1 /* Intel(R) Ethernet Switch Host Interface Driver
2  * Copyright(c) 2013 - 2016 Intel Corporation.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms and conditions of the GNU General Public License,
6  * version 2, as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope it will be useful, but WITHOUT
9  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
11  * more details.
12  *
13  * The full GNU General Public License is included in this distribution in
14  * the file called "COPYING".
15  *
16  * Contact Information:
17  * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
18  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
19  */
20 
21 #include "fm10k.h"
22 #include <linux/vmalloc.h>
23 #ifdef CONFIG_FM10K_VXLAN
24 #include <net/vxlan.h>
25 #endif /* CONFIG_FM10K_VXLAN */
26 
27 /**
28  * fm10k_setup_tx_resources - allocate Tx resources (Descriptors)
29  * @tx_ring:    tx descriptor ring (for a specific queue) to setup
30  *
31  * Return 0 on success, negative on failure
32  **/
33 int fm10k_setup_tx_resources(struct fm10k_ring *tx_ring)
34 {
35 	struct device *dev = tx_ring->dev;
36 	int size;
37 
38 	size = sizeof(struct fm10k_tx_buffer) * tx_ring->count;
39 
40 	tx_ring->tx_buffer = vzalloc(size);
41 	if (!tx_ring->tx_buffer)
42 		goto err;
43 
44 	u64_stats_init(&tx_ring->syncp);
45 
46 	/* round up to nearest 4K */
47 	tx_ring->size = tx_ring->count * sizeof(struct fm10k_tx_desc);
48 	tx_ring->size = ALIGN(tx_ring->size, 4096);
49 
50 	tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
51 					   &tx_ring->dma, GFP_KERNEL);
52 	if (!tx_ring->desc)
53 		goto err;
54 
55 	return 0;
56 
57 err:
58 	vfree(tx_ring->tx_buffer);
59 	tx_ring->tx_buffer = NULL;
60 	return -ENOMEM;
61 }
62 
63 /**
64  * fm10k_setup_all_tx_resources - allocate all queues Tx resources
65  * @interface: board private structure
66  *
67  * If this function returns with an error, then it's possible one or
68  * more of the rings is populated (while the rest are not).  It is the
69  * callers duty to clean those orphaned rings.
70  *
71  * Return 0 on success, negative on failure
72  **/
73 static int fm10k_setup_all_tx_resources(struct fm10k_intfc *interface)
74 {
75 	int i, err = 0;
76 
77 	for (i = 0; i < interface->num_tx_queues; i++) {
78 		err = fm10k_setup_tx_resources(interface->tx_ring[i]);
79 		if (!err)
80 			continue;
81 
82 		netif_err(interface, probe, interface->netdev,
83 			  "Allocation for Tx Queue %u failed\n", i);
84 		goto err_setup_tx;
85 	}
86 
87 	return 0;
88 err_setup_tx:
89 	/* rewind the index freeing the rings as we go */
90 	while (i--)
91 		fm10k_free_tx_resources(interface->tx_ring[i]);
92 	return err;
93 }
94 
95 /**
96  * fm10k_setup_rx_resources - allocate Rx resources (Descriptors)
97  * @rx_ring:    rx descriptor ring (for a specific queue) to setup
98  *
99  * Returns 0 on success, negative on failure
100  **/
101 int fm10k_setup_rx_resources(struct fm10k_ring *rx_ring)
102 {
103 	struct device *dev = rx_ring->dev;
104 	int size;
105 
106 	size = sizeof(struct fm10k_rx_buffer) * rx_ring->count;
107 
108 	rx_ring->rx_buffer = vzalloc(size);
109 	if (!rx_ring->rx_buffer)
110 		goto err;
111 
112 	u64_stats_init(&rx_ring->syncp);
113 
114 	/* Round up to nearest 4K */
115 	rx_ring->size = rx_ring->count * sizeof(union fm10k_rx_desc);
116 	rx_ring->size = ALIGN(rx_ring->size, 4096);
117 
118 	rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
119 					   &rx_ring->dma, GFP_KERNEL);
120 	if (!rx_ring->desc)
121 		goto err;
122 
123 	return 0;
124 err:
125 	vfree(rx_ring->rx_buffer);
126 	rx_ring->rx_buffer = NULL;
127 	return -ENOMEM;
128 }
129 
130 /**
131  * fm10k_setup_all_rx_resources - allocate all queues Rx resources
132  * @interface: board private structure
133  *
134  * If this function returns with an error, then it's possible one or
135  * more of the rings is populated (while the rest are not).  It is the
136  * callers duty to clean those orphaned rings.
137  *
138  * Return 0 on success, negative on failure
139  **/
140 static int fm10k_setup_all_rx_resources(struct fm10k_intfc *interface)
141 {
142 	int i, err = 0;
143 
144 	for (i = 0; i < interface->num_rx_queues; i++) {
145 		err = fm10k_setup_rx_resources(interface->rx_ring[i]);
146 		if (!err)
147 			continue;
148 
149 		netif_err(interface, probe, interface->netdev,
150 			  "Allocation for Rx Queue %u failed\n", i);
151 		goto err_setup_rx;
152 	}
153 
154 	return 0;
155 err_setup_rx:
156 	/* rewind the index freeing the rings as we go */
157 	while (i--)
158 		fm10k_free_rx_resources(interface->rx_ring[i]);
159 	return err;
160 }
161 
162 void fm10k_unmap_and_free_tx_resource(struct fm10k_ring *ring,
163 				      struct fm10k_tx_buffer *tx_buffer)
164 {
165 	if (tx_buffer->skb) {
166 		dev_kfree_skb_any(tx_buffer->skb);
167 		if (dma_unmap_len(tx_buffer, len))
168 			dma_unmap_single(ring->dev,
169 					 dma_unmap_addr(tx_buffer, dma),
170 					 dma_unmap_len(tx_buffer, len),
171 					 DMA_TO_DEVICE);
172 	} else if (dma_unmap_len(tx_buffer, len)) {
173 		dma_unmap_page(ring->dev,
174 			       dma_unmap_addr(tx_buffer, dma),
175 			       dma_unmap_len(tx_buffer, len),
176 			       DMA_TO_DEVICE);
177 	}
178 	tx_buffer->next_to_watch = NULL;
179 	tx_buffer->skb = NULL;
180 	dma_unmap_len_set(tx_buffer, len, 0);
