1 /* Intel Ethernet Switch Host Interface Driver
2  * Copyright(c) 2013 - 2014 Intel Corporation.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms and conditions of the GNU General Public License,
6  * version 2, as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope it will be useful, but WITHOUT
9  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
11  * more details.
12  *
13  * The full GNU General Public License is included in this distribution in
14  * the file called "COPYING".
15  *
16  * Contact Information:
17  * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
18  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
19  */
20 
21 #include <linux/types.h>
22 #include <linux/module.h>
23 #include <net/ipv6.h>
24 #include <net/ip.h>
25 #include <net/tcp.h>
26 #include <linux/if_macvlan.h>
27 #include <linux/prefetch.h>
28 
29 #include "fm10k.h"
30 
31 #define DRV_VERSION	"0.15.2-k"
32 const char fm10k_driver_version[] = DRV_VERSION;
33 char fm10k_driver_name[] = "fm10k";
34 static const char fm10k_driver_string[] =
35 	"Intel(R) Ethernet Switch Host Interface Driver";
36 static const char fm10k_copyright[] =
37 	"Copyright (c) 2013 Intel Corporation.";
38 
39 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
40 MODULE_DESCRIPTION("Intel(R) Ethernet Switch Host Interface Driver");
41 MODULE_LICENSE("GPL");
42 MODULE_VERSION(DRV_VERSION);
43 
44 /* single workqueue for entire fm10k driver */
45 struct workqueue_struct *fm10k_workqueue = NULL;
46 
47 /**
48  * fm10k_init_module - Driver Registration Routine
49  *
50  * fm10k_init_module is the first routine called when the driver is
51  * loaded.  All it does is register with the PCI subsystem.
52  **/
53 static int __init fm10k_init_module(void)
54 {
55 	pr_info("%s - version %s\n", fm10k_driver_string, fm10k_driver_version);
56 	pr_info("%s\n", fm10k_copyright);
57 
58 	/* create driver workqueue */
59 	if (!fm10k_workqueue)
60 		fm10k_workqueue = create_workqueue("fm10k");
61 
62 	fm10k_dbg_init();
63 
64 	return fm10k_register_pci_driver();
65 }
66 module_init(fm10k_init_module);
67 
68 /**
69  * fm10k_exit_module - Driver Exit Cleanup Routine
70  *
71  * fm10k_exit_module is called just before the driver is removed
72  * from memory.
73  **/
74 static void __exit fm10k_exit_module(void)
75 {
76 	fm10k_unregister_pci_driver();
77 
78 	fm10k_dbg_exit();
79 
80 	/* destroy driver workqueue */
81 	flush_workqueue(fm10k_workqueue);
82 	destroy_workqueue(fm10k_workqueue);
83 	fm10k_workqueue = NULL;
84 }
85 module_exit(fm10k_exit_module);
86 
87 static bool fm10k_alloc_mapped_page(struct fm10k_ring *rx_ring,
88 				    struct fm10k_rx_buffer *bi)
89 {
90 	struct page *page = bi->page;
91 	dma_addr_t dma;
92 
93 	/* Only page will be NULL if buffer was consumed */
94 	if (likely(page))
95 		return true;
96 
97 	/* alloc new page for storage */
98 	page = dev_alloc_page();
99 	if (unlikely(!page)) {
100 		rx_ring->rx_stats.alloc_failed++;
101 		return false;
102 	}
103 
104 	/* map page for use */
105 	dma = dma_map_page(rx_ring->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE);
106 
107 	/* if mapping failed free memory back to system since
108 	 * there isn't much point in holding memory we can't use
109 	 */
110 	if (dma_mapping_error(rx_ring->dev, dma)) {
111 		__free_page(page);
112 
113 		rx_ring->rx_stats.alloc_failed++;
114 		return false;
115 	}
116 
117 	bi->dma = dma;
118 	bi->page = page;
119 	bi->page_offset = 0;
120 
121 	return true;
122 }
123 
124 /**
125  * fm10k_alloc_rx_buffers - Replace used receive buffers
126  * @rx_ring: ring to place buffers on
127  * @cleaned_count: number of buffers to replace
128  **/
129 void fm10k_alloc_rx_buffers(struct fm10k_ring *rx_ring, u16 cleaned_count)
130 {
131 	union fm10k_rx_desc *rx_desc;
132 	struct fm10k_rx_buffer *bi;
133 	u16 i = rx_ring->next_to_use;
134 
135 	/* nothing to do */
136 	if (!cleaned_count)
137 		return;
138 
139 	rx_desc = FM10K_RX_DESC(rx_ring, i);
140 	bi = &rx_ring->rx_buffer[i];
141 	i -= rx_ring->count;
142 
143 	do {
144 		if (!fm10k_alloc_mapped_page(rx_ring, bi))
145 			break;
146 
147 		/* Refresh the desc even if buffer_addrs didn't change
148 		 * because each write-back erases this info.
149 		 */
150 		rx_desc->q.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
151 
152 		rx_desc++;
153 		bi++;
154 		i++;
155 		if (unlikely(!i)) {
156 			rx_desc = FM10K_RX_DESC(rx_ring, 0);
157 			bi = rx_ring->rx_buffer;
158 			i -= rx_ring->count;
159 		}
160 
161 		/* clear the status bits for the next_to_use descriptor */
162 		rx_desc->d.staterr = 0;
163 
164 		cleaned_count--;
165 	} while (cleaned_count);
166 
167 	i += rx_ring->count;
168 
169 	if (rx_ring->next_to_use != i) {
170 		/* record the next descriptor to use */
171 		rx_ring->next_to_use = i;
172 
173 		/* update next to alloc since we have filled the ring */
174 		rx_ring->next_to_alloc = i;
175 
176 		/* Force memory writes to complete before letting h/w
177 		 * know there are new descriptors to fetch.  (Only
178 		 * applicable for weak-ordered memory model archs,
179 		 * such as IA-64).
180 		 */
181 		wmb();
182 
183 		/* notify hardware of new descriptors */
184 		writel(i, rx_ring->tail);
185 	}
186 }
187 
188 /**
189  * fm10k_reuse_rx_page - page flip buffer and store it back on the ring
190  * @rx_ring: rx descriptor ring to store buffers on
191  * @old_buff: donor buffer to have page reused
192  *
193  * Synchronizes page for reuse by the interface
194  **/
195 static void fm10k_reuse_rx_page(struct fm10k_ring *rx_ring,
196 				struct fm10k_rx_buffer *old_buff)
197 {
198 	struct fm10k_rx_buffer *new_buff;
199 	u16 nta = rx_ring->next_to_alloc;
200 
201 	new_buff = &rx_ring->rx_buffer[nta];
202 
203 	/* update, and store next to alloc */
204 	nta++;
205 	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
206 
207 	/* transfer page from old buffer to new buffer */
208 	*new_buff = *old_buff;
209 
210 	/* sync the buffer for use by the device */
211 	dma_sync_single_range_for_device(rx_ring->dev, old_buff->dma,
212 					 old_buff->page_offset,
213 					 FM10K_RX_BUFSZ,
214 					 DMA_FROM_DEVICE);
215 }
216 
217 static inline bool fm10k_page_is_reserved(struct page *page)
218 {
219 	return (page_to_nid(page) != numa_mem_id()) || page_is_pfmemalloc(page);
220 }
221 
222 static bool fm10k_can_reuse_rx_page(struct fm10k_rx_buffer *rx_buffer,
223 				    struct page *page,
224 				    unsigned int __maybe_unused truesize)
225 {
226 	/* avoid re-using remote pages */
227 	if (unlikely(fm10k_page_is_reserved(page)))
228 		return false;
229 
230 #if (PAGE_SIZE < 8192)
231 	/* if we are only owner of page we can reuse it */
232 	if (unlikely(page_count(page) != 1))
233 		return false;
234 
235 	/* flip page offset to other buffer */
236 	rx_buffer->page_offset ^= FM10K_RX_BUFSZ;
237 #else
238 	/* move offset up to the next cache line */
239 	rx_buffer->page_offset += truesize;
240 
241 	if (rx_buffer->page_offset > (PAGE_SIZE - FM10K_RX_BUFSZ))
242 		return false;
243 #endif
244 
245 	/* Even if we own the page, we are not allowed to use atomic_set()
246 	 * This would break get_page_unless_zero() users.
247 	 */
248 	atomic_inc(&page->_count);
249 
250 	return true;
251 }
252 
253 /**
254  * fm10k_add_rx_frag - Add contents of Rx buffer to sk_buff
255  * @rx_buffer: buffer containing page to add
256  * @rx_desc: descriptor containing length of buffer written by hardware
257  * @skb: sk_buff to place the data into
258  *
259  * This function will add the data contained in rx_buffer->page to the skb.
260  * This is done either through a direct copy if the data in the buffer is
261  * less than the skb header size, otherwise it will just attach the page as
262  * a frag to the skb.
263  *
264  * The function will then update the page offset if necessary and return
265  * true if the buffer can be reused by the interface.
266  **/
267 static bool fm10k_add_rx_frag(struct fm10k_rx_buffer *rx_buffer,
268 			      union fm10k_rx_desc *rx_desc,
269 			      struct sk_buff *skb)
270 {
271 	struct page *page = rx_buffer->page;
272 	unsigned char *va = page_address(page) + rx_buffer->page_offset;
273 	unsigned int size = le16_to_cpu(rx_desc->w.length);
274 #if (PAGE_SIZE < 8192)
275 	unsigned int truesize = FM10K_RX_BUFSZ;
276 #else
277 	unsigned int truesize = SKB_DATA_ALIGN(size);
278 #endif
279 	unsigned int pull_len;
280 
281 	if (unlikely(skb_is_nonlinear(skb)))
282 		goto add_tail_frag;
283 
284 	if (likely(size <= FM10K_RX_HDR_LEN)) {
285 		memcpy(__skb_put(skb, size), va, ALIGN(size, sizeof(long)));
286 
287 		/* page is not reserved, we can reuse buffer as-is */
288 		if (likely(!fm10k_page_is_reserved(page)))
289 			return true;
290 
291 		/* this page cannot be reused so discard it */
292 		__free_page(page);
293 		return false;
294 	}
295 
296 	/* we need the header to contain the greater of either ETH_HLEN or
297 	 * 60 bytes if the skb->len is less than 60 for skb_pad.
