1 /* Intel Ethernet Switch Host Interface Driver
2  * Copyright(c) 2013 - 2014 Intel Corporation.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms and conditions of the GNU General Public License,
6  * version 2, as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope it will be useful, but WITHOUT
9  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
11  * more details.
12  *
13  * The full GNU General Public License is included in this distribution in
14  * the file called "COPYING".
15  *
16  * Contact Information:
17  * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
18  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
19  */
20 
21 #include <linux/types.h>
22 #include <linux/module.h>
23 #include <net/ipv6.h>
24 #include <net/ip.h>
25 #include <net/tcp.h>
26 #include <linux/if_macvlan.h>
27 #include <linux/prefetch.h>
28 
29 #include "fm10k.h"
30 
31 #define DRV_VERSION	"0.19.3-k"
32 const char fm10k_driver_version[] = DRV_VERSION;
33 char fm10k_driver_name[] = "fm10k";
34 static const char fm10k_driver_string[] =
35 	"Intel(R) Ethernet Switch Host Interface Driver";
36 static const char fm10k_copyright[] =
37 	"Copyright (c) 2013 Intel Corporation.";
38 
39 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
40 MODULE_DESCRIPTION("Intel(R) Ethernet Switch Host Interface Driver");
41 MODULE_LICENSE("GPL");
42 MODULE_VERSION(DRV_VERSION);
43 
44 /* single workqueue for entire fm10k driver */
45 struct workqueue_struct *fm10k_workqueue;
46 
47 /**
48  * fm10k_init_module - Driver Registration Routine
49  *
50  * fm10k_init_module is the first routine called when the driver is
51  * loaded.  All it does is register with the PCI subsystem.
52  **/
53 static int __init fm10k_init_module(void)
54 {
55 	pr_info("%s - version %s\n", fm10k_driver_string, fm10k_driver_version);
56 	pr_info("%s\n", fm10k_copyright);
57 
58 	/* create driver workqueue */
59 	fm10k_workqueue = create_workqueue("fm10k");
60 
61 	fm10k_dbg_init();
62 
63 	return fm10k_register_pci_driver();
64 }
65 module_init(fm10k_init_module);
66 
67 /**
68  * fm10k_exit_module - Driver Exit Cleanup Routine
69  *
70  * fm10k_exit_module is called just before the driver is removed
71  * from memory.
72  **/
73 static void __exit fm10k_exit_module(void)
74 {
75 	fm10k_unregister_pci_driver();
76 
77 	fm10k_dbg_exit();
78 
79 	/* destroy driver workqueue */
80 	flush_workqueue(fm10k_workqueue);
81 	destroy_workqueue(fm10k_workqueue);
82 }
83 module_exit(fm10k_exit_module);
84 
85 static bool fm10k_alloc_mapped_page(struct fm10k_ring *rx_ring,
86 				    struct fm10k_rx_buffer *bi)
87 {
88 	struct page *page = bi->page;
89 	dma_addr_t dma;
90 
91 	/* Only page will be NULL if buffer was consumed */
92 	if (likely(page))
93 		return true;
94 
95 	/* alloc new page for storage */
96 	page = dev_alloc_page();
97 	if (unlikely(!page)) {
98 		rx_ring->rx_stats.alloc_failed++;
99 		return false;
100 	}
101 
102 	/* map page for use */
103 	dma = dma_map_page(rx_ring->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE);
104 
105 	/* if mapping failed free memory back to system since
106 	 * there isn't much point in holding memory we can't use
107 	 */
108 	if (dma_mapping_error(rx_ring->dev, dma)) {
109 		__free_page(page);
110 
111 		rx_ring->rx_stats.alloc_failed++;
112 		return false;
113 	}
114 
115 	bi->dma = dma;
116 	bi->page = page;
117 	bi->page_offset = 0;
118 
119 	return true;
120 }
121 
122 /**
123  * fm10k_alloc_rx_buffers - Replace used receive buffers
124  * @rx_ring: ring to place buffers on
125  * @cleaned_count: number of buffers to replace
126  **/
127 void fm10k_alloc_rx_buffers(struct fm10k_ring *rx_ring, u16 cleaned_count)
128 {
129 	union fm10k_rx_desc *rx_desc;
130 	struct fm10k_rx_buffer *bi;
131 	u16 i = rx_ring->next_to_use;
132 
133 	/* nothing to do */
134 	if (!cleaned_count)
135 		return;
136 
137 	rx_desc = FM10K_RX_DESC(rx_ring, i);
138 	bi = &rx_ring->rx_buffer[i];
139 	i -= rx_ring->count;
140 
141 	do {
142 		if (!fm10k_alloc_mapped_page(rx_ring, bi))
143 			break;
144 
145 		/* Refresh the desc even if buffer_addrs didn't change
146 		 * because each write-back erases this info.
147 		 */
148 		rx_desc->q.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
149 
150 		rx_desc++;
151 		bi++;
152 		i++;
153 		if (unlikely(!i)) {
154 			rx_desc = FM10K_RX_DESC(rx_ring, 0);
155 			bi = rx_ring->rx_buffer;
156 			i -= rx_ring->count;
157 		}
158 
159 		/* clear the status bits for the next_to_use descriptor */
160 		rx_desc->d.staterr = 0;
161 
162 		cleaned_count--;
163 	} while (cleaned_count);
164 
165 	i += rx_ring->count;
166 
167 	if (rx_ring->next_to_use != i) {
168 		/* record the next descriptor to use */
169 		rx_ring->next_to_use = i;
170 
171 		/* update next to alloc since we have filled the ring */
172 		rx_ring->next_to_alloc = i;
173 
174 		/* Force memory writes to complete before letting h/w
175 		 * know there are new descriptors to fetch.  (Only
176 		 * applicable for weak-ordered memory model archs,
177 		 * such as IA-64).
178 		 */
179 		wmb();
180 
181 		/* notify hardware of new descriptors */
182 		writel(i, rx_ring->tail);
183 	}
184 }
185 
186 /**
187  * fm10k_reuse_rx_page - page flip buffer and store it back on the ring
188  * @rx_ring: rx descriptor ring to store buffers on
189  * @old_buff: donor buffer to have page reused
190  *
191  * Synchronizes page for reuse by the interface
192  **/
193 static void fm10k_reuse_rx_page(struct fm10k_ring *rx_ring,
194 				struct fm10k_rx_buffer *old_buff)
195 {
196 	struct fm10k_rx_buffer *new_buff;
197 	u16 nta = rx_ring->next_to_alloc;
198 
199 	new_buff = &rx_ring->rx_buffer[nta];
200 
201 	/* update, and store next to alloc */
202 	nta++;
203 	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
204 
205 	/* transfer page from old buffer to new buffer */
206 	*new_buff = *old_buff;
207 
208 	/* sync the buffer for use by the device */
209 	dma_sync_single_range_for_device(rx_ring->dev, old_buff->dma,
210 					 old_buff->page_offset,
211 					 FM10K_RX_BUFSZ,
212 					 DMA_FROM_DEVICE);
213 }
214 
215 static inline bool fm10k_page_is_reserved(struct page *page)
216 {
217 	return (page_to_nid(page) != numa_mem_id()) || page_is_pfmemalloc(page);
218 }
219 
220 static bool fm10k_can_reuse_rx_page(struct fm10k_rx_buffer *rx_buffer,
221 				    struct page *page,
222 				    unsigned int __maybe_unused truesize)
223 {
224 	/* avoid re-using remote pages */
225 	if (unlikely(fm10k_page_is_reserved(page)))
226 		return false;
227 
228 #if (PAGE_SIZE < 8192)
229 	/* if we are only owner of page we can reuse it */
230 	if (unlikely(page_count(page) != 1))
231 		return false;
232 
233 	/* flip page offset to other buffer */
234 	rx_buffer->page_offset ^= FM10K_RX_BUFSZ;
235 #else
236 	/* move offset up to the next cache line */
237 	rx_buffer->page_offset += truesize;
238 
239 	if (rx_buffer->page_offset > (PAGE_SIZE - FM10K_RX_BUFSZ))
240 		return false;
241 #endif
242 
243 	/* Even if we own the page, we are not allowed to use atomic_set()
244 	 * This would break get_page_unless_zero() users.
245 	 */
246 	atomic_inc(&page->_count);
247 
248 	return true;
249 }
250 
251 /**
252  * fm10k_add_rx_frag - Add contents of Rx buffer to sk_buff
253  * @rx_buffer: buffer containing page to add
254  * @rx_desc: descriptor containing length of buffer written by hardware
255  * @skb: sk_buff to place the data into
256  *
257  * This function will add the data contained in rx_buffer->page to the skb.
258  * This is done either through a direct copy if the data in the buffer is
259  * less than the skb header size, otherwise it will just attach the page as
260  * a frag to the skb.
261  *
262  * The function will then update the page offset if necessary and return
263  * true if the buffer can be reused by the interface.
264  **/
265 static bool fm10k_add_rx_frag(struct fm10k_rx_buffer *rx_buffer,
266 			      union fm10k_rx_desc *rx_desc,
267 			      struct sk_buff *skb)
268 {
269 	struct page *page = rx_buffer->page;
270 	unsigned char *va = page_address(page) + rx_buffer->page_offset;
271 	unsigned int size = le16_to_cpu(rx_desc->w.length);
272 #if (PAGE_SIZE < 8192)
273 	unsigned int truesize = FM10K_RX_BUFSZ;
274 #else
275 	unsigned int truesize = SKB_DATA_ALIGN(size);
276 #endif
277 	unsigned int pull_len;
278 
279 	if (unlikely(skb_is_nonlinear(skb)))
280 		goto add_tail_frag;
281 
282 	if (likely(size <= FM10K_RX_HDR_LEN)) {
283 		memcpy(__skb_put(skb, size), va, ALIGN(size, sizeof(long)));
284 
285 		/* page is not reserved, we can reuse buffer as-is */
286 		if (likely(!fm10k_page_is_reserved(page)))
287 			return true;
288 
289 		/* this page cannot be reused so discard it */
290 		__free_page(page);
291 		return false;
292 	}
293 
294 	/* we need the header to contain the greater of either ETH_HLEN or
295 	 * 60 bytes if the skb->len is less than 60 for skb_pad.
