xref: /openbmc/linux/drivers/net/ethernet/intel/fm10k/fm10k_main.c (revision a03a8dbe20eff6d57aae3147577bf84b52aba4e6)
1 /* Intel Ethernet Switch Host Interface Driver
2  * Copyright(c) 2013 - 2014 Intel Corporation.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms and conditions of the GNU General Public License,
6  * version 2, as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope it will be useful, but WITHOUT
9  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
11  * more details.
12  *
13  * The full GNU General Public License is included in this distribution in
14  * the file called "COPYING".
15  *
16  * Contact Information:
17  * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
18  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
19  */
20 
21 #include <linux/types.h>
22 #include <linux/module.h>
23 #include <net/ipv6.h>
24 #include <net/ip.h>
25 #include <net/tcp.h>
26 #include <linux/if_macvlan.h>
27 #include <linux/prefetch.h>
28 
29 #include "fm10k.h"
30 
31 #define DRV_VERSION	"0.12.2-k"
32 const char fm10k_driver_version[] = DRV_VERSION;
33 char fm10k_driver_name[] = "fm10k";
34 static const char fm10k_driver_string[] =
35 	"Intel(R) Ethernet Switch Host Interface Driver";
36 static const char fm10k_copyright[] =
37 	"Copyright (c) 2013 Intel Corporation.";
38 
39 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
40 MODULE_DESCRIPTION("Intel(R) Ethernet Switch Host Interface Driver");
41 MODULE_LICENSE("GPL");
42 MODULE_VERSION(DRV_VERSION);
43 
44 /**
45  * fm10k_init_module - Driver Registration Routine
46  *
47  * fm10k_init_module is the first routine called when the driver is
48  * loaded.  All it does is register with the PCI subsystem.
49  **/
50 static int __init fm10k_init_module(void)
51 {
52 	pr_info("%s - version %s\n", fm10k_driver_string, fm10k_driver_version);
53 	pr_info("%s\n", fm10k_copyright);
54 
55 	fm10k_dbg_init();
56 
57 	return fm10k_register_pci_driver();
58 }
59 module_init(fm10k_init_module);
60 
61 /**
62  * fm10k_exit_module - Driver Exit Cleanup Routine
63  *
64  * fm10k_exit_module is called just before the driver is removed
65  * from memory.
66  **/
67 static void __exit fm10k_exit_module(void)
68 {
69 	fm10k_unregister_pci_driver();
70 
71 	fm10k_dbg_exit();
72 }
73 module_exit(fm10k_exit_module);
74 
75 static bool fm10k_alloc_mapped_page(struct fm10k_ring *rx_ring,
76 				    struct fm10k_rx_buffer *bi)
77 {
78 	struct page *page = bi->page;
79 	dma_addr_t dma;
80 
81 	/* Only page will be NULL if buffer was consumed */
82 	if (likely(page))
83 		return true;
84 
85 	/* alloc new page for storage */
86 	page = dev_alloc_page();
87 	if (unlikely(!page)) {
88 		rx_ring->rx_stats.alloc_failed++;
89 		return false;
90 	}
91 
92 	/* map page for use */
93 	dma = dma_map_page(rx_ring->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE);
94 
95 	/* if mapping failed free memory back to system since
96 	 * there isn't much point in holding memory we can't use
97 	 */
98 	if (dma_mapping_error(rx_ring->dev, dma)) {
99 		__free_page(page);
100 
101 		rx_ring->rx_stats.alloc_failed++;
102 		return false;
103 	}
104 
105 	bi->dma = dma;
106 	bi->page = page;
107 	bi->page_offset = 0;
108 
109 	return true;
110 }
111 
112 /**
113  * fm10k_alloc_rx_buffers - Replace used receive buffers
114  * @rx_ring: ring to place buffers on
115  * @cleaned_count: number of buffers to replace
116  **/
117 void fm10k_alloc_rx_buffers(struct fm10k_ring *rx_ring, u16 cleaned_count)
118 {
119 	union fm10k_rx_desc *rx_desc;
120 	struct fm10k_rx_buffer *bi;
121 	u16 i = rx_ring->next_to_use;
122 
123 	/* nothing to do */
124 	if (!cleaned_count)
125 		return;
126 
127 	rx_desc = FM10K_RX_DESC(rx_ring, i);
128 	bi = &rx_ring->rx_buffer[i];
129 	i -= rx_ring->count;
130 
131 	do {
132 		if (!fm10k_alloc_mapped_page(rx_ring, bi))
133 			break;
134 
135 		/* Refresh the desc even if buffer_addrs didn't change
136 		 * because each write-back erases this info.
137 		 */
138 		rx_desc->q.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
139 
140 		rx_desc++;
141 		bi++;
142 		i++;
143 		if (unlikely(!i)) {
144 			rx_desc = FM10K_RX_DESC(rx_ring, 0);
145 			bi = rx_ring->rx_buffer;
146 			i -= rx_ring->count;
147 		}
148 
149 		/* clear the status bits for the next_to_use descriptor */
150 		rx_desc->d.staterr = 0;
151 
152 		cleaned_count--;
153 	} while (cleaned_count);
154 
155 	i += rx_ring->count;
156 
157 	if (rx_ring->next_to_use != i) {
158 		/* record the next descriptor to use */
159 		rx_ring->next_to_use = i;
160 
161 		/* update next to alloc since we have filled the ring */
162 		rx_ring->next_to_alloc = i;
163 
164 		/* Force memory writes to complete before letting h/w
165 		 * know there are new descriptors to fetch.  (Only
166 		 * applicable for weak-ordered memory model archs,
167 		 * such as IA-64).
168 		 */
169 		wmb();
170 
171 		/* notify hardware of new descriptors */
172 		writel(i, rx_ring->tail);
173 	}
174 }
175 
176 /**
177  * fm10k_reuse_rx_page - page flip buffer and store it back on the ring
178  * @rx_ring: rx descriptor ring to store buffers on
179  * @old_buff: donor buffer to have page reused
180  *
181  * Synchronizes page for reuse by the interface
182  **/
183 static void fm10k_reuse_rx_page(struct fm10k_ring *rx_ring,
184 				struct fm10k_rx_buffer *old_buff)
185 {
186 	struct fm10k_rx_buffer *new_buff;
187 	u16 nta = rx_ring->next_to_alloc;
188 
189 	new_buff = &rx_ring->rx_buffer[nta];
190 
191 	/* update, and store next to alloc */
192 	nta++;
193 	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
194 
195 	/* transfer page from old buffer to new buffer */
196 	*new_buff = *old_buff;
197 
198 	/* sync the buffer for use by the device */
199 	dma_sync_single_range_for_device(rx_ring->dev, old_buff->dma,
200 					 old_buff->page_offset,
201 					 FM10K_RX_BUFSZ,
202 					 DMA_FROM_DEVICE);
203 }
204 
205 static inline bool fm10k_page_is_reserved(struct page *page)
206 {
207 	return (page_to_nid(page) != numa_mem_id()) || page->pfmemalloc;
208 }
209 
210 static bool fm10k_can_reuse_rx_page(struct fm10k_rx_buffer *rx_buffer,
211 				    struct page *page,
212 				    unsigned int truesize)
213 {
214 	/* avoid re-using remote pages */
215 	if (unlikely(fm10k_page_is_reserved(page)))
216 		return false;
217 
218 #if (PAGE_SIZE < 8192)
219 	/* if we are only owner of page we can reuse it */
220 	if (unlikely(page_count(page) != 1))
221 		return false;
222 
223 	/* flip page offset to other buffer */
224 	rx_buffer->page_offset ^= FM10K_RX_BUFSZ;
225 #else
226 	/* move offset up to the next cache line */
227 	rx_buffer->page_offset += truesize;
228 
229 	if (rx_buffer->page_offset > (PAGE_SIZE - FM10K_RX_BUFSZ))
230 		return false;
231 #endif
232 
233 	/* Even if we own the page, we are not allowed to use atomic_set()
234 	 * This would break get_page_unless_zero() users.
235 	 */
236 	atomic_inc(&page->_count);
237 
238 	return true;
239 }
240 
241 /**
242  * fm10k_add_rx_frag - Add contents of Rx buffer to sk_buff
243  * @rx_ring: rx descriptor ring to transact packets on
244  * @rx_buffer: buffer containing page to add
245  * @rx_desc: descriptor containing length of buffer written by hardware
246  * @skb: sk_buff to place the data into
247  *
248  * This function will add the data contained in rx_buffer->page to the skb.
249  * This is done either through a direct copy if the data in the buffer is
250  * less than the skb header size, otherwise it will just attach the page as
251  * a frag to the skb.
252  *
253  * The function will then update the page offset if necessary and return
254  * true if the buffer can be reused by the interface.
