1 // SPDX-License-Identifier: GPL-2.0 2 /* Intel(R) Ethernet Switch Host Interface Driver 3 * Copyright(c) 2013 - 2018 Intel Corporation. 4 * 5 * This program is free software; you can redistribute it and/or modify it 6 * under the terms and conditions of the GNU General Public License, 7 * version 2, as published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 12 * more details. 13 * 14 * The full GNU General Public License is included in this distribution in 15 * the file called "COPYING". 16 * 17 * Contact Information: 18 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> 19 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 20 */ 21 22 #include "fm10k.h" 23 #include <linux/vmalloc.h> 24 #include <net/udp_tunnel.h> 25 26 /** 27 * fm10k_setup_tx_resources - allocate Tx resources (Descriptors) 28 * @tx_ring: tx descriptor ring (for a specific queue) to setup 29 * 30 * Return 0 on success, negative on failure 31 **/ 32 int fm10k_setup_tx_resources(struct fm10k_ring *tx_ring) 33 { 34 struct device *dev = tx_ring->dev; 35 int size; 36 37 size = sizeof(struct fm10k_tx_buffer) * tx_ring->count; 38 39 tx_ring->tx_buffer = vzalloc(size); 40 if (!tx_ring->tx_buffer) 41 goto err; 42 43 u64_stats_init(&tx_ring->syncp); 44 45 /* round up to nearest 4K */ 46 tx_ring->size = tx_ring->count * sizeof(struct fm10k_tx_desc); 47 tx_ring->size = ALIGN(tx_ring->size, 4096); 48 49 tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size, 50 &tx_ring->dma, GFP_KERNEL); 51 if (!tx_ring->desc) 52 goto err; 53 54 return 0; 55 56 err: 57 vfree(tx_ring->tx_buffer); 58 tx_ring->tx_buffer = NULL; 59 return -ENOMEM; 60 } 61 62 /** 63 * fm10k_setup_all_tx_resources - allocate all queues Tx resources 64 * @interface: board private structure 65 * 66 * If this function returns with an error, then it's possible one or 67 * more of the rings is populated (while the rest are not). It is the 68 * callers duty to clean those orphaned rings. 69 * 70 * Return 0 on success, negative on failure 71 **/ 72 static int fm10k_setup_all_tx_resources(struct fm10k_intfc *interface) 73 { 74 int i, err = 0; 75 76 for (i = 0; i < interface->num_tx_queues; i++) { 77 err = fm10k_setup_tx_resources(interface->tx_ring[i]); 78 if (!err) 79 continue; 80 81 netif_err(interface, probe, interface->netdev, 82 "Allocation for Tx Queue %u failed\n", i); 83 goto err_setup_tx; 84 } 85 86 return 0; 87 err_setup_tx: 88 /* rewind the index freeing the rings as we go */ 89 while (i--) 90 fm10k_free_tx_resources(interface->tx_ring[i]); 91 return err; 92 } 93 94 /** 95 * fm10k_setup_rx_resources - allocate Rx resources (Descriptors) 96 * @rx_ring: rx descriptor ring (for a specific queue) to setup 97 * 98 * Returns 0 on success, negative on failure 99 **/ 100 int fm10k_setup_rx_resources(struct fm10k_ring *rx_ring) 101 { 102 struct device *dev = rx_ring->dev; 103 int size; 104 105 size = sizeof(struct fm10k_rx_buffer) * rx_ring->count; 106 107 rx_ring->rx_buffer = vzalloc(size); 108 if (!rx_ring->rx_buffer) 109 goto err; 110 111 u64_stats_init(&rx_ring->syncp); 112 113 /* Round up to nearest 4K */ 114 rx_ring->size = rx_ring->count * sizeof(union fm10k_rx_desc); 115 rx_ring->size = ALIGN(rx_ring->size, 4096); 116 117 rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size, 118 &rx_ring->dma, GFP_KERNEL); 119 if (!rx_ring->desc) 120 goto err; 121 122 return 0; 123 err: 124 vfree(rx_ring->rx_buffer); 125 rx_ring->rx_buffer = NULL; 126 return -ENOMEM; 127 } 128 129 /** 130 * fm10k_setup_all_rx_resources - allocate all queues Rx resources 131 * @interface: board private structure 132 * 133 * If this function returns with an error, then it's possible one or 134 * more of the rings is populated (while the rest are not). It is the 135 * callers duty to clean those orphaned rings. 136 * 137 * Return 0 on success, negative on failure 138 **/ 139 static int fm10k_setup_all_rx_resources(struct fm10k_intfc *interface) 140 { 141 int i, err = 0; 142 143 for (i = 0; i < interface->num_rx_queues; i++) { 144 err = fm10k_setup_rx_resources(interface->rx_ring[i]); 145 if (!err) 146 continue; 147 148 netif_err(interface, probe, interface->netdev, 149 "Allocation for Rx Queue %u failed\n", i); 150 goto err_setup_rx; 151 } 152 153 return 0; 154 err_setup_rx: 155 /* rewind the index freeing the rings as we go */ 156 while (i--) 157 fm10k_free_rx_resources(interface->rx_ring[i]); 158 return err; 159 } 160 161 void fm10k_unmap_and_free_tx_resource(struct fm10k_ring *ring, 162 struct fm10k_tx_buffer *tx_buffer) 163 { 164 if (tx_buffer->skb) { 165 dev_kfree_skb_any(tx_buffer->skb); 166 if (dma_unmap_len(tx_buffer, len)) 167 dma_unmap_single(ring->dev, 168 dma_unmap_addr(tx_buffer, dma), 169 dma_unmap_len(tx_buffer, len), 170 DMA_TO_DEVICE); 171 } else if (dma_unmap_len(tx_buffer, len)) { 172 dma_unmap_page(ring->dev, 173 dma_unmap_addr(tx_buffer, dma), 174 dma_unmap_len(tx_buffer, len), 175 DMA_TO_DEVICE); 176 } 177 tx_buffer->next_to_watch = NULL; 178 tx_buffer->skb = NULL; 179 dma_unmap_len_set(tx_buffer, len, 0); 180 /* tx_buffer must be completely set up in the transmit path */ 181 } 182 183 /** 184 * fm10k_clean_tx_ring - Free Tx Buffers 185 * @tx_ring: ring to be cleaned 186 **/ 187 static void fm10k_clean_tx_ring(struct fm10k_ring *tx_ring) 188 { 189 struct fm10k_tx_buffer *tx_buffer; 190 unsigned long size; 191 u16 i; 192 193 /* ring already cleared, nothing to do */ 194 if (!tx_ring->tx_buffer) 195 return; 196 197 /* Free all the Tx ring sk_buffs */ 198 for (i = 0; i < tx_ring->count; i++) { 199 tx_buffer = &tx_ring->tx_buffer[i]; 200 fm10k_unmap_and_free_tx_resource(tx_ring, tx_buffer); 201 } 202 203 /* reset BQL values */ 204 netdev_tx_reset_queue(txring_txq(tx_ring)); 205 206 size = sizeof(struct fm10k_tx_buffer) * tx_ring->count; 207 memset(tx_ring->tx_buffer, 0, size); 208 209 /* Zero out the descriptor ring */ 210 memset(tx_ring->desc, 0, tx_ring->size); 211 } 212 213 /** 214 * fm10k_free_tx_resources - Free Tx Resources per Queue 215 * @tx_ring: Tx descriptor ring for a specific queue 216 * 217 * Free all transmit software resources 218 **/ 219 void fm10k_free_tx_resources(struct fm10k_ring *tx_ring) 220 { 221 fm10k_clean_tx_ring(tx_ring); 