1 // SPDX-License-Identifier: GPL-2.0
2 /* Intel(R) Ethernet Switch Host Interface Driver
3  * Copyright(c) 2013 - 2018 Intel Corporation.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  *
14  * The full GNU General Public License is included in this distribution in
15  * the file called "COPYING".
16  *
17  * Contact Information:
18  * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
19  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
20  */
21 
22 #include "fm10k_pf.h"
23 #include "fm10k_vf.h"
24 
25 /**
26  *  fm10k_reset_hw_pf - PF hardware reset
27  *  @hw: pointer to hardware structure
28  *
29  *  This function should return the hardware to a state similar to the
30  *  one it is in after being powered on.
31  **/
32 static s32 fm10k_reset_hw_pf(struct fm10k_hw *hw)
33 {
34 	s32 err;
35 	u32 reg;
36 	u16 i;
37 
38 	/* Disable interrupts */
39 	fm10k_write_reg(hw, FM10K_EIMR, FM10K_EIMR_DISABLE(ALL));
40 
41 	/* Lock ITR2 reg 0 into itself and disable interrupt moderation */
42 	fm10k_write_reg(hw, FM10K_ITR2(0), 0);
43 	fm10k_write_reg(hw, FM10K_INT_CTRL, 0);
44 
45 	/* We assume here Tx and Rx queue 0 are owned by the PF */
46 
47 	/* Shut off VF access to their queues forcing them to queue 0 */
48 	for (i = 0; i < FM10K_TQMAP_TABLE_SIZE; i++) {
49 		fm10k_write_reg(hw, FM10K_TQMAP(i), 0);
50 		fm10k_write_reg(hw, FM10K_RQMAP(i), 0);
51 	}
52 
53 	/* shut down all rings */
54 	err = fm10k_disable_queues_generic(hw, FM10K_MAX_QUEUES);
55 	if (err == FM10K_ERR_REQUESTS_PENDING) {
56 		hw->mac.reset_while_pending++;
57 		goto force_reset;
58 	} else if (err) {
59 		return err;
60 	}
61 
62 	/* Verify that DMA is no longer active */
63 	reg = fm10k_read_reg(hw, FM10K_DMA_CTRL);
64 	if (reg & (FM10K_DMA_CTRL_TX_ACTIVE | FM10K_DMA_CTRL_RX_ACTIVE))
65 		return FM10K_ERR_DMA_PENDING;
66 
67 force_reset:
68 	/* Inititate data path reset */
69 	reg = FM10K_DMA_CTRL_DATAPATH_RESET;
70 	fm10k_write_reg(hw, FM10K_DMA_CTRL, reg);
71 
72 	/* Flush write and allow 100us for reset to complete */
73 	fm10k_write_flush(hw);
74 	udelay(FM10K_RESET_TIMEOUT);
75 
76 	/* Verify we made it out of reset */
77 	reg = fm10k_read_reg(hw, FM10K_IP);
78 	if (!(reg & FM10K_IP_NOTINRESET))
79 		return FM10K_ERR_RESET_FAILED;
80 
81 	return 0;
82 }
83 
84 /**
85  *  fm10k_is_ari_hierarchy_pf - Indicate ARI hierarchy support
86  *  @hw: pointer to hardware structure
87  *
88  *  Looks at the ARI hierarchy bit to determine whether ARI is supported or not.
89  **/
90 static bool fm10k_is_ari_hierarchy_pf(struct fm10k_hw *hw)
91 {
92 	u16 sriov_ctrl = fm10k_read_pci_cfg_word(hw, FM10K_PCIE_SRIOV_CTRL);
93 
94 	return !!(sriov_ctrl & FM10K_PCIE_SRIOV_CTRL_VFARI);
95 }
96 
97 /**
98  *  fm10k_init_hw_pf - PF hardware initialization
99  *  @hw: pointer to hardware structure
100  *
101  **/
102 static s32 fm10k_init_hw_pf(struct fm10k_hw *hw)
103 {
104 	u32 dma_ctrl, txqctl;
105 	u16 i;
106 
107 	/* Establish default VSI as valid */
108 	fm10k_write_reg(hw, FM10K_DGLORTDEC(fm10k_dglort_default), 0);
109 	fm10k_write_reg(hw, FM10K_DGLORTMAP(fm10k_dglort_default),
110 			FM10K_DGLORTMAP_ANY);
111 
112 	/* Invalidate all other GLORT entries */
113 	for (i = 1; i < FM10K_DGLORT_COUNT; i++)
114 		fm10k_write_reg(hw, FM10K_DGLORTMAP(i), FM10K_DGLORTMAP_NONE);
115 
116 	/* reset ITR2(0) to point to itself */
117 	fm10k_write_reg(hw, FM10K_ITR2(0), 0);
118 
119 	/* reset VF ITR2(0) to point to 0 avoid PF registers */
120 	fm10k_write_reg(hw, FM10K_ITR2(FM10K_ITR_REG_COUNT_PF), 0);
121 
122 	/* loop through all PF ITR2 registers pointing them to the previous */
123 	for (i = 1; i < FM10K_ITR_REG_COUNT_PF; i++)
124 		fm10k_write_reg(hw, FM10K_ITR2(i), i - 1);
125 
126 	/* Enable interrupt moderator if not already enabled */
127 	fm10k_write_reg(hw, FM10K_INT_CTRL, FM10K_INT_CTRL_ENABLEMODERATOR);
128 
129 	/* compute the default txqctl configuration */
130 	txqctl = FM10K_TXQCTL_PF | FM10K_TXQCTL_UNLIMITED_BW |
131 		 (hw->mac.default_vid << FM10K_TXQCTL_VID_SHIFT);
132 
133 	for (i = 0; i < FM10K_MAX_QUEUES; i++) {
134 		/* configure rings for 256 Queue / 32 Descriptor cache mode */
135 		fm10k_write_reg(hw, FM10K_TQDLOC(i),
136 				(i * FM10K_TQDLOC_BASE_32_DESC) |
137 				FM10K_TQDLOC_SIZE_32_DESC);
138 		fm10k_write_reg(hw, FM10K_TXQCTL(i), txqctl);
139 
140 		/* configure rings to provide TPH processing hints */
141 		fm10k_write_reg(hw, FM10K_TPH_TXCTRL(i),
142 				FM10K_TPH_TXCTRL_DESC_TPHEN |
143 				FM10K_TPH_TXCTRL_DESC_RROEN |
144 				FM10K_TPH_TXCTRL_DESC_WROEN |
145 				FM10K_TPH_TXCTRL_DATA_RROEN);
146 		fm10k_write_reg(hw, FM10K_TPH_RXCTRL(i),
147 				FM10K_TPH_RXCTRL_DESC_TPHEN |
148 				FM10K_TPH_RXCTRL_DESC_RROEN |
149 				FM10K_TPH_RXCTRL_DATA_WROEN |
150 				FM10K_TPH_RXCTRL_HDR_WROEN);
151 	}
152 
153 	/* set max hold interval to align with 1.024 usec in all modes and
154 	 * store ITR scale
155 	 */
156 	switch (hw->bus.speed) {
157 	case fm10k_bus_speed_2500:
158 		dma_ctrl = FM10K_DMA_CTRL_MAX_HOLD_1US_GEN1;
159 		hw->mac.itr_scale = FM10K_TDLEN_ITR_SCALE_GEN1;
160 		break;
161 	case fm10k_bus_speed_5000:
162 		dma_ctrl = FM10K_DMA_CTRL_MAX_HOLD_1US_GEN2;
163 		hw->mac.itr_scale = FM10K_TDLEN_ITR_SCALE_GEN2;
164 		break;
165 	case fm10k_bus_speed_8000:
166 		dma_ctrl = FM10K_DMA_CTRL_MAX_HOLD_1US_GEN3;
167 		hw->mac.itr_scale = FM10K_TDLEN_ITR_SCALE_GEN3;
168 		break;
169 	default:
170 		dma_ctrl = 0;
171 		/* just in case, assume Gen3 ITR scale */
172 		hw->mac.itr_scale = FM10K_TDLEN_ITR_SCALE_GEN3;
173 		break;
174 	}
175 
176 	/* Configure TSO flags */
177 	fm10k_write_reg(hw, FM10K_DTXTCPFLGL, FM10K_TSO_FLAGS_LOW);
178 	fm10k_write_reg(hw, FM10K_DTXTCPFLGH, FM10K_TSO_FLAGS_HI);
179 
180 	/* Enable DMA engine
181 	 * Set Rx Descriptor size to 32
182 	 * Set Minimum MSS to 64
183 	 * Set Maximum number of Rx queues to 256 / 32 Descriptor
184 	 */
185 	dma_ctrl |= FM10K_DMA_CTRL_TX_ENABLE | FM10K_DMA_CTRL_RX_ENABLE |
186 		    FM10K_DMA_CTRL_RX_DESC_SIZE | FM10K_DMA_CTRL_MINMSS_64 |
187 		    FM10K_DMA_CTRL_32_DESC;
188 
189 	fm10k_write_reg(hw, FM10K_DMA_CTRL, dma_ctrl);
190 
191 	/* record maximum queue count, we limit ourselves to 128 */
192 	hw->mac.max_queues = FM10K_MAX_QUEUES_PF;
193 
194 	/* We support either 64 VFs or 7 VFs depending on if we have ARI */
195 	hw->iov.total_vfs = fm10k_is_ari_hierarchy_pf(hw) ? 64 : 7;
196 
197 	return 0;
198 }
199 
200 /**
201  *  fm10k_update_vlan_pf - Update status of VLAN ID in VLAN filter table
202  *  @hw: pointer to hardware structure
203  *  @vid: VLAN ID to add to table
204  *  @vsi: Index indicating VF ID or PF ID in table
205  *  @set: Indicates if this is a set or clear operation
206  *
207  *  This function adds or removes the corresponding VLAN ID from the VLAN
208  *  filter table for the corresponding function.  In addition to the
209  *  standard set/clear that supports one bit a multi-bit write is
210  *  supported to set 64 bits at a time.
211  **/
212 static s32 fm10k_update_vlan_pf(struct fm10k_hw *hw, u32 vid, u8 vsi, bool set)
213 {
214 	u32 vlan_table, reg, mask, bit, len;
215 
216 	/* verify the VSI index is valid */
217 	if (vsi > FM10K_VLAN_TABLE_VSI_MAX)
218 		return FM10K_ERR_PARAM;
219 
220 	/* VLAN multi-bit write:
221 	 * The multi-bit write has several parts to it.
