1 /* Intel(R) Ethernet Switch Host Interface Driver 2 * Copyright(c) 2013 - 2017 Intel Corporation. 3 * 4 * This program is free software; you can redistribute it and/or modify it 5 * under the terms and conditions of the GNU General Public License, 6 * version 2, as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope it will be useful, but WITHOUT 9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 11 * more details. 12 * 13 * The full GNU General Public License is included in this distribution in 14 * the file called "COPYING". 15 * 16 * Contact Information: 17 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> 18 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 19 */ 20 21 #include <linux/types.h> 22 #include <linux/module.h> 23 #include <net/ipv6.h> 24 #include <net/ip.h> 25 #include <net/tcp.h> 26 #include <linux/if_macvlan.h> 27 #include <linux/prefetch.h> 28 29 #include "fm10k.h" 30 31 #define DRV_VERSION "0.22.1-k" 32 #define DRV_SUMMARY "Intel(R) Ethernet Switch Host Interface Driver" 33 const char fm10k_driver_version[] = DRV_VERSION; 34 char fm10k_driver_name[] = "fm10k"; 35 static const char fm10k_driver_string[] = DRV_SUMMARY; 36 static const char fm10k_copyright[] = 37 "Copyright(c) 2013 - 2017 Intel Corporation."; 38 39 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>"); 40 MODULE_DESCRIPTION(DRV_SUMMARY); 41 MODULE_LICENSE("GPL"); 42 MODULE_VERSION(DRV_VERSION); 43 44 /* single workqueue for entire fm10k driver */ 45 struct workqueue_struct *fm10k_workqueue; 46 47 /** 48 * fm10k_init_module - Driver Registration Routine 49 * 50 * fm10k_init_module is the first routine called when the driver is 51 * loaded. All it does is register with the PCI subsystem. 52 **/ 53 static int __init fm10k_init_module(void) 54 { 55 pr_info("%s - version %s\n", fm10k_driver_string, fm10k_driver_version); 56 pr_info("%s\n", fm10k_copyright); 57 58 /* create driver workqueue */ 59 fm10k_workqueue = alloc_workqueue("%s", WQ_MEM_RECLAIM, 0, 60 fm10k_driver_name); 61 62 fm10k_dbg_init(); 63 64 return fm10k_register_pci_driver(); 65 } 66 module_init(fm10k_init_module); 67 68 /** 69 * fm10k_exit_module - Driver Exit Cleanup Routine 70 * 71 * fm10k_exit_module is called just before the driver is removed 72 * from memory. 73 **/ 74 static void __exit fm10k_exit_module(void) 75 { 76 fm10k_unregister_pci_driver(); 77 78 fm10k_dbg_exit(); 79 80 /* destroy driver workqueue */ 81 destroy_workqueue(fm10k_workqueue); 82 } 83 module_exit(fm10k_exit_module); 84 85 static bool fm10k_alloc_mapped_page(struct fm10k_ring *rx_ring, 86 struct fm10k_rx_buffer *bi) 87 { 88 struct page *page = bi->page; 89 dma_addr_t dma; 90 91 /* Only page will be NULL if buffer was consumed */ 92 if (likely(page)) 93 return true; 94 95 /* alloc new page for storage */ 96 page = dev_alloc_page(); 97 if (unlikely(!page)) { 98 rx_ring->rx_stats.alloc_failed++; 99 return false; 100 } 101 102 /* map page for use */ 103 dma = dma_map_page(rx_ring->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE); 104 105 /* if mapping failed free memory back to system since 106 * there isn't much point in holding memory we can't use 107 */ 108 if (dma_mapping_error(rx_ring->dev, dma)) { 109 __free_page(page); 110 111 rx_ring->rx_stats.alloc_failed++; 112 return false; 113 } 114 115 bi->dma = dma; 116 bi->page = page; 117 bi->page_offset = 0; 118 119 return true; 120 } 121 122 /** 123 * fm10k_alloc_rx_buffers - Replace used receive buffers 124 * @rx_ring: ring to place buffers on 125 * @cleaned_count: number of buffers to replace 126 **/ 127 void fm10k_alloc_rx_buffers(struct fm10k_ring *rx_ring, u16 cleaned_count) 128 { 129 union fm10k_rx_desc *rx_desc; 130 struct fm10k_rx_buffer *bi; 131 u16 i = rx_ring->next_to_use; 132 133 /* nothing to do */ 134 if (!cleaned_count) 135 return; 136 137 rx_desc = FM10K_RX_DESC(rx_ring, i); 138 bi = &rx_ring->rx_buffer[i]; 139 i -= rx_ring->count; 140 141 do { 142 if (!fm10k_alloc_mapped_page(rx_ring, bi)) 143 break; 144 145 /* Refresh the desc even if buffer_addrs didn't change 146 * because each write-back erases this info. 147 */ 148 rx_desc->q.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset); 149 150 rx_desc++; 151 bi++; 152 i++; 153 if (unlikely(!i)) { 154 rx_desc = FM10K_RX_DESC(rx_ring, 0); 155 bi = rx_ring->rx_buffer; 156 i -= rx_ring->count; 157 } 158 159 /* clear the status bits for the next_to_use descriptor */ 160 rx_desc->d.staterr = 0; 161 162 cleaned_count--; 163 } while (cleaned_count); 164 165 i += rx_ring->count; 166 167 if (rx_ring->next_to_use != i) { 168 /* record the next descriptor to use */ 169 rx_ring->next_to_use = i; 170 171 /* update next to alloc since we have filled the ring */ 172 rx_ring->next_to_alloc = i; 173 174 /* Force memory writes to complete before letting h/w 175 * know there are new descriptors to fetch. (Only 176 * applicable for weak-ordered memory model archs, 177 * such as IA-64). 178 */ 179 wmb(); 180 181 /* notify hardware of new descriptors */ 182 writel(i, rx_ring->tail); 183 } 184 } 185 186 /** 187 * fm10k_reuse_rx_page - page flip buffer and store it back on the ring 188 * @rx_ring: rx descriptor ring to store buffers on 189 * @old_buff: donor buffer to have page reused 190 * 191 * Synchronizes page for reuse by the interface 192 **/ 193 static void fm10k_reuse_rx_page(struct fm10k_ring *rx_ring, 194 struct fm10k_rx_buffer *old_buff) 195 { 196 struct fm10k_rx_buffer *new_buff; 197 u16 nta = rx_ring->next_to_alloc; 198 199 new_buff = &rx_ring->rx_buffer[nta]; 200 201 /* update, and store next to alloc */ 202 nta++; 203 rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0; 204 205 /* transfer page from old buffer to new buffer */ 206 *new_buff = *old_buff; 207 208 /* sync the buffer for use by the device */ 209 dma_sync_single_range_for_device(rx_ring->dev, old_buff->dma, 210 old_buff->page_offset, 211 FM10K_RX_BUFSZ, 212 DMA_FROM_DEVICE); 213 } 214 215 static inline bool fm10k_page_is_reserved(struct page *page) 216 { 217 return (page_to_nid(page) != numa_mem_id()) || page_is_pfmemalloc(page); 218 } 219 220 static bool fm10k_can_reuse_rx_page(struct fm10k_rx_buffer *rx_buffer, 221 struct page *page, 222 unsigned int __maybe_unused truesize) 223 { 224 /* avoid re-using remote pages */ 225 if (unlikely(fm10k_page_is_reserved(page))) 226 return false; 227 228 #if (PAGE_SIZE < 8192) 229 /* if we are only owner of page we can reuse it */ 230 if (unlikely(page_count(page) != 1)) 231 return false; 232 233 /* flip page offset to other buffer */ 234 rx_buffer->page_offset ^= FM10K_RX_BUFSZ; 235 #else 236 /* move offset up to the next cache line */ 237 rx_buffer->page_offset += truesize; 238 239 if (rx_buffer->page_offset > (PAGE_SIZE - FM10K_RX_BUFSZ)) 240 return false; 241 #endif 242 243 /* Even if we own the page, we are not allowed to use atomic_set() 244 * This would break get_page_unless_zero() users. 245 */ 246 page_ref_inc(page); 247 248 return true; 249 } 250 251 /** 252 * fm10k_add_rx_frag - Add contents of Rx buffer to sk_buff 253 * @rx_buffer: buffer containing page to add 254 * @size: packet size from rx_desc 255 * @rx_desc: descriptor containing length of buffer written by hardware 256 * @skb: sk_buff to place the data into 257 * 258 * This function will add the data contained in rx_buffer->page to the skb. 259 * This is done either through a direct copy if the data in the buffer is 260 * less than the skb header size, otherwise it will just attach the page as 261 * a frag to the skb. 262 * 263 * The function will then update the page offset if necessary and return 264 * true if the buffer can be reused by the interface. 