181 	/* tx_buffer must be completely set up in the transmit path */
182 }
183 
184 /**
185  * fm10k_clean_tx_ring - Free Tx Buffers
186  * @tx_ring: ring to be cleaned
187  **/
188 static void fm10k_clean_tx_ring(struct fm10k_ring *tx_ring)
189 {
190 	struct fm10k_tx_buffer *tx_buffer;
191 	unsigned long size;
192 	u16 i;
193 
194 	/* ring already cleared, nothing to do */
195 	if (!tx_ring->tx_buffer)
196 		return;
197 
198 	/* Free all the Tx ring sk_buffs */
199 	for (i = 0; i < tx_ring->count; i++) {
200 		tx_buffer = &tx_ring->tx_buffer[i];
201 		fm10k_unmap_and_free_tx_resource(tx_ring, tx_buffer);
202 	}
203 
204 	/* reset BQL values */
205 	netdev_tx_reset_queue(txring_txq(tx_ring));
206 
207 	size = sizeof(struct fm10k_tx_buffer) * tx_ring->count;
208 	memset(tx_ring->tx_buffer, 0, size);
209 
210 	/* Zero out the descriptor ring */
211 	memset(tx_ring->desc, 0, tx_ring->size);
212 }
213 
214 /**
215  * fm10k_free_tx_resources - Free Tx Resources per Queue
216  * @tx_ring: Tx descriptor ring for a specific queue
217  *
218  * Free all transmit software resources
219  **/
220 void fm10k_free_tx_resources(struct fm10k_ring *tx_ring)
221 {
222 	fm10k_clean_tx_ring(tx_ring);
223 
224 	vfree(tx_ring->tx_buffer);
225 	tx_ring->tx_buffer = NULL;
226 
227 	/* if not set, then don't free */
228 	if (!tx_ring->desc)
229 		return;
230 
231 	dma_free_coherent(tx_ring->dev, tx_ring->size,
232 			  tx_ring->desc, tx_ring->dma);
233 	tx_ring->desc = NULL;
234 }
235 
236 /**
237  * fm10k_clean_all_tx_rings - Free Tx Buffers for all queues
238  * @interface: board private structure
239  **/
240 void fm10k_clean_all_tx_rings(struct fm10k_intfc *interface)
241 {
242 	int i;
243 
244 	for (i = 0; i < interface->num_tx_queues; i++)
245 		fm10k_clean_tx_ring(interface->tx_ring[i]);
246 }
247 
248 /**
249  * fm10k_free_all_tx_resources - Free Tx Resources for All Queues
250  * @interface: board private structure
251  *
252  * Free all transmit software resources
253  **/
254 static void fm10k_free_all_tx_resources(struct fm10k_intfc *interface)
255 {
256 	int i = interface->num_tx_queues;
257 
258 	while (i--)
259 		fm10k_free_tx_resources(interface->tx_ring[i]);
260 }
261 
262 /**
263  * fm10k_clean_rx_ring - Free Rx Buffers per Queue
264  * @rx_ring: ring to free buffers from
265  **/
266 static void fm10k_clean_rx_ring(struct fm10k_ring *rx_ring)
267 {
268 	unsigned long size;
269 	u16 i;
270 
271 	if (!rx_ring->rx_buffer)
272 		return;
273 
274 	if (rx_ring->skb)
275 		dev_kfree_skb(rx_ring->skb);
276 	rx_ring->skb = NULL;
277 
278 	/* Free all the Rx ring sk_buffs */
279 	for (i = 0; i < rx_ring->count; i++) {
280 		struct fm10k_rx_buffer *buffer = &rx_ring->rx_buffer[i];
281 		/* clean-up will only set page pointer to NULL */
282 		if (!buffer->page)
283 			continue;
284 
285 		dma_unmap_page(rx_ring->dev, buffer->dma,
286 			       PAGE_SIZE, DMA_FROM_DEVICE);
287 		__free_page(buffer->page);
288 
289 		buffer->page = NULL;
290 	}
291 
292 	size = sizeof(struct fm10k_rx_buffer) * rx_ring->count;
293 	memset(rx_ring->rx_buffer, 0, size);
294 
295 	/* Zero out the descriptor ring */
296 	memset(rx_ring->desc, 0, rx_ring->size);
297 
298 	rx_ring->next_to_alloc = 0;
299 	rx_ring->next_to_clean = 0;
300 	rx_ring->next_to_use = 0;
301 }
302 
303 /**
304  * fm10k_free_rx_resources - Free Rx Resources
305  * @rx_ring: ring to clean the resources from
306  *
307  * Free all receive software resources
308  **/
309 void fm10k_free_rx_resources(struct fm10k_ring *rx_ring)
310 {
311 	fm10k_clean_rx_ring(rx_ring);
312 
313 	vfree(rx_ring->rx_buffer);
314 	rx_ring->rx_buffer = NULL;
315 
316 	/* if not set, then don't free */
317 	if (!rx_ring->desc)
318 		return;
319 
320 	dma_free_coherent(rx_ring->dev, rx_ring->size,
321 			  rx_ring->desc, rx_ring->dma);
322 
323 	rx_ring->desc = NULL;
324 }
325 
326 /**
327  * fm10k_clean_all_rx_rings - Free Rx Buffers for all queues
328  * @interface: board private structure
329  **/
330 void fm10k_clean_all_rx_rings(struct fm10k_intfc *interface)
331 {
332 	int i;
333 
334 	for (i = 0; i < interface->num_rx_queues; i++)
335 		fm10k_clean_rx_ring(interface->rx_ring[i]);
336 }
337 
338 /**
339  * fm10k_free_all_rx_resources - Free Rx Resources for All Queues
340  * @interface: board private structure
341  *
342  * Free all receive software resources
343  **/
344 static void fm10k_free_all_rx_resources(struct fm10k_intfc *interface)
345 {
346 	int i = interface->num_rx_queues;
347 
348 	while (i--)
349 		fm10k_free_rx_resources(interface->rx_ring[i]);
350 }
351 
352 /**
353  * fm10k_request_glort_range - Request GLORTs for use in configuring rules
354  * @interface: board private structure
355  *
356  * This function allocates a range of glorts for this interface to use.
357  **/
358 static void fm10k_request_glort_range(struct fm10k_intfc *interface)
359 {
360 	struct fm10k_hw *hw = &interface->hw;
361 	u16 mask = (~hw->mac.dglort_map) >> FM10K_DGLORTMAP_MASK_SHIFT;
362 
363 	/* establish GLORT base */
364 	interface->glort = hw->mac.dglort_map & FM10K_DGLORTMAP_NONE;
365 	interface->glort_count = 0;
366 
367 	/* nothing we can do until mask is allocated */
368 	if (hw->mac.dglort_map == FM10K_DGLORTMAP_NONE)
369 		return;
370 
371 	/* we support 3 possible GLORT configurations.