222 	 *               24              16               8               0
223 	 *  7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0
224 	 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
225 	 * | RSVD0 |         Length        |C|RSVD0|        VLAN ID        |
226 	 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
227 	 *
228 	 * VLAN ID: Vlan Starting value
229 	 * RSVD0: Reserved section, must be 0
230 	 * C: Flag field, 0 is set, 1 is clear (Used in VF VLAN message)
231 	 * Length: Number of times to repeat the bit being set
232 	 */
233 	len = vid >> 16;
234 	vid = (vid << 17) >> 17;
235 
236 	/* verify the reserved 0 fields are 0 */
237 	if (len >= FM10K_VLAN_TABLE_VID_MAX || vid >= FM10K_VLAN_TABLE_VID_MAX)
238 		return FM10K_ERR_PARAM;
239 
240 	/* Loop through the table updating all required VLANs */
241 	for (reg = FM10K_VLAN_TABLE(vsi, vid / 32), bit = vid % 32;
242 	     len < FM10K_VLAN_TABLE_VID_MAX;
243 	     len -= 32 - bit, reg++, bit = 0) {
244 		/* record the initial state of the register */
245 		vlan_table = fm10k_read_reg(hw, reg);
246 
247 		/* truncate mask if we are at the start or end of the run */
248 		mask = (~(u32)0 >> ((len < 31) ? 31 - len : 0)) << bit;
249 
250 		/* make necessary modifications to the register */
251 		mask &= set ? ~vlan_table : vlan_table;
252 		if (mask)
253 			fm10k_write_reg(hw, reg, vlan_table ^ mask);
254 	}
255 
256 	return 0;
257 }
258 
259 /**
260  *  fm10k_read_mac_addr_pf - Read device MAC address
261  *  @hw: pointer to the HW structure
262  *
263  *  Reads the device MAC address from the SM_AREA and stores the value.
264  **/
265 static s32 fm10k_read_mac_addr_pf(struct fm10k_hw *hw)
266 {
267 	u8 perm_addr[ETH_ALEN];
268 	u32 serial_num;
269 
270 	serial_num = fm10k_read_reg(hw, FM10K_SM_AREA(1));
271 
272 	/* last byte should be all 1's */
273 	if ((~serial_num) << 24)
274 		return  FM10K_ERR_INVALID_MAC_ADDR;
275 
276 	perm_addr[0] = (u8)(serial_num >> 24);
277 	perm_addr[1] = (u8)(serial_num >> 16);
278 	perm_addr[2] = (u8)(serial_num >> 8);
279 
280 	serial_num = fm10k_read_reg(hw, FM10K_SM_AREA(0));
281 
282 	/* first byte should be all 1's */
283 	if ((~serial_num) >> 24)
284 		return  FM10K_ERR_INVALID_MAC_ADDR;
285 
286 	perm_addr[3] = (u8)(serial_num >> 16);
287 	perm_addr[4] = (u8)(serial_num >> 8);
288 	perm_addr[5] = (u8)(serial_num);
289 
290 	ether_addr_copy(hw->mac.perm_addr, perm_addr);
291 	ether_addr_copy(hw->mac.addr, perm_addr);
292 
293 	return 0;
294 }
295 
296 /**
297  *  fm10k_glort_valid_pf - Validate that the provided glort is valid
298  *  @hw: pointer to the HW structure
299  *  @glort: base glort to be validated
300  *
301  *  This function will return an error if the provided glort is invalid
302  **/
303 bool fm10k_glort_valid_pf(struct fm10k_hw *hw, u16 glort)
304 {
305 	glort &= hw->mac.dglort_map >> FM10K_DGLORTMAP_MASK_SHIFT;
306 
307 	return glort == (hw->mac.dglort_map & FM10K_DGLORTMAP_NONE);
308 }
309 
310 /**
311  *  fm10k_update_xc_addr_pf - Update device addresses
312  *  @hw: pointer to the HW structure
313  *  @glort: base resource tag for this request
314  *  @mac: MAC address to add/remove from table
315  *  @vid: VLAN ID to add/remove from table
316  *  @add: Indicates if this is an add or remove operation
317  *  @flags: flags field to indicate add and secure
318  *
319  *  This function generates a message to the Switch API requesting
320  *  that the given logical port add/remove the given L2 MAC/VLAN address.
321  **/
322 static s32 fm10k_update_xc_addr_pf(struct fm10k_hw *hw, u16 glort,
323 				   const u8 *mac, u16 vid, bool add, u8 flags)
324 {
325 	struct fm10k_mbx_info *mbx = &hw->mbx;
326 	struct fm10k_mac_update mac_update;
327 	u32 msg[5];
328 
329 	/* clear set bit from VLAN ID */
330 	vid &= ~FM10K_VLAN_CLEAR;
331 
332 	/* if glort or VLAN are not valid return error */
333 	if (!fm10k_glort_valid_pf(hw, glort) || vid >= FM10K_VLAN_TABLE_VID_MAX)
334 		return FM10K_ERR_PARAM;
335 
336 	/* record fields */
337 	mac_update.mac_lower = cpu_to_le32(((u32)mac[2] << 24) |
338 						 ((u32)mac[3] << 16) |
339 						 ((u32)mac[4] << 8) |
340 						 ((u32)mac[5]));
341 	mac_update.mac_upper = cpu_to_le16(((u16)mac[0] << 8) |
342 					   ((u16)mac[1]));
343 	mac_update.vlan = cpu_to_le16(vid);
344 	mac_update.glort = cpu_to_le16(glort);
345 	mac_update.action = add ? 0 : 1;
346 	mac_update.flags = flags;
347 
348 	/* populate mac_update fields */
349 	fm10k_tlv_msg_init(msg, FM10K_PF_MSG_ID_UPDATE_MAC_FWD_RULE);
350 	fm10k_tlv_attr_put_le_struct(msg, FM10K_PF_ATTR_ID_MAC_UPDATE,
351 				     &mac_update, sizeof(mac_update));
352 
353 	/* load onto outgoing mailbox */
354 	return mbx->ops.enqueue_tx(hw, mbx, msg);
355 }
356 
357 /**
358  *  fm10k_update_uc_addr_pf - Update device unicast addresses
359  *  @hw: pointer to the HW structure
360  *  @glort: base resource tag for this request
361  *  @mac: MAC address to add/remove from table
362  *  @vid: VLAN ID to add/remove from table
363  *  @add: Indicates if this is an add or remove operation
364  *  @flags: flags field to indicate add and secure
365  *
366  *  This function is used to add or remove unicast addresses for
367  *  the PF.
368  **/
369 static s32 fm10k_update_uc_addr_pf(struct fm10k_hw *hw, u16 glort,
370 				   const u8 *mac, u16 vid, bool add, u8 flags)
371 {
372 	/* verify MAC address is valid */
373 	if (!is_valid_ether_addr(mac))
374 		return FM10K_ERR_PARAM;
375 
376 	return fm10k_update_xc_addr_pf(hw, glort, mac, vid, add, flags);
377 }
378 
379 /**
380  *  fm10k_update_mc_addr_pf - Update device multicast addresses
381  *  @hw: pointer to the HW structure
382  *  @glort: base resource tag for this request
383  *  @mac: MAC address to add/remove from table
384  *  @vid: VLAN ID to add/remove from table
385  *  @add: Indicates if this is an add or remove operation
386  *
387  *  This function is used to add or remove multicast MAC addresses for
388  *  the PF.
389  **/
390 static s32 fm10k_update_mc_addr_pf(struct fm10k_hw *hw, u16 glort,
391 				   const u8 *mac, u16 vid, bool add)
392 {
393 	/* verify multicast address is valid */
394 	if (!is_multicast_ether_addr(mac))
395 		return FM10K_ERR_PARAM;
396 
397 	return fm10k_update_xc_addr_pf(hw, glort, mac, vid, add, 0);
398 }
399 
400 /**
401  *  fm10k_update_xcast_mode_pf - Request update of multicast mode
402  *  @hw: pointer to hardware structure
403  *  @glort: base resource tag for this request
404  *  @mode: integer value indicating mode being requested
405  *
406  *  This function will attempt to request a higher mode for the port
407  *  so that it can enable either multicast, multicast promiscuous, or
408  *  promiscuous mode of operation.
409  **/
410 static s32 fm10k_update_xcast_mode_pf(struct fm10k_hw *hw, u16 glort, u8 mode)
411 {
412 	struct fm10k_mbx_info *mbx = &hw->mbx;
413 	u32 msg[3], xcast_mode;
414 
415 	if (mode > FM10K_XCAST_MODE_NONE)
416 		return FM10K_ERR_PARAM;
417 
418 	/* if glort is not valid return error */
419 	if (!fm10k_glort_valid_pf(hw, glort))
420 		return FM10K_ERR_PARAM;
421 
422 	/* write xcast mode as a single u32 value,
423 	 * lower 16 bits: glort
424 	 * upper 16 bits: mode
425 	 */
426 	xcast_mode = ((u32)mode << 16) | glort;
427 
428 	/* generate message requesting to change xcast mode */
429 	fm10k_tlv_msg_init(msg, FM10K_PF_MSG_ID_XCAST_MODES);
430 	fm10k_tlv_attr_put_u32(msg, FM10K_PF_ATTR_ID_XCAST_MODE, xcast_mode);
431 
432 	/* load onto outgoing mailbox */
433 	return mbx->ops.enqueue_tx(hw, mbx, msg);
434 }
435 
436 /**
437  *  fm10k_update_int_moderator_pf - Update interrupt moderator linked list
438  *  @hw: pointer to hardware structure
439  *
440  *  This function walks through the MSI-X vector table to determine the
441  *  number of active interrupts and based on that information updates the
442  *  interrupt moderator linked list.
443  **/
444 static void fm10k_update_int_moderator_pf(struct fm10k_hw *hw)
445 {
446 	u32 i;
447 
448 	/* Disable interrupt moderator */
449 	fm10k_write_reg(hw, FM10K_INT_CTRL, 0);
450 
451 	/* loop through PF from last to first looking enabled vectors */
452 	for (i = FM10K_ITR_REG_COUNT_PF - 1; i; i--) {
453 		if (!fm10k_read_reg(hw, FM10K_MSIX_VECTOR_MASK(i)))
454 			break;
455 	}
456 
457 	/* always reset VFITR2[0] to point to last enabled PF vector */
458 	fm10k_write_reg(hw, FM10K_ITR2(FM10K_ITR_REG_COUNT_PF), i);
459 
460 	/* reset ITR2[0] to point to last enabled PF vector */
461 	if (!hw->iov.num_vfs)
462 		fm10k_write_reg(hw, FM10K_ITR2(0), i);
463 
464 	/* Enable interrupt moderator */
465 	fm10k_write_reg(hw, FM10K_INT_CTRL, FM10K_INT_CTRL_ENABLEMODERATOR);
466 }
467 
468 /**
469  *  fm10k_update_lport_state_pf - Notify the switch of a change in port state
470  *  @hw: pointer to the HW structure
471  *  @glort: base resource tag for this request
472  *  @count: number of logical ports being updated
473  *  @enable: boolean value indicating enable or disable
474  *
475  *  This function is used to add/remove a logical port from the switch.
