1 /* Intel Ethernet Switch Host Interface Driver
2  * Copyright(c) 2013 - 2014 Intel Corporation.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms and conditions of the GNU General Public License,
6  * version 2, as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope it will be useful, but WITHOUT
9  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
11  * more details.
12  *
13  * The full GNU General Public License is included in this distribution in
14  * the file called "COPYING".
15  *
16  * Contact Information:
17  * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
18  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
19  */
20 
21 #include <linux/types.h>
22 #include <linux/module.h>
23 #include <net/ipv6.h>
24 #include <net/ip.h>
25 #include <net/tcp.h>
26 #include <linux/if_macvlan.h>
27 #include <linux/prefetch.h>
28 
29 #include "fm10k.h"
30 
31 #define DRV_VERSION	"0.15.2-k"
32 const char fm10k_driver_version[] = DRV_VERSION;
33 char fm10k_driver_name[] = "fm10k";
34 static const char fm10k_driver_string[] =
35 	"Intel(R) Ethernet Switch Host Interface Driver";
36 static const char fm10k_copyright[] =
37 	"Copyright (c) 2013 Intel Corporation.";
38 
39 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
40 MODULE_DESCRIPTION("Intel(R) Ethernet Switch Host Interface Driver");
41 MODULE_LICENSE("GPL");
42 MODULE_VERSION(DRV_VERSION);
43 
44 /* single workqueue for entire fm10k driver */
45 struct workqueue_struct *fm10k_workqueue = NULL;
46 
47 /**
48  * fm10k_init_module - Driver Registration Routine
49  *
50  * fm10k_init_module is the first routine called when the driver is
51  * loaded.  All it does is register with the PCI subsystem.
52  **/
53 static int __init fm10k_init_module(void)
54 {
55 	pr_info("%s - version %s\n", fm10k_driver_string, fm10k_driver_version);
56 	pr_info("%s\n", fm10k_copyright);
57 
58 	/* create driver workqueue */
59 	if (!fm10k_workqueue)
60 		fm10k_workqueue = create_workqueue("fm10k");
61 
62 	fm10k_dbg_init();
63 
64 	return fm10k_register_pci_driver();
65 }
66 module_init(fm10k_init_module);
67 
68 /**
69  * fm10k_exit_module - Driver Exit Cleanup Routine
70  *
71  * fm10k_exit_module is called just before the driver is removed
72  * from memory.
73  **/
74 static void __exit fm10k_exit_module(void)
75 {
76 	fm10k_unregister_pci_driver();
77 
78 	fm10k_dbg_exit();
79 
80 	/* destroy driver workqueue */
81 	flush_workqueue(fm10k_workqueue);
82 	destroy_workqueue(fm10k_workqueue);
83 	fm10k_workqueue = NULL;
84 }
85 module_exit(fm10k_exit_module);
86 
87 static bool fm10k_alloc_mapped_page(struct fm10k_ring *rx_ring,
88 				    struct fm10k_rx_buffer *bi)
89 {
90 	struct page *page = bi->page;
91 	dma_addr_t dma;
92 
93 	/* Only page will be NULL if buffer was consumed */
94 	if (likely(page))
95 		return true;
96 
97 	/* alloc new page for storage */
98 	page = dev_alloc_page();
99 	if (unlikely(!page)) {
100 		rx_ring->rx_stats.alloc_failed++;
101 		return false;
102 	}
103 
104 	/* map page for use */
105 	dma = dma_map_page(rx_ring->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE);
106 
107 	/* if mapping failed free memory back to system since
108 	 * there isn't much point in holding memory we can't use
109 	 */
110 	if (dma_mapping_error(rx_ring->dev, dma)) {
111 		__free_page(page);
112 
113 		rx_ring->rx_stats.alloc_failed++;
114 		return false;
115 	}
116 
117 	bi->dma = dma;
118 	bi->page = page;
119 	bi->page_offset = 0;
120 
121 	return true;
122 }
123 
124 /**
125  * fm10k_alloc_rx_buffers - Replace used receive buffers
126  * @rx_ring: ring to place buffers on
127  * @cleaned_count: number of buffers to replace
128  **/
129 void fm10k_alloc_rx_buffers(struct fm10k_ring *rx_ring, u16 cleaned_count)
130 {
131 	union fm10k_rx_desc *rx_desc;
132 	struct fm10k_rx_buffer *bi;
133 	u16 i = rx_ring->next_to_use;
134 
135 	/* nothing to do */
136 	if (!cleaned_count)
137 		return;
138 
139 	rx_desc = FM10K_RX_DESC(rx_ring, i);
140 	bi = &rx_ring->rx_buffer[i];
141 	i -= rx_ring->count;
142 
143 	do {
144 		if (!fm10k_alloc_mapped_page(rx_ring, bi))
145 			break;
146 
147 		/* Refresh the desc even if buffer_addrs didn't change
148 		 * because each write-back erases this info.
149 		 */
150 		rx_desc->q.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
151 
152 		rx_desc++;
153 		bi++;
154 		i++;
155 		if (unlikely(!i)) {
156 			rx_desc = FM10K_RX_DESC(rx_ring, 0);
157 			bi = rx_ring->rx_buffer;
158 			i -= rx_ring->count;
159 		}
160 
161 		/* clear the status bits for the next_to_use descriptor */
162 		rx_desc->d.staterr = 0;
163 
164 		cleaned_count--;
165 	} while (cleaned_count);
166 
167 	i += rx_ring->count;
168 
169 	if (rx_ring->next_to_use != i) {
170 		/* record the next descriptor to use */
171 		rx_ring->next_to_use = i;
172 
173 		/* update next to alloc since we have filled the ring */
174 		rx_ring->next_to_alloc = i;
175 
176 		/* Force memory writes to complete before letting h/w
177 		 * know there are new descriptors to fetch.  (Only
178 		 * applicable for weak-ordered memory model archs,
179 		 * such as IA-64).
180 		 */
181 		wmb();
182 
183 		/* notify hardware of new descriptors */
184 		writel(i, rx_ring->tail);
185 	}
186 }
187 
188 /**
189  * fm10k_reuse_rx_page - page flip buffer and store it back on the ring
190  * @rx_ring: rx descriptor ring to store buffers on
191  * @old_buff: donor buffer to have page reused
192  *
193  * Synchronizes page for reuse by the interface
194  **/
195 static void fm10k_reuse_rx_page(struct fm10k_ring *rx_ring,
196 				struct fm10k_rx_buffer *old_buff)
197 {
198 	struct fm10k_rx_buffer *new_buff;
199 	u16 nta = rx_ring->next_to_alloc;
200 
201 	new_buff = &rx_ring->rx_buffer[nta];
202 
203 	/* update, and store next to alloc */
204 	nta++;
205 	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
206 
207 	/* transfer page from old buffer to new buffer */
208 	*new_buff = *old_buff;
209 
210 	/* sync the buffer for use by the device */
211 	dma_sync_single_range_for_device(rx_ring->dev, old_buff->dma,
212 					 old_buff->page_offset,
213 					 FM10K_RX_BUFSZ,
214 					 DMA_FROM_DEVICE);
215 }
216 
217 static inline bool fm10k_page_is_reserved(struct page *page)
218 {
219 	return (page_to_nid(page) != numa_mem_id()) || page->pfmemalloc;
220 }
221 
222 static bool fm10k_can_reuse_rx_page(struct fm10k_rx_buffer *rx_buffer,
223 				    struct page *page,
224 				    unsigned int __maybe_unused truesize)
225 {
226 	/* avoid re-using remote pages */
227 	if (unlikely(fm10k_page_is_reserved(page)))
228 		return false;
229 
230 #if (PAGE_SIZE < 8192)
231 	/* if we are only owner of page we can reuse it */
232 	if (unlikely(page_count(page) != 1))
233 		return false;
234 
235 	/* flip page offset to other buffer */
236 	rx_buffer->page_offset ^= FM10K_RX_BUFSZ;
237 #else
238 	/* move offset up to the next cache line */
239 	rx_buffer->page_offset += truesize;
240 
241 	if (rx_buffer->page_offset > (PAGE_SIZE - FM10K_RX_BUFSZ))
242 		return false;
243 #endif
244 
245 	/* Even if we own the page, we are not allowed to use atomic_set()
246 	 * This would break get_page_unless_zero() users.
247 	 */
248 	atomic_inc(&page->_count);
249 
250 	return true;
251 }
252 
253 /**
254  * fm10k_add_rx_frag - Add contents of Rx buffer to sk_buff
255  * @rx_buffer: buffer containing page to add
256  * @rx_desc: descriptor containing length of buffer written by hardware
257  * @skb: sk_buff to place the data into
258  *
259  * This function will add the data contained in rx_buffer->page to the skb.
260  * This is done either through a direct copy if the data in the buffer is
261  * less than the skb header size, otherwise it will just attach the page as
262  * a frag to the skb.
263  *
264  * The function will then update the page offset if necessary and return
265  * true if the buffer can be reused by the interface.