222 223 vfree(tx_ring->tx_buffer); 224 tx_ring->tx_buffer = NULL; 225 226 /* if not set, then don't free */ 227 if (!tx_ring->desc) 228 return; 229 230 dma_free_coherent(tx_ring->dev, tx_ring->size, 231 tx_ring->desc, tx_ring->dma); 232 tx_ring->desc = NULL; 233 } 234 235 /** 236 * fm10k_clean_all_tx_rings - Free Tx Buffers for all queues 237 * @interface: board private structure 238 **/ 239 void fm10k_clean_all_tx_rings(struct fm10k_intfc *interface) 240 { 241 int i; 242 243 for (i = 0; i < interface->num_tx_queues; i++) 244 fm10k_clean_tx_ring(interface->tx_ring[i]); 245 } 246 247 /** 248 * fm10k_free_all_tx_resources - Free Tx Resources for All Queues 249 * @interface: board private structure 250 * 251 * Free all transmit software resources 252 **/ 253 static void fm10k_free_all_tx_resources(struct fm10k_intfc *interface) 254 { 255 int i = interface->num_tx_queues; 256 257 while (i--) 258 fm10k_free_tx_resources(interface->tx_ring[i]); 259 } 260 261 /** 262 * fm10k_clean_rx_ring - Free Rx Buffers per Queue 263 * @rx_ring: ring to free buffers from 264 **/ 265 static void fm10k_clean_rx_ring(struct fm10k_ring *rx_ring) 266 { 267 unsigned long size; 268 u16 i; 269 270 if (!rx_ring->rx_buffer) 271 return; 272 273 if (rx_ring->skb) 274 dev_kfree_skb(rx_ring->skb); 275 rx_ring->skb = NULL; 276 277 /* Free all the Rx ring sk_buffs */ 278 for (i = 0; i < rx_ring->count; i++) { 279 struct fm10k_rx_buffer *buffer = &rx_ring->rx_buffer[i]; 280 /* clean-up will only set page pointer to NULL */ 281 if (!buffer->page) 282 continue; 283 284 dma_unmap_page(rx_ring->dev, buffer->dma, 285 PAGE_SIZE, DMA_FROM_DEVICE); 286 __free_page(buffer->page); 287 288 buffer->page = NULL; 289 } 290 291 size = sizeof(struct fm10k_rx_buffer) * rx_ring->count; 292 memset(rx_ring->rx_buffer, 0, size); 293 294 /* Zero out the descriptor ring */ 295 memset(rx_ring->desc, 0, rx_ring->size); 296 297 rx_ring->next_to_alloc = 0; 298 rx_ring->next_to_clean = 0; 299 rx_ring->next_to_use = 0; 300 } 301 302 /** 303 * fm10k_free_rx_resources - Free Rx Resources 304 * @rx_ring: ring to clean the resources from 305 * 306 * Free all receive software resources 307 **/ 308 void fm10k_free_rx_resources(struct fm10k_ring *rx_ring) 309 { 310 fm10k_clean_rx_ring(rx_ring); 311 312 vfree(rx_ring->rx_buffer); 313 rx_ring->rx_buffer = NULL; 314 315 /* if not set, then don't free */ 316 if (!rx_ring->desc) 317 return; 318 319 dma_free_coherent(rx_ring->dev, rx_ring->size, 320 rx_ring->desc, rx_ring->dma); 321 322 rx_ring->desc = NULL; 323 } 324 325 /** 326 * fm10k_clean_all_rx_rings - Free Rx Buffers for all queues 327 * @interface: board private structure 328 **/ 329 void fm10k_clean_all_rx_rings(struct fm10k_intfc *interface) 330 { 331 int i; 332 333 for (i = 0; i < interface->num_rx_queues; i++) 334 fm10k_clean_rx_ring(interface->rx_ring[i]); 335 } 336 337 /** 338 * fm10k_free_all_rx_resources - Free Rx Resources for All Queues 339 * @interface: board private structure 340 * 341 * Free all receive software resources 342 **/ 343 static void fm10k_free_all_rx_resources(struct fm10k_intfc *interface) 344 { 345 int i = interface->num_rx_queues; 346 347 while (i--) 348 fm10k_free_rx_resources(interface->rx_ring[i]); 349 } 350 351 /** 352 * fm10k_request_glort_range - Request GLORTs for use in configuring rules 353 * @interface: board private structure 354 * 355 * This function allocates a range of glorts for this interface to use. 356 **/ 357 static void fm10k_request_glort_range(struct fm10k_intfc *interface) 358 { 359 struct fm10k_hw *hw = &interface->hw; 360 u16 mask = (~hw->mac.dglort_map) >> FM10K_DGLORTMAP_MASK_SHIFT; 361 362 /* establish GLORT base */ 363 interface->glort = hw->mac.dglort_map & FM10K_DGLORTMAP_NONE; 364 interface->glort_count = 0; 365 366 /* nothing we can do until mask is allocated */ 367 if (hw->mac.dglort_map == FM10K_DGLORTMAP_NONE) 368 return; 369 370 /* we support 3 possible GLORT configurations. 371 * 1: VFs consume all but the last 1 372 * 2: VFs and PF split glorts with possible gap between 373 * 3: VFs allocated first 64, all others belong to PF 374 */ 375 if (mask <= hw->iov.total_vfs) { 376 interface->glort_count = 1; 377 interface->glort += mask; 378 } else if (mask < 64) { 379 interface->glort_count = (mask + 1) / 2; 380 interface->glort += interface->glort_count; 381 } else { 382 interface->glort_count = mask - 63; 383 interface->glort += 64; 384 } 385 } 386 387 /** 388 * fm10k_free_udp_port_info 389 * @interface: board private structure 390 * 391 * This function frees both geneve_port and vxlan_port structures 392 **/ 393 static void fm10k_free_udp_port_info(struct fm10k_intfc *interface) 394 { 395 struct fm10k_udp_port *port; 396 397 /* flush all entries from vxlan list */ 398 port = list_first_entry_or_null(&interface->vxlan_port, 399 struct fm10k_udp_port, list); 400 while (port) { 401 list_del(&port->list); 402 kfree(port); 403 port = list_first_entry_or_null(&interface->vxlan_port, 404 struct fm10k_udp_port, 405 list); 406 } 407 408 /* flush all entries from geneve list */ 409 port = list_first_entry_or_null(&interface->geneve_port, 410 struct fm10k_udp_port, list); 411 while (port) { 412 list_del(&port->list); 413 kfree(port); 414 port = list_first_entry_or_null(&interface->vxlan_port, 415 struct fm10k_udp_port, 416 list); 417 } 418 } 419 420 /** 421 * fm10k_restore_udp_port_info 422 * @interface: board private structure 423 * 424 * This function restores the value in the tunnel_cfg register(s) after reset 425 **/ 426 static void fm10k_restore_udp_port_info(struct fm10k_intfc *interface) 427 { 428 struct fm10k_hw *hw = &interface->hw; 429 struct fm10k_udp_port *port; 430 431 /* only the PF supports configuring tunnels */ 432 if (hw->mac.type != fm10k_mac_pf) 433 return; 434 435 port = list_first_entry_or_null(&interface->vxlan_port, 436 struct fm10k_udp_port, list); 437 438 /* restore tunnel configuration register */ 439 fm10k_write_reg(hw, FM10K_TUNNEL_CFG, 440 (port ? ntohs(port->port) : 0) | 441 (ETH_P_TEB << FM10K_TUNNEL_CFG_NVGRE_SHIFT)); 442 443 port = list_first_entry_or_null(&interface->geneve_port, 444 struct fm10k_udp_port, list); 445 446 /* restore Geneve