1 /* Intel(R) Ethernet Switch Host Interface Driver 2 * Copyright(c) 2013 - 2017 Intel Corporation. 3 * 4 * This program is free software; you can redistribute it and/or modify it 5 * under the terms and conditions of the GNU General Public License, 6 * version 2, as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope it will be useful, but WITHOUT 9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 11 * more details. 12 * 13 * The full GNU General Public License is included in this distribution in 14 * the file called "COPYING". 15 * 16 * Contact Information: 17 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> 18 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 19 */ 20 21 #include "fm10k_pf.h" 22 #include "fm10k_vf.h" 23 24 /** 25 * fm10k_reset_hw_pf - PF hardware reset 26 * @hw: pointer to hardware structure 27 * 28 * This function should return the hardware to a state similar to the 29 * one it is in after being powered on. 30 **/ 31 static s32 fm10k_reset_hw_pf(struct fm10k_hw *hw) 32 { 33 s32 err; 34 u32 reg; 35 u16 i; 36 37 /* Disable interrupts */ 38 fm10k_write_reg(hw, FM10K_EIMR, FM10K_EIMR_DISABLE(ALL)); 39 40 /* Lock ITR2 reg 0 into itself and disable interrupt moderation */ 41 fm10k_write_reg(hw, FM10K_ITR2(0), 0); 42 fm10k_write_reg(hw, FM10K_INT_CTRL, 0); 43 44 /* We assume here Tx and Rx queue 0 are owned by the PF */ 45 46 /* Shut off VF access to their queues forcing them to queue 0 */ 47 for (i = 0; i < FM10K_TQMAP_TABLE_SIZE; i++) { 48 fm10k_write_reg(hw, FM10K_TQMAP(i), 0); 49 fm10k_write_reg(hw, FM10K_RQMAP(i), 0); 50 } 51 52 /* shut down all rings */ 53 err = fm10k_disable_queues_generic(hw, FM10K_MAX_QUEUES); 54 if (err == FM10K_ERR_REQUESTS_PENDING) { 55 hw->mac.reset_while_pending++; 56 goto force_reset; 57 } else if (err) { 58 return err; 59 } 60 61 /* Verify that DMA is no longer active */ 62 reg = fm10k_read_reg(hw, FM10K_DMA_CTRL); 63 if (reg & (FM10K_DMA_CTRL_TX_ACTIVE | FM10K_DMA_CTRL_RX_ACTIVE)) 64 return FM10K_ERR_DMA_PENDING; 65 66 force_reset: 67 /* Inititate data path reset */ 68 reg = FM10K_DMA_CTRL_DATAPATH_RESET; 69 fm10k_write_reg(hw, FM10K_DMA_CTRL, reg); 70 71 /* Flush write and allow 100us for reset to complete */ 72 fm10k_write_flush(hw); 73 udelay(FM10K_RESET_TIMEOUT); 74 75 /* Verify we made it out of reset */ 76 reg = fm10k_read_reg(hw, FM10K_IP); 77 if (!(reg & FM10K_IP_NOTINRESET)) 78 return FM10K_ERR_RESET_FAILED; 79 80 return 0; 81 } 82 83 /** 84 * fm10k_is_ari_hierarchy_pf - Indicate ARI hierarchy support 85 * @hw: pointer to hardware structure 86 * 87 * Looks at the ARI hierarchy bit to determine whether ARI is supported or not. 88 **/ 89 static bool fm10k_is_ari_hierarchy_pf(struct fm10k_hw *hw) 90 { 91 u16 sriov_ctrl = fm10k_read_pci_cfg_word(hw, FM10K_PCIE_SRIOV_CTRL); 92 93 return !!(sriov_ctrl & FM10K_PCIE_SRIOV_CTRL_VFARI); 94 } 95 96 /** 97 * fm10k_init_hw_pf - PF hardware initialization 98 * @hw: pointer to hardware structure 99 * 100 **/ 101 static s32 fm10k_init_hw_pf(struct fm10k_hw *hw) 102 { 103 u32 dma_ctrl, txqctl; 104 u16 i; 105 106 /* Establish default VSI as valid */ 107 fm10k_write_reg(hw, FM10K_DGLORTDEC(fm10k_dglort_default), 0); 108 fm10k_write_reg(hw, FM10K_DGLORTMAP(fm10k_dglort_default), 109 FM10K_DGLORTMAP_ANY); 110 111 /* Invalidate all other GLORT entries */ 112 for (i = 1; i < FM10K_DGLORT_COUNT; i++) 113 fm10k_write_reg(hw, FM10K_DGLORTMAP(i), FM10K_DGLORTMAP_NONE); 114 115 /* reset ITR2(0) to point to itself */ 116 fm10k_write_reg(hw, FM10K_ITR2(0), 0); 117 118 /* reset VF ITR2(0) to point to 0 avoid PF registers */ 119 fm10k_write_reg(hw, FM10K_ITR2(FM10K_ITR_REG_COUNT_PF), 0); 120 121 /* loop through all PF ITR2 registers pointing them to the previous */ 122 for (i = 1; i < FM10K_ITR_REG_COUNT_PF; i++) 123 fm10k_write_reg(hw, FM10K_ITR2(i), i - 1); 124 125 /* Enable interrupt moderator if not already enabled */ 126 fm10k_write_reg(hw, FM10K_INT_CTRL, FM10K_INT_CTRL_ENABLEMODERATOR); 127 128 /* compute the default txqctl configuration */ 129 txqctl = FM10K_TXQCTL_PF | FM10K_TXQCTL_UNLIMITED_BW | 130 (hw->mac.default_vid << FM10K_TXQCTL_VID_SHIFT); 131 132 for (i = 0; i < FM10K_MAX_QUEUES; i++) { 133 /* configure rings for 256 Queue / 32 Descriptor cache mode */ 134 fm10k_write_reg(hw, FM10K_TQDLOC(i), 135 (i * FM10K_TQDLOC_BASE_32_DESC) | 136 FM10K_TQDLOC_SIZE_32_DESC); 137 fm10k_write_reg(hw, FM10K_TXQCTL(i), txqctl); 138 139 /* configure rings to provide TPH processing hints */ 140 fm10k_write_reg(hw, FM10K_TPH_TXCTRL(i), 141 FM10K_TPH_TXCTRL_DESC_TPHEN | 142 FM10K_TPH_TXCTRL_DESC_RROEN | 143 FM10K_TPH_TXCTRL_DESC_WROEN | 144 FM10K_TPH_TXCTRL_DATA_RROEN); 145 fm10k_write_reg(hw, FM10K_TPH_RXCTRL(i), 146 FM10K_TPH_RXCTRL_DESC_TPHEN | 147 FM10K_TPH_RXCTRL_DESC_RROEN | 148 FM10K_TPH_RXCTRL_DATA_WROEN | 149 FM10K_TPH_RXCTRL_HDR_WROEN); 150 } 151 152 /* set max hold interval to align with 1.024 usec in all modes and 153 * store ITR scale 154 */ 155 switch (hw->bus.speed) { 156 case fm10k_bus_speed_2500: 157 dma_ctrl = FM10K_DMA_CTRL_MAX_HOLD_1US_GEN1; 158 hw->mac.itr_scale = FM10K_TDLEN_ITR_SCALE_GEN1; 159 break; 160 case fm10k_bus_speed_5000: 161 dma_ctrl = FM10K_DMA_CTRL_MAX_HOLD_1US_GEN2; 162 hw->mac.itr_scale = FM10K_TDLEN_ITR_SCALE_GEN2; 163 break; 164 case fm10k_bus_speed_8000: 165 dma_ctrl = FM10K_DMA_CTRL_MAX_HOLD_1US_GEN3; 166 hw->mac.itr_scale = FM10K_TDLEN_ITR_SCALE_GEN3; 167 break; 168 default: 169 dma_ctrl = 0; 170 /* just in case, assume Gen3 ITR scale */ 171 hw->mac.itr_scale = FM10K_TDLEN_ITR_SCALE_GEN3; 172 break; 173 } 174 175 /* Configure TSO flags */ 176 fm10k_write_reg(hw, FM10K_DTXTCPFLGL, FM10K_TSO_FLAGS_LOW); 177 fm10k_write_reg(hw, FM10K_DTXTCPFLGH, FM10K_TSO_FLAGS_HI); 178 179 /* Enable DMA engine 180 * Set Rx Descriptor size to 32 181 * Set Minimum MSS to 64 182 * Set Maximum number of Rx queues to 256 / 32 Descriptor 183 */ 184 dma_ctrl |= FM10K_DMA_CTRL_TX_ENABLE | FM10K_DMA_CTRL_RX_ENABLE | 185 FM10K_DMA_CTRL_RX_DESC_SIZE | FM10K_DMA_CTRL_MINMSS_64 | 186 FM10K_DMA_CTRL_32_DESC; 187 188 fm10k_write_reg(hw, FM10K_DMA_CTRL, dma_ctrl); 189 190 /* record maximum queue count, we limit ourselves to 128 */ 191 hw->mac.max_queues = FM10K_MAX_QUEUES_PF; 192 193 /* We support either 64 VFs or 7 VFs depending on if we have ARI */ 194 hw->iov.total_vfs = fm10k_is_ari_hierarchy_pf(hw) ? 64 : 7; 195 196 return 0; 197 } 198 199 /** 200 * fm10k_update_vlan_pf - Update status of VLAN ID in VLAN filter table 201 * @hw: pointer to hardware structure 202 * @vid: VLAN ID to add to table 203 * @vsi: Index indicating VF ID or PF ID in table 204 * @set: Indicates if this is a set or clear operation 205 * 206 * This function adds or removes the corresponding VLAN ID from the VLAN 207 * filter table for the corresponding function. In addition to the 208 * standard set/clear that supports one bit a multi-bit write is 209 * supported to set 64 bits at a time. 210 **/ 211 static s32 fm10k_update_vlan_pf(struct fm10k_hw *hw, u32 vid, u8 vsi, bool set) 212 { 213 u32 vlan_table, reg, mask, bit, len; 214 215 /* verify the VSI index is valid */ 216 if (vsi > FM10K_VLAN_TABLE_VSI_MAX) 217 return FM10K_ERR_PARAM; 218 219 /* VLAN multi-bit write: 220 * The multi-bit write has several parts to it. 221 * 24 16 8 0 222 * 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 223 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 224 * | RSVD0 | Length |C|RSVD0| VLAN ID | 225 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 226 * 227 * VLAN ID: Vlan Starting value 228 * RSVD0: Reserved section, must be 0 229 * C: Flag field, 0 is set, 1 is clear (Used in VF VLAN message) 230 * Length: Number of times to repeat the bit being set 231 */ 232 len = vid >> 16; 233 vid = (vid << 17) >> 17; 234 235 /* verify the reserved 0 fields are 0 */ 236 if (len >= FM10K_VLAN_TABLE_VID_MAX || vid >= FM10K_VLAN_TABLE_VID_MAX) 237 return FM10K_ERR_PARAM; 238 239 /* Loop through the table updating all required VLANs */ 240 for (reg = FM10K_VLAN_TABLE(vsi, vid / 32), bit = vid % 32; 241 len < FM10K_VLAN_TABLE_VID_MAX; 242 len -= 32 - bit, reg++, bit = 0) { 243 /* record the initial state of the register */ 244 vlan_table = fm10k_read_reg(hw, reg); 245 246 /* truncate mask if we are at the start or end of the run */ 247 mask = (~(u32)0 >> ((len < 31) ? 