1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 2013 - 2019 Intel Corporation. */
3 
4 #include <linux/module.h>
5 #include <linux/interrupt.h>
6 #include <linux/aer.h>
7 
8 #include "fm10k.h"
9 
10 static const struct fm10k_info *fm10k_info_tbl[] = {
11 	[fm10k_device_pf] = &fm10k_pf_info,
12 	[fm10k_device_vf] = &fm10k_vf_info,
13 };
14 
15 /*
16  * fm10k_pci_tbl - PCI Device ID Table
17  *
18  * Wildcard entries (PCI_ANY_ID) should come last
19  * Last entry must be all 0s
20  *
21  * { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
22  *   Class, Class Mask, private data (not used) }
23  */
24 static const struct pci_device_id fm10k_pci_tbl[] = {
25 	{ PCI_VDEVICE(INTEL, FM10K_DEV_ID_PF), fm10k_device_pf },
26 	{ PCI_VDEVICE(INTEL, FM10K_DEV_ID_SDI_FM10420_QDA2), fm10k_device_pf },
27 	{ PCI_VDEVICE(INTEL, FM10K_DEV_ID_SDI_FM10420_DA2), fm10k_device_pf },
28 	{ PCI_VDEVICE(INTEL, FM10K_DEV_ID_VF), fm10k_device_vf },
29 	/* required last entry */
30 	{ 0, }
31 };
32 MODULE_DEVICE_TABLE(pci, fm10k_pci_tbl);
33 
34 u16 fm10k_read_pci_cfg_word(struct fm10k_hw *hw, u32 reg)
35 {
36 	struct fm10k_intfc *interface = hw->back;
37 	u16 value = 0;
38 
39 	if (FM10K_REMOVED(hw->hw_addr))
40 		return ~value;
41 
42 	pci_read_config_word(interface->pdev, reg, &value);
43 	if (value == 0xFFFF)
44 		fm10k_write_flush(hw);
45 
46 	return value;
47 }
48 
49 u32 fm10k_read_reg(struct fm10k_hw *hw, int reg)
50 {
51 	u32 __iomem *hw_addr = READ_ONCE(hw->hw_addr);
52 	u32 value = 0;
53 
54 	if (FM10K_REMOVED(hw_addr))
55 		return ~value;
56 
57 	value = readl(&hw_addr[reg]);
58 	if (!(~value) && (!reg || !(~readl(hw_addr)))) {
59 		struct fm10k_intfc *interface = hw->back;
60 		struct net_device *netdev = interface->netdev;
61 
62 		hw->hw_addr = NULL;
63 		netif_device_detach(netdev);
64 		netdev_err(netdev, "PCIe link lost, device now detached\n");
65 	}
66 
67 	return value;
68 }
69 
70 static int fm10k_hw_ready(struct fm10k_intfc *interface)
71 {
72 	struct fm10k_hw *hw = &interface->hw;
73 
74 	fm10k_write_flush(hw);
75 
76 	return FM10K_REMOVED(hw->hw_addr) ? -ENODEV : 0;
77 }
78 
79 /**
80  * fm10k_macvlan_schedule - Schedule MAC/VLAN queue task
81  * @interface: fm10k private interface structure
82  *
83  * Schedule the MAC/VLAN queue monitor task. If the MAC/VLAN task cannot be
84  * started immediately, request that it be restarted when possible.
85  */
86 void fm10k_macvlan_schedule(struct fm10k_intfc *interface)
87 {
88 	/* Avoid processing the MAC/VLAN queue when the service task is
89 	 * disabled, or when we're resetting the device.
90 	 */
91 	if (!test_bit(__FM10K_MACVLAN_DISABLE, interface->state) &&
92 	    !test_and_set_bit(__FM10K_MACVLAN_SCHED, interface->state)) {
93 		clear_bit(__FM10K_MACVLAN_REQUEST, interface->state);
94 		/* We delay the actual start of execution in order to allow
95 		 * multiple MAC/VLAN updates to accumulate before handling
96 		 * them, and to allow some time to let the mailbox drain
97 		 * between runs.
98 		 */
99 		queue_delayed_work(fm10k_workqueue,
100 				   &interface->macvlan_task, 10);
101 	} else {
102 		set_bit(__FM10K_MACVLAN_REQUEST, interface->state);
103 	}
104 }
105 
106 /**
107  * fm10k_stop_macvlan_task - Stop the MAC/VLAN queue monitor
108  * @interface: fm10k private interface structure
109  *
110  * Wait until the MAC/VLAN queue task has stopped, and cancel any future
111  * requests.
112  */
113 static void fm10k_stop_macvlan_task(struct fm10k_intfc *interface)
114 {
115 	/* Disable the MAC/VLAN work item */
116 	set_bit(__FM10K_MACVLAN_DISABLE, interface->state);
117 
118 	/* Make sure we waited until any current invocations have stopped */
119 	cancel_delayed_work_sync(&interface->macvlan_task);
120 
121 	/* We set the __FM10K_MACVLAN_SCHED bit when we schedule the task.
122 	 * However, it may not be unset of the MAC/VLAN task never actually
123 	 * got a chance to run. Since we've canceled the task here, and it
124 	 * cannot be rescheuled right now, we need to ensure the scheduled bit
125 	 * gets unset.
126 	 */
127 	clear_bit(__FM10K_MACVLAN_SCHED, interface->state);
128 }
129 
130 /**
131  * fm10k_resume_macvlan_task - Restart the MAC/VLAN queue monitor
132  * @interface: fm10k private interface structure
133  *
134  * Clear the __FM10K_MACVLAN_DISABLE bit and, if a request occurred, schedule
135  * the MAC/VLAN work monitor.
136  */
137 static void fm10k_resume_macvlan_task(struct fm10k_intfc *interface)
138 {
139 	/* Re-enable the MAC/VLAN work item */
140 	clear_bit(__FM10K_MACVLAN_DISABLE, interface->state);
141 
142 	/* We might have received a MAC/VLAN request while disabled. If so,
143 	 * kick off the queue now.
144 	 */
145 	if (test_bit(__FM10K_MACVLAN_REQUEST, interface->state))
146 		fm10k_macvlan_schedule(interface);
147 }
148 
149 void fm10k_service_event_schedule(struct fm10k_intfc *interface)
150 {
151 	if (!test_bit(__FM10K_SERVICE_DISABLE, interface->state) &&
152 	    !test_and_set_bit(__FM10K_SERVICE_SCHED, interface->state)) {
153 		clear_bit(__FM10K_SERVICE_REQUEST, interface->state);
154 		queue_work(fm10k_workqueue, &interface->service_task);
155 	} else {
156 		set_bit(__FM10K_SERVICE_REQUEST, interface->state);
157 	}
158 }
159 
160 static void fm10k_service_event_complete(struct fm10k_intfc *interface)
161 {
162 	WARN_ON(!test_bit(__FM10K_SERVICE_SCHED, interface->state));
163 
164 	/* flush memory to make sure state is correct before next watchog */
165 	smp_mb__before_atomic();
166 	clear_bit(__FM10K_SERVICE_SCHED, interface->state);
167 
168 	/* If a service event was requested since we started, immediately
169 	 * re-schedule now. This ensures we don't drop a request until the
170 	 * next timer event.
171 	 */
172 	if (test_bit(__FM10K_SERVICE_REQUEST, interface->state))
173 		fm10k_service_event_schedule(interface);
174 }
175 
176 static void fm10k_stop_service_event(struct fm10k_intfc *interface)
177 {
178 	set_bit(__FM10K_SERVICE_DISABLE, interface->state);
179 	cancel_work_sync(&interface->service_task);
180 
181 	/* It's possible that cancel_work_sync stopped the service task from
182 	 * running before it could actually start. In this case the
183 	 * __FM10K_SERVICE_SCHED bit will never be cleared. Since we know that
184 	 * the service task cannot be running at this point, we need to clear
185 	 * the scheduled bit, as otherwise the service task may never be
186 	 * restarted.
187 	 */
188 	clear_bit(__FM10K_SERVICE_SCHED, interface->state);
189 }
190 
191 static void fm10k_start_service_event(struct fm10k_intfc *interface)
192 {
193 	clear_bit(__FM10K_SERVICE_DISABLE, interface->state);
194 	fm10k_service_event_schedule(interface);
195 }
196 
197 /**
198  * fm10k_service_timer - Timer Call-back
199  * @t: pointer to timer data
200  **/
201 static void fm10k_service_timer(struct timer_list *t)
202 {
203 	struct fm10k_intfc *interface = from_timer(interface, t,
204 						   service_timer);
205 
206 	/* Reset the timer */
207 	mod_timer(&interface->service_timer, (HZ * 2) + jiffies);
208 
209 	fm10k_service_event_schedule(interface);
210 }
211 
212 /**
213  * fm10k_prepare_for_reset - Prepare the driver and device for a pending reset
214  * @interface: fm10k private data structure
215  *
216  * This function prepares for a device reset by shutting as much down as we
217  * can. It does nothing and returns false if __FM10K_RESETTING was already set
218  * prior to calling this function. It returns true if it actually did work.
219  */
220 static bool fm10k_prepare_for_reset(struct fm10k_intfc *interface)
221 {
222 	struct net_device *netdev = interface->netdev;
223 
224 	WARN_ON(in_interrupt());
225 
226 	/* put off any impending NetWatchDogTimeout */
227 	netif_trans_update(netdev);
228 
229 	/* Nothing to do if a reset is already in progress */
230 	if (test_and_set_bit(__FM10K_RESETTING, interface->state))
231 		return false;
232 
233 	/* As the MAC/VLAN task will be accessing registers it must not be
234 	 * running while we reset. Although the task will not be scheduled
235 	 * once we start resetting it may already be running
236 	 */
237 	fm10k_stop_macvlan_task(interface);
238 
239 	rtnl_lock();
240 
241 	fm10k_iov_suspend(interface->pdev);
242 
243 	if (netif_running(netdev))
244 		fm10k_close(netdev);
245 
246 	fm10k_mbx_free_irq(interface);
247 
248 	/* free interrupts */
249 	fm10k_clear_queueing_scheme(interface);
250 
251 	/* delay any future reset requests */
252 	interface->last_reset = jiffies + (10 * HZ);
253 
254 	rtnl_unlock();
255 
256 	return true;
257 }
258 
259 static int fm10k_handle_reset(struct fm10k_intfc *interface)
260 {
261 	struct net_device *netdev = interface->netdev;
262 	struct fm10k_hw *hw = &interface->hw;
263 	int err;
264 
265 	WARN_ON(!test_bit(__FM10K_RESETTING, interface->state));
266 
267 	rtnl_lock();
268 
269 	pci_set_master(interface->pdev);
270 
271 	/* reset and initialize the hardware so it is in a known state */
272 	err = hw->mac.ops.reset_hw(hw);
273 	if (err) {
274 		dev_err(&interface->pdev->dev, "reset_hw failed: %d\n", err);
275 		goto reinit_err;
276 	}
277 
278 	err = hw->mac.ops.init_hw(hw);
279 	if (err) {
280 		dev_err(&interface->pdev->dev, "init_hw failed: %d\n", err);
281 		goto reinit_err;
282 	}
283 
284 	err = fm10k_init_queueing_scheme(interface);
285 	if (err) {
286 		dev_err(&interface->pdev->dev,
287 			"init_queueing_scheme failed: %d\n", err);
288 		goto reinit_err;
289 	}
290 
291 	/* re-associate interrupts */
292 	err = fm10k_mbx_request_irq(interface);
293 	if (err)
294 		goto err_mbx_irq;
295 
296 	err = fm10k_hw_ready(interface);
297 	if (err)
298 		goto err_open;
299 
300 	/* update hardware address for VFs if perm_addr has changed */
301 	if (hw->mac.type == fm10k_mac_vf) {
302 		if (is_valid_ether_addr(hw->mac.perm_addr)) {
303 			ether_addr_copy(hw->mac.addr, hw->mac.perm_addr);
304 			ether_addr_copy(netdev->perm_addr, hw->mac.perm_addr);
305 			ether_addr_copy(netdev->dev_addr, hw->mac.perm_addr);
306 			netdev->addr_assign_type &= ~NET_ADDR_RANDOM;
307 		}
308 
309 		if (hw->mac.vlan_override)
310 			netdev->features &= ~NETIF_F_HW_VLAN_CTAG_RX;
311 		else
312 			netdev->features |= NETIF_F_HW_VLAN_CTAG_RX;
313 	}
314 
315 	err = netif_running(netdev) ? fm10k_open(netdev) : 0;
316 	if (err)
317 		goto err_open;
318 
319 	fm10k_iov_resume(interface->pdev);
320 
321 	rtnl_unlock();
322 
323 	fm10k_resume_macvlan_task(interface);
324 
325 	clear_bit(__FM10K_RESETTING, interface->state);
326 
327 	return err;
328 err_open:
329 	fm10k_mbx_free_irq(interface);
330 err_mbx_irq:
331 	fm10k_clear_queueing_scheme(interface);
332 reinit_err:
333 	netif_device_detach(netdev);
334 
335 	rtnl_unlock();
336 
337 	clear_bit(__FM10K_RESETTING, interface->state);
338 
339 	return err;
340 }
341 
342 static void fm10k_detach_subtask(struct fm10k_intfc *interface)
343 {
344 	struct net_device *netdev = interface->netdev;
345 	u32 __iomem *hw_addr;
346 	u32 value;
347 
348 	/* do nothing if netdev is still present or hw_addr is set */
349 	if (netif_device_present(netdev) || interface->hw.hw_addr)
350 		return;
351 
352 	/* We've lost the PCIe register space, and can no longer access the
353 	 * device. Shut everything except the detach subtask down and prepare
354 	 * to reset the device in case we recover. If we actually prepare for
355 	 * reset, indicate that we're detached.
