1 /* Intel Ethernet Switch Host Interface Driver 2 * Copyright(c) 2013 - 2015 Intel Corporation. 3 * 4 * This program is free software; you can redistribute it and/or modify it 5 * under the terms and conditions of the GNU General Public License, 6 * version 2, as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope it will be useful, but WITHOUT 9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 11 * more details. 12 * 13 * The full GNU General Public License is included in this distribution in 14 * the file called "COPYING". 15 * 16 * Contact Information: 17 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> 18 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 19 */ 20 21 #include <linux/module.h> 22 #include <linux/aer.h> 23 24 #include "fm10k.h" 25 26 static const struct fm10k_info *fm10k_info_tbl[] = { 27 [fm10k_device_pf] = &fm10k_pf_info, 28 [fm10k_device_vf] = &fm10k_vf_info, 29 }; 30 31 /** 32 * fm10k_pci_tbl - PCI Device ID Table 33 * 34 * Wildcard entries (PCI_ANY_ID) should come last 35 * Last entry must be all 0s 36 * 37 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID, 38 * Class, Class Mask, private data (not used) } 39 */ 40 static const struct pci_device_id fm10k_pci_tbl[] = { 41 { PCI_VDEVICE(INTEL, FM10K_DEV_ID_PF), fm10k_device_pf }, 42 { PCI_VDEVICE(INTEL, FM10K_DEV_ID_VF), fm10k_device_vf }, 43 /* required last entry */ 44 { 0, } 45 }; 46 MODULE_DEVICE_TABLE(pci, fm10k_pci_tbl); 47 48 u16 fm10k_read_pci_cfg_word(struct fm10k_hw *hw, u32 reg) 49 { 50 struct fm10k_intfc *interface = hw->back; 51 u16 value = 0; 52 53 if (FM10K_REMOVED(hw->hw_addr)) 54 return ~value; 55 56 pci_read_config_word(interface->pdev, reg, &value); 57 if (value == 0xFFFF) 58 fm10k_write_flush(hw); 59 60 return value; 61 } 62 63 u32 fm10k_read_reg(struct fm10k_hw *hw, int reg) 64 { 65 u32 __iomem *hw_addr = ACCESS_ONCE(hw->hw_addr); 66 u32 value = 0; 67 68 if (FM10K_REMOVED(hw_addr)) 69 return ~value; 70 71 value = readl(&hw_addr[reg]); 72 if (!(~value) && (!reg || !(~readl(hw_addr)))) { 73 struct fm10k_intfc *interface = hw->back; 74 struct net_device *netdev = interface->netdev; 75 76 hw->hw_addr = NULL; 77 netif_device_detach(netdev); 78 netdev_err(netdev, "PCIe link lost, device now detached\n"); 79 } 80 81 return value; 82 } 83 84 static int fm10k_hw_ready(struct fm10k_intfc *interface) 85 { 86 struct fm10k_hw *hw = &interface->hw; 87 88 fm10k_write_flush(hw); 89 90 return FM10K_REMOVED(hw->hw_addr) ? -ENODEV : 0; 91 } 92 93 void fm10k_service_event_schedule(struct fm10k_intfc *interface) 94 { 95 if (!test_bit(__FM10K_SERVICE_DISABLE, &interface->state) && 96 !test_and_set_bit(__FM10K_SERVICE_SCHED, &interface->state)) 97 queue_work(fm10k_workqueue, &interface->service_task); 98 } 99 100 static void fm10k_service_event_complete(struct fm10k_intfc *interface) 101 { 102 BUG_ON(!test_bit(__FM10K_SERVICE_SCHED, &interface->state)); 103 104 /* flush memory to make sure state is correct before next watchog */ 105 smp_mb__before_atomic(); 106 clear_bit(__FM10K_SERVICE_SCHED, &interface->state); 107 } 108 109 /** 110 * fm10k_service_timer - Timer Call-back 111 * @data: pointer to interface cast into an unsigned long 112 **/ 113 static void fm10k_service_timer(unsigned long data) 114 { 115 struct fm10k_intfc *interface = (struct fm10k_intfc *)data; 116 117 /* Reset the timer */ 118 mod_timer(&interface->service_timer, (HZ * 2) + jiffies); 119 120 fm10k_service_event_schedule(interface); 121 } 122 123 static void fm10k_detach_subtask(struct fm10k_intfc *interface) 124 { 125 struct net_device *netdev = interface->netdev; 126 127 /* do nothing if device is still present or hw_addr is set */ 128 if (netif_device_present(netdev) || interface->hw.hw_addr) 129 return; 130 131 rtnl_lock(); 132 133 if (netif_running(netdev)) 134 dev_close(netdev); 135 136 rtnl_unlock(); 137 } 138 139 static void fm10k_reinit(struct fm10k_intfc *interface) 140 { 141 struct net_device *netdev = interface->netdev; 142 struct fm10k_hw *hw = &interface->hw; 143 int err; 144 145 WARN_ON(in_interrupt()); 146 147 /* put off any impending NetWatchDogTimeout */ 148 netdev->trans_start = jiffies; 149 150 while (test_and_set_bit(__FM10K_RESETTING, &interface->state)) 151 usleep_range(1000, 2000); 152 153 rtnl_lock(); 154 155 fm10k_iov_suspend(interface->pdev); 156 157 if (netif_running(netdev)) 158 fm10k_close(netdev); 159 160 fm10k_mbx_free_irq(interface); 161 162 /* delay any future reset requests */ 163 interface->last_reset = jiffies + (10 * HZ); 164 165 /* reset and initialize the hardware so it is in a known state */ 166 err = hw->mac.ops.reset_hw(hw) ? : hw->mac.ops.init_hw(hw); 167 if (err) 168 dev_err(&interface->pdev->dev, "init_hw failed: %d\n", err); 169 170 /* reassociate interrupts */ 171 fm10k_mbx_request_irq(interface); 172 173 /* update hardware address for VFs if perm_addr has changed */ 174 if (hw->mac.type == fm10k_mac_vf) { 175 if (is_valid_ether_addr(hw->mac.perm_addr)) { 176 ether_addr_copy(hw->mac.addr, hw->mac.perm_addr); 177 ether_addr_copy(netdev->perm_addr, hw->mac.perm_addr); 178 ether_addr_copy(netdev->dev_addr, hw->mac.perm_addr); 179 netdev->addr_assign_type &= ~NET_ADDR_RANDOM; 180 } 181 182 if (hw->mac.vlan_override) 183 netdev->features &= ~NETIF_F_HW_VLAN_CTAG_RX; 184 else 185 netdev->features |= NETIF_F_HW_VLAN_CTAG_RX; 186 } 187 188 /* reset clock */ 189 fm10k_ts_reset(interface); 190 191 if (netif_running(netdev)) 192 fm10k_open(netdev); 193 194 fm10k_iov_resume(interface->pdev); 195 196 rtnl_unlock(); 197 198 clear_bit(__FM10K_RESETTING, &interface->state); 199 } 200 201 static void fm10k_reset_subtask(struct fm10k_intfc *interface) 202 { 203 if (!(interface->flags & FM10K_FLAG_RESET_REQUESTED)) 204 return; 205 206 interface->flags &= ~FM10K_FLAG_RESET_REQUESTED; 207 208 netdev_err(interface->netdev, "Reset interface\n"); 209 210 fm10k_reinit(interface); 211 } 212 213 /** 214 * fm10k_configure_swpri_map - Configure Receive SWPRI to PC mapping 215 * @interface: board private structure 216 * 217 * Configure the SWPRI to PC mapping for the port. 218 **/ 219 static void fm10k_configure_swpri_map(struct fm10k_intfc *interface) 220 { 221 struct net_device *netdev = interface->netdev; 222 struct fm10k_hw *hw = &interface->hw; 223 int i; 224 225 /* clear flag indicating update is needed */ 226 interface->flags &= ~FM10K_FLAG_SWPRI_CONFIG; 227 228 /* these registers are only available on the PF */ 229 if (hw->mac.type != fm10k_mac_pf) 230 return; 231 232 /* configure SWPRI to PC map */ 233 for (i = 0; i < FM10K_SWPRI_MAX; i++) 234 fm10k_write_reg(hw, FM10K_SWPRI_MAP(i), 235 netdev_get_prio_tc_map(netdev, i)); 236 } 237 238 /** 239 * fm10k_watchdog_update_host_state - Update the link status based on host. 240 * @interface: board private structure 241 **/ 242 static void fm10k_watchdog_update_host_state(struct fm10k_intfc *interface) 243 { 244 struct fm10k_hw *hw = &interface->hw; 245 s32 err; 246 247 if (test_bit(__FM10K_LINK_DOWN, &interface->state)) { 248 interface->host_ready = false; 249 if (time_is_after_jiffies(interface->link_down_event)) 250 return; 251 clear_bit(__FM10K_LINK_DOWN, &interface->state); 252 } 253 254 if (interface->flags & FM10K_FLAG_SWPRI_CONFIG) { 255 if (rtnl_trylock()) { 256 fm10k_configure_swpri_map(interface); 257 rtnl_unlock(); 258 } 259 } 260 261 /* lock the mailbox for transmit and receive */ 262 fm10k_mbx_lock(interface); 263 264 err = hw->mac.ops.get_host_state(hw, &interface->host_ready); 265 if (err && time_is_before_jiffies(interface->last_reset)) 266 interface->flags |= FM10K_FLAG_RESET_REQUESTED; 267 268 /* free the lock */ 269 fm10k_mbx_unlock(interface); 270 } 271 272 /** 273 * fm10k_mbx_subtask - Process upstream and downstream mailboxes 274 * @interface: board private structure 275 * 276 * This function will process both the upstream and downstream mailboxes. 277 **/ 278 static void fm10k_mbx_subtask(struct fm10k_intfc *interface) 279 { 280 /* process upstream mailbox and update device state */ 281 fm10k_watchdog_update_host_state(interface); 282 283 /* process downstream mailboxes */ 284 fm10k_iov_mbx(interface); 285 } 286 287 /** 288 * fm10k_watchdog_host_is_ready - Update netdev status based on host ready 289 * @interface: board private structure 290 **/ 291 static void fm10k_watchdog_host_is_ready(struct fm10k_intfc *interface) 292 { 293 struct net_device *netdev = interface->netdev; 294 295 /* only continue if link state is currently down */ 296 if (netif_carrier_ok(netdev)) 297 return; 298 299 netif_info(interface, drv, netdev, "NIC Link is up\n"); 300 301 netif_carrier_on(netdev); 302 netif_tx_wake_all_queues(netdev); 303 } 304 305 /** 306 * fm10k_watchdog_host_not_ready - Update netdev status based on host not ready 307 * @interface: board private structure 308 **/ 309 static void fm10k_watchdog_host_not_ready(struct fm10k_intfc *interface) 310 { 311 struct net_device *netdev = interface->netdev; 312 313 /* only continue if link state is currently up */ 314 if (!netif_carrier_ok(netdev)) 315 return; 316 317 netif_info(interface, drv, netdev, "NIC Link is down\n"); 318 319 netif_carrier_off(netdev); 320 netif_tx_stop_all_queues(netdev); 321 } 322 323 /** 324 * fm10k_update_stats - Update the board statistics counters. 