298 	 */
299 	pull_len = eth_get_headlen(va, FM10K_RX_HDR_LEN);
300 
301 	/* align pull length to size of long to optimize memcpy performance */
302 	memcpy(__skb_put(skb, pull_len), va, ALIGN(pull_len, sizeof(long)));
303 
304 	/* update all of the pointers */
305 	va += pull_len;
306 	size -= pull_len;
307 
308 add_tail_frag:
309 	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
310 			(unsigned long)va & ~PAGE_MASK, size, truesize);
311 
312 	return fm10k_can_reuse_rx_page(rx_buffer, page, truesize);
313 }
314 
315 static struct sk_buff *fm10k_fetch_rx_buffer(struct fm10k_ring *rx_ring,
316 					     union fm10k_rx_desc *rx_desc,
317 					     struct sk_buff *skb)
318 {
319 	struct fm10k_rx_buffer *rx_buffer;
320 	struct page *page;
321 
322 	rx_buffer = &rx_ring->rx_buffer[rx_ring->next_to_clean];
323 	page = rx_buffer->page;
324 	prefetchw(page);
325 
326 	if (likely(!skb)) {
327 		void *page_addr = page_address(page) +
328 				  rx_buffer->page_offset;
329 
330 		/* prefetch first cache line of first page */
331 		prefetch(page_addr);
332 #if L1_CACHE_BYTES < 128
333 		prefetch(page_addr + L1_CACHE_BYTES);
334 #endif
335 
336 		/* allocate a skb to store the frags */
337 		skb = napi_alloc_skb(&rx_ring->q_vector->napi,
338 				     FM10K_RX_HDR_LEN);
339 		if (unlikely(!skb)) {
340 			rx_ring->rx_stats.alloc_failed++;
341 			return NULL;
342 		}
343 
344 		/* we will be copying header into skb->data in
345 		 * pskb_may_pull so it is in our interest to prefetch
346 		 * it now to avoid a possible cache miss
347 		 */
348 		prefetchw(skb->data);
349 	}
350 
351 	/* we are reusing so sync this buffer for CPU use */
352 	dma_sync_single_range_for_cpu(rx_ring->dev,
353 				      rx_buffer->dma,
354 				      rx_buffer->page_offset,
355 				      FM10K_RX_BUFSZ,
356 				      DMA_FROM_DEVICE);
357 
358 	/* pull page into skb */
359 	if (fm10k_add_rx_frag(rx_buffer, rx_desc, skb)) {
360 		/* hand second half of page back to the ring */
361 		fm10k_reuse_rx_page(rx_ring, rx_buffer);
362 	} else {
363 		/* we are not reusing the buffer so unmap it */
364 		dma_unmap_page(rx_ring->dev, rx_buffer->dma,
365 			       PAGE_SIZE, DMA_FROM_DEVICE);
366 	}
367 
368 	/* clear contents of rx_buffer */
369 	rx_buffer->page = NULL;
370 
371 	return skb;
372 }
373 
374 static inline void fm10k_rx_checksum(struct fm10k_ring *ring,
375 				     union fm10k_rx_desc *rx_desc,
376 				     struct sk_buff *skb)
377 {
378 	skb_checksum_none_assert(skb);
379 
380 	/* Rx checksum disabled via ethtool */
381 	if (!(ring->netdev->features & NETIF_F_RXCSUM))
382 		return;
383 
384 	/* TCP/UDP checksum error bit is set */
385 	if (fm10k_test_staterr(rx_desc,
386 			       FM10K_RXD_STATUS_L4E |
387 			       FM10K_RXD_STATUS_L4E2 |
388 			       FM10K_RXD_STATUS_IPE |
389 			       FM10K_RXD_STATUS_IPE2)) {
390 		ring->rx_stats.csum_err++;
391 		return;
392 	}
393 
394 	/* It must be a TCP or UDP packet with a valid checksum */
395 	if (fm10k_test_staterr(rx_desc, FM10K_RXD_STATUS_L4CS2))
396 		skb->encapsulation = true;
397 	else if (!fm10k_test_staterr(rx_desc, FM10K_RXD_STATUS_L4CS))
398 		return;
399 
400 	skb->ip_summed = CHECKSUM_UNNECESSARY;
401 
402 	ring->rx_stats.csum_good++;
403 }
404 
405 #define FM10K_RSS_L4_TYPES_MASK \
406 	((1ul << FM10K_RSSTYPE_IPV4_TCP) | \
407 	 (1ul << FM10K_RSSTYPE_IPV4_UDP) | \
408 	 (1ul << FM10K_RSSTYPE_IPV6_TCP) | \
409 	 (1ul << FM10K_RSSTYPE_IPV6_UDP))
410 
411 static inline void fm10k_rx_hash(struct fm10k_ring *ring,
412 				 union fm10k_rx_desc *rx_desc,
413 				 struct sk_buff *skb)
414 {
415 	u16 rss_type;
416 
417 	if (!(ring->netdev->features & NETIF_F_RXHASH))
418 		return;
419 
420 	rss_type = le16_to_cpu(rx_desc->w.pkt_info) & FM10K_RXD_RSSTYPE_MASK;
421 	if (!rss_type)
422 		return;
423 
424 	skb_set_hash(skb, le32_to_cpu(rx_desc->d.rss),
425 		     (FM10K_RSS_L4_TYPES_MASK & (1ul << rss_type)) ?
426 		     PKT_HASH_TYPE_L4 : PKT_HASH_TYPE_L3);
427 }
428 
429 static void fm10k_rx_hwtstamp(struct fm10k_ring *rx_ring,
430 			      union fm10k_rx_desc *rx_desc,
431 			      struct sk_buff *skb)
432 {
433 	struct fm10k_intfc *interface = rx_ring->q_vector->interface;
434 
435 	FM10K_CB(skb)->tstamp = rx_desc->q.timestamp;
436 
437 	if (unlikely(interface->flags & FM10K_FLAG_RX_TS_ENABLED))
438 		fm10k_systime_to_hwtstamp(interface, skb_hwtstamps(skb),
439 					  le64_to_cpu(rx_desc->q.timestamp));
440 }
441 
442 static void fm10k_type_trans(struct fm10k_ring *rx_ring,
443 			     union fm10k_rx_desc __maybe_unused *rx_desc,
444 			     struct sk_buff *skb)
445 {
446 	struct net_device *dev = rx_ring->netdev;
447 	struct fm10k_l2_accel *l2_accel = rcu_dereference_bh(rx_ring->l2_accel);
448 
449 	/* check to see if DGLORT belongs to a MACVLAN */
450 	if (l2_accel) {
451 		u16 idx = le16_to_cpu(FM10K_CB(skb)->fi.w.dglort) - 1;
452 
453 		idx -= l2_accel->dglort;
454 		if (idx < l2_accel->size && l2_accel->macvlan[idx])
455 			dev = l2_accel->macvlan[idx];
456 		else
457 			l2_accel = NULL;
458 	}
459 
460 	skb->protocol = eth_type_trans(skb, dev);
461 
462 	if (!l2_accel)
463 		return;
464 
465 	/* update MACVLAN statistics */
466 	macvlan_count_rx(netdev_priv(dev), skb->len + ETH_HLEN, 1,
467 			 !!(rx_desc->w.hdr_info &
468 			    cpu_to_le16(FM10K_RXD_HDR_INFO_XC_MASK)));
469 }
470 
471 /**
472  * fm10k_process_skb_fields - Populate skb header fields from Rx descriptor
473  * @rx_ring: rx descriptor ring packet is being transacted on
474  * @rx_desc: pointer to the EOP Rx descriptor
475  * @skb: pointer to current skb being populated
476  *
477  * This function checks the ring, descriptor, and packet information in
478  * order to populate the hash, checksum, VLAN, timestamp, protocol, and
479  * other fields within the skb.
480  **/
481 static unsigned int fm10k_process_skb_fields(struct fm10k_ring *rx_ring,
482 					     union fm10k_rx_desc *rx_desc,
483 					     struct sk_buff *skb)
484 {
485 	unsigned int len = skb->len;
486 
487 	fm10k_rx_hash(rx_ring, rx_desc, skb);
488 
489 	fm10k_rx_checksum(rx_ring, rx_desc, skb);
490 
491 	fm10k_rx_hwtstamp(rx_ring, rx_desc, skb);
492 
493 	FM10K_CB(skb)->fi.w.vlan = rx_desc->w.vlan;
494 
495 	skb_record_rx_queue(skb, rx_ring->queue_index);
496 
497 	FM10K_CB(skb)->fi.d.glort = rx_desc->d.glort;
498 
499 	if (rx_desc->w.vlan) {
500 		u16 vid = le16_to_cpu(rx_desc->w.vlan);
501 
502 		if ((vid & VLAN_VID_MASK) != rx_ring->vid)
503 			__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
504 		else if (vid & VLAN_PRIO_MASK)
505 			__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
506 					       vid & VLAN_PRIO_MASK);
507 	}
508 
509 	fm10k_type_trans(rx_ring, rx_desc, skb);
510 
511 	return len;
512 }
513 
514 /**
515  * fm10k_is_non_eop - process handling of non-EOP buffers
516  * @rx_ring: Rx ring being processed
517  * @rx_desc: Rx descriptor for current buffer
518  *
519  * This function updates next to clean.  If the buffer is an EOP buffer
520  * this function exits returning false, otherwise it will place the
521  * sk_buff in the next buffer to be chained and return true indicating
522  * that this is in fact a non-EOP buffer.
