1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright(c) 2013 - 2019 Intel Corporation. */ 3 4 #include <linux/module.h> 5 #include <linux/interrupt.h> 6 #include <linux/aer.h> 7 8 #include "fm10k.h" 9 10 static const struct fm10k_info *fm10k_info_tbl[] = { 11 [fm10k_device_pf] = &fm10k_pf_info, 12 [fm10k_device_vf] = &fm10k_vf_info, 13 }; 14 15 /* 16 * fm10k_pci_tbl - PCI Device ID Table 17 * 18 * Wildcard entries (PCI_ANY_ID) should come last 19 * Last entry must be all 0s 20 * 21 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID, 22 * Class, Class Mask, private data (not used) } 23 */ 24 static const struct pci_device_id fm10k_pci_tbl[] = { 25 { PCI_VDEVICE(INTEL, FM10K_DEV_ID_PF), fm10k_device_pf }, 26 { PCI_VDEVICE(INTEL, FM10K_DEV_ID_SDI_FM10420_QDA2), fm10k_device_pf }, 27 { PCI_VDEVICE(INTEL, FM10K_DEV_ID_SDI_FM10420_DA2), fm10k_device_pf }, 28 { PCI_VDEVICE(INTEL, FM10K_DEV_ID_VF), fm10k_device_vf }, 29 /* required last entry */ 30 { 0, } 31 }; 32 MODULE_DEVICE_TABLE(pci, fm10k_pci_tbl); 33 34 u16 fm10k_read_pci_cfg_word(struct fm10k_hw *hw, u32 reg) 35 { 36 struct fm10k_intfc *interface = hw->back; 37 u16 value = 0; 38 39 if (FM10K_REMOVED(hw->hw_addr)) 40 return ~value; 41 42 pci_read_config_word(interface->pdev, reg, &value); 43 if (value == 0xFFFF) 44 fm10k_write_flush(hw); 45 46 return value; 47 } 48 49 u32 fm10k_read_reg(struct fm10k_hw *hw, int reg) 50 { 51 u32 __iomem *hw_addr = READ_ONCE(hw->hw_addr); 52 u32 value = 0; 53 54 if (FM10K_REMOVED(hw_addr)) 55 return ~value; 56 57 value = readl(&hw_addr[reg]); 58 if (!(~value) && (!reg || !(~readl(hw_addr)))) { 59 struct fm10k_intfc *interface = hw->back; 60 struct net_device *netdev = interface->netdev; 61 62 hw->hw_addr = NULL; 63 netif_device_detach(netdev); 64 netdev_err(netdev, "PCIe link lost, device now detached\n"); 65 } 66 67 return value; 68 } 69 70 static int fm10k_hw_ready(struct fm10k_intfc *interface) 71 { 72 struct fm10k_hw *hw = &interface->hw; 73 74 fm10k_write_flush(hw); 75 76 return FM10K_REMOVED(hw->hw_addr) ? -ENODEV : 0; 77 } 78 79 /** 80 * fm10k_macvlan_schedule - Schedule MAC/VLAN queue task 81 * @interface: fm10k private interface structure 82 * 83 * Schedule the MAC/VLAN queue monitor task. If the MAC/VLAN task cannot be 84 * started immediately, request that it be restarted when possible. 85 */ 86 void fm10k_macvlan_schedule(struct fm10k_intfc *interface) 87 { 88 /* Avoid processing the MAC/VLAN queue when the service task is 89 * disabled, or when we're resetting the device. 90 */ 91 if (!test_bit(__FM10K_MACVLAN_DISABLE, interface->state) && 92 !test_and_set_bit(__FM10K_MACVLAN_SCHED, interface->state)) { 93 clear_bit(__FM10K_MACVLAN_REQUEST, interface->state); 94 /* We delay the actual start of execution in order to allow 95 * multiple MAC/VLAN updates to accumulate before handling 96 * them, and to allow some time to let the mailbox drain 97 * between runs. 98 */ 99 queue_delayed_work(fm10k_workqueue, 100 &interface->macvlan_task, 10); 101 } else { 102 set_bit(__FM10K_MACVLAN_REQUEST, interface->state); 103 } 104 } 105 106 /** 107 * fm10k_stop_macvlan_task - Stop the MAC/VLAN queue monitor 108 * @interface: fm10k private interface structure 109 * 110 * Wait until the MAC/VLAN queue task has stopped, and cancel any future 111 * requests. 112 */ 113 static void fm10k_stop_macvlan_task(struct fm10k_intfc *interface) 114 { 115 /* Disable the MAC/VLAN work item */ 116 set_bit(__FM10K_MACVLAN_DISABLE, interface->state); 117 118 /* Make sure we waited until any current invocations have stopped */ 119 cancel_delayed_work_sync(&interface->macvlan_task); 120 121 /* We set the __FM10K_MACVLAN_SCHED bit when we schedule the task. 122 * However, it may not be unset of the MAC/VLAN task never actually 123 * got a chance to run. Since we've canceled the task here, and it 124 * cannot be rescheuled right now, we need to ensure the scheduled bit 125 * gets unset. 126 */ 127 clear_bit(__FM10K_MACVLAN_SCHED, interface->state); 128 } 129 130 /** 131 * fm10k_resume_macvlan_task - Restart the MAC/VLAN queue monitor 132 * @interface: fm10k private interface structure 133 * 134 * Clear the __FM10K_MACVLAN_DISABLE bit and, if a request occurred, schedule 135 * the MAC/VLAN work monitor. 136 */ 137 static void fm10k_resume_macvlan_task(struct fm10k_intfc *interface) 138 { 139 /* Re-enable the MAC/VLAN work item */ 140 clear_bit(__FM10K_MACVLAN_DISABLE, interface->state); 141 142 /* We might have received a MAC/VLAN request while disabled. If so, 143 * kick off the queue now. 144 */ 145 if (test_bit(__FM10K_MACVLAN_REQUEST, interface->state)) 146 fm10k_macvlan_schedule(interface); 147 } 148 149 void fm10k_service_event_schedule(struct fm10k_intfc *interface) 150 { 151 if (!test_bit(__FM10K_SERVICE_DISABLE, interface->state) && 152 !test_and_set_bit(__FM10K_SERVICE_SCHED, interface->state)) { 153 clear_bit(__FM10K_SERVICE_REQUEST, interface->state); 154 queue_work(fm10k_workqueue, &interface->service_task); 155 } else { 156 set_bit(__FM10K_SERVICE_REQUEST, interface->state); 157 } 158 } 159 160 static void fm10k_service_event_complete(struct fm10k_intfc *interface) 161 { 162 WARN_ON(!test_bit(__FM10K_SERVICE_SCHED, interface->state)); 163 164 /* flush memory to make sure state is correct before next watchog */ 165 smp_mb__before_atomic(); 166 clear_bit(__FM10K_SERVICE_SCHED, interface->state); 167 168 /* If a service event was requested since we started, immediately 169 * re-schedule now. This ensures we don't drop a request until the 170 * next timer event. 171 */ 172 if (test_bit(__FM10K_SERVICE_REQUEST, interface->state)) 173 fm10k_service_event_schedule(interface); 174 } 175 176 static void fm10k_stop_service_event(struct fm10k_intfc *interface) 177 { 178 set_bit(__FM10K_SERVICE_DISABLE, interface->state); 179 cancel_work_sync(&interface->service_task); 180 181 /* It's possible that cancel_work_sync stopped the service task from 182 * running before it could actually start. In this case the 183 * __FM10K_SERVICE_SCHED bit will never be cleared. Since we know that 184 * the service task cannot be running at this point, we need to clear 185 * the scheduled bit, as otherwise the service task may never be 186 * restarted. 187 */ 188 clear_bit(__FM10K_SERVICE_SCHED, interface->state); 189 } 190 191 static void fm10k_start_service_event(struct fm10k_intfc *interface) 192 { 193 clear_bit(__FM10K_SERVICE_DISABLE, interface->state); 194 fm10k_service_event_schedule(interface); 195 } 196 197 /** 198 * fm10k_service_timer - Timer Call-back 199 * @t: pointer to timer data 200 **/ 201 static void fm10k_service_timer(struct timer_list *t) 202 { 203 struct fm10k_intfc *interface = from_timer(interface, t, 204 service_timer); 205 206 /* Reset the timer */ 207 mod_timer(&interface->service_timer, (HZ * 2) + jiffies); 208 209 fm10k_service_event_schedule(interface); 210 } 211 212 /** 213 * fm10k_prepare_for_reset - Prepare the driver and device for a pending reset 214 * @interface: fm10k private data structure 215 * 216 * This function prepares for a device reset by shutting as much down as we 217 * can. It does nothing and returns false if __FM10K_RESETTING was already set 218 * prior to calling this function. It returns true if it actually did work. 219 */ 220 static bool fm10k_prepare_for_reset(struct fm10k_intfc *interface) 221 { 222 struct net_device *netdev = interface->netdev; 223 224 WARN_ON(in_interrupt()); 225 226 /* put off any impending NetWatchDogTimeout */ 227 netif_trans_update(netdev); 228 229 /* Nothing to do if a reset is already in progress */ 230 if (test_and_set_bit(__FM10K_RESETTING, interface->state)) 231 return false; 232 233 /* As the MAC/VLAN task will be accessing registers it must not be 234 * running while we reset. Although the task will not be scheduled 235 * once we start resetting it may already be running 236 */ 237 fm10k_stop_macvlan_task(interface); 238 239 rtnl_lock(); 240 241 fm10k_iov_suspend(interface->pdev); 242 243 if (netif_running(netdev)) 244 fm10k_close(netdev); 245 246 fm10k_mbx_free_irq(interface); 247 248 /* free interrupts */ 249 fm10k_clear_queueing_scheme(interface); 250 251 /* delay any future reset requests */ 252 interface->last_reset = jiffies + (10 * HZ); 253 254 rtnl_unlock(); 255 256 return true; 257 } 258 259 static int fm10k_handle_reset(struct fm10k_intfc *interface) 260 { 261 struct net_device *netdev = interface->netdev; 262 struct fm10k_hw *hw = &interface->hw; 263 int err; 264 265 WARN_ON(!test_bit(__FM10K_RESETTING, interface->state)); 266 267 rtnl_lock(); 268 269 pci_set_master(interface->pdev); 270 271 /* reset and initialize the hardware so it is in a known state */ 272 err = hw->mac.ops.reset_hw(hw); 273 if (err) { 274 dev_err(&interface->pdev->dev, "reset_hw failed: %d\n", err); 275 goto reinit_err; 276 } 277 278 err = hw->mac.ops.init_hw(hw); 279 if (err) { 280 dev_err(&interface->pdev->dev, "init_hw failed: %d\n", err); 281 goto reinit_err; 282 } 283 284 err = fm10k_init_queueing_scheme(interface); 285 if (err) { 286 dev_err(&interface->pdev->dev, 287 "init_queueing_scheme failed: %d\n", err); 288 goto reinit_err; 289 } 290 291 /* re-associate interrupts */ 292 err = fm10k_mbx_request_irq(interface); 293 if (err) 294 goto err_mbx_irq; 295 296 err = fm10k_hw_ready(interface); 297 if (err) 298 goto err_open; 299 300 /* update hardware address for VFs if perm_addr has changed */ 301 if (hw->mac.type == fm10k_mac_vf) { 302 if (is_valid_ether_addr(hw->mac.perm_addr)) { 303 ether_addr_copy(hw->mac.addr, hw->mac.perm_addr); 304 ether_addr_copy(netdev->perm_addr, hw->mac.perm_addr); 305 ether_addr_copy(netdev->dev_addr, hw->mac.perm_addr); 306 netdev->addr_assign_type &= ~NET_ADDR_RANDOM; 307 } 308 309 if (hw->mac.vlan_override) 310 netdev->features &= ~NETIF_F_HW_VLAN_CTAG_RX; 311 else 312 netdev->features |= NETIF_F_HW_VLAN_CTAG_RX; 313 } 314 315 err = netif_running(netdev) ? fm10k_open(netdev) : 0; 316 if (err) 317 goto err_open; 318 319 fm10k_iov_resume(interface->pdev); 320 321 rtnl_unlock(); 322 323 fm10k_resume_macvlan_task(interface); 324 325 clear_bit(__FM10K_RESETTING, interface->state); 326 327 return err; 328 err_open: 329 fm10k_mbx_free_irq(interface); 330 err_mbx_irq: 331 fm10k_clear_queueing_scheme(interface); 332 reinit_err: 333 netif_device_detach(netdev); 334 335 rtnl_unlock(); 336 337 clear_bit(__FM10K_RESETTING, interface->state); 338 339 return err; 340 } 341 342 static void fm10k_detach_subtask(struct fm10k_intfc *interface) 343 { 344 struct net_device *netdev = interface->netdev; 345 u32 __iomem *hw_addr; 346 u32 value; 347 348 /* do nothing if netdev is still present or hw_addr is set */ 349 if (netif_device_present(netdev) || interface->hw.hw_addr) 350 return; 351 352 /* We've lost the PCIe register space, and can no longer access the 353 * device. Shut everything except the detach subtask down and prepare 354 * to reset the device in case we recover. If we actually prepare for 355 * reset, indicate that we're detached. 