xref: /openbmc/linux/drivers/net/ethernet/intel/fm10k/fm10k_netdev.c (revision 5ef12cb4a3a78ffb331c03a795a15eea4ae35155)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Intel(R) Ethernet Switch Host Interface Driver
3  * Copyright(c) 2013 - 2018 Intel Corporation.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  *
14  * The full GNU General Public License is included in this distribution in
15  * the file called "COPYING".
16  *
17  * Contact Information:
18  * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
19  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
20  */
21 
22 #include "fm10k.h"
23 #include <linux/vmalloc.h>
24 #include <net/udp_tunnel.h>
25 
26 /**
27  * fm10k_setup_tx_resources - allocate Tx resources (Descriptors)
28  * @tx_ring:    tx descriptor ring (for a specific queue) to setup
29  *
30  * Return 0 on success, negative on failure
31  **/
32 int fm10k_setup_tx_resources(struct fm10k_ring *tx_ring)
33 {
34 	struct device *dev = tx_ring->dev;
35 	int size;
36 
37 	size = sizeof(struct fm10k_tx_buffer) * tx_ring->count;
38 
39 	tx_ring->tx_buffer = vzalloc(size);
40 	if (!tx_ring->tx_buffer)
41 		goto err;
42 
43 	u64_stats_init(&tx_ring->syncp);
44 
45 	/* round up to nearest 4K */
46 	tx_ring->size = tx_ring->count * sizeof(struct fm10k_tx_desc);
47 	tx_ring->size = ALIGN(tx_ring->size, 4096);
48 
49 	tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
50 					   &tx_ring->dma, GFP_KERNEL);
51 	if (!tx_ring->desc)
52 		goto err;
53 
54 	return 0;
55 
56 err:
57 	vfree(tx_ring->tx_buffer);
58 	tx_ring->tx_buffer = NULL;
59 	return -ENOMEM;
60 }
61 
62 /**
63  * fm10k_setup_all_tx_resources - allocate all queues Tx resources
64  * @interface: board private structure
65  *
66  * If this function returns with an error, then it's possible one or
67  * more of the rings is populated (while the rest are not).  It is the
68  * callers duty to clean those orphaned rings.
69  *
70  * Return 0 on success, negative on failure
71  **/
72 static int fm10k_setup_all_tx_resources(struct fm10k_intfc *interface)
73 {
74 	int i, err = 0;
75 
76 	for (i = 0; i < interface->num_tx_queues; i++) {
77 		err = fm10k_setup_tx_resources(interface->tx_ring[i]);
78 		if (!err)
79 			continue;
80 
81 		netif_err(interface, probe, interface->netdev,
82 			  "Allocation for Tx Queue %u failed\n", i);
83 		goto err_setup_tx;
84 	}
85 
86 	return 0;
87 err_setup_tx:
88 	/* rewind the index freeing the rings as we go */
89 	while (i--)
90 		fm10k_free_tx_resources(interface->tx_ring[i]);
91 	return err;
92 }
93 
94 /**
95  * fm10k_setup_rx_resources - allocate Rx resources (Descriptors)
96  * @rx_ring:    rx descriptor ring (for a specific queue) to setup
97  *
98  * Returns 0 on success, negative on failure
99  **/
100 int fm10k_setup_rx_resources(struct fm10k_ring *rx_ring)
101 {
102 	struct device *dev = rx_ring->dev;
103 	int size;
104 
105 	size = sizeof(struct fm10k_rx_buffer) * rx_ring->count;
106 
107 	rx_ring->rx_buffer = vzalloc(size);
108 	if (!rx_ring->rx_buffer)
109 		goto err;
110 
111 	u64_stats_init(&rx_ring->syncp);
112 
113 	/* Round up to nearest 4K */
114 	rx_ring->size = rx_ring->count * sizeof(union fm10k_rx_desc);
115 	rx_ring->size = ALIGN(rx_ring->size, 4096);
116 
117 	rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
118 					   &rx_ring->dma, GFP_KERNEL);
119 	if (!rx_ring->desc)
120 		goto err;
121 
122 	return 0;
123 err:
124 	vfree(rx_ring->rx_buffer);
125 	rx_ring->rx_buffer = NULL;
126 	return -ENOMEM;
127 }
128 
129 /**
130  * fm10k_setup_all_rx_resources - allocate all queues Rx resources
131  * @interface: board private structure
132  *
133  * If this function returns with an error, then it's possible one or
134  * more of the rings is populated (while the rest are not).  It is the
135  * callers duty to clean those orphaned rings.
136  *
137  * Return 0 on success, negative on failure
138  **/
139 static int fm10k_setup_all_rx_resources(struct fm10k_intfc *interface)
140 {
141 	int i, err = 0;
142 
143 	for (i = 0; i < interface->num_rx_queues; i++) {
144 		err = fm10k_setup_rx_resources(interface->rx_ring[i]);
145 		if (!err)
146 			continue;
147 
148 		netif_err(interface, probe, interface->netdev,
149 			  "Allocation for Rx Queue %u failed\n", i);
150 		goto err_setup_rx;
151 	}
152 
153 	return 0;
154 err_setup_rx:
155 	/* rewind the index freeing the rings as we go */
156 	while (i--)
157 		fm10k_free_rx_resources(interface->rx_ring[i]);
158 	return err;
159 }
160 
161 void fm10k_unmap_and_free_tx_resource(struct fm10k_ring *ring,
162 				      struct fm10k_tx_buffer *tx_buffer)
163 {
164 	if (tx_buffer->skb) {
165 		dev_kfree_skb_any(tx_buffer->skb);
166 		if (dma_unmap_len(tx_buffer, len))
167 			dma_unmap_single(ring->dev,
168 					 dma_unmap_addr(tx_buffer, dma),
169 					 dma_unmap_len(tx_buffer, len),
170 					 DMA_TO_DEVICE);
171 	} else if (dma_unmap_len(tx_buffer, len)) {
172 		dma_unmap_page(ring->dev,
173 			       dma_unmap_addr(tx_buffer, dma),
174 			       dma_unmap_len(tx_buffer, len),
175 			       DMA_TO_DEVICE);
176 	}
177 	tx_buffer->next_to_watch = NULL;
178 	tx_buffer->skb = NULL;
179 	dma_unmap_len_set(tx_buffer, len, 0);
180 	/* tx_buffer must be completely set up in the transmit path */
181 }
182 
183 /**
184  * fm10k_clean_tx_ring - Free Tx Buffers
185  * @tx_ring: ring to be cleaned
186  **/
187 static void fm10k_clean_tx_ring(struct fm10k_ring *tx_ring)
188 {
189 	struct fm10k_tx_buffer *tx_buffer;
190 	unsigned long size;
191 	u16 i;
192 
193 	/* ring already cleared, nothing to do */
194 	if (!tx_ring->tx_buffer)
195 		return;
196 
197 	/* Free all the Tx ring sk_buffs */
198 	for (i = 0; i < tx_ring->count; i++) {
199 		tx_buffer = &tx_ring->tx_buffer[i];
200 		fm10k_unmap_and_free_tx_resource(tx_ring, tx_buffer);
201 	}
202 
203 	/* reset BQL values */
204 	netdev_tx_reset_queue(txring_txq(tx_ring));
205 
206 	size = sizeof(struct fm10k_tx_buffer) * tx_ring->count;
207 	memset(tx_ring->tx_buffer, 0, size);
208 
209 	/* Zero out the descriptor ring */
210 	memset(tx_ring->desc, 0, tx_ring->size);
211 }
212 
213 /**
214  * fm10k_free_tx_resources - Free Tx Resources per Queue
215  * @tx_ring: Tx descriptor ring for a specific queue
216  *
217  * Free all transmit software resources
218  **/
219 void fm10k_free_tx_resources(struct fm10k_ring *tx_ring)
220 {
221 	fm10k_clean_tx_ring(tx_ring);
222 
223 	vfree(tx_ring->tx_buffer);
224 	tx_ring->tx_buffer = NULL;
225 
226 	/* if not set, then don't free */
227 	if (!tx_ring->desc)
228 		return;
229 
230 	dma_free_coherent(tx_ring->dev, tx_ring->size,
231 			  tx_ring->desc, tx_ring->dma);
232 	tx_ring->desc = NULL;
233 }
234 
235 /**
236  * fm10k_clean_all_tx_rings - Free Tx Buffers for all queues
237  * @interface: board private structure
238  **/
