xref: /openbmc/linux/drivers/net/ethernet/intel/fm10k/fm10k_main.c (revision 8a649e33f48e08be20c51541d9184645892ec370)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 2013 - 2019 Intel Corporation. */
3 
4 #include <linux/types.h>
5 #include <linux/module.h>
6 #include <net/ipv6.h>
7 #include <net/ip.h>
8 #include <net/tcp.h>
9 #include <linux/if_macvlan.h>
10 #include <linux/prefetch.h>
11 
12 #include "fm10k.h"
13 
14 #define DRV_SUMMARY	"Intel(R) Ethernet Switch Host Interface Driver"
15 char fm10k_driver_name[] = "fm10k";
16 static const char fm10k_driver_string[] = DRV_SUMMARY;
17 static const char fm10k_copyright[] =
18 	"Copyright(c) 2013 - 2019 Intel Corporation.";
19 
20 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
21 MODULE_DESCRIPTION(DRV_SUMMARY);
22 MODULE_LICENSE("GPL v2");
23 
24 /* single workqueue for entire fm10k driver */
25 struct workqueue_struct *fm10k_workqueue;
26 
27 /**
28  * fm10k_init_module - Driver Registration Routine
29  *
30  * fm10k_init_module is the first routine called when the driver is
31  * loaded.  All it does is register with the PCI subsystem.
32  **/
33 static int __init fm10k_init_module(void)
34 {
35 	int ret;
36 
37 	pr_info("%s\n", fm10k_driver_string);
38 	pr_info("%s\n", fm10k_copyright);
39 
40 	/* create driver workqueue */
41 	fm10k_workqueue = alloc_workqueue("%s", WQ_MEM_RECLAIM, 0,
42 					  fm10k_driver_name);
43 	if (!fm10k_workqueue)
44 		return -ENOMEM;
45 
46 	fm10k_dbg_init();
47 
48 	ret = fm10k_register_pci_driver();
49 	if (ret) {
50 		fm10k_dbg_exit();
51 		destroy_workqueue(fm10k_workqueue);
52 	}
53 
54 	return ret;
55 }
56 module_init(fm10k_init_module);
57 
58 /**
59  * fm10k_exit_module - Driver Exit Cleanup Routine
60  *
61  * fm10k_exit_module is called just before the driver is removed
62  * from memory.
63  **/
64 static void __exit fm10k_exit_module(void)
65 {
66 	fm10k_unregister_pci_driver();
67 
68 	fm10k_dbg_exit();
69 
70 	/* destroy driver workqueue */
71 	destroy_workqueue(fm10k_workqueue);
72 }
73 module_exit(fm10k_exit_module);
74 
75 static bool fm10k_alloc_mapped_page(struct fm10k_ring *rx_ring,
76 				    struct fm10k_rx_buffer *bi)
77 {
78 	struct page *page = bi->page;
79 	dma_addr_t dma;
80 
81 	/* Only page will be NULL if buffer was consumed */
82 	if (likely(page))
83 		return true;
84 
85 	/* alloc new page for storage */
86 	page = dev_alloc_page();
87 	if (unlikely(!page)) {
88 		rx_ring->rx_stats.alloc_failed++;
89 		return false;
90 	}
91 
92 	/* map page for use */
93 	dma = dma_map_page(rx_ring->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE);
94 
95 	/* if mapping failed free memory back to system since
96 	 * there isn't much point in holding memory we can't use
97 	 */
98 	if (dma_mapping_error(rx_ring->dev, dma)) {
99 		__free_page(page);
100 
101 		rx_ring->rx_stats.alloc_failed++;
102 		return false;
103 	}
104 
105 	bi->dma = dma;
106 	bi->page = page;
107 	bi->page_offset = 0;
108 
109 	return true;
110 }
111 
112 /**
113  * fm10k_alloc_rx_buffers - Replace used receive buffers
114  * @rx_ring: ring to place buffers on
115  * @cleaned_count: number of buffers to replace
116  **/
117 void fm10k_alloc_rx_buffers(struct fm10k_ring *rx_ring, u16 cleaned_count)
118 {
119 	union fm10k_rx_desc *rx_desc;
120 	struct fm10k_rx_buffer *bi;
121 	u16 i = rx_ring->next_to_use;
122 
123 	/* nothing to do */
124 	if (!cleaned_count)
125 		return;
126 
127 	rx_desc = FM10K_RX_DESC(rx_ring, i);
128 	bi = &rx_ring->rx_buffer[i];
129 	i -= rx_ring->count;
130 
131 	do {
132 		if (!fm10k_alloc_mapped_page(rx_ring, bi))
133 			break;
134 
135 		/* Refresh the desc even if buffer_addrs didn't change
136 		 * because each write-back erases this info.
137 		 */
138 		rx_desc->q.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
139 
140 		rx_desc++;
141 		bi++;
142 		i++;
143 		if (unlikely(!i)) {
144 			rx_desc = FM10K_RX_DESC(rx_ring, 0);
145 			bi = rx_ring->rx_buffer;
146 			i -= rx_ring->count;
147 		}
148 
149 		/* clear the status bits for the next_to_use descriptor */
150 		rx_desc->d.staterr = 0;
151 
152 		cleaned_count--;
153 	} while (cleaned_count);
154 
155 	i += rx_ring->count;
156 
157 	if (rx_ring->next_to_use != i) {
158 		/* record the next descriptor to use */
159 		rx_ring->next_to_use = i;
160 
161 		/* update next to alloc since we have filled the ring */
162 		rx_ring->next_to_alloc = i;
163 
164 		/* Force memory writes to complete before letting h/w
165 		 * know there are new descriptors to fetch.  (Only
166 		 * applicable for weak-ordered memory model archs,
167 		 * such as IA-64).
168 		 */
169 		wmb();
170 
171 		/* notify hardware of new descriptors */
172 		writel(i, rx_ring->tail);
173 	}
174 }
175 
176 /**
177  * fm10k_reuse_rx_page - page flip buffer and store it back on the ring
178  * @rx_ring: rx descriptor ring to store buffers on
179  * @old_buff: donor buffer to have page reused
180  *
181  * Synchronizes page for reuse by the interface
182  **/
183 static void fm10k_reuse_rx_page(struct fm10k_ring *rx_ring,
184 				struct fm10k_rx_buffer *old_buff)
185 {
186 	struct fm10k_rx_buffer *new_buff;
187 	u16 nta = rx_ring->next_to_alloc;
188 
189 	new_buff = &rx_ring->rx_buffer[nta];
190 
191 	/* update, and store next to alloc */
192 	nta++;
193 	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
194 
195 	/* transfer page from old buffer to new buffer */
196 	*new_buff = *old_buff;
197 
198 	/* sync the buffer for use by the device */
199 	dma_sync_single_range_for_device(rx_ring->dev, old_buff->dma,
200 					 old_buff->page_offset,
201 					 FM10K_RX_BUFSZ,
202 					 DMA_FROM_DEVICE);
203 }
204 
205 static bool fm10k_can_reuse_rx_page(struct fm10k_rx_buffer *rx_buffer,
206 				    struct page *page,
207 				    unsigned int __maybe_unused truesize)
208 {
209 	/* avoid re-using remote and pfmemalloc pages */
210 	if (!dev_page_is_reusable(page))
211 		return false;
212 
213 #if (PAGE_SIZE < 8192)
214 	/* if we are only owner of page we can reuse it */
215 	if (unlikely(page_count(page) != 1))
216 		return false;
217 
218 	/* flip page offset to other buffer */
219 	rx_buffer->page_offset ^= FM10K_RX_BUFSZ;
220 #else
221 	/* move offset up to the next cache line */
222 	rx_buffer->page_offset += truesize;
223 
224 	if (rx_buffer->page_offset > (PAGE_SIZE - FM10K_RX_BUFSZ))
225 		return false;
226 #endif
227 
228 	/* Even if we own the page, we are not allowed to use atomic_set()
229 	 * This would break get_page_unless_zero() users.
230 	 */
231 	page_ref_inc(page);
232 
233 	return true;
234 }
235 
236 /**
237  * fm10k_add_rx_frag - Add contents of Rx buffer to sk_buff
238  * @rx_buffer: buffer containing page to add
239  * @size: packet size from rx_desc
240  * @rx_desc: descriptor containing length of buffer written by hardware
241  * @skb: sk_buff to place the data into
242  *
243  * This function will add the data contained in rx_buffer->page to the skb.
244  * This is done either through a direct copy if the data in the buffer is
245  * less than the skb header size, otherwise it will just attach the page as
246  * a frag to the skb.
247  *
248  * The function will then update the page offset if necessary and return
249  * true if the buffer can be reused by the interface.
250  **/
251 static bool fm10k_add_rx_frag(struct fm10k_rx_buffer *rx_buffer,
252 			      unsigned int size,
253 			      union fm10k_rx_desc *rx_desc,
254 			      struct sk_buff *skb)
255 {
256 	struct page *page = rx_buffer->page;
257 	unsigned char *va = page_address(page) + rx_buffer->page_offset;
258 #if (PAGE_SIZE < 8192)
259 	unsigned int truesize = FM10K_RX_BUFSZ;
260 #else
261 	unsigned int truesize = ALIGN(size, 512);
262 #endif
263 	unsigned int pull_len;
264 
265 	if (unlikely(skb_is_nonlinear(skb)))
266 		goto add_tail_frag;
267 
268 	if (likely(size <= FM10K_RX_HDR_LEN)) {
269 		memcpy(__skb_put(skb, size), va, ALIGN(size, sizeof(long)));
270 
271 		/* page is reusable, we can reuse buffer as-is */
272 		if (dev_page_is_reusable(page))
273 			return true;
274 
275 		/* this page cannot be reused so discard it */
276 		__free_page(page);
277 		return false;
278 	}
279 
280 	/* we need the header to contain the greater of either ETH_HLEN or
281 	 * 60 bytes if the skb->len is less than 60 for skb_pad.
