1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright(c) 2013 - 2018 Intel Corporation. */ 3 4 #include <linux/module.h> 5 #include <linux/interrupt.h> 6 #include <linux/aer.h> 7 8 #include "fm10k.h" 9 10 static const struct fm10k_info *fm10k_info_tbl[] = { 11 [fm10k_device_pf] = &fm10k_pf_info, 12 [fm10k_device_vf] = &fm10k_vf_info, 13 }; 14 15 /* 16 * fm10k_pci_tbl - PCI Device ID Table 17 * 18 * Wildcard entries (PCI_ANY_ID) should come last 19 * Last entry must be all 0s 20 * 21 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID, 22 * Class, Class Mask, private data (not used) } 23 */ 24 static const struct pci_device_id fm10k_pci_tbl[] = { 25 { PCI_VDEVICE(INTEL, FM10K_DEV_ID_PF), fm10k_device_pf }, 26 { PCI_VDEVICE(INTEL, FM10K_DEV_ID_VF), fm10k_device_vf }, 27 /* required last entry */ 28 { 0, } 29 }; 30 MODULE_DEVICE_TABLE(pci, fm10k_pci_tbl); 31 32 u16 fm10k_read_pci_cfg_word(struct fm10k_hw *hw, u32 reg) 33 { 34 struct fm10k_intfc *interface = hw->back; 35 u16 value = 0; 36 37 if (FM10K_REMOVED(hw->hw_addr)) 38 return ~value; 39 40 pci_read_config_word(interface->pdev, reg, &value); 41 if (value == 0xFFFF) 42 fm10k_write_flush(hw); 43 44 return value; 45 } 46 47 u32 fm10k_read_reg(struct fm10k_hw *hw, int reg) 48 { 49 u32 __iomem *hw_addr = READ_ONCE(hw->hw_addr); 50 u32 value = 0; 51 52 if (FM10K_REMOVED(hw_addr)) 53 return ~value; 54 55 value = readl(&hw_addr[reg]); 56 if (!(~value) && (!reg || !(~readl(hw_addr)))) { 57 struct fm10k_intfc *interface = hw->back; 58 struct net_device *netdev = interface->netdev; 59 60 hw->hw_addr = NULL; 61 netif_device_detach(netdev); 62 netdev_err(netdev, "PCIe link lost, device now detached\n"); 63 } 64 65 return value; 66 } 67 68 static int fm10k_hw_ready(struct fm10k_intfc *interface) 69 { 70 struct fm10k_hw *hw = &interface->hw; 71 72 fm10k_write_flush(hw); 73 74 return FM10K_REMOVED(hw->hw_addr) ? -ENODEV : 0; 75 } 76 77 /** 78 * fm10k_macvlan_schedule - Schedule MAC/VLAN queue task 79 * @interface: fm10k private interface structure 80 * 81 * Schedule the MAC/VLAN queue monitor task. If the MAC/VLAN task cannot be 82 * started immediately, request that it be restarted when possible. 83 */ 84 void fm10k_macvlan_schedule(struct fm10k_intfc *interface) 85 { 86 /* Avoid processing the MAC/VLAN queue when the service task is 87 * disabled, or when we're resetting the device. 88 */ 89 if (!test_bit(__FM10K_MACVLAN_DISABLE, interface->state) && 90 !test_and_set_bit(__FM10K_MACVLAN_SCHED, interface->state)) { 91 clear_bit(__FM10K_MACVLAN_REQUEST, interface->state); 92 /* We delay the actual start of execution in order to allow 93 * multiple MAC/VLAN updates to accumulate before handling 94 * them, and to allow some time to let the mailbox drain 95 * between runs. 96 */ 97 queue_delayed_work(fm10k_workqueue, 98 &interface->macvlan_task, 10); 99 } else { 100 set_bit(__FM10K_MACVLAN_REQUEST, interface->state); 101 } 102 } 103 104 /** 105 * fm10k_stop_macvlan_task - Stop the MAC/VLAN queue monitor 106 * @interface: fm10k private interface structure 107 * 108 * Wait until the MAC/VLAN queue task has stopped, and cancel any future 109 * requests. 110 */ 111 static void fm10k_stop_macvlan_task(struct fm10k_intfc *interface) 112 { 113 /* Disable the MAC/VLAN work item */ 114 set_bit(__FM10K_MACVLAN_DISABLE, interface->state); 115 116 /* Make sure we waited until any current invocations have stopped */ 117 cancel_delayed_work_sync(&interface->macvlan_task); 118 119 /* We set the __FM10K_MACVLAN_SCHED bit when we schedule the task. 120 * However, it may not be unset of the MAC/VLAN task never actually 121 * got a chance to run. Since we've canceled the task here, and it 122 * cannot be rescheuled right now, we need to ensure the scheduled bit 123 * gets unset. 124 */ 125 clear_bit(__FM10K_MACVLAN_SCHED, interface->state); 126 } 127 128 /** 129 * fm10k_resume_macvlan_task - Restart the MAC/VLAN queue monitor 130 * @interface: fm10k private interface structure 131 * 132 * Clear the __FM10K_MACVLAN_DISABLE bit and, if a request occurred, schedule 133 * the MAC/VLAN work monitor. 134 */ 135 static void fm10k_resume_macvlan_task(struct fm10k_intfc *interface) 136 { 137 /* Re-enable the MAC/VLAN work item */ 138 clear_bit(__FM10K_MACVLAN_DISABLE, interface->state); 139 140 /* We might have received a MAC/VLAN request while disabled. If so, 141 * kick off the queue now. 142 */ 143 if (test_bit(__FM10K_MACVLAN_REQUEST, interface->state)) 144 fm10k_macvlan_schedule(interface); 145 } 146 147 void fm10k_service_event_schedule(struct fm10k_intfc *interface) 148 { 149 if (!test_bit(__FM10K_SERVICE_DISABLE, interface->state) && 150 !test_and_set_bit(__FM10K_SERVICE_SCHED, interface->state)) { 151 clear_bit(__FM10K_SERVICE_REQUEST, interface->state); 152 queue_work(fm10k_workqueue, &interface->service_task); 153 } else { 154 set_bit(__FM10K_SERVICE_REQUEST, interface->state); 155 } 156 } 157 158 static void fm10k_service_event_complete(struct fm10k_intfc *interface) 159 { 160 WARN_ON(!test_bit(__FM10K_SERVICE_SCHED, interface->state)); 161 162 /* flush memory to make sure state is correct before next watchog */ 163 smp_mb__before_atomic(); 164 clear_bit(__FM10K_SERVICE_SCHED, interface->state); 165 166 /* If a service event was requested since we started, immediately 167 * re-schedule now. This ensures we don't drop a request until the 168 * next timer event. 169 */ 170 if (test_bit(__FM10K_SERVICE_REQUEST, interface->state)) 171 fm10k_service_event_schedule(interface); 172 } 173 174 static void fm10k_stop_service_event(struct fm10k_intfc *interface) 175 { 176 set_bit(__FM10K_SERVICE_DISABLE, interface->state); 177 cancel_work_sync(&interface->service_task); 178 179 /* It's possible that cancel_work_sync stopped the service task from 180 * running before it could actually start. In this case the 181 * __FM10K_SERVICE_SCHED bit will never be cleared. Since we know that 182 * the service task cannot be running at this point, we need to clear 183 * the scheduled bit, as otherwise the service task may never be 184 * restarted. 185 */ 186 clear_bit(__FM10K_SERVICE_SCHED, interface->state); 187 } 188 189 static void fm10k_start_service_event(struct fm10k_intfc *interface) 190 { 191 clear_bit(__FM10K_SERVICE_DISABLE, interface->state); 192 fm10k_service_event_schedule(interface); 193 } 194 195 /** 196 * fm10k_service_timer - Timer Call-back 197 * @t: pointer to timer data 198 **/ 199 static void fm10k_service_timer(struct timer_list *t) 200 { 201 struct fm10k_intfc *interface = from_timer(interface, t, 202 service_timer); 203 204 /* Reset the timer */ 205 mod_timer(&interface->service_timer, (HZ * 2) + jiffies); 206 207 fm10k_service_event_schedule(interface); 208 } 209 210 /** 211 * fm10k_prepare_for_reset - Prepare the driver and device for a pending reset 212 * @interface: fm10k private data structure 213 * 214 * This function prepares for a device reset by shutting as much down as we 215 * can. It does nothing and returns false if __FM10K_RESETTING was already set 216 * prior to calling this function. It returns true if it actually did work. 217 */ 218 static bool fm10k_prepare_for_reset(struct fm10k_intfc *interface) 219 { 220 struct net_device *netdev = interface->netdev; 221 222 WARN_ON(in_interrupt()); 223 224 /* put off any impending NetWatchDogTimeout */ 225 netif_trans_update(netdev); 226 227 /* Nothing to do if a reset is already in progress */ 228 if (test_and_set_bit(__FM10K_RESETTING, interface->state)) 229 return false; 230 231 /* As the MAC/VLAN task will be accessing registers it must not be 232 * running while we reset. Although the task will not be scheduled 233 * once we start resetting it may already be running 234 */ 235 fm10k_stop_macvlan_task(interface); 236 237 rtnl_lock(); 238 239 fm10k_iov_suspend(interface->pdev); 240 241 if (netif_running(netdev)) 242 fm10k_close(netdev); 243 244 fm10k_mbx_free_irq(interface); 245 246 /* free interrupts */ 247 fm10k_clear_queueing_scheme(interface); 248 249 /* delay any future reset requests */ 250 interface->last_reset = jiffies + (10 * HZ); 251 252 rtnl_unlock(); 253 254 return true; 255 } 256 257 static int fm10k_handle_reset(struct fm10k_intfc *interface) 258 { 259 struct net_device *netdev = interface->netdev; 260 struct fm10k_hw *hw = &interface->hw; 261 int err; 262 263 WARN_ON(!test_bit(__FM10K_RESETTING, interface->state)); 264 265 rtnl_lock(); 266 267 pci_set_master(interface->pdev); 268 269 /* reset and initialize the hardware so it is in a known state */ 270 err = hw->mac.ops.reset_hw(hw); 271 if (err) { 272 dev_err(&interface->pdev->dev, "reset_hw failed: %d\n", err); 273 goto reinit_err; 274 } 275 276 err = hw->mac.ops.init_hw(hw); 277 if (err) { 278 dev_err(&interface->pdev->dev, "init_hw failed: %d\n", err); 279 goto reinit_err; 280 } 281 282 err = fm10k_init_queueing_scheme(interface); 283 if (err) { 284 dev_err(&interface->pdev->dev, 285 "init_queueing_scheme failed: %d\n", err); 286 goto reinit_err; 287 } 288 289 /* re-associate interrupts */ 290 err = fm10k_mbx_request_irq(interface); 291 if (err) 292 goto err_mbx_irq; 293 294 err = fm10k_hw_ready(interface); 295 if (err) 296 goto err_open; 297 298 /* update hardware address for VFs if perm_addr has changed */ 299 if (hw->mac.type == fm10k_mac_vf) { 300 if (is_valid_ether_addr(hw->mac.perm_addr)) { 301 ether_addr_copy(hw->mac.addr, hw->mac.perm_addr); 302 ether_addr_copy(netdev->perm_addr, hw->mac.perm_addr); 303 ether_addr_copy(netdev->dev_addr, hw->mac.perm_addr); 304 netdev->addr_assign_type &= ~NET_ADDR_RANDOM; 305 } 306 307 if (hw->mac.vlan_override) 308 netdev->features &= ~NETIF_F_HW_VLAN_CTAG_RX; 309 else 310 netdev->features |= NETIF_F_HW_VLAN_CTAG_RX; 311 } 312 313 err = netif_running(netdev) ? fm10k_open(netdev) : 0; 314 if (err) 315 goto err_open; 316 317 fm10k_iov_resume(interface->pdev); 318 319 rtnl_unlock(); 320 321 fm10k_resume_macvlan_task(interface); 322 323 clear_bit(__FM10K_RESETTING, interface->state); 324 325 return err; 326 err_open: 327 fm10k_mbx_free_irq(interface); 328 err_mbx_irq: 329 fm10k_clear_queueing_scheme(interface); 330 reinit_err: 331 netif_device_detach(netdev); 332 333 rtnl_unlock(); 334 335 clear_bit(__FM10K_RESETTING, interface->state); 336 337 return err; 338 } 339 340 static void fm10k_detach_subtask(struct fm10k_intfc *interface) 341 { 342 struct net_device *netdev = interface->netdev; 343 u32 __iomem *hw_addr; 344 u32 value; 345 int err; 346 347 /* do nothing if netdev is still present or hw_addr is set */ 348 if (netif_device_present(netdev) || interface->hw.hw_addr) 349 return; 350 351 /* We've lost the PCIe register space, and can no longer access the 352 * device. Shut everything except the detach subtask down and prepare 353 * to reset the device in case we recover. If we actually prepare for 354 * reset, indicate that we're detached. 