1 /* Intel Ethernet Switch Host Interface Driver 2 * Copyright(c) 2013 - 2014 Intel Corporation. 3 * 4 * This program is free software; you can redistribute it and/or modify it 5 * under the terms and conditions of the GNU General Public License, 6 * version 2, as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope it will be useful, but WITHOUT 9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 11 * more details. 12 * 13 * The full GNU General Public License is included in this distribution in 14 * the file called "COPYING". 15 * 16 * Contact Information: 17 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> 18 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 19 */ 20 21 #include <linux/types.h> 22 #include <linux/module.h> 23 #include <net/ipv6.h> 24 #include <net/ip.h> 25 #include <net/tcp.h> 26 #include <linux/if_macvlan.h> 27 #include <linux/prefetch.h> 28 29 #include "fm10k.h" 30 31 #define DRV_VERSION "0.19.3-k" 32 const char fm10k_driver_version[] = DRV_VERSION; 33 char fm10k_driver_name[] = "fm10k"; 34 static const char fm10k_driver_string[] = 35 "Intel(R) Ethernet Switch Host Interface Driver"; 36 static const char fm10k_copyright[] = 37 "Copyright (c) 2013 Intel Corporation."; 38 39 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>"); 40 MODULE_DESCRIPTION("Intel(R) Ethernet Switch Host Interface Driver"); 41 MODULE_LICENSE("GPL"); 42 MODULE_VERSION(DRV_VERSION); 43 44 /* single workqueue for entire fm10k driver */ 45 struct workqueue_struct *fm10k_workqueue; 46 47 /** 48 * fm10k_init_module - Driver Registration Routine 49 * 50 * fm10k_init_module is the first routine called when the driver is 51 * loaded. All it does is register with the PCI subsystem. 52 **/ 53 static int __init fm10k_init_module(void) 54 { 55 pr_info("%s - version %s\n", fm10k_driver_string, fm10k_driver_version); 56 pr_info("%s\n", fm10k_copyright); 57 58 /* create driver workqueue */ 59 fm10k_workqueue = create_workqueue("fm10k"); 60 61 fm10k_dbg_init(); 62 63 return fm10k_register_pci_driver(); 64 } 65 module_init(fm10k_init_module); 66 67 /** 68 * fm10k_exit_module - Driver Exit Cleanup Routine 69 * 70 * fm10k_exit_module is called just before the driver is removed 71 * from memory. 72 **/ 73 static void __exit fm10k_exit_module(void) 74 { 75 fm10k_unregister_pci_driver(); 76 77 fm10k_dbg_exit(); 78 79 /* destroy driver workqueue */ 80 flush_workqueue(fm10k_workqueue); 81 destroy_workqueue(fm10k_workqueue); 82 } 83 module_exit(fm10k_exit_module); 84 85 static bool fm10k_alloc_mapped_page(struct fm10k_ring *rx_ring, 86 struct fm10k_rx_buffer *bi) 87 { 88 struct page *page = bi->page; 89 dma_addr_t dma; 90 91 /* Only page will be NULL if buffer was consumed */ 92 if (likely(page)) 93 return true; 94 95 /* alloc new page for storage */ 96 page = dev_alloc_page(); 97 if (unlikely(!page)) { 98 rx_ring->rx_stats.alloc_failed++; 99 return false; 100 } 101 102 /* map page for use */ 103 dma = dma_map_page(rx_ring->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE); 104 105 /* if mapping failed free memory back to system since 106 * there isn't much point in holding memory we can't use 107 */ 108 if (dma_mapping_error(rx_ring->dev, dma)) { 109 __free_page(page); 110 111 rx_ring->rx_stats.alloc_failed++; 112 return false; 113 } 114 115 bi->dma = dma; 116 bi->page = page; 117 bi->page_offset = 0; 118 119 return true; 120 } 121 122 /** 123 * fm10k_alloc_rx_buffers - Replace used receive buffers 124 * @rx_ring: ring to place buffers on 125 * @cleaned_count: number of buffers to replace 126 **/ 127 void fm10k_alloc_rx_buffers(struct fm10k_ring *rx_ring, u16 cleaned_count) 128 { 129 union fm10k_rx_desc *rx_desc; 130 struct fm10k_rx_buffer *bi; 131 u16 i = rx_ring->next_to_use; 132 133 /* nothing to do */ 134 if (!cleaned_count) 135 return; 136 137 rx_desc = FM10K_RX_DESC(rx_ring, i); 138 bi = &rx_ring->rx_buffer[i]; 139 i -= rx_ring->count; 140 141 do { 142 if (!fm10k_alloc_mapped_page(rx_ring, bi)) 143 break; 144 145 /* Refresh the desc even if buffer_addrs didn't change 146 * because each write-back erases this info. 147 */ 148 rx_desc->q.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset); 149 150 rx_desc++; 151 bi++; 152 i++; 153 if (unlikely(!i)) { 154 rx_desc = FM10K_RX_DESC(rx_ring, 0); 155 bi = rx_ring->rx_buffer; 156 i -= rx_ring->count; 157 } 158 159 /* clear the status bits for the next_to_use descriptor */ 160 rx_desc->d.staterr = 0; 161 162 cleaned_count--; 163 } while (cleaned_count); 164 165 i += rx_ring->count; 166 167 if (rx_ring->next_to_use != i) { 168 /* record the next descriptor to use */ 169 rx_ring->next_to_use = i; 170 171 /* update next to alloc since we have filled the ring */ 172 rx_ring->next_to_alloc = i; 173 174 /* Force memory writes to complete before letting h/w 175 * know there are new descriptors to fetch. (Only 176 * applicable for weak-ordered memory model archs, 177 * such as IA-64). 178 */ 179 wmb(); 180 181 /* notify hardware of new descriptors */ 182 writel(i, rx_ring->tail); 183 } 184 } 185 186 /** 187 * fm10k_reuse_rx_page - page flip buffer and store it back on the ring 188 * @rx_ring: rx descriptor ring to store buffers on 189 * @old_buff: donor buffer to have page reused 190 * 191 * Synchronizes page for reuse by the interface 192 **/ 193 static void fm10k_reuse_rx_page(struct fm10k_ring *rx_ring, 194 struct fm10k_rx_buffer *old_buff) 195 { 196 struct fm10k_rx_buffer *new_buff; 197 u16 nta = rx_ring->next_to_alloc; 198 199 new_buff = &rx_ring->rx_buffer[nta]; 200 201 /* update, and store next to alloc */ 202 nta++; 203 rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0; 204 205 /* transfer page from old buffer to new buffer */ 206 *new_buff = *old_buff; 207 208 /* sync the buffer for use by the device */ 209 dma_sync_single_range_for_device(rx_ring->dev, old_buff->dma, 210 old_buff->page_offset, 211 FM10K_RX_BUFSZ, 212 DMA_FROM_DEVICE); 213 } 214 215 static inline bool fm10k_page_is_reserved(struct page *page) 216 { 217 return (page_to_nid(page) != numa_mem_id()) || page_is_pfmemalloc(page); 218 } 219 220 static bool fm10k_can_reuse_rx_page(struct fm10k_rx_buffer *rx_buffer, 221 struct page *page, 222 unsigned int __maybe_unused truesize) 223 { 224 /* avoid re-using remote pages */ 225 if (unlikely(fm10k_page_is_reserved(page))) 226 return false; 227 228 #if (PAGE_SIZE < 8192) 229 /* if we are only owner of page we can reuse it */ 230 if (unlikely(page_count(page) != 1)) 231 return false; 232 233 /* flip page offset to other buffer */ 234 rx_buffer->page_offset ^= FM10K_RX_BUFSZ; 235 #else 236 /* move offset up to the next cache line */ 237 rx_buffer->page_offset += truesize; 238 239 if (rx_buffer->page_offset > (PAGE_SIZE - FM10K_RX_BUFSZ)) 240 return false; 241 #endif 242 243 /* Even if we own the page, we are not allowed to use atomic_set() 244 * This would break get_page_unless_zero() users. 245 */ 246 atomic_inc(&page->_count); 247 248 return true; 249 } 250 251 /** 252 * fm10k_add_rx_frag - Add contents of Rx buffer to sk_buff 253 * @rx_buffer: buffer containing page to add 254 * @rx_desc: descriptor containing length of buffer written by hardware 255 * @skb: sk_buff to place the data into 256 * 257 * This function will add the data contained in rx_buffer->page to the skb. 258 * This is done either through a direct copy if the data in the buffer is 259 * less than the skb header size, otherwise it will just attach the page as 260 * a frag to the skb. 261 * 262 * The function will then update the page offset if necessary and return 263 * true if the buffer can be reused by the interface. 