1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright(c) 2013 - 2018 Intel Corporation. */ 3 4 #include <linux/module.h> 5 #include <linux/interrupt.h> 6 #include <linux/aer.h> 7 8 #include "fm10k.h" 9 10 static const struct fm10k_info *fm10k_info_tbl[] = { 11 [fm10k_device_pf] = &fm10k_pf_info, 12 [fm10k_device_vf] = &fm10k_vf_info, 13 }; 14 15 /* 16 * fm10k_pci_tbl - PCI Device ID Table 17 * 18 * Wildcard entries (PCI_ANY_ID) should come last 19 * Last entry must be all 0s 20 * 21 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID, 22 * Class, Class Mask, private data (not used) } 23 */ 24 static const struct pci_device_id fm10k_pci_tbl[] = { 25 { PCI_VDEVICE(INTEL, FM10K_DEV_ID_PF), fm10k_device_pf }, 26 { PCI_VDEVICE(INTEL, FM10K_DEV_ID_SDI_FM10420_QDA2), fm10k_device_pf }, 27 { PCI_VDEVICE(INTEL, FM10K_DEV_ID_SDI_FM10420_DA2), fm10k_device_pf }, 28 { PCI_VDEVICE(INTEL, FM10K_DEV_ID_VF), fm10k_device_vf }, 29 /* required last entry */ 30 { 0, } 31 }; 32 MODULE_DEVICE_TABLE(pci, fm10k_pci_tbl); 33 34 u16 fm10k_read_pci_cfg_word(struct fm10k_hw *hw, u32 reg) 35 { 36 struct fm10k_intfc *interface = hw->back; 37 u16 value = 0; 38 39 if (FM10K_REMOVED(hw->hw_addr)) 40 return ~value; 41 42 pci_read_config_word(interface->pdev, reg, &value); 43 if (value == 0xFFFF) 44 fm10k_write_flush(hw); 45 46 return value; 47 } 48 49 u32 fm10k_read_reg(struct fm10k_hw *hw, int reg) 50 { 51 u32 __iomem *hw_addr = READ_ONCE(hw->hw_addr); 52 u32 value = 0; 53 54 if (FM10K_REMOVED(hw_addr)) 55 return ~value; 56 57 value = readl(&hw_addr[reg]); 58 if (!(~value) && (!reg || !(~readl(hw_addr)))) { 59 struct fm10k_intfc *interface = hw->back; 60 struct net_device *netdev = interface->netdev; 61 62 hw->hw_addr = NULL; 63 netif_device_detach(netdev); 64 netdev_err(netdev, "PCIe link lost, device now detached\n"); 65 } 66 67 return value; 68 } 69 70 static int fm10k_hw_ready(struct fm10k_intfc *interface) 71 { 72 struct fm10k_hw *hw = &interface->hw; 73 74 fm10k_write_flush(hw); 75 76 return FM10K_REMOVED(hw->hw_addr) ? -ENODEV : 0; 77 } 78 79 /** 80 * fm10k_macvlan_schedule - Schedule MAC/VLAN queue task 81 * @interface: fm10k private interface structure 82 * 83 * Schedule the MAC/VLAN queue monitor task. If the MAC/VLAN task cannot be 84 * started immediately, request that it be restarted when possible. 85 */ 86 void fm10k_macvlan_schedule(struct fm10k_intfc *interface) 87 { 88 /* Avoid processing the MAC/VLAN queue when the service task is 89 * disabled, or when we're resetting the device. 90 */ 91 if (!test_bit(__FM10K_MACVLAN_DISABLE, interface->state) && 92 !test_and_set_bit(__FM10K_MACVLAN_SCHED, interface->state)) { 93 clear_bit(__FM10K_MACVLAN_REQUEST, interface->state); 94 /* We delay the actual start of execution in order to allow 95 * multiple MAC/VLAN updates to accumulate before handling 96 * them, and to allow some time to let the mailbox drain 97 * between runs. 98 */ 99 queue_delayed_work(fm10k_workqueue, 100 &interface->macvlan_task, 10); 101 } else { 102 set_bit(__FM10K_MACVLAN_REQUEST, interface->state); 103 } 104 } 105 106 /** 107 * fm10k_stop_macvlan_task - Stop the MAC/VLAN queue monitor 108 * @interface: fm10k private interface structure 109 * 110 * Wait until the MAC/VLAN queue task has stopped, and cancel any future 111 * requests. 112 */ 113 static void fm10k_stop_macvlan_task(struct fm10k_intfc *interface) 114 { 115 /* Disable the MAC/VLAN work item */ 116 set_bit(__FM10K_MACVLAN_DISABLE, interface->state); 117 118 /* Make sure we waited until any current invocations have stopped */ 119 cancel_delayed_work_sync(&interface->macvlan_task); 120 121 /* We set the __FM10K_MACVLAN_SCHED bit when we schedule the task. 122 * However, it may not be unset of the MAC/VLAN task never actually 123 * got a chance to run. Since we've canceled the task here, and it 124 * cannot be rescheuled right now, we need to ensure the scheduled bit 125 * gets unset. 126 */ 127 clear_bit(__FM10K_MACVLAN_SCHED, interface->state); 128 } 129 130 /** 131 * fm10k_resume_macvlan_task - Restart the MAC/VLAN queue monitor 132 * @interface: fm10k private interface structure 133 * 134 * Clear the __FM10K_MACVLAN_DISABLE bit and, if a request occurred, schedule 135 * the MAC/VLAN work monitor. 136 */ 137 static void fm10k_resume_macvlan_task(struct fm10k_intfc *interface) 138 { 139 /* Re-enable the MAC/VLAN work item */ 140 clear_bit(__FM10K_MACVLAN_DISABLE, interface->state); 141 142 /* We might have received a MAC/VLAN request while disabled. If so, 143 * kick off the queue now. 144 */ 145 if (test_bit(__FM10K_MACVLAN_REQUEST, interface->state)) 146 fm10k_macvlan_schedule(interface); 147 } 148 149 void fm10k_service_event_schedule(struct fm10k_intfc *interface) 150 { 151 if (!test_bit(__FM10K_SERVICE_DISABLE, interface->state) && 152 !test_and_set_bit(__FM10K_SERVICE_SCHED, interface->state)) { 153 clear_bit(__FM10K_SERVICE_REQUEST, interface->state); 154 queue_work(fm10k_workqueue, &interface->service_task); 155 } else { 156 set_bit(__FM10K_SERVICE_REQUEST, interface->state); 157 } 158 } 159 160 static void fm10k_service_event_complete(struct fm10k_intfc *interface) 161 { 162 WARN_ON(!test_bit(__FM10K_SERVICE_SCHED, interface->state)); 163 164 /* flush memory to make sure state is correct before next watchog */ 165 smp_mb__before_atomic(); 166 clear_bit(__FM10K_SERVICE_SCHED, interface->state); 167 168 /* If a service event was requested since we started, immediately 169 * re-schedule now. This ensures we don't drop a request until the 170 * next timer event. 171 */ 172 if (test_bit(__FM10K_SERVICE_REQUEST, interface->state)) 173 fm10k_service_event_schedule(interface); 174 } 175 176 static void fm10k_stop_service_event(struct fm10k_intfc *interface) 177 { 178 set_bit(__FM10K_SERVICE_DISABLE, interface->state); 179 cancel_work_sync(&interface->service_task); 180 181 /* It's possible that cancel_work_sync stopped the service task from 182 * running before it could actually start. In this case the 183 * __FM10K_SERVICE_SCHED bit will never be cleared. Since we know that 184 * the service task cannot be running at this point, we need to clear 185 * the scheduled bit, as otherwise the service task may never be 186 * restarted. 187 */ 188 clear_bit(__FM10K_SERVICE_SCHED, interface->state); 189 } 190 191 static void fm10k_start_service_event(struct fm10k_intfc *interface) 192 { 193 clear_bit(__FM10K_SERVICE_DISABLE, interface->state); 194 fm10k_service_event_schedule(interface); 195 } 196 197 /** 198 * fm10k_service_timer - Timer Call-back 199 * @t: pointer to timer data 200 **/ 201 static void fm10k_service_timer(struct timer_list *t) 202 { 203 struct fm10k_intfc *interface = from_timer(interface, t, 204 service_timer); 205 206 /* Reset the timer */ 207 mod_timer(&interface->service_timer, (HZ * 2) + jiffies); 208 209 fm10k_service_event_schedule(interface); 210 } 211 212 /** 213 * fm10k_prepare_for_reset - Prepare the driver and device for a pending reset 214 * @interface: fm10k private data structure 215 * 216 * This function prepares for a device reset by shutting as much down as we 217 * can. It does nothing and returns false if __FM10K_RESETTING was already set 218 * prior to calling this function. It returns true if it actually did work. 219 */ 220 static bool fm10k_prepare_for_reset(struct fm10k_intfc *interface) 221 { 222 struct net_device *netdev = interface->netdev; 223 224 WARN_ON(in_interrupt()); 225 226 /* put off any impending NetWatchDogTimeout */ 227 netif_trans_update(netdev); 228 229 /* Nothing to do if a reset is already in progress */ 230 if (test_and_set_bit(__FM10K_RESETTING, interface->state)) 231 return false; 232 233 /* As the MAC/VLAN task will be accessing registers it must not be 234 * running while we reset. Although the task will not be scheduled 235 * once we start resetting it may already be running 236 */ 237 fm10k_stop_macvlan_task(interface); 238 239 rtnl_lock(); 240 241 fm10k_iov_suspend(interface->pdev); 242 243 if (netif_running(netdev)) 244 fm10k_close(netdev); 245 246 fm10k_mbx_free_irq(interface); 247 248 /* free interrupts */ 249 fm10k_clear_queueing_scheme(interface); 250 251 /* delay any future reset requests */ 252 interface->last_reset = jiffies + (10 * HZ); 253 254 rtnl_unlock(); 255 256 return true; 257 } 258 259 static int fm10k_handle_reset(struct fm10k_intfc *interface) 260 { 261 struct net_device *netdev = interface->netdev; 262 struct fm10k_hw *hw = &interface->hw; 263 int err; 264 265 WARN_ON(!test_bit(__FM10K_RESETTING, interface->state)); 266 267 rtnl_lock(); 268 269 pci_set_master(interface->pdev); 270 271 /* reset and initialize the hardware so it is in a known state */ 272 err = hw->mac.ops.reset_hw(hw); 273 if (err) { 274 dev_err(&interface->pdev->dev, "reset_hw failed: %d\n", err); 275 goto reinit_err; 276 } 277 278 err = hw->mac.ops.init_hw(hw); 279 if (err) { 280 dev_err(&interface->pdev->dev, "init_hw failed: %d\n", err); 281 goto reinit_err; 282 } 283 284 err = fm10k_init_queueing_scheme(interface); 285 if (err) { 286 dev_err(&interface->pdev->dev, 287 "init_queueing_scheme failed: %d\n", err); 288 goto reinit_err; 289 } 290 291 /* re-associate interrupts */ 292 err = fm10k_mbx_request_irq(interface); 293 if (err) 294 goto err_mbx_irq; 295 296 err = fm10k_hw_ready(interface); 297 if (err) 298 goto err_open; 299 300 /* update hardware address for VFs if perm_addr has changed */ 301 if (hw->mac.type == fm10k_mac_vf) { 302 if (is_valid_ether_addr(hw->mac.perm_addr)) { 303 ether_addr_copy(hw->mac.addr, hw->mac.perm_addr); 304 ether_addr_copy(netdev->perm_addr, hw->mac.perm_addr); 305 ether_addr_copy(netdev->dev_addr, hw->mac.perm_addr); 306 netdev->addr_assign_type &= ~NET_ADDR_RANDOM; 307 } 308 309 if (hw->mac.vlan_override) 310 netdev->features &= ~NETIF_F_HW_VLAN_CTAG_RX; 311 else 312 netdev->features |= NETIF_F_HW_VLAN_CTAG_RX; 313 } 314 315 err = netif_running(netdev) ? fm10k_open(netdev) : 0; 316 if (err) 317 goto err_open; 318 319 fm10k_iov_resume(interface->pdev); 320 321 rtnl_unlock(); 322 323 fm10k_resume_macvlan_task(interface); 324 325 clear_bit(__FM10K_RESETTING, interface->state); 326 327 return err; 328 err_open: 329 fm10k_mbx_free_irq(interface); 330 err_mbx_irq: 331 fm10k_clear_queueing_scheme(interface); 332 reinit_err: 333 netif_device_detach(netdev); 334 335 rtnl_unlock(); 336 337 clear_bit(__FM10K_RESETTING, interface->state); 338 339 return err; 340 } 341 342 static void fm10k_detach_subtask(struct fm10k_intfc *interface) 343 { 344 struct net_device *netdev = interface->netdev; 345 u32 __iomem *hw_addr; 346 u32 value; 347 int err; 348 349 /* do nothing if netdev is still present or hw_addr is set */ 350 if (netif_device_present(netdev) || interface->hw.hw_addr) 351 return; 352 353 /* We've lost the PCIe register space, and can no longer access the 354 * device. Shut everything except the detach subtask down and prepare 355 * to reset the device in case we recover. If we actually prepare for 356 * reset, indicate that we're detached. 