1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 2013 - 2018 Intel Corporation. */
3 
4 #include <linux/types.h>
5 #include <linux/module.h>
6 #include <net/ipv6.h>
7 #include <net/ip.h>
8 #include <net/tcp.h>
9 #include <linux/if_macvlan.h>
10 #include <linux/prefetch.h>
11 
12 #include "fm10k.h"
13 
14 #define DRV_VERSION	"0.26.1-k"
15 #define DRV_SUMMARY	"Intel(R) Ethernet Switch Host Interface Driver"
16 const char fm10k_driver_version[] = DRV_VERSION;
17 char fm10k_driver_name[] = "fm10k";
18 static const char fm10k_driver_string[] = DRV_SUMMARY;
19 static const char fm10k_copyright[] =
20 	"Copyright(c) 2013 - 2018 Intel Corporation.";
21 
22 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
23 MODULE_DESCRIPTION(DRV_SUMMARY);
24 MODULE_LICENSE("GPL v2");
25 MODULE_VERSION(DRV_VERSION);
26 
27 /* single workqueue for entire fm10k driver */
28 struct workqueue_struct *fm10k_workqueue;
29 
30 /**
31  * fm10k_init_module - Driver Registration Routine
32  *
33  * fm10k_init_module is the first routine called when the driver is
34  * loaded.  All it does is register with the PCI subsystem.
35  **/
36 static int __init fm10k_init_module(void)
37 {
38 	pr_info("%s - version %s\n", fm10k_driver_string, fm10k_driver_version);
39 	pr_info("%s\n", fm10k_copyright);
40 
41 	/* create driver workqueue */
42 	fm10k_workqueue = alloc_workqueue("%s", WQ_MEM_RECLAIM, 0,
43 					  fm10k_driver_name);
44 	if (!fm10k_workqueue)
45 		return -ENOMEM;
46 
47 	fm10k_dbg_init();
48 
49 	return fm10k_register_pci_driver();
50 }
51 module_init(fm10k_init_module);
52 
53 /**
54  * fm10k_exit_module - Driver Exit Cleanup Routine
55  *
56  * fm10k_exit_module is called just before the driver is removed
57  * from memory.
58  **/
59 static void __exit fm10k_exit_module(void)
60 {
61 	fm10k_unregister_pci_driver();
62 
63 	fm10k_dbg_exit();
64 
65 	/* destroy driver workqueue */
66 	destroy_workqueue(fm10k_workqueue);
67 }
68 module_exit(fm10k_exit_module);
69 
70 static bool fm10k_alloc_mapped_page(struct fm10k_ring *rx_ring,
71 				    struct fm10k_rx_buffer *bi)
72 {
73 	struct page *page = bi->page;
74 	dma_addr_t dma;
75 
76 	/* Only page will be NULL if buffer was consumed */
77 	if (likely(page))
78 		return true;
79 
80 	/* alloc new page for storage */
81 	page = dev_alloc_page();
82 	if (unlikely(!page)) {
83 		rx_ring->rx_stats.alloc_failed++;
84 		return false;
85 	}
86 
87 	/* map page for use */
88 	dma = dma_map_page(rx_ring->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE);
89 
90 	/* if mapping failed free memory back to system since
91 	 * there isn't much point in holding memory we can't use
92 	 */
93 	if (dma_mapping_error(rx_ring->dev, dma)) {
94 		__free_page(page);
95 
96 		rx_ring->rx_stats.alloc_failed++;
97 		return false;
98 	}
99 
100 	bi->dma = dma;
101 	bi->page = page;
102 	bi->page_offset = 0;
103 
104 	return true;
105 }
106 
107 /**
108  * fm10k_alloc_rx_buffers - Replace used receive buffers
109  * @rx_ring: ring to place buffers on
110  * @cleaned_count: number of buffers to replace
111  **/
112 void fm10k_alloc_rx_buffers(struct fm10k_ring *rx_ring, u16 cleaned_count)
113 {
114 	union fm10k_rx_desc *rx_desc;
115 	struct fm10k_rx_buffer *bi;
116 	u16 i = rx_ring->next_to_use;
117 
118 	/* nothing to do */
119 	if (!cleaned_count)
120 		return;
121 
122 	rx_desc = FM10K_RX_DESC(rx_ring, i);
123 	bi = &rx_ring->rx_buffer[i];
124 	i -= rx_ring->count;
125 
126 	do {
127 		if (!fm10k_alloc_mapped_page(rx_ring, bi))
128 			break;
129 
130 		/* Refresh the desc even if buffer_addrs didn't change
131 		 * because each write-back erases this info.
132 		 */
133 		rx_desc->q.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
134 
135 		rx_desc++;
136 		bi++;
137 		i++;
138 		if (unlikely(!i)) {
139 			rx_desc = FM10K_RX_DESC(rx_ring, 0);
140 			bi = rx_ring->rx_buffer;
141 			i -= rx_ring->count;
142 		}
143 
144 		/* clear the status bits for the next_to_use descriptor */
145 		rx_desc->d.staterr = 0;
146 
147 		cleaned_count--;
148 	} while (cleaned_count);
149 
150 	i += rx_ring->count;
151 
152 	if (rx_ring->next_to_use != i) {
153 		/* record the next descriptor to use */
154 		rx_ring->next_to_use = i;
155 
156 		/* update next to alloc since we have filled the ring */
157 		rx_ring->next_to_alloc = i;
158 
159 		/* Force memory writes to complete before letting h/w
160 		 * know there are new descriptors to fetch.  (Only
161 		 * applicable for weak-ordered memory model archs,
162 		 * such as IA-64).
163 		 */
164 		wmb();
165 
166 		/* notify hardware of new descriptors */
167 		writel(i, rx_ring->tail);
168 	}
169 }
170 
171 /**
172  * fm10k_reuse_rx_page - page flip buffer and store it back on the ring
173  * @rx_ring: rx descriptor ring to store buffers on
174  * @old_buff: donor buffer to have page reused
175  *
176  * Synchronizes page for reuse by the interface
177  **/
178 static void fm10k_reuse_rx_page(struct fm10k_ring *rx_ring,
179 				struct fm10k_rx_buffer *old_buff)
180 {
181 	struct fm10k_rx_buffer *new_buff;
182 	u16 nta = rx_ring->next_to_alloc;
183 
184 	new_buff = &rx_ring->rx_buffer[nta];
185 
186 	/* update, and store next to alloc */
187 	nta++;
188 	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
189 
190 	/* transfer page from old buffer to new buffer */
191 	*new_buff = *old_buff;
192 
193 	/* sync the buffer for use by the device */
194 	dma_sync_single_range_for_device(rx_ring->dev, old_buff->dma,
195 					 old_buff->page_offset,
196 					 FM10K_RX_BUFSZ,
197 					 DMA_FROM_DEVICE);
198 }
199 
200 static inline bool fm10k_page_is_reserved(struct page *page)
201 {
202 	return (page_to_nid(page) != numa_mem_id()) || page_is_pfmemalloc(page);
203 }
204 
205 static bool fm10k_can_reuse_rx_page(struct fm10k_rx_buffer *rx_buffer,
206 				    struct page *page,
207 				    unsigned int __maybe_unused truesize)
208 {
209 	/* avoid re-using remote pages */
210 	if (unlikely(fm10k_page_is_reserved(page)))
211 		return false;
212 
213 #if (PAGE_SIZE < 8192)
214 	/* if we are only owner of page we can reuse it */
215 	if (unlikely(page_count(page) != 1))
216 		return false;
217 
218 	/* flip page offset to other buffer */
219 	rx_buffer->page_offset ^= FM10K_RX_BUFSZ;
220 #else
221 	/* move offset up to the next cache line */
222 	rx_buffer->page_offset += truesize;
223 
224 	if (rx_buffer->page_offset > (PAGE_SIZE - FM10K_RX_BUFSZ))
225 		return false;
226 #endif
227 
228 	/* Even if we own the page, we are not allowed to use atomic_set()
229 	 * This would break get_page_unless_zero() users.
230 	 */
231 	page_ref_inc(page);
232 
233 	return true;
234 }
235 
236 /**
237  * fm10k_add_rx_frag - Add contents of Rx buffer to sk_buff
238  * @rx_buffer: buffer containing page to add
239  * @size: packet size from rx_desc
240  * @rx_desc: descriptor containing length of buffer written by hardware
241  * @skb: sk_buff to place the data into
242  *
243  * This function will add the data contained in rx_buffer->page to the skb.
244  * This is done either through a direct copy if the data in the buffer is
245  * less than the skb header size, otherwise it will just attach the page as
246  * a frag to the skb.
247  *
248  * The function will then update the page offset if necessary and return
249  * true if the buffer can be reused by the interface.
250  **/
251 static bool fm10k_add_rx_frag(struct fm10k_rx_buffer *rx_buffer,
252 			      unsigned int size,
253 			      union fm10k_rx_desc *rx_desc,
254 			      struct sk_buff *skb)
255 {
256 	struct page *page = rx_buffer->page;
257 	unsigned char *va = page_address(page) + rx_buffer->page_offset;
258 #if (PAGE_SIZE < 8192)
259 	unsigned int truesize = FM10K_RX_BUFSZ;
260 #else
261 	unsigned int truesize = ALIGN(size, 512);
262 #endif
263 	unsigned int pull_len;
264 
265 	if (unlikely(skb_is_nonlinear(skb)))
266 		goto add_tail_frag;
267 
268 	if (likely(size <= FM10K_RX_HDR_LEN)) {
269 		memcpy(__skb_put(skb, size), va, ALIGN(size, sizeof(long)));
270 
271 		/* page is not reserved, we can reuse buffer as-is */
272 		if (likely(!fm10k_page_is_reserved(page)))
273 			return true;
274 
275 		/* this page cannot be reused so discard it */
276 		__free_page(page);
277 		return false;
278 	}
279 
280 	/* we need the header to contain the greater of either ETH_HLEN or
281 	 * 60 bytes if the skb->len is less than 60 for skb_pad.
