1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright(c) 2013 - 2019 Intel Corporation. */ 3 4 #include "fm10k.h" 5 #include <linux/vmalloc.h> 6 #include <net/udp_tunnel.h> 7 #include <linux/if_macvlan.h> 8 9 /** 10 * fm10k_setup_tx_resources - allocate Tx resources (Descriptors) 11 * @tx_ring: tx descriptor ring (for a specific queue) to setup 12 * 13 * Return 0 on success, negative on failure 14 **/ 15 int fm10k_setup_tx_resources(struct fm10k_ring *tx_ring) 16 { 17 struct device *dev = tx_ring->dev; 18 int size; 19 20 size = sizeof(struct fm10k_tx_buffer) * tx_ring->count; 21 22 tx_ring->tx_buffer = vzalloc(size); 23 if (!tx_ring->tx_buffer) 24 goto err; 25 26 u64_stats_init(&tx_ring->syncp); 27 28 /* round up to nearest 4K */ 29 tx_ring->size = tx_ring->count * sizeof(struct fm10k_tx_desc); 30 tx_ring->size = ALIGN(tx_ring->size, 4096); 31 32 tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size, 33 &tx_ring->dma, GFP_KERNEL); 34 if (!tx_ring->desc) 35 goto err; 36 37 return 0; 38 39 err: 40 vfree(tx_ring->tx_buffer); 41 tx_ring->tx_buffer = NULL; 42 return -ENOMEM; 43 } 44 45 /** 46 * fm10k_setup_all_tx_resources - allocate all queues Tx resources 47 * @interface: board private structure 48 * 49 * If this function returns with an error, then it's possible one or 50 * more of the rings is populated (while the rest are not). It is the 51 * callers duty to clean those orphaned rings. 52 * 53 * Return 0 on success, negative on failure 54 **/ 55 static int fm10k_setup_all_tx_resources(struct fm10k_intfc *interface) 56 { 57 int i, err; 58 59 for (i = 0; i < interface->num_tx_queues; i++) { 60 err = fm10k_setup_tx_resources(interface->tx_ring[i]); 61 if (!err) 62 continue; 63 64 netif_err(interface, probe, interface->netdev, 65 "Allocation for Tx Queue %u failed\n", i); 66 goto err_setup_tx; 67 } 68 69 return 0; 70 err_setup_tx: 71 /* rewind the index freeing the rings as we go */ 72 while (i--) 73 fm10k_free_tx_resources(interface->tx_ring[i]); 74 return err; 75 } 76 77 /** 78 * fm10k_setup_rx_resources - allocate Rx resources (Descriptors) 79 * @rx_ring: rx descriptor ring (for a specific queue) to setup 80 * 81 * Returns 0 on success, negative on failure 82 **/ 83 int fm10k_setup_rx_resources(struct fm10k_ring *rx_ring) 84 { 85 struct device *dev = rx_ring->dev; 86 int size; 87 88 size = sizeof(struct fm10k_rx_buffer) * rx_ring->count; 89 90 rx_ring->rx_buffer = vzalloc(size); 91 if (!rx_ring->rx_buffer) 92 goto err; 93 94 u64_stats_init(&rx_ring->syncp); 95 96 /* Round up to nearest 4K */ 97 rx_ring->size = rx_ring->count * sizeof(union fm10k_rx_desc); 98 rx_ring->size = ALIGN(rx_ring->size, 4096); 99 100 rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size, 101 &rx_ring->dma, GFP_KERNEL); 102 if (!rx_ring->desc) 103 goto err; 104 105 return 0; 106 err: 107 vfree(rx_ring->rx_buffer); 108 rx_ring->rx_buffer = NULL; 109 return -ENOMEM; 110 } 111 112 /** 113 * fm10k_setup_all_rx_resources - allocate all queues Rx resources 114 * @interface: board private structure 115 * 116 * If this function returns with an error, then it's possible one or 117 * more of the rings is populated (while the rest are not). It is the 118 * callers duty to clean those orphaned rings. 119 * 120 * Return 0 on success, negative on failure 121 **/ 122 static int fm10k_setup_all_rx_resources(struct fm10k_intfc *interface) 123 { 124 int i, err; 125 126 for (i = 0; i < interface->num_rx_queues; i++) { 127 err = fm10k_setup_rx_resources(interface->rx_ring[i]); 128 if (!err) 129 continue; 130 131 netif_err(interface, probe, interface->netdev, 132 "Allocation for Rx Queue %u failed\n", i); 133 goto err_setup_rx; 134 } 135 136 return 0; 137 err_setup_rx: 138 /* rewind the index freeing the rings as we go */ 139 while (i--) 140 fm10k_free_rx_resources(interface->rx_ring[i]); 141 return err; 142 } 143 144 void fm10k_unmap_and_free_tx_resource(struct fm10k_ring *ring, 145 struct fm10k_tx_buffer *tx_buffer) 146 { 147 if (tx_buffer->skb) { 148 dev_kfree_skb_any(tx_buffer->skb); 149 if (dma_unmap_len(tx_buffer, len)) 150 dma_unmap_single(ring->dev, 151 dma_unmap_addr(tx_buffer, dma), 152 dma_unmap_len(tx_buffer, len), 153 DMA_TO_DEVICE); 154 } else if (dma_unmap_len(tx_buffer, len)) { 155 dma_unmap_page(ring->dev, 156 dma_unmap_addr(tx_buffer, dma), 157 dma_unmap_len(tx_buffer, len), 158 DMA_TO_DEVICE); 159 } 160 tx_buffer->next_to_watch = NULL; 161 tx_buffer->skb = NULL; 162 dma_unmap_len_set(tx_buffer, len, 0); 163 /* tx_buffer must be completely set up in the transmit path */ 164 } 165 166 /** 167 * fm10k_clean_tx_ring - Free Tx Buffers 168 * @tx_ring: ring to be cleaned 169 **/ 170 static void fm10k_clean_tx_ring(struct fm10k_ring *tx_ring) 171 { 172 unsigned long size; 173 u16 i; 174 175 /* ring already cleared, nothing to do */ 176 if (!tx_ring->tx_buffer) 177 return; 178 179 /* Free all the Tx ring sk_buffs */ 180 for (i = 0; i < tx_ring->count; i++) { 181 struct fm10k_tx_buffer *tx_buffer = &tx_ring->tx_buffer[i]; 182 183 fm10k_unmap_and_free_tx_resource(tx_ring, tx_buffer); 184 } 185 186 /* reset BQL values */ 187 netdev_tx_reset_queue(txring_txq(tx_ring)); 188 189 size = sizeof(struct fm10k_tx_buffer) * tx_ring->count; 190 memset(tx_ring->tx_buffer, 0, size); 191 192 /* Zero out the descriptor ring */ 193 memset(tx_ring->desc, 0, tx_ring->size); 194 } 195 196 /** 197 * fm10k_free_tx_resources - Free Tx Resources per Queue 198 * @tx_ring: Tx descriptor ring for a specific queue 199 * 200 * Free all transmit software resources 201 **/ 202 void fm10k_free_tx_resources(struct fm10k_ring *tx_ring) 203 { 204 fm10k_clean_tx_ring(tx_ring); 205 206 vfree(tx_ring->tx_buffer); 207 tx_ring->tx_buffer = NULL; 208 209 /* if not set, then don't free */ 210 if (!tx_ring->desc) 211 return; 212 213 dma_free_coherent(tx_ring->dev, tx_ring->size, 214 tx_ring->desc, tx_ring->dma); 215 tx_ring->desc = NULL; 216 } 217 218 /** 219 * fm10k_clean_all_tx_rings - Free Tx Buffers for all queues 220 * @interface: board private structure 221 **/ 222 void fm10k_clean_all_tx_rings(struct fm10k_intfc *interface) 223 { 224 int i; 225 226 for (i = 0; i < interface->num_tx_queues; i++) 227 fm10k_clean_tx_ring(interface->tx_ring[i]); 228 } 229 230 /** 231 * fm10k_free_all_tx_resources - Free Tx Resources for All Queues 232 * @interface: board private structure 233 * 234 * Free all transmit software resources 235 **/ 236 static void fm10k_free_all_tx_resources(struct fm10k_intfc *interface) 237 { 238 int i = interface->num_tx_queues; 239 240 while (i--) 241 fm10k_free_tx_resources(interface->tx_ring[i]); 242 } 243 244 /** 245 * fm10k_clean_rx_ring - Free Rx Buffers per Queue 246 * @rx_ring: ring to free buffers from 247 **/ 248 static void fm10k_clean_rx_ring(struct fm10k_ring *rx_ring) 249 { 250 unsigned long size; 251 u16 i; 252 253 if (!rx_ring->rx_buffer) 254 return; 255 256 dev_kfree_skb(rx_ring->skb); 257 rx_ring->skb = NULL; 258 259 /* Free all the Rx ring sk_buffs */ 260 for (i = 0; i < rx_ring->count; i++) { 261 struct fm10k_rx_buffer *buffer = &rx_ring->rx_buffer[i]; 262 /* clean-up will only set page pointer to NULL */ 263 if (!buffer->page) 264 continue; 265 266 dma_unmap_page(rx_ring->dev, buffer->dma, 267 PAGE_SIZE, DMA_FROM_DEVICE); 268 __free_page(buffer->page); 269 270 buffer->page = NULL; 271 } 272 273 size = sizeof(struct fm10k_rx_buffer) * rx_ring->count; 274 memset(rx_ring->rx_buffer, 0, size); 275 276 /* Zero out the descriptor ring */ 277 memset(rx_ring->desc, 0, rx_ring->size); 278 279 rx_ring->next_to_alloc = 0; 280 rx_ring->next_to_clean = 0; 281 rx_ring->next_to_use = 0; 282 } 283 284 /** 285 * fm10k_free_rx_resources - Free Rx Resources 286 * @rx_ring: ring to clean the resources from 287 * 288 * Free all receive software resources 289 **/ 290 void fm10k_free_rx_resources(struct fm10k_ring *rx_ring) 291 { 292 fm10k_clean_rx_ring(rx_ring); 293 294 vfree(rx_ring->rx_buffer); 295 rx_ring->rx_buffer = NULL; 296 297 /* if not set, then don't free */ 298 if (!rx_ring->desc) 299 return; 300 301 dma_free_coherent(rx_ring->dev, rx_ring->size, 302 rx_ring->desc, rx_ring->dma); 303 304 rx_ring->desc = NULL; 305 } 306 307 /** 308 * fm10k_clean_all_rx_rings - Free Rx Buffers for all queues 309 * @interface: board private structure 310 **/ 311 void fm10k_clean_all_rx_rings(struct fm10k_intfc *interface) 312 { 313 int i; 314 315 for (i = 0; i < interface->num_rx_queues; i++) 316 fm10k_clean_rx_ring(interface->rx_ring[i]); 317 } 318 319 /** 320 * fm10k_free_all_rx_resources - Free Rx Resources for All Queues 321 * @interface: board private structure 322 * 323 * Free all receive software resources 324 **/ 325 static void fm10k_free_all_rx_resources(struct fm10k_intfc *interface) 326 { 327 int i = interface->num_rx_queues; 328 329 while (i--) 330 fm10k_free_rx_resources(interface->rx_ring[i]); 331 } 332 333 /** 334 * fm10k_request_glort_range - Request GLORTs for use in configuring rules 335 * @interface: board private structure 336 * 337 * This function allocates a range of glorts for this interface to use. 338 **/ 339 static void fm10k_request_glort_range(struct fm10k_intfc *interface) 340 { 341 struct fm10k_hw *hw = &interface->hw; 342 u16 mask = (~hw->mac.dglort_map) >> FM10K_DGLORTMAP_MASK_SHIFT; 343 344 /* establish GLORT base */ 345 interface->glort = hw->mac.dglort_map & FM10K_DGLORTMAP_NONE; 346 interface->glort_count = 0; 347 348 /* nothing we can do until mask is allocated */ 349 if (hw->mac.dglort_map == FM10K_DGLORTMAP_NONE) 350 return; 351 352 /* we support 3 possible GLORT configurations. 353 * 1: VFs consume all but the last 1 354 * 2: VFs and PF split glorts with possible gap between 355 * 3: VFs allocated first 64, all others belong to PF 356 */ 357 if (mask <= hw->iov.total_vfs) { 358 interface->glort_count = 1; 359 interface->glort += mask; 360 } else if (mask < 64) { 361 interface->glort_count = (mask + 1) / 2; 362 interface->glort += interface->glort_count; 363 } else { 364 interface->glort_count = mask - 63; 365 interface->glort += 64; 366 } 367 } 368 369 /** 370 * fm10k_free_udp_port_info 371 * @interface: board private structure 372 * 373 * This function frees both geneve_port and vxlan_port structures 374 **/ 375 static void fm10k_free_udp_port_info(struct fm10k_intfc *interface) 376 { 377 struct fm10k_udp_port *port; 378 379 /* flush all entries from vxlan list */ 380 port = list_first_entry_or_null(&interface->vxlan_port, 381 struct fm10k_udp_port, list); 382 while (port) { 383 list_del(&port->list); 384 kfree(port); 385 port = list_first_entry_or_null(&interface->vxlan_port, 386 struct fm10k_udp_port, 387 list); 388 } 389 390 /* flush all entries from geneve list */ 391 port = list_first_entry_or_null(&interface->geneve_port, 392 struct fm10k_udp_port, list); 393 while (port) { 394 list_del(&port->list); 395 kfree(port); 396 port = list_first_entry_or_null(&interface->vxlan_port, 397 struct fm10k_udp_port, 398 list); 399 } 400 } 401 402 /** 403 * fm10k_restore_udp_port_info 404 * @interface: board private structure 405 * 406 * This function restores the value in the tunnel_cfg register(s) after reset 407 **/ 408 static void fm10k_restore_udp_port_info(struct fm10k_intfc *interface) 409 { 410 struct fm10k_hw *hw = &interface->hw; 411 struct fm10k_udp_port *port; 412 413 /* only the PF supports configuring tunnels */ 414 if (hw->mac.type != fm10k_mac_pf) 415 return; 416 417 port = list_first_entry_or_null(&interface->vxlan_port, 418 struct fm10k_udp_port, list); 419 420 /* restore tunnel configuration register */ 421 fm10k_write_reg(hw, FM10K_TUNNEL_CFG, 422 (port ? ntohs(port->port) : 0) | 423 (ETH_P_TEB << FM10K_TUNNEL_CFG_NVGRE_SHIFT)); 424 425 port = list_first_entry_or_null(&interface->geneve_port, 426 struct fm10k_udp_port, list); 427 428 /* restore Geneve tunnel configuration register */ 429 fm10k_write_reg(hw, FM10K_TUNNEL_CFG_GENEVE, 430 (port ? ntohs(port->port) : 0)); 431 } 432 433 static struct fm10k_udp_port * 434 fm10k_remove_tunnel_port(struct list_head *ports, 435 struct udp_tunnel_info *ti) 436 { 437 struct fm10k_udp_port *port; 438 439 list_for_each_entry(port, ports, list) { 440 if ((port->port == ti->port) && 441 (port->sa_family == ti->sa_family)) { 442 list_del(&port->list); 443 return port; 444 } 445 } 446 447 return NULL; 448 } 449 450 static void fm10k_insert_tunnel_port(struct list_head *ports, 451 struct udp_tunnel_info *ti) 452 { 453 struct fm10k_udp_port *port; 454 455 /* remove existing port entry from the list so that the newest items 456 * are always at the tail of the list. 457 */ 458 port = fm10k_remove_tunnel_port(ports, ti); 459 if (!port) { 460 port = kmalloc(sizeof(*port), GFP_ATOMIC); 461 if (!port) 462 return; 463 port->port = ti->port; 464 port->sa_family = ti->sa_family; 465 } 466 467 list_add_tail(&port->list, ports); 468 } 469 470 /** 471 * fm10k_udp_tunnel_add 472 * @dev: network interface device structure 473 * @ti: Tunnel endpoint information 474 * 475 * This function is called when a new UDP tunnel port has been added. 