1 /* Intel Ethernet Switch Host Interface Driver
2  * Copyright(c) 2013 - 2015 Intel Corporation.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms and conditions of the GNU General Public License,
6  * version 2, as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope it will be useful, but WITHOUT
9  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
11  * more details.
12  *
13  * The full GNU General Public License is included in this distribution in
14  * the file called "COPYING".
15  *
16  * Contact Information:
17  * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
18  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
19  */
20 
21 #include "fm10k.h"
22 #include <linux/vmalloc.h>
23 #if IS_ENABLED(CONFIG_FM10K_VXLAN)
24 #include <net/vxlan.h>
25 #endif /* CONFIG_FM10K_VXLAN */
26 
27 /**
28  * fm10k_setup_tx_resources - allocate Tx resources (Descriptors)
29  * @tx_ring:    tx descriptor ring (for a specific queue) to setup
30  *
31  * Return 0 on success, negative on failure
32  **/
33 int fm10k_setup_tx_resources(struct fm10k_ring *tx_ring)
34 {
35 	struct device *dev = tx_ring->dev;
36 	int size;
37 
38 	size = sizeof(struct fm10k_tx_buffer) * tx_ring->count;
39 
40 	tx_ring->tx_buffer = vzalloc(size);
41 	if (!tx_ring->tx_buffer)
42 		goto err;
43 
44 	u64_stats_init(&tx_ring->syncp);
45 
46 	/* round up to nearest 4K */
47 	tx_ring->size = tx_ring->count * sizeof(struct fm10k_tx_desc);
48 	tx_ring->size = ALIGN(tx_ring->size, 4096);
49 
50 	tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
51 					   &tx_ring->dma, GFP_KERNEL);
52 	if (!tx_ring->desc)
53 		goto err;
54 
55 	return 0;
56 
57 err:
58 	vfree(tx_ring->tx_buffer);
59 	tx_ring->tx_buffer = NULL;
60 	return -ENOMEM;
61 }
62 
63 /**
64  * fm10k_setup_all_tx_resources - allocate all queues Tx resources
65  * @interface: board private structure
66  *
67  * If this function returns with an error, then it's possible one or
68  * more of the rings is populated (while the rest are not).  It is the
69  * callers duty to clean those orphaned rings.
70  *
71  * Return 0 on success, negative on failure
72  **/
73 static int fm10k_setup_all_tx_resources(struct fm10k_intfc *interface)
74 {
75 	int i, err = 0;
76 
77 	for (i = 0; i < interface->num_tx_queues; i++) {
78 		err = fm10k_setup_tx_resources(interface->tx_ring[i]);
79 		if (!err)
80 			continue;
81 
82 		netif_err(interface, probe, interface->netdev,
83 			  "Allocation for Tx Queue %u failed\n", i);
84 		goto err_setup_tx;
85 	}
86 
87 	return 0;
88 err_setup_tx:
89 	/* rewind the index freeing the rings as we go */
90 	while (i--)
91 		fm10k_free_tx_resources(interface->tx_ring[i]);
92 	return err;
93 }
94 
95 /**
96  * fm10k_setup_rx_resources - allocate Rx resources (Descriptors)
97  * @rx_ring:    rx descriptor ring (for a specific queue) to setup
98  *
99  * Returns 0 on success, negative on failure
100  **/
101 int fm10k_setup_rx_resources(struct fm10k_ring *rx_ring)
102 {
103 	struct device *dev = rx_ring->dev;
104 	int size;
105 
106 	size = sizeof(struct fm10k_rx_buffer) * rx_ring->count;
107 
108 	rx_ring->rx_buffer = vzalloc(size);
109 	if (!rx_ring->rx_buffer)
110 		goto err;
111 
112 	u64_stats_init(&rx_ring->syncp);
113 
114 	/* Round up to nearest 4K */
115 	rx_ring->size = rx_ring->count * sizeof(union fm10k_rx_desc);
116 	rx_ring->size = ALIGN(rx_ring->size, 4096);
117 
118 	rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
119 					   &rx_ring->dma, GFP_KERNEL);
120 	if (!rx_ring->desc)
121 		goto err;
122 
123 	return 0;
124 err:
125 	vfree(rx_ring->rx_buffer);
126 	rx_ring->rx_buffer = NULL;
127 	return -ENOMEM;
128 }
129 
130 /**
131  * fm10k_setup_all_rx_resources - allocate all queues Rx resources
132  * @interface: board private structure
133  *
134  * If this function returns with an error, then it's possible one or
135  * more of the rings is populated (while the rest are not).  It is the
136  * callers duty to clean those orphaned rings.
137  *
138  * Return 0 on success, negative on failure
139  **/
140 static int fm10k_setup_all_rx_resources(struct fm10k_intfc *interface)
141 {
142 	int i, err = 0;
143 
144 	for (i = 0; i < interface->num_rx_queues; i++) {
145 		err = fm10k_setup_rx_resources(interface->rx_ring[i]);
146 		if (!err)
147 			continue;
148 
149 		netif_err(interface, probe, interface->netdev,
150 			  "Allocation for Rx Queue %u failed\n", i);
151 		goto err_setup_rx;
152 	}
153 
154 	return 0;
155 err_setup_rx:
156 	/* rewind the index freeing the rings as we go */
157 	while (i--)
158 		fm10k_free_rx_resources(interface->rx_ring[i]);
159 	return err;
160 }
161 
162 void fm10k_unmap_and_free_tx_resource(struct fm10k_ring *ring,
163 				      struct fm10k_tx_buffer *tx_buffer)
164 {
165 	if (tx_buffer->skb) {
166 		dev_kfree_skb_any(tx_buffer->skb);
167 		if (dma_unmap_len(tx_buffer, len))
168 			dma_unmap_single(ring->dev,
169 					 dma_unmap_addr(tx_buffer, dma),
170 					 dma_unmap_len(tx_buffer, len),
171 					 DMA_TO_DEVICE);
172 	} else if (dma_unmap_len(tx_buffer, len)) {
173 		dma_unmap_page(ring->dev,
174 			       dma_unmap_addr(tx_buffer, dma),
175 			       dma_unmap_len(tx_buffer, len),
176 			       DMA_TO_DEVICE);
177 	}
178 	tx_buffer->next_to_watch = NULL;
179 	tx_buffer->skb = NULL;
180 	dma_unmap_len_set(tx_buffer, len, 0);
181 	/* tx_buffer must be completely set up in the transmit path */