357 */ 358 if (fm10k_prepare_for_reset(interface)) 359 set_bit(__FM10K_RESET_DETACHED, interface->state); 360 361 /* check the real address space to see if we've recovered */ 362 hw_addr = READ_ONCE(interface->uc_addr); 363 value = readl(hw_addr); 364 if (~value) { 365 /* Make sure the reset was initiated because we detached, 366 * otherwise we might race with a different reset flow. 367 */ 368 if (!test_and_clear_bit(__FM10K_RESET_DETACHED, 369 interface->state)) 370 return; 371 372 /* Restore the hardware address */ 373 interface->hw.hw_addr = interface->uc_addr; 374 375 /* PCIe link has been restored, and the device is active 376 * again. Restore everything and reset the device. 377 */ 378 err = fm10k_handle_reset(interface); 379 if (err) { 380 netdev_err(netdev, "Unable to reset device: %d\n", err); 381 interface->hw.hw_addr = NULL; 382 return; 383 } 384 385 /* Re-attach the netdev */ 386 netif_device_attach(netdev); 387 netdev_warn(netdev, "PCIe link restored, device now attached\n"); 388 return; 389 } 390 } 391 392 static void fm10k_reset_subtask(struct fm10k_intfc *interface) 393 { 394 int err; 395 396 if (!test_and_clear_bit(FM10K_FLAG_RESET_REQUESTED, 397 interface->flags)) 398 return; 399 400 /* If another thread has already prepared to reset the device, we 401 * should not attempt to handle a reset here, since we'd race with 402 * that thread. This may happen if we suspend the device or if the 403 * PCIe link is lost. In this case, we'll just ignore the RESET 404 * request, as it will (eventually) be taken care of when the thread 405 * which actually started the reset is finished. 406 */ 407 if (!fm10k_prepare_for_reset(interface)) 408 return; 409 410 netdev_err(interface->netdev, "Reset interface\n"); 411 412 err = fm10k_handle_reset(interface); 413 if (err) 414 dev_err(&interface->pdev->dev, 415 "fm10k_handle_reset failed: %d\n", err); 416 } 417 418 /** 419 * fm10k_configure_swpri_map - Configure Receive SWPRI to PC mapping 420 * @interface: board private structure 421 * 422 * Configure the SWPRI to PC mapping for the port. 423 **/ 424 static void fm10k_configure_swpri_map(struct fm10k_intfc *interface) 425 { 426 struct net_device *netdev = interface->netdev; 427 struct fm10k_hw *hw = &interface->hw; 428 int i; 429 430 /* clear flag indicating update is needed */ 431 clear_bit(FM10K_FLAG_SWPRI_CONFIG, interface->flags); 432 433 /* these registers are only available on the PF */ 434 if (hw->mac.type != fm10k_mac_pf) 435 return; 436 437 /* configure SWPRI to PC map */ 438 for (i = 0; i < FM10K_SWPRI_MAX; i++) 439 fm10k_write_reg(hw, FM10K_SWPRI_MAP(i), 440 netdev_get_prio_tc_map(netdev, i)); 441 } 442 443 /** 444 * fm10k_watchdog_update_host_state - Update the link status based on host. 445 * @interface: board private structure 446 **/ 447 static void fm10k_watchdog_update_host_state(struct fm10k_intfc *interface) 448 { 449 struct fm10k_hw *hw = &interface->hw; 450 s32 err; 451 452 if (test_bit(__FM10K_LINK_DOWN, interface->state)) { 453 interface->host_ready = false; 454 if (time_is_after_jiffies(interface->link_down_event)) 455 return; 456 clear_bit(__FM10K_LINK_DOWN, interface->state); 457 } 458 459 if (test_bit(FM10K_FLAG_SWPRI_CONFIG, interface->flags)) { 460 if (rtnl_trylock()) { 461 fm10k_configure_swpri_map(interface); 462 rtnl_unlock(); 463 } 464 } 465 466 /* lock the mailbox for transmit and receive */ 467 fm10k_mbx_lock(interface); 468 469 err = hw->mac.ops.get_host_state(hw, &interface->host_ready); 470 if (err && time_is_before_jiffies(interface->last_reset)) 471 set_bit(FM10K_FLAG_RESET_REQUESTED, interface->flags); 472 473 /* free the lock */ 474 fm10k_mbx_unlock(interface); 475 } 476 477 /** 478 * fm10k_mbx_subtask - Process upstream and downstream mailboxes 479 * @interface: board private structure 480 * 481 * This function will process both the upstream and downstream mailboxes. 482 **/ 483 static void fm10k_mbx_subtask(struct fm10k_intfc *interface) 484 { 485 /* If we're resetting, bail out */ 486 if (test_bit(__FM10K_RESETTING, interface->state)) 487 return; 488 489 /* process upstream mailbox and update device state */ 490 fm10k_watchdog_update_host_state(interface); 491 492 /* process downstream mailboxes */ 493 fm10k_iov_mbx(interface); 494 } 495 496 /** 497 * fm10k_watchdog_host_is_ready - Update netdev status based on host ready 498 * @interface: board private structure 499 **/ 500 static void fm10k_watchdog_host_is_ready(struct fm10k_intfc *interface) 501 { 502 struct net_device *netdev = interface->netdev; 503 504 /* only continue if link state is currently down */ 505 if (netif_carrier_ok(netdev)) 506 return; 507 508 netif_info(interface, drv, netdev, "NIC Link is up\n"); 509 510 netif_carrier_on(netdev); 511 netif_tx_wake_all_queues(netdev); 512 } 513 514 /** 515 * fm10k_watchdog_host_not_ready - Update netdev status based on host not ready 516 * @interface: board private structure 517 **/ 518 static void fm10k_watchdog_host_not_ready(struct fm10k_intfc *interface) 519 { 520 struct net_device *netdev = interface->netdev; 521 522 /* only continue if link state is currently up */ 523 if (!netif_carrier_ok(netdev)) 524 return; 525 526 netif_info(interface, drv, netdev, "NIC Link is down\n"); 527 528 netif_carrier_off(netdev); 529 netif_tx_stop_all_queues(netdev); 530 } 531 532 /** 533 * fm10k_update_stats - Update the board statistics counters. 534 * @interface: board private structure 535 **/ 536 void fm10k_update_stats(struct fm10k_intfc *interface) 537 { 538 struct net_device_stats *net_stats = &interface->netdev->stats; 539 struct fm10k_hw *hw = &interface->hw; 540 u64 hw_csum_tx_good = 0, hw_csum_rx_good = 0, rx_length_errors = 0; 541 u64 rx_switch_errors = 0, rx_drops = 0, rx_pp_errors = 0; 542 u64 rx_link_errors = 0; 543 u64 rx_errors = 0, rx_csum_errors = 0, tx_csum_errors = 0; 544 u64 restart_queue = 0, tx_busy = 0, alloc_failed = 0; 545 u64 rx_bytes_nic = 0, rx_pkts_nic = 0, rx_drops_nic = 0; 546 u64 tx_bytes_nic = 0, tx_pkts_nic = 0; 547 u64 bytes, pkts; 548 int i; 549 550 /* ensure only one thread updates stats at a time */ 551 if (test_and_set_bit(__FM10K_UPDATING_STATS, interface->state)) 552 return; 553 554 /* do not allow stats update via service task for next second */ 555 interface->next_stats_update = jiffies + HZ; 556 557 /* gather some stats to the interface struct that are per queue */ 558 for (bytes = 0, pkts = 0, i = 0; i < interface->num_tx_queues; i++) { 559 struct fm10k_ring *tx_ring = READ_ONCE(interface->tx_ring[i]); 560 561 if (!tx_ring) 562 continue; 563 564 restart_queue += tx_ring->tx_stats.restart_queue; 565 tx_busy += tx_ring->tx_stats.tx_busy; 566 tx_csum_errors += tx_ring->tx_stats.csum_err; 567 bytes += tx_ring->stats.bytes; 568 pkts += tx_ring->stats.packets; 569 hw_csum_tx_good += tx_ring->tx_stats.csum_good; 570 } 571 572 interface->restart_queue = restart_queue; 573 interface->tx_busy = tx_busy; 574 net_stats->tx_bytes = bytes; 575 net_stats->tx_packets = pkts; 576 interface->tx_csum_errors = tx_csum_errors; 577 interface->hw_csum_tx_good = hw_csum_tx_good; 578 579 /* gather some stats to the interface struct that are per queue */ 580 for (bytes = 0, pkts = 0, i = 0; i < interface->num_rx_queues; i++) { 581 struct fm10k_ring *rx_ring = READ_ONCE(interface->rx_ring[i]); 582 583 if (!rx_ring) 584 continue; 585 586 bytes += rx_ring->stats.bytes; 587 pkts += rx_ring->stats.packets; 588 alloc_failed += rx_ring->rx_stats.alloc_failed; 589 rx_csum_errors += rx_ring->rx_stats.csum_err; 590 rx_errors += rx_ring->rx_stats.errors; 591 hw_csum_rx_good += rx_ring->rx_stats.csum_good; 592 rx_switch_errors += rx_ring->rx_stats.switch_errors; 593 rx_drops += rx_ring->rx_stats.drops; 594 rx_pp_errors += rx_ring->rx_stats.pp_errors; 595 rx_link_errors += rx_ring->rx_stats.link_errors; 596 rx_length_errors += rx_ring->rx_stats.length_errors; 597 } 598 599 net_stats->rx_bytes = bytes; 600 net_stats->rx_packets = pkts; 601 interface->alloc_failed = alloc_failed; 602 interface->rx_csum_errors = rx_csum_errors; 603 interface->hw_csum_rx_good = hw_csum_rx_good; 604 interface->rx_switch_errors = rx_switch_errors; 605 interface->rx_drops = rx_drops; 606 interface->rx_pp_errors = rx_pp_errors; 607 interface->rx_link_errors = rx_link_errors; 608 interface->rx_length_errors = rx_length_errors; 609 610 hw->mac.ops.update_hw_stats(hw, &interface->stats); 611 612 for (i = 0; i < hw->mac.max_queues; i++) { 613 struct fm10k_hw_stats_q *q = &interface->stats.q[i]; 614 615 tx_bytes_nic += q->tx_bytes.count; 616 tx_pkts_nic += q->tx_packets.count; 617 rx_bytes_nic += q->rx_bytes.count; 618 rx_pkts_nic += q->rx_packets.count; 619 rx_drops_nic += q->rx_drops.count; 620 } 621 622 interface->tx_bytes_nic = tx_bytes_nic; 623 interface->tx_packets_nic = tx_pkts_nic; 624 interface->rx_bytes_nic = rx_bytes_nic; 625 interface->rx_packets_nic = rx_pkts_nic; 626 interface->rx_drops_nic = rx_drops_nic; 627 628 /* Fill out the OS statistics structure */ 629 net_stats->rx_errors = rx_errors; 630 net_stats->rx_dropped = interface->stats.nodesc_drop.count; 631 632 clear_bit(__FM10K_UPDATING_STATS, interface->state); 633 } 634 635 /** 636 * fm10k_watchdog_flush_tx - flush queues on host not ready 637 * @interface: pointer to the device interface structure 638 **/ 639 static void fm10k_watchdog_flush_tx(struct fm10k_intfc *interface) 640 { 641 int some_tx_pending = 0; 642 int i; 643 644 /* nothing to do if carrier is up */ 645 if (netif_carrier_ok(interface->netdev)) 646 return; 647 648 for (i = 0; i < interface->num_tx_queues; i++) { 649 struct fm10k_ring *tx_ring = interface->tx_ring[i]; 650 651 if (tx_ring->next_to_use != tx_ring->next_to_clean) { 652 some_tx_pending = 1; 653 break; 654 } 655 } 656 657 /* We've lost link, so the controller stops DMA, but we've got 658 * queued Tx work that's never going to get done, so reset 659 * controller to flush Tx. 660 */ 661 if (some_tx_pending) 662 set_bit(FM10K_FLAG_RESET_REQUESTED, interface->flags); 663 } 664 665 /** 666 * fm10k_watchdog_subtask - check and bring link up 667 * @interface: pointer to the device interface structure 668 **/ 669 static void fm10k_watchdog_subtask(struct fm10k_intfc *interface) 670 { 671 /* if interface is down do nothing */ 672 if (test_bit(__FM10K_DOWN, interface->state) || 673 test_bit(__FM10K_RESETTING, interface->state)) 674 return; 675 676 if (interface->host_ready) 677 fm10k_watchdog_host_is_ready(interface); 678 else 679 fm10k_watchdog_host_not_ready(interface); 680 681 /* update stats only once every second */ 682 if (time_is_before_jiffies(interface->next_stats_update)) 683 fm10k_update_stats(interface); 684 685 /* flush any uncompleted work */ 686 fm10k_watchdog_flush_tx(interface); 687 } 688 689 /** 690 * fm10k_check_hang_subtask - check for hung queues and dropped interrupts 691 * @interface: pointer to the device interface structure 692 * 693 * This function serves two purposes. First it strobes the interrupt lines 694 * in order to make certain interrupts are occurring. Secondly it sets the 695 * bits needed to check for TX hangs. As a result we should immediately 696 * determine if a hang has occurred. 697 */ 698 static void fm10k_check_hang_subtask(struct fm10k_intfc *interface) 699 { 700 int i; 701 702 /* If we're down or resetting, just bail */ 703 if (test_bit(__FM10K_DOWN, interface->state) || 704 test_bit(__FM10K_RESETTING, interface->state)) 705 return; 706 707 /* rate limit tx hang checks to only once every 2 seconds */ 708 if (time_is_after_eq_jiffies(interface->next_tx_hang_check)) 709 return; 710 interface->next_tx_hang_check = jiffies + (2 * HZ); 711 712 if (netif_carrier_ok(interface->netdev)) { 713 /* Force detection of hung controller */ 714 for (i = 0; i < interface->num_tx_queues; i++) 715 set_check_for_tx_hang(interface->tx_ring[i]); 716 717 /* Rearm all in-use q_vectors for immediate firing */ 718 for (i = 0; i < interface->num_q_vectors; i++) { 719 struct fm10k_q_vector *qv = interface->q_vector[i]; 720 721 if (!qv->tx.count && !qv->rx.count) 722 continue; 723 writel(FM10K_ITR_ENABLE | FM10K_ITR_PENDING2, qv->itr); 724 } 725 } 726 } 727 728 /** 729 * fm10k_service_task - manages and runs subtasks 730 * @work: pointer to work_struct containing our data 731 **/ 732 static void fm10k_service_task(struct work_struct *work) 733 { 734 struct fm10k_intfc *interface; 735 736 interface = container_of(work, struct fm10k_intfc, service_task); 737 738 /* Check whether we're detached first */ 739 fm10k_detach_subtask(interface); 740 741 /* tasks run even when interface is down */ 742 fm10k_mbx_subtask(interface); 743 fm10k_reset_subtask(interface); 744 745 /* tasks only run when interface is up */ 746 fm10k_watchdog_subtask(interface); 747 fm10k_check_hang_subtask(interface); 748 749 /* release lock on service events to allow scheduling next event */ 750 fm10k_service_event_complete(interface); 751 } 752 753 /** 754 * fm10k_macvlan_task - send queued MAC/VLAN requests to switch manager 755 * @work: pointer to work_struct containing our data 756 * 757 * This work item handles sending MAC/VLAN updates to the switch manager. When 758 * the interface is up, it will attempt to queue mailbox messages to the 759 * switch manager requesting updates for MAC/VLAN pairs. If the Tx fifo of the 760 * mailbox is full, it will reschedule itself to try again in a short while. 761 * This ensures that the driver does not overload the switch mailbox with too 762 * many simultaneous requests, causing an unnecessary reset. 763 **/ 764 static void fm10k_macvlan_task(struct work_struct *work) 765 { 766 struct fm10k_macvlan_request *item; 767 struct fm10k_intfc *interface; 768 struct delayed_work *dwork; 769 struct list_head *requests; 770 struct fm10k_hw *hw; 771 unsigned long flags; 772 773 dwork = to_delayed_work(work); 774 interface = container_of(dwork, struct fm10k_intfc, macvlan_task); 775 hw = &interface->hw; 776 requests = &interface->macvlan_requests; 777 778 do { 779 /* Pop the first item off the list */ 780 spin_lock_irqsave(&interface->macvlan_lock, flags); 781 item = list_first_entry_or_null(requests, 782 struct fm10k_macvlan_request, 783 list); 784 if (item) 785 list_del_init(&item->list); 786 787 spin_unlock_irqrestore(&interface->macvlan_lock, flags); 788 789 /* We have no more items to process */ 790 if (!item) 791 goto done; 792 793 fm10k_mbx_lock(interface); 794 795 /* Check that we have plenty of space to send the message. We 796 * want to ensure that the mailbox stays low enough to avoid a 797 * change in the host state, otherwise we may see spurious 798 * link up / link down notifications. 799 */ 800 if (!hw->mbx.ops.tx_ready(&hw->mbx, FM10K_VFMBX_MSG_MTU + 5)) { 801 hw->mbx.ops.process(hw, &hw->mbx); 802 set_bit(__FM10K_MACVLAN_REQUEST, interface->state); 803 fm10k_mbx_unlock(interface); 804 805 /* Put the request back on the list */ 806 spin_lock_irqsave(&interface->macvlan_lock, flags); 807 list_add(&item->list, requests); 808 spin_unlock_irqrestore(&interface->macvlan_lock, flags); 809 break; 810 } 811 812 switch (item->type) { 813 case FM10K_MC_MAC_REQUEST: 814 hw->mac.ops.update_mc_addr(hw, 815 item->mac.glort, 816 item->mac.addr, 817 item->mac.vid, 818 item->set); 819 break; 820 case FM10K_UC_MAC_REQUEST: 821 hw->mac.ops.update_uc_addr(hw, 822 item->mac.glort, 823 item->mac.addr, 824 item->mac.vid, 825 item->set, 826 0); 827 break; 828 case FM10K_VLAN_REQUEST: 829 hw->mac.ops.update_vlan(hw, 830 item->vlan.vid, 831 item->vlan.vsi, 832 item->set); 833 break; 834 default: 835 break; 836 } 837 838 fm10k_mbx_unlock(interface); 839 840 /* Free the item now that we've sent the update */ 841 kfree(item); 842 } while (true); 843 844 done: 845 WARN_ON(!test_bit(__FM10K_MACVLAN_SCHED, interface->state)); 846 847 /* flush memory to make sure state is correct */ 848 smp_mb__before_atomic(); 849 clear_bit(__FM10K_MACVLAN_SCHED, interface->state); 850 851 /* If a MAC/VLAN request was scheduled since we started, we should 852 * re-schedule. However, there is no reason to re-schedule if there is 853 * no work to do. 854 */ 855 if (test_bit(__FM10K_MACVLAN_REQUEST, interface->state)) 856 fm10k_macvlan_schedule(interface); 857 } 858 859 /** 860 * fm10k_configure_tx_ring - Configure Tx ring after Reset 861 * @interface: board private structure 862 * @ring: structure containing ring specific data 863 * 864 * Configure the Tx descriptor ring after a reset. 865 **/ 866 static void fm10k_configure_tx_ring(struct fm10k_intfc *interface, 867 struct fm10k_ring *ring) 868 { 869 struct fm10k_hw *hw = &interface->hw; 870 u64 tdba = ring->dma; 871 u32 size = ring->count * sizeof(struct fm10k_tx_desc); 872 u32 txint = FM10K_INT_MAP_DISABLE; 873 u32 txdctl = BIT(FM10K_TXDCTL_MAX_TIME_SHIFT) | FM10K_TXDCTL_ENABLE; 874 u8 reg_idx = ring->reg_idx; 875 876 /* disable queue to avoid issues while updating state */ 877 fm10k_write_reg(hw, FM10K_TXDCTL(reg_idx), 0); 878 fm10k_write_flush(hw); 879 880 /* possible poll here to verify ring resources have been cleaned */ 881 882 /* set location and size for descriptor ring */ 883 fm10k_write_reg(hw, FM10K_TDBAL(reg_idx), tdba & DMA_BIT_MASK(32)); 884 fm10k_write_reg(hw, FM10K_TDBAH(reg_idx), tdba >> 32); 885 fm10k_write_reg(hw, FM10K_TDLEN(reg_idx), size); 886 887 /* reset head and tail pointers */ 888 fm10k_write_reg(hw, FM10K_TDH(reg_idx), 0); 889 fm10k_write_reg(hw, FM10K_TDT(reg_idx), 0); 890 891 /* store tail pointer */ 892 ring->tail = &interface->uc_addr[FM10K_TDT(reg_idx)]; 893 894 /* reset ntu and ntc to place SW in sync with hardware */ 895 ring->next_to_clean = 0; 896 ring->next_to_use = 0; 897 898 /* Map interrupt */ 899 if (ring->q_vector) { 900 txint = ring->q_vector->v_idx + NON_Q_VECTORS(hw); 901 txint |= FM10K_INT_MAP_TIMER0; 902 } 903 904 fm10k_write_reg(hw, FM10K_TXINT(reg_idx), txint); 905 906 /* enable use of FTAG bit in Tx descriptor, register is RO for VF */ 907 fm10k_write_reg(hw, FM10K_PFVTCTL(reg_idx), 908 FM10K_PFVTCTL_FTAG_DESC_ENABLE); 909 910 /* Initialize XPS */ 911 if (!test_and_set_bit(__FM10K_TX_XPS_INIT_DONE, ring->state) && 912 ring->q_vector) 913 netif_set_xps_queue(ring->netdev, 914 &ring->q_vector->affinity_mask, 915 ring->queue_index); 916 917 /* enable queue */ 918 fm10k_write_reg(hw, FM10K_TXDCTL(reg_idx), txdctl); 919 } 920 921 /** 922 * fm10k_enable_tx_ring - Verify Tx ring is enabled after configuration 923 * @interface: board private structure 924 * @ring: structure containing ring specific data 925 * 926 * Verify the Tx descriptor ring is ready for transmit. 927 **/ 928 static void fm10k_enable_tx_ring(struct fm10k_intfc *interface, 929 struct fm10k_ring *ring) 930 { 931 struct fm10k_hw *hw = &interface->hw; 932 int wait_loop = 10; 933 u32 txdctl; 934 u8 reg_idx = ring->reg_idx; 935 936 /* if we are already enabled just exit */ 937 if (fm10k_read_reg(hw, FM10K_TXDCTL(reg_idx)) & FM10K_TXDCTL_ENABLE) 938 return; 939 940 /* poll to verify queue is enabled */ 941 do { 942 usleep_range(1000, 2000); 943 txdctl = fm10k_read_reg(hw, FM10K_TXDCTL(reg_idx)); 944 } while (!(txdctl & FM10K_TXDCTL_ENABLE) && --wait_loop); 945 if (!wait_loop) 946 netif_err(interface, drv, interface->netdev, 947 "Could not enable Tx Queue %d\n", reg_idx); 948 } 949 950 /** 951 * fm10k_configure_tx - Configure Transmit Unit after Reset 952 * @interface: board private structure 953 * 954 * Configure the Tx unit of the MAC after a reset. 