tunnel configuration register */ 447 fm10k_write_reg(hw, FM10K_TUNNEL_CFG_GENEVE, 448 (port ? ntohs(port->port) : 0)); 449 } 450 451 static struct fm10k_udp_port * 452 fm10k_remove_tunnel_port(struct list_head *ports, 453 struct udp_tunnel_info *ti) 454 { 455 struct fm10k_udp_port *port; 456 457 list_for_each_entry(port, ports, list) { 458 if ((port->port == ti->port) && 459 (port->sa_family == ti->sa_family)) { 460 list_del(&port->list); 461 return port; 462 } 463 } 464 465 return NULL; 466 } 467 468 static void fm10k_insert_tunnel_port(struct list_head *ports, 469 struct udp_tunnel_info *ti) 470 { 471 struct fm10k_udp_port *port; 472 473 /* remove existing port entry from the list so that the newest items 474 * are always at the tail of the list. 475 */ 476 port = fm10k_remove_tunnel_port(ports, ti); 477 if (!port) { 478 port = kmalloc(sizeof(*port), GFP_ATOMIC); 479 if (!port) 480 return; 481 port->port = ti->port; 482 port->sa_family = ti->sa_family; 483 } 484 485 list_add_tail(&port->list, ports); 486 } 487 488 /** 489 * fm10k_udp_tunnel_add 490 * @dev: network interface device structure 491 * @ti: Tunnel endpoint information 492 * 493 * This function is called when a new UDP tunnel port has been added. 494 * Due to hardware restrictions, only one port per type can be offloaded at 495 * once. 496 **/ 497 static void fm10k_udp_tunnel_add(struct net_device *dev, 498 struct udp_tunnel_info *ti) 499 { 500 struct fm10k_intfc *interface = netdev_priv(dev); 501 502 /* only the PF supports configuring tunnels */ 503 if (interface->hw.mac.type != fm10k_mac_pf) 504 return; 505 506 switch (ti->type) { 507 case UDP_TUNNEL_TYPE_VXLAN: 508 fm10k_insert_tunnel_port(&interface->vxlan_port, ti); 509 break; 510 case UDP_TUNNEL_TYPE_GENEVE: 511 fm10k_insert_tunnel_port(&interface->geneve_port, ti); 512 break; 513 default: 514 return; 515 } 516 517 fm10k_restore_udp_port_info(interface); 518 } 519 520 /** 521 * fm10k_udp_tunnel_del 522 * @dev: network interface device structure 523 * @ti: Tunnel end point information 524 * 525 * This function is called when a new UDP tunnel port is deleted. The freed 526 * port will be removed from the list, then we reprogram the offloaded port 527 * based on the head of the list. 528 **/ 529 static void fm10k_udp_tunnel_del(struct net_device *dev, 530 struct udp_tunnel_info *ti) 531 { 532 struct fm10k_intfc *interface = netdev_priv(dev); 533 struct fm10k_udp_port *port = NULL; 534 535 if (interface->hw.mac.type != fm10k_mac_pf) 536 return; 537 538 switch (ti->type) { 539 case UDP_TUNNEL_TYPE_VXLAN: 540 port = fm10k_remove_tunnel_port(&interface->vxlan_port, ti); 541 break; 542 case UDP_TUNNEL_TYPE_GENEVE: 543 port = fm10k_remove_tunnel_port(&interface->geneve_port, ti); 544 break; 545 default: 546 return; 547 } 548 549 /* if we did remove a port we need to free its memory */ 550 kfree(port); 551 552 fm10k_restore_udp_port_info(interface); 553 } 554 555 /** 556 * fm10k_open - Called when a network interface is made active 557 * @netdev: network interface device structure 558 * 559 * Returns 0 on success, negative value on failure 560 * 561 * The open entry point is called when a network interface is made 562 * active by the system (IFF_UP). At this point all resources needed 563 * for transmit and receive operations are allocated, the interrupt 564 * handler is registered with the OS, the watchdog timer is started, 565 * and the stack is notified that the interface is ready. 566 **/ 567 int fm10k_open(struct net_device *netdev) 568 { 569 struct fm10k_intfc *interface = netdev_priv(netdev); 570 int err; 571 572 /* allocate transmit descriptors */ 573 err = fm10k_setup_all_tx_resources(interface); 574 if (err) 575 goto err_setup_tx; 576 577 /* allocate receive descriptors */ 578 err = fm10k_setup_all_rx_resources(interface); 579 if (err) 580 goto err_setup_rx; 581 582 /* allocate interrupt resources */ 583 err = fm10k_qv_request_irq(interface); 584 if (err) 585 goto err_req_irq; 586 587 /* setup GLORT assignment for this port */ 588 fm10k_request_glort_range(interface); 589 590 /* Notify the stack of the actual queue counts */ 591 err = netif_set_real_num_tx_queues(netdev, 592 interface->num_tx_queues); 593 if (err) 594 goto err_set_queues; 595 596 err = netif_set_real_num_rx_queues(netdev, 597 interface->num_rx_queues); 598 if (err) 599 goto err_set_queues; 600 601 udp_tunnel_get_rx_info(netdev); 602 603 fm10k_up(interface); 604 605 return 0; 606 607 err_set_queues: 608 fm10k_qv_free_irq(interface); 609 err_req_irq: 610 fm10k_free_all_rx_resources(interface); 611 err_setup_rx: 612 fm10k_free_all_tx_resources(interface); 613 err_setup_tx: 614 return err; 615 } 616 617 /** 618 * fm10k_close - Disables a network interface 619 * @netdev: network interface device structure 620 * 621 * Returns 0, this is not allowed to fail 622 * 623 * The close entry point is called when an interface is de-activated 624 * by the OS. The hardware is still under the drivers control, but 625 * needs to be disabled. A global MAC reset is issued to stop the 626 * hardware, and all transmit and receive resources are freed. 627 **/ 628 int fm10k_close(struct net_device *netdev) 629 { 630 struct fm10k_intfc *interface = netdev_priv(netdev); 631 632 fm10k_down(interface); 633 634 fm10k_qv_free_irq(interface); 635 636 fm10k_free_udp_port_info(interface); 637 638 fm10k_free_all_tx_resources(interface); 639 fm10k_free_all_rx_resources(interface); 640 641 return 0; 642 } 643 644 static netdev_tx_t fm10k_xmit_frame(struct sk_buff *skb, struct net_device *dev) 645 { 646 struct fm10k_intfc *interface = netdev_priv(dev); 647 int num_tx_queues = READ_ONCE(interface->num_tx_queues); 648 unsigned int r_idx = skb->queue_mapping; 649 int err; 650 651 if (!num_tx_queues) 652 return NETDEV_TX_BUSY; 653 654 if ((skb->protocol == htons(ETH_P_8021Q)) && 655 !skb_vlan_tag_present(skb)) { 656 /* FM10K only supports hardware tagging, any tags in frame 657 * are considered 2nd level or "outer" tags 658 */ 659 struct vlan_hdr *vhdr; 660 __be16 proto; 661 662 /* make sure skb is not shared */ 663 skb = skb_share_check(skb, GFP_ATOMIC); 664 if (!skb) 665 return NETDEV_TX_OK; 666 667 /* make sure there