1 /* Intel(R) Ethernet Switch Host Interface Driver
2  * Copyright(c) 2013 - 2016 Intel Corporation.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms and conditions of the GNU General Public License,
6  * version 2, as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope it will be useful, but WITHOUT
9  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
11  * more details.
12  *
13  * The full GNU General Public License is included in this distribution in
14  * the file called "COPYING".
15  *
16  * Contact Information:
17  * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
18  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
19  */
20 
21 #include <linux/types.h>
22 #include <linux/module.h>
23 #include <net/ipv6.h>
24 #include <net/ip.h>
25 #include <net/tcp.h>
26 #include <linux/if_macvlan.h>
27 #include <linux/prefetch.h>
28 
29 #include "fm10k.h"
30 
31 #define DRV_VERSION	"0.21.2-k"
32 #define DRV_SUMMARY	"Intel(R) Ethernet Switch Host Interface Driver"
33 const char fm10k_driver_version[] = DRV_VERSION;
34 char fm10k_driver_name[] = "fm10k";
35 static const char fm10k_driver_string[] = DRV_SUMMARY;
36 static const char fm10k_copyright[] =
37 	"Copyright (c) 2013 - 2016 Intel Corporation.";
38 
39 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
40 MODULE_DESCRIPTION(DRV_SUMMARY);
41 MODULE_LICENSE("GPL");
42 MODULE_VERSION(DRV_VERSION);
43 
44 /* single workqueue for entire fm10k driver */
45 struct workqueue_struct *fm10k_workqueue;
46 
47 /**
48  * fm10k_init_module - Driver Registration Routine
49  *
50  * fm10k_init_module is the first routine called when the driver is
51  * loaded.  All it does is register with the PCI subsystem.
52  **/
53 static int __init fm10k_init_module(void)
54 {
55 	pr_info("%s - version %s\n", fm10k_driver_string, fm10k_driver_version);
56 	pr_info("%s\n", fm10k_copyright);
57 
58 	/* create driver workqueue */
59 	fm10k_workqueue = alloc_workqueue("fm10k", WQ_MEM_RECLAIM, 0);
60 
61 	fm10k_dbg_init();
62 
63 	return fm10k_register_pci_driver();
64 }
65 module_init(fm10k_init_module);
66 
67 /**
68  * fm10k_exit_module - Driver Exit Cleanup Routine
69  *
70  * fm10k_exit_module is called just before the driver is removed
71  * from memory.
72  **/
73 static void __exit fm10k_exit_module(void)
74 {
75 	fm10k_unregister_pci_driver();
76 
77 	fm10k_dbg_exit();
78 
79 	/* destroy driver workqueue */
80 	destroy_workqueue(fm10k_workqueue);
81 }
82 module_exit(fm10k_exit_module);
83 
84 static bool fm10k_alloc_mapped_page(struct fm10k_ring *rx_ring,
85 				    struct fm10k_rx_buffer *bi)
86 {
87 	struct page *page = bi->page;
88 	dma_addr_t dma;
89 
90 	/* Only page will be NULL if buffer was consumed */
91 	if (likely(page))
92 		return true;
93 
94 	/* alloc new page for storage */
95 	page = dev_alloc_page();
96 	if (unlikely(!page)) {
97 		rx_ring->rx_stats.alloc_failed++;
98 		return false;
99 	}
100 
101 	/* map page for use */
102 	dma = dma_map_page(rx_ring->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE);
103 
104 	/* if mapping failed free memory back to system since
105 	 * there isn't much point in holding memory we can't use
106 	 */
107 	if (dma_mapping_error(rx_ring->dev, dma)) {
108 		__free_page(page);
109 
110 		rx_ring->rx_stats.alloc_failed++;
111 		return false;
112 	}
113 
114 	bi->dma = dma;
115 	bi->page = page;
116 	bi->page_offset = 0;
117 
118 	return true;
119 }
120 
121 /**
122  * fm10k_alloc_rx_buffers - Replace used receive buffers
123  * @rx_ring: ring to place buffers on
124  * @cleaned_count: number of buffers to replace
125  **/
126 void fm10k_alloc_rx_buffers(struct fm10k_ring *rx_ring, u16 cleaned_count)
127 {
128 	union fm10k_rx_desc *rx_desc;
129 	struct fm10k_rx_buffer *bi;
130 	u16 i = rx_ring->next_to_use;
131 
132 	/* nothing to do */
133 	if (!cleaned_count)
134 		return;
135 
136 	rx_desc = FM10K_RX_DESC(rx_ring, i);
137 	bi = &rx_ring->rx_buffer[i];
138 	i -= rx_ring->count;
139 
140 	do {
141 		if (!fm10k_alloc_mapped_page(rx_ring, bi))
142 			break;
143 
144 		/* Refresh the desc even if buffer_addrs didn't change
145 		 * because each write-back erases this info.
146 		 */
147 		rx_desc->q.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
148 
149 		rx_desc++;
150 		bi++;
151 		i++;
152 		if (unlikely(!i)) {
153 			rx_desc = FM10K_RX_DESC(rx_ring, 0);
154 			bi = rx_ring->rx_buffer;
155 			i -= rx_ring->count;
156 		}
157 
158 		/* clear the status bits for the next_to_use descriptor */
159 		rx_desc->d.staterr = 0;
160 
161 		cleaned_count--;
162 	} while (cleaned_count);
163 
164 	i += rx_ring->count;
165 
166 	if (rx_ring->next_to_use != i) {
167 		/* record the next descriptor to use */
168 		rx_ring->next_to_use = i;
169 
170 		/* update next to alloc since we have filled the ring */
171 		rx_ring->next_to_alloc = i;
172 
173 		/* Force memory writes to complete before letting h/w
174 		 * know there are new descriptors to fetch.  (Only
175 		 * applicable for weak-ordered memory model archs,
176 		 * such as IA-64).
177 		 */
178 		wmb();
179 
180 		/* notify hardware of new descriptors */
181 		writel(i, rx_ring->tail);
182 	}
183 }
184 
185 /**
186  * fm10k_reuse_rx_page - page flip buffer and store it back on the ring
187  * @rx_ring: rx descriptor ring to store buffers on
188  * @old_buff: donor buffer to have page reused
189  *
190  * Synchronizes page for reuse by the interface
191  **/
192 static void fm10k_reuse_rx_page(struct fm10k_ring *rx_ring,
193 				struct fm10k_rx_buffer *old_buff)
194 {
195 	struct fm10k_rx_buffer *new_buff;
196 	u16 nta = rx_ring->next_to_alloc;
197 
198 	new_buff = &rx_ring->rx_buffer[nta];
199 
200 	/* update, and store next to alloc */
201 	nta++;
202 	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
203 
204 	/* transfer page from old buffer to new buffer */
205 	*new_buff = *old_buff;
206 
207 	/* sync the buffer for use by the device */
208 	dma_sync_single_range_for_device(rx_ring->dev, old_buff->dma,
209 					 old_buff->page_offset,
210 					 FM10K_RX_BUFSZ,
211 					 DMA_FROM_DEVICE);
212 }
213 
214 static inline bool fm10k_page_is_reserved(struct page *page)
215 {
216 	return (page_to_nid(page) != numa_mem_id()) || page_is_pfmemalloc(page);
217 }
218 
219 static bool fm10k_can_reuse_rx_page(struct fm10k_rx_buffer *rx_buffer,
220 				    struct page *page,
221 				    unsigned int __maybe_unused truesize)
222 {
223 	/* avoid re-using remote pages */
224 	if (unlikely(fm10k_page_is_reserved(page)))
225 		return false;
226 
227 #if (PAGE_SIZE < 8192)
228 	/* if we are only owner of page we can reuse it */
229 	if (unlikely(page_count(page) != 1))
230 		return false;
231 
232 	/* flip page offset to other buffer */
233 	rx_buffer->page_offset ^= FM10K_RX_BUFSZ;
234 #else
235 	/* move offset up to the next cache line */
236 	rx_buffer->page_offset += truesize;
237 
238 	if (rx_buffer->page_offset > (PAGE_SIZE - FM10K_RX_BUFSZ))
239 		return false;
240 #endif
241 
242 	/* Even if we own the page, we are not allowed to use atomic_set()
243 	 * This would break get_page_unless_zero() users.
244 	 */
245 	page_ref_inc(page);
246 
247 	return true;
248 }
249 
250 /**
251  * fm10k_add_rx_frag - Add contents of Rx buffer to sk_buff
252  * @rx_buffer: buffer containing page to add
253  * @rx_desc: descriptor containing length of buffer written by hardware
254  * @skb: sk_buff to place the data into
255  *
256  * This function will add the data contained in rx_buffer->page to the skb.
257  * This is done either through a direct copy if the data in the buffer is
258  * less than the skb header size, otherwise it will just attach the page as
259  * a frag to the skb.
260  *
261  * The function will then update the page offset if necessary and return
262  * true if the buffer can be reused by the interface.
263  **/
264 static bool fm10k_add_rx_frag(struct fm10k_rx_buffer *rx_buffer,
265 			      union fm10k_rx_desc *rx_desc,
266 			      struct sk_buff *skb)
267 {
268 	struct page *page = rx_buffer->page;
269 	unsigned char *va = page_address(page) + rx_buffer->page_offset;
270 	unsigned int size = le16_to_cpu(rx_desc->w.length);
271 #if (PAGE_SIZE < 8192)
272 	unsigned int truesize = FM10K_RX_BUFSZ;
273 #else
274 	unsigned int truesize = ALIGN(size, 512);
275 #endif
276 	unsigned int pull_len;
277 
278 	if (unlikely(skb_is_nonlinear(skb)))
279 		goto add_tail_frag;
280 
281 	if (likely(size <= FM10K_RX_HDR_LEN)) {
282 		memcpy(__skb_put(skb, size), va, ALIGN(size, sizeof(long)));
283 
284 		/* page is not reserved, we can reuse buffer as-is */
285 		if (likely(!fm10k_page_is_reserved(page)))
286 			return true;
287 
288 		/* this page cannot be reused so discard it */
289 		__free_page(page);
290 		return false;
291 	}
292 
293 	/* we need the header to contain the greater of either ETH_HLEN or
294 	 * 60 bytes if the skb->len is less than 60 for skb_pad.