266  **/
267 static bool fm10k_add_rx_frag(struct fm10k_rx_buffer *rx_buffer,
268 			      union fm10k_rx_desc *rx_desc,
269 			      struct sk_buff *skb)
270 {
271 	struct page *page = rx_buffer->page;
272 	unsigned int size = le16_to_cpu(rx_desc->w.length);
273 #if (PAGE_SIZE < 8192)
274 	unsigned int truesize = FM10K_RX_BUFSZ;
275 #else
276 	unsigned int truesize = ALIGN(size, L1_CACHE_BYTES);
277 #endif
278 
279 	if ((size <= FM10K_RX_HDR_LEN) && !skb_is_nonlinear(skb)) {
280 		unsigned char *va = page_address(page) + rx_buffer->page_offset;
281 
282 		memcpy(__skb_put(skb, size), va, ALIGN(size, sizeof(long)));
283 
284 		/* page is not reserved, we can reuse buffer as-is */
285 		if (likely(!fm10k_page_is_reserved(page)))
286 			return true;
287 
288 		/* this page cannot be reused so discard it */
289 		__free_page(page);
290 		return false;
291 	}
292 
293 	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
294 			rx_buffer->page_offset, size, truesize);
295 
296 	return fm10k_can_reuse_rx_page(rx_buffer, page, truesize);
297 }
298 
299 static struct sk_buff *fm10k_fetch_rx_buffer(struct fm10k_ring *rx_ring,
300 					     union fm10k_rx_desc *rx_desc,
301 					     struct sk_buff *skb)
302 {
303 	struct fm10k_rx_buffer *rx_buffer;
304 	struct page *page;
305 
306 	rx_buffer = &rx_ring->rx_buffer[rx_ring->next_to_clean];
307 	page = rx_buffer->page;
308 	prefetchw(page);
309 
310 	if (likely(!skb)) {
311 		void *page_addr = page_address(page) +
312 				  rx_buffer->page_offset;
313 
314 		/* prefetch first cache line of first page */
315 		prefetch(page_addr);
316 #if L1_CACHE_BYTES < 128
317 		prefetch(page_addr + L1_CACHE_BYTES);
318 #endif
319 
320 		/* allocate a skb to store the frags */
321 		skb = napi_alloc_skb(&rx_ring->q_vector->napi,
322 				     FM10K_RX_HDR_LEN);
323 		if (unlikely(!skb)) {
324 			rx_ring->rx_stats.alloc_failed++;
325 			return NULL;
326 		}
327 
328 		/* we will be copying header into skb->data in
329 		 * pskb_may_pull so it is in our interest to prefetch
330 		 * it now to avoid a possible cache miss
331 		 */
332 		prefetchw(skb->data);
333 	}
334 
335 	/* we are reusing so sync this buffer for CPU use */
336 	dma_sync_single_range_for_cpu(rx_ring->dev,
337 				      rx_buffer->dma,
338 				      rx_buffer->page_offset,
339 				      FM10K_RX_BUFSZ,
340 				      DMA_FROM_DEVICE);
341 
342 	/* pull page into skb */
343 	if (fm10k_add_rx_frag(rx_buffer, rx_desc, skb)) {
344 		/* hand second half of page back to the ring */
345 		fm10k_reuse_rx_page(rx_ring, rx_buffer);
346 	} else {
347 		/* we are not reusing the buffer so unmap it */
348 		dma_unmap_page(rx_ring->dev, rx_buffer->dma,
349 			       PAGE_SIZE, DMA_FROM_DEVICE);
350 	}
351 
352 	/* clear contents of rx_buffer */
353 	rx_buffer->page = NULL;
354 
355 	return skb;
356 }
357 
358 static inline void fm10k_rx_checksum(struct fm10k_ring *ring,
359 				     union fm10k_rx_desc *rx_desc,
360 				     struct sk_buff *skb)
361 {
362 	skb_checksum_none_assert(skb);
363 
364 	/* Rx checksum disabled via ethtool */
365 	if (!(ring->netdev->features & NETIF_F_RXCSUM))
366 		return;
367 
368 	/* TCP/UDP checksum error bit is set */
369 	if (fm10k_test_staterr(rx_desc,
370 			       FM10K_RXD_STATUS_L4E |
371 			       FM10K_RXD_STATUS_L4E2 |
372 			       FM10K_RXD_STATUS_IPE |
373 			       FM10K_RXD_STATUS_IPE2)) {
374 		ring->rx_stats.csum_err++;
375 		return;
376 	}
377 
378 	/* It must be a TCP or UDP packet with a valid checksum */
379 	if (fm10k_test_staterr(rx_desc, FM10K_RXD_STATUS_L4CS2))
380 		skb->encapsulation = true;
381 	else if (!fm10k_test_staterr(rx_desc, FM10K_RXD_STATUS_L4CS))
382 		return;
383 
384 	skb->ip_summed = CHECKSUM_UNNECESSARY;
385 }
386 
387 #define FM10K_RSS_L4_TYPES_MASK \
388 	((1ul << FM10K_RSSTYPE_IPV4_TCP) | \
389 	 (1ul << FM10K_RSSTYPE_IPV4_UDP) | \
390 	 (1ul << FM10K_RSSTYPE_IPV6_TCP) | \
391 	 (1ul << FM10K_RSSTYPE_IPV6_UDP))
392 
393 static inline void fm10k_rx_hash(struct fm10k_ring *ring,
394 				 union fm10k_rx_desc *rx_desc,
395 				 struct sk_buff *skb)
396 {
397 	u16 rss_type;
398 
399 	if (!(ring->netdev->features & NETIF_F_RXHASH))
400 		return;
401 
402 	rss_type = le16_to_cpu(rx_desc->w.pkt_info) & FM10K_RXD_RSSTYPE_MASK;
403 	if (!rss_type)
404 		return;
405 
406 	skb_set_hash(skb, le32_to_cpu(rx_desc->d.rss),
407 		     (FM10K_RSS_L4_TYPES_MASK & (1ul << rss_type)) ?
408 		     PKT_HASH_TYPE_L4 : PKT_HASH_TYPE_L3);
409 }
410 
411 static void fm10k_rx_hwtstamp(struct fm10k_ring *rx_ring,
412 			      union fm10k_rx_desc *rx_desc,
413 			      struct sk_buff *skb)
414 {
415 	struct fm10k_intfc *interface = rx_ring->q_vector->interface;
416 
417 	FM10K_CB(skb)->tstamp = rx_desc->q.timestamp;
418 
419 	if (unlikely(interface->flags & FM10K_FLAG_RX_TS_ENABLED))
420 		fm10k_systime_to_hwtstamp(interface, skb_hwtstamps(skb),
421 					  le64_to_cpu(rx_desc->q.timestamp));
422 }
423 
424 static void fm10k_type_trans(struct fm10k_ring *rx_ring,
425 			     union fm10k_rx_desc __maybe_unused *rx_desc,
426 			     struct sk_buff *skb)
427 {
428 	struct net_device *dev = rx_ring->netdev;
429 	struct fm10k_l2_accel *l2_accel = rcu_dereference_bh(rx_ring->l2_accel);
430 
431 	/* check to see if DGLORT belongs to a MACVLAN */
432 	if (l2_accel) {
433 		u16 idx = le16_to_cpu(FM10K_CB(skb)->fi.w.dglort) - 1;
434 
435 		idx -= l2_accel->dglort;
436 		if (idx < l2_accel->size && l2_accel->macvlan[idx])
437 			dev = l2_accel->macvlan[idx];
438 		else
439 			l2_accel = NULL;
440 	}
441 
442 	skb->protocol = eth_type_trans(skb, dev);
443 
444 	if (!l2_accel)
445 		return;
446 
447 	/* update MACVLAN statistics */
448 	macvlan_count_rx(netdev_priv(dev), skb->len + ETH_HLEN, 1,
449 			 !!(rx_desc->w.hdr_info &
450 			    cpu_to_le16(FM10K_RXD_HDR_INFO_XC_MASK)));
451 }
452 
453 /**
454  * fm10k_process_skb_fields - Populate skb header fields from Rx descriptor
455  * @rx_ring: rx descriptor ring packet is being transacted on
456  * @rx_desc: pointer to the EOP Rx descriptor
457  * @skb: pointer to current skb being populated
458  *
459  * This function checks the ring, descriptor, and packet information in
460  * order to populate the hash, checksum, VLAN, timestamp, protocol, and
461  * other fields within the skb.
462  **/
463 static unsigned int fm10k_process_skb_fields(struct fm10k_ring *rx_ring,
464 					     union fm10k_rx_desc *rx_desc,
465 					     struct sk_buff *skb)
466 {
467 	unsigned int len = skb->len;
468 
469 	fm10k_rx_hash(rx_ring, rx_desc, skb);
470 
471 	fm10k_rx_checksum(rx_ring, rx_desc, skb);
472 
473 	fm10k_rx_hwtstamp(rx_ring, rx_desc, skb);
474 
475 	FM10K_CB(skb)->fi.w.vlan = rx_desc->w.vlan;
476 
477 	skb_record_rx_queue(skb, rx_ring->queue_index);
478 
479 	FM10K_CB(skb)->fi.d.glort = rx_desc->d.glort;
480 
481 	if (rx_desc->w.vlan) {
482 		u16 vid = le16_to_cpu(rx_desc->w.vlan);
483 
484 		if (vid != rx_ring->vid)
485 			__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
486 	}
487 
488 	fm10k_type_trans(rx_ring, rx_desc, skb);
489 
490 	return len;
491 }
492 
493 /**
494  * fm10k_is_non_eop - process handling of non-EOP buffers
495  * @rx_ring: Rx ring being processed
496  * @rx_desc: Rx descriptor for current buffer
497  *
498  * This function updates next to clean.  If the buffer is an EOP buffer
499  * this function exits returning false, otherwise it will place the
500  * sk_buff in the next buffer to be chained and return true indicating
501  * that this is in fact a non-EOP buffer.
502  **/
503 static bool fm10k_is_non_eop(struct fm10k_ring *rx_ring,
504 			     union fm10k_rx_desc *rx_desc)
505 {
506 	u32 ntc = rx_ring->next_to_clean + 1;
507 
508 	/* fetch, update, and store next to clean */
509 	ntc = (ntc < rx_ring->count) ? ntc : 0;
510 	rx_ring->next_to_clean = ntc;
511 
512 	prefetch(FM10K_RX_DESC(rx_ring, ntc));
513 
514 	if (likely(fm10k_test_staterr(rx_desc, FM10K_RXD_STATUS_EOP)))
515 		return false;
516 
517 	return true;
518 }
519 
520 /**
521  * fm10k_pull_tail - fm10k specific version of skb_pull_tail
522  * @skb: pointer to current skb being adjusted
523  *
524  * This function is an fm10k specific version of __pskb_pull_tail.  The
525  * main difference between this version and the original function is that
526  * this function can make several assumptions about the state of things
527  * that allow for significant optimizations versus the standard function.
