1 /* Intel Ethernet Switch Host Interface Driver
2  * Copyright(c) 2013 - 2014 Intel Corporation.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms and conditions of the GNU General Public License,
6  * version 2, as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope it will be useful, but WITHOUT
9  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
11  * more details.
12  *
13  * The full GNU General Public License is included in this distribution in
14  * the file called "COPYING".
15  *
16  * Contact Information:
17  * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
18  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
19  */
20 
21 #include <linux/types.h>
22 #include <linux/module.h>
23 #include <net/ipv6.h>
24 #include <net/ip.h>
25 #include <net/tcp.h>
26 #include <linux/if_macvlan.h>
27 #include <linux/prefetch.h>
28 
29 #include "fm10k.h"
30 
31 #define DRV_VERSION	"0.12.2-k"
32 const char fm10k_driver_version[] = DRV_VERSION;
33 char fm10k_driver_name[] = "fm10k";
34 static const char fm10k_driver_string[] =
35 	"Intel(R) Ethernet Switch Host Interface Driver";
36 static const char fm10k_copyright[] =
37 	"Copyright (c) 2013 Intel Corporation.";
38 
39 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
40 MODULE_DESCRIPTION("Intel(R) Ethernet Switch Host Interface Driver");
41 MODULE_LICENSE("GPL");
42 MODULE_VERSION(DRV_VERSION);
43 
44 /**
45  * fm10k_init_module - Driver Registration Routine
46  *
47  * fm10k_init_module is the first routine called when the driver is
48  * loaded.  All it does is register with the PCI subsystem.
49  **/
50 static int __init fm10k_init_module(void)
51 {
52 	pr_info("%s - version %s\n", fm10k_driver_string, fm10k_driver_version);
53 	pr_info("%s\n", fm10k_copyright);
54 
55 	fm10k_dbg_init();
56 
57 	return fm10k_register_pci_driver();
58 }
59 module_init(fm10k_init_module);
60 
61 /**
62  * fm10k_exit_module - Driver Exit Cleanup Routine
63  *
64  * fm10k_exit_module is called just before the driver is removed
65  * from memory.
66  **/
67 static void __exit fm10k_exit_module(void)
68 {
69 	fm10k_unregister_pci_driver();
70 
71 	fm10k_dbg_exit();
72 }
73 module_exit(fm10k_exit_module);
74 
75 static bool fm10k_alloc_mapped_page(struct fm10k_ring *rx_ring,
76 				    struct fm10k_rx_buffer *bi)
77 {
78 	struct page *page = bi->page;
79 	dma_addr_t dma;
80 
81 	/* Only page will be NULL if buffer was consumed */
82 	if (likely(page))
83 		return true;
84 
85 	/* alloc new page for storage */
86 	page = dev_alloc_page();
87 	if (unlikely(!page)) {
88 		rx_ring->rx_stats.alloc_failed++;
89 		return false;
90 	}
91 
92 	/* map page for use */
93 	dma = dma_map_page(rx_ring->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE);
94 
95 	/* if mapping failed free memory back to system since
96 	 * there isn't much point in holding memory we can't use
97 	 */
98 	if (dma_mapping_error(rx_ring->dev, dma)) {
99 		__free_page(page);
100 		bi->page = NULL;
101 
102 		rx_ring->rx_stats.alloc_failed++;
103 		return false;
104 	}
105 
106 	bi->dma = dma;
107 	bi->page = page;
108 	bi->page_offset = 0;
109 
110 	return true;
111 }
112 
113 /**
114  * fm10k_alloc_rx_buffers - Replace used receive buffers
115  * @rx_ring: ring to place buffers on
116  * @cleaned_count: number of buffers to replace
117  **/
118 void fm10k_alloc_rx_buffers(struct fm10k_ring *rx_ring, u16 cleaned_count)
119 {
120 	union fm10k_rx_desc *rx_desc;
121 	struct fm10k_rx_buffer *bi;
122 	u16 i = rx_ring->next_to_use;
123 
124 	/* nothing to do */
125 	if (!cleaned_count)
126 		return;
127 
128 	rx_desc = FM10K_RX_DESC(rx_ring, i);
129 	bi = &rx_ring->rx_buffer[i];
130 	i -= rx_ring->count;
131 
132 	do {
133 		if (!fm10k_alloc_mapped_page(rx_ring, bi))
134 			break;
135 
136 		/* Refresh the desc even if buffer_addrs didn't change
137 		 * because each write-back erases this info.
138 		 */
139 		rx_desc->q.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
140 
141 		rx_desc++;
142 		bi++;
143 		i++;
144 		if (unlikely(!i)) {
145 			rx_desc = FM10K_RX_DESC(rx_ring, 0);
146 			bi = rx_ring->rx_buffer;
147 			i -= rx_ring->count;
148 		}
149 
150 		/* clear the hdr_addr for the next_to_use descriptor */
151 		rx_desc->q.hdr_addr = 0;
152 
153 		cleaned_count--;
154 	} while (cleaned_count);
155 
156 	i += rx_ring->count;
157 
158 	if (rx_ring->next_to_use != i) {
159 		/* record the next descriptor to use */
160 		rx_ring->next_to_use = i;
161 
162 		/* update next to alloc since we have filled the ring */
163 		rx_ring->next_to_alloc = i;
164 
165 		/* Force memory writes to complete before letting h/w
166 		 * know there are new descriptors to fetch.  (Only
167 		 * applicable for weak-ordered memory model archs,
168 		 * such as IA-64).
169 		 */
170 		wmb();
171 
172 		/* notify hardware of new descriptors */
173 		writel(i, rx_ring->tail);
174 	}
175 }
176 
177 /**
178  * fm10k_reuse_rx_page - page flip buffer and store it back on the ring
179  * @rx_ring: rx descriptor ring to store buffers on
180  * @old_buff: donor buffer to have page reused
181  *
182  * Synchronizes page for reuse by the interface
183  **/
184 static void fm10k_reuse_rx_page(struct fm10k_ring *rx_ring,
185 				struct fm10k_rx_buffer *old_buff)
186 {
187 	struct fm10k_rx_buffer *new_buff;
188 	u16 nta = rx_ring->next_to_alloc;
189 
190 	new_buff = &rx_ring->rx_buffer[nta];
191 
192 	/* update, and store next to alloc */
193 	nta++;
194 	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
195 
196 	/* transfer page from old buffer to new buffer */
197 	memcpy(new_buff, old_buff, sizeof(struct fm10k_rx_buffer));
198 
199 	/* sync the buffer for use by the device */
200 	dma_sync_single_range_for_device(rx_ring->dev, old_buff->dma,
201 					 old_buff->page_offset,
202 					 FM10K_RX_BUFSZ,
203 					 DMA_FROM_DEVICE);
204 }
205 
206 static bool fm10k_can_reuse_rx_page(struct fm10k_rx_buffer *rx_buffer,
207 				    struct page *page,
208 				    unsigned int truesize)
209 {
210 	/* avoid re-using remote pages */
211 	if (unlikely(page_to_nid(page) != numa_mem_id()))
212 		return false;
213 
214 #if (PAGE_SIZE < 8192)
215 	/* if we are only owner of page we can reuse it */
216 	if (unlikely(page_count(page) != 1))
217 		return false;
218 
219 	/* flip page offset to other buffer */
220 	rx_buffer->page_offset ^= FM10K_RX_BUFSZ;
221 
222 	/* Even if we own the page, we are not allowed to use atomic_set()
223 	 * This would break get_page_unless_zero() users.
224 	 */
225 	atomic_inc(&page->_count);
226 #else
227 	/* move offset up to the next cache line */
228 	rx_buffer->page_offset += truesize;
229 
230 	if (rx_buffer->page_offset > (PAGE_SIZE - FM10K_RX_BUFSZ))
231 		return false;
232 
233 	/* bump ref count on page before it is given to the stack */
234 	get_page(page);
235 #endif
236 
237 	return true;
238 }
239 
240 /**
241  * fm10k_add_rx_frag - Add contents of Rx buffer to sk_buff
242  * @rx_ring: rx descriptor ring to transact packets on
243  * @rx_buffer: buffer containing page to add
244  * @rx_desc: descriptor containing length of buffer written by hardware
245  * @skb: sk_buff to place the data into
246  *
247  * This function will add the data contained in rx_buffer->page to the skb.
248  * This is done either through a direct copy if the data in the buffer is
249  * less than the skb header size, otherwise it will just attach the page as
250  * a frag to the skb.
251  *
252  * The function will then update the page offset if necessary and return
253  * true if the buffer can be reused by the interface.