239 void fm10k_clean_all_tx_rings(struct fm10k_intfc *interface)
240 {
241 	int i;
242 
243 	for (i = 0; i < interface->num_tx_queues; i++)
244 		fm10k_clean_tx_ring(interface->tx_ring[i]);
245 }
246 
247 /**
248  * fm10k_free_all_tx_resources - Free Tx Resources for All Queues
249  * @interface: board private structure
250  *
251  * Free all transmit software resources
252  **/
253 static void fm10k_free_all_tx_resources(struct fm10k_intfc *interface)
254 {
255 	int i = interface->num_tx_queues;
256 
257 	while (i--)
258 		fm10k_free_tx_resources(interface->tx_ring[i]);
259 }
260 
261 /**
262  * fm10k_clean_rx_ring - Free Rx Buffers per Queue
263  * @rx_ring: ring to free buffers from
264  **/
265 static void fm10k_clean_rx_ring(struct fm10k_ring *rx_ring)
266 {
267 	unsigned long size;
268 	u16 i;
269 
270 	if (!rx_ring->rx_buffer)
271 		return;
272 
273 	if (rx_ring->skb)
274 		dev_kfree_skb(rx_ring->skb);
275 	rx_ring->skb = NULL;
276 
277 	/* Free all the Rx ring sk_buffs */
278 	for (i = 0; i < rx_ring->count; i++) {
279 		struct fm10k_rx_buffer *buffer = &rx_ring->rx_buffer[i];
280 		/* clean-up will only set page pointer to NULL */
281 		if (!buffer->page)
282 			continue;
283 
284 		dma_unmap_page(rx_ring->dev, buffer->dma,
285 			       PAGE_SIZE, DMA_FROM_DEVICE);
286 		__free_page(buffer->page);
287 
288 		buffer->page = NULL;
289 	}
290 
291 	size = sizeof(struct fm10k_rx_buffer) * rx_ring->count;
292 	memset(rx_ring->rx_buffer, 0, size);
293 
294 	/* Zero out the descriptor ring */
295 	memset(rx_ring->desc, 0, rx_ring->size);
296 
297 	rx_ring->next_to_alloc = 0;
298 	rx_ring->next_to_clean = 0;
299 	rx_ring->next_to_use = 0;
300 }
301 
302 /**
303  * fm10k_free_rx_resources - Free Rx Resources
304  * @rx_ring: ring to clean the resources from
305  *
306  * Free all receive software resources
307  **/
308 void fm10k_free_rx_resources(struct fm10k_ring *rx_ring)
309 {
310 	fm10k_clean_rx_ring(rx_ring);
311 
312 	vfree(rx_ring->rx_buffer);
313 	rx_ring->rx_buffer = NULL;
314 
315 	/* if not set, then don't free */
316 	if (!rx_ring->desc)
317 		return;
318 
319 	dma_free_coherent(rx_ring->dev, rx_ring->size,
320 			  rx_ring->desc, rx_ring->dma);
321 
322 	rx_ring->desc = NULL;
323 }
324 
325 /**
326  * fm10k_clean_all_rx_rings - Free Rx Buffers for all queues
327  * @interface: board private structure
328  **/
329 void fm10k_clean_all_rx_rings(struct fm10k_intfc *interface)
330 {
331 	int i;
332 
333 	for (i = 0; i < interface->num_rx_queues; i++)
334 		fm10k_clean_rx_ring(interface->rx_ring[i]);
335 }
336 
337 /**
338  * fm10k_free_all_rx_resources - Free Rx Resources for All Queues
339  * @interface: board private structure
340  *
341  * Free all receive software resources
342  **/
343 static void fm10k_free_all_rx_resources(struct fm10k_intfc *interface)
344 {
345 	int i = interface->num_rx_queues;
346 
347 	while (i--)
348 		fm10k_free_rx_resources(interface->rx_ring[i]);
349 }
350 
351 /**
352  * fm10k_request_glort_range - Request GLORTs for use in configuring rules
353  * @interface: board private structure
354  *
355  * This function allocates a range of glorts for this interface to use.
356  **/
357 static void fm10k_request_glort_range(struct fm10k_intfc *interface)
358 {
359 	struct fm10k_hw *hw = &interface->hw;
360 	u16 mask = (~hw->mac.dglort_map) >> FM10K_DGLORTMAP_MASK_SHIFT;
361 
362 	/* establish GLORT base */
363 	interface->glort = hw->mac.dglort_map & FM10K_DGLORTMAP_NONE;
364 	interface->glort_count = 0;
365 
366 	/* nothing we can do until mask is allocated */
367 	if (hw->mac.dglort_map == FM10K_DGLORTMAP_NONE)
368 		return;
369 
370 	/* we support 3 possible GLORT configurations.
371 	 * 1: VFs consume all but the last 1
372 	 * 2: VFs and PF split glorts with possible gap between
373 	 * 3: VFs allocated first 64, all others belong to PF
374 	 */
375 	if (mask <= hw->iov.total_vfs) {
376 		interface->glort_count = 1;
377 		interface->glort += mask;
378 	} else if (mask < 64) {
379 		interface->glort_count = (mask + 1) / 2;
380 		interface->glort += interface->glort_count;
381 	} else {
382 		interface->glort_count = mask - 63;
383 		interface->glort += 64;
384 	}
385 }
386 
387 /**
388  * fm10k_free_udp_port_info
389  * @interface: board private structure
390  *
391  * This function frees both geneve_port and vxlan_port structures
392  **/
393 static void fm10k_free_udp_port_info(struct fm10k_intfc *interface)
394 {
395 	struct fm10k_udp_port *port;
396 
397 	/* flush all entries from vxlan list */
398 	port = list_first_entry_or_null(&interface->vxlan_port,
399 					struct fm10k_udp_port, list);
400 	while (port) {
401 		list_del(&port->list);
402 		kfree(port);
403 		port = list_first_entry_or_null(&interface->vxlan_port,
404 						struct fm10k_udp_port,
405 						list);
406 	}
407 
408 	/* flush all entries from geneve list */
409 	port = list_first_entry_or_null(&interface->geneve_port,
410 					struct fm10k_udp_port, list);
411 	while (port) {
412 		list_del(&port->list);
413 		kfree(port);
414 		port = list_first_entry_or_null(&interface->vxlan_port,
415 						struct fm10k_udp_port,
416 						list);
417 	}
418 }
419 
420 /**
421  * fm10k_restore_udp_port_info
422  * @interface: board private structure
423  *
424  * This function restores the value in the tunnel_cfg register(s) after reset
425  **/
426 static void fm10k_restore_udp_port_info(struct fm10k_intfc *interface)
427 {
428 	struct fm10k_hw *hw = &interface->hw;
429 	struct fm10k_udp_port *port;
430 
431 	/* only the PF supports configuring tunnels */
432 	if (hw->mac.type != fm10k_mac_pf)
433 		return;
434 
435 	port = list_first_entry_or_null(&interface->vxlan_port,
436 					struct fm10k_udp_port, list);
437 
438 	/* restore tunnel configuration register */
439 	fm10k_write_reg(hw, FM10K_TUNNEL_CFG,
440 			(port ? ntohs(port->port) : 0) |
441 			(ETH_P_TEB << FM10K_TUNNEL_CFG_NVGRE_SHIFT));
442 
443 	port = list_first_entry_or_null(&interface->geneve_port,
444 					struct fm10k_udp_port, list);
445 
446 	/* restore Geneve tunnel configuration register */
447 	fm10k_write_reg(hw, FM10K_TUNNEL_CFG_GENEVE,
448 			(port ? ntohs(port->port) : 0));
449 }
450 
451 static struct fm10k_udp_port *
452 fm10k_remove_tunnel_port(struct list_head *ports,
453 			 struct udp_tunnel_info *ti)
454 {
455 	struct fm10k_udp_port *port;
456 
457 	list_for_each_entry(port, ports, list) {
458 		if ((port->port == ti->port) &&
459 		    (port->sa_family == ti->sa_family)) {
460 			list_del(&port->list);
461 			return port;
462 		}
463 	}
464 
465 	return NULL;
466 }
467 
468 static void fm10k_insert_tunnel_port(struct list_head *ports,
469 				     struct udp_tunnel_info *ti)
470 {
471 	struct fm10k_udp_port *port;
472 
473 	/* remove existing port entry from the list so that the newest items
474 	 * are always at the tail of the list.