355 */ 356 if (fm10k_prepare_for_reset(interface)) 357 set_bit(__FM10K_RESET_DETACHED, interface->state); 358 359 /* check the real address space to see if we've recovered */ 360 hw_addr = READ_ONCE(interface->uc_addr); 361 value = readl(hw_addr); 362 if (~value) { 363 /* Make sure the reset was initiated because we detached, 364 * otherwise we might race with a different reset flow. 365 */ 366 if (!test_and_clear_bit(__FM10K_RESET_DETACHED, 367 interface->state)) 368 return; 369 370 /* Restore the hardware address */ 371 interface->hw.hw_addr = interface->uc_addr; 372 373 /* PCIe link has been restored, and the device is active 374 * again. Restore everything and reset the device. 375 */ 376 err = fm10k_handle_reset(interface); 377 if (err) { 378 netdev_err(netdev, "Unable to reset device: %d\n", err); 379 interface->hw.hw_addr = NULL; 380 return; 381 } 382 383 /* Re-attach the netdev */ 384 netif_device_attach(netdev); 385 netdev_warn(netdev, "PCIe link restored, device now attached\n"); 386 return; 387 } 388 } 389 390 static void fm10k_reset_subtask(struct fm10k_intfc *interface) 391 { 392 int err; 393 394 if (!test_and_clear_bit(FM10K_FLAG_RESET_REQUESTED, 395 interface->flags)) 396 return; 397 398 /* If another thread has already prepared to reset the device, we 399 * should not attempt to handle a reset here, since we'd race with 400 * that thread. This may happen if we suspend the device or if the 401 * PCIe link is lost. In this case, we'll just ignore the RESET 402 * request, as it will (eventually) be taken care of when the thread 403 * which actually started the reset is finished. 404 */ 405 if (!fm10k_prepare_for_reset(interface)) 406 return; 407 408 netdev_err(interface->netdev, "Reset interface\n"); 409 410 err = fm10k_handle_reset(interface); 411 if (err) 412 dev_err(&interface->pdev->dev, 413 "fm10k_handle_reset failed: %d\n", err); 414 } 415 416 /** 417 * fm10k_configure_swpri_map - Configure Receive SWPRI to PC mapping 418 * @interface: board private structure 419 * 420 * Configure the SWPRI to PC mapping for the port. 421 **/ 422 static void fm10k_configure_swpri_map(struct fm10k_intfc *interface) 423 { 424 struct net_device *netdev = interface->netdev; 425 struct fm10k_hw *hw = &interface->hw; 426 int i; 427 428 /* clear flag indicating update is needed */ 429 clear_bit(FM10K_FLAG_SWPRI_CONFIG, interface->flags); 430 431 /* these registers are only available on the PF */ 432 if (hw->mac.type != fm10k_mac_pf) 433 return; 434 435 /* configure SWPRI to PC map */ 436 for (i = 0; i < FM10K_SWPRI_MAX; i++) 437 fm10k_write_reg(hw, FM10K_SWPRI_MAP(i), 438 netdev_get_prio_tc_map(netdev, i)); 439 } 440 441 /** 442 * fm10k_watchdog_update_host_state - Update the link status based on host. 443 * @interface: board private structure 444 **/ 445 static void fm10k_watchdog_update_host_state(struct fm10k_intfc *interface) 446 { 447 struct fm10k_hw *hw = &interface->hw; 448 s32 err; 449 450 if (test_bit(__FM10K_LINK_DOWN, interface->state)) { 451 interface->host_ready = false; 452 if (time_is_after_jiffies(interface->link_down_event)) 453 return; 454 clear_bit(__FM10K_LINK_DOWN, interface->state); 455 } 456 457 if (test_bit(FM10K_FLAG_SWPRI_CONFIG, interface->flags)) { 458 if (rtnl_trylock()) { 459 fm10k_configure_swpri_map(interface); 460 rtnl_unlock(); 461 } 462 } 463 464 /* lock the mailbox for transmit and receive */ 465 fm10k_mbx_lock(interface); 466 467 err = hw->mac.ops.get_host_state(hw, &interface->host_ready); 468 if (err && time_is_before_jiffies(interface->last_reset)) 469 set_bit(FM10K_FLAG_RESET_REQUESTED, interface->flags); 470 471 /* free the lock */ 472 fm10k_mbx_unlock(interface); 473 } 474 475 /** 476 * fm10k_mbx_subtask - Process upstream and downstream mailboxes 477 * @interface: board private structure 478 * 479 * This function will process both the upstream and downstream mailboxes. 480 **/ 481 static void fm10k_mbx_subtask(struct fm10k_intfc *interface) 482 { 483 /* If we're resetting, bail out */ 484 if (test_bit(__FM10K_RESETTING, interface->state)) 485 return; 486 487 /* process upstream mailbox and update device state */ 488 fm10k_watchdog_update_host_state(interface); 489 490 /* process downstream mailboxes */ 491 fm10k_iov_mbx(interface); 492 } 493 494 /** 495 * fm10k_watchdog_host_is_ready - Update netdev status based on host ready 496 * @interface: board private structure 497 **/ 498 static void fm10k_watchdog_host_is_ready(struct fm10k_intfc *interface) 499 { 500 struct net_device *netdev = interface->netdev; 501 502 /* only continue if link state is currently down */ 503 if (netif_carrier_ok(netdev)) 504 return; 505 506 netif_info(interface, drv, netdev, "NIC Link is up\n"); 507 508 netif_carrier_on(netdev); 509 netif_tx_wake_all_queues(netdev); 510 } 511 512 /** 513 * fm10k_watchdog_host_not_ready - Update netdev status based on host not ready 514 * @interface: board private structure 515 **/ 516 static void fm10k_watchdog_host_not_ready(struct fm10k_intfc *interface) 517 { 518 struct net_device *netdev = interface->netdev; 519 520 /* only continue if link state is currently up */ 521 if (!netif_carrier_ok(netdev)) 522 return; 523 524 netif_info(interface, drv, netdev, "NIC Link is down\n"); 525 526 netif_carrier_off(netdev); 527 netif_tx_stop_all_queues(netdev); 528 } 529 530 /** 531 * fm10k_update_stats - Update the board statistics counters. 532 * @interface: board private structure 533 **/ 534 void fm10k_update_stats(struct fm10k_intfc *interface) 535 { 536 struct net_device_stats *net_stats = &interface->netdev->stats; 537 struct fm10k_hw *hw = &interface->hw; 538 u64 hw_csum_tx_good = 0, hw_csum_rx_good = 0, rx_length_errors = 0; 539 u64 rx_switch_errors = 0, rx_drops = 0, rx_pp_errors = 0; 540 u64 rx_link_errors = 0; 541 u64 rx_errors = 0, rx_csum_errors = 0, tx_csum_errors = 0; 542 u64 restart_queue = 0, tx_busy = 0, alloc_failed = 0; 543 u64 rx_bytes_nic = 0, rx_pkts_nic = 0, rx_drops_nic = 0; 544 u64 tx_bytes_nic = 0, tx_pkts_nic = 0; 545 u64 bytes, pkts; 546 int i; 547 548 /* ensure only one thread updates stats at a time */ 549 if (test_and_set_bit(__FM10K_UPDATING_STATS, interface->state)) 550 return; 551 552 /* do not allow stats update via service task for next second */ 553 interface->next_stats_update = jiffies + HZ; 554 555 /* gather some stats to the interface struct that are per queue */ 556 for (bytes = 0, pkts = 0, i = 0; i < interface->num_tx_queues; i++) { 557 struct fm10k_ring *tx_ring = READ_ONCE(interface->tx_ring[i]); 558 559 if (!tx_ring) 560 continue; 561 562 restart_queue += tx_ring->tx_stats.restart_queue; 563 tx_busy += tx_ring->tx_stats.tx_busy; 564 tx_csum_errors += tx_ring->tx_stats.csum_err; 565 bytes += tx_ring->stats.bytes; 566 pkts += tx_ring->stats.packets; 567 hw_csum_tx_good += tx_ring->tx_stats.csum_good; 568 } 569 570 interface->restart_queue = restart_queue; 571 interface->tx_busy = tx_busy; 572 net_stats->tx_bytes = bytes; 573 net_stats->tx_packets = pkts; 574 interface->tx_csum_errors = tx_csum_errors; 575 interface->hw_csum_tx_good = hw_csum_tx_good; 576 577 /* gather some stats to the interface struct that are per queue */ 578 for (bytes = 0, pkts = 0, i = 0; i < interface->num_rx_queues; i++) { 579 struct fm10k_ring *rx_ring = READ_ONCE(interface->rx_ring[i]); 580 581 if (!rx_ring) 582 continue; 583 584 bytes += rx_ring->stats.bytes; 585 pkts += rx_ring->stats.packets; 586 alloc_failed += rx_ring->rx_stats.alloc_failed; 587 rx_csum_errors += rx_ring->rx_stats.csum_err; 588 rx_errors += rx_ring->rx_stats.errors; 589 hw_csum_rx_good += rx_ring->rx_stats.csum_good; 590 rx_switch_errors += rx_ring->rx_stats.switch_errors; 591 rx_drops += rx_ring->rx_stats.drops; 592 rx_pp_errors += rx_ring->rx_stats.pp_errors; 593 rx_link_errors += rx_ring->rx_stats.link_errors; 594 rx_length_errors += rx_ring->rx_stats.length_errors; 595 } 596 597 net_stats->rx_bytes = bytes; 598 net_stats->rx_packets = pkts; 599 interface->alloc_failed = alloc_failed; 600 interface->rx_csum_errors = rx_csum_errors; 601 interface->hw_csum_rx_good = hw_csum_rx_good; 602 interface->rx_switch_errors = rx_switch_errors; 603 interface->rx_drops = rx_drops; 604 interface->rx_pp_errors = rx_pp_errors; 605 interface->rx_link_errors = rx_link_errors; 606 interface->rx_length_errors = rx_length_errors; 607 608 hw->mac.ops.update_hw_stats(hw, &interface->stats); 609 610 for (i = 0; i < hw->mac.max_queues; i++) { 611 struct fm10k_hw_stats_q *q = &interface->stats.q[i]; 612 613 tx_bytes_nic += q->tx_bytes.count; 614 tx_pkts_nic += q->tx_packets.count; 615 rx_bytes_nic += q->rx_bytes.count; 616 rx_pkts_nic += q->rx_packets.count; 617 rx_drops_nic += q->rx_drops.count; 618 } 619 620 interface->tx_bytes_nic = tx_bytes_nic; 621 interface->tx_packets_nic = tx_pkts_nic; 622 interface->rx_bytes_nic = rx_bytes_nic; 623 interface->rx_packets_nic = rx_pkts_nic; 624 interface->rx_drops_nic = rx_drops_nic; 625 626 /* Fill out the OS statistics structure */ 627 net_stats->rx_errors = rx_errors; 628 net_stats->rx_dropped = interface->stats.nodesc_drop.count; 629 630 clear_bit(__FM10K_UPDATING_STATS, interface->state); 631 } 632 633 /** 634 * fm10k_watchdog_flush_tx - flush queues on host not ready 635 * @interface: pointer to the device interface structure 