1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright(c) 2013 - 2018 Intel Corporation. */ 3 4 #include "fm10k.h" 5 #include <linux/vmalloc.h> 6 #include <net/udp_tunnel.h> 7 #include <linux/if_macvlan.h> 8 9 /** 10 * fm10k_setup_tx_resources - allocate Tx resources (Descriptors) 11 * @tx_ring: tx descriptor ring (for a specific queue) to setup 12 * 13 * Return 0 on success, negative on failure 14 **/ 15 int fm10k_setup_tx_resources(struct fm10k_ring *tx_ring) 16 { 17 struct device *dev = tx_ring->dev; 18 int size; 19 20 size = sizeof(struct fm10k_tx_buffer) * tx_ring->count; 21 22 tx_ring->tx_buffer = vzalloc(size); 23 if (!tx_ring->tx_buffer) 24 goto err; 25 26 u64_stats_init(&tx_ring->syncp); 27 28 /* round up to nearest 4K */ 29 tx_ring->size = tx_ring->count * sizeof(struct fm10k_tx_desc); 30 tx_ring->size = ALIGN(tx_ring->size, 4096); 31 32 tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size, 33 &tx_ring->dma, GFP_KERNEL); 34 if (!tx_ring->desc) 35 goto err; 36 37 return 0; 38 39 err: 40 vfree(tx_ring->tx_buffer); 41 tx_ring->tx_buffer = NULL; 42 return -ENOMEM; 43 } 44 45 /** 46 * fm10k_setup_all_tx_resources - allocate all queues Tx resources 47 * @interface: board private structure 48 * 49 * If this function returns with an error, then it's possible one or 50 * more of the rings is populated (while the rest are not). It is the 51 * callers duty to clean those orphaned rings. 52 * 53 * Return 0 on success, negative on failure 54 **/ 55 static int fm10k_setup_all_tx_resources(struct fm10k_intfc *interface) 56 { 57 int i, err = 0; 58 59 for (i = 0; i < interface->num_tx_queues; i++) { 60 err = fm10k_setup_tx_resources(interface->tx_ring[i]); 61 if (!err) 62 continue; 63 64 netif_err(interface, probe, interface->netdev, 65 "Allocation for Tx Queue %u failed\n", i); 66 goto err_setup_tx; 67 } 68 69 return 0; 70 err_setup_tx: 71 /* rewind the index freeing the rings as we go */ 72 while (i--) 73 fm10k_free_tx_resources(interface->tx_ring[i]); 74 return err; 75 } 76 77 /** 78 * fm10k_setup_rx_resources - allocate Rx resources (Descriptors) 79 * @rx_ring: rx descriptor ring (for a specific queue) to setup 80 * 81 * Returns 0 on success, negative on failure 82 **/ 83 int fm10k_setup_rx_resources(struct fm10k_ring *rx_ring) 84 { 85 struct device *dev = rx_ring->dev; 86 int size; 87 88 size = sizeof(struct fm10k_rx_buffer) * rx_ring->count; 89 90 rx_ring->rx_buffer = vzalloc(size); 91 if (!rx_ring->rx_buffer) 92 goto err; 93 94 u64_stats_init(&rx_ring->syncp); 95 96 /* Round up to nearest 4K */ 97 rx_ring->size = rx_ring->count * sizeof(union fm10k_rx_desc); 98 rx_ring->size = ALIGN(rx_ring->size, 4096); 99 100 rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size, 101 &rx_ring->dma, GFP_KERNEL); 102 if (!rx_ring->desc) 103 goto err; 104 105 return 0; 106 err: 107 vfree(rx_ring->rx_buffer); 108 rx_ring->rx_buffer = NULL; 109 return -ENOMEM; 110 } 111 112 /** 113 * fm10k_setup_all_rx_resources - allocate all queues Rx resources 114 * @interface: board private structure 115 * 116 * If this function returns with an error, then it's possible one or 117 * more of the rings is populated (while the rest are not). It is the 118 * callers duty to clean those orphaned rings. 119 * 120 * Return 0 on success, negative on failure 121 **/ 122 static int fm10k_setup_all_rx_resources(struct fm10k_intfc *interface) 123 { 124 int i, err = 0; 125 126 for (i = 0; i < interface->num_rx_queues; i++) { 127 err = fm10k_setup_rx_resources(interface->rx_ring[i]); 128 if (!err) 129 continue; 130 131 netif_err(interface, probe, interface->netdev, 132 "Allocation for Rx Queue %u failed\n", i); 133 goto err_setup_rx; 134 } 135 136 return 0; 137 err_setup_rx: 138 /* rewind the index freeing the rings as we go */ 139 while (i--) 140 fm10k_free_rx_resources(interface->rx_ring[i]); 141 return err; 142 } 143 144 void fm10k_unmap_and_free_tx_resource(struct fm10k_ring *ring, 145 struct fm10k_tx_buffer *tx_buffer) 146 { 147 if (tx_buffer->skb) { 148 dev_kfree_skb_any(tx_buffer->skb); 149 if (dma_unmap_len(tx_buffer, len)) 150 dma_unmap_single(ring->dev, 151 dma_unmap_addr(tx_buffer, dma), 152 dma_unmap_len(tx_buffer, len), 153 DMA_TO_DEVICE); 154 } else if (dma_unmap_len(tx_buffer, len)) { 155 dma_unmap_page(ring->dev, 156 dma_unmap_addr(tx_buffer, dma), 157 dma_unmap_len(tx_buffer, len), 158 DMA_TO_DEVICE); 159 } 160 tx_buffer->next_to_watch = NULL; 161 tx_buffer->skb = NULL; 162 dma_unmap_len_set(tx_buffer, len, 0); 163 /* tx_buffer must be completely set up in the transmit path */ 164 } 165 166 /** 167 * fm10k_clean_tx_ring - Free Tx Buffers 168 * @tx_ring: ring to be cleaned 169 **/ 170 static void fm10k_clean_tx_ring(struct fm10k_ring *tx_ring) 171 { 172 struct fm10k_tx_buffer *tx_buffer; 173 unsigned long size; 174 u16 i; 175 176 /* ring already cleared, nothing to do */ 177 if (!tx_ring->tx_buffer) 178 return; 179 180 /* Free all the Tx ring sk_buffs */ 181 for (i = 0; i < tx_ring->count; i++) { 182 tx_buffer = &tx_ring->tx_buffer[i]; 183 fm10k_unmap_and_free_tx_resource(tx_ring, tx_buffer); 184 } 185 186 /* reset BQL values */ 187 netdev_tx_reset_queue(txring_txq(tx_ring)); 188 189 size = sizeof(struct fm10k_tx_buffer) * tx_ring->count; 190 memset(tx_ring->tx_buffer, 0, size); 191 192 /* Zero out the descriptor ring */ 193 memset(tx_ring->desc, 0, tx_ring->size); 194 } 195 196 /** 197 * fm10k_free_tx_resources - Free Tx Resources per Queue 198 * @tx_ring: Tx descriptor ring for a specific queue 199 * 200 * Free all transmit software resources 201 **/ 202 void fm10k_free_tx_resources(struct fm10k_ring *tx_ring) 203 { 204 fm10k_clean_tx_ring(tx_ring); 205 206 vfree(tx_ring->tx_buffer); 207 tx_ring->tx_buffer = NULL; 208 209 /* if not set, then don't free */ 210 if (!tx_ring->desc) 211 return; 212 213 dma_free_coherent(tx_ring->dev, tx_ring->size, 214 tx_ring->desc, tx_ring->dma); 215 tx_ring->desc = NULL; 216 } 217 218 /** 219 * fm10k_clean_all_tx_rings - Free Tx Buffers for all queues 220 * @interface: board private structure 221 **/ 222 void fm10k_clean_all_tx_rings(struct fm10k_intfc *interface) 223 { 224 int i; 225 226 for (i = 0; i < interface->num_tx_queues; i++) 227 fm10k_clean_tx_ring(interface->tx_ring[i]); 228 } 229 230 /** 231 * fm10k_free_all_tx_resources - Free Tx Resources for All