528  * As a result we can do things like drop a frag and maintain an accurate
529  * truesize for the skb.
530  */
531 static void fm10k_pull_tail(struct sk_buff *skb)
532 {
533 	struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[0];
534 	unsigned char *va;
535 	unsigned int pull_len;
536 
537 	/* it is valid to use page_address instead of kmap since we are
538 	 * working with pages allocated out of the lomem pool per
539 	 * alloc_page(GFP_ATOMIC)
540 	 */
541 	va = skb_frag_address(frag);
542 
543 	/* we need the header to contain the greater of either ETH_HLEN or
544 	 * 60 bytes if the skb->len is less than 60 for skb_pad.
545 	 */
546 	pull_len = eth_get_headlen(va, FM10K_RX_HDR_LEN);
547 
548 	/* align pull length to size of long to optimize memcpy performance */
549 	skb_copy_to_linear_data(skb, va, ALIGN(pull_len, sizeof(long)));
550 
551 	/* update all of the pointers */
552 	skb_frag_size_sub(frag, pull_len);
553 	frag->page_offset += pull_len;
554 	skb->data_len -= pull_len;
555 	skb->tail += pull_len;
556 }
557 
558 /**
559  * fm10k_cleanup_headers - Correct corrupted or empty headers
560  * @rx_ring: rx descriptor ring packet is being transacted on
561  * @rx_desc: pointer to the EOP Rx descriptor
562  * @skb: pointer to current skb being fixed
563  *
564  * Address the case where we are pulling data in on pages only
565  * and as such no data is present in the skb header.
566  *
567  * In addition if skb is not at least 60 bytes we need to pad it so that
568  * it is large enough to qualify as a valid Ethernet frame.
569  *
570  * Returns true if an error was encountered and skb was freed.
571  **/
572 static bool fm10k_cleanup_headers(struct fm10k_ring *rx_ring,
573 				  union fm10k_rx_desc *rx_desc,
574 				  struct sk_buff *skb)
575 {
576 	if (unlikely((fm10k_test_staterr(rx_desc,
577 					 FM10K_RXD_STATUS_RXE)))) {
578 		dev_kfree_skb_any(skb);
579 		rx_ring->rx_stats.errors++;
580 		return true;
581 	}
582 
583 	/* place header in linear portion of buffer */
584 	if (skb_is_nonlinear(skb))
585 		fm10k_pull_tail(skb);
586 
587 	/* if eth_skb_pad returns an error the skb was freed */
588 	if (eth_skb_pad(skb))
589 		return true;
590 
591 	return false;
592 }
593 
594 /**
595  * fm10k_receive_skb - helper function to handle rx indications
596  * @q_vector: structure containing interrupt and ring information
597  * @skb: packet to send up
598  **/
599 static void fm10k_receive_skb(struct fm10k_q_vector *q_vector,
600 			      struct sk_buff *skb)
601 {
602 	napi_gro_receive(&q_vector->napi, skb);
603 }
604 
605 static bool fm10k_clean_rx_irq(struct fm10k_q_vector *q_vector,
606 			       struct fm10k_ring *rx_ring,
607 			       int budget)
608 {
609 	struct sk_buff *skb = rx_ring->skb;
610 	unsigned int total_bytes = 0, total_packets = 0;
611 	u16 cleaned_count = fm10k_desc_unused(rx_ring);
612 
613 	while (likely(total_packets < budget)) {
614 		union fm10k_rx_desc *rx_desc;
615 
616 		/* return some buffers to hardware, one at a time is too slow */
617 		if (cleaned_count >= FM10K_RX_BUFFER_WRITE) {
618 			fm10k_alloc_rx_buffers(rx_ring, cleaned_count);
619 			cleaned_count = 0;
620 		}
621 
622 		rx_desc = FM10K_RX_DESC(rx_ring, rx_ring->next_to_clean);
623 
624 		if (!rx_desc->d.staterr)
625 			break;
626 
627 		/* This memory barrier is needed to keep us from reading
628 		 * any other fields out of the rx_desc until we know the
629 		 * descriptor has been written back
630 		 */
631 		dma_rmb();
632 
633 		/* retrieve a buffer from the ring */
634 		skb = fm10k_fetch_rx_buffer(rx_ring, rx_desc, skb);
635 
636 		/* exit if we failed to retrieve a buffer */
637 		if (!skb)
638 			break;
639 
640 		cleaned_count++;
641 
642 		/* fetch next buffer in frame if non-eop */
643 		if (fm10k_is_non_eop(rx_ring, rx_desc))
644 			continue;
645 
646 		/* verify the packet layout is correct */
647 		if (fm10k_cleanup_headers(rx_ring, rx_desc, skb)) {
648 			skb = NULL;
649 			continue;
650 		}
651 
652 		/* populate checksum, timestamp, VLAN, and protocol */
653 		total_bytes += fm10k_process_skb_fields(rx_ring, rx_desc, skb);
654 
655 		fm10k_receive_skb(q_vector, skb);
656 
657 		/* reset skb pointer */
658 		skb = NULL;
659 
660 		/* update budget accounting */
661 		total_packets++;
662 	}
663 
664 	/* place incomplete frames back on ring for completion */
665 	rx_ring->skb = skb;
666 
667 	u64_stats_update_begin(&rx_ring->syncp);
668 	rx_ring->stats.packets += total_packets;
669 	rx_ring->stats.bytes += total_bytes;
670 	u64_stats_update_end(&rx_ring->syncp);
671 	q_vector->rx.total_packets += total_packets;
672 	q_vector->rx.total_bytes += total_bytes;
673 
674 	return total_packets < budget;
675 }
676 
677 #define VXLAN_HLEN (sizeof(struct udphdr) + 8)
678 static struct ethhdr *fm10k_port_is_vxlan(struct sk_buff *skb)
679 {
680 	struct fm10k_intfc *interface = netdev_priv(skb->dev);
681 	struct fm10k_vxlan_port *vxlan_port;
682 
683 	/* we can only offload a vxlan if we recognize it as such */
684 	vxlan_port = list_first_entry_or_null(&interface->vxlan_port,
685 					      struct fm10k_vxlan_port, list);
686 
687 	if (!vxlan_port)
688 		return NULL;
689 	if (vxlan_port->port != udp_hdr(skb)->dest)
690 		return NULL;
691 
692 	/* return offset of udp_hdr plus 8 bytes for VXLAN header */
693 	return (struct ethhdr *)(skb_transport_header(skb) + VXLAN_HLEN);
694 }
695 
696 #define FM10K_NVGRE_RESERVED0_FLAGS htons(0x9FFF)
697 #define NVGRE_TNI htons(0x2000)
698 struct fm10k_nvgre_hdr {
699 	__be16 flags;
700 	__be16 proto;
701 	__be32 tni;
702 };
703 
704 static struct ethhdr *fm10k_gre_is_nvgre(struct sk_buff *skb)
705 {
706 	struct fm10k_nvgre_hdr *nvgre_hdr;
707 	int hlen = ip_hdrlen(skb);
708 
709 	/* currently only IPv4 is supported due to hlen above */
710 	if (vlan_get_protocol(skb) != htons(ETH_P_IP))
711 		return NULL;
712 
713 	/* our transport header should be NVGRE */
714 	nvgre_hdr = (struct fm10k_nvgre_hdr *)(skb_network_header(skb) + hlen);
715 
716 	/* verify all reserved flags are 0 */
717 	if (nvgre_hdr->flags & FM10K_NVGRE_RESERVED0_FLAGS)
718 		return NULL;
719 
720 	/* report start of ethernet header */
721 	if (nvgre_hdr->flags & NVGRE_TNI)
722 		return (struct ethhdr *)(nvgre_hdr + 1);
723 
724 	return (struct ethhdr *)(&nvgre_hdr->tni);
725 }
726 
727 __be16 fm10k_tx_encap_offload(struct sk_buff *skb)
728 {
729 	u8 l4_hdr = 0, inner_l4_hdr = 0, inner_l4_hlen;
730 	struct ethhdr *eth_hdr;
731 
732 	if (skb->inner_protocol_type != ENCAP_TYPE_ETHER ||
733 	    skb->inner_protocol != htons(ETH_P_TEB))
734 		return 0;
735 
736 	switch (vlan_get_protocol(skb)) {
737 	case htons(ETH_P_IP):
738 		l4_hdr = ip_hdr(skb)->protocol;
739 		break;
740 	case htons(ETH_P_IPV6):
741 		l4_hdr = ipv6_hdr(skb)->nexthdr;
742 		break;
743 	default:
744 		return 0;
745 	}
746 
747 	switch (l4_hdr) {
748 	case IPPROTO_UDP:
749 		eth_hdr = fm10k_port_is_vxlan(skb);
750 		break;
751 	case IPPROTO_GRE:
752 		eth_hdr = fm10k_gre_is_nvgre(skb);
753 		break;
754 	default:
755 		return 0;
756 	}
757 
758 	if (!eth_hdr)
759 		return 0;
760 
761 	switch (eth_hdr->h_proto) {
762 	case htons(ETH_P_IP):
763 		inner_l4_hdr = inner_ip_hdr(skb)->protocol;
764 		break;
765 	case htons(ETH_P_IPV6):
766 		inner_l4_hdr = inner_ipv6_hdr(skb)->nexthdr;
767 		break;
768 	default:
769 		return 0;
770 	}
771 
772 	switch (inner_l4_hdr) {
773 	case IPPROTO_TCP:
774 		inner_l4_hlen = inner_tcp_hdrlen(skb);
775 		break;
776 	case IPPROTO_UDP:
777 		inner_l4_hlen = 8;
778 		break;
779 	default:
780 		return 0;
781 	}
782 
783 	/* The hardware allows tunnel offloads only if the combined inner and
784 	 * outer header is 184 bytes or less
785 	 */
786 	if (skb_inner_transport_header(skb) + inner_l4_hlen -
787 	    skb_mac_header(skb) > FM10K_TUNNEL_HEADER_LENGTH)
788 		return 0;
789 
790 	return eth_hdr->h_proto;
791 }
792 
793 static int fm10k_tso(struct fm10k_ring *tx_ring,
794 		     struct fm10k_tx_buffer *first)
