1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright(c) 2013 - 2019 Intel Corporation. */ 3 4 #include <linux/types.h> 5 #include <linux/module.h> 6 #include <net/ipv6.h> 7 #include <net/ip.h> 8 #include <net/tcp.h> 9 #include <linux/if_macvlan.h> 10 #include <linux/prefetch.h> 11 12 #include "fm10k.h" 13 14 #define DRV_SUMMARY "Intel(R) Ethernet Switch Host Interface Driver" 15 char fm10k_driver_name[] = "fm10k"; 16 static const char fm10k_driver_string[] = DRV_SUMMARY; 17 static const char fm10k_copyright[] = 18 "Copyright(c) 2013 - 2019 Intel Corporation."; 19 20 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>"); 21 MODULE_DESCRIPTION(DRV_SUMMARY); 22 MODULE_LICENSE("GPL v2"); 23 24 /* single workqueue for entire fm10k driver */ 25 struct workqueue_struct *fm10k_workqueue; 26 27 /** 28 * fm10k_init_module - Driver Registration Routine 29 * 30 * fm10k_init_module is the first routine called when the driver is 31 * loaded. All it does is register with the PCI subsystem. 32 **/ 33 static int __init fm10k_init_module(void) 34 { 35 pr_info("%s\n", fm10k_driver_string); 36 pr_info("%s\n", fm10k_copyright); 37 38 /* create driver workqueue */ 39 fm10k_workqueue = alloc_workqueue("%s", WQ_MEM_RECLAIM, 0, 40 fm10k_driver_name); 41 if (!fm10k_workqueue) 42 return -ENOMEM; 43 44 fm10k_dbg_init(); 45 46 return fm10k_register_pci_driver(); 47 } 48 module_init(fm10k_init_module); 49 50 /** 51 * fm10k_exit_module - Driver Exit Cleanup Routine 52 * 53 * fm10k_exit_module is called just before the driver is removed 54 * from memory. 55 **/ 56 static void __exit fm10k_exit_module(void) 57 { 58 fm10k_unregister_pci_driver(); 59 60 fm10k_dbg_exit(); 61 62 /* destroy driver workqueue */ 63 destroy_workqueue(fm10k_workqueue); 64 } 65 module_exit(fm10k_exit_module); 66 67 static bool fm10k_alloc_mapped_page(struct fm10k_ring *rx_ring, 68 struct fm10k_rx_buffer *bi) 69 { 70 struct page *page = bi->page; 71 dma_addr_t dma; 72 73 /* Only page will be NULL if buffer was consumed */ 74 if (likely(page)) 75 return true; 76 77 /* alloc new page for storage */ 78 page = dev_alloc_page(); 79 if (unlikely(!page)) { 80 rx_ring->rx_stats.alloc_failed++; 81 return false; 82 } 83 84 /* map page for use */ 85 dma = dma_map_page(rx_ring->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE); 86 87 /* if mapping failed free memory back to system since 88 * there isn't much point in holding memory we can't use 89 */ 90 if (dma_mapping_error(rx_ring->dev, dma)) { 91 __free_page(page); 92 93 rx_ring->rx_stats.alloc_failed++; 94 return false; 95 } 96 97 bi->dma = dma; 98 bi->page = page; 99 bi->page_offset = 0; 100 101 return true; 102 } 103 104 /** 105 * fm10k_alloc_rx_buffers - Replace used receive buffers 106 * @rx_ring: ring to place buffers on 107 * @cleaned_count: number of buffers to replace 108 **/ 109 void fm10k_alloc_rx_buffers(struct fm10k_ring *rx_ring, u16 cleaned_count) 110 { 111 union fm10k_rx_desc *rx_desc; 112 struct fm10k_rx_buffer *bi; 113 u16 i = rx_ring->next_to_use; 114 115 /* nothing to do */ 116 if (!cleaned_count) 117 return; 118 119 rx_desc = FM10K_RX_DESC(rx_ring, i); 120 bi = &rx_ring->rx_buffer[i]; 121 i -= rx_ring->count; 122 123 do { 124 if (!fm10k_alloc_mapped_page(rx_ring, bi)) 125 break; 126 127 /* Refresh the desc even if buffer_addrs didn't change 128 * because each write-back erases this info. 129 */ 130 rx_desc->q.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset); 131 132 rx_desc++; 133 bi++; 134 i++; 135 if (unlikely(!i)) { 136 rx_desc = FM10K_RX_DESC(rx_ring, 0); 137 bi = rx_ring->rx_buffer; 138 i -= rx_ring->count; 139 } 140 141 /* clear the status bits for the next_to_use descriptor */ 142 rx_desc->d.staterr = 0; 143 144 cleaned_count--; 145 } while (cleaned_count); 146 147 i += rx_ring->count; 148 149 if (rx_ring->next_to_use != i) { 150 /* record the next descriptor to use */ 151 rx_ring->next_to_use = i; 152 153 /* update next to alloc since we have filled the ring */ 154 rx_ring->next_to_alloc = i; 155 156 /* Force memory writes to complete before letting h/w 157 * know there are new descriptors to fetch. (Only 158 * applicable for weak-ordered memory model archs, 159 * such as IA-64). 160 */ 161 wmb(); 162 163 /* notify hardware of new descriptors */ 164 writel(i, rx_ring->tail); 165 } 166 } 167 168 /** 169 * fm10k_reuse_rx_page - page flip buffer and store it back on the ring 170 * @rx_ring: rx descriptor ring to store buffers on 171 * @old_buff: donor buffer to have page reused 172 * 173 * Synchronizes page for reuse by the interface 174 **/ 175 static void fm10k_reuse_rx_page(struct fm10k_ring *rx_ring, 176 struct fm10k_rx_buffer *old_buff) 177 { 178 struct fm10k_rx_buffer *new_buff; 179 u16 nta = rx_ring->next_to_alloc; 180 181 new_buff = &rx_ring->rx_buffer[nta]; 182 183 /* update, and store next to alloc */ 184 nta++; 185 rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0; 186 187 /* transfer page from old buffer to new buffer */ 188 *new_buff = *old_buff; 189 190 /* sync the buffer for use by the device */ 191 dma_sync_single_range_for_device(rx_ring->dev, old_buff->dma, 192 old_buff->page_offset, 193 FM10K_RX_BUFSZ, 194 DMA_FROM_DEVICE); 195 } 196 197 static bool fm10k_can_reuse_rx_page(struct fm10k_rx_buffer *rx_buffer, 198 struct page *page, 199 unsigned int __maybe_unused truesize) 200 { 201 /* avoid re-using remote and pfmemalloc pages */ 202 if (!dev_page_is_reusable(page)) 203 return false; 204 205 #if (PAGE_SIZE < 8192) 206 /* if we are only owner of page we can reuse it */ 207 if (unlikely(page_count(page) != 1)) 208 return false; 209 210 /* flip page offset to other buffer */ 211 rx_buffer->page_offset ^= FM10K_RX_BUFSZ; 212 #else 213 /* move offset up to the next cache line */ 214 rx_buffer->page_offset += truesize; 215 216 if (rx_buffer->page_offset > (PAGE_SIZE - FM10K_RX_BUFSZ)) 217 return false; 218 #endif 219 220 /* Even if we own the page, we are not allowed to use atomic_set() 221 * This would break get_page_unless_zero() users. 222 */ 223 page_ref_inc(page); 224 225 return true; 226 } 227 228 /** 229 * fm10k_add_rx_frag - Add contents of Rx buffer to sk_buff 230 * @rx_buffer: buffer containing page to add 231 * @size: packet size from rx_desc 232 * @rx_desc: descriptor containing length of buffer written by hardware 233 * @skb: sk_buff to place the data into 234 * 235 * This function will add the data contained in rx_buffer->page to the skb. 236 * This is done either through a direct copy if the data in the buffer is 237 * less than the skb header size, otherwise it will just attach the page as 238 * a frag to the skb. 239 * 240 * The function will then update the page offset if necessary and return 241 * true if the buffer can be reused by the interface. 