356 */ 357 if (fm10k_prepare_for_reset(interface)) 358 set_bit(__FM10K_RESET_DETACHED, interface->state); 359 360 /* check the real address space to see if we've recovered */ 361 hw_addr = READ_ONCE(interface->uc_addr); 362 value = readl(hw_addr); 363 if (~value) { 364 int err; 365 366 /* Make sure the reset was initiated because we detached, 367 * otherwise we might race with a different reset flow. 368 */ 369 if (!test_and_clear_bit(__FM10K_RESET_DETACHED, 370 interface->state)) 371 return; 372 373 /* Restore the hardware address */ 374 interface->hw.hw_addr = interface->uc_addr; 375 376 /* PCIe link has been restored, and the device is active 377 * again. Restore everything and reset the device. 378 */ 379 err = fm10k_handle_reset(interface); 380 if (err) { 381 netdev_err(netdev, "Unable to reset device: %d\n", err); 382 interface->hw.hw_addr = NULL; 383 return; 384 } 385 386 /* Re-attach the netdev */ 387 netif_device_attach(netdev); 388 netdev_warn(netdev, "PCIe link restored, device now attached\n"); 389 return; 390 } 391 } 392 393 static void fm10k_reset_subtask(struct fm10k_intfc *interface) 394 { 395 int err; 396 397 if (!test_and_clear_bit(FM10K_FLAG_RESET_REQUESTED, 398 interface->flags)) 399 return; 400 401 /* If another thread has already prepared to reset the device, we 402 * should not attempt to handle a reset here, since we'd race with 403 * that thread. This may happen if we suspend the device or if the 404 * PCIe link is lost. In this case, we'll just ignore the RESET 405 * request, as it will (eventually) be taken care of when the thread 406 * which actually started the reset is finished. 407 */ 408 if (!fm10k_prepare_for_reset(interface)) 409 return; 410 411 netdev_err(interface->netdev, "Reset interface\n"); 412 413 err = fm10k_handle_reset(interface); 414 if (err) 415 dev_err(&interface->pdev->dev, 416 "fm10k_handle_reset failed: %d\n", err); 417 } 418 419 /** 420 * fm10k_configure_swpri_map - Configure Receive SWPRI to PC mapping 421 * @interface: board private structure 422 * 423 * Configure the SWPRI to PC mapping for the port. 424 **/ 425 static void fm10k_configure_swpri_map(struct fm10k_intfc *interface) 426 { 427 struct net_device *netdev = interface->netdev; 428 struct fm10k_hw *hw = &interface->hw; 429 int i; 430 431 /* clear flag indicating update is needed */ 432 clear_bit(FM10K_FLAG_SWPRI_CONFIG, interface->flags); 433 434 /* these registers are only available on the PF */ 435 if (hw->mac.type != fm10k_mac_pf) 436 return; 437 438 /* configure SWPRI to PC map */ 439 for (i = 0; i < FM10K_SWPRI_MAX; i++) 440 fm10k_write_reg(hw, FM10K_SWPRI_MAP(i), 441 netdev_get_prio_tc_map(netdev, i)); 442 } 443 444 /** 445 * fm10k_watchdog_update_host_state - Update the link status based on host. 446 * @interface: board private structure 447 **/ 448 static void fm10k_watchdog_update_host_state(struct fm10k_intfc *interface) 449 { 450 struct fm10k_hw *hw = &interface->hw; 451 s32 err; 452 453 if (test_bit(__FM10K_LINK_DOWN, interface->state)) { 454 interface->host_ready = false; 455 if (time_is_after_jiffies(interface->link_down_event)) 456 return; 457 clear_bit(__FM10K_LINK_DOWN, interface->state); 458 } 459 460 if (test_bit(FM10K_FLAG_SWPRI_CONFIG, interface->flags)) { 461 if (rtnl_trylock()) { 462 fm10k_configure_swpri_map(interface); 463 rtnl_unlock(); 464 } 465 } 466 467 /* lock the mailbox for transmit and receive */ 468 fm10k_mbx_lock(interface); 469 470 err = hw->mac.ops.get_host_state(hw, &interface->host_ready); 471 if (err && time_is_before_jiffies(interface->last_reset)) 472 set_bit(FM10K_FLAG_RESET_REQUESTED, interface->flags); 473 474 /* free the lock */ 475 fm10k_mbx_unlock(interface); 476 } 477 478 /** 479 * fm10k_mbx_subtask - Process upstream and downstream mailboxes 480 * @interface: board private structure 481 * 482 * This function will process both the upstream and downstream mailboxes. 483 **/ 484 static void fm10k_mbx_subtask(struct fm10k_intfc *interface) 485 { 486 /* If we're resetting, bail out */ 487 if (test_bit(__FM10K_RESETTING, interface->state)) 488 return; 489 490 /* process upstream mailbox and update device state */ 491 fm10k_watchdog_update_host_state(interface); 492 493 /* process downstream mailboxes */ 494 fm10k_iov_mbx(interface); 495 } 496 497 /** 498 * fm10k_watchdog_host_is_ready - Update netdev status based on host ready 499 * @interface: board private structure 500 **/ 501 static void fm10k_watchdog_host_is_ready(struct fm10k_intfc *interface) 502 { 503 struct net_device *netdev = interface->netdev; 504 505 /* only continue if link state is currently down */ 506 if (netif_carrier_ok(netdev)) 507 return; 508 509 netif_info(interface, drv, netdev, "NIC Link is up\n"); 510 511 netif_carrier_on(netdev); 512 netif_tx_wake_all_queues(netdev); 513 } 514 515 /** 516 * fm10k_watchdog_host_not_ready - Update netdev status based on host not ready 517 * @interface: board private structure 518 **/ 519 static void fm10k_watchdog_host_not_ready(struct fm10k_intfc *interface) 520 { 521 struct net_device *netdev = interface->netdev; 522 523 /* only continue if link state is currently up */ 524 if (!netif_carrier_ok(netdev)) 525 return; 526 527 netif_info(interface, drv, netdev, "NIC Link is down\n"); 528 529 netif_carrier_off(netdev); 530 netif_tx_stop_all_queues(netdev); 531 } 532 533 /** 534 * fm10k_update_stats - Update the board statistics counters. 535 * @interface: board private structure 536 **/ 537 void fm10k_update_stats(struct fm10k_intfc *interface) 538 { 539 struct net_device_stats *net_stats = &interface->netdev->stats; 540 struct fm10k_hw *hw = &interface->hw; 541 u64 hw_csum_tx_good = 0, hw_csum_rx_good = 0, rx_length_errors = 0; 542 u64 rx_switch_errors = 0, rx_drops = 0, rx_pp_errors = 0; 543 u64 rx_link_errors = 0; 544 u64 rx_errors = 0, rx_csum_errors = 0, tx_csum_errors = 0; 545 u64 restart_queue = 0, tx_busy = 0, alloc_failed = 0; 546 u64 rx_bytes_nic = 0, rx_pkts_nic = 0, rx_drops_nic = 0; 547 u64 tx_bytes_nic = 0, tx_pkts_nic = 0; 548 u64 bytes, pkts; 549 int i; 550 551 /* ensure only one thread updates stats at a time */ 552 if (test_and_set_bit(__FM10K_UPDATING_STATS, interface->state)) 553 return; 554 555 /* do not allow stats update via service task for next second */ 556 interface->next_stats_update = jiffies + HZ; 557 558 /* gather some stats to the interface struct that are per queue */ 559 for (bytes = 0, pkts = 0, i = 0; i < interface->num_tx_queues; i++) { 560 struct fm10k_ring *tx_ring = READ_ONCE(interface->tx_ring[i]); 561 562 if (!tx_ring) 563 continue; 564 565 restart_queue += tx_ring->tx_stats.restart_queue; 566 tx_busy += tx_ring->tx_stats.tx_busy; 567 tx_csum_errors += tx_ring->tx_stats.csum_err; 568 bytes += tx_ring->stats.bytes; 569 pkts += tx_ring->stats.packets; 570 hw_csum_tx_good += tx_ring->tx_stats.csum_good; 571 } 572 573 interface->restart_queue = restart_queue; 574 interface->tx_busy = tx_busy; 575 net_stats->tx_bytes = bytes; 576 net_stats->tx_packets = pkts; 577 interface->tx_csum_errors = tx_csum_errors; 578 interface->hw_csum_tx_good = hw_csum_tx_good; 579 580 /* gather some stats to the interface struct that are per queue */ 581 for (bytes = 0, pkts = 0, i = 0; i < interface->num_rx_queues; i++) { 582 struct fm10k_ring *rx_ring = READ_ONCE(interface->rx_ring[i]); 583 584 if (!rx_ring) 585 continue; 586 587 bytes += rx_ring->stats.bytes; 588 pkts += rx_ring->stats.packets; 589 alloc_failed += rx_ring->rx_stats.alloc_failed; 590 rx_csum_errors += rx_ring->rx_stats.csum_err; 591 rx_errors += rx_ring->rx_stats.errors; 592 hw_csum_rx_good += rx_ring->rx_stats.csum_good; 593 rx_switch_errors += rx_ring->rx_stats.switch_errors; 594 rx_drops += rx_ring->rx_stats.drops; 595 rx_pp_errors += rx_ring->rx_stats.pp_errors; 596 rx_link_errors += rx_ring->rx_stats.link_errors; 597 rx_length_errors += rx_ring->rx_stats.length_errors; 598 } 599 600 net_stats->rx_bytes = bytes; 601 net_stats->rx_packets = pkts; 602 interface->alloc_failed = alloc_failed; 603 interface->rx_csum_errors = rx_csum_errors; 604 interface->hw_csum_rx_good = hw_csum_rx_good; 605 interface->rx_switch_errors = rx_switch_errors; 606 interface->rx_drops = rx_drops; 607 interface->rx_pp_errors = rx_pp_errors; 608 interface->rx_link_errors = rx_link_errors; 609 interface->rx_length_errors = rx_length_errors; 610 611 hw->mac.ops.update_hw_stats(hw, &interface->stats); 612 613 for (i = 0; i < hw->mac.max_queues; i++) { 614 struct fm10k_hw_stats_q *q = &interface->stats.q[i]; 615 616 tx_bytes_nic += q->tx_bytes.count; 617 tx_pkts_nic += q->tx_packets.count; 618 rx_bytes_nic += q->rx_bytes.count; 619 rx_pkts_nic += q->rx_packets.count; 620 rx_drops_nic += q->rx_drops.count; 621 } 622 623 interface->tx_bytes_nic = tx_bytes_nic; 624 interface->tx_packets_nic = tx_pkts_nic; 625 interface->rx_bytes_nic = rx_bytes_nic; 626 interface->rx_packets_nic = rx_pkts_nic; 627 interface->rx_drops_nic = rx_drops_nic; 628 629 /* Fill out the OS statistics structure */ 630 net_stats->rx_errors = rx_errors; 631 net_stats->rx_dropped = interface->stats.nodesc_drop.count; 632 633 /* Update VF statistics */ 