955 **/ 956 static void fm10k_configure_tx(struct fm10k_intfc *interface) 957 { 958 int i; 959 960 /* Setup the HW Tx Head and Tail descriptor pointers */ 961 for (i = 0; i < interface->num_tx_queues; i++) 962 fm10k_configure_tx_ring(interface, interface->tx_ring[i]); 963 964 /* poll here to verify that Tx rings are now enabled */ 965 for (i = 0; i < interface->num_tx_queues; i++) 966 fm10k_enable_tx_ring(interface, interface->tx_ring[i]); 967 } 968 969 /** 970 * fm10k_configure_rx_ring - Configure Rx ring after Reset 971 * @interface: board private structure 972 * @ring: structure containing ring specific data 973 * 974 * Configure the Rx descriptor ring after a reset. 975 **/ 976 static void fm10k_configure_rx_ring(struct fm10k_intfc *interface, 977 struct fm10k_ring *ring) 978 { 979 u64 rdba = ring->dma; 980 struct fm10k_hw *hw = &interface->hw; 981 u32 size = ring->count * sizeof(union fm10k_rx_desc); 982 u32 rxqctl, rxdctl = FM10K_RXDCTL_WRITE_BACK_MIN_DELAY; 983 u32 srrctl = FM10K_SRRCTL_BUFFER_CHAINING_EN; 984 u32 rxint = FM10K_INT_MAP_DISABLE; 985 u8 rx_pause = interface->rx_pause; 986 u8 reg_idx = ring->reg_idx; 987 988 /* disable queue to avoid issues while updating state */ 989 rxqctl = fm10k_read_reg(hw, FM10K_RXQCTL(reg_idx)); 990 rxqctl &= ~FM10K_RXQCTL_ENABLE; 991 fm10k_write_reg(hw, FM10K_RXQCTL(reg_idx), rxqctl); 992 fm10k_write_flush(hw); 993 994 /* possible poll here to verify ring resources have been cleaned */ 995 996 /* set location and size for descriptor ring */ 997 fm10k_write_reg(hw, FM10K_RDBAL(reg_idx), rdba & DMA_BIT_MASK(32)); 998 fm10k_write_reg(hw, FM10K_RDBAH(reg_idx), rdba >> 32); 999 fm10k_write_reg(hw, FM10K_RDLEN(reg_idx), size); 1000 1001 /* reset head and tail pointers */ 1002 fm10k_write_reg(hw, FM10K_RDH(reg_idx), 0); 1003 fm10k_write_reg(hw, FM10K_RDT(reg_idx), 0); 1004 1005 /* store tail pointer */ 1006 ring->tail = &interface->uc_addr[FM10K_RDT(reg_idx)]; 1007 1008 /* reset ntu and ntc to place SW in sync with hardware */ 1009 ring->next_to_clean = 0; 1010 ring->next_to_use = 0; 1011 ring->next_to_alloc = 0; 1012 1013 /* Configure the Rx buffer size for one buff without split */ 1014 srrctl |= FM10K_RX_BUFSZ >> FM10K_SRRCTL_BSIZEPKT_SHIFT; 1015 1016 /* Configure the Rx ring to suppress loopback packets */ 1017 srrctl |= FM10K_SRRCTL_LOOPBACK_SUPPRESS; 1018 fm10k_write_reg(hw, FM10K_SRRCTL(reg_idx), srrctl); 1019 1020 /* Enable drop on empty */ 1021 #ifdef CONFIG_DCB 1022 if (interface->pfc_en) 1023 rx_pause = interface->pfc_en; 1024 #endif 1025 if (!(rx_pause & BIT(ring->qos_pc))) 1026 rxdctl |= FM10K_RXDCTL_DROP_ON_EMPTY; 1027 1028 fm10k_write_reg(hw, FM10K_RXDCTL(reg_idx), rxdctl); 1029 1030 /* assign default VLAN to queue */ 1031 ring->vid = hw->mac.default_vid; 1032 1033 /* if we have an active VLAN, disable default VLAN ID */ 1034 if (test_bit(hw->mac.default_vid, interface->active_vlans)) 1035 ring->vid |= FM10K_VLAN_CLEAR; 1036 1037 /* Map interrupt */ 1038 if (ring->q_vector) { 1039 rxint = ring->q_vector->v_idx + NON_Q_VECTORS(hw); 1040 rxint |= FM10K_INT_MAP_TIMER1; 1041 } 1042 1043 fm10k_write_reg(hw, FM10K_RXINT(reg_idx), rxint); 1044 1045 /* enable queue */ 1046 rxqctl = fm10k_read_reg(hw, FM10K_RXQCTL(reg_idx)); 1047 rxqctl |= FM10K_RXQCTL_ENABLE; 1048 fm10k_write_reg(hw, FM10K_RXQCTL(reg_idx), rxqctl); 1049 1050 /* place buffers on ring for receive data */ 1051 fm10k_alloc_rx_buffers(ring, fm10k_desc_unused(ring)); 1052 } 1053 1054 /** 1055 * fm10k_update_rx_drop_en - Configures the drop enable bits for Rx rings 1056 * @interface: board private structure 1057 * 1058 * Configure the drop enable bits for the Rx rings. 1059 **/ 1060 void fm10k_update_rx_drop_en(struct fm10k_intfc *interface) 1061 { 1062 struct fm10k_hw *hw = &interface->hw; 1063 u8 rx_pause = interface->rx_pause; 1064 int i; 1065 1066 #ifdef CONFIG_DCB 1067 if (interface->pfc_en) 1068 rx_pause = interface->pfc_en; 1069 1070 #endif 1071 for (i = 0; i < interface->num_rx_queues; i++) { 1072 struct fm10k_ring *ring = interface->rx_ring[i]; 1073 u32 rxdctl = FM10K_RXDCTL_WRITE_BACK_MIN_DELAY; 1074 u8 reg_idx = ring->reg_idx; 1075 1076 if (!(rx_pause & BIT(ring->qos_pc))) 1077 rxdctl |= FM10K_RXDCTL_DROP_ON_EMPTY; 1078 1079 fm10k_write_reg(hw, FM10K_RXDCTL(reg_idx), rxdctl); 1080 } 1081 } 1082 1083 /** 1084 * fm10k_configure_dglort - Configure Receive DGLORT after reset 1085 * @interface: board private structure 1086 * 1087 * Configure the DGLORT description and RSS tables. 1088 **/ 1089 static void fm10k_configure_dglort(struct fm10k_intfc *interface) 1090 { 1091 struct fm10k_dglort_cfg dglort = { 0 }; 1092 struct fm10k_hw *hw = &interface->hw; 1093 int i; 1094 u32 mrqc; 1095 1096 /* Fill out hash function seeds */ 1097 for (i = 0; i < FM10K_RSSRK_SIZE; i++) 1098 fm10k_write_reg(hw, FM10K_RSSRK(0, i), interface->rssrk[i]); 1099 1100 /* Write RETA table to hardware */ 1101 for (i = 0; i < FM10K_RETA_SIZE; i++) 1102 fm10k_write_reg(hw, FM10K_RETA(0, i), interface->reta[i]); 1103 1104 /* Generate RSS hash based on packet types, TCP/UDP 1105 * port numbers and/or IPv4/v6 src and dst addresses 1106 */ 1107 mrqc = FM10K_MRQC_IPV4 | 1108 FM10K_MRQC_TCP_IPV4 | 1109 FM10K_MRQC_IPV6 | 1110 FM10K_MRQC_TCP_IPV6; 1111 1112 if (test_bit(FM10K_FLAG_RSS_FIELD_IPV4_UDP, interface->flags)) 1113 mrqc |= FM10K_MRQC_UDP_IPV4; 1114 if (test_bit(FM10K_FLAG_RSS_FIELD_IPV6_UDP, interface->flags)) 1115 mrqc |= FM10K_MRQC_UDP_IPV6; 1116 1117 fm10k_write_reg(hw, FM10K_MRQC(0), mrqc); 1118 1119 /* configure default DGLORT mapping for RSS/DCB */ 1120 dglort.inner_rss = 1; 1121 dglort.rss_l = fls(interface->ring_feature[RING_F_RSS].mask); 1122 dglort.pc_l = fls(interface->ring_feature[RING_F_QOS].mask); 1123 hw->mac.ops.configure_dglort_map(hw, &dglort); 1124 1125 /* assign GLORT per queue for queue mapped testing */ 1126 if (interface->glort_count > 64) { 1127 memset(&dglort, 0, sizeof(dglort)); 1128 dglort.inner_rss = 1; 1129 dglort.glort = interface->glort + 64; 1130 dglort.idx = fm10k_dglort_pf_queue; 1131 dglort.queue_l = fls(interface->num_rx_queues - 1); 1132 hw->mac.ops.configure_dglort_map(hw, &dglort); 1133 } 1134 1135 /* assign glort value for RSS/DCB specific to this interface */ 1136 memset(&dglort, 0, sizeof(dglort)); 1137 dglort.inner_rss = 1; 1138 dglort.glort = interface->glort; 1139 dglort.rss_l = fls(interface->ring_feature[RING_F_RSS].mask); 1140 dglort.pc_l = fls(interface->ring_feature[RING_F_QOS].mask); 1141 /* configure DGLORT mapping for RSS/DCB */ 1142 dglort.idx = fm10k_dglort_pf_rss; 1143 if (interface->l2_accel) 1144 dglort.shared_l = fls(interface->l2_accel->size); 1145 hw->mac.ops.configure_dglort_map(hw, &dglort); 1146 } 1147 1148 /** 1149 * fm10k_configure_rx - Configure Receive Unit after Reset 1150 * @interface: board private structure 1151 * 1152 * Configure the Rx unit of the MAC after a reset. 1153 **/ 1154 static void fm10k_configure_rx(struct fm10k_intfc *interface) 1155 { 1156 int i; 1157 1158 /* Configure SWPRI to PC map */ 1159 fm10k_configure_swpri_map(interface); 1160 1161 /* Configure RSS and DGLORT map */ 1162 fm10k_configure_dglort(interface); 1163 1164 /* Setup the HW Rx Head and Tail descriptor pointers */ 1165 for (i = 0; i < interface->num_rx_queues; i++) 1166 fm10k_configure_rx_ring(interface, interface->rx_ring[i]); 1167 1168 /* possible poll here to verify that Rx rings are now enabled */ 1169 } 1170 1171 static void fm10k_napi_enable_all(struct fm10k_intfc *interface) 1172 { 1173 struct fm10k_q_vector *q_vector; 1174 int q_idx; 1175 1176 for (q_idx = 0; q_idx < interface->num_q_vectors; q_idx++) { 1177 q_vector = interface->q_vector[q_idx]; 1178 napi_enable(&q_vector->napi); 1179 } 1180 } 1181 1182 static irqreturn_t fm10k_msix_clean_rings(int __always_unused irq, void *data) 1183 { 1184 struct fm10k_q_vector *q_vector = data; 1185 1186 if (q_vector->rx.count || q_vector->tx.count) 1187 napi_schedule_irqoff(&q_vector->napi); 1188 1189 return IRQ_HANDLED; 1190 } 1191 1192 static irqreturn_t fm10k_msix_mbx_vf(int __always_unused irq, void *data) 1193 { 1194 struct fm10k_intfc *interface = data; 1195 struct fm10k_hw *hw = &interface->hw; 1196 struct fm10k_mbx_info *mbx = &hw->mbx; 1197 1198 /* re-enable mailbox interrupt and indicate 20us delay */ 1199 fm10k_write_reg(hw, FM10K_VFITR(FM10K_MBX_VECTOR), 1200 (FM10K_MBX_INT_DELAY >> hw->mac.itr_scale) | 1201 FM10K_ITR_ENABLE); 1202 1203 /* service upstream mailbox */ 1204 if (fm10k_mbx_trylock(interface)) { 1205 mbx->ops.process(hw, mbx); 1206 fm10k_mbx_unlock(interface); 1207 } 1208 1209 hw->mac.get_host_state = true; 1210 fm10k_service_event_schedule(interface); 1211 1212 return IRQ_HANDLED; 1213 } 1214 1215 #define FM10K_ERR_MSG(type) case (type): error = #type; break 1216 static void fm10k_handle_fault(struct fm10k_intfc *interface, int type, 1217 struct fm10k_fault *fault) 1218 { 1219 struct pci_dev *pdev = interface->pdev; 1220 struct fm10k_hw *hw = &interface->hw; 1221 struct fm10k_iov_data *iov_data = interface->iov_data; 1222 char *error; 1223 1224 switch (type) { 1225 case FM10K_PCA_FAULT: 1226 switch (fault->type) { 1227 default: 1228 error = "Unknown PCA error"; 1229 break; 1230 FM10K_ERR_MSG(PCA_NO_FAULT); 1231 FM10K_ERR_MSG(PCA_UNMAPPED_ADDR); 1232 FM10K_ERR_MSG(PCA_BAD_QACCESS_PF); 1233 FM10K_ERR_MSG(PCA_BAD_QACCESS_VF); 1234 FM10K_ERR_MSG(PCA_MALICIOUS_REQ); 1235 FM10K_ERR_MSG(PCA_POISONED_TLP); 1236 FM10K_ERR_MSG(PCA_TLP_ABORT); 1237 } 1238 break; 1239 case FM10K_THI_FAULT: 1240 switch (fault->type) { 1241 default: 1242 error = "Unknown THI error"; 1243 break; 1244 FM10K_ERR_MSG(THI_NO_FAULT); 1245 FM10K_ERR_MSG(THI_MAL_DIS_Q_FAULT); 1246 } 1247 break; 1248 case FM10K_FUM_FAULT: 1249 switch (fault->type) { 1250 default: 1251 error = "Unknown FUM error"; 1252 break; 1253 FM10K_ERR_MSG(FUM_NO_FAULT); 1254 FM10K_ERR_MSG(FUM_UNMAPPED_ADDR); 1255 FM10K_ERR_MSG(FUM_BAD_VF_QACCESS); 1256 FM10K_ERR_MSG(FUM_ADD_DECODE_ERR); 1257 FM10K_ERR_MSG(FUM_RO_ERROR); 1258 FM10K_ERR_MSG(FUM_QPRC_CRC_ERROR); 1259 FM10K_ERR_MSG(FUM_CSR_TIMEOUT); 1260 FM10K_ERR_MSG(FUM_INVALID_TYPE); 1261 FM10K_ERR_MSG(FUM_INVALID_LENGTH); 1262 FM10K_ERR_MSG(FUM_INVALID_BE); 1263 FM10K_ERR_MSG(FUM_INVALID_ALIGN); 1264 } 1265 break; 1266 default: 1267 error = "Undocumented fault"; 1268 break; 1269 } 1270 1271 dev_warn(&pdev->dev, 1272 "%s Address: 0x%llx SpecInfo: 0x%x Func: %02x.