254  **/
255 static bool fm10k_add_rx_frag(struct fm10k_ring *rx_ring,
256 			      struct fm10k_rx_buffer *rx_buffer,
257 			      union fm10k_rx_desc *rx_desc,
258 			      struct sk_buff *skb)
259 {
260 	struct page *page = rx_buffer->page;
261 	unsigned int size = le16_to_cpu(rx_desc->w.length);
262 #if (PAGE_SIZE < 8192)
263 	unsigned int truesize = FM10K_RX_BUFSZ;
264 #else
265 	unsigned int truesize = ALIGN(size, L1_CACHE_BYTES);
266 #endif
267 
268 	if ((size <= FM10K_RX_HDR_LEN) && !skb_is_nonlinear(skb)) {
269 		unsigned char *va = page_address(page) + rx_buffer->page_offset;
270 
271 		memcpy(__skb_put(skb, size), va, ALIGN(size, sizeof(long)));
272 
273 		/* we can reuse buffer as-is, just make sure it is local */
274 		if (likely(page_to_nid(page) == numa_mem_id()))
275 			return true;
276 
277 		/* this page cannot be reused so discard it */
278 		put_page(page);
279 		return false;
280 	}
281 
282 	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
283 			rx_buffer->page_offset, size, truesize);
284 
285 	return fm10k_can_reuse_rx_page(rx_buffer, page, truesize);
286 }
287 
288 static struct sk_buff *fm10k_fetch_rx_buffer(struct fm10k_ring *rx_ring,
289 					     union fm10k_rx_desc *rx_desc,
290 					     struct sk_buff *skb)
291 {
292 	struct fm10k_rx_buffer *rx_buffer;
293 	struct page *page;
294 
295 	rx_buffer = &rx_ring->rx_buffer[rx_ring->next_to_clean];
296 
297 	page = rx_buffer->page;
298 	prefetchw(page);
299 
300 	if (likely(!skb)) {
301 		void *page_addr = page_address(page) +
302 				  rx_buffer->page_offset;
303 
304 		/* prefetch first cache line of first page */
305 		prefetch(page_addr);
306 #if L1_CACHE_BYTES < 128
307 		prefetch(page_addr + L1_CACHE_BYTES);
308 #endif
309 
310 		/* allocate a skb to store the frags */
311 		skb = napi_alloc_skb(&rx_ring->q_vector->napi,
312 				     FM10K_RX_HDR_LEN);
313 		if (unlikely(!skb)) {
314 			rx_ring->rx_stats.alloc_failed++;
315 			return NULL;
316 		}
317 
318 		/* we will be copying header into skb->data in
319 		 * pskb_may_pull so it is in our interest to prefetch
320 		 * it now to avoid a possible cache miss
321 		 */
322 		prefetchw(skb->data);
323 	}
324 
325 	/* we are reusing so sync this buffer for CPU use */
326 	dma_sync_single_range_for_cpu(rx_ring->dev,
327 				      rx_buffer->dma,
328 				      rx_buffer->page_offset,
329 				      FM10K_RX_BUFSZ,
330 				      DMA_FROM_DEVICE);
331 
332 	/* pull page into skb */
333 	if (fm10k_add_rx_frag(rx_ring, rx_buffer, rx_desc, skb)) {
334 		/* hand second half of page back to the ring */
335 		fm10k_reuse_rx_page(rx_ring, rx_buffer);
336 	} else {
337 		/* we are not reusing the buffer so unmap it */
338 		dma_unmap_page(rx_ring->dev, rx_buffer->dma,
339 			       PAGE_SIZE, DMA_FROM_DEVICE);
340 	}
341 
342 	/* clear contents of rx_buffer */
343 	rx_buffer->page = NULL;
344 
345 	return skb;
346 }
347 
348 static inline void fm10k_rx_checksum(struct fm10k_ring *ring,
349 				     union fm10k_rx_desc *rx_desc,
350 				     struct sk_buff *skb)
351 {
352 	skb_checksum_none_assert(skb);
353 
354 	/* Rx checksum disabled via ethtool */
355 	if (!(ring->netdev->features & NETIF_F_RXCSUM))
356 		return;
357 
358 	/* TCP/UDP checksum error bit is set */
359 	if (fm10k_test_staterr(rx_desc,
360 			       FM10K_RXD_STATUS_L4E |
361 			       FM10K_RXD_STATUS_L4E2 |
362 			       FM10K_RXD_STATUS_IPE |
363 			       FM10K_RXD_STATUS_IPE2)) {
364 		ring->rx_stats.csum_err++;
365 		return;
366 	}
367 
368 	/* It must be a TCP or UDP packet with a valid checksum */
369 	if (fm10k_test_staterr(rx_desc, FM10K_RXD_STATUS_L4CS2))
370 		skb->encapsulation = true;
371 	else if (!fm10k_test_staterr(rx_desc, FM10K_RXD_STATUS_L4CS))
372 		return;
373 
374 	skb->ip_summed = CHECKSUM_UNNECESSARY;
375 }
376 
377 #define FM10K_RSS_L4_TYPES_MASK \
378 	((1ul << FM10K_RSSTYPE_IPV4_TCP) | \
379 	 (1ul << FM10K_RSSTYPE_IPV4_UDP) | \
380 	 (1ul << FM10K_RSSTYPE_IPV6_TCP) | \
381 	 (1ul << FM10K_RSSTYPE_IPV6_UDP))
382 
383 static inline void fm10k_rx_hash(struct fm10k_ring *ring,
384 				 union fm10k_rx_desc *rx_desc,
385 				 struct sk_buff *skb)
386 {
387 	u16 rss_type;
388 
389 	if (!(ring->netdev->features & NETIF_F_RXHASH))
390 		return;
391 
392 	rss_type = le16_to_cpu(rx_desc->w.pkt_info) & FM10K_RXD_RSSTYPE_MASK;
393 	if (!rss_type)
394 		return;
395 
396 	skb_set_hash(skb, le32_to_cpu(rx_desc->d.rss),
397 		     (FM10K_RSS_L4_TYPES_MASK & (1ul << rss_type)) ?
398 		     PKT_HASH_TYPE_L4 : PKT_HASH_TYPE_L3);
399 }
400 
401 static void fm10k_rx_hwtstamp(struct fm10k_ring *rx_ring,
402 			      union fm10k_rx_desc *rx_desc,
403 			      struct sk_buff *skb)
404 {
405 	struct fm10k_intfc *interface = rx_ring->q_vector->interface;
406 
407 	FM10K_CB(skb)->tstamp = rx_desc->q.timestamp;
408 
409 	if (unlikely(interface->flags & FM10K_FLAG_RX_TS_ENABLED))
410 		fm10k_systime_to_hwtstamp(interface, skb_hwtstamps(skb),
411 					  le64_to_cpu(rx_desc->q.timestamp));
412 }
413 
414 static void fm10k_type_trans(struct fm10k_ring *rx_ring,
415 			     union fm10k_rx_desc *rx_desc,
416 			     struct sk_buff *skb)
417 {
418 	struct net_device *dev = rx_ring->netdev;
419 	struct fm10k_l2_accel *l2_accel = rcu_dereference_bh(rx_ring->l2_accel);
420 
421 	/* check to see if DGLORT belongs to a MACVLAN */
422 	if (l2_accel) {
423 		u16 idx = le16_to_cpu(FM10K_CB(skb)->fi.w.dglort) - 1;
424 
425 		idx -= l2_accel->dglort;
426 		if (idx < l2_accel->size && l2_accel->macvlan[idx])
427 			dev = l2_accel->macvlan[idx];
428 		else
429 			l2_accel = NULL;
430 	}
431 
432 	skb->protocol = eth_type_trans(skb, dev);
433 
434 	if (!l2_accel)
435 		return;
436 
437 	/* update MACVLAN statistics */
438 	macvlan_count_rx(netdev_priv(dev), skb->len + ETH_HLEN, 1,
439 			 !!(rx_desc->w.hdr_info &
440 			    cpu_to_le16(FM10K_RXD_HDR_INFO_XC_MASK)));
441 }
442 
443 /**
444  * fm10k_process_skb_fields - Populate skb header fields from Rx descriptor
445  * @rx_ring: rx descriptor ring packet is being transacted on
446  * @rx_desc: pointer to the EOP Rx descriptor
447  * @skb: pointer to current skb being populated
448  *
449  * This function checks the ring, descriptor, and packet information in
450  * order to populate the hash, checksum, VLAN, timestamp, protocol, and
451  * other fields within the skb.
452  **/
453 static unsigned int fm10k_process_skb_fields(struct fm10k_ring *rx_ring,
454 					     union fm10k_rx_desc *rx_desc,
455 					     struct sk_buff *skb)
456 {
457 	unsigned int len = skb->len;
458 
459 	fm10k_rx_hash(rx_ring, rx_desc, skb);
460 
461 	fm10k_rx_checksum(rx_ring, rx_desc, skb);
462 
463 	fm10k_rx_hwtstamp(rx_ring, rx_desc, skb);
464 
465 	FM10K_CB(skb)->fi.w.vlan = rx_desc->w.vlan;
466 
467 	skb_record_rx_queue(skb, rx_ring->queue_index);
468 
469 	FM10K_CB(skb)->fi.d.glort = rx_desc->d.glort;
470 
471 	if (rx_desc->w.vlan) {
472 		u16 vid = le16_to_cpu(rx_desc->w.vlan);
473 
474 		if (vid != rx_ring->vid)
475 			__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
476 	}
477 
478 	fm10k_type_trans(rx_ring, rx_desc, skb);
479 
480 	return len;
481 }
482 
483 /**
484  * fm10k_is_non_eop - process handling of non-EOP buffers
485  * @rx_ring: Rx ring being processed
486  * @rx_desc: Rx descriptor for current buffer
487  *
488  * This function updates next to clean.  If the buffer is an EOP buffer
489  * this function exits returning false, otherwise it will place the
490  * sk_buff in the next buffer to be chained and return true indicating
491  * that this is in fact a non-EOP buffer.
492  **/
493 static bool fm10k_is_non_eop(struct fm10k_ring *rx_ring,
494 			     union fm10k_rx_desc *rx_desc)
495 {
496 	u32 ntc = rx_ring->next_to_clean + 1;
497 
498 	/* fetch, update, and store next to clean */
499 	ntc = (ntc < rx_ring->count) ? ntc : 0;
500 	rx_ring->next_to_clean = ntc;
501 
502 	prefetch(FM10K_RX_DESC(rx_ring, ntc));
503 
504 	if (likely(fm10k_test_staterr(rx_desc, FM10K_RXD_STATUS_EOP)))
505 		return false;
506 
507 	return true;
508 }
509 
510 /**
511  * fm10k_pull_tail - fm10k specific version of skb_pull_tail
512  * @rx_ring: rx descriptor ring packet is being transacted on
513  * @rx_desc: pointer to the EOP Rx descriptor
514  * @skb: pointer to current skb being adjusted
515  *
516  * This function is an fm10k specific version of __pskb_pull_tail.  The
517  * main difference between this version and the original function is that
518  * this function can make several assumptions about the state of things
519  * that allow for significant optimizations versus the standard function.
