1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright(c) 2013 - 2019 Intel Corporation. */ 3 4 #include <linux/module.h> 5 #include <linux/interrupt.h> 6 7 #include "fm10k.h" 8 9 static const struct fm10k_info *fm10k_info_tbl[] = { 10 [fm10k_device_pf] = &fm10k_pf_info, 11 [fm10k_device_vf] = &fm10k_vf_info, 12 }; 13 14 /* 15 * fm10k_pci_tbl - PCI Device ID Table 16 * 17 * Wildcard entries (PCI_ANY_ID) should come last 18 * Last entry must be all 0s 19 * 20 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID, 21 * Class, Class Mask, private data (not used) } 22 */ 23 static const struct pci_device_id fm10k_pci_tbl[] = { 24 { PCI_VDEVICE(INTEL, FM10K_DEV_ID_PF), fm10k_device_pf }, 25 { PCI_VDEVICE(INTEL, FM10K_DEV_ID_SDI_FM10420_QDA2), fm10k_device_pf }, 26 { PCI_VDEVICE(INTEL, FM10K_DEV_ID_SDI_FM10420_DA2), fm10k_device_pf }, 27 { PCI_VDEVICE(INTEL, FM10K_DEV_ID_VF), fm10k_device_vf }, 28 /* required last entry */ 29 { 0, } 30 }; 31 MODULE_DEVICE_TABLE(pci, fm10k_pci_tbl); 32 33 u16 fm10k_read_pci_cfg_word(struct fm10k_hw *hw, u32 reg) 34 { 35 struct fm10k_intfc *interface = hw->back; 36 u16 value = 0; 37 38 if (FM10K_REMOVED(hw->hw_addr)) 39 return ~value; 40 41 pci_read_config_word(interface->pdev, reg, &value); 42 if (value == 0xFFFF) 43 fm10k_write_flush(hw); 44 45 return value; 46 } 47 48 u32 fm10k_read_reg(struct fm10k_hw *hw, int reg) 49 { 50 u32 __iomem *hw_addr = READ_ONCE(hw->hw_addr); 51 u32 value = 0; 52 53 if (FM10K_REMOVED(hw_addr)) 54 return ~value; 55 56 value = readl(&hw_addr[reg]); 57 if (!(~value) && (!reg || !(~readl(hw_addr)))) { 58 struct fm10k_intfc *interface = hw->back; 59 struct net_device *netdev = interface->netdev; 60 61 hw->hw_addr = NULL; 62 netif_device_detach(netdev); 63 netdev_err(netdev, "PCIe link lost, device now detached\n"); 64 } 65 66 return value; 67 } 68 69 static int fm10k_hw_ready(struct fm10k_intfc *interface) 70 { 71 struct fm10k_hw *hw = &interface->hw; 72 73 fm10k_write_flush(hw); 74 75 return FM10K_REMOVED(hw->hw_addr) ? -ENODEV : 0; 76 } 77 78 /** 79 * fm10k_macvlan_schedule - Schedule MAC/VLAN queue task 80 * @interface: fm10k private interface structure 81 * 82 * Schedule the MAC/VLAN queue monitor task. If the MAC/VLAN task cannot be 83 * started immediately, request that it be restarted when possible. 84 */ 85 void fm10k_macvlan_schedule(struct fm10k_intfc *interface) 86 { 87 /* Avoid processing the MAC/VLAN queue when the service task is 88 * disabled, or when we're resetting the device. 89 */ 90 if (!test_bit(__FM10K_MACVLAN_DISABLE, interface->state) && 91 !test_and_set_bit(__FM10K_MACVLAN_SCHED, interface->state)) { 92 clear_bit(__FM10K_MACVLAN_REQUEST, interface->state); 93 /* We delay the actual start of execution in order to allow 94 * multiple MAC/VLAN updates to accumulate before handling 95 * them, and to allow some time to let the mailbox drain 96 * between runs. 97 */ 98 queue_delayed_work(fm10k_workqueue, 99 &interface->macvlan_task, 10); 100 } else { 101 set_bit(__FM10K_MACVLAN_REQUEST, interface->state); 102 } 103 } 104 105 /** 106 * fm10k_stop_macvlan_task - Stop the MAC/VLAN queue monitor 107 * @interface: fm10k private interface structure 108 * 109 * Wait until the MAC/VLAN queue task has stopped, and cancel any future 110 * requests. 111 */ 112 static void fm10k_stop_macvlan_task(struct fm10k_intfc *interface) 113 { 114 /* Disable the MAC/VLAN work item */ 115 set_bit(__FM10K_MACVLAN_DISABLE, interface->state); 116 117 /* Make sure we waited until any current invocations have stopped */ 118 cancel_delayed_work_sync(&interface->macvlan_task); 119 120 /* We set the __FM10K_MACVLAN_SCHED bit when we schedule the task. 121 * However, it may not be unset of the MAC/VLAN task never actually 122 * got a chance to run. Since we've canceled the task here, and it 123 * cannot be rescheuled right now, we need to ensure the scheduled bit 124 * gets unset. 125 */ 126 clear_bit(__FM10K_MACVLAN_SCHED, interface->state); 127 } 128 129 /** 130 * fm10k_resume_macvlan_task - Restart the MAC/VLAN queue monitor 131 * @interface: fm10k private interface structure 132 * 133 * Clear the __FM10K_MACVLAN_DISABLE bit and, if a request occurred, schedule 134 * the MAC/VLAN work monitor. 135 */ 136 static void fm10k_resume_macvlan_task(struct fm10k_intfc *interface) 137 { 138 /* Re-enable the MAC/VLAN work item */ 139 clear_bit(__FM10K_MACVLAN_DISABLE, interface->state); 140 141 /* We might have received a MAC/VLAN request while disabled. If so, 142 * kick off the queue now. 143 */ 144 if (test_bit(__FM10K_MACVLAN_REQUEST, interface->state)) 145 fm10k_macvlan_schedule(interface); 146 } 147 148 void fm10k_service_event_schedule(struct fm10k_intfc *interface) 149 { 150 if (!test_bit(__FM10K_SERVICE_DISABLE, interface->state) && 151 !test_and_set_bit(__FM10K_SERVICE_SCHED, interface->state)) { 152 clear_bit(__FM10K_SERVICE_REQUEST, interface->state); 153 queue_work(fm10k_workqueue, &interface->service_task); 154 } else { 155 set_bit(__FM10K_SERVICE_REQUEST, interface->state); 156 } 157 } 158 159 static void fm10k_service_event_complete(struct fm10k_intfc *interface) 160 { 161 WARN_ON(!test_bit(__FM10K_SERVICE_SCHED, interface->state)); 162 163 /* flush memory to make sure state is correct before next watchog */ 164 smp_mb__before_atomic(); 165 clear_bit(__FM10K_SERVICE_SCHED, interface->state); 166 167 /* If a service event was requested since we started, immediately 168 * re-schedule now. This ensures we don't drop a request until the 169 * next timer event. 170 */ 171 if (test_bit(__FM10K_SERVICE_REQUEST, interface->state)) 172 fm10k_service_event_schedule(interface); 173 } 174 175 static void fm10k_stop_service_event(struct fm10k_intfc *interface) 176 { 177 set_bit(__FM10K_SERVICE_DISABLE, interface->state); 178 cancel_work_sync(&interface->service_task); 179 180 /* It's possible that cancel_work_sync stopped the service task from 181 * running before it could actually start. In this case the 182 * __FM10K_SERVICE_SCHED bit will never be cleared. Since we know that 183 * the service task cannot be running at this point, we need to clear 184 * the scheduled bit, as otherwise the service task may never be 185 * restarted. 186 */ 187 clear_bit(__FM10K_SERVICE_SCHED, interface->state); 188 } 189 190 static void fm10k_start_service_event(struct fm10k_intfc *interface) 191 { 192 clear_bit(__FM10K_SERVICE_DISABLE, interface->state); 193 fm10k_service_event_schedule(interface); 194 } 195 196 /** 197 * fm10k_service_timer - Timer Call-back 198 * @t: pointer to timer data 199 **/ 200 static void fm10k_service_timer(struct timer_list *t) 201 { 202 struct fm10k_intfc *interface = from_timer(interface, t, 203 service_timer); 204 205 /* Reset the timer */ 206 mod_timer(&interface->service_timer, (HZ * 2) + jiffies); 207 208 fm10k_service_event_schedule(interface); 209 } 210 211 /** 212 * fm10k_prepare_for_reset - Prepare the driver and device for a pending reset 213 * @interface: fm10k private data structure 214 * 215 * This function prepares for a device reset by shutting as much down as we 216 * can. It does nothing and returns false if __FM10K_RESETTING was already set 217 * prior to calling this function. It returns true if it actually did work. 218 */ 219 static bool fm10k_prepare_for_reset(struct fm10k_intfc *interface) 220 { 221 struct net_device *netdev = interface->netdev; 222 223 /* put off any impending NetWatchDogTimeout */ 224 netif_trans_update(netdev); 225 226 /* Nothing to do if a reset is already in progress */ 227 if (test_and_set_bit(__FM10K_RESETTING, interface->state)) 228 return false; 229 230 /* As the MAC/VLAN task will be accessing registers it must not be 231 * running while we reset. Although the task will not be scheduled 232 * once we start resetting it may already be running 233 */ 234 fm10k_stop_macvlan_task(interface); 235 236 rtnl_lock(); 237 238 fm10k_iov_suspend(interface->pdev); 239 240 if (netif_running(netdev)) 241 fm10k_close(netdev); 242 243 fm10k_mbx_free_irq(interface); 244 245 /* free interrupts */ 246 fm10k_clear_queueing_scheme(interface); 247 248 /* delay any future reset requests */ 249 interface->last_reset = jiffies + (10 * HZ); 250 251 rtnl_unlock(); 252 253 return true; 254 } 255 256 static int fm10k_handle_reset(struct fm10k_intfc *interface) 257 { 258 struct net_device *netdev = interface->netdev; 259 struct fm10k_hw *hw = &interface->hw; 260 int err; 261 262 WARN_ON(!test_bit(__FM10K_RESETTING, interface->state)); 263 264 rtnl_lock(); 265 266 pci_set_master(interface->pdev); 267 268 /* reset and initialize the hardware so it is in a known state */ 269 err = hw->mac.ops.reset_hw(hw); 270 if (err) { 271 dev_err(&interface->pdev->dev, "reset_hw failed: %d\n", err); 272 goto reinit_err; 273 } 274 275 err = hw->mac.ops.init_hw(hw); 276 if (err) { 277 dev_err(&interface->pdev->dev, "init_hw failed: %d\n", err); 278 goto reinit_err; 279 } 280 281 err = fm10k_init_queueing_scheme(interface); 282 if (err) { 283 dev_err(&interface->pdev->dev, 284 "init_queueing_scheme failed: %d\n", err); 285 goto reinit_err; 286 } 287 288 /* re-associate interrupts */ 289 err = fm10k_mbx_request_irq(interface); 290 if (err) 291 goto err_mbx_irq; 292 293 err = fm10k_hw_ready(interface); 294 if (err) 295 goto err_open; 296 297 /* update hardware address for VFs if perm_addr has changed */ 298 if (hw->mac.type == fm10k_mac_vf) { 299 if (is_valid_ether_addr(hw->mac.perm_addr)) { 300 ether_addr_copy(hw->mac.addr, hw->mac.perm_addr); 301 ether_addr_copy(netdev->perm_addr, hw->mac.perm_addr); 302 eth_hw_addr_set(netdev, hw->mac.perm_addr); 303 netdev->addr_assign_type &= ~NET_ADDR_RANDOM; 304 } 305 306 if (hw->mac.vlan_override) 307 netdev->features &= ~NETIF_F_HW_VLAN_CTAG_RX; 308 else 309 netdev->features |= NETIF_F_HW_VLAN_CTAG_RX; 310 } 311 312 err = netif_running(netdev) ? fm10k_open(netdev) : 0; 313 if (err) 314 goto err_open; 315 316 fm10k_iov_resume(interface->pdev); 317 318 rtnl_unlock(); 319 320 fm10k_resume_macvlan_task(interface); 321 322 clear_bit(__FM10K_RESETTING, interface->state); 323 324 return err; 325 err_open: 326 fm10k_mbx_free_irq(interface); 327 err_mbx_irq: 328 fm10k_clear_queueing_scheme(interface); 329 reinit_err: 330 netif_device_detach(netdev); 331 332 rtnl_unlock(); 333 334 clear_bit(__FM10K_RESETTING, interface->state); 335 336 return err; 337 } 338 339 static void fm10k_detach_subtask(struct fm10k_intfc *interface) 340 { 341 struct net_device *netdev = interface->netdev; 342 u32 __iomem *hw_addr; 343 u32 value; 344 345 /* do nothing if netdev is still present or hw_addr is set */ 346 if (netif_device_present(netdev) || interface->hw.hw_addr) 347 return; 348 349 /* We've lost the PCIe register space, and can no longer access the 350 * device. Shut everything except the detach subtask down and prepare 351 * to reset the device in case we recover. If we actually prepare for 352 * reset, indicate that we're detached. 