1 /* Intel(R) Ethernet Switch Host Interface Driver 2 * Copyright(c) 2013 - 2016 Intel Corporation. 3 * 4 * This program is free software; you can redistribute it and/or modify it 5 * under the terms and conditions of the GNU General Public License, 6 * version 2, as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope it will be useful, but WITHOUT 9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 11 * more details. 12 * 13 * The full GNU General Public License is included in this distribution in 14 * the file called "COPYING". 15 * 16 * Contact Information: 17 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> 18 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 19 */ 20 21 #include "fm10k.h" 22 #include <linux/vmalloc.h> 23 #include <net/udp_tunnel.h> 24 25 /** 26 * fm10k_setup_tx_resources - allocate Tx resources (Descriptors) 27 * @tx_ring: tx descriptor ring (for a specific queue) to setup 28 * 29 * Return 0 on success, negative on failure 30 **/ 31 int fm10k_setup_tx_resources(struct fm10k_ring *tx_ring) 32 { 33 struct device *dev = tx_ring->dev; 34 int size; 35 36 size = sizeof(struct fm10k_tx_buffer) * tx_ring->count; 37 38 tx_ring->tx_buffer = vzalloc(size); 39 if (!tx_ring->tx_buffer) 40 goto err; 41 42 u64_stats_init(&tx_ring->syncp); 43 44 /* round up to nearest 4K */ 45 tx_ring->size = tx_ring->count * sizeof(struct fm10k_tx_desc); 46 tx_ring->size = ALIGN(tx_ring->size, 4096); 47 48 tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size, 49 &tx_ring->dma, GFP_KERNEL); 50 if (!tx_ring->desc) 51 goto err; 52 53 return 0; 54 55 err: 56 vfree(tx_ring->tx_buffer); 57 tx_ring->tx_buffer = NULL; 58 return -ENOMEM; 59 } 60 61 /** 62 * fm10k_setup_all_tx_resources - allocate all queues Tx resources 63 * @interface: board private structure 64 * 65 * If this function returns with an error, then it's possible one or 66 * more of the rings is populated (while the rest are not). It is the 67 * callers duty to clean those orphaned rings. 68 * 69 * Return 0 on success, negative on failure 70 **/ 71 static int fm10k_setup_all_tx_resources(struct fm10k_intfc *interface) 72 { 73 int i, err = 0; 74 75 for (i = 0; i < interface->num_tx_queues; i++) { 76 err = fm10k_setup_tx_resources(interface->tx_ring[i]); 77 if (!err) 78 continue; 79 80 netif_err(interface, probe, interface->netdev, 81 "Allocation for Tx Queue %u failed\n", i); 82 goto err_setup_tx; 83 } 84 85 return 0; 86 err_setup_tx: 87 /* rewind the index freeing the rings as we go */ 88 while (i--) 89 fm10k_free_tx_resources(interface->tx_ring[i]); 90 return err; 91 } 92 93 /** 94 * fm10k_setup_rx_resources - allocate Rx resources (Descriptors) 95 * @rx_ring: rx descriptor ring (for a specific queue) to setup 96 * 97 * Returns 0 on success, negative on failure 98 **/ 99 int fm10k_setup_rx_resources(struct fm10k_ring *rx_ring) 100 { 101 struct device *dev = rx_ring->dev; 102 int size; 103 104 size = sizeof(struct fm10k_rx_buffer) * rx_ring->count; 105 106 rx_ring->rx_buffer = vzalloc(size); 107 if (!rx_ring->rx_buffer) 108 goto err; 109 110 u64_stats_init(&rx_ring->syncp); 111 112 /* Round up to nearest 4K */ 113 rx_ring->size = rx_ring->count * sizeof(union fm10k_rx_desc); 114 rx_ring->size = ALIGN(rx_ring->size, 4096); 115 116 rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size, 117 &rx_ring->dma, GFP_KERNEL); 118 if (!rx_ring->desc) 119 goto err; 120 121 return 0; 122 err: 123 vfree(rx_ring->rx_buffer); 124 rx_ring->rx_buffer = NULL; 125 return -ENOMEM; 126 } 127 128 /** 129 * fm10k_setup_all_rx_resources - allocate all queues Rx resources 130 * @interface: board private structure 131 * 132 * If this function returns with an error, then it's possible one or 133 * more of the rings is populated (while the rest are not). It is the 134 * callers duty to clean those orphaned rings. 135 * 136 * Return 0 on success, negative on failure 137 **/ 138 static int fm10k_setup_all_rx_resources(struct fm10k_intfc *interface) 139 { 140 int i, err = 0; 141 142 for (i = 0; i < interface->num_rx_queues; i++) { 143 err = fm10k_setup_rx_resources(interface->rx_ring[i]); 144 if (!err) 145 continue; 146 147 netif_err(interface, probe, interface->netdev, 148 "Allocation for Rx Queue %u failed\n", i); 149 goto err_setup_rx; 150 } 151 152 return 0; 153 err_setup_rx: 154 /* rewind the index freeing the rings as we go */ 155 while (i--) 156 fm10k_free_rx_resources(interface->rx_ring[i]); 157 return err; 158 } 159 160 void fm10k_unmap_and_free_tx_resource(struct fm10k_ring *ring, 161 struct fm10k_tx_buffer *tx_buffer) 162 { 163 if (tx_buffer->skb) { 164 dev_kfree_skb_any(tx_buffer->skb); 165 if (dma_unmap_len(tx_buffer, len)) 166 dma_unmap_single(ring->dev, 167 dma_unmap_addr(tx_buffer, dma), 168 dma_unmap_len(tx_buffer, len), 169 DMA_TO_DEVICE); 170 } else if (dma_unmap_len(tx_buffer, len)) { 171 dma_unmap_page(ring->dev, 172 dma_unmap_addr(tx_buffer, dma), 173 dma_unmap_len(tx_buffer, len), 174 DMA_TO_DEVICE); 175 } 176 tx_buffer->next_to_watch = NULL; 177 tx_buffer->skb = NULL; 178 dma_unmap_len_set(tx_buffer, len, 0); 179 /* tx_buffer must be completely set up in the transmit path */ 180 } 181 182 /** 183 * fm10k_clean_tx_ring - Free Tx Buffers 184 * @tx_ring: ring to be cleaned 185 **/ 186 static void fm10k_clean_tx_ring(struct fm10k_ring *tx_ring) 187 { 188 struct fm10k_tx_buffer *tx_buffer; 189 unsigned long size; 190 u16 i; 191 192 /* ring already cleared, nothing to do */ 193 if (!tx_ring->tx_buffer) 194 return; 195 196 /* Free all the Tx ring sk_buffs */ 197 for (i = 0; i < tx_ring->count; i++) { 198 tx_buffer = &tx_ring->tx_buffer[i]; 199 fm10k_unmap_and_free_tx_resource(tx_ring, tx_buffer); 200 } 201 202 /* reset BQL values */ 203 netdev_tx_reset_queue(txring_txq(tx_ring)); 204 205 size = sizeof(struct fm10k_tx_buffer) * tx_ring->count; 206 memset(tx_ring->tx_buffer, 0, size); 207 208 /* Zero out the descriptor ring */ 209 memset(tx_ring->desc, 0, tx_ring->size); 210 } 211 212 /** 213 * fm10k_free_tx_resources - Free Tx Resources per Queue 214 * @tx_ring: Tx descriptor ring for a specific queue 215 * 216 * Free all transmit software resources 217 **/ 218 void fm10k_free_tx_resources(struct fm10k_ring *tx_ring) 219 { 220 fm10k_clean_tx_ring(tx_ring); 221 222 vfree(tx_ring->tx_buffer); 223 tx_ring->tx_buffer = NULL; 224 225 /* if not set, then don't free */ 226 if (!tx_ring->desc) 227 return; 228 229 dma_free_coherent(tx_ring->dev, tx_ring->size, 230 tx_ring->desc, tx_ring->dma); 231 tx_ring->desc = NULL; 232 } 233 234 /** 235 * fm10k_clean_all_tx_rings - Free Tx Buffers for all queues 236 * @interface: board private structure 237 **/ 238 void fm10k_clean_all_tx_rings(struct fm10k_intfc *interface) 239 { 240 int i; 241 242 for (i = 0; i < interface->num_tx_queues; i++) 243 fm10k_clean_tx_ring(interface->tx_ring[i]); 244 } 245 246 /** 247 * fm10k_free_all_tx_resources - Free Tx Resources for All Queues 248 * @interface: board private structure 249 * 250 * Free all transmit software resources 251 **/ 252 static void fm10k_free_all_tx_resources(struct fm10k_intfc *interface) 253 { 254 int i = interface->num_tx_queues; 255 256 while (i--) 257 fm10k_free_tx_resources(interface->tx_ring[i]); 258 } 259 260 /** 261 * fm10k_clean_rx_ring - Free Rx Buffers per Queue 262 * @rx_ring: ring to free buffers from 263 **/ 264 static void fm10k_clean_rx_ring(struct fm10k_ring *rx_ring) 265 { 266 unsigned long size; 267 u16 i; 268 269 if (!rx_ring->rx_buffer) 270 return; 271 272 if (rx_ring->skb) 273 dev_kfree_skb(rx_ring->skb); 274 rx_ring->skb = NULL; 275 276 /* Free all the Rx ring sk_buffs */ 277 for (i = 0; i < rx_ring->count; i++) { 278 struct fm10k_rx_buffer *buffer = &rx_ring->rx_buffer[i]; 279 /* clean-up will only set page pointer to NULL */ 280 if (!buffer->page) 281 continue; 282 283 dma_unmap_page(rx_ring->dev, buffer->dma, 284 PAGE_SIZE, DMA_FROM_DEVICE); 285 __free_page(buffer->page); 286 287 buffer->page = NULL; 288 } 289 290 size = sizeof(struct fm10k_rx_buffer) * rx_ring->count; 291 memset(rx_ring->rx_buffer, 0, size); 292 293 /* Zero out the descriptor ring */ 294 memset(rx_ring->desc, 0, rx_ring->size); 295 296 rx_ring->next_to_alloc = 0; 297 rx_ring->next_to_clean = 0; 298 rx_ring->next_to_use = 0; 299 } 300 301 /** 302 * fm10k_free_rx_resources - Free Rx Resources 303 * @rx_ring: ring to clean the resources from 304 * 305 * Free all receive software resources 306 **/ 307 void fm10k_free_rx_resources(struct fm10k_ring *rx_ring) 308 { 309 fm10k_clean_rx_ring(rx_ring); 310 311 vfree(rx_ring->rx_buffer); 312 rx_ring->rx_buffer = NULL; 313 314 /* if not set, then don't free */ 315 if (!rx_ring->desc) 316 return; 317 318 dma_free_coherent(rx_ring->dev, rx_ring->size, 319 rx_ring->desc, rx_ring->dma); 320 321 rx_ring->desc = NULL; 322 } 323 324 /** 325 * fm10k_clean_all_rx_rings - Free Rx Buffers for all queues 326 * @interface: board private structure 327 **/ 328 void fm10k_clean_all_rx_rings(struct fm10k_intfc *interface) 329 { 330 int i; 331 332 for (i = 0; i < interface->num_rx_queues; i++) 333 fm10k_clean_rx_ring(interface->rx_ring[i]); 334 } 335 336 /** 337 * fm10k_free_all_rx_resources - Free Rx Resources for All Queues 338 * @interface: board private structure 339 * 340 * Free all receive software resources 341 **/ 342 static void fm10k_free_all_rx_resources(struct fm10k_intfc *interface) 343 { 344 int i = interface->num_rx_queues; 345 346 while (i--) 347 fm10k_free_rx_resources(interface->rx_ring[i]); 348 } 349 350 /** 351 * fm10k_request_glort_range - Request GLORTs for use in configuring rules 352 * @interface: board private structure 353 * 354 * This function allocates a range of glorts for this interface to use. 355 **/ 356 static void fm10k_request_glort_range(struct fm10k_intfc *interface) 357 { 358 struct fm10k_hw *hw = &interface->hw; 359 u16 mask = (~hw->mac.dglort_map) >> FM10K_DGLORTMAP_MASK_SHIFT; 360 361 /* establish GLORT base */ 362 interface->glort = hw->mac.dglort_map & FM10K_DGLORTMAP_NONE; 363 interface->glort_count = 0; 364 365 /* nothing we can do until mask is allocated */ 366 if (hw->mac.dglort_map == FM10K_DGLORTMAP_NONE) 367 return; 368 369 /* we support 3 possible GLORT configurations. 