795 {
796 	struct sk_buff *skb = first->skb;
797 	struct fm10k_tx_desc *tx_desc;
798 	unsigned char *th;
799 	u8 hdrlen;
800 
801 	if (skb->ip_summed != CHECKSUM_PARTIAL)
802 		return 0;
803 
804 	if (!skb_is_gso(skb))
805 		return 0;
806 
807 	/* compute header lengths */
808 	if (skb->encapsulation) {
809 		if (!fm10k_tx_encap_offload(skb))
810 			goto err_vxlan;
811 		th = skb_inner_transport_header(skb);
812 	} else {
813 		th = skb_transport_header(skb);
814 	}
815 
816 	/* compute offset from SOF to transport header and add header len */
817 	hdrlen = (th - skb->data) + (((struct tcphdr *)th)->doff << 2);
818 
819 	first->tx_flags |= FM10K_TX_FLAGS_CSUM;
820 
821 	/* update gso size and bytecount with header size */
822 	first->gso_segs = skb_shinfo(skb)->gso_segs;
823 	first->bytecount += (first->gso_segs - 1) * hdrlen;
824 
825 	/* populate Tx descriptor header size and mss */
826 	tx_desc = FM10K_TX_DESC(tx_ring, tx_ring->next_to_use);
827 	tx_desc->hdrlen = hdrlen;
828 	tx_desc->mss = cpu_to_le16(skb_shinfo(skb)->gso_size);
829 
830 	return 1;
831 err_vxlan:
832 	tx_ring->netdev->features &= ~NETIF_F_GSO_UDP_TUNNEL;
833 	if (!net_ratelimit())
834 		netdev_err(tx_ring->netdev,
835 			   "TSO requested for unsupported tunnel, disabling offload\n");
836 	return -1;
837 }
838 
839 static void fm10k_tx_csum(struct fm10k_ring *tx_ring,
840 			  struct fm10k_tx_buffer *first)
841 {
842 	struct sk_buff *skb = first->skb;
843 	struct fm10k_tx_desc *tx_desc;
844 	union {
845 		struct iphdr *ipv4;
846 		struct ipv6hdr *ipv6;
847 		u8 *raw;
848 	} network_hdr;
849 	__be16 protocol;
850 	u8 l4_hdr = 0;
851 
852 	if (skb->ip_summed != CHECKSUM_PARTIAL)
853 		goto no_csum;
854 
855 	if (skb->encapsulation) {
856 		protocol = fm10k_tx_encap_offload(skb);
857 		if (!protocol) {
858 			if (skb_checksum_help(skb)) {
859 				dev_warn(tx_ring->dev,
860 					 "failed to offload encap csum!\n");
861 				tx_ring->tx_stats.csum_err++;
862 			}
863 			goto no_csum;
864 		}
865 		network_hdr.raw = skb_inner_network_header(skb);
866 	} else {
867 		protocol = vlan_get_protocol(skb);
868 		network_hdr.raw = skb_network_header(skb);
869 	}
870 
871 	switch (protocol) {
872 	case htons(ETH_P_IP):
873 		l4_hdr = network_hdr.ipv4->protocol;
874 		break;
875 	case htons(ETH_P_IPV6):
876 		l4_hdr = network_hdr.ipv6->nexthdr;
877 		break;
878 	default:
879 		if (unlikely(net_ratelimit())) {
880 			dev_warn(tx_ring->dev,
881 				 "partial checksum but ip version=%x!\n",
882 				 protocol);
883 		}
884 		tx_ring->tx_stats.csum_err++;
885 		goto no_csum;
886 	}
887 
888 	switch (l4_hdr) {
889 	case IPPROTO_TCP:
890 	case IPPROTO_UDP:
891 		break;
892 	case IPPROTO_GRE:
893 		if (skb->encapsulation)
894 			break;
895 	default:
896 		if (unlikely(net_ratelimit())) {
897 			dev_warn(tx_ring->dev,
898 				 "partial checksum but l4 proto=%x!\n",
899 				 l4_hdr);
900 		}
901 		tx_ring->tx_stats.csum_err++;
902 		goto no_csum;
903 	}
904 
905 	/* update TX checksum flag */
906 	first->tx_flags |= FM10K_TX_FLAGS_CSUM;
907 
908 no_csum:
909 	/* populate Tx descriptor header size and mss */
910 	tx_desc = FM10K_TX_DESC(tx_ring, tx_ring->next_to_use);
911 	tx_desc->hdrlen = 0;
912 	tx_desc->mss = 0;
913 }
914 
915 #define FM10K_SET_FLAG(_input, _flag, _result) \
916 	((_flag <= _result) ? \
917 	 ((u32)(_input & _flag) * (_result / _flag)) : \
918 	 ((u32)(_input & _flag) / (_flag / _result)))
919 
920 static u8 fm10k_tx_desc_flags(struct sk_buff *skb, u32 tx_flags)
921 {
922 	/* set type for advanced descriptor with frame checksum insertion */
923 	u32 desc_flags = 0;
924 
925 	/* set timestamping bits */
926 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
927 	    likely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS))
928 			desc_flags |= FM10K_TXD_FLAG_TIME;
929 
930 	/* set checksum offload bits */
931 	desc_flags |= FM10K_SET_FLAG(tx_flags, FM10K_TX_FLAGS_CSUM,
932 				     FM10K_TXD_FLAG_CSUM);
933 
934 	return desc_flags;
935 }
936 
937 static bool fm10k_tx_desc_push(struct fm10k_ring *tx_ring,
938 			       struct fm10k_tx_desc *tx_desc, u16 i,
939 			       dma_addr_t dma, unsigned int size, u8 desc_flags)
940 {
941 	/* set RS and INT for last frame in a cache line */
942 	if ((++i & (FM10K_TXD_WB_FIFO_SIZE - 1)) == 0)
943 		desc_flags |= FM10K_TXD_FLAG_RS | FM10K_TXD_FLAG_INT;
944 
945 	/* record values to descriptor */
946 	tx_desc->buffer_addr = cpu_to_le64(dma);
947 	tx_desc->flags = desc_flags;
948 	tx_desc->buflen = cpu_to_le16(size);
949 
950 	/* return true if we just wrapped the ring */
951 	return i == tx_ring->count;
952 }
953 
954 static int __fm10k_maybe_stop_tx(struct fm10k_ring *tx_ring, u16 size)
955 {
956 	netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
957 
958 	/* Memory barrier before checking head and tail */
959 	smp_mb();
960 
961 	/* Check again in a case another CPU has just made room available */
962 	if (likely(fm10k_desc_unused(tx_ring) < size))
963 		return -EBUSY;
964 
965 	/* A reprieve! - use start_queue because it doesn't call schedule */
966 	netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
967 	++tx_ring->tx_stats.restart_queue;
968 	return 0;
969 }
970 
971 static inline int fm10k_maybe_stop_tx(struct fm10k_ring *tx_ring, u16 size)
972 {
973 	if (likely(fm10k_desc_unused(tx_ring) >= size))
974 		return 0;
975 	return __fm10k_maybe_stop_tx(tx_ring, size);
976 }
977 
978 static void fm10k_tx_map(struct fm10k_ring *tx_ring,
979 			 struct fm10k_tx_buffer *first)
980 {
981 	struct sk_buff *skb = first->skb;
982 	struct fm10k_tx_buffer *tx_buffer;
983 	struct fm10k_tx_desc *tx_desc;
984 	struct skb_frag_struct *frag;
985 	unsigned char *data;
986 	dma_addr_t dma;
987 	unsigned int data_len, size;
988 	u32 tx_flags = first->tx_flags;
989 	u16 i = tx_ring->next_to_use;
990 	u8 flags = fm10k_tx_desc_flags(skb, tx_flags);
991 
992 	tx_desc = FM10K_TX_DESC(tx_ring, i);
993 
994 	/* add HW VLAN tag */
995 	if (skb_vlan_tag_present(skb))
996 		tx_desc->vlan = cpu_to_le16(skb_vlan_tag_get(skb));
997 	else
998 		tx_desc->vlan = 0;
999 
1000 	size = skb_headlen(skb);
1001 	data = skb->data;
1002 
1003 	dma = dma_map_single(tx_ring->dev, data, size, DMA_TO_DEVICE);
1004 
1005 	data_len = skb->data_len;
1006 	tx_buffer = first;
1007 
1008 	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
1009 		if (dma_mapping_error(tx_ring->dev, dma))
1010 			goto dma_error;
1011 
1012 		/* record length, and DMA address */
1013 		dma_unmap_len_set(tx_buffer, len, size);
1014 		dma_unmap_addr_set(tx_buffer, dma, dma);
1015 
1016 		while (unlikely(size > FM10K_MAX_DATA_PER_TXD)) {
1017 			if (fm10k_tx_desc_push(tx_ring, tx_desc++, i++, dma,
1018 					       FM10K_MAX_DATA_PER_TXD, flags)) {
1019 				tx_desc = FM10K_TX_DESC(tx_ring, 0);
1020 				i = 0;
1021 			}
1022 
1023 			dma += FM10K_MAX_DATA_PER_TXD;
1024 			size -= FM10K_MAX_DATA_PER_TXD;
1025 		}
1026 
1027 		if (likely(!data_len))
1028 			break;
1029 
1030 		if (fm10k_tx_desc_push(tx_ring, tx_desc++, i++,
1031 				       dma, size, flags)) {
1032 			tx_desc = FM10K_TX_DESC(tx_ring, 0);
1033 			i = 0;
1034 		}
1035 
1036 		size = skb_frag_size(frag);
1037 		data_len -= size;
1038 
1039 		dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
1040 				       DMA_TO_DEVICE);
1041 
1042 		tx_buffer = &tx_ring->tx_buffer[i];
1043 	}
1044 
1045 	/* write last descriptor with LAST bit set */
1046 	flags |= FM10K_TXD_FLAG_LAST;
1047 
1048 	if (fm10k_tx_desc_push(tx_ring, tx_desc, i++, dma, size, flags))
1049 		i = 0;
1050 
1051 	/* record bytecount for BQL */
1052 	netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
1053 
1054 	/* record SW timestamp if HW timestamp is not available */
1055 	skb_tx_timestamp(first->skb);
1056 
1057 	/* Force memory writes to complete before letting h/w know there
1058 	 * are new descriptors to fetch.  (Only applicable for weak-ordered
1059 	 * memory model archs, such as IA-64).