282 	 */
283 	pull_len = eth_get_headlen(skb->dev, va, FM10K_RX_HDR_LEN);
284 
285 	/* align pull length to size of long to optimize memcpy performance */
286 	memcpy(__skb_put(skb, pull_len), va, ALIGN(pull_len, sizeof(long)));
287 
288 	/* update all of the pointers */
289 	va += pull_len;
290 	size -= pull_len;
291 
292 add_tail_frag:
293 	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
294 			(unsigned long)va & ~PAGE_MASK, size, truesize);
295 
296 	return fm10k_can_reuse_rx_page(rx_buffer, page, truesize);
297 }
298 
299 static struct sk_buff *fm10k_fetch_rx_buffer(struct fm10k_ring *rx_ring,
300 					     union fm10k_rx_desc *rx_desc,
301 					     struct sk_buff *skb)
302 {
303 	unsigned int size = le16_to_cpu(rx_desc->w.length);
304 	struct fm10k_rx_buffer *rx_buffer;
305 	struct page *page;
306 
307 	rx_buffer = &rx_ring->rx_buffer[rx_ring->next_to_clean];
308 	page = rx_buffer->page;
309 	prefetchw(page);
310 
311 	if (likely(!skb)) {
312 		void *page_addr = page_address(page) +
313 				  rx_buffer->page_offset;
314 
315 		/* prefetch first cache line of first page */
316 		prefetch(page_addr);
317 #if L1_CACHE_BYTES < 128
318 		prefetch(page_addr + L1_CACHE_BYTES);
319 #endif
320 
321 		/* allocate a skb to store the frags */
322 		skb = napi_alloc_skb(&rx_ring->q_vector->napi,
323 				     FM10K_RX_HDR_LEN);
324 		if (unlikely(!skb)) {
325 			rx_ring->rx_stats.alloc_failed++;
326 			return NULL;
327 		}
328 
329 		/* we will be copying header into skb->data in
330 		 * pskb_may_pull so it is in our interest to prefetch
331 		 * it now to avoid a possible cache miss
332 		 */
333 		prefetchw(skb->data);
334 	}
335 
336 	/* we are reusing so sync this buffer for CPU use */
337 	dma_sync_single_range_for_cpu(rx_ring->dev,
338 				      rx_buffer->dma,
339 				      rx_buffer->page_offset,
340 				      size,
341 				      DMA_FROM_DEVICE);
342 
343 	/* pull page into skb */
344 	if (fm10k_add_rx_frag(rx_buffer, size, rx_desc, skb)) {
345 		/* hand second half of page back to the ring */
346 		fm10k_reuse_rx_page(rx_ring, rx_buffer);
347 	} else {
348 		/* we are not reusing the buffer so unmap it */
349 		dma_unmap_page(rx_ring->dev, rx_buffer->dma,
350 			       PAGE_SIZE, DMA_FROM_DEVICE);
351 	}
352 
353 	/* clear contents of rx_buffer */
354 	rx_buffer->page = NULL;
355 
356 	return skb;
357 }
358 
359 static inline void fm10k_rx_checksum(struct fm10k_ring *ring,
360 				     union fm10k_rx_desc *rx_desc,
361 				     struct sk_buff *skb)
362 {
363 	skb_checksum_none_assert(skb);
364 
365 	/* Rx checksum disabled via ethtool */
366 	if (!(ring->netdev->features & NETIF_F_RXCSUM))
367 		return;
368 
369 	/* TCP/UDP checksum error bit is set */
370 	if (fm10k_test_staterr(rx_desc,
371 			       FM10K_RXD_STATUS_L4E |
372 			       FM10K_RXD_STATUS_L4E2 |
373 			       FM10K_RXD_STATUS_IPE |
374 			       FM10K_RXD_STATUS_IPE2)) {
375 		ring->rx_stats.csum_err++;
376 		return;
377 	}
378 
379 	/* It must be a TCP or UDP packet with a valid checksum */
380 	if (fm10k_test_staterr(rx_desc, FM10K_RXD_STATUS_L4CS2))
381 		skb->encapsulation = true;
382 	else if (!fm10k_test_staterr(rx_desc, FM10K_RXD_STATUS_L4CS))
383 		return;
384 
385 	skb->ip_summed = CHECKSUM_UNNECESSARY;
386 
387 	ring->rx_stats.csum_good++;
388 }
389 
390 #define FM10K_RSS_L4_TYPES_MASK \
391 	(BIT(FM10K_RSSTYPE_IPV4_TCP) | \
392 	 BIT(FM10K_RSSTYPE_IPV4_UDP) | \
393 	 BIT(FM10K_RSSTYPE_IPV6_TCP) | \
394 	 BIT(FM10K_RSSTYPE_IPV6_UDP))
395 
396 static inline void fm10k_rx_hash(struct fm10k_ring *ring,
397 				 union fm10k_rx_desc *rx_desc,
398 				 struct sk_buff *skb)
399 {
400 	u16 rss_type;
401 
402 	if (!(ring->netdev->features & NETIF_F_RXHASH))
403 		return;
404 
405 	rss_type = le16_to_cpu(rx_desc->w.pkt_info) & FM10K_RXD_RSSTYPE_MASK;
406 	if (!rss_type)
407 		return;
408 
409 	skb_set_hash(skb, le32_to_cpu(rx_desc->d.rss),
410 		     (BIT(rss_type) & FM10K_RSS_L4_TYPES_MASK) ?
411 		     PKT_HASH_TYPE_L4 : PKT_HASH_TYPE_L3);
412 }
413 
414 static void fm10k_type_trans(struct fm10k_ring *rx_ring,
415 			     union fm10k_rx_desc __maybe_unused *rx_desc,
416 			     struct sk_buff *skb)
417 {
418 	struct net_device *dev = rx_ring->netdev;
419 	struct fm10k_l2_accel *l2_accel = rcu_dereference_bh(rx_ring->l2_accel);
420 
421 	/* check to see if DGLORT belongs to a MACVLAN */
422 	if (l2_accel) {
423 		u16 idx = le16_to_cpu(FM10K_CB(skb)->fi.w.dglort) - 1;
424 
425 		idx -= l2_accel->dglort;
426 		if (idx < l2_accel->size && l2_accel->macvlan[idx])
427 			dev = l2_accel->macvlan[idx];
428 		else
429 			l2_accel = NULL;
430 	}
431 
432 	/* Record Rx queue, or update macvlan statistics */
433 	if (!l2_accel)
434 		skb_record_rx_queue(skb, rx_ring->queue_index);
435 	else
436 		macvlan_count_rx(netdev_priv(dev), skb->len + ETH_HLEN, true,
437 				 false);
438 
439 	skb->protocol = eth_type_trans(skb, dev);
440 }
441 
442 /**
443  * fm10k_process_skb_fields - Populate skb header fields from Rx descriptor
444  * @rx_ring: rx descriptor ring packet is being transacted on
445  * @rx_desc: pointer to the EOP Rx descriptor
446  * @skb: pointer to current skb being populated
447  *
448  * This function checks the ring, descriptor, and packet information in
449  * order to populate the hash, checksum, VLAN, timestamp, protocol, and
450  * other fields within the skb.
451  **/
452 static unsigned int fm10k_process_skb_fields(struct fm10k_ring *rx_ring,
453 					     union fm10k_rx_desc *rx_desc,
454 					     struct sk_buff *skb)
455 {
456 	unsigned int len = skb->len;
457 
458 	fm10k_rx_hash(rx_ring, rx_desc, skb);
459 
460 	fm10k_rx_checksum(rx_ring, rx_desc, skb);
461 
462 	FM10K_CB(skb)->tstamp = rx_desc->q.timestamp;
463 
464 	FM10K_CB(skb)->fi.w.vlan = rx_desc->w.vlan;
465 
466 	FM10K_CB(skb)->fi.d.glort = rx_desc->d.glort;
467 
468 	if (rx_desc->w.vlan) {
469 		u16 vid = le16_to_cpu(rx_desc->w.vlan);
470 
471 		if ((vid & VLAN_VID_MASK) != rx_ring->vid)
472 			__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
473 		else if (vid & VLAN_PRIO_MASK)
474 			__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
475 					       vid & VLAN_PRIO_MASK);
476 	}
477 
478 	fm10k_type_trans(rx_ring, rx_desc, skb);
479 
480 	return len;
481 }
482 
483 /**
484  * fm10k_is_non_eop - process handling of non-EOP buffers
485  * @rx_ring: Rx ring being processed
486  * @rx_desc: Rx descriptor for current buffer
487  *
488  * This function updates next to clean.  If the buffer is an EOP buffer
489  * this function exits returning false, otherwise it will place the
490  * sk_buff in the next buffer to be chained and return true indicating
491  * that this is in fact a non-EOP buffer.
492  **/
493 static bool fm10k_is_non_eop(struct fm10k_ring *rx_ring,
494 			     union fm10k_rx_desc *rx_desc)
495 {
496 	u32 ntc = rx_ring->next_to_clean + 1;
497 
498 	/* fetch, update, and store next to clean */
499 	ntc = (ntc < rx_ring->count) ? ntc : 0;
500 	rx_ring->next_to_clean = ntc;
501 
502 	prefetch(FM10K_RX_DESC(rx_ring, ntc));
503 
504 	if (likely(fm10k_test_staterr(rx_desc, FM10K_RXD_STATUS_EOP)))
505 		return false;
506 
507 	return true;
508 }
509 
510 /**
511  * fm10k_cleanup_headers - Correct corrupted or empty headers
512  * @rx_ring: rx descriptor ring packet is being transacted on
513  * @rx_desc: pointer to the EOP Rx descriptor
514  * @skb: pointer to current skb being fixed
515  *
516  * Address the case where we are pulling data in on pages only
517  * and as such no data is present in the skb header.
518  *
519  * In addition if skb is not at least 60 bytes we need to pad it so that
520  * it is large enough to qualify as a valid Ethernet frame.
521  *
522  * Returns true if an error was encountered and skb was freed.