31 - len : 0)) << bit; 248 249 /* make necessary modifications to the register */ 250 mask &= set ? ~vlan_table : vlan_table; 251 if (mask) 252 fm10k_write_reg(hw, reg, vlan_table ^ mask); 253 } 254 255 return 0; 256 } 257 258 /** 259 * fm10k_read_mac_addr_pf - Read device MAC address 260 * @hw: pointer to the HW structure 261 * 262 * Reads the device MAC address from the SM_AREA and stores the value. 263 **/ 264 static s32 fm10k_read_mac_addr_pf(struct fm10k_hw *hw) 265 { 266 u8 perm_addr[ETH_ALEN]; 267 u32 serial_num; 268 269 serial_num = fm10k_read_reg(hw, FM10K_SM_AREA(1)); 270 271 /* last byte should be all 1's */ 272 if ((~serial_num) << 24) 273 return FM10K_ERR_INVALID_MAC_ADDR; 274 275 perm_addr[0] = (u8)(serial_num >> 24); 276 perm_addr[1] = (u8)(serial_num >> 16); 277 perm_addr[2] = (u8)(serial_num >> 8); 278 279 serial_num = fm10k_read_reg(hw, FM10K_SM_AREA(0)); 280 281 /* first byte should be all 1's */ 282 if ((~serial_num) >> 24) 283 return FM10K_ERR_INVALID_MAC_ADDR; 284 285 perm_addr[3] = (u8)(serial_num >> 16); 286 perm_addr[4] = (u8)(serial_num >> 8); 287 perm_addr[5] = (u8)(serial_num); 288 289 ether_addr_copy(hw->mac.perm_addr, perm_addr); 290 ether_addr_copy(hw->mac.addr, perm_addr); 291 292 return 0; 293 } 294 295 /** 296 * fm10k_glort_valid_pf - Validate that the provided glort is valid 297 * @hw: pointer to the HW structure 298 * @glort: base glort to be validated 299 * 300 * This function will return an error if the provided glort is invalid 301 **/ 302 bool fm10k_glort_valid_pf(struct fm10k_hw *hw, u16 glort) 303 { 304 glort &= hw->mac.dglort_map >> FM10K_DGLORTMAP_MASK_SHIFT; 305 306 return glort == (hw->mac.dglort_map & FM10K_DGLORTMAP_NONE); 307 } 308 309 /** 310 * fm10k_update_xc_addr_pf - Update device addresses 311 * @hw: pointer to the HW structure 312 * @glort: base resource tag for this request 313 * @mac: MAC address to add/remove from table 314 * @vid: VLAN ID to add/remove from table 315 * @add: Indicates if this is an add or remove operation 316 * @flags: flags field to indicate add and secure 317 * 318 * This function generates a message to the Switch API requesting 319 * that the given logical port add/remove the given L2 MAC/VLAN address. 320 **/ 321 static s32 fm10k_update_xc_addr_pf(struct fm10k_hw *hw, u16 glort, 322 const u8 *mac, u16 vid, bool add, u8 flags) 323 { 324 struct fm10k_mbx_info *mbx = &hw->mbx; 325 struct fm10k_mac_update mac_update; 326 u32 msg[5]; 327 328 /* clear set bit from VLAN ID */ 329 vid &= ~FM10K_VLAN_CLEAR; 330 331 /* if glort or VLAN are not valid return error */ 332 if (!fm10k_glort_valid_pf(hw, glort) || vid >= FM10K_VLAN_TABLE_VID_MAX) 333 return FM10K_ERR_PARAM; 334 335 /* record fields */ 336 mac_update.mac_lower = cpu_to_le32(((u32)mac[2] << 24) | 337 ((u32)mac[3] << 16) | 338 ((u32)mac[4] << 8) | 339 ((u32)mac[5])); 340 mac_update.mac_upper = cpu_to_le16(((u16)mac[0] << 8) | 341 ((u16)mac[1])); 342 mac_update.vlan = cpu_to_le16(vid); 343 mac_update.glort = cpu_to_le16(glort); 344 mac_update.action = add ? 0 : 1; 345 mac_update.flags = flags; 346 347 /* populate mac_update fields */ 348 fm10k_tlv_msg_init(msg, FM10K_PF_MSG_ID_UPDATE_MAC_FWD_RULE); 349 fm10k_tlv_attr_put_le_struct(msg, FM10K_PF_ATTR_ID_MAC_UPDATE, 350 &mac_update, sizeof(mac_update)); 351 352 /* load onto outgoing mailbox */ 353 return mbx->ops.enqueue_tx(hw, mbx, msg); 354 } 355 356 /** 357 * fm10k_update_uc_addr_pf - Update device unicast addresses 358 * @hw: pointer to the HW structure 359 * @glort: base resource tag for this request 360 * @mac: MAC address to add/remove from table 361 * @vid: VLAN ID to add/remove from table 362 * @add: Indicates if this is an add or remove operation 363 * @flags: flags field to indicate add and secure 364 * 365 * This function is used to add or remove unicast addresses for 366 * the PF. 367 **/ 368 static s32 fm10k_update_uc_addr_pf(struct fm10k_hw *hw, u16 glort, 369 const u8 *mac, u16 vid, bool add, u8 flags) 370 { 371 /* verify MAC address is valid */ 372 if (!is_valid_ether_addr(mac)) 373 return FM10K_ERR_PARAM; 374 375 return fm10k_update_xc_addr_pf(hw, glort, mac, vid, add, flags); 376 } 377 378 /** 379 * fm10k_update_mc_addr_pf - Update device multicast addresses 380 * @hw: pointer to the HW structure 381 * @glort: base resource tag for this request 382 * @mac: MAC address to add/remove from table 383 * @vid: VLAN ID to add/remove from table 384 * @add: Indicates if this is an add or remove operation 385 * 386 * This function is used to add or remove multicast MAC addresses for 387 * the PF. 388 **/ 389 static s32 fm10k_update_mc_addr_pf(struct fm10k_hw *hw, u16 glort, 390 const u8 *mac, u16 vid, bool add) 391 { 392 /* verify multicast address is valid */ 393 if (!is_multicast_ether_addr(mac)) 394 return FM10K_ERR_PARAM; 395 396 return fm10k_update_xc_addr_pf(hw, glort, mac, vid, add, 0); 397 } 398 399 /** 400 * fm10k_update_xcast_mode_pf - Request update of multicast mode 401 * @hw: pointer to hardware structure 402 * @glort: base resource tag for this request 403 * @mode: integer value indicating mode being requested 404 * 405 * This function will attempt to request a higher mode for the port 406 * so that it can enable either multicast, multicast promiscuous, or 407 * promiscuous mode of operation. 408 **/ 409 static s32 fm10k_update_xcast_mode_pf(struct fm10k_hw *hw, u16 glort, u8 mode) 410 { 411 struct fm10k_mbx_info *mbx = &hw->mbx; 412 u32 msg[3], xcast_mode; 413 414 if (mode > FM10K_XCAST_MODE_NONE) 415 return FM10K_ERR_PARAM; 416 417 /* if glort is not valid return error */ 418 if (!fm10k_glort_valid_pf(hw, glort)) 419 return FM10K_ERR_PARAM; 420 421 /* write xcast mode as a single u32 value, 422 * lower 16 bits: glort 423 * upper 16 bits: mode 424 */ 425 xcast_mode = ((u32)mode << 16) | glort; 426 427 /* generate message requesting to change xcast mode */ 428 fm10k_tlv_msg_init(msg, FM10K_PF_MSG_ID_XCAST_MODES); 429 fm10k_tlv_attr_put_u32(msg, FM10K_PF_ATTR_ID_XCAST_MODE, xcast_mode); 430 431 /* load onto outgoing mailbox */ 432 return mbx->ops.enqueue_tx(hw, mbx, msg); 433 } 434 435 /** 436 * fm10k_update_int_moderator_pf - Update interrupt moderator linked list 437 * @hw: pointer to hardware structure 438 * 439 * This function walks through the MSI-X vector table to determine the 440 * number of active interrupts and based on that information updates the 441 * interrupt moderator linked list. 442 **/ 443 static void fm10k_update_int_moderator_pf(struct fm10k_hw *hw) 444 { 445 u32 i; 446 447 /* Disable interrupt moderator */ 448 fm10k_write_reg(hw, FM10K_INT_CTRL, 0); 449 450 /* loop through PF from last to first looking enabled vectors */ 451 for (i = FM10K_ITR_REG_COUNT_PF - 1; i; i--) { 452 if (!fm10k_read_reg(hw, FM10K_MSIX_VECTOR_MASK(i))) 453 break; 454 } 455 456 /* always reset VFITR2[0] to point to last enabled PF vector */ 457 fm10k_write_reg(hw, FM10K_ITR2(FM10K_ITR_REG_COUNT_PF), i); 458 459 /* reset ITR2[0] to point to last enabled PF vector */ 460 if (!hw->iov.num_vfs) 461 fm10k_write_reg(hw, FM10K_ITR2(0), i); 462 463 /* Enable interrupt moderator */ 464 fm10k_write_reg(hw, FM10K_INT_CTRL, FM10K_INT_CTRL_ENABLEMODERATOR); 465 } 466 467 /** 468 * fm10k_update_lport_state_pf - Notify the switch of a change in port state 469 * @hw: pointer to the HW structure 470 * @glort: base resource tag for this request 471 * @count: number of logical ports being updated 472 * @enable: boolean value indicating enable or disable 473 * 474 * This function is used to add/remove a logical port from the switch. 