476 * Due to hardware restrictions, only one port per type can be offloaded at 477 * once. 478 **/ 479 static void fm10k_udp_tunnel_add(struct net_device *dev, 480 struct udp_tunnel_info *ti) 481 { 482 struct fm10k_intfc *interface = netdev_priv(dev); 483 484 /* only the PF supports configuring tunnels */ 485 if (interface->hw.mac.type != fm10k_mac_pf) 486 return; 487 488 switch (ti->type) { 489 case UDP_TUNNEL_TYPE_VXLAN: 490 fm10k_insert_tunnel_port(&interface->vxlan_port, ti); 491 break; 492 case UDP_TUNNEL_TYPE_GENEVE: 493 fm10k_insert_tunnel_port(&interface->geneve_port, ti); 494 break; 495 default: 496 return; 497 } 498 499 fm10k_restore_udp_port_info(interface); 500 } 501 502 /** 503 * fm10k_udp_tunnel_del 504 * @dev: network interface device structure 505 * @ti: Tunnel end point information 506 * 507 * This function is called when a new UDP tunnel port is deleted. The freed 508 * port will be removed from the list, then we reprogram the offloaded port 509 * based on the head of the list. 510 **/ 511 static void fm10k_udp_tunnel_del(struct net_device *dev, 512 struct udp_tunnel_info *ti) 513 { 514 struct fm10k_intfc *interface = netdev_priv(dev); 515 struct fm10k_udp_port *port = NULL; 516 517 if (interface->hw.mac.type != fm10k_mac_pf) 518 return; 519 520 switch (ti->type) { 521 case UDP_TUNNEL_TYPE_VXLAN: 522 port = fm10k_remove_tunnel_port(&interface->vxlan_port, ti); 523 break; 524 case UDP_TUNNEL_TYPE_GENEVE: 525 port = fm10k_remove_tunnel_port(&interface->geneve_port, ti); 526 break; 527 default: 528 return; 529 } 530 531 /* if we did remove a port we need to free its memory */ 532 kfree(port); 533 534 fm10k_restore_udp_port_info(interface); 535 } 536 537 /** 538 * fm10k_open - Called when a network interface is made active 539 * @netdev: network interface device structure 540 * 541 * Returns 0 on success, negative value on failure 542 * 543 * The open entry point is called when a network interface is made 544 * active by the system (IFF_UP). At this point all resources needed 545 * for transmit and receive operations are allocated, the interrupt 546 * handler is registered with the OS, the watchdog timer is started, 547 * and the stack is notified that the interface is ready. 548 **/ 549 int fm10k_open(struct net_device *netdev) 550 { 551 struct fm10k_intfc *interface = netdev_priv(netdev); 552 int err; 553 554 /* allocate transmit descriptors */ 555 err = fm10k_setup_all_tx_resources(interface); 556 if (err) 557 goto err_setup_tx; 558 559 /* allocate receive descriptors */ 560 err = fm10k_setup_all_rx_resources(interface); 561 if (err) 562 goto err_setup_rx; 563 564 /* allocate interrupt resources */ 565 err = fm10k_qv_request_irq(interface); 566 if (err) 567 goto err_req_irq; 568 569 /* setup GLORT assignment for this port */ 570 fm10k_request_glort_range(interface); 571 572 /* Notify the stack of the actual queue counts */ 573 err = netif_set_real_num_tx_queues(netdev, 574 interface->num_tx_queues); 575 if (err) 576 goto err_set_queues; 577 578 err = netif_set_real_num_rx_queues(netdev, 579 interface->num_rx_queues); 580 if (err) 581 goto err_set_queues; 582 583 udp_tunnel_get_rx_info(netdev); 584 585 fm10k_up(interface); 586 587 return 0; 588 589 err_set_queues: 590 fm10k_qv_free_irq(interface); 591 err_req_irq: 592 fm10k_free_all_rx_resources(interface); 593 err_setup_rx: 594 fm10k_free_all_tx_resources(interface); 595 err_setup_tx: 596 return err; 597 } 598 599 /** 600 * fm10k_close - Disables a network interface 601 * @netdev: network interface device structure 602 * 603 * Returns 0, this is not allowed to fail 604 * 605 * The close entry point is called when an interface is de-activated 606 * by the OS. The hardware is still under the drivers control, but 607 * needs to be disabled. A global MAC reset is issued to stop the 608 * hardware, and all transmit and receive resources are freed. 609 **/ 610 int fm10k_close(struct net_device *netdev) 611 { 612 struct fm10k_intfc *interface = netdev_priv(netdev); 613 614 fm10k_down(interface); 615 616 fm10k_qv_free_irq(interface); 617 618 fm10k_free_udp_port_info(interface); 619 620 fm10k_free_all_tx_resources(interface); 621 fm10k_free_all_rx_resources(interface); 622 623 return 0; 624 } 625 626 static netdev_tx_t fm10k_xmit_frame(struct sk_buff *skb, struct net_device *dev) 627 { 628 struct fm10k_intfc *interface = netdev_priv(dev); 629 int num_tx_queues = READ_ONCE(interface->num_tx_queues); 630 unsigned int r_idx = skb->queue_mapping; 631 int err; 632 633 if (!num_tx_queues) 634 return NETDEV_TX_BUSY; 635 636 if ((skb->protocol == htons(ETH_P_8021Q)) && 637 !skb_vlan_tag_present(skb)) { 638 /* FM10K only supports hardware tagging, any tags in frame 639 * are considered 2nd level or "outer" tags 640 */ 641 struct vlan_hdr *vhdr; 642 __be16 proto; 643 644 /* make sure skb is not shared */ 645 skb = skb_share_check(skb, GFP_ATOMIC); 646 if (!skb) 647 return NETDEV_TX_OK; 648 649 /* make sure there is enough room to move the ethernet header */ 650 if (unlikely(!pskb_may_pull(skb, VLAN_ETH_HLEN))) 651 return NETDEV_TX_OK; 652 653 /* verify the skb head is not shared */ 654 err = skb_cow_head(skb, 0); 655 if (err) { 656 dev_kfree_skb(skb); 657 return NETDEV_TX_OK; 658 } 659 660 /* locate VLAN header */ 661 vhdr = (struct vlan_hdr *)(skb->data + ETH_HLEN); 662 663 /* pull the 2 key pieces of data out of it */ 664 __vlan_hwaccel_put_tag(skb, 665 htons(ETH_P_8021Q), 666 ntohs(vhdr->h_vlan_TCI)); 667 proto = vhdr->h_vlan_encapsulated_proto; 668 skb->protocol = (ntohs(proto) >= 1536) ? proto : 669 htons(ETH_P_802_2); 670 671 /* squash it by moving the ethernet addresses up 4 bytes */ 672 memmove(skb->data + VLAN_HLEN, skb->data, 12); 673 __skb_pull(skb, VLAN_HLEN); 674 skb_reset_mac_header(skb); 675 } 676 677 /* The minimum packet size for a single buffer is 17B so pad the skb 678 * in order to meet this minimum size requirement. 