255  **/
256 static bool fm10k_add_rx_frag(struct fm10k_ring *rx_ring,
257 			      struct fm10k_rx_buffer *rx_buffer,
258 			      union fm10k_rx_desc *rx_desc,
259 			      struct sk_buff *skb)
260 {
261 	struct page *page = rx_buffer->page;
262 	unsigned int size = le16_to_cpu(rx_desc->w.length);
263 #if (PAGE_SIZE < 8192)
264 	unsigned int truesize = FM10K_RX_BUFSZ;
265 #else
266 	unsigned int truesize = ALIGN(size, L1_CACHE_BYTES);
267 #endif
268 
269 	if ((size <= FM10K_RX_HDR_LEN) && !skb_is_nonlinear(skb)) {
270 		unsigned char *va = page_address(page) + rx_buffer->page_offset;
271 
272 		memcpy(__skb_put(skb, size), va, ALIGN(size, sizeof(long)));
273 
274 		/* page is not reserved, we can reuse buffer as-is */
275 		if (likely(!fm10k_page_is_reserved(page)))
276 			return true;
277 
278 		/* this page cannot be reused so discard it */
279 		__free_page(page);
280 		return false;
281 	}
282 
283 	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
284 			rx_buffer->page_offset, size, truesize);
285 
286 	return fm10k_can_reuse_rx_page(rx_buffer, page, truesize);
287 }
288 
289 static struct sk_buff *fm10k_fetch_rx_buffer(struct fm10k_ring *rx_ring,
290 					     union fm10k_rx_desc *rx_desc,
291 					     struct sk_buff *skb)
292 {
293 	struct fm10k_rx_buffer *rx_buffer;
294 	struct page *page;
295 
296 	rx_buffer = &rx_ring->rx_buffer[rx_ring->next_to_clean];
297 	page = rx_buffer->page;
298 	prefetchw(page);
299 
300 	if (likely(!skb)) {
301 		void *page_addr = page_address(page) +
302 				  rx_buffer->page_offset;
303 
304 		/* prefetch first cache line of first page */
305 		prefetch(page_addr);
306 #if L1_CACHE_BYTES < 128
307 		prefetch(page_addr + L1_CACHE_BYTES);
308 #endif
309 
310 		/* allocate a skb to store the frags */
311 		skb = napi_alloc_skb(&rx_ring->q_vector->napi,
312 				     FM10K_RX_HDR_LEN);
313 		if (unlikely(!skb)) {
314 			rx_ring->rx_stats.alloc_failed++;
315 			return NULL;
316 		}
317 
318 		/* we will be copying header into skb->data in
319 		 * pskb_may_pull so it is in our interest to prefetch
320 		 * it now to avoid a possible cache miss
321 		 */
322 		prefetchw(skb->data);
323 	}
324 
325 	/* we are reusing so sync this buffer for CPU use */
326 	dma_sync_single_range_for_cpu(rx_ring->dev,
327 				      rx_buffer->dma,
328 				      rx_buffer->page_offset,
329 				      FM10K_RX_BUFSZ,
330 				      DMA_FROM_DEVICE);
331 
332 	/* pull page into skb */
333 	if (fm10k_add_rx_frag(rx_ring, rx_buffer, rx_desc, skb)) {
334 		/* hand second half of page back to the ring */
335 		fm10k_reuse_rx_page(rx_ring, rx_buffer);
336 	} else {
337 		/* we are not reusing the buffer so unmap it */
338 		dma_unmap_page(rx_ring->dev, rx_buffer->dma,
339 			       PAGE_SIZE, DMA_FROM_DEVICE);
340 	}
341 
342 	/* clear contents of rx_buffer */
343 	rx_buffer->page = NULL;
344 
345 	return skb;
346 }
347 
348 static inline void fm10k_rx_checksum(struct fm10k_ring *ring,
349 				     union fm10k_rx_desc *rx_desc,
350 				     struct sk_buff *skb)
351 {
352 	skb_checksum_none_assert(skb);
353 
354 	/* Rx checksum disabled via ethtool */
355 	if (!(ring->netdev->features & NETIF_F_RXCSUM))
356 		return;
357 
358 	/* TCP/UDP checksum error bit is set */
359 	if (fm10k_test_staterr(rx_desc,
360 			       FM10K_RXD_STATUS_L4E |
361 			       FM10K_RXD_STATUS_L4E2 |
362 			       FM10K_RXD_STATUS_IPE |
363 			       FM10K_RXD_STATUS_IPE2)) {
364 		ring->rx_stats.csum_err++;
365 		return;
366 	}
367 
368 	/* It must be a TCP or UDP packet with a valid checksum */
369 	if (fm10k_test_staterr(rx_desc, FM10K_RXD_STATUS_L4CS2))
370 		skb->encapsulation = true;
371 	else if (!fm10k_test_staterr(rx_desc, FM10K_RXD_STATUS_L4CS))
372 		return;
373 
374 	skb->ip_summed = CHECKSUM_UNNECESSARY;
375 }
376 
377 #define FM10K_RSS_L4_TYPES_MASK \
378 	((1ul << FM10K_RSSTYPE_IPV4_TCP) | \
379 	 (1ul << FM10K_RSSTYPE_IPV4_UDP) | \
380 	 (1ul << FM10K_RSSTYPE_IPV6_TCP) | \
381 	 (1ul << FM10K_RSSTYPE_IPV6_UDP))
382 
383 static inline void fm10k_rx_hash(struct fm10k_ring *ring,
384 				 union fm10k_rx_desc *rx_desc,
385 				 struct sk_buff *skb)
386 {
387 	u16 rss_type;
388 
389 	if (!(ring->netdev->features & NETIF_F_RXHASH))
390 		return;
391 
392 	rss_type = le16_to_cpu(rx_desc->w.pkt_info) & FM10K_RXD_RSSTYPE_MASK;
393 	if (!rss_type)
394 		return;
395 
396 	skb_set_hash(skb, le32_to_cpu(rx_desc->d.rss),
397 		     (FM10K_RSS_L4_TYPES_MASK & (1ul << rss_type)) ?
398 		     PKT_HASH_TYPE_L4 : PKT_HASH_TYPE_L3);
399 }
400 
401 static void fm10k_rx_hwtstamp(struct fm10k_ring *rx_ring,
402 			      union fm10k_rx_desc *rx_desc,
403 			      struct sk_buff *skb)
404 {
405 	struct fm10k_intfc *interface = rx_ring->q_vector->interface;
406 
407 	FM10K_CB(skb)->tstamp = rx_desc->q.timestamp;
408 
409 	if (unlikely(interface->flags & FM10K_FLAG_RX_TS_ENABLED))
410 		fm10k_systime_to_hwtstamp(interface, skb_hwtstamps(skb),
411 					  le64_to_cpu(rx_desc->q.timestamp));
412 }
413 
414 static void fm10k_type_trans(struct fm10k_ring *rx_ring,
415 			     union fm10k_rx_desc *rx_desc,
416 			     struct sk_buff *skb)
417 {
418 	struct net_device *dev = rx_ring->netdev;
419 	struct fm10k_l2_accel *l2_accel = rcu_dereference_bh(rx_ring->l2_accel);
420 
421 	/* check to see if DGLORT belongs to a MACVLAN */
422 	if (l2_accel) {
423 		u16 idx = le16_to_cpu(FM10K_CB(skb)->fi.w.dglort) - 1;
424 
425 		idx -= l2_accel->dglort;
426 		if (idx < l2_accel->size && l2_accel->macvlan[idx])
427 			dev = l2_accel->macvlan[idx];
428 		else
429 			l2_accel = NULL;
430 	}
431 
432 	skb->protocol = eth_type_trans(skb, dev);
433 
434 	if (!l2_accel)
435 		return;
436 
437 	/* update MACVLAN statistics */
438 	macvlan_count_rx(netdev_priv(dev), skb->len + ETH_HLEN, 1,
439 			 !!(rx_desc->w.hdr_info &
440 			    cpu_to_le16(FM10K_RXD_HDR_INFO_XC_MASK)));
441 }
442 
443 /**
444  * fm10k_process_skb_fields - Populate skb header fields from Rx descriptor
445  * @rx_ring: rx descriptor ring packet is being transacted on
446  * @rx_desc: pointer to the EOP Rx descriptor
447  * @skb: pointer to current skb being populated
448  *
449  * This function checks the ring, descriptor, and packet information in
450  * order to populate the hash, checksum, VLAN, timestamp, protocol, and
451  * other fields within the skb.
452  **/
453 static unsigned int fm10k_process_skb_fields(struct fm10k_ring *rx_ring,
454 					     union fm10k_rx_desc *rx_desc,
455 					     struct sk_buff *skb)
456 {
457 	unsigned int len = skb->len;
458 
459 	fm10k_rx_hash(rx_ring, rx_desc, skb);
460 
461 	fm10k_rx_checksum(rx_ring, rx_desc, skb);
462 
463 	fm10k_rx_hwtstamp(rx_ring, rx_desc, skb);
464 
465 	FM10K_CB(skb)->fi.w.vlan = rx_desc->w.vlan;
466 
467 	skb_record_rx_queue(skb, rx_ring->queue_index);
468 
469 	FM10K_CB(skb)->fi.d.glort = rx_desc->d.glort;
470 
471 	if (rx_desc->w.vlan) {
472 		u16 vid = le16_to_cpu(rx_desc->w.vlan);
473 
474 		if (vid != rx_ring->vid)
475 			__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
476 	}
477 
478 	fm10k_type_trans(rx_ring, rx_desc, skb);
479 
480 	return len;
481 }
482 
483 /**
484  * fm10k_is_non_eop - process handling of non-EOP buffers
485  * @rx_ring: Rx ring being processed
486  * @rx_desc: Rx descriptor for current buffer
487  *
488  * This function updates next to clean.  If the buffer is an EOP buffer
489  * this function exits returning false, otherwise it will place the
490  * sk_buff in the next buffer to be chained and return true indicating
491  * that this is in fact a non-EOP buffer.
492  **/
493 static bool fm10k_is_non_eop(struct fm10k_ring *rx_ring,
494 			     union fm10k_rx_desc *rx_desc)
495 {
496 	u32 ntc = rx_ring->next_to_clean + 1;
497 
498 	/* fetch, update, and store next to clean */
499 	ntc = (ntc < rx_ring->count) ? ntc : 0;
500 	rx_ring->next_to_clean = ntc;
501 
502 	prefetch(FM10K_RX_DESC(rx_ring, ntc));
503 
504 	if (likely(fm10k_test_staterr(rx_desc, FM10K_RXD_STATUS_EOP)))
505 		return false;
506 
507 	return true;
508 }
509 
510 /**
511  * fm10k_pull_tail - fm10k specific version of skb_pull_tail
512  * @rx_ring: rx descriptor ring packet is being transacted on
513  * @rx_desc: pointer to the EOP Rx descriptor
514  * @skb: pointer to current skb being adjusted
515  *
516  * This function is an fm10k specific version of __pskb_pull_tail.  The
517  * main difference between this version and the original function is that
518  * this function can make several assumptions about the state of things
519  * that allow for significant optimizations versus the standard function.