370 * 1: VFs consume all but the last 1 371 * 2: VFs and PF split glorts with possible gap between 372 * 3: VFs allocated first 64, all others belong to PF 373 */ 374 if (mask <= hw->iov.total_vfs) { 375 interface->glort_count = 1; 376 interface->glort += mask; 377 } else if (mask < 64) { 378 interface->glort_count = (mask + 1) / 2; 379 interface->glort += interface->glort_count; 380 } else { 381 interface->glort_count = mask - 63; 382 interface->glort += 64; 383 } 384 } 385 386 /** 387 * fm10k_free_udp_port_info 388 * @interface: board private structure 389 * 390 * This function frees both geneve_port and vxlan_port structures 391 **/ 392 static void fm10k_free_udp_port_info(struct fm10k_intfc *interface) 393 { 394 struct fm10k_udp_port *port; 395 396 /* flush all entries from vxlan list */ 397 port = list_first_entry_or_null(&interface->vxlan_port, 398 struct fm10k_udp_port, list); 399 while (port) { 400 list_del(&port->list); 401 kfree(port); 402 port = list_first_entry_or_null(&interface->vxlan_port, 403 struct fm10k_udp_port, 404 list); 405 } 406 407 /* flush all entries from geneve list */ 408 port = list_first_entry_or_null(&interface->geneve_port, 409 struct fm10k_udp_port, list); 410 while (port) { 411 list_del(&port->list); 412 kfree(port); 413 port = list_first_entry_or_null(&interface->vxlan_port, 414 struct fm10k_udp_port, 415 list); 416 } 417 } 418 419 /** 420 * fm10k_restore_udp_port_info 421 * @interface: board private structure 422 * 423 * This function restores the value in the tunnel_cfg register(s) after reset 424 **/ 425 static void fm10k_restore_udp_port_info(struct fm10k_intfc *interface) 426 { 427 struct fm10k_hw *hw = &interface->hw; 428 struct fm10k_udp_port *port; 429 430 /* only the PF supports configuring tunnels */ 431 if (hw->mac.type != fm10k_mac_pf) 432 return; 433 434 port = list_first_entry_or_null(&interface->vxlan_port, 435 struct fm10k_udp_port, list); 436 437 /* restore tunnel configuration register */ 438 fm10k_write_reg(hw, FM10K_TUNNEL_CFG, 439 (port ? ntohs(port->port) : 0) | 440 (ETH_P_TEB << FM10K_TUNNEL_CFG_NVGRE_SHIFT)); 441 442 port = list_first_entry_or_null(&interface->geneve_port, 443 struct fm10k_udp_port, list); 444 445 /* restore Geneve tunnel configuration register */ 446 fm10k_write_reg(hw, FM10K_TUNNEL_CFG_GENEVE, 447 (port ? ntohs(port->port) : 0)); 448 } 449 450 static struct fm10k_udp_port * 451 fm10k_remove_tunnel_port(struct list_head *ports, 452 struct udp_tunnel_info *ti) 453 { 454 struct fm10k_udp_port *port; 455 456 list_for_each_entry(port, ports, list) { 457 if ((port->port == ti->port) && 458 (port->sa_family == ti->sa_family)) { 459 list_del(&port->list); 460 return port; 461 } 462 } 463 464 return NULL; 465 } 466 467 static void fm10k_insert_tunnel_port(struct list_head *ports, 468 struct udp_tunnel_info *ti) 469 { 470 struct fm10k_udp_port *port; 471 472 /* remove existing port entry from the list so that the newest items 473 * are always at the tail of the list. 474 */ 475 port = fm10k_remove_tunnel_port(ports, ti); 476 if (!port) { 477 port = kmalloc(sizeof(*port), GFP_ATOMIC); 478 if (!port) 479 return; 480 port->port = ti->port; 481 port->sa_family = ti->sa_family; 482 } 483 484 list_add_tail(&port->list, ports); 485 } 486 487 /** 488 * fm10k_udp_tunnel_add 489 * @netdev: network interface device structure 490 * @ti: Tunnel endpoint information 491 * 492 * This function is called when a new UDP tunnel port has been added. 493 * Due to hardware restrictions, only one port per type can be offloaded at 494 * once. 495 **/ 496 static void fm10k_udp_tunnel_add(struct net_device *dev, 497 struct udp_tunnel_info *ti) 498 { 499 struct fm10k_intfc *interface = netdev_priv(dev); 500 501 /* only the PF supports configuring tunnels */ 502 if (interface->hw.mac.type != fm10k_mac_pf) 503 return; 504 505 switch (ti->type) { 506 case UDP_TUNNEL_TYPE_VXLAN: 507 fm10k_insert_tunnel_port(&interface->vxlan_port, ti); 508 break; 509 case UDP_TUNNEL_TYPE_GENEVE: 510 fm10k_insert_tunnel_port(&interface->geneve_port, ti); 511 break; 512 default: 513 return; 514 } 515 516 fm10k_restore_udp_port_info(interface); 517 } 518 519 /** 520 * fm10k_udp_tunnel_del 521 * @netdev: network interface device structure 522 * @ti: Tunnel endpoint information 523 * 524 * This function is called when a new UDP tunnel port is deleted. The freed 525 * port will be removed from the list, then we reprogram the offloaded port 526 * based on the head of the list. 527 **/ 528 static void fm10k_udp_tunnel_del(struct net_device *dev, 529 struct udp_tunnel_info *ti) 530 { 531 struct fm10k_intfc *interface = netdev_priv(dev); 532 struct fm10k_udp_port *port = NULL; 533 534 if (interface->hw.mac.type != fm10k_mac_pf) 535 return; 536 537 switch (ti->type) { 538 case UDP_TUNNEL_TYPE_VXLAN: 539 port = fm10k_remove_tunnel_port(&interface->vxlan_port, ti); 540 break; 541 case UDP_TUNNEL_TYPE_GENEVE: 542 port = fm10k_remove_tunnel_port(&interface->geneve_port, ti); 543 break; 544 default: 545 return; 546 } 547 548 /* if we did remove a port we need to free its memory */ 549 kfree(port); 550 551 fm10k_restore_udp_port_info(interface); 552 } 553 554 /** 555 * fm10k_open - Called when a network interface is made active 556 * @netdev: network interface device structure 557 * 558 * Returns 0 on success, negative value on failure 559 * 560 * The open entry point is called when a network interface is made 561 * active by the system (IFF_UP). At this point all resources needed 562 * for transmit and receive operations are allocated, the interrupt 563 * handler is registered with the OS, the watchdog timer is started, 564 * and the stack is notified that the interface is ready. 