476  **/
477 static s32 fm10k_update_lport_state_pf(struct fm10k_hw *hw, u16 glort,
478 				       u16 count, bool enable)
479 {
480 	struct fm10k_mbx_info *mbx = &hw->mbx;
481 	u32 msg[3], lport_msg;
482 
483 	/* do nothing if we are being asked to create or destroy 0 ports */
484 	if (!count)
485 		return 0;
486 
487 	/* if glort is not valid return error */
488 	if (!fm10k_glort_valid_pf(hw, glort))
489 		return FM10K_ERR_PARAM;
490 
491 	/* reset multicast mode if deleting lport */
492 	if (!enable)
493 		fm10k_update_xcast_mode_pf(hw, glort, FM10K_XCAST_MODE_NONE);
494 
495 	/* construct the lport message from the 2 pieces of data we have */
496 	lport_msg = ((u32)count << 16) | glort;
497 
498 	/* generate lport create/delete message */
499 	fm10k_tlv_msg_init(msg, enable ? FM10K_PF_MSG_ID_LPORT_CREATE :
500 					 FM10K_PF_MSG_ID_LPORT_DELETE);
501 	fm10k_tlv_attr_put_u32(msg, FM10K_PF_ATTR_ID_PORT, lport_msg);
502 
503 	/* load onto outgoing mailbox */
504 	return mbx->ops.enqueue_tx(hw, mbx, msg);
505 }
506 
507 /**
508  *  fm10k_configure_dglort_map_pf - Configures GLORT entry and queues
509  *  @hw: pointer to hardware structure
510  *  @dglort: pointer to dglort configuration structure
511  *
512  *  Reads the configuration structure contained in dglort_cfg and uses
513  *  that information to then populate a DGLORTMAP/DEC entry and the queues
514  *  to which it has been assigned.
515  **/
516 static s32 fm10k_configure_dglort_map_pf(struct fm10k_hw *hw,
517 					 struct fm10k_dglort_cfg *dglort)
518 {
519 	u16 glort, queue_count, vsi_count, pc_count;
520 	u16 vsi, queue, pc, q_idx;
521 	u32 txqctl, dglortdec, dglortmap;
522 
523 	/* verify the dglort pointer */
524 	if (!dglort)
525 		return FM10K_ERR_PARAM;
526 
527 	/* verify the dglort values */
528 	if ((dglort->idx > 7) || (dglort->rss_l > 7) || (dglort->pc_l > 3) ||
529 	    (dglort->vsi_l > 6) || (dglort->vsi_b > 64) ||
530 	    (dglort->queue_l > 8) || (dglort->queue_b >= 256))
531 		return FM10K_ERR_PARAM;
532 
533 	/* determine count of VSIs and queues */
534 	queue_count = BIT(dglort->rss_l + dglort->pc_l);
535 	vsi_count = BIT(dglort->vsi_l + dglort->queue_l);
536 	glort = dglort->glort;
537 	q_idx = dglort->queue_b;
538 
539 	/* configure SGLORT for queues */
540 	for (vsi = 0; vsi < vsi_count; vsi++, glort++) {
541 		for (queue = 0; queue < queue_count; queue++, q_idx++) {
542 			if (q_idx >= FM10K_MAX_QUEUES)
543 				break;
544 
545 			fm10k_write_reg(hw, FM10K_TX_SGLORT(q_idx), glort);
546 			fm10k_write_reg(hw, FM10K_RX_SGLORT(q_idx), glort);
547 		}
548 	}
549 
550 	/* determine count of PCs and queues */
551 	queue_count = BIT(dglort->queue_l + dglort->rss_l + dglort->vsi_l);
552 	pc_count = BIT(dglort->pc_l);
553 
554 	/* configure PC for Tx queues */
555 	for (pc = 0; pc < pc_count; pc++) {
556 		q_idx = pc + dglort->queue_b;
557 		for (queue = 0; queue < queue_count; queue++) {
558 			if (q_idx >= FM10K_MAX_QUEUES)
559 				break;
560 
561 			txqctl = fm10k_read_reg(hw, FM10K_TXQCTL(q_idx));
562 			txqctl &= ~FM10K_TXQCTL_PC_MASK;
563 			txqctl |= pc << FM10K_TXQCTL_PC_SHIFT;
564 			fm10k_write_reg(hw, FM10K_TXQCTL(q_idx), txqctl);
565 
566 			q_idx += pc_count;
567 		}
568 	}
569 
570 	/* configure DGLORTDEC */
571 	dglortdec = ((u32)(dglort->rss_l) << FM10K_DGLORTDEC_RSSLENGTH_SHIFT) |
572 		    ((u32)(dglort->queue_b) << FM10K_DGLORTDEC_QBASE_SHIFT) |
573 		    ((u32)(dglort->pc_l) << FM10K_DGLORTDEC_PCLENGTH_SHIFT) |
574 		    ((u32)(dglort->vsi_b) << FM10K_DGLORTDEC_VSIBASE_SHIFT) |
575 		    ((u32)(dglort->vsi_l) << FM10K_DGLORTDEC_VSILENGTH_SHIFT) |
576 		    ((u32)(dglort->queue_l));
577 	if (dglort->inner_rss)
578 		dglortdec |=  FM10K_DGLORTDEC_INNERRSS_ENABLE;
579 
580 	/* configure DGLORTMAP */
581 	dglortmap = (dglort->idx == fm10k_dglort_default) ?
582 			FM10K_DGLORTMAP_ANY : FM10K_DGLORTMAP_ZERO;
583 	dglortmap <<= dglort->vsi_l + dglort->queue_l + dglort->shared_l;
584 	dglortmap |= dglort->glort;
585 
586 	/* write values to hardware */
587 	fm10k_write_reg(hw, FM10K_DGLORTDEC(dglort->idx), dglortdec);
588 	fm10k_write_reg(hw, FM10K_DGLORTMAP(dglort->idx), dglortmap);
589 
590 	return 0;
591 }
592 
593 u16 fm10k_queues_per_pool(struct fm10k_hw *hw)
594 {
595 	u16 num_pools = hw->iov.num_pools;
596 
597 	return (num_pools > 32) ? 2 : (num_pools > 16) ? 4 : (num_pools > 8) ?
598 	       8 : FM10K_MAX_QUEUES_POOL;
599 }
600 
601 u16 fm10k_vf_queue_index(struct fm10k_hw *hw, u16 vf_idx)
602 {
603 	u16 num_vfs = hw->iov.num_vfs;
604 	u16 vf_q_idx = FM10K_MAX_QUEUES;
605 
606 	vf_q_idx -= fm10k_queues_per_pool(hw) * (num_vfs - vf_idx);
607 
608 	return vf_q_idx;
609 }
610 
611 static u16 fm10k_vectors_per_pool(struct fm10k_hw *hw)
612 {
613 	u16 num_pools = hw->iov.num_pools;
614 
615 	return (num_pools > 32) ? 8 : (num_pools > 16) ? 16 :
616 	       FM10K_MAX_VECTORS_POOL;
617 }
618 
619 static u16 fm10k_vf_vector_index(struct fm10k_hw *hw, u16 vf_idx)
620 {
621 	u16 vf_v_idx = FM10K_MAX_VECTORS_PF;
622 
623 	vf_v_idx += fm10k_vectors_per_pool(hw) * vf_idx;
624 
625 	return vf_v_idx;
626 }
627 
628 /**
629  *  fm10k_iov_assign_resources_pf - Assign pool resources for virtualization
630  *  @hw: pointer to the HW structure
631  *  @num_vfs: number of VFs to be allocated
632  *  @num_pools: number of virtualization pools to be allocated
633  *
634  *  Allocates queues and traffic classes to virtualization entities to prepare
635  *  the PF for SR-IOV and VMDq
636  **/
637 static s32 fm10k_iov_assign_resources_pf(struct fm10k_hw *hw, u16 num_vfs,
638 					 u16 num_pools)
639 {
640 	u16 qmap_stride, qpp, vpp, vf_q_idx, vf_q_idx0, qmap_idx;
641 	u32 vid = hw->mac.default_vid << FM10K_TXQCTL_VID_SHIFT;
642 	int i, j;
643 
644 	/* hardware only supports up to 64 pools */
645 	if (num_pools > 64)
646 		return FM10K_ERR_PARAM;
647 
648 	/* the number of VFs cannot exceed the number of pools */
649 	if ((num_vfs > num_pools) || (num_vfs > hw->iov.total_vfs))
650 		return FM10K_ERR_PARAM;
651 
652 	/* record number of virtualization entities */
653 	hw->iov.num_vfs = num_vfs;
654 	hw->iov.num_pools = num_pools;
655 
656 	/* determine qmap offsets and counts */
657 	qmap_stride = (num_vfs > 8) ? 32 : 256;
658 	qpp = fm10k_queues_per_pool(hw);
659 	vpp = fm10k_vectors_per_pool(hw);
660 
661 	/* calculate starting index for queues */
662 	vf_q_idx = fm10k_vf_queue_index(hw, 0);
663 	qmap_idx = 0;
664 
665 	/* establish TCs with -1 credits and no quanta to prevent transmit */
666 	for (i = 0; i < num_vfs; i++) {
667 		fm10k_write_reg(hw, FM10K_TC_MAXCREDIT(i), 0);
668 		fm10k_write_reg(hw, FM10K_TC_RATE(i), 0);
669 		fm10k_write_reg(hw, FM10K_TC_CREDIT(i),
670 				FM10K_TC_CREDIT_CREDIT_MASK);
671 	}
672 
673 	/* zero out all mbmem registers */
674 	for (i = FM10K_VFMBMEM_LEN * num_vfs; i--;)
675 		fm10k_write_reg(hw, FM10K_MBMEM(i), 0);
676 
677 	/* clear event notification of VF FLR */
678 	fm10k_write_reg(hw, FM10K_PFVFLREC(0), ~0);
679 	fm10k_write_reg(hw, FM10K_PFVFLREC(1), ~0);
680 
681 	/* loop through unallocated rings assigning them back to PF */
682 	for (i = FM10K_MAX_QUEUES_PF; i < vf_q_idx; i++) {
683 		fm10k_write_reg(hw, FM10K_TXDCTL(i), 0);
684 		fm10k_write_reg(hw, FM10K_TXQCTL(i), FM10K_TXQCTL_PF |
685 				FM10K_TXQCTL_UNLIMITED_BW | vid);
686 		fm10k_write_reg(hw, FM10K_RXQCTL(i), FM10K_RXQCTL_PF);
687 	}
688 
689 	/* PF should have already updated VFITR2[0] */
690 
691 	/* update all ITR registers to flow to VFITR2[0] */
692 	for (i = FM10K_ITR_REG_COUNT_PF + 1; i < FM10K_ITR_REG_COUNT; i++) {
693 		if (!(i & (vpp - 1)))
694 			fm10k_write_reg(hw, FM10K_ITR2(i), i - vpp);
695 		else
696 			fm10k_write_reg(hw, FM10K_ITR2(i), i - 1);
697 	}
698 
699 	/* update PF ITR2[0] to reference the last vector */
700 	fm10k_write_reg(hw, FM10K_ITR2(0),
701 			fm10k_vf_vector_index(hw, num_vfs - 1));
702 
703 	/* loop through rings populating rings and TCs */
704 	for (i = 0; i < num_vfs; i++) {
705 		/* record index for VF queue 0 for use in end of loop */
706 		vf_q_idx0 = vf_q_idx;
707 
708 		for (j = 0; j < qpp; j++, qmap_idx++, vf_q_idx++) {
709 			/* assign VF and locked TC to queues */
710 			fm10k_write_reg(hw, FM10K_TXDCTL(vf_q_idx), 0);
711 			fm10k_write_reg(hw, FM10K_TXQCTL(vf_q_idx),
712 					(i << FM10K_TXQCTL_TC_SHIFT) | i |
713 					FM10K_TXQCTL_VF | vid);
714 			fm10k_write_reg(hw, FM10K_RXDCTL(vf_q_idx),
715 					FM10K_RXDCTL_WRITE_BACK_MIN_DELAY |
716 					FM10K_RXDCTL_DROP_ON_EMPTY);
717 			fm10k_write_reg(hw, FM10K_RXQCTL(vf_q_idx),
718 					(i << FM10K_RXQCTL_VF_SHIFT) |
719 					FM10K_RXQCTL_VF);
720 
721 			/* map queue pair to VF */
722 			fm10k_write_reg(hw, FM10K_TQMAP(qmap_idx), vf_q_idx);
723 			fm10k_write_reg(hw, FM10K_RQMAP(qmap_idx), vf_q_idx);
724 		}
725 
726 		/* repeat the first ring for all of the remaining VF rings */
727 		for (; j < qmap_stride; j++, qmap_idx++) {
728 			fm10k_write_reg(hw, FM10K_TQMAP(qmap_idx), vf_q_idx0);
729 			fm10k_write_reg(hw, FM10K_RQMAP(qmap_idx), vf_q_idx0);
730 		}
731 	}
732 
733 	/* loop through remaining indexes assigning all to queue 0 */
734 	while (qmap_idx < FM10K_TQMAP_TABLE_SIZE) {
735 		fm10k_write_reg(hw, FM10K_TQMAP(qmap_idx), 0);
736 		fm10k_write_reg(hw, FM10K_RQMAP(qmap_idx), 0);
737 		qmap_idx++;
738 	}
739 
740 	return 0;
741 }
742 
743 /**
744  *  fm10k_iov_configure_tc_pf - Configure the shaping group for VF
745  *  @hw: pointer to the HW structure
746  *  @vf_idx: index of VF receiving GLORT
747  *  @rate: Rate indicated in Mb/s
748  *
749  *  Configured the TC for a given VF to allow only up to a given number
750  *  of Mb/s of outgoing Tx throughput.