520  * As a result we can do things like drop a frag and maintain an accurate
521  * truesize for the skb.
522  */
523 static void fm10k_pull_tail(struct fm10k_ring *rx_ring,
524 			    union fm10k_rx_desc *rx_desc,
525 			    struct sk_buff *skb)
526 {
527 	struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[0];
528 	unsigned char *va;
529 	unsigned int pull_len;
530 
531 	/* it is valid to use page_address instead of kmap since we are
532 	 * working with pages allocated out of the lomem pool per
533 	 * alloc_page(GFP_ATOMIC)
534 	 */
535 	va = skb_frag_address(frag);
536 
537 	/* we need the header to contain the greater of either ETH_HLEN or
538 	 * 60 bytes if the skb->len is less than 60 for skb_pad.
539 	 */
540 	pull_len = eth_get_headlen(va, FM10K_RX_HDR_LEN);
541 
542 	/* align pull length to size of long to optimize memcpy performance */
543 	skb_copy_to_linear_data(skb, va, ALIGN(pull_len, sizeof(long)));
544 
545 	/* update all of the pointers */
546 	skb_frag_size_sub(frag, pull_len);
547 	frag->page_offset += pull_len;
548 	skb->data_len -= pull_len;
549 	skb->tail += pull_len;
550 }
551 
552 /**
553  * fm10k_cleanup_headers - Correct corrupted or empty headers
554  * @rx_ring: rx descriptor ring packet is being transacted on
555  * @rx_desc: pointer to the EOP Rx descriptor
556  * @skb: pointer to current skb being fixed
557  *
558  * Address the case where we are pulling data in on pages only
559  * and as such no data is present in the skb header.
560  *
561  * In addition if skb is not at least 60 bytes we need to pad it so that
562  * it is large enough to qualify as a valid Ethernet frame.
563  *
564  * Returns true if an error was encountered and skb was freed.
565  **/
566 static bool fm10k_cleanup_headers(struct fm10k_ring *rx_ring,
567 				  union fm10k_rx_desc *rx_desc,
568 				  struct sk_buff *skb)
569 {
570 	if (unlikely((fm10k_test_staterr(rx_desc,
571 					 FM10K_RXD_STATUS_RXE)))) {
572 		dev_kfree_skb_any(skb);
573 		rx_ring->rx_stats.errors++;
574 		return true;
575 	}
576 
577 	/* place header in linear portion of buffer */
578 	if (skb_is_nonlinear(skb))
579 		fm10k_pull_tail(rx_ring, rx_desc, skb);
580 
581 	/* if eth_skb_pad returns an error the skb was freed */
582 	if (eth_skb_pad(skb))
583 		return true;
584 
585 	return false;
586 }
587 
588 /**
589  * fm10k_receive_skb - helper function to handle rx indications
590  * @q_vector: structure containing interrupt and ring information
591  * @skb: packet to send up
592  **/
593 static void fm10k_receive_skb(struct fm10k_q_vector *q_vector,
594 			      struct sk_buff *skb)
595 {
596 	napi_gro_receive(&q_vector->napi, skb);
597 }
598 
599 static bool fm10k_clean_rx_irq(struct fm10k_q_vector *q_vector,
600 			       struct fm10k_ring *rx_ring,
601 			       int budget)
602 {
603 	struct sk_buff *skb = rx_ring->skb;
604 	unsigned int total_bytes = 0, total_packets = 0;
605 	u16 cleaned_count = fm10k_desc_unused(rx_ring);
606 
607 	do {
608 		union fm10k_rx_desc *rx_desc;
609 
610 		/* return some buffers to hardware, one at a time is too slow */
611 		if (cleaned_count >= FM10K_RX_BUFFER_WRITE) {
612 			fm10k_alloc_rx_buffers(rx_ring, cleaned_count);
613 			cleaned_count = 0;
614 		}
615 
616 		rx_desc = FM10K_RX_DESC(rx_ring, rx_ring->next_to_clean);
617 
618 		if (!rx_desc->d.staterr)
619 			break;
620 
621 		/* This memory barrier is needed to keep us from reading
622 		 * any other fields out of the rx_desc until we know the
623 		 * descriptor has been written back
624 		 */
625 		dma_rmb();
626 
627 		/* retrieve a buffer from the ring */
628 		skb = fm10k_fetch_rx_buffer(rx_ring, rx_desc, skb);
629 
630 		/* exit if we failed to retrieve a buffer */
631 		if (!skb)
632 			break;
633 
634 		cleaned_count++;
635 
636 		/* fetch next buffer in frame if non-eop */
637 		if (fm10k_is_non_eop(rx_ring, rx_desc))
638 			continue;
639 
640 		/* verify the packet layout is correct */
641 		if (fm10k_cleanup_headers(rx_ring, rx_desc, skb)) {
642 			skb = NULL;
643 			continue;
644 		}
645 
646 		/* populate checksum, timestamp, VLAN, and protocol */
647 		total_bytes += fm10k_process_skb_fields(rx_ring, rx_desc, skb);
648 
649 		fm10k_receive_skb(q_vector, skb);
650 
651 		/* reset skb pointer */
652 		skb = NULL;
653 
654 		/* update budget accounting */
655 		total_packets++;
656 	} while (likely(total_packets < budget));
657 
658 	/* place incomplete frames back on ring for completion */
659 	rx_ring->skb = skb;
660 
661 	u64_stats_update_begin(&rx_ring->syncp);
662 	rx_ring->stats.packets += total_packets;
663 	rx_ring->stats.bytes += total_bytes;
664 	u64_stats_update_end(&rx_ring->syncp);
665 	q_vector->rx.total_packets += total_packets;
666 	q_vector->rx.total_bytes += total_bytes;
667 
668 	return total_packets < budget;
669 }
670 
671 #define VXLAN_HLEN (sizeof(struct udphdr) + 8)
672 static struct ethhdr *fm10k_port_is_vxlan(struct sk_buff *skb)
673 {
674 	struct fm10k_intfc *interface = netdev_priv(skb->dev);
675 	struct fm10k_vxlan_port *vxlan_port;
676 
677 	/* we can only offload a vxlan if we recognize it as such */
678 	vxlan_port = list_first_entry_or_null(&interface->vxlan_port,
679 					      struct fm10k_vxlan_port, list);
680 
681 	if (!vxlan_port)
682 		return NULL;
683 	if (vxlan_port->port != udp_hdr(skb)->dest)
684 		return NULL;
685 
686 	/* return offset of udp_hdr plus 8 bytes for VXLAN header */
687 	return (struct ethhdr *)(skb_transport_header(skb) + VXLAN_HLEN);
688 }
689 
690 #define FM10K_NVGRE_RESERVED0_FLAGS htons(0x9FFF)
691 #define NVGRE_TNI htons(0x2000)
692 struct fm10k_nvgre_hdr {
693 	__be16 flags;
694 	__be16 proto;
695 	__be32 tni;
696 };
697 
698 static struct ethhdr *fm10k_gre_is_nvgre(struct sk_buff *skb)
699 {
700 	struct fm10k_nvgre_hdr *nvgre_hdr;
701 	int hlen = ip_hdrlen(skb);
702 
703 	/* currently only IPv4 is supported due to hlen above */
704 	if (vlan_get_protocol(skb) != htons(ETH_P_IP))
705 		return NULL;
706 
707 	/* our transport header should be NVGRE */
708 	nvgre_hdr = (struct fm10k_nvgre_hdr *)(skb_network_header(skb) + hlen);
709 
710 	/* verify all reserved flags are 0 */
711 	if (nvgre_hdr->flags & FM10K_NVGRE_RESERVED0_FLAGS)
712 		return NULL;
713 
714 	/* verify protocol is transparent Ethernet bridging */
715 	if (nvgre_hdr->proto != htons(ETH_P_TEB))
716 		return NULL;
717 
718 	/* report start of ethernet header */
719 	if (nvgre_hdr->flags & NVGRE_TNI)
720 		return (struct ethhdr *)(nvgre_hdr + 1);
721 
722 	return (struct ethhdr *)(&nvgre_hdr->tni);
723 }
724 
725 static __be16 fm10k_tx_encap_offload(struct sk_buff *skb)
726 {
727 	struct ethhdr *eth_hdr;
728 	u8 l4_hdr = 0;
729 
730 	switch (vlan_get_protocol(skb)) {
731 	case htons(ETH_P_IP):
732 		l4_hdr = ip_hdr(skb)->protocol;
733 		break;
734 	case htons(ETH_P_IPV6):
735 		l4_hdr = ipv6_hdr(skb)->nexthdr;
736 		break;
737 	default:
738 		return 0;
739 	}
740 
741 	switch (l4_hdr) {
742 	case IPPROTO_UDP:
743 		eth_hdr = fm10k_port_is_vxlan(skb);
744 		break;
745 	case IPPROTO_GRE:
746 		eth_hdr = fm10k_gre_is_nvgre(skb);
747 		break;
748 	default:
749 		return 0;
750 	}
751 
752 	if (!eth_hdr)
753 		return 0;
754 
755 	switch (eth_hdr->h_proto) {
756 	case htons(ETH_P_IP):
757 	case htons(ETH_P_IPV6):
758 		break;
759 	default:
760 		return 0;
761 	}
762 
763 	return eth_hdr->h_proto;
764 }
765 
766 static int fm10k_tso(struct fm10k_ring *tx_ring,
767 		     struct fm10k_tx_buffer *first)
768 {
769 	struct sk_buff *skb = first->skb;
770 	struct fm10k_tx_desc *tx_desc;
771 	unsigned char *th;
772 	u8 hdrlen;
773 
774 	if (skb->ip_summed != CHECKSUM_PARTIAL)
775 		return 0;
776 
777 	if (!skb_is_gso(skb))