523  **/
524 static bool fm10k_is_non_eop(struct fm10k_ring *rx_ring,
525 			     union fm10k_rx_desc *rx_desc)
526 {
527 	u32 ntc = rx_ring->next_to_clean + 1;
528 
529 	/* fetch, update, and store next to clean */
530 	ntc = (ntc < rx_ring->count) ? ntc : 0;
531 	rx_ring->next_to_clean = ntc;
532 
533 	prefetch(FM10K_RX_DESC(rx_ring, ntc));
534 
535 	if (likely(fm10k_test_staterr(rx_desc, FM10K_RXD_STATUS_EOP)))
536 		return false;
537 
538 	return true;
539 }
540 
541 /**
542  * fm10k_cleanup_headers - Correct corrupted or empty headers
543  * @rx_ring: rx descriptor ring packet is being transacted on
544  * @rx_desc: pointer to the EOP Rx descriptor
545  * @skb: pointer to current skb being fixed
546  *
547  * Address the case where we are pulling data in on pages only
548  * and as such no data is present in the skb header.
549  *
550  * In addition if skb is not at least 60 bytes we need to pad it so that
551  * it is large enough to qualify as a valid Ethernet frame.
552  *
553  * Returns true if an error was encountered and skb was freed.
554  **/
555 static bool fm10k_cleanup_headers(struct fm10k_ring *rx_ring,
556 				  union fm10k_rx_desc *rx_desc,
557 				  struct sk_buff *skb)
558 {
559 	if (unlikely((fm10k_test_staterr(rx_desc,
560 					 FM10K_RXD_STATUS_RXE)))) {
561 #define FM10K_TEST_RXD_BIT(rxd, bit) \
562 	((rxd)->w.csum_err & cpu_to_le16(bit))
563 		if (FM10K_TEST_RXD_BIT(rx_desc, FM10K_RXD_ERR_SWITCH_ERROR))
564 			rx_ring->rx_stats.switch_errors++;
565 		if (FM10K_TEST_RXD_BIT(rx_desc, FM10K_RXD_ERR_NO_DESCRIPTOR))
566 			rx_ring->rx_stats.drops++;
567 		if (FM10K_TEST_RXD_BIT(rx_desc, FM10K_RXD_ERR_PP_ERROR))
568 			rx_ring->rx_stats.pp_errors++;
569 		if (FM10K_TEST_RXD_BIT(rx_desc, FM10K_RXD_ERR_SWITCH_READY))
570 			rx_ring->rx_stats.link_errors++;
571 		if (FM10K_TEST_RXD_BIT(rx_desc, FM10K_RXD_ERR_TOO_BIG))
572 			rx_ring->rx_stats.length_errors++;
573 		dev_kfree_skb_any(skb);
574 		rx_ring->rx_stats.errors++;
575 		return true;
576 	}
577 
578 	/* if eth_skb_pad returns an error the skb was freed */
579 	if (eth_skb_pad(skb))
580 		return true;
581 
582 	return false;
583 }
584 
585 /**
586  * fm10k_receive_skb - helper function to handle rx indications
587  * @q_vector: structure containing interrupt and ring information
588  * @skb: packet to send up
589  **/
590 static void fm10k_receive_skb(struct fm10k_q_vector *q_vector,
591 			      struct sk_buff *skb)
592 {
593 	napi_gro_receive(&q_vector->napi, skb);
594 }
595 
596 static int fm10k_clean_rx_irq(struct fm10k_q_vector *q_vector,
597 			      struct fm10k_ring *rx_ring,
598 			      int budget)
599 {
600 	struct sk_buff *skb = rx_ring->skb;
601 	unsigned int total_bytes = 0, total_packets = 0;
602 	u16 cleaned_count = fm10k_desc_unused(rx_ring);
603 
604 	while (likely(total_packets < budget)) {
605 		union fm10k_rx_desc *rx_desc;
606 
607 		/* return some buffers to hardware, one at a time is too slow */
608 		if (cleaned_count >= FM10K_RX_BUFFER_WRITE) {
609 			fm10k_alloc_rx_buffers(rx_ring, cleaned_count);
610 			cleaned_count = 0;
611 		}
612 
613 		rx_desc = FM10K_RX_DESC(rx_ring, rx_ring->next_to_clean);
614 
615 		if (!rx_desc->d.staterr)
616 			break;
617 
618 		/* This memory barrier is needed to keep us from reading
619 		 * any other fields out of the rx_desc until we know the
620 		 * descriptor has been written back
621 		 */
622 		dma_rmb();
623 
624 		/* retrieve a buffer from the ring */
625 		skb = fm10k_fetch_rx_buffer(rx_ring, rx_desc, skb);
626 
627 		/* exit if we failed to retrieve a buffer */
628 		if (!skb)
629 			break;
630 
631 		cleaned_count++;
632 
633 		/* fetch next buffer in frame if non-eop */
634 		if (fm10k_is_non_eop(rx_ring, rx_desc))
635 			continue;
636 
637 		/* verify the packet layout is correct */
638 		if (fm10k_cleanup_headers(rx_ring, rx_desc, skb)) {
639 			skb = NULL;
640 			continue;
641 		}
642 
643 		/* populate checksum, timestamp, VLAN, and protocol */
644 		total_bytes += fm10k_process_skb_fields(rx_ring, rx_desc, skb);
645 
646 		fm10k_receive_skb(q_vector, skb);
647 
648 		/* reset skb pointer */
649 		skb = NULL;
650 
651 		/* update budget accounting */
652 		total_packets++;
653 	}
654 
655 	/* place incomplete frames back on ring for completion */
656 	rx_ring->skb = skb;
657 
658 	u64_stats_update_begin(&rx_ring->syncp);
659 	rx_ring->stats.packets += total_packets;
660 	rx_ring->stats.bytes += total_bytes;
661 	u64_stats_update_end(&rx_ring->syncp);
662 	q_vector->rx.total_packets += total_packets;
663 	q_vector->rx.total_bytes += total_bytes;
664 
665 	return total_packets;
666 }
667 
668 #define VXLAN_HLEN (sizeof(struct udphdr) + 8)
669 static struct ethhdr *fm10k_port_is_vxlan(struct sk_buff *skb)
670 {
671 	struct fm10k_intfc *interface = netdev_priv(skb->dev);
672 	struct fm10k_vxlan_port *vxlan_port;
673 
674 	/* we can only offload a vxlan if we recognize it as such */
675 	vxlan_port = list_first_entry_or_null(&interface->vxlan_port,
676 					      struct fm10k_vxlan_port, list);
677 
678 	if (!vxlan_port)
679 		return NULL;
680 	if (vxlan_port->port != udp_hdr(skb)->dest)
681 		return NULL;
682 
683 	/* return offset of udp_hdr plus 8 bytes for VXLAN header */
684 	return (struct ethhdr *)(skb_transport_header(skb) + VXLAN_HLEN);
685 }
686 
687 #define FM10K_NVGRE_RESERVED0_FLAGS htons(0x9FFF)
688 #define NVGRE_TNI htons(0x2000)
689 struct fm10k_nvgre_hdr {
690 	__be16 flags;
691 	__be16 proto;
692 	__be32 tni;
693 };
694 
695 static struct ethhdr *fm10k_gre_is_nvgre(struct sk_buff *skb)
696 {
697 	struct fm10k_nvgre_hdr *nvgre_hdr;
698 	int hlen = ip_hdrlen(skb);
699 
700 	/* currently only IPv4 is supported due to hlen above */
701 	if (vlan_get_protocol(skb) != htons(ETH_P_IP))
702 		return NULL;
703 
704 	/* our transport header should be NVGRE */
705 	nvgre_hdr = (struct fm10k_nvgre_hdr *)(skb_network_header(skb) + hlen);
706 
707 	/* verify all reserved flags are 0 */
708 	if (nvgre_hdr->flags & FM10K_NVGRE_RESERVED0_FLAGS)
709 		return NULL;
710 
711 	/* report start of ethernet header */
712 	if (nvgre_hdr->flags & NVGRE_TNI)
713 		return (struct ethhdr *)(nvgre_hdr + 1);
714 
715 	return (struct ethhdr *)(&nvgre_hdr->tni);
716 }
717 
718 __be16 fm10k_tx_encap_offload(struct sk_buff *skb)
719 {
720 	u8 l4_hdr = 0, inner_l4_hdr = 0, inner_l4_hlen;
721 	struct ethhdr *eth_hdr;
722 
723 	if (skb->inner_protocol_type != ENCAP_TYPE_ETHER ||
724 	    skb->inner_protocol != htons(ETH_P_TEB))
725 		return 0;
726 
727 	switch (vlan_get_protocol(skb)) {
728 	case htons(ETH_P_IP):
729 		l4_hdr = ip_hdr(skb)->protocol;
730 		break;
731 	case htons(ETH_P_IPV6):
732 		l4_hdr = ipv6_hdr(skb)->nexthdr;
733 		break;
734 	default:
735 		return 0;
736 	}
737 
738 	switch (l4_hdr) {
739 	case IPPROTO_UDP:
740 		eth_hdr = fm10k_port_is_vxlan(skb);
741 		break;
742 	case IPPROTO_GRE:
743 		eth_hdr = fm10k_gre_is_nvgre(skb);
744 		break;
745 	default:
746 		return 0;
747 	}
748 
749 	if (!eth_hdr)
750 		return 0;
751 
752 	switch (eth_hdr->h_proto) {
753 	case htons(ETH_P_IP):
754 		inner_l4_hdr = inner_ip_hdr(skb)->protocol;
755 		break;
756 	case htons(ETH_P_IPV6):
757 		inner_l4_hdr = inner_ipv6_hdr(skb)->nexthdr;
758 		break;
759 	default:
760 		return 0;
761 	}
762 
763 	switch (inner_l4_hdr) {
764 	case IPPROTO_TCP:
765 		inner_l4_hlen = inner_tcp_hdrlen(skb);
766 		break;
767 	case IPPROTO_UDP:
768 		inner_l4_hlen = 8;
769 		break;
770 	default:
771 		return 0;
772 	}
773 
774 	/* The hardware allows tunnel offloads only if the combined inner and
775 	 * outer header is 184 bytes or less
776 	 */
777 	if (skb_inner_transport_header(skb) + inner_l4_hlen -
778 	    skb_mac_header(skb) > FM10K_TUNNEL_HEADER_LENGTH)
779 		return 0;
780 
781 	return eth_hdr->h_proto;
782 }
783 
784 static int fm10k_tso(struct fm10k_ring *tx_ring,
785 		     struct fm10k_tx_buffer *first)
786 {
787 	struct sk_buff *skb = first->skb;