282 	 */
283 	pull_len = eth_get_headlen(skb->dev, va, FM10K_RX_HDR_LEN);
284 
285 	/* align pull length to size of long to optimize memcpy performance */
286 	memcpy(__skb_put(skb, pull_len), va, ALIGN(pull_len, sizeof(long)));
287 
288 	/* update all of the pointers */
289 	va += pull_len;
290 	size -= pull_len;
291 
292 add_tail_frag:
293 	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
294 			(unsigned long)va & ~PAGE_MASK, size, truesize);
295 
296 	return fm10k_can_reuse_rx_page(rx_buffer, page, truesize);
297 }
298 
299 static struct sk_buff *fm10k_fetch_rx_buffer(struct fm10k_ring *rx_ring,
300 					     union fm10k_rx_desc *rx_desc,
301 					     struct sk_buff *skb)
302 {
303 	unsigned int size = le16_to_cpu(rx_desc->w.length);
304 	struct fm10k_rx_buffer *rx_buffer;
305 	struct page *page;
306 
307 	rx_buffer = &rx_ring->rx_buffer[rx_ring->next_to_clean];
308 	page = rx_buffer->page;
309 	prefetchw(page);
310 
311 	if (likely(!skb)) {
312 		void *page_addr = page_address(page) +
313 				  rx_buffer->page_offset;
314 
315 		/* prefetch first cache line of first page */
316 		net_prefetch(page_addr);
317 
318 		/* allocate a skb to store the frags */
319 		skb = napi_alloc_skb(&rx_ring->q_vector->napi,
320 				     FM10K_RX_HDR_LEN);
321 		if (unlikely(!skb)) {
322 			rx_ring->rx_stats.alloc_failed++;
323 			return NULL;
324 		}
325 
326 		/* we will be copying header into skb->data in
327 		 * pskb_may_pull so it is in our interest to prefetch
328 		 * it now to avoid a possible cache miss
329 		 */
330 		prefetchw(skb->data);
331 	}
332 
333 	/* we are reusing so sync this buffer for CPU use */
334 	dma_sync_single_range_for_cpu(rx_ring->dev,
335 				      rx_buffer->dma,
336 				      rx_buffer->page_offset,
337 				      size,
338 				      DMA_FROM_DEVICE);
339 
340 	/* pull page into skb */
341 	if (fm10k_add_rx_frag(rx_buffer, size, rx_desc, skb)) {
342 		/* hand second half of page back to the ring */
343 		fm10k_reuse_rx_page(rx_ring, rx_buffer);
344 	} else {
345 		/* we are not reusing the buffer so unmap it */
346 		dma_unmap_page(rx_ring->dev, rx_buffer->dma,
347 			       PAGE_SIZE, DMA_FROM_DEVICE);
348 	}
349 
350 	/* clear contents of rx_buffer */
351 	rx_buffer->page = NULL;
352 
353 	return skb;
354 }
355 
356 static inline void fm10k_rx_checksum(struct fm10k_ring *ring,
357 				     union fm10k_rx_desc *rx_desc,
358 				     struct sk_buff *skb)
359 {
360 	skb_checksum_none_assert(skb);
361 
362 	/* Rx checksum disabled via ethtool */
363 	if (!(ring->netdev->features & NETIF_F_RXCSUM))
364 		return;
365 
366 	/* TCP/UDP checksum error bit is set */
367 	if (fm10k_test_staterr(rx_desc,
368 			       FM10K_RXD_STATUS_L4E |
369 			       FM10K_RXD_STATUS_L4E2 |
370 			       FM10K_RXD_STATUS_IPE |
371 			       FM10K_RXD_STATUS_IPE2)) {
372 		ring->rx_stats.csum_err++;
373 		return;
374 	}
375 
376 	/* It must be a TCP or UDP packet with a valid checksum */
377 	if (fm10k_test_staterr(rx_desc, FM10K_RXD_STATUS_L4CS2))
378 		skb->encapsulation = true;
379 	else if (!fm10k_test_staterr(rx_desc, FM10K_RXD_STATUS_L4CS))
380 		return;
381 
382 	skb->ip_summed = CHECKSUM_UNNECESSARY;
383 
384 	ring->rx_stats.csum_good++;
385 }
386 
387 #define FM10K_RSS_L4_TYPES_MASK \
388 	(BIT(FM10K_RSSTYPE_IPV4_TCP) | \
389 	 BIT(FM10K_RSSTYPE_IPV4_UDP) | \
390 	 BIT(FM10K_RSSTYPE_IPV6_TCP) | \
391 	 BIT(FM10K_RSSTYPE_IPV6_UDP))
392 
393 static inline void fm10k_rx_hash(struct fm10k_ring *ring,
394 				 union fm10k_rx_desc *rx_desc,
395 				 struct sk_buff *skb)
396 {
397 	u16 rss_type;
398 
399 	if (!(ring->netdev->features & NETIF_F_RXHASH))
400 		return;
401 
402 	rss_type = le16_to_cpu(rx_desc->w.pkt_info) & FM10K_RXD_RSSTYPE_MASK;
403 	if (!rss_type)
404 		return;
405 
406 	skb_set_hash(skb, le32_to_cpu(rx_desc->d.rss),
407 		     (BIT(rss_type) & FM10K_RSS_L4_TYPES_MASK) ?
408 		     PKT_HASH_TYPE_L4 : PKT_HASH_TYPE_L3);
409 }
410 
411 static void fm10k_type_trans(struct fm10k_ring *rx_ring,
412 			     union fm10k_rx_desc __maybe_unused *rx_desc,
413 			     struct sk_buff *skb)
414 {
415 	struct net_device *dev = rx_ring->netdev;
416 	struct fm10k_l2_accel *l2_accel = rcu_dereference_bh(rx_ring->l2_accel);
417 
418 	/* check to see if DGLORT belongs to a MACVLAN */
419 	if (l2_accel) {
420 		u16 idx = le16_to_cpu(FM10K_CB(skb)->fi.w.dglort) - 1;
421 
422 		idx -= l2_accel->dglort;
423 		if (idx < l2_accel->size && l2_accel->macvlan[idx])
424 			dev = l2_accel->macvlan[idx];
425 		else
426 			l2_accel = NULL;
427 	}
428 
429 	/* Record Rx queue, or update macvlan statistics */
430 	if (!l2_accel)
431 		skb_record_rx_queue(skb, rx_ring->queue_index);
432 	else
433 		macvlan_count_rx(netdev_priv(dev), skb->len + ETH_HLEN, true,
434 				 false);
435 
436 	skb->protocol = eth_type_trans(skb, dev);
437 }
438 
439 /**
440  * fm10k_process_skb_fields - Populate skb header fields from Rx descriptor
441  * @rx_ring: rx descriptor ring packet is being transacted on
442  * @rx_desc: pointer to the EOP Rx descriptor
443  * @skb: pointer to current skb being populated
444  *
445  * This function checks the ring, descriptor, and packet information in
446  * order to populate the hash, checksum, VLAN, timestamp, protocol, and
447  * other fields within the skb.
448  **/
449 static unsigned int fm10k_process_skb_fields(struct fm10k_ring *rx_ring,
450 					     union fm10k_rx_desc *rx_desc,
451 					     struct sk_buff *skb)
452 {
453 	unsigned int len = skb->len;
454 
455 	fm10k_rx_hash(rx_ring, rx_desc, skb);
456 
457 	fm10k_rx_checksum(rx_ring, rx_desc, skb);
458 
459 	FM10K_CB(skb)->tstamp = rx_desc->q.timestamp;
460 
461 	FM10K_CB(skb)->fi.w.vlan = rx_desc->w.vlan;
462 
463 	FM10K_CB(skb)->fi.d.glort = rx_desc->d.glort;
464 
465 	if (rx_desc->w.vlan) {
466 		u16 vid = le16_to_cpu(rx_desc->w.vlan);
467 
468 		if ((vid & VLAN_VID_MASK) != rx_ring->vid)
469 			__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
470 		else if (vid & VLAN_PRIO_MASK)
471 			__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
472 					       vid & VLAN_PRIO_MASK);
473 	}
474 
475 	fm10k_type_trans(rx_ring, rx_desc, skb);
476 
477 	return len;
478 }
479 
480 /**
481  * fm10k_is_non_eop - process handling of non-EOP buffers
482  * @rx_ring: Rx ring being processed
483  * @rx_desc: Rx descriptor for current buffer
484  *
485  * This function updates next to clean.  If the buffer is an EOP buffer
486  * this function exits returning false, otherwise it will place the
487  * sk_buff in the next buffer to be chained and return true indicating
488  * that this is in fact a non-EOP buffer.
489  **/
490 static bool fm10k_is_non_eop(struct fm10k_ring *rx_ring,
491 			     union fm10k_rx_desc *rx_desc)
492 {
493 	u32 ntc = rx_ring->next_to_clean + 1;
494 
495 	/* fetch, update, and store next to clean */
496 	ntc = (ntc < rx_ring->count) ? ntc : 0;
497 	rx_ring->next_to_clean = ntc;
498 
499 	prefetch(FM10K_RX_DESC(rx_ring, ntc));
500 
501 	if (likely(fm10k_test_staterr(rx_desc, FM10K_RXD_STATUS_EOP)))
502 		return false;
503 
504 	return true;
505 }
506 
507 /**
508  * fm10k_cleanup_headers - Correct corrupted or empty headers
509  * @rx_ring: rx descriptor ring packet is being transacted on
510  * @rx_desc: pointer to the EOP Rx descriptor
511  * @skb: pointer to current skb being fixed
512  *
513  * Address the case where we are pulling data in on pages only
514  * and as such no data is present in the skb header.
515  *
516  * In addition if skb is not at least 60 bytes we need to pad it so that
517  * it is large enough to qualify as a valid Ethernet frame.
518  *
519  * Returns true if an error was encountered and skb was freed.
