1 /* Intel Ethernet Switch Host Interface Driver
2  * Copyright(c) 2013 - 2014 Intel Corporation.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms and conditions of the GNU General Public License,
6  * version 2, as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope it will be useful, but WITHOUT
9  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
11  * more details.
12  *
13  * The full GNU General Public License is included in this distribution in
14  * the file called "COPYING".
15  *
16  * Contact Information:
17  * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
18  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
19  */
20 
21 #include "fm10k_pf.h"
22 #include "fm10k_vf.h"
23 
24 /**
25  *  fm10k_reset_hw_pf - PF hardware reset
26  *  @hw: pointer to hardware structure
27  *
28  *  This function should return the hardware to a state similar to the
29  *  one it is in after being powered on.
30  **/
31 static s32 fm10k_reset_hw_pf(struct fm10k_hw *hw)
32 {
33 	s32 err;
34 	u32 reg;
35 	u16 i;
36 
37 	/* Disable interrupts */
38 	fm10k_write_reg(hw, FM10K_EIMR, FM10K_EIMR_DISABLE(ALL));
39 
40 	/* Lock ITR2 reg 0 into itself and disable interrupt moderation */
41 	fm10k_write_reg(hw, FM10K_ITR2(0), 0);
42 	fm10k_write_reg(hw, FM10K_INT_CTRL, 0);
43 
44 	/* We assume here Tx and Rx queue 0 are owned by the PF */
45 
46 	/* Shut off VF access to their queues forcing them to queue 0 */
47 	for (i = 0; i < FM10K_TQMAP_TABLE_SIZE; i++) {
48 		fm10k_write_reg(hw, FM10K_TQMAP(i), 0);
49 		fm10k_write_reg(hw, FM10K_RQMAP(i), 0);
50 	}
51 
52 	/* shut down all rings */
53 	err = fm10k_disable_queues_generic(hw, FM10K_MAX_QUEUES);
54 	if (err)
55 		return err;
56 
57 	/* Verify that DMA is no longer active */
58 	reg = fm10k_read_reg(hw, FM10K_DMA_CTRL);
59 	if (reg & (FM10K_DMA_CTRL_TX_ACTIVE | FM10K_DMA_CTRL_RX_ACTIVE))
60 		return FM10K_ERR_DMA_PENDING;
61 
62 	/* Inititate data path reset */
63 	reg |= FM10K_DMA_CTRL_DATAPATH_RESET;
64 	fm10k_write_reg(hw, FM10K_DMA_CTRL, reg);
65 
66 	/* Flush write and allow 100us for reset to complete */
67 	fm10k_write_flush(hw);
68 	udelay(FM10K_RESET_TIMEOUT);
69 
70 	/* Verify we made it out of reset */
71 	reg = fm10k_read_reg(hw, FM10K_IP);
72 	if (!(reg & FM10K_IP_NOTINRESET))
73 		err = FM10K_ERR_RESET_FAILED;
74 
75 	return err;
76 }
77 
78 /**
79  *  fm10k_is_ari_hierarchy_pf - Indicate ARI hierarchy support
80  *  @hw: pointer to hardware structure
81  *
82  *  Looks at the ARI hierarchy bit to determine whether ARI is supported or not.
83  **/
84 static bool fm10k_is_ari_hierarchy_pf(struct fm10k_hw *hw)
85 {
86 	u16 sriov_ctrl = fm10k_read_pci_cfg_word(hw, FM10K_PCIE_SRIOV_CTRL);
87 
88 	return !!(sriov_ctrl & FM10K_PCIE_SRIOV_CTRL_VFARI);
89 }
90 
91 /**
92  *  fm10k_init_hw_pf - PF hardware initialization
93  *  @hw: pointer to hardware structure
94  *
95  **/
96 static s32 fm10k_init_hw_pf(struct fm10k_hw *hw)
97 {
98 	u32 dma_ctrl, txqctl;
99 	u16 i;
100 
101 	/* Establish default VSI as valid */
102 	fm10k_write_reg(hw, FM10K_DGLORTDEC(fm10k_dglort_default), 0);
103 	fm10k_write_reg(hw, FM10K_DGLORTMAP(fm10k_dglort_default),
104 			FM10K_DGLORTMAP_ANY);
105 
106 	/* Invalidate all other GLORT entries */
107 	for (i = 1; i < FM10K_DGLORT_COUNT; i++)
108 		fm10k_write_reg(hw, FM10K_DGLORTMAP(i), FM10K_DGLORTMAP_NONE);
109 
110 	/* reset ITR2(0) to point to itself */
111 	fm10k_write_reg(hw, FM10K_ITR2(0), 0);
112 
113 	/* reset VF ITR2(0) to point to 0 avoid PF registers */
114 	fm10k_write_reg(hw, FM10K_ITR2(FM10K_ITR_REG_COUNT_PF), 0);
115 
116 	/* loop through all PF ITR2 registers pointing them to the previous */
117 	for (i = 1; i < FM10K_ITR_REG_COUNT_PF; i++)
118 		fm10k_write_reg(hw, FM10K_ITR2(i), i - 1);
119 
120 	/* Enable interrupt moderator if not already enabled */
121 	fm10k_write_reg(hw, FM10K_INT_CTRL, FM10K_INT_CTRL_ENABLEMODERATOR);
122 
123 	/* compute the default txqctl configuration */
124 	txqctl = FM10K_TXQCTL_PF | FM10K_TXQCTL_UNLIMITED_BW |
125 		 (hw->mac.default_vid << FM10K_TXQCTL_VID_SHIFT);
126 
127 	for (i = 0; i < FM10K_MAX_QUEUES; i++) {
128 		/* configure rings for 256 Queue / 32 Descriptor cache mode */
129 		fm10k_write_reg(hw, FM10K_TQDLOC(i),
130 				(i * FM10K_TQDLOC_BASE_32_DESC) |
131 				FM10K_TQDLOC_SIZE_32_DESC);
132 		fm10k_write_reg(hw, FM10K_TXQCTL(i), txqctl);
133 
134 		/* configure rings to provide TPH processing hints */
135 		fm10k_write_reg(hw, FM10K_TPH_TXCTRL(i),
136 				FM10K_TPH_TXCTRL_DESC_TPHEN |
137 				FM10K_TPH_TXCTRL_DESC_RROEN |
138 				FM10K_TPH_TXCTRL_DESC_WROEN |
139 				FM10K_TPH_TXCTRL_DATA_RROEN);
140 		fm10k_write_reg(hw, FM10K_TPH_RXCTRL(i),
141 				FM10K_TPH_RXCTRL_DESC_TPHEN |
142 				FM10K_TPH_RXCTRL_DESC_RROEN |
143 				FM10K_TPH_RXCTRL_DATA_WROEN |
144 				FM10K_TPH_RXCTRL_HDR_WROEN);
145 	}
146 
147 	/* set max hold interval to align with 1.024 usec in all modes */
148 	switch (hw->bus.speed) {
149 	case fm10k_bus_speed_2500:
150 		dma_ctrl = FM10K_DMA_CTRL_MAX_HOLD_1US_GEN1;
151 		break;
152 	case fm10k_bus_speed_5000:
153 		dma_ctrl = FM10K_DMA_CTRL_MAX_HOLD_1US_GEN2;
154 		break;
155 	case fm10k_bus_speed_8000:
156 		dma_ctrl = FM10K_DMA_CTRL_MAX_HOLD_1US_GEN3;
157 		break;
158 	default:
159 		dma_ctrl = 0;
160 		break;
161 	}
162 
163 	/* Configure TSO flags */
164 	fm10k_write_reg(hw, FM10K_DTXTCPFLGL, FM10K_TSO_FLAGS_LOW);
165 	fm10k_write_reg(hw, FM10K_DTXTCPFLGH, FM10K_TSO_FLAGS_HI);
166 
167 	/* Enable DMA engine
168 	 * Set Rx Descriptor size to 32
169 	 * Set Minimum MSS to 64
170 	 * Set Maximum number of Rx queues to 256 / 32 Descriptor
171 	 */
172 	dma_ctrl |= FM10K_DMA_CTRL_TX_ENABLE | FM10K_DMA_CTRL_RX_ENABLE |
173 		    FM10K_DMA_CTRL_RX_DESC_SIZE | FM10K_DMA_CTRL_MINMSS_64 |
174 		    FM10K_DMA_CTRL_32_DESC;
175 
176 	fm10k_write_reg(hw, FM10K_DMA_CTRL, dma_ctrl);
177 
178 	/* record maximum queue count, we limit ourselves to 128 */
179 	hw->mac.max_queues = FM10K_MAX_QUEUES_PF;
180 
181 	/* We support either 64 VFs or 7 VFs depending on if we have ARI */
182 	hw->iov.total_vfs = fm10k_is_ari_hierarchy_pf(hw) ? 64 : 7;
183 
184 	return 0;
185 }
186 
187 /**
188  *  fm10k_is_slot_appropriate_pf - Indicate appropriate slot for this SKU
189  *  @hw: pointer to hardware structure
190  *
191  *  Looks at the PCIe bus info to confirm whether or not this slot can support
192  *  the necessary bandwidth for this device.
193  **/
194 static bool fm10k_is_slot_appropriate_pf(struct fm10k_hw *hw)
195 {
196 	return (hw->bus.speed == hw->bus_caps.speed) &&
197 	       (hw->bus.width == hw->bus_caps.width);
198 }
199 
200 /**
201  *  fm10k_update_vlan_pf - Update status of VLAN ID in VLAN filter table
202  *  @hw: pointer to hardware structure
203  *  @vid: VLAN ID to add to table
204  *  @vsi: Index indicating VF ID or PF ID in table
205  *  @set: Indicates if this is a set or clear operation
206  *
207  *  This function adds or removes the corresponding VLAN ID from the VLAN
208  *  filter table for the corresponding function.  In addition to the
209  *  standard set/clear that supports one bit a multi-bit write is
210  *  supported to set 64 bits at a time.
211  **/
212 static s32 fm10k_update_vlan_pf(struct fm10k_hw *hw, u32 vid, u8 vsi, bool set)
213 {
214 	u32 vlan_table, reg, mask, bit, len;
215 
216 	/* verify the VSI index is valid */
217 	if (vsi > FM10K_VLAN_TABLE_VSI_MAX)
218 		return FM10K_ERR_PARAM;
219 
220 	/* VLAN multi-bit write:
221 	 * The multi-bit write has several parts to it.
222 	 *    3			  2		      1			  0
223 	 *  1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
224 	 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
225 	 * | RSVD0 |         Length        |C|RSVD0|        VLAN ID        |
226 	 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
227 	 *
228 	 * VLAN ID: Vlan Starting value
229 	 * RSVD0: Reserved section, must be 0
230 	 * C: Flag field, 0 is set, 1 is clear (Used in VF VLAN message)
231 	 * Length: Number of times to repeat the bit being set
232 	 */
233 	len = vid >> 16;
234 	vid = (vid << 17) >> 17;
235 
236 	/* verify the reserved 0 fields are 0 */
237 	if (len >= FM10K_VLAN_TABLE_VID_MAX ||
238 	    vid >= FM10K_VLAN_TABLE_VID_MAX)
239 		return FM10K_ERR_PARAM;
240 
241 	/* Loop through the table updating all required VLANs */
242 	for (reg = FM10K_VLAN_TABLE(vsi, vid / 32), bit = vid % 32;
243 	     len < FM10K_VLAN_TABLE_VID_MAX;
244 	     len -= 32 - bit, reg++, bit = 0) {
245 		/* record the initial state of the register */
246 		vlan_table = fm10k_read_reg(hw, reg);
247 
248 		/* truncate mask if we are at the start or end of the run */
249 		mask = (~(u32)0 >> ((len < 31) ? 31 - len : 0)) << bit;
250 
251 		/* make necessary modifications to the register */
252 		mask &= set ? ~vlan_table : vlan_table;
253 		if (mask)
254 			fm10k_write_reg(hw, reg, vlan_table ^ mask);
255 	}
256 
257 	return 0;
258 }
259 
260 /**
261  *  fm10k_read_mac_addr_pf - Read device MAC address
262  *  @hw: pointer to the HW structure
263  *
264  *  Reads the device MAC address from the SM_AREA and stores the value.