372 	 * 1: VFs consume all but the last 1
373 	 * 2: VFs and PF split glorts with possible gap between
374 	 * 3: VFs allocated first 64, all others belong to PF
375 	 */
376 	if (mask <= hw->iov.total_vfs) {
377 		interface->glort_count = 1;
378 		interface->glort += mask;
379 	} else if (mask < 64) {
380 		interface->glort_count = (mask + 1) / 2;
381 		interface->glort += interface->glort_count;
382 	} else {
383 		interface->glort_count = mask - 63;
384 		interface->glort += 64;
385 	}
386 }
387 
388 /**
389  * fm10k_del_vxlan_port_all
390  * @interface: board private structure
391  *
392  * This function frees the entire vxlan_port list
393  **/
394 static void fm10k_del_vxlan_port_all(struct fm10k_intfc *interface)
395 {
396 	struct fm10k_vxlan_port *vxlan_port;
397 
398 	/* flush all entries from list */
399 	vxlan_port = list_first_entry_or_null(&interface->vxlan_port,
400 					      struct fm10k_vxlan_port, list);
401 	while (vxlan_port) {
402 		list_del(&vxlan_port->list);
403 		kfree(vxlan_port);
404 		vxlan_port = list_first_entry_or_null(&interface->vxlan_port,
405 						      struct fm10k_vxlan_port,
406 						      list);
407 	}
408 }
409 
410 /**
411  * fm10k_restore_vxlan_port
412  * @interface: board private structure
413  *
414  * This function restores the value in the tunnel_cfg register after reset
415  **/
416 static void fm10k_restore_vxlan_port(struct fm10k_intfc *interface)
417 {
418 	struct fm10k_hw *hw = &interface->hw;
419 	struct fm10k_vxlan_port *vxlan_port;
420 
421 	/* only the PF supports configuring tunnels */
422 	if (hw->mac.type != fm10k_mac_pf)
423 		return;
424 
425 	vxlan_port = list_first_entry_or_null(&interface->vxlan_port,
426 					      struct fm10k_vxlan_port, list);
427 
428 	/* restore tunnel configuration register */
429 	fm10k_write_reg(hw, FM10K_TUNNEL_CFG,
430 			(vxlan_port ? ntohs(vxlan_port->port) : 0) |
431 			(ETH_P_TEB << FM10K_TUNNEL_CFG_NVGRE_SHIFT));
432 }
433 
434 /**
435  * fm10k_add_vxlan_port
436  * @netdev: network interface device structure
437  * @sa_family: Address family of new port
438  * @port: port number used for VXLAN
439  *
440  * This function is called when a new VXLAN interface has added a new port
441  * number to the range that is currently in use for VXLAN.  The new port
442  * number is always added to the tail so that the port number list should
443  * match the order in which the ports were allocated.  The head of the list
444  * is always used as the VXLAN port number for offloads.
445  **/
446 static void fm10k_add_vxlan_port(struct net_device *dev,
447 				 sa_family_t sa_family, __be16 port) {
448 	struct fm10k_intfc *interface = netdev_priv(dev);
449 	struct fm10k_vxlan_port *vxlan_port;
450 
451 	/* only the PF supports configuring tunnels */
452 	if (interface->hw.mac.type != fm10k_mac_pf)
453 		return;
454 
455 	/* existing ports are pulled out so our new entry is always last */
456 	fm10k_vxlan_port_for_each(vxlan_port, interface) {
457 		if ((vxlan_port->port == port) &&
458 		    (vxlan_port->sa_family == sa_family)) {
459 			list_del(&vxlan_port->list);
460 			goto insert_tail;
461 		}
462 	}
463 
464 	/* allocate memory to track ports */
465 	vxlan_port = kmalloc(sizeof(*vxlan_port), GFP_ATOMIC);
466 	if (!vxlan_port)
467 		return;
468 	vxlan_port->port = port;
469 	vxlan_port->sa_family = sa_family;
470 
471 insert_tail:
472 	/* add new port value to list */
473 	list_add_tail(&vxlan_port->list, &interface->vxlan_port);
474 
475 	fm10k_restore_vxlan_port(interface);
476 }
477 
478 /**
479  * fm10k_del_vxlan_port
480  * @netdev: network interface device structure
481  * @sa_family: Address family of freed port
482  * @port: port number used for VXLAN
483  *
484  * This function is called when a new VXLAN interface has freed a port
485  * number from the range that is currently in use for VXLAN.  The freed
486  * port is removed from the list and the new head is used to determine
487  * the port number for offloads.
488  **/
489 static void fm10k_del_vxlan_port(struct net_device *dev,
490 				 sa_family_t sa_family, __be16 port) {
491 	struct fm10k_intfc *interface = netdev_priv(dev);
492 	struct fm10k_vxlan_port *vxlan_port;
493 
494 	if (interface->hw.mac.type != fm10k_mac_pf)
495 		return;
496 
497 	/* find the port in the list and free it */
498 	fm10k_vxlan_port_for_each(vxlan_port, interface) {
499 		if ((vxlan_port->port == port) &&
500 		    (vxlan_port->sa_family == sa_family)) {
501 			list_del(&vxlan_port->list);
502 			kfree(vxlan_port);
503 			break;
504 		}
505 	}
506 
507 	fm10k_restore_vxlan_port(interface);
508 }
509 
510 /**
511  * fm10k_open - Called when a network interface is made active
512  * @netdev: network interface device structure
513  *
514  * Returns 0 on success, negative value on failure
515  *
516  * The open entry point is called when a network interface is made
517  * active by the system (IFF_UP).  At this point all resources needed
518  * for transmit and receive operations are allocated, the interrupt
519  * handler is registered with the OS, the watchdog timer is started,
520  * and the stack is notified that the interface is ready.
521  **/
522 int fm10k_open(struct net_device *netdev)
523 {
524 	struct fm10k_intfc *interface = netdev_priv(netdev);
525 	int err;
526 
527 	/* allocate transmit descriptors */
528 	err = fm10k_setup_all_tx_resources(interface);
529 	if (err)
530 		goto err_setup_tx;
531 
532 	/* allocate receive descriptors */
533 	err = fm10k_setup_all_rx_resources(interface);
534 	if (err)
535 		goto err_setup_rx;
536 
537 	/* allocate interrupt resources */
538 	err = fm10k_qv_request_irq(interface);
539 	if (err)
540 		goto err_req_irq;
541 
542 	/* setup GLORT assignment for this port */
543 	fm10k_request_glort_range(interface);
544 
545 	/* Notify the stack of the actual queue counts */
546 	err = netif_set_real_num_tx_queues(netdev,
547 					   interface->num_tx_queues);
548 	if (err)
549 		goto err_set_queues;
550 
551 	err = netif_set_real_num_rx_queues(netdev,
552 					   interface->num_rx_queues);
553 	if (err)
554 		goto err_set_queues;
555 
556 #ifdef CONFIG_FM10K_VXLAN
557 	/* update VXLAN port configuration */
558 	vxlan_get_rx_port(netdev);
559 #endif
560 
561 	fm10k_up(interface);
562 
563 	return 0;
564 
565 err_set_queues:
566 	fm10k_qv_free_irq(interface);
567 err_req_irq:
568 	fm10k_free_all_rx_resources(interface);
569 err_setup_rx:
570 	fm10k_free_all_tx_resources(interface);
571 err_setup_tx:
572 	return err;
573 }
574 
575 /**
576  * fm10k_close - Disables a network interface
577  * @netdev: network interface device structure
578  *
579  * Returns 0, this is not allowed to fail
580  *
581  * The close entry point is called when an interface is de-activated
582  * by the OS.  The hardware is still under the drivers control, but
583  * needs to be disabled.  A global MAC reset is issued to stop the
584  * hardware, and all transmit and receive resources are freed.