356 	 */
357 	if (fm10k_prepare_for_reset(interface))
358 		set_bit(__FM10K_RESET_DETACHED, interface->state);
359 
360 	/* check the real address space to see if we've recovered */
361 	hw_addr = READ_ONCE(interface->uc_addr);
362 	value = readl(hw_addr);
363 	if (~value) {
364 		int err;
365 
366 		/* Make sure the reset was initiated because we detached,
367 		 * otherwise we might race with a different reset flow.
368 		 */
369 		if (!test_and_clear_bit(__FM10K_RESET_DETACHED,
370 					interface->state))
371 			return;
372 
373 		/* Restore the hardware address */
374 		interface->hw.hw_addr = interface->uc_addr;
375 
376 		/* PCIe link has been restored, and the device is active
377 		 * again. Restore everything and reset the device.
378 		 */
379 		err = fm10k_handle_reset(interface);
380 		if (err) {
381 			netdev_err(netdev, "Unable to reset device: %d\n", err);
382 			interface->hw.hw_addr = NULL;
383 			return;
384 		}
385 
386 		/* Re-attach the netdev */
387 		netif_device_attach(netdev);
388 		netdev_warn(netdev, "PCIe link restored, device now attached\n");
389 		return;
390 	}
391 }
392 
393 static void fm10k_reset_subtask(struct fm10k_intfc *interface)
394 {
395 	int err;
396 
397 	if (!test_and_clear_bit(FM10K_FLAG_RESET_REQUESTED,
398 				interface->flags))
399 		return;
400 
401 	/* If another thread has already prepared to reset the device, we
402 	 * should not attempt to handle a reset here, since we'd race with
403 	 * that thread. This may happen if we suspend the device or if the
404 	 * PCIe link is lost. In this case, we'll just ignore the RESET
405 	 * request, as it will (eventually) be taken care of when the thread
406 	 * which actually started the reset is finished.
407 	 */
408 	if (!fm10k_prepare_for_reset(interface))
409 		return;
410 
411 	netdev_err(interface->netdev, "Reset interface\n");
412 
413 	err = fm10k_handle_reset(interface);
414 	if (err)
415 		dev_err(&interface->pdev->dev,
416 			"fm10k_handle_reset failed: %d\n", err);
417 }
418 
419 /**
420  * fm10k_configure_swpri_map - Configure Receive SWPRI to PC mapping
421  * @interface: board private structure
422  *
423  * Configure the SWPRI to PC mapping for the port.
424  **/
425 static void fm10k_configure_swpri_map(struct fm10k_intfc *interface)
426 {
427 	struct net_device *netdev = interface->netdev;
428 	struct fm10k_hw *hw = &interface->hw;
429 	int i;
430 
431 	/* clear flag indicating update is needed */
432 	clear_bit(FM10K_FLAG_SWPRI_CONFIG, interface->flags);
433 
434 	/* these registers are only available on the PF */
435 	if (hw->mac.type != fm10k_mac_pf)
436 		return;
437 
438 	/* configure SWPRI to PC map */
439 	for (i = 0; i < FM10K_SWPRI_MAX; i++)
440 		fm10k_write_reg(hw, FM10K_SWPRI_MAP(i),
441 				netdev_get_prio_tc_map(netdev, i));
442 }
443 
444 /**
445  * fm10k_watchdog_update_host_state - Update the link status based on host.
446  * @interface: board private structure
447  **/
448 static void fm10k_watchdog_update_host_state(struct fm10k_intfc *interface)
449 {
450 	struct fm10k_hw *hw = &interface->hw;
451 	s32 err;
452 
453 	if (test_bit(__FM10K_LINK_DOWN, interface->state)) {
454 		interface->host_ready = false;
455 		if (time_is_after_jiffies(interface->link_down_event))
456 			return;
457 		clear_bit(__FM10K_LINK_DOWN, interface->state);
458 	}
459 
460 	if (test_bit(FM10K_FLAG_SWPRI_CONFIG, interface->flags)) {
461 		if (rtnl_trylock()) {
462 			fm10k_configure_swpri_map(interface);
463 			rtnl_unlock();
464 		}
465 	}
466 
467 	/* lock the mailbox for transmit and receive */
468 	fm10k_mbx_lock(interface);
469 
470 	err = hw->mac.ops.get_host_state(hw, &interface->host_ready);
471 	if (err && time_is_before_jiffies(interface->last_reset))
472 		set_bit(FM10K_FLAG_RESET_REQUESTED, interface->flags);
473 
474 	/* free the lock */
475 	fm10k_mbx_unlock(interface);
476 }
477 
478 /**
479  * fm10k_mbx_subtask - Process upstream and downstream mailboxes
480  * @interface: board private structure
481  *
482  * This function will process both the upstream and downstream mailboxes.
483  **/
484 static void fm10k_mbx_subtask(struct fm10k_intfc *interface)
485 {
486 	/* If we're resetting, bail out */
487 	if (test_bit(__FM10K_RESETTING, interface->state))
488 		return;
489 
490 	/* process upstream mailbox and update device state */
491 	fm10k_watchdog_update_host_state(interface);
492 
493 	/* process downstream mailboxes */
494 	fm10k_iov_mbx(interface);
495 }
496 
497 /**
498  * fm10k_watchdog_host_is_ready - Update netdev status based on host ready
499  * @interface: board private structure
500  **/
501 static void fm10k_watchdog_host_is_ready(struct fm10k_intfc *interface)
502 {
503 	struct net_device *netdev = interface->netdev;
504 
505 	/* only continue if link state is currently down */
506 	if (netif_carrier_ok(netdev))
507 		return;
508 
509 	netif_info(interface, drv, netdev, "NIC Link is up\n");
510 
511 	netif_carrier_on(netdev);
512 	netif_tx_wake_all_queues(netdev);
513 }
514 
515 /**
516  * fm10k_watchdog_host_not_ready - Update netdev status based on host not ready
517  * @interface: board private structure
518  **/
519 static void fm10k_watchdog_host_not_ready(struct fm10k_intfc *interface)
520 {
521 	struct net_device *netdev = interface->netdev;
522 
523 	/* only continue if link state is currently up */
524 	if (!netif_carrier_ok(netdev))
525 		return;
526 
527 	netif_info(interface, drv, netdev, "NIC Link is down\n");
528 
529 	netif_carrier_off(netdev);
530 	netif_tx_stop_all_queues(netdev);
531 }
532 
533 /**
534  * fm10k_update_stats - Update the board statistics counters.
535  * @interface: board private structure
536  **/
537 void fm10k_update_stats(struct fm10k_intfc *interface)
538 {
539 	struct net_device_stats *net_stats = &interface->netdev->stats;
540 	struct fm10k_hw *hw = &interface->hw;
541 	u64 hw_csum_tx_good = 0, hw_csum_rx_good = 0, rx_length_errors = 0;
542 	u64 rx_switch_errors = 0, rx_drops = 0, rx_pp_errors = 0;
543 	u64 rx_link_errors = 0;
544 	u64 rx_errors = 0, rx_csum_errors = 0, tx_csum_errors = 0;
545 	u64 restart_queue = 0, tx_busy = 0, alloc_failed = 0;
546 	u64 rx_bytes_nic = 0, rx_pkts_nic = 0, rx_drops_nic = 0;
547 	u64 tx_bytes_nic = 0, tx_pkts_nic = 0;
548 	u64 bytes, pkts;
549 	int i;
550 
551 	/* ensure only one thread updates stats at a time */
552 	if (test_and_set_bit(__FM10K_UPDATING_STATS, interface->state))
553 		return;
554 
555 	/* do not allow stats update via service task for next second */
556 	interface->next_stats_update = jiffies + HZ;
557 
558 	/* gather some stats to the interface struct that are per queue */
559 	for (bytes = 0, pkts = 0, i = 0; i < interface->num_tx_queues; i++) {
560 		struct fm10k_ring *tx_ring = READ_ONCE(interface->tx_ring[i]);
561 
562 		if (!tx_ring)
563 			continue;
564 
565 		restart_queue += tx_ring->tx_stats.restart_queue;
566 		tx_busy += tx_ring->tx_stats.tx_busy;
567 		tx_csum_errors += tx_ring->tx_stats.csum_err;
568 		bytes += tx_ring->stats.bytes;
569 		pkts += tx_ring->stats.packets;
570 		hw_csum_tx_good += tx_ring->tx_stats.csum_good;
571 	}
572 
573 	interface->restart_queue = restart_queue;
574 	interface->tx_busy = tx_busy;
575 	net_stats->tx_bytes = bytes;
576 	net_stats->tx_packets = pkts;
577 	interface->tx_csum_errors = tx_csum_errors;
578 	interface->hw_csum_tx_good = hw_csum_tx_good;
579 
580 	/* gather some stats to the interface struct that are per queue */
581 	for (bytes = 0, pkts = 0, i = 0; i < interface->num_rx_queues; i++) {
582 		struct fm10k_ring *rx_ring = READ_ONCE(interface->rx_ring[i]);
583 
584 		if (!rx_ring)
585 			continue;
586 
587 		bytes += rx_ring->stats.bytes;
588 		pkts += rx_ring->stats.packets;
589 		alloc_failed += rx_ring->rx_stats.alloc_failed;
590 		rx_csum_errors += rx_ring->rx_stats.csum_err;
591 		rx_errors += rx_ring->rx_stats.errors;
592 		hw_csum_rx_good += rx_ring->rx_stats.csum_good;
593 		rx_switch_errors += rx_ring->rx_stats.switch_errors;
594 		rx_drops += rx_ring->rx_stats.drops;
595 		rx_pp_errors += rx_ring->rx_stats.pp_errors;
596 		rx_link_errors += rx_ring->rx_stats.link_errors;
597 		rx_length_errors += rx_ring->rx_stats.length_errors;
598 	}
599 
600 	net_stats->rx_bytes = bytes;
601 	net_stats->rx_packets = pkts;
602 	interface->alloc_failed = alloc_failed;
603 	interface->rx_csum_errors = rx_csum_errors;
604 	interface->hw_csum_rx_good = hw_csum_rx_good;
605 	interface->rx_switch_errors = rx_switch_errors;
606 	interface->rx_drops = rx_drops;
607 	interface->rx_pp_errors = rx_pp_errors;
608 	interface->rx_link_errors = rx_link_errors;
609 	interface->rx_length_errors = rx_length_errors;
610 
611 	hw->mac.ops.update_hw_stats(hw, &interface->stats);
612 
613 	for (i = 0; i < hw->mac.max_queues; i++) {
614 		struct fm10k_hw_stats_q *q = &interface->stats.q[i];
615 
616 		tx_bytes_nic += q->tx_bytes.count;
617 		tx_pkts_nic += q->tx_packets.count;
618 		rx_bytes_nic += q->rx_bytes.count;
619 		rx_pkts_nic += q->rx_packets.count;
620 		rx_drops_nic += q->rx_drops.count;
621 	}
622 
623 	interface->tx_bytes_nic = tx_bytes_nic;
624 	interface->tx_packets_nic = tx_pkts_nic;
625 	interface->rx_bytes_nic = rx_bytes_nic;
626 	interface->rx_packets_nic = rx_pkts_nic;
627 	interface->rx_drops_nic = rx_drops_nic;
628 
629 	/* Fill out the OS statistics structure */
630 	net_stats->rx_errors = rx_errors;
631 	net_stats->rx_dropped = interface->stats.nodesc_drop.count;
632 
633 	/* Update VF statistics */
634 	fm10k_iov_update_stats(interface);
635 
636 	clear_bit(__FM10K_UPDATING_STATS, interface->state);
637 }
638 
639 /**
640  * fm10k_watchdog_flush_tx - flush queues on host not ready
641  * @interface: pointer to the device interface structure
642  **/
643 static void fm10k_watchdog_flush_tx(struct fm10k_intfc *interface)
644 {
645 	int some_tx_pending = 0;
646 	int i;
647 
648 	/* nothing to do if carrier is up */
649 	if (netif_carrier_ok(interface->netdev))
650 		return;
651 
652 	for (i = 0; i < interface->num_tx_queues; i++) {
653 		struct fm10k_ring *tx_ring = interface->tx_ring[i];
654 
655 		if (tx_ring->next_to_use != tx_ring->next_to_clean) {
656 			some_tx_pending = 1;
657 			break;
658 		}
659 	}
660 
661 	/* We've lost link, so the controller stops DMA, but we've got
662 	 * queued Tx work that's never going to get done, so reset
663 	 * controller to flush Tx.