265  **/
266 static s32 fm10k_read_mac_addr_pf(struct fm10k_hw *hw)
267 {
268 	u8 perm_addr[ETH_ALEN];
269 	u32 serial_num;
270 	int i;
271 
272 	serial_num = fm10k_read_reg(hw, FM10K_SM_AREA(1));
273 
274 	/* last byte should be all 1's */
275 	if ((~serial_num) << 24)
276 		return  FM10K_ERR_INVALID_MAC_ADDR;
277 
278 	perm_addr[0] = (u8)(serial_num >> 24);
279 	perm_addr[1] = (u8)(serial_num >> 16);
280 	perm_addr[2] = (u8)(serial_num >> 8);
281 
282 	serial_num = fm10k_read_reg(hw, FM10K_SM_AREA(0));
283 
284 	/* first byte should be all 1's */
285 	if ((~serial_num) >> 24)
286 		return  FM10K_ERR_INVALID_MAC_ADDR;
287 
288 	perm_addr[3] = (u8)(serial_num >> 16);
289 	perm_addr[4] = (u8)(serial_num >> 8);
290 	perm_addr[5] = (u8)(serial_num);
291 
292 	for (i = 0; i < ETH_ALEN; i++) {
293 		hw->mac.perm_addr[i] = perm_addr[i];
294 		hw->mac.addr[i] = perm_addr[i];
295 	}
296 
297 	return 0;
298 }
299 
300 /**
301  *  fm10k_glort_valid_pf - Validate that the provided glort is valid
302  *  @hw: pointer to the HW structure
303  *  @glort: base glort to be validated
304  *
305  *  This function will return an error if the provided glort is invalid
306  **/
307 bool fm10k_glort_valid_pf(struct fm10k_hw *hw, u16 glort)
308 {
309 	glort &= hw->mac.dglort_map >> FM10K_DGLORTMAP_MASK_SHIFT;
310 
311 	return glort == (hw->mac.dglort_map & FM10K_DGLORTMAP_NONE);
312 }
313 
314 /**
315  *  fm10k_update_uc_addr_pf - Update device unicast addresss
316  *  @hw: pointer to the HW structure
317  *  @glort: base resource tag for this request
318  *  @mac: MAC address to add/remove from table
319  *  @vid: VLAN ID to add/remove from table
320  *  @add: Indicates if this is an add or remove operation
321  *  @flags: flags field to indicate add and secure
322  *
323  *  This function generates a message to the Switch API requesting
324  *  that the given logical port add/remove the given L2 MAC/VLAN address.
325  **/
326 static s32 fm10k_update_xc_addr_pf(struct fm10k_hw *hw, u16 glort,
327 				   const u8 *mac, u16 vid, bool add, u8 flags)
328 {
329 	struct fm10k_mbx_info *mbx = &hw->mbx;
330 	struct fm10k_mac_update mac_update;
331 	u32 msg[5];
332 
333 	/* if glort is not valid return error */
334 	if (!fm10k_glort_valid_pf(hw, glort))
335 		return FM10K_ERR_PARAM;
336 
337 	/* drop upper 4 bits of VLAN ID */
338 	vid = (vid << 4) >> 4;
339 
340 	/* record fields */
341 	mac_update.mac_lower = cpu_to_le32(((u32)mac[2] << 24) |
342 						 ((u32)mac[3] << 16) |
343 						 ((u32)mac[4] << 8) |
344 						 ((u32)mac[5]));
345 	mac_update.mac_upper = cpu_to_le16(((u32)mac[0] << 8) |
346 						 ((u32)mac[1]));
347 	mac_update.vlan = cpu_to_le16(vid);
348 	mac_update.glort = cpu_to_le16(glort);
349 	mac_update.action = add ? 0 : 1;
350 	mac_update.flags = flags;
351 
352 	/* populate mac_update fields */
353 	fm10k_tlv_msg_init(msg, FM10K_PF_MSG_ID_UPDATE_MAC_FWD_RULE);
354 	fm10k_tlv_attr_put_le_struct(msg, FM10K_PF_ATTR_ID_MAC_UPDATE,
355 				     &mac_update, sizeof(mac_update));
356 
357 	/* load onto outgoing mailbox */
358 	return mbx->ops.enqueue_tx(hw, mbx, msg);
359 }
360 
361 /**
362  *  fm10k_update_uc_addr_pf - Update device unicast addresss
363  *  @hw: pointer to the HW structure
364  *  @glort: base resource tag for this request
365  *  @mac: MAC address to add/remove from table
366  *  @vid: VLAN ID to add/remove from table
367  *  @add: Indicates if this is an add or remove operation
368  *  @flags: flags field to indicate add and secure
369  *
370  *  This function is used to add or remove unicast addresses for
371  *  the PF.
372  **/
373 static s32 fm10k_update_uc_addr_pf(struct fm10k_hw *hw, u16 glort,
374 				   const u8 *mac, u16 vid, bool add, u8 flags)
375 {
376 	/* verify MAC address is valid */
377 	if (!is_valid_ether_addr(mac))
378 		return FM10K_ERR_PARAM;
379 
380 	return fm10k_update_xc_addr_pf(hw, glort, mac, vid, add, flags);
381 }
382 
383 /**
384  *  fm10k_update_mc_addr_pf - Update device multicast addresses
385  *  @hw: pointer to the HW structure
386  *  @glort: base resource tag for this request
387  *  @mac: MAC address to add/remove from table
388  *  @vid: VLAN ID to add/remove from table
389  *  @add: Indicates if this is an add or remove operation
390  *
391  *  This function is used to add or remove multicast MAC addresses for
392  *  the PF.
393  **/
394 static s32 fm10k_update_mc_addr_pf(struct fm10k_hw *hw, u16 glort,
395 				   const u8 *mac, u16 vid, bool add)
396 {
397 	/* verify multicast address is valid */
398 	if (!is_multicast_ether_addr(mac))
399 		return FM10K_ERR_PARAM;
400 
401 	return fm10k_update_xc_addr_pf(hw, glort, mac, vid, add, 0);
402 }
403 
404 /**
405  *  fm10k_update_xcast_mode_pf - Request update of multicast mode
406  *  @hw: pointer to hardware structure
407  *  @glort: base resource tag for this request
408  *  @mode: integer value indicating mode being requested
409  *
410  *  This function will attempt to request a higher mode for the port
411  *  so that it can enable either multicast, multicast promiscuous, or
412  *  promiscuous mode of operation.
413  **/
414 static s32 fm10k_update_xcast_mode_pf(struct fm10k_hw *hw, u16 glort, u8 mode)
415 {
416 	struct fm10k_mbx_info *mbx = &hw->mbx;
417 	u32 msg[3], xcast_mode;
418 
419 	if (mode > FM10K_XCAST_MODE_NONE)
420 		return FM10K_ERR_PARAM;
421 	/* if glort is not valid return error */
422 	if (!fm10k_glort_valid_pf(hw, glort))
423 		return FM10K_ERR_PARAM;
424 
425 	/* write xcast mode as a single u32 value,
426 	 * lower 16 bits: glort
427 	 * upper 16 bits: mode
428 	 */
429 	xcast_mode = ((u32)mode << 16) | glort;
430 
431 	/* generate message requesting to change xcast mode */
432 	fm10k_tlv_msg_init(msg, FM10K_PF_MSG_ID_XCAST_MODES);
433 	fm10k_tlv_attr_put_u32(msg, FM10K_PF_ATTR_ID_XCAST_MODE, xcast_mode);
434 
435 	/* load onto outgoing mailbox */
436 	return mbx->ops.enqueue_tx(hw, mbx, msg);
437 }
438 
439 /**
440  *  fm10k_update_int_moderator_pf - Update interrupt moderator linked list
441  *  @hw: pointer to hardware structure
442  *
443  *  This function walks through the MSI-X vector table to determine the
444  *  number of active interrupts and based on that information updates the
445  *  interrupt moderator linked list.
446  **/
447 static void fm10k_update_int_moderator_pf(struct fm10k_hw *hw)
448 {
449 	u32 i;
450 
451 	/* Disable interrupt moderator */
452 	fm10k_write_reg(hw, FM10K_INT_CTRL, 0);
453 
454 	/* loop through PF from last to first looking enabled vectors */
455 	for (i = FM10K_ITR_REG_COUNT_PF - 1; i; i--) {
456 		if (!fm10k_read_reg(hw, FM10K_MSIX_VECTOR_MASK(i)))
457 			break;
458 	}
459 
460 	/* always reset VFITR2[0] to point to last enabled PF vector*/
461 	fm10k_write_reg(hw, FM10K_ITR2(FM10K_ITR_REG_COUNT_PF), i);
462 
463 	/* reset ITR2[0] to point to last enabled PF vector */
464 	if (!hw->iov.num_vfs)
465 		fm10k_write_reg(hw, FM10K_ITR2(0), i);
466 
467 	/* Enable interrupt moderator */
468 	fm10k_write_reg(hw, FM10K_INT_CTRL, FM10K_INT_CTRL_ENABLEMODERATOR);
469 }
470 
471 /**
472  *  fm10k_update_lport_state_pf - Notify the switch of a change in port state
473  *  @hw: pointer to the HW structure
474  *  @glort: base resource tag for this request
475  *  @count: number of logical ports being updated
476  *  @enable: boolean value indicating enable or disable
477  *
478  *  This function is used to add/remove a logical port from the switch.
479  **/
480 static s32 fm10k_update_lport_state_pf(struct fm10k_hw *hw, u16 glort,
481 				       u16 count, bool enable)
482 {
483 	struct fm10k_mbx_info *mbx = &hw->mbx;
484 	u32 msg[3], lport_msg;
485 
486 	/* do nothing if we are being asked to create or destroy 0 ports */
487 	if (!count)
488 		return 0;
489 
490 	/* if glort is not valid return error */
491 	if (!fm10k_glort_valid_pf(hw, glort))
492 		return FM10K_ERR_PARAM;
493 
494 	/* construct the lport message from the 2 pieces of data we have */
495 	lport_msg = ((u32)count << 16) | glort;
496 
497 	/* generate lport create/delete message */
498 	fm10k_tlv_msg_init(msg, enable ? FM10K_PF_MSG_ID_LPORT_CREATE :
499 					 FM10K_PF_MSG_ID_LPORT_DELETE);
500 	fm10k_tlv_attr_put_u32(msg, FM10K_PF_ATTR_ID_PORT, lport_msg);
501 
502 	/* load onto outgoing mailbox */
503 	return mbx->ops.enqueue_tx(hw, mbx, msg);
504 }
505 
506 /**
507  *  fm10k_configure_dglort_map_pf - Configures GLORT entry and queues
508  *  @hw: pointer to hardware structure
509  *  @dglort: pointer to dglort configuration structure
510  *
511  *  Reads the configuration structure contained in dglort_cfg and uses
512  *  that information to then populate a DGLORTMAP/DEC entry and the queues
513  *  to which it has been assigned.