520  * As a result we can do things like drop a frag and maintain an accurate
521  * truesize for the skb.
522  */
523 static void fm10k_pull_tail(struct fm10k_ring *rx_ring,
524 			    union fm10k_rx_desc *rx_desc,
525 			    struct sk_buff *skb)
526 {
527 	struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[0];
528 	unsigned char *va;
529 	unsigned int pull_len;
530 
531 	/* it is valid to use page_address instead of kmap since we are
532 	 * working with pages allocated out of the lomem pool per
533 	 * alloc_page(GFP_ATOMIC)
534 	 */
535 	va = skb_frag_address(frag);
536 
537 	/* we need the header to contain the greater of either ETH_HLEN or
538 	 * 60 bytes if the skb->len is less than 60 for skb_pad.
539 	 */
540 	pull_len = eth_get_headlen(va, FM10K_RX_HDR_LEN);
541 
542 	/* align pull length to size of long to optimize memcpy performance */
543 	skb_copy_to_linear_data(skb, va, ALIGN(pull_len, sizeof(long)));
544 
545 	/* update all of the pointers */
546 	skb_frag_size_sub(frag, pull_len);
547 	frag->page_offset += pull_len;
548 	skb->data_len -= pull_len;
549 	skb->tail += pull_len;
550 }
551 
552 /**
553  * fm10k_cleanup_headers - Correct corrupted or empty headers
554  * @rx_ring: rx descriptor ring packet is being transacted on
555  * @rx_desc: pointer to the EOP Rx descriptor
556  * @skb: pointer to current skb being fixed
557  *
558  * Address the case where we are pulling data in on pages only
559  * and as such no data is present in the skb header.
560  *
561  * In addition if skb is not at least 60 bytes we need to pad it so that
562  * it is large enough to qualify as a valid Ethernet frame.
563  *
564  * Returns true if an error was encountered and skb was freed.
565  **/
566 static bool fm10k_cleanup_headers(struct fm10k_ring *rx_ring,
567 				  union fm10k_rx_desc *rx_desc,
568 				  struct sk_buff *skb)
569 {
570 	if (unlikely((fm10k_test_staterr(rx_desc,
571 					 FM10K_RXD_STATUS_RXE)))) {
572 		dev_kfree_skb_any(skb);
573 		rx_ring->rx_stats.errors++;
574 		return true;
575 	}
576 
577 	/* place header in linear portion of buffer */
578 	if (skb_is_nonlinear(skb))
579 		fm10k_pull_tail(rx_ring, rx_desc, skb);
580 
581 	/* if eth_skb_pad returns an error the skb was freed */
582 	if (eth_skb_pad(skb))
583 		return true;
584 
585 	return false;
586 }
587 
588 /**
589  * fm10k_receive_skb - helper function to handle rx indications
590  * @q_vector: structure containing interrupt and ring information
591  * @skb: packet to send up
592  **/
593 static void fm10k_receive_skb(struct fm10k_q_vector *q_vector,
594 			      struct sk_buff *skb)
595 {
596 	napi_gro_receive(&q_vector->napi, skb);
597 }
598 
599 static bool fm10k_clean_rx_irq(struct fm10k_q_vector *q_vector,
600 			       struct fm10k_ring *rx_ring,
601 			       int budget)
602 {
603 	struct sk_buff *skb = rx_ring->skb;
604 	unsigned int total_bytes = 0, total_packets = 0;
605 	u16 cleaned_count = fm10k_desc_unused(rx_ring);
606 
607 	do {
608 		union fm10k_rx_desc *rx_desc;
609 
610 		/* return some buffers to hardware, one at a time is too slow */
611 		if (cleaned_count >= FM10K_RX_BUFFER_WRITE) {
612 			fm10k_alloc_rx_buffers(rx_ring, cleaned_count);
613 			cleaned_count = 0;
614 		}
615 
616 		rx_desc = FM10K_RX_DESC(rx_ring, rx_ring->next_to_clean);
617 
618 		if (!rx_desc->d.staterr)
619 			break;
620 
621 		/* This memory barrier is needed to keep us from reading
622 		 * any other fields out of the rx_desc until we know the
623 		 * descriptor has been written back
624 		 */
625 		dma_rmb();
626 
627 		/* retrieve a buffer from the ring */
628 		skb = fm10k_fetch_rx_buffer(rx_ring, rx_desc, skb);
629 
630 		/* exit if we failed to retrieve a buffer */
631 		if (!skb)
632 			break;
633 
634 		cleaned_count++;
635 
636 		/* fetch next buffer in frame if non-eop */
637 		if (fm10k_is_non_eop(rx_ring, rx_desc))
638 			continue;
639 
640 		/* verify the packet layout is correct */
641 		if (fm10k_cleanup_headers(rx_ring, rx_desc, skb)) {
642 			skb = NULL;
643 			continue;
644 		}
645 
646 		/* populate checksum, timestamp, VLAN, and protocol */
647 		total_bytes += fm10k_process_skb_fields(rx_ring, rx_desc, skb);
648 
649 		fm10k_receive_skb(q_vector, skb);
650 
651 		/* reset skb pointer */
652 		skb = NULL;
653 
654 		/* update budget accounting */
655 		total_packets++;
656 	} while (likely(total_packets < budget));
657 
658 	/* place incomplete frames back on ring for completion */
659 	rx_ring->skb = skb;
660 
661 	u64_stats_update_begin(&rx_ring->syncp);
662 	rx_ring->stats.packets += total_packets;
663 	rx_ring->stats.bytes += total_bytes;
664 	u64_stats_update_end(&rx_ring->syncp);
665 	q_vector->rx.total_packets += total_packets;
666 	q_vector->rx.total_bytes += total_bytes;
667 
668 	return total_packets < budget;
669 }
670 
671 #define VXLAN_HLEN (sizeof(struct udphdr) + 8)
672 static struct ethhdr *fm10k_port_is_vxlan(struct sk_buff *skb)
673 {
674 	struct fm10k_intfc *interface = netdev_priv(skb->dev);
675 	struct fm10k_vxlan_port *vxlan_port;
676 
677 	/* we can only offload a vxlan if we recognize it as such */
678 	vxlan_port = list_first_entry_or_null(&interface->vxlan_port,
679 					      struct fm10k_vxlan_port, list);
680 
681 	if (!vxlan_port)
682 		return NULL;
683 	if (vxlan_port->port != udp_hdr(skb)->dest)
684 		return NULL;
685 
686 	/* return offset of udp_hdr plus 8 bytes for VXLAN header */
687 	return (struct ethhdr *)(skb_transport_header(skb) + VXLAN_HLEN);
688 }
689 
690 #define FM10K_NVGRE_RESERVED0_FLAGS htons(0x9FFF)
691 #define NVGRE_TNI htons(0x2000)
692 struct fm10k_nvgre_hdr {
693 	__be16 flags;
694 	__be16 proto;
695 	__be32 tni;
696 };
697 
698 static struct ethhdr *fm10k_gre_is_nvgre(struct sk_buff *skb)
699 {
700 	struct fm10k_nvgre_hdr *nvgre_hdr;
701 	int hlen = ip_hdrlen(skb);
702 
703 	/* currently only IPv4 is supported due to hlen above */
704 	if (vlan_get_protocol(skb) != htons(ETH_P_IP))
705 		return NULL;
706 
707 	/* our transport header should be NVGRE */
708 	nvgre_hdr = (struct fm10k_nvgre_hdr *)(skb_network_header(skb) + hlen);
709 
710 	/* verify all reserved flags are 0 */
711 	if (nvgre_hdr->flags & FM10K_NVGRE_RESERVED0_FLAGS)
712 		return NULL;
713 
714 	/* report start of ethernet header */
715 	if (nvgre_hdr->flags & NVGRE_TNI)
716 		return (struct ethhdr *)(nvgre_hdr + 1);
717 
718 	return (struct ethhdr *)(&nvgre_hdr->tni);
719 }
720 
721 __be16 fm10k_tx_encap_offload(struct sk_buff *skb)
722 {
723 	u8 l4_hdr = 0, inner_l4_hdr = 0, inner_l4_hlen;
724 	struct ethhdr *eth_hdr;
725 
726 	if (skb->inner_protocol_type != ENCAP_TYPE_ETHER ||
727 	    skb->inner_protocol != htons(ETH_P_TEB))
728 		return 0;
729 
730 	switch (vlan_get_protocol(skb)) {
731 	case htons(ETH_P_IP):
732 		l4_hdr = ip_hdr(skb)->protocol;
733 		break;
734 	case htons(ETH_P_IPV6):
735 		l4_hdr = ipv6_hdr(skb)->nexthdr;
736 		break;
737 	default:
738 		return 0;
739 	}
740 
741 	switch (l4_hdr) {
742 	case IPPROTO_UDP:
743 		eth_hdr = fm10k_port_is_vxlan(skb);
744 		break;
745 	case IPPROTO_GRE:
746 		eth_hdr = fm10k_gre_is_nvgre(skb);
747 		break;
748 	default:
749 		return 0;
750 	}
751 
752 	if (!eth_hdr)
753 		return 0;
754 
755 	switch (eth_hdr->h_proto) {
756 	case htons(ETH_P_IP):
757 		inner_l4_hdr = inner_ip_hdr(skb)->protocol;
758 		break;
759 	case htons(ETH_P_IPV6):
760 		inner_l4_hdr = inner_ipv6_hdr(skb)->nexthdr;
761 		break;
762 	default:
763 		return 0;
764 	}
765 
766 	switch (inner_l4_hdr) {
767 	case IPPROTO_TCP:
768 		inner_l4_hlen = inner_tcp_hdrlen(skb);
769 		break;
770 	case IPPROTO_UDP:
771 		inner_l4_hlen = 8;
772 		break;
773 	default:
774 		return 0;
775 	}
776 
777 	/* The hardware allows tunnel offloads only if the combined inner and
778 	 * outer header is 184 bytes or less
779 	 */
780 	if (skb_inner_transport_header(skb) + inner_l4_hlen -
781 	    skb_mac_header(skb) > FM10K_TUNNEL_HEADER_LENGTH)
782 		return 0;
783 
784 	return eth_hdr->h_proto;
785 }
786 
