1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright(c) 2013 - 2018 Intel Corporation. */ 3 4 #include <linux/types.h> 5 #include <linux/module.h> 6 #include <net/ipv6.h> 7 #include <net/ip.h> 8 #include <net/tcp.h> 9 #include <linux/if_macvlan.h> 10 #include <linux/prefetch.h> 11 12 #include "fm10k.h" 13 14 #define DRV_VERSION "0.23.4-k" 15 #define DRV_SUMMARY "Intel(R) Ethernet Switch Host Interface Driver" 16 const char fm10k_driver_version[] = DRV_VERSION; 17 char fm10k_driver_name[] = "fm10k"; 18 static const char fm10k_driver_string[] = DRV_SUMMARY; 19 static const char fm10k_copyright[] = 20 "Copyright(c) 2013 - 2018 Intel Corporation."; 21 22 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>"); 23 MODULE_DESCRIPTION(DRV_SUMMARY); 24 MODULE_LICENSE("GPL"); 25 MODULE_VERSION(DRV_VERSION); 26 27 /* single workqueue for entire fm10k driver */ 28 struct workqueue_struct *fm10k_workqueue; 29 30 /** 31 * fm10k_init_module - Driver Registration Routine 32 * 33 * fm10k_init_module is the first routine called when the driver is 34 * loaded. All it does is register with the PCI subsystem. 35 **/ 36 static int __init fm10k_init_module(void) 37 { 38 pr_info("%s - version %s\n", fm10k_driver_string, fm10k_driver_version); 39 pr_info("%s\n", fm10k_copyright); 40 41 /* create driver workqueue */ 42 fm10k_workqueue = alloc_workqueue("%s", WQ_MEM_RECLAIM, 0, 43 fm10k_driver_name); 44 45 fm10k_dbg_init(); 46 47 return fm10k_register_pci_driver(); 48 } 49 module_init(fm10k_init_module); 50 51 /** 52 * fm10k_exit_module - Driver Exit Cleanup Routine 53 * 54 * fm10k_exit_module is called just before the driver is removed 55 * from memory. 56 **/ 57 static void __exit fm10k_exit_module(void) 58 { 59 fm10k_unregister_pci_driver(); 60 61 fm10k_dbg_exit(); 62 63 /* destroy driver workqueue */ 64 destroy_workqueue(fm10k_workqueue); 65 } 66 module_exit(fm10k_exit_module); 67 68 static bool fm10k_alloc_mapped_page(struct fm10k_ring *rx_ring, 69 struct fm10k_rx_buffer *bi) 70 { 71 struct page *page = bi->page; 72 dma_addr_t dma; 73 74 /* Only page will be NULL if buffer was consumed */ 75 if (likely(page)) 76 return true; 77 78 /* alloc new page for storage */ 79 page = dev_alloc_page(); 80 if (unlikely(!page)) { 81 rx_ring->rx_stats.alloc_failed++; 82 return false; 83 } 84 85 /* map page for use */ 86 dma = dma_map_page(rx_ring->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE); 87 88 /* if mapping failed free memory back to system since 89 * there isn't much point in holding memory we can't use 90 */ 91 if (dma_mapping_error(rx_ring->dev, dma)) { 92 __free_page(page); 93 94 rx_ring->rx_stats.alloc_failed++; 95 return false; 96 } 97 98 bi->dma = dma; 99 bi->page = page; 100 bi->page_offset = 0; 101 102 return true; 103 } 104 105 /** 106 * fm10k_alloc_rx_buffers - Replace used receive buffers 107 * @rx_ring: ring to place buffers on 108 * @cleaned_count: number of buffers to replace 109 **/ 110 void fm10k_alloc_rx_buffers(struct fm10k_ring *rx_ring, u16 cleaned_count) 111 { 112 union fm10k_rx_desc *rx_desc; 113 struct fm10k_rx_buffer *bi; 114 u16 i = rx_ring->next_to_use; 115 116 /* nothing to do */ 117 if (!cleaned_count) 118 return; 119 120 rx_desc = FM10K_RX_DESC(rx_ring, i); 121 bi = &rx_ring->rx_buffer[i]; 122 i -= rx_ring->count; 123 124 do { 125 if (!fm10k_alloc_mapped_page(rx_ring, bi)) 126 break; 127 128 /* Refresh the desc even if buffer_addrs didn't change 129 * because each write-back erases this info. 130 */ 131 rx_desc->q.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset); 132 133 rx_desc++; 134 bi++; 135 i++; 136 if (unlikely(!i)) { 137 rx_desc = FM10K_RX_DESC(rx_ring, 0); 138 bi = rx_ring->rx_buffer; 139 i -= rx_ring->count; 140 } 141 142 /* clear the status bits for the next_to_use descriptor */ 143 rx_desc->d.staterr = 0; 144 145 cleaned_count--; 146 } while (cleaned_count); 147 148 i += rx_ring->count; 149 150 if (rx_ring->next_to_use != i) { 151 /* record the next descriptor to use */ 152 rx_ring->next_to_use = i; 153 154 /* update next to alloc since we have filled the ring */ 155 rx_ring->next_to_alloc = i; 156 157 /* Force memory writes to complete before letting h/w 158 * know there are new descriptors to fetch. (Only 159 * applicable for weak-ordered memory model archs, 160 * such as IA-64). 161 */ 162 wmb(); 163 164 /* notify hardware of new descriptors */ 165 writel(i, rx_ring->tail); 166 } 167 } 168 169 /** 170 * fm10k_reuse_rx_page - page flip buffer and store it back on the ring 171 * @rx_ring: rx descriptor ring to store buffers on 172 * @old_buff: donor buffer to have page reused 173 * 174 * Synchronizes page for reuse by the interface 175 **/ 176 static void fm10k_reuse_rx_page(struct fm10k_ring *rx_ring, 177 struct fm10k_rx_buffer *old_buff) 178 { 179 struct fm10k_rx_buffer *new_buff; 180 u16 nta = rx_ring->next_to_alloc; 181 182 new_buff = &rx_ring->rx_buffer[nta]; 183 184 /* update, and store next to alloc */ 185 nta++; 186 rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0; 187 188 /* transfer page from old buffer to new buffer */ 189 *new_buff = *old_buff; 190 191 /* sync the buffer for use by the device */ 192 dma_sync_single_range_for_device(rx_ring->dev, old_buff->dma, 193 old_buff->page_offset, 194 FM10K_RX_BUFSZ, 195 DMA_FROM_DEVICE); 196 } 197 198 static inline bool fm10k_page_is_reserved(struct page *page) 199 { 200 return (page_to_nid(page) != numa_mem_id()) || page_is_pfmemalloc(page); 201 } 202 203 static bool fm10k_can_reuse_rx_page(struct fm10k_rx_buffer *rx_buffer, 204 struct page *page, 205 unsigned int __maybe_unused truesize) 206 { 207 /* avoid re-using remote pages */ 208 if (unlikely(fm10k_page_is_reserved(page))) 209 return false; 210 211 #if (PAGE_SIZE < 8192) 212 /* if we are only owner of page we can reuse it */ 213 if (unlikely(page_count(page) != 1)) 214 return false; 215 216 /* flip page offset to other buffer */ 217 rx_buffer->page_offset ^= FM10K_RX_BUFSZ; 218 #else 219 /* move offset up to the next cache line */ 220 rx_buffer->page_offset += truesize; 221 222 if (rx_buffer->page_offset > (PAGE_SIZE - FM10K_RX_BUFSZ)) 223 return false; 224 #endif 225 226 /* Even if we own the page, we are not allowed to use atomic_set() 227 * This would break get_page_unless_zero() users. 228 */ 229 page_ref_inc(page); 230 231 return true; 232 } 233 234 /** 235 * fm10k_add_rx_frag - Add contents of Rx buffer to sk_buff 236 * @rx_buffer: buffer containing page to add 237 * @size: packet size from rx_desc 238 * @rx_desc: descriptor containing length of buffer written by hardware 239 * @skb: sk_buff to place the data into 240 * 241 * This function will add the data contained in rx_buffer->page to the skb. 242 * This is done either through a direct copy if the data in the buffer is 243 * less than the skb header size, otherwise it will just attach the page as 244 * a frag to the skb. 245 * 246 * The function will then update the page offset if necessary and return 247 * true if the buffer can be reused by the interface. 