514  **/
515 static s32 fm10k_configure_dglort_map_pf(struct fm10k_hw *hw,
516 					 struct fm10k_dglort_cfg *dglort)
517 {
518 	u16 glort, queue_count, vsi_count, pc_count;
519 	u16 vsi, queue, pc, q_idx;
520 	u32 txqctl, dglortdec, dglortmap;
521 
522 	/* verify the dglort pointer */
523 	if (!dglort)
524 		return FM10K_ERR_PARAM;
525 
526 	/* verify the dglort values */
527 	if ((dglort->idx > 7) || (dglort->rss_l > 7) || (dglort->pc_l > 3) ||
528 	    (dglort->vsi_l > 6) || (dglort->vsi_b > 64) ||
529 	    (dglort->queue_l > 8) || (dglort->queue_b >= 256))
530 		return FM10K_ERR_PARAM;
531 
532 	/* determine count of VSIs and queues */
533 	queue_count = 1 << (dglort->rss_l + dglort->pc_l);
534 	vsi_count = 1 << (dglort->vsi_l + dglort->queue_l);
535 	glort = dglort->glort;
536 	q_idx = dglort->queue_b;
537 
538 	/* configure SGLORT for queues */
539 	for (vsi = 0; vsi < vsi_count; vsi++, glort++) {
540 		for (queue = 0; queue < queue_count; queue++, q_idx++) {
541 			if (q_idx >= FM10K_MAX_QUEUES)
542 				break;
543 
544 			fm10k_write_reg(hw, FM10K_TX_SGLORT(q_idx), glort);
545 			fm10k_write_reg(hw, FM10K_RX_SGLORT(q_idx), glort);
546 		}
547 	}
548 
549 	/* determine count of PCs and queues */
550 	queue_count = 1 << (dglort->queue_l + dglort->rss_l + dglort->vsi_l);
551 	pc_count = 1 << dglort->pc_l;
552 
553 	/* configure PC for Tx queues */
554 	for (pc = 0; pc < pc_count; pc++) {
555 		q_idx = pc + dglort->queue_b;
556 		for (queue = 0; queue < queue_count; queue++) {
557 			if (q_idx >= FM10K_MAX_QUEUES)
558 				break;
559 
560 			txqctl = fm10k_read_reg(hw, FM10K_TXQCTL(q_idx));
561 			txqctl &= ~FM10K_TXQCTL_PC_MASK;
562 			txqctl |= pc << FM10K_TXQCTL_PC_SHIFT;
563 			fm10k_write_reg(hw, FM10K_TXQCTL(q_idx), txqctl);
564 
565 			q_idx += pc_count;
566 		}
567 	}
568 
569 	/* configure DGLORTDEC */
570 	dglortdec = ((u32)(dglort->rss_l) << FM10K_DGLORTDEC_RSSLENGTH_SHIFT) |
571 		    ((u32)(dglort->queue_b) << FM10K_DGLORTDEC_QBASE_SHIFT) |
572 		    ((u32)(dglort->pc_l) << FM10K_DGLORTDEC_PCLENGTH_SHIFT) |
573 		    ((u32)(dglort->vsi_b) << FM10K_DGLORTDEC_VSIBASE_SHIFT) |
574 		    ((u32)(dglort->vsi_l) << FM10K_DGLORTDEC_VSILENGTH_SHIFT) |
575 		    ((u32)(dglort->queue_l));
576 	if (dglort->inner_rss)
577 		dglortdec |=  FM10K_DGLORTDEC_INNERRSS_ENABLE;
578 
579 	/* configure DGLORTMAP */
580 	dglortmap = (dglort->idx == fm10k_dglort_default) ?
581 			FM10K_DGLORTMAP_ANY : FM10K_DGLORTMAP_ZERO;
582 	dglortmap <<= dglort->vsi_l + dglort->queue_l + dglort->shared_l;
583 	dglortmap |= dglort->glort;
584 
585 	/* write values to hardware */
586 	fm10k_write_reg(hw, FM10K_DGLORTDEC(dglort->idx), dglortdec);
587 	fm10k_write_reg(hw, FM10K_DGLORTMAP(dglort->idx), dglortmap);
588 
589 	return 0;
590 }
591 
592 u16 fm10k_queues_per_pool(struct fm10k_hw *hw)
593 {
594 	u16 num_pools = hw->iov.num_pools;
595 
596 	return (num_pools > 32) ? 2 : (num_pools > 16) ? 4 : (num_pools > 8) ?
597 	       8 : FM10K_MAX_QUEUES_POOL;
598 }
599 
600 u16 fm10k_vf_queue_index(struct fm10k_hw *hw, u16 vf_idx)
601 {
602 	u16 num_vfs = hw->iov.num_vfs;
603 	u16 vf_q_idx = FM10K_MAX_QUEUES;
604 
605 	vf_q_idx -= fm10k_queues_per_pool(hw) * (num_vfs - vf_idx);
606 
607 	return vf_q_idx;
608 }
609 
610 static u16 fm10k_vectors_per_pool(struct fm10k_hw *hw)
611 {
612 	u16 num_pools = hw->iov.num_pools;
613 
614 	return (num_pools > 32) ? 8 : (num_pools > 16) ? 16 :
615 	       FM10K_MAX_VECTORS_POOL;
616 }
617 
618 static u16 fm10k_vf_vector_index(struct fm10k_hw *hw, u16 vf_idx)
619 {
620 	u16 vf_v_idx = FM10K_MAX_VECTORS_PF;
621 
622 	vf_v_idx += fm10k_vectors_per_pool(hw) * vf_idx;
623 
624 	return vf_v_idx;
625 }
626 
627 /**
628  *  fm10k_iov_assign_resources_pf - Assign pool resources for virtualization
629  *  @hw: pointer to the HW structure
630  *  @num_vfs: number of VFs to be allocated
631  *  @num_pools: number of virtualization pools to be allocated
632  *
633  *  Allocates queues and traffic classes to virtualization entities to prepare
634  *  the PF for SR-IOV and VMDq
635  **/
636 static s32 fm10k_iov_assign_resources_pf(struct fm10k_hw *hw, u16 num_vfs,
637 					 u16 num_pools)
638 {
639 	u16 qmap_stride, qpp, vpp, vf_q_idx, vf_q_idx0, qmap_idx;
640 	u32 vid = hw->mac.default_vid << FM10K_TXQCTL_VID_SHIFT;
641 	int i, j;
642 
643 	/* hardware only supports up to 64 pools */
644 	if (num_pools > 64)
645 		return FM10K_ERR_PARAM;
646 
647 	/* the number of VFs cannot exceed the number of pools */
648 	if ((num_vfs > num_pools) || (num_vfs > hw->iov.total_vfs))
649 		return FM10K_ERR_PARAM;
650 
651 	/* record number of virtualization entities */
652 	hw->iov.num_vfs = num_vfs;
653 	hw->iov.num_pools = num_pools;
654 
655 	/* determine qmap offsets and counts */
656 	qmap_stride = (num_vfs > 8) ? 32 : 256;
657 	qpp = fm10k_queues_per_pool(hw);
658 	vpp = fm10k_vectors_per_pool(hw);
659 
660 	/* calculate starting index for queues */
661 	vf_q_idx = fm10k_vf_queue_index(hw, 0);
662 	qmap_idx = 0;
663 
664 	/* establish TCs with -1 credits and no quanta to prevent transmit */
665 	for (i = 0; i < num_vfs; i++) {
666 		fm10k_write_reg(hw, FM10K_TC_MAXCREDIT(i), 0);
667 		fm10k_write_reg(hw, FM10K_TC_RATE(i), 0);
668 		fm10k_write_reg(hw, FM10K_TC_CREDIT(i),
669 				FM10K_TC_CREDIT_CREDIT_MASK);
670 	}
671 
672 	/* zero out all mbmem registers */
673 	for (i = FM10K_VFMBMEM_LEN * num_vfs; i--;)
674 		fm10k_write_reg(hw, FM10K_MBMEM(i), 0);
675 
676 	/* clear event notification of VF FLR */
677 	fm10k_write_reg(hw, FM10K_PFVFLREC(0), ~0);
678 	fm10k_write_reg(hw, FM10K_PFVFLREC(1), ~0);
679 
680 	/* loop through unallocated rings assigning them back to PF */
681 	for (i = FM10K_MAX_QUEUES_PF; i < vf_q_idx; i++) {
682 		fm10k_write_reg(hw, FM10K_TXDCTL(i), 0);
683 		fm10k_write_reg(hw, FM10K_TXQCTL(i), FM10K_TXQCTL_PF | vid);
684 		fm10k_write_reg(hw, FM10K_RXQCTL(i), FM10K_RXQCTL_PF);
685 	}
686 
687 	/* PF should have already updated VFITR2[0] */
688 
689 	/* update all ITR registers to flow to VFITR2[0] */
690 	for (i = FM10K_ITR_REG_COUNT_PF + 1; i < FM10K_ITR_REG_COUNT; i++) {
691 		if (!(i & (vpp - 1)))
692 			fm10k_write_reg(hw, FM10K_ITR2(i), i - vpp);
693 		else
694 			fm10k_write_reg(hw, FM10K_ITR2(i), i - 1);
695 	}
696 
697 	/* update PF ITR2[0] to reference the last vector */
698 	fm10k_write_reg(hw, FM10K_ITR2(0),
699 			fm10k_vf_vector_index(hw, num_vfs - 1));
700 
701 	/* loop through rings populating rings and TCs */
702 	for (i = 0; i < num_vfs; i++) {
703 		/* record index for VF queue 0 for use in end of loop */
704 		vf_q_idx0 = vf_q_idx;
705 
706 		for (j = 0; j < qpp; j++, qmap_idx++, vf_q_idx++) {
707 			/* assign VF and locked TC to queues */
708 			fm10k_write_reg(hw, FM10K_TXDCTL(vf_q_idx), 0);
709 			fm10k_write_reg(hw, FM10K_TXQCTL(vf_q_idx),
710 					(i << FM10K_TXQCTL_TC_SHIFT) | i |
711 					FM10K_TXQCTL_VF | vid);
712 			fm10k_write_reg(hw, FM10K_RXDCTL(vf_q_idx),
713 					FM10K_RXDCTL_WRITE_BACK_MIN_DELAY |
714 					FM10K_RXDCTL_DROP_ON_EMPTY);
715 			fm10k_write_reg(hw, FM10K_RXQCTL(vf_q_idx),
716 					FM10K_RXQCTL_VF |
717 					(i << FM10K_RXQCTL_VF_SHIFT));
718 
719 			/* map queue pair to VF */
720 			fm10k_write_reg(hw, FM10K_TQMAP(qmap_idx), vf_q_idx);
721 			fm10k_write_reg(hw, FM10K_RQMAP(qmap_idx), vf_q_idx);
722 		}
723 
724 		/* repeat the first ring for all of the remaining VF rings */
725 		for (; j < qmap_stride; j++, qmap_idx++) {
726 			fm10k_write_reg(hw, FM10K_TQMAP(qmap_idx), vf_q_idx0);
727 			fm10k_write_reg(hw, FM10K_RQMAP(qmap_idx), vf_q_idx0);
728 		}
729 	}
730 
731 	/* loop through remaining indexes assigning all to queue 0 */
732 	while (qmap_idx < FM10K_TQMAP_TABLE_SIZE) {
733 		fm10k_write_reg(hw, FM10K_TQMAP(qmap_idx), 0);
734 		fm10k_write_reg(hw, FM10K_RQMAP(qmap_idx), 0);
735 		qmap_idx++;
736 	}
737 
738 	return 0;
739 }
740 
741 /**
742  *  fm10k_iov_configure_tc_pf - Configure the shaping group for VF
743  *  @hw: pointer to the HW structure
744  *  @vf_idx: index of VF receiving GLORT
745  *  @rate: Rate indicated in Mb/s
746  *
747  *  Configured the TC for a given VF to allow only up to a given number
748  *  of Mb/s of outgoing Tx throughput.