264 **/ 265 static bool fm10k_add_rx_frag(struct fm10k_rx_buffer *rx_buffer, 266 union fm10k_rx_desc *rx_desc, 267 struct sk_buff *skb) 268 { 269 struct page *page = rx_buffer->page; 270 unsigned char *va = page_address(page) + rx_buffer->page_offset; 271 unsigned int size = le16_to_cpu(rx_desc->w.length); 272 #if (PAGE_SIZE < 8192) 273 unsigned int truesize = FM10K_RX_BUFSZ; 274 #else 275 unsigned int truesize = SKB_DATA_ALIGN(size); 276 #endif 277 unsigned int pull_len; 278 279 if (unlikely(skb_is_nonlinear(skb))) 280 goto add_tail_frag; 281 282 if (likely(size <= FM10K_RX_HDR_LEN)) { 283 memcpy(__skb_put(skb, size), va, ALIGN(size, sizeof(long))); 284 285 /* page is not reserved, we can reuse buffer as-is */ 286 if (likely(!fm10k_page_is_reserved(page))) 287 return true; 288 289 /* this page cannot be reused so discard it */ 290 __free_page(page); 291 return false; 292 } 293 294 /* we need the header to contain the greater of either ETH_HLEN or 295 * 60 bytes if the skb->len is less than 60 for skb_pad. 296 */ 297 pull_len = eth_get_headlen(va, FM10K_RX_HDR_LEN); 298 299 /* align pull length to size of long to optimize memcpy performance */ 300 memcpy(__skb_put(skb, pull_len), va, ALIGN(pull_len, sizeof(long))); 301 302 /* update all of the pointers */ 303 va += pull_len; 304 size -= pull_len; 305 306 add_tail_frag: 307 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page, 308 (unsigned long)va & ~PAGE_MASK, size, truesize); 309 310 return fm10k_can_reuse_rx_page(rx_buffer, page, truesize); 311 } 312 313 static struct sk_buff *fm10k_fetch_rx_buffer(struct fm10k_ring *rx_ring, 314 union fm10k_rx_desc *rx_desc, 315 struct sk_buff *skb) 316 { 317 struct fm10k_rx_buffer *rx_buffer; 318 struct page *page; 319 320 rx_buffer = &rx_ring->rx_buffer[rx_ring->next_to_clean]; 321 page = rx_buffer->page; 322 prefetchw(page); 323 324 if (likely(!skb)) { 325 void *page_addr = page_address(page) + 326 rx_buffer->page_offset; 327 328 /* prefetch first cache line of first page */ 329 prefetch(page_addr); 330 #if L1_CACHE_BYTES < 128 331 prefetch(page_addr + L1_CACHE_BYTES); 332 #endif 333 334 /* allocate a skb to store the frags */ 335 skb = napi_alloc_skb(&rx_ring->q_vector->napi, 336 FM10K_RX_HDR_LEN); 337 if (unlikely(!skb)) { 338 rx_ring->rx_stats.alloc_failed++; 339 return NULL; 340 } 341 342 /* we will be copying header into skb->data in 343 * pskb_may_pull so it is in our interest to prefetch 344 * it now to avoid a possible cache miss 345 */ 346 prefetchw(skb->data); 347 } 348 349 /* we are reusing so sync this buffer for CPU use */ 350 dma_sync_single_range_for_cpu(rx_ring->dev, 351 rx_buffer->dma, 352 rx_buffer->page_offset, 353 FM10K_RX_BUFSZ, 354 DMA_FROM_DEVICE); 355 356 /* pull page into skb */ 357 if (fm10k_add_rx_frag(rx_buffer, rx_desc, skb)) { 358 /* hand second half of page back to the ring */ 359 fm10k_reuse_rx_page(rx_ring, rx_buffer); 360 } else { 361 /* we are not reusing the buffer so unmap it */ 362 dma_unmap_page(rx_ring->dev, rx_buffer->dma, 363 PAGE_SIZE, DMA_FROM_DEVICE); 364 } 365 366 /* clear contents of rx_buffer */ 367 rx_buffer->page = NULL; 368 369 return skb; 370 } 371 372 static inline void fm10k_rx_checksum(struct fm10k_ring *ring, 373 union fm10k_rx_desc *rx_desc, 374 struct sk_buff *skb) 375 { 376 skb_checksum_none_assert(skb); 377 378 /* Rx checksum disabled via ethtool */ 379 if (!(ring->netdev->features & NETIF_F_RXCSUM)) 380 return; 381 382 /* TCP/UDP checksum error bit is set */ 383 if (fm10k_test_staterr(rx_desc, 384 FM10K_RXD_STATUS_L4E | 385 FM10K_RXD_STATUS_L4E2 | 386 FM10K_RXD_STATUS_IPE | 387 FM10K_RXD_STATUS_IPE2)) { 388 ring->rx_stats.csum_err++; 389 return; 390 } 391 392 /* It must be a TCP or UDP packet with a valid checksum */ 393 if (fm10k_test_staterr(rx_desc, FM10K_RXD_STATUS_L4CS2)) 394 skb->encapsulation = true; 395 else if (!fm10k_test_staterr(rx_desc, FM10K_RXD_STATUS_L4CS)) 396 return; 397 398 skb->ip_summed = CHECKSUM_UNNECESSARY; 399 400 ring->rx_stats.csum_good++; 401 } 402 403 #define FM10K_RSS_L4_TYPES_MASK \ 404 ((1ul << FM10K_RSSTYPE_IPV4_TCP) | \ 405 (1ul << FM10K_RSSTYPE_IPV4_UDP) | \ 406 (1ul << FM10K_RSSTYPE_IPV6_TCP) | \ 407 (1ul << FM10K_RSSTYPE_IPV6_UDP)) 408 409 static inline void fm10k_rx_hash(struct fm10k_ring *ring, 410 union fm10k_rx_desc *rx_desc, 411 struct sk_buff *skb) 412 { 413 u16 rss_type; 414 415 if (!(ring->netdev->features & NETIF_F_RXHASH)) 416 return; 417 418 rss_type = le16_to_cpu(rx_desc->w.pkt_info) & FM10K_RXD_RSSTYPE_MASK; 419 if (!rss_type) 420 return; 421 422 skb_set_hash(skb, le32_to_cpu(rx_desc->d.rss), 423 (FM10K_RSS_L4_TYPES_MASK & (1ul << rss_type)) ? 424 PKT_HASH_TYPE_L4 : PKT_HASH_TYPE_L3); 425 } 426 427 static void fm10k_rx_hwtstamp(struct fm10k_ring *rx_ring, 428 union fm10k_rx_desc *rx_desc, 429 struct sk_buff *skb) 430 { 431 struct fm10k_intfc *interface = rx_ring->q_vector->interface; 432 433 FM10K_CB(skb)->tstamp = rx_desc->q.timestamp; 434 435 if (unlikely(interface->flags & FM10K_FLAG_RX_TS_ENABLED)) 436 fm10k_systime_to_hwtstamp(interface, skb_hwtstamps(skb), 437 le64_to_cpu(rx_desc->q.timestamp)); 438 } 439 440 static void fm10k_type_trans(struct fm10k_ring *rx_ring, 441 union fm10k_rx_desc __maybe_unused *rx_desc, 442 struct sk_buff *skb) 443 { 444 struct net_device *dev = rx_ring->netdev; 445 struct fm10k_l2_accel *l2_accel = rcu_dereference_bh(rx_ring->l2_accel); 446 447 /* check to see if DGLORT belongs to a MACVLAN */ 448 if (l2_accel) { 449 u16 idx = le16_to_cpu(FM10K_CB(skb)->fi.w.dglort) - 1; 450 451 idx -= l2_accel->dglort; 452 if (idx < l2_accel->size && l2_accel->macvlan[idx]) 453 dev = l2_accel->macvlan[idx]; 454 else 455 l2_accel = NULL; 456 } 457 458 skb->protocol = eth_type_trans(skb, dev); 459 460 if (!l2_accel) 461 return; 462 463 /* update MACVLAN statistics */ 464 macvlan_count_rx(netdev_priv(dev), skb->len + ETH_HLEN, 1, 465 !!(rx_desc->w.hdr_info & 466 cpu_to_le16(FM10K_RXD_HDR_INFO_XC_MASK))); 467 } 468 469 /** 470 * fm10k_process_skb_fields - Populate skb header fields from Rx descriptor 471 * @rx_ring: rx descriptor ring packet is being transacted on 472 * @rx_desc: pointer to the EOP Rx descriptor 473 * @skb: pointer to current skb being populated 474 * 475 * This function checks the ring, descriptor, and packet information in 476 * order to populate the hash, checksum, VLAN, timestamp, protocol, and 477 * other fields within the skb. 478 **/ 479 static unsigned int fm10k_process_skb_fields(struct fm10k_ring *rx_ring, 480 union fm10k_rx_desc *rx_desc, 481 struct sk_buff *skb) 482 { 483 unsigned int len = skb->len; 484 485 fm10k_rx_hash(rx_ring, rx_desc, skb); 486 487 fm10k_rx_checksum(rx_ring, rx_desc, skb); 488 489 fm10k_rx_hwtstamp(rx_ring, rx_desc, skb); 490 491 FM10K_CB(skb)->fi.w.vlan = rx_desc->w.vlan; 492 493 skb_record_rx_queue(skb, rx_ring->queue_index); 494 495 FM10K_CB(skb)->fi.d.glort = rx_desc->d.glort; 496 497 if (rx_desc->w.vlan) { 498 u16 vid = le16_to_cpu(rx_desc->w.vlan); 499 500 if ((vid & VLAN_VID_MASK) != rx_ring->vid) 501 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid); 502 else if (vid & VLAN_PRIO_MASK) 503 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), 504 vid & VLAN_PRIO_MASK); 505 } 506 507 fm10k_type_trans(rx_ring, rx_desc, skb); 508 509 return len; 510 } 511 512 /** 513 * fm10k_is_non_eop - process handling of non-EOP buffers 514 * @rx_ring: Rx ring being processed 515 * @rx_desc: Rx descriptor for current buffer 516 * 517 * This function updates next to clean. If the buffer is an EOP buffer 518 * this function exits returning false, otherwise it will place the 519 * sk_buff in the next buffer to be chained and return true indicating 520 * that this is in fact a non-EOP buffer. 