751  **/
752 static s32 fm10k_iov_configure_tc_pf(struct fm10k_hw *hw, u16 vf_idx, int rate)
753 {
754 	/* configure defaults */
755 	u32 interval = FM10K_TC_RATE_INTERVAL_4US_GEN3;
756 	u32 tc_rate = FM10K_TC_RATE_QUANTA_MASK;
757 
758 	/* verify vf is in range */
759 	if (vf_idx >= hw->iov.num_vfs)
760 		return FM10K_ERR_PARAM;
761 
762 	/* set interval to align with 4.096 usec in all modes */
763 	switch (hw->bus.speed) {
764 	case fm10k_bus_speed_2500:
765 		interval = FM10K_TC_RATE_INTERVAL_4US_GEN1;
766 		break;
767 	case fm10k_bus_speed_5000:
768 		interval = FM10K_TC_RATE_INTERVAL_4US_GEN2;
769 		break;
770 	default:
771 		break;
772 	}
773 
774 	if (rate) {
775 		if (rate > FM10K_VF_TC_MAX || rate < FM10K_VF_TC_MIN)
776 			return FM10K_ERR_PARAM;
777 
778 		/* The quanta is measured in Bytes per 4.096 or 8.192 usec
779 		 * The rate is provided in Mbits per second
780 		 * To tralslate from rate to quanta we need to multiply the
781 		 * rate by 8.192 usec and divide by 8 bits/byte.  To avoid
782 		 * dealing with floating point we can round the values up
783 		 * to the nearest whole number ratio which gives us 128 / 125.
784 		 */
785 		tc_rate = (rate * 128) / 125;
786 
787 		/* try to keep the rate limiting accurate by increasing
788 		 * the number of credits and interval for rates less than 4Gb/s
789 		 */
790 		if (rate < 4000)
791 			interval <<= 1;
792 		else
793 			tc_rate >>= 1;
794 	}
795 
796 	/* update rate limiter with new values */
797 	fm10k_write_reg(hw, FM10K_TC_RATE(vf_idx), tc_rate | interval);
798 	fm10k_write_reg(hw, FM10K_TC_MAXCREDIT(vf_idx), FM10K_TC_MAXCREDIT_64K);
799 	fm10k_write_reg(hw, FM10K_TC_CREDIT(vf_idx), FM10K_TC_MAXCREDIT_64K);
800 
801 	return 0;
802 }
803 
804 /**
805  *  fm10k_iov_assign_int_moderator_pf - Add VF interrupts to moderator list
806  *  @hw: pointer to the HW structure
807  *  @vf_idx: index of VF receiving GLORT
808  *
809  *  Update the interrupt moderator linked list to include any MSI-X
810  *  interrupts which the VF has enabled in the MSI-X vector table.
811  **/
812 static s32 fm10k_iov_assign_int_moderator_pf(struct fm10k_hw *hw, u16 vf_idx)
813 {
814 	u16 vf_v_idx, vf_v_limit, i;
815 
816 	/* verify vf is in range */
817 	if (vf_idx >= hw->iov.num_vfs)
818 		return FM10K_ERR_PARAM;
819 
820 	/* determine vector offset and count */
821 	vf_v_idx = fm10k_vf_vector_index(hw, vf_idx);
822 	vf_v_limit = vf_v_idx + fm10k_vectors_per_pool(hw);
823 
824 	/* search for first vector that is not masked */
825 	for (i = vf_v_limit - 1; i > vf_v_idx; i--) {
826 		if (!fm10k_read_reg(hw, FM10K_MSIX_VECTOR_MASK(i)))
827 			break;
828 	}
829 
830 	/* reset linked list so it now includes our active vectors */
831 	if (vf_idx == (hw->iov.num_vfs - 1))
832 		fm10k_write_reg(hw, FM10K_ITR2(0), i);
833 	else
834 		fm10k_write_reg(hw, FM10K_ITR2(vf_v_limit), i);
835 
836 	return 0;
837 }
838 
839 /**
840  *  fm10k_iov_assign_default_mac_vlan_pf - Assign a MAC and VLAN to VF
841  *  @hw: pointer to the HW structure
842  *  @vf_info: pointer to VF information structure
843  *
844  *  Assign a MAC address and default VLAN to a VF and notify it of the update
845  **/
846 static s32 fm10k_iov_assign_default_mac_vlan_pf(struct fm10k_hw *hw,
847 						struct fm10k_vf_info *vf_info)
848 {
849 	u16 qmap_stride, queues_per_pool, vf_q_idx, timeout, qmap_idx, i;
850 	u32 msg[4], txdctl, txqctl, tdbal = 0, tdbah = 0;
851 	s32 err = 0;
852 	u16 vf_idx, vf_vid;
853 
854 	/* verify vf is in range */
855 	if (!vf_info || vf_info->vf_idx >= hw->iov.num_vfs)
856 		return FM10K_ERR_PARAM;
857 
858 	/* determine qmap offsets and counts */
859 	qmap_stride = (hw->iov.num_vfs > 8) ? 32 : 256;
860 	queues_per_pool = fm10k_queues_per_pool(hw);
861 
862 	/* calculate starting index for queues */
863 	vf_idx = vf_info->vf_idx;
864 	vf_q_idx = fm10k_vf_queue_index(hw, vf_idx);
865 	qmap_idx = qmap_stride * vf_idx;
866 
867 	/* Determine correct default VLAN ID. The FM10K_VLAN_OVERRIDE bit is
868 	 * used here to indicate to the VF that it will not have privilege to
869 	 * write VLAN_TABLE. All policy is enforced on the PF but this allows
870 	 * the VF to correctly report errors to userspace requests.
871 	 */
872 	if (vf_info->pf_vid)
873 		vf_vid = vf_info->pf_vid | FM10K_VLAN_OVERRIDE;
874 	else
875 		vf_vid = vf_info->sw_vid;
876 
877 	/* generate MAC_ADDR request */
878 	fm10k_tlv_msg_init(msg, FM10K_VF_MSG_ID_MAC_VLAN);
879 	fm10k_tlv_attr_put_mac_vlan(msg, FM10K_MAC_VLAN_MSG_DEFAULT_MAC,
880 				    vf_info->mac, vf_vid);
881 
882 	/* Configure Queue control register with new VLAN ID. The TXQCTL
883 	 * register is RO from the VF, so the PF must do this even in the
884 	 * case of notifying the VF of a new VID via the mailbox.
885 	 */
886 	txqctl = ((u32)vf_vid << FM10K_TXQCTL_VID_SHIFT) &
887 		 FM10K_TXQCTL_VID_MASK;
888 	txqctl |= (vf_idx << FM10K_TXQCTL_TC_SHIFT) |
889 		  FM10K_TXQCTL_VF | vf_idx;
890 
891 	for (i = 0; i < queues_per_pool; i++)
892 		fm10k_write_reg(hw, FM10K_TXQCTL(vf_q_idx + i), txqctl);
893 
894 	/* try loading a message onto outgoing mailbox first */
895 	if (vf_info->mbx.ops.enqueue_tx) {
896 		err = vf_info->mbx.ops.enqueue_tx(hw, &vf_info->mbx, msg);
897 		if (err != FM10K_MBX_ERR_NO_MBX)
898 			return err;
899 		err = 0;
900 	}
901 
902 	/* If we aren't connected to a mailbox, this is most likely because
903 	 * the VF driver is not running. It should thus be safe to re-map
904 	 * queues and use the registers to pass the MAC address so that the VF
905 	 * driver gets correct information during its initialization.
906 	 */
907 
908 	/* MAP Tx queue back to 0 temporarily, and disable it */
909 	fm10k_write_reg(hw, FM10K_TQMAP(qmap_idx), 0);
910 	fm10k_write_reg(hw, FM10K_TXDCTL(vf_q_idx), 0);
911 
912 	/* verify ring has disabled before modifying base address registers */
913 	txdctl = fm10k_read_reg(hw, FM10K_TXDCTL(vf_q_idx));
914 	for (timeout = 0; txdctl & FM10K_TXDCTL_ENABLE; timeout++) {
915 		/* limit ourselves to a 1ms timeout */
916 		if (timeout == 10) {
917 			err = FM10K_ERR_DMA_PENDING;
918 			goto err_out;
919 		}
920 
921 		usleep_range(100, 200);
922 		txdctl = fm10k_read_reg(hw, FM10K_TXDCTL(vf_q_idx));
923 	}
924 
925 	/* Update base address registers to contain MAC address */
926 	if (is_valid_ether_addr(vf_info->mac)) {
927 		tdbal = (((u32)vf_info->mac[3]) << 24) |
928 			(((u32)vf_info->mac[4]) << 16) |
929 			(((u32)vf_info->mac[5]) << 8);
930 
931 		tdbah = (((u32)0xFF)	        << 24) |
932 			(((u32)vf_info->mac[0]) << 16) |
933 			(((u32)vf_info->mac[1]) << 8) |
934 			((u32)vf_info->mac[2]);
935 	}
936 
937 	/* Record the base address into queue 0 */
938 	fm10k_write_reg(hw, FM10K_TDBAL(vf_q_idx), tdbal);
939 	fm10k_write_reg(hw, FM10K_TDBAH(vf_q_idx), tdbah);
940 
941 	/* Provide the VF the ITR scale, using software-defined fields in TDLEN
942 	 * to pass the information during VF initialization. See definition of
943 	 * FM10K_TDLEN_ITR_SCALE_SHIFT for more details.
