1 /* Intel Ethernet Switch Host Interface Driver 2 * Copyright(c) 2013 - 2014 Intel Corporation. 3 * 4 * This program is free software; you can redistribute it and/or modify it 5 * under the terms and conditions of the GNU General Public License, 6 * version 2, as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope it will be useful, but WITHOUT 9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 11 * more details. 12 * 13 * The full GNU General Public License is included in this distribution in 14 * the file called "COPYING". 15 * 16 * Contact Information: 17 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> 18 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 19 */ 20 21 #include <linux/types.h> 22 #include <linux/module.h> 23 #include <net/ipv6.h> 24 #include <net/ip.h> 25 #include <net/tcp.h> 26 #include <linux/if_macvlan.h> 27 #include <linux/prefetch.h> 28 29 #include "fm10k.h" 30 31 #define DRV_VERSION "0.12.2-k" 32 const char fm10k_driver_version[] = DRV_VERSION; 33 char fm10k_driver_name[] = "fm10k"; 34 static const char fm10k_driver_string[] = 35 "Intel(R) Ethernet Switch Host Interface Driver"; 36 static const char fm10k_copyright[] = 37 "Copyright (c) 2013 Intel Corporation."; 38 39 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>"); 40 MODULE_DESCRIPTION("Intel(R) Ethernet Switch Host Interface Driver"); 41 MODULE_LICENSE("GPL"); 42 MODULE_VERSION(DRV_VERSION); 43 44 /** 45 * fm10k_init_module - Driver Registration Routine 46 * 47 * fm10k_init_module is the first routine called when the driver is 48 * loaded. All it does is register with the PCI subsystem. 49 **/ 50 static int __init fm10k_init_module(void) 51 { 52 pr_info("%s - version %s\n", fm10k_driver_string, fm10k_driver_version); 53 pr_info("%s\n", fm10k_copyright); 54 55 fm10k_dbg_init(); 56 57 return fm10k_register_pci_driver(); 58 } 59 module_init(fm10k_init_module); 60 61 /** 62 * fm10k_exit_module - Driver Exit Cleanup Routine 63 * 64 * fm10k_exit_module is called just before the driver is removed 65 * from memory. 66 **/ 67 static void __exit fm10k_exit_module(void) 68 { 69 fm10k_unregister_pci_driver(); 70 71 fm10k_dbg_exit(); 72 } 73 module_exit(fm10k_exit_module); 74 75 static bool fm10k_alloc_mapped_page(struct fm10k_ring *rx_ring, 76 struct fm10k_rx_buffer *bi) 77 { 78 struct page *page = bi->page; 79 dma_addr_t dma; 80 81 /* Only page will be NULL if buffer was consumed */ 82 if (likely(page)) 83 return true; 84 85 /* alloc new page for storage */ 86 page = alloc_page(GFP_ATOMIC | __GFP_COLD); 87 if (unlikely(!page)) { 88 rx_ring->rx_stats.alloc_failed++; 89 return false; 90 } 91 92 /* map page for use */ 93 dma = dma_map_page(rx_ring->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE); 94 95 /* if mapping failed free memory back to system since 96 * there isn't much point in holding memory we can't use 97 */ 98 if (dma_mapping_error(rx_ring->dev, dma)) { 99 __free_page(page); 100 bi->page = NULL; 101 102 rx_ring->rx_stats.alloc_failed++; 103 return false; 104 } 105 106 bi->dma = dma; 107 bi->page = page; 108 bi->page_offset = 0; 109 110 return true; 111 } 112 113 /** 114 * fm10k_alloc_rx_buffers - Replace used receive buffers 115 * @rx_ring: ring to place buffers on 116 * @cleaned_count: number of buffers to replace 117 **/ 118 void fm10k_alloc_rx_buffers(struct fm10k_ring *rx_ring, u16 cleaned_count) 119 { 120 union fm10k_rx_desc *rx_desc; 121 struct fm10k_rx_buffer *bi; 122 u16 i = rx_ring->next_to_use; 123 124 /* nothing to do */ 125 if (!cleaned_count) 126 return; 127 128 rx_desc = FM10K_RX_DESC(rx_ring, i); 129 bi = &rx_ring->rx_buffer[i]; 130 i -= rx_ring->count; 131 132 do { 133 if (!fm10k_alloc_mapped_page(rx_ring, bi)) 134 break; 135 136 /* Refresh the desc even if buffer_addrs didn't change 137 * because each write-back erases this info. 138 */ 139 rx_desc->q.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset); 140 141 rx_desc++; 142 bi++; 143 i++; 144 if (unlikely(!i)) { 145 rx_desc = FM10K_RX_DESC(rx_ring, 0); 146 bi = rx_ring->rx_buffer; 147 i -= rx_ring->count; 148 } 149 150 /* clear the hdr_addr for the next_to_use descriptor */ 151 rx_desc->q.hdr_addr = 0; 152 153 cleaned_count--; 154 } while (cleaned_count); 155 156 i += rx_ring->count; 157 158 if (rx_ring->next_to_use != i) { 159 /* record the next descriptor to use */ 160 rx_ring->next_to_use = i; 161 162 /* update next to alloc since we have filled the ring */ 163 rx_ring->next_to_alloc = i; 164 165 /* Force memory writes to complete before letting h/w 166 * know there are new descriptors to fetch. (Only 167 * applicable for weak-ordered memory model archs, 168 * such as IA-64). 169 */ 170 wmb(); 171 172 /* notify hardware of new descriptors */ 173 writel(i, rx_ring->tail); 174 } 175 } 176 177 /** 178 * fm10k_reuse_rx_page - page flip buffer and store it back on the ring 179 * @rx_ring: rx descriptor ring to store buffers on 180 * @old_buff: donor buffer to have page reused 181 * 182 * Synchronizes page for reuse by the interface 183 **/ 184 static void fm10k_reuse_rx_page(struct fm10k_ring *rx_ring, 185 struct fm10k_rx_buffer *old_buff) 186 { 187 struct fm10k_rx_buffer *new_buff; 188 u16 nta = rx_ring->next_to_alloc; 189 190 new_buff = &rx_ring->rx_buffer[nta]; 191 192 /* update, and store next to alloc */ 193 nta++; 194 rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0; 195 196 /* transfer page from old buffer to new buffer */ 197 memcpy(new_buff, old_buff, sizeof(struct fm10k_rx_buffer)); 198 199 /* sync the buffer for use by the device */ 200 dma_sync_single_range_for_device(rx_ring->dev, old_buff->dma, 201 old_buff->page_offset, 202 FM10K_RX_BUFSZ, 203 DMA_FROM_DEVICE); 204 } 205 206 static bool fm10k_can_reuse_rx_page(struct fm10k_rx_buffer *rx_buffer, 207 struct page *page, 208 unsigned int truesize) 209 { 210 /* avoid re-using remote pages */ 211 if (unlikely(page_to_nid(page) != numa_mem_id())) 212 return false; 213 214 #if (PAGE_SIZE < 8192) 215 /* if we are only owner of page we can reuse it */ 216 if (unlikely(page_count(page) != 1)) 217 return false; 218 219 /* flip page offset to other buffer */ 220 rx_buffer->page_offset ^= FM10K_RX_BUFSZ; 221 222 /* Even if we own the page, we are not allowed to use atomic_set() 223 * This would break get_page_unless_zero() users. 224 */ 225 atomic_inc(&page->_count); 226 #else 227 /* move offset up to the next cache line */ 228 rx_buffer->page_offset += truesize; 229 230 if (rx_buffer->page_offset > (PAGE_SIZE - FM10K_RX_BUFSZ)) 231 return false; 232 233 /* bump ref count on page before it is given to the stack */ 234 get_page(page); 235 #endif 236 237 return true; 238 } 239 240 /** 241 * fm10k_add_rx_frag - Add contents of Rx buffer to sk_buff 242 * @rx_ring: rx descriptor ring to transact packets on 243 * @rx_buffer: buffer containing page to add 244 * @rx_desc: descriptor containing length of buffer written by hardware 245 * @skb: sk_buff to place the data into 246 * 247 * This function will add the data contained in rx_buffer->page to the skb. 248 * This is done either through a direct copy if the data in the buffer is 249 * less than the skb header size, otherwise it will just attach the page as 250 * a frag to the skb. 251 * 252 * The function will then update the page offset if necessary and return 253 * true if the buffer can be reused by the interface. 