1 /* Intel(R) Ethernet Switch Host Interface Driver 2 * Copyright(c) 2013 - 2017 Intel Corporation. 3 * 4 * This program is free software; you can redistribute it and/or modify it 5 * under the terms and conditions of the GNU General Public License, 6 * version 2, as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope it will be useful, but WITHOUT 9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 11 * more details. 12 * 13 * The full GNU General Public License is included in this distribution in 14 * the file called "COPYING". 15 * 16 * Contact Information: 17 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> 18 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 19 */ 20 21 #include "fm10k.h" 22 #include <linux/vmalloc.h> 23 #include <net/udp_tunnel.h> 24 25 /** 26 * fm10k_setup_tx_resources - allocate Tx resources (Descriptors) 27 * @tx_ring: tx descriptor ring (for a specific queue) to setup 28 * 29 * Return 0 on success, negative on failure 30 **/ 31 int fm10k_setup_tx_resources(struct fm10k_ring *tx_ring) 32 { 33 struct device *dev = tx_ring->dev; 34 int size; 35 36 size = sizeof(struct fm10k_tx_buffer) * tx_ring->count; 37 38 tx_ring->tx_buffer = vzalloc(size); 39 if (!tx_ring->tx_buffer) 40 goto err; 41 42 u64_stats_init(&tx_ring->syncp); 43 44 /* round up to nearest 4K */ 45 tx_ring->size = tx_ring->count * sizeof(struct fm10k_tx_desc); 46 tx_ring->size = ALIGN(tx_ring->size, 4096); 47 48 tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size, 49 &tx_ring->dma, GFP_KERNEL); 50 if (!tx_ring->desc) 51 goto err; 52 53 return 0; 54 55 err: 56 vfree(tx_ring->tx_buffer); 57 tx_ring->tx_buffer = NULL; 58 return -ENOMEM; 59 } 60 61 /** 62 * fm10k_setup_all_tx_resources - allocate all queues Tx resources 63 * @interface: board private structure 64 * 65 * If this function returns with an error, then it's possible one or 66 * more of the rings is populated (while the rest are not). It is the 67 * callers duty to clean those orphaned rings. 68 * 69 * Return 0 on success, negative on failure 70 **/ 71 static int fm10k_setup_all_tx_resources(struct fm10k_intfc *interface) 72 { 73 int i, err = 0; 74 75 for (i = 0; i < interface->num_tx_queues; i++) { 76 err = fm10k_setup_tx_resources(interface->tx_ring[i]); 77 if (!err) 78 continue; 79 80 netif_err(interface, probe, interface->netdev, 81 "Allocation for Tx Queue %u failed\n", i); 82 goto err_setup_tx; 83 } 84 85 return 0; 86 err_setup_tx: 87 /* rewind the index freeing the rings as we go */ 88 while (i--) 89 fm10k_free_tx_resources(interface->tx_ring[i]); 90 return err; 91 } 92 93 /** 94 * fm10k_setup_rx_resources - allocate Rx resources (Descriptors) 95 * @rx_ring: rx descriptor ring (for a specific queue) to setup 96 * 97 * Returns 0 on success, negative on failure 98 **/ 99 int fm10k_setup_rx_resources(struct fm10k_ring *rx_ring) 100 { 101 struct device *dev = rx_ring->dev; 102 int size; 103 104 size = sizeof(struct fm10k_rx_buffer) * rx_ring->count; 105 106 rx_ring->rx_buffer = vzalloc(size); 107 if (!rx_ring->rx_buffer) 108 goto err; 109 110 u64_stats_init(&rx_ring->syncp); 111 112 /* Round up to nearest 4K */ 113 rx_ring->size = rx_ring->count * sizeof(union fm10k_rx_desc); 114 rx_ring->size = ALIGN(rx_ring->size, 4096); 115 116 rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size, 117 &rx_ring->dma, GFP_KERNEL); 118 if (!rx_ring->desc) 119 goto err; 120 121 return 0; 122 err: 123 vfree(rx_ring->rx_buffer); 124 rx_ring->rx_buffer = NULL; 125 return -ENOMEM; 126 } 127 128 /** 129 * fm10k_setup_all_rx_resources - allocate all queues Rx resources 130 * @interface: board private structure 131 * 132 * If this function returns with an error, then it's possible one or 133 * more of the rings is populated (while the rest are not). It is the 134 * callers duty to clean those orphaned rings. 135 * 136 * Return 0 on success, negative on failure 137 **/ 138 static int fm10k_setup_all_rx_resources(struct fm10k_intfc *interface) 139 { 140 int i, err = 0; 141 142 for (i = 0; i < interface->num_rx_queues; i++) { 143 err = fm10k_setup_rx_resources(interface->rx_ring[i]); 144 if (!err) 145 continue; 146 147 netif_err(interface, probe, interface->netdev, 148 "Allocation for Rx Queue %u failed\n", i); 149 goto err_setup_rx; 150 } 151 152 return 0; 153 err_setup_rx: 154 /* rewind the index freeing the rings as we go */ 155 while (i--) 156 fm10k_free_rx_resources(interface->rx_ring[i]); 157 return err; 158 } 159 160 void fm10k_unmap_and_free_tx_resource(struct fm10k_ring *ring, 161 struct fm10k_tx_buffer *tx_buffer) 162 { 163 if (tx_buffer->skb) { 164 dev_kfree_skb_any(tx_buffer->skb); 165 if (dma_unmap_len(tx_buffer, len)) 166 dma_unmap_single(ring->dev, 167 dma_unmap_addr(tx_buffer, dma), 168 dma_unmap_len(tx_buffer, len), 169 DMA_TO_DEVICE); 170 } else if (dma_unmap_len(tx_buffer, len)) { 171 dma_unmap_page(ring->dev, 172 dma_unmap_addr(tx_buffer, dma), 173 dma_unmap_len(tx_buffer, len), 174 DMA_TO_DEVICE); 175 } 176 tx_buffer->next_to_watch = NULL; 177 tx_buffer->skb = NULL; 178 dma_unmap_len_set(tx_buffer, len, 0); 179 /* tx_buffer must be completely set up in the transmit path */ 180 } 181 182 /** 183 * fm10k_clean_tx_ring - Free Tx Buffers 184 * @tx_ring: ring to be cleaned 185 **/ 186 static void fm10k_clean_tx_ring(struct fm10k_ring *tx_ring) 187 { 188 struct fm10k_tx_buffer *tx_buffer; 189 unsigned long size; 190 u16 i; 191 192 /* ring already cleared, nothing to do */ 193 if (!tx_ring->tx_buffer) 194 return; 195 196 /* Free all the Tx ring sk_buffs */ 197 for (i = 0; i < tx_ring->count; i++) { 198 tx_buffer = &tx_ring->tx_buffer[i]; 199 fm10k_unmap_and_free_tx_resource(tx_ring, tx_buffer); 200 } 201 202 /* reset BQL values */ 203 netdev_tx_reset_queue(txring_txq(tx_ring)); 204 205 size = sizeof(struct fm10k_tx_buffer) * tx_ring->count; 206 memset(tx_ring->tx_buffer, 0, size); 207 208 /* Zero out the descriptor ring */ 209 memset(tx_ring->desc, 0, tx_ring->size); 210 } 211 212 /** 213 * fm10k_free_tx_resources - Free Tx Resources per Queue 214 * @tx_ring: Tx descriptor ring for a specific queue 215 * 216 * Free