FM10K_ERR_PARAM; 647 648 /* record number of virtualization entities */ 649 hw->iov.num_vfs = num_vfs; 650 hw->iov.num_pools = num_pools; 651 652 /* determine qmap offsets and counts */ 653 qmap_stride = (num_vfs > 8) ? 32 : 256; 654 qpp = fm10k_queues_per_pool(hw); 655 vpp = fm10k_vectors_per_pool(hw); 656 657 /* calculate starting index for queues */ 658 vf_q_idx = fm10k_vf_queue_index(hw, 0); 659 qmap_idx = 0; 660 661 /* establish TCs with -1 credits and no quanta to prevent transmit */ 662 for (i = 0; i < num_vfs; i++) { 663 fm10k_write_reg(hw, FM10K_TC_MAXCREDIT(i), 0); 664 fm10k_write_reg(hw, FM10K_TC_RATE(i), 0); 665 fm10k_write_reg(hw, FM10K_TC_CREDIT(i), 666 FM10K_TC_CREDIT_CREDIT_MASK); 667 } 668 669 /* zero out all mbmem registers */ 670 for (i = FM10K_VFMBMEM_LEN * num_vfs; i--;) 671 fm10k_write_reg(hw, FM10K_MBMEM(i), 0); 672 673 /* clear event notification of VF FLR */ 674 fm10k_write_reg(hw, FM10K_PFVFLREC(0), ~0); 675 fm10k_write_reg(hw, FM10K_PFVFLREC(1), ~0); 676 677 /* loop through unallocated rings assigning them back to PF */ 678 for (i = FM10K_MAX_QUEUES_PF; i < vf_q_idx; i++) { 679 fm10k_write_reg(hw, FM10K_TXDCTL(i), 0); 680 fm10k_write_reg(hw, FM10K_TXQCTL(i), FM10K_TXQCTL_PF | 681 FM10K_TXQCTL_UNLIMITED_BW | vid); 682 fm10k_write_reg(hw, FM10K_RXQCTL(i), FM10K_RXQCTL_PF); 683 } 684 685 /* PF should have already updated VFITR2[0] */ 686 687 /* update all ITR registers to flow to VFITR2[0] */ 688 for (i = FM10K_ITR_REG_COUNT_PF + 1; i < FM10K_ITR_REG_COUNT; i++) { 689 if (!(i & (vpp - 1))) 690 fm10k_write_reg(hw, FM10K_ITR2(i), i - vpp); 691 else 692 fm10k_write_reg(hw, FM10K_ITR2(i), i - 1); 693 } 694 695 /* update PF ITR2[0] to reference the last vector */ 696 fm10k_write_reg(hw, FM10K_ITR2(0), 697 fm10k_vf_vector_index(hw, num_vfs - 1)); 698 699 /* loop through rings populating rings and TCs */ 700 for (i = 0; i < num_vfs; i++) { 701 /* record index for VF queue 0 for use in end of loop */ 702 vf_q_idx0 = vf_q_idx; 703 704 for (j = 0; j < qpp; j++, qmap_idx++, vf_q_idx++) { 705 /* assign VF and locked TC to queues */ 706 fm10k_write_reg(hw, FM10K_TXDCTL(vf_q_idx), 0); 707 fm10k_write_reg(hw, FM10K_TXQCTL(vf_q_idx), 708 (i << FM10K_TXQCTL_TC_SHIFT) | i | 709 FM10K_TXQCTL_VF | vid); 710 fm10k_write_reg(hw, FM10K_RXDCTL(vf_q_idx), 711 FM10K_RXDCTL_WRITE_BACK_MIN_DELAY | 712 FM10K_RXDCTL_DROP_ON_EMPTY); 713 fm10k_write_reg(hw, FM10K_RXQCTL(vf_q_idx), 714 FM10K_RXQCTL_VF | 715 (i << FM10K_RXQCTL_VF_SHIFT)); 716 717 /* map queue pair to VF */ 718 fm10k_write_reg(hw, FM10K_TQMAP(qmap_idx), vf_q_idx); 719 fm10k_write_reg(hw, FM10K_RQMAP(qmap_idx), vf_q_idx); 720 } 721 722 /* repeat the first ring for all of the remaining VF rings */ 723 for (; j < qmap_stride; j++, qmap_idx++) { 724 fm10k_write_reg(hw, FM10K_TQMAP(qmap_idx), vf_q_idx0); 725 fm10k_write_reg(hw, FM10K_RQMAP(qmap_idx), vf_q_idx0); 726 } 727 } 728 729 /* loop through remaining indexes assigning all to queue 0 */ 730 while (qmap_idx < FM10K_TQMAP_TABLE_SIZE) { 731 fm10k_write_reg(hw, FM10K_TQMAP(qmap_idx), 0); 732 fm10k_write_reg(hw, FM10K_RQMAP(qmap_idx), 0); 733 qmap_idx++; 734 } 735 736 return 0; 737 } 738 739 /** 740 * fm10k_iov_configure_tc_pf - Configure the shaping group for VF 741 * @hw: pointer to the HW structure 742 * @vf_idx: index of VF receiving GLORT 743 * @rate: Rate indicated in Mb/s 744 * 745 * Configured the TC for a given VF to allow only up to a given number 746 * of Mb/s of outgoing Tx throughput. 747 **/ 748 static s32 fm10k_iov_configure_tc_pf(struct fm10k_hw *hw, u16 vf_idx, int rate) 749 { 750 /* configure defaults */ 751 u32 interval = FM10K_TC_RATE_INTERVAL_4US_GEN3; 752 u32 tc_rate = FM10K_TC_RATE_QUANTA_MASK; 753 754 /* verify vf is in range */ 755 if (vf_idx >= hw->iov.num_vfs) 756 return FM10K_ERR_PARAM; 757 758 /* set interval to align with 4.096 usec in all modes */ 759 switch (hw->bus.speed) { 760 case fm10k_bus_speed_2500: 761 interval = FM10K_TC_RATE_INTERVAL_4US_GEN1; 762 break; 763 case fm10k_bus_speed_5000: 764 interval = FM10K_TC_RATE_INTERVAL_4US_GEN2; 765 break; 766 default: 767 break; 768 } 769 770 if (rate) { 771 if (rate > FM10K_VF_TC_MAX || rate < FM10K_VF_TC_MIN) 772 return FM10K_ERR_PARAM; 773 774 /* The quanta is measured in Bytes per 4.096 or 8.192 usec 775 * The rate is provided in Mbits per second 776 * To tralslate from rate to quanta we need to multiply the 777 * rate by 8.192 usec and divide by 8 bits/byte. To avoid 778 * dealing with floating point we can round the values up 779 * to the nearest whole number ratio which gives us 128 / 125. 780 */ 781 tc_rate = (rate * 128) / 125; 782 783 /* try to keep the rate limiting accurate by increasing 784 * the number of credits and interval for rates less than 4Gb/s 785 */ 786 if (rate < 4000) 787 interval <<= 1; 788 else 789 tc_rate >>= 1; 790 } 791 792 /* update rate limiter with new values */ 793 fm10k_write_reg(hw, FM10K_TC_RATE(vf_idx), tc_rate | interval); 794 fm10k_write_reg(hw, FM10K_TC_MAXCREDIT(vf_idx), FM10K_TC_MAXCREDIT_64K); 795 fm10k_write_reg(hw, FM10K_TC_CREDIT(vf_idx), FM10K_TC_MAXCREDIT_64K); 796 797 return 0; 798 } 799 800 /** 801 * fm10k_iov_assign_int_moderator_pf - Add VF interrupts to moderator list 802 * @hw: pointer to the HW structure 803 * @vf_idx: index of VF receiving GLORT 804 * 805 * Update the interrupt moderator linked list to include any MSI-X 806 * interrupts which the VF has enabled in the MSI-X vector table. 