242 **/ 243 static bool fm10k_add_rx_frag(struct fm10k_rx_buffer *rx_buffer, 244 unsigned int size, 245 union fm10k_rx_desc *rx_desc, 246 struct sk_buff *skb) 247 { 248 struct page *page = rx_buffer->page; 249 unsigned char *va = page_address(page) + rx_buffer->page_offset; 250 #if (PAGE_SIZE < 8192) 251 unsigned int truesize = FM10K_RX_BUFSZ; 252 #else 253 unsigned int truesize = ALIGN(size, 512); 254 #endif 255 unsigned int pull_len; 256 257 if (unlikely(skb_is_nonlinear(skb))) 258 goto add_tail_frag; 259 260 if (likely(size <= FM10K_RX_HDR_LEN)) { 261 memcpy(__skb_put(skb, size), va, ALIGN(size, sizeof(long))); 262 263 /* page is reusable, we can reuse buffer as-is */ 264 if (dev_page_is_reusable(page)) 265 return true; 266 267 /* this page cannot be reused so discard it */ 268 __free_page(page); 269 return false; 270 } 271 272 /* we need the header to contain the greater of either ETH_HLEN or 273 * 60 bytes if the skb->len is less than 60 for skb_pad. 274 */ 275 pull_len = eth_get_headlen(skb->dev, va, FM10K_RX_HDR_LEN); 276 277 /* align pull length to size of long to optimize memcpy performance */ 278 memcpy(__skb_put(skb, pull_len), va, ALIGN(pull_len, sizeof(long))); 279 280 /* update all of the pointers */ 281 va += pull_len; 282 size -= pull_len; 283 284 add_tail_frag: 285 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page, 286 (unsigned long)va & ~PAGE_MASK, size, truesize); 287 288 return fm10k_can_reuse_rx_page(rx_buffer, page, truesize); 289 } 290 291 static struct sk_buff *fm10k_fetch_rx_buffer(struct fm10k_ring *rx_ring, 292 union fm10k_rx_desc *rx_desc, 293 struct sk_buff *skb) 294 { 295 unsigned int size = le16_to_cpu(rx_desc->w.length); 296 struct fm10k_rx_buffer *rx_buffer; 297 struct page *page; 298 299 rx_buffer = &rx_ring->rx_buffer[rx_ring->next_to_clean]; 300 page = rx_buffer->page; 301 prefetchw(page); 302 303 if (likely(!skb)) { 304 void *page_addr = page_address(page) + 305 rx_buffer->page_offset; 306 307 /* prefetch first cache line of first page */ 308 net_prefetch(page_addr); 309 310 /* allocate a skb to store the frags */ 311 skb = napi_alloc_skb(&rx_ring->q_vector->napi, 312 FM10K_RX_HDR_LEN); 313 if (unlikely(!skb)) { 314 rx_ring->rx_stats.alloc_failed++; 315 return NULL; 316 } 317 318 /* we will be copying header into skb->data in 319 * pskb_may_pull so it is in our interest to prefetch 320 * it now to avoid a possible cache miss 321 */ 322 prefetchw(skb->data); 323 } 324 325 /* we are reusing so sync this buffer for CPU use */ 326 dma_sync_single_range_for_cpu(rx_ring->dev, 327 rx_buffer->dma, 328 rx_buffer->page_offset, 329 size, 330 DMA_FROM_DEVICE); 331 332 /* pull page into skb */ 333 if (fm10k_add_rx_frag(rx_buffer, size, rx_desc, skb)) { 334 /* hand second half of page back to the ring */ 335 fm10k_reuse_rx_page(rx_ring, rx_buffer); 336 } else { 337 /* we are not reusing the buffer so unmap it */ 338 dma_unmap_page(rx_ring->dev, rx_buffer->dma, 339 PAGE_SIZE, DMA_FROM_DEVICE); 340 } 341 342 /* clear contents of rx_buffer */ 343 rx_buffer->page = NULL; 344 345 return skb; 346 } 347 348 static inline void fm10k_rx_checksum(struct fm10k_ring *ring, 349 union fm10k_rx_desc *rx_desc, 350 struct sk_buff *skb) 351 { 352 skb_checksum_none_assert(skb); 353 354 /* Rx checksum disabled via ethtool */ 355 if (!(ring->netdev->features & NETIF_F_RXCSUM)) 356 return; 357 358 /* TCP/UDP checksum error bit is set */ 359 if (fm10k_test_staterr(rx_desc, 360 FM10K_RXD_STATUS_L4E | 361 FM10K_RXD_STATUS_L4E2 | 362 FM10K_RXD_STATUS_IPE | 363 FM10K_RXD_STATUS_IPE2)) { 364 ring->rx_stats.csum_err++; 365 return; 366 } 367 368 /* It must be a TCP or UDP packet with a valid checksum */ 369 if (fm10k_test_staterr(rx_desc, FM10K_RXD_STATUS_L4CS2)) 370 skb->encapsulation = true; 371 else if (!fm10k_test_staterr(rx_desc, FM10K_RXD_STATUS_L4CS)) 372 return; 373 374 skb->ip_summed = CHECKSUM_UNNECESSARY; 375 376 ring->rx_stats.csum_good++; 377 } 378 379 #define FM10K_RSS_L4_TYPES_MASK \ 380 (BIT(FM10K_RSSTYPE_IPV4_TCP) | \ 381 BIT(FM10K_RSSTYPE_IPV4_UDP) | \ 382 BIT(FM10K_RSSTYPE_IPV6_TCP) | \ 383 BIT(FM10K_RSSTYPE_IPV6_UDP)) 384 385 static inline void fm10k_rx_hash(struct fm10k_ring *ring, 386 union fm10k_rx_desc *rx_desc, 387 struct sk_buff *skb) 388 { 389 u16 rss_type; 390 391 if (!(ring->netdev->features & NETIF_F_RXHASH)) 392 return; 393 394 rss_type = le16_to_cpu(rx_desc->w.pkt_info) & FM10K_RXD_RSSTYPE_MASK; 395 if (!rss_type) 396 return; 397 398 skb_set_hash(skb, le32_to_cpu(rx_desc->d.rss), 399 (BIT(rss_type) & FM10K_RSS_L4_TYPES_MASK) ? 400 PKT_HASH_TYPE_L4 : PKT_HASH_TYPE_L3); 401 } 402 403 static void fm10k_type_trans(struct fm10k_ring *rx_ring, 404 union fm10k_rx_desc __maybe_unused *rx_desc, 405 struct sk_buff *skb) 406 { 407 struct net_device *dev = rx_ring->netdev; 408 struct fm10k_l2_accel *l2_accel = rcu_dereference_bh(rx_ring->l2_accel); 409 410 /* check to see if DGLORT belongs to a MACVLAN */ 411 if (l2_accel) { 412 u16 idx = le16_to_cpu(FM10K_CB(skb)->fi.w.dglort) - 1; 413 414 idx -= l2_accel->dglort; 415 if (idx < l2_accel->size && l2_accel->macvlan[idx]) 416 dev = l2_accel->macvlan[idx]; 417 else 418 l2_accel = NULL; 419 } 420 421 /* Record Rx queue, or update macvlan statistics */ 422 if (!l2_accel) 423 skb_record_rx_queue(skb, rx_ring->queue_index); 424 else 425 macvlan_count_rx(netdev_priv(dev), skb->len + ETH_HLEN, true, 426 false); 427 428 skb->protocol = eth_type_trans(skb, dev); 429 } 430 431 /** 432 * fm10k_process_skb_fields - Populate skb header fields from Rx descriptor 433 * @rx_ring: rx descriptor ring packet is being transacted on 434 * @rx_desc: pointer to the EOP Rx descriptor 435 * @skb: pointer to current skb being populated 436 * 437 * This function checks the ring, descriptor, and packet information in 438 * order to populate the hash, checksum, VLAN, timestamp, protocol, and 439 * other fields within the skb. 440 **/ 441 static unsigned int fm10k_process_skb_fields(struct fm10k_ring *rx_ring, 442 union fm10k_rx_desc *rx_desc, 443 struct sk_buff *skb) 444 { 445 unsigned int len = skb->len; 446 447 fm10k_rx_hash(rx_ring, rx_desc, skb); 448 449 fm10k_rx_checksum(rx_ring, rx_desc, skb); 450 451 FM10K_CB(skb)->tstamp = rx_desc->q.timestamp; 452 453 FM10K_CB(skb)->fi.w.vlan = rx_desc->w.vlan; 454 455 FM10K_CB(skb)->fi.d.glort = rx_desc->d.glort; 456 457 if (rx_desc->w.vlan) { 458 u16 vid = le16_to_cpu(rx_desc->w.vlan); 459 460 if ((vid & VLAN_VID_MASK) != rx_ring->vid) 461 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid); 462 else if (vid & VLAN_PRIO_MASK) 463 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), 464 vid & VLAN_PRIO_MASK); 465 } 466 467 fm10k_type_trans(rx_ring, rx_desc, skb); 468 469 return len; 470 } 471 472 /** 473 * fm10k_is_non_eop - process handling of non-EOP buffers 474 * @rx_ring: Rx ring being processed 475 * @rx_desc: Rx descriptor for current buffer 476 * 477 * This function updates next to clean. If the buffer is an EOP buffer 478 * this function exits returning false, otherwise it will place the 479 * sk_buff in the next buffer to be chained and return true indicating 480 * that this is in fact a non-EOP buffer. 481 **/ 482 static bool fm10k_is_non_eop(struct fm10k_ring *rx_ring, 483 union fm10k_rx_desc *rx_desc) 484 { 485 u32 ntc = rx_ring->next_to_clean + 1; 486 487 /* fetch, update, and store next to clean */ 488 ntc = (ntc < rx_ring->count) ? ntc : 0; 489 rx_ring->next_to_clean = ntc; 490 491 prefetch(FM10K_RX_DESC(rx_ring, ntc)); 492 493 if (likely(fm10k_test_staterr(rx_desc, FM10K_RXD_STATUS_EOP))) 494 return false; 495 496 return true; 497 } 498 499 /** 500 * fm10k_cleanup_headers - Correct corrupted or empty headers 501 * @rx_ring: rx descriptor ring packet is being transacted on 502 * @rx_desc: pointer to the EOP Rx descriptor 503 * @skb: pointer to current skb being fixed 504 * 505 * Address the case where we are pulling data in on pages only 506 * and as such no data is present in the skb header. 507 * 508 * In addition if skb is not at least 60 bytes we need to pad it so that 509 * it is large enough to qualify as a valid Ethernet frame. 510 * 511 * Returns true if an error was encountered and skb was freed. 