%0x\n", 1273 error, fault->address, fault->specinfo, 1274 PCI_SLOT(fault->func), PCI_FUNC(fault->func)); 1275 1276 /* For VF faults, clear out the respective LPORT, reset the queue 1277 * resources, and then reconnect to the mailbox. This allows the 1278 * VF in question to resume behavior. For transient faults that are 1279 * the result of non-malicious behavior this will log the fault and 1280 * allow the VF to resume functionality. Obviously for malicious VFs 1281 * they will be able to attempt malicious behavior again. In this 1282 * case, the system administrator will need to step in and manually 1283 * remove or disable the VF in question. 1284 */ 1285 if (fault->func && iov_data) { 1286 int vf = fault->func - 1; 1287 struct fm10k_vf_info *vf_info = &iov_data->vf_info[vf]; 1288 1289 hw->iov.ops.reset_lport(hw, vf_info); 1290 hw->iov.ops.reset_resources(hw, vf_info); 1291 1292 /* reset_lport disables the VF, so re-enable it */ 1293 hw->iov.ops.set_lport(hw, vf_info, vf, 1294 FM10K_VF_FLAG_MULTI_CAPABLE); 1295 1296 /* reset_resources will disconnect from the mbx */ 1297 vf_info->mbx.ops.connect(hw, &vf_info->mbx); 1298 } 1299 } 1300 1301 static void fm10k_report_fault(struct fm10k_intfc *interface, u32 eicr) 1302 { 1303 struct fm10k_hw *hw = &interface->hw; 1304 struct fm10k_fault fault = { 0 }; 1305 int type, err; 1306 1307 for (eicr &= FM10K_EICR_FAULT_MASK, type = FM10K_PCA_FAULT; 1308 eicr; 1309 eicr >>= 1, type += FM10K_FAULT_SIZE) { 1310 /* only check if there is an error reported */ 1311 if (!(eicr & 0x1)) 1312 continue; 1313 1314 /* retrieve fault info */ 1315 err = hw->mac.ops.get_fault(hw, type, &fault); 1316 if (err) { 1317 dev_err(&interface->pdev->dev, 1318 "error reading fault\n"); 1319 continue; 1320 } 1321 1322 fm10k_handle_fault(interface, type, &fault); 1323 } 1324 } 1325 1326 static void fm10k_reset_drop_on_empty(struct fm10k_intfc *interface, u32 eicr) 1327 { 1328 struct fm10k_hw *hw = &interface->hw; 1329 const u32 rxdctl = FM10K_RXDCTL_WRITE_BACK_MIN_DELAY; 1330 u32 maxholdq; 1331 int q; 1332 1333 if (!(eicr & FM10K_EICR_MAXHOLDTIME)) 1334 return; 1335 1336 maxholdq = fm10k_read_reg(hw, FM10K_MAXHOLDQ(7)); 1337 if (maxholdq) 1338 fm10k_write_reg(hw, FM10K_MAXHOLDQ(7), maxholdq); 1339 for (q = 255;;) { 1340 if (maxholdq & BIT(31)) { 1341 if (q < FM10K_MAX_QUEUES_PF) { 1342 interface->rx_overrun_pf++; 1343 fm10k_write_reg(hw, FM10K_RXDCTL(q), rxdctl); 1344 } else { 1345 interface->rx_overrun_vf++; 1346 } 1347 } 1348 1349 maxholdq *= 2; 1350 if (!maxholdq) 1351 q &= ~(32 - 1); 1352 1353 if (!q) 1354 break; 1355 1356 if (q-- % 32) 1357 continue; 1358 1359 maxholdq = fm10k_read_reg(hw, FM10K_MAXHOLDQ(q / 32)); 1360 if (maxholdq) 1361 fm10k_write_reg(hw, FM10K_MAXHOLDQ(q / 32), maxholdq); 1362 } 1363 } 1364 1365 static irqreturn_t fm10k_msix_mbx_pf(int __always_unused irq, void *data) 1366 { 1367 struct fm10k_intfc *interface = data; 1368 struct fm10k_hw *hw = &interface->hw; 1369 struct fm10k_mbx_info *mbx = &hw->mbx; 1370 u32 eicr; 1371 s32 err = 0; 1372 1373 /* unmask any set bits related to this interrupt */ 1374 eicr = fm10k_read_reg(hw, FM10K_EICR); 1375 fm10k_write_reg(hw, FM10K_EICR, eicr & (FM10K_EICR_MAILBOX | 1376 FM10K_EICR_SWITCHREADY | 1377 FM10K_EICR_SWITCHNOTREADY)); 1378 1379 /* report any faults found to the message log */ 1380 fm10k_report_fault(interface, eicr); 1381 1382 /* reset any queues disabled due to receiver overrun */ 1383 fm10k_reset_drop_on_empty(interface, eicr); 1384 1385 /* service mailboxes */ 1386 if (fm10k_mbx_trylock(interface)) { 1387 err = mbx->ops.process(hw, mbx); 1388 /* handle VFLRE events */ 1389 fm10k_iov_event(interface); 1390 fm10k_mbx_unlock(interface); 1391 } 1392 1393 if (err == FM10K_ERR_RESET_REQUESTED) 1394 set_bit(FM10K_FLAG_RESET_REQUESTED, interface->flags); 1395 1396 /* if switch toggled state we should reset GLORTs */ 1397 if (eicr & FM10K_EICR_SWITCHNOTREADY) { 1398 /* force link down for at least 4 seconds */ 1399 interface->link_down_event = jiffies + (4 * HZ); 1400 set_bit(__FM10K_LINK_DOWN, interface->state); 1401 1402 /* reset dglort_map back to no config */ 1403 hw->mac.dglort_map = FM10K_DGLORTMAP_NONE; 1404 } 1405 1406 /* we should validate host state after interrupt event */ 1407 hw->mac.get_host_state = true; 1408 1409 /* validate host state, and handle VF mailboxes in the service task */ 1410 fm10k_service_event_schedule(interface); 1411 1412 /* re-enable mailbox interrupt and indicate 20us delay */ 1413 fm10k_write_reg(hw, FM10K_ITR(FM10K_MBX_VECTOR), 1414 (FM10K_MBX_INT_DELAY >> hw->mac.itr_scale) | 1415 FM10K_ITR_ENABLE); 1416 1417 return IRQ_HANDLED; 1418 } 1419 1420 void fm10k_mbx_free_irq(struct fm10k_intfc *interface) 1421 { 1422 struct fm10k_hw *hw = &interface->hw; 1423 struct msix_entry *entry; 1424 int itr_reg; 1425 1426 /* no mailbox IRQ to free if MSI-X is not enabled */ 1427 if (!interface->msix_entries) 1428 return; 1429 1430 entry = &interface->msix_entries[FM10K_MBX_VECTOR]; 1431 1432 /* disconnect the mailbox */ 1433 hw->mbx.ops.disconnect(hw, &hw->mbx); 1434 1435 /* disable Mailbox cause */ 1436 if (hw->mac.type == fm10k_mac_pf) { 1437 fm10k_write_reg(hw, FM10K_EIMR, 1438 FM10K_EIMR_DISABLE(PCA_FAULT) | 1439 FM10K_EIMR_DISABLE(FUM_FAULT) | 1440 FM10K_EIMR_DISABLE(MAILBOX) | 1441 FM10K_EIMR_DISABLE(SWITCHREADY) | 1442 FM10K_EIMR_DISABLE(SWITCHNOTREADY) | 1443 FM10K_EIMR_DISABLE(SRAMERROR) | 1444 FM10K_EIMR_DISABLE(VFLR) | 1445 FM10K_EIMR_DISABLE(MAXHOLDTIME)); 1446 itr_reg = FM10K_ITR(FM10K_MBX_VECTOR); 1447 } else { 1448 itr_reg = FM10K_VFITR(FM10K_MBX_VECTOR); 1449 } 1450 1451 fm10k_write_reg(hw, itr_reg, FM10K_ITR_MASK_SET); 1452 1453 free_irq(entry->vector, interface); 1454 } 1455 1456 static s32 fm10k_mbx_mac_addr(struct fm10k_hw *hw, u32 **results, 1457 struct fm10k_mbx_info *mbx) 1458 { 1459 bool vlan_override = hw->mac.vlan_override; 1460 u16 default_vid = hw->mac.default_vid; 1461 struct fm10k_intfc *interface; 1462 s32 err; 1463 1464 err = fm10k_msg_mac_vlan_vf(hw, results, mbx); 1465 if (err) 1466 return err; 1467 1468 interface = container_of(hw, struct fm10k_intfc, hw); 1469 1470 /* MAC was changed so we need reset */ 1471 if (is_valid_ether_addr(hw->mac.perm_addr) && 1472 !ether_addr_equal(hw->mac.perm_addr, hw->mac.addr)) 1473 set_bit(FM10K_FLAG_RESET_REQUESTED, interface->flags); 1474 1475 /* VLAN override was changed, or default VLAN changed */ 1476 if ((vlan_override != hw->mac.vlan_override) || 1477 (default_vid != hw->mac.default_vid)) 1478 set_bit(FM10K_FLAG_RESET_REQUESTED, interface->flags); 1479 1480 return 0; 1481 } 1482 1483 /* generic error handler for mailbox issues */ 1484 static s32 fm10k_mbx_error(struct fm10k_hw *hw, u32 **results, 1485 struct fm10k_mbx_info __always_unused *mbx) 1486 { 1487 struct fm10k_intfc *interface; 1488 struct pci_dev *pdev; 1489 1490 interface = container_of(hw, struct fm10k_intfc, hw); 1491 pdev = interface->pdev; 1492 1493 dev_err(&pdev->dev, "Unknown message ID %u\n", 1494 **results & FM10K_TLV_ID_MASK); 1495 1496 return 0; 1497 } 1498 1499 static const struct fm10k_msg_data vf_mbx_data[] = { 1500 FM10K_TLV_MSG_TEST_HANDLER(fm10k_tlv_msg_test), 1501 FM10K_VF_MSG_MAC_VLAN_HANDLER(fm10k_mbx_mac_addr), 1502 FM10K_VF_MSG_LPORT_STATE_HANDLER(fm10k_msg_lport_state_vf), 1503 FM10K_TLV_MSG_ERROR_HANDLER(fm10k_mbx_error), 1504 }; 1505 1506 static int fm10k_mbx_request_irq_vf(struct fm10k_intfc *interface) 1507 { 1508 struct msix_entry *entry = &interface->msix_entries[FM10K_MBX_VECTOR]; 1509 struct net_device *dev = interface->netdev; 1510 struct fm10k_hw *hw = &interface->hw; 1511 int err; 1512 1513 /* Use timer0 for interrupt moderation on the mailbox */ 1514 u32 itr = entry->entry | FM10K_INT_MAP_TIMER0; 1515 1516 /* register mailbox handlers */ 1517 err = hw->mbx.ops.register_handlers(&hw->mbx, vf_mbx_data); 1518 if (err) 1519 return err; 1520 1521 /* request the IRQ */ 1522 err = request_irq(entry->vector, fm10k_msix_mbx_vf, 0, 1523 dev->name, interface); 1524 if (err) { 1525 netif_err(interface, probe, dev, 1526 "request_irq for msix_mbx failed: %d\n", err); 1527 return err; 1528 } 1529 1530 /* map all of the interrupt sources */ 1531 fm10k_write_reg(hw, FM10K_VFINT_MAP, itr); 1532 1533 /* enable interrupt */ 1534 fm10k_write_reg(hw, FM10K_VFITR(entry->entry), FM10K_ITR_ENABLE); 1535 1536 return 0; 1537 } 1538 1539 static s32 fm10k_lport_map(struct fm10k_hw *hw, u32 **results, 1540 struct fm10k_mbx_info *mbx) 1541 { 1542 struct fm10k_intfc *interface; 1543 u32 dglort_map = hw->mac.dglort_map; 1544 s32 err; 1545 1546 interface = container_of(hw, struct fm10k_intfc, hw); 1547 1548 err = fm10k_msg_err_pf(hw, results, mbx); 1549 if (!err && hw->swapi.status) { 1550 /* force link down for a reasonable delay */ 1551 interface->link_down_event = jiffies + (2 * HZ); 1552 set_bit(__FM10K_LINK_DOWN, interface->state); 1553 1554 /* reset dglort_map back to no config */ 1555 hw->mac.dglort_map = FM10K_DGLORTMAP_NONE; 1556 1557 fm10k_service_event_schedule(interface); 1558 1559 /* prevent overloading kernel message buffer */ 1560 if (interface->lport_map_failed) 1561 return 0; 1562 1563 interface->lport_map_failed = true; 1564 1565 if (hw->swapi.status == FM10K_MSG_ERR_PEP_NOT_SCHEDULED) 1566 dev_warn(&interface->pdev->dev, 1567 "cannot obtain link because the host interface is configured for a PCIe host interface bandwidth of zero\n"); 1568 dev_warn(&interface->pdev->dev, 1569 "request logical port map failed: %d\n", 1570 hw->swapi.status); 1571 1572 return 0; 1573 } 1574 1575 err = fm10k_msg_lport_map_pf(hw, results, mbx); 1576 if (err) 1577 return err; 1578 1579 interface->lport_map_failed = false; 1580 1581 /* we need to reset if port count was just updated */ 1582 if (dglort_map != hw->mac.dglort_map) 1583 set_bit(FM10K_FLAG_RESET_REQUESTED, interface->flags); 1584 1585 return 0; 1586 } 1587 1588 static s32 fm10k_update_pvid(struct fm10k_hw *hw, u32 **results, 1589 struct fm10k_mbx_info __always_unused *mbx) 1590 { 1591 struct fm10k_intfc *interface; 1592 u16 glort, pvid; 1593 u32 pvid_update; 1594 s32 err; 1595 1596 err = fm10k_tlv_attr_get_u32(results[FM10K_PF_ATTR_ID_UPDATE_PVID], 1597 &pvid_update); 1598 if (err) 1599 return err; 1600 1601 /* extract values from the pvid update */ 1602 glort = FM10K_MSG_HDR_FIELD_GET(pvid_update, UPDATE_PVID_GLORT); 1603 pvid = FM10K_MSG_HDR_FIELD_GET(pvid_update, UPDATE_PVID_PVID); 1604 1605 /* if glort is not valid return error */ 1606 if (!fm10k_glort_valid_pf(hw, glort)) 1607 return FM10K_ERR_PARAM; 1608 1609 /* verify VLAN ID is valid */ 1610 if (pvid >= FM10K_VLAN_TABLE_VID_MAX) 1611 return FM10K_ERR_PARAM; 1612 1613 interface = container_of(hw, struct fm10k_intfc, hw); 1614 1615 /* check to see if this belongs to one of the VFs */ 1616 err = fm10k_iov_update_pvid(interface, glort, pvid); 1617 if (!err) 1618 return 0; 1619 1620 /* we need to reset if default VLAN was just updated */ 1621 if (pvid != hw->mac.default_vid) 1622 set_bit(FM10K_FLAG_RESET_REQUESTED, interface->flags); 1623 1624 hw->mac.default_vid = pvid; 1625 1626 return 0; 1627 } 1628 1629 static const struct fm10k_msg_data pf_mbx_data[] = { 1630 FM10K_PF_MSG_ERR_HANDLER(XCAST_MODES, fm10k_msg_err_pf), 1631 FM10K_PF_MSG_ERR_HANDLER(UPDATE_MAC_FWD_RULE, fm10k_msg_err_pf), 1632 FM10K_PF_MSG_LPORT_MAP_HANDLER(fm10k_lport_map), 1633 FM10K_PF_MSG_ERR_HANDLER(LPORT_CREATE, fm10k_msg_err_pf), 1634 FM10K_PF_MSG_ERR_HANDLER(LPORT_DELETE, fm10k_msg_err_pf), 1635 FM10K_PF_MSG_UPDATE_PVID_HANDLER(fm10k_update_pvid), 1636 FM10K_TLV_MSG_ERROR_HANDLER(fm10k_mbx_error), 1637 }; 1638 1639 static int fm10k_mbx_request_irq_pf(struct fm10k_intfc *interface) 1640 { 1641 struct msix_entry *entry = &interface->msix_entries[FM10K_MBX_VECTOR]; 1642 struct net_device *dev = interface->netdev; 1643 struct fm10k_hw *hw = &interface->hw; 1644 int err; 1645 1646 /* Use timer0 for interrupt moderation on the mailbox */ 1647 u32 mbx_itr = entry->entry | FM10K_INT_MAP_TIMER0; 1648 u32 other_itr = entry->entry | FM10K_INT_MAP_IMMEDIATE; 1649 1650 /* register mailbox handlers */ 1651 err = hw->mbx.ops.register_handlers(&hw->mbx, pf_mbx_data); 1652 if (err) 1653 return err; 1654 1655 /* request the IRQ */ 1656 err = request_irq(entry->vector, fm10k_msix_mbx_pf, 0, 1657 dev->name, interface); 1658 if (err) { 1659 netif_err(interface, probe, dev, 1660 "request_irq for msix_mbx failed: %d\n", err); 1661 return err; 1662 } 1663 1664 /* Enable interrupts w/ no moderation for "other" interrupts */ 1665 fm10k_write_reg(hw, FM10K_INT_MAP(fm10k_int_pcie_fault), other_itr); 1666 fm10k_write_reg(hw, FM10K_INT_MAP(fm10k_int_switch_up_down), other_itr); 1667 fm10k_write_reg(hw, FM10K_INT_MAP(fm10k_int_sram), other_itr); 1668 fm10k_write_reg(hw, FM10K_INT_MAP(fm10k_int_max_hold_time), other_itr); 1669 fm10k_write_reg(hw, FM10K_INT_MAP(fm10k_int_vflr), other_itr); 1670 1671 /* Enable interrupts w/ moderation for mailbox */ 1672 fm10k_write_reg(hw, FM10K_INT_MAP(fm10k_int_mailbox), mbx_itr); 1673 1674 /* Enable individual interrupt causes */ 1675 fm10k_write_reg(hw, FM10K_EIMR, FM10K_EIMR_ENABLE(PCA_FAULT) | 1676 FM10K_EIMR_ENABLE(FUM_FAULT) | 1677 FM10K_EIMR_ENABLE(MAILBOX) | 1678 FM10K_EIMR_ENABLE(SWITCHREADY) | 1679 FM10K_EIMR_ENABLE(SWITCHNOTREADY) | 1680 FM10K_EIMR_ENABLE(SRAMERROR) | 1681 FM10K_EIMR_ENABLE(VFLR) | 1682 FM10K_EIMR_ENABLE(MAXHOLDTIME)); 1683 1684 /* enable interrupt */ 1685 fm10k_write_reg(hw, FM10K_ITR(entry->entry), FM10K_ITR_ENABLE); 1686 1687 return 0; 1688 } 1689 1690 int fm10k_mbx_request_irq(struct fm10k_intfc *interface) 1691 { 1692 struct fm10k_hw *hw = &interface->hw; 1693 int err; 1694 1695 /* enable Mailbox cause */ 1696 if (hw->mac.type == fm10k_mac_pf) 1697 err = fm10k_mbx_request_irq_pf(interface); 1698 else 1699 err = fm10k_mbx_request_irq_vf(interface); 1700 if (err) 1701 return err; 1702 1703 /* connect mailbox */ 1704 err = hw->mbx.ops.connect(hw, &hw->mbx); 1705 1706 /* if the mailbox failed to connect, then free IRQ */ 1707 if (err) 1708 fm10k_mbx_free_irq(interface); 1709 1710 return err; 1711 } 1712 1713 /** 1714 * fm10k_qv_free_irq - release interrupts associated with queue vectors 1715 * @interface: board private structure 1716 * 1717 * Release all interrupts associated with this interface 1718 **/ 1719 void fm10k_qv_free_irq(struct fm10k_intfc *interface) 1720 { 1721 int vector = interface->num_q_vectors; 1722 struct fm10k_hw *hw = &interface->hw; 1723 struct msix_entry *entry; 1724 1725 entry = &interface->msix_entries[NON_Q_VECTORS(hw) + vector]; 1726 1727 while (vector) { 1728 struct fm10k_q_vector *q_vector; 1729 1730 vector--; 1731 entry--; 1732 q_vector = interface->q_vector[vector]; 1733 1734 if (!q_vector->tx.count && !q_vector->rx.count) 1735 continue; 1736 1737 /* clear the affinity_mask in the IRQ descriptor */ 1738 irq_set_affinity_hint(entry->vector, NULL); 1739 1740 /* disable interrupts */ 1741 writel(FM10K_ITR_MASK_SET, q_vector->itr); 1742 1743 free_irq(entry->vector, q_vector); 1744 } 1745 } 1746 1747 /** 1748 * fm10k_qv_request_irq - initialize interrupts for queue vectors 1749 * @interface: board private structure 1750 * 1751 * Attempts to configure interrupts using the best available 1752 * capabilities of the hardware and kernel. 1753 **/ 1754 int fm10k_qv_request_irq(struct fm10k_intfc *interface) 1755 { 1756 struct net_device *dev = interface->netdev; 1757 struct fm10k_hw *hw = &interface->hw; 1758 struct msix_entry *entry; 1759 unsigned int ri = 0, ti = 0; 1760 int vector, err; 1761 1762 entry = &interface->msix_entries[NON_Q_VECTORS(hw)]; 1763 1764 for (vector = 0; vector < interface->num_q_vectors; vector++) { 1765 struct fm10k_q_vector *q_vector = interface->q_vector[vector]; 1766 1767 /* name the vector */ 1768 if (q_vector->tx.count && q_vector->rx.count) { 1769 snprintf(q_vector->name, sizeof(q_vector->name), 1770 "%s-TxRx-%u", dev->name, ri++); 1771 ti++; 1772 } else if (q_vector->rx.count) { 1773 snprintf(q_vector->name, sizeof(q_vector->name), 1774 "%s-rx-%u", dev->name, ri++); 1775 } else if (q_vector->tx.count) { 1776 snprintf(q_vector->name, sizeof(q_vector->name), 1777 "%s-tx-%u", dev->name, ti++); 1778 } else { 1779 /* skip this unused q_vector */ 1780 continue; 1781 } 1782 1783 /* Assign ITR register to q_vector */ 1784 q_vector->itr = (hw->mac.type == fm10k_mac_pf) ? 1785 &interface->uc_addr[FM10K_ITR(entry->entry)] : 1786 &interface->uc_addr[FM10K_VFITR(entry->entry)]; 1787 1788 /* request the IRQ */ 1789 err = request_irq(entry->vector, &fm10k_msix_clean_rings, 0, 1790 q_vector->name, q_vector); 1791 if (err) { 1792 netif_err(interface, probe, dev, 1793 "request_irq failed for MSIX interrupt Error: %d\n", 1794 err); 1795 goto err_out; 1796 } 1797 1798 /* assign the mask for this irq */ 1799 irq_set_affinity_hint(entry->vector, &q_vector->affinity_mask); 1800 1801 /* Enable q_vector */ 1802 writel(FM10K_ITR_ENABLE, q_vector->itr); 1803 1804 entry++; 1805 } 1806 1807 return 0; 1808 1809 err_out: 1810 /* wind through the ring freeing all entries and vectors */ 1811 while (vector) { 1812 struct fm10k_q_vector *q_vector; 1813 1814 entry--; 1815 vector--; 1816 q_vector = interface->q_vector[vector]; 1817 1818 if (!q_vector->tx.count && !q_vector->rx.count) 1819 continue; 1820 1821 /* clear the affinity_mask in the IRQ descriptor */ 1822 irq_set_affinity_hint(entry->vector, NULL); 1823 1824 /* disable interrupts */ 1825 writel(FM10K_ITR_MASK_SET, q_vector->itr); 1826 1827 free_irq(entry->vector, q_vector); 1828 } 1829 1830 return err; 1831 } 1832 1833 void fm10k_up(struct fm10k_intfc *interface) 1834 { 1835 struct fm10k_hw *hw = &interface->hw; 1836 1837 /* Enable Tx/Rx DMA */ 1838 hw->mac.ops.start_hw(hw); 1839 1840 /* configure Tx descriptor rings */ 1841 fm10k_configure_tx(interface); 1842 1843 /* configure Rx descriptor rings */ 1844 fm10k_configure_rx(interface); 1845 1846 /* configure interrupts */ 1847 hw->mac.ops.update_int_moderator(hw); 1848 1849 /* enable statistics capture again */ 1850 clear_bit(__FM10K_UPDATING_STATS, interface->state); 1851 1852 /* clear down bit to indicate we are ready to go */ 1853 clear_bit(__FM10K_DOWN, interface->state); 1854 1855 /* enable polling cleanups */ 1856 fm10k_napi_enable_all(interface); 1857 1858 /* re-establish Rx filters */ 1859 fm10k_restore_rx_state(interface); 1860 1861 /* enable transmits */ 1862 netif_tx_start_all_queues(interface->netdev); 1863 1864 /* kick off the service timer now */ 1865 hw->mac.get_host_state = true; 1866 mod_timer(&interface->service_timer, jiffies); 1867 } 1868 1869 static void fm10k_napi_disable_all(struct fm10k_intfc *interface) 1870 { 1871 struct fm10k_q_vector *q_vector; 1872 int q_idx; 1873 1874 for (q_idx = 0; q_idx < interface->num_q_vectors; q_idx++) { 1875 q_vector = interface->q_vector[q_idx]; 1876 napi_disable(&q_vector->napi); 1877 } 1878 } 1879 1880 void fm10k_down(struct fm10k_intfc *interface) 1881 { 1882 struct net_device *netdev = interface->netdev; 1883 struct fm10k_hw *hw = &interface->hw; 1884 int err, i = 0, count = 0; 1885 1886 /* signal that we are down to the interrupt handler and service task */ 1887 if (test_and_set_bit(__FM10K_DOWN, interface->state)) 1888 return; 1889 1890 /* call carrier off first to avoid false dev_watchdog timeouts */ 1891 netif_carrier_off(netdev); 1892 1893 /* disable transmits */ 1894 netif_tx_stop_all_queues(netdev); 1895 netif_tx_disable(netdev); 1896 1897 /* reset Rx filters */ 1898 fm10k_reset_rx_state(interface); 1899 1900 /* disable polling routines */ 1901 fm10k_napi_disable_all(interface); 1902 1903 /* capture stats one last time before stopping interface */ 1904 fm10k_update_stats(interface); 1905 1906 /* prevent updating statistics while we're down */ 1907 while (test_and_set_bit(__FM10K_UPDATING_STATS, interface->state)) 1908 usleep_range(1000, 2000); 1909 1910 /* skip waiting for TX DMA if we lost PCIe link */ 1911 if (FM10K_REMOVED(hw->hw_addr)) 1912 goto skip_tx_dma_drain; 1913 1914 /* In some rare circumstances it can take a while for Tx queues to 1915 * quiesce and be fully disabled. Attempt to .stop_hw() first, and 1916 * then if we get ERR_REQUESTS_PENDING, go ahead and wait in a loop 1917 * until the Tx queues have emptied, or until a number of retries. If 1918 * we fail to clear within the retry loop, we will issue a warning 1919 * indicating that Tx DMA is probably hung. Note this means we call 1920 * .stop_hw() twice but this shouldn't cause any problems. 