523  **/
524 static bool fm10k_cleanup_headers(struct fm10k_ring *rx_ring,
525 				  union fm10k_rx_desc *rx_desc,
526 				  struct sk_buff *skb)
527 {
528 	if (unlikely((fm10k_test_staterr(rx_desc,
529 					 FM10K_RXD_STATUS_RXE)))) {
530 #define FM10K_TEST_RXD_BIT(rxd, bit) \
531 	((rxd)->w.csum_err & cpu_to_le16(bit))
532 		if (FM10K_TEST_RXD_BIT(rx_desc, FM10K_RXD_ERR_SWITCH_ERROR))
533 			rx_ring->rx_stats.switch_errors++;
534 		if (FM10K_TEST_RXD_BIT(rx_desc, FM10K_RXD_ERR_NO_DESCRIPTOR))
535 			rx_ring->rx_stats.drops++;
536 		if (FM10K_TEST_RXD_BIT(rx_desc, FM10K_RXD_ERR_PP_ERROR))
537 			rx_ring->rx_stats.pp_errors++;
538 		if (FM10K_TEST_RXD_BIT(rx_desc, FM10K_RXD_ERR_SWITCH_READY))
539 			rx_ring->rx_stats.link_errors++;
540 		if (FM10K_TEST_RXD_BIT(rx_desc, FM10K_RXD_ERR_TOO_BIG))
541 			rx_ring->rx_stats.length_errors++;
542 		dev_kfree_skb_any(skb);
543 		rx_ring->rx_stats.errors++;
544 		return true;
545 	}
546 
547 	/* if eth_skb_pad returns an error the skb was freed */
548 	if (eth_skb_pad(skb))
549 		return true;
550 
551 	return false;
552 }
553 
554 /**
555  * fm10k_receive_skb - helper function to handle rx indications
556  * @q_vector: structure containing interrupt and ring information
557  * @skb: packet to send up
558  **/
559 static void fm10k_receive_skb(struct fm10k_q_vector *q_vector,
560 			      struct sk_buff *skb)
561 {
562 	napi_gro_receive(&q_vector->napi, skb);
563 }
564 
565 static int fm10k_clean_rx_irq(struct fm10k_q_vector *q_vector,
566 			      struct fm10k_ring *rx_ring,
567 			      int budget)
568 {
569 	struct sk_buff *skb = rx_ring->skb;
570 	unsigned int total_bytes = 0, total_packets = 0;
571 	u16 cleaned_count = fm10k_desc_unused(rx_ring);
572 
573 	while (likely(total_packets < budget)) {
574 		union fm10k_rx_desc *rx_desc;
575 
576 		/* return some buffers to hardware, one at a time is too slow */
577 		if (cleaned_count >= FM10K_RX_BUFFER_WRITE) {
578 			fm10k_alloc_rx_buffers(rx_ring, cleaned_count);
579 			cleaned_count = 0;
580 		}
581 
582 		rx_desc = FM10K_RX_DESC(rx_ring, rx_ring->next_to_clean);
583 
584 		if (!rx_desc->d.staterr)
585 			break;
586 
587 		/* This memory barrier is needed to keep us from reading
588 		 * any other fields out of the rx_desc until we know the
589 		 * descriptor has been written back
590 		 */
591 		dma_rmb();
592 
593 		/* retrieve a buffer from the ring */
594 		skb = fm10k_fetch_rx_buffer(rx_ring, rx_desc, skb);
595 
596 		/* exit if we failed to retrieve a buffer */
597 		if (!skb)
598 			break;
599 
600 		cleaned_count++;
601 
602 		/* fetch next buffer in frame if non-eop */
603 		if (fm10k_is_non_eop(rx_ring, rx_desc))
604 			continue;
605 
606 		/* verify the packet layout is correct */
607 		if (fm10k_cleanup_headers(rx_ring, rx_desc, skb)) {
608 			skb = NULL;
609 			continue;
610 		}
611 
612 		/* populate checksum, timestamp, VLAN, and protocol */
613 		total_bytes += fm10k_process_skb_fields(rx_ring, rx_desc, skb);
614 
615 		fm10k_receive_skb(q_vector, skb);
616 
617 		/* reset skb pointer */
618 		skb = NULL;
619 
620 		/* update budget accounting */
621 		total_packets++;
622 	}
623 
624 	/* place incomplete frames back on ring for completion */
625 	rx_ring->skb = skb;
626 
627 	u64_stats_update_begin(&rx_ring->syncp);
628 	rx_ring->stats.packets += total_packets;
629 	rx_ring->stats.bytes += total_bytes;
630 	u64_stats_update_end(&rx_ring->syncp);
631 	q_vector->rx.total_packets += total_packets;
632 	q_vector->rx.total_bytes += total_bytes;
633 
634 	return total_packets;
635 }
636 
637 #define VXLAN_HLEN (sizeof(struct udphdr) + 8)
638 static struct ethhdr *fm10k_port_is_vxlan(struct sk_buff *skb)
639 {
640 	struct fm10k_intfc *interface = netdev_priv(skb->dev);
641 	struct fm10k_udp_port *vxlan_port;
642 
643 	/* we can only offload a vxlan if we recognize it as such */
644 	vxlan_port = list_first_entry_or_null(&interface->vxlan_port,
645 					      struct fm10k_udp_port, list);
646 
647 	if (!vxlan_port)
648 		return NULL;
649 	if (vxlan_port->port != udp_hdr(skb)->dest)
650 		return NULL;
651 
652 	/* return offset of udp_hdr plus 8 bytes for VXLAN header */
653 	return (struct ethhdr *)(skb_transport_header(skb) + VXLAN_HLEN);
654 }
655 
656 #define FM10K_NVGRE_RESERVED0_FLAGS htons(0x9FFF)
657 #define NVGRE_TNI htons(0x2000)
658 struct fm10k_nvgre_hdr {
659 	__be16 flags;
660 	__be16 proto;
661 	__be32 tni;
662 };
663 
664 static struct ethhdr *fm10k_gre_is_nvgre(struct sk_buff *skb)
665 {
666 	struct fm10k_nvgre_hdr *nvgre_hdr;
667 	int hlen = ip_hdrlen(skb);
668 
669 	/* currently only IPv4 is supported due to hlen above */
670 	if (vlan_get_protocol(skb) != htons(ETH_P_IP))
671 		return NULL;
672 
673 	/* our transport header should be NVGRE */
674 	nvgre_hdr = (struct fm10k_nvgre_hdr *)(skb_network_header(skb) + hlen);
675 
676 	/* verify all reserved flags are 0 */
677 	if (nvgre_hdr->flags & FM10K_NVGRE_RESERVED0_FLAGS)
678 		return NULL;
679 
680 	/* report start of ethernet header */
681 	if (nvgre_hdr->flags & NVGRE_TNI)
682 		return (struct ethhdr *)(nvgre_hdr + 1);
683 
684 	return (struct ethhdr *)(&nvgre_hdr->tni);
685 }
686 
687 __be16 fm10k_tx_encap_offload(struct sk_buff *skb)
688 {
689 	u8 l4_hdr = 0, inner_l4_hdr = 0, inner_l4_hlen;
690 	struct ethhdr *eth_hdr;
691 
692 	if (skb->inner_protocol_type != ENCAP_TYPE_ETHER ||
693 	    skb->inner_protocol != htons(ETH_P_TEB))
694 		return 0;
695 
696 	switch (vlan_get_protocol(skb)) {
697 	case htons(ETH_P_IP):
698 		l4_hdr = ip_hdr(skb)->protocol;
699 		break;
700 	case htons(ETH_P_IPV6):
701 		l4_hdr = ipv6_hdr(skb)->nexthdr;
702 		break;
703 	default:
704 		return 0;
705 	}
706 
707 	switch (l4_hdr) {
708 	case IPPROTO_UDP:
709 		eth_hdr = fm10k_port_is_vxlan(skb);
710 		break;
711 	case IPPROTO_GRE:
712 		eth_hdr = fm10k_gre_is_nvgre(skb);
713 		break;
714 	default:
715 		return 0;
716 	}
717 
718 	if (!eth_hdr)
719 		return 0;
720 
721 	switch (eth_hdr->h_proto) {
722 	case htons(ETH_P_IP):
723 		inner_l4_hdr = inner_ip_hdr(skb)->protocol;
724 		break;
725 	case htons(ETH_P_IPV6):
726 		inner_l4_hdr = inner_ipv6_hdr(skb)->nexthdr;
727 		break;
728 	default:
729 		return 0;
730 	}
731 
732 	switch (inner_l4_hdr) {
733 	case IPPROTO_TCP:
734 		inner_l4_hlen = inner_tcp_hdrlen(skb);
735 		break;
736 	case IPPROTO_UDP:
737 		inner_l4_hlen = 8;
738 		break;
739 	default:
740 		return 0;
741 	}
742 
743 	/* The hardware allows tunnel offloads only if the combined inner and
744 	 * outer header is 184 bytes or less
745 	 */
746 	if (skb_inner_transport_header(skb) + inner_l4_hlen -
747 	    skb_mac_header(skb) > FM10K_TUNNEL_HEADER_LENGTH)
748 		return 0;
749 
750 	return eth_hdr->h_proto;
751 }
752 
753 static int fm10k_tso(struct fm10k_ring *tx_ring,
754 		     struct fm10k_tx_buffer *first)
755 {
756 	struct sk_buff *skb = first->skb;
757 	struct fm10k_tx_desc *tx_desc;
758 	unsigned char *th;
759 	u8 hdrlen;
760 
761 	if (skb->ip_summed != CHECKSUM_PARTIAL)
762 		return 0;
763 
764 	if (!skb_is_gso(skb))
765 		return 0;
766 
767 	/* compute header lengths */
768 	if (skb->encapsulation) {
769 		if (!fm10k_tx_encap_offload(skb))
770 			goto err_vxlan;
771 		th = skb_inner_transport_header(skb);
772 	} else {
773 		th = skb_transport_header(skb);
774 	}
775 
776 	/* compute offset from SOF to transport header and add header len */
777 	hdrlen = (th - skb->data) + (((struct tcphdr *)th)->doff << 2);
778 
779 	first->tx_flags |= FM10K_TX_FLAGS_CSUM;
780 
