1 /* Intel Ethernet Switch Host Interface Driver
2  * Copyright(c) 2013 - 2015 Intel Corporation.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms and conditions of the GNU General Public License,
6  * version 2, as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope it will be useful, but WITHOUT
9  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
11  * more details.
12  *
13  * The full GNU General Public License is included in this distribution in
14  * the file called "COPYING".
15  *
16  * Contact Information:
17  * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
18  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
19  */
20 
21 #include "fm10k_pf.h"
22 #include "fm10k_vf.h"
23 
24 /**
25  *  fm10k_reset_hw_pf - PF hardware reset
26  *  @hw: pointer to hardware structure
27  *
28  *  This function should return the hardware to a state similar to the
29  *  one it is in after being powered on.
30  **/
31 static s32 fm10k_reset_hw_pf(struct fm10k_hw *hw)
32 {
33 	s32 err;
34 	u32 reg;
35 	u16 i;
36 
37 	/* Disable interrupts */
38 	fm10k_write_reg(hw, FM10K_EIMR, FM10K_EIMR_DISABLE(ALL));
39 
40 	/* Lock ITR2 reg 0 into itself and disable interrupt moderation */
41 	fm10k_write_reg(hw, FM10K_ITR2(0), 0);
42 	fm10k_write_reg(hw, FM10K_INT_CTRL, 0);
43 
44 	/* We assume here Tx and Rx queue 0 are owned by the PF */
45 
46 	/* Shut off VF access to their queues forcing them to queue 0 */
47 	for (i = 0; i < FM10K_TQMAP_TABLE_SIZE; i++) {
48 		fm10k_write_reg(hw, FM10K_TQMAP(i), 0);
49 		fm10k_write_reg(hw, FM10K_RQMAP(i), 0);
50 	}
51 
52 	/* shut down all rings */
53 	err = fm10k_disable_queues_generic(hw, FM10K_MAX_QUEUES);
54 	if (err)
55 		return err;
56 
57 	/* Verify that DMA is no longer active */
58 	reg = fm10k_read_reg(hw, FM10K_DMA_CTRL);
59 	if (reg & (FM10K_DMA_CTRL_TX_ACTIVE | FM10K_DMA_CTRL_RX_ACTIVE))
60 		return FM10K_ERR_DMA_PENDING;
61 
62 	/* verify the switch is ready for reset */
63 	reg = fm10k_read_reg(hw, FM10K_DMA_CTRL2);
64 	if (!(reg & FM10K_DMA_CTRL2_SWITCH_READY))
65 		goto out;
66 
67 	/* Inititate data path reset */
68 	reg |= FM10K_DMA_CTRL_DATAPATH_RESET;
69 	fm10k_write_reg(hw, FM10K_DMA_CTRL, reg);
70 
71 	/* Flush write and allow 100us for reset to complete */
72 	fm10k_write_flush(hw);
73 	udelay(FM10K_RESET_TIMEOUT);
74 
75 	/* Verify we made it out of reset */
76 	reg = fm10k_read_reg(hw, FM10K_IP);
77 	if (!(reg & FM10K_IP_NOTINRESET))
78 		err = FM10K_ERR_RESET_FAILED;
79 
80 out:
81 	return err;
82 }
83 
84 /**
85  *  fm10k_is_ari_hierarchy_pf - Indicate ARI hierarchy support
86  *  @hw: pointer to hardware structure
87  *
88  *  Looks at the ARI hierarchy bit to determine whether ARI is supported or not.
89  **/
90 static bool fm10k_is_ari_hierarchy_pf(struct fm10k_hw *hw)
91 {
92 	u16 sriov_ctrl = fm10k_read_pci_cfg_word(hw, FM10K_PCIE_SRIOV_CTRL);
93 
94 	return !!(sriov_ctrl & FM10K_PCIE_SRIOV_CTRL_VFARI);
95 }
96 
97 /**
98  *  fm10k_init_hw_pf - PF hardware initialization
99  *  @hw: pointer to hardware structure
100  *
101  **/
102 static s32 fm10k_init_hw_pf(struct fm10k_hw *hw)
103 {
104 	u32 dma_ctrl, txqctl;
105 	u16 i;
106 
107 	/* Establish default VSI as valid */
108 	fm10k_write_reg(hw, FM10K_DGLORTDEC(fm10k_dglort_default), 0);
109 	fm10k_write_reg(hw, FM10K_DGLORTMAP(fm10k_dglort_default),
110 			FM10K_DGLORTMAP_ANY);
111 
112 	/* Invalidate all other GLORT entries */
113 	for (i = 1; i < FM10K_DGLORT_COUNT; i++)
114 		fm10k_write_reg(hw, FM10K_DGLORTMAP(i), FM10K_DGLORTMAP_NONE);
115 
116 	/* reset ITR2(0) to point to itself */
117 	fm10k_write_reg(hw, FM10K_ITR2(0), 0);
118 
119 	/* reset VF ITR2(0) to point to 0 avoid PF registers */
120 	fm10k_write_reg(hw, FM10K_ITR2(FM10K_ITR_REG_COUNT_PF), 0);
121 
122 	/* loop through all PF ITR2 registers pointing them to the previous */
123 	for (i = 1; i < FM10K_ITR_REG_COUNT_PF; i++)
124 		fm10k_write_reg(hw, FM10K_ITR2(i), i - 1);
125 
126 	/* Enable interrupt moderator if not already enabled */
127 	fm10k_write_reg(hw, FM10K_INT_CTRL, FM10K_INT_CTRL_ENABLEMODERATOR);
128 
129 	/* compute the default txqctl configuration */
130 	txqctl = FM10K_TXQCTL_PF | FM10K_TXQCTL_UNLIMITED_BW |
131 		 (hw->mac.default_vid << FM10K_TXQCTL_VID_SHIFT);
132 
133 	for (i = 0; i < FM10K_MAX_QUEUES; i++) {
134 		/* configure rings for 256 Queue / 32 Descriptor cache mode */
135 		fm10k_write_reg(hw, FM10K_TQDLOC(i),
136 				(i * FM10K_TQDLOC_BASE_32_DESC) |
137 				FM10K_TQDLOC_SIZE_32_DESC);
138 		fm10k_write_reg(hw, FM10K_TXQCTL(i), txqctl);
139 
140 		/* configure rings to provide TPH processing hints */
141 		fm10k_write_reg(hw, FM10K_TPH_TXCTRL(i),
142 				FM10K_TPH_TXCTRL_DESC_TPHEN |
143 				FM10K_TPH_TXCTRL_DESC_RROEN |
144 				FM10K_TPH_TXCTRL_DESC_WROEN |
145 				FM10K_TPH_TXCTRL_DATA_RROEN);
146 		fm10k_write_reg(hw, FM10K_TPH_RXCTRL(i),
147 				FM10K_TPH_RXCTRL_DESC_TPHEN |
148 				FM10K_TPH_RXCTRL_DESC_RROEN |
149 				FM10K_TPH_RXCTRL_DATA_WROEN |
150 				FM10K_TPH_RXCTRL_HDR_WROEN);
151 	}
152 
153 	/* set max hold interval to align with 1.024 usec in all modes and
154 	 * store ITR scale
155 	 */
156 	switch (hw->bus.speed) {
157 	case fm10k_bus_speed_2500:
158 		dma_ctrl = FM10K_DMA_CTRL_MAX_HOLD_1US_GEN1;
159 		hw->mac.itr_scale = FM10K_TDLEN_ITR_SCALE_GEN1;
160 		break;
161 	case fm10k_bus_speed_5000:
162 		dma_ctrl = FM10K_DMA_CTRL_MAX_HOLD_1US_GEN2;
163 		hw->mac.itr_scale = FM10K_TDLEN_ITR_SCALE_GEN2;
164 		break;
165 	case fm10k_bus_speed_8000:
166 		dma_ctrl = FM10K_DMA_CTRL_MAX_HOLD_1US_GEN3;
167 		hw->mac.itr_scale = FM10K_TDLEN_ITR_SCALE_GEN3;
168 		break;
169 	default:
170 		dma_ctrl = 0;
171 		/* just in case, assume Gen3 ITR scale */
172 		hw->mac.itr_scale = FM10K_TDLEN_ITR_SCALE_GEN3;
173 		break;
174 	}
175 
176 	/* Configure TSO flags */
177 	fm10k_write_reg(hw, FM10K_DTXTCPFLGL, FM10K_TSO_FLAGS_LOW);
178 	fm10k_write_reg(hw, FM10K_DTXTCPFLGH, FM10K_TSO_FLAGS_HI);
179 
180 	/* Enable DMA engine
181 	 * Set Rx Descriptor size to 32
182 	 * Set Minimum MSS to 64
183 	 * Set Maximum number of Rx queues to 256 / 32 Descriptor
184 	 */
185 	dma_ctrl |= FM10K_DMA_CTRL_TX_ENABLE | FM10K_DMA_CTRL_RX_ENABLE |
186 		    FM10K_DMA_CTRL_RX_DESC_SIZE | FM10K_DMA_CTRL_MINMSS_64 |
187 		    FM10K_DMA_CTRL_32_DESC;
188 
189 	fm10k_write_reg(hw, FM10K_DMA_CTRL, dma_ctrl);
190 
191 	/* record maximum queue count, we limit ourselves to 128 */
192 	hw->mac.max_queues = FM10K_MAX_QUEUES_PF;
193 
194 	/* We support either 64 VFs or 7 VFs depending on if we have ARI */
195 	hw->iov.total_vfs = fm10k_is_ari_hierarchy_pf(hw) ? 64 : 7;
196 
197 	return 0;
198 }
199 
200 /**
201  *  fm10k_update_vlan_pf - Update status of VLAN ID in VLAN filter table
202  *  @hw: pointer to hardware structure
203  *  @vid: VLAN ID to add to table
204  *  @vsi: Index indicating VF ID or PF ID in table
205  *  @set: Indicates if this is a set or clear operation
206  *
207  *  This function adds or removes the corresponding VLAN ID from the VLAN
208  *  filter table for the corresponding function.  In addition to the
209  *  standard set/clear that supports one bit a multi-bit write is
210  *  supported to set 64 bits at a time.
211  **/
212 static s32 fm10k_update_vlan_pf(struct fm10k_hw *hw, u32 vid, u8 vsi, bool set)
213 {
214 	u32 vlan_table, reg, mask, bit, len;
215 
216 	/* verify the VSI index is valid */
217 	if (vsi > FM10K_VLAN_TABLE_VSI_MAX)
218 		return FM10K_ERR_PARAM;
219 
220 	/* VLAN multi-bit write:
221 	 * The multi-bit write has several parts to it.
222 	 *    3			  2		      1			  0
223 	 *  1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
224 	 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
225 	 * | RSVD0 |         Length        |C|RSVD0|        VLAN ID        |
226 	 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
227 	 *
228 	 * VLAN ID: Vlan Starting value
229 	 * RSVD0: Reserved section, must be 0
230 	 * C: Flag field, 0 is set, 1 is clear (Used in VF VLAN message)
231 	 * Length: Number of times to repeat the bit being set
232 	 */
233 	len = vid >> 16;
234 	vid = (vid << 17) >> 17;
235 
236 	/* verify the reserved 0 fields are 0 */
237 	if (len >= FM10K_VLAN_TABLE_VID_MAX || vid >= FM10K_VLAN_TABLE_VID_MAX)
238 		return FM10K_ERR_PARAM;
239 
240 	/* Loop through the table updating all required VLANs */
241 	for (reg = FM10K_VLAN_TABLE(vsi, vid / 32), bit = vid % 32;
242 	     len < FM10K_VLAN_TABLE_VID_MAX;
243 	     len -= 32 - bit, reg++, bit = 0) {
244 		/* record the initial state of the register */
245 		vlan_table = fm10k_read_reg(hw, reg);
246 
247 		/* truncate mask if we are at the start or end of the run */
248 		mask = (~(u32)0 >> ((len < 31) ? 31 - len : 0)) << bit;
249 
250 		/* make necessary modifications to the register */
251 		mask &= set ? ~vlan_table : vlan_table;
252 		if (mask)
253 			fm10k_write_reg(hw, reg, vlan_table ^ mask);
254 	}
255 
256 	return 0;
257 }
258 
259 /**
260  *  fm10k_read_mac_addr_pf - Read device MAC address
261  *  @hw: pointer to the HW structure
262  *
263  *  Reads the device MAC address from the SM_AREA and stores the value.