353 */ 354 if (fm10k_prepare_for_reset(interface)) 355 set_bit(__FM10K_RESET_DETACHED, interface->state); 356 357 /* check the real address space to see if we've recovered */ 358 hw_addr = READ_ONCE(interface->uc_addr); 359 value = readl(hw_addr); 360 if (~value) { 361 int err; 362 363 /* Make sure the reset was initiated because we detached, 364 * otherwise we might race with a different reset flow. 365 */ 366 if (!test_and_clear_bit(__FM10K_RESET_DETACHED, 367 interface->state)) 368 return; 369 370 /* Restore the hardware address */ 371 interface->hw.hw_addr = interface->uc_addr; 372 373 /* PCIe link has been restored, and the device is active 374 * again. Restore everything and reset the device. 375 */ 376 err = fm10k_handle_reset(interface); 377 if (err) { 378 netdev_err(netdev, "Unable to reset device: %d\n", err); 379 interface->hw.hw_addr = NULL; 380 return; 381 } 382 383 /* Re-attach the netdev */ 384 netif_device_attach(netdev); 385 netdev_warn(netdev, "PCIe link restored, device now attached\n"); 386 return; 387 } 388 } 389 390 static void fm10k_reset_subtask(struct fm10k_intfc *interface) 391 { 392 int err; 393 394 if (!test_and_clear_bit(FM10K_FLAG_RESET_REQUESTED, 395 interface->flags)) 396 return; 397 398 /* If another thread has already prepared to reset the device, we 399 * should not attempt to handle a reset here, since we'd race with 400 * that thread. This may happen if we suspend the device or if the 401 * PCIe link is lost. In this case, we'll just ignore the RESET 402 * request, as it will (eventually) be taken care of when the thread 403 * which actually started the reset is finished. 404 */ 405 if (!fm10k_prepare_for_reset(interface)) 406 return; 407 408 netdev_err(interface->netdev, "Reset interface\n"); 409 410 err = fm10k_handle_reset(interface); 411 if (err) 412 dev_err(&interface->pdev->dev, 413 "fm10k_handle_reset failed: %d\n", err); 414 } 415 416 /** 417 * fm10k_configure_swpri_map - Configure Receive SWPRI to PC mapping 418 * @interface: board private structure 419 * 420 * Configure the SWPRI to PC mapping for the port. 421 **/ 422 static void fm10k_configure_swpri_map(struct fm10k_intfc *interface) 423 { 424 struct net_device *netdev = interface->netdev; 425 struct fm10k_hw *hw = &interface->hw; 426 int i; 427 428 /* clear flag indicating update is needed */ 429 clear_bit(FM10K_FLAG_SWPRI_CONFIG, interface->flags); 430 431 /* these registers are only available on the PF */ 432 if (hw->mac.type != fm10k_mac_pf) 433 return; 434 435 /* configure SWPRI to PC map */ 436 for (i = 0; i < FM10K_SWPRI_MAX; i++) 437 fm10k_write_reg(hw, FM10K_SWPRI_MAP(i), 438 netdev_get_prio_tc_map(netdev, i)); 439 } 440 441 /** 442 * fm10k_watchdog_update_host_state - Update the link status based on host. 443 * @interface: board private structure 444 **/ 445 static void fm10k_watchdog_update_host_state(struct fm10k_intfc *interface) 446 { 447 struct fm10k_hw *hw = &interface->hw; 448 s32 err; 449 450 if (test_bit(__FM10K_LINK_DOWN, interface->state)) { 451 interface->host_ready = false; 452 if (time_is_after_jiffies(interface->link_down_event)) 453 return; 454 clear_bit(__FM10K_LINK_DOWN, interface->state); 455 } 456 457 if (test_bit(FM10K_FLAG_SWPRI_CONFIG, interface->flags)) { 458 if (rtnl_trylock()) { 459 fm10k_configure_swpri_map(interface); 460 rtnl_unlock(); 461 } 462 } 463 464 /* lock the mailbox for transmit and receive */ 465 fm10k_mbx_lock(interface); 466 467 err = hw->mac.ops.get_host_state(hw, &interface->host_ready); 468 if (err && time_is_before_jiffies(interface->last_reset)) 469 set_bit(FM10K_FLAG_RESET_REQUESTED, interface->flags); 470 471 /* free the lock */ 472 fm10k_mbx_unlock(interface); 473 } 474 475 /** 476 * fm10k_mbx_subtask - Process upstream and downstream mailboxes 477 * @interface: board private structure 478 * 479 * This function will process both the upstream and downstream mailboxes. 480 **/ 481 static void fm10k_mbx_subtask(struct fm10k_intfc *interface) 482 { 483 /* If we're resetting, bail out */ 484 if (test_bit(__FM10K_RESETTING, interface->state)) 485 return; 486 487 /* process upstream mailbox and update device state */ 488 fm10k_watchdog_update_host_state(interface); 489 490 /* process downstream mailboxes */ 491 fm10k_iov_mbx(interface); 492 } 493 494 /** 495 * fm10k_watchdog_host_is_ready - Update netdev status based on host ready 496 * @interface: board private structure 497 **/ 498 static void fm10k_watchdog_host_is_ready(struct fm10k_intfc *interface) 499 { 500 struct net_device *netdev = interface->netdev; 501 502 /* only continue if link state is currently down */ 503 if (netif_carrier_ok(netdev)) 504 return; 505 506 netif_info(interface, drv, netdev, "NIC Link is up\n"); 507 508 netif_carrier_on(netdev); 509 netif_tx_wake_all_queues(netdev); 510 } 511 512 /** 513 * fm10k_watchdog_host_not_ready - Update netdev status based on host not ready 514 * @interface: board private structure 515 **/ 516 static void fm10k_watchdog_host_not_ready(struct fm10k_intfc *interface) 517 { 518 struct net_device *netdev = interface->netdev; 519 520 /* only continue if link state is currently up */ 521 if (!netif_carrier_ok(netdev)) 522 return; 523 524 netif_info(interface, drv, netdev, "NIC Link is down\n"); 525 526 netif_carrier_off(netdev); 527 netif_tx_stop_all_queues(netdev); 528 } 529 530 /** 531 * fm10k_update_stats - Update the board statistics counters. 532 * @interface: board private structure 533 **/ 534 void fm10k_update_stats(struct fm10k_intfc *interface) 535 { 536 struct net_device_stats *net_stats = &interface->netdev->stats; 537 struct fm10k_hw *hw = &interface->hw; 538 u64 hw_csum_tx_good = 0, hw_csum_rx_good = 0, rx_length_errors = 0; 539 u64 rx_switch_errors = 0, rx_drops = 0, rx_pp_errors = 0; 540 u64 rx_link_errors = 0; 541 u64 rx_errors = 0, rx_csum_errors = 0, tx_csum_errors = 0; 542 u64 restart_queue = 0, tx_busy = 0, alloc_failed = 0; 543 u64 rx_bytes_nic = 0, rx_pkts_nic = 0, rx_drops_nic = 0; 544 u64 tx_bytes_nic = 0, tx_pkts_nic = 0; 545 u64 bytes, pkts; 546 int i; 547 548 /* ensure only one thread updates stats at a time */ 549 if (test_and_set_bit(__FM10K_UPDATING_STATS, interface->state)) 550 return; 551 552 /* do not allow stats update via service task for next second */ 553 interface->next_stats_update = jiffies + HZ; 554 555 /* gather some stats to the interface struct that are per queue */ 556 for (bytes = 0, pkts = 0, i = 0; i < interface->num_tx_queues; i++) { 557 struct fm10k_ring *tx_ring = READ_ONCE(interface->tx_ring[i]); 558 559 if (!tx_ring) 560 continue; 561 562 restart_queue += tx_ring->tx_stats.restart_queue; 563 tx_busy += tx_ring->tx_stats.tx_busy; 564 tx_csum_errors += tx_ring->tx_stats.csum_err; 565 bytes += tx_ring->stats.bytes; 566 pkts += tx_ring->stats.packets; 567 hw_csum_tx_good += tx_ring->tx_stats.csum_good; 568 } 569 570 interface->restart_queue = restart_queue; 571 interface->tx_busy = tx_busy; 572 net_stats->tx_bytes = bytes; 573 net_stats->tx_packets = pkts; 574 interface->tx_csum_errors = tx_csum_errors; 575 interface->hw_csum_tx_good = hw_csum_tx_good; 576 577 /* gather some stats to the interface struct that are per queue */ 578 for (bytes = 0, pkts = 0, i = 0; i < interface->num_rx_queues; i++) { 579 struct fm10k_ring *rx_ring = READ_ONCE(interface->rx_ring[i]); 580 581 if (!rx_ring) 582 continue; 583 584 bytes += rx_ring->stats.bytes; 585 pkts += rx_ring->stats.packets; 586 alloc_failed += rx_ring->rx_stats.alloc_failed; 587 rx_csum_errors += rx_ring->rx_stats.csum_err; 588 rx_errors += rx_ring->rx_stats.errors; 589 hw_csum_rx_good += rx_ring->rx_stats.csum_good; 590 rx_switch_errors += rx_ring->rx_stats.switch_errors; 591 rx_drops += rx_ring->rx_stats.drops; 592 rx_pp_errors += rx_ring->rx_stats.pp_errors; 593 rx_link_errors += rx_ring->rx_stats.link_errors; 594 rx_length_errors += rx_ring->rx_stats.length_errors; 595 } 596 597 net_stats->rx_bytes = bytes; 598 net_stats->rx_packets = pkts; 599 interface->alloc_failed = alloc_failed; 600 interface->rx_csum_errors = rx_csum_errors; 601 interface->hw_csum_rx_good = hw_csum_rx_good; 602 interface->rx_switch_errors = rx_switch_errors; 603 interface->rx_drops = rx_drops; 604 interface->rx_pp_errors = rx_pp_errors; 605 interface->rx_link_errors = rx_link_errors; 606 interface->rx_length_errors = rx_length_errors; 607 608 hw->mac.ops.update_hw_stats(hw, &interface->stats); 609 610 for (i = 0; i < hw->mac.max_queues; i++) { 611 struct fm10k_hw_stats_q *q = &interface->stats.q[i]; 612 613 tx_bytes_nic += q->tx_bytes.count; 614 tx_pkts_nic += q->tx_packets.count; 615 rx_bytes_nic += q->rx_bytes.count; 616 rx_pkts_nic += q->rx_packets.count; 617 rx_drops_nic += q->rx_drops.count; 618 } 619 620 interface->tx_bytes_nic = tx_bytes_nic; 621 interface->tx_packets_nic = tx_pkts_nic; 622 interface->rx_bytes_nic = rx_bytes_nic; 623 interface->rx_packets_nic = rx_pkts_nic; 624 interface->rx_drops_nic = rx_drops_nic; 625 626 /* Fill out the OS statistics structure */ 627 net_stats->rx_errors = rx_errors; 628 net_stats->rx_dropped = interface->stats.nodesc_drop.count; 629 630 /* Update VF statistics */ 631 fm10k_iov_update_stats(interface); 