512 **/ 513 static bool fm10k_cleanup_headers(struct fm10k_ring *rx_ring, 514 union fm10k_rx_desc *rx_desc, 515 struct sk_buff *skb) 516 { 517 if (unlikely((fm10k_test_staterr(rx_desc, 518 FM10K_RXD_STATUS_RXE)))) { 519 #define FM10K_TEST_RXD_BIT(rxd, bit) \ 520 ((rxd)->w.csum_err & cpu_to_le16(bit)) 521 if (FM10K_TEST_RXD_BIT(rx_desc, FM10K_RXD_ERR_SWITCH_ERROR)) 522 rx_ring->rx_stats.switch_errors++; 523 if (FM10K_TEST_RXD_BIT(rx_desc, FM10K_RXD_ERR_NO_DESCRIPTOR)) 524 rx_ring->rx_stats.drops++; 525 if (FM10K_TEST_RXD_BIT(rx_desc, FM10K_RXD_ERR_PP_ERROR)) 526 rx_ring->rx_stats.pp_errors++; 527 if (FM10K_TEST_RXD_BIT(rx_desc, FM10K_RXD_ERR_SWITCH_READY)) 528 rx_ring->rx_stats.link_errors++; 529 if (FM10K_TEST_RXD_BIT(rx_desc, FM10K_RXD_ERR_TOO_BIG)) 530 rx_ring->rx_stats.length_errors++; 531 dev_kfree_skb_any(skb); 532 rx_ring->rx_stats.errors++; 533 return true; 534 } 535 536 /* if eth_skb_pad returns an error the skb was freed */ 537 if (eth_skb_pad(skb)) 538 return true; 539 540 return false; 541 } 542 543 /** 544 * fm10k_receive_skb - helper function to handle rx indications 545 * @q_vector: structure containing interrupt and ring information 546 * @skb: packet to send up 547 **/ 548 static void fm10k_receive_skb(struct fm10k_q_vector *q_vector, 549 struct sk_buff *skb) 550 { 551 napi_gro_receive(&q_vector->napi, skb); 552 } 553 554 static int fm10k_clean_rx_irq(struct fm10k_q_vector *q_vector, 555 struct fm10k_ring *rx_ring, 556 int budget) 557 { 558 struct sk_buff *skb = rx_ring->skb; 559 unsigned int total_bytes = 0, total_packets = 0; 560 u16 cleaned_count = fm10k_desc_unused(rx_ring); 561 562 while (likely(total_packets < budget)) { 563 union fm10k_rx_desc *rx_desc; 564 565 /* return some buffers to hardware, one at a time is too slow */ 566 if (cleaned_count >= FM10K_RX_BUFFER_WRITE) { 567 fm10k_alloc_rx_buffers(rx_ring, cleaned_count); 568 cleaned_count = 0; 569 } 570 571 rx_desc = FM10K_RX_DESC(rx_ring, rx_ring->next_to_clean); 572 573 if (!rx_desc->d.staterr) 574 break; 575 576 /* This memory barrier is needed to keep us from reading 577 * any other fields out of the rx_desc until we know the 578 * descriptor has been written back 579 */ 580 dma_rmb(); 581 582 /* retrieve a buffer from the ring */ 583 skb = fm10k_fetch_rx_buffer(rx_ring, rx_desc, skb); 584 585 /* exit if we failed to retrieve a buffer */ 586 if (!skb) 587 break; 588 589 cleaned_count++; 590 591 /* fetch next buffer in frame if non-eop */ 592 if (fm10k_is_non_eop(rx_ring, rx_desc)) 593 continue; 594 595 /* verify the packet layout is correct */ 596 if (fm10k_cleanup_headers(rx_ring, rx_desc, skb)) { 597 skb = NULL; 598 continue; 599 } 600 601 /* populate checksum, timestamp, VLAN, and protocol */ 602 total_bytes += fm10k_process_skb_fields(rx_ring, rx_desc, skb); 603 604 fm10k_receive_skb(q_vector, skb); 605 606 /* reset skb pointer */ 607 skb = NULL; 608 609 /* update budget accounting */ 610 total_packets++; 611 } 612 613 /* place incomplete frames back on ring for completion */ 614 rx_ring->skb = skb; 615 616 u64_stats_update_begin(&rx_ring->syncp); 617 rx_ring->stats.packets += total_packets; 618 rx_ring->stats.bytes += total_bytes; 619 u64_stats_update_end(&rx_ring->syncp); 620 q_vector->rx.total_packets += total_packets; 621 q_vector->rx.total_bytes += total_bytes; 622 623 return total_packets; 624 } 625 626 #define VXLAN_HLEN (sizeof(struct udphdr) + 8) 627 static struct ethhdr *fm10k_port_is_vxlan(struct sk_buff *skb) 628 { 629 struct fm10k_intfc *interface = netdev_priv(skb->dev); 630 631 if (interface->vxlan_port != udp_hdr(skb)->dest) 632 return NULL; 633 634 /* return offset of udp_hdr plus 8 bytes for VXLAN header */ 635 return (struct ethhdr *)(skb_transport_header(skb) + VXLAN_HLEN); 636 } 637 638 #define FM10K_NVGRE_RESERVED0_FLAGS htons(0x9FFF) 639 #define NVGRE_TNI htons(0x2000) 640 struct fm10k_nvgre_hdr { 641 __be16 flags; 642 __be16 proto; 643 __be32 tni; 644 }; 645 646 static struct ethhdr *fm10k_gre_is_nvgre(struct sk_buff *skb) 647 { 648 struct fm10k_nvgre_hdr *nvgre_hdr; 649 int hlen = ip_hdrlen(skb); 650 651 /* currently only IPv4 is supported due to hlen above */ 652 if (vlan_get_protocol(skb) != htons(ETH_P_IP)) 653 return NULL; 654 655 /* our transport header should be NVGRE */ 656 nvgre_hdr = (struct fm10k_nvgre_hdr *)(skb_network_header(skb) + hlen); 657 658 /* verify all reserved flags are 0 */ 659 if (nvgre_hdr->flags & FM10K_NVGRE_RESERVED0_FLAGS) 660 return NULL; 661 662 /* report start of ethernet header */ 663 if (nvgre_hdr->flags & NVGRE_TNI) 664 return (struct ethhdr *)(nvgre_hdr + 1); 665 666 return (struct ethhdr *)(&nvgre_hdr->tni); 667 } 668 669 __be16 fm10k_tx_encap_offload(struct sk_buff *skb) 670 { 671 u8 l4_hdr = 0, inner_l4_hdr = 0, inner_l4_hlen; 672 struct ethhdr *eth_hdr; 673 674 if (skb->inner_protocol_type != ENCAP_TYPE_ETHER || 675 skb->inner_protocol != htons(ETH_P_TEB)) 676 return 0; 677 678 switch (vlan_get_protocol(skb)) { 679 case htons(ETH_P_IP): 680 l4_hdr = ip_hdr(skb)->protocol; 681 break; 682 case htons(ETH_P_IPV6): 683 l4_hdr = ipv6_hdr(skb)->nexthdr; 684 break; 685 default: 686 return 0; 687 } 688 689 switch (l4_hdr) { 690 case IPPROTO_UDP: 691 eth_hdr = fm10k_port_is_vxlan(skb); 692 break; 693 case IPPROTO_GRE: 694 eth_hdr = fm10k_gre_is_nvgre(skb); 695 break; 696 default: 697 return 0; 698 } 699 700 if (!eth_hdr) 701 return 0; 702 703 switch (eth_hdr->h_proto) { 704 case htons(ETH_P_IP): 705 inner_l4_hdr = inner_ip_hdr(skb)->protocol; 706 break; 707 case htons(ETH_P_IPV6): 708 inner_l4_hdr = inner_ipv6_hdr(skb)->nexthdr; 709 break; 710 default: 711 return 0; 712 } 713 714 switch (inner_l4_hdr) { 715 case IPPROTO_TCP: 716 inner_l4_hlen = inner_tcp_hdrlen(skb); 717 break; 718 case IPPROTO_UDP: 719 inner_l4_hlen = 8; 720 break; 721 default: 722 return 0; 723 } 724 725 /* The hardware allows tunnel offloads only if the combined inner and 726 * outer header is 184 bytes or less 727 */ 728 if (skb_inner_transport_header(skb) + inner_l4_hlen - 729 skb_mac_header(skb) > FM10K_TUNNEL_HEADER_LENGTH) 730 return 0; 731 732 return eth_hdr->h_proto; 733 } 734 735 static int fm10k_tso(struct fm10k_ring *tx_ring, 736 struct fm10k_tx_buffer *first) 737 { 738 struct sk_buff *skb = first->skb; 739 struct fm10k_tx_desc *tx_desc; 740 unsigned char *th; 741 u8 hdrlen; 742 743 if (skb->ip_summed != CHECKSUM_PARTIAL) 744 return 0; 745 746 if (!skb_is_gso(skb)) 747 return 0; 748 749 /* compute header lengths */ 750 if (skb->encapsulation) { 751 if (!fm10k_tx_encap_offload(skb)) 752 goto err_vxlan; 753 th = skb_inner_transport_header(skb); 754 } else { 755 th = skb_transport_header(skb); 756 } 757 758 /* compute offset from SOF to transport header and add header len */ 759 hdrlen = (th - skb->data) + (((struct tcphdr *)th)->doff << 2); 760 761 first->tx_flags |= FM10K_TX_FLAGS_CSUM; 762 763 /* update gso size and bytecount with header size */ 764 first->gso_segs = skb_shinfo(skb)->gso_segs; 765 first->bytecount += (first->gso_segs - 1) * hdrlen; 766 767 /* populate Tx descriptor header size and mss */ 768 tx_desc = FM10K_TX_DESC(tx_ring, tx_ring->next_to_use); 769 tx_desc->hdrlen = hdrlen; 770 tx_desc->mss = cpu_to_le16(skb_shinfo(skb)->gso_size); 771 772 return 1; 773 774 err_vxlan: 775 tx_ring->netdev->features &= ~NETIF_F_GSO_UDP_TUNNEL; 776 if (net_ratelimit()) 777 netdev_err(tx_ring->netdev, 778 "TSO requested for unsupported tunnel, disabling offload\n"); 779 return -1; 780 } 781 782 static void fm10k_tx_csum(struct fm10k_ring *tx_ring, 783 struct fm10k_tx_buffer *first) 784 { 785 struct sk_buff *skb = first->skb; 786 struct fm10k_tx_desc *tx_desc; 787 union { 788 struct iphdr *ipv4; 789 struct ipv6hdr *ipv6; 790 u8 *raw; 791 } network_hdr; 792 u8 *transport_hdr; 793 __be16 frag_off; 794 __be16 protocol; 795 u8 l4_hdr = 0; 796 797 if (skb->ip_summed != CHECKSUM_PARTIAL) 798 goto no_csum; 799 800 if (skb->encapsulation) { 801 protocol = fm10k_tx_encap_offload(skb); 802 if (!protocol) { 803 if (skb_checksum_help(skb)) { 804 dev_warn(tx_ring->dev, 805 "failed to offload encap csum!