265 **/ 266 static bool fm10k_add_rx_frag(struct fm10k_rx_buffer *rx_buffer, 267 unsigned int size, 268 union fm10k_rx_desc *rx_desc, 269 struct sk_buff *skb) 270 { 271 struct page *page = rx_buffer->page; 272 unsigned char *va = page_address(page) + rx_buffer->page_offset; 273 #if (PAGE_SIZE < 8192) 274 unsigned int truesize = FM10K_RX_BUFSZ; 275 #else 276 unsigned int truesize = ALIGN(size, 512); 277 #endif 278 unsigned int pull_len; 279 280 if (unlikely(skb_is_nonlinear(skb))) 281 goto add_tail_frag; 282 283 if (likely(size <= FM10K_RX_HDR_LEN)) { 284 memcpy(__skb_put(skb, size), va, ALIGN(size, sizeof(long))); 285 286 /* page is not reserved, we can reuse buffer as-is */ 287 if (likely(!fm10k_page_is_reserved(page))) 288 return true; 289 290 /* this page cannot be reused so discard it */ 291 __free_page(page); 292 return false; 293 } 294 295 /* we need the header to contain the greater of either ETH_HLEN or 296 * 60 bytes if the skb->len is less than 60 for skb_pad. 297 */ 298 pull_len = eth_get_headlen(va, FM10K_RX_HDR_LEN); 299 300 /* align pull length to size of long to optimize memcpy performance */ 301 memcpy(__skb_put(skb, pull_len), va, ALIGN(pull_len, sizeof(long))); 302 303 /* update all of the pointers */ 304 va += pull_len; 305 size -= pull_len; 306 307 add_tail_frag: 308 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page, 309 (unsigned long)va & ~PAGE_MASK, size, truesize); 310 311 return fm10k_can_reuse_rx_page(rx_buffer, page, truesize); 312 } 313 314 static struct sk_buff *fm10k_fetch_rx_buffer(struct fm10k_ring *rx_ring, 315 union fm10k_rx_desc *rx_desc, 316 struct sk_buff *skb) 317 { 318 unsigned int size = le16_to_cpu(rx_desc->w.length); 319 struct fm10k_rx_buffer *rx_buffer; 320 struct page *page; 321 322 rx_buffer = &rx_ring->rx_buffer[rx_ring->next_to_clean]; 323 page = rx_buffer->page; 324 prefetchw(page); 325 326 if (likely(!skb)) { 327 void *page_addr = page_address(page) + 328 rx_buffer->page_offset; 329 330 /* prefetch first cache line of first page */ 331 prefetch(page_addr); 332 #if L1_CACHE_BYTES < 128 333 prefetch(page_addr + L1_CACHE_BYTES); 334 #endif 335 336 /* allocate a skb to store the frags */ 337 skb = napi_alloc_skb(&rx_ring->q_vector->napi, 338 FM10K_RX_HDR_LEN); 339 if (unlikely(!skb)) { 340 rx_ring->rx_stats.alloc_failed++; 341 return NULL; 342 } 343 344 /* we will be copying header into skb->data in 345 * pskb_may_pull so it is in our interest to prefetch 346 * it now to avoid a possible cache miss 347 */ 348 prefetchw(skb->data); 349 } 350 351 /* we are reusing so sync this buffer for CPU use */ 352 dma_sync_single_range_for_cpu(rx_ring->dev, 353 rx_buffer->dma, 354 rx_buffer->page_offset, 355 size, 356 DMA_FROM_DEVICE); 357 358 /* pull page into skb */ 359 if (fm10k_add_rx_frag(rx_buffer, size, rx_desc, skb)) { 360 /* hand second half of page back to the ring */ 361 fm10k_reuse_rx_page(rx_ring, rx_buffer); 362 } else { 363 /* we are not reusing the buffer so unmap it */ 364 dma_unmap_page(rx_ring->dev, rx_buffer->dma, 365 PAGE_SIZE, DMA_FROM_DEVICE); 366 } 367 368 /* clear contents of rx_buffer */ 369 rx_buffer->page = NULL; 370 371 return skb; 372 } 373 374 static inline void fm10k_rx_checksum(struct fm10k_ring *ring, 375 union fm10k_rx_desc *rx_desc, 376 struct sk_buff *skb) 377 { 378 skb_checksum_none_assert(skb); 379 380 /* Rx checksum disabled via ethtool */ 381 if (!(ring->netdev->features & NETIF_F_RXCSUM)) 382 return; 383 384 /* TCP/UDP checksum error bit is set */ 385 if (fm10k_test_staterr(rx_desc, 386 FM10K_RXD_STATUS_L4E | 387 FM10K_RXD_STATUS_L4E2 | 388 FM10K_RXD_STATUS_IPE | 389 FM10K_RXD_STATUS_IPE2)) { 390 ring->rx_stats.csum_err++; 391 return; 392 } 393 394 /* It must be a TCP or UDP packet with a valid checksum */ 395 if (fm10k_test_staterr(rx_desc, FM10K_RXD_STATUS_L4CS2)) 396 skb->encapsulation = true; 397 else if (!fm10k_test_staterr(rx_desc, FM10K_RXD_STATUS_L4CS)) 398 return; 399 400 skb->ip_summed = CHECKSUM_UNNECESSARY; 401 402 ring->rx_stats.csum_good++; 403 } 404 405 #define FM10K_RSS_L4_TYPES_MASK \ 406 (BIT(FM10K_RSSTYPE_IPV4_TCP) | \ 407 BIT(FM10K_RSSTYPE_IPV4_UDP) | \ 408 BIT(FM10K_RSSTYPE_IPV6_TCP) | \ 409 BIT(FM10K_RSSTYPE_IPV6_UDP)) 410 411 static inline void fm10k_rx_hash(struct fm10k_ring *ring, 412 union fm10k_rx_desc *rx_desc, 413 struct sk_buff *skb) 414 { 415 u16 rss_type; 416 417 if (!(ring->netdev->features & NETIF_F_RXHASH)) 418 return; 419 420 rss_type = le16_to_cpu(rx_desc->w.pkt_info) & FM10K_RXD_RSSTYPE_MASK; 421 if (!rss_type) 422 return; 423 424 skb_set_hash(skb, le32_to_cpu(rx_desc->d.rss), 425 (BIT(rss_type) & FM10K_RSS_L4_TYPES_MASK) ? 426 PKT_HASH_TYPE_L4 : PKT_HASH_TYPE_L3); 427 } 428 429 static void fm10k_type_trans(struct fm10k_ring *rx_ring, 430 union fm10k_rx_desc __maybe_unused *rx_desc, 431 struct sk_buff *skb) 432 { 433 struct net_device *dev = rx_ring->netdev; 434 struct fm10k_l2_accel *l2_accel = rcu_dereference_bh(rx_ring->l2_accel); 435 436 /* check to see if DGLORT belongs to a MACVLAN */ 437 if (l2_accel) { 438 u16 idx = le16_to_cpu(FM10K_CB(skb)->fi.w.dglort) - 1; 439 440 idx -= l2_accel->dglort; 441 if (idx < l2_accel->size && l2_accel->macvlan[idx]) 442 dev = l2_accel->macvlan[idx]; 443 else 444 l2_accel = NULL; 445 } 446 447 skb->protocol = eth_type_trans(skb, dev); 448 449 /* Record Rx queue, or update macvlan statistics */ 450 if (!l2_accel) 451 skb_record_rx_queue(skb, rx_ring->queue_index); 452 else 453 macvlan_count_rx(netdev_priv(dev), skb->len + ETH_HLEN, true, 454 (skb->pkt_type == PACKET_BROADCAST) || 455 (skb->pkt_type == PACKET_MULTICAST)); 456 } 457 458 /** 459 * fm10k_process_skb_fields - Populate skb header fields from Rx descriptor 460 * @rx_ring: rx descriptor ring packet is being transacted on 461 * @rx_desc: pointer to the EOP Rx descriptor 462 * @skb: pointer to current skb being populated 463 * 464 * This function checks the ring, descriptor, and packet information in 465 * order to populate the hash, checksum, VLAN, timestamp, protocol, and 466 * other fields within the skb. 467 **/ 468 static unsigned int fm10k_process_skb_fields(struct fm10k_ring *rx_ring, 469 union fm10k_rx_desc *rx_desc, 470 struct sk_buff *skb) 471 { 472 unsigned int len = skb->len; 473 474 fm10k_rx_hash(rx_ring, rx_desc, skb); 475 476 fm10k_rx_checksum(rx_ring, rx_desc, skb); 477 478 FM10K_CB(skb)->tstamp = rx_desc->q.timestamp; 479 480 FM10K_CB(skb)->fi.w.vlan = rx_desc->w.vlan; 481 482 FM10K_CB(skb)->fi.d.glort = rx_desc->d.glort; 483 484 if (rx_desc->w.vlan) { 485 u16 vid = le16_to_cpu(rx_desc->w.vlan); 486 487 if ((vid & VLAN_VID_MASK) != rx_ring->vid) 488 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid); 489 else if (vid & VLAN_PRIO_MASK) 490 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), 491 vid & VLAN_PRIO_MASK); 492 } 493 494 fm10k_type_trans(rx_ring, rx_desc, skb); 495 496 return len; 497 } 498 499 /** 500 * fm10k_is_non_eop - process handling of non-EOP buffers 501 * @rx_ring: Rx ring being processed 502 * @rx_desc: Rx descriptor for current buffer 503 * 504 * This function updates next to clean. If the buffer is an EOP buffer 505 * this function exits returning false, otherwise it will place the 506 * sk_buff in the next buffer to be chained and return true indicating 507 * that this is in fact a non-EOP buffer. 508 **/ 509 static bool fm10k_is_non_eop(struct fm10k_ring *rx_ring, 510 union fm10k_rx_desc *rx_desc) 511 { 512 u32 ntc = rx_ring->next_to_clean + 1; 513 514 /* fetch, update, and store next to clean */ 515 ntc = (ntc < rx_ring->count) ? ntc : 0; 516 rx_ring->next_to_clean = ntc; 517 518 prefetch(FM10K_RX_DESC(rx_ring, ntc)); 519 520 if (likely(fm10k_test_staterr(rx_desc, FM10K_RXD_STATUS_EOP))) 521 return false; 522 523 return true; 524 } 525 526 /** 527 * fm10k_cleanup_headers - Correct corrupted or empty headers 528 * @rx_ring: rx descriptor ring packet is being transacted on 529 * @rx_desc: pointer to the EOP Rx descriptor 530 * @skb: pointer to current skb being fixed 531 * 532 * Address the case where we are pulling data in on pages only 533 * and as such no data is present in the skb header. 