325 * @interface: board private structure 326 **/ 327 void fm10k_update_stats(struct fm10k_intfc *interface) 328 { 329 struct net_device_stats *net_stats = &interface->netdev->stats; 330 struct fm10k_hw *hw = &interface->hw; 331 u64 hw_csum_tx_good = 0, hw_csum_rx_good = 0, rx_length_errors = 0; 332 u64 rx_switch_errors = 0, rx_drops = 0, rx_pp_errors = 0; 333 u64 rx_link_errors = 0; 334 u64 rx_errors = 0, rx_csum_errors = 0, tx_csum_errors = 0; 335 u64 restart_queue = 0, tx_busy = 0, alloc_failed = 0; 336 u64 rx_bytes_nic = 0, rx_pkts_nic = 0, rx_drops_nic = 0; 337 u64 tx_bytes_nic = 0, tx_pkts_nic = 0; 338 u64 bytes, pkts; 339 int i; 340 341 /* do not allow stats update via service task for next second */ 342 interface->next_stats_update = jiffies + HZ; 343 344 /* gather some stats to the interface struct that are per queue */ 345 for (bytes = 0, pkts = 0, i = 0; i < interface->num_tx_queues; i++) { 346 struct fm10k_ring *tx_ring = interface->tx_ring[i]; 347 348 restart_queue += tx_ring->tx_stats.restart_queue; 349 tx_busy += tx_ring->tx_stats.tx_busy; 350 tx_csum_errors += tx_ring->tx_stats.csum_err; 351 bytes += tx_ring->stats.bytes; 352 pkts += tx_ring->stats.packets; 353 hw_csum_tx_good += tx_ring->tx_stats.csum_good; 354 } 355 356 interface->restart_queue = restart_queue; 357 interface->tx_busy = tx_busy; 358 net_stats->tx_bytes = bytes; 359 net_stats->tx_packets = pkts; 360 interface->tx_csum_errors = tx_csum_errors; 361 interface->hw_csum_tx_good = hw_csum_tx_good; 362 363 /* gather some stats to the interface struct that are per queue */ 364 for (bytes = 0, pkts = 0, i = 0; i < interface->num_rx_queues; i++) { 365 struct fm10k_ring *rx_ring = interface->rx_ring[i]; 366 367 bytes += rx_ring->stats.bytes; 368 pkts += rx_ring->stats.packets; 369 alloc_failed += rx_ring->rx_stats.alloc_failed; 370 rx_csum_errors += rx_ring->rx_stats.csum_err; 371 rx_errors += rx_ring->rx_stats.errors; 372 hw_csum_rx_good += rx_ring->rx_stats.csum_good; 373 rx_switch_errors += rx_ring->rx_stats.switch_errors; 374 rx_drops += rx_ring->rx_stats.drops; 375 rx_pp_errors += rx_ring->rx_stats.pp_errors; 376 rx_link_errors += rx_ring->rx_stats.link_errors; 377 rx_length_errors += rx_ring->rx_stats.length_errors; 378 } 379 380 net_stats->rx_bytes = bytes; 381 net_stats->rx_packets = pkts; 382 interface->alloc_failed = alloc_failed; 383 interface->rx_csum_errors = rx_csum_errors; 384 interface->hw_csum_rx_good = hw_csum_rx_good; 385 interface->rx_switch_errors = rx_switch_errors; 386 interface->rx_drops = rx_drops; 387 interface->rx_pp_errors = rx_pp_errors; 388 interface->rx_link_errors = rx_link_errors; 389 interface->rx_length_errors = rx_length_errors; 390 391 hw->mac.ops.update_hw_stats(hw, &interface->stats); 392 393 for (i = 0; i < hw->mac.max_queues; i++) { 394 struct fm10k_hw_stats_q *q = &interface->stats.q[i]; 395 396 tx_bytes_nic += q->tx_bytes.count; 397 tx_pkts_nic += q->tx_packets.count; 398 rx_bytes_nic += q->rx_bytes.count; 399 rx_pkts_nic += q->rx_packets.count; 400 rx_drops_nic += q->rx_drops.count; 401 } 402 403 interface->tx_bytes_nic = tx_bytes_nic; 404 interface->tx_packets_nic = tx_pkts_nic; 405 interface->rx_bytes_nic = rx_bytes_nic; 406 interface->rx_packets_nic = rx_pkts_nic; 407 interface->rx_drops_nic = rx_drops_nic; 408 409 /* Fill out the OS statistics structure */ 410 net_stats->rx_errors = rx_errors; 411 net_stats->rx_dropped = interface->stats.nodesc_drop.count; 412 } 413 414 /** 415 * fm10k_watchdog_flush_tx - flush queues on host not ready 416 * @interface - pointer to the device interface structure 417 **/ 418 static void fm10k_watchdog_flush_tx(struct fm10k_intfc *interface) 419 { 420 int some_tx_pending = 0; 421 int i; 422 423 /* nothing to do if carrier is up */ 424 if (netif_carrier_ok(interface->netdev)) 425 return; 426 427 for (i = 0; i < interface->num_tx_queues; i++) { 428 struct fm10k_ring *tx_ring = interface->tx_ring[i]; 429 430 if (tx_ring->next_to_use != tx_ring->next_to_clean) { 431 some_tx_pending = 1; 432 break; 433 } 434 } 435 436 /* We've lost link, so the controller stops DMA, but we've got 437 * queued Tx work that's never going to get done, so reset 438 * controller to flush Tx. 439 */ 440 if (some_tx_pending) 441 interface->flags |= FM10K_FLAG_RESET_REQUESTED; 442 } 443 444 /** 445 * fm10k_watchdog_subtask - check and bring link up 446 * @interface - pointer to the device interface structure 447 **/ 448 static void fm10k_watchdog_subtask(struct fm10k_intfc *interface) 449 { 450 /* if interface is down do nothing */ 451 if (test_bit(__FM10K_DOWN, &interface->state) || 452 test_bit(__FM10K_RESETTING, &interface->state)) 453 return; 454 455 if (interface->host_ready) 456 fm10k_watchdog_host_is_ready(interface); 457 else 458 fm10k_watchdog_host_not_ready(interface); 459 460 /* update stats only once every second */ 461 if (time_is_before_jiffies(interface->next_stats_update)) 462 fm10k_update_stats(interface); 463 464 /* flush any uncompleted work */ 465 fm10k_watchdog_flush_tx(interface); 466 } 467 468 /** 469 * fm10k_check_hang_subtask - check for hung queues and dropped interrupts 470 * @interface - pointer to the device interface structure 471 * 472 * This function serves two purposes. First it strobes the interrupt lines 473 * in order to make certain interrupts are occurring. Secondly it sets the 474 * bits needed to check for TX hangs. As a result we should immediately 475 * determine if a hang has occurred. 476 */ 477 static void fm10k_check_hang_subtask(struct fm10k_intfc *interface) 478 { 479 int i; 480 481 /* If we're down or resetting, just bail */ 482 if (test_bit(__FM10K_DOWN, &interface->state) || 483 test_bit(__FM10K_RESETTING, &interface->state)) 484 return; 485 486 /* rate limit tx hang checks to only once every 2 seconds */ 487 if (time_is_after_eq_jiffies(interface->next_tx_hang_check)) 488 return; 489 interface->next_tx_hang_check = jiffies + (2 * HZ); 490 491 if (netif_carrier_ok(interface->netdev)) { 492 /* Force detection of hung controller */ 493 for (i = 0; i < interface->num_tx_queues; i++) 494 set_check_for_tx_hang(interface->tx_ring[i]); 495 496 /* Rearm all in-use q_vectors for immediate firing */ 497 for (i = 0; i < interface->num_q_vectors; i++) { 498 struct fm10k_q_vector *qv = interface->q_vector[i]; 499 500 if (!qv->tx.count && !qv->rx.count) 501 continue; 502 writel(FM10K_ITR_ENABLE | FM10K_ITR_PENDING2, qv->itr); 503 } 504 } 505 } 506 507 /** 508 * fm10k_service_task - manages and runs subtasks 509 * @work: pointer to work_struct containing our data 510 **/ 511 static void fm10k_service_task(struct work_struct *work) 512 { 513 struct fm10k_intfc *interface; 514 515 interface = container_of(work, struct fm10k_intfc, service_task); 516 517 /* tasks run even when interface is down */ 518 fm10k_mbx_subtask(interface); 519 fm10k_detach_subtask(interface); 520 fm10k_reset_subtask(interface); 521 522 /* tasks only run when interface is up */ 523 fm10k_watchdog_subtask(interface); 524 fm10k_check_hang_subtask(interface); 525 fm10k_ts_tx_subtask(interface); 526 527 /* release lock on service events to allow scheduling next event */ 528 fm10k_service_event_complete(interface); 529 } 530 531 /** 532 * fm10k_configure_tx_ring - Configure Tx ring after Reset 533 * @interface: board private structure 534 * @ring: structure containing ring specific data 535 * 536 * Configure the Tx descriptor ring after a reset. 537 **/ 538 static void fm10k_configure_tx_ring(struct fm10k_intfc *interface, 539 struct fm10k_ring *ring) 540 { 541 struct fm10k_hw *hw = &interface->hw; 542 u64 tdba = ring->dma; 543 u32 size = ring->count * sizeof(struct fm10k_tx_desc); 544 u32 txint = FM10K_INT_MAP_DISABLE; 545 u32 txdctl = FM10K_TXDCTL_ENABLE | (1 << FM10K_TXDCTL_MAX_TIME_SHIFT); 546 u8 reg_idx = ring->reg_idx; 547 548 /* disable queue to avoid issues while updating state */ 549 fm10k_write_reg(hw, FM10K_TXDCTL(reg_idx), 0); 550 fm10k_write_flush(hw); 551 552 /* possible poll here to verify ring resources have been cleaned */ 553 554 /* set location and size for descriptor ring */ 555 fm10k_write_reg(hw, FM10K_TDBAL(reg_idx), tdba & DMA_BIT_MASK(32)); 556 fm10k_write_reg(hw, FM10K_TDBAH(reg_idx), tdba >> 32); 557 fm10k_write_reg(hw, FM10K_TDLEN(reg_idx), size); 558 559 /* reset head and tail pointers */ 560 fm10k_write_reg(hw, FM10K_TDH(reg_idx), 0); 561 fm10k_write_reg(hw, FM10K_TDT(reg_idx), 0); 562 563 /* store tail pointer */ 564 ring->tail = &interface->uc_addr[FM10K_TDT(reg_idx)]; 565 566 /* reset ntu and ntc to place SW in sync with hardwdare */ 567 ring->next_to_clean = 0; 568 ring->next_to_use = 0; 569 570 /* Map interrupt */ 571 if (ring->q_vector) { 572 txint = ring->q_vector->v_idx + NON_Q_VECTORS(hw); 573 txint |= FM10K_INT_MAP_TIMER0; 574 } 575 576 fm10k_write_reg(hw, FM10K_TXINT(reg_idx), txint); 577 578 /* enable use of FTAG bit in Tx descriptor, register is RO for VF */ 579 fm10k_write_reg(hw, FM10K_PFVTCTL(reg_idx), 580 FM10K_PFVTCTL_FTAG_DESC_ENABLE); 581 582 /* enable queue */ 583 fm10k_write_reg(hw, FM10K_TXDCTL(reg_idx), txdctl); 584 } 585 586 /** 587 * fm10k_enable_tx_ring - Verify Tx ring is enabled after configuration 588 * @interface: board private structure 589 * @ring: structure containing ring specific data 590 * 591 * Verify the Tx descriptor ring is ready for transmit. 