1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright(c) 2013 - 2019 Intel Corporation. */ 3 4 #include <linux/module.h> 5 #include <linux/interrupt.h> 6 #include <linux/aer.h> 7 8 #include "fm10k.h" 9 10 static const struct fm10k_info *fm10k_info_tbl[] = { 11 [fm10k_device_pf] = &fm10k_pf_info, 12 [fm10k_device_vf] = &fm10k_vf_info, 13 }; 14 15 /* 16 * fm10k_pci_tbl - PCI Device ID Table 17 * 18 * Wildcard entries (PCI_ANY_ID) should come last 19 * Last entry must be all 0s 20 * 21 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID, 22 * Class, Class Mask, private data (not used) } 23 */ 24 static const struct pci_device_id fm10k_pci_tbl[] = { 25 { PCI_VDEVICE(INTEL, FM10K_DEV_ID_PF), fm10k_device_pf }, 26 { PCI_VDEVICE(INTEL, FM10K_DEV_ID_SDI_FM10420_QDA2), fm10k_device_pf }, 27 { PCI_VDEVICE(INTEL, FM10K_DEV_ID_SDI_FM10420_DA2), fm10k_device_pf }, 28 { PCI_VDEVICE(INTEL, FM10K_DEV_ID_VF), fm10k_device_vf }, 29 /* required last entry */ 30 { 0, } 31 }; 32 MODULE_DEVICE_TABLE(pci, fm10k_pci_tbl); 33 34 u16 fm10k_read_pci_cfg_word(struct fm10k_hw *hw, u32 reg) 35 { 36 struct fm10k_intfc *interface = hw->back; 37 u16 value = 0; 38 39 if (FM10K_REMOVED(hw->hw_addr)) 40 return ~value; 41 42 pci_read_config_word(interface->pdev, reg, &value); 43 if (value == 0xFFFF) 44 fm10k_write_flush(hw); 45 46 return value; 47 } 48 49 u32 fm10k_read_reg(struct fm10k_hw *hw, int reg) 50 { 51 u32 __iomem *hw_addr = READ_ONCE(hw->hw_addr); 52 u32 value = 0; 53 54 if (FM10K_REMOVED(hw_addr)) 55 return ~value; 56 57 value = readl(&hw_addr[reg]); 58 if (!(~value) && (!reg || !(~readl(hw_addr)))) { 59 struct fm10k_intfc *interface = hw->back; 60 struct net_device *netdev = interface->netdev; 61 62 hw->hw_addr = NULL; 63 netif_device_detach(netdev); 64 netdev_err(netdev, "PCIe link lost, device now detached\n"); 65 } 66 67 return value; 68 } 69 70 static int fm10k_hw_ready(struct fm10k_intfc *interface) 71 { 72 struct fm10k_hw *hw = &interface->hw; 73 74 fm10k_write_flush(hw); 75 76 return FM10K_REMOVED(hw->hw_addr) ? -ENODEV : 0; 77 } 78 79 /** 80 * fm10k_macvlan_schedule - Schedule MAC/VLAN queue task 81 * @interface: fm10k private interface structure 82 * 83 * Schedule the MAC/VLAN queue monitor task. If the MAC/VLAN task cannot be 84 * started immediately, request that it be restarted when possible. 85 */ 86 void fm10k_macvlan_schedule(struct fm10k_intfc *interface) 87 { 88 /* Avoid processing the MAC/VLAN queue when the service task is 89 * disabled, or when we're resetting the device. 90 */ 91 if (!test_bit(__FM10K_MACVLAN_DISABLE, interface->state) && 92 !test_and_set_bit(__FM10K_MACVLAN_SCHED, interface->state)) { 93 clear_bit(__FM10K_MACVLAN_REQUEST, interface->state); 94 /* We delay the actual start of execution in order to allow 95 * multiple MAC/VLAN updates to accumulate before handling 96 * them, and to allow some time to let the mailbox drain 97 * between runs. 98 */ 99 queue_delayed_work(fm10k_workqueue, 100 &interface->macvlan_task, 10); 101 } else { 102 set_bit(__FM10K_MACVLAN_REQUEST, interface->state); 103 } 104 } 105 106 /** 107 * fm10k_stop_macvlan_task - Stop the MAC/VLAN queue monitor 108 * @interface: fm10k private interface structure 109 * 110 * Wait until the MAC/VLAN queue task has stopped, and cancel any future 111 * requests. 112 */ 113 static void fm10k_stop_macvlan_task(struct fm10k_intfc *interface) 114 { 115 /* Disable the MAC/VLAN work item */ 116 set_bit(__FM10K_MACVLAN_DISABLE, interface->state); 117 118 /* Make sure we waited until any current invocations have stopped */ 119 cancel_delayed_work_sync(&interface->macvlan_task); 120 121 /* We set the __FM10K_MACVLAN_SCHED bit when we schedule the task. 122 * However, it may not be unset of the MAC/VLAN task never actually 123 * got a chance to run. Since we've canceled the task here, and it 124 * cannot be rescheuled right now, we need to ensure the scheduled bit 125 * gets unset. 126 */ 127 clear_bit(__FM10K_MACVLAN_SCHED, interface->state); 128 } 129 130 /** 131 * fm10k_resume_macvlan_task - Restart the MAC/VLAN queue monitor 132 * @interface: fm10k private interface structure 133 * 134 * Clear the __FM10K_MACVLAN_DISABLE bit and, if a request occurred, schedule 135 * the MAC/VLAN work monitor. 136 */ 137 static void fm10k_resume_macvlan_task(struct fm10k_intfc *interface) 138 { 139 /* Re-enable the MAC/VLAN work item */ 140 clear_bit(__FM10K_MACVLAN_DISABLE, interface->state); 141 142 /* We might have received a MAC/VLAN request while disabled. If so, 143 * kick off the queue now. 144 */ 145 if (test_bit(__FM10K_MACVLAN_REQUEST, interface->state)) 146 fm10k_macvlan_schedule(interface); 147 } 148 149 void fm10k_service_event_schedule(struct fm10k_intfc *interface) 150 { 151 if (!test_bit(__FM10K_SERVICE_DISABLE, interface->state) && 152 !test_and_set_bit(__FM10K_SERVICE_SCHED, interface->state)) { 153 clear_bit(__FM10K_SERVICE_REQUEST, interface->state); 154 queue_work(fm10k_workqueue, &interface->service_task); 155 } else { 156 set_bit(__FM10K_SERVICE_REQUEST, interface->state); 157 } 158 } 159 160 static void fm10k_service_event_complete(struct fm10k_intfc *interface) 161 { 162 WARN_ON(!test_bit(__FM10K_SERVICE_SCHED, interface->state)); 163 164 /* flush memory to make sure state is correct before next watchog */ 165 smp_mb__before_atomic(); 166 clear_bit(__FM10K_SERVICE_SCHED, interface->state); 167 168 /* If a service event was requested since we started, immediately 169 * re-schedule now. This ensures we don't drop a request until the 170 * next timer event. 171 */ 172 if (test_bit(__FM10K_SERVICE_REQUEST, interface->state)) 173 fm10k_service_event_schedule(interface); 174 } 175 176 static void fm10k_stop_service_event(struct fm10k_intfc *interface) 177 { 178 set_bit(__FM10K_SERVICE_DISABLE, interface->state); 179 cancel_work_sync(&interface->service_task); 180 181 /* It's possible that cancel_work_sync stopped the service task from 182 * running before it could actually start. In this case the 183 * __FM10K_SERVICE_SCHED bit will never be cleared. Since we know that 184 * the service task cannot be running at this point, we need to clear 185 * the scheduled bit, as otherwise the service task may never be 186 * restarted. 187 */ 188 clear_bit(__FM10K_SERVICE_SCHED, interface->state); 189 } 190 191 static void fm10k_start_service_event(struct fm10k_intfc *interface) 192 { 193 clear_bit(__FM10K_SERVICE_DISABLE, interface->state); 194 fm10k_service_event_schedule(interface); 195 } 196 197 /** 198 * fm10k_service_timer - Timer Call-back 199 * @t: pointer to timer data 200 **/ 201 static void fm10k_service_timer(struct timer_list *t) 202 { 203 struct fm10k_intfc *interface = from_timer(interface, t, 204 service_timer); 205 206 /* Reset the timer */ 207 mod_timer(&interface->service_timer, (HZ * 2) + jiffies); 208 209 fm10k_service_event_schedule(interface); 210 } 211 212 /** 213 * fm10k_prepare_for_reset - Prepare the driver and device for a pending reset 214 * @interface: fm10k private data structure 215 * 216 * This function prepares for a device reset by shutting as much down as we 217 * can. It does nothing and returns false if __FM10K_RESETTING was already set 218 * prior to calling this function. It returns true if it actually did work. 219 */ 220 static bool fm10k_prepare_for_reset(struct fm10k_intfc *interface) 221 { 222 struct net_device *netdev = interface->netdev; 223 224 /* put off any impending NetWatchDogTimeout */ 225 netif_trans_update(netdev); 226 227 /* Nothing to do if a reset is already in progress */ 228 if (test_and_set_bit(__FM10K_RESETTING, interface->state)) 229 return false; 230 231 /* As the MAC/VLAN task will be accessing registers it must not be 232 * running while we reset. Although the task will not be scheduled 233 * once we start resetting it may already be running 234 */ 235 fm10k_stop_macvlan_task(interface); 236 237 rtnl_lock(); 238 239 fm10k_iov_suspend(interface->pdev); 240 241 if (netif_running(netdev)) 242 fm10k_close(netdev); 243 244 fm10k_mbx_free_irq(interface); 245 246 /* free interrupts */ 247 fm10k_clear_queueing_scheme(interface); 248 249 /* delay any future reset requests */ 250 interface->last_reset = jiffies + (10 * HZ); 251 252 rtnl_unlock(); 253 254 return true; 255 } 256 257 static int fm10k_handle_reset(struct fm10k_intfc *interface) 258 { 259 struct net_device *netdev = interface->netdev; 260 struct fm10k_hw *hw = &interface->hw; 261 int err; 262 263 WARN_ON(!test_bit(__FM10K_RESETTING, interface->state)); 264 265 rtnl_lock(); 266 267 pci_set_master(interface->pdev); 268 269 /* reset and initialize the hardware so it is in a known state */ 270 err = hw->mac.ops.reset_hw(hw); 271 if (err) { 272 dev_err(&interface->pdev->dev, "reset_hw failed: %d\n", err); 273 goto reinit_err; 274 } 275 276 err = hw->mac.ops.init_hw(hw); 277 if (err) { 278 dev_err(&interface->pdev->dev, "init_hw failed: %d\n", err); 279 goto reinit_err; 280 } 281 282 err = fm10k_init_queueing_scheme(interface); 283 if (err) { 284 dev_err(&interface->pdev->dev, 285 "init_queueing_scheme failed: %d\n", err); 286 goto reinit_err; 287 } 288 289 /* re-associate interrupts */ 290 err = fm10k_mbx_request_irq(interface); 291 if (err) 292 goto err_mbx_irq; 293 294 err = fm10k_hw_ready(interface); 295 if (err) 296 goto err_open; 297 298 /* update hardware address for VFs if perm_addr has changed */ 299 if (hw->mac.type == fm10k_mac_vf) { 300 if (is_valid_ether_addr(hw->mac.perm_addr)) { 301 ether_addr_copy(hw->mac.addr, hw->mac.perm_addr); 302 ether_addr_copy(netdev->perm_addr, hw->mac.perm_addr); 303 ether_addr_copy(netdev->dev_addr, hw->mac.perm_addr); 304 netdev->addr_assign_type &= ~NET_ADDR_RANDOM; 305 } 306 307 if (hw->mac.vlan_override) 308 netdev->features &= ~NETIF_F_HW_VLAN_CTAG_RX; 309 else 310 netdev->features |= NETIF_F_HW_VLAN_CTAG_RX; 311 } 312 313 err = netif_running(netdev) ? fm10k_open(netdev) : 0; 314 if (err) 315 goto err_open; 316 317 fm10k_iov_resume(interface->pdev); 318 319 rtnl_unlock(); 320 321 fm10k_resume_macvlan_task(interface); 322 323 clear_bit(__FM10K_RESETTING, interface->state); 324 325 return err; 326 err_open: 327 fm10k_mbx_free_irq(interface); 328 err_mbx_irq: 329 fm10k_clear_queueing_scheme(interface); 330 reinit_err: 331 netif_device_detach(netdev); 332 333 rtnl_unlock(); 334 335 clear_bit(__FM10K_RESETTING, interface->state); 336 337 return err; 338 } 339 340 static void fm10k_detach_subtask(struct fm10k_intfc *interface) 341 { 342 struct net_device *netdev = interface->netdev; 343 u32 __iomem *hw_addr; 344 u32 value; 345 346 /* do nothing if netdev is still present or hw_addr is set */ 347 if (netif_device_present(netdev) || interface->hw.hw_addr) 348 return; 349 350 /* We've lost the PCIe register space, and can no longer access the 351 * device. Shut everything except the detach subtask down and prepare 352 * to reset the device in case we recover. If we actually prepare for 353 * reset, indicate that we're detached. 