1 /* Intel Ethernet Switch Host Interface Driver 2 * Copyright(c) 2013 - 2014 Intel Corporation. 3 * 4 * This program is free software; you can redistribute it and/or modify it 5 * under the terms and conditions of the GNU General Public License, 6 * version 2, as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope it will be useful, but WITHOUT 9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 11 * more details. 12 * 13 * The full GNU General Public License is included in this distribution in 14 * the file called "COPYING". 15 * 16 * Contact Information: 17 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> 18 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 19 */ 20 21 #include <linux/types.h> 22 #include <linux/module.h> 23 #include <net/ipv6.h> 24 #include <net/ip.h> 25 #include <net/tcp.h> 26 #include <linux/if_macvlan.h> 27 #include <linux/prefetch.h> 28 29 #include "fm10k.h" 30 31 #define DRV_VERSION "0.12.2-k" 32 const char fm10k_driver_version[] = DRV_VERSION; 33 char fm10k_driver_name[] = "fm10k"; 34 static const char fm10k_driver_string[] = 35 "Intel(R) Ethernet Switch Host Interface Driver"; 36 static const char fm10k_copyright[] = 37 "Copyright (c) 2013 Intel Corporation."; 38 39 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>"); 40 MODULE_DESCRIPTION("Intel(R) Ethernet Switch Host Interface Driver"); 41 MODULE_LICENSE("GPL"); 42 MODULE_VERSION(DRV_VERSION); 43 44 /** 45 * fm10k_init_module - Driver Registration Routine 46 * 47 * fm10k_init_module is the first routine called when the driver is 48 * loaded. All it does is register with the PCI subsystem. 49 **/ 50 static int __init fm10k_init_module(void) 51 { 52 pr_info("%s - version %s\n", fm10k_driver_string, fm10k_driver_version); 53 pr_info("%s\n", fm10k_copyright); 54 55 fm10k_dbg_init(); 56 57 return fm10k_register_pci_driver(); 58 } 59 module_init(fm10k_init_module); 60 61 /** 62 * fm10k_exit_module - Driver Exit Cleanup Routine 63 * 64 * fm10k_exit_module is called just before the driver is removed 65 * from memory. 66 **/ 67 static void __exit fm10k_exit_module(void) 68 { 69 fm10k_unregister_pci_driver(); 70 71 fm10k_dbg_exit(); 72 } 73 module_exit(fm10k_exit_module); 74 75 static bool fm10k_alloc_mapped_page(struct fm10k_ring *rx_ring, 76 struct fm10k_rx_buffer *bi) 77 { 78 struct page *page = bi->page; 79 dma_addr_t dma; 80 81 /* Only page will be NULL if buffer was consumed */ 82 if (likely(page)) 83 return true; 84 85 /* alloc new page for storage */ 86 page = dev_alloc_page(); 87 if (unlikely(!page)) { 88 rx_ring->rx_stats.alloc_failed++; 89 return false; 90 } 91 92 /* map page for use */ 93 dma = dma_map_page(rx_ring->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE); 94 95 /* if mapping failed free memory back to system since 96 * there isn't much point in holding memory we can't use 97 */ 98 if (dma_mapping_error(rx_ring->dev, dma)) { 99 __free_page(page); 100 bi->page = NULL; 101 102 rx_ring->rx_stats.alloc_failed++; 103 return false; 104 } 105 106 bi->dma = dma; 107 bi->page = page; 108 bi->page_offset = 0; 109 110 return true; 111 } 112 113 /** 114 * fm10k_alloc_rx_buffers - Replace used receive buffers 115 * @rx_ring: ring to place buffers on 116 * @cleaned_count: number of buffers to replace 117 **/ 118 void fm10k_alloc_rx_buffers(struct fm10k_ring *rx_ring, u16 cleaned_count) 119 { 120 union fm10k_rx_desc *rx_desc; 121 struct fm10k_rx_buffer *bi; 122 u16 i = rx_ring->next_to_use; 123 124 /* nothing to do */ 125 if (!cleaned_count) 126 return; 127 128 rx_desc = FM10K_RX_DESC(rx_ring, i); 129 bi = &rx_ring->rx_buffer[i]; 130 i -= rx_ring->count; 131 132 do { 133 if (!fm10k_alloc_mapped_page(rx_ring, bi)) 134 break; 135 136 /* Refresh the desc even if buffer_addrs didn't change 137 * because each write-back erases this info. 138 */ 139 rx_desc->q.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset); 140 141 rx_desc++; 142 bi++; 143 i++; 144 if (unlikely(!i)) { 145 rx_desc = FM10K_RX_DESC(rx_ring, 0); 146 bi = rx_ring->rx_buffer; 147 i -= rx_ring->count; 148 } 149 150 /* clear the hdr_addr for the next_to_use descriptor */ 151 rx_desc->q.hdr_addr = 0; 152 153 cleaned_count--; 154 } while (cleaned_count); 155 156 i += rx_ring->count; 157 158 if (rx_ring->next_to_use != i) { 159 /* record the next descriptor to use */ 160 rx_ring->next_to_use = i; 161 162 /* update next to alloc since we have filled the ring */ 163 rx_ring->next_to_alloc = i; 164 165 /* Force memory writes to complete before letting h/w 166 * know there are new descriptors to fetch. (Only 167 * applicable for weak-ordered memory model archs, 168 * such as IA-64). 169 */ 170 wmb(); 171 172 /* notify hardware of new descriptors */ 173 writel(i, rx_ring->tail); 174 } 175 } 176 177 /** 178 * fm10k_reuse_rx_page - page flip buffer and store it back on the ring 179 * @rx_ring: rx descriptor ring to store buffers on 180 * @old_buff: donor buffer to have page reused 181 * 182 * Synchronizes page for reuse by the interface 183 **/ 184 static void fm10k_reuse_rx_page(struct fm10k_ring *rx_ring, 185 struct fm10k_rx_buffer *old_buff) 186 { 187 struct fm10k_rx_buffer *new_buff; 188 u16 nta = rx_ring->next_to_alloc; 189 190 new_buff = &rx_ring->rx_buffer[nta]; 191 192 /* update, and store next to alloc */ 193 nta++; 194 rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0; 195 196 /* transfer page from old buffer to new buffer */ 197 memcpy(new_buff, old_buff, sizeof(struct fm10k_rx_buffer)); 198 199 /* sync the buffer for use by the device */ 200 dma_sync_single_range_for_device(rx_ring->dev, old_buff->dma, 201 old_buff->page_offset, 202 FM10K_RX_BUFSZ, 203 DMA_FROM_DEVICE); 204 } 205 206 static bool fm10k_can_reuse_rx_page(struct fm10k_rx_buffer *rx_buffer, 207 struct page *page, 208 unsigned int truesize) 209 { 210 /* avoid re-using remote pages */ 211 if (unlikely(page_to_nid(page) != numa_mem_id())) 212 return false; 213 214 #if (PAGE_SIZE < 8192) 215 /* if we are only owner of page we can reuse it */ 216 if (unlikely(page_count(page) != 1)) 217 return false; 218 219 /* flip page offset to other buffer */ 220 rx_buffer->page_offset ^= FM10K_RX_BUFSZ; 221 222 /* Even if we own the page, we are not allowed to use atomic_set() 223 * This would break get_page_unless_zero() users. 224 */ 225 atomic_inc(&page->_count); 226 #else 227 /* move offset up to the next cache line */ 228 rx_buffer->page_offset += truesize; 229 230 if (rx_buffer->page_offset > (PAGE_SIZE - FM10K_RX_BUFSZ)) 231 return false; 232 233 /* bump ref count on page before it is given to the stack */ 234 get_page(page); 235 #endif 236 237 return true; 238 } 239 240 /** 241 * fm10k_add_rx_frag - Add contents of Rx buffer to sk_buff 242 * @rx_ring: rx descriptor ring to transact packets on 243 * @rx_buffer: buffer containing page to add 244 * @rx_desc: descriptor containing length of buffer written by hardware 245 * @skb: sk_buff to place the data into 246 * 247 * This function will add the data contained in rx_buffer->page to the skb. 248 * This is done either through a direct copy if the data in the buffer is 249 * less than the skb header size, otherwise it will just attach the page as 250 * a frag to the skb. 251 * 252 * The function will then update the page offset if necessary and return 253 * true if the buffer can be reused by the interface. 