565 **/ 566 int fm10k_open(struct net_device *netdev) 567 { 568 struct fm10k_intfc *interface = netdev_priv(netdev); 569 int err; 570 571 /* allocate transmit descriptors */ 572 err = fm10k_setup_all_tx_resources(interface); 573 if (err) 574 goto err_setup_tx; 575 576 /* allocate receive descriptors */ 577 err = fm10k_setup_all_rx_resources(interface); 578 if (err) 579 goto err_setup_rx; 580 581 /* allocate interrupt resources */ 582 err = fm10k_qv_request_irq(interface); 583 if (err) 584 goto err_req_irq; 585 586 /* setup GLORT assignment for this port */ 587 fm10k_request_glort_range(interface); 588 589 /* Notify the stack of the actual queue counts */ 590 err = netif_set_real_num_tx_queues(netdev, 591 interface->num_tx_queues); 592 if (err) 593 goto err_set_queues; 594 595 err = netif_set_real_num_rx_queues(netdev, 596 interface->num_rx_queues); 597 if (err) 598 goto err_set_queues; 599 600 udp_tunnel_get_rx_info(netdev); 601 602 fm10k_up(interface); 603 604 return 0; 605 606 err_set_queues: 607 fm10k_qv_free_irq(interface); 608 err_req_irq: 609 fm10k_free_all_rx_resources(interface); 610 err_setup_rx: 611 fm10k_free_all_tx_resources(interface); 612 err_setup_tx: 613 return err; 614 } 615 616 /** 617 * fm10k_close - Disables a network interface 618 * @netdev: network interface device structure 619 * 620 * Returns 0, this is not allowed to fail 621 * 622 * The close entry point is called when an interface is de-activated 623 * by the OS. The hardware is still under the drivers control, but 624 * needs to be disabled. A global MAC reset is issued to stop the 625 * hardware, and all transmit and receive resources are freed. 626 **/ 627 int fm10k_close(struct net_device *netdev) 628 { 629 struct fm10k_intfc *interface = netdev_priv(netdev); 630 631 fm10k_down(interface); 632 633 fm10k_qv_free_irq(interface); 634 635 fm10k_free_udp_port_info(interface); 636 637 fm10k_free_all_tx_resources(interface); 638 fm10k_free_all_rx_resources(interface); 639 640 return 0; 641 } 642 643 static netdev_tx_t fm10k_xmit_frame(struct sk_buff *skb, struct net_device *dev) 644 { 645 struct fm10k_intfc *interface = netdev_priv(dev); 646 unsigned int r_idx = skb->queue_mapping; 647 int err; 648 649 if ((skb->protocol == htons(ETH_P_8021Q)) && 650 !skb_vlan_tag_present(skb)) { 651 /* FM10K only supports hardware tagging, any tags in frame 652 * are considered 2nd level or "outer" tags 653 */ 654 struct vlan_hdr *vhdr; 655 __be16 proto; 656 657 /* make sure skb is not shared */ 658 skb = skb_share_check(skb, GFP_ATOMIC); 659 if (!skb) 660 return NETDEV_TX_OK; 661 662 /* make sure there is enough room to move the ethernet header */ 663 if (unlikely(!pskb_may_pull(skb, VLAN_ETH_HLEN))) 664 return NETDEV_TX_OK; 665 666 /* verify the skb head is not shared */ 667 err = skb_cow_head(skb, 0); 668 if (err) { 669 dev_kfree_skb(skb); 670 return NETDEV_TX_OK; 671 } 672 673 /* locate VLAN header */ 674 vhdr = (struct vlan_hdr *)(skb->data + ETH_HLEN); 675 676 /* pull the 2 key pieces of data out of it */ 677 __vlan_hwaccel_put_tag(skb, 678 htons(ETH_P_8021Q), 679 ntohs(vhdr->h_vlan_TCI)); 680 proto = vhdr->h_vlan_encapsulated_proto; 681 skb->protocol = (ntohs(proto) >= 1536) ? proto : 682 htons(ETH_P_802_2); 683 684 /* squash it by moving the ethernet addresses up 4 bytes */ 685 memmove(skb->data + VLAN_HLEN, skb->data, 12); 686 __skb_pull(skb, VLAN_HLEN); 687 skb_reset_mac_header(skb); 688 } 689 690 /* The minimum packet size for a single buffer is 17B so pad the skb 691 * in order to meet this minimum size requirement. 692 */ 693 if (unlikely(skb->len < 17)) { 694 int pad_len = 17 - skb->len; 695 696 if (skb_pad(skb, pad_len)) 697 return NETDEV_TX_OK; 698 __skb_put(skb, pad_len); 699 } 700 701 if (r_idx >= interface->num_tx_queues) 702 r_idx %= interface->num_tx_queues; 703 704 err = fm10k_xmit_frame_ring(skb, interface->tx_ring[r_idx]); 705 706 return err; 707 } 708 709 /** 710 * fm10k_tx_timeout - Respond to a Tx Hang 711 * @netdev: network interface device structure 712 **/ 713 static void fm10k_tx_timeout(struct net_device *netdev) 714 { 715 struct fm10k_intfc *interface = netdev_priv(netdev); 716 bool real_tx_hang = false; 717 int i; 718 719 #define TX_TIMEO_LIMIT 16000 720 for (i = 0; i < interface->num_tx_queues; i++) { 721 struct fm10k_ring *tx_ring = interface->tx_ring[i]; 722 723 if (check_for_tx_hang(tx_ring) && fm10k_check_tx_hang(tx_ring)) 724 real_tx_hang = true; 725 } 726 727 if (real_tx_hang) { 728 fm10k_tx_timeout_reset(interface); 729 } else { 730 netif_info(interface, drv, netdev, 731 "Fake Tx hang detected with timeout of %d seconds\n", 732 netdev->watchdog_timeo / HZ); 733 734 /* fake Tx hang - increase the kernel timeout */ 735 if (netdev->watchdog_timeo < TX_TIMEO_LIMIT) 736 netdev->watchdog_timeo *= 2; 737 } 738 } 739 740 static int fm10k_uc_vlan_unsync(struct net_device *netdev, 741 const unsigned char *uc_addr) 742 { 743 struct fm10k_intfc *interface = netdev_priv(netdev); 744 struct fm10k_hw *hw = &interface->hw; 745 u16 glort = interface->glort; 746 u16 vid = interface->vid; 747 bool set = !!(vid / VLAN_N_VID); 748 int err; 749 750 /* drop any leading bits on the VLAN ID */ 751 vid &= VLAN_N_VID - 1; 752 753 err = hw->mac.ops.update_uc_addr(hw, glort, uc_addr, vid, set, 0); 754 if (err) 755 return err; 756 757 /* return non-zero value as we are only doing a partial sync/unsync */ 758 return 1; 759 } 760 761 static int fm10k_mc_vlan_unsync(struct net_device *netdev, 762 const unsigned char *mc_addr) 763 { 764 struct fm10k_intfc *interface = netdev_priv(netdev); 765 struct fm10k_hw *hw = &interface->hw; 766 u16 glort = interface->glort; 767 u16 vid = interface->vid; 768 bool set = !!