295 	 */
296 	pull_len = eth_get_headlen(va, FM10K_RX_HDR_LEN);
297 
298 	/* align pull length to size of long to optimize memcpy performance */
299 	memcpy(__skb_put(skb, pull_len), va, ALIGN(pull_len, sizeof(long)));
300 
301 	/* update all of the pointers */
302 	va += pull_len;
303 	size -= pull_len;
304 
305 add_tail_frag:
306 	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
307 			(unsigned long)va & ~PAGE_MASK, size, truesize);
308 
309 	return fm10k_can_reuse_rx_page(rx_buffer, page, truesize);
310 }
311 
312 static struct sk_buff *fm10k_fetch_rx_buffer(struct fm10k_ring *rx_ring,
313 					     union fm10k_rx_desc *rx_desc,
314 					     struct sk_buff *skb)
315 {
316 	struct fm10k_rx_buffer *rx_buffer;
317 	struct page *page;
318 
319 	rx_buffer = &rx_ring->rx_buffer[rx_ring->next_to_clean];
320 	page = rx_buffer->page;
321 	prefetchw(page);
322 
323 	if (likely(!skb)) {
324 		void *page_addr = page_address(page) +
325 				  rx_buffer->page_offset;
326 
327 		/* prefetch first cache line of first page */
328 		prefetch(page_addr);
329 #if L1_CACHE_BYTES < 128
330 		prefetch(page_addr + L1_CACHE_BYTES);
331 #endif
332 
333 		/* allocate a skb to store the frags */
334 		skb = napi_alloc_skb(&rx_ring->q_vector->napi,
335 				     FM10K_RX_HDR_LEN);
336 		if (unlikely(!skb)) {
337 			rx_ring->rx_stats.alloc_failed++;
338 			return NULL;
339 		}
340 
341 		/* we will be copying header into skb->data in
342 		 * pskb_may_pull so it is in our interest to prefetch
343 		 * it now to avoid a possible cache miss
344 		 */
345 		prefetchw(skb->data);
346 	}
347 
348 	/* we are reusing so sync this buffer for CPU use */
349 	dma_sync_single_range_for_cpu(rx_ring->dev,
350 				      rx_buffer->dma,
351 				      rx_buffer->page_offset,
352 				      FM10K_RX_BUFSZ,
353 				      DMA_FROM_DEVICE);
354 
355 	/* pull page into skb */
356 	if (fm10k_add_rx_frag(rx_buffer, rx_desc, skb)) {
357 		/* hand second half of page back to the ring */
358 		fm10k_reuse_rx_page(rx_ring, rx_buffer);
359 	} else {
360 		/* we are not reusing the buffer so unmap it */
361 		dma_unmap_page(rx_ring->dev, rx_buffer->dma,
362 			       PAGE_SIZE, DMA_FROM_DEVICE);
363 	}
364 
365 	/* clear contents of rx_buffer */
366 	rx_buffer->page = NULL;
367 
368 	return skb;
369 }
370 
371 static inline void fm10k_rx_checksum(struct fm10k_ring *ring,
372 				     union fm10k_rx_desc *rx_desc,
373 				     struct sk_buff *skb)
374 {
375 	skb_checksum_none_assert(skb);
376 
377 	/* Rx checksum disabled via ethtool */
378 	if (!(ring->netdev->features & NETIF_F_RXCSUM))
379 		return;
380 
381 	/* TCP/UDP checksum error bit is set */
382 	if (fm10k_test_staterr(rx_desc,
383 			       FM10K_RXD_STATUS_L4E |
384 			       FM10K_RXD_STATUS_L4E2 |
385 			       FM10K_RXD_STATUS_IPE |
386 			       FM10K_RXD_STATUS_IPE2)) {
387 		ring->rx_stats.csum_err++;
388 		return;
389 	}
390 
391 	/* It must be a TCP or UDP packet with a valid checksum */
392 	if (fm10k_test_staterr(rx_desc, FM10K_RXD_STATUS_L4CS2))
393 		skb->encapsulation = true;
394 	else if (!fm10k_test_staterr(rx_desc, FM10K_RXD_STATUS_L4CS))
395 		return;
396 
397 	skb->ip_summed = CHECKSUM_UNNECESSARY;
398 
399 	ring->rx_stats.csum_good++;
400 }
401 
402 #define FM10K_RSS_L4_TYPES_MASK \
403 	(BIT(FM10K_RSSTYPE_IPV4_TCP) | \
404 	 BIT(FM10K_RSSTYPE_IPV4_UDP) | \
405 	 BIT(FM10K_RSSTYPE_IPV6_TCP) | \
406 	 BIT(FM10K_RSSTYPE_IPV6_UDP))
407 
408 static inline void fm10k_rx_hash(struct fm10k_ring *ring,
409 				 union fm10k_rx_desc *rx_desc,
410 				 struct sk_buff *skb)
411 {
412 	u16 rss_type;
413 
414 	if (!(ring->netdev->features & NETIF_F_RXHASH))
415 		return;
416 
417 	rss_type = le16_to_cpu(rx_desc->w.pkt_info) & FM10K_RXD_RSSTYPE_MASK;
418 	if (!rss_type)
419 		return;
420 
421 	skb_set_hash(skb, le32_to_cpu(rx_desc->d.rss),
422 		     (BIT(rss_type) & FM10K_RSS_L4_TYPES_MASK) ?
423 		     PKT_HASH_TYPE_L4 : PKT_HASH_TYPE_L3);
424 }
425 
426 static void fm10k_type_trans(struct fm10k_ring *rx_ring,
427 			     union fm10k_rx_desc __maybe_unused *rx_desc,
428 			     struct sk_buff *skb)
429 {
430 	struct net_device *dev = rx_ring->netdev;
431 	struct fm10k_l2_accel *l2_accel = rcu_dereference_bh(rx_ring->l2_accel);
432 
433 	/* check to see if DGLORT belongs to a MACVLAN */
434 	if (l2_accel) {
435 		u16 idx = le16_to_cpu(FM10K_CB(skb)->fi.w.dglort) - 1;
436 
437 		idx -= l2_accel->dglort;
438 		if (idx < l2_accel->size && l2_accel->macvlan[idx])
439 			dev = l2_accel->macvlan[idx];
440 		else
441 			l2_accel = NULL;
442 	}
443 
444 	skb->protocol = eth_type_trans(skb, dev);
445 
446 	if (!l2_accel)
447 		return;
448 
449 	/* update MACVLAN statistics */
450 	macvlan_count_rx(netdev_priv(dev), skb->len + ETH_HLEN, 1,
451 			 !!(rx_desc->w.hdr_info &
452 			    cpu_to_le16(FM10K_RXD_HDR_INFO_XC_MASK)));
453 }
454 
455 /**
456  * fm10k_process_skb_fields - Populate skb header fields from Rx descriptor
457  * @rx_ring: rx descriptor ring packet is being transacted on
458  * @rx_desc: pointer to the EOP Rx descriptor
459  * @skb: pointer to current skb being populated
460  *
461  * This function checks the ring, descriptor, and packet information in
462  * order to populate the hash, checksum, VLAN, timestamp, protocol, and
463  * other fields within the skb.
464  **/
465 static unsigned int fm10k_process_skb_fields(struct fm10k_ring *rx_ring,
466 					     union fm10k_rx_desc *rx_desc,
467 					     struct sk_buff *skb)
468 {
469 	unsigned int len = skb->len;
470 
471 	fm10k_rx_hash(rx_ring, rx_desc, skb);
472 
473 	fm10k_rx_checksum(rx_ring, rx_desc, skb);
474 
475 	FM10K_CB(skb)->fi.w.vlan = rx_desc->w.vlan;
476 
477 	skb_record_rx_queue(skb, rx_ring->queue_index);
478 
479 	FM10K_CB(skb)->fi.d.glort = rx_desc->d.glort;
480 
481 	if (rx_desc->w.vlan) {
482 		u16 vid = le16_to_cpu(rx_desc->w.vlan);
483 
484 		if ((vid & VLAN_VID_MASK) != rx_ring->vid)
485 			__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
486 		else if (vid & VLAN_PRIO_MASK)
487 			__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
488 					       vid & VLAN_PRIO_MASK);
489 	}
490 
491 	fm10k_type_trans(rx_ring, rx_desc, skb);
492 
493 	return len;
494 }
495 
496 /**
497  * fm10k_is_non_eop - process handling of non-EOP buffers
498  * @rx_ring: Rx ring being processed
499  * @rx_desc: Rx descriptor for current buffer
500  *
501  * This function updates next to clean.  If the buffer is an EOP buffer
502  * this function exits returning false, otherwise it will place the
503  * sk_buff in the next buffer to be chained and return true indicating
504  * that this is in fact a non-EOP buffer.
505  **/
506 static bool fm10k_is_non_eop(struct fm10k_ring *rx_ring,
507 			     union fm10k_rx_desc *rx_desc)
508 {
509 	u32 ntc = rx_ring->next_to_clean + 1;
510 
511 	/* fetch, update, and store next to clean */
512 	ntc = (ntc < rx_ring->count) ? ntc : 0;
513 	rx_ring->next_to_clean = ntc;
514 
515 	prefetch(FM10K_RX_DESC(rx_ring, ntc));
516 
517 	if (likely(fm10k_test_staterr(rx_desc, FM10K_RXD_STATUS_EOP)))
518 		return false;
519 
520 	return true;
521 }
522 
523 /**
524  * fm10k_cleanup_headers - Correct corrupted or empty headers
525  * @rx_ring: rx descriptor ring packet is being transacted on
526  * @rx_desc: pointer to the EOP Rx descriptor
527  * @skb: pointer to current skb being fixed
528  *
529  * Address the case where we are pulling data in on pages only
530  * and as such no data is present in the skb header.
531  *
532  * In addition if skb is not at least 60 bytes we need to pad it so that
533  * it is large enough to qualify as a valid Ethernet frame.