1060 	 *
1061 	 * We also need this memory barrier to make certain all of the
1062 	 * status bits have been updated before next_to_watch is written.
1063 	 */
1064 	wmb();
1065 
1066 	/* set next_to_watch value indicating a packet is present */
1067 	first->next_to_watch = tx_desc;
1068 
1069 	tx_ring->next_to_use = i;
1070 
1071 	/* Make sure there is space in the ring for the next send. */
1072 	fm10k_maybe_stop_tx(tx_ring, DESC_NEEDED);
1073 
1074 	/* notify HW of packet */
1075 	if (netif_xmit_stopped(txring_txq(tx_ring)) || !skb->xmit_more) {
1076 		writel(i, tx_ring->tail);
1077 
1078 		/* we need this if more than one processor can write to our tail
1079 		 * at a time, it synchronizes IO on IA64/Altix systems
1080 		 */
1081 		mmiowb();
1082 	}
1083 
1084 	return;
1085 dma_error:
1086 	dev_err(tx_ring->dev, "TX DMA map failed\n");
1087 
1088 	/* clear dma mappings for failed tx_buffer map */
1089 	for (;;) {
1090 		tx_buffer = &tx_ring->tx_buffer[i];
1091 		fm10k_unmap_and_free_tx_resource(tx_ring, tx_buffer);
1092 		if (tx_buffer == first)
1093 			break;
1094 		if (i == 0)
1095 			i = tx_ring->count;
1096 		i--;
1097 	}
1098 
1099 	tx_ring->next_to_use = i;
1100 }
1101 
1102 netdev_tx_t fm10k_xmit_frame_ring(struct sk_buff *skb,
1103 				  struct fm10k_ring *tx_ring)
1104 {
1105 	struct fm10k_tx_buffer *first;
1106 	int tso;
1107 	u32 tx_flags = 0;
1108 #if PAGE_SIZE > FM10K_MAX_DATA_PER_TXD
1109 	unsigned short f;
1110 #endif
1111 	u16 count = TXD_USE_COUNT(skb_headlen(skb));
1112 
1113 	/* need: 1 descriptor per page * PAGE_SIZE/FM10K_MAX_DATA_PER_TXD,
1114 	 *       + 1 desc for skb_headlen/FM10K_MAX_DATA_PER_TXD,
1115 	 *       + 2 desc gap to keep tail from touching head
1116 	 * otherwise try next time
1117 	 */
1118 #if PAGE_SIZE > FM10K_MAX_DATA_PER_TXD
1119 	for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
1120 		count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size);
1121 #else
1122 	count += skb_shinfo(skb)->nr_frags;
1123 #endif
1124 	if (fm10k_maybe_stop_tx(tx_ring, count + 3)) {
1125 		tx_ring->tx_stats.tx_busy++;
1126 		return NETDEV_TX_BUSY;
1127 	}
1128 
1129 	/* record the location of the first descriptor for this packet */
1130 	first = &tx_ring->tx_buffer[tx_ring->next_to_use];
1131 	first->skb = skb;
1132 	first->bytecount = max_t(unsigned int, skb->len, ETH_ZLEN);
1133 	first->gso_segs = 1;
1134 
1135 	/* record initial flags and protocol */
1136 	first->tx_flags = tx_flags;
1137 
1138 	tso = fm10k_tso(tx_ring, first);
1139 	if (tso < 0)
1140 		goto out_drop;
1141 	else if (!tso)
1142 		fm10k_tx_csum(tx_ring, first);
1143 
1144 	fm10k_tx_map(tx_ring, first);
1145 
1146 	return NETDEV_TX_OK;
1147 
1148 out_drop:
1149 	dev_kfree_skb_any(first->skb);
1150 	first->skb = NULL;
1151 
1152 	return NETDEV_TX_OK;
1153 }
1154 
1155 static u64 fm10k_get_tx_completed(struct fm10k_ring *ring)
1156 {
1157 	return ring->stats.packets;
1158 }
1159 
1160 static u64 fm10k_get_tx_pending(struct fm10k_ring *ring)
1161 {
1162 	/* use SW head and tail until we have real hardware */
1163 	u32 head = ring->next_to_clean;
1164 	u32 tail = ring->next_to_use;
1165 
1166 	return ((head <= tail) ? tail : tail + ring->count) - head;
1167 }
1168 
1169 bool fm10k_check_tx_hang(struct fm10k_ring *tx_ring)
1170 {
1171 	u32 tx_done = fm10k_get_tx_completed(tx_ring);
1172 	u32 tx_done_old = tx_ring->tx_stats.tx_done_old;
1173 	u32 tx_pending = fm10k_get_tx_pending(tx_ring);
1174 
1175 	clear_check_for_tx_hang(tx_ring);
1176 
1177 	/* Check for a hung queue, but be thorough. This verifies
1178 	 * that a transmit has been completed since the previous
1179 	 * check AND there is at least one packet pending. By
1180 	 * requiring this to fail twice we avoid races with
1181 	 * clearing the ARMED bit and conditions where we
1182 	 * run the check_tx_hang logic with a transmit completion
1183 	 * pending but without time to complete it yet.
1184 	 */
1185 	if (!tx_pending || (tx_done_old != tx_done)) {
1186 		/* update completed stats and continue */
1187 		tx_ring->tx_stats.tx_done_old = tx_done;
1188 		/* reset the countdown */
1189 		clear_bit(__FM10K_HANG_CHECK_ARMED, &tx_ring->state);
1190 
1191 		return false;
1192 	}
1193 
1194 	/* make sure it is true for two checks in a row */
1195 	return test_and_set_bit(__FM10K_HANG_CHECK_ARMED, &tx_ring->state);
1196 }
1197 
1198 /**
1199  * fm10k_tx_timeout_reset - initiate reset due to Tx timeout
1200  * @interface: driver private struct
1201  **/
1202 void fm10k_tx_timeout_reset(struct fm10k_intfc *interface)
1203 {
1204 	/* Do the reset outside of interrupt context */
1205 	if (!test_bit(__FM10K_DOWN, &interface->state)) {
1206 		interface->tx_timeout_count++;
1207 		interface->flags |= FM10K_FLAG_RESET_REQUESTED;
1208 		fm10k_service_event_schedule(interface);
1209 	}
1210 }
1211 
1212 /**
1213  * fm10k_clean_tx_irq - Reclaim resources after transmit completes
1214  * @q_vector: structure containing interrupt and ring information
1215  * @tx_ring: tx ring to clean
1216  **/
1217 static bool fm10k_clean_tx_irq(struct fm10k_q_vector *q_vector,
1218 			       struct fm10k_ring *tx_ring)
1219 {
1220 	struct fm10k_intfc *interface = q_vector->interface;
1221 	struct fm10k_tx_buffer *tx_buffer;
1222 	struct fm10k_tx_desc *tx_desc;
1223 	unsigned int total_bytes = 0, total_packets = 0;
1224 	unsigned int budget = q_vector->tx.work_limit;
1225 	unsigned int i = tx_ring->next_to_clean;
1226 
1227 	if (test_bit(__FM10K_DOWN, &interface->state))
1228 		return true;
1229 
1230 	tx_buffer = &tx_ring->tx_buffer[i];
1231 	tx_desc = FM10K_TX_DESC(tx_ring, i);
1232 	i -= tx_ring->count;
1233 
1234 	do {
1235 		struct fm10k_tx_desc *eop_desc = tx_buffer->next_to_watch;
1236 
1237 		/* if next_to_watch is not set then there is no work pending */
1238 		if (!eop_desc)
1239 			break;
1240 
1241 		/* prevent any other reads prior to eop_desc */
1242 		read_barrier_depends();
1243 
1244 		/* if DD is not set pending work has not been completed */
1245 		if (!(eop_desc->flags & FM10K_TXD_FLAG_DONE))
1246 			break;
1247 
1248 		/* clear next_to_watch to prevent false hangs */
1249 		tx_buffer->next_to_watch = NULL;
1250 
1251 		/* update the statistics for this packet */
1252 		total_bytes += tx_buffer->bytecount;
1253 		total_packets += tx_buffer->gso_segs;
1254 
1255 		/* free the skb */
1256 		dev_consume_skb_any(tx_buffer->skb);
1257 
1258 		/* unmap skb header data */
1259 		dma_unmap_single(tx_ring->dev,
1260 				 dma_unmap_addr(tx_buffer, dma),
1261 				 dma_unmap_len(tx_buffer, len),
1262 				 DMA_TO_DEVICE);
1263 
1264 		/* clear tx_buffer data */
1265 		tx_buffer->skb = NULL;
1266 		dma_unmap_len_set(tx_buffer, len, 0);
1267 
1268 		/* unmap remaining buffers */
1269 		while (tx_desc != eop_desc) {
1270 			tx_buffer++;
1271 			tx_desc++;
1272 			i++;
1273 			if (unlikely(!i)) {
1274 				i -= tx_ring->count;
1275 				tx_buffer = tx_ring->tx_buffer;
1276 				tx_desc = FM10K_TX_DESC(tx_ring, 0);
1277 			}
1278 
1279 			/* unmap any remaining paged data */
1280 			if (dma_unmap_len(tx_buffer, len)) {
1281 				dma_unmap_page(tx_ring->dev,
1282 					       dma_unmap_addr(tx_buffer, dma),
1283 					       dma_unmap_len(tx_buffer, len),
1284 					       DMA_TO_DEVICE);
1285 				dma_unmap_len_set(tx_buffer, len, 0);
1286 			}
1287 		}
1288 
1289 		/* move us one more past the eop_desc for start of next pkt */
1290 		tx_buffer++;
1291 		tx_desc++;
1292 		i++;
1293 		if (unlikely(!i)) {
1294 			i -= tx_ring->count;
1295 			tx_buffer = tx_ring->tx_buffer;
1296 			tx_desc = FM10K_TX_DESC(tx_ring, 0);
1297 		}
1298 