664 	 */
665 	if (some_tx_pending)
666 		set_bit(FM10K_FLAG_RESET_REQUESTED, interface->flags);
667 }
668 
669 /**
670  * fm10k_watchdog_subtask - check and bring link up
671  * @interface: pointer to the device interface structure
672  **/
673 static void fm10k_watchdog_subtask(struct fm10k_intfc *interface)
674 {
675 	/* if interface is down do nothing */
676 	if (test_bit(__FM10K_DOWN, interface->state) ||
677 	    test_bit(__FM10K_RESETTING, interface->state))
678 		return;
679 
680 	if (interface->host_ready)
681 		fm10k_watchdog_host_is_ready(interface);
682 	else
683 		fm10k_watchdog_host_not_ready(interface);
684 
685 	/* update stats only once every second */
686 	if (time_is_before_jiffies(interface->next_stats_update))
687 		fm10k_update_stats(interface);
688 
689 	/* flush any uncompleted work */
690 	fm10k_watchdog_flush_tx(interface);
691 }
692 
693 /**
694  * fm10k_check_hang_subtask - check for hung queues and dropped interrupts
695  * @interface: pointer to the device interface structure
696  *
697  * This function serves two purposes.  First it strobes the interrupt lines
698  * in order to make certain interrupts are occurring.  Secondly it sets the
699  * bits needed to check for TX hangs.  As a result we should immediately
700  * determine if a hang has occurred.
701  */
702 static void fm10k_check_hang_subtask(struct fm10k_intfc *interface)
703 {
704 	/* If we're down or resetting, just bail */
705 	if (test_bit(__FM10K_DOWN, interface->state) ||
706 	    test_bit(__FM10K_RESETTING, interface->state))
707 		return;
708 
709 	/* rate limit tx hang checks to only once every 2 seconds */
710 	if (time_is_after_eq_jiffies(interface->next_tx_hang_check))
711 		return;
712 	interface->next_tx_hang_check = jiffies + (2 * HZ);
713 
714 	if (netif_carrier_ok(interface->netdev)) {
715 		int i;
716 
717 		/* Force detection of hung controller */
718 		for (i = 0; i < interface->num_tx_queues; i++)
719 			set_check_for_tx_hang(interface->tx_ring[i]);
720 
721 		/* Rearm all in-use q_vectors for immediate firing */
722 		for (i = 0; i < interface->num_q_vectors; i++) {
723 			struct fm10k_q_vector *qv = interface->q_vector[i];
724 
725 			if (!qv->tx.count && !qv->rx.count)
726 				continue;
727 			writel(FM10K_ITR_ENABLE | FM10K_ITR_PENDING2, qv->itr);
728 		}
729 	}
730 }
731 
732 /**
733  * fm10k_service_task - manages and runs subtasks
734  * @work: pointer to work_struct containing our data
735  **/
736 static void fm10k_service_task(struct work_struct *work)
737 {
738 	struct fm10k_intfc *interface;
739 
740 	interface = container_of(work, struct fm10k_intfc, service_task);
741 
742 	/* Check whether we're detached first */
743 	fm10k_detach_subtask(interface);
744 
745 	/* tasks run even when interface is down */
746 	fm10k_mbx_subtask(interface);
747 	fm10k_reset_subtask(interface);
748 
749 	/* tasks only run when interface is up */
750 	fm10k_watchdog_subtask(interface);
751 	fm10k_check_hang_subtask(interface);
752 
753 	/* release lock on service events to allow scheduling next event */
754 	fm10k_service_event_complete(interface);
755 }
756 
757 /**
758  * fm10k_macvlan_task - send queued MAC/VLAN requests to switch manager
759  * @work: pointer to work_struct containing our data
760  *
761  * This work item handles sending MAC/VLAN updates to the switch manager. When
762  * the interface is up, it will attempt to queue mailbox messages to the
763  * switch manager requesting updates for MAC/VLAN pairs. If the Tx fifo of the
764  * mailbox is full, it will reschedule itself to try again in a short while.
765  * This ensures that the driver does not overload the switch mailbox with too
766  * many simultaneous requests, causing an unnecessary reset.
767  **/
768 static void fm10k_macvlan_task(struct work_struct *work)
769 {
770 	struct fm10k_macvlan_request *item;
771 	struct fm10k_intfc *interface;
772 	struct delayed_work *dwork;
773 	struct list_head *requests;
774 	struct fm10k_hw *hw;
775 	unsigned long flags;
776 
777 	dwork = to_delayed_work(work);
778 	interface = container_of(dwork, struct fm10k_intfc, macvlan_task);
779 	hw = &interface->hw;
780 	requests = &interface->macvlan_requests;
781 
782 	do {
783 		/* Pop the first item off the list */
784 		spin_lock_irqsave(&interface->macvlan_lock, flags);
785 		item = list_first_entry_or_null(requests,
786 						struct fm10k_macvlan_request,
787 						list);
788 		if (item)
789 			list_del_init(&item->list);
790 
791 		spin_unlock_irqrestore(&interface->macvlan_lock, flags);
792 
793 		/* We have no more items to process */
794 		if (!item)
795 			goto done;
796 
797 		fm10k_mbx_lock(interface);
798 
799 		/* Check that we have plenty of space to send the message. We
800 		 * want to ensure that the mailbox stays low enough to avoid a
801 		 * change in the host state, otherwise we may see spurious
802 		 * link up / link down notifications.
803 		 */
804 		if (!hw->mbx.ops.tx_ready(&hw->mbx, FM10K_VFMBX_MSG_MTU + 5)) {
805 			hw->mbx.ops.process(hw, &hw->mbx);
806 			set_bit(__FM10K_MACVLAN_REQUEST, interface->state);
807 			fm10k_mbx_unlock(interface);
808 
809 			/* Put the request back on the list */
810 			spin_lock_irqsave(&interface->macvlan_lock, flags);
811 			list_add(&item->list, requests);
812 			spin_unlock_irqrestore(&interface->macvlan_lock, flags);
813 			break;
814 		}
815 
816 		switch (item->type) {
817 		case FM10K_MC_MAC_REQUEST:
818 			hw->mac.ops.update_mc_addr(hw,
819 						   item->mac.glort,
820 						   item->mac.addr,
821 						   item->mac.vid,
822 						   item->set);
823 			break;
824 		case FM10K_UC_MAC_REQUEST:
825 			hw->mac.ops.update_uc_addr(hw,
826 						   item->mac.glort,
827 						   item->mac.addr,
828 						   item->mac.vid,
829 						   item->set,
830 						   0);
831 			break;
832 		case FM10K_VLAN_REQUEST:
833 			hw->mac.ops.update_vlan(hw,
834 						item->vlan.vid,
835 						item->vlan.vsi,
836 						item->set);
837 			break;
838 		default:
839 			break;
840 		}
841 
842 		fm10k_mbx_unlock(interface);
843 
844 		/* Free the item now that we've sent the update */
845 		kfree(item);
846 	} while (true);
847 
848 done:
849 	WARN_ON(!test_bit(__FM10K_MACVLAN_SCHED, interface->state));
850 
851 	/* flush memory to make sure state is correct */
852 	smp_mb__before_atomic();
853 	clear_bit(__FM10K_MACVLAN_SCHED, interface->state);
854 
855 	/* If a MAC/VLAN request was scheduled since we started, we should
856 	 * re-schedule. However, there is no reason to re-schedule if there is
857 	 * no work to do.
858 	 */
859 	if (test_bit(__FM10K_MACVLAN_REQUEST, interface->state))
860 		fm10k_macvlan_schedule(interface);
861 }
862 
863 /**
864  * fm10k_configure_tx_ring - Configure Tx ring after Reset
865  * @interface: board private structure
866  * @ring: structure containing ring specific data
867  *
868  * Configure the Tx descriptor ring after a reset.
869  **/
870 static void fm10k_configure_tx_ring(struct fm10k_intfc *interface,
871 				    struct fm10k_ring *ring)
872 {
873 	struct fm10k_hw *hw = &interface->hw;
874 	u64 tdba = ring->dma;
875 	u32 size = ring->count * sizeof(struct fm10k_tx_desc);
876 	u32 txint = FM10K_INT_MAP_DISABLE;
877 	u32 txdctl = BIT(FM10K_TXDCTL_MAX_TIME_SHIFT) | FM10K_TXDCTL_ENABLE;
878 	u8 reg_idx = ring->reg_idx;
879 
880 	/* disable queue to avoid issues while updating state */
881 	fm10k_write_reg(hw, FM10K_TXDCTL(reg_idx), 0);
882 	fm10k_write_flush(hw);
883 
884 	/* possible poll here to verify ring resources have been cleaned */
885 
886 	/* set location and size for descriptor ring */
887 	fm10k_write_reg(hw, FM10K_TDBAL(reg_idx), tdba & DMA_BIT_MASK(32));
888 	fm10k_write_reg(hw, FM10K_TDBAH(reg_idx), tdba >> 32);
889 	fm10k_write_reg(hw, FM10K_TDLEN(reg_idx), size);
890 
891 	/* reset head and tail pointers */
892 	fm10k_write_reg(hw, FM10K_TDH(reg_idx), 0);
893 	fm10k_write_reg(hw, FM10K_TDT(reg_idx), 0);
894 
895 	/* store tail pointer */
896 	ring->tail = &interface->uc_addr[FM10K_TDT(reg_idx)];
897 
898 	/* reset ntu and ntc to place SW in sync with hardware */
899 	ring->next_to_clean = 0;
900 	ring->next_to_use = 0;
901 
902 	/* Map interrupt */
903 	if (ring->q_vector) {
904 		txint = ring->q_vector->v_idx + NON_Q_VECTORS;
905 		txint |= FM10K_INT_MAP_TIMER0;
906 	}
907 
908 	fm10k_write_reg(hw, FM10K_TXINT(reg_idx), txint);
909 
910 	/* enable use of FTAG bit in Tx descriptor, register is RO for VF */
911 	fm10k_write_reg(hw, FM10K_PFVTCTL(reg_idx),
912 			FM10K_PFVTCTL_FTAG_DESC_ENABLE);
913 
914 	/* Initialize XPS */
915 	if (!test_and_set_bit(__FM10K_TX_XPS_INIT_DONE, ring->state) &&
916 	    ring->q_vector)
917 		netif_set_xps_queue(ring->netdev,
918 				    &ring->q_vector->affinity_mask,
919 				    ring->queue_index);
920 
921 	/* enable queue */
922 	fm10k_write_reg(hw, FM10K_TXDCTL(reg_idx), txdctl);
923 }
924 
925 /**
926  * fm10k_enable_tx_ring - Verify Tx ring is enabled after configuration
927  * @interface: board private structure
928  * @ring: structure containing ring specific data
929  *
930  * Verify the Tx descriptor ring is ready for transmit.
931  **/
932 static void fm10k_enable_tx_ring(struct fm10k_intfc *interface,
933 				 struct fm10k_ring *ring)
934 {
935 	struct fm10k_hw *hw = &interface->hw;
936 	int wait_loop = 10;
937 	u32 txdctl;
938 	u8 reg_idx = ring->reg_idx;
939 
940 	/* if we are already enabled just exit */
941 	if (fm10k_read_reg(hw, FM10K_TXDCTL(reg_idx)) & FM10K_TXDCTL_ENABLE)
942 		return;
943 
944 	/* poll to verify queue is enabled */
945 	do {
946 		usleep_range(1000, 2000);
947 		txdctl = fm10k_read_reg(hw, FM10K_TXDCTL(reg_idx));
948 	} while (!(txdctl & FM10K_TXDCTL_ENABLE) && --wait_loop);
949 	if (!wait_loop)
950 		netif_err(interface, drv, interface->netdev,
951 			  "Could not enable Tx Queue %d\n", reg_idx);
952 }
953 
954 /**
955  * fm10k_configure_tx - Configure Transmit Unit after Reset
956  * @interface: board private structure
957  *
958  * Configure the Tx unit of the MAC after a reset.
959  **/
960 static void fm10k_configure_tx(struct fm10k_intfc *interface)
961 {
962 	int i;
963 
964 	/* Setup the HW Tx Head and Tail descriptor pointers */
965 	for (i = 0; i < interface->num_tx_queues; i++)
966 		fm10k_configure_tx_ring(interface, interface->tx_ring[i]);
967 
968 	/* poll here to verify that Tx rings are now enabled */
969 	for (i = 0; i < interface->num_tx_queues; i++)
970 		fm10k_enable_tx_ring(interface, interface->tx_ring[i]);
971 }
972 
973 /**
974  * fm10k_configure_rx_ring - Configure Rx ring after Reset
975  * @interface: board private structure
976  * @ring: structure containing ring specific data
977  *
978  * Configure the Rx descriptor ring after a reset.