807 **/ 808 static s32 fm10k_iov_assign_int_moderator_pf(struct fm10k_hw *hw, u16 vf_idx) 809 { 810 u16 vf_v_idx, vf_v_limit, i; 811 812 /* verify vf is in range */ 813 if (vf_idx >= hw->iov.num_vfs) 814 return FM10K_ERR_PARAM; 815 816 /* determine vector offset and count */ 817 vf_v_idx = fm10k_vf_vector_index(hw, vf_idx); 818 vf_v_limit = vf_v_idx + fm10k_vectors_per_pool(hw); 819 820 /* search for first vector that is not masked */ 821 for (i = vf_v_limit - 1; i > vf_v_idx; i--) { 822 if (!fm10k_read_reg(hw, FM10K_MSIX_VECTOR_MASK(i))) 823 break; 824 } 825 826 /* reset linked list so it now includes our active vectors */ 827 if (vf_idx == (hw->iov.num_vfs - 1)) 828 fm10k_write_reg(hw, FM10K_ITR2(0), i); 829 else 830 fm10k_write_reg(hw, FM10K_ITR2(vf_v_limit), i); 831 832 return 0; 833 } 834 835 /** 836 * fm10k_iov_assign_default_mac_vlan_pf - Assign a MAC and VLAN to VF 837 * @hw: pointer to the HW structure 838 * @vf_info: pointer to VF information structure 839 * 840 * Assign a MAC address and default VLAN to a VF and notify it of the update 841 **/ 842 static s32 fm10k_iov_assign_default_mac_vlan_pf(struct fm10k_hw *hw, 843 struct fm10k_vf_info *vf_info) 844 { 845 u16 qmap_stride, queues_per_pool, vf_q_idx, timeout, qmap_idx, i; 846 u32 msg[4], txdctl, txqctl, tdbal = 0, tdbah = 0; 847 s32 err = 0; 848 u16 vf_idx, vf_vid; 849 850 /* verify vf is in range */ 851 if (!vf_info || vf_info->vf_idx >= hw->iov.num_vfs) 852 return FM10K_ERR_PARAM; 853 854 /* determine qmap offsets and counts */ 855 qmap_stride = (hw->iov.num_vfs > 8) ? 32 : 256; 856 queues_per_pool = fm10k_queues_per_pool(hw); 857 858 /* calculate starting index for queues */ 859 vf_idx = vf_info->vf_idx; 860 vf_q_idx = fm10k_vf_queue_index(hw, vf_idx); 861 qmap_idx = qmap_stride * vf_idx; 862 863 /* MAP Tx queue back to 0 temporarily, and disable it */ 864 fm10k_write_reg(hw, FM10K_TQMAP(qmap_idx), 0); 865 fm10k_write_reg(hw, FM10K_TXDCTL(vf_q_idx), 0); 866 867 /* determine correct default VLAN ID */ 868 if (vf_info->pf_vid) 869 vf_vid = vf_info->pf_vid | FM10K_VLAN_CLEAR; 870 else 871 vf_vid = vf_info->sw_vid; 872 873 /* generate MAC_ADDR request */ 874 fm10k_tlv_msg_init(msg, FM10K_VF_MSG_ID_MAC_VLAN); 875 fm10k_tlv_attr_put_mac_vlan(msg, FM10K_MAC_VLAN_MSG_DEFAULT_MAC, 876 vf_info->mac, vf_vid); 877 878 /* load onto outgoing mailbox, ignore any errors on enqueue */ 879 if (vf_info->mbx.ops.enqueue_tx) 880 vf_info->mbx.ops.enqueue_tx(hw, &vf_info->mbx, msg); 881 882 /* verify ring has disabled before modifying base address registers */ 883 txdctl = fm10k_read_reg(hw, FM10K_TXDCTL(vf_q_idx)); 884 for (timeout = 0; txdctl & FM10K_TXDCTL_ENABLE; timeout++) { 885 /* limit ourselves to a 1ms timeout */ 886 if (timeout == 10) { 887 err = FM10K_ERR_DMA_PENDING; 888 goto err_out; 889 } 890 891 usleep_range(100, 200); 892 txdctl = fm10k_read_reg(hw, FM10K_TXDCTL(vf_q_idx)); 893 } 894 895 /* Update base address registers to contain MAC address */ 896 if (is_valid_ether_addr(vf_info->mac)) { 897 tdbal = (((u32)vf_info->mac[3]) << 24) | 898 (((u32)vf_info->mac[4]) << 16) | 899 (((u32)vf_info->mac[5]) << 8); 900 901 tdbah = (((u32)0xFF) << 24) | 902 (((u32)vf_info->mac[0]) << 16) | 903 (((u32)vf_info->mac[1]) << 8) | 904 ((u32)vf_info->mac[2]); 905 } 906 907 /* Record the base address into queue 0 */ 908 fm10k_write_reg(hw, FM10K_TDBAL(vf_q_idx), tdbal); 909 fm10k_write_reg(hw, FM10K_TDBAH(vf_q_idx), tdbah); 910 911 /* Provide the VF the ITR scale, using software-defined fields in TDLEN 912 * to pass the information during VF initialization. See definition of 913 * FM10K_TDLEN_ITR_SCALE_SHIFT for more details. 914 */ 915 fm10k_write_reg(hw, FM10K_TDLEN(vf_q_idx), hw->mac.itr_scale << 916 FM10K_TDLEN_ITR_SCALE_SHIFT); 917 918 err_out: 919 /* configure Queue control register */ 920 txqctl = ((u32)vf_vid << FM10K_TXQCTL_VID_SHIFT) & 921 FM10K_TXQCTL_VID_MASK; 922 txqctl |= (vf_idx << FM10K_TXQCTL_TC_SHIFT) | 923 FM10K_TXQCTL_VF | vf_idx; 924 925 /* assign VLAN ID */ 926 for (i = 0; i < queues_per_pool; i++) 927 fm10k_write_reg(hw, FM10K_TXQCTL(vf_q_idx + i), txqctl); 928 929 /* restore the queue back to VF ownership */ 930 fm10k_write_reg(hw, FM10K_TQMAP(qmap_idx), vf_q_idx); 931 return err; 932 } 933 934 /** 935 * fm10k_iov_reset_resources_pf - Reassign queues and interrupts to a VF 936 * @hw: pointer to the HW structure 937 * @vf_info: pointer to VF information structure 938 * 939 * Reassign the interrupts and queues to a VF following an FLR 940 **/ 941 static s32 fm10k_iov_reset_resources_pf(struct fm10k_hw *hw, 942 struct fm10k_vf_info *vf_info) 943 { 944 u16 qmap_stride, queues_per_pool, vf_q_idx, qmap_idx; 945 u32 tdbal = 0, tdbah = 0, txqctl, rxqctl; 946 u16 vf_v_idx, vf_v_limit, vf_vid; 947 u8 vf_idx = vf_info->vf_idx; 948 int i; 949 950 /* verify vf is in range */ 951 if (vf_idx >= hw->iov.num_vfs) 952 return FM10K_ERR_PARAM; 953 954 /* clear event notification of VF FLR */ 955 fm10k_write_reg(hw, FM10K_PFVFLREC(vf_idx / 32), 1 << (vf_idx % 32)); 956 957 /* force timeout and then disconnect the mailbox */ 958 vf_info->mbx.timeout = 0; 959 if (vf_info->mbx.ops.disconnect) 960 vf_info->mbx.ops.disconnect(hw, &vf_info->mbx); 961 962 /* determine vector offset and count */ 963 vf_v_idx = fm10k_vf_vector_index(hw, vf_idx); 964 vf_v_limit = vf_v_idx + fm10k_vectors_per_pool(hw); 965 966 /* determine qmap offsets and counts */ 967 qmap_stride = (hw->iov.num_vfs > 8) ? 