264  **/
265 static s32 fm10k_read_mac_addr_pf(struct fm10k_hw *hw)
266 {
267 	u8 perm_addr[ETH_ALEN];
268 	u32 serial_num;
269 
270 	serial_num = fm10k_read_reg(hw, FM10K_SM_AREA(1));
271 
272 	/* last byte should be all 1's */
273 	if ((~serial_num) << 24)
274 		return  FM10K_ERR_INVALID_MAC_ADDR;
275 
276 	perm_addr[0] = (u8)(serial_num >> 24);
277 	perm_addr[1] = (u8)(serial_num >> 16);
278 	perm_addr[2] = (u8)(serial_num >> 8);
279 
280 	serial_num = fm10k_read_reg(hw, FM10K_SM_AREA(0));
281 
282 	/* first byte should be all 1's */
283 	if ((~serial_num) >> 24)
284 		return  FM10K_ERR_INVALID_MAC_ADDR;
285 
286 	perm_addr[3] = (u8)(serial_num >> 16);
287 	perm_addr[4] = (u8)(serial_num >> 8);
288 	perm_addr[5] = (u8)(serial_num);
289 
290 	ether_addr_copy(hw->mac.perm_addr, perm_addr);
291 	ether_addr_copy(hw->mac.addr, perm_addr);
292 
293 	return 0;
294 }
295 
296 /**
297  *  fm10k_glort_valid_pf - Validate that the provided glort is valid
298  *  @hw: pointer to the HW structure
299  *  @glort: base glort to be validated
300  *
301  *  This function will return an error if the provided glort is invalid
302  **/
303 bool fm10k_glort_valid_pf(struct fm10k_hw *hw, u16 glort)
304 {
305 	glort &= hw->mac.dglort_map >> FM10K_DGLORTMAP_MASK_SHIFT;
306 
307 	return glort == (hw->mac.dglort_map & FM10K_DGLORTMAP_NONE);
308 }
309 
310 /**
311  *  fm10k_update_xc_addr_pf - Update device addresses
312  *  @hw: pointer to the HW structure
313  *  @glort: base resource tag for this request
314  *  @mac: MAC address to add/remove from table
315  *  @vid: VLAN ID to add/remove from table
316  *  @add: Indicates if this is an add or remove operation
317  *  @flags: flags field to indicate add and secure
318  *
319  *  This function generates a message to the Switch API requesting
320  *  that the given logical port add/remove the given L2 MAC/VLAN address.
321  **/
322 static s32 fm10k_update_xc_addr_pf(struct fm10k_hw *hw, u16 glort,
323 				   const u8 *mac, u16 vid, bool add, u8 flags)
324 {
325 	struct fm10k_mbx_info *mbx = &hw->mbx;
326 	struct fm10k_mac_update mac_update;
327 	u32 msg[5];
328 
329 	/* clear set bit from VLAN ID */
330 	vid &= ~FM10K_VLAN_CLEAR;
331 
332 	/* if glort or VLAN are not valid return error */
333 	if (!fm10k_glort_valid_pf(hw, glort) || vid >= FM10K_VLAN_TABLE_VID_MAX)
334 		return FM10K_ERR_PARAM;
335 
336 	/* record fields */
337 	mac_update.mac_lower = cpu_to_le32(((u32)mac[2] << 24) |
338 						 ((u32)mac[3] << 16) |
339 						 ((u32)mac[4] << 8) |
340 						 ((u32)mac[5]));
341 	mac_update.mac_upper = cpu_to_le16(((u16)mac[0] << 8) |
342 					   ((u16)mac[1]));
343 	mac_update.vlan = cpu_to_le16(vid);
344 	mac_update.glort = cpu_to_le16(glort);
345 	mac_update.action = add ? 0 : 1;
346 	mac_update.flags = flags;
347 
348 	/* populate mac_update fields */
349 	fm10k_tlv_msg_init(msg, FM10K_PF_MSG_ID_UPDATE_MAC_FWD_RULE);
350 	fm10k_tlv_attr_put_le_struct(msg, FM10K_PF_ATTR_ID_MAC_UPDATE,
351 				     &mac_update, sizeof(mac_update));
352 
353 	/* load onto outgoing mailbox */
354 	return mbx->ops.enqueue_tx(hw, mbx, msg);
355 }
356 
357 /**
358  *  fm10k_update_uc_addr_pf - Update device unicast addresses
359  *  @hw: pointer to the HW structure
360  *  @glort: base resource tag for this request
361  *  @mac: MAC address to add/remove from table
362  *  @vid: VLAN ID to add/remove from table
363  *  @add: Indicates if this is an add or remove operation
364  *  @flags: flags field to indicate add and secure
365  *
366  *  This function is used to add or remove unicast addresses for
367  *  the PF.
368  **/
369 static s32 fm10k_update_uc_addr_pf(struct fm10k_hw *hw, u16 glort,
370 				   const u8 *mac, u16 vid, bool add, u8 flags)
371 {
372 	/* verify MAC address is valid */
373 	if (!is_valid_ether_addr(mac))
374 		return FM10K_ERR_PARAM;
375 
376 	return fm10k_update_xc_addr_pf(hw, glort, mac, vid, add, flags);
377 }
378 
379 /**
380  *  fm10k_update_mc_addr_pf - Update device multicast addresses
381  *  @hw: pointer to the HW structure
382  *  @glort: base resource tag for this request
383  *  @mac: MAC address to add/remove from table
384  *  @vid: VLAN ID to add/remove from table
385  *  @add: Indicates if this is an add or remove operation
386  *
387  *  This function is used to add or remove multicast MAC addresses for
388  *  the PF.
389  **/
390 static s32 fm10k_update_mc_addr_pf(struct fm10k_hw *hw, u16 glort,
391 				   const u8 *mac, u16 vid, bool add)
392 {
393 	/* verify multicast address is valid */
394 	if (!is_multicast_ether_addr(mac))
395 		return FM10K_ERR_PARAM;
396 
397 	return fm10k_update_xc_addr_pf(hw, glort, mac, vid, add, 0);
398 }
399 
400 /**
401  *  fm10k_update_xcast_mode_pf - Request update of multicast mode
402  *  @hw: pointer to hardware structure
403  *  @glort: base resource tag for this request
404  *  @mode: integer value indicating mode being requested
405  *
406  *  This function will attempt to request a higher mode for the port
407  *  so that it can enable either multicast, multicast promiscuous, or
408  *  promiscuous mode of operation.
409  **/
410 static s32 fm10k_update_xcast_mode_pf(struct fm10k_hw *hw, u16 glort, u8 mode)
411 {
412 	struct fm10k_mbx_info *mbx = &hw->mbx;
413 	u32 msg[3], xcast_mode;
414 
415 	if (mode > FM10K_XCAST_MODE_NONE)
416 		return FM10K_ERR_PARAM;
417 
418 	/* if glort is not valid return error */
419 	if (!fm10k_glort_valid_pf(hw, glort))
420 		return FM10K_ERR_PARAM;
421 
422 	/* write xcast mode as a single u32 value,
423 	 * lower 16 bits: glort
424 	 * upper 16 bits: mode
425 	 */
426 	xcast_mode = ((u32)mode << 16) | glort;
427 
428 	/* generate message requesting to change xcast mode */
429 	fm10k_tlv_msg_init(msg, FM10K_PF_MSG_ID_XCAST_MODES);
430 	fm10k_tlv_attr_put_u32(msg, FM10K_PF_ATTR_ID_XCAST_MODE, xcast_mode);
431 
432 	/* load onto outgoing mailbox */
433 	return mbx->ops.enqueue_tx(hw, mbx, msg);
434 }
435 
436 /**
437  *  fm10k_update_int_moderator_pf - Update interrupt moderator linked list
438  *  @hw: pointer to hardware structure
439  *
440  *  This function walks through the MSI-X vector table to determine the
441  *  number of active interrupts and based on that information updates the
442  *  interrupt moderator linked list.
443  **/
444 static void fm10k_update_int_moderator_pf(struct fm10k_hw *hw)
445 {
446 	u32 i;
447 
448 	/* Disable interrupt moderator */
449 	fm10k_write_reg(hw, FM10K_INT_CTRL, 0);
450 
451 	/* loop through PF from last to first looking enabled vectors */
452 	for (i = FM10K_ITR_REG_COUNT_PF - 1; i; i--) {
453 		if (!fm10k_read_reg(hw, FM10K_MSIX_VECTOR_MASK(i)))
454 			break;
455 	}
456 
457 	/* always reset VFITR2[0] to point to last enabled PF vector */
458 	fm10k_write_reg(hw, FM10K_ITR2(FM10K_ITR_REG_COUNT_PF), i);
459 
460 	/* reset ITR2[0] to point to last enabled PF vector */
461 	if (!hw->iov.num_vfs)
462 		fm10k_write_reg(hw, FM10K_ITR2(0), i);
463 
464 	/* Enable interrupt moderator */
465 	fm10k_write_reg(hw, FM10K_INT_CTRL, FM10K_INT_CTRL_ENABLEMODERATOR);
466 }
467 
468 /**
469  *  fm10k_update_lport_state_pf - Notify the switch of a change in port state
470  *  @hw: pointer to the HW structure
471  *  @glort: base resource tag for this request
472  *  @count: number of logical ports being updated
473  *  @enable: boolean value indicating enable or disable
474  *
475  *  This function is used to add/remove a logical port from the switch.
476  **/
477 static s32 fm10k_update_lport_state_pf(struct fm10k_hw *hw, u16 glort,
478 				       u16 count, bool enable)
479 {
480 	struct fm10k_mbx_info *mbx = &hw->mbx;
481 	u32 msg[3], lport_msg;
482 
483 	/* do nothing if we are being asked to create or destroy 0 ports */
484 	if (!count)
485 		return 0;
486 
487 	/* if glort is not valid return error */
488 	if (!fm10k_glort_valid_pf(hw, glort))
489 		return FM10K_ERR_PARAM;
490 
491 	/* construct the lport message from the 2 pieces of data we have */
492 	lport_msg = ((u32)count << 16) | glort;
493 
494 	/* generate lport create/delete message */
495 	fm10k_tlv_msg_init(msg, enable ? FM10K_PF_MSG_ID_LPORT_CREATE :
496 					 FM10K_PF_MSG_ID_LPORT_DELETE);
497 	fm10k_tlv_attr_put_u32(msg, FM10K_PF_ATTR_ID_PORT, lport_msg);
498 
499 	/* load onto outgoing mailbox */
500 	return mbx->ops.enqueue_tx(hw, mbx, msg);
501 }
502 
503 /**
504  *  fm10k_configure_dglort_map_pf - Configures GLORT entry and queues
505  *  @hw: pointer to hardware structure
506  *  @dglort: pointer to dglort configuration structure
507  *
508  *  Reads the configuration structure contained in dglort_cfg and uses
509  *  that information to then populate a DGLORTMAP/DEC entry and the queues
510  *  to which it has been assigned.