778 		return 0;
779 
780 	/* compute header lengths */
781 	if (skb->encapsulation) {
782 		if (!fm10k_tx_encap_offload(skb))
783 			goto err_vxlan;
784 		th = skb_inner_transport_header(skb);
785 	} else {
786 		th = skb_transport_header(skb);
787 	}
788 
789 	/* compute offset from SOF to transport header and add header len */
790 	hdrlen = (th - skb->data) + (((struct tcphdr *)th)->doff << 2);
791 
792 	first->tx_flags |= FM10K_TX_FLAGS_CSUM;
793 
794 	/* update gso size and bytecount with header size */
795 	first->gso_segs = skb_shinfo(skb)->gso_segs;
796 	first->bytecount += (first->gso_segs - 1) * hdrlen;
797 
798 	/* populate Tx descriptor header size and mss */
799 	tx_desc = FM10K_TX_DESC(tx_ring, tx_ring->next_to_use);
800 	tx_desc->hdrlen = hdrlen;
801 	tx_desc->mss = cpu_to_le16(skb_shinfo(skb)->gso_size);
802 
803 	return 1;
804 err_vxlan:
805 	tx_ring->netdev->features &= ~NETIF_F_GSO_UDP_TUNNEL;
806 	if (!net_ratelimit())
807 		netdev_err(tx_ring->netdev,
808 			   "TSO requested for unsupported tunnel, disabling offload\n");
809 	return -1;
810 }
811 
812 static void fm10k_tx_csum(struct fm10k_ring *tx_ring,
813 			  struct fm10k_tx_buffer *first)
814 {
815 	struct sk_buff *skb = first->skb;
816 	struct fm10k_tx_desc *tx_desc;
817 	union {
818 		struct iphdr *ipv4;
819 		struct ipv6hdr *ipv6;
820 		u8 *raw;
821 	} network_hdr;
822 	__be16 protocol;
823 	u8 l4_hdr = 0;
824 
825 	if (skb->ip_summed != CHECKSUM_PARTIAL)
826 		goto no_csum;
827 
828 	if (skb->encapsulation) {
829 		protocol = fm10k_tx_encap_offload(skb);
830 		if (!protocol) {
831 			if (skb_checksum_help(skb)) {
832 				dev_warn(tx_ring->dev,
833 					 "failed to offload encap csum!\n");
834 				tx_ring->tx_stats.csum_err++;
835 			}
836 			goto no_csum;
837 		}
838 		network_hdr.raw = skb_inner_network_header(skb);
839 	} else {
840 		protocol = vlan_get_protocol(skb);
841 		network_hdr.raw = skb_network_header(skb);
842 	}
843 
844 	switch (protocol) {
845 	case htons(ETH_P_IP):
846 		l4_hdr = network_hdr.ipv4->protocol;
847 		break;
848 	case htons(ETH_P_IPV6):
849 		l4_hdr = network_hdr.ipv6->nexthdr;
850 		break;
851 	default:
852 		if (unlikely(net_ratelimit())) {
853 			dev_warn(tx_ring->dev,
854 				 "partial checksum but ip version=%x!\n",
855 				 protocol);
856 		}
857 		tx_ring->tx_stats.csum_err++;
858 		goto no_csum;
859 	}
860 
861 	switch (l4_hdr) {
862 	case IPPROTO_TCP:
863 	case IPPROTO_UDP:
864 		break;
865 	case IPPROTO_GRE:
866 		if (skb->encapsulation)
867 			break;
868 	default:
869 		if (unlikely(net_ratelimit())) {
870 			dev_warn(tx_ring->dev,
871 				 "partial checksum but l4 proto=%x!\n",
872 				 l4_hdr);
873 		}
874 		tx_ring->tx_stats.csum_err++;
875 		goto no_csum;
876 	}
877 
878 	/* update TX checksum flag */
879 	first->tx_flags |= FM10K_TX_FLAGS_CSUM;
880 
881 no_csum:
882 	/* populate Tx descriptor header size and mss */
883 	tx_desc = FM10K_TX_DESC(tx_ring, tx_ring->next_to_use);
884 	tx_desc->hdrlen = 0;
885 	tx_desc->mss = 0;
886 }
887 
888 #define FM10K_SET_FLAG(_input, _flag, _result) \
889 	((_flag <= _result) ? \
890 	 ((u32)(_input & _flag) * (_result / _flag)) : \
891 	 ((u32)(_input & _flag) / (_flag / _result)))
892 
893 static u8 fm10k_tx_desc_flags(struct sk_buff *skb, u32 tx_flags)
894 {
895 	/* set type for advanced descriptor with frame checksum insertion */
896 	u32 desc_flags = 0;
897 
898 	/* set timestamping bits */
899 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
900 	    likely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS))
901 			desc_flags |= FM10K_TXD_FLAG_TIME;
902 
903 	/* set checksum offload bits */
904 	desc_flags |= FM10K_SET_FLAG(tx_flags, FM10K_TX_FLAGS_CSUM,
905 				     FM10K_TXD_FLAG_CSUM);
906 
907 	return desc_flags;
908 }
909 
910 static bool fm10k_tx_desc_push(struct fm10k_ring *tx_ring,
911 			       struct fm10k_tx_desc *tx_desc, u16 i,
912 			       dma_addr_t dma, unsigned int size, u8 desc_flags)
913 {
914 	/* set RS and INT for last frame in a cache line */
915 	if ((++i & (FM10K_TXD_WB_FIFO_SIZE - 1)) == 0)
916 		desc_flags |= FM10K_TXD_FLAG_RS | FM10K_TXD_FLAG_INT;
917 
918 	/* record values to descriptor */
919 	tx_desc->buffer_addr = cpu_to_le64(dma);
920 	tx_desc->flags = desc_flags;
921 	tx_desc->buflen = cpu_to_le16(size);
922 
923 	/* return true if we just wrapped the ring */
924 	return i == tx_ring->count;
925 }
926 
927 static int __fm10k_maybe_stop_tx(struct fm10k_ring *tx_ring, u16 size)
928 {
929 	netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
930 
931 	smp_mb();
932 
933 	/* We need to check again in a case another CPU has just
934 	 * made room available. */
935 	if (likely(fm10k_desc_unused(tx_ring) < size))
936 		return -EBUSY;
937 
938 	/* A reprieve! - use start_queue because it doesn't call schedule */
939 	netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
940 	++tx_ring->tx_stats.restart_queue;
941 	return 0;
942 }
943 
944 static inline int fm10k_maybe_stop_tx(struct fm10k_ring *tx_ring, u16 size)
945 {
946 	if (likely(fm10k_desc_unused(tx_ring) >= size))
947 		return 0;
948 	return __fm10k_maybe_stop_tx(tx_ring, size);
949 }
950 
951 static void fm10k_tx_map(struct fm10k_ring *tx_ring,
952 			 struct fm10k_tx_buffer *first)
953 {
954 	struct sk_buff *skb = first->skb;
955 	struct fm10k_tx_buffer *tx_buffer;
956 	struct fm10k_tx_desc *tx_desc;
957 	struct skb_frag_struct *frag;
958 	unsigned char *data;
959 	dma_addr_t dma;
960 	unsigned int data_len, size;
961 	u32 tx_flags = first->tx_flags;
962 	u16 i = tx_ring->next_to_use;
963 	u8 flags = fm10k_tx_desc_flags(skb, tx_flags);
964 
965 	tx_desc = FM10K_TX_DESC(tx_ring, i);
966 
967 	/* add HW VLAN tag */
968 	if (vlan_tx_tag_present(skb))
969 		tx_desc->vlan = cpu_to_le16(vlan_tx_tag_get(skb));
970 	else
971 		tx_desc->vlan = 0;
972 
973 	size = skb_headlen(skb);
974 	data = skb->data;
975 
976 	dma = dma_map_single(tx_ring->dev, data, size, DMA_TO_DEVICE);
977 
978 	data_len = skb->data_len;
979 	tx_buffer = first;
980 
981 	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
982 		if (dma_mapping_error(tx_ring->dev, dma))
983 			goto dma_error;
984 
985 		/* record length, and DMA address */
986 		dma_unmap_len_set(tx_buffer, len, size);
987 		dma_unmap_addr_set(tx_buffer, dma, dma);
988 
989 		while (unlikely(size > FM10K_MAX_DATA_PER_TXD)) {
990 			if (fm10k_tx_desc_push(tx_ring, tx_desc++, i++, dma,
991 					       FM10K_MAX_DATA_PER_TXD, flags)) {
992 				tx_desc = FM10K_TX_DESC(tx_ring, 0);
993 				i = 0;
994 			}
995 
996 			dma += FM10K_MAX_DATA_PER_TXD;
997 			size -= FM10K_MAX_DATA_PER_TXD;
998 		}
999 
1000 		if (likely(!data_len))
1001 			break;
1002 
1003 		if (fm10k_tx_desc_push(tx_ring, tx_desc++, i++,
1004 				       dma, size, flags)) {
1005 			tx_desc = FM10K_TX_DESC(tx_ring, 0);
1006 			i = 0;
1007 		}
1008 
1009 		size = skb_frag_size(frag);
1010 		data_len -= size;
1011 
1012 		dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
1013 				       DMA_TO_DEVICE);
1014 
1015 		tx_buffer = &tx_ring->tx_buffer[i];
1016 	}
1017 
1018 	/* write last descriptor with LAST bit set */
1019 	flags |= FM10K_TXD_FLAG_LAST;
1020 
1021 	if (fm10k_tx_desc_push(tx_ring, tx_desc, i++, dma, size, flags))
1022 		i = 0;
1023 
1024 	/* record bytecount for BQL */
1025 	netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
1026 
1027 	/* record SW timestamp if HW timestamp is not available */
1028 	skb_tx_timestamp(first->skb);
1029 
1030 	/* Force memory writes to complete before letting h/w know there
1031 	 * are new descriptors to fetch.  (Only applicable for weak-ordered
1032 	 * memory model archs, such as IA-64).