is enough room to move the ethernet header */ 668 if (unlikely(!pskb_may_pull(skb, VLAN_ETH_HLEN))) 669 return NETDEV_TX_OK; 670 671 /* verify the skb head is not shared */ 672 err = skb_cow_head(skb, 0); 673 if (err) { 674 dev_kfree_skb(skb); 675 return NETDEV_TX_OK; 676 } 677 678 /* locate VLAN header */ 679 vhdr = (struct vlan_hdr *)(skb->data + ETH_HLEN); 680 681 /* pull the 2 key pieces of data out of it */ 682 __vlan_hwaccel_put_tag(skb, 683 htons(ETH_P_8021Q), 684 ntohs(vhdr->h_vlan_TCI)); 685 proto = vhdr->h_vlan_encapsulated_proto; 686 skb->protocol = (ntohs(proto) >= 1536) ? proto : 687 htons(ETH_P_802_2); 688 689 /* squash it by moving the ethernet addresses up 4 bytes */ 690 memmove(skb->data + VLAN_HLEN, skb->data, 12); 691 __skb_pull(skb, VLAN_HLEN); 692 skb_reset_mac_header(skb); 693 } 694 695 /* The minimum packet size for a single buffer is 17B so pad the skb 696 * in order to meet this minimum size requirement. 697 */ 698 if (unlikely(skb->len < 17)) { 699 int pad_len = 17 - skb->len; 700 701 if (skb_pad(skb, pad_len)) 702 return NETDEV_TX_OK; 703 __skb_put(skb, pad_len); 704 } 705 706 if (r_idx >= num_tx_queues) 707 r_idx %= num_tx_queues; 708 709 err = fm10k_xmit_frame_ring(skb, interface->tx_ring[r_idx]); 710 711 return err; 712 } 713 714 /** 715 * fm10k_tx_timeout - Respond to a Tx Hang 716 * @netdev: network interface device structure 717 **/ 718 static void fm10k_tx_timeout(struct net_device *netdev) 719 { 720 struct fm10k_intfc *interface = netdev_priv(netdev); 721 bool real_tx_hang = false; 722 int i; 723 724 #define TX_TIMEO_LIMIT 16000 725 for (i = 0; i < interface->num_tx_queues; i++) { 726 struct fm10k_ring *tx_ring = interface->tx_ring[i]; 727 728 if (check_for_tx_hang(tx_ring) && fm10k_check_tx_hang(tx_ring)) 729 real_tx_hang = true; 730 } 731 732 if (real_tx_hang) { 733 fm10k_tx_timeout_reset(interface); 734 } else { 735 netif_info(interface, drv, netdev, 736 "Fake Tx hang detected with timeout of %d seconds\n", 737 netdev->watchdog_timeo / HZ); 738 739 /* fake Tx hang - increase the kernel timeout */ 740 if (netdev->watchdog_timeo < TX_TIMEO_LIMIT) 741 netdev->watchdog_timeo *= 2; 742 } 743 } 744 745 /** 746 * fm10k_host_mbx_ready - Check PF interface's mailbox readiness 747 * @interface: board private structure 748 * 749 * This function checks if the PF interface's mailbox is ready before queueing 750 * mailbox messages for transmission. This will prevent filling the TX mailbox 751 * queue when the receiver is not ready. VF interfaces are exempt from this 752 * check since it will block all PF-VF mailbox messages from being sent from 753 * the VF to the PF at initialization. 754 **/ 755 static bool fm10k_host_mbx_ready(struct fm10k_intfc *interface) 756 { 757 struct fm10k_hw *hw = &interface->hw; 758 759 return (hw->mac.type == fm10k_mac_vf || interface->host_ready); 760 } 761 762 /** 763 * fm10k_queue_vlan_request - Queue a VLAN update request 764 * @interface: the fm10k interface structure 765 * @vid: the VLAN vid 766 * @vsi: VSI index number 767 * @set: whether to set or clear 768 * 769 * This function queues up a VLAN update. For VFs, this must be sent to the 770 * managing PF over the mailbox. For PFs, we'll use the same handling so that 771 * it's similar to the VF. This avoids storming the PF<->VF mailbox with too 772 * many VLAN updates during reset. 773 */ 774 int fm10k_queue_vlan_request(struct fm10k_intfc *interface, 775 u32 vid, u8 vsi, bool set) 776 { 777 struct fm10k_macvlan_request *request; 778 unsigned long flags; 779 780 /* This must be atomic since we may be called while the netdev 781 * addr_list_lock is held 782 */ 783 request = kzalloc(sizeof(*request), GFP_ATOMIC); 784 if (!request) 785 return -ENOMEM; 786 787 request->type = FM10K_VLAN_REQUEST; 788 request->vlan.vid = vid; 789 request->vlan.vsi = vsi; 790 request->set = set; 791 792 spin_lock_irqsave(&interface->macvlan_lock, flags); 793 list_add_tail(&request->list, &interface->macvlan_requests); 794 spin_unlock_irqrestore(&interface->macvlan_lock, flags); 795 796 fm10k_macvlan_schedule(interface); 797 798 return 0; 799 } 800 801 /** 802 * fm10k_queue_mac_request - Queue a MAC update request 803 * @interface: the fm10k interface structure 804 * @glort: the target glort for this update 805 * @addr: the address to update 806 * @vid: the vid to update 807 * @set: whether to add or remove 808 * 809 * This function queues up a MAC request for sending to the switch manager. 810 * A separate thread monitors the queue and sends updates to the switch 811 * manager. Return 0 on success, and negative error code on failure. 812 **/ 813 int fm10k_queue_mac_request(struct fm10k_intfc *interface, u16 glort, 814 const unsigned char *addr, u16 vid, bool set) 815 { 816 struct fm10k_macvlan_request *request; 817 unsigned long flags; 818 819 /* This must be atomic since we may be called while the netdev 820 * addr_list_lock is held 821 */ 822 request = kzalloc(sizeof(*request), GFP_ATOMIC); 823 if (!request) 824 return -ENOMEM; 825 826 if (is_multicast_ether_addr(addr)) 827 request->type = FM10K_MC_MAC_REQUEST; 828 else 829 request->type = FM10K_UC_MAC_REQUEST; 830 831 ether_addr_copy(request->mac.addr, addr); 832 request->mac.glort = glort; 833 request->mac.vid = vid; 834 request->set = set; 835 836 spin_lock_irqsave(&interface->macvlan_lock, flags); 837 list_add_tail(&request->list, &interface->macvlan_requests); 838 spin_unlock_irqrestore(&interface->macvlan_lock, flags); 839 840 fm10k_macvlan_schedule(interface); 841 842 return 0; 843 } 844 845 /** 846 * fm10k_clear_macvlan_queue - Cancel pending updates for a given glort 847 * @interface: the fm10k interface structure 848 * @glort: the target glort to clear 849 * @vlans: true to clear VLAN messages, false to ignore them 850 * 851 * Cancel any outstanding MAC/VLAN requests for a given glort. This is 852 * expected to be called when a logical port goes down. 853 **/ 854 void fm10k_clear_macvlan_queue(struct fm10k_intfc *interface, 855 u16 glort, bool vlans) 856 857 { 858 struct fm10k_macvlan_request *r, *tmp; 859 unsigned long flags; 860 861 spin_lock_irqsave(&interface->macvlan_lock, flags); 862 863 /* Free any outstanding MAC/VLAN requests for this interface */ 864 list_for_each_entry_safe(r, tmp, &interface->macvlan_requests, list) { 865 switch (r->type) { 866 case FM10K_MC_MAC_REQUEST: 867 case FM10K_UC_MAC_REQUEST: 868 /* Don't free requests for other interfaces */ 869 if (r->mac.glort != glort) 870 break; 871 /* fall through */ 872 case FM10K_VLAN_REQUEST: 873 if (vlans) { 874 list_del(&r->list); 875 kfree(r); 876 } 877 break; 878 } 879 } 880 881 spin_unlock_irqrestore(&interface->macvlan_lock, flags); 882 } 883 884 static int fm10k_uc_vlan_unsync(struct net_device *netdev, 885 const unsigned char *uc_addr) 886 { 887 struct fm10k_intfc *interface = netdev_priv(netdev); 888 u16 glort = interface->glort; 889 u16 vid = interface->vid; 890 bool set = !!