521 **/ 522 static bool fm10k_is_non_eop(struct fm10k_ring *rx_ring, 523 union fm10k_rx_desc *rx_desc) 524 { 525 u32 ntc = rx_ring->next_to_clean + 1; 526 527 /* fetch, update, and store next to clean */ 528 ntc = (ntc < rx_ring->count) ? ntc : 0; 529 rx_ring->next_to_clean = ntc; 530 531 prefetch(FM10K_RX_DESC(rx_ring, ntc)); 532 533 if (likely(fm10k_test_staterr(rx_desc, FM10K_RXD_STATUS_EOP))) 534 return false; 535 536 return true; 537 } 538 539 /** 540 * fm10k_cleanup_headers - Correct corrupted or empty headers 541 * @rx_ring: rx descriptor ring packet is being transacted on 542 * @rx_desc: pointer to the EOP Rx descriptor 543 * @skb: pointer to current skb being fixed 544 * 545 * Address the case where we are pulling data in on pages only 546 * and as such no data is present in the skb header. 547 * 548 * In addition if skb is not at least 60 bytes we need to pad it so that 549 * it is large enough to qualify as a valid Ethernet frame. 550 * 551 * Returns true if an error was encountered and skb was freed. 552 **/ 553 static bool fm10k_cleanup_headers(struct fm10k_ring *rx_ring, 554 union fm10k_rx_desc *rx_desc, 555 struct sk_buff *skb) 556 { 557 if (unlikely((fm10k_test_staterr(rx_desc, 558 FM10K_RXD_STATUS_RXE)))) { 559 #define FM10K_TEST_RXD_BIT(rxd, bit) \ 560 ((rxd)->w.csum_err & cpu_to_le16(bit)) 561 if (FM10K_TEST_RXD_BIT(rx_desc, FM10K_RXD_ERR_SWITCH_ERROR)) 562 rx_ring->rx_stats.switch_errors++; 563 if (FM10K_TEST_RXD_BIT(rx_desc, FM10K_RXD_ERR_NO_DESCRIPTOR)) 564 rx_ring->rx_stats.drops++; 565 if (FM10K_TEST_RXD_BIT(rx_desc, FM10K_RXD_ERR_PP_ERROR)) 566 rx_ring->rx_stats.pp_errors++; 567 if (FM10K_TEST_RXD_BIT(rx_desc, FM10K_RXD_ERR_SWITCH_READY)) 568 rx_ring->rx_stats.link_errors++; 569 if (FM10K_TEST_RXD_BIT(rx_desc, FM10K_RXD_ERR_TOO_BIG)) 570 rx_ring->rx_stats.length_errors++; 571 dev_kfree_skb_any(skb); 572 rx_ring->rx_stats.errors++; 573 return true; 574 } 575 576 /* if eth_skb_pad returns an error the skb was freed */ 577 if (eth_skb_pad(skb)) 578 return true; 579 580 return false; 581 } 582 583 /** 584 * fm10k_receive_skb - helper function to handle rx indications 585 * @q_vector: structure containing interrupt and ring information 586 * @skb: packet to send up 587 **/ 588 static void fm10k_receive_skb(struct fm10k_q_vector *q_vector, 589 struct sk_buff *skb) 590 { 591 napi_gro_receive(&q_vector->napi, skb); 592 } 593 594 static int fm10k_clean_rx_irq(struct fm10k_q_vector *q_vector, 595 struct fm10k_ring *rx_ring, 596 int budget) 597 { 598 struct sk_buff *skb = rx_ring->skb; 599 unsigned int total_bytes = 0, total_packets = 0; 600 u16 cleaned_count = fm10k_desc_unused(rx_ring); 601 602 while (likely(total_packets < budget)) { 603 union fm10k_rx_desc *rx_desc; 604 605 /* return some buffers to hardware, one at a time is too slow */ 606 if (cleaned_count >= FM10K_RX_BUFFER_WRITE) { 607 fm10k_alloc_rx_buffers(rx_ring, cleaned_count); 608 cleaned_count = 0; 609 } 610 611 rx_desc = FM10K_RX_DESC(rx_ring, rx_ring->next_to_clean); 612 613 if (!rx_desc->d.staterr) 614 break; 615 616 /* This memory barrier is needed to keep us from reading 617 * any other fields out of the rx_desc until we know the 618 * descriptor has been written back 619 */ 620 dma_rmb(); 621 622 /* retrieve a buffer from the ring */ 623 skb = fm10k_fetch_rx_buffer(rx_ring, rx_desc, skb); 624 625 /* exit if we failed to retrieve a buffer */ 626 if (!skb) 627 break; 628 629 cleaned_count++; 630 631 /* fetch next buffer in frame if non-eop */ 632 if (fm10k_is_non_eop(rx_ring, rx_desc)) 633 continue; 634 635 /* verify the packet layout is correct */ 636 if (fm10k_cleanup_headers(rx_ring, rx_desc, skb)) { 637 skb = NULL; 638 continue; 639 } 640 641 /* populate checksum, timestamp, VLAN, and protocol */ 642 total_bytes += fm10k_process_skb_fields(rx_ring, rx_desc, skb); 643 644 fm10k_receive_skb(q_vector, skb); 645 646 /* reset skb pointer */ 647 skb = NULL; 648 649 /* update budget accounting */ 650 total_packets++; 651 } 652 653 /* place incomplete frames back on ring for completion */ 654 rx_ring->skb = skb; 655 656 u64_stats_update_begin(&rx_ring->syncp); 657 rx_ring->stats.packets += total_packets; 658 rx_ring->stats.bytes += total_bytes; 659 u64_stats_update_end(&rx_ring->syncp); 660 q_vector->rx.total_packets += total_packets; 661 q_vector->rx.total_bytes += total_bytes; 662 663 return total_packets; 664 } 665 666 #define VXLAN_HLEN (sizeof(struct udphdr) + 8) 667 static struct ethhdr *fm10k_port_is_vxlan(struct sk_buff *skb) 668 { 669 struct fm10k_intfc *interface = netdev_priv(skb->dev); 670 struct fm10k_vxlan_port *vxlan_port; 671 672 /* we can only offload a vxlan if we recognize it as such */ 673 vxlan_port = list_first_entry_or_null(&interface->vxlan_port, 674 struct fm10k_vxlan_port, list); 675 676 if (!vxlan_port) 677 return NULL; 678 if (vxlan_port->port != udp_hdr(skb)->dest) 679 return NULL; 680 681 /* return offset of udp_hdr plus 8 bytes for VXLAN header */ 682 return (struct ethhdr *)(skb_transport_header(skb) + VXLAN_HLEN); 683 } 684 685 #define FM10K_NVGRE_RESERVED0_FLAGS htons(0x9FFF) 686 #define NVGRE_TNI htons(0x2000) 687 struct fm10k_nvgre_hdr { 688 __be16 flags; 689 __be16 proto; 690 __be32 tni; 691 }; 692 693 static struct ethhdr *fm10k_gre_is_nvgre(struct sk_buff *skb) 694 { 695 struct fm10k_nvgre_hdr *nvgre_hdr; 696 int hlen = ip_hdrlen(skb); 697 698 /* currently only IPv4 is supported due to hlen above */ 699 if (vlan_get_protocol(skb) != htons(ETH_P_IP)) 700 return NULL; 701 702 /* our transport header should be NVGRE */ 703 nvgre_hdr = (struct fm10k_nvgre_hdr *)(skb_network_header(skb) + hlen); 704 705 /* verify all reserved flags are 0 */ 706 if (nvgre_hdr->flags & FM10K_NVGRE_RESERVED0_FLAGS) 707 return NULL; 708 709 /* report start of ethernet header */ 710 if (nvgre_hdr->flags & NVGRE_TNI) 711 return (struct ethhdr *)(nvgre_hdr + 1); 712 713 return (struct ethhdr *)(&nvgre_hdr->tni); 714 } 715 716 __be16 fm10k_tx_encap_offload(struct sk_buff *skb) 717 { 718 u8 l4_hdr = 0, inner_l4_hdr = 0, inner_l4_hlen; 719 struct ethhdr *eth_hdr; 720 721 if (skb->inner_protocol_type != ENCAP_TYPE_ETHER || 722 skb->inner_protocol != htons(ETH_P_TEB)) 723 return 0; 724 725 switch (vlan_get_protocol(skb)) { 726 case htons(ETH_P_IP): 727 l4_hdr = ip_hdr(skb)->protocol; 728 break; 729 case htons(ETH_P_IPV6): 730 l4_hdr = ipv6_hdr(skb)->nexthdr; 731 break; 732 default: 733 return 0; 734 } 735 736 switch (l4_hdr) { 737 case IPPROTO_UDP: 738 eth_hdr = fm10k_port_is_vxlan(skb); 739 break; 740 case IPPROTO_GRE: 741 eth_hdr = fm10k_gre_is_nvgre(skb); 742 break; 743 default: 744 return 0; 745 } 746 747 if (!eth_hdr) 748 return 0; 749 750 switch (eth_hdr->h_proto) { 751 case htons(ETH_P_IP): 752 inner_l4_hdr = inner_ip_hdr(skb)->protocol; 753 break; 754 case htons(ETH_P_IPV6): 755 inner_l4_hdr = inner_ipv6_hdr(skb)->nexthdr; 756 break; 757 default: 758 return 0; 759 } 760 761 switch (inner_l4_hdr) { 762 case IPPROTO_TCP: 763 inner_l4_hlen = inner_tcp_hdrlen(skb); 764 break; 765 case IPPROTO_UDP: 766 inner_l4_hlen = 8; 767 break; 768 default: 769 return 0; 770 } 771 772 /* The hardware allows tunnel offloads only if the combined inner and 773 * outer header is 184 bytes or less 774 */ 775 if (skb_inner_transport_header(skb) + inner_l4_hlen - 776 skb_mac_header(skb) > FM10K_TUNNEL_HEADER_LENGTH) 777 return 0; 778 779 return eth_hdr->h_proto; 780 } 781 782 static int fm10k_tso(struct fm10k_ring *tx_ring, 783 struct fm10k_tx_buffer *first) 784 { 785 struct sk_buff *skb = first->skb; 786 struct fm10k_tx_desc *tx_desc; 787 unsigned char *th; 788 u8 hdrlen; 789 790 if (skb->ip_summed != CHECKSUM_PARTIAL) 791 return 0; 