592 **/ 593 static void fm10k_enable_tx_ring(struct fm10k_intfc *interface, 594 struct fm10k_ring *ring) 595 { 596 struct fm10k_hw *hw = &interface->hw; 597 int wait_loop = 10; 598 u32 txdctl; 599 u8 reg_idx = ring->reg_idx; 600 601 /* if we are already enabled just exit */ 602 if (fm10k_read_reg(hw, FM10K_TXDCTL(reg_idx)) & FM10K_TXDCTL_ENABLE) 603 return; 604 605 /* poll to verify queue is enabled */ 606 do { 607 usleep_range(1000, 2000); 608 txdctl = fm10k_read_reg(hw, FM10K_TXDCTL(reg_idx)); 609 } while (!(txdctl & FM10K_TXDCTL_ENABLE) && --wait_loop); 610 if (!wait_loop) 611 netif_err(interface, drv, interface->netdev, 612 "Could not enable Tx Queue %d\n", reg_idx); 613 } 614 615 /** 616 * fm10k_configure_tx - Configure Transmit Unit after Reset 617 * @interface: board private structure 618 * 619 * Configure the Tx unit of the MAC after a reset. 620 **/ 621 static void fm10k_configure_tx(struct fm10k_intfc *interface) 622 { 623 int i; 624 625 /* Setup the HW Tx Head and Tail descriptor pointers */ 626 for (i = 0; i < interface->num_tx_queues; i++) 627 fm10k_configure_tx_ring(interface, interface->tx_ring[i]); 628 629 /* poll here to verify that Tx rings are now enabled */ 630 for (i = 0; i < interface->num_tx_queues; i++) 631 fm10k_enable_tx_ring(interface, interface->tx_ring[i]); 632 } 633 634 /** 635 * fm10k_configure_rx_ring - Configure Rx ring after Reset 636 * @interface: board private structure 637 * @ring: structure containing ring specific data 638 * 639 * Configure the Rx descriptor ring after a reset. 640 **/ 641 static void fm10k_configure_rx_ring(struct fm10k_intfc *interface, 642 struct fm10k_ring *ring) 643 { 644 u64 rdba = ring->dma; 645 struct fm10k_hw *hw = &interface->hw; 646 u32 size = ring->count * sizeof(union fm10k_rx_desc); 647 u32 rxqctl = FM10K_RXQCTL_ENABLE | FM10K_RXQCTL_PF; 648 u32 rxdctl = FM10K_RXDCTL_WRITE_BACK_MIN_DELAY; 649 u32 srrctl = FM10K_SRRCTL_BUFFER_CHAINING_EN; 650 u32 rxint = FM10K_INT_MAP_DISABLE; 651 u8 rx_pause = interface->rx_pause; 652 u8 reg_idx = ring->reg_idx; 653 654 /* disable queue to avoid issues while updating state */ 655 fm10k_write_reg(hw, FM10K_RXQCTL(reg_idx), 0); 656 fm10k_write_flush(hw); 657 658 /* possible poll here to verify ring resources have been cleaned */ 659 660 /* set location and size for descriptor ring */ 661 fm10k_write_reg(hw, FM10K_RDBAL(reg_idx), rdba & DMA_BIT_MASK(32)); 662 fm10k_write_reg(hw, FM10K_RDBAH(reg_idx), rdba >> 32); 663 fm10k_write_reg(hw, FM10K_RDLEN(reg_idx), size); 664 665 /* reset head and tail pointers */ 666 fm10k_write_reg(hw, FM10K_RDH(reg_idx), 0); 667 fm10k_write_reg(hw, FM10K_RDT(reg_idx), 0); 668 669 /* store tail pointer */ 670 ring->tail = &interface->uc_addr[FM10K_RDT(reg_idx)]; 671 672 /* reset ntu and ntc to place SW in sync with hardwdare */ 673 ring->next_to_clean = 0; 674 ring->next_to_use = 0; 675 ring->next_to_alloc = 0; 676 677 /* Configure the Rx buffer size for one buff without split */ 678 srrctl |= FM10K_RX_BUFSZ >> FM10K_SRRCTL_BSIZEPKT_SHIFT; 679 680 /* Configure the Rx ring to suppress loopback packets */ 681 srrctl |= FM10K_SRRCTL_LOOPBACK_SUPPRESS; 682 fm10k_write_reg(hw, FM10K_SRRCTL(reg_idx), srrctl); 683 684 /* Enable drop on empty */ 685 #ifdef CONFIG_DCB 686 if (interface->pfc_en) 687 rx_pause = interface->pfc_en; 688 #endif 689 if (!(rx_pause & (1 << ring->qos_pc))) 690 rxdctl |= FM10K_RXDCTL_DROP_ON_EMPTY; 691 692 fm10k_write_reg(hw, FM10K_RXDCTL(reg_idx), rxdctl); 693 694 /* assign default VLAN to queue */ 695 ring->vid = hw->mac.default_vid; 696 697 /* if we have an active VLAN, disable default VID */ 698 if (test_bit(hw->mac.default_vid, interface->active_vlans)) 699 ring->vid |= FM10K_VLAN_CLEAR; 700 701 /* Map interrupt */ 702 if (ring->q_vector) { 703 rxint = ring->q_vector->v_idx + NON_Q_VECTORS(hw); 704 rxint |= FM10K_INT_MAP_TIMER1; 705 } 706 707 fm10k_write_reg(hw, FM10K_RXINT(reg_idx), rxint); 708 709 /* enable queue */ 710 fm10k_write_reg(hw, FM10K_RXQCTL(reg_idx), rxqctl); 711 712 /* place buffers on ring for receive data */ 713 fm10k_alloc_rx_buffers(ring, fm10k_desc_unused(ring)); 714 } 715 716 /** 717 * fm10k_update_rx_drop_en - Configures the drop enable bits for Rx rings 718 * @interface: board private structure 719 * 720 * Configure the drop enable bits for the Rx rings. 721 **/ 722 void fm10k_update_rx_drop_en(struct fm10k_intfc *interface) 723 { 724 struct fm10k_hw *hw = &interface->hw; 725 u8 rx_pause = interface->rx_pause; 726 int i; 727 728 #ifdef CONFIG_DCB 729 if (interface->pfc_en) 730 rx_pause = interface->pfc_en; 731 732 #endif 733 for (i = 0; i < interface->num_rx_queues; i++) { 734 struct fm10k_ring *ring = interface->rx_ring[i]; 735 u32 rxdctl = FM10K_RXDCTL_WRITE_BACK_MIN_DELAY; 736 u8 reg_idx = ring->reg_idx; 737 738 if (!(rx_pause & (1 << ring->qos_pc))) 739 rxdctl |= FM10K_RXDCTL_DROP_ON_EMPTY; 740 741 fm10k_write_reg(hw, FM10K_RXDCTL(reg_idx), rxdctl); 742 } 743 } 744 745 /** 746 * fm10k_configure_dglort - Configure Receive DGLORT after reset 747 * @interface: board private structure 748 * 749 * Configure the DGLORT description and RSS tables. 750 **/ 751 static void fm10k_configure_dglort(struct fm10k_intfc *interface) 752 { 753 struct fm10k_dglort_cfg dglort = { 0 }; 754 struct fm10k_hw *hw = &interface->hw; 755 int i; 756 u32 mrqc; 757 758 /* Fill out hash function seeds */ 759 for (i = 0; i < FM10K_RSSRK_SIZE; i++) 760 fm10k_write_reg(hw, FM10K_RSSRK(0, i), interface->rssrk[i]); 761 762 /* Write RETA table to hardware */ 763 for (i = 0; i < FM10K_RETA_SIZE; i++) 764 fm10k_write_reg(hw, FM10K_RETA(0, i), interface->reta[i]); 765 766 /* Generate RSS hash based on packet types, TCP/UDP 767 * port numbers and/or IPv4/v6 src and dst addresses 768 */ 769 mrqc = FM10K_MRQC_IPV4 | 770 FM10K_MRQC_TCP_IPV4 | 771 FM10K_MRQC_IPV6 | 772 FM10K_MRQC_TCP_IPV6; 773 774 if (interface->flags & FM10K_FLAG_RSS_FIELD_IPV4_UDP) 775 mrqc |= FM10K_MRQC_UDP_IPV4; 776 if (interface->flags & FM10K_FLAG_RSS_FIELD_IPV6_UDP) 777 mrqc |= FM10K_MRQC_UDP_IPV6; 778 779 fm10k_write_reg(hw, FM10K_MRQC(0), mrqc); 780 781 /* configure default DGLORT mapping for RSS/DCB */ 782 dglort.inner_rss = 1; 783 dglort.rss_l = fls(interface->ring_feature[RING_F_RSS].mask); 784 dglort.pc_l = fls(interface->ring_feature[RING_F_QOS].mask); 785 hw->mac.ops.configure_dglort_map(hw, &dglort); 786 787 /* assign GLORT per queue for queue mapped testing */ 788 if (interface->glort_count > 64) { 789 memset(&dglort, 0, sizeof(dglort)); 790 dglort.inner_rss = 1; 791 dglort.glort = interface->glort + 64; 792 dglort.idx = fm10k_dglort_pf_queue; 793 dglort.queue_l = fls(interface->num_rx_queues - 1); 794 hw->mac.ops.configure_dglort_map(hw, &dglort); 795 } 796 797 /* assign glort value for RSS/DCB specific to this interface */ 798 memset(&dglort, 0, sizeof(dglort)); 799 dglort.inner_rss = 1; 800 dglort.glort = interface->glort; 801 dglort.rss_l = fls(interface->ring_feature[RING_F_RSS].mask); 802 dglort.pc_l = fls(interface->ring_feature[RING_F_QOS].mask); 803 /* configure DGLORT mapping for RSS/DCB */ 804 dglort.idx = fm10k_dglort_pf_rss; 805 if (interface->l2_accel) 806 dglort.shared_l = fls(interface->l2_accel->size); 807 hw->mac.ops.configure_dglort_map(hw, &dglort); 808 } 809 810 /** 811 * fm10k_configure_rx - Configure Receive Unit after Reset 812 * @interface: board private structure 813 * 814 * Configure the Rx unit of the MAC after a reset. 