254 **/ 255 static bool fm10k_add_rx_frag(struct fm10k_ring *rx_ring, 256 struct fm10k_rx_buffer *rx_buffer, 257 union fm10k_rx_desc *rx_desc, 258 struct sk_buff *skb) 259 { 260 struct page *page = rx_buffer->page; 261 unsigned int size = le16_to_cpu(rx_desc->w.length); 262 #if (PAGE_SIZE < 8192) 263 unsigned int truesize = FM10K_RX_BUFSZ; 264 #else 265 unsigned int truesize = ALIGN(size, L1_CACHE_BYTES); 266 #endif 267 268 if ((size <= FM10K_RX_HDR_LEN) && !skb_is_nonlinear(skb)) { 269 unsigned char *va = page_address(page) + rx_buffer->page_offset; 270 271 memcpy(__skb_put(skb, size), va, ALIGN(size, sizeof(long))); 272 273 /* we can reuse buffer as-is, just make sure it is local */ 274 if (likely(page_to_nid(page) == numa_mem_id())) 275 return true; 276 277 /* this page cannot be reused so discard it */ 278 put_page(page); 279 return false; 280 } 281 282 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page, 283 rx_buffer->page_offset, size, truesize); 284 285 return fm10k_can_reuse_rx_page(rx_buffer, page, truesize); 286 } 287 288 static struct sk_buff *fm10k_fetch_rx_buffer(struct fm10k_ring *rx_ring, 289 union fm10k_rx_desc *rx_desc, 290 struct sk_buff *skb) 291 { 292 struct fm10k_rx_buffer *rx_buffer; 293 struct page *page; 294 295 rx_buffer = &rx_ring->rx_buffer[rx_ring->next_to_clean]; 296 297 page = rx_buffer->page; 298 prefetchw(page); 299 300 if (likely(!skb)) { 301 void *page_addr = page_address(page) + 302 rx_buffer->page_offset; 303 304 /* prefetch first cache line of first page */ 305 prefetch(page_addr); 306 #if L1_CACHE_BYTES < 128 307 prefetch(page_addr + L1_CACHE_BYTES); 308 #endif 309 310 /* allocate a skb to store the frags */ 311 skb = netdev_alloc_skb_ip_align(rx_ring->netdev, 312 FM10K_RX_HDR_LEN); 313 if (unlikely(!skb)) { 314 rx_ring->rx_stats.alloc_failed++; 315 return NULL; 316 } 317 318 /* we will be copying header into skb->data in 319 * pskb_may_pull so it is in our interest to prefetch 320 * it now to avoid a possible cache miss 321 */ 322 prefetchw(skb->data); 323 } 324 325 /* we are reusing so sync this buffer for CPU use */ 326 dma_sync_single_range_for_cpu(rx_ring->dev, 327 rx_buffer->dma, 328 rx_buffer->page_offset, 329 FM10K_RX_BUFSZ, 330 DMA_FROM_DEVICE); 331 332 /* pull page into skb */ 333 if (fm10k_add_rx_frag(rx_ring, rx_buffer, rx_desc, skb)) { 334 /* hand second half of page back to the ring */ 335 fm10k_reuse_rx_page(rx_ring, rx_buffer); 336 } else { 337 /* we are not reusing the buffer so unmap it */ 338 dma_unmap_page(rx_ring->dev, rx_buffer->dma, 339 PAGE_SIZE, DMA_FROM_DEVICE); 340 } 341 342 /* clear contents of rx_buffer */ 343 rx_buffer->page = NULL; 344 345 return skb; 346 } 347 348 static inline void fm10k_rx_checksum(struct fm10k_ring *ring, 349 union fm10k_rx_desc *rx_desc, 350 struct sk_buff *skb) 351 { 352 skb_checksum_none_assert(skb); 353 354 /* Rx checksum disabled via ethtool */ 355 if (!(ring->netdev->features & NETIF_F_RXCSUM)) 356 return; 357 358 /* TCP/UDP checksum error bit is set */ 359 if (fm10k_test_staterr(rx_desc, 360 FM10K_RXD_STATUS_L4E | 361 FM10K_RXD_STATUS_L4E2 | 362 FM10K_RXD_STATUS_IPE | 363 FM10K_RXD_STATUS_IPE2)) { 364 ring->rx_stats.csum_err++; 365 return; 366 } 367 368 /* It must be a TCP or UDP packet with a valid checksum */ 369 if (fm10k_test_staterr(rx_desc, FM10K_RXD_STATUS_L4CS2)) 370 skb->encapsulation = true; 371 else if (!fm10k_test_staterr(rx_desc, FM10K_RXD_STATUS_L4CS)) 372 return; 373 374 skb->ip_summed = CHECKSUM_UNNECESSARY; 375 } 376 377 #define FM10K_RSS_L4_TYPES_MASK \ 378 ((1ul << FM10K_RSSTYPE_IPV4_TCP) | \ 379 (1ul << FM10K_RSSTYPE_IPV4_UDP) | \ 380 (1ul << FM10K_RSSTYPE_IPV6_TCP) | \ 381 (1ul << FM10K_RSSTYPE_IPV6_UDP)) 382 383 static inline void fm10k_rx_hash(struct fm10k_ring *ring, 384 union fm10k_rx_desc *rx_desc, 385 struct sk_buff *skb) 386 { 387 u16 rss_type; 388 389 if (!(ring->netdev->features & NETIF_F_RXHASH)) 390 return; 391 392 rss_type = le16_to_cpu(rx_desc->w.pkt_info) & FM10K_RXD_RSSTYPE_MASK; 393 if (!rss_type) 394 return; 395 396 skb_set_hash(skb, le32_to_cpu(rx_desc->d.rss), 397 (FM10K_RSS_L4_TYPES_MASK & (1ul << rss_type)) ? 398 PKT_HASH_TYPE_L4 : PKT_HASH_TYPE_L3); 399 } 400 401 static void fm10k_rx_hwtstamp(struct fm10k_ring *rx_ring, 402 union fm10k_rx_desc *rx_desc, 403 struct sk_buff *skb) 404 { 405 struct fm10k_intfc *interface = rx_ring->q_vector->interface; 406 407 FM10K_CB(skb)->tstamp = rx_desc->q.timestamp; 408 409 if (unlikely(interface->flags & FM10K_FLAG_RX_TS_ENABLED)) 410 fm10k_systime_to_hwtstamp(interface, skb_hwtstamps(skb), 411 le64_to_cpu(rx_desc->q.timestamp)); 412 } 413 414 static void fm10k_type_trans(struct fm10k_ring *rx_ring, 415 union fm10k_rx_desc *rx_desc, 416 struct sk_buff *skb) 417 { 418 struct net_device *dev = rx_ring->netdev; 419 struct fm10k_l2_accel *l2_accel = rcu_dereference_bh(rx_ring->l2_accel); 420 421 /* check to see if DGLORT belongs to a MACVLAN */ 422 if (l2_accel) { 423 u16 idx = le16_to_cpu(FM10K_CB(skb)->fi.w.dglort) - 1; 424 425 idx -= l2_accel->dglort; 426 if (idx < l2_accel->size && l2_accel->macvlan[idx]) 427 dev = l2_accel->macvlan[idx]; 428 else 429 l2_accel = NULL; 430 } 431 432 skb->protocol = eth_type_trans(skb, dev); 433 434 if (!l2_accel) 435 return; 436 437 /* update MACVLAN statistics */ 438 macvlan_count_rx(netdev_priv(dev), skb->len + ETH_HLEN, 1, 439 !!(rx_desc->w.hdr_info & 440 cpu_to_le16(FM10K_RXD_HDR_INFO_XC_MASK))); 441 } 442 443 /** 444 * fm10k_process_skb_fields - Populate skb header fields from Rx descriptor 445 * @rx_ring: rx descriptor ring packet is being transacted on 446 * @rx_desc: pointer to the EOP Rx descriptor 447 * @skb: pointer to current skb being populated 448 * 449 * This function checks the ring, descriptor, and packet information in 450 * order to populate the hash, checksum, VLAN, timestamp, protocol, and 451 * other fields within the skb. 452 **/ 453 static unsigned int fm10k_process_skb_fields(struct fm10k_ring *rx_ring, 454 union fm10k_rx_desc *rx_desc, 455 struct sk_buff *skb) 456 { 457 unsigned int len = skb->len; 458 459 fm10k_rx_hash(rx_ring, rx_desc, skb); 460 461 fm10k_rx_checksum(rx_ring, rx_desc, skb); 462 463 fm10k_rx_hwtstamp(rx_ring, rx_desc, skb); 464 465 FM10K_CB(skb)->fi.w.vlan = rx_desc->w.vlan; 466 467 skb_record_rx_queue(skb, rx_ring->queue_index); 468 469 FM10K_CB(skb)->fi.d.glort = rx_desc->d.glort; 470 471 if (rx_desc->w.vlan) { 472 u16 vid = le16_to_cpu(rx_desc->w.vlan); 473 474 if (vid != rx_ring->vid) 475 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid); 476 } 477 478 fm10k_type_trans(rx_ring, rx_desc, skb); 479 480 return len; 481 } 482 483 /** 484 * fm10k_is_non_eop - process handling of non-EOP buffers 485 * @rx_ring: Rx ring being processed 486 * @rx_desc: Rx descriptor for current buffer 487 * 488 * This function updates next to clean. If the buffer is an EOP buffer 489 * this function exits returning false, otherwise it will place the 490 * sk_buff in the next buffer to be chained and return true indicating 491 * that this is in fact a non-EOP buffer. 492 **/ 493 static bool fm10k_is_non_eop(struct fm10k_ring *rx_ring, 494 union fm10k_rx_desc *rx_desc) 495 { 496 u32 ntc = rx_ring->next_to_clean + 1; 497 498 /* fetch, update, and store next to clean */ 499 ntc = (ntc < rx_ring->count) ? ntc : 0; 500 rx_ring->next_to_clean = ntc; 501 502 prefetch(FM10K_RX_DESC(rx_ring, ntc)); 503 504 if (likely(fm10k_test_staterr(rx_desc, FM10K_RXD_STATUS_EOP))) 505 return false; 506 507 return true; 508 } 509 510 /** 511 * fm10k_pull_tail - fm10k specific version of skb_pull_tail 512 * @rx_ring: rx descriptor ring packet is being transacted on 513 * @rx_desc: pointer to the EOP Rx descriptor 514 * @skb: pointer to current skb being adjusted 515 * 516 * This function is an fm10k specific version of __pskb_pull_tail. The 517 * main difference between this version and the original function is that 518 * this function can make several assumptions about the state of things 519 * that allow for significant optimizations versus the standard function. 