xref: /openbmc/linux/drivers/net/ethernet/intel/fm10k/fm10k_main.c (revision 5ef12cb4a3a78ffb331c03a795a15eea4ae35155)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Intel(R) Ethernet Switch Host Interface Driver
3  * Copyright(c) 2013 - 2017 Intel Corporation.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  *
14  * The full GNU General Public License is included in this distribution in
15  * the file called "COPYING".
16  *
17  * Contact Information:
18  * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
19  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
20  */
21 
22 #include <linux/types.h>
23 #include <linux/module.h>
24 #include <net/ipv6.h>
25 #include <net/ip.h>
26 #include <net/tcp.h>
27 #include <linux/if_macvlan.h>
28 #include <linux/prefetch.h>
29 
30 #include "fm10k.h"
31 
32 #define DRV_VERSION	"0.23.4-k"
33 #define DRV_SUMMARY	"Intel(R) Ethernet Switch Host Interface Driver"
34 const char fm10k_driver_version[] = DRV_VERSION;
35 char fm10k_driver_name[] = "fm10k";
36 static const char fm10k_driver_string[] = DRV_SUMMARY;
37 static const char fm10k_copyright[] =
38 	"Copyright(c) 2013 - 2018 Intel Corporation.";
39 
40 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
41 MODULE_DESCRIPTION(DRV_SUMMARY);
42 MODULE_LICENSE("GPL");
43 MODULE_VERSION(DRV_VERSION);
44 
45 /* single workqueue for entire fm10k driver */
46 struct workqueue_struct *fm10k_workqueue;
47 
48 /**
49  * fm10k_init_module - Driver Registration Routine
50  *
51  * fm10k_init_module is the first routine called when the driver is
52  * loaded.  All it does is register with the PCI subsystem.
53  **/
54 static int __init fm10k_init_module(void)
55 {
56 	pr_info("%s - version %s\n", fm10k_driver_string, fm10k_driver_version);
57 	pr_info("%s\n", fm10k_copyright);
58 
59 	/* create driver workqueue */
60 	fm10k_workqueue = alloc_workqueue("%s", WQ_MEM_RECLAIM, 0,
61 					  fm10k_driver_name);
62 
63 	fm10k_dbg_init();
64 
65 	return fm10k_register_pci_driver();
66 }
67 module_init(fm10k_init_module);
68 
69 /**
70  * fm10k_exit_module - Driver Exit Cleanup Routine
71  *
72  * fm10k_exit_module is called just before the driver is removed
73  * from memory.
74  **/
75 static void __exit fm10k_exit_module(void)
76 {
77 	fm10k_unregister_pci_driver();
78 
79 	fm10k_dbg_exit();
80 
81 	/* destroy driver workqueue */
82 	destroy_workqueue(fm10k_workqueue);
83 }
84 module_exit(fm10k_exit_module);
85 
86 static bool fm10k_alloc_mapped_page(struct fm10k_ring *rx_ring,
87 				    struct fm10k_rx_buffer *bi)
88 {
89 	struct page *page = bi->page;
90 	dma_addr_t dma;
91 
92 	/* Only page will be NULL if buffer was consumed */
93 	if (likely(page))
94 		return true;
95 
96 	/* alloc new page for storage */
97 	page = dev_alloc_page();
98 	if (unlikely(!page)) {
99 		rx_ring->rx_stats.alloc_failed++;
100 		return false;
101 	}
102 
103 	/* map page for use */
104 	dma = dma_map_page(rx_ring->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE);
105 
106 	/* if mapping failed free memory back to system since
107 	 * there isn't much point in holding memory we can't use
108 	 */
109 	if (dma_mapping_error(rx_ring->dev, dma)) {
110 		__free_page(page);
111 
112 		rx_ring->rx_stats.alloc_failed++;
113 		return false;
114 	}
115 
116 	bi->dma = dma;
117 	bi->page = page;
118 	bi->page_offset = 0;
119 
120 	return true;
121 }
122 
123 /**
124  * fm10k_alloc_rx_buffers - Replace used receive buffers
125  * @rx_ring: ring to place buffers on
126  * @cleaned_count: number of buffers to replace
127  **/
128 void fm10k_alloc_rx_buffers(struct fm10k_ring *rx_ring, u16 cleaned_count)
129 {
130 	union fm10k_rx_desc *rx_desc;
131 	struct fm10k_rx_buffer *bi;
132 	u16 i = rx_ring->next_to_use;
133 
134 	/* nothing to do */
135 	if (!cleaned_count)
136 		return;
137 
138 	rx_desc = FM10K_RX_DESC(rx_ring, i);
139 	bi = &rx_ring->rx_buffer[i];
140 	i -= rx_ring->count;
141 
142 	do {
143 		if (!fm10k_alloc_mapped_page(rx_ring, bi))
144 			break;
145 
146 		/* Refresh the desc even if buffer_addrs didn't change
147 		 * because each write-back erases this info.
148 		 */
149 		rx_desc->q.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
150 
151 		rx_desc++;
152 		bi++;
153 		i++;
154 		if (unlikely(!i)) {
155 			rx_desc = FM10K_RX_DESC(rx_ring, 0);
156 			bi = rx_ring->rx_buffer;
157 			i -= rx_ring->count;
158 		}
159 
160 		/* clear the status bits for the next_to_use descriptor */
161 		rx_desc->d.staterr = 0;
162 
163 		cleaned_count--;
164 	} while (cleaned_count);
165 
166 	i += rx_ring->count;
167 
168 	if (rx_ring->next_to_use != i) {
169 		/* record the next descriptor to use */
170 		rx_ring->next_to_use = i;
171 
172 		/* update next to alloc since we have filled the ring */
173 		rx_ring->next_to_alloc = i;
174 
175 		/* Force memory writes to complete before letting h/w
176 		 * know there are new descriptors to fetch.  (Only
177 		 * applicable for weak-ordered memory model archs,
178 		 * such as IA-64).
179 		 */
180 		wmb();
181 
182 		/* notify hardware of new descriptors */
183 		writel(i, rx_ring->tail);
184 	}
185 }
186 
187 /**
188  * fm10k_reuse_rx_page - page flip buffer and store it back on the ring
189  * @rx_ring: rx descriptor ring to store buffers on
190  * @old_buff: donor buffer to have page reused
191  *
192  * Synchronizes page for reuse by the interface
193  **/
194 static void fm10k_reuse_rx_page(struct fm10k_ring *rx_ring,
195 				struct fm10k_rx_buffer *old_buff)
196 {
197 	struct fm10k_rx_buffer *new_buff;
198 	u16 nta = rx_ring->next_to_alloc;
199 
200 	new_buff = &rx_ring->rx_buffer[nta];
201 
202 	/* update, and store next to alloc */
203 	nta++;
204 	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
205 
206 	/* transfer page from old buffer to new buffer */
207 	*new_buff = *old_buff;
208 
209 	/* sync the buffer for use by the device */
210 	dma_sync_single_range_for_device(rx_ring->dev, old_buff->dma,
211 					 old_buff->page_offset,
212 					 FM10K_RX_BUFSZ,
213 					 DMA_FROM_DEVICE);
214 }
215 
216 static inline bool fm10k_page_is_reserved(struct page *page)
217 {
218 	return (page_to_nid(page) != numa_mem_id()) || page_is_pfmemalloc(page);
219 }
220 
221 static bool fm10k_can_reuse_rx_page(struct fm10k_rx_buffer *rx_buffer,
222 				    struct page *page,
223 				    unsigned int __maybe_unused truesize)
224 {
225 	/* avoid re-using remote pages */
226 	if (unlikely(fm10k_page_is_reserved(page)))
227 		return false;
228 
229 #if (PAGE_SIZE < 8192)
230 	/* if we are only owner of page we can reuse it */
231 	if (unlikely(page_count(page) != 1))
232 		return false;
233 
234 	/* flip page offset to other buffer */
235 	rx_buffer->page_offset ^= FM10K_RX_BUFSZ;
236 #else
237 	/* move offset up to the next cache line */
238 	rx_buffer->page_offset += truesize;
239 
240 	if (rx_buffer->page_offset > (PAGE_SIZE - FM10K_RX_BUFSZ))
241 		return false;
242 #endif
243 
244 	/* Even if we own the page, we are not allowed to use atomic_set()
245 	 * This would break get_page_unless_zero() users.
246 	 */
247 	page_ref_inc(page);
248 
249 	return true;
250 }
251 
252 /**
253  * fm10k_add_rx_frag - Add contents of Rx buffer to sk_buff
254  * @rx_buffer: buffer containing page to add
255  * @size: packet size from rx_desc
256  * @rx_desc: descriptor containing length of buffer written by hardware
257  * @skb: sk_buff to place the data into
258  *
259  * This function will add the data contained in rx_buffer->page to the skb.
260  * This is done either through a direct copy if the data in the buffer is
261  * less than the skb header size, otherwise it will just attach the page as
262  * a frag to the skb.
263  *
264  * The function will then update the page offset if necessary and return
265  * true if the buffer can be reused by the interface.
266  **/
267 static bool fm10k_add_rx_frag(struct fm10k_rx_buffer *rx_buffer,
268 			      unsigned int size,
269 			      union fm10k_rx_desc *rx_desc,
270 			      struct sk_buff *skb)
271 {
272 	struct page *page = rx_buffer->page;
273 	unsigned char *va = page_address(page) + rx_buffer->page_offset;
274 #if (PAGE_SIZE < 8192)
275 	unsigned int truesize = FM10K_RX_BUFSZ;
276 #else
277 	unsigned int truesize = ALIGN(size, 512);
278 #endif
279 	unsigned int pull_len;
280 
281 	if (unlikely(skb_is_nonlinear(skb)))
282 		goto add_tail_frag;
283 
284 	if (likely(size <= FM10K_RX_HDR_LEN)) {
285 		memcpy(__skb_put(skb, size), va, ALIGN(size, sizeof(long)));
286 
287 		/* page is not reserved, we can reuse buffer as-is */
288 		if (likely(!fm10k_page_is_reserved(page)))
289 			return true;
290 
291 		/* this page cannot be reused so discard it */
292 		__free_page(page);
293 		return false;
294 	}
295 
296 	/* we need the header to contain the greater of either ETH_HLEN or
297 	 * 60 bytes if the skb->len is less than 60 for skb_pad.
