xref: /openbmc/linux/drivers/net/ethernet/intel/fm10k/fm10k_main.c (revision 6396bb221514d2876fd6dc0aa2a1f240d99b37bb)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 2013 - 2018 Intel Corporation. */
3 
4 #include <linux/types.h>
5 #include <linux/module.h>
6 #include <net/ipv6.h>
7 #include <net/ip.h>
8 #include <net/tcp.h>
9 #include <linux/if_macvlan.h>
10 #include <linux/prefetch.h>
11 
12 #include "fm10k.h"
13 
14 #define DRV_VERSION	"0.23.4-k"
15 #define DRV_SUMMARY	"Intel(R) Ethernet Switch Host Interface Driver"
16 const char fm10k_driver_version[] = DRV_VERSION;
17 char fm10k_driver_name[] = "fm10k";
18 static const char fm10k_driver_string[] = DRV_SUMMARY;
19 static const char fm10k_copyright[] =
20 	"Copyright(c) 2013 - 2018 Intel Corporation.";
21 
22 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
23 MODULE_DESCRIPTION(DRV_SUMMARY);
24 MODULE_LICENSE("GPL");
25 MODULE_VERSION(DRV_VERSION);
26 
27 /* single workqueue for entire fm10k driver */
28 struct workqueue_struct *fm10k_workqueue;
29 
30 /**
31  * fm10k_init_module - Driver Registration Routine
32  *
33  * fm10k_init_module is the first routine called when the driver is
34  * loaded.  All it does is register with the PCI subsystem.
35  **/
36 static int __init fm10k_init_module(void)
37 {
38 	pr_info("%s - version %s\n", fm10k_driver_string, fm10k_driver_version);
39 	pr_info("%s\n", fm10k_copyright);
40 
41 	/* create driver workqueue */
42 	fm10k_workqueue = alloc_workqueue("%s", WQ_MEM_RECLAIM, 0,
43 					  fm10k_driver_name);
44 
45 	fm10k_dbg_init();
46 
47 	return fm10k_register_pci_driver();
48 }
49 module_init(fm10k_init_module);
50 
51 /**
52  * fm10k_exit_module - Driver Exit Cleanup Routine
53  *
54  * fm10k_exit_module is called just before the driver is removed
55  * from memory.
56  **/
57 static void __exit fm10k_exit_module(void)
58 {
59 	fm10k_unregister_pci_driver();
60 
61 	fm10k_dbg_exit();
62 
63 	/* destroy driver workqueue */
64 	destroy_workqueue(fm10k_workqueue);
65 }
66 module_exit(fm10k_exit_module);
67 
68 static bool fm10k_alloc_mapped_page(struct fm10k_ring *rx_ring,
69 				    struct fm10k_rx_buffer *bi)
70 {
71 	struct page *page = bi->page;
72 	dma_addr_t dma;
73 
74 	/* Only page will be NULL if buffer was consumed */
75 	if (likely(page))
76 		return true;
77 
78 	/* alloc new page for storage */
79 	page = dev_alloc_page();
80 	if (unlikely(!page)) {
81 		rx_ring->rx_stats.alloc_failed++;
82 		return false;
83 	}
84 
85 	/* map page for use */
86 	dma = dma_map_page(rx_ring->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE);
87 
88 	/* if mapping failed free memory back to system since
89 	 * there isn't much point in holding memory we can't use
90 	 */
91 	if (dma_mapping_error(rx_ring->dev, dma)) {
92 		__free_page(page);
93 
94 		rx_ring->rx_stats.alloc_failed++;
95 		return false;
96 	}
97 
98 	bi->dma = dma;
99 	bi->page = page;
100 	bi->page_offset = 0;
101 
102 	return true;
103 }
104 
105 /**
106  * fm10k_alloc_rx_buffers - Replace used receive buffers
107  * @rx_ring: ring to place buffers on
108  * @cleaned_count: number of buffers to replace
109  **/
110 void fm10k_alloc_rx_buffers(struct fm10k_ring *rx_ring, u16 cleaned_count)
111 {
112 	union fm10k_rx_desc *rx_desc;
113 	struct fm10k_rx_buffer *bi;
114 	u16 i = rx_ring->next_to_use;
115 
116 	/* nothing to do */
117 	if (!cleaned_count)
118 		return;
119 
120 	rx_desc = FM10K_RX_DESC(rx_ring, i);
121 	bi = &rx_ring->rx_buffer[i];
122 	i -= rx_ring->count;
123 
124 	do {
125 		if (!fm10k_alloc_mapped_page(rx_ring, bi))
126 			break;
127 
128 		/* Refresh the desc even if buffer_addrs didn't change
129 		 * because each write-back erases this info.
130 		 */
131 		rx_desc->q.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
132 
133 		rx_desc++;
134 		bi++;
135 		i++;
136 		if (unlikely(!i)) {
137 			rx_desc = FM10K_RX_DESC(rx_ring, 0);
138 			bi = rx_ring->rx_buffer;
139 			i -= rx_ring->count;
140 		}
141 
142 		/* clear the status bits for the next_to_use descriptor */
143 		rx_desc->d.staterr = 0;
144 
145 		cleaned_count--;
146 	} while (cleaned_count);
147 
148 	i += rx_ring->count;
149 
150 	if (rx_ring->next_to_use != i) {
151 		/* record the next descriptor to use */
152 		rx_ring->next_to_use = i;
153 
154 		/* update next to alloc since we have filled the ring */
155 		rx_ring->next_to_alloc = i;
156 
157 		/* Force memory writes to complete before letting h/w
158 		 * know there are new descriptors to fetch.  (Only
159 		 * applicable for weak-ordered memory model archs,
160 		 * such as IA-64).
161 		 */
162 		wmb();
163 
164 		/* notify hardware of new descriptors */
165 		writel(i, rx_ring->tail);
166 	}
167 }
168 
169 /**
170  * fm10k_reuse_rx_page - page flip buffer and store it back on the ring
171  * @rx_ring: rx descriptor ring to store buffers on
172  * @old_buff: donor buffer to have page reused
173  *
174  * Synchronizes page for reuse by the interface
175  **/
176 static void fm10k_reuse_rx_page(struct fm10k_ring *rx_ring,
177 				struct fm10k_rx_buffer *old_buff)
178 {
179 	struct fm10k_rx_buffer *new_buff;
180 	u16 nta = rx_ring->next_to_alloc;
181 
182 	new_buff = &rx_ring->rx_buffer[nta];
183 
184 	/* update, and store next to alloc */
185 	nta++;
186 	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
187 
188 	/* transfer page from old buffer to new buffer */
189 	*new_buff = *old_buff;
190 
191 	/* sync the buffer for use by the device */
192 	dma_sync_single_range_for_device(rx_ring->dev, old_buff->dma,
193 					 old_buff->page_offset,
194 					 FM10K_RX_BUFSZ,
195 					 DMA_FROM_DEVICE);
196 }
197 
198 static inline bool fm10k_page_is_reserved(struct page *page)
199 {
200 	return (page_to_nid(page) != numa_mem_id()) || page_is_pfmemalloc(page);
201 }
202 
203 static bool fm10k_can_reuse_rx_page(struct fm10k_rx_buffer *rx_buffer,
204 				    struct page *page,
205 				    unsigned int __maybe_unused truesize)
206 {
207 	/* avoid re-using remote pages */
208 	if (unlikely(fm10k_page_is_reserved(page)))
209 		return false;
210 
211 #if (PAGE_SIZE < 8192)
212 	/* if we are only owner of page we can reuse it */
213 	if (unlikely(page_count(page) != 1))
214 		return false;
215 
216 	/* flip page offset to other buffer */
217 	rx_buffer->page_offset ^= FM10K_RX_BUFSZ;
218 #else
219 	/* move offset up to the next cache line */
220 	rx_buffer->page_offset += truesize;
221 
222 	if (rx_buffer->page_offset > (PAGE_SIZE - FM10K_RX_BUFSZ))
223 		return false;
224 #endif
225 
226 	/* Even if we own the page, we are not allowed to use atomic_set()
227 	 * This would break get_page_unless_zero() users.
228 	 */
229 	page_ref_inc(page);
230 
231 	return true;
232 }
233 
234 /**
235  * fm10k_add_rx_frag - Add contents of Rx buffer to sk_buff
236  * @rx_buffer: buffer containing page to add
237  * @size: packet size from rx_desc
238  * @rx_desc: descriptor containing length of buffer written by hardware
239  * @skb: sk_buff to place the data into
240  *
241  * This function will add the data contained in rx_buffer->page to the skb.
242  * This is done either through a direct copy if the data in the buffer is
243  * less than the skb header size, otherwise it will just attach the page as
244  * a frag to the skb.
245  *
246  * The function will then update the page offset if necessary and return
247  * true if the buffer can be reused by the interface.
248  **/
249 static bool fm10k_add_rx_frag(struct fm10k_rx_buffer *rx_buffer,
250 			      unsigned int size,
251 			      union fm10k_rx_desc *rx_desc,
252 			      struct sk_buff *skb)
253 {
254 	struct page *page = rx_buffer->page;
255 	unsigned char *va = page_address(page) + rx_buffer->page_offset;
256 #if (PAGE_SIZE < 8192)
257 	unsigned int truesize = FM10K_RX_BUFSZ;
258 #else
259 	unsigned int truesize = ALIGN(size, 512);
260 #endif
261 	unsigned int pull_len;
262 
263 	if (unlikely(skb_is_nonlinear(skb)))
264 		goto add_tail_frag;
265 
266 	if (likely(size <= FM10K_RX_HDR_LEN)) {
267 		memcpy(__skb_put(skb, size), va, ALIGN(size, sizeof(long)));
268 
269 		/* page is not reserved, we can reuse buffer as-is */
270 		if (likely(!fm10k_page_is_reserved(page)))
271 			return true;
272 
273 		/* this page cannot be reused so discard it */
274 		__free_page(page);
275 		return false;
276 	}
277 
278 	/* we need the header to contain the greater of either ETH_HLEN or
279 	 * 60 bytes if the skb->len is less than 60 for skb_pad.