354 */ 355 if (fm10k_prepare_for_reset(interface)) 356 set_bit(__FM10K_RESET_DETACHED, interface->state); 357 358 /* check the real address space to see if we've recovered */ 359 hw_addr = READ_ONCE(interface->uc_addr); 360 value = readl(hw_addr); 361 if (~value) { 362 int err; 363 364 /* Make sure the reset was initiated because we detached, 365 * otherwise we might race with a different reset flow. 366 */ 367 if (!test_and_clear_bit(__FM10K_RESET_DETACHED, 368 interface->state)) 369 return; 370 371 /* Restore the hardware address */ 372 interface->hw.hw_addr = interface->uc_addr; 373 374 /* PCIe link has been restored, and the device is active 375 * again. Restore everything and reset the device. 376 */ 377 err = fm10k_handle_reset(interface); 378 if (err) { 379 netdev_err(netdev, "Unable to reset device: %d\n", err); 380 interface->hw.hw_addr = NULL; 381 return; 382 } 383 384 /* Re-attach the netdev */ 385 netif_device_attach(netdev); 386 netdev_warn(netdev, "PCIe link restored, device now attached\n"); 387 return; 388 } 389 } 390 391 static void fm10k_reset_subtask(struct fm10k_intfc *interface) 392 { 393 int err; 394 395 if (!test_and_clear_bit(FM10K_FLAG_RESET_REQUESTED, 396 interface->flags)) 397 return; 398 399 /* If another thread has already prepared to reset the device, we 400 * should not attempt to handle a reset here, since we'd race with 401 * that thread. This may happen if we suspend the device or if the 402 * PCIe link is lost. In this case, we'll just ignore the RESET 403 * request, as it will (eventually) be taken care of when the thread 404 * which actually started the reset is finished. 405 */ 406 if (!fm10k_prepare_for_reset(interface)) 407 return; 408 409 netdev_err(interface->netdev, "Reset interface\n"); 410 411 err = fm10k_handle_reset(interface); 412 if (err) 413 dev_err(&interface->pdev->dev, 414 "fm10k_handle_reset failed: %d\n", err); 415 } 416 417 /** 418 * fm10k_configure_swpri_map - Configure Receive SWPRI to PC mapping 419 * @interface: board private structure 420 * 421 * Configure the SWPRI to PC mapping for the port. 422 **/ 423 static void fm10k_configure_swpri_map(struct fm10k_intfc *interface) 424 { 425 struct net_device *netdev = interface->netdev; 426 struct fm10k_hw *hw = &interface->hw; 427 int i; 428 429 /* clear flag indicating update is needed */ 430 clear_bit(FM10K_FLAG_SWPRI_CONFIG, interface->flags); 431 432 /* these registers are only available on the PF */ 433 if (hw->mac.type != fm10k_mac_pf) 434 return; 435 436 /* configure SWPRI to PC map */ 437 for (i = 0; i < FM10K_SWPRI_MAX; i++) 438 fm10k_write_reg(hw, FM10K_SWPRI_MAP(i), 439 netdev_get_prio_tc_map(netdev, i)); 440 } 441 442 /** 443 * fm10k_watchdog_update_host_state - Update the link status based on host. 444 * @interface: board private structure 445 **/ 446 static void fm10k_watchdog_update_host_state(struct fm10k_intfc *interface) 447 { 448 struct fm10k_hw *hw = &interface->hw; 449 s32 err; 450 451 if (test_bit(__FM10K_LINK_DOWN, interface->state)) { 452 interface->host_ready = false; 453 if (time_is_after_jiffies(interface->link_down_event)) 454 return; 455 clear_bit(__FM10K_LINK_DOWN, interface->state); 456 } 457 458 if (test_bit(FM10K_FLAG_SWPRI_CONFIG, interface->flags)) { 459 if (rtnl_trylock()) { 460 fm10k_configure_swpri_map(interface); 461 rtnl_unlock(); 462 } 463 } 464 465 /* lock the mailbox for transmit and receive */ 466 fm10k_mbx_lock(interface); 467 468 err = hw->mac.ops.get_host_state(hw, &interface->host_ready); 469 if (err && time_is_before_jiffies(interface->last_reset)) 470 set_bit(FM10K_FLAG_RESET_REQUESTED, interface->flags); 471 472 /* free the lock */ 473 fm10k_mbx_unlock(interface); 474 } 475 476 /** 477 * fm10k_mbx_subtask - Process upstream and downstream mailboxes 478 * @interface: board private structure 479 * 480 * This function will process both the upstream and downstream mailboxes. 481 **/ 482 static void fm10k_mbx_subtask(struct fm10k_intfc *interface) 483 { 484 /* If we're resetting, bail out */ 485 if (test_bit(__FM10K_RESETTING, interface->state)) 486 return; 487 488 /* process upstream mailbox and update device state */ 489 fm10k_watchdog_update_host_state(interface); 490 491 /* process downstream mailboxes */ 492 fm10k_iov_mbx(interface); 493 } 494 495 /** 496 * fm10k_watchdog_host_is_ready - Update netdev status based on host ready 497 * @interface: board private structure 498 **/ 499 static void fm10k_watchdog_host_is_ready(struct fm10k_intfc *interface) 500 { 501 struct net_device *netdev = interface->netdev; 502 503 /* only continue if link state is currently down */ 504 if (netif_carrier_ok(netdev)) 505 return; 506 507 netif_info(interface, drv, netdev, "NIC Link is up\n"); 508 509 netif_carrier_on(netdev); 510 netif_tx_wake_all_queues(netdev); 511 } 512 513 /** 514 * fm10k_watchdog_host_not_ready - Update netdev status based on host not ready 515 * @interface: board private structure 516 **/ 517 static void fm10k_watchdog_host_not_ready(struct fm10k_intfc *interface) 518 { 519 struct net_device *netdev = interface->netdev; 520 521 /* only continue if link state is currently up */ 522 if (!netif_carrier_ok(netdev)) 523 return; 524 525 netif_info(interface, drv, netdev, "NIC Link is down\n"); 526 527 netif_carrier_off(netdev); 528 netif_tx_stop_all_queues(netdev); 529 } 530 531 /** 532 * fm10k_update_stats - Update the board statistics counters. 533 * @interface: board private structure 534 **/ 535 void fm10k_update_stats(struct fm10k_intfc *interface) 536 { 537 struct net_device_stats *net_stats = &interface->netdev->stats; 538 struct fm10k_hw *hw = &interface->hw; 539 u64 hw_csum_tx_good = 0, hw_csum_rx_good = 0, rx_length_errors = 0; 540 u64 rx_switch_errors = 0, rx_drops = 0, rx_pp_errors = 0; 541 u64 rx_link_errors = 0; 542 u64 rx_errors = 0, rx_csum_errors = 0, tx_csum_errors = 0; 543 u64 restart_queue = 0, tx_busy = 0, alloc_failed = 0; 544 u64 rx_bytes_nic = 0, rx_pkts_nic = 0, rx_drops_nic = 0; 545 u64 tx_bytes_nic = 0, tx_pkts_nic = 0; 546 u64 bytes, pkts; 547 int i; 548 549 /* ensure only one thread updates stats at a time */ 550 if (test_and_set_bit(__FM10K_UPDATING_STATS, interface->state)) 551 return; 552 553 /* do not allow stats update via service task for next second */ 554 interface->next_stats_update = jiffies + HZ; 555 556 /* gather some stats to the interface struct that are per queue */ 557 for (bytes = 0, pkts = 0, i = 0; i < interface->num_tx_queues; i++) { 558 struct fm10k_ring *tx_ring = READ_ONCE(interface->tx_ring[i]); 559 560 if (!tx_ring) 561 continue; 562 563 restart_queue += tx_ring->tx_stats.restart_queue; 564 tx_busy += tx_ring->tx_stats.tx_busy; 565 tx_csum_errors += tx_ring->tx_stats.csum_err; 566 bytes += tx_ring->stats.bytes; 567 pkts += tx_ring->stats.packets; 568 hw_csum_tx_good += tx_ring->tx_stats.csum_good; 569 } 570 571 interface->restart_queue = restart_queue; 572 interface->tx_busy = tx_busy; 573 net_stats->tx_bytes = bytes; 574 net_stats->tx_packets = pkts; 575 interface->tx_csum_errors = tx_csum_errors; 576 interface->hw_csum_tx_good = hw_csum_tx_good; 577 578 /* gather some stats to the interface struct that are per queue */ 579 for (bytes = 0, pkts = 0, i = 0; i < interface->num_rx_queues; i++) { 580 struct fm10k_ring *rx_ring = READ_ONCE(interface->rx_ring[i]); 581 582 if (!rx_ring) 583 continue; 584 585 bytes += rx_ring->stats.bytes; 586 pkts += rx_ring->stats.packets; 587 alloc_failed += rx_ring->rx_stats.alloc_failed; 588 rx_csum_errors += rx_ring->rx_stats.csum_err; 589 rx_errors += rx_ring->rx_stats.errors; 590 hw_csum_rx_good += rx_ring->rx_stats.csum_good; 591 rx_switch_errors += rx_ring->rx_stats.switch_errors; 592 rx_drops += rx_ring->rx_stats.drops; 593 rx_pp_errors += rx_ring->rx_stats.pp_errors; 594 rx_link_errors += rx_ring->rx_stats.link_errors; 595 rx_length_errors += rx_ring->rx_stats.length_errors; 596 } 597 598 net_stats->rx_bytes = bytes; 599 net_stats->rx_packets = pkts; 600 interface->alloc_failed = alloc_failed; 601 interface->rx_csum_errors = rx_csum_errors; 602 interface->hw_csum_rx_good = hw_csum_rx_good; 603 interface->rx_switch_errors = rx_switch_errors; 604 interface->rx_drops = rx_drops; 605 interface->rx_pp_errors = rx_pp_errors; 606 interface->rx_link_errors = rx_link_errors; 607 interface->rx_length_errors = rx_length_errors; 608 609 hw->mac.ops.update_hw_stats(hw, &interface->stats); 610 611 for (i = 0; i < hw->mac.max_queues; i++) { 612 struct fm10k_hw_stats_q *q = &interface->stats.q[i]; 613 614 tx_bytes_nic += q->tx_bytes.count; 615 tx_pkts_nic += q->tx_packets.count; 616 rx_bytes_nic += q->rx_bytes.count; 617 rx_pkts_nic += q->rx_packets.count; 618 rx_drops_nic += q->rx_drops.count; 619 } 620 621 interface->tx_bytes_nic = tx_bytes_nic; 622 interface->tx_packets_nic = tx_pkts_nic; 623 interface->rx_bytes_nic = rx_bytes_nic; 624 interface->rx_packets_nic = rx_pkts_nic; 625 interface->rx_drops_nic = rx_drops_nic; 626 627 /* Fill out the OS statistics structure */ 628 net_stats->rx_errors = rx_errors; 629 net_stats->rx_dropped = interface->stats.nodesc_drop.count; 630 631 /* Update VF statistics */ 632 fm10k_iov_update_stats(interface); 