679 */ 680 if (unlikely(skb->len < 17)) { 681 int pad_len = 17 - skb->len; 682 683 if (skb_pad(skb, pad_len)) 684 return NETDEV_TX_OK; 685 __skb_put(skb, pad_len); 686 } 687 688 if (r_idx >= num_tx_queues) 689 r_idx %= num_tx_queues; 690 691 err = fm10k_xmit_frame_ring(skb, interface->tx_ring[r_idx]); 692 693 return err; 694 } 695 696 /** 697 * fm10k_tx_timeout - Respond to a Tx Hang 698 * @netdev: network interface device structure 699 * @txqueue: the index of the Tx queue that timed out 700 **/ 701 static void fm10k_tx_timeout(struct net_device *netdev, unsigned int txqueue) 702 { 703 struct fm10k_intfc *interface = netdev_priv(netdev); 704 struct fm10k_ring *tx_ring; 705 bool real_tx_hang = false; 706 707 if (txqueue >= interface->num_tx_queues) { 708 WARN(1, "invalid Tx queue index %d", txqueue); 709 return; 710 } 711 712 tx_ring = interface->tx_ring[txqueue]; 713 if (check_for_tx_hang(tx_ring) && fm10k_check_tx_hang(tx_ring)) 714 real_tx_hang = true; 715 716 #define TX_TIMEO_LIMIT 16000 717 if (real_tx_hang) { 718 fm10k_tx_timeout_reset(interface); 719 } else { 720 netif_info(interface, drv, netdev, 721 "Fake Tx hang detected with timeout of %d seconds\n", 722 netdev->watchdog_timeo / HZ); 723 724 /* fake Tx hang - increase the kernel timeout */ 725 if (netdev->watchdog_timeo < TX_TIMEO_LIMIT) 726 netdev->watchdog_timeo *= 2; 727 } 728 } 729 730 /** 731 * fm10k_host_mbx_ready - Check PF interface's mailbox readiness 732 * @interface: board private structure 733 * 734 * This function checks if the PF interface's mailbox is ready before queueing 735 * mailbox messages for transmission. This will prevent filling the TX mailbox 736 * queue when the receiver is not ready. VF interfaces are exempt from this 737 * check since it will block all PF-VF mailbox messages from being sent from 738 * the VF to the PF at initialization. 739 **/ 740 static bool fm10k_host_mbx_ready(struct fm10k_intfc *interface) 741 { 742 struct fm10k_hw *hw = &interface->hw; 743 744 return (hw->mac.type == fm10k_mac_vf || interface->host_ready); 745 } 746 747 /** 748 * fm10k_queue_vlan_request - Queue a VLAN update request 749 * @interface: the fm10k interface structure 750 * @vid: the VLAN vid 751 * @vsi: VSI index number 752 * @set: whether to set or clear 753 * 754 * This function queues up a VLAN update. For VFs, this must be sent to the 755 * managing PF over the mailbox. For PFs, we'll use the same handling so that 756 * it's similar to the VF. This avoids storming the PF<->VF mailbox with too 757 * many VLAN updates during reset. 758 */ 759 int fm10k_queue_vlan_request(struct fm10k_intfc *interface, 760 u32 vid, u8 vsi, bool set) 761 { 762 struct fm10k_macvlan_request *request; 763 unsigned long flags; 764 765 /* This must be atomic since we may be called while the netdev 766 * addr_list_lock is held 767 */ 768 request = kzalloc(sizeof(*request), GFP_ATOMIC); 769 if (!request) 770 return -ENOMEM; 771 772 request->type = FM10K_VLAN_REQUEST; 773 request->vlan.vid = vid; 774 request->vlan.vsi = vsi; 775 request->set = set; 776 777 spin_lock_irqsave(&interface->macvlan_lock, flags); 778 list_add_tail(&request->list, &interface->macvlan_requests); 779 spin_unlock_irqrestore(&interface->macvlan_lock, flags); 780 781 fm10k_macvlan_schedule(interface); 782 783 return 0; 784 } 785 786 /** 787 * fm10k_queue_mac_request - Queue a MAC update request 788 * @interface: the fm10k interface structure 789 * @glort: the target glort for this update 790 * @addr: the address to update 791 * @vid: the vid to update 792 * @set: whether to add or remove 793 * 794 * This function queues up a MAC request for sending to the switch manager. 795 * A separate thread monitors the queue and sends updates to the switch 796 * manager. Return 0 on success, and negative error code on failure. 797 **/ 798 int fm10k_queue_mac_request(struct fm10k_intfc *interface, u16 glort, 799 const unsigned char *addr, u16 vid, bool set) 800 { 801 struct fm10k_macvlan_request *request; 802 unsigned long flags; 803 804 /* This must be atomic since we may be called while the netdev 805 * addr_list_lock is held 806 */ 807 request = kzalloc(sizeof(*request), GFP_ATOMIC); 808 if (!request) 809 return -ENOMEM; 810 811 if (is_multicast_ether_addr(addr)) 812 request->type = FM10K_MC_MAC_REQUEST; 813 else 814 request->type = FM10K_UC_MAC_REQUEST; 815 816 ether_addr_copy(request->mac.addr, addr); 817 request->mac.glort = glort; 818 request->mac.vid = vid; 819 request->set = set; 820 821 spin_lock_irqsave(&interface->macvlan_lock, flags); 822 list_add_tail(&request->list, &interface->macvlan_requests); 823 spin_unlock_irqrestore(&interface->macvlan_lock, flags); 824 825 fm10k_macvlan_schedule(interface); 826 827 return 0; 828 } 829 830 /** 831 * fm10k_clear_macvlan_queue - Cancel pending updates for a given glort 832 * @interface: the fm10k interface structure 833 * @glort: the target glort to clear 834 * @vlans: true to clear VLAN messages, false to ignore them 835 * 836 * Cancel any outstanding MAC/VLAN requests for a given glort. This is 837 * expected to be called when a logical port goes down. 838 **/ 839 void fm10k_clear_macvlan_queue(struct fm10k_intfc *interface, 840 u16 glort, bool vlans) 841 842 { 843 struct fm10k_macvlan_request *r, *tmp; 844 unsigned long flags; 845 846 spin_lock_irqsave(&interface->macvlan_lock, flags); 847 848 /* Free any outstanding MAC/VLAN requests for this interface */ 849 list_for_each_entry_safe(r, tmp, &interface->macvlan_requests, list) { 850 switch (r->type) { 851 case FM10K_MC_MAC_REQUEST: 852 case FM10K_UC_MAC_REQUEST: 853 /* Don't free requests for other interfaces */ 854 if (r->mac.glort != glort) 855 break; 856 /* fall through */ 857 case FM10K_VLAN_REQUEST: 858 if (vlans) { 859 list_del(&r->list); 860 kfree(r); 861 } 862 break; 863 } 864 } 865 866 spin_unlock_irqrestore(&interface->macvlan_lock, flags); 867 } 868 869 static int fm10k_uc_vlan_unsync(struct net_device *netdev, 870 const unsigned char *uc_addr) 871 { 872 struct fm10k_intfc *interface = netdev_priv(netdev); 873 u16 glort = interface->glort; 874 u16 vid = interface->vid; 875 bool set = !!