520 * As a result we can do things like drop a frag and maintain an accurate 521 * truesize for the skb. 522 */ 523 static void fm10k_pull_tail(struct fm10k_ring *rx_ring, 524 union fm10k_rx_desc *rx_desc, 525 struct sk_buff *skb) 526 { 527 struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[0]; 528 unsigned char *va; 529 unsigned int pull_len; 530 531 /* it is valid to use page_address instead of kmap since we are 532 * working with pages allocated out of the lomem pool per 533 * alloc_page(GFP_ATOMIC) 534 */ 535 va = skb_frag_address(frag); 536 537 /* we need the header to contain the greater of either ETH_HLEN or 538 * 60 bytes if the skb->len is less than 60 for skb_pad. 539 */ 540 pull_len = eth_get_headlen(va, FM10K_RX_HDR_LEN); 541 542 /* align pull length to size of long to optimize memcpy performance */ 543 skb_copy_to_linear_data(skb, va, ALIGN(pull_len, sizeof(long))); 544 545 /* update all of the pointers */ 546 skb_frag_size_sub(frag, pull_len); 547 frag->page_offset += pull_len; 548 skb->data_len -= pull_len; 549 skb->tail += pull_len; 550 } 551 552 /** 553 * fm10k_cleanup_headers - Correct corrupted or empty headers 554 * @rx_ring: rx descriptor ring packet is being transacted on 555 * @rx_desc: pointer to the EOP Rx descriptor 556 * @skb: pointer to current skb being fixed 557 * 558 * Address the case where we are pulling data in on pages only 559 * and as such no data is present in the skb header. 560 * 561 * In addition if skb is not at least 60 bytes we need to pad it so that 562 * it is large enough to qualify as a valid Ethernet frame. 563 * 564 * Returns true if an error was encountered and skb was freed. 565 **/ 566 static bool fm10k_cleanup_headers(struct fm10k_ring *rx_ring, 567 union fm10k_rx_desc *rx_desc, 568 struct sk_buff *skb) 569 { 570 if (unlikely((fm10k_test_staterr(rx_desc, 571 FM10K_RXD_STATUS_RXE)))) { 572 dev_kfree_skb_any(skb); 573 rx_ring->rx_stats.errors++; 574 return true; 575 } 576 577 /* place header in linear portion of buffer */ 578 if (skb_is_nonlinear(skb)) 579 fm10k_pull_tail(rx_ring, rx_desc, skb); 580 581 /* if skb_pad returns an error the skb was freed */ 582 if (unlikely(skb->len < 60)) { 583 int pad_len = 60 - skb->len; 584 585 if (skb_pad(skb, pad_len)) 586 return true; 587 __skb_put(skb, pad_len); 588 } 589 590 return false; 591 } 592 593 /** 594 * fm10k_receive_skb - helper function to handle rx indications 595 * @q_vector: structure containing interrupt and ring information 596 * @skb: packet to send up 597 **/ 598 static void fm10k_receive_skb(struct fm10k_q_vector *q_vector, 599 struct sk_buff *skb) 600 { 601 napi_gro_receive(&q_vector->napi, skb); 602 } 603 604 static bool fm10k_clean_rx_irq(struct fm10k_q_vector *q_vector, 605 struct fm10k_ring *rx_ring, 606 int budget) 607 { 608 struct sk_buff *skb = rx_ring->skb; 609 unsigned int total_bytes = 0, total_packets = 0; 610 u16 cleaned_count = fm10k_desc_unused(rx_ring); 611 612 do { 613 union fm10k_rx_desc *rx_desc; 614 615 /* return some buffers to hardware, one at a time is too slow */ 616 if (cleaned_count >= FM10K_RX_BUFFER_WRITE) { 617 fm10k_alloc_rx_buffers(rx_ring, cleaned_count); 618 cleaned_count = 0; 619 } 620 621 rx_desc = FM10K_RX_DESC(rx_ring, rx_ring->next_to_clean); 622 623 if (!fm10k_test_staterr(rx_desc, FM10K_RXD_STATUS_DD)) 624 break; 625 626 /* This memory barrier is needed to keep us from reading 627 * any other fields out of the rx_desc until we know the 628 * RXD_STATUS_DD bit is set 629 */ 630 rmb(); 631 632 /* retrieve a buffer from the ring */ 633 skb = fm10k_fetch_rx_buffer(rx_ring, rx_desc, skb); 634 635 /* exit if we failed to retrieve a buffer */ 636 if (!skb) 637 break; 638 639 cleaned_count++; 640 641 /* fetch next buffer in frame if non-eop */ 642 if (fm10k_is_non_eop(rx_ring, rx_desc)) 643 continue; 644 645 /* verify the packet layout is correct */ 646 if (fm10k_cleanup_headers(rx_ring, rx_desc, skb)) { 647 skb = NULL; 648 continue; 649 } 650 651 /* populate checksum, timestamp, VLAN, and protocol */ 652 total_bytes += fm10k_process_skb_fields(rx_ring, rx_desc, skb); 653 654 fm10k_receive_skb(q_vector, skb); 655 656 /* reset skb pointer */ 657 skb = NULL; 658 659 /* update budget accounting */ 660 total_packets++; 661 } while (likely(total_packets < budget)); 662 663 /* place incomplete frames back on ring for completion */ 664 rx_ring->skb = skb; 665 666 u64_stats_update_begin(&rx_ring->syncp); 667 rx_ring->stats.packets += total_packets; 668 rx_ring->stats.bytes += total_bytes; 669 u64_stats_update_end(&rx_ring->syncp); 670 q_vector->rx.total_packets += total_packets; 671 q_vector->rx.total_bytes += total_bytes; 672 673 return total_packets < budget; 674 } 675 676 #define VXLAN_HLEN (sizeof(struct udphdr) + 8) 677 static struct ethhdr *fm10k_port_is_vxlan(struct sk_buff *skb) 678 { 679 struct fm10k_intfc *interface = netdev_priv(skb->dev); 680 struct fm10k_vxlan_port *vxlan_port; 681 682 /* we can only offload a vxlan if we recognize it as such */ 683 vxlan_port = list_first_entry_or_null(&interface->vxlan_port, 684 struct fm10k_vxlan_port, list); 685 686 if (!vxlan_port) 687 return NULL; 688 if (vxlan_port->port != udp_hdr(skb)->dest) 689 return NULL; 690 691 /* return offset of udp_hdr plus 8 bytes for VXLAN header */ 692 return (struct ethhdr *)(skb_transport_header(skb) + VXLAN_HLEN); 693 } 694 695 #define FM10K_NVGRE_RESERVED0_FLAGS htons(0x9FFF) 696 #define NVGRE_TNI htons(0x2000) 697 struct fm10k_nvgre_hdr { 698 __be16 flags; 699 __be16 proto; 700 __be32 tni; 701 }; 702 703 static struct ethhdr *fm10k_gre_is_nvgre(struct sk_buff *skb) 704 { 705 struct fm10k_nvgre_hdr *nvgre_hdr; 706 int hlen = ip_hdrlen(skb); 707 708 /* currently only IPv4 is supported due to hlen above */ 709 if (vlan_get_protocol(skb) != htons(ETH_P_IP)) 710 return NULL; 711 712 /* our transport header should be NVGRE */ 713 nvgre_hdr = (struct fm10k_nvgre_hdr *)(skb_network_header(skb) + hlen); 714 715 /* verify all reserved flags are 0 */ 716 if (nvgre_hdr->flags & FM10K_NVGRE_RESERVED0_FLAGS) 717 return NULL; 718 719 /* verify protocol is transparent Ethernet bridging */ 720 if (nvgre_hdr->proto != htons(ETH_P_TEB)) 721 return NULL; 722 723 /* report start of ethernet header */ 724 if (nvgre_hdr->flags & NVGRE_TNI) 725 return (struct ethhdr *)(nvgre_hdr + 1); 726 727 return (struct ethhdr *)(&nvgre_hdr->tni); 728 } 729 730 static __be16 fm10k_tx_encap_offload(struct sk_buff *skb) 731 { 732 struct ethhdr *eth_hdr; 733 u8 l4_hdr = 0; 734 735 switch (vlan_get_protocol(skb)) { 736 case htons(ETH_P_IP): 737 l4_hdr = ip_hdr(skb)->protocol; 738 break; 739 case htons(ETH_P_IPV6): 740 l4_hdr = ipv6_hdr(skb)->nexthdr; 741 break; 742 default: 743 return 0; 744 } 745 746 switch (l4_hdr) { 747 case IPPROTO_UDP: 748 eth_hdr = fm10k_port_is_vxlan(skb); 749 break; 750 case IPPROTO_GRE: 751 eth_hdr = fm10k_gre_is_nvgre(skb); 752 break; 753 default: 754 return 0; 755 } 756 757 if (!eth_hdr) 758 return 0; 