\n"); 806 tx_ring->tx_stats.csum_err++; 807 } 808 goto no_csum; 809 } 810 network_hdr.raw = skb_inner_network_header(skb); 811 transport_hdr = skb_inner_transport_header(skb); 812 } else { 813 protocol = vlan_get_protocol(skb); 814 network_hdr.raw = skb_network_header(skb); 815 transport_hdr = skb_transport_header(skb); 816 } 817 818 switch (protocol) { 819 case htons(ETH_P_IP): 820 l4_hdr = network_hdr.ipv4->protocol; 821 break; 822 case htons(ETH_P_IPV6): 823 l4_hdr = network_hdr.ipv6->nexthdr; 824 if (likely((transport_hdr - network_hdr.raw) == 825 sizeof(struct ipv6hdr))) 826 break; 827 ipv6_skip_exthdr(skb, network_hdr.raw - skb->data + 828 sizeof(struct ipv6hdr), 829 &l4_hdr, &frag_off); 830 if (unlikely(frag_off)) 831 l4_hdr = NEXTHDR_FRAGMENT; 832 break; 833 default: 834 break; 835 } 836 837 switch (l4_hdr) { 838 case IPPROTO_TCP: 839 case IPPROTO_UDP: 840 break; 841 case IPPROTO_GRE: 842 if (skb->encapsulation) 843 break; 844 fallthrough; 845 default: 846 if (unlikely(net_ratelimit())) { 847 dev_warn(tx_ring->dev, 848 "partial checksum, version=%d l4 proto=%x\n", 849 protocol, l4_hdr); 850 } 851 skb_checksum_help(skb); 852 tx_ring->tx_stats.csum_err++; 853 goto no_csum; 854 } 855 856 /* update TX checksum flag */ 857 first->tx_flags |= FM10K_TX_FLAGS_CSUM; 858 tx_ring->tx_stats.csum_good++; 859 860 no_csum: 861 /* populate Tx descriptor header size and mss */ 862 tx_desc = FM10K_TX_DESC(tx_ring, tx_ring->next_to_use); 863 tx_desc->hdrlen = 0; 864 tx_desc->mss = 0; 865 } 866 867 #define FM10K_SET_FLAG(_input, _flag, _result) \ 868 ((_flag <= _result) ? \ 869 ((u32)(_input & _flag) * (_result / _flag)) : \ 870 ((u32)(_input & _flag) / (_flag / _result))) 871 872 static u8 fm10k_tx_desc_flags(struct sk_buff *skb, u32 tx_flags) 873 { 874 /* set type for advanced descriptor with frame checksum insertion */ 875 u32 desc_flags = 0; 876 877 /* set checksum offload bits */ 878 desc_flags |= FM10K_SET_FLAG(tx_flags, FM10K_TX_FLAGS_CSUM, 879 FM10K_TXD_FLAG_CSUM); 880 881 return desc_flags; 882 } 883 884 static bool fm10k_tx_desc_push(struct fm10k_ring *tx_ring, 885 struct fm10k_tx_desc *tx_desc, u16 i, 886 dma_addr_t dma, unsigned int size, u8 desc_flags) 887 { 888 /* set RS and INT for last frame in a cache line */ 889 if ((++i & (FM10K_TXD_WB_FIFO_SIZE - 1)) == 0) 890 desc_flags |= FM10K_TXD_FLAG_RS | FM10K_TXD_FLAG_INT; 891 892 /* record values to descriptor */ 893 tx_desc->buffer_addr = cpu_to_le64(dma); 894 tx_desc->flags = desc_flags; 895 tx_desc->buflen = cpu_to_le16(size); 896 897 /* return true if we just wrapped the ring */ 898 return i == tx_ring->count; 899 } 900 901 static int __fm10k_maybe_stop_tx(struct fm10k_ring *tx_ring, u16 size) 902 { 903 netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index); 904 905 /* Memory barrier before checking head and tail */ 906 smp_mb(); 907 908 /* Check again in a case another CPU has just made room available */ 909 if (likely(fm10k_desc_unused(tx_ring) < size)) 910 return -EBUSY; 911 912 /* A reprieve! - use start_queue because it doesn't call schedule */ 913 netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index); 914 ++tx_ring->tx_stats.restart_queue; 915 return 0; 916 } 917 918 static inline int fm10k_maybe_stop_tx(struct fm10k_ring *tx_ring, u16 size) 919 { 920 if (likely(fm10k_desc_unused(tx_ring) >= size)) 921 return 0; 922 return __fm10k_maybe_stop_tx(tx_ring, size); 923 } 924 925 static void fm10k_tx_map(struct fm10k_ring *tx_ring, 926 struct fm10k_tx_buffer *first) 927 { 928 struct sk_buff *skb = first->skb; 929 struct fm10k_tx_buffer *tx_buffer; 930 struct fm10k_tx_desc *tx_desc; 931 skb_frag_t *frag; 932 unsigned char *data; 933 dma_addr_t dma; 934 unsigned int data_len, size; 935 u32 tx_flags = first->tx_flags; 936 u16 i = tx_ring->next_to_use; 937 u8 flags = fm10k_tx_desc_flags(skb, tx_flags); 938 939 tx_desc = FM10K_TX_DESC(tx_ring, i); 940 941 /* add HW VLAN tag */ 942 if (skb_vlan_tag_present(skb)) 943 tx_desc->vlan = cpu_to_le16(skb_vlan_tag_get(skb)); 944 else 945 tx_desc->vlan = 0; 946 947 size = skb_headlen(skb); 948 data = skb->data; 949 950 dma = dma_map_single(tx_ring->dev, data, size, DMA_TO_DEVICE); 951 952 data_len = skb->data_len; 953 tx_buffer = first; 954 955 for (frag = &skb_shinfo(skb)->frags[0];; frag++) { 956 if (dma_mapping_error(tx_ring->dev, dma)) 957 goto dma_error; 958 959 /* record length, and DMA address */ 960 dma_unmap_len_set(tx_buffer, len, size); 961 dma_unmap_addr_set(tx_buffer, dma, dma); 962 963 while (unlikely(size > FM10K_MAX_DATA_PER_TXD)) { 964 if (fm10k_tx_desc_push(tx_ring, tx_desc++, i++, dma, 965 FM10K_MAX_DATA_PER_TXD, flags)) { 966 tx_desc = FM10K_TX_DESC(tx_ring, 0); 967 i = 0; 968 } 969 970 dma += FM10K_MAX_DATA_PER_TXD; 971 size -= FM10K_MAX_DATA_PER_TXD; 972 } 973 974 if (likely(!data_len)) 975 break; 976 977 if (fm10k_tx_desc_push(tx_ring, tx_desc++, i++, 978 dma, size, flags)) { 979 tx_desc = FM10K_TX_DESC(tx_ring, 0); 980 i = 0; 981 } 982 983 size = skb_frag_size(frag); 984 data_len -= size; 985 986 dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size, 987 DMA_TO_DEVICE); 988 989 tx_buffer = &tx_ring->tx_buffer[i]; 990 } 991 992 /* write last descriptor with LAST bit set */ 993 flags |= FM10K_TXD_FLAG_LAST; 994 995 if (fm10k_tx_desc_push(tx_ring, tx_desc, i++, dma, size, flags)) 996 i = 0; 997 998 /* record bytecount for BQL */ 999 netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount); 1000 1001 /* record SW timestamp if HW timestamp is not available */ 1002 skb_tx_timestamp(first->skb); 1003 1004 /* Force memory writes to complete before letting h/w know there 1005 * are new descriptors to fetch. (Only applicable for weak-ordered 1006 * memory model archs, such as IA-64). 1007 * 1008 * We also need this memory barrier to make certain all of the 1009 * status bits have been updated before next_to_watch is written. 1010 */ 1011 wmb(); 1012 1013 /* set next_to_watch value indicating a packet is present */ 1014 first->next_to_watch = tx_desc; 1015 1016 tx_ring->next_to_use = i; 1017 1018 /* Make sure there is space in the ring for the next send. */ 1019 fm10k_maybe_stop_tx(tx_ring, DESC_NEEDED); 1020 1021 /* notify HW of packet */ 1022 if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) { 1023 writel(i, tx_ring->tail); 1024 } 1025 1026 return; 1027 dma_error: 1028 dev_err(tx_ring->dev, "TX DMA map failed\n"); 1029 1030 /* clear dma mappings for failed tx_buffer map */ 1031 for (;;) { 1032 tx_buffer = &tx_ring->tx_buffer[i]; 1033 fm10k_unmap_and_free_tx_resource(tx_ring, tx_buffer); 1034 if (tx_buffer == first) 1035 break; 1036 if (i == 0) 1037 i = tx_ring->count; 1038 i--; 1039 } 1040 1041 tx_ring->next_to_use = i; 1042 } 1043 1044 netdev_tx_t fm10k_xmit_frame_ring(struct sk_buff *skb, 1045 struct fm10k_ring *tx_ring) 1046 { 1047 u16 count = TXD_USE_COUNT(skb_headlen(skb)); 1048 struct fm10k_tx_buffer *first; 1049 unsigned short f; 1050 u32 tx_flags = 0; 1051 int tso; 1052 1053 /* need: 1 descriptor per page * PAGE_SIZE/FM10K_MAX_DATA_PER_TXD, 1054 * + 1 desc for skb_headlen/FM10K_MAX_DATA_PER_TXD, 1055 * + 2 desc gap to keep tail from touching head 