788 	struct fm10k_tx_desc *tx_desc;
789 	unsigned char *th;
790 	u8 hdrlen;
791 
792 	if (skb->ip_summed != CHECKSUM_PARTIAL)
793 		return 0;
794 
795 	if (!skb_is_gso(skb))
796 		return 0;
797 
798 	/* compute header lengths */
799 	if (skb->encapsulation) {
800 		if (!fm10k_tx_encap_offload(skb))
801 			goto err_vxlan;
802 		th = skb_inner_transport_header(skb);
803 	} else {
804 		th = skb_transport_header(skb);
805 	}
806 
807 	/* compute offset from SOF to transport header and add header len */
808 	hdrlen = (th - skb->data) + (((struct tcphdr *)th)->doff << 2);
809 
810 	first->tx_flags |= FM10K_TX_FLAGS_CSUM;
811 
812 	/* update gso size and bytecount with header size */
813 	first->gso_segs = skb_shinfo(skb)->gso_segs;
814 	first->bytecount += (first->gso_segs - 1) * hdrlen;
815 
816 	/* populate Tx descriptor header size and mss */
817 	tx_desc = FM10K_TX_DESC(tx_ring, tx_ring->next_to_use);
818 	tx_desc->hdrlen = hdrlen;
819 	tx_desc->mss = cpu_to_le16(skb_shinfo(skb)->gso_size);
820 
821 	return 1;
822 err_vxlan:
823 	tx_ring->netdev->features &= ~NETIF_F_GSO_UDP_TUNNEL;
824 	if (!net_ratelimit())
825 		netdev_err(tx_ring->netdev,
826 			   "TSO requested for unsupported tunnel, disabling offload\n");
827 	return -1;
828 }
829 
830 static void fm10k_tx_csum(struct fm10k_ring *tx_ring,
831 			  struct fm10k_tx_buffer *first)
832 {
833 	struct sk_buff *skb = first->skb;
834 	struct fm10k_tx_desc *tx_desc;
835 	union {
836 		struct iphdr *ipv4;
837 		struct ipv6hdr *ipv6;
838 		u8 *raw;
839 	} network_hdr;
840 	__be16 protocol;
841 	u8 l4_hdr = 0;
842 
843 	if (skb->ip_summed != CHECKSUM_PARTIAL)
844 		goto no_csum;
845 
846 	if (skb->encapsulation) {
847 		protocol = fm10k_tx_encap_offload(skb);
848 		if (!protocol) {
849 			if (skb_checksum_help(skb)) {
850 				dev_warn(tx_ring->dev,
851 					 "failed to offload encap csum!\n");
852 				tx_ring->tx_stats.csum_err++;
853 			}
854 			goto no_csum;
855 		}
856 		network_hdr.raw = skb_inner_network_header(skb);
857 	} else {
858 		protocol = vlan_get_protocol(skb);
859 		network_hdr.raw = skb_network_header(skb);
860 	}
861 
862 	switch (protocol) {
863 	case htons(ETH_P_IP):
864 		l4_hdr = network_hdr.ipv4->protocol;
865 		break;
866 	case htons(ETH_P_IPV6):
867 		l4_hdr = network_hdr.ipv6->nexthdr;
868 		break;
869 	default:
870 		if (unlikely(net_ratelimit())) {
871 			dev_warn(tx_ring->dev,
872 				 "partial checksum but ip version=%x!\n",
873 				 protocol);
874 		}
875 		tx_ring->tx_stats.csum_err++;
876 		goto no_csum;
877 	}
878 
879 	switch (l4_hdr) {
880 	case IPPROTO_TCP:
881 	case IPPROTO_UDP:
882 		break;
883 	case IPPROTO_GRE:
884 		if (skb->encapsulation)
885 			break;
886 	default:
887 		if (unlikely(net_ratelimit())) {
888 			dev_warn(tx_ring->dev,
889 				 "partial checksum but l4 proto=%x!\n",
890 				 l4_hdr);
891 		}
892 		tx_ring->tx_stats.csum_err++;
893 		goto no_csum;
894 	}
895 
896 	/* update TX checksum flag */
897 	first->tx_flags |= FM10K_TX_FLAGS_CSUM;
898 	tx_ring->tx_stats.csum_good++;
899 
900 no_csum:
901 	/* populate Tx descriptor header size and mss */
902 	tx_desc = FM10K_TX_DESC(tx_ring, tx_ring->next_to_use);
903 	tx_desc->hdrlen = 0;
904 	tx_desc->mss = 0;
905 }
906 
907 #define FM10K_SET_FLAG(_input, _flag, _result) \
908 	((_flag <= _result) ? \
909 	 ((u32)(_input & _flag) * (_result / _flag)) : \
910 	 ((u32)(_input & _flag) / (_flag / _result)))
911 
912 static u8 fm10k_tx_desc_flags(struct sk_buff *skb, u32 tx_flags)
913 {
914 	/* set type for advanced descriptor with frame checksum insertion */
915 	u32 desc_flags = 0;
916 
917 	/* set timestamping bits */
918 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
919 	    likely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS))
920 			desc_flags |= FM10K_TXD_FLAG_TIME;
921 
922 	/* set checksum offload bits */
923 	desc_flags |= FM10K_SET_FLAG(tx_flags, FM10K_TX_FLAGS_CSUM,
924 				     FM10K_TXD_FLAG_CSUM);
925 
926 	return desc_flags;
927 }
928 
929 static bool fm10k_tx_desc_push(struct fm10k_ring *tx_ring,
930 			       struct fm10k_tx_desc *tx_desc, u16 i,
931 			       dma_addr_t dma, unsigned int size, u8 desc_flags)
932 {
933 	/* set RS and INT for last frame in a cache line */
934 	if ((++i & (FM10K_TXD_WB_FIFO_SIZE - 1)) == 0)
935 		desc_flags |= FM10K_TXD_FLAG_RS | FM10K_TXD_FLAG_INT;
936 
937 	/* record values to descriptor */
938 	tx_desc->buffer_addr = cpu_to_le64(dma);
939 	tx_desc->flags = desc_flags;
940 	tx_desc->buflen = cpu_to_le16(size);
941 
942 	/* return true if we just wrapped the ring */
943 	return i == tx_ring->count;
944 }
945 
946 static int __fm10k_maybe_stop_tx(struct fm10k_ring *tx_ring, u16 size)
947 {
948 	netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
949 
950 	/* Memory barrier before checking head and tail */
951 	smp_mb();
952 
953 	/* Check again in a case another CPU has just made room available */
954 	if (likely(fm10k_desc_unused(tx_ring) < size))
955 		return -EBUSY;
956 
957 	/* A reprieve! - use start_queue because it doesn't call schedule */
958 	netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
959 	++tx_ring->tx_stats.restart_queue;
960 	return 0;
961 }
962 
963 static inline int fm10k_maybe_stop_tx(struct fm10k_ring *tx_ring, u16 size)
964 {
965 	if (likely(fm10k_desc_unused(tx_ring) >= size))
966 		return 0;
967 	return __fm10k_maybe_stop_tx(tx_ring, size);
968 }
969 
970 static void fm10k_tx_map(struct fm10k_ring *tx_ring,
971 			 struct fm10k_tx_buffer *first)
972 {
973 	struct sk_buff *skb = first->skb;
974 	struct fm10k_tx_buffer *tx_buffer;
975 	struct fm10k_tx_desc *tx_desc;
976 	struct skb_frag_struct *frag;
977 	unsigned char *data;
978 	dma_addr_t dma;
979 	unsigned int data_len, size;
980 	u32 tx_flags = first->tx_flags;
981 	u16 i = tx_ring->next_to_use;
982 	u8 flags = fm10k_tx_desc_flags(skb, tx_flags);
983 
984 	tx_desc = FM10K_TX_DESC(tx_ring, i);
985 
986 	/* add HW VLAN tag */
987 	if (skb_vlan_tag_present(skb))
988 		tx_desc->vlan = cpu_to_le16(skb_vlan_tag_get(skb));
989 	else
990 		tx_desc->vlan = 0;
991 
992 	size = skb_headlen(skb);
993 	data = skb->data;
994 
995 	dma = dma_map_single(tx_ring->dev, data, size, DMA_TO_DEVICE);
996 
997 	data_len = skb->data_len;
998 	tx_buffer = first;
999 
1000 	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
1001 		if (dma_mapping_error(tx_ring->dev, dma))
1002 			goto dma_error;
1003 
1004 		/* record length, and DMA address */
1005 		dma_unmap_len_set(tx_buffer, len, size);
1006 		dma_unmap_addr_set(tx_buffer, dma, dma);
1007 
1008 		while (unlikely(size > FM10K_MAX_DATA_PER_TXD)) {
1009 			if (fm10k_tx_desc_push(tx_ring, tx_desc++, i++, dma,
1010 					       FM10K_MAX_DATA_PER_TXD, flags)) {
1011 				tx_desc = FM10K_TX_DESC(tx_ring, 0);
1012 				i = 0;
1013 			}
1014 
1015 			dma += FM10K_MAX_DATA_PER_TXD;
1016 			size -= FM10K_MAX_DATA_PER_TXD;
1017 		}
1018 
1019 		if (likely(!data_len))
1020 			break;
1021 
1022 		if (fm10k_tx_desc_push(tx_ring, tx_desc++, i++,
1023 				       dma, size, flags)) {
1024 			tx_desc = FM10K_TX_DESC(tx_ring, 0);
1025 			i = 0;
1026 		}
1027 
1028 		size = skb_frag_size(frag);
1029 		data_len -= size;
1030 
1031 		dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
1032 				       DMA_TO_DEVICE);
1033 
1034 		tx_buffer = &tx_ring->tx_buffer[i];
1035 	}
1036 
1037 	/* write last descriptor with LAST bit set */
1038 	flags |= FM10K_TXD_FLAG_LAST;
1039 
1040 	if (fm10k_tx_desc_push(tx_ring, tx_desc, i++, dma, size, flags))
1041 		i = 0;
1042 
1043 	/* record bytecount for BQL */
1044 	netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
1045 
1046 	/* record SW timestamp if HW timestamp is not available */
1047 	skb_tx_timestamp(first->skb);
1048 
1049 	/* Force memory writes to complete before letting h/w know there
1050 	 * are new descriptors to fetch.  (Only applicable for weak-ordered
1051 	 * memory model archs, such as IA-64).