944 	 */
945 	fm10k_write_reg(hw, FM10K_TDLEN(vf_q_idx), hw->mac.itr_scale <<
946 						   FM10K_TDLEN_ITR_SCALE_SHIFT);
947 
948 err_out:
949 	/* restore the queue back to VF ownership */
950 	fm10k_write_reg(hw, FM10K_TQMAP(qmap_idx), vf_q_idx);
951 	return err;
952 }
953 
954 /**
955  *  fm10k_iov_reset_resources_pf - Reassign queues and interrupts to a VF
956  *  @hw: pointer to the HW structure
957  *  @vf_info: pointer to VF information structure
958  *
959  *  Reassign the interrupts and queues to a VF following an FLR
960  **/
961 static s32 fm10k_iov_reset_resources_pf(struct fm10k_hw *hw,
962 					struct fm10k_vf_info *vf_info)
963 {
964 	u16 qmap_stride, queues_per_pool, vf_q_idx, qmap_idx;
965 	u32 tdbal = 0, tdbah = 0, txqctl, rxqctl;
966 	u16 vf_v_idx, vf_v_limit, vf_vid;
967 	u8 vf_idx = vf_info->vf_idx;
968 	int i;
969 
970 	/* verify vf is in range */
971 	if (vf_idx >= hw->iov.num_vfs)
972 		return FM10K_ERR_PARAM;
973 
974 	/* clear event notification of VF FLR */
975 	fm10k_write_reg(hw, FM10K_PFVFLREC(vf_idx / 32), BIT(vf_idx % 32));
976 
977 	/* force timeout and then disconnect the mailbox */
978 	vf_info->mbx.timeout = 0;
979 	if (vf_info->mbx.ops.disconnect)
980 		vf_info->mbx.ops.disconnect(hw, &vf_info->mbx);
981 
982 	/* determine vector offset and count */
983 	vf_v_idx = fm10k_vf_vector_index(hw, vf_idx);
984 	vf_v_limit = vf_v_idx + fm10k_vectors_per_pool(hw);
985 
986 	/* determine qmap offsets and counts */
987 	qmap_stride = (hw->iov.num_vfs > 8) ? 32 : 256;
988 	queues_per_pool = fm10k_queues_per_pool(hw);
989 	qmap_idx = qmap_stride * vf_idx;
990 
991 	/* make all the queues inaccessible to the VF */
992 	for (i = qmap_idx; i < (qmap_idx + qmap_stride); i++) {
993 		fm10k_write_reg(hw, FM10K_TQMAP(i), 0);
994 		fm10k_write_reg(hw, FM10K_RQMAP(i), 0);
995 	}
996 
997 	/* calculate starting index for queues */
998 	vf_q_idx = fm10k_vf_queue_index(hw, vf_idx);
999 
1000 	/* determine correct default VLAN ID */
1001 	if (vf_info->pf_vid)
1002 		vf_vid = vf_info->pf_vid;
1003 	else
1004 		vf_vid = vf_info->sw_vid;
1005 
1006 	/* configure Queue control register */
1007 	txqctl = ((u32)vf_vid << FM10K_TXQCTL_VID_SHIFT) |
1008 		 (vf_idx << FM10K_TXQCTL_TC_SHIFT) |
1009 		 FM10K_TXQCTL_VF | vf_idx;
1010 	rxqctl = (vf_idx << FM10K_RXQCTL_VF_SHIFT) | FM10K_RXQCTL_VF;
1011 
1012 	/* stop further DMA and reset queue ownership back to VF */
1013 	for (i = vf_q_idx; i < (queues_per_pool + vf_q_idx); i++) {
1014 		fm10k_write_reg(hw, FM10K_TXDCTL(i), 0);
1015 		fm10k_write_reg(hw, FM10K_TXQCTL(i), txqctl);
1016 		fm10k_write_reg(hw, FM10K_RXDCTL(i),
1017 				FM10K_RXDCTL_WRITE_BACK_MIN_DELAY |
1018 				FM10K_RXDCTL_DROP_ON_EMPTY);
1019 		fm10k_write_reg(hw, FM10K_RXQCTL(i), rxqctl);
1020 	}
1021 
1022 	/* reset TC with -1 credits and no quanta to prevent transmit */
1023 	fm10k_write_reg(hw, FM10K_TC_MAXCREDIT(vf_idx), 0);
1024 	fm10k_write_reg(hw, FM10K_TC_RATE(vf_idx), 0);
1025 	fm10k_write_reg(hw, FM10K_TC_CREDIT(vf_idx),
1026 			FM10K_TC_CREDIT_CREDIT_MASK);
1027 
1028 	/* update our first entry in the table based on previous VF */
1029 	if (!vf_idx)
1030 		hw->mac.ops.update_int_moderator(hw);
1031 	else
1032 		hw->iov.ops.assign_int_moderator(hw, vf_idx - 1);
1033 
1034 	/* reset linked list so it now includes our active vectors */
1035 	if (vf_idx == (hw->iov.num_vfs - 1))
1036 		fm10k_write_reg(hw, FM10K_ITR2(0), vf_v_idx);
1037 	else
1038 		fm10k_write_reg(hw, FM10K_ITR2(vf_v_limit), vf_v_idx);
1039 
1040 	/* link remaining vectors so that next points to previous */
1041 	for (vf_v_idx++; vf_v_idx < vf_v_limit; vf_v_idx++)
1042 		fm10k_write_reg(hw, FM10K_ITR2(vf_v_idx), vf_v_idx - 1);
1043 
1044 	/* zero out MBMEM, VLAN_TABLE, RETA, RSSRK, and MRQC registers */
1045 	for (i = FM10K_VFMBMEM_LEN; i--;)
1046 		fm10k_write_reg(hw, FM10K_MBMEM_VF(vf_idx, i), 0);
1047 	for (i = FM10K_VLAN_TABLE_SIZE; i--;)
1048 		fm10k_write_reg(hw, FM10K_VLAN_TABLE(vf_info->vsi, i), 0);
1049 	for (i = FM10K_RETA_SIZE; i--;)
1050 		fm10k_write_reg(hw, FM10K_RETA(vf_info->vsi, i), 0);
1051 	for (i = FM10K_RSSRK_SIZE; i--;)
1052 		fm10k_write_reg(hw, FM10K_RSSRK(vf_info->vsi, i), 0);
1053 	fm10k_write_reg(hw, FM10K_MRQC(vf_info->vsi), 0);
1054 
1055 	/* Update base address registers to contain MAC address */
1056 	if (is_valid_ether_addr(vf_info->mac)) {
1057 		tdbal = (((u32)vf_info->mac[3]) << 24) |
1058 			(((u32)vf_info->mac[4]) << 16) |
1059 			(((u32)vf_info->mac[5]) << 8);
1060 		tdbah = (((u32)0xFF)	   << 24) |
1061 			(((u32)vf_info->mac[0]) << 16) |
1062 			(((u32)vf_info->mac[1]) << 8) |
1063 			((u32)vf_info->mac[2]);
1064 	}
1065 
1066 	/* map queue pairs back to VF from last to first */
1067 	for (i = queues_per_pool; i--;) {
1068 		fm10k_write_reg(hw, FM10K_TDBAL(vf_q_idx + i), tdbal);
1069 		fm10k_write_reg(hw, FM10K_TDBAH(vf_q_idx + i), tdbah);
1070 		/* See definition of FM10K_TDLEN_ITR_SCALE_SHIFT for an
1071 		 * explanation of how TDLEN is used.
1072 		 */
1073 		fm10k_write_reg(hw, FM10K_TDLEN(vf_q_idx + i),
1074 				hw->mac.itr_scale <<
1075 				FM10K_TDLEN_ITR_SCALE_SHIFT);
1076 		fm10k_write_reg(hw, FM10K_TQMAP(qmap_idx + i), vf_q_idx + i);
1077 		fm10k_write_reg(hw, FM10K_RQMAP(qmap_idx + i), vf_q_idx + i);
1078 	}
1079 
1080 	/* repeat the first ring for all the remaining VF rings */
1081 	for (i = queues_per_pool; i < qmap_stride; i++) {
1082 		fm10k_write_reg(hw, FM10K_TQMAP(qmap_idx + i), vf_q_idx);
1083 		fm10k_write_reg(hw, FM10K_RQMAP(qmap_idx + i), vf_q_idx);
1084 	}
1085 
1086 	return 0;
1087 }
1088 
1089 /**
1090  *  fm10k_iov_set_lport_pf - Assign and enable a logical port for a given VF
1091  *  @hw: pointer to hardware structure
1092  *  @vf_info: pointer to VF information structure
1093  *  @lport_idx: Logical port offset from the hardware glort
1094  *  @flags: Set of capability flags to extend port beyond basic functionality
1095  *
1096  *  This function allows enabling a VF port by assigning it a GLORT and
1097  *  setting the flags so that it can enable an Rx mode.
1098  **/
1099 static s32 fm10k_iov_set_lport_pf(struct fm10k_hw *hw,
1100 				  struct fm10k_vf_info *vf_info,
1101 				  u16 lport_idx, u8 flags)
1102 {
1103 	u16 glort = (hw->mac.dglort_map + lport_idx) & FM10K_DGLORTMAP_NONE;
1104 
1105 	/* if glort is not valid return error */
1106 	if (!fm10k_glort_valid_pf(hw, glort))
1107 		return FM10K_ERR_PARAM;
1108 
1109 	vf_info->vf_flags = flags | FM10K_VF_FLAG_NONE_CAPABLE;
1110 	vf_info->glort = glort;
1111 
1112 	return 0;
1113 }
1114 
1115 /**
1116  *  fm10k_iov_reset_lport_pf - Disable a logical port for a given VF
1117  *  @hw: pointer to hardware structure
1118  *  @vf_info: pointer to VF information structure
1119  *
1120  *  This function disables a VF port by stripping it of a GLORT and
1121  *  setting the flags so that it cannot enable any Rx mode.
1122  **/
1123 static void fm10k_iov_reset_lport_pf(struct fm10k_hw *hw,
1124 				     struct fm10k_vf_info *vf_info)
1125 {
1126 	u32 msg[1];
1127 
1128 	/* need to disable the port if it is already enabled */
1129 	if (FM10K_VF_FLAG_ENABLED(vf_info)) {
1130 		/* notify switch that this port has been disabled */
1131 		fm10k_update_lport_state_pf(hw, vf_info->glort, 1, false);
1132 
1133 		/* generate port state response to notify VF it is not ready */
1134 		fm10k_tlv_msg_init(msg, FM10K_VF_MSG_ID_LPORT_STATE);
1135 		vf_info->mbx.ops.enqueue_tx(hw, &vf_info->mbx, msg);
1136 	}
1137 
1138 	/* clear flags and glort if it exists */
1139 	vf_info->vf_flags = 0;
1140 	vf_info->glort = 0;
1141 }
1142 
1143 /**
1144  *  fm10k_iov_update_stats_pf - Updates hardware related statistics for VFs
1145  *  @hw: pointer to hardware structure
1146  *  @q: stats for all queues of a VF
1147  *  @vf_idx: index of VF
1148  *
1149  *  This function collects queue stats for VFs.