(vid / VLAN_N_VID); 769 int err; 770 771 /* drop any leading bits on the VLAN ID */ 772 vid &= VLAN_N_VID - 1; 773 774 err = hw->mac.ops.update_mc_addr(hw, glort, mc_addr, vid, set); 775 if (err) 776 return err; 777 778 /* return non-zero value as we are only doing a partial sync/unsync */ 779 return 1; 780 } 781 782 static int fm10k_update_vid(struct net_device *netdev, u16 vid, bool set) 783 { 784 struct fm10k_intfc *interface = netdev_priv(netdev); 785 struct fm10k_hw *hw = &interface->hw; 786 s32 err; 787 int i; 788 789 /* updates do not apply to VLAN 0 */ 790 if (!vid) 791 return 0; 792 793 if (vid >= VLAN_N_VID) 794 return -EINVAL; 795 796 /* Verify we have permission to add VLANs */ 797 if (hw->mac.vlan_override) 798 return -EACCES; 799 800 /* update active_vlans bitmask */ 801 set_bit(vid, interface->active_vlans); 802 if (!set) 803 clear_bit(vid, interface->active_vlans); 804 805 /* disable the default VLAN ID on ring if we have an active VLAN */ 806 for (i = 0; i < interface->num_rx_queues; i++) { 807 struct fm10k_ring *rx_ring = interface->rx_ring[i]; 808 u16 rx_vid = rx_ring->vid & (VLAN_N_VID - 1); 809 810 if (test_bit(rx_vid, interface->active_vlans)) 811 rx_ring->vid |= FM10K_VLAN_CLEAR; 812 else 813 rx_ring->vid &= ~FM10K_VLAN_CLEAR; 814 } 815 816 /* Do not remove default VLAN ID related entries from VLAN and MAC 817 * tables 818 */ 819 if (!set && vid == hw->mac.default_vid) 820 return 0; 821 822 /* Do not throw an error if the interface is down. We will sync once 823 * we come up 824 */ 825 if (test_bit(__FM10K_DOWN, &interface->state)) 826 return 0; 827 828 fm10k_mbx_lock(interface); 829 830 /* only need to update the VLAN if not in promiscuous mode */ 831 if (!(netdev->flags & IFF_PROMISC)) { 832 err = hw->mac.ops.update_vlan(hw, vid, 0, set); 833 if (err) 834 goto err_out; 835 } 836 837 /* update our base MAC address */ 838 err = hw->mac.ops.update_uc_addr(hw, interface->glort, hw->mac.addr, 839 vid, set, 0); 840 if (err) 841 goto err_out; 842 843 /* set VLAN ID prior to syncing/unsyncing the VLAN */ 844 interface->vid = vid + (set ? VLAN_N_VID : 0); 845 846 /* Update the unicast and multicast address list to add/drop VLAN */ 847 __dev_uc_unsync(netdev, fm10k_uc_vlan_unsync); 848 __dev_mc_unsync(netdev, fm10k_mc_vlan_unsync); 849 850 err_out: 851 fm10k_mbx_unlock(interface); 852 853 return err; 854 } 855 856 static int fm10k_vlan_rx_add_vid(struct net_device *netdev, 857 __always_unused __be16 proto, u16 vid) 858 { 859 /* update VLAN and address table based on changes */ 860 return fm10k_update_vid(netdev, vid, true); 861 } 862 863 static int fm10k_vlan_rx_kill_vid(struct net_device *netdev, 864 __always_unused __be16 proto, u16 vid) 865 { 866 /* update VLAN and address table based on changes */ 867 return fm10k_update_vid(netdev, vid, false); 868 } 869 870 static u16 fm10k_find_next_vlan(struct fm10k_intfc *interface, u16 vid) 871 { 872 struct fm10k_hw *hw = &interface->hw; 873 u16 default_vid = hw->mac.default_vid; 874 u16 vid_limit = vid < default_vid ? default_vid : VLAN_N_VID; 875 876 vid = find_next_bit(interface->active_vlans, vid_limit, ++vid); 877 878 return vid; 879 } 880 881 static void fm10k_clear_unused_vlans(struct fm10k_intfc *interface) 882 { 883 struct fm10k_hw *hw = &interface->hw; 884 u32 vid, prev_vid; 885 886 /* loop through and find any gaps in the table */ 887 for (vid = 0, prev_vid = 0; 888 prev_vid < VLAN_N_VID; 889 prev_vid = vid + 1, vid = fm10k_find_next_vlan(interface, vid)) { 890 if (prev_vid == vid) 891 continue; 892 893 /* send request to clear multiple bits at a time */ 894 prev_vid += (vid - prev_vid - 1) << FM10K_VLAN_LENGTH_SHIFT; 895 hw->mac.ops.update_vlan(hw, prev_vid, 0, false); 896 } 897 } 898 899 static int __fm10k_uc_sync(struct net_device *dev, 900 const unsigned char *addr, bool sync) 901 { 902 struct fm10k_intfc *interface = netdev_priv(dev); 903 struct fm10k_hw *hw = &interface->hw; 904 u16 vid, glort = interface->glort; 905 s32 err; 906 907 if (!is_valid_ether_addr(addr)) 908 return -EADDRNOTAVAIL; 909 910 /* update table with current entries */ 911 for (vid = hw->mac.default_vid ? fm10k_find_next_vlan(interface, 0) : 1; 912 vid < VLAN_N_VID; 913 vid = fm10k_find_next_vlan(interface, vid)) { 914 err = hw->mac.ops.update_uc_addr(hw, glort, addr, 915 vid, sync, 0); 916 if (err) 917 return err; 918 } 919 920 return 0; 921 } 922 923 static int fm10k_uc_sync(struct net_device *dev, 924 const unsigned char *addr) 925 { 926 return __fm10k_uc_sync(dev, addr, true); 927 } 928 929 static int fm10k_uc_unsync(struct net_device *dev, 930 const unsigned char *addr) 931 { 932 return __fm10k_uc_sync(dev, addr, false); 933 } 934 935 static int fm10k_set_mac(struct net_device *dev, void *p) 936 { 937 struct fm10k_intfc *interface = netdev_priv(dev); 938 struct fm10k_hw *hw = &interface->hw; 939 struct sockaddr *addr = p; 940 s32 err = 0; 941 942 if (!is_valid_ether_addr(addr->sa_data)) 943 return -EADDRNOTAVAIL; 944 945 if (dev->flags & IFF_UP) { 946 /* setting MAC address requires mailbox */ 947 fm10k_mbx_lock(interface); 948 949 err = fm10k_uc_sync(dev, addr->sa_data); 950 if (!err) 951 fm10k_uc_unsync(dev, hw->mac.addr); 952 953 fm10k_mbx_unlock(interface); 954 } 955 956 if (!err) { 957 ether_addr_copy(dev->dev_addr, addr->sa_data); 958 ether_addr_copy(hw->mac.addr, addr->sa_data); 959 dev->addr_assign_type &= ~NET_ADDR_RANDOM; 960 } 961 962 /* if we had a mailbox error suggest