(vid / VLAN_N_VID); 876 int err; 877 878 /* drop any leading bits on the VLAN ID */ 879 vid &= VLAN_N_VID - 1; 880 881 err = fm10k_queue_mac_request(interface, glort, uc_addr, vid, set); 882 if (err) 883 return err; 884 885 /* return non-zero value as we are only doing a partial sync/unsync */ 886 return 1; 887 } 888 889 static int fm10k_mc_vlan_unsync(struct net_device *netdev, 890 const unsigned char *mc_addr) 891 { 892 struct fm10k_intfc *interface = netdev_priv(netdev); 893 u16 glort = interface->glort; 894 u16 vid = interface->vid; 895 bool set = !!(vid / VLAN_N_VID); 896 int err; 897 898 /* drop any leading bits on the VLAN ID */ 899 vid &= VLAN_N_VID - 1; 900 901 err = fm10k_queue_mac_request(interface, glort, mc_addr, vid, set); 902 if (err) 903 return err; 904 905 /* return non-zero value as we are only doing a partial sync/unsync */ 906 return 1; 907 } 908 909 static int fm10k_update_vid(struct net_device *netdev, u16 vid, bool set) 910 { 911 struct fm10k_intfc *interface = netdev_priv(netdev); 912 struct fm10k_l2_accel *l2_accel = interface->l2_accel; 913 struct fm10k_hw *hw = &interface->hw; 914 u16 glort; 915 s32 err; 916 int i; 917 918 /* updates do not apply to VLAN 0 */ 919 if (!vid) 920 return 0; 921 922 if (vid >= VLAN_N_VID) 923 return -EINVAL; 924 925 /* Verify that we have permission to add VLANs. If this is a request 926 * to remove a VLAN, we still want to allow the user to remove the 927 * VLAN device. In that case, we need to clear the bit in the 928 * active_vlans bitmask. 929 */ 930 if (set && hw->mac.vlan_override) 931 return -EACCES; 932 933 /* update active_vlans bitmask */ 934 set_bit(vid, interface->active_vlans); 935 if (!set) 936 clear_bit(vid, interface->active_vlans); 937 938 /* disable the default VLAN ID on ring if we have an active VLAN */ 939 for (i = 0; i < interface->num_rx_queues; i++) { 940 struct fm10k_ring *rx_ring = interface->rx_ring[i]; 941 u16 rx_vid = rx_ring->vid & (VLAN_N_VID - 1); 942 943 if (test_bit(rx_vid, interface->active_vlans)) 944 rx_ring->vid |= FM10K_VLAN_CLEAR; 945 else 946 rx_ring->vid &= ~FM10K_VLAN_CLEAR; 947 } 948 949 /* If our VLAN has been overridden, there is no reason to send VLAN 950 * removal requests as they will be silently ignored. 951 */ 952 if (hw->mac.vlan_override) 953 return 0; 954 955 /* Do not remove default VLAN ID related entries from VLAN and MAC 956 * tables 957 */ 958 if (!set && vid == hw->mac.default_vid) 959 return 0; 960 961 /* Do not throw an error if the interface is down. We will sync once 962 * we come up 963 */ 964 if (test_bit(__FM10K_DOWN, interface->state)) 965 return 0; 966 967 fm10k_mbx_lock(interface); 968 969 /* only need to update the VLAN if not in promiscuous mode */ 970 if (!(netdev->flags & IFF_PROMISC)) { 971 err = fm10k_queue_vlan_request(interface, vid, 0, set); 972 if (err) 973 goto err_out; 974 } 975 976 /* Update our base MAC address */ 977 err = fm10k_queue_mac_request(interface, interface->glort, 978 hw->mac.addr, vid, set); 979 if (err) 980 goto err_out; 981 982 /* Update L2 accelerated macvlan addresses */ 983 if (l2_accel) { 984 for (i = 0; i < l2_accel->size; i++) { 985 struct net_device *sdev = l2_accel->macvlan[i]; 986 987 if (!sdev) 988 continue; 989 990 glort = l2_accel->dglort + 1 + i; 991 992 fm10k_queue_mac_request(interface, glort, 993 sdev->dev_addr, 994 vid, set); 995 } 996 } 997 998 /* set VLAN ID prior to syncing/unsyncing the VLAN */ 999 interface->vid = vid + (set ? VLAN_N_VID : 0); 1000 1001 /* Update the unicast and multicast address list to add/drop VLAN */ 1002 __dev_uc_unsync(netdev, fm10k_uc_vlan_unsync); 1003 __dev_mc_unsync(netdev, fm10k_mc_vlan_unsync); 1004 1005 err_out: 1006 fm10k_mbx_unlock(interface); 1007 1008 return err; 1009 } 1010 1011 static int fm10k_vlan_rx_add_vid(struct net_device *netdev, 1012 __always_unused __be16 proto, u16 vid) 1013 { 1014 /* update VLAN and address table based on changes */ 1015 return fm10k_update_vid(netdev, vid, true); 1016 } 1017 1018 static int fm10k_vlan_rx_kill_vid(struct net_device *netdev, 1019 __always_unused __be16 proto, u16 vid) 1020 { 1021 /* update VLAN and address table based on changes */ 1022 return fm10k_update_vid(netdev, vid, false); 1023 } 1024 1025 static u16 fm10k_find_next_vlan(struct fm10k_intfc *interface, u16 vid) 1026 { 1027 struct fm10k_hw *hw = &interface->hw; 1028 u16 default_vid = hw->mac.default_vid; 1029 u16 vid_limit = vid < default_vid ? default_vid : VLAN_N_VID; 1030 1031 vid = find_next_bit(interface->active_vlans, vid_limit, ++vid); 1032 1033 return vid; 1034 } 1035 1036 static void fm10k_clear_unused_vlans(struct fm10k_intfc *interface) 1037 { 1038 u32 vid, prev_vid; 1039 1040 /* loop through and find any gaps in the table */ 1041 for (vid = 0, prev_vid = 0; 1042 prev_vid < VLAN_N_VID; 1043 prev_vid = vid + 1, vid = fm10k_find_next_vlan(interface, vid)) { 1044 if (prev_vid == vid) 1045 continue; 1046 1047 /* send request to clear multiple bits at a time */ 1048 prev_vid += (vid - prev_vid - 1) << FM10K_VLAN_LENGTH_SHIFT; 1049 fm10k_queue_vlan_request(interface, prev_vid, 0, false); 1050 } 1051 } 1052 1053 static int __fm10k_uc_sync(struct net_device *dev, 1054 const unsigned char *addr, bool sync) 1055 { 1056 struct fm10k_intfc *interface = netdev_priv(dev); 1057 u16 vid, glort = interface->glort; 1058 s32 err; 1059 1060 if (!is_valid_ether_addr(addr)) 1061 return -EADDRNOTAVAIL; 1062 1063 for (vid = fm10k_find_next_vlan(interface, 0); 1064 vid < VLAN_N_VID; 1065 vid = fm10k_find_next_vlan(interface, vid)) { 1066 err = fm10k_queue_mac_request(interface, glort, 1067 addr, vid, sync); 1068 if (err) 1069 return err; 1070 } 1071 1072 return 0; 1073 } 1074 1075 static int fm10k_uc_sync(struct net_device *dev, 1076 const unsigned char *addr) 1077 { 1078 return __fm10k_uc_sync(dev, addr, true); 1079 } 1080 1081 static int fm10k_uc_unsync(struct net_device *dev, 1082 const unsigned char *addr) 1083 { 1084 return __fm10k_uc_sync(dev, addr, false); 1085 } 1086 1087 static int fm10k_set_mac(struct net_device *dev, void *p) 1088 { 1089 struct fm10k_intfc *interface = netdev_priv(dev); 1090 struct fm10k_hw *hw = &interface->hw; 1091 struct sockaddr *addr = p; 1092 s32 err = 0; 1093 1094 if (!is_valid_ether_addr(addr->sa_data)) 1095 return -EADDRNOTAVAIL; 1096 1097 if (dev->flags & IFF_UP) { 1098 /* setting MAC address requires mailbox */ 1099 fm10k_mbx_lock(interface); 1100 1101 err = fm10k_uc_sync(dev, addr->sa_data); 1102 if (!err) 1103 