792 793 if (!skb_is_gso(skb)) 794 return 0; 795 796 /* compute header lengths */ 797 if (skb->encapsulation) { 798 if (!fm10k_tx_encap_offload(skb)) 799 goto err_vxlan; 800 th = skb_inner_transport_header(skb); 801 } else { 802 th = skb_transport_header(skb); 803 } 804 805 /* compute offset from SOF to transport header and add header len */ 806 hdrlen = (th - skb->data) + (((struct tcphdr *)th)->doff << 2); 807 808 first->tx_flags |= FM10K_TX_FLAGS_CSUM; 809 810 /* update gso size and bytecount with header size */ 811 first->gso_segs = skb_shinfo(skb)->gso_segs; 812 first->bytecount += (first->gso_segs - 1) * hdrlen; 813 814 /* populate Tx descriptor header size and mss */ 815 tx_desc = FM10K_TX_DESC(tx_ring, tx_ring->next_to_use); 816 tx_desc->hdrlen = hdrlen; 817 tx_desc->mss = cpu_to_le16(skb_shinfo(skb)->gso_size); 818 819 return 1; 820 err_vxlan: 821 tx_ring->netdev->features &= ~NETIF_F_GSO_UDP_TUNNEL; 822 if (!net_ratelimit()) 823 netdev_err(tx_ring->netdev, 824 "TSO requested for unsupported tunnel, disabling offload\n"); 825 return -1; 826 } 827 828 static void fm10k_tx_csum(struct fm10k_ring *tx_ring, 829 struct fm10k_tx_buffer *first) 830 { 831 struct sk_buff *skb = first->skb; 832 struct fm10k_tx_desc *tx_desc; 833 union { 834 struct iphdr *ipv4; 835 struct ipv6hdr *ipv6; 836 u8 *raw; 837 } network_hdr; 838 __be16 protocol; 839 u8 l4_hdr = 0; 840 841 if (skb->ip_summed != CHECKSUM_PARTIAL) 842 goto no_csum; 843 844 if (skb->encapsulation) { 845 protocol = fm10k_tx_encap_offload(skb); 846 if (!protocol) { 847 if (skb_checksum_help(skb)) { 848 dev_warn(tx_ring->dev, 849 "failed to offload encap csum!\n"); 850 tx_ring->tx_stats.csum_err++; 851 } 852 goto no_csum; 853 } 854 network_hdr.raw = skb_inner_network_header(skb); 855 } else { 856 protocol = vlan_get_protocol(skb); 857 network_hdr.raw = skb_network_header(skb); 858 } 859 860 switch (protocol) { 861 case htons(ETH_P_IP): 862 l4_hdr = network_hdr.ipv4->protocol; 863 break; 864 case htons(ETH_P_IPV6): 865 l4_hdr = network_hdr.ipv6->nexthdr; 866 break; 867 default: 868 if (unlikely(net_ratelimit())) { 869 dev_warn(tx_ring->dev, 870 "partial checksum but ip version=%x!\n", 871 protocol); 872 } 873 tx_ring->tx_stats.csum_err++; 874 goto no_csum; 875 } 876 877 switch (l4_hdr) { 878 case IPPROTO_TCP: 879 case IPPROTO_UDP: 880 break; 881 case IPPROTO_GRE: 882 if (skb->encapsulation) 883 break; 884 default: 885 if (unlikely(net_ratelimit())) { 886 dev_warn(tx_ring->dev, 887 "partial checksum but l4 proto=%x!\n", 888 l4_hdr); 889 } 890 tx_ring->tx_stats.csum_err++; 891 goto no_csum; 892 } 893 894 /* update TX checksum flag */ 895 first->tx_flags |= FM10K_TX_FLAGS_CSUM; 896 tx_ring->tx_stats.csum_good++; 897 898 no_csum: 899 /* populate Tx descriptor header size and mss */ 900 tx_desc = FM10K_TX_DESC(tx_ring, tx_ring->next_to_use); 901 tx_desc->hdrlen = 0; 902 tx_desc->mss = 0; 903 } 904 905 #define FM10K_SET_FLAG(_input, _flag, _result) \ 906 ((_flag <= _result) ? \ 907 ((u32)(_input & _flag) * (_result / _flag)) : \ 908 ((u32)(_input & _flag) / (_flag / _result))) 909 910 static u8 fm10k_tx_desc_flags(struct sk_buff *skb, u32 tx_flags) 911 { 912 /* set type for advanced descriptor with frame checksum insertion */ 913 u32 desc_flags = 0; 914 915 /* set timestamping bits */ 916 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && 917 likely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) 918 desc_flags |= FM10K_TXD_FLAG_TIME; 919 920 /* set checksum offload bits */ 921 desc_flags |= FM10K_SET_FLAG(tx_flags, FM10K_TX_FLAGS_CSUM, 922 FM10K_TXD_FLAG_CSUM); 923 924 return desc_flags; 925 } 926 927 static bool fm10k_tx_desc_push(struct fm10k_ring *tx_ring, 928 struct fm10k_tx_desc *tx_desc, u16 i, 929 dma_addr_t dma, unsigned int size, u8 desc_flags) 930 { 931 /* set RS and INT for last frame in a cache line */ 932 if ((++i & (FM10K_TXD_WB_FIFO_SIZE - 1)) == 0) 933 desc_flags |= FM10K_TXD_FLAG_RS | FM10K_TXD_FLAG_INT; 934 935 /* record values to descriptor */ 936 tx_desc->buffer_addr = cpu_to_le64(dma); 937 tx_desc->flags = desc_flags; 938 tx_desc->buflen = cpu_to_le16(size); 939 940 /* return true if we just wrapped the ring */ 941 return i == tx_ring->count; 942 } 943 944 static int __fm10k_maybe_stop_tx(struct fm10k_ring *tx_ring, u16 size) 945 { 946 netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index); 947 948 /* Memory barrier before checking head and tail */ 949 smp_mb(); 950 951 /* Check again in a case another CPU has just made room available */ 952 if (likely(fm10k_desc_unused(tx_ring) < size)) 953 return -EBUSY; 954 955 /* A reprieve! - use start_queue because it doesn't call schedule */ 956 netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index); 957 ++tx_ring->tx_stats.restart_queue; 958 return 0; 959 } 960 961 static inline int fm10k_maybe_stop_tx(struct fm10k_ring *tx_ring, u16 size) 962 { 963 if (likely(fm10k_desc_unused(tx_ring) >= size)) 964 return 0; 965 return __fm10k_maybe_stop_tx(tx_ring, size); 966 } 967 968 static void fm10k_tx_map(struct fm10k_ring *tx_ring, 969 struct fm10k_tx_buffer *first) 970 { 971 struct sk_buff *skb = first->skb; 972 struct fm10k_tx_buffer *tx_buffer; 973 struct fm10k_tx_desc *tx_desc; 974 struct skb_frag_struct *frag; 975 unsigned char *data; 976 dma_addr_t dma; 977 unsigned int data_len, size; 978 u32 tx_flags = first->tx_flags; 979 u16 i = tx_ring->next_to_use; 980 u8 flags = fm10k_tx_desc_flags(skb, tx_flags); 981 982 tx_desc = FM10K_TX_DESC(tx_ring, i); 983 984 /* add HW VLAN tag */ 985 if (skb_vlan_tag_present(skb)) 986 tx_desc->vlan = cpu_to_le16(skb_vlan_tag_get(skb)); 987 else 988 tx_desc->vlan = 0; 989 990 size = skb_headlen(skb); 991 data = skb->data; 992 993 dma = dma_map_single(tx_ring->dev, data, size, DMA_TO_DEVICE); 994 995 data_len = skb->data_len; 996 tx_buffer = first; 997 998 for (frag = &skb_shinfo(skb)->frags[0];; frag++) { 999 if (dma_mapping_error(tx_ring->dev, dma)) 1000 goto dma_error; 1001 1002 /* record length, and DMA address */ 1003 dma_unmap_len_set(tx_buffer, len, size); 1004 dma_unmap_addr_set(tx_buffer, dma, dma); 1005 1006 while (unlikely(size > FM10K_MAX_DATA_PER_TXD)) { 1007 if (fm10k_tx_desc_push(tx_ring, tx_desc++, i++, dma, 1008 FM10K_MAX_DATA_PER_TXD, flags)) { 1009 tx_desc = FM10K_TX_DESC(tx_ring, 0); 1010 i = 0; 1011 } 1012 1013 dma += FM10K_MAX_DATA_PER_TXD; 1014 size -= FM10K_MAX_DATA_PER_TXD; 1015 } 1016 1017 if (likely(!data_len)) 1018 break; 1019 1020 if (fm10k_tx_desc_push(tx_ring, tx_desc++, i++, 1021 dma, size, flags)) { 1022 tx_desc = FM10K_TX_DESC(tx_ring, 0); 1023 i = 0; 1024 } 1025 1026 size = skb_frag_size(frag); 1027 data_len -= size; 1028 1029 dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size, 1030 DMA_TO_DEVICE); 1031 1032 tx_buffer = &tx_ring->tx_buffer[i]; 1033 } 1034 1035 /* write last descriptor with LAST bit set */ 1036 flags |= FM10K_TXD_FLAG_LAST; 1037 1038 if (fm10k_tx_desc_push(tx_ring, tx_desc, i++, dma, size, flags)) 1039 i = 0; 1040 1041 /* record bytecount for BQL */ 1042 netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount); 1043 1044 /* record SW timestamp if HW timestamp is not available */ 1045 skb_tx_timestamp(first->skb); 1046 1047 /* Force memory writes to complete before letting h/w know there 1048 * are new descriptors to fetch. (Only applicable for weak-ordered 1049 * memory model archs, such as IA-64). 1050 * 1051 * We also need this memory barrier to make certain all of the 1052 * status bits have been updated before next_to_watch is written. 