781 	/* update gso size and bytecount with header size */
782 	first->gso_segs = skb_shinfo(skb)->gso_segs;
783 	first->bytecount += (first->gso_segs - 1) * hdrlen;
784 
785 	/* populate Tx descriptor header size and mss */
786 	tx_desc = FM10K_TX_DESC(tx_ring, tx_ring->next_to_use);
787 	tx_desc->hdrlen = hdrlen;
788 	tx_desc->mss = cpu_to_le16(skb_shinfo(skb)->gso_size);
789 
790 	return 1;
791 
792 err_vxlan:
793 	tx_ring->netdev->features &= ~NETIF_F_GSO_UDP_TUNNEL;
794 	if (net_ratelimit())
795 		netdev_err(tx_ring->netdev,
796 			   "TSO requested for unsupported tunnel, disabling offload\n");
797 	return -1;
798 }
799 
800 static void fm10k_tx_csum(struct fm10k_ring *tx_ring,
801 			  struct fm10k_tx_buffer *first)
802 {
803 	struct sk_buff *skb = first->skb;
804 	struct fm10k_tx_desc *tx_desc;
805 	union {
806 		struct iphdr *ipv4;
807 		struct ipv6hdr *ipv6;
808 		u8 *raw;
809 	} network_hdr;
810 	u8 *transport_hdr;
811 	__be16 frag_off;
812 	__be16 protocol;
813 	u8 l4_hdr = 0;
814 
815 	if (skb->ip_summed != CHECKSUM_PARTIAL)
816 		goto no_csum;
817 
818 	if (skb->encapsulation) {
819 		protocol = fm10k_tx_encap_offload(skb);
820 		if (!protocol) {
821 			if (skb_checksum_help(skb)) {
822 				dev_warn(tx_ring->dev,
823 					 "failed to offload encap csum!\n");
824 				tx_ring->tx_stats.csum_err++;
825 			}
826 			goto no_csum;
827 		}
828 		network_hdr.raw = skb_inner_network_header(skb);
829 		transport_hdr = skb_inner_transport_header(skb);
830 	} else {
831 		protocol = vlan_get_protocol(skb);
832 		network_hdr.raw = skb_network_header(skb);
833 		transport_hdr = skb_transport_header(skb);
834 	}
835 
836 	switch (protocol) {
837 	case htons(ETH_P_IP):
838 		l4_hdr = network_hdr.ipv4->protocol;
839 		break;
840 	case htons(ETH_P_IPV6):
841 		l4_hdr = network_hdr.ipv6->nexthdr;
842 		if (likely((transport_hdr - network_hdr.raw) ==
843 			   sizeof(struct ipv6hdr)))
844 			break;
845 		ipv6_skip_exthdr(skb, network_hdr.raw - skb->data +
846 				      sizeof(struct ipv6hdr),
847 				 &l4_hdr, &frag_off);
848 		if (unlikely(frag_off))
849 			l4_hdr = NEXTHDR_FRAGMENT;
850 		break;
851 	default:
852 		break;
853 	}
854 
855 	switch (l4_hdr) {
856 	case IPPROTO_TCP:
857 	case IPPROTO_UDP:
858 		break;
859 	case IPPROTO_GRE:
860 		if (skb->encapsulation)
861 			break;
862 		/* fall through */
863 	default:
864 		if (unlikely(net_ratelimit())) {
865 			dev_warn(tx_ring->dev,
866 				 "partial checksum, version=%d l4 proto=%x\n",
867 				 protocol, l4_hdr);
868 		}
869 		skb_checksum_help(skb);
870 		tx_ring->tx_stats.csum_err++;
871 		goto no_csum;
872 	}
873 
874 	/* update TX checksum flag */
875 	first->tx_flags |= FM10K_TX_FLAGS_CSUM;
876 	tx_ring->tx_stats.csum_good++;
877 
878 no_csum:
879 	/* populate Tx descriptor header size and mss */
880 	tx_desc = FM10K_TX_DESC(tx_ring, tx_ring->next_to_use);
881 	tx_desc->hdrlen = 0;
882 	tx_desc->mss = 0;
883 }
884 
885 #define FM10K_SET_FLAG(_input, _flag, _result) \
886 	((_flag <= _result) ? \
887 	 ((u32)(_input & _flag) * (_result / _flag)) : \
888 	 ((u32)(_input & _flag) / (_flag / _result)))
889 
890 static u8 fm10k_tx_desc_flags(struct sk_buff *skb, u32 tx_flags)
891 {
892 	/* set type for advanced descriptor with frame checksum insertion */
893 	u32 desc_flags = 0;
894 
895 	/* set checksum offload bits */
896 	desc_flags |= FM10K_SET_FLAG(tx_flags, FM10K_TX_FLAGS_CSUM,
897 				     FM10K_TXD_FLAG_CSUM);
898 
899 	return desc_flags;
900 }
901 
902 static bool fm10k_tx_desc_push(struct fm10k_ring *tx_ring,
903 			       struct fm10k_tx_desc *tx_desc, u16 i,
904 			       dma_addr_t dma, unsigned int size, u8 desc_flags)
905 {
906 	/* set RS and INT for last frame in a cache line */
907 	if ((++i & (FM10K_TXD_WB_FIFO_SIZE - 1)) == 0)
908 		desc_flags |= FM10K_TXD_FLAG_RS | FM10K_TXD_FLAG_INT;
909 
910 	/* record values to descriptor */
911 	tx_desc->buffer_addr = cpu_to_le64(dma);
912 	tx_desc->flags = desc_flags;
913 	tx_desc->buflen = cpu_to_le16(size);
914 
915 	/* return true if we just wrapped the ring */
916 	return i == tx_ring->count;
917 }
918 
919 static int __fm10k_maybe_stop_tx(struct fm10k_ring *tx_ring, u16 size)
920 {
921 	netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
922 
923 	/* Memory barrier before checking head and tail */
924 	smp_mb();
925 
926 	/* Check again in a case another CPU has just made room available */
927 	if (likely(fm10k_desc_unused(tx_ring) < size))
928 		return -EBUSY;
929 
930 	/* A reprieve! - use start_queue because it doesn't call schedule */
931 	netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
932 	++tx_ring->tx_stats.restart_queue;
933 	return 0;
934 }
935 
936 static inline int fm10k_maybe_stop_tx(struct fm10k_ring *tx_ring, u16 size)
937 {
938 	if (likely(fm10k_desc_unused(tx_ring) >= size))
939 		return 0;
940 	return __fm10k_maybe_stop_tx(tx_ring, size);
941 }
942 
943 static void fm10k_tx_map(struct fm10k_ring *tx_ring,
944 			 struct fm10k_tx_buffer *first)
945 {
946 	struct sk_buff *skb = first->skb;
947 	struct fm10k_tx_buffer *tx_buffer;
948 	struct fm10k_tx_desc *tx_desc;
949 	struct skb_frag_struct *frag;
950 	unsigned char *data;
951 	dma_addr_t dma;
952 	unsigned int data_len, size;
953 	u32 tx_flags = first->tx_flags;
954 	u16 i = tx_ring->next_to_use;
955 	u8 flags = fm10k_tx_desc_flags(skb, tx_flags);
956 
957 	tx_desc = FM10K_TX_DESC(tx_ring, i);
958 
959 	/* add HW VLAN tag */
960 	if (skb_vlan_tag_present(skb))
961 		tx_desc->vlan = cpu_to_le16(skb_vlan_tag_get(skb));
962 	else
963 		tx_desc->vlan = 0;
964 
965 	size = skb_headlen(skb);
966 	data = skb->data;
967 
968 	dma = dma_map_single(tx_ring->dev, data, size, DMA_TO_DEVICE);
969 
970 	data_len = skb->data_len;
971 	tx_buffer = first;
972 
973 	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
974 		if (dma_mapping_error(tx_ring->dev, dma))
975 			goto dma_error;
976 
977 		/* record length, and DMA address */
978 		dma_unmap_len_set(tx_buffer, len, size);
979 		dma_unmap_addr_set(tx_buffer, dma, dma);
980 
981 		while (unlikely(size > FM10K_MAX_DATA_PER_TXD)) {
982 			if (fm10k_tx_desc_push(tx_ring, tx_desc++, i++, dma,
983 					       FM10K_MAX_DATA_PER_TXD, flags)) {
984 				tx_desc = FM10K_TX_DESC(tx_ring, 0);
985 				i = 0;
986 			}
987 
988 			dma += FM10K_MAX_DATA_PER_TXD;
989 			size -= FM10K_MAX_DATA_PER_TXD;
990 		}
991 
992 		if (likely(!data_len))
993 			break;
994 
995 		if (fm10k_tx_desc_push(tx_ring, tx_desc++, i++,
996 				       dma, size, flags)) {
997 			tx_desc = FM10K_TX_DESC(tx_ring, 0);
998 			i = 0;
999 		}
1000 
1001 		size = skb_frag_size(frag);
1002 		data_len -= size;
1003 
1004 		dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
1005 				       DMA_TO_DEVICE);
1006 
1007 		tx_buffer = &tx_ring->tx_buffer[i];
1008 	}
1009 
1010 	/* write last descriptor with LAST bit set */
1011 	flags |= FM10K_TXD_FLAG_LAST;
1012 
1013 	if (fm10k_tx_desc_push(tx_ring, tx_desc, i++, dma, size, flags))
1014 		i = 0;
1015 
1016 	/* record bytecount for BQL */
1017 	netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
1018 
1019 	/* record SW timestamp if HW timestamp is not available */
1020 	skb_tx_timestamp(first->skb);
1021 
1022 	/* Force memory writes to complete before letting h/w know there
1023 	 * are new descriptors to fetch.  (Only applicable for weak-ordered
1024 	 * memory model archs, such as IA-64).
1025 	 *
1026 	 * We also need this memory barrier to make certain all of the
1027 	 * status bits have been updated before next_to_watch is written.