280 	 */
281 	pull_len = eth_get_headlen(va, FM10K_RX_HDR_LEN);
282 
283 	/* align pull length to size of long to optimize memcpy performance */
284 	memcpy(__skb_put(skb, pull_len), va, ALIGN(pull_len, sizeof(long)));
285 
286 	/* update all of the pointers */
287 	va += pull_len;
288 	size -= pull_len;
289 
290 add_tail_frag:
291 	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
292 			(unsigned long)va & ~PAGE_MASK, size, truesize);
293 
294 	return fm10k_can_reuse_rx_page(rx_buffer, page, truesize);
295 }
296 
297 static struct sk_buff *fm10k_fetch_rx_buffer(struct fm10k_ring *rx_ring,
298 					     union fm10k_rx_desc *rx_desc,
299 					     struct sk_buff *skb)
300 {
301 	unsigned int size = le16_to_cpu(rx_desc->w.length);
302 	struct fm10k_rx_buffer *rx_buffer;
303 	struct page *page;
304 
305 	rx_buffer = &rx_ring->rx_buffer[rx_ring->next_to_clean];
306 	page = rx_buffer->page;
307 	prefetchw(page);
308 
309 	if (likely(!skb)) {
310 		void *page_addr = page_address(page) +
311 				  rx_buffer->page_offset;
312 
313 		/* prefetch first cache line of first page */
314 		prefetch(page_addr);
315 #if L1_CACHE_BYTES < 128
316 		prefetch(page_addr + L1_CACHE_BYTES);
317 #endif
318 
319 		/* allocate a skb to store the frags */
320 		skb = napi_alloc_skb(&rx_ring->q_vector->napi,
321 				     FM10K_RX_HDR_LEN);
322 		if (unlikely(!skb)) {
323 			rx_ring->rx_stats.alloc_failed++;
324 			return NULL;
325 		}
326 
327 		/* we will be copying header into skb->data in
328 		 * pskb_may_pull so it is in our interest to prefetch
329 		 * it now to avoid a possible cache miss
330 		 */
331 		prefetchw(skb->data);
332 	}
333 
334 	/* we are reusing so sync this buffer for CPU use */
335 	dma_sync_single_range_for_cpu(rx_ring->dev,
336 				      rx_buffer->dma,
337 				      rx_buffer->page_offset,
338 				      size,
339 				      DMA_FROM_DEVICE);
340 
341 	/* pull page into skb */
342 	if (fm10k_add_rx_frag(rx_buffer, size, rx_desc, skb)) {
343 		/* hand second half of page back to the ring */
344 		fm10k_reuse_rx_page(rx_ring, rx_buffer);
345 	} else {
346 		/* we are not reusing the buffer so unmap it */
347 		dma_unmap_page(rx_ring->dev, rx_buffer->dma,
348 			       PAGE_SIZE, DMA_FROM_DEVICE);
349 	}
350 
351 	/* clear contents of rx_buffer */
352 	rx_buffer->page = NULL;
353 
354 	return skb;
355 }
356 
357 static inline void fm10k_rx_checksum(struct fm10k_ring *ring,
358 				     union fm10k_rx_desc *rx_desc,
359 				     struct sk_buff *skb)
360 {
361 	skb_checksum_none_assert(skb);
362 
363 	/* Rx checksum disabled via ethtool */
364 	if (!(ring->netdev->features & NETIF_F_RXCSUM))
365 		return;
366 
367 	/* TCP/UDP checksum error bit is set */
368 	if (fm10k_test_staterr(rx_desc,
369 			       FM10K_RXD_STATUS_L4E |
370 			       FM10K_RXD_STATUS_L4E2 |
371 			       FM10K_RXD_STATUS_IPE |
372 			       FM10K_RXD_STATUS_IPE2)) {
373 		ring->rx_stats.csum_err++;
374 		return;
375 	}
376 
377 	/* It must be a TCP or UDP packet with a valid checksum */
378 	if (fm10k_test_staterr(rx_desc, FM10K_RXD_STATUS_L4CS2))
379 		skb->encapsulation = true;
380 	else if (!fm10k_test_staterr(rx_desc, FM10K_RXD_STATUS_L4CS))
381 		return;
382 
383 	skb->ip_summed = CHECKSUM_UNNECESSARY;
384 
385 	ring->rx_stats.csum_good++;
386 }
387 
388 #define FM10K_RSS_L4_TYPES_MASK \
389 	(BIT(FM10K_RSSTYPE_IPV4_TCP) | \
390 	 BIT(FM10K_RSSTYPE_IPV4_UDP) | \
391 	 BIT(FM10K_RSSTYPE_IPV6_TCP) | \
392 	 BIT(FM10K_RSSTYPE_IPV6_UDP))
393 
394 static inline void fm10k_rx_hash(struct fm10k_ring *ring,
395 				 union fm10k_rx_desc *rx_desc,
396 				 struct sk_buff *skb)
397 {
398 	u16 rss_type;
399 
400 	if (!(ring->netdev->features & NETIF_F_RXHASH))
401 		return;
402 
403 	rss_type = le16_to_cpu(rx_desc->w.pkt_info) & FM10K_RXD_RSSTYPE_MASK;
404 	if (!rss_type)
405 		return;
406 
407 	skb_set_hash(skb, le32_to_cpu(rx_desc->d.rss),
408 		     (BIT(rss_type) & FM10K_RSS_L4_TYPES_MASK) ?
409 		     PKT_HASH_TYPE_L4 : PKT_HASH_TYPE_L3);
410 }
411 
412 static void fm10k_type_trans(struct fm10k_ring *rx_ring,
413 			     union fm10k_rx_desc __maybe_unused *rx_desc,
414 			     struct sk_buff *skb)
415 {
416 	struct net_device *dev = rx_ring->netdev;
417 	struct fm10k_l2_accel *l2_accel = rcu_dereference_bh(rx_ring->l2_accel);
418 
419 	/* check to see if DGLORT belongs to a MACVLAN */
420 	if (l2_accel) {
421 		u16 idx = le16_to_cpu(FM10K_CB(skb)->fi.w.dglort) - 1;
422 
423 		idx -= l2_accel->dglort;
424 		if (idx < l2_accel->size && l2_accel->macvlan[idx])
425 			dev = l2_accel->macvlan[idx];
426 		else
427 			l2_accel = NULL;
428 	}
429 
430 	/* Record Rx queue, or update macvlan statistics */
431 	if (!l2_accel)
432 		skb_record_rx_queue(skb, rx_ring->queue_index);
433 	else
434 		macvlan_count_rx(netdev_priv(dev), skb->len + ETH_HLEN, true,
435 				 false);
436 
437 	skb->protocol = eth_type_trans(skb, dev);
438 }
439 
440 /**
441  * fm10k_process_skb_fields - Populate skb header fields from Rx descriptor
442  * @rx_ring: rx descriptor ring packet is being transacted on
443  * @rx_desc: pointer to the EOP Rx descriptor
444  * @skb: pointer to current skb being populated
445  *
446  * This function checks the ring, descriptor, and packet information in
447  * order to populate the hash, checksum, VLAN, timestamp, protocol, and
448  * other fields within the skb.
449  **/
450 static unsigned int fm10k_process_skb_fields(struct fm10k_ring *rx_ring,
451 					     union fm10k_rx_desc *rx_desc,
452 					     struct sk_buff *skb)
453 {
454 	unsigned int len = skb->len;
455 
456 	fm10k_rx_hash(rx_ring, rx_desc, skb);
457 
458 	fm10k_rx_checksum(rx_ring, rx_desc, skb);
459 
460 	FM10K_CB(skb)->tstamp = rx_desc->q.timestamp;
461 
462 	FM10K_CB(skb)->fi.w.vlan = rx_desc->w.vlan;
463 
464 	FM10K_CB(skb)->fi.d.glort = rx_desc->d.glort;
465 
466 	if (rx_desc->w.vlan) {
467 		u16 vid = le16_to_cpu(rx_desc->w.vlan);
468 
469 		if ((vid & VLAN_VID_MASK) != rx_ring->vid)
470 			__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
471 		else if (vid & VLAN_PRIO_MASK)
472 			__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
473 					       vid & VLAN_PRIO_MASK);
474 	}
475 
476 	fm10k_type_trans(rx_ring, rx_desc, skb);
477 
478 	return len;
479 }
480 
481 /**
482  * fm10k_is_non_eop - process handling of non-EOP buffers
483  * @rx_ring: Rx ring being processed
484  * @rx_desc: Rx descriptor for current buffer
485  *
486  * This function updates next to clean.  If the buffer is an EOP buffer
487  * this function exits returning false, otherwise it will place the
488  * sk_buff in the next buffer to be chained and return true indicating
489  * that this is in fact a non-EOP buffer.
490  **/
491 static bool fm10k_is_non_eop(struct fm10k_ring *rx_ring,
492 			     union fm10k_rx_desc *rx_desc)
493 {
494 	u32 ntc = rx_ring->next_to_clean + 1;
495 
496 	/* fetch, update, and store next to clean */
497 	ntc = (ntc < rx_ring->count) ? ntc : 0;
498 	rx_ring->next_to_clean = ntc;
499 
500 	prefetch(FM10K_RX_DESC(rx_ring, ntc));
501 
502 	if (likely(fm10k_test_staterr(rx_desc, FM10K_RXD_STATUS_EOP)))
503 		return false;
504 
505 	return true;
506 }
507 
508 /**
509  * fm10k_cleanup_headers - Correct corrupted or empty headers
510  * @rx_ring: rx descriptor ring packet is being transacted on
511  * @rx_desc: pointer to the EOP Rx descriptor
512  * @skb: pointer to current skb being fixed
513  *
514  * Address the case where we are pulling data in on pages only
515  * and as such no data is present in the skb header.
516  *
517  * In addition if skb is not at least 60 bytes we need to pad it so that
518  * it is large enough to qualify as a valid Ethernet frame.
519  *
520  * Returns true if an error was encountered and skb was freed.