633 634 clear_bit(__FM10K_UPDATING_STATS, interface->state); 635 } 636 637 /** 638 * fm10k_watchdog_flush_tx - flush queues on host not ready 639 * @interface: pointer to the device interface structure 640 **/ 641 static void fm10k_watchdog_flush_tx(struct fm10k_intfc *interface) 642 { 643 int some_tx_pending = 0; 644 int i; 645 646 /* nothing to do if carrier is up */ 647 if (netif_carrier_ok(interface->netdev)) 648 return; 649 650 for (i = 0; i < interface->num_tx_queues; i++) { 651 struct fm10k_ring *tx_ring = interface->tx_ring[i]; 652 653 if (tx_ring->next_to_use != tx_ring->next_to_clean) { 654 some_tx_pending = 1; 655 break; 656 } 657 } 658 659 /* We've lost link, so the controller stops DMA, but we've got 660 * queued Tx work that's never going to get done, so reset 661 * controller to flush Tx. 662 */ 663 if (some_tx_pending) 664 set_bit(FM10K_FLAG_RESET_REQUESTED, interface->flags); 665 } 666 667 /** 668 * fm10k_watchdog_subtask - check and bring link up 669 * @interface: pointer to the device interface structure 670 **/ 671 static void fm10k_watchdog_subtask(struct fm10k_intfc *interface) 672 { 673 /* if interface is down do nothing */ 674 if (test_bit(__FM10K_DOWN, interface->state) || 675 test_bit(__FM10K_RESETTING, interface->state)) 676 return; 677 678 if (interface->host_ready) 679 fm10k_watchdog_host_is_ready(interface); 680 else 681 fm10k_watchdog_host_not_ready(interface); 682 683 /* update stats only once every second */ 684 if (time_is_before_jiffies(interface->next_stats_update)) 685 fm10k_update_stats(interface); 686 687 /* flush any uncompleted work */ 688 fm10k_watchdog_flush_tx(interface); 689 } 690 691 /** 692 * fm10k_check_hang_subtask - check for hung queues and dropped interrupts 693 * @interface: pointer to the device interface structure 694 * 695 * This function serves two purposes. First it strobes the interrupt lines 696 * in order to make certain interrupts are occurring. Secondly it sets the 697 * bits needed to check for TX hangs. As a result we should immediately 698 * determine if a hang has occurred. 699 */ 700 static void fm10k_check_hang_subtask(struct fm10k_intfc *interface) 701 { 702 /* If we're down or resetting, just bail */ 703 if (test_bit(__FM10K_DOWN, interface->state) || 704 test_bit(__FM10K_RESETTING, interface->state)) 705 return; 706 707 /* rate limit tx hang checks to only once every 2 seconds */ 708 if (time_is_after_eq_jiffies(interface->next_tx_hang_check)) 709 return; 710 interface->next_tx_hang_check = jiffies + (2 * HZ); 711 712 if (netif_carrier_ok(interface->netdev)) { 713 int i; 714 715 /* Force detection of hung controller */ 716 for (i = 0; i < interface->num_tx_queues; i++) 717 set_check_for_tx_hang(interface->tx_ring[i]); 718 719 /* Rearm all in-use q_vectors for immediate firing */ 720 for (i = 0; i < interface->num_q_vectors; i++) { 721 struct fm10k_q_vector *qv = interface->q_vector[i]; 722 723 if (!qv->tx.count && !qv->rx.count) 724 continue; 725 writel(FM10K_ITR_ENABLE | FM10K_ITR_PENDING2, qv->itr); 726 } 727 } 728 } 729 730 /** 731 * fm10k_service_task - manages and runs subtasks 732 * @work: pointer to work_struct containing our data 733 **/ 734 static void fm10k_service_task(struct work_struct *work) 735 { 736 struct fm10k_intfc *interface; 737 738 interface = container_of(work, struct fm10k_intfc, service_task); 739 740 /* Check whether we're detached first */ 741 fm10k_detach_subtask(interface); 742 743 /* tasks run even when interface is down */ 744 fm10k_mbx_subtask(interface); 745 fm10k_reset_subtask(interface); 746 747 /* tasks only run when interface is up */ 748 fm10k_watchdog_subtask(interface); 749 fm10k_check_hang_subtask(interface); 750 751 /* release lock on service events to allow scheduling next event */ 752 fm10k_service_event_complete(interface); 753 } 754 755 /** 756 * fm10k_macvlan_task - send queued MAC/VLAN requests to switch manager 757 * @work: pointer to work_struct containing our data 758 * 759 * This work item handles sending MAC/VLAN updates to the switch manager. When 760 * the interface is up, it will attempt to queue mailbox messages to the 761 * switch manager requesting updates for MAC/VLAN pairs. If the Tx fifo of the 762 * mailbox is full, it will reschedule itself to try again in a short while. 763 * This ensures that the driver does not overload the switch mailbox with too 764 * many simultaneous requests, causing an unnecessary reset. 765 **/ 766 static void fm10k_macvlan_task(struct work_struct *work) 767 { 768 struct fm10k_macvlan_request *item; 769 struct fm10k_intfc *interface; 770 struct delayed_work *dwork; 771 struct list_head *requests; 772 struct fm10k_hw *hw; 773 unsigned long flags; 774 775 dwork = to_delayed_work(work); 776 interface = container_of(dwork, struct fm10k_intfc, macvlan_task); 777 hw = &interface->hw; 778 requests = &interface->macvlan_requests; 779 780 do { 781 /* Pop the first item off the list */ 782 spin_lock_irqsave(&interface->macvlan_lock, flags); 783 item = list_first_entry_or_null(requests, 784 struct fm10k_macvlan_request, 785 list); 786 if (item) 787 list_del_init(&item->list); 788 789 spin_unlock_irqrestore(&interface->macvlan_lock, flags); 790 791 /* We have no more items to process */ 792 if (!item) 793 goto done; 794 795 fm10k_mbx_lock(interface); 796 797 /* Check that we have plenty of space to send the message. We 798 * want to ensure that the mailbox stays low enough to avoid a 799 * change in the host state, otherwise we may see spurious 800 * link up / link down notifications. 801 */ 802 if (!hw->mbx.ops.tx_ready(&hw->mbx, FM10K_VFMBX_MSG_MTU + 5)) { 803 hw->mbx.ops.process(hw, &hw->mbx); 804 set_bit(__FM10K_MACVLAN_REQUEST, interface->state); 805 fm10k_mbx_unlock(interface); 806 807 /* Put the request back on the list */ 808 spin_lock_irqsave(&interface->macvlan_lock, flags); 809 list_add(&item->list, requests); 810 spin_unlock_irqrestore(&interface->macvlan_lock, flags); 811 break; 812 } 813 814 switch (item->type) { 815 case FM10K_MC_MAC_REQUEST: 816 hw->mac.ops.update_mc_addr(hw, 817 item->mac.glort, 818 item->mac.addr, 819 item->mac.vid, 820 item->set); 821 break; 822 case FM10K_UC_MAC_REQUEST: 823 hw->mac.ops.update_uc_addr(hw, 824 item->mac.glort, 825 item->mac.addr, 826 item->mac.vid, 827 item->set, 828 0); 829 break; 830 case FM10K_VLAN_REQUEST: 831 hw->mac.ops.update_vlan(hw, 832 item->vlan.vid, 833 item->vlan.vsi, 834 item->set); 835 break; 836 default: 837 break; 838 } 839 840 fm10k_mbx_unlock(interface); 841 842 /* Free the item now that we've sent the update */ 843 kfree(item); 844 } while (true); 845 846 done: 847 WARN_ON(!test_bit(__FM10K_MACVLAN_SCHED, interface->state)); 848 849 /* flush memory to make sure state is correct */ 850 smp_mb__before_atomic(); 851 clear_bit(__FM10K_MACVLAN_SCHED, interface->state); 852 853 /* If a MAC/VLAN request was scheduled since we started, we should 854 * re-schedule. However, there is no reason to re-schedule if there is 855 * no work to do. 856 */ 857 if (test_bit(__FM10K_MACVLAN_REQUEST, interface->state)) 858 fm10k_macvlan_schedule(interface); 859 } 860 861 /** 862 * fm10k_configure_tx_ring - Configure Tx ring after Reset 863 * @interface: board private structure 864 * @ring: structure containing ring specific data 865 * 866 * Configure the Tx descriptor ring after a reset. 867 **/ 868 static void fm10k_configure_tx_ring(struct fm10k_intfc *interface, 869 struct fm10k_ring *ring) 870 { 871 struct fm10k_hw *hw = &interface->hw; 872 u64 tdba = ring->dma; 873 u32 size = ring->count * sizeof(struct fm10k_tx_desc); 874 u32 txint = FM10K_INT_MAP_DISABLE; 875 u32 txdctl = BIT(FM10K_TXDCTL_MAX_TIME_SHIFT) | FM10K_TXDCTL_ENABLE; 876 u8 reg_idx = ring->reg_idx; 877 878 /* disable queue to avoid issues while updating state */ 879 fm10k_write_reg(hw, FM10K_TXDCTL(reg_idx), 0); 880 fm10k_write_flush(hw); 881 882 /* possible poll here to verify ring resources have been cleaned */ 883 884 /* set location and size for descriptor ring */ 885 fm10k_write_reg(hw, FM10K_TDBAL(reg_idx), tdba & DMA_BIT_MASK(32)); 886 fm10k_write_reg(hw, FM10K_TDBAH(reg_idx), tdba >> 32); 887 fm10k_write_reg(hw, FM10K_TDLEN(reg_idx), size); 888 889 /* reset head and tail pointers */ 890 fm10k_write_reg(hw, FM10K_TDH(reg_idx), 0); 891 fm10k_write_reg(hw, FM10K_TDT(reg_idx), 0); 892 893 /* store tail pointer */ 894 ring->tail = &interface->uc_addr[FM10K_TDT(reg_idx)]; 895 896 /* reset ntu and ntc to place SW in sync with hardware */ 897 ring->next_to_clean = 0; 898 ring->next_to_use = 0; 899 900 /* Map interrupt */ 901 if (ring->q_vector) { 902 txint = ring->q_vector->v_idx + NON_Q_VECTORS; 903 txint |= FM10K_INT_MAP_TIMER0; 904 } 905 906 fm10k_write_reg(hw, FM10K_TXINT(reg_idx), txint); 907 908 /* enable use of FTAG bit in Tx descriptor, register is RO for VF */ 909 fm10k_write_reg(hw, FM10K_PFVTCTL(reg_idx), 910 FM10K_PFVTCTL_FTAG_DESC_ENABLE); 911 912 /* Initialize XPS */ 913 if (!test_and_set_bit(__FM10K_TX_XPS_INIT_DONE, ring->state) && 914 ring->q_vector) 915 netif_set_xps_queue(ring->netdev, 916 &ring->q_vector->affinity_mask, 917 ring->queue_index); 918 919 /* enable queue */ 920 fm10k_write_reg(hw, FM10K_TXDCTL(reg_idx), txdctl); 921 } 922 923 /** 924 * fm10k_enable_tx_ring - Verify Tx ring is enabled after configuration 925 * @interface: board private structure 926 * @ring: structure containing ring specific data 927 * 928 * Verify the Tx descriptor ring is ready for transmit. 929 **/ 930 static void fm10k_enable_tx_ring(struct fm10k_intfc *interface, 931 struct fm10k_ring *ring) 932 { 933 struct fm10k_hw *hw = &interface->hw; 934 int wait_loop = 10; 935 u32 txdctl; 936 u8 reg_idx = ring->reg_idx; 937 938 /* if we are already enabled just exit */ 939 if (fm10k_read_reg(hw, FM10K_TXDCTL(reg_idx)) & FM10K_TXDCTL_ENABLE) 940 return; 941 942 /* poll to verify queue is enabled */ 943 do { 944 usleep_range(1000, 2000); 945 txdctl = fm10k_read_reg(hw, FM10K_TXDCTL(reg_idx)); 946 } while (!