534  *
535  * Returns true if an error was encountered and skb was freed.
536  **/
537 static bool fm10k_cleanup_headers(struct fm10k_ring *rx_ring,
538 				  union fm10k_rx_desc *rx_desc,
539 				  struct sk_buff *skb)
540 {
541 	if (unlikely((fm10k_test_staterr(rx_desc,
542 					 FM10K_RXD_STATUS_RXE)))) {
543 #define FM10K_TEST_RXD_BIT(rxd, bit) \
544 	((rxd)->w.csum_err & cpu_to_le16(bit))
545 		if (FM10K_TEST_RXD_BIT(rx_desc, FM10K_RXD_ERR_SWITCH_ERROR))
546 			rx_ring->rx_stats.switch_errors++;
547 		if (FM10K_TEST_RXD_BIT(rx_desc, FM10K_RXD_ERR_NO_DESCRIPTOR))
548 			rx_ring->rx_stats.drops++;
549 		if (FM10K_TEST_RXD_BIT(rx_desc, FM10K_RXD_ERR_PP_ERROR))
550 			rx_ring->rx_stats.pp_errors++;
551 		if (FM10K_TEST_RXD_BIT(rx_desc, FM10K_RXD_ERR_SWITCH_READY))
552 			rx_ring->rx_stats.link_errors++;
553 		if (FM10K_TEST_RXD_BIT(rx_desc, FM10K_RXD_ERR_TOO_BIG))
554 			rx_ring->rx_stats.length_errors++;
555 		dev_kfree_skb_any(skb);
556 		rx_ring->rx_stats.errors++;
557 		return true;
558 	}
559 
560 	/* if eth_skb_pad returns an error the skb was freed */
561 	if (eth_skb_pad(skb))
562 		return true;
563 
564 	return false;
565 }
566 
567 /**
568  * fm10k_receive_skb - helper function to handle rx indications
569  * @q_vector: structure containing interrupt and ring information
570  * @skb: packet to send up
571  **/
572 static void fm10k_receive_skb(struct fm10k_q_vector *q_vector,
573 			      struct sk_buff *skb)
574 {
575 	napi_gro_receive(&q_vector->napi, skb);
576 }
577 
578 static int fm10k_clean_rx_irq(struct fm10k_q_vector *q_vector,
579 			      struct fm10k_ring *rx_ring,
580 			      int budget)
581 {
582 	struct sk_buff *skb = rx_ring->skb;
583 	unsigned int total_bytes = 0, total_packets = 0;
584 	u16 cleaned_count = fm10k_desc_unused(rx_ring);
585 
586 	while (likely(total_packets < budget)) {
587 		union fm10k_rx_desc *rx_desc;
588 
589 		/* return some buffers to hardware, one at a time is too slow */
590 		if (cleaned_count >= FM10K_RX_BUFFER_WRITE) {
591 			fm10k_alloc_rx_buffers(rx_ring, cleaned_count);
592 			cleaned_count = 0;
593 		}
594 
595 		rx_desc = FM10K_RX_DESC(rx_ring, rx_ring->next_to_clean);
596 
597 		if (!rx_desc->d.staterr)
598 			break;
599 
600 		/* This memory barrier is needed to keep us from reading
601 		 * any other fields out of the rx_desc until we know the
602 		 * descriptor has been written back
603 		 */
604 		dma_rmb();
605 
606 		/* retrieve a buffer from the ring */
607 		skb = fm10k_fetch_rx_buffer(rx_ring, rx_desc, skb);
608 
609 		/* exit if we failed to retrieve a buffer */
610 		if (!skb)
611 			break;
612 
613 		cleaned_count++;
614 
615 		/* fetch next buffer in frame if non-eop */
616 		if (fm10k_is_non_eop(rx_ring, rx_desc))
617 			continue;
618 
619 		/* verify the packet layout is correct */
620 		if (fm10k_cleanup_headers(rx_ring, rx_desc, skb)) {
621 			skb = NULL;
622 			continue;
623 		}
624 
625 		/* populate checksum, timestamp, VLAN, and protocol */
626 		total_bytes += fm10k_process_skb_fields(rx_ring, rx_desc, skb);
627 
628 		fm10k_receive_skb(q_vector, skb);
629 
630 		/* reset skb pointer */
631 		skb = NULL;
632 
633 		/* update budget accounting */
634 		total_packets++;
635 	}
636 
637 	/* place incomplete frames back on ring for completion */
638 	rx_ring->skb = skb;
639 
640 	u64_stats_update_begin(&rx_ring->syncp);
641 	rx_ring->stats.packets += total_packets;
642 	rx_ring->stats.bytes += total_bytes;
643 	u64_stats_update_end(&rx_ring->syncp);
644 	q_vector->rx.total_packets += total_packets;
645 	q_vector->rx.total_bytes += total_bytes;
646 
647 	return total_packets;
648 }
649 
650 #define VXLAN_HLEN (sizeof(struct udphdr) + 8)
651 static struct ethhdr *fm10k_port_is_vxlan(struct sk_buff *skb)
652 {
653 	struct fm10k_intfc *interface = netdev_priv(skb->dev);
654 	struct fm10k_vxlan_port *vxlan_port;
655 
656 	/* we can only offload a vxlan if we recognize it as such */
657 	vxlan_port = list_first_entry_or_null(&interface->vxlan_port,
658 					      struct fm10k_vxlan_port, list);
659 
660 	if (!vxlan_port)
661 		return NULL;
662 	if (vxlan_port->port != udp_hdr(skb)->dest)
663 		return NULL;
664 
665 	/* return offset of udp_hdr plus 8 bytes for VXLAN header */
666 	return (struct ethhdr *)(skb_transport_header(skb) + VXLAN_HLEN);
667 }
668 
669 #define FM10K_NVGRE_RESERVED0_FLAGS htons(0x9FFF)
670 #define NVGRE_TNI htons(0x2000)
671 struct fm10k_nvgre_hdr {
672 	__be16 flags;
673 	__be16 proto;
674 	__be32 tni;
675 };
676 
677 static struct ethhdr *fm10k_gre_is_nvgre(struct sk_buff *skb)
678 {
679 	struct fm10k_nvgre_hdr *nvgre_hdr;
680 	int hlen = ip_hdrlen(skb);
681 
682 	/* currently only IPv4 is supported due to hlen above */
683 	if (vlan_get_protocol(skb) != htons(ETH_P_IP))
684 		return NULL;
685 
686 	/* our transport header should be NVGRE */
687 	nvgre_hdr = (struct fm10k_nvgre_hdr *)(skb_network_header(skb) + hlen);
688 
689 	/* verify all reserved flags are 0 */
690 	if (nvgre_hdr->flags & FM10K_NVGRE_RESERVED0_FLAGS)
691 		return NULL;
692 
693 	/* report start of ethernet header */
694 	if (nvgre_hdr->flags & NVGRE_TNI)
695 		return (struct ethhdr *)(nvgre_hdr + 1);
696 
697 	return (struct ethhdr *)(&nvgre_hdr->tni);
698 }
699 
700 __be16 fm10k_tx_encap_offload(struct sk_buff *skb)
701 {
702 	u8 l4_hdr = 0, inner_l4_hdr = 0, inner_l4_hlen;
703 	struct ethhdr *eth_hdr;
704 
705 	if (skb->inner_protocol_type != ENCAP_TYPE_ETHER ||
706 	    skb->inner_protocol != htons(ETH_P_TEB))
707 		return 0;
708 
709 	switch (vlan_get_protocol(skb)) {
710 	case htons(ETH_P_IP):
711 		l4_hdr = ip_hdr(skb)->protocol;
712 		break;
713 	case htons(ETH_P_IPV6):
714 		l4_hdr = ipv6_hdr(skb)->nexthdr;
715 		break;
716 	default:
717 		return 0;
718 	}
719 
720 	switch (l4_hdr) {
721 	case IPPROTO_UDP:
722 		eth_hdr = fm10k_port_is_vxlan(skb);
723 		break;
724 	case IPPROTO_GRE:
725 		eth_hdr = fm10k_gre_is_nvgre(skb);
726 		break;
727 	default:
728 		return 0;
729 	}
730 
731 	if (!eth_hdr)
732 		return 0;
733 
734 	switch (eth_hdr->h_proto) {
735 	case htons(ETH_P_IP):
736 		inner_l4_hdr = inner_ip_hdr(skb)->protocol;
737 		break;
738 	case htons(ETH_P_IPV6):
739 		inner_l4_hdr = inner_ipv6_hdr(skb)->nexthdr;
740 		break;
741 	default:
742 		return 0;
743 	}
744 
745 	switch (inner_l4_hdr) {
746 	case IPPROTO_TCP:
747 		inner_l4_hlen = inner_tcp_hdrlen(skb);
748 		break;
749 	case IPPROTO_UDP:
750 		inner_l4_hlen = 8;
751 		break;
752 	default:
753 		return 0;
754 	}
755 
756 	/* The hardware allows tunnel offloads only if the combined inner and
757 	 * outer header is 184 bytes or less
758 	 */
759 	if (skb_inner_transport_header(skb) + inner_l4_hlen -
760 	    skb_mac_header(skb) > FM10K_TUNNEL_HEADER_LENGTH)
761 		return 0;
762 
763 	return eth_hdr->h_proto;
764 }
765 
766 static int fm10k_tso(struct fm10k_ring *tx_ring,
767 		     struct fm10k_tx_buffer *first)
768 {
769 	struct sk_buff *skb = first->skb;
770 	struct fm10k_tx_desc *tx_desc;
771 	unsigned char *th;
772 	u8 hdrlen;
773 
774 	if (skb->ip_summed != CHECKSUM_PARTIAL)
775 		return 0;
776 
777 	if (!skb_is_gso(skb))
778 		return 0;
779 
780 	/* compute header lengths */
781 	if (skb->encapsulation) {
782 		if (!fm10k_tx_encap_offload(skb))
783 			goto err_vxlan;
784 		th = skb_inner_transport_header(skb);
785 	} else {
786 		th = skb_transport_header(skb);
787 	}
788 
789 	/* compute offset from SOF to transport header and add header len */