632 633 clear_bit(__FM10K_UPDATING_STATS, interface->state); 634 } 635 636 /** 637 * fm10k_watchdog_flush_tx - flush queues on host not ready 638 * @interface: pointer to the device interface structure 639 **/ 640 static void fm10k_watchdog_flush_tx(struct fm10k_intfc *interface) 641 { 642 int some_tx_pending = 0; 643 int i; 644 645 /* nothing to do if carrier is up */ 646 if (netif_carrier_ok(interface->netdev)) 647 return; 648 649 for (i = 0; i < interface->num_tx_queues; i++) { 650 struct fm10k_ring *tx_ring = interface->tx_ring[i]; 651 652 if (tx_ring->next_to_use != tx_ring->next_to_clean) { 653 some_tx_pending = 1; 654 break; 655 } 656 } 657 658 /* We've lost link, so the controller stops DMA, but we've got 659 * queued Tx work that's never going to get done, so reset 660 * controller to flush Tx. 661 */ 662 if (some_tx_pending) 663 set_bit(FM10K_FLAG_RESET_REQUESTED, interface->flags); 664 } 665 666 /** 667 * fm10k_watchdog_subtask - check and bring link up 668 * @interface: pointer to the device interface structure 669 **/ 670 static void fm10k_watchdog_subtask(struct fm10k_intfc *interface) 671 { 672 /* if interface is down do nothing */ 673 if (test_bit(__FM10K_DOWN, interface->state) || 674 test_bit(__FM10K_RESETTING, interface->state)) 675 return; 676 677 if (interface->host_ready) 678 fm10k_watchdog_host_is_ready(interface); 679 else 680 fm10k_watchdog_host_not_ready(interface); 681 682 /* update stats only once every second */ 683 if (time_is_before_jiffies(interface->next_stats_update)) 684 fm10k_update_stats(interface); 685 686 /* flush any uncompleted work */ 687 fm10k_watchdog_flush_tx(interface); 688 } 689 690 /** 691 * fm10k_check_hang_subtask - check for hung queues and dropped interrupts 692 * @interface: pointer to the device interface structure 693 * 694 * This function serves two purposes. First it strobes the interrupt lines 695 * in order to make certain interrupts are occurring. Secondly it sets the 696 * bits needed to check for TX hangs. As a result we should immediately 697 * determine if a hang has occurred. 698 */ 699 static void fm10k_check_hang_subtask(struct fm10k_intfc *interface) 700 { 701 /* If we're down or resetting, just bail */ 702 if (test_bit(__FM10K_DOWN, interface->state) || 703 test_bit(__FM10K_RESETTING, interface->state)) 704 return; 705 706 /* rate limit tx hang checks to only once every 2 seconds */ 707 if (time_is_after_eq_jiffies(interface->next_tx_hang_check)) 708 return; 709 interface->next_tx_hang_check = jiffies + (2 * HZ); 710 711 if (netif_carrier_ok(interface->netdev)) { 712 int i; 713 714 /* Force detection of hung controller */ 715 for (i = 0; i < interface->num_tx_queues; i++) 716 set_check_for_tx_hang(interface->tx_ring[i]); 717 718 /* Rearm all in-use q_vectors for immediate firing */ 719 for (i = 0; i < interface->num_q_vectors; i++) { 720 struct fm10k_q_vector *qv = interface->q_vector[i]; 721 722 if (!qv->tx.count && !qv->rx.count) 723 continue; 724 writel(FM10K_ITR_ENABLE | FM10K_ITR_PENDING2, qv->itr); 725 } 726 } 727 } 728 729 /** 730 * fm10k_service_task - manages and runs subtasks 731 * @work: pointer to work_struct containing our data 732 **/ 733 static void fm10k_service_task(struct work_struct *work) 734 { 735 struct fm10k_intfc *interface; 736 737 interface = container_of(work, struct fm10k_intfc, service_task); 738 739 /* Check whether we're detached first */ 740 fm10k_detach_subtask(interface); 741 742 /* tasks run even when interface is down */ 743 fm10k_mbx_subtask(interface); 744 fm10k_reset_subtask(interface); 745 746 /* tasks only run when interface is up */ 747 fm10k_watchdog_subtask(interface); 748 fm10k_check_hang_subtask(interface); 749 750 /* release lock on service events to allow scheduling next event */ 751 fm10k_service_event_complete(interface); 752 } 753 754 /** 755 * fm10k_macvlan_task - send queued MAC/VLAN requests to switch manager 756 * @work: pointer to work_struct containing our data 757 * 758 * This work item handles sending MAC/VLAN updates to the switch manager. When 759 * the interface is up, it will attempt to queue mailbox messages to the 760 * switch manager requesting updates for MAC/VLAN pairs. If the Tx fifo of the 761 * mailbox is full, it will reschedule itself to try again in a short while. 762 * This ensures that the driver does not overload the switch mailbox with too 763 * many simultaneous requests, causing an unnecessary reset. 764 **/ 765 static void fm10k_macvlan_task(struct work_struct *work) 766 { 767 struct fm10k_macvlan_request *item; 768 struct fm10k_intfc *interface; 769 struct delayed_work *dwork; 770 struct list_head *requests; 771 struct fm10k_hw *hw; 772 unsigned long flags; 773 774 dwork = to_delayed_work(work); 775 interface = container_of(dwork, struct fm10k_intfc, macvlan_task); 776 hw = &interface->hw; 777 requests = &interface->macvlan_requests; 778 779 do { 780 /* Pop the first item off the list */ 781 spin_lock_irqsave(&interface->macvlan_lock, flags); 782 item = list_first_entry_or_null(requests, 783 struct fm10k_macvlan_request, 784 list); 785 if (item) 786 list_del_init(&item->list); 787 788 spin_unlock_irqrestore(&interface->macvlan_lock, flags); 789 790 /* We have no more items to process */ 791 if (!item) 792 goto done; 793 794 fm10k_mbx_lock(interface); 795 796 /* Check that we have plenty of space to send the message. We 797 * want to ensure that the mailbox stays low enough to avoid a 798 * change in the host state, otherwise we may see spurious 799 * link up / link down notifications. 800 */ 801 if (!hw->mbx.ops.tx_ready(&hw->mbx, FM10K_VFMBX_MSG_MTU + 5)) { 802 hw->mbx.ops.process(hw, &hw->mbx); 803 set_bit(__FM10K_MACVLAN_REQUEST, interface->state); 804 fm10k_mbx_unlock(interface); 805 806 /* Put the request back on the list */ 807 spin_lock_irqsave(&interface->macvlan_lock, flags); 808 list_add(&item->list, requests); 809 spin_unlock_irqrestore(&interface->macvlan_lock, flags); 810 break; 811 } 812 813 switch (item->type) { 814 case FM10K_MC_MAC_REQUEST: 815 hw->mac.ops.update_mc_addr(hw, 816 item->mac.glort, 817 item->mac.addr, 818 item->mac.vid, 819 item->set); 820 break; 821 case FM10K_UC_MAC_REQUEST: 822 hw->mac.ops.update_uc_addr(hw, 823 item->mac.glort, 824 item->mac.addr, 825 item->mac.vid, 826 item->set, 827 0); 828 break; 829 case FM10K_VLAN_REQUEST: 830 hw->mac.ops.update_vlan(hw, 831 item->vlan.vid, 832 item->vlan.vsi, 833 item->set); 834 break; 835 default: 836 break; 837 } 838 839 fm10k_mbx_unlock(interface); 840 841 /* Free the item now that we've sent the update */ 842 kfree(item); 843 } while (true); 844 845 done: 846 WARN_ON(!test_bit(__FM10K_MACVLAN_SCHED, interface->state)); 847 848 /* flush memory to make sure state is correct */ 849 smp_mb__before_atomic(); 850 clear_bit(__FM10K_MACVLAN_SCHED, interface->state); 851 852 /* If a MAC/VLAN request was scheduled since we started, we should 853 * re-schedule. However, there is no reason to re-schedule if there is 854 * no work to do. 855 */ 856 if (test_bit(__FM10K_MACVLAN_REQUEST, interface->state)) 857 fm10k_macvlan_schedule(interface); 858 } 859 860 /** 861 * fm10k_configure_tx_ring - Configure Tx ring after Reset 862 * @interface: board private structure 863 * @ring: structure containing ring specific data 864 * 865 * Configure the Tx descriptor ring after a reset. 866 **/ 867 static void fm10k_configure_tx_ring(struct fm10k_intfc *interface, 868 struct fm10k_ring *ring) 869 { 870 struct fm10k_hw *hw = &interface->hw; 871 u64 tdba = ring->dma; 872 u32 size = ring->count * sizeof(struct fm10k_tx_desc); 873 u32 txint = FM10K_INT_MAP_DISABLE; 874 u32 txdctl = BIT(FM10K_TXDCTL_MAX_TIME_SHIFT) | FM10K_TXDCTL_ENABLE; 875 u8 reg_idx = ring->reg_idx; 876 877 /* disable queue to avoid issues while updating state */ 878 fm10k_write_reg(hw, FM10K_TXDCTL(reg_idx), 0); 879 fm10k_write_flush(hw); 880 881 /* possible poll here to verify ring resources have been cleaned */ 882 883 /* set location and size for descriptor ring */ 884 fm10k_write_reg(hw, FM10K_TDBAL(reg_idx), tdba & DMA_BIT_MASK(32)); 885 fm10k_write_reg(hw, FM10K_TDBAH(reg_idx), tdba >> 32); 886 fm10k_write_reg(hw, FM10K_TDLEN(reg_idx), size); 887 888 /* reset head and tail pointers */ 889 fm10k_write_reg(hw, FM10K_TDH(reg_idx), 0); 890 fm10k_write_reg(hw, FM10K_TDT(reg_idx), 0); 891 892 /* store tail pointer */ 893 ring->tail = &interface->uc_addr[FM10K_TDT(reg_idx)]; 894 895 /* reset ntu and ntc to place SW in sync with hardware */ 896 ring->next_to_clean = 0; 897 ring->next_to_use = 0; 898 899 /* Map interrupt */ 900 if (ring->q_vector) { 901 txint = ring->q_vector->v_idx + NON_Q_VECTORS; 902 txint |= FM10K_INT_MAP_TIMER0; 903 } 904 905 fm10k_write_reg(hw, FM10K_TXINT(reg_idx), txint); 906 907 /* enable use of FTAG bit in Tx descriptor, register is RO for VF */ 908 fm10k_write_reg(hw, FM10K_PFVTCTL(reg_idx), 909 FM10K_PFVTCTL_FTAG_DESC_ENABLE); 910 911 /* Initialize XPS */ 912 if (!test_and_set_bit(__FM10K_TX_XPS_INIT_DONE, ring->state) && 913 ring->q_vector) 914 netif_set_xps_queue(ring->netdev, 915 &ring->q_vector->affinity_mask, 916 ring->queue_index); 917 918 /* enable queue */ 919 fm10k_write_reg(hw, FM10K_TXDCTL(reg_idx), txdctl); 920 } 921 922 /** 923 * fm10k_enable_tx_ring - Verify Tx ring is enabled after configuration 924 * @interface: board private structure 925 * @ring: structure containing ring specific data 926 * 927 * Verify the Tx descriptor ring is ready for transmit. 928 **/ 929 static void fm10k_enable_tx_ring(struct fm10k_intfc *interface, 930 struct fm10k_ring *ring) 931 { 932 struct fm10k_hw *hw = &interface->hw; 933 int wait_loop = 10; 934 u32 txdctl; 935 u8 reg_idx = ring->reg_idx; 936 937 /* if we are already enabled just exit */ 938 if (fm10k_read_reg(hw, FM10K_TXDCTL(reg_idx)) & FM10K_TXDCTL_ENABLE) 939 return; 940 941 /* poll to verify queue is enabled */ 942 do { 943 usleep_range(1000, 2000); 944 txdctl = fm10k_read_reg(hw, FM10K_TXDCTL(reg_idx)); 945 } while (!