534 * 535 * In addition if skb is not at least 60 bytes we need to pad it so that 536 * it is large enough to qualify as a valid Ethernet frame. 537 * 538 * Returns true if an error was encountered and skb was freed. 539 **/ 540 static bool fm10k_cleanup_headers(struct fm10k_ring *rx_ring, 541 union fm10k_rx_desc *rx_desc, 542 struct sk_buff *skb) 543 { 544 if (unlikely((fm10k_test_staterr(rx_desc, 545 FM10K_RXD_STATUS_RXE)))) { 546 #define FM10K_TEST_RXD_BIT(rxd, bit) \ 547 ((rxd)->w.csum_err & cpu_to_le16(bit)) 548 if (FM10K_TEST_RXD_BIT(rx_desc, FM10K_RXD_ERR_SWITCH_ERROR)) 549 rx_ring->rx_stats.switch_errors++; 550 if (FM10K_TEST_RXD_BIT(rx_desc, FM10K_RXD_ERR_NO_DESCRIPTOR)) 551 rx_ring->rx_stats.drops++; 552 if (FM10K_TEST_RXD_BIT(rx_desc, FM10K_RXD_ERR_PP_ERROR)) 553 rx_ring->rx_stats.pp_errors++; 554 if (FM10K_TEST_RXD_BIT(rx_desc, FM10K_RXD_ERR_SWITCH_READY)) 555 rx_ring->rx_stats.link_errors++; 556 if (FM10K_TEST_RXD_BIT(rx_desc, FM10K_RXD_ERR_TOO_BIG)) 557 rx_ring->rx_stats.length_errors++; 558 dev_kfree_skb_any(skb); 559 rx_ring->rx_stats.errors++; 560 return true; 561 } 562 563 /* if eth_skb_pad returns an error the skb was freed */ 564 if (eth_skb_pad(skb)) 565 return true; 566 567 return false; 568 } 569 570 /** 571 * fm10k_receive_skb - helper function to handle rx indications 572 * @q_vector: structure containing interrupt and ring information 573 * @skb: packet to send up 574 **/ 575 static void fm10k_receive_skb(struct fm10k_q_vector *q_vector, 576 struct sk_buff *skb) 577 { 578 napi_gro_receive(&q_vector->napi, skb); 579 } 580 581 static int fm10k_clean_rx_irq(struct fm10k_q_vector *q_vector, 582 struct fm10k_ring *rx_ring, 583 int budget) 584 { 585 struct sk_buff *skb = rx_ring->skb; 586 unsigned int total_bytes = 0, total_packets = 0; 587 u16 cleaned_count = fm10k_desc_unused(rx_ring); 588 589 while (likely(total_packets < budget)) { 590 union fm10k_rx_desc *rx_desc; 591 592 /* return some buffers to hardware, one at a time is too slow */ 593 if (cleaned_count >= FM10K_RX_BUFFER_WRITE) { 594 fm10k_alloc_rx_buffers(rx_ring, cleaned_count); 595 cleaned_count = 0; 596 } 597 598 rx_desc = FM10K_RX_DESC(rx_ring, rx_ring->next_to_clean); 599 600 if (!rx_desc->d.staterr) 601 break; 602 603 /* This memory barrier is needed to keep us from reading 604 * any other fields out of the rx_desc until we know the 605 * descriptor has been written back 606 */ 607 dma_rmb(); 608 609 /* retrieve a buffer from the ring */ 610 skb = fm10k_fetch_rx_buffer(rx_ring, rx_desc, skb); 611 612 /* exit if we failed to retrieve a buffer */ 613 if (!skb) 614 break; 615 616 cleaned_count++; 617 618 /* fetch next buffer in frame if non-eop */ 619 if (fm10k_is_non_eop(rx_ring, rx_desc)) 620 continue; 621 622 /* verify the packet layout is correct */ 623 if (fm10k_cleanup_headers(rx_ring, rx_desc, skb)) { 624 skb = NULL; 625 continue; 626 } 627 628 /* populate checksum, timestamp, VLAN, and protocol */ 629 total_bytes += fm10k_process_skb_fields(rx_ring, rx_desc, skb); 630 631 fm10k_receive_skb(q_vector, skb); 632 633 /* reset skb pointer */ 634 skb = NULL; 635 636 /* update budget accounting */ 637 total_packets++; 638 } 639 640 /* place incomplete frames back on ring for completion */ 641 rx_ring->skb = skb; 642 643 u64_stats_update_begin(&rx_ring->syncp); 644 rx_ring->stats.packets += total_packets; 645 rx_ring->stats.bytes += total_bytes; 646 u64_stats_update_end(&rx_ring->syncp); 647 q_vector->rx.total_packets += total_packets; 648 q_vector->rx.total_bytes += total_bytes; 649 650 return total_packets; 651 } 652 653 #define VXLAN_HLEN (sizeof(struct udphdr) + 8) 654 static struct ethhdr *fm10k_port_is_vxlan(struct sk_buff *skb) 655 { 656 struct fm10k_intfc *interface = netdev_priv(skb->dev); 657 struct fm10k_udp_port *vxlan_port; 658 659 /* we can only offload a vxlan if we recognize it as such */ 660 vxlan_port = list_first_entry_or_null(&interface->vxlan_port, 661 struct fm10k_udp_port, list); 662 663 if (!vxlan_port) 664 return NULL; 665 if (vxlan_port->port != udp_hdr(skb)->dest) 666 return NULL; 667 668 /* return offset of udp_hdr plus 8 bytes for VXLAN header */ 669 return (struct ethhdr *)(skb_transport_header(skb) + VXLAN_HLEN); 670 } 671 672 #define FM10K_NVGRE_RESERVED0_FLAGS htons(0x9FFF) 673 #define NVGRE_TNI htons(0x2000) 674 struct fm10k_nvgre_hdr { 675 __be16 flags; 676 __be16 proto; 677 __be32 tni; 678 }; 679 680 static struct ethhdr *fm10k_gre_is_nvgre(struct sk_buff *skb) 681 { 682 struct fm10k_nvgre_hdr *nvgre_hdr; 683 int hlen = ip_hdrlen(skb); 684 685 /* currently only IPv4 is supported due to hlen above */ 686 if (vlan_get_protocol(skb) != htons(ETH_P_IP)) 687 return NULL; 688 689 /* our transport header should be NVGRE */ 690 nvgre_hdr = (struct fm10k_nvgre_hdr *)(skb_network_header(skb) + hlen); 691 692 /* verify all reserved flags are 0 */ 693 if (nvgre_hdr->flags & FM10K_NVGRE_RESERVED0_FLAGS) 694 return NULL; 695 696 /* report start of ethernet header */ 697 if (nvgre_hdr->flags & NVGRE_TNI) 698 return (struct ethhdr *)(nvgre_hdr + 1); 699 700 return (struct ethhdr *)(&nvgre_hdr->tni); 701 } 702 703 __be16 fm10k_tx_encap_offload(struct sk_buff *skb) 704 { 705 u8 l4_hdr = 0, inner_l4_hdr = 0, inner_l4_hlen; 706 struct ethhdr *eth_hdr; 707 708 if (skb->inner_protocol_type != ENCAP_TYPE_ETHER || 709 skb->inner_protocol != htons(ETH_P_TEB)) 710 return 0; 711 712 switch (vlan_get_protocol(skb)) { 713 case htons(ETH_P_IP): 714 l4_hdr = ip_hdr(skb)->protocol; 715 break; 716 case htons(ETH_P_IPV6): 717 l4_hdr = ipv6_hdr(skb)->nexthdr; 718 break; 719 default: 720 return 0; 721 } 722 723 switch (l4_hdr) { 724 case IPPROTO_UDP: 725 eth_hdr = fm10k_port_is_vxlan(skb); 726 break; 727 case IPPROTO_GRE: 728 eth_hdr = fm10k_gre_is_nvgre(skb); 729 break; 730 default: 731 return 0; 732 } 733 734 if (!eth_hdr) 735 return 0; 736 737 switch (eth_hdr->h_proto) { 738 case htons(ETH_P_IP): 739 inner_l4_hdr = inner_ip_hdr(skb)->protocol; 740 break; 741 case htons(ETH_P_IPV6): 742 inner_l4_hdr = inner_ipv6_hdr(skb)->nexthdr; 743 break; 744 default: 745 return 0; 746 } 747 748 switch (inner_l4_hdr) { 749 case IPPROTO_TCP: 750 inner_l4_hlen = inner_tcp_hdrlen(skb); 751 break; 752 case IPPROTO_UDP: 753 inner_l4_hlen = 8; 754 break; 755 default: 756 return 0; 757 } 758 759 /* The hardware allows tunnel offloads only if the combined inner and 760 * outer header is 184 bytes or less 761 */ 762 if (skb_inner_transport_header(skb) + inner_l4_hlen - 763 skb_mac_header(skb) > FM10K_TUNNEL_HEADER_LENGTH) 764 return 0; 765 766 return eth_hdr->h_proto; 767 } 768 769 static int fm10k_tso(struct fm10k_ring *tx_ring, 770 struct fm10k_tx_buffer *first) 771 { 772 struct sk_buff *skb = first->skb; 773 struct fm10k_tx_desc *tx_desc; 774 unsigned char *th; 775 u8 hdrlen; 776 777 if (skb->ip_summed != CHECKSUM_PARTIAL) 778 return 0; 779 780 if (!skb_is_gso(skb)) 781 return 0; 782 783 /* compute header lengths */ 784 if (skb->encapsulation) { 785 if (!fm10k_tx_encap_offload(skb)) 786 goto err_vxlan; 787 th = skb_inner_transport_header(skb); 788 } else { 789 th = skb_transport_header(skb); 790 } 791 792 /* compute offset from SOF to transport header and add header len */ 793 hdrlen = (th - skb->data) + (((struct tcphdr *)th)->doff << 2); 794 795 first->tx_flags |= FM10K_TX_FLAGS_CSUM; 796 797 /* update gso size and bytecount with header size */ 798 first->gso_segs = skb_shinfo(skb)->gso_segs; 799 first->bytecount += (first->gso_segs - 1) * hdrlen; 800 801 /* populate Tx descriptor header size and mss */ 802 tx_desc = FM10K_TX_DESC(tx_ring, tx_ring->next_to_use); 803 tx_desc->hdrlen = hdrlen; 804 tx_desc->mss = cpu_to_le16(skb_shinfo(skb)->gso_size); 805 806 return 1; 807 808 err_vxlan: 809 tx_ring->netdev->features &= ~NETIF_F_GSO_UDP_TUNNEL; 810 if (net_ratelimit()) 811 netdev_err(tx_ring->netdev, 812 "TSO requested for unsupported tunnel, disabling offload\n"); 813 return -1; 814 } 815 816 static void fm10k_tx_csum(struct fm10k_ring *tx_ring, 817 struct fm10k_tx_buffer *first) 818 { 819 struct sk_buff *skb = first->skb; 820 struct fm10k_tx_desc *tx_desc; 821 union { 822 struct iphdr *ipv4; 823 struct ipv6hdr *ipv6; 824 u8 *raw; 825 } network_hdr; 826 u8 *transport_hdr; 827 __be16 frag_off; 828 __be16 protocol; 829 u8 l4_hdr = 0; 830 831 if (skb->ip_summed != CHECKSUM_PARTIAL) 832 goto no_csum; 833 834 if (skb->encapsulation) { 835 protocol = fm10k_tx_encap_offload(skb); 836 if (!protocol) { 837 if (skb_checksum_help(skb)) { 838 dev_warn(tx_ring->dev, 839 "failed to offload encap csum!