1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright(c) 2013 - 2019 Intel Corporation. */ 3 4 #include <linux/types.h> 5 #include <linux/module.h> 6 #include <net/ipv6.h> 7 #include <net/ip.h> 8 #include <net/tcp.h> 9 #include <linux/if_macvlan.h> 10 #include <linux/prefetch.h> 11 12 #include "fm10k.h" 13 14 #define DRV_SUMMARY "Intel(R) Ethernet Switch Host Interface Driver" 15 char fm10k_driver_name[] = "fm10k"; 16 static const char fm10k_driver_string[] = DRV_SUMMARY; 17 static const char fm10k_copyright[] = 18 "Copyright(c) 2013 - 2019 Intel Corporation."; 19 20 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>"); 21 MODULE_DESCRIPTION(DRV_SUMMARY); 22 MODULE_LICENSE("GPL v2"); 23 24 /* single workqueue for entire fm10k driver */ 25 struct workqueue_struct *fm10k_workqueue; 26 27 /** 28 * fm10k_init_module - Driver Registration Routine 29 * 30 * fm10k_init_module is the first routine called when the driver is 31 * loaded. All it does is register with the PCI subsystem. 32 **/ 33 static int __init fm10k_init_module(void) 34 { 35 pr_info("%s\n", fm10k_driver_string); 36 pr_info("%s\n", fm10k_copyright); 37 38 /* create driver workqueue */ 39 fm10k_workqueue = alloc_workqueue("%s", WQ_MEM_RECLAIM, 0, 40 fm10k_driver_name); 41 if (!fm10k_workqueue) 42 return -ENOMEM; 43 44 fm10k_dbg_init(); 45 46 return fm10k_register_pci_driver(); 47 } 48 module_init(fm10k_init_module); 49 50 /** 51 * fm10k_exit_module - Driver Exit Cleanup Routine 52 * 53 * fm10k_exit_module is called just before the driver is removed 54 * from memory. 55 **/ 56 static void __exit fm10k_exit_module(void) 57 { 58 fm10k_unregister_pci_driver(); 59 60 fm10k_dbg_exit(); 61 62 /* destroy driver workqueue */ 63 destroy_workqueue(fm10k_workqueue); 64 } 65 module_exit(fm10k_exit_module); 66 67 static bool fm10k_alloc_mapped_page(struct fm10k_ring *rx_ring, 68 struct fm10k_rx_buffer *bi) 69 { 70 struct page *page = bi->page; 71 dma_addr_t dma; 72 73 /* Only page will be NULL if buffer was consumed */ 74 if (likely(page)) 75 return true; 76 77 /* alloc new page for storage */ 78 page = dev_alloc_page(); 79 if (unlikely(!page)) { 80 rx_ring->rx_stats.alloc_failed++; 81 return false; 82 } 83 84 /* map page for use */ 85 dma = dma_map_page(rx_ring->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE); 86 87 /* if mapping failed free memory back to system since 88 * there isn't much point in holding memory we can't use 89 */ 90 if (dma_mapping_error(rx_ring->dev, dma)) { 91 __free_page(page); 92 93 rx_ring->rx_stats.alloc_failed++; 94 return false; 95 } 96 97 bi->dma = dma; 98 bi->page = page; 99 bi->page_offset = 0; 100 101 return true; 102 } 103 104 /** 105 * fm10k_alloc_rx_buffers - Replace used receive buffers 106 * @rx_ring: ring to place buffers on 107 * @cleaned_count: number of buffers to replace 108 **/ 109 void fm10k_alloc_rx_buffers(struct fm10k_ring *rx_ring, u16 cleaned_count) 110 { 111 union fm10k_rx_desc *rx_desc; 112 struct fm10k_rx_buffer *bi; 113 u16 i = rx_ring->next_to_use; 114 115 /* nothing to do */ 116 if (!cleaned_count) 117 return; 118 119 rx_desc = FM10K_RX_DESC(rx_ring, i); 120 bi = &rx_ring->rx_buffer[i]; 121 i -= rx_ring->count; 122 123 do { 124 if (!fm10k_alloc_mapped_page(rx_ring, bi)) 125 break; 126 127 /* Refresh the desc even if buffer_addrs didn't change 128 * because each write-back erases this info. 129 */ 130 rx_desc->q.