(txdctl & FM10K_TXDCTL_ENABLE) && --wait_loop); 946 if (!wait_loop) 947 netif_err(interface, drv, interface->netdev, 948 "Could not enable Tx Queue %d\n", reg_idx); 949 } 950 951 /** 952 * fm10k_configure_tx - Configure Transmit Unit after Reset 953 * @interface: board private structure 954 * 955 * Configure the Tx unit of the MAC after a reset. 956 **/ 957 static void fm10k_configure_tx(struct fm10k_intfc *interface) 958 { 959 int i; 960 961 /* Setup the HW Tx Head and Tail descriptor pointers */ 962 for (i = 0; i < interface->num_tx_queues; i++) 963 fm10k_configure_tx_ring(interface, interface->tx_ring[i]); 964 965 /* poll here to verify that Tx rings are now enabled */ 966 for (i = 0; i < interface->num_tx_queues; i++) 967 fm10k_enable_tx_ring(interface, interface->tx_ring[i]); 968 } 969 970 /** 971 * fm10k_configure_rx_ring - Configure Rx ring after Reset 972 * @interface: board private structure 973 * @ring: structure containing ring specific data 974 * 975 * Configure the Rx descriptor ring after a reset. 976 **/ 977 static void fm10k_configure_rx_ring(struct fm10k_intfc *interface, 978 struct fm10k_ring *ring) 979 { 980 u64 rdba = ring->dma; 981 struct fm10k_hw *hw = &interface->hw; 982 u32 size = ring->count * sizeof(union fm10k_rx_desc); 983 u32 rxqctl, rxdctl = FM10K_RXDCTL_WRITE_BACK_MIN_DELAY; 984 u32 srrctl = FM10K_SRRCTL_BUFFER_CHAINING_EN; 985 u32 rxint = FM10K_INT_MAP_DISABLE; 986 u8 rx_pause = interface->rx_pause; 987 u8 reg_idx = ring->reg_idx; 988 989 /* disable queue to avoid issues while updating state */ 990 rxqctl = fm10k_read_reg(hw, FM10K_RXQCTL(reg_idx)); 991 rxqctl &= ~FM10K_RXQCTL_ENABLE; 992 fm10k_write_reg(hw, FM10K_RXQCTL(reg_idx), rxqctl); 993 fm10k_write_flush(hw); 994 995 /* possible poll here to verify ring resources have been cleaned */ 996 997 /* set location and size for descriptor ring */ 998 fm10k_write_reg(hw, FM10K_RDBAL(reg_idx), rdba & DMA_BIT_MASK(32)); 999 fm10k_write_reg(hw, FM10K_RDBAH(reg_idx), rdba >> 32); 1000 fm10k_write_reg(hw, FM10K_RDLEN(reg_idx), size); 1001 1002 /* reset head and tail pointers */ 1003 fm10k_write_reg(hw, FM10K_RDH(reg_idx), 0); 1004 fm10k_write_reg(hw, FM10K_RDT(reg_idx), 0); 1005 1006 /* store tail pointer */ 1007 ring->tail = &interface->uc_addr[FM10K_RDT(reg_idx)]; 1008 1009 /* reset ntu and ntc to place SW in sync with hardware */ 1010 ring->next_to_clean = 0; 1011 ring->next_to_use = 0; 1012 ring->next_to_alloc = 0; 1013 1014 /* Configure the Rx buffer size for one buff without split */ 1015 srrctl |= FM10K_RX_BUFSZ >> FM10K_SRRCTL_BSIZEPKT_SHIFT; 1016 1017 /* Configure the Rx ring to suppress loopback packets */ 1018 srrctl |= FM10K_SRRCTL_LOOPBACK_SUPPRESS; 1019 fm10k_write_reg(hw, FM10K_SRRCTL(reg_idx), srrctl); 1020 1021 /* Enable drop on empty */ 1022 #ifdef CONFIG_DCB 1023 if (interface->pfc_en) 1024 rx_pause = interface->pfc_en; 1025 #endif 1026 if (!(rx_pause & BIT(ring->qos_pc))) 1027 rxdctl |= FM10K_RXDCTL_DROP_ON_EMPTY; 1028 1029 fm10k_write_reg(hw, FM10K_RXDCTL(reg_idx), rxdctl); 1030 1031 /* assign default VLAN to queue */ 1032 ring->vid = hw->mac.default_vid; 1033 1034 /* if we have an active VLAN, disable default VLAN ID */ 1035 if (test_bit(hw->mac.default_vid, interface->active_vlans)) 1036 ring->vid |= FM10K_VLAN_CLEAR; 1037 1038 /* Map interrupt */ 1039 if (ring->q_vector) { 1040 rxint = ring->q_vector->v_idx + NON_Q_VECTORS; 1041 rxint |= FM10K_INT_MAP_TIMER1; 1042 } 1043 1044 fm10k_write_reg(hw, FM10K_RXINT(reg_idx), rxint); 1045 1046 /* enable queue */ 1047 rxqctl = fm10k_read_reg(hw, FM10K_RXQCTL(reg_idx)); 1048 rxqctl |= FM10K_RXQCTL_ENABLE; 1049 fm10k_write_reg(hw, FM10K_RXQCTL(reg_idx), rxqctl); 1050 1051 /* place buffers on ring for receive data */ 1052 fm10k_alloc_rx_buffers(ring, fm10k_desc_unused(ring)); 1053 } 1054 1055 /** 1056 * fm10k_update_rx_drop_en - Configures the drop enable bits for Rx rings 1057 * @interface: board private structure 1058 * 1059 * Configure the drop enable bits for the Rx rings. 1060 **/ 1061 void fm10k_update_rx_drop_en(struct fm10k_intfc *interface) 1062 { 1063 struct fm10k_hw *hw = &interface->hw; 1064 u8 rx_pause = interface->rx_pause; 1065 int i; 1066 1067 #ifdef CONFIG_DCB 1068 if (interface->pfc_en) 1069 rx_pause = interface->pfc_en; 1070 1071 #endif 1072 for (i = 0; i < interface->num_rx_queues; i++) { 1073 struct fm10k_ring *ring = interface->rx_ring[i]; 1074 u32 rxdctl = FM10K_RXDCTL_WRITE_BACK_MIN_DELAY; 1075 u8 reg_idx = ring->reg_idx; 1076 1077 if (!(rx_pause & BIT(ring->qos_pc))) 1078 rxdctl |= FM10K_RXDCTL_DROP_ON_EMPTY; 1079 1080 fm10k_write_reg(hw, FM10K_RXDCTL(reg_idx), rxdctl); 1081 } 1082 } 1083 1084 /** 1085 * fm10k_configure_dglort - Configure Receive DGLORT after reset 1086 * @interface: board private structure 1087 * 1088 * Configure the DGLORT description and RSS tables. 1089 **/ 1090 static void fm10k_configure_dglort(struct fm10k_intfc *interface) 1091 { 1092 struct fm10k_dglort_cfg dglort = { 0 }; 1093 struct fm10k_hw *hw = &interface->hw; 1094 int i; 1095 u32 mrqc; 1096 1097 /* Fill out hash function seeds */ 1098 for (i = 0; i < FM10K_RSSRK_SIZE; i++) 1099 fm10k_write_reg(hw, FM10K_RSSRK(0, i), interface->rssrk[i]); 1100 1101 /* Write RETA table to hardware */ 1102 for (i = 0; i < FM10K_RETA_SIZE; i++) 1103 fm10k_write_reg(hw, FM10K_RETA(0, i), interface->reta[i]); 1104 1105 /* Generate RSS hash based on packet types, TCP/UDP 1106 * port numbers and/or IPv4/v6 src and dst addresses 1107 */ 1108 mrqc = FM10K_MRQC_IPV4 | 1109 FM10K_MRQC_TCP_IPV4 | 1110 FM10K_MRQC_IPV6 | 1111 FM10K_MRQC_TCP_IPV6; 1112 1113 if (test_bit(FM10K_FLAG_RSS_FIELD_IPV4_UDP, interface->flags)) 1114 mrqc |= FM10K_MRQC_UDP_IPV4; 1115 if (test_bit(FM10K_FLAG_RSS_FIELD_IPV6_UDP, interface->flags)) 1116 mrqc |= FM10K_MRQC_UDP_IPV6; 1117 1118 fm10k_write_reg(hw, FM10K_MRQC(0), mrqc); 1119 1120 /* configure default DGLORT mapping for RSS/DCB */ 1121 dglort.inner_rss = 1; 1122 dglort.rss_l = fls(interface->ring_feature[RING_F_RSS].mask); 1123 dglort.pc_l = fls(interface->ring_feature[RING_F_QOS].mask); 1124 hw->mac.ops.configure_dglort_map(hw, &dglort); 1125 1126 /* assign GLORT per queue for queue mapped testing */ 1127 if (interface->glort_count > 64) { 1128 memset(&dglort, 0, sizeof(dglort)); 1129 dglort.inner_rss = 1; 1130 dglort.glort = interface->glort + 64; 1131 dglort.idx = fm10k_dglort_pf_queue; 1132 dglort.queue_l = fls(interface->num_rx_queues - 1); 1133 hw->mac.ops.configure_dglort_map(hw, &dglort); 1134 } 1135 1136 /* assign glort value for RSS/DCB specific to this interface */ 1137 memset(&dglort, 0, sizeof(dglort)); 1138 dglort.inner_rss = 1; 1139 dglort.glort = interface->glort; 1140 dglort.rss_l = fls(interface->ring_feature[RING_F_RSS].mask); 1141 dglort.pc_l = fls(interface->ring_feature[RING_F_QOS].mask); 1142 /* configure DGLORT mapping for RSS/DCB */ 1143 dglort.idx = fm10k_dglort_pf_rss; 1144 if (interface->l2_accel) 1145 dglort.shared_l = fls(interface->l2_accel->size); 1146 hw->mac.ops.configure_dglort_map(hw, &dglort); 1147 } 1148 1149 /** 1150 * fm10k_configure_rx - Configure Receive Unit after Reset 1151 * @interface: board private structure 1152 * 1153 * Configure the Rx unit of the MAC after a reset. 1154 **/ 1155 static void fm10k_configure_rx(struct fm10k_intfc *interface) 1156 { 1157 int i; 1158 1159 /* Configure SWPRI to PC map */ 1160 fm10k_configure_swpri_map(interface); 1161 1162 /* Configure RSS and DGLORT map */ 1163 fm10k_configure_dglort(interface); 1164 1165 /* Setup the HW Rx Head and Tail descriptor pointers */ 1166 for (i = 0; i < interface->num_rx_queues; i++) 1167 fm10k_configure_rx_ring(interface, interface->rx_ring[i]); 1168 1169 /* possible poll here to verify that Rx rings are now enabled */ 1170 } 1171 1172 static void fm10k_napi_enable_all(struct fm10k_intfc *interface) 1173 { 1174 struct fm10k_q_vector *q_vector; 1175 int q_idx; 1176 1177 for (q_idx = 0; q_idx < interface->num_q_vectors; q_idx++) { 1178 q_vector = interface->q_vector[q_idx]; 1179 napi_enable(&q_vector->napi); 1180 } 1181 } 1182 1183 static irqreturn_t fm10k_msix_clean_rings(int __always_unused irq, void *data) 1184 { 1185 struct fm10k_q_vector *q_vector = data; 1186 1187 if (q_vector->rx.count || q_vector->tx.count) 1188 napi_schedule_irqoff(&q_vector->napi); 1189 1190 return IRQ_HANDLED; 1191 } 1192 1193 static irqreturn_t fm10k_msix_mbx_vf(int __always_unused irq, void *data) 1194 { 1195 struct fm10k_intfc *interface = data; 1196 struct fm10k_hw *hw = &interface->hw; 1197 struct fm10k_mbx_info *mbx = &hw->mbx; 1198 1199 /* re-enable mailbox interrupt and indicate 20us delay */ 1200 fm10k_write_reg(hw, FM10K_VFITR(FM10K_MBX_VECTOR), 1201 (FM10K_MBX_INT_DELAY >> hw->mac.itr_scale) | 1202 FM10K_ITR_ENABLE); 1203 1204 /* service upstream mailbox */ 1205 if (fm10k_mbx_trylock(interface)) { 1206 mbx->ops.process(hw, mbx); 1207 fm10k_mbx_unlock(interface); 1208 } 1209 1210 hw->mac.get_host_state = true; 1211 fm10k_service_event_schedule(interface); 1212 1213 return IRQ_HANDLED; 1214 } 1215 1216 #define FM10K_ERR_MSG(type) case (type): error = #type; break 1217 static void fm10k_handle_fault(struct fm10k_intfc *interface, int type, 1218 struct fm10k_fault *fault) 1219 { 1220 struct pci_dev *pdev = interface->pdev; 1221 struct fm10k_hw *hw = &interface->hw; 1222 struct fm10k_iov_data *iov_data = interface->iov_data; 1223 char *error; 1224 1225 switch (type) { 1226 case FM10K_PCA_FAULT: 1227 switch (fault->type) { 1228 default: 1229 error = "Unknown PCA error"; 1230 break; 1231 FM10K_ERR_MSG(PCA_NO_FAULT); 1232 FM10K_ERR_MSG(PCA_UNMAPPED_ADDR); 1233 FM10K_ERR_MSG(PCA_BAD_QACCESS_PF); 1234 FM10K_ERR_MSG(PCA_BAD_QACCESS_VF); 1235 FM10K_ERR_MSG(PCA_MALICIOUS_REQ); 1236 FM10K_ERR_MSG(PCA_POISONED_TLP); 1237 FM10K_ERR_MSG(PCA_TLP_ABORT); 1238 } 1239 break; 1240 case FM10K_THI_FAULT: 1241 switch (fault->type) { 1242 default: 1243 error = "Unknown THI error"; 1244 break; 1245 FM10K_ERR_MSG(THI_NO_FAULT); 1246 FM10K_ERR_MSG(THI_MAL_DIS_Q_FAULT); 1247 } 1248 break; 1249 case FM10K_FUM_FAULT: 1250 switch (fault->type) { 1251 default: 1252 error = "Unknown FUM error"; 1253 break; 1254 FM10K_ERR_MSG(FUM_NO_FAULT); 1255 FM10K_ERR_MSG(FUM_UNMAPPED_ADDR); 1256 FM10K_ERR_MSG(FUM_BAD_VF_QACCESS); 1257 FM10K_ERR_MSG(FUM_ADD_DECODE_ERR); 1258 FM10K_ERR_MSG(FUM_RO_ERROR); 1259 FM10K_ERR_MSG(FUM_QPRC_CRC_ERROR); 1260 FM10K_ERR_MSG(FUM_CSR_TIMEOUT); 1261 FM10K_ERR_MSG(FUM_INVALID_TYPE); 1262 FM10K_ERR_MSG(FUM_INVALID_LENGTH); 1263 FM10K_ERR_MSG(FUM_INVALID_BE); 1264 FM10K_ERR_MSG(FUM_INVALID_ALIGN); 1265 } 1266 break; 1267 default: 1268 error = "Undocumented fault"; 1269 break; 1270 } 1271 1272 dev_warn(&pdev->dev, 1273 "%s Address: 0x%llx SpecInfo: 0x%x Func: %02x.