\n"); 840 tx_ring->tx_stats.csum_err++; 841 } 842 goto no_csum; 843 } 844 network_hdr.raw = skb_inner_network_header(skb); 845 transport_hdr = skb_inner_transport_header(skb); 846 } else { 847 protocol = vlan_get_protocol(skb); 848 network_hdr.raw = skb_network_header(skb); 849 transport_hdr = skb_transport_header(skb); 850 } 851 852 switch (protocol) { 853 case htons(ETH_P_IP): 854 l4_hdr = network_hdr.ipv4->protocol; 855 break; 856 case htons(ETH_P_IPV6): 857 l4_hdr = network_hdr.ipv6->nexthdr; 858 if (likely((transport_hdr - network_hdr.raw) == 859 sizeof(struct ipv6hdr))) 860 break; 861 ipv6_skip_exthdr(skb, network_hdr.raw - skb->data + 862 sizeof(struct ipv6hdr), 863 &l4_hdr, &frag_off); 864 if (unlikely(frag_off)) 865 l4_hdr = NEXTHDR_FRAGMENT; 866 break; 867 default: 868 break; 869 } 870 871 switch (l4_hdr) { 872 case IPPROTO_TCP: 873 case IPPROTO_UDP: 874 break; 875 case IPPROTO_GRE: 876 if (skb->encapsulation) 877 break; 878 /* fall through */ 879 default: 880 if (unlikely(net_ratelimit())) { 881 dev_warn(tx_ring->dev, 882 "partial checksum, version=%d l4 proto=%x\n", 883 protocol, l4_hdr); 884 } 885 skb_checksum_help(skb); 886 tx_ring->tx_stats.csum_err++; 887 goto no_csum; 888 } 889 890 /* update TX checksum flag */ 891 first->tx_flags |= FM10K_TX_FLAGS_CSUM; 892 tx_ring->tx_stats.csum_good++; 893 894 no_csum: 895 /* populate Tx descriptor header size and mss */ 896 tx_desc = FM10K_TX_DESC(tx_ring, tx_ring->next_to_use); 897 tx_desc->hdrlen = 0; 898 tx_desc->mss = 0; 899 } 900 901 #define FM10K_SET_FLAG(_input, _flag, _result) \ 902 ((_flag <= _result) ? \ 903 ((u32)(_input & _flag) * (_result / _flag)) : \ 904 ((u32)(_input & _flag) / (_flag / _result))) 905 906 static u8 fm10k_tx_desc_flags(struct sk_buff *skb, u32 tx_flags) 907 { 908 /* set type for advanced descriptor with frame checksum insertion */ 909 u32 desc_flags = 0; 910 911 /* set checksum offload bits */ 912 desc_flags |= FM10K_SET_FLAG(tx_flags, FM10K_TX_FLAGS_CSUM, 913 FM10K_TXD_FLAG_CSUM); 914 915 return desc_flags; 916 } 917 918 static bool fm10k_tx_desc_push(struct fm10k_ring *tx_ring, 919 struct fm10k_tx_desc *tx_desc, u16 i, 920 dma_addr_t dma, unsigned int size, u8 desc_flags) 921 { 922 /* set RS and INT for last frame in a cache line */ 923 if ((++i & (FM10K_TXD_WB_FIFO_SIZE - 1)) == 0) 924 desc_flags |= FM10K_TXD_FLAG_RS | FM10K_TXD_FLAG_INT; 925 926 /* record values to descriptor */ 927 tx_desc->buffer_addr = cpu_to_le64(dma); 928 tx_desc->flags = desc_flags; 929 tx_desc->buflen = cpu_to_le16(size); 930 931 /* return true if we just wrapped the ring */ 932 return i == tx_ring->count; 933 } 934 935 static int __fm10k_maybe_stop_tx(struct fm10k_ring *tx_ring, u16 size) 936 { 937 netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index); 938 939 /* Memory barrier before checking head and tail */ 940 smp_mb(); 941 942 /* Check again in a case another CPU has just made room available */ 943 if (likely(fm10k_desc_unused(tx_ring) < size)) 944 return -EBUSY; 945 946 /* A reprieve! - use start_queue because it doesn't call schedule */ 947 netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index); 948 ++tx_ring->tx_stats.restart_queue; 949 return 0; 950 } 951 952 static inline int fm10k_maybe_stop_tx(struct fm10k_ring *tx_ring, u16 size) 953 { 954 if (likely(fm10k_desc_unused(tx_ring) >= size)) 955 return 0; 956 return __fm10k_maybe_stop_tx(tx_ring, size); 957 } 958 959 static void fm10k_tx_map(struct fm10k_ring *tx_ring, 960 struct fm10k_tx_buffer *first) 961 { 962 struct sk_buff *skb = first->skb; 963 struct fm10k_tx_buffer *tx_buffer; 964 struct fm10k_tx_desc *tx_desc; 965 struct skb_frag_struct *frag; 966 unsigned char *data; 967 dma_addr_t dma; 968 unsigned int data_len, size; 969 u32 tx_flags = first->tx_flags; 970 u16 i = tx_ring->next_to_use; 971 u8 flags = fm10k_tx_desc_flags(skb, tx_flags); 972 973 tx_desc = FM10K_TX_DESC(tx_ring, i); 974 975 /* add HW VLAN tag */ 976 if (skb_vlan_tag_present(skb)) 977 tx_desc->vlan = cpu_to_le16(skb_vlan_tag_get(skb)); 978 else 979 tx_desc->vlan = 0; 980 981 size = skb_headlen(skb); 982 data = skb->data; 983 984 dma = dma_map_single(tx_ring->dev, data, size, DMA_TO_DEVICE); 985 986 data_len = skb->data_len; 987 tx_buffer = first; 988 989 for (frag = &skb_shinfo(skb)->frags[0];; frag++) { 990 if (dma_mapping_error(tx_ring->dev, dma)) 991 goto dma_error; 992 993 /* record length, and DMA address */ 994 dma_unmap_len_set(tx_buffer, len, size); 995 dma_unmap_addr_set(tx_buffer, dma, dma); 996 997 while (unlikely(size > FM10K_MAX_DATA_PER_TXD)) { 998 if (fm10k_tx_desc_push(tx_ring, tx_desc++, i++, dma, 999 FM10K_MAX_DATA_PER_TXD, flags)) { 1000 tx_desc = FM10K_TX_DESC(tx_ring, 0); 1001 i = 0; 1002 } 1003 1004 dma += FM10K_MAX_DATA_PER_TXD; 1005 size -= FM10K_MAX_DATA_PER_TXD; 1006 } 1007 1008 if (likely(!data_len)) 1009 break; 1010 1011 if (fm10k_tx_desc_push(tx_ring, tx_desc++, i++, 1012 dma, size, flags)) { 1013 tx_desc = FM10K_TX_DESC(tx_ring, 0); 1014 i = 0; 1015 } 1016 1017 size = skb_frag_size(frag); 1018 data_len -= size; 1019 1020 dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size, 1021 DMA_TO_DEVICE); 1022 1023 tx_buffer = &tx_ring->tx_buffer[i]; 1024 } 1025 1026 /* write last descriptor with LAST bit set */ 1027 flags |= FM10K_TXD_FLAG_LAST; 1028 1029 if (fm10k_tx_desc_push(tx_ring, tx_desc, i++, dma, size, flags)) 1030 i = 0; 1031 1032 /* record bytecount for BQL */ 1033 netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount); 1034 1035 /* record SW timestamp if HW timestamp is not available */ 1036 skb_tx_timestamp(first->skb); 1037 1038 /* Force memory writes to complete before letting h/w know there 1039 * are new descriptors to fetch. (Only applicable for weak-ordered 1040 * memory model archs, such as IA-64). 1041 * 1042 * We also need this memory barrier to make certain all of the 1043 * status bits have been updated before next_to_watch is written. 