254 **/ 255 static bool fm10k_add_rx_frag(struct fm10k_ring *rx_ring, 256 struct fm10k_rx_buffer *rx_buffer, 257 union fm10k_rx_desc *rx_desc, 258 struct sk_buff *skb) 259 { 260 struct page *page = rx_buffer->page; 261 unsigned int size = le16_to_cpu(rx_desc->w.length); 262 #if (PAGE_SIZE < 8192) 263 unsigned int truesize = FM10K_RX_BUFSZ; 264 #else 265 unsigned int truesize = ALIGN(size, L1_CACHE_BYTES); 266 #endif 267 268 if ((size <= FM10K_RX_HDR_LEN) && !skb_is_nonlinear(skb)) { 269 unsigned char *va = page_address(page) + rx_buffer->page_offset; 270 271 memcpy(__skb_put(skb, size), va, ALIGN(size, sizeof(long))); 272 273 /* we can reuse buffer as-is, just make sure it is local */ 274 if (likely(page_to_nid(page) == numa_mem_id())) 275 return true; 276 277 /* this page cannot be reused so discard it */ 278 put_page(page); 279 return false; 280 } 281 282 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page, 283 rx_buffer->page_offset, size, truesize); 284 285 return fm10k_can_reuse_rx_page(rx_buffer, page, truesize); 286 } 287 288 static struct sk_buff *fm10k_fetch_rx_buffer(struct fm10k_ring *rx_ring, 289 union fm10k_rx_desc *rx_desc, 290 struct sk_buff *skb) 291 { 292 struct fm10k_rx_buffer *rx_buffer; 293 struct page *page; 294 295 rx_buffer = &rx_ring->rx_buffer[rx_ring->next_to_clean]; 296 297 page = rx_buffer->page; 298 prefetchw(page); 299 300 if (likely(!skb)) { 301 void *page_addr = page_address(page) + 302 rx_buffer->page_offset; 303 304 /* prefetch first cache line of first page */ 305 prefetch(page_addr); 306 #if L1_CACHE_BYTES < 128 307 prefetch(page_addr + L1_CACHE_BYTES); 308 #endif 309 310 /* allocate a skb to store the frags */ 311 skb = napi_alloc_skb(&rx_ring->q_vector->napi, 312 FM10K_RX_HDR_LEN); 313 if (unlikely(!skb)) { 314 rx_ring->rx_stats.alloc_failed++; 315 return NULL; 316 } 317 318 /* we will be copying header into skb->data in 319 * pskb_may_pull so it is in our interest to prefetch 320 * it now to avoid a possible cache miss 321 */ 322 prefetchw(skb->data); 323 } 324 325 /* we are reusing so sync this buffer for CPU use */ 326 dma_sync_single_range_for_cpu(rx_ring->dev, 327 rx_buffer->dma, 328 rx_buffer->page_offset, 329 FM10K_RX_BUFSZ, 330 DMA_FROM_DEVICE); 331 332 /* pull page into skb */ 333 if (fm10k_add_rx_frag(rx_ring, rx_buffer, rx_desc, skb)) { 334 /* hand second half of page back to the ring */ 335 fm10k_reuse_rx_page(rx_ring, rx_buffer); 336 } else { 337 /* we are not reusing the buffer so unmap it */ 338 dma_unmap_page(rx_ring->dev, rx_buffer->dma, 339 PAGE_SIZE, DMA_FROM_DEVICE); 340 } 341 342 /* clear contents of rx_buffer */ 343 rx_buffer->page = NULL; 344 345 return skb; 346 } 347 348 static inline void fm10k_rx_checksum(struct fm10k_ring *ring, 349 union fm10k_rx_desc *rx_desc, 350 struct sk_buff *skb) 351 { 352 skb_checksum_none_assert(skb); 353 354 /* Rx checksum disabled via ethtool */ 355 if (!(ring->netdev->features & NETIF_F_RXCSUM)) 356 return; 357 358 /* TCP/UDP checksum error bit is set */ 359 if (fm10k_test_staterr(rx_desc, 360 FM10K_RXD_STATUS_L4E | 361 FM10K_RXD_STATUS_L4E2 | 362 FM10K_RXD_STATUS_IPE | 363 FM10K_RXD_STATUS_IPE2)) { 364 ring->rx_stats.csum_err++; 365 return; 366 } 367 368 /* It must be a TCP or UDP packet with a valid checksum */ 369 if (fm10k_test_staterr(rx_desc, FM10K_RXD_STATUS_L4CS2)) 370 skb->encapsulation = true; 371 else if (!fm10k_test_staterr(rx_desc, FM10K_RXD_STATUS_L4CS)) 372 return; 373 374 skb->ip_summed = CHECKSUM_UNNECESSARY; 375 } 376 377 #define FM10K_RSS_L4_TYPES_MASK \ 378 ((1ul << FM10K_RSSTYPE_IPV4_TCP) | \ 379 (1ul << FM10K_RSSTYPE_IPV4_UDP) | \ 380 (1ul << FM10K_RSSTYPE_IPV6_TCP) | \ 381 (1ul << FM10K_RSSTYPE_IPV6_UDP)) 382 383 static inline void fm10k_rx_hash(struct fm10k_ring *ring, 384 union fm10k_rx_desc *rx_desc, 385 struct sk_buff *skb) 386 { 387 u16 rss_type; 388 389 if (!(ring->netdev->features & NETIF_F_RXHASH)) 390 return; 391 392 rss_type = le16_to_cpu(rx_desc->w.pkt_info) & FM10K_RXD_RSSTYPE_MASK; 393 if (!rss_type) 394 return; 395 396 skb_set_hash(skb, le32_to_cpu(rx_desc->d.rss), 397 (FM10K_RSS_L4_TYPES_MASK & (1ul << rss_type)) ? 398 PKT_HASH_TYPE_L4 : PKT_HASH_TYPE_L3); 399 } 400 401 static void fm10k_rx_hwtstamp(struct fm10k_ring *rx_ring, 402 union fm10k_rx_desc *rx_desc, 403 struct sk_buff *skb) 404 { 405 struct fm10k_intfc *interface = rx_ring->q_vector->interface; 406 407 FM10K_CB(skb)->tstamp = rx_desc->q.timestamp; 408 409 if (unlikely(interface->flags & FM10K_FLAG_RX_TS_ENABLED)) 410 fm10k_systime_to_hwtstamp(interface, skb_hwtstamps(skb), 411 le64_to_cpu(rx_desc->q.timestamp)); 412 } 413 414 static void fm10k_type_trans(struct fm10k_ring *rx_ring, 415 union fm10k_rx_desc *rx_desc, 416 struct sk_buff *skb) 417 { 418 struct net_device *dev = rx_ring->netdev; 419 struct fm10k_l2_accel *l2_accel = rcu_dereference_bh(rx_ring->l2_accel); 420 421 /* check to see if DGLORT belongs to a MACVLAN */ 422 if (l2_accel) { 423 u16 idx = le16_to_cpu(FM10K_CB(skb)->fi.w.dglort) - 1; 424 425 idx -= l2_accel->dglort; 426 if (idx < l2_accel->size && l2_accel->macvlan[idx]) 427 dev = l2_accel->macvlan[idx]; 428 else 429 l2_accel = NULL; 430 } 431 432 skb->protocol = eth_type_trans(skb, dev); 433 434 if (!l2_accel) 435 return; 436 437 /* update MACVLAN statistics */ 438 macvlan_count_rx(netdev_priv(dev), skb->len + ETH_HLEN, 1, 439 !!(rx_desc->w.hdr_info & 440 cpu_to_le16(FM10K_RXD_HDR_INFO_XC_MASK))); 441 } 442 443 /** 444 * fm10k_process_skb_fields - Populate skb header fields from Rx descriptor 445 * @rx_ring: rx descriptor ring packet is being transacted on 446 * @rx_desc: pointer to the EOP Rx descriptor 447 * @skb: pointer to current skb being populated 448 * 449 * This function checks the ring, descriptor, and packet information in 450 * order to populate the hash, checksum, VLAN, timestamp, protocol, and 451 * other fields within the skb. 452 **/ 453 static unsigned int fm10k_process_skb_fields(struct fm10k_ring *rx_ring, 454 union fm10k_rx_desc *rx_desc, 455 struct sk_buff *skb) 456 { 457 unsigned int len = skb->len; 458 459 fm10k_rx_hash(rx_ring, rx_desc, skb); 460 461 fm10k_rx_checksum(rx_ring, rx_desc, skb); 462 463 fm10k_rx_hwtstamp(rx_ring, rx_desc, skb); 464 465 FM10K_CB(skb)->fi.w.vlan = rx_desc->w.vlan; 466 467 skb_record_rx_queue(skb, rx_ring->queue_index); 468 469 FM10K_CB(skb)->fi.d.glort = rx_desc->d.glort; 470 471 if (rx_desc->w.vlan) { 472 u16 vid = le16_to_cpu(rx_desc->w.vlan); 473 474 if (vid != rx_ring->vid) 475 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid); 476 } 477 478 fm10k_type_trans(rx_ring, rx_desc, skb); 479 480 return len; 481 } 482 483 /** 484 * fm10k_is_non_eop - process handling of non-EOP buffers 485 * @rx_ring: Rx ring being processed 486 * @rx_desc: Rx descriptor for current buffer 487 * 488 * This function updates next to clean. If the buffer is an EOP buffer 489 * this function exits returning false, otherwise it will place the 490 * sk_buff in the next buffer to be chained and return true indicating 491 * that this is in fact a non-EOP buffer. 