all transmit software resources 217 **/ 218 void fm10k_free_tx_resources(struct fm10k_ring *tx_ring) 219 { 220 fm10k_clean_tx_ring(tx_ring); 221 222 vfree(tx_ring->tx_buffer); 223 tx_ring->tx_buffer = NULL; 224 225 /* if not set, then don't free */ 226 if (!tx_ring->desc) 227 return; 228 229 dma_free_coherent(tx_ring->dev, tx_ring->size, 230 tx_ring->desc, tx_ring->dma); 231 tx_ring->desc = NULL; 232 } 233 234 /** 235 * fm10k_clean_all_tx_rings - Free Tx Buffers for all queues 236 * @interface: board private structure 237 **/ 238 void fm10k_clean_all_tx_rings(struct fm10k_intfc *interface) 239 { 240 int i; 241 242 for (i = 0; i < interface->num_tx_queues; i++) 243 fm10k_clean_tx_ring(interface->tx_ring[i]); 244 } 245 246 /** 247 * fm10k_free_all_tx_resources - Free Tx Resources for All Queues 248 * @interface: board private structure 249 * 250 * Free all transmit software resources 251 **/ 252 static void fm10k_free_all_tx_resources(struct fm10k_intfc *interface) 253 { 254 int i = interface->num_tx_queues; 255 256 while (i--) 257 fm10k_free_tx_resources(interface->tx_ring[i]); 258 } 259 260 /** 261 * fm10k_clean_rx_ring - Free Rx Buffers per Queue 262 * @rx_ring: ring to free buffers from 263 **/ 264 static void fm10k_clean_rx_ring(struct fm10k_ring *rx_ring) 265 { 266 unsigned long size; 267 u16 i; 268 269 if (!rx_ring->rx_buffer) 270 return; 271 272 if (rx_ring->skb) 273 dev_kfree_skb(rx_ring->skb); 274 rx_ring->skb = NULL; 275 276 /* Free all the Rx ring sk_buffs */ 277 for (i = 0; i < rx_ring->count; i++) { 278 struct fm10k_rx_buffer *buffer = &rx_ring->rx_buffer[i]; 279 /* clean-up will only set page pointer to NULL */ 280 if (!buffer->page) 281 continue; 282 283 dma_unmap_page(rx_ring->dev, buffer->dma, 284 PAGE_SIZE, DMA_FROM_DEVICE); 285 __free_page(buffer->page); 286 287 buffer->page = NULL; 288 } 289 290 size = sizeof(struct fm10k_rx_buffer) * rx_ring->count; 291 memset(rx_ring->rx_buffer, 0, size); 292 293 /* Zero out the descriptor ring */ 294 memset(rx_ring->desc, 0, rx_ring->size); 295 296 rx_ring->next_to_alloc = 0; 297 rx_ring->next_to_clean = 0; 298 rx_ring->next_to_use = 0; 299 } 300 301 /** 302 * fm10k_free_rx_resources - Free Rx Resources 303 * @rx_ring: ring to clean the resources from 304 * 305 * Free all receive software resources 306 **/ 307 void fm10k_free_rx_resources(struct fm10k_ring *rx_ring) 308 { 309 fm10k_clean_rx_ring(rx_ring); 310 311 vfree(rx_ring->rx_buffer); 312 rx_ring->rx_buffer = NULL; 313 314 /* if not set, then don't free */ 315 if (!rx_ring->desc) 316 return; 317 318 dma_free_coherent(rx_ring->dev, rx_ring->size, 319 rx_ring->desc, rx_ring->dma); 320 321 rx_ring->desc = NULL; 322 } 323 324 /** 325 * fm10k_clean_all_rx_rings - Free Rx Buffers for all queues 326 * @interface: board private structure 327 **/ 328 void fm10k_clean_all_rx_rings(struct fm10k_intfc *interface) 329 { 330 int i; 331 332 for (i = 0; i < interface->num_rx_queues; i++) 333 fm10k_clean_rx_ring(interface->rx_ring[i]); 334 } 335 336 /** 337 * fm10k_free_all_rx_resources - Free Rx Resources for All Queues 338 * @interface: board private structure 339 * 340 * Free all receive software resources 341 **/ 342 static void fm10k_free_all_rx_resources(struct fm10k_intfc *interface) 343 { 344 int i = interface->num_rx_queues; 345 346 while (i--) 347 fm10k_free_rx_resources(interface->rx_ring[i]); 348 } 349 350 /** 351 * fm10k_request_glort_range - Request GLORTs for use in configuring rules 352 * @interface: board private structure 353 * 354 * This function allocates a range of glorts for this interface to use. 355 **/ 356 static void fm10k_request_glort_range(struct fm10k_intfc *interface) 357 { 358 struct fm10k_hw *hw = &interface->hw; 359 u16 mask = (~hw->mac.dglort_map) >> FM10K_DGLORTMAP_MASK_SHIFT; 360 361 /* establish GLORT base */ 362 interface->glort = hw->mac.dglort_map & FM10K_DGLORTMAP_NONE; 363 interface->glort_count = 0; 364 365 /* nothing we can do until mask is allocated */ 366 if (hw->mac.dglort_map == FM10K_DGLORTMAP_NONE) 367 return; 368 369 /* we support 3 possible GLORT configurations. 370 * 1: VFs consume all but the last 1 371 * 2: VFs and PF split glorts with possible gap between 372 * 3: VFs allocated first 64, all others belong to PF 373 */ 374 if (mask <= hw->iov.total_vfs) { 375 interface->glort_count = 1; 376 interface->glort += mask; 377 } else if (mask < 64) { 378 interface->glort_count = (mask + 1) / 2; 379 interface->glort += interface->glort_count; 380 } else { 381 interface->glort_count = mask - 63; 382 interface->glort += 64; 383 } 384 } 385 386 /** 387 * fm10k_free_udp_port_info 388 * @interface: board private structure 389 * 390 * This function frees both geneve_port and vxlan_port structures 391 **/ 392 static void fm10k_free_udp_port_info(struct fm10k_intfc *interface) 393 { 394 struct fm10k_udp_port *port; 395 396 /* flush all entries from vxlan list */ 397 port = list_first_entry_or_null(&interface->vxlan_port, 398 struct fm10k_udp_port, list); 399 while (port) { 400 list_del(&port->list); 401 kfree(port); 402 port = list_first_entry_or_null(&interface->vxlan_port, 403 struct fm10k_udp_port, 404 list); 405 } 406 407 /* flush all entries from geneve list */ 408 port = list_first_entry_or_null(&interface->geneve_port, 409 struct fm10k_udp_port, list); 410 while (port) { 411 list_del(&port->list); 412 kfree(port); 413 port = list_first_entry_or_null(&interface->vxlan_port, 414 struct fm10k_udp_port, 415 list); 416 } 417 } 418 419 /** 420 * fm10k_restore_udp_port_info 421 * @interface: board private structure 422 * 423 * This function restores the value in the tunnel_cfg register(s) after reset 424 **/ 425 static void fm10k_restore_udp_port_info(struct fm10k_intfc *interface) 426 { 427 struct fm10k_hw *hw = &interface->hw; 428 struct fm10k_udp_port *port; 429 430 /* only the PF supports configuring tunnels */ 431 if (hw->mac.type != fm10k_mac_pf) 432 return; 433 434 port = list_first_entry_or_null(&interface->vxlan_port, 435 struct fm10k_udp_port, list); 436 437 /* restore tunnel configuration register */ 438 fm10k_write_reg(hw, FM10K_TUNNEL_CFG, 