%0x\n", 1274 error, fault->address, fault->specinfo, 1275 PCI_SLOT(fault->func), PCI_FUNC(fault->func)); 1276 1277 /* For VF faults, clear out the respective LPORT, reset the queue 1278 * resources, and then reconnect to the mailbox. This allows the 1279 * VF in question to resume behavior. For transient faults that are 1280 * the result of non-malicious behavior this will log the fault and 1281 * allow the VF to resume functionality. Obviously for malicious VFs 1282 * they will be able to attempt malicious behavior again. In this 1283 * case, the system administrator will need to step in and manually 1284 * remove or disable the VF in question. 1285 */ 1286 if (fault->func && iov_data) { 1287 int vf = fault->func - 1; 1288 struct fm10k_vf_info *vf_info = &iov_data->vf_info[vf]; 1289 1290 hw->iov.ops.reset_lport(hw, vf_info); 1291 hw->iov.ops.reset_resources(hw, vf_info); 1292 1293 /* reset_lport disables the VF, so re-enable it */ 1294 hw->iov.ops.set_lport(hw, vf_info, vf, 1295 FM10K_VF_FLAG_MULTI_CAPABLE); 1296 1297 /* reset_resources will disconnect from the mbx */ 1298 vf_info->mbx.ops.connect(hw, &vf_info->mbx); 1299 } 1300 } 1301 1302 static void fm10k_report_fault(struct fm10k_intfc *interface, u32 eicr) 1303 { 1304 struct fm10k_hw *hw = &interface->hw; 1305 struct fm10k_fault fault = { 0 }; 1306 int type, err; 1307 1308 for (eicr &= FM10K_EICR_FAULT_MASK, type = FM10K_PCA_FAULT; 1309 eicr; 1310 eicr >>= 1, type += FM10K_FAULT_SIZE) { 1311 /* only check if there is an error reported */ 1312 if (!(eicr & 0x1)) 1313 continue; 1314 1315 /* retrieve fault info */ 1316 err = hw->mac.ops.get_fault(hw, type, &fault); 1317 if (err) { 1318 dev_err(&interface->pdev->dev, 1319 "error reading fault\n"); 1320 continue; 1321 } 1322 1323 fm10k_handle_fault(interface, type, &fault); 1324 } 1325 } 1326 1327 static void fm10k_reset_drop_on_empty(struct fm10k_intfc *interface, u32 eicr) 1328 { 1329 struct fm10k_hw *hw = &interface->hw; 1330 const u32 rxdctl = FM10K_RXDCTL_WRITE_BACK_MIN_DELAY; 1331 u32 maxholdq; 1332 int q; 1333 1334 if (!(eicr & FM10K_EICR_MAXHOLDTIME)) 1335 return; 1336 1337 maxholdq = fm10k_read_reg(hw, FM10K_MAXHOLDQ(7)); 1338 if (maxholdq) 1339 fm10k_write_reg(hw, FM10K_MAXHOLDQ(7), maxholdq); 1340 for (q = 255;;) { 1341 if (maxholdq & BIT(31)) { 1342 if (q < FM10K_MAX_QUEUES_PF) { 1343 interface->rx_overrun_pf++; 1344 fm10k_write_reg(hw, FM10K_RXDCTL(q), rxdctl); 1345 } else { 1346 interface->rx_overrun_vf++; 1347 } 1348 } 1349 1350 maxholdq *= 2; 1351 if (!maxholdq) 1352 q &= ~(32 - 1); 1353 1354 if (!q) 1355 break; 1356 1357 if (q-- % 32) 1358 continue; 1359 1360 maxholdq = fm10k_read_reg(hw, FM10K_MAXHOLDQ(q / 32)); 1361 if (maxholdq) 1362 fm10k_write_reg(hw, FM10K_MAXHOLDQ(q / 32), maxholdq); 1363 } 1364 } 1365 1366 static irqreturn_t fm10k_msix_mbx_pf(int __always_unused irq, void *data) 1367 { 1368 struct fm10k_intfc *interface = data; 1369 struct fm10k_hw *hw = &interface->hw; 1370 struct fm10k_mbx_info *mbx = &hw->mbx; 1371 u32 eicr; 1372 1373 /* unmask any set bits related to this interrupt */ 1374 eicr = fm10k_read_reg(hw, FM10K_EICR); 1375 fm10k_write_reg(hw, FM10K_EICR, eicr & (FM10K_EICR_MAILBOX | 1376 FM10K_EICR_SWITCHREADY | 1377 FM10K_EICR_SWITCHNOTREADY)); 1378 1379 /* report any faults found to the message log */ 1380 fm10k_report_fault(interface, eicr); 1381 1382 /* reset any queues disabled due to receiver overrun */ 1383 fm10k_reset_drop_on_empty(interface, eicr); 1384 1385 /* service mailboxes */ 1386 if (fm10k_mbx_trylock(interface)) { 1387 s32 err = mbx->ops.process(hw, mbx); 1388 1389 if (err == FM10K_ERR_RESET_REQUESTED) 1390 set_bit(FM10K_FLAG_RESET_REQUESTED, interface->flags); 1391 1392 /* handle VFLRE events */ 1393 fm10k_iov_event(interface); 1394 fm10k_mbx_unlock(interface); 1395 } 1396 1397 /* if switch toggled state we should reset GLORTs */ 1398 if (eicr & FM10K_EICR_SWITCHNOTREADY) { 1399 /* force link down for at least 4 seconds */ 1400 interface->link_down_event = jiffies + (4 * HZ); 1401 set_bit(__FM10K_LINK_DOWN, interface->state); 1402 1403 /* reset dglort_map back to no config */ 1404 hw->mac.dglort_map = FM10K_DGLORTMAP_NONE; 1405 } 1406 1407 /* we should validate host state after interrupt event */ 1408 hw->mac.get_host_state = true; 1409 1410 /* validate host state, and handle VF mailboxes in the service task */ 1411 fm10k_service_event_schedule(interface); 1412 1413 /* re-enable mailbox interrupt and indicate 20us delay */ 1414 fm10k_write_reg(hw, FM10K_ITR(FM10K_MBX_VECTOR), 1415 (FM10K_MBX_INT_DELAY >> hw->mac.itr_scale) | 1416 FM10K_ITR_ENABLE); 1417 1418 return IRQ_HANDLED; 1419 } 1420 1421 void fm10k_mbx_free_irq(struct fm10k_intfc *interface) 1422 { 1423 struct fm10k_hw *hw = &interface->hw; 1424 struct msix_entry *entry; 1425 int itr_reg; 1426 1427 /* no mailbox IRQ to free if MSI-X is not enabled */ 1428 if (!interface->msix_entries) 1429 return; 1430 1431 entry = &interface->msix_entries[FM10K_MBX_VECTOR]; 1432 1433 /* disconnect the mailbox */ 1434 hw->mbx.ops.disconnect(hw, &hw->mbx); 1435 1436 /* disable Mailbox cause */ 1437 if (hw->mac.type == fm10k_mac_pf) { 1438 fm10k_write_reg(hw, FM10K_EIMR, 1439 FM10K_EIMR_DISABLE(PCA_FAULT) | 1440 FM10K_EIMR_DISABLE(FUM_FAULT) | 1441 FM10K_EIMR_DISABLE(MAILBOX) | 1442 FM10K_EIMR_DISABLE(SWITCHREADY) | 1443 FM10K_EIMR_DISABLE(SWITCHNOTREADY) | 1444 FM10K_EIMR_DISABLE(SRAMERROR) | 1445 FM10K_EIMR_DISABLE(VFLR) | 1446 FM10K_EIMR_DISABLE(MAXHOLDTIME)); 1447 itr_reg = FM10K_ITR(FM10K_MBX_VECTOR); 1448 } else { 1449 itr_reg = FM10K_VFITR(FM10K_MBX_VECTOR); 1450 } 1451 1452 fm10k_write_reg(hw, itr_reg, FM10K_ITR_MASK_SET); 1453 1454 free_irq(entry->vector, interface); 1455 } 1456 1457 static s32 fm10k_mbx_mac_addr(struct fm10k_hw *hw, u32 **results, 1458 struct fm10k_mbx_info *mbx) 1459 { 1460 bool vlan_override = hw->mac.vlan_override; 1461 u16 default_vid = hw->mac.default_vid; 1462 struct fm10k_intfc *interface; 1463 s32 err; 1464 1465 err = fm10k_msg_mac_vlan_vf(hw, results, mbx); 1466 if (err) 1467 return err; 1468 1469 interface = container_of(hw, struct fm10k_intfc, hw); 1470 1471 /* MAC was changed so we need reset */ 1472 if (is_valid_ether_addr(hw->mac.perm_addr) && 1473 !ether_addr_equal(hw->mac.perm_addr, hw->mac.addr)) 1474 set_bit(FM10K_FLAG_RESET_REQUESTED, interface->flags); 1475 1476 /* VLAN override was changed, or default VLAN changed */ 1477 if ((vlan_override != hw->mac.vlan_override) || 1478 (default_vid != hw->mac.default_vid)) 1479 set_bit(FM10K_FLAG_RESET_REQUESTED, interface->flags); 1480 1481 return 0; 1482 } 1483 1484 /* generic error handler for mailbox issues */ 1485 static s32 fm10k_mbx_error(struct fm10k_hw *hw, u32 **results, 1486 struct fm10k_mbx_info __always_unused *mbx) 1487 { 1488 struct fm10k_intfc *interface; 1489 struct pci_dev *pdev; 1490 1491 interface = container_of(hw, struct fm10k_intfc, hw); 1492 pdev = interface->pdev; 1493 1494 dev_err(&pdev->dev, "Unknown message ID %u\n", 1495 **results & FM10K_TLV_ID_MASK); 1496 1497 return 0; 1498 } 1499 1500 static const struct fm10k_msg_data vf_mbx_data[] = { 1501 FM10K_TLV_MSG_TEST_HANDLER(fm10k_tlv_msg_test), 1502 FM10K_VF_MSG_MAC_VLAN_HANDLER(fm10k_mbx_mac_addr), 1503 FM10K_VF_MSG_LPORT_STATE_HANDLER(fm10k_msg_lport_state_vf), 1504 FM10K_TLV_MSG_ERROR_HANDLER(fm10k_mbx_error), 1505 }; 1506 1507 static int fm10k_mbx_request_irq_vf(struct fm10k_intfc *interface) 1508 { 1509 struct msix_entry *entry = &interface->msix_entries[FM10K_MBX_VECTOR]; 1510 struct net_device *dev = interface->netdev; 1511 struct fm10k_hw *hw = &interface->hw; 1512 int err; 1513 1514 /* Use timer0 for interrupt moderation on the mailbox */ 1515 u32 itr = entry->entry | FM10K_INT_MAP_TIMER0; 1516 1517 /* register mailbox handlers */ 1518 err = hw->mbx.ops.register_handlers(&hw->mbx, vf_mbx_data); 1519 if (err) 1520 return err; 1521 1522 /* request the IRQ */ 1523 err = request_irq(entry->vector, fm10k_msix_mbx_vf, 0, 1524 dev->name, interface); 1525 if (err) { 1526 netif_err(interface, probe, dev, 1527 "request_irq for msix_mbx failed: %d\n", err); 1528 return err; 1529 } 1530 1531 /* map all of the interrupt sources */ 1532 fm10k_write_reg(hw, FM10K_VFINT_MAP, itr); 1533 1534 /* enable interrupt */ 1535 fm10k_write_reg(hw, FM10K_VFITR(entry->entry), FM10K_ITR_ENABLE); 1536 1537 return 0; 1538 } 1539 1540 static s32 fm10k_lport_map(struct fm10k_hw *hw, u32 **results, 1541 struct fm10k_mbx_info *mbx) 1542 { 1543 struct fm10k_intfc *interface; 1544 u32 dglort_map = hw->mac.dglort_map; 1545 s32 err; 1546 1547 interface = container_of(hw, struct fm10k_intfc, hw); 1548 1549 err = fm10k_msg_err_pf(hw, results, mbx); 1550 if (!err && hw->swapi.status) { 1551 /* force link down for a reasonable delay */ 1552 interface->link_down_event = jiffies + (2 * HZ); 1553 set_bit(__FM10K_LINK_DOWN, interface->state); 1554 1555 /* reset dglort_map back to no config */ 1556 hw->mac.dglort_map = FM10K_DGLORTMAP_NONE; 1557 1558 fm10k_service_event_schedule(interface); 1559 1560 /* prevent overloading kernel message buffer */ 1561 if (interface->lport_map_failed) 1562 return 0; 1563 1564 interface->lport_map_failed = true; 1565 1566 if (hw->swapi.status == FM10K_MSG_ERR_PEP_NOT_SCHEDULED) 1567 dev_warn(&interface->pdev->dev, 1568 "cannot obtain link because the host interface is configured for a PCIe host interface bandwidth of zero\n"); 1569 dev_warn(&interface->pdev->dev, 1570 "request