520  **/
521 static bool fm10k_cleanup_headers(struct fm10k_ring *rx_ring,
522 				  union fm10k_rx_desc *rx_desc,
523 				  struct sk_buff *skb)
524 {
525 	if (unlikely((fm10k_test_staterr(rx_desc,
526 					 FM10K_RXD_STATUS_RXE)))) {
527 #define FM10K_TEST_RXD_BIT(rxd, bit) \
528 	((rxd)->w.csum_err & cpu_to_le16(bit))
529 		if (FM10K_TEST_RXD_BIT(rx_desc, FM10K_RXD_ERR_SWITCH_ERROR))
530 			rx_ring->rx_stats.switch_errors++;
531 		if (FM10K_TEST_RXD_BIT(rx_desc, FM10K_RXD_ERR_NO_DESCRIPTOR))
532 			rx_ring->rx_stats.drops++;
533 		if (FM10K_TEST_RXD_BIT(rx_desc, FM10K_RXD_ERR_PP_ERROR))
534 			rx_ring->rx_stats.pp_errors++;
535 		if (FM10K_TEST_RXD_BIT(rx_desc, FM10K_RXD_ERR_SWITCH_READY))
536 			rx_ring->rx_stats.link_errors++;
537 		if (FM10K_TEST_RXD_BIT(rx_desc, FM10K_RXD_ERR_TOO_BIG))
538 			rx_ring->rx_stats.length_errors++;
539 		dev_kfree_skb_any(skb);
540 		rx_ring->rx_stats.errors++;
541 		return true;
542 	}
543 
544 	/* if eth_skb_pad returns an error the skb was freed */
545 	if (eth_skb_pad(skb))
546 		return true;
547 
548 	return false;
549 }
550 
551 /**
552  * fm10k_receive_skb - helper function to handle rx indications
553  * @q_vector: structure containing interrupt and ring information
554  * @skb: packet to send up
555  **/
556 static void fm10k_receive_skb(struct fm10k_q_vector *q_vector,
557 			      struct sk_buff *skb)
558 {
559 	napi_gro_receive(&q_vector->napi, skb);
560 }
561 
562 static int fm10k_clean_rx_irq(struct fm10k_q_vector *q_vector,
563 			      struct fm10k_ring *rx_ring,
564 			      int budget)
565 {
566 	struct sk_buff *skb = rx_ring->skb;
567 	unsigned int total_bytes = 0, total_packets = 0;
568 	u16 cleaned_count = fm10k_desc_unused(rx_ring);
569 
570 	while (likely(total_packets < budget)) {
571 		union fm10k_rx_desc *rx_desc;
572 
573 		/* return some buffers to hardware, one at a time is too slow */
574 		if (cleaned_count >= FM10K_RX_BUFFER_WRITE) {
575 			fm10k_alloc_rx_buffers(rx_ring, cleaned_count);
576 			cleaned_count = 0;
577 		}
578 
579 		rx_desc = FM10K_RX_DESC(rx_ring, rx_ring->next_to_clean);
580 
581 		if (!rx_desc->d.staterr)
582 			break;
583 
584 		/* This memory barrier is needed to keep us from reading
585 		 * any other fields out of the rx_desc until we know the
586 		 * descriptor has been written back
587 		 */
588 		dma_rmb();
589 
590 		/* retrieve a buffer from the ring */
591 		skb = fm10k_fetch_rx_buffer(rx_ring, rx_desc, skb);
592 
593 		/* exit if we failed to retrieve a buffer */
594 		if (!skb)
595 			break;
596 
597 		cleaned_count++;
598 
599 		/* fetch next buffer in frame if non-eop */
600 		if (fm10k_is_non_eop(rx_ring, rx_desc))
601 			continue;
602 
603 		/* verify the packet layout is correct */
604 		if (fm10k_cleanup_headers(rx_ring, rx_desc, skb)) {
605 			skb = NULL;
606 			continue;
607 		}
608 
609 		/* populate checksum, timestamp, VLAN, and protocol */
610 		total_bytes += fm10k_process_skb_fields(rx_ring, rx_desc, skb);
611 
612 		fm10k_receive_skb(q_vector, skb);
613 
614 		/* reset skb pointer */
615 		skb = NULL;
616 
617 		/* update budget accounting */
618 		total_packets++;
619 	}
620 
621 	/* place incomplete frames back on ring for completion */
622 	rx_ring->skb = skb;
623 
624 	u64_stats_update_begin(&rx_ring->syncp);
625 	rx_ring->stats.packets += total_packets;
626 	rx_ring->stats.bytes += total_bytes;
627 	u64_stats_update_end(&rx_ring->syncp);
628 	q_vector->rx.total_packets += total_packets;
629 	q_vector->rx.total_bytes += total_bytes;
630 
631 	return total_packets;
632 }
633 
634 #define VXLAN_HLEN (sizeof(struct udphdr) + 8)
635 static struct ethhdr *fm10k_port_is_vxlan(struct sk_buff *skb)
636 {
637 	struct fm10k_intfc *interface = netdev_priv(skb->dev);
638 
639 	if (interface->vxlan_port != udp_hdr(skb)->dest)
640 		return NULL;
641 
642 	/* return offset of udp_hdr plus 8 bytes for VXLAN header */
643 	return (struct ethhdr *)(skb_transport_header(skb) + VXLAN_HLEN);
644 }
645 
646 #define FM10K_NVGRE_RESERVED0_FLAGS htons(0x9FFF)
647 #define NVGRE_TNI htons(0x2000)
648 struct fm10k_nvgre_hdr {
649 	__be16 flags;
650 	__be16 proto;
651 	__be32 tni;
652 };
653 
654 static struct ethhdr *fm10k_gre_is_nvgre(struct sk_buff *skb)
655 {
656 	struct fm10k_nvgre_hdr *nvgre_hdr;
657 	int hlen = ip_hdrlen(skb);
658 
659 	/* currently only IPv4 is supported due to hlen above */
660 	if (vlan_get_protocol(skb) != htons(ETH_P_IP))
661 		return NULL;
662 
663 	/* our transport header should be NVGRE */
664 	nvgre_hdr = (struct fm10k_nvgre_hdr *)(skb_network_header(skb) + hlen);
665 
666 	/* verify all reserved flags are 0 */
667 	if (nvgre_hdr->flags & FM10K_NVGRE_RESERVED0_FLAGS)
668 		return NULL;
669 
670 	/* report start of ethernet header */
671 	if (nvgre_hdr->flags & NVGRE_TNI)
672 		return (struct ethhdr *)(nvgre_hdr + 1);
673 
674 	return (struct ethhdr *)(&nvgre_hdr->tni);
675 }
676 
677 __be16 fm10k_tx_encap_offload(struct sk_buff *skb)
678 {
679 	u8 l4_hdr = 0, inner_l4_hdr = 0, inner_l4_hlen;
680 	struct ethhdr *eth_hdr;
681 
682 	if (skb->inner_protocol_type != ENCAP_TYPE_ETHER ||
683 	    skb->inner_protocol != htons(ETH_P_TEB))
684 		return 0;
685 
686 	switch (vlan_get_protocol(skb)) {
687 	case htons(ETH_P_IP):
688 		l4_hdr = ip_hdr(skb)->protocol;
689 		break;
690 	case htons(ETH_P_IPV6):
691 		l4_hdr = ipv6_hdr(skb)->nexthdr;
692 		break;
693 	default:
694 		return 0;
695 	}
696 
697 	switch (l4_hdr) {
698 	case IPPROTO_UDP:
699 		eth_hdr = fm10k_port_is_vxlan(skb);
700 		break;
701 	case IPPROTO_GRE:
702 		eth_hdr = fm10k_gre_is_nvgre(skb);
703 		break;
704 	default:
705 		return 0;
706 	}
707 
708 	if (!eth_hdr)
709 		return 0;
710 
711 	switch (eth_hdr->h_proto) {
712 	case htons(ETH_P_IP):
713 		inner_l4_hdr = inner_ip_hdr(skb)->protocol;
714 		break;
715 	case htons(ETH_P_IPV6):
716 		inner_l4_hdr = inner_ipv6_hdr(skb)->nexthdr;
717 		break;
718 	default:
719 		return 0;
720 	}
721 
722 	switch (inner_l4_hdr) {
723 	case IPPROTO_TCP:
724 		inner_l4_hlen = inner_tcp_hdrlen(skb);
725 		break;
726 	case IPPROTO_UDP:
727 		inner_l4_hlen = 8;
728 		break;
729 	default:
730 		return 0;
731 	}
732 
733 	/* The hardware allows tunnel offloads only if the combined inner and
734 	 * outer header is 184 bytes or less
735 	 */
736 	if (skb_inner_transport_header(skb) + inner_l4_hlen -
737 	    skb_mac_header(skb) > FM10K_TUNNEL_HEADER_LENGTH)
738 		return 0;
739 
740 	return eth_hdr->h_proto;
741 }
742 
743 static int fm10k_tso(struct fm10k_ring *tx_ring,
744 		     struct fm10k_tx_buffer *first)
745 {
746 	struct sk_buff *skb = first->skb;
747 	struct fm10k_tx_desc *tx_desc;
748 	unsigned char *th;
749 	u8 hdrlen;
750 
751 	if (skb->ip_summed != CHECKSUM_PARTIAL)
752 		return 0;
753 
754 	if (!skb_is_gso(skb))
755 		return 0;
756 
757 	/* compute header lengths */
758 	if (skb->encapsulation) {
759 		if (!fm10k_tx_encap_offload(skb))
760 			goto err_vxlan;
761 		th = skb_inner_transport_header(skb);
762 	} else {
763 		th = skb_transport_header(skb);
764 	}
765 
766 	/* compute offset from SOF to transport header and add header len */
767 	hdrlen = (th - skb->data) + (((struct tcphdr *)th)->doff << 2);
768 
769 	first->tx_flags |= FM10K_TX_FLAGS_CSUM;
770 
771 	/* update gso size and bytecount with header size */
772 	first->gso_segs = skb_shinfo(skb)->gso_segs;
773 	first->bytecount += (first->gso_segs - 1) * hdrlen;