248 **/ 249 static bool fm10k_add_rx_frag(struct fm10k_rx_buffer *rx_buffer, 250 unsigned int size, 251 union fm10k_rx_desc *rx_desc, 252 struct sk_buff *skb) 253 { 254 struct page *page = rx_buffer->page; 255 unsigned char *va = page_address(page) + rx_buffer->page_offset; 256 #if (PAGE_SIZE < 8192) 257 unsigned int truesize = FM10K_RX_BUFSZ; 258 #else 259 unsigned int truesize = ALIGN(size, 512); 260 #endif 261 unsigned int pull_len; 262 263 if (unlikely(skb_is_nonlinear(skb))) 264 goto add_tail_frag; 265 266 if (likely(size <= FM10K_RX_HDR_LEN)) { 267 memcpy(__skb_put(skb, size), va, ALIGN(size, sizeof(long))); 268 269 /* page is not reserved, we can reuse buffer as-is */ 270 if (likely(!fm10k_page_is_reserved(page))) 271 return true; 272 273 /* this page cannot be reused so discard it */ 274 __free_page(page); 275 return false; 276 } 277 278 /* we need the header to contain the greater of either ETH_HLEN or 279 * 60 bytes if the skb->len is less than 60 for skb_pad. 280 */ 281 pull_len = eth_get_headlen(va, FM10K_RX_HDR_LEN); 282 283 /* align pull length to size of long to optimize memcpy performance */ 284 memcpy(__skb_put(skb, pull_len), va, ALIGN(pull_len, sizeof(long))); 285 286 /* update all of the pointers */ 287 va += pull_len; 288 size -= pull_len; 289 290 add_tail_frag: 291 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page, 292 (unsigned long)va & ~PAGE_MASK, size, truesize); 293 294 return fm10k_can_reuse_rx_page(rx_buffer, page, truesize); 295 } 296 297 static struct sk_buff *fm10k_fetch_rx_buffer(struct fm10k_ring *rx_ring, 298 union fm10k_rx_desc *rx_desc, 299 struct sk_buff *skb) 300 { 301 unsigned int size = le16_to_cpu(rx_desc->w.length); 302 struct fm10k_rx_buffer *rx_buffer; 303 struct page *page; 304 305 rx_buffer = &rx_ring->rx_buffer[rx_ring->next_to_clean]; 306 page = rx_buffer->page; 307 prefetchw(page); 308 309 if (likely(!skb)) { 310 void *page_addr = page_address(page) + 311 rx_buffer->page_offset; 312 313 /* prefetch first cache line of first page */ 314 prefetch(page_addr); 315 #if L1_CACHE_BYTES < 128 316 prefetch(page_addr + L1_CACHE_BYTES); 317 #endif 318 319 /* allocate a skb to store the frags */ 320 skb = napi_alloc_skb(&rx_ring->q_vector->napi, 321 FM10K_RX_HDR_LEN); 322 if (unlikely(!skb)) { 323 rx_ring->rx_stats.alloc_failed++; 324 return NULL; 325 } 326 327 /* we will be copying header into skb->data in 328 * pskb_may_pull so it is in our interest to prefetch 329 * it now to avoid a possible cache miss 330 */ 331 prefetchw(skb->data); 332 } 333 334 /* we are reusing so sync this buffer for CPU use */ 335 dma_sync_single_range_for_cpu(rx_ring->dev, 336 rx_buffer->dma, 337 rx_buffer->page_offset, 338 size, 339 DMA_FROM_DEVICE); 340 341 /* pull page into skb */ 342 if (fm10k_add_rx_frag(rx_buffer, size, rx_desc, skb)) { 343 /* hand second half of page back to the ring */ 344 fm10k_reuse_rx_page(rx_ring, rx_buffer); 345 } else { 346 /* we are not reusing the buffer so unmap it */ 347 dma_unmap_page(rx_ring->dev, rx_buffer->dma, 348 PAGE_SIZE, DMA_FROM_DEVICE); 349 } 350 351 /* clear contents of rx_buffer */ 352 rx_buffer->page = NULL; 353 354 return skb; 355 } 356 357 static inline void fm10k_rx_checksum(struct fm10k_ring *ring, 358 union fm10k_rx_desc *rx_desc, 359 struct sk_buff *skb) 360 { 361 skb_checksum_none_assert(skb); 362 363 /* Rx checksum disabled via ethtool */ 364 if (!(ring->netdev->features & NETIF_F_RXCSUM)) 365 return; 366 367 /* TCP/UDP checksum error bit is set */ 368 if (fm10k_test_staterr(rx_desc, 369 FM10K_RXD_STATUS_L4E | 370 FM10K_RXD_STATUS_L4E2 | 371 FM10K_RXD_STATUS_IPE | 372 FM10K_RXD_STATUS_IPE2)) { 373 ring->rx_stats.csum_err++; 374 return; 375 } 376 377 /* It must be a TCP or UDP packet with a valid checksum */ 378 if (fm10k_test_staterr(rx_desc, FM10K_RXD_STATUS_L4CS2)) 379 skb->encapsulation = true; 380 else if (!fm10k_test_staterr(rx_desc, FM10K_RXD_STATUS_L4CS)) 381 return; 382 383 skb->ip_summed = CHECKSUM_UNNECESSARY; 384 385 ring->rx_stats.csum_good++; 386 } 387 388 #define FM10K_RSS_L4_TYPES_MASK \ 389 (BIT(FM10K_RSSTYPE_IPV4_TCP) | \ 390 BIT(FM10K_RSSTYPE_IPV4_UDP) | \ 391 BIT(FM10K_RSSTYPE_IPV6_TCP) | \ 392 BIT(FM10K_RSSTYPE_IPV6_UDP)) 393 394 static inline void fm10k_rx_hash(struct fm10k_ring *ring, 395 union fm10k_rx_desc *rx_desc, 396 struct sk_buff *skb) 397 { 398 u16 rss_type; 399 400 if (!(ring->netdev->features & NETIF_F_RXHASH)) 401 return; 402 403 rss_type = le16_to_cpu(rx_desc->w.pkt_info) & FM10K_RXD_RSSTYPE_MASK; 404 if (!rss_type) 405 return; 406 407 skb_set_hash(skb, le32_to_cpu(rx_desc->d.rss), 408 (BIT(rss_type) & FM10K_RSS_L4_TYPES_MASK) ? 409 PKT_HASH_TYPE_L4 : PKT_HASH_TYPE_L3); 410 } 411 412 static void fm10k_type_trans(struct fm10k_ring *rx_ring, 413 union fm10k_rx_desc __maybe_unused *rx_desc, 414 struct sk_buff *skb) 415 { 416 struct net_device *dev = rx_ring->netdev; 417 struct fm10k_l2_accel *l2_accel = rcu_dereference_bh(rx_ring->l2_accel); 418 419 /* check to see if DGLORT belongs to a MACVLAN */ 420 if (l2_accel) { 421 u16 idx = le16_to_cpu(FM10K_CB(skb)->fi.w.dglort) - 1; 422 423 idx -= l2_accel->dglort; 424 if (idx < l2_accel->size && l2_accel->macvlan[idx]) 425 dev = l2_accel->macvlan[idx]; 426 else 427 l2_accel = NULL; 428 } 429 430 /* Record Rx queue, or update macvlan statistics */ 431 if (!l2_accel) 432 skb_record_rx_queue(skb, rx_ring->queue_index); 433 else 434 macvlan_count_rx(netdev_priv(dev), skb->len + ETH_HLEN, true, 435 false); 436 437 skb->protocol = eth_type_trans(skb, dev); 438 } 439 440 /** 441 * fm10k_process_skb_fields - Populate skb header fields from Rx descriptor 442 * @rx_ring: rx descriptor ring packet is being transacted on 443 * @rx_desc: pointer to the EOP Rx descriptor 444 * @skb: pointer to current skb being populated 445 * 446 * This function checks the ring, descriptor, and packet information in 447 * order to populate the hash, checksum, VLAN, timestamp, protocol, and 448 * other fields within the skb. 449 **/ 450 static unsigned int fm10k_process_skb_fields(struct fm10k_ring *rx_ring, 451 union fm10k_rx_desc *rx_desc, 452 struct sk_buff *skb) 453 { 454 unsigned int len = skb->len; 455 456 fm10k_rx_hash(rx_ring, rx_desc, skb); 457 458 fm10k_rx_checksum(rx_ring, rx_desc, skb); 459 460 FM10K_CB(skb)->tstamp = rx_desc->q.timestamp; 461 462 FM10K_CB(skb)->fi.w.vlan = rx_desc->w.vlan; 463 464 FM10K_CB(skb)->fi.d.glort = rx_desc->d.glort; 465 466 if (rx_desc->w.vlan) { 467 u16 vid = le16_to_cpu(rx_desc->w.vlan); 468 469 if ((vid & VLAN_VID_MASK) != rx_ring->vid) 470 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid); 471 else if (vid & VLAN_PRIO_MASK) 472 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), 473 vid & VLAN_PRIO_MASK); 474 } 475 476 fm10k_type_trans(rx_ring, rx_desc, skb); 477 478 return len; 479 } 480 481 /** 482 * fm10k_is_non_eop - process handling of non-EOP buffers 483 * @rx_ring: Rx ring being processed 484 * @rx_desc: Rx descriptor for current buffer 485 * 486 * This function updates next to clean. If the buffer is an EOP buffer 487 * this function exits returning false, otherwise it will place the 488 * sk_buff in the next buffer to be chained and return true indicating 489 * that this is in fact a non-EOP buffer. 490 **/ 491 static bool fm10k_is_non_eop(struct fm10k_ring *rx_ring, 492 union fm10k_rx_desc *rx_desc) 493 { 494 u32 ntc = rx_ring->next_to_clean + 1; 495 496 /* fetch, update, and store next to clean */ 497 ntc = (ntc < rx_ring->count) ? ntc : 0; 498 rx_ring->next_to_clean = ntc; 499 500 prefetch(FM10K_RX_DESC(rx_ring, ntc)); 501 502 if (likely(fm10k_test_staterr(rx_desc, FM10K_RXD_STATUS_EOP))) 503 return false; 504 505 return true; 506 } 507 508 /** 509 * fm10k_cleanup_headers - Correct corrupted or empty headers 510 * @rx_ring: rx descriptor ring packet is being transacted on 511 * @rx_desc: pointer to the EOP Rx descriptor 512 * @skb: pointer to current skb being fixed 513 * 514 * Address the case where we are pulling data in on pages only 515 * and as such no data is present in the skb header. 516 * 517 * In addition if skb is not at least 60 bytes we need to pad it so that 518 * it is large enough to qualify as a valid Ethernet frame. 519 * 520 * Returns true if an error was encountered and skb was freed. 