1299 		/* issue prefetch for next Tx descriptor */
1300 		prefetch(tx_desc);
1301 
1302 		/* update budget accounting */
1303 		budget--;
1304 	} while (likely(budget));
1305 
1306 	i += tx_ring->count;
1307 	tx_ring->next_to_clean = i;
1308 	u64_stats_update_begin(&tx_ring->syncp);
1309 	tx_ring->stats.bytes += total_bytes;
1310 	tx_ring->stats.packets += total_packets;
1311 	u64_stats_update_end(&tx_ring->syncp);
1312 	q_vector->tx.total_bytes += total_bytes;
1313 	q_vector->tx.total_packets += total_packets;
1314 
1315 	if (check_for_tx_hang(tx_ring) && fm10k_check_tx_hang(tx_ring)) {
1316 		/* schedule immediate reset if we believe we hung */
1317 		struct fm10k_hw *hw = &interface->hw;
1318 
1319 		netif_err(interface, drv, tx_ring->netdev,
1320 			  "Detected Tx Unit Hang\n"
1321 			  "  Tx Queue             <%d>\n"
1322 			  "  TDH, TDT             <%x>, <%x>\n"
1323 			  "  next_to_use          <%x>\n"
1324 			  "  next_to_clean        <%x>\n",
1325 			  tx_ring->queue_index,
1326 			  fm10k_read_reg(hw, FM10K_TDH(tx_ring->reg_idx)),
1327 			  fm10k_read_reg(hw, FM10K_TDT(tx_ring->reg_idx)),
1328 			  tx_ring->next_to_use, i);
1329 
1330 		netif_stop_subqueue(tx_ring->netdev,
1331 				    tx_ring->queue_index);
1332 
1333 		netif_info(interface, probe, tx_ring->netdev,
1334 			   "tx hang %d detected on queue %d, resetting interface\n",
1335 			   interface->tx_timeout_count + 1,
1336 			   tx_ring->queue_index);
1337 
1338 		fm10k_tx_timeout_reset(interface);
1339 
1340 		/* the netdev is about to reset, no point in enabling stuff */
1341 		return true;
1342 	}
1343 
1344 	/* notify netdev of completed buffers */
1345 	netdev_tx_completed_queue(txring_txq(tx_ring),
1346 				  total_packets, total_bytes);
1347 
1348 #define TX_WAKE_THRESHOLD min_t(u16, FM10K_MIN_TXD - 1, DESC_NEEDED * 2)
1349 	if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
1350 		     (fm10k_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD))) {
1351 		/* Make sure that anybody stopping the queue after this
1352 		 * sees the new next_to_clean.
1353 		 */
1354 		smp_mb();
1355 		if (__netif_subqueue_stopped(tx_ring->netdev,
1356 					     tx_ring->queue_index) &&
1357 		    !test_bit(__FM10K_DOWN, &interface->state)) {
1358 			netif_wake_subqueue(tx_ring->netdev,
1359 					    tx_ring->queue_index);
1360 			++tx_ring->tx_stats.restart_queue;
1361 		}
1362 	}
1363 
1364 	return !!budget;
1365 }
1366 
1367 /**
1368  * fm10k_update_itr - update the dynamic ITR value based on packet size
1369  *
1370  *      Stores a new ITR value based on strictly on packet size.  The
1371  *      divisors and thresholds used by this function were determined based
1372  *      on theoretical maximum wire speed and testing data, in order to
1373  *      minimize response time while increasing bulk throughput.
1374  *
1375  * @ring_container: Container for rings to have ITR updated
1376  **/
1377 static void fm10k_update_itr(struct fm10k_ring_container *ring_container)
1378 {
1379 	unsigned int avg_wire_size, packets;
1380 
1381 	/* Only update ITR if we are using adaptive setting */
1382 	if (!(ring_container->itr & FM10K_ITR_ADAPTIVE))
1383 		goto clear_counts;
1384 
1385 	packets = ring_container->total_packets;
1386 	if (!packets)
1387 		goto clear_counts;
1388 
1389 	avg_wire_size = ring_container->total_bytes / packets;
1390 
1391 	/* Add 24 bytes to size to account for CRC, preamble, and gap */
1392 	avg_wire_size += 24;
1393 
1394 	/* Don't starve jumbo frames */
1395 	if (avg_wire_size > 3000)
1396 		avg_wire_size = 3000;
1397 
1398 	/* Give a little boost to mid-size frames */
1399 	if ((avg_wire_size > 300) && (avg_wire_size < 1200))
1400 		avg_wire_size /= 3;
1401 	else
1402 		avg_wire_size /= 2;
1403 
1404 	/* write back value and retain adaptive flag */
1405 	ring_container->itr = avg_wire_size | FM10K_ITR_ADAPTIVE;
1406 
1407 clear_counts:
1408 	ring_container->total_bytes = 0;
1409 	ring_container->total_packets = 0;
1410 }
1411 
1412 static void fm10k_qv_enable(struct fm10k_q_vector *q_vector)
1413 {
1414 	/* Enable auto-mask and clear the current mask */
1415 	u32 itr = FM10K_ITR_ENABLE;
1416 
1417 	/* Update Tx ITR */
1418 	fm10k_update_itr(&q_vector->tx);
1419 
1420 	/* Update Rx ITR */
1421 	fm10k_update_itr(&q_vector->rx);
1422 
1423 	/* Store Tx itr in timer slot 0 */
1424 	itr |= (q_vector->tx.itr & FM10K_ITR_MAX);
1425 
1426 	/* Shift Rx itr to timer slot 1 */
1427 	itr |= (q_vector->rx.itr & FM10K_ITR_MAX) << FM10K_ITR_INTERVAL1_SHIFT;
1428 
1429 	/* Write the final value to the ITR register */
1430 	writel(itr, q_vector->itr);
1431 }
1432 
1433 static int fm10k_poll(struct napi_struct *napi, int budget)
1434 {
1435 	struct fm10k_q_vector *q_vector =
1436 			       container_of(napi, struct fm10k_q_vector, napi);
1437 	struct fm10k_ring *ring;
1438 	int per_ring_budget;
1439 	bool clean_complete = true;
1440 
1441 	fm10k_for_each_ring(ring, q_vector->tx)
1442 		clean_complete &= fm10k_clean_tx_irq(q_vector, ring);
1443 
1444 	/* attempt to distribute budget to each queue fairly, but don't
1445 	 * allow the budget to go below 1 because we'll exit polling
1446 	 */
1447 	if (q_vector->rx.count > 1)
1448 		per_ring_budget = max(budget/q_vector->rx.count, 1);
1449 	else
1450 		per_ring_budget = budget;
1451 
1452 	fm10k_for_each_ring(ring, q_vector->rx)
1453 		clean_complete &= fm10k_clean_rx_irq(q_vector, ring,
1454 						     per_ring_budget);
1455 
1456 	/* If all work not completed, return budget and keep polling */
1457 	if (!clean_complete)
1458 		return budget;
1459 
1460 	/* all work done, exit the polling mode */
1461 	napi_complete(napi);
1462 
1463 	/* re-enable the q_vector */
1464 	fm10k_qv_enable(q_vector);
1465 
1466 	return 0;
1467 }
1468 
1469 /**
1470  * fm10k_set_qos_queues: Allocate queues for a QOS-enabled device
1471  * @interface: board private structure to initialize
1472  *
1473  * When QoS (Quality of Service) is enabled, allocate queues for
1474  * each traffic class.  If multiqueue isn't available,then abort QoS
1475  * initialization.
1476  *
1477  * This function handles all combinations of Qos and RSS.
1478  *
1479  **/
1480 static bool fm10k_set_qos_queues(struct fm10k_intfc *interface)
1481 {
1482 	struct net_device *dev = interface->netdev;
1483 	struct fm10k_ring_feature *f;
1484 	int rss_i, i;
1485 	int pcs;
1486 
1487 	/* Map queue offset and counts onto allocated tx queues */
1488 	pcs = netdev_get_num_tc(dev);
1489 
1490 	if (pcs <= 1)
1491 		return false;
1492 
1493 	/* set QoS mask and indices */
1494 	f = &interface->ring_feature[RING_F_QOS];
1495 	f->indices = pcs;
1496 	f->mask = (1 << fls(pcs - 1)) - 1;
1497 
1498 	/* determine the upper limit for our current DCB mode */
1499 	rss_i = interface->hw.mac.max_queues / pcs;
1500 	rss_i = 1 << (fls(rss_i) - 1);
1501 
1502 	/* set RSS mask and indices */
1503 	f = &interface->ring_feature[RING_F_RSS];
1504 	rss_i = min_t(u16, rss_i, f->limit);
1505 	f->indices = rss_i;
1506 	f->mask = (1 << fls(rss_i - 1)) - 1;
1507 
1508 	/* configure pause class to queue mapping */
1509 	for (i = 0; i < pcs; i++)
1510 		netdev_set_tc_queue(dev, i, rss_i, rss_i * i);
1511 
1512 	interface->num_rx_queues = rss_i * pcs;
1513 	interface->num_tx_queues = rss_i * pcs;
1514 
1515 	return true;
1516 }
1517 
1518 /**
1519  * fm10k_set_rss_queues: Allocate queues for RSS
1520  * @interface: board private structure to initialize
1521  *
1522  * This is our "base" multiqueue mode.  RSS (Receive Side Scaling) will try
1523  * to allocate one Rx queue per CPU, and if available, one Tx queue per CPU.