636 **/ 637 static void fm10k_watchdog_flush_tx(struct fm10k_intfc *interface) 638 { 639 int some_tx_pending = 0; 640 int i; 641 642 /* nothing to do if carrier is up */ 643 if (netif_carrier_ok(interface->netdev)) 644 return; 645 646 for (i = 0; i < interface->num_tx_queues; i++) { 647 struct fm10k_ring *tx_ring = interface->tx_ring[i]; 648 649 if (tx_ring->next_to_use != tx_ring->next_to_clean) { 650 some_tx_pending = 1; 651 break; 652 } 653 } 654 655 /* We've lost link, so the controller stops DMA, but we've got 656 * queued Tx work that's never going to get done, so reset 657 * controller to flush Tx. 658 */ 659 if (some_tx_pending) 660 set_bit(FM10K_FLAG_RESET_REQUESTED, interface->flags); 661 } 662 663 /** 664 * fm10k_watchdog_subtask - check and bring link up 665 * @interface: pointer to the device interface structure 666 **/ 667 static void fm10k_watchdog_subtask(struct fm10k_intfc *interface) 668 { 669 /* if interface is down do nothing */ 670 if (test_bit(__FM10K_DOWN, interface->state) || 671 test_bit(__FM10K_RESETTING, interface->state)) 672 return; 673 674 if (interface->host_ready) 675 fm10k_watchdog_host_is_ready(interface); 676 else 677 fm10k_watchdog_host_not_ready(interface); 678 679 /* update stats only once every second */ 680 if (time_is_before_jiffies(interface->next_stats_update)) 681 fm10k_update_stats(interface); 682 683 /* flush any uncompleted work */ 684 fm10k_watchdog_flush_tx(interface); 685 } 686 687 /** 688 * fm10k_check_hang_subtask - check for hung queues and dropped interrupts 689 * @interface: pointer to the device interface structure 690 * 691 * This function serves two purposes. First it strobes the interrupt lines 692 * in order to make certain interrupts are occurring. Secondly it sets the 693 * bits needed to check for TX hangs. As a result we should immediately 694 * determine if a hang has occurred. 695 */ 696 static void fm10k_check_hang_subtask(struct fm10k_intfc *interface) 697 { 698 int i; 699 700 /* If we're down or resetting, just bail */ 701 if (test_bit(__FM10K_DOWN, interface->state) || 702 test_bit(__FM10K_RESETTING, interface->state)) 703 return; 704 705 /* rate limit tx hang checks to only once every 2 seconds */ 706 if (time_is_after_eq_jiffies(interface->next_tx_hang_check)) 707 return; 708 interface->next_tx_hang_check = jiffies + (2 * HZ); 709 710 if (netif_carrier_ok(interface->netdev)) { 711 /* Force detection of hung controller */ 712 for (i = 0; i < interface->num_tx_queues; i++) 713 set_check_for_tx_hang(interface->tx_ring[i]); 714 715 /* Rearm all in-use q_vectors for immediate firing */ 716 for (i = 0; i < interface->num_q_vectors; i++) { 717 struct fm10k_q_vector *qv = interface->q_vector[i]; 718 719 if (!qv->tx.count && !qv->rx.count) 720 continue; 721 writel(FM10K_ITR_ENABLE | FM10K_ITR_PENDING2, qv->itr); 722 } 723 } 724 } 725 726 /** 727 * fm10k_service_task - manages and runs subtasks 728 * @work: pointer to work_struct containing our data 729 **/ 730 static void fm10k_service_task(struct work_struct *work) 731 { 732 struct fm10k_intfc *interface; 733 734 interface = container_of(work, struct fm10k_intfc, service_task); 735 736 /* Check whether we're detached first */ 737 fm10k_detach_subtask(interface); 738 739 /* tasks run even when interface is down */ 740 fm10k_mbx_subtask(interface); 741 fm10k_reset_subtask(interface); 742 743 /* tasks only run when interface is up */ 744 fm10k_watchdog_subtask(interface); 745 fm10k_check_hang_subtask(interface); 746 747 /* release lock on service events to allow scheduling next event */ 748 fm10k_service_event_complete(interface); 749 } 750 751 /** 752 * fm10k_macvlan_task - send queued MAC/VLAN requests to switch manager 753 * @work: pointer to work_struct containing our data 754 * 755 * This work item handles sending MAC/VLAN updates to the switch manager. When 756 * the interface is up, it will attempt to queue mailbox messages to the 757 * switch manager requesting updates for MAC/VLAN pairs. If the Tx fifo of the 758 * mailbox is full, it will reschedule itself to try again in a short while. 759 * This ensures that the driver does not overload the switch mailbox with too 760 * many simultaneous requests, causing an unnecessary reset. 761 **/ 762 static void fm10k_macvlan_task(struct work_struct *work) 763 { 764 struct fm10k_macvlan_request *item; 765 struct fm10k_intfc *interface; 766 struct delayed_work *dwork; 767 struct list_head *requests; 768 struct fm10k_hw *hw; 769 unsigned long flags; 770 771 dwork = to_delayed_work(work); 772 interface = container_of(dwork, struct fm10k_intfc, macvlan_task); 773 hw = &interface->hw; 774 requests = &interface->macvlan_requests; 775 776 do { 777 /* Pop the first item off the list */ 778 spin_lock_irqsave(&interface->macvlan_lock, flags); 779 item = list_first_entry_or_null(requests, 780 struct fm10k_macvlan_request, 781 list); 782 if (item) 783 list_del_init(&item->list); 784 785 spin_unlock_irqrestore(&interface->macvlan_lock, flags); 786 787 /* We have no more items to process */ 788 if (!item) 789 goto done; 790 791 fm10k_mbx_lock(interface); 792 793 /* Check that we have plenty of space to send the message. We 794 * want to ensure that the mailbox stays low enough to avoid a 795 * change in the host state, otherwise we may see spurious 796 * link up / link down notifications. 797 */ 798 if (!hw->mbx.ops.tx_ready(&hw->mbx, FM10K_VFMBX_MSG_MTU + 5)) { 799 hw->mbx.ops.process(hw, &hw->mbx); 800 set_bit(__FM10K_MACVLAN_REQUEST, interface->state); 801 fm10k_mbx_unlock(interface); 802 803 /* Put the request back on the list */ 804 spin_lock_irqsave(&interface->macvlan_lock, flags); 805 list_add(&item->list, requests); 806 spin_unlock_irqrestore(&interface->macvlan_lock, flags); 807 break; 808 } 809 810 switch (item->type) { 811 case FM10K_MC_MAC_REQUEST: 812 hw->mac.ops.update_mc_addr(hw, 813 item->mac.glort, 814 item->mac.addr, 815 item->mac.vid, 816 item->set); 817 break; 818 case FM10K_UC_MAC_REQUEST: 819 hw->mac.ops.update_uc_addr(hw, 820 item->mac.glort, 821 item->mac.addr, 822 item->mac.vid, 823 item->set, 824 0); 825 break; 826 case FM10K_VLAN_REQUEST: 827 hw->mac.ops.update_vlan(hw, 828 item->vlan.vid, 829 item->vlan.vsi, 830 item->set); 831 break; 832 default: 833 break; 834 } 835 836 fm10k_mbx_unlock(interface); 837 838 /* Free the item now that we've sent the update */ 839 kfree(item); 840 } while (true); 841 842 done: 843 WARN_ON(!test_bit(__FM10K_MACVLAN_SCHED, interface->state)); 844 845 /* flush memory to make sure state is correct */ 846 smp_mb__before_atomic(); 847 clear_bit(__FM10K_MACVLAN_SCHED, interface->state); 848 849 /* If a MAC/VLAN request was scheduled since we started, we should 850 * re-schedule. However, there is no reason to re-schedule if there is 851 * no work to do. 852 */ 853 if (test_bit(__FM10K_MACVLAN_REQUEST, interface->state)) 854 fm10k_macvlan_schedule(interface); 855 } 856 857 /** 858 * fm10k_configure_tx_ring - Configure Tx ring after Reset 859 * @interface: board private structure 860 * @ring: structure containing ring specific data 861 * 862 * Configure the Tx descriptor ring after a reset. 863 **/ 864 static void fm10k_configure_tx_ring(struct fm10k_intfc *interface, 865 struct fm10k_ring *ring) 866 { 867 struct fm10k_hw *hw = &interface->hw; 868 u64 tdba = ring->dma; 869 u32 size = ring->count * sizeof(struct fm10k_tx_desc); 870 u32 txint = FM10K_INT_MAP_DISABLE; 871 u32 txdctl = BIT(FM10K_TXDCTL_MAX_TIME_SHIFT) | FM10K_TXDCTL_ENABLE; 872 u8 reg_idx = ring->reg_idx; 873 874 /* disable queue to avoid issues while updating state */ 875 fm10k_write_reg(hw, FM10K_TXDCTL(reg_idx), 0); 876 fm10k_write_flush(hw); 877 878 /* possible poll here to verify ring resources have been cleaned */ 879 880 /* set location and size for descriptor ring */ 881 fm10k_write_reg(hw, FM10K_TDBAL(reg_idx), tdba & DMA_BIT_MASK(32)); 882 fm10k_write_reg(hw, FM10K_TDBAH(reg_idx), tdba >> 32); 883 fm10k_write_reg(hw, FM10K_TDLEN(reg_idx), size); 884 885 /* reset head and tail pointers */ 886 fm10k_write_reg(hw, FM10K_TDH(reg_idx), 0); 887 fm10k_write_reg(hw, FM10K_TDT(reg_idx), 0); 888 889 /* store tail pointer */ 890 ring->tail = &interface->uc_addr[FM10K_TDT(reg_idx)]; 891 892 /* reset ntu and ntc to place SW in sync with hardware */ 893 ring->next_to_clean = 0; 894 ring->next_to_use = 0; 895 896 /* Map interrupt */ 897 if (ring->q_vector) { 898 txint = ring->q_vector->v_idx + NON_Q_VECTORS(hw); 899 txint |= FM10K_INT_MAP_TIMER0; 900 } 901 902 fm10k_write_reg(hw, FM10K_TXINT(reg_idx), txint); 903 904 /* enable use of FTAG bit in Tx descriptor, register is RO for VF */ 905 fm10k_write_reg(hw, FM10K_PFVTCTL(reg_idx), 906 FM10K_PFVTCTL_FTAG_DESC_ENABLE); 907 908 /* Initialize XPS */ 909 if (!test_and_set_bit(__FM10K_TX_XPS_INIT_DONE, ring->state) && 910 ring->q_vector) 911 netif_set_xps_queue(ring->netdev, 912 &ring->q_vector->affinity_mask, 913 ring->queue_index); 914 915 /* enable queue */ 916 fm10k_write_reg(hw, FM10K_TXDCTL(reg_idx), txdctl); 917 } 918 919 /** 920 * fm10k_enable_tx_ring - Verify Tx ring is enabled after configuration 921 * @interface: board private structure 922 * @ring: structure containing ring specific data 923 * 924 * Verify the Tx descriptor ring is ready for transmit. 925 **/ 926 static void fm10k_enable_tx_ring(struct fm10k_intfc *interface, 927 struct fm10k_ring *ring) 928 { 929 struct fm10k_hw *hw = &interface->hw; 930 int wait_loop = 10; 931 u32 txdctl; 932 u8 reg_idx = ring->reg_idx; 933 934 /* if we are already enabled just exit */ 935 if (fm10k_read_reg(hw, FM10K_TXDCTL(reg_idx)) & FM10K_TXDCTL_ENABLE) 936 return; 937 938 /* poll to verify queue is enabled */ 939 do { 940 usleep_range(1000, 2000); 941 txdctl = fm10k_read_reg(hw, FM10K_TXDCTL(reg_idx)); 942 } while (!(txdctl & FM10K_TXDCTL_ENABLE) && --wait_loop); 943 if (!wait_loop) 944 netif_err(interface, drv, interface->netdev, 945 "Could not enable Tx Queue %d\n", reg_idx); 946 } 947 948 /** 949 * fm10k_configure_tx - Configure Transmit Unit after Reset 950 * @interface: board private structure 951 * 952 * Configure the Tx unit of the MAC after a reset. 