492 **/ 493 static bool fm10k_is_non_eop(struct fm10k_ring *rx_ring, 494 union fm10k_rx_desc *rx_desc) 495 { 496 u32 ntc = rx_ring->next_to_clean + 1; 497 498 /* fetch, update, and store next to clean */ 499 ntc = (ntc < rx_ring->count) ? ntc : 0; 500 rx_ring->next_to_clean = ntc; 501 502 prefetch(FM10K_RX_DESC(rx_ring, ntc)); 503 504 if (likely(fm10k_test_staterr(rx_desc, FM10K_RXD_STATUS_EOP))) 505 return false; 506 507 return true; 508 } 509 510 /** 511 * fm10k_pull_tail - fm10k specific version of skb_pull_tail 512 * @rx_ring: rx descriptor ring packet is being transacted on 513 * @rx_desc: pointer to the EOP Rx descriptor 514 * @skb: pointer to current skb being adjusted 515 * 516 * This function is an fm10k specific version of __pskb_pull_tail. The 517 * main difference between this version and the original function is that 518 * this function can make several assumptions about the state of things 519 * that allow for significant optimizations versus the standard function. 520 * As a result we can do things like drop a frag and maintain an accurate 521 * truesize for the skb. 522 */ 523 static void fm10k_pull_tail(struct fm10k_ring *rx_ring, 524 union fm10k_rx_desc *rx_desc, 525 struct sk_buff *skb) 526 { 527 struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[0]; 528 unsigned char *va; 529 unsigned int pull_len; 530 531 /* it is valid to use page_address instead of kmap since we are 532 * working with pages allocated out of the lomem pool per 533 * alloc_page(GFP_ATOMIC) 534 */ 535 va = skb_frag_address(frag); 536 537 /* we need the header to contain the greater of either ETH_HLEN or 538 * 60 bytes if the skb->len is less than 60 for skb_pad. 539 */ 540 pull_len = eth_get_headlen(va, FM10K_RX_HDR_LEN); 541 542 /* align pull length to size of long to optimize memcpy performance */ 543 skb_copy_to_linear_data(skb, va, ALIGN(pull_len, sizeof(long))); 544 545 /* update all of the pointers */ 546 skb_frag_size_sub(frag, pull_len); 547 frag->page_offset += pull_len; 548 skb->data_len -= pull_len; 549 skb->tail += pull_len; 550 } 551 552 /** 553 * fm10k_cleanup_headers - Correct corrupted or empty headers 554 * @rx_ring: rx descriptor ring packet is being transacted on 555 * @rx_desc: pointer to the EOP Rx descriptor 556 * @skb: pointer to current skb being fixed 557 * 558 * Address the case where we are pulling data in on pages only 559 * and as such no data is present in the skb header. 560 * 561 * In addition if skb is not at least 60 bytes we need to pad it so that 562 * it is large enough to qualify as a valid Ethernet frame. 563 * 564 * Returns true if an error was encountered and skb was freed. 565 **/ 566 static bool fm10k_cleanup_headers(struct fm10k_ring *rx_ring, 567 union fm10k_rx_desc *rx_desc, 568 struct sk_buff *skb) 569 { 570 if (unlikely((fm10k_test_staterr(rx_desc, 571 FM10K_RXD_STATUS_RXE)))) { 572 dev_kfree_skb_any(skb); 573 rx_ring->rx_stats.errors++; 574 return true; 575 } 576 577 /* place header in linear portion of buffer */ 578 if (skb_is_nonlinear(skb)) 579 fm10k_pull_tail(rx_ring, rx_desc, skb); 580 581 /* if eth_skb_pad returns an error the skb was freed */ 582 if (eth_skb_pad(skb)) 583 return true; 584 585 return false; 586 } 587 588 /** 589 * fm10k_receive_skb - helper function to handle rx indications 590 * @q_vector: structure containing interrupt and ring information 591 * @skb: packet to send up 592 **/ 593 static void fm10k_receive_skb(struct fm10k_q_vector *q_vector, 594 struct sk_buff *skb) 595 { 596 napi_gro_receive(&q_vector->napi, skb); 597 } 598 599 static bool fm10k_clean_rx_irq(struct fm10k_q_vector *q_vector, 600 struct fm10k_ring *rx_ring, 601 int budget) 602 { 603 struct sk_buff *skb = rx_ring->skb; 604 unsigned int total_bytes = 0, total_packets = 0; 605 u16 cleaned_count = fm10k_desc_unused(rx_ring); 606 607 do { 608 union fm10k_rx_desc *rx_desc; 609 610 /* return some buffers to hardware, one at a time is too slow */ 611 if (cleaned_count >= FM10K_RX_BUFFER_WRITE) { 612 fm10k_alloc_rx_buffers(rx_ring, cleaned_count); 613 cleaned_count = 0; 614 } 615 616 rx_desc = FM10K_RX_DESC(rx_ring, rx_ring->next_to_clean); 617 618 if (!rx_desc->d.staterr) 619 break; 620 621 /* This memory barrier is needed to keep us from reading 622 * any other fields out of the rx_desc until we know the 623 * descriptor has been written back 624 */ 625 dma_rmb(); 626 627 /* retrieve a buffer from the ring */ 628 skb = fm10k_fetch_rx_buffer(rx_ring, rx_desc, skb); 629 630 /* exit if we failed to retrieve a buffer */ 631 if (!skb) 632 break; 633 634 cleaned_count++; 635 636 /* fetch next buffer in frame if non-eop */ 637 if (fm10k_is_non_eop(rx_ring, rx_desc)) 638 continue; 639 640 /* verify the packet layout is correct */ 641 if (fm10k_cleanup_headers(rx_ring, rx_desc, skb)) { 642 skb = NULL; 643 continue; 644 } 645 646 /* populate checksum, timestamp, VLAN, and protocol */ 647 total_bytes += fm10k_process_skb_fields(rx_ring, rx_desc, skb); 648 649 fm10k_receive_skb(q_vector, skb); 650 651 /* reset skb pointer */ 652 skb = NULL; 653 654 /* update budget accounting */ 655 total_packets++; 656 } while (likely(total_packets < budget)); 657 658 /* place incomplete frames back on ring for completion */ 659 rx_ring->skb = skb; 660 661 u64_stats_update_begin(&rx_ring->syncp); 662 rx_ring->stats.packets += total_packets; 663 rx_ring->stats.bytes += total_bytes; 664 u64_stats_update_end(&rx_ring->syncp); 665 q_vector->rx.total_packets += total_packets; 666 q_vector->rx.total_bytes += total_bytes; 667 668 return total_packets < budget; 669 } 670 671 #define VXLAN_HLEN (sizeof(struct udphdr) + 8) 672 static struct ethhdr *fm10k_port_is_vxlan(struct sk_buff *skb) 673 { 674 struct fm10k_intfc *interface = netdev_priv(skb->dev); 675 struct fm10k_vxlan_port *vxlan_port; 676 677 /* we can only offload a vxlan if we recognize it as such */ 678 vxlan_port = list_first_entry_or_null(&interface->vxlan_port, 679 struct fm10k_vxlan_port, list); 680 681 if (!vxlan_port) 682 return NULL; 683 if (vxlan_port->port != udp_hdr(skb)->dest) 684 return NULL; 685 686 /* return offset of udp_hdr plus 8 bytes for VXLAN header */ 687 return (struct ethhdr *)(skb_transport_header(skb) + VXLAN_HLEN); 688 } 689 690 #define FM10K_NVGRE_RESERVED0_FLAGS htons(0x9FFF) 691 #define NVGRE_TNI htons(0x2000) 692 struct fm10k_nvgre_hdr { 693 __be16 flags; 694 __be16 proto; 695 __be32 tni; 696 }; 697 698 static struct ethhdr *fm10k_gre_is_nvgre(struct sk_buff *skb) 699 { 700 struct fm10k_nvgre_hdr *nvgre_hdr; 701 int hlen = ip_hdrlen(skb); 702 703 /* currently only IPv4 is supported due to hlen above */ 704 if (vlan_get_protocol(skb) != htons(ETH_P_IP)) 705 return NULL; 706 707 /* our transport header should be NVGRE */ 708 nvgre_hdr = (struct fm10k_nvgre_hdr *)(skb_network_header(skb) + hlen); 709 710 /* verify all reserved flags are 0 */ 711 if (nvgre_hdr->flags & FM10K_NVGRE_RESERVED0_FLAGS) 712 return NULL; 713 714 /* verify protocol is transparent Ethernet bridging */ 715 if (nvgre_hdr->proto != htons(ETH_P_TEB)) 716 return NULL; 717 718 /* report start of ethernet header */ 719 if (nvgre_hdr->flags & NVGRE_TNI) 720 return (struct ethhdr *)(nvgre_hdr + 1); 721 722 return (struct ethhdr *)(&nvgre_hdr->tni); 723 } 724 725 static __be16 fm10k_tx_encap_offload(struct sk_buff *skb) 726 { 727 struct ethhdr *eth_hdr; 728 u8 l4_hdr = 0; 729 730 switch (vlan_get_protocol(skb)) { 731 case htons(ETH_P_IP): 732 l4_hdr = ip_hdr(skb)->protocol; 733 break; 734 case htons(ETH_P_IPV6): 735 l4_hdr = ipv6_hdr(skb)->nexthdr; 736 break; 737 default: 738 return 0; 739 } 740 741 switch (l4_hdr) { 742 case IPPROTO_UDP: 743 eth_hdr = fm10k_port_is_vxlan(skb); 744 break; 745 case IPPROTO_GRE: 746 eth_hdr = fm10k_gre_is_nvgre(skb); 747 break; 748 default: 749 return 0; 750 } 751 752 if (!eth_hdr) 753 return 0; 754 755 switch (eth_hdr->h_proto) { 756 case htons(ETH_P_IP): 757 case htons(ETH_P_IPV6): 