511  **/
512 static s32 fm10k_configure_dglort_map_pf(struct fm10k_hw *hw,
513 					 struct fm10k_dglort_cfg *dglort)
514 {
515 	u16 glort, queue_count, vsi_count, pc_count;
516 	u16 vsi, queue, pc, q_idx;
517 	u32 txqctl, dglortdec, dglortmap;
518 
519 	/* verify the dglort pointer */
520 	if (!dglort)
521 		return FM10K_ERR_PARAM;
522 
523 	/* verify the dglort values */
524 	if ((dglort->idx > 7) || (dglort->rss_l > 7) || (dglort->pc_l > 3) ||
525 	    (dglort->vsi_l > 6) || (dglort->vsi_b > 64) ||
526 	    (dglort->queue_l > 8) || (dglort->queue_b >= 256))
527 		return FM10K_ERR_PARAM;
528 
529 	/* determine count of VSIs and queues */
530 	queue_count = 1 << (dglort->rss_l + dglort->pc_l);
531 	vsi_count = 1 << (dglort->vsi_l + dglort->queue_l);
532 	glort = dglort->glort;
533 	q_idx = dglort->queue_b;
534 
535 	/* configure SGLORT for queues */
536 	for (vsi = 0; vsi < vsi_count; vsi++, glort++) {
537 		for (queue = 0; queue < queue_count; queue++, q_idx++) {
538 			if (q_idx >= FM10K_MAX_QUEUES)
539 				break;
540 
541 			fm10k_write_reg(hw, FM10K_TX_SGLORT(q_idx), glort);
542 			fm10k_write_reg(hw, FM10K_RX_SGLORT(q_idx), glort);
543 		}
544 	}
545 
546 	/* determine count of PCs and queues */
547 	queue_count = 1 << (dglort->queue_l + dglort->rss_l + dglort->vsi_l);
548 	pc_count = 1 << dglort->pc_l;
549 
550 	/* configure PC for Tx queues */
551 	for (pc = 0; pc < pc_count; pc++) {
552 		q_idx = pc + dglort->queue_b;
553 		for (queue = 0; queue < queue_count; queue++) {
554 			if (q_idx >= FM10K_MAX_QUEUES)
555 				break;
556 
557 			txqctl = fm10k_read_reg(hw, FM10K_TXQCTL(q_idx));
558 			txqctl &= ~FM10K_TXQCTL_PC_MASK;
559 			txqctl |= pc << FM10K_TXQCTL_PC_SHIFT;
560 			fm10k_write_reg(hw, FM10K_TXQCTL(q_idx), txqctl);
561 
562 			q_idx += pc_count;
563 		}
564 	}
565 
566 	/* configure DGLORTDEC */
567 	dglortdec = ((u32)(dglort->rss_l) << FM10K_DGLORTDEC_RSSLENGTH_SHIFT) |
568 		    ((u32)(dglort->queue_b) << FM10K_DGLORTDEC_QBASE_SHIFT) |
569 		    ((u32)(dglort->pc_l) << FM10K_DGLORTDEC_PCLENGTH_SHIFT) |
570 		    ((u32)(dglort->vsi_b) << FM10K_DGLORTDEC_VSIBASE_SHIFT) |
571 		    ((u32)(dglort->vsi_l) << FM10K_DGLORTDEC_VSILENGTH_SHIFT) |
572 		    ((u32)(dglort->queue_l));
573 	if (dglort->inner_rss)
574 		dglortdec |=  FM10K_DGLORTDEC_INNERRSS_ENABLE;
575 
576 	/* configure DGLORTMAP */
577 	dglortmap = (dglort->idx == fm10k_dglort_default) ?
578 			FM10K_DGLORTMAP_ANY : FM10K_DGLORTMAP_ZERO;
579 	dglortmap <<= dglort->vsi_l + dglort->queue_l + dglort->shared_l;
580 	dglortmap |= dglort->glort;
581 
582 	/* write values to hardware */
583 	fm10k_write_reg(hw, FM10K_DGLORTDEC(dglort->idx), dglortdec);
584 	fm10k_write_reg(hw, FM10K_DGLORTMAP(dglort->idx), dglortmap);
585 
586 	return 0;
587 }
588 
589 u16 fm10k_queues_per_pool(struct fm10k_hw *hw)
590 {
591 	u16 num_pools = hw->iov.num_pools;
592 
593 	return (num_pools > 32) ? 2 : (num_pools > 16) ? 4 : (num_pools > 8) ?
594 	       8 : FM10K_MAX_QUEUES_POOL;
595 }
596 
597 u16 fm10k_vf_queue_index(struct fm10k_hw *hw, u16 vf_idx)
598 {
599 	u16 num_vfs = hw->iov.num_vfs;
600 	u16 vf_q_idx = FM10K_MAX_QUEUES;
601 
602 	vf_q_idx -= fm10k_queues_per_pool(hw) * (num_vfs - vf_idx);
603 
604 	return vf_q_idx;
605 }
606 
607 static u16 fm10k_vectors_per_pool(struct fm10k_hw *hw)
608 {
609 	u16 num_pools = hw->iov.num_pools;
610 
611 	return (num_pools > 32) ? 8 : (num_pools > 16) ? 16 :
612 	       FM10K_MAX_VECTORS_POOL;
613 }
614 
615 static u16 fm10k_vf_vector_index(struct fm10k_hw *hw, u16 vf_idx)
616 {
617 	u16 vf_v_idx = FM10K_MAX_VECTORS_PF;
618 
619 	vf_v_idx += fm10k_vectors_per_pool(hw) * vf_idx;
620 
621 	return vf_v_idx;
622 }
623 
624 /**
625  *  fm10k_iov_assign_resources_pf - Assign pool resources for virtualization
626  *  @hw: pointer to the HW structure
627  *  @num_vfs: number of VFs to be allocated
628  *  @num_pools: number of virtualization pools to be allocated
629  *
630  *  Allocates queues and traffic classes to virtualization entities to prepare
631  *  the PF for SR-IOV and VMDq
632  **/
633 static s32 fm10k_iov_assign_resources_pf(struct fm10k_hw *hw, u16 num_vfs,
634 					 u16 num_pools)
635 {
636 	u16 qmap_stride, qpp, vpp, vf_q_idx, vf_q_idx0, qmap_idx;
637 	u32 vid = hw->mac.default_vid << FM10K_TXQCTL_VID_SHIFT;
638 	int i, j;
639 
640 	/* hardware only supports up to 64 pools */
641 	if (num_pools > 64)
642 		return FM10K_ERR_PARAM;
643 
644 	/* the number of VFs cannot exceed the number of pools */
645 	if ((num_vfs > num_pools) || (num_vfs > hw->iov.total_vfs))
646 		return FM10K_ERR_PARAM;
647 
648 	/* record number of virtualization entities */
649 	hw->iov.num_vfs = num_vfs;
650 	hw->iov.num_pools = num_pools;
651 
652 	/* determine qmap offsets and counts */
653 	qmap_stride = (num_vfs > 8) ? 32 : 256;
654 	qpp = fm10k_queues_per_pool(hw);
655 	vpp = fm10k_vectors_per_pool(hw);
656 
657 	/* calculate starting index for queues */
658 	vf_q_idx = fm10k_vf_queue_index(hw, 0);
659 	qmap_idx = 0;
660 
661 	/* establish TCs with -1 credits and no quanta to prevent transmit */
662 	for (i = 0; i < num_vfs; i++) {
663 		fm10k_write_reg(hw, FM10K_TC_MAXCREDIT(i), 0);
664 		fm10k_write_reg(hw, FM10K_TC_RATE(i), 0);
665 		fm10k_write_reg(hw, FM10K_TC_CREDIT(i),
666 				FM10K_TC_CREDIT_CREDIT_MASK);
667 	}
668 
669 	/* zero out all mbmem registers */
670 	for (i = FM10K_VFMBMEM_LEN * num_vfs; i--;)
671 		fm10k_write_reg(hw, FM10K_MBMEM(i), 0);
672 
673 	/* clear event notification of VF FLR */
674 	fm10k_write_reg(hw, FM10K_PFVFLREC(0), ~0);
675 	fm10k_write_reg(hw, FM10K_PFVFLREC(1), ~0);
676 
677 	/* loop through unallocated rings assigning them back to PF */
678 	for (i = FM10K_MAX_QUEUES_PF; i < vf_q_idx; i++) {
679 		fm10k_write_reg(hw, FM10K_TXDCTL(i), 0);
680 		fm10k_write_reg(hw, FM10K_TXQCTL(i), FM10K_TXQCTL_PF |
681 				FM10K_TXQCTL_UNLIMITED_BW | vid);
682 		fm10k_write_reg(hw, FM10K_RXQCTL(i), FM10K_RXQCTL_PF);
683 	}
684 
685 	/* PF should have already updated VFITR2[0] */
686 
687 	/* update all ITR registers to flow to VFITR2[0] */
688 	for (i = FM10K_ITR_REG_COUNT_PF + 1; i < FM10K_ITR_REG_COUNT; i++) {
689 		if (!(i & (vpp - 1)))
690 			fm10k_write_reg(hw, FM10K_ITR2(i), i - vpp);
691 		else
692 			fm10k_write_reg(hw, FM10K_ITR2(i), i - 1);
693 	}
694 
695 	/* update PF ITR2[0] to reference the last vector */
696 	fm10k_write_reg(hw, FM10K_ITR2(0),
697 			fm10k_vf_vector_index(hw, num_vfs - 1));
698 
699 	/* loop through rings populating rings and TCs */
700 	for (i = 0; i < num_vfs; i++) {
701 		/* record index for VF queue 0 for use in end of loop */
702 		vf_q_idx0 = vf_q_idx;
703 
704 		for (j = 0; j < qpp; j++, qmap_idx++, vf_q_idx++) {
705 			/* assign VF and locked TC to queues */
706 			fm10k_write_reg(hw, FM10K_TXDCTL(vf_q_idx), 0);
707 			fm10k_write_reg(hw, FM10K_TXQCTL(vf_q_idx),
708 					(i << FM10K_TXQCTL_TC_SHIFT) | i |
709 					FM10K_TXQCTL_VF | vid);
710 			fm10k_write_reg(hw, FM10K_RXDCTL(vf_q_idx),
711 					FM10K_RXDCTL_WRITE_BACK_MIN_DELAY |
712 					FM10K_RXDCTL_DROP_ON_EMPTY);
713 			fm10k_write_reg(hw, FM10K_RXQCTL(vf_q_idx),
714 					FM10K_RXQCTL_VF |
715 					(i << FM10K_RXQCTL_VF_SHIFT));
716 
717 			/* map queue pair to VF */
718 			fm10k_write_reg(hw, FM10K_TQMAP(qmap_idx), vf_q_idx);
719 			fm10k_write_reg(hw, FM10K_RQMAP(qmap_idx), vf_q_idx);
720 		}
721 
722 		/* repeat the first ring for all of the remaining VF rings */
723 		for (; j < qmap_stride; j++, qmap_idx++) {
724 			fm10k_write_reg(hw, FM10K_TQMAP(qmap_idx), vf_q_idx0);
725 			fm10k_write_reg(hw, FM10K_RQMAP(qmap_idx), vf_q_idx0);
726 		}
727 	}
728 
729 	/* loop through remaining indexes assigning all to queue 0 */
730 	while (qmap_idx < FM10K_TQMAP_TABLE_SIZE) {
731 		fm10k_write_reg(hw, FM10K_TQMAP(qmap_idx), 0);
732 		fm10k_write_reg(hw, FM10K_RQMAP(qmap_idx), 0);
733 		qmap_idx++;
734 	}
735 
736 	return 0;
737 }
738 
739 /**
740  *  fm10k_iov_configure_tc_pf - Configure the shaping group for VF
741  *  @hw: pointer to the HW structure
742  *  @vf_idx: index of VF receiving GLORT
743  *  @rate: Rate indicated in Mb/s
744  *
745  *  Configured the TC for a given VF to allow only up to a given number
746  *  of Mb/s of outgoing Tx throughput.