32 : 256; 968 queues_per_pool = fm10k_queues_per_pool(hw); 969 qmap_idx = qmap_stride * vf_idx; 970 971 /* make all the queues inaccessible to the VF */ 972 for (i = qmap_idx; i < (qmap_idx + qmap_stride); i++) { 973 fm10k_write_reg(hw, FM10K_TQMAP(i), 0); 974 fm10k_write_reg(hw, FM10K_RQMAP(i), 0); 975 } 976 977 /* calculate starting index for queues */ 978 vf_q_idx = fm10k_vf_queue_index(hw, vf_idx); 979 980 /* determine correct default VLAN ID */ 981 if (vf_info->pf_vid) 982 vf_vid = vf_info->pf_vid; 983 else 984 vf_vid = vf_info->sw_vid; 985 986 /* configure Queue control register */ 987 txqctl = ((u32)vf_vid << FM10K_TXQCTL_VID_SHIFT) | 988 (vf_idx << FM10K_TXQCTL_TC_SHIFT) | 989 FM10K_TXQCTL_VF | vf_idx; 990 rxqctl = FM10K_RXQCTL_VF | (vf_idx << FM10K_RXQCTL_VF_SHIFT); 991 992 /* stop further DMA and reset queue ownership back to VF */ 993 for (i = vf_q_idx; i < (queues_per_pool + vf_q_idx); i++) { 994 fm10k_write_reg(hw, FM10K_TXDCTL(i), 0); 995 fm10k_write_reg(hw, FM10K_TXQCTL(i), txqctl); 996 fm10k_write_reg(hw, FM10K_RXDCTL(i), 997 FM10K_RXDCTL_WRITE_BACK_MIN_DELAY | 998 FM10K_RXDCTL_DROP_ON_EMPTY); 999 fm10k_write_reg(hw, FM10K_RXQCTL(i), rxqctl); 1000 } 1001 1002 /* reset TC with -1 credits and no quanta to prevent transmit */ 1003 fm10k_write_reg(hw, FM10K_TC_MAXCREDIT(vf_idx), 0); 1004 fm10k_write_reg(hw, FM10K_TC_RATE(vf_idx), 0); 1005 fm10k_write_reg(hw, FM10K_TC_CREDIT(vf_idx), 1006 FM10K_TC_CREDIT_CREDIT_MASK); 1007 1008 /* update our first entry in the table based on previous VF */ 1009 if (!vf_idx) 1010 hw->mac.ops.update_int_moderator(hw); 1011 else 1012 hw->iov.ops.assign_int_moderator(hw, vf_idx - 1); 1013 1014 /* reset linked list so it now includes our active vectors */ 1015 if (vf_idx == (hw->iov.num_vfs - 1)) 1016 fm10k_write_reg(hw, FM10K_ITR2(0), vf_v_idx); 1017 else 1018 fm10k_write_reg(hw, FM10K_ITR2(vf_v_limit), vf_v_idx); 1019 1020 /* link remaining vectors so that next points to previous */ 1021 for (vf_v_idx++; vf_v_idx < vf_v_limit; vf_v_idx++) 1022 fm10k_write_reg(hw, FM10K_ITR2(vf_v_idx), vf_v_idx - 1); 1023 1024 /* zero out MBMEM, VLAN_TABLE, RETA, RSSRK, and MRQC registers */ 1025 for (i = FM10K_VFMBMEM_LEN; i--;) 1026 fm10k_write_reg(hw, FM10K_MBMEM_VF(vf_idx, i), 0); 1027 for (i = FM10K_VLAN_TABLE_SIZE; i--;) 1028 fm10k_write_reg(hw, FM10K_VLAN_TABLE(vf_info->vsi, i), 0); 1029 for (i = FM10K_RETA_SIZE; i--;) 1030 fm10k_write_reg(hw, FM10K_RETA(vf_info->vsi, i), 0); 1031 for (i = FM10K_RSSRK_SIZE; i--;) 1032 fm10k_write_reg(hw, FM10K_RSSRK(vf_info->vsi, i), 0); 1033 fm10k_write_reg(hw, FM10K_MRQC(vf_info->vsi), 0); 1034 1035 /* Update base address registers to contain MAC address */ 1036 if (is_valid_ether_addr(vf_info->mac)) { 1037 tdbal = (((u32)vf_info->mac[3]) << 24) | 1038 (((u32)vf_info->mac[4]) << 16) | 1039 (((u32)vf_info->mac[5]) << 8); 1040 tdbah = (((u32)0xFF) << 24) | 1041 (((u32)vf_info->mac[0]) << 16) | 1042 (((u32)vf_info->mac[1]) << 8) | 1043 ((u32)vf_info->mac[2]); 1044 } 1045 1046 /* map queue pairs back to VF from last to first */ 1047 for (i = queues_per_pool; i--;) { 1048 fm10k_write_reg(hw, FM10K_TDBAL(vf_q_idx + i), tdbal); 1049 fm10k_write_reg(hw, FM10K_TDBAH(vf_q_idx + i), tdbah); 1050 /* See definition of FM10K_TDLEN_ITR_SCALE_SHIFT for an 1051 * explanation of how TDLEN is used. 1052 */ 1053 fm10k_write_reg(hw, FM10K_TDLEN(vf_q_idx + i), 1054 hw->mac.itr_scale << 1055 FM10K_TDLEN_ITR_SCALE_SHIFT); 1056 fm10k_write_reg(hw, FM10K_TQMAP(qmap_idx + i), vf_q_idx + i); 1057 fm10k_write_reg(hw, FM10K_RQMAP(qmap_idx + i), vf_q_idx + i); 1058 } 1059 1060 /* repeat the first ring for all the remaining VF rings */ 1061 for (i = queues_per_pool; i < qmap_stride; i++) { 1062 fm10k_write_reg(hw, FM10K_TQMAP(qmap_idx + i), vf_q_idx); 1063 fm10k_write_reg(hw, FM10K_RQMAP(qmap_idx + i), vf_q_idx); 1064 } 1065 1066 return 0; 1067 } 1068 1069 /** 1070 * fm10k_iov_set_lport_pf - Assign and enable a logical port for a given VF 1071 * @hw: pointer to hardware structure 1072 * @vf_info: pointer to VF information structure 1073 * @lport_idx: Logical port offset from the hardware glort 1074 * @flags: Set of capability flags to extend port beyond basic functionality 1075 * 1076 * This function allows enabling a VF port by assigning it a GLORT and 1077 * setting the flags so that it can enable an Rx mode. 1078 **/ 1079 static s32 fm10k_iov_set_lport_pf(struct fm10k_hw *hw, 1080 struct fm10k_vf_info *vf_info, 1081 u16 lport_idx, u8 flags) 1082 { 1083 u16 glort = (hw->mac.dglort_map + lport_idx) & FM10K_DGLORTMAP_NONE; 1084 1085 /* if glort is not valid return error */ 1086 if (!fm10k_glort_valid_pf(hw, glort)) 1087 return FM10K_ERR_PARAM; 1088 1089 vf_info->vf_flags = flags | FM10K_VF_FLAG_NONE_CAPABLE; 1090 vf_info->glort = glort; 1091 1092 return 0; 1093 } 1094 1095 /** 1096 * fm10k_iov_reset_lport_pf - Disable a logical port for a given VF 1097 * @hw: pointer to hardware structure 1098 * @vf_info: pointer to VF information structure 1099 * 1100 * This function disables a VF port by stripping it of a GLORT and 1101 * setting the flags so that it cannot enable any Rx mode. 1102 **/ 1103 static void fm10k_iov_reset_lport_pf(struct fm10k_hw *hw, 1104 struct fm10k_vf_info *vf_info) 1105 { 1106 u32 msg[1]; 1107 1108 /* need to disable the port if it is already enabled */ 1109 if (FM10K_VF_FLAG_ENABLED(vf_info)) { 1110 /* notify switch that this port has been disabled */ 1111 fm10k_update_lport_state_pf(hw, vf_info->glort, 1, false); 1112 1113 /* generate port state response to notify VF it is not ready */ 1114 fm10k_tlv_msg_init(msg, FM10K_VF_MSG_ID_LPORT_STATE); 1115 vf_info->mbx.ops.enqueue_tx(hw, &vf_info->mbx, msg); 1116 } 1117 1118 /* clear flags and glort if it exists */ 1119 vf_info->vf_flags = 0; 1120 