475 	 */
476 	port = fm10k_remove_tunnel_port(ports, ti);
477 	if (!port) {
478 		port = kmalloc(sizeof(*port), GFP_ATOMIC);
479 		if  (!port)
480 			return;
481 		port->port = ti->port;
482 		port->sa_family = ti->sa_family;
483 	}
484 
485 	list_add_tail(&port->list, ports);
486 }
487 
488 /**
489  * fm10k_udp_tunnel_add
490  * @dev: network interface device structure
491  * @ti: Tunnel endpoint information
492  *
493  * This function is called when a new UDP tunnel port has been added.
494  * Due to hardware restrictions, only one port per type can be offloaded at
495  * once.
496  **/
497 static void fm10k_udp_tunnel_add(struct net_device *dev,
498 				 struct udp_tunnel_info *ti)
499 {
500 	struct fm10k_intfc *interface = netdev_priv(dev);
501 
502 	/* only the PF supports configuring tunnels */
503 	if (interface->hw.mac.type != fm10k_mac_pf)
504 		return;
505 
506 	switch (ti->type) {
507 	case UDP_TUNNEL_TYPE_VXLAN:
508 		fm10k_insert_tunnel_port(&interface->vxlan_port, ti);
509 		break;
510 	case UDP_TUNNEL_TYPE_GENEVE:
511 		fm10k_insert_tunnel_port(&interface->geneve_port, ti);
512 		break;
513 	default:
514 		return;
515 	}
516 
517 	fm10k_restore_udp_port_info(interface);
518 }
519 
520 /**
521  * fm10k_udp_tunnel_del
522  * @dev: network interface device structure
523  * @ti: Tunnel end point information
524  *
525  * This function is called when a new UDP tunnel port is deleted. The freed
526  * port will be removed from the list, then we reprogram the offloaded port
527  * based on the head of the list.
528  **/
529 static void fm10k_udp_tunnel_del(struct net_device *dev,
530 				 struct udp_tunnel_info *ti)
531 {
532 	struct fm10k_intfc *interface = netdev_priv(dev);
533 	struct fm10k_udp_port *port = NULL;
534 
535 	if (interface->hw.mac.type != fm10k_mac_pf)
536 		return;
537 
538 	switch (ti->type) {
539 	case UDP_TUNNEL_TYPE_VXLAN:
540 		port = fm10k_remove_tunnel_port(&interface->vxlan_port, ti);
541 		break;
542 	case UDP_TUNNEL_TYPE_GENEVE:
543 		port = fm10k_remove_tunnel_port(&interface->geneve_port, ti);
544 		break;
545 	default:
546 		return;
547 	}
548 
549 	/* if we did remove a port we need to free its memory */
550 	kfree(port);
551 
552 	fm10k_restore_udp_port_info(interface);
553 }
554 
555 /**
556  * fm10k_open - Called when a network interface is made active
557  * @netdev: network interface device structure
558  *
559  * Returns 0 on success, negative value on failure
560  *
561  * The open entry point is called when a network interface is made
562  * active by the system (IFF_UP).  At this point all resources needed
563  * for transmit and receive operations are allocated, the interrupt
564  * handler is registered with the OS, the watchdog timer is started,
565  * and the stack is notified that the interface is ready.
566  **/
567 int fm10k_open(struct net_device *netdev)
568 {
569 	struct fm10k_intfc *interface = netdev_priv(netdev);
570 	int err;
571 
572 	/* allocate transmit descriptors */
573 	err = fm10k_setup_all_tx_resources(interface);
574 	if (err)
575 		goto err_setup_tx;
576 
577 	/* allocate receive descriptors */
578 	err = fm10k_setup_all_rx_resources(interface);
579 	if (err)
580 		goto err_setup_rx;
581 
582 	/* allocate interrupt resources */
583 	err = fm10k_qv_request_irq(interface);
584 	if (err)
585 		goto err_req_irq;
586 
587 	/* setup GLORT assignment for this port */
588 	fm10k_request_glort_range(interface);
589 
590 	/* Notify the stack of the actual queue counts */
591 	err = netif_set_real_num_tx_queues(netdev,
592 					   interface->num_tx_queues);
593 	if (err)
594 		goto err_set_queues;
595 
596 	err = netif_set_real_num_rx_queues(netdev,
597 					   interface->num_rx_queues);
598 	if (err)
599 		goto err_set_queues;
600 
601 	udp_tunnel_get_rx_info(netdev);
602 
603 	fm10k_up(interface);
604 
605 	return 0;
606 
607 err_set_queues:
608 	fm10k_qv_free_irq(interface);
609 err_req_irq:
610 	fm10k_free_all_rx_resources(interface);
611 err_setup_rx:
612 	fm10k_free_all_tx_resources(interface);
613 err_setup_tx:
614 	return err;
615 }
616 
617 /**
618  * fm10k_close - Disables a network interface
619  * @netdev: network interface device structure
620  *
621  * Returns 0, this is not allowed to fail
622  *
623  * The close entry point is called when an interface is de-activated
624  * by the OS.  The hardware is still under the drivers control, but
625  * needs to be disabled.  A global MAC reset is issued to stop the
626  * hardware, and all transmit and receive resources are freed.
627  **/
628 int fm10k_close(struct net_device *netdev)
629 {
630 	struct fm10k_intfc *interface = netdev_priv(netdev);
631 
632 	fm10k_down(interface);
633 
634 	fm10k_qv_free_irq(interface);
635 
636 	fm10k_free_udp_port_info(interface);
637 
638 	fm10k_free_all_tx_resources(interface);
639 	fm10k_free_all_rx_resources(interface);
640 
641 	return 0;
642 }
643 
644 static netdev_tx_t fm10k_xmit_frame(struct sk_buff *skb, struct net_device *dev)
645 {
646 	struct fm10k_intfc *interface = netdev_priv(dev);
647 	int num_tx_queues = READ_ONCE(interface->num_tx_queues);
648 	unsigned int r_idx = skb->queue_mapping;
649 	int err;
650 
651 	if (!num_tx_queues)
652 		return NETDEV_TX_BUSY;
653 
654 	if ((skb->protocol == htons(ETH_P_8021Q)) &&
655 	    !skb_vlan_tag_present(skb)) {
656 		/* FM10K only supports hardware tagging, any tags in frame
657 		 * are considered 2nd level or "outer" tags
658 		 */
659 		struct vlan_hdr *vhdr;
660 		__be16 proto;
661 
662 		/* make sure skb is not shared */
663 		skb = skb_share_check(skb, GFP_ATOMIC);
664 		if (!skb)
665 			return NETDEV_TX_OK;
666 
667 		/* make sure there is enough room to move the ethernet header */
668 		if (unlikely(!pskb_may_pull(skb, VLAN_ETH_HLEN)))
669 			return NETDEV_TX_OK;
670 
671 		/* verify the skb head is not shared */
672 		err = skb_cow_head(skb, 0);
673 		if (err) {
674 			dev_kfree_skb(skb);
675 			return NETDEV_TX_OK;
676 		}
677 
678 		/* locate VLAN header */
679 		vhdr = (struct vlan_hdr *)(skb->data + ETH_HLEN);
680 
681 		/* pull the 2 key pieces of data out of it */
682 		__vlan_hwaccel_put_tag(skb,
683 				       htons(ETH_P_8021Q),
684 				       ntohs(vhdr->h_vlan_TCI));
685 		proto = vhdr->h_vlan_encapsulated_proto;
686 		skb->protocol = (ntohs(proto) >= 1536) ? proto :
687 							 htons(ETH_P_802_2);
688 
689 		/* squash it by moving the ethernet addresses up 4 bytes */
690 		memmove(skb->data + VLAN_HLEN, skb->data, 12);
691 		__skb_pull(skb, VLAN_HLEN);
692 		skb_reset_mac_header(skb);
693 	}
694 
695 	/* The minimum packet size for a single buffer is 17B so pad the skb
696 	 * in order to meet this minimum size requirement.