1033 	 *
1034 	 * We also need this memory barrier to make certain all of the
1035 	 * status bits have been updated before next_to_watch is written.
1036 	 */
1037 	wmb();
1038 
1039 	/* set next_to_watch value indicating a packet is present */
1040 	first->next_to_watch = tx_desc;
1041 
1042 	tx_ring->next_to_use = i;
1043 
1044 	/* Make sure there is space in the ring for the next send. */
1045 	fm10k_maybe_stop_tx(tx_ring, DESC_NEEDED);
1046 
1047 	/* notify HW of packet */
1048 	if (netif_xmit_stopped(txring_txq(tx_ring)) || !skb->xmit_more) {
1049 		writel(i, tx_ring->tail);
1050 
1051 		/* we need this if more than one processor can write to our tail
1052 		 * at a time, it synchronizes IO on IA64/Altix systems
1053 		 */
1054 		mmiowb();
1055 	}
1056 
1057 	return;
1058 dma_error:
1059 	dev_err(tx_ring->dev, "TX DMA map failed\n");
1060 
1061 	/* clear dma mappings for failed tx_buffer map */
1062 	for (;;) {
1063 		tx_buffer = &tx_ring->tx_buffer[i];
1064 		fm10k_unmap_and_free_tx_resource(tx_ring, tx_buffer);
1065 		if (tx_buffer == first)
1066 			break;
1067 		if (i == 0)
1068 			i = tx_ring->count;
1069 		i--;
1070 	}
1071 
1072 	tx_ring->next_to_use = i;
1073 }
1074 
1075 netdev_tx_t fm10k_xmit_frame_ring(struct sk_buff *skb,
1076 				  struct fm10k_ring *tx_ring)
1077 {
1078 	struct fm10k_tx_buffer *first;
1079 	int tso;
1080 	u32 tx_flags = 0;
1081 #if PAGE_SIZE > FM10K_MAX_DATA_PER_TXD
1082 	unsigned short f;
1083 #endif
1084 	u16 count = TXD_USE_COUNT(skb_headlen(skb));
1085 
1086 	/* need: 1 descriptor per page * PAGE_SIZE/FM10K_MAX_DATA_PER_TXD,
1087 	 *       + 1 desc for skb_headlen/FM10K_MAX_DATA_PER_TXD,
1088 	 *       + 2 desc gap to keep tail from touching head
1089 	 * otherwise try next time
1090 	 */
1091 #if PAGE_SIZE > FM10K_MAX_DATA_PER_TXD
1092 	for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
1093 		count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size);
1094 #else
1095 	count += skb_shinfo(skb)->nr_frags;
1096 #endif
1097 	if (fm10k_maybe_stop_tx(tx_ring, count + 3)) {
1098 		tx_ring->tx_stats.tx_busy++;
1099 		return NETDEV_TX_BUSY;
1100 	}
1101 
1102 	/* record the location of the first descriptor for this packet */
1103 	first = &tx_ring->tx_buffer[tx_ring->next_to_use];
1104 	first->skb = skb;
1105 	first->bytecount = max_t(unsigned int, skb->len, ETH_ZLEN);
1106 	first->gso_segs = 1;
1107 
1108 	/* record initial flags and protocol */
1109 	first->tx_flags = tx_flags;
1110 
1111 	tso = fm10k_tso(tx_ring, first);
1112 	if (tso < 0)
1113 		goto out_drop;
1114 	else if (!tso)
1115 		fm10k_tx_csum(tx_ring, first);
1116 
1117 	fm10k_tx_map(tx_ring, first);
1118 
1119 	return NETDEV_TX_OK;
1120 
1121 out_drop:
1122 	dev_kfree_skb_any(first->skb);
1123 	first->skb = NULL;
1124 
1125 	return NETDEV_TX_OK;
1126 }
1127 
1128 static u64 fm10k_get_tx_completed(struct fm10k_ring *ring)
1129 {
1130 	return ring->stats.packets;
1131 }
1132 
1133 static u64 fm10k_get_tx_pending(struct fm10k_ring *ring)
1134 {
1135 	/* use SW head and tail until we have real hardware */
1136 	u32 head = ring->next_to_clean;
1137 	u32 tail = ring->next_to_use;
1138 
1139 	return ((head <= tail) ? tail : tail + ring->count) - head;
1140 }
1141 
1142 bool fm10k_check_tx_hang(struct fm10k_ring *tx_ring)
1143 {
1144 	u32 tx_done = fm10k_get_tx_completed(tx_ring);
1145 	u32 tx_done_old = tx_ring->tx_stats.tx_done_old;
1146 	u32 tx_pending = fm10k_get_tx_pending(tx_ring);
1147 
1148 	clear_check_for_tx_hang(tx_ring);
1149 
1150 	/* Check for a hung queue, but be thorough. This verifies
1151 	 * that a transmit has been completed since the previous
1152 	 * check AND there is at least one packet pending. By
1153 	 * requiring this to fail twice we avoid races with
1154 	 * clearing the ARMED bit and conditions where we
1155 	 * run the check_tx_hang logic with a transmit completion
1156 	 * pending but without time to complete it yet.
1157 	 */
1158 	if (!tx_pending || (tx_done_old != tx_done)) {
1159 		/* update completed stats and continue */
1160 		tx_ring->tx_stats.tx_done_old = tx_done;
1161 		/* reset the countdown */
1162 		clear_bit(__FM10K_HANG_CHECK_ARMED, &tx_ring->state);
1163 
1164 		return false;
1165 	}
1166 
1167 	/* make sure it is true for two checks in a row */
1168 	return test_and_set_bit(__FM10K_HANG_CHECK_ARMED, &tx_ring->state);
1169 }
1170 
1171 /**
1172  * fm10k_tx_timeout_reset - initiate reset due to Tx timeout
1173  * @interface: driver private struct
1174  **/
1175 void fm10k_tx_timeout_reset(struct fm10k_intfc *interface)
1176 {
1177 	/* Do the reset outside of interrupt context */
1178 	if (!test_bit(__FM10K_DOWN, &interface->state)) {
1179 		netdev_err(interface->netdev, "Reset interface\n");
1180 		interface->tx_timeout_count++;
1181 		interface->flags |= FM10K_FLAG_RESET_REQUESTED;
1182 		fm10k_service_event_schedule(interface);
1183 	}
1184 }
1185 
1186 /**
1187  * fm10k_clean_tx_irq - Reclaim resources after transmit completes
1188  * @q_vector: structure containing interrupt and ring information
1189  * @tx_ring: tx ring to clean
1190  **/
1191 static bool fm10k_clean_tx_irq(struct fm10k_q_vector *q_vector,
1192 			       struct fm10k_ring *tx_ring)
1193 {
1194 	struct fm10k_intfc *interface = q_vector->interface;
1195 	struct fm10k_tx_buffer *tx_buffer;
1196 	struct fm10k_tx_desc *tx_desc;
1197 	unsigned int total_bytes = 0, total_packets = 0;
1198 	unsigned int budget = q_vector->tx.work_limit;
1199 	unsigned int i = tx_ring->next_to_clean;
1200 
1201 	if (test_bit(__FM10K_DOWN, &interface->state))
1202 		return true;
1203 
1204 	tx_buffer = &tx_ring->tx_buffer[i];
1205 	tx_desc = FM10K_TX_DESC(tx_ring, i);
1206 	i -= tx_ring->count;
1207 
1208 	do {
1209 		struct fm10k_tx_desc *eop_desc = tx_buffer->next_to_watch;
1210 
1211 		/* if next_to_watch is not set then there is no work pending */
1212 		if (!eop_desc)
1213 			break;
1214 
1215 		/* prevent any other reads prior to eop_desc */
1216 		read_barrier_depends();
1217 
1218 		/* if DD is not set pending work has not been completed */
1219 		if (!(eop_desc->flags & FM10K_TXD_FLAG_DONE))
1220 			break;
1221 
1222 		/* clear next_to_watch to prevent false hangs */
1223 		tx_buffer->next_to_watch = NULL;
1224 
1225 		/* update the statistics for this packet */
1226 		total_bytes += tx_buffer->bytecount;
1227 		total_packets += tx_buffer->gso_segs;
1228 
1229 		/* free the skb */
1230 		dev_consume_skb_any(tx_buffer->skb);
1231 
1232 		/* unmap skb header data */
1233 		dma_unmap_single(tx_ring->dev,
1234 				 dma_unmap_addr(tx_buffer, dma),
1235 				 dma_unmap_len(tx_buffer, len),
1236 				 DMA_TO_DEVICE);
1237 
1238 		/* clear tx_buffer data */
1239 		tx_buffer->skb = NULL;
1240 		dma_unmap_len_set(tx_buffer, len, 0);
1241 
1242 		/* unmap remaining buffers */
1243 		while (tx_desc != eop_desc) {
1244 			tx_buffer++;
1245 			tx_desc++;
1246 			i++;
1247 			if (unlikely(!i)) {
1248 				i -= tx_ring->count;
1249 				tx_buffer = tx_ring->tx_buffer;
1250 				tx_desc = FM10K_TX_DESC(tx_ring, 0);
1251 			}
1252 
1253 			/* unmap any remaining paged data */
1254 			if (dma_unmap_len(tx_buffer, len)) {
1255 				dma_unmap_page(tx_ring->dev,
1256 					       dma_unmap_addr(tx_buffer, dma),
1257 					       dma_unmap_len(tx_buffer, len),
1258 					       DMA_TO_DEVICE);
1259 				dma_unmap_len_set(tx_buffer, len, 0);
1260 			}
1261 		}
1262 
1263 		/* move us one more past the eop_desc for start of next pkt */
1264 		tx_buffer++;
1265 		tx_desc++;
1266 		i++;
1267 		if (unlikely(!i)) {
1268 			i -= tx_ring->count;
1269 			tx_buffer = tx_ring->tx_buffer;
1270 			tx_desc = FM10K_TX_DESC(tx_ring, 0);