774 
775 	/* populate Tx descriptor header size and mss */
776 	tx_desc = FM10K_TX_DESC(tx_ring, tx_ring->next_to_use);
777 	tx_desc->hdrlen = hdrlen;
778 	tx_desc->mss = cpu_to_le16(skb_shinfo(skb)->gso_size);
779 
780 	return 1;
781 
782 err_vxlan:
783 	tx_ring->netdev->features &= ~NETIF_F_GSO_UDP_TUNNEL;
784 	if (net_ratelimit())
785 		netdev_err(tx_ring->netdev,
786 			   "TSO requested for unsupported tunnel, disabling offload\n");
787 	return -1;
788 }
789 
790 static void fm10k_tx_csum(struct fm10k_ring *tx_ring,
791 			  struct fm10k_tx_buffer *first)
792 {
793 	struct sk_buff *skb = first->skb;
794 	struct fm10k_tx_desc *tx_desc;
795 	union {
796 		struct iphdr *ipv4;
797 		struct ipv6hdr *ipv6;
798 		u8 *raw;
799 	} network_hdr;
800 	u8 *transport_hdr;
801 	__be16 frag_off;
802 	__be16 protocol;
803 	u8 l4_hdr = 0;
804 
805 	if (skb->ip_summed != CHECKSUM_PARTIAL)
806 		goto no_csum;
807 
808 	if (skb->encapsulation) {
809 		protocol = fm10k_tx_encap_offload(skb);
810 		if (!protocol) {
811 			if (skb_checksum_help(skb)) {
812 				dev_warn(tx_ring->dev,
813 					 "failed to offload encap csum!\n");
814 				tx_ring->tx_stats.csum_err++;
815 			}
816 			goto no_csum;
817 		}
818 		network_hdr.raw = skb_inner_network_header(skb);
819 		transport_hdr = skb_inner_transport_header(skb);
820 	} else {
821 		protocol = vlan_get_protocol(skb);
822 		network_hdr.raw = skb_network_header(skb);
823 		transport_hdr = skb_transport_header(skb);
824 	}
825 
826 	switch (protocol) {
827 	case htons(ETH_P_IP):
828 		l4_hdr = network_hdr.ipv4->protocol;
829 		break;
830 	case htons(ETH_P_IPV6):
831 		l4_hdr = network_hdr.ipv6->nexthdr;
832 		if (likely((transport_hdr - network_hdr.raw) ==
833 			   sizeof(struct ipv6hdr)))
834 			break;
835 		ipv6_skip_exthdr(skb, network_hdr.raw - skb->data +
836 				      sizeof(struct ipv6hdr),
837 				 &l4_hdr, &frag_off);
838 		if (unlikely(frag_off))
839 			l4_hdr = NEXTHDR_FRAGMENT;
840 		break;
841 	default:
842 		break;
843 	}
844 
845 	switch (l4_hdr) {
846 	case IPPROTO_TCP:
847 	case IPPROTO_UDP:
848 		break;
849 	case IPPROTO_GRE:
850 		if (skb->encapsulation)
851 			break;
852 		fallthrough;
853 	default:
854 		if (unlikely(net_ratelimit())) {
855 			dev_warn(tx_ring->dev,
856 				 "partial checksum, version=%d l4 proto=%x\n",
857 				 protocol, l4_hdr);
858 		}
859 		skb_checksum_help(skb);
860 		tx_ring->tx_stats.csum_err++;
861 		goto no_csum;
862 	}
863 
864 	/* update TX checksum flag */
865 	first->tx_flags |= FM10K_TX_FLAGS_CSUM;
866 	tx_ring->tx_stats.csum_good++;
867 
868 no_csum:
869 	/* populate Tx descriptor header size and mss */
870 	tx_desc = FM10K_TX_DESC(tx_ring, tx_ring->next_to_use);
871 	tx_desc->hdrlen = 0;
872 	tx_desc->mss = 0;
873 }
874 
875 #define FM10K_SET_FLAG(_input, _flag, _result) \
876 	((_flag <= _result) ? \
877 	 ((u32)(_input & _flag) * (_result / _flag)) : \
878 	 ((u32)(_input & _flag) / (_flag / _result)))
879 
880 static u8 fm10k_tx_desc_flags(struct sk_buff *skb, u32 tx_flags)
881 {
882 	/* set type for advanced descriptor with frame checksum insertion */
883 	u32 desc_flags = 0;
884 
885 	/* set checksum offload bits */
886 	desc_flags |= FM10K_SET_FLAG(tx_flags, FM10K_TX_FLAGS_CSUM,
887 				     FM10K_TXD_FLAG_CSUM);
888 
889 	return desc_flags;
890 }
891 
892 static bool fm10k_tx_desc_push(struct fm10k_ring *tx_ring,
893 			       struct fm10k_tx_desc *tx_desc, u16 i,
894 			       dma_addr_t dma, unsigned int size, u8 desc_flags)
895 {
896 	/* set RS and INT for last frame in a cache line */
897 	if ((++i & (FM10K_TXD_WB_FIFO_SIZE - 1)) == 0)
898 		desc_flags |= FM10K_TXD_FLAG_RS | FM10K_TXD_FLAG_INT;
899 
900 	/* record values to descriptor */
901 	tx_desc->buffer_addr = cpu_to_le64(dma);
902 	tx_desc->flags = desc_flags;
903 	tx_desc->buflen = cpu_to_le16(size);
904 
905 	/* return true if we just wrapped the ring */
906 	return i == tx_ring->count;
907 }
908 
909 static int __fm10k_maybe_stop_tx(struct fm10k_ring *tx_ring, u16 size)
910 {
911 	netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
912 
913 	/* Memory barrier before checking head and tail */
914 	smp_mb();
915 
916 	/* Check again in a case another CPU has just made room available */
917 	if (likely(fm10k_desc_unused(tx_ring) < size))
918 		return -EBUSY;
919 
920 	/* A reprieve! - use start_queue because it doesn't call schedule */
921 	netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
922 	++tx_ring->tx_stats.restart_queue;
923 	return 0;
924 }
925 
926 static inline int fm10k_maybe_stop_tx(struct fm10k_ring *tx_ring, u16 size)
927 {
928 	if (likely(fm10k_desc_unused(tx_ring) >= size))
929 		return 0;
930 	return __fm10k_maybe_stop_tx(tx_ring, size);
931 }
932 
933 static void fm10k_tx_map(struct fm10k_ring *tx_ring,
934 			 struct fm10k_tx_buffer *first)
935 {
936 	struct sk_buff *skb = first->skb;
937 	struct fm10k_tx_buffer *tx_buffer;
938 	struct fm10k_tx_desc *tx_desc;
939 	skb_frag_t *frag;
940 	unsigned char *data;
941 	dma_addr_t dma;
942 	unsigned int data_len, size;
943 	u32 tx_flags = first->tx_flags;
944 	u16 i = tx_ring->next_to_use;
945 	u8 flags = fm10k_tx_desc_flags(skb, tx_flags);
946 
947 	tx_desc = FM10K_TX_DESC(tx_ring, i);
948 
949 	/* add HW VLAN tag */
950 	if (skb_vlan_tag_present(skb))
951 		tx_desc->vlan = cpu_to_le16(skb_vlan_tag_get(skb));
952 	else
953 		tx_desc->vlan = 0;
954 
955 	size = skb_headlen(skb);
956 	data = skb->data;
957 
958 	dma = dma_map_single(tx_ring->dev, data, size, DMA_TO_DEVICE);
959 
960 	data_len = skb->data_len;
961 	tx_buffer = first;
962 
963 	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
964 		if (dma_mapping_error(tx_ring->dev, dma))
965 			goto dma_error;
966 
967 		/* record length, and DMA address */
968 		dma_unmap_len_set(tx_buffer, len, size);
969 		dma_unmap_addr_set(tx_buffer, dma, dma);
970 
971 		while (unlikely(size > FM10K_MAX_DATA_PER_TXD)) {
972 			if (fm10k_tx_desc_push(tx_ring, tx_desc++, i++, dma,
973 					       FM10K_MAX_DATA_PER_TXD, flags)) {
974 				tx_desc = FM10K_TX_DESC(tx_ring, 0);
975 				i = 0;
976 			}
977 
978 			dma += FM10K_MAX_DATA_PER_TXD;
979 			size -= FM10K_MAX_DATA_PER_TXD;
980 		}
981 
982 		if (likely(!data_len))
983 			break;
984 
985 		if (fm10k_tx_desc_push(tx_ring, tx_desc++, i++,
986 				       dma, size, flags)) {
987 			tx_desc = FM10K_TX_DESC(tx_ring, 0);
988 			i = 0;
989 		}
990 
991 		size = skb_frag_size(frag);
992 		data_len -= size;
993 
994 		dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
995 				       DMA_TO_DEVICE);
996 
997 		tx_buffer = &tx_ring->tx_buffer[i];
998 	}
999 
1000 	/* write last descriptor with LAST bit set */
1001 	flags |= FM10K_TXD_FLAG_LAST;
1002 
1003 	if (fm10k_tx_desc_push(tx_ring, tx_desc, i++, dma, size, flags))
1004 		i = 0;
1005 
1006 	/* record bytecount for BQL */
1007 	netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
1008 
1009 	/* record SW timestamp if HW timestamp is not available */
1010 	skb_tx_timestamp(first->skb);
1011 
1012 	/* Force memory writes to complete before letting h/w know there
1013 	 * are new descriptors to fetch.  (Only applicable for weak-ordered
1014 	 * memory model archs, such as IA-64).
1015 	 *
1016 	 * We also need this memory barrier to make certain all of the
1017 	 * status bits have been updated before next_to_watch is written.