697 	 */
698 	if (unlikely(skb->len < 17)) {
699 		int pad_len = 17 - skb->len;
700 
701 		if (skb_pad(skb, pad_len))
702 			return NETDEV_TX_OK;
703 		__skb_put(skb, pad_len);
704 	}
705 
706 	if (r_idx >= num_tx_queues)
707 		r_idx %= num_tx_queues;
708 
709 	err = fm10k_xmit_frame_ring(skb, interface->tx_ring[r_idx]);
710 
711 	return err;
712 }
713 
714 /**
715  * fm10k_tx_timeout - Respond to a Tx Hang
716  * @netdev: network interface device structure
717  **/
718 static void fm10k_tx_timeout(struct net_device *netdev)
719 {
720 	struct fm10k_intfc *interface = netdev_priv(netdev);
721 	bool real_tx_hang = false;
722 	int i;
723 
724 #define TX_TIMEO_LIMIT 16000
725 	for (i = 0; i < interface->num_tx_queues; i++) {
726 		struct fm10k_ring *tx_ring = interface->tx_ring[i];
727 
728 		if (check_for_tx_hang(tx_ring) && fm10k_check_tx_hang(tx_ring))
729 			real_tx_hang = true;
730 	}
731 
732 	if (real_tx_hang) {
733 		fm10k_tx_timeout_reset(interface);
734 	} else {
735 		netif_info(interface, drv, netdev,
736 			   "Fake Tx hang detected with timeout of %d seconds\n",
737 			   netdev->watchdog_timeo / HZ);
738 
739 		/* fake Tx hang - increase the kernel timeout */
740 		if (netdev->watchdog_timeo < TX_TIMEO_LIMIT)
741 			netdev->watchdog_timeo *= 2;
742 	}
743 }
744 
745 /**
746  * fm10k_host_mbx_ready - Check PF interface's mailbox readiness
747  * @interface: board private structure
748  *
749  * This function checks if the PF interface's mailbox is ready before queueing
750  * mailbox messages for transmission. This will prevent filling the TX mailbox
751  * queue when the receiver is not ready. VF interfaces are exempt from this
752  * check since it will block all PF-VF mailbox messages from being sent from
753  * the VF to the PF at initialization.
754  **/
755 static bool fm10k_host_mbx_ready(struct fm10k_intfc *interface)
756 {
757 	struct fm10k_hw *hw = &interface->hw;
758 
759 	return (hw->mac.type == fm10k_mac_vf || interface->host_ready);
760 }
761 
762 /**
763  * fm10k_queue_vlan_request - Queue a VLAN update request
764  * @interface: the fm10k interface structure
765  * @vid: the VLAN vid
766  * @vsi: VSI index number
767  * @set: whether to set or clear
768  *
769  * This function queues up a VLAN update. For VFs, this must be sent to the
770  * managing PF over the mailbox. For PFs, we'll use the same handling so that
771  * it's similar to the VF. This avoids storming the PF<->VF mailbox with too
772  * many VLAN updates during reset.
773  */
774 int fm10k_queue_vlan_request(struct fm10k_intfc *interface,
775 			     u32 vid, u8 vsi, bool set)
776 {
777 	struct fm10k_macvlan_request *request;
778 	unsigned long flags;
779 
780 	/* This must be atomic since we may be called while the netdev
781 	 * addr_list_lock is held
782 	 */
783 	request = kzalloc(sizeof(*request), GFP_ATOMIC);
784 	if (!request)
785 		return -ENOMEM;
786 
787 	request->type = FM10K_VLAN_REQUEST;
788 	request->vlan.vid = vid;
789 	request->vlan.vsi = vsi;
790 	request->set = set;
791 
792 	spin_lock_irqsave(&interface->macvlan_lock, flags);
793 	list_add_tail(&request->list, &interface->macvlan_requests);
794 	spin_unlock_irqrestore(&interface->macvlan_lock, flags);
795 
796 	fm10k_macvlan_schedule(interface);
797 
798 	return 0;
799 }
800 
801 /**
802  * fm10k_queue_mac_request - Queue a MAC update request
803  * @interface: the fm10k interface structure
804  * @glort: the target glort for this update
805  * @addr: the address to update
806  * @vid: the vid to update
807  * @set: whether to add or remove
808  *
809  * This function queues up a MAC request for sending to the switch manager.
810  * A separate thread monitors the queue and sends updates to the switch
811  * manager. Return 0 on success, and negative error code on failure.
812  **/
813 int fm10k_queue_mac_request(struct fm10k_intfc *interface, u16 glort,
814 			    const unsigned char *addr, u16 vid, bool set)
815 {
816 	struct fm10k_macvlan_request *request;
817 	unsigned long flags;
818 
819 	/* This must be atomic since we may be called while the netdev
820 	 * addr_list_lock is held
821 	 */
822 	request = kzalloc(sizeof(*request), GFP_ATOMIC);
823 	if (!request)
824 		return -ENOMEM;
825 
826 	if (is_multicast_ether_addr(addr))
827 		request->type = FM10K_MC_MAC_REQUEST;
828 	else
829 		request->type = FM10K_UC_MAC_REQUEST;
830 
831 	ether_addr_copy(request->mac.addr, addr);
832 	request->mac.glort = glort;
833 	request->mac.vid = vid;
834 	request->set = set;
835 
836 	spin_lock_irqsave(&interface->macvlan_lock, flags);
837 	list_add_tail(&request->list, &interface->macvlan_requests);
838 	spin_unlock_irqrestore(&interface->macvlan_lock, flags);
839 
840 	fm10k_macvlan_schedule(interface);
841 
842 	return 0;
843 }
844 
845 /**
846  * fm10k_clear_macvlan_queue - Cancel pending updates for a given glort
847  * @interface: the fm10k interface structure
848  * @glort: the target glort to clear
849  * @vlans: true to clear VLAN messages, false to ignore them
850  *
851  * Cancel any outstanding MAC/VLAN requests for a given glort. This is
852  * expected to be called when a logical port goes down.
853  **/
854 void fm10k_clear_macvlan_queue(struct fm10k_intfc *interface,
855 			       u16 glort, bool vlans)
856 
857 {
858 	struct fm10k_macvlan_request *r, *tmp;
859 	unsigned long flags;
860 
861 	spin_lock_irqsave(&interface->macvlan_lock, flags);
862 
863 	/* Free any outstanding MAC/VLAN requests for this interface */
864 	list_for_each_entry_safe(r, tmp, &interface->macvlan_requests, list) {
865 		switch (r->type) {
866 		case FM10K_MC_MAC_REQUEST:
867 		case FM10K_UC_MAC_REQUEST:
868 			/* Don't free requests for other interfaces */
869 			if (r->mac.glort != glort)
870 				break;
871 			/* fall through */
872 		case FM10K_VLAN_REQUEST:
873 			if (vlans) {
874 				list_del(&r->list);
875 				kfree(r);
876 			}
877 			break;
878 		}
879 	}
880 
881 	spin_unlock_irqrestore(&interface->macvlan_lock, flags);
882 }
883 
884 static int fm10k_uc_vlan_unsync(struct net_device *netdev,
885 				const unsigned char *uc_addr)
886 {
887 	struct fm10k_intfc *interface = netdev_priv(netdev);
888 	u16 glort = interface->glort;
889 	u16 vid = interface->vid;
890 	bool set = !!(vid / VLAN_N_VID);
891 	int err = -EHOSTDOWN;
892 
893 	/* drop any leading bits on the VLAN ID */
894 	vid &= VLAN_N_VID - 1;
895 
896 	err = fm10k_queue_mac_request(interface, glort, uc_addr, vid, set);
897 	if (err)
898 		return err;
899 
900 	/* return non-zero value as we are only doing a partial sync/unsync */
901 	return 1;
902 }
903 
904 static int fm10k_mc_vlan_unsync(struct net_device *netdev,
905 				const unsigned char *mc_addr)
906 {
907 	struct fm10k_intfc *interface = netdev_priv(netdev);
908 	u16 glort = interface->glort;
909 	u16 vid = interface->vid;
910 	bool set = !!(vid / VLAN_N_VID);
911 	int err = -EHOSTDOWN;
912 
913 	/* drop any leading bits on the VLAN ID */
914 	vid &= VLAN_N_VID - 1;
915 
916 	err = fm10k_queue_mac_request(interface, glort, mc_addr, vid, set);
917 	if (err)
918 		return err;
919 
920 	/* return non-zero value as we are only doing a partial sync/unsync */
921 	return 1;
922 }
923 
924 static int fm10k_update_vid(struct net_device *netdev, u16 vid, bool set)
925 {
926 	struct fm10k_intfc *interface = netdev_priv(netdev);
927 	struct fm10k_hw *hw = &interface->hw;
928 	s32 err;
929 	int i;
930 
931 	/* updates do not apply to VLAN 0 */
932 	if (!vid)
933 		return 0;
934 
935 	if (vid >= VLAN_N_VID)
936 		return -EINVAL;
937 
938 	/* Verify that we have permission to add VLANs. If this is a request
939 	 * to remove a VLAN, we still want to allow the user to remove the
940 	 * VLAN device. In that case, we need to clear the bit in the
941 	 * active_vlans bitmask.