1044 */ 1045 wmb(); 1046 1047 /* set next_to_watch value indicating a packet is present */ 1048 first->next_to_watch = tx_desc; 1049 1050 tx_ring->next_to_use = i; 1051 1052 /* Make sure there is space in the ring for the next send. */ 1053 fm10k_maybe_stop_tx(tx_ring, DESC_NEEDED); 1054 1055 /* notify HW of packet */ 1056 if (netif_xmit_stopped(txring_txq(tx_ring)) || !skb->xmit_more) { 1057 writel(i, tx_ring->tail); 1058 1059 /* we need this if more than one processor can write to our tail 1060 * at a time, it synchronizes IO on IA64/Altix systems 1061 */ 1062 mmiowb(); 1063 } 1064 1065 return; 1066 dma_error: 1067 dev_err(tx_ring->dev, "TX DMA map failed\n"); 1068 1069 /* clear dma mappings for failed tx_buffer map */ 1070 for (;;) { 1071 tx_buffer = &tx_ring->tx_buffer[i]; 1072 fm10k_unmap_and_free_tx_resource(tx_ring, tx_buffer); 1073 if (tx_buffer == first) 1074 break; 1075 if (i == 0) 1076 i = tx_ring->count; 1077 i--; 1078 } 1079 1080 tx_ring->next_to_use = i; 1081 } 1082 1083 netdev_tx_t fm10k_xmit_frame_ring(struct sk_buff *skb, 1084 struct fm10k_ring *tx_ring) 1085 { 1086 u16 count = TXD_USE_COUNT(skb_headlen(skb)); 1087 struct fm10k_tx_buffer *first; 1088 unsigned short f; 1089 u32 tx_flags = 0; 1090 int tso; 1091 1092 /* need: 1 descriptor per page * PAGE_SIZE/FM10K_MAX_DATA_PER_TXD, 1093 * + 1 desc for skb_headlen/FM10K_MAX_DATA_PER_TXD, 1094 * + 2 desc gap to keep tail from touching head 1095 * otherwise try next time 1096 */ 1097 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) 1098 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size); 1099 1100 if (fm10k_maybe_stop_tx(tx_ring, count + 3)) { 1101 tx_ring->tx_stats.tx_busy++; 1102 return NETDEV_TX_BUSY; 1103 } 1104 1105 /* record the location of the first descriptor for this packet */ 1106 first = &tx_ring->tx_buffer[tx_ring->next_to_use]; 1107 first->skb = skb; 1108 first->bytecount = max_t(unsigned int, skb->len, ETH_ZLEN); 1109 first->gso_segs = 1; 1110 1111 /* record initial flags and protocol */ 1112 first->tx_flags = tx_flags; 1113 1114 tso = fm10k_tso(tx_ring, first); 1115 if (tso < 0) 1116 goto out_drop; 1117 else if (!tso) 1118 fm10k_tx_csum(tx_ring, first); 1119 1120 fm10k_tx_map(tx_ring, first); 1121 1122 return NETDEV_TX_OK; 1123 1124 out_drop: 1125 dev_kfree_skb_any(first->skb); 1126 first->skb = NULL; 1127 1128 return NETDEV_TX_OK; 1129 } 1130 1131 static u64 fm10k_get_tx_completed(struct fm10k_ring *ring) 1132 { 1133 return ring->stats.packets; 1134 } 1135 1136 /** 1137 * fm10k_get_tx_pending - how many Tx descriptors not processed 1138 * @ring: the ring structure 1139 * @in_sw: is tx_pending being checked in SW or in HW? 1140 */ 1141 u64 fm10k_get_tx_pending(struct fm10k_ring *ring, bool in_sw) 1142 { 1143 struct fm10k_intfc *interface = ring->q_vector->interface; 1144 struct fm10k_hw *hw = &interface->hw; 1145 u32 head, tail; 1146 1147 if (likely(in_sw)) { 1148 head = ring->next_to_clean; 1149 tail = ring->next_to_use; 1150 } else { 1151 head = fm10k_read_reg(hw, FM10K_TDH(ring->reg_idx)); 1152 tail = fm10k_read_reg(hw, FM10K_TDT(ring->reg_idx)); 1153 } 1154 1155 return ((head <= tail) ? tail : tail + ring->count) - head; 1156 } 1157 1158 bool fm10k_check_tx_hang(struct fm10k_ring *tx_ring) 1159 { 1160 u32 tx_done = fm10k_get_tx_completed(tx_ring); 1161 u32 tx_done_old = tx_ring->tx_stats.tx_done_old; 1162 u32 tx_pending = fm10k_get_tx_pending(tx_ring, true); 1163 1164 clear_check_for_tx_hang(tx_ring); 1165 1166 /* Check for a hung queue, but be thorough. This verifies 1167 * that a transmit has been completed since the previous 1168 * check AND there is at least one packet pending. By 1169 * requiring this to fail twice we avoid races with 1170 * clearing the ARMED bit and conditions where we 1171 * run the check_tx_hang logic with a transmit completion 1172 * pending but without time to complete it yet. 1173 */ 1174 if (!tx_pending || (tx_done_old != tx_done)) { 1175 /* update completed stats and continue */ 1176 tx_ring->tx_stats.tx_done_old = tx_done; 1177 /* reset the countdown */ 1178 clear_bit(__FM10K_HANG_CHECK_ARMED, tx_ring->state); 1179 1180 return false; 1181 } 1182 1183 /* make sure it is true for two checks in a row */ 1184 return test_and_set_bit(__FM10K_HANG_CHECK_ARMED, tx_ring->state); 1185 } 1186 1187 /** 1188 * fm10k_tx_timeout_reset - initiate reset due to Tx timeout 1189 * @interface: driver private struct 1190 **/ 1191 void fm10k_tx_timeout_reset(struct fm10k_intfc *interface) 1192 { 1193 /* Do the reset outside of interrupt context */ 1194 if (!test_bit(__FM10K_DOWN, interface->state)) { 1195 interface->tx_timeout_count++; 1196 set_bit(FM10K_FLAG_RESET_REQUESTED, interface->flags); 1197 fm10k_service_event_schedule(interface); 1198 } 1199 } 1200 1201 /** 1202 * fm10k_clean_tx_irq - Reclaim resources after transmit completes 1203 * @q_vector: structure containing interrupt and ring information 1204 * @tx_ring: tx ring to clean 1205 * @napi_budget: Used to determine if we are in netpoll 1206 **/ 1207 static bool fm10k_clean_tx_irq(struct fm10k_q_vector *q_vector, 1208 struct fm10k_ring *tx_ring, int napi_budget) 1209 { 1210 struct fm10k_intfc *interface = q_vector->interface; 1211 struct fm10k_tx_buffer *tx_buffer; 1212 struct fm10k_tx_desc *tx_desc; 1213 unsigned int total_bytes = 0, total_packets = 0; 1214 unsigned int budget = q_vector->tx.work_limit; 1215 unsigned int i = tx_ring->next_to_clean; 1216 1217 if (test_bit(__FM10K_DOWN, interface->state)) 1218 return true; 1219 1220 tx_buffer = &tx_ring->tx_buffer[i]; 1221 tx_desc = FM10K_TX_DESC(tx_ring, i); 1222 i -= tx_ring->count; 1223 1224 do { 1225 struct fm10k_tx_desc *eop_desc = tx_buffer->next_to_watch; 1226 1227 /* if next_to_watch is not set then there is no work pending */ 1228 if (!eop_desc) 1229 break; 1230 1231 /* prevent any other reads prior to eop_desc */ 1232 smp_rmb(); 1233 1234 /* if DD is not set pending work has not been completed */ 1235 if (!(eop_desc->flags & FM10K_TXD_FLAG_DONE)) 1236 break; 1237 1238 /* clear next_to_watch to prevent false hangs */ 1239 tx_buffer->next_to_watch = NULL; 1240 1241 /* update the statistics for this packet */ 1242 total_bytes += tx_buffer->bytecount; 1243 total_packets += tx_buffer->gso_segs; 1244 1245 /* free the skb */ 1246 napi_consume_skb(tx_buffer->skb, napi_budget); 1247 1248 /* unmap skb header data */ 1249 dma_unmap_single(tx_ring->dev, 1250 dma_unmap_addr(tx_buffer, dma), 1251 dma_unmap_len(tx_buffer, len), 1252 DMA_TO_DEVICE); 1253 1254 /* clear tx_buffer data */ 1255 tx_buffer->skb = NULL; 1256 dma_unmap_len_set(tx_buffer, len, 0); 1257 1258 /* unmap remaining buffers */ 1259 while (tx_desc != eop_desc) { 1260 tx_buffer++; 1261 tx_desc++; 1262 i++; 1263 if (unlikely(!i)) { 1264 i -= tx_ring->count; 1265 tx_buffer = tx_ring->tx_buffer; 1266 tx_desc = FM10K_TX_DESC(tx_ring, 0); 1267 } 1268 1269 /* unmap any remaining paged data */ 1270 if (dma_unmap_len(tx_buffer, len)) { 1271 dma_unmap_page(tx_ring->dev, 1272 dma_unmap_addr(tx_buffer, dma), 1273 dma_unmap_len(tx_buffer, len), 1274 DMA_TO_DEVICE); 1275 dma_unmap_len_set(tx_buffer, len, 0); 1276 } 1277 } 1278 1279 /* move us one more past the eop_desc for start of next pkt */ 1280 tx_buffer++; 1281 tx_desc++; 1282 i++; 1283 if (unlikely(!i)) { 1284 i -= tx_ring->count; 1285 tx_buffer = tx_ring->tx_buffer; 1286 tx_desc = FM10K_TX_DESC(tx_ring, 0); 1287 } 1288 1289 /* issue prefetch for next Tx descriptor */ 1290 prefetch(tx_desc); 1291 1292 /* update budget accounting */ 1293 budget--; 1294 } while (likely(budget)); 1295 1296 i += tx_ring->count; 1297 tx_ring->next_to_clean = i; 1298 u64_stats_update_begin(&tx_ring->syncp); 1299 tx_ring->stats.bytes += total_bytes; 1300 tx_ring->stats.packets += total_packets; 1301 u64_stats_update_end(&tx_ring->syncp); 1302 q_vector->tx.total_bytes += total_bytes; 1303 q_vector->tx.total_packets += total_packets; 1304 1305 if (check_for_tx_hang(tx_ring) && fm10k_check_tx_hang(tx_ring)) { 1306 /* schedule immediate reset if we believe we hung */ 1307 struct fm10k_hw *hw = &interface->hw; 1308 1309 netif_err(interface, drv, tx_ring->netdev, 1310 "Detected Tx Unit Hang\n" 1311 " Tx Queue <%d>\n" 1312 " TDH, TDT <%x>, <%x>\n" 1313 " next_to_use <%x>\n" 1314 " next_to_clean <%x>\n", 1315 tx_ring->queue_index, 1316 fm10k_read_reg(hw, FM10K_TDH(tx_ring->reg_idx)), 1317 fm10k_read_reg(hw, FM10K_TDT(tx_ring->reg_idx)), 1318 tx_ring->next_to_use, i); 1319 1320 netif_stop_subqueue(tx_ring->netdev, 1321 tx_ring->queue_index); 1322 1323 netif_info(interface, probe, tx_ring->netdev, 1324 "tx hang %d detected on queue %d, resetting interface\n", 1325 interface->tx_timeout_count + 1, 1326 tx_ring->queue_index); 1327 1328 fm10k_tx_timeout_reset(interface); 1329 1330 /* the netdev is about to reset, no point in enabling stuff */ 1331 return true; 1332 } 1333 1334 /* notify netdev of completed buffers */ 1335 netdev_tx_completed_queue(txring_txq(tx_ring), 1336 total_packets, total_bytes); 1337 1338 #define TX_WAKE_THRESHOLD min_t(u16, FM10K_MIN_TXD - 1, DESC_NEEDED * 2) 1339 if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) && 1340 (fm10k_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD))) { 1341 /* Make sure that anybody stopping the queue after this 1342 * sees the new next_to_clean. 