634 fm10k_iov_update_stats(interface); 635 636 clear_bit(__FM10K_UPDATING_STATS, interface->state); 637 } 638 639 /** 640 * fm10k_watchdog_flush_tx - flush queues on host not ready 641 * @interface: pointer to the device interface structure 642 **/ 643 static void fm10k_watchdog_flush_tx(struct fm10k_intfc *interface) 644 { 645 int some_tx_pending = 0; 646 int i; 647 648 /* nothing to do if carrier is up */ 649 if (netif_carrier_ok(interface->netdev)) 650 return; 651 652 for (i = 0; i < interface->num_tx_queues; i++) { 653 struct fm10k_ring *tx_ring = interface->tx_ring[i]; 654 655 if (tx_ring->next_to_use != tx_ring->next_to_clean) { 656 some_tx_pending = 1; 657 break; 658 } 659 } 660 661 /* We've lost link, so the controller stops DMA, but we've got 662 * queued Tx work that's never going to get done, so reset 663 * controller to flush Tx. 664 */ 665 if (some_tx_pending) 666 set_bit(FM10K_FLAG_RESET_REQUESTED, interface->flags); 667 } 668 669 /** 670 * fm10k_watchdog_subtask - check and bring link up 671 * @interface: pointer to the device interface structure 672 **/ 673 static void fm10k_watchdog_subtask(struct fm10k_intfc *interface) 674 { 675 /* if interface is down do nothing */ 676 if (test_bit(__FM10K_DOWN, interface->state) || 677 test_bit(__FM10K_RESETTING, interface->state)) 678 return; 679 680 if (interface->host_ready) 681 fm10k_watchdog_host_is_ready(interface); 682 else 683 fm10k_watchdog_host_not_ready(interface); 684 685 /* update stats only once every second */ 686 if (time_is_before_jiffies(interface->next_stats_update)) 687 fm10k_update_stats(interface); 688 689 /* flush any uncompleted work */ 690 fm10k_watchdog_flush_tx(interface); 691 } 692 693 /** 694 * fm10k_check_hang_subtask - check for hung queues and dropped interrupts 695 * @interface: pointer to the device interface structure 696 * 697 * This function serves two purposes. First it strobes the interrupt lines 698 * in order to make certain interrupts are occurring. Secondly it sets the 699 * bits needed to check for TX hangs. As a result we should immediately 700 * determine if a hang has occurred. 701 */ 702 static void fm10k_check_hang_subtask(struct fm10k_intfc *interface) 703 { 704 /* If we're down or resetting, just bail */ 705 if (test_bit(__FM10K_DOWN, interface->state) || 706 test_bit(__FM10K_RESETTING, interface->state)) 707 return; 708 709 /* rate limit tx hang checks to only once every 2 seconds */ 710 if (time_is_after_eq_jiffies(interface->next_tx_hang_check)) 711 return; 712 interface->next_tx_hang_check = jiffies + (2 * HZ); 713 714 if (netif_carrier_ok(interface->netdev)) { 715 int i; 716 717 /* Force detection of hung controller */ 718 for (i = 0; i < interface->num_tx_queues; i++) 719 set_check_for_tx_hang(interface->tx_ring[i]); 720 721 /* Rearm all in-use q_vectors for immediate firing */ 722 for (i = 0; i < interface->num_q_vectors; i++) { 723 struct fm10k_q_vector *qv = interface->q_vector[i]; 724 725 if (!qv->tx.count && !qv->rx.count) 726 continue; 727 writel(FM10K_ITR_ENABLE | FM10K_ITR_PENDING2, qv->itr); 728 } 729 } 730 } 731 732 /** 733 * fm10k_service_task - manages and runs subtasks 734 * @work: pointer to work_struct containing our data 735 **/ 736 static void fm10k_service_task(struct work_struct *work) 737 { 738 struct fm10k_intfc *interface; 739 740 interface = container_of(work, struct fm10k_intfc, service_task); 741 742 /* Check whether we're detached first */ 743 fm10k_detach_subtask(interface); 744 745 /* tasks run even when interface is down */ 746 fm10k_mbx_subtask(interface); 747 fm10k_reset_subtask(interface); 748 749 /* tasks only run when interface is up */ 750 fm10k_watchdog_subtask(interface); 751 fm10k_check_hang_subtask(interface); 752 753 /* release lock on service events to allow scheduling next event */ 754 fm10k_service_event_complete(interface); 755 } 756 757 /** 758 * fm10k_macvlan_task - send queued MAC/VLAN requests to switch manager 759 * @work: pointer to work_struct containing our data 760 * 761 * This work item handles sending MAC/VLAN updates to the switch manager. When 762 * the interface is up, it will attempt to queue mailbox messages to the 763 * switch manager requesting updates for MAC/VLAN pairs. If the Tx fifo of the 764 * mailbox is full, it will reschedule itself to try again in a short while. 765 * This ensures that the driver does not overload the switch mailbox with too 766 * many simultaneous requests, causing an unnecessary reset. 767 **/ 768 static void fm10k_macvlan_task(struct work_struct *work) 769 { 770 struct fm10k_macvlan_request *item; 771 struct fm10k_intfc *interface; 772 struct delayed_work *dwork; 773 struct list_head *requests; 774 struct fm10k_hw *hw; 775 unsigned long flags; 776 777 dwork = to_delayed_work(work); 778 interface = container_of(dwork, struct fm10k_intfc, macvlan_task); 779 hw = &interface->hw; 780 requests = &interface->macvlan_requests; 781 782 do { 783 /* Pop the first item off the list */ 784 spin_lock_irqsave(&interface->macvlan_lock, flags); 785 item = list_first_entry_or_null(requests, 786 struct fm10k_macvlan_request, 787 list); 788 if (item) 789 list_del_init(&item->list); 790 791 spin_unlock_irqrestore(&interface->macvlan_lock, flags); 792 793 /* We have no more items to process */ 794 if (!item) 795 goto done; 796 797 fm10k_mbx_lock(interface); 798 799 /* Check that we have plenty of space to send the message. We 800 * want to ensure that the mailbox stays low enough to avoid a 801 * change in the host state, otherwise we may see spurious 802 * link up / link down notifications. 803 */ 804 if (!hw->mbx.ops.tx_ready(&hw->mbx, FM10K_VFMBX_MSG_MTU + 5)) { 805 hw->mbx.ops.process(hw, &hw->mbx); 806 set_bit(__FM10K_MACVLAN_REQUEST, interface->state); 807 fm10k_mbx_unlock(interface); 808 809 /* Put the request back on the list */ 810 spin_lock_irqsave(&interface->macvlan_lock, flags); 811 list_add(&item->list, requests); 812 spin_unlock_irqrestore(&interface->macvlan_lock, flags); 813 break; 814 } 815 816 switch (item->type) { 817 case FM10K_MC_MAC_REQUEST: 818 hw->mac.ops.update_mc_addr(hw, 819 item->mac.glort, 820 item->mac.addr, 821 item->mac.vid, 822 item->set); 823 break; 824 case FM10K_UC_MAC_REQUEST: 825 hw->mac.ops.update_uc_addr(hw, 826 item->mac.glort, 827 item->mac.addr, 828 item->mac.vid, 829 item->set, 830 0); 831 break; 832 case FM10K_VLAN_REQUEST: 833 hw->mac.ops.update_vlan(hw, 834 item->vlan.vid, 835 item->vlan.vsi, 836 item->set); 837 break; 838 default: 839 break; 840 } 841 842 fm10k_mbx_unlock(interface); 843 844 /* Free the item now that we've sent the update */ 845 kfree(item); 846 } while (true); 847 848 done: 849 WARN_ON(!test_bit(__FM10K_MACVLAN_SCHED, interface->state)); 850 851 /* flush memory to make sure state is correct */ 852 smp_mb__before_atomic(); 853 clear_bit(__FM10K_MACVLAN_SCHED, interface->state); 854 855 /* If a MAC/VLAN request was scheduled since we started, we should 856 * re-schedule. However, there is no reason to re-schedule if there is 857 * no work to do. 858 */ 859 if (test_bit(__FM10K_MACVLAN_REQUEST, interface->state)) 860 fm10k_macvlan_schedule(interface); 861 } 862 863 /** 864 * fm10k_configure_tx_ring - Configure Tx ring after Reset 865 * @interface: board private structure 866 * @ring: structure containing ring specific data 867 * 868 * Configure the Tx descriptor ring after a reset. 869 **/ 870 static void fm10k_configure_tx_ring(struct fm10k_intfc *interface, 871 struct fm10k_ring *ring) 872 { 873 struct fm10k_hw *hw = &interface->hw; 874 u64 tdba = ring->dma; 875 u32 size = ring->count * sizeof(struct fm10k_tx_desc); 876 u32 txint = FM10K_INT_MAP_DISABLE; 877 u32 txdctl = BIT(FM10K_TXDCTL_MAX_TIME_SHIFT) | FM10K_TXDCTL_ENABLE; 878 u8 reg_idx = ring->reg_idx; 879 880 /* disable queue to avoid issues while updating state */ 881 fm10k_write_reg(hw, FM10K_TXDCTL(reg_idx), 0); 882 fm10k_write_flush(hw); 883 884 /* possible poll here to verify ring resources have been cleaned */ 885 886 /* set location and size for descriptor ring */ 887 fm10k_write_reg(hw, FM10K_TDBAL(reg_idx), tdba & DMA_BIT_MASK(32)); 888 fm10k_write_reg(hw, FM10K_TDBAH(reg_idx), tdba >> 32); 889 fm10k_write_reg(hw, FM10K_TDLEN(reg_idx), size); 890 891 /* reset head and tail pointers */ 892 fm10k_write_reg(hw, FM10K_TDH(reg_idx), 0); 893 fm10k_write_reg(hw, FM10K_TDT(reg_idx), 0); 894 895 /* store tail pointer */ 896 ring->tail = &interface->uc_addr[FM10K_TDT(reg_idx)]; 897 898 /* reset ntu and ntc to place SW in sync with hardware */ 899 ring->next_to_clean = 0; 900 ring->next_to_use = 0; 901 902 /* Map interrupt */ 903 if (ring->q_vector) { 904 txint = ring->q_vector->v_idx + NON_Q_VECTORS; 905 txint |= FM10K_INT_MAP_TIMER0; 906 } 907 908 fm10k_write_reg(hw, FM10K_TXINT(reg_idx), txint); 909 910 /* enable use of FTAG bit in Tx descriptor, register is RO for VF */ 911 fm10k_write_reg(hw, FM10K_PFVTCTL(reg_idx), 912 FM10K_PFVTCTL_FTAG_DESC_ENABLE); 913 914 /* Initialize XPS */ 915 if (!test_and_set_bit(__FM10K_TX_XPS_INIT_DONE, ring->state) && 916 ring->q_vector) 917 netif_set_xps_queue(ring->netdev, 918 &ring->q_vector->affinity_mask, 919 ring->queue_index); 920 921 /* enable queue */ 922 fm10k_write_reg(hw, FM10K_TXDCTL(reg_idx), txdctl); 923 } 924 925 /** 926 * fm10k_enable_tx_ring - Verify Tx ring is enabled after configuration 927 * @interface: board private structure 928 * @ring: structure containing ring specific data 929 * 930 * Verify the Tx descriptor ring is ready for transmit. 931 **/ 932 static void fm10k_enable_tx_ring(struct fm10k_intfc *interface, 933 struct fm10k_ring *ring) 934 { 935 struct fm10k_hw *hw = &interface->hw; 936 int wait_loop = 10; 937 u32 txdctl; 938 u8 reg_idx = ring->reg_idx; 939 940 /* if we are already enabled just exit */ 941 if (fm10k_read_reg(hw, FM10K_TXDCTL(reg_idx)) & FM10K_TXDCTL_ENABLE) 942 return; 943 944 /* poll to verify queue is enabled */ 945 do { 946 usleep_range(1000, 2000); 947 txdctl = fm10k_read_reg(hw, FM10K_TXDCTL(reg_idx)); 948 } while (!