logical port map failed: %d\n", 1571 hw->swapi.status); 1572 1573 return 0; 1574 } 1575 1576 err = fm10k_msg_lport_map_pf(hw, results, mbx); 1577 if (err) 1578 return err; 1579 1580 interface->lport_map_failed = false; 1581 1582 /* we need to reset if port count was just updated */ 1583 if (dglort_map != hw->mac.dglort_map) 1584 set_bit(FM10K_FLAG_RESET_REQUESTED, interface->flags); 1585 1586 return 0; 1587 } 1588 1589 static s32 fm10k_update_pvid(struct fm10k_hw *hw, u32 **results, 1590 struct fm10k_mbx_info __always_unused *mbx) 1591 { 1592 struct fm10k_intfc *interface; 1593 u16 glort, pvid; 1594 u32 pvid_update; 1595 s32 err; 1596 1597 err = fm10k_tlv_attr_get_u32(results[FM10K_PF_ATTR_ID_UPDATE_PVID], 1598 &pvid_update); 1599 if (err) 1600 return err; 1601 1602 /* extract values from the pvid update */ 1603 glort = FM10K_MSG_HDR_FIELD_GET(pvid_update, UPDATE_PVID_GLORT); 1604 pvid = FM10K_MSG_HDR_FIELD_GET(pvid_update, UPDATE_PVID_PVID); 1605 1606 /* if glort is not valid return error */ 1607 if (!fm10k_glort_valid_pf(hw, glort)) 1608 return FM10K_ERR_PARAM; 1609 1610 /* verify VLAN ID is valid */ 1611 if (pvid >= FM10K_VLAN_TABLE_VID_MAX) 1612 return FM10K_ERR_PARAM; 1613 1614 interface = container_of(hw, struct fm10k_intfc, hw); 1615 1616 /* check to see if this belongs to one of the VFs */ 1617 err = fm10k_iov_update_pvid(interface, glort, pvid); 1618 if (!err) 1619 return 0; 1620 1621 /* we need to reset if default VLAN was just updated */ 1622 if (pvid != hw->mac.default_vid) 1623 set_bit(FM10K_FLAG_RESET_REQUESTED, interface->flags); 1624 1625 hw->mac.default_vid = pvid; 1626 1627 return 0; 1628 } 1629 1630 static const struct fm10k_msg_data pf_mbx_data[] = { 1631 FM10K_PF_MSG_ERR_HANDLER(XCAST_MODES, fm10k_msg_err_pf), 1632 FM10K_PF_MSG_ERR_HANDLER(UPDATE_MAC_FWD_RULE, fm10k_msg_err_pf), 1633 FM10K_PF_MSG_LPORT_MAP_HANDLER(fm10k_lport_map), 1634 FM10K_PF_MSG_ERR_HANDLER(LPORT_CREATE, fm10k_msg_err_pf), 1635 FM10K_PF_MSG_ERR_HANDLER(LPORT_DELETE, fm10k_msg_err_pf), 1636 FM10K_PF_MSG_UPDATE_PVID_HANDLER(fm10k_update_pvid), 1637 FM10K_TLV_MSG_ERROR_HANDLER(fm10k_mbx_error), 1638 }; 1639 1640 static int fm10k_mbx_request_irq_pf(struct fm10k_intfc *interface) 1641 { 1642 struct msix_entry *entry = &interface->msix_entries[FM10K_MBX_VECTOR]; 1643 struct net_device *dev = interface->netdev; 1644 struct fm10k_hw *hw = &interface->hw; 1645 int err; 1646 1647 /* Use timer0 for interrupt moderation on the mailbox */ 1648 u32 mbx_itr = entry->entry | FM10K_INT_MAP_TIMER0; 1649 u32 other_itr = entry->entry | FM10K_INT_MAP_IMMEDIATE; 1650 1651 /* register mailbox handlers */ 1652 err = hw->mbx.ops.register_handlers(&hw->mbx, pf_mbx_data); 1653 if (err) 1654 return err; 1655 1656 /* request the IRQ */ 1657 err = request_irq(entry->vector, fm10k_msix_mbx_pf, 0, 1658 dev->name, interface); 1659 if (err) { 1660 netif_err(interface, probe, dev, 1661 "request_irq for msix_mbx failed: %d\n", err); 1662 return err; 1663 } 1664 1665 /* Enable interrupts w/ no moderation for "other" interrupts */ 1666 fm10k_write_reg(hw, FM10K_INT_MAP(fm10k_int_pcie_fault), other_itr); 1667 fm10k_write_reg(hw, FM10K_INT_MAP(fm10k_int_switch_up_down), other_itr); 1668 fm10k_write_reg(hw, FM10K_INT_MAP(fm10k_int_sram), other_itr); 1669 fm10k_write_reg(hw, FM10K_INT_MAP(fm10k_int_max_hold_time), other_itr); 1670 fm10k_write_reg(hw, FM10K_INT_MAP(fm10k_int_vflr), other_itr); 1671 1672 /* Enable interrupts w/ moderation for mailbox */ 1673 fm10k_write_reg(hw, FM10K_INT_MAP(fm10k_int_mailbox), mbx_itr); 1674 1675 /* Enable individual interrupt causes */ 1676 fm10k_write_reg(hw, FM10K_EIMR, FM10K_EIMR_ENABLE(PCA_FAULT) | 1677 FM10K_EIMR_ENABLE(FUM_FAULT) | 1678 FM10K_EIMR_ENABLE(MAILBOX) | 1679 FM10K_EIMR_ENABLE(SWITCHREADY) | 1680 FM10K_EIMR_ENABLE(SWITCHNOTREADY) | 1681 FM10K_EIMR_ENABLE(SRAMERROR) | 1682 FM10K_EIMR_ENABLE(VFLR) | 1683 FM10K_EIMR_ENABLE(MAXHOLDTIME)); 1684 1685 /* enable interrupt */ 1686 fm10k_write_reg(hw, FM10K_ITR(entry->entry), FM10K_ITR_ENABLE); 1687 1688 return 0; 1689 } 1690 1691 int fm10k_mbx_request_irq(struct fm10k_intfc *interface) 1692 { 1693 struct fm10k_hw *hw = &interface->hw; 1694 int err; 1695 1696 /* enable Mailbox cause */ 1697 if (hw->mac.type == fm10k_mac_pf) 1698 err = fm10k_mbx_request_irq_pf(interface); 1699 else 1700 err = fm10k_mbx_request_irq_vf(interface); 1701 if (err) 1702 return err; 1703 1704 /* connect mailbox */ 1705 err = hw->mbx.ops.connect(hw, &hw->mbx); 1706 1707 /* if the mailbox failed to connect, then free IRQ */ 1708 if (err) 1709 fm10k_mbx_free_irq(interface); 1710 1711 return err; 1712 } 1713 1714 /** 1715 * fm10k_qv_free_irq - release interrupts associated with queue vectors 1716 * @interface: board private structure 1717 * 1718 * Release all interrupts associated with this interface 1719 **/ 1720 void fm10k_qv_free_irq(struct fm10k_intfc *interface) 1721 { 1722 int vector = interface->num_q_vectors; 1723 struct msix_entry *entry; 1724 1725 entry = &interface->msix_entries[NON_Q_VECTORS + vector]; 1726 1727 while (vector) { 1728 struct fm10k_q_vector *q_vector; 1729 1730 vector--; 1731 entry--; 1732 q_vector = interface->q_vector[vector]; 1733 1734 if (!q_vector->tx.count && !q_vector->rx.count) 1735 continue; 1736 1737 /* clear the affinity_mask in the IRQ descriptor */ 1738 irq_set_affinity_hint(entry->vector, NULL); 1739 1740 /* disable interrupts */ 1741 writel(FM10K_ITR_MASK_SET, q_vector->itr); 1742 1743 free_irq(entry->vector, q_vector); 1744 } 1745 } 1746 1747 /** 1748 * fm10k_qv_request_irq - initialize interrupts for queue vectors 1749 * @interface: board private structure 1750 * 1751 * Attempts to configure interrupts using the best available 1752 * capabilities of the hardware and kernel. 1753 **/ 1754 int fm10k_qv_request_irq(struct fm10k_intfc *interface) 1755 { 1756 struct net_device *dev = interface->netdev; 1757 struct fm10k_hw *hw = &interface->hw; 1758 struct msix_entry *entry; 1759 unsigned int ri = 0, ti = 0; 1760 int vector, err; 1761 1762 entry = &interface->msix_entries[NON_Q_VECTORS]; 1763 1764 for (vector = 0; vector < interface->num_q_vectors; vector++) { 1765 struct fm10k_q_vector *q_vector = interface->q_vector[vector]; 1766 1767 /* name the vector */ 1768 if (q_vector->tx.count && q_vector->rx.count) { 1769 snprintf(q_vector->name, sizeof(q_vector->name), 1770 "%s-TxRx-%u", dev->name, ri++); 1771 ti++; 1772 } else if (q_vector->rx.count) { 1773 snprintf(q_vector->name, sizeof(q_vector->name), 1774 "%s-rx-%u", dev->name, ri++); 1775 } else if (q_vector->tx.count) { 1776 snprintf(q_vector->name, sizeof(q_vector->name), 1777 "%s-tx-%u", dev->name, ti++); 1778 } else { 1779 /* skip this unused q_vector */ 1780 continue; 1781 } 1782 1783 /* Assign ITR register to q_vector */ 1784 q_vector->itr = (hw->mac.type == fm10k_mac_pf) ? 1785 &interface->uc_addr[FM10K_ITR(entry->entry)] : 1786 &interface->uc_addr[FM10K_VFITR(entry->entry)]; 1787 1788 /* request the IRQ */ 1789 err = request_irq(entry->vector, &fm10k_msix_clean_rings, 0, 1790 q_vector->name, q_vector); 1791 if (err) { 1792 netif_err(interface, probe, dev, 1793 "request_irq failed for MSIX interrupt Error: %d\n", 1794 err); 1795 goto err_out; 1796 } 1797 1798 /* assign the mask for this irq */ 1799 irq_set_affinity_hint(entry->vector, &q_vector->affinity_mask); 1800 1801 /* Enable q_vector */ 1802 writel(FM10K_ITR_ENABLE, q_vector->itr); 1803 1804 entry++; 1805 } 1806 1807 return 0; 1808 1809 err_out: 1810 /* wind through the ring freeing all entries and vectors */ 1811 while (vector) { 1812 struct fm10k_q_vector *q_vector; 1813 1814 entry--; 1815 vector--; 1816 q_vector = interface->q_vector[vector]; 1817 1818 if (!q_vector->tx.count && !q_vector->rx.count) 1819 continue; 1820 1821 /* clear the affinity_mask in the IRQ descriptor */ 1822 irq_set_affinity_hint(entry->vector, NULL); 1823 1824 /* disable interrupts */ 1825 writel(FM10K_ITR_MASK_SET, q_vector->itr); 1826 1827 free_irq(entry->vector, q_vector); 1828 } 1829 1830 return err; 1831 } 1832 1833 void fm10k_up(struct fm10k_intfc *interface) 1834 { 1835 struct fm10k_hw *hw = &interface->hw; 1836 1837 /* Enable Tx/Rx DMA */ 1838 hw->mac.ops.start_hw(hw); 1839 1840 /* configure Tx descriptor rings */ 1841 fm10k_configure_tx(interface); 1842 1843 /* configure Rx descriptor rings */ 1844 fm10k_configure_rx(interface); 1845 1846 /* configure interrupts */ 1847 hw->mac.ops.update_int_moderator(hw); 1848 1849 /* enable statistics capture again */ 1850 clear_bit(__FM10K_UPDATING_STATS, interface->state); 1851 1852 /* clear down bit to indicate we are ready to go */ 1853 clear_bit(__FM10K_DOWN, interface->state); 1854 1855 /* enable polling cleanups */ 1856 fm10k_napi_enable_all(interface); 1857 1858 /* re-establish Rx filters */ 1859 fm10k_restore_rx_state(interface); 1860 1861 /* enable transmits */ 1862 netif_tx_start_all_queues(interface->netdev); 1863 1864 /* kick off the service timer now */ 1865 hw->mac.get_host_state = true; 1866 mod_timer(&interface->service_timer, jiffies); 1867 } 1868 1869 static void fm10k_napi_disable_all(struct fm10k_intfc *interface) 1870 { 1871 struct fm10k_q_vector *q_vector; 1872 int q_idx; 1873 1874 for (q_idx = 0; q_idx < interface->num_q_vectors; q_idx++) { 1875 q_vector = interface->q_vector[q_idx]; 1876 napi_disable(&q_vector->napi); 1877 } 1878 } 1879 1880 void fm10k_down(struct fm10k_intfc *interface) 1881 { 1882 struct net_device *netdev = interface->netdev; 1883 struct fm10k_hw *hw = &interface->hw; 1884 int err, i = 0, count = 0; 1885 1886 /* signal that we are down to the interrupt handler and service task */ 1887 if (test_and_set_bit(__FM10K_DOWN, interface->state)) 1888 return; 1889 1890 /* call carrier off first to avoid false dev_watchdog timeouts */ 1891 netif_carrier_off(netdev); 1892 1893 /* disable transmits */ 1894 netif_tx_stop_all_queues(netdev); 1895 netif_tx_disable(netdev); 1896 1897 /* reset Rx filters */ 1898 fm10k_reset_rx_state(interface); 1899 1900 /* disable polling routines */ 1901 fm10k_napi_disable_all(interface); 1902 1903 /* capture stats one last time before stopping interface */ 1904 fm10k_update_stats(interface); 1905 1906 /* prevent updating statistics while we're down */ 1907 while (test_and_set_bit(__FM10K_UPDATING_STATS, interface->state)) 1908 usleep_range(1000, 2000); 1909 1910 /* skip waiting for TX DMA if we lost PCIe link */ 1911 if (FM10K_REMOVED(hw->hw_addr)) 1912 goto skip_tx_dma_drain; 1913 1914 /* In some rare circumstances it can take a while for Tx queues to 1915 * quiesce and be fully disabled. Attempt to .stop_hw() first, and 1916 * then if we get ERR_REQUESTS_PENDING, go ahead and wait in a loop 1917 * until the Tx queues have emptied, or until a number of retries. If 1918 * we fail to clear within the retry loop, we will issue a warning 1919 * indicating that Tx DMA is probably hung. Note this means we call 1920 * .stop_hw() twice but this shouldn't cause any problems. 