(vid / VLAN_N_VID); 891 int err = -EHOSTDOWN; 892 893 /* drop any leading bits on the VLAN ID */ 894 vid &= VLAN_N_VID - 1; 895 896 err = fm10k_queue_mac_request(interface, glort, uc_addr, vid, set); 897 if (err) 898 return err; 899 900 /* return non-zero value as we are only doing a partial sync/unsync */ 901 return 1; 902 } 903 904 static int fm10k_mc_vlan_unsync(struct net_device *netdev, 905 const unsigned char *mc_addr) 906 { 907 struct fm10k_intfc *interface = netdev_priv(netdev); 908 u16 glort = interface->glort; 909 u16 vid = interface->vid; 910 bool set = !!(vid / VLAN_N_VID); 911 int err = -EHOSTDOWN; 912 913 /* drop any leading bits on the VLAN ID */ 914 vid &= VLAN_N_VID - 1; 915 916 err = fm10k_queue_mac_request(interface, glort, mc_addr, vid, set); 917 if (err) 918 return err; 919 920 /* return non-zero value as we are only doing a partial sync/unsync */ 921 return 1; 922 } 923 924 static int fm10k_update_vid(struct net_device *netdev, u16 vid, bool set) 925 { 926 struct fm10k_intfc *interface = netdev_priv(netdev); 927 struct fm10k_hw *hw = &interface->hw; 928 s32 err; 929 int i; 930 931 /* updates do not apply to VLAN 0 */ 932 if (!vid) 933 return 0; 934 935 if (vid >= VLAN_N_VID) 936 return -EINVAL; 937 938 /* Verify that we have permission to add VLANs. If this is a request 939 * to remove a VLAN, we still want to allow the user to remove the 940 * VLAN device. In that case, we need to clear the bit in the 941 * active_vlans bitmask. 942 */ 943 if (set && hw->mac.vlan_override) 944 return -EACCES; 945 946 /* update active_vlans bitmask */ 947 set_bit(vid, interface->active_vlans); 948 if (!set) 949 clear_bit(vid, interface->active_vlans); 950 951 /* disable the default VLAN ID on ring if we have an active VLAN */ 952 for (i = 0; i < interface->num_rx_queues; i++) { 953 struct fm10k_ring *rx_ring = interface->rx_ring[i]; 954 u16 rx_vid = rx_ring->vid & (VLAN_N_VID - 1); 955 956 if (test_bit(rx_vid, interface->active_vlans)) 957 rx_ring->vid |= FM10K_VLAN_CLEAR; 958 else 959 rx_ring->vid &= ~FM10K_VLAN_CLEAR; 960 } 961 962 /* If our VLAN has been overridden, there is no reason to send VLAN 963 * removal requests as they will be silently ignored. 964 */ 965 if (hw->mac.vlan_override) 966 return 0; 967 968 /* Do not remove default VLAN ID related entries from VLAN and MAC 969 * tables 970 */ 971 if (!set && vid == hw->mac.default_vid) 972 return 0; 973 974 /* Do not throw an error if the interface is down. We will sync once 975 * we come up 976 */ 977 if (test_bit(__FM10K_DOWN, interface->state)) 978 return 0; 979 980 fm10k_mbx_lock(interface); 981 982 /* only need to update the VLAN if not in promiscuous mode */ 983 if (!(netdev->flags & IFF_PROMISC)) { 984 err = fm10k_queue_vlan_request(interface, vid, 0, set); 985 if (err) 986 goto err_out; 987 } 988 989 /* Update our base MAC address */ 990 err = fm10k_queue_mac_request(interface, interface->glort, 991 hw->mac.addr, vid, set); 992 if (err) 993 goto err_out; 994 995 /* set VLAN ID prior to syncing/unsyncing the VLAN */ 996 interface->vid = vid + (set ? VLAN_N_VID : 0); 997 998 /* Update the unicast and multicast address list to add/drop VLAN */ 999 __dev_uc_unsync(netdev, fm10k_uc_vlan_unsync); 1000 __dev_mc_unsync(netdev, fm10k_mc_vlan_unsync); 1001 1002 err_out: 1003 fm10k_mbx_unlock(interface); 1004 1005 return err; 1006 } 1007 1008 static int fm10k_vlan_rx_add_vid(struct net_device *netdev, 1009 __always_unused __be16 proto, u16 vid) 1010 { 1011 /* update VLAN and address table based on changes */ 1012 return fm10k_update_vid(netdev, vid, true); 1013 } 1014 1015 static int fm10k_vlan_rx_kill_vid(struct net_device *netdev, 1016 __always_unused __be16 proto, u16 vid) 1017 { 1018 /* update VLAN and address table based on changes */ 1019 return fm10k_update_vid(netdev, vid, false); 1020 } 1021 1022 static u16 fm10k_find_next_vlan(struct fm10k_intfc *interface, u16 vid) 1023 { 1024 struct fm10k_hw *hw = &interface->hw; 1025 u16 default_vid = hw->mac.default_vid; 1026 u16 vid_limit = vid < default_vid ? default_vid : VLAN_N_VID; 1027 1028 vid = find_next_bit(interface->active_vlans, vid_limit, ++vid); 1029 1030 return vid; 1031 } 1032 1033 static void fm10k_clear_unused_vlans(struct fm10k_intfc *interface) 1034 { 1035 u32 vid, prev_vid; 1036 1037 /* loop through and find any gaps in the table */ 1038 for (vid = 0, prev_vid = 0; 1039 prev_vid < VLAN_N_VID; 1040 prev_vid = vid + 1, vid = fm10k_find_next_vlan(interface, vid)) { 1041 if (prev_vid == vid) 1042 continue; 1043 1044 /* send request to clear multiple bits at a time */ 1045 prev_vid += (vid - prev_vid - 1) << FM10K_VLAN_LENGTH_SHIFT; 1046 fm10k_queue_vlan_request(interface, prev_vid, 0, false); 1047 } 1048 } 1049 1050 static int __fm10k_uc_sync(struct net_device *dev, 1051 const unsigned char *addr, bool sync) 1052 { 1053 struct fm10k_intfc *interface = netdev_priv(dev); 1054 u16 vid, glort = interface->glort; 1055 s32 err; 1056 1057 if (!is_valid_ether_addr(addr)) 1058 return -EADDRNOTAVAIL; 1059 1060 for (vid = fm10k_find_next_vlan(interface, 0); 1061 vid < VLAN_N_VID; 1062 vid = fm10k_find_next_vlan(interface, vid)) { 1063 err = fm10k_queue_mac_request(interface, glort, 1064 addr, vid, sync); 1065 if (err) 1066 return err; 1067 } 1068 1069 return 0; 1070 } 1071 1072 static int fm10k_uc_sync(struct net_device *dev, 1073 const unsigned char *addr) 1074 { 1075 return __fm10k_uc_sync(dev, addr, true); 1076 } 