953 **/ 954 static void fm10k_configure_tx(struct fm10k_intfc *interface) 955 { 956 int i; 957 958 /* Setup the HW Tx Head and Tail descriptor pointers */ 959 for (i = 0; i < interface->num_tx_queues; i++) 960 fm10k_configure_tx_ring(interface, interface->tx_ring[i]); 961 962 /* poll here to verify that Tx rings are now enabled */ 963 for (i = 0; i < interface->num_tx_queues; i++) 964 fm10k_enable_tx_ring(interface, interface->tx_ring[i]); 965 } 966 967 /** 968 * fm10k_configure_rx_ring - Configure Rx ring after Reset 969 * @interface: board private structure 970 * @ring: structure containing ring specific data 971 * 972 * Configure the Rx descriptor ring after a reset. 973 **/ 974 static void fm10k_configure_rx_ring(struct fm10k_intfc *interface, 975 struct fm10k_ring *ring) 976 { 977 u64 rdba = ring->dma; 978 struct fm10k_hw *hw = &interface->hw; 979 u32 size = ring->count * sizeof(union fm10k_rx_desc); 980 u32 rxqctl, rxdctl = FM10K_RXDCTL_WRITE_BACK_MIN_DELAY; 981 u32 srrctl = FM10K_SRRCTL_BUFFER_CHAINING_EN; 982 u32 rxint = FM10K_INT_MAP_DISABLE; 983 u8 rx_pause = interface->rx_pause; 984 u8 reg_idx = ring->reg_idx; 985 986 /* disable queue to avoid issues while updating state */ 987 rxqctl = fm10k_read_reg(hw, FM10K_RXQCTL(reg_idx)); 988 rxqctl &= ~FM10K_RXQCTL_ENABLE; 989 fm10k_write_reg(hw, FM10K_RXQCTL(reg_idx), rxqctl); 990 fm10k_write_flush(hw); 991 992 /* possible poll here to verify ring resources have been cleaned */ 993 994 /* set location and size for descriptor ring */ 995 fm10k_write_reg(hw, FM10K_RDBAL(reg_idx), rdba & DMA_BIT_MASK(32)); 996 fm10k_write_reg(hw, FM10K_RDBAH(reg_idx), rdba >> 32); 997 fm10k_write_reg(hw, FM10K_RDLEN(reg_idx), size); 998 999 /* reset head and tail pointers */ 1000 fm10k_write_reg(hw, FM10K_RDH(reg_idx), 0); 1001 fm10k_write_reg(hw, FM10K_RDT(reg_idx), 0); 1002 1003 /* store tail pointer */ 1004 ring->tail = &interface->uc_addr[FM10K_RDT(reg_idx)]; 1005 1006 /* reset ntu and ntc to place SW in sync with hardware */ 1007 ring->next_to_clean = 0; 1008 ring->next_to_use = 0; 1009 ring->next_to_alloc = 0; 1010 1011 /* Configure the Rx buffer size for one buff without split */ 1012 srrctl |= FM10K_RX_BUFSZ >> FM10K_SRRCTL_BSIZEPKT_SHIFT; 1013 1014 /* Configure the Rx ring to suppress loopback packets */ 1015 srrctl |= FM10K_SRRCTL_LOOPBACK_SUPPRESS; 1016 fm10k_write_reg(hw, FM10K_SRRCTL(reg_idx), srrctl); 1017 1018 /* Enable drop on empty */ 1019 #ifdef CONFIG_DCB 1020 if (interface->pfc_en) 1021 rx_pause = interface->pfc_en; 1022 #endif 1023 if (!(rx_pause & BIT(ring->qos_pc))) 1024 rxdctl |= FM10K_RXDCTL_DROP_ON_EMPTY; 1025 1026 fm10k_write_reg(hw, FM10K_RXDCTL(reg_idx), rxdctl); 1027 1028 /* assign default VLAN to queue */ 1029 ring->vid = hw->mac.default_vid; 1030 1031 /* if we have an active VLAN, disable default VLAN ID */ 1032 if (test_bit(hw->mac.default_vid, interface->active_vlans)) 1033 ring->vid |= FM10K_VLAN_CLEAR; 1034 1035 /* Map interrupt */ 1036 if (ring->q_vector) { 1037 rxint = ring->q_vector->v_idx + NON_Q_VECTORS(hw); 1038 rxint |= FM10K_INT_MAP_TIMER1; 1039 } 1040 1041 fm10k_write_reg(hw, FM10K_RXINT(reg_idx), rxint); 1042 1043 /* enable queue */ 1044 rxqctl = fm10k_read_reg(hw, FM10K_RXQCTL(reg_idx)); 1045 rxqctl |= FM10K_RXQCTL_ENABLE; 1046 fm10k_write_reg(hw, FM10K_RXQCTL(reg_idx), rxqctl); 1047 1048 /* place buffers on ring for receive data */ 1049 fm10k_alloc_rx_buffers(ring, fm10k_desc_unused(ring)); 1050 } 1051 1052 /** 1053 * fm10k_update_rx_drop_en - Configures the drop enable bits for Rx rings 1054 * @interface: board private structure 1055 * 1056 * Configure the drop enable bits for the Rx rings. 1057 **/ 1058 void fm10k_update_rx_drop_en(struct fm10k_intfc *interface) 1059 { 1060 struct fm10k_hw *hw = &interface->hw; 1061 u8 rx_pause = interface->rx_pause; 1062 int i; 1063 1064 #ifdef CONFIG_DCB 1065 if (interface->pfc_en) 1066 rx_pause = interface->pfc_en; 1067 1068 #endif 1069 for (i = 0; i < interface->num_rx_queues; i++) { 1070 struct fm10k_ring *ring = interface->rx_ring[i]; 1071 u32 rxdctl = FM10K_RXDCTL_WRITE_BACK_MIN_DELAY; 1072 u8 reg_idx = ring->reg_idx; 1073 1074 if (!(rx_pause & BIT(ring->qos_pc))) 1075 rxdctl |= FM10K_RXDCTL_DROP_ON_EMPTY; 1076 1077 fm10k_write_reg(hw, FM10K_RXDCTL(reg_idx), rxdctl); 1078 } 1079 } 1080 1081 /** 1082 * fm10k_configure_dglort - Configure Receive DGLORT after reset 1083 * @interface: board private structure 1084 * 1085 * Configure the DGLORT description and RSS tables. 1086 **/ 1087 static void fm10k_configure_dglort(struct fm10k_intfc *interface) 1088 { 1089 struct fm10k_dglort_cfg dglort = { 0 }; 1090 struct fm10k_hw *hw = &interface->hw; 1091 int i; 1092 u32 mrqc; 1093 1094 /* Fill out hash function seeds */ 1095 for (i = 0; i < FM10K_RSSRK_SIZE; i++) 1096 fm10k_write_reg(hw, FM10K_RSSRK(0, i), interface->rssrk[i]); 1097 1098 /* Write RETA table to hardware */ 1099 for (i = 0; i < FM10K_RETA_SIZE; i++) 1100 fm10k_write_reg(hw, FM10K_RETA(0, i), interface->reta[i]); 1101 1102 /* Generate RSS hash based on packet types, TCP/UDP 1103 * port numbers and/or IPv4/v6 src and dst addresses 1104 */ 1105 mrqc = FM10K_MRQC_IPV4 | 1106 FM10K_MRQC_TCP_IPV4 | 1107 FM10K_MRQC_IPV6 | 1108 FM10K_MRQC_TCP_IPV6; 1109 1110 if (test_bit(FM10K_FLAG_RSS_FIELD_IPV4_UDP, interface->flags)) 1111 mrqc |= FM10K_MRQC_UDP_IPV4; 1112 if (test_bit(FM10K_FLAG_RSS_FIELD_IPV6_UDP, interface->flags)) 1113 mrqc |= FM10K_MRQC_UDP_IPV6; 1114 1115 fm10k_write_reg(hw, FM10K_MRQC(0), mrqc); 1116 1117 /* configure default DGLORT mapping for RSS/DCB */ 1118 dglort.inner_rss = 1; 1119 dglort.rss_l = fls(interface->ring_feature[RING_F_RSS].mask); 1120 dglort.pc_l = fls(interface->ring_feature[RING_F_QOS].mask); 1121 hw->mac.ops.configure_dglort_map(hw, &dglort); 1122 1123 /* assign GLORT per queue for queue mapped testing */ 1124 if (interface->glort_count > 64) { 1125 memset(&dglort, 0, sizeof(dglort)); 1126 dglort.inner_rss = 1; 1127 dglort.glort = interface->glort + 64; 1128 dglort.idx = fm10k_dglort_pf_queue; 1129 dglort.queue_l = fls(interface->num_rx_queues - 1); 1130 hw->mac.ops.configure_dglort_map(hw, &dglort); 1131 } 1132 1133 /* assign glort value for RSS/DCB specific to this interface */ 1134 memset(&dglort, 0, sizeof(dglort)); 1135 dglort.inner_rss = 1; 1136 dglort.glort = interface->glort; 1137 dglort.rss_l = fls(interface->ring_feature[RING_F_RSS].mask); 1138 dglort.pc_l = fls(interface->ring_feature[RING_F_QOS].mask); 1139 /* configure DGLORT mapping for RSS/DCB */ 1140 dglort.idx = fm10k_dglort_pf_rss; 1141 if (interface->l2_accel) 1142 dglort.shared_l = fls(interface->l2_accel->size); 1143 hw->mac.ops.configure_dglort_map(hw, &dglort); 1144 } 1145 1146 /** 1147 * fm10k_configure_rx - Configure Receive Unit after Reset 1148 * @interface: board private structure 1149 * 1150 * Configure the Rx unit of the MAC after a reset. 1151 **/ 1152 static void fm10k_configure_rx(struct fm10k_intfc *interface) 1153 { 1154 int i; 1155 1156 /* Configure SWPRI to PC map */ 1157 fm10k_configure_swpri_map(interface); 1158 1159 /* Configure RSS and DGLORT map */ 1160 fm10k_configure_dglort(interface); 1161 1162 /* Setup the HW Rx Head and Tail descriptor pointers */ 1163 for (i = 0; i < interface->num_rx_queues; i++) 1164 fm10k_configure_rx_ring(interface, interface->rx_ring[i]); 1165 1166 /* possible poll here to verify that Rx rings are now enabled */ 1167 } 1168 1169 static void fm10k_napi_enable_all(struct fm10k_intfc *interface) 1170 { 1171 struct fm10k_q_vector *q_vector; 1172 int q_idx; 1173 1174 for (q_idx = 0; q_idx < interface->num_q_vectors; q_idx++) { 1175 q_vector = interface->q_vector[q_idx]; 1176 napi_enable(&q_vector->napi); 1177 } 1178 } 1179 1180 static irqreturn_t fm10k_msix_clean_rings(int __always_unused irq, void *data) 1181 { 1182 struct fm10k_q_vector *q_vector = data; 1183 1184 if (q_vector->rx.count || q_vector->tx.count) 1185 napi_schedule_irqoff(&q_vector->napi); 1186 1187 return IRQ_HANDLED; 1188 } 1189 1190 static irqreturn_t fm10k_msix_mbx_vf(int __always_unused irq, void *data) 1191 { 1192 struct fm10k_intfc *interface = data; 1193 struct fm10k_hw *hw = &interface->hw; 1194 struct fm10k_mbx_info *mbx = &hw->mbx; 1195 1196 /* re-enable mailbox interrupt and indicate 20us delay */ 1197 fm10k_write_reg(hw, FM10K_VFITR(FM10K_MBX_VECTOR), 1198 (FM10K_MBX_INT_DELAY >> hw->mac.itr_scale) | 1199 FM10K_ITR_ENABLE); 1200 1201 /* service upstream mailbox */ 1202 if (fm10k_mbx_trylock(interface)) { 1203 mbx->ops.process(hw, mbx); 1204 fm10k_mbx_unlock(interface); 1205 } 1206 1207 hw->mac.get_host_state = true; 1208 fm10k_service_event_schedule(interface); 1209 1210 return IRQ_HANDLED; 1211 } 1212 1213 #define FM10K_ERR_MSG(type) case (type): error = #type; break 1214 static void fm10k_handle_fault(struct fm10k_intfc *interface, int type, 1215 struct fm10k_fault *fault) 1216 { 1217 struct pci_dev *pdev = interface->pdev; 1218 struct fm10k_hw *hw = &interface->hw; 1219 struct fm10k_iov_data *iov_data = interface->iov_data; 1220 char *error; 1221 1222 switch (type) { 1223 case FM10K_PCA_FAULT: 1224 switch (fault->type) { 1225 default: 1226 error = "Unknown PCA error"; 1227 break; 1228 FM10K_ERR_MSG(PCA_NO_FAULT); 1229 FM10K_ERR_MSG(PCA_UNMAPPED_ADDR); 1230 FM10K_ERR_MSG(PCA_BAD_QACCESS_PF); 1231 FM10K_ERR_MSG(PCA_BAD_QACCESS_VF); 1232 FM10K_ERR_MSG(PCA_MALICIOUS_REQ); 1233 FM10K_ERR_MSG(PCA_POISONED_TLP); 1234 FM10K_ERR_MSG(PCA_TLP_ABORT); 1235 } 1236 break; 1237 case FM10K_THI_FAULT: 1238 switch (fault->type) { 1239 default: 1240 error = "Unknown THI error"; 1241 break; 1242 FM10K_ERR_MSG(THI_NO_FAULT); 1243 FM10K_ERR_MSG(THI_MAL_DIS_Q_FAULT); 1244 } 1245 break; 1246 case FM10K_FUM_FAULT: 1247 switch (fault->type) { 1248 default: 1249 error = "Unknown FUM error"; 1250 break; 1251 FM10K_ERR_MSG(FUM_NO_FAULT); 1252 FM10K_ERR_MSG(FUM_UNMAPPED_ADDR); 1253 FM10K_ERR_MSG(FUM_BAD_VF_QACCESS); 1254 FM10K_ERR_MSG(FUM_ADD_DECODE_ERR); 1255 FM10K_ERR_MSG(FUM_RO_ERROR); 1256 FM10K_ERR_MSG(FUM_QPRC_CRC_ERROR); 1257 FM10K_ERR_MSG(FUM_CSR_TIMEOUT); 1258 FM10K_ERR_MSG(FUM_INVALID_TYPE); 1259 FM10K_ERR_MSG(FUM_INVALID_LENGTH); 1260 FM10K_ERR_MSG(FUM_INVALID_BE); 1261 FM10K_ERR_MSG(FUM_INVALID_ALIGN); 1262 } 1263 break; 1264 default: 1265 error = "Undocumented fault"; 1266 break; 1267 } 1268 1269 dev_warn(&pdev->dev, 1270 "%s Address: 0x%llx SpecInfo: 0x%x Func: %02x.