1028 	 */
1029 	wmb();
1030 
1031 	/* set next_to_watch value indicating a packet is present */
1032 	first->next_to_watch = tx_desc;
1033 
1034 	tx_ring->next_to_use = i;
1035 
1036 	/* Make sure there is space in the ring for the next send. */
1037 	fm10k_maybe_stop_tx(tx_ring, DESC_NEEDED);
1038 
1039 	/* notify HW of packet */
1040 	if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) {
1041 		writel(i, tx_ring->tail);
1042 	}
1043 
1044 	return;
1045 dma_error:
1046 	dev_err(tx_ring->dev, "TX DMA map failed\n");
1047 
1048 	/* clear dma mappings for failed tx_buffer map */
1049 	for (;;) {
1050 		tx_buffer = &tx_ring->tx_buffer[i];
1051 		fm10k_unmap_and_free_tx_resource(tx_ring, tx_buffer);
1052 		if (tx_buffer == first)
1053 			break;
1054 		if (i == 0)
1055 			i = tx_ring->count;
1056 		i--;
1057 	}
1058 
1059 	tx_ring->next_to_use = i;
1060 }
1061 
1062 netdev_tx_t fm10k_xmit_frame_ring(struct sk_buff *skb,
1063 				  struct fm10k_ring *tx_ring)
1064 {
1065 	u16 count = TXD_USE_COUNT(skb_headlen(skb));
1066 	struct fm10k_tx_buffer *first;
1067 	unsigned short f;
1068 	u32 tx_flags = 0;
1069 	int tso;
1070 
1071 	/* need: 1 descriptor per page * PAGE_SIZE/FM10K_MAX_DATA_PER_TXD,
1072 	 *       + 1 desc for skb_headlen/FM10K_MAX_DATA_PER_TXD,
1073 	 *       + 2 desc gap to keep tail from touching head
1074 	 * otherwise try next time
1075 	 */
1076 	for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
1077 		count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size);
1078 
1079 	if (fm10k_maybe_stop_tx(tx_ring, count + 3)) {
1080 		tx_ring->tx_stats.tx_busy++;
1081 		return NETDEV_TX_BUSY;
1082 	}
1083 
1084 	/* record the location of the first descriptor for this packet */
1085 	first = &tx_ring->tx_buffer[tx_ring->next_to_use];
1086 	first->skb = skb;
1087 	first->bytecount = max_t(unsigned int, skb->len, ETH_ZLEN);
1088 	first->gso_segs = 1;
1089 
1090 	/* record initial flags and protocol */
1091 	first->tx_flags = tx_flags;
1092 
1093 	tso = fm10k_tso(tx_ring, first);
1094 	if (tso < 0)
1095 		goto out_drop;
1096 	else if (!tso)
1097 		fm10k_tx_csum(tx_ring, first);
1098 
1099 	fm10k_tx_map(tx_ring, first);
1100 
1101 	return NETDEV_TX_OK;
1102 
1103 out_drop:
1104 	dev_kfree_skb_any(first->skb);
1105 	first->skb = NULL;
1106 
1107 	return NETDEV_TX_OK;
1108 }
1109 
1110 static u64 fm10k_get_tx_completed(struct fm10k_ring *ring)
1111 {
1112 	return ring->stats.packets;
1113 }
1114 
1115 /**
1116  * fm10k_get_tx_pending - how many Tx descriptors not processed
1117  * @ring: the ring structure
1118  * @in_sw: is tx_pending being checked in SW or in HW?
1119  */
1120 u64 fm10k_get_tx_pending(struct fm10k_ring *ring, bool in_sw)
1121 {
1122 	struct fm10k_intfc *interface = ring->q_vector->interface;
1123 	struct fm10k_hw *hw = &interface->hw;
1124 	u32 head, tail;
1125 
1126 	if (likely(in_sw)) {
1127 		head = ring->next_to_clean;
1128 		tail = ring->next_to_use;
1129 	} else {
1130 		head = fm10k_read_reg(hw, FM10K_TDH(ring->reg_idx));
1131 		tail = fm10k_read_reg(hw, FM10K_TDT(ring->reg_idx));
1132 	}
1133 
1134 	return ((head <= tail) ? tail : tail + ring->count) - head;
1135 }
1136 
1137 bool fm10k_check_tx_hang(struct fm10k_ring *tx_ring)
1138 {
1139 	u32 tx_done = fm10k_get_tx_completed(tx_ring);
1140 	u32 tx_done_old = tx_ring->tx_stats.tx_done_old;
1141 	u32 tx_pending = fm10k_get_tx_pending(tx_ring, true);
1142 
1143 	clear_check_for_tx_hang(tx_ring);
1144 
1145 	/* Check for a hung queue, but be thorough. This verifies
1146 	 * that a transmit has been completed since the previous
1147 	 * check AND there is at least one packet pending. By
1148 	 * requiring this to fail twice we avoid races with
1149 	 * clearing the ARMED bit and conditions where we
1150 	 * run the check_tx_hang logic with a transmit completion
1151 	 * pending but without time to complete it yet.
1152 	 */
1153 	if (!tx_pending || (tx_done_old != tx_done)) {
1154 		/* update completed stats and continue */
1155 		tx_ring->tx_stats.tx_done_old = tx_done;
1156 		/* reset the countdown */
1157 		clear_bit(__FM10K_HANG_CHECK_ARMED, tx_ring->state);
1158 
1159 		return false;
1160 	}
1161 
1162 	/* make sure it is true for two checks in a row */
1163 	return test_and_set_bit(__FM10K_HANG_CHECK_ARMED, tx_ring->state);
1164 }
1165 
1166 /**
1167  * fm10k_tx_timeout_reset - initiate reset due to Tx timeout
1168  * @interface: driver private struct
1169  **/
1170 void fm10k_tx_timeout_reset(struct fm10k_intfc *interface)
1171 {
1172 	/* Do the reset outside of interrupt context */
1173 	if (!test_bit(__FM10K_DOWN, interface->state)) {
1174 		interface->tx_timeout_count++;
1175 		set_bit(FM10K_FLAG_RESET_REQUESTED, interface->flags);
1176 		fm10k_service_event_schedule(interface);
1177 	}
1178 }
1179 
1180 /**
1181  * fm10k_clean_tx_irq - Reclaim resources after transmit completes
1182  * @q_vector: structure containing interrupt and ring information
1183  * @tx_ring: tx ring to clean
1184  * @napi_budget: Used to determine if we are in netpoll
1185  **/
1186 static bool fm10k_clean_tx_irq(struct fm10k_q_vector *q_vector,
1187 			       struct fm10k_ring *tx_ring, int napi_budget)
1188 {
1189 	struct fm10k_intfc *interface = q_vector->interface;
1190 	struct fm10k_tx_buffer *tx_buffer;
1191 	struct fm10k_tx_desc *tx_desc;
1192 	unsigned int total_bytes = 0, total_packets = 0;
1193 	unsigned int budget = q_vector->tx.work_limit;
1194 	unsigned int i = tx_ring->next_to_clean;
1195 
1196 	if (test_bit(__FM10K_DOWN, interface->state))
1197 		return true;
1198 
1199 	tx_buffer = &tx_ring->tx_buffer[i];
1200 	tx_desc = FM10K_TX_DESC(tx_ring, i);
1201 	i -= tx_ring->count;
1202 
1203 	do {
1204 		struct fm10k_tx_desc *eop_desc = tx_buffer->next_to_watch;
1205 
1206 		/* if next_to_watch is not set then there is no work pending */
1207 		if (!eop_desc)
1208 			break;
1209 
1210 		/* prevent any other reads prior to eop_desc */
1211 		smp_rmb();
1212 
1213 		/* if DD is not set pending work has not been completed */
1214 		if (!(eop_desc->flags & FM10K_TXD_FLAG_DONE))
1215 			break;
1216 
1217 		/* clear next_to_watch to prevent false hangs */
1218 		tx_buffer->next_to_watch = NULL;
1219 
1220 		/* update the statistics for this packet */
1221 		total_bytes += tx_buffer->bytecount;
1222 		total_packets += tx_buffer->gso_segs;
1223 
1224 		/* free the skb */
1225 		napi_consume_skb(tx_buffer->skb, napi_budget);
1226 
1227 		/* unmap skb header data */
1228 		dma_unmap_single(tx_ring->dev,
1229 				 dma_unmap_addr(tx_buffer, dma),
1230 				 dma_unmap_len(tx_buffer, len),
1231 				 DMA_TO_DEVICE);
1232 
1233 		/* clear tx_buffer data */
1234 		tx_buffer->skb = NULL;
1235 		dma_unmap_len_set(tx_buffer, len, 0);
1236 
1237 		/* unmap remaining buffers */
1238 		while (tx_desc != eop_desc) {
1239 			tx_buffer++;
1240 			tx_desc++;
1241 			i++;
1242 			if (unlikely(!i)) {
1243 				i -= tx_ring->count;
1244 				tx_buffer = tx_ring->tx_buffer;
1245 				tx_desc = FM10K_TX_DESC(tx_ring, 0);
1246 			}
1247 
1248 			/* unmap any remaining paged data */
1249 			if (dma_unmap_len(tx_buffer, len)) {
1250 				dma_unmap_page(tx_ring->dev,
1251 					       dma_unmap_addr(tx_buffer, dma),
1252 					       dma_unmap_len(tx_buffer, len),
1253 					       DMA_TO_DEVICE);
1254 				dma_unmap_len_set(tx_buffer, len, 0);
1255 			}
1256 		}
1257 
1258 		/* move us one more past the eop_desc for start of next pkt */
1259 		tx_buffer++;
1260 		tx_desc++;
1261 		i++;
1262 		if (unlikely(!i)) {
1263 			i -= tx_ring->count;
1264 			tx_buffer = tx_ring->tx_buffer;
1265 			tx_desc = FM10K_TX_DESC(tx_ring, 0);
1266 		}
1267 
1268 		/* issue prefetch for next Tx descriptor */
1269 		prefetch(tx_desc);
1270 
1271 		/* update budget accounting */
1272 		budget--;
1273 	} while (likely(budget));
1274 
1275 	i += tx_ring->count;
1276 	tx_ring->next_to_clean = i;
1277 	u64_stats_update_begin(&tx_ring->syncp);
1278 	tx_ring->stats.bytes += total_bytes;
1279 	tx_ring->stats.packets += total_packets;
1280 	u64_stats_update_end(&tx_ring->syncp);
1281 	q_vector->tx.total_bytes += total_bytes;
1282 	q_vector->tx.total_packets += total_packets;
1283 
1284 	if (check_for_tx_hang(tx_ring) && fm10k_check_tx_hang(tx_ring)) {
1285 		/* schedule immediate reset if we believe we hung */
1286 		struct fm10k_hw *hw = &interface->hw;
1287 
1288 		netif_err(interface, drv, tx_ring->netdev,
1289 			  "Detected Tx Unit Hang\n"
1290 			  "  Tx Queue             <%d>\n"
1291 			  "  TDH, TDT             <%x>, <%x>\n"
1292 			  "  next_to_use          <%x>\n"
1293 			  "  next_to_clean        <%x>\n",
1294 			  tx_ring->queue_index,
1295 			  fm10k_read_reg(hw, FM10K_TDH(tx_ring->reg_idx)),
1296 			  fm10k_read_reg(hw, FM10K_TDT(tx_ring->reg_idx)),
1297 			  tx_ring->next_to_use, i);
1298 
1299 		netif_stop_subqueue(tx_ring->netdev,
1300 				    tx_ring->queue_index);
1301 
1302 		netif_info(interface, probe, tx_ring->netdev,
1303 			   "tx hang %d detected on queue %d, resetting interface\n",
1304 			   interface->tx_timeout_count + 1,
1305 			   tx_ring->queue_index);
1306 
1307 		fm10k_tx_timeout_reset(interface);
1308 
1309 		/* the netdev is about to reset, no point in enabling stuff */
1310 		return true;
1311 	}
1312 
1313 	/* notify netdev of completed buffers */
1314 	netdev_tx_completed_queue(txring_txq(tx_ring),
1315 				  total_packets, total_bytes);
1316 
1317 #define TX_WAKE_THRESHOLD min_t(u16, FM10K_MIN_TXD - 1, DESC_NEEDED * 2)
1318 	if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
1319 		     (fm10k_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD))) {
1320 		/* Make sure that anybody stopping the queue after this
1321 		 * sees the new next_to_clean.