1056 * otherwise try next time 1057 */ 1058 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) { 1059 skb_frag_t *frag = &skb_shinfo(skb)->frags[f]; 1060 1061 count += TXD_USE_COUNT(skb_frag_size(frag)); 1062 } 1063 1064 if (fm10k_maybe_stop_tx(tx_ring, count + 3)) { 1065 tx_ring->tx_stats.tx_busy++; 1066 return NETDEV_TX_BUSY; 1067 } 1068 1069 /* record the location of the first descriptor for this packet */ 1070 first = &tx_ring->tx_buffer[tx_ring->next_to_use]; 1071 first->skb = skb; 1072 first->bytecount = max_t(unsigned int, skb->len, ETH_ZLEN); 1073 first->gso_segs = 1; 1074 1075 /* record initial flags and protocol */ 1076 first->tx_flags = tx_flags; 1077 1078 tso = fm10k_tso(tx_ring, first); 1079 if (tso < 0) 1080 goto out_drop; 1081 else if (!tso) 1082 fm10k_tx_csum(tx_ring, first); 1083 1084 fm10k_tx_map(tx_ring, first); 1085 1086 return NETDEV_TX_OK; 1087 1088 out_drop: 1089 dev_kfree_skb_any(first->skb); 1090 first->skb = NULL; 1091 1092 return NETDEV_TX_OK; 1093 } 1094 1095 static u64 fm10k_get_tx_completed(struct fm10k_ring *ring) 1096 { 1097 return ring->stats.packets; 1098 } 1099 1100 /** 1101 * fm10k_get_tx_pending - how many Tx descriptors not processed 1102 * @ring: the ring structure 1103 * @in_sw: is tx_pending being checked in SW or in HW? 1104 */ 1105 u64 fm10k_get_tx_pending(struct fm10k_ring *ring, bool in_sw) 1106 { 1107 struct fm10k_intfc *interface = ring->q_vector->interface; 1108 struct fm10k_hw *hw = &interface->hw; 1109 u32 head, tail; 1110 1111 if (likely(in_sw)) { 1112 head = ring->next_to_clean; 1113 tail = ring->next_to_use; 1114 } else { 1115 head = fm10k_read_reg(hw, FM10K_TDH(ring->reg_idx)); 1116 tail = fm10k_read_reg(hw, FM10K_TDT(ring->reg_idx)); 1117 } 1118 1119 return ((head <= tail) ? tail : tail + ring->count) - head; 1120 } 1121 1122 bool fm10k_check_tx_hang(struct fm10k_ring *tx_ring) 1123 { 1124 u32 tx_done = fm10k_get_tx_completed(tx_ring); 1125 u32 tx_done_old = tx_ring->tx_stats.tx_done_old; 1126 u32 tx_pending = fm10k_get_tx_pending(tx_ring, true); 1127 1128 clear_check_for_tx_hang(tx_ring); 1129 1130 /* Check for a hung queue, but be thorough. This verifies 1131 * that a transmit has been completed since the previous 1132 * check AND there is at least one packet pending. By 1133 * requiring this to fail twice we avoid races with 1134 * clearing the ARMED bit and conditions where we 1135 * run the check_tx_hang logic with a transmit completion 1136 * pending but without time to complete it yet. 1137 */ 1138 if (!tx_pending || (tx_done_old != tx_done)) { 1139 /* update completed stats and continue */ 1140 tx_ring->tx_stats.tx_done_old = tx_done; 1141 /* reset the countdown */ 1142 clear_bit(__FM10K_HANG_CHECK_ARMED, tx_ring->state); 1143 1144 return false; 1145 } 1146 1147 /* make sure it is true for two checks in a row */ 1148 return test_and_set_bit(__FM10K_HANG_CHECK_ARMED, tx_ring->state); 1149 } 1150 1151 /** 1152 * fm10k_tx_timeout_reset - initiate reset due to Tx timeout 1153 * @interface: driver private struct 1154 **/ 1155 void fm10k_tx_timeout_reset(struct fm10k_intfc *interface) 1156 { 1157 /* Do the reset outside of interrupt context */ 1158 if (!test_bit(__FM10K_DOWN, interface->state)) { 1159 interface->tx_timeout_count++; 1160 set_bit(FM10K_FLAG_RESET_REQUESTED, interface->flags); 1161 fm10k_service_event_schedule(interface); 1162 } 1163 } 1164 1165 /** 1166 * fm10k_clean_tx_irq - Reclaim resources after transmit completes 1167 * @q_vector: structure containing interrupt and ring information 1168 * @tx_ring: tx ring to clean 1169 * @napi_budget: Used to determine if we are in netpoll 1170 **/ 1171 static bool fm10k_clean_tx_irq(struct fm10k_q_vector *q_vector, 1172 struct fm10k_ring *tx_ring, int napi_budget) 1173 { 1174 struct fm10k_intfc *interface = q_vector->interface; 1175 struct fm10k_tx_buffer *tx_buffer; 1176 struct fm10k_tx_desc *tx_desc; 1177 unsigned int total_bytes = 0, total_packets = 0; 1178 unsigned int budget = q_vector->tx.work_limit; 1179 unsigned int i = tx_ring->next_to_clean; 1180 1181 if (test_bit(__FM10K_DOWN, interface->state)) 1182 return true; 1183 1184 tx_buffer = &tx_ring->tx_buffer[i]; 1185 tx_desc = FM10K_TX_DESC(tx_ring, i); 1186 i -= tx_ring->count; 1187 1188 do { 1189 struct fm10k_tx_desc *eop_desc = tx_buffer->next_to_watch; 1190 1191 /* if next_to_watch is not set then there is no work pending */ 1192 if (!eop_desc) 1193 break; 1194 1195 /* prevent any other reads prior to eop_desc */ 1196 smp_rmb(); 1197 1198 /* if DD is not set pending work has not been completed */ 1199 if (!(eop_desc->flags & FM10K_TXD_FLAG_DONE)) 1200 break; 1201 1202 /* clear next_to_watch to prevent false hangs */ 1203 tx_buffer->next_to_watch = NULL; 1204 1205 /* update the statistics for this packet */ 1206 total_bytes += tx_buffer->bytecount; 1207 total_packets += tx_buffer->gso_segs; 1208 1209 /* free the skb */ 1210 napi_consume_skb(tx_buffer->skb, napi_budget); 1211 1212 /* unmap skb header data */ 1213 dma_unmap_single(tx_ring->dev, 1214 dma_unmap_addr(tx_buffer, dma), 1215 dma_unmap_len(tx_buffer, len), 1216 DMA_TO_DEVICE); 1217 1218 /* clear tx_buffer data */ 1219 tx_buffer->skb = NULL; 1220 dma_unmap_len_set(tx_buffer, len, 0); 1221 1222 /* unmap remaining buffers */ 1223 while (tx_desc != eop_desc) { 1224 tx_buffer++; 1225 tx_desc++; 1226 i++; 1227 if (unlikely(!i)) { 1228 i -= tx_ring->count; 1229 tx_buffer = tx_ring->tx_buffer; 1230 tx_desc = FM10K_TX_DESC(tx_ring, 0); 1231 } 1232 1233 /* unmap any remaining paged data */ 1234 if (dma_unmap_len(tx_buffer, len)) { 1235 dma_unmap_page(tx_ring->dev, 1236 dma_unmap_addr(tx_buffer, dma), 1237 dma_unmap_len(tx_buffer, len), 1238 DMA_TO_DEVICE); 1239 dma_unmap_len_set(tx_buffer, len, 0); 1240 } 1241 } 1242 1243 /* move us one more past the eop_desc for start of next pkt */ 1244 tx_buffer++; 1245 tx_desc++; 1246 i++; 1247 if (unlikely(!i)) { 1248 i -= tx_ring->count; 1249 tx_buffer = tx_ring->tx_buffer; 1250 tx_desc = FM10K_TX_DESC(tx_ring, 0); 1251 } 1252 1253 /* issue prefetch for next Tx descriptor */ 1254 prefetch(tx_desc); 1255 1256 /* update budget accounting */ 1257 budget--; 1258 } while (likely(budget)); 1259 1260 i += tx_ring->count; 1261 tx_ring->next_to_clean = i; 1262 u64_stats_update_begin(&tx_ring->syncp); 1263 tx_ring->stats.bytes += total_bytes; 1264 tx_ring->stats.packets += total_packets; 1265 u64_stats_update_end(&tx_ring->syncp); 1266 q_vector->tx.total_bytes += total_bytes; 1267 q_vector->tx.total_packets += total_packets; 1268 1269 if (check_for_tx_hang(tx_ring) && fm10k_check_tx_hang(tx_ring)) { 1270 /* schedule immediate reset if we believe we hung */ 1271 struct fm10k_hw *hw = &interface->hw; 1272 1273 netif_err(interface, drv, tx_ring->netdev, 1274 "Detected Tx Unit Hang\n" 1275 " Tx Queue <%d>\n" 1276 " TDH, TDT <%x>, <%x>\n" 1277 " next_to_use <%x>\n" 1278 " next_to_clean <%x>\n", 1279 tx_ring->queue_index, 1280 fm10k_read_reg(hw, FM10K_TDH(tx_ring->reg_idx)), 1281 fm10k_read_reg(hw, FM10K_TDT(tx_ring->reg_idx)), 1282 tx_ring->next_to_use, i); 1283 1284 netif_stop_subqueue(tx_ring->netdev, 1285 tx_ring->queue_index); 1286 1287 netif_info(interface, probe, tx_ring->netdev, 1288 "tx hang %d detected on queue %d, resetting interface\n", 1289 interface->tx_timeout_count + 1, 1290 tx_ring->queue_index); 1291 1292 fm10k_tx_timeout_reset(interface); 1293 1294 /* the netdev is about to reset, no point in enabling stuff */ 1295 return true; 1296 } 1297 1298 /* notify netdev of completed buffers */ 1299 netdev_tx_completed_queue(txring_txq(tx_ring), 1300 total_packets, total_bytes); 1301 1302 #define TX_WAKE_THRESHOLD min_t(u16, FM10K_MIN_TXD - 1, DESC_NEEDED * 2) 1303 if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) && 1304 (fm10k_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD))) { 1305 /* Make sure that anybody stopping the queue after this 1306 * sees the new next_to_clean. 