296 	 */
297 	pull_len = eth_get_headlen(va, FM10K_RX_HDR_LEN);
298 
299 	/* align pull length to size of long to optimize memcpy performance */
300 	memcpy(__skb_put(skb, pull_len), va, ALIGN(pull_len, sizeof(long)));
301 
302 	/* update all of the pointers */
303 	va += pull_len;
304 	size -= pull_len;
305 
306 add_tail_frag:
307 	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
308 			(unsigned long)va & ~PAGE_MASK, size, truesize);
309 
310 	return fm10k_can_reuse_rx_page(rx_buffer, page, truesize);
311 }
312 
313 static struct sk_buff *fm10k_fetch_rx_buffer(struct fm10k_ring *rx_ring,
314 					     union fm10k_rx_desc *rx_desc,
315 					     struct sk_buff *skb)
316 {
317 	struct fm10k_rx_buffer *rx_buffer;
318 	struct page *page;
319 
320 	rx_buffer = &rx_ring->rx_buffer[rx_ring->next_to_clean];
321 	page = rx_buffer->page;
322 	prefetchw(page);
323 
324 	if (likely(!skb)) {
325 		void *page_addr = page_address(page) +
326 				  rx_buffer->page_offset;
327 
328 		/* prefetch first cache line of first page */
329 		prefetch(page_addr);
330 #if L1_CACHE_BYTES < 128
331 		prefetch(page_addr + L1_CACHE_BYTES);
332 #endif
333 
334 		/* allocate a skb to store the frags */
335 		skb = napi_alloc_skb(&rx_ring->q_vector->napi,
336 				     FM10K_RX_HDR_LEN);
337 		if (unlikely(!skb)) {
338 			rx_ring->rx_stats.alloc_failed++;
339 			return NULL;
340 		}
341 
342 		/* we will be copying header into skb->data in
343 		 * pskb_may_pull so it is in our interest to prefetch
344 		 * it now to avoid a possible cache miss
345 		 */
346 		prefetchw(skb->data);
347 	}
348 
349 	/* we are reusing so sync this buffer for CPU use */
350 	dma_sync_single_range_for_cpu(rx_ring->dev,
351 				      rx_buffer->dma,
352 				      rx_buffer->page_offset,
353 				      FM10K_RX_BUFSZ,
354 				      DMA_FROM_DEVICE);
355 
356 	/* pull page into skb */
357 	if (fm10k_add_rx_frag(rx_buffer, rx_desc, skb)) {
358 		/* hand second half of page back to the ring */
359 		fm10k_reuse_rx_page(rx_ring, rx_buffer);
360 	} else {
361 		/* we are not reusing the buffer so unmap it */
362 		dma_unmap_page(rx_ring->dev, rx_buffer->dma,
363 			       PAGE_SIZE, DMA_FROM_DEVICE);
364 	}
365 
366 	/* clear contents of rx_buffer */
367 	rx_buffer->page = NULL;
368 
369 	return skb;
370 }
371 
372 static inline void fm10k_rx_checksum(struct fm10k_ring *ring,
373 				     union fm10k_rx_desc *rx_desc,
374 				     struct sk_buff *skb)
375 {
376 	skb_checksum_none_assert(skb);
377 
378 	/* Rx checksum disabled via ethtool */
379 	if (!(ring->netdev->features & NETIF_F_RXCSUM))
380 		return;
381 
382 	/* TCP/UDP checksum error bit is set */
383 	if (fm10k_test_staterr(rx_desc,
384 			       FM10K_RXD_STATUS_L4E |
385 			       FM10K_RXD_STATUS_L4E2 |
386 			       FM10K_RXD_STATUS_IPE |
387 			       FM10K_RXD_STATUS_IPE2)) {
388 		ring->rx_stats.csum_err++;
389 		return;
390 	}
391 
392 	/* It must be a TCP or UDP packet with a valid checksum */
393 	if (fm10k_test_staterr(rx_desc, FM10K_RXD_STATUS_L4CS2))
394 		skb->encapsulation = true;
395 	else if (!fm10k_test_staterr(rx_desc, FM10K_RXD_STATUS_L4CS))
396 		return;
397 
398 	skb->ip_summed = CHECKSUM_UNNECESSARY;
399 
400 	ring->rx_stats.csum_good++;
401 }
402 
403 #define FM10K_RSS_L4_TYPES_MASK \
404 	((1ul << FM10K_RSSTYPE_IPV4_TCP) | \
405 	 (1ul << FM10K_RSSTYPE_IPV4_UDP) | \
406 	 (1ul << FM10K_RSSTYPE_IPV6_TCP) | \
407 	 (1ul << FM10K_RSSTYPE_IPV6_UDP))
408 
409 static inline void fm10k_rx_hash(struct fm10k_ring *ring,
410 				 union fm10k_rx_desc *rx_desc,
411 				 struct sk_buff *skb)
412 {
413 	u16 rss_type;
414 
415 	if (!(ring->netdev->features & NETIF_F_RXHASH))
416 		return;
417 
418 	rss_type = le16_to_cpu(rx_desc->w.pkt_info) & FM10K_RXD_RSSTYPE_MASK;
419 	if (!rss_type)
420 		return;
421 
422 	skb_set_hash(skb, le32_to_cpu(rx_desc->d.rss),
423 		     (FM10K_RSS_L4_TYPES_MASK & (1ul << rss_type)) ?
424 		     PKT_HASH_TYPE_L4 : PKT_HASH_TYPE_L3);
425 }
426 
427 static void fm10k_rx_hwtstamp(struct fm10k_ring *rx_ring,
428 			      union fm10k_rx_desc *rx_desc,
429 			      struct sk_buff *skb)
430 {
431 	struct fm10k_intfc *interface = rx_ring->q_vector->interface;
432 
433 	FM10K_CB(skb)->tstamp = rx_desc->q.timestamp;
434 
435 	if (unlikely(interface->flags & FM10K_FLAG_RX_TS_ENABLED))
436 		fm10k_systime_to_hwtstamp(interface, skb_hwtstamps(skb),
437 					  le64_to_cpu(rx_desc->q.timestamp));
438 }
439 
440 static void fm10k_type_trans(struct fm10k_ring *rx_ring,
441 			     union fm10k_rx_desc __maybe_unused *rx_desc,
442 			     struct sk_buff *skb)
443 {
444 	struct net_device *dev = rx_ring->netdev;
445 	struct fm10k_l2_accel *l2_accel = rcu_dereference_bh(rx_ring->l2_accel);
446 
447 	/* check to see if DGLORT belongs to a MACVLAN */
448 	if (l2_accel) {
449 		u16 idx = le16_to_cpu(FM10K_CB(skb)->fi.w.dglort) - 1;
450 
451 		idx -= l2_accel->dglort;
452 		if (idx < l2_accel->size && l2_accel->macvlan[idx])
453 			dev = l2_accel->macvlan[idx];
454 		else
455 			l2_accel = NULL;
456 	}
457 
458 	skb->protocol = eth_type_trans(skb, dev);
459 
460 	if (!l2_accel)
461 		return;
462 
463 	/* update MACVLAN statistics */
464 	macvlan_count_rx(netdev_priv(dev), skb->len + ETH_HLEN, 1,
465 			 !!(rx_desc->w.hdr_info &
466 			    cpu_to_le16(FM10K_RXD_HDR_INFO_XC_MASK)));
467 }
468 
469 /**
470  * fm10k_process_skb_fields - Populate skb header fields from Rx descriptor
471  * @rx_ring: rx descriptor ring packet is being transacted on
472  * @rx_desc: pointer to the EOP Rx descriptor
473  * @skb: pointer to current skb being populated
474  *
475  * This function checks the ring, descriptor, and packet information in
476  * order to populate the hash, checksum, VLAN, timestamp, protocol, and
477  * other fields within the skb.
478  **/
479 static unsigned int fm10k_process_skb_fields(struct fm10k_ring *rx_ring,
480 					     union fm10k_rx_desc *rx_desc,
481 					     struct sk_buff *skb)
482 {
483 	unsigned int len = skb->len;
484 
485 	fm10k_rx_hash(rx_ring, rx_desc, skb);
486 
487 	fm10k_rx_checksum(rx_ring, rx_desc, skb);
488 
489 	fm10k_rx_hwtstamp(rx_ring, rx_desc, skb);
490 
491 	FM10K_CB(skb)->fi.w.vlan = rx_desc->w.vlan;
492 
493 	skb_record_rx_queue(skb, rx_ring->queue_index);
494 
495 	FM10K_CB(skb)->fi.d.glort = rx_desc->d.glort;
496 
497 	if (rx_desc->w.vlan) {
498 		u16 vid = le16_to_cpu(rx_desc->w.vlan);
499 
500 		if ((vid & VLAN_VID_MASK) != rx_ring->vid)
501 			__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
502 		else if (vid & VLAN_PRIO_MASK)
503 			__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
504 					       vid & VLAN_PRIO_MASK);
505 	}
506 
507 	fm10k_type_trans(rx_ring, rx_desc, skb);
508 
509 	return len;
510 }
511 
512 /**
513  * fm10k_is_non_eop - process handling of non-EOP buffers
514  * @rx_ring: Rx ring being processed
515  * @rx_desc: Rx descriptor for current buffer
516  *
517  * This function updates next to clean.  If the buffer is an EOP buffer
518  * this function exits returning false, otherwise it will place the
519  * sk_buff in the next buffer to be chained and return true indicating
520  * that this is in fact a non-EOP buffer.