521  **/
522 static bool fm10k_cleanup_headers(struct fm10k_ring *rx_ring,
523 				  union fm10k_rx_desc *rx_desc,
524 				  struct sk_buff *skb)
525 {
526 	if (unlikely((fm10k_test_staterr(rx_desc,
527 					 FM10K_RXD_STATUS_RXE)))) {
528 #define FM10K_TEST_RXD_BIT(rxd, bit) \
529 	((rxd)->w.csum_err & cpu_to_le16(bit))
530 		if (FM10K_TEST_RXD_BIT(rx_desc, FM10K_RXD_ERR_SWITCH_ERROR))
531 			rx_ring->rx_stats.switch_errors++;
532 		if (FM10K_TEST_RXD_BIT(rx_desc, FM10K_RXD_ERR_NO_DESCRIPTOR))
533 			rx_ring->rx_stats.drops++;
534 		if (FM10K_TEST_RXD_BIT(rx_desc, FM10K_RXD_ERR_PP_ERROR))
535 			rx_ring->rx_stats.pp_errors++;
536 		if (FM10K_TEST_RXD_BIT(rx_desc, FM10K_RXD_ERR_SWITCH_READY))
537 			rx_ring->rx_stats.link_errors++;
538 		if (FM10K_TEST_RXD_BIT(rx_desc, FM10K_RXD_ERR_TOO_BIG))
539 			rx_ring->rx_stats.length_errors++;
540 		dev_kfree_skb_any(skb);
541 		rx_ring->rx_stats.errors++;
542 		return true;
543 	}
544 
545 	/* if eth_skb_pad returns an error the skb was freed */
546 	if (eth_skb_pad(skb))
547 		return true;
548 
549 	return false;
550 }
551 
552 /**
553  * fm10k_receive_skb - helper function to handle rx indications
554  * @q_vector: structure containing interrupt and ring information
555  * @skb: packet to send up
556  **/
557 static void fm10k_receive_skb(struct fm10k_q_vector *q_vector,
558 			      struct sk_buff *skb)
559 {
560 	napi_gro_receive(&q_vector->napi, skb);
561 }
562 
563 static int fm10k_clean_rx_irq(struct fm10k_q_vector *q_vector,
564 			      struct fm10k_ring *rx_ring,
565 			      int budget)
566 {
567 	struct sk_buff *skb = rx_ring->skb;
568 	unsigned int total_bytes = 0, total_packets = 0;
569 	u16 cleaned_count = fm10k_desc_unused(rx_ring);
570 
571 	while (likely(total_packets < budget)) {
572 		union fm10k_rx_desc *rx_desc;
573 
574 		/* return some buffers to hardware, one at a time is too slow */
575 		if (cleaned_count >= FM10K_RX_BUFFER_WRITE) {
576 			fm10k_alloc_rx_buffers(rx_ring, cleaned_count);
577 			cleaned_count = 0;
578 		}
579 
580 		rx_desc = FM10K_RX_DESC(rx_ring, rx_ring->next_to_clean);
581 
582 		if (!rx_desc->d.staterr)
583 			break;
584 
585 		/* This memory barrier is needed to keep us from reading
586 		 * any other fields out of the rx_desc until we know the
587 		 * descriptor has been written back
588 		 */
589 		dma_rmb();
590 
591 		/* retrieve a buffer from the ring */
592 		skb = fm10k_fetch_rx_buffer(rx_ring, rx_desc, skb);
593 
594 		/* exit if we failed to retrieve a buffer */
595 		if (!skb)
596 			break;
597 
598 		cleaned_count++;
599 
600 		/* fetch next buffer in frame if non-eop */
601 		if (fm10k_is_non_eop(rx_ring, rx_desc))
602 			continue;
603 
604 		/* verify the packet layout is correct */
605 		if (fm10k_cleanup_headers(rx_ring, rx_desc, skb)) {
606 			skb = NULL;
607 			continue;
608 		}
609 
610 		/* populate checksum, timestamp, VLAN, and protocol */
611 		total_bytes += fm10k_process_skb_fields(rx_ring, rx_desc, skb);
612 
613 		fm10k_receive_skb(q_vector, skb);
614 
615 		/* reset skb pointer */
616 		skb = NULL;
617 
618 		/* update budget accounting */
619 		total_packets++;
620 	}
621 
622 	/* place incomplete frames back on ring for completion */
623 	rx_ring->skb = skb;
624 
625 	u64_stats_update_begin(&rx_ring->syncp);
626 	rx_ring->stats.packets += total_packets;
627 	rx_ring->stats.bytes += total_bytes;
628 	u64_stats_update_end(&rx_ring->syncp);
629 	q_vector->rx.total_packets += total_packets;
630 	q_vector->rx.total_bytes += total_bytes;
631 
632 	return total_packets;
633 }
634 
635 #define VXLAN_HLEN (sizeof(struct udphdr) + 8)
636 static struct ethhdr *fm10k_port_is_vxlan(struct sk_buff *skb)
637 {
638 	struct fm10k_intfc *interface = netdev_priv(skb->dev);
639 	struct fm10k_udp_port *vxlan_port;
640 
641 	/* we can only offload a vxlan if we recognize it as such */
642 	vxlan_port = list_first_entry_or_null(&interface->vxlan_port,
643 					      struct fm10k_udp_port, list);
644 
645 	if (!vxlan_port)
646 		return NULL;
647 	if (vxlan_port->port != udp_hdr(skb)->dest)
648 		return NULL;
649 
650 	/* return offset of udp_hdr plus 8 bytes for VXLAN header */
651 	return (struct ethhdr *)(skb_transport_header(skb) + VXLAN_HLEN);
652 }
653 
654 #define FM10K_NVGRE_RESERVED0_FLAGS htons(0x9FFF)
655 #define NVGRE_TNI htons(0x2000)
656 struct fm10k_nvgre_hdr {
657 	__be16 flags;
658 	__be16 proto;
659 	__be32 tni;
660 };
661 
662 static struct ethhdr *fm10k_gre_is_nvgre(struct sk_buff *skb)
663 {
664 	struct fm10k_nvgre_hdr *nvgre_hdr;
665 	int hlen = ip_hdrlen(skb);
666 
667 	/* currently only IPv4 is supported due to hlen above */
668 	if (vlan_get_protocol(skb) != htons(ETH_P_IP))
669 		return NULL;
670 
671 	/* our transport header should be NVGRE */
672 	nvgre_hdr = (struct fm10k_nvgre_hdr *)(skb_network_header(skb) + hlen);
673 
674 	/* verify all reserved flags are 0 */
675 	if (nvgre_hdr->flags & FM10K_NVGRE_RESERVED0_FLAGS)
676 		return NULL;
677 
678 	/* report start of ethernet header */
679 	if (nvgre_hdr->flags & NVGRE_TNI)
680 		return (struct ethhdr *)(nvgre_hdr + 1);
681 
682 	return (struct ethhdr *)(&nvgre_hdr->tni);
683 }
684 
685 __be16 fm10k_tx_encap_offload(struct sk_buff *skb)
686 {
687 	u8 l4_hdr = 0, inner_l4_hdr = 0, inner_l4_hlen;
688 	struct ethhdr *eth_hdr;
689 
690 	if (skb->inner_protocol_type != ENCAP_TYPE_ETHER ||
691 	    skb->inner_protocol != htons(ETH_P_TEB))
692 		return 0;
693 
694 	switch (vlan_get_protocol(skb)) {
695 	case htons(ETH_P_IP):
696 		l4_hdr = ip_hdr(skb)->protocol;
697 		break;
698 	case htons(ETH_P_IPV6):
699 		l4_hdr = ipv6_hdr(skb)->nexthdr;
700 		break;
701 	default:
702 		return 0;
703 	}
704 
705 	switch (l4_hdr) {
706 	case IPPROTO_UDP:
707 		eth_hdr = fm10k_port_is_vxlan(skb);
708 		break;
709 	case IPPROTO_GRE:
710 		eth_hdr = fm10k_gre_is_nvgre(skb);
711 		break;
712 	default:
713 		return 0;
714 	}
715 
716 	if (!eth_hdr)
717 		return 0;
718 
719 	switch (eth_hdr->h_proto) {
720 	case htons(ETH_P_IP):
721 		inner_l4_hdr = inner_ip_hdr(skb)->protocol;
722 		break;
723 	case htons(ETH_P_IPV6):
724 		inner_l4_hdr = inner_ipv6_hdr(skb)->nexthdr;
725 		break;
726 	default:
727 		return 0;
728 	}
729 
730 	switch (inner_l4_hdr) {
731 	case IPPROTO_TCP:
732 		inner_l4_hlen = inner_tcp_hdrlen(skb);
733 		break;
734 	case IPPROTO_UDP:
735 		inner_l4_hlen = 8;
736 		break;
737 	default:
738 		return 0;
739 	}
740 
741 	/* The hardware allows tunnel offloads only if the combined inner and
742 	 * outer header is 184 bytes or less
743 	 */
744 	if (skb_inner_transport_header(skb) + inner_l4_hlen -
745 	    skb_mac_header(skb) > FM10K_TUNNEL_HEADER_LENGTH)
746 		return 0;
747 
748 	return eth_hdr->h_proto;
749 }
750 
751 static int fm10k_tso(struct fm10k_ring *tx_ring,
752 		     struct fm10k_tx_buffer *first)
753 {
754 	struct sk_buff *skb = first->skb;
755 	struct fm10k_tx_desc *tx_desc;
756 	unsigned char *th;
757 	u8 hdrlen;
758 
759 	if (skb->ip_summed != CHECKSUM_PARTIAL)
760 		return 0;
761 
762 	if (!skb_is_gso(skb))
763 		return 0;
764 
765 	/* compute header lengths */
766 	if (skb->encapsulation) {
767 		if (!fm10k_tx_encap_offload(skb))
768 			goto err_vxlan;
769 		th = skb_inner_transport_header(skb);
770 	} else {
771 		th = skb_transport_header(skb);
772 	}
773 
774 	/* compute offset from SOF to transport header and add header len */
775 	hdrlen = (th - skb->data) + (((struct tcphdr *)th)->doff << 2);
776 
777 	first->tx_flags |= FM10K_TX_FLAGS_CSUM;
778 