182 }
183 
184 /**
185  * fm10k_clean_tx_ring - Free Tx Buffers
186  * @tx_ring: ring to be cleaned
187  **/
188 static void fm10k_clean_tx_ring(struct fm10k_ring *tx_ring)
189 {
190 	struct fm10k_tx_buffer *tx_buffer;
191 	unsigned long size;
192 	u16 i;
193 
194 	/* ring already cleared, nothing to do */
195 	if (!tx_ring->tx_buffer)
196 		return;
197 
198 	/* Free all the Tx ring sk_buffs */
199 	for (i = 0; i < tx_ring->count; i++) {
200 		tx_buffer = &tx_ring->tx_buffer[i];
201 		fm10k_unmap_and_free_tx_resource(tx_ring, tx_buffer);
202 	}
203 
204 	/* reset BQL values */
205 	netdev_tx_reset_queue(txring_txq(tx_ring));
206 
207 	size = sizeof(struct fm10k_tx_buffer) * tx_ring->count;
208 	memset(tx_ring->tx_buffer, 0, size);
209 
210 	/* Zero out the descriptor ring */
211 	memset(tx_ring->desc, 0, tx_ring->size);
212 }
213 
214 /**
215  * fm10k_free_tx_resources - Free Tx Resources per Queue
216  * @tx_ring: Tx descriptor ring for a specific queue
217  *
218  * Free all transmit software resources
219  **/
220 void fm10k_free_tx_resources(struct fm10k_ring *tx_ring)
221 {
222 	fm10k_clean_tx_ring(tx_ring);
223 
224 	vfree(tx_ring->tx_buffer);
225 	tx_ring->tx_buffer = NULL;
226 
227 	/* if not set, then don't free */
228 	if (!tx_ring->desc)
229 		return;
230 
231 	dma_free_coherent(tx_ring->dev, tx_ring->size,
232 			  tx_ring->desc, tx_ring->dma);
233 	tx_ring->desc = NULL;
234 }
235 
236 /**
237  * fm10k_clean_all_tx_rings - Free Tx Buffers for all queues
238  * @interface: board private structure
239  **/
240 void fm10k_clean_all_tx_rings(struct fm10k_intfc *interface)
241 {
242 	int i;
243 
244 	for (i = 0; i < interface->num_tx_queues; i++)
245 		fm10k_clean_tx_ring(interface->tx_ring[i]);
246 
247 	/* remove any stale timestamp buffers and free them */
248 	skb_queue_purge(&interface->ts_tx_skb_queue);
249 }
250 
251 /**
252  * fm10k_free_all_tx_resources - Free Tx Resources for All Queues
253  * @interface: board private structure
254  *
255  * Free all transmit software resources
256  **/
257 static void fm10k_free_all_tx_resources(struct fm10k_intfc *interface)
258 {
259 	int i = interface->num_tx_queues;
260 
261 	while (i--)
262 		fm10k_free_tx_resources(interface->tx_ring[i]);
263 }
264 
265 /**
266  * fm10k_clean_rx_ring - Free Rx Buffers per Queue
267  * @rx_ring: ring to free buffers from
268  **/
269 static void fm10k_clean_rx_ring(struct fm10k_ring *rx_ring)
270 {
271 	unsigned long size;
272 	u16 i;
273 
274 	if (!rx_ring->rx_buffer)
275 		return;
276 
277 	if (rx_ring->skb)
278 		dev_kfree_skb(rx_ring->skb);
279 	rx_ring->skb = NULL;
280 
281 	/* Free all the Rx ring sk_buffs */
282 	for (i = 0; i < rx_ring->count; i++) {
283 		struct fm10k_rx_buffer *buffer = &rx_ring->rx_buffer[i];
284 		/* clean-up will only set page pointer to NULL */
285 		if (!buffer->page)
286 			continue;
287 
288 		dma_unmap_page(rx_ring->dev, buffer->dma,
289 			       PAGE_SIZE, DMA_FROM_DEVICE);
290 		__free_page(buffer->page);
291 
292 		buffer->page = NULL;
293 	}
294 
295 	size = sizeof(struct fm10k_rx_buffer) * rx_ring->count;
296 	memset(rx_ring->rx_buffer, 0, size);
297 
298 	/* Zero out the descriptor ring */
299 	memset(rx_ring->desc, 0, rx_ring->size);
300 
301 	rx_ring->next_to_alloc = 0;
302 	rx_ring->next_to_clean = 0;
303 	rx_ring->next_to_use = 0;
304 }
305 
306 /**
307  * fm10k_free_rx_resources - Free Rx Resources
308  * @rx_ring: ring to clean the resources from
309  *
310  * Free all receive software resources
311  **/
312 void fm10k_free_rx_resources(struct fm10k_ring *rx_ring)
313 {
314 	fm10k_clean_rx_ring(rx_ring);
315 
316 	vfree(rx_ring->rx_buffer);
317 	rx_ring->rx_buffer = NULL;
318 
319 	/* if not set, then don't free */
320 	if (!rx_ring->desc)
321 		return;
322 
323 	dma_free_coherent(rx_ring->dev, rx_ring->size,
324 			  rx_ring->desc, rx_ring->dma);
325 
326 	rx_ring->desc = NULL;
327 }
328 
329 /**
330  * fm10k_clean_all_rx_rings - Free Rx Buffers for all queues
331  * @interface: board private structure
332  **/
333 void fm10k_clean_all_rx_rings(struct fm10k_intfc *interface)
334 {
335 	int i;
336 
337 	for (i = 0; i < interface->num_rx_queues; i++)
338 		fm10k_clean_rx_ring(interface->rx_ring[i]);
339 }
340 
341 /**
342  * fm10k_free_all_rx_resources - Free Rx Resources for All Queues
343  * @interface: board private structure
344  *
345  * Free all receive software resources
346  **/
347 static void fm10k_free_all_rx_resources(struct fm10k_intfc *interface)
348 {
349 	int i = interface->num_rx_queues;
350 
351 	while (i--)
352 		fm10k_free_rx_resources(interface->rx_ring[i]);
353 }
354 
355 /**
356  * fm10k_request_glort_range - Request GLORTs for use in configuring rules
357  * @interface: board private structure
358  *
359  * This function allocates a range of glorts for this interface to use.
360  **/
361 static void fm10k_request_glort_range(struct fm10k_intfc *interface)
362 {
363 	struct fm10k_hw *hw = &interface->hw;
364 	u16 mask = (~hw->mac.dglort_map) >> FM10K_DGLORTMAP_MASK_SHIFT;
365 
366 	/* establish GLORT base */
367 	interface->glort = hw->mac.dglort_map & FM10K_DGLORTMAP_NONE;
368 	interface->glort_count = 0;
369 
370 	/* nothing we can do until mask is allocated */
371 	if (hw->mac.dglort_map == FM10K_DGLORTMAP_NONE)
372 		return;
373 
374 	/* we support 3 possible GLORT configurations.