475 **/ 476 static s32 fm10k_update_lport_state_pf(struct fm10k_hw *hw, u16 glort, 477 u16 count, bool enable) 478 { 479 struct fm10k_mbx_info *mbx = &hw->mbx; 480 u32 msg[3], lport_msg; 481 482 /* do nothing if we are being asked to create or destroy 0 ports */ 483 if (!count) 484 return 0; 485 486 /* if glort is not valid return error */ 487 if (!fm10k_glort_valid_pf(hw, glort)) 488 return FM10K_ERR_PARAM; 489 490 /* reset multicast mode if deleting lport */ 491 if (!enable) 492 fm10k_update_xcast_mode_pf(hw, glort, FM10K_XCAST_MODE_NONE); 493 494 /* construct the lport message from the 2 pieces of data we have */ 495 lport_msg = ((u32)count << 16) | glort; 496 497 /* generate lport create/delete message */ 498 fm10k_tlv_msg_init(msg, enable ? FM10K_PF_MSG_ID_LPORT_CREATE : 499 FM10K_PF_MSG_ID_LPORT_DELETE); 500 fm10k_tlv_attr_put_u32(msg, FM10K_PF_ATTR_ID_PORT, lport_msg); 501 502 /* load onto outgoing mailbox */ 503 return mbx->ops.enqueue_tx(hw, mbx, msg); 504 } 505 506 /** 507 * fm10k_configure_dglort_map_pf - Configures GLORT entry and queues 508 * @hw: pointer to hardware structure 509 * @dglort: pointer to dglort configuration structure 510 * 511 * Reads the configuration structure contained in dglort_cfg and uses 512 * that information to then populate a DGLORTMAP/DEC entry and the queues 513 * to which it has been assigned. 514 **/ 515 static s32 fm10k_configure_dglort_map_pf(struct fm10k_hw *hw, 516 struct fm10k_dglort_cfg *dglort) 517 { 518 u16 glort, queue_count, vsi_count, pc_count; 519 u16 vsi, queue, pc, q_idx; 520 u32 txqctl, dglortdec, dglortmap; 521 522 /* verify the dglort pointer */ 523 if (!dglort) 524 return FM10K_ERR_PARAM; 525 526 /* verify the dglort values */ 527 if ((dglort->idx > 7) || (dglort->rss_l > 7) || (dglort->pc_l > 3) || 528 (dglort->vsi_l > 6) || (dglort->vsi_b > 64) || 529 (dglort->queue_l > 8) || (dglort->queue_b >= 256)) 530 return FM10K_ERR_PARAM; 531 532 /* determine count of VSIs and queues */ 533 queue_count = BIT(dglort->rss_l + dglort->pc_l); 534 vsi_count = BIT(dglort->vsi_l + dglort->queue_l); 535 glort = dglort->glort; 536 q_idx = dglort->queue_b; 537 538 /* configure SGLORT for queues */ 539 for (vsi = 0; vsi < vsi_count; vsi++, glort++) { 540 for (queue = 0; queue < queue_count; queue++, q_idx++) { 541 if (q_idx >= FM10K_MAX_QUEUES) 542 break; 543 544 fm10k_write_reg(hw, FM10K_TX_SGLORT(q_idx), glort); 545 fm10k_write_reg(hw, FM10K_RX_SGLORT(q_idx), glort); 546 } 547 } 548 549 /* determine count of PCs and queues */ 550 queue_count = BIT(dglort->queue_l + dglort->rss_l + dglort->vsi_l); 551 pc_count = BIT(dglort->pc_l); 552 553 /* configure PC for Tx queues */ 554 for (pc = 0; pc < pc_count; pc++) { 555 q_idx = pc + dglort->queue_b; 556 for (queue = 0; queue < queue_count; queue++) { 557 if (q_idx >= FM10K_MAX_QUEUES) 558 break; 559 560 txqctl = fm10k_read_reg(hw, FM10K_TXQCTL(q_idx)); 561 txqctl &= ~FM10K_TXQCTL_PC_MASK; 562 txqctl |= pc << FM10K_TXQCTL_PC_SHIFT; 563 fm10k_write_reg(hw, FM10K_TXQCTL(q_idx), txqctl); 564 565 q_idx += pc_count; 566 } 567 } 568 569 /* configure DGLORTDEC */ 570 dglortdec = ((u32)(dglort->rss_l) << FM10K_DGLORTDEC_RSSLENGTH_SHIFT) | 571 ((u32)(dglort->queue_b) << FM10K_DGLORTDEC_QBASE_SHIFT) | 572 ((u32)(dglort->pc_l) << FM10K_DGLORTDEC_PCLENGTH_SHIFT) | 573 ((u32)(dglort->vsi_b) << FM10K_DGLORTDEC_VSIBASE_SHIFT) | 574 ((u32)(dglort->vsi_l) << FM10K_DGLORTDEC_VSILENGTH_SHIFT) | 575 ((u32)(dglort->queue_l)); 576 if (dglort->inner_rss) 577 dglortdec |= FM10K_DGLORTDEC_INNERRSS_ENABLE; 578 579 /* configure DGLORTMAP */ 580 dglortmap = (dglort->idx == fm10k_dglort_default) ? 581 FM10K_DGLORTMAP_ANY : FM10K_DGLORTMAP_ZERO; 582 dglortmap <<= dglort->vsi_l + dglort->queue_l + dglort->shared_l; 583 dglortmap |= dglort->glort; 584 585 /* write values to hardware */ 586 fm10k_write_reg(hw, FM10K_DGLORTDEC(dglort->idx), dglortdec); 587 fm10k_write_reg(hw, FM10K_DGLORTMAP(dglort->idx), dglortmap); 588 589 return 0; 590 } 591 592 u16 fm10k_queues_per_pool(struct fm10k_hw *hw) 593 { 594 u16 num_pools = hw->iov.num_pools; 595 596 return (num_pools > 32) ? 2 : (num_pools > 16) ? 4 : (num_pools > 8) ? 597 8 : FM10K_MAX_QUEUES_POOL; 598 } 599 600 u16 fm10k_vf_queue_index(struct fm10k_hw *hw, u16 vf_idx) 601 { 602 u16 num_vfs = hw->iov.num_vfs; 603 u16 vf_q_idx = FM10K_MAX_QUEUES; 604 605 vf_q_idx -= fm10k_queues_per_pool(hw) * (num_vfs - vf_idx); 606 607 return vf_q_idx; 608 } 609 610 static u16 fm10k_vectors_per_pool(struct fm10k_hw *hw) 611 { 612 u16 num_pools = hw->iov.num_pools; 613 614 return (num_pools > 32) ? 8 : (num_pools > 16) ? 16 : 615 FM10K_MAX_VECTORS_POOL; 616 } 617 618 static u16 fm10k_vf_vector_index(struct fm10k_hw *hw, u16 vf_idx) 619 { 620 u16 vf_v_idx = FM10K_MAX_VECTORS_PF; 621 622 vf_v_idx += fm10k_vectors_per_pool(hw) * vf_idx; 623 624 return vf_v_idx; 625 } 626 627 /** 628 * fm10k_iov_assign_resources_pf - Assign pool resources for virtualization 629 * @hw: pointer to the HW structure 630 * @num_vfs: number of VFs to be allocated 631 * @num_pools: number of virtualization pools to be allocated 632 * 633 * Allocates queues and traffic classes to virtualization entities to prepare 634 * the PF for SR-IOV and VMDq 635 **/ 636 static s32 fm10k_iov_assign_resources_pf(struct fm10k_hw *hw, u16 num_vfs, 637 u16 num_pools) 638 { 639 u16 qmap_stride, qpp, vpp, vf_q_idx, vf_q_idx0, qmap_idx; 640 u32 vid = hw->mac.default_vid << FM10K_TXQCTL_VID_SHIFT; 641 int i, j; 642 643 /* hardware only supports up to 64 pools */ 644 if (num_pools > 64) 645 return FM10K_ERR_PARAM; 646 647 /* the number of VFs cannot exceed the number of pools */ 648 if ((num_vfs > num_pools) || (num_vfs > hw->iov.total_vfs)) 649 return FM10K_ERR_PARAM; 650 651 /* record number of virtualization entities */ 652 hw->iov.num_vfs = num_vfs; 653 hw->iov.num_pools = num_pools; 654 655 /* determine qmap offsets and counts */ 656 qmap_stride = (num_vfs > 8) ? 32 : 256; 657 qpp = fm10k_queues_per_pool(hw); 658 vpp = fm10k_vectors_per_pool(hw); 659 660 /* calculate starting index for queues */ 661 vf_q_idx = fm10k_vf_queue_index(hw, 0); 662 qmap_idx = 0; 663 664 /* establish TCs with -1 credits and no quanta to prevent transmit */ 665 for (i = 0; i < num_vfs; i++) { 666 fm10k_write_reg(hw, FM10K_TC_MAXCREDIT(i), 0); 667 fm10k_write_reg(hw, FM10K_TC_RATE(i), 0); 668 fm10k_write_reg(hw, FM10K_TC_CREDIT(i), 669 FM10K_TC_CREDIT_CREDIT_MASK); 670 } 671 672 /* zero out all mbmem registers */ 673 for (i = FM10K_VFMBMEM_LEN * num_vfs; i--;) 674 fm10k_write_reg(hw, FM10K_MBMEM(i), 0); 675 676 /* clear event notification of VF FLR */ 677 fm10k_write_reg(hw, FM10K_PFVFLREC(0), ~0); 678 fm10k_write_reg(hw, FM10K_PFVFLREC(1), ~0); 679 680 /* loop through unallocated rings assigning them back to PF */ 681 for (i = FM10K_MAX_QUEUES_PF; i < vf_q_idx; i++) { 682 fm10k_write_reg(hw, FM10K_TXDCTL(i), 0); 683 fm10k_write_reg(hw, FM10K_TXQCTL(i), FM10K_TXQCTL_PF | 684 FM10K_TXQCTL_UNLIMITED_BW | vid); 685 fm10k_write_reg(hw, FM10K_RXQCTL(i), FM10K_RXQCTL_PF); 686 } 687 688 /* PF should have already updated VFITR2[0] */ 689 690 /* update all ITR registers to flow to VFITR2[0] */ 691 for (i = FM10K_ITR_REG_COUNT_PF + 1; i < FM10K_ITR_REG_COUNT; i++) { 692 if (!