585  **/
586 int fm10k_close(struct net_device *netdev)
587 {
588 	struct fm10k_intfc *interface = netdev_priv(netdev);
589 
590 	fm10k_down(interface);
591 
592 	fm10k_qv_free_irq(interface);
593 
594 	fm10k_del_vxlan_port_all(interface);
595 
596 	fm10k_free_all_tx_resources(interface);
597 	fm10k_free_all_rx_resources(interface);
598 
599 	return 0;
600 }
601 
602 static netdev_tx_t fm10k_xmit_frame(struct sk_buff *skb, struct net_device *dev)
603 {
604 	struct fm10k_intfc *interface = netdev_priv(dev);
605 	unsigned int r_idx = skb->queue_mapping;
606 	int err;
607 
608 	if ((skb->protocol == htons(ETH_P_8021Q)) &&
609 	    !skb_vlan_tag_present(skb)) {
610 		/* FM10K only supports hardware tagging, any tags in frame
611 		 * are considered 2nd level or "outer" tags
612 		 */
613 		struct vlan_hdr *vhdr;
614 		__be16 proto;
615 
616 		/* make sure skb is not shared */
617 		skb = skb_share_check(skb, GFP_ATOMIC);
618 		if (!skb)
619 			return NETDEV_TX_OK;
620 
621 		/* make sure there is enough room to move the ethernet header */
622 		if (unlikely(!pskb_may_pull(skb, VLAN_ETH_HLEN)))
623 			return NETDEV_TX_OK;
624 
625 		/* verify the skb head is not shared */
626 		err = skb_cow_head(skb, 0);
627 		if (err) {
628 			dev_kfree_skb(skb);
629 			return NETDEV_TX_OK;
630 		}
631 
632 		/* locate VLAN header */
633 		vhdr = (struct vlan_hdr *)(skb->data + ETH_HLEN);
634 
635 		/* pull the 2 key pieces of data out of it */
636 		__vlan_hwaccel_put_tag(skb,
637 				       htons(ETH_P_8021Q),
638 				       ntohs(vhdr->h_vlan_TCI));
639 		proto = vhdr->h_vlan_encapsulated_proto;
640 		skb->protocol = (ntohs(proto) >= 1536) ? proto :
641 							 htons(ETH_P_802_2);
642 
643 		/* squash it by moving the ethernet addresses up 4 bytes */
644 		memmove(skb->data + VLAN_HLEN, skb->data, 12);
645 		__skb_pull(skb, VLAN_HLEN);
646 		skb_reset_mac_header(skb);
647 	}
648 
649 	/* The minimum packet size for a single buffer is 17B so pad the skb
650 	 * in order to meet this minimum size requirement.
651 	 */
652 	if (unlikely(skb->len < 17)) {
653 		int pad_len = 17 - skb->len;
654 
655 		if (skb_pad(skb, pad_len))
656 			return NETDEV_TX_OK;
657 		__skb_put(skb, pad_len);
658 	}
659 
660 	if (r_idx >= interface->num_tx_queues)
661 		r_idx %= interface->num_tx_queues;
662 
663 	err = fm10k_xmit_frame_ring(skb, interface->tx_ring[r_idx]);
664 
665 	return err;
666 }
667 
668 static int fm10k_change_mtu(struct net_device *dev, int new_mtu)
669 {
670 	if (new_mtu < 68 || new_mtu > FM10K_MAX_JUMBO_FRAME_SIZE)
671 		return -EINVAL;
672 
673 	dev->mtu = new_mtu;
674 
675 	return 0;
676 }
677 
678 /**
679  * fm10k_tx_timeout - Respond to a Tx Hang
680  * @netdev: network interface device structure
681  **/
682 static void fm10k_tx_timeout(struct net_device *netdev)
683 {
684 	struct fm10k_intfc *interface = netdev_priv(netdev);
685 	bool real_tx_hang = false;
686 	int i;
687 
688 #define TX_TIMEO_LIMIT 16000
689 	for (i = 0; i < interface->num_tx_queues; i++) {
690 		struct fm10k_ring *tx_ring = interface->tx_ring[i];
691 
692 		if (check_for_tx_hang(tx_ring) && fm10k_check_tx_hang(tx_ring))
693 			real_tx_hang = true;
694 	}
695 
696 	if (real_tx_hang) {
697 		fm10k_tx_timeout_reset(interface);
698 	} else {
699 		netif_info(interface, drv, netdev,
700 			   "Fake Tx hang detected with timeout of %d seconds\n",
701 			   netdev->watchdog_timeo / HZ);
702 
703 		/* fake Tx hang - increase the kernel timeout */
704 		if (netdev->watchdog_timeo < TX_TIMEO_LIMIT)
705 			netdev->watchdog_timeo *= 2;
706 	}
707 }
708 
709 static int fm10k_uc_vlan_unsync(struct net_device *netdev,
710 				const unsigned char *uc_addr)
711 {
712 	struct fm10k_intfc *interface = netdev_priv(netdev);
713 	struct fm10k_hw *hw = &interface->hw;
714 	u16 glort = interface->glort;
715 	u16 vid = interface->vid;
716 	bool set = !!(vid / VLAN_N_VID);
717 	int err;
718 
719 	/* drop any leading bits on the VLAN ID */
720 	vid &= VLAN_N_VID - 1;
721 
722 	err = hw->mac.ops.update_uc_addr(hw, glort, uc_addr, vid, set, 0);
723 	if (err)
724 		return err;
725 
726 	/* return non-zero value as we are only doing a partial sync/unsync */
727 	return 1;
728 }
729 
730 static int fm10k_mc_vlan_unsync(struct net_device *netdev,
731 				const unsigned char *mc_addr)
732 {
733 	struct fm10k_intfc *interface = netdev_priv(netdev);
734 	struct fm10k_hw *hw = &interface->hw;
735 	u16 glort = interface->glort;
736 	u16 vid = interface->vid;
737 	bool set = !!(vid / VLAN_N_VID);
738 	int err;
739 
740 	/* drop any leading bits on the VLAN ID */
741 	vid &= VLAN_N_VID - 1;
742 
743 	err = hw->mac.ops.update_mc_addr(hw, glort, mc_addr, vid, set);
744 	if (err)
745 		return err;
746 
747 	/* return non-zero value as we are only doing a partial sync/unsync */
748 	return 1;
749 }
750 
751 static int fm10k_update_vid(struct net_device *netdev, u16 vid, bool set)
752 {
753 	struct fm10k_intfc *interface = netdev_priv(netdev);
754 	struct fm10k_hw *hw = &interface->hw;
755 	s32 err;
756 	int i;
757 
758 	/* updates do not apply to VLAN 0 */
759 	if (!vid)
760 		return 0;
761 
762 	if (vid >= VLAN_N_VID)
763 		return -EINVAL;
764 
765 	/* Verify we have permission to add VLANs */
766 	if (hw->mac.vlan_override)
767 		return -EACCES;
768 
769 	/* update active_vlans bitmask */
770 	set_bit(vid, interface->active_vlans);
771 	if (!set)
772 		clear_bit(vid, interface->active_vlans);
773 
774 	/* disable the default VLAN ID on ring if we have an active VLAN */
775 	for (i = 0; i < interface->num_rx_queues; i++) {
776 		struct fm10k_ring *rx_ring = interface->rx_ring[i];
777 		u16 rx_vid = rx_ring->vid & (VLAN_N_VID - 1);
778 
779 		if (test_bit(rx_vid, interface->active_vlans))
780 			rx_ring->vid |= FM10K_VLAN_CLEAR;
781 		else
782 			rx_ring->vid &= ~FM10K_VLAN_CLEAR;
783 	}
784 