%0x\n", 1271 error, fault->address, fault->specinfo, 1272 PCI_SLOT(fault->func), PCI_FUNC(fault->func)); 1273 1274 /* For VF faults, clear out the respective LPORT, reset the queue 1275 * resources, and then reconnect to the mailbox. This allows the 1276 * VF in question to resume behavior. For transient faults that are 1277 * the result of non-malicious behavior this will log the fault and 1278 * allow the VF to resume functionality. Obviously for malicious VFs 1279 * they will be able to attempt malicious behavior again. In this 1280 * case, the system administrator will need to step in and manually 1281 * remove or disable the VF in question. 1282 */ 1283 if (fault->func && iov_data) { 1284 int vf = fault->func - 1; 1285 struct fm10k_vf_info *vf_info = &iov_data->vf_info[vf]; 1286 1287 hw->iov.ops.reset_lport(hw, vf_info); 1288 hw->iov.ops.reset_resources(hw, vf_info); 1289 1290 /* reset_lport disables the VF, so re-enable it */ 1291 hw->iov.ops.set_lport(hw, vf_info, vf, 1292 FM10K_VF_FLAG_MULTI_CAPABLE); 1293 1294 /* reset_resources will disconnect from the mbx */ 1295 vf_info->mbx.ops.connect(hw, &vf_info->mbx); 1296 } 1297 } 1298 1299 static void fm10k_report_fault(struct fm10k_intfc *interface, u32 eicr) 1300 { 1301 struct fm10k_hw *hw = &interface->hw; 1302 struct fm10k_fault fault = { 0 }; 1303 int type, err; 1304 1305 for (eicr &= FM10K_EICR_FAULT_MASK, type = FM10K_PCA_FAULT; 1306 eicr; 1307 eicr >>= 1, type += FM10K_FAULT_SIZE) { 1308 /* only check if there is an error reported */ 1309 if (!(eicr & 0x1)) 1310 continue; 1311 1312 /* retrieve fault info */ 1313 err = hw->mac.ops.get_fault(hw, type, &fault); 1314 if (err) { 1315 dev_err(&interface->pdev->dev, 1316 "error reading fault\n"); 1317 continue; 1318 } 1319 1320 fm10k_handle_fault(interface, type, &fault); 1321 } 1322 } 1323 1324 static void fm10k_reset_drop_on_empty(struct fm10k_intfc *interface, u32 eicr) 1325 { 1326 struct fm10k_hw *hw = &interface->hw; 1327 const u32 rxdctl = FM10K_RXDCTL_WRITE_BACK_MIN_DELAY; 1328 u32 maxholdq; 1329 int q; 1330 1331 if (!(eicr & FM10K_EICR_MAXHOLDTIME)) 1332 return; 1333 1334 maxholdq = fm10k_read_reg(hw, FM10K_MAXHOLDQ(7)); 1335 if (maxholdq) 1336 fm10k_write_reg(hw, FM10K_MAXHOLDQ(7), maxholdq); 1337 for (q = 255;;) { 1338 if (maxholdq & BIT(31)) { 1339 if (q < FM10K_MAX_QUEUES_PF) { 1340 interface->rx_overrun_pf++; 1341 fm10k_write_reg(hw, FM10K_RXDCTL(q), rxdctl); 1342 } else { 1343 interface->rx_overrun_vf++; 1344 } 1345 } 1346 1347 maxholdq *= 2; 1348 if (!maxholdq) 1349 q &= ~(32 - 1); 1350 1351 if (!q) 1352 break; 1353 1354 if (q-- % 32) 1355 continue; 1356 1357 maxholdq = fm10k_read_reg(hw, FM10K_MAXHOLDQ(q / 32)); 1358 if (maxholdq) 1359 fm10k_write_reg(hw, FM10K_MAXHOLDQ(q / 32), maxholdq); 1360 } 1361 } 1362 1363 static irqreturn_t fm10k_msix_mbx_pf(int __always_unused irq, void *data) 1364 { 1365 struct fm10k_intfc *interface = data; 1366 struct fm10k_hw *hw = &interface->hw; 1367 struct fm10k_mbx_info *mbx = &hw->mbx; 1368 u32 eicr; 1369 s32 err = 0; 1370 1371 /* unmask any set bits related to this interrupt */ 1372 eicr = fm10k_read_reg(hw, FM10K_EICR); 1373 fm10k_write_reg(hw, FM10K_EICR, eicr & (FM10K_EICR_MAILBOX | 1374 FM10K_EICR_SWITCHREADY | 1375 FM10K_EICR_SWITCHNOTREADY)); 1376 1377 /* report any faults found to the message log */ 1378 fm10k_report_fault(interface, eicr); 1379 1380 /* reset any queues disabled due to receiver overrun */ 1381 fm10k_reset_drop_on_empty(interface, eicr); 1382 1383 /* service mailboxes */ 1384 if (fm10k_mbx_trylock(interface)) { 1385 err = mbx->ops.process(hw, mbx); 1386 /* handle VFLRE events */ 1387 fm10k_iov_event(interface); 1388 fm10k_mbx_unlock(interface); 1389 } 1390 1391 if (err == FM10K_ERR_RESET_REQUESTED) 1392 set_bit(FM10K_FLAG_RESET_REQUESTED, interface->flags); 1393 1394 /* if switch toggled state we should reset GLORTs */ 1395 if (eicr & FM10K_EICR_SWITCHNOTREADY) { 1396 /* force link down for at least 4 seconds */ 1397 interface->link_down_event = jiffies + (4 * HZ); 1398 set_bit(__FM10K_LINK_DOWN, interface->state); 1399 1400 /* reset dglort_map back to no config */ 1401 hw->mac.dglort_map = FM10K_DGLORTMAP_NONE; 1402 } 1403 1404 /* we should validate host state after interrupt event */ 1405 hw->mac.get_host_state = true; 1406 1407 /* validate host state, and handle VF mailboxes in the service task */ 1408 fm10k_service_event_schedule(interface); 1409 1410 /* re-enable mailbox interrupt and indicate 20us delay */ 1411 fm10k_write_reg(hw, FM10K_ITR(FM10K_MBX_VECTOR), 1412 (FM10K_MBX_INT_DELAY >> hw->mac.itr_scale) | 1413 FM10K_ITR_ENABLE); 1414 1415 return IRQ_HANDLED; 1416 } 1417 1418 void fm10k_mbx_free_irq(struct fm10k_intfc *interface) 1419 { 1420 struct fm10k_hw *hw = &interface->hw; 1421 struct msix_entry *entry; 1422 int itr_reg; 1423 1424 /* no mailbox IRQ to free if MSI-X is not enabled */ 1425 if (!interface->msix_entries) 1426 return; 1427 1428 entry = &interface->msix_entries[FM10K_MBX_VECTOR]; 1429 1430 /* disconnect the mailbox */ 1431 hw->mbx.ops.disconnect(hw, &hw->mbx); 1432 1433 /* disable Mailbox cause */ 1434 if (hw->mac.type == fm10k_mac_pf) { 1435 fm10k_write_reg(hw, FM10K_EIMR, 1436 FM10K_EIMR_DISABLE(PCA_FAULT) | 1437 FM10K_EIMR_DISABLE(FUM_FAULT) | 1438 FM10K_EIMR_DISABLE(MAILBOX) | 1439 FM10K_EIMR_DISABLE(SWITCHREADY) | 1440 FM10K_EIMR_DISABLE(SWITCHNOTREADY) | 1441 FM10K_EIMR_DISABLE(SRAMERROR) | 1442 FM10K_EIMR_DISABLE(VFLR) | 1443 FM10K_EIMR_DISABLE(MAXHOLDTIME)); 1444 itr_reg = FM10K_ITR(FM10K_MBX_VECTOR); 1445 } else { 1446 itr_reg = FM10K_VFITR(FM10K_MBX_VECTOR); 1447 } 1448 1449 fm10k_write_reg(hw, itr_reg, FM10K_ITR_MASK_SET); 1450 1451 free_irq(entry->vector, interface); 1452 } 1453 1454 static s32 fm10k_mbx_mac_addr(struct fm10k_hw *hw, u32 **results, 1455 struct fm10k_mbx_info *mbx) 1456 { 1457 bool vlan_override = hw->mac.vlan_override; 1458 u16 default_vid = hw->mac.default_vid; 1459 struct fm10k_intfc *interface; 1460 s32 err; 1461 1462 err = fm10k_msg_mac_vlan_vf(hw, results, mbx); 1463 if (err) 1464 return err; 1465 1466 interface = container_of(hw, struct fm10k_intfc, hw); 1467 1468 /* MAC was changed so we need reset */ 1469 if (is_valid_ether_addr(hw->mac.perm_addr) && 1470 !ether_addr_equal(hw->mac.perm_addr, hw->mac.addr)) 1471 set_bit(FM10K_FLAG_RESET_REQUESTED, interface->flags); 1472 1473 /* VLAN override was changed, or default VLAN changed */ 1474 if ((vlan_override != hw->mac.vlan_override) || 1475 (default_vid != hw->mac.default_vid)) 1476 set_bit(FM10K_FLAG_RESET_REQUESTED, interface->flags); 1477 1478 return 0; 1479 } 1480 1481 /* generic error handler for mailbox issues */ 1482 static s32 fm10k_mbx_error(struct fm10k_hw *hw, u32 **results, 1483 struct fm10k_mbx_info __always_unused *mbx) 1484 { 1485 struct fm10k_intfc *interface; 1486 struct pci_dev *pdev; 1487 1488 interface = container_of(hw, struct fm10k_intfc, hw); 1489 pdev = interface->pdev; 1490 1491 dev_err(&pdev->dev, "Unknown message ID %u\n", 1492 **results & FM10K_TLV_ID_MASK); 1493 1494 return 0; 1495 } 1496 1497 static const struct fm10k_msg_data vf_mbx_data[] = { 1498 FM10K_TLV_MSG_TEST_HANDLER(fm10k_tlv_msg_test), 1499 FM10K_VF_MSG_MAC_VLAN_HANDLER(fm10k_mbx_mac_addr), 1500 FM10K_VF_MSG_LPORT_STATE_HANDLER(fm10k_msg_lport_state_vf), 1501 FM10K_TLV_MSG_ERROR_HANDLER(fm10k_mbx_error), 1502 }; 1503 1504 static int fm10k_mbx_request_irq_vf(struct fm10k_intfc *interface) 1505 { 1506 struct msix_entry *entry = &interface->msix_entries[FM10K_MBX_VECTOR]; 1507 struct net_device *dev = interface->netdev; 1508 struct fm10k_hw *hw = &interface->hw; 1509 int err; 1510 1511 /* Use timer0 for interrupt moderation on the mailbox */ 1512 u32 itr = entry->entry | FM10K_INT_MAP_TIMER0; 1513 1514 /* register mailbox handlers */ 1515 err = hw->mbx.ops.register_handlers(&hw->mbx, vf_mbx_data); 1516 if (err) 1517 return err; 1518 1519 /* request the IRQ */ 1520 err = request_irq(entry->vector, fm10k_msix_mbx_vf, 0, 1521 dev->name, interface); 1522 if (err) { 1523 netif_err(interface, probe, dev, 1524 "request_irq for msix_mbx failed: %d\n", err); 1525 return err; 1526 } 1527 1528 /* map all of the interrupt sources */ 1529 fm10k_write_reg(hw, FM10K_VFINT_MAP, itr); 1530 1531 /* enable interrupt */ 1532 fm10k_write_reg(hw, FM10K_VFITR(entry->entry), FM10K_ITR_ENABLE); 1533 1534 return 0; 1535 } 1536 1537 static s32 fm10k_lport_map(struct fm10k_hw *hw, u32 **results, 1538 struct fm10k_mbx_info *mbx) 1539 { 1540 struct fm10k_intfc *interface; 1541 u32 dglort_map = hw->mac.dglort_map; 1542 s32 err; 1543 1544 interface = container_of(hw, struct fm10k_intfc, hw); 1545 1546 err = fm10k_msg_err_pf(hw, results, mbx); 1547 if (!err && hw->swapi.status) { 1548 /* force link down for a reasonable delay */ 1549 interface->link_down_event = jiffies + (2 * HZ); 1550 set_bit(__FM10K_LINK_DOWN, interface->state); 1551 1552 /* reset dglort_map back to no config */ 1553 hw->mac.dglort_map = FM10K_DGLORTMAP_NONE; 1554 1555 fm10k_service_event_schedule(interface); 1556 1557 /* prevent overloading kernel message buffer */ 1558 if (interface->lport_map_failed) 1559 return 0; 1560 1561 interface->lport_map_failed = true; 1562 1563 if (hw->swapi.status == FM10K_MSG_ERR_PEP_NOT_SCHEDULED) 1564 dev_warn(&interface->pdev->dev, 1565 "cannot obtain link because the host interface is configured for a PCIe host interface bandwidth of zero\n"); 1566 dev_warn(&interface->pdev->dev, 1567 "request logical port map failed: %d\n", 1568 hw->swapi.status); 1569 1570 return 0; 1571 } 1572 1573 err = fm10k_msg_lport_map_pf(hw, results, mbx); 1574 if (err) 1575 return err; 1576 1577 interface->lport_map_failed = false; 1578 1579 /* we need to reset if port count was just updated */ 1580 if (dglort_map != hw->mac.dglort_map) 1581 set_bit(FM10K_FLAG_RESET_REQUESTED, interface->flags); 1582 1583 return 0; 1584 } 1585 1586 static s32 fm10k_update_pvid(struct fm10k_hw *hw, u32 **results, 1587 struct fm10k_mbx_info __always_unused *mbx) 1588 { 1589 struct fm10k_intfc *interface; 1590 u16 glort, pvid; 1591 u32 pvid_update; 1592 s32 err; 1593 1594 err = fm10k_tlv_attr_get_u32(results[FM10K_PF_ATTR_ID_UPDATE_PVID], 1595 &pvid_update); 1596 if (err) 1597 return err; 1598 1599 /* extract values from the pvid update */ 1600 glort = FM10K_MSG_HDR_FIELD_GET(pvid_update, UPDATE_PVID_GLORT); 1601 pvid = FM10K_MSG_HDR_FIELD_GET(pvid_update, UPDATE_PVID_PVID); 1602 1603 /* if glort is not valid return error */ 1604 if (!fm10k_glort_valid_pf(hw, glort)) 1605 return FM10K_ERR_PARAM; 1606 1607 /* verify VLAN ID is valid */ 1608 if (pvid >= FM10K_VLAN_TABLE_VID_MAX) 1609 return FM10K_ERR_PARAM; 1610 1611 interface = container_of(hw, struct fm10k_intfc, hw); 1612 1613 /* check to see if this belongs to one of the VFs */ 1614 err = fm10k_iov_update_pvid(interface, glort, pvid); 1615 if (!err) 1616 return 0; 1617 1618 /* we need to reset if default VLAN was just updated */ 1619 if (pvid != hw->mac.default_vid) 1620 set_bit(FM10K_FLAG_RESET_REQUESTED, interface->flags); 1621 1622 hw->mac.default_vid = pvid; 1623 1624 return 0; 1625 } 1626 1627 static const struct fm10k_msg_data pf_mbx_data[] = { 1628 FM10K_PF_MSG_ERR_HANDLER(XCAST_MODES, fm10k_msg_err_pf), 1629 FM10K_PF_MSG_ERR_HANDLER(UPDATE_MAC_FWD_RULE, fm10k_msg_err_pf), 1630 FM10K_PF_MSG_LPORT_MAP_HANDLER(fm10k_lport_map), 1631 FM10K_PF_MSG_ERR_HANDLER(LPORT_CREATE, fm10k_msg_err_pf), 1632 FM10K_PF_MSG_ERR_HANDLER(LPORT_DELETE, fm10k_msg_err_pf), 1633 FM10K_PF_MSG_UPDATE_PVID_HANDLER(fm10k_update_pvid), 1634 FM10K_TLV_MSG_ERROR_HANDLER(fm10k_mbx_error), 1635 }; 1636 1637 static int fm10k_mbx_request_irq_pf(struct fm10k_intfc *interface) 1638 { 1639 struct msix_entry *entry = &interface->msix_entries[FM10K_MBX_VECTOR]; 1640 struct net_device *dev = interface->netdev; 1641 struct fm10k_hw *hw = &interface->hw; 1642 int err; 1643 1644 /* Use timer0 for interrupt moderation on the mailbox */ 1645 u32 mbx_itr = entry->entry | FM10K_INT_MAP_TIMER0; 1646 u32 other_itr = entry->entry | FM10K_INT_MAP_IMMEDIATE; 1647 1648 /* register mailbox handlers */ 1649 err = hw->mbx.ops.register_handlers(&hw->mbx, pf_mbx_data); 1650 if (err) 1651 return err; 1652 1653 /* request the IRQ */ 1654 err = request_irq(entry->vector, fm10k_msix_mbx_pf, 0, 1655 dev->name, interface); 1656 if (err) { 1657 netif_err(interface, probe, dev, 1658 "request_irq for msix_mbx failed: %d\n", err); 1659 return err; 1660 } 1661 1662 /* Enable interrupts w/ no moderation for "other" interrupts */ 1663 fm10k_write_reg(hw, FM10K_INT_MAP(fm10k_int_pcie_fault), other_itr); 1664 fm10k_write_reg(hw, FM10K_INT_MAP(fm10k_int_switch_up_down), other_itr); 1665 fm10k_write_reg(hw, FM10K_INT_MAP(fm10k_int_sram), other_itr); 1666 fm10k_write_reg(hw, FM10K_INT_MAP(fm10k_int_max_hold_time), other_itr); 1667 fm10k_write_reg(hw, FM10K_INT_MAP(fm10k_int_vflr), other_itr); 1668 1669 /* Enable interrupts w/ moderation for mailbox */ 1670 fm10k_write_reg(hw, FM10K_INT_MAP(fm10k_int_mailbox), mbx_itr); 1671 1672 /* Enable individual interrupt causes */ 1673 fm10k_write_reg(hw, FM10K_EIMR, FM10K_EIMR_ENABLE(PCA_FAULT) | 1674 FM10K_EIMR_ENABLE(FUM_FAULT) | 1675 FM10K_EIMR_ENABLE(MAILBOX) | 1676 FM10K_EIMR_ENABLE(SWITCHREADY) | 1677 FM10K_EIMR_ENABLE(SWITCHNOTREADY) | 1678 FM10K_EIMR_ENABLE(SRAMERROR) | 1679 FM10K_EIMR_ENABLE(VFLR) | 1680 FM10K_EIMR_ENABLE(MAXHOLDTIME)); 1681 1682 /* enable interrupt */ 1683 fm10k_write_reg(hw, FM10K_ITR(entry->entry), FM10K_ITR_ENABLE); 1684 1685 return 0; 1686 } 1687 1688 int fm10k_mbx_request_irq(struct fm10k_intfc *interface) 1689 { 1690 struct fm10k_hw *hw = &interface->hw; 1691 int err; 1692 1693 /* enable Mailbox cause */ 1694 if (hw->mac.type == fm10k_mac_pf) 1695 err = fm10k_mbx_request_irq_pf(interface); 1696 else 1697 err = fm10k_mbx_request_irq_vf(interface); 1698 if (err) 1699 return err; 1700 1701 /* connect mailbox */ 1702 err = hw->mbx.ops.connect(hw, &hw->mbx); 1703 1704 /* if the mailbox failed to connect, then free IRQ */ 1705 if (err) 1706 fm10k_mbx_free_irq(interface); 1707 1708 return err; 1709 } 1710 1711 /** 1712 * fm10k_qv_free_irq - release interrupts associated with queue vectors 1713 * @interface: board private structure 1714 * 1715 * Release all interrupts associated with this interface 1716 **/ 1717 void fm10k_qv_free_irq(struct fm10k_intfc *interface) 1718 { 1719 int vector = interface->num_q_vectors; 1720 struct fm10k_hw *hw = &interface->hw; 1721 struct msix_entry *entry; 1722 1723 entry = &interface->msix_entries[NON_Q_VECTORS(hw) + vector]; 1724 1725 while (vector) { 1726 struct fm10k_q_vector *q_vector; 1727 1728 vector--; 1729 entry--; 1730 q_vector = interface->q_vector[vector]; 1731 1732 if (!q_vector->tx.count && !q_vector->rx.count) 1733 continue; 1734 1735 /* clear the affinity_mask in the IRQ descriptor */ 1736 irq_set_affinity_hint(entry->vector, NULL); 1737 1738 /* disable interrupts */ 1739 writel(FM10K_ITR_MASK_SET, q_vector->itr); 1740 1741 free_irq(entry->vector, q_vector); 1742 } 1743 } 1744 1745 /** 1746 * fm10k_qv_request_irq - initialize interrupts for queue vectors 1747 * @interface: board private structure 1748 * 1749 * Attempts to configure interrupts using the best available 1750 * capabilities of the hardware and kernel. 1751 **/ 1752 int fm10k_qv_request_irq(struct fm10k_intfc *interface) 1753 { 1754 struct net_device *dev = interface->netdev; 1755 struct fm10k_hw *hw = &interface->hw; 1756 struct msix_entry *entry; 1757 unsigned int ri = 0, ti = 0; 1758 int vector, err; 1759 1760 entry = &interface->msix_entries[NON_Q_VECTORS(hw)]; 1761 1762 for (vector = 0; vector < interface->num_q_vectors; vector++) { 1763 struct fm10k_q_vector *q_vector = interface->q_vector[vector]; 1764 1765 /* name the vector */ 1766 if (q_vector->tx.count && q_vector->rx.count) { 1767 snprintf(q_vector->name, sizeof(q_vector->name), 1768 "%s-TxRx-%u", dev->name, ri++); 1769 ti++; 1770 } else if (q_vector->rx.count) { 1771 snprintf(q_vector->name, sizeof(q_vector->name), 1772 "%s-rx-%u", dev->name, ri++); 1773 } else if (q_vector->tx.count) { 1774 snprintf(q_vector->name, sizeof(q_vector->name), 1775 "%s-tx-%u", dev->name, ti++); 1776 } else { 1777 /* skip this unused q_vector */ 1778 continue; 1779 } 1780 1781 /* Assign ITR register to q_vector */ 1782 q_vector->itr = (hw->mac.type == fm10k_mac_pf) ? 1783 &interface->uc_addr[FM10K_ITR(entry->entry)] : 1784 &interface->uc_addr[FM10K_VFITR(entry->entry)]; 1785 1786 /* request the IRQ */ 1787 err = request_irq(entry->vector, &fm10k_msix_clean_rings, 0, 1788 q_vector->name, q_vector); 1789 if (err) { 1790 netif_err(interface, probe, dev, 1791 "request_irq failed for MSIX interrupt Error: %d\n", 1792 err); 1793 goto err_out; 1794 } 1795 1796 /* assign the mask for this irq */ 1797 irq_set_affinity_hint(entry->vector, &q_vector->affinity_mask); 1798 1799 /* Enable q_vector */ 1800 writel(FM10K_ITR_ENABLE, q_vector->itr); 1801 1802 entry++; 1803 } 1804 1805 return 0; 1806 1807 err_out: 1808 /* wind through the ring freeing all entries and vectors */ 1809 while (vector) { 1810 struct fm10k_q_vector *q_vector; 1811 1812 entry--; 1813 vector--; 1814 q_vector = interface->q_vector[vector]; 1815 1816 if (!q_vector->tx.count && !q_vector->rx.count) 1817 continue; 1818 1819 /* clear the affinity_mask in the IRQ descriptor */ 1820 irq_set_affinity_hint(entry->vector, NULL); 1821 1822 /* disable interrupts */ 1823 writel(FM10K_ITR_MASK_SET, q_vector->itr); 1824 1825 free_irq(entry->vector, q_vector); 1826 } 1827 1828 return err; 1829 } 1830 1831 void fm10k_up(struct fm10k_intfc *interface) 1832 { 1833 struct fm10k_hw *hw = &interface->hw; 1834 1835 /* Enable Tx/Rx DMA */ 1836 hw->mac.ops.start_hw(hw); 1837 1838 /* configure Tx descriptor rings */ 1839 fm10k_configure_tx(interface); 1840 1841 /* configure Rx descriptor rings */ 1842 fm10k_configure_rx(interface); 1843 1844 /* configure interrupts */ 1845 hw->mac.ops.update_int_moderator(hw); 1846 1847 /* enable statistics capture again */ 1848 clear_bit(__FM10K_UPDATING_STATS, interface->state); 1849 1850 /* clear down bit to indicate we are ready to go */ 1851 clear_bit(__FM10K_DOWN, interface->state); 1852 1853 /* enable polling cleanups */ 1854 fm10k_napi_enable_all(interface); 1855 1856 /* re-establish Rx filters */ 1857 fm10k_restore_rx_state(interface); 1858 1859 /* enable transmits */ 1860 netif_tx_start_all_queues(interface->netdev); 1861 1862 /* kick off the service timer now */ 1863 hw->mac.get_host_state = true; 1864 mod_timer(&interface->service_timer, jiffies); 1865 } 1866 1867 static void fm10k_napi_disable_all(struct fm10k_intfc *interface) 1868 { 1869 struct fm10k_q_vector *q_vector; 1870 int q_idx; 1871 1872 for (q_idx = 0; q_idx < interface->num_q_vectors; q_idx++) { 1873 q_vector = interface->q_vector[q_idx]; 1874 napi_disable(&q_vector->napi); 1875 } 1876 } 1877 1878 void fm10k_down(struct fm10k_intfc *interface) 1879 { 1880 struct net_device *netdev = interface->netdev; 1881 struct fm10k_hw *hw = &interface->hw; 1882 int err, i = 0, count = 0; 1883 1884 /* signal that we are down to the interrupt handler and service task */ 1885 if (test_and_set_bit(__FM10K_DOWN, interface->state)) 1886 return; 1887 1888 /* call carrier off first to avoid false dev_watchdog timeouts */ 1889 netif_carrier_off(netdev); 1890 1891 /* disable transmits */ 1892 netif_tx_stop_all_queues(netdev); 1893 netif_tx_disable(netdev); 1894 1895 /* reset Rx filters */ 1896 fm10k_reset_rx_state(interface); 1897 1898 /* disable polling routines */ 1899 fm10k_napi_disable_all(interface); 1900 1901 /* capture stats one last time before stopping interface */ 1902 fm10k_update_stats(interface); 1903 1904 /* prevent updating statistics while we're down */ 1905 while (test_and_set_bit(__FM10K_UPDATING_STATS, interface->state)) 1906 usleep_range(1000, 2000); 1907 1908 /* skip waiting for TX DMA if we lost PCIe link */ 1909 if (FM10K_REMOVED(hw->hw_addr)) 1910 goto skip_tx_dma_drain; 1911 1912 /* In some rare circumstances it can take a while for Tx queues to 1913 * quiesce and be fully disabled. Attempt to .stop_hw() first, and 1914 * then if we get ERR_REQUESTS_PENDING, go ahead and wait in a loop 1915 * until the Tx queues have emptied, or until a number of retries. If 1916 * we fail to clear within the retry loop, we will issue a warning 1917 * indicating that Tx DMA is probably hung. Note this means we call 1918 * .stop_hw() twice but this shouldn't cause any problems. 