439 (port ? ntohs(port->port) : 0) | 440 (ETH_P_TEB << FM10K_TUNNEL_CFG_NVGRE_SHIFT)); 441 442 port = list_first_entry_or_null(&interface->geneve_port, 443 struct fm10k_udp_port, list); 444 445 /* restore Geneve tunnel configuration register */ 446 fm10k_write_reg(hw, FM10K_TUNNEL_CFG_GENEVE, 447 (port ? ntohs(port->port) : 0)); 448 } 449 450 static struct fm10k_udp_port * 451 fm10k_remove_tunnel_port(struct list_head *ports, 452 struct udp_tunnel_info *ti) 453 { 454 struct fm10k_udp_port *port; 455 456 list_for_each_entry(port, ports, list) { 457 if ((port->port == ti->port) && 458 (port->sa_family == ti->sa_family)) { 459 list_del(&port->list); 460 return port; 461 } 462 } 463 464 return NULL; 465 } 466 467 static void fm10k_insert_tunnel_port(struct list_head *ports, 468 struct udp_tunnel_info *ti) 469 { 470 struct fm10k_udp_port *port; 471 472 /* remove existing port entry from the list so that the newest items 473 * are always at the tail of the list. 474 */ 475 port = fm10k_remove_tunnel_port(ports, ti); 476 if (!port) { 477 port = kmalloc(sizeof(*port), GFP_ATOMIC); 478 if (!port) 479 return; 480 port->port = ti->port; 481 port->sa_family = ti->sa_family; 482 } 483 484 list_add_tail(&port->list, ports); 485 } 486 487 /** 488 * fm10k_udp_tunnel_add 489 * @netdev: network interface device structure 490 * @ti: Tunnel endpoint information 491 * 492 * This function is called when a new UDP tunnel port has been added. 493 * Due to hardware restrictions, only one port per type can be offloaded at 494 * once. 495 **/ 496 static void fm10k_udp_tunnel_add(struct net_device *dev, 497 struct udp_tunnel_info *ti) 498 { 499 struct fm10k_intfc *interface = netdev_priv(dev); 500 501 /* only the PF supports configuring tunnels */ 502 if (interface->hw.mac.type != fm10k_mac_pf) 503 return; 504 505 switch (ti->type) { 506 case UDP_TUNNEL_TYPE_VXLAN: 507 fm10k_insert_tunnel_port(&interface->vxlan_port, ti); 508 break; 509 case UDP_TUNNEL_TYPE_GENEVE: 510 fm10k_insert_tunnel_port(&interface->geneve_port, ti); 511 break; 512 default: 513 return; 514 } 515 516 fm10k_restore_udp_port_info(interface); 517 } 518 519 /** 520 * fm10k_udp_tunnel_del 521 * @netdev: network interface device structure 522 * @ti: Tunnel endpoint information 523 * 524 * This function is called when a new UDP tunnel port is deleted. The freed 525 * port will be removed from the list, then we reprogram the offloaded port 526 * based on the head of the list. 527 **/ 528 static void fm10k_udp_tunnel_del(struct net_device *dev, 529 struct udp_tunnel_info *ti) 530 { 531 struct fm10k_intfc *interface = netdev_priv(dev); 532 struct fm10k_udp_port *port = NULL; 533 534 if (interface->hw.mac.type != fm10k_mac_pf) 535 return; 536 537 switch (ti->type) { 538 case UDP_TUNNEL_TYPE_VXLAN: 539 port = fm10k_remove_tunnel_port(&interface->vxlan_port, ti); 540 break; 541 case UDP_TUNNEL_TYPE_GENEVE: 542 port = fm10k_remove_tunnel_port(&interface->geneve_port, ti); 543 break; 544 default: 545 return; 546 } 547 548 /* if we did remove a port we need to free its memory */ 549 kfree(port); 550 551 fm10k_restore_udp_port_info(interface); 552 } 553 554 /** 555 * fm10k_open - Called when a network interface is made active 556 * @netdev: network interface device structure 557 * 558 * Returns 0 on success, negative value on failure 559 * 560 * The open entry point is called when a network interface is made 561 * active by the system (IFF_UP). At this point all resources needed 562 * for transmit and receive operations are allocated, the interrupt 563 * handler is registered with the OS, the watchdog timer is started, 564 * and the stack is notified that the interface is ready. 565 **/ 566 int fm10k_open(struct net_device *netdev) 567 { 568 struct fm10k_intfc *interface = netdev_priv(netdev); 569 int err; 570 571 /* allocate transmit descriptors */ 572 err = fm10k_setup_all_tx_resources(interface); 573 if (err) 574 goto err_setup_tx; 575 576 /* allocate receive descriptors */ 577 err = fm10k_setup_all_rx_resources(interface); 578 if (err) 579 goto err_setup_rx; 580 581 /* allocate interrupt resources */ 582 err = fm10k_qv_request_irq(interface); 583 if (err) 584 goto err_req_irq; 585 586 /* setup GLORT assignment for this port */ 587 fm10k_request_glort_range(interface); 588 589 /* Notify the stack of the actual queue counts */ 590 err = netif_set_real_num_tx_queues(netdev, 591 interface->num_tx_queues); 592 if (err) 593 goto err_set_queues; 594 595 err = netif_set_real_num_rx_queues(netdev, 596 interface->num_rx_queues); 597 if (err) 598 goto err_set_queues; 599 600 udp_tunnel_get_rx_info(netdev); 601 602 fm10k_up(interface); 603 604 return 0; 605 606 err_set_queues: 607 fm10k_qv_free_irq(interface); 608 err_req_irq: 609 fm10k_free_all_rx_resources(interface); 610 err_setup_rx: 611 fm10k_free_all_tx_resources(interface); 612 err_setup_tx: 613 return err; 614 } 615 616 /** 617 * fm10k_close - Disables a network interface 618 * @netdev: network interface device structure 619 * 620 * Returns 0, this is not allowed to fail 621 * 622 * The close entry point is called when an interface is de-activated 623 * by the OS. The hardware is still under the drivers control, but 624 * needs to be disabled. A global MAC reset is issued to stop the 625 * hardware, and all transmit and receive resources are freed. 