1921 */ 1922 err = hw->mac.ops.stop_hw(hw); 1923 if (err != FM10K_ERR_REQUESTS_PENDING) 1924 goto skip_tx_dma_drain; 1925 1926 #define TX_DMA_DRAIN_RETRIES 25 1927 for (count = 0; count < TX_DMA_DRAIN_RETRIES; count++) { 1928 usleep_range(10000, 20000); 1929 1930 /* start checking at the last ring to have pending Tx */ 1931 for (; i < interface->num_tx_queues; i++) 1932 if (fm10k_get_tx_pending(interface->tx_ring[i], false)) 1933 break; 1934 1935 /* if all the queues are drained, we can break now */ 1936 if (i == interface->num_tx_queues) 1937 break; 1938 } 1939 1940 if (count >= TX_DMA_DRAIN_RETRIES) 1941 dev_err(&interface->pdev->dev, 1942 "Tx queues failed to drain after %d tries. Tx DMA is probably hung.\n", 1943 count); 1944 skip_tx_dma_drain: 1945 /* Disable DMA engine for Tx/Rx */ 1946 err = hw->mac.ops.stop_hw(hw); 1947 if (err == FM10K_ERR_REQUESTS_PENDING) 1948 dev_err(&interface->pdev->dev, 1949 "due to pending requests hw was not shut down gracefully\n"); 1950 else if (err) 1951 dev_err(&interface->pdev->dev, "stop_hw failed: %d\n", err); 1952 1953 /* free any buffers still on the rings */ 1954 fm10k_clean_all_tx_rings(interface); 1955 fm10k_clean_all_rx_rings(interface); 1956 } 1957 1958 /** 1959 * fm10k_sw_init - Initialize general software structures 1960 * @interface: host interface private structure to initialize 1961 * @ent: PCI device ID entry 1962 * 1963 * fm10k_sw_init initializes the interface private data structure. 1964 * Fields are initialized based on PCI device information and 1965 * OS network device settings (MTU size). 1966 **/ 1967 static int fm10k_sw_init(struct fm10k_intfc *interface, 1968 const struct pci_device_id *ent) 1969 { 1970 const struct fm10k_info *fi = fm10k_info_tbl[ent->driver_data]; 1971 struct fm10k_hw *hw = &interface->hw; 1972 struct pci_dev *pdev = interface->pdev; 1973 struct net_device *netdev = interface->netdev; 1974 u32 rss_key[FM10K_RSSRK_SIZE]; 1975 unsigned int rss; 1976 int err; 1977 1978 /* initialize back pointer */ 1979 hw->back = interface; 1980 hw->hw_addr = interface->uc_addr; 1981 1982 /* PCI config space info */ 1983 hw->vendor_id = pdev->vendor; 1984 hw->device_id = pdev->device; 1985 hw->revision_id = pdev->revision; 1986 hw->subsystem_vendor_id = pdev->subsystem_vendor; 1987 hw->subsystem_device_id = pdev->subsystem_device; 1988 1989 /* Setup hw api */ 1990 memcpy(&hw->mac.ops, fi->mac_ops, sizeof(hw->mac.ops)); 1991 hw->mac.type = fi->mac; 1992 1993 /* Setup IOV handlers */ 1994 if (fi->iov_ops) 1995 memcpy(&hw->iov.ops, fi->iov_ops, sizeof(hw->iov.ops)); 1996 1997 /* Set common capability flags and settings */ 1998 rss = min_t(int, FM10K_MAX_RSS_INDICES, num_online_cpus()); 1999 interface->ring_feature[RING_F_RSS].limit = rss; 2000 fi->get_invariants(hw); 2001 2002 /* pick up the PCIe bus settings for reporting later */ 2003 if (hw->mac.ops.get_bus_info) 2004 hw->mac.ops.get_bus_info(hw); 2005 2006 /* limit the usable DMA range */ 2007 if (hw->mac.ops.set_dma_mask) 2008 hw->mac.ops.set_dma_mask(hw, dma_get_mask(&pdev->dev)); 2009 2010 /* update netdev with DMA restrictions */ 2011 if (dma_get_mask(&pdev->dev) > DMA_BIT_MASK(32)) { 2012 netdev->features |= NETIF_F_HIGHDMA; 2013 netdev->vlan_features |= NETIF_F_HIGHDMA; 2014 } 2015 2016 /* reset and initialize the hardware so it is in a known state */ 2017 err = hw->mac.ops.reset_hw(hw); 2018 if (err) { 2019 dev_err(&pdev->dev, "reset_hw failed: %d\n", err); 2020 return err; 2021 } 2022 2023 err = hw->mac.ops.init_hw(hw); 2024 if (err) { 2025 dev_err(&pdev->dev, "init_hw failed: %d\n", err); 2026 return err; 2027 } 2028 2029 /* initialize hardware statistics */ 2030 hw->mac.ops.update_hw_stats(hw, &interface->stats); 2031 2032 /* Set upper limit on IOV VFs that can be allocated */ 2033 pci_sriov_set_totalvfs(pdev, hw->iov.total_vfs); 2034 2035 /* Start with random Ethernet address */ 2036 eth_random_addr(hw->mac.addr); 2037 2038 /* Initialize MAC address from hardware */ 2039 err = hw->mac.ops.read_mac_addr(hw); 2040 if (err) { 2041 dev_warn(&pdev->dev, 2042 "Failed to obtain MAC address defaulting to random\n"); 2043 /* tag address assignment as random */ 2044 netdev->addr_assign_type |= NET_ADDR_RANDOM; 2045 } 2046 2047 eth_hw_addr_set(netdev, hw->mac.addr); 2048 ether_addr_copy(netdev->perm_addr, hw->mac.addr); 2049 2050 if (!is_valid_ether_addr(netdev->perm_addr)) { 2051 dev_err(&pdev->dev, "Invalid MAC Address\n"); 2052 return -EIO; 2053 } 2054 2055 /* initialize DCBNL interface */ 2056 fm10k_dcbnl_set_ops(netdev); 2057 2058 /* set default ring sizes */ 2059 interface->tx_ring_count = FM10K_DEFAULT_TXD; 2060 interface->rx_ring_count = FM10K_DEFAULT_RXD; 2061 2062 /* set default interrupt moderation */ 2063 interface->tx_itr = FM10K_TX_ITR_DEFAULT; 2064 interface->rx_itr = FM10K_ITR_ADAPTIVE | FM10K_RX_ITR_DEFAULT; 2065 2066 /* Initialize the MAC/VLAN queue */ 2067 INIT_LIST_HEAD(&interface->macvlan_requests); 2068 2069 netdev_rss_key_fill(rss_key, sizeof(rss_key)); 2070 memcpy(interface->rssrk, rss_key, sizeof(rss_key)); 2071 2072 /* Initialize the mailbox lock */ 2073 spin_lock_init(&interface->mbx_lock); 2074 spin_lock_init(&interface->macvlan_lock); 2075 2076 /* Start off interface as being down */ 2077 set_bit(__FM10K_DOWN, interface->state); 2078 set_bit(__FM10K_UPDATING_STATS, interface->state); 2079 2080 return 0; 2081 } 2082 2083 /** 2084 * fm10k_probe - Device Initialization Routine 2085 * @pdev: PCI device information struct 2086 * @ent: entry in fm10k_pci_tbl 2087 * 2088 * Returns 0 on success, negative on failure 2089 * 2090 * fm10k_probe initializes an interface identified by a pci_dev structure. 2091 * The OS initialization, configuring of the interface private structure, 2092 * and a hardware reset occur. 2093 **/ 2094 static int fm10k_probe(struct pci_dev *pdev, const struct pci_device_id *ent) 2095 { 2096 struct net_device *netdev; 2097 struct fm10k_intfc *interface; 2098 int err; 2099 2100 if (pdev->error_state != pci_channel_io_normal) { 2101 dev_err(&pdev->dev, 2102 "PCI device still in an error state. Unable to load...\n"); 2103 return -EIO; 2104 } 2105 2106 err = pci_enable_device_mem(pdev); 2107 if (err) { 2108 dev_err(&pdev->dev, 2109 "PCI enable device failed: %d\n", err); 2110 return err; 2111 } 2112 2113 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(48)); 2114 if (err) 2115 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)); 2116 if (err) { 2117 dev_err(&pdev->dev, 2118 "DMA configuration failed: %d\n", err); 2119 goto err_dma; 2120 } 2121 2122 err = pci_request_mem_regions(pdev, fm10k_driver_name); 2123 if (err) { 2124 dev_err(&pdev->dev, 2125 "pci_request_selected_regions failed: %d\n", err); 2126 goto err_pci_reg; 2127 } 2128 2129 pci_set_master(pdev); 2130 pci_save_state(pdev); 2131 2132 netdev = fm10k_alloc_netdev(fm10k_info_tbl[ent->driver_data]); 2133 if (!netdev) { 2134 err = -ENOMEM; 2135 goto err_alloc_netdev; 2136 } 2137 2138 SET_NETDEV_DEV(netdev, &pdev->dev); 2139 2140 interface = netdev_priv(netdev); 2141 pci_set_drvdata(pdev, interface); 2142 2143 interface->netdev = netdev; 2144 interface->pdev = pdev; 2145 2146 interface->uc_addr = ioremap(pci_resource_start(pdev, 0), 2147 FM10K_UC_ADDR_SIZE); 2148 if (!interface->uc_addr) { 2149 err = -EIO; 2150 goto err_ioremap; 2151 } 2152 2153 err = fm10k_sw_init(interface, ent); 2154 if (err) 2155 goto err_sw_init; 2156 2157 /* enable debugfs support */ 2158 fm10k_dbg_intfc_init(interface); 2159 2160 err = fm10k_init_queueing_scheme(interface); 2161 if (err) 2162 goto err_sw_init; 2163 2164 /* the mbx interrupt might attempt to schedule the service task, so we 2165 * must ensure it is disabled since we haven't yet requested the timer 2166 * or work item. 2167 */ 2168 set_bit(__FM10K_SERVICE_DISABLE, interface->state); 2169 2170 err = fm10k_mbx_request_irq(interface); 2171 if (err) 2172 goto err_mbx_interrupt; 2173 2174 /* final check of hardware state before registering the interface */ 2175 err = fm10k_hw_ready(interface); 2176 if (err) 2177 goto err_register; 2178 2179 err = register_netdev(netdev); 2180 if (err) 2181 goto err_register; 2182 2183 /* carrier off reporting is important to ethtool even BEFORE open */ 2184 netif_carrier_off(netdev); 2185 2186 /* stop all the transmit queues from transmitting until link is up */ 2187 netif_tx_stop_all_queues(netdev); 2188 2189 /* Initialize service timer and service task late in order to avoid 2190 * cleanup issues. 