1053 */ 1054 wmb(); 1055 1056 /* set next_to_watch value indicating a packet is present */ 1057 first->next_to_watch = tx_desc; 1058 1059 tx_ring->next_to_use = i; 1060 1061 /* Make sure there is space in the ring for the next send. */ 1062 fm10k_maybe_stop_tx(tx_ring, DESC_NEEDED); 1063 1064 /* notify HW of packet */ 1065 if (netif_xmit_stopped(txring_txq(tx_ring)) || !skb->xmit_more) { 1066 writel(i, tx_ring->tail); 1067 1068 /* we need this if more than one processor can write to our tail 1069 * at a time, it synchronizes IO on IA64/Altix systems 1070 */ 1071 mmiowb(); 1072 } 1073 1074 return; 1075 dma_error: 1076 dev_err(tx_ring->dev, "TX DMA map failed\n"); 1077 1078 /* clear dma mappings for failed tx_buffer map */ 1079 for (;;) { 1080 tx_buffer = &tx_ring->tx_buffer[i]; 1081 fm10k_unmap_and_free_tx_resource(tx_ring, tx_buffer); 1082 if (tx_buffer == first) 1083 break; 1084 if (i == 0) 1085 i = tx_ring->count; 1086 i--; 1087 } 1088 1089 tx_ring->next_to_use = i; 1090 } 1091 1092 netdev_tx_t fm10k_xmit_frame_ring(struct sk_buff *skb, 1093 struct fm10k_ring *tx_ring) 1094 { 1095 u16 count = TXD_USE_COUNT(skb_headlen(skb)); 1096 struct fm10k_tx_buffer *first; 1097 unsigned short f; 1098 u32 tx_flags = 0; 1099 int tso; 1100 1101 /* need: 1 descriptor per page * PAGE_SIZE/FM10K_MAX_DATA_PER_TXD, 1102 * + 1 desc for skb_headlen/FM10K_MAX_DATA_PER_TXD, 1103 * + 2 desc gap to keep tail from touching head 1104 * otherwise try next time 1105 */ 1106 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) 1107 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size); 1108 1109 if (fm10k_maybe_stop_tx(tx_ring, count + 3)) { 1110 tx_ring->tx_stats.tx_busy++; 1111 return NETDEV_TX_BUSY; 1112 } 1113 1114 /* record the location of the first descriptor for this packet */ 1115 first = &tx_ring->tx_buffer[tx_ring->next_to_use]; 1116 first->skb = skb; 1117 first->bytecount = max_t(unsigned int, skb->len, ETH_ZLEN); 1118 first->gso_segs = 1; 1119 1120 /* record initial flags and protocol */ 1121 first->tx_flags = tx_flags; 1122 1123 tso = fm10k_tso(tx_ring, first); 1124 if (tso < 0) 1125 goto out_drop; 1126 else if (!tso) 1127 fm10k_tx_csum(tx_ring, first); 1128 1129 fm10k_tx_map(tx_ring, first); 1130 1131 return NETDEV_TX_OK; 1132 1133 out_drop: 1134 dev_kfree_skb_any(first->skb); 1135 first->skb = NULL; 1136 1137 return NETDEV_TX_OK; 1138 } 1139 1140 static u64 fm10k_get_tx_completed(struct fm10k_ring *ring) 1141 { 1142 return ring->stats.packets; 1143 } 1144 1145 static u64 fm10k_get_tx_pending(struct fm10k_ring *ring) 1146 { 1147 /* use SW head and tail until we have real hardware */ 1148 u32 head = ring->next_to_clean; 1149 u32 tail = ring->next_to_use; 1150 1151 return ((head <= tail) ? tail : tail + ring->count) - head; 1152 } 1153 1154 bool fm10k_check_tx_hang(struct fm10k_ring *tx_ring) 1155 { 1156 u32 tx_done = fm10k_get_tx_completed(tx_ring); 1157 u32 tx_done_old = tx_ring->tx_stats.tx_done_old; 1158 u32 tx_pending = fm10k_get_tx_pending(tx_ring); 1159 1160 clear_check_for_tx_hang(tx_ring); 1161 1162 /* Check for a hung queue, but be thorough. This verifies 1163 * that a transmit has been completed since the previous 1164 * check AND there is at least one packet pending. By 1165 * requiring this to fail twice we avoid races with 1166 * clearing the ARMED bit and conditions where we 1167 * run the check_tx_hang logic with a transmit completion 1168 * pending but without time to complete it yet. 1169 */ 1170 if (!tx_pending || (tx_done_old != tx_done)) { 1171 /* update completed stats and continue */ 1172 tx_ring->tx_stats.tx_done_old = tx_done; 1173 /* reset the countdown */ 1174 clear_bit(__FM10K_HANG_CHECK_ARMED, &tx_ring->state); 1175 1176 return false; 1177 } 1178 1179 /* make sure it is true for two checks in a row */ 1180 return test_and_set_bit(__FM10K_HANG_CHECK_ARMED, &tx_ring->state); 1181 } 1182 1183 /** 1184 * fm10k_tx_timeout_reset - initiate reset due to Tx timeout 1185 * @interface: driver private struct 1186 **/ 1187 void fm10k_tx_timeout_reset(struct fm10k_intfc *interface) 1188 { 1189 /* Do the reset outside of interrupt context */ 1190 if (!test_bit(__FM10K_DOWN, &interface->state)) { 1191 interface->tx_timeout_count++; 1192 interface->flags |= FM10K_FLAG_RESET_REQUESTED; 1193 fm10k_service_event_schedule(interface); 1194 } 1195 } 1196 1197 /** 1198 * fm10k_clean_tx_irq - Reclaim resources after transmit completes 1199 * @q_vector: structure containing interrupt and ring information 1200 * @tx_ring: tx ring to clean 1201 **/ 1202 static bool fm10k_clean_tx_irq(struct fm10k_q_vector *q_vector, 1203 struct fm10k_ring *tx_ring) 1204 { 1205 struct fm10k_intfc *interface = q_vector->interface; 1206 struct fm10k_tx_buffer *tx_buffer; 1207 struct fm10k_tx_desc *tx_desc; 1208 unsigned int total_bytes = 0, total_packets = 0; 1209 unsigned int budget = q_vector->tx.work_limit; 1210 unsigned int i = tx_ring->next_to_clean; 1211 1212 if (test_bit(__FM10K_DOWN, &interface->state)) 1213 return true; 1214 1215 tx_buffer = &tx_ring->tx_buffer[i]; 1216 tx_desc = FM10K_TX_DESC(tx_ring, i); 1217 i -= tx_ring->count; 1218 1219 do { 1220 struct fm10k_tx_desc *eop_desc = tx_buffer->next_to_watch; 1221 1222 /* if next_to_watch is not set then there is no work pending */ 1223 if (!eop_desc) 1224 break; 1225 1226 /* prevent any other reads prior to eop_desc */ 1227 read_barrier_depends(); 1228 1229 /* if DD is not set pending work has not been completed */ 1230 if (!(eop_desc->flags & FM10K_TXD_FLAG_DONE)) 1231 break; 1232 1233 /* clear next_to_watch to prevent false hangs */ 1234 tx_buffer->next_to_watch = NULL; 1235 1236 /* update the statistics for this packet */ 1237 total_bytes += tx_buffer->bytecount; 1238 total_packets += tx_buffer->gso_segs; 1239 1240 /* free the skb */ 1241 dev_consume_skb_any(tx_buffer->skb); 1242 1243 /* unmap skb header data */ 1244 dma_unmap_single(tx_ring->dev, 1245 dma_unmap_addr(tx_buffer, dma), 1246 dma_unmap_len(tx_buffer, len), 1247 DMA_TO_DEVICE); 1248 1249 /* clear tx_buffer data */ 1250 tx_buffer->skb = NULL; 1251 dma_unmap_len_set(tx_buffer, len, 0); 1252 1253 /* unmap remaining buffers */ 1254 while (tx_desc != eop_desc) { 1255 tx_buffer++; 1256 tx_desc++; 1257 i++; 1258 if (unlikely(!i)) { 1259 i -= tx_ring->count; 1260 tx_buffer = tx_ring->tx_buffer; 1261 tx_desc = FM10K_TX_DESC(tx_ring, 0); 1262 } 1263 1264 /* unmap any remaining paged data */ 1265 if (dma_unmap_len(tx_buffer, len)) { 1266 dma_unmap_page(tx_ring->dev, 1267 dma_unmap_addr(tx_buffer, dma), 1268 dma_unmap_len(tx_buffer, len), 1269 DMA_TO_DEVICE); 1270 dma_unmap_len_set(tx_buffer, len, 0); 1271 } 1272 } 1273 1274 /* move us one more past the eop_desc for start of next pkt */ 1275 tx_buffer++; 1276 tx_desc++; 1277 i++; 1278 if (unlikely(!i)) { 1279 i -= tx_ring->count; 1280 tx_buffer = tx_ring->tx_buffer; 1281 tx_desc = FM10K_TX_DESC(tx_ring, 0); 1282 } 1283 1284 /* issue prefetch for next Tx descriptor */ 1285 prefetch(tx_desc); 1286 1287 /* update budget accounting */ 1288 budget--; 1289 } while (likely(budget)); 1290 1291 i += tx_ring->count; 1292 tx_ring->next_to_clean = i; 1293 u64_stats_update_begin(&tx_ring->syncp); 1294 tx_ring->stats.bytes += total_bytes; 1295 tx_ring->stats.packets += total_packets; 1296 u64_stats_update_end(&tx_ring->syncp); 1297 q_vector->tx.total_bytes += total_bytes; 1298 q_vector->tx.total_packets += total_packets; 1299 1300 if (check_for_tx_hang(tx_ring) && fm10k_check_tx_hang(tx_ring)) { 1301 /* schedule immediate reset if we believe we hung */ 1302 struct fm10k_hw *hw = &interface->hw; 1303 1304 netif_err(interface, drv, tx_ring->netdev, 1305 "Detected Tx Unit Hang\n" 1306 " Tx Queue <%d>\n" 1307 " TDH, TDT <%x>, <%x>\n" 1308 " next_to_use <%x>\n" 1309 " next_to_clean <%x>\n", 1310 tx_ring->queue_index, 1311 fm10k_read_reg(hw, FM10K_TDH(tx_ring->reg_idx)), 1312 fm10k_read_reg(hw, FM10K_TDT(tx_ring->reg_idx)), 1313 tx_ring->next_to_use, i); 1314 1315 netif_stop_subqueue(tx_ring->netdev, 1316 tx_ring->queue_index); 1317 1318 netif_info(interface, probe, tx_ring->netdev, 1319 "tx hang %d detected on queue %d, resetting interface\n", 1320 interface->tx_timeout_count + 1, 1321 tx_ring->queue_index); 1322 1323 fm10k_tx_timeout_reset(interface); 1324 1325 /* the netdev is about to reset, no point in enabling stuff */ 1326 return true; 1327 } 1328 1329 /* notify netdev of completed buffers */ 1330 netdev_tx_completed_queue(txring_txq(tx_ring), 1331 total_packets, total_bytes); 1332 1333 #define TX_WAKE_THRESHOLD min_t(u16, FM10K_MIN_TXD - 1, DESC_NEEDED * 2) 1334 if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) && 1335 (fm10k_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD))) { 1336 /* Make sure that anybody stopping the queue after this 1337 * sees the new next_to_clean. 