1921 */ 1922 err = hw->mac.ops.stop_hw(hw); 1923 if (err != FM10K_ERR_REQUESTS_PENDING) 1924 goto skip_tx_dma_drain; 1925 1926 #define TX_DMA_DRAIN_RETRIES 25 1927 for (count = 0; count < TX_DMA_DRAIN_RETRIES; count++) { 1928 usleep_range(10000, 20000); 1929 1930 /* start checking at the last ring to have pending Tx */ 1931 for (; i < interface->num_tx_queues; i++) 1932 if (fm10k_get_tx_pending(interface->tx_ring[i], false)) 1933 break; 1934 1935 /* if all the queues are drained, we can break now */ 1936 if (i == interface->num_tx_queues) 1937 break; 1938 } 1939 1940 if (count >= TX_DMA_DRAIN_RETRIES) 1941 dev_err(&interface->pdev->dev, 1942 "Tx queues failed to drain after %d tries. Tx DMA is probably hung.\n", 1943 count); 1944 skip_tx_dma_drain: 1945 /* Disable DMA engine for Tx/Rx */ 1946 err = hw->mac.ops.stop_hw(hw); 1947 if (err == FM10K_ERR_REQUESTS_PENDING) 1948 dev_err(&interface->pdev->dev, 1949 "due to pending requests hw was not shut down gracefully\n"); 1950 else if (err) 1951 dev_err(&interface->pdev->dev, "stop_hw failed: %d\n", err); 1952 1953 /* free any buffers still on the rings */ 1954 fm10k_clean_all_tx_rings(interface); 1955 fm10k_clean_all_rx_rings(interface); 1956 } 1957 1958 /** 1959 * fm10k_sw_init - Initialize general software structures 1960 * @interface: host interface private structure to initialize 1961 * @ent: PCI device ID entry 1962 * 1963 * fm10k_sw_init initializes the interface private data structure. 1964 * Fields are initialized based on PCI device information and 1965 * OS network device settings (MTU size). 1966 **/ 1967 static int fm10k_sw_init(struct fm10k_intfc *interface, 1968 const struct pci_device_id *ent) 1969 { 1970 const struct fm10k_info *fi = fm10k_info_tbl[ent->driver_data]; 1971 struct fm10k_hw *hw = &interface->hw; 1972 struct pci_dev *pdev = interface->pdev; 1973 struct net_device *netdev = interface->netdev; 1974 u32 rss_key[FM10K_RSSRK_SIZE]; 1975 unsigned int rss; 1976 int err; 1977 1978 /* initialize back pointer */ 1979 hw->back = interface; 1980 hw->hw_addr = interface->uc_addr; 1981 1982 /* PCI config space info */ 1983 hw->vendor_id = pdev->vendor; 1984 hw->device_id = pdev->device; 1985 hw->revision_id = pdev->revision; 1986 hw->subsystem_vendor_id = pdev->subsystem_vendor; 1987 hw->subsystem_device_id = pdev->subsystem_device; 1988 1989 /* Setup hw api */ 1990 memcpy(&hw->mac.ops, fi->mac_ops, sizeof(hw->mac.ops)); 1991 hw->mac.type = fi->mac; 1992 1993 /* Setup IOV handlers */ 1994 if (fi->iov_ops) 1995 memcpy(&hw->iov.ops, fi->iov_ops, sizeof(hw->iov.ops)); 1996 1997 /* Set common capability flags and settings */ 1998 rss = min_t(int, FM10K_MAX_RSS_INDICES, num_online_cpus()); 1999 interface->ring_feature[RING_F_RSS].limit = rss; 2000 fi->get_invariants(hw); 2001 2002 /* pick up the PCIe bus settings for reporting later */ 2003 if (hw->mac.ops.get_bus_info) 2004 hw->mac.ops.get_bus_info(hw); 2005 2006 /* limit the usable DMA range */ 2007 if (hw->mac.ops.set_dma_mask) 2008 hw->mac.ops.set_dma_mask(hw, dma_get_mask(&pdev->dev)); 2009 2010 /* update netdev with DMA restrictions */ 2011 if (dma_get_mask(&pdev->dev) > DMA_BIT_MASK(32)) { 2012 netdev->features |= NETIF_F_HIGHDMA; 2013 netdev->vlan_features |= NETIF_F_HIGHDMA; 2014 } 2015 2016 /* reset and initialize the hardware so it is in a known state */ 2017 err = hw->mac.ops.reset_hw(hw); 2018 if (err) { 2019 dev_err(&pdev->dev, "reset_hw failed: %d\n", err); 2020 return err; 2021 } 2022 2023 err = hw->mac.ops.init_hw(hw); 2024 if (err) { 2025 dev_err(&pdev->dev, "init_hw failed: %d\n", err); 2026 return err; 2027 } 2028 2029 /* initialize hardware statistics */ 2030 hw->mac.ops.update_hw_stats(hw, &interface->stats); 2031 2032 /* Set upper limit on IOV VFs that can be allocated */ 2033 pci_sriov_set_totalvfs(pdev, hw->iov.total_vfs); 2034 2035 /* Start with random Ethernet address */ 2036 eth_random_addr(hw->mac.addr); 2037 2038 /* Initialize MAC address from hardware */ 2039 err = hw->mac.ops.read_mac_addr(hw); 2040 if (err) { 2041 dev_warn(&pdev->dev, 2042 "Failed to obtain MAC address defaulting to random\n"); 2043 /* tag address assignment as random */ 2044 netdev->addr_assign_type |= NET_ADDR_RANDOM; 2045 } 2046 2047 ether_addr_copy(netdev->dev_addr, hw->mac.addr); 2048 ether_addr_copy(netdev->perm_addr, hw->mac.addr); 2049 2050 if (!is_valid_ether_addr(netdev->perm_addr)) { 2051 dev_err(&pdev->dev, "Invalid MAC Address\n"); 2052 return -EIO; 2053 } 2054 2055 /* initialize DCBNL interface */ 2056 fm10k_dcbnl_set_ops(netdev); 2057 2058 /* set default ring sizes */ 2059 interface->tx_ring_count = FM10K_DEFAULT_TXD; 2060 interface->rx_ring_count = FM10K_DEFAULT_RXD; 2061 2062 /* set default interrupt moderation */ 2063 interface->tx_itr = FM10K_TX_ITR_DEFAULT; 2064 interface->rx_itr = FM10K_ITR_ADAPTIVE | FM10K_RX_ITR_DEFAULT; 2065 2066 /* initialize udp port lists */ 2067 INIT_LIST_HEAD(&interface->vxlan_port); 2068 INIT_LIST_HEAD(&interface->geneve_port); 2069 2070 /* Initialize the MAC/VLAN queue */ 2071 INIT_LIST_HEAD(&interface->macvlan_requests); 2072 2073 netdev_rss_key_fill(rss_key, sizeof(rss_key)); 2074 memcpy(interface->rssrk, rss_key, sizeof(rss_key)); 2075 2076 /* Initialize the mailbox lock */ 2077 spin_lock_init(&interface->mbx_lock); 2078 spin_lock_init(&interface->macvlan_lock); 2079 2080 /* Start off interface as being down */ 2081 set_bit(__FM10K_DOWN, interface->state); 2082 set_bit(__FM10K_UPDATING_STATS, interface->state); 2083 2084 return 0; 2085 } 2086 2087 /** 2088 * fm10k_probe - Device Initialization Routine 2089 * @pdev: PCI device information struct 2090 * @ent: entry in fm10k_pci_tbl 2091 * 2092 * Returns 0 on success, negative on failure 2093 * 2094 * fm10k_probe initializes an interface identified by a pci_dev structure. 2095 * The OS initialization, configuring of the interface private structure, 2096 * and a hardware reset occur. 2097 **/ 2098 static int fm10k_probe(struct pci_dev *pdev, const struct pci_device_id *ent) 2099 { 2100 struct net_device *netdev; 2101 struct fm10k_intfc *interface; 2102 int err; 2103 2104 if (pdev->error_state != pci_channel_io_normal) { 2105 dev_err(&pdev->dev, 2106 "PCI device still in an error state. Unable to load...\n"); 2107 return -EIO; 2108 } 2109 2110 err = pci_enable_device_mem(pdev); 2111 if (err) { 2112 dev_err(&pdev->dev, 2113 "PCI enable device failed: %d\n", err); 2114 return err; 2115 } 2116 2117 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(48)); 2118 if (err) 2119 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)); 2120 if (err) { 2121 dev_err(&pdev->dev, 2122 "DMA configuration failed: %d\n", err); 2123 goto err_dma; 2124 } 2125 2126 err = pci_request_mem_regions(pdev, fm10k_driver_name); 2127 if (err) { 2128 dev_err(&pdev->dev, 2129 "pci_request_selected_regions failed: %d\n", err); 2130 goto err_pci_reg; 2131 } 2132 2133 pci_enable_pcie_error_reporting(pdev); 2134 2135 pci_set_master(pdev); 2136 pci_save_state(pdev); 2137 2138 netdev = fm10k_alloc_netdev(fm10k_info_tbl[ent->driver_data]); 2139 if (!netdev) { 2140 err = -ENOMEM; 2141 goto err_alloc_netdev; 2142 } 2143 2144 SET_NETDEV_DEV(netdev, &pdev->dev); 2145 2146 interface = netdev_priv(netdev); 2147 pci_set_drvdata(pdev, interface); 2148 2149 interface->netdev = netdev; 2150 interface->pdev = pdev; 2151 2152 interface->uc_addr = ioremap(pci_resource_start(pdev, 0), 2153 FM10K_UC_ADDR_SIZE); 2154 if (!interface->uc_addr) { 2155 err = -EIO; 2156 goto err_ioremap; 2157 } 2158 2159 err = fm10k_sw_init(interface, ent); 2160 if (err) 2161 goto err_sw_init; 2162 2163 /* enable debugfs support */ 2164 fm10k_dbg_intfc_init(interface); 2165 2166 err = fm10k_init_queueing_scheme(interface); 2167 if (err) 2168 goto err_sw_init; 2169 2170 /* the mbx interrupt might attempt to schedule the service task, so we 2171 * must ensure it is disabled since we haven't yet requested the timer 2172 * or work item. 2173 */ 2174 set_bit(__FM10K_SERVICE_DISABLE, interface->state); 2175 2176 err = fm10k_mbx_request_irq(interface); 2177 if (err) 2178 goto err_mbx_interrupt; 2179 2180 /* final check of hardware state before registering the interface */ 2181 err = fm10k_hw_ready(interface); 2182 if (err) 2183 goto err_register; 2184 2185 err = register_netdev(netdev); 2186 if (err) 2187 goto err_register; 2188 2189 /* carrier off reporting is important to ethtool even BEFORE open */ 2190 netif_carrier_off(netdev); 2191 2192 /* stop all the transmit queues from transmitting until link is up */ 2193 netif_tx_stop_all_queues(netdev); 2194 2195 /* Initialize service timer and service task late in order to avoid 2196 * cleanup issues. 