787 static int fm10k_tso(struct fm10k_ring *tx_ring,
788 		     struct fm10k_tx_buffer *first)
789 {
790 	struct sk_buff *skb = first->skb;
791 	struct fm10k_tx_desc *tx_desc;
792 	unsigned char *th;
793 	u8 hdrlen;
794 
795 	if (skb->ip_summed != CHECKSUM_PARTIAL)
796 		return 0;
797 
798 	if (!skb_is_gso(skb))
799 		return 0;
800 
801 	/* compute header lengths */
802 	if (skb->encapsulation) {
803 		if (!fm10k_tx_encap_offload(skb))
804 			goto err_vxlan;
805 		th = skb_inner_transport_header(skb);
806 	} else {
807 		th = skb_transport_header(skb);
808 	}
809 
810 	/* compute offset from SOF to transport header and add header len */
811 	hdrlen = (th - skb->data) + (((struct tcphdr *)th)->doff << 2);
812 
813 	first->tx_flags |= FM10K_TX_FLAGS_CSUM;
814 
815 	/* update gso size and bytecount with header size */
816 	first->gso_segs = skb_shinfo(skb)->gso_segs;
817 	first->bytecount += (first->gso_segs - 1) * hdrlen;
818 
819 	/* populate Tx descriptor header size and mss */
820 	tx_desc = FM10K_TX_DESC(tx_ring, tx_ring->next_to_use);
821 	tx_desc->hdrlen = hdrlen;
822 	tx_desc->mss = cpu_to_le16(skb_shinfo(skb)->gso_size);
823 
824 	return 1;
825 err_vxlan:
826 	tx_ring->netdev->features &= ~NETIF_F_GSO_UDP_TUNNEL;
827 	if (!net_ratelimit())
828 		netdev_err(tx_ring->netdev,
829 			   "TSO requested for unsupported tunnel, disabling offload\n");
830 	return -1;
831 }
832 
833 static void fm10k_tx_csum(struct fm10k_ring *tx_ring,
834 			  struct fm10k_tx_buffer *first)
835 {
836 	struct sk_buff *skb = first->skb;
837 	struct fm10k_tx_desc *tx_desc;
838 	union {
839 		struct iphdr *ipv4;
840 		struct ipv6hdr *ipv6;
841 		u8 *raw;
842 	} network_hdr;
843 	__be16 protocol;
844 	u8 l4_hdr = 0;
845 
846 	if (skb->ip_summed != CHECKSUM_PARTIAL)
847 		goto no_csum;
848 
849 	if (skb->encapsulation) {
850 		protocol = fm10k_tx_encap_offload(skb);
851 		if (!protocol) {
852 			if (skb_checksum_help(skb)) {
853 				dev_warn(tx_ring->dev,
854 					 "failed to offload encap csum!\n");
855 				tx_ring->tx_stats.csum_err++;
856 			}
857 			goto no_csum;
858 		}
859 		network_hdr.raw = skb_inner_network_header(skb);
860 	} else {
861 		protocol = vlan_get_protocol(skb);
862 		network_hdr.raw = skb_network_header(skb);
863 	}
864 
865 	switch (protocol) {
866 	case htons(ETH_P_IP):
867 		l4_hdr = network_hdr.ipv4->protocol;
868 		break;
869 	case htons(ETH_P_IPV6):
870 		l4_hdr = network_hdr.ipv6->nexthdr;
871 		break;
872 	default:
873 		if (unlikely(net_ratelimit())) {
874 			dev_warn(tx_ring->dev,
875 				 "partial checksum but ip version=%x!\n",
876 				 protocol);
877 		}
878 		tx_ring->tx_stats.csum_err++;
879 		goto no_csum;
880 	}
881 
882 	switch (l4_hdr) {
883 	case IPPROTO_TCP:
884 	case IPPROTO_UDP:
885 		break;
886 	case IPPROTO_GRE:
887 		if (skb->encapsulation)
888 			break;
889 	default:
890 		if (unlikely(net_ratelimit())) {
891 			dev_warn(tx_ring->dev,
892 				 "partial checksum but l4 proto=%x!\n",
893 				 l4_hdr);
894 		}
895 		tx_ring->tx_stats.csum_err++;
896 		goto no_csum;
897 	}
898 
899 	/* update TX checksum flag */
900 	first->tx_flags |= FM10K_TX_FLAGS_CSUM;
901 
902 no_csum:
903 	/* populate Tx descriptor header size and mss */
904 	tx_desc = FM10K_TX_DESC(tx_ring, tx_ring->next_to_use);
905 	tx_desc->hdrlen = 0;
906 	tx_desc->mss = 0;
907 }
908 
909 #define FM10K_SET_FLAG(_input, _flag, _result) \
910 	((_flag <= _result) ? \
911 	 ((u32)(_input & _flag) * (_result / _flag)) : \
912 	 ((u32)(_input & _flag) / (_flag / _result)))
913 
914 static u8 fm10k_tx_desc_flags(struct sk_buff *skb, u32 tx_flags)
915 {
916 	/* set type for advanced descriptor with frame checksum insertion */
917 	u32 desc_flags = 0;
918 
919 	/* set timestamping bits */
920 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
921 	    likely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS))
922 			desc_flags |= FM10K_TXD_FLAG_TIME;
923 
924 	/* set checksum offload bits */
925 	desc_flags |= FM10K_SET_FLAG(tx_flags, FM10K_TX_FLAGS_CSUM,
926 				     FM10K_TXD_FLAG_CSUM);
927 
928 	return desc_flags;
929 }
930 
931 static bool fm10k_tx_desc_push(struct fm10k_ring *tx_ring,
932 			       struct fm10k_tx_desc *tx_desc, u16 i,
933 			       dma_addr_t dma, unsigned int size, u8 desc_flags)
934 {
935 	/* set RS and INT for last frame in a cache line */
936 	if ((++i & (FM10K_TXD_WB_FIFO_SIZE - 1)) == 0)
937 		desc_flags |= FM10K_TXD_FLAG_RS | FM10K_TXD_FLAG_INT;
938 
939 	/* record values to descriptor */
940 	tx_desc->buffer_addr = cpu_to_le64(dma);
941 	tx_desc->flags = desc_flags;
942 	tx_desc->buflen = cpu_to_le16(size);
943 
944 	/* return true if we just wrapped the ring */
945 	return i == tx_ring->count;
946 }
947 
948 static int __fm10k_maybe_stop_tx(struct fm10k_ring *tx_ring, u16 size)
949 {
950 	netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
951 
952 	/* Memory barrier before checking head and tail */
953 	smp_mb();
954 
955 	/* Check again in a case another CPU has just made room available */
956 	if (likely(fm10k_desc_unused(tx_ring) < size))
957 		return -EBUSY;
958 
959 	/* A reprieve! - use start_queue because it doesn't call schedule */
960 	netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
961 	++tx_ring->tx_stats.restart_queue;
962 	return 0;
963 }
964 
965 static inline int fm10k_maybe_stop_tx(struct fm10k_ring *tx_ring, u16 size)
966 {
967 	if (likely(fm10k_desc_unused(tx_ring) >= size))
968 		return 0;
969 	return __fm10k_maybe_stop_tx(tx_ring, size);
970 }
971 
972 static void fm10k_tx_map(struct fm10k_ring *tx_ring,
973 			 struct fm10k_tx_buffer *first)
974 {
975 	struct sk_buff *skb = first->skb;
976 	struct fm10k_tx_buffer *tx_buffer;
977 	struct fm10k_tx_desc *tx_desc;
978 	struct skb_frag_struct *frag;
979 	unsigned char *data;
980 	dma_addr_t dma;
981 	unsigned int data_len, size;
982 	u32 tx_flags = first->tx_flags;
983 	u16 i = tx_ring->next_to_use;
984 	u8 flags = fm10k_tx_desc_flags(skb, tx_flags);
985 
986 	tx_desc = FM10K_TX_DESC(tx_ring, i);
987 
988 	/* add HW VLAN tag */
989 	if (skb_vlan_tag_present(skb))
990 		tx_desc->vlan = cpu_to_le16(skb_vlan_tag_get(skb));
991 	else
992 		tx_desc->vlan = 0;
993 
994 	size = skb_headlen(skb);
995 	data = skb->data;
996 
997 	dma = dma_map_single(tx_ring->dev, data, size, DMA_TO_DEVICE);
998 
999 	data_len = skb->data_len;
1000 	tx_buffer = first;
1001 
1002 	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
1003 		if (dma_mapping_error(tx_ring->dev, dma))
1004 			goto dma_error;
1005 
1006 		/* record length, and DMA address */
1007 		dma_unmap_len_set(tx_buffer, len, size);
1008 		dma_unmap_addr_set(tx_buffer, dma, dma);
1009 
1010 		while (unlikely(size > FM10K_MAX_DATA_PER_TXD)) {
1011 			if (fm10k_tx_desc_push(tx_ring, tx_desc++, i++, dma,
1012 					       FM10K_MAX_DATA_PER_TXD, flags)) {
1013 				tx_desc = FM10K_TX_DESC(tx_ring, 0);
1014 				i = 0;
1015 			}
1016 
1017 			dma += FM10K_MAX_DATA_PER_TXD;
1018 			size -= FM10K_MAX_DATA_PER_TXD;
1019 		}
1020 
1021 		if (likely(!data_len))
1022 			break;
1023 
1024 		if (fm10k_tx_desc_push(tx_ring, tx_desc++, i++,
1025 				       dma, size, flags)) {
1026 			tx_desc = FM10K_TX_DESC(tx_ring, 0);
1027 			i = 0;
1028 		}
1029 
1030 		size = skb_frag_size(frag);
1031 		data_len -= size;
1032 
1033 		dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
1034 				       DMA_TO_DEVICE);
1035 
1036 		tx_buffer = &tx_ring->tx_buffer[i];
1037 	}
1038 
1039 	/* write last descriptor with LAST bit set */
1040 	flags |= FM10K_TXD_FLAG_LAST;
1041 
1042 	if (fm10k_tx_desc_push(tx_ring, tx_desc, i++, dma, size, flags))
1043 		i = 0;
1044 
1045 	/* record bytecount for BQL */
1046 	netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
1047 
1048 	/* record SW timestamp if HW timestamp is not available */
1049 	skb_tx_timestamp(first->skb);
1050 
1051 	/* Force memory writes to complete before letting h/w know there
1052 	 * are new descriptors to fetch.  (Only applicable for weak-ordered
1053 	 * memory model archs, such as IA-64).