fm10k_uc_unsync(dev, hw->mac.addr); 1104 1105 fm10k_mbx_unlock(interface); 1106 } 1107 1108 if (!err) { 1109 ether_addr_copy(dev->dev_addr, addr->sa_data); 1110 ether_addr_copy(hw->mac.addr, addr->sa_data); 1111 dev->addr_assign_type &= ~NET_ADDR_RANDOM; 1112 } 1113 1114 /* if we had a mailbox error suggest trying again */ 1115 return err ? -EAGAIN : 0; 1116 } 1117 1118 static int __fm10k_mc_sync(struct net_device *dev, 1119 const unsigned char *addr, bool sync) 1120 { 1121 struct fm10k_intfc *interface = netdev_priv(dev); 1122 u16 vid, glort = interface->glort; 1123 s32 err; 1124 1125 if (!is_multicast_ether_addr(addr)) 1126 return -EADDRNOTAVAIL; 1127 1128 for (vid = fm10k_find_next_vlan(interface, 0); 1129 vid < VLAN_N_VID; 1130 vid = fm10k_find_next_vlan(interface, vid)) { 1131 err = fm10k_queue_mac_request(interface, glort, 1132 addr, vid, sync); 1133 if (err) 1134 return err; 1135 } 1136 1137 return 0; 1138 } 1139 1140 static int fm10k_mc_sync(struct net_device *dev, 1141 const unsigned char *addr) 1142 { 1143 return __fm10k_mc_sync(dev, addr, true); 1144 } 1145 1146 static int fm10k_mc_unsync(struct net_device *dev, 1147 const unsigned char *addr) 1148 { 1149 return __fm10k_mc_sync(dev, addr, false); 1150 } 1151 1152 static void fm10k_set_rx_mode(struct net_device *dev) 1153 { 1154 struct fm10k_intfc *interface = netdev_priv(dev); 1155 struct fm10k_hw *hw = &interface->hw; 1156 int xcast_mode; 1157 1158 /* no need to update the harwdare if we are not running */ 1159 if (!(dev->flags & IFF_UP)) 1160 return; 1161 1162 /* determine new mode based on flags */ 1163 xcast_mode = (dev->flags & IFF_PROMISC) ? FM10K_XCAST_MODE_PROMISC : 1164 (dev->flags & IFF_ALLMULTI) ? FM10K_XCAST_MODE_ALLMULTI : 1165 (dev->flags & (IFF_BROADCAST | IFF_MULTICAST)) ? 1166 FM10K_XCAST_MODE_MULTI : FM10K_XCAST_MODE_NONE; 1167 1168 fm10k_mbx_lock(interface); 1169 1170 /* update xcast mode first, but only if it changed */ 1171 if (interface->xcast_mode != xcast_mode) { 1172 /* update VLAN table when entering promiscuous mode */ 1173 if (xcast_mode == FM10K_XCAST_MODE_PROMISC) 1174 fm10k_queue_vlan_request(interface, FM10K_VLAN_ALL, 1175 0, true); 1176 1177 /* clear VLAN table when exiting promiscuous mode */ 1178 if (interface->xcast_mode == FM10K_XCAST_MODE_PROMISC) 1179 fm10k_clear_unused_vlans(interface); 1180 1181 /* update xcast mode if host's mailbox is ready */ 1182 if (fm10k_host_mbx_ready(interface)) 1183 hw->mac.ops.update_xcast_mode(hw, interface->glort, 1184 xcast_mode); 1185 1186 /* record updated xcast mode state */ 1187 interface->xcast_mode = xcast_mode; 1188 } 1189 1190 /* synchronize all of the addresses */ 1191 __dev_uc_sync(dev, fm10k_uc_sync, fm10k_uc_unsync); 1192 __dev_mc_sync(dev, fm10k_mc_sync, fm10k_mc_unsync); 1193 1194 fm10k_mbx_unlock(interface); 1195 } 1196 1197 void fm10k_restore_rx_state(struct fm10k_intfc *interface) 1198 { 1199 struct fm10k_l2_accel *l2_accel = interface->l2_accel; 1200 struct net_device *netdev = interface->netdev; 1201 struct fm10k_hw *hw = &interface->hw; 1202 int xcast_mode, i; 1203 u16 vid, glort; 1204 1205 /* record glort for this interface */ 1206 glort = interface->glort; 1207 1208 /* convert interface flags to xcast mode */ 1209 if (netdev->flags & IFF_PROMISC) 1210 xcast_mode = FM10K_XCAST_MODE_PROMISC; 1211 else if (netdev->flags & IFF_ALLMULTI) 1212 xcast_mode = FM10K_XCAST_MODE_ALLMULTI; 1213 else if (netdev->flags & (IFF_BROADCAST | IFF_MULTICAST)) 1214 xcast_mode = FM10K_XCAST_MODE_MULTI; 1215 else 1216 xcast_mode = FM10K_XCAST_MODE_NONE; 1217 1218 fm10k_mbx_lock(interface); 1219 1220 /* Enable logical port if host's mailbox is ready */ 1221 if (fm10k_host_mbx_ready(interface)) 1222 hw->mac.ops.update_lport_state(hw, glort, 1223 interface->glort_count, true); 1224 1225 /* update VLAN table */ 1226 fm10k_queue_vlan_request(interface, FM10K_VLAN_ALL, 0, 1227 xcast_mode == FM10K_XCAST_MODE_PROMISC); 1228 1229 /* update table with current entries */ 1230 for (vid = fm10k_find_next_vlan(interface, 0); 1231 vid < VLAN_N_VID; 1232 vid = fm10k_find_next_vlan(interface, vid)) { 1233 fm10k_queue_vlan_request(interface, vid, 0, true); 1234 1235 fm10k_queue_mac_request(interface, glort, 1236 hw->mac.addr, vid, true); 1237 1238 /* synchronize macvlan addresses */ 1239 if (l2_accel) { 1240 for (i = 0; i < l2_accel->size; i++) { 1241 struct net_device *sdev = l2_accel->macvlan[i]; 1242 1243 if (!sdev) 1244 continue; 1245 1246 glort = l2_accel->dglort + 1 + i; 1247 1248 fm10k_queue_mac_request(interface, glort, 1249 sdev->dev_addr, 1250 vid, true); 1251 } 1252 } 1253 } 1254 1255 /* update xcast mode before synchronizing addresses if host's mailbox 1256 * is ready 1257 */ 1258 if (fm10k_host_mbx_ready(interface)) 1259 hw->mac.ops.update_xcast_mode(hw, glort, xcast_mode); 1260 1261 /* synchronize all of the addresses */ 1262 __dev_uc_sync(netdev, fm10k_uc_sync, fm10k_uc_unsync); 1263 __dev_mc_sync(netdev, fm10k_mc_sync, fm10k_mc_unsync); 1264 1265 /* synchronize macvlan addresses */ 1266 if (l2_accel) { 1267 for (i = 0; i < l2_accel->size; i++) { 1268 struct net_device *sdev = l2_accel->macvlan[i]; 1269 1270 if (!sdev) 1271 continue; 1272 1273 glort = l2_accel->dglort + 1 + i; 1274 1275 hw->mac.ops.update_xcast_mode(hw, glort, 1276 FM10K_XCAST_MODE_NONE); 1277 fm10k_queue_mac_request(interface, glort, 1278 sdev->dev_addr, 1279 hw->mac.default_vid, true); 1280 } 1281 } 1282 1283 fm10k_mbx_unlock(interface); 1284 1285 /* record updated xcast mode state */ 1286 interface->xcast_mode = xcast_mode; 1287 1288 /* Restore tunnel configuration */ 1289 fm10k_restore_udp_port_info(interface); 1290 } 1291 1292 void fm10k_reset_rx_state(struct fm10k_intfc *interface) 1293 { 1294 struct net_device *netdev = interface->netdev; 1295 struct fm10k_hw *hw = &interface->hw; 1296 1297 /* Wait for MAC/VLAN work to finish */ 1298 while (test_bit(__FM10K_MACVLAN_SCHED, interface->state)) 1299 usleep_range(1000, 2000); 1300 1301 /* Cancel pending MAC/VLAN requests */ 1302 fm10k_clear_macvlan_queue(interface, interface->glort, true); 1303 1304 fm10k_mbx_lock(interface); 1305 1306 /* clear the logical port state on lower device if host's mailbox is 1307 * ready 1308 */ 1309 if (fm10k_host_mbx_ready(interface)) 1310 hw->mac.ops.update_lport_state(hw, interface->glort, 1311 interface->glort_count, false); 1312 1313 fm10k_mbx_unlock(interface); 1314 1315 /* reset flags to default state */ 1316 interface->xcast_mode = FM10K_XCAST_MODE_NONE; 1317 1318 /* clear the sync flag since the lport has been dropped */ 1319 __dev_uc_unsync(netdev, NULL); 1320 __dev_mc_unsync(netdev, NULL); 1321 } 1322 1323 /** 1324 * fm10k_get_stats64 - Get System Network Statistics 1325 * @netdev: network interface device structure 1326 * @stats: storage space for 64bit statistics 1327 * 1328 * Obtain 64bit statistics in a way that is safe for both 32bit and 64bit 1329 * architectures. 