(txdctl & FM10K_TXDCTL_ENABLE) && --wait_loop); 949 if (!wait_loop) 950 netif_err(interface, drv, interface->netdev, 951 "Could not enable Tx Queue %d\n", reg_idx); 952 } 953 954 /** 955 * fm10k_configure_tx - Configure Transmit Unit after Reset 956 * @interface: board private structure 957 * 958 * Configure the Tx unit of the MAC after a reset. 959 **/ 960 static void fm10k_configure_tx(struct fm10k_intfc *interface) 961 { 962 int i; 963 964 /* Setup the HW Tx Head and Tail descriptor pointers */ 965 for (i = 0; i < interface->num_tx_queues; i++) 966 fm10k_configure_tx_ring(interface, interface->tx_ring[i]); 967 968 /* poll here to verify that Tx rings are now enabled */ 969 for (i = 0; i < interface->num_tx_queues; i++) 970 fm10k_enable_tx_ring(interface, interface->tx_ring[i]); 971 } 972 973 /** 974 * fm10k_configure_rx_ring - Configure Rx ring after Reset 975 * @interface: board private structure 976 * @ring: structure containing ring specific data 977 * 978 * Configure the Rx descriptor ring after a reset. 979 **/ 980 static void fm10k_configure_rx_ring(struct fm10k_intfc *interface, 981 struct fm10k_ring *ring) 982 { 983 u64 rdba = ring->dma; 984 struct fm10k_hw *hw = &interface->hw; 985 u32 size = ring->count * sizeof(union fm10k_rx_desc); 986 u32 rxqctl, rxdctl = FM10K_RXDCTL_WRITE_BACK_MIN_DELAY; 987 u32 srrctl = FM10K_SRRCTL_BUFFER_CHAINING_EN; 988 u32 rxint = FM10K_INT_MAP_DISABLE; 989 u8 rx_pause = interface->rx_pause; 990 u8 reg_idx = ring->reg_idx; 991 992 /* disable queue to avoid issues while updating state */ 993 rxqctl = fm10k_read_reg(hw, FM10K_RXQCTL(reg_idx)); 994 rxqctl &= ~FM10K_RXQCTL_ENABLE; 995 fm10k_write_reg(hw, FM10K_RXQCTL(reg_idx), rxqctl); 996 fm10k_write_flush(hw); 997 998 /* possible poll here to verify ring resources have been cleaned */ 999 1000 /* set location and size for descriptor ring */ 1001 fm10k_write_reg(hw, FM10K_RDBAL(reg_idx), rdba & DMA_BIT_MASK(32)); 1002 fm10k_write_reg(hw, FM10K_RDBAH(reg_idx), rdba >> 32); 1003 fm10k_write_reg(hw, FM10K_RDLEN(reg_idx), size); 1004 1005 /* reset head and tail pointers */ 1006 fm10k_write_reg(hw, FM10K_RDH(reg_idx), 0); 1007 fm10k_write_reg(hw, FM10K_RDT(reg_idx), 0); 1008 1009 /* store tail pointer */ 1010 ring->tail = &interface->uc_addr[FM10K_RDT(reg_idx)]; 1011 1012 /* reset ntu and ntc to place SW in sync with hardware */ 1013 ring->next_to_clean = 0; 1014 ring->next_to_use = 0; 1015 ring->next_to_alloc = 0; 1016 1017 /* Configure the Rx buffer size for one buff without split */ 1018 srrctl |= FM10K_RX_BUFSZ >> FM10K_SRRCTL_BSIZEPKT_SHIFT; 1019 1020 /* Configure the Rx ring to suppress loopback packets */ 1021 srrctl |= FM10K_SRRCTL_LOOPBACK_SUPPRESS; 1022 fm10k_write_reg(hw, FM10K_SRRCTL(reg_idx), srrctl); 1023 1024 /* Enable drop on empty */ 1025 #ifdef CONFIG_DCB 1026 if (interface->pfc_en) 1027 rx_pause = interface->pfc_en; 1028 #endif 1029 if (!(rx_pause & BIT(ring->qos_pc))) 1030 rxdctl |= FM10K_RXDCTL_DROP_ON_EMPTY; 1031 1032 fm10k_write_reg(hw, FM10K_RXDCTL(reg_idx), rxdctl); 1033 1034 /* assign default VLAN to queue */ 1035 ring->vid = hw->mac.default_vid; 1036 1037 /* if we have an active VLAN, disable default VLAN ID */ 1038 if (test_bit(hw->mac.default_vid, interface->active_vlans)) 1039 ring->vid |= FM10K_VLAN_CLEAR; 1040 1041 /* Map interrupt */ 1042 if (ring->q_vector) { 1043 rxint = ring->q_vector->v_idx + NON_Q_VECTORS; 1044 rxint |= FM10K_INT_MAP_TIMER1; 1045 } 1046 1047 fm10k_write_reg(hw, FM10K_RXINT(reg_idx), rxint); 1048 1049 /* enable queue */ 1050 rxqctl = fm10k_read_reg(hw, FM10K_RXQCTL(reg_idx)); 1051 rxqctl |= FM10K_RXQCTL_ENABLE; 1052 fm10k_write_reg(hw, FM10K_RXQCTL(reg_idx), rxqctl); 1053 1054 /* place buffers on ring for receive data */ 1055 fm10k_alloc_rx_buffers(ring, fm10k_desc_unused(ring)); 1056 } 1057 1058 /** 1059 * fm10k_update_rx_drop_en - Configures the drop enable bits for Rx rings 1060 * @interface: board private structure 1061 * 1062 * Configure the drop enable bits for the Rx rings. 1063 **/ 1064 void fm10k_update_rx_drop_en(struct fm10k_intfc *interface) 1065 { 1066 struct fm10k_hw *hw = &interface->hw; 1067 u8 rx_pause = interface->rx_pause; 1068 int i; 1069 1070 #ifdef CONFIG_DCB 1071 if (interface->pfc_en) 1072 rx_pause = interface->pfc_en; 1073 1074 #endif 1075 for (i = 0; i < interface->num_rx_queues; i++) { 1076 struct fm10k_ring *ring = interface->rx_ring[i]; 1077 u32 rxdctl = FM10K_RXDCTL_WRITE_BACK_MIN_DELAY; 1078 u8 reg_idx = ring->reg_idx; 1079 1080 if (!(rx_pause & BIT(ring->qos_pc))) 1081 rxdctl |= FM10K_RXDCTL_DROP_ON_EMPTY; 1082 1083 fm10k_write_reg(hw, FM10K_RXDCTL(reg_idx), rxdctl); 1084 } 1085 } 1086 1087 /** 1088 * fm10k_configure_dglort - Configure Receive DGLORT after reset 1089 * @interface: board private structure 1090 * 1091 * Configure the DGLORT description and RSS tables. 1092 **/ 1093 static void fm10k_configure_dglort(struct fm10k_intfc *interface) 1094 { 1095 struct fm10k_dglort_cfg dglort = { 0 }; 1096 struct fm10k_hw *hw = &interface->hw; 1097 int i; 1098 u32 mrqc; 1099 1100 /* Fill out hash function seeds */ 1101 for (i = 0; i < FM10K_RSSRK_SIZE; i++) 1102 fm10k_write_reg(hw, FM10K_RSSRK(0, i), interface->rssrk[i]); 1103 1104 /* Write RETA table to hardware */ 1105 for (i = 0; i < FM10K_RETA_SIZE; i++) 1106 fm10k_write_reg(hw, FM10K_RETA(0, i), interface->reta[i]); 1107 1108 /* Generate RSS hash based on packet types, TCP/UDP 1109 * port numbers and/or IPv4/v6 src and dst addresses 1110 */ 1111 mrqc = FM10K_MRQC_IPV4 | 1112 FM10K_MRQC_TCP_IPV4 | 1113 FM10K_MRQC_IPV6 | 1114 FM10K_MRQC_TCP_IPV6; 1115 1116 if (test_bit(FM10K_FLAG_RSS_FIELD_IPV4_UDP, interface->flags)) 1117 mrqc |= FM10K_MRQC_UDP_IPV4; 1118 if (test_bit(FM10K_FLAG_RSS_FIELD_IPV6_UDP, interface->flags)) 1119 mrqc |= FM10K_MRQC_UDP_IPV6; 1120 1121 fm10k_write_reg(hw, FM10K_MRQC(0), mrqc); 1122 1123 /* configure default DGLORT mapping for RSS/DCB */ 1124 dglort.inner_rss = 1; 1125 dglort.rss_l = fls(interface->ring_feature[RING_F_RSS].mask); 1126 dglort.pc_l = fls(interface->ring_feature[RING_F_QOS].mask); 1127 hw->mac.ops.configure_dglort_map(hw, &dglort); 1128 1129 /* assign GLORT per queue for queue mapped testing */ 1130 if (interface->glort_count > 64) { 1131 memset(&dglort, 0, sizeof(dglort)); 1132 dglort.inner_rss = 1; 1133 dglort.glort = interface->glort + 64; 1134 dglort.idx = fm10k_dglort_pf_queue; 1135 dglort.queue_l = fls(interface->num_rx_queues - 1); 1136 hw->mac.ops.configure_dglort_map(hw, &dglort); 1137 } 1138 1139 /* assign glort value for RSS/DCB specific to this interface */ 1140 memset(&dglort, 0, sizeof(dglort)); 1141 dglort.inner_rss = 1; 1142 dglort.glort = interface->glort; 1143 dglort.rss_l = fls(interface->ring_feature[RING_F_RSS].mask); 1144 dglort.pc_l = fls(interface->ring_feature[RING_F_QOS].mask); 1145 /* configure DGLORT mapping for RSS/DCB */ 1146 dglort.idx = fm10k_dglort_pf_rss; 1147 if (interface->l2_accel) 1148 dglort.shared_l = fls(interface->l2_accel->size); 1149 hw->mac.ops.configure_dglort_map(hw, &dglort); 1150 } 1151 1152 /** 1153 * fm10k_configure_rx - Configure Receive Unit after Reset 1154 * @interface: board private structure 1155 * 1156 * Configure the Rx unit of the MAC after a reset. 1157 **/ 1158 static void fm10k_configure_rx(struct fm10k_intfc *interface) 1159 { 1160 int i; 1161 1162 /* Configure SWPRI to PC map */ 1163 fm10k_configure_swpri_map(interface); 1164 1165 /* Configure RSS and DGLORT map */ 1166 fm10k_configure_dglort(interface); 1167 1168 /* Setup the HW Rx Head and Tail descriptor pointers */ 1169 for (i = 0; i < interface->num_rx_queues; i++) 1170 fm10k_configure_rx_ring(interface, interface->rx_ring[i]); 1171 1172 /* possible poll here to verify that Rx rings are now enabled */ 1173 } 1174 1175 static void fm10k_napi_enable_all(struct fm10k_intfc *interface) 1176 { 1177 struct fm10k_q_vector *q_vector; 1178 int q_idx; 1179 1180 for (q_idx = 0; q_idx < interface->num_q_vectors; q_idx++) { 1181 q_vector = interface->q_vector[q_idx]; 1182 napi_enable(&q_vector->napi); 1183 } 1184 } 1185 1186 static irqreturn_t fm10k_msix_clean_rings(int __always_unused irq, void *data) 1187 { 1188 struct fm10k_q_vector *q_vector = data; 1189 1190 if (q_vector->rx.count || q_vector->tx.count) 1191 napi_schedule_irqoff(&q_vector->napi); 1192 1193 return IRQ_HANDLED; 1194 } 1195 1196 static irqreturn_t fm10k_msix_mbx_vf(int __always_unused irq, void *data) 1197 { 1198 struct fm10k_intfc *interface = data; 1199 struct fm10k_hw *hw = &interface->hw; 1200 struct fm10k_mbx_info *mbx = &hw->mbx; 1201 1202 /* re-enable mailbox interrupt and indicate 20us delay */ 1203 fm10k_write_reg(hw, FM10K_VFITR(FM10K_MBX_VECTOR), 1204 (FM10K_MBX_INT_DELAY >> hw->mac.itr_scale) | 1205 FM10K_ITR_ENABLE); 1206 1207 /* service upstream mailbox */ 1208 if (fm10k_mbx_trylock(interface)) { 1209 mbx->ops.process(hw, mbx); 1210 fm10k_mbx_unlock(interface); 1211 } 1212 1213 hw->mac.get_host_state = true; 1214 fm10k_service_event_schedule(interface); 1215 1216 return IRQ_HANDLED; 1217 } 1218 1219 #define FM10K_ERR_MSG(type) case (type): error = #type; break 1220 static void fm10k_handle_fault(struct fm10k_intfc *interface, int type, 1221 struct fm10k_fault *fault) 1222 { 1223 struct pci_dev *pdev = interface->pdev; 1224 struct fm10k_hw *hw = &interface->hw; 1225 struct fm10k_iov_data *iov_data = interface->iov_data; 1226 char *error; 1227 1228 switch (type) { 1229 case FM10K_PCA_FAULT: 1230 switch (fault->type) { 1231 default: 1232 error = "Unknown PCA error"; 1233 break; 1234 FM10K_ERR_MSG(PCA_NO_FAULT); 1235 FM10K_ERR_MSG(PCA_UNMAPPED_ADDR); 1236 FM10K_ERR_MSG(PCA_BAD_QACCESS_PF); 1237 FM10K_ERR_MSG(PCA_BAD_QACCESS_VF); 1238 FM10K_ERR_MSG(PCA_MALICIOUS_REQ); 1239 FM10K_ERR_MSG(PCA_POISONED_TLP); 1240 FM10K_ERR_MSG(PCA_TLP_ABORT); 1241 } 1242 break; 1243 case FM10K_THI_FAULT: 1244 switch (fault->type) { 1245 default: 1246 error = "Unknown THI error"; 1247 break; 1248 FM10K_ERR_MSG(THI_NO_FAULT); 1249 FM10K_ERR_MSG(THI_MAL_DIS_Q_FAULT); 1250 } 1251 break; 1252 case FM10K_FUM_FAULT: 1253 switch (fault->type) { 1254 default: 1255 error = "Unknown FUM error"; 1256 break; 1257 FM10K_ERR_MSG(FUM_NO_FAULT); 1258 FM10K_ERR_MSG(FUM_UNMAPPED_ADDR); 1259 FM10K_ERR_MSG(FUM_BAD_VF_QACCESS); 1260 FM10K_ERR_MSG(FUM_ADD_DECODE_ERR); 1261 FM10K_ERR_MSG(FUM_RO_ERROR); 1262 FM10K_ERR_MSG(FUM_QPRC_CRC_ERROR); 1263 FM10K_ERR_MSG(FUM_CSR_TIMEOUT); 1264 FM10K_ERR_MSG(FUM_INVALID_TYPE); 1265 FM10K_ERR_MSG(FUM_INVALID_LENGTH); 1266 FM10K_ERR_MSG(FUM_INVALID_BE); 1267 FM10K_ERR_MSG(FUM_INVALID_ALIGN); 1268 } 1269 break; 1270 default: 1271 error = "Undocumented fault"; 1272 break; 1273 } 1274 1275 dev_warn(&pdev->dev, 1276 "%s Address: 0x%llx SpecInfo: 0x%x Func: %02x.