779 	/* update gso size and bytecount with header size */
780 	first->gso_segs = skb_shinfo(skb)->gso_segs;
781 	first->bytecount += (first->gso_segs - 1) * hdrlen;
782 
783 	/* populate Tx descriptor header size and mss */
784 	tx_desc = FM10K_TX_DESC(tx_ring, tx_ring->next_to_use);
785 	tx_desc->hdrlen = hdrlen;
786 	tx_desc->mss = cpu_to_le16(skb_shinfo(skb)->gso_size);
787 
788 	return 1;
789 
790 err_vxlan:
791 	tx_ring->netdev->features &= ~NETIF_F_GSO_UDP_TUNNEL;
792 	if (net_ratelimit())
793 		netdev_err(tx_ring->netdev,
794 			   "TSO requested for unsupported tunnel, disabling offload\n");
795 	return -1;
796 }
797 
798 static void fm10k_tx_csum(struct fm10k_ring *tx_ring,
799 			  struct fm10k_tx_buffer *first)
800 {
801 	struct sk_buff *skb = first->skb;
802 	struct fm10k_tx_desc *tx_desc;
803 	union {
804 		struct iphdr *ipv4;
805 		struct ipv6hdr *ipv6;
806 		u8 *raw;
807 	} network_hdr;
808 	u8 *transport_hdr;
809 	__be16 frag_off;
810 	__be16 protocol;
811 	u8 l4_hdr = 0;
812 
813 	if (skb->ip_summed != CHECKSUM_PARTIAL)
814 		goto no_csum;
815 
816 	if (skb->encapsulation) {
817 		protocol = fm10k_tx_encap_offload(skb);
818 		if (!protocol) {
819 			if (skb_checksum_help(skb)) {
820 				dev_warn(tx_ring->dev,
821 					 "failed to offload encap csum!\n");
822 				tx_ring->tx_stats.csum_err++;
823 			}
824 			goto no_csum;
825 		}
826 		network_hdr.raw = skb_inner_network_header(skb);
827 		transport_hdr = skb_inner_transport_header(skb);
828 	} else {
829 		protocol = vlan_get_protocol(skb);
830 		network_hdr.raw = skb_network_header(skb);
831 		transport_hdr = skb_transport_header(skb);
832 	}
833 
834 	switch (protocol) {
835 	case htons(ETH_P_IP):
836 		l4_hdr = network_hdr.ipv4->protocol;
837 		break;
838 	case htons(ETH_P_IPV6):
839 		l4_hdr = network_hdr.ipv6->nexthdr;
840 		if (likely((transport_hdr - network_hdr.raw) ==
841 			   sizeof(struct ipv6hdr)))
842 			break;
843 		ipv6_skip_exthdr(skb, network_hdr.raw - skb->data +
844 				      sizeof(struct ipv6hdr),
845 				 &l4_hdr, &frag_off);
846 		if (unlikely(frag_off))
847 			l4_hdr = NEXTHDR_FRAGMENT;
848 		break;
849 	default:
850 		break;
851 	}
852 
853 	switch (l4_hdr) {
854 	case IPPROTO_TCP:
855 	case IPPROTO_UDP:
856 		break;
857 	case IPPROTO_GRE:
858 		if (skb->encapsulation)
859 			break;
860 		/* fall through */
861 	default:
862 		if (unlikely(net_ratelimit())) {
863 			dev_warn(tx_ring->dev,
864 				 "partial checksum, version=%d l4 proto=%x\n",
865 				 protocol, l4_hdr);
866 		}
867 		skb_checksum_help(skb);
868 		tx_ring->tx_stats.csum_err++;
869 		goto no_csum;
870 	}
871 
872 	/* update TX checksum flag */
873 	first->tx_flags |= FM10K_TX_FLAGS_CSUM;
874 	tx_ring->tx_stats.csum_good++;
875 
876 no_csum:
877 	/* populate Tx descriptor header size and mss */
878 	tx_desc = FM10K_TX_DESC(tx_ring, tx_ring->next_to_use);
879 	tx_desc->hdrlen = 0;
880 	tx_desc->mss = 0;
881 }
882 
883 #define FM10K_SET_FLAG(_input, _flag, _result) \
884 	((_flag <= _result) ? \
885 	 ((u32)(_input & _flag) * (_result / _flag)) : \
886 	 ((u32)(_input & _flag) / (_flag / _result)))
887 
888 static u8 fm10k_tx_desc_flags(struct sk_buff *skb, u32 tx_flags)
889 {
890 	/* set type for advanced descriptor with frame checksum insertion */
891 	u32 desc_flags = 0;
892 
893 	/* set checksum offload bits */
894 	desc_flags |= FM10K_SET_FLAG(tx_flags, FM10K_TX_FLAGS_CSUM,
895 				     FM10K_TXD_FLAG_CSUM);
896 
897 	return desc_flags;
898 }
899 
900 static bool fm10k_tx_desc_push(struct fm10k_ring *tx_ring,
901 			       struct fm10k_tx_desc *tx_desc, u16 i,
902 			       dma_addr_t dma, unsigned int size, u8 desc_flags)
903 {
904 	/* set RS and INT for last frame in a cache line */
905 	if ((++i & (FM10K_TXD_WB_FIFO_SIZE - 1)) == 0)
906 		desc_flags |= FM10K_TXD_FLAG_RS | FM10K_TXD_FLAG_INT;
907 
908 	/* record values to descriptor */
909 	tx_desc->buffer_addr = cpu_to_le64(dma);
910 	tx_desc->flags = desc_flags;
911 	tx_desc->buflen = cpu_to_le16(size);
912 
913 	/* return true if we just wrapped the ring */
914 	return i == tx_ring->count;
915 }
916 
917 static int __fm10k_maybe_stop_tx(struct fm10k_ring *tx_ring, u16 size)
918 {
919 	netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
920 
921 	/* Memory barrier before checking head and tail */
922 	smp_mb();
923 
924 	/* Check again in a case another CPU has just made room available */
925 	if (likely(fm10k_desc_unused(tx_ring) < size))
926 		return -EBUSY;
927 
928 	/* A reprieve! - use start_queue because it doesn't call schedule */
929 	netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
930 	++tx_ring->tx_stats.restart_queue;
931 	return 0;
932 }
933 
934 static inline int fm10k_maybe_stop_tx(struct fm10k_ring *tx_ring, u16 size)
935 {
936 	if (likely(fm10k_desc_unused(tx_ring) >= size))
937 		return 0;
938 	return __fm10k_maybe_stop_tx(tx_ring, size);
939 }
940 
941 static void fm10k_tx_map(struct fm10k_ring *tx_ring,
942 			 struct fm10k_tx_buffer *first)
943 {
944 	struct sk_buff *skb = first->skb;
945 	struct fm10k_tx_buffer *tx_buffer;
946 	struct fm10k_tx_desc *tx_desc;
947 	struct skb_frag_struct *frag;
948 	unsigned char *data;
949 	dma_addr_t dma;
950 	unsigned int data_len, size;
951 	u32 tx_flags = first->tx_flags;
952 	u16 i = tx_ring->next_to_use;
953 	u8 flags = fm10k_tx_desc_flags(skb, tx_flags);
954 
955 	tx_desc = FM10K_TX_DESC(tx_ring, i);
956 
957 	/* add HW VLAN tag */
958 	if (skb_vlan_tag_present(skb))
959 		tx_desc->vlan = cpu_to_le16(skb_vlan_tag_get(skb));
960 	else
961 		tx_desc->vlan = 0;
962 
963 	size = skb_headlen(skb);
964 	data = skb->data;
965 
966 	dma = dma_map_single(tx_ring->dev, data, size, DMA_TO_DEVICE);
967 
968 	data_len = skb->data_len;
969 	tx_buffer = first;
970 
971 	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
972 		if (dma_mapping_error(tx_ring->dev, dma))
973 			goto dma_error;
974 
975 		/* record length, and DMA address */
976 		dma_unmap_len_set(tx_buffer, len, size);
977 		dma_unmap_addr_set(tx_buffer, dma, dma);
978 
979 		while (unlikely(size > FM10K_MAX_DATA_PER_TXD)) {
980 			if (fm10k_tx_desc_push(tx_ring, tx_desc++, i++, dma,
981 					       FM10K_MAX_DATA_PER_TXD, flags)) {
982 				tx_desc = FM10K_TX_DESC(tx_ring, 0);
983 				i = 0;
984 			}
985 
986 			dma += FM10K_MAX_DATA_PER_TXD;
987 			size -= FM10K_MAX_DATA_PER_TXD;
988 		}
989 
990 		if (likely(!data_len))
991 			break;
992 
993 		if (fm10k_tx_desc_push(tx_ring, tx_desc++, i++,
994 				       dma, size, flags)) {
995 			tx_desc = FM10K_TX_DESC(tx_ring, 0);
996 			i = 0;
997 		}
998 
999 		size = skb_frag_size(frag);
1000 		data_len -= size;
1001 
1002 		dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
1003 				       DMA_TO_DEVICE);
1004 
1005 		tx_buffer = &tx_ring->tx_buffer[i];
1006 	}
1007 
1008 	/* write last descriptor with LAST bit set */
1009 	flags |= FM10K_TXD_FLAG_LAST;
1010 
1011 	if (fm10k_tx_desc_push(tx_ring, tx_desc, i++, dma, size, flags))
1012 		i = 0;
1013 
1014 	/* record bytecount for BQL */
1015 	netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
1016 
1017 	/* record SW timestamp if HW timestamp is not available */
1018 	skb_tx_timestamp(first->skb);
1019 
1020 	/* Force memory writes to complete before letting h/w know there
1021 	 * are new descriptors to fetch.  (Only applicable for weak-ordered
1022 	 * memory model archs, such as IA-64).
1023 	 *
1024 	 * We also need this memory barrier to make certain all of the
1025 	 * status bits have been updated before next_to_watch is written.