747  **/
748 static s32 fm10k_iov_configure_tc_pf(struct fm10k_hw *hw, u16 vf_idx, int rate)
749 {
750 	/* configure defaults */
751 	u32 interval = FM10K_TC_RATE_INTERVAL_4US_GEN3;
752 	u32 tc_rate = FM10K_TC_RATE_QUANTA_MASK;
753 
754 	/* verify vf is in range */
755 	if (vf_idx >= hw->iov.num_vfs)
756 		return FM10K_ERR_PARAM;
757 
758 	/* set interval to align with 4.096 usec in all modes */
759 	switch (hw->bus.speed) {
760 	case fm10k_bus_speed_2500:
761 		interval = FM10K_TC_RATE_INTERVAL_4US_GEN1;
762 		break;
763 	case fm10k_bus_speed_5000:
764 		interval = FM10K_TC_RATE_INTERVAL_4US_GEN2;
765 		break;
766 	default:
767 		break;
768 	}
769 
770 	if (rate) {
771 		if (rate > FM10K_VF_TC_MAX || rate < FM10K_VF_TC_MIN)
772 			return FM10K_ERR_PARAM;
773 
774 		/* The quanta is measured in Bytes per 4.096 or 8.192 usec
775 		 * The rate is provided in Mbits per second
776 		 * To tralslate from rate to quanta we need to multiply the
777 		 * rate by 8.192 usec and divide by 8 bits/byte.  To avoid
778 		 * dealing with floating point we can round the values up
779 		 * to the nearest whole number ratio which gives us 128 / 125.
780 		 */
781 		tc_rate = (rate * 128) / 125;
782 
783 		/* try to keep the rate limiting accurate by increasing
784 		 * the number of credits and interval for rates less than 4Gb/s
785 		 */
786 		if (rate < 4000)
787 			interval <<= 1;
788 		else
789 			tc_rate >>= 1;
790 	}
791 
792 	/* update rate limiter with new values */
793 	fm10k_write_reg(hw, FM10K_TC_RATE(vf_idx), tc_rate | interval);
794 	fm10k_write_reg(hw, FM10K_TC_MAXCREDIT(vf_idx), FM10K_TC_MAXCREDIT_64K);
795 	fm10k_write_reg(hw, FM10K_TC_CREDIT(vf_idx), FM10K_TC_MAXCREDIT_64K);
796 
797 	return 0;
798 }
799 
800 /**
801  *  fm10k_iov_assign_int_moderator_pf - Add VF interrupts to moderator list
802  *  @hw: pointer to the HW structure
803  *  @vf_idx: index of VF receiving GLORT
804  *
805  *  Update the interrupt moderator linked list to include any MSI-X
806  *  interrupts which the VF has enabled in the MSI-X vector table.
807  **/
808 static s32 fm10k_iov_assign_int_moderator_pf(struct fm10k_hw *hw, u16 vf_idx)
809 {
810 	u16 vf_v_idx, vf_v_limit, i;
811 
812 	/* verify vf is in range */
813 	if (vf_idx >= hw->iov.num_vfs)
814 		return FM10K_ERR_PARAM;
815 
816 	/* determine vector offset and count */
817 	vf_v_idx = fm10k_vf_vector_index(hw, vf_idx);
818 	vf_v_limit = vf_v_idx + fm10k_vectors_per_pool(hw);
819 
820 	/* search for first vector that is not masked */
821 	for (i = vf_v_limit - 1; i > vf_v_idx; i--) {
822 		if (!fm10k_read_reg(hw, FM10K_MSIX_VECTOR_MASK(i)))
823 			break;
824 	}
825 
826 	/* reset linked list so it now includes our active vectors */
827 	if (vf_idx == (hw->iov.num_vfs - 1))
828 		fm10k_write_reg(hw, FM10K_ITR2(0), i);
829 	else
830 		fm10k_write_reg(hw, FM10K_ITR2(vf_v_limit), i);
831 
832 	return 0;
833 }
834 
835 /**
836  *  fm10k_iov_assign_default_mac_vlan_pf - Assign a MAC and VLAN to VF
837  *  @hw: pointer to the HW structure
838  *  @vf_info: pointer to VF information structure
839  *
840  *  Assign a MAC address and default VLAN to a VF and notify it of the update
841  **/
842 static s32 fm10k_iov_assign_default_mac_vlan_pf(struct fm10k_hw *hw,
843 						struct fm10k_vf_info *vf_info)
844 {
845 	u16 qmap_stride, queues_per_pool, vf_q_idx, timeout, qmap_idx, i;
846 	u32 msg[4], txdctl, txqctl, tdbal = 0, tdbah = 0;
847 	s32 err = 0;
848 	u16 vf_idx, vf_vid;
849 
850 	/* verify vf is in range */
851 	if (!vf_info || vf_info->vf_idx >= hw->iov.num_vfs)
852 		return FM10K_ERR_PARAM;
853 
854 	/* determine qmap offsets and counts */
855 	qmap_stride = (hw->iov.num_vfs > 8) ? 32 : 256;
856 	queues_per_pool = fm10k_queues_per_pool(hw);
857 
858 	/* calculate starting index for queues */
859 	vf_idx = vf_info->vf_idx;
860 	vf_q_idx = fm10k_vf_queue_index(hw, vf_idx);
861 	qmap_idx = qmap_stride * vf_idx;
862 
863 	/* MAP Tx queue back to 0 temporarily, and disable it */
864 	fm10k_write_reg(hw, FM10K_TQMAP(qmap_idx), 0);
865 	fm10k_write_reg(hw, FM10K_TXDCTL(vf_q_idx), 0);
866 
867 	/* determine correct default VLAN ID */
868 	if (vf_info->pf_vid)
869 		vf_vid = vf_info->pf_vid | FM10K_VLAN_CLEAR;
870 	else
871 		vf_vid = vf_info->sw_vid;
872 
873 	/* generate MAC_ADDR request */
874 	fm10k_tlv_msg_init(msg, FM10K_VF_MSG_ID_MAC_VLAN);
875 	fm10k_tlv_attr_put_mac_vlan(msg, FM10K_MAC_VLAN_MSG_DEFAULT_MAC,
876 				    vf_info->mac, vf_vid);
877 
878 	/* load onto outgoing mailbox, ignore any errors on enqueue */
879 	if (vf_info->mbx.ops.enqueue_tx)
880 		vf_info->mbx.ops.enqueue_tx(hw, &vf_info->mbx, msg);
881 
882 	/* verify ring has disabled before modifying base address registers */
883 	txdctl = fm10k_read_reg(hw, FM10K_TXDCTL(vf_q_idx));
884 	for (timeout = 0; txdctl & FM10K_TXDCTL_ENABLE; timeout++) {
885 		/* limit ourselves to a 1ms timeout */
886 		if (timeout == 10) {
887 			err = FM10K_ERR_DMA_PENDING;
888 			goto err_out;
889 		}
890 
891 		usleep_range(100, 200);
892 		txdctl = fm10k_read_reg(hw, FM10K_TXDCTL(vf_q_idx));
893 	}
894 
895 	/* Update base address registers to contain MAC address */
896 	if (is_valid_ether_addr(vf_info->mac)) {
897 		tdbal = (((u32)vf_info->mac[3]) << 24) |
898 			(((u32)vf_info->mac[4]) << 16) |
899 			(((u32)vf_info->mac[5]) << 8);
900 
901 		tdbah = (((u32)0xFF)	        << 24) |
902 			(((u32)vf_info->mac[0]) << 16) |
903 			(((u32)vf_info->mac[1]) << 8) |
904 			((u32)vf_info->mac[2]);
905 	}
906 
907 	/* Record the base address into queue 0 */
908 	fm10k_write_reg(hw, FM10K_TDBAL(vf_q_idx), tdbal);
909 	fm10k_write_reg(hw, FM10K_TDBAH(vf_q_idx), tdbah);
910 
911 	/* Provide the VF the ITR scale, using software-defined fields in TDLEN
912 	 * to pass the information during VF initialization. See definition of
913 	 * FM10K_TDLEN_ITR_SCALE_SHIFT for more details.