1307 */ 1308 smp_mb(); 1309 if (__netif_subqueue_stopped(tx_ring->netdev, 1310 tx_ring->queue_index) && 1311 !test_bit(__FM10K_DOWN, interface->state)) { 1312 netif_wake_subqueue(tx_ring->netdev, 1313 tx_ring->queue_index); 1314 ++tx_ring->tx_stats.restart_queue; 1315 } 1316 } 1317 1318 return !!budget; 1319 } 1320 1321 /** 1322 * fm10k_update_itr - update the dynamic ITR value based on packet size 1323 * 1324 * Stores a new ITR value based on strictly on packet size. The 1325 * divisors and thresholds used by this function were determined based 1326 * on theoretical maximum wire speed and testing data, in order to 1327 * minimize response time while increasing bulk throughput. 1328 * 1329 * @ring_container: Container for rings to have ITR updated 1330 **/ 1331 static void fm10k_update_itr(struct fm10k_ring_container *ring_container) 1332 { 1333 unsigned int avg_wire_size, packets, itr_round; 1334 1335 /* Only update ITR if we are using adaptive setting */ 1336 if (!ITR_IS_ADAPTIVE(ring_container->itr)) 1337 goto clear_counts; 1338 1339 packets = ring_container->total_packets; 1340 if (!packets) 1341 goto clear_counts; 1342 1343 avg_wire_size = ring_container->total_bytes / packets; 1344 1345 /* The following is a crude approximation of: 1346 * wmem_default / (size + overhead) = desired_pkts_per_int 1347 * rate / bits_per_byte / (size + ethernet overhead) = pkt_rate 1348 * (desired_pkt_rate / pkt_rate) * usecs_per_sec = ITR value 1349 * 1350 * Assuming wmem_default is 212992 and overhead is 640 bytes per 1351 * packet, (256 skb, 64 headroom, 320 shared info), we can reduce the 1352 * formula down to 1353 * 1354 * (34 * (size + 24)) / (size + 640) = ITR 1355 * 1356 * We first do some math on the packet size and then finally bitshift 1357 * by 8 after rounding up. We also have to account for PCIe link speed 1358 * difference as ITR scales based on this. 1359 */ 1360 if (avg_wire_size <= 360) { 1361 /* Start at 250K ints/sec and gradually drop to 77K ints/sec */ 1362 avg_wire_size *= 8; 1363 avg_wire_size += 376; 1364 } else if (avg_wire_size <= 1152) { 1365 /* 77K ints/sec to 45K ints/sec */ 1366 avg_wire_size *= 3; 1367 avg_wire_size += 2176; 1368 } else if (avg_wire_size <= 1920) { 1369 /* 45K ints/sec to 38K ints/sec */ 1370 avg_wire_size += 4480; 1371 } else { 1372 /* plateau at a limit of 38K ints/sec */ 1373 avg_wire_size = 6656; 1374 } 1375 1376 /* Perform final bitshift for division after rounding up to ensure 1377 * that the calculation will never get below a 1. The bit shift 1378 * accounts for changes in the ITR due to PCIe link speed. 1379 */ 1380 itr_round = READ_ONCE(ring_container->itr_scale) + 8; 1381 avg_wire_size += BIT(itr_round) - 1; 1382 avg_wire_size >>= itr_round; 1383 1384 /* write back value and retain adaptive flag */ 1385 ring_container->itr = avg_wire_size | FM10K_ITR_ADAPTIVE; 1386 1387 clear_counts: 1388 ring_container->total_bytes = 0; 1389 ring_container->total_packets = 0; 1390 } 1391 1392 static void fm10k_qv_enable(struct fm10k_q_vector *q_vector) 1393 { 1394 /* Enable auto-mask and clear the current mask */ 1395 u32 itr = FM10K_ITR_ENABLE; 1396 1397 /* Update Tx ITR */ 1398 fm10k_update_itr(&q_vector->tx); 1399 1400 /* Update Rx ITR */ 1401 fm10k_update_itr(&q_vector->rx); 1402 1403 /* Store Tx itr in timer slot 0 */ 1404 itr |= (q_vector->tx.itr & FM10K_ITR_MAX); 1405 1406 /* Shift Rx itr to timer slot 1 */ 1407 itr |= (q_vector->rx.itr & FM10K_ITR_MAX) << FM10K_ITR_INTERVAL1_SHIFT; 1408 1409 /* Write the final value to the ITR register */ 1410 writel(itr, q_vector->itr); 1411 } 1412 1413 static int fm10k_poll(struct napi_struct *napi, int budget) 1414 { 1415 struct fm10k_q_vector *q_vector = 1416 container_of(napi, struct fm10k_q_vector, napi); 1417 struct fm10k_ring *ring; 1418 int per_ring_budget, work_done = 0; 1419 bool clean_complete = true; 1420 1421 fm10k_for_each_ring(ring, q_vector->tx) { 1422 if (!fm10k_clean_tx_irq(q_vector, ring, budget)) 1423 clean_complete = false; 1424 } 1425 1426 /* Handle case where we are called by netpoll with a budget of 0 */ 1427 if (budget <= 0) 1428 return budget; 1429 1430 /* attempt to distribute budget to each queue fairly, but don't 1431 * allow the budget to go below 1 because we'll exit polling 1432 */ 1433 if (q_vector->rx.count > 1) 1434 per_ring_budget = max(budget / q_vector->rx.count, 1); 1435 else 1436 per_ring_budget = budget; 1437 1438 fm10k_for_each_ring(ring, q_vector->rx) { 1439 int work = fm10k_clean_rx_irq(q_vector, ring, per_ring_budget); 1440 1441 work_done += work; 1442 if (work >= per_ring_budget) 1443 clean_complete = false; 1444 } 1445 1446 /* If all work not completed, return budget and keep polling */ 1447 if (!clean_complete) 1448 return budget; 1449 1450 /* Exit the polling mode, but don't re-enable interrupts if stack might 1451 * poll us due to busy-polling 1452 */ 1453 if (likely(napi_complete_done(napi, work_done))) 1454 fm10k_qv_enable(q_vector); 1455 1456 return min(work_done, budget - 1); 1457 } 1458 1459 /** 1460 * fm10k_set_qos_queues: Allocate queues for a QOS-enabled device 1461 * @interface: board private structure to initialize 1462 * 1463 * When QoS (Quality of Service) is enabled, allocate queues for 1464 * each traffic class. If multiqueue isn't available,then abort QoS 1465 * initialization. 1466 * 1467 * This function handles all combinations of Qos and RSS. 1468 * 1469 **/ 1470 static bool fm10k_set_qos_queues(struct fm10k_intfc *interface) 1471 { 1472 struct net_device *dev = interface->netdev; 1473 struct fm10k_ring_feature *f; 1474 int rss_i, i; 1475 int pcs; 1476 1477 /* Map queue offset and counts onto allocated tx queues */ 1478 pcs = netdev_get_num_tc(dev); 1479 1480 if (pcs <= 1) 1481 return false; 1482 1483 /* set QoS mask and indices */ 1484 f = &interface->ring_feature[RING_F_QOS]; 1485 f->indices = pcs; 1486 f->mask = BIT(fls(pcs - 1)) - 1; 1487 1488 /* determine the upper limit for our current DCB mode */ 1489 rss_i = interface->hw.mac.max_queues / pcs; 1490 rss_i = BIT(fls(rss_i) - 1); 1491 1492 /* set RSS mask and indices */ 1493 f = &interface->ring_feature[RING_F_RSS]; 1494 rss_i = min_t(u16, rss_i, f->limit); 1495 f->indices = rss_i; 1496 f->mask = BIT(fls(rss_i - 1)) - 1; 1497 1498 /* configure pause class to queue mapping */ 1499 for (i = 0; i < pcs; i++) 1500 netdev_set_tc_queue(dev, i, rss_i, rss_i * i); 1501 1502 interface->num_rx_queues = rss_i * pcs; 1503 interface->num_tx_queues = rss_i * pcs; 1504 1505 return true; 1506 } 1507 1508 /** 1509 * fm10k_set_rss_queues: Allocate queues for RSS 1510 * @interface: board private structure to initialize 1511 * 1512 * This is our "base" multiqueue mode. RSS (Receive Side Scaling) will try 1513 * to allocate one Rx queue per CPU, and if available, one Tx queue per CPU. 1514 * 1515 **/ 1516 static bool fm10k_set_rss_queues(struct fm10k_intfc *interface) 1517 { 1518 struct fm10k_ring_feature *f; 1519 u16 rss_i; 1520 1521 f = &interface->ring_feature[RING_F_RSS]; 1522 rss_i = min_t(u16, interface->hw.mac.max_queues, f->limit); 1523 1524 /* record indices and power of 2 mask for RSS */ 1525 f->indices = rss_i; 1526 f->mask = BIT(fls(rss_i - 1)) - 1; 1527 1528 interface->num_rx_queues = rss_i; 1529 interface->num_tx_queues = rss_i; 1530 1531 return true; 1532 } 1533 1534 /** 1535 * fm10k_set_num_queues: Allocate queues for device, feature dependent 1536 * @interface: board private structure to initialize 1537 * 1538 * This is the top level queue allocation routine. The order here is very 1539 * important, starting with the "most" number of features turned on at once, 1540 * and ending with the smallest set of features. This way large combinations 1541 * can be allocated if they're turned on, and smaller combinations are the 1542 * fall through conditions. 