1026 	 */
1027 	wmb();
1028 
1029 	/* set next_to_watch value indicating a packet is present */
1030 	first->next_to_watch = tx_desc;
1031 
1032 	tx_ring->next_to_use = i;
1033 
1034 	/* Make sure there is space in the ring for the next send. */
1035 	fm10k_maybe_stop_tx(tx_ring, DESC_NEEDED);
1036 
1037 	/* notify HW of packet */
1038 	if (netif_xmit_stopped(txring_txq(tx_ring)) || !skb->xmit_more) {
1039 		writel(i, tx_ring->tail);
1040 
1041 		/* we need this if more than one processor can write to our tail
1042 		 * at a time, it synchronizes IO on IA64/Altix systems
1043 		 */
1044 		mmiowb();
1045 	}
1046 
1047 	return;
1048 dma_error:
1049 	dev_err(tx_ring->dev, "TX DMA map failed\n");
1050 
1051 	/* clear dma mappings for failed tx_buffer map */
1052 	for (;;) {
1053 		tx_buffer = &tx_ring->tx_buffer[i];
1054 		fm10k_unmap_and_free_tx_resource(tx_ring, tx_buffer);
1055 		if (tx_buffer == first)
1056 			break;
1057 		if (i == 0)
1058 			i = tx_ring->count;
1059 		i--;
1060 	}
1061 
1062 	tx_ring->next_to_use = i;
1063 }
1064 
1065 netdev_tx_t fm10k_xmit_frame_ring(struct sk_buff *skb,
1066 				  struct fm10k_ring *tx_ring)
1067 {
1068 	u16 count = TXD_USE_COUNT(skb_headlen(skb));
1069 	struct fm10k_tx_buffer *first;
1070 	unsigned short f;
1071 	u32 tx_flags = 0;
1072 	int tso;
1073 
1074 	/* need: 1 descriptor per page * PAGE_SIZE/FM10K_MAX_DATA_PER_TXD,
1075 	 *       + 1 desc for skb_headlen/FM10K_MAX_DATA_PER_TXD,
1076 	 *       + 2 desc gap to keep tail from touching head
1077 	 * otherwise try next time
1078 	 */
1079 	for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
1080 		count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size);
1081 
1082 	if (fm10k_maybe_stop_tx(tx_ring, count + 3)) {
1083 		tx_ring->tx_stats.tx_busy++;
1084 		return NETDEV_TX_BUSY;
1085 	}
1086 
1087 	/* record the location of the first descriptor for this packet */
1088 	first = &tx_ring->tx_buffer[tx_ring->next_to_use];
1089 	first->skb = skb;
1090 	first->bytecount = max_t(unsigned int, skb->len, ETH_ZLEN);
1091 	first->gso_segs = 1;
1092 
1093 	/* record initial flags and protocol */
1094 	first->tx_flags = tx_flags;
1095 
1096 	tso = fm10k_tso(tx_ring, first);
1097 	if (tso < 0)
1098 		goto out_drop;
1099 	else if (!tso)
1100 		fm10k_tx_csum(tx_ring, first);
1101 
1102 	fm10k_tx_map(tx_ring, first);
1103 
1104 	return NETDEV_TX_OK;
1105 
1106 out_drop:
1107 	dev_kfree_skb_any(first->skb);
1108 	first->skb = NULL;
1109 
1110 	return NETDEV_TX_OK;
1111 }
1112 
1113 static u64 fm10k_get_tx_completed(struct fm10k_ring *ring)
1114 {
1115 	return ring->stats.packets;
1116 }
1117 
1118 /**
1119  * fm10k_get_tx_pending - how many Tx descriptors not processed
1120  * @ring: the ring structure
1121  * @in_sw: is tx_pending being checked in SW or in HW?
1122  */
1123 u64 fm10k_get_tx_pending(struct fm10k_ring *ring, bool in_sw)
1124 {
1125 	struct fm10k_intfc *interface = ring->q_vector->interface;
1126 	struct fm10k_hw *hw = &interface->hw;
1127 	u32 head, tail;
1128 
1129 	if (likely(in_sw)) {
1130 		head = ring->next_to_clean;
1131 		tail = ring->next_to_use;
1132 	} else {
1133 		head = fm10k_read_reg(hw, FM10K_TDH(ring->reg_idx));
1134 		tail = fm10k_read_reg(hw, FM10K_TDT(ring->reg_idx));
1135 	}
1136 
1137 	return ((head <= tail) ? tail : tail + ring->count) - head;
1138 }
1139 
1140 bool fm10k_check_tx_hang(struct fm10k_ring *tx_ring)
1141 {
1142 	u32 tx_done = fm10k_get_tx_completed(tx_ring);
1143 	u32 tx_done_old = tx_ring->tx_stats.tx_done_old;
1144 	u32 tx_pending = fm10k_get_tx_pending(tx_ring, true);
1145 
1146 	clear_check_for_tx_hang(tx_ring);
1147 
1148 	/* Check for a hung queue, but be thorough. This verifies
1149 	 * that a transmit has been completed since the previous
1150 	 * check AND there is at least one packet pending. By
1151 	 * requiring this to fail twice we avoid races with
1152 	 * clearing the ARMED bit and conditions where we
1153 	 * run the check_tx_hang logic with a transmit completion
1154 	 * pending but without time to complete it yet.
1155 	 */
1156 	if (!tx_pending || (tx_done_old != tx_done)) {
1157 		/* update completed stats and continue */
1158 		tx_ring->tx_stats.tx_done_old = tx_done;
1159 		/* reset the countdown */
1160 		clear_bit(__FM10K_HANG_CHECK_ARMED, tx_ring->state);
1161 
1162 		return false;
1163 	}
1164 
1165 	/* make sure it is true for two checks in a row */
1166 	return test_and_set_bit(__FM10K_HANG_CHECK_ARMED, tx_ring->state);
1167 }
1168 
1169 /**
1170  * fm10k_tx_timeout_reset - initiate reset due to Tx timeout
1171  * @interface: driver private struct
1172  **/
1173 void fm10k_tx_timeout_reset(struct fm10k_intfc *interface)
1174 {
1175 	/* Do the reset outside of interrupt context */
1176 	if (!test_bit(__FM10K_DOWN, interface->state)) {
1177 		interface->tx_timeout_count++;
1178 		set_bit(FM10K_FLAG_RESET_REQUESTED, interface->flags);
1179 		fm10k_service_event_schedule(interface);
1180 	}
1181 }
1182 
1183 /**
1184  * fm10k_clean_tx_irq - Reclaim resources after transmit completes
1185  * @q_vector: structure containing interrupt and ring information
1186  * @tx_ring: tx ring to clean
1187  * @napi_budget: Used to determine if we are in netpoll
1188  **/
1189 static bool fm10k_clean_tx_irq(struct fm10k_q_vector *q_vector,
1190 			       struct fm10k_ring *tx_ring, int napi_budget)
1191 {
1192 	struct fm10k_intfc *interface = q_vector->interface;
1193 	struct fm10k_tx_buffer *tx_buffer;
1194 	struct fm10k_tx_desc *tx_desc;
1195 	unsigned int total_bytes = 0, total_packets = 0;
1196 	unsigned int budget = q_vector->tx.work_limit;
1197 	unsigned int i = tx_ring->next_to_clean;
1198 
1199 	if (test_bit(__FM10K_DOWN, interface->state))
1200 		return true;
1201 
1202 	tx_buffer = &tx_ring->tx_buffer[i];
1203 	tx_desc = FM10K_TX_DESC(tx_ring, i);
1204 	i -= tx_ring->count;
1205 
1206 	do {
1207 		struct fm10k_tx_desc *eop_desc = tx_buffer->next_to_watch;
1208 
1209 		/* if next_to_watch is not set then there is no work pending */
1210 		if (!eop_desc)
1211 			break;
1212 
1213 		/* prevent any other reads prior to eop_desc */
1214 		smp_rmb();
1215 
1216 		/* if DD is not set pending work has not been completed */
1217 		if (!(eop_desc->flags & FM10K_TXD_FLAG_DONE))
1218 			break;
1219 
1220 		/* clear next_to_watch to prevent false hangs */
1221 		tx_buffer->next_to_watch = NULL;
1222 
1223 		/* update the statistics for this packet */
1224 		total_bytes += tx_buffer->bytecount;
1225 		total_packets += tx_buffer->gso_segs;
1226 
1227 		/* free the skb */
1228 		napi_consume_skb(tx_buffer->skb, napi_budget);
1229 
1230 		/* unmap skb header data */
1231 		dma_unmap_single(tx_ring->dev,
1232 				 dma_unmap_addr(tx_buffer, dma),
1233 				 dma_unmap_len(tx_buffer, len),
1234 				 DMA_TO_DEVICE);
1235 
1236 		/* clear tx_buffer data */
1237 		tx_buffer->skb = NULL;
1238 		dma_unmap_len_set(tx_buffer, len, 0);
1239 
1240 		/* unmap remaining buffers */
1241 		while (tx_desc != eop_desc) {
1242 			tx_buffer++;
1243 			tx_desc++;
1244 			i++;
1245 			if (unlikely(!i)) {
1246 				i -= tx_ring->count;
1247 				tx_buffer = tx_ring->tx_buffer;
1248 				tx_desc = FM10K_TX_DESC(tx_ring, 0);
1249 			}
1250 
1251 			/* unmap any remaining paged data */
1252 			if (dma_unmap_len(tx_buffer, len)) {
1253 				dma_unmap_page(tx_ring->dev,
1254 					       dma_unmap_addr(tx_buffer, dma),
1255 					       dma_unmap_len(tx_buffer, len),
1256 					       DMA_TO_DEVICE);
1257 				dma_unmap_len_set(tx_buffer, len, 0);
1258 			}
1259 		}
1260 
1261 		/* move us one more past the eop_desc for start of next pkt */
1262 		tx_buffer++;
1263 		tx_desc++;
1264 		i++;
1265 		if (unlikely(!i)) {
1266 			i -= tx_ring->count;
1267 			tx_buffer = tx_ring->tx_buffer;
1268 			tx_desc = FM10K_TX_DESC(tx_ring, 0);
1269 		}
1270 
1271 		/* issue prefetch for next Tx descriptor */
1272 		prefetch(tx_desc);
1273 
1274 		/* update budget accounting */
1275 		budget--;
1276 	} while (likely(budget));
1277 
1278 	i += tx_ring->count;
1279 	tx_ring->next_to_clean = i;
1280 	u64_stats_update_begin(&tx_ring->syncp);
1281 	tx_ring->stats.bytes += total_bytes;
1282 	tx_ring->stats.packets += total_packets;
1283 	u64_stats_update_end(&tx_ring->syncp);
1284 	q_vector->tx.total_bytes += total_bytes;
1285 	q_vector->tx.total_packets += total_packets;
1286 
1287 	if (check_for_tx_hang(tx_ring) && fm10k_check_tx_hang(tx_ring)) {
1288 		/* schedule immediate reset if we believe we hung */
1289 		struct fm10k_hw *hw = &interface->hw;
1290 
1291 		netif_err(interface, drv, tx_ring->netdev,
1292 			  "Detected Tx Unit Hang\n"
1293 			  "  Tx Queue             <%d>\n"
1294 			  "  TDH, TDT             <%x>, <%x>\n"
1295 			  "  next_to_use          <%x>\n"
1296 			  "  next_to_clean        <%x>\n",
1297 			  tx_ring->queue_index,
1298 			  fm10k_read_reg(hw, FM10K_TDH(tx_ring->reg_idx)),
1299 			  fm10k_read_reg(hw, FM10K_TDT(tx_ring->reg_idx)),
1300 			  tx_ring->next_to_use, i);
1301 
1302 		netif_stop_subqueue(tx_ring->netdev,
1303 				    tx_ring->queue_index);
1304 
1305 		netif_info(interface, probe, tx_ring->netdev,
1306 			   "tx hang %d detected on queue %d, resetting interface\n",
1307 			   interface->tx_timeout_count + 1,
1308 			   tx_ring->queue_index);
1309 
1310 		fm10k_tx_timeout_reset(interface);
1311 
1312 		/* the netdev is about to reset, no point in enabling stuff */
1313 		return true;
1314 	}
1315 
1316 	/* notify netdev of completed buffers */
1317 	netdev_tx_completed_queue(txring_txq(tx_ring),
1318 				  total_packets, total_bytes);
1319 
1320 #define TX_WAKE_THRESHOLD min_t(u16, FM10K_MIN_TXD - 1, DESC_NEEDED * 2)
1321 	if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
1322 		     (fm10k_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD))) {
1323 		/* Make sure that anybody stopping the queue after this
1324 		 * sees the new next_to_clean.