979  **/
980 static void fm10k_configure_rx_ring(struct fm10k_intfc *interface,
981 				    struct fm10k_ring *ring)
982 {
983 	u64 rdba = ring->dma;
984 	struct fm10k_hw *hw = &interface->hw;
985 	u32 size = ring->count * sizeof(union fm10k_rx_desc);
986 	u32 rxqctl, rxdctl = FM10K_RXDCTL_WRITE_BACK_MIN_DELAY;
987 	u32 srrctl = FM10K_SRRCTL_BUFFER_CHAINING_EN;
988 	u32 rxint = FM10K_INT_MAP_DISABLE;
989 	u8 rx_pause = interface->rx_pause;
990 	u8 reg_idx = ring->reg_idx;
991 
992 	/* disable queue to avoid issues while updating state */
993 	rxqctl = fm10k_read_reg(hw, FM10K_RXQCTL(reg_idx));
994 	rxqctl &= ~FM10K_RXQCTL_ENABLE;
995 	fm10k_write_reg(hw, FM10K_RXQCTL(reg_idx), rxqctl);
996 	fm10k_write_flush(hw);
997 
998 	/* possible poll here to verify ring resources have been cleaned */
999 
1000 	/* set location and size for descriptor ring */
1001 	fm10k_write_reg(hw, FM10K_RDBAL(reg_idx), rdba & DMA_BIT_MASK(32));
1002 	fm10k_write_reg(hw, FM10K_RDBAH(reg_idx), rdba >> 32);
1003 	fm10k_write_reg(hw, FM10K_RDLEN(reg_idx), size);
1004 
1005 	/* reset head and tail pointers */
1006 	fm10k_write_reg(hw, FM10K_RDH(reg_idx), 0);
1007 	fm10k_write_reg(hw, FM10K_RDT(reg_idx), 0);
1008 
1009 	/* store tail pointer */
1010 	ring->tail = &interface->uc_addr[FM10K_RDT(reg_idx)];
1011 
1012 	/* reset ntu and ntc to place SW in sync with hardware */
1013 	ring->next_to_clean = 0;
1014 	ring->next_to_use = 0;
1015 	ring->next_to_alloc = 0;
1016 
1017 	/* Configure the Rx buffer size for one buff without split */
1018 	srrctl |= FM10K_RX_BUFSZ >> FM10K_SRRCTL_BSIZEPKT_SHIFT;
1019 
1020 	/* Configure the Rx ring to suppress loopback packets */
1021 	srrctl |= FM10K_SRRCTL_LOOPBACK_SUPPRESS;
1022 	fm10k_write_reg(hw, FM10K_SRRCTL(reg_idx), srrctl);
1023 
1024 	/* Enable drop on empty */
1025 #ifdef CONFIG_DCB
1026 	if (interface->pfc_en)
1027 		rx_pause = interface->pfc_en;
1028 #endif
1029 	if (!(rx_pause & BIT(ring->qos_pc)))
1030 		rxdctl |= FM10K_RXDCTL_DROP_ON_EMPTY;
1031 
1032 	fm10k_write_reg(hw, FM10K_RXDCTL(reg_idx), rxdctl);
1033 
1034 	/* assign default VLAN to queue */
1035 	ring->vid = hw->mac.default_vid;
1036 
1037 	/* if we have an active VLAN, disable default VLAN ID */
1038 	if (test_bit(hw->mac.default_vid, interface->active_vlans))
1039 		ring->vid |= FM10K_VLAN_CLEAR;
1040 
1041 	/* Map interrupt */
1042 	if (ring->q_vector) {
1043 		rxint = ring->q_vector->v_idx + NON_Q_VECTORS;
1044 		rxint |= FM10K_INT_MAP_TIMER1;
1045 	}
1046 
1047 	fm10k_write_reg(hw, FM10K_RXINT(reg_idx), rxint);
1048 
1049 	/* enable queue */
1050 	rxqctl = fm10k_read_reg(hw, FM10K_RXQCTL(reg_idx));
1051 	rxqctl |= FM10K_RXQCTL_ENABLE;
1052 	fm10k_write_reg(hw, FM10K_RXQCTL(reg_idx), rxqctl);
1053 
1054 	/* place buffers on ring for receive data */
1055 	fm10k_alloc_rx_buffers(ring, fm10k_desc_unused(ring));
1056 }
1057 
1058 /**
1059  * fm10k_update_rx_drop_en - Configures the drop enable bits for Rx rings
1060  * @interface: board private structure
1061  *
1062  * Configure the drop enable bits for the Rx rings.
1063  **/
1064 void fm10k_update_rx_drop_en(struct fm10k_intfc *interface)
1065 {
1066 	struct fm10k_hw *hw = &interface->hw;
1067 	u8 rx_pause = interface->rx_pause;
1068 	int i;
1069 
1070 #ifdef CONFIG_DCB
1071 	if (interface->pfc_en)
1072 		rx_pause = interface->pfc_en;
1073 
1074 #endif
1075 	for (i = 0; i < interface->num_rx_queues; i++) {
1076 		struct fm10k_ring *ring = interface->rx_ring[i];
1077 		u32 rxdctl = FM10K_RXDCTL_WRITE_BACK_MIN_DELAY;
1078 		u8 reg_idx = ring->reg_idx;
1079 
1080 		if (!(rx_pause & BIT(ring->qos_pc)))
1081 			rxdctl |= FM10K_RXDCTL_DROP_ON_EMPTY;
1082 
1083 		fm10k_write_reg(hw, FM10K_RXDCTL(reg_idx), rxdctl);
1084 	}
1085 }
1086 
1087 /**
1088  * fm10k_configure_dglort - Configure Receive DGLORT after reset
1089  * @interface: board private structure
1090  *
1091  * Configure the DGLORT description and RSS tables.
1092  **/
1093 static void fm10k_configure_dglort(struct fm10k_intfc *interface)
1094 {
1095 	struct fm10k_dglort_cfg dglort = { 0 };
1096 	struct fm10k_hw *hw = &interface->hw;
1097 	int i;
1098 	u32 mrqc;
1099 
1100 	/* Fill out hash function seeds */
1101 	for (i = 0; i < FM10K_RSSRK_SIZE; i++)
1102 		fm10k_write_reg(hw, FM10K_RSSRK(0, i), interface->rssrk[i]);
1103 
1104 	/* Write RETA table to hardware */
1105 	for (i = 0; i < FM10K_RETA_SIZE; i++)
1106 		fm10k_write_reg(hw, FM10K_RETA(0, i), interface->reta[i]);
1107 
1108 	/* Generate RSS hash based on packet types, TCP/UDP
1109 	 * port numbers and/or IPv4/v6 src and dst addresses
1110 	 */
1111 	mrqc = FM10K_MRQC_IPV4 |
1112 	       FM10K_MRQC_TCP_IPV4 |
1113 	       FM10K_MRQC_IPV6 |
1114 	       FM10K_MRQC_TCP_IPV6;
1115 
1116 	if (test_bit(FM10K_FLAG_RSS_FIELD_IPV4_UDP, interface->flags))
1117 		mrqc |= FM10K_MRQC_UDP_IPV4;
1118 	if (test_bit(FM10K_FLAG_RSS_FIELD_IPV6_UDP, interface->flags))
1119 		mrqc |= FM10K_MRQC_UDP_IPV6;
1120 
1121 	fm10k_write_reg(hw, FM10K_MRQC(0), mrqc);
1122 
1123 	/* configure default DGLORT mapping for RSS/DCB */
1124 	dglort.inner_rss = 1;
1125 	dglort.rss_l = fls(interface->ring_feature[RING_F_RSS].mask);
1126 	dglort.pc_l = fls(interface->ring_feature[RING_F_QOS].mask);
1127 	hw->mac.ops.configure_dglort_map(hw, &dglort);
1128 
1129 	/* assign GLORT per queue for queue mapped testing */
1130 	if (interface->glort_count > 64) {
1131 		memset(&dglort, 0, sizeof(dglort));
1132 		dglort.inner_rss = 1;
1133 		dglort.glort = interface->glort + 64;
1134 		dglort.idx = fm10k_dglort_pf_queue;
1135 		dglort.queue_l = fls(interface->num_rx_queues - 1);
1136 		hw->mac.ops.configure_dglort_map(hw, &dglort);
1137 	}
1138 
1139 	/* assign glort value for RSS/DCB specific to this interface */
1140 	memset(&dglort, 0, sizeof(dglort));
1141 	dglort.inner_rss = 1;
1142 	dglort.glort = interface->glort;
1143 	dglort.rss_l = fls(interface->ring_feature[RING_F_RSS].mask);
1144 	dglort.pc_l = fls(interface->ring_feature[RING_F_QOS].mask);
1145 	/* configure DGLORT mapping for RSS/DCB */
1146 	dglort.idx = fm10k_dglort_pf_rss;
1147 	if (interface->l2_accel)
1148 		dglort.shared_l = fls(interface->l2_accel->size);
1149 	hw->mac.ops.configure_dglort_map(hw, &dglort);
1150 }
1151 
1152 /**
1153  * fm10k_configure_rx - Configure Receive Unit after Reset
1154  * @interface: board private structure
1155  *
1156  * Configure the Rx unit of the MAC after a reset.
1157  **/
1158 static void fm10k_configure_rx(struct fm10k_intfc *interface)
1159 {
1160 	int i;
1161 
1162 	/* Configure SWPRI to PC map */
1163 	fm10k_configure_swpri_map(interface);
1164 
1165 	/* Configure RSS and DGLORT map */
1166 	fm10k_configure_dglort(interface);
1167 
1168 	/* Setup the HW Rx Head and Tail descriptor pointers */
1169 	for (i = 0; i < interface->num_rx_queues; i++)
1170 		fm10k_configure_rx_ring(interface, interface->rx_ring[i]);
1171 
1172 	/* possible poll here to verify that Rx rings are now enabled */
1173 }
1174 
1175 static void fm10k_napi_enable_all(struct fm10k_intfc *interface)
1176 {
1177 	struct fm10k_q_vector *q_vector;
1178 	int q_idx;
1179 
1180 	for (q_idx = 0; q_idx < interface->num_q_vectors; q_idx++) {
1181 		q_vector = interface->q_vector[q_idx];
1182 		napi_enable(&q_vector->napi);
1183 	}
1184 }
1185 
1186 static irqreturn_t fm10k_msix_clean_rings(int __always_unused irq, void *data)
1187 {
1188 	struct fm10k_q_vector *q_vector = data;
1189 
1190 	if (q_vector->rx.count || q_vector->tx.count)
1191 		napi_schedule_irqoff(&q_vector->napi);
1192 
1193 	return IRQ_HANDLED;
1194 }
1195 
1196 static irqreturn_t fm10k_msix_mbx_vf(int __always_unused irq, void *data)
1197 {
1198 	struct fm10k_intfc *interface = data;
1199 	struct fm10k_hw *hw = &interface->hw;
1200 	struct fm10k_mbx_info *mbx = &hw->mbx;
1201 
1202 	/* re-enable mailbox interrupt and indicate 20us delay */
1203 	fm10k_write_reg(hw, FM10K_VFITR(FM10K_MBX_VECTOR),
1204 			(FM10K_MBX_INT_DELAY >> hw->mac.itr_scale) |
1205 			FM10K_ITR_ENABLE);
1206 
1207 	/* service upstream mailbox */
1208 	if (fm10k_mbx_trylock(interface)) {
1209 		mbx->ops.process(hw, mbx);
1210 		fm10k_mbx_unlock(interface);
1211 	}
1212 
1213 	hw->mac.get_host_state = true;
1214 	fm10k_service_event_schedule(interface);
1215 
1216 	return IRQ_HANDLED;
1217 }
1218 
1219 #define FM10K_ERR_MSG(type) case (type): error = #type; break
1220 static void fm10k_handle_fault(struct fm10k_intfc *interface, int type,
1221 			       struct fm10k_fault *fault)
1222 {
1223 	struct pci_dev *pdev = interface->pdev;
1224 	struct fm10k_hw *hw = &interface->hw;
1225 	struct fm10k_iov_data *iov_data = interface->iov_data;
1226 	char *error;
1227 
1228 	switch (type) {
1229 	case FM10K_PCA_FAULT:
1230 		switch (fault->type) {
1231 		default:
1232 			error = "Unknown PCA error";
1233 			break;
1234 		FM10K_ERR_MSG(PCA_NO_FAULT);
1235 		FM10K_ERR_MSG(PCA_UNMAPPED_ADDR);
1236 		FM10K_ERR_MSG(PCA_BAD_QACCESS_PF);
1237 		FM10K_ERR_MSG(PCA_BAD_QACCESS_VF);
1238 		FM10K_ERR_MSG(PCA_MALICIOUS_REQ);
1239 		FM10K_ERR_MSG(PCA_POISONED_TLP);
1240 		FM10K_ERR_MSG(PCA_TLP_ABORT);
1241 		}
1242 		break;
1243 	case FM10K_THI_FAULT:
1244 		switch (fault->type) {
1245 		default:
1246 			error = "Unknown THI error";
1247 			break;
1248 		FM10K_ERR_MSG(THI_NO_FAULT);
1249 		FM10K_ERR_MSG(THI_MAL_DIS_Q_FAULT);
1250 		}
1251 		break;
1252 	case FM10K_FUM_FAULT:
1253 		switch (fault->type) {
1254 		default:
1255 			error = "Unknown FUM error";
1256 			break;
1257 		FM10K_ERR_MSG(FUM_NO_FAULT);
1258 		FM10K_ERR_MSG(FUM_UNMAPPED_ADDR);
1259 		FM10K_ERR_MSG(FUM_BAD_VF_QACCESS);
1260 		FM10K_ERR_MSG(FUM_ADD_DECODE_ERR);
1261 		FM10K_ERR_MSG(FUM_RO_ERROR);
1262 		FM10K_ERR_MSG(FUM_QPRC_CRC_ERROR);
1263 		FM10K_ERR_MSG(FUM_CSR_TIMEOUT);
1264 		FM10K_ERR_MSG(FUM_INVALID_TYPE);
1265 		FM10K_ERR_MSG(FUM_INVALID_LENGTH);
1266 		FM10K_ERR_MSG(FUM_INVALID_BE);
1267 		FM10K_ERR_MSG(FUM_INVALID_ALIGN);
1268 		}
1269 		break;
1270 	default:
1271 		error = "Undocumented fault";
1272 		break;
1273 	}
1274 
1275 	dev_warn(&pdev->dev,
1276 		 "%s Address: 0x%llx SpecInfo: 0x%x Func: %02x.%0x\n",
1277 		 error, fault->address, fault->specinfo,
1278 		 PCI_SLOT(fault->func), PCI_FUNC(fault->func));
1279 
1280 	/* For VF faults, clear out the respective LPORT, reset the queue
1281 	 * resources, and then reconnect to the mailbox. This allows the
1282 	 * VF in question to resume behavior. For transient faults that are
1283 	 * the result of non-malicious behavior this will log the fault and
1284 	 * allow the VF to resume functionality. Obviously for malicious VFs
1285 	 * they will be able to attempt malicious behavior again. In this
1286 	 * case, the system administrator will need to step in and manually
1287 	 * remove or disable the VF in question.