749  **/
750 static s32 fm10k_iov_configure_tc_pf(struct fm10k_hw *hw, u16 vf_idx, int rate)
751 {
752 	/* configure defaults */
753 	u32 interval = FM10K_TC_RATE_INTERVAL_4US_GEN3;
754 	u32 tc_rate = FM10K_TC_RATE_QUANTA_MASK;
755 
756 	/* verify vf is in range */
757 	if (vf_idx >= hw->iov.num_vfs)
758 		return FM10K_ERR_PARAM;
759 
760 	/* set interval to align with 4.096 usec in all modes */
761 	switch (hw->bus.speed) {
762 	case fm10k_bus_speed_2500:
763 		interval = FM10K_TC_RATE_INTERVAL_4US_GEN1;
764 		break;
765 	case fm10k_bus_speed_5000:
766 		interval = FM10K_TC_RATE_INTERVAL_4US_GEN2;
767 		break;
768 	default:
769 		break;
770 	}
771 
772 	if (rate) {
773 		if (rate > FM10K_VF_TC_MAX || rate < FM10K_VF_TC_MIN)
774 			return FM10K_ERR_PARAM;
775 
776 		/* The quanta is measured in Bytes per 4.096 or 8.192 usec
777 		 * The rate is provided in Mbits per second
778 		 * To tralslate from rate to quanta we need to multiply the
779 		 * rate by 8.192 usec and divide by 8 bits/byte.  To avoid
780 		 * dealing with floating point we can round the values up
781 		 * to the nearest whole number ratio which gives us 128 / 125.
782 		 */
783 		tc_rate = (rate * 128) / 125;
784 
785 		/* try to keep the rate limiting accurate by increasing
786 		 * the number of credits and interval for rates less than 4Gb/s
787 		 */
788 		if (rate < 4000)
789 			interval <<= 1;
790 		else
791 			tc_rate >>= 1;
792 	}
793 
794 	/* update rate limiter with new values */
795 	fm10k_write_reg(hw, FM10K_TC_RATE(vf_idx), tc_rate | interval);
796 	fm10k_write_reg(hw, FM10K_TC_MAXCREDIT(vf_idx), FM10K_TC_MAXCREDIT_64K);
797 	fm10k_write_reg(hw, FM10K_TC_CREDIT(vf_idx), FM10K_TC_MAXCREDIT_64K);
798 
799 	return 0;
800 }
801 
802 /**
803  *  fm10k_iov_assign_int_moderator_pf - Add VF interrupts to moderator list
804  *  @hw: pointer to the HW structure
805  *  @vf_idx: index of VF receiving GLORT
806  *
807  *  Update the interrupt moderator linked list to include any MSI-X
808  *  interrupts which the VF has enabled in the MSI-X vector table.
809  **/
810 static s32 fm10k_iov_assign_int_moderator_pf(struct fm10k_hw *hw, u16 vf_idx)
811 {
812 	u16 vf_v_idx, vf_v_limit, i;
813 
814 	/* verify vf is in range */
815 	if (vf_idx >= hw->iov.num_vfs)
816 		return FM10K_ERR_PARAM;
817 
818 	/* determine vector offset and count*/
819 	vf_v_idx = fm10k_vf_vector_index(hw, vf_idx);
820 	vf_v_limit = vf_v_idx + fm10k_vectors_per_pool(hw);
821 
822 	/* search for first vector that is not masked */
823 	for (i = vf_v_limit - 1; i > vf_v_idx; i--) {
824 		if (!fm10k_read_reg(hw, FM10K_MSIX_VECTOR_MASK(i)))
825 			break;
826 	}
827 
828 	/* reset linked list so it now includes our active vectors */
829 	if (vf_idx == (hw->iov.num_vfs - 1))
830 		fm10k_write_reg(hw, FM10K_ITR2(0), i);
831 	else
832 		fm10k_write_reg(hw, FM10K_ITR2(vf_v_limit), i);
833 
834 	return 0;
835 }
836 
837 /**
838  *  fm10k_iov_assign_default_mac_vlan_pf - Assign a MAC and VLAN to VF
839  *  @hw: pointer to the HW structure
840  *  @vf_info: pointer to VF information structure
841  *
842  *  Assign a MAC address and default VLAN to a VF and notify it of the update
843  **/
844 static s32 fm10k_iov_assign_default_mac_vlan_pf(struct fm10k_hw *hw,
845 						struct fm10k_vf_info *vf_info)
846 {
847 	u16 qmap_stride, queues_per_pool, vf_q_idx, timeout, qmap_idx, i;
848 	u32 msg[4], txdctl, txqctl, tdbal = 0, tdbah = 0;
849 	s32 err = 0;
850 	u16 vf_idx, vf_vid;
851 
852 	/* verify vf is in range */
853 	if (!vf_info || vf_info->vf_idx >= hw->iov.num_vfs)
854 		return FM10K_ERR_PARAM;
855 
856 	/* determine qmap offsets and counts */
857 	qmap_stride = (hw->iov.num_vfs > 8) ? 32 : 256;
858 	queues_per_pool = fm10k_queues_per_pool(hw);
859 
860 	/* calculate starting index for queues */
861 	vf_idx = vf_info->vf_idx;
862 	vf_q_idx = fm10k_vf_queue_index(hw, vf_idx);
863 	qmap_idx = qmap_stride * vf_idx;
864 
865 	/* MAP Tx queue back to 0 temporarily, and disable it */
866 	fm10k_write_reg(hw, FM10K_TQMAP(qmap_idx), 0);
867 	fm10k_write_reg(hw, FM10K_TXDCTL(vf_q_idx), 0);
868 
869 	/* determine correct default VLAN ID */
870 	if (vf_info->pf_vid)
871 		vf_vid = vf_info->pf_vid | FM10K_VLAN_CLEAR;
872 	else
873 		vf_vid = vf_info->sw_vid;
874 
875 	/* generate MAC_ADDR request */
876 	fm10k_tlv_msg_init(msg, FM10K_VF_MSG_ID_MAC_VLAN);
877 	fm10k_tlv_attr_put_mac_vlan(msg, FM10K_MAC_VLAN_MSG_DEFAULT_MAC,
878 				    vf_info->mac, vf_vid);
879 
880 	/* load onto outgoing mailbox, ignore any errors on enqueue */
881 	if (vf_info->mbx.ops.enqueue_tx)
882 		vf_info->mbx.ops.enqueue_tx(hw, &vf_info->mbx, msg);
883 
884 	/* verify ring has disabled before modifying base address registers */
885 	txdctl = fm10k_read_reg(hw, FM10K_TXDCTL(vf_q_idx));
886 	for (timeout = 0; txdctl & FM10K_TXDCTL_ENABLE; timeout++) {
887 		/* limit ourselves to a 1ms timeout */
888 		if (timeout == 10) {
889 			err = FM10K_ERR_DMA_PENDING;
890 			goto err_out;
891 		}
892 
893 		usleep_range(100, 200);
894 		txdctl = fm10k_read_reg(hw, FM10K_TXDCTL(vf_q_idx));
895 	}
896 
897 	/* Update base address registers to contain MAC address */
898 	if (is_valid_ether_addr(vf_info->mac)) {
899 		tdbal = (((u32)vf_info->mac[3]) << 24) |
900 			(((u32)vf_info->mac[4]) << 16) |
901 			(((u32)vf_info->mac[5]) << 8);
902 
903 		tdbah = (((u32)0xFF)	        << 24) |
904 			(((u32)vf_info->mac[0]) << 16) |
905 			(((u32)vf_info->mac[1]) << 8) |
906 			((u32)vf_info->mac[2]);
907 	}
908 
909 	/* Record the base address into queue 0 */
910 	fm10k_write_reg(hw, FM10K_TDBAL(vf_q_idx), tdbal);
911 	fm10k_write_reg(hw, FM10K_TDBAH(vf_q_idx), tdbah);
912 
913 err_out:
914 	/* configure Queue control register */
915 	txqctl = ((u32)vf_vid << FM10K_TXQCTL_VID_SHIFT) &
916 		 FM10K_TXQCTL_VID_MASK;
917 	txqctl |= (vf_idx << FM10K_TXQCTL_TC_SHIFT) |
918 		  FM10K_TXQCTL_VF | vf_idx;
919 
920 	/* assign VID */
921 	for (i = 0; i < queues_per_pool; i++)
922 		fm10k_write_reg(hw, FM10K_TXQCTL(vf_q_idx + i), txqctl);
923 
924 	/* restore the queue back to VF ownership */
925 	fm10k_write_reg(hw, FM10K_TQMAP(qmap_idx), vf_q_idx);
926 	return err;
927 }
928 
929 /**
930  *  fm10k_iov_reset_resources_pf - Reassign queues and interrupts to a VF
931  *  @hw: pointer to the HW structure
932  *  @vf_info: pointer to VF information structure
933  *
934  *  Reassign the interrupts and queues to a VF following an FLR
935  **/
936 static s32 fm10k_iov_reset_resources_pf(struct fm10k_hw *hw,
937 					struct fm10k_vf_info *vf_info)
938 {
939 	u16 qmap_stride, queues_per_pool, vf_q_idx, qmap_idx;
940 	u32 tdbal = 0, tdbah = 0, txqctl, rxqctl;
941 	u16 vf_v_idx, vf_v_limit, vf_vid;
942 	u8 vf_idx = vf_info->vf_idx;
943 	int i;
944 
945 	/* verify vf is in range */
946 	if (vf_idx >= hw->iov.num_vfs)
947 		return FM10K_ERR_PARAM;
948 
949 	/* clear event notification of VF FLR */
950 	fm10k_write_reg(hw, FM10K_PFVFLREC(vf_idx / 32), 1 << (vf_idx % 32));
951 
952 	/* force timeout and then disconnect the mailbox */
953 	vf_info->mbx.timeout = 0;
954 	if (vf_info->mbx.ops.disconnect)
955 		vf_info->mbx.ops.disconnect(hw, &vf_info->mbx);
956 
957 	/* determine vector offset and count*/
958 	vf_v_idx = fm10k_vf_vector_index(hw, vf_idx);
959 	vf_v_limit = vf_v_idx + fm10k_vectors_per_pool(hw);
960 
961 	/* determine qmap offsets and counts */
962 	qmap_stride = (hw->iov.num_vfs > 8) ? 32 : 256;
963 	queues_per_pool = fm10k_queues_per_pool(hw);
964 	qmap_idx = qmap_stride * vf_idx;
965 
966 	/* make all the queues inaccessible to the VF */
967 	for (i = qmap_idx; i < (qmap_idx + qmap_stride); i++) {
968 		fm10k_write_reg(hw, FM10K_TQMAP(i), 0);