521 **/ 522 static bool fm10k_cleanup_headers(struct fm10k_ring *rx_ring, 523 union fm10k_rx_desc *rx_desc, 524 struct sk_buff *skb) 525 { 526 if (unlikely((fm10k_test_staterr(rx_desc, 527 FM10K_RXD_STATUS_RXE)))) { 528 #define FM10K_TEST_RXD_BIT(rxd, bit) \ 529 ((rxd)->w.csum_err & cpu_to_le16(bit)) 530 if (FM10K_TEST_RXD_BIT(rx_desc, FM10K_RXD_ERR_SWITCH_ERROR)) 531 rx_ring->rx_stats.switch_errors++; 532 if (FM10K_TEST_RXD_BIT(rx_desc, FM10K_RXD_ERR_NO_DESCRIPTOR)) 533 rx_ring->rx_stats.drops++; 534 if (FM10K_TEST_RXD_BIT(rx_desc, FM10K_RXD_ERR_PP_ERROR)) 535 rx_ring->rx_stats.pp_errors++; 536 if (FM10K_TEST_RXD_BIT(rx_desc, FM10K_RXD_ERR_SWITCH_READY)) 537 rx_ring->rx_stats.link_errors++; 538 if (FM10K_TEST_RXD_BIT(rx_desc, FM10K_RXD_ERR_TOO_BIG)) 539 rx_ring->rx_stats.length_errors++; 540 dev_kfree_skb_any(skb); 541 rx_ring->rx_stats.errors++; 542 return true; 543 } 544 545 /* if eth_skb_pad returns an error the skb was freed */ 546 if (eth_skb_pad(skb)) 547 return true; 548 549 return false; 550 } 551 552 /** 553 * fm10k_receive_skb - helper function to handle rx indications 554 * @q_vector: structure containing interrupt and ring information 555 * @skb: packet to send up 556 **/ 557 static void fm10k_receive_skb(struct fm10k_q_vector *q_vector, 558 struct sk_buff *skb) 559 { 560 napi_gro_receive(&q_vector->napi, skb); 561 } 562 563 static int fm10k_clean_rx_irq(struct fm10k_q_vector *q_vector, 564 struct fm10k_ring *rx_ring, 565 int budget) 566 { 567 struct sk_buff *skb = rx_ring->skb; 568 unsigned int total_bytes = 0, total_packets = 0; 569 u16 cleaned_count = fm10k_desc_unused(rx_ring); 570 571 while (likely(total_packets < budget)) { 572 union fm10k_rx_desc *rx_desc; 573 574 /* return some buffers to hardware, one at a time is too slow */ 575 if (cleaned_count >= FM10K_RX_BUFFER_WRITE) { 576 fm10k_alloc_rx_buffers(rx_ring, cleaned_count); 577 cleaned_count = 0; 578 } 579 580 rx_desc = FM10K_RX_DESC(rx_ring, rx_ring->next_to_clean); 581 582 if (!rx_desc->d.staterr) 583 break; 584 585 /* This memory barrier is needed to keep us from reading 586 * any other fields out of the rx_desc until we know the 587 * descriptor has been written back 588 */ 589 dma_rmb(); 590 591 /* retrieve a buffer from the ring */ 592 skb = fm10k_fetch_rx_buffer(rx_ring, rx_desc, skb); 593 594 /* exit if we failed to retrieve a buffer */ 595 if (!skb) 596 break; 597 598 cleaned_count++; 599 600 /* fetch next buffer in frame if non-eop */ 601 if (fm10k_is_non_eop(rx_ring, rx_desc)) 602 continue; 603 604 /* verify the packet layout is correct */ 605 if (fm10k_cleanup_headers(rx_ring, rx_desc, skb)) { 606 skb = NULL; 607 continue; 608 } 609 610 /* populate checksum, timestamp, VLAN, and protocol */ 611 total_bytes += fm10k_process_skb_fields(rx_ring, rx_desc, skb); 612 613 fm10k_receive_skb(q_vector, skb); 614 615 /* reset skb pointer */ 616 skb = NULL; 617 618 /* update budget accounting */ 619 total_packets++; 620 } 621 622 /* place incomplete frames back on ring for completion */ 623 rx_ring->skb = skb; 624 625 u64_stats_update_begin(&rx_ring->syncp); 626 rx_ring->stats.packets += total_packets; 627 rx_ring->stats.bytes += total_bytes; 628 u64_stats_update_end(&rx_ring->syncp); 629 q_vector->rx.total_packets += total_packets; 630 q_vector->rx.total_bytes += total_bytes; 631 632 return total_packets; 633 } 634 635 #define VXLAN_HLEN (sizeof(struct udphdr) + 8) 636 static struct ethhdr *fm10k_port_is_vxlan(struct sk_buff *skb) 637 { 638 struct fm10k_intfc *interface = netdev_priv(skb->dev); 639 struct fm10k_udp_port *vxlan_port; 640 641 /* we can only offload a vxlan if we recognize it as such */ 642 vxlan_port = list_first_entry_or_null(&interface->vxlan_port, 643 struct fm10k_udp_port, list); 644 645 if (!vxlan_port) 646 return NULL; 647 if (vxlan_port->port != udp_hdr(skb)->dest) 648 return NULL; 649 650 /* return offset of udp_hdr plus 8 bytes for VXLAN header */ 651 return (struct ethhdr *)(skb_transport_header(skb) + VXLAN_HLEN); 652 } 653 654 #define FM10K_NVGRE_RESERVED0_FLAGS htons(0x9FFF) 655 #define NVGRE_TNI htons(0x2000) 656 struct fm10k_nvgre_hdr { 657 __be16 flags; 658 __be16 proto; 659 __be32 tni; 660 }; 661 662 static struct ethhdr *fm10k_gre_is_nvgre(struct sk_buff *skb) 663 { 664 struct fm10k_nvgre_hdr *nvgre_hdr; 665 int hlen = ip_hdrlen(skb); 666 667 /* currently only IPv4 is supported due to hlen above */ 668 if (vlan_get_protocol(skb) != htons(ETH_P_IP)) 669 return NULL; 670 671 /* our transport header should be NVGRE */ 672 nvgre_hdr = (struct fm10k_nvgre_hdr *)(skb_network_header(skb) + hlen); 673 674 /* verify all reserved flags are 0 */ 675 if (nvgre_hdr->flags & FM10K_NVGRE_RESERVED0_FLAGS) 676 return NULL; 677 678 /* report start of ethernet header */ 679 if (nvgre_hdr->flags & NVGRE_TNI) 680 return (struct ethhdr *)(nvgre_hdr + 1); 681 682 return (struct ethhdr *)(&nvgre_hdr->tni); 683 } 684 685 __be16 fm10k_tx_encap_offload(struct sk_buff *skb) 686 { 687 u8 l4_hdr = 0, inner_l4_hdr = 0, inner_l4_hlen; 688 struct ethhdr *eth_hdr; 689 690 if (skb->inner_protocol_type != ENCAP_TYPE_ETHER || 691 skb->inner_protocol != htons(ETH_P_TEB)) 692 return 0; 693 694 switch (vlan_get_protocol(skb)) { 695 case htons(ETH_P_IP): 696 l4_hdr = ip_hdr(skb)->protocol; 697 break; 698 case htons(ETH_P_IPV6): 699 l4_hdr = ipv6_hdr(skb)->nexthdr; 700 break; 701 default: 702 return 0; 703 } 704 705 switch (l4_hdr) { 706 case IPPROTO_UDP: 707 eth_hdr = fm10k_port_is_vxlan(skb); 708 break; 709 case IPPROTO_GRE: 710 eth_hdr = fm10k_gre_is_nvgre(skb); 711 break; 712 default: 713 return 0; 714 } 715 716 if (!eth_hdr) 717 return 0; 718 719 switch (eth_hdr->h_proto) { 720 case htons(ETH_P_IP): 721 inner_l4_hdr = inner_ip_hdr(skb)->protocol; 722 break; 723 case htons(ETH_P_IPV6): 724 inner_l4_hdr = inner_ipv6_hdr(skb)->nexthdr; 725 break; 726 default: 727 return 0; 728 } 729 730 switch (inner_l4_hdr) { 731 case IPPROTO_TCP: 732 inner_l4_hlen = inner_tcp_hdrlen(skb); 733 break; 734 case IPPROTO_UDP: 735 inner_l4_hlen = 8; 736 break; 737 default: 738 return 0; 739 } 740 741 /* The hardware allows tunnel offloads only if the combined inner and 742 * outer header is 184 bytes or less 743 */ 744 if (skb_inner_transport_header(skb) + inner_l4_hlen - 745 skb_mac_header(skb) > FM10K_TUNNEL_HEADER_LENGTH) 746 return 0; 747 748 return eth_hdr->h_proto; 749 } 750 751 static int fm10k_tso(struct fm10k_ring *tx_ring, 752 struct fm10k_tx_buffer *first) 753 { 754 struct sk_buff *skb = first->skb; 755 struct fm10k_tx_desc *tx_desc; 756 unsigned char *th; 757 u8 hdrlen; 758 759 if (skb->ip_summed != CHECKSUM_PARTIAL) 760 return 0; 761 762 if (!skb_is_gso(skb)) 763 return 0; 764 765 /* compute header lengths */ 766 if (skb->encapsulation) { 767 if (!fm10k_tx_encap_offload(skb)) 768 goto err_vxlan; 769 th = skb_inner_transport_header(skb); 770 } else { 771 th = skb_transport_header(skb); 772 } 773 774 /* compute offset from SOF to transport header and add header len */ 775 hdrlen = (th - skb->data) + (((struct tcphdr *)th)->doff << 2); 776 777 first->tx_flags |= FM10K_TX_FLAGS_CSUM; 778 779 /* update gso size and bytecount with header size */ 780 first->gso_segs = skb_shinfo(skb)->gso_segs; 781 first->bytecount += (first->gso_segs - 1) * hdrlen; 782 783 /* populate Tx descriptor header size and mss */ 784 tx_desc = FM10K_TX_DESC(tx_ring, tx_ring->next_to_use); 785 tx_desc->hdrlen = hdrlen; 786 tx_desc->mss = cpu_to_le16(skb_shinfo(skb)->gso_size); 787 788 return 1; 789 790 err_vxlan: 791 tx_ring->netdev->features &= ~NETIF_F_GSO_UDP_TUNNEL; 792 if (net_ratelimit()) 793 netdev_err(tx_ring->netdev, 794 "TSO requested for unsupported tunnel, disabling offload\n"); 795 return -1; 796 } 797 798 static void fm10k_tx_csum(struct fm10k_ring *tx_ring, 799 struct fm10k_tx_buffer *first) 800 { 801 struct sk_buff *skb = first->skb; 802 struct fm10k_tx_desc *tx_desc; 803 union { 804 struct iphdr *ipv4; 805 struct ipv6hdr *ipv6; 806 u8 *raw; 807 } network_hdr; 808 u8 *transport_hdr; 809 __be16 frag_off; 810 __be16 protocol; 811 u8 l4_hdr = 0; 812 813 if (skb->ip_summed != CHECKSUM_PARTIAL) 814 goto no_csum; 815 816 if (skb->encapsulation) { 817 protocol = fm10k_tx_encap_offload(skb); 818 if (!protocol) { 819 if (skb_checksum_help(skb)) { 820 dev_warn(tx_ring->dev, 821 "failed to offload encap csum!