1322 		 */
1323 		smp_mb();
1324 		if (__netif_subqueue_stopped(tx_ring->netdev,
1325 					     tx_ring->queue_index) &&
1326 		    !test_bit(__FM10K_DOWN, interface->state)) {
1327 			netif_wake_subqueue(tx_ring->netdev,
1328 					    tx_ring->queue_index);
1329 			++tx_ring->tx_stats.restart_queue;
1330 		}
1331 	}
1332 
1333 	return !!budget;
1334 }
1335 
1336 /**
1337  * fm10k_update_itr - update the dynamic ITR value based on packet size
1338  *
1339  *      Stores a new ITR value based on strictly on packet size.  The
1340  *      divisors and thresholds used by this function were determined based
1341  *      on theoretical maximum wire speed and testing data, in order to
1342  *      minimize response time while increasing bulk throughput.
1343  *
1344  * @ring_container: Container for rings to have ITR updated
1345  **/
1346 static void fm10k_update_itr(struct fm10k_ring_container *ring_container)
1347 {
1348 	unsigned int avg_wire_size, packets, itr_round;
1349 
1350 	/* Only update ITR if we are using adaptive setting */
1351 	if (!ITR_IS_ADAPTIVE(ring_container->itr))
1352 		goto clear_counts;
1353 
1354 	packets = ring_container->total_packets;
1355 	if (!packets)
1356 		goto clear_counts;
1357 
1358 	avg_wire_size = ring_container->total_bytes / packets;
1359 
1360 	/* The following is a crude approximation of:
1361 	 *  wmem_default / (size + overhead) = desired_pkts_per_int
1362 	 *  rate / bits_per_byte / (size + ethernet overhead) = pkt_rate
1363 	 *  (desired_pkt_rate / pkt_rate) * usecs_per_sec = ITR value
1364 	 *
1365 	 * Assuming wmem_default is 212992 and overhead is 640 bytes per
1366 	 * packet, (256 skb, 64 headroom, 320 shared info), we can reduce the
1367 	 * formula down to
1368 	 *
1369 	 *  (34 * (size + 24)) / (size + 640) = ITR
1370 	 *
1371 	 * We first do some math on the packet size and then finally bitshift
1372 	 * by 8 after rounding up. We also have to account for PCIe link speed
1373 	 * difference as ITR scales based on this.
1374 	 */
1375 	if (avg_wire_size <= 360) {
1376 		/* Start at 250K ints/sec and gradually drop to 77K ints/sec */
1377 		avg_wire_size *= 8;
1378 		avg_wire_size += 376;
1379 	} else if (avg_wire_size <= 1152) {
1380 		/* 77K ints/sec to 45K ints/sec */
1381 		avg_wire_size *= 3;
1382 		avg_wire_size += 2176;
1383 	} else if (avg_wire_size <= 1920) {
1384 		/* 45K ints/sec to 38K ints/sec */
1385 		avg_wire_size += 4480;
1386 	} else {
1387 		/* plateau at a limit of 38K ints/sec */
1388 		avg_wire_size = 6656;
1389 	}
1390 
1391 	/* Perform final bitshift for division after rounding up to ensure
1392 	 * that the calculation will never get below a 1. The bit shift
1393 	 * accounts for changes in the ITR due to PCIe link speed.
1394 	 */
1395 	itr_round = READ_ONCE(ring_container->itr_scale) + 8;
1396 	avg_wire_size += BIT(itr_round) - 1;
1397 	avg_wire_size >>= itr_round;
1398 
1399 	/* write back value and retain adaptive flag */
1400 	ring_container->itr = avg_wire_size | FM10K_ITR_ADAPTIVE;
1401 
1402 clear_counts:
1403 	ring_container->total_bytes = 0;
1404 	ring_container->total_packets = 0;
1405 }
1406 
1407 static void fm10k_qv_enable(struct fm10k_q_vector *q_vector)
1408 {
1409 	/* Enable auto-mask and clear the current mask */
1410 	u32 itr = FM10K_ITR_ENABLE;
1411 
1412 	/* Update Tx ITR */
1413 	fm10k_update_itr(&q_vector->tx);
1414 
1415 	/* Update Rx ITR */
1416 	fm10k_update_itr(&q_vector->rx);
1417 
1418 	/* Store Tx itr in timer slot 0 */
1419 	itr |= (q_vector->tx.itr & FM10K_ITR_MAX);
1420 
1421 	/* Shift Rx itr to timer slot 1 */
1422 	itr |= (q_vector->rx.itr & FM10K_ITR_MAX) << FM10K_ITR_INTERVAL1_SHIFT;
1423 
1424 	/* Write the final value to the ITR register */
1425 	writel(itr, q_vector->itr);
1426 }
1427 
1428 static int fm10k_poll(struct napi_struct *napi, int budget)
1429 {
1430 	struct fm10k_q_vector *q_vector =
1431 			       container_of(napi, struct fm10k_q_vector, napi);
1432 	struct fm10k_ring *ring;
1433 	int per_ring_budget, work_done = 0;
1434 	bool clean_complete = true;
1435 
1436 	fm10k_for_each_ring(ring, q_vector->tx) {
1437 		if (!fm10k_clean_tx_irq(q_vector, ring, budget))
1438 			clean_complete = false;
1439 	}
1440 
1441 	/* Handle case where we are called by netpoll with a budget of 0 */
1442 	if (budget <= 0)
1443 		return budget;
1444 
1445 	/* attempt to distribute budget to each queue fairly, but don't
1446 	 * allow the budget to go below 1 because we'll exit polling
1447 	 */
1448 	if (q_vector->rx.count > 1)
1449 		per_ring_budget = max(budget / q_vector->rx.count, 1);
1450 	else
1451 		per_ring_budget = budget;
1452 
1453 	fm10k_for_each_ring(ring, q_vector->rx) {
1454 		int work = fm10k_clean_rx_irq(q_vector, ring, per_ring_budget);
1455 
1456 		work_done += work;
1457 		if (work >= per_ring_budget)
1458 			clean_complete = false;
1459 	}
1460 
1461 	/* If all work not completed, return budget and keep polling */
1462 	if (!clean_complete)
1463 		return budget;
1464 
1465 	/* Exit the polling mode, but don't re-enable interrupts if stack might
1466 	 * poll us due to busy-polling
1467 	 */
1468 	if (likely(napi_complete_done(napi, work_done)))
1469 		fm10k_qv_enable(q_vector);
1470 
1471 	return min(work_done, budget - 1);
1472 }
1473 
1474 /**
1475  * fm10k_set_qos_queues: Allocate queues for a QOS-enabled device
1476  * @interface: board private structure to initialize
1477  *
1478  * When QoS (Quality of Service) is enabled, allocate queues for
1479  * each traffic class.  If multiqueue isn't available,then abort QoS
1480  * initialization.
1481  *
1482  * This function handles all combinations of Qos and RSS.