(i & (vpp - 1))) 693 fm10k_write_reg(hw, FM10K_ITR2(i), i - vpp); 694 else 695 fm10k_write_reg(hw, FM10K_ITR2(i), i - 1); 696 } 697 698 /* update PF ITR2[0] to reference the last vector */ 699 fm10k_write_reg(hw, FM10K_ITR2(0), 700 fm10k_vf_vector_index(hw, num_vfs - 1)); 701 702 /* loop through rings populating rings and TCs */ 703 for (i = 0; i < num_vfs; i++) { 704 /* record index for VF queue 0 for use in end of loop */ 705 vf_q_idx0 = vf_q_idx; 706 707 for (j = 0; j < qpp; j++, qmap_idx++, vf_q_idx++) { 708 /* assign VF and locked TC to queues */ 709 fm10k_write_reg(hw, FM10K_TXDCTL(vf_q_idx), 0); 710 fm10k_write_reg(hw, FM10K_TXQCTL(vf_q_idx), 711 (i << FM10K_TXQCTL_TC_SHIFT) | i | 712 FM10K_TXQCTL_VF | vid); 713 fm10k_write_reg(hw, FM10K_RXDCTL(vf_q_idx), 714 FM10K_RXDCTL_WRITE_BACK_MIN_DELAY | 715 FM10K_RXDCTL_DROP_ON_EMPTY); 716 fm10k_write_reg(hw, FM10K_RXQCTL(vf_q_idx), 717 (i << FM10K_RXQCTL_VF_SHIFT) | 718 FM10K_RXQCTL_VF); 719 720 /* map queue pair to VF */ 721 fm10k_write_reg(hw, FM10K_TQMAP(qmap_idx), vf_q_idx); 722 fm10k_write_reg(hw, FM10K_RQMAP(qmap_idx), vf_q_idx); 723 } 724 725 /* repeat the first ring for all of the remaining VF rings */ 726 for (; j < qmap_stride; j++, qmap_idx++) { 727 fm10k_write_reg(hw, FM10K_TQMAP(qmap_idx), vf_q_idx0); 728 fm10k_write_reg(hw, FM10K_RQMAP(qmap_idx), vf_q_idx0); 729 } 730 } 731 732 /* loop through remaining indexes assigning all to queue 0 */ 733 while (qmap_idx < FM10K_TQMAP_TABLE_SIZE) { 734 fm10k_write_reg(hw, FM10K_TQMAP(qmap_idx), 0); 735 fm10k_write_reg(hw, FM10K_RQMAP(qmap_idx), 0); 736 qmap_idx++; 737 } 738 739 return 0; 740 } 741 742 /** 743 * fm10k_iov_configure_tc_pf - Configure the shaping group for VF 744 * @hw: pointer to the HW structure 745 * @vf_idx: index of VF receiving GLORT 746 * @rate: Rate indicated in Mb/s 747 * 748 * Configured the TC for a given VF to allow only up to a given number 749 * of Mb/s of outgoing Tx throughput. 750 **/ 751 static s32 fm10k_iov_configure_tc_pf(struct fm10k_hw *hw, u16 vf_idx, int rate) 752 { 753 /* configure defaults */ 754 u32 interval = FM10K_TC_RATE_INTERVAL_4US_GEN3; 755 u32 tc_rate = FM10K_TC_RATE_QUANTA_MASK; 756 757 /* verify vf is in range */ 758 if (vf_idx >= hw->iov.num_vfs) 759 return FM10K_ERR_PARAM; 760 761 /* set interval to align with 4.096 usec in all modes */ 762 switch (hw->bus.speed) { 763 case fm10k_bus_speed_2500: 764 interval = FM10K_TC_RATE_INTERVAL_4US_GEN1; 765 break; 766 case fm10k_bus_speed_5000: 767 interval = FM10K_TC_RATE_INTERVAL_4US_GEN2; 768 break; 769 default: 770 break; 771 } 772 773 if (rate) { 774 if (rate > FM10K_VF_TC_MAX || rate < FM10K_VF_TC_MIN) 775 return FM10K_ERR_PARAM; 776 777 /* The quanta is measured in Bytes per 4.096 or 8.192 usec 778 * The rate is provided in Mbits per second 779 * To tralslate from rate to quanta we need to multiply the 780 * rate by 8.192 usec and divide by 8 bits/byte. To avoid 781 * dealing with floating point we can round the values up 782 * to the nearest whole number ratio which gives us 128 / 125. 783 */ 784 tc_rate = (rate * 128) / 125; 785 786 /* try to keep the rate limiting accurate by increasing 787 * the number of credits and interval for rates less than 4Gb/s 788 */ 789 if (rate < 4000) 790 interval <<= 1; 791 else 792 tc_rate >>= 1; 793 } 794 795 /* update rate limiter with new values */ 796 fm10k_write_reg(hw, FM10K_TC_RATE(vf_idx), tc_rate | interval); 797 fm10k_write_reg(hw, FM10K_TC_MAXCREDIT(vf_idx), FM10K_TC_MAXCREDIT_64K); 798 fm10k_write_reg(hw, FM10K_TC_CREDIT(vf_idx), FM10K_TC_MAXCREDIT_64K); 799 800 return 0; 801 } 802 803 /** 804 * fm10k_iov_assign_int_moderator_pf - Add VF interrupts to moderator list 805 * @hw: pointer to the HW structure 806 * @vf_idx: index of VF receiving GLORT 807 * 808 * Update the interrupt moderator linked list to include any MSI-X 809 * interrupts which the VF has enabled in the MSI-X vector table. 810 **/ 811 static s32 fm10k_iov_assign_int_moderator_pf(struct fm10k_hw *hw, u16 vf_idx) 812 { 813 u16 vf_v_idx, vf_v_limit, i; 814 815 /* verify vf is in range */ 816 if (vf_idx >= hw->iov.num_vfs) 817 return FM10K_ERR_PARAM; 818 819 /* determine vector offset and count */ 820 vf_v_idx = fm10k_vf_vector_index(hw, vf_idx); 821 vf_v_limit = vf_v_idx + fm10k_vectors_per_pool(hw); 822 823 /* search for first vector that is not masked */ 824 for (i = vf_v_limit - 1; i > vf_v_idx; i--) { 825 if (!fm10k_read_reg(hw, FM10K_MSIX_VECTOR_MASK(i))) 826 break; 827 } 828 829 /* reset linked list so it now includes our active vectors */ 830 if (vf_idx == (hw->iov.num_vfs - 1)) 831 fm10k_write_reg(hw, FM10K_ITR2(0), i); 832 else 833 fm10k_write_reg(hw, FM10K_ITR2(vf_v_limit), i); 834 835 return 0; 836 } 837 838 /** 839 * fm10k_iov_assign_default_mac_vlan_pf - Assign a MAC and VLAN to VF 840 * @hw: pointer to the HW structure 841 * @vf_info: pointer to VF information structure 842 * 843 * Assign a MAC address and default VLAN to a VF and notify it of the update 844 **/ 845 static s32 fm10k_iov_assign_default_mac_vlan_pf(struct fm10k_hw *hw, 846 struct fm10k_vf_info *vf_info) 847 { 848 u16 qmap_stride, queues_per_pool, vf_q_idx, timeout, qmap_idx, i; 849 u32 msg[4], txdctl, txqctl, tdbal = 0, tdbah = 0; 850 s32 err = 0; 851 u16 vf_idx, vf_vid; 852 853 /* verify vf is in range */ 854 if (!vf_info || vf_info->vf_idx >= hw->iov.num_vfs) 855 return FM10K_ERR_PARAM; 856 857 /* determine qmap offsets and counts */ 858 qmap_stride = (hw->iov.num_vfs > 8) ? 32 : 256; 859 queues_per_pool = fm10k_queues_per_pool(hw); 860 861 /* calculate starting index for queues */ 862 vf_idx = vf_info->vf_idx; 863 vf_q_idx = fm10k_vf_queue_index(hw, vf_idx); 864 qmap_idx = qmap_stride * vf_idx; 865 866 /* Determine correct default VLAN ID. The FM10K_VLAN_OVERRIDE bit is 867 * used here to indicate to the VF that it will not have privilege to 868 * write VLAN_TABLE. All policy is enforced on the PF but this allows 869 * the VF to correctly report errors to userspace requests. 870 */ 871 if (vf_info->pf_vid) 872 vf_vid = vf_info->pf_vid | FM10K_VLAN_OVERRIDE; 873 else 874 vf_vid = vf_info->sw_vid; 875 876 /* generate MAC_ADDR request */ 877 fm10k_tlv_msg_init(msg, FM10K_VF_MSG_ID_MAC_VLAN); 878 fm10k_tlv_attr_put_mac_vlan(msg, FM10K_MAC_VLAN_MSG_DEFAULT_MAC, 879 vf_info->mac, vf_vid); 880 881 /* Configure Queue control register with new VLAN ID. The TXQCTL 882 * register is RO from the VF, so the PF must do this even in the 883 * case of notifying the VF of a new VID via the mailbox. 884 */ 885 txqctl = ((u32)vf_vid << FM10K_TXQCTL_VID_SHIFT) & 886 FM10K_TXQCTL_VID_MASK; 887 txqctl |= (vf_idx << FM10K_TXQCTL_TC_SHIFT) | 888 FM10K_TXQCTL_VF | vf_idx; 889 890 for (i = 0; i < queues_per_pool; i++) 891 fm10k_write_reg(hw, FM10K_TXQCTL(vf_q_idx + i), txqctl); 892 893 /* try loading a message onto outgoing mailbox first */ 894 if (vf_info->mbx.ops.enqueue_tx) { 895 err = vf_info->mbx.ops.enqueue_tx(hw, &vf_info->mbx, msg); 896 if (err != FM10K_MBX_ERR_NO_MBX) 897 return err; 898 err = 0; 899 } 900 901 /* If we aren't connected to a mailbox, this is most likely because 902 * the VF driver is not running. It should thus be safe to re-map 903 * queues and use the registers to pass the MAC address so that the VF 904 * driver gets correct information during its initialization. 905 */ 906 907 /* MAP Tx queue back to 0 temporarily, and disable it */ 908 fm10k_write_reg(hw, FM10K_TQMAP(qmap_idx), 0); 909 fm10k_write_reg(hw, FM10K_TXDCTL(vf_q_idx), 0); 910 911 /* verify ring has disabled before modifying base address registers */ 912 txdctl = fm10k_read_reg(hw, FM10K_TXDCTL(vf_q_idx)); 913 for (timeout = 0; txdctl & FM10K_TXDCTL_ENABLE; timeout++) { 914 /* limit ourselves to a 1ms timeout */ 915 if (timeout == 10) { 916 err = FM10K_ERR_DMA_PENDING; 917 goto err_out; 918 } 919 920 usleep_range(100, 200); 921 txdctl = fm10k_read_reg(hw, FM10K_TXDCTL(vf_q_idx)); 922 } 923 924 /* Update base address registers to contain MAC address */ 925 if (is_valid_ether_addr(vf_info->mac)) { 926 tdbal = (((u32)vf_info->mac[3]) << 24) | 927 (((u32)vf_info->mac[4]) << 16) | 928 (((u32)vf_info->mac[5]) << 8); 929 930 tdbah = (((u32)0xFF) << 24) | 931 (((u32)vf_info->mac[0]) << 16) | 932 (((u32)vf_info->mac[1]) << 8) | 933 ((u32)vf_info->mac[2]); 934 } 935 936 /* Record the base address into queue 0 */ 937 fm10k_write_reg(hw, FM10K_TDBAL(vf_q_idx), tdbal); 938 fm10k_write_reg(hw, FM10K_TDBAH(vf_q_idx), tdbah); 939 940 /* Provide the VF the ITR scale, using software-defined fields in TDLEN 941 * to pass the information during VF initialization. See definition of 942 * FM10K_TDLEN_ITR_SCALE_SHIFT for more details. 