375 	 * 1: VFs consume all but the last 1
376 	 * 2: VFs and PF split glorts with possible gap between
377 	 * 3: VFs allocated first 64, all others belong to PF
378 	 */
379 	if (mask <= hw->iov.total_vfs) {
380 		interface->glort_count = 1;
381 		interface->glort += mask;
382 	} else if (mask < 64) {
383 		interface->glort_count = (mask + 1) / 2;
384 		interface->glort += interface->glort_count;
385 	} else {
386 		interface->glort_count = mask - 63;
387 		interface->glort += 64;
388 	}
389 }
390 
391 /**
392  * fm10k_del_vxlan_port_all
393  * @interface: board private structure
394  *
395  * This function frees the entire vxlan_port list
396  **/
397 static void fm10k_del_vxlan_port_all(struct fm10k_intfc *interface)
398 {
399 	struct fm10k_vxlan_port *vxlan_port;
400 
401 	/* flush all entries from list */
402 	vxlan_port = list_first_entry_or_null(&interface->vxlan_port,
403 					      struct fm10k_vxlan_port, list);
404 	while (vxlan_port) {
405 		list_del(&vxlan_port->list);
406 		kfree(vxlan_port);
407 		vxlan_port = list_first_entry_or_null(&interface->vxlan_port,
408 						      struct fm10k_vxlan_port,
409 						      list);
410 	}
411 }
412 
413 /**
414  * fm10k_restore_vxlan_port
415  * @interface: board private structure
416  *
417  * This function restores the value in the tunnel_cfg register after reset
418  **/
419 static void fm10k_restore_vxlan_port(struct fm10k_intfc *interface)
420 {
421 	struct fm10k_hw *hw = &interface->hw;
422 	struct fm10k_vxlan_port *vxlan_port;
423 
424 	/* only the PF supports configuring tunnels */
425 	if (hw->mac.type != fm10k_mac_pf)
426 		return;
427 
428 	vxlan_port = list_first_entry_or_null(&interface->vxlan_port,
429 					      struct fm10k_vxlan_port, list);
430 
431 	/* restore tunnel configuration register */
432 	fm10k_write_reg(hw, FM10K_TUNNEL_CFG,
433 			(vxlan_port ? ntohs(vxlan_port->port) : 0) |
434 			(ETH_P_TEB << FM10K_TUNNEL_CFG_NVGRE_SHIFT));
435 }
436 
437 /**
438  * fm10k_add_vxlan_port
439  * @netdev: network interface device structure
440  * @sa_family: Address family of new port
441  * @port: port number used for VXLAN
442  *
443  * This funciton is called when a new VXLAN interface has added a new port
444  * number to the range that is currently in use for VXLAN.  The new port
445  * number is always added to the tail so that the port number list should
446  * match the order in which the ports were allocated.  The head of the list
447  * is always used as the VXLAN port number for offloads.
448  **/
449 static void fm10k_add_vxlan_port(struct net_device *dev,
450 				 sa_family_t sa_family, __be16 port) {
451 	struct fm10k_intfc *interface = netdev_priv(dev);
452 	struct fm10k_vxlan_port *vxlan_port;
453 
454 	/* only the PF supports configuring tunnels */
455 	if (interface->hw.mac.type != fm10k_mac_pf)
456 		return;
457 
458 	/* existing ports are pulled out so our new entry is always last */
459 	fm10k_vxlan_port_for_each(vxlan_port, interface) {
460 		if ((vxlan_port->port == port) &&
461 		    (vxlan_port->sa_family == sa_family)) {
462 			list_del(&vxlan_port->list);
463 			goto insert_tail;
464 		}
465 	}
466 
467 	/* allocate memory to track ports */
468 	vxlan_port = kmalloc(sizeof(*vxlan_port), GFP_ATOMIC);
469 	if (!vxlan_port)
470 		return;
471 	vxlan_port->port = port;
472 	vxlan_port->sa_family = sa_family;
473 
474 insert_tail:
475 	/* add new port value to list */
476 	list_add_tail(&vxlan_port->list, &interface->vxlan_port);
477 
478 	fm10k_restore_vxlan_port(interface);
479 }
480 
481 /**
482  * fm10k_del_vxlan_port
483  * @netdev: network interface device structure
484  * @sa_family: Address family of freed port
485  * @port: port number used for VXLAN
486  *
487  * This funciton is called when a new VXLAN interface has freed a port
488  * number from the range that is currently in use for VXLAN.  The freed
489  * port is removed from the list and the new head is used to determine
490  * the port number for offloads.
491  **/
492 static void fm10k_del_vxlan_port(struct net_device *dev,
493 				 sa_family_t sa_family, __be16 port) {
494 	struct fm10k_intfc *interface = netdev_priv(dev);
495 	struct fm10k_vxlan_port *vxlan_port;
496 
497 	if (interface->hw.mac.type != fm10k_mac_pf)
498 		return;
499 
500 	/* find the port in the list and free it */
501 	fm10k_vxlan_port_for_each(vxlan_port, interface) {
502 		if ((vxlan_port->port == port) &&
503 		    (vxlan_port->sa_family == sa_family)) {
504 			list_del(&vxlan_port->list);
505 			kfree(vxlan_port);
506 			break;
507 		}
508 	}
509 
510 	fm10k_restore_vxlan_port(interface);
511 }
512 
513 /**
514  * fm10k_open - Called when a network interface is made active
515  * @netdev: network interface device structure
516  *
517  * Returns 0 on success, negative value on failure
518  *
519  * The open entry point is called when a network interface is made
520  * active by the system (IFF_UP).  At this point all resources needed
521  * for transmit and receive operations are allocated, the interrupt
522  * handler is registered with the OS, the watchdog timer is started,
523  * and the stack is notified that the interface is ready.
524  **/
525 int fm10k_open(struct net_device *netdev)
526 {
527 	struct fm10k_intfc *interface = netdev_priv(netdev);
528 	int err;
529 
530 	/* allocate transmit descriptors */
531 	err = fm10k_setup_all_tx_resources(interface);
532 	if (err)
533 		goto err_setup_tx;
534 
535 	/* allocate receive descriptors */
536 	err = fm10k_setup_all_rx_resources(interface);
537 	if (err)
538 		goto err_setup_rx;
539 
540 	/* allocate interrupt resources */
541 	err = fm10k_qv_request_irq(interface);
542 	if (err)
543 		goto err_req_irq;
544 
545 	/* setup GLORT assignment for this port */
546 	fm10k_request_glort_range(interface);
547 
548 	/* Notify the stack of the actual queue counts */
549 	err = netif_set_real_num_tx_queues(netdev,
550 					   interface->num_tx_queues);
551 	if (err)
552 		goto err_set_queues;
553 
554 	err = netif_set_real_num_rx_queues(netdev,
555 					   interface->num_rx_queues);
556 	if (err)
557 		goto err_set_queues;
558 
559 #if IS_ENABLED(CONFIG_FM10K_VXLAN)
560 	/* update VXLAN port configuration */
561 	vxlan_get_rx_port(netdev);
562 
563 #endif
564 	fm10k_up(interface);
565 
566 	return 0;
567 
568 err_set_queues:
569 	fm10k_qv_free_irq(interface);
570 err_req_irq:
571 	fm10k_free_all_rx_resources(interface);
572 err_setup_rx:
573 	fm10k_free_all_tx_resources(interface);
574 err_setup_tx:
575 	return err;
576 }
577 
578 /**
579  * fm10k_close - Disables a network interface
580  * @netdev: network interface device structure
581  *
582  * Returns 0, this is not allowed to fail
583  *
584  * The close entry point is called when an interface is de-activated
585  * by the OS.  The hardware is still under the drivers control, but
586  * needs to be disabled.  A global MAC reset is issued to stop the
587  * hardware, and all transmit and receive resources are freed.