815 **/ 816 static void fm10k_configure_rx(struct fm10k_intfc *interface) 817 { 818 int i; 819 820 /* Configure SWPRI to PC map */ 821 fm10k_configure_swpri_map(interface); 822 823 /* Configure RSS and DGLORT map */ 824 fm10k_configure_dglort(interface); 825 826 /* Setup the HW Rx Head and Tail descriptor pointers */ 827 for (i = 0; i < interface->num_rx_queues; i++) 828 fm10k_configure_rx_ring(interface, interface->rx_ring[i]); 829 830 /* possible poll here to verify that Rx rings are now enabled */ 831 } 832 833 static void fm10k_napi_enable_all(struct fm10k_intfc *interface) 834 { 835 struct fm10k_q_vector *q_vector; 836 int q_idx; 837 838 for (q_idx = 0; q_idx < interface->num_q_vectors; q_idx++) { 839 q_vector = interface->q_vector[q_idx]; 840 napi_enable(&q_vector->napi); 841 } 842 } 843 844 static irqreturn_t fm10k_msix_clean_rings(int __always_unused irq, void *data) 845 { 846 struct fm10k_q_vector *q_vector = data; 847 848 if (q_vector->rx.count || q_vector->tx.count) 849 napi_schedule(&q_vector->napi); 850 851 return IRQ_HANDLED; 852 } 853 854 static irqreturn_t fm10k_msix_mbx_vf(int __always_unused irq, void *data) 855 { 856 struct fm10k_intfc *interface = data; 857 struct fm10k_hw *hw = &interface->hw; 858 struct fm10k_mbx_info *mbx = &hw->mbx; 859 860 /* re-enable mailbox interrupt and indicate 20us delay */ 861 fm10k_write_reg(hw, FM10K_VFITR(FM10K_MBX_VECTOR), 862 FM10K_ITR_ENABLE | FM10K_MBX_INT_DELAY); 863 864 /* service upstream mailbox */ 865 if (fm10k_mbx_trylock(interface)) { 866 mbx->ops.process(hw, mbx); 867 fm10k_mbx_unlock(interface); 868 } 869 870 hw->mac.get_host_state = 1; 871 fm10k_service_event_schedule(interface); 872 873 return IRQ_HANDLED; 874 } 875 876 #ifdef CONFIG_NET_POLL_CONTROLLER 877 /** 878 * fm10k_netpoll - A Polling 'interrupt' handler 879 * @netdev: network interface device structure 880 * 881 * This is used by netconsole to send skbs without having to re-enable 882 * interrupts. It's not called while the normal interrupt routine is executing. 883 **/ 884 void fm10k_netpoll(struct net_device *netdev) 885 { 886 struct fm10k_intfc *interface = netdev_priv(netdev); 887 int i; 888 889 /* if interface is down do nothing */ 890 if (test_bit(__FM10K_DOWN, &interface->state)) 891 return; 892 893 for (i = 0; i < interface->num_q_vectors; i++) 894 fm10k_msix_clean_rings(0, interface->q_vector[i]); 895 } 896 897 #endif 898 #define FM10K_ERR_MSG(type) case (type): error = #type; break 899 static void fm10k_handle_fault(struct fm10k_intfc *interface, int type, 900 struct fm10k_fault *fault) 901 { 902 struct pci_dev *pdev = interface->pdev; 903 struct fm10k_hw *hw = &interface->hw; 904 struct fm10k_iov_data *iov_data = interface->iov_data; 905 char *error; 906 907 switch (type) { 908 case FM10K_PCA_FAULT: 909 switch (fault->type) { 910 default: 911 error = "Unknown PCA error"; 912 break; 913 FM10K_ERR_MSG(PCA_NO_FAULT); 914 FM10K_ERR_MSG(PCA_UNMAPPED_ADDR); 915 FM10K_ERR_MSG(PCA_BAD_QACCESS_PF); 916 FM10K_ERR_MSG(PCA_BAD_QACCESS_VF); 917 FM10K_ERR_MSG(PCA_MALICIOUS_REQ); 918 FM10K_ERR_MSG(PCA_POISONED_TLP); 919 FM10K_ERR_MSG(PCA_TLP_ABORT); 920 } 921 break; 922 case FM10K_THI_FAULT: 923 switch (fault->type) { 924 default: 925 error = "Unknown THI error"; 926 break; 927 FM10K_ERR_MSG(THI_NO_FAULT); 928 FM10K_ERR_MSG(THI_MAL_DIS_Q_FAULT); 929 } 930 break; 931 case FM10K_FUM_FAULT: 932 switch (fault->type) { 933 default: 934 error = "Unknown FUM error"; 935 break; 936 FM10K_ERR_MSG(FUM_NO_FAULT); 937 FM10K_ERR_MSG(FUM_UNMAPPED_ADDR); 938 FM10K_ERR_MSG(FUM_BAD_VF_QACCESS); 939 FM10K_ERR_MSG(FUM_ADD_DECODE_ERR); 940 FM10K_ERR_MSG(FUM_RO_ERROR); 941 FM10K_ERR_MSG(FUM_QPRC_CRC_ERROR); 942 FM10K_ERR_MSG(FUM_CSR_TIMEOUT); 943 FM10K_ERR_MSG(FUM_INVALID_TYPE); 944 FM10K_ERR_MSG(FUM_INVALID_LENGTH); 945 FM10K_ERR_MSG(FUM_INVALID_BE); 946 FM10K_ERR_MSG(FUM_INVALID_ALIGN); 947 } 948 break; 949 default: 950 error = "Undocumented fault"; 951 break; 952 } 953 954 dev_warn(&pdev->dev, 955 "%s Address: 0x%llx SpecInfo: 0x%x Func: %02x.%0x\n", 956 error, fault->address, fault->specinfo, 957 PCI_SLOT(fault->func), PCI_FUNC(fault->func)); 958 959 /* For VF faults, clear out the respective LPORT, reset the queue 960 * resources, and then reconnect to the mailbox. This allows the 961 * VF in question to resume behavior. For transient faults that are 962 * the result of non-malicious behavior this will log the fault and 963 * allow the VF to resume functionality. Obviously for malicious VFs 964 * they will be able to attempt malicious behavior again. In this 965 * case, the system administrator will need to step in and manually 966 * remove or disable the VF in question. 967 */ 968 if (fault->func && iov_data) { 969 int vf = fault->func - 1; 970 struct fm10k_vf_info *vf_info = &iov_data->vf_info[vf]; 971 972 hw->iov.ops.reset_lport(hw, vf_info); 973 hw->iov.ops.reset_resources(hw, vf_info); 974 975 /* reset_lport disables the VF, so re-enable it */ 976 hw->iov.ops.set_lport(hw, vf_info, vf, 977 FM10K_VF_FLAG_MULTI_CAPABLE); 978 979 /* reset_resources will disconnect from the mbx */ 980 vf_info->mbx.ops.connect(hw, &vf_info->mbx); 981 } 982 } 983 984 static void fm10k_report_fault(struct fm10k_intfc *interface, u32 eicr) 985 { 986 struct fm10k_hw *hw = &interface->hw; 987 struct fm10k_fault fault = { 0 }; 988 int type, err; 989 990 for (eicr &= FM10K_EICR_FAULT_MASK, type = FM10K_PCA_FAULT; 991 eicr; 992 eicr >>= 1, type += FM10K_FAULT_SIZE) { 993 /* only check if there is an error reported */ 994 if (!(eicr & 0x1)) 995 continue; 996 997 /* retrieve fault info */ 998 err = hw->mac.ops.get_fault(hw, type, &fault); 999 if (err) { 1000 dev_err(&interface->pdev->dev, 1001 "error reading fault\n"); 1002 continue; 1003 } 1004 1005 fm10k_handle_fault(interface, type, &fault); 1006 } 1007 } 1008 1009 static void fm10k_reset_drop_on_empty(struct fm10k_intfc *interface, u32 eicr) 1010 { 1011 struct fm10k_hw *hw = &interface->hw; 1012 const u32 rxdctl = FM10K_RXDCTL_WRITE_BACK_MIN_DELAY; 1013 u32 maxholdq; 1014 int q; 1015 1016 if (!(eicr & FM10K_EICR_MAXHOLDTIME)) 1017 return; 1018 1019 maxholdq = fm10k_read_reg(hw, FM10K_MAXHOLDQ(7)); 1020 if (maxholdq) 1021 fm10k_write_reg(hw, FM10K_MAXHOLDQ(7), maxholdq); 1022 for (q = 255;;) { 1023 if (maxholdq & (1 << 31)) { 1024 if (q < FM10K_MAX_QUEUES_PF) { 1025 interface->rx_overrun_pf++; 1026 fm10k_write_reg(hw, FM10K_RXDCTL(q), rxdctl); 1027 } else { 1028 interface->rx_overrun_vf++; 1029 } 1030 } 1031 1032 maxholdq *= 2; 1033 if (!maxholdq) 1034 q &= ~(32 - 1); 1035 1036 if (!q) 1037 break; 1038 1039 if (q-- % 32) 1040 continue; 1041 1042 maxholdq = fm10k_read_reg(hw, FM10K_MAXHOLDQ(q / 32)); 1043 if (maxholdq) 1044 fm10k_write_reg(hw, FM10K_MAXHOLDQ(q / 32), maxholdq); 1045 } 1046 } 1047 1048 static irqreturn_t fm10k_msix_mbx_pf(int __always_unused irq, void *data) 1049 { 1050 struct fm10k_intfc *interface = data; 1051 struct fm10k_hw *hw = &interface->hw; 1052 struct fm10k_mbx_info *mbx = &hw->mbx; 1053 u32 eicr; 1054 1055 /* unmask any set bits related to this interrupt */ 1056 eicr = fm10k_read_reg(hw, FM10K_EICR); 1057 fm10k_write_reg(hw, FM10K_EICR, eicr & (FM10K_EICR_MAILBOX | 1058 FM10K_EICR_SWITCHREADY | 1059 FM10K_EICR_SWITCHNOTREADY)); 1060 1061 /* report any faults found to the message log */ 1062 fm10k_report_fault(interface, eicr); 1063 1064 /* reset any queues disabled due to receiver overrun */ 1065 fm10k_reset_drop_on_empty(interface, eicr); 1066 1067 /* service mailboxes */ 1068 if (fm10k_mbx_trylock(interface)) { 1069 mbx->ops.process(hw, mbx); 1070 /* handle VFLRE events */ 1071 fm10k_iov_event(interface); 1072 fm10k_mbx_unlock(interface); 1073 } 1074 1075 /* if switch toggled state we should reset GLORTs */ 1076 if (eicr & FM10K_EICR_SWITCHNOTREADY) { 1077 /* force link down for at least 4 seconds */ 1078 interface->link_down_event = jiffies + (4 * HZ); 1079 set_bit(__FM10K_LINK_DOWN, &interface->state); 1080 1081 /* reset dglort_map back to no config */ 1082 hw->mac.dglort_map = FM10K_DGLORTMAP_NONE; 1083 } 1084 1085 /* we should validate host state after interrupt event */ 1086 hw->mac.get_host_state = 1; 1087 1088 /* validate host state, and handle VF mailboxes in the service task */ 1089 fm10k_service_event_schedule(interface); 1090 1091 /* re-enable mailbox interrupt and indicate 20us delay */ 1092 fm10k_write_reg(hw, FM10K_ITR(FM10K_MBX_VECTOR), 1093 FM10K_ITR_ENABLE | FM10K_MBX_INT_DELAY); 1094 1095 return IRQ_HANDLED; 1096 } 1097 1098 void fm10k_mbx_free_irq(struct fm10k_intfc *interface) 1099 { 1100 struct msix_entry *entry = &interface->msix_entries[FM10K_MBX_VECTOR]; 1101 struct fm10k_hw *hw = &interface->hw; 1102 int itr_reg; 1103 1104 /* disconnect the mailbox */ 1105 hw->mbx.ops.disconnect(hw, &hw->mbx); 1106 1107 /* disable Mailbox cause */ 1108 if (hw->mac.type == fm10k_mac_pf) { 1109 fm10k_write_reg(hw, FM10K_EIMR, 1110 FM10K_EIMR_DISABLE(PCA_FAULT) | 1111 FM10K_EIMR_DISABLE(FUM_FAULT) | 1112 FM10K_EIMR_DISABLE(MAILBOX) | 1113 FM10K_EIMR_DISABLE(SWITCHREADY) | 1114 FM10K_EIMR_DISABLE(SWITCHNOTREADY) | 1115 FM10K_EIMR_DISABLE(SRAMERROR) | 1116 FM10K_EIMR_DISABLE(VFLR) | 1117 FM10K_EIMR_DISABLE(MAXHOLDTIME)); 1118 itr_reg = FM10K_ITR(FM10K_MBX_VECTOR); 1119 } else { 1120 itr_reg = FM10K_VFITR(FM10K_MBX_VECTOR); 1121 } 1122 1123 fm10k_write_reg(hw, itr_reg, FM10K_ITR_MASK_SET); 1124 1125 free_irq(entry->vector, interface); 1126 } 1127 1128 static s32 fm10k_mbx_mac_addr(struct fm10k_hw *hw, u32 **results, 1129 struct fm10k_mbx_info *mbx) 1130 { 1131 bool vlan_override = hw->mac.vlan_override; 1132 u16 default_vid = hw->mac.default_vid; 1133 struct fm10k_intfc *interface; 