626 **/ 627 int fm10k_close(struct net_device *netdev) 628 { 629 struct fm10k_intfc *interface = netdev_priv(netdev); 630 631 fm10k_down(interface); 632 633 fm10k_qv_free_irq(interface); 634 635 fm10k_free_udp_port_info(interface); 636 637 fm10k_free_all_tx_resources(interface); 638 fm10k_free_all_rx_resources(interface); 639 640 return 0; 641 } 642 643 static netdev_tx_t fm10k_xmit_frame(struct sk_buff *skb, struct net_device *dev) 644 { 645 struct fm10k_intfc *interface = netdev_priv(dev); 646 int num_tx_queues = READ_ONCE(interface->num_tx_queues); 647 unsigned int r_idx = skb->queue_mapping; 648 int err; 649 650 if (!num_tx_queues) 651 return NETDEV_TX_BUSY; 652 653 if ((skb->protocol == htons(ETH_P_8021Q)) && 654 !skb_vlan_tag_present(skb)) { 655 /* FM10K only supports hardware tagging, any tags in frame 656 * are considered 2nd level or "outer" tags 657 */ 658 struct vlan_hdr *vhdr; 659 __be16 proto; 660 661 /* make sure skb is not shared */ 662 skb = skb_share_check(skb, GFP_ATOMIC); 663 if (!skb) 664 return NETDEV_TX_OK; 665 666 /* make sure there is enough room to move the ethernet header */ 667 if (unlikely(!pskb_may_pull(skb, VLAN_ETH_HLEN))) 668 return NETDEV_TX_OK; 669 670 /* verify the skb head is not shared */ 671 err = skb_cow_head(skb, 0); 672 if (err) { 673 dev_kfree_skb(skb); 674 return NETDEV_TX_OK; 675 } 676 677 /* locate VLAN header */ 678 vhdr = (struct vlan_hdr *)(skb->data + ETH_HLEN); 679 680 /* pull the 2 key pieces of data out of it */ 681 __vlan_hwaccel_put_tag(skb, 682 htons(ETH_P_8021Q), 683 ntohs(vhdr->h_vlan_TCI)); 684 proto = vhdr->h_vlan_encapsulated_proto; 685 skb->protocol = (ntohs(proto) >= 1536) ? proto : 686 htons(ETH_P_802_2); 687 688 /* squash it by moving the ethernet addresses up 4 bytes */ 689 memmove(skb->data + VLAN_HLEN, skb->data, 12); 690 __skb_pull(skb, VLAN_HLEN); 691 skb_reset_mac_header(skb); 692 } 693 694 /* The minimum packet size for a single buffer is 17B so pad the skb 695 * in order to meet this minimum size requirement. 696 */ 697 if (unlikely(skb->len < 17)) { 698 int pad_len = 17 - skb->len; 699 700 if (skb_pad(skb, pad_len)) 701 return NETDEV_TX_OK; 702 __skb_put(skb, pad_len); 703 } 704 705 if (r_idx >= num_tx_queues) 706 r_idx %= num_tx_queues; 707 708 err = fm10k_xmit_frame_ring(skb, interface->tx_ring[r_idx]); 709 710 return err; 711 } 712 713 /** 714 * fm10k_tx_timeout - Respond to a Tx Hang 715 * @netdev: network interface device structure 716 **/ 717 static void fm10k_tx_timeout(struct net_device *netdev) 718 { 719 struct fm10k_intfc *interface = netdev_priv(netdev); 720 bool real_tx_hang = false; 721 int i; 722 723 #define TX_TIMEO_LIMIT 16000 724 for (i = 0; i < interface->num_tx_queues; i++) { 725 struct fm10k_ring *tx_ring = interface->tx_ring[i]; 726 727 if (check_for_tx_hang(tx_ring) && fm10k_check_tx_hang(tx_ring)) 728 real_tx_hang = true; 729 } 730 731 if (real_tx_hang) { 732 fm10k_tx_timeout_reset(interface); 733 } else { 734 netif_info(interface, drv, netdev, 735 "Fake Tx hang detected with timeout of %d seconds\n", 736 netdev->watchdog_timeo / HZ); 737 738 /* fake Tx hang - increase the kernel timeout */ 739 if (netdev->watchdog_timeo < TX_TIMEO_LIMIT) 740 netdev->watchdog_timeo *= 2; 741 } 742 } 743 744 /** 745 * fm10k_host_mbx_ready - Check PF interface's mailbox readiness 746 * @interface: board private structure 747 * 748 * This function checks if the PF interface's mailbox is ready before queueing 749 * mailbox messages for transmission. This will prevent filling the TX mailbox 750 * queue when the receiver is not ready. VF interfaces are exempt from this 751 * check since it will block all PF-VF mailbox messages from being sent from 752 * the VF to the PF at initialization. 753 **/ 754 static bool fm10k_host_mbx_ready(struct fm10k_intfc *interface) 755 { 756 struct fm10k_hw *hw = &interface->hw; 757 758 return (hw->mac.type == fm10k_mac_vf || interface->host_ready); 759 } 760 761 /** 762 * fm10k_queue_vlan_request - Queue a VLAN update request 763 * @interface: the fm10k interface structure 764 * @vid: the VLAN vid 765 * @vsi: VSI index number 766 * @set: whether to set or clear 767 * 768 * This function queues up a VLAN update. For VFs, this must be sent to the 769 * managing PF over the mailbox. For PFs, we'll use the same handling so that 770 * it's similar to the VF. This avoids storming the PF<->VF mailbox with too 771 * many VLAN updates during reset. 772 */ 773 int fm10k_queue_vlan_request(struct fm10k_intfc *interface, 774 u32 vid, u8 vsi, bool set) 775 { 776 struct fm10k_macvlan_request *request; 777 unsigned long flags; 778 779 /* This must be atomic since we may be called while the netdev 780 * addr_list_lock is held 781 */ 782 request = kzalloc(sizeof(*request), GFP_ATOMIC); 783 if (!request) 784 return -ENOMEM; 785 786 request->type = FM10K_VLAN_REQUEST; 787 request->vlan.vid = vid; 788 request->vlan.vsi = vsi; 789 request->set = set; 790 791 spin_lock_irqsave(&interface->macvlan_lock, flags); 792 list_add_tail(&request->list, &interface->macvlan_requests); 793 spin_unlock_irqrestore(&interface->macvlan_lock, flags); 794 795 fm10k_macvlan_schedule(interface); 796 797 return 0; 798 } 799 800 /** 801 * fm10k_queue_mac_request - Queue a MAC update request 802 * @interface: the fm10k interface structure 803 * @glort: the target glort for this update 804 * @addr: the address to update 805 * @vid: the vid to update 806 * @sync: whether to add or remove 807 * 808 * This function queues up a MAC request for sending to the switch manager. 809 * A separate thread monitors the queue and sends updates to the switch 810 * manager. Return 0 on success, and negative error code on failure. 811 **/ 812 int fm10k_queue_mac_request(struct fm10k_intfc *interface, u16 glort, 813 const unsigned char *addr, u16 vid, bool set) 814 { 815 struct fm10k_macvlan_request *request; 816 unsigned long flags; 817 818 /* This must be atomic since we may be called while the netdev 819 * addr_list_lock is held 820 */ 821 request = kzalloc(sizeof(*request), GFP_ATOMIC); 822 if (!request) 823 return -ENOMEM; 824 825 if (is_multicast_ether_addr(addr)) 826 request->type = FM10K_MC_MAC_REQUEST; 827 else 828 request->type = FM10K_UC_MAC_REQUEST; 829 830 ether_addr_copy(request->mac.addr, addr); 831 request->mac.glort = glort; 832 request->mac.vid = vid; 833 request->set = set; 834 835 spin_lock_irqsave(&interface->macvlan_lock, flags); 836 list_add_tail(&request->list, &interface->macvlan_requests); 837 spin_unlock_irqrestore(&interface->macvlan_lock, flags); 838 839 fm10k_macvlan_schedule(interface); 840 841 return 0; 842 } 843 844 /** 845 * fm10k_clear_macvlan_queue - Cancel pending updates for a given glort 846 * @interface: the fm10k interface structure 847 * @glort: the target glort to clear 848 * @vlans: true to clear VLAN messages, false to ignore