943 */ 944 fm10k_write_reg(hw, FM10K_TDLEN(vf_q_idx), hw->mac.itr_scale << 945 FM10K_TDLEN_ITR_SCALE_SHIFT); 946 947 err_out: 948 /* restore the queue back to VF ownership */ 949 fm10k_write_reg(hw, FM10K_TQMAP(qmap_idx), vf_q_idx); 950 return err; 951 } 952 953 /** 954 * fm10k_iov_reset_resources_pf - Reassign queues and interrupts to a VF 955 * @hw: pointer to the HW structure 956 * @vf_info: pointer to VF information structure 957 * 958 * Reassign the interrupts and queues to a VF following an FLR 959 **/ 960 static s32 fm10k_iov_reset_resources_pf(struct fm10k_hw *hw, 961 struct fm10k_vf_info *vf_info) 962 { 963 u16 qmap_stride, queues_per_pool, vf_q_idx, qmap_idx; 964 u32 tdbal = 0, tdbah = 0, txqctl, rxqctl; 965 u16 vf_v_idx, vf_v_limit, vf_vid; 966 u8 vf_idx = vf_info->vf_idx; 967 int i; 968 969 /* verify vf is in range */ 970 if (vf_idx >= hw->iov.num_vfs) 971 return FM10K_ERR_PARAM; 972 973 /* clear event notification of VF FLR */ 974 fm10k_write_reg(hw, FM10K_PFVFLREC(vf_idx / 32), BIT(vf_idx % 32)); 975 976 /* force timeout and then disconnect the mailbox */ 977 vf_info->mbx.timeout = 0; 978 if (vf_info->mbx.ops.disconnect) 979 vf_info->mbx.ops.disconnect(hw, &vf_info->mbx); 980 981 /* determine vector offset and count */ 982 vf_v_idx = fm10k_vf_vector_index(hw, vf_idx); 983 vf_v_limit = vf_v_idx + fm10k_vectors_per_pool(hw); 984 985 /* determine qmap offsets and counts */ 986 qmap_stride = (hw->iov.num_vfs > 8) ? 32 : 256; 987 queues_per_pool = fm10k_queues_per_pool(hw); 988 qmap_idx = qmap_stride * vf_idx; 989 990 /* make all the queues inaccessible to the VF */ 991 for (i = qmap_idx; i < (qmap_idx + qmap_stride); i++) { 992 fm10k_write_reg(hw, FM10K_TQMAP(i), 0); 993 fm10k_write_reg(hw, FM10K_RQMAP(i), 0); 994 } 995 996 /* calculate starting index for queues */ 997 vf_q_idx = fm10k_vf_queue_index(hw, vf_idx); 998 999 /* determine correct default VLAN ID */ 1000 if (vf_info->pf_vid) 1001 vf_vid = vf_info->pf_vid; 1002 else 1003 vf_vid = vf_info->sw_vid; 1004 1005 /* configure Queue control register */ 1006 txqctl = ((u32)vf_vid << FM10K_TXQCTL_VID_SHIFT) | 1007 (vf_idx << FM10K_TXQCTL_TC_SHIFT) | 1008 FM10K_TXQCTL_VF | vf_idx; 1009 rxqctl = (vf_idx << FM10K_RXQCTL_VF_SHIFT) | FM10K_RXQCTL_VF; 1010 1011 /* stop further DMA and reset queue ownership back to VF */ 1012 for (i = vf_q_idx; i < (queues_per_pool + vf_q_idx); i++) { 1013 fm10k_write_reg(hw, FM10K_TXDCTL(i), 0); 1014 fm10k_write_reg(hw, FM10K_TXQCTL(i), txqctl); 1015 fm10k_write_reg(hw, FM10K_RXDCTL(i), 1016 FM10K_RXDCTL_WRITE_BACK_MIN_DELAY | 1017 FM10K_RXDCTL_DROP_ON_EMPTY); 1018 fm10k_write_reg(hw, FM10K_RXQCTL(i), rxqctl); 1019 } 1020 1021 /* reset TC with -1 credits and no quanta to prevent transmit */ 1022 fm10k_write_reg(hw, FM10K_TC_MAXCREDIT(vf_idx), 0); 1023 fm10k_write_reg(hw, FM10K_TC_RATE(vf_idx), 0); 1024 fm10k_write_reg(hw, FM10K_TC_CREDIT(vf_idx), 1025 FM10K_TC_CREDIT_CREDIT_MASK); 1026 1027 /* update our first entry in the table based on previous VF */ 1028 if (!vf_idx) 1029 hw->mac.ops.update_int_moderator(hw); 1030 else 1031 hw->iov.ops.assign_int_moderator(hw, vf_idx - 1); 1032 1033 /* reset linked list so it now includes our active vectors */ 1034 if (vf_idx == (hw->iov.num_vfs - 1)) 1035 fm10k_write_reg(hw, FM10K_ITR2(0), vf_v_idx); 1036 else 1037 fm10k_write_reg(hw, FM10K_ITR2(vf_v_limit), vf_v_idx); 1038 1039 /* link remaining vectors so that next points to previous */ 1040 for (vf_v_idx++; vf_v_idx < vf_v_limit; vf_v_idx++) 1041 fm10k_write_reg(hw, FM10K_ITR2(vf_v_idx), vf_v_idx - 1); 1042 1043 /* zero out MBMEM, VLAN_TABLE, RETA, RSSRK, and MRQC registers */ 1044 for (i = FM10K_VFMBMEM_LEN; i--;) 1045 fm10k_write_reg(hw, FM10K_MBMEM_VF(vf_idx, i), 0); 1046 for (i = FM10K_VLAN_TABLE_SIZE; i--;) 1047 fm10k_write_reg(hw, FM10K_VLAN_TABLE(vf_info->vsi, i), 0); 1048 for (i = FM10K_RETA_SIZE; i--;) 1049 fm10k_write_reg(hw, FM10K_RETA(vf_info->vsi, i), 0); 1050 for (i = FM10K_RSSRK_SIZE; i--;) 1051 fm10k_write_reg(hw, FM10K_RSSRK(vf_info->vsi, i), 0); 1052 fm10k_write_reg(hw, FM10K_MRQC(vf_info->vsi), 0); 1053 1054 /* Update base address registers to contain MAC address */ 1055 if (is_valid_ether_addr(vf_info->mac)) { 1056 tdbal = (((u32)vf_info->mac[3]) << 24) | 1057 (((u32)vf_info->mac[4]) << 16) | 1058 (((u32)vf_info->mac[5]) << 8); 1059 tdbah = (((u32)0xFF) << 24) | 1060 (((u32)vf_info->mac[0]) << 16) | 1061 (((u32)vf_info->mac[1]) << 8) | 1062 ((u32)vf_info->mac[2]); 1063 } 1064 1065 /* map queue pairs back to VF from last to first */ 1066 for (i = queues_per_pool; i--;) { 1067 fm10k_write_reg(hw, FM10K_TDBAL(vf_q_idx + i), tdbal); 1068 fm10k_write_reg(hw, FM10K_TDBAH(vf_q_idx + i), tdbah); 1069 /* See definition of FM10K_TDLEN_ITR_SCALE_SHIFT for an 1070 * explanation of how TDLEN is used. 1071 */ 1072 fm10k_write_reg(hw, FM10K_TDLEN(vf_q_idx + i), 1073 hw->mac.itr_scale << 1074 FM10K_TDLEN_ITR_SCALE_SHIFT); 1075 fm10k_write_reg(hw, FM10K_TQMAP(qmap_idx + i), vf_q_idx + i); 1076 fm10k_write_reg(hw, FM10K_RQMAP(qmap_idx + i), vf_q_idx + i); 1077 } 1078 1079 /* repeat the first ring for all the remaining VF rings */ 1080 for (i = queues_per_pool; i < qmap_stride; i++) { 1081 fm10k_write_reg(hw, FM10K_TQMAP(qmap_idx + i), vf_q_idx); 1082 fm10k_write_reg(hw, FM10K_RQMAP(qmap_idx + i), vf_q_idx); 1083 } 1084 1085 return 0; 1086 } 1087 1088 /** 1089 * fm10k_iov_set_lport_pf - Assign and enable a logical port for a given VF 1090 * @hw: pointer to hardware structure 1091 * @vf_info: pointer to VF information structure 1092 * @lport_idx: Logical port offset from the hardware glort 1093 * @flags: Set of capability flags to extend port beyond basic functionality 1094 * 1095 * This function allows enabling a VF port by assigning it a GLORT and 1096 * setting the flags so that it can enable an Rx mode. 1097 **/ 1098 static s32 fm10k_iov_set_lport_pf(struct fm10k_hw *hw, 1099 struct fm10k_vf_info *vf_info, 1100 u16 lport_idx, u8 flags) 1101 { 1102 u16 glort = (hw->mac.dglort_map + lport_idx) & FM10K_DGLORTMAP_NONE; 1103 1104 /* if glort is not valid return error */ 1105 if (!fm10k_glort_valid_pf(hw, glort)) 1106 return FM10K_ERR_PARAM; 1107 1108 vf_info->vf_flags = flags | FM10K_VF_FLAG_NONE_CAPABLE; 1109 vf_info->glort = glort; 1110 1111 return 0; 1112 } 1113 1114 /** 1115 * fm10k_iov_reset_lport_pf - Disable a logical port for a given VF 1116 * @hw: pointer to hardware structure 1117 * @vf_info: pointer to VF information structure 1118 * 1119 * This function disables a VF port by stripping it of a GLORT and 1120 * setting the flags so that it cannot enable any Rx mode. 1121 **/ 1122 static void fm10k_iov_reset_lport_pf(struct fm10k_hw *hw, 1123 struct fm10k_vf_info *vf_info) 1124 { 1125 u32 msg[1]; 1126 1127 /* need to disable the port if it is already enabled */ 1128 if (FM10K_VF_FLAG_ENABLED(vf_info)) { 1129 /* notify switch that this port has been disabled */ 1130 fm10k_update_lport_state_pf(hw, vf_info->glort, 1, false); 1131 1132 /* generate port state response to notify VF it is not ready */ 1133 fm10k_tlv_msg_init(msg, FM10K_VF_MSG_ID_LPORT_STATE); 1134 vf_info->mbx.ops.enqueue_tx(hw, &vf_info->mbx, msg); 1135 } 1136 1137 /* clear flags and glort if it exists */ 1138 vf_info->vf_flags = 0; 1139 vf_info->glort = 0; 1140 } 1141 1142 /** 1143 * fm10k_iov_update_stats_pf - Updates hardware related statistics for VFs 1144 * @hw: pointer to hardware structure 1145 * @q: stats for all queues of a VF 1146 * @vf_idx: index of VF 1147 * 1148 * This function collects queue stats for VFs. 1149 **/ 1150 static void fm10k_iov_update_stats_pf(struct fm10k_hw *hw, 1151 struct fm10k_hw_stats_q *q, 1152 u16 vf_idx) 1153 { 1154 u32 idx, qpp; 1155 1156 /* get stats for all of the queues */ 1157 qpp = fm10k_queues_per_pool(hw); 1158 idx = fm10k_vf_queue_index(hw, vf_idx); 1159 fm10k_update_hw_stats_q(hw, q, idx, qpp); 1160 } 1161 1162 /** 1163 * fm10k_iov_msg_msix_pf - Message