1919 */ 1920 err = hw->mac.ops.stop_hw(hw); 1921 if (err != FM10K_ERR_REQUESTS_PENDING) 1922 goto skip_tx_dma_drain; 1923 1924 #define TX_DMA_DRAIN_RETRIES 25 1925 for (count = 0; count < TX_DMA_DRAIN_RETRIES; count++) { 1926 usleep_range(10000, 20000); 1927 1928 /* start checking at the last ring to have pending Tx */ 1929 for (; i < interface->num_tx_queues; i++) 1930 if (fm10k_get_tx_pending(interface->tx_ring[i], false)) 1931 break; 1932 1933 /* if all the queues are drained, we can break now */ 1934 if (i == interface->num_tx_queues) 1935 break; 1936 } 1937 1938 if (count >= TX_DMA_DRAIN_RETRIES) 1939 dev_err(&interface->pdev->dev, 1940 "Tx queues failed to drain after %d tries. Tx DMA is probably hung.\n", 1941 count); 1942 skip_tx_dma_drain: 1943 /* Disable DMA engine for Tx/Rx */ 1944 err = hw->mac.ops.stop_hw(hw); 1945 if (err == FM10K_ERR_REQUESTS_PENDING) 1946 dev_err(&interface->pdev->dev, 1947 "due to pending requests hw was not shut down gracefully\n"); 1948 else if (err) 1949 dev_err(&interface->pdev->dev, "stop_hw failed: %d\n", err); 1950 1951 /* free any buffers still on the rings */ 1952 fm10k_clean_all_tx_rings(interface); 1953 fm10k_clean_all_rx_rings(interface); 1954 } 1955 1956 /** 1957 * fm10k_sw_init - Initialize general software structures 1958 * @interface: host interface private structure to initialize 1959 * @ent: PCI device ID entry 1960 * 1961 * fm10k_sw_init initializes the interface private data structure. 1962 * Fields are initialized based on PCI device information and 1963 * OS network device settings (MTU size). 1964 **/ 1965 static int fm10k_sw_init(struct fm10k_intfc *interface, 1966 const struct pci_device_id *ent) 1967 { 1968 const struct fm10k_info *fi = fm10k_info_tbl[ent->driver_data]; 1969 struct fm10k_hw *hw = &interface->hw; 1970 struct pci_dev *pdev = interface->pdev; 1971 struct net_device *netdev = interface->netdev; 1972 u32 rss_key[FM10K_RSSRK_SIZE]; 1973 unsigned int rss; 1974 int err; 1975 1976 /* initialize back pointer */ 1977 hw->back = interface; 1978 hw->hw_addr = interface->uc_addr; 1979 1980 /* PCI config space info */ 1981 hw->vendor_id = pdev->vendor; 1982 hw->device_id = pdev->device; 1983 hw->revision_id = pdev->revision; 1984 hw->subsystem_vendor_id = pdev->subsystem_vendor; 1985 hw->subsystem_device_id = pdev->subsystem_device; 1986 1987 /* Setup hw api */ 1988 memcpy(&hw->mac.ops, fi->mac_ops, sizeof(hw->mac.ops)); 1989 hw->mac.type = fi->mac; 1990 1991 /* Setup IOV handlers */ 1992 if (fi->iov_ops) 1993 memcpy(&hw->iov.ops, fi->iov_ops, sizeof(hw->iov.ops)); 1994 1995 /* Set common capability flags and settings */ 1996 rss = min_t(int, FM10K_MAX_RSS_INDICES, num_online_cpus()); 1997 interface->ring_feature[RING_F_RSS].limit = rss; 1998 fi->get_invariants(hw); 1999 2000 /* pick up the PCIe bus settings for reporting later */ 2001 if (hw->mac.ops.get_bus_info) 2002 hw->mac.ops.get_bus_info(hw); 2003 2004 /* limit the usable DMA range */ 2005 if (hw->mac.ops.set_dma_mask) 2006 hw->mac.ops.set_dma_mask(hw, dma_get_mask(&pdev->dev)); 2007 2008 /* update netdev with DMA restrictions */ 2009 if (dma_get_mask(&pdev->dev) > DMA_BIT_MASK(32)) { 2010 netdev->features |= NETIF_F_HIGHDMA; 2011 netdev->vlan_features |= NETIF_F_HIGHDMA; 2012 } 2013 2014 /* reset and initialize the hardware so it is in a known state */ 2015 err = hw->mac.ops.reset_hw(hw); 2016 if (err) { 2017 dev_err(&pdev->dev, "reset_hw failed: %d\n", err); 2018 return err; 2019 } 2020 2021 err = hw->mac.ops.init_hw(hw); 2022 if (err) { 2023 dev_err(&pdev->dev, "init_hw failed: %d\n", err); 2024 return err; 2025 } 2026 2027 /* initialize hardware statistics */ 2028 hw->mac.ops.update_hw_stats(hw, &interface->stats); 2029 2030 /* Set upper limit on IOV VFs that can be allocated */ 2031 pci_sriov_set_totalvfs(pdev, hw->iov.total_vfs); 2032 2033 /* Start with random Ethernet address */ 2034 eth_random_addr(hw->mac.addr); 2035 2036 /* Initialize MAC address from hardware */ 2037 err = hw->mac.ops.read_mac_addr(hw); 2038 if (err) { 2039 dev_warn(&pdev->dev, 2040 "Failed to obtain MAC address defaulting to random\n"); 2041 /* tag address assignment as random */ 2042 netdev->addr_assign_type |= NET_ADDR_RANDOM; 2043 } 2044 2045 ether_addr_copy(netdev->dev_addr, hw->mac.addr); 2046 ether_addr_copy(netdev->perm_addr, hw->mac.addr); 2047 2048 if (!is_valid_ether_addr(netdev->perm_addr)) { 2049 dev_err(&pdev->dev, "Invalid MAC Address\n"); 2050 return -EIO; 2051 } 2052 2053 /* initialize DCBNL interface */ 2054 fm10k_dcbnl_set_ops(netdev); 2055 2056 /* set default ring sizes */ 2057 interface->tx_ring_count = FM10K_DEFAULT_TXD; 2058 interface->rx_ring_count = FM10K_DEFAULT_RXD; 2059 2060 /* set default interrupt moderation */ 2061 interface->tx_itr = FM10K_TX_ITR_DEFAULT; 2062 interface->rx_itr = FM10K_ITR_ADAPTIVE | FM10K_RX_ITR_DEFAULT; 2063 2064 /* initialize udp port lists */ 2065 INIT_LIST_HEAD(&interface->vxlan_port); 2066 INIT_LIST_HEAD(&interface->geneve_port); 2067 2068 /* Initialize the MAC/VLAN queue */ 2069 INIT_LIST_HEAD(&interface->macvlan_requests); 2070 2071 netdev_rss_key_fill(rss_key, sizeof(rss_key)); 2072 memcpy(interface->rssrk, rss_key, sizeof(rss_key)); 2073 2074 /* Initialize the mailbox lock */ 2075 spin_lock_init(&interface->mbx_lock); 2076 spin_lock_init(&interface->macvlan_lock); 2077 2078 /* Start off interface as being down */ 2079 set_bit(__FM10K_DOWN, interface->state); 2080 set_bit(__FM10K_UPDATING_STATS, interface->state); 2081 2082 return 0; 2083 } 2084 2085 /** 2086 * fm10k_probe - Device Initialization Routine 2087 * @pdev: PCI device information struct 2088 * @ent: entry in fm10k_pci_tbl 2089 * 2090 * Returns 0 on success, negative on failure 2091 * 2092 * fm10k_probe initializes an interface identified by a pci_dev structure. 2093 * The OS initialization, configuring of the interface private structure, 2094 * and a hardware reset occur. 2095 **/ 2096 static int fm10k_probe(struct pci_dev *pdev, const struct pci_device_id *ent) 2097 { 2098 struct net_device *netdev; 2099 struct fm10k_intfc *interface; 2100 int err; 2101 2102 if (pdev->error_state != pci_channel_io_normal) { 2103 dev_err(&pdev->dev, 2104 "PCI device still in an error state. Unable to load...\n"); 2105 return -EIO; 2106 } 2107 2108 err = pci_enable_device_mem(pdev); 2109 if (err) { 2110 dev_err(&pdev->dev, 2111 "PCI enable device failed: %d\n", err); 2112 return err; 2113 } 2114 2115 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(48)); 2116 if (err) 2117 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)); 2118 if (err) { 2119 dev_err(&pdev->dev, 2120 "DMA configuration failed: %d\n", err); 2121 goto err_dma; 2122 } 2123 2124 err = pci_request_mem_regions(pdev, fm10k_driver_name); 2125 if (err) { 2126 dev_err(&pdev->dev, 2127 "pci_request_selected_regions failed: %d\n", err); 2128 goto err_pci_reg; 2129 } 2130 2131 pci_enable_pcie_error_reporting(pdev); 2132 2133 pci_set_master(pdev); 2134 pci_save_state(pdev); 2135 2136 netdev = fm10k_alloc_netdev(fm10k_info_tbl[ent->driver_data]); 2137 if (!netdev) { 2138 err = -ENOMEM; 2139 goto err_alloc_netdev; 2140 } 2141 2142 SET_NETDEV_DEV(netdev, &pdev->dev); 2143 2144 interface = netdev_priv(netdev); 2145 pci_set_drvdata(pdev, interface); 2146 2147 interface->netdev = netdev; 2148 interface->pdev = pdev; 2149 2150 interface->uc_addr = ioremap(pci_resource_start(pdev, 0), 2151 FM10K_UC_ADDR_SIZE); 2152 if (!interface->uc_addr) { 2153 err = -EIO; 2154 goto err_ioremap; 2155 } 2156 2157 err = fm10k_sw_init(interface, ent); 2158 if (err) 2159 goto err_sw_init; 2160 2161 /* enable debugfs support */ 2162 fm10k_dbg_intfc_init(interface); 2163 2164 err = fm10k_init_queueing_scheme(interface); 2165 if (err) 2166 goto err_sw_init; 2167 2168 /* the mbx interrupt might attempt to schedule the service task, so we 2169 * must ensure it is disabled since we haven't yet requested the timer 2170 * or work item. 2171 */ 2172 set_bit(__FM10K_SERVICE_DISABLE, interface->state); 2173 2174 err = fm10k_mbx_request_irq(interface); 2175 if (err) 2176 goto err_mbx_interrupt; 2177 2178 /* final check of hardware state before registering the interface */ 2179 err = fm10k_hw_ready(interface); 2180 if (err) 2181 goto err_register; 2182 2183 err = register_netdev(netdev); 2184 if (err) 2185 goto err_register; 2186 2187 /* carrier off reporting is important to ethtool even BEFORE open */ 2188 netif_carrier_off(netdev); 2189 2190 /* stop all the transmit queues from transmitting until link is up */ 2191 netif_tx_stop_all_queues(netdev); 2192 2193 /* Initialize service timer and service task late in order to avoid 2194 * cleanup issues. 