1288 	 */
1289 	if (fault->func && iov_data) {
1290 		int vf = fault->func - 1;
1291 		struct fm10k_vf_info *vf_info = &iov_data->vf_info[vf];
1292 
1293 		hw->iov.ops.reset_lport(hw, vf_info);
1294 		hw->iov.ops.reset_resources(hw, vf_info);
1295 
1296 		/* reset_lport disables the VF, so re-enable it */
1297 		hw->iov.ops.set_lport(hw, vf_info, vf,
1298 				      FM10K_VF_FLAG_MULTI_CAPABLE);
1299 
1300 		/* reset_resources will disconnect from the mbx  */
1301 		vf_info->mbx.ops.connect(hw, &vf_info->mbx);
1302 	}
1303 }
1304 
1305 static void fm10k_report_fault(struct fm10k_intfc *interface, u32 eicr)
1306 {
1307 	struct fm10k_hw *hw = &interface->hw;
1308 	struct fm10k_fault fault = { 0 };
1309 	int type, err;
1310 
1311 	for (eicr &= FM10K_EICR_FAULT_MASK, type = FM10K_PCA_FAULT;
1312 	     eicr;
1313 	     eicr >>= 1, type += FM10K_FAULT_SIZE) {
1314 		/* only check if there is an error reported */
1315 		if (!(eicr & 0x1))
1316 			continue;
1317 
1318 		/* retrieve fault info */
1319 		err = hw->mac.ops.get_fault(hw, type, &fault);
1320 		if (err) {
1321 			dev_err(&interface->pdev->dev,
1322 				"error reading fault\n");
1323 			continue;
1324 		}
1325 
1326 		fm10k_handle_fault(interface, type, &fault);
1327 	}
1328 }
1329 
1330 static void fm10k_reset_drop_on_empty(struct fm10k_intfc *interface, u32 eicr)
1331 {
1332 	struct fm10k_hw *hw = &interface->hw;
1333 	const u32 rxdctl = FM10K_RXDCTL_WRITE_BACK_MIN_DELAY;
1334 	u32 maxholdq;
1335 	int q;
1336 
1337 	if (!(eicr & FM10K_EICR_MAXHOLDTIME))
1338 		return;
1339 
1340 	maxholdq = fm10k_read_reg(hw, FM10K_MAXHOLDQ(7));
1341 	if (maxholdq)
1342 		fm10k_write_reg(hw, FM10K_MAXHOLDQ(7), maxholdq);
1343 	for (q = 255;;) {
1344 		if (maxholdq & BIT(31)) {
1345 			if (q < FM10K_MAX_QUEUES_PF) {
1346 				interface->rx_overrun_pf++;
1347 				fm10k_write_reg(hw, FM10K_RXDCTL(q), rxdctl);
1348 			} else {
1349 				interface->rx_overrun_vf++;
1350 			}
1351 		}
1352 
1353 		maxholdq *= 2;
1354 		if (!maxholdq)
1355 			q &= ~(32 - 1);
1356 
1357 		if (!q)
1358 			break;
1359 
1360 		if (q-- % 32)
1361 			continue;
1362 
1363 		maxholdq = fm10k_read_reg(hw, FM10K_MAXHOLDQ(q / 32));
1364 		if (maxholdq)
1365 			fm10k_write_reg(hw, FM10K_MAXHOLDQ(q / 32), maxholdq);
1366 	}
1367 }
1368 
1369 static irqreturn_t fm10k_msix_mbx_pf(int __always_unused irq, void *data)
1370 {
1371 	struct fm10k_intfc *interface = data;
1372 	struct fm10k_hw *hw = &interface->hw;
1373 	struct fm10k_mbx_info *mbx = &hw->mbx;
1374 	u32 eicr;
1375 	s32 err = 0;
1376 
1377 	/* unmask any set bits related to this interrupt */
1378 	eicr = fm10k_read_reg(hw, FM10K_EICR);
1379 	fm10k_write_reg(hw, FM10K_EICR, eicr & (FM10K_EICR_MAILBOX |
1380 						FM10K_EICR_SWITCHREADY |
1381 						FM10K_EICR_SWITCHNOTREADY));
1382 
1383 	/* report any faults found to the message log */
1384 	fm10k_report_fault(interface, eicr);
1385 
1386 	/* reset any queues disabled due to receiver overrun */
1387 	fm10k_reset_drop_on_empty(interface, eicr);
1388 
1389 	/* service mailboxes */
1390 	if (fm10k_mbx_trylock(interface)) {
1391 		err = mbx->ops.process(hw, mbx);
1392 		/* handle VFLRE events */
1393 		fm10k_iov_event(interface);
1394 		fm10k_mbx_unlock(interface);
1395 	}
1396 
1397 	if (err == FM10K_ERR_RESET_REQUESTED)
1398 		set_bit(FM10K_FLAG_RESET_REQUESTED, interface->flags);
1399 
1400 	/* if switch toggled state we should reset GLORTs */
1401 	if (eicr & FM10K_EICR_SWITCHNOTREADY) {
1402 		/* force link down for at least 4 seconds */
1403 		interface->link_down_event = jiffies + (4 * HZ);
1404 		set_bit(__FM10K_LINK_DOWN, interface->state);
1405 
1406 		/* reset dglort_map back to no config */
1407 		hw->mac.dglort_map = FM10K_DGLORTMAP_NONE;
1408 	}
1409 
1410 	/* we should validate host state after interrupt event */
1411 	hw->mac.get_host_state = true;
1412 
1413 	/* validate host state, and handle VF mailboxes in the service task */
1414 	fm10k_service_event_schedule(interface);
1415 
1416 	/* re-enable mailbox interrupt and indicate 20us delay */
1417 	fm10k_write_reg(hw, FM10K_ITR(FM10K_MBX_VECTOR),
1418 			(FM10K_MBX_INT_DELAY >> hw->mac.itr_scale) |
1419 			FM10K_ITR_ENABLE);
1420 
1421 	return IRQ_HANDLED;
1422 }
1423 
1424 void fm10k_mbx_free_irq(struct fm10k_intfc *interface)
1425 {
1426 	struct fm10k_hw *hw = &interface->hw;
1427 	struct msix_entry *entry;
1428 	int itr_reg;
1429 
1430 	/* no mailbox IRQ to free if MSI-X is not enabled */
1431 	if (!interface->msix_entries)
1432 		return;
1433 
1434 	entry = &interface->msix_entries[FM10K_MBX_VECTOR];
1435 
1436 	/* disconnect the mailbox */
1437 	hw->mbx.ops.disconnect(hw, &hw->mbx);
1438 
1439 	/* disable Mailbox cause */
1440 	if (hw->mac.type == fm10k_mac_pf) {
1441 		fm10k_write_reg(hw, FM10K_EIMR,
1442 				FM10K_EIMR_DISABLE(PCA_FAULT) |
1443 				FM10K_EIMR_DISABLE(FUM_FAULT) |
1444 				FM10K_EIMR_DISABLE(MAILBOX) |
1445 				FM10K_EIMR_DISABLE(SWITCHREADY) |
1446 				FM10K_EIMR_DISABLE(SWITCHNOTREADY) |
1447 				FM10K_EIMR_DISABLE(SRAMERROR) |
1448 				FM10K_EIMR_DISABLE(VFLR) |
1449 				FM10K_EIMR_DISABLE(MAXHOLDTIME));
1450 		itr_reg = FM10K_ITR(FM10K_MBX_VECTOR);
1451 	} else {
1452 		itr_reg = FM10K_VFITR(FM10K_MBX_VECTOR);
1453 	}
1454 
1455 	fm10k_write_reg(hw, itr_reg, FM10K_ITR_MASK_SET);
1456 
1457 	free_irq(entry->vector, interface);
1458 }
1459 
1460 static s32 fm10k_mbx_mac_addr(struct fm10k_hw *hw, u32 **results,
1461 			      struct fm10k_mbx_info *mbx)
1462 {
1463 	bool vlan_override = hw->mac.vlan_override;
1464 	u16 default_vid = hw->mac.default_vid;
1465 	struct fm10k_intfc *interface;
1466 	s32 err;
1467 
1468 	err = fm10k_msg_mac_vlan_vf(hw, results, mbx);
1469 	if (err)
1470 		return err;
1471 
1472 	interface = container_of(hw, struct fm10k_intfc, hw);
1473 
1474 	/* MAC was changed so we need reset */
1475 	if (is_valid_ether_addr(hw->mac.perm_addr) &&
1476 	    !ether_addr_equal(hw->mac.perm_addr, hw->mac.addr))
1477 		set_bit(FM10K_FLAG_RESET_REQUESTED, interface->flags);
1478 
1479 	/* VLAN override was changed, or default VLAN changed */
1480 	if ((vlan_override != hw->mac.vlan_override) ||
1481 	    (default_vid != hw->mac.default_vid))
1482 		set_bit(FM10K_FLAG_RESET_REQUESTED, interface->flags);
1483 
1484 	return 0;
1485 }
1486 
1487 /* generic error handler for mailbox issues */
1488 static s32 fm10k_mbx_error(struct fm10k_hw *hw, u32 **results,
1489 			   struct fm10k_mbx_info __always_unused *mbx)
1490 {
1491 	struct fm10k_intfc *interface;
1492 	struct pci_dev *pdev;
1493 
1494 	interface = container_of(hw, struct fm10k_intfc, hw);
1495 	pdev = interface->pdev;
1496 
1497 	dev_err(&pdev->dev, "Unknown message ID %u\n",
1498 		**results & FM10K_TLV_ID_MASK);
1499 
1500 	return 0;
1501 }
1502 
1503 static const struct fm10k_msg_data vf_mbx_data[] = {
1504 	FM10K_TLV_MSG_TEST_HANDLER(fm10k_tlv_msg_test),
1505 	FM10K_VF_MSG_MAC_VLAN_HANDLER(fm10k_mbx_mac_addr),
1506 	FM10K_VF_MSG_LPORT_STATE_HANDLER(fm10k_msg_lport_state_vf),
1507 	FM10K_TLV_MSG_ERROR_HANDLER(fm10k_mbx_error),
1508 };
1509 
1510 static int fm10k_mbx_request_irq_vf(struct fm10k_intfc *interface)
1511 {
1512 	struct msix_entry *entry = &interface->msix_entries[FM10K_MBX_VECTOR];
1513 	struct net_device *dev = interface->netdev;
1514 	struct fm10k_hw *hw = &interface->hw;
1515 	int err;
1516 
1517 	/* Use timer0 for interrupt moderation on the mailbox */
1518 	u32 itr = entry->entry | FM10K_INT_MAP_TIMER0;
1519 
1520 	/* register mailbox handlers */
1521 	err = hw->mbx.ops.register_handlers(&hw->mbx, vf_mbx_data);
1522 	if (err)
1523 		return err;
1524 
1525 	/* request the IRQ */
1526 	err = request_irq(entry->vector, fm10k_msix_mbx_vf, 0,
1527 			  dev->name, interface);
1528 	if (err) {
1529 		netif_err(interface, probe, dev,
1530 			  "request_irq for msix_mbx failed: %d\n", err);
1531 		return err;
1532 	}
1533 
1534 	/* map all of the interrupt sources */
1535 	fm10k_write_reg(hw, FM10K_VFINT_MAP, itr);
1536 
1537 	/* enable interrupt */
1538 	fm10k_write_reg(hw, FM10K_VFITR(entry->entry), FM10K_ITR_ENABLE);
1539 
1540 	return 0;
1541 }
1542 
1543 static s32 fm10k_lport_map(struct fm10k_hw *hw, u32 **results,
1544 			   struct fm10k_mbx_info *mbx)
1545 {
1546 	struct fm10k_intfc *interface;
1547 	u32 dglort_map = hw->mac.dglort_map;
1548 	s32 err;
1549 
1550 	interface = container_of(hw, struct fm10k_intfc, hw);
1551 
1552 	err = fm10k_msg_err_pf(hw, results, mbx);
1553 	if (!err && hw->swapi.status) {
1554 		/* force link down for a reasonable delay */
1555 		interface->link_down_event = jiffies + (2 * HZ);
1556 		set_bit(__FM10K_LINK_DOWN, interface->state);
1557 
1558 		/* reset dglort_map back to no config */
1559 		hw->mac.dglort_map = FM10K_DGLORTMAP_NONE;
1560 
1561 		fm10k_service_event_schedule(interface);
1562 
1563 		/* prevent overloading kernel message buffer */
1564 		if (interface->lport_map_failed)
1565 			return 0;
1566 
1567 		interface->lport_map_failed = true;
1568 
1569 		if (hw->swapi.status == FM10K_MSG_ERR_PEP_NOT_SCHEDULED)
1570 			dev_warn(&interface->pdev->dev,
1571 				 "cannot obtain link because the host interface is configured for a PCIe host interface bandwidth of zero\n");
1572 		dev_warn(&interface->pdev->dev,
1573 			 "request logical port map failed: %d\n",
1574 			 hw->swapi.status);
1575 
1576 		return 0;
1577 	}
1578 
1579 	err = fm10k_msg_lport_map_pf(hw, results, mbx);
1580 	if (err)
1581 		return err;
1582 
1583 	interface->lport_map_failed = false;
1584 
1585 	/* we need to reset if port count was just updated */
1586 	if (dglort_map != hw->mac.dglort_map)
1587 		set_bit(FM10K_FLAG_RESET_REQUESTED, interface->flags);
1588 
1589 	return 0;
1590 }
1591 
1592 static s32 fm10k_update_pvid(struct fm10k_hw *hw, u32 **results,
1593 			     struct fm10k_mbx_info __always_unused *mbx)
1594 {
1595 	struct fm10k_intfc *interface;
1596 	u16 glort, pvid;
1597 	u32 pvid_update;
1598 	s32 err;
1599 
1600 	err = fm10k_tlv_attr_get_u32(results[FM10K_PF_ATTR_ID_UPDATE_PVID],
1601 				     &pvid_update);
1602 	if (err)
1603 		return err;
1604 
1605 	/* extract values from the pvid update */
1606 	glort = FM10K_MSG_HDR_FIELD_GET(pvid_update, UPDATE_PVID_GLORT);
1607 	pvid = FM10K_MSG_HDR_FIELD_GET(pvid_update, UPDATE_PVID_PVID);
1608 
1609 	/* if glort is not valid return error */
1610 	if (!fm10k_glort_valid_pf(hw, glort))