Queues 232 * @interface: board private structure 233 * 234 * Free all transmit software resources 235 **/ 236 static void fm10k_free_all_tx_resources(struct fm10k_intfc *interface) 237 { 238 int i = interface->num_tx_queues; 239 240 while (i--) 241 fm10k_free_tx_resources(interface->tx_ring[i]); 242 } 243 244 /** 245 * fm10k_clean_rx_ring - Free Rx Buffers per Queue 246 * @rx_ring: ring to free buffers from 247 **/ 248 static void fm10k_clean_rx_ring(struct fm10k_ring *rx_ring) 249 { 250 unsigned long size; 251 u16 i; 252 253 if (!rx_ring->rx_buffer) 254 return; 255 256 if (rx_ring->skb) 257 dev_kfree_skb(rx_ring->skb); 258 rx_ring->skb = NULL; 259 260 /* Free all the Rx ring sk_buffs */ 261 for (i = 0; i < rx_ring->count; i++) { 262 struct fm10k_rx_buffer *buffer = &rx_ring->rx_buffer[i]; 263 /* clean-up will only set page pointer to NULL */ 264 if (!buffer->page) 265 continue; 266 267 dma_unmap_page(rx_ring->dev, buffer->dma, 268 PAGE_SIZE, DMA_FROM_DEVICE); 269 __free_page(buffer->page); 270 271 buffer->page = NULL; 272 } 273 274 size = sizeof(struct fm10k_rx_buffer) * rx_ring->count; 275 memset(rx_ring->rx_buffer, 0, size); 276 277 /* Zero out the descriptor ring */ 278 memset(rx_ring->desc, 0, rx_ring->size); 279 280 rx_ring->next_to_alloc = 0; 281 rx_ring->next_to_clean = 0; 282 rx_ring->next_to_use = 0; 283 } 284 285 /** 286 * fm10k_free_rx_resources - Free Rx Resources 287 * @rx_ring: ring to clean the resources from 288 * 289 * Free all receive software resources 290 **/ 291 void fm10k_free_rx_resources(struct fm10k_ring *rx_ring) 292 { 293 fm10k_clean_rx_ring(rx_ring); 294 295 vfree(rx_ring->rx_buffer); 296 rx_ring->rx_buffer = NULL; 297 298 /* if not set, then don't free */ 299 if (!rx_ring->desc) 300 return; 301 302 dma_free_coherent(rx_ring->dev, rx_ring->size, 303 rx_ring->desc, rx_ring->dma); 304 305 rx_ring->desc = NULL; 306 } 307 308 /** 309 * fm10k_clean_all_rx_rings - Free Rx Buffers for all queues 310 * @interface: board private structure 311 **/ 312 void fm10k_clean_all_rx_rings(struct fm10k_intfc *interface) 313 { 314 int i; 315 316 for (i = 0; i < interface->num_rx_queues; i++) 317 fm10k_clean_rx_ring(interface->rx_ring[i]); 318 } 319 320 /** 321 * fm10k_free_all_rx_resources - Free Rx Resources for All Queues 322 * @interface: board private structure 323 * 324 * Free all receive software resources 325 **/ 326 static void fm10k_free_all_rx_resources(struct fm10k_intfc *interface) 327 { 328 int i = interface->num_rx_queues; 329 330 while (i--) 331 fm10k_free_rx_resources(interface->rx_ring[i]); 332 } 333 334 /** 335 * fm10k_request_glort_range - Request GLORTs for use in configuring rules 336 * @interface: board private structure 337 * 338 * This function allocates a range of glorts for this interface to use. 339 **/ 340 static void fm10k_request_glort_range(struct fm10k_intfc *interface) 341 { 342 struct fm10k_hw *hw = &interface->hw; 343 u16 mask = (~hw->mac.dglort_map) >> FM10K_DGLORTMAP_MASK_SHIFT; 344 345 /* establish GLORT base */ 346 interface->glort = hw->mac.dglort_map & FM10K_DGLORTMAP_NONE; 347 interface->glort_count = 0; 348 349 /* nothing we can do until mask is allocated */ 350 if (hw->mac.dglort_map == FM10K_DGLORTMAP_NONE) 351 return; 352 353 /* we support 3 possible GLORT configurations. 354 * 1: VFs consume all but the last 1 355 * 2: VFs and PF split glorts with possible gap between 356 * 3: VFs allocated first 64, all others belong to PF 357 */ 358 if (mask <= hw->iov.total_vfs) { 359 interface->glort_count = 1; 360 interface->glort += mask; 361 } else if (mask < 64) { 362 interface->glort_count = (mask + 1) / 2; 363 interface->glort += interface->glort_count; 364 } else { 365 interface->glort_count = mask - 63; 366 interface->glort += 64; 367 } 368 } 369 370 /** 371 * fm10k_free_udp_port_info 372 * @interface: board private structure 373 * 374 * This function frees both geneve_port and vxlan_port structures 375 **/ 376 static void fm10k_free_udp_port_info(struct fm10k_intfc *interface) 377 { 378 struct fm10k_udp_port *port; 379 380 /* flush all entries from vxlan list */ 381 port = list_first_entry_or_null(&interface->vxlan_port, 382 struct fm10k_udp_port, list); 383 while (port) { 384 list_del(&port->list); 385 kfree(port); 386 port = list_first_entry_or_null(&interface->vxlan_port, 387 struct fm10k_udp_port, 388 list); 389 } 390 391 /* flush all entries from geneve list */ 392 port = list_first_entry_or_null(&interface->geneve_port, 393 struct fm10k_udp_port, list); 394 while (port) { 395 list_del(&port->list); 396 kfree(port); 397 port = list_first_entry_or_null(&interface->vxlan_port, 398 struct fm10k_udp_port, 399 list); 400 } 401 } 402 403 /** 404 * fm10k_restore_udp_port_info 405 * @interface: board private structure 406 * 407 * This function restores the value in the tunnel_cfg register(s) after reset 408 **/ 409 static void fm10k_restore_udp_port_info(struct fm10k_intfc *interface) 410 { 411 struct fm10k_hw *hw = &interface->hw; 412 struct fm10k_udp_port *port; 413 414 /* only the PF supports configuring tunnels */ 415 if (hw->mac.type != fm10k_mac_pf) 416 return; 417 418 port = list_first_entry_or_null(&interface->vxlan_port, 419 struct fm10k_udp_port, list); 420 421 /* restore tunnel configuration register */ 422 fm10k_write_reg(hw, FM10K_TUNNEL_CFG, 423 (port ? ntohs(port->port) : 0) | 424 (ETH_P_TEB << FM10K_TUNNEL_CFG_NVGRE_SHIFT)); 425 426 port = list_first_entry_or_null(&interface->geneve_port, 427 struct fm10k_udp_port, list); 428 429 /* restore Geneve tunnel configuration register */ 430 fm10k_write_reg(hw, FM10K_TUNNEL_CFG_GENEVE, 431 (port ? ntohs(port->port) : 0)); 432 } 433 434 static struct fm10k_udp_port * 435 fm10k_remove_tunnel_port(struct list_head *ports, 436 struct udp_tunnel_info *ti) 437 { 438 struct fm10k_udp_port *port; 439 440 list_for_each_entry(port, ports, list) { 441 if ((port->port == ti->port) && 442 (port->sa_family == ti->sa_family)) { 443 list_del(&port->list); 444 return port; 445 } 446 } 447 448 return NULL; 449 } 450 451 static void fm10k_insert_tunnel_port(struct list_head *ports, 452 struct udp_tunnel_info *ti) 453 { 454 struct fm10k_udp_port *port; 455 456 /* remove existing port entry from the list so that the newest items 457 * are always at the tail of the list. 458 */ 459 port = fm10k_remove_tunnel_port(ports, ti); 460 if (!port) { 461 port = kmalloc(sizeof(*port), GFP_ATOMIC); 462 if (!port) 463 return; 464 port->port = ti->port; 465 port->sa_family = ti->sa_family; 466 } 467 468 list_add_tail(&port->list, ports); 469 } 470 471 /** 472 * fm10k_udp_tunnel_add 473 * @dev: network interface device structure 474 * @ti: Tunnel endpoint information 475 * 476 * This function is called when a new UDP tunnel port has been added. 