them 849 * 850 * Cancel any outstanding MAC/VLAN requests for a given glort. This is 851 * expected to be called when a logical port goes down. 852 **/ 853 void fm10k_clear_macvlan_queue(struct fm10k_intfc *interface, 854 u16 glort, bool vlans) 855 856 { 857 struct fm10k_macvlan_request *r, *tmp; 858 unsigned long flags; 859 860 spin_lock_irqsave(&interface->macvlan_lock, flags); 861 862 /* Free any outstanding MAC/VLAN requests for this interface */ 863 list_for_each_entry_safe(r, tmp, &interface->macvlan_requests, list) { 864 switch (r->type) { 865 case FM10K_MC_MAC_REQUEST: 866 case FM10K_UC_MAC_REQUEST: 867 /* Don't free requests for other interfaces */ 868 if (r->mac.glort != glort) 869 break; 870 /* fall through */ 871 case FM10K_VLAN_REQUEST: 872 if (vlans) { 873 list_del(&r->list); 874 kfree(r); 875 } 876 break; 877 } 878 } 879 880 spin_unlock_irqrestore(&interface->macvlan_lock, flags); 881 } 882 883 static int fm10k_uc_vlan_unsync(struct net_device *netdev, 884 const unsigned char *uc_addr) 885 { 886 struct fm10k_intfc *interface = netdev_priv(netdev); 887 u16 glort = interface->glort; 888 u16 vid = interface->vid; 889 bool set = !!(vid / VLAN_N_VID); 890 int err = -EHOSTDOWN; 891 892 /* drop any leading bits on the VLAN ID */ 893 vid &= VLAN_N_VID - 1; 894 895 err = fm10k_queue_mac_request(interface, glort, uc_addr, vid, set); 896 if (err) 897 return err; 898 899 /* return non-zero value as we are only doing a partial sync/unsync */ 900 return 1; 901 } 902 903 static int fm10k_mc_vlan_unsync(struct net_device *netdev, 904 const unsigned char *mc_addr) 905 { 906 struct fm10k_intfc *interface = netdev_priv(netdev); 907 u16 glort = interface->glort; 908 u16 vid = interface->vid; 909 bool set = !!(vid / VLAN_N_VID); 910 int err = -EHOSTDOWN; 911 912 /* drop any leading bits on the VLAN ID */ 913 vid &= VLAN_N_VID - 1; 914 915 err = fm10k_queue_mac_request(interface, glort, mc_addr, vid, set); 916 if (err) 917 return err; 918 919 /* return non-zero value as we are only doing a partial sync/unsync */ 920 return 1; 921 } 922 923 static int fm10k_update_vid(struct net_device *netdev, u16 vid, bool set) 924 { 925 struct fm10k_intfc *interface = netdev_priv(netdev); 926 struct fm10k_hw *hw = &interface->hw; 927 s32 err; 928 int i; 929 930 /* updates do not apply to VLAN 0 */ 931 if (!vid) 932 return 0; 933 934 if (vid >= VLAN_N_VID) 935 return -EINVAL; 936 937 /* Verify we have permission to add VLANs */ 938 if (hw->mac.vlan_override) 939 return -EACCES; 940 941 /* update active_vlans bitmask */ 942 set_bit(vid, interface->active_vlans); 943 if (!set) 944 clear_bit(vid, interface->active_vlans); 945 946 /* disable the default VLAN ID on ring if we have an active VLAN */ 947 for (i = 0; i < interface->num_rx_queues; i++) { 948 struct fm10k_ring *rx_ring = interface->rx_ring[i]; 949 u16 rx_vid = rx_ring->vid & (VLAN_N_VID - 1); 950 951 if (test_bit(rx_vid, interface->active_vlans)) 952 rx_ring->vid |= FM10K_VLAN_CLEAR; 953 else 954 rx_ring->vid &= ~FM10K_VLAN_CLEAR; 955 } 956 957 /* Do not remove default VLAN ID related entries from VLAN and MAC 958 * tables 959 */ 960 if (!set && vid == hw->mac.default_vid) 961 return 0; 962 963 /* Do not throw an error if the interface is down. We will sync once 964 * we come up 965 */ 966 if (test_bit(__FM10K_DOWN, interface->state)) 967 return 0; 968 969 fm10k_mbx_lock(interface); 970 971 /* only need to update the VLAN if not in promiscuous mode */ 972 if (!(netdev->flags & IFF_PROMISC)) { 973 err = fm10k_queue_vlan_request(interface, vid, 0, set); 974 if (err) 975 goto err_out; 976 } 977 978 /* Update our base MAC address */ 979 err = fm10k_queue_mac_request(interface, interface->glort, 980 hw->mac.addr, vid, set); 981 if (err) 982 goto err_out; 983 984 /* set VLAN ID prior to syncing/unsyncing the VLAN */ 985 interface->vid = vid + (set ? VLAN_N_VID : 0); 986 987 /* Update the unicast and multicast address list to add/drop VLAN */ 988 __dev_uc_unsync(netdev, fm10k_uc_vlan_unsync); 989 __dev_mc_unsync(netdev, fm10k_mc_vlan_unsync); 990 991 err_out: 992 fm10k_mbx_unlock(interface); 993 994 return err; 995 } 996 997 static int fm10k_vlan_rx_add_vid(struct net_device *netdev, 998 __always_unused __be16 proto, u16 vid) 999 { 1000 /* update VLAN and address table based on changes */ 1001 return fm10k_update_vid(netdev, vid, true); 1002 } 1003 1004 static int fm10k_vlan_rx_kill_vid(struct net_device *netdev, 1005 __always_unused __be16 proto, u16 vid) 1006 { 1007 /* update VLAN and address table based on changes */ 1008 return fm10k_update_vid(netdev, vid, false); 1009 } 1010 1011 static u16 fm10k_find_next_vlan(struct fm10k_intfc *interface, u16 vid) 1012 { 1013 struct fm10k_hw *hw = &interface->hw; 1014 u16 default_vid = hw->mac.default_vid; 1015 u16 vid_limit = vid < default_vid ? default_vid : VLAN_N_VID; 1016 1017 vid = find_next_bit(interface->active_vlans, vid_limit, ++vid); 1018 1019 return vid; 1020 } 1021 1022 static void fm10k_clear_unused_vlans(struct fm10k_intfc *interface) 1023 { 1024 u32 vid, prev_vid; 1025 1026 /* loop through and find any gaps in the table */ 1027 for (vid = 0, prev_vid = 0; 1028 prev_vid < VLAN_N_VID; 1029 prev_vid = vid + 1, vid = fm10k_find_next_vlan(interface, vid)) { 1030 if (prev_vid == vid) 1031 continue; 1032 1033 /* send request to clear multiple bits at a time */ 1034 prev_vid += (vid - prev_vid - 1) << FM10K_VLAN_LENGTH_SHIFT; 1035 fm10k_queue_vlan_request(interface, prev_vid, 0, false); 1036 } 1037 } 1038 1039 static int __fm10k_uc_sync(struct net_device *dev, 1040 const unsigned char *addr, bool sync) 1041 { 1042 struct fm10k_intfc *interface = netdev_priv(dev); 1043 struct fm10k_hw *hw = &interface->hw; 1044 u16 vid, glort = interface->glort; 1045 s32 err; 1046 1047 if (!is_valid_ether_addr(addr)) 1048 return -EADDRNOTAVAIL; 1049 1050 for (vid = hw->mac.default_vid ? fm10k_find_next_vlan(interface, 0) : 1; 1051 vid < VLAN_N_VID; 1052 vid = fm10k_find_next_vlan(interface, vid)) { 1053 err = fm10k_queue_mac_request(interface, glort, 1054 addr, vid, sync); 1055 if (err) 1056 return err; 1057 } 1058 