1524  *
1525  **/
1526 static bool fm10k_set_rss_queues(struct fm10k_intfc *interface)
1527 {
1528 	struct fm10k_ring_feature *f;
1529 	u16 rss_i;
1530 
1531 	f = &interface->ring_feature[RING_F_RSS];
1532 	rss_i = min_t(u16, interface->hw.mac.max_queues, f->limit);
1533 
1534 	/* record indices and power of 2 mask for RSS */
1535 	f->indices = rss_i;
1536 	f->mask = (1 << fls(rss_i - 1)) - 1;
1537 
1538 	interface->num_rx_queues = rss_i;
1539 	interface->num_tx_queues = rss_i;
1540 
1541 	return true;
1542 }
1543 
1544 /**
1545  * fm10k_set_num_queues: Allocate queues for device, feature dependent
1546  * @interface: board private structure to initialize
1547  *
1548  * This is the top level queue allocation routine.  The order here is very
1549  * important, starting with the "most" number of features turned on at once,
1550  * and ending with the smallest set of features.  This way large combinations
1551  * can be allocated if they're turned on, and smaller combinations are the
1552  * fallthrough conditions.
1553  *
1554  **/
1555 static void fm10k_set_num_queues(struct fm10k_intfc *interface)
1556 {
1557 	/* Start with base case */
1558 	interface->num_rx_queues = 1;
1559 	interface->num_tx_queues = 1;
1560 
1561 	if (fm10k_set_qos_queues(interface))
1562 		return;
1563 
1564 	fm10k_set_rss_queues(interface);
1565 }
1566 
1567 /**
1568  * fm10k_alloc_q_vector - Allocate memory for a single interrupt vector
1569  * @interface: board private structure to initialize
1570  * @v_count: q_vectors allocated on interface, used for ring interleaving
1571  * @v_idx: index of vector in interface struct
1572  * @txr_count: total number of Tx rings to allocate
1573  * @txr_idx: index of first Tx ring to allocate
1574  * @rxr_count: total number of Rx rings to allocate
1575  * @rxr_idx: index of first Rx ring to allocate
1576  *
1577  * We allocate one q_vector.  If allocation fails we return -ENOMEM.
1578  **/
1579 static int fm10k_alloc_q_vector(struct fm10k_intfc *interface,
1580 				unsigned int v_count, unsigned int v_idx,
1581 				unsigned int txr_count, unsigned int txr_idx,
1582 				unsigned int rxr_count, unsigned int rxr_idx)
1583 {
1584 	struct fm10k_q_vector *q_vector;
1585 	struct fm10k_ring *ring;
1586 	int ring_count, size;
1587 
1588 	ring_count = txr_count + rxr_count;
1589 	size = sizeof(struct fm10k_q_vector) +
1590 	       (sizeof(struct fm10k_ring) * ring_count);
1591 
1592 	/* allocate q_vector and rings */
1593 	q_vector = kzalloc(size, GFP_KERNEL);
1594 	if (!q_vector)
1595 		return -ENOMEM;
1596 
1597 	/* initialize NAPI */
1598 	netif_napi_add(interface->netdev, &q_vector->napi,
1599 		       fm10k_poll, NAPI_POLL_WEIGHT);
1600 
1601 	/* tie q_vector and interface together */
1602 	interface->q_vector[v_idx] = q_vector;
1603 	q_vector->interface = interface;
1604 	q_vector->v_idx = v_idx;
1605 
1606 	/* initialize pointer to rings */
1607 	ring = q_vector->ring;
1608 
1609 	/* save Tx ring container info */
1610 	q_vector->tx.ring = ring;
1611 	q_vector->tx.work_limit = FM10K_DEFAULT_TX_WORK;
1612 	q_vector->tx.itr = interface->tx_itr;
1613 	q_vector->tx.count = txr_count;
1614 
1615 	while (txr_count) {
1616 		/* assign generic ring traits */
1617 		ring->dev = &interface->pdev->dev;
1618 		ring->netdev = interface->netdev;
1619 
1620 		/* configure backlink on ring */
1621 		ring->q_vector = q_vector;
1622 
1623 		/* apply Tx specific ring traits */
1624 		ring->count = interface->tx_ring_count;
1625 		ring->queue_index = txr_idx;
1626 
1627 		/* assign ring to interface */
1628 		interface->tx_ring[txr_idx] = ring;
1629 
1630 		/* update count and index */
1631 		txr_count--;
1632 		txr_idx += v_count;
1633 
1634 		/* push pointer to next ring */
1635 		ring++;
1636 	}
1637 
1638 	/* save Rx ring container info */
1639 	q_vector->rx.ring = ring;
1640 	q_vector->rx.itr = interface->rx_itr;
1641 	q_vector->rx.count = rxr_count;
1642 
1643 	while (rxr_count) {
1644 		/* assign generic ring traits */
1645 		ring->dev = &interface->pdev->dev;
1646 		ring->netdev = interface->netdev;
1647 		rcu_assign_pointer(ring->l2_accel, interface->l2_accel);
1648 
1649 		/* configure backlink on ring */
1650 		ring->q_vector = q_vector;
1651 
1652 		/* apply Rx specific ring traits */
1653 		ring->count = interface->rx_ring_count;
1654 		ring->queue_index = rxr_idx;
1655 
1656 		/* assign ring to interface */
1657 		interface->rx_ring[rxr_idx] = ring;
1658 
1659 		/* update count and index */
1660 		rxr_count--;
1661 		rxr_idx += v_count;
1662 
1663 		/* push pointer to next ring */
1664 		ring++;
1665 	}
1666 
1667 	fm10k_dbg_q_vector_init(q_vector);
1668 
1669 	return 0;
1670 }
1671 
1672 /**
1673  * fm10k_free_q_vector - Free memory allocated for specific interrupt vector
1674  * @interface: board private structure to initialize
1675  * @v_idx: Index of vector to be freed
1676  *
1677  * This function frees the memory allocated to the q_vector.  In addition if
1678  * NAPI is enabled it will delete any references to the NAPI struct prior
1679  * to freeing the q_vector.
1680  **/
1681 static void fm10k_free_q_vector(struct fm10k_intfc *interface, int v_idx)
1682 {
1683 	struct fm10k_q_vector *q_vector = interface->q_vector[v_idx];
1684 	struct fm10k_ring *ring;
1685 
1686 	fm10k_dbg_q_vector_exit(q_vector);
1687 
1688 	fm10k_for_each_ring(ring, q_vector->tx)
1689 		interface->tx_ring[ring->queue_index] = NULL;
1690 
1691 	fm10k_for_each_ring(ring, q_vector->rx)
1692 		interface->rx_ring[ring->queue_index] = NULL;
1693 
1694 	interface->q_vector[v_idx] = NULL;
1695 	netif_napi_del(&q_vector->napi);
1696 	kfree_rcu(q_vector, rcu);
1697 }
1698 
1699 /**
1700  * fm10k_alloc_q_vectors - Allocate memory for interrupt vectors
1701  * @interface: board private structure to initialize
1702  *
1703  * We allocate one q_vector per queue interrupt.  If allocation fails we
1704  * return -ENOMEM.
1705  **/
1706 static int fm10k_alloc_q_vectors(struct fm10k_intfc *interface)
1707 {
1708 	unsigned int q_vectors = interface->num_q_vectors;
1709 	unsigned int rxr_remaining = interface->num_rx_queues;
1710 	unsigned int txr_remaining = interface->num_tx_queues;
1711 	unsigned int rxr_idx = 0, txr_idx = 0, v_idx = 0;
1712 	int err;
1713 
1714 	if (q_vectors >= (rxr_remaining + txr_remaining)) {
1715 		for (; rxr_remaining; v_idx++) {
1716 			err = fm10k_alloc_q_vector(interface, q_vectors, v_idx,
1717 						   0, 0, 1, rxr_idx);
1718 			if (err)
1719 				goto err_out;
1720 
1721 			/* update counts and index */
1722 			rxr_remaining--;
1723 			rxr_idx++;
1724 		}
1725 	}
1726 
1727 	for (; v_idx < q_vectors; v_idx++) {
1728 		int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
1729 		int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
1730 
1731 		err = fm10k_alloc_q_vector(interface, q_vectors, v_idx,
1732 					   tqpv, txr_idx,
1733 					   rqpv, rxr_idx);
1734 
1735 		if (err)
1736 			goto err_out;
1737 
1738 		/* update counts and index */
1739 		rxr_remaining -= rqpv;
1740 		txr_remaining -= tqpv;
1741 		rxr_idx++;
1742 		txr_idx++;
1743 	}
1744 
1745 	return 0;
1746 
1747 err_out:
1748 	interface->num_tx_queues = 0;
1749 	interface->num_rx_queues = 0;
1750 	interface->num_q_vectors = 0;
1751 
1752 	while (v_idx--)
1753 		fm10k_free_q_vector(interface, v_idx);
1754 
1755 	return -ENOMEM;
1756 }
1757 
1758 /**
1759  * fm10k_free_q_vectors - Free memory allocated for interrupt vectors
1760  * @interface: board private structure to initialize
1761  *
1762  * This function frees the memory allocated to the q_vectors.  In addition if
1763  * NAPI is enabled it will delete any references to the NAPI struct prior
1764  * to freeing the q_vector.