\n"); 822 tx_ring->tx_stats.csum_err++; 823 } 824 goto no_csum; 825 } 826 network_hdr.raw = skb_inner_network_header(skb); 827 transport_hdr = skb_inner_transport_header(skb); 828 } else { 829 protocol = vlan_get_protocol(skb); 830 network_hdr.raw = skb_network_header(skb); 831 transport_hdr = skb_transport_header(skb); 832 } 833 834 switch (protocol) { 835 case htons(ETH_P_IP): 836 l4_hdr = network_hdr.ipv4->protocol; 837 break; 838 case htons(ETH_P_IPV6): 839 l4_hdr = network_hdr.ipv6->nexthdr; 840 if (likely((transport_hdr - network_hdr.raw) == 841 sizeof(struct ipv6hdr))) 842 break; 843 ipv6_skip_exthdr(skb, network_hdr.raw - skb->data + 844 sizeof(struct ipv6hdr), 845 &l4_hdr, &frag_off); 846 if (unlikely(frag_off)) 847 l4_hdr = NEXTHDR_FRAGMENT; 848 break; 849 default: 850 break; 851 } 852 853 switch (l4_hdr) { 854 case IPPROTO_TCP: 855 case IPPROTO_UDP: 856 break; 857 case IPPROTO_GRE: 858 if (skb->encapsulation) 859 break; 860 /* fall through */ 861 default: 862 if (unlikely(net_ratelimit())) { 863 dev_warn(tx_ring->dev, 864 "partial checksum, version=%d l4 proto=%x\n", 865 protocol, l4_hdr); 866 } 867 skb_checksum_help(skb); 868 tx_ring->tx_stats.csum_err++; 869 goto no_csum; 870 } 871 872 /* update TX checksum flag */ 873 first->tx_flags |= FM10K_TX_FLAGS_CSUM; 874 tx_ring->tx_stats.csum_good++; 875 876 no_csum: 877 /* populate Tx descriptor header size and mss */ 878 tx_desc = FM10K_TX_DESC(tx_ring, tx_ring->next_to_use); 879 tx_desc->hdrlen = 0; 880 tx_desc->mss = 0; 881 } 882 883 #define FM10K_SET_FLAG(_input, _flag, _result) \ 884 ((_flag <= _result) ? \ 885 ((u32)(_input & _flag) * (_result / _flag)) : \ 886 ((u32)(_input & _flag) / (_flag / _result))) 887 888 static u8 fm10k_tx_desc_flags(struct sk_buff *skb, u32 tx_flags) 889 { 890 /* set type for advanced descriptor with frame checksum insertion */ 891 u32 desc_flags = 0; 892 893 /* set checksum offload bits */ 894 desc_flags |= FM10K_SET_FLAG(tx_flags, FM10K_TX_FLAGS_CSUM, 895 FM10K_TXD_FLAG_CSUM); 896 897 return desc_flags; 898 } 899 900 static bool fm10k_tx_desc_push(struct fm10k_ring *tx_ring, 901 struct fm10k_tx_desc *tx_desc, u16 i, 902 dma_addr_t dma, unsigned int size, u8 desc_flags) 903 { 904 /* set RS and INT for last frame in a cache line */ 905 if ((++i & (FM10K_TXD_WB_FIFO_SIZE - 1)) == 0) 906 desc_flags |= FM10K_TXD_FLAG_RS | FM10K_TXD_FLAG_INT; 907 908 /* record values to descriptor */ 909 tx_desc->buffer_addr = cpu_to_le64(dma); 910 tx_desc->flags = desc_flags; 911 tx_desc->buflen = cpu_to_le16(size); 912 913 /* return true if we just wrapped the ring */ 914 return i == tx_ring->count; 915 } 916 917 static int __fm10k_maybe_stop_tx(struct fm10k_ring *tx_ring, u16 size) 918 { 919 netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index); 920 921 /* Memory barrier before checking head and tail */ 922 smp_mb(); 923 924 /* Check again in a case another CPU has just made room available */ 925 if (likely(fm10k_desc_unused(tx_ring) < size)) 926 return -EBUSY; 927 928 /* A reprieve! - use start_queue because it doesn't call schedule */ 929 netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index); 930 ++tx_ring->tx_stats.restart_queue; 931 return 0; 932 } 933 934 static inline int fm10k_maybe_stop_tx(struct fm10k_ring *tx_ring, u16 size) 935 { 936 if (likely(fm10k_desc_unused(tx_ring) >= size)) 937 return 0; 938 return __fm10k_maybe_stop_tx(tx_ring, size); 939 } 940 941 static void fm10k_tx_map(struct fm10k_ring *tx_ring, 942 struct fm10k_tx_buffer *first) 943 { 944 struct sk_buff *skb = first->skb; 945 struct fm10k_tx_buffer *tx_buffer; 946 struct fm10k_tx_desc *tx_desc; 947 struct skb_frag_struct *frag; 948 unsigned char *data; 949 dma_addr_t dma; 950 unsigned int data_len, size; 951 u32 tx_flags = first->tx_flags; 952 u16 i = tx_ring->next_to_use; 953 u8 flags = fm10k_tx_desc_flags(skb, tx_flags); 954 955 tx_desc = FM10K_TX_DESC(tx_ring, i); 956 957 /* add HW VLAN tag */ 958 if (skb_vlan_tag_present(skb)) 959 tx_desc->vlan = cpu_to_le16(skb_vlan_tag_get(skb)); 960 else 961 tx_desc->vlan = 0; 962 963 size = skb_headlen(skb); 964 data = skb->data; 965 966 dma = dma_map_single(tx_ring->dev, data, size, DMA_TO_DEVICE); 967 968 data_len = skb->data_len; 969 tx_buffer = first; 970 971 for (frag = &skb_shinfo(skb)->frags[0];; frag++) { 972 if (dma_mapping_error(tx_ring->dev, dma)) 973 goto dma_error; 974 975 /* record length, and DMA address */ 976 dma_unmap_len_set(tx_buffer, len, size); 977 dma_unmap_addr_set(tx_buffer, dma, dma); 978 979 while (unlikely(size > FM10K_MAX_DATA_PER_TXD)) { 980 if (fm10k_tx_desc_push(tx_ring, tx_desc++, i++, dma, 981 FM10K_MAX_DATA_PER_TXD, flags)) { 982 tx_desc = FM10K_TX_DESC(tx_ring, 0); 983 i = 0; 984 } 985 986 dma += FM10K_MAX_DATA_PER_TXD; 987 size -= FM10K_MAX_DATA_PER_TXD; 988 } 989 990 if (likely(!data_len)) 991 break; 992 993 if (fm10k_tx_desc_push(tx_ring, tx_desc++, i++, 994 dma, size, flags)) { 995 tx_desc = FM10K_TX_DESC(tx_ring, 0); 996 i = 0; 997 } 998 999 size = skb_frag_size(frag); 1000 data_len -= size; 1001 1002 dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size, 1003 DMA_TO_DEVICE); 1004 1005 tx_buffer = &tx_ring->tx_buffer[i]; 1006 } 1007 1008 /* write last descriptor with LAST bit set */ 1009 flags |= FM10K_TXD_FLAG_LAST; 1010 1011 if (fm10k_tx_desc_push(tx_ring, tx_desc, i++, dma, size, flags)) 1012 i = 0; 1013 1014 /* record bytecount for BQL */ 1015 netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount); 1016 1017 /* record SW timestamp if HW timestamp is not available */ 1018 skb_tx_timestamp(first->skb); 1019 1020 /* Force memory writes to complete before letting h/w know there 1021 * are new descriptors to fetch. (Only applicable for weak-ordered 1022 * memory model archs, such as IA-64). 1023 * 1024 * We also need this memory barrier to make certain all of the 1025 * status bits have been updated before next_to_watch is written. 