1483  *
1484  **/
1485 static bool fm10k_set_qos_queues(struct fm10k_intfc *interface)
1486 {
1487 	struct net_device *dev = interface->netdev;
1488 	struct fm10k_ring_feature *f;
1489 	int rss_i, i;
1490 	int pcs;
1491 
1492 	/* Map queue offset and counts onto allocated tx queues */
1493 	pcs = netdev_get_num_tc(dev);
1494 
1495 	if (pcs <= 1)
1496 		return false;
1497 
1498 	/* set QoS mask and indices */
1499 	f = &interface->ring_feature[RING_F_QOS];
1500 	f->indices = pcs;
1501 	f->mask = BIT(fls(pcs - 1)) - 1;
1502 
1503 	/* determine the upper limit for our current DCB mode */
1504 	rss_i = interface->hw.mac.max_queues / pcs;
1505 	rss_i = BIT(fls(rss_i) - 1);
1506 
1507 	/* set RSS mask and indices */
1508 	f = &interface->ring_feature[RING_F_RSS];
1509 	rss_i = min_t(u16, rss_i, f->limit);
1510 	f->indices = rss_i;
1511 	f->mask = BIT(fls(rss_i - 1)) - 1;
1512 
1513 	/* configure pause class to queue mapping */
1514 	for (i = 0; i < pcs; i++)
1515 		netdev_set_tc_queue(dev, i, rss_i, rss_i * i);
1516 
1517 	interface->num_rx_queues = rss_i * pcs;
1518 	interface->num_tx_queues = rss_i * pcs;
1519 
1520 	return true;
1521 }
1522 
1523 /**
1524  * fm10k_set_rss_queues: Allocate queues for RSS
1525  * @interface: board private structure to initialize
1526  *
1527  * This is our "base" multiqueue mode.  RSS (Receive Side Scaling) will try
1528  * to allocate one Rx queue per CPU, and if available, one Tx queue per CPU.
1529  *
1530  **/
1531 static bool fm10k_set_rss_queues(struct fm10k_intfc *interface)
1532 {
1533 	struct fm10k_ring_feature *f;
1534 	u16 rss_i;
1535 
1536 	f = &interface->ring_feature[RING_F_RSS];
1537 	rss_i = min_t(u16, interface->hw.mac.max_queues, f->limit);
1538 
1539 	/* record indices and power of 2 mask for RSS */
1540 	f->indices = rss_i;
1541 	f->mask = BIT(fls(rss_i - 1)) - 1;
1542 
1543 	interface->num_rx_queues = rss_i;
1544 	interface->num_tx_queues = rss_i;
1545 
1546 	return true;
1547 }
1548 
1549 /**
1550  * fm10k_set_num_queues: Allocate queues for device, feature dependent
1551  * @interface: board private structure to initialize
1552  *
1553  * This is the top level queue allocation routine.  The order here is very
1554  * important, starting with the "most" number of features turned on at once,
1555  * and ending with the smallest set of features.  This way large combinations
1556  * can be allocated if they're turned on, and smaller combinations are the
1557  * fallthrough conditions.
1558  *
1559  **/
1560 static void fm10k_set_num_queues(struct fm10k_intfc *interface)
1561 {
1562 	/* Attempt to setup QoS and RSS first */
1563 	if (fm10k_set_qos_queues(interface))
1564 		return;
1565 
1566 	/* If we don't have QoS, just fallback to only RSS. */
1567 	fm10k_set_rss_queues(interface);
1568 }
1569 
1570 /**
1571  * fm10k_reset_num_queues - Reset the number of queues to zero
1572  * @interface: board private structure
1573  *
1574  * This function should be called whenever we need to reset the number of
1575  * queues after an error condition.
1576  */
1577 static void fm10k_reset_num_queues(struct fm10k_intfc *interface)
1578 {
1579 	interface->num_tx_queues = 0;
1580 	interface->num_rx_queues = 0;
1581 	interface->num_q_vectors = 0;
1582 }
1583 
1584 /**
1585  * fm10k_alloc_q_vector - Allocate memory for a single interrupt vector
1586  * @interface: board private structure to initialize
1587  * @v_count: q_vectors allocated on interface, used for ring interleaving
1588  * @v_idx: index of vector in interface struct
1589  * @txr_count: total number of Tx rings to allocate
1590  * @txr_idx: index of first Tx ring to allocate
1591  * @rxr_count: total number of Rx rings to allocate
1592  * @rxr_idx: index of first Rx ring to allocate
1593  *
1594  * We allocate one q_vector.  If allocation fails we return -ENOMEM.
1595  **/
1596 static int fm10k_alloc_q_vector(struct fm10k_intfc *interface,
1597 				unsigned int v_count, unsigned int v_idx,
1598 				unsigned int txr_count, unsigned int txr_idx,
1599 				unsigned int rxr_count, unsigned int rxr_idx)
1600 {
1601 	struct fm10k_q_vector *q_vector;
1602 	struct fm10k_ring *ring;
1603 	int ring_count;
1604 
1605 	ring_count = txr_count + rxr_count;
1606 
1607 	/* allocate q_vector and rings */
1608 	q_vector = kzalloc(struct_size(q_vector, ring, ring_count), GFP_KERNEL);
1609 	if (!q_vector)
1610 		return -ENOMEM;
1611 
1612 	/* initialize NAPI */
1613 	netif_napi_add(interface->netdev, &q_vector->napi,
1614 		       fm10k_poll, NAPI_POLL_WEIGHT);
1615 
1616 	/* tie q_vector and interface together */
1617 	interface->q_vector[v_idx] = q_vector;
1618 	q_vector->interface = interface;
1619 	q_vector->v_idx = v_idx;
1620 
1621 	/* initialize pointer to rings */
1622 	ring = q_vector->ring;
1623 
1624 	/* save Tx ring container info */
1625 	q_vector->tx.ring = ring;
1626 	q_vector->tx.work_limit = FM10K_DEFAULT_TX_WORK;
1627 	q_vector->tx.itr = interface->tx_itr;
1628 	q_vector->tx.itr_scale = interface->hw.mac.itr_scale;
1629 	q_vector->tx.count = txr_count;
1630 
1631 	while (txr_count) {
1632 		/* assign generic ring traits */
1633 		ring->dev = &interface->pdev->dev;
1634 		ring->netdev = interface->netdev;
1635 
1636 		/* configure backlink on ring */
1637 		ring->q_vector = q_vector;
1638 
1639 		/* apply Tx specific ring traits */
1640 		ring->count = interface->tx_ring_count;
1641 		ring->queue_index = txr_idx;
1642 
1643 		/* assign ring to interface */
1644 		interface->tx_ring[txr_idx] = ring;
1645 
1646 		/* update count and index */
1647 		txr_count--;
1648 		txr_idx += v_count;
1649 
1650 		/* push pointer to next ring */
1651 		ring++;
1652 	}
1653 
1654 	/* save Rx ring container info */
1655 	q_vector->rx.ring = ring;
1656 	q_vector->rx.itr = interface->rx_itr;
1657 	q_vector->rx.itr_scale = interface->hw.mac.itr_scale;
1658 	q_vector->rx.count = rxr_count;
1659 
1660 	while (rxr_count) {
1661 		/* assign generic ring traits */
1662 		ring->dev = &interface->pdev->dev;
1663 		ring->netdev = interface->netdev;
1664 		rcu_assign_pointer(ring->l2_accel, interface->l2_accel);
1665 
1666 		/* configure backlink on ring */
1667 		ring->q_vector = q_vector;
1668 
1669 		/* apply Rx specific ring traits */
1670 		ring->count = interface->rx_ring_count;
1671 		ring->queue_index = rxr_idx;
1672 
1673 		/* assign ring to interface */
1674 		interface->rx_ring[rxr_idx] = ring;
1675 
1676 		/* update count and index */
1677 		rxr_count--;
1678 		rxr_idx += v_count;
1679 
1680 		/* push pointer to next ring */
1681 		ring++;
1682 	}
1683 
1684 	fm10k_dbg_q_vector_init(q_vector);
1685 
1686 	return 0;
1687 }
1688 
1689 /**
1690  * fm10k_free_q_vector - Free memory allocated for specific interrupt vector
1691  * @interface: board private structure to initialize
1692  * @v_idx: Index of vector to be freed
1693  *
1694  * This function frees the memory allocated to the q_vector.  In addition if
1695  * NAPI is enabled it will delete any references to the NAPI struct prior
1696  * to freeing the q_vector.
1697  **/
1698 static void fm10k_free_q_vector(struct fm10k_intfc *interface, int v_idx)
1699 {
1700 	struct fm10k_q_vector *q_vector = interface->q_vector[v_idx];
1701 	struct fm10k_ring *ring;
1702 
1703 	fm10k_dbg_q_vector_exit(q_vector);
1704 
1705 	fm10k_for_each_ring(ring, q_vector->tx)
1706 		interface->tx_ring[ring->queue_index] = NULL;
1707 
1708 	fm10k_for_each_ring(ring, q_vector->rx)
1709 		interface->rx_ring[ring->queue_index] = NULL;
1710 
1711 	interface->q_vector[v_idx] = NULL;
1712 	netif_napi_del(&q_vector->napi);
1713 	kfree_rcu(q_vector, rcu);
1714 }
1715 
1716 /**
1717  * fm10k_alloc_q_vectors - Allocate memory for interrupt vectors
1718  * @interface: board private structure to initialize
1719  *
1720  * We allocate one q_vector per queue interrupt.  If allocation fails we
1721  * return -ENOMEM.
1722  **/
1723 static int fm10k_alloc_q_vectors(struct fm10k_intfc *interface)
1724 {
1725 	unsigned int q_vectors = interface->num_q_vectors;
1726 	unsigned int rxr_remaining = interface->num_rx_queues;
1727 	unsigned int txr_remaining = interface->num_tx_queues;
1728 	unsigned int rxr_idx = 0, txr_idx = 0, v_idx = 0;
1729 	int err;
1730 
1731 	if (q_vectors >= (rxr_remaining + txr_remaining)) {
1732 		for (; rxr_remaining; v_idx++) {
1733 			err = fm10k_alloc_q_vector(interface, q_vectors, v_idx,
1734 						   0, 0, 1, rxr_idx);
1735 			if (err)
1736 				goto err_out;
1737 
1738 			/* update counts and index */
1739 			rxr_remaining--;
1740 			rxr_idx++;
1741 		}
1742 	}
1743 
1744 	for (; v_idx < q_vectors; v_idx++) {
1745 		int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
1746 		int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
1747 
1748 		err = fm10k_alloc_q_vector(interface, q_vectors, v_idx,
1749 					   tqpv, txr_idx,
1750 					   rqpv, rxr_idx);
1751 
1752 		if (err)
1753 			goto err_out;
1754 
1755 		/* update counts and index */
1756 		rxr_remaining -= rqpv;
1757 		txr_remaining -= tqpv;
1758 		rxr_idx++;
1759 		txr_idx++;
1760 	}
1761 
1762 	return 0;
1763 
1764 err_out:
1765 	fm10k_reset_num_queues(interface);
1766 
1767 	while (v_idx--)
1768 		fm10k_free_q_vector(interface, v_idx);
1769 
1770 	return -ENOMEM;
1771 }
1772 
1773 /**
1774  * fm10k_free_q_vectors - Free memory allocated for interrupt vectors
1775  * @interface: board private structure to initialize
1776  *
1777  * This function frees the memory allocated to the q_vectors.  In addition if
1778  * NAPI is enabled it will delete any references to the NAPI struct prior
1779  * to freeing the q_vector.