1077 1078 static int fm10k_uc_unsync(struct net_device *dev, 1079 const unsigned char *addr) 1080 { 1081 return __fm10k_uc_sync(dev, addr, false); 1082 } 1083 1084 static int fm10k_set_mac(struct net_device *dev, void *p) 1085 { 1086 struct fm10k_intfc *interface = netdev_priv(dev); 1087 struct fm10k_hw *hw = &interface->hw; 1088 struct sockaddr *addr = p; 1089 s32 err = 0; 1090 1091 if (!is_valid_ether_addr(addr->sa_data)) 1092 return -EADDRNOTAVAIL; 1093 1094 if (dev->flags & IFF_UP) { 1095 /* setting MAC address requires mailbox */ 1096 fm10k_mbx_lock(interface); 1097 1098 err = fm10k_uc_sync(dev, addr->sa_data); 1099 if (!err) 1100 fm10k_uc_unsync(dev, hw->mac.addr); 1101 1102 fm10k_mbx_unlock(interface); 1103 } 1104 1105 if (!err) { 1106 ether_addr_copy(dev->dev_addr, addr->sa_data); 1107 ether_addr_copy(hw->mac.addr, addr->sa_data); 1108 dev->addr_assign_type &= ~NET_ADDR_RANDOM; 1109 } 1110 1111 /* if we had a mailbox error suggest trying again */ 1112 return err ? -EAGAIN : 0; 1113 } 1114 1115 static int __fm10k_mc_sync(struct net_device *dev, 1116 const unsigned char *addr, bool sync) 1117 { 1118 struct fm10k_intfc *interface = netdev_priv(dev); 1119 u16 vid, glort = interface->glort; 1120 s32 err; 1121 1122 if (!is_multicast_ether_addr(addr)) 1123 return -EADDRNOTAVAIL; 1124 1125 for (vid = fm10k_find_next_vlan(interface, 0); 1126 vid < VLAN_N_VID; 1127 vid = fm10k_find_next_vlan(interface, vid)) { 1128 err = fm10k_queue_mac_request(interface, glort, 1129 addr, vid, sync); 1130 if (err) 1131 return err; 1132 } 1133 1134 return 0; 1135 } 1136 1137 static int fm10k_mc_sync(struct net_device *dev, 1138 const unsigned char *addr) 1139 { 1140 return __fm10k_mc_sync(dev, addr, true); 1141 } 1142 1143 static int fm10k_mc_unsync(struct net_device *dev, 1144 const unsigned char *addr) 1145 { 1146 return __fm10k_mc_sync(dev, addr, false); 1147 } 1148 1149 static void fm10k_set_rx_mode(struct net_device *dev) 1150 { 1151 struct fm10k_intfc *interface = netdev_priv(dev); 1152 struct fm10k_hw *hw = &interface->hw; 1153 int xcast_mode; 1154 1155 /* no need to update the harwdare if we are not running */ 1156 if (!(dev->flags & IFF_UP)) 1157 return; 1158 1159 /* determine new mode based on flags */ 1160 xcast_mode = (dev->flags & IFF_PROMISC) ? FM10K_XCAST_MODE_PROMISC : 1161 (dev->flags & IFF_ALLMULTI) ? FM10K_XCAST_MODE_ALLMULTI : 1162 (dev->flags & (IFF_BROADCAST | IFF_MULTICAST)) ? 1163 FM10K_XCAST_MODE_MULTI : FM10K_XCAST_MODE_NONE; 1164 1165 fm10k_mbx_lock(interface); 1166 1167 /* update xcast mode first, but only if it changed */ 1168 if (interface->xcast_mode != xcast_mode) { 1169 /* update VLAN table when entering promiscuous mode */ 1170 if (xcast_mode == FM10K_XCAST_MODE_PROMISC) 1171 fm10k_queue_vlan_request(interface, FM10K_VLAN_ALL, 1172 0, true); 1173 1174 /* clear VLAN table when exiting promiscuous mode */ 1175 if (interface->xcast_mode == FM10K_XCAST_MODE_PROMISC) 1176 fm10k_clear_unused_vlans(interface); 1177 1178 /* update xcast mode if host's mailbox is ready */ 1179 if (fm10k_host_mbx_ready(interface)) 1180 hw->mac.ops.update_xcast_mode(hw, interface->glort, 1181 xcast_mode); 1182 1183 /* record updated xcast mode state */ 1184 interface->xcast_mode = xcast_mode; 1185 } 1186 1187 /* synchronize all of the addresses */ 1188 __dev_uc_sync(dev, fm10k_uc_sync, fm10k_uc_unsync); 1189 __dev_mc_sync(dev, fm10k_mc_sync, fm10k_mc_unsync); 1190 1191 fm10k_mbx_unlock(interface); 1192 } 1193 1194 void fm10k_restore_rx_state(struct fm10k_intfc *interface) 1195 { 1196 struct fm10k_l2_accel *l2_accel = interface->l2_accel; 1197 struct net_device *netdev = interface->netdev; 1198 struct fm10k_hw *hw = &interface->hw; 1199 int xcast_mode, i; 1200 u16 vid, glort; 1201 1202 /* record glort for this interface */ 1203 glort = interface->glort; 1204 1205 /* convert interface flags to xcast mode */ 1206 if (netdev->flags & IFF_PROMISC) 1207 xcast_mode = FM10K_XCAST_MODE_PROMISC; 1208 else if (netdev->flags & IFF_ALLMULTI) 1209 xcast_mode = FM10K_XCAST_MODE_ALLMULTI; 1210 else if (netdev->flags & (IFF_BROADCAST | IFF_MULTICAST)) 1211 xcast_mode = FM10K_XCAST_MODE_MULTI; 1212 else 1213 xcast_mode = FM10K_XCAST_MODE_NONE; 1214 1215 fm10k_mbx_lock(interface); 1216 1217 /* Enable logical port if host's mailbox is ready */ 1218 if (fm10k_host_mbx_ready(interface)) 1219 hw->mac.ops.update_lport_state(hw, glort, 1220 interface->glort_count, true); 1221 1222 /* update VLAN table */ 1223 fm10k_queue_vlan_request(interface, FM10K_VLAN_ALL, 0, 1224 xcast_mode == FM10K_XCAST_MODE_PROMISC); 1225 1226 /* update table with current entries */ 1227 for (vid = fm10k_find_next_vlan(interface, 0); 1228 vid < VLAN_N_VID; 1229 vid = fm10k_find_next_vlan(interface, vid)) { 1230 fm10k_queue_vlan_request(interface, vid, 0, true); 1231 1232 fm10k_queue_mac_request(interface, glort, 1233 hw->mac.addr, vid, true); 1234 } 1235 1236 /* update xcast mode before synchronizing addresses if host's mailbox 1237 * is ready 1238 */ 1239 if (fm10k_host_mbx_ready(interface)) 1240 hw->mac.ops.update_xcast_mode(hw, glort, xcast_mode); 1241 1242 /* synchronize all of the addresses */ 1243 __dev_uc_sync(netdev, fm10k_uc_sync, fm10k_uc_unsync); 1244 __dev_mc_sync(netdev, fm10k_mc_sync, fm10k_mc_unsync); 1245 1246 /* synchronize macvlan addresses */ 1247 if (l2_accel) { 1248 for (i = 0; i < l2_accel->size; i++) { 1249 struct net_device *sdev = l2_accel->macvlan[i]; 1250 1251 if (!sdev) 1252 continue; 1253 1254 glort = l2_accel->dglort + 1 + i; 1255 1256 hw->mac.ops.update_xcast_mode(hw, glort, 1257 FM10K_XCAST_MODE_MULTI); 1258 fm10k_queue_mac_request(interface, glort, 1259 sdev->dev_addr, 1260 hw->mac.default_vid, true); 1261 } 1262 } 1263 1264 fm10k_mbx_unlock(interface); 1265 1266 /* record updated xcast mode state */ 1267 interface->xcast_mode = xcast_mode; 1268 1269 /* Restore tunnel configuration */ 1270 fm10k_restore_udp_port_info(interface); 1271 } 1272 1273 void fm10k_reset_rx_state(struct fm10k_intfc *interface) 1274 { 1275 struct net_device *netdev = interface->netdev; 1276 struct fm10k_hw *hw = &interface->hw; 1277 1278 /* Wait for MAC/VLAN work to finish */ 1279 while (test_bit(__FM10K_MACVLAN_SCHED, interface->state)) 