1052 	 *
1053 	 * We also need this memory barrier to make certain all of the
1054 	 * status bits have been updated before next_to_watch is written.
1055 	 */
1056 	wmb();
1057 
1058 	/* set next_to_watch value indicating a packet is present */
1059 	first->next_to_watch = tx_desc;
1060 
1061 	tx_ring->next_to_use = i;
1062 
1063 	/* Make sure there is space in the ring for the next send. */
1064 	fm10k_maybe_stop_tx(tx_ring, DESC_NEEDED);
1065 
1066 	/* notify HW of packet */
1067 	if (netif_xmit_stopped(txring_txq(tx_ring)) || !skb->xmit_more) {
1068 		writel(i, tx_ring->tail);
1069 
1070 		/* we need this if more than one processor can write to our tail
1071 		 * at a time, it synchronizes IO on IA64/Altix systems
1072 		 */
1073 		mmiowb();
1074 	}
1075 
1076 	return;
1077 dma_error:
1078 	dev_err(tx_ring->dev, "TX DMA map failed\n");
1079 
1080 	/* clear dma mappings for failed tx_buffer map */
1081 	for (;;) {
1082 		tx_buffer = &tx_ring->tx_buffer[i];
1083 		fm10k_unmap_and_free_tx_resource(tx_ring, tx_buffer);
1084 		if (tx_buffer == first)
1085 			break;
1086 		if (i == 0)
1087 			i = tx_ring->count;
1088 		i--;
1089 	}
1090 
1091 	tx_ring->next_to_use = i;
1092 }
1093 
1094 netdev_tx_t fm10k_xmit_frame_ring(struct sk_buff *skb,
1095 				  struct fm10k_ring *tx_ring)
1096 {
1097 	struct fm10k_tx_buffer *first;
1098 	int tso;
1099 	u32 tx_flags = 0;
1100 	unsigned short f;
1101 	u16 count = TXD_USE_COUNT(skb_headlen(skb));
1102 
1103 	/* need: 1 descriptor per page * PAGE_SIZE/FM10K_MAX_DATA_PER_TXD,
1104 	 *       + 1 desc for skb_headlen/FM10K_MAX_DATA_PER_TXD,
1105 	 *       + 2 desc gap to keep tail from touching head
1106 	 * otherwise try next time
1107 	 */
1108 	for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
1109 		count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size);
1110 
1111 	if (fm10k_maybe_stop_tx(tx_ring, count + 3)) {
1112 		tx_ring->tx_stats.tx_busy++;
1113 		return NETDEV_TX_BUSY;
1114 	}
1115 
1116 	/* record the location of the first descriptor for this packet */
1117 	first = &tx_ring->tx_buffer[tx_ring->next_to_use];
1118 	first->skb = skb;
1119 	first->bytecount = max_t(unsigned int, skb->len, ETH_ZLEN);
1120 	first->gso_segs = 1;
1121 
1122 	/* record initial flags and protocol */
1123 	first->tx_flags = tx_flags;
1124 
1125 	tso = fm10k_tso(tx_ring, first);
1126 	if (tso < 0)
1127 		goto out_drop;
1128 	else if (!tso)
1129 		fm10k_tx_csum(tx_ring, first);
1130 
1131 	fm10k_tx_map(tx_ring, first);
1132 
1133 	return NETDEV_TX_OK;
1134 
1135 out_drop:
1136 	dev_kfree_skb_any(first->skb);
1137 	first->skb = NULL;
1138 
1139 	return NETDEV_TX_OK;
1140 }
1141 
1142 static u64 fm10k_get_tx_completed(struct fm10k_ring *ring)
1143 {
1144 	return ring->stats.packets;
1145 }
1146 
1147 static u64 fm10k_get_tx_pending(struct fm10k_ring *ring)
1148 {
1149 	/* use SW head and tail until we have real hardware */
1150 	u32 head = ring->next_to_clean;
1151 	u32 tail = ring->next_to_use;
1152 
1153 	return ((head <= tail) ? tail : tail + ring->count) - head;
1154 }
1155 
1156 bool fm10k_check_tx_hang(struct fm10k_ring *tx_ring)
1157 {
1158 	u32 tx_done = fm10k_get_tx_completed(tx_ring);
1159 	u32 tx_done_old = tx_ring->tx_stats.tx_done_old;
1160 	u32 tx_pending = fm10k_get_tx_pending(tx_ring);
1161 
1162 	clear_check_for_tx_hang(tx_ring);
1163 
1164 	/* Check for a hung queue, but be thorough. This verifies
1165 	 * that a transmit has been completed since the previous
1166 	 * check AND there is at least one packet pending. By
1167 	 * requiring this to fail twice we avoid races with
1168 	 * clearing the ARMED bit and conditions where we
1169 	 * run the check_tx_hang logic with a transmit completion
1170 	 * pending but without time to complete it yet.
1171 	 */
1172 	if (!tx_pending || (tx_done_old != tx_done)) {
1173 		/* update completed stats and continue */
1174 		tx_ring->tx_stats.tx_done_old = tx_done;
1175 		/* reset the countdown */
1176 		clear_bit(__FM10K_HANG_CHECK_ARMED, &tx_ring->state);
1177 
1178 		return false;
1179 	}
1180 
1181 	/* make sure it is true for two checks in a row */
1182 	return test_and_set_bit(__FM10K_HANG_CHECK_ARMED, &tx_ring->state);
1183 }
1184 
1185 /**
1186  * fm10k_tx_timeout_reset - initiate reset due to Tx timeout
1187  * @interface: driver private struct
1188  **/
1189 void fm10k_tx_timeout_reset(struct fm10k_intfc *interface)
1190 {
1191 	/* Do the reset outside of interrupt context */
1192 	if (!test_bit(__FM10K_DOWN, &interface->state)) {
1193 		interface->tx_timeout_count++;
1194 		interface->flags |= FM10K_FLAG_RESET_REQUESTED;
1195 		fm10k_service_event_schedule(interface);
1196 	}
1197 }
1198 
1199 /**
1200  * fm10k_clean_tx_irq - Reclaim resources after transmit completes
1201  * @q_vector: structure containing interrupt and ring information
1202  * @tx_ring: tx ring to clean
1203  **/
1204 static bool fm10k_clean_tx_irq(struct fm10k_q_vector *q_vector,
1205 			       struct fm10k_ring *tx_ring)
1206 {
1207 	struct fm10k_intfc *interface = q_vector->interface;
1208 	struct fm10k_tx_buffer *tx_buffer;
1209 	struct fm10k_tx_desc *tx_desc;
1210 	unsigned int total_bytes = 0, total_packets = 0;
1211 	unsigned int budget = q_vector->tx.work_limit;
1212 	unsigned int i = tx_ring->next_to_clean;
1213 
1214 	if (test_bit(__FM10K_DOWN, &interface->state))
1215 		return true;
1216 
1217 	tx_buffer = &tx_ring->tx_buffer[i];
1218 	tx_desc = FM10K_TX_DESC(tx_ring, i);
1219 	i -= tx_ring->count;
1220 
1221 	do {
1222 		struct fm10k_tx_desc *eop_desc = tx_buffer->next_to_watch;
1223 
1224 		/* if next_to_watch is not set then there is no work pending */
1225 		if (!eop_desc)
1226 			break;
1227 
1228 		/* prevent any other reads prior to eop_desc */
1229 		read_barrier_depends();
1230 
1231 		/* if DD is not set pending work has not been completed */
1232 		if (!(eop_desc->flags & FM10K_TXD_FLAG_DONE))
1233 			break;
1234 
1235 		/* clear next_to_watch to prevent false hangs */
1236 		tx_buffer->next_to_watch = NULL;
1237 
1238 		/* update the statistics for this packet */
1239 		total_bytes += tx_buffer->bytecount;
1240 		total_packets += tx_buffer->gso_segs;
1241 
1242 		/* free the skb */
1243 		dev_consume_skb_any(tx_buffer->skb);
1244 
1245 		/* unmap skb header data */
1246 		dma_unmap_single(tx_ring->dev,
1247 				 dma_unmap_addr(tx_buffer, dma),
1248 				 dma_unmap_len(tx_buffer, len),
1249 				 DMA_TO_DEVICE);
1250 
1251 		/* clear tx_buffer data */
1252 		tx_buffer->skb = NULL;
1253 		dma_unmap_len_set(tx_buffer, len, 0);
1254 
1255 		/* unmap remaining buffers */
1256 		while (tx_desc != eop_desc) {
1257 			tx_buffer++;
1258 			tx_desc++;
1259 			i++;
1260 			if (unlikely(!i)) {
1261 				i -= tx_ring->count;
1262 				tx_buffer = tx_ring->tx_buffer;
1263 				tx_desc = FM10K_TX_DESC(tx_ring, 0);
1264 			}
1265 
1266 			/* unmap any remaining paged data */
1267 			if (dma_unmap_len(tx_buffer, len)) {
1268 				dma_unmap_page(tx_ring->dev,
1269 					       dma_unmap_addr(tx_buffer, dma),
1270 					       dma_unmap_len(tx_buffer, len),
1271 					       DMA_TO_DEVICE);
1272 				dma_unmap_len_set(tx_buffer, len, 0);
1273 			}
1274 		}
1275 
1276 		/* move us one more past the eop_desc for start of next pkt */
1277 		tx_buffer++;
1278 		tx_desc++;
1279 		i++;
1280 		if (unlikely(!i)) {
1281 			i -= tx_ring->count;
1282 			tx_buffer = tx_ring->tx_buffer;
1283 			tx_desc = FM10K_TX_DESC(tx_ring, 0);
1284 		}
1285 
1286 		/* issue prefetch for next Tx descriptor */
1287 		prefetch(tx_desc);
1288 
1289 		/* update budget accounting */
1290 		budget--;
