1 /* Intel(R) Ethernet Switch Host Interface Driver 2 * Copyright(c) 2013 - 2016 Intel Corporation. 3 * 4 * This program is free software; you can redistribute it and/or modify it 5 * under the terms and conditions of the GNU General Public License, 6 * version 2, as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope it will be useful, but WITHOUT 9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 11 * more details. 12 * 13 * The full GNU General Public License is included in this distribution in 14 * the file called "COPYING". 15 * 16 * Contact Information: 17 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> 18 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 19 */ 20 21 #include <linux/types.h> 22 #include <linux/module.h> 23 #include <net/ipv6.h> 24 #include <net/ip.h> 25 #include <net/tcp.h> 26 #include <linux/if_macvlan.h> 27 #include <linux/prefetch.h> 28 29 #include "fm10k.h" 30 31 #define DRV_VERSION "0.21.2-k" 32 #define DRV_SUMMARY "Intel(R) Ethernet Switch Host Interface Driver" 33 const char fm10k_driver_version[] = DRV_VERSION; 34 char fm10k_driver_name[] = "fm10k"; 35 static const char fm10k_driver_string[] = DRV_SUMMARY; 36 static const char fm10k_copyright[] = 37 "Copyright (c) 2013 - 2016 Intel Corporation."; 38 39 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>"); 40 MODULE_DESCRIPTION(DRV_SUMMARY); 41 MODULE_LICENSE("GPL"); 42 MODULE_VERSION(DRV_VERSION); 43 44 /* single workqueue for entire fm10k driver */ 45 struct workqueue_struct *fm10k_workqueue; 46 47 /** 48 * fm10k_init_module - Driver Registration Routine 49 * 50 * fm10k_init_module is the first routine called when the driver is 51 * loaded. All it does is register with the PCI subsystem. 52 **/ 53 static int __init fm10k_init_module(void) 54 { 55 pr_info("%s - version %s\n", fm10k_driver_string, fm10k_driver_version); 56 pr_info("%s\n", fm10k_copyright); 57 58 /* create driver workqueue */ 59 fm10k_workqueue = alloc_workqueue("fm10k", WQ_MEM_RECLAIM, 0); 60 61 fm10k_dbg_init(); 62 63 return fm10k_register_pci_driver(); 64 } 65 module_init(fm10k_init_module); 66 67 /** 68 * fm10k_exit_module - Driver Exit Cleanup Routine 69 * 70 * fm10k_exit_module is called just before the driver is removed 71 * from memory. 72 **/ 73 static void __exit fm10k_exit_module(void) 74 { 75 fm10k_unregister_pci_driver(); 76 77 fm10k_dbg_exit(); 78 79 /* destroy driver workqueue */ 80 destroy_workqueue(fm10k_workqueue); 81 } 82 module_exit(fm10k_exit_module); 83 84 static bool fm10k_alloc_mapped_page(struct fm10k_ring *rx_ring, 85 struct fm10k_rx_buffer *bi) 86 { 87 struct page *page = bi->page; 88 dma_addr_t dma; 89 90 /* Only page will be NULL if buffer was consumed */ 91 if (likely(page)) 92 return true; 93 94 /* alloc new page for storage */ 95 page = dev_alloc_page(); 96 if (unlikely(!page)) { 97 rx_ring->rx_stats.alloc_failed++; 98 return false; 99 } 100 101 /* map page for use */ 102 dma = dma_map_page(rx_ring->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE); 103 104 /* if mapping failed free memory back to system since 105 * there isn't much point in holding memory we can't use 106 */ 107 if (dma_mapping_error(rx_ring->dev, dma)) { 108 __free_page(page); 109 110 rx_ring->rx_stats.alloc_failed++; 111 return false; 112 } 113 114 bi->dma = dma; 115 bi->page = page; 116 bi->page_offset = 0; 117 118 return true; 119 } 120 121 /** 122 * fm10k_alloc_rx_buffers - Replace used receive buffers 123 * @rx_ring: ring to place buffers on 124 * @cleaned_count: number of buffers to replace 125 **/ 126 void fm10k_alloc_rx_buffers(struct fm10k_ring *rx_ring, u16 cleaned_count) 127 { 128 union fm10k_rx_desc *rx_desc; 129 struct fm10k_rx_buffer *bi; 130 u16 i = rx_ring->next_to_use; 131 132 /* nothing to do */ 133 if (!cleaned_count) 134 return; 135 136 rx_desc = FM10K_RX_DESC(rx_ring, i); 137 bi = &rx_ring->rx_buffer[i]; 138 i -= rx_ring->count; 139 140 do { 141 if (!fm10k_alloc_mapped_page(rx_ring, bi)) 142 break; 143 144 /* Refresh the desc even if buffer_addrs didn't change 145 * because each write-back erases this info. 146 */ 147 rx_desc->q.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset); 148 149 rx_desc++; 150 bi++; 151 i++; 152 if (unlikely(!i)) { 153 rx_desc = FM10K_RX_DESC(rx_ring, 0); 154 bi = rx_ring->rx_buffer; 155 i -= rx_ring->count; 156 } 157 158 /* clear the status bits for the next_to_use descriptor */ 159 rx_desc->d.staterr = 0; 160 161 cleaned_count--; 162 } while (cleaned_count); 163 164 i += rx_ring->count; 165 166 if (rx_ring->next_to_use != i) { 167 /* record the next descriptor to use */ 168 rx_ring->next_to_use = i; 169 170 /* update next to alloc since we have filled the ring */ 171 rx_ring->next_to_alloc = i; 172 173 /* Force memory writes to complete before letting h/w 174 * know there are new descriptors to fetch. (Only 175 * applicable for weak-ordered memory model archs, 176 * such as IA-64). 177 */ 178 wmb(); 179 180 /* notify hardware of new descriptors */ 181 writel(i, rx_ring->tail); 182 } 183 } 184 185 /** 186 * fm10k_reuse_rx_page - page flip buffer and store it back on the ring 187 * @rx_ring: rx descriptor ring to store buffers on 188 * @old_buff: donor buffer to have page reused 189 * 190 * Synchronizes page for reuse by the interface 191 **/ 192 static void fm10k_reuse_rx_page(struct fm10k_ring *rx_ring, 193 struct fm10k_rx_buffer *old_buff) 194 { 195 struct fm10k_rx_buffer *new_buff; 196 u16 nta = rx_ring->next_to_alloc; 197 198 new_buff = &rx_ring->rx_buffer[nta]; 199 200 /* update, and store next to alloc */ 201 nta++; 202 rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0; 203 204 /* transfer page from old buffer to new buffer */ 205 *new_buff = *old_buff; 206 207 /* sync the buffer for use by the device */ 208 dma_sync_single_range_for_device(rx_ring->dev, old_buff->dma, 209 old_buff->page_offset, 210 FM10K_RX_BUFSZ, 211 DMA_FROM_DEVICE); 212 } 213 214 static inline bool fm10k_page_is_reserved(struct page *page) 215 { 216 return (page_to_nid(page) != numa_mem_id()) || page_is_pfmemalloc(page); 217 } 218 219 static bool fm10k_can_reuse_rx_page(struct fm10k_rx_buffer *rx_buffer, 220 struct page *page, 221 unsigned int __maybe_unused truesize) 222 { 223 /* avoid re-using remote pages */ 224 if (unlikely(fm10k_page_is_reserved(page))) 225 return false; 226 227 #if (PAGE_SIZE < 8192) 228 /* if we are only owner of page we can reuse it */ 229 if (unlikely(page_count(page) != 1)) 230 return false; 231 232 /* flip page offset to other buffer */ 233 rx_buffer->page_offset ^= FM10K_RX_BUFSZ; 234 #else 235 /* move offset up to the next cache line */ 236 rx_buffer->page_offset += truesize; 237 238 if (rx_buffer->page_offset > (PAGE_SIZE - FM10K_RX_BUFSZ)) 239 return false; 240 #endif 241 242 /* Even if we own the page, we are not allowed to use atomic_set() 243 * This would break get_page_unless_zero() users. 244 */ 245 page_ref_inc(page); 246 247 return true; 248 } 249 250 /** 251 * fm10k_add_rx_frag - Add contents of Rx buffer to sk_buff 252 * @rx_buffer: buffer containing page to add 253 * @rx_desc: descriptor containing length of buffer written by hardware 254 * @skb: sk_buff to place the data into 255 * 256 * This function will add the data contained in rx_buffer->page to the skb. 257 * This is done either through a direct copy if the data in the buffer is 258 * less than the skb header size, otherwise it will just attach the page as 259 * a frag to the skb. 260 * 261 * The function will then update the page offset if necessary and return 262 * true if the buffer can be reused by the interface. 