785 	/* Do not remove default VLAN ID related entries from VLAN and MAC
786 	 * tables
787 	 */
788 	if (!set && vid == hw->mac.default_vid)
789 		return 0;
790 
791 	/* Do not throw an error if the interface is down. We will sync once
792 	 * we come up
793 	 */
794 	if (test_bit(__FM10K_DOWN, &interface->state))
795 		return 0;
796 
797 	fm10k_mbx_lock(interface);
798 
799 	/* only need to update the VLAN if not in promiscuous mode */
800 	if (!(netdev->flags & IFF_PROMISC)) {
801 		err = hw->mac.ops.update_vlan(hw, vid, 0, set);
802 		if (err)
803 			goto err_out;
804 	}
805 
806 	/* update our base MAC address */
807 	err = hw->mac.ops.update_uc_addr(hw, interface->glort, hw->mac.addr,
808 					 vid, set, 0);
809 	if (err)
810 		goto err_out;
811 
812 	/* set VLAN ID prior to syncing/unsyncing the VLAN */
813 	interface->vid = vid + (set ? VLAN_N_VID : 0);
814 
815 	/* Update the unicast and multicast address list to add/drop VLAN */
816 	__dev_uc_unsync(netdev, fm10k_uc_vlan_unsync);
817 	__dev_mc_unsync(netdev, fm10k_mc_vlan_unsync);
818 
819 err_out:
820 	fm10k_mbx_unlock(interface);
821 
822 	return err;
823 }
824 
825 static int fm10k_vlan_rx_add_vid(struct net_device *netdev,
826 				 __always_unused __be16 proto, u16 vid)
827 {
828 	/* update VLAN and address table based on changes */
829 	return fm10k_update_vid(netdev, vid, true);
830 }
831 
832 static int fm10k_vlan_rx_kill_vid(struct net_device *netdev,
833 				  __always_unused __be16 proto, u16 vid)
834 {
835 	/* update VLAN and address table based on changes */
836 	return fm10k_update_vid(netdev, vid, false);
837 }
838 
839 static u16 fm10k_find_next_vlan(struct fm10k_intfc *interface, u16 vid)
840 {
841 	struct fm10k_hw *hw = &interface->hw;
842 	u16 default_vid = hw->mac.default_vid;
843 	u16 vid_limit = vid < default_vid ? default_vid : VLAN_N_VID;
844 
845 	vid = find_next_bit(interface->active_vlans, vid_limit, ++vid);
846 
847 	return vid;
848 }
849 
850 static void fm10k_clear_unused_vlans(struct fm10k_intfc *interface)
851 {
852 	struct fm10k_hw *hw = &interface->hw;
853 	u32 vid, prev_vid;
854 
855 	/* loop through and find any gaps in the table */
856 	for (vid = 0, prev_vid = 0;
857 	     prev_vid < VLAN_N_VID;
858 	     prev_vid = vid + 1, vid = fm10k_find_next_vlan(interface, vid)) {
859 		if (prev_vid == vid)
860 			continue;
861 
862 		/* send request to clear multiple bits at a time */
863 		prev_vid += (vid - prev_vid - 1) << FM10K_VLAN_LENGTH_SHIFT;
864 		hw->mac.ops.update_vlan(hw, prev_vid, 0, false);
865 	}
866 }
867 
868 static int __fm10k_uc_sync(struct net_device *dev,
869 			   const unsigned char *addr, bool sync)
870 {
871 	struct fm10k_intfc *interface = netdev_priv(dev);
872 	struct fm10k_hw *hw = &interface->hw;
873 	u16 vid, glort = interface->glort;
874 	s32 err;
875 
876 	if (!is_valid_ether_addr(addr))
877 		return -EADDRNOTAVAIL;
878 
879 	/* update table with current entries */
880 	for (vid = hw->mac.default_vid ? fm10k_find_next_vlan(interface, 0) : 1;
881 	     vid < VLAN_N_VID;
882 	     vid = fm10k_find_next_vlan(interface, vid)) {
883 		err = hw->mac.ops.update_uc_addr(hw, glort, addr,
884 						  vid, sync, 0);
885 		if (err)
886 			return err;
887 	}
888 
889 	return 0;
890 }
891 
892 static int fm10k_uc_sync(struct net_device *dev,
893 			 const unsigned char *addr)
894 {
895 	return __fm10k_uc_sync(dev, addr, true);
896 }
897 
898 static int fm10k_uc_unsync(struct net_device *dev,
899 			   const unsigned char *addr)
900 {
901 	return __fm10k_uc_sync(dev, addr, false);
902 }
903 
904 static int fm10k_set_mac(struct net_device *dev, void *p)
905 {
906 	struct fm10k_intfc *interface = netdev_priv(dev);
907 	struct fm10k_hw *hw = &interface->hw;
908 	struct sockaddr *addr = p;
909 	s32 err = 0;
910 
911 	if (!is_valid_ether_addr(addr->sa_data))
912 		return -EADDRNOTAVAIL;
913 
914 	if (dev->flags & IFF_UP) {
915 		/* setting MAC address requires mailbox */
916 		fm10k_mbx_lock(interface);
917 
918 		err = fm10k_uc_sync(dev, addr->sa_data);
919 		if (!err)
920 			fm10k_uc_unsync(dev, hw->mac.addr);
921 
922 		fm10k_mbx_unlock(interface);
923 	}
924 
925 	if (!err) {
926 		ether_addr_copy(dev->dev_addr, addr->sa_data);
927 		ether_addr_copy(hw->mac.addr, addr->sa_data);
928 		dev->addr_assign_type &= ~NET_ADDR_RANDOM;
929 	}
930 
931 	/* if we had a mailbox error suggest trying again */
932 	return err ? -EAGAIN : 0;
933 }
934 
935 static int __fm10k_mc_sync(struct net_device *dev,
936 			   const unsigned char *addr, bool sync)
937 {
938 	struct fm10k_intfc *interface = netdev_priv(dev);
939 	struct fm10k_hw *hw = &interface->hw;
940 	u16 vid, glort = interface->glort;
941 
942 	/* update table with current entries */
943 	for (vid = hw->mac.default_vid ? fm10k_find_next_vlan(interface, 0) : 1;
944 	     vid < VLAN_N_VID;
945 	     vid = fm10k_find_next_vlan(interface, vid)) {
946 		hw->mac.ops.update_mc_addr(hw, glort, addr, vid, sync);
947 	}
948 
949 	return 0;
950 }
951 
952 static int fm10k_mc_sync(struct net_device *dev,
953 			 const unsigned char *addr)
954 {
955 	return __fm10k_mc_sync(dev, addr, true);
956 }
957 
958 static int fm10k_mc_unsync(struct net_device *dev,
959 			   const unsigned char *addr)
960 {
961 	return __fm10k_mc_sync(dev, addr, false);
962 }
963 
964 static void fm10k_set_rx_mode(struct net_device *dev)
965 {
966 	struct fm10k_intfc *interface = netdev_priv(dev);
967 	struct fm10k_hw *hw = &interface->hw;
968 	int xcast_mode;
969 
970 	/* no need to update the harwdare if we are not running */
971 	if (!(dev->flags & IFF_UP))
972 		return;
973 
974 	/* determine new mode based on flags */
975 	xcast_mode = (dev->flags & IFF_PROMISC) ? FM10K_XCAST_MODE_PROMISC :
976 		     (dev->flags & IFF_ALLMULTI) ? FM10K_XCAST_MODE_ALLMULTI :
977 		     (dev->flags & (IFF_BROADCAST | IFF_MULTICAST)) ?