521  **/
522 static bool fm10k_is_non_eop(struct fm10k_ring *rx_ring,
523 			     union fm10k_rx_desc *rx_desc)
524 {
525 	u32 ntc = rx_ring->next_to_clean + 1;
526 
527 	/* fetch, update, and store next to clean */
528 	ntc = (ntc < rx_ring->count) ? ntc : 0;
529 	rx_ring->next_to_clean = ntc;
530 
531 	prefetch(FM10K_RX_DESC(rx_ring, ntc));
532 
533 	if (likely(fm10k_test_staterr(rx_desc, FM10K_RXD_STATUS_EOP)))
534 		return false;
535 
536 	return true;
537 }
538 
539 /**
540  * fm10k_cleanup_headers - Correct corrupted or empty headers
541  * @rx_ring: rx descriptor ring packet is being transacted on
542  * @rx_desc: pointer to the EOP Rx descriptor
543  * @skb: pointer to current skb being fixed
544  *
545  * Address the case where we are pulling data in on pages only
546  * and as such no data is present in the skb header.
547  *
548  * In addition if skb is not at least 60 bytes we need to pad it so that
549  * it is large enough to qualify as a valid Ethernet frame.
550  *
551  * Returns true if an error was encountered and skb was freed.
552  **/
553 static bool fm10k_cleanup_headers(struct fm10k_ring *rx_ring,
554 				  union fm10k_rx_desc *rx_desc,
555 				  struct sk_buff *skb)
556 {
557 	if (unlikely((fm10k_test_staterr(rx_desc,
558 					 FM10K_RXD_STATUS_RXE)))) {
559 #define FM10K_TEST_RXD_BIT(rxd, bit) \
560 	((rxd)->w.csum_err & cpu_to_le16(bit))
561 		if (FM10K_TEST_RXD_BIT(rx_desc, FM10K_RXD_ERR_SWITCH_ERROR))
562 			rx_ring->rx_stats.switch_errors++;
563 		if (FM10K_TEST_RXD_BIT(rx_desc, FM10K_RXD_ERR_NO_DESCRIPTOR))
564 			rx_ring->rx_stats.drops++;
565 		if (FM10K_TEST_RXD_BIT(rx_desc, FM10K_RXD_ERR_PP_ERROR))
566 			rx_ring->rx_stats.pp_errors++;
567 		if (FM10K_TEST_RXD_BIT(rx_desc, FM10K_RXD_ERR_SWITCH_READY))
568 			rx_ring->rx_stats.link_errors++;
569 		if (FM10K_TEST_RXD_BIT(rx_desc, FM10K_RXD_ERR_TOO_BIG))
570 			rx_ring->rx_stats.length_errors++;
571 		dev_kfree_skb_any(skb);
572 		rx_ring->rx_stats.errors++;
573 		return true;
574 	}
575 
576 	/* if eth_skb_pad returns an error the skb was freed */
577 	if (eth_skb_pad(skb))
578 		return true;
579 
580 	return false;
581 }
582 
583 /**
584  * fm10k_receive_skb - helper function to handle rx indications
585  * @q_vector: structure containing interrupt and ring information
586  * @skb: packet to send up
587  **/
588 static void fm10k_receive_skb(struct fm10k_q_vector *q_vector,
589 			      struct sk_buff *skb)
590 {
591 	napi_gro_receive(&q_vector->napi, skb);
592 }
593 
594 static int fm10k_clean_rx_irq(struct fm10k_q_vector *q_vector,
595 			      struct fm10k_ring *rx_ring,
596 			      int budget)
597 {
598 	struct sk_buff *skb = rx_ring->skb;
599 	unsigned int total_bytes = 0, total_packets = 0;
600 	u16 cleaned_count = fm10k_desc_unused(rx_ring);
601 
602 	while (likely(total_packets < budget)) {
603 		union fm10k_rx_desc *rx_desc;
604 
605 		/* return some buffers to hardware, one at a time is too slow */
606 		if (cleaned_count >= FM10K_RX_BUFFER_WRITE) {
607 			fm10k_alloc_rx_buffers(rx_ring, cleaned_count);
608 			cleaned_count = 0;
609 		}
610 
611 		rx_desc = FM10K_RX_DESC(rx_ring, rx_ring->next_to_clean);
612 
613 		if (!rx_desc->d.staterr)
614 			break;
615 
616 		/* This memory barrier is needed to keep us from reading
617 		 * any other fields out of the rx_desc until we know the
618 		 * descriptor has been written back
619 		 */
620 		dma_rmb();
621 
622 		/* retrieve a buffer from the ring */
623 		skb = fm10k_fetch_rx_buffer(rx_ring, rx_desc, skb);
624 
625 		/* exit if we failed to retrieve a buffer */
626 		if (!skb)
627 			break;
628 
629 		cleaned_count++;
630 
631 		/* fetch next buffer in frame if non-eop */
632 		if (fm10k_is_non_eop(rx_ring, rx_desc))
633 			continue;
634 
635 		/* verify the packet layout is correct */
636 		if (fm10k_cleanup_headers(rx_ring, rx_desc, skb)) {
637 			skb = NULL;
638 			continue;
639 		}
640 
641 		/* populate checksum, timestamp, VLAN, and protocol */
642 		total_bytes += fm10k_process_skb_fields(rx_ring, rx_desc, skb);
643 
644 		fm10k_receive_skb(q_vector, skb);
645 
646 		/* reset skb pointer */
647 		skb = NULL;
648 
649 		/* update budget accounting */
650 		total_packets++;
651 	}
652 
653 	/* place incomplete frames back on ring for completion */
654 	rx_ring->skb = skb;
655 
656 	u64_stats_update_begin(&rx_ring->syncp);
657 	rx_ring->stats.packets += total_packets;
658 	rx_ring->stats.bytes += total_bytes;
659 	u64_stats_update_end(&rx_ring->syncp);
660 	q_vector->rx.total_packets += total_packets;
661 	q_vector->rx.total_bytes += total_bytes;
662 
663 	return total_packets;
664 }
665 
666 #define VXLAN_HLEN (sizeof(struct udphdr) + 8)
667 static struct ethhdr *fm10k_port_is_vxlan(struct sk_buff *skb)
668 {
669 	struct fm10k_intfc *interface = netdev_priv(skb->dev);
670 	struct fm10k_vxlan_port *vxlan_port;
671 
672 	/* we can only offload a vxlan if we recognize it as such */
673 	vxlan_port = list_first_entry_or_null(&interface->vxlan_port,
674 					      struct fm10k_vxlan_port, list);
675 
676 	if (!vxlan_port)
677 		return NULL;
678 	if (vxlan_port->port != udp_hdr(skb)->dest)
679 		return NULL;
680 
681 	/* return offset of udp_hdr plus 8 bytes for VXLAN header */
682 	return (struct ethhdr *)(skb_transport_header(skb) + VXLAN_HLEN);
683 }
684 
685 #define FM10K_NVGRE_RESERVED0_FLAGS htons(0x9FFF)
686 #define NVGRE_TNI htons(0x2000)
687 struct fm10k_nvgre_hdr {
688 	__be16 flags;
689 	__be16 proto;
690 	__be32 tni;
691 };
692 
693 static struct ethhdr *fm10k_gre_is_nvgre(struct sk_buff *skb)
694 {
695 	struct fm10k_nvgre_hdr *nvgre_hdr;
696 	int hlen = ip_hdrlen(skb);
697 
698 	/* currently only IPv4 is supported due to hlen above */
699 	if (vlan_get_protocol(skb) != htons(ETH_P_IP))
700 		return NULL;
701 
702 	/* our transport header should be NVGRE */
703 	nvgre_hdr = (struct fm10k_nvgre_hdr *)(skb_network_header(skb) + hlen);
704 
705 	/* verify all reserved flags are 0 */
706 	if (nvgre_hdr->flags & FM10K_NVGRE_RESERVED0_FLAGS)
707 		return NULL;
708 
709 	/* report start of ethernet header */
710 	if (nvgre_hdr->flags & NVGRE_TNI)
711 		return (struct ethhdr *)(nvgre_hdr + 1);
712 
713 	return (struct ethhdr *)(&nvgre_hdr->tni);
714 }
715 
716 __be16 fm10k_tx_encap_offload(struct sk_buff *skb)
717 {
718 	u8 l4_hdr = 0, inner_l4_hdr = 0, inner_l4_hlen;
719 	struct ethhdr *eth_hdr;
720 
721 	if (skb->inner_protocol_type != ENCAP_TYPE_ETHER ||
722 	    skb->inner_protocol != htons(ETH_P_TEB))
723 		return 0;
724 
725 	switch (vlan_get_protocol(skb)) {
726 	case htons(ETH_P_IP):
727 		l4_hdr = ip_hdr(skb)->protocol;
728 		break;
729 	case htons(ETH_P_IPV6):
730 		l4_hdr = ipv6_hdr(skb)->nexthdr;
731 		break;
732 	default:
733 		return 0;
734 	}
735 
736 	switch (l4_hdr) {
737 	case IPPROTO_UDP:
738 		eth_hdr = fm10k_port_is_vxlan(skb);
739 		break;
740 	case IPPROTO_GRE:
741 		eth_hdr = fm10k_gre_is_nvgre(skb);
742 		break;
743 	default:
744 		return 0;
745 	}
746 
747 	if (!eth_hdr)
748 		return 0;
749 
750 	switch (eth_hdr->h_proto) {
751 	case htons(ETH_P_IP):
752 		inner_l4_hdr = inner_ip_hdr(skb)->protocol;
753 		break;
754 	case htons(ETH_P_IPV6):
755 		inner_l4_hdr = inner_ipv6_hdr(skb)->nexthdr;
756 		break;
757 	default:
758 		return 0;
759 	}
760 
761 	switch (inner_l4_hdr) {
762 	case IPPROTO_TCP:
763 		inner_l4_hlen = inner_tcp_hdrlen(skb);
764 		break;
765 	case IPPROTO_UDP:
766 		inner_l4_hlen = 8;
767 		break;
768 	default:
769 		return 0;
770 	}
771 
772 	/* The hardware allows tunnel offloads only if the combined inner and
773 	 * outer header is 184 bytes or less
774 	 */
775 	if (skb_inner_transport_header(skb) + inner_l4_hlen -
776 	    skb_mac_header(skb) > FM10K_TUNNEL_HEADER_LENGTH)
777 		return 0;
778 
779 	return eth_hdr->h_proto;
780 }
781 
782 static int fm10k_tso(struct fm10k_ring *tx_ring,
783 		     struct fm10k_tx_buffer *first)
784 {
785 	struct sk_buff *skb = first->skb;