477 * Due to hardware restrictions, only one port per type can be offloaded at 478 * once. 479 **/ 480 static void fm10k_udp_tunnel_add(struct net_device *dev, 481 struct udp_tunnel_info *ti) 482 { 483 struct fm10k_intfc *interface = netdev_priv(dev); 484 485 /* only the PF supports configuring tunnels */ 486 if (interface->hw.mac.type != fm10k_mac_pf) 487 return; 488 489 switch (ti->type) { 490 case UDP_TUNNEL_TYPE_VXLAN: 491 fm10k_insert_tunnel_port(&interface->vxlan_port, ti); 492 break; 493 case UDP_TUNNEL_TYPE_GENEVE: 494 fm10k_insert_tunnel_port(&interface->geneve_port, ti); 495 break; 496 default: 497 return; 498 } 499 500 fm10k_restore_udp_port_info(interface); 501 } 502 503 /** 504 * fm10k_udp_tunnel_del 505 * @dev: network interface device structure 506 * @ti: Tunnel end point information 507 * 508 * This function is called when a new UDP tunnel port is deleted. The freed 509 * port will be removed from the list, then we reprogram the offloaded port 510 * based on the head of the list. 511 **/ 512 static void fm10k_udp_tunnel_del(struct net_device *dev, 513 struct udp_tunnel_info *ti) 514 { 515 struct fm10k_intfc *interface = netdev_priv(dev); 516 struct fm10k_udp_port *port = NULL; 517 518 if (interface->hw.mac.type != fm10k_mac_pf) 519 return; 520 521 switch (ti->type) { 522 case UDP_TUNNEL_TYPE_VXLAN: 523 port = fm10k_remove_tunnel_port(&interface->vxlan_port, ti); 524 break; 525 case UDP_TUNNEL_TYPE_GENEVE: 526 port = fm10k_remove_tunnel_port(&interface->geneve_port, ti); 527 break; 528 default: 529 return; 530 } 531 532 /* if we did remove a port we need to free its memory */ 533 kfree(port); 534 535 fm10k_restore_udp_port_info(interface); 536 } 537 538 /** 539 * fm10k_open - Called when a network interface is made active 540 * @netdev: network interface device structure 541 * 542 * Returns 0 on success, negative value on failure 543 * 544 * The open entry point is called when a network interface is made 545 * active by the system (IFF_UP). At this point all resources needed 546 * for transmit and receive operations are allocated, the interrupt 547 * handler is registered with the OS, the watchdog timer is started, 548 * and the stack is notified that the interface is ready. 549 **/ 550 int fm10k_open(struct net_device *netdev) 551 { 552 struct fm10k_intfc *interface = netdev_priv(netdev); 553 int err; 554 555 /* allocate transmit descriptors */ 556 err = fm10k_setup_all_tx_resources(interface); 557 if (err) 558 goto err_setup_tx; 559 560 /* allocate receive descriptors */ 561 err = fm10k_setup_all_rx_resources(interface); 562 if (err) 563 goto err_setup_rx; 564 565 /* allocate interrupt resources */ 566 err = fm10k_qv_request_irq(interface); 567 if (err) 568 goto err_req_irq; 569 570 /* setup GLORT assignment for this port */ 571 fm10k_request_glort_range(interface); 572 573 /* Notify the stack of the actual queue counts */ 574 err = netif_set_real_num_tx_queues(netdev, 575 interface->num_tx_queues); 576 if (err) 577 goto err_set_queues; 578 579 err = netif_set_real_num_rx_queues(netdev, 580 interface->num_rx_queues); 581 if (err) 582 goto err_set_queues; 583 584 udp_tunnel_get_rx_info(netdev); 585 586 fm10k_up(interface); 587 588 return 0; 589 590 err_set_queues: 591 fm10k_qv_free_irq(interface); 592 err_req_irq: 593 fm10k_free_all_rx_resources(interface); 594 err_setup_rx: 595 fm10k_free_all_tx_resources(interface); 596 err_setup_tx: 597 return err; 598 } 599 600 /** 601 * fm10k_close - Disables a network interface 602 * @netdev: network interface device structure 603 * 604 * Returns 0, this is not allowed to fail 605 * 606 * The close entry point is called when an interface is de-activated 607 * by the OS. The hardware is still under the drivers control, but 608 * needs to be disabled. A global MAC reset is issued to stop the 609 * hardware, and all transmit and receive resources are freed. 610 **/ 611 int fm10k_close(struct net_device *netdev) 612 { 613 struct fm10k_intfc *interface = netdev_priv(netdev); 614 615 fm10k_down(interface); 616 617 fm10k_qv_free_irq(interface); 618 619 fm10k_free_udp_port_info(interface); 620 621 fm10k_free_all_tx_resources(interface); 622 fm10k_free_all_rx_resources(interface); 623 624 return 0; 625 } 626 627 static netdev_tx_t fm10k_xmit_frame(struct sk_buff *skb, struct net_device *dev) 628 { 629 struct fm10k_intfc *interface = netdev_priv(dev); 630 int num_tx_queues = READ_ONCE(interface->num_tx_queues); 631 unsigned int r_idx = skb->queue_mapping; 632 int err; 633 634 if (!num_tx_queues) 635 return NETDEV_TX_BUSY; 636 637 if ((skb->protocol == htons(ETH_P_8021Q)) && 638 !skb_vlan_tag_present(skb)) { 639 /* FM10K only supports hardware tagging, any tags in frame 640 * are considered 2nd level or "outer" tags 641 */ 642 struct vlan_hdr *vhdr; 643 __be16 proto; 644 645 /* make sure skb is not shared */ 646 skb = skb_share_check(skb, GFP_ATOMIC); 647 if (!skb) 648 return NETDEV_TX_OK; 649 650 /* make sure there is enough room to move the ethernet header */ 651 if (unlikely(!pskb_may_pull(skb, VLAN_ETH_HLEN))) 652 return NETDEV_TX_OK; 653 654 /* verify the skb head is not shared */ 655 err = skb_cow_head(skb, 0); 656 if (err) { 657 dev_kfree_skb(skb); 658 return NETDEV_TX_OK; 659 } 660 661 /* locate VLAN header */ 662 vhdr = (struct vlan_hdr *)(skb->data + ETH_HLEN); 663 664 /* pull the 2 key pieces of data out of it */ 665 __vlan_hwaccel_put_tag(skb, 666 htons(ETH_P_8021Q), 667 ntohs(vhdr->h_vlan_TCI)); 668 proto = vhdr->h_vlan_encapsulated_proto; 669 skb->protocol = (ntohs(proto) >= 1536) ? proto : 670 htons(ETH_P_802_2); 671 672 /* squash it by moving the ethernet addresses up 4 bytes */ 673 memmove(skb->data + VLAN_HLEN, skb->data, 12); 674 __skb_pull(skb, VLAN_HLEN); 675 skb_reset_mac_header(skb); 676 } 677 678 /* The minimum packet size for a single buffer is 17B so pad the skb 679 * in order to meet this minimum size requirement. 