1338 */ 1339 smp_mb(); 1340 if (__netif_subqueue_stopped(tx_ring->netdev, 1341 tx_ring->queue_index) && 1342 !test_bit(__FM10K_DOWN, &interface->state)) { 1343 netif_wake_subqueue(tx_ring->netdev, 1344 tx_ring->queue_index); 1345 ++tx_ring->tx_stats.restart_queue; 1346 } 1347 } 1348 1349 return !!budget; 1350 } 1351 1352 /** 1353 * fm10k_update_itr - update the dynamic ITR value based on packet size 1354 * 1355 * Stores a new ITR value based on strictly on packet size. The 1356 * divisors and thresholds used by this function were determined based 1357 * on theoretical maximum wire speed and testing data, in order to 1358 * minimize response time while increasing bulk throughput. 1359 * 1360 * @ring_container: Container for rings to have ITR updated 1361 **/ 1362 static void fm10k_update_itr(struct fm10k_ring_container *ring_container) 1363 { 1364 unsigned int avg_wire_size, packets, itr_round; 1365 1366 /* Only update ITR if we are using adaptive setting */ 1367 if (!ITR_IS_ADAPTIVE(ring_container->itr)) 1368 goto clear_counts; 1369 1370 packets = ring_container->total_packets; 1371 if (!packets) 1372 goto clear_counts; 1373 1374 avg_wire_size = ring_container->total_bytes / packets; 1375 1376 /* The following is a crude approximation of: 1377 * wmem_default / (size + overhead) = desired_pkts_per_int 1378 * rate / bits_per_byte / (size + ethernet overhead) = pkt_rate 1379 * (desired_pkt_rate / pkt_rate) * usecs_per_sec = ITR value 1380 * 1381 * Assuming wmem_default is 212992 and overhead is 640 bytes per 1382 * packet, (256 skb, 64 headroom, 320 shared info), we can reduce the 1383 * formula down to 1384 * 1385 * (34 * (size + 24)) / (size + 640) = ITR 1386 * 1387 * We first do some math on the packet size and then finally bitshift 1388 * by 8 after rounding up. We also have to account for PCIe link speed 1389 * difference as ITR scales based on this. 1390 */ 1391 if (avg_wire_size <= 360) { 1392 /* Start at 250K ints/sec and gradually drop to 77K ints/sec */ 1393 avg_wire_size *= 8; 1394 avg_wire_size += 376; 1395 } else if (avg_wire_size <= 1152) { 1396 /* 77K ints/sec to 45K ints/sec */ 1397 avg_wire_size *= 3; 1398 avg_wire_size += 2176; 1399 } else if (avg_wire_size <= 1920) { 1400 /* 45K ints/sec to 38K ints/sec */ 1401 avg_wire_size += 4480; 1402 } else { 1403 /* plateau at a limit of 38K ints/sec */ 1404 avg_wire_size = 6656; 1405 } 1406 1407 /* Perform final bitshift for division after rounding up to ensure 1408 * that the calculation will never get below a 1. The bit shift 1409 * accounts for changes in the ITR due to PCIe link speed. 1410 */ 1411 itr_round = ACCESS_ONCE(ring_container->itr_scale) + 8; 1412 avg_wire_size += (1 << itr_round) - 1; 1413 avg_wire_size >>= itr_round; 1414 1415 /* write back value and retain adaptive flag */ 1416 ring_container->itr = avg_wire_size | FM10K_ITR_ADAPTIVE; 1417 1418 clear_counts: 1419 ring_container->total_bytes = 0; 1420 ring_container->total_packets = 0; 1421 } 1422 1423 static void fm10k_qv_enable(struct fm10k_q_vector *q_vector) 1424 { 1425 /* Enable auto-mask and clear the current mask */ 1426 u32 itr = FM10K_ITR_ENABLE; 1427 1428 /* Update Tx ITR */ 1429 fm10k_update_itr(&q_vector->tx); 1430 1431 /* Update Rx ITR */ 1432 fm10k_update_itr(&q_vector->rx); 1433 1434 /* Store Tx itr in timer slot 0 */ 1435 itr |= (q_vector->tx.itr & FM10K_ITR_MAX); 1436 1437 /* Shift Rx itr to timer slot 1 */ 1438 itr |= (q_vector->rx.itr & FM10K_ITR_MAX) << FM10K_ITR_INTERVAL1_SHIFT; 1439 1440 /* Write the final value to the ITR register */ 1441 writel(itr, q_vector->itr); 1442 } 1443 1444 static int fm10k_poll(struct napi_struct *napi, int budget) 1445 { 1446 struct fm10k_q_vector *q_vector = 1447 container_of(napi, struct fm10k_q_vector, napi); 1448 struct fm10k_ring *ring; 1449 int per_ring_budget, work_done = 0; 1450 bool clean_complete = true; 1451 1452 fm10k_for_each_ring(ring, q_vector->tx) 1453 clean_complete &= fm10k_clean_tx_irq(q_vector, ring); 1454 1455 /* Handle case where we are called by netpoll with a budget of 0 */ 1456 if (budget <= 0) 1457 return budget; 1458 1459 /* attempt to distribute budget to each queue fairly, but don't 1460 * allow the budget to go below 1 because we'll exit polling 1461 */ 1462 if (q_vector->rx.count > 1) 1463 per_ring_budget = max(budget / q_vector->rx.count, 1); 1464 else 1465 per_ring_budget = budget; 1466 1467 fm10k_for_each_ring(ring, q_vector->rx) { 1468 int work = fm10k_clean_rx_irq(q_vector, ring, per_ring_budget); 1469 1470 work_done += work; 1471 clean_complete &= !!(work < per_ring_budget); 1472 } 1473 1474 /* If all work not completed, return budget and keep polling */ 1475 if (!clean_complete) 1476 return budget; 1477 1478 /* all work done, exit the polling mode */ 1479 napi_complete_done(napi, work_done); 1480 1481 /* re-enable the q_vector */ 1482 fm10k_qv_enable(q_vector); 1483 1484 return 0; 1485 } 1486 1487 /** 1488 * fm10k_set_qos_queues: Allocate queues for a QOS-enabled device 1489 * @interface: board private structure to initialize 1490 * 1491 * When QoS (Quality of Service) is enabled, allocate queues for 1492 * each traffic class. If multiqueue isn't available,then abort QoS 1493 * initialization. 1494 * 1495 * This function handles all combinations of Qos and RSS. 1496 * 1497 **/ 1498 static bool fm10k_set_qos_queues(struct fm10k_intfc *interface) 1499 { 1500 struct net_device *dev = interface->netdev; 1501 struct fm10k_ring_feature *f; 1502 int rss_i, i; 1503 int pcs; 1504 1505 /* Map queue offset and counts onto allocated tx queues */ 1506 pcs = netdev_get_num_tc(dev); 1507 1508 if (pcs <= 1) 1509 return false; 1510 1511 /* set QoS mask and indices */ 1512 f = &interface->ring_feature[RING_F_QOS]; 1513 f->indices = pcs; 1514 f->mask = (1 << fls(pcs - 1)) - 1; 1515 1516 /* determine the upper limit for our current DCB mode */ 1517 rss_i = interface->hw.mac.max_queues / pcs; 1518 rss_i = 1 << (fls(rss_i) - 1); 1519 1520 /* set RSS mask and indices */ 1521 f = &interface->ring_feature[RING_F_RSS]; 1522 rss_i = min_t(u16, rss_i, f->limit); 1523 f->indices = rss_i; 1524 f->mask = (1 << fls(rss_i - 1)) - 1; 1525 1526 /* configure pause class to queue mapping */ 1527 for (i = 0; i < pcs; i++) 1528 netdev_set_tc_queue(dev, i, rss_i, rss_i * i); 1529 1530 interface->num_rx_queues = rss_i * pcs; 1531 interface->num_tx_queues = rss_i * pcs; 1532 1533 return true; 1534 } 1535 1536 /** 1537 * fm10k_set_rss_queues: Allocate queues for RSS 1538 * @interface: board private structure to initialize 1539 * 1540 * This is our "base" multiqueue mode. RSS (Receive Side Scaling) will try 1541 * to allocate one Rx queue per CPU, and if available, one Tx queue per CPU. 1542 * 1543 **/ 1544 static bool fm10k_set_rss_queues(struct fm10k_intfc *interface) 1545 { 1546 struct fm10k_ring_feature *f; 1547 u16 rss_i; 1548 1549 f = &interface->ring_feature[RING_F_RSS]; 1550 rss_i = min_t(u16, interface->hw.mac.max_queues, f->limit); 1551 1552 /* record indices and power of 2 mask for RSS */ 1553 f->indices = rss_i; 1554 f->mask = (1 << fls(rss_i - 1)) - 1; 1555 1556 interface->num_rx_queues = rss_i; 1557 interface->num_tx_queues = rss_i; 1558 1559 return true; 1560 } 1561 1562 /** 1563 * fm10k_set_num_queues: Allocate queues for device, feature dependent 1564 * @interface: board private structure to initialize 1565 * 1566 * This is the top level queue allocation routine. The order here is very 1567 * important, starting with the "most" number of features turned on at once, 1568 * and ending with the smallest set of features. This way large combinations 1569 * can be allocated if they're turned on, and smaller combinations are the 1570 * fallthrough conditions. 