1018 	 */
1019 	wmb();
1020 
1021 	/* set next_to_watch value indicating a packet is present */
1022 	first->next_to_watch = tx_desc;
1023 
1024 	tx_ring->next_to_use = i;
1025 
1026 	/* Make sure there is space in the ring for the next send. */
1027 	fm10k_maybe_stop_tx(tx_ring, DESC_NEEDED);
1028 
1029 	/* notify HW of packet */
1030 	if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) {
1031 		writel(i, tx_ring->tail);
1032 	}
1033 
1034 	return;
1035 dma_error:
1036 	dev_err(tx_ring->dev, "TX DMA map failed\n");
1037 
1038 	/* clear dma mappings for failed tx_buffer map */
1039 	for (;;) {
1040 		tx_buffer = &tx_ring->tx_buffer[i];
1041 		fm10k_unmap_and_free_tx_resource(tx_ring, tx_buffer);
1042 		if (tx_buffer == first)
1043 			break;
1044 		if (i == 0)
1045 			i = tx_ring->count;
1046 		i--;
1047 	}
1048 
1049 	tx_ring->next_to_use = i;
1050 }
1051 
1052 netdev_tx_t fm10k_xmit_frame_ring(struct sk_buff *skb,
1053 				  struct fm10k_ring *tx_ring)
1054 {
1055 	u16 count = TXD_USE_COUNT(skb_headlen(skb));
1056 	struct fm10k_tx_buffer *first;
1057 	unsigned short f;
1058 	u32 tx_flags = 0;
1059 	int tso;
1060 
1061 	/* need: 1 descriptor per page * PAGE_SIZE/FM10K_MAX_DATA_PER_TXD,
1062 	 *       + 1 desc for skb_headlen/FM10K_MAX_DATA_PER_TXD,
1063 	 *       + 2 desc gap to keep tail from touching head
1064 	 * otherwise try next time
1065 	 */
1066 	for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) {
1067 		skb_frag_t *frag = &skb_shinfo(skb)->frags[f];
1068 
1069 		count += TXD_USE_COUNT(skb_frag_size(frag));
1070 	}
1071 
1072 	if (fm10k_maybe_stop_tx(tx_ring, count + 3)) {
1073 		tx_ring->tx_stats.tx_busy++;
1074 		return NETDEV_TX_BUSY;
1075 	}
1076 
1077 	/* record the location of the first descriptor for this packet */
1078 	first = &tx_ring->tx_buffer[tx_ring->next_to_use];
1079 	first->skb = skb;
1080 	first->bytecount = max_t(unsigned int, skb->len, ETH_ZLEN);
1081 	first->gso_segs = 1;
1082 
1083 	/* record initial flags and protocol */
1084 	first->tx_flags = tx_flags;
1085 
1086 	tso = fm10k_tso(tx_ring, first);
1087 	if (tso < 0)
1088 		goto out_drop;
1089 	else if (!tso)
1090 		fm10k_tx_csum(tx_ring, first);
1091 
1092 	fm10k_tx_map(tx_ring, first);
1093 
1094 	return NETDEV_TX_OK;
1095 
1096 out_drop:
1097 	dev_kfree_skb_any(first->skb);
1098 	first->skb = NULL;
1099 
1100 	return NETDEV_TX_OK;
1101 }
1102 
1103 static u64 fm10k_get_tx_completed(struct fm10k_ring *ring)
1104 {
1105 	return ring->stats.packets;
1106 }
1107 
1108 /**
1109  * fm10k_get_tx_pending - how many Tx descriptors not processed
1110  * @ring: the ring structure
1111  * @in_sw: is tx_pending being checked in SW or in HW?
1112  */
1113 u64 fm10k_get_tx_pending(struct fm10k_ring *ring, bool in_sw)
1114 {
1115 	struct fm10k_intfc *interface = ring->q_vector->interface;
1116 	struct fm10k_hw *hw = &interface->hw;
1117 	u32 head, tail;
1118 
1119 	if (likely(in_sw)) {
1120 		head = ring->next_to_clean;
1121 		tail = ring->next_to_use;
1122 	} else {
1123 		head = fm10k_read_reg(hw, FM10K_TDH(ring->reg_idx));
1124 		tail = fm10k_read_reg(hw, FM10K_TDT(ring->reg_idx));
1125 	}
1126 
1127 	return ((head <= tail) ? tail : tail + ring->count) - head;
1128 }
1129 
1130 bool fm10k_check_tx_hang(struct fm10k_ring *tx_ring)
1131 {
1132 	u32 tx_done = fm10k_get_tx_completed(tx_ring);
1133 	u32 tx_done_old = tx_ring->tx_stats.tx_done_old;
1134 	u32 tx_pending = fm10k_get_tx_pending(tx_ring, true);
1135 
1136 	clear_check_for_tx_hang(tx_ring);
1137 
1138 	/* Check for a hung queue, but be thorough. This verifies
1139 	 * that a transmit has been completed since the previous
1140 	 * check AND there is at least one packet pending. By
1141 	 * requiring this to fail twice we avoid races with
1142 	 * clearing the ARMED bit and conditions where we
1143 	 * run the check_tx_hang logic with a transmit completion
1144 	 * pending but without time to complete it yet.
1145 	 */
1146 	if (!tx_pending || (tx_done_old != tx_done)) {
1147 		/* update completed stats and continue */
1148 		tx_ring->tx_stats.tx_done_old = tx_done;
1149 		/* reset the countdown */
1150 		clear_bit(__FM10K_HANG_CHECK_ARMED, tx_ring->state);
1151 
1152 		return false;
1153 	}
1154 
1155 	/* make sure it is true for two checks in a row */
1156 	return test_and_set_bit(__FM10K_HANG_CHECK_ARMED, tx_ring->state);
1157 }
1158 
1159 /**
1160  * fm10k_tx_timeout_reset - initiate reset due to Tx timeout
1161  * @interface: driver private struct
1162  **/
1163 void fm10k_tx_timeout_reset(struct fm10k_intfc *interface)
1164 {
1165 	/* Do the reset outside of interrupt context */
1166 	if (!test_bit(__FM10K_DOWN, interface->state)) {
1167 		interface->tx_timeout_count++;
1168 		set_bit(FM10K_FLAG_RESET_REQUESTED, interface->flags);
1169 		fm10k_service_event_schedule(interface);
1170 	}
1171 }
1172 
1173 /**
1174  * fm10k_clean_tx_irq - Reclaim resources after transmit completes
1175  * @q_vector: structure containing interrupt and ring information
1176  * @tx_ring: tx ring to clean
1177  * @napi_budget: Used to determine if we are in netpoll
1178  **/
1179 static bool fm10k_clean_tx_irq(struct fm10k_q_vector *q_vector,
1180 			       struct fm10k_ring *tx_ring, int napi_budget)
1181 {
1182 	struct fm10k_intfc *interface = q_vector->interface;
1183 	struct fm10k_tx_buffer *tx_buffer;
1184 	struct fm10k_tx_desc *tx_desc;
1185 	unsigned int total_bytes = 0, total_packets = 0;
1186 	unsigned int budget = q_vector->tx.work_limit;
1187 	unsigned int i = tx_ring->next_to_clean;
1188 
1189 	if (test_bit(__FM10K_DOWN, interface->state))
1190 		return true;
1191 
1192 	tx_buffer = &tx_ring->tx_buffer[i];
1193 	tx_desc = FM10K_TX_DESC(tx_ring, i);
1194 	i -= tx_ring->count;
1195 
1196 	do {
1197 		struct fm10k_tx_desc *eop_desc = tx_buffer->next_to_watch;
1198 
1199 		/* if next_to_watch is not set then there is no work pending */
1200 		if (!eop_desc)
1201 			break;
1202 
1203 		/* prevent any other reads prior to eop_desc */
1204 		smp_rmb();
1205 
1206 		/* if DD is not set pending work has not been completed */
1207 		if (!(eop_desc->flags & FM10K_TXD_FLAG_DONE))
1208 			break;
1209 
1210 		/* clear next_to_watch to prevent false hangs */
1211 		tx_buffer->next_to_watch = NULL;
1212 
1213 		/* update the statistics for this packet */
1214 		total_bytes += tx_buffer->bytecount;
1215 		total_packets += tx_buffer->gso_segs;
1216 
1217 		/* free the skb */
1218 		napi_consume_skb(tx_buffer->skb, napi_budget);
1219 
1220 		/* unmap skb header data */
1221 		dma_unmap_single(tx_ring->dev,
1222 				 dma_unmap_addr(tx_buffer, dma),
1223 				 dma_unmap_len(tx_buffer, len),
1224 				 DMA_TO_DEVICE);
1225 
1226 		/* clear tx_buffer data */
1227 		tx_buffer->skb = NULL;
1228 		dma_unmap_len_set(tx_buffer, len, 0);
1229 
1230 		/* unmap remaining buffers */
1231 		while (tx_desc != eop_desc) {
1232 			tx_buffer++;
1233 			tx_desc++;
1234 			i++;
1235 			if (unlikely(!i)) {
1236 				i -= tx_ring->count;
1237 				tx_buffer = tx_ring->tx_buffer;
1238 				tx_desc = FM10K_TX_DESC(tx_ring, 0);
1239 			}
1240 
1241 			/* unmap any remaining paged data */
1242 			if (dma_unmap_len(tx_buffer, len)) {
1243 				dma_unmap_page(tx_ring->dev,
1244 					       dma_unmap_addr(tx_buffer, dma),
1245 					       dma_unmap_len(tx_buffer, len),
1246 					       DMA_TO_DEVICE);
1247 				dma_unmap_len_set(tx_buffer, len, 0);
1248 			}
1249 		}
1250 
1251 		/* move us one more past the eop_desc for start of next pkt */
1252 		tx_buffer++;
1253 		tx_desc++;
1254 		i++;
1255 		if (unlikely(!i)) {
1256 			i -= tx_ring->count;
1257 			tx_buffer = tx_ring->tx_buffer;
1258 			tx_desc = FM10K_TX_DESC(tx_ring, 0);
1259 		}
1260 
1261 		/* issue prefetch for next Tx descriptor */
1262 		prefetch(tx_desc);
1263 
1264 		/* update budget accounting */
1265 		budget--;
1266 	} while (likely(budget));
1267 
1268 	i += tx_ring->count;
1269 	tx_ring->next_to_clean = i;
1270 	u64_stats_update_begin(&tx_ring->syncp);
1271 	tx_ring->stats.bytes += total_bytes;
1272 	tx_ring->stats.packets += total_packets;
1273 	u64_stats_update_end(&tx_ring->syncp);
1274 	q_vector->tx.total_bytes += total_bytes;
1275 	q_vector->tx.total_packets += total_packets;
1276 
1277 	if (check_for_tx_hang(tx_ring) && fm10k_check_tx_hang(tx_ring)) {
1278 		/* schedule immediate reset if we believe we hung */
1279 		struct fm10k_hw *hw = &interface->hw;
1280 
1281 		netif_err(interface, drv, tx_ring->netdev,
1282 			  "Detected Tx Unit Hang\n"
1283 			  "  Tx Queue             <%d>\n"
1284 			  "  TDH, TDT             <%x>, <%x>\n"
1285 			  "  next_to_use          <%x>\n"
1286 			  "  next_to_clean        <%x>\n",
1287 			  tx_ring->queue_index,
1288 			  fm10k_read_reg(hw, FM10K_TDH(tx_ring->reg_idx)),
1289 			  fm10k_read_reg(hw, FM10K_TDT(tx_ring->reg_idx)),
1290 			  tx_ring->next_to_use, i);
1291 
1292 		netif_stop_subqueue(tx_ring->netdev,
1293 				    tx_ring->queue_index);
1294 
1295 		netif_info(interface, probe, tx_ring->netdev,
1296 			   "tx hang %d detected on queue %d, resetting interface\n",
1297 			   interface->tx_timeout_count + 1,
1298 			   tx_ring->queue_index);
1299 
1300 		fm10k_tx_timeout_reset(interface);
1301 
1302 		/* the netdev is about to reset, no point in enabling stuff */
1303 		return true;
1304 	}
1305 
1306 	/* notify netdev of completed buffers */
1307 	netdev_tx_completed_queue(txring_txq(tx_ring),
1308 				  total_packets, total_bytes);
1309 
1310 #define TX_WAKE_THRESHOLD min_t(u16, FM10K_MIN_TXD - 1, DESC_NEEDED * 2)
1311 	if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
1312 		     (fm10k_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD))) {
1313 		/* Make sure that anybody stopping the queue after this
1314 		 * sees the new next_to_clean.