588  **/
589 int fm10k_close(struct net_device *netdev)
590 {
591 	struct fm10k_intfc *interface = netdev_priv(netdev);
592 
593 	fm10k_down(interface);
594 
595 	fm10k_qv_free_irq(interface);
596 
597 	fm10k_del_vxlan_port_all(interface);
598 
599 	fm10k_free_all_tx_resources(interface);
600 	fm10k_free_all_rx_resources(interface);
601 
602 	return 0;
603 }
604 
605 static netdev_tx_t fm10k_xmit_frame(struct sk_buff *skb, struct net_device *dev)
606 {
607 	struct fm10k_intfc *interface = netdev_priv(dev);
608 	unsigned int r_idx = skb->queue_mapping;
609 	int err;
610 
611 	if ((skb->protocol ==  htons(ETH_P_8021Q)) &&
612 	    !skb_vlan_tag_present(skb)) {
613 		/* FM10K only supports hardware tagging, any tags in frame
614 		 * are considered 2nd level or "outer" tags
615 		 */
616 		struct vlan_hdr *vhdr;
617 		__be16 proto;
618 
619 		/* make sure skb is not shared */
620 		skb = skb_share_check(skb, GFP_ATOMIC);
621 		if (!skb)
622 			return NETDEV_TX_OK;
623 
624 		/* make sure there is enough room to move the ethernet header */
625 		if (unlikely(!pskb_may_pull(skb, VLAN_ETH_HLEN)))
626 			return NETDEV_TX_OK;
627 
628 		/* verify the skb head is not shared */
629 		err = skb_cow_head(skb, 0);
630 		if (err)
631 			return NETDEV_TX_OK;
632 
633 		/* locate vlan header */
634 		vhdr = (struct vlan_hdr *)(skb->data + ETH_HLEN);
635 
636 		/* pull the 2 key pieces of data out of it */
637 		__vlan_hwaccel_put_tag(skb,
638 				       htons(ETH_P_8021Q),
639 				       ntohs(vhdr->h_vlan_TCI));
640 		proto = vhdr->h_vlan_encapsulated_proto;
641 		skb->protocol = (ntohs(proto) >= 1536) ? proto :
642 							 htons(ETH_P_802_2);
643 
644 		/* squash it by moving the ethernet addresses up 4 bytes */
645 		memmove(skb->data + VLAN_HLEN, skb->data, 12);
646 		__skb_pull(skb, VLAN_HLEN);
647 		skb_reset_mac_header(skb);
648 	}
649 
650 	/* The minimum packet size for a single buffer is 17B so pad the skb
651 	 * in order to meet this minimum size requirement.
652 	 */
653 	if (unlikely(skb->len < 17)) {
654 		int pad_len = 17 - skb->len;
655 
656 		if (skb_pad(skb, pad_len))
657 			return NETDEV_TX_OK;
658 		__skb_put(skb, pad_len);
659 	}
660 
661 	/* prepare packet for hardware time stamping */
662 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP))
663 		fm10k_ts_tx_enqueue(interface, skb);
664 
665 	if (r_idx >= interface->num_tx_queues)
666 		r_idx %= interface->num_tx_queues;
667 
668 	err = fm10k_xmit_frame_ring(skb, interface->tx_ring[r_idx]);
669 
670 	return err;
671 }
672 
673 static int fm10k_change_mtu(struct net_device *dev, int new_mtu)
674 {
675 	if (new_mtu < 68 || new_mtu > FM10K_MAX_JUMBO_FRAME_SIZE)
676 		return -EINVAL;
677 
678 	dev->mtu = new_mtu;
679 
680 	return 0;
681 }
682 
683 /**
684  * fm10k_tx_timeout - Respond to a Tx Hang
685  * @netdev: network interface device structure
686  **/
687 static void fm10k_tx_timeout(struct net_device *netdev)
688 {
689 	struct fm10k_intfc *interface = netdev_priv(netdev);
690 	bool real_tx_hang = false;
691 	int i;
692 
693 #define TX_TIMEO_LIMIT 16000
694 	for (i = 0; i < interface->num_tx_queues; i++) {
695 		struct fm10k_ring *tx_ring = interface->tx_ring[i];
696 
697 		if (check_for_tx_hang(tx_ring) && fm10k_check_tx_hang(tx_ring))
698 			real_tx_hang = true;
699 	}
700 
701 	if (real_tx_hang) {
702 		fm10k_tx_timeout_reset(interface);
703 	} else {
704 		netif_info(interface, drv, netdev,
705 			   "Fake Tx hang detected with timeout of %d seconds\n",
706 			   netdev->watchdog_timeo/HZ);
707 
708 		/* fake Tx hang - increase the kernel timeout */
709 		if (netdev->watchdog_timeo < TX_TIMEO_LIMIT)
710 			netdev->watchdog_timeo *= 2;
711 	}
712 }
713 
714 static int fm10k_uc_vlan_unsync(struct net_device *netdev,
715 				const unsigned char *uc_addr)
716 {
717 	struct fm10k_intfc *interface = netdev_priv(netdev);
718 	struct fm10k_hw *hw = &interface->hw;
719 	u16 glort = interface->glort;
720 	u16 vid = interface->vid;
721 	bool set = !!(vid / VLAN_N_VID);
722 	int err;
723 
724 	/* drop any leading bits on the VLAN ID */
725 	vid &= VLAN_N_VID - 1;
726 
727 	err = hw->mac.ops.update_uc_addr(hw, glort, uc_addr, vid, set, 0);
728 	if (err)
729 		return err;
730 
731 	/* return non-zero value as we are only doing a partial sync/unsync */
732 	return 1;
733 }
734 
735 static int fm10k_mc_vlan_unsync(struct net_device *netdev,
736 				const unsigned char *mc_addr)
737 {
738 	struct fm10k_intfc *interface = netdev_priv(netdev);
739 	struct fm10k_hw *hw = &interface->hw;
740 	u16 glort = interface->glort;
741 	u16 vid = interface->vid;
742 	bool set = !!(vid / VLAN_N_VID);
743 	int err;
744 
745 	/* drop any leading bits on the VLAN ID */
746 	vid &= VLAN_N_VID - 1;
747 
748 	err = hw->mac.ops.update_mc_addr(hw, glort, mc_addr, vid, set);
749 	if (err)
750 		return err;
751 
752 	/* return non-zero value as we are only doing a partial sync/unsync */
753 	return 1;
754 }
755 
756 static int fm10k_update_vid(struct net_device *netdev, u16 vid, bool set)
757 {
758 	struct fm10k_intfc *interface = netdev_priv(netdev);
759 	struct fm10k_hw *hw = &interface->hw;
760 	s32 err;
761 
762 	/* updates do not apply to VLAN 0 */
763 	if (!vid)
764 		return 0;
765 
766 	if (vid >= VLAN_N_VID)
767 		return -EINVAL;
768 
769 	/* Verify we have permission to add VLANs */
770 	if (hw->mac.vlan_override)
771 		return -EACCES;
772 
773 	/* update active_vlans bitmask */
774 	set_bit(vid, interface->active_vlans);
775 	if (!set)
776 		clear_bit(vid, interface->active_vlans);
777 
778 	/* if default VLAN is already present do nothing */