(txdctl & FM10K_TXDCTL_ENABLE) && --wait_loop); 947 if (!wait_loop) 948 netif_err(interface, drv, interface->netdev, 949 "Could not enable Tx Queue %d\n", reg_idx); 950 } 951 952 /** 953 * fm10k_configure_tx - Configure Transmit Unit after Reset 954 * @interface: board private structure 955 * 956 * Configure the Tx unit of the MAC after a reset. 957 **/ 958 static void fm10k_configure_tx(struct fm10k_intfc *interface) 959 { 960 int i; 961 962 /* Setup the HW Tx Head and Tail descriptor pointers */ 963 for (i = 0; i < interface->num_tx_queues; i++) 964 fm10k_configure_tx_ring(interface, interface->tx_ring[i]); 965 966 /* poll here to verify that Tx rings are now enabled */ 967 for (i = 0; i < interface->num_tx_queues; i++) 968 fm10k_enable_tx_ring(interface, interface->tx_ring[i]); 969 } 970 971 /** 972 * fm10k_configure_rx_ring - Configure Rx ring after Reset 973 * @interface: board private structure 974 * @ring: structure containing ring specific data 975 * 976 * Configure the Rx descriptor ring after a reset. 977 **/ 978 static void fm10k_configure_rx_ring(struct fm10k_intfc *interface, 979 struct fm10k_ring *ring) 980 { 981 u64 rdba = ring->dma; 982 struct fm10k_hw *hw = &interface->hw; 983 u32 size = ring->count * sizeof(union fm10k_rx_desc); 984 u32 rxqctl, rxdctl = FM10K_RXDCTL_WRITE_BACK_MIN_DELAY; 985 u32 srrctl = FM10K_SRRCTL_BUFFER_CHAINING_EN; 986 u32 rxint = FM10K_INT_MAP_DISABLE; 987 u8 rx_pause = interface->rx_pause; 988 u8 reg_idx = ring->reg_idx; 989 990 /* disable queue to avoid issues while updating state */ 991 rxqctl = fm10k_read_reg(hw, FM10K_RXQCTL(reg_idx)); 992 rxqctl &= ~FM10K_RXQCTL_ENABLE; 993 fm10k_write_reg(hw, FM10K_RXQCTL(reg_idx), rxqctl); 994 fm10k_write_flush(hw); 995 996 /* possible poll here to verify ring resources have been cleaned */ 997 998 /* set location and size for descriptor ring */ 999 fm10k_write_reg(hw, FM10K_RDBAL(reg_idx), rdba & DMA_BIT_MASK(32)); 1000 fm10k_write_reg(hw, FM10K_RDBAH(reg_idx), rdba >> 32); 1001 fm10k_write_reg(hw, FM10K_RDLEN(reg_idx), size); 1002 1003 /* reset head and tail pointers */ 1004 fm10k_write_reg(hw, FM10K_RDH(reg_idx), 0); 1005 fm10k_write_reg(hw, FM10K_RDT(reg_idx), 0); 1006 1007 /* store tail pointer */ 1008 ring->tail = &interface->uc_addr[FM10K_RDT(reg_idx)]; 1009 1010 /* reset ntu and ntc to place SW in sync with hardware */ 1011 ring->next_to_clean = 0; 1012 ring->next_to_use = 0; 1013 ring->next_to_alloc = 0; 1014 1015 /* Configure the Rx buffer size for one buff without split */ 1016 srrctl |= FM10K_RX_BUFSZ >> FM10K_SRRCTL_BSIZEPKT_SHIFT; 1017 1018 /* Configure the Rx ring to suppress loopback packets */ 1019 srrctl |= FM10K_SRRCTL_LOOPBACK_SUPPRESS; 1020 fm10k_write_reg(hw, FM10K_SRRCTL(reg_idx), srrctl); 1021 1022 /* Enable drop on empty */ 1023 #ifdef CONFIG_DCB 1024 if (interface->pfc_en) 1025 rx_pause = interface->pfc_en; 1026 #endif 1027 if (!(rx_pause & BIT(ring->qos_pc))) 1028 rxdctl |= FM10K_RXDCTL_DROP_ON_EMPTY; 1029 1030 fm10k_write_reg(hw, FM10K_RXDCTL(reg_idx), rxdctl); 1031 1032 /* assign default VLAN to queue */ 1033 ring->vid = hw->mac.default_vid; 1034 1035 /* if we have an active VLAN, disable default VLAN ID */ 1036 if (test_bit(hw->mac.default_vid, interface->active_vlans)) 1037 ring->vid |= FM10K_VLAN_CLEAR; 1038 1039 /* Map interrupt */ 1040 if (ring->q_vector) { 1041 rxint = ring->q_vector->v_idx + NON_Q_VECTORS; 1042 rxint |= FM10K_INT_MAP_TIMER1; 1043 } 1044 1045 fm10k_write_reg(hw, FM10K_RXINT(reg_idx), rxint); 1046 1047 /* enable queue */ 1048 rxqctl = fm10k_read_reg(hw, FM10K_RXQCTL(reg_idx)); 1049 rxqctl |= FM10K_RXQCTL_ENABLE; 1050 fm10k_write_reg(hw, FM10K_RXQCTL(reg_idx), rxqctl); 1051 1052 /* place buffers on ring for receive data */ 1053 fm10k_alloc_rx_buffers(ring, fm10k_desc_unused(ring)); 1054 } 1055 1056 /** 1057 * fm10k_update_rx_drop_en - Configures the drop enable bits for Rx rings 1058 * @interface: board private structure 1059 * 1060 * Configure the drop enable bits for the Rx rings. 1061 **/ 1062 void fm10k_update_rx_drop_en(struct fm10k_intfc *interface) 1063 { 1064 struct fm10k_hw *hw = &interface->hw; 1065 u8 rx_pause = interface->rx_pause; 1066 int i; 1067 1068 #ifdef CONFIG_DCB 1069 if (interface->pfc_en) 1070 rx_pause = interface->pfc_en; 1071 1072 #endif 1073 for (i = 0; i < interface->num_rx_queues; i++) { 1074 struct fm10k_ring *ring = interface->rx_ring[i]; 1075 u32 rxdctl = FM10K_RXDCTL_WRITE_BACK_MIN_DELAY; 1076 u8 reg_idx = ring->reg_idx; 1077 1078 if (!(rx_pause & BIT(ring->qos_pc))) 1079 rxdctl |= FM10K_RXDCTL_DROP_ON_EMPTY; 1080 1081 fm10k_write_reg(hw, FM10K_RXDCTL(reg_idx), rxdctl); 1082 } 1083 } 1084 1085 /** 1086 * fm10k_configure_dglort - Configure Receive DGLORT after reset 1087 * @interface: board private structure 1088 * 1089 * Configure the DGLORT description and RSS tables. 1090 **/ 1091 static void fm10k_configure_dglort(struct fm10k_intfc *interface) 1092 { 1093 struct fm10k_dglort_cfg dglort = { 0 }; 1094 struct fm10k_hw *hw = &interface->hw; 1095 int i; 1096 u32 mrqc; 1097 1098 /* Fill out hash function seeds */ 1099 for (i = 0; i < FM10K_RSSRK_SIZE; i++) 1100 fm10k_write_reg(hw, FM10K_RSSRK(0, i), interface->rssrk[i]); 1101 1102 /* Write RETA table to hardware */ 1103 for (i = 0; i < FM10K_RETA_SIZE; i++) 1104 fm10k_write_reg(hw, FM10K_RETA(0, i), interface->reta[i]); 1105 1106 /* Generate RSS hash based on packet types, TCP/UDP 1107 * port numbers and/or IPv4/v6 src and dst addresses 1108 */ 1109 mrqc = FM10K_MRQC_IPV4 | 1110 FM10K_MRQC_TCP_IPV4 | 1111 FM10K_MRQC_IPV6 | 1112 FM10K_MRQC_TCP_IPV6; 1113 1114 if (test_bit(FM10K_FLAG_RSS_FIELD_IPV4_UDP, interface->flags)) 1115 mrqc |= FM10K_MRQC_UDP_IPV4; 1116 if (test_bit(FM10K_FLAG_RSS_FIELD_IPV6_UDP, interface->flags)) 1117 mrqc |= FM10K_MRQC_UDP_IPV6; 1118 1119 fm10k_write_reg(hw, FM10K_MRQC(0), mrqc); 1120 1121 /* configure default DGLORT mapping for RSS/DCB */ 1122 dglort.inner_rss = 1; 1123 dglort.rss_l = fls(interface->ring_feature[RING_F_RSS].mask); 1124 dglort.pc_l = fls(interface->ring_feature[RING_F_QOS].mask); 1125 hw->mac.ops.configure_dglort_map(hw, &dglort); 1126 1127 /* assign GLORT per queue for queue mapped testing */ 1128 if (interface->glort_count > 64) { 1129 memset(&dglort, 0, sizeof(dglort)); 1130 dglort.inner_rss = 1; 1131 dglort.glort = interface->glort + 64; 1132 dglort.idx = fm10k_dglort_pf_queue; 1133 dglort.queue_l = fls(interface->num_rx_queues - 1); 1134 hw->mac.ops.configure_dglort_map(hw, &dglort); 1135 } 1136 1137 /* assign glort value for RSS/DCB specific to this interface */ 1138 memset(&dglort, 0, sizeof(dglort)); 1139 dglort.inner_rss = 1; 1140 dglort.glort = interface->glort; 1141 dglort.rss_l = fls(interface->ring_feature[RING_F_RSS].mask); 1142 dglort.pc_l = fls(interface->ring_feature[RING_F_QOS].mask); 1143 /* configure DGLORT mapping for RSS/DCB */ 1144 dglort.idx = fm10k_dglort_pf_rss; 1145 if (interface->l2_accel) 1146 dglort.shared_l = fls(interface->l2_accel->size); 1147 hw->mac.ops.configure_dglort_map(hw, &dglort); 1148 } 1149 1150 /** 1151 * fm10k_configure_rx - Configure Receive Unit after Reset 1152 * @interface: board private structure 1153 * 1154 * Configure the Rx unit of the MAC after a reset. 1155 **/ 1156 static void fm10k_configure_rx(struct fm10k_intfc *interface) 1157 { 1158 int i; 1159 1160 /* Configure SWPRI to PC map */ 1161 fm10k_configure_swpri_map(interface); 1162 1163 /* Configure RSS and DGLORT map */ 1164 fm10k_configure_dglort(interface); 1165 1166 /* Setup the HW Rx Head and Tail descriptor pointers */ 1167 for (i = 0; i < interface->num_rx_queues; i++) 1168 fm10k_configure_rx_ring(interface, interface->rx_ring[i]); 1169 1170 /* possible poll here to verify that Rx rings are now enabled */ 1171 } 1172 1173 static void fm10k_napi_enable_all(struct fm10k_intfc *interface) 1174 { 1175 struct fm10k_q_vector *q_vector; 1176 int q_idx; 1177 1178 for (q_idx = 0; q_idx < interface->num_q_vectors; q_idx++) { 1179 q_vector = interface->q_vector[q_idx]; 1180 napi_enable(&q_vector->napi); 1181 } 1182 } 1183 1184 static irqreturn_t fm10k_msix_clean_rings(int __always_unused irq, void *data) 1185 { 1186 struct fm10k_q_vector *q_vector = data; 1187 1188 if (q_vector->rx.count || q_vector->tx.count) 1189 napi_schedule_irqoff(&q_vector->napi); 1190 1191 return IRQ_HANDLED; 1192 } 1193 1194 static irqreturn_t fm10k_msix_mbx_vf(int __always_unused irq, void *data) 1195 { 1196 struct fm10k_intfc *interface = data; 1197 struct fm10k_hw *hw = &interface->hw; 1198 struct fm10k_mbx_info *mbx = &hw->mbx; 1199 1200 /* re-enable mailbox interrupt and indicate 20us delay */ 1201 fm10k_write_reg(hw, FM10K_VFITR(FM10K_MBX_VECTOR), 1202 (FM10K_MBX_INT_DELAY >> hw->mac.itr_scale) | 1203 FM10K_ITR_ENABLE); 1204 1205 /* service upstream mailbox */ 1206 if (fm10k_mbx_trylock(interface)) { 1207 mbx->ops.process(hw, mbx); 1208 fm10k_mbx_unlock(interface); 1209 } 1210 1211 hw->mac.get_host_state = true; 1212 fm10k_service_event_schedule(interface); 1213 1214 return IRQ_HANDLED; 1215 } 1216 1217 #define FM10K_ERR_MSG(type) case (type): error = #type; break 1218 static void fm10k_handle_fault(struct fm10k_intfc *interface, int type, 1219 struct fm10k_fault *fault) 1220 { 1221 struct pci_dev *pdev = interface->pdev; 1222 struct fm10k_hw *hw = &interface->hw; 1223 struct fm10k_iov_data *iov_data = interface->iov_data; 1224 char *error; 1225 1226 switch (type) { 1227 case FM10K_PCA_FAULT: 1228 switch (fault->type) { 1229 default: 1230 error = "Unknown PCA error"; 1231 break; 1232 FM10K_ERR_MSG(PCA_NO_FAULT); 1233 FM10K_ERR_MSG(PCA_UNMAPPED_ADDR); 1234 FM10K_ERR_MSG(PCA_BAD_QACCESS_PF); 1235 FM10K_ERR_MSG(PCA_BAD_QACCESS_VF); 1236 FM10K_ERR_MSG(PCA_MALICIOUS_REQ); 1237 FM10K_ERR_MSG(PCA_POISONED_TLP); 1238 FM10K_ERR_MSG(PCA_TLP_ABORT); 1239 } 1240 break; 1241 case FM10K_THI_FAULT: 1242 switch (fault->type) { 1243 default: 1244 error = "Unknown THI error"; 1245 break; 1246 FM10K_ERR_MSG(THI_NO_FAULT); 1247 FM10K_ERR_MSG(THI_MAL_DIS_Q_FAULT); 1248 } 1249 break; 1250 case FM10K_FUM_FAULT: 1251 switch (fault->type) { 1252 default: 1253 error = "Unknown FUM error"; 1254 break; 1255 FM10K_ERR_MSG(FUM_NO_FAULT); 1256 FM10K_ERR_MSG(FUM_UNMAPPED_ADDR); 1257 FM10K_ERR_MSG(FUM_BAD_VF_QACCESS); 1258 FM10K_ERR_MSG(FUM_ADD_DECODE_ERR); 1259 FM10K_ERR_MSG(FUM_RO_ERROR); 1260 FM10K_ERR_MSG(FUM_QPRC_CRC_ERROR); 1261 FM10K_ERR_MSG(FUM_CSR_TIMEOUT); 1262 FM10K_ERR_MSG(FUM_INVALID_TYPE); 1263 FM10K_ERR_MSG(FUM_INVALID_LENGTH); 1264 FM10K_ERR_MSG(FUM_INVALID_BE); 1265 FM10K_ERR_MSG(FUM_INVALID_ALIGN); 1266 } 1267 break; 1268 default: 1269 error = "Undocumented fault"; 1270 break; 1271 } 1272 1273 dev_warn(&pdev->dev, 1274 "%s Address: 0x%llx SpecInfo: 0x%x Func: %02x.