298 	 */
299 	pull_len = eth_get_headlen(va, FM10K_RX_HDR_LEN);
300 
301 	/* align pull length to size of long to optimize memcpy performance */
302 	memcpy(__skb_put(skb, pull_len), va, ALIGN(pull_len, sizeof(long)));
303 
304 	/* update all of the pointers */
305 	va += pull_len;
306 	size -= pull_len;
307 
308 add_tail_frag:
309 	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
310 			(unsigned long)va & ~PAGE_MASK, size, truesize);
311 
312 	return fm10k_can_reuse_rx_page(rx_buffer, page, truesize);
313 }
314 
315 static struct sk_buff *fm10k_fetch_rx_buffer(struct fm10k_ring *rx_ring,
316 					     union fm10k_rx_desc *rx_desc,
317 					     struct sk_buff *skb)
318 {
319 	unsigned int size = le16_to_cpu(rx_desc->w.length);
320 	struct fm10k_rx_buffer *rx_buffer;
321 	struct page *page;
322 
323 	rx_buffer = &rx_ring->rx_buffer[rx_ring->next_to_clean];
324 	page = rx_buffer->page;
325 	prefetchw(page);
326 
327 	if (likely(!skb)) {
328 		void *page_addr = page_address(page) +
329 				  rx_buffer->page_offset;
330 
331 		/* prefetch first cache line of first page */
332 		prefetch(page_addr);
333 #if L1_CACHE_BYTES < 128
334 		prefetch(page_addr + L1_CACHE_BYTES);
335 #endif
336 
337 		/* allocate a skb to store the frags */
338 		skb = napi_alloc_skb(&rx_ring->q_vector->napi,
339 				     FM10K_RX_HDR_LEN);
340 		if (unlikely(!skb)) {
341 			rx_ring->rx_stats.alloc_failed++;
342 			return NULL;
343 		}
344 
345 		/* we will be copying header into skb->data in
346 		 * pskb_may_pull so it is in our interest to prefetch
347 		 * it now to avoid a possible cache miss
348 		 */
349 		prefetchw(skb->data);
350 	}
351 
352 	/* we are reusing so sync this buffer for CPU use */
353 	dma_sync_single_range_for_cpu(rx_ring->dev,
354 				      rx_buffer->dma,
355 				      rx_buffer->page_offset,
356 				      size,
357 				      DMA_FROM_DEVICE);
358 
359 	/* pull page into skb */
360 	if (fm10k_add_rx_frag(rx_buffer, size, rx_desc, skb)) {
361 		/* hand second half of page back to the ring */
362 		fm10k_reuse_rx_page(rx_ring, rx_buffer);
363 	} else {
364 		/* we are not reusing the buffer so unmap it */
365 		dma_unmap_page(rx_ring->dev, rx_buffer->dma,
366 			       PAGE_SIZE, DMA_FROM_DEVICE);
367 	}
368 
369 	/* clear contents of rx_buffer */
370 	rx_buffer->page = NULL;
371 
372 	return skb;
373 }
374 
375 static inline void fm10k_rx_checksum(struct fm10k_ring *ring,
376 				     union fm10k_rx_desc *rx_desc,
377 				     struct sk_buff *skb)
378 {
379 	skb_checksum_none_assert(skb);
380 
381 	/* Rx checksum disabled via ethtool */
382 	if (!(ring->netdev->features & NETIF_F_RXCSUM))
383 		return;
384 
385 	/* TCP/UDP checksum error bit is set */
386 	if (fm10k_test_staterr(rx_desc,
387 			       FM10K_RXD_STATUS_L4E |
388 			       FM10K_RXD_STATUS_L4E2 |
389 			       FM10K_RXD_STATUS_IPE |
390 			       FM10K_RXD_STATUS_IPE2)) {
391 		ring->rx_stats.csum_err++;
392 		return;
393 	}
394 
395 	/* It must be a TCP or UDP packet with a valid checksum */
396 	if (fm10k_test_staterr(rx_desc, FM10K_RXD_STATUS_L4CS2))
397 		skb->encapsulation = true;
398 	else if (!fm10k_test_staterr(rx_desc, FM10K_RXD_STATUS_L4CS))
399 		return;
400 
401 	skb->ip_summed = CHECKSUM_UNNECESSARY;
402 
403 	ring->rx_stats.csum_good++;
404 }
405 
406 #define FM10K_RSS_L4_TYPES_MASK \
407 	(BIT(FM10K_RSSTYPE_IPV4_TCP) | \
408 	 BIT(FM10K_RSSTYPE_IPV4_UDP) | \
409 	 BIT(FM10K_RSSTYPE_IPV6_TCP) | \
410 	 BIT(FM10K_RSSTYPE_IPV6_UDP))
411 
412 static inline void fm10k_rx_hash(struct fm10k_ring *ring,
413 				 union fm10k_rx_desc *rx_desc,
414 				 struct sk_buff *skb)
415 {
416 	u16 rss_type;
417 
418 	if (!(ring->netdev->features & NETIF_F_RXHASH))
419 		return;
420 
421 	rss_type = le16_to_cpu(rx_desc->w.pkt_info) & FM10K_RXD_RSSTYPE_MASK;
422 	if (!rss_type)
423 		return;
424 
425 	skb_set_hash(skb, le32_to_cpu(rx_desc->d.rss),
426 		     (BIT(rss_type) & FM10K_RSS_L4_TYPES_MASK) ?
427 		     PKT_HASH_TYPE_L4 : PKT_HASH_TYPE_L3);
428 }
429 
430 static void fm10k_type_trans(struct fm10k_ring *rx_ring,
431 			     union fm10k_rx_desc __maybe_unused *rx_desc,
432 			     struct sk_buff *skb)
433 {
434 	struct net_device *dev = rx_ring->netdev;
435 	struct fm10k_l2_accel *l2_accel = rcu_dereference_bh(rx_ring->l2_accel);
436 
437 	/* check to see if DGLORT belongs to a MACVLAN */
438 	if (l2_accel) {
439 		u16 idx = le16_to_cpu(FM10K_CB(skb)->fi.w.dglort) - 1;
440 
441 		idx -= l2_accel->dglort;
442 		if (idx < l2_accel->size && l2_accel->macvlan[idx])
443 			dev = l2_accel->macvlan[idx];
444 		else
445 			l2_accel = NULL;
446 	}
447 
448 	skb->protocol = eth_type_trans(skb, dev);
449 
450 	/* Record Rx queue, or update macvlan statistics */
451 	if (!l2_accel)
452 		skb_record_rx_queue(skb, rx_ring->queue_index);
453 	else
454 		macvlan_count_rx(netdev_priv(dev), skb->len + ETH_HLEN, true,
455 				 (skb->pkt_type == PACKET_BROADCAST) ||
456 				 (skb->pkt_type == PACKET_MULTICAST));
457 }
458 
459 /**
460  * fm10k_process_skb_fields - Populate skb header fields from Rx descriptor
461  * @rx_ring: rx descriptor ring packet is being transacted on
462  * @rx_desc: pointer to the EOP Rx descriptor
463  * @skb: pointer to current skb being populated
464  *
465  * This function checks the ring, descriptor, and packet information in
466  * order to populate the hash, checksum, VLAN, timestamp, protocol, and
467  * other fields within the skb.
468  **/
469 static unsigned int fm10k_process_skb_fields(struct fm10k_ring *rx_ring,
470 					     union fm10k_rx_desc *rx_desc,
471 					     struct sk_buff *skb)
472 {
473 	unsigned int len = skb->len;
474 
475 	fm10k_rx_hash(rx_ring, rx_desc, skb);
476 
477 	fm10k_rx_checksum(rx_ring, rx_desc, skb);
478 
479 	FM10K_CB(skb)->tstamp = rx_desc->q.timestamp;
480 
481 	FM10K_CB(skb)->fi.w.vlan = rx_desc->w.vlan;
482 
483 	FM10K_CB(skb)->fi.d.glort = rx_desc->d.glort;
484 
485 	if (rx_desc->w.vlan) {
486 		u16 vid = le16_to_cpu(rx_desc->w.vlan);
487 
488 		if ((vid & VLAN_VID_MASK) != rx_ring->vid)
489 			__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
490 		else if (vid & VLAN_PRIO_MASK)
491 			__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
492 					       vid & VLAN_PRIO_MASK);
493 	}
494 
495 	fm10k_type_trans(rx_ring, rx_desc, skb);
496 
497 	return len;
498 }
499 
500 /**
501  * fm10k_is_non_eop - process handling of non-EOP buffers
502  * @rx_ring: Rx ring being processed
503  * @rx_desc: Rx descriptor for current buffer
504  *
505  * This function updates next to clean.  If the buffer is an EOP buffer
506  * this function exits returning false, otherwise it will place the
507  * sk_buff in the next buffer to be chained and return true indicating
508  * that this is in fact a non-EOP buffer.
509  **/
510 static bool fm10k_is_non_eop(struct fm10k_ring *rx_ring,
511 			     union fm10k_rx_desc *rx_desc)
512 {
513 	u32 ntc = rx_ring->next_to_clean + 1;
514 
515 	/* fetch, update, and store next to clean */
516 	ntc = (ntc < rx_ring->count) ? ntc : 0;
517 	rx_ring->next_to_clean = ntc;
518 
519 	prefetch(FM10K_RX_DESC(rx_ring, ntc));
520 
521 	if (likely(fm10k_test_staterr(rx_desc, FM10K_RXD_STATUS_EOP)))
522 		return false;
523 
524 	return true;
525 }
526 
527 /**
528  * fm10k_cleanup_headers - Correct corrupted or empty headers
529  * @rx_ring: rx descriptor ring packet is being transacted on
530  * @rx_desc: pointer to the EOP Rx descriptor
531  * @skb: pointer to current skb being fixed
532  *
533  * Address the case where we are pulling data in on pages only
534  * and as such no data is present in the skb header.
535  *
536  * In addition if skb is not at least 60 bytes we need to pad it so that
537  * it is large enough to qualify as a valid Ethernet frame.