1054 	 *
1055 	 * We also need this memory barrier to make certain all of the
1056 	 * status bits have been updated before next_to_watch is written.
1057 	 */
1058 	wmb();
1059 
1060 	/* set next_to_watch value indicating a packet is present */
1061 	first->next_to_watch = tx_desc;
1062 
1063 	tx_ring->next_to_use = i;
1064 
1065 	/* Make sure there is space in the ring for the next send. */
1066 	fm10k_maybe_stop_tx(tx_ring, DESC_NEEDED);
1067 
1068 	/* notify HW of packet */
1069 	if (netif_xmit_stopped(txring_txq(tx_ring)) || !skb->xmit_more) {
1070 		writel(i, tx_ring->tail);
1071 
1072 		/* we need this if more than one processor can write to our tail
1073 		 * at a time, it synchronizes IO on IA64/Altix systems
1074 		 */
1075 		mmiowb();
1076 	}
1077 
1078 	return;
1079 dma_error:
1080 	dev_err(tx_ring->dev, "TX DMA map failed\n");
1081 
1082 	/* clear dma mappings for failed tx_buffer map */
1083 	for (;;) {
1084 		tx_buffer = &tx_ring->tx_buffer[i];
1085 		fm10k_unmap_and_free_tx_resource(tx_ring, tx_buffer);
1086 		if (tx_buffer == first)
1087 			break;
1088 		if (i == 0)
1089 			i = tx_ring->count;
1090 		i--;
1091 	}
1092 
1093 	tx_ring->next_to_use = i;
1094 }
1095 
1096 netdev_tx_t fm10k_xmit_frame_ring(struct sk_buff *skb,
1097 				  struct fm10k_ring *tx_ring)
1098 {
1099 	struct fm10k_tx_buffer *first;
1100 	int tso;
1101 	u32 tx_flags = 0;
1102 #if PAGE_SIZE > FM10K_MAX_DATA_PER_TXD
1103 	unsigned short f;
1104 #endif
1105 	u16 count = TXD_USE_COUNT(skb_headlen(skb));
1106 
1107 	/* need: 1 descriptor per page * PAGE_SIZE/FM10K_MAX_DATA_PER_TXD,
1108 	 *       + 1 desc for skb_headlen/FM10K_MAX_DATA_PER_TXD,
1109 	 *       + 2 desc gap to keep tail from touching head
1110 	 * otherwise try next time
1111 	 */
1112 #if PAGE_SIZE > FM10K_MAX_DATA_PER_TXD
1113 	for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
1114 		count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size);
1115 #else
1116 	count += skb_shinfo(skb)->nr_frags;
1117 #endif
1118 	if (fm10k_maybe_stop_tx(tx_ring, count + 3)) {
1119 		tx_ring->tx_stats.tx_busy++;
1120 		return NETDEV_TX_BUSY;
1121 	}
1122 
1123 	/* record the location of the first descriptor for this packet */
1124 	first = &tx_ring->tx_buffer[tx_ring->next_to_use];
1125 	first->skb = skb;
1126 	first->bytecount = max_t(unsigned int, skb->len, ETH_ZLEN);
1127 	first->gso_segs = 1;
1128 
1129 	/* record initial flags and protocol */
1130 	first->tx_flags = tx_flags;
1131 
1132 	tso = fm10k_tso(tx_ring, first);
1133 	if (tso < 0)
1134 		goto out_drop;
1135 	else if (!tso)
1136 		fm10k_tx_csum(tx_ring, first);
1137 
1138 	fm10k_tx_map(tx_ring, first);
1139 
1140 	return NETDEV_TX_OK;
1141 
1142 out_drop:
1143 	dev_kfree_skb_any(first->skb);
1144 	first->skb = NULL;
1145 
1146 	return NETDEV_TX_OK;
1147 }
1148 
1149 static u64 fm10k_get_tx_completed(struct fm10k_ring *ring)
1150 {
1151 	return ring->stats.packets;
1152 }
1153 
1154 static u64 fm10k_get_tx_pending(struct fm10k_ring *ring)
1155 {
1156 	/* use SW head and tail until we have real hardware */
1157 	u32 head = ring->next_to_clean;
1158 	u32 tail = ring->next_to_use;
1159 
1160 	return ((head <= tail) ? tail : tail + ring->count) - head;
1161 }
1162 
1163 bool fm10k_check_tx_hang(struct fm10k_ring *tx_ring)
1164 {
1165 	u32 tx_done = fm10k_get_tx_completed(tx_ring);
1166 	u32 tx_done_old = tx_ring->tx_stats.tx_done_old;
1167 	u32 tx_pending = fm10k_get_tx_pending(tx_ring);
1168 
1169 	clear_check_for_tx_hang(tx_ring);
1170 
1171 	/* Check for a hung queue, but be thorough. This verifies
1172 	 * that a transmit has been completed since the previous
1173 	 * check AND there is at least one packet pending. By
1174 	 * requiring this to fail twice we avoid races with
1175 	 * clearing the ARMED bit and conditions where we
1176 	 * run the check_tx_hang logic with a transmit completion
1177 	 * pending but without time to complete it yet.
1178 	 */
1179 	if (!tx_pending || (tx_done_old != tx_done)) {
1180 		/* update completed stats and continue */
1181 		tx_ring->tx_stats.tx_done_old = tx_done;
1182 		/* reset the countdown */
1183 		clear_bit(__FM10K_HANG_CHECK_ARMED, &tx_ring->state);
1184 
1185 		return false;
1186 	}
1187 
1188 	/* make sure it is true for two checks in a row */
1189 	return test_and_set_bit(__FM10K_HANG_CHECK_ARMED, &tx_ring->state);
1190 }
1191 
1192 /**
1193  * fm10k_tx_timeout_reset - initiate reset due to Tx timeout
1194  * @interface: driver private struct
1195  **/
1196 void fm10k_tx_timeout_reset(struct fm10k_intfc *interface)
1197 {
1198 	/* Do the reset outside of interrupt context */
1199 	if (!test_bit(__FM10K_DOWN, &interface->state)) {
1200 		netdev_err(interface->netdev, "Reset interface\n");
1201 		interface->tx_timeout_count++;
1202 		interface->flags |= FM10K_FLAG_RESET_REQUESTED;
1203 		fm10k_service_event_schedule(interface);
1204 	}
1205 }
1206 
1207 /**
1208  * fm10k_clean_tx_irq - Reclaim resources after transmit completes
1209  * @q_vector: structure containing interrupt and ring information
1210  * @tx_ring: tx ring to clean
1211  **/
1212 static bool fm10k_clean_tx_irq(struct fm10k_q_vector *q_vector,
1213 			       struct fm10k_ring *tx_ring)
1214 {
1215 	struct fm10k_intfc *interface = q_vector->interface;
1216 	struct fm10k_tx_buffer *tx_buffer;
1217 	struct fm10k_tx_desc *tx_desc;
1218 	unsigned int total_bytes = 0, total_packets = 0;
1219 	unsigned int budget = q_vector->tx.work_limit;
1220 	unsigned int i = tx_ring->next_to_clean;
1221 
1222 	if (test_bit(__FM10K_DOWN, &interface->state))
1223 		return true;
1224 
1225 	tx_buffer = &tx_ring->tx_buffer[i];
1226 	tx_desc = FM10K_TX_DESC(tx_ring, i);
1227 	i -= tx_ring->count;
1228 
1229 	do {
1230 		struct fm10k_tx_desc *eop_desc = tx_buffer->next_to_watch;
1231 
1232 		/* if next_to_watch is not set then there is no work pending */
1233 		if (!eop_desc)
1234 			break;
1235 
1236 		/* prevent any other reads prior to eop_desc */
1237 		read_barrier_depends();
1238 
1239 		/* if DD is not set pending work has not been completed */
1240 		if (!(eop_desc->flags & FM10K_TXD_FLAG_DONE))
1241 			break;
1242 
1243 		/* clear next_to_watch to prevent false hangs */
1244 		tx_buffer->next_to_watch = NULL;
1245 
1246 		/* update the statistics for this packet */
1247 		total_bytes += tx_buffer->bytecount;
1248 		total_packets += tx_buffer->gso_segs;
1249 
1250 		/* free the skb */
1251 		dev_consume_skb_any(tx_buffer->skb);
1252 
1253 		/* unmap skb header data */
1254 		dma_unmap_single(tx_ring->dev,
1255 				 dma_unmap_addr(tx_buffer, dma),
1256 				 dma_unmap_len(tx_buffer, len),
1257 				 DMA_TO_DEVICE);
1258 
1259 		/* clear tx_buffer data */
1260 		tx_buffer->skb = NULL;
1261 		dma_unmap_len_set(tx_buffer, len, 0);
1262 
1263 		/* unmap remaining buffers */
1264 		while (tx_desc != eop_desc) {
1265 			tx_buffer++;
1266 			tx_desc++;
1267 			i++;
1268 			if (unlikely(!i)) {
1269 				i -= tx_ring->count;
1270 				tx_buffer = tx_ring->tx_buffer;
1271 				tx_desc = FM10K_TX_DESC(tx_ring, 0);
1272 			}
1273 
1274 			/* unmap any remaining paged data */
1275 			if (dma_unmap_len(tx_buffer, len)) {
1276 				dma_unmap_page(tx_ring->dev,
1277 					       dma_unmap_addr(tx_buffer, dma),
1278 					       dma_unmap_len(tx_buffer, len),
1279 					       DMA_TO_DEVICE);
1280 				dma_unmap_len_set(tx_buffer, len, 0);
1281 			}
1282 		}
1283 
1284 		/* move us one more past the eop_desc for start of next pkt */
1285 		tx_buffer++;
1286 		tx_desc++;
1287 		i++;
1288 		if (unlikely(!i)) {
1289 			i -= tx_ring->count;
1290 			tx_buffer = tx_ring->tx_buffer;
1291 			tx_desc = FM10K_TX_DESC(tx_ring, 0);