1134 s32 err; 1135 1136 err = fm10k_msg_mac_vlan_vf(hw, results, mbx); 1137 if (err) 1138 return err; 1139 1140 interface = container_of(hw, struct fm10k_intfc, hw); 1141 1142 /* MAC was changed so we need reset */ 1143 if (is_valid_ether_addr(hw->mac.perm_addr) && 1144 memcmp(hw->mac.perm_addr, hw->mac.addr, ETH_ALEN)) 1145 interface->flags |= FM10K_FLAG_RESET_REQUESTED; 1146 1147 /* VLAN override was changed, or default VLAN changed */ 1148 if ((vlan_override != hw->mac.vlan_override) || 1149 (default_vid != hw->mac.default_vid)) 1150 interface->flags |= FM10K_FLAG_RESET_REQUESTED; 1151 1152 return 0; 1153 } 1154 1155 static s32 fm10k_1588_msg_vf(struct fm10k_hw *hw, u32 **results, 1156 struct fm10k_mbx_info __always_unused *mbx) 1157 { 1158 struct fm10k_intfc *interface; 1159 u64 timestamp; 1160 s32 err; 1161 1162 err = fm10k_tlv_attr_get_u64(results[FM10K_1588_MSG_TIMESTAMP], 1163 ×tamp); 1164 if (err) 1165 return err; 1166 1167 interface = container_of(hw, struct fm10k_intfc, hw); 1168 1169 fm10k_ts_tx_hwtstamp(interface, 0, timestamp); 1170 1171 return 0; 1172 } 1173 1174 /* generic error handler for mailbox issues */ 1175 static s32 fm10k_mbx_error(struct fm10k_hw *hw, u32 **results, 1176 struct fm10k_mbx_info __always_unused *mbx) 1177 { 1178 struct fm10k_intfc *interface; 1179 struct pci_dev *pdev; 1180 1181 interface = container_of(hw, struct fm10k_intfc, hw); 1182 pdev = interface->pdev; 1183 1184 dev_err(&pdev->dev, "Unknown message ID %u\n", 1185 **results & FM10K_TLV_ID_MASK); 1186 1187 return 0; 1188 } 1189 1190 static const struct fm10k_msg_data vf_mbx_data[] = { 1191 FM10K_TLV_MSG_TEST_HANDLER(fm10k_tlv_msg_test), 1192 FM10K_VF_MSG_MAC_VLAN_HANDLER(fm10k_mbx_mac_addr), 1193 FM10K_VF_MSG_LPORT_STATE_HANDLER(fm10k_msg_lport_state_vf), 1194 FM10K_VF_MSG_1588_HANDLER(fm10k_1588_msg_vf), 1195 FM10K_TLV_MSG_ERROR_HANDLER(fm10k_mbx_error), 1196 }; 1197 1198 static int fm10k_mbx_request_irq_vf(struct fm10k_intfc *interface) 1199 { 1200 struct msix_entry *entry = &interface->msix_entries[FM10K_MBX_VECTOR]; 1201 struct net_device *dev = interface->netdev; 1202 struct fm10k_hw *hw = &interface->hw; 1203 int err; 1204 1205 /* Use timer0 for interrupt moderation on the mailbox */ 1206 u32 itr = FM10K_INT_MAP_TIMER0 | entry->entry; 1207 1208 /* register mailbox handlers */ 1209 err = hw->mbx.ops.register_handlers(&hw->mbx, vf_mbx_data); 1210 if (err) 1211 return err; 1212 1213 /* request the IRQ */ 1214 err = request_irq(entry->vector, fm10k_msix_mbx_vf, 0, 1215 dev->name, interface); 1216 if (err) { 1217 netif_err(interface, probe, dev, 1218 "request_irq for msix_mbx failed: %d\n", err); 1219 return err; 1220 } 1221 1222 /* map all of the interrupt sources */ 1223 fm10k_write_reg(hw, FM10K_VFINT_MAP, itr); 1224 1225 /* enable interrupt */ 1226 fm10k_write_reg(hw, FM10K_VFITR(entry->entry), FM10K_ITR_ENABLE); 1227 1228 return 0; 1229 } 1230 1231 static s32 fm10k_lport_map(struct fm10k_hw *hw, u32 **results, 1232 struct fm10k_mbx_info *mbx) 1233 { 1234 struct fm10k_intfc *interface; 1235 u32 dglort_map = hw->mac.dglort_map; 1236 s32 err; 1237 1238 err = fm10k_msg_lport_map_pf(hw, results, mbx); 1239 if (err) 1240 return err; 1241 1242 interface = container_of(hw, struct fm10k_intfc, hw); 1243 1244 /* we need to reset if port count was just updated */ 1245 if (dglort_map != hw->mac.dglort_map) 1246 interface->flags |= FM10K_FLAG_RESET_REQUESTED; 1247 1248 return 0; 1249 } 1250 1251 static s32 fm10k_update_pvid(struct fm10k_hw *hw, u32 **results, 1252 struct fm10k_mbx_info __always_unused *mbx) 1253 { 1254 struct fm10k_intfc *interface; 1255 u16 glort, pvid; 1256 u32 pvid_update; 1257 s32 err; 1258 1259 err = fm10k_tlv_attr_get_u32(results[FM10K_PF_ATTR_ID_UPDATE_PVID], 1260 &pvid_update); 1261 if (err) 1262 return err; 1263 1264 /* extract values from the pvid update */ 1265 glort = FM10K_MSG_HDR_FIELD_GET(pvid_update, UPDATE_PVID_GLORT); 1266 pvid = FM10K_MSG_HDR_FIELD_GET(pvid_update, UPDATE_PVID_PVID); 1267 1268 /* if glort is not valid return error */ 1269 if (!fm10k_glort_valid_pf(hw, glort)) 1270 return FM10K_ERR_PARAM; 1271 1272 /* verify VID is valid */ 1273 if (pvid >= FM10K_VLAN_TABLE_VID_MAX) 1274 return FM10K_ERR_PARAM; 1275 1276 interface = container_of(hw, struct fm10k_intfc, hw); 1277 1278 /* check to see if this belongs to one of the VFs */ 1279 err = fm10k_iov_update_pvid(interface, glort, pvid); 1280 if (!err) 1281 return 0; 1282 1283 /* we need to reset if default VLAN was just updated */ 1284 if (pvid != hw->mac.default_vid) 1285 interface->flags |= FM10K_FLAG_RESET_REQUESTED; 1286 1287 hw->mac.default_vid = pvid; 1288 1289 return 0; 1290 } 1291 1292 static s32 fm10k_1588_msg_pf(struct fm10k_hw *hw, u32 **results, 1293 struct fm10k_mbx_info __always_unused *mbx) 1294 { 1295 struct fm10k_swapi_1588_timestamp timestamp; 1296 struct fm10k_iov_data *iov_data; 1297 struct fm10k_intfc *interface; 1298 u16 sglort, vf_idx; 1299 s32 err; 1300 1301 err = fm10k_tlv_attr_get_le_struct( 1302 results[FM10K_PF_ATTR_ID_1588_TIMESTAMP], 1303 ×tamp, sizeof(timestamp)); 1304 if (err) 1305 return err; 1306 1307 interface = container_of(hw, struct fm10k_intfc, hw); 1308 1309 if (timestamp.dglort) { 1310 fm10k_ts_tx_hwtstamp(interface, timestamp.dglort, 1311 le64_to_cpu(timestamp.egress)); 1312 return 0; 1313 } 1314 1315 /* either dglort or sglort must be set */ 1316 if (!timestamp.sglort) 1317 return FM10K_ERR_PARAM; 1318 1319 /* verify GLORT is at least one of the ones we own */ 1320 sglort = le16_to_cpu(timestamp.sglort); 1321 if (!fm10k_glort_valid_pf(hw, sglort)) 1322 return FM10K_ERR_PARAM; 1323 1324 if (sglort == interface->glort) { 1325 fm10k_ts_tx_hwtstamp(interface, 0, 1326 le64_to_cpu(timestamp.ingress)); 1327 return 0; 1328 } 1329 1330 /* if there is no iov_data then there is no mailboxes to process */ 1331 if (!ACCESS_ONCE(interface->iov_data)) 1332 return FM10K_ERR_PARAM; 1333 1334 rcu_read_lock(); 1335 1336 /* notify VF if this timestamp belongs to it */ 1337 iov_data = interface->iov_data; 1338 vf_idx = (hw->mac.dglort_map & FM10K_DGLORTMAP_NONE) - sglort; 1339 1340 if (!iov_data || vf_idx >= iov_data->num_vfs) { 1341 err = FM10K_ERR_PARAM; 1342 goto err_unlock; 1343 } 1344 1345 err = hw->iov.ops.report_timestamp(hw, &iov_data->vf_info[vf_idx], 1346 le64_to_cpu(timestamp.ingress)); 1347 1348 err_unlock: 1349 rcu_read_unlock(); 1350 1351 return err; 1352 } 1353 1354 static const struct fm10k_msg_data pf_mbx_data[] = { 1355 FM10K_PF_MSG_ERR_HANDLER(XCAST_MODES, fm10k_msg_err_pf), 1356 FM10K_PF_MSG_ERR_HANDLER(UPDATE_MAC_FWD_RULE, fm10k_msg_err_pf), 1357 FM10K_PF_MSG_LPORT_MAP_HANDLER(fm10k_lport_map), 1358 FM10K_PF_MSG_ERR_HANDLER(LPORT_CREATE, fm10k_msg_err_pf), 1359 FM10K_PF_MSG_ERR_HANDLER(LPORT_DELETE, fm10k_msg_err_pf), 1360 FM10K_PF_MSG_UPDATE_PVID_HANDLER(fm10k_update_pvid), 1361 FM10K_PF_MSG_1588_TIMESTAMP_HANDLER(fm10k_1588_msg_pf), 1362 FM10K_TLV_MSG_ERROR_HANDLER(fm10k_mbx_error), 1363 }; 1364 1365 static int fm10k_mbx_request_irq_pf(struct fm10k_intfc *interface) 1366 { 1367 struct msix_entry *entry = &interface->msix_entries[FM10K_MBX_VECTOR]; 1368 struct net_device *dev = interface->netdev; 1369 struct fm10k_hw *hw = &interface->hw; 1370 int err; 1371 1372 /* Use timer0 for interrupt moderation on the mailbox */ 1373 u32 mbx_itr = FM10K_INT_MAP_TIMER0 | entry->entry; 1374 u32 other_itr = FM10K_INT_MAP_IMMEDIATE | entry->entry; 1375 1376 /* register mailbox handlers */ 1377 err = hw->mbx.ops.register_handlers(&hw->mbx, pf_mbx_data); 1378 if (err) 1379 return err; 1380 1381 /* request the IRQ */ 1382 err = request_irq(entry->vector, fm10k_msix_mbx_pf, 0, 1383 dev->name, interface); 1384 if (err) { 1385 netif_err(interface, probe, dev, 1386 "request_irq for msix_mbx failed: %d\n", err); 1387 return err; 1388 } 1389 1390 /* Enable interrupts w/ no moderation for "other" interrupts */ 1391 fm10k_write_reg(hw, FM10K_INT_MAP(fm10k_int_PCIeFault), other_itr); 1392 fm10k_write_reg(hw, FM10K_INT_MAP(fm10k_int_SwitchUpDown), other_itr); 1393 fm10k_write_reg(hw, FM10K_INT_MAP(fm10k_int_SRAM), other_itr); 1394 fm10k_write_reg(hw, FM10K_INT_MAP(fm10k_int_MaxHoldTime), other_itr); 1395 fm10k_write_reg(hw, FM10K_INT_MAP(fm10k_int_VFLR), other_itr); 1396 1397 /* Enable interrupts w/ moderation for mailbox */ 1398 fm10k_write_reg(hw, FM10K_INT_MAP(fm10k_int_Mailbox), mbx_itr); 1399 1400 /* Enable individual interrupt causes */ 1401 fm10k_write_reg(hw, FM10K_EIMR, FM10K_EIMR_ENABLE(PCA_FAULT) | 1402 FM10K_EIMR_ENABLE(FUM_FAULT) | 1403 FM10K_EIMR_ENABLE(MAILBOX) | 1404 FM10K_EIMR_ENABLE(SWITCHREADY) | 1405 FM10K_EIMR_ENABLE(SWITCHNOTREADY) | 1406 FM10K_EIMR_ENABLE(SRAMERROR) | 1407 FM10K_EIMR_ENABLE(VFLR) | 1408 FM10K_EIMR_ENABLE(MAXHOLDTIME)); 1409 1410 /* enable interrupt */ 1411 fm10k_write_reg(hw, FM10K_ITR(entry->entry), FM10K_ITR_ENABLE); 1412 1413 return 0; 1414 } 1415 1416 int fm10k_mbx_request_irq(struct