942 	 */
943 	if (set && hw->mac.vlan_override)
944 		return -EACCES;
945 
946 	/* update active_vlans bitmask */
947 	set_bit(vid, interface->active_vlans);
948 	if (!set)
949 		clear_bit(vid, interface->active_vlans);
950 
951 	/* disable the default VLAN ID on ring if we have an active VLAN */
952 	for (i = 0; i < interface->num_rx_queues; i++) {
953 		struct fm10k_ring *rx_ring = interface->rx_ring[i];
954 		u16 rx_vid = rx_ring->vid & (VLAN_N_VID - 1);
955 
956 		if (test_bit(rx_vid, interface->active_vlans))
957 			rx_ring->vid |= FM10K_VLAN_CLEAR;
958 		else
959 			rx_ring->vid &= ~FM10K_VLAN_CLEAR;
960 	}
961 
962 	/* If our VLAN has been overridden, there is no reason to send VLAN
963 	 * removal requests as they will be silently ignored.
964 	 */
965 	if (hw->mac.vlan_override)
966 		return 0;
967 
968 	/* Do not remove default VLAN ID related entries from VLAN and MAC
969 	 * tables
970 	 */
971 	if (!set && vid == hw->mac.default_vid)
972 		return 0;
973 
974 	/* Do not throw an error if the interface is down. We will sync once
975 	 * we come up
976 	 */
977 	if (test_bit(__FM10K_DOWN, interface->state))
978 		return 0;
979 
980 	fm10k_mbx_lock(interface);
981 
982 	/* only need to update the VLAN if not in promiscuous mode */
983 	if (!(netdev->flags & IFF_PROMISC)) {
984 		err = fm10k_queue_vlan_request(interface, vid, 0, set);
985 		if (err)
986 			goto err_out;
987 	}
988 
989 	/* Update our base MAC address */
990 	err = fm10k_queue_mac_request(interface, interface->glort,
991 				      hw->mac.addr, vid, set);
992 	if (err)
993 		goto err_out;
994 
995 	/* set VLAN ID prior to syncing/unsyncing the VLAN */
996 	interface->vid = vid + (set ? VLAN_N_VID : 0);
997 
998 	/* Update the unicast and multicast address list to add/drop VLAN */
999 	__dev_uc_unsync(netdev, fm10k_uc_vlan_unsync);
1000 	__dev_mc_unsync(netdev, fm10k_mc_vlan_unsync);
1001 
1002 err_out:
1003 	fm10k_mbx_unlock(interface);
1004 
1005 	return err;
1006 }
1007 
1008 static int fm10k_vlan_rx_add_vid(struct net_device *netdev,
1009 				 __always_unused __be16 proto, u16 vid)
1010 {
1011 	/* update VLAN and address table based on changes */
1012 	return fm10k_update_vid(netdev, vid, true);
1013 }
1014 
1015 static int fm10k_vlan_rx_kill_vid(struct net_device *netdev,
1016 				  __always_unused __be16 proto, u16 vid)
1017 {
1018 	/* update VLAN and address table based on changes */
1019 	return fm10k_update_vid(netdev, vid, false);
1020 }
1021 
1022 static u16 fm10k_find_next_vlan(struct fm10k_intfc *interface, u16 vid)
1023 {
1024 	struct fm10k_hw *hw = &interface->hw;
1025 	u16 default_vid = hw->mac.default_vid;
1026 	u16 vid_limit = vid < default_vid ? default_vid : VLAN_N_VID;
1027 
1028 	vid = find_next_bit(interface->active_vlans, vid_limit, ++vid);
1029 
1030 	return vid;
1031 }
1032 
1033 static void fm10k_clear_unused_vlans(struct fm10k_intfc *interface)
1034 {
1035 	u32 vid, prev_vid;
1036 
1037 	/* loop through and find any gaps in the table */
1038 	for (vid = 0, prev_vid = 0;
1039 	     prev_vid < VLAN_N_VID;
1040 	     prev_vid = vid + 1, vid = fm10k_find_next_vlan(interface, vid)) {
1041 		if (prev_vid == vid)
1042 			continue;
1043 
1044 		/* send request to clear multiple bits at a time */
1045 		prev_vid += (vid - prev_vid - 1) << FM10K_VLAN_LENGTH_SHIFT;
1046 		fm10k_queue_vlan_request(interface, prev_vid, 0, false);
1047 	}
1048 }
1049 
1050 static int __fm10k_uc_sync(struct net_device *dev,
1051 			   const unsigned char *addr, bool sync)
1052 {
1053 	struct fm10k_intfc *interface = netdev_priv(dev);
1054 	u16 vid, glort = interface->glort;
1055 	s32 err;
1056 
1057 	if (!is_valid_ether_addr(addr))
1058 		return -EADDRNOTAVAIL;
1059 
1060 	for (vid = fm10k_find_next_vlan(interface, 0);
1061 	     vid < VLAN_N_VID;
1062 	     vid = fm10k_find_next_vlan(interface, vid)) {
1063 		err = fm10k_queue_mac_request(interface, glort,
1064 					      addr, vid, sync);
1065 		if (err)
1066 			return err;
1067 	}
1068 
1069 	return 0;
1070 }
1071 
1072 static int fm10k_uc_sync(struct net_device *dev,
1073 			 const unsigned char *addr)
1074 {
1075 	return __fm10k_uc_sync(dev, addr, true);
1076 }
1077 
1078 static int fm10k_uc_unsync(struct net_device *dev,
1079 			   const unsigned char *addr)
1080 {
1081 	return __fm10k_uc_sync(dev, addr, false);
1082 }
1083 
1084 static int fm10k_set_mac(struct net_device *dev, void *p)
1085 {
1086 	struct fm10k_intfc *interface = netdev_priv(dev);
1087 	struct fm10k_hw *hw = &interface->hw;
1088 	struct sockaddr *addr = p;
1089 	s32 err = 0;
1090 
1091 	if (!is_valid_ether_addr(addr->sa_data))
1092 		return -EADDRNOTAVAIL;
1093 
1094 	if (dev->flags & IFF_UP) {
1095 		/* setting MAC address requires mailbox */
1096 		fm10k_mbx_lock(interface);
1097 
1098 		err = fm10k_uc_sync(dev, addr->sa_data);
1099 		if (!err)
1100 			fm10k_uc_unsync(dev, hw->mac.addr);
1101 
1102 		fm10k_mbx_unlock(interface);
1103 	}
1104 
1105 	if (!err) {
1106 		ether_addr_copy(dev->dev_addr, addr->sa_data);
1107 		ether_addr_copy(hw->mac.addr, addr->sa_data);
1108 		dev->addr_assign_type &= ~NET_ADDR_RANDOM;
1109 	}
1110 
1111 	/* if we had a mailbox error suggest trying again */
1112 	return err ? -EAGAIN : 0;
1113 }
1114 
1115 static int __fm10k_mc_sync(struct net_device *dev,
1116 			   const unsigned char *addr, bool sync)
1117 {
1118 	struct fm10k_intfc *interface = netdev_priv(dev);
1119 	u16 vid, glort = interface->glort;
1120 	s32 err;
1121 
1122 	if (!is_multicast_ether_addr(addr))
1123 		return -EADDRNOTAVAIL;
1124 
1125 	for (vid = fm10k_find_next_vlan(interface, 0);
1126 	     vid < VLAN_N_VID;
1127 	     vid = fm10k_find_next_vlan(interface, vid)) {
1128 		err = fm10k_queue_mac_request(interface, glort,
1129 					      addr, vid, sync);
1130 		if (err)
1131 			return err;
1132 	}
1133 
1134 	return 0;
1135 }
1136 
1137 static int fm10k_mc_sync(struct net_device *dev,
1138 			 const unsigned char *addr)
1139 {
1140 	return __fm10k_mc_sync(dev, addr, true);
1141 }
1142 
1143 static int fm10k_mc_unsync(struct net_device *dev,
1144 			   const unsigned char *addr)
1145 {
1146 	return __fm10k_mc_sync(dev, addr, false);
1147 }
1148 
1149 static void fm10k_set_rx_mode(struct net_device *dev)
1150 {
1151 	struct fm10k_intfc *interface = netdev_priv(dev);
1152 	struct fm10k_hw *hw = &interface->hw;
1153 	int xcast_mode;
1154 
1155 	/* no need to update the harwdare if we are not running */
1156 	if (!(dev->flags & IFF_UP))
1157 		return;
1158 
1159 	/* determine new mode based on flags */
1160 	xcast_mode = (dev->flags & IFF_PROMISC) ? FM10K_XCAST_MODE_PROMISC :
1161 		     (dev->flags & IFF_ALLMULTI) ? FM10K_XCAST_MODE_ALLMULTI :
1162 		     (dev->flags & (IFF_BROADCAST | IFF_MULTICAST)) ?