1292 		}
1293 
1294 		/* issue prefetch for next Tx descriptor */
1295 		prefetch(tx_desc);
1296 
1297 		/* update budget accounting */
1298 		budget--;
1299 	} while (likely(budget));
1300 
1301 	i += tx_ring->count;
1302 	tx_ring->next_to_clean = i;
1303 	u64_stats_update_begin(&tx_ring->syncp);
1304 	tx_ring->stats.bytes += total_bytes;
1305 	tx_ring->stats.packets += total_packets;
1306 	u64_stats_update_end(&tx_ring->syncp);
1307 	q_vector->tx.total_bytes += total_bytes;
1308 	q_vector->tx.total_packets += total_packets;
1309 
1310 	if (check_for_tx_hang(tx_ring) && fm10k_check_tx_hang(tx_ring)) {
1311 		/* schedule immediate reset if we believe we hung */
1312 		struct fm10k_hw *hw = &interface->hw;
1313 
1314 		netif_err(interface, drv, tx_ring->netdev,
1315 			  "Detected Tx Unit Hang\n"
1316 			  "  Tx Queue             <%d>\n"
1317 			  "  TDH, TDT             <%x>, <%x>\n"
1318 			  "  next_to_use          <%x>\n"
1319 			  "  next_to_clean        <%x>\n",
1320 			  tx_ring->queue_index,
1321 			  fm10k_read_reg(hw, FM10K_TDH(tx_ring->reg_idx)),
1322 			  fm10k_read_reg(hw, FM10K_TDT(tx_ring->reg_idx)),
1323 			  tx_ring->next_to_use, i);
1324 
1325 		netif_stop_subqueue(tx_ring->netdev,
1326 				    tx_ring->queue_index);
1327 
1328 		netif_info(interface, probe, tx_ring->netdev,
1329 			   "tx hang %d detected on queue %d, resetting interface\n",
1330 			   interface->tx_timeout_count + 1,
1331 			   tx_ring->queue_index);
1332 
1333 		fm10k_tx_timeout_reset(interface);
1334 
1335 		/* the netdev is about to reset, no point in enabling stuff */
1336 		return true;
1337 	}
1338 
1339 	/* notify netdev of completed buffers */
1340 	netdev_tx_completed_queue(txring_txq(tx_ring),
1341 				  total_packets, total_bytes);
1342 
1343 #define TX_WAKE_THRESHOLD min_t(u16, FM10K_MIN_TXD - 1, DESC_NEEDED * 2)
1344 	if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
1345 		     (fm10k_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD))) {
1346 		/* Make sure that anybody stopping the queue after this
1347 		 * sees the new next_to_clean.
1348 		 */
1349 		smp_mb();
1350 		if (__netif_subqueue_stopped(tx_ring->netdev,
1351 					     tx_ring->queue_index) &&
1352 		    !test_bit(__FM10K_DOWN, &interface->state)) {
1353 			netif_wake_subqueue(tx_ring->netdev,
1354 					    tx_ring->queue_index);
1355 			++tx_ring->tx_stats.restart_queue;
1356 		}
1357 	}
1358 
1359 	return !!budget;
1360 }
1361 
1362 /**
1363  * fm10k_update_itr - update the dynamic ITR value based on packet size
1364  *
1365  *      Stores a new ITR value based on strictly on packet size.  The
1366  *      divisors and thresholds used by this function were determined based
1367  *      on theoretical maximum wire speed and testing data, in order to
1368  *      minimize response time while increasing bulk throughput.
1369  *
1370  * @ring_container: Container for rings to have ITR updated
1371  **/
1372 static void fm10k_update_itr(struct fm10k_ring_container *ring_container)
1373 {
1374 	unsigned int avg_wire_size, packets;
1375 
1376 	/* Only update ITR if we are using adaptive setting */
1377 	if (!(ring_container->itr & FM10K_ITR_ADAPTIVE))
1378 		goto clear_counts;
1379 
1380 	packets = ring_container->total_packets;
1381 	if (!packets)
1382 		goto clear_counts;
1383 
1384 	avg_wire_size = ring_container->total_bytes / packets;
1385 
1386 	/* Add 24 bytes to size to account for CRC, preamble, and gap */
1387 	avg_wire_size += 24;
1388 
1389 	/* Don't starve jumbo frames */
1390 	if (avg_wire_size > 3000)
1391 		avg_wire_size = 3000;
1392 
1393 	/* Give a little boost to mid-size frames */
1394 	if ((avg_wire_size > 300) && (avg_wire_size < 1200))
1395 		avg_wire_size /= 3;
1396 	else
1397 		avg_wire_size /= 2;
1398 
1399 	/* write back value and retain adaptive flag */
1400 	ring_container->itr = avg_wire_size | FM10K_ITR_ADAPTIVE;
1401 
1402 clear_counts:
1403 	ring_container->total_bytes = 0;
1404 	ring_container->total_packets = 0;
1405 }
1406 
1407 static void fm10k_qv_enable(struct fm10k_q_vector *q_vector)
1408 {
1409 	/* Enable auto-mask and clear the current mask */
1410 	u32 itr = FM10K_ITR_ENABLE;
1411 
1412 	/* Update Tx ITR */
1413 	fm10k_update_itr(&q_vector->tx);
1414 
1415 	/* Update Rx ITR */
1416 	fm10k_update_itr(&q_vector->rx);
1417 
1418 	/* Store Tx itr in timer slot 0 */
1419 	itr |= (q_vector->tx.itr & FM10K_ITR_MAX);
1420 
1421 	/* Shift Rx itr to timer slot 1 */
1422 	itr |= (q_vector->rx.itr & FM10K_ITR_MAX) << FM10K_ITR_INTERVAL1_SHIFT;
1423 
1424 	/* Write the final value to the ITR register */
1425 	writel(itr, q_vector->itr);
1426 }
1427 
1428 static int fm10k_poll(struct napi_struct *napi, int budget)
1429 {
1430 	struct fm10k_q_vector *q_vector =
1431 			       container_of(napi, struct fm10k_q_vector, napi);
1432 	struct fm10k_ring *ring;
1433 	int per_ring_budget;
1434 	bool clean_complete = true;
1435 
1436 	fm10k_for_each_ring(ring, q_vector->tx)
1437 		clean_complete &= fm10k_clean_tx_irq(q_vector, ring);
1438 
1439 	/* attempt to distribute budget to each queue fairly, but don't
1440 	 * allow the budget to go below 1 because we'll exit polling
1441 	 */
1442 	if (q_vector->rx.count > 1)
1443 		per_ring_budget = max(budget/q_vector->rx.count, 1);
1444 	else
1445 		per_ring_budget = budget;
1446 
1447 	fm10k_for_each_ring(ring, q_vector->rx)
1448 		clean_complete &= fm10k_clean_rx_irq(q_vector, ring,
1449 						     per_ring_budget);
1450 
1451 	/* If all work not completed, return budget and keep polling */
1452 	if (!clean_complete)
1453 		return budget;
1454 
1455 	/* all work done, exit the polling mode */
1456 	napi_complete(napi);
1457 
1458 	/* re-enable the q_vector */
1459 	fm10k_qv_enable(q_vector);
1460 
1461 	return 0;
1462 }
1463 
1464 /**
1465  * fm10k_set_qos_queues: Allocate queues for a QOS-enabled device
1466  * @interface: board private structure to initialize
1467  *
1468  * When QoS (Quality of Service) is enabled, allocate queues for
1469  * each traffic class.  If multiqueue isn't available,then abort QoS
1470  * initialization.
1471  *
1472  * This function handles all combinations of Qos and RSS.
1473  *
1474  **/
1475 static bool fm10k_set_qos_queues(struct fm10k_intfc *interface)
1476 {
1477 	struct net_device *dev = interface->netdev;
1478 	struct fm10k_ring_feature *f;
1479 	int rss_i, i;
1480 	int pcs;
1481 
1482 	/* Map queue offset and counts onto allocated tx queues */
1483 	pcs = netdev_get_num_tc(dev);
1484 
1485 	if (pcs <= 1)
1486 		return false;
1487 
1488 	/* set QoS mask and indices */
1489 	f = &interface->ring_feature[RING_F_QOS];
1490 	f->indices = pcs;
1491 	f->mask = (1 << fls(pcs - 1)) - 1;
1492 
1493 	/* determine the upper limit for our current DCB mode */
1494 	rss_i = interface->hw.mac.max_queues / pcs;
1495 	rss_i = 1 << (fls(rss_i) - 1);
1496 
1497 	/* set RSS mask and indices */
1498 	f = &interface->ring_feature[RING_F_RSS];
1499 	rss_i = min_t(u16, rss_i, f->limit);
1500 	f->indices = rss_i;
1501 	f->mask = (1 << fls(rss_i - 1)) - 1;
1502 
1503 	/* configure pause class to queue mapping */
1504 	for (i = 0; i < pcs; i++)
1505 		netdev_set_tc_queue(dev, i, rss_i, rss_i * i);
1506 
1507 	interface->num_rx_queues = rss_i * pcs;
1508 	interface->num_tx_queues = rss_i * pcs;
1509 
1510 	return true;
1511 }
1512 
1513 /**
1514  * fm10k_set_rss_queues: Allocate queues for RSS
1515  * @interface: board private structure to initialize
1516  *
1517  * This is our "base" multiqueue mode.  RSS (Receive Side Scaling) will try
1518  * to allocate one Rx queue per CPU, and if available, one Tx queue per CPU.