vf_info->glort = 0; 1121 } 1122 1123 /** 1124 * fm10k_iov_update_stats_pf - Updates hardware related statistics for VFs 1125 * @hw: pointer to hardware structure 1126 * @q: stats for all queues of a VF 1127 * @vf_idx: index of VF 1128 * 1129 * This function collects queue stats for VFs. 1130 **/ 1131 static void fm10k_iov_update_stats_pf(struct fm10k_hw *hw, 1132 struct fm10k_hw_stats_q *q, 1133 u16 vf_idx) 1134 { 1135 u32 idx, qpp; 1136 1137 /* get stats for all of the queues */ 1138 qpp = fm10k_queues_per_pool(hw); 1139 idx = fm10k_vf_queue_index(hw, vf_idx); 1140 fm10k_update_hw_stats_q(hw, q, idx, qpp); 1141 } 1142 1143 static s32 fm10k_iov_report_timestamp_pf(struct fm10k_hw *hw, 1144 struct fm10k_vf_info *vf_info, 1145 u64 timestamp) 1146 { 1147 u32 msg[4]; 1148 1149 /* generate port state response to notify VF it is not ready */ 1150 fm10k_tlv_msg_init(msg, FM10K_VF_MSG_ID_1588); 1151 fm10k_tlv_attr_put_u64(msg, FM10K_1588_MSG_TIMESTAMP, timestamp); 1152 1153 return vf_info->mbx.ops.enqueue_tx(hw, &vf_info->mbx, msg); 1154 } 1155 1156 /** 1157 * fm10k_iov_msg_msix_pf - Message handler for MSI-X request from VF 1158 * @hw: Pointer to hardware structure 1159 * @results: Pointer array to message, results[0] is pointer to message 1160 * @mbx: Pointer to mailbox information structure 1161 * 1162 * This function is a default handler for MSI-X requests from the VF. The 1163 * assumption is that in this case it is acceptable to just directly 1164 * hand off the message from the VF to the underlying shared code. 1165 **/ 1166 s32 fm10k_iov_msg_msix_pf(struct fm10k_hw *hw, u32 **results, 1167 struct fm10k_mbx_info *mbx) 1168 { 1169 struct fm10k_vf_info *vf_info = (struct fm10k_vf_info *)mbx; 1170 u8 vf_idx = vf_info->vf_idx; 1171 1172 return hw->iov.ops.assign_int_moderator(hw, vf_idx); 1173 } 1174 1175 /** 1176 * fm10k_iov_select_vid - Select correct default VLAN ID 1177 * @hw: Pointer to hardware structure 1178 * @vid: VLAN ID to correct 1179 * 1180 * Will report an error if the VLAN ID is out of range. For VID = 0, it will 1181 * return either the pf_vid or sw_vid depending on which one is set. 1182 */ 1183 static s32 fm10k_iov_select_vid(struct fm10k_vf_info *vf_info, u16 vid) 1184 { 1185 if (!vid) 1186 return vf_info->pf_vid ? vf_info->pf_vid : vf_info->sw_vid; 1187 else if (vf_info->pf_vid && vid != vf_info->pf_vid) 1188 return FM10K_ERR_PARAM; 1189 else 1190 return vid; 1191 } 1192 1193 /** 1194 * fm10k_iov_msg_mac_vlan_pf - Message handler for MAC/VLAN request from VF 1195 * @hw: Pointer to hardware structure 1196 * @results: Pointer array to message, results[0] is pointer to message 1197 * @mbx: Pointer to mailbox information structure 1198 * 1199 * This function is a default handler for MAC/VLAN requests from the VF. 1200 * The assumption is that in this case it is acceptable to just directly 1201 * hand off the message from the VF to the underlying shared code. 1202 **/ 1203 s32 fm10k_iov_msg_mac_vlan_pf(struct fm10k_hw *hw, u32 **results, 1204 struct fm10k_mbx_info *mbx) 1205 { 1206 struct fm10k_vf_info *vf_info = (struct fm10k_vf_info *)mbx; 1207 u8 mac[ETH_ALEN]; 1208 u32 *result; 1209 int err = 0; 1210 bool set; 1211 u16 vlan; 1212 u32 vid; 1213 1214 /* we shouldn't be updating rules on a disabled interface */ 1215 if (!FM10K_VF_FLAG_ENABLED(vf_info)) 1216 err = FM10K_ERR_PARAM; 1217 1218 if (!err && !!results[FM10K_MAC_VLAN_MSG_VLAN]) { 1219 result = results[FM10K_MAC_VLAN_MSG_VLAN]; 1220 1221 /* record VLAN id requested */ 1222 err = fm10k_tlv_attr_get_u32(result, &vid); 1223 if (err) 1224 return err; 1225 1226 /* verify upper 16 bits are zero */ 1227 if (vid >> 16) 1228 return FM10K_ERR_PARAM; 1229 1230 set = !(vid & FM10K_VLAN_CLEAR); 1231 vid &= ~FM10K_VLAN_CLEAR; 1232 1233 err = fm10k_iov_select_vid(vf_info, (u16)vid); 1234 if (err < 0) 1235 return err; 1236 1237 vid = err; 1238 1239 /* update VSI info for VF in regards to VLAN table */ 1240 err = hw->mac.ops.update_vlan(hw, vid, vf_info->vsi, set); 1241 } 1242 1243 if (!err && !!results[FM10K_MAC_VLAN_MSG_MAC]) { 1244 result = results[FM10K_MAC_VLAN_MSG_MAC]; 1245 1246 /* record unicast MAC address requested */ 1247 err = fm10k_tlv_attr_get_mac_vlan(result, mac, &vlan); 1248 if (err) 1249 return err; 1250 1251 /* block attempts to set MAC for a locked device */ 1252 if (is_valid_ether_addr(vf_info->mac) && 1253 !ether_addr_equal(mac, vf_info->mac)) 1254 return FM10K_ERR_PARAM; 1255 1256 set = !(vlan & FM10K_VLAN_CLEAR); 1257 vlan &= ~FM10K_VLAN_CLEAR; 1258 1259 err = fm10k_iov_select_vid(vf_info, vlan); 1260 if (err < 0) 1261 return err; 1262 1263 vlan = (u16)err; 1264 1265 /* notify switch of request for new unicast address */ 1266 err = hw->mac.ops.update_uc_addr(hw, vf_info->glort, 1267 mac, vlan, set, 0); 1268 } 1269 1270 if (!err && !!results[FM10K_MAC_VLAN_MSG_MULTICAST]) { 1271 result = results[FM10K_MAC_VLAN_MSG_MULTICAST]; 1272 1273 /* record multicast MAC address requested */ 1274 err = fm10k_tlv_attr_get_mac_vlan(result, mac, &vlan); 1275 if (err) 1276 return err; 1277 1278 /* verify that the VF is allowed to request multicast */ 1279 if (!(vf_info->vf_flags & FM10K_VF_FLAG_MULTI_ENABLED)) 1280 return FM10K_ERR_PARAM; 1281 1282 set = !