%0x\n", 1275 error, fault->address, fault->specinfo, 1276 PCI_SLOT(fault->func), PCI_FUNC(fault->func)); 1277 1278 /* For VF faults, clear out the respective LPORT, reset the queue 1279 * resources, and then reconnect to the mailbox. This allows the 1280 * VF in question to resume behavior. For transient faults that are 1281 * the result of non-malicious behavior this will log the fault and 1282 * allow the VF to resume functionality. Obviously for malicious VFs 1283 * they will be able to attempt malicious behavior again. In this 1284 * case, the system administrator will need to step in and manually 1285 * remove or disable the VF in question. 1286 */ 1287 if (fault->func && iov_data) { 1288 int vf = fault->func - 1; 1289 struct fm10k_vf_info *vf_info = &iov_data->vf_info[vf]; 1290 1291 hw->iov.ops.reset_lport(hw, vf_info); 1292 hw->iov.ops.reset_resources(hw, vf_info); 1293 1294 /* reset_lport disables the VF, so re-enable it */ 1295 hw->iov.ops.set_lport(hw, vf_info, vf, 1296 FM10K_VF_FLAG_MULTI_CAPABLE); 1297 1298 /* reset_resources will disconnect from the mbx */ 1299 vf_info->mbx.ops.connect(hw, &vf_info->mbx); 1300 } 1301 } 1302 1303 static void fm10k_report_fault(struct fm10k_intfc *interface, u32 eicr) 1304 { 1305 struct fm10k_hw *hw = &interface->hw; 1306 struct fm10k_fault fault = { 0 }; 1307 int type, err; 1308 1309 for (eicr &= FM10K_EICR_FAULT_MASK, type = FM10K_PCA_FAULT; 1310 eicr; 1311 eicr >>= 1, type += FM10K_FAULT_SIZE) { 1312 /* only check if there is an error reported */ 1313 if (!(eicr & 0x1)) 1314 continue; 1315 1316 /* retrieve fault info */ 1317 err = hw->mac.ops.get_fault(hw, type, &fault); 1318 if (err) { 1319 dev_err(&interface->pdev->dev, 1320 "error reading fault\n"); 1321 continue; 1322 } 1323 1324 fm10k_handle_fault(interface, type, &fault); 1325 } 1326 } 1327 1328 static void fm10k_reset_drop_on_empty(struct fm10k_intfc *interface, u32 eicr) 1329 { 1330 struct fm10k_hw *hw = &interface->hw; 1331 const u32 rxdctl = FM10K_RXDCTL_WRITE_BACK_MIN_DELAY; 1332 u32 maxholdq; 1333 int q; 1334 1335 if (!(eicr & FM10K_EICR_MAXHOLDTIME)) 1336 return; 1337 1338 maxholdq = fm10k_read_reg(hw, FM10K_MAXHOLDQ(7)); 1339 if (maxholdq) 1340 fm10k_write_reg(hw, FM10K_MAXHOLDQ(7), maxholdq); 1341 for (q = 255;;) { 1342 if (maxholdq & BIT(31)) { 1343 if (q < FM10K_MAX_QUEUES_PF) { 1344 interface->rx_overrun_pf++; 1345 fm10k_write_reg(hw, FM10K_RXDCTL(q), rxdctl); 1346 } else { 1347 interface->rx_overrun_vf++; 1348 } 1349 } 1350 1351 maxholdq *= 2; 1352 if (!maxholdq) 1353 q &= ~(32 - 1); 1354 1355 if (!q) 1356 break; 1357 1358 if (q-- % 32) 1359 continue; 1360 1361 maxholdq = fm10k_read_reg(hw, FM10K_MAXHOLDQ(q / 32)); 1362 if (maxholdq) 1363 fm10k_write_reg(hw, FM10K_MAXHOLDQ(q / 32), maxholdq); 1364 } 1365 } 1366 1367 static irqreturn_t fm10k_msix_mbx_pf(int __always_unused irq, void *data) 1368 { 1369 struct fm10k_intfc *interface = data; 1370 struct fm10k_hw *hw = &interface->hw; 1371 struct fm10k_mbx_info *mbx = &hw->mbx; 1372 u32 eicr; 1373 s32 err = 0; 1374 1375 /* unmask any set bits related to this interrupt */ 1376 eicr = fm10k_read_reg(hw, FM10K_EICR); 1377 fm10k_write_reg(hw, FM10K_EICR, eicr & (FM10K_EICR_MAILBOX | 1378 FM10K_EICR_SWITCHREADY | 1379 FM10K_EICR_SWITCHNOTREADY)); 1380 1381 /* report any faults found to the message log */ 1382 fm10k_report_fault(interface, eicr); 1383 1384 /* reset any queues disabled due to receiver overrun */ 1385 fm10k_reset_drop_on_empty(interface, eicr); 1386 1387 /* service mailboxes */ 1388 if (fm10k_mbx_trylock(interface)) { 1389 err = mbx->ops.process(hw, mbx); 1390 /* handle VFLRE events */ 1391 fm10k_iov_event(interface); 1392 fm10k_mbx_unlock(interface); 1393 } 1394 1395 if (err == FM10K_ERR_RESET_REQUESTED) 1396 set_bit(FM10K_FLAG_RESET_REQUESTED, interface->flags); 1397 1398 /* if switch toggled state we should reset GLORTs */ 1399 if (eicr & FM10K_EICR_SWITCHNOTREADY) { 1400 /* force link down for at least 4 seconds */ 1401 interface->link_down_event = jiffies + (4 * HZ); 1402 set_bit(__FM10K_LINK_DOWN, interface->state); 1403 1404 /* reset dglort_map back to no config */ 1405 hw->mac.dglort_map = FM10K_DGLORTMAP_NONE; 1406 } 1407 1408 /* we should validate host state after interrupt event */ 1409 hw->mac.get_host_state = true; 1410 1411 /* validate host state, and handle VF mailboxes in the service task */ 1412 fm10k_service_event_schedule(interface); 1413 1414 /* re-enable mailbox interrupt and indicate 20us delay */ 1415 fm10k_write_reg(hw, FM10K_ITR(FM10K_MBX_VECTOR), 1416 (FM10K_MBX_INT_DELAY >> hw->mac.itr_scale) | 1417 FM10K_ITR_ENABLE); 1418 1419 return IRQ_HANDLED; 1420 } 1421 1422 void fm10k_mbx_free_irq(struct fm10k_intfc *interface) 1423 { 1424 struct fm10k_hw *hw = &interface->hw; 1425 struct msix_entry *entry; 1426 int itr_reg; 1427 1428 /* no mailbox IRQ to free if MSI-X is not enabled */ 1429 if (!interface->msix_entries) 1430 return; 1431 1432 entry = &interface->msix_entries[FM10K_MBX_VECTOR]; 1433 1434 /* disconnect the mailbox */ 1435 hw->mbx.ops.disconnect(hw, &hw->mbx); 1436 1437 /* disable Mailbox cause */ 1438 if (hw->mac.type == fm10k_mac_pf) { 1439 fm10k_write_reg(hw, FM10K_EIMR, 1440 FM10K_EIMR_DISABLE(PCA_FAULT) | 1441 FM10K_EIMR_DISABLE(FUM_FAULT) | 1442 FM10K_EIMR_DISABLE(MAILBOX) | 1443 FM10K_EIMR_DISABLE(SWITCHREADY) | 1444 FM10K_EIMR_DISABLE(SWITCHNOTREADY) | 1445 FM10K_EIMR_DISABLE(SRAMERROR) | 1446 FM10K_EIMR_DISABLE(VFLR) | 1447 FM10K_EIMR_DISABLE(MAXHOLDTIME)); 1448 itr_reg = FM10K_ITR(FM10K_MBX_VECTOR); 1449 } else { 1450 itr_reg = FM10K_VFITR(FM10K_MBX_VECTOR); 1451 } 1452 1453 fm10k_write_reg(hw, itr_reg, FM10K_ITR_MASK_SET); 1454 1455 free_irq(entry->vector, interface); 1456 } 1457 1458 static s32 fm10k_mbx_mac_addr(struct fm10k_hw *hw, u32 **results, 1459 struct fm10k_mbx_info *mbx) 1460 { 1461 bool vlan_override = hw->mac.vlan_override; 1462 u16 default_vid = hw->mac.default_vid; 1463 struct fm10k_intfc *interface; 1464 s32 err; 1465 1466 err = fm10k_msg_mac_vlan_vf(hw, results, mbx); 1467 if (err) 1468 return err; 1469 1470 interface = container_of(hw, struct fm10k_intfc, hw); 1471 1472 /* MAC was changed so we need reset */ 1473 if (is_valid_ether_addr(hw->mac.perm_addr) && 1474 !ether_addr_equal(hw->mac.perm_addr, hw->mac.addr)) 1475 set_bit(FM10K_FLAG_RESET_REQUESTED, interface->flags); 1476 1477 /* VLAN override was changed, or default VLAN changed */ 1478 if ((vlan_override != hw->mac.vlan_override) || 1479 (default_vid != hw->mac.default_vid)) 1480 set_bit(FM10K_FLAG_RESET_REQUESTED, interface->flags); 1481 1482 return 0; 1483 } 1484 1485 /* generic error handler for mailbox issues */ 1486 static s32 fm10k_mbx_error(struct fm10k_hw *hw, u32 **results, 1487 struct fm10k_mbx_info __always_unused *mbx) 1488 { 1489 struct fm10k_intfc *interface; 1490 struct pci_dev *pdev; 1491 1492 interface = container_of(hw, struct fm10k_intfc, hw); 1493 pdev = interface->pdev; 1494 1495 dev_err(&pdev->dev, "Unknown message ID %u\n", 1496 **results & FM10K_TLV_ID_MASK); 1497 1498 return 0; 1499 } 1500 1501 static const struct fm10k_msg_data vf_mbx_data[] = { 1502 FM10K_TLV_MSG_TEST_HANDLER(fm10k_tlv_msg_test), 1503 FM10K_VF_MSG_MAC_VLAN_HANDLER(fm10k_mbx_mac_addr), 1504 FM10K_VF_MSG_LPORT_STATE_HANDLER(fm10k_msg_lport_state_vf), 1505 FM10K_TLV_MSG_ERROR_HANDLER(fm10k_mbx_error), 1506 }; 1507 1508 static int fm10k_mbx_request_irq_vf(struct fm10k_intfc *interface) 1509 { 1510 struct msix_entry *entry = &interface->msix_entries[FM10K_MBX_VECTOR]; 1511 struct net_device *dev = interface->netdev; 1512 struct fm10k_hw *hw = &interface->hw; 1513 int err; 1514 1515 /* Use timer0 for interrupt moderation on the mailbox */ 1516 u32 itr = entry->entry | FM10K_INT_MAP_TIMER0; 1517 1518 /* register mailbox handlers */ 1519 err = hw->mbx.ops.register_handlers(&hw->mbx, vf_mbx_data); 1520 if (err) 1521 return err; 1522 1523 /* request the IRQ */ 1524 err = request_irq(entry->vector, fm10k_msix_mbx_vf, 0, 1525 dev->name, interface); 1526 if (err) { 1527 netif_err(interface, probe, dev, 1528 "request_irq for msix_mbx failed: %d\n", err); 1529 return err; 1530 } 1531 1532 /* map all of the interrupt sources */ 1533 fm10k_write_reg(hw, FM10K_VFINT_MAP, itr); 1534 1535 /* enable interrupt */ 1536 fm10k_write_reg(hw, FM10K_VFITR(entry->entry), FM10K_ITR_ENABLE); 1537 1538 return 0; 1539 } 1540 1541 static s32 fm10k_lport_map(struct fm10k_hw *hw, u32 **results, 1542 struct fm10k_mbx_info *mbx) 1543 { 1544 struct fm10k_intfc *interface; 1545 u32 dglort_map = hw->mac.dglort_map; 1546 s32 err; 1547 1548 interface = container_of(hw, struct fm10k_intfc, hw); 1549 1550 err = fm10k_msg_err_pf(hw, results, mbx); 1551 if (!err && hw->swapi.status) { 1552 /* force link down for a reasonable delay */ 1553 interface->link_down_event = jiffies + (2 * HZ); 1554 set_bit(__FM10K_LINK_DOWN, interface->state); 1555 1556 /* reset dglort_map back to no config */ 1557 hw->mac.dglort_map = FM10K_DGLORTMAP_NONE; 1558 1559 fm10k_service_event_schedule(interface); 1560 1561 /* prevent overloading kernel message buffer */ 1562 if (interface->lport_map_failed) 1563 return 0; 1564 1565 interface->lport_map_failed = true; 1566 1567 if (hw->swapi.status == FM10K_MSG_ERR_PEP_NOT_SCHEDULED) 1568 dev_warn(&interface->pdev->dev, 1569 "cannot obtain link because the host interface is configured for a PCIe host interface bandwidth of zero\n"); 1570 dev_warn(&interface->pdev->dev, 1571 "request logical port map failed: %d\n", 1572 hw->swapi.status); 