790 	hdrlen = (th - skb->data) + (((struct tcphdr *)th)->doff << 2);
791 
792 	first->tx_flags |= FM10K_TX_FLAGS_CSUM;
793 
794 	/* update gso size and bytecount with header size */
795 	first->gso_segs = skb_shinfo(skb)->gso_segs;
796 	first->bytecount += (first->gso_segs - 1) * hdrlen;
797 
798 	/* populate Tx descriptor header size and mss */
799 	tx_desc = FM10K_TX_DESC(tx_ring, tx_ring->next_to_use);
800 	tx_desc->hdrlen = hdrlen;
801 	tx_desc->mss = cpu_to_le16(skb_shinfo(skb)->gso_size);
802 
803 	return 1;
804 err_vxlan:
805 	tx_ring->netdev->features &= ~NETIF_F_GSO_UDP_TUNNEL;
806 	if (!net_ratelimit())
807 		netdev_err(tx_ring->netdev,
808 			   "TSO requested for unsupported tunnel, disabling offload\n");
809 	return -1;
810 }
811 
812 static void fm10k_tx_csum(struct fm10k_ring *tx_ring,
813 			  struct fm10k_tx_buffer *first)
814 {
815 	struct sk_buff *skb = first->skb;
816 	struct fm10k_tx_desc *tx_desc;
817 	union {
818 		struct iphdr *ipv4;
819 		struct ipv6hdr *ipv6;
820 		u8 *raw;
821 	} network_hdr;
822 	u8 *transport_hdr;
823 	__be16 frag_off;
824 	__be16 protocol;
825 	u8 l4_hdr = 0;
826 
827 	if (skb->ip_summed != CHECKSUM_PARTIAL)
828 		goto no_csum;
829 
830 	if (skb->encapsulation) {
831 		protocol = fm10k_tx_encap_offload(skb);
832 		if (!protocol) {
833 			if (skb_checksum_help(skb)) {
834 				dev_warn(tx_ring->dev,
835 					 "failed to offload encap csum!\n");
836 				tx_ring->tx_stats.csum_err++;
837 			}
838 			goto no_csum;
839 		}
840 		network_hdr.raw = skb_inner_network_header(skb);
841 		transport_hdr = skb_inner_transport_header(skb);
842 	} else {
843 		protocol = vlan_get_protocol(skb);
844 		network_hdr.raw = skb_network_header(skb);
845 		transport_hdr = skb_transport_header(skb);
846 	}
847 
848 	switch (protocol) {
849 	case htons(ETH_P_IP):
850 		l4_hdr = network_hdr.ipv4->protocol;
851 		break;
852 	case htons(ETH_P_IPV6):
853 		l4_hdr = network_hdr.ipv6->nexthdr;
854 		if (likely((transport_hdr - network_hdr.raw) ==
855 			   sizeof(struct ipv6hdr)))
856 			break;
857 		ipv6_skip_exthdr(skb, network_hdr.raw - skb->data +
858 				      sizeof(struct ipv6hdr),
859 				 &l4_hdr, &frag_off);
860 		if (unlikely(frag_off))
861 			l4_hdr = NEXTHDR_FRAGMENT;
862 		break;
863 	default:
864 		break;
865 	}
866 
867 	switch (l4_hdr) {
868 	case IPPROTO_TCP:
869 	case IPPROTO_UDP:
870 		break;
871 	case IPPROTO_GRE:
872 		if (skb->encapsulation)
873 			break;
874 	default:
875 		if (unlikely(net_ratelimit())) {
876 			dev_warn(tx_ring->dev,
877 				 "partial checksum, version=%d l4 proto=%x\n",
878 				 protocol, l4_hdr);
879 		}
880 		skb_checksum_help(skb);
881 		tx_ring->tx_stats.csum_err++;
882 		goto no_csum;
883 	}
884 
885 	/* update TX checksum flag */
886 	first->tx_flags |= FM10K_TX_FLAGS_CSUM;
887 	tx_ring->tx_stats.csum_good++;
888 
889 no_csum:
890 	/* populate Tx descriptor header size and mss */
891 	tx_desc = FM10K_TX_DESC(tx_ring, tx_ring->next_to_use);
892 	tx_desc->hdrlen = 0;
893 	tx_desc->mss = 0;
894 }
895 
896 #define FM10K_SET_FLAG(_input, _flag, _result) \
897 	((_flag <= _result) ? \
898 	 ((u32)(_input & _flag) * (_result / _flag)) : \
899 	 ((u32)(_input & _flag) / (_flag / _result)))
900 
901 static u8 fm10k_tx_desc_flags(struct sk_buff *skb, u32 tx_flags)
902 {
903 	/* set type for advanced descriptor with frame checksum insertion */
904 	u32 desc_flags = 0;
905 
906 	/* set checksum offload bits */
907 	desc_flags |= FM10K_SET_FLAG(tx_flags, FM10K_TX_FLAGS_CSUM,
908 				     FM10K_TXD_FLAG_CSUM);
909 
910 	return desc_flags;
911 }
912 
913 static bool fm10k_tx_desc_push(struct fm10k_ring *tx_ring,
914 			       struct fm10k_tx_desc *tx_desc, u16 i,
915 			       dma_addr_t dma, unsigned int size, u8 desc_flags)
916 {
917 	/* set RS and INT for last frame in a cache line */
918 	if ((++i & (FM10K_TXD_WB_FIFO_SIZE - 1)) == 0)
919 		desc_flags |= FM10K_TXD_FLAG_RS | FM10K_TXD_FLAG_INT;
920 
921 	/* record values to descriptor */
922 	tx_desc->buffer_addr = cpu_to_le64(dma);
923 	tx_desc->flags = desc_flags;
924 	tx_desc->buflen = cpu_to_le16(size);
925 
926 	/* return true if we just wrapped the ring */
927 	return i == tx_ring->count;
928 }
929 
930 static int __fm10k_maybe_stop_tx(struct fm10k_ring *tx_ring, u16 size)
931 {
932 	netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
933 
934 	/* Memory barrier before checking head and tail */
935 	smp_mb();
936 
937 	/* Check again in a case another CPU has just made room available */
938 	if (likely(fm10k_desc_unused(tx_ring) < size))
939 		return -EBUSY;
940 
941 	/* A reprieve! - use start_queue because it doesn't call schedule */
942 	netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
943 	++tx_ring->tx_stats.restart_queue;
944 	return 0;
945 }
946 
947 static inline int fm10k_maybe_stop_tx(struct fm10k_ring *tx_ring, u16 size)
948 {
949 	if (likely(fm10k_desc_unused(tx_ring) >= size))
950 		return 0;
951 	return __fm10k_maybe_stop_tx(tx_ring, size);
952 }
953 
954 static void fm10k_tx_map(struct fm10k_ring *tx_ring,
955 			 struct fm10k_tx_buffer *first)
956 {
957 	struct sk_buff *skb = first->skb;
958 	struct fm10k_tx_buffer *tx_buffer;
959 	struct fm10k_tx_desc *tx_desc;
960 	struct skb_frag_struct *frag;
961 	unsigned char *data;
962 	dma_addr_t dma;
963 	unsigned int data_len, size;
964 	u32 tx_flags = first->tx_flags;
965 	u16 i = tx_ring->next_to_use;
966 	u8 flags = fm10k_tx_desc_flags(skb, tx_flags);
967 
968 	tx_desc = FM10K_TX_DESC(tx_ring, i);
969 
970 	/* add HW VLAN tag */
971 	if (skb_vlan_tag_present(skb))
972 		tx_desc->vlan = cpu_to_le16(skb_vlan_tag_get(skb));
973 	else
974 		tx_desc->vlan = 0;
975 
976 	size = skb_headlen(skb);
977 	data = skb->data;
978 
979 	dma = dma_map_single(tx_ring->dev, data, size, DMA_TO_DEVICE);
980 
981 	data_len = skb->data_len;
982 	tx_buffer = first;
983 
984 	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
985 		if (dma_mapping_error(tx_ring->dev, dma))
986 			goto dma_error;
987 
988 		/* record length, and DMA address */
989 		dma_unmap_len_set(tx_buffer, len, size);
990 		dma_unmap_addr_set(tx_buffer, dma, dma);
991 
992 		while (unlikely(size > FM10K_MAX_DATA_PER_TXD)) {
993 			if (fm10k_tx_desc_push(tx_ring, tx_desc++, i++, dma,
994 					       FM10K_MAX_DATA_PER_TXD, flags)) {
995 				tx_desc = FM10K_TX_DESC(tx_ring, 0);
996 				i = 0;
997 			}
998 
999 			dma += FM10K_MAX_DATA_PER_TXD;
1000 			size -= FM10K_MAX_DATA_PER_TXD;
1001 		}
1002 
1003 		if (likely(!data_len))
1004 			break;
1005 
1006 		if (fm10k_tx_desc_push(tx_ring, tx_desc++, i++,
1007 				       dma, size, flags)) {
1008 			tx_desc = FM10K_TX_DESC(tx_ring, 0);
1009 			i = 0;
1010 		}
1011 
1012 		size = skb_frag_size(frag);
1013 		data_len -= size;
1014 
1015 		dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
1016 				       DMA_TO_DEVICE);
1017 
1018 		tx_buffer = &tx_ring->tx_buffer[i];
1019 	}
1020 
1021 	/* write last descriptor with LAST bit set */
1022 	flags |= FM10K_TXD_FLAG_LAST;
1023 
1024 	if (fm10k_tx_desc_push(tx_ring, tx_desc, i++, dma, size, flags))
1025 		i = 0;
1026 
1027 	/* record bytecount for BQL */
1028 	netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
1029 
1030 	/* record SW timestamp if HW timestamp is not available */
1031 	skb_tx_timestamp(first->skb);
1032 
1033 	/* Force memory writes to complete before letting h/w know there
1034 	 * are new descriptors to fetch.  (Only applicable for weak-ordered
1035 	 * memory model archs, such as IA-64).