759 760 switch (eth_hdr->h_proto) { 761 case htons(ETH_P_IP): 762 case htons(ETH_P_IPV6): 763 break; 764 default: 765 return 0; 766 } 767 768 return eth_hdr->h_proto; 769 } 770 771 static int fm10k_tso(struct fm10k_ring *tx_ring, 772 struct fm10k_tx_buffer *first) 773 { 774 struct sk_buff *skb = first->skb; 775 struct fm10k_tx_desc *tx_desc; 776 unsigned char *th; 777 u8 hdrlen; 778 779 if (skb->ip_summed != CHECKSUM_PARTIAL) 780 return 0; 781 782 if (!skb_is_gso(skb)) 783 return 0; 784 785 /* compute header lengths */ 786 if (skb->encapsulation) { 787 if (!fm10k_tx_encap_offload(skb)) 788 goto err_vxlan; 789 th = skb_inner_transport_header(skb); 790 } else { 791 th = skb_transport_header(skb); 792 } 793 794 /* compute offset from SOF to transport header and add header len */ 795 hdrlen = (th - skb->data) + (((struct tcphdr *)th)->doff << 2); 796 797 first->tx_flags |= FM10K_TX_FLAGS_CSUM; 798 799 /* update gso size and bytecount with header size */ 800 first->gso_segs = skb_shinfo(skb)->gso_segs; 801 first->bytecount += (first->gso_segs - 1) * hdrlen; 802 803 /* populate Tx descriptor header size and mss */ 804 tx_desc = FM10K_TX_DESC(tx_ring, tx_ring->next_to_use); 805 tx_desc->hdrlen = hdrlen; 806 tx_desc->mss = cpu_to_le16(skb_shinfo(skb)->gso_size); 807 808 return 1; 809 err_vxlan: 810 tx_ring->netdev->features &= ~NETIF_F_GSO_UDP_TUNNEL; 811 if (!net_ratelimit()) 812 netdev_err(tx_ring->netdev, 813 "TSO requested for unsupported tunnel, disabling offload\n"); 814 return -1; 815 } 816 817 static void fm10k_tx_csum(struct fm10k_ring *tx_ring, 818 struct fm10k_tx_buffer *first) 819 { 820 struct sk_buff *skb = first->skb; 821 struct fm10k_tx_desc *tx_desc; 822 union { 823 struct iphdr *ipv4; 824 struct ipv6hdr *ipv6; 825 u8 *raw; 826 } network_hdr; 827 __be16 protocol; 828 u8 l4_hdr = 0; 829 830 if (skb->ip_summed != CHECKSUM_PARTIAL) 831 goto no_csum; 832 833 if (skb->encapsulation) { 834 protocol = fm10k_tx_encap_offload(skb); 835 if (!protocol) { 836 if (skb_checksum_help(skb)) { 837 dev_warn(tx_ring->dev, 838 "failed to offload encap csum!\n"); 839 tx_ring->tx_stats.csum_err++; 840 } 841 goto no_csum; 842 } 843 network_hdr.raw = skb_inner_network_header(skb); 844 } else { 845 protocol = vlan_get_protocol(skb); 846 network_hdr.raw = skb_network_header(skb); 847 } 848 849 switch (protocol) { 850 case htons(ETH_P_IP): 851 l4_hdr = network_hdr.ipv4->protocol; 852 break; 853 case htons(ETH_P_IPV6): 854 l4_hdr = network_hdr.ipv6->nexthdr; 855 break; 856 default: 857 if (unlikely(net_ratelimit())) { 858 dev_warn(tx_ring->dev, 859 "partial checksum but ip version=%x!\n", 860 protocol); 861 } 862 tx_ring->tx_stats.csum_err++; 863 goto no_csum; 864 } 865 866 switch (l4_hdr) { 867 case IPPROTO_TCP: 868 case IPPROTO_UDP: 869 break; 870 case IPPROTO_GRE: 871 if (skb->encapsulation) 872 break; 873 default: 874 if (unlikely(net_ratelimit())) { 875 dev_warn(tx_ring->dev, 876 "partial checksum but l4 proto=%x!\n", 877 l4_hdr); 878 } 879 tx_ring->tx_stats.csum_err++; 880 goto no_csum; 881 } 882 883 /* update TX checksum flag */ 884 first->tx_flags |= FM10K_TX_FLAGS_CSUM; 885 886 no_csum: 887 /* populate Tx descriptor header size and mss */ 888 tx_desc = FM10K_TX_DESC(tx_ring, tx_ring->next_to_use); 889 tx_desc->hdrlen = 0; 890 tx_desc->mss = 0; 891 } 892 893 #define FM10K_SET_FLAG(_input, _flag, _result) \ 894 ((_flag <= _result) ? \ 895 ((u32)(_input & _flag) * (_result / _flag)) : \ 896 ((u32)(_input & _flag) / (_flag / _result))) 897 898 static u8 fm10k_tx_desc_flags(struct sk_buff *skb, u32 tx_flags) 899 { 900 /* set type for advanced descriptor with frame checksum insertion */ 901 u32 desc_flags = 0; 902 903 /* set timestamping bits */ 904 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && 905 likely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) 906 desc_flags |= FM10K_TXD_FLAG_TIME; 907 908 /* set checksum offload bits */ 909 desc_flags |= FM10K_SET_FLAG(tx_flags, FM10K_TX_FLAGS_CSUM, 910 FM10K_TXD_FLAG_CSUM); 911 912 return desc_flags; 913 } 914 915 static bool fm10k_tx_desc_push(struct fm10k_ring *tx_ring, 916 struct fm10k_tx_desc *tx_desc, u16 i, 917 dma_addr_t dma, unsigned int size, u8 desc_flags) 918 { 919 /* set RS and INT for last frame in a cache line */ 920 if ((++i & (FM10K_TXD_WB_FIFO_SIZE - 1)) == 0) 921 desc_flags |= FM10K_TXD_FLAG_RS | FM10K_TXD_FLAG_INT; 922 923 /* record values to descriptor */ 924 tx_desc->buffer_addr = cpu_to_le64(dma); 925 tx_desc->flags = desc_flags; 926 tx_desc->buflen = cpu_to_le16(size); 927 928 /* return true if we just wrapped the ring */ 929 return i == tx_ring->count; 930 } 931 932 static int __fm10k_maybe_stop_tx(struct fm10k_ring *tx_ring, u16 size) 933 { 934 netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index); 935 936 smp_mb(); 937 938 /* We need to check again in a case another CPU has just 939 * made room available. */ 940 if (likely(fm10k_desc_unused(tx_ring) < size)) 941 return -EBUSY; 942 943 /* A reprieve! - use start_queue because it doesn't call schedule */ 944 netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index); 945 ++tx_ring->tx_stats.restart_queue; 946 return 0; 947 } 948 949 static inline int fm10k_maybe_stop_tx(struct fm10k_ring *tx_ring, u16 size) 950 { 951 if (likely(fm10k_desc_unused(tx_ring) >= size)) 952 return 0; 953 return __fm10k_maybe_stop_tx(tx_ring, size); 954 } 955 956 static void fm10k_tx_map(struct fm10k_ring *tx_ring, 957 struct fm10k_tx_buffer *first) 958 { 959 struct sk_buff *skb = first->skb; 960 struct fm10k_tx_buffer *tx_buffer; 961 struct fm10k_tx_desc *tx_desc; 962 struct skb_frag_struct *frag; 963 unsigned char *data; 964 dma_addr_t dma; 965 unsigned int data_len, size; 966 u32 tx_flags = first->tx_flags; 967 u16 i = tx_ring->next_to_use; 968 u8 flags = fm10k_tx_desc_flags(skb, tx_flags); 969 970 tx_desc = FM10K_TX_DESC(tx_ring, i); 971 972 /* add HW VLAN tag */ 973 if (vlan_tx_tag_present(skb)) 974 tx_desc->vlan = cpu_to_le16(vlan_tx_tag_get(skb)); 975 else 976 tx_desc->vlan = 0; 977 978 size = skb_headlen(skb); 979 data = skb->data; 980 981 dma = dma_map_single(tx_ring->dev, data, size, DMA_TO_DEVICE); 982 983 data_len = skb->data_len; 984 tx_buffer = first; 985 986 for (frag = &skb_shinfo(skb)->frags[0];; frag++) { 987 if (dma_mapping_error(tx_ring->dev, dma)) 988 goto dma_error; 989 990 /* record length, and DMA address */ 991 dma_unmap_len_set(tx_buffer, len, size); 992 dma_unmap_addr_set(tx_buffer, dma, dma); 993 994 while (unlikely(size > FM10K_MAX_DATA_PER_TXD)) { 995 if (fm10k_tx_desc_push(tx_ring, tx_desc++, i++, dma, 996 FM10K_MAX_DATA_PER_TXD, flags)) { 997 tx_desc = FM10K_TX_DESC(tx_ring, 0); 998 i = 0; 999 } 1000 1001 dma += FM10K_MAX_DATA_PER_TXD; 1002 size -= FM10K_MAX_DATA_PER_TXD; 1003 } 1004 1005 if (likely(!data_len)) 1006 break; 1007 1008 if (fm10k_tx_desc_push(tx_ring, tx_desc++, i++, 1009 dma, size, flags)) { 1010 tx_desc = FM10K_TX_DESC(tx_ring, 0); 1011 i = 0; 1012 } 1013 1014 size = skb_frag_size(frag); 1015 data_len -= size; 1016 1017 dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size, 1018 DMA_TO_DEVICE); 1019 1020 tx_buffer = &tx_ring->tx_buffer[i]; 1021 } 1022 1023 /* write last descriptor with LAST bit set */ 1024 flags |= FM10K_TXD_FLAG_LAST; 1025 1026 if (fm10k_tx_desc_push(tx_ring, tx_desc, i++, dma, size, flags)) 1027 i = 0; 1028 1029 /* record bytecount for BQL */ 1030 netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount); 1031 1032 /* record SW timestamp if HW timestamp is not available */ 1033 skb_tx_timestamp(first->skb); 1034 1035 /* Force memory writes to complete before letting h/w know there 1036 * are new descriptors to fetch. (Only applicable for weak-ordered 1037 * memory model archs, such as IA-64). 