1330 */ 1331 static void fm10k_get_stats64(struct net_device *netdev, 1332 struct rtnl_link_stats64 *stats) 1333 { 1334 struct fm10k_intfc *interface = netdev_priv(netdev); 1335 struct fm10k_ring *ring; 1336 unsigned int start, i; 1337 u64 bytes, packets; 1338 1339 rcu_read_lock(); 1340 1341 for (i = 0; i < interface->num_rx_queues; i++) { 1342 ring = READ_ONCE(interface->rx_ring[i]); 1343 1344 if (!ring) 1345 continue; 1346 1347 do { 1348 start = u64_stats_fetch_begin_irq(&ring->syncp); 1349 packets = ring->stats.packets; 1350 bytes = ring->stats.bytes; 1351 } while (u64_stats_fetch_retry_irq(&ring->syncp, start)); 1352 1353 stats->rx_packets += packets; 1354 stats->rx_bytes += bytes; 1355 } 1356 1357 for (i = 0; i < interface->num_tx_queues; i++) { 1358 ring = READ_ONCE(interface->tx_ring[i]); 1359 1360 if (!ring) 1361 continue; 1362 1363 do { 1364 start = u64_stats_fetch_begin_irq(&ring->syncp); 1365 packets = ring->stats.packets; 1366 bytes = ring->stats.bytes; 1367 } while (u64_stats_fetch_retry_irq(&ring->syncp, start)); 1368 1369 stats->tx_packets += packets; 1370 stats->tx_bytes += bytes; 1371 } 1372 1373 rcu_read_unlock(); 1374 1375 /* following stats updated by fm10k_service_task() */ 1376 stats->rx_missed_errors = netdev->stats.rx_missed_errors; 1377 } 1378 1379 int fm10k_setup_tc(struct net_device *dev, u8 tc) 1380 { 1381 struct fm10k_intfc *interface = netdev_priv(dev); 1382 int err; 1383 1384 /* Currently only the PF supports priority classes */ 1385 if (tc && (interface->hw.mac.type != fm10k_mac_pf)) 1386 return -EINVAL; 1387 1388 /* Hardware supports up to 8 traffic classes */ 1389 if (tc > 8) 1390 return -EINVAL; 1391 1392 /* Hardware has to reinitialize queues to match packet 1393 * buffer alignment. Unfortunately, the hardware is not 1394 * flexible enough to do this dynamically. 1395 */ 1396 if (netif_running(dev)) 1397 fm10k_close(dev); 1398 1399 fm10k_mbx_free_irq(interface); 1400 1401 fm10k_clear_queueing_scheme(interface); 1402 1403 /* we expect the prio_tc map to be repopulated later */ 1404 netdev_reset_tc(dev); 1405 netdev_set_num_tc(dev, tc); 1406 1407 err = fm10k_init_queueing_scheme(interface); 1408 if (err) 1409 goto err_queueing_scheme; 1410 1411 err = fm10k_mbx_request_irq(interface); 1412 if (err) 1413 goto err_mbx_irq; 1414 1415 err = netif_running(dev) ? fm10k_open(dev) : 0; 1416 if (err) 1417 goto err_open; 1418 1419 /* flag to indicate SWPRI has yet to be updated */ 1420 set_bit(FM10K_FLAG_SWPRI_CONFIG, interface->flags); 1421 1422 return 0; 1423 err_open: 1424 fm10k_mbx_free_irq(interface); 1425 err_mbx_irq: 1426 fm10k_clear_queueing_scheme(interface); 1427 err_queueing_scheme: 1428 netif_device_detach(dev); 1429 1430 return err; 1431 } 1432 1433 static int __fm10k_setup_tc(struct net_device *dev, enum tc_setup_type type, 1434 void *type_data) 1435 { 1436 struct tc_mqprio_qopt *mqprio = type_data; 1437 1438 if (type != TC_SETUP_QDISC_MQPRIO) 1439 return -EOPNOTSUPP; 1440 1441 mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS; 1442 1443 return fm10k_setup_tc(dev, mqprio->num_tc); 1444 } 1445 1446 static void fm10k_assign_l2_accel(struct fm10k_intfc *interface, 1447 struct fm10k_l2_accel *l2_accel) 1448 { 1449 int i; 1450 1451 for (i = 0; i < interface->num_rx_queues; i++) { 1452 struct fm10k_ring *ring = interface->rx_ring[i]; 1453 1454 rcu_assign_pointer(ring->l2_accel, l2_accel); 1455 } 1456 1457 interface->l2_accel = l2_accel; 1458 } 1459 1460 static void *fm10k_dfwd_add_station(struct net_device *dev, 1461 struct net_device *sdev) 1462 { 1463 struct fm10k_intfc *interface = netdev_priv(dev); 1464 struct fm10k_l2_accel *l2_accel = interface->l2_accel; 1465 struct fm10k_l2_accel *old_l2_accel = NULL; 1466 struct fm10k_dglort_cfg dglort = { 0 }; 1467 struct fm10k_hw *hw = &interface->hw; 1468 int size, i; 1469 u16 vid, glort; 1470 1471 /* The hardware supported by fm10k only filters on the destination MAC 1472 * address. In order to avoid issues we only support offloading modes 1473 * where the hardware can actually provide the functionality. 1474 */ 1475 if (!macvlan_supports_dest_filter(sdev)) 1476 return ERR_PTR(-EMEDIUMTYPE); 1477 1478 /* allocate l2 accel structure if it is not available */ 1479 if (!l2_accel) { 1480 /* verify there is enough free GLORTs to support l2_accel */ 1481 if (interface->glort_count < 7) 1482 return ERR_PTR(-EBUSY); 1483 1484 size = offsetof(struct fm10k_l2_accel, macvlan[7]); 1485 l2_accel = kzalloc(size, GFP_KERNEL); 1486 if (!l2_accel) 1487 return ERR_PTR(-ENOMEM); 1488 1489 l2_accel->size = 7; 1490 l2_accel->dglort = interface->glort; 1491 1492 /* update pointers */ 1493 fm10k_assign_l2_accel(interface, l2_accel); 1494 /* do not expand if we are at our limit */ 1495 } else if ((l2_accel->count == FM10K_MAX_STATIONS) || 1496 (l2_accel->count == (interface->glort_count - 1))) { 1497 return ERR_PTR(-EBUSY); 1498 /* expand if we have hit the size limit */ 1499 } else if (l2_accel->count == l2_accel->size) { 1500 old_l2_accel = l2_accel; 1501 size = offsetof(struct fm10k_l2_accel, 1502 macvlan[(l2_accel->size * 2) + 1]); 1503 l2_accel = kzalloc(size, GFP_KERNEL); 1504 if (!l2_accel) 1505 return ERR_PTR(-ENOMEM); 1506 1507 memcpy(l2_accel, old_l2_accel, 1508 offsetof(struct fm10k_l2_accel, 1509 macvlan[old_l2_accel->size])); 1510 1511 l2_accel->size = (old_l2_accel->size * 2) + 1; 1512 1513 /* update pointers */ 1514 fm10k_assign_l2_accel(interface, l2_accel); 1515 kfree_rcu(old_l2_accel, rcu); 1516 } 1517 1518 /* add macvlan to accel table, and record GLORT for position */ 1519 for (i = 0; i < l2_accel->size; i++) { 1520 if (!l2_accel->macvlan[i]) 1521 break; 1522 } 1523 1524 /* record station */ 1525 l2_accel->macvlan[i] = sdev; 1526 l2_accel->count++; 