2195 */ 2196 timer_setup(&interface->service_timer, fm10k_service_timer, 0); 2197 INIT_WORK(&interface->service_task, fm10k_service_task); 2198 2199 /* Setup the MAC/VLAN queue */ 2200 INIT_DELAYED_WORK(&interface->macvlan_task, fm10k_macvlan_task); 2201 2202 /* kick off service timer now, even when interface is down */ 2203 mod_timer(&interface->service_timer, (HZ * 2) + jiffies); 2204 2205 /* print warning for non-optimal configurations */ 2206 pcie_print_link_status(interface->pdev); 2207 2208 /* report MAC address for logging */ 2209 dev_info(&pdev->dev, "%pM\n", netdev->dev_addr); 2210 2211 /* enable SR-IOV after registering netdev to enforce PF/VF ordering */ 2212 fm10k_iov_configure(pdev, 0); 2213 2214 /* clear the service task disable bit and kick off service task */ 2215 clear_bit(__FM10K_SERVICE_DISABLE, interface->state); 2216 fm10k_service_event_schedule(interface); 2217 2218 return 0; 2219 2220 err_register: 2221 fm10k_mbx_free_irq(interface); 2222 err_mbx_interrupt: 2223 fm10k_clear_queueing_scheme(interface); 2224 err_sw_init: 2225 if (interface->sw_addr) 2226 iounmap(interface->sw_addr); 2227 iounmap(interface->uc_addr); 2228 err_ioremap: 2229 free_netdev(netdev); 2230 err_alloc_netdev: 2231 pci_release_mem_regions(pdev); 2232 err_pci_reg: 2233 err_dma: 2234 pci_disable_device(pdev); 2235 return err; 2236 } 2237 2238 /** 2239 * fm10k_remove - Device Removal Routine 2240 * @pdev: PCI device information struct 2241 * 2242 * fm10k_remove is called by the PCI subsystem to alert the driver 2243 * that it should release a PCI device. The could be caused by a 2244 * Hot-Plug event, or because the driver is going to be removed from 2245 * memory. 2246 **/ 2247 static void fm10k_remove(struct pci_dev *pdev) 2248 { 2249 struct fm10k_intfc *interface = pci_get_drvdata(pdev); 2250 struct net_device *netdev = interface->netdev; 2251 2252 del_timer_sync(&interface->service_timer); 2253 2254 fm10k_stop_service_event(interface); 2255 fm10k_stop_macvlan_task(interface); 2256 2257 /* Remove all pending MAC/VLAN requests */ 2258 fm10k_clear_macvlan_queue(interface, interface->glort, true); 2259 2260 /* free netdev, this may bounce the interrupts due to setup_tc */ 2261 if (netdev->reg_state == NETREG_REGISTERED) 2262 unregister_netdev(netdev); 2263 2264 /* release VFs */ 2265 fm10k_iov_disable(pdev); 2266 2267 /* disable mailbox interrupt */ 2268 fm10k_mbx_free_irq(interface); 2269 2270 /* free interrupts */ 2271 fm10k_clear_queueing_scheme(interface); 2272 2273 /* remove any debugfs interfaces */ 2274 fm10k_dbg_intfc_exit(interface); 2275 2276 if (interface->sw_addr) 2277 iounmap(interface->sw_addr); 2278 iounmap(interface->uc_addr); 2279 2280 free_netdev(netdev); 2281 2282 pci_release_mem_regions(pdev); 2283 2284 pci_disable_pcie_error_reporting(pdev); 2285 2286 pci_disable_device(pdev); 2287 } 2288 2289 static void fm10k_prepare_suspend(struct fm10k_intfc *interface) 2290 { 2291 /* the watchdog task reads from registers, which might appear like 2292 * a surprise remove if the PCIe device is disabled while we're 2293 * stopped. We stop the watchdog task until after we resume software 2294 * activity. 2295 * 2296 * Note that the MAC/VLAN task will be stopped as part of preparing 2297 * for reset so we don't need to handle it here. 2298 */ 2299 fm10k_stop_service_event(interface); 2300 2301 if (fm10k_prepare_for_reset(interface)) 2302 set_bit(__FM10K_RESET_SUSPENDED, interface->state); 2303 } 2304 2305 static int fm10k_handle_resume(struct fm10k_intfc *interface) 2306 { 2307 struct fm10k_hw *hw = &interface->hw; 2308 int err; 2309 2310 /* Even if we didn't properly prepare for reset in 2311 * fm10k_prepare_suspend, we'll attempt to resume anyways. 2312 */ 2313 if (!test_and_clear_bit(__FM10K_RESET_SUSPENDED, interface->state)) 2314 dev_warn(&interface->pdev->dev, 2315 "Device was shut down as part of suspend... Attempting to recover\n"); 2316 2317 /* reset statistics starting values */ 2318 hw->mac.ops.rebind_hw_stats(hw, &interface->stats); 2319 2320 err = fm10k_handle_reset(interface); 2321 if (err) 2322 return err; 2323 2324 /* assume host is not ready, to prevent race with watchdog in case we 2325 * actually don't have connection to the switch 2326 */ 2327 interface->host_ready = false; 2328 fm10k_watchdog_host_not_ready(interface); 2329 2330 /* force link to stay down for a second to prevent link flutter */ 2331 interface->link_down_event = jiffies + (HZ); 2332 set_bit(__FM10K_LINK_DOWN, interface->state); 2333 2334 /* restart the service task */ 2335 fm10k_start_service_event(interface); 2336 2337 /* Restart the MAC/VLAN request queue in-case of outstanding events */ 2338 fm10k_macvlan_schedule(interface); 2339 2340 return err; 2341 } 2342 2343 /** 2344 * fm10k_resume - Generic PM resume hook 2345 * @dev: generic device structure 2346 * 2347 * Generic PM hook used when waking the device from a low power state after 2348 * suspend or hibernation. This function does not need to handle lower PCIe 2349 * device state as the stack takes care of that for us. 2350 **/ 2351 static int __maybe_unused fm10k_resume(struct device *dev) 2352 { 2353 struct fm10k_intfc *interface = pci_get_drvdata(to_pci_dev(dev)); 2354 struct net_device *netdev = interface->netdev; 2355 struct fm10k_hw *hw = &interface->hw; 2356 int err; 2357 2358 /* refresh hw_addr in case it was dropped */ 2359 hw->hw_addr = interface->uc_addr; 2360 2361 err = fm10k_handle_resume(interface); 2362 if (err) 2363 return err; 2364 2365 netif_device_attach(netdev); 2366 2367 return 0; 2368 } 2369 2370 /** 2371 * fm10k_suspend - Generic PM suspend hook 2372 * @dev: generic device structure 2373 * 2374 * Generic PM hook used when setting the device into a low power state for 2375 * system suspend or hibernation. This function does not need to handle lower 2376 * PCIe device state as the stack takes care of that for us. 2377 **/ 2378 static int __maybe_unused fm10k_suspend(struct device *dev) 2379 { 2380 struct fm10k_intfc *interface = pci_get_drvdata(to_pci_dev(dev)); 2381 struct net_device *netdev = interface->netdev; 2382 2383 netif_device_detach(netdev); 2384 2385 fm10k_prepare_suspend(interface); 2386 2387 return 0; 2388 } 2389 2390 /** 2391 * fm10k_io_error_detected - called when PCI error is detected 2392 * @pdev: Pointer to PCI device 2393 * @state: The current pci connection state 2394 * 2395 * This function is called after a PCI bus error affecting 2396 * this device has been detected. 2397 */ 2398 static pci_ers_result_t fm10k_io_error_detected(struct pci_dev *pdev, 2399 pci_channel_state_t state) 2400 { 2401 struct fm10k_intfc *interface = pci_get_drvdata(pdev); 2402 struct net_device *netdev = interface->netdev; 2403 2404 netif_device_detach(netdev); 2405 2406 if (state == pci_channel_io_perm_failure) 2407 return PCI_ERS_RESULT_DISCONNECT; 2408 2409 fm10k_prepare_suspend(interface); 2410 2411 /* Request a slot reset. */ 2412 return PCI_ERS_RESULT_NEED_RESET; 2413 } 2414 2415 /** 2416 * fm10k_io_slot_reset - called after the pci bus has been reset. 2417 * @pdev: Pointer to PCI device 2418 * 2419 * Restart the card from scratch, as if from a cold-boot. 2420 */ 2421 static pci_ers_result_t fm10k_io_slot_reset(struct pci_dev *pdev) 2422 { 2423 pci_ers_result_t result; 2424 2425 if (pci_reenable_device(pdev)) { 2426 dev_err(&pdev->dev, 2427 "Cannot re-enable PCI device after reset.\n"); 2428 result = PCI_ERS_RESULT_DISCONNECT; 2429 } else { 2430 pci_set_master(pdev); 2431 pci_restore_state(pdev); 2432 2433 /* After second error pci->state_saved is false, this 2434 * resets it so EEH doesn't break. 2435 */ 2436 pci_save_state(pdev); 2437 2438 pci_wake_from_d3(pdev, false); 2439 2440 result = PCI_ERS_RESULT_RECOVERED; 2441 } 2442 2443 pci_cleanup_aer_uncorrect_error_status(pdev); 2444 2445 return result; 2446 } 2447 2448 /** 2449 * fm10k_io_resume - called when traffic can start flowing again. 2450 * @pdev: Pointer to PCI device 2451 * 2452 * This callback is called when the error recovery driver tells us that 2453 * its OK to resume normal operation. 2454 */ 2455 static void fm10k_io_resume(struct pci_dev *pdev) 2456 { 2457 struct fm10k_intfc *interface = pci_get_drvdata(pdev); 2458 struct net_device *netdev = interface->netdev; 2459 int err; 2460 2461 err = fm10k_handle_resume(interface); 2462 2463 if (err) 2464 dev_warn(&pdev->dev, 2465 "%s failed: %d\n", __func__, err); 2466 else 2467 netif_device_attach(netdev); 2468 } 2469 2470 /** 2471 * fm10k_io_reset_prepare - called when PCI function is about to be reset 2472 * @pdev: Pointer to PCI device 2473 * 2474 * This callback is called when the PCI function is about to be reset, 2475 * allowing the device driver to prepare for it. 2476 */ 2477 static void fm10k_io_reset_prepare(struct pci_dev *pdev) 2478 { 2479 /* warn incase we have any active VF devices */ 2480 if (pci_num_vf(pdev)) 2481 dev_warn(&pdev->dev, 2482 "PCIe FLR may cause issues for any active VF devices\n"); 2483 fm10k_prepare_suspend(pci_get_drvdata(pdev)); 2484 } 2485 2486 /** 2487 * fm10k_io_reset_done - called when PCI function has finished resetting 2488 * @pdev: Pointer to PCI device 2489 * 2490 * This callback is called just after the PCI function is reset, such as via 2491 * /sys/class/net/<enpX>/device/reset or similar. 2492 */ 2493 static void fm10k_io_reset_done(struct pci_dev *pdev) 2494 { 2495 struct fm10k_intfc *interface = pci_get_drvdata(pdev); 2496 int err = fm10k_handle_resume(interface); 2497 2498 if (err) { 2499 dev_warn(&pdev->dev, 2500 "%s failed: %d\n", __func__, err); 2501 netif_device_detach(interface->netdev); 2502 } 2503 } 2504 2505 static const struct pci_error_handlers fm10k_err_handler = { 2506 .error_detected = fm10k_io_error_detected, 2507 .slot_reset = fm10k_io_slot_reset, 2508 .resume = fm10k_io_resume, 2509 .reset_prepare = fm10k_io_reset_prepare, 2510 .reset_done = fm10k_io_reset_done, 2511 }; 2512 2513 static SIMPLE_DEV_PM_OPS(fm10k_pm_ops, fm10k_suspend, fm10k_resume); 2514 2515 static struct pci_driver fm10k_driver = { 2516 .name = fm10k_driver_name, 2517 .id_table = fm10k_pci_tbl, 2518 .probe = fm10k_probe, 2519 .remove = fm10k_remove, 2520 .driver = { 2521 .pm = &fm10k_pm_ops, 2522 }, 2523 .sriov_configure = fm10k_iov_configure, 2524 .err_handler = &fm10k_err_handler 2525 }; 2526 2527 /** 2528 * fm10k_register_pci_driver - register driver interface 2529 * 2530 * This function is called on module load in order to register the driver. 2531 **/ 2532 int fm10k_register_pci_driver(void) 2533 { 2534 return pci_register_driver(&fm10k_driver); 2535 } 2536 2537 /** 2538 * fm10k_unregister_pci_driver - unregister driver interface 2539 * 2540 * This function is called on module unload in order to remove the driver. 2541 **/ 2542 void fm10k_unregister_pci_driver(void) 2543 { 2544 pci_unregister_driver(&fm10k_driver); 2545 } 2546