trying again */ 963 return err ? -EAGAIN : 0; 964 } 965 966 static int __fm10k_mc_sync(struct net_device *dev, 967 const unsigned char *addr, bool sync) 968 { 969 struct fm10k_intfc *interface = netdev_priv(dev); 970 struct fm10k_hw *hw = &interface->hw; 971 u16 vid, glort = interface->glort; 972 973 /* update table with current entries */ 974 for (vid = hw->mac.default_vid ? fm10k_find_next_vlan(interface, 0) : 1; 975 vid < VLAN_N_VID; 976 vid = fm10k_find_next_vlan(interface, vid)) { 977 hw->mac.ops.update_mc_addr(hw, glort, addr, vid, sync); 978 } 979 980 return 0; 981 } 982 983 static int fm10k_mc_sync(struct net_device *dev, 984 const unsigned char *addr) 985 { 986 return __fm10k_mc_sync(dev, addr, true); 987 } 988 989 static int fm10k_mc_unsync(struct net_device *dev, 990 const unsigned char *addr) 991 { 992 return __fm10k_mc_sync(dev, addr, false); 993 } 994 995 static void fm10k_set_rx_mode(struct net_device *dev) 996 { 997 struct fm10k_intfc *interface = netdev_priv(dev); 998 struct fm10k_hw *hw = &interface->hw; 999 int xcast_mode; 1000 1001 /* no need to update the harwdare if we are not running */ 1002 if (!(dev->flags & IFF_UP)) 1003 return; 1004 1005 /* determine new mode based on flags */ 1006 xcast_mode = (dev->flags & IFF_PROMISC) ? FM10K_XCAST_MODE_PROMISC : 1007 (dev->flags & IFF_ALLMULTI) ? FM10K_XCAST_MODE_ALLMULTI : 1008 (dev->flags & (IFF_BROADCAST | IFF_MULTICAST)) ? 1009 FM10K_XCAST_MODE_MULTI : FM10K_XCAST_MODE_NONE; 1010 1011 fm10k_mbx_lock(interface); 1012 1013 /* update xcast mode first, but only if it changed */ 1014 if (interface->xcast_mode != xcast_mode) { 1015 /* update VLAN table */ 1016 if (xcast_mode == FM10K_XCAST_MODE_PROMISC) 1017 hw->mac.ops.update_vlan(hw, FM10K_VLAN_ALL, 0, true); 1018 if (interface->xcast_mode == FM10K_XCAST_MODE_PROMISC) 1019 fm10k_clear_unused_vlans(interface); 1020 1021 /* update xcast mode */ 1022 hw->mac.ops.update_xcast_mode(hw, interface->glort, xcast_mode); 1023 1024 /* record updated xcast mode state */ 1025 interface->xcast_mode = xcast_mode; 1026 } 1027 1028 /* synchronize all of the addresses */ 1029 __dev_uc_sync(dev, fm10k_uc_sync, fm10k_uc_unsync); 1030 __dev_mc_sync(dev, fm10k_mc_sync, fm10k_mc_unsync); 1031 1032 fm10k_mbx_unlock(interface); 1033 } 1034 1035 void fm10k_restore_rx_state(struct fm10k_intfc *interface) 1036 { 1037 struct net_device *netdev = interface->netdev; 1038 struct fm10k_hw *hw = &interface->hw; 1039 int xcast_mode; 1040 u16 vid, glort; 1041 1042 /* record glort for this interface */ 1043 glort = interface->glort; 1044 1045 /* convert interface flags to xcast mode */ 1046 if (netdev->flags & IFF_PROMISC) 1047 xcast_mode = FM10K_XCAST_MODE_PROMISC; 1048 else if (netdev->flags & IFF_ALLMULTI) 1049 xcast_mode = FM10K_XCAST_MODE_ALLMULTI; 1050 else if (netdev->flags & (IFF_BROADCAST | IFF_MULTICAST)) 1051 xcast_mode = FM10K_XCAST_MODE_MULTI; 1052 else 1053 xcast_mode = FM10K_XCAST_MODE_NONE; 1054 1055 fm10k_mbx_lock(interface); 1056 1057 /* Enable logical port */ 1058 hw->mac.ops.update_lport_state(hw, glort, interface->glort_count, true); 1059 1060 /* update VLAN table */ 1061 hw->mac.ops.update_vlan(hw, FM10K_VLAN_ALL, 0, 1062 xcast_mode == FM10K_XCAST_MODE_PROMISC); 1063 1064 /* Add filter for VLAN 0 */ 1065 hw->mac.ops.update_vlan(hw, 0, 0, true); 1066 1067 /* update table with current entries */ 1068 for (vid = hw->mac.default_vid ? fm10k_find_next_vlan(interface, 0) : 1; 1069 vid < VLAN_N_VID; 1070 vid = fm10k_find_next_vlan(interface, vid)) { 1071 hw->mac.ops.update_vlan(hw, vid, 0, true); 1072 hw->mac.ops.update_uc_addr(hw, glort, hw->mac.addr, 1073 vid, true, 0); 1074 } 1075 1076 /* update xcast mode before synchronizing addresses */ 1077 hw->mac.ops.update_xcast_mode(hw, glort, xcast_mode); 1078 1079 /* synchronize all of the addresses */ 1080 __dev_uc_sync(netdev, fm10k_uc_sync, fm10k_uc_unsync); 1081 __dev_mc_sync(netdev, fm10k_mc_sync, fm10k_mc_unsync); 1082 1083 fm10k_mbx_unlock(interface); 1084 1085 /* record updated xcast mode state */ 1086 interface->xcast_mode = xcast_mode; 1087 1088 /* Restore tunnel configuration */ 1089 fm10k_restore_udp_port_info(interface); 1090 } 1091 1092 void fm10k_reset_rx_state(struct fm10k_intfc *interface) 1093 { 1094 struct net_device *netdev = interface->netdev; 1095 struct fm10k_hw *hw = &interface->hw; 1096 1097 fm10k_mbx_lock(interface); 1098 1099 /* clear the logical port state on lower device */ 1100 hw->mac.ops.update_lport_state(hw, interface->glort, 1101 interface->glort_count, false); 1102 1103 fm10k_mbx_unlock(interface); 1104 1105 /* reset flags to default state */ 1106 interface->xcast_mode = FM10K_XCAST_MODE_NONE; 1107 1108 /* clear the sync flag since the lport has been dropped */ 1109 __dev_uc_unsync(netdev, NULL); 1110 __dev_mc_unsync(netdev, NULL); 1111 } 1112 1113 /** 1114 * fm10k_get_stats64 - Get System Network Statistics 1115 * @netdev: network interface device structure 1116 * @stats: storage space for 64bit statistics 1117 * 1118 * Returns 64bit statistics, for use in the ndo_get_stats64 callback. This 1119 * function replaces fm10k_get_stats for kernels which support it. 1120 */ 1121 static void fm10k_get_stats64(struct net_device *netdev, 1122 struct rtnl_link_stats64 *stats) 1123 { 1124 struct fm10k_intfc *interface = netdev_priv(netdev); 1125 struct fm10k_ring *ring; 1126 unsigned int start, i; 1127 u64 bytes, packets; 1128 1129 