2197 */ 2198 timer_setup(&interface->service_timer, fm10k_service_timer, 0); 2199 INIT_WORK(&interface->service_task, fm10k_service_task); 2200 2201 /* Setup the MAC/VLAN queue */ 2202 INIT_DELAYED_WORK(&interface->macvlan_task, fm10k_macvlan_task); 2203 2204 /* kick off service timer now, even when interface is down */ 2205 mod_timer(&interface->service_timer, (HZ * 2) + jiffies); 2206 2207 /* print warning for non-optimal configurations */ 2208 pcie_print_link_status(interface->pdev); 2209 2210 /* report MAC address for logging */ 2211 dev_info(&pdev->dev, "%pM\n", netdev->dev_addr); 2212 2213 /* enable SR-IOV after registering netdev to enforce PF/VF ordering */ 2214 fm10k_iov_configure(pdev, 0); 2215 2216 /* clear the service task disable bit and kick off service task */ 2217 clear_bit(__FM10K_SERVICE_DISABLE, interface->state); 2218 fm10k_service_event_schedule(interface); 2219 2220 return 0; 2221 2222 err_register: 2223 fm10k_mbx_free_irq(interface); 2224 err_mbx_interrupt: 2225 fm10k_clear_queueing_scheme(interface); 2226 err_sw_init: 2227 if (interface->sw_addr) 2228 iounmap(interface->sw_addr); 2229 iounmap(interface->uc_addr); 2230 err_ioremap: 2231 free_netdev(netdev); 2232 err_alloc_netdev: 2233 pci_release_mem_regions(pdev); 2234 err_pci_reg: 2235 err_dma: 2236 pci_disable_device(pdev); 2237 return err; 2238 } 2239 2240 /** 2241 * fm10k_remove - Device Removal Routine 2242 * @pdev: PCI device information struct 2243 * 2244 * fm10k_remove is called by the PCI subsystem to alert the driver 2245 * that it should release a PCI device. The could be caused by a 2246 * Hot-Plug event, or because the driver is going to be removed from 2247 * memory. 2248 **/ 2249 static void fm10k_remove(struct pci_dev *pdev) 2250 { 2251 struct fm10k_intfc *interface = pci_get_drvdata(pdev); 2252 struct net_device *netdev = interface->netdev; 2253 2254 del_timer_sync(&interface->service_timer); 2255 2256 fm10k_stop_service_event(interface); 2257 fm10k_stop_macvlan_task(interface); 2258 2259 /* Remove all pending MAC/VLAN requests */ 2260 fm10k_clear_macvlan_queue(interface, interface->glort, true); 2261 2262 /* free netdev, this may bounce the interrupts due to setup_tc */ 2263 if (netdev->reg_state == NETREG_REGISTERED) 2264 unregister_netdev(netdev); 2265 2266 /* release VFs */ 2267 fm10k_iov_disable(pdev); 2268 2269 /* disable mailbox interrupt */ 2270 fm10k_mbx_free_irq(interface); 2271 2272 /* free interrupts */ 2273 fm10k_clear_queueing_scheme(interface); 2274 2275 /* remove any debugfs interfaces */ 2276 fm10k_dbg_intfc_exit(interface); 2277 2278 if (interface->sw_addr) 2279 iounmap(interface->sw_addr); 2280 iounmap(interface->uc_addr); 2281 2282 free_netdev(netdev); 2283 2284 pci_release_mem_regions(pdev); 2285 2286 pci_disable_pcie_error_reporting(pdev); 2287 2288 pci_disable_device(pdev); 2289 } 2290 2291 static void fm10k_prepare_suspend(struct fm10k_intfc *interface) 2292 { 2293 /* the watchdog task reads from registers, which might appear like 2294 * a surprise remove if the PCIe device is disabled while we're 2295 * stopped. We stop the watchdog task until after we resume software 2296 * activity. 2297 * 2298 * Note that the MAC/VLAN task will be stopped as part of preparing 2299 * for reset so we don't need to handle it here. 2300 */ 2301 fm10k_stop_service_event(interface); 2302 2303 if (fm10k_prepare_for_reset(interface)) 2304 set_bit(__FM10K_RESET_SUSPENDED, interface->state); 2305 } 2306 2307 static int fm10k_handle_resume(struct fm10k_intfc *interface) 2308 { 2309 struct fm10k_hw *hw = &interface->hw; 2310 int err; 2311 2312 /* Even if we didn't properly prepare for reset in 2313 * fm10k_prepare_suspend, we'll attempt to resume anyways. 2314 */ 2315 if (!test_and_clear_bit(__FM10K_RESET_SUSPENDED, interface->state)) 2316 dev_warn(&interface->pdev->dev, 2317 "Device was shut down as part of suspend... Attempting to recover\n"); 2318 2319 /* reset statistics starting values */ 2320 hw->mac.ops.rebind_hw_stats(hw, &interface->stats); 2321 2322 err = fm10k_handle_reset(interface); 2323 if (err) 2324 return err; 2325 2326 /* assume host is not ready, to prevent race with watchdog in case we 2327 * actually don't have connection to the switch 2328 */ 2329 interface->host_ready = false; 2330 fm10k_watchdog_host_not_ready(interface); 2331 2332 /* force link to stay down for a second to prevent link flutter */ 2333 interface->link_down_event = jiffies + (HZ); 2334 set_bit(__FM10K_LINK_DOWN, interface->state); 2335 2336 /* restart the service task */ 2337 fm10k_start_service_event(interface); 2338 2339 /* Restart the MAC/VLAN request queue in-case of outstanding events */ 2340 fm10k_macvlan_schedule(interface); 2341 2342 return err; 2343 } 2344 2345 /** 2346 * fm10k_resume - Generic PM resume hook 2347 * @dev: generic device structure 2348 * 2349 * Generic PM hook used when waking the device from a low power state after 2350 * suspend or hibernation. This function does not need to handle lower PCIe 2351 * device state as the stack takes care of that for us. 2352 **/ 2353 static int __maybe_unused fm10k_resume(struct device *dev) 2354 { 2355 struct fm10k_intfc *interface = pci_get_drvdata(to_pci_dev(dev)); 2356 struct net_device *netdev = interface->netdev; 2357 struct fm10k_hw *hw = &interface->hw; 2358 int err; 2359 2360 /* refresh hw_addr in case it was dropped */ 2361 hw->hw_addr = interface->uc_addr; 2362 2363 err = fm10k_handle_resume(interface); 2364 if (err) 2365 return err; 2366 2367 netif_device_attach(netdev); 2368 2369 return 0; 2370 } 2371 2372 /** 2373 * fm10k_suspend - Generic PM suspend hook 2374 * @dev: generic device structure 2375 * 2376 * Generic PM hook used when setting the device into a low power state for 2377 * system suspend or hibernation. This function does not need to handle lower 2378 * PCIe device state as the stack takes care of that for us. 2379 **/ 2380 static int __maybe_unused fm10k_suspend(struct device *dev) 2381 { 2382 struct fm10k_intfc *interface = pci_get_drvdata(to_pci_dev(dev)); 2383 struct net_device *netdev = interface->netdev; 2384 2385 netif_device_detach(netdev); 2386 2387 fm10k_prepare_suspend(interface); 2388 2389 return 0; 2390 } 2391 2392 /** 2393 * fm10k_io_error_detected - called when PCI error is detected 2394 * @pdev: Pointer to PCI device 2395 * @state: The current pci connection state 2396 * 2397 * This function is called after a PCI bus error affecting 2398 * this device has been detected. 2399 */ 2400 static pci_ers_result_t fm10k_io_error_detected(struct pci_dev *pdev, 2401 pci_channel_state_t state) 2402 { 2403 struct fm10k_intfc *interface = pci_get_drvdata(pdev); 2404 struct net_device *netdev = interface->netdev; 2405 2406 netif_device_detach(netdev); 2407 2408 if (state == pci_channel_io_perm_failure) 2409 return PCI_ERS_RESULT_DISCONNECT; 2410 2411 fm10k_prepare_suspend(interface); 2412 2413 /* Request a slot reset. */ 2414 return PCI_ERS_RESULT_NEED_RESET; 2415 } 2416 2417 /** 2418 * fm10k_io_slot_reset - called after the pci bus has been reset. 2419 * @pdev: Pointer to PCI device 2420 * 2421 * Restart the card from scratch, as if from a cold-boot. 2422 */ 2423 static pci_ers_result_t fm10k_io_slot_reset(struct pci_dev *pdev) 2424 { 2425 pci_ers_result_t result; 2426 2427 if (pci_reenable_device(pdev)) { 2428 dev_err(&pdev->dev, 2429 "Cannot re-enable PCI device after reset.\n"); 2430 result = PCI_ERS_RESULT_DISCONNECT; 2431 } else { 2432 pci_set_master(pdev); 2433 pci_restore_state(pdev); 2434 2435 /* After second error pci->state_saved is false, this 2436 * resets it so EEH doesn't break. 2437 */ 2438 pci_save_state(pdev); 2439 2440 pci_wake_from_d3(pdev, false); 2441 2442 result = PCI_ERS_RESULT_RECOVERED; 2443 } 2444 2445 return result; 2446 } 2447 2448 /** 2449 * fm10k_io_resume - called when traffic can start flowing again. 2450 * @pdev: Pointer to PCI device 2451 * 2452 * This callback is called when the error recovery driver tells us that 2453 * its OK to resume normal operation. 2454 */ 2455 static void fm10k_io_resume(struct pci_dev *pdev) 2456 { 2457 struct fm10k_intfc *interface = pci_get_drvdata(pdev); 2458 struct net_device *netdev = interface->netdev; 2459 int err; 2460 2461 err = fm10k_handle_resume(interface); 2462 2463 if (err) 2464 dev_warn(&pdev->dev, 2465 "%s failed: %d\n", __func__, err); 2466 else 2467 netif_device_attach(netdev); 2468 } 2469 2470 /** 2471 * fm10k_io_reset_prepare - called when PCI function is about to be reset 2472 * @pdev: Pointer to PCI device 2473 * 2474 * This callback is called when the PCI function is about to be reset, 2475 * allowing the device driver to prepare for it. 2476 */ 2477 static void fm10k_io_reset_prepare(struct pci_dev *pdev) 2478 { 2479 /* warn incase we have any active VF devices */ 2480 if (pci_num_vf(pdev)) 2481 dev_warn(&pdev->dev, 2482 "PCIe FLR may cause issues for any active VF devices\n"); 2483 fm10k_prepare_suspend(pci_get_drvdata(pdev)); 2484 } 2485 2486 /** 2487 * fm10k_io_reset_done - called when PCI function has finished resetting 2488 * @pdev: Pointer to PCI device 2489 * 2490 * This callback is called just after the PCI function is reset, such as via 2491 * /sys/class/net/<enpX>/device/reset or similar. 2492 */ 2493 static void fm10k_io_reset_done(struct pci_dev *pdev) 2494 { 2495 struct fm10k_intfc *interface = pci_get_drvdata(pdev); 2496 int err = fm10k_handle_resume(interface); 2497 2498 if (err) { 2499 dev_warn(&pdev->dev, 2500 "%s failed: %d\n", __func__, err); 2501 netif_device_detach(interface->netdev); 2502 } 2503 } 2504 2505 static const struct pci_error_handlers fm10k_err_handler = { 2506 .error_detected = fm10k_io_error_detected, 2507 .slot_reset = fm10k_io_slot_reset, 2508 .resume = fm10k_io_resume, 2509 .reset_prepare = fm10k_io_reset_prepare, 2510 .reset_done = fm10k_io_reset_done, 2511 }; 2512 2513 static SIMPLE_DEV_PM_OPS(fm10k_pm_ops, fm10k_suspend, fm10k_resume); 2514 2515 static struct pci_driver fm10k_driver = { 2516 .name = fm10k_driver_name, 2517 .id_table = fm10k_pci_tbl, 2518 .probe = fm10k_probe, 2519 .remove = fm10k_remove, 2520 .driver = { 2521 .pm = &fm10k_pm_ops, 2522 }, 2523 .sriov_configure = fm10k_iov_configure, 2524 .err_handler = &fm10k_err_handler 2525 }; 2526 2527 /** 2528 * fm10k_register_pci_driver - register driver interface 2529 * 2530 * This function is called on module load in order to register the driver. 2531 **/ 2532 int fm10k_register_pci_driver(void) 2533 { 2534 return pci_register_driver(&fm10k_driver); 2535 } 2536 2537 /** 2538 * fm10k_unregister_pci_driver - unregister driver interface 2539 * 2540 * This function is called on module unload in order to remove the driver. 2541 **/ 2542 void fm10k_unregister_pci_driver(void) 2543 { 2544 pci_unregister_driver(&fm10k_driver); 2545 } 2546