758 break; 759 default: 760 return 0; 761 } 762 763 return eth_hdr->h_proto; 764 } 765 766 static int fm10k_tso(struct fm10k_ring *tx_ring, 767 struct fm10k_tx_buffer *first) 768 { 769 struct sk_buff *skb = first->skb; 770 struct fm10k_tx_desc *tx_desc; 771 unsigned char *th; 772 u8 hdrlen; 773 774 if (skb->ip_summed != CHECKSUM_PARTIAL) 775 return 0; 776 777 if (!skb_is_gso(skb)) 778 return 0; 779 780 /* compute header lengths */ 781 if (skb->encapsulation) { 782 if (!fm10k_tx_encap_offload(skb)) 783 goto err_vxlan; 784 th = skb_inner_transport_header(skb); 785 } else { 786 th = skb_transport_header(skb); 787 } 788 789 /* compute offset from SOF to transport header and add header len */ 790 hdrlen = (th - skb->data) + (((struct tcphdr *)th)->doff << 2); 791 792 first->tx_flags |= FM10K_TX_FLAGS_CSUM; 793 794 /* update gso size and bytecount with header size */ 795 first->gso_segs = skb_shinfo(skb)->gso_segs; 796 first->bytecount += (first->gso_segs - 1) * hdrlen; 797 798 /* populate Tx descriptor header size and mss */ 799 tx_desc = FM10K_TX_DESC(tx_ring, tx_ring->next_to_use); 800 tx_desc->hdrlen = hdrlen; 801 tx_desc->mss = cpu_to_le16(skb_shinfo(skb)->gso_size); 802 803 return 1; 804 err_vxlan: 805 tx_ring->netdev->features &= ~NETIF_F_GSO_UDP_TUNNEL; 806 if (!net_ratelimit()) 807 netdev_err(tx_ring->netdev, 808 "TSO requested for unsupported tunnel, disabling offload\n"); 809 return -1; 810 } 811 812 static void fm10k_tx_csum(struct fm10k_ring *tx_ring, 813 struct fm10k_tx_buffer *first) 814 { 815 struct sk_buff *skb = first->skb; 816 struct fm10k_tx_desc *tx_desc; 817 union { 818 struct iphdr *ipv4; 819 struct ipv6hdr *ipv6; 820 u8 *raw; 821 } network_hdr; 822 __be16 protocol; 823 u8 l4_hdr = 0; 824 825 if (skb->ip_summed != CHECKSUM_PARTIAL) 826 goto no_csum; 827 828 if (skb->encapsulation) { 829 protocol = fm10k_tx_encap_offload(skb); 830 if (!protocol) { 831 if (skb_checksum_help(skb)) { 832 dev_warn(tx_ring->dev, 833 "failed to offload encap csum!\n"); 834 tx_ring->tx_stats.csum_err++; 835 } 836 goto no_csum; 837 } 838 network_hdr.raw = skb_inner_network_header(skb); 839 } else { 840 protocol = vlan_get_protocol(skb); 841 network_hdr.raw = skb_network_header(skb); 842 } 843 844 switch (protocol) { 845 case htons(ETH_P_IP): 846 l4_hdr = network_hdr.ipv4->protocol; 847 break; 848 case htons(ETH_P_IPV6): 849 l4_hdr = network_hdr.ipv6->nexthdr; 850 break; 851 default: 852 if (unlikely(net_ratelimit())) { 853 dev_warn(tx_ring->dev, 854 "partial checksum but ip version=%x!\n", 855 protocol); 856 } 857 tx_ring->tx_stats.csum_err++; 858 goto no_csum; 859 } 860 861 switch (l4_hdr) { 862 case IPPROTO_TCP: 863 case IPPROTO_UDP: 864 break; 865 case IPPROTO_GRE: 866 if (skb->encapsulation) 867 break; 868 default: 869 if (unlikely(net_ratelimit())) { 870 dev_warn(tx_ring->dev, 871 "partial checksum but l4 proto=%x!\n", 872 l4_hdr); 873 } 874 tx_ring->tx_stats.csum_err++; 875 goto no_csum; 876 } 877 878 /* update TX checksum flag */ 879 first->tx_flags |= FM10K_TX_FLAGS_CSUM; 880 881 no_csum: 882 /* populate Tx descriptor header size and mss */ 883 tx_desc = FM10K_TX_DESC(tx_ring, tx_ring->next_to_use); 884 tx_desc->hdrlen = 0; 885 tx_desc->mss = 0; 886 } 887 888 #define FM10K_SET_FLAG(_input, _flag, _result) \ 889 ((_flag <= _result) ? \ 890 ((u32)(_input & _flag) * (_result / _flag)) : \ 891 ((u32)(_input & _flag) / (_flag / _result))) 892 893 static u8 fm10k_tx_desc_flags(struct sk_buff *skb, u32 tx_flags) 894 { 895 /* set type for advanced descriptor with frame checksum insertion */ 896 u32 desc_flags = 0; 897 898 /* set timestamping bits */ 899 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && 900 likely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) 901 desc_flags |= FM10K_TXD_FLAG_TIME; 902 903 /* set checksum offload bits */ 904 desc_flags |= FM10K_SET_FLAG(tx_flags, FM10K_TX_FLAGS_CSUM, 905 FM10K_TXD_FLAG_CSUM); 906 907 return desc_flags; 908 } 909 910 static bool fm10k_tx_desc_push(struct fm10k_ring *tx_ring, 911 struct fm10k_tx_desc *tx_desc, u16 i, 912 dma_addr_t dma, unsigned int size, u8 desc_flags) 913 { 914 /* set RS and INT for last frame in a cache line */ 915 if ((++i & (FM10K_TXD_WB_FIFO_SIZE - 1)) == 0) 916 desc_flags |= FM10K_TXD_FLAG_RS | FM10K_TXD_FLAG_INT; 917 918 /* record values to descriptor */ 919 tx_desc->buffer_addr = cpu_to_le64(dma); 920 tx_desc->flags = desc_flags; 921 tx_desc->buflen = cpu_to_le16(size); 922 923 /* return true if we just wrapped the ring */ 924 return i == tx_ring->count; 925 } 926 927 static int __fm10k_maybe_stop_tx(struct fm10k_ring *tx_ring, u16 size) 928 { 929 netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index); 930 931 smp_mb(); 932 933 /* We need to check again in a case another CPU has just 934 * made room available. */ 935 if (likely(fm10k_desc_unused(tx_ring) < size)) 936 return -EBUSY; 937 938 /* A reprieve! - use start_queue because it doesn't call schedule */ 939 netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index); 940 ++tx_ring->tx_stats.restart_queue; 941 return 0; 942 } 943 944 static inline int fm10k_maybe_stop_tx(struct fm10k_ring *tx_ring, u16 size) 945 { 946 if (likely(fm10k_desc_unused(tx_ring) >= size)) 947 return 0; 948 return __fm10k_maybe_stop_tx(tx_ring, size); 949 } 950 951 static void fm10k_tx_map(struct fm10k_ring *tx_ring, 952 struct fm10k_tx_buffer *first) 953 { 954 struct sk_buff *skb = first->skb; 955 struct fm10k_tx_buffer *tx_buffer; 956 struct fm10k_tx_desc *tx_desc; 957 struct skb_frag_struct *frag; 958 unsigned char *data; 959 dma_addr_t dma; 960 unsigned int data_len, size; 961 u32 tx_flags = first->tx_flags; 962 u16 i = tx_ring->next_to_use; 963 u8 flags = fm10k_tx_desc_flags(skb, tx_flags); 964 965 tx_desc = FM10K_TX_DESC(tx_ring, i); 966 967 /* add HW VLAN tag */ 968 if (vlan_tx_tag_present(skb)) 969 tx_desc->vlan = cpu_to_le16(vlan_tx_tag_get(skb)); 970 else 971 tx_desc->vlan = 0; 972 973 size = skb_headlen(skb); 974 data = skb->data; 975 976 dma = dma_map_single(tx_ring->dev, data, size, DMA_TO_DEVICE); 977 978 data_len = skb->data_len; 979 tx_buffer = first; 980 981 for (frag = &skb_shinfo(skb)->frags[0];; frag++) { 982 if (dma_mapping_error(tx_ring->dev, dma)) 983 goto dma_error; 984 985 /* record length, and DMA address */ 986 dma_unmap_len_set(tx_buffer, len, size); 987 dma_unmap_addr_set(tx_buffer, dma, dma); 988 989 while (unlikely(size > FM10K_MAX_DATA_PER_TXD)) { 990 if (fm10k_tx_desc_push(tx_ring, tx_desc++, i++, dma, 991 FM10K_MAX_DATA_PER_TXD, flags)) { 992 tx_desc = FM10K_TX_DESC(tx_ring, 0); 993 i = 0; 994 } 995 996 dma += FM10K_MAX_DATA_PER_TXD; 997 size -= FM10K_MAX_DATA_PER_TXD; 998 } 999 1000 if (likely(!data_len)) 1001 break; 1002 1003 if (fm10k_tx_desc_push(tx_ring, tx_desc++, i++, 1004 dma, size, flags)) { 1005 tx_desc = FM10K_TX_DESC(tx_ring, 0); 1006 i = 0; 1007 } 1008 1009 size = skb_frag_size(frag); 1010 data_len -= size; 1011 1012 dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size, 1013 DMA_TO_DEVICE); 1014 1015 tx_buffer = &tx_ring->tx_buffer[i]; 1016 } 1017 1018 /* write last descriptor with LAST bit set */ 1019 flags |= FM10K_TXD_FLAG_LAST; 1020 1021 if (fm10k_tx_desc_push(tx_ring, tx_desc, i++, dma, size, flags)) 1022 i = 0; 1023 1024 /* record bytecount for BQL */ 1025 netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount); 1026 1027 /* record SW timestamp if HW timestamp is not available */ 1028 skb_tx_timestamp(first->skb); 1029 1030 /* Force memory writes to complete before letting h/w know there 1031 * are new descriptors to fetch. (Only applicable for weak-ordered 1032 * memory model archs, such as IA-64). 