1026 */ 1027 wmb(); 1028 1029 /* set next_to_watch value indicating a packet is present */ 1030 first->next_to_watch = tx_desc; 1031 1032 tx_ring->next_to_use = i; 1033 1034 /* Make sure there is space in the ring for the next send. */ 1035 fm10k_maybe_stop_tx(tx_ring, DESC_NEEDED); 1036 1037 /* notify HW of packet */ 1038 if (netif_xmit_stopped(txring_txq(tx_ring)) || !skb->xmit_more) { 1039 writel(i, tx_ring->tail); 1040 1041 /* we need this if more than one processor can write to our tail 1042 * at a time, it synchronizes IO on IA64/Altix systems 1043 */ 1044 mmiowb(); 1045 } 1046 1047 return; 1048 dma_error: 1049 dev_err(tx_ring->dev, "TX DMA map failed\n"); 1050 1051 /* clear dma mappings for failed tx_buffer map */ 1052 for (;;) { 1053 tx_buffer = &tx_ring->tx_buffer[i]; 1054 fm10k_unmap_and_free_tx_resource(tx_ring, tx_buffer); 1055 if (tx_buffer == first) 1056 break; 1057 if (i == 0) 1058 i = tx_ring->count; 1059 i--; 1060 } 1061 1062 tx_ring->next_to_use = i; 1063 } 1064 1065 netdev_tx_t fm10k_xmit_frame_ring(struct sk_buff *skb, 1066 struct fm10k_ring *tx_ring) 1067 { 1068 u16 count = TXD_USE_COUNT(skb_headlen(skb)); 1069 struct fm10k_tx_buffer *first; 1070 unsigned short f; 1071 u32 tx_flags = 0; 1072 int tso; 1073 1074 /* need: 1 descriptor per page * PAGE_SIZE/FM10K_MAX_DATA_PER_TXD, 1075 * + 1 desc for skb_headlen/FM10K_MAX_DATA_PER_TXD, 1076 * + 2 desc gap to keep tail from touching head 1077 * otherwise try next time 1078 */ 1079 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) 1080 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size); 1081 1082 if (fm10k_maybe_stop_tx(tx_ring, count + 3)) { 1083 tx_ring->tx_stats.tx_busy++; 1084 return NETDEV_TX_BUSY; 1085 } 1086 1087 /* record the location of the first descriptor for this packet */ 1088 first = &tx_ring->tx_buffer[tx_ring->next_to_use]; 1089 first->skb = skb; 1090 first->bytecount = max_t(unsigned int, skb->len, ETH_ZLEN); 1091 first->gso_segs = 1; 1092 1093 /* record initial flags and protocol */ 1094 first->tx_flags = tx_flags; 1095 1096 tso = fm10k_tso(tx_ring, first); 1097 if (tso < 0) 1098 goto out_drop; 1099 else if (!tso) 1100 fm10k_tx_csum(tx_ring, first); 1101 1102 fm10k_tx_map(tx_ring, first); 1103 1104 return NETDEV_TX_OK; 1105 1106 out_drop: 1107 dev_kfree_skb_any(first->skb); 1108 first->skb = NULL; 1109 1110 return NETDEV_TX_OK; 1111 } 1112 1113 static u64 fm10k_get_tx_completed(struct fm10k_ring *ring) 1114 { 1115 return ring->stats.packets; 1116 } 1117 1118 /** 1119 * fm10k_get_tx_pending - how many Tx descriptors not processed 1120 * @ring: the ring structure 1121 * @in_sw: is tx_pending being checked in SW or in HW? 1122 */ 1123 u64 fm10k_get_tx_pending(struct fm10k_ring *ring, bool in_sw) 1124 { 1125 struct fm10k_intfc *interface = ring->q_vector->interface; 1126 struct fm10k_hw *hw = &interface->hw; 1127 u32 head, tail; 1128 1129 if (likely(in_sw)) { 1130 head = ring->next_to_clean; 1131 tail = ring->next_to_use; 1132 } else { 1133 head = fm10k_read_reg(hw, FM10K_TDH(ring->reg_idx)); 1134 tail = fm10k_read_reg(hw, FM10K_TDT(ring->reg_idx)); 1135 } 1136 1137 return ((head <= tail) ? tail : tail + ring->count) - head; 1138 } 1139 1140 bool fm10k_check_tx_hang(struct fm10k_ring *tx_ring) 1141 { 1142 u32 tx_done = fm10k_get_tx_completed(tx_ring); 1143 u32 tx_done_old = tx_ring->tx_stats.tx_done_old; 1144 u32 tx_pending = fm10k_get_tx_pending(tx_ring, true); 1145 1146 clear_check_for_tx_hang(tx_ring); 1147 1148 /* Check for a hung queue, but be thorough. This verifies 1149 * that a transmit has been completed since the previous 1150 * check AND there is at least one packet pending. By 1151 * requiring this to fail twice we avoid races with 1152 * clearing the ARMED bit and conditions where we 1153 * run the check_tx_hang logic with a transmit completion 1154 * pending but without time to complete it yet. 1155 */ 1156 if (!tx_pending || (tx_done_old != tx_done)) { 1157 /* update completed stats and continue */ 1158 tx_ring->tx_stats.tx_done_old = tx_done; 1159 /* reset the countdown */ 1160 clear_bit(__FM10K_HANG_CHECK_ARMED, tx_ring->state); 1161 1162 return false; 1163 } 1164 1165 /* make sure it is true for two checks in a row */ 1166 return test_and_set_bit(__FM10K_HANG_CHECK_ARMED, tx_ring->state); 1167 } 1168 1169 /** 1170 * fm10k_tx_timeout_reset - initiate reset due to Tx timeout 1171 * @interface: driver private struct 1172 **/ 1173 void fm10k_tx_timeout_reset(struct fm10k_intfc *interface) 1174 { 1175 /* Do the reset outside of interrupt context */ 1176 if (!test_bit(__FM10K_DOWN, interface->state)) { 1177 interface->tx_timeout_count++; 1178 set_bit(FM10K_FLAG_RESET_REQUESTED, interface->flags); 1179 fm10k_service_event_schedule(interface); 1180 } 1181 } 1182 1183 /** 1184 * fm10k_clean_tx_irq - Reclaim resources after transmit completes 1185 * @q_vector: structure containing interrupt and ring information 1186 * @tx_ring: tx ring to clean 1187 * @napi_budget: Used to determine if we are in netpoll 1188 **/ 1189 static bool fm10k_clean_tx_irq(struct fm10k_q_vector *q_vector, 1190 struct fm10k_ring *tx_ring, int napi_budget) 1191 { 1192 struct fm10k_intfc *interface = q_vector->interface; 1193 struct fm10k_tx_buffer *tx_buffer; 1194 struct fm10k_tx_desc *tx_desc; 1195 unsigned int total_bytes = 0, total_packets = 0; 1196 unsigned int budget = q_vector->tx.work_limit; 1197 unsigned int i = tx_ring->next_to_clean; 1198 1199 if (test_bit(__FM10K_DOWN, interface->state)) 1200 return true; 1201 1202 tx_buffer = &tx_ring->tx_buffer[i]; 1203 tx_desc = FM10K_TX_DESC(tx_ring, i); 1204 i -= tx_ring->count; 1205 1206 do { 1207 struct fm10k_tx_desc *eop_desc = tx_buffer->next_to_watch; 1208 1209 /* if next_to_watch is not set then there is no work pending */ 1210 if (!eop_desc) 1211 break; 1212 1213 /* prevent any other reads prior to eop_desc */ 1214 smp_rmb(); 1215 1216 /* if DD is not set pending work has not been completed */ 1217 if (!(eop_desc->flags & FM10K_TXD_FLAG_DONE)) 1218 break; 1219 1220 /* clear next_to_watch to prevent false hangs */ 1221 tx_buffer->next_to_watch = NULL; 1222 1223 /* update the statistics for this packet */ 1224 total_bytes += tx_buffer->bytecount; 1225 total_packets += tx_buffer->gso_segs; 1226 1227 /* free the skb */ 1228 napi_consume_skb(tx_buffer->skb, napi_budget); 1229 1230 /* unmap skb header data */ 1231 dma_unmap_single(tx_ring->dev, 1232 dma_unmap_addr(tx_buffer, dma), 1233 dma_unmap_len(tx_buffer, len), 1234 DMA_TO_DEVICE); 1235 1236 /* clear tx_buffer data */ 1237 tx_buffer->skb = NULL; 1238 dma_unmap_len_set(tx_buffer, len, 0); 1239 1240 /* unmap remaining buffers */ 1241 while (tx_desc != eop_desc) { 1242 tx_buffer++; 1243 tx_desc++; 1244 i++; 1245 if (unlikely(!i)) { 1246 i -= tx_ring->count; 1247 tx_buffer = tx_ring->tx_buffer; 1248 tx_desc = FM10K_TX_DESC(tx_ring, 0); 1249 } 1250 1251 /* unmap any remaining paged data */ 1252 if (dma_unmap_len(tx_buffer, len)) { 1253 dma_unmap_page(tx_ring->dev, 1254 dma_unmap_addr(tx_buffer, dma), 1255 dma_unmap_len(tx_buffer, len), 1256 DMA_TO_DEVICE); 1257 dma_unmap_len_set(tx_buffer, len, 0); 1258 } 1259 } 1260 1261 /* move us one more past the eop_desc for start of next pkt */ 1262 tx_buffer++; 1263 tx_desc++; 1264 i++; 1265 if (unlikely(!i)) { 1266 i -= tx_ring->count; 1267 tx_buffer = tx_ring->tx_buffer; 1268 tx_desc = FM10K_TX_DESC(tx_ring, 0); 1269 } 1270 1271 /* issue prefetch for next Tx descriptor */ 1272 prefetch(tx_desc); 1273 1274 /* update budget accounting */ 1275 budget--; 1276 } while (likely(budget)); 1277 1278 i += tx_ring->count; 1279 tx_ring->next_to_clean = i; 1280 u64_stats_update_begin(&tx_ring->syncp); 1281 tx_ring->stats.bytes += total_bytes; 1282 tx_ring->stats.packets += total_packets; 1283 u64_stats_update_end(&tx_ring->syncp); 1284 q_vector->tx.total_bytes += total_bytes; 1285 q_vector->tx.total_packets += total_packets; 1286 1287 if (check_for_tx_hang(tx_ring) && fm10k_check_tx_hang(tx_ring)) { 1288 /* schedule immediate reset if we believe we hung */ 1289 struct fm10k_hw *hw = &interface->hw; 1290 1291 netif_err(interface, drv, tx_ring->netdev, 1292 "Detected Tx Unit Hang\n" 1293 " Tx Queue <%d>\n" 1294 " TDH, TDT <%x>, <%x>\n" 1295 " next_to_use <%x>\n" 1296 " next_to_clean <%x>\n", 1297 tx_ring->queue_index, 1298 fm10k_read_reg(hw, FM10K_TDH(tx_ring->reg_idx)), 1299 fm10k_read_reg(hw, FM10K_TDT(tx_ring->reg_idx)), 1300 tx_ring->next_to_use, i); 1301 1302 netif_stop_subqueue(tx_ring->netdev, 1303 tx_ring->queue_index); 1304 1305 netif_info(interface, probe, tx_ring->netdev, 1306 "tx hang %d detected on queue %d, resetting interface\n", 1307 interface->tx_timeout_count + 1, 1308 tx_ring->queue_index); 1309 1310 fm10k_tx_timeout_reset(interface); 1311 1312 /* the netdev is about to reset, no point in enabling stuff */ 1313 return true; 1314 } 1315 1316 /* notify netdev of completed buffers */ 1317 netdev_tx_completed_queue(txring_txq(tx_ring), 1318 total_packets, total_bytes); 1319 1320 #define TX_WAKE_THRESHOLD min_t(u16, FM10K_MIN_TXD - 1, DESC_NEEDED * 2) 1321 if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) && 1322 (fm10k_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD))) { 1323 /* Make sure that anybody stopping the queue after this 1324 * sees the new next_to_clean. 