786 	struct fm10k_tx_desc *tx_desc;
787 	unsigned char *th;
788 	u8 hdrlen;
789 
790 	if (skb->ip_summed != CHECKSUM_PARTIAL)
791 		return 0;
792 
793 	if (!skb_is_gso(skb))
794 		return 0;
795 
796 	/* compute header lengths */
797 	if (skb->encapsulation) {
798 		if (!fm10k_tx_encap_offload(skb))
799 			goto err_vxlan;
800 		th = skb_inner_transport_header(skb);
801 	} else {
802 		th = skb_transport_header(skb);
803 	}
804 
805 	/* compute offset from SOF to transport header and add header len */
806 	hdrlen = (th - skb->data) + (((struct tcphdr *)th)->doff << 2);
807 
808 	first->tx_flags |= FM10K_TX_FLAGS_CSUM;
809 
810 	/* update gso size and bytecount with header size */
811 	first->gso_segs = skb_shinfo(skb)->gso_segs;
812 	first->bytecount += (first->gso_segs - 1) * hdrlen;
813 
814 	/* populate Tx descriptor header size and mss */
815 	tx_desc = FM10K_TX_DESC(tx_ring, tx_ring->next_to_use);
816 	tx_desc->hdrlen = hdrlen;
817 	tx_desc->mss = cpu_to_le16(skb_shinfo(skb)->gso_size);
818 
819 	return 1;
820 err_vxlan:
821 	tx_ring->netdev->features &= ~NETIF_F_GSO_UDP_TUNNEL;
822 	if (!net_ratelimit())
823 		netdev_err(tx_ring->netdev,
824 			   "TSO requested for unsupported tunnel, disabling offload\n");
825 	return -1;
826 }
827 
828 static void fm10k_tx_csum(struct fm10k_ring *tx_ring,
829 			  struct fm10k_tx_buffer *first)
830 {
831 	struct sk_buff *skb = first->skb;
832 	struct fm10k_tx_desc *tx_desc;
833 	union {
834 		struct iphdr *ipv4;
835 		struct ipv6hdr *ipv6;
836 		u8 *raw;
837 	} network_hdr;
838 	__be16 protocol;
839 	u8 l4_hdr = 0;
840 
841 	if (skb->ip_summed != CHECKSUM_PARTIAL)
842 		goto no_csum;
843 
844 	if (skb->encapsulation) {
845 		protocol = fm10k_tx_encap_offload(skb);
846 		if (!protocol) {
847 			if (skb_checksum_help(skb)) {
848 				dev_warn(tx_ring->dev,
849 					 "failed to offload encap csum!\n");
850 				tx_ring->tx_stats.csum_err++;
851 			}
852 			goto no_csum;
853 		}
854 		network_hdr.raw = skb_inner_network_header(skb);
855 	} else {
856 		protocol = vlan_get_protocol(skb);
857 		network_hdr.raw = skb_network_header(skb);
858 	}
859 
860 	switch (protocol) {
861 	case htons(ETH_P_IP):
862 		l4_hdr = network_hdr.ipv4->protocol;
863 		break;
864 	case htons(ETH_P_IPV6):
865 		l4_hdr = network_hdr.ipv6->nexthdr;
866 		break;
867 	default:
868 		if (unlikely(net_ratelimit())) {
869 			dev_warn(tx_ring->dev,
870 				 "partial checksum but ip version=%x!\n",
871 				 protocol);
872 		}
873 		tx_ring->tx_stats.csum_err++;
874 		goto no_csum;
875 	}
876 
877 	switch (l4_hdr) {
878 	case IPPROTO_TCP:
879 	case IPPROTO_UDP:
880 		break;
881 	case IPPROTO_GRE:
882 		if (skb->encapsulation)
883 			break;
884 	default:
885 		if (unlikely(net_ratelimit())) {
886 			dev_warn(tx_ring->dev,
887 				 "partial checksum but l4 proto=%x!\n",
888 				 l4_hdr);
889 		}
890 		tx_ring->tx_stats.csum_err++;
891 		goto no_csum;
892 	}
893 
894 	/* update TX checksum flag */
895 	first->tx_flags |= FM10K_TX_FLAGS_CSUM;
896 	tx_ring->tx_stats.csum_good++;
897 
898 no_csum:
899 	/* populate Tx descriptor header size and mss */
900 	tx_desc = FM10K_TX_DESC(tx_ring, tx_ring->next_to_use);
901 	tx_desc->hdrlen = 0;
902 	tx_desc->mss = 0;
903 }
904 
905 #define FM10K_SET_FLAG(_input, _flag, _result) \
906 	((_flag <= _result) ? \
907 	 ((u32)(_input & _flag) * (_result / _flag)) : \
908 	 ((u32)(_input & _flag) / (_flag / _result)))
909 
910 static u8 fm10k_tx_desc_flags(struct sk_buff *skb, u32 tx_flags)
911 {
912 	/* set type for advanced descriptor with frame checksum insertion */
913 	u32 desc_flags = 0;
914 
915 	/* set timestamping bits */
916 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
917 	    likely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS))
918 		desc_flags |= FM10K_TXD_FLAG_TIME;
919 
920 	/* set checksum offload bits */
921 	desc_flags |= FM10K_SET_FLAG(tx_flags, FM10K_TX_FLAGS_CSUM,
922 				     FM10K_TXD_FLAG_CSUM);
923 
924 	return desc_flags;
925 }
926 
927 static bool fm10k_tx_desc_push(struct fm10k_ring *tx_ring,
928 			       struct fm10k_tx_desc *tx_desc, u16 i,
929 			       dma_addr_t dma, unsigned int size, u8 desc_flags)
930 {
931 	/* set RS and INT for last frame in a cache line */
932 	if ((++i & (FM10K_TXD_WB_FIFO_SIZE - 1)) == 0)
933 		desc_flags |= FM10K_TXD_FLAG_RS | FM10K_TXD_FLAG_INT;
934 
935 	/* record values to descriptor */
936 	tx_desc->buffer_addr = cpu_to_le64(dma);
937 	tx_desc->flags = desc_flags;
938 	tx_desc->buflen = cpu_to_le16(size);
939 
940 	/* return true if we just wrapped the ring */
941 	return i == tx_ring->count;
942 }
943 
944 static int __fm10k_maybe_stop_tx(struct fm10k_ring *tx_ring, u16 size)
945 {
946 	netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
947 
948 	/* Memory barrier before checking head and tail */
949 	smp_mb();
950 
951 	/* Check again in a case another CPU has just made room available */
952 	if (likely(fm10k_desc_unused(tx_ring) < size))
953 		return -EBUSY;
954 
955 	/* A reprieve! - use start_queue because it doesn't call schedule */
956 	netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
957 	++tx_ring->tx_stats.restart_queue;
958 	return 0;
959 }
960 
961 static inline int fm10k_maybe_stop_tx(struct fm10k_ring *tx_ring, u16 size)
962 {
963 	if (likely(fm10k_desc_unused(tx_ring) >= size))
964 		return 0;
965 	return __fm10k_maybe_stop_tx(tx_ring, size);
966 }
967 
968 static void fm10k_tx_map(struct fm10k_ring *tx_ring,
969 			 struct fm10k_tx_buffer *first)
970 {
971 	struct sk_buff *skb = first->skb;
972 	struct fm10k_tx_buffer *tx_buffer;
973 	struct fm10k_tx_desc *tx_desc;
974 	struct skb_frag_struct *frag;
975 	unsigned char *data;
976 	dma_addr_t dma;
977 	unsigned int data_len, size;
978 	u32 tx_flags = first->tx_flags;
979 	u16 i = tx_ring->next_to_use;
980 	u8 flags = fm10k_tx_desc_flags(skb, tx_flags);
981 
982 	tx_desc = FM10K_TX_DESC(tx_ring, i);
983 
984 	/* add HW VLAN tag */
985 	if (skb_vlan_tag_present(skb))
986 		tx_desc->vlan = cpu_to_le16(skb_vlan_tag_get(skb));
987 	else
988 		tx_desc->vlan = 0;
989 
990 	size = skb_headlen(skb);
991 	data = skb->data;
992 
993 	dma = dma_map_single(tx_ring->dev, data, size, DMA_TO_DEVICE);
994 
995 	data_len = skb->data_len;
996 	tx_buffer = first;
997 
998 	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
999 		if (dma_mapping_error(tx_ring->dev, dma))
1000 			goto dma_error;
1001 
1002 		/* record length, and DMA address */
1003 		dma_unmap_len_set(tx_buffer, len, size);
1004 		dma_unmap_addr_set(tx_buffer, dma, dma);
1005 
1006 		while (unlikely(size > FM10K_MAX_DATA_PER_TXD)) {
1007 			if (fm10k_tx_desc_push(tx_ring, tx_desc++, i++, dma,
1008 					       FM10K_MAX_DATA_PER_TXD, flags)) {
1009 				tx_desc = FM10K_TX_DESC(tx_ring, 0);
1010 				i = 0;
1011 			}
1012 
1013 			dma += FM10K_MAX_DATA_PER_TXD;
1014 			size -= FM10K_MAX_DATA_PER_TXD;
1015 		}
1016 
1017 		if (likely(!data_len))
1018 			break;
1019 
1020 		if (fm10k_tx_desc_push(tx_ring, tx_desc++, i++,
1021 				       dma, size, flags)) {
1022 			tx_desc = FM10K_TX_DESC(tx_ring, 0);
1023 			i = 0;
1024 		}
1025 
1026 		size = skb_frag_size(frag);
1027 		data_len -= size;
1028 
1029 		dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
1030 				       DMA_TO_DEVICE);
1031 
1032 		tx_buffer = &tx_ring->tx_buffer[i];
1033 	}
1034 
1035 	/* write last descriptor with LAST bit set */
1036 	flags |= FM10K_TXD_FLAG_LAST;
1037 
1038 	if (fm10k_tx_desc_push(tx_ring, tx_desc, i++, dma, size, flags))
1039 		i = 0;
1040 
1041 	/* record bytecount for BQL */
1042 	netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
1043 
1044 	/* record SW timestamp if HW timestamp is not available */
1045 	skb_tx_timestamp(first->skb);
1046 
1047 	/* Force memory writes to complete before letting h/w know there
1048 	 * are new descriptors to fetch.  (Only applicable for weak-ordered
1049 	 * memory model archs, such as IA-64).