1036 	 *
1037 	 * We also need this memory barrier to make certain all of the
1038 	 * status bits have been updated before next_to_watch is written.
1039 	 */
1040 	wmb();
1041 
1042 	/* set next_to_watch value indicating a packet is present */
1043 	first->next_to_watch = tx_desc;
1044 
1045 	tx_ring->next_to_use = i;
1046 
1047 	/* Make sure there is space in the ring for the next send. */
1048 	fm10k_maybe_stop_tx(tx_ring, DESC_NEEDED);
1049 
1050 	/* notify HW of packet */
1051 	if (netif_xmit_stopped(txring_txq(tx_ring)) || !skb->xmit_more) {
1052 		writel(i, tx_ring->tail);
1053 
1054 		/* we need this if more than one processor can write to our tail
1055 		 * at a time, it synchronizes IO on IA64/Altix systems
1056 		 */
1057 		mmiowb();
1058 	}
1059 
1060 	return;
1061 dma_error:
1062 	dev_err(tx_ring->dev, "TX DMA map failed\n");
1063 
1064 	/* clear dma mappings for failed tx_buffer map */
1065 	for (;;) {
1066 		tx_buffer = &tx_ring->tx_buffer[i];
1067 		fm10k_unmap_and_free_tx_resource(tx_ring, tx_buffer);
1068 		if (tx_buffer == first)
1069 			break;
1070 		if (i == 0)
1071 			i = tx_ring->count;
1072 		i--;
1073 	}
1074 
1075 	tx_ring->next_to_use = i;
1076 }
1077 
1078 netdev_tx_t fm10k_xmit_frame_ring(struct sk_buff *skb,
1079 				  struct fm10k_ring *tx_ring)
1080 {
1081 	u16 count = TXD_USE_COUNT(skb_headlen(skb));
1082 	struct fm10k_tx_buffer *first;
1083 	unsigned short f;
1084 	u32 tx_flags = 0;
1085 	int tso;
1086 
1087 	/* need: 1 descriptor per page * PAGE_SIZE/FM10K_MAX_DATA_PER_TXD,
1088 	 *       + 1 desc for skb_headlen/FM10K_MAX_DATA_PER_TXD,
1089 	 *       + 2 desc gap to keep tail from touching head
1090 	 * otherwise try next time
1091 	 */
1092 	for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
1093 		count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size);
1094 
1095 	if (fm10k_maybe_stop_tx(tx_ring, count + 3)) {
1096 		tx_ring->tx_stats.tx_busy++;
1097 		return NETDEV_TX_BUSY;
1098 	}
1099 
1100 	/* record the location of the first descriptor for this packet */
1101 	first = &tx_ring->tx_buffer[tx_ring->next_to_use];
1102 	first->skb = skb;
1103 	first->bytecount = max_t(unsigned int, skb->len, ETH_ZLEN);
1104 	first->gso_segs = 1;
1105 
1106 	/* record initial flags and protocol */
1107 	first->tx_flags = tx_flags;
1108 
1109 	tso = fm10k_tso(tx_ring, first);
1110 	if (tso < 0)
1111 		goto out_drop;
1112 	else if (!tso)
1113 		fm10k_tx_csum(tx_ring, first);
1114 
1115 	fm10k_tx_map(tx_ring, first);
1116 
1117 	return NETDEV_TX_OK;
1118 
1119 out_drop:
1120 	dev_kfree_skb_any(first->skb);
1121 	first->skb = NULL;
1122 
1123 	return NETDEV_TX_OK;
1124 }
1125 
1126 static u64 fm10k_get_tx_completed(struct fm10k_ring *ring)
1127 {
1128 	return ring->stats.packets;
1129 }
1130 
1131 u64 fm10k_get_tx_pending(struct fm10k_ring *ring)
1132 {
1133 	struct fm10k_intfc *interface = ring->q_vector->interface;
1134 	struct fm10k_hw *hw = &interface->hw;
1135 
1136 	u32 head = fm10k_read_reg(hw, FM10K_TDH(ring->reg_idx));
1137 	u32 tail = fm10k_read_reg(hw, FM10K_TDT(ring->reg_idx));
1138 
1139 	return ((head <= tail) ? tail : tail + ring->count) - head;
1140 }
1141 
1142 bool fm10k_check_tx_hang(struct fm10k_ring *tx_ring)
1143 {
1144 	u32 tx_done = fm10k_get_tx_completed(tx_ring);
1145 	u32 tx_done_old = tx_ring->tx_stats.tx_done_old;
1146 	u32 tx_pending = fm10k_get_tx_pending(tx_ring);
1147 
1148 	clear_check_for_tx_hang(tx_ring);
1149 
1150 	/* Check for a hung queue, but be thorough. This verifies
1151 	 * that a transmit has been completed since the previous
1152 	 * check AND there is at least one packet pending. By
1153 	 * requiring this to fail twice we avoid races with
1154 	 * clearing the ARMED bit and conditions where we
1155 	 * run the check_tx_hang logic with a transmit completion
1156 	 * pending but without time to complete it yet.
1157 	 */
1158 	if (!tx_pending || (tx_done_old != tx_done)) {
1159 		/* update completed stats and continue */
1160 		tx_ring->tx_stats.tx_done_old = tx_done;
1161 		/* reset the countdown */
1162 		clear_bit(__FM10K_HANG_CHECK_ARMED, &tx_ring->state);
1163 
1164 		return false;
1165 	}
1166 
1167 	/* make sure it is true for two checks in a row */
1168 	return test_and_set_bit(__FM10K_HANG_CHECK_ARMED, &tx_ring->state);
1169 }
1170 
1171 /**
1172  * fm10k_tx_timeout_reset - initiate reset due to Tx timeout
1173  * @interface: driver private struct
1174  **/
1175 void fm10k_tx_timeout_reset(struct fm10k_intfc *interface)
1176 {
1177 	/* Do the reset outside of interrupt context */
1178 	if (!test_bit(__FM10K_DOWN, &interface->state)) {
1179 		interface->tx_timeout_count++;
1180 		interface->flags |= FM10K_FLAG_RESET_REQUESTED;
1181 		fm10k_service_event_schedule(interface);
1182 	}
1183 }
1184 
1185 /**
1186  * fm10k_clean_tx_irq - Reclaim resources after transmit completes
1187  * @q_vector: structure containing interrupt and ring information
1188  * @tx_ring: tx ring to clean
1189  * @napi_budget: Used to determine if we are in netpoll
1190  **/
1191 static bool fm10k_clean_tx_irq(struct fm10k_q_vector *q_vector,
1192 			       struct fm10k_ring *tx_ring, int napi_budget)
1193 {
1194 	struct fm10k_intfc *interface = q_vector->interface;
1195 	struct fm10k_tx_buffer *tx_buffer;
1196 	struct fm10k_tx_desc *tx_desc;
1197 	unsigned int total_bytes = 0, total_packets = 0;
1198 	unsigned int budget = q_vector->tx.work_limit;
1199 	unsigned int i = tx_ring->next_to_clean;
1200 
1201 	if (test_bit(__FM10K_DOWN, &interface->state))
1202 		return true;
1203 
1204 	tx_buffer = &tx_ring->tx_buffer[i];
1205 	tx_desc = FM10K_TX_DESC(tx_ring, i);
1206 	i -= tx_ring->count;
1207 
1208 	do {
1209 		struct fm10k_tx_desc *eop_desc = tx_buffer->next_to_watch;
1210 
1211 		/* if next_to_watch is not set then there is no work pending */
1212 		if (!eop_desc)
1213 			break;
1214 
1215 		/* prevent any other reads prior to eop_desc */
1216 		read_barrier_depends();
1217 
1218 		/* if DD is not set pending work has not been completed */
1219 		if (!(eop_desc->flags & FM10K_TXD_FLAG_DONE))
1220 			break;
1221 
1222 		/* clear next_to_watch to prevent false hangs */
1223 		tx_buffer->next_to_watch = NULL;
1224 
1225 		/* update the statistics for this packet */
1226 		total_bytes += tx_buffer->bytecount;
1227 		total_packets += tx_buffer->gso_segs;
1228 
1229 		/* free the skb */
1230 		napi_consume_skb(tx_buffer->skb, napi_budget);
1231 
1232 		/* unmap skb header data */
1233 		dma_unmap_single(tx_ring->dev,
1234 				 dma_unmap_addr(tx_buffer, dma),
1235 				 dma_unmap_len(tx_buffer, len),
1236 				 DMA_TO_DEVICE);
1237 
1238 		/* clear tx_buffer data */
1239 		tx_buffer->skb = NULL;
1240 		dma_unmap_len_set(tx_buffer, len, 0);
1241 
1242 		/* unmap remaining buffers */
1243 		while (tx_desc != eop_desc) {
1244 			tx_buffer++;
1245 			tx_desc++;
1246 			i++;
1247 			if (unlikely(!i)) {
1248 				i -= tx_ring->count;
1249 				tx_buffer = tx_ring->tx_buffer;
1250 				tx_desc = FM10K_TX_DESC(tx_ring, 0);
1251 			}
1252 
1253 			/* unmap any remaining paged data */
1254 			if (dma_unmap_len(tx_buffer, len)) {
1255 				dma_unmap_page(tx_ring->dev,
1256 					       dma_unmap_addr(tx_buffer, dma),
1257 					       dma_unmap_len(tx_buffer, len),
1258 					       DMA_TO_DEVICE);
1259 				dma_unmap_len_set(tx_buffer, len, 0);
1260 			}
1261 		}
1262 
1263 		/* move us one more past the eop_desc for start of next pkt */
1264 		tx_buffer++;
1265 		tx_desc++;
1266 		i++;
1267 		if (unlikely(!i)) {
1268 			i -= tx_ring->count;
1269 			tx_buffer = tx_ring->tx_buffer;
1270 			tx_desc = FM10K_TX_DESC(tx_ring, 0);
1271 		}
1272 
1273 		/* issue prefetch for next Tx descriptor */
1274 		prefetch(tx_desc);
1275 
1276 		/* update budget accounting */
1277 		budget--;
1278 	} while (likely(budget));
1279 
1280 	i += tx_ring->count;
1281 	tx_ring->next_to_clean = i;
1282 	u64_stats_update_begin(&tx_ring->syncp);
1283 	tx_ring->stats.bytes += total_bytes;
1284 	tx_ring->stats.packets += total_packets;
1285 	u64_stats_update_end(&tx_ring->syncp);
1286 	q_vector->tx.total_bytes += total_bytes;
1287 	q_vector->tx.total_packets += total_packets;
1288 
1289 	if (check_for_tx_hang(tx_ring) && fm10k_check_tx_hang(tx_ring)) {
1290 		/* schedule immediate reset if we believe we hung */
1291 		struct fm10k_hw *hw = &interface->hw;
1292 
1293 		netif_err(interface, drv, tx_ring->netdev,
1294 			  "Detected Tx Unit Hang\n"
1295 			  "  Tx Queue             <%d>\n"
1296 			  "  TDH, TDT             <%x>, <%x>\n"
1297 			  "  next_to_use          <%x>\n"
1298 			  "  next_to_clean        <%x>\n",
1299 			  tx_ring->queue_index,
1300 			  fm10k_read_reg(hw, FM10K_TDH(tx_ring->reg_idx)),
1301 			  fm10k_read_reg(hw, FM10K_TDT(tx_ring->reg_idx)),
1302 			  tx_ring->next_to_use, i);
1303 
1304 		netif_stop_subqueue(tx_ring->netdev,
1305 				    tx_ring->queue_index);
1306 
1307 		netif_info(interface, probe, tx_ring->netdev,
1308 			   "tx hang %d detected on queue %d, resetting interface\n",
1309 			   interface->tx_timeout_count + 1,
1310 			   tx_ring->queue_index);
1311 
1312 		fm10k_tx_timeout_reset(interface);
1313 
1314 		/* the netdev is about to reset, no point in enabling stuff */
1315 		return true;
1316 	}
1317 
1318 	/* notify netdev of completed buffers */
1319 	netdev_tx_completed_queue(txring_txq(tx_ring),
1320 				  total_packets, total_bytes);
1321 
1322 #define TX_WAKE_THRESHOLD min_t(u16, FM10K_MIN_TXD - 1, DESC_NEEDED * 2)
1323 	if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
1324 		     (fm10k_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD))) {
1325 		/* Make sure that anybody stopping the queue after this
1326 		 * sees the new next_to_clean.