1059 return 0; 1060 } 1061 1062 static int fm10k_uc_sync(struct net_device *dev, 1063 const unsigned char *addr) 1064 { 1065 return __fm10k_uc_sync(dev, addr, true); 1066 } 1067 1068 static int fm10k_uc_unsync(struct net_device *dev, 1069 const unsigned char *addr) 1070 { 1071 return __fm10k_uc_sync(dev, addr, false); 1072 } 1073 1074 static int fm10k_set_mac(struct net_device *dev, void *p) 1075 { 1076 struct fm10k_intfc *interface = netdev_priv(dev); 1077 struct fm10k_hw *hw = &interface->hw; 1078 struct sockaddr *addr = p; 1079 s32 err = 0; 1080 1081 if (!is_valid_ether_addr(addr->sa_data)) 1082 return -EADDRNOTAVAIL; 1083 1084 if (dev->flags & IFF_UP) { 1085 /* setting MAC address requires mailbox */ 1086 fm10k_mbx_lock(interface); 1087 1088 err = fm10k_uc_sync(dev, addr->sa_data); 1089 if (!err) 1090 fm10k_uc_unsync(dev, hw->mac.addr); 1091 1092 fm10k_mbx_unlock(interface); 1093 } 1094 1095 if (!err) { 1096 ether_addr_copy(dev->dev_addr, addr->sa_data); 1097 ether_addr_copy(hw->mac.addr, addr->sa_data); 1098 dev->addr_assign_type &= ~NET_ADDR_RANDOM; 1099 } 1100 1101 /* if we had a mailbox error suggest trying again */ 1102 return err ? -EAGAIN : 0; 1103 } 1104 1105 static int __fm10k_mc_sync(struct net_device *dev, 1106 const unsigned char *addr, bool sync) 1107 { 1108 struct fm10k_intfc *interface = netdev_priv(dev); 1109 struct fm10k_hw *hw = &interface->hw; 1110 u16 vid, glort = interface->glort; 1111 s32 err; 1112 1113 if (!is_multicast_ether_addr(addr)) 1114 return -EADDRNOTAVAIL; 1115 1116 for (vid = hw->mac.default_vid ? fm10k_find_next_vlan(interface, 0) : 1; 1117 vid < VLAN_N_VID; 1118 vid = fm10k_find_next_vlan(interface, vid)) { 1119 err = fm10k_queue_mac_request(interface, glort, 1120 addr, vid, sync); 1121 if (err) 1122 return err; 1123 } 1124 1125 return 0; 1126 } 1127 1128 static int fm10k_mc_sync(struct net_device *dev, 1129 const unsigned char *addr) 1130 { 1131 return __fm10k_mc_sync(dev, addr, true); 1132 } 1133 1134 static int fm10k_mc_unsync(struct net_device *dev, 1135 const unsigned char *addr) 1136 { 1137 return __fm10k_mc_sync(dev, addr, false); 1138 } 1139 1140 static void fm10k_set_rx_mode(struct net_device *dev) 1141 { 1142 struct fm10k_intfc *interface = netdev_priv(dev); 1143 struct fm10k_hw *hw = &interface->hw; 1144 int xcast_mode; 1145 1146 /* no need to update the harwdare if we are not running */ 1147 if (!(dev->flags & IFF_UP)) 1148 return; 1149 1150 /* determine new mode based on flags */ 1151 xcast_mode = (dev->flags & IFF_PROMISC) ? FM10K_XCAST_MODE_PROMISC : 1152 (dev->flags & IFF_ALLMULTI) ? FM10K_XCAST_MODE_ALLMULTI : 1153 (dev->flags & (IFF_BROADCAST | IFF_MULTICAST)) ? 1154 FM10K_XCAST_MODE_MULTI : FM10K_XCAST_MODE_NONE; 1155 1156 fm10k_mbx_lock(interface); 1157 1158 /* update xcast mode first, but only if it changed */ 1159 if (interface->xcast_mode != xcast_mode) { 1160 /* update VLAN table */ 1161 if (xcast_mode == FM10K_XCAST_MODE_PROMISC) 1162 fm10k_queue_vlan_request(interface, FM10K_VLAN_ALL, 1163 0, true); 1164 if (interface->xcast_mode == FM10K_XCAST_MODE_PROMISC) 1165 fm10k_clear_unused_vlans(interface); 1166 1167 /* update xcast mode if host's mailbox is ready */ 1168 if (fm10k_host_mbx_ready(interface)) 1169 hw->mac.ops.update_xcast_mode(hw, interface->glort, 1170 xcast_mode); 1171 1172 /* record updated xcast mode state */ 1173 interface->xcast_mode = xcast_mode; 1174 } 1175 1176 /* synchronize all of the addresses */ 1177 __dev_uc_sync(dev, fm10k_uc_sync, fm10k_uc_unsync); 1178 __dev_mc_sync(dev, fm10k_mc_sync, fm10k_mc_unsync); 1179 1180 fm10k_mbx_unlock(interface); 1181 } 1182 1183 void fm10k_restore_rx_state(struct fm10k_intfc *interface) 1184 { 1185 struct net_device *netdev = interface->netdev; 1186 struct fm10k_hw *hw = &interface->hw; 1187 int xcast_mode; 1188 u16 vid, glort; 1189 1190 /* record glort for this interface */ 1191 glort = interface->glort; 1192 1193 /* convert interface flags to xcast mode */ 1194 if (netdev->flags & IFF_PROMISC) 1195 xcast_mode = FM10K_XCAST_MODE_PROMISC; 1196 else if (netdev->flags & IFF_ALLMULTI) 1197 xcast_mode = FM10K_XCAST_MODE_ALLMULTI; 1198 else if (netdev->flags & (IFF_BROADCAST | IFF_MULTICAST)) 1199 xcast_mode = FM10K_XCAST_MODE_MULTI; 1200 else 1201 xcast_mode = FM10K_XCAST_MODE_NONE; 1202 1203 fm10k_mbx_lock(interface); 1204 1205 /* Enable logical port if host's mailbox is ready */ 1206 if (fm10k_host_mbx_ready(interface)) 1207 hw->mac.ops.update_lport_state(hw, glort, 1208 interface->glort_count, true); 1209 1210 /* update VLAN table */ 1211 fm10k_queue_vlan_request(interface, FM10K_VLAN_ALL, 0, 1212 xcast_mode == FM10K_XCAST_MODE_PROMISC); 1213 1214 /* Add filter for VLAN 0 */ 1215 fm10k_queue_vlan_request(interface, 0, 0, true); 1216 1217 /* update table with current entries */ 1218 for (vid = hw->mac.default_vid ? fm10k_find_next_vlan(interface, 0) : 1; 1219 vid < VLAN_N_VID; 1220 vid = fm10k_find_next_vlan(interface, vid)) { 1221 fm10k_queue_vlan_request(interface, vid, 0, true); 1222 1223 fm10k_queue_mac_request(interface, glort, 1224 hw->mac.addr, vid, true); 1225 } 1226 1227 /* update xcast mode before synchronizing addresses if host's mailbox 1228 * is ready 1229 */ 1230 if (fm10k_host_mbx_ready(interface)) 1231 hw->mac.ops.update_xcast_mode(hw, glort, xcast_mode); 1232 1233 /* synchronize all of the addresses */ 1234 __dev_uc_sync(netdev, fm10k_uc_sync, fm10k_uc_unsync); 1235 __dev_mc_sync(netdev, fm10k_mc_sync, fm10k_mc_unsync); 1236 1237 fm10k_mbx_unlock(interface); 1238 1239 /* record updated xcast mode state */ 1240 interface->xcast_mode = xcast_mode; 1241 1242 /* Restore tunnel configuration */ 1243 fm10k_restore_udp_port_info(interface); 1244 } 1245 1246 void fm10k_reset_rx_state(struct fm10k_intfc *interface) 1247 { 1248 struct net_device *netdev = interface->netdev; 1249 struct fm10k_hw *hw = &interface->hw; 1250 1251 /* Wait for MAC/VLAN work to finish */ 1252 while (test_bit(__FM10K_MACVLAN_SCHED, interface->state)) 1253 usleep_range(1000, 2000); 1254 1255 /* Cancel pending MAC/VLAN requests */ 1256 fm10k_clear_macvlan_queue(interface, interface->glort, true); 1257 1258 fm10k_mbx_lock(interface); 1259 1260 /* clear the logical port state on lower device if host's mailbox is 1261 * ready 1262 */ 1263 if (fm10k_host_mbx_ready(interface)) 1264 hw->mac.ops.update_lport_state(hw, interface->glort, 1265 interface->glort_count, false); 1266 1267 fm10k_mbx_unlock(interface); 1268 1269 /* reset flags to default state */ 1270 interface->xcast_mode = FM10K_XCAST_MODE_NONE; 1271 1272 /* clear the sync flag since the lport has been dropped */ 1273 __dev_uc_unsync(netdev, NULL); 1274 __dev_mc_unsync(netdev, NULL); 1275 } 1276 1277 /** 1278 * fm10k_get_stats64 - Get System Network Statistics 1279 * @netdev: network interface device structure 1280 * @stats: storage space for 64bit statistics 1281 * 1282 * Obtain 64bit statistics in a way that is safe for both 32bit and 64bit 1283 * architectures. 