779 	if (vid == hw->mac.default_vid)
780 		return 0;
781 
782 	fm10k_mbx_lock(interface);
783 
784 	/* only need to update the VLAN if not in promiscuous mode */
785 	if (!(netdev->flags & IFF_PROMISC)) {
786 		err = hw->mac.ops.update_vlan(hw, vid, 0, set);
787 		if (err)
788 			goto err_out;
789 	}
790 
791 	/* update our base MAC address */
792 	err = hw->mac.ops.update_uc_addr(hw, interface->glort, hw->mac.addr,
793 					 vid, set, 0);
794 	if (err)
795 		goto err_out;
796 
797 	/* set vid prior to syncing/unsyncing the VLAN */
798 	interface->vid = vid + (set ? VLAN_N_VID : 0);
799 
800 	/* Update the unicast and multicast address list to add/drop VLAN */
801 	__dev_uc_unsync(netdev, fm10k_uc_vlan_unsync);
802 	__dev_mc_unsync(netdev, fm10k_mc_vlan_unsync);
803 
804 err_out:
805 	fm10k_mbx_unlock(interface);
806 
807 	return err;
808 }
809 
810 static int fm10k_vlan_rx_add_vid(struct net_device *netdev,
811 				 __always_unused __be16 proto, u16 vid)
812 {
813 	/* update VLAN and address table based on changes */
814 	return fm10k_update_vid(netdev, vid, true);
815 }
816 
817 static int fm10k_vlan_rx_kill_vid(struct net_device *netdev,
818 				  __always_unused __be16 proto, u16 vid)
819 {
820 	/* update VLAN and address table based on changes */
821 	return fm10k_update_vid(netdev, vid, false);
822 }
823 
824 static u16 fm10k_find_next_vlan(struct fm10k_intfc *interface, u16 vid)
825 {
826 	struct fm10k_hw *hw = &interface->hw;
827 	u16 default_vid = hw->mac.default_vid;
828 	u16 vid_limit = vid < default_vid ? default_vid : VLAN_N_VID;
829 
830 	vid = find_next_bit(interface->active_vlans, vid_limit, ++vid);
831 
832 	return vid;
833 }
834 
835 static void fm10k_clear_unused_vlans(struct fm10k_intfc *interface)
836 {
837 	struct fm10k_hw *hw = &interface->hw;
838 	u32 vid, prev_vid;
839 
840 	/* loop through and find any gaps in the table */
841 	for (vid = 0, prev_vid = 0;
842 	     prev_vid < VLAN_N_VID;
843 	     prev_vid = vid + 1, vid = fm10k_find_next_vlan(interface, vid)) {
844 		if (prev_vid == vid)
845 			continue;
846 
847 		/* send request to clear multiple bits at a time */
848 		prev_vid += (vid - prev_vid - 1) << FM10K_VLAN_LENGTH_SHIFT;
849 		hw->mac.ops.update_vlan(hw, prev_vid, 0, false);
850 	}
851 }
852 
853 static int __fm10k_uc_sync(struct net_device *dev,
854 			   const unsigned char *addr, bool sync)
855 {
856 	struct fm10k_intfc *interface = netdev_priv(dev);
857 	struct fm10k_hw *hw = &interface->hw;
858 	u16 vid, glort = interface->glort;
859 	s32 err;
860 
861 	if (!is_valid_ether_addr(addr))
862 		return -EADDRNOTAVAIL;
863 
864 	/* update table with current entries */
865 	for (vid = hw->mac.default_vid ? fm10k_find_next_vlan(interface, 0) : 0;
866 	     vid < VLAN_N_VID;
867 	     vid = fm10k_find_next_vlan(interface, vid)) {
868 		err = hw->mac.ops.update_uc_addr(hw, glort, addr,
869 						  vid, sync, 0);
870 		if (err)
871 			return err;
872 	}
873 
874 	return 0;
875 }
876 
877 static int fm10k_uc_sync(struct net_device *dev,
878 			 const unsigned char *addr)
879 {
880 	return __fm10k_uc_sync(dev, addr, true);
881 }
882 
883 static int fm10k_uc_unsync(struct net_device *dev,
884 			   const unsigned char *addr)
885 {
886 	return __fm10k_uc_sync(dev, addr, false);
887 }
888 
889 static int fm10k_set_mac(struct net_device *dev, void *p)
890 {
891 	struct fm10k_intfc *interface = netdev_priv(dev);
892 	struct fm10k_hw *hw = &interface->hw;
893 	struct sockaddr *addr = p;
894 	s32 err = 0;
895 
896 	if (!is_valid_ether_addr(addr->sa_data))
897 		return -EADDRNOTAVAIL;
898 
899 	if (dev->flags & IFF_UP) {
900 		/* setting MAC address requires mailbox */
901 		fm10k_mbx_lock(interface);
902 
903 		err = fm10k_uc_sync(dev, addr->sa_data);
904 		if (!err)
905 			fm10k_uc_unsync(dev, hw->mac.addr);
906 
907 		fm10k_mbx_unlock(interface);
908 	}
909 
910 	if (!err) {
911 		ether_addr_copy(dev->dev_addr, addr->sa_data);
912 		ether_addr_copy(hw->mac.addr, addr->sa_data);
913 		dev->addr_assign_type &= ~NET_ADDR_RANDOM;
914 	}
915 
916 	/* if we had a mailbox error suggest trying again */
917 	return err ? -EAGAIN : 0;
918 }
919 
920 static int __fm10k_mc_sync(struct net_device *dev,
921 			   const unsigned char *addr, bool sync)
922 {
923 	struct fm10k_intfc *interface = netdev_priv(dev);
924 	struct fm10k_hw *hw = &interface->hw;
925 	u16 vid, glort = interface->glort;
926 
927 	/* update table with current entries */
928 	for (vid = hw->mac.default_vid ? fm10k_find_next_vlan(interface, 0) : 0;
929 	     vid < VLAN_N_VID;
930 	     vid = fm10k_find_next_vlan(interface, vid)) {
931 		hw->mac.ops.update_mc_addr(hw, glort, addr, vid, sync);
932 	}
933 
934 	return 0;
935 }
936 
937 static int fm10k_mc_sync(struct net_device *dev,
938 			 const unsigned char *addr)
939 {
940 	return __fm10k_mc_sync(dev, addr, true);
941 }
942 
943 static int fm10k_mc_unsync(struct net_device *dev,
944 			   const unsigned char *addr)
945 {
946 	return __fm10k_mc_sync(dev, addr, false);
947 }
948 
949 static void fm10k_set_rx_mode(struct net_device *dev)
950 {
951 	struct fm10k_intfc *interface = netdev_priv(dev);
952 	struct fm10k_hw *hw = &interface->hw;
953 	int xcast_mode;
954 
955 	/* no need to update the harwdare if we are not running */
956 	if (!(dev->flags & IFF_UP))
957 		return;
958 
959 	/* determine new mode based on flags */
960 	xcast_mode = (dev->flags & IFF_PROMISC) ? FM10K_XCAST_MODE_PROMISC :
961 		     (dev->flags & IFF_ALLMULTI) ? FM10K_XCAST_MODE_ALLMULTI :
962 		     (dev->flags & (IFF_BROADCAST | IFF_MULTICAST)) ?