1327 		 */
1328 		smp_mb();
1329 		if (__netif_subqueue_stopped(tx_ring->netdev,
1330 					     tx_ring->queue_index) &&
1331 		    !test_bit(__FM10K_DOWN, &interface->state)) {
1332 			netif_wake_subqueue(tx_ring->netdev,
1333 					    tx_ring->queue_index);
1334 			++tx_ring->tx_stats.restart_queue;
1335 		}
1336 	}
1337 
1338 	return !!budget;
1339 }
1340 
1341 /**
1342  * fm10k_update_itr - update the dynamic ITR value based on packet size
1343  *
1344  *      Stores a new ITR value based on strictly on packet size.  The
1345  *      divisors and thresholds used by this function were determined based
1346  *      on theoretical maximum wire speed and testing data, in order to
1347  *      minimize response time while increasing bulk throughput.
1348  *
1349  * @ring_container: Container for rings to have ITR updated
1350  **/
1351 static void fm10k_update_itr(struct fm10k_ring_container *ring_container)
1352 {
1353 	unsigned int avg_wire_size, packets, itr_round;
1354 
1355 	/* Only update ITR if we are using adaptive setting */
1356 	if (!ITR_IS_ADAPTIVE(ring_container->itr))
1357 		goto clear_counts;
1358 
1359 	packets = ring_container->total_packets;
1360 	if (!packets)
1361 		goto clear_counts;
1362 
1363 	avg_wire_size = ring_container->total_bytes / packets;
1364 
1365 	/* The following is a crude approximation of:
1366 	 *  wmem_default / (size + overhead) = desired_pkts_per_int
1367 	 *  rate / bits_per_byte / (size + ethernet overhead) = pkt_rate
1368 	 *  (desired_pkt_rate / pkt_rate) * usecs_per_sec = ITR value
1369 	 *
1370 	 * Assuming wmem_default is 212992 and overhead is 640 bytes per
1371 	 * packet, (256 skb, 64 headroom, 320 shared info), we can reduce the
1372 	 * formula down to
1373 	 *
1374 	 *  (34 * (size + 24)) / (size + 640) = ITR
1375 	 *
1376 	 * We first do some math on the packet size and then finally bitshift
1377 	 * by 8 after rounding up. We also have to account for PCIe link speed
1378 	 * difference as ITR scales based on this.
1379 	 */
1380 	if (avg_wire_size <= 360) {
1381 		/* Start at 250K ints/sec and gradually drop to 77K ints/sec */
1382 		avg_wire_size *= 8;
1383 		avg_wire_size += 376;
1384 	} else if (avg_wire_size <= 1152) {
1385 		/* 77K ints/sec to 45K ints/sec */
1386 		avg_wire_size *= 3;
1387 		avg_wire_size += 2176;
1388 	} else if (avg_wire_size <= 1920) {
1389 		/* 45K ints/sec to 38K ints/sec */
1390 		avg_wire_size += 4480;
1391 	} else {
1392 		/* plateau at a limit of 38K ints/sec */
1393 		avg_wire_size = 6656;
1394 	}
1395 
1396 	/* Perform final bitshift for division after rounding up to ensure
1397 	 * that the calculation will never get below a 1. The bit shift
1398 	 * accounts for changes in the ITR due to PCIe link speed.
1399 	 */
1400 	itr_round = ACCESS_ONCE(ring_container->itr_scale) + 8;
1401 	avg_wire_size += BIT(itr_round) - 1;
1402 	avg_wire_size >>= itr_round;
1403 
1404 	/* write back value and retain adaptive flag */
1405 	ring_container->itr = avg_wire_size | FM10K_ITR_ADAPTIVE;
1406 
1407 clear_counts:
1408 	ring_container->total_bytes = 0;
1409 	ring_container->total_packets = 0;
1410 }
1411 
1412 static void fm10k_qv_enable(struct fm10k_q_vector *q_vector)
1413 {
1414 	/* Enable auto-mask and clear the current mask */
1415 	u32 itr = FM10K_ITR_ENABLE;
1416 
1417 	/* Update Tx ITR */
1418 	fm10k_update_itr(&q_vector->tx);
1419 
1420 	/* Update Rx ITR */
1421 	fm10k_update_itr(&q_vector->rx);
1422 
1423 	/* Store Tx itr in timer slot 0 */
1424 	itr |= (q_vector->tx.itr & FM10K_ITR_MAX);
1425 
1426 	/* Shift Rx itr to timer slot 1 */
1427 	itr |= (q_vector->rx.itr & FM10K_ITR_MAX) << FM10K_ITR_INTERVAL1_SHIFT;
1428 
1429 	/* Write the final value to the ITR register */
1430 	writel(itr, q_vector->itr);
1431 }
1432 
1433 static int fm10k_poll(struct napi_struct *napi, int budget)
1434 {
1435 	struct fm10k_q_vector *q_vector =
1436 			       container_of(napi, struct fm10k_q_vector, napi);
1437 	struct fm10k_ring *ring;
1438 	int per_ring_budget, work_done = 0;
1439 	bool clean_complete = true;
1440 
1441 	fm10k_for_each_ring(ring, q_vector->tx) {
1442 		if (!fm10k_clean_tx_irq(q_vector, ring, budget))
1443 			clean_complete = false;
1444 	}
1445 
1446 	/* Handle case where we are called by netpoll with a budget of 0 */
1447 	if (budget <= 0)
1448 		return budget;
1449 
1450 	/* attempt to distribute budget to each queue fairly, but don't
1451 	 * allow the budget to go below 1 because we'll exit polling
1452 	 */
1453 	if (q_vector->rx.count > 1)
1454 		per_ring_budget = max(budget / q_vector->rx.count, 1);
1455 	else
1456 		per_ring_budget = budget;
1457 
1458 	fm10k_for_each_ring(ring, q_vector->rx) {
1459 		int work = fm10k_clean_rx_irq(q_vector, ring, per_ring_budget);
1460 
1461 		work_done += work;
1462 		if (work >= per_ring_budget)
1463 			clean_complete = false;
1464 	}
1465 
1466 	/* If all work not completed, return budget and keep polling */
1467 	if (!clean_complete)
1468 		return budget;
1469 
1470 	/* all work done, exit the polling mode */
1471 	napi_complete_done(napi, work_done);
1472 
1473 	/* re-enable the q_vector */
1474 	fm10k_qv_enable(q_vector);
1475 
1476 	return 0;
1477 }
1478 
1479 /**
1480  * fm10k_set_qos_queues: Allocate queues for a QOS-enabled device
1481  * @interface: board private structure to initialize
1482  *
1483  * When QoS (Quality of Service) is enabled, allocate queues for
1484  * each traffic class.  If multiqueue isn't available,then abort QoS
1485  * initialization.
1486  *
1487  * This function handles all combinations of Qos and RSS.