978 		     FM10K_XCAST_MODE_MULTI : FM10K_XCAST_MODE_NONE;
979 
980 	fm10k_mbx_lock(interface);
981 
982 	/* update xcast mode first, but only if it changed */
983 	if (interface->xcast_mode != xcast_mode) {
984 		/* update VLAN table */
985 		if (xcast_mode == FM10K_XCAST_MODE_PROMISC)
986 			hw->mac.ops.update_vlan(hw, FM10K_VLAN_ALL, 0, true);
987 		if (interface->xcast_mode == FM10K_XCAST_MODE_PROMISC)
988 			fm10k_clear_unused_vlans(interface);
989 
990 		/* update xcast mode */
991 		hw->mac.ops.update_xcast_mode(hw, interface->glort, xcast_mode);
992 
993 		/* record updated xcast mode state */
994 		interface->xcast_mode = xcast_mode;
995 	}
996 
997 	/* synchronize all of the addresses */
998 	__dev_uc_sync(dev, fm10k_uc_sync, fm10k_uc_unsync);
999 	__dev_mc_sync(dev, fm10k_mc_sync, fm10k_mc_unsync);
1000 
1001 	fm10k_mbx_unlock(interface);
1002 }
1003 
1004 void fm10k_restore_rx_state(struct fm10k_intfc *interface)
1005 {
1006 	struct net_device *netdev = interface->netdev;
1007 	struct fm10k_hw *hw = &interface->hw;
1008 	int xcast_mode;
1009 	u16 vid, glort;
1010 
1011 	/* record glort for this interface */
1012 	glort = interface->glort;
1013 
1014 	/* convert interface flags to xcast mode */
1015 	if (netdev->flags & IFF_PROMISC)
1016 		xcast_mode = FM10K_XCAST_MODE_PROMISC;
1017 	else if (netdev->flags & IFF_ALLMULTI)
1018 		xcast_mode = FM10K_XCAST_MODE_ALLMULTI;
1019 	else if (netdev->flags & (IFF_BROADCAST | IFF_MULTICAST))
1020 		xcast_mode = FM10K_XCAST_MODE_MULTI;
1021 	else
1022 		xcast_mode = FM10K_XCAST_MODE_NONE;
1023 
1024 	fm10k_mbx_lock(interface);
1025 
1026 	/* Enable logical port */
1027 	hw->mac.ops.update_lport_state(hw, glort, interface->glort_count, true);
1028 
1029 	/* update VLAN table */
1030 	hw->mac.ops.update_vlan(hw, FM10K_VLAN_ALL, 0,
1031 				xcast_mode == FM10K_XCAST_MODE_PROMISC);
1032 
1033 	/* Add filter for VLAN 0 */
1034 	hw->mac.ops.update_vlan(hw, 0, 0, true);
1035 
1036 	/* update table with current entries */
1037 	for (vid = hw->mac.default_vid ? fm10k_find_next_vlan(interface, 0) : 1;
1038 	     vid < VLAN_N_VID;
1039 	     vid = fm10k_find_next_vlan(interface, vid)) {
1040 		hw->mac.ops.update_vlan(hw, vid, 0, true);
1041 		hw->mac.ops.update_uc_addr(hw, glort, hw->mac.addr,
1042 					   vid, true, 0);
1043 	}
1044 
1045 	/* update xcast mode before synchronizing addresses */
1046 	hw->mac.ops.update_xcast_mode(hw, glort, xcast_mode);
1047 
1048 	/* synchronize all of the addresses */
1049 	__dev_uc_sync(netdev, fm10k_uc_sync, fm10k_uc_unsync);
1050 	__dev_mc_sync(netdev, fm10k_mc_sync, fm10k_mc_unsync);
1051 
1052 	fm10k_mbx_unlock(interface);
1053 
1054 	/* record updated xcast mode state */
1055 	interface->xcast_mode = xcast_mode;
1056 
1057 	/* Restore tunnel configuration */
1058 	fm10k_restore_vxlan_port(interface);
1059 }
1060 
1061 void fm10k_reset_rx_state(struct fm10k_intfc *interface)
1062 {
1063 	struct net_device *netdev = interface->netdev;
1064 	struct fm10k_hw *hw = &interface->hw;
1065 
1066 	fm10k_mbx_lock(interface);
1067 
1068 	/* clear the logical port state on lower device */
1069 	hw->mac.ops.update_lport_state(hw, interface->glort,
1070 				       interface->glort_count, false);
1071 
1072 	fm10k_mbx_unlock(interface);
1073 
1074 	/* reset flags to default state */
1075 	interface->xcast_mode = FM10K_XCAST_MODE_NONE;
1076 
1077 	/* clear the sync flag since the lport has been dropped */
1078 	__dev_uc_unsync(netdev, NULL);
1079 	__dev_mc_unsync(netdev, NULL);
1080 }
1081 
1082 /**
1083  * fm10k_get_stats64 - Get System Network Statistics
1084  * @netdev: network interface device structure
1085  * @stats: storage space for 64bit statistics
1086  *
1087  * Returns 64bit statistics, for use in the ndo_get_stats64 callback. This
1088  * function replaces fm10k_get_stats for kernels which support it.
1089  */
1090 static struct rtnl_link_stats64 *fm10k_get_stats64(struct net_device *netdev,
1091 						   struct rtnl_link_stats64 *stats)
1092 {
1093 	struct fm10k_intfc *interface = netdev_priv(netdev);
1094 	struct fm10k_ring *ring;
1095 	unsigned int start, i;
1096 	u64 bytes, packets;
1097 
1098 	rcu_read_lock();
1099 
1100 	for (i = 0; i < interface->num_rx_queues; i++) {
1101 		ring = ACCESS_ONCE(interface->rx_ring[i]);
1102 
1103 		if (!ring)
1104 			continue;
1105 
1106 		do {
1107 			start = u64_stats_fetch_begin_irq(&ring->syncp);
1108 			packets = ring->stats.packets;
1109 			bytes   = ring->stats.bytes;
1110 		} while (u64_stats_fetch_retry_irq(&ring->syncp, start));
1111 
1112 		stats->rx_packets += packets;
1113 		stats->rx_bytes   += bytes;
1114 	}
1115 
1116 	for (i = 0; i < interface->num_tx_queues; i++) {
1117 		ring = ACCESS_ONCE(interface->tx_ring[i]);
1118 
1119 		if (!ring)
1120 			continue;
1121 
1122 		do {
1123 			start = u64_stats_fetch_begin_irq(&ring->syncp);
1124 			packets = ring->stats.packets;
1125 			bytes   = ring->stats.bytes;
1126 		} while (u64_stats_fetch_retry_irq(&ring->syncp, start));
1127 
1128 		stats->tx_packets += packets;
1129 		stats->tx_bytes   += bytes;
1130 	}
1131 
1132 	rcu_read_unlock();
1133 
1134 	/* following stats updated by fm10k_service_task() */
1135 	stats->rx_missed_errors	= netdev->stats.rx_missed_errors;
1136 
1137 	return stats;
1138 }
1139 
1140 int fm10k_setup_tc(struct net_device *dev, u8 tc)
1141 {
1142 	struct fm10k_intfc *interface = netdev_priv(dev);
1143 	int err;
1144 
1145 	/* Currently only the PF supports priority classes */
1146 	if (tc && (interface->hw.mac.type != fm10k_mac_pf))
1147 		return -EINVAL;
1148 
1149 	/* Hardware supports up to 8 traffic classes */
1150 	if (tc > 8)
1151 		return -EINVAL;
1152 
1153 	/* Hardware has to reinitialize queues to match packet
1154 	 * buffer alignment. Unfortunately, the hardware is not
1155 	 * flexible enough to do this dynamically.