(vlan & FM10K_VLAN_CLEAR); 1283 vlan &= ~FM10K_VLAN_CLEAR; 1284 1285 err = fm10k_iov_select_vid(vf_info, vlan); 1286 if (err < 0) 1287 return err; 1288 1289 vlan = (u16)err; 1290 1291 /* notify switch of request for new multicast address */ 1292 err = hw->mac.ops.update_mc_addr(hw, vf_info->glort, 1293 mac, vlan, set); 1294 } 1295 1296 return err; 1297 } 1298 1299 /** 1300 * fm10k_iov_supported_xcast_mode_pf - Determine best match for xcast mode 1301 * @vf_info: VF info structure containing capability flags 1302 * @mode: Requested xcast mode 1303 * 1304 * This function outputs the mode that most closely matches the requested 1305 * mode. If not modes match it will request we disable the port 1306 **/ 1307 static u8 fm10k_iov_supported_xcast_mode_pf(struct fm10k_vf_info *vf_info, 1308 u8 mode) 1309 { 1310 u8 vf_flags = vf_info->vf_flags; 1311 1312 /* match up mode to capabilities as best as possible */ 1313 switch (mode) { 1314 case FM10K_XCAST_MODE_PROMISC: 1315 if (vf_flags & FM10K_VF_FLAG_PROMISC_CAPABLE) 1316 return FM10K_XCAST_MODE_PROMISC; 1317 /* fallthough */ 1318 case FM10K_XCAST_MODE_ALLMULTI: 1319 if (vf_flags & FM10K_VF_FLAG_ALLMULTI_CAPABLE) 1320 return FM10K_XCAST_MODE_ALLMULTI; 1321 /* fallthough */ 1322 case FM10K_XCAST_MODE_MULTI: 1323 if (vf_flags & FM10K_VF_FLAG_MULTI_CAPABLE) 1324 return FM10K_XCAST_MODE_MULTI; 1325 /* fallthough */ 1326 case FM10K_XCAST_MODE_NONE: 1327 if (vf_flags & FM10K_VF_FLAG_NONE_CAPABLE) 1328 return FM10K_XCAST_MODE_NONE; 1329 /* fallthough */ 1330 default: 1331 break; 1332 } 1333 1334 /* disable interface as it should not be able to request any */ 1335 return FM10K_XCAST_MODE_DISABLE; 1336 } 1337 1338 /** 1339 * fm10k_iov_msg_lport_state_pf - Message handler for port state requests 1340 * @hw: Pointer to hardware structure 1341 * @results: Pointer array to message, results[0] is pointer to message 1342 * @mbx: Pointer to mailbox information structure 1343 * 1344 * This function is a default handler for port state requests. The port 1345 * state requests for now are basic and consist of enabling or disabling 1346 * the port. 1347 **/ 1348 s32 fm10k_iov_msg_lport_state_pf(struct fm10k_hw *hw, u32 **results, 1349 struct fm10k_mbx_info *mbx) 1350 { 1351 struct fm10k_vf_info *vf_info = (struct fm10k_vf_info *)mbx; 1352 u32 *result; 1353 s32 err = 0; 1354 u32 msg[2]; 1355 u8 mode = 0; 1356 1357 /* verify VF is allowed to enable even minimal mode */ 1358 if (!(vf_info->vf_flags & FM10K_VF_FLAG_NONE_CAPABLE)) 1359 return FM10K_ERR_PARAM; 1360 1361 if (!!results[FM10K_LPORT_STATE_MSG_XCAST_MODE]) { 1362 result = results[FM10K_LPORT_STATE_MSG_XCAST_MODE]; 1363 1364 /* XCAST mode update requested */ 1365 err = fm10k_tlv_attr_get_u8(result, &mode); 1366 if (err) 1367 return FM10K_ERR_PARAM; 1368 1369 /* prep for possible demotion depending on capabilities */ 1370 mode = fm10k_iov_supported_xcast_mode_pf(vf_info, mode); 1371 1372 /* if mode is not currently enabled, enable it */ 1373 if (!(FM10K_VF_FLAG_ENABLED(vf_info) & (1 << mode))) 1374 fm10k_update_xcast_mode_pf(hw, vf_info->glort, mode); 1375 1376 /* swap mode back to a bit flag */ 1377 mode = FM10K_VF_FLAG_SET_MODE(mode); 1378 } else if (!results[FM10K_LPORT_STATE_MSG_DISABLE]) { 1379 /* need to disable the port if it is already enabled */ 1380 if (FM10K_VF_FLAG_ENABLED(vf_info)) 1381 err = fm10k_update_lport_state_pf(hw, vf_info->glort, 1382 1, false); 1383 1384 /* we need to clear VF_FLAG_ENABLED flags in order to ensure 1385 * that we actually re-enable the LPORT state below. Note that 1386 * this has no impact if the VF is already disabled, as the 1387 * flags are already cleared. 1388 */ 1389 if (!err) 1390 vf_info->vf_flags = FM10K_VF_FLAG_CAPABLE(vf_info); 1391 1392 /* when enabling the port we should reset the rate limiters */ 1393 hw->iov.ops.configure_tc(hw, vf_info->vf_idx, vf_info->rate); 1394 1395 /* set mode for minimal functionality */ 1396 mode = FM10K_VF_FLAG_SET_MODE_NONE; 1397 1398 /* generate port state response to notify VF it is ready */ 1399 fm10k_tlv_msg_init(msg, FM10K_VF_MSG_ID_LPORT_STATE); 1400 fm10k_tlv_attr_put_bool(msg, FM10K_LPORT_STATE_MSG_READY); 1401 mbx->ops.enqueue_tx(hw, mbx, msg); 1402 } 1403 1404 /* if enable state toggled note the update */ 1405 if (!err && (!FM10K_VF_FLAG_ENABLED(vf_info) != !mode)) 1406 err = fm10k_update_lport_state_pf(hw, vf_info->glort, 1, 1407 !!mode); 1408 1409 /* if state change succeeded, then update our stored state */ 1410 mode |= FM10K_VF_FLAG_CAPABLE(vf_info); 1411 if (!err) 1412 vf_info->vf_flags = mode; 1413 1414 return err; 1415 } 1416 1417 /** 1418 * fm10k_update_stats_hw_pf - Updates hardware related statistics of PF 1419 * @hw: pointer to hardware structure 1420 * @stats: pointer to the stats structure to update 1421 * 1422 * This function collects and aggregates global and per queue hardware 1423 * statistics. 1424 **/ 1425 static void fm10k_update_hw_stats_pf(struct fm10k_hw *hw, 1426 struct fm10k_hw_stats *stats) 1427 { 1428 u32 timeout, ur, ca, um, xec, vlan_drop, loopback_drop, nodesc_drop; 1429 u32 id, id_prev; 1430 1431 /* Use Tx queue 0 as a canary to detect a reset */ 1432 id = fm10k_read_reg(hw, FM10K_TXQCTL(0)); 1433 1434 /* Read Global Statistics */ 1435 do { 1436 timeout = fm10k_read_hw_stats_32b(hw, FM10K_STATS_TIMEOUT, 1437 &stats->timeout); 1438 ur = fm10k_read_hw_stats_32b(hw, FM10K_STATS_UR, &stats->ur); 1439 ca = fm10k_read_hw_stats_32b(hw, FM10K_STATS_CA, &stats->ca); 1440 um = fm10k_read_hw_stats_32b(hw, FM10K_STATS_UM, &stats->um); 1441 xec = fm10k_read_hw_stats_32b(hw, FM10K_STATS_XEC, &stats->xec); 1442 vlan_drop = fm10k_read_hw_stats_32b(hw, FM10K_STATS_VLAN_DROP, 1443 &stats->vlan_drop); 1444 loopback_drop = 1445 fm10k_read_hw_stats_32b(hw, 1446 FM10K_STATS_LOOPBACK_DROP, 1447 &stats->loopback_drop); 1448 nodesc_drop = fm10k_read_hw_stats_32b(hw, 1449 FM10K_STATS_NODESC_DROP, 