1033 * 1034 * We also need this memory barrier to make certain all of the 1035 * status bits have been updated before next_to_watch is written. 1036 */ 1037 wmb(); 1038 1039 /* set next_to_watch value indicating a packet is present */ 1040 first->next_to_watch = tx_desc; 1041 1042 tx_ring->next_to_use = i; 1043 1044 /* Make sure there is space in the ring for the next send. */ 1045 fm10k_maybe_stop_tx(tx_ring, DESC_NEEDED); 1046 1047 /* notify HW of packet */ 1048 if (netif_xmit_stopped(txring_txq(tx_ring)) || !skb->xmit_more) { 1049 writel(i, tx_ring->tail); 1050 1051 /* we need this if more than one processor can write to our tail 1052 * at a time, it synchronizes IO on IA64/Altix systems 1053 */ 1054 mmiowb(); 1055 } 1056 1057 return; 1058 dma_error: 1059 dev_err(tx_ring->dev, "TX DMA map failed\n"); 1060 1061 /* clear dma mappings for failed tx_buffer map */ 1062 for (;;) { 1063 tx_buffer = &tx_ring->tx_buffer[i]; 1064 fm10k_unmap_and_free_tx_resource(tx_ring, tx_buffer); 1065 if (tx_buffer == first) 1066 break; 1067 if (i == 0) 1068 i = tx_ring->count; 1069 i--; 1070 } 1071 1072 tx_ring->next_to_use = i; 1073 } 1074 1075 netdev_tx_t fm10k_xmit_frame_ring(struct sk_buff *skb, 1076 struct fm10k_ring *tx_ring) 1077 { 1078 struct fm10k_tx_buffer *first; 1079 int tso; 1080 u32 tx_flags = 0; 1081 #if PAGE_SIZE > FM10K_MAX_DATA_PER_TXD 1082 unsigned short f; 1083 #endif 1084 u16 count = TXD_USE_COUNT(skb_headlen(skb)); 1085 1086 /* need: 1 descriptor per page * PAGE_SIZE/FM10K_MAX_DATA_PER_TXD, 1087 * + 1 desc for skb_headlen/FM10K_MAX_DATA_PER_TXD, 1088 * + 2 desc gap to keep tail from touching head 1089 * otherwise try next time 1090 */ 1091 #if PAGE_SIZE > FM10K_MAX_DATA_PER_TXD 1092 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) 1093 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size); 1094 #else 1095 count += skb_shinfo(skb)->nr_frags; 1096 #endif 1097 if (fm10k_maybe_stop_tx(tx_ring, count + 3)) { 1098 tx_ring->tx_stats.tx_busy++; 1099 return NETDEV_TX_BUSY; 1100 } 1101 1102 /* record the location of the first descriptor for this packet */ 1103 first = &tx_ring->tx_buffer[tx_ring->next_to_use]; 1104 first->skb = skb; 1105 first->bytecount = max_t(unsigned int, skb->len, ETH_ZLEN); 1106 first->gso_segs = 1; 1107 1108 /* record initial flags and protocol */ 1109 first->tx_flags = tx_flags; 1110 1111 tso = fm10k_tso(tx_ring, first); 1112 if (tso < 0) 1113 goto out_drop; 1114 else if (!tso) 1115 fm10k_tx_csum(tx_ring, first); 1116 1117 fm10k_tx_map(tx_ring, first); 1118 1119 return NETDEV_TX_OK; 1120 1121 out_drop: 1122 dev_kfree_skb_any(first->skb); 1123 first->skb = NULL; 1124 1125 return NETDEV_TX_OK; 1126 } 1127 1128 static u64 fm10k_get_tx_completed(struct fm10k_ring *ring) 1129 { 1130 return ring->stats.packets; 1131 } 1132 1133 static u64 fm10k_get_tx_pending(struct fm10k_ring *ring) 1134 { 1135 /* use SW head and tail until we have real hardware */ 1136 u32 head = ring->next_to_clean; 1137 u32 tail = ring->next_to_use; 1138 1139 return ((head <= tail) ? tail : tail + ring->count) - head; 1140 } 1141 1142 bool fm10k_check_tx_hang(struct fm10k_ring *tx_ring) 1143 { 1144 u32 tx_done = fm10k_get_tx_completed(tx_ring); 1145 u32 tx_done_old = tx_ring->tx_stats.tx_done_old; 1146 u32 tx_pending = fm10k_get_tx_pending(tx_ring); 1147 1148 clear_check_for_tx_hang(tx_ring); 1149 1150 /* Check for a hung queue, but be thorough. This verifies 1151 * that a transmit has been completed since the previous 1152 * check AND there is at least one packet pending. By 1153 * requiring this to fail twice we avoid races with 1154 * clearing the ARMED bit and conditions where we 1155 * run the check_tx_hang logic with a transmit completion 1156 * pending but without time to complete it yet. 1157 */ 1158 if (!tx_pending || (tx_done_old != tx_done)) { 1159 /* update completed stats and continue */ 1160 tx_ring->tx_stats.tx_done_old = tx_done; 1161 /* reset the countdown */ 1162 clear_bit(__FM10K_HANG_CHECK_ARMED, &tx_ring->state); 1163 1164 return false; 1165 } 1166 1167 /* make sure it is true for two checks in a row */ 1168 return test_and_set_bit(__FM10K_HANG_CHECK_ARMED, &tx_ring->state); 1169 } 1170 1171 /** 1172 * fm10k_tx_timeout_reset - initiate reset due to Tx timeout 1173 * @interface: driver private struct 1174 **/ 1175 void fm10k_tx_timeout_reset(struct fm10k_intfc *interface) 1176 { 1177 /* Do the reset outside of interrupt context */ 1178 if (!test_bit(__FM10K_DOWN, &interface->state)) { 1179 netdev_err(interface->netdev, "Reset interface\n"); 1180 interface->tx_timeout_count++; 1181 interface->flags |= FM10K_FLAG_RESET_REQUESTED; 1182 fm10k_service_event_schedule(interface); 1183 } 1184 } 1185 1186 /** 1187 * fm10k_clean_tx_irq - Reclaim resources after transmit completes 1188 * @q_vector: structure containing interrupt and ring information 1189 * @tx_ring: tx ring to clean 1190 **/ 1191 static bool fm10k_clean_tx_irq(struct fm10k_q_vector *q_vector, 1192 struct fm10k_ring *tx_ring) 1193 { 1194 struct fm10k_intfc *interface = q_vector->interface; 1195 struct fm10k_tx_buffer *tx_buffer; 1196 struct fm10k_tx_desc *tx_desc; 1197 unsigned int total_bytes = 0, total_packets = 0; 1198 unsigned int budget = q_vector->tx.work_limit; 1199 unsigned int i = tx_ring->next_to_clean; 1200 1201 if (test_bit(__FM10K_DOWN, &interface->state)) 1202 return true; 1203 1204 tx_buffer = &tx_ring->tx_buffer[i]; 1205 tx_desc = FM10K_TX_DESC(tx_ring, i); 1206 i -= tx_ring->count; 1207 1208 do { 1209 struct fm10k_tx_desc *eop_desc = tx_buffer->next_to_watch; 1210 1211 /* if next_to_watch is not set then there is no work pending */ 1212 if (!eop_desc) 1213 break; 1214 1215 /* prevent any other reads prior to eop_desc */ 1216 read_barrier_depends(); 1217 1218 /* if DD is not set pending work has not been completed */ 1219 if (!(eop_desc->flags & FM10K_TXD_FLAG_DONE)) 1220 break; 1221 1222 /* clear next_to_watch to prevent false hangs */ 1223 tx_buffer->next_to_watch = NULL; 1224 1225 /* update the statistics for this packet */ 1226 total_bytes += tx_buffer->bytecount; 1227 total_packets += tx_buffer->gso_segs; 1228 1229 /* free the skb */ 1230 dev_consume_skb_any(tx_buffer->skb); 1231 1232 /* unmap skb header data */ 1233 dma_unmap_single(tx_ring->dev, 1234 dma_unmap_addr(tx_buffer, dma), 1235 dma_unmap_len(tx_buffer, len), 1236 DMA_TO_DEVICE); 1237 1238 /* clear tx_buffer data */ 1239 tx_buffer->skb = NULL; 1240 dma_unmap_len_set(tx_buffer, len, 0); 1241 1242 /* unmap remaining buffers */ 1243 while (tx_desc != eop_desc) { 1244 tx_buffer++; 1245 tx_desc++; 1246 i++; 1247 if (unlikely(!i)) { 1248 i -= tx_ring->count; 1249 tx_buffer = tx_ring->tx_buffer; 1250 tx_desc = FM10K_TX_DESC(tx_ring, 0); 1251 } 1252 1253 /* unmap any remaining paged data */ 1254 if (dma_unmap_len(tx_buffer, len)) { 1255 dma_unmap_page(tx_ring->dev, 1256 dma_unmap_addr(tx_buffer, dma), 1257 dma_unmap_len(tx_buffer, len), 1258 DMA_TO_DEVICE); 1259 dma_unmap_len_set(tx_buffer, len, 0); 1260 } 1261 } 1262 1263 /* move us one more past the eop_desc for start of next pkt */ 1264 tx_buffer++; 1265 tx_desc++; 1266 i++; 1267 if (unlikely(!i)) { 1268 i -= tx_ring->count; 1269 tx_buffer = tx_ring->tx_buffer; 1270 tx_desc = FM10K_TX_DESC(tx_ring, 