1156 	 */
1157 	if (netif_running(dev))
1158 		fm10k_close(dev);
1159 
1160 	fm10k_mbx_free_irq(interface);
1161 
1162 	fm10k_clear_queueing_scheme(interface);
1163 
1164 	/* we expect the prio_tc map to be repopulated later */
1165 	netdev_reset_tc(dev);
1166 	netdev_set_num_tc(dev, tc);
1167 
1168 	err = fm10k_init_queueing_scheme(interface);
1169 	if (err)
1170 		goto err_queueing_scheme;
1171 
1172 	err = fm10k_mbx_request_irq(interface);
1173 	if (err)
1174 		goto err_mbx_irq;
1175 
1176 	err = netif_running(dev) ? fm10k_open(dev) : 0;
1177 	if (err)
1178 		goto err_open;
1179 
1180 	/* flag to indicate SWPRI has yet to be updated */
1181 	interface->flags |= FM10K_FLAG_SWPRI_CONFIG;
1182 
1183 	return 0;
1184 err_open:
1185 	fm10k_mbx_free_irq(interface);
1186 err_mbx_irq:
1187 	fm10k_clear_queueing_scheme(interface);
1188 err_queueing_scheme:
1189 	netif_device_detach(dev);
1190 
1191 	return err;
1192 }
1193 
1194 static int __fm10k_setup_tc(struct net_device *dev, u32 handle, __be16 proto,
1195 			    struct tc_to_netdev *tc)
1196 {
1197 	if (tc->type != TC_SETUP_MQPRIO)
1198 		return -EINVAL;
1199 
1200 	return fm10k_setup_tc(dev, tc->tc);
1201 }
1202 
1203 static void fm10k_assign_l2_accel(struct fm10k_intfc *interface,
1204 				  struct fm10k_l2_accel *l2_accel)
1205 {
1206 	struct fm10k_ring *ring;
1207 	int i;
1208 
1209 	for (i = 0; i < interface->num_rx_queues; i++) {
1210 		ring = interface->rx_ring[i];
1211 		rcu_assign_pointer(ring->l2_accel, l2_accel);
1212 	}
1213 
1214 	interface->l2_accel = l2_accel;
1215 }
1216 
1217 static void *fm10k_dfwd_add_station(struct net_device *dev,
1218 				    struct net_device *sdev)
1219 {
1220 	struct fm10k_intfc *interface = netdev_priv(dev);
1221 	struct fm10k_l2_accel *l2_accel = interface->l2_accel;
1222 	struct fm10k_l2_accel *old_l2_accel = NULL;
1223 	struct fm10k_dglort_cfg dglort = { 0 };
1224 	struct fm10k_hw *hw = &interface->hw;
1225 	int size = 0, i;
1226 	u16 glort;
1227 
1228 	/* allocate l2 accel structure if it is not available */
1229 	if (!l2_accel) {
1230 		/* verify there is enough free GLORTs to support l2_accel */
1231 		if (interface->glort_count < 7)
1232 			return ERR_PTR(-EBUSY);
1233 
1234 		size = offsetof(struct fm10k_l2_accel, macvlan[7]);
1235 		l2_accel = kzalloc(size, GFP_KERNEL);
1236 		if (!l2_accel)
1237 			return ERR_PTR(-ENOMEM);
1238 
1239 		l2_accel->size = 7;
1240 		l2_accel->dglort = interface->glort;
1241 
1242 		/* update pointers */
1243 		fm10k_assign_l2_accel(interface, l2_accel);
1244 	/* do not expand if we are at our limit */
1245 	} else if ((l2_accel->count == FM10K_MAX_STATIONS) ||
1246 		   (l2_accel->count == (interface->glort_count - 1))) {
1247 		return ERR_PTR(-EBUSY);
1248 	/* expand if we have hit the size limit */
1249 	} else if (l2_accel->count == l2_accel->size) {
1250 		old_l2_accel = l2_accel;
1251 		size = offsetof(struct fm10k_l2_accel,
1252 				macvlan[(l2_accel->size * 2) + 1]);
1253 		l2_accel = kzalloc(size, GFP_KERNEL);
1254 		if (!l2_accel)
1255 			return ERR_PTR(-ENOMEM);
1256 
1257 		memcpy(l2_accel, old_l2_accel,
1258 		       offsetof(struct fm10k_l2_accel,
1259 				macvlan[old_l2_accel->size]));
1260 
1261 		l2_accel->size = (old_l2_accel->size * 2) + 1;
1262 
1263 		/* update pointers */
1264 		fm10k_assign_l2_accel(interface, l2_accel);
1265 		kfree_rcu(old_l2_accel, rcu);
1266 	}
1267 
1268 	/* add macvlan to accel table, and record GLORT for position */
1269 	for (i = 0; i < l2_accel->size; i++) {
1270 		if (!l2_accel->macvlan[i])
1271 			break;
1272 	}
1273 
1274 	/* record station */
1275 	l2_accel->macvlan[i] = sdev;
1276 	l2_accel->count++;
1277 
1278 	/* configure default DGLORT mapping for RSS/DCB */
1279 	dglort.idx = fm10k_dglort_pf_rss;
1280 	dglort.inner_rss = 1;
1281 	dglort.rss_l = fls(interface->ring_feature[RING_F_RSS].mask);
1282 	dglort.pc_l = fls(interface->ring_feature[RING_F_QOS].mask);
1283 	dglort.glort = interface->glort;
1284 	dglort.shared_l = fls(l2_accel->size);
1285 	hw->mac.ops.configure_dglort_map(hw, &dglort);
1286 
1287 	/* Add rules for this specific dglort to the switch */
1288 	fm10k_mbx_lock(interface);
1289 
1290 	glort = l2_accel->dglort + 1 + i;
1291 	hw->mac.ops.update_xcast_mode(hw, glort, FM10K_XCAST_MODE_MULTI);
1292 	hw->mac.ops.update_uc_addr(hw, glort, sdev->dev_addr, 0, true, 0);
1293 
1294 	fm10k_mbx_unlock(interface);
1295 
1296 	return sdev;
1297 }
1298 
1299 static void fm10k_dfwd_del_station(struct net_device *dev, void *priv)
1300 {
1301 	struct fm10k_intfc *interface = netdev_priv(dev);
1302 	struct fm10k_l2_accel *l2_accel = ACCESS_ONCE(interface->l2_accel);
1303 	struct fm10k_dglort_cfg dglort = { 0 };
1304 	struct fm10k_hw *hw = &interface->hw;
1305 	struct net_device *sdev = priv;
1306 	int i;
1307 	u16 glort;
1308 
1309 	if (!l2_accel)