1271 		}
1272 
1273 		/* issue prefetch for next Tx descriptor */
1274 		prefetch(tx_desc);
1275 
1276 		/* update budget accounting */
1277 		budget--;
1278 	} while (likely(budget));
1279 
1280 	i += tx_ring->count;
1281 	tx_ring->next_to_clean = i;
1282 	u64_stats_update_begin(&tx_ring->syncp);
1283 	tx_ring->stats.bytes += total_bytes;
1284 	tx_ring->stats.packets += total_packets;
1285 	u64_stats_update_end(&tx_ring->syncp);
1286 	q_vector->tx.total_bytes += total_bytes;
1287 	q_vector->tx.total_packets += total_packets;
1288 
1289 	if (check_for_tx_hang(tx_ring) && fm10k_check_tx_hang(tx_ring)) {
1290 		/* schedule immediate reset if we believe we hung */
1291 		struct fm10k_hw *hw = &interface->hw;
1292 
1293 		netif_err(interface, drv, tx_ring->netdev,
1294 			  "Detected Tx Unit Hang\n"
1295 			  "  Tx Queue             <%d>\n"
1296 			  "  TDH, TDT             <%x>, <%x>\n"
1297 			  "  next_to_use          <%x>\n"
1298 			  "  next_to_clean        <%x>\n",
1299 			  tx_ring->queue_index,
1300 			  fm10k_read_reg(hw, FM10K_TDH(tx_ring->reg_idx)),
1301 			  fm10k_read_reg(hw, FM10K_TDT(tx_ring->reg_idx)),
1302 			  tx_ring->next_to_use, i);
1303 
1304 		netif_stop_subqueue(tx_ring->netdev,
1305 				    tx_ring->queue_index);
1306 
1307 		netif_info(interface, probe, tx_ring->netdev,
1308 			   "tx hang %d detected on queue %d, resetting interface\n",
1309 			   interface->tx_timeout_count + 1,
1310 			   tx_ring->queue_index);
1311 
1312 		fm10k_tx_timeout_reset(interface);
1313 
1314 		/* the netdev is about to reset, no point in enabling stuff */
1315 		return true;
1316 	}
1317 
1318 	/* notify netdev of completed buffers */
1319 	netdev_tx_completed_queue(txring_txq(tx_ring),
1320 				  total_packets, total_bytes);
1321 
1322 #define TX_WAKE_THRESHOLD min_t(u16, FM10K_MIN_TXD - 1, DESC_NEEDED * 2)
1323 	if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
1324 		     (fm10k_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD))) {
1325 		/* Make sure that anybody stopping the queue after this
1326 		 * sees the new next_to_clean.
1327 		 */
1328 		smp_mb();
1329 		if (__netif_subqueue_stopped(tx_ring->netdev,
1330 					     tx_ring->queue_index) &&
1331 		    !test_bit(__FM10K_DOWN, &interface->state)) {
1332 			netif_wake_subqueue(tx_ring->netdev,
1333 					    tx_ring->queue_index);
1334 			++tx_ring->tx_stats.restart_queue;
1335 		}
1336 	}
1337 
1338 	return !!budget;
1339 }
1340 
1341 /**
1342  * fm10k_update_itr - update the dynamic ITR value based on packet size
1343  *
1344  *      Stores a new ITR value based on strictly on packet size.  The
1345  *      divisors and thresholds used by this function were determined based
1346  *      on theoretical maximum wire speed and testing data, in order to
1347  *      minimize response time while increasing bulk throughput.
1348  *
1349  * @ring_container: Container for rings to have ITR updated
1350  **/
1351 static void fm10k_update_itr(struct fm10k_ring_container *ring_container)
1352 {
1353 	unsigned int avg_wire_size, packets;
1354 
1355 	/* Only update ITR if we are using adaptive setting */
1356 	if (!(ring_container->itr & FM10K_ITR_ADAPTIVE))
1357 		goto clear_counts;
1358 
1359 	packets = ring_container->total_packets;
1360 	if (!packets)
1361 		goto clear_counts;
1362 
1363 	avg_wire_size = ring_container->total_bytes / packets;
1364 
1365 	/* Add 24 bytes to size to account for CRC, preamble, and gap */
1366 	avg_wire_size += 24;
1367 
1368 	/* Don't starve jumbo frames */
1369 	if (avg_wire_size > 3000)
1370 		avg_wire_size = 3000;
1371 
1372 	/* Give a little boost to mid-size frames */
1373 	if ((avg_wire_size > 300) && (avg_wire_size < 1200))
1374 		avg_wire_size /= 3;
1375 	else
1376 		avg_wire_size /= 2;
1377 
1378 	/* write back value and retain adaptive flag */
1379 	ring_container->itr = avg_wire_size | FM10K_ITR_ADAPTIVE;
1380 
1381 clear_counts:
1382 	ring_container->total_bytes = 0;
1383 	ring_container->total_packets = 0;
1384 }
1385 
1386 static void fm10k_qv_enable(struct fm10k_q_vector *q_vector)
1387 {
1388 	/* Enable auto-mask and clear the current mask */
1389 	u32 itr = FM10K_ITR_ENABLE;
1390 
1391 	/* Update Tx ITR */
1392 	fm10k_update_itr(&q_vector->tx);
1393 
1394 	/* Update Rx ITR */
1395 	fm10k_update_itr(&q_vector->rx);
1396 
1397 	/* Store Tx itr in timer slot 0 */
1398 	itr |= (q_vector->tx.itr & FM10K_ITR_MAX);
1399 
1400 	/* Shift Rx itr to timer slot 1 */
1401 	itr |= (q_vector->rx.itr & FM10K_ITR_MAX) << FM10K_ITR_INTERVAL1_SHIFT;
1402 
1403 	/* Write the final value to the ITR register */
1404 	writel(itr, q_vector->itr);
1405 }
1406 
1407 static int fm10k_poll(struct napi_struct *napi, int budget)
1408 {
1409 	struct fm10k_q_vector *q_vector =
1410 			       container_of(napi, struct fm10k_q_vector, napi);
1411 	struct fm10k_ring *ring;
1412 	int per_ring_budget;
1413 	bool clean_complete = true;
1414 
1415 	fm10k_for_each_ring(ring, q_vector->tx)
1416 		clean_complete &= fm10k_clean_tx_irq(q_vector, ring);
1417 
1418 	/* attempt to distribute budget to each queue fairly, but don't
1419 	 * allow the budget to go below 1 because we'll exit polling
1420 	 */
1421 	if (q_vector->rx.count > 1)
1422 		per_ring_budget = max(budget/q_vector->rx.count, 1);
1423 	else
1424 		per_ring_budget = budget;
1425 
1426 	fm10k_for_each_ring(ring, q_vector->rx)
1427 		clean_complete &= fm10k_clean_rx_irq(q_vector, ring,
1428 						     per_ring_budget);
1429 
1430 	/* If all work not completed, return budget and keep polling */
1431 	if (!clean_complete)
1432 		return budget;
1433 
1434 	/* all work done, exit the polling mode */
1435 	napi_complete(napi);
1436 
1437 	/* re-enable the q_vector */
1438 	fm10k_qv_enable(q_vector);
1439 
1440 	return 0;
1441 }
1442 
1443 /**
1444  * fm10k_set_qos_queues: Allocate queues for a QOS-enabled device
1445  * @interface: board private structure to initialize
1446  *
1447  * When QoS (Quality of Service) is enabled, allocate queues for
1448  * each traffic class.  If multiqueue isn't available,then abort QoS
1449  * initialization.
1450  *
1451  * This function handles all combinations of Qos and RSS.
1452  *
1453  **/
1454 static bool fm10k_set_qos_queues(struct fm10k_intfc *interface)
1455 {
1456 	struct net_device *dev = interface->netdev;
1457 	struct fm10k_ring_feature *f;
1458 	int rss_i, i;
1459 	int pcs;
1460 
1461 	/* Map queue offset and counts onto allocated tx queues */
1462 	pcs = netdev_get_num_tc(dev);
1463 
1464 	if (pcs <= 1)
1465 		return false;
1466 
1467 	/* set QoS mask and indices */
1468 	f = &interface->ring_feature[RING_F_QOS];
1469 	f->indices = pcs;
1470 	f->mask = (1 << fls(pcs - 1)) - 1;
1471 
1472 	/* determine the upper limit for our current DCB mode */
1473 	rss_i = interface->hw.mac.max_queues / pcs;
1474 	rss_i = 1 << (fls(rss_i) - 1);
1475 
1476 	/* set RSS mask and indices */
1477 	f = &interface->ring_feature[RING_F_RSS];
1478 	rss_i = min_t(u16, rss_i, f->limit);
1479 	f->indices = rss_i;
1480 	f->mask = (1 << fls(rss_i - 1)) - 1;
1481 
1482 	/* configure pause class to queue mapping */
1483 	for (i = 0; i < pcs; i++)
1484 		netdev_set_tc_queue(dev, i, rss_i, rss_i * i);
1485 
1486 	interface->num_rx_queues = rss_i * pcs;
1487 	interface->num_tx_queues = rss_i * pcs;
1488 
1489 	return true;
1490 }
1491 
1492 /**
1493  * fm10k_set_rss_queues: Allocate queues for RSS
1494  * @interface: board private structure to initialize
1495  *
1496  * This is our "base" multiqueue mode.  RSS (Receive Side Scaling) will try
1497  * to allocate one Rx queue per CPU, and if available, one Tx queue per CPU.