1325 		 */
1326 		smp_mb();
1327 		if (__netif_subqueue_stopped(tx_ring->netdev,
1328 					     tx_ring->queue_index) &&
1329 		    !test_bit(__FM10K_DOWN, interface->state)) {
1330 			netif_wake_subqueue(tx_ring->netdev,
1331 					    tx_ring->queue_index);
1332 			++tx_ring->tx_stats.restart_queue;
1333 		}
1334 	}
1335 
1336 	return !!budget;
1337 }
1338 
1339 /**
1340  * fm10k_update_itr - update the dynamic ITR value based on packet size
1341  *
1342  *      Stores a new ITR value based on strictly on packet size.  The
1343  *      divisors and thresholds used by this function were determined based
1344  *      on theoretical maximum wire speed and testing data, in order to
1345  *      minimize response time while increasing bulk throughput.
1346  *
1347  * @ring_container: Container for rings to have ITR updated
1348  **/
1349 static void fm10k_update_itr(struct fm10k_ring_container *ring_container)
1350 {
1351 	unsigned int avg_wire_size, packets, itr_round;
1352 
1353 	/* Only update ITR if we are using adaptive setting */
1354 	if (!ITR_IS_ADAPTIVE(ring_container->itr))
1355 		goto clear_counts;
1356 
1357 	packets = ring_container->total_packets;
1358 	if (!packets)
1359 		goto clear_counts;
1360 
1361 	avg_wire_size = ring_container->total_bytes / packets;
1362 
1363 	/* The following is a crude approximation of:
1364 	 *  wmem_default / (size + overhead) = desired_pkts_per_int
1365 	 *  rate / bits_per_byte / (size + ethernet overhead) = pkt_rate
1366 	 *  (desired_pkt_rate / pkt_rate) * usecs_per_sec = ITR value
1367 	 *
1368 	 * Assuming wmem_default is 212992 and overhead is 640 bytes per
1369 	 * packet, (256 skb, 64 headroom, 320 shared info), we can reduce the
1370 	 * formula down to
1371 	 *
1372 	 *  (34 * (size + 24)) / (size + 640) = ITR
1373 	 *
1374 	 * We first do some math on the packet size and then finally bitshift
1375 	 * by 8 after rounding up. We also have to account for PCIe link speed
1376 	 * difference as ITR scales based on this.
1377 	 */
1378 	if (avg_wire_size <= 360) {
1379 		/* Start at 250K ints/sec and gradually drop to 77K ints/sec */
1380 		avg_wire_size *= 8;
1381 		avg_wire_size += 376;
1382 	} else if (avg_wire_size <= 1152) {
1383 		/* 77K ints/sec to 45K ints/sec */
1384 		avg_wire_size *= 3;
1385 		avg_wire_size += 2176;
1386 	} else if (avg_wire_size <= 1920) {
1387 		/* 45K ints/sec to 38K ints/sec */
1388 		avg_wire_size += 4480;
1389 	} else {
1390 		/* plateau at a limit of 38K ints/sec */
1391 		avg_wire_size = 6656;
1392 	}
1393 
1394 	/* Perform final bitshift for division after rounding up to ensure
1395 	 * that the calculation will never get below a 1. The bit shift
1396 	 * accounts for changes in the ITR due to PCIe link speed.
1397 	 */
1398 	itr_round = READ_ONCE(ring_container->itr_scale) + 8;
1399 	avg_wire_size += BIT(itr_round) - 1;
1400 	avg_wire_size >>= itr_round;
1401 
1402 	/* write back value and retain adaptive flag */
1403 	ring_container->itr = avg_wire_size | FM10K_ITR_ADAPTIVE;
1404 
1405 clear_counts:
1406 	ring_container->total_bytes = 0;
1407 	ring_container->total_packets = 0;
1408 }
1409 
1410 static void fm10k_qv_enable(struct fm10k_q_vector *q_vector)
1411 {
1412 	/* Enable auto-mask and clear the current mask */
1413 	u32 itr = FM10K_ITR_ENABLE;
1414 
1415 	/* Update Tx ITR */
1416 	fm10k_update_itr(&q_vector->tx);
1417 
1418 	/* Update Rx ITR */
1419 	fm10k_update_itr(&q_vector->rx);
1420 
1421 	/* Store Tx itr in timer slot 0 */
1422 	itr |= (q_vector->tx.itr & FM10K_ITR_MAX);
1423 
1424 	/* Shift Rx itr to timer slot 1 */
1425 	itr |= (q_vector->rx.itr & FM10K_ITR_MAX) << FM10K_ITR_INTERVAL1_SHIFT;
1426 
1427 	/* Write the final value to the ITR register */
1428 	writel(itr, q_vector->itr);
1429 }
1430 
1431 static int fm10k_poll(struct napi_struct *napi, int budget)
1432 {
1433 	struct fm10k_q_vector *q_vector =
1434 			       container_of(napi, struct fm10k_q_vector, napi);
1435 	struct fm10k_ring *ring;
1436 	int per_ring_budget, work_done = 0;
1437 	bool clean_complete = true;
1438 
1439 	fm10k_for_each_ring(ring, q_vector->tx) {
1440 		if (!fm10k_clean_tx_irq(q_vector, ring, budget))
1441 			clean_complete = false;
1442 	}
1443 
1444 	/* Handle case where we are called by netpoll with a budget of 0 */
1445 	if (budget <= 0)
1446 		return budget;
1447 
1448 	/* attempt to distribute budget to each queue fairly, but don't
1449 	 * allow the budget to go below 1 because we'll exit polling
1450 	 */
1451 	if (q_vector->rx.count > 1)
1452 		per_ring_budget = max(budget / q_vector->rx.count, 1);
1453 	else
1454 		per_ring_budget = budget;
1455 
1456 	fm10k_for_each_ring(ring, q_vector->rx) {
1457 		int work = fm10k_clean_rx_irq(q_vector, ring, per_ring_budget);
1458 
1459 		work_done += work;
1460 		if (work >= per_ring_budget)
1461 			clean_complete = false;
1462 	}
1463 
1464 	/* If all work not completed, return budget and keep polling */
1465 	if (!clean_complete)
1466 		return budget;
1467 
1468 	/* all work done, exit the polling mode */
1469 	napi_complete_done(napi, work_done);
1470 
1471 	/* re-enable the q_vector */
1472 	fm10k_qv_enable(q_vector);
1473 
1474 	return min(work_done, budget - 1);
1475 }
1476 
1477 /**
1478  * fm10k_set_qos_queues: Allocate queues for a QOS-enabled device
1479  * @interface: board private structure to initialize
1480  *
1481  * When QoS (Quality of Service) is enabled, allocate queues for
1482  * each traffic class.  If multiqueue isn't available,then abort QoS
1483  * initialization.
1484  *
1485  * This function handles all combinations of Qos and RSS.