1543 * 1544 **/ 1545 static void fm10k_set_num_queues(struct fm10k_intfc *interface) 1546 { 1547 /* Attempt to setup QoS and RSS first */ 1548 if (fm10k_set_qos_queues(interface)) 1549 return; 1550 1551 /* If we don't have QoS, just fallback to only RSS. */ 1552 fm10k_set_rss_queues(interface); 1553 } 1554 1555 /** 1556 * fm10k_reset_num_queues - Reset the number of queues to zero 1557 * @interface: board private structure 1558 * 1559 * This function should be called whenever we need to reset the number of 1560 * queues after an error condition. 1561 */ 1562 static void fm10k_reset_num_queues(struct fm10k_intfc *interface) 1563 { 1564 interface->num_tx_queues = 0; 1565 interface->num_rx_queues = 0; 1566 interface->num_q_vectors = 0; 1567 } 1568 1569 /** 1570 * fm10k_alloc_q_vector - Allocate memory for a single interrupt vector 1571 * @interface: board private structure to initialize 1572 * @v_count: q_vectors allocated on interface, used for ring interleaving 1573 * @v_idx: index of vector in interface struct 1574 * @txr_count: total number of Tx rings to allocate 1575 * @txr_idx: index of first Tx ring to allocate 1576 * @rxr_count: total number of Rx rings to allocate 1577 * @rxr_idx: index of first Rx ring to allocate 1578 * 1579 * We allocate one q_vector. If allocation fails we return -ENOMEM. 1580 **/ 1581 static int fm10k_alloc_q_vector(struct fm10k_intfc *interface, 1582 unsigned int v_count, unsigned int v_idx, 1583 unsigned int txr_count, unsigned int txr_idx, 1584 unsigned int rxr_count, unsigned int rxr_idx) 1585 { 1586 struct fm10k_q_vector *q_vector; 1587 struct fm10k_ring *ring; 1588 int ring_count; 1589 1590 ring_count = txr_count + rxr_count; 1591 1592 /* allocate q_vector and rings */ 1593 q_vector = kzalloc(struct_size(q_vector, ring, ring_count), GFP_KERNEL); 1594 if (!q_vector) 1595 return -ENOMEM; 1596 1597 /* initialize NAPI */ 1598 netif_napi_add(interface->netdev, &q_vector->napi, 1599 fm10k_poll, NAPI_POLL_WEIGHT); 1600 1601 /* tie q_vector and interface together */ 1602 interface->q_vector[v_idx] = q_vector; 1603 q_vector->interface = interface; 1604 q_vector->v_idx = v_idx; 1605 1606 /* initialize pointer to rings */ 1607 ring = q_vector->ring; 1608 1609 /* save Tx ring container info */ 1610 q_vector->tx.ring = ring; 1611 q_vector->tx.work_limit = FM10K_DEFAULT_TX_WORK; 1612 q_vector->tx.itr = interface->tx_itr; 1613 q_vector->tx.itr_scale = interface->hw.mac.itr_scale; 1614 q_vector->tx.count = txr_count; 1615 1616 while (txr_count) { 1617 /* assign generic ring traits */ 1618 ring->dev = &interface->pdev->dev; 1619 ring->netdev = interface->netdev; 1620 1621 /* configure backlink on ring */ 1622 ring->q_vector = q_vector; 1623 1624 /* apply Tx specific ring traits */ 1625 ring->count = interface->tx_ring_count; 1626 ring->queue_index = txr_idx; 1627 1628 /* assign ring to interface */ 1629 interface->tx_ring[txr_idx] = ring; 1630 1631 /* update count and index */ 1632 txr_count--; 1633 txr_idx += v_count; 1634 1635 /* push pointer to next ring */ 1636 ring++; 1637 } 1638 1639 /* save Rx ring container info */ 1640 q_vector->rx.ring = ring; 1641 q_vector->rx.itr = interface->rx_itr; 1642 q_vector->rx.itr_scale = interface->hw.mac.itr_scale; 1643 q_vector->rx.count = rxr_count; 1644 1645 while (rxr_count) { 1646 /* assign generic ring traits */ 1647 ring->dev = &interface->pdev->dev; 1648 ring->netdev = interface->netdev; 1649 rcu_assign_pointer(ring->l2_accel, interface->l2_accel); 1650 1651 /* configure backlink on ring */ 1652 ring->q_vector = q_vector; 1653 1654 /* apply Rx specific ring traits */ 1655 ring->count = interface->rx_ring_count; 1656 ring->queue_index = rxr_idx; 1657 1658 /* assign ring to interface */ 1659 interface->rx_ring[rxr_idx] = ring; 1660 1661 /* update count and index */ 1662 rxr_count--; 1663 rxr_idx += v_count; 1664 1665 /* push pointer to next ring */ 1666 ring++; 1667 } 1668 1669 fm10k_dbg_q_vector_init(q_vector); 1670 1671 return 0; 1672 } 1673 1674 /** 1675 * fm10k_free_q_vector - Free memory allocated for specific interrupt vector 1676 * @interface: board private structure to initialize 1677 * @v_idx: Index of vector to be freed 1678 * 1679 * This function frees the memory allocated to the q_vector. In addition if 1680 * NAPI is enabled it will delete any references to the NAPI struct prior 1681 * to freeing the q_vector. 1682 **/ 1683 static void fm10k_free_q_vector(struct fm10k_intfc *interface, int v_idx) 1684 { 1685 struct fm10k_q_vector *q_vector = interface->q_vector[v_idx]; 1686 struct fm10k_ring *ring; 1687 1688 fm10k_dbg_q_vector_exit(q_vector); 1689 1690 fm10k_for_each_ring(ring, q_vector->tx) 1691 interface->tx_ring[ring->queue_index] = NULL; 1692 1693 fm10k_for_each_ring(ring, q_vector->rx) 1694 interface->rx_ring[ring->queue_index] = NULL; 1695 1696 interface->q_vector[v_idx] = NULL; 1697 netif_napi_del(&q_vector->napi); 1698 kfree_rcu(q_vector, rcu); 1699 } 1700 1701 /** 1702 * fm10k_alloc_q_vectors - Allocate memory for interrupt vectors 1703 * @interface: board private structure to initialize 1704 * 1705 * We allocate one q_vector per queue interrupt. If allocation fails we 1706 * return -ENOMEM. 1707 **/ 1708 static int fm10k_alloc_q_vectors(struct fm10k_intfc *interface) 1709 { 1710 unsigned int q_vectors = interface->num_q_vectors; 1711 unsigned int rxr_remaining = interface->num_rx_queues; 1712 unsigned int txr_remaining = interface->num_tx_queues; 1713 unsigned int rxr_idx = 0, txr_idx = 0, v_idx = 0; 1714 int err; 1715 1716 if (q_vectors >= (rxr_remaining + txr_remaining)) { 1717 for (; rxr_remaining; v_idx++) { 1718 err = fm10k_alloc_q_vector(interface, q_vectors, v_idx, 1719 0, 0, 1, rxr_idx); 1720 if (err) 1721 goto err_out; 1722 1723 /* update counts and index */ 1724 rxr_remaining--; 1725 rxr_idx++; 1726 } 1727 } 1728 1729 for (; v_idx < q_vectors; v_idx++) { 1730 int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx); 1731 int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx); 1732 1733 err = fm10k_alloc_q_vector(interface, q_vectors, v_idx, 1734 tqpv, txr_idx, 1735 rqpv, rxr_idx); 1736 1737 if (err) 1738 goto err_out; 1739 1740 /* update counts and index */ 1741 rxr_remaining -= rqpv; 1742 txr_remaining -= tqpv; 1743 rxr_idx++; 1744 txr_idx++; 1745 } 1746 1747 return 0; 1748 1749 err_out: 1750 fm10k_reset_num_queues(interface); 1751 1752 while (v_idx--) 1753 fm10k_free_q_vector(interface, v_idx); 1754 1755 return -ENOMEM; 1756 } 1757 1758 /** 1759 * fm10k_free_q_vectors - Free memory allocated for interrupt vectors 1760 * @interface: board private structure to initialize 1761 * 1762 * This function frees the memory allocated to the q_vectors. In addition if 1763 * NAPI is enabled it will delete any references to the NAPI struct prior 1764 * to freeing the q_vector. 