263 **/ 264 static bool fm10k_add_rx_frag(struct fm10k_rx_buffer *rx_buffer, 265 union fm10k_rx_desc *rx_desc, 266 struct sk_buff *skb) 267 { 268 struct page *page = rx_buffer->page; 269 unsigned char *va = page_address(page) + rx_buffer->page_offset; 270 unsigned int size = le16_to_cpu(rx_desc->w.length); 271 #if (PAGE_SIZE < 8192) 272 unsigned int truesize = FM10K_RX_BUFSZ; 273 #else 274 unsigned int truesize = ALIGN(size, 512); 275 #endif 276 unsigned int pull_len; 277 278 if (unlikely(skb_is_nonlinear(skb))) 279 goto add_tail_frag; 280 281 if (likely(size <= FM10K_RX_HDR_LEN)) { 282 memcpy(__skb_put(skb, size), va, ALIGN(size, sizeof(long))); 283 284 /* page is not reserved, we can reuse buffer as-is */ 285 if (likely(!fm10k_page_is_reserved(page))) 286 return true; 287 288 /* this page cannot be reused so discard it */ 289 __free_page(page); 290 return false; 291 } 292 293 /* we need the header to contain the greater of either ETH_HLEN or 294 * 60 bytes if the skb->len is less than 60 for skb_pad. 295 */ 296 pull_len = eth_get_headlen(va, FM10K_RX_HDR_LEN); 297 298 /* align pull length to size of long to optimize memcpy performance */ 299 memcpy(__skb_put(skb, pull_len), va, ALIGN(pull_len, sizeof(long))); 300 301 /* update all of the pointers */ 302 va += pull_len; 303 size -= pull_len; 304 305 add_tail_frag: 306 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page, 307 (unsigned long)va & ~PAGE_MASK, size, truesize); 308 309 return fm10k_can_reuse_rx_page(rx_buffer, page, truesize); 310 } 311 312 static struct sk_buff *fm10k_fetch_rx_buffer(struct fm10k_ring *rx_ring, 313 union fm10k_rx_desc *rx_desc, 314 struct sk_buff *skb) 315 { 316 struct fm10k_rx_buffer *rx_buffer; 317 struct page *page; 318 319 rx_buffer = &rx_ring->rx_buffer[rx_ring->next_to_clean]; 320 page = rx_buffer->page; 321 prefetchw(page); 322 323 if (likely(!skb)) { 324 void *page_addr = page_address(page) + 325 rx_buffer->page_offset; 326 327 /* prefetch first cache line of first page */ 328 prefetch(page_addr); 329 #if L1_CACHE_BYTES < 128 330 prefetch(page_addr + L1_CACHE_BYTES); 331 #endif 332 333 /* allocate a skb to store the frags */ 334 skb = napi_alloc_skb(&rx_ring->q_vector->napi, 335 FM10K_RX_HDR_LEN); 336 if (unlikely(!skb)) { 337 rx_ring->rx_stats.alloc_failed++; 338 return NULL; 339 } 340 341 /* we will be copying header into skb->data in 342 * pskb_may_pull so it is in our interest to prefetch 343 * it now to avoid a possible cache miss 344 */ 345 prefetchw(skb->data); 346 } 347 348 /* we are reusing so sync this buffer for CPU use */ 349 dma_sync_single_range_for_cpu(rx_ring->dev, 350 rx_buffer->dma, 351 rx_buffer->page_offset, 352 FM10K_RX_BUFSZ, 353 DMA_FROM_DEVICE); 354 355 /* pull page into skb */ 356 if (fm10k_add_rx_frag(rx_buffer, rx_desc, skb)) { 357 /* hand second half of page back to the ring */ 358 fm10k_reuse_rx_page(rx_ring, rx_buffer); 359 } else { 360 /* we are not reusing the buffer so unmap it */ 361 dma_unmap_page(rx_ring->dev, rx_buffer->dma, 362 PAGE_SIZE, DMA_FROM_DEVICE); 363 } 364 365 /* clear contents of rx_buffer */ 366 rx_buffer->page = NULL; 367 368 return skb; 369 } 370 371 static inline void fm10k_rx_checksum(struct fm10k_ring *ring, 372 union fm10k_rx_desc *rx_desc, 373 struct sk_buff *skb) 374 { 375 skb_checksum_none_assert(skb); 376 377 /* Rx checksum disabled via ethtool */ 378 if (!(ring->netdev->features & NETIF_F_RXCSUM)) 379 return; 380 381 /* TCP/UDP checksum error bit is set */ 382 if (fm10k_test_staterr(rx_desc, 383 FM10K_RXD_STATUS_L4E | 384 FM10K_RXD_STATUS_L4E2 | 385 FM10K_RXD_STATUS_IPE | 386 FM10K_RXD_STATUS_IPE2)) { 387 ring->rx_stats.csum_err++; 388 return; 389 } 390 391 /* It must be a TCP or UDP packet with a valid checksum */ 392 if (fm10k_test_staterr(rx_desc, FM10K_RXD_STATUS_L4CS2)) 393 skb->encapsulation = true; 394 else if (!fm10k_test_staterr(rx_desc, FM10K_RXD_STATUS_L4CS)) 395 return; 396 397 skb->ip_summed = CHECKSUM_UNNECESSARY; 398 399 ring->rx_stats.csum_good++; 400 } 401 402 #define FM10K_RSS_L4_TYPES_MASK \ 403 (BIT(FM10K_RSSTYPE_IPV4_TCP) | \ 404 BIT(FM10K_RSSTYPE_IPV4_UDP) | \ 405 BIT(FM10K_RSSTYPE_IPV6_TCP) | \ 406 BIT(FM10K_RSSTYPE_IPV6_UDP)) 407 408 static inline void fm10k_rx_hash(struct fm10k_ring *ring, 409 union fm10k_rx_desc *rx_desc, 410 struct sk_buff *skb) 411 { 412 u16 rss_type; 413 414 if (!(ring->netdev->features & NETIF_F_RXHASH)) 415 return; 416 417 rss_type = le16_to_cpu(rx_desc->w.pkt_info) & FM10K_RXD_RSSTYPE_MASK; 418 if (!rss_type) 419 return; 420 421 skb_set_hash(skb, le32_to_cpu(rx_desc->d.rss), 422 (BIT(rss_type) & FM10K_RSS_L4_TYPES_MASK) ? 423 PKT_HASH_TYPE_L4 : PKT_HASH_TYPE_L3); 424 } 425 426 static void fm10k_type_trans(struct fm10k_ring *rx_ring, 427 union fm10k_rx_desc __maybe_unused *rx_desc, 428 struct sk_buff *skb) 429 { 430 struct net_device *dev = rx_ring->netdev; 431 struct fm10k_l2_accel *l2_accel = rcu_dereference_bh(rx_ring->l2_accel); 432 433 /* check to see if DGLORT belongs to a MACVLAN */ 434 if (l2_accel) { 435 u16 idx = le16_to_cpu(FM10K_CB(skb)->fi.w.dglort) - 1; 436 437 idx -= l2_accel->dglort; 438 if (idx < l2_accel->size && l2_accel->macvlan[idx]) 439 dev = l2_accel->macvlan[idx]; 440 else 441 l2_accel = NULL; 442 } 443 444 skb->protocol = eth_type_trans(skb, dev); 445 446 if (!l2_accel) 447 return; 448 449 /* update MACVLAN statistics */ 450 macvlan_count_rx(netdev_priv(dev), skb->len + ETH_HLEN, 1, 451 !!(rx_desc->w.hdr_info & 452 cpu_to_le16(FM10K_RXD_HDR_INFO_XC_MASK))); 453 } 454 455 /** 456 * fm10k_process_skb_fields - Populate skb header fields from Rx descriptor 457 * @rx_ring: rx descriptor ring packet is being transacted on 458 * @rx_desc: pointer to the EOP Rx descriptor 459 * @skb: pointer to current skb being populated 460 * 461 * This function checks the ring, descriptor, and packet information in 462 * order to populate the hash, checksum, VLAN, timestamp, protocol, and 463 * other fields within the skb. 464 **/ 465 static unsigned int fm10k_process_skb_fields(struct fm10k_ring *rx_ring, 466 union fm10k_rx_desc *rx_desc, 467 struct sk_buff *skb) 468 { 469 unsigned int len = skb->len; 470 471 fm10k_rx_hash(rx_ring, rx_desc, skb); 472 473 fm10k_rx_checksum(rx_ring, rx_desc, skb); 474 475 FM10K_CB(skb)->fi.w.vlan = rx_desc->w.vlan; 476 477 skb_record_rx_queue(skb, rx_ring->queue_index); 478 479 FM10K_CB(skb)->fi.d.glort = rx_desc->d.glort; 480 481 if (rx_desc->w.vlan) { 482 u16 vid = le16_to_cpu(rx_desc->w.vlan); 483 484 if ((vid & VLAN_VID_MASK) != rx_ring->vid) 485 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid); 486 else if (vid & VLAN_PRIO_MASK) 487 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), 488 vid & VLAN_PRIO_MASK); 489 } 490 491 fm10k_type_trans(rx_ring, rx_desc, skb); 492 493 return len; 494 } 495 496 /** 497 * fm10k_is_non_eop - process handling of non-EOP buffers 498 * @rx_ring: Rx ring being processed 499 * @rx_desc: Rx descriptor for current buffer 500 * 501 * This function updates next to clean. If the buffer is an EOP buffer 502 * this function exits returning false, otherwise it will place the 503 * sk_buff in the next buffer to be chained and return true indicating 504 * that this is in fact a non-EOP buffer. 505 **/ 506 static bool fm10k_is_non_eop(struct fm10k_ring *rx_ring, 507 union fm10k_rx_desc *rx_desc) 508 { 509 u32 ntc = rx_ring->next_to_clean + 1; 510 511 /* fetch, update, and store next to clean */ 512 ntc = (ntc < rx_ring->count) ? ntc : 0; 513 rx_ring->next_to_clean = ntc; 514 515 prefetch(FM10K_RX_DESC(rx_ring, ntc)); 516 517 if (likely(fm10k_test_staterr(rx_desc, FM10K_RXD_STATUS_EOP))) 518 return false; 519 520 return true; 521 } 522 523 /** 524 * fm10k_cleanup_headers - Correct corrupted or empty headers 525 * @rx_ring: rx descriptor ring packet is being transacted on 526 * @rx_desc: pointer to the EOP Rx descriptor 527 * @skb: pointer to current skb being fixed 528 * 529 * Address the case where we are pulling data in on pages only 530 * and as such no data is present in the skb header. 