680 */ 681 if (unlikely(skb->len < 17)) { 682 int pad_len = 17 - skb->len; 683 684 if (skb_pad(skb, pad_len)) 685 return NETDEV_TX_OK; 686 __skb_put(skb, pad_len); 687 } 688 689 if (r_idx >= num_tx_queues) 690 r_idx %= num_tx_queues; 691 692 err = fm10k_xmit_frame_ring(skb, interface->tx_ring[r_idx]); 693 694 return err; 695 } 696 697 /** 698 * fm10k_tx_timeout - Respond to a Tx Hang 699 * @netdev: network interface device structure 700 **/ 701 static void fm10k_tx_timeout(struct net_device *netdev) 702 { 703 struct fm10k_intfc *interface = netdev_priv(netdev); 704 bool real_tx_hang = false; 705 int i; 706 707 #define TX_TIMEO_LIMIT 16000 708 for (i = 0; i < interface->num_tx_queues; i++) { 709 struct fm10k_ring *tx_ring = interface->tx_ring[i]; 710 711 if (check_for_tx_hang(tx_ring) && fm10k_check_tx_hang(tx_ring)) 712 real_tx_hang = true; 713 } 714 715 if (real_tx_hang) { 716 fm10k_tx_timeout_reset(interface); 717 } else { 718 netif_info(interface, drv, netdev, 719 "Fake Tx hang detected with timeout of %d seconds\n", 720 netdev->watchdog_timeo / HZ); 721 722 /* fake Tx hang - increase the kernel timeout */ 723 if (netdev->watchdog_timeo < TX_TIMEO_LIMIT) 724 netdev->watchdog_timeo *= 2; 725 } 726 } 727 728 /** 729 * fm10k_host_mbx_ready - Check PF interface's mailbox readiness 730 * @interface: board private structure 731 * 732 * This function checks if the PF interface's mailbox is ready before queueing 733 * mailbox messages for transmission. This will prevent filling the TX mailbox 734 * queue when the receiver is not ready. VF interfaces are exempt from this 735 * check since it will block all PF-VF mailbox messages from being sent from 736 * the VF to the PF at initialization. 737 **/ 738 static bool fm10k_host_mbx_ready(struct fm10k_intfc *interface) 739 { 740 struct fm10k_hw *hw = &interface->hw; 741 742 return (hw->mac.type == fm10k_mac_vf || interface->host_ready); 743 } 744 745 /** 746 * fm10k_queue_vlan_request - Queue a VLAN update request 747 * @interface: the fm10k interface structure 748 * @vid: the VLAN vid 749 * @vsi: VSI index number 750 * @set: whether to set or clear 751 * 752 * This function queues up a VLAN update. For VFs, this must be sent to the 753 * managing PF over the mailbox. For PFs, we'll use the same handling so that 754 * it's similar to the VF. This avoids storming the PF<->VF mailbox with too 755 * many VLAN updates during reset. 756 */ 757 int fm10k_queue_vlan_request(struct fm10k_intfc *interface, 758 u32 vid, u8 vsi, bool set) 759 { 760 struct fm10k_macvlan_request *request; 761 unsigned long flags; 762 763 /* This must be atomic since we may be called while the netdev 764 * addr_list_lock is held 765 */ 766 request = kzalloc(sizeof(*request), GFP_ATOMIC); 767 if (!request) 768 return -ENOMEM; 769 770 request->type = FM10K_VLAN_REQUEST; 771 request->vlan.vid = vid; 772 request->vlan.vsi = vsi; 773 request->set = set; 774 775 spin_lock_irqsave(&interface->macvlan_lock, flags); 776 list_add_tail(&request->list, &interface->macvlan_requests); 777 spin_unlock_irqrestore(&interface->macvlan_lock, flags); 778 779 fm10k_macvlan_schedule(interface); 780 781 return 0; 782 } 783 784 /** 785 * fm10k_queue_mac_request - Queue a MAC update request 786 * @interface: the fm10k interface structure 787 * @glort: the target glort for this update 788 * @addr: the address to update 789 * @vid: the vid to update 790 * @set: whether to add or remove 791 * 792 * This function queues up a MAC request for sending to the switch manager. 793 * A separate thread monitors the queue and sends updates to the switch 794 * manager. Return 0 on success, and negative error code on failure. 795 **/ 796 int fm10k_queue_mac_request(struct fm10k_intfc *interface, u16 glort, 797 const unsigned char *addr, u16 vid, bool set) 798 { 799 struct fm10k_macvlan_request *request; 800 unsigned long flags; 801 802 /* This must be atomic since we may be called while the netdev 803 * addr_list_lock is held 804 */ 805 request = kzalloc(sizeof(*request), GFP_ATOMIC); 806 if (!request) 807 return -ENOMEM; 808 809 if (is_multicast_ether_addr(addr)) 810 request->type = FM10K_MC_MAC_REQUEST; 811 else 812 request->type = FM10K_UC_MAC_REQUEST; 813 814 ether_addr_copy(request->mac.addr, addr); 815 request->mac.glort = glort; 816 request->mac.vid = vid; 817 request->set = set; 818 819 spin_lock_irqsave(&interface->macvlan_lock, flags); 820 list_add_tail(&request->list, &interface->macvlan_requests); 821 spin_unlock_irqrestore(&interface->macvlan_lock, flags); 822 823 fm10k_macvlan_schedule(interface); 824 825 return 0; 826 } 827 828 /** 829 * fm10k_clear_macvlan_queue - Cancel pending updates for a given glort 830 * @interface: the fm10k interface structure 831 * @glort: the target glort to clear 832 * @vlans: true to clear VLAN messages, false to ignore them 833 * 834 * Cancel any outstanding MAC/VLAN requests for a given glort. This is 835 * expected to be called when a logical port goes down. 836 **/ 837 void fm10k_clear_macvlan_queue(struct fm10k_intfc *interface, 838 u16 glort, bool vlans) 839 840 { 841 struct fm10k_macvlan_request *r, *tmp; 842 unsigned long flags; 843 844 spin_lock_irqsave(&interface->macvlan_lock, flags); 845 846 /* Free any outstanding MAC/VLAN requests for this interface */ 847 list_for_each_entry_safe(r, tmp, &interface->macvlan_requests, list) { 848 switch (r->type) { 849 case FM10K_MC_MAC_REQUEST: 850 case FM10K_UC_MAC_REQUEST: 851 /* Don't free requests for other interfaces */ 852 if (r->mac.glort != glort) 853 break; 854 /* fall through */ 855 case FM10K_VLAN_REQUEST: 856 if (vlans) { 857 list_del(&r->list); 858 kfree(r); 859 } 860 break; 861 } 862 } 863 864 spin_unlock_irqrestore(&interface->macvlan_lock, flags); 865 } 866 867 static int fm10k_uc_vlan_unsync(struct net_device *netdev, 868 const unsigned char *uc_addr) 869 { 870 struct fm10k_intfc *interface = netdev_priv(netdev); 871 u16 glort = interface->glort; 872 u16 vid = interface->vid; 873 bool set = !!