1573 1574 return 0; 1575 } 1576 1577 err = fm10k_msg_lport_map_pf(hw, results, mbx); 1578 if (err) 1579 return err; 1580 1581 interface->lport_map_failed = false; 1582 1583 /* we need to reset if port count was just updated */ 1584 if (dglort_map != hw->mac.dglort_map) 1585 set_bit(FM10K_FLAG_RESET_REQUESTED, interface->flags); 1586 1587 return 0; 1588 } 1589 1590 static s32 fm10k_update_pvid(struct fm10k_hw *hw, u32 **results, 1591 struct fm10k_mbx_info __always_unused *mbx) 1592 { 1593 struct fm10k_intfc *interface; 1594 u16 glort, pvid; 1595 u32 pvid_update; 1596 s32 err; 1597 1598 err = fm10k_tlv_attr_get_u32(results[FM10K_PF_ATTR_ID_UPDATE_PVID], 1599 &pvid_update); 1600 if (err) 1601 return err; 1602 1603 /* extract values from the pvid update */ 1604 glort = FM10K_MSG_HDR_FIELD_GET(pvid_update, UPDATE_PVID_GLORT); 1605 pvid = FM10K_MSG_HDR_FIELD_GET(pvid_update, UPDATE_PVID_PVID); 1606 1607 /* if glort is not valid return error */ 1608 if (!fm10k_glort_valid_pf(hw, glort)) 1609 return FM10K_ERR_PARAM; 1610 1611 /* verify VLAN ID is valid */ 1612 if (pvid >= FM10K_VLAN_TABLE_VID_MAX) 1613 return FM10K_ERR_PARAM; 1614 1615 interface = container_of(hw, struct fm10k_intfc, hw); 1616 1617 /* check to see if this belongs to one of the VFs */ 1618 err = fm10k_iov_update_pvid(interface, glort, pvid); 1619 if (!err) 1620 return 0; 1621 1622 /* we need to reset if default VLAN was just updated */ 1623 if (pvid != hw->mac.default_vid) 1624 set_bit(FM10K_FLAG_RESET_REQUESTED, interface->flags); 1625 1626 hw->mac.default_vid = pvid; 1627 1628 return 0; 1629 } 1630 1631 static const struct fm10k_msg_data pf_mbx_data[] = { 1632 FM10K_PF_MSG_ERR_HANDLER(XCAST_MODES, fm10k_msg_err_pf), 1633 FM10K_PF_MSG_ERR_HANDLER(UPDATE_MAC_FWD_RULE, fm10k_msg_err_pf), 1634 FM10K_PF_MSG_LPORT_MAP_HANDLER(fm10k_lport_map), 1635 FM10K_PF_MSG_ERR_HANDLER(LPORT_CREATE, fm10k_msg_err_pf), 1636 FM10K_PF_MSG_ERR_HANDLER(LPORT_DELETE, fm10k_msg_err_pf), 1637 FM10K_PF_MSG_UPDATE_PVID_HANDLER(fm10k_update_pvid), 1638 FM10K_TLV_MSG_ERROR_HANDLER(fm10k_mbx_error), 1639 }; 1640 1641 static int fm10k_mbx_request_irq_pf(struct fm10k_intfc *interface) 1642 { 1643 struct msix_entry *entry = &interface->msix_entries[FM10K_MBX_VECTOR]; 1644 struct net_device *dev = interface->netdev; 1645 struct fm10k_hw *hw = &interface->hw; 1646 int err; 1647 1648 /* Use timer0 for interrupt moderation on the mailbox */ 1649 u32 mbx_itr = entry->entry | FM10K_INT_MAP_TIMER0; 1650 u32 other_itr = entry->entry | FM10K_INT_MAP_IMMEDIATE; 1651 1652 /* register mailbox handlers */ 1653 err = hw->mbx.ops.register_handlers(&hw->mbx, pf_mbx_data); 1654 if (err) 1655 return err; 1656 1657 /* request the IRQ */ 1658 err = request_irq(entry->vector, fm10k_msix_mbx_pf, 0, 1659 dev->name, interface); 1660 if (err) { 1661 netif_err(interface, probe, dev, 1662 "request_irq for msix_mbx failed: %d\n", err); 1663 return err; 1664 } 1665 1666 /* Enable interrupts w/ no moderation for "other" interrupts */ 1667 fm10k_write_reg(hw, FM10K_INT_MAP(fm10k_int_pcie_fault), other_itr); 1668 fm10k_write_reg(hw, FM10K_INT_MAP(fm10k_int_switch_up_down), other_itr); 1669 fm10k_write_reg(hw, FM10K_INT_MAP(fm10k_int_sram), other_itr); 1670 fm10k_write_reg(hw, FM10K_INT_MAP(fm10k_int_max_hold_time), other_itr); 1671 fm10k_write_reg(hw, FM10K_INT_MAP(fm10k_int_vflr), other_itr); 1672 1673 /* Enable interrupts w/ moderation for mailbox */ 1674 fm10k_write_reg(hw, FM10K_INT_MAP(fm10k_int_mailbox), mbx_itr); 1675 1676 /* Enable individual interrupt causes */ 1677 fm10k_write_reg(hw, FM10K_EIMR, FM10K_EIMR_ENABLE(PCA_FAULT) | 1678 FM10K_EIMR_ENABLE(FUM_FAULT) | 1679 FM10K_EIMR_ENABLE(MAILBOX) | 1680 FM10K_EIMR_ENABLE(SWITCHREADY) | 1681 FM10K_EIMR_ENABLE(SWITCHNOTREADY) | 1682 FM10K_EIMR_ENABLE(SRAMERROR) | 1683 FM10K_EIMR_ENABLE(VFLR) | 1684 FM10K_EIMR_ENABLE(MAXHOLDTIME)); 1685 1686 /* enable interrupt */ 1687 fm10k_write_reg(hw, FM10K_ITR(entry->entry), FM10K_ITR_ENABLE); 1688 1689 return 0; 1690 } 1691 1692 int fm10k_mbx_request_irq(struct fm10k_intfc *interface) 1693 { 1694 struct fm10k_hw *hw = &interface->hw; 1695 int err; 1696 1697 /* enable Mailbox cause */ 1698 if (hw->mac.type == fm10k_mac_pf) 1699 err = fm10k_mbx_request_irq_pf(interface); 1700 else 1701 err = fm10k_mbx_request_irq_vf(interface); 1702 if (err) 1703 return err; 1704 1705 /* connect mailbox */ 1706 err = hw->mbx.ops.connect(hw, &hw->mbx); 1707 1708 /* if the mailbox failed to connect, then free IRQ */ 1709 if (err) 1710 fm10k_mbx_free_irq(interface); 1711 1712 return err; 1713 } 1714 1715 /** 1716 * fm10k_qv_free_irq - release interrupts associated with queue vectors 1717 * @interface: board private structure 1718 * 1719 * Release all interrupts associated with this interface 1720 **/ 1721 void fm10k_qv_free_irq(struct fm10k_intfc *interface) 1722 { 1723 int vector = interface->num_q_vectors; 1724 struct msix_entry *entry; 1725 1726 entry = &interface->msix_entries[NON_Q_VECTORS + vector]; 1727 1728 while (vector) { 1729 struct fm10k_q_vector *q_vector; 1730 1731 vector--; 1732 entry--; 1733 q_vector = interface->q_vector[vector]; 1734 1735 if (!q_vector->tx.count && !q_vector->rx.count) 1736 continue; 1737 1738 /* clear the affinity_mask in the IRQ descriptor */ 1739 irq_set_affinity_hint(entry->vector, NULL); 1740 1741 /* disable interrupts */ 1742 writel(FM10K_ITR_MASK_SET, q_vector->itr); 1743 1744 free_irq(entry->vector, q_vector); 1745 } 1746 } 1747 1748 /** 1749 * fm10k_qv_request_irq - initialize interrupts for queue vectors 1750 * @interface: board private structure 1751 * 1752 * Attempts to configure interrupts using the best available 1753 * capabilities of the hardware and kernel. 1754 **/ 1755 int fm10k_qv_request_irq(struct fm10k_intfc *interface) 1756 { 1757 struct net_device *dev = interface->netdev; 1758 struct fm10k_hw *hw = &interface->hw; 1759 struct msix_entry *entry; 1760 unsigned int ri = 0, ti = 0; 1761 int vector, err; 1762 1763 entry = &interface->msix_entries[NON_Q_VECTORS]; 1764 1765 for (vector = 0; vector < interface->num_q_vectors; vector++) { 1766 struct fm10k_q_vector *q_vector = interface->q_vector[vector]; 1767 1768 /* name the vector */ 1769 if (q_vector->tx.count && q_vector->rx.count) { 1770 snprintf(q_vector->name, sizeof(q_vector->name), 1771 "%s-TxRx-%u", dev->name, ri++); 1772 ti++; 1773 } else if (q_vector->rx.count) { 1774 snprintf(q_vector->name, sizeof(q_vector->name), 1775 "%s-rx-%u", dev->name, ri++); 1776 } else if (q_vector->tx.count) { 1777 snprintf(q_vector->name, sizeof(q_vector->name), 1778 "%s-tx-%u", dev->name, ti++); 1779 } else { 1780 /* skip this unused q_vector */ 1781 continue; 1782 } 1783 1784 /* Assign ITR register to q_vector */ 1785 q_vector->itr = (hw->mac.type == fm10k_mac_pf) ? 1786 &interface->uc_addr[FM10K_ITR(entry->entry)] : 1787 &interface->uc_addr[FM10K_VFITR(entry->entry)]; 1788 1789 /* request the IRQ */ 1790 err = request_irq(entry->vector, &fm10k_msix_clean_rings, 0, 1791 q_vector->name, q_vector); 1792 if (err) { 1793 netif_err(interface, probe, dev, 1794 "request_irq failed for MSIX interrupt Error: %d\n", 1795 err); 1796 goto err_out; 1797 } 1798 1799 /* assign the mask for this irq */ 1800 irq_set_affinity_hint(entry->vector, &q_vector->affinity_mask); 1801 1802 /* Enable q_vector */ 1803 writel(FM10K_ITR_ENABLE, q_vector->itr); 1804 1805 entry++; 1806 } 1807 1808 return 0; 1809 1810 err_out: 1811 /* wind through the ring freeing all entries and vectors */ 1812 while (vector) { 1813 struct fm10k_q_vector *q_vector; 1814 1815 entry--; 1816 vector--; 1817 q_vector = interface->q_vector[vector]; 1818 1819 if (!q_vector->tx.count && !q_vector->rx.count) 1820 continue; 1821 1822 /* clear the affinity_mask in the IRQ descriptor */ 1823 irq_set_affinity_hint(entry->vector, NULL); 1824 1825 /* disable interrupts */ 1826 writel(FM10K_ITR_MASK_SET, q_vector->itr); 1827 1828 free_irq(entry->vector, q_vector); 1829 } 1830 1831 return err; 1832 } 1833 1834 void fm10k_up(struct fm10k_intfc *interface) 1835 { 1836 struct fm10k_hw *hw = &interface->hw; 1837 1838 /* Enable Tx/Rx DMA */ 1839 hw->mac.ops.start_hw(hw); 1840 1841 /* configure Tx descriptor rings */ 1842 fm10k_configure_tx(interface); 1843 1844 /* configure Rx descriptor rings */ 1845 fm10k_configure_rx(interface); 1846 1847 /* configure interrupts */ 1848 hw->mac.ops.update_int_moderator(hw); 1849 1850 /* enable statistics capture again */ 1851 clear_bit(__FM10K_UPDATING_STATS, interface->state); 1852 1853 /* clear down bit to indicate we are ready to go */ 1854 clear_bit(__FM10K_DOWN, interface->state); 1855 1856 /* enable polling cleanups */ 1857 fm10k_napi_enable_all(interface); 1858 1859 /* re-establish Rx filters */ 1860 fm10k_restore_rx_state(interface); 1861 1862 /* enable transmits */ 1863 netif_tx_start_all_queues(interface->netdev); 1864 1865 /* kick off the service timer now */ 1866 hw->mac.get_host_state = true; 1867 mod_timer(&interface->service_timer, jiffies); 1868 } 1869 1870 static void fm10k_napi_disable_all(struct fm10k_intfc *interface) 1871 { 1872 struct fm10k_q_vector *q_vector; 1873 int q_idx; 1874 1875 for (q_idx = 0; q_idx < interface->num_q_vectors; q_idx++) { 1876 q_vector = interface->q_vector[q_idx]; 1877 napi_disable(&q_vector->napi); 1878 } 1879 } 1880 1881 void fm10k_down(struct fm10k_intfc *interface) 1882 { 1883 struct net_device *netdev = interface->netdev; 1884 struct fm10k_hw *hw = &interface->hw; 1885 int err, i = 0, count = 0; 1886 1887 /* signal that we are down to the interrupt handler and service task */ 1888 if (test_and_set_bit(__FM10K_DOWN, interface->state)) 1889 return; 1890 1891 /* call carrier off first to avoid false dev_watchdog timeouts */ 1892 netif_carrier_off(netdev); 1893 1894 /* disable transmits */ 1895 netif_tx_stop_all_queues(netdev); 1896 netif_tx_disable(netdev); 1897 1898 /* reset Rx filters */ 1899 fm10k_reset_rx_state(interface); 1900 1901 /* disable polling routines */ 1902 fm10k_napi_disable_all(interface); 1903 1904 /* capture stats one last time before stopping interface */ 1905 fm10k_update_stats(interface); 1906 1907 /* prevent updating statistics while we're down */ 1908 while (test_and_set_bit(__FM10K_UPDATING_STATS, interface->state)) 1909 usleep_range(1000, 2000); 1910 1911 /* skip waiting for TX DMA if we lost PCIe link */ 1912 if (FM10K_REMOVED(hw->hw_addr)) 1913 goto skip_tx_dma_drain; 1914 1915 /* In some rare circumstances it can take a while for Tx queues to 1916 * quiesce and be fully disabled. Attempt to .stop_hw() first, and 1917 * then if we get ERR_REQUESTS_PENDING, go ahead and wait in a loop 1918 * until the Tx queues have emptied, or until a number of retries. If 1919 * we fail to clear within the retry loop, we will issue a warning 1920 * indicating that Tx DMA is probably hung. Note this means we call 1921 * .stop_hw() twice but this shouldn't cause any problems. 