531 * 532 * In addition if skb is not at least 60 bytes we need to pad it so that 533 * it is large enough to qualify as a valid Ethernet frame. 534 * 535 * Returns true if an error was encountered and skb was freed. 536 **/ 537 static bool fm10k_cleanup_headers(struct fm10k_ring *rx_ring, 538 union fm10k_rx_desc *rx_desc, 539 struct sk_buff *skb) 540 { 541 if (unlikely((fm10k_test_staterr(rx_desc, 542 FM10K_RXD_STATUS_RXE)))) { 543 #define FM10K_TEST_RXD_BIT(rxd, bit) \ 544 ((rxd)->w.csum_err & cpu_to_le16(bit)) 545 if (FM10K_TEST_RXD_BIT(rx_desc, FM10K_RXD_ERR_SWITCH_ERROR)) 546 rx_ring->rx_stats.switch_errors++; 547 if (FM10K_TEST_RXD_BIT(rx_desc, FM10K_RXD_ERR_NO_DESCRIPTOR)) 548 rx_ring->rx_stats.drops++; 549 if (FM10K_TEST_RXD_BIT(rx_desc, FM10K_RXD_ERR_PP_ERROR)) 550 rx_ring->rx_stats.pp_errors++; 551 if (FM10K_TEST_RXD_BIT(rx_desc, FM10K_RXD_ERR_SWITCH_READY)) 552 rx_ring->rx_stats.link_errors++; 553 if (FM10K_TEST_RXD_BIT(rx_desc, FM10K_RXD_ERR_TOO_BIG)) 554 rx_ring->rx_stats.length_errors++; 555 dev_kfree_skb_any(skb); 556 rx_ring->rx_stats.errors++; 557 return true; 558 } 559 560 /* if eth_skb_pad returns an error the skb was freed */ 561 if (eth_skb_pad(skb)) 562 return true; 563 564 return false; 565 } 566 567 /** 568 * fm10k_receive_skb - helper function to handle rx indications 569 * @q_vector: structure containing interrupt and ring information 570 * @skb: packet to send up 571 **/ 572 static void fm10k_receive_skb(struct fm10k_q_vector *q_vector, 573 struct sk_buff *skb) 574 { 575 napi_gro_receive(&q_vector->napi, skb); 576 } 577 578 static int fm10k_clean_rx_irq(struct fm10k_q_vector *q_vector, 579 struct fm10k_ring *rx_ring, 580 int budget) 581 { 582 struct sk_buff *skb = rx_ring->skb; 583 unsigned int total_bytes = 0, total_packets = 0; 584 u16 cleaned_count = fm10k_desc_unused(rx_ring); 585 586 while (likely(total_packets < budget)) { 587 union fm10k_rx_desc *rx_desc; 588 589 /* return some buffers to hardware, one at a time is too slow */ 590 if (cleaned_count >= FM10K_RX_BUFFER_WRITE) { 591 fm10k_alloc_rx_buffers(rx_ring, cleaned_count); 592 cleaned_count = 0; 593 } 594 595 rx_desc = FM10K_RX_DESC(rx_ring, rx_ring->next_to_clean); 596 597 if (!rx_desc->d.staterr) 598 break; 599 600 /* This memory barrier is needed to keep us from reading 601 * any other fields out of the rx_desc until we know the 602 * descriptor has been written back 603 */ 604 dma_rmb(); 605 606 /* retrieve a buffer from the ring */ 607 skb = fm10k_fetch_rx_buffer(rx_ring, rx_desc, skb); 608 609 /* exit if we failed to retrieve a buffer */ 610 if (!skb) 611 break; 612 613 cleaned_count++; 614 615 /* fetch next buffer in frame if non-eop */ 616 if (fm10k_is_non_eop(rx_ring, rx_desc)) 617 continue; 618 619 /* verify the packet layout is correct */ 620 if (fm10k_cleanup_headers(rx_ring, rx_desc, skb)) { 621 skb = NULL; 622 continue; 623 } 624 625 /* populate checksum, timestamp, VLAN, and protocol */ 626 total_bytes += fm10k_process_skb_fields(rx_ring, rx_desc, skb); 627 628 fm10k_receive_skb(q_vector, skb); 629 630 /* reset skb pointer */ 631 skb = NULL; 632 633 /* update budget accounting */ 634 total_packets++; 635 } 636 637 /* place incomplete frames back on ring for completion */ 638 rx_ring->skb = skb; 639 640 u64_stats_update_begin(&rx_ring->syncp); 641 rx_ring->stats.packets += total_packets; 642 rx_ring->stats.bytes += total_bytes; 643 u64_stats_update_end(&rx_ring->syncp); 644 q_vector->rx.total_packets += total_packets; 645 q_vector->rx.total_bytes += total_bytes; 646 647 return total_packets; 648 } 649 650 #define VXLAN_HLEN (sizeof(struct udphdr) + 8) 651 static struct ethhdr *fm10k_port_is_vxlan(struct sk_buff *skb) 652 { 653 struct fm10k_intfc *interface = netdev_priv(skb->dev); 654 struct fm10k_vxlan_port *vxlan_port; 655 656 /* we can only offload a vxlan if we recognize it as such */ 657 vxlan_port = list_first_entry_or_null(&interface->vxlan_port, 658 struct fm10k_vxlan_port, list); 659 660 if (!vxlan_port) 661 return NULL; 662 if (vxlan_port->port != udp_hdr(skb)->dest) 663 return NULL; 664 665 /* return offset of udp_hdr plus 8 bytes for VXLAN header */ 666 return (struct ethhdr *)(skb_transport_header(skb) + VXLAN_HLEN); 667 } 668 669 #define FM10K_NVGRE_RESERVED0_FLAGS htons(0x9FFF) 670 #define NVGRE_TNI htons(0x2000) 671 struct fm10k_nvgre_hdr { 672 __be16 flags; 673 __be16 proto; 674 __be32 tni; 675 }; 676 677 static struct ethhdr *fm10k_gre_is_nvgre(struct sk_buff *skb) 678 { 679 struct fm10k_nvgre_hdr *nvgre_hdr; 680 int hlen = ip_hdrlen(skb); 681 682 /* currently only IPv4 is supported due to hlen above */ 683 if (vlan_get_protocol(skb) != htons(ETH_P_IP)) 684 return NULL; 685 686 /* our transport header should be NVGRE */ 687 nvgre_hdr = (struct fm10k_nvgre_hdr *)(skb_network_header(skb) + hlen); 688 689 /* verify all reserved flags are 0 */ 690 if (nvgre_hdr->flags & FM10K_NVGRE_RESERVED0_FLAGS) 691 return NULL; 692 693 /* report start of ethernet header */ 694 if (nvgre_hdr->flags & NVGRE_TNI) 695 return (struct ethhdr *)(nvgre_hdr + 1); 696 697 return (struct ethhdr *)(&nvgre_hdr->tni); 698 } 699 700 __be16 fm10k_tx_encap_offload(struct sk_buff *skb) 701 { 702 u8 l4_hdr = 0, inner_l4_hdr = 0, inner_l4_hlen; 703 struct ethhdr *eth_hdr; 704 705 if (skb->inner_protocol_type != ENCAP_TYPE_ETHER || 706 skb->inner_protocol != htons(ETH_P_TEB)) 707 return 0; 708 709 switch (vlan_get_protocol(skb)) { 710 case htons(ETH_P_IP): 711 l4_hdr = ip_hdr(skb)->protocol; 712 break; 713 case htons(ETH_P_IPV6): 714 l4_hdr = ipv6_hdr(skb)->nexthdr; 715 break; 716 default: 717 return 0; 718 } 719 720 switch (l4_hdr) { 721 case IPPROTO_UDP: 722 eth_hdr = fm10k_port_is_vxlan(skb); 723 break; 724 case IPPROTO_GRE: 725 eth_hdr = fm10k_gre_is_nvgre(skb); 726 break; 727 default: 728 return 0; 729 } 730 731 if (!eth_hdr) 732 return 0; 733 734 switch (eth_hdr->h_proto) { 735 case htons(ETH_P_IP): 736 inner_l4_hdr = inner_ip_hdr(skb)->protocol; 737 break; 738 case htons(ETH_P_IPV6): 739 inner_l4_hdr = inner_ipv6_hdr(skb)->nexthdr; 740 break; 741 default: 742 return 0; 743 } 744 745 switch (inner_l4_hdr) { 746 case IPPROTO_TCP: 747 inner_l4_hlen = inner_tcp_hdrlen(skb); 748 break; 749 case IPPROTO_UDP: 750 inner_l4_hlen = 8; 751 break; 752 default: 753 return 0; 754 } 755 756 /* The hardware allows tunnel offloads only if the combined inner and 757 * outer header is 184 bytes or less 758 */ 759 if (skb_inner_transport_header(skb) + inner_l4_hlen - 760 skb_mac_header(skb) > FM10K_TUNNEL_HEADER_LENGTH) 761 return 0; 762 763 return eth_hdr->h_proto; 764 } 765 766 static int fm10k_tso(struct fm10k_ring *tx_ring, 767 struct fm10k_tx_buffer *first) 768 { 769 struct sk_buff *skb = first->skb; 770 struct fm10k_tx_desc *tx_desc; 771 unsigned char *th; 772 u8 hdrlen; 773 774 if (skb->ip_summed != CHECKSUM_PARTIAL) 775 return 0; 776 777 if (!skb_is_gso(skb)) 778 return 0; 779 780 /* compute header lengths */ 781 if (skb->encapsulation) { 782 if (!fm10k_tx_encap_offload(skb)) 783 goto err_vxlan; 784 th = skb_inner_transport_header(skb); 785 } else { 786 th = skb_transport_header(skb); 787 } 788 789 /* compute offset from SOF to transport header and add header len */ 790 hdrlen = (th - skb->data) + (((struct tcphdr *)th)->doff << 2); 791 792 first->tx_flags |= FM10K_TX_FLAGS_CSUM; 793 794 /* update gso size and bytecount with header