%0x\n", 1277 error, fault->address, fault->specinfo, 1278 PCI_SLOT(fault->func), PCI_FUNC(fault->func)); 1279 1280 /* For VF faults, clear out the respective LPORT, reset the queue 1281 * resources, and then reconnect to the mailbox. This allows the 1282 * VF in question to resume behavior. For transient faults that are 1283 * the result of non-malicious behavior this will log the fault and 1284 * allow the VF to resume functionality. Obviously for malicious VFs 1285 * they will be able to attempt malicious behavior again. In this 1286 * case, the system administrator will need to step in and manually 1287 * remove or disable the VF in question. 1288 */ 1289 if (fault->func && iov_data) { 1290 int vf = fault->func - 1; 1291 struct fm10k_vf_info *vf_info = &iov_data->vf_info[vf]; 1292 1293 hw->iov.ops.reset_lport(hw, vf_info); 1294 hw->iov.ops.reset_resources(hw, vf_info); 1295 1296 /* reset_lport disables the VF, so re-enable it */ 1297 hw->iov.ops.set_lport(hw, vf_info, vf, 1298 FM10K_VF_FLAG_MULTI_CAPABLE); 1299 1300 /* reset_resources will disconnect from the mbx */ 1301 vf_info->mbx.ops.connect(hw, &vf_info->mbx); 1302 } 1303 } 1304 1305 static void fm10k_report_fault(struct fm10k_intfc *interface, u32 eicr) 1306 { 1307 struct fm10k_hw *hw = &interface->hw; 1308 struct fm10k_fault fault = { 0 }; 1309 int type, err; 1310 1311 for (eicr &= FM10K_EICR_FAULT_MASK, type = FM10K_PCA_FAULT; 1312 eicr; 1313 eicr >>= 1, type += FM10K_FAULT_SIZE) { 1314 /* only check if there is an error reported */ 1315 if (!(eicr & 0x1)) 1316 continue; 1317 1318 /* retrieve fault info */ 1319 err = hw->mac.ops.get_fault(hw, type, &fault); 1320 if (err) { 1321 dev_err(&interface->pdev->dev, 1322 "error reading fault\n"); 1323 continue; 1324 } 1325 1326 fm10k_handle_fault(interface, type, &fault); 1327 } 1328 } 1329 1330 static void fm10k_reset_drop_on_empty(struct fm10k_intfc *interface, u32 eicr) 1331 { 1332 struct fm10k_hw *hw = &interface->hw; 1333 const u32 rxdctl = FM10K_RXDCTL_WRITE_BACK_MIN_DELAY; 1334 u32 maxholdq; 1335 int q; 1336 1337 if (!(eicr & FM10K_EICR_MAXHOLDTIME)) 1338 return; 1339 1340 maxholdq = fm10k_read_reg(hw, FM10K_MAXHOLDQ(7)); 1341 if (maxholdq) 1342 fm10k_write_reg(hw, FM10K_MAXHOLDQ(7), maxholdq); 1343 for (q = 255;;) { 1344 if (maxholdq & BIT(31)) { 1345 if (q < FM10K_MAX_QUEUES_PF) { 1346 interface->rx_overrun_pf++; 1347 fm10k_write_reg(hw, FM10K_RXDCTL(q), rxdctl); 1348 } else { 1349 interface->rx_overrun_vf++; 1350 } 1351 } 1352 1353 maxholdq *= 2; 1354 if (!maxholdq) 1355 q &= ~(32 - 1); 1356 1357 if (!q) 1358 break; 1359 1360 if (q-- % 32) 1361 continue; 1362 1363 maxholdq = fm10k_read_reg(hw, FM10K_MAXHOLDQ(q / 32)); 1364 if (maxholdq) 1365 fm10k_write_reg(hw, FM10K_MAXHOLDQ(q / 32), maxholdq); 1366 } 1367 } 1368 1369 static irqreturn_t fm10k_msix_mbx_pf(int __always_unused irq, void *data) 1370 { 1371 struct fm10k_intfc *interface = data; 1372 struct fm10k_hw *hw = &interface->hw; 1373 struct fm10k_mbx_info *mbx = &hw->mbx; 1374 u32 eicr; 1375 s32 err = 0; 1376 1377 /* unmask any set bits related to this interrupt */ 1378 eicr = fm10k_read_reg(hw, FM10K_EICR); 1379 fm10k_write_reg(hw, FM10K_EICR, eicr & (FM10K_EICR_MAILBOX | 1380 FM10K_EICR_SWITCHREADY | 1381 FM10K_EICR_SWITCHNOTREADY)); 1382 1383 /* report any faults found to the message log */ 1384 fm10k_report_fault(interface, eicr); 1385 1386 /* reset any queues disabled due to receiver overrun */ 1387 fm10k_reset_drop_on_empty(interface, eicr); 1388 1389 /* service mailboxes */ 1390 if (fm10k_mbx_trylock(interface)) { 1391 err = mbx->ops.process(hw, mbx); 1392 /* handle VFLRE events */ 1393 fm10k_iov_event(interface); 1394 fm10k_mbx_unlock(interface); 1395 } 1396 1397 if (err == FM10K_ERR_RESET_REQUESTED) 1398 set_bit(FM10K_FLAG_RESET_REQUESTED, interface->flags); 1399 1400 /* if switch toggled state we should reset GLORTs */ 1401 if (eicr & FM10K_EICR_SWITCHNOTREADY) { 1402 /* force link down for at least 4 seconds */ 1403 interface->link_down_event = jiffies + (4 * HZ); 1404 set_bit(__FM10K_LINK_DOWN, interface->state); 1405 1406 /* reset dglort_map back to no config */ 1407 hw->mac.dglort_map = FM10K_DGLORTMAP_NONE; 1408 } 1409 1410 /* we should validate host state after interrupt event */ 1411 hw->mac.get_host_state = true; 1412 1413 /* validate host state, and handle VF mailboxes in the service task */ 1414 fm10k_service_event_schedule(interface); 1415 1416 /* re-enable mailbox interrupt and indicate 20us delay */ 1417 fm10k_write_reg(hw, FM10K_ITR(FM10K_MBX_VECTOR), 1418 (FM10K_MBX_INT_DELAY >> hw->mac.itr_scale) | 1419 FM10K_ITR_ENABLE); 1420 1421 return IRQ_HANDLED; 1422 } 1423 1424 void fm10k_mbx_free_irq(struct fm10k_intfc *interface) 1425 { 1426 struct fm10k_hw *hw = &interface->hw; 1427 struct msix_entry *entry; 1428 int itr_reg; 1429 1430 /* no mailbox IRQ to free if MSI-X is not enabled */ 1431 if (!interface->msix_entries) 1432 return; 1433 1434 entry = &interface->msix_entries[FM10K_MBX_VECTOR]; 1435 1436 /* disconnect the mailbox */ 1437 hw->mbx.ops.disconnect(hw, &hw->mbx); 1438 1439 /* disable Mailbox cause */ 1440 if (hw->mac.type == fm10k_mac_pf) { 1441 fm10k_write_reg(hw, FM10K_EIMR, 1442 FM10K_EIMR_DISABLE(PCA_FAULT) | 1443 FM10K_EIMR_DISABLE(FUM_FAULT) | 1444 FM10K_EIMR_DISABLE(MAILBOX) | 1445 FM10K_EIMR_DISABLE(SWITCHREADY) | 1446 FM10K_EIMR_DISABLE(SWITCHNOTREADY) | 1447 FM10K_EIMR_DISABLE(SRAMERROR) | 1448 FM10K_EIMR_DISABLE(VFLR) | 1449 FM10K_EIMR_DISABLE(MAXHOLDTIME)); 1450 itr_reg = FM10K_ITR(FM10K_MBX_VECTOR); 1451 } else { 1452 itr_reg = FM10K_VFITR(FM10K_MBX_VECTOR); 1453 } 1454 1455 fm10k_write_reg(hw, itr_reg, FM10K_ITR_MASK_SET); 1456 1457 free_irq(entry->vector, interface); 1458 } 1459 1460 static s32 fm10k_mbx_mac_addr(struct fm10k_hw *hw, u32 **results, 1461 struct fm10k_mbx_info *mbx) 1462 { 1463 bool vlan_override = hw->mac.vlan_override; 1464 u16 default_vid = hw->mac.default_vid; 1465 struct fm10k_intfc *interface; 1466 s32 err; 1467 1468 err = fm10k_msg_mac_vlan_vf(hw, results, mbx); 1469 if (err) 1470 return err; 1471 1472 interface = container_of(hw, struct fm10k_intfc, hw); 1473 1474 /* MAC was changed so we need reset */ 1475 if (is_valid_ether_addr(hw->mac.perm_addr) && 1476 !ether_addr_equal(hw->mac.perm_addr, hw->mac.addr)) 1477 set_bit(FM10K_FLAG_RESET_REQUESTED, interface->flags); 1478 1479 /* VLAN override was changed, or default VLAN changed */ 1480 if ((vlan_override != hw->mac.vlan_override) || 1481 (default_vid != hw->mac.default_vid)) 1482 set_bit(FM10K_FLAG_RESET_REQUESTED, interface->flags); 1483 1484 return 0; 1485 } 1486 1487 /* generic error handler for mailbox issues */ 1488 static s32 fm10k_mbx_error(struct fm10k_hw *hw, u32 **results, 1489 struct fm10k_mbx_info __always_unused *mbx) 1490 { 1491 struct fm10k_intfc *interface; 1492 struct pci_dev *pdev; 1493 1494 interface = container_of(hw, struct fm10k_intfc, hw); 1495 pdev = interface->pdev; 1496 1497 dev_err(&pdev->dev, "Unknown message ID %u\n", 1498 **results & FM10K_TLV_ID_MASK); 1499 1500 return 0; 1501 } 1502 1503 static const struct fm10k_msg_data vf_mbx_data[] = { 1504 FM10K_TLV_MSG_TEST_HANDLER(fm10k_tlv_msg_test), 1505 FM10K_VF_MSG_MAC_VLAN_HANDLER(fm10k_mbx_mac_addr), 1506 FM10K_VF_MSG_LPORT_STATE_HANDLER(fm10k_msg_lport_state_vf), 1507 FM10K_TLV_MSG_ERROR_HANDLER(fm10k_mbx_error), 1508 }; 1509 1510 static int fm10k_mbx_request_irq_vf(struct fm10k_intfc *interface) 1511 { 1512 struct msix_entry *entry = &interface->msix_entries[FM10K_MBX_VECTOR]; 1513 struct net_device *dev = interface->netdev; 1514 struct fm10k_hw *hw = &interface->hw; 1515 int err; 1516 1517 /* Use timer0 for interrupt moderation on the mailbox */ 1518 u32 itr = entry->entry | FM10K_INT_MAP_TIMER0; 1519 1520 /* register mailbox handlers */ 1521 err = hw->mbx.ops.register_handlers(&hw->mbx, vf_mbx_data); 1522 if (err) 1523 return err; 1524 1525 /* request the IRQ */ 1526 err = request_irq(entry->vector, fm10k_msix_mbx_vf, 0, 1527 dev->name, interface); 1528 if (err) { 1529 netif_err(interface, probe, dev, 1530 "request_irq for msix_mbx failed: %d\n", err); 1531 return err; 1532 } 1533 1534 /* map all of the interrupt sources */ 1535 fm10k_write_reg(hw, FM10K_VFINT_MAP, itr); 1536 1537 /* enable interrupt */ 1538 fm10k_write_reg(hw, FM10K_VFITR(entry->entry), FM10K_ITR_ENABLE); 1539 1540 return 0; 1541 } 1542 1543 static s32 fm10k_lport_map(struct fm10k_hw *hw, u32 **results, 1544 struct fm10k_mbx_info *mbx) 1545 { 1546 struct fm10k_intfc *interface; 1547 u32 dglort_map = hw->mac.dglort_map; 1548 s32 err; 1549 1550 interface = container_of(hw, struct fm10k_intfc, hw); 1551 1552 err = fm10k_msg_err_pf(hw, results, mbx); 1553 if (!err && hw->swapi.status) { 1554 /* force link down for a reasonable delay */ 1555 interface->link_down_event = jiffies + (2 * HZ); 1556 set_bit(__FM10K_LINK_DOWN, interface->state); 1557 1558 /* reset dglort_map back to no config */ 1559 hw->mac.dglort_map = FM10K_DGLORTMAP_NONE; 1560 1561 fm10k_service_event_schedule(interface); 1562 1563 /* prevent overloading kernel message buffer */ 1564 if (interface->lport_map_failed) 1565 return 0; 1566 1567 interface->lport_map_failed = true; 1568 1569 if (hw->swapi.status == FM10K_MSG_ERR_PEP_NOT_SCHEDULED) 1570 dev_warn(&interface->pdev->dev, 1571 "cannot obtain link because the host interface is configured for a PCIe host interface bandwidth of zero\n"); 1572 dev_warn(&interface->pdev->dev, 1573 "request logical port map failed: %d\n", 1574 