1611 		return FM10K_ERR_PARAM;
1612 
1613 	/* verify VLAN ID is valid */
1614 	if (pvid >= FM10K_VLAN_TABLE_VID_MAX)
1615 		return FM10K_ERR_PARAM;
1616 
1617 	interface = container_of(hw, struct fm10k_intfc, hw);
1618 
1619 	/* check to see if this belongs to one of the VFs */
1620 	err = fm10k_iov_update_pvid(interface, glort, pvid);
1621 	if (!err)
1622 		return 0;
1623 
1624 	/* we need to reset if default VLAN was just updated */
1625 	if (pvid != hw->mac.default_vid)
1626 		set_bit(FM10K_FLAG_RESET_REQUESTED, interface->flags);
1627 
1628 	hw->mac.default_vid = pvid;
1629 
1630 	return 0;
1631 }
1632 
1633 static const struct fm10k_msg_data pf_mbx_data[] = {
1634 	FM10K_PF_MSG_ERR_HANDLER(XCAST_MODES, fm10k_msg_err_pf),
1635 	FM10K_PF_MSG_ERR_HANDLER(UPDATE_MAC_FWD_RULE, fm10k_msg_err_pf),
1636 	FM10K_PF_MSG_LPORT_MAP_HANDLER(fm10k_lport_map),
1637 	FM10K_PF_MSG_ERR_HANDLER(LPORT_CREATE, fm10k_msg_err_pf),
1638 	FM10K_PF_MSG_ERR_HANDLER(LPORT_DELETE, fm10k_msg_err_pf),
1639 	FM10K_PF_MSG_UPDATE_PVID_HANDLER(fm10k_update_pvid),
1640 	FM10K_TLV_MSG_ERROR_HANDLER(fm10k_mbx_error),
1641 };
1642 
1643 static int fm10k_mbx_request_irq_pf(struct fm10k_intfc *interface)
1644 {
1645 	struct msix_entry *entry = &interface->msix_entries[FM10K_MBX_VECTOR];
1646 	struct net_device *dev = interface->netdev;
1647 	struct fm10k_hw *hw = &interface->hw;
1648 	int err;
1649 
1650 	/* Use timer0 for interrupt moderation on the mailbox */
1651 	u32 mbx_itr = entry->entry | FM10K_INT_MAP_TIMER0;
1652 	u32 other_itr = entry->entry | FM10K_INT_MAP_IMMEDIATE;
1653 
1654 	/* register mailbox handlers */
1655 	err = hw->mbx.ops.register_handlers(&hw->mbx, pf_mbx_data);
1656 	if (err)
1657 		return err;
1658 
1659 	/* request the IRQ */
1660 	err = request_irq(entry->vector, fm10k_msix_mbx_pf, 0,
1661 			  dev->name, interface);
1662 	if (err) {
1663 		netif_err(interface, probe, dev,
1664 			  "request_irq for msix_mbx failed: %d\n", err);
1665 		return err;
1666 	}
1667 
1668 	/* Enable interrupts w/ no moderation for "other" interrupts */
1669 	fm10k_write_reg(hw, FM10K_INT_MAP(fm10k_int_pcie_fault), other_itr);
1670 	fm10k_write_reg(hw, FM10K_INT_MAP(fm10k_int_switch_up_down), other_itr);
1671 	fm10k_write_reg(hw, FM10K_INT_MAP(fm10k_int_sram), other_itr);
1672 	fm10k_write_reg(hw, FM10K_INT_MAP(fm10k_int_max_hold_time), other_itr);
1673 	fm10k_write_reg(hw, FM10K_INT_MAP(fm10k_int_vflr), other_itr);
1674 
1675 	/* Enable interrupts w/ moderation for mailbox */
1676 	fm10k_write_reg(hw, FM10K_INT_MAP(fm10k_int_mailbox), mbx_itr);
1677 
1678 	/* Enable individual interrupt causes */
1679 	fm10k_write_reg(hw, FM10K_EIMR, FM10K_EIMR_ENABLE(PCA_FAULT) |
1680 					FM10K_EIMR_ENABLE(FUM_FAULT) |
1681 					FM10K_EIMR_ENABLE(MAILBOX) |
1682 					FM10K_EIMR_ENABLE(SWITCHREADY) |
1683 					FM10K_EIMR_ENABLE(SWITCHNOTREADY) |
1684 					FM10K_EIMR_ENABLE(SRAMERROR) |
1685 					FM10K_EIMR_ENABLE(VFLR) |
1686 					FM10K_EIMR_ENABLE(MAXHOLDTIME));
1687 
1688 	/* enable interrupt */
1689 	fm10k_write_reg(hw, FM10K_ITR(entry->entry), FM10K_ITR_ENABLE);
1690 
1691 	return 0;
1692 }
1693 
1694 int fm10k_mbx_request_irq(struct fm10k_intfc *interface)
1695 {
1696 	struct fm10k_hw *hw = &interface->hw;
1697 	int err;
1698 
1699 	/* enable Mailbox cause */
1700 	if (hw->mac.type == fm10k_mac_pf)
1701 		err = fm10k_mbx_request_irq_pf(interface);
1702 	else
1703 		err = fm10k_mbx_request_irq_vf(interface);
1704 	if (err)
1705 		return err;
1706 
1707 	/* connect mailbox */
1708 	err = hw->mbx.ops.connect(hw, &hw->mbx);
1709 
1710 	/* if the mailbox failed to connect, then free IRQ */
1711 	if (err)
1712 		fm10k_mbx_free_irq(interface);
1713 
1714 	return err;
1715 }
1716 
1717 /**
1718  * fm10k_qv_free_irq - release interrupts associated with queue vectors
1719  * @interface: board private structure
1720  *
1721  * Release all interrupts associated with this interface
1722  **/
1723 void fm10k_qv_free_irq(struct fm10k_intfc *interface)
1724 {
1725 	int vector = interface->num_q_vectors;
1726 	struct msix_entry *entry;
1727 
1728 	entry = &interface->msix_entries[NON_Q_VECTORS + vector];
1729 
1730 	while (vector) {
1731 		struct fm10k_q_vector *q_vector;
1732 
1733 		vector--;
1734 		entry--;
1735 		q_vector = interface->q_vector[vector];
1736 
1737 		if (!q_vector->tx.count && !q_vector->rx.count)
1738 			continue;
1739 
1740 		/* clear the affinity_mask in the IRQ descriptor */
1741 		irq_set_affinity_hint(entry->vector, NULL);
1742 
1743 		/* disable interrupts */
1744 		writel(FM10K_ITR_MASK_SET, q_vector->itr);
1745 
1746 		free_irq(entry->vector, q_vector);
1747 	}
1748 }
1749 
1750 /**
1751  * fm10k_qv_request_irq - initialize interrupts for queue vectors
1752  * @interface: board private structure
1753  *
1754  * Attempts to configure interrupts using the best available
1755  * capabilities of the hardware and kernel.
1756  **/
1757 int fm10k_qv_request_irq(struct fm10k_intfc *interface)
1758 {
1759 	struct net_device *dev = interface->netdev;
1760 	struct fm10k_hw *hw = &interface->hw;
1761 	struct msix_entry *entry;
1762 	unsigned int ri = 0, ti = 0;
1763 	int vector, err;
1764 
1765 	entry = &interface->msix_entries[NON_Q_VECTORS];
1766 
1767 	for (vector = 0; vector < interface->num_q_vectors; vector++) {
1768 		struct fm10k_q_vector *q_vector = interface->q_vector[vector];
1769 
1770 		/* name the vector */
1771 		if (q_vector->tx.count && q_vector->rx.count) {
1772 			snprintf(q_vector->name, sizeof(q_vector->name),
1773 				 "%s-TxRx-%u", dev->name, ri++);
1774 			ti++;
1775 		} else if (q_vector->rx.count) {
1776 			snprintf(q_vector->name, sizeof(q_vector->name),
1777 				 "%s-rx-%u", dev->name, ri++);
1778 		} else if (q_vector->tx.count) {
1779 			snprintf(q_vector->name, sizeof(q_vector->name),
1780 				 "%s-tx-%u", dev->name, ti++);
1781 		} else {
1782 			/* skip this unused q_vector */
1783 			continue;
1784 		}
1785 
1786 		/* Assign ITR register to q_vector */
1787 		q_vector->itr = (hw->mac.type == fm10k_mac_pf) ?
1788 				&interface->uc_addr[FM10K_ITR(entry->entry)] :
1789 				&interface->uc_addr[FM10K_VFITR(entry->entry)];
1790 
1791 		/* request the IRQ */
1792 		err = request_irq(entry->vector, &fm10k_msix_clean_rings, 0,
1793 				  q_vector->name, q_vector);
1794 		if (err) {
1795 			netif_err(interface, probe, dev,
1796 				  "request_irq failed for MSIX interrupt Error: %d\n",
1797 				  err);
1798 			goto err_out;
1799 		}
1800 
1801 		/* assign the mask for this irq */
1802 		irq_set_affinity_hint(entry->vector, &q_vector->affinity_mask);
1803 
1804 		/* Enable q_vector */
1805 		writel(FM10K_ITR_ENABLE, q_vector->itr);
1806 
1807 		entry++;
1808 	}
1809 
1810 	return 0;
1811 
1812 err_out:
1813 	/* wind through the ring freeing all entries and vectors */
1814 	while (vector) {
1815 		struct fm10k_q_vector *q_vector;
1816 
1817 		entry--;
1818 		vector--;
1819 		q_vector = interface->q_vector[vector];
1820 
1821 		if (!q_vector->tx.count && !q_vector->rx.count)
1822 			continue;
1823 
1824 		/* clear the affinity_mask in the IRQ descriptor */
1825 		irq_set_affinity_hint(entry->vector, NULL);
1826 
1827 		/* disable interrupts */
1828 		writel(FM10K_ITR_MASK_SET, q_vector->itr);
1829 
1830 		free_irq(entry->vector, q_vector);
1831 	}
1832 
1833 	return err;
1834 }
1835 
1836 void fm10k_up(struct fm10k_intfc *interface)
1837 {
1838 	struct fm10k_hw *hw = &interface->hw;
1839 
1840 	/* Enable Tx/Rx DMA */
1841 	hw->mac.ops.start_hw(hw);
1842 
1843 	/* configure Tx descriptor rings */
1844 	fm10k_configure_tx(interface);
1845 
1846 	/* configure Rx descriptor rings */
1847 	fm10k_configure_rx(interface);
1848 
1849 	/* configure interrupts */
1850 	hw->mac.ops.update_int_moderator(hw);
1851 
1852 	/* enable statistics capture again */
1853 	clear_bit(__FM10K_UPDATING_STATS, interface->state);
1854 
1855 	/* clear down bit to indicate we are ready to go */
1856 	clear_bit(__FM10K_DOWN, interface->state);
1857 
1858 	/* enable polling cleanups */
1859 	fm10k_napi_enable_all(interface);
1860 
1861 	/* re-establish Rx filters */
1862 	fm10k_restore_rx_state(interface);
1863 
1864 	/* enable transmits */
1865 	netif_tx_start_all_queues(interface->netdev);
1866 
1867 	/* kick off the service timer now */
1868 	hw->mac.get_host_state = true;
1869 	mod_timer(&interface->service_timer, jiffies);
1870 }
1871 
1872 static void fm10k_napi_disable_all(struct fm10k_intfc *interface)
1873 {
1874 	struct fm10k_q_vector *q_vector;
1875 	int q_idx;
1876 
1877 	for (q_idx = 0; q_idx < interface->num_q_vectors; q_idx++) {
1878 		q_vector = interface->q_vector[q_idx];
1879 		napi_disable(&q_vector->napi);
1880 	}
1881 }
1882 
1883 void fm10k_down(struct fm10k_intfc *interface)
1884 {
1885 	struct net_device *netdev = interface->netdev;
1886 	struct fm10k_hw *hw = &interface->hw;
1887 	int err, i = 0, count = 0;
1888 
1889 	/* signal that we are down to the interrupt handler and service task */
1890 	if (test_and_set_bit(__FM10K_DOWN, interface->state))
1891 		return;
1892 
1893 	/* call carrier off first to avoid false dev_watchdog timeouts */
1894 	netif_carrier_off(netdev);
1895 
1896 	/* disable transmits */
1897 	netif_tx_stop_all_queues(netdev);
1898 	netif_tx_disable(netdev);
1899 
1900 	/* reset Rx filters */
1901 	fm10k_reset_rx_state(interface);
1902 
1903 	/* disable polling routines */
1904 	fm10k_napi_disable_all(interface);
1905 
1906 	/* capture stats one last time before stopping interface */
1907 	fm10k_update_stats(interface);
1908 
1909 	/* prevent updating statistics while we're down */
1910 	while (test_and_set_bit(__FM10K_UPDATING_STATS, interface->state))
1911 		usleep_range(1000, 2000);
1912 
1913 	/* skip waiting for TX DMA if we lost PCIe link */
1914 	if (FM10K_REMOVED(hw->hw_addr))
1915 		goto skip_tx_dma_drain;
1916 
1917 	/* In some rare circumstances it can take a while for Tx queues to
1918 	 * quiesce and be fully disabled. Attempt to .stop_hw() first, and
1919 	 * then if we get ERR_REQUESTS_PENDING, go ahead and wait in a loop
1920 	 * until the Tx queues have emptied, or until a number of retries. If
1921 	 * we fail to clear within the retry loop, we will issue a warning
1922 	 * indicating that Tx DMA is probably hung. Note this means we call
1923 	 * .stop_hw() twice but this shouldn't cause any problems.