963 		     FM10K_XCAST_MODE_MULTI : FM10K_XCAST_MODE_NONE;
964 
965 	fm10k_mbx_lock(interface);
966 
967 	/* update xcast mode first, but only if it changed */
968 	if (interface->xcast_mode != xcast_mode) {
969 		/* update VLAN table */
970 		if (xcast_mode == FM10K_XCAST_MODE_PROMISC)
971 			hw->mac.ops.update_vlan(hw, FM10K_VLAN_ALL, 0, true);
972 		if (interface->xcast_mode == FM10K_XCAST_MODE_PROMISC)
973 			fm10k_clear_unused_vlans(interface);
974 
975 		/* update xcast mode */
976 		hw->mac.ops.update_xcast_mode(hw, interface->glort, xcast_mode);
977 
978 		/* record updated xcast mode state */
979 		interface->xcast_mode = xcast_mode;
980 	}
981 
982 	/* synchronize all of the addresses */
983 	if (xcast_mode != FM10K_XCAST_MODE_PROMISC) {
984 		__dev_uc_sync(dev, fm10k_uc_sync, fm10k_uc_unsync);
985 		if (xcast_mode != FM10K_XCAST_MODE_ALLMULTI)
986 			__dev_mc_sync(dev, fm10k_mc_sync, fm10k_mc_unsync);
987 	}
988 
989 	fm10k_mbx_unlock(interface);
990 }
991 
992 void fm10k_restore_rx_state(struct fm10k_intfc *interface)
993 {
994 	struct net_device *netdev = interface->netdev;
995 	struct fm10k_hw *hw = &interface->hw;
996 	int xcast_mode;
997 	u16 vid, glort;
998 
999 	/* restore our address if perm_addr is set */
1000 	if (hw->mac.type == fm10k_mac_vf) {
1001 		if (is_valid_ether_addr(hw->mac.perm_addr)) {
1002 			ether_addr_copy(hw->mac.addr, hw->mac.perm_addr);
1003 			ether_addr_copy(netdev->perm_addr, hw->mac.perm_addr);
1004 			ether_addr_copy(netdev->dev_addr, hw->mac.perm_addr);
1005 			netdev->addr_assign_type &= ~NET_ADDR_RANDOM;
1006 		}
1007 
1008 		if (hw->mac.vlan_override)
1009 			netdev->features &= ~NETIF_F_HW_VLAN_CTAG_RX;
1010 		else
1011 			netdev->features |= NETIF_F_HW_VLAN_CTAG_RX;
1012 	}
1013 
1014 	/* record glort for this interface */
1015 	glort = interface->glort;
1016 
1017 	/* convert interface flags to xcast mode */
1018 	if (netdev->flags & IFF_PROMISC)
1019 		xcast_mode = FM10K_XCAST_MODE_PROMISC;
1020 	else if (netdev->flags & IFF_ALLMULTI)
1021 		xcast_mode = FM10K_XCAST_MODE_ALLMULTI;
1022 	else if (netdev->flags & (IFF_BROADCAST | IFF_MULTICAST))
1023 		xcast_mode = FM10K_XCAST_MODE_MULTI;
1024 	else
1025 		xcast_mode = FM10K_XCAST_MODE_NONE;
1026 
1027 	fm10k_mbx_lock(interface);
1028 
1029 	/* Enable logical port */
1030 	hw->mac.ops.update_lport_state(hw, glort, interface->glort_count, true);
1031 
1032 	/* update VLAN table */
1033 	hw->mac.ops.update_vlan(hw, FM10K_VLAN_ALL, 0,
1034 				xcast_mode == FM10K_XCAST_MODE_PROMISC);
1035 
1036 	/* Add filter for VLAN 0 */
1037 	hw->mac.ops.update_vlan(hw, 0, 0, true);
1038 
1039 	/* update table with current entries */
1040 	for (vid = hw->mac.default_vid ? fm10k_find_next_vlan(interface, 0) : 0;
1041 	     vid < VLAN_N_VID;
1042 	     vid = fm10k_find_next_vlan(interface, vid)) {
1043 		hw->mac.ops.update_vlan(hw, vid, 0, true);
1044 		hw->mac.ops.update_uc_addr(hw, glort, hw->mac.addr,
1045 					   vid, true, 0);
1046 	}
1047 
1048 	/* update xcast mode before syncronizing addresses */
1049 	hw->mac.ops.update_xcast_mode(hw, glort, xcast_mode);
1050 
1051 	/* synchronize all of the addresses */
1052 	if (xcast_mode != FM10K_XCAST_MODE_PROMISC) {
1053 		__dev_uc_sync(netdev, fm10k_uc_sync, fm10k_uc_unsync);
1054 		if (xcast_mode != FM10K_XCAST_MODE_ALLMULTI)
1055 			__dev_mc_sync(netdev, fm10k_mc_sync, fm10k_mc_unsync);
1056 	}
1057 
1058 	fm10k_mbx_unlock(interface);
1059 
1060 	/* record updated xcast mode state */
1061 	interface->xcast_mode = xcast_mode;
1062 
1063 	/* Restore tunnel configuration */
1064 	fm10k_restore_vxlan_port(interface);
1065 }
1066 
1067 void fm10k_reset_rx_state(struct fm10k_intfc *interface)
1068 {
1069 	struct net_device *netdev = interface->netdev;
1070 	struct fm10k_hw *hw = &interface->hw;
1071 
1072 	fm10k_mbx_lock(interface);
1073 
1074 	/* clear the logical port state on lower device */
1075 	hw->mac.ops.update_lport_state(hw, interface->glort,
1076 				       interface->glort_count, false);
1077 
1078 	fm10k_mbx_unlock(interface);
1079 
1080 	/* reset flags to default state */
1081 	interface->xcast_mode = FM10K_XCAST_MODE_NONE;
1082 
1083 	/* clear the sync flag since the lport has been dropped */
1084 	__dev_uc_unsync(netdev, NULL);
1085 	__dev_mc_unsync(netdev, NULL);
1086 }
1087 
1088 /**
1089  * fm10k_get_stats64 - Get System Network Statistics
1090  * @netdev: network interface device structure
1091  * @stats: storage space for 64bit statistics
1092  *
1093  * Returns 64bit statistics, for use in the ndo_get_stats64 callback. This
1094  * function replaces fm10k_get_stats for kernels which support it.