1291 	} while (likely(budget));
1292 
1293 	i += tx_ring->count;
1294 	tx_ring->next_to_clean = i;
1295 	u64_stats_update_begin(&tx_ring->syncp);
1296 	tx_ring->stats.bytes += total_bytes;
1297 	tx_ring->stats.packets += total_packets;
1298 	u64_stats_update_end(&tx_ring->syncp);
1299 	q_vector->tx.total_bytes += total_bytes;
1300 	q_vector->tx.total_packets += total_packets;
1301 
1302 	if (check_for_tx_hang(tx_ring) && fm10k_check_tx_hang(tx_ring)) {
1303 		/* schedule immediate reset if we believe we hung */
1304 		struct fm10k_hw *hw = &interface->hw;
1305 
1306 		netif_err(interface, drv, tx_ring->netdev,
1307 			  "Detected Tx Unit Hang\n"
1308 			  "  Tx Queue             <%d>\n"
1309 			  "  TDH, TDT             <%x>, <%x>\n"
1310 			  "  next_to_use          <%x>\n"
1311 			  "  next_to_clean        <%x>\n",
1312 			  tx_ring->queue_index,
1313 			  fm10k_read_reg(hw, FM10K_TDH(tx_ring->reg_idx)),
1314 			  fm10k_read_reg(hw, FM10K_TDT(tx_ring->reg_idx)),
1315 			  tx_ring->next_to_use, i);
1316 
1317 		netif_stop_subqueue(tx_ring->netdev,
1318 				    tx_ring->queue_index);
1319 
1320 		netif_info(interface, probe, tx_ring->netdev,
1321 			   "tx hang %d detected on queue %d, resetting interface\n",
1322 			   interface->tx_timeout_count + 1,
1323 			   tx_ring->queue_index);
1324 
1325 		fm10k_tx_timeout_reset(interface);
1326 
1327 		/* the netdev is about to reset, no point in enabling stuff */
1328 		return true;
1329 	}
1330 
1331 	/* notify netdev of completed buffers */
1332 	netdev_tx_completed_queue(txring_txq(tx_ring),
1333 				  total_packets, total_bytes);
1334 
1335 #define TX_WAKE_THRESHOLD min_t(u16, FM10K_MIN_TXD - 1, DESC_NEEDED * 2)
1336 	if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
1337 		     (fm10k_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD))) {
1338 		/* Make sure that anybody stopping the queue after this
1339 		 * sees the new next_to_clean.
1340 		 */
1341 		smp_mb();
1342 		if (__netif_subqueue_stopped(tx_ring->netdev,
1343 					     tx_ring->queue_index) &&
1344 		    !test_bit(__FM10K_DOWN, &interface->state)) {
1345 			netif_wake_subqueue(tx_ring->netdev,
1346 					    tx_ring->queue_index);
1347 			++tx_ring->tx_stats.restart_queue;
1348 		}
1349 	}
1350 
1351 	return !!budget;
1352 }
1353 
1354 /**
1355  * fm10k_update_itr - update the dynamic ITR value based on packet size
1356  *
1357  *      Stores a new ITR value based on strictly on packet size.  The
1358  *      divisors and thresholds used by this function were determined based
1359  *      on theoretical maximum wire speed and testing data, in order to
1360  *      minimize response time while increasing bulk throughput.
1361  *
1362  * @ring_container: Container for rings to have ITR updated
1363  **/
1364 static void fm10k_update_itr(struct fm10k_ring_container *ring_container)
1365 {
1366 	unsigned int avg_wire_size, packets;
1367 
1368 	/* Only update ITR if we are using adaptive setting */
1369 	if (!(ring_container->itr & FM10K_ITR_ADAPTIVE))
1370 		goto clear_counts;
1371 
1372 	packets = ring_container->total_packets;
1373 	if (!packets)
1374 		goto clear_counts;
1375 
1376 	avg_wire_size = ring_container->total_bytes / packets;
1377 
1378 	/* Add 24 bytes to size to account for CRC, preamble, and gap */
1379 	avg_wire_size += 24;
1380 
1381 	/* Don't starve jumbo frames */
1382 	if (avg_wire_size > 3000)
1383 		avg_wire_size = 3000;
1384 
1385 	/* Give a little boost to mid-size frames */
1386 	if ((avg_wire_size > 300) && (avg_wire_size < 1200))
1387 		avg_wire_size /= 3;
1388 	else
1389 		avg_wire_size /= 2;
1390 
1391 	/* write back value and retain adaptive flag */
1392 	ring_container->itr = avg_wire_size | FM10K_ITR_ADAPTIVE;
1393 
1394 clear_counts:
1395 	ring_container->total_bytes = 0;
1396 	ring_container->total_packets = 0;
1397 }
1398 
1399 static void fm10k_qv_enable(struct fm10k_q_vector *q_vector)
1400 {
1401 	/* Enable auto-mask and clear the current mask */
1402 	u32 itr = FM10K_ITR_ENABLE;
1403 
1404 	/* Update Tx ITR */
1405 	fm10k_update_itr(&q_vector->tx);
1406 
1407 	/* Update Rx ITR */
1408 	fm10k_update_itr(&q_vector->rx);
1409 
1410 	/* Store Tx itr in timer slot 0 */
1411 	itr |= (q_vector->tx.itr & FM10K_ITR_MAX);
1412 
1413 	/* Shift Rx itr to timer slot 1 */
1414 	itr |= (q_vector->rx.itr & FM10K_ITR_MAX) << FM10K_ITR_INTERVAL1_SHIFT;
1415 
1416 	/* Write the final value to the ITR register */
1417 	writel(itr, q_vector->itr);
1418 }
1419 
1420 static int fm10k_poll(struct napi_struct *napi, int budget)
1421 {
1422 	struct fm10k_q_vector *q_vector =
1423 			       container_of(napi, struct fm10k_q_vector, napi);
1424 	struct fm10k_ring *ring;
1425 	int per_ring_budget, work_done = 0;
1426 	bool clean_complete = true;
1427 
1428 	fm10k_for_each_ring(ring, q_vector->tx)
1429 		clean_complete &= fm10k_clean_tx_irq(q_vector, ring);
1430 
1431 	/* attempt to distribute budget to each queue fairly, but don't
1432 	 * allow the budget to go below 1 because we'll exit polling
1433 	 */
1434 	if (q_vector->rx.count > 1)
1435 		per_ring_budget = max(budget/q_vector->rx.count, 1);
1436 	else
1437 		per_ring_budget = budget;
1438 
1439 	fm10k_for_each_ring(ring, q_vector->rx) {
1440 		int work = fm10k_clean_rx_irq(q_vector, ring, per_ring_budget);
1441 
1442 		work_done += work;
1443 		clean_complete &= !!(work < per_ring_budget);
1444 	}
1445 
1446 	/* If all work not completed, return budget and keep polling */
1447 	if (!clean_complete)
1448 		return budget;
1449 
1450 	/* all work done, exit the polling mode */
1451 	napi_complete_done(napi, work_done);
1452 
1453 	/* re-enable the q_vector */
1454 	fm10k_qv_enable(q_vector);
1455 
1456 	return 0;
1457 }
1458 
1459 /**
1460  * fm10k_set_qos_queues: Allocate queues for a QOS-enabled device
1461  * @interface: board private structure to initialize
1462  *
1463  * When QoS (Quality of Service) is enabled, allocate queues for
1464  * each traffic class.  If multiqueue isn't available,then abort QoS
1465  * initialization.
1466  *
1467  * This function handles all combinations of Qos and RSS.
1468  *
1469  **/
1470 static bool fm10k_set_qos_queues(struct fm10k_intfc *interface)
1471 {
1472 	struct net_device *dev = interface->netdev;
1473 	struct fm10k_ring_feature *f;
1474 	int rss_i, i;
1475 	int pcs;
1476 
1477 	/* Map queue offset and counts onto allocated tx queues */
1478 	pcs = netdev_get_num_tc(dev);
1479 
1480 	if (pcs <= 1)
1481 		return false;
1482 
1483 	/* set QoS mask and indices */
1484 	f = &interface->ring_feature[RING_F_QOS];
1485 	f->indices = pcs;
1486 	f->mask = (1 << fls(pcs - 1)) - 1;
1487 
1488 	/* determine the upper limit for our current DCB mode */
1489 	rss_i = interface->hw.mac.max_queues / pcs;
1490 	rss_i = 1 << (fls(rss_i) - 1);
1491 
1492 	/* set RSS mask and indices */
1493 	f = &interface->ring_feature[RING_F_RSS];
1494 	rss_i = min_t(u16, rss_i, f->limit);
1495 	f->indices = rss_i;
1496 	f->mask = (1 << fls(rss_i - 1)) - 1;
1497 
1498 	/* configure pause class to queue mapping */
1499 	for (i = 0; i < pcs; i++)
1500 		netdev_set_tc_queue(dev, i, rss_i, rss_i * i);
1501 
1502 	interface->num_rx_queues = rss_i * pcs;
1503 	interface->num_tx_queues = rss_i * pcs;
1504 
1505 	return true;
1506 }
1507 
1508 /**
1509  * fm10k_set_rss_queues: Allocate queues for RSS
1510  * @interface: board private structure to initialize
1511  *
1512  * This is our "base" multiqueue mode.  RSS (Receive Side Scaling) will try
1513  * to allocate one Rx queue per CPU, and if available, one Tx queue per CPU.