1163 		     FM10K_XCAST_MODE_MULTI : FM10K_XCAST_MODE_NONE;
1164 
1165 	fm10k_mbx_lock(interface);
1166 
1167 	/* update xcast mode first, but only if it changed */
1168 	if (interface->xcast_mode != xcast_mode) {
1169 		/* update VLAN table when entering promiscuous mode */
1170 		if (xcast_mode == FM10K_XCAST_MODE_PROMISC)
1171 			fm10k_queue_vlan_request(interface, FM10K_VLAN_ALL,
1172 						 0, true);
1173 
1174 		/* clear VLAN table when exiting promiscuous mode */
1175 		if (interface->xcast_mode == FM10K_XCAST_MODE_PROMISC)
1176 			fm10k_clear_unused_vlans(interface);
1177 
1178 		/* update xcast mode if host's mailbox is ready */
1179 		if (fm10k_host_mbx_ready(interface))
1180 			hw->mac.ops.update_xcast_mode(hw, interface->glort,
1181 						      xcast_mode);
1182 
1183 		/* record updated xcast mode state */
1184 		interface->xcast_mode = xcast_mode;
1185 	}
1186 
1187 	/* synchronize all of the addresses */
1188 	__dev_uc_sync(dev, fm10k_uc_sync, fm10k_uc_unsync);
1189 	__dev_mc_sync(dev, fm10k_mc_sync, fm10k_mc_unsync);
1190 
1191 	fm10k_mbx_unlock(interface);
1192 }
1193 
1194 void fm10k_restore_rx_state(struct fm10k_intfc *interface)
1195 {
1196 	struct fm10k_l2_accel *l2_accel = interface->l2_accel;
1197 	struct net_device *netdev = interface->netdev;
1198 	struct fm10k_hw *hw = &interface->hw;
1199 	int xcast_mode, i;
1200 	u16 vid, glort;
1201 
1202 	/* record glort for this interface */
1203 	glort = interface->glort;
1204 
1205 	/* convert interface flags to xcast mode */
1206 	if (netdev->flags & IFF_PROMISC)
1207 		xcast_mode = FM10K_XCAST_MODE_PROMISC;
1208 	else if (netdev->flags & IFF_ALLMULTI)
1209 		xcast_mode = FM10K_XCAST_MODE_ALLMULTI;
1210 	else if (netdev->flags & (IFF_BROADCAST | IFF_MULTICAST))
1211 		xcast_mode = FM10K_XCAST_MODE_MULTI;
1212 	else
1213 		xcast_mode = FM10K_XCAST_MODE_NONE;
1214 
1215 	fm10k_mbx_lock(interface);
1216 
1217 	/* Enable logical port if host's mailbox is ready */
1218 	if (fm10k_host_mbx_ready(interface))
1219 		hw->mac.ops.update_lport_state(hw, glort,
1220 					       interface->glort_count, true);
1221 
1222 	/* update VLAN table */
1223 	fm10k_queue_vlan_request(interface, FM10K_VLAN_ALL, 0,
1224 				 xcast_mode == FM10K_XCAST_MODE_PROMISC);
1225 
1226 	/* update table with current entries */
1227 	for (vid = fm10k_find_next_vlan(interface, 0);
1228 	     vid < VLAN_N_VID;
1229 	     vid = fm10k_find_next_vlan(interface, vid)) {
1230 		fm10k_queue_vlan_request(interface, vid, 0, true);
1231 
1232 		fm10k_queue_mac_request(interface, glort,
1233 					hw->mac.addr, vid, true);
1234 	}
1235 
1236 	/* update xcast mode before synchronizing addresses if host's mailbox
1237 	 * is ready
1238 	 */
1239 	if (fm10k_host_mbx_ready(interface))
1240 		hw->mac.ops.update_xcast_mode(hw, glort, xcast_mode);
1241 
1242 	/* synchronize all of the addresses */
1243 	__dev_uc_sync(netdev, fm10k_uc_sync, fm10k_uc_unsync);
1244 	__dev_mc_sync(netdev, fm10k_mc_sync, fm10k_mc_unsync);
1245 
1246 	/* synchronize macvlan addresses */
1247 	if (l2_accel) {
1248 		for (i = 0; i < l2_accel->size; i++) {
1249 			struct net_device *sdev = l2_accel->macvlan[i];
1250 
1251 			if (!sdev)
1252 				continue;
1253 
1254 			glort = l2_accel->dglort + 1 + i;
1255 
1256 			hw->mac.ops.update_xcast_mode(hw, glort,
1257 						      FM10K_XCAST_MODE_MULTI);
1258 			fm10k_queue_mac_request(interface, glort,
1259 						sdev->dev_addr,
1260 						hw->mac.default_vid, true);
1261 		}
1262 	}
1263 
1264 	fm10k_mbx_unlock(interface);
1265 
1266 	/* record updated xcast mode state */
1267 	interface->xcast_mode = xcast_mode;
1268 
1269 	/* Restore tunnel configuration */
1270 	fm10k_restore_udp_port_info(interface);
1271 }
1272 
1273 void fm10k_reset_rx_state(struct fm10k_intfc *interface)
1274 {
1275 	struct net_device *netdev = interface->netdev;
1276 	struct fm10k_hw *hw = &interface->hw;
1277 
1278 	/* Wait for MAC/VLAN work to finish */
1279 	while (test_bit(__FM10K_MACVLAN_SCHED, interface->state))
1280 		usleep_range(1000, 2000);
1281 
1282 	/* Cancel pending MAC/VLAN requests */
1283 	fm10k_clear_macvlan_queue(interface, interface->glort, true);
1284 
1285 	fm10k_mbx_lock(interface);
1286 
1287 	/* clear the logical port state on lower device if host's mailbox is
1288 	 * ready
1289 	 */
1290 	if (fm10k_host_mbx_ready(interface))
1291 		hw->mac.ops.update_lport_state(hw, interface->glort,
1292 					       interface->glort_count, false);
1293 
1294 	fm10k_mbx_unlock(interface);
1295 
1296 	/* reset flags to default state */
1297 	interface->xcast_mode = FM10K_XCAST_MODE_NONE;
1298 
1299 	/* clear the sync flag since the lport has been dropped */
1300 	__dev_uc_unsync(netdev, NULL);
1301 	__dev_mc_unsync(netdev, NULL);
1302 }
1303 
1304 /**
1305  * fm10k_get_stats64 - Get System Network Statistics
1306  * @netdev: network interface device structure
1307  * @stats: storage space for 64bit statistics
1308  *
1309  * Obtain 64bit statistics in a way that is safe for both 32bit and 64bit
1310  * architectures.