rcu_read_lock(); 1130 1131 for (i = 0; i < interface->num_rx_queues; i++) { 1132 ring = READ_ONCE(interface->rx_ring[i]); 1133 1134 if (!ring) 1135 continue; 1136 1137 do { 1138 start = u64_stats_fetch_begin_irq(&ring->syncp); 1139 packets = ring->stats.packets; 1140 bytes = ring->stats.bytes; 1141 } while (u64_stats_fetch_retry_irq(&ring->syncp, start)); 1142 1143 stats->rx_packets += packets; 1144 stats->rx_bytes += bytes; 1145 } 1146 1147 for (i = 0; i < interface->num_tx_queues; i++) { 1148 ring = READ_ONCE(interface->tx_ring[i]); 1149 1150 if (!ring) 1151 continue; 1152 1153 do { 1154 start = u64_stats_fetch_begin_irq(&ring->syncp); 1155 packets = ring->stats.packets; 1156 bytes = ring->stats.bytes; 1157 } while (u64_stats_fetch_retry_irq(&ring->syncp, start)); 1158 1159 stats->tx_packets += packets; 1160 stats->tx_bytes += bytes; 1161 } 1162 1163 rcu_read_unlock(); 1164 1165 /* following stats updated by fm10k_service_task() */ 1166 stats->rx_missed_errors = netdev->stats.rx_missed_errors; 1167 } 1168 1169 int fm10k_setup_tc(struct net_device *dev, u8 tc) 1170 { 1171 struct fm10k_intfc *interface = netdev_priv(dev); 1172 int err; 1173 1174 /* Currently only the PF supports priority classes */ 1175 if (tc && (interface->hw.mac.type != fm10k_mac_pf)) 1176 return -EINVAL; 1177 1178 /* Hardware supports up to 8 traffic classes */ 1179 if (tc > 8) 1180 return -EINVAL; 1181 1182 /* Hardware has to reinitialize queues to match packet 1183 * buffer alignment. Unfortunately, the hardware is not 1184 * flexible enough to do this dynamically. 1185 */ 1186 if (netif_running(dev)) 1187 fm10k_close(dev); 1188 1189 fm10k_mbx_free_irq(interface); 1190 1191 fm10k_clear_queueing_scheme(interface); 1192 1193 /* we expect the prio_tc map to be repopulated later */ 1194 netdev_reset_tc(dev); 1195 netdev_set_num_tc(dev, tc); 1196 1197 err = fm10k_init_queueing_scheme(interface); 1198 if (err) 1199 goto err_queueing_scheme; 1200 1201 err = fm10k_mbx_request_irq(interface); 1202 if (err) 1203 goto err_mbx_irq; 1204 1205 err = netif_running(dev) ? fm10k_open(dev) : 0; 1206 if (err) 1207 goto err_open; 1208 1209 /* flag to indicate SWPRI has yet to be updated */ 1210 interface->flags |= FM10K_FLAG_SWPRI_CONFIG; 1211 1212 return 0; 1213 err_open: 1214 fm10k_mbx_free_irq(interface); 1215 err_mbx_irq: 1216 fm10k_clear_queueing_scheme(interface); 1217 err_queueing_scheme: 1218 netif_device_detach(dev); 1219 1220 return err; 1221 } 1222 1223 static int __fm10k_setup_tc(struct net_device *dev, u32 handle, __be16 proto, 1224 struct tc_to_netdev *tc) 1225 { 1226 if (tc->type != TC_SETUP_MQPRIO) 1227 return -EINVAL; 1228 1229 return fm10k_setup_tc(dev, tc->tc); 1230 } 1231 1232 static void fm10k_assign_l2_accel(struct fm10k_intfc *interface, 1233 struct fm10k_l2_accel *l2_accel) 1234 { 1235 struct fm10k_ring *ring; 1236 int i; 1237 1238 for (i = 0; i < interface->num_rx_queues; i++) { 1239 ring = interface->rx_ring[i]; 1240 rcu_assign_pointer(ring->l2_accel, l2_accel); 1241 } 1242 1243 interface->l2_accel = l2_accel; 1244 } 1245 1246 static void *fm10k_dfwd_add_station(struct net_device *dev, 1247 struct net_device *sdev) 1248 { 1249 struct fm10k_intfc *interface = netdev_priv(dev); 1250 struct fm10k_l2_accel *l2_accel = interface->l2_accel; 1251 struct fm10k_l2_accel *old_l2_accel = NULL; 1252 struct fm10k_dglort_cfg dglort = { 0 }; 1253 struct fm10k_hw *hw = &interface->hw; 1254 int size = 0, i; 1255 u16 glort; 1256 1257 /* allocate l2 accel structure if it is not available */ 1258 if (!l2_accel) { 1259 /* verify there is enough free GLORTs to support l2_accel */ 1260 if (interface->glort_count < 7) 1261 return ERR_PTR(-EBUSY); 1262 1263 size = offsetof(struct fm10k_l2_accel, macvlan[7]); 1264 l2_accel = kzalloc(size, GFP_KERNEL); 1265 if (!l2_accel) 1266 return ERR_PTR(-ENOMEM); 1267 1268 l2_accel->size = 7; 1269 l2_accel->dglort = interface->glort; 1270 1271 /* update pointers */ 1272 fm10k_assign_l2_accel(interface, l2_accel); 1273 /* do not expand if we are at our limit */ 1274 } else if ((l2_accel->count == FM10K_MAX_STATIONS) || 1275 (l2_accel->count == (interface->glort_count - 1))) { 1276 return ERR_PTR(-EBUSY); 1277 /* expand if we have hit the size limit */ 1278 } else if (l2_accel->count == l2_accel->size) { 1279 old_l2_accel = l2_accel; 1280 size = offsetof(struct fm10k_l2_accel, 1281 macvlan[(l2_accel->size * 2) + 1]); 1282 l2_accel = kzalloc(size, GFP_KERNEL); 1283 if (!l2_accel) 1284 return ERR_PTR(-ENOMEM); 1285 1286 memcpy(l2_accel, old_l2_accel, 1287 offsetof(struct fm10k_l2_accel, 1288 macvlan[old_l2_accel->size])); 1289 1290 l2_accel->size = (old_l2_accel->size * 2) + 1; 1291 1292 /* update pointers */ 1293 fm10k_assign_l2_accel(interface, l2_accel); 1294 kfree_rcu(old_l2_accel, rcu); 1295 } 1296 1297 /* add macvlan to accel table, and record GLORT for position */ 1298 for (i = 0; i < l2_accel->size; i++) { 1299 if (!l2_accel->macvlan[i]) 1300 break; 1301 } 1302 1303 /* record station */ 1304 l2_accel->macvlan[i] = sdev; 1305 l2_accel->count++; 1306 1307 /* configure default DGLORT mapping for RSS/DCB */ 1308 dglort.idx = fm10k_dglort_pf_rss; 1309 dglort.inner_rss = 1; 1310 dglort.rss_l = fls(interface->ring_feature[RING_F_RSS].mask); 1311 dglort.pc_l = fls(interface->ring_feature[RING_F_QOS].mask); 1312 dglort.glort = interface->glort; 1313 dglort.shared_l = fls(l2_accel->size); 1314 