1922 */ 1923 err = hw->mac.ops.stop_hw(hw); 1924 if (err != FM10K_ERR_REQUESTS_PENDING) 1925 goto skip_tx_dma_drain; 1926 1927 #define TX_DMA_DRAIN_RETRIES 25 1928 for (count = 0; count < TX_DMA_DRAIN_RETRIES; count++) { 1929 usleep_range(10000, 20000); 1930 1931 /* start checking at the last ring to have pending Tx */ 1932 for (; i < interface->num_tx_queues; i++) 1933 if (fm10k_get_tx_pending(interface->tx_ring[i], false)) 1934 break; 1935 1936 /* if all the queues are drained, we can break now */ 1937 if (i == interface->num_tx_queues) 1938 break; 1939 } 1940 1941 if (count >= TX_DMA_DRAIN_RETRIES) 1942 dev_err(&interface->pdev->dev, 1943 "Tx queues failed to drain after %d tries. Tx DMA is probably hung.\n", 1944 count); 1945 skip_tx_dma_drain: 1946 /* Disable DMA engine for Tx/Rx */ 1947 err = hw->mac.ops.stop_hw(hw); 1948 if (err == FM10K_ERR_REQUESTS_PENDING) 1949 dev_err(&interface->pdev->dev, 1950 "due to pending requests hw was not shut down gracefully\n"); 1951 else if (err) 1952 dev_err(&interface->pdev->dev, "stop_hw failed: %d\n", err); 1953 1954 /* free any buffers still on the rings */ 1955 fm10k_clean_all_tx_rings(interface); 1956 fm10k_clean_all_rx_rings(interface); 1957 } 1958 1959 /** 1960 * fm10k_sw_init - Initialize general software structures 1961 * @interface: host interface private structure to initialize 1962 * @ent: PCI device ID entry 1963 * 1964 * fm10k_sw_init initializes the interface private data structure. 1965 * Fields are initialized based on PCI device information and 1966 * OS network device settings (MTU size). 1967 **/ 1968 static int fm10k_sw_init(struct fm10k_intfc *interface, 1969 const struct pci_device_id *ent) 1970 { 1971 const struct fm10k_info *fi = fm10k_info_tbl[ent->driver_data]; 1972 struct fm10k_hw *hw = &interface->hw; 1973 struct pci_dev *pdev = interface->pdev; 1974 struct net_device *netdev = interface->netdev; 1975 u32 rss_key[FM10K_RSSRK_SIZE]; 1976 unsigned int rss; 1977 int err; 1978 1979 /* initialize back pointer */ 1980 hw->back = interface; 1981 hw->hw_addr = interface->uc_addr; 1982 1983 /* PCI config space info */ 1984 hw->vendor_id = pdev->vendor; 1985 hw->device_id = pdev->device; 1986 hw->revision_id = pdev->revision; 1987 hw->subsystem_vendor_id = pdev->subsystem_vendor; 1988 hw->subsystem_device_id = pdev->subsystem_device; 1989 1990 /* Setup hw api */ 1991 memcpy(&hw->mac.ops, fi->mac_ops, sizeof(hw->mac.ops)); 1992 hw->mac.type = fi->mac; 1993 1994 /* Setup IOV handlers */ 1995 if (fi->iov_ops) 1996 memcpy(&hw->iov.ops, fi->iov_ops, sizeof(hw->iov.ops)); 1997 1998 /* Set common capability flags and settings */ 1999 rss = min_t(int, FM10K_MAX_RSS_INDICES, num_online_cpus()); 2000 interface->ring_feature[RING_F_RSS].limit = rss; 2001 fi->get_invariants(hw); 2002 2003 /* pick up the PCIe bus settings for reporting later */ 2004 if (hw->mac.ops.get_bus_info) 2005 hw->mac.ops.get_bus_info(hw); 2006 2007 /* limit the usable DMA range */ 2008 if (hw->mac.ops.set_dma_mask) 2009 hw->mac.ops.set_dma_mask(hw, dma_get_mask(&pdev->dev)); 2010 2011 /* update netdev with DMA restrictions */ 2012 if (dma_get_mask(&pdev->dev) > DMA_BIT_MASK(32)) { 2013 netdev->features |= NETIF_F_HIGHDMA; 2014 netdev->vlan_features |= NETIF_F_HIGHDMA; 2015 } 2016 2017 /* reset and initialize the hardware so it is in a known state */ 2018 err = hw->mac.ops.reset_hw(hw); 2019 if (err) { 2020 dev_err(&pdev->dev, "reset_hw failed: %d\n", err); 2021 return err; 2022 } 2023 2024 err = hw->mac.ops.init_hw(hw); 2025 if (err) { 2026 dev_err(&pdev->dev, "init_hw failed: %d\n", err); 2027 return err; 2028 } 2029 2030 /* initialize hardware statistics */ 2031 hw->mac.ops.update_hw_stats(hw, &interface->stats); 2032 2033 /* Set upper limit on IOV VFs that can be allocated */ 2034 pci_sriov_set_totalvfs(pdev, hw->iov.total_vfs); 2035 2036 /* Start with random Ethernet address */ 2037 eth_random_addr(hw->mac.addr); 2038 2039 /* Initialize MAC address from hardware */ 2040 err = hw->mac.ops.read_mac_addr(hw); 2041 if (err) { 2042 dev_warn(&pdev->dev, 2043 "Failed to obtain MAC address defaulting to random\n"); 2044 /* tag address assignment as random */ 2045 netdev->addr_assign_type |= NET_ADDR_RANDOM; 2046 } 2047 2048 ether_addr_copy(netdev->dev_addr, hw->mac.addr); 2049 ether_addr_copy(netdev->perm_addr, hw->mac.addr); 2050 2051 if (!is_valid_ether_addr(netdev->perm_addr)) { 2052 dev_err(&pdev->dev, "Invalid MAC Address\n"); 2053 return -EIO; 2054 } 2055 2056 /* initialize DCBNL interface */ 2057 fm10k_dcbnl_set_ops(netdev); 2058 2059 /* set default ring sizes */ 2060 interface->tx_ring_count = FM10K_DEFAULT_TXD; 2061 interface->rx_ring_count = FM10K_DEFAULT_RXD; 2062 2063 /* set default interrupt moderation */ 2064 interface->tx_itr = FM10K_TX_ITR_DEFAULT; 2065 interface->rx_itr = FM10K_ITR_ADAPTIVE | FM10K_RX_ITR_DEFAULT; 2066 2067 /* Initialize the MAC/VLAN queue */ 2068 INIT_LIST_HEAD(&interface->macvlan_requests); 2069 2070 netdev_rss_key_fill(rss_key, sizeof(rss_key)); 2071 memcpy(interface->rssrk, rss_key, sizeof(rss_key)); 2072 2073 /* Initialize the mailbox lock */ 2074 spin_lock_init(&interface->mbx_lock); 2075 spin_lock_init(&interface->macvlan_lock); 2076 2077 /* Start off interface as being down */ 2078 set_bit(__FM10K_DOWN, interface->state); 2079 set_bit(__FM10K_UPDATING_STATS, interface->state); 2080 2081 return 0; 2082 } 2083 2084 /** 2085 * fm10k_probe - Device Initialization Routine 2086 * @pdev: PCI device information struct 2087 * @ent: entry in fm10k_pci_tbl 2088 * 2089 * Returns 0 on success, negative on failure 2090 * 2091 * fm10k_probe initializes an interface identified by a pci_dev structure. 2092 * The OS initialization, configuring of the interface private structure, 2093 * and a hardware reset occur. 2094 **/ 2095 static int fm10k_probe(struct pci_dev *pdev, const struct pci_device_id *ent) 2096 { 2097 struct net_device *netdev; 2098 struct fm10k_intfc *interface; 2099 int err; 2100 2101 if (pdev->error_state != pci_channel_io_normal) { 2102 dev_err(&pdev->dev, 2103 "PCI device still in an error state. Unable to load...\n"); 2104 return -EIO; 2105 } 2106 2107 err = pci_enable_device_mem(pdev); 2108 if (err) { 2109 dev_err(&pdev->dev, 2110 "PCI enable device failed: %d\n", err); 2111 return err; 2112 } 2113 2114 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(48)); 2115 if (err) 2116 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)); 2117 if (err) { 2118 dev_err(&pdev->dev, 2119 "DMA configuration failed: %d\n", err); 2120 goto err_dma; 2121 } 2122 2123 err = pci_request_mem_regions(pdev, fm10k_driver_name); 2124 if (err) { 2125 dev_err(&pdev->dev, 2126 "pci_request_selected_regions failed: %d\n", err); 2127 goto err_pci_reg; 2128 } 2129 2130 pci_enable_pcie_error_reporting(pdev); 2131 2132 pci_set_master(pdev); 2133 pci_save_state(pdev); 2134 2135 netdev = fm10k_alloc_netdev(fm10k_info_tbl[ent->driver_data]); 2136 if (!netdev) { 2137 err = -ENOMEM; 2138 goto err_alloc_netdev; 2139 } 2140 2141 SET_NETDEV_DEV(netdev, &pdev->dev); 2142 2143 interface = netdev_priv(netdev); 2144 pci_set_drvdata(pdev, interface); 2145 2146 interface->netdev = netdev; 2147 interface->pdev = pdev; 2148 2149 interface->uc_addr = ioremap(pci_resource_start(pdev, 0), 2150 FM10K_UC_ADDR_SIZE); 2151 if (!interface->uc_addr) { 2152 err = -EIO; 2153 goto err_ioremap; 2154 } 2155 2156 err = fm10k_sw_init(interface, ent); 2157 if (err) 2158 goto err_sw_init; 2159 2160 /* enable debugfs support */ 2161 fm10k_dbg_intfc_init(interface); 2162 2163 err = fm10k_init_queueing_scheme(interface); 2164 if (err) 2165 goto err_sw_init; 2166 2167 /* the mbx interrupt might attempt to schedule the service task, so we 2168 * must ensure it is disabled since we haven't yet requested the timer 2169 * or work item. 2170 */ 2171 set_bit(__FM10K_SERVICE_DISABLE, interface->state); 2172 2173 err = fm10k_mbx_request_irq(interface); 2174 if (err) 2175 goto err_mbx_interrupt; 2176 2177 /* final check of hardware state before registering the interface */ 2178 err = fm10k_hw_ready(interface); 2179 if (err) 2180 goto err_register; 2181 2182 err = register_netdev(netdev); 2183 if (err) 2184 goto err_register; 2185 2186 /* carrier off reporting is important to ethtool even BEFORE open */ 2187 netif_carrier_off(netdev); 2188 2189 /* stop all the transmit queues from transmitting until link is up */ 2190 netif_tx_stop_all_queues(netdev); 2191 2192 /* Initialize service timer and service task late in order to avoid 2193 * cleanup issues. 