2191 */ 2192 timer_setup(&interface->service_timer, fm10k_service_timer, 0); 2193 INIT_WORK(&interface->service_task, fm10k_service_task); 2194 2195 /* Setup the MAC/VLAN queue */ 2196 INIT_DELAYED_WORK(&interface->macvlan_task, fm10k_macvlan_task); 2197 2198 /* kick off service timer now, even when interface is down */ 2199 mod_timer(&interface->service_timer, (HZ * 2) + jiffies); 2200 2201 /* print warning for non-optimal configurations */ 2202 pcie_print_link_status(interface->pdev); 2203 2204 /* report MAC address for logging */ 2205 dev_info(&pdev->dev, "%pM\n", netdev->dev_addr); 2206 2207 /* enable SR-IOV after registering netdev to enforce PF/VF ordering */ 2208 fm10k_iov_configure(pdev, 0); 2209 2210 /* clear the service task disable bit and kick off service task */ 2211 clear_bit(__FM10K_SERVICE_DISABLE, interface->state); 2212 fm10k_service_event_schedule(interface); 2213 2214 return 0; 2215 2216 err_register: 2217 fm10k_mbx_free_irq(interface); 2218 err_mbx_interrupt: 2219 fm10k_clear_queueing_scheme(interface); 2220 err_sw_init: 2221 if (interface->sw_addr) 2222 iounmap(interface->sw_addr); 2223 iounmap(interface->uc_addr); 2224 err_ioremap: 2225 free_netdev(netdev); 2226 err_alloc_netdev: 2227 pci_release_mem_regions(pdev); 2228 err_pci_reg: 2229 err_dma: 2230 pci_disable_device(pdev); 2231 return err; 2232 } 2233 2234 /** 2235 * fm10k_remove - Device Removal Routine 2236 * @pdev: PCI device information struct 2237 * 2238 * fm10k_remove is called by the PCI subsystem to alert the driver 2239 * that it should release a PCI device. The could be caused by a 2240 * Hot-Plug event, or because the driver is going to be removed from 2241 * memory. 2242 **/ 2243 static void fm10k_remove(struct pci_dev *pdev) 2244 { 2245 struct fm10k_intfc *interface = pci_get_drvdata(pdev); 2246 struct net_device *netdev = interface->netdev; 2247 2248 del_timer_sync(&interface->service_timer); 2249 2250 fm10k_stop_service_event(interface); 2251 fm10k_stop_macvlan_task(interface); 2252 2253 /* Remove all pending MAC/VLAN requests */ 2254 fm10k_clear_macvlan_queue(interface, interface->glort, true); 2255 2256 /* free netdev, this may bounce the interrupts due to setup_tc */ 2257 if (netdev->reg_state == NETREG_REGISTERED) 2258 unregister_netdev(netdev); 2259 2260 /* release VFs */ 2261 fm10k_iov_disable(pdev); 2262 2263 /* disable mailbox interrupt */ 2264 fm10k_mbx_free_irq(interface); 2265 2266 /* free interrupts */ 2267 fm10k_clear_queueing_scheme(interface); 2268 2269 /* remove any debugfs interfaces */ 2270 fm10k_dbg_intfc_exit(interface); 2271 2272 if (interface->sw_addr) 2273 iounmap(interface->sw_addr); 2274 iounmap(interface->uc_addr); 2275 2276 free_netdev(netdev); 2277 2278 pci_release_mem_regions(pdev); 2279 2280 pci_disable_device(pdev); 2281 } 2282 2283 static void fm10k_prepare_suspend(struct fm10k_intfc *interface) 2284 { 2285 /* the watchdog task reads from registers, which might appear like 2286 * a surprise remove if the PCIe device is disabled while we're 2287 * stopped. We stop the watchdog task until after we resume software 2288 * activity. 2289 * 2290 * Note that the MAC/VLAN task will be stopped as part of preparing 2291 * for reset so we don't need to handle it here. 2292 */ 2293 fm10k_stop_service_event(interface); 2294 2295 if (fm10k_prepare_for_reset(interface)) 2296 set_bit(__FM10K_RESET_SUSPENDED, interface->state); 2297 } 2298 2299 static int fm10k_handle_resume(struct fm10k_intfc *interface) 2300 { 2301 struct fm10k_hw *hw = &interface->hw; 2302 int err; 2303 2304 /* Even if we didn't properly prepare for reset in 2305 * fm10k_prepare_suspend, we'll attempt to resume anyways. 2306 */ 2307 if (!test_and_clear_bit(__FM10K_RESET_SUSPENDED, interface->state)) 2308 dev_warn(&interface->pdev->dev, 2309 "Device was shut down as part of suspend... Attempting to recover\n"); 2310 2311 /* reset statistics starting values */ 2312 hw->mac.ops.rebind_hw_stats(hw, &interface->stats); 2313 2314 err = fm10k_handle_reset(interface); 2315 if (err) 2316 return err; 2317 2318 /* assume host is not ready, to prevent race with watchdog in case we 2319 * actually don't have connection to the switch 2320 */ 2321 interface->host_ready = false; 2322 fm10k_watchdog_host_not_ready(interface); 2323 2324 /* force link to stay down for a second to prevent link flutter */ 2325 interface->link_down_event = jiffies + (HZ); 2326 set_bit(__FM10K_LINK_DOWN, interface->state); 2327 2328 /* restart the service task */ 2329 fm10k_start_service_event(interface); 2330 2331 /* Restart the MAC/VLAN request queue in-case of outstanding events */ 2332 fm10k_macvlan_schedule(interface); 2333 2334 return 0; 2335 } 2336 2337 /** 2338 * fm10k_resume - Generic PM resume hook 2339 * @dev: generic device structure 2340 * 2341 * Generic PM hook used when waking the device from a low power state after 2342 * suspend or hibernation. This function does not need to handle lower PCIe 2343 * device state as the stack takes care of that for us. 2344 **/ 2345 static int __maybe_unused fm10k_resume(struct device *dev) 2346 { 2347 struct fm10k_intfc *interface = dev_get_drvdata(dev); 2348 struct net_device *netdev = interface->netdev; 2349 struct fm10k_hw *hw = &interface->hw; 2350 int err; 2351 2352 /* refresh hw_addr in case it was dropped */ 2353 hw->hw_addr = interface->uc_addr; 2354 2355 err = fm10k_handle_resume(interface); 2356 if (err) 2357 return err; 2358 2359 netif_device_attach(netdev); 2360 2361 return 0; 2362 } 2363 2364 /** 2365 * fm10k_suspend - Generic PM suspend hook 2366 * @dev: generic device structure 2367 * 2368 * Generic PM hook used when setting the device into a low power state for 2369 * system suspend or hibernation. This function does not need to handle lower 2370 * PCIe device state as the stack takes care of that for us. 2371 **/ 2372 static int __maybe_unused fm10k_suspend(struct device *dev) 2373 { 2374 struct fm10k_intfc *interface = dev_get_drvdata(dev); 2375 struct net_device *netdev = interface->netdev; 2376 2377 netif_device_detach(netdev); 2378 2379 fm10k_prepare_suspend(interface); 2380 2381 return 0; 2382 } 2383 2384 /** 2385 * fm10k_io_error_detected - called when PCI error is detected 2386 * @pdev: Pointer to PCI device 2387 * @state: The current pci connection state 2388 * 2389 * This function is called after a PCI bus error affecting 2390 * this device has been detected. 2391 */ 2392 static pci_ers_result_t fm10k_io_error_detected(struct pci_dev *pdev, 2393 pci_channel_state_t state) 2394 { 2395 struct fm10k_intfc *interface = pci_get_drvdata(pdev); 2396 struct net_device *netdev = interface->netdev; 2397 2398 netif_device_detach(netdev); 2399 2400 if (state == pci_channel_io_perm_failure) 2401 return PCI_ERS_RESULT_DISCONNECT; 2402 2403 fm10k_prepare_suspend(interface); 2404 2405 /* Request a slot reset. */ 2406 return PCI_ERS_RESULT_NEED_RESET; 2407 } 2408 2409 /** 2410 * fm10k_io_slot_reset - called after the pci bus has been reset. 2411 * @pdev: Pointer to PCI device 2412 * 2413 * Restart the card from scratch, as if from a cold-boot. 2414 */ 2415 static pci_ers_result_t fm10k_io_slot_reset(struct pci_dev *pdev) 2416 { 2417 pci_ers_result_t result; 2418 2419 if (pci_reenable_device(pdev)) { 2420 dev_err(&pdev->dev, 2421 "Cannot re-enable PCI device after reset.\n"); 2422 result = PCI_ERS_RESULT_DISCONNECT; 2423 } else { 2424 pci_set_master(pdev); 2425 pci_restore_state(pdev); 2426 2427 /* After second error pci->state_saved is false, this 2428 * resets it so EEH doesn't break. 2429 */ 2430 pci_save_state(pdev); 2431 2432 pci_wake_from_d3(pdev, false); 2433 2434 result = PCI_ERS_RESULT_RECOVERED; 2435 } 2436 2437 return result; 2438 } 2439 2440 /** 2441 * fm10k_io_resume - called when traffic can start flowing again. 2442 * @pdev: Pointer to PCI device 2443 * 2444 * This callback is called when the error recovery driver tells us that 2445 * its OK to resume normal operation. 2446 */ 2447 static void fm10k_io_resume(struct pci_dev *pdev) 2448 { 2449 struct fm10k_intfc *interface = pci_get_drvdata(pdev); 2450 struct net_device *netdev = interface->netdev; 2451 int err; 2452 2453 err = fm10k_handle_resume(interface); 2454 2455 if (err) 2456 dev_warn(&pdev->dev, 2457 "%s failed: %d\n", __func__, err); 2458 else 2459 netif_device_attach(netdev); 2460 } 2461 2462 /** 2463 * fm10k_io_reset_prepare - called when PCI function is about to be reset 2464 * @pdev: Pointer to PCI device 2465 * 2466 * This callback is called when the PCI function is about to be reset, 2467 * allowing the device driver to prepare for it. 2468 */ 2469 static void fm10k_io_reset_prepare(struct pci_dev *pdev) 2470 { 2471 /* warn incase we have any active VF devices */ 2472 if (pci_num_vf(pdev)) 2473 dev_warn(&pdev->dev, 2474 "PCIe FLR may cause issues for any active VF devices\n"); 2475 fm10k_prepare_suspend(pci_get_drvdata(pdev)); 2476 } 2477 2478 /** 2479 * fm10k_io_reset_done - called when PCI function has finished resetting 2480 * @pdev: Pointer to PCI device 2481 * 2482 * This callback is called just after the PCI function is reset, such as via 2483 * /sys/class/net/<enpX>/device/reset or similar. 2484 */ 2485 static void fm10k_io_reset_done(struct pci_dev *pdev) 2486 { 2487 struct fm10k_intfc *interface = pci_get_drvdata(pdev); 2488 int err = fm10k_handle_resume(interface); 2489 2490 if (err) { 2491 dev_warn(&pdev->dev, 2492 "%s failed: %d\n", __func__, err); 2493 netif_device_detach(interface->netdev); 2494 } 2495 } 2496 2497 static const struct pci_error_handlers fm10k_err_handler = { 2498 .error_detected = fm10k_io_error_detected, 2499 .slot_reset = fm10k_io_slot_reset, 2500 .resume = fm10k_io_resume, 2501 .reset_prepare = fm10k_io_reset_prepare, 2502 .reset_done = fm10k_io_reset_done, 2503 }; 2504 2505 static SIMPLE_DEV_PM_OPS(fm10k_pm_ops, fm10k_suspend, fm10k_resume); 2506 2507 static struct pci_driver fm10k_driver = { 2508 .name = fm10k_driver_name, 2509 .id_table = fm10k_pci_tbl, 2510 .probe = fm10k_probe, 2511 .remove = fm10k_remove, 2512 .driver = { 2513 .pm = &fm10k_pm_ops, 2514 }, 2515 .sriov_configure = fm10k_iov_configure, 2516 .err_handler = &fm10k_err_handler 2517 }; 2518 2519 /** 2520 * fm10k_register_pci_driver - register driver interface 2521 * 2522 * This function is called on module load in order to register the driver. 2523 **/ 2524 int fm10k_register_pci_driver(void) 2525 { 2526 return pci_register_driver(&fm10k_driver); 2527 } 2528 2529 /** 2530 * fm10k_unregister_pci_driver - unregister driver interface 2531 * 2532 * This function is called on module unload in order to remove the driver. 2533 **/ 2534 void fm10k_unregister_pci_driver(void) 2535 { 2536 pci_unregister_driver(&fm10k_driver); 2537 } 2538