1450 &stats->nodesc_drop); 1451 1452 /* if value has not changed then we have consistent data */ 1453 id_prev = id; 1454 id = fm10k_read_reg(hw, FM10K_TXQCTL(0)); 1455 } while ((id ^ id_prev) & FM10K_TXQCTL_ID_MASK); 1456 1457 /* drop non-ID bits and set VALID ID bit */ 1458 id &= FM10K_TXQCTL_ID_MASK; 1459 id |= FM10K_STAT_VALID; 1460 1461 /* Update Global Statistics */ 1462 if (stats->stats_idx == id) { 1463 stats->timeout.count += timeout; 1464 stats->ur.count += ur; 1465 stats->ca.count += ca; 1466 stats->um.count += um; 1467 stats->xec.count += xec; 1468 stats->vlan_drop.count += vlan_drop; 1469 stats->loopback_drop.count += loopback_drop; 1470 stats->nodesc_drop.count += nodesc_drop; 1471 } 1472 1473 /* Update bases and record current PF id */ 1474 fm10k_update_hw_base_32b(&stats->timeout, timeout); 1475 fm10k_update_hw_base_32b(&stats->ur, ur); 1476 fm10k_update_hw_base_32b(&stats->ca, ca); 1477 fm10k_update_hw_base_32b(&stats->um, um); 1478 fm10k_update_hw_base_32b(&stats->xec, xec); 1479 fm10k_update_hw_base_32b(&stats->vlan_drop, vlan_drop); 1480 fm10k_update_hw_base_32b(&stats->loopback_drop, loopback_drop); 1481 fm10k_update_hw_base_32b(&stats->nodesc_drop, nodesc_drop); 1482 stats->stats_idx = id; 1483 1484 /* Update Queue Statistics */ 1485 fm10k_update_hw_stats_q(hw, stats->q, 0, hw->mac.max_queues); 1486 } 1487 1488 /** 1489 * fm10k_rebind_hw_stats_pf - Resets base for hardware statistics of PF 1490 * @hw: pointer to hardware structure 1491 * @stats: pointer to the stats structure to update 1492 * 1493 * This function resets the base for global and per queue hardware 1494 * statistics. 1495 **/ 1496 static void fm10k_rebind_hw_stats_pf(struct fm10k_hw *hw, 1497 struct fm10k_hw_stats *stats) 1498 { 1499 /* Unbind Global Statistics */ 1500 fm10k_unbind_hw_stats_32b(&stats->timeout); 1501 fm10k_unbind_hw_stats_32b(&stats->ur); 1502 fm10k_unbind_hw_stats_32b(&stats->ca); 1503 fm10k_unbind_hw_stats_32b(&stats->um); 1504 fm10k_unbind_hw_stats_32b(&stats->xec); 1505 fm10k_unbind_hw_stats_32b(&stats->vlan_drop); 1506 fm10k_unbind_hw_stats_32b(&stats->loopback_drop); 1507 fm10k_unbind_hw_stats_32b(&stats->nodesc_drop); 1508 1509 /* Unbind Queue Statistics */ 1510 fm10k_unbind_hw_stats_q(stats->q, 0, hw->mac.max_queues); 1511 1512 /* Reinitialize bases for all stats */ 1513 fm10k_update_hw_stats_pf(hw, stats); 1514 } 1515 1516 /** 1517 * fm10k_set_dma_mask_pf - Configures PhyAddrSpace to limit DMA to system 1518 * @hw: pointer to hardware structure 1519 * @dma_mask: 64 bit DMA mask required for platform 1520 * 1521 * This function sets the PHYADDR.PhyAddrSpace bits for the endpoint in order 1522 * to limit the access to memory beyond what is physically in the system. 1523 **/ 1524 static void fm10k_set_dma_mask_pf(struct fm10k_hw *hw, u64 dma_mask) 1525 { 1526 /* we need to write the upper 32 bits of DMA mask to PhyAddrSpace */ 1527 u32 phyaddr = (u32)(dma_mask >> 32); 1528 1529 fm10k_write_reg(hw, FM10K_PHYADDR, phyaddr); 1530 } 1531 1532 /** 1533 * fm10k_get_fault_pf - Record a fault in one of the interface units 1534 * @hw: pointer to hardware structure 1535 * @type: pointer to fault type register offset 1536 * @fault: pointer to memory location to record the fault 1537 * 1538 * Record the fault register contents to the fault data structure and 1539 * clear the entry from the register. 1540 * 1541 * Returns ERR_PARAM if invalid register is specified or no error is present. 1542 **/ 1543 static s32 fm10k_get_fault_pf(struct fm10k_hw *hw, int type, 1544 struct fm10k_fault *fault) 1545 { 1546 u32 func; 1547 1548 /* verify the fault register is in range and is aligned */ 1549 switch (type) { 1550 case FM10K_PCA_FAULT: 1551 case FM10K_THI_FAULT: 1552 case FM10K_FUM_FAULT: 1553 break; 1554 default: 1555 return FM10K_ERR_PARAM; 1556 } 1557 1558 /* only service faults that are valid */ 1559 func = fm10k_read_reg(hw, type + FM10K_FAULT_FUNC); 1560 if (!(func & FM10K_FAULT_FUNC_VALID)) 1561 return FM10K_ERR_PARAM; 1562 1563 /* read remaining fields */ 1564 fault->address = fm10k_read_reg(hw, type + FM10K_FAULT_ADDR_HI); 1565 fault->address <<= 32; 1566 fault->address = fm10k_read_reg(hw, type + FM10K_FAULT_ADDR_LO); 1567 fault->specinfo = fm10k_read_reg(hw, type + FM10K_FAULT_SPECINFO); 1568 1569 /* clear valid bit to allow for next error */ 1570 fm10k_write_reg(hw, type + FM10K_FAULT_FUNC, FM10K_FAULT_FUNC_VALID); 1571 1572 /* Record which function triggered the error */ 1573 if (func & FM10K_FAULT_FUNC_PF) 1574 fault->func = 0; 1575 else 1576 fault->func = 1 + ((func & FM10K_FAULT_FUNC_VF_MASK) >> 1577 FM10K_FAULT_FUNC_VF_SHIFT); 1578 1579 /* record fault type */ 1580 fault->type = func & FM10K_FAULT_FUNC_TYPE_MASK; 1581 1582 return 0; 1583 } 1584 1585 /** 1586 * fm10k_request_lport_map_pf - Request LPORT map from the switch API 1587 * @hw: pointer to hardware structure 1588 * 1589 **/ 1590 static s32 fm10k_request_lport_map_pf(struct fm10k_hw *hw) 1591 { 1592 struct fm10k_mbx_info *mbx = &hw->mbx; 1593 u32 msg[1]; 1594 1595 /* issue request asking for LPORT map */ 1596 fm10k_tlv_msg_init(msg, FM10K_PF_MSG_ID_LPORT_MAP); 1597 1598 /* load onto outgoing mailbox */ 1599 return mbx->ops.enqueue_tx(hw, mbx, msg); 1600 } 1601 1602 /** 1603 * fm10k_get_host_state_pf - Returns the state of the switch and mailbox 1604 * @hw: pointer to hardware structure 1605 * @switch_ready: pointer to boolean value that will record switch state 1606 * 1607 * This funciton will check the DMA_CTRL2 register and mailbox in order 1608 * to determine if the switch is ready for the PF to begin requesting 1609 * addresses and mapping traffic to the local interface. 