1765  **/
1766 static void fm10k_free_q_vectors(struct fm10k_intfc *interface)
1767 {
1768 	int v_idx = interface->num_q_vectors;
1769 
1770 	interface->num_tx_queues = 0;
1771 	interface->num_rx_queues = 0;
1772 	interface->num_q_vectors = 0;
1773 
1774 	while (v_idx--)
1775 		fm10k_free_q_vector(interface, v_idx);
1776 }
1777 
1778 /**
1779  * f10k_reset_msix_capability - reset MSI-X capability
1780  * @interface: board private structure to initialize
1781  *
1782  * Reset the MSI-X capability back to its starting state
1783  **/
1784 static void fm10k_reset_msix_capability(struct fm10k_intfc *interface)
1785 {
1786 	pci_disable_msix(interface->pdev);
1787 	kfree(interface->msix_entries);
1788 	interface->msix_entries = NULL;
1789 }
1790 
1791 /**
1792  * f10k_init_msix_capability - configure MSI-X capability
1793  * @interface: board private structure to initialize
1794  *
1795  * Attempt to configure the interrupts using the best available
1796  * capabilities of the hardware and the kernel.
1797  **/
1798 static int fm10k_init_msix_capability(struct fm10k_intfc *interface)
1799 {
1800 	struct fm10k_hw *hw = &interface->hw;
1801 	int v_budget, vector;
1802 
1803 	/* It's easy to be greedy for MSI-X vectors, but it really
1804 	 * doesn't do us much good if we have a lot more vectors
1805 	 * than CPU's.  So let's be conservative and only ask for
1806 	 * (roughly) the same number of vectors as there are CPU's.
1807 	 * the default is to use pairs of vectors
1808 	 */
1809 	v_budget = max(interface->num_rx_queues, interface->num_tx_queues);
1810 	v_budget = min_t(u16, v_budget, num_online_cpus());
1811 
1812 	/* account for vectors not related to queues */
1813 	v_budget += NON_Q_VECTORS(hw);
1814 
1815 	/* At the same time, hardware can only support a maximum of
1816 	 * hw.mac->max_msix_vectors vectors.  With features
1817 	 * such as RSS and VMDq, we can easily surpass the number of Rx and Tx
1818 	 * descriptor queues supported by our device.  Thus, we cap it off in
1819 	 * those rare cases where the cpu count also exceeds our vector limit.
1820 	 */
1821 	v_budget = min_t(int, v_budget, hw->mac.max_msix_vectors);
1822 
1823 	/* A failure in MSI-X entry allocation is fatal. */
1824 	interface->msix_entries = kcalloc(v_budget, sizeof(struct msix_entry),
1825 					  GFP_KERNEL);
1826 	if (!interface->msix_entries)
1827 		return -ENOMEM;
1828 
1829 	/* populate entry values */
1830 	for (vector = 0; vector < v_budget; vector++)
1831 		interface->msix_entries[vector].entry = vector;
1832 
1833 	/* Attempt to enable MSI-X with requested value */
1834 	v_budget = pci_enable_msix_range(interface->pdev,
1835 					 interface->msix_entries,
1836 					 MIN_MSIX_COUNT(hw),
1837 					 v_budget);
1838 	if (v_budget < 0) {
1839 		kfree(interface->msix_entries);
1840 		interface->msix_entries = NULL;
1841 		return -ENOMEM;
1842 	}
1843 
1844 	/* record the number of queues available for q_vectors */
1845 	interface->num_q_vectors = v_budget - NON_Q_VECTORS(hw);
1846 
1847 	return 0;
1848 }
1849 
1850 /**
1851  * fm10k_cache_ring_qos - Descriptor ring to register mapping for QoS
1852  * @interface: Interface structure continaining rings and devices
1853  *
1854  * Cache the descriptor ring offsets for Qos
1855  **/
1856 static bool fm10k_cache_ring_qos(struct fm10k_intfc *interface)
1857 {
1858 	struct net_device *dev = interface->netdev;
1859 	int pc, offset, rss_i, i, q_idx;
1860 	u16 pc_stride = interface->ring_feature[RING_F_QOS].mask + 1;
1861 	u8 num_pcs = netdev_get_num_tc(dev);
1862 
1863 	if (num_pcs <= 1)
1864 		return false;
1865 
1866 	rss_i = interface->ring_feature[RING_F_RSS].indices;
1867 
1868 	for (pc = 0, offset = 0; pc < num_pcs; pc++, offset += rss_i) {
1869 		q_idx = pc;
1870 		for (i = 0; i < rss_i; i++) {
1871 			interface->tx_ring[offset + i]->reg_idx = q_idx;
1872 			interface->tx_ring[offset + i]->qos_pc = pc;
1873 			interface->rx_ring[offset + i]->reg_idx = q_idx;
1874 			interface->rx_ring[offset + i]->qos_pc = pc;
1875 			q_idx += pc_stride;
1876 		}
1877 	}
1878 
1879 	return true;
1880 }
1881 
1882 /**
1883  * fm10k_cache_ring_rss - Descriptor ring to register mapping for RSS
1884  * @interface: Interface structure continaining rings and devices
1885  *
1886  * Cache the descriptor ring offsets for RSS
1887  **/
1888 static void fm10k_cache_ring_rss(struct fm10k_intfc *interface)
1889 {
1890 	int i;
1891 
1892 	for (i = 0; i < interface->num_rx_queues; i++)
1893 		interface->rx_ring[i]->reg_idx = i;
1894 
1895 	for (i = 0; i < interface->num_tx_queues; i++)
1896 		interface->tx_ring[i]->reg_idx = i;
1897 }
1898 
1899 /**
1900  * fm10k_assign_rings - Map rings to network devices
1901  * @interface: Interface structure containing rings and devices
1902  *
1903  * This function is meant to go though and configure both the network
1904  * devices so that they contain rings, and configure the rings so that
1905  * they function with their network devices.
1906  **/
1907 static void fm10k_assign_rings(struct fm10k_intfc *interface)
1908 {
1909 	if (fm10k_cache_ring_qos(interface))
1910 		return;
1911 
1912 	fm10k_cache_ring_rss(interface);
1913 }
1914 
1915 static void fm10k_init_reta(struct fm10k_intfc *interface)
1916 {
1917 	u16 i, rss_i = interface->ring_feature[RING_F_RSS].indices;
1918 	u32 reta, base;
1919 
1920 	/* If the netdev is initialized we have to maintain table if possible */
1921 	if (interface->netdev->reg_state) {
1922 		for (i = FM10K_RETA_SIZE; i--;) {
1923 			reta = interface->reta[i];
1924 			if ((((reta << 24) >> 24) < rss_i) &&
1925 			    (((reta << 16) >> 24) < rss_i) &&
1926 			    (((reta <<  8) >> 24) < rss_i) &&
1927 			    (((reta)       >> 24) < rss_i))
1928 				continue;
1929 			goto repopulate_reta;
1930 		}
1931 
1932 		/* do nothing if all of the elements are in bounds */
1933 		return;
1934 	}
1935 
1936 repopulate_reta:
1937 	/* Populate the redirection table 4 entries at a time.  To do this
1938 	 * we are generating the results for n and n+2 and then interleaving
1939 	 * those with the results with n+1 and n+3.
1940 	 */
1941 	for (i = FM10K_RETA_SIZE; i--;) {
1942 		/* first pass generates n and n+2 */
1943 		base = ((i * 0x00040004) + 0x00020000) * rss_i;
1944 		reta = (base & 0x3F803F80) >> 7;
1945 
1946 		/* second pass generates n+1 and n+3 */
1947 		base += 0x00010001 * rss_i;
1948 		reta |= (base & 0x3F803F80) << 1;
1949 
1950 		interface->reta[i] = reta;
1951 	}
1952 }
1953 
1954 /**
1955  * fm10k_init_queueing_scheme - Determine proper queueing scheme
1956  * @interface: board private structure to initialize
1957  *
1958  * We determine which queueing scheme to use based on...
1959  * - Hardware queue count (num_*_queues)
1960  *   - defined by miscellaneous hardware support/features (RSS, etc.)
1961  **/
1962 int fm10k_init_queueing_scheme(struct fm10k_intfc *interface)
1963 {
1964 	int err;
1965 
1966 	/* Number of supported queues */
1967 	fm10k_set_num_queues(interface);
1968 
1969 	/* Configure MSI-X capability */
1970 	err = fm10k_init_msix_capability(interface);
1971 	if (err) {
1972 		dev_err(&interface->pdev->dev,
1973 			"Unable to initialize MSI-X capability\n");
1974 		return err;
1975 	}
1976 
1977 	/* Allocate memory for queues */
1978 	err = fm10k_alloc_q_vectors(interface);
1979 	if (err)
1980 		return err;
1981 
1982 	/* Map rings to devices, and map devices to physical queues */
1983 	fm10k_assign_rings(interface);
1984 
1985 	/* Initialize RSS redirection table */
1986 	fm10k_init_reta(interface);
1987 
1988 	return 0;
1989 }
1990 
1991 /**
1992  * fm10k_clear_queueing_scheme - Clear the current queueing scheme settings
1993  * @interface: board private structure to clear queueing scheme on
1994  *
1995  * We go through and clear queueing specific resources and reset the structure
1996  * to pre-load conditions
1997  **/
1998 void fm10k_clear_queueing_scheme(struct fm10k_intfc *interface)
1999 {
2000 	fm10k_free_q_vectors(interface);
2001 	fm10k_reset_msix_capability(interface);
2002 }
2003