1280 usleep_range(1000, 2000); 1281 1282 /* Cancel pending MAC/VLAN requests */ 1283 fm10k_clear_macvlan_queue(interface, interface->glort, true); 1284 1285 fm10k_mbx_lock(interface); 1286 1287 /* clear the logical port state on lower device if host's mailbox is 1288 * ready 1289 */ 1290 if (fm10k_host_mbx_ready(interface)) 1291 hw->mac.ops.update_lport_state(hw, interface->glort, 1292 interface->glort_count, false); 1293 1294 fm10k_mbx_unlock(interface); 1295 1296 /* reset flags to default state */ 1297 interface->xcast_mode = FM10K_XCAST_MODE_NONE; 1298 1299 /* clear the sync flag since the lport has been dropped */ 1300 __dev_uc_unsync(netdev, NULL); 1301 __dev_mc_unsync(netdev, NULL); 1302 } 1303 1304 /** 1305 * fm10k_get_stats64 - Get System Network Statistics 1306 * @netdev: network interface device structure 1307 * @stats: storage space for 64bit statistics 1308 * 1309 * Obtain 64bit statistics in a way that is safe for both 32bit and 64bit 1310 * architectures. 1311 */ 1312 static void fm10k_get_stats64(struct net_device *netdev, 1313 struct rtnl_link_stats64 *stats) 1314 { 1315 struct fm10k_intfc *interface = netdev_priv(netdev); 1316 struct fm10k_ring *ring; 1317 unsigned int start, i; 1318 u64 bytes, packets; 1319 1320 rcu_read_lock(); 1321 1322 for (i = 0; i < interface->num_rx_queues; i++) { 1323 ring = READ_ONCE(interface->rx_ring[i]); 1324 1325 if (!ring) 1326 continue; 1327 1328 do { 1329 start = u64_stats_fetch_begin_irq(&ring->syncp); 1330 packets = ring->stats.packets; 1331 bytes = ring->stats.bytes; 1332 } while (u64_stats_fetch_retry_irq(&ring->syncp, start)); 1333 1334 stats->rx_packets += packets; 1335 stats->rx_bytes += bytes; 1336 } 1337 1338 for (i = 0; i < interface->num_tx_queues; i++) { 1339 ring = READ_ONCE(interface->tx_ring[i]); 1340 1341 if (!ring) 1342 continue; 1343 1344 do { 1345 start = u64_stats_fetch_begin_irq(&ring->syncp); 1346 packets = ring->stats.packets; 1347 bytes = ring->stats.bytes; 1348 } while (u64_stats_fetch_retry_irq(&ring->syncp, start)); 1349 1350 stats->tx_packets += packets; 1351 stats->tx_bytes += bytes; 1352 } 1353 1354 rcu_read_unlock(); 1355 1356 /* following stats updated by fm10k_service_task() */ 1357 stats->rx_missed_errors = netdev->stats.rx_missed_errors; 1358 } 1359 1360 int fm10k_setup_tc(struct net_device *dev, u8 tc) 1361 { 1362 struct fm10k_intfc *interface = netdev_priv(dev); 1363 int err; 1364 1365 /* Currently only the PF supports priority classes */ 1366 if (tc && (interface->hw.mac.type != fm10k_mac_pf)) 1367 return -EINVAL; 1368 1369 /* Hardware supports up to 8 traffic classes */ 1370 if (tc > 8) 1371 return -EINVAL; 1372 1373 /* Hardware has to reinitialize queues to match packet 1374 * buffer alignment. Unfortunately, the hardware is not 1375 * flexible enough to do this dynamically. 1376 */ 1377 if (netif_running(dev)) 1378 fm10k_close(dev); 1379 1380 fm10k_mbx_free_irq(interface); 1381 1382 fm10k_clear_queueing_scheme(interface); 1383 1384 /* we expect the prio_tc map to be repopulated later */ 1385 netdev_reset_tc(dev); 1386 netdev_set_num_tc(dev, tc); 1387 1388 err = fm10k_init_queueing_scheme(interface); 1389 if (err) 1390 goto err_queueing_scheme; 1391 1392 err = fm10k_mbx_request_irq(interface); 1393 if (err) 1394 goto err_mbx_irq; 1395 1396 err = netif_running(dev) ? fm10k_open(dev) : 0; 1397 if (err) 1398 goto err_open; 1399 1400 /* flag to indicate SWPRI has yet to be updated */ 1401 set_bit(FM10K_FLAG_SWPRI_CONFIG, interface->flags); 1402 1403 return 0; 1404 err_open: 1405 fm10k_mbx_free_irq(interface); 1406 err_mbx_irq: 1407 fm10k_clear_queueing_scheme(interface); 1408 err_queueing_scheme: 1409 netif_device_detach(dev); 1410 1411 return err; 1412 } 1413 1414 static int __fm10k_setup_tc(struct net_device *dev, enum tc_setup_type type, 1415 void *type_data) 1416 { 1417 struct tc_mqprio_qopt *mqprio = type_data; 1418 1419 if (type != TC_SETUP_QDISC_MQPRIO) 1420 return -EOPNOTSUPP; 1421 1422 mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS; 1423 1424 return fm10k_setup_tc(dev, mqprio->num_tc); 1425 } 1426 1427 static void fm10k_assign_l2_accel(struct fm10k_intfc *interface, 1428 struct fm10k_l2_accel *l2_accel) 1429 { 1430 struct fm10k_ring *ring; 1431 int i; 1432 1433 for (i = 0; i < interface->num_rx_queues; i++) { 1434 ring = interface->rx_ring[i]; 1435 rcu_assign_pointer(ring->l2_accel, l2_accel); 1436 } 1437 1438 interface->l2_accel = l2_accel; 1439 } 1440 1441 static void *fm10k_dfwd_add_station(struct net_device *dev, 1442 struct net_device *sdev) 1443 { 1444 struct fm10k_intfc *interface = netdev_priv(dev); 1445 struct fm10k_l2_accel *l2_accel = interface->l2_accel; 1446 struct fm10k_l2_accel *old_l2_accel = NULL; 1447 struct fm10k_dglort_cfg dglort = { 0 }; 1448 struct fm10k_hw *hw = &interface->hw; 1449 int size = 0, i; 1450 u16 glort; 1451 1452 /* allocate l2 accel structure if it is not available */ 1453 if (!l2_accel) { 1454 /* verify there is enough free GLORTs to support l2_accel */ 1455 if (interface->glort_count < 7) 1456 return ERR_PTR(-EBUSY); 1457 1458 size = offsetof(struct fm10k_l2_accel, macvlan[7]); 1459 l2_accel = kzalloc(size, GFP_KERNEL); 1460 if (!l2_accel) 1461 return ERR_PTR(-ENOMEM); 1462 1463 l2_accel->size = 7; 1464 l2_accel->dglort = interface->glort; 1465 1466 /* update pointers */ 1467 fm10k_assign_l2_accel(interface, l2_accel); 1468 /* do not expand if we are at our limit */ 1469 } else if ((l2_accel->count == FM10K_MAX_STATIONS) || 1470 (l2_accel->count == (interface->glort_count - 1))) { 1471 return ERR_PTR(-EBUSY); 1472 /* expand if we have hit the size limit */ 1473 } else if (l2_accel->count == l2_accel->size) { 1474 old_l2_accel = l2_accel; 1475 size = offsetof(struct fm10k_l2_accel, 1476 macvlan[(l2_accel->size * 2) + 1]); 1477 l2_accel = kzalloc(size, GFP_KERNEL); 1478 if (!l2_accel) 1479 return ERR_PTR(-ENOMEM); 1480 1481 memcpy(l2_accel, old_l2_accel, 1482 offsetof(struct fm10k_l2_accel, 1483 macvlan[old_l2_accel->size])); 1484 1485 l2_accel->size = (old_l2_accel->size * 2) + 1; 1486 1487 /* update pointers */ 1488 fm10k_assign_l2_accel(interface, l2_accel); 1489 kfree_rcu(old_l2_accel, rcu); 1490 } 1491 1492 /* add macvlan to accel table, and record GLORT for position */ 1493 for (i = 0; i < l2_accel->size; i++) { 1494 if (!l2_accel->macvlan[i]) 1495 break; 1496 } 1497 1498 /* record station */ 1499 l2_accel->macvlan[i] = sdev; 1500 l2_accel->count++; 1501 1502 /* configure default DGLORT mapping for RSS/DCB */ 1503 dglort.idx = fm10k_dglort_pf_rss; 1504 dglort.inner_rss = 1; 1505 dglort.rss_l = fls(interface->ring_feature[RING_F_RSS].mask); 1506 dglort.pc_l = fls(interface->ring_feature[RING_F_QOS].mask); 1507 dglort.glort = interface->glort; 1508 dglort.shared_l = fls(l2_accel->size); 1509 hw->mac.ops.configure_dglort_map(hw, &dglort); 1510 1511 /* Add rules for this specific dglort to the switch */ 1512 fm10k_mbx_lock(interface); 1513 1514 glort = l2_accel->dglort + 1 + i; 1515 1516 if (fm10k_host_mbx_ready(interface)) { 1517 hw->mac.ops.update_xcast_mode(hw, glort, 1518 FM10K_XCAST_MODE_MULTI); 1519 fm10k_queue_mac_request(interface, glort, sdev->dev_addr, 1520 hw->mac.default_vid, true); 1521 } 1522 1523 fm10k_mbx_unlock(interface); 1524 1525 return sdev; 1526 } 1527 1528 static void fm10k_dfwd_del_station(struct net_device *dev, void *priv) 1529 { 1530 struct fm10k_intfc *interface = netdev_priv(dev); 1531 struct fm10k_l2_accel *l2_accel = READ_ONCE(interface->l2_accel); 1532 struct fm10k_dglort_cfg dglort = { 0 }; 1533 struct fm10k_hw *hw = &interface->hw; 1534 struct net_device *sdev = priv; 1535 int i; 1536 u16 glort; 1537 1538 if (!l2_accel) 1539 return; 1540 1541 /* search table for matching interface */ 1542 for (i = 0; i < l2_accel->size; i++) { 1543 if (l2_accel->macvlan[i] == sdev) 1544 break; 1545 } 1546 1547 /* exit if macvlan not found */ 1548 if (i == l2_accel->size) 1549 return; 1550 1551 /* Remove any rules specific to this dglort */ 1552 fm10k_mbx_lock(interface); 1553 1554 glort = l2_accel->dglort + 1 + i; 1555 1556 if (fm10k_host_mbx_ready(interface)) { 1557 hw->mac.ops.update_xcast_mode(hw, glort, 1558 FM10K_XCAST_MODE_NONE); 1559 fm10k_queue_mac_request(interface, glort, sdev->dev_addr, 1560 hw->mac.default_vid, false); 1561 } 1562 1563 fm10k_mbx_unlock(interface); 1564 1565 /* record removal */ 1566 l2_accel->macvlan[i] = NULL; 1567 l2_accel->count--; 1568 1569 /* configure default DGLORT mapping for RSS/DCB */ 1570 dglort.idx = fm10k_dglort_pf_rss; 1571 dglort.inner_rss = 1; 1572 dglort.rss_l = fls(interface->ring_feature[RING_F_RSS].mask); 1573 dglort.pc_l = fls(interface->ring_feature[RING_F_QOS].mask); 1574 dglort.glort = interface->glort; 1575 dglort.shared_l = fls(l2_accel->size); 1576 hw->mac.ops.configure_dglort_map(hw, &dglort); 1577 1578 /* If table is empty remove it */ 1579 if (l2_accel->count == 0) { 1580 fm10k_assign_l2_accel(interface, NULL); 1581 kfree_rcu(l2_accel, rcu); 1582 } 1583 } 1584 1585 static netdev_features_t fm10k_features_check(struct sk_buff *skb, 1586 struct net_device *dev, 1587 netdev_features_t features) 1588 { 1589 if (!skb->encapsulation || fm10k_tx_encap_offload(skb)) 1590 return features; 1591 1592 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 1593 } 1594 1595 static const struct net_device_ops fm10k_netdev_ops = { 1596 .ndo_open = fm10k_open, 1597 .ndo_stop = fm10k_close, 1598 .ndo_validate_addr = eth_validate_addr, 1599 .ndo_start_xmit = fm10k_xmit_frame, 1600 .ndo_set_mac_address = fm10k_set_mac, 1601 .ndo_tx_timeout = fm10k_tx_timeout, 1602 .ndo_vlan_rx_add_vid = fm10k_vlan_rx_add_vid, 1603 .ndo_vlan_rx_kill_vid = fm10k_vlan_rx_kill_vid, 1604 .ndo_set_rx_mode = fm10k_set_rx_mode, 1605 .ndo_get_stats64 = fm10k_get_stats64, 1606 .ndo_setup_tc = __fm10k_setup_tc, 1607 .ndo_set_vf_mac = fm10k_ndo_set_vf_mac, 1608 .ndo_set_vf_vlan = fm10k_ndo_set_vf_vlan, 1609 .ndo_set_vf_rate = fm10k_ndo_set_vf_bw, 1610 .ndo_get_vf_config = fm10k_ndo_get_vf_config, 1611 .ndo_udp_tunnel_add = fm10k_udp_tunnel_add, 1612 .ndo_udp_tunnel_del = fm10k_udp_tunnel_del, 1613 .ndo_dfwd_add_station = fm10k_dfwd_add_station, 1614 .ndo_dfwd_del_station = fm10k_dfwd_del_station, 1615 #ifdef CONFIG_NET_POLL_CONTROLLER 1616 .ndo_poll_controller = fm10k_netpoll, 1617 #endif 1618 .ndo_features_check = fm10k_features_check, 1619 }; 1620 1621 #define DEFAULT_DEBUG_LEVEL_SHIFT 3 1622 1623 struct net_device *fm10k_alloc_netdev(const struct fm10k_info *info) 1624 { 1625 netdev_features_t hw_features; 1626 struct fm10k_intfc *interface; 1627 struct net_device *dev; 1628 1629 dev = alloc_etherdev_mq(sizeof(struct fm10k_intfc), MAX_QUEUES); 1630 if (!dev) 1631 return NULL; 1632 1633 /* set net device and ethtool ops */ 1634 dev->netdev_ops = &fm10k_netdev_ops; 1635 fm10k_set_ethtool_ops(dev); 1636 1637 /* configure default debug level */ 1638 interface = netdev_priv(dev); 1639 interface->msg_enable = BIT(DEFAULT_DEBUG_LEVEL_SHIFT) - 1; 1640 1641 /* configure default features */ 1642 dev->features |= NETIF_F_IP_CSUM | 1643 NETIF_F_IPV6_CSUM | 1644 NETIF_F_SG | 1645 NETIF_F_TSO | 1646 NETIF_F_TSO6 | 1647 NETIF_F_TSO_ECN | 1648 NETIF_F_RXHASH | 1649 NETIF_F_RXCSUM; 1650 1651 /* Only the PF can support VXLAN and NVGRE tunnel offloads */ 1652 if (info->mac == fm10k_mac_pf) { 1653 dev->hw_enc_features = NETIF_F_IP_CSUM | 1654 NETIF_F_TSO | 1655 NETIF_F_TSO6 | 1656 NETIF_F_TSO_ECN | 1657 NETIF_F_GSO_UDP_TUNNEL | 1658 NETIF_F_IPV6_CSUM | 1659 NETIF_F_SG; 1660 1661 dev->features |= NETIF_F_GSO_UDP_TUNNEL; 1662 } 1663 1664 /* all features defined to this point should be changeable */ 1665 hw_features = dev->features; 1666 1667 /* allow user to enable L2 forwarding acceleration */ 1668 hw_features |= NETIF_F_HW_L2FW_DOFFLOAD; 1669 1670 /* configure VLAN features */ 1671 dev->vlan_features |= dev->features; 1672 1673 /* we want to leave these both on as we cannot disable VLAN tag 1674 * insertion or stripping on the hardware since it is contained 1675 * in the FTAG and not in the frame itself. 1676 */ 1677 dev->features |= NETIF_F_HW_VLAN_CTAG_TX | 1678 NETIF_F_HW_VLAN_CTAG_RX | 1679 NETIF_F_HW_VLAN_CTAG_FILTER; 1680 1681 dev->priv_flags |= IFF_UNICAST_FLT; 1682 1683 dev->hw_features |= hw_features; 1684 1685 /* MTU range: 68 - 15342 */ 1686 dev->min_mtu = ETH_MIN_MTU; 1687 dev->max_mtu = FM10K_MAX_JUMBO_FRAME_SIZE; 1688 1689 return dev; 1690 } 1691