1498  *
1499  **/
1500 static bool fm10k_set_rss_queues(struct fm10k_intfc *interface)
1501 {
1502 	struct fm10k_ring_feature *f;
1503 	u16 rss_i;
1504 
1505 	f = &interface->ring_feature[RING_F_RSS];
1506 	rss_i = min_t(u16, interface->hw.mac.max_queues, f->limit);
1507 
1508 	/* record indices and power of 2 mask for RSS */
1509 	f->indices = rss_i;
1510 	f->mask = (1 << fls(rss_i - 1)) - 1;
1511 
1512 	interface->num_rx_queues = rss_i;
1513 	interface->num_tx_queues = rss_i;
1514 
1515 	return true;
1516 }
1517 
1518 /**
1519  * fm10k_set_num_queues: Allocate queues for device, feature dependent
1520  * @interface: board private structure to initialize
1521  *
1522  * This is the top level queue allocation routine.  The order here is very
1523  * important, starting with the "most" number of features turned on at once,
1524  * and ending with the smallest set of features.  This way large combinations
1525  * can be allocated if they're turned on, and smaller combinations are the
1526  * fallthrough conditions.
1527  *
1528  **/
1529 static void fm10k_set_num_queues(struct fm10k_intfc *interface)
1530 {
1531 	/* Start with base case */
1532 	interface->num_rx_queues = 1;
1533 	interface->num_tx_queues = 1;
1534 
1535 	if (fm10k_set_qos_queues(interface))
1536 		return;
1537 
1538 	fm10k_set_rss_queues(interface);
1539 }
1540 
1541 /**
1542  * fm10k_alloc_q_vector - Allocate memory for a single interrupt vector
1543  * @interface: board private structure to initialize
1544  * @v_count: q_vectors allocated on interface, used for ring interleaving
1545  * @v_idx: index of vector in interface struct
1546  * @txr_count: total number of Tx rings to allocate
1547  * @txr_idx: index of first Tx ring to allocate
1548  * @rxr_count: total number of Rx rings to allocate
1549  * @rxr_idx: index of first Rx ring to allocate
1550  *
1551  * We allocate one q_vector.  If allocation fails we return -ENOMEM.
1552  **/
1553 static int fm10k_alloc_q_vector(struct fm10k_intfc *interface,
1554 				unsigned int v_count, unsigned int v_idx,
1555 				unsigned int txr_count, unsigned int txr_idx,
1556 				unsigned int rxr_count, unsigned int rxr_idx)
1557 {
1558 	struct fm10k_q_vector *q_vector;
1559 	struct fm10k_ring *ring;
1560 	int ring_count, size;
1561 
1562 	ring_count = txr_count + rxr_count;
1563 	size = sizeof(struct fm10k_q_vector) +
1564 	       (sizeof(struct fm10k_ring) * ring_count);
1565 
1566 	/* allocate q_vector and rings */
1567 	q_vector = kzalloc(size, GFP_KERNEL);
1568 	if (!q_vector)
1569 		return -ENOMEM;
1570 
1571 	/* initialize NAPI */
1572 	netif_napi_add(interface->netdev, &q_vector->napi,
1573 		       fm10k_poll, NAPI_POLL_WEIGHT);
1574 
1575 	/* tie q_vector and interface together */
1576 	interface->q_vector[v_idx] = q_vector;
1577 	q_vector->interface = interface;
1578 	q_vector->v_idx = v_idx;
1579 
1580 	/* initialize pointer to rings */
1581 	ring = q_vector->ring;
1582 
1583 	/* save Tx ring container info */
1584 	q_vector->tx.ring = ring;
1585 	q_vector->tx.work_limit = FM10K_DEFAULT_TX_WORK;
1586 	q_vector->tx.itr = interface->tx_itr;
1587 	q_vector->tx.count = txr_count;
1588 
1589 	while (txr_count) {
1590 		/* assign generic ring traits */
1591 		ring->dev = &interface->pdev->dev;
1592 		ring->netdev = interface->netdev;
1593 
1594 		/* configure backlink on ring */
1595 		ring->q_vector = q_vector;
1596 
1597 		/* apply Tx specific ring traits */
1598 		ring->count = interface->tx_ring_count;
1599 		ring->queue_index = txr_idx;
1600 
1601 		/* assign ring to interface */
1602 		interface->tx_ring[txr_idx] = ring;
1603 
1604 		/* update count and index */
1605 		txr_count--;
1606 		txr_idx += v_count;
1607 
1608 		/* push pointer to next ring */
1609 		ring++;
1610 	}
1611 
1612 	/* save Rx ring container info */
1613 	q_vector->rx.ring = ring;
1614 	q_vector->rx.itr = interface->rx_itr;
1615 	q_vector->rx.count = rxr_count;
1616 
1617 	while (rxr_count) {
1618 		/* assign generic ring traits */
1619 		ring->dev = &interface->pdev->dev;
1620 		ring->netdev = interface->netdev;
1621 		rcu_assign_pointer(ring->l2_accel, interface->l2_accel);
1622 
1623 		/* configure backlink on ring */
1624 		ring->q_vector = q_vector;
1625 
1626 		/* apply Rx specific ring traits */
1627 		ring->count = interface->rx_ring_count;
1628 		ring->queue_index = rxr_idx;
1629 
1630 		/* assign ring to interface */
1631 		interface->rx_ring[rxr_idx] = ring;
1632 
1633 		/* update count and index */
1634 		rxr_count--;
1635 		rxr_idx += v_count;
1636 
1637 		/* push pointer to next ring */
1638 		ring++;
1639 	}
1640 
1641 	fm10k_dbg_q_vector_init(q_vector);
1642 
1643 	return 0;
1644 }
1645 
1646 /**
1647  * fm10k_free_q_vector - Free memory allocated for specific interrupt vector
1648  * @interface: board private structure to initialize
1649  * @v_idx: Index of vector to be freed
1650  *
1651  * This function frees the memory allocated to the q_vector.  In addition if
1652  * NAPI is enabled it will delete any references to the NAPI struct prior
1653  * to freeing the q_vector.
1654  **/
1655 static void fm10k_free_q_vector(struct fm10k_intfc *interface, int v_idx)
1656 {
1657 	struct fm10k_q_vector *q_vector = interface->q_vector[v_idx];
1658 	struct fm10k_ring *ring;
1659 
1660 	fm10k_dbg_q_vector_exit(q_vector);
1661 
1662 	fm10k_for_each_ring(ring, q_vector->tx)
1663 		interface->tx_ring[ring->queue_index] = NULL;
1664 
1665 	fm10k_for_each_ring(ring, q_vector->rx)
1666 		interface->rx_ring[ring->queue_index] = NULL;
1667 
1668 	interface->q_vector[v_idx] = NULL;
1669 	netif_napi_del(&q_vector->napi);
1670 	kfree_rcu(q_vector, rcu);
1671 }
1672 
1673 /**
1674  * fm10k_alloc_q_vectors - Allocate memory for interrupt vectors
1675  * @interface: board private structure to initialize
1676  *
1677  * We allocate one q_vector per queue interrupt.  If allocation fails we
1678  * return -ENOMEM.
1679  **/
1680 static int fm10k_alloc_q_vectors(struct fm10k_intfc *interface)
1681 {
1682 	unsigned int q_vectors = interface->num_q_vectors;
1683 	unsigned int rxr_remaining = interface->num_rx_queues;
1684 	unsigned int txr_remaining = interface->num_tx_queues;
1685 	unsigned int rxr_idx = 0, txr_idx = 0, v_idx = 0;
1686 	int err;
1687 
1688 	if (q_vectors >= (rxr_remaining + txr_remaining)) {
1689 		for (; rxr_remaining; v_idx++) {
1690 			err = fm10k_alloc_q_vector(interface, q_vectors, v_idx,
1691 						   0, 0, 1, rxr_idx);
1692 			if (err)
1693 				goto err_out;
1694 
1695 			/* update counts and index */
1696 			rxr_remaining--;
1697 			rxr_idx++;
1698 		}
1699 	}
1700 
1701 	for (; v_idx < q_vectors; v_idx++) {
1702 		int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
1703 		int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
1704 
1705 		err = fm10k_alloc_q_vector(interface, q_vectors, v_idx,
1706 					   tqpv, txr_idx,
1707 					   rqpv, rxr_idx);
1708 
1709 		if (err)
1710 			goto err_out;
1711 
1712 		/* update counts and index */
1713 		rxr_remaining -= rqpv;
1714 		txr_remaining -= tqpv;
1715 		rxr_idx++;
1716 		txr_idx++;
1717 	}
1718 
1719 	return 0;
1720 
1721 err_out:
1722 	interface->num_tx_queues = 0;
1723 	interface->num_rx_queues = 0;
1724 	interface->num_q_vectors = 0;
1725 
1726 	while (v_idx--)
1727 		fm10k_free_q_vector(interface, v_idx);
1728 
1729 	return -ENOMEM;
1730 }
1731 
1732 /**
1733  * fm10k_free_q_vectors - Free memory allocated for interrupt vectors
1734  * @interface: board private structure to initialize
1735  *
1736  * This function frees the memory allocated to the q_vectors.  In addition if
1737  * NAPI is enabled it will delete any references to the NAPI struct prior
1738  * to freeing the q_vector.