1095  */
1096 static struct rtnl_link_stats64 *fm10k_get_stats64(struct net_device *netdev,
1097 						   struct rtnl_link_stats64 *stats)
1098 {
1099 	struct fm10k_intfc *interface = netdev_priv(netdev);
1100 	struct fm10k_ring *ring;
1101 	unsigned int start, i;
1102 	u64 bytes, packets;
1103 
1104 	rcu_read_lock();
1105 
1106 	for (i = 0; i < interface->num_rx_queues; i++) {
1107 		ring = ACCESS_ONCE(interface->rx_ring[i]);
1108 
1109 		if (!ring)
1110 			continue;
1111 
1112 		do {
1113 			start = u64_stats_fetch_begin_irq(&ring->syncp);
1114 			packets = ring->stats.packets;
1115 			bytes   = ring->stats.bytes;
1116 		} while (u64_stats_fetch_retry_irq(&ring->syncp, start));
1117 
1118 		stats->rx_packets += packets;
1119 		stats->rx_bytes   += bytes;
1120 	}
1121 
1122 	for (i = 0; i < interface->num_tx_queues; i++) {
1123 		ring = ACCESS_ONCE(interface->tx_ring[i]);
1124 
1125 		if (!ring)
1126 			continue;
1127 
1128 		do {
1129 			start = u64_stats_fetch_begin_irq(&ring->syncp);
1130 			packets = ring->stats.packets;
1131 			bytes   = ring->stats.bytes;
1132 		} while (u64_stats_fetch_retry_irq(&ring->syncp, start));
1133 
1134 		stats->tx_packets += packets;
1135 		stats->tx_bytes   += bytes;
1136 	}
1137 
1138 	rcu_read_unlock();
1139 
1140 	/* following stats updated by fm10k_service_task() */
1141 	stats->rx_missed_errors	= netdev->stats.rx_missed_errors;
1142 
1143 	return stats;
1144 }
1145 
1146 int fm10k_setup_tc(struct net_device *dev, u8 tc)
1147 {
1148 	struct fm10k_intfc *interface = netdev_priv(dev);
1149 
1150 	/* Currently only the PF supports priority classes */
1151 	if (tc && (interface->hw.mac.type != fm10k_mac_pf))
1152 		return -EINVAL;
1153 
1154 	/* Hardware supports up to 8 traffic classes */
1155 	if (tc > 8)
1156 		return -EINVAL;
1157 
1158 	/* Hardware has to reinitialize queues to match packet
1159 	 * buffer alignment. Unfortunately, the hardware is not
1160 	 * flexible enough to do this dynamically.
1161 	 */
1162 	if (netif_running(dev))
1163 		fm10k_close(dev);
1164 
1165 	fm10k_mbx_free_irq(interface);
1166 
1167 	fm10k_clear_queueing_scheme(interface);
1168 
1169 	/* we expect the prio_tc map to be repopulated later */
1170 	netdev_reset_tc(dev);
1171 	netdev_set_num_tc(dev, tc);
1172 
1173 	fm10k_init_queueing_scheme(interface);
1174 
1175 	fm10k_mbx_request_irq(interface);
1176 
1177 	if (netif_running(dev))
1178 		fm10k_open(dev);
1179 
1180 	/* flag to indicate SWPRI has yet to be updated */
1181 	interface->flags |= FM10K_FLAG_SWPRI_CONFIG;
1182 
1183 	return 0;
1184 }
1185 
1186 static int fm10k_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
1187 {
1188 	switch (cmd) {
1189 	case SIOCGHWTSTAMP:
1190 		return fm10k_get_ts_config(netdev, ifr);
1191 	case SIOCSHWTSTAMP:
1192 		return fm10k_set_ts_config(netdev, ifr);
1193 	default:
1194 		return -EOPNOTSUPP;
1195 	}
1196 }
1197 
1198 static void fm10k_assign_l2_accel(struct fm10k_intfc *interface,
1199 				  struct fm10k_l2_accel *l2_accel)
1200 {
1201 	struct fm10k_ring *ring;
1202 	int i;
1203 
1204 	for (i = 0; i < interface->num_rx_queues; i++) {
1205 		ring = interface->rx_ring[i];
1206 		rcu_assign_pointer(ring->l2_accel, l2_accel);
1207 	}
1208 
1209 	interface->l2_accel = l2_accel;
1210 }
1211 
1212 static void *fm10k_dfwd_add_station(struct net_device *dev,
1213 				    struct net_device *sdev)
1214 {
1215 	struct fm10k_intfc *interface = netdev_priv(dev);
1216 	struct fm10k_l2_accel *l2_accel = interface->l2_accel;
1217 	struct fm10k_l2_accel *old_l2_accel = NULL;
1218 	struct fm10k_dglort_cfg dglort = { 0 };
1219 	struct fm10k_hw *hw = &interface->hw;
1220 	int size = 0, i;
1221 	u16 glort;
1222 
1223 	/* allocate l2 accel structure if it is not available */
1224 	if (!l2_accel) {
1225 		/* verify there is enough free GLORTs to support l2_accel */
1226 		if (interface->glort_count < 7)
1227 			return ERR_PTR(-EBUSY);
1228 
1229 		size = offsetof(struct fm10k_l2_accel, macvlan[7]);
1230 		l2_accel = kzalloc(size, GFP_KERNEL);
1231 		if (!l2_accel)
1232 			return ERR_PTR(-ENOMEM);
1233 
1234 		l2_accel->size = 7;
1235 		l2_accel->dglort = interface->glort;
1236 
1237 		/* update pointers */
1238 		fm10k_assign_l2_accel(interface, l2_accel);
1239 	/* do not expand if we are at our limit */
1240 	} else if ((l2_accel->count == FM10K_MAX_STATIONS) ||
1241 		   (l2_accel->count == (interface->glort_count - 1))) {
1242 		return ERR_PTR(-EBUSY);
1243 	/* expand if we have hit the size limit */
1244 	} else if (l2_accel->count == l2_accel->size) {
1245 		old_l2_accel = l2_accel;
1246 		size = offsetof(struct fm10k_l2_accel,
1247 				macvlan[(l2_accel->size * 2) + 1]);
1248 		l2_accel = kzalloc(size, GFP_KERNEL);
1249 		if (!l2_accel)
1250 			return ERR_PTR(-ENOMEM);
1251 
1252 		memcpy(l2_accel, old_l2_accel,
1253 		       offsetof(struct fm10k_l2_accel,
1254 				macvlan[old_l2_accel->size]));
1255 
1256 		l2_accel->size = (old_l2_accel->size * 2) + 1;
1257 
1258 		/* update pointers */
1259 		fm10k_assign_l2_accel(interface, l2_accel);
1260 		kfree_rcu(old_l2_accel, rcu);
1261 	}
1262 
1263 	/* add macvlan to accel table, and record GLORT for position */
1264 	for (i = 0; i < l2_accel->size; i++) {
1265 		if (!l2_accel->macvlan[i])
1266 			break;
1267 	}
1268 
1269 	/* record station */
1270 	l2_accel->macvlan[i] = sdev;
1271 	l2_accel->count++;
1272 
1273 	/* configure default DGLORT mapping for RSS/DCB */
1274 	dglort.idx = fm10k_dglort_pf_rss;
1275 	dglort.inner_rss = 1;
1276 	dglort.rss_l = fls(interface->ring_feature[RING_F_RSS].mask);