fm10k_intfc *interface) 1417 { 1418 struct fm10k_hw *hw = &interface->hw; 1419 int err; 1420 1421 /* enable Mailbox cause */ 1422 if (hw->mac.type == fm10k_mac_pf) 1423 err = fm10k_mbx_request_irq_pf(interface); 1424 else 1425 err = fm10k_mbx_request_irq_vf(interface); 1426 1427 /* connect mailbox */ 1428 if (!err) 1429 err = hw->mbx.ops.connect(hw, &hw->mbx); 1430 1431 return err; 1432 } 1433 1434 /** 1435 * fm10k_qv_free_irq - release interrupts associated with queue vectors 1436 * @interface: board private structure 1437 * 1438 * Release all interrupts associated with this interface 1439 **/ 1440 void fm10k_qv_free_irq(struct fm10k_intfc *interface) 1441 { 1442 int vector = interface->num_q_vectors; 1443 struct fm10k_hw *hw = &interface->hw; 1444 struct msix_entry *entry; 1445 1446 entry = &interface->msix_entries[NON_Q_VECTORS(hw) + vector]; 1447 1448 while (vector) { 1449 struct fm10k_q_vector *q_vector; 1450 1451 vector--; 1452 entry--; 1453 q_vector = interface->q_vector[vector]; 1454 1455 if (!q_vector->tx.count && !q_vector->rx.count) 1456 continue; 1457 1458 /* disable interrupts */ 1459 1460 writel(FM10K_ITR_MASK_SET, q_vector->itr); 1461 1462 free_irq(entry->vector, q_vector); 1463 } 1464 } 1465 1466 /** 1467 * fm10k_qv_request_irq - initialize interrupts for queue vectors 1468 * @interface: board private structure 1469 * 1470 * Attempts to configure interrupts using the best available 1471 * capabilities of the hardware and kernel. 1472 **/ 1473 int fm10k_qv_request_irq(struct fm10k_intfc *interface) 1474 { 1475 struct net_device *dev = interface->netdev; 1476 struct fm10k_hw *hw = &interface->hw; 1477 struct msix_entry *entry; 1478 int ri = 0, ti = 0; 1479 int vector, err; 1480 1481 entry = &interface->msix_entries[NON_Q_VECTORS(hw)]; 1482 1483 for (vector = 0; vector < interface->num_q_vectors; vector++) { 1484 struct fm10k_q_vector *q_vector = interface->q_vector[vector]; 1485 1486 /* name the vector */ 1487 if (q_vector->tx.count && q_vector->rx.count) { 1488 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 1489 "%s-TxRx-%d", dev->name, ri++); 1490 ti++; 1491 } else if (q_vector->rx.count) { 1492 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 1493 "%s-rx-%d", dev->name, ri++); 1494 } else if (q_vector->tx.count) { 1495 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 1496 "%s-tx-%d", dev->name, ti++); 1497 } else { 1498 /* skip this unused q_vector */ 1499 continue; 1500 } 1501 1502 /* Assign ITR register to q_vector */ 1503 q_vector->itr = (hw->mac.type == fm10k_mac_pf) ? 1504 &interface->uc_addr[FM10K_ITR(entry->entry)] : 1505 &interface->uc_addr[FM10K_VFITR(entry->entry)]; 1506 1507 /* request the IRQ */ 1508 err = request_irq(entry->vector, &fm10k_msix_clean_rings, 0, 1509 q_vector->name, q_vector); 1510 if (err) { 1511 netif_err(interface, probe, dev, 1512 "request_irq failed for MSIX interrupt Error: %d\n", 1513 err); 1514 goto err_out; 1515 } 1516 1517 /* Enable q_vector */ 1518 writel(FM10K_ITR_ENABLE, q_vector->itr); 1519 1520 entry++; 1521 } 1522 1523 return 0; 1524 1525 err_out: 1526 /* wind through the ring freeing all entries and vectors */ 1527 while (vector) { 1528 struct fm10k_q_vector *q_vector; 1529 1530 entry--; 1531 vector--; 1532 q_vector = interface->q_vector[vector]; 1533 1534 if (!q_vector->tx.count && !q_vector->rx.count) 1535 continue; 1536 1537 /* disable interrupts */ 1538 1539 writel(FM10K_ITR_MASK_SET, q_vector->itr); 1540 1541 free_irq(entry->vector, q_vector); 1542 } 1543 1544 return err; 1545 } 1546 1547 void fm10k_up(struct fm10k_intfc *interface) 1548 { 1549 struct fm10k_hw *hw = &interface->hw; 1550 1551 /* Enable Tx/Rx DMA */ 1552 hw->mac.ops.start_hw(hw); 1553 1554 /* configure Tx descriptor rings */ 1555 fm10k_configure_tx(interface); 1556 1557 /* configure Rx descriptor rings */ 1558 fm10k_configure_rx(interface); 1559 1560 /* configure interrupts */ 1561 hw->mac.ops.update_int_moderator(hw); 1562 1563 /* clear down bit to indicate we are ready to go */ 1564 clear_bit(__FM10K_DOWN, &interface->state); 1565 1566 /* enable polling cleanups */ 1567 fm10k_napi_enable_all(interface); 1568 1569 /* re-establish Rx filters */ 1570 fm10k_restore_rx_state(interface); 1571 1572 /* enable transmits */ 1573 netif_tx_start_all_queues(interface->netdev); 1574 1575 /* kick off the service timer now */ 1576 hw->mac.get_host_state = 1; 1577 mod_timer(&interface->service_timer, jiffies); 1578 } 1579 1580 static void fm10k_napi_disable_all(struct fm10k_intfc *interface) 1581 { 1582 struct fm10k_q_vector *q_vector; 1583 int q_idx; 1584 1585 for (q_idx = 0; q_idx < interface->num_q_vectors; q_idx++) { 1586 q_vector = interface->q_vector[q_idx]; 1587 napi_disable(&q_vector->napi); 1588 } 1589 } 1590 1591 void fm10k_down(struct fm10k_intfc *interface) 1592 { 1593 struct net_device *netdev = interface->netdev; 1594 struct fm10k_hw *hw = &interface->hw; 1595 1596 /* signal that we are down to the interrupt handler and service task */ 1597 set_bit(__FM10K_DOWN, &interface->state); 1598 1599 /* call carrier off first to avoid false dev_watchdog timeouts */ 1600 netif_carrier_off(netdev); 1601 1602 /* disable transmits */ 1603 netif_tx_stop_all_queues(netdev); 1604 netif_tx_disable(netdev); 1605 1606 /* reset Rx filters */ 1607 fm10k_reset_rx_state(interface); 1608 1609 /* allow 10ms for device to quiesce */ 1610 usleep_range(10000, 20000); 1611 1612 /* disable polling routines */ 1613 fm10k_napi_disable_all(interface); 1614 1615 /* capture stats one last time before stopping interface */ 1616 fm10k_update_stats(interface); 1617 1618 /* Disable DMA engine for Tx/Rx */ 1619 hw->mac.ops.stop_hw(hw); 1620 1621 /* free any buffers still on the rings */ 1622 fm10k_clean_all_tx_rings(interface); 1623 fm10k_clean_all_rx_rings(interface); 1624 } 1625 1626 /** 1627 * fm10k_sw_init - Initialize general software structures 1628 * @interface: host interface private structure to initialize 1629 * 1630 * fm10k_sw_init initializes the interface private data structure. 1631 * Fields are initialized based on PCI device information and 1632 * OS network device settings (MTU size). 1633 **/ 1634 static int fm10k_sw_init(struct fm10k_intfc *interface, 1635 const struct pci_device_id *ent) 1636 { 1637 const struct fm10k_info *fi = fm10k_info_tbl[ent->driver_data]; 1638 struct fm10k_hw *hw = &interface->hw; 1639 struct pci_dev *pdev = interface->pdev; 1640 struct net_device *netdev = interface->netdev; 1641 u32 rss_key[FM10K_RSSRK_SIZE]; 1642 unsigned int rss; 1643 int err; 1644 1645 /* initialize back pointer */ 1646 hw->back = interface; 1647 hw->hw_addr = interface->uc_addr; 1648 1649 /* PCI config space info */ 1650 hw->vendor_id = pdev->vendor; 1651 hw->device_id = pdev->device; 1652 hw->revision_id = pdev->revision; 1653 hw->subsystem_vendor_id = pdev->subsystem_vendor; 1654 hw->subsystem_device_id = pdev->subsystem_device; 1655 1656 /* Setup hw api */ 1657 memcpy(&hw->mac.ops, fi->mac_ops, sizeof(hw->mac.ops)); 1658 hw->mac.type = fi->mac; 1659 1660 /* Setup IOV handlers */ 1661 if (fi->iov_ops) 1662 memcpy(&hw->iov.ops, fi->iov_ops, sizeof(hw->iov.ops)); 1663 1664 /* Set common capability flags and settings */ 1665 rss = min_t(int, FM10K_MAX_RSS_INDICES, num_online_cpus()); 1666 interface->ring_feature[RING_F_RSS].limit = rss; 1667 fi->get_invariants(hw); 1668 1669 /* pick up the PCIe bus settings for reporting later */ 1670 if (hw->mac.ops.get_bus_info) 1671 hw->mac.ops.get_bus_info(hw); 1672 1673 /* limit the usable DMA range */ 1674 if (hw->mac.ops.set_dma_mask) 1675 hw->mac.ops.set_dma_mask(hw, dma_get_mask(&pdev->dev)); 1676 1677 /* update netdev with DMA restrictions */ 1678 if (dma_get_mask(&pdev->dev) > DMA_BIT_MASK(32)) { 1679 netdev->features |= NETIF_F_HIGHDMA; 1680 netdev->vlan_features |= NETIF_F_HIGHDMA; 1681 } 1682 1683 /* delay any future reset requests */ 1684 interface->last_reset = jiffies + (10 * HZ); 1685 1686 /* reset and initialize the hardware so it is in a known state */ 1687 err = hw->mac.ops.reset_hw(hw) ? : hw->mac.ops.init_hw(hw); 1688 if (err) { 1689 dev_err(&pdev->dev, "init_hw failed: %d\n", err); 1690 return err; 1691 } 1692 1693 /* initialize hardware statistics */ 1694 hw->mac.ops.update_hw_stats(hw, &interface->stats); 1695 1696 /* Set upper limit on IOV VFs that can be allocated */ 1697 pci_sriov_set_totalvfs(pdev, hw->iov.total_vfs); 1698 1699 /* Start with random Ethernet address */ 1700 eth_random_addr(hw->mac.addr); 1701 1702 /* Initialize MAC address from hardware */ 1703 err = hw->mac.ops.read_mac_addr(hw); 1704 if (err) { 1705 dev_warn(&pdev->dev, 1706 "Failed to obtain MAC address defaulting to random\n"); 1707 /* tag address assignment as random */ 1708 netdev->addr_assign_type |= NET_ADDR_RANDOM; 1709 } 1710 1711 memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len); 1712 memcpy(netdev->perm_addr, hw->mac.addr, netdev->addr_len); 1713 1714 if (!is_valid_ether_addr(netdev->perm_addr)) { 1715 dev_err(&pdev->dev, "Invalid MAC Address\n"); 1716 return -EIO; 1717 } 1718 1719 /* assign BAR 4 resources for use with PTP */ 1720 if (fm10k_read_reg(hw, FM10K_CTRL) & FM10K_CTRL_BAR4_ALLOWED) 1721 interface->sw_addr = ioremap(pci_resource_start(pdev, 4), 1722 pci_resource_len(pdev, 4)); 1723 hw->sw_addr = interface->sw_addr; 1724 1725 /* Only the PF can support VXLAN and NVGRE offloads */ 1726 if (hw->mac.type != fm10k_mac_pf) { 1727 netdev->hw_enc_features = 0; 1728 netdev->features &= ~NETIF_F_GSO_UDP_TUNNEL; 1729 netdev->hw_features &= ~NETIF_F_GSO_UDP_TUNNEL; 1730 } 1731 1732 /* initialize DCBNL interface */ 1733 fm10k_dcbnl_set_ops(netdev); 1734 1735 /* Initialize service timer and service task */ 1736 set_bit(__FM10K_SERVICE_DISABLE, &interface->state); 1737 setup_timer(&interface->service_timer, &fm10k_service_timer, 1738 (unsigned long)interface); 1739 INIT_WORK(&interface->service_task, fm10k_service_task); 1740 1741 /* kick off service timer now, even when interface is down */ 1742 mod_timer(&interface->service_timer, (HZ * 2) + jiffies); 1743 1744 /* Intitialize timestamp data */ 1745 fm10k_ts_init(interface); 1746 1747 /* set default ring sizes */ 1748 interface->tx_ring_count = FM10K_DEFAULT_TXD; 1749 interface->rx_ring_count = FM10K_DEFAULT_RXD; 1750 1751 /* set default interrupt moderation */ 1752 interface->tx_itr = FM10K_ITR_10K; 1753 interface->rx_itr = FM10K_ITR_ADAPTIVE | FM10K_ITR_20K; 1754 1755 /* initialize vxlan_port list */ 1756 INIT_LIST_HEAD(&interface->vxlan_port); 1757 1758 netdev_rss_key_fill(rss_key, sizeof(rss_key)); 1759 memcpy(interface->rssrk, rss_key, sizeof(rss_key)); 1760 1761 /* Start off interface as being down */ 1762 set_bit(__FM10K_DOWN, &interface->state); 1763 1764 return 0; 1765 } 1766 1767 static void fm10k_slot_warn(struct fm10k_intfc *interface) 1768 { 1769 enum pcie_link_width width = PCIE_LNK_WIDTH_UNKNOWN; 1770 enum pci_bus_speed speed = PCI_SPEED_UNKNOWN; 1771 struct fm10k_hw *hw = &interface->hw; 1772 int max_gts = 0, expected_gts = 0; 1773 1774 if (pcie_get_minimum_link(interface->pdev, &speed, &width) || 1775 speed == PCI_SPEED_UNKNOWN || width == PCIE_LNK_WIDTH_UNKNOWN) { 1776 dev_warn(&interface->pdev->dev, 1777 "Unable to determine PCI Express bandwidth.\n"); 1778 return; 1779 } 1780 1781 switch (speed) { 1782 case PCIE_SPEED_2_5GT: 1783 /* 8b/10b encoding reduces max throughput by 20% */ 1784 max_gts = 2 * width; 1785 break; 1786 case PCIE_SPEED_5_0GT: 1787 /* 8b/10b encoding reduces max throughput by 20% */ 1788 max_gts = 4 * width; 1789 break; 1790 case PCIE_SPEED_8_0GT: 1791 /* 128b/130b encoding has less than 2% impact on throughput */ 1792 max_gts = 8 * width; 1793 break; 1794 default: 1795 dev_warn(&interface->pdev->dev, 1796 "Unable to determine PCI Express bandwidth.\n"); 1797 return; 1798 } 1799 1800 dev_info(&interface->pdev->dev, 1801 "PCI Express bandwidth of %dGT/s available\n", 1802 max_gts); 1803 dev_info(&interface->pdev->dev, 1804 "(Speed:%s, Width: x%d, Encoding Loss:%s, Payload:%s)\n", 1805 (speed == PCIE_SPEED_8_0GT ? "8.0GT/s" : 1806 speed == PCIE_SPEED_5_0GT ? "5.0GT/s" : 1807 speed == PCIE_SPEED_2_5GT ? "2.5GT/s" : 1808 "Unknown"), 1809 hw->bus.width, 1810 (speed == PCIE_SPEED_2_5GT ? "20%" : 1811 speed == PCIE_SPEED_5_0GT ? "20%" : 1812 speed == PCIE_SPEED_8_0GT ? "<2%" : 1813 "Unknown"), 1814 (hw->bus.payload == fm10k_bus_payload_128 ? "128B" : 1815 hw->bus.payload == fm10k_bus_payload_256 ? "256B" : 1816 hw->bus.payload == fm10k_bus_payload_512 ? "512B" : 1817 "Unknown")); 1818 1819 switch (hw->bus_caps.speed) { 1820 case fm10k_bus_speed_2500: 1821 /* 8b/10b encoding reduces max throughput by 20% */ 1822 expected_gts = 2 * hw->bus_caps.width; 1823 break; 1824 case fm10k_bus_speed_5000: 1825 /* 8b/10b encoding reduces max throughput by 20% */ 1826 expected_gts = 4 * hw->bus_caps.width; 1827 break; 1828 case fm10k_bus_speed_8000: 1829 /* 128b/130b encoding has less than 2% impact on throughput */ 1830 expected_gts = 8 * hw->bus_caps.width; 1831 break; 1832 default: 1833 dev_warn(&interface->pdev->dev, 1834 "Unable to determine expected PCI Express bandwidth.\n"); 1835 return; 1836 } 1837 1838 if (max_gts < expected_gts) { 1839 dev_warn(&interface->pdev->dev, 1840 "This device requires %dGT/s of bandwidth for optimal performance.\n", 1841 expected_gts); 1842 dev_warn(&interface->pdev->dev, 1843 "A %sslot with x%d lanes is suggested.\n", 1844 (hw->bus_caps.speed == fm10k_bus_speed_2500 ? "2.5GT/s " : 1845 hw->bus_caps.speed == fm10k_bus_speed_5000 ? "5.0GT/s " : 1846 hw->bus_caps.speed == fm10k_bus_speed_8000 ? "8.0GT/s " : ""), 1847 hw->bus_caps.width); 1848 } 1849 } 1850 1851 /** 1852 * fm10k_probe - Device Initialization Routine 1853 * @pdev: PCI device information struct 1854 * @ent: entry in fm10k_pci_tbl 1855 * 1856 * Returns 0 on success, negative on failure 1857 * 1858 * fm10k_probe initializes an interface identified by a pci_dev structure. 1859 * The OS initialization, configuring of the interface private structure, 1860 * and a hardware reset occur. 1861 **/ 1862 static int fm10k_probe(struct pci_dev *pdev, 1863 const struct pci_device_id *ent) 1864 { 1865 struct net_device *netdev; 1866 struct fm10k_intfc *interface; 1867 int err; 1868 1869 err = pci_enable_device_mem(pdev); 1870 if (err) 1871 return err; 1872 1873 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(48)); 1874 if (err) 1875 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)); 1876 if (err) { 1877 dev_err(&pdev->dev, 1878 "DMA configuration failed: %d\n", err); 1879 goto err_dma; 1880 } 1881 1882 err = pci_request_selected_regions(pdev, 1883 pci_select_bars(pdev, 1884 IORESOURCE_MEM), 1885 fm10k_driver_name); 1886 if (err) { 1887 dev_err(&pdev->dev, 1888 "pci_request_selected_regions failed: %d\n", err); 1889 goto err_pci_reg; 1890 } 1891 1892 pci_enable_pcie_error_reporting(pdev); 1893 1894 pci_set_master(pdev); 1895 pci_save_state(pdev); 1896 1897 netdev = fm10k_alloc_netdev(); 1898 if (!netdev) { 1899 err = -ENOMEM; 1900 goto err_alloc_netdev; 1901 } 1902 1903 SET_NETDEV_DEV(netdev, &pdev->dev); 1904 1905 interface = netdev_priv(netdev); 1906 pci_set_drvdata(pdev, interface); 1907 1908 interface->netdev = netdev; 1909 interface->pdev = pdev; 1910 1911 interface->uc_addr = ioremap(pci_resource_start(pdev, 0), 1912 FM10K_UC_ADDR_SIZE); 1913 if (!interface->uc_addr) { 1914 err = -EIO; 1915 goto err_ioremap; 1916 } 1917 1918 err = fm10k_sw_init(interface, ent); 1919 if (err) 1920 goto err_sw_init; 1921 1922 /* enable debugfs support */ 1923 fm10k_dbg_intfc_init(interface); 1924 1925 err = fm10k_init_queueing_scheme(interface); 1926 if (err) 1927 goto err_sw_init; 1928 1929 err = fm10k_mbx_request_irq(interface); 1930 if (err) 1931 goto err_mbx_interrupt; 1932 1933 /* final check of hardware state before registering the interface */ 1934 err = fm10k_hw_ready(interface); 1935 if (err) 1936 goto err_register; 1937 1938 err = register_netdev(netdev); 1939 if (err) 1940 goto err_register; 1941 1942 /* carrier off reporting is important to ethtool even BEFORE open */ 1943 netif_carrier_off(netdev); 1944 1945 /* stop all the transmit queues from transmitting until link is up */ 1946 netif_tx_stop_all_queues(netdev); 1947 1948 /* Register PTP interface */ 1949 fm10k_ptp_register(interface); 1950 1951 /* print warning for non-optimal configurations */ 1952 fm10k_slot_warn(interface); 1953 1954 /* report MAC address for logging */ 1955 dev_info(&pdev->dev, "%pM\n", netdev->dev_addr); 1956 1957 /* enable SR-IOV after registering netdev to enforce PF/VF ordering */ 1958 fm10k_iov_configure(pdev, 0); 1959 1960 /* clear the service task disable bit to allow service task to start */ 1961 clear_bit(__FM10K_SERVICE_DISABLE, &interface->state); 1962 1963 return 0; 1964 1965 err_register: 1966 fm10k_mbx_free_irq(interface); 1967 err_mbx_interrupt: 1968 fm10k_clear_queueing_scheme(interface); 1969 err_sw_init: 1970 if (interface->sw_addr) 1971 iounmap(interface->sw_addr); 1972 iounmap(interface->uc_addr); 1973 err_ioremap: 1974 free_netdev(netdev); 1975 err_alloc_netdev: 1976 pci_release_selected_regions(pdev, 1977 pci_select_bars(pdev, IORESOURCE_MEM)); 1978 err_pci_reg: 1979 err_dma: 1980 pci_disable_device(pdev); 1981 return err; 1982 } 1983 1984 /** 1985 * fm10k_remove - Device Removal Routine 1986 * @pdev: PCI device information struct 1987 * 1988 * fm10k_remove is called by the PCI subsystem to alert the driver 1989 * that it should release a PCI device. The could be caused by a 1990 * Hot-Plug event, or because the driver is going to be removed from 1991 * memory. 