914 	 */
915 	fm10k_write_reg(hw, FM10K_TDLEN(vf_q_idx), hw->mac.itr_scale <<
916 						   FM10K_TDLEN_ITR_SCALE_SHIFT);
917 
918 err_out:
919 	/* configure Queue control register */
920 	txqctl = ((u32)vf_vid << FM10K_TXQCTL_VID_SHIFT) &
921 		 FM10K_TXQCTL_VID_MASK;
922 	txqctl |= (vf_idx << FM10K_TXQCTL_TC_SHIFT) |
923 		  FM10K_TXQCTL_VF | vf_idx;
924 
925 	/* assign VLAN ID */
926 	for (i = 0; i < queues_per_pool; i++)
927 		fm10k_write_reg(hw, FM10K_TXQCTL(vf_q_idx + i), txqctl);
928 
929 	/* restore the queue back to VF ownership */
930 	fm10k_write_reg(hw, FM10K_TQMAP(qmap_idx), vf_q_idx);
931 	return err;
932 }
933 
934 /**
935  *  fm10k_iov_reset_resources_pf - Reassign queues and interrupts to a VF
936  *  @hw: pointer to the HW structure
937  *  @vf_info: pointer to VF information structure
938  *
939  *  Reassign the interrupts and queues to a VF following an FLR
940  **/
941 static s32 fm10k_iov_reset_resources_pf(struct fm10k_hw *hw,
942 					struct fm10k_vf_info *vf_info)
943 {
944 	u16 qmap_stride, queues_per_pool, vf_q_idx, qmap_idx;
945 	u32 tdbal = 0, tdbah = 0, txqctl, rxqctl;
946 	u16 vf_v_idx, vf_v_limit, vf_vid;
947 	u8 vf_idx = vf_info->vf_idx;
948 	int i;
949 
950 	/* verify vf is in range */
951 	if (vf_idx >= hw->iov.num_vfs)
952 		return FM10K_ERR_PARAM;
953 
954 	/* clear event notification of VF FLR */
955 	fm10k_write_reg(hw, FM10K_PFVFLREC(vf_idx / 32), 1 << (vf_idx % 32));
956 
957 	/* force timeout and then disconnect the mailbox */
958 	vf_info->mbx.timeout = 0;
959 	if (vf_info->mbx.ops.disconnect)
960 		vf_info->mbx.ops.disconnect(hw, &vf_info->mbx);
961 
962 	/* determine vector offset and count */
963 	vf_v_idx = fm10k_vf_vector_index(hw, vf_idx);
964 	vf_v_limit = vf_v_idx + fm10k_vectors_per_pool(hw);
965 
966 	/* determine qmap offsets and counts */
967 	qmap_stride = (hw->iov.num_vfs > 8) ? 32 : 256;
968 	queues_per_pool = fm10k_queues_per_pool(hw);
969 	qmap_idx = qmap_stride * vf_idx;
970 
971 	/* make all the queues inaccessible to the VF */
972 	for (i = qmap_idx; i < (qmap_idx + qmap_stride); i++) {
973 		fm10k_write_reg(hw, FM10K_TQMAP(i), 0);
974 		fm10k_write_reg(hw, FM10K_RQMAP(i), 0);
975 	}
976 
977 	/* calculate starting index for queues */
978 	vf_q_idx = fm10k_vf_queue_index(hw, vf_idx);
979 
980 	/* determine correct default VLAN ID */
981 	if (vf_info->pf_vid)
982 		vf_vid = vf_info->pf_vid;
983 	else
984 		vf_vid = vf_info->sw_vid;
985 
986 	/* configure Queue control register */
987 	txqctl = ((u32)vf_vid << FM10K_TXQCTL_VID_SHIFT) |
988 		 (vf_idx << FM10K_TXQCTL_TC_SHIFT) |
989 		 FM10K_TXQCTL_VF | vf_idx;
990 	rxqctl = FM10K_RXQCTL_VF | (vf_idx << FM10K_RXQCTL_VF_SHIFT);
991 
992 	/* stop further DMA and reset queue ownership back to VF */
993 	for (i = vf_q_idx; i < (queues_per_pool + vf_q_idx); i++) {
994 		fm10k_write_reg(hw, FM10K_TXDCTL(i), 0);
995 		fm10k_write_reg(hw, FM10K_TXQCTL(i), txqctl);
996 		fm10k_write_reg(hw, FM10K_RXDCTL(i),
997 				FM10K_RXDCTL_WRITE_BACK_MIN_DELAY |
998 				FM10K_RXDCTL_DROP_ON_EMPTY);
999 		fm10k_write_reg(hw, FM10K_RXQCTL(i), rxqctl);
1000 	}
1001 
1002 	/* reset TC with -1 credits and no quanta to prevent transmit */
1003 	fm10k_write_reg(hw, FM10K_TC_MAXCREDIT(vf_idx), 0);
1004 	fm10k_write_reg(hw, FM10K_TC_RATE(vf_idx), 0);
1005 	fm10k_write_reg(hw, FM10K_TC_CREDIT(vf_idx),
1006 			FM10K_TC_CREDIT_CREDIT_MASK);
1007 
1008 	/* update our first entry in the table based on previous VF */
1009 	if (!vf_idx)
1010 		hw->mac.ops.update_int_moderator(hw);
1011 	else
1012 		hw->iov.ops.assign_int_moderator(hw, vf_idx - 1);
1013 
1014 	/* reset linked list so it now includes our active vectors */
1015 	if (vf_idx == (hw->iov.num_vfs - 1))
1016 		fm10k_write_reg(hw, FM10K_ITR2(0), vf_v_idx);
1017 	else
1018 		fm10k_write_reg(hw, FM10K_ITR2(vf_v_limit), vf_v_idx);
1019 
1020 	/* link remaining vectors so that next points to previous */
1021 	for (vf_v_idx++; vf_v_idx < vf_v_limit; vf_v_idx++)
1022 		fm10k_write_reg(hw, FM10K_ITR2(vf_v_idx), vf_v_idx - 1);
1023 
1024 	/* zero out MBMEM, VLAN_TABLE, RETA, RSSRK, and MRQC registers */
1025 	for (i = FM10K_VFMBMEM_LEN; i--;)
1026 		fm10k_write_reg(hw, FM10K_MBMEM_VF(vf_idx, i), 0);
1027 	for (i = FM10K_VLAN_TABLE_SIZE; i--;)
1028 		fm10k_write_reg(hw, FM10K_VLAN_TABLE(vf_info->vsi, i), 0);
1029 	for (i = FM10K_RETA_SIZE; i--;)
1030 		fm10k_write_reg(hw, FM10K_RETA(vf_info->vsi, i), 0);
1031 	for (i = FM10K_RSSRK_SIZE; i--;)
1032 		fm10k_write_reg(hw, FM10K_RSSRK(vf_info->vsi, i), 0);
1033 	fm10k_write_reg(hw, FM10K_MRQC(vf_info->vsi), 0);
1034 
1035 	/* Update base address registers to contain MAC address */
1036 	if (is_valid_ether_addr(vf_info->mac)) {
1037 		tdbal = (((u32)vf_info->mac[3]) << 24) |
1038 			(((u32)vf_info->mac[4]) << 16) |
1039 			(((u32)vf_info->mac[5]) << 8);
1040 		tdbah = (((u32)0xFF)	   << 24) |
1041 			(((u32)vf_info->mac[0]) << 16) |
1042 			(((u32)vf_info->mac[1]) << 8) |
1043 			((u32)vf_info->mac[2]);
1044 	}
1045 
1046 	/* map queue pairs back to VF from last to first */
1047 	for (i = queues_per_pool; i--;) {
1048 		fm10k_write_reg(hw, FM10K_TDBAL(vf_q_idx + i), tdbal);
1049 		fm10k_write_reg(hw, FM10K_TDBAH(vf_q_idx + i), tdbah);
1050 		/* See definition of FM10K_TDLEN_ITR_SCALE_SHIFT for an
1051 		 * explanation of how TDLEN is used.
1052 		 */
1053 		fm10k_write_reg(hw, FM10K_TDLEN(vf_q_idx + i),
1054 				hw->mac.itr_scale <<
1055 				FM10K_TDLEN_ITR_SCALE_SHIFT);
1056 		fm10k_write_reg(hw, FM10K_TQMAP(qmap_idx + i), vf_q_idx + i);
1057 		fm10k_write_reg(hw, FM10K_RQMAP(qmap_idx + i), vf_q_idx + i);
1058 	}
1059 
1060 	/* repeat the first ring for all the remaining VF rings */
1061 	for (i = queues_per_pool; i < qmap_stride; i++) {
1062 		fm10k_write_reg(hw, FM10K_TQMAP(qmap_idx + i), vf_q_idx);
1063 		fm10k_write_reg(hw, FM10K_RQMAP(qmap_idx + i), vf_q_idx);
1064 	}
1065 
1066 	return 0;
1067 }
1068 
1069 /**
1070  *  fm10k_iov_set_lport_pf - Assign and enable a logical port for a given VF
1071  *  @hw: pointer to hardware structure
1072  *  @vf_info: pointer to VF information structure
1073  *  @lport_idx: Logical port offset from the hardware glort
1074  *  @flags: Set of capability flags to extend port beyond basic functionality
1075  *
1076  *  This function allows enabling a VF port by assigning it a GLORT and
1077  *  setting the flags so that it can enable an Rx mode.
1078  **/
1079 static s32 fm10k_iov_set_lport_pf(struct fm10k_hw *hw,
1080 				  struct fm10k_vf_info *vf_info,
1081 				  u16 lport_idx, u8 flags)
1082 {
1083 	u16 glort = (hw->mac.dglort_map + lport_idx) & FM10K_DGLORTMAP_NONE;
1084 
1085 	/* if glort is not valid return error */
1086 	if (!fm10k_glort_valid_pf(hw, glort))
1087 		return FM10K_ERR_PARAM;
1088 
1089 	vf_info->vf_flags = flags | FM10K_VF_FLAG_NONE_CAPABLE;
1090 	vf_info->glort = glort;
1091 
1092 	return 0;
1093 }
1094 
1095 /**
1096  *  fm10k_iov_reset_lport_pf - Disable a logical port for a given VF
1097  *  @hw: pointer to hardware structure
1098  *  @vf_info: pointer to VF information structure
1099  *
1100  *  This function disables a VF port by stripping it of a GLORT and
1101  *  setting the flags so that it cannot enable any Rx mode.
1102  **/
1103 static void fm10k_iov_reset_lport_pf(struct fm10k_hw *hw,
1104 				     struct fm10k_vf_info *vf_info)
1105 {
1106 	u32 msg[1];
1107 
1108 	/* need to disable the port if it is already enabled */
1109 	if (FM10K_VF_FLAG_ENABLED(vf_info)) {
1110 		/* notify switch that this port has been disabled */
1111 		fm10k_update_lport_state_pf(hw, vf_info->glort, 1, false);
1112 
1113 		/* generate port state response to notify VF it is not ready */
1114 		fm10k_tlv_msg_init(msg, FM10K_VF_MSG_ID_LPORT_STATE);
1115 		vf_info->mbx.ops.enqueue_tx(hw, &vf_info->mbx, msg);
1116 	}
1117 
1118 	/* clear flags and glort if it exists */
1119 	vf_info->vf_flags = 0;
1120 	vf_info->glort = 0;
1121 }
1122 
1123 /**
1124  *  fm10k_iov_update_stats_pf - Updates hardware related statistics for VFs
1125  *  @hw: pointer to hardware structure
1126  *  @q: stats for all queues of a VF
1127  *  @vf_idx: index of VF
1128  *
1129  *  This function collects queue stats for VFs.
1130  **/
1131 static void fm10k_iov_update_stats_pf(struct fm10k_hw *hw,
1132 				      struct fm10k_hw_stats_q *q,
1133 				      u16 vf_idx)
1134 {
1135 	u32 idx, qpp;
1136 
1137 	/* get stats for all of the queues */
1138 	qpp = fm10k_queues_per_pool(hw);
1139 	idx = fm10k_vf_queue_index(hw, vf_idx);
1140 	fm10k_update_hw_stats_q(hw, q, idx, qpp);
1141 }
1142 
1143 static s32 fm10k_iov_report_timestamp_pf(struct fm10k_hw *hw,
1144 					 struct fm10k_vf_info *vf_info,
1145 					 u64 timestamp)
1146 {
1147 	u32 msg[4];
1148 
1149 	/* generate port state response to notify VF it is not ready */
1150 	fm10k_tlv_msg_init(msg, FM10K_VF_MSG_ID_1588);
1151 	fm10k_tlv_attr_put_u64(msg, FM10K_1588_MSG_TIMESTAMP, timestamp);
1152 
1153 	return vf_info->mbx.ops.enqueue_tx(hw, &vf_info->mbx, msg);
1154 }
1155 
1156 /**
1157  *  fm10k_iov_msg_msix_pf - Message handler for MSI-X request from VF
1158  *  @hw: Pointer to hardware structure
1159  *  @results: Pointer array to message, results[0] is pointer to message
1160  *  @mbx: Pointer to mailbox information structure
1161  *
1162  *  This function is a default handler for MSI-X requests from the VF.  The
1163  *  assumption is that in this case it is acceptable to just directly
1164  *  hand off the message from the VF to the underlying shared code.
1165  **/
1166 s32 fm10k_iov_msg_msix_pf(struct fm10k_hw *hw, u32 **results,
1167 			  struct fm10k_mbx_info *mbx)
1168 {
1169 	struct fm10k_vf_info *vf_info = (struct fm10k_vf_info *)mbx;
1170 	u8 vf_idx = vf_info->vf_idx;
1171 
1172 	return hw->iov.ops.assign_int_moderator(hw, vf_idx);
1173 }
1174 
1175 /**
1176  * fm10k_iov_select_vid - Select correct default VLAN ID
1177  * @hw: Pointer to hardware structure
1178  * @vid: VLAN ID to correct
1179  *
1180  * Will report an error if the VLAN ID is out of range. For VID = 0, it will
1181  * return either the pf_vid or sw_vid depending on which one is set.
1182  */
1183 static s32 fm10k_iov_select_vid(struct fm10k_vf_info *vf_info, u16 vid)
1184 {
1185 	if (!vid)
1186 		return vf_info->pf_vid ? vf_info->pf_vid : vf_info->sw_vid;
1187 	else if (vf_info->pf_vid && vid != vf_info->pf_vid)
1188 		return FM10K_ERR_PARAM;
1189 	else
1190 		return vid;
1191 }
1192 
1193 /**
1194  *  fm10k_iov_msg_mac_vlan_pf - Message handler for MAC/VLAN request from VF
1195  *  @hw: Pointer to hardware structure
1196  *  @results: Pointer array to message, results[0] is pointer to message
1197  *  @mbx: Pointer to mailbox information structure
1198  *
1199  *  This function is a default handler for MAC/VLAN requests from the VF.