1277 	dglort.pc_l = fls(interface->ring_feature[RING_F_QOS].mask);
1278 	dglort.glort = interface->glort;
1279 	dglort.shared_l = fls(l2_accel->size);
1280 	hw->mac.ops.configure_dglort_map(hw, &dglort);
1281 
1282 	/* Add rules for this specific dglort to the switch */
1283 	fm10k_mbx_lock(interface);
1284 
1285 	glort = l2_accel->dglort + 1 + i;
1286 	hw->mac.ops.update_xcast_mode(hw, glort, FM10K_XCAST_MODE_MULTI);
1287 	hw->mac.ops.update_uc_addr(hw, glort, sdev->dev_addr, 0, true, 0);
1288 
1289 	fm10k_mbx_unlock(interface);
1290 
1291 	return sdev;
1292 }
1293 
1294 static void fm10k_dfwd_del_station(struct net_device *dev, void *priv)
1295 {
1296 	struct fm10k_intfc *interface = netdev_priv(dev);
1297 	struct fm10k_l2_accel *l2_accel = ACCESS_ONCE(interface->l2_accel);
1298 	struct fm10k_dglort_cfg dglort = { 0 };
1299 	struct fm10k_hw *hw = &interface->hw;
1300 	struct net_device *sdev = priv;
1301 	int i;
1302 	u16 glort;
1303 
1304 	if (!l2_accel)
1305 		return;
1306 
1307 	/* search table for matching interface */
1308 	for (i = 0; i < l2_accel->size; i++) {
1309 		if (l2_accel->macvlan[i] == sdev)
1310 			break;
1311 	}
1312 
1313 	/* exit if macvlan not found */
1314 	if (i == l2_accel->size)
1315 		return;
1316 
1317 	/* Remove any rules specific to this dglort */
1318 	fm10k_mbx_lock(interface);
1319 
1320 	glort = l2_accel->dglort + 1 + i;
1321 	hw->mac.ops.update_xcast_mode(hw, glort, FM10K_XCAST_MODE_NONE);
1322 	hw->mac.ops.update_uc_addr(hw, glort, sdev->dev_addr, 0, false, 0);
1323 
1324 	fm10k_mbx_unlock(interface);
1325 
1326 	/* record removal */
1327 	l2_accel->macvlan[i] = NULL;
1328 	l2_accel->count--;
1329 
1330 	/* configure default DGLORT mapping for RSS/DCB */
1331 	dglort.idx = fm10k_dglort_pf_rss;
1332 	dglort.inner_rss = 1;
1333 	dglort.rss_l = fls(interface->ring_feature[RING_F_RSS].mask);
1334 	dglort.pc_l = fls(interface->ring_feature[RING_F_QOS].mask);
1335 	dglort.glort = interface->glort;
1336 	dglort.shared_l = fls(l2_accel->size);
1337 	hw->mac.ops.configure_dglort_map(hw, &dglort);
1338 
1339 	/* If table is empty remove it */
1340 	if (l2_accel->count == 0) {
1341 		fm10k_assign_l2_accel(interface, NULL);
1342 		kfree_rcu(l2_accel, rcu);
1343 	}
1344 }
1345 
1346 static netdev_features_t fm10k_features_check(struct sk_buff *skb,
1347 					      struct net_device *dev,
1348 					      netdev_features_t features)
1349 {
1350 	if (!skb->encapsulation || fm10k_tx_encap_offload(skb))
1351 		return features;
1352 
1353 	return features & ~(NETIF_F_ALL_CSUM | NETIF_F_GSO_MASK);
1354 }
1355 
1356 static const struct net_device_ops fm10k_netdev_ops = {
1357 	.ndo_open		= fm10k_open,
1358 	.ndo_stop		= fm10k_close,
1359 	.ndo_validate_addr	= eth_validate_addr,
1360 	.ndo_start_xmit		= fm10k_xmit_frame,
1361 	.ndo_set_mac_address	= fm10k_set_mac,
1362 	.ndo_change_mtu		= fm10k_change_mtu,
1363 	.ndo_tx_timeout		= fm10k_tx_timeout,
1364 	.ndo_vlan_rx_add_vid	= fm10k_vlan_rx_add_vid,
1365 	.ndo_vlan_rx_kill_vid	= fm10k_vlan_rx_kill_vid,
1366 	.ndo_set_rx_mode	= fm10k_set_rx_mode,
1367 	.ndo_get_stats64	= fm10k_get_stats64,
1368 	.ndo_setup_tc		= fm10k_setup_tc,
1369 	.ndo_set_vf_mac		= fm10k_ndo_set_vf_mac,
1370 	.ndo_set_vf_vlan	= fm10k_ndo_set_vf_vlan,
1371 	.ndo_set_vf_rate	= fm10k_ndo_set_vf_bw,
1372 	.ndo_get_vf_config	= fm10k_ndo_get_vf_config,
1373 	.ndo_add_vxlan_port	= fm10k_add_vxlan_port,
1374 	.ndo_del_vxlan_port	= fm10k_del_vxlan_port,
1375 	.ndo_do_ioctl		= fm10k_ioctl,
1376 	.ndo_dfwd_add_station	= fm10k_dfwd_add_station,
1377 	.ndo_dfwd_del_station	= fm10k_dfwd_del_station,
1378 #ifdef CONFIG_NET_POLL_CONTROLLER
1379 	.ndo_poll_controller	= fm10k_netpoll,
1380 #endif
1381 	.ndo_features_check	= fm10k_features_check,
1382 };
1383 
1384 #define DEFAULT_DEBUG_LEVEL_SHIFT 3
1385 
1386 struct net_device *fm10k_alloc_netdev(void)
1387 {
1388 	struct fm10k_intfc *interface;
1389 	struct net_device *dev;
1390 
1391 	dev = alloc_etherdev_mq(sizeof(struct fm10k_intfc), MAX_QUEUES);
1392 	if (!dev)
1393 		return NULL;
1394 
1395 	/* set net device and ethtool ops */
1396 	dev->netdev_ops = &fm10k_netdev_ops;
1397 	fm10k_set_ethtool_ops(dev);
1398 
1399 	/* configure default debug level */
1400 	interface = netdev_priv(dev);
1401 	interface->msg_enable = (1 << DEFAULT_DEBUG_LEVEL_SHIFT) - 1;
1402 
1403 	/* configure default features */
1404 	dev->features |= NETIF_F_IP_CSUM |
1405 			 NETIF_F_IPV6_CSUM |
1406 			 NETIF_F_SG |
1407 			 NETIF_F_TSO |
1408 			 NETIF_F_TSO6 |
1409 			 NETIF_F_TSO_ECN |
1410 			 NETIF_F_GSO_UDP_TUNNEL |
1411 			 NETIF_F_RXHASH |
1412 			 NETIF_F_RXCSUM;
1413 
1414 	/* all features defined to this point should be changeable */
1415 	dev->hw_features |= dev->features;
1416 
1417 	/* allow user to enable L2 forwarding acceleration */
1418 	dev->hw_features |= NETIF_F_HW_L2FW_DOFFLOAD;
1419 
1420 	/* configure VLAN features */
1421 	dev->vlan_features |= dev->features;
1422 
1423 	/* configure tunnel offloads */
1424 	dev->hw_enc_features |= NETIF_F_IP_CSUM |
1425 				NETIF_F_TSO |
1426 				NETIF_F_TSO6 |
1427 				NETIF_F_TSO_ECN |
1428 				NETIF_F_GSO_UDP_TUNNEL |
1429 				NETIF_F_IPV6_CSUM;
1430 
1431 	/* we want to leave these both on as we cannot disable VLAN tag
1432 	 * insertion or stripping on the hardware since it is contained
1433 	 * in the FTAG and not in the frame itself.
1434 	 */
1435 	dev->features |= NETIF_F_HW_VLAN_CTAG_TX |
1436 			 NETIF_F_HW_VLAN_CTAG_RX |
1437 			 NETIF_F_HW_VLAN_CTAG_FILTER;
1438 
1439 	dev->priv_flags |= IFF_UNICAST_FLT;
1440 
1441 	return dev;
1442 }
1443