1050 	 *
1051 	 * We also need this memory barrier to make certain all of the
1052 	 * status bits have been updated before next_to_watch is written.
1053 	 */
1054 	wmb();
1055 
1056 	/* set next_to_watch value indicating a packet is present */
1057 	first->next_to_watch = tx_desc;
1058 
1059 	tx_ring->next_to_use = i;
1060 
1061 	/* Make sure there is space in the ring for the next send. */
1062 	fm10k_maybe_stop_tx(tx_ring, DESC_NEEDED);
1063 
1064 	/* notify HW of packet */
1065 	if (netif_xmit_stopped(txring_txq(tx_ring)) || !skb->xmit_more) {
1066 		writel(i, tx_ring->tail);
1067 
1068 		/* we need this if more than one processor can write to our tail
1069 		 * at a time, it synchronizes IO on IA64/Altix systems
1070 		 */
1071 		mmiowb();
1072 	}
1073 
1074 	return;
1075 dma_error:
1076 	dev_err(tx_ring->dev, "TX DMA map failed\n");
1077 
1078 	/* clear dma mappings for failed tx_buffer map */
1079 	for (;;) {
1080 		tx_buffer = &tx_ring->tx_buffer[i];
1081 		fm10k_unmap_and_free_tx_resource(tx_ring, tx_buffer);
1082 		if (tx_buffer == first)
1083 			break;
1084 		if (i == 0)
1085 			i = tx_ring->count;
1086 		i--;
1087 	}
1088 
1089 	tx_ring->next_to_use = i;
1090 }
1091 
1092 netdev_tx_t fm10k_xmit_frame_ring(struct sk_buff *skb,
1093 				  struct fm10k_ring *tx_ring)
1094 {
1095 	u16 count = TXD_USE_COUNT(skb_headlen(skb));
1096 	struct fm10k_tx_buffer *first;
1097 	unsigned short f;
1098 	u32 tx_flags = 0;
1099 	int tso;
1100 
1101 	/* need: 1 descriptor per page * PAGE_SIZE/FM10K_MAX_DATA_PER_TXD,
1102 	 *       + 1 desc for skb_headlen/FM10K_MAX_DATA_PER_TXD,
1103 	 *       + 2 desc gap to keep tail from touching head
1104 	 * otherwise try next time
1105 	 */
1106 	for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
1107 		count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size);
1108 
1109 	if (fm10k_maybe_stop_tx(tx_ring, count + 3)) {
1110 		tx_ring->tx_stats.tx_busy++;
1111 		return NETDEV_TX_BUSY;
1112 	}
1113 
1114 	/* record the location of the first descriptor for this packet */
1115 	first = &tx_ring->tx_buffer[tx_ring->next_to_use];
1116 	first->skb = skb;
1117 	first->bytecount = max_t(unsigned int, skb->len, ETH_ZLEN);
1118 	first->gso_segs = 1;
1119 
1120 	/* record initial flags and protocol */
1121 	first->tx_flags = tx_flags;
1122 
1123 	tso = fm10k_tso(tx_ring, first);
1124 	if (tso < 0)
1125 		goto out_drop;
1126 	else if (!tso)
1127 		fm10k_tx_csum(tx_ring, first);
1128 
1129 	fm10k_tx_map(tx_ring, first);
1130 
1131 	return NETDEV_TX_OK;
1132 
1133 out_drop:
1134 	dev_kfree_skb_any(first->skb);
1135 	first->skb = NULL;
1136 
1137 	return NETDEV_TX_OK;
1138 }
1139 
1140 static u64 fm10k_get_tx_completed(struct fm10k_ring *ring)
1141 {
1142 	return ring->stats.packets;
1143 }
1144 
1145 static u64 fm10k_get_tx_pending(struct fm10k_ring *ring)
1146 {
1147 	/* use SW head and tail until we have real hardware */
1148 	u32 head = ring->next_to_clean;
1149 	u32 tail = ring->next_to_use;
1150 
1151 	return ((head <= tail) ? tail : tail + ring->count) - head;
1152 }
1153 
1154 bool fm10k_check_tx_hang(struct fm10k_ring *tx_ring)
1155 {
1156 	u32 tx_done = fm10k_get_tx_completed(tx_ring);
1157 	u32 tx_done_old = tx_ring->tx_stats.tx_done_old;
1158 	u32 tx_pending = fm10k_get_tx_pending(tx_ring);
1159 
1160 	clear_check_for_tx_hang(tx_ring);
1161 
1162 	/* Check for a hung queue, but be thorough. This verifies
1163 	 * that a transmit has been completed since the previous
1164 	 * check AND there is at least one packet pending. By
1165 	 * requiring this to fail twice we avoid races with
1166 	 * clearing the ARMED bit and conditions where we
1167 	 * run the check_tx_hang logic with a transmit completion
1168 	 * pending but without time to complete it yet.
1169 	 */
1170 	if (!tx_pending || (tx_done_old != tx_done)) {
1171 		/* update completed stats and continue */
1172 		tx_ring->tx_stats.tx_done_old = tx_done;
1173 		/* reset the countdown */
1174 		clear_bit(__FM10K_HANG_CHECK_ARMED, &tx_ring->state);
1175 
1176 		return false;
1177 	}
1178 
1179 	/* make sure it is true for two checks in a row */
1180 	return test_and_set_bit(__FM10K_HANG_CHECK_ARMED, &tx_ring->state);
1181 }
1182 
1183 /**
1184  * fm10k_tx_timeout_reset - initiate reset due to Tx timeout
1185  * @interface: driver private struct
1186  **/
1187 void fm10k_tx_timeout_reset(struct fm10k_intfc *interface)
1188 {
1189 	/* Do the reset outside of interrupt context */
1190 	if (!test_bit(__FM10K_DOWN, &interface->state)) {
1191 		interface->tx_timeout_count++;
1192 		interface->flags |= FM10K_FLAG_RESET_REQUESTED;
1193 		fm10k_service_event_schedule(interface);
1194 	}
1195 }
1196 
1197 /**
1198  * fm10k_clean_tx_irq - Reclaim resources after transmit completes
1199  * @q_vector: structure containing interrupt and ring information
1200  * @tx_ring: tx ring to clean
1201  **/
1202 static bool fm10k_clean_tx_irq(struct fm10k_q_vector *q_vector,
1203 			       struct fm10k_ring *tx_ring)
1204 {
1205 	struct fm10k_intfc *interface = q_vector->interface;
1206 	struct fm10k_tx_buffer *tx_buffer;
1207 	struct fm10k_tx_desc *tx_desc;
1208 	unsigned int total_bytes = 0, total_packets = 0;
1209 	unsigned int budget = q_vector->tx.work_limit;
1210 	unsigned int i = tx_ring->next_to_clean;
1211 
1212 	if (test_bit(__FM10K_DOWN, &interface->state))
1213 		return true;
1214 
1215 	tx_buffer = &tx_ring->tx_buffer[i];
1216 	tx_desc = FM10K_TX_DESC(tx_ring, i);
1217 	i -= tx_ring->count;
1218 
1219 	do {
1220 		struct fm10k_tx_desc *eop_desc = tx_buffer->next_to_watch;
1221 
1222 		/* if next_to_watch is not set then there is no work pending */
1223 		if (!eop_desc)
1224 			break;
1225 
1226 		/* prevent any other reads prior to eop_desc */
1227 		read_barrier_depends();
1228 
1229 		/* if DD is not set pending work has not been completed */
1230 		if (!(eop_desc->flags & FM10K_TXD_FLAG_DONE))
1231 			break;
1232 
1233 		/* clear next_to_watch to prevent false hangs */
1234 		tx_buffer->next_to_watch = NULL;
1235 
1236 		/* update the statistics for this packet */
1237 		total_bytes += tx_buffer->bytecount;
1238 		total_packets += tx_buffer->gso_segs;
1239 
1240 		/* free the skb */
1241 		dev_consume_skb_any(tx_buffer->skb);
1242 
1243 		/* unmap skb header data */
1244 		dma_unmap_single(tx_ring->dev,
1245 				 dma_unmap_addr(tx_buffer, dma),
1246 				 dma_unmap_len(tx_buffer, len),
1247 				 DMA_TO_DEVICE);
1248 
1249 		/* clear tx_buffer data */
1250 		tx_buffer->skb = NULL;
1251 		dma_unmap_len_set(tx_buffer, len, 0);
1252 
1253 		/* unmap remaining buffers */
1254 		while (tx_desc != eop_desc) {
1255 			tx_buffer++;
1256 			tx_desc++;
1257 			i++;
1258 			if (unlikely(!i)) {
1259 				i -= tx_ring->count;
1260 				tx_buffer = tx_ring->tx_buffer;
1261 				tx_desc = FM10K_TX_DESC(tx_ring, 0);
1262 			}
1263 
1264 			/* unmap any remaining paged data */
1265 			if (dma_unmap_len(tx_buffer, len)) {
1266 				dma_unmap_page(tx_ring->dev,
1267 					       dma_unmap_addr(tx_buffer, dma),
1268 					       dma_unmap_len(tx_buffer, len),
1269 					       DMA_TO_DEVICE);
1270 				dma_unmap_len_set(tx_buffer, len, 0);
1271 			}
1272 		}
1273 
1274 		/* move us one more past the eop_desc for start of next pkt */
1275 		tx_buffer++;
1276 		tx_desc++;
1277 		i++;
1278 		if (unlikely(!i)) {
1279 			i -= tx_ring->count;
1280 			tx_buffer = tx_ring->tx_buffer;
1281 			tx_desc = FM10K_TX_DESC(tx_ring, 0);
1282 		}
1283 
1284 		/* issue prefetch for next Tx descriptor */
1285 		prefetch(tx_desc);
1286 
1287 		/* update budget accounting */
1288 		budget--;
1289 	} while (likely(budget));
1290 
1291 	i += tx_ring->count;
1292 	tx_ring->next_to_clean = i;
1293 	u64_stats_update_begin(&tx_ring->syncp);
1294 	tx_ring->stats.bytes += total_bytes;
1295 	tx_ring->stats.packets += total_packets;
1296 	u64_stats_update_end(&tx_ring->syncp);
1297 	q_vector->tx.total_bytes += total_bytes;
1298 	q_vector->tx.total_packets += total_packets;
1299 
1300 	if (check_for_tx_hang(tx_ring) && fm10k_check_tx_hang(tx_ring)) {
1301 		/* schedule immediate reset if we believe we hung */
1302 		struct fm10k_hw *hw = &interface->hw;
1303 
1304 		netif_err(interface, drv, tx_ring->netdev,
1305 			  "Detected Tx Unit Hang\n"
1306 			  "  Tx Queue             <%d>\n"
1307 			  "  TDH, TDT             <%x>, <%x>\n"
1308 			  "  next_to_use          <%x>\n"
1309 			  "  next_to_clean        <%x>\n",
1310 			  tx_ring->queue_index,
1311 			  fm10k_read_reg(hw, FM10K_TDH(tx_ring->reg_idx)),
1312 			  fm10k_read_reg(hw, FM10K_TDT(tx_ring->reg_idx)),
1313 			  tx_ring->next_to_use, i);
1314 
1315 		netif_stop_subqueue(tx_ring->netdev,
1316 				    tx_ring->queue_index);
1317 
1318 		netif_info(interface, probe, tx_ring->netdev,
1319 			   "tx hang %d detected on queue %d, resetting interface\n",
1320 			   interface->tx_timeout_count + 1,
1321 			   tx_ring->queue_index);
1322 
1323 		fm10k_tx_timeout_reset(interface);
1324 
1325 		/* the netdev is about to reset, no point in enabling stuff */
1326 		return true;
1327 	}
1328 
1329 	/* notify netdev of completed buffers */
1330 	netdev_tx_completed_queue(txring_txq(tx_ring),
1331 				  total_packets, total_bytes);
1332 
1333 #define TX_WAKE_THRESHOLD min_t(u16, FM10K_MIN_TXD - 1, DESC_NEEDED * 2)
1334 	if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
1335 		     (fm10k_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD))) {
1336 		/* Make sure that anybody stopping the queue after this
1337 		 * sees the new next_to_clean.