size */ 795 first->gso_segs = skb_shinfo(skb)->gso_segs; 796 first->bytecount += (first->gso_segs - 1) * hdrlen; 797 798 /* populate Tx descriptor header size and mss */ 799 tx_desc = FM10K_TX_DESC(tx_ring, tx_ring->next_to_use); 800 tx_desc->hdrlen = hdrlen; 801 tx_desc->mss = cpu_to_le16(skb_shinfo(skb)->gso_size); 802 803 return 1; 804 err_vxlan: 805 tx_ring->netdev->features &= ~NETIF_F_GSO_UDP_TUNNEL; 806 if (!net_ratelimit()) 807 netdev_err(tx_ring->netdev, 808 "TSO requested for unsupported tunnel, disabling offload\n"); 809 return -1; 810 } 811 812 static void fm10k_tx_csum(struct fm10k_ring *tx_ring, 813 struct fm10k_tx_buffer *first) 814 { 815 struct sk_buff *skb = first->skb; 816 struct fm10k_tx_desc *tx_desc; 817 union { 818 struct iphdr *ipv4; 819 struct ipv6hdr *ipv6; 820 u8 *raw; 821 } network_hdr; 822 u8 *transport_hdr; 823 __be16 frag_off; 824 __be16 protocol; 825 u8 l4_hdr = 0; 826 827 if (skb->ip_summed != CHECKSUM_PARTIAL) 828 goto no_csum; 829 830 if (skb->encapsulation) { 831 protocol = fm10k_tx_encap_offload(skb); 832 if (!protocol) { 833 if (skb_checksum_help(skb)) { 834 dev_warn(tx_ring->dev, 835 "failed to offload encap csum!\n"); 836 tx_ring->tx_stats.csum_err++; 837 } 838 goto no_csum; 839 } 840 network_hdr.raw = skb_inner_network_header(skb); 841 transport_hdr = skb_inner_transport_header(skb); 842 } else { 843 protocol = vlan_get_protocol(skb); 844 network_hdr.raw = skb_network_header(skb); 845 transport_hdr = skb_transport_header(skb); 846 } 847 848 switch (protocol) { 849 case htons(ETH_P_IP): 850 l4_hdr = network_hdr.ipv4->protocol; 851 break; 852 case htons(ETH_P_IPV6): 853 l4_hdr = network_hdr.ipv6->nexthdr; 854 if (likely((transport_hdr - network_hdr.raw) == 855 sizeof(struct ipv6hdr))) 856 break; 857 ipv6_skip_exthdr(skb, network_hdr.raw - skb->data + 858 sizeof(struct ipv6hdr), 859 &l4_hdr, &frag_off); 860 if (unlikely(frag_off)) 861 l4_hdr = NEXTHDR_FRAGMENT; 862 break; 863 default: 864 break; 865 } 866 867 switch (l4_hdr) { 868 case IPPROTO_TCP: 869 case IPPROTO_UDP: 870 break; 871 case IPPROTO_GRE: 872 if (skb->encapsulation) 873 break; 874 default: 875 if (unlikely(net_ratelimit())) { 876 dev_warn(tx_ring->dev, 877 "partial checksum, version=%d l4 proto=%x\n", 878 protocol, l4_hdr); 879 } 880 skb_checksum_help(skb); 881 tx_ring->tx_stats.csum_err++; 882 goto no_csum; 883 } 884 885 /* update TX checksum flag */ 886 first->tx_flags |= FM10K_TX_FLAGS_CSUM; 887 tx_ring->tx_stats.csum_good++; 888 889 no_csum: 890 /* populate Tx descriptor header size and mss */ 891 tx_desc = FM10K_TX_DESC(tx_ring, tx_ring->next_to_use); 892 tx_desc->hdrlen = 0; 893 tx_desc->mss = 0; 894 } 895 896 #define FM10K_SET_FLAG(_input, _flag, _result) \ 897 ((_flag <= _result) ? \ 898 ((u32)(_input & _flag) * (_result / _flag)) : \ 899 ((u32)(_input & _flag) / (_flag / _result))) 900 901 static u8 fm10k_tx_desc_flags(struct sk_buff *skb, u32 tx_flags) 902 { 903 /* set type for advanced descriptor with frame checksum insertion */ 904 u32 desc_flags = 0; 905 906 /* set checksum offload bits */ 907 desc_flags |= FM10K_SET_FLAG(tx_flags, FM10K_TX_FLAGS_CSUM, 908 FM10K_TXD_FLAG_CSUM); 909 910 return desc_flags; 911 } 912 913 static bool fm10k_tx_desc_push(struct fm10k_ring *tx_ring, 914 struct fm10k_tx_desc *tx_desc, u16 i, 915 dma_addr_t dma, unsigned int size, u8 desc_flags) 916 { 917 /* set RS and INT for last frame in a cache line */ 918 if ((++i & (FM10K_TXD_WB_FIFO_SIZE - 1)) == 0) 919 desc_flags |= FM10K_TXD_FLAG_RS | FM10K_TXD_FLAG_INT; 920 921 /* record values to descriptor */ 922 tx_desc->buffer_addr = cpu_to_le64(dma); 923 tx_desc->flags = desc_flags; 924 tx_desc->buflen = cpu_to_le16(size); 925 926 /* return true if we just wrapped the ring */ 927 return i == tx_ring->count; 928 } 929 930 static int __fm10k_maybe_stop_tx(struct fm10k_ring *tx_ring, u16 size) 931 { 932 netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index); 933 934 /* Memory barrier before checking head and tail */ 935 smp_mb(); 936 937 /* Check again in a case another CPU has just made room available */ 938 if (likely(fm10k_desc_unused(tx_ring) < size)) 939 return -EBUSY; 940 941 /* A reprieve! - use start_queue because it doesn't call schedule */ 942 netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index); 943 ++tx_ring->tx_stats.restart_queue; 944 return 0; 945 } 946 947 static inline int fm10k_maybe_stop_tx(struct fm10k_ring *tx_ring, u16 size) 948 { 949 if (likely(fm10k_desc_unused(tx_ring) >= size)) 950 return 0; 951 return __fm10k_maybe_stop_tx(tx_ring, size); 952 } 953 954 static void fm10k_tx_map(struct fm10k_ring *tx_ring, 955 struct fm10k_tx_buffer *first) 956 { 957 struct sk_buff *skb = first->skb; 958 struct fm10k_tx_buffer *tx_buffer; 959 struct fm10k_tx_desc *tx_desc; 960 struct skb_frag_struct *frag; 961 unsigned char *data; 962 dma_addr_t dma; 963 unsigned int data_len, size; 964 u32 tx_flags = first->tx_flags; 965 u16 i = tx_ring->next_to_use; 966 u8 flags = fm10k_tx_desc_flags(skb, tx_flags); 967 968 tx_desc = FM10K_TX_DESC(tx_ring, i); 969 970 /* add HW VLAN tag */ 971 if (skb_vlan_tag_present(skb)) 972 tx_desc->vlan = cpu_to_le16(skb_vlan_tag_get(skb)); 973 else 974 tx_desc->vlan = 0; 975 976 size = skb_headlen(skb); 977 data = skb->data; 978 979 dma = dma_map_single(tx_ring->dev, data, size, DMA_TO_DEVICE); 980 981 data_len = skb->data_len; 982 tx_buffer = first; 983 984 for (frag = &skb_shinfo(skb)->frags[0];; frag++) { 985 if (dma_mapping_error(tx_ring->dev, dma)) 986 goto dma_error; 987 988 /* record length, and DMA address */ 989 dma_unmap_len_set(tx_buffer, len, size); 990 dma_unmap_addr_set(tx_buffer, dma, dma); 991 992 while (unlikely(size > FM10K_MAX_DATA_PER_TXD)) { 993 if (fm10k_tx_desc_push(tx_ring, tx_desc++, i++, dma, 994 FM10K_MAX_DATA_PER_TXD, flags)) { 995 tx_desc = FM10K_TX_DESC(tx_ring, 0); 996 i = 0; 997 } 998 999 dma += FM10K_MAX_DATA_PER_TXD; 1000 size -= FM10K_MAX_DATA_PER_TXD; 1001 } 1002 1003 if (likely(!data_len)) 1004 break; 1005 1006 if (fm10k_tx_desc_push(tx_ring, tx_desc++, i++, 1007 dma, size, flags)) { 1008 tx_desc = FM10K_TX_DESC(tx_ring, 0); 1009 i = 0; 1010 } 1011 1012 size = skb_frag_size(frag); 1013 data_len -= size; 1014 1015 dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size, 1016 DMA_TO_DEVICE); 1017 1018 tx_buffer = &tx_ring->tx_buffer[i]; 1019 } 1020 1021 /* write last descriptor with LAST bit set */ 1022 flags |= FM10K_TXD_FLAG_LAST; 1023 1024 if (fm10k_tx_desc_push(tx_ring, tx_desc, i++, dma, size, flags)) 1025 i = 0; 1026 1027 /* record bytecount for BQL */ 1028 netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount); 1029 1030 /* record SW timestamp if HW timestamp is not available */ 1031 skb_tx_timestamp(first->skb); 1032 1033 /* Force memory writes to complete before letting h/w know there 1034 * are new descriptors to fetch. (Only applicable for weak-ordered 1035 * memory model archs, such as IA-64). 1036 * 1037 * We also need this memory barrier to make certain all of the 1038 * status bits have been updated before next_to_watch is written. 