1924 	 */
1925 	err = hw->mac.ops.stop_hw(hw);
1926 	if (err != FM10K_ERR_REQUESTS_PENDING)
1927 		goto skip_tx_dma_drain;
1928 
1929 #define TX_DMA_DRAIN_RETRIES 25
1930 	for (count = 0; count < TX_DMA_DRAIN_RETRIES; count++) {
1931 		usleep_range(10000, 20000);
1932 
1933 		/* start checking at the last ring to have pending Tx */
1934 		for (; i < interface->num_tx_queues; i++)
1935 			if (fm10k_get_tx_pending(interface->tx_ring[i], false))
1936 				break;
1937 
1938 		/* if all the queues are drained, we can break now */
1939 		if (i == interface->num_tx_queues)
1940 			break;
1941 	}
1942 
1943 	if (count >= TX_DMA_DRAIN_RETRIES)
1944 		dev_err(&interface->pdev->dev,
1945 			"Tx queues failed to drain after %d tries. Tx DMA is probably hung.\n",
1946 			count);
1947 skip_tx_dma_drain:
1948 	/* Disable DMA engine for Tx/Rx */
1949 	err = hw->mac.ops.stop_hw(hw);
1950 	if (err == FM10K_ERR_REQUESTS_PENDING)
1951 		dev_err(&interface->pdev->dev,
1952 			"due to pending requests hw was not shut down gracefully\n");
1953 	else if (err)
1954 		dev_err(&interface->pdev->dev, "stop_hw failed: %d\n", err);
1955 
1956 	/* free any buffers still on the rings */
1957 	fm10k_clean_all_tx_rings(interface);
1958 	fm10k_clean_all_rx_rings(interface);
1959 }
1960 
1961 /**
1962  * fm10k_sw_init - Initialize general software structures
1963  * @interface: host interface private structure to initialize
1964  * @ent: PCI device ID entry
1965  *
1966  * fm10k_sw_init initializes the interface private data structure.
1967  * Fields are initialized based on PCI device information and
1968  * OS network device settings (MTU size).
1969  **/
1970 static int fm10k_sw_init(struct fm10k_intfc *interface,
1971 			 const struct pci_device_id *ent)
1972 {
1973 	const struct fm10k_info *fi = fm10k_info_tbl[ent->driver_data];
1974 	struct fm10k_hw *hw = &interface->hw;
1975 	struct pci_dev *pdev = interface->pdev;
1976 	struct net_device *netdev = interface->netdev;
1977 	u32 rss_key[FM10K_RSSRK_SIZE];
1978 	unsigned int rss;
1979 	int err;
1980 
1981 	/* initialize back pointer */
1982 	hw->back = interface;
1983 	hw->hw_addr = interface->uc_addr;
1984 
1985 	/* PCI config space info */
1986 	hw->vendor_id = pdev->vendor;
1987 	hw->device_id = pdev->device;
1988 	hw->revision_id = pdev->revision;
1989 	hw->subsystem_vendor_id = pdev->subsystem_vendor;
1990 	hw->subsystem_device_id = pdev->subsystem_device;
1991 
1992 	/* Setup hw api */
1993 	memcpy(&hw->mac.ops, fi->mac_ops, sizeof(hw->mac.ops));
1994 	hw->mac.type = fi->mac;
1995 
1996 	/* Setup IOV handlers */
1997 	if (fi->iov_ops)
1998 		memcpy(&hw->iov.ops, fi->iov_ops, sizeof(hw->iov.ops));
1999 
2000 	/* Set common capability flags and settings */
2001 	rss = min_t(int, FM10K_MAX_RSS_INDICES, num_online_cpus());
2002 	interface->ring_feature[RING_F_RSS].limit = rss;
2003 	fi->get_invariants(hw);
2004 
2005 	/* pick up the PCIe bus settings for reporting later */
2006 	if (hw->mac.ops.get_bus_info)
2007 		hw->mac.ops.get_bus_info(hw);
2008 
2009 	/* limit the usable DMA range */
2010 	if (hw->mac.ops.set_dma_mask)
2011 		hw->mac.ops.set_dma_mask(hw, dma_get_mask(&pdev->dev));
2012 
2013 	/* update netdev with DMA restrictions */
2014 	if (dma_get_mask(&pdev->dev) > DMA_BIT_MASK(32)) {
2015 		netdev->features |= NETIF_F_HIGHDMA;
2016 		netdev->vlan_features |= NETIF_F_HIGHDMA;
2017 	}
2018 
2019 	/* reset and initialize the hardware so it is in a known state */
2020 	err = hw->mac.ops.reset_hw(hw);
2021 	if (err) {
2022 		dev_err(&pdev->dev, "reset_hw failed: %d\n", err);
2023 		return err;
2024 	}
2025 
2026 	err = hw->mac.ops.init_hw(hw);
2027 	if (err) {
2028 		dev_err(&pdev->dev, "init_hw failed: %d\n", err);
2029 		return err;
2030 	}
2031 
2032 	/* initialize hardware statistics */
2033 	hw->mac.ops.update_hw_stats(hw, &interface->stats);
2034 
2035 	/* Set upper limit on IOV VFs that can be allocated */
2036 	pci_sriov_set_totalvfs(pdev, hw->iov.total_vfs);
2037 
2038 	/* Start with random Ethernet address */
2039 	eth_random_addr(hw->mac.addr);
2040 
2041 	/* Initialize MAC address from hardware */
2042 	err = hw->mac.ops.read_mac_addr(hw);
2043 	if (err) {
2044 		dev_warn(&pdev->dev,
2045 			 "Failed to obtain MAC address defaulting to random\n");
2046 		/* tag address assignment as random */
2047 		netdev->addr_assign_type |= NET_ADDR_RANDOM;
2048 	}
2049 
2050 	ether_addr_copy(netdev->dev_addr, hw->mac.addr);
2051 	ether_addr_copy(netdev->perm_addr, hw->mac.addr);
2052 
2053 	if (!is_valid_ether_addr(netdev->perm_addr)) {
2054 		dev_err(&pdev->dev, "Invalid MAC Address\n");
2055 		return -EIO;
2056 	}
2057 
2058 	/* initialize DCBNL interface */
2059 	fm10k_dcbnl_set_ops(netdev);
2060 
2061 	/* set default ring sizes */
2062 	interface->tx_ring_count = FM10K_DEFAULT_TXD;
2063 	interface->rx_ring_count = FM10K_DEFAULT_RXD;
2064 
2065 	/* set default interrupt moderation */
2066 	interface->tx_itr = FM10K_TX_ITR_DEFAULT;
2067 	interface->rx_itr = FM10K_ITR_ADAPTIVE | FM10K_RX_ITR_DEFAULT;
2068 
2069 	/* Initialize the MAC/VLAN queue */
2070 	INIT_LIST_HEAD(&interface->macvlan_requests);
2071 
2072 	netdev_rss_key_fill(rss_key, sizeof(rss_key));
2073 	memcpy(interface->rssrk, rss_key, sizeof(rss_key));
2074 
2075 	/* Initialize the mailbox lock */
2076 	spin_lock_init(&interface->mbx_lock);
2077 	spin_lock_init(&interface->macvlan_lock);
2078 
2079 	/* Start off interface as being down */
2080 	set_bit(__FM10K_DOWN, interface->state);
2081 	set_bit(__FM10K_UPDATING_STATS, interface->state);
2082 
2083 	return 0;
2084 }
2085 
2086 /**
2087  * fm10k_probe - Device Initialization Routine
2088  * @pdev: PCI device information struct
2089  * @ent: entry in fm10k_pci_tbl
2090  *
2091  * Returns 0 on success, negative on failure
2092  *
2093  * fm10k_probe initializes an interface identified by a pci_dev structure.
2094  * The OS initialization, configuring of the interface private structure,
2095  * and a hardware reset occur.
2096  **/
2097 static int fm10k_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
2098 {
2099 	struct net_device *netdev;
2100 	struct fm10k_intfc *interface;
2101 	int err;
2102 
2103 	if (pdev->error_state != pci_channel_io_normal) {
2104 		dev_err(&pdev->dev,
2105 			"PCI device still in an error state. Unable to load...\n");
2106 		return -EIO;
2107 	}
2108 
2109 	err = pci_enable_device_mem(pdev);
2110 	if (err) {
2111 		dev_err(&pdev->dev,
2112 			"PCI enable device failed: %d\n", err);
2113 		return err;
2114 	}
2115 
2116 	err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(48));
2117 	if (err)
2118 		err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
2119 	if (err) {
2120 		dev_err(&pdev->dev,
2121 			"DMA configuration failed: %d\n", err);
2122 		goto err_dma;
2123 	}
2124 
2125 	err = pci_request_mem_regions(pdev, fm10k_driver_name);
2126 	if (err) {
2127 		dev_err(&pdev->dev,
2128 			"pci_request_selected_regions failed: %d\n", err);
2129 		goto err_pci_reg;
2130 	}
2131 
2132 	pci_enable_pcie_error_reporting(pdev);
2133 
2134 	pci_set_master(pdev);
2135 	pci_save_state(pdev);
2136 
2137 	netdev = fm10k_alloc_netdev(fm10k_info_tbl[ent->driver_data]);
2138 	if (!netdev) {
2139 		err = -ENOMEM;
2140 		goto err_alloc_netdev;
2141 	}
2142 
2143 	SET_NETDEV_DEV(netdev, &pdev->dev);
2144 
2145 	interface = netdev_priv(netdev);
2146 	pci_set_drvdata(pdev, interface);
2147 
2148 	interface->netdev = netdev;
2149 	interface->pdev = pdev;
2150 
2151 	interface->uc_addr = ioremap(pci_resource_start(pdev, 0),
2152 				     FM10K_UC_ADDR_SIZE);
2153 	if (!interface->uc_addr) {
2154 		err = -EIO;
2155 		goto err_ioremap;
2156 	}
2157 
2158 	err = fm10k_sw_init(interface, ent);
2159 	if (err)
2160 		goto err_sw_init;
2161 
2162 	/* enable debugfs support */
2163 	fm10k_dbg_intfc_init(interface);
2164 
2165 	err = fm10k_init_queueing_scheme(interface);
2166 	if (err)
2167 		goto err_sw_init;
2168 
2169 	/* the mbx interrupt might attempt to schedule the service task, so we
2170 	 * must ensure it is disabled since we haven't yet requested the timer
2171 	 * or work item.
2172 	 */
2173 	set_bit(__FM10K_SERVICE_DISABLE, interface->state);
2174 
2175 	err = fm10k_mbx_request_irq(interface);
2176 	if (err)
2177 		goto err_mbx_interrupt;
2178 
2179 	/* final check of hardware state before registering the interface */
2180 	err = fm10k_hw_ready(interface);
2181 	if (err)
2182 		goto err_register;
2183 
2184 	err = register_netdev(netdev);
2185 	if (err)
2186 		goto err_register;
2187 
2188 	/* carrier off reporting is important to ethtool even BEFORE open */
2189 	netif_carrier_off(netdev);
2190 
2191 	/* stop all the transmit queues from transmitting until link is up */
2192 	netif_tx_stop_all_queues(netdev);
2193 
2194 	/* Initialize service timer and service task late in order to avoid
2195 	 * cleanup issues.