969 		fm10k_write_reg(hw, FM10K_RQMAP(i), 0);
970 	}
971 
972 	/* calculate starting index for queues */
973 	vf_q_idx = fm10k_vf_queue_index(hw, vf_idx);
974 
975 	/* determine correct default VLAN ID */
976 	if (vf_info->pf_vid)
977 		vf_vid = vf_info->pf_vid;
978 	else
979 		vf_vid = vf_info->sw_vid;
980 
981 	/* configure Queue control register */
982 	txqctl = ((u32)vf_vid << FM10K_TXQCTL_VID_SHIFT) |
983 		 (vf_idx << FM10K_TXQCTL_TC_SHIFT) |
984 		 FM10K_TXQCTL_VF | vf_idx;
985 	rxqctl = FM10K_RXQCTL_VF | (vf_idx << FM10K_RXQCTL_VF_SHIFT);
986 
987 	/* stop further DMA and reset queue ownership back to VF */
988 	for (i = vf_q_idx; i < (queues_per_pool + vf_q_idx); i++) {
989 		fm10k_write_reg(hw, FM10K_TXDCTL(i), 0);
990 		fm10k_write_reg(hw, FM10K_TXQCTL(i), txqctl);
991 		fm10k_write_reg(hw, FM10K_RXDCTL(i),
992 				FM10K_RXDCTL_WRITE_BACK_MIN_DELAY |
993 				FM10K_RXDCTL_DROP_ON_EMPTY);
994 		fm10k_write_reg(hw, FM10K_RXQCTL(i), rxqctl);
995 	}
996 
997 	/* reset TC with -1 credits and no quanta to prevent transmit */
998 	fm10k_write_reg(hw, FM10K_TC_MAXCREDIT(vf_idx), 0);
999 	fm10k_write_reg(hw, FM10K_TC_RATE(vf_idx), 0);
1000 	fm10k_write_reg(hw, FM10K_TC_CREDIT(vf_idx),
1001 			FM10K_TC_CREDIT_CREDIT_MASK);
1002 
1003 	/* update our first entry in the table based on previous VF */
1004 	if (!vf_idx)
1005 		hw->mac.ops.update_int_moderator(hw);
1006 	else
1007 		hw->iov.ops.assign_int_moderator(hw, vf_idx - 1);
1008 
1009 	/* reset linked list so it now includes our active vectors */
1010 	if (vf_idx == (hw->iov.num_vfs - 1))
1011 		fm10k_write_reg(hw, FM10K_ITR2(0), vf_v_idx);
1012 	else
1013 		fm10k_write_reg(hw, FM10K_ITR2(vf_v_limit), vf_v_idx);
1014 
1015 	/* link remaining vectors so that next points to previous */
1016 	for (vf_v_idx++; vf_v_idx < vf_v_limit; vf_v_idx++)
1017 		fm10k_write_reg(hw, FM10K_ITR2(vf_v_idx), vf_v_idx - 1);
1018 
1019 	/* zero out MBMEM, VLAN_TABLE, RETA, RSSRK, and MRQC registers */
1020 	for (i = FM10K_VFMBMEM_LEN; i--;)
1021 		fm10k_write_reg(hw, FM10K_MBMEM_VF(vf_idx, i), 0);
1022 	for (i = FM10K_VLAN_TABLE_SIZE; i--;)
1023 		fm10k_write_reg(hw, FM10K_VLAN_TABLE(vf_info->vsi, i), 0);
1024 	for (i = FM10K_RETA_SIZE; i--;)
1025 		fm10k_write_reg(hw, FM10K_RETA(vf_info->vsi, i), 0);
1026 	for (i = FM10K_RSSRK_SIZE; i--;)
1027 		fm10k_write_reg(hw, FM10K_RSSRK(vf_info->vsi, i), 0);
1028 	fm10k_write_reg(hw, FM10K_MRQC(vf_info->vsi), 0);
1029 
1030 	/* Update base address registers to contain MAC address */
1031 	if (is_valid_ether_addr(vf_info->mac)) {
1032 		tdbal = (((u32)vf_info->mac[3]) << 24) |
1033 			(((u32)vf_info->mac[4]) << 16) |
1034 			(((u32)vf_info->mac[5]) << 8);
1035 		tdbah = (((u32)0xFF)	   << 24) |
1036 			(((u32)vf_info->mac[0]) << 16) |
1037 			(((u32)vf_info->mac[1]) << 8) |
1038 			((u32)vf_info->mac[2]);
1039 	}
1040 
1041 	/* map queue pairs back to VF from last to first*/
1042 	for (i = queues_per_pool; i--;) {
1043 		fm10k_write_reg(hw, FM10K_TDBAL(vf_q_idx + i), tdbal);
1044 		fm10k_write_reg(hw, FM10K_TDBAH(vf_q_idx + i), tdbah);
1045 		fm10k_write_reg(hw, FM10K_TQMAP(qmap_idx + i), vf_q_idx + i);
1046 		fm10k_write_reg(hw, FM10K_RQMAP(qmap_idx + i), vf_q_idx + i);
1047 	}
1048 
1049 	return 0;
1050 }
1051 
1052 /**
1053  *  fm10k_iov_set_lport_pf - Assign and enable a logical port for a given VF
1054  *  @hw: pointer to hardware structure
1055  *  @vf_info: pointer to VF information structure
1056  *  @lport_idx: Logical port offset from the hardware glort
1057  *  @flags: Set of capability flags to extend port beyond basic functionality
1058  *
1059  *  This function allows enabling a VF port by assigning it a GLORT and
1060  *  setting the flags so that it can enable an Rx mode.
1061  **/
1062 static s32 fm10k_iov_set_lport_pf(struct fm10k_hw *hw,
1063 				  struct fm10k_vf_info *vf_info,
1064 				  u16 lport_idx, u8 flags)
1065 {
1066 	u16 glort = (hw->mac.dglort_map + lport_idx) & FM10K_DGLORTMAP_NONE;
1067 
1068 	/* if glort is not valid return error */
1069 	if (!fm10k_glort_valid_pf(hw, glort))
1070 		return FM10K_ERR_PARAM;
1071 
1072 	vf_info->vf_flags = flags | FM10K_VF_FLAG_NONE_CAPABLE;
1073 	vf_info->glort = glort;
1074 
1075 	return 0;
1076 }
1077 
1078 /**
1079  *  fm10k_iov_reset_lport_pf - Disable a logical port for a given VF
1080  *  @hw: pointer to hardware structure
1081  *  @vf_info: pointer to VF information structure
1082  *
1083  *  This function disables a VF port by stripping it of a GLORT and
1084  *  setting the flags so that it cannot enable any Rx mode.
1085  **/
1086 static void fm10k_iov_reset_lport_pf(struct fm10k_hw *hw,
1087 				     struct fm10k_vf_info *vf_info)
1088 {
1089 	u32 msg[1];
1090 
1091 	/* need to disable the port if it is already enabled */
1092 	if (FM10K_VF_FLAG_ENABLED(vf_info)) {
1093 		/* notify switch that this port has been disabled */
1094 		fm10k_update_lport_state_pf(hw, vf_info->glort, 1, false);
1095 
1096 		/* generate port state response to notify VF it is not ready */
1097 		fm10k_tlv_msg_init(msg, FM10K_VF_MSG_ID_LPORT_STATE);
1098 		vf_info->mbx.ops.enqueue_tx(hw, &vf_info->mbx, msg);
1099 	}
1100 
1101 	/* clear flags and glort if it exists */
1102 	vf_info->vf_flags = 0;
1103 	vf_info->glort = 0;
1104 }
1105 
1106 /**
1107  *  fm10k_iov_update_stats_pf - Updates hardware related statistics for VFs
1108  *  @hw: pointer to hardware structure
1109  *  @q: stats for all queues of a VF
1110  *  @vf_idx: index of VF
1111  *
1112  *  This function collects queue stats for VFs.
1113  **/
1114 static void fm10k_iov_update_stats_pf(struct fm10k_hw *hw,
1115 				      struct fm10k_hw_stats_q *q,
1116 				      u16 vf_idx)
1117 {
1118 	u32 idx, qpp;
1119 
1120 	/* get stats for all of the queues */
1121 	qpp = fm10k_queues_per_pool(hw);
1122 	idx = fm10k_vf_queue_index(hw, vf_idx);
1123 	fm10k_update_hw_stats_q(hw, q, idx, qpp);
1124 }
1125 
1126 static s32 fm10k_iov_report_timestamp_pf(struct fm10k_hw *hw,
1127 					 struct fm10k_vf_info *vf_info,
1128 					 u64 timestamp)
1129 {
1130 	u32 msg[4];
1131 
1132 	/* generate port state response to notify VF it is not ready */
1133 	fm10k_tlv_msg_init(msg, FM10K_VF_MSG_ID_1588);
1134 	fm10k_tlv_attr_put_u64(msg, FM10K_1588_MSG_TIMESTAMP, timestamp);
1135 
1136 	return vf_info->mbx.ops.enqueue_tx(hw, &vf_info->mbx, msg);
1137 }
1138 
1139 /**
1140  *  fm10k_iov_msg_msix_pf - Message handler for MSI-X request from VF
1141  *  @hw: Pointer to hardware structure
1142  *  @results: Pointer array to message, results[0] is pointer to message
1143  *  @mbx: Pointer to mailbox information structure
1144  *
1145  *  This function is a default handler for MSI-X requests from the VF.  The
1146  *  assumption is that in this case it is acceptable to just directly
1147  *  hand off the message form the VF to the underlying shared code.
1148  **/
1149 s32 fm10k_iov_msg_msix_pf(struct fm10k_hw *hw, u32 **results,
1150 			  struct fm10k_mbx_info *mbx)
1151 {
1152 	struct fm10k_vf_info *vf_info = (struct fm10k_vf_info *)mbx;
1153 	u8 vf_idx = vf_info->vf_idx;
1154 
1155 	return hw->iov.ops.assign_int_moderator(hw, vf_idx);
1156 }
1157 
1158 /**
1159  *  fm10k_iov_msg_mac_vlan_pf - Message handler for MAC/VLAN request from VF
1160  *  @hw: Pointer to hardware structure
1161  *  @results: Pointer array to message, results[0] is pointer to message
1162  *  @mbx: Pointer to mailbox information structure
1163  *
1164  *  This function is a default handler for MAC/VLAN requests from the VF.
1165  *  The assumption is that in this case it is acceptable to just directly
1166  *  hand off the message form the VF to the underlying shared code.