1200  *  The assumption is that in this case it is acceptable to just directly
1201  *  hand off the message from the VF to the underlying shared code.
1202  **/
1203 s32 fm10k_iov_msg_mac_vlan_pf(struct fm10k_hw *hw, u32 **results,
1204 			      struct fm10k_mbx_info *mbx)
1205 {
1206 	struct fm10k_vf_info *vf_info = (struct fm10k_vf_info *)mbx;
1207 	u8 mac[ETH_ALEN];
1208 	u32 *result;
1209 	int err = 0;
1210 	bool set;
1211 	u16 vlan;
1212 	u32 vid;
1213 
1214 	/* we shouldn't be updating rules on a disabled interface */
1215 	if (!FM10K_VF_FLAG_ENABLED(vf_info))
1216 		err = FM10K_ERR_PARAM;
1217 
1218 	if (!err && !!results[FM10K_MAC_VLAN_MSG_VLAN]) {
1219 		result = results[FM10K_MAC_VLAN_MSG_VLAN];
1220 
1221 		/* record VLAN id requested */
1222 		err = fm10k_tlv_attr_get_u32(result, &vid);
1223 		if (err)
1224 			return err;
1225 
1226 		/* verify upper 16 bits are zero */
1227 		if (vid >> 16)
1228 			return FM10K_ERR_PARAM;
1229 
1230 		set = !(vid & FM10K_VLAN_CLEAR);
1231 		vid &= ~FM10K_VLAN_CLEAR;
1232 
1233 		err = fm10k_iov_select_vid(vf_info, (u16)vid);
1234 		if (err < 0)
1235 			return err;
1236 
1237 		vid = err;
1238 
1239 		/* update VSI info for VF in regards to VLAN table */
1240 		err = hw->mac.ops.update_vlan(hw, vid, vf_info->vsi, set);
1241 	}
1242 
1243 	if (!err && !!results[FM10K_MAC_VLAN_MSG_MAC]) {
1244 		result = results[FM10K_MAC_VLAN_MSG_MAC];
1245 
1246 		/* record unicast MAC address requested */
1247 		err = fm10k_tlv_attr_get_mac_vlan(result, mac, &vlan);
1248 		if (err)
1249 			return err;
1250 
1251 		/* block attempts to set MAC for a locked device */
1252 		if (is_valid_ether_addr(vf_info->mac) &&
1253 		    !ether_addr_equal(mac, vf_info->mac))
1254 			return FM10K_ERR_PARAM;
1255 
1256 		set = !(vlan & FM10K_VLAN_CLEAR);
1257 		vlan &= ~FM10K_VLAN_CLEAR;
1258 
1259 		err = fm10k_iov_select_vid(vf_info, vlan);
1260 		if (err < 0)
1261 			return err;
1262 
1263 		vlan = (u16)err;
1264 
1265 		/* notify switch of request for new unicast address */
1266 		err = hw->mac.ops.update_uc_addr(hw, vf_info->glort,
1267 						 mac, vlan, set, 0);
1268 	}
1269 
1270 	if (!err && !!results[FM10K_MAC_VLAN_MSG_MULTICAST]) {
1271 		result = results[FM10K_MAC_VLAN_MSG_MULTICAST];
1272 
1273 		/* record multicast MAC address requested */
1274 		err = fm10k_tlv_attr_get_mac_vlan(result, mac, &vlan);
1275 		if (err)
1276 			return err;
1277 
1278 		/* verify that the VF is allowed to request multicast */
1279 		if (!(vf_info->vf_flags & FM10K_VF_FLAG_MULTI_ENABLED))
1280 			return FM10K_ERR_PARAM;
1281 
1282 		set = !(vlan & FM10K_VLAN_CLEAR);
1283 		vlan &= ~FM10K_VLAN_CLEAR;
1284 
1285 		err = fm10k_iov_select_vid(vf_info, vlan);
1286 		if (err < 0)
1287 			return err;
1288 
1289 		vlan = (u16)err;
1290 
1291 		/* notify switch of request for new multicast address */
1292 		err = hw->mac.ops.update_mc_addr(hw, vf_info->glort,
1293 						 mac, vlan, set);
1294 	}
1295 
1296 	return err;
1297 }
1298 
1299 /**
1300  *  fm10k_iov_supported_xcast_mode_pf - Determine best match for xcast mode
1301  *  @vf_info: VF info structure containing capability flags
1302  *  @mode: Requested xcast mode
1303  *
1304  *  This function outputs the mode that most closely matches the requested
1305  *  mode.  If not modes match it will request we disable the port
1306  **/
1307 static u8 fm10k_iov_supported_xcast_mode_pf(struct fm10k_vf_info *vf_info,
1308 					    u8 mode)
1309 {
1310 	u8 vf_flags = vf_info->vf_flags;
1311 
1312 	/* match up mode to capabilities as best as possible */
1313 	switch (mode) {
1314 	case FM10K_XCAST_MODE_PROMISC:
1315 		if (vf_flags & FM10K_VF_FLAG_PROMISC_CAPABLE)
1316 			return FM10K_XCAST_MODE_PROMISC;
1317 		/* fallthough */
1318 	case FM10K_XCAST_MODE_ALLMULTI:
1319 		if (vf_flags & FM10K_VF_FLAG_ALLMULTI_CAPABLE)
1320 			return FM10K_XCAST_MODE_ALLMULTI;
1321 		/* fallthough */
1322 	case FM10K_XCAST_MODE_MULTI:
1323 		if (vf_flags & FM10K_VF_FLAG_MULTI_CAPABLE)
1324 			return FM10K_XCAST_MODE_MULTI;
1325 		/* fallthough */
1326 	case FM10K_XCAST_MODE_NONE:
1327 		if (vf_flags & FM10K_VF_FLAG_NONE_CAPABLE)
1328 			return FM10K_XCAST_MODE_NONE;
1329 		/* fallthough */
1330 	default:
1331 		break;
1332 	}
1333 
1334 	/* disable interface as it should not be able to request any */
1335 	return FM10K_XCAST_MODE_DISABLE;
1336 }
1337 
1338 /**
1339  *  fm10k_iov_msg_lport_state_pf - Message handler for port state requests
1340  *  @hw: Pointer to hardware structure
1341  *  @results: Pointer array to message, results[0] is pointer to message
1342  *  @mbx: Pointer to mailbox information structure
1343  *
1344  *  This function is a default handler for port state requests.  The port
1345  *  state requests for now are basic and consist of enabling or disabling
1346  *  the port.
1347  **/
1348 s32 fm10k_iov_msg_lport_state_pf(struct fm10k_hw *hw, u32 **results,
1349 				 struct fm10k_mbx_info *mbx)
1350 {
1351 	struct fm10k_vf_info *vf_info = (struct fm10k_vf_info *)mbx;
1352 	u32 *result;
1353 	s32 err = 0;
1354 	u32 msg[2];
1355 	u8 mode = 0;
1356 
1357 	/* verify VF is allowed to enable even minimal mode */
1358 	if (!(vf_info->vf_flags & FM10K_VF_FLAG_NONE_CAPABLE))
1359 		return FM10K_ERR_PARAM;
1360 
1361 	if (!!results[FM10K_LPORT_STATE_MSG_XCAST_MODE]) {
1362 		result = results[FM10K_LPORT_STATE_MSG_XCAST_MODE];
1363 
1364 		/* XCAST mode update requested */
1365 		err = fm10k_tlv_attr_get_u8(result, &mode);
1366 		if (err)
1367 			return FM10K_ERR_PARAM;
1368 
1369 		/* prep for possible demotion depending on capabilities */
1370 		mode = fm10k_iov_supported_xcast_mode_pf(vf_info, mode);
1371 
1372 		/* if mode is not currently enabled, enable it */
1373 		if (!(FM10K_VF_FLAG_ENABLED(vf_info) & (1 << mode)))
1374 			fm10k_update_xcast_mode_pf(hw, vf_info->glort, mode);
1375 
1376 		/* swap mode back to a bit flag */
1377 		mode = FM10K_VF_FLAG_SET_MODE(mode);
1378 	} else if (!results[FM10K_LPORT_STATE_MSG_DISABLE]) {
1379 		/* need to disable the port if it is already enabled */
1380 		if (FM10K_VF_FLAG_ENABLED(vf_info))
1381 			err = fm10k_update_lport_state_pf(hw, vf_info->glort,
1382 							  1, false);
1383 
1384 		/* we need to clear VF_FLAG_ENABLED flags in order to ensure
1385 		 * that we actually re-enable the LPORT state below. Note that
1386 		 * this has no impact if the VF is already disabled, as the
1387 		 * flags are already cleared.
1388 		 */
1389 		if (!err)
1390 			vf_info->vf_flags = FM10K_VF_FLAG_CAPABLE(vf_info);
1391 
1392 		/* when enabling the port we should reset the rate limiters */
1393 		hw->iov.ops.configure_tc(hw, vf_info->vf_idx, vf_info->rate);
1394 
1395 		/* set mode for minimal functionality */
1396 		mode = FM10K_VF_FLAG_SET_MODE_NONE;
1397 
1398 		/* generate port state response to notify VF it is ready */
1399 		fm10k_tlv_msg_init(msg, FM10K_VF_MSG_ID_LPORT_STATE);
1400 		fm10k_tlv_attr_put_bool(msg, FM10K_LPORT_STATE_MSG_READY);
1401 		mbx->ops.enqueue_tx(hw, mbx, msg);
1402 	}
1403 
1404 	/* if enable state toggled note the update */
1405 	if (!err && (!FM10K_VF_FLAG_ENABLED(vf_info) != !mode))
1406 		err = fm10k_update_lport_state_pf(hw, vf_info->glort, 1,
1407 						  !!mode);
1408 
1409 	/* if state change succeeded, then update our stored state */
1410 	mode |= FM10K_VF_FLAG_CAPABLE(vf_info);
1411 	if (!err)
1412 		vf_info->vf_flags = mode;
1413 
1414 	return err;
1415 }
1416 
1417 /**
1418  *  fm10k_update_stats_hw_pf - Updates hardware related statistics of PF
1419  *  @hw: pointer to hardware structure
1420  *  @stats: pointer to the stats structure to update
1421  *
1422  *  This function collects and aggregates global and per queue hardware
1423  *  statistics.