1486  *
1487  **/
1488 static bool fm10k_set_qos_queues(struct fm10k_intfc *interface)
1489 {
1490 	struct net_device *dev = interface->netdev;
1491 	struct fm10k_ring_feature *f;
1492 	int rss_i, i;
1493 	int pcs;
1494 
1495 	/* Map queue offset and counts onto allocated tx queues */
1496 	pcs = netdev_get_num_tc(dev);
1497 
1498 	if (pcs <= 1)
1499 		return false;
1500 
1501 	/* set QoS mask and indices */
1502 	f = &interface->ring_feature[RING_F_QOS];
1503 	f->indices = pcs;
1504 	f->mask = BIT(fls(pcs - 1)) - 1;
1505 
1506 	/* determine the upper limit for our current DCB mode */
1507 	rss_i = interface->hw.mac.max_queues / pcs;
1508 	rss_i = BIT(fls(rss_i) - 1);
1509 
1510 	/* set RSS mask and indices */
1511 	f = &interface->ring_feature[RING_F_RSS];
1512 	rss_i = min_t(u16, rss_i, f->limit);
1513 	f->indices = rss_i;
1514 	f->mask = BIT(fls(rss_i - 1)) - 1;
1515 
1516 	/* configure pause class to queue mapping */
1517 	for (i = 0; i < pcs; i++)
1518 		netdev_set_tc_queue(dev, i, rss_i, rss_i * i);
1519 
1520 	interface->num_rx_queues = rss_i * pcs;
1521 	interface->num_tx_queues = rss_i * pcs;
1522 
1523 	return true;
1524 }
1525 
1526 /**
1527  * fm10k_set_rss_queues: Allocate queues for RSS
1528  * @interface: board private structure to initialize
1529  *
1530  * This is our "base" multiqueue mode.  RSS (Receive Side Scaling) will try
1531  * to allocate one Rx queue per CPU, and if available, one Tx queue per CPU.
1532  *
1533  **/
1534 static bool fm10k_set_rss_queues(struct fm10k_intfc *interface)
1535 {
1536 	struct fm10k_ring_feature *f;
1537 	u16 rss_i;
1538 
1539 	f = &interface->ring_feature[RING_F_RSS];
1540 	rss_i = min_t(u16, interface->hw.mac.max_queues, f->limit);
1541 
1542 	/* record indices and power of 2 mask for RSS */
1543 	f->indices = rss_i;
1544 	f->mask = BIT(fls(rss_i - 1)) - 1;
1545 
1546 	interface->num_rx_queues = rss_i;
1547 	interface->num_tx_queues = rss_i;
1548 
1549 	return true;
1550 }
1551 
1552 /**
1553  * fm10k_set_num_queues: Allocate queues for device, feature dependent
1554  * @interface: board private structure to initialize
1555  *
1556  * This is the top level queue allocation routine.  The order here is very
1557  * important, starting with the "most" number of features turned on at once,
1558  * and ending with the smallest set of features.  This way large combinations
1559  * can be allocated if they're turned on, and smaller combinations are the
1560  * fallthrough conditions.
1561  *
1562  **/
1563 static void fm10k_set_num_queues(struct fm10k_intfc *interface)
1564 {
1565 	/* Attempt to setup QoS and RSS first */
1566 	if (fm10k_set_qos_queues(interface))
1567 		return;
1568 
1569 	/* If we don't have QoS, just fallback to only RSS. */
1570 	fm10k_set_rss_queues(interface);
1571 }
1572 
1573 /**
1574  * fm10k_reset_num_queues - Reset the number of queues to zero
1575  * @interface: board private structure
1576  *
1577  * This function should be called whenever we need to reset the number of
1578  * queues after an error condition.
1579  */
1580 static void fm10k_reset_num_queues(struct fm10k_intfc *interface)
1581 {
1582 	interface->num_tx_queues = 0;
1583 	interface->num_rx_queues = 0;
1584 	interface->num_q_vectors = 0;
1585 }
1586 
1587 /**
1588  * fm10k_alloc_q_vector - Allocate memory for a single interrupt vector
1589  * @interface: board private structure to initialize
1590  * @v_count: q_vectors allocated on interface, used for ring interleaving
1591  * @v_idx: index of vector in interface struct
1592  * @txr_count: total number of Tx rings to allocate
1593  * @txr_idx: index of first Tx ring to allocate
1594  * @rxr_count: total number of Rx rings to allocate
1595  * @rxr_idx: index of first Rx ring to allocate
1596  *
1597  * We allocate one q_vector.  If allocation fails we return -ENOMEM.
1598  **/
1599 static int fm10k_alloc_q_vector(struct fm10k_intfc *interface,
1600 				unsigned int v_count, unsigned int v_idx,
1601 				unsigned int txr_count, unsigned int txr_idx,
1602 				unsigned int rxr_count, unsigned int rxr_idx)
1603 {
1604 	struct fm10k_q_vector *q_vector;
1605 	struct fm10k_ring *ring;
1606 	int ring_count, size;
1607 
1608 	ring_count = txr_count + rxr_count;
1609 	size = sizeof(struct fm10k_q_vector) +
1610 	       (sizeof(struct fm10k_ring) * ring_count);
1611 
1612 	/* allocate q_vector and rings */
1613 	q_vector = kzalloc(size, GFP_KERNEL);
1614 	if (!q_vector)
1615 		return -ENOMEM;
1616 
1617 	/* initialize NAPI */
1618 	netif_napi_add(interface->netdev, &q_vector->napi,
1619 		       fm10k_poll, NAPI_POLL_WEIGHT);
1620 
1621 	/* tie q_vector and interface together */
1622 	interface->q_vector[v_idx] = q_vector;
1623 	q_vector->interface = interface;
1624 	q_vector->v_idx = v_idx;
1625 
1626 	/* initialize pointer to rings */
1627 	ring = q_vector->ring;
1628 
1629 	/* save Tx ring container info */
1630 	q_vector->tx.ring = ring;
1631 	q_vector->tx.work_limit = FM10K_DEFAULT_TX_WORK;
1632 	q_vector->tx.itr = interface->tx_itr;
1633 	q_vector->tx.itr_scale = interface->hw.mac.itr_scale;
1634 	q_vector->tx.count = txr_count;
1635 
1636 	while (txr_count) {
1637 		/* assign generic ring traits */
1638 		ring->dev = &interface->pdev->dev;
1639 		ring->netdev = interface->netdev;
1640 
1641 		/* configure backlink on ring */
1642 		ring->q_vector = q_vector;
1643 
1644 		/* apply Tx specific ring traits */
1645 		ring->count = interface->tx_ring_count;
1646 		ring->queue_index = txr_idx;
1647 
1648 		/* assign ring to interface */
1649 		interface->tx_ring[txr_idx] = ring;
1650 
1651 		/* update count and index */
1652 		txr_count--;
1653 		txr_idx += v_count;
1654 
1655 		/* push pointer to next ring */
1656 		ring++;
1657 	}
1658 
1659 	/* save Rx ring container info */
1660 	q_vector->rx.ring = ring;
1661 	q_vector->rx.itr = interface->rx_itr;
1662 	q_vector->rx.itr_scale = interface->hw.mac.itr_scale;
1663 	q_vector->rx.count = rxr_count;
1664 
1665 	while (rxr_count) {
1666 		/* assign generic ring traits */
1667 		ring->dev = &interface->pdev->dev;
1668 		ring->netdev = interface->netdev;
1669 		rcu_assign_pointer(ring->l2_accel, interface->l2_accel);
1670 
1671 		/* configure backlink on ring */
1672 		ring->q_vector = q_vector;
1673 
1674 		/* apply Rx specific ring traits */
1675 		ring->count = interface->rx_ring_count;
1676 		ring->queue_index = rxr_idx;
1677 
1678 		/* assign ring to interface */
1679 		interface->rx_ring[rxr_idx] = ring;
1680 
1681 		/* update count and index */
1682 		rxr_count--;
1683 		rxr_idx += v_count;
1684 
1685 		/* push pointer to next ring */
1686 		ring++;
1687 	}
1688 
1689 	fm10k_dbg_q_vector_init(q_vector);
1690 
1691 	return 0;
1692 }
1693 
1694 /**
1695  * fm10k_free_q_vector - Free memory allocated for specific interrupt vector
1696  * @interface: board private structure to initialize
1697  * @v_idx: Index of vector to be freed
1698  *
1699  * This function frees the memory allocated to the q_vector.  In addition if
1700  * NAPI is enabled it will delete any references to the NAPI struct prior
1701  * to freeing the q_vector.
1702  **/
1703 static void fm10k_free_q_vector(struct fm10k_intfc *interface, int v_idx)
1704 {
1705 	struct fm10k_q_vector *q_vector = interface->q_vector[v_idx];
1706 	struct fm10k_ring *ring;
1707 
1708 	fm10k_dbg_q_vector_exit(q_vector);
1709 
1710 	fm10k_for_each_ring(ring, q_vector->tx)
1711 		interface->tx_ring[ring->queue_index] = NULL;
1712 
1713 	fm10k_for_each_ring(ring, q_vector->rx)
1714 		interface->rx_ring[ring->queue_index] = NULL;
1715 
1716 	interface->q_vector[v_idx] = NULL;
1717 	netif_napi_del(&q_vector->napi);
1718 	kfree_rcu(q_vector, rcu);
1719 }
1720 
1721 /**
1722  * fm10k_alloc_q_vectors - Allocate memory for interrupt vectors
1723  * @interface: board private structure to initialize
1724  *
1725  * We allocate one q_vector per queue interrupt.  If allocation fails we
1726  * return -ENOMEM.
1727  **/
1728 static int fm10k_alloc_q_vectors(struct fm10k_intfc *interface)
1729 {
1730 	unsigned int q_vectors = interface->num_q_vectors;
1731 	unsigned int rxr_remaining = interface->num_rx_queues;
1732 	unsigned int txr_remaining = interface->num_tx_queues;
1733 	unsigned int rxr_idx = 0, txr_idx = 0, v_idx = 0;
1734 	int err;
1735 
1736 	if (q_vectors >= (rxr_remaining + txr_remaining)) {
1737 		for (; rxr_remaining; v_idx++) {
1738 			err = fm10k_alloc_q_vector(interface, q_vectors, v_idx,
1739 						   0, 0, 1, rxr_idx);
1740 			if (err)
1741 				goto err_out;
1742 
1743 			/* update counts and index */
1744 			rxr_remaining--;
1745 			rxr_idx++;
1746 		}
1747 	}
1748 
1749 	for (; v_idx < q_vectors; v_idx++) {
1750 		int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
1751 		int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
1752 
1753 		err = fm10k_alloc_q_vector(interface, q_vectors, v_idx,
1754 					   tqpv, txr_idx,
1755 					   rqpv, rxr_idx);
1756 
1757 		if (err)
1758 			goto err_out;
1759 
1760 		/* update counts and index */
1761 		rxr_remaining -= rqpv;
1762 		txr_remaining -= tqpv;
1763 		rxr_idx++;
1764 		txr_idx++;
1765 	}
1766 
1767 	return 0;
1768 
1769 err_out:
1770 	fm10k_reset_num_queues(interface);
1771 
1772 	while (v_idx--)
1773 		fm10k_free_q_vector(interface, v_idx);
1774 
1775 	return -ENOMEM;
1776 }
1777 
1778 /**
1779  * fm10k_free_q_vectors - Free memory allocated for interrupt vectors
1780  * @interface: board private structure to initialize
1781  *
1782  * This function frees the memory allocated to the q_vectors.  In addition if
1783  * NAPI is enabled it will delete any references to the NAPI struct prior
1784  * to freeing the q_vector.