1311  */
1312 static void fm10k_get_stats64(struct net_device *netdev,
1313 			      struct rtnl_link_stats64 *stats)
1314 {
1315 	struct fm10k_intfc *interface = netdev_priv(netdev);
1316 	struct fm10k_ring *ring;
1317 	unsigned int start, i;
1318 	u64 bytes, packets;
1319 
1320 	rcu_read_lock();
1321 
1322 	for (i = 0; i < interface->num_rx_queues; i++) {
1323 		ring = READ_ONCE(interface->rx_ring[i]);
1324 
1325 		if (!ring)
1326 			continue;
1327 
1328 		do {
1329 			start = u64_stats_fetch_begin_irq(&ring->syncp);
1330 			packets = ring->stats.packets;
1331 			bytes   = ring->stats.bytes;
1332 		} while (u64_stats_fetch_retry_irq(&ring->syncp, start));
1333 
1334 		stats->rx_packets += packets;
1335 		stats->rx_bytes   += bytes;
1336 	}
1337 
1338 	for (i = 0; i < interface->num_tx_queues; i++) {
1339 		ring = READ_ONCE(interface->tx_ring[i]);
1340 
1341 		if (!ring)
1342 			continue;
1343 
1344 		do {
1345 			start = u64_stats_fetch_begin_irq(&ring->syncp);
1346 			packets = ring->stats.packets;
1347 			bytes   = ring->stats.bytes;
1348 		} while (u64_stats_fetch_retry_irq(&ring->syncp, start));
1349 
1350 		stats->tx_packets += packets;
1351 		stats->tx_bytes   += bytes;
1352 	}
1353 
1354 	rcu_read_unlock();
1355 
1356 	/* following stats updated by fm10k_service_task() */
1357 	stats->rx_missed_errors	= netdev->stats.rx_missed_errors;
1358 }
1359 
1360 int fm10k_setup_tc(struct net_device *dev, u8 tc)
1361 {
1362 	struct fm10k_intfc *interface = netdev_priv(dev);
1363 	int err;
1364 
1365 	/* Currently only the PF supports priority classes */
1366 	if (tc && (interface->hw.mac.type != fm10k_mac_pf))
1367 		return -EINVAL;
1368 
1369 	/* Hardware supports up to 8 traffic classes */
1370 	if (tc > 8)
1371 		return -EINVAL;
1372 
1373 	/* Hardware has to reinitialize queues to match packet
1374 	 * buffer alignment. Unfortunately, the hardware is not
1375 	 * flexible enough to do this dynamically.
1376 	 */
1377 	if (netif_running(dev))
1378 		fm10k_close(dev);
1379 
1380 	fm10k_mbx_free_irq(interface);
1381 
1382 	fm10k_clear_queueing_scheme(interface);
1383 
1384 	/* we expect the prio_tc map to be repopulated later */
1385 	netdev_reset_tc(dev);
1386 	netdev_set_num_tc(dev, tc);
1387 
1388 	err = fm10k_init_queueing_scheme(interface);
1389 	if (err)
1390 		goto err_queueing_scheme;
1391 
1392 	err = fm10k_mbx_request_irq(interface);
1393 	if (err)
1394 		goto err_mbx_irq;
1395 
1396 	err = netif_running(dev) ? fm10k_open(dev) : 0;
1397 	if (err)
1398 		goto err_open;
1399 
1400 	/* flag to indicate SWPRI has yet to be updated */
1401 	set_bit(FM10K_FLAG_SWPRI_CONFIG, interface->flags);
1402 
1403 	return 0;
1404 err_open:
1405 	fm10k_mbx_free_irq(interface);
1406 err_mbx_irq:
1407 	fm10k_clear_queueing_scheme(interface);
1408 err_queueing_scheme:
1409 	netif_device_detach(dev);
1410 
1411 	return err;
1412 }
1413 
1414 static int __fm10k_setup_tc(struct net_device *dev, enum tc_setup_type type,
1415 			    void *type_data)
1416 {
1417 	struct tc_mqprio_qopt *mqprio = type_data;
1418 
1419 	if (type != TC_SETUP_QDISC_MQPRIO)
1420 		return -EOPNOTSUPP;
1421 
1422 	mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS;
1423 
1424 	return fm10k_setup_tc(dev, mqprio->num_tc);
1425 }
1426 
1427 static void fm10k_assign_l2_accel(struct fm10k_intfc *interface,
1428 				  struct fm10k_l2_accel *l2_accel)
1429 {
1430 	struct fm10k_ring *ring;
1431 	int i;
1432 
1433 	for (i = 0; i < interface->num_rx_queues; i++) {
1434 		ring = interface->rx_ring[i];
1435 		rcu_assign_pointer(ring->l2_accel, l2_accel);
1436 	}
1437 
1438 	interface->l2_accel = l2_accel;
1439 }
1440 
1441 static void *fm10k_dfwd_add_station(struct net_device *dev,
1442 				    struct net_device *sdev)
1443 {
1444 	struct fm10k_intfc *interface = netdev_priv(dev);
1445 	struct fm10k_l2_accel *l2_accel = interface->l2_accel;
1446 	struct fm10k_l2_accel *old_l2_accel = NULL;
1447 	struct fm10k_dglort_cfg dglort = { 0 };
1448 	struct fm10k_hw *hw = &interface->hw;
1449 	int size = 0, i;
1450 	u16 glort;
1451 
1452 	/* allocate l2 accel structure if it is not available */
1453 	if (!l2_accel) {
1454 		/* verify there is enough free GLORTs to support l2_accel */
1455 		if (interface->glort_count < 7)
1456 			return ERR_PTR(-EBUSY);
1457 
1458 		size = offsetof(struct fm10k_l2_accel, macvlan[7]);
1459 		l2_accel = kzalloc(size, GFP_KERNEL);
1460 		if (!l2_accel)
1461 			return ERR_PTR(-ENOMEM);
1462 
1463 		l2_accel->size = 7;
1464 		l2_accel->dglort = interface->glort;
1465 
1466 		/* update pointers */
1467 		fm10k_assign_l2_accel(interface, l2_accel);
1468 	/* do not expand if we are at our limit */
1469 	} else if ((l2_accel->count == FM10K_MAX_STATIONS) ||
1470 		   (l2_accel->count == (interface->glort_count - 1))) {
1471 		return ERR_PTR(-EBUSY);
1472 	/* expand if we have hit the size limit */
1473 	} else if (l2_accel->count == l2_accel->size) {
1474 		old_l2_accel = l2_accel;
1475 		size = offsetof(struct fm10k_l2_accel,
1476 				macvlan[(l2_accel->size * 2) + 1]);
1477 		l2_accel = kzalloc(size, GFP_KERNEL);
1478 		if (!l2_accel)
1479 			return ERR_PTR(-ENOMEM);
1480 
1481 		memcpy(l2_accel, old_l2_accel,
1482 		       offsetof(struct fm10k_l2_accel,
1483 				macvlan[old_l2_accel->size]));
1484 
1485 		l2_accel->size = (old_l2_accel->size * 2) + 1;
1486 
1487 		/* update pointers */
1488 		fm10k_assign_l2_accel(interface, l2_accel);
1489 		kfree_rcu(old_l2_accel, rcu);
1490 	}
1491 
1492 	/* add macvlan to accel table, and record GLORT for position */
1493 	for (i = 0; i < l2_accel->size; i++) {
1494 		if (!l2_accel->macvlan[i])
1495 			break;
1496 	}
1497 
1498 	/* record station */
1499 	l2_accel->macvlan[i] = sdev;
1500 	l2_accel->count++;
1501 
1502 	/* configure default DGLORT mapping for RSS/DCB */
1503 	dglort.idx = fm10k_dglort_pf_rss;
1504 	dglort.inner_rss = 1;
1505 	dglort.rss_l = fls(interface->ring_feature[RING_F_RSS].mask);
1506 	dglort.pc_l = fls(interface->ring_feature[RING_F_QOS].mask);