1150  **/
1151 static void fm10k_iov_update_stats_pf(struct fm10k_hw *hw,
1152 				      struct fm10k_hw_stats_q *q,
1153 				      u16 vf_idx)
1154 {
1155 	u32 idx, qpp;
1156 
1157 	/* get stats for all of the queues */
1158 	qpp = fm10k_queues_per_pool(hw);
1159 	idx = fm10k_vf_queue_index(hw, vf_idx);
1160 	fm10k_update_hw_stats_q(hw, q, idx, qpp);
1161 }
1162 
1163 /**
1164  *  fm10k_iov_msg_msix_pf - Message handler for MSI-X request from VF
1165  *  @hw: Pointer to hardware structure
1166  *  @results: Pointer array to message, results[0] is pointer to message
1167  *  @mbx: Pointer to mailbox information structure
1168  *
1169  *  This function is a default handler for MSI-X requests from the VF.  The
1170  *  assumption is that in this case it is acceptable to just directly
1171  *  hand off the message from the VF to the underlying shared code.
1172  **/
1173 s32 fm10k_iov_msg_msix_pf(struct fm10k_hw *hw, u32 **results,
1174 			  struct fm10k_mbx_info *mbx)
1175 {
1176 	struct fm10k_vf_info *vf_info = (struct fm10k_vf_info *)mbx;
1177 	u8 vf_idx = vf_info->vf_idx;
1178 
1179 	return hw->iov.ops.assign_int_moderator(hw, vf_idx);
1180 }
1181 
1182 /**
1183  * fm10k_iov_select_vid - Select correct default VLAN ID
1184  * @vf_info: pointer to VF information structure
1185  * @vid: VLAN ID to correct
1186  *
1187  * Will report an error if the VLAN ID is out of range. For VID = 0, it will
1188  * return either the pf_vid or sw_vid depending on which one is set.
1189  */
1190 s32 fm10k_iov_select_vid(struct fm10k_vf_info *vf_info, u16 vid)
1191 {
1192 	if (!vid)
1193 		return vf_info->pf_vid ? vf_info->pf_vid : vf_info->sw_vid;
1194 	else if (vf_info->pf_vid && vid != vf_info->pf_vid)
1195 		return FM10K_ERR_PARAM;
1196 	else
1197 		return vid;
1198 }
1199 
1200 /**
1201  *  fm10k_iov_msg_mac_vlan_pf - Message handler for MAC/VLAN request from VF
1202  *  @hw: Pointer to hardware structure
1203  *  @results: Pointer array to message, results[0] is pointer to message
1204  *  @mbx: Pointer to mailbox information structure
1205  *
1206  *  This function is a default handler for MAC/VLAN requests from the VF.
1207  *  The assumption is that in this case it is acceptable to just directly
1208  *  hand off the message from the VF to the underlying shared code.
1209  **/
1210 s32 fm10k_iov_msg_mac_vlan_pf(struct fm10k_hw *hw, u32 **results,
1211 			      struct fm10k_mbx_info *mbx)
1212 {
1213 	struct fm10k_vf_info *vf_info = (struct fm10k_vf_info *)mbx;
1214 	u8 mac[ETH_ALEN];
1215 	u32 *result;
1216 	int err = 0;
1217 	bool set;
1218 	u16 vlan;
1219 	u32 vid;
1220 
1221 	/* we shouldn't be updating rules on a disabled interface */
1222 	if (!FM10K_VF_FLAG_ENABLED(vf_info))
1223 		err = FM10K_ERR_PARAM;
1224 
1225 	if (!err && !!results[FM10K_MAC_VLAN_MSG_VLAN]) {
1226 		result = results[FM10K_MAC_VLAN_MSG_VLAN];
1227 
1228 		/* record VLAN id requested */
1229 		err = fm10k_tlv_attr_get_u32(result, &vid);
1230 		if (err)
1231 			return err;
1232 
1233 		set = !(vid & FM10K_VLAN_CLEAR);
1234 		vid &= ~FM10K_VLAN_CLEAR;
1235 
1236 		/* if the length field has been set, this is a multi-bit
1237 		 * update request. For multi-bit requests, simply disallow
1238 		 * them when the pf_vid has been set. In this case, the PF
1239 		 * should have already cleared the VLAN_TABLE, and if we
1240 		 * allowed them, it could allow a rogue VF to receive traffic
1241 		 * on a VLAN it was not assigned. In the single-bit case, we
1242 		 * need to modify requests for VLAN 0 to use the default PF or
1243 		 * SW vid when assigned.
1244 		 */
1245 
1246 		if (vid >> 16) {
1247 			/* prevent multi-bit requests when PF has
1248 			 * administratively set the VLAN for this VF
1249 			 */
1250 			if (vf_info->pf_vid)
1251 				return FM10K_ERR_PARAM;
1252 		} else {
1253 			err = fm10k_iov_select_vid(vf_info, (u16)vid);
1254 			if (err < 0)
1255 				return err;
1256 
1257 			vid = err;
1258 		}
1259 
1260 		/* update VSI info for VF in regards to VLAN table */
1261 		err = hw->mac.ops.update_vlan(hw, vid, vf_info->vsi, set);
1262 	}
1263 
1264 	if (!err && !!results[FM10K_MAC_VLAN_MSG_MAC]) {
1265 		result = results[FM10K_MAC_VLAN_MSG_MAC];
1266 
1267 		/* record unicast MAC address requested */
1268 		err = fm10k_tlv_attr_get_mac_vlan(result, mac, &vlan);
1269 		if (err)
1270 			return err;
1271 
1272 		/* block attempts to set MAC for a locked device */
1273 		if (is_valid_ether_addr(vf_info->mac) &&
1274 		    !ether_addr_equal(mac, vf_info->mac))
1275 			return FM10K_ERR_PARAM;
1276 
1277 		set = !(vlan & FM10K_VLAN_CLEAR);
1278 		vlan &= ~FM10K_VLAN_CLEAR;
1279 
1280 		err = fm10k_iov_select_vid(vf_info, vlan);
1281 		if (err < 0)
1282 			return err;
1283 
1284 		vlan = (u16)err;
1285 
1286 		/* notify switch of request for new unicast address */
1287 		err = hw->mac.ops.update_uc_addr(hw, vf_info->glort,
1288 						 mac, vlan, set, 0);
1289 	}
1290 
1291 	if (!err && !!results[FM10K_MAC_VLAN_MSG_MULTICAST]) {
1292 		result = results[FM10K_MAC_VLAN_MSG_MULTICAST];
1293 
1294 		/* record multicast MAC address requested */
1295 		err = fm10k_tlv_attr_get_mac_vlan(result, mac, &vlan);
1296 		if (err)
1297 			return err;
1298 
1299 		/* verify that the VF is allowed to request multicast */
1300 		if (!(vf_info->vf_flags & FM10K_VF_FLAG_MULTI_ENABLED))
1301 			return FM10K_ERR_PARAM;
1302 
1303 		set = !(vlan & FM10K_VLAN_CLEAR);
1304 		vlan &= ~FM10K_VLAN_CLEAR;
1305 
1306 		err = fm10k_iov_select_vid(vf_info, vlan);
1307 		if (err < 0)
1308 			return err;
1309 
1310 		vlan = (u16)err;
1311 
1312 		/* notify switch of request for new multicast address */
1313 		err = hw->mac.ops.update_mc_addr(hw, vf_info->glort,
1314 						 mac, vlan, set);
1315 	}
1316 
1317 	return err;
1318 }
1319 
1320 /**
1321  *  fm10k_iov_supported_xcast_mode_pf - Determine best match for xcast mode
1322  *  @vf_info: VF info structure containing capability flags
1323  *  @mode: Requested xcast mode
1324  *
1325  *  This function outputs the mode that most closely matches the requested
1326  *  mode.  If not modes match it will request we disable the port
1327  **/
1328 static u8 fm10k_iov_supported_xcast_mode_pf(struct fm10k_vf_info *vf_info,
1329 					    u8 mode)
1330 {
1331 	u8 vf_flags = vf_info->vf_flags;
1332 
1333 	/* match up mode to capabilities as best as possible */
1334 	switch (mode) {
1335 	case FM10K_XCAST_MODE_PROMISC:
1336 		if (vf_flags & FM10K_VF_FLAG_PROMISC_CAPABLE)
1337 			return FM10K_XCAST_MODE_PROMISC;
1338 		/* fall through */
1339 	case FM10K_XCAST_MODE_ALLMULTI:
1340 		if (vf_flags & FM10K_VF_FLAG_ALLMULTI_CAPABLE)
1341 			return FM10K_XCAST_MODE_ALLMULTI;
1342 		/* fall through */
1343 	case FM10K_XCAST_MODE_MULTI:
1344 		if (vf_flags & FM10K_VF_FLAG_MULTI_CAPABLE)
1345 			return FM10K_XCAST_MODE_MULTI;
1346 		/* fall through */
1347 	case FM10K_XCAST_MODE_NONE:
1348 		if (vf_flags & FM10K_VF_FLAG_NONE_CAPABLE)
1349 			return FM10K_XCAST_MODE_NONE;
1350 		/* fall through */
1351 	default:
1352 		break;
1353 	}
1354 
1355 	/* disable interface as it should not be able to request any */
1356 	return FM10K_XCAST_MODE_DISABLE;
1357 }
1358 
1359 /**
1360  *  fm10k_iov_msg_lport_state_pf - Message handler for port state requests
1361  *  @hw: Pointer to hardware structure
1362  *  @results: Pointer array to message, results[0] is pointer to message
1363  *  @mbx: Pointer to mailbox information structure
1364  *
1365  *  This function is a default handler for port state requests.  The port
1366  *  state requests for now are basic and consist of enabling or disabling
1367  *  the port.
1368  **/
1369 s32 fm10k_iov_msg_lport_state_pf(struct fm10k_hw *hw, u32 **results,
1370 				 struct fm10k_mbx_info *mbx)
1371 {
1372 	struct fm10k_vf_info *vf_info = (struct fm10k_vf_info *)mbx;
1373 	u32 *result;
1374 	s32 err = 0;
1375 	u32 msg[2];
1376 	u8 mode = 0;
1377 
1378 	/* verify VF is allowed to enable even minimal mode */
1379 	if (!(vf_info->vf_flags & FM10K_VF_FLAG_NONE_CAPABLE))
1380 		return FM10K_ERR_PARAM;
1381 
1382 	if (!!results[FM10K_LPORT_STATE_MSG_XCAST_MODE]) {
1383 		result = results[FM10K_LPORT_STATE_MSG_XCAST_MODE];
1384 
1385 		/* XCAST mode update requested */
1386 		err = fm10k_tlv_attr_get_u8(result, &mode);
1387 		if (err)
1388 			return FM10K_ERR_PARAM;
1389 
1390 		/* prep for possible demotion depending on capabilities */
1391 		mode = fm10k_iov_supported_xcast_mode_pf(vf_info, mode);
1392 
1393 		/* if mode is not currently enabled, enable it */
1394 		if (!(FM10K_VF_FLAG_ENABLED(vf_info) & BIT(mode)))
1395 			fm10k_update_xcast_mode_pf(hw, vf_info->glort, mode);
1396 
1397 		/* swap mode back to a bit flag */
1398 		mode = FM10K_VF_FLAG_SET_MODE(mode);
1399 	} else if (!results[FM10K_LPORT_STATE_MSG_DISABLE]) {
1400 		/* need to disable the port if it is already enabled */
1401 		if (FM10K_VF_FLAG_ENABLED(vf_info))
1402 			err = fm10k_update_lport_state_pf(hw, vf_info->glort,
1403 							  1, false);
1404 
1405 		/* we need to clear VF_FLAG_ENABLED flags in order to ensure
1406 		 * that we actually re-enable the LPORT state below. Note that
1407 		 * this has no impact if the VF is already disabled, as the
1408 		 * flags are already cleared.