1519  *
1520  **/
1521 static bool fm10k_set_rss_queues(struct fm10k_intfc *interface)
1522 {
1523 	struct fm10k_ring_feature *f;
1524 	u16 rss_i;
1525 
1526 	f = &interface->ring_feature[RING_F_RSS];
1527 	rss_i = min_t(u16, interface->hw.mac.max_queues, f->limit);
1528 
1529 	/* record indices and power of 2 mask for RSS */
1530 	f->indices = rss_i;
1531 	f->mask = (1 << fls(rss_i - 1)) - 1;
1532 
1533 	interface->num_rx_queues = rss_i;
1534 	interface->num_tx_queues = rss_i;
1535 
1536 	return true;
1537 }
1538 
1539 /**
1540  * fm10k_set_num_queues: Allocate queues for device, feature dependent
1541  * @interface: board private structure to initialize
1542  *
1543  * This is the top level queue allocation routine.  The order here is very
1544  * important, starting with the "most" number of features turned on at once,
1545  * and ending with the smallest set of features.  This way large combinations
1546  * can be allocated if they're turned on, and smaller combinations are the
1547  * fallthrough conditions.
1548  *
1549  **/
1550 static void fm10k_set_num_queues(struct fm10k_intfc *interface)
1551 {
1552 	/* Start with base case */
1553 	interface->num_rx_queues = 1;
1554 	interface->num_tx_queues = 1;
1555 
1556 	if (fm10k_set_qos_queues(interface))
1557 		return;
1558 
1559 	fm10k_set_rss_queues(interface);
1560 }
1561 
1562 /**
1563  * fm10k_alloc_q_vector - Allocate memory for a single interrupt vector
1564  * @interface: board private structure to initialize
1565  * @v_count: q_vectors allocated on interface, used for ring interleaving
1566  * @v_idx: index of vector in interface struct
1567  * @txr_count: total number of Tx rings to allocate
1568  * @txr_idx: index of first Tx ring to allocate
1569  * @rxr_count: total number of Rx rings to allocate
1570  * @rxr_idx: index of first Rx ring to allocate
1571  *
1572  * We allocate one q_vector.  If allocation fails we return -ENOMEM.
1573  **/
1574 static int fm10k_alloc_q_vector(struct fm10k_intfc *interface,
1575 				unsigned int v_count, unsigned int v_idx,
1576 				unsigned int txr_count, unsigned int txr_idx,
1577 				unsigned int rxr_count, unsigned int rxr_idx)
1578 {
1579 	struct fm10k_q_vector *q_vector;
1580 	struct fm10k_ring *ring;
1581 	int ring_count, size;
1582 
1583 	ring_count = txr_count + rxr_count;
1584 	size = sizeof(struct fm10k_q_vector) +
1585 	       (sizeof(struct fm10k_ring) * ring_count);
1586 
1587 	/* allocate q_vector and rings */
1588 	q_vector = kzalloc(size, GFP_KERNEL);
1589 	if (!q_vector)
1590 		return -ENOMEM;
1591 
1592 	/* initialize NAPI */
1593 	netif_napi_add(interface->netdev, &q_vector->napi,
1594 		       fm10k_poll, NAPI_POLL_WEIGHT);
1595 
1596 	/* tie q_vector and interface together */
1597 	interface->q_vector[v_idx] = q_vector;
1598 	q_vector->interface = interface;
1599 	q_vector->v_idx = v_idx;
1600 
1601 	/* initialize pointer to rings */
1602 	ring = q_vector->ring;
1603 
1604 	/* save Tx ring container info */
1605 	q_vector->tx.ring = ring;
1606 	q_vector->tx.work_limit = FM10K_DEFAULT_TX_WORK;
1607 	q_vector->tx.itr = interface->tx_itr;
1608 	q_vector->tx.count = txr_count;
1609 
1610 	while (txr_count) {
1611 		/* assign generic ring traits */
1612 		ring->dev = &interface->pdev->dev;
1613 		ring->netdev = interface->netdev;
1614 
1615 		/* configure backlink on ring */
1616 		ring->q_vector = q_vector;
1617 
1618 		/* apply Tx specific ring traits */
1619 		ring->count = interface->tx_ring_count;
1620 		ring->queue_index = txr_idx;
1621 
1622 		/* assign ring to interface */
1623 		interface->tx_ring[txr_idx] = ring;
1624 
1625 		/* update count and index */
1626 		txr_count--;
1627 		txr_idx += v_count;
1628 
1629 		/* push pointer to next ring */
1630 		ring++;
1631 	}
1632 
1633 	/* save Rx ring container info */
1634 	q_vector->rx.ring = ring;
1635 	q_vector->rx.itr = interface->rx_itr;
1636 	q_vector->rx.count = rxr_count;
1637 
1638 	while (rxr_count) {
1639 		/* assign generic ring traits */
1640 		ring->dev = &interface->pdev->dev;
1641 		ring->netdev = interface->netdev;
1642 		rcu_assign_pointer(ring->l2_accel, interface->l2_accel);
1643 
1644 		/* configure backlink on ring */
1645 		ring->q_vector = q_vector;
1646 
1647 		/* apply Rx specific ring traits */
1648 		ring->count = interface->rx_ring_count;
1649 		ring->queue_index = rxr_idx;
1650 
1651 		/* assign ring to interface */
1652 		interface->rx_ring[rxr_idx] = ring;
1653 
1654 		/* update count and index */
1655 		rxr_count--;
1656 		rxr_idx += v_count;
1657 
1658 		/* push pointer to next ring */
1659 		ring++;
1660 	}
1661 
1662 	fm10k_dbg_q_vector_init(q_vector);
1663 
1664 	return 0;
1665 }
1666 
1667 /**
1668  * fm10k_free_q_vector - Free memory allocated for specific interrupt vector
1669  * @interface: board private structure to initialize
1670  * @v_idx: Index of vector to be freed
1671  *
1672  * This function frees the memory allocated to the q_vector.  In addition if
1673  * NAPI is enabled it will delete any references to the NAPI struct prior
1674  * to freeing the q_vector.
1675  **/
1676 static void fm10k_free_q_vector(struct fm10k_intfc *interface, int v_idx)
1677 {
1678 	struct fm10k_q_vector *q_vector = interface->q_vector[v_idx];
1679 	struct fm10k_ring *ring;
1680 
1681 	fm10k_dbg_q_vector_exit(q_vector);
1682 
1683 	fm10k_for_each_ring(ring, q_vector->tx)
1684 		interface->tx_ring[ring->queue_index] = NULL;
1685 
1686 	fm10k_for_each_ring(ring, q_vector->rx)
1687 		interface->rx_ring[ring->queue_index] = NULL;
1688 
1689 	interface->q_vector[v_idx] = NULL;
1690 	netif_napi_del(&q_vector->napi);
1691 	kfree_rcu(q_vector, rcu);
1692 }
1693 
1694 /**
1695  * fm10k_alloc_q_vectors - Allocate memory for interrupt vectors
1696  * @interface: board private structure to initialize
1697  *
1698  * We allocate one q_vector per queue interrupt.  If allocation fails we
1699  * return -ENOMEM.
1700  **/
1701 static int fm10k_alloc_q_vectors(struct fm10k_intfc *interface)
1702 {
1703 	unsigned int q_vectors = interface->num_q_vectors;
1704 	unsigned int rxr_remaining = interface->num_rx_queues;
1705 	unsigned int txr_remaining = interface->num_tx_queues;
1706 	unsigned int rxr_idx = 0, txr_idx = 0, v_idx = 0;
1707 	int err;
1708 
1709 	if (q_vectors >= (rxr_remaining + txr_remaining)) {
1710 		for (; rxr_remaining; v_idx++) {
1711 			err = fm10k_alloc_q_vector(interface, q_vectors, v_idx,
1712 						   0, 0, 1, rxr_idx);
1713 			if (err)
1714 				goto err_out;
1715 
1716 			/* update counts and index */
1717 			rxr_remaining--;
1718 			rxr_idx++;
1719 		}
1720 	}
1721 
1722 	for (; v_idx < q_vectors; v_idx++) {
1723 		int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
1724 		int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
1725 
1726 		err = fm10k_alloc_q_vector(interface, q_vectors, v_idx,
1727 					   tqpv, txr_idx,
1728 					   rqpv, rxr_idx);
1729 
1730 		if (err)
1731 			goto err_out;
1732 
1733 		/* update counts and index */
1734 		rxr_remaining -= rqpv;
1735 		txr_remaining -= tqpv;
1736 		rxr_idx++;
1737 		txr_idx++;
1738 	}
1739 
1740 	return 0;
1741 
1742 err_out:
1743 	interface->num_tx_queues = 0;
1744 	interface->num_rx_queues = 0;
1745 	interface->num_q_vectors = 0;
1746 
1747 	while (v_idx--)
1748 		fm10k_free_q_vector(interface, v_idx);
1749 
1750 	return -ENOMEM;
1751 }
1752 
1753 /**
1754  * fm10k_free_q_vectors - Free memory allocated for interrupt vectors
1755  * @interface: board private structure to initialize
1756  *
1757  * This function frees the memory allocated to the q_vectors.  In addition if
1758  * NAPI is enabled it will delete any references to the NAPI struct prior
1759  * to freeing the q_vector.