hw->swapi.status); 1575 1576 return 0; 1577 } 1578 1579 err = fm10k_msg_lport_map_pf(hw, results, mbx); 1580 if (err) 1581 return err; 1582 1583 interface->lport_map_failed = false; 1584 1585 /* we need to reset if port count was just updated */ 1586 if (dglort_map != hw->mac.dglort_map) 1587 set_bit(FM10K_FLAG_RESET_REQUESTED, interface->flags); 1588 1589 return 0; 1590 } 1591 1592 static s32 fm10k_update_pvid(struct fm10k_hw *hw, u32 **results, 1593 struct fm10k_mbx_info __always_unused *mbx) 1594 { 1595 struct fm10k_intfc *interface; 1596 u16 glort, pvid; 1597 u32 pvid_update; 1598 s32 err; 1599 1600 err = fm10k_tlv_attr_get_u32(results[FM10K_PF_ATTR_ID_UPDATE_PVID], 1601 &pvid_update); 1602 if (err) 1603 return err; 1604 1605 /* extract values from the pvid update */ 1606 glort = FM10K_MSG_HDR_FIELD_GET(pvid_update, UPDATE_PVID_GLORT); 1607 pvid = FM10K_MSG_HDR_FIELD_GET(pvid_update, UPDATE_PVID_PVID); 1608 1609 /* if glort is not valid return error */ 1610 if (!fm10k_glort_valid_pf(hw, glort)) 1611 return FM10K_ERR_PARAM; 1612 1613 /* verify VLAN ID is valid */ 1614 if (pvid >= FM10K_VLAN_TABLE_VID_MAX) 1615 return FM10K_ERR_PARAM; 1616 1617 interface = container_of(hw, struct fm10k_intfc, hw); 1618 1619 /* check to see if this belongs to one of the VFs */ 1620 err = fm10k_iov_update_pvid(interface, glort, pvid); 1621 if (!err) 1622 return 0; 1623 1624 /* we need to reset if default VLAN was just updated */ 1625 if (pvid != hw->mac.default_vid) 1626 set_bit(FM10K_FLAG_RESET_REQUESTED, interface->flags); 1627 1628 hw->mac.default_vid = pvid; 1629 1630 return 0; 1631 } 1632 1633 static const struct fm10k_msg_data pf_mbx_data[] = { 1634 FM10K_PF_MSG_ERR_HANDLER(XCAST_MODES, fm10k_msg_err_pf), 1635 FM10K_PF_MSG_ERR_HANDLER(UPDATE_MAC_FWD_RULE, fm10k_msg_err_pf), 1636 FM10K_PF_MSG_LPORT_MAP_HANDLER(fm10k_lport_map), 1637 FM10K_PF_MSG_ERR_HANDLER(LPORT_CREATE, fm10k_msg_err_pf), 1638 FM10K_PF_MSG_ERR_HANDLER(LPORT_DELETE, fm10k_msg_err_pf), 1639 FM10K_PF_MSG_UPDATE_PVID_HANDLER(fm10k_update_pvid), 1640 FM10K_TLV_MSG_ERROR_HANDLER(fm10k_mbx_error), 1641 }; 1642 1643 static int fm10k_mbx_request_irq_pf(struct fm10k_intfc *interface) 1644 { 1645 struct msix_entry *entry = &interface->msix_entries[FM10K_MBX_VECTOR]; 1646 struct net_device *dev = interface->netdev; 1647 struct fm10k_hw *hw = &interface->hw; 1648 int err; 1649 1650 /* Use timer0 for interrupt moderation on the mailbox */ 1651 u32 mbx_itr = entry->entry | FM10K_INT_MAP_TIMER0; 1652 u32 other_itr = entry->entry | FM10K_INT_MAP_IMMEDIATE; 1653 1654 /* register mailbox handlers */ 1655 err = hw->mbx.ops.register_handlers(&hw->mbx, pf_mbx_data); 1656 if (err) 1657 return err; 1658 1659 /* request the IRQ */ 1660 err = request_irq(entry->vector, fm10k_msix_mbx_pf, 0, 1661 dev->name, interface); 1662 if (err) { 1663 netif_err(interface, probe, dev, 1664 "request_irq for msix_mbx failed: %d\n", err); 1665 return err; 1666 } 1667 1668 /* Enable interrupts w/ no moderation for "other" interrupts */ 1669 fm10k_write_reg(hw, FM10K_INT_MAP(fm10k_int_pcie_fault), other_itr); 1670 fm10k_write_reg(hw, FM10K_INT_MAP(fm10k_int_switch_up_down), other_itr); 1671 fm10k_write_reg(hw, FM10K_INT_MAP(fm10k_int_sram), other_itr); 1672 fm10k_write_reg(hw, FM10K_INT_MAP(fm10k_int_max_hold_time), other_itr); 1673 fm10k_write_reg(hw, FM10K_INT_MAP(fm10k_int_vflr), other_itr); 1674 1675 /* Enable interrupts w/ moderation for mailbox */ 1676 fm10k_write_reg(hw, FM10K_INT_MAP(fm10k_int_mailbox), mbx_itr); 1677 1678 /* Enable individual interrupt causes */ 1679 fm10k_write_reg(hw, FM10K_EIMR, FM10K_EIMR_ENABLE(PCA_FAULT) | 1680 FM10K_EIMR_ENABLE(FUM_FAULT) | 1681 FM10K_EIMR_ENABLE(MAILBOX) | 1682 FM10K_EIMR_ENABLE(SWITCHREADY) | 1683 FM10K_EIMR_ENABLE(SWITCHNOTREADY) | 1684 FM10K_EIMR_ENABLE(SRAMERROR) | 1685 FM10K_EIMR_ENABLE(VFLR) | 1686 FM10K_EIMR_ENABLE(MAXHOLDTIME)); 1687 1688 /* enable interrupt */ 1689 fm10k_write_reg(hw, FM10K_ITR(entry->entry), FM10K_ITR_ENABLE); 1690 1691 return 0; 1692 } 1693 1694 int fm10k_mbx_request_irq(struct fm10k_intfc *interface) 1695 { 1696 struct fm10k_hw *hw = &interface->hw; 1697 int err; 1698 1699 /* enable Mailbox cause */ 1700 if (hw->mac.type == fm10k_mac_pf) 1701 err = fm10k_mbx_request_irq_pf(interface); 1702 else 1703 err = fm10k_mbx_request_irq_vf(interface); 1704 if (err) 1705 return err; 1706 1707 /* connect mailbox */ 1708 err = hw->mbx.ops.connect(hw, &hw->mbx); 1709 1710 /* if the mailbox failed to connect, then free IRQ */ 1711 if (err) 1712 fm10k_mbx_free_irq(interface); 1713 1714 return err; 1715 } 1716 1717 /** 1718 * fm10k_qv_free_irq - release interrupts associated with queue vectors 1719 * @interface: board private structure 1720 * 1721 * Release all interrupts associated with this interface 1722 **/ 1723 void fm10k_qv_free_irq(struct fm10k_intfc *interface) 1724 { 1725 int vector = interface->num_q_vectors; 1726 struct msix_entry *entry; 1727 1728 entry = &interface->msix_entries[NON_Q_VECTORS + vector]; 1729 1730 while (vector) { 1731 struct fm10k_q_vector *q_vector; 1732 1733 vector--; 1734 entry--; 1735 q_vector = interface->q_vector[vector]; 1736 1737 if (!q_vector->tx.count && !q_vector->rx.count) 1738 continue; 1739 1740 /* clear the affinity_mask in the IRQ descriptor */ 1741 irq_set_affinity_hint(entry->vector, NULL); 1742 1743 /* disable interrupts */ 1744 writel(FM10K_ITR_MASK_SET, q_vector->itr); 1745 1746 free_irq(entry->vector, q_vector); 1747 } 1748 } 1749 1750 /** 1751 * fm10k_qv_request_irq - initialize interrupts for queue vectors 1752 * @interface: board private structure 1753 * 1754 * Attempts to configure interrupts using the best available 1755 * capabilities of the hardware and kernel. 1756 **/ 1757 int fm10k_qv_request_irq(struct fm10k_intfc *interface) 1758 { 1759 struct net_device *dev = interface->netdev; 1760 struct fm10k_hw *hw = &interface->hw; 1761 struct msix_entry *entry; 1762 unsigned int ri = 0, ti = 0; 1763 int vector, err; 1764 1765 entry = &interface->msix_entries[NON_Q_VECTORS]; 1766 1767 for (vector = 0; vector < interface->num_q_vectors; vector++) { 1768 struct fm10k_q_vector *q_vector = interface->q_vector[vector]; 1769 1770 /* name the vector */ 1771 if (q_vector->tx.count && q_vector->rx.count) { 1772 snprintf(q_vector->name, sizeof(q_vector->name), 1773 "%s-TxRx-%u", dev->name, ri++); 1774 ti++; 1775 } else if (q_vector->rx.count) { 1776 snprintf(q_vector->name, sizeof(q_vector->name), 1777 "%s-rx-%u", dev->name, ri++); 1778 } else if (q_vector->tx.count) { 1779 snprintf(q_vector->name, sizeof(q_vector->name), 1780 "%s-tx-%u", dev->name, ti++); 1781 } else { 1782 /* skip this unused q_vector */ 1783 continue; 1784 } 1785 1786 /* Assign ITR register to q_vector */ 1787 q_vector->itr = (hw->mac.type == fm10k_mac_pf) ? 1788 &interface->uc_addr[FM10K_ITR(entry->entry)] : 1789 &interface->uc_addr[FM10K_VFITR(entry->entry)]; 1790 1791 /* request the IRQ */ 1792 err = request_irq(entry->vector, &fm10k_msix_clean_rings, 0, 1793 q_vector->name, q_vector); 1794 if (err) { 1795 netif_err(interface, probe, dev, 1796 "request_irq failed for MSIX interrupt Error: %d\n", 1797 err); 1798 goto err_out; 1799 } 1800 1801 /* assign the mask for this irq */ 1802 irq_set_affinity_hint(entry->vector, &q_vector->affinity_mask); 1803 1804 /* Enable q_vector */ 1805 writel(FM10K_ITR_ENABLE, q_vector->itr); 1806 1807 entry++; 1808 } 1809 1810 return 0; 1811 1812 err_out: 1813 /* wind through the ring freeing all entries and vectors */ 1814 while (vector) { 1815 struct fm10k_q_vector *q_vector; 1816 1817 entry--; 1818 vector--; 1819 q_vector = interface->q_vector[vector]; 1820 1821 if (!q_vector->tx.count && !q_vector->rx.count) 1822 continue; 1823 1824 /* clear the affinity_mask in the IRQ descriptor */ 1825 irq_set_affinity_hint(entry->vector, NULL); 1826 1827 /* disable interrupts */ 1828 writel(FM10K_ITR_MASK_SET, q_vector->itr); 1829 1830 free_irq(entry->vector, q_vector); 1831 } 1832 1833 return err; 1834 } 1835 1836 void fm10k_up(struct fm10k_intfc *interface) 1837 { 1838 struct fm10k_hw *hw = &interface->hw; 1839 1840 /* Enable Tx/Rx DMA */ 1841 hw->mac.ops.start_hw(hw); 1842 1843 /* configure Tx descriptor rings */ 1844 fm10k_configure_tx(interface); 1845 1846 /* configure Rx descriptor rings */ 1847 fm10k_configure_rx(interface); 1848 1849 /* configure interrupts */ 1850 hw->mac.ops.update_int_moderator(hw); 1851 1852 /* enable statistics capture again */ 1853 clear_bit(__FM10K_UPDATING_STATS, interface->state); 1854 1855 /* clear down bit to indicate we are ready to go */ 1856 clear_bit(__FM10K_DOWN, interface->state); 1857 1858 /* enable polling cleanups */ 1859 fm10k_napi_enable_all(interface); 1860 1861 /* re-establish Rx filters */ 1862 fm10k_restore_rx_state(interface); 1863 1864 /* enable transmits */ 1865 netif_tx_start_all_queues(interface->netdev); 1866 1867 /* kick off the service timer now */ 1868 hw->mac.get_host_state = true; 1869 mod_timer(&interface->service_timer, jiffies); 1870 } 1871 1872 static void fm10k_napi_disable_all(struct fm10k_intfc *interface) 1873 { 1874 struct fm10k_q_vector *q_vector; 1875 int q_idx; 1876 1877 for (q_idx = 0; q_idx < interface->num_q_vectors; q_idx++) { 1878 q_vector = interface->q_vector[q_idx]; 1879 napi_disable(&q_vector->napi); 1880 } 1881 } 1882 1883 void fm10k_down(struct fm10k_intfc *interface) 1884 { 1885 struct net_device *netdev = interface->netdev; 1886 struct fm10k_hw *hw = &interface->hw; 1887 int err, i = 0, count = 0; 1888 1889 /* signal that we are down to the interrupt handler and service task */ 1890 if (test_and_set_bit(__FM10K_DOWN, interface->state)) 1891 return; 1892 1893 /* call carrier off first to avoid false dev_watchdog timeouts */ 1894 netif_carrier_off(netdev); 1895 1896 /* disable transmits */ 1897 netif_tx_stop_all_queues(netdev); 1898 netif_tx_disable(netdev); 1899 1900 /* reset Rx filters */ 1901 fm10k_reset_rx_state(interface); 1902 1903 /* disable polling routines */ 1904 fm10k_napi_disable_all(interface); 1905 1906 /* capture stats one last time before stopping interface */ 1907 fm10k_update_stats(interface); 1908 1909 /* prevent updating statistics while we're down */ 1910 while (test_and_set_bit(__FM10K_UPDATING_STATS, interface->state)) 1911 usleep_range(1000, 2000); 1912 1913 /* skip waiting for TX DMA if we lost PCIe link */ 1914 if (FM10K_REMOVED(hw->hw_addr)) 1915 goto skip_tx_dma_drain; 1916 1917 /* In some rare circumstances it can take a while for Tx queues to 1918 * quiesce and be fully disabled. Attempt to .stop_hw() first, and 1919 * then if we get ERR_REQUESTS_PENDING, go ahead and wait in a loop 1920 * until the Tx queues have emptied, or until a number of retries. If 1921 * we fail to clear within the retry loop, we will issue a warning 1922 * indicating that Tx DMA is probably hung. Note this means we call 1923 * .stop_hw() twice but this shouldn't cause any problems. 