1167  **/
1168 s32 fm10k_iov_msg_mac_vlan_pf(struct fm10k_hw *hw, u32 **results,
1169 			      struct fm10k_mbx_info *mbx)
1170 {
1171 	struct fm10k_vf_info *vf_info = (struct fm10k_vf_info *)mbx;
1172 	int err = 0;
1173 	u8 mac[ETH_ALEN];
1174 	u32 *result;
1175 	u16 vlan;
1176 	u32 vid;
1177 
1178 	/* we shouldn't be updating rules on a disabled interface */
1179 	if (!FM10K_VF_FLAG_ENABLED(vf_info))
1180 		err = FM10K_ERR_PARAM;
1181 
1182 	if (!err && !!results[FM10K_MAC_VLAN_MSG_VLAN]) {
1183 		result = results[FM10K_MAC_VLAN_MSG_VLAN];
1184 
1185 		/* record VLAN id requested */
1186 		err = fm10k_tlv_attr_get_u32(result, &vid);
1187 		if (err)
1188 			return err;
1189 
1190 		/* if VLAN ID is 0, set the default VLAN ID instead of 0 */
1191 		if (!vid || (vid == FM10K_VLAN_CLEAR)) {
1192 			if (vf_info->pf_vid)
1193 				vid |= vf_info->pf_vid;
1194 			else
1195 				vid |= vf_info->sw_vid;
1196 		} else if (vid != vf_info->pf_vid) {
1197 			return FM10K_ERR_PARAM;
1198 		}
1199 
1200 		/* update VSI info for VF in regards to VLAN table */
1201 		err = hw->mac.ops.update_vlan(hw, vid, vf_info->vsi,
1202 					      !(vid & FM10K_VLAN_CLEAR));
1203 	}
1204 
1205 	if (!err && !!results[FM10K_MAC_VLAN_MSG_MAC]) {
1206 		result = results[FM10K_MAC_VLAN_MSG_MAC];
1207 
1208 		/* record unicast MAC address requested */
1209 		err = fm10k_tlv_attr_get_mac_vlan(result, mac, &vlan);
1210 		if (err)
1211 			return err;
1212 
1213 		/* block attempts to set MAC for a locked device */
1214 		if (is_valid_ether_addr(vf_info->mac) &&
1215 		    memcmp(mac, vf_info->mac, ETH_ALEN))
1216 			return FM10K_ERR_PARAM;
1217 
1218 		/* if VLAN ID is 0, set the default VLAN ID instead of 0 */
1219 		if (!vlan || (vlan == FM10K_VLAN_CLEAR)) {
1220 			if (vf_info->pf_vid)
1221 				vlan |= vf_info->pf_vid;
1222 			else
1223 				vlan |= vf_info->sw_vid;
1224 		} else if (vf_info->pf_vid) {
1225 			return FM10K_ERR_PARAM;
1226 		}
1227 
1228 		/* notify switch of request for new unicast address */
1229 		err = hw->mac.ops.update_uc_addr(hw, vf_info->glort, mac, vlan,
1230 						 !(vlan & FM10K_VLAN_CLEAR), 0);
1231 	}
1232 
1233 	if (!err && !!results[FM10K_MAC_VLAN_MSG_MULTICAST]) {
1234 		result = results[FM10K_MAC_VLAN_MSG_MULTICAST];
1235 
1236 		/* record multicast MAC address requested */
1237 		err = fm10k_tlv_attr_get_mac_vlan(result, mac, &vlan);
1238 		if (err)
1239 			return err;
1240 
1241 		/* verify that the VF is allowed to request multicast */
1242 		if (!(vf_info->vf_flags & FM10K_VF_FLAG_MULTI_ENABLED))
1243 			return FM10K_ERR_PARAM;
1244 
1245 		/* if VLAN ID is 0, set the default VLAN ID instead of 0 */
1246 		if (!vlan || (vlan == FM10K_VLAN_CLEAR)) {
1247 			if (vf_info->pf_vid)
1248 				vlan |= vf_info->pf_vid;
1249 			else
1250 				vlan |= vf_info->sw_vid;
1251 		} else if (vf_info->pf_vid) {
1252 			return FM10K_ERR_PARAM;
1253 		}
1254 
1255 		/* notify switch of request for new multicast address */
1256 		err = hw->mac.ops.update_mc_addr(hw, vf_info->glort, mac,
1257 						 !(vlan & FM10K_VLAN_CLEAR), 0);
1258 	}
1259 
1260 	return err;
1261 }
1262 
1263 /**
1264  *  fm10k_iov_supported_xcast_mode_pf - Determine best match for xcast mode
1265  *  @vf_info: VF info structure containing capability flags
1266  *  @mode: Requested xcast mode
1267  *
1268  *  This function outputs the mode that most closely matches the requested
1269  *  mode.  If not modes match it will request we disable the port
1270  **/
1271 static u8 fm10k_iov_supported_xcast_mode_pf(struct fm10k_vf_info *vf_info,
1272 					    u8 mode)
1273 {
1274 	u8 vf_flags = vf_info->vf_flags;
1275 
1276 	/* match up mode to capabilities as best as possible */
1277 	switch (mode) {
1278 	case FM10K_XCAST_MODE_PROMISC:
1279 		if (vf_flags & FM10K_VF_FLAG_PROMISC_CAPABLE)
1280 			return FM10K_XCAST_MODE_PROMISC;
1281 		/* fallthough */
1282 	case FM10K_XCAST_MODE_ALLMULTI:
1283 		if (vf_flags & FM10K_VF_FLAG_ALLMULTI_CAPABLE)
1284 			return FM10K_XCAST_MODE_ALLMULTI;
1285 		/* fallthough */
1286 	case FM10K_XCAST_MODE_MULTI:
1287 		if (vf_flags & FM10K_VF_FLAG_MULTI_CAPABLE)
1288 			return FM10K_XCAST_MODE_MULTI;
1289 		/* fallthough */
1290 	case FM10K_XCAST_MODE_NONE:
1291 		if (vf_flags & FM10K_VF_FLAG_NONE_CAPABLE)
1292 			return FM10K_XCAST_MODE_NONE;
1293 		/* fallthough */
1294 	default:
1295 		break;
1296 	}
1297 
1298 	/* disable interface as it should not be able to request any */
1299 	return FM10K_XCAST_MODE_DISABLE;
1300 }
1301 
1302 /**
1303  *  fm10k_iov_msg_lport_state_pf - Message handler for port state requests
1304  *  @hw: Pointer to hardware structure
1305  *  @results: Pointer array to message, results[0] is pointer to message
1306  *  @mbx: Pointer to mailbox information structure
1307  *
1308  *  This function is a default handler for port state requests.  The port
1309  *  state requests for now are basic and consist of enabling or disabling
1310  *  the port.
1311  **/
1312 s32 fm10k_iov_msg_lport_state_pf(struct fm10k_hw *hw, u32 **results,
1313 				 struct fm10k_mbx_info *mbx)
1314 {
1315 	struct fm10k_vf_info *vf_info = (struct fm10k_vf_info *)mbx;
1316 	u32 *result;
1317 	s32 err = 0;
1318 	u32 msg[2];
1319 	u8 mode = 0;
1320 
1321 	/* verify VF is allowed to enable even minimal mode */
1322 	if (!(vf_info->vf_flags & FM10K_VF_FLAG_NONE_CAPABLE))
1323 		return FM10K_ERR_PARAM;
1324 
1325 	if (!!results[FM10K_LPORT_STATE_MSG_XCAST_MODE]) {
1326 		result = results[FM10K_LPORT_STATE_MSG_XCAST_MODE];
1327 
1328 		/* XCAST mode update requested */
1329 		err = fm10k_tlv_attr_get_u8(result, &mode);
1330 		if (err)
1331 			return FM10K_ERR_PARAM;
1332 
1333 		/* prep for possible demotion depending on capabilities */
1334 		mode = fm10k_iov_supported_xcast_mode_pf(vf_info, mode);
1335 
1336 		/* if mode is not currently enabled, enable it */
1337 		if (!(FM10K_VF_FLAG_ENABLED(vf_info) & (1 << mode)))
1338 			fm10k_update_xcast_mode_pf(hw, vf_info->glort, mode);
1339 
1340 		/* swap mode back to a bit flag */
1341 		mode = FM10K_VF_FLAG_SET_MODE(mode);
1342 	} else if (!results[FM10K_LPORT_STATE_MSG_DISABLE]) {
1343 		/* need to disable the port if it is already enabled */
1344 		if (FM10K_VF_FLAG_ENABLED(vf_info))
1345 			err = fm10k_update_lport_state_pf(hw, vf_info->glort,
1346 							  1, false);
1347 
1348 		/* when enabling the port we should reset the rate limiters */
1349 		hw->iov.ops.configure_tc(hw, vf_info->vf_idx, vf_info->rate);
1350 
1351 		/* set mode for minimal functionality */
1352 		mode = FM10K_VF_FLAG_SET_MODE_NONE;
1353 
1354 		/* generate port state response to notify VF it is ready */
1355 		fm10k_tlv_msg_init(msg, FM10K_VF_MSG_ID_LPORT_STATE);
1356 		fm10k_tlv_attr_put_bool(msg, FM10K_LPORT_STATE_MSG_READY);
1357 		mbx->ops.enqueue_tx(hw, mbx, msg);
1358 	}
1359 
1360 	/* if enable state toggled note the update */
1361 	if (!err && (!FM10K_VF_FLAG_ENABLED(vf_info) != !mode))
1362 		err = fm10k_update_lport_state_pf(hw, vf_info->glort, 1,
1363 						  !!mode);
1364 
1365 	/* if state change succeeded, then update our stored state */
1366 	mode |= FM10K_VF_FLAG_CAPABLE(vf_info);
1367 	if (!err)
1368 		vf_info->vf_flags = mode;
1369 
1370 	return err;
1371 }
1372 
1373 const struct fm10k_msg_data fm10k_iov_msg_data_pf[] = {
1374 	FM10K_TLV_MSG_TEST_HANDLER(fm10k_tlv_msg_test),
1375 	FM10K_VF_MSG_MSIX_HANDLER(fm10k_iov_msg_msix_pf),
1376 	FM10K_VF_MSG_MAC_VLAN_HANDLER(fm10k_iov_msg_mac_vlan_pf),
1377 	FM10K_VF_MSG_LPORT_STATE_HANDLER(fm10k_iov_msg_lport_state_pf),
1378 	FM10K_TLV_MSG_ERROR_HANDLER(fm10k_tlv_msg_error),
1379 };
1380 
1381 /**
1382  *  fm10k_update_stats_hw_pf - Updates hardware related statistics of PF
1383  *  @hw: pointer to hardware structure
1384  *  @stats: pointer to the stats structure to update
1385  *
1386  *  This function collects and aggregates global and per queue hardware
1387  *  statistics.