1527 1528 /* configure default DGLORT mapping for RSS/DCB */ 1529 dglort.idx = fm10k_dglort_pf_rss; 1530 dglort.inner_rss = 1; 1531 dglort.rss_l = fls(interface->ring_feature[RING_F_RSS].mask); 1532 dglort.pc_l = fls(interface->ring_feature[RING_F_QOS].mask); 1533 dglort.glort = interface->glort; 1534 dglort.shared_l = fls(l2_accel->size); 1535 hw->mac.ops.configure_dglort_map(hw, &dglort); 1536 1537 /* Add rules for this specific dglort to the switch */ 1538 fm10k_mbx_lock(interface); 1539 1540 glort = l2_accel->dglort + 1 + i; 1541 1542 if (fm10k_host_mbx_ready(interface)) 1543 hw->mac.ops.update_xcast_mode(hw, glort, 1544 FM10K_XCAST_MODE_NONE); 1545 1546 fm10k_queue_mac_request(interface, glort, sdev->dev_addr, 1547 hw->mac.default_vid, true); 1548 1549 for (vid = fm10k_find_next_vlan(interface, 0); 1550 vid < VLAN_N_VID; 1551 vid = fm10k_find_next_vlan(interface, vid)) 1552 fm10k_queue_mac_request(interface, glort, sdev->dev_addr, 1553 vid, true); 1554 1555 fm10k_mbx_unlock(interface); 1556 1557 return sdev; 1558 } 1559 1560 static void fm10k_dfwd_del_station(struct net_device *dev, void *priv) 1561 { 1562 struct fm10k_intfc *interface = netdev_priv(dev); 1563 struct fm10k_l2_accel *l2_accel = READ_ONCE(interface->l2_accel); 1564 struct fm10k_dglort_cfg dglort = { 0 }; 1565 struct fm10k_hw *hw = &interface->hw; 1566 struct net_device *sdev = priv; 1567 u16 vid, glort; 1568 int i; 1569 1570 if (!l2_accel) 1571 return; 1572 1573 /* search table for matching interface */ 1574 for (i = 0; i < l2_accel->size; i++) { 1575 if (l2_accel->macvlan[i] == sdev) 1576 break; 1577 } 1578 1579 /* exit if macvlan not found */ 1580 if (i == l2_accel->size) 1581 return; 1582 1583 /* Remove any rules specific to this dglort */ 1584 fm10k_mbx_lock(interface); 1585 1586 glort = l2_accel->dglort + 1 + i; 1587 1588 if (fm10k_host_mbx_ready(interface)) 1589 hw->mac.ops.update_xcast_mode(hw, glort, 1590 FM10K_XCAST_MODE_NONE); 1591 1592 fm10k_queue_mac_request(interface, glort, sdev->dev_addr, 1593 hw->mac.default_vid, false); 1594 1595 for (vid = fm10k_find_next_vlan(interface, 0); 1596 vid < VLAN_N_VID; 1597 vid = fm10k_find_next_vlan(interface, vid)) 1598 fm10k_queue_mac_request(interface, glort, sdev->dev_addr, 1599 vid, false); 1600 1601 fm10k_mbx_unlock(interface); 1602 1603 /* record removal */ 1604 l2_accel->macvlan[i] = NULL; 1605 l2_accel->count--; 1606 1607 /* configure default DGLORT mapping for RSS/DCB */ 1608 dglort.idx = fm10k_dglort_pf_rss; 1609 dglort.inner_rss = 1; 1610 dglort.rss_l = fls(interface->ring_feature[RING_F_RSS].mask); 1611 dglort.pc_l = fls(interface->ring_feature[RING_F_QOS].mask); 1612 dglort.glort = interface->glort; 1613 dglort.shared_l = fls(l2_accel->size); 1614 hw->mac.ops.configure_dglort_map(hw, &dglort); 1615 1616 /* If table is empty remove it */ 1617 if (l2_accel->count == 0) { 1618 fm10k_assign_l2_accel(interface, NULL); 1619 kfree_rcu(l2_accel, rcu); 1620 } 1621 } 1622 1623 static netdev_features_t fm10k_features_check(struct sk_buff *skb, 1624 struct net_device *dev, 1625 netdev_features_t features) 1626 { 1627 if (!skb->encapsulation || fm10k_tx_encap_offload(skb)) 1628 return features; 1629 1630 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 1631 } 1632 1633 static const struct net_device_ops fm10k_netdev_ops = { 1634 .ndo_open = fm10k_open, 1635 .ndo_stop = fm10k_close, 1636 .ndo_validate_addr = eth_validate_addr, 1637 .ndo_start_xmit = fm10k_xmit_frame, 1638 .ndo_set_mac_address = fm10k_set_mac, 1639 .ndo_tx_timeout = fm10k_tx_timeout, 1640 .ndo_vlan_rx_add_vid = fm10k_vlan_rx_add_vid, 1641 .ndo_vlan_rx_kill_vid = fm10k_vlan_rx_kill_vid, 1642 .ndo_set_rx_mode = fm10k_set_rx_mode, 1643 .ndo_get_stats64 = fm10k_get_stats64, 1644 .ndo_setup_tc = __fm10k_setup_tc, 1645 .ndo_set_vf_mac = fm10k_ndo_set_vf_mac, 1646 .ndo_set_vf_vlan = fm10k_ndo_set_vf_vlan, 1647 .ndo_set_vf_rate = fm10k_ndo_set_vf_bw, 1648 .ndo_get_vf_config = fm10k_ndo_get_vf_config, 1649 .ndo_get_vf_stats = fm10k_ndo_get_vf_stats, 1650 .ndo_udp_tunnel_add = fm10k_udp_tunnel_add, 1651 .ndo_udp_tunnel_del = fm10k_udp_tunnel_del, 1652 .ndo_dfwd_add_station = fm10k_dfwd_add_station, 1653 .ndo_dfwd_del_station = fm10k_dfwd_del_station, 1654 .ndo_features_check = fm10k_features_check, 1655 }; 1656 1657 #define DEFAULT_DEBUG_LEVEL_SHIFT 3 1658 1659 struct net_device *fm10k_alloc_netdev(const struct fm10k_info *info) 1660 { 1661 netdev_features_t hw_features; 1662 struct fm10k_intfc *interface; 1663 struct net_device *dev; 1664 1665 dev = alloc_etherdev_mq(sizeof(struct fm10k_intfc), MAX_QUEUES); 1666 if (!dev) 1667 return NULL; 1668 1669 /* set net device and ethtool ops */ 1670 dev->netdev_ops = &fm10k_netdev_ops; 1671 fm10k_set_ethtool_ops(dev); 1672 1673 /* configure default debug level */ 1674 interface = netdev_priv(dev); 1675 interface->msg_enable = BIT(DEFAULT_DEBUG_LEVEL_SHIFT) - 1; 1676 1677 /* configure default features */ 1678 dev->features |= NETIF_F_IP_CSUM | 1679 NETIF_F_IPV6_CSUM | 1680 NETIF_F_SG | 1681 NETIF_F_TSO | 1682 NETIF_F_TSO6 | 1683 NETIF_F_TSO_ECN | 1684 NETIF_F_RXHASH | 1685 NETIF_F_RXCSUM; 1686 1687 /* Only the PF can support VXLAN and NVGRE tunnel offloads */ 1688 if (info->mac == fm10k_mac_pf) { 1689 dev->hw_enc_features = NETIF_F_IP_CSUM | 1690 NETIF_F_TSO | 1691 NETIF_F_TSO6 | 1692 NETIF_F_TSO_ECN | 1693 NETIF_F_GSO_UDP_TUNNEL | 1694 NETIF_F_IPV6_CSUM | 1695 NETIF_F_SG; 1696 1697 dev->features |= NETIF_F_GSO_UDP_TUNNEL; 1698 } 1699 1700 /* all features defined to this point should be changeable */ 1701 hw_features = dev->features; 1702 1703 /* allow user to enable L2 forwarding acceleration */ 1704 hw_features |= NETIF_F_HW_L2FW_DOFFLOAD; 1705 1706 /* configure VLAN features */ 1707 dev->vlan_features |= dev->features; 1708 1709 /* we want to leave these both on as we cannot disable VLAN tag 1710 * insertion or stripping on the hardware since it is contained 1711 * in the FTAG and not in the frame itself. 1712 */ 1713 dev->features |= NETIF_F_HW_VLAN_CTAG_TX | 1714 NETIF_F_HW_VLAN_CTAG_RX | 1715 NETIF_F_HW_VLAN_CTAG_FILTER; 1716 1717 dev->priv_flags |= IFF_UNICAST_FLT; 1718 1719 dev->hw_features |= hw_features; 1720 1721 /* MTU range: 68 - 15342 */ 1722 dev->min_mtu = ETH_MIN_MTU; 1723 dev->max_mtu = FM10K_MAX_JUMBO_FRAME_SIZE; 1724 1725 return dev; 1726 } 1727