(vid / VLAN_N_VID); 874 int err = -EHOSTDOWN; 875 876 /* drop any leading bits on the VLAN ID */ 877 vid &= VLAN_N_VID - 1; 878 879 err = fm10k_queue_mac_request(interface, glort, uc_addr, vid, set); 880 if (err) 881 return err; 882 883 /* return non-zero value as we are only doing a partial sync/unsync */ 884 return 1; 885 } 886 887 static int fm10k_mc_vlan_unsync(struct net_device *netdev, 888 const unsigned char *mc_addr) 889 { 890 struct fm10k_intfc *interface = netdev_priv(netdev); 891 u16 glort = interface->glort; 892 u16 vid = interface->vid; 893 bool set = !!(vid / VLAN_N_VID); 894 int err = -EHOSTDOWN; 895 896 /* drop any leading bits on the VLAN ID */ 897 vid &= VLAN_N_VID - 1; 898 899 err = fm10k_queue_mac_request(interface, glort, mc_addr, vid, set); 900 if (err) 901 return err; 902 903 /* return non-zero value as we are only doing a partial sync/unsync */ 904 return 1; 905 } 906 907 static int fm10k_update_vid(struct net_device *netdev, u16 vid, bool set) 908 { 909 struct fm10k_intfc *interface = netdev_priv(netdev); 910 struct fm10k_l2_accel *l2_accel = interface->l2_accel; 911 struct fm10k_hw *hw = &interface->hw; 912 u16 glort; 913 s32 err; 914 int i; 915 916 /* updates do not apply to VLAN 0 */ 917 if (!vid) 918 return 0; 919 920 if (vid >= VLAN_N_VID) 921 return -EINVAL; 922 923 /* Verify that we have permission to add VLANs. If this is a request 924 * to remove a VLAN, we still want to allow the user to remove the 925 * VLAN device. In that case, we need to clear the bit in the 926 * active_vlans bitmask. 927 */ 928 if (set && hw->mac.vlan_override) 929 return -EACCES; 930 931 /* update active_vlans bitmask */ 932 set_bit(vid, interface->active_vlans); 933 if (!set) 934 clear_bit(vid, interface->active_vlans); 935 936 /* disable the default VLAN ID on ring if we have an active VLAN */ 937 for (i = 0; i < interface->num_rx_queues; i++) { 938 struct fm10k_ring *rx_ring = interface->rx_ring[i]; 939 u16 rx_vid = rx_ring->vid & (VLAN_N_VID - 1); 940 941 if (test_bit(rx_vid, interface->active_vlans)) 942 rx_ring->vid |= FM10K_VLAN_CLEAR; 943 else 944 rx_ring->vid &= ~FM10K_VLAN_CLEAR; 945 } 946 947 /* If our VLAN has been overridden, there is no reason to send VLAN 948 * removal requests as they will be silently ignored. 949 */ 950 if (hw->mac.vlan_override) 951 return 0; 952 953 /* Do not remove default VLAN ID related entries from VLAN and MAC 954 * tables 955 */ 956 if (!set && vid == hw->mac.default_vid) 957 return 0; 958 959 /* Do not throw an error if the interface is down. We will sync once 960 * we come up 961 */ 962 if (test_bit(__FM10K_DOWN, interface->state)) 963 return 0; 964 965 fm10k_mbx_lock(interface); 966 967 /* only need to update the VLAN if not in promiscuous mode */ 968 if (!(netdev->flags & IFF_PROMISC)) { 969 err = fm10k_queue_vlan_request(interface, vid, 0, set); 970 if (err) 971 goto err_out; 972 } 973 974 /* Update our base MAC address */ 975 err = fm10k_queue_mac_request(interface, interface->glort, 976 hw->mac.addr, vid, set); 977 if (err) 978 goto err_out; 979 980 /* Update L2 accelerated macvlan addresses */ 981 if (l2_accel) { 982 for (i = 0; i < l2_accel->size; i++) { 983 struct net_device *sdev = l2_accel->macvlan[i]; 984 985 if (!sdev) 986 continue; 987 988 glort = l2_accel->dglort + 1 + i; 989 990 fm10k_queue_mac_request(interface, glort, 991 sdev->dev_addr, 992 vid, set); 993 } 994 } 995 996 /* set VLAN ID prior to syncing/unsyncing the VLAN */ 997 interface->vid = vid + (set ? VLAN_N_VID : 0); 998 999 /* Update the unicast and multicast address list to add/drop VLAN */ 1000 __dev_uc_unsync(netdev, fm10k_uc_vlan_unsync); 1001 __dev_mc_unsync(netdev, fm10k_mc_vlan_unsync); 1002 1003 err_out: 1004 fm10k_mbx_unlock(interface); 1005 1006 return err; 1007 } 1008 1009 static int fm10k_vlan_rx_add_vid(struct net_device *netdev, 1010 __always_unused __be16 proto, u16 vid) 1011 { 1012 /* update VLAN and address table based on changes */ 1013 return fm10k_update_vid(netdev, vid, true); 1014 } 1015 1016 static int fm10k_vlan_rx_kill_vid(struct net_device *netdev, 1017 __always_unused __be16 proto, u16 vid) 1018 { 1019 /* update VLAN and address table based on changes */ 1020 return fm10k_update_vid(netdev, vid, false); 1021 } 1022 1023 static u16 fm10k_find_next_vlan(struct fm10k_intfc *interface, u16 vid) 1024 { 1025 struct fm10k_hw *hw = &interface->hw; 1026 u16 default_vid = hw->mac.default_vid; 1027 u16 vid_limit = vid < default_vid ? default_vid : VLAN_N_VID; 1028 1029 vid = find_next_bit(interface->active_vlans, vid_limit, ++vid); 1030 1031 return vid; 1032 } 1033 1034 static void fm10k_clear_unused_vlans(struct fm10k_intfc *interface) 1035 { 1036 u32 vid, prev_vid; 1037 1038 /* loop through and find any gaps in the table */ 1039 for (vid = 0, prev_vid = 0; 1040 prev_vid < VLAN_N_VID; 1041 prev_vid = vid + 1, vid = fm10k_find_next_vlan(interface, vid)) { 1042 if (prev_vid == vid) 1043 continue; 1044 1045 /* send request to clear multiple bits at a time */ 1046 prev_vid += (vid - prev_vid - 1) << FM10K_VLAN_LENGTH_SHIFT; 1047 fm10k_queue_vlan_request(interface, prev_vid, 0, false); 1048 } 1049 } 1050 1051 static int __fm10k_uc_sync(struct net_device *dev, 1052 const unsigned char *addr, bool sync) 1053 { 1054 struct fm10k_intfc *interface = netdev_priv(dev); 1055 u16 vid, glort = interface->glort; 1056 s32 err; 1057 1058 if (!is_valid_ether_addr(addr)) 1059 return -EADDRNOTAVAIL; 1060 1061 for (vid = fm10k_find_next_vlan(interface, 0); 1062 vid < VLAN_N_VID; 1063 vid = fm10k_find_next_vlan(interface, vid)) { 1064 err = fm10k_queue_mac_request(interface, glort, 1065 addr, vid, sync); 1066 if (err) 1067 return err; 1068 } 1069 1070 return 0; 1071 } 1072 1073 static int fm10k_uc_sync(struct net_device *dev, 1074 const unsigned char *addr) 1075 { 1076 return __fm10k_uc_sync(dev, addr, true); 1077 } 1078 1079 static int fm10k_uc_unsync(struct net_device *dev, 1080 const unsigned char *addr) 1081 { 1082 return __fm10k_uc_sync(dev, addr, false); 1083 } 1084 1085 static int fm10k_set_mac(struct net_device *dev, void *p) 1086 { 1087 struct fm10k_intfc *interface = netdev_priv(dev); 1088 struct fm10k_hw *hw = &interface->hw; 1089 struct sockaddr *addr = p; 1090 s32 err = 0; 1091 1092 if (!is_valid_ether_addr(addr->sa_data)) 1093 return -EADDRNOTAVAIL; 1094 1095 if (dev->flags & IFF_UP) { 1096 /* setting MAC address requires mailbox */ 1097 fm10k_mbx_lock(interface); 1098 1099 err = fm10k_uc_sync(dev, addr->sa_data); 1100 if (!err) 1101 fm10k_uc_unsync(dev, hw->mac.addr); 1102 1103 fm10k_mbx_unlock(interface); 1104 } 1105 1106 if (!err) { 1107 ether_addr_copy(dev->dev_addr, addr->sa_data); 1108 ether_addr_copy(hw->mac.addr, addr->sa_data); 1109 dev->addr_assign_type &= ~NET_ADDR_RANDOM; 1110 } 1111 1112 /* if we had a mailbox error suggest trying again */ 1113 return err ? -EAGAIN : 0; 1114 } 1115 1116 static int __fm10k_mc_sync(struct net_device *dev, 1117 const unsigned char *addr, bool sync) 1118 { 1119 struct fm10k_intfc *interface = netdev_priv(dev); 1120 u16 vid, glort = interface->glort; 1121 s32 err; 1122 1123 if (!is_multicast_ether_addr(addr)) 1124 return -EADDRNOTAVAIL; 1125 1126 for (vid = fm10k_find_next_vlan(interface, 0); 1127 vid < VLAN_N_VID; 1128 vid = fm10k_find_next_vlan(interface, vid)) { 1129 err = fm10k_queue_mac_request(interface, glort, 1130 addr, vid, sync); 1131 if (err) 1132 return err; 1133 } 1134 1135 return 0; 1136 } 1137 1138 static int fm10k_mc_sync(struct net_device *dev, 1139 const unsigned char *addr) 1140 { 1141 return __fm10k_mc_sync(dev, addr, true); 1142 } 1143 1144 static int fm10k_mc_unsync(struct net_device *dev, 1145 const unsigned char *addr) 1146 { 1147 return __fm10k_mc_sync(dev, addr, false); 1148 } 1149 1150 static void fm10k_set_rx_mode(struct net_device *dev) 1151 { 1152 struct fm10k_intfc *interface = netdev_priv(dev); 1153 struct fm10k_hw *hw = &interface->hw; 1154 int xcast_mode; 1155 1156 /* no need to update the harwdare if we are not running */ 1157 if (!(dev->flags & IFF_UP)) 1158 return; 1159 1160 /* determine new mode based on flags */ 1161 xcast_mode = (dev->flags & IFF_PROMISC) ? FM10K_XCAST_MODE_PROMISC : 1162 (dev->flags & IFF_ALLMULTI) ? FM10K_XCAST_MODE_ALLMULTI : 1163 (dev->flags & (IFF_BROADCAST | IFF_MULTICAST)) ? 1164 FM10K_XCAST_MODE_MULTI : FM10K_XCAST_MODE_NONE; 1165 1166 fm10k_mbx_lock(interface); 1167 1168 /* update xcast mode first, but only if it changed */ 1169 if (interface->xcast_mode != xcast_mode) { 1170 /* update VLAN table when entering promiscuous mode */ 1171 if (xcast_mode == FM10K_XCAST_MODE_PROMISC) 1172 fm10k_queue_vlan_request(interface, FM10K_VLAN_ALL, 1173 0, true); 1174 1175 /* clear VLAN table when exiting promiscuous mode */ 1176 if (interface->xcast_mode == FM10K_XCAST_MODE_PROMISC) 1177 fm10k_clear_unused_vlans(interface); 1178 1179 /* update xcast mode if host's mailbox is ready */ 1180 if (fm10k_host_mbx_ready(interface)) 1181 hw->mac.ops.update_xcast_mode(hw, interface->glort, 1182 xcast_mode); 1183 1184 /* record updated xcast mode state */ 1185 interface->xcast_mode = xcast_mode; 1186 } 1187 1188 /* synchronize all of the addresses */ 1189 __dev_uc_sync(dev, fm10k_uc_sync, fm10k_uc_unsync); 1190 __dev_mc_sync(dev, fm10k_mc_sync, fm10k_mc_unsync); 1191 1192 fm10k_mbx_unlock(interface); 1193 } 1194 1195 void fm10k_restore_rx_state(struct fm10k_intfc *interface) 1196 { 1197 struct fm10k_l2_accel *l2_accel = interface->l2_accel; 1198 struct net_device *netdev = interface->netdev; 1199 struct fm10k_hw *hw = &interface->hw; 1200 int xcast_mode, i; 1201 u16 vid, glort; 1202 1203 /* record glort for this interface */ 1204 glort = interface->glort; 1205 1206 /* convert interface flags to xcast mode */ 1207 if (netdev->flags & IFF_PROMISC) 1208 xcast_mode = FM10K_XCAST_MODE_PROMISC; 1209 else if (netdev->flags & IFF_ALLMULTI) 1210 xcast_mode = FM10K_XCAST_MODE_ALLMULTI; 1211 else if (netdev->flags & (IFF_BROADCAST | IFF_MULTICAST)) 1212 xcast_mode = FM10K_XCAST_MODE_MULTI; 1213 else 1214 xcast_mode = FM10K_XCAST_MODE_NONE; 1215 1216 fm10k_mbx_lock(interface); 1217 1218 /* Enable logical port if host's mailbox is ready */ 1219 if (fm10k_host_mbx_ready(interface)) 1220 hw->mac.ops.update_lport_state(hw, glort, 1221 interface->glort_count, true); 1222 1223 /* update VLAN table */ 1224 fm10k_queue_vlan_request(interface, FM10K_VLAN_ALL, 0, 1225 xcast_mode == FM10K_XCAST_MODE_PROMISC); 1226 1227 /* update table with current entries */ 1228 for (vid = fm10k_find_next_vlan(interface, 0); 1229 vid < VLAN_N_VID; 1230 vid = fm10k_find_next_vlan(interface, vid)) { 1231 fm10k_queue_vlan_request(interface, vid, 0, true); 1232 1233 fm10k_queue_mac_request(interface, glort, 1234 hw->mac.addr, vid, true); 1235 1236 /* synchronize macvlan addresses */ 1237 if (l2_accel) { 1238 for (i = 0; i < l2_accel->size; i++) { 1239 struct net_device *sdev = l2_accel->macvlan[i]; 1240 1241 if (!sdev) 1242 continue; 1243 1244 glort = l2_accel->dglort + 1 + i; 1245 1246 fm10k_queue_mac_request(interface, glort, 1247 sdev->dev_addr, 1248 vid, true); 1249 } 1250 } 1251 } 1252 1253 /* update xcast mode before synchronizing addresses if host's mailbox 1254 * is ready 1255 */ 1256 if (fm10k_host_mbx_ready(interface)) 1257 hw->mac.ops.update_xcast_mode(hw, glort, xcast_mode); 1258 1259 /* synchronize all of the addresses */ 1260 __dev_uc_sync(netdev, fm10k_uc_sync, fm10k_uc_unsync); 1261 __dev_mc_sync(netdev, fm10k_mc_sync, fm10k_mc_unsync); 1262 1263 /* synchronize macvlan addresses */ 1264 if (l2_accel) { 1265 for (i = 0; i < l2_accel->size; i++) { 1266 struct net_device *sdev = l2_accel->macvlan[i]; 1267 1268 if (!sdev) 1269 continue; 1270 1271 glort = l2_accel->dglort + 1 + i; 1272 1273 hw->mac.ops.update_xcast_mode(hw, glort, 1274 FM10K_XCAST_MODE_NONE); 1275 fm10k_queue_mac_request(interface, glort, 1276 sdev->dev_addr, 1277 hw->mac.default_vid, true); 1278 } 1279 } 1280 1281 fm10k_mbx_unlock(interface); 1282 1283 /* record updated xcast mode state */ 1284 interface->xcast_mode = xcast_mode; 1285 1286 /* Restore tunnel configuration */ 1287 fm10k_restore_udp_port_info(interface); 1288 } 1289 1290 void fm10k_reset_rx_state(struct fm10k_intfc *interface) 1291 { 1292 struct net_device *netdev = interface->netdev; 1293 struct fm10k_hw *hw = &interface->hw; 1294 1295 /* Wait for MAC/VLAN work to finish */ 1296 while (test_bit(__FM10K_MACVLAN_SCHED, interface->state)) 1297 usleep_range(1000, 2000); 1298 1299 /* Cancel pending MAC/VLAN requests */ 1300 fm10k_clear_macvlan_queue(interface, interface->glort, true); 1301 1302 fm10k_mbx_lock(interface); 1303 1304 /* clear the logical port state on lower device if host's mailbox is 1305 * ready 1306 */ 1307 if (fm10k_host_mbx_ready(interface)) 1308 hw->mac.ops.update_lport_state(hw, interface->glort, 1309 interface->glort_count, false); 1310 1311 fm10k_mbx_unlock(interface); 1312 1313 /* reset flags to default state */ 1314 interface->xcast_mode = FM10K_XCAST_MODE_NONE; 1315 1316 /* clear the sync flag since the lport has been dropped */ 1317 __dev_uc_unsync(netdev, NULL); 1318 __dev_mc_unsync(netdev, NULL); 1319 } 1320 1321 /** 1322 * fm10k_get_stats64 - Get System Network Statistics 1323 * @netdev: network interface device structure 1324 * @stats: storage space for 64bit statistics 1325 * 1326 * Obtain 64bit statistics in a way that is safe for both 32bit and 64bit 1327 * architectures. 