1284 */ 1285 static void fm10k_get_stats64(struct net_device *netdev, 1286 struct rtnl_link_stats64 *stats) 1287 { 1288 struct fm10k_intfc *interface = netdev_priv(netdev); 1289 struct fm10k_ring *ring; 1290 unsigned int start, i; 1291 u64 bytes, packets; 1292 1293 rcu_read_lock(); 1294 1295 for (i = 0; i < interface->num_rx_queues; i++) { 1296 ring = READ_ONCE(interface->rx_ring[i]); 1297 1298 if (!ring) 1299 continue; 1300 1301 do { 1302 start = u64_stats_fetch_begin_irq(&ring->syncp); 1303 packets = ring->stats.packets; 1304 bytes = ring->stats.bytes; 1305 } while (u64_stats_fetch_retry_irq(&ring->syncp, start)); 1306 1307 stats->rx_packets += packets; 1308 stats->rx_bytes += bytes; 1309 } 1310 1311 for (i = 0; i < interface->num_tx_queues; i++) { 1312 ring = READ_ONCE(interface->tx_ring[i]); 1313 1314 if (!ring) 1315 continue; 1316 1317 do { 1318 start = u64_stats_fetch_begin_irq(&ring->syncp); 1319 packets = ring->stats.packets; 1320 bytes = ring->stats.bytes; 1321 } while (u64_stats_fetch_retry_irq(&ring->syncp, start)); 1322 1323 stats->tx_packets += packets; 1324 stats->tx_bytes += bytes; 1325 } 1326 1327 rcu_read_unlock(); 1328 1329 /* following stats updated by fm10k_service_task() */ 1330 stats->rx_missed_errors = netdev->stats.rx_missed_errors; 1331 } 1332 1333 int fm10k_setup_tc(struct net_device *dev, u8 tc) 1334 { 1335 struct fm10k_intfc *interface = netdev_priv(dev); 1336 int err; 1337 1338 /* Currently only the PF supports priority classes */ 1339 if (tc && (interface->hw.mac.type != fm10k_mac_pf)) 1340 return -EINVAL; 1341 1342 /* Hardware supports up to 8 traffic classes */ 1343 if (tc > 8) 1344 return -EINVAL; 1345 1346 /* Hardware has to reinitialize queues to match packet 1347 * buffer alignment. Unfortunately, the hardware is not 1348 * flexible enough to do this dynamically. 1349 */ 1350 if (netif_running(dev)) 1351 fm10k_close(dev); 1352 1353 fm10k_mbx_free_irq(interface); 1354 1355 fm10k_clear_queueing_scheme(interface); 1356 1357 /* we expect the prio_tc map to be repopulated later */ 1358 netdev_reset_tc(dev); 1359 netdev_set_num_tc(dev, tc); 1360 1361 err = fm10k_init_queueing_scheme(interface); 1362 if (err) 1363 goto err_queueing_scheme; 1364 1365 err = fm10k_mbx_request_irq(interface); 1366 if (err) 1367 goto err_mbx_irq; 1368 1369 err = netif_running(dev) ? fm10k_open(dev) : 0; 1370 if (err) 1371 goto err_open; 1372 1373 /* flag to indicate SWPRI has yet to be updated */ 1374 set_bit(FM10K_FLAG_SWPRI_CONFIG, interface->flags); 1375 1376 return 0; 1377 err_open: 1378 fm10k_mbx_free_irq(interface); 1379 err_mbx_irq: 1380 fm10k_clear_queueing_scheme(interface); 1381 err_queueing_scheme: 1382 netif_device_detach(dev); 1383 1384 return err; 1385 } 1386 1387 static int __fm10k_setup_tc(struct net_device *dev, enum tc_setup_type type, 1388 void *type_data) 1389 { 1390 struct tc_mqprio_qopt *mqprio = type_data; 1391 1392 if (type != TC_SETUP_QDISC_MQPRIO) 1393 return -EOPNOTSUPP; 1394 1395 mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS; 1396 1397 return fm10k_setup_tc(dev, mqprio->num_tc); 1398 } 1399 1400 static void fm10k_assign_l2_accel(struct fm10k_intfc *interface, 1401 struct fm10k_l2_accel *l2_accel) 1402 { 1403 struct fm10k_ring *ring; 1404 int i; 1405 1406 for (i = 0; i < interface->num_rx_queues; i++) { 1407 ring = interface->rx_ring[i]; 1408 rcu_assign_pointer(ring->l2_accel, l2_accel); 1409 } 1410 1411 interface->l2_accel = l2_accel; 1412 } 1413 1414 static void *fm10k_dfwd_add_station(struct net_device *dev, 1415 struct net_device *sdev) 1416 { 1417 struct fm10k_intfc *interface = netdev_priv(dev); 1418 struct fm10k_l2_accel *l2_accel = interface->l2_accel; 1419 struct fm10k_l2_accel *old_l2_accel = NULL; 1420 struct fm10k_dglort_cfg dglort = { 0 }; 1421 struct fm10k_hw *hw = &interface->hw; 1422 int size = 0, i; 1423 u16 glort; 1424 1425 /* allocate l2 accel structure if it is not available */ 1426 if (!l2_accel) { 1427 /* verify there is enough free GLORTs to support l2_accel */ 1428 if (interface->glort_count < 7) 1429 return ERR_PTR(-EBUSY); 1430 1431 size = offsetof(struct fm10k_l2_accel, macvlan[7]); 1432 l2_accel = kzalloc(size, GFP_KERNEL); 1433 if (!l2_accel) 1434 return ERR_PTR(-ENOMEM); 1435 1436 l2_accel->size = 7; 1437 l2_accel->dglort = interface->glort; 1438 1439 /* update pointers */ 1440 fm10k_assign_l2_accel(interface, l2_accel); 1441 /* do not expand if we are at our limit */ 1442 } else if ((l2_accel->count == FM10K_MAX_STATIONS) || 1443 (l2_accel->count == (interface->glort_count - 1))) { 1444 return ERR_PTR(-EBUSY); 1445 /* expand if we have hit the size limit */ 1446 } else if (l2_accel->count == l2_accel->size) { 1447 old_l2_accel = l2_accel; 1448 size = offsetof(struct fm10k_l2_accel, 1449 macvlan[(l2_accel->size * 2) + 1]); 1450 l2_accel = kzalloc(size, GFP_KERNEL); 1451 if (!l2_accel) 1452 return ERR_PTR(-ENOMEM); 1453 1454 memcpy(l2_accel, old_l2_accel, 1455 offsetof(struct fm10k_l2_accel, 1456 macvlan[old_l2_accel->size])); 1457 1458 l2_accel->size = (old_l2_accel->size * 2) + 1; 1459 1460 /* update pointers */ 1461 fm10k_assign_l2_accel(interface, l2_accel); 1462 kfree_rcu(old_l2_accel, rcu); 1463 } 1464 1465 /* add macvlan to accel table, and record GLORT for