1610 **/ 1611 static s32 fm10k_get_host_state_pf(struct fm10k_hw *hw, bool *switch_ready) 1612 { 1613 s32 ret_val = 0; 1614 u32 dma_ctrl2; 1615 1616 /* verify the switch is ready for interaction */ 1617 dma_ctrl2 = fm10k_read_reg(hw, FM10K_DMA_CTRL2); 1618 if (!(dma_ctrl2 & FM10K_DMA_CTRL2_SWITCH_READY)) 1619 goto out; 1620 1621 /* retrieve generic host state info */ 1622 ret_val = fm10k_get_host_state_generic(hw, switch_ready); 1623 if (ret_val) 1624 goto out; 1625 1626 /* interface cannot receive traffic without logical ports */ 1627 if (hw->mac.dglort_map == FM10K_DGLORTMAP_NONE) 1628 ret_val = fm10k_request_lport_map_pf(hw); 1629 1630 out: 1631 return ret_val; 1632 } 1633 1634 /* This structure defines the attibutes to be parsed below */ 1635 const struct fm10k_tlv_attr fm10k_lport_map_msg_attr[] = { 1636 FM10K_TLV_ATTR_U32(FM10K_PF_ATTR_ID_LPORT_MAP), 1637 FM10K_TLV_ATTR_LAST 1638 }; 1639 1640 /** 1641 * fm10k_msg_lport_map_pf - Message handler for lport_map message from SM 1642 * @hw: Pointer to hardware structure 1643 * @results: pointer array containing parsed data 1644 * @mbx: Pointer to mailbox information structure 1645 * 1646 * This handler configures the lport mapping based on the reply from the 1647 * switch API. 1648 **/ 1649 s32 fm10k_msg_lport_map_pf(struct fm10k_hw *hw, u32 **results, 1650 struct fm10k_mbx_info *mbx) 1651 { 1652 u16 glort, mask; 1653 u32 dglort_map; 1654 s32 err; 1655 1656 err = fm10k_tlv_attr_get_u32(results[FM10K_PF_ATTR_ID_LPORT_MAP], 1657 &dglort_map); 1658 if (err) 1659 return err; 1660 1661 /* extract values out of the header */ 1662 glort = FM10K_MSG_HDR_FIELD_GET(dglort_map, LPORT_MAP_GLORT); 1663 mask = FM10K_MSG_HDR_FIELD_GET(dglort_map, LPORT_MAP_MASK); 1664 1665 /* verify mask is set and none of the masked bits in glort are set */ 1666 if (!mask || (glort & ~mask)) 1667 return FM10K_ERR_PARAM; 1668 1669 /* verify the mask is contiguous, and that it is 1's followed by 0's */ 1670 if (((~(mask - 1) & mask) + mask) & FM10K_DGLORTMAP_NONE) 1671 return FM10K_ERR_PARAM; 1672 1673 /* record the glort, mask, and port count */ 1674 hw->mac.dglort_map = dglort_map; 1675 1676 return 0; 1677 } 1678 1679 const struct fm10k_tlv_attr fm10k_update_pvid_msg_attr[] = { 1680 FM10K_TLV_ATTR_U32(FM10K_PF_ATTR_ID_UPDATE_PVID), 1681 FM10K_TLV_ATTR_LAST 1682 }; 1683 1684 /** 1685 * fm10k_msg_update_pvid_pf - Message handler for port VLAN message from SM 1686 * @hw: Pointer to hardware structure 1687 * @results: pointer array containing parsed data 1688 * @mbx: Pointer to mailbox information structure 1689 * 1690 * This handler configures the default VLAN for the PF 1691 **/ 1692 static s32 fm10k_msg_update_pvid_pf(struct fm10k_hw *hw, u32 **results, 1693 struct fm10k_mbx_info *mbx) 1694 { 1695 u16 glort, pvid; 1696 u32 pvid_update; 1697 s32 err; 1698 1699 err = fm10k_tlv_attr_get_u32(results[FM10K_PF_ATTR_ID_UPDATE_PVID], 1700 &pvid_update); 1701 if (err) 1702 return err; 1703 1704 /* extract values from the pvid update */ 1705 glort = FM10K_MSG_HDR_FIELD_GET(pvid_update, UPDATE_PVID_GLORT); 1706 pvid = FM10K_MSG_HDR_FIELD_GET(pvid_update, UPDATE_PVID_PVID); 1707 1708 /* if glort is not valid return error */ 1709 if (!fm10k_glort_valid_pf(hw, glort)) 1710 return FM10K_ERR_PARAM; 1711 1712 /* verify VLAN ID is valid */ 1713 if (pvid >= FM10K_VLAN_TABLE_VID_MAX) 1714 return FM10K_ERR_PARAM; 1715 1716 /* record the port VLAN ID value */ 1717 hw->mac.default_vid = pvid; 1718 1719 return 0; 1720 } 1721 1722 /** 1723 * fm10k_record_global_table_data - Move global table data to swapi table info 1724 * @from: pointer to source table data structure 1725 * @to: pointer to destination table info structure 1726 * 1727 * This function is will copy table_data to the table_info contained in 1728 * the hw struct. 1729 **/ 1730 static void fm10k_record_global_table_data(struct fm10k_global_table_data *from, 1731 struct fm10k_swapi_table_info *to) 1732 { 1733 /* convert from le32 struct to CPU byte ordered values */ 1734 to->used = le32_to_cpu(from->used); 1735 to->avail = le32_to_cpu(from->avail); 1736 } 1737 1738 const struct fm10k_tlv_attr fm10k_err_msg_attr[] = { 1739 FM10K_TLV_ATTR_LE_STRUCT(FM10K_PF_ATTR_ID_ERR, 1740 sizeof(struct fm10k_swapi_error)), 1741 FM10K_TLV_ATTR_LAST 1742 }; 1743 1744 /** 1745 * fm10k_msg_err_pf - Message handler for error reply 1746 * @hw: Pointer to hardware structure 1747 * @results: pointer array containing parsed data 1748 * @mbx: Pointer to mailbox information structure 1749 * 1750 * This handler will capture the data for any error replies to previous 1751 * messages that the PF has sent. 1752 **/ 1753 s32 fm10k_msg_err_pf(struct fm10k_hw *hw, u32 **results, 1754 struct fm10k_mbx_info *mbx) 1755 { 1756 struct fm10k_swapi_error err_msg; 1757 s32 err; 1758 1759 /* extract structure from message */ 1760 err = fm10k_tlv_attr_get_le_struct(results[FM10K_PF_ATTR_ID_ERR], 1761 &err_msg, sizeof(err_msg)); 1762 if (err) 1763 return err; 1764 1765 /* record table status */ 1766 fm10k_record_global_table_data(&err_msg.mac, &hw->swapi.mac); 1767 fm10k_record_global_table_data(&err_msg.nexthop, &hw->swapi.nexthop); 1768 fm10k_record_global_table_data(&err_msg.ffu, &hw->swapi.ffu); 1769 1770 /* record SW API status value */ 1771 hw->swapi.status = le32_to_cpu(err_msg.status); 1772 1773 return 0; 1774 } 1775 1776 const struct fm10k_tlv_attr fm10k_1588_timestamp_msg_attr[] = { 1777 FM10K_TLV_ATTR_LE_STRUCT(FM10K_PF_ATTR_ID_1588_TIMESTAMP, 1778 sizeof(struct fm10k_swapi_1588_timestamp)), 1779 FM10K_TLV_ATTR_LAST 1780 }; 1781 1782 /* currently there is no shared 1588 timestamp handler */ 1783 1784 /** 1785 * fm10k_adjust_systime_pf - Adjust systime frequency 1786 * @hw: pointer to hardware structure 1787 * @ppb: adjustment rate in parts per billion 1788 * 1789 * This function will adjust the SYSTIME_CFG register contained in BAR 4 1790 * if this function is supported for BAR 4 access. The adjustment amount 1791 * is based on the parts per billion value provided and adjusted to a 1792 * value based on parts per 2^48 clock cycles. 