0); 1271 } 1272 1273 /* issue prefetch for next Tx descriptor */ 1274 prefetch(tx_desc); 1275 1276 /* update budget accounting */ 1277 budget--; 1278 } while (likely(budget)); 1279 1280 i += tx_ring->count; 1281 tx_ring->next_to_clean = i; 1282 u64_stats_update_begin(&tx_ring->syncp); 1283 tx_ring->stats.bytes += total_bytes; 1284 tx_ring->stats.packets += total_packets; 1285 u64_stats_update_end(&tx_ring->syncp); 1286 q_vector->tx.total_bytes += total_bytes; 1287 q_vector->tx.total_packets += total_packets; 1288 1289 if (check_for_tx_hang(tx_ring) && fm10k_check_tx_hang(tx_ring)) { 1290 /* schedule immediate reset if we believe we hung */ 1291 struct fm10k_hw *hw = &interface->hw; 1292 1293 netif_err(interface, drv, tx_ring->netdev, 1294 "Detected Tx Unit Hang\n" 1295 " Tx Queue <%d>\n" 1296 " TDH, TDT <%x>, <%x>\n" 1297 " next_to_use <%x>\n" 1298 " next_to_clean <%x>\n", 1299 tx_ring->queue_index, 1300 fm10k_read_reg(hw, FM10K_TDH(tx_ring->reg_idx)), 1301 fm10k_read_reg(hw, FM10K_TDT(tx_ring->reg_idx)), 1302 tx_ring->next_to_use, i); 1303 1304 netif_stop_subqueue(tx_ring->netdev, 1305 tx_ring->queue_index); 1306 1307 netif_info(interface, probe, tx_ring->netdev, 1308 "tx hang %d detected on queue %d, resetting interface\n", 1309 interface->tx_timeout_count + 1, 1310 tx_ring->queue_index); 1311 1312 fm10k_tx_timeout_reset(interface); 1313 1314 /* the netdev is about to reset, no point in enabling stuff */ 1315 return true; 1316 } 1317 1318 /* notify netdev of completed buffers */ 1319 netdev_tx_completed_queue(txring_txq(tx_ring), 1320 total_packets, total_bytes); 1321 1322 #define TX_WAKE_THRESHOLD min_t(u16, FM10K_MIN_TXD - 1, DESC_NEEDED * 2) 1323 if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) && 1324 (fm10k_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD))) { 1325 /* Make sure that anybody stopping the queue after this 1326 * sees the new next_to_clean. 1327 */ 1328 smp_mb(); 1329 if (__netif_subqueue_stopped(tx_ring->netdev, 1330 tx_ring->queue_index) && 1331 !test_bit(__FM10K_DOWN, &interface->state)) { 1332 netif_wake_subqueue(tx_ring->netdev, 1333 tx_ring->queue_index); 1334 ++tx_ring->tx_stats.restart_queue; 1335 } 1336 } 1337 1338 return !!budget; 1339 } 1340 1341 /** 1342 * fm10k_update_itr - update the dynamic ITR value based on packet size 1343 * 1344 * Stores a new ITR value based on strictly on packet size. The 1345 * divisors and thresholds used by this function were determined based 1346 * on theoretical maximum wire speed and testing data, in order to 1347 * minimize response time while increasing bulk throughput. 1348 * 1349 * @ring_container: Container for rings to have ITR updated 1350 **/ 1351 static void fm10k_update_itr(struct fm10k_ring_container *ring_container) 1352 { 1353 unsigned int avg_wire_size, packets; 1354 1355 /* Only update ITR if we are using adaptive setting */ 1356 if (!(ring_container->itr & FM10K_ITR_ADAPTIVE)) 1357 goto clear_counts; 1358 1359 packets = ring_container->total_packets; 1360 if (!packets) 1361 goto clear_counts; 1362 1363 avg_wire_size = ring_container->total_bytes / packets; 1364 1365 /* Add 24 bytes to size to account for CRC, preamble, and gap */ 1366 avg_wire_size += 24; 1367 1368 /* Don't starve jumbo frames */ 1369 if (avg_wire_size > 3000) 1370 avg_wire_size = 3000; 1371 1372 /* Give a little boost to mid-size frames */ 1373 if ((avg_wire_size > 300) && (avg_wire_size < 1200)) 1374 avg_wire_size /= 3; 1375 else 1376 avg_wire_size /= 2; 1377 1378 /* write back value and retain adaptive flag */ 1379 ring_container->itr = avg_wire_size | FM10K_ITR_ADAPTIVE; 1380 1381 clear_counts: 1382 ring_container->total_bytes = 0; 1383 ring_container->total_packets = 0; 1384 } 1385 1386 static void fm10k_qv_enable(struct fm10k_q_vector *q_vector) 1387 { 1388 /* Enable auto-mask and clear the current mask */ 1389 u32 itr = FM10K_ITR_ENABLE; 1390 1391 /* Update Tx ITR */ 1392 fm10k_update_itr(&q_vector->tx); 1393 1394 /* Update Rx ITR */ 1395 fm10k_update_itr(&q_vector->rx); 1396 1397 /* Store Tx itr in timer slot 0 */ 1398 itr |= (q_vector->tx.itr & FM10K_ITR_MAX); 1399 1400 /* Shift Rx itr to timer slot 1 */ 1401 itr |= (q_vector->rx.itr & FM10K_ITR_MAX) << FM10K_ITR_INTERVAL1_SHIFT; 1402 1403 /* Write the final value to the ITR register */ 1404 writel(itr, q_vector->itr); 1405 } 1406 1407 static int fm10k_poll(struct napi_struct *napi, int budget) 1408 { 1409 struct fm10k_q_vector *q_vector = 1410 container_of(napi, struct fm10k_q_vector, napi); 1411 struct fm10k_ring *ring; 1412 int per_ring_budget; 1413 bool clean_complete = true; 1414 1415 fm10k_for_each_ring(ring, q_vector->tx) 1416 clean_complete &= fm10k_clean_tx_irq(q_vector, ring); 1417 1418 /* attempt to distribute budget to each queue fairly, but don't 1419 * allow the budget to go below 1 because we'll exit polling 1420 */ 1421 if (q_vector->rx.count > 1) 1422 per_ring_budget = max(budget/q_vector->rx.count, 1); 1423 else 1424 per_ring_budget = budget; 1425 1426 fm10k_for_each_ring(ring, q_vector->rx) 1427 clean_complete &= fm10k_clean_rx_irq(q_vector, ring, 1428 per_ring_budget); 1429 1430 /* If all work not completed, return budget and keep polling */ 1431 if (!clean_complete) 1432 return budget; 1433 1434 /* all work done, exit the polling mode */ 1435 napi_complete(napi); 1436 1437 /* re-enable the q_vector */ 1438 fm10k_qv_enable(q_vector); 1439 1440 return 0; 1441 } 1442 1443 /** 1444 * fm10k_set_qos_queues: Allocate queues for a QOS-enabled device 1445 * @interface: board private structure to initialize 1446 * 1447 * When QoS (Quality of Service) is enabled, allocate queues for 1448 * each traffic class. If multiqueue isn't available,then abort QoS 1449 * initialization. 1450 * 1451 * This function handles all combinations of Qos and RSS. 1452 * 1453 **/ 1454 static bool fm10k_set_qos_queues(struct fm10k_intfc *interface) 1455 { 1456 struct net_device *dev = interface->netdev; 1457 struct fm10k_ring_feature *f; 1458 int rss_i, i; 1459 int pcs; 1460 1461 /* Map queue offset and counts onto allocated tx queues */ 1462 pcs = netdev_get_num_tc(dev); 1463 1464 if (pcs <= 1) 1465 return false; 1466 1467 /* set QoS mask and indices */ 1468 f = &interface->ring_feature[RING_F_QOS]; 1469 f->indices = pcs; 1470 f->mask = (1 << fls(pcs - 1)) - 1; 1471 1472 /* determine the upper limit for our current DCB mode */ 1473 rss_i = interface->hw.mac.max_queues / pcs; 1474 rss_i = 1 << (fls(rss_i) - 1); 1475 1476 /* set RSS mask and indices */ 1477 f = &interface->ring_feature[RING_F_RSS]; 1478 rss_i = min_t(u16, rss_i, f->limit); 1479 f->indices = rss_i; 1480 f->mask = (1 << fls(rss_i - 1)) - 1; 1481 1482 /* configure pause class to queue mapping */ 1483 for (i = 0; i < pcs; i++) 1484 netdev_set_tc_queue(dev, i, rss_i, rss_i * i); 1485 1486 interface->num_rx_queues = rss_i * pcs; 1487 interface->num_tx_queues = rss_i * pcs; 1488 1489 return true; 1490 } 1491 1492 /** 1493 * fm10k_set_rss_queues: Allocate queues for RSS 1494 * @interface: board private structure to initialize 1495 * 1496 * This is our "base" multiqueue mode. RSS (Receive Side Scaling) will try 1497 * to allocate one Rx queue per CPU, and if available, one Tx queue per CPU. 1498 * 1499 **/ 1500 static bool fm10k_set_rss_queues(struct fm10k_intfc *interface) 1501 { 1502 struct fm10k_ring_feature *f; 1503 u16 rss_i; 1504 1505 f = &interface->ring_feature[RING_F_RSS]; 1506 rss_i = min_t(u16, interface->hw.mac.max_queues, f->limit); 1507 1508 /* record indices and power of 2 mask for RSS */ 1509 f->indices = rss_i; 1510 f->mask = (1 << fls(rss_i - 1)) - 1; 1511 1512 interface->num_rx_queues = rss_i; 1513 interface->num_tx_queues = rss_i; 1514 1515 return true; 1516 } 1517 1518 /** 1519 * fm10k_set_num_queues: Allocate queues for device, feature dependent 1520 * @interface: board private structure to initialize 1521 * 1522 * This is the top level queue allocation routine. The order here is very 1523 * important, starting with the "most" number of features turned on at once, 1524 * and ending with the smallest set of features. This way large combinations 1525 * can be allocated if they're turned on, and smaller combinations are the 1526 * fallthrough conditions. 