538  *
539  * Returns true if an error was encountered and skb was freed.
540  **/
541 static bool fm10k_cleanup_headers(struct fm10k_ring *rx_ring,
542 				  union fm10k_rx_desc *rx_desc,
543 				  struct sk_buff *skb)
544 {
545 	if (unlikely((fm10k_test_staterr(rx_desc,
546 					 FM10K_RXD_STATUS_RXE)))) {
547 #define FM10K_TEST_RXD_BIT(rxd, bit) \
548 	((rxd)->w.csum_err & cpu_to_le16(bit))
549 		if (FM10K_TEST_RXD_BIT(rx_desc, FM10K_RXD_ERR_SWITCH_ERROR))
550 			rx_ring->rx_stats.switch_errors++;
551 		if (FM10K_TEST_RXD_BIT(rx_desc, FM10K_RXD_ERR_NO_DESCRIPTOR))
552 			rx_ring->rx_stats.drops++;
553 		if (FM10K_TEST_RXD_BIT(rx_desc, FM10K_RXD_ERR_PP_ERROR))
554 			rx_ring->rx_stats.pp_errors++;
555 		if (FM10K_TEST_RXD_BIT(rx_desc, FM10K_RXD_ERR_SWITCH_READY))
556 			rx_ring->rx_stats.link_errors++;
557 		if (FM10K_TEST_RXD_BIT(rx_desc, FM10K_RXD_ERR_TOO_BIG))
558 			rx_ring->rx_stats.length_errors++;
559 		dev_kfree_skb_any(skb);
560 		rx_ring->rx_stats.errors++;
561 		return true;
562 	}
563 
564 	/* if eth_skb_pad returns an error the skb was freed */
565 	if (eth_skb_pad(skb))
566 		return true;
567 
568 	return false;
569 }
570 
571 /**
572  * fm10k_receive_skb - helper function to handle rx indications
573  * @q_vector: structure containing interrupt and ring information
574  * @skb: packet to send up
575  **/
576 static void fm10k_receive_skb(struct fm10k_q_vector *q_vector,
577 			      struct sk_buff *skb)
578 {
579 	napi_gro_receive(&q_vector->napi, skb);
580 }
581 
582 static int fm10k_clean_rx_irq(struct fm10k_q_vector *q_vector,
583 			      struct fm10k_ring *rx_ring,
584 			      int budget)
585 {
586 	struct sk_buff *skb = rx_ring->skb;
587 	unsigned int total_bytes = 0, total_packets = 0;
588 	u16 cleaned_count = fm10k_desc_unused(rx_ring);
589 
590 	while (likely(total_packets < budget)) {
591 		union fm10k_rx_desc *rx_desc;
592 
593 		/* return some buffers to hardware, one at a time is too slow */
594 		if (cleaned_count >= FM10K_RX_BUFFER_WRITE) {
595 			fm10k_alloc_rx_buffers(rx_ring, cleaned_count);
596 			cleaned_count = 0;
597 		}
598 
599 		rx_desc = FM10K_RX_DESC(rx_ring, rx_ring->next_to_clean);
600 
601 		if (!rx_desc->d.staterr)
602 			break;
603 
604 		/* This memory barrier is needed to keep us from reading
605 		 * any other fields out of the rx_desc until we know the
606 		 * descriptor has been written back
607 		 */
608 		dma_rmb();
609 
610 		/* retrieve a buffer from the ring */
611 		skb = fm10k_fetch_rx_buffer(rx_ring, rx_desc, skb);
612 
613 		/* exit if we failed to retrieve a buffer */
614 		if (!skb)
615 			break;
616 
617 		cleaned_count++;
618 
619 		/* fetch next buffer in frame if non-eop */
620 		if (fm10k_is_non_eop(rx_ring, rx_desc))
621 			continue;
622 
623 		/* verify the packet layout is correct */
624 		if (fm10k_cleanup_headers(rx_ring, rx_desc, skb)) {
625 			skb = NULL;
626 			continue;
627 		}
628 
629 		/* populate checksum, timestamp, VLAN, and protocol */
630 		total_bytes += fm10k_process_skb_fields(rx_ring, rx_desc, skb);
631 
632 		fm10k_receive_skb(q_vector, skb);
633 
634 		/* reset skb pointer */
635 		skb = NULL;
636 
637 		/* update budget accounting */
638 		total_packets++;
639 	}
640 
641 	/* place incomplete frames back on ring for completion */
642 	rx_ring->skb = skb;
643 
644 	u64_stats_update_begin(&rx_ring->syncp);
645 	rx_ring->stats.packets += total_packets;
646 	rx_ring->stats.bytes += total_bytes;
647 	u64_stats_update_end(&rx_ring->syncp);
648 	q_vector->rx.total_packets += total_packets;
649 	q_vector->rx.total_bytes += total_bytes;
650 
651 	return total_packets;
652 }
653 
654 #define VXLAN_HLEN (sizeof(struct udphdr) + 8)
655 static struct ethhdr *fm10k_port_is_vxlan(struct sk_buff *skb)
656 {
657 	struct fm10k_intfc *interface = netdev_priv(skb->dev);
658 	struct fm10k_udp_port *vxlan_port;
659 
660 	/* we can only offload a vxlan if we recognize it as such */
661 	vxlan_port = list_first_entry_or_null(&interface->vxlan_port,
662 					      struct fm10k_udp_port, list);
663 
664 	if (!vxlan_port)
665 		return NULL;
666 	if (vxlan_port->port != udp_hdr(skb)->dest)
667 		return NULL;
668 
669 	/* return offset of udp_hdr plus 8 bytes for VXLAN header */
670 	return (struct ethhdr *)(skb_transport_header(skb) + VXLAN_HLEN);
671 }
672 
673 #define FM10K_NVGRE_RESERVED0_FLAGS htons(0x9FFF)
674 #define NVGRE_TNI htons(0x2000)
675 struct fm10k_nvgre_hdr {
676 	__be16 flags;
677 	__be16 proto;
678 	__be32 tni;
679 };
680 
681 static struct ethhdr *fm10k_gre_is_nvgre(struct sk_buff *skb)
682 {
683 	struct fm10k_nvgre_hdr *nvgre_hdr;
684 	int hlen = ip_hdrlen(skb);
685 
686 	/* currently only IPv4 is supported due to hlen above */
687 	if (vlan_get_protocol(skb) != htons(ETH_P_IP))
688 		return NULL;
689 
690 	/* our transport header should be NVGRE */
691 	nvgre_hdr = (struct fm10k_nvgre_hdr *)(skb_network_header(skb) + hlen);
692 
693 	/* verify all reserved flags are 0 */
694 	if (nvgre_hdr->flags & FM10K_NVGRE_RESERVED0_FLAGS)
695 		return NULL;
696 
697 	/* report start of ethernet header */
698 	if (nvgre_hdr->flags & NVGRE_TNI)
699 		return (struct ethhdr *)(nvgre_hdr + 1);
700 
701 	return (struct ethhdr *)(&nvgre_hdr->tni);
702 }
703 
704 __be16 fm10k_tx_encap_offload(struct sk_buff *skb)
705 {
706 	u8 l4_hdr = 0, inner_l4_hdr = 0, inner_l4_hlen;
707 	struct ethhdr *eth_hdr;
708 
709 	if (skb->inner_protocol_type != ENCAP_TYPE_ETHER ||
710 	    skb->inner_protocol != htons(ETH_P_TEB))
711 		return 0;
712 
713 	switch (vlan_get_protocol(skb)) {
714 	case htons(ETH_P_IP):
715 		l4_hdr = ip_hdr(skb)->protocol;
716 		break;
717 	case htons(ETH_P_IPV6):
718 		l4_hdr = ipv6_hdr(skb)->nexthdr;
719 		break;
720 	default:
721 		return 0;
722 	}
723 
724 	switch (l4_hdr) {
725 	case IPPROTO_UDP:
726 		eth_hdr = fm10k_port_is_vxlan(skb);
727 		break;
728 	case IPPROTO_GRE:
729 		eth_hdr = fm10k_gre_is_nvgre(skb);
730 		break;
731 	default:
732 		return 0;
733 	}
734 
735 	if (!eth_hdr)
736 		return 0;
737 
738 	switch (eth_hdr->h_proto) {
739 	case htons(ETH_P_IP):
740 		inner_l4_hdr = inner_ip_hdr(skb)->protocol;
741 		break;
742 	case htons(ETH_P_IPV6):
743 		inner_l4_hdr = inner_ipv6_hdr(skb)->nexthdr;
744 		break;
745 	default:
746 		return 0;
747 	}
748 
749 	switch (inner_l4_hdr) {
750 	case IPPROTO_TCP:
751 		inner_l4_hlen = inner_tcp_hdrlen(skb);
752 		break;
753 	case IPPROTO_UDP:
754 		inner_l4_hlen = 8;
755 		break;
756 	default:
757 		return 0;
758 	}
759 
760 	/* The hardware allows tunnel offloads only if the combined inner and
761 	 * outer header is 184 bytes or less
762 	 */
763 	if (skb_inner_transport_header(skb) + inner_l4_hlen -
764 	    skb_mac_header(skb) > FM10K_TUNNEL_HEADER_LENGTH)
765 		return 0;
766 
767 	return eth_hdr->h_proto;
768 }
769 
770 static int fm10k_tso(struct fm10k_ring *tx_ring,
771 		     struct fm10k_tx_buffer *first)
772 {
773 	struct sk_buff *skb = first->skb;
774 	struct fm10k_tx_desc *tx_desc;
775 	unsigned char *th;
776 	u8 hdrlen;
777 
778 	if (skb->ip_summed != CHECKSUM_PARTIAL)
779 		return 0;
780 
781 	if (!skb_is_gso(skb))
782 		return 0;
783 
784 	/* compute header lengths */
785 	if (skb->encapsulation) {
786 		if (!fm10k_tx_encap_offload(skb))
787 			goto err_vxlan;
788 		th = skb_inner_transport_header(skb);
789 	} else {
790 		th = skb_transport_header(skb);
791 	}
792 
793 	/* compute offset from SOF to transport header and add header len */
794 	hdrlen = (th - skb->data) + (((struct tcphdr *)th)->doff << 2);
795 
796 	first->tx_flags |= FM10K_TX_FLAGS_CSUM;