handler for MSI-X request from VF 1164 * @hw: Pointer to hardware structure 1165 * @results: Pointer array to message, results[0] is pointer to message 1166 * @mbx: Pointer to mailbox information structure 1167 * 1168 * This function is a default handler for MSI-X requests from the VF. The 1169 * assumption is that in this case it is acceptable to just directly 1170 * hand off the message from the VF to the underlying shared code. 1171 **/ 1172 s32 fm10k_iov_msg_msix_pf(struct fm10k_hw *hw, u32 **results, 1173 struct fm10k_mbx_info *mbx) 1174 { 1175 struct fm10k_vf_info *vf_info = (struct fm10k_vf_info *)mbx; 1176 u8 vf_idx = vf_info->vf_idx; 1177 1178 return hw->iov.ops.assign_int_moderator(hw, vf_idx); 1179 } 1180 1181 /** 1182 * fm10k_iov_select_vid - Select correct default VLAN ID 1183 * @hw: Pointer to hardware structure 1184 * @vid: VLAN ID to correct 1185 * 1186 * Will report an error if the VLAN ID is out of range. For VID = 0, it will 1187 * return either the pf_vid or sw_vid depending on which one is set. 1188 */ 1189 s32 fm10k_iov_select_vid(struct fm10k_vf_info *vf_info, u16 vid) 1190 { 1191 if (!vid) 1192 return vf_info->pf_vid ? vf_info->pf_vid : vf_info->sw_vid; 1193 else if (vf_info->pf_vid && vid != vf_info->pf_vid) 1194 return FM10K_ERR_PARAM; 1195 else 1196 return vid; 1197 } 1198 1199 /** 1200 * fm10k_iov_msg_mac_vlan_pf - Message handler for MAC/VLAN request from VF 1201 * @hw: Pointer to hardware structure 1202 * @results: Pointer array to message, results[0] is pointer to message 1203 * @mbx: Pointer to mailbox information structure 1204 * 1205 * This function is a default handler for MAC/VLAN requests from the VF. 1206 * The assumption is that in this case it is acceptable to just directly 1207 * hand off the message from the VF to the underlying shared code. 1208 **/ 1209 s32 fm10k_iov_msg_mac_vlan_pf(struct fm10k_hw *hw, u32 **results, 1210 struct fm10k_mbx_info *mbx) 1211 { 1212 struct fm10k_vf_info *vf_info = (struct fm10k_vf_info *)mbx; 1213 u8 mac[ETH_ALEN]; 1214 u32 *result; 1215 int err = 0; 1216 bool set; 1217 u16 vlan; 1218 u32 vid; 1219 1220 /* we shouldn't be updating rules on a disabled interface */ 1221 if (!FM10K_VF_FLAG_ENABLED(vf_info)) 1222 err = FM10K_ERR_PARAM; 1223 1224 if (!err && !!results[FM10K_MAC_VLAN_MSG_VLAN]) { 1225 result = results[FM10K_MAC_VLAN_MSG_VLAN]; 1226 1227 /* record VLAN id requested */ 1228 err = fm10k_tlv_attr_get_u32(result, &vid); 1229 if (err) 1230 return err; 1231 1232 set = !(vid & FM10K_VLAN_CLEAR); 1233 vid &= ~FM10K_VLAN_CLEAR; 1234 1235 /* if the length field has been set, this is a multi-bit 1236 * update request. For multi-bit requests, simply disallow 1237 * them when the pf_vid has been set. In this case, the PF 1238 * should have already cleared the VLAN_TABLE, and if we 1239 * allowed them, it could allow a rogue VF to receive traffic 1240 * on a VLAN it was not assigned. In the single-bit case, we 1241 * need to modify requests for VLAN 0 to use the default PF or 1242 * SW vid when assigned. 1243 */ 1244 1245 if (vid >> 16) { 1246 /* prevent multi-bit requests when PF has 1247 * administratively set the VLAN for this VF 1248 */ 1249 if (vf_info->pf_vid) 1250 return FM10K_ERR_PARAM; 1251 } else { 1252 err = fm10k_iov_select_vid(vf_info, (u16)vid); 1253 if (err < 0) 1254 return err; 1255 1256 vid = err; 1257 } 1258 1259 /* update VSI info for VF in regards to VLAN table */ 1260 err = hw->mac.ops.update_vlan(hw, vid, vf_info->vsi, set); 1261 } 1262 1263 if (!err && !!results[FM10K_MAC_VLAN_MSG_MAC]) { 1264 result = results[FM10K_MAC_VLAN_MSG_MAC]; 1265 1266 /* record unicast MAC address requested */ 1267 err = fm10k_tlv_attr_get_mac_vlan(result, mac, &vlan); 1268 if (err) 1269 return err; 1270 1271 /* block attempts to set MAC for a locked device */ 1272 if (is_valid_ether_addr(vf_info->mac) && 1273 !ether_addr_equal(mac, vf_info->mac)) 1274 return FM10K_ERR_PARAM; 1275 1276 set = !(vlan & FM10K_VLAN_CLEAR); 1277 vlan &= ~FM10K_VLAN_CLEAR; 1278 1279 err = fm10k_iov_select_vid(vf_info, vlan); 1280 if (err < 0) 1281 return err; 1282 1283 vlan = (u16)err; 1284 1285 /* notify switch of request for new unicast address */ 1286 err = hw->mac.ops.update_uc_addr(hw, vf_info->glort, 1287 mac, vlan, set, 0); 1288 } 1289 1290 if (!err && !!results[FM10K_MAC_VLAN_MSG_MULTICAST]) { 1291 result = results[FM10K_MAC_VLAN_MSG_MULTICAST]; 1292 1293 /* record multicast MAC address requested */ 1294 err = fm10k_tlv_attr_get_mac_vlan(result, mac, &vlan); 1295 if (err) 1296 return err; 1297 1298 /* verify that the VF is allowed to request multicast */ 1299 if (!(vf_info->vf_flags & FM10K_VF_FLAG_MULTI_ENABLED)) 1300 return FM10K_ERR_PARAM; 1301 1302 set = !(vlan & FM10K_VLAN_CLEAR); 1303 vlan &= ~FM10K_VLAN_CLEAR; 1304 1305 err = fm10k_iov_select_vid(vf_info, vlan); 1306 if (err < 0) 1307 return err; 1308 1309 vlan = (u16)err; 1310 1311 /* notify switch of request for new multicast address */ 1312 err = hw->mac.ops.update_mc_addr(hw, vf_info->glort, 1313 mac, vlan, set); 1314 } 1315 1316 return err; 1317 } 1318 1319 /** 1320 * fm10k_iov_supported_xcast_mode_pf - Determine best match for xcast mode 1321 * @vf_info: VF info structure containing capability flags 1322 * @mode: Requested xcast mode 1323 * 1324 * This function outputs the mode that most closely matches the requested 1325 * mode. If not modes match it will request we disable the port 1326 **/ 1327 static u8 fm10k_iov_supported_xcast_mode_pf(struct fm10k_vf_info *vf_info, 1328 u8 mode) 1329 { 1330 u8 vf_flags = vf_info->vf_flags; 1331 1332 /* match up mode to capabilities as best as possible */ 1333 switch (mode) { 1334 case FM10K_XCAST_MODE_PROMISC: 1335 if (vf_flags & FM10K_VF_FLAG_PROMISC_CAPABLE) 1336 return FM10K_XCAST_MODE_PROMISC; 1337 /* fall through */ 1338 case FM10K_XCAST_MODE_ALLMULTI: 1339 if (vf_flags & FM10K_VF_FLAG_ALLMULTI_CAPABLE) 1340 return FM10K_XCAST_MODE_ALLMULTI; 1341 /* fall through */ 1342 case FM10K_XCAST_MODE_MULTI: 1343 if (vf_flags & FM10K_VF_FLAG_MULTI_CAPABLE) 1344 return FM10K_XCAST_MODE_MULTI; 1345 /* fall through */ 1346 case FM10K_XCAST_MODE_NONE: 1347 if (vf_flags & FM10K_VF_FLAG_NONE_CAPABLE) 1348 return FM10K_XCAST_MODE_NONE; 1349 /* fall through */ 1350 default: 1351 break; 1352 } 1353 1354 /* disable interface as it should not be able to request any */ 1355 return FM10K_XCAST_MODE_DISABLE; 1356 } 1357 1358 /** 1359 * fm10k_iov_msg_lport_state_pf - Message handler for port state requests 1360 * @hw: Pointer to hardware structure 1361 * @results: Pointer array to message, results[0] is pointer to message 1362 * @mbx: Pointer to mailbox information structure 1363 * 1364 * This function is a default handler for port state requests. The port 1365 * state requests for now are basic and consist of enabling or disabling 1366 * the port. 1367 **/ 1368 s32 fm10k_iov_msg_lport_state_pf(struct fm10k_hw *hw, u32 **results, 1369 struct fm10k_mbx_info *mbx) 1370 { 1371 struct fm10k_vf_info *vf_info = (struct fm10k_vf_info *)mbx; 1372 u32 *result; 1373 s32 err = 0; 1374 u32 msg[2]; 1375 u8 mode = 0; 1376 1377 /* verify VF is allowed to enable even minimal mode */ 1378 if (!(vf_info->vf_flags & FM10K_VF_FLAG_NONE_CAPABLE)) 1379 return FM10K_ERR_PARAM; 1380 1381 if (!!results[FM10K_LPORT_STATE_MSG_XCAST_MODE]) { 1382 result = results[FM10K_LPORT_STATE_MSG_XCAST_MODE]; 1383 1384 /* XCAST mode update requested */ 1385 err = fm10k_tlv_attr_get_u8(result, &mode); 1386 if (err) 1387 return FM10K_ERR_PARAM; 1388 1389 /* prep for possible demotion depending on capabilities */ 1390 mode = fm10k_iov_supported_xcast_mode_pf(vf_info, mode); 1391 1392 /* if mode is not currently enabled, enable it */ 1393 if (!