1760  **/
1761 static void fm10k_free_q_vectors(struct fm10k_intfc *interface)
1762 {
1763 	int v_idx = interface->num_q_vectors;
1764 
1765 	interface->num_tx_queues = 0;
1766 	interface->num_rx_queues = 0;
1767 	interface->num_q_vectors = 0;
1768 
1769 	while (v_idx--)
1770 		fm10k_free_q_vector(interface, v_idx);
1771 }
1772 
1773 /**
1774  * f10k_reset_msix_capability - reset MSI-X capability
1775  * @interface: board private structure to initialize
1776  *
1777  * Reset the MSI-X capability back to its starting state
1778  **/
1779 static void fm10k_reset_msix_capability(struct fm10k_intfc *interface)
1780 {
1781 	pci_disable_msix(interface->pdev);
1782 	kfree(interface->msix_entries);
1783 	interface->msix_entries = NULL;
1784 }
1785 
1786 /**
1787  * f10k_init_msix_capability - configure MSI-X capability
1788  * @interface: board private structure to initialize
1789  *
1790  * Attempt to configure the interrupts using the best available
1791  * capabilities of the hardware and the kernel.
1792  **/
1793 static int fm10k_init_msix_capability(struct fm10k_intfc *interface)
1794 {
1795 	struct fm10k_hw *hw = &interface->hw;
1796 	int v_budget, vector;
1797 
1798 	/* It's easy to be greedy for MSI-X vectors, but it really
1799 	 * doesn't do us much good if we have a lot more vectors
1800 	 * than CPU's.  So let's be conservative and only ask for
1801 	 * (roughly) the same number of vectors as there are CPU's.
1802 	 * the default is to use pairs of vectors
1803 	 */
1804 	v_budget = max(interface->num_rx_queues, interface->num_tx_queues);
1805 	v_budget = min_t(u16, v_budget, num_online_cpus());
1806 
1807 	/* account for vectors not related to queues */
1808 	v_budget += NON_Q_VECTORS(hw);
1809 
1810 	/* At the same time, hardware can only support a maximum of
1811 	 * hw.mac->max_msix_vectors vectors.  With features
1812 	 * such as RSS and VMDq, we can easily surpass the number of Rx and Tx
1813 	 * descriptor queues supported by our device.  Thus, we cap it off in
1814 	 * those rare cases where the cpu count also exceeds our vector limit.
1815 	 */
1816 	v_budget = min_t(int, v_budget, hw->mac.max_msix_vectors);
1817 
1818 	/* A failure in MSI-X entry allocation is fatal. */
1819 	interface->msix_entries = kcalloc(v_budget, sizeof(struct msix_entry),
1820 					  GFP_KERNEL);
1821 	if (!interface->msix_entries)
1822 		return -ENOMEM;
1823 
1824 	/* populate entry values */
1825 	for (vector = 0; vector < v_budget; vector++)
1826 		interface->msix_entries[vector].entry = vector;
1827 
1828 	/* Attempt to enable MSI-X with requested value */
1829 	v_budget = pci_enable_msix_range(interface->pdev,
1830 					 interface->msix_entries,
1831 					 MIN_MSIX_COUNT(hw),
1832 					 v_budget);
1833 	if (v_budget < 0) {
1834 		kfree(interface->msix_entries);
1835 		interface->msix_entries = NULL;
1836 		return -ENOMEM;
1837 	}
1838 
1839 	/* record the number of queues available for q_vectors */
1840 	interface->num_q_vectors = v_budget - NON_Q_VECTORS(hw);
1841 
1842 	return 0;
1843 }
1844 
1845 /**
1846  * fm10k_cache_ring_qos - Descriptor ring to register mapping for QoS
1847  * @interface: Interface structure continaining rings and devices
1848  *
1849  * Cache the descriptor ring offsets for Qos
1850  **/
1851 static bool fm10k_cache_ring_qos(struct fm10k_intfc *interface)
1852 {
1853 	struct net_device *dev = interface->netdev;
1854 	int pc, offset, rss_i, i, q_idx;
1855 	u16 pc_stride = interface->ring_feature[RING_F_QOS].mask + 1;
1856 	u8 num_pcs = netdev_get_num_tc(dev);
1857 
1858 	if (num_pcs <= 1)
1859 		return false;
1860 
1861 	rss_i = interface->ring_feature[RING_F_RSS].indices;
1862 
1863 	for (pc = 0, offset = 0; pc < num_pcs; pc++, offset += rss_i) {
1864 		q_idx = pc;
1865 		for (i = 0; i < rss_i; i++) {
1866 			interface->tx_ring[offset + i]->reg_idx = q_idx;
1867 			interface->tx_ring[offset + i]->qos_pc = pc;
1868 			interface->rx_ring[offset + i]->reg_idx = q_idx;
1869 			interface->rx_ring[offset + i]->qos_pc = pc;
1870 			q_idx += pc_stride;
1871 		}
1872 	}
1873 
1874 	return true;
1875 }
1876 
1877 /**
1878  * fm10k_cache_ring_rss - Descriptor ring to register mapping for RSS
1879  * @interface: Interface structure continaining rings and devices
1880  *
1881  * Cache the descriptor ring offsets for RSS
1882  **/
1883 static void fm10k_cache_ring_rss(struct fm10k_intfc *interface)
1884 {
1885 	int i;
1886 
1887 	for (i = 0; i < interface->num_rx_queues; i++)
1888 		interface->rx_ring[i]->reg_idx = i;
1889 
1890 	for (i = 0; i < interface->num_tx_queues; i++)
1891 		interface->tx_ring[i]->reg_idx = i;
1892 }
1893 
1894 /**
1895  * fm10k_assign_rings - Map rings to network devices
1896  * @interface: Interface structure containing rings and devices
1897  *
1898  * This function is meant to go though and configure both the network
1899  * devices so that they contain rings, and configure the rings so that
1900  * they function with their network devices.
1901  **/
1902 static void fm10k_assign_rings(struct fm10k_intfc *interface)
1903 {
1904 	if (fm10k_cache_ring_qos(interface))
1905 		return;
1906 
1907 	fm10k_cache_ring_rss(interface);
1908 }
1909 
1910 static void fm10k_init_reta(struct fm10k_intfc *interface)
1911 {
1912 	u16 i, rss_i = interface->ring_feature[RING_F_RSS].indices;
1913 	u32 reta, base;
1914 
1915 	/* If the netdev is initialized we have to maintain table if possible */
1916 	if (interface->netdev->reg_state) {
1917 		for (i = FM10K_RETA_SIZE; i--;) {
1918 			reta = interface->reta[i];
1919 			if ((((reta << 24) >> 24) < rss_i) &&
1920 			    (((reta << 16) >> 24) < rss_i) &&
1921 			    (((reta <<  8) >> 24) < rss_i) &&
1922 			    (((reta)       >> 24) < rss_i))
1923 				continue;
1924 			goto repopulate_reta;
1925 		}
1926 
1927 		/* do nothing if all of the elements are in bounds */
1928 		return;
1929 	}
1930 
1931 repopulate_reta:
1932 	/* Populate the redirection table 4 entries at a time.  To do this
1933 	 * we are generating the results for n and n+2 and then interleaving
1934 	 * those with the results with n+1 and n+3.
1935 	 */
1936 	for (i = FM10K_RETA_SIZE; i--;) {
1937 		/* first pass generates n and n+2 */
1938 		base = ((i * 0x00040004) + 0x00020000) * rss_i;
1939 		reta = (base & 0x3F803F80) >> 7;
1940 
1941 		/* second pass generates n+1 and n+3 */
1942 		base += 0x00010001 * rss_i;
1943 		reta |= (base & 0x3F803F80) << 1;
1944 
1945 		interface->reta[i] = reta;
1946 	}
1947 }
1948 
1949 /**
1950  * fm10k_init_queueing_scheme - Determine proper queueing scheme
1951  * @interface: board private structure to initialize
1952  *
1953  * We determine which queueing scheme to use based on...
1954  * - Hardware queue count (num_*_queues)
1955  *   - defined by miscellaneous hardware support/features (RSS, etc.)
1956  **/
1957 int fm10k_init_queueing_scheme(struct fm10k_intfc *interface)
1958 {
1959 	int err;
1960 
1961 	/* Number of supported queues */
1962 	fm10k_set_num_queues(interface);
1963 
1964 	/* Configure MSI-X capability */
1965 	err = fm10k_init_msix_capability(interface);
1966 	if (err) {
1967 		dev_err(&interface->pdev->dev,
1968 			"Unable to initialize MSI-X capability\n");
1969 		return err;
1970 	}
1971 
1972 	/* Allocate memory for queues */
1973 	err = fm10k_alloc_q_vectors(interface);
1974 	if (err)
1975 		return err;
1976 
1977 	/* Map rings to devices, and map devices to physical queues */
1978 	fm10k_assign_rings(interface);
1979 
1980 	/* Initialize RSS redirection table */
1981 	fm10k_init_reta(interface);
1982 
1983 	return 0;
1984 }
1985 
1986 /**
1987  * fm10k_clear_queueing_scheme - Clear the current queueing scheme settings
1988  * @interface: board private structure to clear queueing scheme on
1989  *
1990  * We go through and clear queueing specific resources and reset the structure
1991  * to pre-load conditions
1992  **/
1993 void fm10k_clear_queueing_scheme(struct fm10k_intfc *interface)
1994 {
1995 	fm10k_free_q_vectors(interface);
1996 	fm10k_reset_msix_capability(interface);
1997 }
1998