1338 		 */
1339 		smp_mb();
1340 		if (__netif_subqueue_stopped(tx_ring->netdev,
1341 					     tx_ring->queue_index) &&
1342 		    !test_bit(__FM10K_DOWN, &interface->state)) {
1343 			netif_wake_subqueue(tx_ring->netdev,
1344 					    tx_ring->queue_index);
1345 			++tx_ring->tx_stats.restart_queue;
1346 		}
1347 	}
1348 
1349 	return !!budget;
1350 }
1351 
1352 /**
1353  * fm10k_update_itr - update the dynamic ITR value based on packet size
1354  *
1355  *      Stores a new ITR value based on strictly on packet size.  The
1356  *      divisors and thresholds used by this function were determined based
1357  *      on theoretical maximum wire speed and testing data, in order to
1358  *      minimize response time while increasing bulk throughput.
1359  *
1360  * @ring_container: Container for rings to have ITR updated
1361  **/
1362 static void fm10k_update_itr(struct fm10k_ring_container *ring_container)
1363 {
1364 	unsigned int avg_wire_size, packets, itr_round;
1365 
1366 	/* Only update ITR if we are using adaptive setting */
1367 	if (!ITR_IS_ADAPTIVE(ring_container->itr))
1368 		goto clear_counts;
1369 
1370 	packets = ring_container->total_packets;
1371 	if (!packets)
1372 		goto clear_counts;
1373 
1374 	avg_wire_size = ring_container->total_bytes / packets;
1375 
1376 	/* The following is a crude approximation of:
1377 	 *  wmem_default / (size + overhead) = desired_pkts_per_int
1378 	 *  rate / bits_per_byte / (size + ethernet overhead) = pkt_rate
1379 	 *  (desired_pkt_rate / pkt_rate) * usecs_per_sec = ITR value
1380 	 *
1381 	 * Assuming wmem_default is 212992 and overhead is 640 bytes per
1382 	 * packet, (256 skb, 64 headroom, 320 shared info), we can reduce the
1383 	 * formula down to
1384 	 *
1385 	 *  (34 * (size + 24)) / (size + 640) = ITR
1386 	 *
1387 	 * We first do some math on the packet size and then finally bitshift
1388 	 * by 8 after rounding up. We also have to account for PCIe link speed
1389 	 * difference as ITR scales based on this.
1390 	 */
1391 	if (avg_wire_size <= 360) {
1392 		/* Start at 250K ints/sec and gradually drop to 77K ints/sec */
1393 		avg_wire_size *= 8;
1394 		avg_wire_size += 376;
1395 	} else if (avg_wire_size <= 1152) {
1396 		/* 77K ints/sec to 45K ints/sec */
1397 		avg_wire_size *= 3;
1398 		avg_wire_size += 2176;
1399 	} else if (avg_wire_size <= 1920) {
1400 		/* 45K ints/sec to 38K ints/sec */
1401 		avg_wire_size += 4480;
1402 	} else {
1403 		/* plateau at a limit of 38K ints/sec */
1404 		avg_wire_size = 6656;
1405 	}
1406 
1407 	/* Perform final bitshift for division after rounding up to ensure
1408 	 * that the calculation will never get below a 1. The bit shift
1409 	 * accounts for changes in the ITR due to PCIe link speed.
1410 	 */
1411 	itr_round = ACCESS_ONCE(ring_container->itr_scale) + 8;
1412 	avg_wire_size += (1 << itr_round) - 1;
1413 	avg_wire_size >>= itr_round;
1414 
1415 	/* write back value and retain adaptive flag */
1416 	ring_container->itr = avg_wire_size | FM10K_ITR_ADAPTIVE;
1417 
1418 clear_counts:
1419 	ring_container->total_bytes = 0;
1420 	ring_container->total_packets = 0;
1421 }
1422 
1423 static void fm10k_qv_enable(struct fm10k_q_vector *q_vector)
1424 {
1425 	/* Enable auto-mask and clear the current mask */
1426 	u32 itr = FM10K_ITR_ENABLE;
1427 
1428 	/* Update Tx ITR */
1429 	fm10k_update_itr(&q_vector->tx);
1430 
1431 	/* Update Rx ITR */
1432 	fm10k_update_itr(&q_vector->rx);
1433 
1434 	/* Store Tx itr in timer slot 0 */
1435 	itr |= (q_vector->tx.itr & FM10K_ITR_MAX);
1436 
1437 	/* Shift Rx itr to timer slot 1 */
1438 	itr |= (q_vector->rx.itr & FM10K_ITR_MAX) << FM10K_ITR_INTERVAL1_SHIFT;
1439 
1440 	/* Write the final value to the ITR register */
1441 	writel(itr, q_vector->itr);
1442 }
1443 
1444 static int fm10k_poll(struct napi_struct *napi, int budget)
1445 {
1446 	struct fm10k_q_vector *q_vector =
1447 			       container_of(napi, struct fm10k_q_vector, napi);
1448 	struct fm10k_ring *ring;
1449 	int per_ring_budget, work_done = 0;
1450 	bool clean_complete = true;
1451 
1452 	fm10k_for_each_ring(ring, q_vector->tx)
1453 		clean_complete &= fm10k_clean_tx_irq(q_vector, ring);
1454 
1455 	/* Handle case where we are called by netpoll with a budget of 0 */
1456 	if (budget <= 0)
1457 		return budget;
1458 
1459 	/* attempt to distribute budget to each queue fairly, but don't
1460 	 * allow the budget to go below 1 because we'll exit polling
1461 	 */
1462 	if (q_vector->rx.count > 1)
1463 		per_ring_budget = max(budget / q_vector->rx.count, 1);
1464 	else
1465 		per_ring_budget = budget;
1466 
1467 	fm10k_for_each_ring(ring, q_vector->rx) {
1468 		int work = fm10k_clean_rx_irq(q_vector, ring, per_ring_budget);
1469 
1470 		work_done += work;
1471 		clean_complete &= !!(work < per_ring_budget);
1472 	}
1473 
1474 	/* If all work not completed, return budget and keep polling */
1475 	if (!clean_complete)
1476 		return budget;
1477 
1478 	/* all work done, exit the polling mode */
1479 	napi_complete_done(napi, work_done);
1480 
1481 	/* re-enable the q_vector */
1482 	fm10k_qv_enable(q_vector);
1483 
1484 	return 0;
1485 }
1486 
1487 /**
1488  * fm10k_set_qos_queues: Allocate queues for a QOS-enabled device
1489  * @interface: board private structure to initialize
1490  *
1491  * When QoS (Quality of Service) is enabled, allocate queues for
1492  * each traffic class.  If multiqueue isn't available,then abort QoS
1493  * initialization.
1494  *
1495  * This function handles all combinations of Qos and RSS.