1039 */ 1040 wmb(); 1041 1042 /* set next_to_watch value indicating a packet is present */ 1043 first->next_to_watch = tx_desc; 1044 1045 tx_ring->next_to_use = i; 1046 1047 /* Make sure there is space in the ring for the next send. */ 1048 fm10k_maybe_stop_tx(tx_ring, DESC_NEEDED); 1049 1050 /* notify HW of packet */ 1051 if (netif_xmit_stopped(txring_txq(tx_ring)) || !skb->xmit_more) { 1052 writel(i, tx_ring->tail); 1053 1054 /* we need this if more than one processor can write to our tail 1055 * at a time, it synchronizes IO on IA64/Altix systems 1056 */ 1057 mmiowb(); 1058 } 1059 1060 return; 1061 dma_error: 1062 dev_err(tx_ring->dev, "TX DMA map failed\n"); 1063 1064 /* clear dma mappings for failed tx_buffer map */ 1065 for (;;) { 1066 tx_buffer = &tx_ring->tx_buffer[i]; 1067 fm10k_unmap_and_free_tx_resource(tx_ring, tx_buffer); 1068 if (tx_buffer == first) 1069 break; 1070 if (i == 0) 1071 i = tx_ring->count; 1072 i--; 1073 } 1074 1075 tx_ring->next_to_use = i; 1076 } 1077 1078 netdev_tx_t fm10k_xmit_frame_ring(struct sk_buff *skb, 1079 struct fm10k_ring *tx_ring) 1080 { 1081 u16 count = TXD_USE_COUNT(skb_headlen(skb)); 1082 struct fm10k_tx_buffer *first; 1083 unsigned short f; 1084 u32 tx_flags = 0; 1085 int tso; 1086 1087 /* need: 1 descriptor per page * PAGE_SIZE/FM10K_MAX_DATA_PER_TXD, 1088 * + 1 desc for skb_headlen/FM10K_MAX_DATA_PER_TXD, 1089 * + 2 desc gap to keep tail from touching head 1090 * otherwise try next time 1091 */ 1092 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) 1093 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size); 1094 1095 if (fm10k_maybe_stop_tx(tx_ring, count + 3)) { 1096 tx_ring->tx_stats.tx_busy++; 1097 return NETDEV_TX_BUSY; 1098 } 1099 1100 /* record the location of the first descriptor for this packet */ 1101 first = &tx_ring->tx_buffer[tx_ring->next_to_use]; 1102 first->skb = skb; 1103 first->bytecount = max_t(unsigned int, skb->len, ETH_ZLEN); 1104 first->gso_segs = 1; 1105 1106 /* record initial flags and protocol */ 1107 first->tx_flags = tx_flags; 1108 1109 tso = fm10k_tso(tx_ring, first); 1110 if (tso < 0) 1111 goto out_drop; 1112 else if (!tso) 1113 fm10k_tx_csum(tx_ring, first); 1114 1115 fm10k_tx_map(tx_ring, first); 1116 1117 return NETDEV_TX_OK; 1118 1119 out_drop: 1120 dev_kfree_skb_any(first->skb); 1121 first->skb = NULL; 1122 1123 return NETDEV_TX_OK; 1124 } 1125 1126 static u64 fm10k_get_tx_completed(struct fm10k_ring *ring) 1127 { 1128 return ring->stats.packets; 1129 } 1130 1131 u64 fm10k_get_tx_pending(struct fm10k_ring *ring) 1132 { 1133 struct fm10k_intfc *interface = ring->q_vector->interface; 1134 struct fm10k_hw *hw = &interface->hw; 1135 1136 u32 head = fm10k_read_reg(hw, FM10K_TDH(ring->reg_idx)); 1137 u32 tail = fm10k_read_reg(hw, FM10K_TDT(ring->reg_idx)); 1138 1139 return ((head <= tail) ? tail : tail + ring->count) - head; 1140 } 1141 1142 bool fm10k_check_tx_hang(struct fm10k_ring *tx_ring) 1143 { 1144 u32 tx_done = fm10k_get_tx_completed(tx_ring); 1145 u32 tx_done_old = tx_ring->tx_stats.tx_done_old; 1146 u32 tx_pending = fm10k_get_tx_pending(tx_ring); 1147 1148 clear_check_for_tx_hang(tx_ring); 1149 1150 /* Check for a hung queue, but be thorough. This verifies 1151 * that a transmit has been completed since the previous 1152 * check AND there is at least one packet pending. By 1153 * requiring this to fail twice we avoid races with 1154 * clearing the ARMED bit and conditions where we 1155 * run the check_tx_hang logic with a transmit completion 1156 * pending but without time to complete it yet. 1157 */ 1158 if (!tx_pending || (tx_done_old != tx_done)) { 1159 /* update completed stats and continue */ 1160 tx_ring->tx_stats.tx_done_old = tx_done; 1161 /* reset the countdown */ 1162 clear_bit(__FM10K_HANG_CHECK_ARMED, &tx_ring->state); 1163 1164 return false; 1165 } 1166 1167 /* make sure it is true for two checks in a row */ 1168 return test_and_set_bit(__FM10K_HANG_CHECK_ARMED, &tx_ring->state); 1169 } 1170 1171 /** 1172 * fm10k_tx_timeout_reset - initiate reset due to Tx timeout 1173 * @interface: driver private struct 1174 **/ 1175 void fm10k_tx_timeout_reset(struct fm10k_intfc *interface) 1176 { 1177 /* Do the reset outside of interrupt context */ 1178 if (!test_bit(__FM10K_DOWN, &interface->state)) { 1179 interface->tx_timeout_count++; 1180 interface->flags |= FM10K_FLAG_RESET_REQUESTED; 1181 fm10k_service_event_schedule(interface); 1182 } 1183 } 1184 1185 /** 1186 * fm10k_clean_tx_irq - Reclaim resources after transmit completes 1187 * @q_vector: structure containing interrupt and ring information 1188 * @tx_ring: tx ring to clean 1189 * @napi_budget: Used to determine if we are in netpoll 1190 **/ 1191 static bool fm10k_clean_tx_irq(struct fm10k_q_vector *q_vector, 1192 struct fm10k_ring *tx_ring, int napi_budget) 1193 { 1194 struct fm10k_intfc *interface = q_vector->interface; 1195 struct fm10k_tx_buffer *tx_buffer; 1196 struct fm10k_tx_desc *tx_desc; 1197 unsigned int total_bytes = 0, total_packets = 0; 1198 unsigned int budget = q_vector->tx.work_limit; 1199 unsigned int i = tx_ring->next_to_clean; 1200 1201 if (test_bit(__FM10K_DOWN, &interface->state)) 1202 return true; 1203 1204 tx_buffer = &tx_ring->tx_buffer[i]; 1205 tx_desc = FM10K_TX_DESC(tx_ring, i); 1206 i -= tx_ring->count; 1207 1208 do { 1209 struct fm10k_tx_desc *eop_desc = tx_buffer->next_to_watch; 1210 1211 /* if next_to_watch is not set then there is no work pending */ 1212 if (!eop_desc) 1213 break; 1214 1215 /* prevent any other reads prior to eop_desc */ 1216 read_barrier_depends(); 1217 1218 /* if DD is not set pending work has not been completed */ 1219 if (!(eop_desc->flags & FM10K_TXD_FLAG_DONE)) 1220 break; 1221 1222 /* clear next_to_watch to prevent false hangs */ 1223 tx_buffer->next_to_watch = NULL; 1224 1225 /* update the statistics for this packet */ 1226 total_bytes += tx_buffer->bytecount; 1227 total_packets += tx_buffer->gso_segs; 1228 1229 /* free the skb */ 1230 napi_consume_skb(tx_buffer->skb, napi_budget); 1231 1232 /* unmap skb header data */ 1233 dma_unmap_single(tx_ring->dev, 1234 dma_unmap_addr(tx_buffer, dma), 1235 dma_unmap_len(tx_buffer, len), 1236 DMA_TO_DEVICE); 1237 1238 /* clear tx_buffer data */ 1239 tx_buffer->skb = NULL; 1240 dma_unmap_len_set(tx_buffer, len, 0); 1241 1242 /* unmap remaining buffers */ 1243 while (tx_desc != eop_desc) { 1244 tx_buffer++; 1245 tx_desc++; 1246 i++; 1247 if (unlikely(!i)) { 1248 i -= tx_ring->count; 1249 tx_buffer = tx_ring->tx_buffer; 1250 tx_desc = FM10K_TX_DESC(tx_ring, 0); 1251 } 1252 1253 /* unmap any remaining paged data */ 1254 if (dma_unmap_len(tx_buffer, len)) { 1255 dma_unmap_page(tx_ring->dev, 1256 dma_unmap_addr(tx_buffer, dma), 1257 dma_unmap_len(tx_buffer, len), 1258 DMA_TO_DEVICE); 1259 dma_unmap_len_set(tx_buffer, len, 0); 1260 } 1261 } 1262 1263 /* move us one more past the eop_desc for start of next pkt */ 1264 tx_buffer++; 1265 tx_desc++; 1266 i++; 1267 if (unlikely(!i)) { 1268 i -= tx_ring->count; 1269 tx_buffer = tx_ring->tx_buffer; 1270 tx_desc = FM10K_TX_DESC(tx_ring, 0); 1271 } 1272 1273 /* issue prefetch for next Tx descriptor */ 1274 prefetch(tx_desc); 1275 1276 /* update budget accounting */ 1277 budget--; 1278 } while (likely(budget)); 1279 1280 i += tx_ring->count; 1281 tx_ring->next_to_clean = i; 1282 u64_stats_update_begin(&tx_ring->syncp); 1283 tx_ring->stats.bytes += total_bytes; 1284 tx_ring->stats.packets += total_packets; 1285 u64_stats_update_end(&tx_ring->syncp); 1286 q_vector->tx.total_bytes += total_bytes; 1287 q_vector->tx.total_packets += total_packets; 1288 1289 if (check_for_tx_hang(tx_ring) && fm10k_check_tx_hang(tx_ring)) { 1290 /* schedule immediate reset if we believe we hung */ 1291 struct fm10k_hw *hw = &interface->hw; 1292 1293 netif_err(interface, drv, tx_ring->netdev, 1294 "Detected Tx Unit Hang\n" 1295 " Tx Queue <%d>\n" 1296 " TDH, TDT <%x>, <%x>\n" 1297 " next_to_use <%x>\n" 1298 " next_to_clean <%x>\n", 1299 tx_ring->queue_index, 1300 fm10k_read_reg(hw, FM10K_TDH(tx_ring->reg_idx)), 1301 fm10k_read_reg(hw, FM10K_TDT(tx_ring->reg_idx)), 1302 tx_ring->next_to_use, i); 1303 1304 netif_stop_subqueue(tx_ring->netdev, 1305 tx_ring->queue_index); 1306 1307 netif_info(interface, probe, tx_ring->netdev, 1308 "tx hang %d detected on queue %d, resetting interface\n", 1309 interface->tx_timeout_count + 1, 1310 tx_ring->queue_index); 1311 1312 fm10k_tx_timeout_reset(interface); 1313 1314 /* the netdev is about to reset, no point in enabling stuff */ 1315 return true; 1316 } 1317 1318 /* notify netdev of completed buffers */ 1319 netdev_tx_completed_queue(txring_txq(tx_ring), 1320 total_packets, total_bytes); 1321 1322 #define TX_WAKE_THRESHOLD min_t(u16, FM10K_MIN_TXD - 1, DESC_NEEDED * 2) 1323 if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) && 1324 (fm10k_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD))) { 1325 /* Make sure that anybody stopping the queue after this 1326 * sees the new next_to_clean. 