1325 */ 1326 smp_mb(); 1327 if (__netif_subqueue_stopped(tx_ring->netdev, 1328 tx_ring->queue_index) && 1329 !test_bit(__FM10K_DOWN, interface->state)) { 1330 netif_wake_subqueue(tx_ring->netdev, 1331 tx_ring->queue_index); 1332 ++tx_ring->tx_stats.restart_queue; 1333 } 1334 } 1335 1336 return !!budget; 1337 } 1338 1339 /** 1340 * fm10k_update_itr - update the dynamic ITR value based on packet size 1341 * 1342 * Stores a new ITR value based on strictly on packet size. The 1343 * divisors and thresholds used by this function were determined based 1344 * on theoretical maximum wire speed and testing data, in order to 1345 * minimize response time while increasing bulk throughput. 1346 * 1347 * @ring_container: Container for rings to have ITR updated 1348 **/ 1349 static void fm10k_update_itr(struct fm10k_ring_container *ring_container) 1350 { 1351 unsigned int avg_wire_size, packets, itr_round; 1352 1353 /* Only update ITR if we are using adaptive setting */ 1354 if (!ITR_IS_ADAPTIVE(ring_container->itr)) 1355 goto clear_counts; 1356 1357 packets = ring_container->total_packets; 1358 if (!packets) 1359 goto clear_counts; 1360 1361 avg_wire_size = ring_container->total_bytes / packets; 1362 1363 /* The following is a crude approximation of: 1364 * wmem_default / (size + overhead) = desired_pkts_per_int 1365 * rate / bits_per_byte / (size + ethernet overhead) = pkt_rate 1366 * (desired_pkt_rate / pkt_rate) * usecs_per_sec = ITR value 1367 * 1368 * Assuming wmem_default is 212992 and overhead is 640 bytes per 1369 * packet, (256 skb, 64 headroom, 320 shared info), we can reduce the 1370 * formula down to 1371 * 1372 * (34 * (size + 24)) / (size + 640) = ITR 1373 * 1374 * We first do some math on the packet size and then finally bitshift 1375 * by 8 after rounding up. We also have to account for PCIe link speed 1376 * difference as ITR scales based on this. 1377 */ 1378 if (avg_wire_size <= 360) { 1379 /* Start at 250K ints/sec and gradually drop to 77K ints/sec */ 1380 avg_wire_size *= 8; 1381 avg_wire_size += 376; 1382 } else if (avg_wire_size <= 1152) { 1383 /* 77K ints/sec to 45K ints/sec */ 1384 avg_wire_size *= 3; 1385 avg_wire_size += 2176; 1386 } else if (avg_wire_size <= 1920) { 1387 /* 45K ints/sec to 38K ints/sec */ 1388 avg_wire_size += 4480; 1389 } else { 1390 /* plateau at a limit of 38K ints/sec */ 1391 avg_wire_size = 6656; 1392 } 1393 1394 /* Perform final bitshift for division after rounding up to ensure 1395 * that the calculation will never get below a 1. The bit shift 1396 * accounts for changes in the ITR due to PCIe link speed. 1397 */ 1398 itr_round = READ_ONCE(ring_container->itr_scale) + 8; 1399 avg_wire_size += BIT(itr_round) - 1; 1400 avg_wire_size >>= itr_round; 1401 1402 /* write back value and retain adaptive flag */ 1403 ring_container->itr = avg_wire_size | FM10K_ITR_ADAPTIVE; 1404 1405 clear_counts: 1406 ring_container->total_bytes = 0; 1407 ring_container->total_packets = 0; 1408 } 1409 1410 static void fm10k_qv_enable(struct fm10k_q_vector *q_vector) 1411 { 1412 /* Enable auto-mask and clear the current mask */ 1413 u32 itr = FM10K_ITR_ENABLE; 1414 1415 /* Update Tx ITR */ 1416 fm10k_update_itr(&q_vector->tx); 1417 1418 /* Update Rx ITR */ 1419 fm10k_update_itr(&q_vector->rx); 1420 1421 /* Store Tx itr in timer slot 0 */ 1422 itr |= (q_vector->tx.itr & FM10K_ITR_MAX); 1423 1424 /* Shift Rx itr to timer slot 1 */ 1425 itr |= (q_vector->rx.itr & FM10K_ITR_MAX) << FM10K_ITR_INTERVAL1_SHIFT; 1426 1427 /* Write the final value to the ITR register */ 1428 writel(itr, q_vector->itr); 1429 } 1430 1431 static int fm10k_poll(struct napi_struct *napi, int budget) 1432 { 1433 struct fm10k_q_vector *q_vector = 1434 container_of(napi, struct fm10k_q_vector, napi); 1435 struct fm10k_ring *ring; 1436 int per_ring_budget, work_done = 0; 1437 bool clean_complete = true; 1438 1439 fm10k_for_each_ring(ring, q_vector->tx) { 1440 if (!fm10k_clean_tx_irq(q_vector, ring, budget)) 1441 clean_complete = false; 1442 } 1443 1444 /* Handle case where we are called by netpoll with a budget of 0 */ 1445 if (budget <= 0) 1446 return budget; 1447 1448 /* attempt to distribute budget to each queue fairly, but don't 1449 * allow the budget to go below 1 because we'll exit polling 1450 */ 1451 if (q_vector->rx.count > 1) 1452 per_ring_budget = max(budget / q_vector->rx.count, 1); 1453 else 1454 per_ring_budget = budget; 1455 1456 fm10k_for_each_ring(ring, q_vector->rx) { 1457 int work = fm10k_clean_rx_irq(q_vector, ring, per_ring_budget); 1458 1459 work_done += work; 1460 if (work >= per_ring_budget) 1461 clean_complete = false; 1462 } 1463 1464 /* If all work not completed, return budget and keep polling */ 1465 if (!clean_complete) 1466 return budget; 1467 1468 /* all work done, exit the polling mode */ 1469 napi_complete_done(napi, work_done); 1470 1471 /* re-enable the q_vector */ 1472 fm10k_qv_enable(q_vector); 1473 1474 return min(work_done, budget - 1); 1475 } 1476 1477 /** 1478 * fm10k_set_qos_queues: Allocate queues for a QOS-enabled device 1479 * @interface: board private structure to initialize 1480 * 1481 * When QoS (Quality of Service) is enabled, allocate queues for 1482 * each traffic class. If multiqueue isn't available,then abort QoS 1483 * initialization. 1484 * 1485 * This function handles all combinations of Qos and RSS. 1486 * 1487 **/ 1488 static bool fm10k_set_qos_queues(struct fm10k_intfc *interface) 1489 { 1490 struct net_device *dev = interface->netdev; 1491 struct fm10k_ring_feature *f; 1492 int rss_i, i; 1493 int pcs; 1494 1495 /* Map queue offset and counts onto allocated tx queues */ 1496 pcs = netdev_get_num_tc(dev); 1497 1498 if (pcs <= 1) 1499 return false; 1500 1501 /* set QoS mask and indices */ 1502 f = &interface->ring_feature[RING_F_QOS]; 1503 f->indices = pcs; 1504 f->mask = BIT(fls(pcs - 1)) - 1; 1505 1506 /* determine the upper limit for our current DCB mode */ 1507 rss_i = interface->hw.mac.max_queues / pcs; 1508 rss_i = BIT(fls(rss_i) - 1); 1509 1510 /* set RSS mask and indices */ 1511 f = &interface->ring_feature[RING_F_RSS]; 1512 rss_i = min_t(u16, rss_i, f->limit); 1513 f->indices = rss_i; 1514 f->mask = BIT(fls(rss_i - 1)) - 1; 1515 1516 /* configure pause class to queue mapping */ 1517 for (i = 0; i < pcs; i++) 1518 netdev_set_tc_queue(dev, i, rss_i, rss_i * i); 1519 1520 interface->num_rx_queues = rss_i * pcs; 1521 interface->num_tx_queues = rss_i * pcs; 1522 1523 return true; 1524 } 1525 1526 /** 1527 * fm10k_set_rss_queues: Allocate queues for RSS 1528 * @interface: board private structure to initialize 1529 * 1530 * This is our "base" multiqueue mode. RSS (Receive Side Scaling) will try 1531 * to allocate one Rx queue per CPU, and if available, one Tx queue per CPU. 1532 * 1533 **/ 1534 static bool fm10k_set_rss_queues(struct fm10k_intfc *interface) 1535 { 1536 struct fm10k_ring_feature *f; 1537 u16 rss_i; 1538 1539 f = &interface->ring_feature[RING_F_RSS]; 1540 rss_i = min_t(u16, interface->hw.mac.max_queues, f->limit); 1541 1542 /* record indices and power of 2 mask for RSS */ 1543 f->indices = rss_i; 1544 f->mask = BIT(fls(rss_i - 1)) - 1; 1545 1546 interface->num_rx_queues = rss_i; 1547 interface->num_tx_queues = rss_i; 1548 1549 return true; 1550 } 1551 1552 /** 1553 * fm10k_set_num_queues: Allocate queues for device, feature dependent 1554 * @interface: board private structure to initialize 1555 * 1556 * This is the top level queue allocation routine. The order here is very 1557 * important, starting with the "most" number of features turned on at once, 1558 * and ending with the smallest set of features. This way large combinations 1559 * can be allocated if they're turned on, and smaller combinations are the 1560 * fallthrough conditions. 