1315 		 */
1316 		smp_mb();
1317 		if (__netif_subqueue_stopped(tx_ring->netdev,
1318 					     tx_ring->queue_index) &&
1319 		    !test_bit(__FM10K_DOWN, interface->state)) {
1320 			netif_wake_subqueue(tx_ring->netdev,
1321 					    tx_ring->queue_index);
1322 			++tx_ring->tx_stats.restart_queue;
1323 		}
1324 	}
1325 
1326 	return !!budget;
1327 }
1328 
1329 /**
1330  * fm10k_update_itr - update the dynamic ITR value based on packet size
1331  *
1332  *      Stores a new ITR value based on strictly on packet size.  The
1333  *      divisors and thresholds used by this function were determined based
1334  *      on theoretical maximum wire speed and testing data, in order to
1335  *      minimize response time while increasing bulk throughput.
1336  *
1337  * @ring_container: Container for rings to have ITR updated
1338  **/
1339 static void fm10k_update_itr(struct fm10k_ring_container *ring_container)
1340 {
1341 	unsigned int avg_wire_size, packets, itr_round;
1342 
1343 	/* Only update ITR if we are using adaptive setting */
1344 	if (!ITR_IS_ADAPTIVE(ring_container->itr))
1345 		goto clear_counts;
1346 
1347 	packets = ring_container->total_packets;
1348 	if (!packets)
1349 		goto clear_counts;
1350 
1351 	avg_wire_size = ring_container->total_bytes / packets;
1352 
1353 	/* The following is a crude approximation of:
1354 	 *  wmem_default / (size + overhead) = desired_pkts_per_int
1355 	 *  rate / bits_per_byte / (size + ethernet overhead) = pkt_rate
1356 	 *  (desired_pkt_rate / pkt_rate) * usecs_per_sec = ITR value
1357 	 *
1358 	 * Assuming wmem_default is 212992 and overhead is 640 bytes per
1359 	 * packet, (256 skb, 64 headroom, 320 shared info), we can reduce the
1360 	 * formula down to
1361 	 *
1362 	 *  (34 * (size + 24)) / (size + 640) = ITR
1363 	 *
1364 	 * We first do some math on the packet size and then finally bitshift
1365 	 * by 8 after rounding up. We also have to account for PCIe link speed
1366 	 * difference as ITR scales based on this.
1367 	 */
1368 	if (avg_wire_size <= 360) {
1369 		/* Start at 250K ints/sec and gradually drop to 77K ints/sec */
1370 		avg_wire_size *= 8;
1371 		avg_wire_size += 376;
1372 	} else if (avg_wire_size <= 1152) {
1373 		/* 77K ints/sec to 45K ints/sec */
1374 		avg_wire_size *= 3;
1375 		avg_wire_size += 2176;
1376 	} else if (avg_wire_size <= 1920) {
1377 		/* 45K ints/sec to 38K ints/sec */
1378 		avg_wire_size += 4480;
1379 	} else {
1380 		/* plateau at a limit of 38K ints/sec */
1381 		avg_wire_size = 6656;
1382 	}
1383 
1384 	/* Perform final bitshift for division after rounding up to ensure
1385 	 * that the calculation will never get below a 1. The bit shift
1386 	 * accounts for changes in the ITR due to PCIe link speed.
1387 	 */
1388 	itr_round = READ_ONCE(ring_container->itr_scale) + 8;
1389 	avg_wire_size += BIT(itr_round) - 1;
1390 	avg_wire_size >>= itr_round;
1391 
1392 	/* write back value and retain adaptive flag */
1393 	ring_container->itr = avg_wire_size | FM10K_ITR_ADAPTIVE;
1394 
1395 clear_counts:
1396 	ring_container->total_bytes = 0;
1397 	ring_container->total_packets = 0;
1398 }
1399 
1400 static void fm10k_qv_enable(struct fm10k_q_vector *q_vector)
1401 {
1402 	/* Enable auto-mask and clear the current mask */
1403 	u32 itr = FM10K_ITR_ENABLE;
1404 
1405 	/* Update Tx ITR */
1406 	fm10k_update_itr(&q_vector->tx);
1407 
1408 	/* Update Rx ITR */
1409 	fm10k_update_itr(&q_vector->rx);
1410 
1411 	/* Store Tx itr in timer slot 0 */
1412 	itr |= (q_vector->tx.itr & FM10K_ITR_MAX);
1413 
1414 	/* Shift Rx itr to timer slot 1 */
1415 	itr |= (q_vector->rx.itr & FM10K_ITR_MAX) << FM10K_ITR_INTERVAL1_SHIFT;
1416 
1417 	/* Write the final value to the ITR register */
1418 	writel(itr, q_vector->itr);
1419 }
1420 
1421 static int fm10k_poll(struct napi_struct *napi, int budget)
1422 {
1423 	struct fm10k_q_vector *q_vector =
1424 			       container_of(napi, struct fm10k_q_vector, napi);
1425 	struct fm10k_ring *ring;
1426 	int per_ring_budget, work_done = 0;
1427 	bool clean_complete = true;
1428 
1429 	fm10k_for_each_ring(ring, q_vector->tx) {
1430 		if (!fm10k_clean_tx_irq(q_vector, ring, budget))
1431 			clean_complete = false;
1432 	}
1433 
1434 	/* Handle case where we are called by netpoll with a budget of 0 */
1435 	if (budget <= 0)
1436 		return budget;
1437 
1438 	/* attempt to distribute budget to each queue fairly, but don't
1439 	 * allow the budget to go below 1 because we'll exit polling
1440 	 */
1441 	if (q_vector->rx.count > 1)
1442 		per_ring_budget = max(budget / q_vector->rx.count, 1);
1443 	else
1444 		per_ring_budget = budget;
1445 
1446 	fm10k_for_each_ring(ring, q_vector->rx) {
1447 		int work = fm10k_clean_rx_irq(q_vector, ring, per_ring_budget);
1448 
1449 		work_done += work;
1450 		if (work >= per_ring_budget)
1451 			clean_complete = false;
1452 	}
1453 
1454 	/* If all work not completed, return budget and keep polling */
1455 	if (!clean_complete)
1456 		return budget;
1457 
1458 	/* Exit the polling mode, but don't re-enable interrupts if stack might
1459 	 * poll us due to busy-polling
1460 	 */
1461 	if (likely(napi_complete_done(napi, work_done)))
1462 		fm10k_qv_enable(q_vector);
1463 
1464 	return min(work_done, budget - 1);
1465 }
1466 
1467 /**
1468  * fm10k_set_qos_queues: Allocate queues for a QOS-enabled device
1469  * @interface: board private structure to initialize
1470  *
1471  * When QoS (Quality of Service) is enabled, allocate queues for
1472  * each traffic class.  If multiqueue isn't available,then abort QoS
1473  * initialization.
1474  *
1475  * This function handles all combinations of Qos and RSS.