hw->mac.ops.configure_dglort_map(hw, &dglort); 1315 1316 /* Add rules for this specific dglort to the switch */ 1317 fm10k_mbx_lock(interface); 1318 1319 glort = l2_accel->dglort + 1 + i; 1320 hw->mac.ops.update_xcast_mode(hw, glort, FM10K_XCAST_MODE_MULTI); 1321 hw->mac.ops.update_uc_addr(hw, glort, sdev->dev_addr, 0, true, 0); 1322 1323 fm10k_mbx_unlock(interface); 1324 1325 return sdev; 1326 } 1327 1328 static void fm10k_dfwd_del_station(struct net_device *dev, void *priv) 1329 { 1330 struct fm10k_intfc *interface = netdev_priv(dev); 1331 struct fm10k_l2_accel *l2_accel = READ_ONCE(interface->l2_accel); 1332 struct fm10k_dglort_cfg dglort = { 0 }; 1333 struct fm10k_hw *hw = &interface->hw; 1334 struct net_device *sdev = priv; 1335 int i; 1336 u16 glort; 1337 1338 if (!l2_accel) 1339 return; 1340 1341 /* search table for matching interface */ 1342 for (i = 0; i < l2_accel->size; i++) { 1343 if (l2_accel->macvlan[i] == sdev) 1344 break; 1345 } 1346 1347 /* exit if macvlan not found */ 1348 if (i == l2_accel->size) 1349 return; 1350 1351 /* Remove any rules specific to this dglort */ 1352 fm10k_mbx_lock(interface); 1353 1354 glort = l2_accel->dglort + 1 + i; 1355 hw->mac.ops.update_xcast_mode(hw, glort, FM10K_XCAST_MODE_NONE); 1356 hw->mac.ops.update_uc_addr(hw, glort, sdev->dev_addr, 0, false, 0); 1357 1358 fm10k_mbx_unlock(interface); 1359 1360 /* record removal */ 1361 l2_accel->macvlan[i] = NULL; 1362 l2_accel->count--; 1363 1364 /* configure default DGLORT mapping for RSS/DCB */ 1365 dglort.idx = fm10k_dglort_pf_rss; 1366 dglort.inner_rss = 1; 1367 dglort.rss_l = fls(interface->ring_feature[RING_F_RSS].mask); 1368 dglort.pc_l = fls(interface->ring_feature[RING_F_QOS].mask); 1369 dglort.glort = interface->glort; 1370 dglort.shared_l = fls(l2_accel->size); 1371 hw->mac.ops.configure_dglort_map(hw, &dglort); 1372 1373 /* If table is empty remove it */ 1374 if (l2_accel->count == 0) { 1375 fm10k_assign_l2_accel(interface, NULL); 1376 kfree_rcu(l2_accel, rcu); 1377 } 1378 } 1379 1380 static netdev_features_t fm10k_features_check(struct sk_buff *skb, 1381 struct net_device *dev, 1382 netdev_features_t features) 1383 { 1384 if (!skb->encapsulation || fm10k_tx_encap_offload(skb)) 1385 return features; 1386 1387 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 1388 } 1389 1390 static const struct net_device_ops fm10k_netdev_ops = { 1391 .ndo_open = fm10k_open, 1392 .ndo_stop = fm10k_close, 1393 .ndo_validate_addr = eth_validate_addr, 1394 .ndo_start_xmit = fm10k_xmit_frame, 1395 .ndo_set_mac_address = fm10k_set_mac, 1396 .ndo_tx_timeout = fm10k_tx_timeout, 1397 .ndo_vlan_rx_add_vid = fm10k_vlan_rx_add_vid, 1398 .ndo_vlan_rx_kill_vid = fm10k_vlan_rx_kill_vid, 1399 .ndo_set_rx_mode = fm10k_set_rx_mode, 1400 .ndo_get_stats64 = fm10k_get_stats64, 1401 .ndo_setup_tc = __fm10k_setup_tc, 1402 .ndo_set_vf_mac = fm10k_ndo_set_vf_mac, 1403 .ndo_set_vf_vlan = fm10k_ndo_set_vf_vlan, 1404 .ndo_set_vf_rate = fm10k_ndo_set_vf_bw, 1405 .ndo_get_vf_config = fm10k_ndo_get_vf_config, 1406 .ndo_udp_tunnel_add = fm10k_udp_tunnel_add, 1407 .ndo_udp_tunnel_del = fm10k_udp_tunnel_del, 1408 .ndo_dfwd_add_station = fm10k_dfwd_add_station, 1409 .ndo_dfwd_del_station = fm10k_dfwd_del_station, 1410 #ifdef CONFIG_NET_POLL_CONTROLLER 1411 .ndo_poll_controller = fm10k_netpoll, 1412 #endif 1413 .ndo_features_check = fm10k_features_check, 1414 }; 1415 1416 #define DEFAULT_DEBUG_LEVEL_SHIFT 3 1417 1418 struct net_device *fm10k_alloc_netdev(const struct fm10k_info *info) 1419 { 1420 netdev_features_t hw_features; 1421 struct fm10k_intfc *interface; 1422 struct net_device *dev; 1423 1424 dev = alloc_etherdev_mq(sizeof(struct fm10k_intfc), MAX_QUEUES); 1425 if (!dev) 1426 return NULL; 1427 1428 /* set net device and ethtool ops */ 1429 dev->netdev_ops = &fm10k_netdev_ops; 1430 fm10k_set_ethtool_ops(dev); 1431 1432 /* configure default debug level */ 1433 interface = netdev_priv(dev); 1434 interface->msg_enable = BIT(DEFAULT_DEBUG_LEVEL_SHIFT) - 1; 1435 1436 /* configure default features */ 1437 dev->features |= NETIF_F_IP_CSUM | 1438 NETIF_F_IPV6_CSUM | 1439 NETIF_F_SG | 1440 NETIF_F_TSO | 1441 NETIF_F_TSO6 | 1442 NETIF_F_TSO_ECN | 1443 NETIF_F_RXHASH | 1444 NETIF_F_RXCSUM; 1445 1446 /* Only the PF can support VXLAN and NVGRE tunnel offloads */ 1447 if (info->mac == fm10k_mac_pf) { 1448 dev->hw_enc_features = NETIF_F_IP_CSUM | 1449 NETIF_F_TSO | 1450 NETIF_F_TSO6 | 1451 NETIF_F_TSO_ECN | 1452 NETIF_F_GSO_UDP_TUNNEL | 1453 NETIF_F_IPV6_CSUM | 1454 NETIF_F_SG; 1455 1456 dev->features |= NETIF_F_GSO_UDP_TUNNEL; 1457 } 1458 1459 /* all features defined to this point should be changeable */ 1460 hw_features = dev->features; 1461 1462 /* allow user to enable L2 forwarding acceleration */ 1463 hw_features |= NETIF_F_HW_L2FW_DOFFLOAD; 1464 1465 /* configure VLAN features */ 1466 dev->vlan_features |= dev->features; 1467 1468 /* we want to leave these both on as we cannot disable VLAN tag 1469 * insertion or stripping on the hardware since it is contained 1470 * in the FTAG and not in the frame itself. 1471 */ 1472 dev->features |= NETIF_F_HW_VLAN_CTAG_TX | 1473 NETIF_F_HW_VLAN_CTAG_RX | 1474 NETIF_F_HW_VLAN_CTAG_FILTER; 1475 1476 dev->priv_flags |= IFF_UNICAST_FLT; 1477 1478 dev->hw_features |= hw_features; 1479 1480 /* MTU range: 68 - 15342 */ 1481 dev->min_mtu = ETH_MIN_MTU; 1482 dev->max_mtu = FM10K_MAX_JUMBO_FRAME_SIZE; 1483 1484 return dev; 1485 } 1486