1409 		 */
1410 		if (!err)
1411 			vf_info->vf_flags = FM10K_VF_FLAG_CAPABLE(vf_info);
1412 
1413 		/* when enabling the port we should reset the rate limiters */
1414 		hw->iov.ops.configure_tc(hw, vf_info->vf_idx, vf_info->rate);
1415 
1416 		/* set mode for minimal functionality */
1417 		mode = FM10K_VF_FLAG_SET_MODE_NONE;
1418 
1419 		/* generate port state response to notify VF it is ready */
1420 		fm10k_tlv_msg_init(msg, FM10K_VF_MSG_ID_LPORT_STATE);
1421 		fm10k_tlv_attr_put_bool(msg, FM10K_LPORT_STATE_MSG_READY);
1422 		mbx->ops.enqueue_tx(hw, mbx, msg);
1423 	}
1424 
1425 	/* if enable state toggled note the update */
1426 	if (!err && (!FM10K_VF_FLAG_ENABLED(vf_info) != !mode))
1427 		err = fm10k_update_lport_state_pf(hw, vf_info->glort, 1,
1428 						  !!mode);
1429 
1430 	/* if state change succeeded, then update our stored state */
1431 	mode |= FM10K_VF_FLAG_CAPABLE(vf_info);
1432 	if (!err)
1433 		vf_info->vf_flags = mode;
1434 
1435 	return err;
1436 }
1437 
1438 /**
1439  *  fm10k_update_stats_hw_pf - Updates hardware related statistics of PF
1440  *  @hw: pointer to hardware structure
1441  *  @stats: pointer to the stats structure to update
1442  *
1443  *  This function collects and aggregates global and per queue hardware
1444  *  statistics.
1445  **/
1446 static void fm10k_update_hw_stats_pf(struct fm10k_hw *hw,
1447 				     struct fm10k_hw_stats *stats)
1448 {
1449 	u32 timeout, ur, ca, um, xec, vlan_drop, loopback_drop, nodesc_drop;
1450 	u32 id, id_prev;
1451 
1452 	/* Use Tx queue 0 as a canary to detect a reset */
1453 	id = fm10k_read_reg(hw, FM10K_TXQCTL(0));
1454 
1455 	/* Read Global Statistics */
1456 	do {
1457 		timeout = fm10k_read_hw_stats_32b(hw, FM10K_STATS_TIMEOUT,
1458 						  &stats->timeout);
1459 		ur = fm10k_read_hw_stats_32b(hw, FM10K_STATS_UR, &stats->ur);
1460 		ca = fm10k_read_hw_stats_32b(hw, FM10K_STATS_CA, &stats->ca);
1461 		um = fm10k_read_hw_stats_32b(hw, FM10K_STATS_UM, &stats->um);
1462 		xec = fm10k_read_hw_stats_32b(hw, FM10K_STATS_XEC, &stats->xec);
1463 		vlan_drop = fm10k_read_hw_stats_32b(hw, FM10K_STATS_VLAN_DROP,
1464 						    &stats->vlan_drop);
1465 		loopback_drop =
1466 			fm10k_read_hw_stats_32b(hw,
1467 						FM10K_STATS_LOOPBACK_DROP,
1468 						&stats->loopback_drop);
1469 		nodesc_drop = fm10k_read_hw_stats_32b(hw,
1470 						      FM10K_STATS_NODESC_DROP,
1471 						      &stats->nodesc_drop);
1472 
1473 		/* if value has not changed then we have consistent data */
1474 		id_prev = id;
1475 		id = fm10k_read_reg(hw, FM10K_TXQCTL(0));
1476 	} while ((id ^ id_prev) & FM10K_TXQCTL_ID_MASK);
1477 
1478 	/* drop non-ID bits and set VALID ID bit */
1479 	id &= FM10K_TXQCTL_ID_MASK;
1480 	id |= FM10K_STAT_VALID;
1481 
1482 	/* Update Global Statistics */
1483 	if (stats->stats_idx == id) {
1484 		stats->timeout.count += timeout;
1485 		stats->ur.count += ur;
1486 		stats->ca.count += ca;
1487 		stats->um.count += um;
1488 		stats->xec.count += xec;
1489 		stats->vlan_drop.count += vlan_drop;
1490 		stats->loopback_drop.count += loopback_drop;
1491 		stats->nodesc_drop.count += nodesc_drop;
1492 	}
1493 
1494 	/* Update bases and record current PF id */
1495 	fm10k_update_hw_base_32b(&stats->timeout, timeout);
1496 	fm10k_update_hw_base_32b(&stats->ur, ur);
1497 	fm10k_update_hw_base_32b(&stats->ca, ca);
1498 	fm10k_update_hw_base_32b(&stats->um, um);
1499 	fm10k_update_hw_base_32b(&stats->xec, xec);
1500 	fm10k_update_hw_base_32b(&stats->vlan_drop, vlan_drop);
1501 	fm10k_update_hw_base_32b(&stats->loopback_drop, loopback_drop);
1502 	fm10k_update_hw_base_32b(&stats->nodesc_drop, nodesc_drop);
1503 	stats->stats_idx = id;
1504 
1505 	/* Update Queue Statistics */
1506 	fm10k_update_hw_stats_q(hw, stats->q, 0, hw->mac.max_queues);
1507 }
1508 
1509 /**
1510  *  fm10k_rebind_hw_stats_pf - Resets base for hardware statistics of PF
1511  *  @hw: pointer to hardware structure
1512  *  @stats: pointer to the stats structure to update
1513  *
1514  *  This function resets the base for global and per queue hardware
1515  *  statistics.
1516  **/
1517 static void fm10k_rebind_hw_stats_pf(struct fm10k_hw *hw,
1518 				     struct fm10k_hw_stats *stats)
1519 {
1520 	/* Unbind Global Statistics */
1521 	fm10k_unbind_hw_stats_32b(&stats->timeout);
1522 	fm10k_unbind_hw_stats_32b(&stats->ur);
1523 	fm10k_unbind_hw_stats_32b(&stats->ca);
1524 	fm10k_unbind_hw_stats_32b(&stats->um);
1525 	fm10k_unbind_hw_stats_32b(&stats->xec);
1526 	fm10k_unbind_hw_stats_32b(&stats->vlan_drop);
1527 	fm10k_unbind_hw_stats_32b(&stats->loopback_drop);
1528 	fm10k_unbind_hw_stats_32b(&stats->nodesc_drop);
1529 
1530 	/* Unbind Queue Statistics */
1531 	fm10k_unbind_hw_stats_q(stats->q, 0, hw->mac.max_queues);
1532 
1533 	/* Reinitialize bases for all stats */
1534 	fm10k_update_hw_stats_pf(hw, stats);
1535 }
1536 
1537 /**
1538  *  fm10k_set_dma_mask_pf - Configures PhyAddrSpace to limit DMA to system
1539  *  @hw: pointer to hardware structure
1540  *  @dma_mask: 64 bit DMA mask required for platform
1541  *
1542  *  This function sets the PHYADDR.PhyAddrSpace bits for the endpoint in order
1543  *  to limit the access to memory beyond what is physically in the system.
1544  **/
1545 static void fm10k_set_dma_mask_pf(struct fm10k_hw *hw, u64 dma_mask)
1546 {
1547 	/* we need to write the upper 32 bits of DMA mask to PhyAddrSpace */
1548 	u32 phyaddr = (u32)(dma_mask >> 32);
1549 
1550 	fm10k_write_reg(hw, FM10K_PHYADDR, phyaddr);
1551 }
1552 
1553 /**
1554  *  fm10k_get_fault_pf - Record a fault in one of the interface units
1555  *  @hw: pointer to hardware structure
1556  *  @type: pointer to fault type register offset
1557  *  @fault: pointer to memory location to record the fault
1558  *
1559  *  Record the fault register contents to the fault data structure and
1560  *  clear the entry from the register.
1561  *
1562  *  Returns ERR_PARAM if invalid register is specified or no error is present.
1563  **/
1564 static s32 fm10k_get_fault_pf(struct fm10k_hw *hw, int type,
1565 			      struct fm10k_fault *fault)
1566 {
1567 	u32 func;
1568 
1569 	/* verify the fault register is in range and is aligned */
1570 	switch (type) {
1571 	case FM10K_PCA_FAULT:
1572 	case FM10K_THI_FAULT:
1573 	case FM10K_FUM_FAULT:
1574 		break;
1575 	default:
1576 		return FM10K_ERR_PARAM;
1577 	}
1578 
1579 	/* only service faults that are valid */
1580 	func = fm10k_read_reg(hw, type + FM10K_FAULT_FUNC);
1581 	if (!(func & FM10K_FAULT_FUNC_VALID))
1582 		return FM10K_ERR_PARAM;
1583 
1584 	/* read remaining fields */
1585 	fault->address = fm10k_read_reg(hw, type + FM10K_FAULT_ADDR_HI);
1586 	fault->address <<= 32;
1587 	fault->address = fm10k_read_reg(hw, type + FM10K_FAULT_ADDR_LO);
1588 	fault->specinfo = fm10k_read_reg(hw, type + FM10K_FAULT_SPECINFO);
1589 
1590 	/* clear valid bit to allow for next error */
1591 	fm10k_write_reg(hw, type + FM10K_FAULT_FUNC, FM10K_FAULT_FUNC_VALID);
1592 
1593 	/* Record which function triggered the error */
1594 	if (func & FM10K_FAULT_FUNC_PF)
1595 		fault->func = 0;
1596 	else
1597 		fault->func = 1 + ((func & FM10K_FAULT_FUNC_VF_MASK) >>
1598 				   FM10K_FAULT_FUNC_VF_SHIFT);
1599 
1600 	/* record fault type */
1601 	fault->type = func & FM10K_FAULT_FUNC_TYPE_MASK;
1602 
1603 	return 0;
1604 }
1605 
1606 /**
1607  *  fm10k_request_lport_map_pf - Request LPORT map from the switch API
1608  *  @hw: pointer to hardware structure
1609  *
1610  **/
1611 static s32 fm10k_request_lport_map_pf(struct fm10k_hw *hw)
1612 {
1613 	struct fm10k_mbx_info *mbx = &hw->mbx;
1614 	u32 msg[1];
1615 
1616 	/* issue request asking for LPORT map */
1617 	fm10k_tlv_msg_init(msg, FM10K_PF_MSG_ID_LPORT_MAP);
1618 
1619 	/* load onto outgoing mailbox */
1620 	return mbx->ops.enqueue_tx(hw, mbx, msg);
1621 }
1622 
1623 /**
1624  *  fm10k_get_host_state_pf - Returns the state of the switch and mailbox
1625  *  @hw: pointer to hardware structure
1626  *  @switch_ready: pointer to boolean value that will record switch state
1627  *
1628  *  This function will check the DMA_CTRL2 register and mailbox in order
1629  *  to determine if the switch is ready for the PF to begin requesting
1630  *  addresses and mapping traffic to the local interface.