1496  *
1497  **/
1498 static bool fm10k_set_qos_queues(struct fm10k_intfc *interface)
1499 {
1500 	struct net_device *dev = interface->netdev;
1501 	struct fm10k_ring_feature *f;
1502 	int rss_i, i;
1503 	int pcs;
1504 
1505 	/* Map queue offset and counts onto allocated tx queues */
1506 	pcs = netdev_get_num_tc(dev);
1507 
1508 	if (pcs <= 1)
1509 		return false;
1510 
1511 	/* set QoS mask and indices */
1512 	f = &interface->ring_feature[RING_F_QOS];
1513 	f->indices = pcs;
1514 	f->mask = (1 << fls(pcs - 1)) - 1;
1515 
1516 	/* determine the upper limit for our current DCB mode */
1517 	rss_i = interface->hw.mac.max_queues / pcs;
1518 	rss_i = 1 << (fls(rss_i) - 1);
1519 
1520 	/* set RSS mask and indices */
1521 	f = &interface->ring_feature[RING_F_RSS];
1522 	rss_i = min_t(u16, rss_i, f->limit);
1523 	f->indices = rss_i;
1524 	f->mask = (1 << fls(rss_i - 1)) - 1;
1525 
1526 	/* configure pause class to queue mapping */
1527 	for (i = 0; i < pcs; i++)
1528 		netdev_set_tc_queue(dev, i, rss_i, rss_i * i);
1529 
1530 	interface->num_rx_queues = rss_i * pcs;
1531 	interface->num_tx_queues = rss_i * pcs;
1532 
1533 	return true;
1534 }
1535 
1536 /**
1537  * fm10k_set_rss_queues: Allocate queues for RSS
1538  * @interface: board private structure to initialize
1539  *
1540  * This is our "base" multiqueue mode.  RSS (Receive Side Scaling) will try
1541  * to allocate one Rx queue per CPU, and if available, one Tx queue per CPU.
1542  *
1543  **/
1544 static bool fm10k_set_rss_queues(struct fm10k_intfc *interface)
1545 {
1546 	struct fm10k_ring_feature *f;
1547 	u16 rss_i;
1548 
1549 	f = &interface->ring_feature[RING_F_RSS];
1550 	rss_i = min_t(u16, interface->hw.mac.max_queues, f->limit);
1551 
1552 	/* record indices and power of 2 mask for RSS */
1553 	f->indices = rss_i;
1554 	f->mask = (1 << fls(rss_i - 1)) - 1;
1555 
1556 	interface->num_rx_queues = rss_i;
1557 	interface->num_tx_queues = rss_i;
1558 
1559 	return true;
1560 }
1561 
1562 /**
1563  * fm10k_set_num_queues: Allocate queues for device, feature dependent
1564  * @interface: board private structure to initialize
1565  *
1566  * This is the top level queue allocation routine.  The order here is very
1567  * important, starting with the "most" number of features turned on at once,
1568  * and ending with the smallest set of features.  This way large combinations
1569  * can be allocated if they're turned on, and smaller combinations are the
1570  * fallthrough conditions.
1571  *
1572  **/
1573 static void fm10k_set_num_queues(struct fm10k_intfc *interface)
1574 {
1575 	/* Start with base case */
1576 	interface->num_rx_queues = 1;
1577 	interface->num_tx_queues = 1;
1578 
1579 	if (fm10k_set_qos_queues(interface))
1580 		return;
1581 
1582 	fm10k_set_rss_queues(interface);
1583 }
1584 
1585 /**
1586  * fm10k_alloc_q_vector - Allocate memory for a single interrupt vector
1587  * @interface: board private structure to initialize
1588  * @v_count: q_vectors allocated on interface, used for ring interleaving
1589  * @v_idx: index of vector in interface struct
1590  * @txr_count: total number of Tx rings to allocate
1591  * @txr_idx: index of first Tx ring to allocate
1592  * @rxr_count: total number of Rx rings to allocate
1593  * @rxr_idx: index of first Rx ring to allocate
1594  *
1595  * We allocate one q_vector.  If allocation fails we return -ENOMEM.
1596  **/
1597 static int fm10k_alloc_q_vector(struct fm10k_intfc *interface,
1598 				unsigned int v_count, unsigned int v_idx,
1599 				unsigned int txr_count, unsigned int txr_idx,
1600 				unsigned int rxr_count, unsigned int rxr_idx)
1601 {
1602 	struct fm10k_q_vector *q_vector;
1603 	struct fm10k_ring *ring;
1604 	int ring_count, size;
1605 
1606 	ring_count = txr_count + rxr_count;
1607 	size = sizeof(struct fm10k_q_vector) +
1608 	       (sizeof(struct fm10k_ring) * ring_count);
1609 
1610 	/* allocate q_vector and rings */
1611 	q_vector = kzalloc(size, GFP_KERNEL);
1612 	if (!q_vector)
1613 		return -ENOMEM;
1614 
1615 	/* initialize NAPI */
1616 	netif_napi_add(interface->netdev, &q_vector->napi,
1617 		       fm10k_poll, NAPI_POLL_WEIGHT);
1618 
1619 	/* tie q_vector and interface together */
1620 	interface->q_vector[v_idx] = q_vector;
1621 	q_vector->interface = interface;
1622 	q_vector->v_idx = v_idx;
1623 
1624 	/* initialize pointer to rings */
1625 	ring = q_vector->ring;
1626 
1627 	/* save Tx ring container info */
1628 	q_vector->tx.ring = ring;
1629 	q_vector->tx.work_limit = FM10K_DEFAULT_TX_WORK;
1630 	q_vector->tx.itr = interface->tx_itr;
1631 	q_vector->tx.itr_scale = interface->hw.mac.itr_scale;
1632 	q_vector->tx.count = txr_count;
1633 
1634 	while (txr_count) {
1635 		/* assign generic ring traits */
1636 		ring->dev = &interface->pdev->dev;
1637 		ring->netdev = interface->netdev;
1638 
1639 		/* configure backlink on ring */
1640 		ring->q_vector = q_vector;
1641 
1642 		/* apply Tx specific ring traits */
1643 		ring->count = interface->tx_ring_count;
1644 		ring->queue_index = txr_idx;
1645 
1646 		/* assign ring to interface */
1647 		interface->tx_ring[txr_idx] = ring;
1648 
1649 		/* update count and index */
1650 		txr_count--;
1651 		txr_idx += v_count;
1652 
1653 		/* push pointer to next ring */
1654 		ring++;
1655 	}
1656 
1657 	/* save Rx ring container info */
1658 	q_vector->rx.ring = ring;
1659 	q_vector->rx.itr = interface->rx_itr;
1660 	q_vector->rx.itr_scale = interface->hw.mac.itr_scale;
1661 	q_vector->rx.count = rxr_count;
1662 
1663 	while (rxr_count) {
1664 		/* assign generic ring traits */
1665 		ring->dev = &interface->pdev->dev;
1666 		ring->netdev = interface->netdev;
1667 		rcu_assign_pointer(ring->l2_accel, interface->l2_accel);
1668 
1669 		/* configure backlink on ring */
1670 		ring->q_vector = q_vector;
1671 
1672 		/* apply Rx specific ring traits */
1673 		ring->count = interface->rx_ring_count;
1674 		ring->queue_index = rxr_idx;
1675 
1676 		/* assign ring to interface */
1677 		interface->rx_ring[rxr_idx] = ring;
1678 
1679 		/* update count and index */
1680 		rxr_count--;
1681 		rxr_idx += v_count;
1682 
1683 		/* push pointer to next ring */
1684 		ring++;
1685 	}
1686 
1687 	fm10k_dbg_q_vector_init(q_vector);
1688 
1689 	return 0;
1690 }
1691 
1692 /**
1693  * fm10k_free_q_vector - Free memory allocated for specific interrupt vector
1694  * @interface: board private structure to initialize
1695  * @v_idx: Index of vector to be freed
1696  *
1697  * This function frees the memory allocated to the q_vector.  In addition if
1698  * NAPI is enabled it will delete any references to the NAPI struct prior
1699  * to freeing the q_vector.
1700  **/
1701 static void fm10k_free_q_vector(struct fm10k_intfc *interface, int v_idx)
1702 {
1703 	struct fm10k_q_vector *q_vector = interface->q_vector[v_idx];
1704 	struct fm10k_ring *ring;
1705 
1706 	fm10k_dbg_q_vector_exit(q_vector);
1707 
1708 	fm10k_for_each_ring(ring, q_vector->tx)
1709 		interface->tx_ring[ring->queue_index] = NULL;
1710 
1711 	fm10k_for_each_ring(ring, q_vector->rx)
1712 		interface->rx_ring[ring->queue_index] = NULL;
1713 
1714 	interface->q_vector[v_idx] = NULL;
1715 	netif_napi_del(&q_vector->napi);
1716 	kfree_rcu(q_vector, rcu);
1717 }
1718 
1719 /**
1720  * fm10k_alloc_q_vectors - Allocate memory for interrupt vectors
1721  * @interface: board private structure to initialize
1722  *
1723  * We allocate one q_vector per queue interrupt.  If allocation fails we
1724  * return -ENOMEM.
1725  **/
1726 static int fm10k_alloc_q_vectors(struct fm10k_intfc *interface)
1727 {
1728 	unsigned int q_vectors = interface->num_q_vectors;
1729 	unsigned int rxr_remaining = interface->num_rx_queues;
1730 	unsigned int txr_remaining = interface->num_tx_queues;
1731 	unsigned int rxr_idx = 0, txr_idx = 0, v_idx = 0;
1732 	int err;
1733 
1734 	if (q_vectors >= (rxr_remaining + txr_remaining)) {
1735 		for (; rxr_remaining; v_idx++) {
1736 			err = fm10k_alloc_q_vector(interface, q_vectors, v_idx,
1737 						   0, 0, 1, rxr_idx);
1738 			if (err)
1739 				goto err_out;
1740 
1741 			/* update counts and index */
1742 			rxr_remaining--;
1743 			rxr_idx++;
1744 		}
1745 	}
1746 
1747 	for (; v_idx < q_vectors; v_idx++) {
1748 		int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
1749 		int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
1750 
1751 		err = fm10k_alloc_q_vector(interface, q_vectors, v_idx,
1752 					   tqpv, txr_idx,
1753 					   rqpv, rxr_idx);
1754 
1755 		if (err)
1756 			goto err_out;
1757 
1758 		/* update counts and index */
1759 		rxr_remaining -= rqpv;
1760 		txr_remaining -= tqpv;
1761 		rxr_idx++;
1762 		txr_idx++;
1763 	}
1764 
1765 	return 0;
1766 
1767 err_out:
1768 	interface->num_tx_queues = 0;
1769 	interface->num_rx_queues = 0;
1770 	interface->num_q_vectors = 0;
1771 
1772 	while (v_idx--)
1773 		fm10k_free_q_vector(interface, v_idx);
1774 
1775 	return -ENOMEM;
1776 }
1777 
1778 /**
1779  * fm10k_free_q_vectors - Free memory allocated for interrupt vectors
1780  * @interface: board private structure to initialize
1781  *
1782  * This function frees the memory allocated to the q_vectors.  In addition if
1783  * NAPI is enabled it will delete any references to the NAPI struct prior
1784  * to freeing the q_vector.