1424  **/
1425 static void fm10k_update_hw_stats_pf(struct fm10k_hw *hw,
1426 				     struct fm10k_hw_stats *stats)
1427 {
1428 	u32 timeout, ur, ca, um, xec, vlan_drop, loopback_drop, nodesc_drop;
1429 	u32 id, id_prev;
1430 
1431 	/* Use Tx queue 0 as a canary to detect a reset */
1432 	id = fm10k_read_reg(hw, FM10K_TXQCTL(0));
1433 
1434 	/* Read Global Statistics */
1435 	do {
1436 		timeout = fm10k_read_hw_stats_32b(hw, FM10K_STATS_TIMEOUT,
1437 						  &stats->timeout);
1438 		ur = fm10k_read_hw_stats_32b(hw, FM10K_STATS_UR, &stats->ur);
1439 		ca = fm10k_read_hw_stats_32b(hw, FM10K_STATS_CA, &stats->ca);
1440 		um = fm10k_read_hw_stats_32b(hw, FM10K_STATS_UM, &stats->um);
1441 		xec = fm10k_read_hw_stats_32b(hw, FM10K_STATS_XEC, &stats->xec);
1442 		vlan_drop = fm10k_read_hw_stats_32b(hw, FM10K_STATS_VLAN_DROP,
1443 						    &stats->vlan_drop);
1444 		loopback_drop =
1445 			fm10k_read_hw_stats_32b(hw,
1446 						FM10K_STATS_LOOPBACK_DROP,
1447 						&stats->loopback_drop);
1448 		nodesc_drop = fm10k_read_hw_stats_32b(hw,
1449 						      FM10K_STATS_NODESC_DROP,
1450 						      &stats->nodesc_drop);
1451 
1452 		/* if value has not changed then we have consistent data */
1453 		id_prev = id;
1454 		id = fm10k_read_reg(hw, FM10K_TXQCTL(0));
1455 	} while ((id ^ id_prev) & FM10K_TXQCTL_ID_MASK);
1456 
1457 	/* drop non-ID bits and set VALID ID bit */
1458 	id &= FM10K_TXQCTL_ID_MASK;
1459 	id |= FM10K_STAT_VALID;
1460 
1461 	/* Update Global Statistics */
1462 	if (stats->stats_idx == id) {
1463 		stats->timeout.count += timeout;
1464 		stats->ur.count += ur;
1465 		stats->ca.count += ca;
1466 		stats->um.count += um;
1467 		stats->xec.count += xec;
1468 		stats->vlan_drop.count += vlan_drop;
1469 		stats->loopback_drop.count += loopback_drop;
1470 		stats->nodesc_drop.count += nodesc_drop;
1471 	}
1472 
1473 	/* Update bases and record current PF id */
1474 	fm10k_update_hw_base_32b(&stats->timeout, timeout);
1475 	fm10k_update_hw_base_32b(&stats->ur, ur);
1476 	fm10k_update_hw_base_32b(&stats->ca, ca);
1477 	fm10k_update_hw_base_32b(&stats->um, um);
1478 	fm10k_update_hw_base_32b(&stats->xec, xec);
1479 	fm10k_update_hw_base_32b(&stats->vlan_drop, vlan_drop);
1480 	fm10k_update_hw_base_32b(&stats->loopback_drop, loopback_drop);
1481 	fm10k_update_hw_base_32b(&stats->nodesc_drop, nodesc_drop);
1482 	stats->stats_idx = id;
1483 
1484 	/* Update Queue Statistics */
1485 	fm10k_update_hw_stats_q(hw, stats->q, 0, hw->mac.max_queues);
1486 }
1487 
1488 /**
1489  *  fm10k_rebind_hw_stats_pf - Resets base for hardware statistics of PF
1490  *  @hw: pointer to hardware structure
1491  *  @stats: pointer to the stats structure to update
1492  *
1493  *  This function resets the base for global and per queue hardware
1494  *  statistics.
1495  **/
1496 static void fm10k_rebind_hw_stats_pf(struct fm10k_hw *hw,
1497 				     struct fm10k_hw_stats *stats)
1498 {
1499 	/* Unbind Global Statistics */
1500 	fm10k_unbind_hw_stats_32b(&stats->timeout);
1501 	fm10k_unbind_hw_stats_32b(&stats->ur);
1502 	fm10k_unbind_hw_stats_32b(&stats->ca);
1503 	fm10k_unbind_hw_stats_32b(&stats->um);
1504 	fm10k_unbind_hw_stats_32b(&stats->xec);
1505 	fm10k_unbind_hw_stats_32b(&stats->vlan_drop);
1506 	fm10k_unbind_hw_stats_32b(&stats->loopback_drop);
1507 	fm10k_unbind_hw_stats_32b(&stats->nodesc_drop);
1508 
1509 	/* Unbind Queue Statistics */
1510 	fm10k_unbind_hw_stats_q(stats->q, 0, hw->mac.max_queues);
1511 
1512 	/* Reinitialize bases for all stats */
1513 	fm10k_update_hw_stats_pf(hw, stats);
1514 }
1515 
1516 /**
1517  *  fm10k_set_dma_mask_pf - Configures PhyAddrSpace to limit DMA to system
1518  *  @hw: pointer to hardware structure
1519  *  @dma_mask: 64 bit DMA mask required for platform
1520  *
1521  *  This function sets the PHYADDR.PhyAddrSpace bits for the endpoint in order
1522  *  to limit the access to memory beyond what is physically in the system.
1523  **/
1524 static void fm10k_set_dma_mask_pf(struct fm10k_hw *hw, u64 dma_mask)
1525 {
1526 	/* we need to write the upper 32 bits of DMA mask to PhyAddrSpace */
1527 	u32 phyaddr = (u32)(dma_mask >> 32);
1528 
1529 	fm10k_write_reg(hw, FM10K_PHYADDR, phyaddr);
1530 }
1531 
1532 /**
1533  *  fm10k_get_fault_pf - Record a fault in one of the interface units
1534  *  @hw: pointer to hardware structure
1535  *  @type: pointer to fault type register offset
1536  *  @fault: pointer to memory location to record the fault
1537  *
1538  *  Record the fault register contents to the fault data structure and
1539  *  clear the entry from the register.
1540  *
1541  *  Returns ERR_PARAM if invalid register is specified or no error is present.
1542  **/
1543 static s32 fm10k_get_fault_pf(struct fm10k_hw *hw, int type,
1544 			      struct fm10k_fault *fault)
1545 {
1546 	u32 func;
1547 
1548 	/* verify the fault register is in range and is aligned */
1549 	switch (type) {
1550 	case FM10K_PCA_FAULT:
1551 	case FM10K_THI_FAULT:
1552 	case FM10K_FUM_FAULT:
1553 		break;
1554 	default:
1555 		return FM10K_ERR_PARAM;
1556 	}
1557 
1558 	/* only service faults that are valid */
1559 	func = fm10k_read_reg(hw, type + FM10K_FAULT_FUNC);
1560 	if (!(func & FM10K_FAULT_FUNC_VALID))
1561 		return FM10K_ERR_PARAM;
1562 
1563 	/* read remaining fields */
1564 	fault->address = fm10k_read_reg(hw, type + FM10K_FAULT_ADDR_HI);
1565 	fault->address <<= 32;
1566 	fault->address = fm10k_read_reg(hw, type + FM10K_FAULT_ADDR_LO);
1567 	fault->specinfo = fm10k_read_reg(hw, type + FM10K_FAULT_SPECINFO);
1568 
1569 	/* clear valid bit to allow for next error */
1570 	fm10k_write_reg(hw, type + FM10K_FAULT_FUNC, FM10K_FAULT_FUNC_VALID);
1571 
1572 	/* Record which function triggered the error */
1573 	if (func & FM10K_FAULT_FUNC_PF)
1574 		fault->func = 0;
1575 	else
1576 		fault->func = 1 + ((func & FM10K_FAULT_FUNC_VF_MASK) >>
1577 				   FM10K_FAULT_FUNC_VF_SHIFT);
1578 
1579 	/* record fault type */
1580 	fault->type = func & FM10K_FAULT_FUNC_TYPE_MASK;
1581 
1582 	return 0;
1583 }
1584 
1585 /**
1586  *  fm10k_request_lport_map_pf - Request LPORT map from the switch API
1587  *  @hw: pointer to hardware structure
1588  *
1589  **/
1590 static s32 fm10k_request_lport_map_pf(struct fm10k_hw *hw)
1591 {
1592 	struct fm10k_mbx_info *mbx = &hw->mbx;
1593 	u32 msg[1];
1594 
1595 	/* issue request asking for LPORT map */
1596 	fm10k_tlv_msg_init(msg, FM10K_PF_MSG_ID_LPORT_MAP);
1597 
1598 	/* load onto outgoing mailbox */
1599 	return mbx->ops.enqueue_tx(hw, mbx, msg);
1600 }
1601 
1602 /**
1603  *  fm10k_get_host_state_pf - Returns the state of the switch and mailbox
1604  *  @hw: pointer to hardware structure
1605  *  @switch_ready: pointer to boolean value that will record switch state
1606  *
1607  *  This funciton will check the DMA_CTRL2 register and mailbox in order
1608  *  to determine if the switch is ready for the PF to begin requesting
1609  *  addresses and mapping traffic to the local interface.
1610  **/
1611 static s32 fm10k_get_host_state_pf(struct fm10k_hw *hw, bool *switch_ready)
1612 {
1613 	s32 ret_val = 0;
1614 	u32 dma_ctrl2;
1615 
1616 	/* verify the switch is ready for interaction */
1617 	dma_ctrl2 = fm10k_read_reg(hw, FM10K_DMA_CTRL2);
1618 	if (!(dma_ctrl2 & FM10K_DMA_CTRL2_SWITCH_READY))
1619 		goto out;
1620 
1621 	/* retrieve generic host state info */
1622 	ret_val = fm10k_get_host_state_generic(hw, switch_ready);
1623 	if (ret_val)
1624 		goto out;
1625 
1626 	/* interface cannot receive traffic without logical ports */
1627 	if (hw->mac.dglort_map == FM10K_DGLORTMAP_NONE)
1628 		ret_val = fm10k_request_lport_map_pf(hw);
1629 
1630 out:
1631 	return ret_val;
1632 }
1633 
1634 /* This structure defines the attibutes to be parsed below */
1635 const struct fm10k_tlv_attr fm10k_lport_map_msg_attr[] = {
1636 	FM10K_TLV_ATTR_U32(FM10K_PF_ATTR_ID_LPORT_MAP),
1637 	FM10K_TLV_ATTR_LAST
1638 };
1639 
1640 /**
1641  *  fm10k_msg_lport_map_pf - Message handler for lport_map message from SM
1642  *  @hw: Pointer to hardware structure
1643  *  @results: pointer array containing parsed data
1644  *  @mbx: Pointer to mailbox information structure
1645  *
1646  *  This handler configures the lport mapping based on the reply from the
1647  *  switch API.
1648  **/
1649 s32 fm10k_msg_lport_map_pf(struct fm10k_hw *hw, u32 **results,
1650 			   struct fm10k_mbx_info *mbx)
1651 {
1652 	u16 glort, mask;
1653 	u32 dglort_map;
1654 	s32 err;
1655 
1656 	err = fm10k_tlv_attr_get_u32(results[FM10K_PF_ATTR_ID_LPORT_MAP],
1657 				     &dglort_map);
1658 	if (err)
1659 		return err;
1660 
1661 	/* extract values out of the header */
1662 	glort = FM10K_MSG_HDR_FIELD_GET(dglort_map, LPORT_MAP_GLORT);
1663 	mask = FM10K_MSG_HDR_FIELD_GET(dglort_map, LPORT_MAP_MASK);
1664 
1665 	/* verify mask is set and none of the masked bits in glort are set */
1666 	if (!mask || (glort & ~mask))
1667 		return FM10K_ERR_PARAM;
1668 
1669 	/* verify the mask is contiguous, and that it is 1's followed by 0's */
1670 	if (((~(mask - 1) & mask) + mask) & FM10K_DGLORTMAP_NONE)
1671 		return FM10K_ERR_PARAM;
1672 
1673 	/* record the glort, mask, and port count */
1674 	hw->mac.dglort_map = dglort_map;
1675 
1676 	return 0;
1677 }
1678 
1679 const struct fm10k_tlv_attr fm10k_update_pvid_msg_attr[] = {
1680 	FM10K_TLV_ATTR_U32(FM10K_PF_ATTR_ID_UPDATE_PVID),
1681 	FM10K_TLV_ATTR_LAST
1682 };
1683 
1684 /**
1685  *  fm10k_msg_update_pvid_pf - Message handler for port VLAN message from SM
1686  *  @hw: Pointer to hardware structure
1687  *  @results: pointer array containing parsed data
1688  *  @mbx: Pointer to mailbox information structure
1689  *
1690  *  This handler configures the default VLAN for the PF
1691  **/
1692 static s32 fm10k_msg_update_pvid_pf(struct fm10k_hw *hw, u32 **results,
1693 				    struct fm10k_mbx_info *mbx)
1694 {
1695 	u16 glort, pvid;
1696 	u32 pvid_update;
1697 	s32 err;
1698 
1699 	err = fm10k_tlv_attr_get_u32(results[FM10K_PF_ATTR_ID_UPDATE_PVID],
1700 				     &pvid_update);
1701 	if (err)
1702 		return err;
1703 
1704 	/* extract values from the pvid update */
1705 	glort = FM10K_MSG_HDR_FIELD_GET(pvid_update, UPDATE_PVID_GLORT);
1706 	pvid = FM10K_MSG_HDR_FIELD_GET(pvid_update, UPDATE_PVID_PVID);
1707 
1708 	/* if glort is not valid return error */
1709 	if (!fm10k_glort_valid_pf(hw, glort))
1710 		return FM10K_ERR_PARAM;
1711 
1712 	/* verify VLAN ID is valid */
1713 	if (pvid >= FM10K_VLAN_TABLE_VID_MAX)
1714 		return FM10K_ERR_PARAM;
1715 
1716 	/* record the port VLAN ID value */
1717 	hw->mac.default_vid = pvid;
1718 
1719 	return 0;
1720 }
1721 
1722 /**
1723  *  fm10k_record_global_table_data - Move global table data to swapi table info
1724  *  @from: pointer to source table data structure
1725  *  @to: pointer to destination table info structure
1726  *
1727  *  This function is will copy table_data to the table_info contained in
1728  *  the hw struct.