1514  *
1515  **/
1516 static bool fm10k_set_rss_queues(struct fm10k_intfc *interface)
1517 {
1518 	struct fm10k_ring_feature *f;
1519 	u16 rss_i;
1520 
1521 	f = &interface->ring_feature[RING_F_RSS];
1522 	rss_i = min_t(u16, interface->hw.mac.max_queues, f->limit);
1523 
1524 	/* record indices and power of 2 mask for RSS */
1525 	f->indices = rss_i;
1526 	f->mask = (1 << fls(rss_i - 1)) - 1;
1527 
1528 	interface->num_rx_queues = rss_i;
1529 	interface->num_tx_queues = rss_i;
1530 
1531 	return true;
1532 }
1533 
1534 /**
1535  * fm10k_set_num_queues: Allocate queues for device, feature dependent
1536  * @interface: board private structure to initialize
1537  *
1538  * This is the top level queue allocation routine.  The order here is very
1539  * important, starting with the "most" number of features turned on at once,
1540  * and ending with the smallest set of features.  This way large combinations
1541  * can be allocated if they're turned on, and smaller combinations are the
1542  * fallthrough conditions.
1543  *
1544  **/
1545 static void fm10k_set_num_queues(struct fm10k_intfc *interface)
1546 {
1547 	/* Start with base case */
1548 	interface->num_rx_queues = 1;
1549 	interface->num_tx_queues = 1;
1550 
1551 	if (fm10k_set_qos_queues(interface))
1552 		return;
1553 
1554 	fm10k_set_rss_queues(interface);
1555 }
1556 
1557 /**
1558  * fm10k_alloc_q_vector - Allocate memory for a single interrupt vector
1559  * @interface: board private structure to initialize
1560  * @v_count: q_vectors allocated on interface, used for ring interleaving
1561  * @v_idx: index of vector in interface struct
1562  * @txr_count: total number of Tx rings to allocate
1563  * @txr_idx: index of first Tx ring to allocate
1564  * @rxr_count: total number of Rx rings to allocate
1565  * @rxr_idx: index of first Rx ring to allocate
1566  *
1567  * We allocate one q_vector.  If allocation fails we return -ENOMEM.
1568  **/
1569 static int fm10k_alloc_q_vector(struct fm10k_intfc *interface,
1570 				unsigned int v_count, unsigned int v_idx,
1571 				unsigned int txr_count, unsigned int txr_idx,
1572 				unsigned int rxr_count, unsigned int rxr_idx)
1573 {
1574 	struct fm10k_q_vector *q_vector;
1575 	struct fm10k_ring *ring;
1576 	int ring_count, size;
1577 
1578 	ring_count = txr_count + rxr_count;
1579 	size = sizeof(struct fm10k_q_vector) +
1580 	       (sizeof(struct fm10k_ring) * ring_count);
1581 
1582 	/* allocate q_vector and rings */
1583 	q_vector = kzalloc(size, GFP_KERNEL);
1584 	if (!q_vector)
1585 		return -ENOMEM;
1586 
1587 	/* initialize NAPI */
1588 	netif_napi_add(interface->netdev, &q_vector->napi,
1589 		       fm10k_poll, NAPI_POLL_WEIGHT);
1590 
1591 	/* tie q_vector and interface together */
1592 	interface->q_vector[v_idx] = q_vector;
1593 	q_vector->interface = interface;
1594 	q_vector->v_idx = v_idx;
1595 
1596 	/* initialize pointer to rings */
1597 	ring = q_vector->ring;
1598 
1599 	/* save Tx ring container info */
1600 	q_vector->tx.ring = ring;
1601 	q_vector->tx.work_limit = FM10K_DEFAULT_TX_WORK;
1602 	q_vector->tx.itr = interface->tx_itr;
1603 	q_vector->tx.count = txr_count;
1604 
1605 	while (txr_count) {
1606 		/* assign generic ring traits */
1607 		ring->dev = &interface->pdev->dev;
1608 		ring->netdev = interface->netdev;
1609 
1610 		/* configure backlink on ring */
1611 		ring->q_vector = q_vector;
1612 
1613 		/* apply Tx specific ring traits */
1614 		ring->count = interface->tx_ring_count;
1615 		ring->queue_index = txr_idx;
1616 
1617 		/* assign ring to interface */
1618 		interface->tx_ring[txr_idx] = ring;
1619 
1620 		/* update count and index */
1621 		txr_count--;
1622 		txr_idx += v_count;
1623 
1624 		/* push pointer to next ring */
1625 		ring++;
1626 	}
1627 
1628 	/* save Rx ring container info */
1629 	q_vector->rx.ring = ring;
1630 	q_vector->rx.itr = interface->rx_itr;
1631 	q_vector->rx.count = rxr_count;
1632 
1633 	while (rxr_count) {
1634 		/* assign generic ring traits */
1635 		ring->dev = &interface->pdev->dev;
1636 		ring->netdev = interface->netdev;
1637 		rcu_assign_pointer(ring->l2_accel, interface->l2_accel);
1638 
1639 		/* configure backlink on ring */
1640 		ring->q_vector = q_vector;
1641 
1642 		/* apply Rx specific ring traits */
1643 		ring->count = interface->rx_ring_count;
1644 		ring->queue_index = rxr_idx;
1645 
1646 		/* assign ring to interface */
1647 		interface->rx_ring[rxr_idx] = ring;
1648 
1649 		/* update count and index */
1650 		rxr_count--;
1651 		rxr_idx += v_count;
1652 
1653 		/* push pointer to next ring */
1654 		ring++;
1655 	}
1656 
1657 	fm10k_dbg_q_vector_init(q_vector);
1658 
1659 	return 0;
1660 }
1661 
1662 /**
1663  * fm10k_free_q_vector - Free memory allocated for specific interrupt vector
1664  * @interface: board private structure to initialize
1665  * @v_idx: Index of vector to be freed
1666  *
1667  * This function frees the memory allocated to the q_vector.  In addition if
1668  * NAPI is enabled it will delete any references to the NAPI struct prior
1669  * to freeing the q_vector.
1670  **/
1671 static void fm10k_free_q_vector(struct fm10k_intfc *interface, int v_idx)
1672 {
1673 	struct fm10k_q_vector *q_vector = interface->q_vector[v_idx];
1674 	struct fm10k_ring *ring;
1675 
1676 	fm10k_dbg_q_vector_exit(q_vector);
1677 
1678 	fm10k_for_each_ring(ring, q_vector->tx)
1679 		interface->tx_ring[ring->queue_index] = NULL;
1680 
1681 	fm10k_for_each_ring(ring, q_vector->rx)
1682 		interface->rx_ring[ring->queue_index] = NULL;
1683 
1684 	interface->q_vector[v_idx] = NULL;
1685 	netif_napi_del(&q_vector->napi);
1686 	kfree_rcu(q_vector, rcu);
1687 }
1688 
1689 /**
1690  * fm10k_alloc_q_vectors - Allocate memory for interrupt vectors
1691  * @interface: board private structure to initialize
1692  *
1693  * We allocate one q_vector per queue interrupt.  If allocation fails we
1694  * return -ENOMEM.
1695  **/
1696 static int fm10k_alloc_q_vectors(struct fm10k_intfc *interface)
1697 {
1698 	unsigned int q_vectors = interface->num_q_vectors;
1699 	unsigned int rxr_remaining = interface->num_rx_queues;
1700 	unsigned int txr_remaining = interface->num_tx_queues;
1701 	unsigned int rxr_idx = 0, txr_idx = 0, v_idx = 0;
1702 	int err;
1703 
1704 	if (q_vectors >= (rxr_remaining + txr_remaining)) {
1705 		for (; rxr_remaining; v_idx++) {
1706 			err = fm10k_alloc_q_vector(interface, q_vectors, v_idx,
1707 						   0, 0, 1, rxr_idx);
1708 			if (err)
1709 				goto err_out;
1710 
1711 			/* update counts and index */
1712 			rxr_remaining--;
1713 			rxr_idx++;
1714 		}
1715 	}
1716 
1717 	for (; v_idx < q_vectors; v_idx++) {
1718 		int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
1719 		int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
1720 
1721 		err = fm10k_alloc_q_vector(interface, q_vectors, v_idx,
1722 					   tqpv, txr_idx,
1723 					   rqpv, rxr_idx);
1724 
1725 		if (err)
1726 			goto err_out;
1727 
1728 		/* update counts and index */
1729 		rxr_remaining -= rqpv;
1730 		txr_remaining -= tqpv;
1731 		rxr_idx++;
1732 		txr_idx++;
1733 	}
1734 
1735 	return 0;
1736 
1737 err_out:
1738 	interface->num_tx_queues = 0;
1739 	interface->num_rx_queues = 0;
1740 	interface->num_q_vectors = 0;
1741 
1742 	while (v_idx--)
1743 		fm10k_free_q_vector(interface, v_idx);
1744 
1745 	return -ENOMEM;
1746 }
1747 
1748 /**
1749  * fm10k_free_q_vectors - Free memory allocated for interrupt vectors
1750  * @interface: board private structure to initialize
1751  *
1752  * This function frees the memory allocated to the q_vectors.  In addition if
1753  * NAPI is enabled it will delete any references to the NAPI struct prior
1754  * to freeing the q_vector.