1527 * 1528 **/ 1529 static void fm10k_set_num_queues(struct fm10k_intfc *interface) 1530 { 1531 /* Start with base case */ 1532 interface->num_rx_queues = 1; 1533 interface->num_tx_queues = 1; 1534 1535 if (fm10k_set_qos_queues(interface)) 1536 return; 1537 1538 fm10k_set_rss_queues(interface); 1539 } 1540 1541 /** 1542 * fm10k_alloc_q_vector - Allocate memory for a single interrupt vector 1543 * @interface: board private structure to initialize 1544 * @v_count: q_vectors allocated on interface, used for ring interleaving 1545 * @v_idx: index of vector in interface struct 1546 * @txr_count: total number of Tx rings to allocate 1547 * @txr_idx: index of first Tx ring to allocate 1548 * @rxr_count: total number of Rx rings to allocate 1549 * @rxr_idx: index of first Rx ring to allocate 1550 * 1551 * We allocate one q_vector. If allocation fails we return -ENOMEM. 1552 **/ 1553 static int fm10k_alloc_q_vector(struct fm10k_intfc *interface, 1554 unsigned int v_count, unsigned int v_idx, 1555 unsigned int txr_count, unsigned int txr_idx, 1556 unsigned int rxr_count, unsigned int rxr_idx) 1557 { 1558 struct fm10k_q_vector *q_vector; 1559 struct fm10k_ring *ring; 1560 int ring_count, size; 1561 1562 ring_count = txr_count + rxr_count; 1563 size = sizeof(struct fm10k_q_vector) + 1564 (sizeof(struct fm10k_ring) * ring_count); 1565 1566 /* allocate q_vector and rings */ 1567 q_vector = kzalloc(size, GFP_KERNEL); 1568 if (!q_vector) 1569 return -ENOMEM; 1570 1571 /* initialize NAPI */ 1572 netif_napi_add(interface->netdev, &q_vector->napi, 1573 fm10k_poll, NAPI_POLL_WEIGHT); 1574 1575 /* tie q_vector and interface together */ 1576 interface->q_vector[v_idx] = q_vector; 1577 q_vector->interface = interface; 1578 q_vector->v_idx = v_idx; 1579 1580 /* initialize pointer to rings */ 1581 ring = q_vector->ring; 1582 1583 /* save Tx ring container info */ 1584 q_vector->tx.ring = ring; 1585 q_vector->tx.work_limit = FM10K_DEFAULT_TX_WORK; 1586 q_vector->tx.itr = interface->tx_itr; 1587 q_vector->tx.count = txr_count; 1588 1589 while (txr_count) { 1590 /* assign generic ring traits */ 1591 ring->dev = &interface->pdev->dev; 1592 ring->netdev = interface->netdev; 1593 1594 /* configure backlink on ring */ 1595 ring->q_vector = q_vector; 1596 1597 /* apply Tx specific ring traits */ 1598 ring->count = interface->tx_ring_count; 1599 ring->queue_index = txr_idx; 1600 1601 /* assign ring to interface */ 1602 interface->tx_ring[txr_idx] = ring; 1603 1604 /* update count and index */ 1605 txr_count--; 1606 txr_idx += v_count; 1607 1608 /* push pointer to next ring */ 1609 ring++; 1610 } 1611 1612 /* save Rx ring container info */ 1613 q_vector->rx.ring = ring; 1614 q_vector->rx.itr = interface->rx_itr; 1615 q_vector->rx.count = rxr_count; 1616 1617 while (rxr_count) { 1618 /* assign generic ring traits */ 1619 ring->dev = &interface->pdev->dev; 1620 ring->netdev = interface->netdev; 1621 rcu_assign_pointer(ring->l2_accel, interface->l2_accel); 1622 1623 /* configure backlink on ring */ 1624 ring->q_vector = q_vector; 1625 1626 /* apply Rx specific ring traits */ 1627 ring->count = interface->rx_ring_count; 1628 ring->queue_index = rxr_idx; 1629 1630 /* assign ring to interface */ 1631 interface->rx_ring[rxr_idx] = ring; 1632 1633 /* update count and index */ 1634 rxr_count--; 1635 rxr_idx += v_count; 1636 1637 /* push pointer to next ring */ 1638 ring++; 1639 } 1640 1641 fm10k_dbg_q_vector_init(q_vector); 1642 1643 return 0; 1644 } 1645 1646 /** 1647 * fm10k_free_q_vector - Free memory allocated for specific interrupt vector 1648 * @interface: board private structure to initialize 1649 * @v_idx: Index of vector to be freed 1650 * 1651 * This function frees the memory allocated to the q_vector. In addition if 1652 * NAPI is enabled it will delete any references to the NAPI struct prior 1653 * to freeing the q_vector. 1654 **/ 1655 static void fm10k_free_q_vector(struct fm10k_intfc *interface, int v_idx) 1656 { 1657 struct fm10k_q_vector *q_vector = interface->q_vector[v_idx]; 1658 struct fm10k_ring *ring; 1659 1660 fm10k_dbg_q_vector_exit(q_vector); 1661 1662 fm10k_for_each_ring(ring, q_vector->tx) 1663 interface->tx_ring[ring->queue_index] = NULL; 1664 1665 fm10k_for_each_ring(ring, q_vector->rx) 1666 interface->rx_ring[ring->queue_index] = NULL; 1667 1668 interface->q_vector[v_idx] = NULL; 1669 netif_napi_del(&q_vector->napi); 1670 kfree_rcu(q_vector, rcu); 1671 } 1672 1673 /** 1674 * fm10k_alloc_q_vectors - Allocate memory for interrupt vectors 1675 * @interface: board private structure to initialize 1676 * 1677 * We allocate one q_vector per queue interrupt. If allocation fails we 1678 * return -ENOMEM. 1679 **/ 1680 static int fm10k_alloc_q_vectors(struct fm10k_intfc *interface) 1681 { 1682 unsigned int q_vectors = interface->num_q_vectors; 1683 unsigned int rxr_remaining = interface->num_rx_queues; 1684 unsigned int txr_remaining = interface->num_tx_queues; 1685 unsigned int rxr_idx = 0, txr_idx = 0, v_idx = 0; 1686 int err; 1687 1688 if (q_vectors >= (rxr_remaining + txr_remaining)) { 1689 for (; rxr_remaining; v_idx++) { 1690 err = fm10k_alloc_q_vector(interface, q_vectors, v_idx, 1691 0, 0, 1, rxr_idx); 1692 if (err) 1693 goto err_out; 1694 1695 /* update counts and index */ 1696 rxr_remaining--; 1697 rxr_idx++; 1698 } 1699 } 1700 1701 for (; v_idx < q_vectors; v_idx++) { 1702 int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx); 1703 int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx); 1704 1705 err = fm10k_alloc_q_vector(interface, q_vectors, v_idx, 1706 tqpv, txr_idx, 1707 rqpv, rxr_idx); 1708 1709 if (err) 1710 goto err_out; 1711 1712 /* update counts and index */ 1713 rxr_remaining -= rqpv; 1714 txr_remaining -= tqpv; 1715 rxr_idx++; 1716 txr_idx++; 1717 } 1718 1719 return 0; 1720 1721 err_out: 1722 interface->num_tx_queues = 0; 1723 interface->num_rx_queues = 0; 1724 interface->num_q_vectors = 0; 1725 1726 while (v_idx--) 1727 fm10k_free_q_vector(interface, v_idx); 1728 1729 return -ENOMEM; 1730 } 1731 1732 /** 1733 * fm10k_free_q_vectors - Free memory allocated for interrupt vectors 1734 * @interface: board private structure to initialize 1735 * 1736 * This function frees the memory allocated to the q_vectors. In addition if 1737 * NAPI is enabled it will delete any references to the NAPI struct prior 1738 * to freeing the q_vector. 