1739  **/
1740 static void fm10k_free_q_vectors(struct fm10k_intfc *interface)
1741 {
1742 	int v_idx = interface->num_q_vectors;
1743 
1744 	interface->num_tx_queues = 0;
1745 	interface->num_rx_queues = 0;
1746 	interface->num_q_vectors = 0;
1747 
1748 	while (v_idx--)
1749 		fm10k_free_q_vector(interface, v_idx);
1750 }
1751 
1752 /**
1753  * f10k_reset_msix_capability - reset MSI-X capability
1754  * @interface: board private structure to initialize
1755  *
1756  * Reset the MSI-X capability back to its starting state
1757  **/
1758 static void fm10k_reset_msix_capability(struct fm10k_intfc *interface)
1759 {
1760 	pci_disable_msix(interface->pdev);
1761 	kfree(interface->msix_entries);
1762 	interface->msix_entries = NULL;
1763 }
1764 
1765 /**
1766  * f10k_init_msix_capability - configure MSI-X capability
1767  * @interface: board private structure to initialize
1768  *
1769  * Attempt to configure the interrupts using the best available
1770  * capabilities of the hardware and the kernel.
1771  **/
1772 static int fm10k_init_msix_capability(struct fm10k_intfc *interface)
1773 {
1774 	struct fm10k_hw *hw = &interface->hw;
1775 	int v_budget, vector;
1776 
1777 	/* It's easy to be greedy for MSI-X vectors, but it really
1778 	 * doesn't do us much good if we have a lot more vectors
1779 	 * than CPU's.  So let's be conservative and only ask for
1780 	 * (roughly) the same number of vectors as there are CPU's.
1781 	 * the default is to use pairs of vectors
1782 	 */
1783 	v_budget = max(interface->num_rx_queues, interface->num_tx_queues);
1784 	v_budget = min_t(u16, v_budget, num_online_cpus());
1785 
1786 	/* account for vectors not related to queues */
1787 	v_budget += NON_Q_VECTORS(hw);
1788 
1789 	/* At the same time, hardware can only support a maximum of
1790 	 * hw.mac->max_msix_vectors vectors.  With features
1791 	 * such as RSS and VMDq, we can easily surpass the number of Rx and Tx
1792 	 * descriptor queues supported by our device.  Thus, we cap it off in
1793 	 * those rare cases where the cpu count also exceeds our vector limit.
1794 	 */
1795 	v_budget = min_t(int, v_budget, hw->mac.max_msix_vectors);
1796 
1797 	/* A failure in MSI-X entry allocation is fatal. */
1798 	interface->msix_entries = kcalloc(v_budget, sizeof(struct msix_entry),
1799 					  GFP_KERNEL);
1800 	if (!interface->msix_entries)
1801 		return -ENOMEM;
1802 
1803 	/* populate entry values */
1804 	for (vector = 0; vector < v_budget; vector++)
1805 		interface->msix_entries[vector].entry = vector;
1806 
1807 	/* Attempt to enable MSI-X with requested value */
1808 	v_budget = pci_enable_msix_range(interface->pdev,
1809 					 interface->msix_entries,
1810 					 MIN_MSIX_COUNT(hw),
1811 					 v_budget);
1812 	if (v_budget < 0) {
1813 		kfree(interface->msix_entries);
1814 		interface->msix_entries = NULL;
1815 		return -ENOMEM;
1816 	}
1817 
1818 	/* record the number of queues available for q_vectors */
1819 	interface->num_q_vectors = v_budget - NON_Q_VECTORS(hw);
1820 
1821 	return 0;
1822 }
1823 
1824 /**
1825  * fm10k_cache_ring_qos - Descriptor ring to register mapping for QoS
1826  * @interface: Interface structure continaining rings and devices
1827  *
1828  * Cache the descriptor ring offsets for Qos
1829  **/
1830 static bool fm10k_cache_ring_qos(struct fm10k_intfc *interface)
1831 {
1832 	struct net_device *dev = interface->netdev;
1833 	int pc, offset, rss_i, i, q_idx;
1834 	u16 pc_stride = interface->ring_feature[RING_F_QOS].mask + 1;
1835 	u8 num_pcs = netdev_get_num_tc(dev);
1836 
1837 	if (num_pcs <= 1)
1838 		return false;
1839 
1840 	rss_i = interface->ring_feature[RING_F_RSS].indices;
1841 
1842 	for (pc = 0, offset = 0; pc < num_pcs; pc++, offset += rss_i) {
1843 		q_idx = pc;
1844 		for (i = 0; i < rss_i; i++) {
1845 			interface->tx_ring[offset + i]->reg_idx = q_idx;
1846 			interface->tx_ring[offset + i]->qos_pc = pc;
1847 			interface->rx_ring[offset + i]->reg_idx = q_idx;
1848 			interface->rx_ring[offset + i]->qos_pc = pc;
1849 			q_idx += pc_stride;
1850 		}
1851 	}
1852 
1853 	return true;
1854 }
1855 
1856 /**
1857  * fm10k_cache_ring_rss - Descriptor ring to register mapping for RSS
1858  * @interface: Interface structure continaining rings and devices
1859  *
1860  * Cache the descriptor ring offsets for RSS
1861  **/
1862 static void fm10k_cache_ring_rss(struct fm10k_intfc *interface)
1863 {
1864 	int i;
1865 
1866 	for (i = 0; i < interface->num_rx_queues; i++)
1867 		interface->rx_ring[i]->reg_idx = i;
1868 
1869 	for (i = 0; i < interface->num_tx_queues; i++)
1870 		interface->tx_ring[i]->reg_idx = i;
1871 }
1872 
1873 /**
1874  * fm10k_assign_rings - Map rings to network devices
1875  * @interface: Interface structure containing rings and devices
1876  *
1877  * This function is meant to go though and configure both the network
1878  * devices so that they contain rings, and configure the rings so that
1879  * they function with their network devices.
1880  **/
1881 static void fm10k_assign_rings(struct fm10k_intfc *interface)
1882 {
1883 	if (fm10k_cache_ring_qos(interface))
1884 		return;
1885 
1886 	fm10k_cache_ring_rss(interface);
1887 }
1888 
1889 static void fm10k_init_reta(struct fm10k_intfc *interface)
1890 {
1891 	u16 i, rss_i = interface->ring_feature[RING_F_RSS].indices;
1892 	u32 reta, base;
1893 
1894 	/* If the netdev is initialized we have to maintain table if possible */
1895 	if (interface->netdev->reg_state) {
1896 		for (i = FM10K_RETA_SIZE; i--;) {
1897 			reta = interface->reta[i];
1898 			if ((((reta << 24) >> 24) < rss_i) &&
1899 			    (((reta << 16) >> 24) < rss_i) &&
1900 			    (((reta <<  8) >> 24) < rss_i) &&
1901 			    (((reta)       >> 24) < rss_i))
1902 				continue;
1903 			goto repopulate_reta;
1904 		}
1905 
1906 		/* do nothing if all of the elements are in bounds */
1907 		return;
1908 	}
1909 
1910 repopulate_reta:
1911 	/* Populate the redirection table 4 entries at a time.  To do this
1912 	 * we are generating the results for n and n+2 and then interleaving
1913 	 * those with the results with n+1 and n+3.
1914 	 */
1915 	for (i = FM10K_RETA_SIZE; i--;) {
1916 		/* first pass generates n and n+2 */
1917 		base = ((i * 0x00040004) + 0x00020000) * rss_i;
1918 		reta = (base & 0x3F803F80) >> 7;
1919 
1920 		/* second pass generates n+1 and n+3 */
1921 		base += 0x00010001 * rss_i;
1922 		reta |= (base & 0x3F803F80) << 1;
1923 
1924 		interface->reta[i] = reta;
1925 	}
1926 }
1927 
1928 /**
1929  * fm10k_init_queueing_scheme - Determine proper queueing scheme
1930  * @interface: board private structure to initialize
1931  *
1932  * We determine which queueing scheme to use based on...
1933  * - Hardware queue count (num_*_queues)
1934  *   - defined by miscellaneous hardware support/features (RSS, etc.)
1935  **/
1936 int fm10k_init_queueing_scheme(struct fm10k_intfc *interface)
1937 {
1938 	int err;
1939 
1940 	/* Number of supported queues */
1941 	fm10k_set_num_queues(interface);
1942 
1943 	/* Configure MSI-X capability */
1944 	err = fm10k_init_msix_capability(interface);
1945 	if (err) {
1946 		dev_err(&interface->pdev->dev,
1947 			"Unable to initialize MSI-X capability\n");
1948 		return err;
1949 	}
1950 
1951 	/* Allocate memory for queues */
1952 	err = fm10k_alloc_q_vectors(interface);
1953 	if (err)
1954 		return err;
1955 
1956 	/* Map rings to devices, and map devices to physical queues */
1957 	fm10k_assign_rings(interface);
1958 
1959 	/* Initialize RSS redirection table */
1960 	fm10k_init_reta(interface);
1961 
1962 	return 0;
1963 }
1964 
1965 /**
1966  * fm10k_clear_queueing_scheme - Clear the current queueing scheme settings
1967  * @interface: board private structure to clear queueing scheme on
1968  *
1969  * We go through and clear queueing specific resources and reset the structure
1970  * to pre-load conditions
1971  **/
1972 void fm10k_clear_queueing_scheme(struct fm10k_intfc *interface)
1973 {
1974 	fm10k_free_q_vectors(interface);
1975 	fm10k_reset_msix_capability(interface);
1976 }
1977