797 
798 	/* update gso size and bytecount with header size */
799 	first->gso_segs = skb_shinfo(skb)->gso_segs;
800 	first->bytecount += (first->gso_segs - 1) * hdrlen;
801 
802 	/* populate Tx descriptor header size and mss */
803 	tx_desc = FM10K_TX_DESC(tx_ring, tx_ring->next_to_use);
804 	tx_desc->hdrlen = hdrlen;
805 	tx_desc->mss = cpu_to_le16(skb_shinfo(skb)->gso_size);
806 
807 	return 1;
808 
809 err_vxlan:
810 	tx_ring->netdev->features &= ~NETIF_F_GSO_UDP_TUNNEL;
811 	if (net_ratelimit())
812 		netdev_err(tx_ring->netdev,
813 			   "TSO requested for unsupported tunnel, disabling offload\n");
814 	return -1;
815 }
816 
817 static void fm10k_tx_csum(struct fm10k_ring *tx_ring,
818 			  struct fm10k_tx_buffer *first)
819 {
820 	struct sk_buff *skb = first->skb;
821 	struct fm10k_tx_desc *tx_desc;
822 	union {
823 		struct iphdr *ipv4;
824 		struct ipv6hdr *ipv6;
825 		u8 *raw;
826 	} network_hdr;
827 	u8 *transport_hdr;
828 	__be16 frag_off;
829 	__be16 protocol;
830 	u8 l4_hdr = 0;
831 
832 	if (skb->ip_summed != CHECKSUM_PARTIAL)
833 		goto no_csum;
834 
835 	if (skb->encapsulation) {
836 		protocol = fm10k_tx_encap_offload(skb);
837 		if (!protocol) {
838 			if (skb_checksum_help(skb)) {
839 				dev_warn(tx_ring->dev,
840 					 "failed to offload encap csum!\n");
841 				tx_ring->tx_stats.csum_err++;
842 			}
843 			goto no_csum;
844 		}
845 		network_hdr.raw = skb_inner_network_header(skb);
846 		transport_hdr = skb_inner_transport_header(skb);
847 	} else {
848 		protocol = vlan_get_protocol(skb);
849 		network_hdr.raw = skb_network_header(skb);
850 		transport_hdr = skb_transport_header(skb);
851 	}
852 
853 	switch (protocol) {
854 	case htons(ETH_P_IP):
855 		l4_hdr = network_hdr.ipv4->protocol;
856 		break;
857 	case htons(ETH_P_IPV6):
858 		l4_hdr = network_hdr.ipv6->nexthdr;
859 		if (likely((transport_hdr - network_hdr.raw) ==
860 			   sizeof(struct ipv6hdr)))
861 			break;
862 		ipv6_skip_exthdr(skb, network_hdr.raw - skb->data +
863 				      sizeof(struct ipv6hdr),
864 				 &l4_hdr, &frag_off);
865 		if (unlikely(frag_off))
866 			l4_hdr = NEXTHDR_FRAGMENT;
867 		break;
868 	default:
869 		break;
870 	}
871 
872 	switch (l4_hdr) {
873 	case IPPROTO_TCP:
874 	case IPPROTO_UDP:
875 		break;
876 	case IPPROTO_GRE:
877 		if (skb->encapsulation)
878 			break;
879 		/* fall through */
880 	default:
881 		if (unlikely(net_ratelimit())) {
882 			dev_warn(tx_ring->dev,
883 				 "partial checksum, version=%d l4 proto=%x\n",
884 				 protocol, l4_hdr);
885 		}
886 		skb_checksum_help(skb);
887 		tx_ring->tx_stats.csum_err++;
888 		goto no_csum;
889 	}
890 
891 	/* update TX checksum flag */
892 	first->tx_flags |= FM10K_TX_FLAGS_CSUM;
893 	tx_ring->tx_stats.csum_good++;
894 
895 no_csum:
896 	/* populate Tx descriptor header size and mss */
897 	tx_desc = FM10K_TX_DESC(tx_ring, tx_ring->next_to_use);
898 	tx_desc->hdrlen = 0;
899 	tx_desc->mss = 0;
900 }
901 
902 #define FM10K_SET_FLAG(_input, _flag, _result) \
903 	((_flag <= _result) ? \
904 	 ((u32)(_input & _flag) * (_result / _flag)) : \
905 	 ((u32)(_input & _flag) / (_flag / _result)))
906 
907 static u8 fm10k_tx_desc_flags(struct sk_buff *skb, u32 tx_flags)
908 {
909 	/* set type for advanced descriptor with frame checksum insertion */
910 	u32 desc_flags = 0;
911 
912 	/* set checksum offload bits */
913 	desc_flags |= FM10K_SET_FLAG(tx_flags, FM10K_TX_FLAGS_CSUM,
914 				     FM10K_TXD_FLAG_CSUM);
915 
916 	return desc_flags;
917 }
918 
919 static bool fm10k_tx_desc_push(struct fm10k_ring *tx_ring,
920 			       struct fm10k_tx_desc *tx_desc, u16 i,
921 			       dma_addr_t dma, unsigned int size, u8 desc_flags)
922 {
923 	/* set RS and INT for last frame in a cache line */
924 	if ((++i & (FM10K_TXD_WB_FIFO_SIZE - 1)) == 0)
925 		desc_flags |= FM10K_TXD_FLAG_RS | FM10K_TXD_FLAG_INT;
926 
927 	/* record values to descriptor */
928 	tx_desc->buffer_addr = cpu_to_le64(dma);
929 	tx_desc->flags = desc_flags;
930 	tx_desc->buflen = cpu_to_le16(size);
931 
932 	/* return true if we just wrapped the ring */
933 	return i == tx_ring->count;
934 }
935 
936 static int __fm10k_maybe_stop_tx(struct fm10k_ring *tx_ring, u16 size)
937 {
938 	netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
939 
940 	/* Memory barrier before checking head and tail */
941 	smp_mb();
942 
943 	/* Check again in a case another CPU has just made room available */
944 	if (likely(fm10k_desc_unused(tx_ring) < size))
945 		return -EBUSY;
946 
947 	/* A reprieve! - use start_queue because it doesn't call schedule */
948 	netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
949 	++tx_ring->tx_stats.restart_queue;
950 	return 0;
951 }
952 
953 static inline int fm10k_maybe_stop_tx(struct fm10k_ring *tx_ring, u16 size)
954 {
955 	if (likely(fm10k_desc_unused(tx_ring) >= size))
956 		return 0;
957 	return __fm10k_maybe_stop_tx(tx_ring, size);
958 }
959 
960 static void fm10k_tx_map(struct fm10k_ring *tx_ring,
961 			 struct fm10k_tx_buffer *first)
962 {
963 	struct sk_buff *skb = first->skb;
964 	struct fm10k_tx_buffer *tx_buffer;
965 	struct fm10k_tx_desc *tx_desc;
966 	struct skb_frag_struct *frag;
967 	unsigned char *data;
968 	dma_addr_t dma;
969 	unsigned int data_len, size;
970 	u32 tx_flags = first->tx_flags;
971 	u16 i = tx_ring->next_to_use;
972 	u8 flags = fm10k_tx_desc_flags(skb, tx_flags);
973 
974 	tx_desc = FM10K_TX_DESC(tx_ring, i);
975 
976 	/* add HW VLAN tag */
977 	if (skb_vlan_tag_present(skb))
978 		tx_desc->vlan = cpu_to_le16(skb_vlan_tag_get(skb));
979 	else
980 		tx_desc->vlan = 0;
981 
982 	size = skb_headlen(skb);
983 	data = skb->data;
984 
985 	dma = dma_map_single(tx_ring->dev, data, size, DMA_TO_DEVICE);
986 
987 	data_len = skb->data_len;
988 	tx_buffer = first;
989 
990 	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
991 		if (dma_mapping_error(tx_ring->dev, dma))
992 			goto dma_error;
993 
994 		/* record length, and DMA address */
995 		dma_unmap_len_set(tx_buffer, len, size);
996 		dma_unmap_addr_set(tx_buffer, dma, dma);
997 
998 		while (unlikely(size > FM10K_MAX_DATA_PER_TXD)) {
999 			if (fm10k_tx_desc_push(tx_ring, tx_desc++, i++, dma,
1000 					       FM10K_MAX_DATA_PER_TXD, flags)) {
1001 				tx_desc = FM10K_TX_DESC(tx_ring, 0);
1002 				i = 0;
1003 			}
1004 
1005 			dma += FM10K_MAX_DATA_PER_TXD;
1006 			size -= FM10K_MAX_DATA_PER_TXD;
1007 		}
1008 
1009 		if (likely(!data_len))
1010 			break;
1011 
1012 		if (fm10k_tx_desc_push(tx_ring, tx_desc++, i++,
1013 				       dma, size, flags)) {
1014 			tx_desc = FM10K_TX_DESC(tx_ring, 0);
1015 			i = 0;
1016 		}
1017 
1018 		size = skb_frag_size(frag);
1019 		data_len -= size;
1020 
1021 		dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
1022 				       DMA_TO_DEVICE);
1023 
1024 		tx_buffer = &tx_ring->tx_buffer[i];
1025 	}
1026 
1027 	/* write last descriptor with LAST bit set */
1028 	flags |= FM10K_TXD_FLAG_LAST;
1029 
1030 	if (fm10k_tx_desc_push(tx_ring, tx_desc, i++, dma, size, flags))
1031 		i = 0;
1032 
1033 	/* record bytecount for BQL */
1034 	netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
1035 
1036 	/* record SW timestamp if HW timestamp is not available */
1037 	skb_tx_timestamp(first->skb);
1038 
1039 	/* Force memory writes to complete before letting h/w know there
1040 	 * are new descriptors to fetch.  (Only applicable for weak-ordered
1041 	 * memory model archs, such as IA-64).
1042 	 *
1043 	 * We also need this memory barrier to make certain all of the
1044 	 * status bits have been updated before next_to_watch is written.