1561 * 1562 **/ 1563 static void fm10k_set_num_queues(struct fm10k_intfc *interface) 1564 { 1565 /* Attempt to setup QoS and RSS first */ 1566 if (fm10k_set_qos_queues(interface)) 1567 return; 1568 1569 /* If we don't have QoS, just fallback to only RSS. */ 1570 fm10k_set_rss_queues(interface); 1571 } 1572 1573 /** 1574 * fm10k_reset_num_queues - Reset the number of queues to zero 1575 * @interface: board private structure 1576 * 1577 * This function should be called whenever we need to reset the number of 1578 * queues after an error condition. 1579 */ 1580 static void fm10k_reset_num_queues(struct fm10k_intfc *interface) 1581 { 1582 interface->num_tx_queues = 0; 1583 interface->num_rx_queues = 0; 1584 interface->num_q_vectors = 0; 1585 } 1586 1587 /** 1588 * fm10k_alloc_q_vector - Allocate memory for a single interrupt vector 1589 * @interface: board private structure to initialize 1590 * @v_count: q_vectors allocated on interface, used for ring interleaving 1591 * @v_idx: index of vector in interface struct 1592 * @txr_count: total number of Tx rings to allocate 1593 * @txr_idx: index of first Tx ring to allocate 1594 * @rxr_count: total number of Rx rings to allocate 1595 * @rxr_idx: index of first Rx ring to allocate 1596 * 1597 * We allocate one q_vector. If allocation fails we return -ENOMEM. 1598 **/ 1599 static int fm10k_alloc_q_vector(struct fm10k_intfc *interface, 1600 unsigned int v_count, unsigned int v_idx, 1601 unsigned int txr_count, unsigned int txr_idx, 1602 unsigned int rxr_count, unsigned int rxr_idx) 1603 { 1604 struct fm10k_q_vector *q_vector; 1605 struct fm10k_ring *ring; 1606 int ring_count, size; 1607 1608 ring_count = txr_count + rxr_count; 1609 size = sizeof(struct fm10k_q_vector) + 1610 (sizeof(struct fm10k_ring) * ring_count); 1611 1612 /* allocate q_vector and rings */ 1613 q_vector = kzalloc(size, GFP_KERNEL); 1614 if (!q_vector) 1615 return -ENOMEM; 1616 1617 /* initialize NAPI */ 1618 netif_napi_add(interface->netdev, &q_vector->napi, 1619 fm10k_poll, NAPI_POLL_WEIGHT); 1620 1621 /* tie q_vector and interface together */ 1622 interface->q_vector[v_idx] = q_vector; 1623 q_vector->interface = interface; 1624 q_vector->v_idx = v_idx; 1625 1626 /* initialize pointer to rings */ 1627 ring = q_vector->ring; 1628 1629 /* save Tx ring container info */ 1630 q_vector->tx.ring = ring; 1631 q_vector->tx.work_limit = FM10K_DEFAULT_TX_WORK; 1632 q_vector->tx.itr = interface->tx_itr; 1633 q_vector->tx.itr_scale = interface->hw.mac.itr_scale; 1634 q_vector->tx.count = txr_count; 1635 1636 while (txr_count) { 1637 /* assign generic ring traits */ 1638 ring->dev = &interface->pdev->dev; 1639 ring->netdev = interface->netdev; 1640 1641 /* configure backlink on ring */ 1642 ring->q_vector = q_vector; 1643 1644 /* apply Tx specific ring traits */ 1645 ring->count = interface->tx_ring_count; 1646 ring->queue_index = txr_idx; 1647 1648 /* assign ring to interface */ 1649 interface->tx_ring[txr_idx] = ring; 1650 1651 /* update count and index */ 1652 txr_count--; 1653 txr_idx += v_count; 1654 1655 /* push pointer to next ring */ 1656 ring++; 1657 } 1658 1659 /* save Rx ring container info */ 1660 q_vector->rx.ring = ring; 1661 q_vector->rx.itr = interface->rx_itr; 1662 q_vector->rx.itr_scale = interface->hw.mac.itr_scale; 1663 q_vector->rx.count = rxr_count; 1664 1665 while (rxr_count) { 1666 /* assign generic ring traits */ 1667 ring->dev = &interface->pdev->dev; 1668 ring->netdev = interface->netdev; 1669 rcu_assign_pointer(ring->l2_accel, interface->l2_accel); 1670 1671 /* configure backlink on ring */ 1672 ring->q_vector = q_vector; 1673 1674 /* apply Rx specific ring traits */ 1675 ring->count = interface->rx_ring_count; 1676 ring->queue_index = rxr_idx; 1677 1678 /* assign ring to interface */ 1679 interface->rx_ring[rxr_idx] = ring; 1680 1681 /* update count and index */ 1682 rxr_count--; 1683 rxr_idx += v_count; 1684 1685 /* push pointer to next ring */ 1686 ring++; 1687 } 1688 1689 fm10k_dbg_q_vector_init(q_vector); 1690 1691 return 0; 1692 } 1693 1694 /** 1695 * fm10k_free_q_vector - Free memory allocated for specific interrupt vector 1696 * @interface: board private structure to initialize 1697 * @v_idx: Index of vector to be freed 1698 * 1699 * This function frees the memory allocated to the q_vector. In addition if 1700 * NAPI is enabled it will delete any references to the NAPI struct prior 1701 * to freeing the q_vector. 1702 **/ 1703 static void fm10k_free_q_vector(struct fm10k_intfc *interface, int v_idx) 1704 { 1705 struct fm10k_q_vector *q_vector = interface->q_vector[v_idx]; 1706 struct fm10k_ring *ring; 1707 1708 fm10k_dbg_q_vector_exit(q_vector); 1709 1710 fm10k_for_each_ring(ring, q_vector->tx) 1711 interface->tx_ring[ring->queue_index] = NULL; 1712 1713 fm10k_for_each_ring(ring, q_vector->rx) 1714 interface->rx_ring[ring->queue_index] = NULL; 1715 1716 interface->q_vector[v_idx] = NULL; 1717 netif_napi_del(&q_vector->napi); 1718 kfree_rcu(q_vector, rcu); 1719 } 1720 1721 /** 1722 * fm10k_alloc_q_vectors - Allocate memory for interrupt vectors 1723 * @interface: board private structure to initialize 1724 * 1725 * We allocate one q_vector per queue interrupt. If allocation fails we 1726 * return -ENOMEM. 1727 **/ 1728 static int fm10k_alloc_q_vectors(struct fm10k_intfc *interface) 1729 { 1730 unsigned int q_vectors = interface->num_q_vectors; 1731 unsigned int rxr_remaining = interface->num_rx_queues; 1732 unsigned int txr_remaining = interface->num_tx_queues; 1733 unsigned int rxr_idx = 0, txr_idx = 0, v_idx = 0; 1734 int err; 1735 1736 if (q_vectors >= (rxr_remaining + txr_remaining)) { 1737 for (; rxr_remaining; v_idx++) { 1738 err = fm10k_alloc_q_vector(interface, q_vectors, v_idx, 1739 0, 0, 1, rxr_idx); 1740 if (err) 1741 goto err_out; 1742 1743 /* update counts and index */ 1744 rxr_remaining--; 1745 rxr_idx++; 1746 } 1747 } 1748 1749 for (; v_idx < q_vectors; v_idx++) { 1750 int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx); 1751 int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx); 1752 1753 err = fm10k_alloc_q_vector(interface, q_vectors, v_idx, 1754 tqpv, txr_idx, 1755 rqpv, rxr_idx); 1756 1757 if (err) 1758 goto err_out; 1759 1760 /* update counts and index */ 1761 rxr_remaining -= rqpv; 1762 txr_remaining -= tqpv; 1763 rxr_idx++; 1764 txr_idx++; 1765 } 1766 1767 return 0; 1768 1769 err_out: 1770 fm10k_reset_num_queues(interface); 1771 1772 while (v_idx--) 1773 fm10k_free_q_vector(interface, v_idx); 1774 1775 return -ENOMEM; 1776 } 1777 1778 /** 1779 * fm10k_free_q_vectors - Free memory allocated for interrupt vectors 1780 * @interface: board private structure to initialize 1781 * 1782 * This function frees the memory allocated to the q_vectors. In addition if 1783 * NAPI is enabled it will delete any references to the NAPI struct prior 1784 * to freeing the q_vector. 