1755  **/
1756 static void fm10k_free_q_vectors(struct fm10k_intfc *interface)
1757 {
1758 	int v_idx = interface->num_q_vectors;
1759 
1760 	interface->num_tx_queues = 0;
1761 	interface->num_rx_queues = 0;
1762 	interface->num_q_vectors = 0;
1763 
1764 	while (v_idx--)
1765 		fm10k_free_q_vector(interface, v_idx);
1766 }
1767 
1768 /**
1769  * f10k_reset_msix_capability - reset MSI-X capability
1770  * @interface: board private structure to initialize
1771  *
1772  * Reset the MSI-X capability back to its starting state
1773  **/
1774 static void fm10k_reset_msix_capability(struct fm10k_intfc *interface)
1775 {
1776 	pci_disable_msix(interface->pdev);
1777 	kfree(interface->msix_entries);
1778 	interface->msix_entries = NULL;
1779 }
1780 
1781 /**
1782  * f10k_init_msix_capability - configure MSI-X capability
1783  * @interface: board private structure to initialize
1784  *
1785  * Attempt to configure the interrupts using the best available
1786  * capabilities of the hardware and the kernel.
1787  **/
1788 static int fm10k_init_msix_capability(struct fm10k_intfc *interface)
1789 {
1790 	struct fm10k_hw *hw = &interface->hw;
1791 	int v_budget, vector;
1792 
1793 	/* It's easy to be greedy for MSI-X vectors, but it really
1794 	 * doesn't do us much good if we have a lot more vectors
1795 	 * than CPU's.  So let's be conservative and only ask for
1796 	 * (roughly) the same number of vectors as there are CPU's.
1797 	 * the default is to use pairs of vectors
1798 	 */
1799 	v_budget = max(interface->num_rx_queues, interface->num_tx_queues);
1800 	v_budget = min_t(u16, v_budget, num_online_cpus());
1801 
1802 	/* account for vectors not related to queues */
1803 	v_budget += NON_Q_VECTORS(hw);
1804 
1805 	/* At the same time, hardware can only support a maximum of
1806 	 * hw.mac->max_msix_vectors vectors.  With features
1807 	 * such as RSS and VMDq, we can easily surpass the number of Rx and Tx
1808 	 * descriptor queues supported by our device.  Thus, we cap it off in
1809 	 * those rare cases where the cpu count also exceeds our vector limit.
1810 	 */
1811 	v_budget = min_t(int, v_budget, hw->mac.max_msix_vectors);
1812 
1813 	/* A failure in MSI-X entry allocation is fatal. */
1814 	interface->msix_entries = kcalloc(v_budget, sizeof(struct msix_entry),
1815 					  GFP_KERNEL);
1816 	if (!interface->msix_entries)
1817 		return -ENOMEM;
1818 
1819 	/* populate entry values */
1820 	for (vector = 0; vector < v_budget; vector++)
1821 		interface->msix_entries[vector].entry = vector;
1822 
1823 	/* Attempt to enable MSI-X with requested value */
1824 	v_budget = pci_enable_msix_range(interface->pdev,
1825 					 interface->msix_entries,
1826 					 MIN_MSIX_COUNT(hw),
1827 					 v_budget);
1828 	if (v_budget < 0) {
1829 		kfree(interface->msix_entries);
1830 		interface->msix_entries = NULL;
1831 		return -ENOMEM;
1832 	}
1833 
1834 	/* record the number of queues available for q_vectors */
1835 	interface->num_q_vectors = v_budget - NON_Q_VECTORS(hw);
1836 
1837 	return 0;
1838 }
1839 
1840 /**
1841  * fm10k_cache_ring_qos - Descriptor ring to register mapping for QoS
1842  * @interface: Interface structure continaining rings and devices
1843  *
1844  * Cache the descriptor ring offsets for Qos
1845  **/
1846 static bool fm10k_cache_ring_qos(struct fm10k_intfc *interface)
1847 {
1848 	struct net_device *dev = interface->netdev;
1849 	int pc, offset, rss_i, i, q_idx;
1850 	u16 pc_stride = interface->ring_feature[RING_F_QOS].mask + 1;
1851 	u8 num_pcs = netdev_get_num_tc(dev);
1852 
1853 	if (num_pcs <= 1)
1854 		return false;
1855 
1856 	rss_i = interface->ring_feature[RING_F_RSS].indices;
1857 
1858 	for (pc = 0, offset = 0; pc < num_pcs; pc++, offset += rss_i) {
1859 		q_idx = pc;
1860 		for (i = 0; i < rss_i; i++) {
1861 			interface->tx_ring[offset + i]->reg_idx = q_idx;
1862 			interface->tx_ring[offset + i]->qos_pc = pc;
1863 			interface->rx_ring[offset + i]->reg_idx = q_idx;
1864 			interface->rx_ring[offset + i]->qos_pc = pc;
1865 			q_idx += pc_stride;
1866 		}
1867 	}
1868 
1869 	return true;
1870 }
1871 
1872 /**
1873  * fm10k_cache_ring_rss - Descriptor ring to register mapping for RSS
1874  * @interface: Interface structure continaining rings and devices
1875  *
1876  * Cache the descriptor ring offsets for RSS
1877  **/
1878 static void fm10k_cache_ring_rss(struct fm10k_intfc *interface)
1879 {
1880 	int i;
1881 
1882 	for (i = 0; i < interface->num_rx_queues; i++)
1883 		interface->rx_ring[i]->reg_idx = i;
1884 
1885 	for (i = 0; i < interface->num_tx_queues; i++)
1886 		interface->tx_ring[i]->reg_idx = i;
1887 }
1888 
1889 /**
1890  * fm10k_assign_rings - Map rings to network devices
1891  * @interface: Interface structure containing rings and devices
1892  *
1893  * This function is meant to go though and configure both the network
1894  * devices so that they contain rings, and configure the rings so that
1895  * they function with their network devices.
1896  **/
1897 static void fm10k_assign_rings(struct fm10k_intfc *interface)
1898 {
1899 	if (fm10k_cache_ring_qos(interface))
1900 		return;
1901 
1902 	fm10k_cache_ring_rss(interface);
1903 }
1904 
1905 static void fm10k_init_reta(struct fm10k_intfc *interface)
1906 {
1907 	u16 i, rss_i = interface->ring_feature[RING_F_RSS].indices;
1908 	u32 reta, base;
1909 
1910 	/* If the netdev is initialized we have to maintain table if possible */
1911 	if (interface->netdev->reg_state != NETREG_UNINITIALIZED) {
1912 		for (i = FM10K_RETA_SIZE; i--;) {
1913 			reta = interface->reta[i];
1914 			if ((((reta << 24) >> 24) < rss_i) &&
1915 			    (((reta << 16) >> 24) < rss_i) &&
1916 			    (((reta <<  8) >> 24) < rss_i) &&
1917 			    (((reta)       >> 24) < rss_i))
1918 				continue;
1919 			goto repopulate_reta;
1920 		}
1921 
1922 		/* do nothing if all of the elements are in bounds */
1923 		return;
1924 	}
1925 
1926 repopulate_reta:
1927 	/* Populate the redirection table 4 entries at a time.  To do this
1928 	 * we are generating the results for n and n+2 and then interleaving
1929 	 * those with the results with n+1 and n+3.
1930 	 */
1931 	for (i = FM10K_RETA_SIZE; i--;) {
1932 		/* first pass generates n and n+2 */
1933 		base = ((i * 0x00040004) + 0x00020000) * rss_i;
1934 		reta = (base & 0x3F803F80) >> 7;
1935 
1936 		/* second pass generates n+1 and n+3 */
1937 		base += 0x00010001 * rss_i;
1938 		reta |= (base & 0x3F803F80) << 1;
1939 
1940 		interface->reta[i] = reta;
1941 	}
1942 }
1943 
1944 /**
1945  * fm10k_init_queueing_scheme - Determine proper queueing scheme
1946  * @interface: board private structure to initialize
1947  *
1948  * We determine which queueing scheme to use based on...
1949  * - Hardware queue count (num_*_queues)
1950  *   - defined by miscellaneous hardware support/features (RSS, etc.)
1951  **/
1952 int fm10k_init_queueing_scheme(struct fm10k_intfc *interface)
1953 {
1954 	int err;
1955 
1956 	/* Number of supported queues */
1957 	fm10k_set_num_queues(interface);
1958 
1959 	/* Configure MSI-X capability */
1960 	err = fm10k_init_msix_capability(interface);
1961 	if (err) {
1962 		dev_err(&interface->pdev->dev,
1963 			"Unable to initialize MSI-X capability\n");
1964 		return err;
1965 	}
1966 
1967 	/* Allocate memory for queues */
1968 	err = fm10k_alloc_q_vectors(interface);
1969 	if (err)
1970 		return err;
1971 
1972 	/* Map rings to devices, and map devices to physical queues */
1973 	fm10k_assign_rings(interface);
1974 
1975 	/* Initialize RSS redirection table */
1976 	fm10k_init_reta(interface);
1977 
1978 	return 0;
1979 }
1980 
1981 /**
1982  * fm10k_clear_queueing_scheme - Clear the current queueing scheme settings
1983  * @interface: board private structure to clear queueing scheme on
1984  *
1985  * We go through and clear queueing specific resources and reset the structure
1986  * to pre-load conditions
1987  **/
1988 void fm10k_clear_queueing_scheme(struct fm10k_intfc *interface)
1989 {
1990 	fm10k_free_q_vectors(interface);
1991 	fm10k_reset_msix_capability(interface);
1992 }
1993