1045 	 */
1046 	wmb();
1047 
1048 	/* set next_to_watch value indicating a packet is present */
1049 	first->next_to_watch = tx_desc;
1050 
1051 	tx_ring->next_to_use = i;
1052 
1053 	/* Make sure there is space in the ring for the next send. */
1054 	fm10k_maybe_stop_tx(tx_ring, DESC_NEEDED);
1055 
1056 	/* notify HW of packet */
1057 	if (netif_xmit_stopped(txring_txq(tx_ring)) || !skb->xmit_more) {
1058 		writel(i, tx_ring->tail);
1059 
1060 		/* we need this if more than one processor can write to our tail
1061 		 * at a time, it synchronizes IO on IA64/Altix systems
1062 		 */
1063 		mmiowb();
1064 	}
1065 
1066 	return;
1067 dma_error:
1068 	dev_err(tx_ring->dev, "TX DMA map failed\n");
1069 
1070 	/* clear dma mappings for failed tx_buffer map */
1071 	for (;;) {
1072 		tx_buffer = &tx_ring->tx_buffer[i];
1073 		fm10k_unmap_and_free_tx_resource(tx_ring, tx_buffer);
1074 		if (tx_buffer == first)
1075 			break;
1076 		if (i == 0)
1077 			i = tx_ring->count;
1078 		i--;
1079 	}
1080 
1081 	tx_ring->next_to_use = i;
1082 }
1083 
1084 netdev_tx_t fm10k_xmit_frame_ring(struct sk_buff *skb,
1085 				  struct fm10k_ring *tx_ring)
1086 {
1087 	u16 count = TXD_USE_COUNT(skb_headlen(skb));
1088 	struct fm10k_tx_buffer *first;
1089 	unsigned short f;
1090 	u32 tx_flags = 0;
1091 	int tso;
1092 
1093 	/* need: 1 descriptor per page * PAGE_SIZE/FM10K_MAX_DATA_PER_TXD,
1094 	 *       + 1 desc for skb_headlen/FM10K_MAX_DATA_PER_TXD,
1095 	 *       + 2 desc gap to keep tail from touching head
1096 	 * otherwise try next time
1097 	 */
1098 	for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
1099 		count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size);
1100 
1101 	if (fm10k_maybe_stop_tx(tx_ring, count + 3)) {
1102 		tx_ring->tx_stats.tx_busy++;
1103 		return NETDEV_TX_BUSY;
1104 	}
1105 
1106 	/* record the location of the first descriptor for this packet */
1107 	first = &tx_ring->tx_buffer[tx_ring->next_to_use];
1108 	first->skb = skb;
1109 	first->bytecount = max_t(unsigned int, skb->len, ETH_ZLEN);
1110 	first->gso_segs = 1;
1111 
1112 	/* record initial flags and protocol */
1113 	first->tx_flags = tx_flags;
1114 
1115 	tso = fm10k_tso(tx_ring, first);
1116 	if (tso < 0)
1117 		goto out_drop;
1118 	else if (!tso)
1119 		fm10k_tx_csum(tx_ring, first);
1120 
1121 	fm10k_tx_map(tx_ring, first);
1122 
1123 	return NETDEV_TX_OK;
1124 
1125 out_drop:
1126 	dev_kfree_skb_any(first->skb);
1127 	first->skb = NULL;
1128 
1129 	return NETDEV_TX_OK;
1130 }
1131 
1132 static u64 fm10k_get_tx_completed(struct fm10k_ring *ring)
1133 {
1134 	return ring->stats.packets;
1135 }
1136 
1137 /**
1138  * fm10k_get_tx_pending - how many Tx descriptors not processed
1139  * @ring: the ring structure
1140  * @in_sw: is tx_pending being checked in SW or in HW?
1141  */
1142 u64 fm10k_get_tx_pending(struct fm10k_ring *ring, bool in_sw)
1143 {
1144 	struct fm10k_intfc *interface = ring->q_vector->interface;
1145 	struct fm10k_hw *hw = &interface->hw;
1146 	u32 head, tail;
1147 
1148 	if (likely(in_sw)) {
1149 		head = ring->next_to_clean;
1150 		tail = ring->next_to_use;
1151 	} else {
1152 		head = fm10k_read_reg(hw, FM10K_TDH(ring->reg_idx));
1153 		tail = fm10k_read_reg(hw, FM10K_TDT(ring->reg_idx));
1154 	}
1155 
1156 	return ((head <= tail) ? tail : tail + ring->count) - head;
1157 }
1158 
1159 bool fm10k_check_tx_hang(struct fm10k_ring *tx_ring)
1160 {
1161 	u32 tx_done = fm10k_get_tx_completed(tx_ring);
1162 	u32 tx_done_old = tx_ring->tx_stats.tx_done_old;
1163 	u32 tx_pending = fm10k_get_tx_pending(tx_ring, true);
1164 
1165 	clear_check_for_tx_hang(tx_ring);
1166 
1167 	/* Check for a hung queue, but be thorough. This verifies
1168 	 * that a transmit has been completed since the previous
1169 	 * check AND there is at least one packet pending. By
1170 	 * requiring this to fail twice we avoid races with
1171 	 * clearing the ARMED bit and conditions where we
1172 	 * run the check_tx_hang logic with a transmit completion
1173 	 * pending but without time to complete it yet.
1174 	 */
1175 	if (!tx_pending || (tx_done_old != tx_done)) {
1176 		/* update completed stats and continue */
1177 		tx_ring->tx_stats.tx_done_old = tx_done;
1178 		/* reset the countdown */
1179 		clear_bit(__FM10K_HANG_CHECK_ARMED, tx_ring->state);
1180 
1181 		return false;
1182 	}
1183 
1184 	/* make sure it is true for two checks in a row */
1185 	return test_and_set_bit(__FM10K_HANG_CHECK_ARMED, tx_ring->state);
1186 }
1187 
1188 /**
1189  * fm10k_tx_timeout_reset - initiate reset due to Tx timeout
1190  * @interface: driver private struct
1191  **/
1192 void fm10k_tx_timeout_reset(struct fm10k_intfc *interface)
1193 {
1194 	/* Do the reset outside of interrupt context */
1195 	if (!test_bit(__FM10K_DOWN, interface->state)) {
1196 		interface->tx_timeout_count++;
1197 		set_bit(FM10K_FLAG_RESET_REQUESTED, interface->flags);
1198 		fm10k_service_event_schedule(interface);
1199 	}
1200 }
1201 
1202 /**
1203  * fm10k_clean_tx_irq - Reclaim resources after transmit completes
1204  * @q_vector: structure containing interrupt and ring information
1205  * @tx_ring: tx ring to clean
1206  * @napi_budget: Used to determine if we are in netpoll
1207  **/
1208 static bool fm10k_clean_tx_irq(struct fm10k_q_vector *q_vector,
1209 			       struct fm10k_ring *tx_ring, int napi_budget)
1210 {
1211 	struct fm10k_intfc *interface = q_vector->interface;
1212 	struct fm10k_tx_buffer *tx_buffer;
1213 	struct fm10k_tx_desc *tx_desc;
1214 	unsigned int total_bytes = 0, total_packets = 0;
1215 	unsigned int budget = q_vector->tx.work_limit;
1216 	unsigned int i = tx_ring->next_to_clean;
1217 
1218 	if (test_bit(__FM10K_DOWN, interface->state))
1219 		return true;
1220 
1221 	tx_buffer = &tx_ring->tx_buffer[i];
1222 	tx_desc = FM10K_TX_DESC(tx_ring, i);
1223 	i -= tx_ring->count;
1224 
1225 	do {
1226 		struct fm10k_tx_desc *eop_desc = tx_buffer->next_to_watch;
1227 
1228 		/* if next_to_watch is not set then there is no work pending */
1229 		if (!eop_desc)
1230 			break;
1231 
1232 		/* prevent any other reads prior to eop_desc */
1233 		smp_rmb();
1234 
1235 		/* if DD is not set pending work has not been completed */
1236 		if (!(eop_desc->flags & FM10K_TXD_FLAG_DONE))
1237 			break;
1238 
1239 		/* clear next_to_watch to prevent false hangs */
1240 		tx_buffer->next_to_watch = NULL;
1241 
1242 		/* update the statistics for this packet */
1243 		total_bytes += tx_buffer->bytecount;
1244 		total_packets += tx_buffer->gso_segs;
1245 
1246 		/* free the skb */
1247 		napi_consume_skb(tx_buffer->skb, napi_budget);
1248 
1249 		/* unmap skb header data */
1250 		dma_unmap_single(tx_ring->dev,
1251 				 dma_unmap_addr(tx_buffer, dma),
1252 				 dma_unmap_len(tx_buffer, len),
1253 				 DMA_TO_DEVICE);
1254 
1255 		/* clear tx_buffer data */
1256 		tx_buffer->skb = NULL;
1257 		dma_unmap_len_set(tx_buffer, len, 0);
1258 
1259 		/* unmap remaining buffers */
1260 		while (tx_desc != eop_desc) {
1261 			tx_buffer++;
1262 			tx_desc++;
1263 			i++;
1264 			if (unlikely(!i)) {
1265 				i -= tx_ring->count;
1266 				tx_buffer = tx_ring->tx_buffer;
1267 				tx_desc = FM10K_TX_DESC(tx_ring, 0);
1268 			}
1269 
1270 			/* unmap any remaining paged data */
1271 			if (dma_unmap_len(tx_buffer, len)) {
1272 				dma_unmap_page(tx_ring->dev,
1273 					       dma_unmap_addr(tx_buffer, dma),
1274 					       dma_unmap_len(tx_buffer, len),
1275 					       DMA_TO_DEVICE);
1276 				dma_unmap_len_set(tx_buffer, len, 0);
1277 			}
1278 		}
1279 
1280 		/* move us one more past the eop_desc for start of next pkt */
1281 		tx_buffer++;
1282 		tx_desc++;
1283 		i++;
1284 		if (unlikely(!i)) {
1285 			i -= tx_ring->count;
1286 			tx_buffer = tx_ring->tx_buffer;
1287 			tx_desc = FM10K_TX_DESC(tx_ring, 0);
1288 		}
1289 
1290 		/* issue prefetch for next Tx descriptor */
1291 		prefetch(tx_desc);
1292 
1293 		/* update budget accounting */
1294 		budget--;
1295 	} while (likely(budget));
1296 
1297 	i += tx_ring->count;
1298 	tx_ring->next_to_clean = i;
1299 	u64_stats_update_begin(&tx_ring->syncp);
1300 	tx_ring->stats.bytes += total_bytes;
1301 	tx_ring->stats.packets += total_packets;
1302 	u64_stats_update_end(&tx_ring->syncp);
1303 	q_vector->tx.total_bytes += total_bytes;
1304 	q_vector->tx.total_packets += total_packets;
1305 
1306 	if (check_for_tx_hang(tx_ring) && fm10k_check_tx_hang(tx_ring)) {
1307 		/* schedule immediate reset if we believe we hung */
1308 		struct fm10k_hw *hw = &interface->hw;
1309 
1310 		netif_err(interface, drv, tx_ring->netdev,
1311 			  "Detected Tx Unit Hang\n"
1312 			  "  Tx Queue             <%d>\n"
1313 			  "  TDH, TDT             <%x>, <%x>\n"
1314 			  "  next_to_use          <%x>\n"
1315 			  "  next_to_clean        <%x>\n",
1316 			  tx_ring->queue_index,
1317 			  fm10k_read_reg(hw, FM10K_TDH(tx_ring->reg_idx)),
1318 			  fm10k_read_reg(hw, FM10K_TDT(tx_ring->reg_idx)),
1319 			  tx_ring->next_to_use, i);
1320 
1321 		netif_stop_subqueue(tx_ring->netdev,
1322 				    tx_ring->queue_index);
1323 
1324 		netif_info(interface, probe, tx_ring->netdev,
1325 			   "tx hang %d detected on queue %d, resetting interface\n",
1326 			   interface->tx_timeout_count + 1,
1327 			   tx_ring->queue_index);
1328 
1329 		fm10k_tx_timeout_reset(interface);
1330 
1331 		/* the netdev is about to reset, no point in enabling stuff */
1332 		return true;
1333 	}
1334 
1335 	/* notify netdev of completed buffers */
1336 	netdev_tx_completed_queue(txring_txq(tx_ring),
1337 				  total_packets, total_bytes);
1338 
1339 #define TX_WAKE_THRESHOLD min_t(u16, FM10K_MIN_TXD - 1, DESC_NEEDED * 2)
1340 	if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
1341 		     (fm10k_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD))) {
1342 		/* Make sure that anybody stopping the queue after this
1343 		 * sees the new next_to_clean.