1739 **/ 1740 static void fm10k_free_q_vectors(struct fm10k_intfc *interface) 1741 { 1742 int v_idx = interface->num_q_vectors; 1743 1744 interface->num_tx_queues = 0; 1745 interface->num_rx_queues = 0; 1746 interface->num_q_vectors = 0; 1747 1748 while (v_idx--) 1749 fm10k_free_q_vector(interface, v_idx); 1750 } 1751 1752 /** 1753 * f10k_reset_msix_capability - reset MSI-X capability 1754 * @interface: board private structure to initialize 1755 * 1756 * Reset the MSI-X capability back to its starting state 1757 **/ 1758 static void fm10k_reset_msix_capability(struct fm10k_intfc *interface) 1759 { 1760 pci_disable_msix(interface->pdev); 1761 kfree(interface->msix_entries); 1762 interface->msix_entries = NULL; 1763 } 1764 1765 /** 1766 * f10k_init_msix_capability - configure MSI-X capability 1767 * @interface: board private structure to initialize 1768 * 1769 * Attempt to configure the interrupts using the best available 1770 * capabilities of the hardware and the kernel. 1771 **/ 1772 static int fm10k_init_msix_capability(struct fm10k_intfc *interface) 1773 { 1774 struct fm10k_hw *hw = &interface->hw; 1775 int v_budget, vector; 1776 1777 /* It's easy to be greedy for MSI-X vectors, but it really 1778 * doesn't do us much good if we have a lot more vectors 1779 * than CPU's. So let's be conservative and only ask for 1780 * (roughly) the same number of vectors as there are CPU's. 1781 * the default is to use pairs of vectors 1782 */ 1783 v_budget = max(interface->num_rx_queues, interface->num_tx_queues); 1784 v_budget = min_t(u16, v_budget, num_online_cpus()); 1785 1786 /* account for vectors not related to queues */ 1787 v_budget += NON_Q_VECTORS(hw); 1788 1789 /* At the same time, hardware can only support a maximum of 1790 * hw.mac->max_msix_vectors vectors. With features 1791 * such as RSS and VMDq, we can easily surpass the number of Rx and Tx 1792 * descriptor queues supported by our device. Thus, we cap it off in 1793 * those rare cases where the cpu count also exceeds our vector limit. 1794 */ 1795 v_budget = min_t(int, v_budget, hw->mac.max_msix_vectors); 1796 1797 /* A failure in MSI-X entry allocation is fatal. */ 1798 interface->msix_entries = kcalloc(v_budget, sizeof(struct msix_entry), 1799 GFP_KERNEL); 1800 if (!interface->msix_entries) 1801 return -ENOMEM; 1802 1803 /* populate entry values */ 1804 for (vector = 0; vector < v_budget; vector++) 1805 interface->msix_entries[vector].entry = vector; 1806 1807 /* Attempt to enable MSI-X with requested value */ 1808 v_budget = pci_enable_msix_range(interface->pdev, 1809 interface->msix_entries, 1810 MIN_MSIX_COUNT(hw), 1811 v_budget); 1812 if (v_budget < 0) { 1813 kfree(interface->msix_entries); 1814 interface->msix_entries = NULL; 1815 return -ENOMEM; 1816 } 1817 1818 /* record the number of queues available for q_vectors */ 1819 interface->num_q_vectors = v_budget - NON_Q_VECTORS(hw); 1820 1821 return 0; 1822 } 1823 1824 /** 1825 * fm10k_cache_ring_qos - Descriptor ring to register mapping for QoS 1826 * @interface: Interface structure continaining rings and devices 1827 * 1828 * Cache the descriptor ring offsets for Qos 1829 **/ 1830 static bool fm10k_cache_ring_qos(struct fm10k_intfc *interface) 1831 { 1832 struct net_device *dev = interface->netdev; 1833 int pc, offset, rss_i, i, q_idx; 1834 u16 pc_stride = interface->ring_feature[RING_F_QOS].mask + 1; 1835 u8 num_pcs = netdev_get_num_tc(dev); 1836 1837 if (num_pcs <= 1) 1838 return false; 1839 1840 rss_i = interface->ring_feature[RING_F_RSS].indices; 1841 1842 for (pc = 0, offset = 0; pc < num_pcs; pc++, offset += rss_i) { 1843 q_idx = pc; 1844 for (i = 0; i < rss_i; i++) { 1845 interface->tx_ring[offset + i]->reg_idx = q_idx; 1846 interface->tx_ring[offset + i]->qos_pc = pc; 1847 interface->rx_ring[offset + i]->reg_idx = q_idx; 1848 interface->rx_ring[offset + i]->qos_pc = pc; 1849 q_idx += pc_stride; 1850 } 1851 } 1852 1853 return true; 1854 } 1855 1856 /** 1857 * fm10k_cache_ring_rss - Descriptor ring to register mapping for RSS 1858 * @interface: Interface structure continaining rings and devices 1859 * 1860 * Cache the descriptor ring offsets for RSS 1861 **/ 1862 static void fm10k_cache_ring_rss(struct fm10k_intfc *interface) 1863 { 1864 int i; 1865 1866 for (i = 0; i < interface->num_rx_queues; i++) 1867 interface->rx_ring[i]->reg_idx = i; 1868 1869 for (i = 0; i < interface->num_tx_queues; i++) 1870 interface->tx_ring[i]->reg_idx = i; 1871 } 1872 1873 /** 1874 * fm10k_assign_rings - Map rings to network devices 1875 * @interface: Interface structure containing rings and devices 1876 * 1877 * This function is meant to go though and configure both the network 1878 * devices so that they contain rings, and configure the rings so that 1879 * they function with their network devices. 1880 **/ 1881 static void fm10k_assign_rings(struct fm10k_intfc *interface) 1882 { 1883 if (fm10k_cache_ring_qos(interface)) 1884 return; 1885 1886 fm10k_cache_ring_rss(interface); 1887 } 1888 1889 static void fm10k_init_reta(struct fm10k_intfc *interface) 1890 { 1891 u16 i, rss_i = interface->ring_feature[RING_F_RSS].indices; 1892 u32 reta, base; 1893 1894 /* If the netdev is initialized we have to maintain table if possible */ 1895 if (interface->netdev->reg_state) { 1896 for (i = FM10K_RETA_SIZE; i--;) { 1897 reta = interface->reta[i]; 1898 if ((((reta << 24) >> 24) < rss_i) && 1899 (((reta << 16) >> 24) < rss_i) && 1900 (((reta << 8) >> 24) < rss_i) && 1901 (((reta) >> 24) < rss_i)) 1902 continue; 1903 goto repopulate_reta; 1904 } 1905 1906 /* do nothing if all of the elements are in bounds */ 1907 return; 1908 } 1909 1910 repopulate_reta: 1911 /* Populate the redirection table 4 entries at a time. To do this 1912 * we are generating the results for n and n+2 and then interleaving 1913 * those with the results with n+1 and n+3. 1914 */ 1915 for (i = FM10K_RETA_SIZE; i--;) { 1916 /* first pass generates n and n+2 */ 1917 base = ((i * 0x00040004) + 0x00020000) * rss_i; 1918 reta = (base & 0x3F803F80) >> 7; 1919 1920 /* second pass generates n+1 and n+3 */ 1921 base += 0x00010001 * rss_i; 1922 reta |= (base & 0x3F803F80) << 1; 1923 1924 interface->reta[i] = reta; 1925 } 1926 } 1927 1928 /** 1929 * fm10k_init_queueing_scheme - Determine proper queueing scheme 1930 * @interface: board private structure to initialize 1931 * 1932 * We determine which queueing scheme to use based on... 1933 * - Hardware queue count (num_*_queues) 1934 * - defined by miscellaneous hardware support/features (RSS, etc.) 1935 **/ 1936 int fm10k_init_queueing_scheme(struct fm10k_intfc *interface) 1937 { 1938 int err; 1939 1940 /* Number of supported queues */ 1941 fm10k_set_num_queues(interface); 1942 1943 /* Configure MSI-X capability */ 1944 err = fm10k_init_msix_capability(interface); 1945 if (err) { 1946 dev_err(&interface->pdev->dev, 1947 "Unable to initialize MSI-X capability\n"); 1948 return err; 1949 } 1950 1951 /* Allocate memory for queues */ 1952 err = fm10k_alloc_q_vectors(interface); 1953 if (err) 1954 return err; 1955 1956 /* Map rings to devices, and map devices to physical queues */ 1957 fm10k_assign_rings(interface); 1958 1959 /* Initialize RSS redirection table */ 1960 fm10k_init_reta(interface); 1961 1962 return 0; 1963 } 1964 1965 /** 1966 * fm10k_clear_queueing_scheme - Clear the current queueing scheme settings 1967 * @interface: board private structure to clear queueing scheme on 1968 * 1969 * We go through and clear queueing specific resources and reset the structure 1970 * to pre-load conditions 1971 **/ 1972 void fm10k_clear_queueing_scheme(struct fm10k_intfc *interface) 1973 { 1974 fm10k_free_q_vectors(interface); 1975 fm10k_reset_msix_capability(interface); 1976 } 1977