(FM10K_VF_FLAG_ENABLED(vf_info) & BIT(mode))) 1394 fm10k_update_xcast_mode_pf(hw, vf_info->glort, mode); 1395 1396 /* swap mode back to a bit flag */ 1397 mode = FM10K_VF_FLAG_SET_MODE(mode); 1398 } else if (!results[FM10K_LPORT_STATE_MSG_DISABLE]) { 1399 /* need to disable the port if it is already enabled */ 1400 if (FM10K_VF_FLAG_ENABLED(vf_info)) 1401 err = fm10k_update_lport_state_pf(hw, vf_info->glort, 1402 1, false); 1403 1404 /* we need to clear VF_FLAG_ENABLED flags in order to ensure 1405 * that we actually re-enable the LPORT state below. Note that 1406 * this has no impact if the VF is already disabled, as the 1407 * flags are already cleared. 1408 */ 1409 if (!err) 1410 vf_info->vf_flags = FM10K_VF_FLAG_CAPABLE(vf_info); 1411 1412 /* when enabling the port we should reset the rate limiters */ 1413 hw->iov.ops.configure_tc(hw, vf_info->vf_idx, vf_info->rate); 1414 1415 /* set mode for minimal functionality */ 1416 mode = FM10K_VF_FLAG_SET_MODE_NONE; 1417 1418 /* generate port state response to notify VF it is ready */ 1419 fm10k_tlv_msg_init(msg, FM10K_VF_MSG_ID_LPORT_STATE); 1420 fm10k_tlv_attr_put_bool(msg, FM10K_LPORT_STATE_MSG_READY); 1421 mbx->ops.enqueue_tx(hw, mbx, msg); 1422 } 1423 1424 /* if enable state toggled note the update */ 1425 if (!err && (!FM10K_VF_FLAG_ENABLED(vf_info) != !mode)) 1426 err = fm10k_update_lport_state_pf(hw, vf_info->glort, 1, 1427 !!mode); 1428 1429 /* if state change succeeded, then update our stored state */ 1430 mode |= FM10K_VF_FLAG_CAPABLE(vf_info); 1431 if (!err) 1432 vf_info->vf_flags = mode; 1433 1434 return err; 1435 } 1436 1437 /** 1438 * fm10k_update_stats_hw_pf - Updates hardware related statistics of PF 1439 * @hw: pointer to hardware structure 1440 * @stats: pointer to the stats structure to update 1441 * 1442 * This function collects and aggregates global and per queue hardware 1443 * statistics. 1444 **/ 1445 static void fm10k_update_hw_stats_pf(struct fm10k_hw *hw, 1446 struct fm10k_hw_stats *stats) 1447 { 1448 u32 timeout, ur, ca, um, xec, vlan_drop, loopback_drop, nodesc_drop; 1449 u32 id, id_prev; 1450 1451 /* Use Tx queue 0 as a canary to detect a reset */ 1452 id = fm10k_read_reg(hw, FM10K_TXQCTL(0)); 1453 1454 /* Read Global Statistics */ 1455 do { 1456 timeout = fm10k_read_hw_stats_32b(hw, FM10K_STATS_TIMEOUT, 1457 &stats->timeout); 1458 ur = fm10k_read_hw_stats_32b(hw, FM10K_STATS_UR, &stats->ur); 1459 ca = fm10k_read_hw_stats_32b(hw, FM10K_STATS_CA, &stats->ca); 1460 um = fm10k_read_hw_stats_32b(hw, FM10K_STATS_UM, &stats->um); 1461 xec = fm10k_read_hw_stats_32b(hw, FM10K_STATS_XEC, &stats->xec); 1462 vlan_drop = fm10k_read_hw_stats_32b(hw, FM10K_STATS_VLAN_DROP, 1463 &stats->vlan_drop); 1464 loopback_drop = 1465 fm10k_read_hw_stats_32b(hw, 1466 FM10K_STATS_LOOPBACK_DROP, 1467 &stats->loopback_drop); 1468 nodesc_drop = fm10k_read_hw_stats_32b(hw, 1469 FM10K_STATS_NODESC_DROP, 1470 &stats->nodesc_drop); 1471 1472 /* if value has not changed then we have consistent data */ 1473 id_prev = id; 1474 id = fm10k_read_reg(hw, FM10K_TXQCTL(0)); 1475 } while ((id ^ id_prev) & FM10K_TXQCTL_ID_MASK); 1476 1477 /* drop non-ID bits and set VALID ID bit */ 1478 id &= FM10K_TXQCTL_ID_MASK; 1479 id |= FM10K_STAT_VALID; 1480 1481 /* Update Global Statistics */ 1482 if (stats->stats_idx == id) { 1483 stats->timeout.count += timeout; 1484 stats->ur.count += ur; 1485 stats->ca.count += ca; 1486 stats->um.count += um; 1487 stats->xec.count += xec; 1488 stats->vlan_drop.count += vlan_drop; 1489 stats->loopback_drop.count += loopback_drop; 1490 stats->nodesc_drop.count += nodesc_drop; 1491 } 1492 1493 /* Update bases and record current PF id */ 1494 fm10k_update_hw_base_32b(&stats->timeout, timeout); 1495 fm10k_update_hw_base_32b(&stats->ur, ur); 1496 fm10k_update_hw_base_32b(&stats->ca, ca); 1497 fm10k_update_hw_base_32b(&stats->um, um); 1498 fm10k_update_hw_base_32b(&stats->xec, xec); 1499 fm10k_update_hw_base_32b(&stats->vlan_drop, vlan_drop); 1500 fm10k_update_hw_base_32b(&stats->loopback_drop, loopback_drop); 1501 fm10k_update_hw_base_32b(&stats->nodesc_drop, nodesc_drop); 1502 stats->stats_idx = id; 1503 1504 /* Update Queue Statistics */ 1505 fm10k_update_hw_stats_q(hw, stats->q, 0, hw->mac.max_queues); 1506 } 1507 1508 /** 1509 * fm10k_rebind_hw_stats_pf - Resets base for hardware statistics of PF 1510 * @hw: pointer to hardware structure 1511 * @stats: pointer to the stats structure to update 1512 * 1513 * This function resets the base for global and per queue hardware 1514 * statistics. 1515 **/ 1516 static void fm10k_rebind_hw_stats_pf(struct fm10k_hw *hw, 1517 struct fm10k_hw_stats *stats) 1518 { 1519 /* Unbind Global Statistics */ 1520 fm10k_unbind_hw_stats_32b(&stats->timeout); 1521 fm10k_unbind_hw_stats_32b(&stats->ur); 1522 fm10k_unbind_hw_stats_32b(&stats->ca); 1523 fm10k_unbind_hw_stats_32b(&stats->um); 1524 fm10k_unbind_hw_stats_32b(&stats->xec); 1525 fm10k_unbind_hw_stats_32b(&stats->vlan_drop); 1526 fm10k_unbind_hw_stats_32b(&stats->loopback_drop); 1527 fm10k_unbind_hw_stats_32b(&stats->nodesc_drop); 1528 1529 /* Unbind Queue Statistics */ 1530 fm10k_unbind_hw_stats_q(stats->q, 0, hw->mac.max_queues); 1531 1532 /* Reinitialize bases for all stats */ 1533 fm10k_update_hw_stats_pf(hw, stats); 1534 } 1535 1536 /** 1537 * fm10k_set_dma_mask_pf - Configures PhyAddrSpace to limit DMA to system 1538 * @hw: pointer to hardware structure 1539 * @dma_mask: 64 bit DMA mask required for platform 1540 * 1541 * This function sets the PHYADDR.PhyAddrSpace bits for the endpoint in order 1542 * to limit the access to memory beyond what is physically in the system. 1543 **/ 1544 static void fm10k_set_dma_mask_pf(struct fm10k_hw *hw, u64 dma_mask) 1545 { 1546 /* we need to write the upper 32 bits of DMA mask to PhyAddrSpace */ 1547 u32 phyaddr = (u32)(dma_mask >> 32); 1548 1549 fm10k_write_reg(hw, FM10K_PHYADDR, phyaddr); 1550 } 1551 1552 /** 1553 * fm10k_get_fault_pf - Record a fault in one of the interface units 1554 * @hw: pointer to hardware structure 1555 * @type: pointer to fault type register offset 1556 * @fault: pointer to memory location to record the fault 1557 * 1558 * Record the fault register contents to the fault data structure and 1559 * clear the entry from the register. 1560 * 1561 * Returns ERR_PARAM if invalid register is specified or no error is present. 1562 **/ 1563 static s32 fm10k_get_fault_pf(struct fm10k_hw *hw, int type, 1564 struct fm10k_fault *fault) 1565 { 1566 u32 func; 1567 1568 /* verify the fault register is in range and is aligned */ 1569 switch (type) { 1570 case FM10K_PCA_FAULT: 1571 case FM10K_THI_FAULT: 1572 case FM10K_FUM_FAULT: 1573 break; 1574 default: 1575 return FM10K_ERR_PARAM; 1576 } 1577 1578 /* only service faults that are valid */ 1579 func = fm10k_read_reg(hw, type + FM10K_FAULT_FUNC); 1580 if (!(func & FM10K_FAULT_FUNC_VALID)) 1581 return FM10K_ERR_PARAM; 1582 1583 /* read remaining fields */ 1584 fault->address = fm10k_read_reg(hw, type + FM10K_FAULT_ADDR_HI); 1585 fault->address <<= 32; 1586 fault->address = fm10k_read_reg(hw, type + FM10K_FAULT_ADDR_LO); 1587 fault->specinfo = fm10k_read_reg(hw, type + FM10K_FAULT_SPECINFO); 1588 1589 /* clear valid bit to allow for next error */ 1590 fm10k_write_reg(hw, type + FM10K_FAULT_FUNC, FM10K_FAULT_FUNC_VALID); 1591 1592 /* Record which function triggered the error */ 1593 if (func & FM10K_FAULT_FUNC_PF) 1594 fault->func = 0; 1595 else 1596 fault->func = 1 + ((func & FM10K_FAULT_FUNC_VF_MASK) >> 1597 FM10K_FAULT_FUNC_VF_SHIFT); 1598 1599 /* record fault type */ 1600 fault->type = func & FM10K_FAULT_FUNC_TYPE_MASK; 1601 1602 return 0; 1603 } 1604 1605 /** 1606 * fm10k_request_lport_map_pf - Request LPORT map from the switch API 1607 * @hw: pointer to hardware structure 1608 * 1609 **/ 1610 static s32 fm10k_request_lport_map_pf(struct fm10k_hw *hw) 1611 { 1612 struct fm10k_mbx_info *mbx = &hw->mbx; 1613 u32 msg[1]; 1614 1615 /* issue request asking for LPORT map */ 1616 fm10k_tlv_msg_init(msg, FM10K_PF_MSG_ID_LPORT_MAP); 1617 1618 /* load onto outgoing mailbox */ 1619 return mbx->ops.enqueue_tx(hw, mbx, msg); 1620 } 1621 1622 /** 1623 * fm10k_get_host_state_pf - Returns the state of the switch and mailbox 1624 * @hw: pointer to hardware structure 1625 * @switch_ready: pointer to boolean value that will record switch state 1626 * 1627 * This function will check the DMA_CTRL2 register and mailbox in order 1628 * to determine if the switch is ready for the PF to begin requesting 1629 * addresses and mapping traffic to the local interface. 