1327 */ 1328 smp_mb(); 1329 if (__netif_subqueue_stopped(tx_ring->netdev, 1330 tx_ring->queue_index) && 1331 !test_bit(__FM10K_DOWN, &interface->state)) { 1332 netif_wake_subqueue(tx_ring->netdev, 1333 tx_ring->queue_index); 1334 ++tx_ring->tx_stats.restart_queue; 1335 } 1336 } 1337 1338 return !!budget; 1339 } 1340 1341 /** 1342 * fm10k_update_itr - update the dynamic ITR value based on packet size 1343 * 1344 * Stores a new ITR value based on strictly on packet size. The 1345 * divisors and thresholds used by this function were determined based 1346 * on theoretical maximum wire speed and testing data, in order to 1347 * minimize response time while increasing bulk throughput. 1348 * 1349 * @ring_container: Container for rings to have ITR updated 1350 **/ 1351 static void fm10k_update_itr(struct fm10k_ring_container *ring_container) 1352 { 1353 unsigned int avg_wire_size, packets, itr_round; 1354 1355 /* Only update ITR if we are using adaptive setting */ 1356 if (!ITR_IS_ADAPTIVE(ring_container->itr)) 1357 goto clear_counts; 1358 1359 packets = ring_container->total_packets; 1360 if (!packets) 1361 goto clear_counts; 1362 1363 avg_wire_size = ring_container->total_bytes / packets; 1364 1365 /* The following is a crude approximation of: 1366 * wmem_default / (size + overhead) = desired_pkts_per_int 1367 * rate / bits_per_byte / (size + ethernet overhead) = pkt_rate 1368 * (desired_pkt_rate / pkt_rate) * usecs_per_sec = ITR value 1369 * 1370 * Assuming wmem_default is 212992 and overhead is 640 bytes per 1371 * packet, (256 skb, 64 headroom, 320 shared info), we can reduce the 1372 * formula down to 1373 * 1374 * (34 * (size + 24)) / (size + 640) = ITR 1375 * 1376 * We first do some math on the packet size and then finally bitshift 1377 * by 8 after rounding up. We also have to account for PCIe link speed 1378 * difference as ITR scales based on this. 1379 */ 1380 if (avg_wire_size <= 360) { 1381 /* Start at 250K ints/sec and gradually drop to 77K ints/sec */ 1382 avg_wire_size *= 8; 1383 avg_wire_size += 376; 1384 } else if (avg_wire_size <= 1152) { 1385 /* 77K ints/sec to 45K ints/sec */ 1386 avg_wire_size *= 3; 1387 avg_wire_size += 2176; 1388 } else if (avg_wire_size <= 1920) { 1389 /* 45K ints/sec to 38K ints/sec */ 1390 avg_wire_size += 4480; 1391 } else { 1392 /* plateau at a limit of 38K ints/sec */ 1393 avg_wire_size = 6656; 1394 } 1395 1396 /* Perform final bitshift for division after rounding up to ensure 1397 * that the calculation will never get below a 1. The bit shift 1398 * accounts for changes in the ITR due to PCIe link speed. 1399 */ 1400 itr_round = ACCESS_ONCE(ring_container->itr_scale) + 8; 1401 avg_wire_size += BIT(itr_round) - 1; 1402 avg_wire_size >>= itr_round; 1403 1404 /* write back value and retain adaptive flag */ 1405 ring_container->itr = avg_wire_size | FM10K_ITR_ADAPTIVE; 1406 1407 clear_counts: 1408 ring_container->total_bytes = 0; 1409 ring_container->total_packets = 0; 1410 } 1411 1412 static void fm10k_qv_enable(struct fm10k_q_vector *q_vector) 1413 { 1414 /* Enable auto-mask and clear the current mask */ 1415 u32 itr = FM10K_ITR_ENABLE; 1416 1417 /* Update Tx ITR */ 1418 fm10k_update_itr(&q_vector->tx); 1419 1420 /* Update Rx ITR */ 1421 fm10k_update_itr(&q_vector->rx); 1422 1423 /* Store Tx itr in timer slot 0 */ 1424 itr |= (q_vector->tx.itr & FM10K_ITR_MAX); 1425 1426 /* Shift Rx itr to timer slot 1 */ 1427 itr |= (q_vector->rx.itr & FM10K_ITR_MAX) << FM10K_ITR_INTERVAL1_SHIFT; 1428 1429 /* Write the final value to the ITR register */ 1430 writel(itr, q_vector->itr); 1431 } 1432 1433 static int fm10k_poll(struct napi_struct *napi, int budget) 1434 { 1435 struct fm10k_q_vector *q_vector = 1436 container_of(napi, struct fm10k_q_vector, napi); 1437 struct fm10k_ring *ring; 1438 int per_ring_budget, work_done = 0; 1439 bool clean_complete = true; 1440 1441 fm10k_for_each_ring(ring, q_vector->tx) { 1442 if (!fm10k_clean_tx_irq(q_vector, ring, budget)) 1443 clean_complete = false; 1444 } 1445 1446 /* Handle case where we are called by netpoll with a budget of 0 */ 1447 if (budget <= 0) 1448 return budget; 1449 1450 /* attempt to distribute budget to each queue fairly, but don't 1451 * allow the budget to go below 1 because we'll exit polling 1452 */ 1453 if (q_vector->rx.count > 1) 1454 per_ring_budget = max(budget / q_vector->rx.count, 1); 1455 else 1456 per_ring_budget = budget; 1457 1458 fm10k_for_each_ring(ring, q_vector->rx) { 1459 int work = fm10k_clean_rx_irq(q_vector, ring, per_ring_budget); 1460 1461 work_done += work; 1462 if (work >= per_ring_budget) 1463 clean_complete = false; 1464 } 1465 1466 /* If all work not completed, return budget and keep polling */ 1467 if (!clean_complete) 1468 return budget; 1469 1470 /* all work done, exit the polling mode */ 1471 napi_complete_done(napi, work_done); 1472 1473 /* re-enable the q_vector */ 1474 fm10k_qv_enable(q_vector); 1475 1476 return 0; 1477 } 1478 1479 /** 1480 * fm10k_set_qos_queues: Allocate queues for a QOS-enabled device 1481 * @interface: board private structure to initialize 1482 * 1483 * When QoS (Quality of Service) is enabled, allocate queues for 1484 * each traffic class. If multiqueue isn't available,then abort QoS 1485 * initialization. 1486 * 1487 * This function handles all combinations of Qos and RSS. 1488 * 1489 **/ 1490 static bool fm10k_set_qos_queues(struct fm10k_intfc *interface) 1491 { 1492 struct net_device *dev = interface->netdev; 1493 struct fm10k_ring_feature *f; 1494 int rss_i, i; 1495 int pcs; 1496 1497 /* Map queue offset and counts onto allocated tx queues */ 1498 pcs = netdev_get_num_tc(dev); 1499 1500 if (pcs <= 1) 1501 return false; 1502 1503 /* set QoS mask and indices */ 1504 f = &interface->ring_feature[RING_F_QOS]; 1505 f->indices = pcs; 1506 f->mask = BIT(fls(pcs - 1)) - 1; 1507 1508 /* determine the upper limit for our current DCB mode */ 1509 rss_i = interface->hw.mac.max_queues / pcs; 1510 rss_i = BIT(fls(rss_i) - 1); 1511 1512 /* set RSS mask and indices */ 1513 f = &interface->ring_feature[RING_F_RSS]; 1514 rss_i = min_t(u16, rss_i, f->limit); 1515 f->indices = rss_i; 1516 f->mask = BIT(fls(rss_i - 1)) - 1; 1517 1518 /* configure pause class to queue mapping */ 1519 for (i = 0; i < pcs; i++) 1520 netdev_set_tc_queue(dev, i, rss_i, rss_i * i); 1521 1522 interface->num_rx_queues = rss_i * pcs; 1523 interface->num_tx_queues = rss_i * pcs; 1524 1525 return true; 1526 } 1527 1528 /** 1529 * fm10k_set_rss_queues: Allocate queues for RSS 1530 * @interface: board private structure to initialize 1531 * 1532 * This is our "base" multiqueue mode. RSS (Receive Side Scaling) will try 1533 * to allocate one Rx queue per CPU, and if available, one Tx queue per CPU. 1534 * 1535 **/ 1536 static bool fm10k_set_rss_queues(struct fm10k_intfc *interface) 1537 { 1538 struct fm10k_ring_feature *f; 1539 u16 rss_i; 1540 1541 f = &interface->ring_feature[RING_F_RSS]; 1542 rss_i = min_t(u16, interface->hw.mac.max_queues, f->limit); 1543 1544 /* record indices and power of 2 mask for RSS */ 1545 f->indices = rss_i; 1546 f->mask = BIT(fls(rss_i - 1)) - 1; 1547 1548 interface->num_rx_queues = rss_i; 1549 interface->num_tx_queues = rss_i; 1550 1551 return true; 1552 } 1553 1554 /** 1555 * fm10k_set_num_queues: Allocate queues for device, feature dependent 1556 * @interface: board private structure to initialize 1557 * 1558 * This is the top level queue allocation routine. The order here is very 1559 * important, starting with the "most" number of features turned on at once, 1560 * and ending with the smallest set of features. This way large combinations 1561 * can be allocated if they're turned on, and smaller combinations are the 1562 * fallthrough conditions. 