1388  **/
1389 static void fm10k_update_hw_stats_pf(struct fm10k_hw *hw,
1390 				     struct fm10k_hw_stats *stats)
1391 {
1392 	u32 timeout, ur, ca, um, xec, vlan_drop, loopback_drop, nodesc_drop;
1393 	u32 id, id_prev;
1394 
1395 	/* Use Tx queue 0 as a canary to detect a reset */
1396 	id = fm10k_read_reg(hw, FM10K_TXQCTL(0));
1397 
1398 	/* Read Global Statistics */
1399 	do {
1400 		timeout = fm10k_read_hw_stats_32b(hw, FM10K_STATS_TIMEOUT,
1401 						  &stats->timeout);
1402 		ur = fm10k_read_hw_stats_32b(hw, FM10K_STATS_UR, &stats->ur);
1403 		ca = fm10k_read_hw_stats_32b(hw, FM10K_STATS_CA, &stats->ca);
1404 		um = fm10k_read_hw_stats_32b(hw, FM10K_STATS_UM, &stats->um);
1405 		xec = fm10k_read_hw_stats_32b(hw, FM10K_STATS_XEC, &stats->xec);
1406 		vlan_drop = fm10k_read_hw_stats_32b(hw, FM10K_STATS_VLAN_DROP,
1407 						    &stats->vlan_drop);
1408 		loopback_drop = fm10k_read_hw_stats_32b(hw,
1409 							FM10K_STATS_LOOPBACK_DROP,
1410 						     &stats->loopback_drop);
1411 		nodesc_drop = fm10k_read_hw_stats_32b(hw,
1412 						      FM10K_STATS_NODESC_DROP,
1413 						      &stats->nodesc_drop);
1414 
1415 		/* if value has not changed then we have consistent data */
1416 		id_prev = id;
1417 		id = fm10k_read_reg(hw, FM10K_TXQCTL(0));
1418 	} while ((id ^ id_prev) & FM10K_TXQCTL_ID_MASK);
1419 
1420 	/* drop non-ID bits and set VALID ID bit */
1421 	id &= FM10K_TXQCTL_ID_MASK;
1422 	id |= FM10K_STAT_VALID;
1423 
1424 	/* Update Global Statistics */
1425 	if (stats->stats_idx == id) {
1426 		stats->timeout.count += timeout;
1427 		stats->ur.count += ur;
1428 		stats->ca.count += ca;
1429 		stats->um.count += um;
1430 		stats->xec.count += xec;
1431 		stats->vlan_drop.count += vlan_drop;
1432 		stats->loopback_drop.count += loopback_drop;
1433 		stats->nodesc_drop.count += nodesc_drop;
1434 	}
1435 
1436 	/* Update bases and record current PF id */
1437 	fm10k_update_hw_base_32b(&stats->timeout, timeout);
1438 	fm10k_update_hw_base_32b(&stats->ur, ur);
1439 	fm10k_update_hw_base_32b(&stats->ca, ca);
1440 	fm10k_update_hw_base_32b(&stats->um, um);
1441 	fm10k_update_hw_base_32b(&stats->xec, xec);
1442 	fm10k_update_hw_base_32b(&stats->vlan_drop, vlan_drop);
1443 	fm10k_update_hw_base_32b(&stats->loopback_drop, loopback_drop);
1444 	fm10k_update_hw_base_32b(&stats->nodesc_drop, nodesc_drop);
1445 	stats->stats_idx = id;
1446 
1447 	/* Update Queue Statistics */
1448 	fm10k_update_hw_stats_q(hw, stats->q, 0, hw->mac.max_queues);
1449 }
1450 
1451 /**
1452  *  fm10k_rebind_hw_stats_pf - Resets base for hardware statistics of PF
1453  *  @hw: pointer to hardware structure
1454  *  @stats: pointer to the stats structure to update
1455  *
1456  *  This function resets the base for global and per queue hardware
1457  *  statistics.
1458  **/
1459 static void fm10k_rebind_hw_stats_pf(struct fm10k_hw *hw,
1460 				     struct fm10k_hw_stats *stats)
1461 {
1462 	/* Unbind Global Statistics */
1463 	fm10k_unbind_hw_stats_32b(&stats->timeout);
1464 	fm10k_unbind_hw_stats_32b(&stats->ur);
1465 	fm10k_unbind_hw_stats_32b(&stats->ca);
1466 	fm10k_unbind_hw_stats_32b(&stats->um);
1467 	fm10k_unbind_hw_stats_32b(&stats->xec);
1468 	fm10k_unbind_hw_stats_32b(&stats->vlan_drop);
1469 	fm10k_unbind_hw_stats_32b(&stats->loopback_drop);
1470 	fm10k_unbind_hw_stats_32b(&stats->nodesc_drop);
1471 
1472 	/* Unbind Queue Statistics */
1473 	fm10k_unbind_hw_stats_q(stats->q, 0, hw->mac.max_queues);
1474 
1475 	/* Reinitialize bases for all stats */
1476 	fm10k_update_hw_stats_pf(hw, stats);
1477 }
1478 
1479 /**
1480  *  fm10k_set_dma_mask_pf - Configures PhyAddrSpace to limit DMA to system
1481  *  @hw: pointer to hardware structure
1482  *  @dma_mask: 64 bit DMA mask required for platform
1483  *
1484  *  This function sets the PHYADDR.PhyAddrSpace bits for the endpoint in order
1485  *  to limit the access to memory beyond what is physically in the system.
1486  **/
1487 static void fm10k_set_dma_mask_pf(struct fm10k_hw *hw, u64 dma_mask)
1488 {
1489 	/* we need to write the upper 32 bits of DMA mask to PhyAddrSpace */
1490 	u32 phyaddr = (u32)(dma_mask >> 32);
1491 
1492 	fm10k_write_reg(hw, FM10K_PHYADDR, phyaddr);
1493 }
1494 
1495 /**
1496  *  fm10k_get_fault_pf - Record a fault in one of the interface units
1497  *  @hw: pointer to hardware structure
1498  *  @type: pointer to fault type register offset
1499  *  @fault: pointer to memory location to record the fault
1500  *
1501  *  Record the fault register contents to the fault data structure and
1502  *  clear the entry from the register.
1503  *
1504  *  Returns ERR_PARAM if invalid register is specified or no error is present.
1505  **/
1506 static s32 fm10k_get_fault_pf(struct fm10k_hw *hw, int type,
1507 			      struct fm10k_fault *fault)
1508 {
1509 	u32 func;
1510 
1511 	/* verify the fault register is in range and is aligned */
1512 	switch (type) {
1513 	case FM10K_PCA_FAULT:
1514 	case FM10K_THI_FAULT:
1515 	case FM10K_FUM_FAULT:
1516 		break;
1517 	default:
1518 		return FM10K_ERR_PARAM;
1519 	}
1520 
1521 	/* only service faults that are valid */
1522 	func = fm10k_read_reg(hw, type + FM10K_FAULT_FUNC);
1523 	if (!(func & FM10K_FAULT_FUNC_VALID))
1524 		return FM10K_ERR_PARAM;
1525 
1526 	/* read remaining fields */
1527 	fault->address = fm10k_read_reg(hw, type + FM10K_FAULT_ADDR_HI);
1528 	fault->address <<= 32;
1529 	fault->address = fm10k_read_reg(hw, type + FM10K_FAULT_ADDR_LO);
1530 	fault->specinfo = fm10k_read_reg(hw, type + FM10K_FAULT_SPECINFO);
1531 
1532 	/* clear valid bit to allow for next error */
1533 	fm10k_write_reg(hw, type + FM10K_FAULT_FUNC, FM10K_FAULT_FUNC_VALID);
1534 
1535 	/* Record which function triggered the error */
1536 	if (func & FM10K_FAULT_FUNC_PF)
1537 		fault->func = 0;
1538 	else
1539 		fault->func = 1 + ((func & FM10K_FAULT_FUNC_VF_MASK) >>
1540 				   FM10K_FAULT_FUNC_VF_SHIFT);
1541 
1542 	/* record fault type */
1543 	fault->type = func & FM10K_FAULT_FUNC_TYPE_MASK;
1544 
1545 	return 0;
1546 }
1547 
1548 /**
1549  *  fm10k_request_lport_map_pf - Request LPORT map from the switch API
1550  *  @hw: pointer to hardware structure
1551  *
1552  **/
1553 static s32 fm10k_request_lport_map_pf(struct fm10k_hw *hw)
1554 {
1555 	struct fm10k_mbx_info *mbx = &hw->mbx;
1556 	u32 msg[1];
1557 
1558 	/* issue request asking for LPORT map */
1559 	fm10k_tlv_msg_init(msg, FM10K_PF_MSG_ID_LPORT_MAP);
1560 
1561 	/* load onto outgoing mailbox */
1562 	return mbx->ops.enqueue_tx(hw, mbx, msg);
1563 }
1564 
1565 /**
1566  *  fm10k_get_host_state_pf - Returns the state of the switch and mailbox
1567  *  @hw: pointer to hardware structure
1568  *  @switch_ready: pointer to boolean value that will record switch state
1569  *
1570  *  This funciton will check the DMA_CTRL2 register and mailbox in order
1571  *  to determine if the switch is ready for the PF to begin requesting
1572  *  addresses and mapping traffic to the local interface.
1573  **/
1574 static s32 fm10k_get_host_state_pf(struct fm10k_hw *hw, bool *switch_ready)
1575 {
1576 	s32 ret_val = 0;
1577 	u32 dma_ctrl2;
1578 
1579 	/* verify the switch is ready for interraction */
1580 	dma_ctrl2 = fm10k_read_reg(hw, FM10K_DMA_CTRL2);
1581 	if (!(dma_ctrl2 & FM10K_DMA_CTRL2_SWITCH_READY))
1582 		goto out;
1583 
1584 	/* retrieve generic host state info */
1585 	ret_val = fm10k_get_host_state_generic(hw, switch_ready);
1586 	if (ret_val)
1587 		goto out;
1588 
1589 	/* interface cannot receive traffic without logical ports */
1590 	if (hw->mac.dglort_map == FM10K_DGLORTMAP_NONE)
1591 		ret_val = fm10k_request_lport_map_pf(hw);
1592 
1593 out:
1594 	return ret_val;
1595 }
1596 
1597 /* This structure defines the attibutes to be parsed below */
1598 const struct fm10k_tlv_attr fm10k_lport_map_msg_attr[] = {
1599 	FM10K_TLV_ATTR_U32(FM10K_PF_ATTR_ID_LPORT_MAP),
1600 	FM10K_TLV_ATTR_LAST
1601 };
1602 
1603 /**
1604  *  fm10k_msg_lport_map_pf - Message handler for lport_map message from SM
1605  *  @hw: Pointer to hardware structure
1606  *  @results: pointer array containing parsed data
1607  *  @mbx: Pointer to mailbox information structure
1608  *
1609  *  This handler configures the lport mapping based on the reply from the
1610  *  switch API.
1611  **/
1612 s32 fm10k_msg_lport_map_pf(struct fm10k_hw *hw, u32 **results,
1613 			   struct fm10k_mbx_info *mbx)
1614 {
1615 	u16 glort, mask;
1616 	u32 dglort_map;
1617 	s32 err;
1618 
1619 	err = fm10k_tlv_attr_get_u32(results[FM10K_PF_ATTR_ID_LPORT_MAP],
1620 				     &dglort_map);
1621 	if (err)
1622 		return err;
1623 
1624 	/* extract values out of the header */
1625 	glort = FM10K_MSG_HDR_FIELD_GET(dglort_map, LPORT_MAP_GLORT);
1626 	mask = FM10K_MSG_HDR_FIELD_GET(dglort_map, LPORT_MAP_MASK);
1627 
1628 	/* verify mask is set and none of the masked bits in glort are set */
1629 	if (!mask || (glort & ~mask))
1630 		return FM10K_ERR_PARAM;
1631 
1632 	/* verify the mask is contiguous, and that it is 1's followed by 0's */
1633 	if (((~(mask - 1) & mask) + mask) & FM10K_DGLORTMAP_NONE)
1634 		return FM10K_ERR_PARAM;
1635 
1636 	/* record the glort, mask, and port count */
1637 	hw->mac.dglort_map = dglort_map;
1638 
1639 	return 0;
1640 }
1641 
1642 const struct fm10k_tlv_attr fm10k_update_pvid_msg_attr[] = {
1643 	FM10K_TLV_ATTR_U32(FM10K_PF_ATTR_ID_UPDATE_PVID),
1644 	FM10K_TLV_ATTR_LAST
1645 };
1646 
1647 /**
1648  *  fm10k_msg_update_pvid_pf - Message handler for port VLAN message from SM
1649  *  @hw: Pointer to hardware structure
1650  *  @results: pointer array containing parsed data
1651  *  @mbx: Pointer to mailbox information structure
1652  *
1653  *  This handler configures the default VLAN for the PF
1654  **/
1655 s32 fm10k_msg_update_pvid_pf(struct fm10k_hw *hw, u32 **results,
1656 			     struct fm10k_mbx_info *mbx)
1657 {
1658 	u16 glort, pvid;
1659 	u32 pvid_update;
1660 	s32 err;
1661 
1662 	err = fm10k_tlv_attr_get_u32(results[FM10K_PF_ATTR_ID_UPDATE_PVID],
1663 				     &pvid_update);
1664 	if (err)
1665 		return err;
1666 
1667 	/* extract values from the pvid update */
1668 	glort = FM10K_MSG_HDR_FIELD_GET(pvid_update, UPDATE_PVID_GLORT);
1669 	pvid = FM10K_MSG_HDR_FIELD_GET(pvid_update, UPDATE_PVID_PVID);
1670 
1671 	/* if glort is not valid return error */
1672 	if (!fm10k_glort_valid_pf(hw, glort))
1673 		return FM10K_ERR_PARAM;
1674 
1675 	/* verify VID is valid */
1676 	if (pvid >= FM10K_VLAN_TABLE_VID_MAX)
1677 		return FM10K_ERR_PARAM;
1678 
1679 	/* record the port VLAN ID value */
1680 	hw->mac.default_vid = pvid;
1681 
1682 	return 0;
1683 }
1684 
1685 /**
1686  *  fm10k_record_global_table_data - Move global table data to swapi table info
1687  *  @from: pointer to source table data structure
1688  *  @to: pointer to destination table info structure
1689  *
1690  *  This function is will copy table_data to the table_info contained in
1691  *  the hw struct.