1571 * 1572 **/ 1573 static void fm10k_set_num_queues(struct fm10k_intfc *interface) 1574 { 1575 /* Start with base case */ 1576 interface->num_rx_queues = 1; 1577 interface->num_tx_queues = 1; 1578 1579 if (fm10k_set_qos_queues(interface)) 1580 return; 1581 1582 fm10k_set_rss_queues(interface); 1583 } 1584 1585 /** 1586 * fm10k_alloc_q_vector - Allocate memory for a single interrupt vector 1587 * @interface: board private structure to initialize 1588 * @v_count: q_vectors allocated on interface, used for ring interleaving 1589 * @v_idx: index of vector in interface struct 1590 * @txr_count: total number of Tx rings to allocate 1591 * @txr_idx: index of first Tx ring to allocate 1592 * @rxr_count: total number of Rx rings to allocate 1593 * @rxr_idx: index of first Rx ring to allocate 1594 * 1595 * We allocate one q_vector. If allocation fails we return -ENOMEM. 1596 **/ 1597 static int fm10k_alloc_q_vector(struct fm10k_intfc *interface, 1598 unsigned int v_count, unsigned int v_idx, 1599 unsigned int txr_count, unsigned int txr_idx, 1600 unsigned int rxr_count, unsigned int rxr_idx) 1601 { 1602 struct fm10k_q_vector *q_vector; 1603 struct fm10k_ring *ring; 1604 int ring_count, size; 1605 1606 ring_count = txr_count + rxr_count; 1607 size = sizeof(struct fm10k_q_vector) + 1608 (sizeof(struct fm10k_ring) * ring_count); 1609 1610 /* allocate q_vector and rings */ 1611 q_vector = kzalloc(size, GFP_KERNEL); 1612 if (!q_vector) 1613 return -ENOMEM; 1614 1615 /* initialize NAPI */ 1616 netif_napi_add(interface->netdev, &q_vector->napi, 1617 fm10k_poll, NAPI_POLL_WEIGHT); 1618 1619 /* tie q_vector and interface together */ 1620 interface->q_vector[v_idx] = q_vector; 1621 q_vector->interface = interface; 1622 q_vector->v_idx = v_idx; 1623 1624 /* initialize pointer to rings */ 1625 ring = q_vector->ring; 1626 1627 /* save Tx ring container info */ 1628 q_vector->tx.ring = ring; 1629 q_vector->tx.work_limit = FM10K_DEFAULT_TX_WORK; 1630 q_vector->tx.itr = interface->tx_itr; 1631 q_vector->tx.itr_scale = interface->hw.mac.itr_scale; 1632 q_vector->tx.count = txr_count; 1633 1634 while (txr_count) { 1635 /* assign generic ring traits */ 1636 ring->dev = &interface->pdev->dev; 1637 ring->netdev = interface->netdev; 1638 1639 /* configure backlink on ring */ 1640 ring->q_vector = q_vector; 1641 1642 /* apply Tx specific ring traits */ 1643 ring->count = interface->tx_ring_count; 1644 ring->queue_index = txr_idx; 1645 1646 /* assign ring to interface */ 1647 interface->tx_ring[txr_idx] = ring; 1648 1649 /* update count and index */ 1650 txr_count--; 1651 txr_idx += v_count; 1652 1653 /* push pointer to next ring */ 1654 ring++; 1655 } 1656 1657 /* save Rx ring container info */ 1658 q_vector->rx.ring = ring; 1659 q_vector->rx.itr = interface->rx_itr; 1660 q_vector->rx.itr_scale = interface->hw.mac.itr_scale; 1661 q_vector->rx.count = rxr_count; 1662 1663 while (rxr_count) { 1664 /* assign generic ring traits */ 1665 ring->dev = &interface->pdev->dev; 1666 ring->netdev = interface->netdev; 1667 rcu_assign_pointer(ring->l2_accel, interface->l2_accel); 1668 1669 /* configure backlink on ring */ 1670 ring->q_vector = q_vector; 1671 1672 /* apply Rx specific ring traits */ 1673 ring->count = interface->rx_ring_count; 1674 ring->queue_index = rxr_idx; 1675 1676 /* assign ring to interface */ 1677 interface->rx_ring[rxr_idx] = ring; 1678 1679 /* update count and index */ 1680 rxr_count--; 1681 rxr_idx += v_count; 1682 1683 /* push pointer to next ring */ 1684 ring++; 1685 } 1686 1687 fm10k_dbg_q_vector_init(q_vector); 1688 1689 return 0; 1690 } 1691 1692 /** 1693 * fm10k_free_q_vector - Free memory allocated for specific interrupt vector 1694 * @interface: board private structure to initialize 1695 * @v_idx: Index of vector to be freed 1696 * 1697 * This function frees the memory allocated to the q_vector. In addition if 1698 * NAPI is enabled it will delete any references to the NAPI struct prior 1699 * to freeing the q_vector. 1700 **/ 1701 static void fm10k_free_q_vector(struct fm10k_intfc *interface, int v_idx) 1702 { 1703 struct fm10k_q_vector *q_vector = interface->q_vector[v_idx]; 1704 struct fm10k_ring *ring; 1705 1706 fm10k_dbg_q_vector_exit(q_vector); 1707 1708 fm10k_for_each_ring(ring, q_vector->tx) 1709 interface->tx_ring[ring->queue_index] = NULL; 1710 1711 fm10k_for_each_ring(ring, q_vector->rx) 1712 interface->rx_ring[ring->queue_index] = NULL; 1713 1714 interface->q_vector[v_idx] = NULL; 1715 netif_napi_del(&q_vector->napi); 1716 kfree_rcu(q_vector, rcu); 1717 } 1718 1719 /** 1720 * fm10k_alloc_q_vectors - Allocate memory for interrupt vectors 1721 * @interface: board private structure to initialize 1722 * 1723 * We allocate one q_vector per queue interrupt. If allocation fails we 1724 * return -ENOMEM. 1725 **/ 1726 static int fm10k_alloc_q_vectors(struct fm10k_intfc *interface) 1727 { 1728 unsigned int q_vectors = interface->num_q_vectors; 1729 unsigned int rxr_remaining = interface->num_rx_queues; 1730 unsigned int txr_remaining = interface->num_tx_queues; 1731 unsigned int rxr_idx = 0, txr_idx = 0, v_idx = 0; 1732 int err; 1733 1734 if (q_vectors >= (rxr_remaining + txr_remaining)) { 1735 for (; rxr_remaining; v_idx++) { 1736 err = fm10k_alloc_q_vector(interface, q_vectors, v_idx, 1737 0, 0, 1, rxr_idx); 1738 if (err) 1739 goto err_out; 1740 1741 /* update counts and index */ 1742 rxr_remaining--; 1743 rxr_idx++; 1744 } 1745 } 1746 1747 for (; v_idx < q_vectors; v_idx++) { 1748 int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx); 1749 int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx); 1750 1751 err = fm10k_alloc_q_vector(interface, q_vectors, v_idx, 1752 tqpv, txr_idx, 1753 rqpv, rxr_idx); 1754 1755 if (err) 1756 goto err_out; 1757 1758 /* update counts and index */ 1759 rxr_remaining -= rqpv; 1760 txr_remaining -= tqpv; 1761 rxr_idx++; 1762 txr_idx++; 1763 } 1764 1765 return 0; 1766 1767 err_out: 1768 interface->num_tx_queues = 0; 1769 interface->num_rx_queues = 0; 1770 interface->num_q_vectors = 0; 1771 1772 while (v_idx--) 1773 fm10k_free_q_vector(interface, v_idx); 1774 1775 return -ENOMEM; 1776 } 1777 1778 /** 1779 * fm10k_free_q_vectors - Free memory allocated for interrupt vectors 1780 * @interface: board private structure to initialize 1781 * 1782 * This function frees the memory allocated to the q_vectors. In addition if 1783 * NAPI is enabled it will delete any references to the NAPI struct prior 1784 * to freeing the q_vector. 