1563 * 1564 **/ 1565 static void fm10k_set_num_queues(struct fm10k_intfc *interface) 1566 { 1567 /* Attempt to setup QoS and RSS first */ 1568 if (fm10k_set_qos_queues(interface)) 1569 return; 1570 1571 /* If we don't have QoS, just fallback to only RSS. */ 1572 fm10k_set_rss_queues(interface); 1573 } 1574 1575 /** 1576 * fm10k_reset_num_queues - Reset the number of queues to zero 1577 * @interface: board private structure 1578 * 1579 * This function should be called whenever we need to reset the number of 1580 * queues after an error condition. 1581 */ 1582 static void fm10k_reset_num_queues(struct fm10k_intfc *interface) 1583 { 1584 interface->num_tx_queues = 0; 1585 interface->num_rx_queues = 0; 1586 interface->num_q_vectors = 0; 1587 } 1588 1589 /** 1590 * fm10k_alloc_q_vector - Allocate memory for a single interrupt vector 1591 * @interface: board private structure to initialize 1592 * @v_count: q_vectors allocated on interface, used for ring interleaving 1593 * @v_idx: index of vector in interface struct 1594 * @txr_count: total number of Tx rings to allocate 1595 * @txr_idx: index of first Tx ring to allocate 1596 * @rxr_count: total number of Rx rings to allocate 1597 * @rxr_idx: index of first Rx ring to allocate 1598 * 1599 * We allocate one q_vector. If allocation fails we return -ENOMEM. 1600 **/ 1601 static int fm10k_alloc_q_vector(struct fm10k_intfc *interface, 1602 unsigned int v_count, unsigned int v_idx, 1603 unsigned int txr_count, unsigned int txr_idx, 1604 unsigned int rxr_count, unsigned int rxr_idx) 1605 { 1606 struct fm10k_q_vector *q_vector; 1607 struct fm10k_ring *ring; 1608 int ring_count, size; 1609 1610 ring_count = txr_count + rxr_count; 1611 size = sizeof(struct fm10k_q_vector) + 1612 (sizeof(struct fm10k_ring) * ring_count); 1613 1614 /* allocate q_vector and rings */ 1615 q_vector = kzalloc(size, GFP_KERNEL); 1616 if (!q_vector) 1617 return -ENOMEM; 1618 1619 /* initialize NAPI */ 1620 netif_napi_add(interface->netdev, &q_vector->napi, 1621 fm10k_poll, NAPI_POLL_WEIGHT); 1622 1623 /* tie q_vector and interface together */ 1624 interface->q_vector[v_idx] = q_vector; 1625 q_vector->interface = interface; 1626 q_vector->v_idx = v_idx; 1627 1628 /* initialize pointer to rings */ 1629 ring = q_vector->ring; 1630 1631 /* save Tx ring container info */ 1632 q_vector->tx.ring = ring; 1633 q_vector->tx.work_limit = FM10K_DEFAULT_TX_WORK; 1634 q_vector->tx.itr = interface->tx_itr; 1635 q_vector->tx.itr_scale = interface->hw.mac.itr_scale; 1636 q_vector->tx.count = txr_count; 1637 1638 while (txr_count) { 1639 /* assign generic ring traits */ 1640 ring->dev = &interface->pdev->dev; 1641 ring->netdev = interface->netdev; 1642 1643 /* configure backlink on ring */ 1644 ring->q_vector = q_vector; 1645 1646 /* apply Tx specific ring traits */ 1647 ring->count = interface->tx_ring_count; 1648 ring->queue_index = txr_idx; 1649 1650 /* assign ring to interface */ 1651 interface->tx_ring[txr_idx] = ring; 1652 1653 /* update count and index */ 1654 txr_count--; 1655 txr_idx += v_count; 1656 1657 /* push pointer to next ring */ 1658 ring++; 1659 } 1660 1661 /* save Rx ring container info */ 1662 q_vector->rx.ring = ring; 1663 q_vector->rx.itr = interface->rx_itr; 1664 q_vector->rx.itr_scale = interface->hw.mac.itr_scale; 1665 q_vector->rx.count = rxr_count; 1666 1667 while (rxr_count) { 1668 /* assign generic ring traits */ 1669 ring->dev = &interface->pdev->dev; 1670 ring->netdev = interface->netdev; 1671 rcu_assign_pointer(ring->l2_accel, interface->l2_accel); 1672 1673 /* configure backlink on ring */ 1674 ring->q_vector = q_vector; 1675 1676 /* apply Rx specific ring traits */ 1677 ring->count = interface->rx_ring_count; 1678 ring->queue_index = rxr_idx; 1679 1680 /* assign ring to interface */ 1681 interface->rx_ring[rxr_idx] = ring; 1682 1683 /* update count and index */ 1684 rxr_count--; 1685 rxr_idx += v_count; 1686 1687 /* push pointer to next ring */ 1688 ring++; 1689 } 1690 1691 fm10k_dbg_q_vector_init(q_vector); 1692 1693 return 0; 1694 } 1695 1696 /** 1697 * fm10k_free_q_vector - Free memory allocated for specific interrupt vector 1698 * @interface: board private structure to initialize 1699 * @v_idx: Index of vector to be freed 1700 * 1701 * This function frees the memory allocated to the q_vector. In addition if 1702 * NAPI is enabled it will delete any references to the NAPI struct prior 1703 * to freeing the q_vector. 1704 **/ 1705 static void fm10k_free_q_vector(struct fm10k_intfc *interface, int v_idx) 1706 { 1707 struct fm10k_q_vector *q_vector = interface->q_vector[v_idx]; 1708 struct fm10k_ring *ring; 1709 1710 fm10k_dbg_q_vector_exit(q_vector); 1711 1712 fm10k_for_each_ring(ring, q_vector->tx) 1713 interface->tx_ring[ring->queue_index] = NULL; 1714 1715 fm10k_for_each_ring(ring, q_vector->rx) 1716 interface->rx_ring[ring->queue_index] = NULL; 1717 1718 interface->q_vector[v_idx] = NULL; 1719 netif_napi_del(&q_vector->napi); 1720 kfree_rcu(q_vector, rcu); 1721 } 1722 1723 /** 1724 * fm10k_alloc_q_vectors - Allocate memory for interrupt vectors 1725 * @interface: board private structure to initialize 1726 * 1727 * We allocate one q_vector per queue interrupt. If allocation fails we 1728 * return -ENOMEM. 1729 **/ 1730 static int fm10k_alloc_q_vectors(struct fm10k_intfc *interface) 1731 { 1732 unsigned int q_vectors = interface->num_q_vectors; 1733 unsigned int rxr_remaining = interface->num_rx_queues; 1734 unsigned int txr_remaining = interface->num_tx_queues; 1735 unsigned int rxr_idx = 0, txr_idx = 0, v_idx = 0; 1736 int err; 1737 1738 if (q_vectors >= (rxr_remaining + txr_remaining)) { 1739 for (; rxr_remaining; v_idx++) { 1740 err = fm10k_alloc_q_vector(interface, q_vectors, v_idx, 1741 0, 0, 1, rxr_idx); 1742 if (err) 1743 goto err_out; 1744 1745 /* update counts and index */ 1746 rxr_remaining--; 1747 rxr_idx++; 1748 } 1749 } 1750 1751 for (; v_idx < q_vectors; v_idx++) { 1752 int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx); 1753 int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx); 1754 1755 err = fm10k_alloc_q_vector(interface, q_vectors, v_idx, 1756 tqpv, txr_idx, 1757 rqpv, rxr_idx); 1758 1759 if (err) 1760 goto err_out; 1761 1762 /* update counts and index */ 1763 rxr_remaining -= rqpv; 1764 txr_remaining -= tqpv; 1765 rxr_idx++; 1766 txr_idx++; 1767 } 1768 1769 return 0; 1770 1771 err_out: 1772 fm10k_reset_num_queues(interface); 1773 1774 while (v_idx--) 1775 fm10k_free_q_vector(interface, v_idx); 1776 1777 return -ENOMEM; 1778 } 1779 1780 /** 1781 * fm10k_free_q_vectors - Free memory allocated for interrupt vectors 1782 * @interface: board private structure to initialize 1783 * 1784 * This function frees the memory allocated to the q_vectors. In addition if 1785 * NAPI is enabled it will delete any references to the NAPI struct prior 1786 * to freeing the q_vector. 