1038 * 1039 * We also need this memory barrier to make certain all of the 1040 * status bits have been updated before next_to_watch is written. 1041 */ 1042 wmb(); 1043 1044 /* set next_to_watch value indicating a packet is present */ 1045 first->next_to_watch = tx_desc; 1046 1047 tx_ring->next_to_use = i; 1048 1049 /* Make sure there is space in the ring for the next send. */ 1050 fm10k_maybe_stop_tx(tx_ring, DESC_NEEDED); 1051 1052 /* notify HW of packet */ 1053 if (netif_xmit_stopped(txring_txq(tx_ring)) || !skb->xmit_more) { 1054 writel(i, tx_ring->tail); 1055 1056 /* we need this if more than one processor can write to our tail 1057 * at a time, it synchronizes IO on IA64/Altix systems 1058 */ 1059 mmiowb(); 1060 } 1061 1062 return; 1063 dma_error: 1064 dev_err(tx_ring->dev, "TX DMA map failed\n"); 1065 1066 /* clear dma mappings for failed tx_buffer map */ 1067 for (;;) { 1068 tx_buffer = &tx_ring->tx_buffer[i]; 1069 fm10k_unmap_and_free_tx_resource(tx_ring, tx_buffer); 1070 if (tx_buffer == first) 1071 break; 1072 if (i == 0) 1073 i = tx_ring->count; 1074 i--; 1075 } 1076 1077 tx_ring->next_to_use = i; 1078 } 1079 1080 netdev_tx_t fm10k_xmit_frame_ring(struct sk_buff *skb, 1081 struct fm10k_ring *tx_ring) 1082 { 1083 struct fm10k_tx_buffer *first; 1084 int tso; 1085 u32 tx_flags = 0; 1086 #if PAGE_SIZE > FM10K_MAX_DATA_PER_TXD 1087 unsigned short f; 1088 #endif 1089 u16 count = TXD_USE_COUNT(skb_headlen(skb)); 1090 1091 /* need: 1 descriptor per page * PAGE_SIZE/FM10K_MAX_DATA_PER_TXD, 1092 * + 1 desc for skb_headlen/FM10K_MAX_DATA_PER_TXD, 1093 * + 2 desc gap to keep tail from touching head 1094 * otherwise try next time 1095 */ 1096 #if PAGE_SIZE > FM10K_MAX_DATA_PER_TXD 1097 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) 1098 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size); 1099 #else 1100 count += skb_shinfo(skb)->nr_frags; 1101 #endif 1102 if (fm10k_maybe_stop_tx(tx_ring, count + 3)) { 1103 tx_ring->tx_stats.tx_busy++; 1104 return NETDEV_TX_BUSY; 1105 } 1106 1107 /* record the location of the first descriptor for this packet */ 1108 first = &tx_ring->tx_buffer[tx_ring->next_to_use]; 1109 first->skb = skb; 1110 first->bytecount = max_t(unsigned int, skb->len, ETH_ZLEN); 1111 first->gso_segs = 1; 1112 1113 /* record initial flags and protocol */ 1114 first->tx_flags = tx_flags; 1115 1116 tso = fm10k_tso(tx_ring, first); 1117 if (tso < 0) 1118 goto out_drop; 1119 else if (!tso) 1120 fm10k_tx_csum(tx_ring, first); 1121 1122 fm10k_tx_map(tx_ring, first); 1123 1124 return NETDEV_TX_OK; 1125 1126 out_drop: 1127 dev_kfree_skb_any(first->skb); 1128 first->skb = NULL; 1129 1130 return NETDEV_TX_OK; 1131 } 1132 1133 static u64 fm10k_get_tx_completed(struct fm10k_ring *ring) 1134 { 1135 return ring->stats.packets; 1136 } 1137 1138 static u64 fm10k_get_tx_pending(struct fm10k_ring *ring) 1139 { 1140 /* use SW head and tail until we have real hardware */ 1141 u32 head = ring->next_to_clean; 1142 u32 tail = ring->next_to_use; 1143 1144 return ((head <= tail) ? tail : tail + ring->count) - head; 1145 } 1146 1147 bool fm10k_check_tx_hang(struct fm10k_ring *tx_ring) 1148 { 1149 u32 tx_done = fm10k_get_tx_completed(tx_ring); 1150 u32 tx_done_old = tx_ring->tx_stats.tx_done_old; 1151 u32 tx_pending = fm10k_get_tx_pending(tx_ring); 1152 1153 clear_check_for_tx_hang(tx_ring); 1154 1155 /* Check for a hung queue, but be thorough. This verifies 1156 * that a transmit has been completed since the previous 1157 * check AND there is at least one packet pending. By 1158 * requiring this to fail twice we avoid races with 1159 * clearing the ARMED bit and conditions where we 1160 * run the check_tx_hang logic with a transmit completion 1161 * pending but without time to complete it yet. 1162 */ 1163 if (!tx_pending || (tx_done_old != tx_done)) { 1164 /* update completed stats and continue */ 1165 tx_ring->tx_stats.tx_done_old = tx_done; 1166 /* reset the countdown */ 1167 clear_bit(__FM10K_HANG_CHECK_ARMED, &tx_ring->state); 1168 1169 return false; 1170 } 1171 1172 /* make sure it is true for two checks in a row */ 1173 return test_and_set_bit(__FM10K_HANG_CHECK_ARMED, &tx_ring->state); 1174 } 1175 1176 /** 1177 * fm10k_tx_timeout_reset - initiate reset due to Tx timeout 1178 * @interface: driver private struct 1179 **/ 1180 void fm10k_tx_timeout_reset(struct fm10k_intfc *interface) 1181 { 1182 /* Do the reset outside of interrupt context */ 1183 if (!test_bit(__FM10K_DOWN, &interface->state)) { 1184 netdev_err(interface->netdev, "Reset interface\n"); 1185 interface->tx_timeout_count++; 1186 interface->flags |= FM10K_FLAG_RESET_REQUESTED; 1187 fm10k_service_event_schedule(interface); 1188 } 1189 } 1190 1191 /** 1192 * fm10k_clean_tx_irq - Reclaim resources after transmit completes 1193 * @q_vector: structure containing interrupt and ring information 1194 * @tx_ring: tx ring to clean 1195 **/ 1196 static bool fm10k_clean_tx_irq(struct fm10k_q_vector *q_vector, 1197 struct fm10k_ring *tx_ring) 1198 { 1199 struct fm10k_intfc *interface = q_vector->interface; 1200 struct fm10k_tx_buffer *tx_buffer; 1201 struct fm10k_tx_desc *tx_desc; 1202 unsigned int total_bytes = 0, total_packets = 0; 1203 unsigned int budget = q_vector->tx.work_limit; 1204 unsigned int i = tx_ring->next_to_clean; 1205 1206 if (test_bit(__FM10K_DOWN, &interface->state)) 1207 return true; 1208 1209 tx_buffer = &tx_ring->tx_buffer[i]; 1210 tx_desc = FM10K_TX_DESC(tx_ring, i); 1211 i -= tx_ring->count; 1212 1213 do { 1214 struct fm10k_tx_desc *eop_desc = tx_buffer->next_to_watch; 1215 1216 /* if next_to_watch is not set then there is no work pending */ 1217 if (!eop_desc) 1218 break; 1219 1220 /* prevent any other reads prior to eop_desc */ 1221 read_barrier_depends(); 1222 1223 /* if DD is not set pending work has not been completed */ 1224 if (!(eop_desc->flags & FM10K_TXD_FLAG_DONE)) 1225 break; 1226 1227 /* clear next_to_watch to prevent false hangs */ 1228 tx_buffer->next_to_watch = NULL; 1229 1230 /* update the statistics for this packet */ 1231 total_bytes += tx_buffer->bytecount; 1232 total_packets += tx_buffer->gso_segs; 1233 1234 /* free the skb */ 1235 dev_consume_skb_any(tx_buffer->skb); 1236 1237 /* unmap skb header data */ 1238 dma_unmap_single(tx_ring->dev, 1239 dma_unmap_addr(tx_buffer, dma), 1240 dma_unmap_len(tx_buffer, len), 1241 DMA_TO_DEVICE); 1242 1243 /* clear tx_buffer data */ 1244 tx_buffer->skb = NULL; 1245 dma_unmap_len_set(tx_buffer, len, 0); 1246 1247 /* unmap remaining buffers */ 1248 while (tx_desc != eop_desc) { 1249 tx_buffer++; 1250 tx_desc++; 1251 i++; 1252 if (unlikely(!i)) { 1253 i -= tx_ring->count; 1254 tx_buffer = tx_ring->tx_buffer; 1255 tx_desc = FM10K_TX_DESC(tx_ring, 0); 1256 } 1257 1258 /* unmap any remaining paged data */ 1259 if (dma_unmap_len(tx_buffer, len)) { 1260 dma_unmap_page(tx_ring->dev, 1261 dma_unmap_addr(tx_buffer, dma), 1262 dma_unmap_len(tx_buffer, len), 1263 DMA_TO_DEVICE); 1264 dma_unmap_len_set(tx_buffer, len, 0); 1265 } 1266 } 1267 1268 /* move us one more past the eop_desc for start of next pkt */ 1269 tx_buffer++; 1270 tx_desc++; 1271 i++; 1272 if (unlikely(!i)) { 1273 i -= tx_ring->count; 1274 tx_buffer = tx_ring->tx_buffer; 1275 tx_desc = FM10K_TX_DESC(tx_ring, 0); 1276 } 1277 1278 /* issue prefetch for next Tx descriptor */ 1279 prefetch(tx_desc); 1280 1281 /* update budget accounting */ 1282 budget--; 1283 } while (likely(budget)); 1284 1285 i += tx_ring->count; 1286 tx_ring->next_to_clean = i; 1287 u64_stats_update_begin(&tx_ring->syncp); 1288 tx_ring->stats.bytes += total_bytes; 1289 tx_ring->stats.packets += total_packets; 1290 u64_stats_update_end(&tx_ring->syncp); 1291 q_vector->tx.total_bytes += total_bytes; 1292 q_vector->tx.total_packets += total_packets; 1293 1294 if (check_for_tx_hang(tx_ring) && fm10k_check_tx_hang(tx_ring)) { 1295 /* schedule immediate reset if we believe we hung */ 1296 struct fm10k_hw *hw = &interface->hw; 1297 1298 netif_err(interface, drv, tx_ring->netdev, 1299 "Detected Tx Unit Hang\n" 1300 " Tx Queue <%d>\n" 1301 " TDH, TDT <%x>, <%x>\n" 1302 " next_to_use <%x>\n" 1303 " next_to_clean <%x>\n", 1304 tx_ring->queue_index, 1305 fm10k_read_reg(hw, FM10K_TDH(tx_ring->reg_idx)), 1306 fm10k_read_reg(hw, FM10K_TDT(tx_ring->reg_idx)), 1307 tx_ring->next_to_use, i); 1308 1309 netif_stop_subqueue(tx_ring->netdev, 1310 tx_ring->queue_index); 1311 1312 netif_info(interface, probe, tx_ring->netdev, 1313 "tx hang %d detected on queue %d, resetting interface\n", 1314 interface->tx_timeout_count + 1, 1315 tx_ring->queue_index); 1316 1317 fm10k_tx_timeout_reset(interface); 1318 1319 /* the netdev is about to reset, no point in enabling stuff */ 1320 return true; 1321 } 1322 1323 /* notify netdev of completed buffers */ 1324 netdev_tx_completed_queue(txring_txq(tx_ring), 1325 total_packets, total_bytes); 1326 1327 #define TX_WAKE_THRESHOLD min_t(u16, FM10K_MIN_TXD - 1, DESC_NEEDED * 2) 1328 if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) && 1329 (fm10k_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD))) { 1330 /* Make sure that anybody stopping the queue after this 1331 * sees the new next_to_clean. 1332 */ 1333 smp_mb(); 1334 if (__netif_subqueue_stopped(tx_ring->netdev, 1335 tx_ring->queue_index) && 1336 !test_bit(__FM10K_DOWN, &interface->state)) { 1337 netif_wake_subqueue(tx_ring->netdev, 1338 tx_ring->queue_index); 1339 ++tx_ring->tx_stats.restart_queue; 1340 } 1341 } 1342 1343 return !!budget; 1344 } 1345 1346 /** 1347 * fm10k_update_itr - update the dynamic ITR value based on packet size 1348 * 1349 * Stores a new ITR value based on strictly on packet size. The 1350 * divisors and thresholds used by this function were determined based 1351 * on theoretical maximum wire speed and testing data, in order to 1352 * minimize response time while increasing bulk throughput. 1353 * 1354 * @ring_container: Container for rings to have ITR updated 1355 **/ 1356 static void fm10k_update_itr(struct fm10k_ring_container *ring_container) 1357 { 1358 unsigned int avg_wire_size, packets; 1359 1360 /* Only update ITR if we are using adaptive setting */ 1361 if (!(ring_container->itr & FM10K_ITR_ADAPTIVE)) 1362 goto clear_counts; 1363 1364 packets = ring_container->total_packets; 1365 if (!packets) 1366 goto clear_counts; 1367 1368 avg_wire_size = ring_container->total_bytes / packets; 1369 1370 /* Add 24 bytes to size to account for CRC, preamble, and gap */ 1371 avg_wire_size += 24; 1372 1373 /* Don't starve jumbo frames */ 1374 if (avg_wire_size > 3000) 1375 avg_wire_size = 3000; 1376 1377 /* Give a little boost to mid-size frames */ 1378 if ((avg_wire_size > 300) && (avg_wire_size < 1200)) 1379 avg_wire_size /= 3; 1380 else 1381 avg_wire_size /= 2; 1382 1383 /* write back value and retain adaptive flag */ 1384 ring_container->itr = avg_wire_size | FM10K_ITR_ADAPTIVE; 1385 1386 clear_counts: 1387 ring_container->total_bytes = 0; 1388 ring_container->total_packets = 0; 1389 } 1390 1391 static void fm10k_qv_enable(struct fm10k_q_vector *q_vector) 1392 { 1393 /* Enable auto-mask and clear the current mask */ 1394 u32 itr = FM10K_ITR_ENABLE; 1395 1396 /* Update Tx ITR */ 1397 fm10k_update_itr(&q_vector->tx); 1398 1399 /* Update Rx ITR */ 1400 fm10k_update_itr(&q_vector->rx); 1401 1402 /* Store Tx itr in timer slot 0 */ 1403 itr |= (q_vector->tx.itr & FM10K_ITR_MAX); 1404 1405 /* Shift Rx itr to timer slot 1 */ 1406 itr |= (q_vector->rx.itr & FM10K_ITR_MAX) << FM10K_ITR_INTERVAL1_SHIFT; 1407 1408 /* Write the final value to the ITR register */ 1409 writel(itr, q_vector->itr); 1410 } 1411 1412 static int fm10k_poll(struct napi_struct *napi, int budget) 1413 { 1414 struct fm10k_q_vector *q_vector = 1415 container_of(napi, struct fm10k_q_vector, napi); 1416 struct fm10k_ring *ring; 1417 int per_ring_budget; 1418 bool clean_complete = true; 1419 1420 fm10k_for_each_ring(ring, q_vector->tx) 1421 clean_complete &= fm10k_clean_tx_irq(q_vector, ring); 1422 1423 /* attempt to distribute budget to each queue fairly, but don't 1424 * allow the budget to go below 1 because we'll exit polling 1425 */ 1426 if (q_vector->rx.count > 1) 1427 per_ring_budget = max(budget/q_vector->rx.count, 1); 1428 else 1429 per_ring_budget = budget; 1430 1431 fm10k_for_each_ring(ring, q_vector->rx) 1432 clean_complete &= fm10k_clean_rx_irq(q_vector, ring, 1433 per_ring_budget); 1434 1435 /* If all work not completed, return budget and keep polling */ 1436 if (!clean_complete) 1437 return budget; 1438 1439 /* all work done, exit the polling mode */ 1440 napi_complete(napi); 1441 1442 /* re-enable the q_vector */ 1443 fm10k_qv_enable(q_vector); 1444 1445 return 0; 1446 } 1447 1448 /** 1449 * fm10k_set_qos_queues: Allocate queues for a QOS-enabled device 1450 * @interface: board private structure to initialize 1451 * 1452 * When QoS (Quality of Service) is enabled, allocate queues for 1453 * each traffic class. If multiqueue isn't available,then abort QoS 1454 * initialization. 1455 * 1456 * This function handles all combinations of Qos and RSS. 1457 * 1458 **/ 1459 static bool fm10k_set_qos_queues(struct fm10k_intfc *interface) 1460 { 1461 struct net_device *dev = interface->netdev; 1462 struct fm10k_ring_feature *f; 1463 int rss_i, i; 1464 int pcs; 1465 1466 /* Map queue offset and counts onto allocated tx queues */ 1467 pcs = netdev_get_num_tc(dev); 1468 1469 if (pcs <= 1) 1470 return false; 1471 1472 /* set QoS mask and indices */ 1473 f = &interface->ring_feature[RING_F_QOS]; 1474 f->indices = pcs; 1475 f->mask = (1 << fls(pcs - 1)) - 1; 1476 1477 /* determine the upper limit for our current DCB mode */ 1478 rss_i = interface->hw.mac.max_queues / pcs; 1479 rss_i = 1 << (fls(rss_i) - 1); 1480 1481 /* set RSS mask and indices */ 1482 f = &interface->ring_feature[RING_F_RSS]; 1483 rss_i = min_t(u16, rss_i, f->limit); 1484 f->indices = rss_i; 1485 f->mask = (1 << fls(rss_i - 1)) - 1; 1486 1487 /* configure pause class to queue mapping */ 1488 for (i = 0; i < pcs; i++) 1489 netdev_set_tc_queue(dev, i, rss_i, rss_i * i); 1490 1491 interface->num_rx_queues = rss_i * pcs; 1492 interface->num_tx_queues = rss_i * pcs; 1493 1494 return true; 1495 } 1496 1497 /** 1498 * fm10k_set_rss_queues: Allocate queues for RSS 1499 * @interface: board private structure to initialize 1500 * 1501 * This is our "base" multiqueue mode. RSS (Receive Side Scaling) will try 1502 * to allocate one Rx queue per CPU, and if available, one Tx queue per CPU. 1503 * 1504 **/ 1505 static bool fm10k_set_rss_queues(struct fm10k_intfc *interface) 1506 { 1507 struct fm10k_ring_feature *f; 1508 u16 rss_i; 1509 1510 f = &interface->ring_feature[RING_F_RSS]; 1511 rss_i = min_t(u16, interface->hw.mac.max_queues, f->limit); 1512 1513 /* record indices and power of 2 mask for RSS */ 1514 f->indices = rss_i; 1515 f->mask = (1 << fls(rss_i - 1)) - 1; 1516 1517 interface->num_rx_queues = rss_i; 1518 interface->num_tx_queues = rss_i; 1519 1520 return true; 1521 } 1522 1523 /** 1524 * fm10k_set_num_queues: Allocate queues for device, feature dependent 1525 * @interface: board private structure to initialize 1526 * 1527 * This is the top level queue allocation routine. The order here is very 1528 * important, starting with the "most" number of features turned on at once, 1529 * and ending with the smallest set of features. This way large combinations 1530 * can be allocated if they're turned on, and smaller combinations are the 1531 * fallthrough conditions. 