1780  **/
1781 static void fm10k_free_q_vectors(struct fm10k_intfc *interface)
1782 {
1783 	int v_idx = interface->num_q_vectors;
1784 
1785 	fm10k_reset_num_queues(interface);
1786 
1787 	while (v_idx--)
1788 		fm10k_free_q_vector(interface, v_idx);
1789 }
1790 
1791 /**
1792  * f10k_reset_msix_capability - reset MSI-X capability
1793  * @interface: board private structure to initialize
1794  *
1795  * Reset the MSI-X capability back to its starting state
1796  **/
1797 static void fm10k_reset_msix_capability(struct fm10k_intfc *interface)
1798 {
1799 	pci_disable_msix(interface->pdev);
1800 	kfree(interface->msix_entries);
1801 	interface->msix_entries = NULL;
1802 }
1803 
1804 /**
1805  * f10k_init_msix_capability - configure MSI-X capability
1806  * @interface: board private structure to initialize
1807  *
1808  * Attempt to configure the interrupts using the best available
1809  * capabilities of the hardware and the kernel.
1810  **/
1811 static int fm10k_init_msix_capability(struct fm10k_intfc *interface)
1812 {
1813 	struct fm10k_hw *hw = &interface->hw;
1814 	int v_budget, vector;
1815 
1816 	/* It's easy to be greedy for MSI-X vectors, but it really
1817 	 * doesn't do us much good if we have a lot more vectors
1818 	 * than CPU's.  So let's be conservative and only ask for
1819 	 * (roughly) the same number of vectors as there are CPU's.
1820 	 * the default is to use pairs of vectors
1821 	 */
1822 	v_budget = max(interface->num_rx_queues, interface->num_tx_queues);
1823 	v_budget = min_t(u16, v_budget, num_online_cpus());
1824 
1825 	/* account for vectors not related to queues */
1826 	v_budget += NON_Q_VECTORS(hw);
1827 
1828 	/* At the same time, hardware can only support a maximum of
1829 	 * hw.mac->max_msix_vectors vectors.  With features
1830 	 * such as RSS and VMDq, we can easily surpass the number of Rx and Tx
1831 	 * descriptor queues supported by our device.  Thus, we cap it off in
1832 	 * those rare cases where the cpu count also exceeds our vector limit.
1833 	 */
1834 	v_budget = min_t(int, v_budget, hw->mac.max_msix_vectors);
1835 
1836 	/* A failure in MSI-X entry allocation is fatal. */
1837 	interface->msix_entries = kcalloc(v_budget, sizeof(struct msix_entry),
1838 					  GFP_KERNEL);
1839 	if (!interface->msix_entries)
1840 		return -ENOMEM;
1841 
1842 	/* populate entry values */
1843 	for (vector = 0; vector < v_budget; vector++)
1844 		interface->msix_entries[vector].entry = vector;
1845 
1846 	/* Attempt to enable MSI-X with requested value */
1847 	v_budget = pci_enable_msix_range(interface->pdev,
1848 					 interface->msix_entries,
1849 					 MIN_MSIX_COUNT(hw),
1850 					 v_budget);
1851 	if (v_budget < 0) {
1852 		kfree(interface->msix_entries);
1853 		interface->msix_entries = NULL;
1854 		return v_budget;
1855 	}
1856 
1857 	/* record the number of queues available for q_vectors */
1858 	interface->num_q_vectors = v_budget - NON_Q_VECTORS(hw);
1859 
1860 	return 0;
1861 }
1862 
1863 /**
1864  * fm10k_cache_ring_qos - Descriptor ring to register mapping for QoS
1865  * @interface: Interface structure continaining rings and devices
1866  *
1867  * Cache the descriptor ring offsets for Qos
1868  **/
1869 static bool fm10k_cache_ring_qos(struct fm10k_intfc *interface)
1870 {
1871 	struct net_device *dev = interface->netdev;
1872 	int pc, offset, rss_i, i, q_idx;
1873 	u16 pc_stride = interface->ring_feature[RING_F_QOS].mask + 1;
1874 	u8 num_pcs = netdev_get_num_tc(dev);
1875 
1876 	if (num_pcs <= 1)
1877 		return false;
1878 
1879 	rss_i = interface->ring_feature[RING_F_RSS].indices;
1880 
1881 	for (pc = 0, offset = 0; pc < num_pcs; pc++, offset += rss_i) {
1882 		q_idx = pc;
1883 		for (i = 0; i < rss_i; i++) {
1884 			interface->tx_ring[offset + i]->reg_idx = q_idx;
1885 			interface->tx_ring[offset + i]->qos_pc = pc;
1886 			interface->rx_ring[offset + i]->reg_idx = q_idx;
1887 			interface->rx_ring[offset + i]->qos_pc = pc;
1888 			q_idx += pc_stride;
1889 		}
1890 	}
1891 
1892 	return true;
1893 }
1894 
1895 /**
1896  * fm10k_cache_ring_rss - Descriptor ring to register mapping for RSS
1897  * @interface: Interface structure continaining rings and devices
1898  *
1899  * Cache the descriptor ring offsets for RSS
1900  **/
1901 static void fm10k_cache_ring_rss(struct fm10k_intfc *interface)
1902 {
1903 	int i;
1904 
1905 	for (i = 0; i < interface->num_rx_queues; i++)
1906 		interface->rx_ring[i]->reg_idx = i;
1907 
1908 	for (i = 0; i < interface->num_tx_queues; i++)
1909 		interface->tx_ring[i]->reg_idx = i;
1910 }
1911 
1912 /**
1913  * fm10k_assign_rings - Map rings to network devices
1914  * @interface: Interface structure containing rings and devices
1915  *
1916  * This function is meant to go though and configure both the network
1917  * devices so that they contain rings, and configure the rings so that
1918  * they function with their network devices.
1919  **/
1920 static void fm10k_assign_rings(struct fm10k_intfc *interface)
1921 {
1922 	if (fm10k_cache_ring_qos(interface))
1923 		return;
1924 
1925 	fm10k_cache_ring_rss(interface);
1926 }
1927 
1928 static void fm10k_init_reta(struct fm10k_intfc *interface)
1929 {
1930 	u16 i, rss_i = interface->ring_feature[RING_F_RSS].indices;
1931 	u32 reta;
1932 
1933 	/* If the Rx flow indirection table has been configured manually, we
1934 	 * need to maintain it when possible.
1935 	 */
1936 	if (netif_is_rxfh_configured(interface->netdev)) {
1937 		for (i = FM10K_RETA_SIZE; i--;) {
1938 			reta = interface->reta[i];
1939 			if ((((reta << 24) >> 24) < rss_i) &&
1940 			    (((reta << 16) >> 24) < rss_i) &&
1941 			    (((reta <<  8) >> 24) < rss_i) &&
1942 			    (((reta)       >> 24) < rss_i))
1943 				continue;
1944 
1945 			/* this should never happen */
1946 			dev_err(&interface->pdev->dev,
1947 				"RSS indirection table assigned flows out of queue bounds. Reconfiguring.\n");
1948 			goto repopulate_reta;
1949 		}
1950 
1951 		/* do nothing if all of the elements are in bounds */
1952 		return;
1953 	}
1954 
1955 repopulate_reta:
1956 	fm10k_write_reta(interface, NULL);
1957 }
1958 
1959 /**
1960  * fm10k_init_queueing_scheme - Determine proper queueing scheme
1961  * @interface: board private structure to initialize
1962  *
1963  * We determine which queueing scheme to use based on...
1964  * - Hardware queue count (num_*_queues)
1965  *   - defined by miscellaneous hardware support/features (RSS, etc.)
1966  **/
1967 int fm10k_init_queueing_scheme(struct fm10k_intfc *interface)
1968 {
1969 	int err;
1970 
1971 	/* Number of supported queues */
1972 	fm10k_set_num_queues(interface);
1973 
1974 	/* Configure MSI-X capability */
1975 	err = fm10k_init_msix_capability(interface);
1976 	if (err) {
1977 		dev_err(&interface->pdev->dev,
1978 			"Unable to initialize MSI-X capability\n");
1979 		goto err_init_msix;
1980 	}
1981 
1982 	/* Allocate memory for queues */
1983 	err = fm10k_alloc_q_vectors(interface);
1984 	if (err) {
1985 		dev_err(&interface->pdev->dev,
1986 			"Unable to allocate queue vectors\n");
1987 		goto err_alloc_q_vectors;
1988 	}
1989 
1990 	/* Map rings to devices, and map devices to physical queues */
1991 	fm10k_assign_rings(interface);
1992 
1993 	/* Initialize RSS redirection table */
1994 	fm10k_init_reta(interface);
1995 
1996 	return 0;
1997 
1998 err_alloc_q_vectors:
1999 	fm10k_reset_msix_capability(interface);
2000 err_init_msix:
2001 	fm10k_reset_num_queues(interface);
2002 	return err;
2003 }
2004 
2005 /**
2006  * fm10k_clear_queueing_scheme - Clear the current queueing scheme settings
2007  * @interface: board private structure to clear queueing scheme on
2008  *
2009  * We go through and clear queueing specific resources and reset the structure
2010  * to pre-load conditions
2011  **/
2012 void fm10k_clear_queueing_scheme(struct fm10k_intfc *interface)
2013 {
2014 	fm10k_free_q_vectors(interface);
2015 	fm10k_reset_msix_capability(interface);
2016 }
2017