1785  **/
1786 static void fm10k_free_q_vectors(struct fm10k_intfc *interface)
1787 {
1788 	int v_idx = interface->num_q_vectors;
1789 
1790 	fm10k_reset_num_queues(interface);
1791 
1792 	while (v_idx--)
1793 		fm10k_free_q_vector(interface, v_idx);
1794 }
1795 
1796 /**
1797  * f10k_reset_msix_capability - reset MSI-X capability
1798  * @interface: board private structure to initialize
1799  *
1800  * Reset the MSI-X capability back to its starting state
1801  **/
1802 static void fm10k_reset_msix_capability(struct fm10k_intfc *interface)
1803 {
1804 	pci_disable_msix(interface->pdev);
1805 	kfree(interface->msix_entries);
1806 	interface->msix_entries = NULL;
1807 }
1808 
1809 /**
1810  * f10k_init_msix_capability - configure MSI-X capability
1811  * @interface: board private structure to initialize
1812  *
1813  * Attempt to configure the interrupts using the best available
1814  * capabilities of the hardware and the kernel.
1815  **/
1816 static int fm10k_init_msix_capability(struct fm10k_intfc *interface)
1817 {
1818 	struct fm10k_hw *hw = &interface->hw;
1819 	int v_budget, vector;
1820 
1821 	/* It's easy to be greedy for MSI-X vectors, but it really
1822 	 * doesn't do us much good if we have a lot more vectors
1823 	 * than CPU's.  So let's be conservative and only ask for
1824 	 * (roughly) the same number of vectors as there are CPU's.
1825 	 * the default is to use pairs of vectors
1826 	 */
1827 	v_budget = max(interface->num_rx_queues, interface->num_tx_queues);
1828 	v_budget = min_t(u16, v_budget, num_online_cpus());
1829 
1830 	/* account for vectors not related to queues */
1831 	v_budget += NON_Q_VECTORS(hw);
1832 
1833 	/* At the same time, hardware can only support a maximum of
1834 	 * hw.mac->max_msix_vectors vectors.  With features
1835 	 * such as RSS and VMDq, we can easily surpass the number of Rx and Tx
1836 	 * descriptor queues supported by our device.  Thus, we cap it off in
1837 	 * those rare cases where the cpu count also exceeds our vector limit.
1838 	 */
1839 	v_budget = min_t(int, v_budget, hw->mac.max_msix_vectors);
1840 
1841 	/* A failure in MSI-X entry allocation is fatal. */
1842 	interface->msix_entries = kcalloc(v_budget, sizeof(struct msix_entry),
1843 					  GFP_KERNEL);
1844 	if (!interface->msix_entries)
1845 		return -ENOMEM;
1846 
1847 	/* populate entry values */
1848 	for (vector = 0; vector < v_budget; vector++)
1849 		interface->msix_entries[vector].entry = vector;
1850 
1851 	/* Attempt to enable MSI-X with requested value */
1852 	v_budget = pci_enable_msix_range(interface->pdev,
1853 					 interface->msix_entries,
1854 					 MIN_MSIX_COUNT(hw),
1855 					 v_budget);
1856 	if (v_budget < 0) {
1857 		kfree(interface->msix_entries);
1858 		interface->msix_entries = NULL;
1859 		return v_budget;
1860 	}
1861 
1862 	/* record the number of queues available for q_vectors */
1863 	interface->num_q_vectors = v_budget - NON_Q_VECTORS(hw);
1864 
1865 	return 0;
1866 }
1867 
1868 /**
1869  * fm10k_cache_ring_qos - Descriptor ring to register mapping for QoS
1870  * @interface: Interface structure continaining rings and devices
1871  *
1872  * Cache the descriptor ring offsets for Qos
1873  **/
1874 static bool fm10k_cache_ring_qos(struct fm10k_intfc *interface)
1875 {
1876 	struct net_device *dev = interface->netdev;
1877 	int pc, offset, rss_i, i, q_idx;
1878 	u16 pc_stride = interface->ring_feature[RING_F_QOS].mask + 1;
1879 	u8 num_pcs = netdev_get_num_tc(dev);
1880 
1881 	if (num_pcs <= 1)
1882 		return false;
1883 
1884 	rss_i = interface->ring_feature[RING_F_RSS].indices;
1885 
1886 	for (pc = 0, offset = 0; pc < num_pcs; pc++, offset += rss_i) {
1887 		q_idx = pc;
1888 		for (i = 0; i < rss_i; i++) {
1889 			interface->tx_ring[offset + i]->reg_idx = q_idx;
1890 			interface->tx_ring[offset + i]->qos_pc = pc;
1891 			interface->rx_ring[offset + i]->reg_idx = q_idx;
1892 			interface->rx_ring[offset + i]->qos_pc = pc;
1893 			q_idx += pc_stride;
1894 		}
1895 	}
1896 
1897 	return true;
1898 }
1899 
1900 /**
1901  * fm10k_cache_ring_rss - Descriptor ring to register mapping for RSS
1902  * @interface: Interface structure continaining rings and devices
1903  *
1904  * Cache the descriptor ring offsets for RSS
1905  **/
1906 static void fm10k_cache_ring_rss(struct fm10k_intfc *interface)
1907 {
1908 	int i;
1909 
1910 	for (i = 0; i < interface->num_rx_queues; i++)
1911 		interface->rx_ring[i]->reg_idx = i;
1912 
1913 	for (i = 0; i < interface->num_tx_queues; i++)
1914 		interface->tx_ring[i]->reg_idx = i;
1915 }
1916 
1917 /**
1918  * fm10k_assign_rings - Map rings to network devices
1919  * @interface: Interface structure containing rings and devices
1920  *
1921  * This function is meant to go though and configure both the network
1922  * devices so that they contain rings, and configure the rings so that
1923  * they function with their network devices.
1924  **/
1925 static void fm10k_assign_rings(struct fm10k_intfc *interface)
1926 {
1927 	if (fm10k_cache_ring_qos(interface))
1928 		return;
1929 
1930 	fm10k_cache_ring_rss(interface);
1931 }
1932 
1933 static void fm10k_init_reta(struct fm10k_intfc *interface)
1934 {
1935 	u16 i, rss_i = interface->ring_feature[RING_F_RSS].indices;
1936 	u32 reta;
1937 
1938 	/* If the Rx flow indirection table has been configured manually, we
1939 	 * need to maintain it when possible.
1940 	 */
1941 	if (netif_is_rxfh_configured(interface->netdev)) {
1942 		for (i = FM10K_RETA_SIZE; i--;) {
1943 			reta = interface->reta[i];
1944 			if ((((reta << 24) >> 24) < rss_i) &&
1945 			    (((reta << 16) >> 24) < rss_i) &&
1946 			    (((reta <<  8) >> 24) < rss_i) &&
1947 			    (((reta)       >> 24) < rss_i))
1948 				continue;
1949 
1950 			/* this should never happen */
1951 			dev_err(&interface->pdev->dev,
1952 				"RSS indirection table assigned flows out of queue bounds. Reconfiguring.\n");
1953 			goto repopulate_reta;
1954 		}
1955 
1956 		/* do nothing if all of the elements are in bounds */
1957 		return;
1958 	}
1959 
1960 repopulate_reta:
1961 	fm10k_write_reta(interface, NULL);
1962 }
1963 
1964 /**
1965  * fm10k_init_queueing_scheme - Determine proper queueing scheme
1966  * @interface: board private structure to initialize
1967  *
1968  * We determine which queueing scheme to use based on...
1969  * - Hardware queue count (num_*_queues)
1970  *   - defined by miscellaneous hardware support/features (RSS, etc.)
1971  **/
1972 int fm10k_init_queueing_scheme(struct fm10k_intfc *interface)
1973 {
1974 	int err;
1975 
1976 	/* Number of supported queues */
1977 	fm10k_set_num_queues(interface);
1978 
1979 	/* Configure MSI-X capability */
1980 	err = fm10k_init_msix_capability(interface);
1981 	if (err) {
1982 		dev_err(&interface->pdev->dev,
1983 			"Unable to initialize MSI-X capability\n");
1984 		goto err_init_msix;
1985 	}
1986 
1987 	/* Allocate memory for queues */
1988 	err = fm10k_alloc_q_vectors(interface);
1989 	if (err) {
1990 		dev_err(&interface->pdev->dev,
1991 			"Unable to allocate queue vectors\n");
1992 		goto err_alloc_q_vectors;
1993 	}
1994 
1995 	/* Map rings to devices, and map devices to physical queues */
1996 	fm10k_assign_rings(interface);
1997 
1998 	/* Initialize RSS redirection table */
1999 	fm10k_init_reta(interface);
2000 
2001 	return 0;
2002 
2003 err_alloc_q_vectors:
2004 	fm10k_reset_msix_capability(interface);
2005 err_init_msix:
2006 	fm10k_reset_num_queues(interface);
2007 	return err;
2008 }
2009 
2010 /**
2011  * fm10k_clear_queueing_scheme - Clear the current queueing scheme settings
2012  * @interface: board private structure to clear queueing scheme on
2013  *
2014  * We go through and clear queueing specific resources and reset the structure
2015  * to pre-load conditions
2016  **/
2017 void fm10k_clear_queueing_scheme(struct fm10k_intfc *interface)
2018 {
2019 	fm10k_free_q_vectors(interface);
2020 	fm10k_reset_msix_capability(interface);
2021 }
2022