1631  **/
1632 static s32 fm10k_get_host_state_pf(struct fm10k_hw *hw, bool *switch_ready)
1633 {
1634 	u32 dma_ctrl2;
1635 
1636 	/* verify the switch is ready for interaction */
1637 	dma_ctrl2 = fm10k_read_reg(hw, FM10K_DMA_CTRL2);
1638 	if (!(dma_ctrl2 & FM10K_DMA_CTRL2_SWITCH_READY))
1639 		return 0;
1640 
1641 	/* retrieve generic host state info */
1642 	return fm10k_get_host_state_generic(hw, switch_ready);
1643 }
1644 
1645 /* This structure defines the attibutes to be parsed below */
1646 const struct fm10k_tlv_attr fm10k_lport_map_msg_attr[] = {
1647 	FM10K_TLV_ATTR_LE_STRUCT(FM10K_PF_ATTR_ID_ERR,
1648 				 sizeof(struct fm10k_swapi_error)),
1649 	FM10K_TLV_ATTR_U32(FM10K_PF_ATTR_ID_LPORT_MAP),
1650 	FM10K_TLV_ATTR_LAST
1651 };
1652 
1653 /**
1654  *  fm10k_msg_lport_map_pf - Message handler for lport_map message from SM
1655  *  @hw: Pointer to hardware structure
1656  *  @results: pointer array containing parsed data
1657  *  @mbx: Pointer to mailbox information structure
1658  *
1659  *  This handler configures the lport mapping based on the reply from the
1660  *  switch API.
1661  **/
1662 s32 fm10k_msg_lport_map_pf(struct fm10k_hw *hw, u32 **results,
1663 			   struct fm10k_mbx_info *mbx)
1664 {
1665 	u16 glort, mask;
1666 	u32 dglort_map;
1667 	s32 err;
1668 
1669 	err = fm10k_tlv_attr_get_u32(results[FM10K_PF_ATTR_ID_LPORT_MAP],
1670 				     &dglort_map);
1671 	if (err)
1672 		return err;
1673 
1674 	/* extract values out of the header */
1675 	glort = FM10K_MSG_HDR_FIELD_GET(dglort_map, LPORT_MAP_GLORT);
1676 	mask = FM10K_MSG_HDR_FIELD_GET(dglort_map, LPORT_MAP_MASK);
1677 
1678 	/* verify mask is set and none of the masked bits in glort are set */
1679 	if (!mask || (glort & ~mask))
1680 		return FM10K_ERR_PARAM;
1681 
1682 	/* verify the mask is contiguous, and that it is 1's followed by 0's */
1683 	if (((~(mask - 1) & mask) + mask) & FM10K_DGLORTMAP_NONE)
1684 		return FM10K_ERR_PARAM;
1685 
1686 	/* record the glort, mask, and port count */
1687 	hw->mac.dglort_map = dglort_map;
1688 
1689 	return 0;
1690 }
1691 
1692 const struct fm10k_tlv_attr fm10k_update_pvid_msg_attr[] = {
1693 	FM10K_TLV_ATTR_U32(FM10K_PF_ATTR_ID_UPDATE_PVID),
1694 	FM10K_TLV_ATTR_LAST
1695 };
1696 
1697 /**
1698  *  fm10k_msg_update_pvid_pf - Message handler for port VLAN message from SM
1699  *  @hw: Pointer to hardware structure
1700  *  @results: pointer array containing parsed data
1701  *  @mbx: Pointer to mailbox information structure
1702  *
1703  *  This handler configures the default VLAN for the PF
1704  **/
1705 static s32 fm10k_msg_update_pvid_pf(struct fm10k_hw *hw, u32 **results,
1706 				    struct fm10k_mbx_info *mbx)
1707 {
1708 	u16 glort, pvid;
1709 	u32 pvid_update;
1710 	s32 err;
1711 
1712 	err = fm10k_tlv_attr_get_u32(results[FM10K_PF_ATTR_ID_UPDATE_PVID],
1713 				     &pvid_update);
1714 	if (err)
1715 		return err;
1716 
1717 	/* extract values from the pvid update */
1718 	glort = FM10K_MSG_HDR_FIELD_GET(pvid_update, UPDATE_PVID_GLORT);
1719 	pvid = FM10K_MSG_HDR_FIELD_GET(pvid_update, UPDATE_PVID_PVID);
1720 
1721 	/* if glort is not valid return error */
1722 	if (!fm10k_glort_valid_pf(hw, glort))
1723 		return FM10K_ERR_PARAM;
1724 
1725 	/* verify VLAN ID is valid */
1726 	if (pvid >= FM10K_VLAN_TABLE_VID_MAX)
1727 		return FM10K_ERR_PARAM;
1728 
1729 	/* record the port VLAN ID value */
1730 	hw->mac.default_vid = pvid;
1731 
1732 	return 0;
1733 }
1734 
1735 /**
1736  *  fm10k_record_global_table_data - Move global table data to swapi table info
1737  *  @from: pointer to source table data structure
1738  *  @to: pointer to destination table info structure
1739  *
1740  *  This function is will copy table_data to the table_info contained in
1741  *  the hw struct.
1742  **/
1743 static void fm10k_record_global_table_data(struct fm10k_global_table_data *from,
1744 					   struct fm10k_swapi_table_info *to)
1745 {
1746 	/* convert from le32 struct to CPU byte ordered values */
1747 	to->used = le32_to_cpu(from->used);
1748 	to->avail = le32_to_cpu(from->avail);
1749 }
1750 
1751 const struct fm10k_tlv_attr fm10k_err_msg_attr[] = {
1752 	FM10K_TLV_ATTR_LE_STRUCT(FM10K_PF_ATTR_ID_ERR,
1753 				 sizeof(struct fm10k_swapi_error)),
1754 	FM10K_TLV_ATTR_LAST
1755 };
1756 
1757 /**
1758  *  fm10k_msg_err_pf - Message handler for error reply
1759  *  @hw: Pointer to hardware structure
1760  *  @results: pointer array containing parsed data
1761  *  @mbx: Pointer to mailbox information structure
1762  *
1763  *  This handler will capture the data for any error replies to previous
1764  *  messages that the PF has sent.
1765  **/
1766 s32 fm10k_msg_err_pf(struct fm10k_hw *hw, u32 **results,
1767 		     struct fm10k_mbx_info *mbx)
1768 {
1769 	struct fm10k_swapi_error err_msg;
1770 	s32 err;
1771 
1772 	/* extract structure from message */
1773 	err = fm10k_tlv_attr_get_le_struct(results[FM10K_PF_ATTR_ID_ERR],
1774 					   &err_msg, sizeof(err_msg));
1775 	if (err)
1776 		return err;
1777 
1778 	/* record table status */
1779 	fm10k_record_global_table_data(&err_msg.mac, &hw->swapi.mac);
1780 	fm10k_record_global_table_data(&err_msg.nexthop, &hw->swapi.nexthop);
1781 	fm10k_record_global_table_data(&err_msg.ffu, &hw->swapi.ffu);
1782 
1783 	/* record SW API status value */
1784 	hw->swapi.status = le32_to_cpu(err_msg.status);
1785 
1786 	return 0;
1787 }
1788 
1789 static const struct fm10k_msg_data fm10k_msg_data_pf[] = {
1790 	FM10K_PF_MSG_ERR_HANDLER(XCAST_MODES, fm10k_msg_err_pf),
1791 	FM10K_PF_MSG_ERR_HANDLER(UPDATE_MAC_FWD_RULE, fm10k_msg_err_pf),
1792 	FM10K_PF_MSG_LPORT_MAP_HANDLER(fm10k_msg_lport_map_pf),
1793 	FM10K_PF_MSG_ERR_HANDLER(LPORT_CREATE, fm10k_msg_err_pf),
1794 	FM10K_PF_MSG_ERR_HANDLER(LPORT_DELETE, fm10k_msg_err_pf),
1795 	FM10K_PF_MSG_UPDATE_PVID_HANDLER(fm10k_msg_update_pvid_pf),
1796 	FM10K_TLV_MSG_ERROR_HANDLER(fm10k_tlv_msg_error),
1797 };
1798 
1799 static const struct fm10k_mac_ops mac_ops_pf = {
1800 	.get_bus_info		= fm10k_get_bus_info_generic,
1801 	.reset_hw		= fm10k_reset_hw_pf,
1802 	.init_hw		= fm10k_init_hw_pf,
1803 	.start_hw		= fm10k_start_hw_generic,
1804 	.stop_hw		= fm10k_stop_hw_generic,
1805 	.update_vlan		= fm10k_update_vlan_pf,
1806 	.read_mac_addr		= fm10k_read_mac_addr_pf,
1807 	.update_uc_addr		= fm10k_update_uc_addr_pf,
1808 	.update_mc_addr		= fm10k_update_mc_addr_pf,
1809 	.update_xcast_mode	= fm10k_update_xcast_mode_pf,
1810 	.update_int_moderator	= fm10k_update_int_moderator_pf,
1811 	.update_lport_state	= fm10k_update_lport_state_pf,
1812 	.update_hw_stats	= fm10k_update_hw_stats_pf,
1813 	.rebind_hw_stats	= fm10k_rebind_hw_stats_pf,
1814 	.configure_dglort_map	= fm10k_configure_dglort_map_pf,
1815 	.set_dma_mask		= fm10k_set_dma_mask_pf,
1816 	.get_fault		= fm10k_get_fault_pf,
1817 	.get_host_state		= fm10k_get_host_state_pf,
1818 	.request_lport_map	= fm10k_request_lport_map_pf,
1819 };
1820 
1821 static const struct fm10k_iov_ops iov_ops_pf = {
1822 	.assign_resources		= fm10k_iov_assign_resources_pf,
1823 	.configure_tc			= fm10k_iov_configure_tc_pf,
1824 	.assign_int_moderator		= fm10k_iov_assign_int_moderator_pf,
1825 	.assign_default_mac_vlan	= fm10k_iov_assign_default_mac_vlan_pf,
1826 	.reset_resources		= fm10k_iov_reset_resources_pf,
1827 	.set_lport			= fm10k_iov_set_lport_pf,
1828 	.reset_lport			= fm10k_iov_reset_lport_pf,
1829 	.update_stats			= fm10k_iov_update_stats_pf,
1830 };
1831 
1832 static s32 fm10k_get_invariants_pf(struct fm10k_hw *hw)
1833 {
1834 	fm10k_get_invariants_generic(hw);
1835 
1836 	return fm10k_sm_mbx_init(hw, &hw->mbx, fm10k_msg_data_pf);
1837 }
1838 
1839 const struct fm10k_info fm10k_pf_info = {
1840 	.mac		= fm10k_mac_pf,
1841 	.get_invariants	= fm10k_get_invariants_pf,
1842 	.mac_ops	= &mac_ops_pf,
1843 	.iov_ops	= &iov_ops_pf,
1844 };
1845