1344 		 */
1345 		smp_mb();
1346 		if (__netif_subqueue_stopped(tx_ring->netdev,
1347 					     tx_ring->queue_index) &&
1348 		    !test_bit(__FM10K_DOWN, interface->state)) {
1349 			netif_wake_subqueue(tx_ring->netdev,
1350 					    tx_ring->queue_index);
1351 			++tx_ring->tx_stats.restart_queue;
1352 		}
1353 	}
1354 
1355 	return !!budget;
1356 }
1357 
1358 /**
1359  * fm10k_update_itr - update the dynamic ITR value based on packet size
1360  *
1361  *      Stores a new ITR value based on strictly on packet size.  The
1362  *      divisors and thresholds used by this function were determined based
1363  *      on theoretical maximum wire speed and testing data, in order to
1364  *      minimize response time while increasing bulk throughput.
1365  *
1366  * @ring_container: Container for rings to have ITR updated
1367  **/
1368 static void fm10k_update_itr(struct fm10k_ring_container *ring_container)
1369 {
1370 	unsigned int avg_wire_size, packets, itr_round;
1371 
1372 	/* Only update ITR if we are using adaptive setting */
1373 	if (!ITR_IS_ADAPTIVE(ring_container->itr))
1374 		goto clear_counts;
1375 
1376 	packets = ring_container->total_packets;
1377 	if (!packets)
1378 		goto clear_counts;
1379 
1380 	avg_wire_size = ring_container->total_bytes / packets;
1381 
1382 	/* The following is a crude approximation of:
1383 	 *  wmem_default / (size + overhead) = desired_pkts_per_int
1384 	 *  rate / bits_per_byte / (size + ethernet overhead) = pkt_rate
1385 	 *  (desired_pkt_rate / pkt_rate) * usecs_per_sec = ITR value
1386 	 *
1387 	 * Assuming wmem_default is 212992 and overhead is 640 bytes per
1388 	 * packet, (256 skb, 64 headroom, 320 shared info), we can reduce the
1389 	 * formula down to
1390 	 *
1391 	 *  (34 * (size + 24)) / (size + 640) = ITR
1392 	 *
1393 	 * We first do some math on the packet size and then finally bitshift
1394 	 * by 8 after rounding up. We also have to account for PCIe link speed
1395 	 * difference as ITR scales based on this.
1396 	 */
1397 	if (avg_wire_size <= 360) {
1398 		/* Start at 250K ints/sec and gradually drop to 77K ints/sec */
1399 		avg_wire_size *= 8;
1400 		avg_wire_size += 376;
1401 	} else if (avg_wire_size <= 1152) {
1402 		/* 77K ints/sec to 45K ints/sec */
1403 		avg_wire_size *= 3;
1404 		avg_wire_size += 2176;
1405 	} else if (avg_wire_size <= 1920) {
1406 		/* 45K ints/sec to 38K ints/sec */
1407 		avg_wire_size += 4480;
1408 	} else {
1409 		/* plateau at a limit of 38K ints/sec */
1410 		avg_wire_size = 6656;
1411 	}
1412 
1413 	/* Perform final bitshift for division after rounding up to ensure
1414 	 * that the calculation will never get below a 1. The bit shift
1415 	 * accounts for changes in the ITR due to PCIe link speed.
1416 	 */
1417 	itr_round = READ_ONCE(ring_container->itr_scale) + 8;
1418 	avg_wire_size += BIT(itr_round) - 1;
1419 	avg_wire_size >>= itr_round;
1420 
1421 	/* write back value and retain adaptive flag */
1422 	ring_container->itr = avg_wire_size | FM10K_ITR_ADAPTIVE;
1423 
1424 clear_counts:
1425 	ring_container->total_bytes = 0;
1426 	ring_container->total_packets = 0;
1427 }
1428 
1429 static void fm10k_qv_enable(struct fm10k_q_vector *q_vector)
1430 {
1431 	/* Enable auto-mask and clear the current mask */
1432 	u32 itr = FM10K_ITR_ENABLE;
1433 
1434 	/* Update Tx ITR */
1435 	fm10k_update_itr(&q_vector->tx);
1436 
1437 	/* Update Rx ITR */
1438 	fm10k_update_itr(&q_vector->rx);
1439 
1440 	/* Store Tx itr in timer slot 0 */
1441 	itr |= (q_vector->tx.itr & FM10K_ITR_MAX);
1442 
1443 	/* Shift Rx itr to timer slot 1 */
1444 	itr |= (q_vector->rx.itr & FM10K_ITR_MAX) << FM10K_ITR_INTERVAL1_SHIFT;
1445 
1446 	/* Write the final value to the ITR register */
1447 	writel(itr, q_vector->itr);
1448 }
1449 
1450 static int fm10k_poll(struct napi_struct *napi, int budget)
1451 {
1452 	struct fm10k_q_vector *q_vector =
1453 			       container_of(napi, struct fm10k_q_vector, napi);
1454 	struct fm10k_ring *ring;
1455 	int per_ring_budget, work_done = 0;
1456 	bool clean_complete = true;
1457 
1458 	fm10k_for_each_ring(ring, q_vector->tx) {
1459 		if (!fm10k_clean_tx_irq(q_vector, ring, budget))
1460 			clean_complete = false;
1461 	}
1462 
1463 	/* Handle case where we are called by netpoll with a budget of 0 */
1464 	if (budget <= 0)
1465 		return budget;
1466 
1467 	/* attempt to distribute budget to each queue fairly, but don't
1468 	 * allow the budget to go below 1 because we'll exit polling
1469 	 */
1470 	if (q_vector->rx.count > 1)
1471 		per_ring_budget = max(budget / q_vector->rx.count, 1);
1472 	else
1473 		per_ring_budget = budget;
1474 
1475 	fm10k_for_each_ring(ring, q_vector->rx) {
1476 		int work = fm10k_clean_rx_irq(q_vector, ring, per_ring_budget);
1477 
1478 		work_done += work;
1479 		if (work >= per_ring_budget)
1480 			clean_complete = false;
1481 	}
1482 
1483 	/* If all work not completed, return budget and keep polling */
1484 	if (!clean_complete)
1485 		return budget;
1486 
1487 	/* all work done, exit the polling mode */
1488 	napi_complete_done(napi, work_done);
1489 
1490 	/* re-enable the q_vector */
1491 	fm10k_qv_enable(q_vector);
1492 
1493 	return min(work_done, budget - 1);
1494 }
1495 
1496 /**
1497  * fm10k_set_qos_queues: Allocate queues for a QOS-enabled device
1498  * @interface: board private structure to initialize
1499  *
1500  * When QoS (Quality of Service) is enabled, allocate queues for
1501  * each traffic class.  If multiqueue isn't available,then abort QoS
1502  * initialization.
1503  *
1504  * This function handles all combinations of Qos and RSS.