1793 * 1794 * If adjustment is not supported or the requested value is too large 1795 * we will return an error. 1796 **/ 1797 static s32 fm10k_adjust_systime_pf(struct fm10k_hw *hw, s32 ppb) 1798 { 1799 u64 systime_adjust; 1800 1801 /* if sw_addr is not set we don't have switch register access */ 1802 if (!hw->sw_addr) 1803 return ppb ? FM10K_ERR_PARAM : 0; 1804 1805 /* we must convert the value from parts per billion to parts per 1806 * 2^48 cycles. In addition I have opted to only use the 30 most 1807 * significant bits of the adjustment value as the 8 least 1808 * significant bits are located in another register and represent 1809 * a value significantly less than a part per billion, the result 1810 * of dropping the 8 least significant bits is that the adjustment 1811 * value is effectively multiplied by 2^8 when we write it. 1812 * 1813 * As a result of all this the math for this breaks down as follows: 1814 * ppb / 10^9 == adjust * 2^8 / 2^48 1815 * If we solve this for adjust, and simplify it comes out as: 1816 * ppb * 2^31 / 5^9 == adjust 1817 */ 1818 systime_adjust = (ppb < 0) ? -ppb : ppb; 1819 systime_adjust <<= 31; 1820 do_div(systime_adjust, 1953125); 1821 1822 /* verify the requested adjustment value is in range */ 1823 if (systime_adjust > FM10K_SW_SYSTIME_ADJUST_MASK) 1824 return FM10K_ERR_PARAM; 1825 1826 if (ppb > 0) 1827 systime_adjust |= FM10K_SW_SYSTIME_ADJUST_DIR_POSITIVE; 1828 1829 fm10k_write_sw_reg(hw, FM10K_SW_SYSTIME_ADJUST, (u32)systime_adjust); 1830 1831 return 0; 1832 } 1833 1834 /** 1835 * fm10k_read_systime_pf - Reads value of systime registers 1836 * @hw: pointer to the hardware structure 1837 * 1838 * Function reads the content of 2 registers, combined to represent a 64 bit 1839 * value measured in nanosecods. In order to guarantee the value is accurate 1840 * we check the 32 most significant bits both before and after reading the 1841 * 32 least significant bits to verify they didn't change as we were reading 1842 * the registers. 1843 **/ 1844 static u64 fm10k_read_systime_pf(struct fm10k_hw *hw) 1845 { 1846 u32 systime_l, systime_h, systime_tmp; 1847 1848 systime_h = fm10k_read_reg(hw, FM10K_SYSTIME + 1); 1849 1850 do { 1851 systime_tmp = systime_h; 1852 systime_l = fm10k_read_reg(hw, FM10K_SYSTIME); 1853 systime_h = fm10k_read_reg(hw, FM10K_SYSTIME + 1); 1854 } while (systime_tmp != systime_h); 1855 1856 return ((u64)systime_h << 32) | systime_l; 1857 } 1858 1859 static const struct fm10k_msg_data fm10k_msg_data_pf[] = { 1860 FM10K_PF_MSG_ERR_HANDLER(XCAST_MODES, fm10k_msg_err_pf), 1861 FM10K_PF_MSG_ERR_HANDLER(UPDATE_MAC_FWD_RULE, fm10k_msg_err_pf), 1862 FM10K_PF_MSG_LPORT_MAP_HANDLER(fm10k_msg_lport_map_pf), 1863 FM10K_PF_MSG_ERR_HANDLER(LPORT_CREATE, fm10k_msg_err_pf), 1864 FM10K_PF_MSG_ERR_HANDLER(LPORT_DELETE, fm10k_msg_err_pf), 1865 FM10K_PF_MSG_UPDATE_PVID_HANDLER(fm10k_msg_update_pvid_pf), 1866 FM10K_TLV_MSG_ERROR_HANDLER(fm10k_tlv_msg_error), 1867 }; 1868 1869 static const struct fm10k_mac_ops mac_ops_pf = { 1870 .get_bus_info = fm10k_get_bus_info_generic, 1871 .reset_hw = fm10k_reset_hw_pf, 1872 .init_hw = fm10k_init_hw_pf, 1873 .start_hw = fm10k_start_hw_generic, 1874 .stop_hw = fm10k_stop_hw_generic, 1875 .update_vlan = fm10k_update_vlan_pf, 1876 .read_mac_addr = fm10k_read_mac_addr_pf, 1877 .update_uc_addr = fm10k_update_uc_addr_pf, 1878 .update_mc_addr = fm10k_update_mc_addr_pf, 1879 .update_xcast_mode = fm10k_update_xcast_mode_pf, 1880 .update_int_moderator = fm10k_update_int_moderator_pf, 1881 .update_lport_state = fm10k_update_lport_state_pf, 1882 .update_hw_stats = fm10k_update_hw_stats_pf, 1883 .rebind_hw_stats = fm10k_rebind_hw_stats_pf, 1884 .configure_dglort_map = fm10k_configure_dglort_map_pf, 1885 .set_dma_mask = fm10k_set_dma_mask_pf, 1886 .get_fault = fm10k_get_fault_pf, 1887 .get_host_state = fm10k_get_host_state_pf, 1888 .adjust_systime = fm10k_adjust_systime_pf, 1889 .read_systime = fm10k_read_systime_pf, 1890 }; 1891 1892 static const struct fm10k_iov_ops iov_ops_pf = { 1893 .assign_resources = fm10k_iov_assign_resources_pf, 1894 .configure_tc = fm10k_iov_configure_tc_pf, 1895 .assign_int_moderator = fm10k_iov_assign_int_moderator_pf, 1896 .assign_default_mac_vlan = fm10k_iov_assign_default_mac_vlan_pf, 1897 .reset_resources = fm10k_iov_reset_resources_pf, 1898 .set_lport = fm10k_iov_set_lport_pf, 1899 .reset_lport = fm10k_iov_reset_lport_pf, 1900 .update_stats = fm10k_iov_update_stats_pf, 1901 .report_timestamp = fm10k_iov_report_timestamp_pf, 1902 }; 1903 1904 static s32 fm10k_get_invariants_pf(struct fm10k_hw *hw) 1905 { 1906 fm10k_get_invariants_generic(hw); 1907 1908 return fm10k_sm_mbx_init(hw, &hw->mbx, fm10k_msg_data_pf); 1909 } 1910 1911 const struct fm10k_info fm10k_pf_info = { 1912 .mac = fm10k_mac_pf, 1913 .get_invariants = fm10k_get_invariants_pf, 1914 .mac_ops = &mac_ops_pf, 1915 .iov_ops = &iov_ops_pf, 1916 }; 1917