1343 */ 1344 smp_mb(); 1345 if (__netif_subqueue_stopped(tx_ring->netdev, 1346 tx_ring->queue_index) && 1347 !test_bit(__FM10K_DOWN, interface->state)) { 1348 netif_wake_subqueue(tx_ring->netdev, 1349 tx_ring->queue_index); 1350 ++tx_ring->tx_stats.restart_queue; 1351 } 1352 } 1353 1354 return !!budget; 1355 } 1356 1357 /** 1358 * fm10k_update_itr - update the dynamic ITR value based on packet size 1359 * 1360 * Stores a new ITR value based on strictly on packet size. The 1361 * divisors and thresholds used by this function were determined based 1362 * on theoretical maximum wire speed and testing data, in order to 1363 * minimize response time while increasing bulk throughput. 1364 * 1365 * @ring_container: Container for rings to have ITR updated 1366 **/ 1367 static void fm10k_update_itr(struct fm10k_ring_container *ring_container) 1368 { 1369 unsigned int avg_wire_size, packets, itr_round; 1370 1371 /* Only update ITR if we are using adaptive setting */ 1372 if (!ITR_IS_ADAPTIVE(ring_container->itr)) 1373 goto clear_counts; 1374 1375 packets = ring_container->total_packets; 1376 if (!packets) 1377 goto clear_counts; 1378 1379 avg_wire_size = ring_container->total_bytes / packets; 1380 1381 /* The following is a crude approximation of: 1382 * wmem_default / (size + overhead) = desired_pkts_per_int 1383 * rate / bits_per_byte / (size + ethernet overhead) = pkt_rate 1384 * (desired_pkt_rate / pkt_rate) * usecs_per_sec = ITR value 1385 * 1386 * Assuming wmem_default is 212992 and overhead is 640 bytes per 1387 * packet, (256 skb, 64 headroom, 320 shared info), we can reduce the 1388 * formula down to 1389 * 1390 * (34 * (size + 24)) / (size + 640) = ITR 1391 * 1392 * We first do some math on the packet size and then finally bitshift 1393 * by 8 after rounding up. We also have to account for PCIe link speed 1394 * difference as ITR scales based on this. 1395 */ 1396 if (avg_wire_size <= 360) { 1397 /* Start at 250K ints/sec and gradually drop to 77K ints/sec */ 1398 avg_wire_size *= 8; 1399 avg_wire_size += 376; 1400 } else if (avg_wire_size <= 1152) { 1401 /* 77K ints/sec to 45K ints/sec */ 1402 avg_wire_size *= 3; 1403 avg_wire_size += 2176; 1404 } else if (avg_wire_size <= 1920) { 1405 /* 45K ints/sec to 38K ints/sec */ 1406 avg_wire_size += 4480; 1407 } else { 1408 /* plateau at a limit of 38K ints/sec */ 1409 avg_wire_size = 6656; 1410 } 1411 1412 /* Perform final bitshift for division after rounding up to ensure 1413 * that the calculation will never get below a 1. The bit shift 1414 * accounts for changes in the ITR due to PCIe link speed. 1415 */ 1416 itr_round = READ_ONCE(ring_container->itr_scale) + 8; 1417 avg_wire_size += BIT(itr_round) - 1; 1418 avg_wire_size >>= itr_round; 1419 1420 /* write back value and retain adaptive flag */ 1421 ring_container->itr = avg_wire_size | FM10K_ITR_ADAPTIVE; 1422 1423 clear_counts: 1424 ring_container->total_bytes = 0; 1425 ring_container->total_packets = 0; 1426 } 1427 1428 static void fm10k_qv_enable(struct fm10k_q_vector *q_vector) 1429 { 1430 /* Enable auto-mask and clear the current mask */ 1431 u32 itr = FM10K_ITR_ENABLE; 1432 1433 /* Update Tx ITR */ 1434 fm10k_update_itr(&q_vector->tx); 1435 1436 /* Update Rx ITR */ 1437 fm10k_update_itr(&q_vector->rx); 1438 1439 /* Store Tx itr in timer slot 0 */ 1440 itr |= (q_vector->tx.itr & FM10K_ITR_MAX); 1441 1442 /* Shift Rx itr to timer slot 1 */ 1443 itr |= (q_vector->rx.itr & FM10K_ITR_MAX) << FM10K_ITR_INTERVAL1_SHIFT; 1444 1445 /* Write the final value to the ITR register */ 1446 writel(itr, q_vector->itr); 1447 } 1448 1449 static int fm10k_poll(struct napi_struct *napi, int budget) 1450 { 1451 struct fm10k_q_vector *q_vector = 1452 container_of(napi, struct fm10k_q_vector, napi); 1453 struct fm10k_ring *ring; 1454 int per_ring_budget, work_done = 0; 1455 bool clean_complete = true; 1456 1457 fm10k_for_each_ring(ring, q_vector->tx) { 1458 if (!fm10k_clean_tx_irq(q_vector, ring, budget)) 1459 clean_complete = false; 1460 } 1461 1462 /* Handle case where we are called by netpoll with a budget of 0 */ 1463 if (budget <= 0) 1464 return budget; 1465 1466 /* attempt to distribute budget to each queue fairly, but don't 1467 * allow the budget to go below 1 because we'll exit polling 1468 */ 1469 if (q_vector->rx.count > 1) 1470 per_ring_budget = max(budget / q_vector->rx.count, 1); 1471 else 1472 per_ring_budget = budget; 1473 1474 fm10k_for_each_ring(ring, q_vector->rx) { 1475 int work = fm10k_clean_rx_irq(q_vector, ring, per_ring_budget); 1476 1477 work_done += work; 1478 if (work >= per_ring_budget) 1479 clean_complete = false; 1480 } 1481 1482 /* If all work not completed, return budget and keep polling */ 1483 if (!clean_complete) 1484 return budget; 1485 1486 /* all work done, exit the polling mode */ 1487 napi_complete_done(napi, work_done); 1488 1489 /* re-enable the q_vector */ 1490 fm10k_qv_enable(q_vector); 1491 1492 return min(work_done, budget - 1); 1493 } 1494 1495 /** 1496 * fm10k_set_qos_queues: Allocate queues for a QOS-enabled device 1497 * @interface: board private structure to initialize 1498 * 1499 * When QoS (Quality of Service) is enabled, allocate queues for 1500 * each traffic class. If multiqueue isn't available,then abort QoS 1501 * initialization. 1502 * 1503 * This function handles all combinations of Qos and RSS. 1504 * 1505 **/ 1506 static bool fm10k_set_qos_queues(struct fm10k_intfc *interface) 1507 { 1508 struct net_device *dev = interface->netdev; 1509 struct fm10k_ring_feature *f; 1510 int rss_i, i; 1511 int pcs; 1512 1513 /* Map queue offset and counts onto allocated tx queues */ 1514 pcs = netdev_get_num_tc(dev); 1515 1516 if (pcs <= 1) 1517 return false; 1518 1519 /* set QoS mask and indices */ 1520 f = &interface->ring_feature[RING_F_QOS]; 1521 f->indices = pcs; 1522 f->mask = BIT(fls(pcs - 1)) - 1; 1523 1524 /* determine the upper limit for our current DCB mode */ 1525 rss_i = interface->hw.mac.max_queues / pcs; 1526 rss_i = BIT(fls(rss_i) - 1); 1527 1528 /* set RSS mask and indices */ 1529 f = &interface->ring_feature[RING_F_RSS]; 1530 rss_i = min_t(u16, rss_i, f->limit); 1531 f->indices = rss_i; 1532 f->mask = BIT(fls(rss_i - 1)) - 1; 1533 1534 /* configure pause class to queue mapping */ 1535 for (i = 0; i < pcs; i++) 1536 netdev_set_tc_queue(dev, i, rss_i, rss_i * i); 1537 1538 interface->num_rx_queues = rss_i * pcs; 1539 interface->num_tx_queues = rss_i * pcs; 1540 1541 return true; 1542 } 1543 1544 /** 1545 * fm10k_set_rss_queues: Allocate queues for RSS 1546 * @interface: board private structure to initialize 1547 * 1548 * This is our "base" multiqueue mode. RSS (Receive Side Scaling) will try 1549 * to allocate one Rx queue per CPU, and if available, one Tx queue per CPU. 1550 * 1551 **/ 1552 static bool fm10k_set_rss_queues(struct fm10k_intfc *interface) 1553 { 1554 struct fm10k_ring_feature *f; 1555 u16 rss_i; 1556 1557 f = &interface->ring_feature[RING_F_RSS]; 1558 rss_i = min_t(u16, interface->hw.mac.max_queues, f->limit); 1559 1560 /* record indices and power of 2 mask for RSS */ 1561 f->indices = rss_i; 1562 f->mask = BIT(fls(rss_i - 1)) - 1; 1563 1564 interface->num_rx_queues = rss_i; 1565 interface->num_tx_queues = rss_i; 1566 1567 return true; 1568 } 1569 1570 /** 1571 * fm10k_set_num_queues: Allocate queues for device, feature dependent 1572 * @interface: board private structure to initialize 1573 * 1574 * This is the top level queue allocation routine. The order here is very 1575 * important, starting with the "most" number of features turned on at once, 1576 * and ending with the smallest set of features. This way large combinations 1577 * can be allocated if they're turned on, and smaller combinations are the 1578 * fallthrough conditions. 