1692  **/
1693 static void fm10k_record_global_table_data(struct fm10k_global_table_data *from,
1694 					   struct fm10k_swapi_table_info *to)
1695 {
1696 	/* convert from le32 struct to CPU byte ordered values */
1697 	to->used = le32_to_cpu(from->used);
1698 	to->avail = le32_to_cpu(from->avail);
1699 }
1700 
1701 const struct fm10k_tlv_attr fm10k_err_msg_attr[] = {
1702 	FM10K_TLV_ATTR_LE_STRUCT(FM10K_PF_ATTR_ID_ERR,
1703 				 sizeof(struct fm10k_swapi_error)),
1704 	FM10K_TLV_ATTR_LAST
1705 };
1706 
1707 /**
1708  *  fm10k_msg_err_pf - Message handler for error reply
1709  *  @hw: Pointer to hardware structure
1710  *  @results: pointer array containing parsed data
1711  *  @mbx: Pointer to mailbox information structure
1712  *
1713  *  This handler will capture the data for any error replies to previous
1714  *  messages that the PF has sent.
1715  **/
1716 s32 fm10k_msg_err_pf(struct fm10k_hw *hw, u32 **results,
1717 		     struct fm10k_mbx_info *mbx)
1718 {
1719 	struct fm10k_swapi_error err_msg;
1720 	s32 err;
1721 
1722 	/* extract structure from message */
1723 	err = fm10k_tlv_attr_get_le_struct(results[FM10K_PF_ATTR_ID_ERR],
1724 					   &err_msg, sizeof(err_msg));
1725 	if (err)
1726 		return err;
1727 
1728 	/* record table status */
1729 	fm10k_record_global_table_data(&err_msg.mac, &hw->swapi.mac);
1730 	fm10k_record_global_table_data(&err_msg.nexthop, &hw->swapi.nexthop);
1731 	fm10k_record_global_table_data(&err_msg.ffu, &hw->swapi.ffu);
1732 
1733 	/* record SW API status value */
1734 	hw->swapi.status = le32_to_cpu(err_msg.status);
1735 
1736 	return 0;
1737 }
1738 
1739 const struct fm10k_tlv_attr fm10k_1588_timestamp_msg_attr[] = {
1740 	FM10K_TLV_ATTR_LE_STRUCT(FM10K_PF_ATTR_ID_1588_TIMESTAMP,
1741 				 sizeof(struct fm10k_swapi_1588_timestamp)),
1742 	FM10K_TLV_ATTR_LAST
1743 };
1744 
1745 /* currently there is no shared 1588 timestamp handler */
1746 
1747 /**
1748  *  fm10k_adjust_systime_pf - Adjust systime frequency
1749  *  @hw: pointer to hardware structure
1750  *  @ppb: adjustment rate in parts per billion
1751  *
1752  *  This function will adjust the SYSTIME_CFG register contained in BAR 4
1753  *  if this function is supported for BAR 4 access.  The adjustment amount
1754  *  is based on the parts per billion value provided and adjusted to a
1755  *  value based on parts per 2^48 clock cycles.
1756  *
1757  *  If adjustment is not supported or the requested value is too large
1758  *  we will return an error.
1759  **/
1760 static s32 fm10k_adjust_systime_pf(struct fm10k_hw *hw, s32 ppb)
1761 {
1762 	u64 systime_adjust;
1763 
1764 	/* if sw_addr is not set we don't have switch register access */
1765 	if (!hw->sw_addr)
1766 		return ppb ? FM10K_ERR_PARAM : 0;
1767 
1768 	/* we must convert the value from parts per billion to parts per
1769 	 * 2^48 cycles.  In addition I have opted to only use the 30 most
1770 	 * significant bits of the adjustment value as the 8 least
1771 	 * significant bits are located in another register and represent
1772 	 * a value significantly less than a part per billion, the result
1773 	 * of dropping the 8 least significant bits is that the adjustment
1774 	 * value is effectively multiplied by 2^8 when we write it.
1775 	 *
1776 	 * As a result of all this the math for this breaks down as follows:
1777 	 *	ppb / 10^9 == adjust * 2^8 / 2^48
1778 	 * If we solve this for adjust, and simplify it comes out as:
1779 	 *	ppb * 2^31 / 5^9 == adjust
1780 	 */
1781 	systime_adjust = (ppb < 0) ? -ppb : ppb;
1782 	systime_adjust <<= 31;
1783 	do_div(systime_adjust, 1953125);
1784 
1785 	/* verify the requested adjustment value is in range */
1786 	if (systime_adjust > FM10K_SW_SYSTIME_ADJUST_MASK)
1787 		return FM10K_ERR_PARAM;
1788 
1789 	if (ppb < 0)
1790 		systime_adjust |= FM10K_SW_SYSTIME_ADJUST_DIR_NEGATIVE;
1791 
1792 	fm10k_write_sw_reg(hw, FM10K_SW_SYSTIME_ADJUST, (u32)systime_adjust);
1793 
1794 	return 0;
1795 }
1796 
1797 /**
1798  *  fm10k_read_systime_pf - Reads value of systime registers
1799  *  @hw: pointer to the hardware structure
1800  *
1801  *  Function reads the content of 2 registers, combined to represent a 64 bit
1802  *  value measured in nanosecods.  In order to guarantee the value is accurate
1803  *  we check the 32 most significant bits both before and after reading the
1804  *  32 least significant bits to verify they didn't change as we were reading
1805  *  the registers.
1806  **/
1807 static u64 fm10k_read_systime_pf(struct fm10k_hw *hw)
1808 {
1809 	u32 systime_l, systime_h, systime_tmp;
1810 
1811 	systime_h = fm10k_read_reg(hw, FM10K_SYSTIME + 1);
1812 
1813 	do {
1814 		systime_tmp = systime_h;
1815 		systime_l = fm10k_read_reg(hw, FM10K_SYSTIME);
1816 		systime_h = fm10k_read_reg(hw, FM10K_SYSTIME + 1);
1817 	} while (systime_tmp != systime_h);
1818 
1819 	return ((u64)systime_h << 32) | systime_l;
1820 }
1821 
1822 static const struct fm10k_msg_data fm10k_msg_data_pf[] = {
1823 	FM10K_PF_MSG_ERR_HANDLER(XCAST_MODES, fm10k_msg_err_pf),
1824 	FM10K_PF_MSG_ERR_HANDLER(UPDATE_MAC_FWD_RULE, fm10k_msg_err_pf),
1825 	FM10K_PF_MSG_LPORT_MAP_HANDLER(fm10k_msg_lport_map_pf),
1826 	FM10K_PF_MSG_ERR_HANDLER(LPORT_CREATE, fm10k_msg_err_pf),
1827 	FM10K_PF_MSG_ERR_HANDLER(LPORT_DELETE, fm10k_msg_err_pf),
1828 	FM10K_PF_MSG_UPDATE_PVID_HANDLER(fm10k_msg_update_pvid_pf),
1829 	FM10K_TLV_MSG_ERROR_HANDLER(fm10k_tlv_msg_error),
1830 };
1831 
1832 static struct fm10k_mac_ops mac_ops_pf = {
1833 	.get_bus_info		= &fm10k_get_bus_info_generic,
1834 	.reset_hw		= &fm10k_reset_hw_pf,
1835 	.init_hw		= &fm10k_init_hw_pf,
1836 	.start_hw		= &fm10k_start_hw_generic,
1837 	.stop_hw		= &fm10k_stop_hw_generic,
1838 	.is_slot_appropriate	= &fm10k_is_slot_appropriate_pf,
1839 	.update_vlan		= &fm10k_update_vlan_pf,
1840 	.read_mac_addr		= &fm10k_read_mac_addr_pf,
1841 	.update_uc_addr		= &fm10k_update_uc_addr_pf,
1842 	.update_mc_addr		= &fm10k_update_mc_addr_pf,
1843 	.update_xcast_mode	= &fm10k_update_xcast_mode_pf,
1844 	.update_int_moderator	= &fm10k_update_int_moderator_pf,
1845 	.update_lport_state	= &fm10k_update_lport_state_pf,
1846 	.update_hw_stats	= &fm10k_update_hw_stats_pf,
1847 	.rebind_hw_stats	= &fm10k_rebind_hw_stats_pf,
1848 	.configure_dglort_map	= &fm10k_configure_dglort_map_pf,
1849 	.set_dma_mask		= &fm10k_set_dma_mask_pf,
1850 	.get_fault		= &fm10k_get_fault_pf,
1851 	.get_host_state		= &fm10k_get_host_state_pf,
1852 	.adjust_systime		= &fm10k_adjust_systime_pf,
1853 	.read_systime		= &fm10k_read_systime_pf,
1854 };
1855 
1856 static struct fm10k_iov_ops iov_ops_pf = {
1857 	.assign_resources		= &fm10k_iov_assign_resources_pf,
1858 	.configure_tc			= &fm10k_iov_configure_tc_pf,
1859 	.assign_int_moderator		= &fm10k_iov_assign_int_moderator_pf,
1860 	.assign_default_mac_vlan	= fm10k_iov_assign_default_mac_vlan_pf,
1861 	.reset_resources		= &fm10k_iov_reset_resources_pf,
1862 	.set_lport			= &fm10k_iov_set_lport_pf,
1863 	.reset_lport			= &fm10k_iov_reset_lport_pf,
1864 	.update_stats			= &fm10k_iov_update_stats_pf,
1865 	.report_timestamp		= &fm10k_iov_report_timestamp_pf,
1866 };
1867 
1868 static s32 fm10k_get_invariants_pf(struct fm10k_hw *hw)
1869 {
1870 	fm10k_get_invariants_generic(hw);
1871 
1872 	return fm10k_sm_mbx_init(hw, &hw->mbx, fm10k_msg_data_pf);
1873 }
1874 
1875 struct fm10k_info fm10k_pf_info = {
1876 	.mac		= fm10k_mac_pf,
1877 	.get_invariants	= &fm10k_get_invariants_pf,
1878 	.mac_ops	= &mac_ops_pf,
1879 	.iov_ops	= &iov_ops_pf,
1880 };
1881