1488  *
1489  **/
1490 static bool fm10k_set_qos_queues(struct fm10k_intfc *interface)
1491 {
1492 	struct net_device *dev = interface->netdev;
1493 	struct fm10k_ring_feature *f;
1494 	int rss_i, i;
1495 	int pcs;
1496 
1497 	/* Map queue offset and counts onto allocated tx queues */
1498 	pcs = netdev_get_num_tc(dev);
1499 
1500 	if (pcs <= 1)
1501 		return false;
1502 
1503 	/* set QoS mask and indices */
1504 	f = &interface->ring_feature[RING_F_QOS];
1505 	f->indices = pcs;
1506 	f->mask = BIT(fls(pcs - 1)) - 1;
1507 
1508 	/* determine the upper limit for our current DCB mode */
1509 	rss_i = interface->hw.mac.max_queues / pcs;
1510 	rss_i = BIT(fls(rss_i) - 1);
1511 
1512 	/* set RSS mask and indices */
1513 	f = &interface->ring_feature[RING_F_RSS];
1514 	rss_i = min_t(u16, rss_i, f->limit);
1515 	f->indices = rss_i;
1516 	f->mask = BIT(fls(rss_i - 1)) - 1;
1517 
1518 	/* configure pause class to queue mapping */
1519 	for (i = 0; i < pcs; i++)
1520 		netdev_set_tc_queue(dev, i, rss_i, rss_i * i);
1521 
1522 	interface->num_rx_queues = rss_i * pcs;
1523 	interface->num_tx_queues = rss_i * pcs;
1524 
1525 	return true;
1526 }
1527 
1528 /**
1529  * fm10k_set_rss_queues: Allocate queues for RSS
1530  * @interface: board private structure to initialize
1531  *
1532  * This is our "base" multiqueue mode.  RSS (Receive Side Scaling) will try
1533  * to allocate one Rx queue per CPU, and if available, one Tx queue per CPU.
1534  *
1535  **/
1536 static bool fm10k_set_rss_queues(struct fm10k_intfc *interface)
1537 {
1538 	struct fm10k_ring_feature *f;
1539 	u16 rss_i;
1540 
1541 	f = &interface->ring_feature[RING_F_RSS];
1542 	rss_i = min_t(u16, interface->hw.mac.max_queues, f->limit);
1543 
1544 	/* record indices and power of 2 mask for RSS */
1545 	f->indices = rss_i;
1546 	f->mask = BIT(fls(rss_i - 1)) - 1;
1547 
1548 	interface->num_rx_queues = rss_i;
1549 	interface->num_tx_queues = rss_i;
1550 
1551 	return true;
1552 }
1553 
1554 /**
1555  * fm10k_set_num_queues: Allocate queues for device, feature dependent
1556  * @interface: board private structure to initialize
1557  *
1558  * This is the top level queue allocation routine.  The order here is very
1559  * important, starting with the "most" number of features turned on at once,
1560  * and ending with the smallest set of features.  This way large combinations
1561  * can be allocated if they're turned on, and smaller combinations are the
1562  * fallthrough conditions.
1563  *
1564  **/
1565 static void fm10k_set_num_queues(struct fm10k_intfc *interface)
1566 {
1567 	/* Attempt to setup QoS and RSS first */
1568 	if (fm10k_set_qos_queues(interface))
1569 		return;
1570 
1571 	/* If we don't have QoS, just fallback to only RSS. */
1572 	fm10k_set_rss_queues(interface);
1573 }
1574 
1575 /**
1576  * fm10k_reset_num_queues - Reset the number of queues to zero
1577  * @interface: board private structure
1578  *
1579  * This function should be called whenever we need to reset the number of
1580  * queues after an error condition.
1581  */
1582 static void fm10k_reset_num_queues(struct fm10k_intfc *interface)
1583 {
1584 	interface->num_tx_queues = 0;
1585 	interface->num_rx_queues = 0;
1586 	interface->num_q_vectors = 0;
1587 }
1588 
1589 /**
1590  * fm10k_alloc_q_vector - Allocate memory for a single interrupt vector
1591  * @interface: board private structure to initialize
1592  * @v_count: q_vectors allocated on interface, used for ring interleaving
1593  * @v_idx: index of vector in interface struct
1594  * @txr_count: total number of Tx rings to allocate
1595  * @txr_idx: index of first Tx ring to allocate
1596  * @rxr_count: total number of Rx rings to allocate
1597  * @rxr_idx: index of first Rx ring to allocate
1598  *
1599  * We allocate one q_vector.  If allocation fails we return -ENOMEM.
1600  **/
1601 static int fm10k_alloc_q_vector(struct fm10k_intfc *interface,
1602 				unsigned int v_count, unsigned int v_idx,
1603 				unsigned int txr_count, unsigned int txr_idx,
1604 				unsigned int rxr_count, unsigned int rxr_idx)
1605 {
1606 	struct fm10k_q_vector *q_vector;
1607 	struct fm10k_ring *ring;
1608 	int ring_count, size;
1609 
1610 	ring_count = txr_count + rxr_count;
1611 	size = sizeof(struct fm10k_q_vector) +
1612 	       (sizeof(struct fm10k_ring) * ring_count);
1613 
1614 	/* allocate q_vector and rings */
1615 	q_vector = kzalloc(size, GFP_KERNEL);
1616 	if (!q_vector)
1617 		return -ENOMEM;
1618 
1619 	/* initialize NAPI */
1620 	netif_napi_add(interface->netdev, &q_vector->napi,
1621 		       fm10k_poll, NAPI_POLL_WEIGHT);
1622 
1623 	/* tie q_vector and interface together */
1624 	interface->q_vector[v_idx] = q_vector;
1625 	q_vector->interface = interface;
1626 	q_vector->v_idx = v_idx;
1627 
1628 	/* initialize pointer to rings */
1629 	ring = q_vector->ring;
1630 
1631 	/* save Tx ring container info */
1632 	q_vector->tx.ring = ring;
1633 	q_vector->tx.work_limit = FM10K_DEFAULT_TX_WORK;
1634 	q_vector->tx.itr = interface->tx_itr;
1635 	q_vector->tx.itr_scale = interface->hw.mac.itr_scale;
1636 	q_vector->tx.count = txr_count;
1637 
1638 	while (txr_count) {
1639 		/* assign generic ring traits */
1640 		ring->dev = &interface->pdev->dev;
1641 		ring->netdev = interface->netdev;
1642 
1643 		/* configure backlink on ring */
1644 		ring->q_vector = q_vector;
1645 
1646 		/* apply Tx specific ring traits */
1647 		ring->count = interface->tx_ring_count;
1648 		ring->queue_index = txr_idx;
1649 
1650 		/* assign ring to interface */
1651 		interface->tx_ring[txr_idx] = ring;
1652 
1653 		/* update count and index */
1654 		txr_count--;
1655 		txr_idx += v_count;
1656 
1657 		/* push pointer to next ring */
1658 		ring++;
1659 	}
1660 
1661 	/* save Rx ring container info */
1662 	q_vector->rx.ring = ring;
1663 	q_vector->rx.itr = interface->rx_itr;
1664 	q_vector->rx.itr_scale = interface->hw.mac.itr_scale;
1665 	q_vector->rx.count = rxr_count;
1666 
1667 	while (rxr_count) {
1668 		/* assign generic ring traits */
1669 		ring->dev = &interface->pdev->dev;
1670 		ring->netdev = interface->netdev;
1671 		rcu_assign_pointer(ring->l2_accel, interface->l2_accel);
1672 
1673 		/* configure backlink on ring */
1674 		ring->q_vector = q_vector;
1675 
1676 		/* apply Rx specific ring traits */
1677 		ring->count = interface->rx_ring_count;
1678 		ring->queue_index = rxr_idx;
1679 
1680 		/* assign ring to interface */
1681 		interface->rx_ring[rxr_idx] = ring;
1682 
1683 		/* update count and index */
1684 		rxr_count--;
1685 		rxr_idx += v_count;
1686 
1687 		/* push pointer to next ring */
1688 		ring++;
1689 	}
1690 
1691 	fm10k_dbg_q_vector_init(q_vector);
1692 
1693 	return 0;
1694 }
1695 
1696 /**
1697  * fm10k_free_q_vector - Free memory allocated for specific interrupt vector
1698  * @interface: board private structure to initialize
1699  * @v_idx: Index of vector to be freed
1700  *
1701  * This function frees the memory allocated to the q_vector.  In addition if
1702  * NAPI is enabled it will delete any references to the NAPI struct prior
1703  * to freeing the q_vector.
1704  **/
1705 static void fm10k_free_q_vector(struct fm10k_intfc *interface, int v_idx)
1706 {
1707 	struct fm10k_q_vector *q_vector = interface->q_vector[v_idx];
1708 	struct fm10k_ring *ring;
1709 
1710 	fm10k_dbg_q_vector_exit(q_vector);
1711 
1712 	fm10k_for_each_ring(ring, q_vector->tx)
1713 		interface->tx_ring[ring->queue_index] = NULL;
1714 
1715 	fm10k_for_each_ring(ring, q_vector->rx)
1716 		interface->rx_ring[ring->queue_index] = NULL;
1717 
1718 	interface->q_vector[v_idx] = NULL;
1719 	netif_napi_del(&q_vector->napi);
1720 	kfree_rcu(q_vector, rcu);
1721 }
1722 
1723 /**
1724  * fm10k_alloc_q_vectors - Allocate memory for interrupt vectors
1725  * @interface: board private structure to initialize
1726  *
1727  * We allocate one q_vector per queue interrupt.  If allocation fails we
1728  * return -ENOMEM.
1729  **/
1730 static int fm10k_alloc_q_vectors(struct fm10k_intfc *interface)
1731 {
1732 	unsigned int q_vectors = interface->num_q_vectors;
1733 	unsigned int rxr_remaining = interface->num_rx_queues;
1734 	unsigned int txr_remaining = interface->num_tx_queues;
1735 	unsigned int rxr_idx = 0, txr_idx = 0, v_idx = 0;
1736 	int err;
1737 
1738 	if (q_vectors >= (rxr_remaining + txr_remaining)) {
1739 		for (; rxr_remaining; v_idx++) {
1740 			err = fm10k_alloc_q_vector(interface, q_vectors, v_idx,
1741 						   0, 0, 1, rxr_idx);
1742 			if (err)
1743 				goto err_out;
1744 
1745 			/* update counts and index */
1746 			rxr_remaining--;
1747 			rxr_idx++;
1748 		}
1749 	}
1750 
1751 	for (; v_idx < q_vectors; v_idx++) {
1752 		int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
1753 		int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
1754 
1755 		err = fm10k_alloc_q_vector(interface, q_vectors, v_idx,
1756 					   tqpv, txr_idx,
1757 					   rqpv, rxr_idx);
1758 
1759 		if (err)
1760 			goto err_out;
1761 
1762 		/* update counts and index */
1763 		rxr_remaining -= rqpv;
1764 		txr_remaining -= tqpv;
1765 		rxr_idx++;
1766 		txr_idx++;
1767 	}
1768 
1769 	return 0;
1770 
1771 err_out:
1772 	fm10k_reset_num_queues(interface);
1773 
1774 	while (v_idx--)
1775 		fm10k_free_q_vector(interface, v_idx);
1776 
1777 	return -ENOMEM;
1778 }
1779 
1780 /**
1781  * fm10k_free_q_vectors - Free memory allocated for interrupt vectors
1782  * @interface: board private structure to initialize
1783  *
1784  * This function frees the memory allocated to the q_vectors.  In addition if
1785  * NAPI is enabled it will delete any references to the NAPI struct prior
1786  * to freeing the q_vector.