1579 * 1580 **/ 1581 static void fm10k_set_num_queues(struct fm10k_intfc *interface) 1582 { 1583 /* Attempt to setup QoS and RSS first */ 1584 if (fm10k_set_qos_queues(interface)) 1585 return; 1586 1587 /* If we don't have QoS, just fallback to only RSS. */ 1588 fm10k_set_rss_queues(interface); 1589 } 1590 1591 /** 1592 * fm10k_reset_num_queues - Reset the number of queues to zero 1593 * @interface: board private structure 1594 * 1595 * This function should be called whenever we need to reset the number of 1596 * queues after an error condition. 1597 */ 1598 static void fm10k_reset_num_queues(struct fm10k_intfc *interface) 1599 { 1600 interface->num_tx_queues = 0; 1601 interface->num_rx_queues = 0; 1602 interface->num_q_vectors = 0; 1603 } 1604 1605 /** 1606 * fm10k_alloc_q_vector - Allocate memory for a single interrupt vector 1607 * @interface: board private structure to initialize 1608 * @v_count: q_vectors allocated on interface, used for ring interleaving 1609 * @v_idx: index of vector in interface struct 1610 * @txr_count: total number of Tx rings to allocate 1611 * @txr_idx: index of first Tx ring to allocate 1612 * @rxr_count: total number of Rx rings to allocate 1613 * @rxr_idx: index of first Rx ring to allocate 1614 * 1615 * We allocate one q_vector. If allocation fails we return -ENOMEM. 1616 **/ 1617 static int fm10k_alloc_q_vector(struct fm10k_intfc *interface, 1618 unsigned int v_count, unsigned int v_idx, 1619 unsigned int txr_count, unsigned int txr_idx, 1620 unsigned int rxr_count, unsigned int rxr_idx) 1621 { 1622 struct fm10k_q_vector *q_vector; 1623 struct fm10k_ring *ring; 1624 int ring_count, size; 1625 1626 ring_count = txr_count + rxr_count; 1627 size = sizeof(struct fm10k_q_vector) + 1628 (sizeof(struct fm10k_ring) * ring_count); 1629 1630 /* allocate q_vector and rings */ 1631 q_vector = kzalloc(size, GFP_KERNEL); 1632 if (!q_vector) 1633 return -ENOMEM; 1634 1635 /* initialize NAPI */ 1636 netif_napi_add(interface->netdev, &q_vector->napi, 1637 fm10k_poll, NAPI_POLL_WEIGHT); 1638 1639 /* tie q_vector and interface together */ 1640 interface->q_vector[v_idx] = q_vector; 1641 q_vector->interface = interface; 1642 q_vector->v_idx = v_idx; 1643 1644 /* initialize pointer to rings */ 1645 ring = q_vector->ring; 1646 1647 /* save Tx ring container info */ 1648 q_vector->tx.ring = ring; 1649 q_vector->tx.work_limit = FM10K_DEFAULT_TX_WORK; 1650 q_vector->tx.itr = interface->tx_itr; 1651 q_vector->tx.itr_scale = interface->hw.mac.itr_scale; 1652 q_vector->tx.count = txr_count; 1653 1654 while (txr_count) { 1655 /* assign generic ring traits */ 1656 ring->dev = &interface->pdev->dev; 1657 ring->netdev = interface->netdev; 1658 1659 /* configure backlink on ring */ 1660 ring->q_vector = q_vector; 1661 1662 /* apply Tx specific ring traits */ 1663 ring->count = interface->tx_ring_count; 1664 ring->queue_index = txr_idx; 1665 1666 /* assign ring to interface */ 1667 interface->tx_ring[txr_idx] = ring; 1668 1669 /* update count and index */ 1670 txr_count--; 1671 txr_idx += v_count; 1672 1673 /* push pointer to next ring */ 1674 ring++; 1675 } 1676 1677 /* save Rx ring container info */ 1678 q_vector->rx.ring = ring; 1679 q_vector->rx.itr = interface->rx_itr; 1680 q_vector->rx.itr_scale = interface->hw.mac.itr_scale; 1681 q_vector->rx.count = rxr_count; 1682 1683 while (rxr_count) { 1684 /* assign generic ring traits */ 1685 ring->dev = &interface->pdev->dev; 1686 ring->netdev = interface->netdev; 1687 rcu_assign_pointer(ring->l2_accel, interface->l2_accel); 1688 1689 /* configure backlink on ring */ 1690 ring->q_vector = q_vector; 1691 1692 /* apply Rx specific ring traits */ 1693 ring->count = interface->rx_ring_count; 1694 ring->queue_index = rxr_idx; 1695 1696 /* assign ring to interface */ 1697 interface->rx_ring[rxr_idx] = ring; 1698 1699 /* update count and index */ 1700 rxr_count--; 1701 rxr_idx += v_count; 1702 1703 /* push pointer to next ring */ 1704 ring++; 1705 } 1706 1707 fm10k_dbg_q_vector_init(q_vector); 1708 1709 return 0; 1710 } 1711 1712 /** 1713 * fm10k_free_q_vector - Free memory allocated for specific interrupt vector 1714 * @interface: board private structure to initialize 1715 * @v_idx: Index of vector to be freed 1716 * 1717 * This function frees the memory allocated to the q_vector. In addition if 1718 * NAPI is enabled it will delete any references to the NAPI struct prior 1719 * to freeing the q_vector. 1720 **/ 1721 static void fm10k_free_q_vector(struct fm10k_intfc *interface, int v_idx) 1722 { 1723 struct fm10k_q_vector *q_vector = interface->q_vector[v_idx]; 1724 struct fm10k_ring *ring; 1725 1726 fm10k_dbg_q_vector_exit(q_vector); 1727 1728 fm10k_for_each_ring(ring, q_vector->tx) 1729 interface->tx_ring[ring->queue_index] = NULL; 1730 1731 fm10k_for_each_ring(ring, q_vector->rx) 1732 interface->rx_ring[ring->queue_index] = NULL; 1733 1734 interface->q_vector[v_idx] = NULL; 1735 netif_napi_del(&q_vector->napi); 1736 kfree_rcu(q_vector, rcu); 1737 } 1738 1739 /** 1740 * fm10k_alloc_q_vectors - Allocate memory for interrupt vectors 1741 * @interface: board private structure to initialize 1742 * 1743 * We allocate one q_vector per queue interrupt. If allocation fails we 1744 * return -ENOMEM. 1745 **/ 1746 static int fm10k_alloc_q_vectors(struct fm10k_intfc *interface) 1747 { 1748 unsigned int q_vectors = interface->num_q_vectors; 1749 unsigned int rxr_remaining = interface->num_rx_queues; 1750 unsigned int txr_remaining = interface->num_tx_queues; 1751 unsigned int rxr_idx = 0, txr_idx = 0, v_idx = 0; 1752 int err; 1753 1754 if (q_vectors >= (rxr_remaining + txr_remaining)) { 1755 for (; rxr_remaining; v_idx++) { 1756 err = fm10k_alloc_q_vector(interface, q_vectors, v_idx, 1757 0, 0, 1, rxr_idx); 1758 if (err) 1759 goto err_out; 1760 1761 /* update counts and index */ 1762 rxr_remaining--; 1763 rxr_idx++; 1764 } 1765 } 1766 1767 for (; v_idx < q_vectors; v_idx++) { 1768 int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx); 1769 int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx); 1770 1771 err = fm10k_alloc_q_vector(interface, q_vectors, v_idx, 1772 tqpv, txr_idx, 1773 rqpv, rxr_idx); 1774 1775 if (err) 1776 goto err_out; 1777 1778 /* update counts and index */ 1779 rxr_remaining -= rqpv; 1780 txr_remaining -= tqpv; 1781 rxr_idx++; 1782 txr_idx++; 1783 } 1784 1785 return 0; 1786 1787 err_out: 1788 fm10k_reset_num_queues(interface); 1789 1790 while (v_idx--) 1791 fm10k_free_q_vector(interface, v_idx); 1792 1793 return -ENOMEM; 1794 } 1795 1796 /** 1797 * fm10k_free_q_vectors - Free memory allocated for interrupt vectors 1798 * @interface: board private structure to initialize 1799 * 1800 * This function frees the memory allocated to the q_vectors. In addition if 1801 * NAPI is enabled it will delete any references to the NAPI struct prior 1802 * to freeing the q_vector. 