1476  *
1477  **/
1478 static bool fm10k_set_qos_queues(struct fm10k_intfc *interface)
1479 {
1480 	struct net_device *dev = interface->netdev;
1481 	struct fm10k_ring_feature *f;
1482 	int rss_i, i;
1483 	int pcs;
1484 
1485 	/* Map queue offset and counts onto allocated tx queues */
1486 	pcs = netdev_get_num_tc(dev);
1487 
1488 	if (pcs <= 1)
1489 		return false;
1490 
1491 	/* set QoS mask and indices */
1492 	f = &interface->ring_feature[RING_F_QOS];
1493 	f->indices = pcs;
1494 	f->mask = BIT(fls(pcs - 1)) - 1;
1495 
1496 	/* determine the upper limit for our current DCB mode */
1497 	rss_i = interface->hw.mac.max_queues / pcs;
1498 	rss_i = BIT(fls(rss_i) - 1);
1499 
1500 	/* set RSS mask and indices */
1501 	f = &interface->ring_feature[RING_F_RSS];
1502 	rss_i = min_t(u16, rss_i, f->limit);
1503 	f->indices = rss_i;
1504 	f->mask = BIT(fls(rss_i - 1)) - 1;
1505 
1506 	/* configure pause class to queue mapping */
1507 	for (i = 0; i < pcs; i++)
1508 		netdev_set_tc_queue(dev, i, rss_i, rss_i * i);
1509 
1510 	interface->num_rx_queues = rss_i * pcs;
1511 	interface->num_tx_queues = rss_i * pcs;
1512 
1513 	return true;
1514 }
1515 
1516 /**
1517  * fm10k_set_rss_queues: Allocate queues for RSS
1518  * @interface: board private structure to initialize
1519  *
1520  * This is our "base" multiqueue mode.  RSS (Receive Side Scaling) will try
1521  * to allocate one Rx queue per CPU, and if available, one Tx queue per CPU.
1522  *
1523  **/
1524 static bool fm10k_set_rss_queues(struct fm10k_intfc *interface)
1525 {
1526 	struct fm10k_ring_feature *f;
1527 	u16 rss_i;
1528 
1529 	f = &interface->ring_feature[RING_F_RSS];
1530 	rss_i = min_t(u16, interface->hw.mac.max_queues, f->limit);
1531 
1532 	/* record indices and power of 2 mask for RSS */
1533 	f->indices = rss_i;
1534 	f->mask = BIT(fls(rss_i - 1)) - 1;
1535 
1536 	interface->num_rx_queues = rss_i;
1537 	interface->num_tx_queues = rss_i;
1538 
1539 	return true;
1540 }
1541 
1542 /**
1543  * fm10k_set_num_queues: Allocate queues for device, feature dependent
1544  * @interface: board private structure to initialize
1545  *
1546  * This is the top level queue allocation routine.  The order here is very
1547  * important, starting with the "most" number of features turned on at once,
1548  * and ending with the smallest set of features.  This way large combinations
1549  * can be allocated if they're turned on, and smaller combinations are the
1550  * fall through conditions.
1551  *
1552  **/
1553 static void fm10k_set_num_queues(struct fm10k_intfc *interface)
1554 {
1555 	/* Attempt to setup QoS and RSS first */
1556 	if (fm10k_set_qos_queues(interface))
1557 		return;
1558 
1559 	/* If we don't have QoS, just fallback to only RSS. */
1560 	fm10k_set_rss_queues(interface);
1561 }
1562 
1563 /**
1564  * fm10k_reset_num_queues - Reset the number of queues to zero
1565  * @interface: board private structure
1566  *
1567  * This function should be called whenever we need to reset the number of
1568  * queues after an error condition.
1569  */
1570 static void fm10k_reset_num_queues(struct fm10k_intfc *interface)
1571 {
1572 	interface->num_tx_queues = 0;
1573 	interface->num_rx_queues = 0;
1574 	interface->num_q_vectors = 0;
1575 }
1576 
1577 /**
1578  * fm10k_alloc_q_vector - Allocate memory for a single interrupt vector
1579  * @interface: board private structure to initialize
1580  * @v_count: q_vectors allocated on interface, used for ring interleaving
1581  * @v_idx: index of vector in interface struct
1582  * @txr_count: total number of Tx rings to allocate
1583  * @txr_idx: index of first Tx ring to allocate
1584  * @rxr_count: total number of Rx rings to allocate
1585  * @rxr_idx: index of first Rx ring to allocate
1586  *
1587  * We allocate one q_vector.  If allocation fails we return -ENOMEM.
1588  **/
1589 static int fm10k_alloc_q_vector(struct fm10k_intfc *interface,
1590 				unsigned int v_count, unsigned int v_idx,
1591 				unsigned int txr_count, unsigned int txr_idx,
1592 				unsigned int rxr_count, unsigned int rxr_idx)
1593 {
1594 	struct fm10k_q_vector *q_vector;
1595 	struct fm10k_ring *ring;
1596 	int ring_count;
1597 
1598 	ring_count = txr_count + rxr_count;
1599 
1600 	/* allocate q_vector and rings */
1601 	q_vector = kzalloc(struct_size(q_vector, ring, ring_count), GFP_KERNEL);
1602 	if (!q_vector)
1603 		return -ENOMEM;
1604 
1605 	/* initialize NAPI */
1606 	netif_napi_add(interface->netdev, &q_vector->napi, fm10k_poll);
1607 
1608 	/* tie q_vector and interface together */
1609 	interface->q_vector[v_idx] = q_vector;
1610 	q_vector->interface = interface;
1611 	q_vector->v_idx = v_idx;
1612 
1613 	/* initialize pointer to rings */
1614 	ring = q_vector->ring;
1615 
1616 	/* save Tx ring container info */
1617 	q_vector->tx.ring = ring;
1618 	q_vector->tx.work_limit = FM10K_DEFAULT_TX_WORK;
1619 	q_vector->tx.itr = interface->tx_itr;
1620 	q_vector->tx.itr_scale = interface->hw.mac.itr_scale;
1621 	q_vector->tx.count = txr_count;
1622 
1623 	while (txr_count) {
1624 		/* assign generic ring traits */
1625 		ring->dev = &interface->pdev->dev;
1626 		ring->netdev = interface->netdev;
1627 
1628 		/* configure backlink on ring */
1629 		ring->q_vector = q_vector;
1630 
1631 		/* apply Tx specific ring traits */
1632 		ring->count = interface->tx_ring_count;
1633 		ring->queue_index = txr_idx;
1634 
1635 		/* assign ring to interface */
1636 		interface->tx_ring[txr_idx] = ring;
1637 
1638 		/* update count and index */
1639 		txr_count--;
1640 		txr_idx += v_count;
1641 
1642 		/* push pointer to next ring */
1643 		ring++;
1644 	}
1645 
1646 	/* save Rx ring container info */
1647 	q_vector->rx.ring = ring;
1648 	q_vector->rx.itr = interface->rx_itr;
1649 	q_vector->rx.itr_scale = interface->hw.mac.itr_scale;
1650 	q_vector->rx.count = rxr_count;
1651 
1652 	while (rxr_count) {
1653 		/* assign generic ring traits */
1654 		ring->dev = &interface->pdev->dev;
1655 		ring->netdev = interface->netdev;
1656 		rcu_assign_pointer(ring->l2_accel, interface->l2_accel);
1657 
1658 		/* configure backlink on ring */
1659 		ring->q_vector = q_vector;
1660 
1661 		/* apply Rx specific ring traits */
1662 		ring->count = interface->rx_ring_count;
1663 		ring->queue_index = rxr_idx;
1664 
1665 		/* assign ring to interface */
1666 		interface->rx_ring[rxr_idx] = ring;
1667 
1668 		/* update count and index */
1669 		rxr_count--;
1670 		rxr_idx += v_count;
1671 
1672 		/* push pointer to next ring */
1673 		ring++;
1674 	}
1675 
1676 	fm10k_dbg_q_vector_init(q_vector);
1677 
1678 	return 0;
1679 }
1680 
1681 /**
1682  * fm10k_free_q_vector - Free memory allocated for specific interrupt vector
1683  * @interface: board private structure to initialize
1684  * @v_idx: Index of vector to be freed
1685  *
1686  * This function frees the memory allocated to the q_vector.  In addition if
1687  * NAPI is enabled it will delete any references to the NAPI struct prior
1688  * to freeing the q_vector.
1689  **/
1690 static void fm10k_free_q_vector(struct fm10k_intfc *interface, int v_idx)
1691 {
1692 	struct fm10k_q_vector *q_vector = interface->q_vector[v_idx];
1693 	struct fm10k_ring *ring;
1694 
1695 	fm10k_dbg_q_vector_exit(q_vector);
1696 
1697 	fm10k_for_each_ring(ring, q_vector->tx)
1698 		interface->tx_ring[ring->queue_index] = NULL;
1699 
1700 	fm10k_for_each_ring(ring, q_vector->rx)
1701 		interface->rx_ring[ring->queue_index] = NULL;
1702 
1703 	interface->q_vector[v_idx] = NULL;
1704 	netif_napi_del(&q_vector->napi);
1705 	kfree_rcu(q_vector, rcu);
1706 }
1707 
1708 /**
1709  * fm10k_alloc_q_vectors - Allocate memory for interrupt vectors
1710  * @interface: board private structure to initialize
1711  *
1712  * We allocate one q_vector per queue interrupt.  If allocation fails we
1713  * return -ENOMEM.
1714  **/
1715 static int fm10k_alloc_q_vectors(struct fm10k_intfc *interface)
1716 {
1717 	unsigned int q_vectors = interface->num_q_vectors;
1718 	unsigned int rxr_remaining = interface->num_rx_queues;
1719 	unsigned int txr_remaining = interface->num_tx_queues;
1720 	unsigned int rxr_idx = 0, txr_idx = 0, v_idx = 0;
1721 	int err;
1722 
1723 	if (q_vectors >= (rxr_remaining + txr_remaining)) {
1724 		for (; rxr_remaining; v_idx++) {
1725 			err = fm10k_alloc_q_vector(interface, q_vectors, v_idx,
1726 						   0, 0, 1, rxr_idx);
1727 			if (err)
1728 				goto err_out;
1729 
1730 			/* update counts and index */
1731 			rxr_remaining--;
1732 			rxr_idx++;
1733 		}
1734 	}
1735 
1736 	for (; v_idx < q_vectors; v_idx++) {
1737 		int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
1738 		int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
1739 
1740 		err = fm10k_alloc_q_vector(interface, q_vectors, v_idx,
1741 					   tqpv, txr_idx,
1742 					   rqpv, rxr_idx);
1743 
1744 		if (err)
1745 			goto err_out;
1746 
1747 		/* update counts and index */
1748 		rxr_remaining -= rqpv;
1749 		txr_remaining -= tqpv;
1750 		rxr_idx++;
1751 		txr_idx++;
1752 	}
1753 
1754 	return 0;
1755 
1756 err_out:
1757 	fm10k_reset_num_queues(interface);
1758 
1759 	while (v_idx--)
1760 		fm10k_free_q_vector(interface, v_idx);
1761 
1762 	return -ENOMEM;
1763 }
1764 
1765 /**
1766  * fm10k_free_q_vectors - Free memory allocated for interrupt vectors
1767  * @interface: board private structure to initialize
1768  *
1769  * This function frees the memory allocated to the q_vectors.  In addition if
1770  * NAPI is enabled it will delete any references to the NAPI struct prior
1771  * to freeing the q_vector.