2196 	 */
2197 	timer_setup(&interface->service_timer, fm10k_service_timer, 0);
2198 	INIT_WORK(&interface->service_task, fm10k_service_task);
2199 
2200 	/* Setup the MAC/VLAN queue */
2201 	INIT_DELAYED_WORK(&interface->macvlan_task, fm10k_macvlan_task);
2202 
2203 	/* kick off service timer now, even when interface is down */
2204 	mod_timer(&interface->service_timer, (HZ * 2) + jiffies);
2205 
2206 	/* print warning for non-optimal configurations */
2207 	pcie_print_link_status(interface->pdev);
2208 
2209 	/* report MAC address for logging */
2210 	dev_info(&pdev->dev, "%pM\n", netdev->dev_addr);
2211 
2212 	/* enable SR-IOV after registering netdev to enforce PF/VF ordering */
2213 	fm10k_iov_configure(pdev, 0);
2214 
2215 	/* clear the service task disable bit and kick off service task */
2216 	clear_bit(__FM10K_SERVICE_DISABLE, interface->state);
2217 	fm10k_service_event_schedule(interface);
2218 
2219 	return 0;
2220 
2221 err_register:
2222 	fm10k_mbx_free_irq(interface);
2223 err_mbx_interrupt:
2224 	fm10k_clear_queueing_scheme(interface);
2225 err_sw_init:
2226 	if (interface->sw_addr)
2227 		iounmap(interface->sw_addr);
2228 	iounmap(interface->uc_addr);
2229 err_ioremap:
2230 	free_netdev(netdev);
2231 err_alloc_netdev:
2232 	pci_release_mem_regions(pdev);
2233 err_pci_reg:
2234 err_dma:
2235 	pci_disable_device(pdev);
2236 	return err;
2237 }
2238 
2239 /**
2240  * fm10k_remove - Device Removal Routine
2241  * @pdev: PCI device information struct
2242  *
2243  * fm10k_remove is called by the PCI subsystem to alert the driver
2244  * that it should release a PCI device.  The could be caused by a
2245  * Hot-Plug event, or because the driver is going to be removed from
2246  * memory.
2247  **/
2248 static void fm10k_remove(struct pci_dev *pdev)
2249 {
2250 	struct fm10k_intfc *interface = pci_get_drvdata(pdev);
2251 	struct net_device *netdev = interface->netdev;
2252 
2253 	del_timer_sync(&interface->service_timer);
2254 
2255 	fm10k_stop_service_event(interface);
2256 	fm10k_stop_macvlan_task(interface);
2257 
2258 	/* Remove all pending MAC/VLAN requests */
2259 	fm10k_clear_macvlan_queue(interface, interface->glort, true);
2260 
2261 	/* free netdev, this may bounce the interrupts due to setup_tc */
2262 	if (netdev->reg_state == NETREG_REGISTERED)
2263 		unregister_netdev(netdev);
2264 
2265 	/* release VFs */
2266 	fm10k_iov_disable(pdev);
2267 
2268 	/* disable mailbox interrupt */
2269 	fm10k_mbx_free_irq(interface);
2270 
2271 	/* free interrupts */
2272 	fm10k_clear_queueing_scheme(interface);
2273 
2274 	/* remove any debugfs interfaces */
2275 	fm10k_dbg_intfc_exit(interface);
2276 
2277 	if (interface->sw_addr)
2278 		iounmap(interface->sw_addr);
2279 	iounmap(interface->uc_addr);
2280 
2281 	free_netdev(netdev);
2282 
2283 	pci_release_mem_regions(pdev);
2284 
2285 	pci_disable_pcie_error_reporting(pdev);
2286 
2287 	pci_disable_device(pdev);
2288 }
2289 
2290 static void fm10k_prepare_suspend(struct fm10k_intfc *interface)
2291 {
2292 	/* the watchdog task reads from registers, which might appear like
2293 	 * a surprise remove if the PCIe device is disabled while we're
2294 	 * stopped. We stop the watchdog task until after we resume software
2295 	 * activity.
2296 	 *
2297 	 * Note that the MAC/VLAN task will be stopped as part of preparing
2298 	 * for reset so we don't need to handle it here.
2299 	 */
2300 	fm10k_stop_service_event(interface);
2301 
2302 	if (fm10k_prepare_for_reset(interface))
2303 		set_bit(__FM10K_RESET_SUSPENDED, interface->state);
2304 }
2305 
2306 static int fm10k_handle_resume(struct fm10k_intfc *interface)
2307 {
2308 	struct fm10k_hw *hw = &interface->hw;
2309 	int err;
2310 
2311 	/* Even if we didn't properly prepare for reset in
2312 	 * fm10k_prepare_suspend, we'll attempt to resume anyways.
2313 	 */
2314 	if (!test_and_clear_bit(__FM10K_RESET_SUSPENDED, interface->state))
2315 		dev_warn(&interface->pdev->dev,
2316 			 "Device was shut down as part of suspend... Attempting to recover\n");
2317 
2318 	/* reset statistics starting values */
2319 	hw->mac.ops.rebind_hw_stats(hw, &interface->stats);
2320 
2321 	err = fm10k_handle_reset(interface);
2322 	if (err)
2323 		return err;
2324 
2325 	/* assume host is not ready, to prevent race with watchdog in case we
2326 	 * actually don't have connection to the switch
2327 	 */
2328 	interface->host_ready = false;
2329 	fm10k_watchdog_host_not_ready(interface);
2330 
2331 	/* force link to stay down for a second to prevent link flutter */
2332 	interface->link_down_event = jiffies + (HZ);
2333 	set_bit(__FM10K_LINK_DOWN, interface->state);
2334 
2335 	/* restart the service task */
2336 	fm10k_start_service_event(interface);
2337 
2338 	/* Restart the MAC/VLAN request queue in-case of outstanding events */
2339 	fm10k_macvlan_schedule(interface);
2340 
2341 	return 0;
2342 }
2343 
2344 /**
2345  * fm10k_resume - Generic PM resume hook
2346  * @dev: generic device structure
2347  *
2348  * Generic PM hook used when waking the device from a low power state after
2349  * suspend or hibernation. This function does not need to handle lower PCIe
2350  * device state as the stack takes care of that for us.
2351  **/
2352 static int __maybe_unused fm10k_resume(struct device *dev)
2353 {
2354 	struct fm10k_intfc *interface = dev_get_drvdata(dev);
2355 	struct net_device *netdev = interface->netdev;
2356 	struct fm10k_hw *hw = &interface->hw;
2357 	int err;
2358 
2359 	/* refresh hw_addr in case it was dropped */
2360 	hw->hw_addr = interface->uc_addr;
2361 
2362 	err = fm10k_handle_resume(interface);
2363 	if (err)
2364 		return err;
2365 
2366 	netif_device_attach(netdev);
2367 
2368 	return 0;
2369 }
2370 
2371 /**
2372  * fm10k_suspend - Generic PM suspend hook
2373  * @dev: generic device structure
2374  *
2375  * Generic PM hook used when setting the device into a low power state for
2376  * system suspend or hibernation. This function does not need to handle lower
2377  * PCIe device state as the stack takes care of that for us.
2378  **/
2379 static int __maybe_unused fm10k_suspend(struct device *dev)
2380 {
2381 	struct fm10k_intfc *interface = dev_get_drvdata(dev);
2382 	struct net_device *netdev = interface->netdev;
2383 
2384 	netif_device_detach(netdev);
2385 
2386 	fm10k_prepare_suspend(interface);
2387 
2388 	return 0;
2389 }
2390 
2391 /**
2392  * fm10k_io_error_detected - called when PCI error is detected
2393  * @pdev: Pointer to PCI device
2394  * @state: The current pci connection state
2395  *
2396  * This function is called after a PCI bus error affecting
2397  * this device has been detected.
2398  */
2399 static pci_ers_result_t fm10k_io_error_detected(struct pci_dev *pdev,
2400 						pci_channel_state_t state)
2401 {
2402 	struct fm10k_intfc *interface = pci_get_drvdata(pdev);
2403 	struct net_device *netdev = interface->netdev;
2404 
2405 	netif_device_detach(netdev);
2406 
2407 	if (state == pci_channel_io_perm_failure)
2408 		return PCI_ERS_RESULT_DISCONNECT;
2409 
2410 	fm10k_prepare_suspend(interface);
2411 
2412 	/* Request a slot reset. */
2413 	return PCI_ERS_RESULT_NEED_RESET;
2414 }
2415 
2416 /**
2417  * fm10k_io_slot_reset - called after the pci bus has been reset.
2418  * @pdev: Pointer to PCI device
2419  *
2420  * Restart the card from scratch, as if from a cold-boot.
2421  */
2422 static pci_ers_result_t fm10k_io_slot_reset(struct pci_dev *pdev)
2423 {
2424 	pci_ers_result_t result;
2425 
2426 	if (pci_reenable_device(pdev)) {
2427 		dev_err(&pdev->dev,
2428 			"Cannot re-enable PCI device after reset.\n");
2429 		result = PCI_ERS_RESULT_DISCONNECT;
2430 	} else {
2431 		pci_set_master(pdev);
2432 		pci_restore_state(pdev);
2433 
2434 		/* After second error pci->state_saved is false, this
2435 		 * resets it so EEH doesn't break.
2436 		 */
2437 		pci_save_state(pdev);
2438 
2439 		pci_wake_from_d3(pdev, false);
2440 
2441 		result = PCI_ERS_RESULT_RECOVERED;
2442 	}
2443 
2444 	return result;
2445 }
2446 
2447 /**
2448  * fm10k_io_resume - called when traffic can start flowing again.
2449  * @pdev: Pointer to PCI device
2450  *
2451  * This callback is called when the error recovery driver tells us that
2452  * its OK to resume normal operation.
2453  */
2454 static void fm10k_io_resume(struct pci_dev *pdev)
2455 {
2456 	struct fm10k_intfc *interface = pci_get_drvdata(pdev);
2457 	struct net_device *netdev = interface->netdev;
2458 	int err;
2459 
2460 	err = fm10k_handle_resume(interface);
2461 
2462 	if (err)
2463 		dev_warn(&pdev->dev,
2464 			 "%s failed: %d\n", __func__, err);
2465 	else
2466 		netif_device_attach(netdev);
2467 }
2468 
2469 /**
2470  * fm10k_io_reset_prepare - called when PCI function is about to be reset
2471  * @pdev: Pointer to PCI device
2472  *
2473  * This callback is called when the PCI function is about to be reset,
2474  * allowing the device driver to prepare for it.
2475  */
2476 static void fm10k_io_reset_prepare(struct pci_dev *pdev)
2477 {
2478 	/* warn incase we have any active VF devices */
2479 	if (pci_num_vf(pdev))
2480 		dev_warn(&pdev->dev,
2481 			 "PCIe FLR may cause issues for any active VF devices\n");
2482 	fm10k_prepare_suspend(pci_get_drvdata(pdev));
2483 }
2484 
2485 /**
2486  * fm10k_io_reset_done - called when PCI function has finished resetting
2487  * @pdev: Pointer to PCI device
2488  *
2489  * This callback is called just after the PCI function is reset, such as via
2490  * /sys/class/net/<enpX>/device/reset or similar.
2491  */
2492 static void fm10k_io_reset_done(struct pci_dev *pdev)
2493 {
2494 	struct fm10k_intfc *interface = pci_get_drvdata(pdev);
2495 	int err = fm10k_handle_resume(interface);
2496 
2497 	if (err) {
2498 		dev_warn(&pdev->dev,
2499 			 "%s failed: %d\n", __func__, err);
2500 		netif_device_detach(interface->netdev);
2501 	}
2502 }
2503 
2504 static const struct pci_error_handlers fm10k_err_handler = {
2505 	.error_detected = fm10k_io_error_detected,
2506 	.slot_reset = fm10k_io_slot_reset,
2507 	.resume = fm10k_io_resume,
2508 	.reset_prepare = fm10k_io_reset_prepare,
2509 	.reset_done = fm10k_io_reset_done,
2510 };
2511 
2512 static SIMPLE_DEV_PM_OPS(fm10k_pm_ops, fm10k_suspend, fm10k_resume);
2513 
2514 static struct pci_driver fm10k_driver = {
2515 	.name			= fm10k_driver_name,
2516 	.id_table		= fm10k_pci_tbl,
2517 	.probe			= fm10k_probe,
2518 	.remove			= fm10k_remove,
2519 	.driver = {
2520 		.pm		= &fm10k_pm_ops,
2521 	},
2522 	.sriov_configure	= fm10k_iov_configure,
2523 	.err_handler		= &fm10k_err_handler
2524 };
2525 
2526 /**
2527  * fm10k_register_pci_driver - register driver interface
2528  *
2529  * This function is called on module load in order to register the driver.
2530  **/
2531 int fm10k_register_pci_driver(void)
2532 {
2533 	return pci_register_driver(&fm10k_driver);
2534 }
2535 
2536 /**
2537  * fm10k_unregister_pci_driver - unregister driver interface
2538  *
2539  * This function is called on module unload in order to remove the driver.
2540  **/
2541 void fm10k_unregister_pci_driver(void)
2542 {
2543 	pci_unregister_driver(&fm10k_driver);
2544 }
2545