1785 **/ 1786 static void fm10k_free_q_vectors(struct fm10k_intfc *interface) 1787 { 1788 int v_idx = interface->num_q_vectors; 1789 1790 fm10k_reset_num_queues(interface); 1791 1792 while (v_idx--) 1793 fm10k_free_q_vector(interface, v_idx); 1794 } 1795 1796 /** 1797 * f10k_reset_msix_capability - reset MSI-X capability 1798 * @interface: board private structure to initialize 1799 * 1800 * Reset the MSI-X capability back to its starting state 1801 **/ 1802 static void fm10k_reset_msix_capability(struct fm10k_intfc *interface) 1803 { 1804 pci_disable_msix(interface->pdev); 1805 kfree(interface->msix_entries); 1806 interface->msix_entries = NULL; 1807 } 1808 1809 /** 1810 * f10k_init_msix_capability - configure MSI-X capability 1811 * @interface: board private structure to initialize 1812 * 1813 * Attempt to configure the interrupts using the best available 1814 * capabilities of the hardware and the kernel. 1815 **/ 1816 static int fm10k_init_msix_capability(struct fm10k_intfc *interface) 1817 { 1818 struct fm10k_hw *hw = &interface->hw; 1819 int v_budget, vector; 1820 1821 /* It's easy to be greedy for MSI-X vectors, but it really 1822 * doesn't do us much good if we have a lot more vectors 1823 * than CPU's. So let's be conservative and only ask for 1824 * (roughly) the same number of vectors as there are CPU's. 1825 * the default is to use pairs of vectors 1826 */ 1827 v_budget = max(interface->num_rx_queues, interface->num_tx_queues); 1828 v_budget = min_t(u16, v_budget, num_online_cpus()); 1829 1830 /* account for vectors not related to queues */ 1831 v_budget += NON_Q_VECTORS(hw); 1832 1833 /* At the same time, hardware can only support a maximum of 1834 * hw.mac->max_msix_vectors vectors. With features 1835 * such as RSS and VMDq, we can easily surpass the number of Rx and Tx 1836 * descriptor queues supported by our device. Thus, we cap it off in 1837 * those rare cases where the cpu count also exceeds our vector limit. 1838 */ 1839 v_budget = min_t(int, v_budget, hw->mac.max_msix_vectors); 1840 1841 /* A failure in MSI-X entry allocation is fatal. */ 1842 interface->msix_entries = kcalloc(v_budget, sizeof(struct msix_entry), 1843 GFP_KERNEL); 1844 if (!interface->msix_entries) 1845 return -ENOMEM; 1846 1847 /* populate entry values */ 1848 for (vector = 0; vector < v_budget; vector++) 1849 interface->msix_entries[vector].entry = vector; 1850 1851 /* Attempt to enable MSI-X with requested value */ 1852 v_budget = pci_enable_msix_range(interface->pdev, 1853 interface->msix_entries, 1854 MIN_MSIX_COUNT(hw), 1855 v_budget); 1856 if (v_budget < 0) { 1857 kfree(interface->msix_entries); 1858 interface->msix_entries = NULL; 1859 return v_budget; 1860 } 1861 1862 /* record the number of queues available for q_vectors */ 1863 interface->num_q_vectors = v_budget - NON_Q_VECTORS(hw); 1864 1865 return 0; 1866 } 1867 1868 /** 1869 * fm10k_cache_ring_qos - Descriptor ring to register mapping for QoS 1870 * @interface: Interface structure continaining rings and devices 1871 * 1872 * Cache the descriptor ring offsets for Qos 1873 **/ 1874 static bool fm10k_cache_ring_qos(struct fm10k_intfc *interface) 1875 { 1876 struct net_device *dev = interface->netdev; 1877 int pc, offset, rss_i, i, q_idx; 1878 u16 pc_stride = interface->ring_feature[RING_F_QOS].mask + 1; 1879 u8 num_pcs = netdev_get_num_tc(dev); 1880 1881 if (num_pcs <= 1) 1882 return false; 1883 1884 rss_i = interface->ring_feature[RING_F_RSS].indices; 1885 1886 for (pc = 0, offset = 0; pc < num_pcs; pc++, offset += rss_i) { 1887 q_idx = pc; 1888 for (i = 0; i < rss_i; i++) { 1889 interface->tx_ring[offset + i]->reg_idx = q_idx; 1890 interface->tx_ring[offset + i]->qos_pc = pc; 1891 interface->rx_ring[offset + i]->reg_idx = q_idx; 1892 interface->rx_ring[offset + i]->qos_pc = pc; 1893 q_idx += pc_stride; 1894 } 1895 } 1896 1897 return true; 1898 } 1899 1900 /** 1901 * fm10k_cache_ring_rss - Descriptor ring to register mapping for RSS 1902 * @interface: Interface structure continaining rings and devices 1903 * 1904 * Cache the descriptor ring offsets for RSS 1905 **/ 1906 static void fm10k_cache_ring_rss(struct fm10k_intfc *interface) 1907 { 1908 int i; 1909 1910 for (i = 0; i < interface->num_rx_queues; i++) 1911 interface->rx_ring[i]->reg_idx = i; 1912 1913 for (i = 0; i < interface->num_tx_queues; i++) 1914 interface->tx_ring[i]->reg_idx = i; 1915 } 1916 1917 /** 1918 * fm10k_assign_rings - Map rings to network devices 1919 * @interface: Interface structure containing rings and devices 1920 * 1921 * This function is meant to go though and configure both the network 1922 * devices so that they contain rings, and configure the rings so that 1923 * they function with their network devices. 1924 **/ 1925 static void fm10k_assign_rings(struct fm10k_intfc *interface) 1926 { 1927 if (fm10k_cache_ring_qos(interface)) 1928 return; 1929 1930 fm10k_cache_ring_rss(interface); 1931 } 1932 1933 static void fm10k_init_reta(struct fm10k_intfc *interface) 1934 { 1935 u16 i, rss_i = interface->ring_feature[RING_F_RSS].indices; 1936 u32 reta; 1937 1938 /* If the Rx flow indirection table has been configured manually, we 1939 * need to maintain it when possible. 1940 */ 1941 if (netif_is_rxfh_configured(interface->netdev)) { 1942 for (i = FM10K_RETA_SIZE; i--;) { 1943 reta = interface->reta[i]; 1944 if ((((reta << 24) >> 24) < rss_i) && 1945 (((reta << 16) >> 24) < rss_i) && 1946 (((reta << 8) >> 24) < rss_i) && 1947 (((reta) >> 24) < rss_i)) 1948 continue; 1949 1950 /* this should never happen */ 1951 dev_err(&interface->pdev->dev, 1952 "RSS indirection table assigned flows out of queue bounds. Reconfiguring.\n"); 1953 goto repopulate_reta; 1954 } 1955 1956 /* do nothing if all of the elements are in bounds */ 1957 return; 1958 } 1959 1960 repopulate_reta: 1961 fm10k_write_reta(interface, NULL); 1962 } 1963 1964 /** 1965 * fm10k_init_queueing_scheme - Determine proper queueing scheme 1966 * @interface: board private structure to initialize 1967 * 1968 * We determine which queueing scheme to use based on... 1969 * - Hardware queue count (num_*_queues) 1970 * - defined by miscellaneous hardware support/features (RSS, etc.) 1971 **/ 1972 int fm10k_init_queueing_scheme(struct fm10k_intfc *interface) 1973 { 1974 int err; 1975 1976 /* Number of supported queues */ 1977 fm10k_set_num_queues(interface); 1978 1979 /* Configure MSI-X capability */ 1980 err = fm10k_init_msix_capability(interface); 1981 if (err) { 1982 dev_err(&interface->pdev->dev, 1983 "Unable to initialize MSI-X capability\n"); 1984 goto err_init_msix; 1985 } 1986 1987 /* Allocate memory for queues */ 1988 err = fm10k_alloc_q_vectors(interface); 1989 if (err) { 1990 dev_err(&interface->pdev->dev, 1991 "Unable to allocate queue vectors\n"); 1992 goto err_alloc_q_vectors; 1993 } 1994 1995 /* Map rings to devices, and map devices to physical queues */ 1996 fm10k_assign_rings(interface); 1997 1998 /* Initialize RSS redirection table */ 1999 fm10k_init_reta(interface); 2000 2001 return 0; 2002 2003 err_alloc_q_vectors: 2004 fm10k_reset_msix_capability(interface); 2005 err_init_msix: 2006 fm10k_reset_num_queues(interface); 2007 return err; 2008 } 2009 2010 /** 2011 * fm10k_clear_queueing_scheme - Clear the current queueing scheme settings 2012 * @interface: board private structure to clear queueing scheme on 2013 * 2014 * We go through and clear queueing specific resources and reset the structure 2015 * to pre-load conditions 2016 **/ 2017 void fm10k_clear_queueing_scheme(struct fm10k_intfc *interface) 2018 { 2019 fm10k_free_q_vectors(interface); 2020 fm10k_reset_msix_capability(interface); 2021 } 2022