1992 **/ 1993 static void fm10k_remove(struct pci_dev *pdev) 1994 { 1995 struct fm10k_intfc *interface = pci_get_drvdata(pdev); 1996 struct net_device *netdev = interface->netdev; 1997 1998 del_timer_sync(&interface->service_timer); 1999 2000 set_bit(__FM10K_SERVICE_DISABLE, &interface->state); 2001 cancel_work_sync(&interface->service_task); 2002 2003 /* free netdev, this may bounce the interrupts due to setup_tc */ 2004 if (netdev->reg_state == NETREG_REGISTERED) 2005 unregister_netdev(netdev); 2006 2007 /* cleanup timestamp handling */ 2008 fm10k_ptp_unregister(interface); 2009 2010 /* release VFs */ 2011 fm10k_iov_disable(pdev); 2012 2013 /* disable mailbox interrupt */ 2014 fm10k_mbx_free_irq(interface); 2015 2016 /* free interrupts */ 2017 fm10k_clear_queueing_scheme(interface); 2018 2019 /* remove any debugfs interfaces */ 2020 fm10k_dbg_intfc_exit(interface); 2021 2022 if (interface->sw_addr) 2023 iounmap(interface->sw_addr); 2024 iounmap(interface->uc_addr); 2025 2026 free_netdev(netdev); 2027 2028 pci_release_selected_regions(pdev, 2029 pci_select_bars(pdev, IORESOURCE_MEM)); 2030 2031 pci_disable_pcie_error_reporting(pdev); 2032 2033 pci_disable_device(pdev); 2034 } 2035 2036 #ifdef CONFIG_PM 2037 /** 2038 * fm10k_resume - Restore device to pre-sleep state 2039 * @pdev: PCI device information struct 2040 * 2041 * fm10k_resume is called after the system has powered back up from a sleep 2042 * state and is ready to resume operation. This function is meant to restore 2043 * the device back to its pre-sleep state. 2044 **/ 2045 static int fm10k_resume(struct pci_dev *pdev) 2046 { 2047 struct fm10k_intfc *interface = pci_get_drvdata(pdev); 2048 struct net_device *netdev = interface->netdev; 2049 struct fm10k_hw *hw = &interface->hw; 2050 u32 err; 2051 2052 pci_set_power_state(pdev, PCI_D0); 2053 pci_restore_state(pdev); 2054 2055 /* pci_restore_state clears dev->state_saved so call 2056 * pci_save_state to restore it. 2057 */ 2058 pci_save_state(pdev); 2059 2060 err = pci_enable_device_mem(pdev); 2061 if (err) { 2062 dev_err(&pdev->dev, "Cannot enable PCI device from suspend\n"); 2063 return err; 2064 } 2065 pci_set_master(pdev); 2066 2067 pci_wake_from_d3(pdev, false); 2068 2069 /* refresh hw_addr in case it was dropped */ 2070 hw->hw_addr = interface->uc_addr; 2071 2072 /* reset hardware to known state */ 2073 err = hw->mac.ops.init_hw(&interface->hw); 2074 if (err) 2075 return err; 2076 2077 /* reset statistics starting values */ 2078 hw->mac.ops.rebind_hw_stats(hw, &interface->stats); 2079 2080 /* reset clock */ 2081 fm10k_ts_reset(interface); 2082 2083 rtnl_lock(); 2084 2085 err = fm10k_init_queueing_scheme(interface); 2086 if (!err) { 2087 fm10k_mbx_request_irq(interface); 2088 if (netif_running(netdev)) 2089 err = fm10k_open(netdev); 2090 } 2091 2092 rtnl_unlock(); 2093 2094 if (err) 2095 return err; 2096 2097 /* assume host is not ready, to prevent race with watchdog in case we 2098 * actually don't have connection to the switch 2099 */ 2100 interface->host_ready = false; 2101 fm10k_watchdog_host_not_ready(interface); 2102 2103 /* clear the service task disable bit to allow service task to start */ 2104 clear_bit(__FM10K_SERVICE_DISABLE, &interface->state); 2105 fm10k_service_event_schedule(interface); 2106 2107 /* restore SR-IOV interface */ 2108 fm10k_iov_resume(pdev); 2109 2110 netif_device_attach(netdev); 2111 2112 return 0; 2113 } 2114 2115 /** 2116 * fm10k_suspend - Prepare the device for a system sleep state 2117 * @pdev: PCI device information struct 2118 * 2119 * fm10k_suspend is meant to shutdown the device prior to the system entering 2120 * a sleep state. The fm10k hardware does not support wake on lan so the 2121 * driver simply needs to shut down the device so it is in a low power state. 2122 **/ 2123 static int fm10k_suspend(struct pci_dev *pdev, 2124 pm_message_t __always_unused state) 2125 { 2126 struct fm10k_intfc *interface = pci_get_drvdata(pdev); 2127 struct net_device *netdev = interface->netdev; 2128 int err = 0; 2129 2130 netif_device_detach(netdev); 2131 2132 fm10k_iov_suspend(pdev); 2133 2134 /* the watchdog tasks may read registers, which will appear like a 2135 * surprise-remove event once the PCI device is disabled. This will 2136 * cause us to close the netdevice, so we don't retain the open/closed 2137 * state post-resume. Prevent this by disabling the service task while 2138 * suspended, until we actually resume. 2139 */ 2140 set_bit(__FM10K_SERVICE_DISABLE, &interface->state); 2141 cancel_work_sync(&interface->service_task); 2142 2143 rtnl_lock(); 2144 2145 if (netif_running(netdev)) 2146 fm10k_close(netdev); 2147 2148 fm10k_mbx_free_irq(interface); 2149 2150 fm10k_clear_queueing_scheme(interface); 2151 2152 rtnl_unlock(); 2153 2154 err = pci_save_state(pdev); 2155 if (err) 2156 return err; 2157 2158 pci_disable_device(pdev); 2159 pci_wake_from_d3(pdev, false); 2160 pci_set_power_state(pdev, PCI_D3hot); 2161 2162 return 0; 2163 } 2164 2165 #endif /* CONFIG_PM */ 2166 /** 2167 * fm10k_io_error_detected - called when PCI error is detected 2168 * @pdev: Pointer to PCI device 2169 * @state: The current pci connection state 2170 * 2171 * This function is called after a PCI bus error affecting 2172 * this device has been detected. 2173 */ 2174 static pci_ers_result_t fm10k_io_error_detected(struct pci_dev *pdev, 2175 pci_channel_state_t state) 2176 { 2177 struct fm10k_intfc *interface = pci_get_drvdata(pdev); 2178 struct net_device *netdev = interface->netdev; 2179 2180 netif_device_detach(netdev); 2181 2182 if (state == pci_channel_io_perm_failure) 2183 return PCI_ERS_RESULT_DISCONNECT; 2184 2185 if (netif_running(netdev)) 2186 fm10k_close(netdev); 2187 2188 fm10k_mbx_free_irq(interface); 2189 2190 pci_disable_device(pdev); 2191 2192 /* Request a slot reset. */ 2193 return PCI_ERS_RESULT_NEED_RESET; 2194 } 2195 2196 /** 2197 * fm10k_io_slot_reset - called after the pci bus has been reset. 2198 * @pdev: Pointer to PCI device 2199 * 2200 * Restart the card from scratch, as if from a cold-boot. 2201 */ 2202 static pci_ers_result_t fm10k_io_slot_reset(struct pci_dev *pdev) 2203 { 2204 struct fm10k_intfc *interface = pci_get_drvdata(pdev); 2205 pci_ers_result_t result; 2206 2207 if (pci_enable_device_mem(pdev)) { 2208 dev_err(&pdev->dev, 2209 "Cannot re-enable PCI device after reset.\n"); 2210 result = PCI_ERS_RESULT_DISCONNECT; 2211 } else { 2212 pci_set_master(pdev); 2213 pci_restore_state(pdev); 2214 2215 /* After second error pci->state_saved is false, this 2216 * resets it so EEH doesn't break. 2217 */ 2218 pci_save_state(pdev); 2219 2220 pci_wake_from_d3(pdev, false); 2221 2222 /* refresh hw_addr in case it was dropped */ 2223 interface->hw.hw_addr = interface->uc_addr; 2224 2225 interface->flags |= FM10K_FLAG_RESET_REQUESTED; 2226 fm10k_service_event_schedule(interface); 2227 2228 result = PCI_ERS_RESULT_RECOVERED; 2229 } 2230 2231 pci_cleanup_aer_uncorrect_error_status(pdev); 2232 2233 return result; 2234 } 2235 2236 /** 2237 * fm10k_io_resume - called when traffic can start flowing again. 2238 * @pdev: Pointer to PCI device 2239 * 2240 * This callback is called when the error recovery driver tells us that 2241 * its OK to resume normal operation. 2242 */ 2243 static void fm10k_io_resume(struct pci_dev *pdev) 2244 { 2245 struct fm10k_intfc *interface = pci_get_drvdata(pdev); 2246 struct net_device *netdev = interface->netdev; 2247 struct fm10k_hw *hw = &interface->hw; 2248 int err = 0; 2249 2250 /* reset hardware to known state */ 2251 hw->mac.ops.init_hw(&interface->hw); 2252 2253 /* reset statistics starting values */ 2254 hw->mac.ops.rebind_hw_stats(hw, &interface->stats); 2255 2256 /* reassociate interrupts */ 2257 fm10k_mbx_request_irq(interface); 2258 2259 /* reset clock */ 2260 fm10k_ts_reset(interface); 2261 2262 if (netif_running(netdev)) 2263 err = fm10k_open(netdev); 2264 2265 /* final check of hardware state before registering the interface */ 2266 err = err ? : fm10k_hw_ready(interface); 2267 2268 if (!err) 2269 netif_device_attach(netdev); 2270 } 2271 2272 static const struct pci_error_handlers fm10k_err_handler = { 2273 .error_detected = fm10k_io_error_detected, 2274 .slot_reset = fm10k_io_slot_reset, 2275 .resume = fm10k_io_resume, 2276 }; 2277 2278 static struct pci_driver fm10k_driver = { 2279 .name = fm10k_driver_name, 2280 .id_table = fm10k_pci_tbl, 2281 .probe = fm10k_probe, 2282 .remove = fm10k_remove, 2283 #ifdef CONFIG_PM 2284 .suspend = fm10k_suspend, 2285 .resume = fm10k_resume, 2286 #endif 2287 .sriov_configure = fm10k_iov_configure, 2288 .err_handler = &fm10k_err_handler 2289 }; 2290 2291 /** 2292 * fm10k_register_pci_driver - register driver interface 2293 * 2294 * This funciton is called on module load in order to register the driver. 2295 **/ 2296 int fm10k_register_pci_driver(void) 2297 { 2298 return pci_register_driver(&fm10k_driver); 2299 } 2300 2301 /** 2302 * fm10k_unregister_pci_driver - unregister driver interface 2303 * 2304 * This funciton is called on module unload in order to remove the driver. 2305 **/ 2306 void fm10k_unregister_pci_driver(void) 2307 { 2308 pci_unregister_driver(&fm10k_driver); 2309 } 2310