1630 **/ 1631 static s32 fm10k_get_host_state_pf(struct fm10k_hw *hw, bool *switch_ready) 1632 { 1633 u32 dma_ctrl2; 1634 1635 /* verify the switch is ready for interaction */ 1636 dma_ctrl2 = fm10k_read_reg(hw, FM10K_DMA_CTRL2); 1637 if (!(dma_ctrl2 & FM10K_DMA_CTRL2_SWITCH_READY)) 1638 return 0; 1639 1640 /* retrieve generic host state info */ 1641 return fm10k_get_host_state_generic(hw, switch_ready); 1642 } 1643 1644 /* This structure defines the attibutes to be parsed below */ 1645 const struct fm10k_tlv_attr fm10k_lport_map_msg_attr[] = { 1646 FM10K_TLV_ATTR_LE_STRUCT(FM10K_PF_ATTR_ID_ERR, 1647 sizeof(struct fm10k_swapi_error)), 1648 FM10K_TLV_ATTR_U32(FM10K_PF_ATTR_ID_LPORT_MAP), 1649 FM10K_TLV_ATTR_LAST 1650 }; 1651 1652 /** 1653 * fm10k_msg_lport_map_pf - Message handler for lport_map message from SM 1654 * @hw: Pointer to hardware structure 1655 * @results: pointer array containing parsed data 1656 * @mbx: Pointer to mailbox information structure 1657 * 1658 * This handler configures the lport mapping based on the reply from the 1659 * switch API. 1660 **/ 1661 s32 fm10k_msg_lport_map_pf(struct fm10k_hw *hw, u32 **results, 1662 struct fm10k_mbx_info *mbx) 1663 { 1664 u16 glort, mask; 1665 u32 dglort_map; 1666 s32 err; 1667 1668 err = fm10k_tlv_attr_get_u32(results[FM10K_PF_ATTR_ID_LPORT_MAP], 1669 &dglort_map); 1670 if (err) 1671 return err; 1672 1673 /* extract values out of the header */ 1674 glort = FM10K_MSG_HDR_FIELD_GET(dglort_map, LPORT_MAP_GLORT); 1675 mask = FM10K_MSG_HDR_FIELD_GET(dglort_map, LPORT_MAP_MASK); 1676 1677 /* verify mask is set and none of the masked bits in glort are set */ 1678 if (!mask || (glort & ~mask)) 1679 return FM10K_ERR_PARAM; 1680 1681 /* verify the mask is contiguous, and that it is 1's followed by 0's */ 1682 if (((~(mask - 1) & mask) + mask) & FM10K_DGLORTMAP_NONE) 1683 return FM10K_ERR_PARAM; 1684 1685 /* record the glort, mask, and port count */ 1686 hw->mac.dglort_map = dglort_map; 1687 1688 return 0; 1689 } 1690 1691 const struct fm10k_tlv_attr fm10k_update_pvid_msg_attr[] = { 1692 FM10K_TLV_ATTR_U32(FM10K_PF_ATTR_ID_UPDATE_PVID), 1693 FM10K_TLV_ATTR_LAST 1694 }; 1695 1696 /** 1697 * fm10k_msg_update_pvid_pf - Message handler for port VLAN message from SM 1698 * @hw: Pointer to hardware structure 1699 * @results: pointer array containing parsed data 1700 * @mbx: Pointer to mailbox information structure 1701 * 1702 * This handler configures the default VLAN for the PF 1703 **/ 1704 static s32 fm10k_msg_update_pvid_pf(struct fm10k_hw *hw, u32 **results, 1705 struct fm10k_mbx_info *mbx) 1706 { 1707 u16 glort, pvid; 1708 u32 pvid_update; 1709 s32 err; 1710 1711 err = fm10k_tlv_attr_get_u32(results[FM10K_PF_ATTR_ID_UPDATE_PVID], 1712 &pvid_update); 1713 if (err) 1714 return err; 1715 1716 /* extract values from the pvid update */ 1717 glort = FM10K_MSG_HDR_FIELD_GET(pvid_update, UPDATE_PVID_GLORT); 1718 pvid = FM10K_MSG_HDR_FIELD_GET(pvid_update, UPDATE_PVID_PVID); 1719 1720 /* if glort is not valid return error */ 1721 if (!fm10k_glort_valid_pf(hw, glort)) 1722 return FM10K_ERR_PARAM; 1723 1724 /* verify VLAN ID is valid */ 1725 if (pvid >= FM10K_VLAN_TABLE_VID_MAX) 1726 return FM10K_ERR_PARAM; 1727 1728 /* record the port VLAN ID value */ 1729 hw->mac.default_vid = pvid; 1730 1731 return 0; 1732 } 1733 1734 /** 1735 * fm10k_record_global_table_data - Move global table data to swapi table info 1736 * @from: pointer to source table data structure 1737 * @to: pointer to destination table info structure 1738 * 1739 * This function is will copy table_data to the table_info contained in 1740 * the hw struct. 1741 **/ 1742 static void fm10k_record_global_table_data(struct fm10k_global_table_data *from, 1743 struct fm10k_swapi_table_info *to) 1744 { 1745 /* convert from le32 struct to CPU byte ordered values */ 1746 to->used = le32_to_cpu(from->used); 1747 to->avail = le32_to_cpu(from->avail); 1748 } 1749 1750 const struct fm10k_tlv_attr fm10k_err_msg_attr[] = { 1751 FM10K_TLV_ATTR_LE_STRUCT(FM10K_PF_ATTR_ID_ERR, 1752 sizeof(struct fm10k_swapi_error)), 1753 FM10K_TLV_ATTR_LAST 1754 }; 1755 1756 /** 1757 * fm10k_msg_err_pf - Message handler for error reply 1758 * @hw: Pointer to hardware structure 1759 * @results: pointer array containing parsed data 1760 * @mbx: Pointer to mailbox information structure 1761 * 1762 * This handler will capture the data for any error replies to previous 1763 * messages that the PF has sent. 1764 **/ 1765 s32 fm10k_msg_err_pf(struct fm10k_hw *hw, u32 **results, 1766 struct fm10k_mbx_info *mbx) 1767 { 1768 struct fm10k_swapi_error err_msg; 1769 s32 err; 1770 1771 /* extract structure from message */ 1772 err = fm10k_tlv_attr_get_le_struct(results[FM10K_PF_ATTR_ID_ERR], 1773 &err_msg, sizeof(err_msg)); 1774 if (err) 1775 return err; 1776 1777 /* record table status */ 1778 fm10k_record_global_table_data(&err_msg.mac, &hw->swapi.mac); 1779 fm10k_record_global_table_data(&err_msg.nexthop, &hw->swapi.nexthop); 1780 fm10k_record_global_table_data(&err_msg.ffu, &hw->swapi.ffu); 1781 1782 /* record SW API status value */ 1783 hw->swapi.status = le32_to_cpu(err_msg.status); 1784 1785 return 0; 1786 } 1787 1788 static const struct fm10k_msg_data fm10k_msg_data_pf[] = { 1789 FM10K_PF_MSG_ERR_HANDLER(XCAST_MODES, fm10k_msg_err_pf), 1790 FM10K_PF_MSG_ERR_HANDLER(UPDATE_MAC_FWD_RULE, fm10k_msg_err_pf), 1791 FM10K_PF_MSG_LPORT_MAP_HANDLER(fm10k_msg_lport_map_pf), 1792 FM10K_PF_MSG_ERR_HANDLER(LPORT_CREATE, fm10k_msg_err_pf), 1793 FM10K_PF_MSG_ERR_HANDLER(LPORT_DELETE, fm10k_msg_err_pf), 1794 FM10K_PF_MSG_UPDATE_PVID_HANDLER(fm10k_msg_update_pvid_pf), 1795 FM10K_TLV_MSG_ERROR_HANDLER(fm10k_tlv_msg_error), 1796 }; 1797 1798 static const struct fm10k_mac_ops mac_ops_pf = { 1799 .get_bus_info = fm10k_get_bus_info_generic, 1800 .reset_hw = fm10k_reset_hw_pf, 1801 .init_hw = fm10k_init_hw_pf, 1802 .start_hw = fm10k_start_hw_generic, 1803 .stop_hw = fm10k_stop_hw_generic, 1804 .update_vlan = fm10k_update_vlan_pf, 1805 .read_mac_addr = fm10k_read_mac_addr_pf, 1806 .update_uc_addr = fm10k_update_uc_addr_pf, 1807 .update_mc_addr = fm10k_update_mc_addr_pf, 1808 .update_xcast_mode = fm10k_update_xcast_mode_pf, 1809 .update_int_moderator = fm10k_update_int_moderator_pf, 1810 .update_lport_state = fm10k_update_lport_state_pf, 1811 .update_hw_stats = fm10k_update_hw_stats_pf, 1812 .rebind_hw_stats = fm10k_rebind_hw_stats_pf, 1813 .configure_dglort_map = fm10k_configure_dglort_map_pf, 1814 .set_dma_mask = fm10k_set_dma_mask_pf, 1815 .get_fault = fm10k_get_fault_pf, 1816 .get_host_state = fm10k_get_host_state_pf, 1817 .request_lport_map = fm10k_request_lport_map_pf, 1818 }; 1819 1820 static const struct fm10k_iov_ops iov_ops_pf = { 1821 .assign_resources = fm10k_iov_assign_resources_pf, 1822 .configure_tc = fm10k_iov_configure_tc_pf, 1823 .assign_int_moderator = fm10k_iov_assign_int_moderator_pf, 1824 .assign_default_mac_vlan = fm10k_iov_assign_default_mac_vlan_pf, 1825 .reset_resources = fm10k_iov_reset_resources_pf, 1826 .set_lport = fm10k_iov_set_lport_pf, 1827 .reset_lport = fm10k_iov_reset_lport_pf, 1828 .update_stats = fm10k_iov_update_stats_pf, 1829 }; 1830 1831 static s32 fm10k_get_invariants_pf(struct fm10k_hw *hw) 1832 { 1833 fm10k_get_invariants_generic(hw); 1834 1835 return fm10k_sm_mbx_init(hw, &hw->mbx, fm10k_msg_data_pf); 1836 } 1837 1838 const struct fm10k_info fm10k_pf_info = { 1839 .mac = fm10k_mac_pf, 1840 .get_invariants = fm10k_get_invariants_pf, 1841 .mac_ops = &mac_ops_pf, 1842 .iov_ops = &iov_ops_pf, 1843 }; 1844