1505  *
1506  **/
1507 static bool fm10k_set_qos_queues(struct fm10k_intfc *interface)
1508 {
1509 	struct net_device *dev = interface->netdev;
1510 	struct fm10k_ring_feature *f;
1511 	int rss_i, i;
1512 	int pcs;
1513 
1514 	/* Map queue offset and counts onto allocated tx queues */
1515 	pcs = netdev_get_num_tc(dev);
1516 
1517 	if (pcs <= 1)
1518 		return false;
1519 
1520 	/* set QoS mask and indices */
1521 	f = &interface->ring_feature[RING_F_QOS];
1522 	f->indices = pcs;
1523 	f->mask = BIT(fls(pcs - 1)) - 1;
1524 
1525 	/* determine the upper limit for our current DCB mode */
1526 	rss_i = interface->hw.mac.max_queues / pcs;
1527 	rss_i = BIT(fls(rss_i) - 1);
1528 
1529 	/* set RSS mask and indices */
1530 	f = &interface->ring_feature[RING_F_RSS];
1531 	rss_i = min_t(u16, rss_i, f->limit);
1532 	f->indices = rss_i;
1533 	f->mask = BIT(fls(rss_i - 1)) - 1;
1534 
1535 	/* configure pause class to queue mapping */
1536 	for (i = 0; i < pcs; i++)
1537 		netdev_set_tc_queue(dev, i, rss_i, rss_i * i);
1538 
1539 	interface->num_rx_queues = rss_i * pcs;
1540 	interface->num_tx_queues = rss_i * pcs;
1541 
1542 	return true;
1543 }
1544 
1545 /**
1546  * fm10k_set_rss_queues: Allocate queues for RSS
1547  * @interface: board private structure to initialize
1548  *
1549  * This is our "base" multiqueue mode.  RSS (Receive Side Scaling) will try
1550  * to allocate one Rx queue per CPU, and if available, one Tx queue per CPU.
1551  *
1552  **/
1553 static bool fm10k_set_rss_queues(struct fm10k_intfc *interface)
1554 {
1555 	struct fm10k_ring_feature *f;
1556 	u16 rss_i;
1557 
1558 	f = &interface->ring_feature[RING_F_RSS];
1559 	rss_i = min_t(u16, interface->hw.mac.max_queues, f->limit);
1560 
1561 	/* record indices and power of 2 mask for RSS */
1562 	f->indices = rss_i;
1563 	f->mask = BIT(fls(rss_i - 1)) - 1;
1564 
1565 	interface->num_rx_queues = rss_i;
1566 	interface->num_tx_queues = rss_i;
1567 
1568 	return true;
1569 }
1570 
1571 /**
1572  * fm10k_set_num_queues: Allocate queues for device, feature dependent
1573  * @interface: board private structure to initialize
1574  *
1575  * This is the top level queue allocation routine.  The order here is very
1576  * important, starting with the "most" number of features turned on at once,
1577  * and ending with the smallest set of features.  This way large combinations
1578  * can be allocated if they're turned on, and smaller combinations are the
1579  * fallthrough conditions.
1580  *
1581  **/
1582 static void fm10k_set_num_queues(struct fm10k_intfc *interface)
1583 {
1584 	/* Attempt to setup QoS and RSS first */
1585 	if (fm10k_set_qos_queues(interface))
1586 		return;
1587 
1588 	/* If we don't have QoS, just fallback to only RSS. */
1589 	fm10k_set_rss_queues(interface);
1590 }
1591 
1592 /**
1593  * fm10k_reset_num_queues - Reset the number of queues to zero
1594  * @interface: board private structure
1595  *
1596  * This function should be called whenever we need to reset the number of
1597  * queues after an error condition.
1598  */
1599 static void fm10k_reset_num_queues(struct fm10k_intfc *interface)
1600 {
1601 	interface->num_tx_queues = 0;
1602 	interface->num_rx_queues = 0;
1603 	interface->num_q_vectors = 0;
1604 }
1605 
1606 /**
1607  * fm10k_alloc_q_vector - Allocate memory for a single interrupt vector
1608  * @interface: board private structure to initialize
1609  * @v_count: q_vectors allocated on interface, used for ring interleaving
1610  * @v_idx: index of vector in interface struct
1611  * @txr_count: total number of Tx rings to allocate
1612  * @txr_idx: index of first Tx ring to allocate
1613  * @rxr_count: total number of Rx rings to allocate
1614  * @rxr_idx: index of first Rx ring to allocate
1615  *
1616  * We allocate one q_vector.  If allocation fails we return -ENOMEM.
1617  **/
1618 static int fm10k_alloc_q_vector(struct fm10k_intfc *interface,
1619 				unsigned int v_count, unsigned int v_idx,
1620 				unsigned int txr_count, unsigned int txr_idx,
1621 				unsigned int rxr_count, unsigned int rxr_idx)
1622 {
1623 	struct fm10k_q_vector *q_vector;
1624 	struct fm10k_ring *ring;
1625 	int ring_count, size;
1626 
1627 	ring_count = txr_count + rxr_count;
1628 	size = sizeof(struct fm10k_q_vector) +
1629 	       (sizeof(struct fm10k_ring) * ring_count);
1630 
1631 	/* allocate q_vector and rings */
1632 	q_vector = kzalloc(size, GFP_KERNEL);
1633 	if (!q_vector)
1634 		return -ENOMEM;
1635 
1636 	/* initialize NAPI */
1637 	netif_napi_add(interface->netdev, &q_vector->napi,
1638 		       fm10k_poll, NAPI_POLL_WEIGHT);
1639 
1640 	/* tie q_vector and interface together */
1641 	interface->q_vector[v_idx] = q_vector;
1642 	q_vector->interface = interface;
1643 	q_vector->v_idx = v_idx;
1644 
1645 	/* initialize pointer to rings */
1646 	ring = q_vector->ring;
1647 
1648 	/* save Tx ring container info */
1649 	q_vector->tx.ring = ring;
1650 	q_vector->tx.work_limit = FM10K_DEFAULT_TX_WORK;
1651 	q_vector->tx.itr = interface->tx_itr;
1652 	q_vector->tx.itr_scale = interface->hw.mac.itr_scale;
1653 	q_vector->tx.count = txr_count;
1654 
1655 	while (txr_count) {
1656 		/* assign generic ring traits */
1657 		ring->dev = &interface->pdev->dev;
1658 		ring->netdev = interface->netdev;
1659 
1660 		/* configure backlink on ring */
1661 		ring->q_vector = q_vector;
1662 
1663 		/* apply Tx specific ring traits */
1664 		ring->count = interface->tx_ring_count;
1665 		ring->queue_index = txr_idx;
1666 
1667 		/* assign ring to interface */
1668 		interface->tx_ring[txr_idx] = ring;
1669 
1670 		/* update count and index */
1671 		txr_count--;
1672 		txr_idx += v_count;
1673 
1674 		/* push pointer to next ring */
1675 		ring++;
1676 	}
1677 
1678 	/* save Rx ring container info */
1679 	q_vector->rx.ring = ring;
1680 	q_vector->rx.itr = interface->rx_itr;
1681 	q_vector->rx.itr_scale = interface->hw.mac.itr_scale;
1682 	q_vector->rx.count = rxr_count;
1683 
1684 	while (rxr_count) {
1685 		/* assign generic ring traits */
1686 		ring->dev = &interface->pdev->dev;
1687 		ring->netdev = interface->netdev;
1688 		rcu_assign_pointer(ring->l2_accel, interface->l2_accel);
1689 
1690 		/* configure backlink on ring */
1691 		ring->q_vector = q_vector;
1692 
1693 		/* apply Rx specific ring traits */
1694 		ring->count = interface->rx_ring_count;
1695 		ring->queue_index = rxr_idx;
1696 
1697 		/* assign ring to interface */
1698 		interface->rx_ring[rxr_idx] = ring;
1699 
1700 		/* update count and index */
1701 		rxr_count--;
1702 		rxr_idx += v_count;
1703 
1704 		/* push pointer to next ring */
1705 		ring++;
1706 	}
1707 
1708 	fm10k_dbg_q_vector_init(q_vector);
1709 
1710 	return 0;
1711 }
1712 
1713 /**
1714  * fm10k_free_q_vector - Free memory allocated for specific interrupt vector
1715  * @interface: board private structure to initialize
1716  * @v_idx: Index of vector to be freed
1717  *
1718  * This function frees the memory allocated to the q_vector.  In addition if
1719  * NAPI is enabled it will delete any references to the NAPI struct prior
1720  * to freeing the q_vector.
1721  **/
1722 static void fm10k_free_q_vector(struct fm10k_intfc *interface, int v_idx)
1723 {
1724 	struct fm10k_q_vector *q_vector = interface->q_vector[v_idx];
1725 	struct fm10k_ring *ring;
1726 
1727 	fm10k_dbg_q_vector_exit(q_vector);
1728 
1729 	fm10k_for_each_ring(ring, q_vector->tx)
1730 		interface->tx_ring[ring->queue_index] = NULL;
1731 
1732 	fm10k_for_each_ring(ring, q_vector->rx)
1733 		interface->rx_ring[ring->queue_index] = NULL;
1734 
1735 	interface->q_vector[v_idx] = NULL;
1736 	netif_napi_del(&q_vector->napi);
1737 	kfree_rcu(q_vector, rcu);
1738 }
1739 
1740 /**
1741  * fm10k_alloc_q_vectors - Allocate memory for interrupt vectors
1742  * @interface: board private structure to initialize
1743  *
1744  * We allocate one q_vector per queue interrupt.  If allocation fails we
1745  * return -ENOMEM.
1746  **/
1747 static int fm10k_alloc_q_vectors(struct fm10k_intfc *interface)
1748 {
1749 	unsigned int q_vectors = interface->num_q_vectors;
1750 	unsigned int rxr_remaining = interface->num_rx_queues;
1751 	unsigned int txr_remaining = interface->num_tx_queues;
1752 	unsigned int rxr_idx = 0, txr_idx = 0, v_idx = 0;
1753 	int err;
1754 
1755 	if (q_vectors >= (rxr_remaining + txr_remaining)) {
1756 		for (; rxr_remaining; v_idx++) {
1757 			err = fm10k_alloc_q_vector(interface, q_vectors, v_idx,
1758 						   0, 0, 1, rxr_idx);
1759 			if (err)
1760 				goto err_out;
1761 
1762 			/* update counts and index */
1763 			rxr_remaining--;
1764 			rxr_idx++;
1765 		}
1766 	}
1767 
1768 	for (; v_idx < q_vectors; v_idx++) {
1769 		int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
1770 		int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
1771 
1772 		err = fm10k_alloc_q_vector(interface, q_vectors, v_idx,
1773 					   tqpv, txr_idx,
1774 					   rqpv, rxr_idx);
1775 
1776 		if (err)
1777 			goto err_out;
1778 
1779 		/* update counts and index */
1780 		rxr_remaining -= rqpv;
1781 		txr_remaining -= tqpv;
1782 		rxr_idx++;
1783 		txr_idx++;
1784 	}
1785 
1786 	return 0;
1787 
1788 err_out:
1789 	fm10k_reset_num_queues(interface);
1790 
1791 	while (v_idx--)
1792 		fm10k_free_q_vector(interface, v_idx);
1793 
1794 	return -ENOMEM;
1795 }
1796 
1797 /**
1798  * fm10k_free_q_vectors - Free memory allocated for interrupt vectors
1799  * @interface: board private structure to initialize
1800  *
1801  * This function frees the memory allocated to the q_vectors.  In addition if
1802  * NAPI is enabled it will delete any references to the NAPI struct prior
1803  * to freeing the q_vector.