1328 */ 1329 static void fm10k_get_stats64(struct net_device *netdev, 1330 struct rtnl_link_stats64 *stats) 1331 { 1332 struct fm10k_intfc *interface = netdev_priv(netdev); 1333 struct fm10k_ring *ring; 1334 unsigned int start, i; 1335 u64 bytes, packets; 1336 1337 rcu_read_lock(); 1338 1339 for (i = 0; i < interface->num_rx_queues; i++) { 1340 ring = READ_ONCE(interface->rx_ring[i]); 1341 1342 if (!ring) 1343 continue; 1344 1345 do { 1346 start = u64_stats_fetch_begin_irq(&ring->syncp); 1347 packets = ring->stats.packets; 1348 bytes = ring->stats.bytes; 1349 } while (u64_stats_fetch_retry_irq(&ring->syncp, start)); 1350 1351 stats->rx_packets += packets; 1352 stats->rx_bytes += bytes; 1353 } 1354 1355 for (i = 0; i < interface->num_tx_queues; i++) { 1356 ring = READ_ONCE(interface->tx_ring[i]); 1357 1358 if (!ring) 1359 continue; 1360 1361 do { 1362 start = u64_stats_fetch_begin_irq(&ring->syncp); 1363 packets = ring->stats.packets; 1364 bytes = ring->stats.bytes; 1365 } while (u64_stats_fetch_retry_irq(&ring->syncp, start)); 1366 1367 stats->tx_packets += packets; 1368 stats->tx_bytes += bytes; 1369 } 1370 1371 rcu_read_unlock(); 1372 1373 /* following stats updated by fm10k_service_task() */ 1374 stats->rx_missed_errors = netdev->stats.rx_missed_errors; 1375 } 1376 1377 int fm10k_setup_tc(struct net_device *dev, u8 tc) 1378 { 1379 struct fm10k_intfc *interface = netdev_priv(dev); 1380 int err; 1381 1382 /* Currently only the PF supports priority classes */ 1383 if (tc && (interface->hw.mac.type != fm10k_mac_pf)) 1384 return -EINVAL; 1385 1386 /* Hardware supports up to 8 traffic classes */ 1387 if (tc > 8) 1388 return -EINVAL; 1389 1390 /* Hardware has to reinitialize queues to match packet 1391 * buffer alignment. Unfortunately, the hardware is not 1392 * flexible enough to do this dynamically. 1393 */ 1394 if (netif_running(dev)) 1395 fm10k_close(dev); 1396 1397 fm10k_mbx_free_irq(interface); 1398 1399 fm10k_clear_queueing_scheme(interface); 1400 1401 /* we expect the prio_tc map to be repopulated later */ 1402 netdev_reset_tc(dev); 1403 netdev_set_num_tc(dev, tc); 1404 1405 err = fm10k_init_queueing_scheme(interface); 1406 if (err) 1407 goto err_queueing_scheme; 1408 1409 err = fm10k_mbx_request_irq(interface); 1410 if (err) 1411 goto err_mbx_irq; 1412 1413 err = netif_running(dev) ? fm10k_open(dev) : 0; 1414 if (err) 1415 goto err_open; 1416 1417 /* flag to indicate SWPRI has yet to be updated */ 1418 set_bit(FM10K_FLAG_SWPRI_CONFIG, interface->flags); 1419 1420 return 0; 1421 err_open: 1422 fm10k_mbx_free_irq(interface); 1423 err_mbx_irq: 1424 fm10k_clear_queueing_scheme(interface); 1425 err_queueing_scheme: 1426 netif_device_detach(dev); 1427 1428 return err; 1429 } 1430 1431 static int __fm10k_setup_tc(struct net_device *dev, enum tc_setup_type type, 1432 void *type_data) 1433 { 1434 struct tc_mqprio_qopt *mqprio = type_data; 1435 1436 if (type != TC_SETUP_QDISC_MQPRIO) 1437 return -EOPNOTSUPP; 1438 1439 mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS; 1440 1441 return fm10k_setup_tc(dev, mqprio->num_tc); 1442 } 1443 1444 static void fm10k_assign_l2_accel(struct fm10k_intfc *interface, 1445 struct fm10k_l2_accel *l2_accel) 1446 { 1447 struct fm10k_ring *ring; 1448 int i; 1449 1450 for (i = 0; i < interface->num_rx_queues; i++) { 1451 ring = interface->rx_ring[i]; 1452 rcu_assign_pointer(ring->l2_accel, l2_accel); 1453 } 1454 1455 interface->l2_accel = l2_accel; 1456 } 1457 1458 static void *fm10k_dfwd_add_station(struct net_device *dev, 1459 struct net_device *sdev) 1460 { 1461 struct fm10k_intfc *interface = netdev_priv(dev); 1462 struct fm10k_l2_accel *l2_accel = interface->l2_accel; 1463 struct fm10k_l2_accel *old_l2_accel = NULL; 1464 struct fm10k_dglort_cfg dglort = { 0 }; 1465 struct fm10k_hw *hw = &interface->hw; 1466 int size = 0, i; 1467 u16 vid, glort; 1468 1469 /* The hardware supported by fm10k only filters on the destination MAC 1470 * address. In order to avoid issues we only support offloading modes 1471 * where the hardware can actually provide the functionality. 1472 */ 1473 if (!macvlan_supports_dest_filter(sdev)) 1474 return ERR_PTR(-EMEDIUMTYPE); 1475 1476 /* allocate l2 accel structure if it is not available */ 1477 if (!l2_accel) { 1478 /* verify there is enough free GLORTs to support l2_accel */ 1479 if (interface->glort_count < 7) 1480 return ERR_PTR(-EBUSY); 1481 1482 size = offsetof(struct fm10k_l2_accel, macvlan[7]); 1483 l2_accel = kzalloc(size, GFP_KERNEL); 1484 if (!l2_accel) 1485 return ERR_PTR(-ENOMEM); 1486 1487 l2_accel->size = 7; 1488 l2_accel->dglort = interface->glort; 1489 1490 /* update pointers */ 1491 fm10k_assign_l2_accel(interface, l2_accel); 1492 /* do not expand if we are at our limit */ 1493 } else if ((l2_accel->count == FM10K_MAX_STATIONS) || 1494 (l2_accel->count == (interface->glort_count - 1))) { 1495 return ERR_PTR(-EBUSY); 1496 /* expand if we have hit the size limit */ 1497 } else if (l2_accel->count == l2_accel->size) { 1498 old_l2_accel = l2_accel; 1499 size = offsetof(struct fm10k_l2_accel, 1500 macvlan[(l2_accel->size * 2) + 1]); 1501 l2_accel = kzalloc(size, GFP_KERNEL); 1502 if (!l2_accel) 1503 return ERR_PTR(-ENOMEM); 1504 1505 memcpy(l2_accel, old_l2_accel, 1506 offsetof(struct fm10k_l2_accel, 1507 macvlan[old_l2_accel->size])); 1508 1509 l2_accel->size = (old_l2_accel->size * 2) + 1; 1510 1511 /* update pointers */ 1512 fm10k_assign_l2_accel(interface, l2_accel); 1513 kfree_rcu(old_l2_accel, rcu); 1514 } 1515 1516 /* add macvlan to accel table, and record GLORT for position */ 1517 for (i = 0; i < l2_accel->size; i++) { 1518 if (!l2_accel->macvlan[i]) 1519 break; 1520 } 1521 1522 /* record station */ 1523 l2_accel->macvlan[i] = sdev; 1524 l2_accel->count++; 1525 1526 /* configure default DGLORT mapping