1787 **/ 1788 static void fm10k_free_q_vectors(struct fm10k_intfc *interface) 1789 { 1790 int v_idx = interface->num_q_vectors; 1791 1792 fm10k_reset_num_queues(interface); 1793 1794 while (v_idx--) 1795 fm10k_free_q_vector(interface, v_idx); 1796 } 1797 1798 /** 1799 * f10k_reset_msix_capability - reset MSI-X capability 1800 * @interface: board private structure to initialize 1801 * 1802 * Reset the MSI-X capability back to its starting state 1803 **/ 1804 static void fm10k_reset_msix_capability(struct fm10k_intfc *interface) 1805 { 1806 pci_disable_msix(interface->pdev); 1807 kfree(interface->msix_entries); 1808 interface->msix_entries = NULL; 1809 } 1810 1811 /** 1812 * f10k_init_msix_capability - configure MSI-X capability 1813 * @interface: board private structure to initialize 1814 * 1815 * Attempt to configure the interrupts using the best available 1816 * capabilities of the hardware and the kernel. 1817 **/ 1818 static int fm10k_init_msix_capability(struct fm10k_intfc *interface) 1819 { 1820 struct fm10k_hw *hw = &interface->hw; 1821 int v_budget, vector; 1822 1823 /* It's easy to be greedy for MSI-X vectors, but it really 1824 * doesn't do us much good if we have a lot more vectors 1825 * than CPU's. So let's be conservative and only ask for 1826 * (roughly) the same number of vectors as there are CPU's. 1827 * the default is to use pairs of vectors 1828 */ 1829 v_budget = max(interface->num_rx_queues, interface->num_tx_queues); 1830 v_budget = min_t(u16, v_budget, num_online_cpus()); 1831 1832 /* account for vectors not related to queues */ 1833 v_budget += NON_Q_VECTORS(hw); 1834 1835 /* At the same time, hardware can only support a maximum of 1836 * hw.mac->max_msix_vectors vectors. With features 1837 * such as RSS and VMDq, we can easily surpass the number of Rx and Tx 1838 * descriptor queues supported by our device. Thus, we cap it off in 1839 * those rare cases where the cpu count also exceeds our vector limit. 1840 */ 1841 v_budget = min_t(int, v_budget, hw->mac.max_msix_vectors); 1842 1843 /* A failure in MSI-X entry allocation is fatal. */ 1844 interface->msix_entries = kcalloc(v_budget, sizeof(struct msix_entry), 1845 GFP_KERNEL); 1846 if (!interface->msix_entries) 1847 return -ENOMEM; 1848 1849 /* populate entry values */ 1850 for (vector = 0; vector < v_budget; vector++) 1851 interface->msix_entries[vector].entry = vector; 1852 1853 /* Attempt to enable MSI-X with requested value */ 1854 v_budget = pci_enable_msix_range(interface->pdev, 1855 interface->msix_entries, 1856 MIN_MSIX_COUNT(hw), 1857 v_budget); 1858 if (v_budget < 0) { 1859 kfree(interface->msix_entries); 1860 interface->msix_entries = NULL; 1861 return v_budget; 1862 } 1863 1864 /* record the number of queues available for q_vectors */ 1865 interface->num_q_vectors = v_budget - NON_Q_VECTORS(hw); 1866 1867 return 0; 1868 } 1869 1870 /** 1871 * fm10k_cache_ring_qos - Descriptor ring to register mapping for QoS 1872 * @interface: Interface structure continaining rings and devices 1873 * 1874 * Cache the descriptor ring offsets for Qos 1875 **/ 1876 static bool fm10k_cache_ring_qos(struct fm10k_intfc *interface) 1877 { 1878 struct net_device *dev = interface->netdev; 1879 int pc, offset, rss_i, i, q_idx; 1880 u16 pc_stride = interface->ring_feature[RING_F_QOS].mask + 1; 1881 u8 num_pcs = netdev_get_num_tc(dev); 1882 1883 if (num_pcs <= 1) 1884 return false; 1885 1886 rss_i = interface->ring_feature[RING_F_RSS].indices; 1887 1888 for (pc = 0, offset = 0; pc < num_pcs; pc++, offset += rss_i) { 1889 q_idx = pc; 1890 for (i = 0; i < rss_i; i++) { 1891 interface->tx_ring[offset + i]->reg_idx = q_idx; 1892 interface->tx_ring[offset + i]->qos_pc = pc; 1893 interface->rx_ring[offset + i]->reg_idx = q_idx; 1894 interface->rx_ring[offset + i]->qos_pc = pc; 1895 q_idx += pc_stride; 1896 } 1897 } 1898 1899 return true; 1900 } 1901 1902 /** 1903 * fm10k_cache_ring_rss - Descriptor ring to register mapping for RSS 1904 * @interface: Interface structure continaining rings and devices 1905 * 1906 * Cache the descriptor ring offsets for RSS 1907 **/ 1908 static void fm10k_cache_ring_rss(struct fm10k_intfc *interface) 1909 { 1910 int i; 1911 1912 for (i = 0; i < interface->num_rx_queues; i++) 1913 interface->rx_ring[i]->reg_idx = i; 1914 1915 for (i = 0; i < interface->num_tx_queues; i++) 1916 interface->tx_ring[i]->reg_idx = i; 1917 } 1918 1919 /** 1920 * fm10k_assign_rings - Map rings to network devices 1921 * @interface: Interface structure containing rings and devices 1922 * 1923 * This function is meant to go though and configure both the network 1924 * devices so that they contain rings, and configure the rings so that 1925 * they function with their network devices. 1926 **/ 1927 static void fm10k_assign_rings(struct fm10k_intfc *interface) 1928 { 1929 if (fm10k_cache_ring_qos(interface)) 1930 return; 1931 1932 fm10k_cache_ring_rss(interface); 1933 } 1934 1935 static void fm10k_init_reta(struct fm10k_intfc *interface) 1936 { 1937 u16 i, rss_i = interface->ring_feature[RING_F_RSS].indices; 1938 u32 reta; 1939 1940 /* If the Rx flow indirection table has been configured manually, we 1941 * need to maintain it when possible. 1942 */ 1943 if (netif_is_rxfh_configured(interface->netdev)) { 1944 for (i = FM10K_RETA_SIZE; i--;) { 1945 reta = interface->reta[i]; 1946 if ((((reta << 24) >> 24) < rss_i) && 1947 (((reta << 16) >> 24) < rss_i) && 1948 (((reta << 8) >> 24) < rss_i) && 1949 (((reta) >> 24) < rss_i)) 1950 continue; 1951 1952 /* this should never happen */ 1953 dev_err(&interface->pdev->dev, 1954 "RSS indirection table assigned flows out of queue bounds. Reconfiguring.\n"); 1955 goto repopulate_reta; 1956 } 1957 1958 /* do nothing if all of the elements are in bounds */ 1959 return; 1960 } 1961 1962 repopulate_reta: 1963 fm10k_write_reta(interface, NULL); 1964 } 1965 1966 /** 1967 * fm10k_init_queueing_scheme - Determine proper queueing scheme 1968 * @interface: board private structure to initialize 1969 * 1970 * We determine which queueing scheme to use based on... 1971 * - Hardware queue count (num_*_queues) 1972 * - defined by miscellaneous hardware support/features (RSS, etc.) 1973 **/ 1974 int fm10k_init_queueing_scheme(struct fm10k_intfc *interface) 1975 { 1976 int err; 1977 1978 /* Number of supported queues */ 1979 fm10k_set_num_queues(interface); 1980 1981 /* Configure MSI-X capability */ 1982 err = fm10k_init_msix_capability(interface); 1983 if (err) { 1984 dev_err(&interface->pdev->dev, 1985 "Unable to initialize MSI-X capability\n"); 1986 goto err_init_msix; 1987 } 1988 1989 /* Allocate memory for queues */ 1990 err = fm10k_alloc_q_vectors(interface); 1991 if (err) { 1992 dev_err(&interface->pdev->dev, 1993 "Unable to allocate queue vectors\n"); 1994 goto err_alloc_q_vectors; 1995 } 1996 1997 /* Map rings to devices, and map devices to physical queues */ 1998 fm10k_assign_rings(interface); 1999 2000 /* Initialize RSS redirection table */ 2001 fm10k_init_reta(interface); 2002 2003 return 0; 2004 2005 err_alloc_q_vectors: 2006 fm10k_reset_msix_capability(interface); 2007 err_init_msix: 2008 fm10k_reset_num_queues(interface); 2009 return err; 2010 } 2011 2012 /** 2013 * fm10k_clear_queueing_scheme - Clear the current queueing scheme settings 2014 * @interface: board private structure to clear queueing scheme on 2015 * 2016 * We go through and clear queueing specific resources and reset the structure 2017 * to pre-load conditions 2018 **/ 2019 void fm10k_clear_queueing_scheme(struct fm10k_intfc *interface) 2020 { 2021 fm10k_free_q_vectors(interface); 2022 fm10k_reset_msix_capability(interface); 2023 } 2024