1924 */ 1925 err = hw->mac.ops.stop_hw(hw); 1926 if (err != FM10K_ERR_REQUESTS_PENDING) 1927 goto skip_tx_dma_drain; 1928 1929 #define TX_DMA_DRAIN_RETRIES 25 1930 for (count = 0; count < TX_DMA_DRAIN_RETRIES; count++) { 1931 usleep_range(10000, 20000); 1932 1933 /* start checking at the last ring to have pending Tx */ 1934 for (; i < interface->num_tx_queues; i++) 1935 if (fm10k_get_tx_pending(interface->tx_ring[i], false)) 1936 break; 1937 1938 /* if all the queues are drained, we can break now */ 1939 if (i == interface->num_tx_queues) 1940 break; 1941 } 1942 1943 if (count >= TX_DMA_DRAIN_RETRIES) 1944 dev_err(&interface->pdev->dev, 1945 "Tx queues failed to drain after %d tries. Tx DMA is probably hung.\n", 1946 count); 1947 skip_tx_dma_drain: 1948 /* Disable DMA engine for Tx/Rx */ 1949 err = hw->mac.ops.stop_hw(hw); 1950 if (err == FM10K_ERR_REQUESTS_PENDING) 1951 dev_err(&interface->pdev->dev, 1952 "due to pending requests hw was not shut down gracefully\n"); 1953 else if (err) 1954 dev_err(&interface->pdev->dev, "stop_hw failed: %d\n", err); 1955 1956 /* free any buffers still on the rings */ 1957 fm10k_clean_all_tx_rings(interface); 1958 fm10k_clean_all_rx_rings(interface); 1959 } 1960 1961 /** 1962 * fm10k_sw_init - Initialize general software structures 1963 * @interface: host interface private structure to initialize 1964 * @ent: PCI device ID entry 1965 * 1966 * fm10k_sw_init initializes the interface private data structure. 1967 * Fields are initialized based on PCI device information and 1968 * OS network device settings (MTU size). 1969 **/ 1970 static int fm10k_sw_init(struct fm10k_intfc *interface, 1971 const struct pci_device_id *ent) 1972 { 1973 const struct fm10k_info *fi = fm10k_info_tbl[ent->driver_data]; 1974 struct fm10k_hw *hw = &interface->hw; 1975 struct pci_dev *pdev = interface->pdev; 1976 struct net_device *netdev = interface->netdev; 1977 u32 rss_key[FM10K_RSSRK_SIZE]; 1978 unsigned int rss; 1979 int err; 1980 1981 /* initialize back pointer */ 1982 hw->back = interface; 1983 hw->hw_addr = interface->uc_addr; 1984 1985 /* PCI config space info */ 1986 hw->vendor_id = pdev->vendor; 1987 hw->device_id = pdev->device; 1988 hw->revision_id = pdev->revision; 1989 hw->subsystem_vendor_id = pdev->subsystem_vendor; 1990 hw->subsystem_device_id = pdev->subsystem_device; 1991 1992 /* Setup hw api */ 1993 memcpy(&hw->mac.ops, fi->mac_ops, sizeof(hw->mac.ops)); 1994 hw->mac.type = fi->mac; 1995 1996 /* Setup IOV handlers */ 1997 if (fi->iov_ops) 1998 memcpy(&hw->iov.ops, fi->iov_ops, sizeof(hw->iov.ops)); 1999 2000 /* Set common capability flags and settings */ 2001 rss = min_t(int, FM10K_MAX_RSS_INDICES, num_online_cpus()); 2002 interface->ring_feature[RING_F_RSS].limit = rss; 2003 fi->get_invariants(hw); 2004 2005 /* pick up the PCIe bus settings for reporting later */ 2006 if (hw->mac.ops.get_bus_info) 2007 hw->mac.ops.get_bus_info(hw); 2008 2009 /* limit the usable DMA range */ 2010 if (hw->mac.ops.set_dma_mask) 2011 hw->mac.ops.set_dma_mask(hw, dma_get_mask(&pdev->dev)); 2012 2013 /* update netdev with DMA restrictions */ 2014 if (dma_get_mask(&pdev->dev) > DMA_BIT_MASK(32)) { 2015 netdev->features |= NETIF_F_HIGHDMA; 2016 netdev->vlan_features |= NETIF_F_HIGHDMA; 2017 } 2018 2019 /* reset and initialize the hardware so it is in a known state */ 2020 err = hw->mac.ops.reset_hw(hw); 2021 if (err) { 2022 dev_err(&pdev->dev, "reset_hw failed: %d\n", err); 2023 return err; 2024 } 2025 2026 err = hw->mac.ops.init_hw(hw); 2027 if (err) { 2028 dev_err(&pdev->dev, "init_hw failed: %d\n", err); 2029 return err; 2030 } 2031 2032 /* initialize hardware statistics */ 2033 hw->mac.ops.update_hw_stats(hw, &interface->stats); 2034 2035 /* Set upper limit on IOV VFs that can be allocated */ 2036 pci_sriov_set_totalvfs(pdev, hw->iov.total_vfs); 2037 2038 /* Start with random Ethernet address */ 2039 eth_random_addr(hw->mac.addr); 2040 2041 /* Initialize MAC address from hardware */ 2042 err = hw->mac.ops.read_mac_addr(hw); 2043 if (err) { 2044 dev_warn(&pdev->dev, 2045 "Failed to obtain MAC address defaulting to random\n"); 2046 /* tag address assignment as random */ 2047 netdev->addr_assign_type |= NET_ADDR_RANDOM; 2048 } 2049 2050 ether_addr_copy(netdev->dev_addr, hw->mac.addr); 2051 ether_addr_copy(netdev->perm_addr, hw->mac.addr); 2052 2053 if (!is_valid_ether_addr(netdev->perm_addr)) { 2054 dev_err(&pdev->dev, "Invalid MAC Address\n"); 2055 return -EIO; 2056 } 2057 2058 /* initialize DCBNL interface */ 2059 fm10k_dcbnl_set_ops(netdev); 2060 2061 /* set default ring sizes */ 2062 interface->tx_ring_count = FM10K_DEFAULT_TXD; 2063 interface->rx_ring_count = FM10K_DEFAULT_RXD; 2064 2065 /* set default interrupt moderation */ 2066 interface->tx_itr = FM10K_TX_ITR_DEFAULT; 2067 interface->rx_itr = FM10K_ITR_ADAPTIVE | FM10K_RX_ITR_DEFAULT; 2068 2069 /* Initialize the MAC/VLAN queue */ 2070 INIT_LIST_HEAD(&interface->macvlan_requests); 2071 2072 netdev_rss_key_fill(rss_key, sizeof(rss_key)); 2073 memcpy(interface->rssrk, rss_key, sizeof(rss_key)); 2074 2075 /* Initialize the mailbox lock */ 2076 spin_lock_init(&interface->mbx_lock); 2077 spin_lock_init(&interface->macvlan_lock); 2078 2079 /* Start off interface as being down */ 2080 set_bit(__FM10K_DOWN, interface->state); 2081 set_bit(__FM10K_UPDATING_STATS, interface->state); 2082 2083 return 0; 2084 } 2085 2086 /** 2087 * fm10k_probe - Device Initialization Routine 2088 * @pdev: PCI device information struct 2089 * @ent: entry in fm10k_pci_tbl 2090 * 2091 * Returns 0 on success, negative on failure 2092 * 2093 * fm10k_probe initializes an interface identified by a pci_dev structure. 2094 * The OS initialization, configuring of the interface private structure, 2095 * and a hardware reset occur. 2096 **/ 2097 static int fm10k_probe(struct pci_dev *pdev, const struct pci_device_id *ent) 2098 { 2099 struct net_device *netdev; 2100 struct fm10k_intfc *interface; 2101 int err; 2102 2103 if (pdev->error_state != pci_channel_io_normal) { 2104 dev_err(&pdev->dev, 2105 "PCI device still in an error state. Unable to load...\n"); 2106 return -EIO; 2107 } 2108 2109 err = pci_enable_device_mem(pdev); 2110 if (err) { 2111 dev_err(&pdev->dev, 2112 "PCI enable device failed: %d\n", err); 2113 return err; 2114 } 2115 2116 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(48)); 2117 if (err) 2118 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)); 2119 if (err) { 2120 dev_err(&pdev->dev, 2121 "DMA configuration failed: %d\n", err); 2122 goto err_dma; 2123 } 2124 2125 err = pci_request_mem_regions(pdev, fm10k_driver_name); 2126 if (err) { 2127 dev_err(&pdev->dev, 2128 "pci_request_selected_regions failed: %d\n", err); 2129 goto err_pci_reg; 2130 } 2131 2132 pci_enable_pcie_error_reporting(pdev); 2133 2134 pci_set_master(pdev); 2135 pci_save_state(pdev); 2136 2137 netdev = fm10k_alloc_netdev(fm10k_info_tbl[ent->driver_data]); 2138 if (!netdev) { 2139 err = -ENOMEM; 2140 goto err_alloc_netdev; 2141 } 2142 2143 SET_NETDEV_DEV(netdev, &pdev->dev); 2144 2145 interface = netdev_priv(netdev); 2146 pci_set_drvdata(pdev, interface); 2147 2148 interface->netdev = netdev; 2149 interface->pdev = pdev; 2150 2151 interface->uc_addr = ioremap(pci_resource_start(pdev, 0), 2152 FM10K_UC_ADDR_SIZE); 2153 if (!interface->uc_addr) { 2154 err = -EIO; 2155 goto err_ioremap; 2156 } 2157 2158 err = fm10k_sw_init(interface, ent); 2159 if (err) 2160 goto err_sw_init; 2161 2162 /* enable debugfs support */ 2163 fm10k_dbg_intfc_init(interface); 2164 2165 err = fm10k_init_queueing_scheme(interface); 2166 if (err) 2167 goto err_sw_init; 2168 2169 /* the mbx interrupt might attempt to schedule the service task, so we 2170 * must ensure it is disabled since we haven't yet requested the timer 2171 * or work item. 2172 */ 2173 set_bit(__FM10K_SERVICE_DISABLE, interface->state); 2174 2175 err = fm10k_mbx_request_irq(interface); 2176 if (err) 2177 goto err_mbx_interrupt; 2178 2179 /* final check of hardware state before registering the interface */ 2180 err = fm10k_hw_ready(interface); 2181 if (err) 2182 goto err_register; 2183 2184 err = register_netdev(netdev); 2185 if (err) 2186 goto err_register; 2187 2188 /* carrier off reporting is important to ethtool even BEFORE open */ 2189 netif_carrier_off(netdev); 2190 2191 /* stop all the transmit queues from transmitting until link is up */ 2192 netif_tx_stop_all_queues(netdev); 2193 2194 /* Initialize service timer and service task late in order to avoid 2195 * cleanup issues. 