1785 **/ 1786 static void fm10k_free_q_vectors(struct fm10k_intfc *interface) 1787 { 1788 int v_idx = interface->num_q_vectors; 1789 1790 interface->num_tx_queues = 0; 1791 interface->num_rx_queues = 0; 1792 interface->num_q_vectors = 0; 1793 1794 while (v_idx--) 1795 fm10k_free_q_vector(interface, v_idx); 1796 } 1797 1798 /** 1799 * f10k_reset_msix_capability - reset MSI-X capability 1800 * @interface: board private structure to initialize 1801 * 1802 * Reset the MSI-X capability back to its starting state 1803 **/ 1804 static void fm10k_reset_msix_capability(struct fm10k_intfc *interface) 1805 { 1806 pci_disable_msix(interface->pdev); 1807 kfree(interface->msix_entries); 1808 interface->msix_entries = NULL; 1809 } 1810 1811 /** 1812 * f10k_init_msix_capability - configure MSI-X capability 1813 * @interface: board private structure to initialize 1814 * 1815 * Attempt to configure the interrupts using the best available 1816 * capabilities of the hardware and the kernel. 1817 **/ 1818 static int fm10k_init_msix_capability(struct fm10k_intfc *interface) 1819 { 1820 struct fm10k_hw *hw = &interface->hw; 1821 int v_budget, vector; 1822 1823 /* It's easy to be greedy for MSI-X vectors, but it really 1824 * doesn't do us much good if we have a lot more vectors 1825 * than CPU's. So let's be conservative and only ask for 1826 * (roughly) the same number of vectors as there are CPU's. 1827 * the default is to use pairs of vectors 1828 */ 1829 v_budget = max(interface->num_rx_queues, interface->num_tx_queues); 1830 v_budget = min_t(u16, v_budget, num_online_cpus()); 1831 1832 /* account for vectors not related to queues */ 1833 v_budget += NON_Q_VECTORS(hw); 1834 1835 /* At the same time, hardware can only support a maximum of 1836 * hw.mac->max_msix_vectors vectors. With features 1837 * such as RSS and VMDq, we can easily surpass the number of Rx and Tx 1838 * descriptor queues supported by our device. Thus, we cap it off in 1839 * those rare cases where the cpu count also exceeds our vector limit. 1840 */ 1841 v_budget = min_t(int, v_budget, hw->mac.max_msix_vectors); 1842 1843 /* A failure in MSI-X entry allocation is fatal. */ 1844 interface->msix_entries = kcalloc(v_budget, sizeof(struct msix_entry), 1845 GFP_KERNEL); 1846 if (!interface->msix_entries) 1847 return -ENOMEM; 1848 1849 /* populate entry values */ 1850 for (vector = 0; vector < v_budget; vector++) 1851 interface->msix_entries[vector].entry = vector; 1852 1853 /* Attempt to enable MSI-X with requested value */ 1854 v_budget = pci_enable_msix_range(interface->pdev, 1855 interface->msix_entries, 1856 MIN_MSIX_COUNT(hw), 1857 v_budget); 1858 if (v_budget < 0) { 1859 kfree(interface->msix_entries); 1860 interface->msix_entries = NULL; 1861 return -ENOMEM; 1862 } 1863 1864 /* record the number of queues available for q_vectors */ 1865 interface->num_q_vectors = v_budget - NON_Q_VECTORS(hw); 1866 1867 return 0; 1868 } 1869 1870 /** 1871 * fm10k_cache_ring_qos - Descriptor ring to register mapping for QoS 1872 * @interface: Interface structure continaining rings and devices 1873 * 1874 * Cache the descriptor ring offsets for Qos 1875 **/ 1876 static bool fm10k_cache_ring_qos(struct fm10k_intfc *interface) 1877 { 1878 struct net_device *dev = interface->netdev; 1879 int pc, offset, rss_i, i, q_idx; 1880 u16 pc_stride = interface->ring_feature[RING_F_QOS].mask + 1; 1881 u8 num_pcs = netdev_get_num_tc(dev); 1882 1883 if (num_pcs <= 1) 1884 return false; 1885 1886 rss_i = interface->ring_feature[RING_F_RSS].indices; 1887 1888 for (pc = 0, offset = 0; pc < num_pcs; pc++, offset += rss_i) { 1889 q_idx = pc; 1890 for (i = 0; i < rss_i; i++) { 1891 interface->tx_ring[offset + i]->reg_idx = q_idx; 1892 interface->tx_ring[offset + i]->qos_pc = pc; 1893 interface->rx_ring[offset + i]->reg_idx = q_idx; 1894 interface->rx_ring[offset + i]->qos_pc = pc; 1895 q_idx += pc_stride; 1896 } 1897 } 1898 1899 return true; 1900 } 1901 1902 /** 1903 * fm10k_cache_ring_rss - Descriptor ring to register mapping for RSS 1904 * @interface: Interface structure continaining rings and devices 1905 * 1906 * Cache the descriptor ring offsets for RSS 1907 **/ 1908 static void fm10k_cache_ring_rss(struct fm10k_intfc *interface) 1909 { 1910 int i; 1911 1912 for (i = 0; i < interface->num_rx_queues; i++) 1913 interface->rx_ring[i]->reg_idx = i; 1914 1915 for (i = 0; i < interface->num_tx_queues; i++) 1916 interface->tx_ring[i]->reg_idx = i; 1917 } 1918 1919 /** 1920 * fm10k_assign_rings - Map rings to network devices 1921 * @interface: Interface structure containing rings and devices 1922 * 1923 * This function is meant to go though and configure both the network 1924 * devices so that they contain rings, and configure the rings so that 1925 * they function with their network devices. 1926 **/ 1927 static void fm10k_assign_rings(struct fm10k_intfc *interface) 1928 { 1929 if (fm10k_cache_ring_qos(interface)) 1930 return; 1931 1932 fm10k_cache_ring_rss(interface); 1933 } 1934 1935 static void fm10k_init_reta(struct fm10k_intfc *interface) 1936 { 1937 u16 i, rss_i = interface->ring_feature[RING_F_RSS].indices; 1938 u32 reta, base; 1939 1940 /* If the netdev is initialized we have to maintain table if possible */ 1941 if (interface->netdev->reg_state != NETREG_UNINITIALIZED) { 1942 for (i = FM10K_RETA_SIZE; i--;) { 1943 reta = interface->reta[i]; 1944 if ((((reta << 24) >> 24) < rss_i) && 1945 (((reta << 16) >> 24) < rss_i) && 1946 (((reta << 8) >> 24) < rss_i) && 1947 (((reta) >> 24) < rss_i)) 1948 continue; 1949 goto repopulate_reta; 1950 } 1951 1952 /* do nothing if all of the elements are in bounds */ 1953 return; 1954 } 1955 1956 repopulate_reta: 1957 /* Populate the redirection table 4 entries at a time. To do this 1958 * we are generating the results for n and n+2 and then interleaving 1959 * those with the results with n+1 and n+3. 1960 */ 1961 for (i = FM10K_RETA_SIZE; i--;) { 1962 /* first pass generates n and n+2 */ 1963 base = ((i * 0x00040004) + 0x00020000) * rss_i; 1964 reta = (base & 0x3F803F80) >> 7; 1965 1966 /* second pass generates n+1 and n+3 */ 1967 base += 0x00010001 * rss_i; 1968 reta |= (base & 0x3F803F80) << 1; 1969 1970 interface->reta[i] = reta; 1971 } 1972 } 1973 1974 /** 1975 * fm10k_init_queueing_scheme - Determine proper queueing scheme 1976 * @interface: board private structure to initialize 1977 * 1978 * We determine which queueing scheme to use based on... 1979 * - Hardware queue count (num_*_queues) 1980 * - defined by miscellaneous hardware support/features (RSS, etc.) 1981 **/ 1982 int fm10k_init_queueing_scheme(struct fm10k_intfc *interface) 1983 { 1984 int err; 1985 1986 /* Number of supported queues */ 1987 fm10k_set_num_queues(interface); 1988 1989 /* Configure MSI-X capability */ 1990 err = fm10k_init_msix_capability(interface); 1991 if (err) { 1992 dev_err(&interface->pdev->dev, 1993 "Unable to initialize MSI-X capability\n"); 1994 return err; 1995 } 1996 1997 /* Allocate memory for queues */ 1998 err = fm10k_alloc_q_vectors(interface); 1999 if (err) { 2000 fm10k_reset_msix_capability(interface); 2001 return err; 2002 } 2003 2004 /* Map rings to devices, and map devices to physical queues */ 2005 fm10k_assign_rings(interface); 2006 2007 /* Initialize RSS redirection table */ 2008 fm10k_init_reta(interface); 2009 2010 return 0; 2011 } 2012 2013 /** 2014 * fm10k_clear_queueing_scheme - Clear the current queueing scheme settings 2015 * @interface: board private structure to clear queueing scheme on 2016 * 2017 * We go through and clear queueing specific resources and reset the structure 2018 * to pre-load conditions 2019 **/ 2020 void fm10k_clear_queueing_scheme(struct fm10k_intfc *interface) 2021 { 2022 fm10k_free_q_vectors(interface); 2023 fm10k_reset_msix_capability(interface); 2024 } 2025