1804  **/
1805 static void fm10k_free_q_vectors(struct fm10k_intfc *interface)
1806 {
1807 	int v_idx = interface->num_q_vectors;
1808 
1809 	fm10k_reset_num_queues(interface);
1810 
1811 	while (v_idx--)
1812 		fm10k_free_q_vector(interface, v_idx);
1813 }
1814 
1815 /**
1816  * f10k_reset_msix_capability - reset MSI-X capability
1817  * @interface: board private structure to initialize
1818  *
1819  * Reset the MSI-X capability back to its starting state
1820  **/
1821 static void fm10k_reset_msix_capability(struct fm10k_intfc *interface)
1822 {
1823 	pci_disable_msix(interface->pdev);
1824 	kfree(interface->msix_entries);
1825 	interface->msix_entries = NULL;
1826 }
1827 
1828 /**
1829  * f10k_init_msix_capability - configure MSI-X capability
1830  * @interface: board private structure to initialize
1831  *
1832  * Attempt to configure the interrupts using the best available
1833  * capabilities of the hardware and the kernel.
1834  **/
1835 static int fm10k_init_msix_capability(struct fm10k_intfc *interface)
1836 {
1837 	struct fm10k_hw *hw = &interface->hw;
1838 	int v_budget, vector;
1839 
1840 	/* It's easy to be greedy for MSI-X vectors, but it really
1841 	 * doesn't do us much good if we have a lot more vectors
1842 	 * than CPU's.  So let's be conservative and only ask for
1843 	 * (roughly) the same number of vectors as there are CPU's.
1844 	 * the default is to use pairs of vectors
1845 	 */
1846 	v_budget = max(interface->num_rx_queues, interface->num_tx_queues);
1847 	v_budget = min_t(u16, v_budget, num_online_cpus());
1848 
1849 	/* account for vectors not related to queues */
1850 	v_budget += NON_Q_VECTORS(hw);
1851 
1852 	/* At the same time, hardware can only support a maximum of
1853 	 * hw.mac->max_msix_vectors vectors.  With features
1854 	 * such as RSS and VMDq, we can easily surpass the number of Rx and Tx
1855 	 * descriptor queues supported by our device.  Thus, we cap it off in
1856 	 * those rare cases where the cpu count also exceeds our vector limit.
1857 	 */
1858 	v_budget = min_t(int, v_budget, hw->mac.max_msix_vectors);
1859 
1860 	/* A failure in MSI-X entry allocation is fatal. */
1861 	interface->msix_entries = kcalloc(v_budget, sizeof(struct msix_entry),
1862 					  GFP_KERNEL);
1863 	if (!interface->msix_entries)
1864 		return -ENOMEM;
1865 
1866 	/* populate entry values */
1867 	for (vector = 0; vector < v_budget; vector++)
1868 		interface->msix_entries[vector].entry = vector;
1869 
1870 	/* Attempt to enable MSI-X with requested value */
1871 	v_budget = pci_enable_msix_range(interface->pdev,
1872 					 interface->msix_entries,
1873 					 MIN_MSIX_COUNT(hw),
1874 					 v_budget);
1875 	if (v_budget < 0) {
1876 		kfree(interface->msix_entries);
1877 		interface->msix_entries = NULL;
1878 		return v_budget;
1879 	}
1880 
1881 	/* record the number of queues available for q_vectors */
1882 	interface->num_q_vectors = v_budget - NON_Q_VECTORS(hw);
1883 
1884 	return 0;
1885 }
1886 
1887 /**
1888  * fm10k_cache_ring_qos - Descriptor ring to register mapping for QoS
1889  * @interface: Interface structure continaining rings and devices
1890  *
1891  * Cache the descriptor ring offsets for Qos
1892  **/
1893 static bool fm10k_cache_ring_qos(struct fm10k_intfc *interface)
1894 {
1895 	struct net_device *dev = interface->netdev;
1896 	int pc, offset, rss_i, i, q_idx;
1897 	u16 pc_stride = interface->ring_feature[RING_F_QOS].mask + 1;
1898 	u8 num_pcs = netdev_get_num_tc(dev);
1899 
1900 	if (num_pcs <= 1)
1901 		return false;
1902 
1903 	rss_i = interface->ring_feature[RING_F_RSS].indices;
1904 
1905 	for (pc = 0, offset = 0; pc < num_pcs; pc++, offset += rss_i) {
1906 		q_idx = pc;
1907 		for (i = 0; i < rss_i; i++) {
1908 			interface->tx_ring[offset + i]->reg_idx = q_idx;
1909 			interface->tx_ring[offset + i]->qos_pc = pc;
1910 			interface->rx_ring[offset + i]->reg_idx = q_idx;
1911 			interface->rx_ring[offset + i]->qos_pc = pc;
1912 			q_idx += pc_stride;
1913 		}
1914 	}
1915 
1916 	return true;
1917 }
1918 
1919 /**
1920  * fm10k_cache_ring_rss - Descriptor ring to register mapping for RSS
1921  * @interface: Interface structure continaining rings and devices
1922  *
1923  * Cache the descriptor ring offsets for RSS
1924  **/
1925 static void fm10k_cache_ring_rss(struct fm10k_intfc *interface)
1926 {
1927 	int i;
1928 
1929 	for (i = 0; i < interface->num_rx_queues; i++)
1930 		interface->rx_ring[i]->reg_idx = i;
1931 
1932 	for (i = 0; i < interface->num_tx_queues; i++)
1933 		interface->tx_ring[i]->reg_idx = i;
1934 }
1935 
1936 /**
1937  * fm10k_assign_rings - Map rings to network devices
1938  * @interface: Interface structure containing rings and devices
1939  *
1940  * This function is meant to go though and configure both the network
1941  * devices so that they contain rings, and configure the rings so that
1942  * they function with their network devices.
1943  **/
1944 static void fm10k_assign_rings(struct fm10k_intfc *interface)
1945 {
1946 	if (fm10k_cache_ring_qos(interface))
1947 		return;
1948 
1949 	fm10k_cache_ring_rss(interface);
1950 }
1951 
1952 static void fm10k_init_reta(struct fm10k_intfc *interface)
1953 {
1954 	u16 i, rss_i = interface->ring_feature[RING_F_RSS].indices;
1955 	u32 reta;
1956 
1957 	/* If the Rx flow indirection table has been configured manually, we
1958 	 * need to maintain it when possible.
1959 	 */
1960 	if (netif_is_rxfh_configured(interface->netdev)) {
1961 		for (i = FM10K_RETA_SIZE; i--;) {
1962 			reta = interface->reta[i];
1963 			if ((((reta << 24) >> 24) < rss_i) &&
1964 			    (((reta << 16) >> 24) < rss_i) &&
1965 			    (((reta <<  8) >> 24) < rss_i) &&
1966 			    (((reta)       >> 24) < rss_i))
1967 				continue;
1968 
1969 			/* this should never happen */
1970 			dev_err(&interface->pdev->dev,
1971 				"RSS indirection table assigned flows out of queue bounds. Reconfiguring.\n");
1972 			goto repopulate_reta;
1973 		}
1974 
1975 		/* do nothing if all of the elements are in bounds */
1976 		return;
1977 	}
1978 
1979 repopulate_reta:
1980 	fm10k_write_reta(interface, NULL);
1981 }
1982 
1983 /**
1984  * fm10k_init_queueing_scheme - Determine proper queueing scheme
1985  * @interface: board private structure to initialize
1986  *
1987  * We determine which queueing scheme to use based on...
1988  * - Hardware queue count (num_*_queues)
1989  *   - defined by miscellaneous hardware support/features (RSS, etc.)
1990  **/
1991 int fm10k_init_queueing_scheme(struct fm10k_intfc *interface)
1992 {
1993 	int err;
1994 
1995 	/* Number of supported queues */
1996 	fm10k_set_num_queues(interface);
1997 
1998 	/* Configure MSI-X capability */
1999 	err = fm10k_init_msix_capability(interface);
2000 	if (err) {
2001 		dev_err(&interface->pdev->dev,
2002 			"Unable to initialize MSI-X capability\n");
2003 		goto err_init_msix;
2004 	}
2005 
2006 	/* Allocate memory for queues */
2007 	err = fm10k_alloc_q_vectors(interface);
2008 	if (err) {
2009 		dev_err(&interface->pdev->dev,
2010 			"Unable to allocate queue vectors\n");
2011 		goto err_alloc_q_vectors;
2012 	}
2013 
2014 	/* Map rings to devices, and map devices to physical queues */
2015 	fm10k_assign_rings(interface);
2016 
2017 	/* Initialize RSS redirection table */
2018 	fm10k_init_reta(interface);
2019 
2020 	return 0;
2021 
2022 err_alloc_q_vectors:
2023 	fm10k_reset_msix_capability(interface);
2024 err_init_msix:
2025 	fm10k_reset_num_queues(interface);
2026 	return err;
2027 }
2028 
2029 /**
2030  * fm10k_clear_queueing_scheme - Clear the current queueing scheme settings
2031  * @interface: board private structure to clear queueing scheme on
2032  *
2033  * We go through and clear queueing specific resources and reset the structure
2034  * to pre-load conditions
2035  **/
2036 void fm10k_clear_queueing_scheme(struct fm10k_intfc *interface)
2037 {
2038 	fm10k_free_q_vectors(interface);
2039 	fm10k_reset_msix_capability(interface);
2040 }
2041