1507 	dglort.glort = interface->glort;
1508 	dglort.shared_l = fls(l2_accel->size);
1509 	hw->mac.ops.configure_dglort_map(hw, &dglort);
1510 
1511 	/* Add rules for this specific dglort to the switch */
1512 	fm10k_mbx_lock(interface);
1513 
1514 	glort = l2_accel->dglort + 1 + i;
1515 
1516 	if (fm10k_host_mbx_ready(interface)) {
1517 		hw->mac.ops.update_xcast_mode(hw, glort,
1518 					      FM10K_XCAST_MODE_MULTI);
1519 		fm10k_queue_mac_request(interface, glort, sdev->dev_addr,
1520 					hw->mac.default_vid, true);
1521 	}
1522 
1523 	fm10k_mbx_unlock(interface);
1524 
1525 	return sdev;
1526 }
1527 
1528 static void fm10k_dfwd_del_station(struct net_device *dev, void *priv)
1529 {
1530 	struct fm10k_intfc *interface = netdev_priv(dev);
1531 	struct fm10k_l2_accel *l2_accel = READ_ONCE(interface->l2_accel);
1532 	struct fm10k_dglort_cfg dglort = { 0 };
1533 	struct fm10k_hw *hw = &interface->hw;
1534 	struct net_device *sdev = priv;
1535 	int i;
1536 	u16 glort;
1537 
1538 	if (!l2_accel)
1539 		return;
1540 
1541 	/* search table for matching interface */
1542 	for (i = 0; i < l2_accel->size; i++) {
1543 		if (l2_accel->macvlan[i] == sdev)
1544 			break;
1545 	}
1546 
1547 	/* exit if macvlan not found */
1548 	if (i == l2_accel->size)
1549 		return;
1550 
1551 	/* Remove any rules specific to this dglort */
1552 	fm10k_mbx_lock(interface);
1553 
1554 	glort = l2_accel->dglort + 1 + i;
1555 
1556 	if (fm10k_host_mbx_ready(interface)) {
1557 		hw->mac.ops.update_xcast_mode(hw, glort,
1558 					      FM10K_XCAST_MODE_NONE);
1559 		fm10k_queue_mac_request(interface, glort, sdev->dev_addr,
1560 					hw->mac.default_vid, false);
1561 	}
1562 
1563 	fm10k_mbx_unlock(interface);
1564 
1565 	/* record removal */
1566 	l2_accel->macvlan[i] = NULL;
1567 	l2_accel->count--;
1568 
1569 	/* configure default DGLORT mapping for RSS/DCB */
1570 	dglort.idx = fm10k_dglort_pf_rss;
1571 	dglort.inner_rss = 1;
1572 	dglort.rss_l = fls(interface->ring_feature[RING_F_RSS].mask);
1573 	dglort.pc_l = fls(interface->ring_feature[RING_F_QOS].mask);
1574 	dglort.glort = interface->glort;
1575 	dglort.shared_l = fls(l2_accel->size);
1576 	hw->mac.ops.configure_dglort_map(hw, &dglort);
1577 
1578 	/* If table is empty remove it */
1579 	if (l2_accel->count == 0) {
1580 		fm10k_assign_l2_accel(interface, NULL);
1581 		kfree_rcu(l2_accel, rcu);
1582 	}
1583 }
1584 
1585 static netdev_features_t fm10k_features_check(struct sk_buff *skb,
1586 					      struct net_device *dev,
1587 					      netdev_features_t features)
1588 {
1589 	if (!skb->encapsulation || fm10k_tx_encap_offload(skb))
1590 		return features;
1591 
1592 	return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
1593 }
1594 
1595 static const struct net_device_ops fm10k_netdev_ops = {
1596 	.ndo_open		= fm10k_open,
1597 	.ndo_stop		= fm10k_close,
1598 	.ndo_validate_addr	= eth_validate_addr,
1599 	.ndo_start_xmit		= fm10k_xmit_frame,
1600 	.ndo_set_mac_address	= fm10k_set_mac,
1601 	.ndo_tx_timeout		= fm10k_tx_timeout,
1602 	.ndo_vlan_rx_add_vid	= fm10k_vlan_rx_add_vid,
1603 	.ndo_vlan_rx_kill_vid	= fm10k_vlan_rx_kill_vid,
1604 	.ndo_set_rx_mode	= fm10k_set_rx_mode,
1605 	.ndo_get_stats64	= fm10k_get_stats64,
1606 	.ndo_setup_tc		= __fm10k_setup_tc,
1607 	.ndo_set_vf_mac		= fm10k_ndo_set_vf_mac,
1608 	.ndo_set_vf_vlan	= fm10k_ndo_set_vf_vlan,
1609 	.ndo_set_vf_rate	= fm10k_ndo_set_vf_bw,
1610 	.ndo_get_vf_config	= fm10k_ndo_get_vf_config,
1611 	.ndo_udp_tunnel_add	= fm10k_udp_tunnel_add,
1612 	.ndo_udp_tunnel_del	= fm10k_udp_tunnel_del,
1613 	.ndo_dfwd_add_station	= fm10k_dfwd_add_station,
1614 	.ndo_dfwd_del_station	= fm10k_dfwd_del_station,
1615 #ifdef CONFIG_NET_POLL_CONTROLLER
1616 	.ndo_poll_controller	= fm10k_netpoll,
1617 #endif
1618 	.ndo_features_check	= fm10k_features_check,
1619 };
1620 
1621 #define DEFAULT_DEBUG_LEVEL_SHIFT 3
1622 
1623 struct net_device *fm10k_alloc_netdev(const struct fm10k_info *info)
1624 {
1625 	netdev_features_t hw_features;
1626 	struct fm10k_intfc *interface;
1627 	struct net_device *dev;
1628 
1629 	dev = alloc_etherdev_mq(sizeof(struct fm10k_intfc), MAX_QUEUES);
1630 	if (!dev)
1631 		return NULL;
1632 
1633 	/* set net device and ethtool ops */
1634 	dev->netdev_ops = &fm10k_netdev_ops;
1635 	fm10k_set_ethtool_ops(dev);
1636 
1637 	/* configure default debug level */
1638 	interface = netdev_priv(dev);
1639 	interface->msg_enable = BIT(DEFAULT_DEBUG_LEVEL_SHIFT) - 1;
1640 
1641 	/* configure default features */
1642 	dev->features |= NETIF_F_IP_CSUM |
1643 			 NETIF_F_IPV6_CSUM |
1644 			 NETIF_F_SG |
1645 			 NETIF_F_TSO |
1646 			 NETIF_F_TSO6 |
1647 			 NETIF_F_TSO_ECN |
1648 			 NETIF_F_RXHASH |
1649 			 NETIF_F_RXCSUM;
1650 
1651 	/* Only the PF can support VXLAN and NVGRE tunnel offloads */
1652 	if (info->mac == fm10k_mac_pf) {
1653 		dev->hw_enc_features = NETIF_F_IP_CSUM |
1654 				       NETIF_F_TSO |
1655 				       NETIF_F_TSO6 |
1656 				       NETIF_F_TSO_ECN |
1657 				       NETIF_F_GSO_UDP_TUNNEL |
1658 				       NETIF_F_IPV6_CSUM |
1659 				       NETIF_F_SG;
1660 
1661 		dev->features |= NETIF_F_GSO_UDP_TUNNEL;
1662 	}
1663 
1664 	/* all features defined to this point should be changeable */
1665 	hw_features = dev->features;
1666 
1667 	/* allow user to enable L2 forwarding acceleration */
1668 	hw_features |= NETIF_F_HW_L2FW_DOFFLOAD;
1669 
1670 	/* configure VLAN features */
1671 	dev->vlan_features |= dev->features;
1672 
1673 	/* we want to leave these both on as we cannot disable VLAN tag
1674 	 * insertion or stripping on the hardware since it is contained
1675 	 * in the FTAG and not in the frame itself.
1676 	 */
1677 	dev->features |= NETIF_F_HW_VLAN_CTAG_TX |
1678 			 NETIF_F_HW_VLAN_CTAG_RX |
1679 			 NETIF_F_HW_VLAN_CTAG_FILTER;
1680 
1681 	dev->priv_flags |= IFF_UNICAST_FLT;
1682 
1683 	dev->hw_features |= hw_features;
1684 
1685 	/* MTU range: 68 - 15342 */
1686 	dev->min_mtu = ETH_MIN_MTU;
1687 	dev->max_mtu = FM10K_MAX_JUMBO_FRAME_SIZE;
1688 
1689 	return dev;
1690 }
1691