1532 * 1533 **/ 1534 static void fm10k_set_num_queues(struct fm10k_intfc *interface) 1535 { 1536 /* Start with base case */ 1537 interface->num_rx_queues = 1; 1538 interface->num_tx_queues = 1; 1539 1540 if (fm10k_set_qos_queues(interface)) 1541 return; 1542 1543 fm10k_set_rss_queues(interface); 1544 } 1545 1546 /** 1547 * fm10k_alloc_q_vector - Allocate memory for a single interrupt vector 1548 * @interface: board private structure to initialize 1549 * @v_count: q_vectors allocated on interface, used for ring interleaving 1550 * @v_idx: index of vector in interface struct 1551 * @txr_count: total number of Tx rings to allocate 1552 * @txr_idx: index of first Tx ring to allocate 1553 * @rxr_count: total number of Rx rings to allocate 1554 * @rxr_idx: index of first Rx ring to allocate 1555 * 1556 * We allocate one q_vector. If allocation fails we return -ENOMEM. 1557 **/ 1558 static int fm10k_alloc_q_vector(struct fm10k_intfc *interface, 1559 unsigned int v_count, unsigned int v_idx, 1560 unsigned int txr_count, unsigned int txr_idx, 1561 unsigned int rxr_count, unsigned int rxr_idx) 1562 { 1563 struct fm10k_q_vector *q_vector; 1564 struct fm10k_ring *ring; 1565 int ring_count, size; 1566 1567 ring_count = txr_count + rxr_count; 1568 size = sizeof(struct fm10k_q_vector) + 1569 (sizeof(struct fm10k_ring) * ring_count); 1570 1571 /* allocate q_vector and rings */ 1572 q_vector = kzalloc(size, GFP_KERNEL); 1573 if (!q_vector) 1574 return -ENOMEM; 1575 1576 /* initialize NAPI */ 1577 netif_napi_add(interface->netdev, &q_vector->napi, 1578 fm10k_poll, NAPI_POLL_WEIGHT); 1579 1580 /* tie q_vector and interface together */ 1581 interface->q_vector[v_idx] = q_vector; 1582 q_vector->interface = interface; 1583 q_vector->v_idx = v_idx; 1584 1585 /* initialize pointer to rings */ 1586 ring = q_vector->ring; 1587 1588 /* save Tx ring container info */ 1589 q_vector->tx.ring = ring; 1590 q_vector->tx.work_limit = FM10K_DEFAULT_TX_WORK; 1591 q_vector->tx.itr = interface->tx_itr; 1592 q_vector->tx.count = txr_count; 1593 1594 while (txr_count) { 1595 /* assign generic ring traits */ 1596 ring->dev = &interface->pdev->dev; 1597 ring->netdev = interface->netdev; 1598 1599 /* configure backlink on ring */ 1600 ring->q_vector = q_vector; 1601 1602 /* apply Tx specific ring traits */ 1603 ring->count = interface->tx_ring_count; 1604 ring->queue_index = txr_idx; 1605 1606 /* assign ring to interface */ 1607 interface->tx_ring[txr_idx] = ring; 1608 1609 /* update count and index */ 1610 txr_count--; 1611 txr_idx += v_count; 1612 1613 /* push pointer to next ring */ 1614 ring++; 1615 } 1616 1617 /* save Rx ring container info */ 1618 q_vector->rx.ring = ring; 1619 q_vector->rx.itr = interface->rx_itr; 1620 q_vector->rx.count = rxr_count; 1621 1622 while (rxr_count) { 1623 /* assign generic ring traits */ 1624 ring->dev = &interface->pdev->dev; 1625 ring->netdev = interface->netdev; 1626 rcu_assign_pointer(ring->l2_accel, interface->l2_accel); 1627 1628 /* configure backlink on ring */ 1629 ring->q_vector = q_vector; 1630 1631 /* apply Rx specific ring traits */ 1632 ring->count = interface->rx_ring_count; 1633 ring->queue_index = rxr_idx; 1634 1635 /* assign ring to interface */ 1636 interface->rx_ring[rxr_idx] = ring; 1637 1638 /* update count and index */ 1639 rxr_count--; 1640 rxr_idx += v_count; 1641 1642 /* push pointer to next ring */ 1643 ring++; 1644 } 1645 1646 fm10k_dbg_q_vector_init(q_vector); 1647 1648 return 0; 1649 } 1650 1651 /** 1652 * fm10k_free_q_vector - Free memory allocated for specific interrupt vector 1653 * @interface: board private structure to initialize 1654 * @v_idx: Index of vector to be freed 1655 * 1656 * This function frees the memory allocated to the q_vector. In addition if 1657 * NAPI is enabled it will delete any references to the NAPI struct prior 1658 * to freeing the q_vector. 1659 **/ 1660 static void fm10k_free_q_vector(struct fm10k_intfc *interface, int v_idx) 1661 { 1662 struct fm10k_q_vector *q_vector = interface->q_vector[v_idx]; 1663 struct fm10k_ring *ring; 1664 1665 fm10k_dbg_q_vector_exit(q_vector); 1666 1667 fm10k_for_each_ring(ring, q_vector->tx) 1668 interface->tx_ring[ring->queue_index] = NULL; 1669 1670 fm10k_for_each_ring(ring, q_vector->rx) 1671 interface->rx_ring[ring->queue_index] = NULL; 1672 1673 interface->q_vector[v_idx] = NULL; 1674 netif_napi_del(&q_vector->napi); 1675 kfree_rcu(q_vector, rcu); 1676 } 1677 1678 /** 1679 * fm10k_alloc_q_vectors - Allocate memory for interrupt vectors 1680 * @interface: board private structure to initialize 1681 * 1682 * We allocate one q_vector per queue interrupt. If allocation fails we 1683 * return -ENOMEM. 1684 **/ 1685 static int fm10k_alloc_q_vectors(struct fm10k_intfc *interface) 1686 { 1687 unsigned int q_vectors = interface->num_q_vectors; 1688 unsigned int rxr_remaining = interface->num_rx_queues; 1689 unsigned int txr_remaining = interface->num_tx_queues; 1690 unsigned int rxr_idx = 0, txr_idx = 0, v_idx = 0; 1691 int err; 1692 1693 if (q_vectors >= (rxr_remaining + txr_remaining)) { 1694 for (; rxr_remaining; v_idx++) { 1695 err = fm10k_alloc_q_vector(interface, q_vectors, v_idx, 1696 0, 0, 1, rxr_idx); 1697 if (err) 1698 goto err_out; 1699 1700 /* update counts and index */ 1701 rxr_remaining--; 1702 rxr_idx++; 1703 } 1704 } 1705 1706 for (; v_idx < q_vectors; v_idx++) { 1707 int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx); 1708 int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx); 1709 1710 err = fm10k_alloc_q_vector(interface, q_vectors, v_idx, 1711 tqpv, txr_idx, 1712 rqpv, rxr_idx); 1713 1714 if (err) 1715 goto err_out; 1716 1717 /* update counts and index */ 1718 rxr_remaining -= rqpv; 1719 txr_remaining -= tqpv; 1720 rxr_idx++; 1721 txr_idx++; 1722 } 1723 1724 return 0; 1725 1726 err_out: 1727 interface->num_tx_queues = 0; 1728 interface->num_rx_queues = 0; 1729 interface->num_q_vectors = 0; 1730 1731 while (v_idx--) 1732 fm10k_free_q_vector(interface, v_idx); 1733 1734 return -ENOMEM; 1735 } 1736 1737 /** 1738 * fm10k_free_q_vectors - Free memory allocated for interrupt vectors 1739 * @interface: board private structure to initialize 1740 * 1741 * This function frees the memory allocated to the q_vectors. In addition if 1742 * NAPI is enabled it will delete any references to the NAPI struct prior 1743 * to freeing the q_vector. 