1787  **/
1788 static void fm10k_free_q_vectors(struct fm10k_intfc *interface)
1789 {
1790 	int v_idx = interface->num_q_vectors;
1791 
1792 	fm10k_reset_num_queues(interface);
1793 
1794 	while (v_idx--)
1795 		fm10k_free_q_vector(interface, v_idx);
1796 }
1797 
1798 /**
1799  * f10k_reset_msix_capability - reset MSI-X capability
1800  * @interface: board private structure to initialize
1801  *
1802  * Reset the MSI-X capability back to its starting state
1803  **/
1804 static void fm10k_reset_msix_capability(struct fm10k_intfc *interface)
1805 {
1806 	pci_disable_msix(interface->pdev);
1807 	kfree(interface->msix_entries);
1808 	interface->msix_entries = NULL;
1809 }
1810 
1811 /**
1812  * f10k_init_msix_capability - configure MSI-X capability
1813  * @interface: board private structure to initialize
1814  *
1815  * Attempt to configure the interrupts using the best available
1816  * capabilities of the hardware and the kernel.
1817  **/
1818 static int fm10k_init_msix_capability(struct fm10k_intfc *interface)
1819 {
1820 	struct fm10k_hw *hw = &interface->hw;
1821 	int v_budget, vector;
1822 
1823 	/* It's easy to be greedy for MSI-X vectors, but it really
1824 	 * doesn't do us much good if we have a lot more vectors
1825 	 * than CPU's.  So let's be conservative and only ask for
1826 	 * (roughly) the same number of vectors as there are CPU's.
1827 	 * the default is to use pairs of vectors
1828 	 */
1829 	v_budget = max(interface->num_rx_queues, interface->num_tx_queues);
1830 	v_budget = min_t(u16, v_budget, num_online_cpus());
1831 
1832 	/* account for vectors not related to queues */
1833 	v_budget += NON_Q_VECTORS(hw);
1834 
1835 	/* At the same time, hardware can only support a maximum of
1836 	 * hw.mac->max_msix_vectors vectors.  With features
1837 	 * such as RSS and VMDq, we can easily surpass the number of Rx and Tx
1838 	 * descriptor queues supported by our device.  Thus, we cap it off in
1839 	 * those rare cases where the cpu count also exceeds our vector limit.
1840 	 */
1841 	v_budget = min_t(int, v_budget, hw->mac.max_msix_vectors);
1842 
1843 	/* A failure in MSI-X entry allocation is fatal. */
1844 	interface->msix_entries = kcalloc(v_budget, sizeof(struct msix_entry),
1845 					  GFP_KERNEL);
1846 	if (!interface->msix_entries)
1847 		return -ENOMEM;
1848 
1849 	/* populate entry values */
1850 	for (vector = 0; vector < v_budget; vector++)
1851 		interface->msix_entries[vector].entry = vector;
1852 
1853 	/* Attempt to enable MSI-X with requested value */
1854 	v_budget = pci_enable_msix_range(interface->pdev,
1855 					 interface->msix_entries,
1856 					 MIN_MSIX_COUNT(hw),
1857 					 v_budget);
1858 	if (v_budget < 0) {
1859 		kfree(interface->msix_entries);
1860 		interface->msix_entries = NULL;
1861 		return v_budget;
1862 	}
1863 
1864 	/* record the number of queues available for q_vectors */
1865 	interface->num_q_vectors = v_budget - NON_Q_VECTORS(hw);
1866 
1867 	return 0;
1868 }
1869 
1870 /**
1871  * fm10k_cache_ring_qos - Descriptor ring to register mapping for QoS
1872  * @interface: Interface structure continaining rings and devices
1873  *
1874  * Cache the descriptor ring offsets for Qos
1875  **/
1876 static bool fm10k_cache_ring_qos(struct fm10k_intfc *interface)
1877 {
1878 	struct net_device *dev = interface->netdev;
1879 	int pc, offset, rss_i, i, q_idx;
1880 	u16 pc_stride = interface->ring_feature[RING_F_QOS].mask + 1;
1881 	u8 num_pcs = netdev_get_num_tc(dev);
1882 
1883 	if (num_pcs <= 1)
1884 		return false;
1885 
1886 	rss_i = interface->ring_feature[RING_F_RSS].indices;
1887 
1888 	for (pc = 0, offset = 0; pc < num_pcs; pc++, offset += rss_i) {
1889 		q_idx = pc;
1890 		for (i = 0; i < rss_i; i++) {
1891 			interface->tx_ring[offset + i]->reg_idx = q_idx;
1892 			interface->tx_ring[offset + i]->qos_pc = pc;
1893 			interface->rx_ring[offset + i]->reg_idx = q_idx;
1894 			interface->rx_ring[offset + i]->qos_pc = pc;
1895 			q_idx += pc_stride;
1896 		}
1897 	}
1898 
1899 	return true;
1900 }
1901 
1902 /**
1903  * fm10k_cache_ring_rss - Descriptor ring to register mapping for RSS
1904  * @interface: Interface structure continaining rings and devices
1905  *
1906  * Cache the descriptor ring offsets for RSS
1907  **/
1908 static void fm10k_cache_ring_rss(struct fm10k_intfc *interface)
1909 {
1910 	int i;
1911 
1912 	for (i = 0; i < interface->num_rx_queues; i++)
1913 		interface->rx_ring[i]->reg_idx = i;
1914 
1915 	for (i = 0; i < interface->num_tx_queues; i++)
1916 		interface->tx_ring[i]->reg_idx = i;
1917 }
1918 
1919 /**
1920  * fm10k_assign_rings - Map rings to network devices
1921  * @interface: Interface structure containing rings and devices
1922  *
1923  * This function is meant to go though and configure both the network
1924  * devices so that they contain rings, and configure the rings so that
1925  * they function with their network devices.
1926  **/
1927 static void fm10k_assign_rings(struct fm10k_intfc *interface)
1928 {
1929 	if (fm10k_cache_ring_qos(interface))
1930 		return;
1931 
1932 	fm10k_cache_ring_rss(interface);
1933 }
1934 
1935 static void fm10k_init_reta(struct fm10k_intfc *interface)
1936 {
1937 	u16 i, rss_i = interface->ring_feature[RING_F_RSS].indices;
1938 	u32 reta;
1939 
1940 	/* If the Rx flow indirection table has been configured manually, we
1941 	 * need to maintain it when possible.
1942 	 */
1943 	if (netif_is_rxfh_configured(interface->netdev)) {
1944 		for (i = FM10K_RETA_SIZE; i--;) {
1945 			reta = interface->reta[i];
1946 			if ((((reta << 24) >> 24) < rss_i) &&
1947 			    (((reta << 16) >> 24) < rss_i) &&
1948 			    (((reta <<  8) >> 24) < rss_i) &&
1949 			    (((reta)       >> 24) < rss_i))
1950 				continue;
1951 
1952 			/* this should never happen */
1953 			dev_err(&interface->pdev->dev,
1954 				"RSS indirection table assigned flows out of queue bounds. Reconfiguring.\n");
1955 			goto repopulate_reta;
1956 		}
1957 
1958 		/* do nothing if all of the elements are in bounds */
1959 		return;
1960 	}
1961 
1962 repopulate_reta:
1963 	fm10k_write_reta(interface, NULL);
1964 }
1965 
1966 /**
1967  * fm10k_init_queueing_scheme - Determine proper queueing scheme
1968  * @interface: board private structure to initialize
1969  *
1970  * We determine which queueing scheme to use based on...
1971  * - Hardware queue count (num_*_queues)
1972  *   - defined by miscellaneous hardware support/features (RSS, etc.)
1973  **/
1974 int fm10k_init_queueing_scheme(struct fm10k_intfc *interface)
1975 {
1976 	int err;
1977 
1978 	/* Number of supported queues */
1979 	fm10k_set_num_queues(interface);
1980 
1981 	/* Configure MSI-X capability */
1982 	err = fm10k_init_msix_capability(interface);
1983 	if (err) {
1984 		dev_err(&interface->pdev->dev,
1985 			"Unable to initialize MSI-X capability\n");
1986 		goto err_init_msix;
1987 	}
1988 
1989 	/* Allocate memory for queues */
1990 	err = fm10k_alloc_q_vectors(interface);
1991 	if (err) {
1992 		dev_err(&interface->pdev->dev,
1993 			"Unable to allocate queue vectors\n");
1994 		goto err_alloc_q_vectors;
1995 	}
1996 
1997 	/* Map rings to devices, and map devices to physical queues */
1998 	fm10k_assign_rings(interface);
1999 
2000 	/* Initialize RSS redirection table */
2001 	fm10k_init_reta(interface);
2002 
2003 	return 0;
2004 
2005 err_alloc_q_vectors:
2006 	fm10k_reset_msix_capability(interface);
2007 err_init_msix:
2008 	fm10k_reset_num_queues(interface);
2009 	return err;
2010 }
2011 
2012 /**
2013  * fm10k_clear_queueing_scheme - Clear the current queueing scheme settings
2014  * @interface: board private structure to clear queueing scheme on
2015  *
2016  * We go through and clear queueing specific resources and reset the structure
2017  * to pre-load conditions
2018  **/
2019 void fm10k_clear_queueing_scheme(struct fm10k_intfc *interface)
2020 {
2021 	fm10k_free_q_vectors(interface);
2022 	fm10k_reset_msix_capability(interface);
2023 }
2024