1772  **/
1773 static void fm10k_free_q_vectors(struct fm10k_intfc *interface)
1774 {
1775 	int v_idx = interface->num_q_vectors;
1776 
1777 	fm10k_reset_num_queues(interface);
1778 
1779 	while (v_idx--)
1780 		fm10k_free_q_vector(interface, v_idx);
1781 }
1782 
1783 /**
1784  * fm10k_reset_msix_capability - reset MSI-X capability
1785  * @interface: board private structure to initialize
1786  *
1787  * Reset the MSI-X capability back to its starting state
1788  **/
1789 static void fm10k_reset_msix_capability(struct fm10k_intfc *interface)
1790 {
1791 	pci_disable_msix(interface->pdev);
1792 	kfree(interface->msix_entries);
1793 	interface->msix_entries = NULL;
1794 }
1795 
1796 /**
1797  * fm10k_init_msix_capability - configure MSI-X capability
1798  * @interface: board private structure to initialize
1799  *
1800  * Attempt to configure the interrupts using the best available
1801  * capabilities of the hardware and the kernel.
1802  **/
1803 static int fm10k_init_msix_capability(struct fm10k_intfc *interface)
1804 {
1805 	struct fm10k_hw *hw = &interface->hw;
1806 	int v_budget, vector;
1807 
1808 	/* It's easy to be greedy for MSI-X vectors, but it really
1809 	 * doesn't do us much good if we have a lot more vectors
1810 	 * than CPU's.  So let's be conservative and only ask for
1811 	 * (roughly) the same number of vectors as there are CPU's.
1812 	 * the default is to use pairs of vectors
1813 	 */
1814 	v_budget = max(interface->num_rx_queues, interface->num_tx_queues);
1815 	v_budget = min_t(u16, v_budget, num_online_cpus());
1816 
1817 	/* account for vectors not related to queues */
1818 	v_budget += NON_Q_VECTORS;
1819 
1820 	/* At the same time, hardware can only support a maximum of
1821 	 * hw.mac->max_msix_vectors vectors.  With features
1822 	 * such as RSS and VMDq, we can easily surpass the number of Rx and Tx
1823 	 * descriptor queues supported by our device.  Thus, we cap it off in
1824 	 * those rare cases where the cpu count also exceeds our vector limit.
1825 	 */
1826 	v_budget = min_t(int, v_budget, hw->mac.max_msix_vectors);
1827 
1828 	/* A failure in MSI-X entry allocation is fatal. */
1829 	interface->msix_entries = kcalloc(v_budget, sizeof(struct msix_entry),
1830 					  GFP_KERNEL);
1831 	if (!interface->msix_entries)
1832 		return -ENOMEM;
1833 
1834 	/* populate entry values */
1835 	for (vector = 0; vector < v_budget; vector++)
1836 		interface->msix_entries[vector].entry = vector;
1837 
1838 	/* Attempt to enable MSI-X with requested value */
1839 	v_budget = pci_enable_msix_range(interface->pdev,
1840 					 interface->msix_entries,
1841 					 MIN_MSIX_COUNT(hw),
1842 					 v_budget);
1843 	if (v_budget < 0) {
1844 		kfree(interface->msix_entries);
1845 		interface->msix_entries = NULL;
1846 		return v_budget;
1847 	}
1848 
1849 	/* record the number of queues available for q_vectors */
1850 	interface->num_q_vectors = v_budget - NON_Q_VECTORS;
1851 
1852 	return 0;
1853 }
1854 
1855 /**
1856  * fm10k_cache_ring_qos - Descriptor ring to register mapping for QoS
1857  * @interface: Interface structure continaining rings and devices
1858  *
1859  * Cache the descriptor ring offsets for Qos
1860  **/
1861 static bool fm10k_cache_ring_qos(struct fm10k_intfc *interface)
1862 {
1863 	struct net_device *dev = interface->netdev;
1864 	int pc, offset, rss_i, i;
1865 	u16 pc_stride = interface->ring_feature[RING_F_QOS].mask + 1;
1866 	u8 num_pcs = netdev_get_num_tc(dev);
1867 
1868 	if (num_pcs <= 1)
1869 		return false;
1870 
1871 	rss_i = interface->ring_feature[RING_F_RSS].indices;
1872 
1873 	for (pc = 0, offset = 0; pc < num_pcs; pc++, offset += rss_i) {
1874 		int q_idx = pc;
1875 
1876 		for (i = 0; i < rss_i; i++) {
1877 			interface->tx_ring[offset + i]->reg_idx = q_idx;
1878 			interface->tx_ring[offset + i]->qos_pc = pc;
1879 			interface->rx_ring[offset + i]->reg_idx = q_idx;
1880 			interface->rx_ring[offset + i]->qos_pc = pc;
1881 			q_idx += pc_stride;
1882 		}
1883 	}
1884 
1885 	return true;
1886 }
1887 
1888 /**
1889  * fm10k_cache_ring_rss - Descriptor ring to register mapping for RSS
1890  * @interface: Interface structure continaining rings and devices
1891  *
1892  * Cache the descriptor ring offsets for RSS
1893  **/
1894 static void fm10k_cache_ring_rss(struct fm10k_intfc *interface)
1895 {
1896 	int i;
1897 
1898 	for (i = 0; i < interface->num_rx_queues; i++)
1899 		interface->rx_ring[i]->reg_idx = i;
1900 
1901 	for (i = 0; i < interface->num_tx_queues; i++)
1902 		interface->tx_ring[i]->reg_idx = i;
1903 }
1904 
1905 /**
1906  * fm10k_assign_rings - Map rings to network devices
1907  * @interface: Interface structure containing rings and devices
1908  *
1909  * This function is meant to go though and configure both the network
1910  * devices so that they contain rings, and configure the rings so that
1911  * they function with their network devices.
1912  **/
1913 static void fm10k_assign_rings(struct fm10k_intfc *interface)
1914 {
1915 	if (fm10k_cache_ring_qos(interface))
1916 		return;
1917 
1918 	fm10k_cache_ring_rss(interface);
1919 }
1920 
1921 static void fm10k_init_reta(struct fm10k_intfc *interface)
1922 {
1923 	u16 i, rss_i = interface->ring_feature[RING_F_RSS].indices;
1924 	u32 reta;
1925 
1926 	/* If the Rx flow indirection table has been configured manually, we
1927 	 * need to maintain it when possible.
1928 	 */
1929 	if (netif_is_rxfh_configured(interface->netdev)) {
1930 		for (i = FM10K_RETA_SIZE; i--;) {
1931 			reta = interface->reta[i];
1932 			if ((((reta << 24) >> 24) < rss_i) &&
1933 			    (((reta << 16) >> 24) < rss_i) &&
1934 			    (((reta <<  8) >> 24) < rss_i) &&
1935 			    (((reta)       >> 24) < rss_i))
1936 				continue;
1937 
1938 			/* this should never happen */
1939 			dev_err(&interface->pdev->dev,
1940 				"RSS indirection table assigned flows out of queue bounds. Reconfiguring.\n");
1941 			goto repopulate_reta;
1942 		}
1943 
1944 		/* do nothing if all of the elements are in bounds */
1945 		return;
1946 	}
1947 
1948 repopulate_reta:
1949 	fm10k_write_reta(interface, NULL);
1950 }
1951 
1952 /**
1953  * fm10k_init_queueing_scheme - Determine proper queueing scheme
1954  * @interface: board private structure to initialize
1955  *
1956  * We determine which queueing scheme to use based on...
1957  * - Hardware queue count (num_*_queues)
1958  *   - defined by miscellaneous hardware support/features (RSS, etc.)
1959  **/
1960 int fm10k_init_queueing_scheme(struct fm10k_intfc *interface)
1961 {
1962 	int err;
1963 
1964 	/* Number of supported queues */
1965 	fm10k_set_num_queues(interface);
1966 
1967 	/* Configure MSI-X capability */
1968 	err = fm10k_init_msix_capability(interface);
1969 	if (err) {
1970 		dev_err(&interface->pdev->dev,
1971 			"Unable to initialize MSI-X capability\n");
1972 		goto err_init_msix;
1973 	}
1974 
1975 	/* Allocate memory for queues */
1976 	err = fm10k_alloc_q_vectors(interface);
1977 	if (err) {
1978 		dev_err(&interface->pdev->dev,
1979 			"Unable to allocate queue vectors\n");
1980 		goto err_alloc_q_vectors;
1981 	}
1982 
1983 	/* Map rings to devices, and map devices to physical queues */
1984 	fm10k_assign_rings(interface);
1985 
1986 	/* Initialize RSS redirection table */
1987 	fm10k_init_reta(interface);
1988 
1989 	return 0;
1990 
1991 err_alloc_q_vectors:
1992 	fm10k_reset_msix_capability(interface);
1993 err_init_msix:
1994 	fm10k_reset_num_queues(interface);
1995 	return err;
1996 }
1997 
1998 /**
1999  * fm10k_clear_queueing_scheme - Clear the current queueing scheme settings
2000  * @interface: board private structure to clear queueing scheme on
2001  *
2002  * We go through and clear queueing specific resources and reset the structure
2003  * to pre-load conditions
2004  **/
2005 void fm10k_clear_queueing_scheme(struct fm10k_intfc *interface)
2006 {
2007 	fm10k_free_q_vectors(interface);
2008 	fm10k_reset_msix_capability(interface);
2009 }
2010