position */ 1466 for (i = 0; i < l2_accel->size; i++) { 1467 if (!l2_accel->macvlan[i]) 1468 break; 1469 } 1470 1471 /* record station */ 1472 l2_accel->macvlan[i] = sdev; 1473 l2_accel->count++; 1474 1475 /* configure default DGLORT mapping for RSS/DCB */ 1476 dglort.idx = fm10k_dglort_pf_rss; 1477 dglort.inner_rss = 1; 1478 dglort.rss_l = fls(interface->ring_feature[RING_F_RSS].mask); 1479 dglort.pc_l = fls(interface->ring_feature[RING_F_QOS].mask); 1480 dglort.glort = interface->glort; 1481 dglort.shared_l = fls(l2_accel->size); 1482 hw->mac.ops.configure_dglort_map(hw, &dglort); 1483 1484 /* Add rules for this specific dglort to the switch */ 1485 fm10k_mbx_lock(interface); 1486 1487 glort = l2_accel->dglort + 1 + i; 1488 1489 if (fm10k_host_mbx_ready(interface)) { 1490 hw->mac.ops.update_xcast_mode(hw, glort, 1491 FM10K_XCAST_MODE_MULTI); 1492 fm10k_queue_mac_request(interface, glort, sdev->dev_addr, 1493 0, true); 1494 } 1495 1496 fm10k_mbx_unlock(interface); 1497 1498 return sdev; 1499 } 1500 1501 static void fm10k_dfwd_del_station(struct net_device *dev, void *priv) 1502 { 1503 struct fm10k_intfc *interface = netdev_priv(dev); 1504 struct fm10k_l2_accel *l2_accel = READ_ONCE(interface->l2_accel); 1505 struct fm10k_dglort_cfg dglort = { 0 }; 1506 struct fm10k_hw *hw = &interface->hw; 1507 struct net_device *sdev = priv; 1508 int i; 1509 u16 glort; 1510 1511 if (!l2_accel) 1512 return; 1513 1514 /* search table for matching interface */ 1515 for (i = 0; i < l2_accel->size; i++) { 1516 if (l2_accel->macvlan[i] == sdev) 1517 break; 1518 } 1519 1520 /* exit if macvlan not found */ 1521 if (i == l2_accel->size) 1522 return; 1523 1524 /* Remove any rules specific to this dglort */ 1525 fm10k_mbx_lock(interface); 1526 1527 glort = l2_accel->dglort + 1 + i; 1528 1529 if (fm10k_host_mbx_ready(interface)) { 1530 hw->mac.ops.update_xcast_mode(hw, glort, 1531 FM10K_XCAST_MODE_NONE); 1532 fm10k_queue_mac_request(interface, glort, sdev->dev_addr, 1533 0, false); 1534 } 1535 1536 fm10k_mbx_unlock(interface); 1537 1538 /* record removal */ 1539 l2_accel->macvlan[i] = NULL; 1540 l2_accel->count--; 1541 1542 /* configure default DGLORT mapping for RSS/DCB */ 1543 dglort.idx = fm10k_dglort_pf_rss; 1544 dglort.inner_rss = 1; 1545 dglort.rss_l = fls(interface->ring_feature[RING_F_RSS].mask); 1546 dglort.pc_l = fls(interface->ring_feature[RING_F_QOS].mask); 1547 dglort.glort = interface->glort; 1548 dglort.shared_l = fls(l2_accel->size); 1549 hw->mac.ops.configure_dglort_map(hw, &dglort); 1550 1551 /* If table is empty remove it */ 1552 if (l2_accel->count == 0) { 1553 fm10k_assign_l2_accel(interface, NULL); 1554 kfree_rcu(l2_accel, rcu); 1555 } 1556 } 1557 1558 static netdev_features_t fm10k_features_check(struct sk_buff *skb, 1559 struct net_device *dev, 1560 netdev_features_t features) 1561 { 1562 if (!skb->encapsulation || fm10k_tx_encap_offload(skb)) 1563 return features; 1564 1565 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 1566 } 1567 1568 static const struct net_device_ops fm10k_netdev_ops = { 1569 .ndo_open = fm10k_open, 1570 .ndo_stop = fm10k_close, 1571 .ndo_validate_addr = eth_validate_addr, 1572 .ndo_start_xmit = fm10k_xmit_frame, 1573 .ndo_set_mac_address = fm10k_set_mac, 1574 .ndo_tx_timeout = fm10k_tx_timeout, 1575 .ndo_vlan_rx_add_vid = fm10k_vlan_rx_add_vid, 1576 .ndo_vlan_rx_kill_vid = fm10k_vlan_rx_kill_vid, 1577 .ndo_set_rx_mode = fm10k_set_rx_mode, 1578 .ndo_get_stats64 = fm10k_get_stats64, 1579 .ndo_setup_tc = __fm10k_setup_tc, 1580 .ndo_set_vf_mac = fm10k_ndo_set_vf_mac, 1581 .ndo_set_vf_vlan = fm10k_ndo_set_vf_vlan, 1582 .ndo_set_vf_rate = fm10k_ndo_set_vf_bw, 1583 .ndo_get_vf_config = fm10k_ndo_get_vf_config, 1584 .ndo_udp_tunnel_add = fm10k_udp_tunnel_add, 1585 .ndo_udp_tunnel_del = fm10k_udp_tunnel_del, 1586 .ndo_dfwd_add_station = fm10k_dfwd_add_station, 1587 .ndo_dfwd_del_station = fm10k_dfwd_del_station, 1588 #ifdef CONFIG_NET_POLL_CONTROLLER 1589 .ndo_poll_controller = fm10k_netpoll, 1590 #endif 1591 .ndo_features_check = fm10k_features_check, 1592 }; 1593 1594 #define DEFAULT_DEBUG_LEVEL_SHIFT 3 1595 1596 struct net_device *fm10k_alloc_netdev(const struct fm10k_info *info) 1597 { 1598 netdev_features_t hw_features; 1599 struct fm10k_intfc *interface; 1600 struct net_device *dev; 1601 1602 dev = alloc_etherdev_mq(sizeof(struct fm10k_intfc), MAX_QUEUES); 1603 if (!dev) 1604 return NULL; 1605 1606 /* set net device and ethtool ops */ 1607 dev->netdev_ops = &fm10k_netdev_ops; 1608 fm10k_set_ethtool_ops(dev); 1609 1610 /* configure default debug level */ 1611 interface = netdev_priv(dev); 1612 interface->msg_enable = BIT(DEFAULT_DEBUG_LEVEL_SHIFT) - 1; 1613 1614 /* configure default features */ 1615 dev->features |= NETIF_F_IP_CSUM | 1616 NETIF_F_IPV6_CSUM | 1617 NETIF_F_SG | 1618 NETIF_F_TSO | 1619 NETIF_F_TSO6 | 1620 NETIF_F_TSO_ECN | 1621 NETIF_F_RXHASH | 1622 NETIF_F_RXCSUM; 1623 1624 /* Only the PF can support VXLAN and NVGRE tunnel offloads */ 1625 if (info->mac == fm10k_mac_pf) { 1626 dev->hw_enc_features = NETIF_F_IP_CSUM | 1627 NETIF_F_TSO | 1628 NETIF_F_TSO6 | 1629 NETIF_F_TSO_ECN | 1630 NETIF_F_GSO_UDP_TUNNEL | 1631 NETIF_F_IPV6_CSUM | 1632 NETIF_F_SG; 1633 1634 dev->features |= NETIF_F_GSO_UDP_TUNNEL; 1635 } 1636 1637 /* all features defined to this point should be changeable */ 1638 hw_features = dev->features; 1639 1640 /* allow user to enable L2 forwarding acceleration */ 1641 hw_features |= NETIF_F_HW_L2FW_DOFFLOAD; 1642 1643 /* configure VLAN features */ 1644 dev->vlan_features |= dev->features; 1645 1646 /* we want to leave these both on as we cannot disable VLAN tag 1647 * insertion or stripping on the hardware since it is contained 1648 * in the FTAG and not in the frame itself. 1649 */ 1650 dev->features |= NETIF_F_HW_VLAN_CTAG_TX | 1651 NETIF_F_HW_VLAN_CTAG_RX | 1652 NETIF_F_HW_VLAN_CTAG_FILTER; 1653 1654 dev->priv_flags |= IFF_UNICAST_FLT; 1655 1656 dev->hw_features |= hw_features; 1657 1658 /* MTU range: 68 - 15342 */ 1659 dev->min_mtu = ETH_MIN_MTU; 1660 dev->max_mtu = FM10K_MAX_JUMBO_FRAME_SIZE; 1661 1662 return dev; 1663 } 1664