1785  **/
1786 static void fm10k_free_q_vectors(struct fm10k_intfc *interface)
1787 {
1788 	int v_idx = interface->num_q_vectors;
1789 
1790 	interface->num_tx_queues = 0;
1791 	interface->num_rx_queues = 0;
1792 	interface->num_q_vectors = 0;
1793 
1794 	while (v_idx--)
1795 		fm10k_free_q_vector(interface, v_idx);
1796 }
1797 
1798 /**
1799  * f10k_reset_msix_capability - reset MSI-X capability
1800  * @interface: board private structure to initialize
1801  *
1802  * Reset the MSI-X capability back to its starting state
1803  **/
1804 static void fm10k_reset_msix_capability(struct fm10k_intfc *interface)
1805 {
1806 	pci_disable_msix(interface->pdev);
1807 	kfree(interface->msix_entries);
1808 	interface->msix_entries = NULL;
1809 }
1810 
1811 /**
1812  * f10k_init_msix_capability - configure MSI-X capability
1813  * @interface: board private structure to initialize
1814  *
1815  * Attempt to configure the interrupts using the best available
1816  * capabilities of the hardware and the kernel.
1817  **/
1818 static int fm10k_init_msix_capability(struct fm10k_intfc *interface)
1819 {
1820 	struct fm10k_hw *hw = &interface->hw;
1821 	int v_budget, vector;
1822 
1823 	/* It's easy to be greedy for MSI-X vectors, but it really
1824 	 * doesn't do us much good if we have a lot more vectors
1825 	 * than CPU's.  So let's be conservative and only ask for
1826 	 * (roughly) the same number of vectors as there are CPU's.
1827 	 * the default is to use pairs of vectors
1828 	 */
1829 	v_budget = max(interface->num_rx_queues, interface->num_tx_queues);
1830 	v_budget = min_t(u16, v_budget, num_online_cpus());
1831 
1832 	/* account for vectors not related to queues */
1833 	v_budget += NON_Q_VECTORS(hw);
1834 
1835 	/* At the same time, hardware can only support a maximum of
1836 	 * hw.mac->max_msix_vectors vectors.  With features
1837 	 * such as RSS and VMDq, we can easily surpass the number of Rx and Tx
1838 	 * descriptor queues supported by our device.  Thus, we cap it off in
1839 	 * those rare cases where the cpu count also exceeds our vector limit.
1840 	 */
1841 	v_budget = min_t(int, v_budget, hw->mac.max_msix_vectors);
1842 
1843 	/* A failure in MSI-X entry allocation is fatal. */
1844 	interface->msix_entries = kcalloc(v_budget, sizeof(struct msix_entry),
1845 					  GFP_KERNEL);
1846 	if (!interface->msix_entries)
1847 		return -ENOMEM;
1848 
1849 	/* populate entry values */
1850 	for (vector = 0; vector < v_budget; vector++)
1851 		interface->msix_entries[vector].entry = vector;
1852 
1853 	/* Attempt to enable MSI-X with requested value */
1854 	v_budget = pci_enable_msix_range(interface->pdev,
1855 					 interface->msix_entries,
1856 					 MIN_MSIX_COUNT(hw),
1857 					 v_budget);
1858 	if (v_budget < 0) {
1859 		kfree(interface->msix_entries);
1860 		interface->msix_entries = NULL;
1861 		return -ENOMEM;
1862 	}
1863 
1864 	/* record the number of queues available for q_vectors */
1865 	interface->num_q_vectors = v_budget - NON_Q_VECTORS(hw);
1866 
1867 	return 0;
1868 }
1869 
1870 /**
1871  * fm10k_cache_ring_qos - Descriptor ring to register mapping for QoS
1872  * @interface: Interface structure continaining rings and devices
1873  *
1874  * Cache the descriptor ring offsets for Qos
1875  **/
1876 static bool fm10k_cache_ring_qos(struct fm10k_intfc *interface)
1877 {
1878 	struct net_device *dev = interface->netdev;
1879 	int pc, offset, rss_i, i, q_idx;
1880 	u16 pc_stride = interface->ring_feature[RING_F_QOS].mask + 1;
1881 	u8 num_pcs = netdev_get_num_tc(dev);
1882 
1883 	if (num_pcs <= 1)
1884 		return false;
1885 
1886 	rss_i = interface->ring_feature[RING_F_RSS].indices;
1887 
1888 	for (pc = 0, offset = 0; pc < num_pcs; pc++, offset += rss_i) {
1889 		q_idx = pc;
1890 		for (i = 0; i < rss_i; i++) {
1891 			interface->tx_ring[offset + i]->reg_idx = q_idx;
1892 			interface->tx_ring[offset + i]->qos_pc = pc;
1893 			interface->rx_ring[offset + i]->reg_idx = q_idx;
1894 			interface->rx_ring[offset + i]->qos_pc = pc;
1895 			q_idx += pc_stride;
1896 		}
1897 	}
1898 
1899 	return true;
1900 }
1901 
1902 /**
1903  * fm10k_cache_ring_rss - Descriptor ring to register mapping for RSS
1904  * @interface: Interface structure continaining rings and devices
1905  *
1906  * Cache the descriptor ring offsets for RSS
1907  **/
1908 static void fm10k_cache_ring_rss(struct fm10k_intfc *interface)
1909 {
1910 	int i;
1911 
1912 	for (i = 0; i < interface->num_rx_queues; i++)
1913 		interface->rx_ring[i]->reg_idx = i;
1914 
1915 	for (i = 0; i < interface->num_tx_queues; i++)
1916 		interface->tx_ring[i]->reg_idx = i;
1917 }
1918 
1919 /**
1920  * fm10k_assign_rings - Map rings to network devices
1921  * @interface: Interface structure containing rings and devices
1922  *
1923  * This function is meant to go though and configure both the network
1924  * devices so that they contain rings, and configure the rings so that
1925  * they function with their network devices.
1926  **/
1927 static void fm10k_assign_rings(struct fm10k_intfc *interface)
1928 {
1929 	if (fm10k_cache_ring_qos(interface))
1930 		return;
1931 
1932 	fm10k_cache_ring_rss(interface);
1933 }
1934 
1935 static void fm10k_init_reta(struct fm10k_intfc *interface)
1936 {
1937 	u16 i, rss_i = interface->ring_feature[RING_F_RSS].indices;
1938 	u32 reta, base;
1939 
1940 	/* If the netdev is initialized we have to maintain table if possible */
1941 	if (interface->netdev->reg_state != NETREG_UNINITIALIZED) {
1942 		for (i = FM10K_RETA_SIZE; i--;) {
1943 			reta = interface->reta[i];
1944 			if ((((reta << 24) >> 24) < rss_i) &&
1945 			    (((reta << 16) >> 24) < rss_i) &&
1946 			    (((reta <<  8) >> 24) < rss_i) &&
1947 			    (((reta)       >> 24) < rss_i))
1948 				continue;
1949 			goto repopulate_reta;
1950 		}
1951 
1952 		/* do nothing if all of the elements are in bounds */
1953 		return;
1954 	}
1955 
1956 repopulate_reta:
1957 	/* Populate the redirection table 4 entries at a time.  To do this
1958 	 * we are generating the results for n and n+2 and then interleaving
1959 	 * those with the results with n+1 and n+3.
1960 	 */
1961 	for (i = FM10K_RETA_SIZE; i--;) {
1962 		/* first pass generates n and n+2 */
1963 		base = ((i * 0x00040004) + 0x00020000) * rss_i;
1964 		reta = (base & 0x3F803F80) >> 7;
1965 
1966 		/* second pass generates n+1 and n+3 */
1967 		base += 0x00010001 * rss_i;
1968 		reta |= (base & 0x3F803F80) << 1;
1969 
1970 		interface->reta[i] = reta;
1971 	}
1972 }
1973 
1974 /**
1975  * fm10k_init_queueing_scheme - Determine proper queueing scheme
1976  * @interface: board private structure to initialize
1977  *
1978  * We determine which queueing scheme to use based on...
1979  * - Hardware queue count (num_*_queues)
1980  *   - defined by miscellaneous hardware support/features (RSS, etc.)
1981  **/
1982 int fm10k_init_queueing_scheme(struct fm10k_intfc *interface)
1983 {
1984 	int err;
1985 
1986 	/* Number of supported queues */
1987 	fm10k_set_num_queues(interface);
1988 
1989 	/* Configure MSI-X capability */
1990 	err = fm10k_init_msix_capability(interface);
1991 	if (err) {
1992 		dev_err(&interface->pdev->dev,
1993 			"Unable to initialize MSI-X capability\n");
1994 		return err;
1995 	}
1996 
1997 	/* Allocate memory for queues */
1998 	err = fm10k_alloc_q_vectors(interface);
1999 	if (err) {
2000 		fm10k_reset_msix_capability(interface);
2001 		return err;
2002 	}
2003 
2004 	/* Map rings to devices, and map devices to physical queues */
2005 	fm10k_assign_rings(interface);
2006 
2007 	/* Initialize RSS redirection table */
2008 	fm10k_init_reta(interface);
2009 
2010 	return 0;
2011 }
2012 
2013 /**
2014  * fm10k_clear_queueing_scheme - Clear the current queueing scheme settings
2015  * @interface: board private structure to clear queueing scheme on
2016  *
2017  * We go through and clear queueing specific resources and reset the structure
2018  * to pre-load conditions
2019  **/
2020 void fm10k_clear_queueing_scheme(struct fm10k_intfc *interface)
2021 {
2022 	fm10k_free_q_vectors(interface);
2023 	fm10k_reset_msix_capability(interface);
2024 }
2025