1765 **/ 1766 static void fm10k_free_q_vectors(struct fm10k_intfc *interface) 1767 { 1768 int v_idx = interface->num_q_vectors; 1769 1770 fm10k_reset_num_queues(interface); 1771 1772 while (v_idx--) 1773 fm10k_free_q_vector(interface, v_idx); 1774 } 1775 1776 /** 1777 * f10k_reset_msix_capability - reset MSI-X capability 1778 * @interface: board private structure to initialize 1779 * 1780 * Reset the MSI-X capability back to its starting state 1781 **/ 1782 static void fm10k_reset_msix_capability(struct fm10k_intfc *interface) 1783 { 1784 pci_disable_msix(interface->pdev); 1785 kfree(interface->msix_entries); 1786 interface->msix_entries = NULL; 1787 } 1788 1789 /** 1790 * f10k_init_msix_capability - configure MSI-X capability 1791 * @interface: board private structure to initialize 1792 * 1793 * Attempt to configure the interrupts using the best available 1794 * capabilities of the hardware and the kernel. 1795 **/ 1796 static int fm10k_init_msix_capability(struct fm10k_intfc *interface) 1797 { 1798 struct fm10k_hw *hw = &interface->hw; 1799 int v_budget, vector; 1800 1801 /* It's easy to be greedy for MSI-X vectors, but it really 1802 * doesn't do us much good if we have a lot more vectors 1803 * than CPU's. So let's be conservative and only ask for 1804 * (roughly) the same number of vectors as there are CPU's. 1805 * the default is to use pairs of vectors 1806 */ 1807 v_budget = max(interface->num_rx_queues, interface->num_tx_queues); 1808 v_budget = min_t(u16, v_budget, num_online_cpus()); 1809 1810 /* account for vectors not related to queues */ 1811 v_budget += NON_Q_VECTORS; 1812 1813 /* At the same time, hardware can only support a maximum of 1814 * hw.mac->max_msix_vectors vectors. With features 1815 * such as RSS and VMDq, we can easily surpass the number of Rx and Tx 1816 * descriptor queues supported by our device. Thus, we cap it off in 1817 * those rare cases where the cpu count also exceeds our vector limit. 1818 */ 1819 v_budget = min_t(int, v_budget, hw->mac.max_msix_vectors); 1820 1821 /* A failure in MSI-X entry allocation is fatal. */ 1822 interface->msix_entries = kcalloc(v_budget, sizeof(struct msix_entry), 1823 GFP_KERNEL); 1824 if (!interface->msix_entries) 1825 return -ENOMEM; 1826 1827 /* populate entry values */ 1828 for (vector = 0; vector < v_budget; vector++) 1829 interface->msix_entries[vector].entry = vector; 1830 1831 /* Attempt to enable MSI-X with requested value */ 1832 v_budget = pci_enable_msix_range(interface->pdev, 1833 interface->msix_entries, 1834 MIN_MSIX_COUNT(hw), 1835 v_budget); 1836 if (v_budget < 0) { 1837 kfree(interface->msix_entries); 1838 interface->msix_entries = NULL; 1839 return v_budget; 1840 } 1841 1842 /* record the number of queues available for q_vectors */ 1843 interface->num_q_vectors = v_budget - NON_Q_VECTORS; 1844 1845 return 0; 1846 } 1847 1848 /** 1849 * fm10k_cache_ring_qos - Descriptor ring to register mapping for QoS 1850 * @interface: Interface structure continaining rings and devices 1851 * 1852 * Cache the descriptor ring offsets for Qos 1853 **/ 1854 static bool fm10k_cache_ring_qos(struct fm10k_intfc *interface) 1855 { 1856 struct net_device *dev = interface->netdev; 1857 int pc, offset, rss_i, i; 1858 u16 pc_stride = interface->ring_feature[RING_F_QOS].mask + 1; 1859 u8 num_pcs = netdev_get_num_tc(dev); 1860 1861 if (num_pcs <= 1) 1862 return false; 1863 1864 rss_i = interface->ring_feature[RING_F_RSS].indices; 1865 1866 for (pc = 0, offset = 0; pc < num_pcs; pc++, offset += rss_i) { 1867 int q_idx = pc; 1868 1869 for (i = 0; i < rss_i; i++) { 1870 interface->tx_ring[offset + i]->reg_idx = q_idx; 1871 interface->tx_ring[offset + i]->qos_pc = pc; 1872 interface->rx_ring[offset + i]->reg_idx = q_idx; 1873 interface->rx_ring[offset + i]->qos_pc = pc; 1874 q_idx += pc_stride; 1875 } 1876 } 1877 1878 return true; 1879 } 1880 1881 /** 1882 * fm10k_cache_ring_rss - Descriptor ring to register mapping for RSS 1883 * @interface: Interface structure continaining rings and devices 1884 * 1885 * Cache the descriptor ring offsets for RSS 1886 **/ 1887 static void fm10k_cache_ring_rss(struct fm10k_intfc *interface) 1888 { 1889 int i; 1890 1891 for (i = 0; i < interface->num_rx_queues; i++) 1892 interface->rx_ring[i]->reg_idx = i; 1893 1894 for (i = 0; i < interface->num_tx_queues; i++) 1895 interface->tx_ring[i]->reg_idx = i; 1896 } 1897 1898 /** 1899 * fm10k_assign_rings - Map rings to network devices 1900 * @interface: Interface structure containing rings and devices 1901 * 1902 * This function is meant to go though and configure both the network 1903 * devices so that they contain rings, and configure the rings so that 1904 * they function with their network devices. 1905 **/ 1906 static void fm10k_assign_rings(struct fm10k_intfc *interface) 1907 { 1908 if (fm10k_cache_ring_qos(interface)) 1909 return; 1910 1911 fm10k_cache_ring_rss(interface); 1912 } 1913 1914 static void fm10k_init_reta(struct fm10k_intfc *interface) 1915 { 1916 u16 i, rss_i = interface->ring_feature[RING_F_RSS].indices; 1917 u32 reta; 1918 1919 /* If the Rx flow indirection table has been configured manually, we 1920 * need to maintain it when possible. 1921 */ 1922 if (netif_is_rxfh_configured(interface->netdev)) { 1923 for (i = FM10K_RETA_SIZE; i--;) { 1924 reta = interface->reta[i]; 1925 if ((((reta << 24) >> 24) < rss_i) && 1926 (((reta << 16) >> 24) < rss_i) && 1927 (((reta << 8) >> 24) < rss_i) && 1928 (((reta) >> 24) < rss_i)) 1929 continue; 1930 1931 /* this should never happen */ 1932 dev_err(&interface->pdev->dev, 1933 "RSS indirection table assigned flows out of queue bounds. Reconfiguring.\n"); 1934 goto repopulate_reta; 1935 } 1936 1937 /* do nothing if all of the elements are in bounds */ 1938 return; 1939 } 1940 1941 repopulate_reta: 1942 fm10k_write_reta(interface, NULL); 1943 } 1944 1945 /** 1946 * fm10k_init_queueing_scheme - Determine proper queueing scheme 1947 * @interface: board private structure to initialize 1948 * 1949 * We determine which queueing scheme to use based on... 1950 * - Hardware queue count (num_*_queues) 1951 * - defined by miscellaneous hardware support/features (RSS, etc.) 1952 **/ 1953 int fm10k_init_queueing_scheme(struct fm10k_intfc *interface) 1954 { 1955 int err; 1956 1957 /* Number of supported queues */ 1958 fm10k_set_num_queues(interface); 1959 1960 /* Configure MSI-X capability */ 1961 err = fm10k_init_msix_capability(interface); 1962 if (err) { 1963 dev_err(&interface->pdev->dev, 1964 "Unable to initialize MSI-X capability\n"); 1965 goto err_init_msix; 1966 } 1967 1968 /* Allocate memory for queues */ 1969 err = fm10k_alloc_q_vectors(interface); 1970 if (err) { 1971 dev_err(&interface->pdev->dev, 1972 "Unable to allocate queue vectors\n"); 1973 goto err_alloc_q_vectors; 1974 } 1975 1976 /* Map rings to devices, and map devices to physical queues */ 1977 fm10k_assign_rings(interface); 1978 1979 /* Initialize RSS redirection table */ 1980 fm10k_init_reta(interface); 1981 1982 return 0; 1983 1984 err_alloc_q_vectors: 1985 fm10k_reset_msix_capability(interface); 1986 err_init_msix: 1987 fm10k_reset_num_queues(interface); 1988 return err; 1989 } 1990 1991 /** 1992 * fm10k_clear_queueing_scheme - Clear the current queueing scheme settings 1993 * @interface: board private structure to clear queueing scheme on 1994 * 1995 * We go through and clear queueing specific resources and reset the structure 1996 * to pre-load conditions 1997 **/ 1998 void fm10k_clear_queueing_scheme(struct fm10k_intfc *interface) 1999 { 2000 fm10k_free_q_vectors(interface); 2001 fm10k_reset_msix_capability(interface); 2002 } 2003