for RSS/DCB */ 1527 dglort.idx = fm10k_dglort_pf_rss; 1528 dglort.inner_rss = 1; 1529 dglort.rss_l = fls(interface->ring_feature[RING_F_RSS].mask); 1530 dglort.pc_l = fls(interface->ring_feature[RING_F_QOS].mask); 1531 dglort.glort = interface->glort; 1532 dglort.shared_l = fls(l2_accel->size); 1533 hw->mac.ops.configure_dglort_map(hw, &dglort); 1534 1535 /* Add rules for this specific dglort to the switch */ 1536 fm10k_mbx_lock(interface); 1537 1538 glort = l2_accel->dglort + 1 + i; 1539 1540 if (fm10k_host_mbx_ready(interface)) 1541 hw->mac.ops.update_xcast_mode(hw, glort, 1542 FM10K_XCAST_MODE_NONE); 1543 1544 fm10k_queue_mac_request(interface, glort, sdev->dev_addr, 1545 hw->mac.default_vid, true); 1546 1547 for (vid = fm10k_find_next_vlan(interface, 0); 1548 vid < VLAN_N_VID; 1549 vid = fm10k_find_next_vlan(interface, vid)) 1550 fm10k_queue_mac_request(interface, glort, sdev->dev_addr, 1551 vid, true); 1552 1553 fm10k_mbx_unlock(interface); 1554 1555 return sdev; 1556 } 1557 1558 static void fm10k_dfwd_del_station(struct net_device *dev, void *priv) 1559 { 1560 struct fm10k_intfc *interface = netdev_priv(dev); 1561 struct fm10k_l2_accel *l2_accel = READ_ONCE(interface->l2_accel); 1562 struct fm10k_dglort_cfg dglort = { 0 }; 1563 struct fm10k_hw *hw = &interface->hw; 1564 struct net_device *sdev = priv; 1565 u16 vid, glort; 1566 int i; 1567 1568 if (!l2_accel) 1569 return; 1570 1571 /* search table for matching interface */ 1572 for (i = 0; i < l2_accel->size; i++) { 1573 if (l2_accel->macvlan[i] == sdev) 1574 break; 1575 } 1576 1577 /* exit if macvlan not found */ 1578 if (i == l2_accel->size) 1579 return; 1580 1581 /* Remove any rules specific to this dglort */ 1582 fm10k_mbx_lock(interface); 1583 1584 glort = l2_accel->dglort + 1 + i; 1585 1586 if (fm10k_host_mbx_ready(interface)) 1587 hw->mac.ops.update_xcast_mode(hw, glort, 1588 FM10K_XCAST_MODE_NONE); 1589 1590 fm10k_queue_mac_request(interface, glort, sdev->dev_addr, 1591 hw->mac.default_vid, false); 1592 1593 for (vid = fm10k_find_next_vlan(interface, 0); 1594 vid < VLAN_N_VID; 1595 vid = fm10k_find_next_vlan(interface, vid)) 1596 fm10k_queue_mac_request(interface, glort, sdev->dev_addr, 1597 vid, false); 1598 1599 fm10k_mbx_unlock(interface); 1600 1601 /* record removal */ 1602 l2_accel->macvlan[i] = NULL; 1603 l2_accel->count--; 1604 1605 /* configure default DGLORT mapping for RSS/DCB */ 1606 dglort.idx = fm10k_dglort_pf_rss; 1607 dglort.inner_rss = 1; 1608 dglort.rss_l = fls(interface->ring_feature[RING_F_RSS].mask); 1609 dglort.pc_l = fls(interface->ring_feature[RING_F_QOS].mask); 1610 dglort.glort = interface->glort; 1611 dglort.shared_l = fls(l2_accel->size); 1612 hw->mac.ops.configure_dglort_map(hw, &dglort); 1613 1614 /* If table is empty remove it */ 1615 if (l2_accel->count == 0) { 1616 fm10k_assign_l2_accel(interface, NULL); 1617 kfree_rcu(l2_accel, rcu); 1618 } 1619 } 1620 1621 static netdev_features_t fm10k_features_check(struct sk_buff *skb, 1622 struct net_device *dev, 1623 netdev_features_t features) 1624 { 1625 if (!skb->encapsulation || fm10k_tx_encap_offload(skb)) 1626 return features; 1627 1628 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 1629 } 1630 1631 static const struct net_device_ops fm10k_netdev_ops = { 1632 .ndo_open = fm10k_open, 1633 .ndo_stop = fm10k_close, 1634 .ndo_validate_addr = eth_validate_addr, 1635 .ndo_start_xmit = fm10k_xmit_frame, 1636 .ndo_set_mac_address = fm10k_set_mac, 1637 .ndo_tx_timeout = fm10k_tx_timeout, 1638 .ndo_vlan_rx_add_vid = fm10k_vlan_rx_add_vid, 1639 .ndo_vlan_rx_kill_vid = fm10k_vlan_rx_kill_vid, 1640 .ndo_set_rx_mode = fm10k_set_rx_mode, 1641 .ndo_get_stats64 = fm10k_get_stats64, 1642 .ndo_setup_tc = __fm10k_setup_tc, 1643 .ndo_set_vf_mac = fm10k_ndo_set_vf_mac, 1644 .ndo_set_vf_vlan = fm10k_ndo_set_vf_vlan, 1645 .ndo_set_vf_rate = fm10k_ndo_set_vf_bw, 1646 .ndo_get_vf_config = fm10k_ndo_get_vf_config, 1647 .ndo_udp_tunnel_add = fm10k_udp_tunnel_add, 1648 .ndo_udp_tunnel_del = fm10k_udp_tunnel_del, 1649 .ndo_dfwd_add_station = fm10k_dfwd_add_station, 1650 .ndo_dfwd_del_station = fm10k_dfwd_del_station, 1651 #ifdef CONFIG_NET_POLL_CONTROLLER 1652 .ndo_poll_controller = fm10k_netpoll, 1653 #endif 1654 .ndo_features_check = fm10k_features_check, 1655 }; 1656 1657 #define DEFAULT_DEBUG_LEVEL_SHIFT 3 1658 1659 struct net_device *fm10k_alloc_netdev(const struct fm10k_info *info) 1660 { 1661 netdev_features_t hw_features; 1662 struct fm10k_intfc *interface; 1663 struct net_device *dev; 1664 1665 dev = alloc_etherdev_mq(sizeof(struct fm10k_intfc), MAX_QUEUES); 1666 if (!dev) 1667 return NULL; 1668 1669 /* set net device and ethtool ops */ 1670 dev->netdev_ops = &fm10k_netdev_ops; 1671 fm10k_set_ethtool_ops(dev); 1672 1673 /* configure default debug level */ 1674 interface = netdev_priv(dev); 1675 interface->msg_enable = BIT(DEFAULT_DEBUG_LEVEL_SHIFT) - 1; 1676 1677 /* configure default features */ 1678 dev->features |= NETIF_F_IP_CSUM | 1679 NETIF_F_IPV6_CSUM | 1680 NETIF_F_SG | 1681 NETIF_F_TSO | 1682 NETIF_F_TSO6 | 1683 NETIF_F_TSO_ECN | 1684 NETIF_F_RXHASH | 1685 NETIF_F_RXCSUM; 1686 1687 /* Only the PF can support VXLAN and NVGRE tunnel offloads */ 1688 if (info->mac == fm10k_mac_pf) { 1689 dev->hw_enc_features = NETIF_F_IP_CSUM | 1690 NETIF_F_TSO | 1691 NETIF_F_TSO6 | 1692 NETIF_F_TSO_ECN | 1693 NETIF_F_GSO_UDP_TUNNEL | 1694 NETIF_F_IPV6_CSUM | 1695 NETIF_F_SG; 1696 1697 dev->features |= NETIF_F_GSO_UDP_TUNNEL; 1698 } 1699 1700 /* all features defined to this point should be changeable */ 1701 hw_features = dev->features; 1702 1703 /* allow user to enable L2 forwarding acceleration */ 1704 hw_features |= NETIF_F_HW_L2FW_DOFFLOAD; 1705 1706 /* configure VLAN features */ 1707 dev->vlan_features |= dev->features; 1708 1709 /* we want to leave these both on as we cannot disable VLAN tag 1710 * insertion or stripping on the hardware since it is contained 1711 * in the FTAG and not in the frame itself. 1712 */ 1713 dev->features |= NETIF_F_HW_VLAN_CTAG_TX | 1714 NETIF_F_HW_VLAN_CTAG_RX | 1715 NETIF_F_HW_VLAN_CTAG_FILTER; 1716 1717 dev->priv_flags |= IFF_UNICAST_FLT; 1718 1719 dev->hw_features |= hw_features; 1720 1721 /* MTU range: 68 - 15342 */ 1722 dev->min_mtu = ETH_MIN_MTU; 1723 dev->max_mtu = FM10K_MAX_JUMBO_FRAME_SIZE; 1724 1725 return dev; 1726 } 1727