2194 */ 2195 timer_setup(&interface->service_timer, fm10k_service_timer, 0); 2196 INIT_WORK(&interface->service_task, fm10k_service_task); 2197 2198 /* Setup the MAC/VLAN queue */ 2199 INIT_DELAYED_WORK(&interface->macvlan_task, fm10k_macvlan_task); 2200 2201 /* kick off service timer now, even when interface is down */ 2202 mod_timer(&interface->service_timer, (HZ * 2) + jiffies); 2203 2204 /* print warning for non-optimal configurations */ 2205 pcie_print_link_status(interface->pdev); 2206 2207 /* report MAC address for logging */ 2208 dev_info(&pdev->dev, "%pM\n", netdev->dev_addr); 2209 2210 /* enable SR-IOV after registering netdev to enforce PF/VF ordering */ 2211 fm10k_iov_configure(pdev, 0); 2212 2213 /* clear the service task disable bit and kick off service task */ 2214 clear_bit(__FM10K_SERVICE_DISABLE, interface->state); 2215 fm10k_service_event_schedule(interface); 2216 2217 return 0; 2218 2219 err_register: 2220 fm10k_mbx_free_irq(interface); 2221 err_mbx_interrupt: 2222 fm10k_clear_queueing_scheme(interface); 2223 err_sw_init: 2224 if (interface->sw_addr) 2225 iounmap(interface->sw_addr); 2226 iounmap(interface->uc_addr); 2227 err_ioremap: 2228 free_netdev(netdev); 2229 err_alloc_netdev: 2230 pci_release_mem_regions(pdev); 2231 err_pci_reg: 2232 err_dma: 2233 pci_disable_device(pdev); 2234 return err; 2235 } 2236 2237 /** 2238 * fm10k_remove - Device Removal Routine 2239 * @pdev: PCI device information struct 2240 * 2241 * fm10k_remove is called by the PCI subsystem to alert the driver 2242 * that it should release a PCI device. The could be caused by a 2243 * Hot-Plug event, or because the driver is going to be removed from 2244 * memory. 2245 **/ 2246 static void fm10k_remove(struct pci_dev *pdev) 2247 { 2248 struct fm10k_intfc *interface = pci_get_drvdata(pdev); 2249 struct net_device *netdev = interface->netdev; 2250 2251 del_timer_sync(&interface->service_timer); 2252 2253 fm10k_stop_service_event(interface); 2254 fm10k_stop_macvlan_task(interface); 2255 2256 /* Remove all pending MAC/VLAN requests */ 2257 fm10k_clear_macvlan_queue(interface, interface->glort, true); 2258 2259 /* free netdev, this may bounce the interrupts due to setup_tc */ 2260 if (netdev->reg_state == NETREG_REGISTERED) 2261 unregister_netdev(netdev); 2262 2263 /* release VFs */ 2264 fm10k_iov_disable(pdev); 2265 2266 /* disable mailbox interrupt */ 2267 fm10k_mbx_free_irq(interface); 2268 2269 /* free interrupts */ 2270 fm10k_clear_queueing_scheme(interface); 2271 2272 /* remove any debugfs interfaces */ 2273 fm10k_dbg_intfc_exit(interface); 2274 2275 if (interface->sw_addr) 2276 iounmap(interface->sw_addr); 2277 iounmap(interface->uc_addr); 2278 2279 free_netdev(netdev); 2280 2281 pci_release_mem_regions(pdev); 2282 2283 pci_disable_pcie_error_reporting(pdev); 2284 2285 pci_disable_device(pdev); 2286 } 2287 2288 static void fm10k_prepare_suspend(struct fm10k_intfc *interface) 2289 { 2290 /* the watchdog task reads from registers, which might appear like 2291 * a surprise remove if the PCIe device is disabled while we're 2292 * stopped. We stop the watchdog task until after we resume software 2293 * activity. 2294 * 2295 * Note that the MAC/VLAN task will be stopped as part of preparing 2296 * for reset so we don't need to handle it here. 2297 */ 2298 fm10k_stop_service_event(interface); 2299 2300 if (fm10k_prepare_for_reset(interface)) 2301 set_bit(__FM10K_RESET_SUSPENDED, interface->state); 2302 } 2303 2304 static int fm10k_handle_resume(struct fm10k_intfc *interface) 2305 { 2306 struct fm10k_hw *hw = &interface->hw; 2307 int err; 2308 2309 /* Even if we didn't properly prepare for reset in 2310 * fm10k_prepare_suspend, we'll attempt to resume anyways. 2311 */ 2312 if (!test_and_clear_bit(__FM10K_RESET_SUSPENDED, interface->state)) 2313 dev_warn(&interface->pdev->dev, 2314 "Device was shut down as part of suspend... Attempting to recover\n"); 2315 2316 /* reset statistics starting values */ 2317 hw->mac.ops.rebind_hw_stats(hw, &interface->stats); 2318 2319 err = fm10k_handle_reset(interface); 2320 if (err) 2321 return err; 2322 2323 /* assume host is not ready, to prevent race with watchdog in case we 2324 * actually don't have connection to the switch 2325 */ 2326 interface->host_ready = false; 2327 fm10k_watchdog_host_not_ready(interface); 2328 2329 /* force link to stay down for a second to prevent link flutter */ 2330 interface->link_down_event = jiffies + (HZ); 2331 set_bit(__FM10K_LINK_DOWN, interface->state); 2332 2333 /* restart the service task */ 2334 fm10k_start_service_event(interface); 2335 2336 /* Restart the MAC/VLAN request queue in-case of outstanding events */ 2337 fm10k_macvlan_schedule(interface); 2338 2339 return 0; 2340 } 2341 2342 /** 2343 * fm10k_resume - Generic PM resume hook 2344 * @dev: generic device structure 2345 * 2346 * Generic PM hook used when waking the device from a low power state after 2347 * suspend or hibernation. This function does not need to handle lower PCIe 2348 * device state as the stack takes care of that for us. 2349 **/ 2350 static int __maybe_unused fm10k_resume(struct device *dev) 2351 { 2352 struct fm10k_intfc *interface = dev_get_drvdata(dev); 2353 struct net_device *netdev = interface->netdev; 2354 struct fm10k_hw *hw = &interface->hw; 2355 int err; 2356 2357 /* refresh hw_addr in case it was dropped */ 2358 hw->hw_addr = interface->uc_addr; 2359 2360 err = fm10k_handle_resume(interface); 2361 if (err) 2362 return err; 2363 2364 netif_device_attach(netdev); 2365 2366 return 0; 2367 } 2368 2369 /** 2370 * fm10k_suspend - Generic PM suspend hook 2371 * @dev: generic device structure 2372 * 2373 * Generic PM hook used when setting the device into a low power state for 2374 * system suspend or hibernation. This function does not need to handle lower 2375 * PCIe device state as the stack takes care of that for us. 2376 **/ 2377 static int __maybe_unused fm10k_suspend(struct device *dev) 2378 { 2379 struct fm10k_intfc *interface = dev_get_drvdata(dev); 2380 struct net_device *netdev = interface->netdev; 2381 2382 netif_device_detach(netdev); 2383 2384 fm10k_prepare_suspend(interface); 2385 2386 return 0; 2387 } 2388 2389 /** 2390 * fm10k_io_error_detected - called when PCI error is detected 2391 * @pdev: Pointer to PCI device 2392 * @state: The current pci connection state 2393 * 2394 * This function is called after a PCI bus error affecting 2395 * this device has been detected. 2396 */ 2397 static pci_ers_result_t fm10k_io_error_detected(struct pci_dev *pdev, 2398 pci_channel_state_t state) 2399 { 2400 struct fm10k_intfc *interface = pci_get_drvdata(pdev); 2401 struct net_device *netdev = interface->netdev; 2402 2403 netif_device_detach(netdev); 2404 2405 if (state == pci_channel_io_perm_failure) 2406 return PCI_ERS_RESULT_DISCONNECT; 2407 2408 fm10k_prepare_suspend(interface); 2409 2410 /* Request a slot reset. */ 2411 return PCI_ERS_RESULT_NEED_RESET; 2412 } 2413 2414 /** 2415 * fm10k_io_slot_reset - called after the pci bus has been reset. 2416 * @pdev: Pointer to PCI device 2417 * 2418 * Restart the card from scratch, as if from a cold-boot. 2419 */ 2420 static pci_ers_result_t fm10k_io_slot_reset(struct pci_dev *pdev) 2421 { 2422 pci_ers_result_t result; 2423 2424 if (pci_reenable_device(pdev)) { 2425 dev_err(&pdev->dev, 2426 "Cannot re-enable PCI device after reset.\n"); 2427 result = PCI_ERS_RESULT_DISCONNECT; 2428 } else { 2429 pci_set_master(pdev); 2430 pci_restore_state(pdev); 2431 2432 /* After second error pci->state_saved is false, this 2433 * resets it so EEH doesn't break. 2434 */ 2435 pci_save_state(pdev); 2436 2437 pci_wake_from_d3(pdev, false); 2438 2439 result = PCI_ERS_RESULT_RECOVERED; 2440 } 2441 2442 return result; 2443 } 2444 2445 /** 2446 * fm10k_io_resume - called when traffic can start flowing again. 2447 * @pdev: Pointer to PCI device 2448 * 2449 * This callback is called when the error recovery driver tells us that 2450 * its OK to resume normal operation. 2451 */ 2452 static void fm10k_io_resume(struct pci_dev *pdev) 2453 { 2454 struct fm10k_intfc *interface = pci_get_drvdata(pdev); 2455 struct net_device *netdev = interface->netdev; 2456 int err; 2457 2458 err = fm10k_handle_resume(interface); 2459 2460 if (err) 2461 dev_warn(&pdev->dev, 2462 "%s failed: %d\n", __func__, err); 2463 else 2464 netif_device_attach(netdev); 2465 } 2466 2467 /** 2468 * fm10k_io_reset_prepare - called when PCI function is about to be reset 2469 * @pdev: Pointer to PCI device 2470 * 2471 * This callback is called when the PCI function is about to be reset, 2472 * allowing the device driver to prepare for it. 2473 */ 2474 static void fm10k_io_reset_prepare(struct pci_dev *pdev) 2475 { 2476 /* warn incase we have any active VF devices */ 2477 if (pci_num_vf(pdev)) 2478 dev_warn(&pdev->dev, 2479 "PCIe FLR may cause issues for any active VF devices\n"); 2480 fm10k_prepare_suspend(pci_get_drvdata(pdev)); 2481 } 2482 2483 /** 2484 * fm10k_io_reset_done - called when PCI function has finished resetting 2485 * @pdev: Pointer to PCI device 2486 * 2487 * This callback is called just after the PCI function is reset, such as via 2488 * /sys/class/net/<enpX>/device/reset or similar. 2489 */ 2490 static void fm10k_io_reset_done(struct pci_dev *pdev) 2491 { 2492 struct fm10k_intfc *interface = pci_get_drvdata(pdev); 2493 int err = fm10k_handle_resume(interface); 2494 2495 if (err) { 2496 dev_warn(&pdev->dev, 2497 "%s failed: %d\n", __func__, err); 2498 netif_device_detach(interface->netdev); 2499 } 2500 } 2501 2502 static const struct pci_error_handlers fm10k_err_handler = { 2503 .error_detected = fm10k_io_error_detected, 2504 .slot_reset = fm10k_io_slot_reset, 2505 .resume = fm10k_io_resume, 2506 .reset_prepare = fm10k_io_reset_prepare, 2507 .reset_done = fm10k_io_reset_done, 2508 }; 2509 2510 static SIMPLE_DEV_PM_OPS(fm10k_pm_ops, fm10k_suspend, fm10k_resume); 2511 2512 static struct pci_driver fm10k_driver = { 2513 .name = fm10k_driver_name, 2514 .id_table = fm10k_pci_tbl, 2515 .probe = fm10k_probe, 2516 .remove = fm10k_remove, 2517 .driver = { 2518 .pm = &fm10k_pm_ops, 2519 }, 2520 .sriov_configure = fm10k_iov_configure, 2521 .err_handler = &fm10k_err_handler 2522 }; 2523 2524 /** 2525 * fm10k_register_pci_driver - register driver interface 2526 * 2527 * This function is called on module load in order to register the driver. 2528 **/ 2529 int fm10k_register_pci_driver(void) 2530 { 2531 return pci_register_driver(&fm10k_driver); 2532 } 2533 2534 /** 2535 * fm10k_unregister_pci_driver - unregister driver interface 2536 * 2537 * This function is called on module unload in order to remove the driver. 2538 **/ 2539 void fm10k_unregister_pci_driver(void) 2540 { 2541 pci_unregister_driver(&fm10k_driver); 2542 } 2543