1310 		return;
1311 
1312 	/* search table for matching interface */
1313 	for (i = 0; i < l2_accel->size; i++) {
1314 		if (l2_accel->macvlan[i] == sdev)
1315 			break;
1316 	}
1317 
1318 	/* exit if macvlan not found */
1319 	if (i == l2_accel->size)
1320 		return;
1321 
1322 	/* Remove any rules specific to this dglort */
1323 	fm10k_mbx_lock(interface);
1324 
1325 	glort = l2_accel->dglort + 1 + i;
1326 	hw->mac.ops.update_xcast_mode(hw, glort, FM10K_XCAST_MODE_NONE);
1327 	hw->mac.ops.update_uc_addr(hw, glort, sdev->dev_addr, 0, false, 0);
1328 
1329 	fm10k_mbx_unlock(interface);
1330 
1331 	/* record removal */
1332 	l2_accel->macvlan[i] = NULL;
1333 	l2_accel->count--;
1334 
1335 	/* configure default DGLORT mapping for RSS/DCB */
1336 	dglort.idx = fm10k_dglort_pf_rss;
1337 	dglort.inner_rss = 1;
1338 	dglort.rss_l = fls(interface->ring_feature[RING_F_RSS].mask);
1339 	dglort.pc_l = fls(interface->ring_feature[RING_F_QOS].mask);
1340 	dglort.glort = interface->glort;
1341 	dglort.shared_l = fls(l2_accel->size);
1342 	hw->mac.ops.configure_dglort_map(hw, &dglort);
1343 
1344 	/* If table is empty remove it */
1345 	if (l2_accel->count == 0) {
1346 		fm10k_assign_l2_accel(interface, NULL);
1347 		kfree_rcu(l2_accel, rcu);
1348 	}
1349 }
1350 
1351 static netdev_features_t fm10k_features_check(struct sk_buff *skb,
1352 					      struct net_device *dev,
1353 					      netdev_features_t features)
1354 {
1355 	if (!skb->encapsulation || fm10k_tx_encap_offload(skb))
1356 		return features;
1357 
1358 	return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
1359 }
1360 
1361 static const struct net_device_ops fm10k_netdev_ops = {
1362 	.ndo_open		= fm10k_open,
1363 	.ndo_stop		= fm10k_close,
1364 	.ndo_validate_addr	= eth_validate_addr,
1365 	.ndo_start_xmit		= fm10k_xmit_frame,
1366 	.ndo_set_mac_address	= fm10k_set_mac,
1367 	.ndo_change_mtu		= fm10k_change_mtu,
1368 	.ndo_tx_timeout		= fm10k_tx_timeout,
1369 	.ndo_vlan_rx_add_vid	= fm10k_vlan_rx_add_vid,
1370 	.ndo_vlan_rx_kill_vid	= fm10k_vlan_rx_kill_vid,
1371 	.ndo_set_rx_mode	= fm10k_set_rx_mode,
1372 	.ndo_get_stats64	= fm10k_get_stats64,
1373 	.ndo_setup_tc		= __fm10k_setup_tc,
1374 	.ndo_set_vf_mac		= fm10k_ndo_set_vf_mac,
1375 	.ndo_set_vf_vlan	= fm10k_ndo_set_vf_vlan,
1376 	.ndo_set_vf_rate	= fm10k_ndo_set_vf_bw,
1377 	.ndo_get_vf_config	= fm10k_ndo_get_vf_config,
1378 	.ndo_add_vxlan_port	= fm10k_add_vxlan_port,
1379 	.ndo_del_vxlan_port	= fm10k_del_vxlan_port,
1380 	.ndo_dfwd_add_station	= fm10k_dfwd_add_station,
1381 	.ndo_dfwd_del_station	= fm10k_dfwd_del_station,
1382 #ifdef CONFIG_NET_POLL_CONTROLLER
1383 	.ndo_poll_controller	= fm10k_netpoll,
1384 #endif
1385 	.ndo_features_check	= fm10k_features_check,
1386 };
1387 
1388 #define DEFAULT_DEBUG_LEVEL_SHIFT 3
1389 
1390 struct net_device *fm10k_alloc_netdev(const struct fm10k_info *info)
1391 {
1392 	netdev_features_t hw_features;
1393 	struct fm10k_intfc *interface;
1394 	struct net_device *dev;
1395 
1396 	dev = alloc_etherdev_mq(sizeof(struct fm10k_intfc), MAX_QUEUES);
1397 	if (!dev)
1398 		return NULL;
1399 
1400 	/* set net device and ethtool ops */
1401 	dev->netdev_ops = &fm10k_netdev_ops;
1402 	fm10k_set_ethtool_ops(dev);
1403 
1404 	/* configure default debug level */
1405 	interface = netdev_priv(dev);
1406 	interface->msg_enable = BIT(DEFAULT_DEBUG_LEVEL_SHIFT) - 1;
1407 
1408 	/* configure default features */
1409 	dev->features |= NETIF_F_IP_CSUM |
1410 			 NETIF_F_IPV6_CSUM |
1411 			 NETIF_F_SG |
1412 			 NETIF_F_TSO |
1413 			 NETIF_F_TSO6 |
1414 			 NETIF_F_TSO_ECN |
1415 			 NETIF_F_RXHASH |
1416 			 NETIF_F_RXCSUM;
1417 
1418 	/* Only the PF can support VXLAN and NVGRE tunnel offloads */
1419 	if (info->mac == fm10k_mac_pf) {
1420 		dev->hw_enc_features = NETIF_F_IP_CSUM |
1421 				       NETIF_F_TSO |
1422 				       NETIF_F_TSO6 |
1423 				       NETIF_F_TSO_ECN |
1424 				       NETIF_F_GSO_UDP_TUNNEL |
1425 				       NETIF_F_IPV6_CSUM |
1426 				       NETIF_F_SG;
1427 
1428 		dev->features |= NETIF_F_GSO_UDP_TUNNEL;
1429 	}
1430 
1431 	/* all features defined to this point should be changeable */
1432 	hw_features = dev->features;
1433 
1434 	/* allow user to enable L2 forwarding acceleration */
1435 	hw_features |= NETIF_F_HW_L2FW_DOFFLOAD;
1436 
1437 	/* configure VLAN features */
1438 	dev->vlan_features |= dev->features;
1439 
1440 	/* we want to leave these both on as we cannot disable VLAN tag
1441 	 * insertion or stripping on the hardware since it is contained
1442 	 * in the FTAG and not in the frame itself.
1443 	 */
1444 	dev->features |= NETIF_F_HW_VLAN_CTAG_TX |
1445 			 NETIF_F_HW_VLAN_CTAG_RX |
1446 			 NETIF_F_HW_VLAN_CTAG_FILTER;
1447 
1448 	dev->priv_flags |= IFF_UNICAST_FLT;
1449 
1450 	dev->hw_features |= hw_features;
1451 
1452 	return dev;
1453 }
1454