1729  **/
1730 static void fm10k_record_global_table_data(struct fm10k_global_table_data *from,
1731 					   struct fm10k_swapi_table_info *to)
1732 {
1733 	/* convert from le32 struct to CPU byte ordered values */
1734 	to->used = le32_to_cpu(from->used);
1735 	to->avail = le32_to_cpu(from->avail);
1736 }
1737 
1738 const struct fm10k_tlv_attr fm10k_err_msg_attr[] = {
1739 	FM10K_TLV_ATTR_LE_STRUCT(FM10K_PF_ATTR_ID_ERR,
1740 				 sizeof(struct fm10k_swapi_error)),
1741 	FM10K_TLV_ATTR_LAST
1742 };
1743 
1744 /**
1745  *  fm10k_msg_err_pf - Message handler for error reply
1746  *  @hw: Pointer to hardware structure
1747  *  @results: pointer array containing parsed data
1748  *  @mbx: Pointer to mailbox information structure
1749  *
1750  *  This handler will capture the data for any error replies to previous
1751  *  messages that the PF has sent.
1752  **/
1753 s32 fm10k_msg_err_pf(struct fm10k_hw *hw, u32 **results,
1754 		     struct fm10k_mbx_info *mbx)
1755 {
1756 	struct fm10k_swapi_error err_msg;
1757 	s32 err;
1758 
1759 	/* extract structure from message */
1760 	err = fm10k_tlv_attr_get_le_struct(results[FM10K_PF_ATTR_ID_ERR],
1761 					   &err_msg, sizeof(err_msg));
1762 	if (err)
1763 		return err;
1764 
1765 	/* record table status */
1766 	fm10k_record_global_table_data(&err_msg.mac, &hw->swapi.mac);
1767 	fm10k_record_global_table_data(&err_msg.nexthop, &hw->swapi.nexthop);
1768 	fm10k_record_global_table_data(&err_msg.ffu, &hw->swapi.ffu);
1769 
1770 	/* record SW API status value */
1771 	hw->swapi.status = le32_to_cpu(err_msg.status);
1772 
1773 	return 0;
1774 }
1775 
1776 const struct fm10k_tlv_attr fm10k_1588_timestamp_msg_attr[] = {
1777 	FM10K_TLV_ATTR_LE_STRUCT(FM10K_PF_ATTR_ID_1588_TIMESTAMP,
1778 				 sizeof(struct fm10k_swapi_1588_timestamp)),
1779 	FM10K_TLV_ATTR_LAST
1780 };
1781 
1782 /* currently there is no shared 1588 timestamp handler */
1783 
1784 /**
1785  *  fm10k_adjust_systime_pf - Adjust systime frequency
1786  *  @hw: pointer to hardware structure
1787  *  @ppb: adjustment rate in parts per billion
1788  *
1789  *  This function will adjust the SYSTIME_CFG register contained in BAR 4
1790  *  if this function is supported for BAR 4 access.  The adjustment amount
1791  *  is based on the parts per billion value provided and adjusted to a
1792  *  value based on parts per 2^48 clock cycles.
1793  *
1794  *  If adjustment is not supported or the requested value is too large
1795  *  we will return an error.
1796  **/
1797 static s32 fm10k_adjust_systime_pf(struct fm10k_hw *hw, s32 ppb)
1798 {
1799 	u64 systime_adjust;
1800 
1801 	/* if sw_addr is not set we don't have switch register access */
1802 	if (!hw->sw_addr)
1803 		return ppb ? FM10K_ERR_PARAM : 0;
1804 
1805 	/* we must convert the value from parts per billion to parts per
1806 	 * 2^48 cycles.  In addition I have opted to only use the 30 most
1807 	 * significant bits of the adjustment value as the 8 least
1808 	 * significant bits are located in another register and represent
1809 	 * a value significantly less than a part per billion, the result
1810 	 * of dropping the 8 least significant bits is that the adjustment
1811 	 * value is effectively multiplied by 2^8 when we write it.
1812 	 *
1813 	 * As a result of all this the math for this breaks down as follows:
1814 	 *	ppb / 10^9 == adjust * 2^8 / 2^48
1815 	 * If we solve this for adjust, and simplify it comes out as:
1816 	 *	ppb * 2^31 / 5^9 == adjust
1817 	 */
1818 	systime_adjust = (ppb < 0) ? -ppb : ppb;
1819 	systime_adjust <<= 31;
1820 	do_div(systime_adjust, 1953125);
1821 
1822 	/* verify the requested adjustment value is in range */
1823 	if (systime_adjust > FM10K_SW_SYSTIME_ADJUST_MASK)
1824 		return FM10K_ERR_PARAM;
1825 
1826 	if (ppb > 0)
1827 		systime_adjust |= FM10K_SW_SYSTIME_ADJUST_DIR_POSITIVE;
1828 
1829 	fm10k_write_sw_reg(hw, FM10K_SW_SYSTIME_ADJUST, (u32)systime_adjust);
1830 
1831 	return 0;
1832 }
1833 
1834 /**
1835  *  fm10k_read_systime_pf - Reads value of systime registers
1836  *  @hw: pointer to the hardware structure
1837  *
1838  *  Function reads the content of 2 registers, combined to represent a 64 bit
1839  *  value measured in nanosecods.  In order to guarantee the value is accurate
1840  *  we check the 32 most significant bits both before and after reading the
1841  *  32 least significant bits to verify they didn't change as we were reading
1842  *  the registers.
1843  **/
1844 static u64 fm10k_read_systime_pf(struct fm10k_hw *hw)
1845 {
1846 	u32 systime_l, systime_h, systime_tmp;
1847 
1848 	systime_h = fm10k_read_reg(hw, FM10K_SYSTIME + 1);
1849 
1850 	do {
1851 		systime_tmp = systime_h;
1852 		systime_l = fm10k_read_reg(hw, FM10K_SYSTIME);
1853 		systime_h = fm10k_read_reg(hw, FM10K_SYSTIME + 1);
1854 	} while (systime_tmp != systime_h);
1855 
1856 	return ((u64)systime_h << 32) | systime_l;
1857 }
1858 
1859 static const struct fm10k_msg_data fm10k_msg_data_pf[] = {
1860 	FM10K_PF_MSG_ERR_HANDLER(XCAST_MODES, fm10k_msg_err_pf),
1861 	FM10K_PF_MSG_ERR_HANDLER(UPDATE_MAC_FWD_RULE, fm10k_msg_err_pf),
1862 	FM10K_PF_MSG_LPORT_MAP_HANDLER(fm10k_msg_lport_map_pf),
1863 	FM10K_PF_MSG_ERR_HANDLER(LPORT_CREATE, fm10k_msg_err_pf),
1864 	FM10K_PF_MSG_ERR_HANDLER(LPORT_DELETE, fm10k_msg_err_pf),
1865 	FM10K_PF_MSG_UPDATE_PVID_HANDLER(fm10k_msg_update_pvid_pf),
1866 	FM10K_TLV_MSG_ERROR_HANDLER(fm10k_tlv_msg_error),
1867 };
1868 
1869 static struct fm10k_mac_ops mac_ops_pf = {
1870 	.get_bus_info		= &fm10k_get_bus_info_generic,
1871 	.reset_hw		= &fm10k_reset_hw_pf,
1872 	.init_hw		= &fm10k_init_hw_pf,
1873 	.start_hw		= &fm10k_start_hw_generic,
1874 	.stop_hw		= &fm10k_stop_hw_generic,
1875 	.update_vlan		= &fm10k_update_vlan_pf,
1876 	.read_mac_addr		= &fm10k_read_mac_addr_pf,
1877 	.update_uc_addr		= &fm10k_update_uc_addr_pf,
1878 	.update_mc_addr		= &fm10k_update_mc_addr_pf,
1879 	.update_xcast_mode	= &fm10k_update_xcast_mode_pf,
1880 	.update_int_moderator	= &fm10k_update_int_moderator_pf,
1881 	.update_lport_state	= &fm10k_update_lport_state_pf,
1882 	.update_hw_stats	= &fm10k_update_hw_stats_pf,
1883 	.rebind_hw_stats	= &fm10k_rebind_hw_stats_pf,
1884 	.configure_dglort_map	= &fm10k_configure_dglort_map_pf,
1885 	.set_dma_mask		= &fm10k_set_dma_mask_pf,
1886 	.get_fault		= &fm10k_get_fault_pf,
1887 	.get_host_state		= &fm10k_get_host_state_pf,
1888 	.adjust_systime		= &fm10k_adjust_systime_pf,
1889 	.read_systime		= &fm10k_read_systime_pf,
1890 };
1891 
1892 static struct fm10k_iov_ops iov_ops_pf = {
1893 	.assign_resources		= &fm10k_iov_assign_resources_pf,
1894 	.configure_tc			= &fm10k_iov_configure_tc_pf,
1895 	.assign_int_moderator		= &fm10k_iov_assign_int_moderator_pf,
1896 	.assign_default_mac_vlan	= fm10k_iov_assign_default_mac_vlan_pf,
1897 	.reset_resources		= &fm10k_iov_reset_resources_pf,
1898 	.set_lport			= &fm10k_iov_set_lport_pf,
1899 	.reset_lport			= &fm10k_iov_reset_lport_pf,
1900 	.update_stats			= &fm10k_iov_update_stats_pf,
1901 	.report_timestamp		= &fm10k_iov_report_timestamp_pf,
1902 };
1903 
1904 static s32 fm10k_get_invariants_pf(struct fm10k_hw *hw)
1905 {
1906 	fm10k_get_invariants_generic(hw);
1907 
1908 	return fm10k_sm_mbx_init(hw, &hw->mbx, fm10k_msg_data_pf);
1909 }
1910 
1911 struct fm10k_info fm10k_pf_info = {
1912 	.mac		= fm10k_mac_pf,
1913 	.get_invariants	= &fm10k_get_invariants_pf,
1914 	.mac_ops	= &mac_ops_pf,
1915 	.iov_ops	= &iov_ops_pf,
1916 };
1917