2196 */ 2197 timer_setup(&interface->service_timer, fm10k_service_timer, 0); 2198 INIT_WORK(&interface->service_task, fm10k_service_task); 2199 2200 /* Setup the MAC/VLAN queue */ 2201 INIT_DELAYED_WORK(&interface->macvlan_task, fm10k_macvlan_task); 2202 2203 /* kick off service timer now, even when interface is down */ 2204 mod_timer(&interface->service_timer, (HZ * 2) + jiffies); 2205 2206 /* print warning for non-optimal configurations */ 2207 pcie_print_link_status(interface->pdev); 2208 2209 /* report MAC address for logging */ 2210 dev_info(&pdev->dev, "%pM\n", netdev->dev_addr); 2211 2212 /* enable SR-IOV after registering netdev to enforce PF/VF ordering */ 2213 fm10k_iov_configure(pdev, 0); 2214 2215 /* clear the service task disable bit and kick off service task */ 2216 clear_bit(__FM10K_SERVICE_DISABLE, interface->state); 2217 fm10k_service_event_schedule(interface); 2218 2219 return 0; 2220 2221 err_register: 2222 fm10k_mbx_free_irq(interface); 2223 err_mbx_interrupt: 2224 fm10k_clear_queueing_scheme(interface); 2225 err_sw_init: 2226 if (interface->sw_addr) 2227 iounmap(interface->sw_addr); 2228 iounmap(interface->uc_addr); 2229 err_ioremap: 2230 free_netdev(netdev); 2231 err_alloc_netdev: 2232 pci_release_mem_regions(pdev); 2233 err_pci_reg: 2234 err_dma: 2235 pci_disable_device(pdev); 2236 return err; 2237 } 2238 2239 /** 2240 * fm10k_remove - Device Removal Routine 2241 * @pdev: PCI device information struct 2242 * 2243 * fm10k_remove is called by the PCI subsystem to alert the driver 2244 * that it should release a PCI device. The could be caused by a 2245 * Hot-Plug event, or because the driver is going to be removed from 2246 * memory. 2247 **/ 2248 static void fm10k_remove(struct pci_dev *pdev) 2249 { 2250 struct fm10k_intfc *interface = pci_get_drvdata(pdev); 2251 struct net_device *netdev = interface->netdev; 2252 2253 del_timer_sync(&interface->service_timer); 2254 2255 fm10k_stop_service_event(interface); 2256 fm10k_stop_macvlan_task(interface); 2257 2258 /* Remove all pending MAC/VLAN requests */ 2259 fm10k_clear_macvlan_queue(interface, interface->glort, true); 2260 2261 /* free netdev, this may bounce the interrupts due to setup_tc */ 2262 if (netdev->reg_state == NETREG_REGISTERED) 2263 unregister_netdev(netdev); 2264 2265 /* release VFs */ 2266 fm10k_iov_disable(pdev); 2267 2268 /* disable mailbox interrupt */ 2269 fm10k_mbx_free_irq(interface); 2270 2271 /* free interrupts */ 2272 fm10k_clear_queueing_scheme(interface); 2273 2274 /* remove any debugfs interfaces */ 2275 fm10k_dbg_intfc_exit(interface); 2276 2277 if (interface->sw_addr) 2278 iounmap(interface->sw_addr); 2279 iounmap(interface->uc_addr); 2280 2281 free_netdev(netdev); 2282 2283 pci_release_mem_regions(pdev); 2284 2285 pci_disable_pcie_error_reporting(pdev); 2286 2287 pci_disable_device(pdev); 2288 } 2289 2290 static void fm10k_prepare_suspend(struct fm10k_intfc *interface) 2291 { 2292 /* the watchdog task reads from registers, which might appear like 2293 * a surprise remove if the PCIe device is disabled while we're 2294 * stopped. We stop the watchdog task until after we resume software 2295 * activity. 2296 * 2297 * Note that the MAC/VLAN task will be stopped as part of preparing 2298 * for reset so we don't need to handle it here. 2299 */ 2300 fm10k_stop_service_event(interface); 2301 2302 if (fm10k_prepare_for_reset(interface)) 2303 set_bit(__FM10K_RESET_SUSPENDED, interface->state); 2304 } 2305 2306 static int fm10k_handle_resume(struct fm10k_intfc *interface) 2307 { 2308 struct fm10k_hw *hw = &interface->hw; 2309 int err; 2310 2311 /* Even if we didn't properly prepare for reset in 2312 * fm10k_prepare_suspend, we'll attempt to resume anyways. 2313 */ 2314 if (!test_and_clear_bit(__FM10K_RESET_SUSPENDED, interface->state)) 2315 dev_warn(&interface->pdev->dev, 2316 "Device was shut down as part of suspend... Attempting to recover\n"); 2317 2318 /* reset statistics starting values */ 2319 hw->mac.ops.rebind_hw_stats(hw, &interface->stats); 2320 2321 err = fm10k_handle_reset(interface); 2322 if (err) 2323 return err; 2324 2325 /* assume host is not ready, to prevent race with watchdog in case we 2326 * actually don't have connection to the switch 2327 */ 2328 interface->host_ready = false; 2329 fm10k_watchdog_host_not_ready(interface); 2330 2331 /* force link to stay down for a second to prevent link flutter */ 2332 interface->link_down_event = jiffies + (HZ); 2333 set_bit(__FM10K_LINK_DOWN, interface->state); 2334 2335 /* restart the service task */ 2336 fm10k_start_service_event(interface); 2337 2338 /* Restart the MAC/VLAN request queue in-case of outstanding events */ 2339 fm10k_macvlan_schedule(interface); 2340 2341 return 0; 2342 } 2343 2344 /** 2345 * fm10k_resume - Generic PM resume hook 2346 * @dev: generic device structure 2347 * 2348 * Generic PM hook used when waking the device from a low power state after 2349 * suspend or hibernation. This function does not need to handle lower PCIe 2350 * device state as the stack takes care of that for us. 2351 **/ 2352 static int __maybe_unused fm10k_resume(struct device *dev) 2353 { 2354 struct fm10k_intfc *interface = dev_get_drvdata(dev); 2355 struct net_device *netdev = interface->netdev; 2356 struct fm10k_hw *hw = &interface->hw; 2357 int err; 2358 2359 /* refresh hw_addr in case it was dropped */ 2360 hw->hw_addr = interface->uc_addr; 2361 2362 err = fm10k_handle_resume(interface); 2363 if (err) 2364 return err; 2365 2366 netif_device_attach(netdev); 2367 2368 return 0; 2369 } 2370 2371 /** 2372 * fm10k_suspend - Generic PM suspend hook 2373 * @dev: generic device structure 2374 * 2375 * Generic PM hook used when setting the device into a low power state for 2376 * system suspend or hibernation. This function does not need to handle lower 2377 * PCIe device state as the stack takes care of that for us. 2378 **/ 2379 static int __maybe_unused fm10k_suspend(struct device *dev) 2380 { 2381 struct fm10k_intfc *interface = dev_get_drvdata(dev); 2382 struct net_device *netdev = interface->netdev; 2383 2384 netif_device_detach(netdev); 2385 2386 fm10k_prepare_suspend(interface); 2387 2388 return 0; 2389 } 2390 2391 /** 2392 * fm10k_io_error_detected - called when PCI error is detected 2393 * @pdev: Pointer to PCI device 2394 * @state: The current pci connection state 2395 * 2396 * This function is called after a PCI bus error affecting 2397 * this device has been detected. 2398 */ 2399 static pci_ers_result_t fm10k_io_error_detected(struct pci_dev *pdev, 2400 pci_channel_state_t state) 2401 { 2402 struct fm10k_intfc *interface = pci_get_drvdata(pdev); 2403 struct net_device *netdev = interface->netdev; 2404 2405 netif_device_detach(netdev); 2406 2407 if (state == pci_channel_io_perm_failure) 2408 return PCI_ERS_RESULT_DISCONNECT; 2409 2410 fm10k_prepare_suspend(interface); 2411 2412 /* Request a slot reset. */ 2413 return PCI_ERS_RESULT_NEED_RESET; 2414 } 2415 2416 /** 2417 * fm10k_io_slot_reset - called after the pci bus has been reset. 2418 * @pdev: Pointer to PCI device 2419 * 2420 * Restart the card from scratch, as if from a cold-boot. 2421 */ 2422 static pci_ers_result_t fm10k_io_slot_reset(struct pci_dev *pdev) 2423 { 2424 pci_ers_result_t result; 2425 2426 if (pci_reenable_device(pdev)) { 2427 dev_err(&pdev->dev, 2428 "Cannot re-enable PCI device after reset.\n"); 2429 result = PCI_ERS_RESULT_DISCONNECT; 2430 } else { 2431 pci_set_master(pdev); 2432 pci_restore_state(pdev); 2433 2434 /* After second error pci->state_saved is false, this 2435 * resets it so EEH doesn't break. 2436 */ 2437 pci_save_state(pdev); 2438 2439 pci_wake_from_d3(pdev, false); 2440 2441 result = PCI_ERS_RESULT_RECOVERED; 2442 } 2443 2444 return result; 2445 } 2446 2447 /** 2448 * fm10k_io_resume - called when traffic can start flowing again. 2449 * @pdev: Pointer to PCI device 2450 * 2451 * This callback is called when the error recovery driver tells us that 2452 * its OK to resume normal operation. 2453 */ 2454 static void fm10k_io_resume(struct pci_dev *pdev) 2455 { 2456 struct fm10k_intfc *interface = pci_get_drvdata(pdev); 2457 struct net_device *netdev = interface->netdev; 2458 int err; 2459 2460 err = fm10k_handle_resume(interface); 2461 2462 if (err) 2463 dev_warn(&pdev->dev, 2464 "%s failed: %d\n", __func__, err); 2465 else 2466 netif_device_attach(netdev); 2467 } 2468 2469 /** 2470 * fm10k_io_reset_prepare - called when PCI function is about to be reset 2471 * @pdev: Pointer to PCI device 2472 * 2473 * This callback is called when the PCI function is about to be reset, 2474 * allowing the device driver to prepare for it. 2475 */ 2476 static void fm10k_io_reset_prepare(struct pci_dev *pdev) 2477 { 2478 /* warn incase we have any active VF devices */ 2479 if (pci_num_vf(pdev)) 2480 dev_warn(&pdev->dev, 2481 "PCIe FLR may cause issues for any active VF devices\n"); 2482 fm10k_prepare_suspend(pci_get_drvdata(pdev)); 2483 } 2484 2485 /** 2486 * fm10k_io_reset_done - called when PCI function has finished resetting 2487 * @pdev: Pointer to PCI device 2488 * 2489 * This callback is called just after the PCI function is reset, such as via 2490 * /sys/class/net/<enpX>/device/reset or similar. 2491 */ 2492 static void fm10k_io_reset_done(struct pci_dev *pdev) 2493 { 2494 struct fm10k_intfc *interface = pci_get_drvdata(pdev); 2495 int err = fm10k_handle_resume(interface); 2496 2497 if (err) { 2498 dev_warn(&pdev->dev, 2499 "%s failed: %d\n", __func__, err); 2500 netif_device_detach(interface->netdev); 2501 } 2502 } 2503 2504 static const struct pci_error_handlers fm10k_err_handler = { 2505 .error_detected = fm10k_io_error_detected, 2506 .slot_reset = fm10k_io_slot_reset, 2507 .resume = fm10k_io_resume, 2508 .reset_prepare = fm10k_io_reset_prepare, 2509 .reset_done = fm10k_io_reset_done, 2510 }; 2511 2512 static SIMPLE_DEV_PM_OPS(fm10k_pm_ops, fm10k_suspend, fm10k_resume); 2513 2514 static struct pci_driver fm10k_driver = { 2515 .name = fm10k_driver_name, 2516 .id_table = fm10k_pci_tbl, 2517 .probe = fm10k_probe, 2518 .remove = fm10k_remove, 2519 .driver = { 2520 .pm = &fm10k_pm_ops, 2521 }, 2522 .sriov_configure = fm10k_iov_configure, 2523 .err_handler = &fm10k_err_handler 2524 }; 2525 2526 /** 2527 * fm10k_register_pci_driver - register driver interface 2528 * 2529 * This function is called on module load in order to register the driver. 2530 **/ 2531 int fm10k_register_pci_driver(void) 2532 { 2533 return pci_register_driver(&fm10k_driver); 2534 } 2535 2536 /** 2537 * fm10k_unregister_pci_driver - unregister driver interface 2538 * 2539 * This function is called on module unload in order to remove the driver. 2540 **/ 2541 void fm10k_unregister_pci_driver(void) 2542 { 2543 pci_unregister_driver(&fm10k_driver); 2544 } 2545