1744 **/ 1745 static void fm10k_free_q_vectors(struct fm10k_intfc *interface) 1746 { 1747 int v_idx = interface->num_q_vectors; 1748 1749 interface->num_tx_queues = 0; 1750 interface->num_rx_queues = 0; 1751 interface->num_q_vectors = 0; 1752 1753 while (v_idx--) 1754 fm10k_free_q_vector(interface, v_idx); 1755 } 1756 1757 /** 1758 * f10k_reset_msix_capability - reset MSI-X capability 1759 * @interface: board private structure to initialize 1760 * 1761 * Reset the MSI-X capability back to its starting state 1762 **/ 1763 static void fm10k_reset_msix_capability(struct fm10k_intfc *interface) 1764 { 1765 pci_disable_msix(interface->pdev); 1766 kfree(interface->msix_entries); 1767 interface->msix_entries = NULL; 1768 } 1769 1770 /** 1771 * f10k_init_msix_capability - configure MSI-X capability 1772 * @interface: board private structure to initialize 1773 * 1774 * Attempt to configure the interrupts using the best available 1775 * capabilities of the hardware and the kernel. 1776 **/ 1777 static int fm10k_init_msix_capability(struct fm10k_intfc *interface) 1778 { 1779 struct fm10k_hw *hw = &interface->hw; 1780 int v_budget, vector; 1781 1782 /* It's easy to be greedy for MSI-X vectors, but it really 1783 * doesn't do us much good if we have a lot more vectors 1784 * than CPU's. So let's be conservative and only ask for 1785 * (roughly) the same number of vectors as there are CPU's. 1786 * the default is to use pairs of vectors 1787 */ 1788 v_budget = max(interface->num_rx_queues, interface->num_tx_queues); 1789 v_budget = min_t(u16, v_budget, num_online_cpus()); 1790 1791 /* account for vectors not related to queues */ 1792 v_budget += NON_Q_VECTORS(hw); 1793 1794 /* At the same time, hardware can only support a maximum of 1795 * hw.mac->max_msix_vectors vectors. With features 1796 * such as RSS and VMDq, we can easily surpass the number of Rx and Tx 1797 * descriptor queues supported by our device. Thus, we cap it off in 1798 * those rare cases where the cpu count also exceeds our vector limit. 1799 */ 1800 v_budget = min_t(int, v_budget, hw->mac.max_msix_vectors); 1801 1802 /* A failure in MSI-X entry allocation is fatal. */ 1803 interface->msix_entries = kcalloc(v_budget, sizeof(struct msix_entry), 1804 GFP_KERNEL); 1805 if (!interface->msix_entries) 1806 return -ENOMEM; 1807 1808 /* populate entry values */ 1809 for (vector = 0; vector < v_budget; vector++) 1810 interface->msix_entries[vector].entry = vector; 1811 1812 /* Attempt to enable MSI-X with requested value */ 1813 v_budget = pci_enable_msix_range(interface->pdev, 1814 interface->msix_entries, 1815 MIN_MSIX_COUNT(hw), 1816 v_budget); 1817 if (v_budget < 0) { 1818 kfree(interface->msix_entries); 1819 interface->msix_entries = NULL; 1820 return -ENOMEM; 1821 } 1822 1823 /* record the number of queues available for q_vectors */ 1824 interface->num_q_vectors = v_budget - NON_Q_VECTORS(hw); 1825 1826 return 0; 1827 } 1828 1829 /** 1830 * fm10k_cache_ring_qos - Descriptor ring to register mapping for QoS 1831 * @interface: Interface structure continaining rings and devices 1832 * 1833 * Cache the descriptor ring offsets for Qos 1834 **/ 1835 static bool fm10k_cache_ring_qos(struct fm10k_intfc *interface) 1836 { 1837 struct net_device *dev = interface->netdev; 1838 int pc, offset, rss_i, i, q_idx; 1839 u16 pc_stride = interface->ring_feature[RING_F_QOS].mask + 1; 1840 u8 num_pcs = netdev_get_num_tc(dev); 1841 1842 if (num_pcs <= 1) 1843 return false; 1844 1845 rss_i = interface->ring_feature[RING_F_RSS].indices; 1846 1847 for (pc = 0, offset = 0; pc < num_pcs; pc++, offset += rss_i) { 1848 q_idx = pc; 1849 for (i = 0; i < rss_i; i++) { 1850 interface->tx_ring[offset + i]->reg_idx = q_idx; 1851 interface->tx_ring[offset + i]->qos_pc = pc; 1852 interface->rx_ring[offset + i]->reg_idx = q_idx; 1853 interface->rx_ring[offset + i]->qos_pc = pc; 1854 q_idx += pc_stride; 1855 } 1856 } 1857 1858 return true; 1859 } 1860 1861 /** 1862 * fm10k_cache_ring_rss - Descriptor ring to register mapping for RSS 1863 * @interface: Interface structure continaining rings and devices 1864 * 1865 * Cache the descriptor ring offsets for RSS 1866 **/ 1867 static void fm10k_cache_ring_rss(struct fm10k_intfc *interface) 1868 { 1869 int i; 1870 1871 for (i = 0; i < interface->num_rx_queues; i++) 1872 interface->rx_ring[i]->reg_idx = i; 1873 1874 for (i = 0; i < interface->num_tx_queues; i++) 1875 interface->tx_ring[i]->reg_idx = i; 1876 } 1877 1878 /** 1879 * fm10k_assign_rings - Map rings to network devices 1880 * @interface: Interface structure containing rings and devices 1881 * 1882 * This function is meant to go though and configure both the network 1883 * devices so that they contain rings, and configure the rings so that 1884 * they function with their network devices. 1885 **/ 1886 static void fm10k_assign_rings(struct fm10k_intfc *interface) 1887 { 1888 if (fm10k_cache_ring_qos(interface)) 1889 return; 1890 1891 fm10k_cache_ring_rss(interface); 1892 } 1893 1894 static void fm10k_init_reta(struct fm10k_intfc *interface) 1895 { 1896 u16 i, rss_i = interface->ring_feature[RING_F_RSS].indices; 1897 u32 reta, base; 1898 1899 /* If the netdev is initialized we have to maintain table if possible */ 1900 if (interface->netdev->reg_state) { 1901 for (i = FM10K_RETA_SIZE; i--;) { 1902 reta = interface->reta[i]; 1903 if ((((reta << 24) >> 24) < rss_i) && 1904 (((reta << 16) >> 24) < rss_i) && 1905 (((reta << 8) >> 24) < rss_i) && 1906 (((reta) >> 24) < rss_i)) 1907 continue; 1908 goto repopulate_reta; 1909 } 1910 1911 /* do nothing if all of the elements are in bounds */ 1912 return; 1913 } 1914 1915 repopulate_reta: 1916 /* Populate the redirection table 4 entries at a time. To do this 1917 * we are generating the results for n and n+2 and then interleaving 1918 * those with the results with n+1 and n+3. 1919 */ 1920 for (i = FM10K_RETA_SIZE; i--;) { 1921 /* first pass generates n and n+2 */ 1922 base = ((i * 0x00040004) + 0x00020000) * rss_i; 1923 reta = (base & 0x3F803F80) >> 7; 1924 1925 /* second pass generates n+1 and n+3 */ 1926 base += 0x00010001 * rss_i; 1927 reta |= (base & 0x3F803F80) << 1; 1928 1929 interface->reta[i] = reta; 1930 } 1931 } 1932 1933 /** 1934 * fm10k_init_queueing_scheme - Determine proper queueing scheme 1935 * @interface: board private structure to initialize 1936 * 1937 * We determine which queueing scheme to use based on... 1938 * - Hardware queue count (num_*_queues) 1939 * - defined by miscellaneous hardware support/features (RSS, etc.) 1940 **/ 1941 int fm10k_init_queueing_scheme(struct fm10k_intfc *interface) 1942 { 1943 int err; 1944 1945 /* Number of supported queues */ 1946 fm10k_set_num_queues(interface); 1947 1948 /* Configure MSI-X capability */ 1949 err = fm10k_init_msix_capability(interface); 1950 if (err) { 1951 dev_err(&interface->pdev->dev, 1952 "Unable to initialize MSI-X capability\n"); 1953 return err; 1954 } 1955 1956 /* Allocate memory for queues */ 1957 err = fm10k_alloc_q_vectors(interface); 1958 if (err) 1959 return err; 1960 1961 /* Map rings to devices, and map devices to physical queues */ 1962 fm10k_assign_rings(interface); 1963 1964 /* Initialize RSS redirection table */ 1965 fm10k_init_reta(interface); 1966 1967 return 0; 1968 } 1969 1970 /** 1971 * fm10k_clear_queueing_scheme - Clear the current queueing scheme settings 1972 * @interface: board private structure to clear queueing scheme on 1973 * 1974 * We go through and clear queueing specific resources and reset the structure 1975 * to pre-load conditions 1976 **/ 1977 void fm10k_clear_queueing_scheme(struct fm10k_intfc *interface) 1978 { 1979 fm10k_free_q_vectors(interface); 1980 fm10k_reset_msix_capability(interface); 1981 } 1982