1803 **/ 1804 static void fm10k_free_q_vectors(struct fm10k_intfc *interface) 1805 { 1806 int v_idx = interface->num_q_vectors; 1807 1808 fm10k_reset_num_queues(interface); 1809 1810 while (v_idx--) 1811 fm10k_free_q_vector(interface, v_idx); 1812 } 1813 1814 /** 1815 * f10k_reset_msix_capability - reset MSI-X capability 1816 * @interface: board private structure to initialize 1817 * 1818 * Reset the MSI-X capability back to its starting state 1819 **/ 1820 static void fm10k_reset_msix_capability(struct fm10k_intfc *interface) 1821 { 1822 pci_disable_msix(interface->pdev); 1823 kfree(interface->msix_entries); 1824 interface->msix_entries = NULL; 1825 } 1826 1827 /** 1828 * f10k_init_msix_capability - configure MSI-X capability 1829 * @interface: board private structure to initialize 1830 * 1831 * Attempt to configure the interrupts using the best available 1832 * capabilities of the hardware and the kernel. 1833 **/ 1834 static int fm10k_init_msix_capability(struct fm10k_intfc *interface) 1835 { 1836 struct fm10k_hw *hw = &interface->hw; 1837 int v_budget, vector; 1838 1839 /* It's easy to be greedy for MSI-X vectors, but it really 1840 * doesn't do us much good if we have a lot more vectors 1841 * than CPU's. So let's be conservative and only ask for 1842 * (roughly) the same number of vectors as there are CPU's. 1843 * the default is to use pairs of vectors 1844 */ 1845 v_budget = max(interface->num_rx_queues, interface->num_tx_queues); 1846 v_budget = min_t(u16, v_budget, num_online_cpus()); 1847 1848 /* account for vectors not related to queues */ 1849 v_budget += NON_Q_VECTORS(hw); 1850 1851 /* At the same time, hardware can only support a maximum of 1852 * hw.mac->max_msix_vectors vectors. With features 1853 * such as RSS and VMDq, we can easily surpass the number of Rx and Tx 1854 * descriptor queues supported by our device. Thus, we cap it off in 1855 * those rare cases where the cpu count also exceeds our vector limit. 1856 */ 1857 v_budget = min_t(int, v_budget, hw->mac.max_msix_vectors); 1858 1859 /* A failure in MSI-X entry allocation is fatal. */ 1860 interface->msix_entries = kcalloc(v_budget, sizeof(struct msix_entry), 1861 GFP_KERNEL); 1862 if (!interface->msix_entries) 1863 return -ENOMEM; 1864 1865 /* populate entry values */ 1866 for (vector = 0; vector < v_budget; vector++) 1867 interface->msix_entries[vector].entry = vector; 1868 1869 /* Attempt to enable MSI-X with requested value */ 1870 v_budget = pci_enable_msix_range(interface->pdev, 1871 interface->msix_entries, 1872 MIN_MSIX_COUNT(hw), 1873 v_budget); 1874 if (v_budget < 0) { 1875 kfree(interface->msix_entries); 1876 interface->msix_entries = NULL; 1877 return v_budget; 1878 } 1879 1880 /* record the number of queues available for q_vectors */ 1881 interface->num_q_vectors = v_budget - NON_Q_VECTORS(hw); 1882 1883 return 0; 1884 } 1885 1886 /** 1887 * fm10k_cache_ring_qos - Descriptor ring to register mapping for QoS 1888 * @interface: Interface structure continaining rings and devices 1889 * 1890 * Cache the descriptor ring offsets for Qos 1891 **/ 1892 static bool fm10k_cache_ring_qos(struct fm10k_intfc *interface) 1893 { 1894 struct net_device *dev = interface->netdev; 1895 int pc, offset, rss_i, i, q_idx; 1896 u16 pc_stride = interface->ring_feature[RING_F_QOS].mask + 1; 1897 u8 num_pcs = netdev_get_num_tc(dev); 1898 1899 if (num_pcs <= 1) 1900 return false; 1901 1902 rss_i = interface->ring_feature[RING_F_RSS].indices; 1903 1904 for (pc = 0, offset = 0; pc < num_pcs; pc++, offset += rss_i) { 1905 q_idx = pc; 1906 for (i = 0; i < rss_i; i++) { 1907 interface->tx_ring[offset + i]->reg_idx = q_idx; 1908 interface->tx_ring[offset + i]->qos_pc = pc; 1909 interface->rx_ring[offset + i]->reg_idx = q_idx; 1910 interface->rx_ring[offset + i]->qos_pc = pc; 1911 q_idx += pc_stride; 1912 } 1913 } 1914 1915 return true; 1916 } 1917 1918 /** 1919 * fm10k_cache_ring_rss - Descriptor ring to register mapping for RSS 1920 * @interface: Interface structure continaining rings and devices 1921 * 1922 * Cache the descriptor ring offsets for RSS 1923 **/ 1924 static void fm10k_cache_ring_rss(struct fm10k_intfc *interface) 1925 { 1926 int i; 1927 1928 for (i = 0; i < interface->num_rx_queues; i++) 1929 interface->rx_ring[i]->reg_idx = i; 1930 1931 for (i = 0; i < interface->num_tx_queues; i++) 1932 interface->tx_ring[i]->reg_idx = i; 1933 } 1934 1935 /** 1936 * fm10k_assign_rings - Map rings to network devices 1937 * @interface: Interface structure containing rings and devices 1938 * 1939 * This function is meant to go though and configure both the network 1940 * devices so that they contain rings, and configure the rings so that 1941 * they function with their network devices. 1942 **/ 1943 static void fm10k_assign_rings(struct fm10k_intfc *interface) 1944 { 1945 if (fm10k_cache_ring_qos(interface)) 1946 return; 1947 1948 fm10k_cache_ring_rss(interface); 1949 } 1950 1951 static void fm10k_init_reta(struct fm10k_intfc *interface) 1952 { 1953 u16 i, rss_i = interface->ring_feature[RING_F_RSS].indices; 1954 u32 reta; 1955 1956 /* If the Rx flow indirection table has been configured manually, we 1957 * need to maintain it when possible. 1958 */ 1959 if (netif_is_rxfh_configured(interface->netdev)) { 1960 for (i = FM10K_RETA_SIZE; i--;) { 1961 reta = interface->reta[i]; 1962 if ((((reta << 24) >> 24) < rss_i) && 1963 (((reta << 16) >> 24) < rss_i) && 1964 (((reta << 8) >> 24) < rss_i) && 1965 (((reta) >> 24) < rss_i)) 1966 continue; 1967 1968 /* this should never happen */ 1969 dev_err(&interface->pdev->dev, 1970 "RSS indirection table assigned flows out of queue bounds. Reconfiguring.\n"); 1971 goto repopulate_reta; 1972 } 1973 1974 /* do nothing if all of the elements are in bounds */ 1975 return; 1976 } 1977 1978 repopulate_reta: 1979 fm10k_write_reta(interface, NULL); 1980 } 1981 1982 /** 1983 * fm10k_init_queueing_scheme - Determine proper queueing scheme 1984 * @interface: board private structure to initialize 1985 * 1986 * We determine which queueing scheme to use based on... 1987 * - Hardware queue count (num_*_queues) 1988 * - defined by miscellaneous hardware support/features (RSS, etc.) 1989 **/ 1990 int fm10k_init_queueing_scheme(struct fm10k_intfc *interface) 1991 { 1992 int err; 1993 1994 /* Number of supported queues */ 1995 fm10k_set_num_queues(interface); 1996 1997 /* Configure MSI-X capability */ 1998 err = fm10k_init_msix_capability(interface); 1999 if (err) { 2000 dev_err(&interface->pdev->dev, 2001 "Unable to initialize MSI-X capability\n"); 2002 goto err_init_msix; 2003 } 2004 2005 /* Allocate memory for queues */ 2006 err = fm10k_alloc_q_vectors(interface); 2007 if (err) { 2008 dev_err(&interface->pdev->dev, 2009 "Unable to allocate queue vectors\n"); 2010 goto err_alloc_q_vectors; 2011 } 2012 2013 /* Map rings to devices, and map devices to physical queues */ 2014 fm10k_assign_rings(interface); 2015 2016 /* Initialize RSS redirection table */ 2017 fm10k_init_reta(interface); 2018 2019 return 0; 2020 2021 err_alloc_q_vectors: 2022 fm10k_reset_msix_capability(interface); 2023 err_init_msix: 2024 fm10k_reset_num_queues(interface); 2025 return err; 2026 } 2027 2028 /** 2029 * fm10k_clear_queueing_scheme - Clear the current queueing scheme settings 2030 * @interface: board private structure to clear queueing scheme on 2031 * 2032 * We go through and clear queueing specific resources and reset the structure 2033 * to pre-load conditions 2034 **/ 2035 void fm10k_clear_queueing_scheme(struct fm10k_intfc *interface) 2036 { 2037 fm10k_free_q_vectors(interface); 2038 fm10k_reset_msix_capability(interface); 2039 } 2040