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset); 131 132 rx_desc++; 133 bi++; 134 i++; 135 if (unlikely(!i)) { 136 rx_desc = FM10K_RX_DESC(rx_ring, 0); 137 bi = rx_ring->rx_buffer; 138 i -= rx_ring->count; 139 } 140 141 /* clear the status bits for the next_to_use descriptor */ 142 rx_desc->d.staterr = 0; 143 144 cleaned_count--; 145 } while (cleaned_count); 146 147 i += rx_ring->count; 148 149 if (rx_ring->next_to_use != i) { 150 /* record the next descriptor to use */ 151 rx_ring->next_to_use = i; 152 153 /* update next to alloc since we have filled the ring */ 154 rx_ring->next_to_alloc = i; 155 156 /* Force memory writes to complete before letting h/w 157 * know there are new descriptors to fetch. (Only 158 * applicable for weak-ordered memory model archs, 159 * such as IA-64). 160 */ 161 wmb(); 162 163 /* notify hardware of new descriptors */ 164 writel(i, rx_ring->tail); 165 } 166 } 167 168 /** 169 * fm10k_reuse_rx_page - page flip buffer and store it back on the ring 170 * @rx_ring: rx descriptor ring to store buffers on 171 * @old_buff: donor buffer to have page reused 172 * 173 * Synchronizes page for reuse by the interface 174 **/ 175 static void fm10k_reuse_rx_page(struct fm10k_ring *rx_ring, 176 struct fm10k_rx_buffer *old_buff) 177 { 178 struct fm10k_rx_buffer *new_buff; 179 u16 nta = rx_ring->next_to_alloc; 180 181 new_buff = &rx_ring->rx_buffer[nta]; 182 183 /* update, and store next to alloc */ 184 nta++; 185 rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0; 186 187 /* transfer page from old buffer to new buffer */ 188 *new_buff = *old_buff; 189 190 /* sync the buffer for use by the device */ 191 dma_sync_single_range_for_device(rx_ring->dev, old_buff->dma, 192 old_buff->page_offset, 193 FM10K_RX_BUFSZ, 194 DMA_FROM_DEVICE); 195 } 196 197 static inline bool fm10k_page_is_reserved(struct page *page) 198 { 199 return (page_to_nid(page) != numa_mem_id()) || page_is_pfmemalloc(page); 200 } 201 202 static bool fm10k_can_reuse_rx_page(struct fm10k_rx_buffer *rx_buffer, 203 struct page *page, 204 unsigned int __maybe_unused truesize) 205 { 206 /* avoid re-using remote pages */ 207 if (unlikely(fm10k_page_is_reserved(page))) 208 return false; 209 210 #if (PAGE_SIZE < 8192) 211 /* if we are only owner of page we can reuse it */ 212 if (unlikely(page_count(page) != 1)) 213 return false; 214 215 /* flip page offset to other buffer */ 216 rx_buffer->page_offset ^= FM10K_RX_BUFSZ; 217 #else 218 /* move offset up to the next cache line */ 219 rx_buffer->page_offset += truesize; 220 221 if (rx_buffer->page_offset > (PAGE_SIZE - FM10K_RX_BUFSZ)) 222 return false; 223 #endif 224 225 /* Even if we own the page, we are not allowed to use atomic_set() 226 * This would break get_page_unless_zero() users. 227 */ 228 page_ref_inc(page); 229 230 return true; 231 } 232 233 /** 234 * fm10k_add_rx_frag - Add contents of Rx buffer to sk_buff 235 * @rx_buffer: buffer containing page to add 236 * @size: packet size from rx_desc 237 * @rx_desc: descriptor containing length of buffer written by hardware 238 * @skb: sk_buff to place the data into 239 * 240 * This function will add the data contained in rx_buffer->page to the skb. 241 * This is done either through a direct copy if the data in the buffer is 242 * less than the skb header size, otherwise it will just attach the page as 243 * a frag to the skb. 244 * 245 * The function will then update the page offset if necessary and return 246 * true if the buffer can be reused by the interface. 247 **/ 248 static bool fm10k_add_rx_frag(struct fm10k_rx_buffer *rx_buffer, 249 unsigned int size, 250 union fm10k_rx_desc *rx_desc, 251 struct sk_buff *skb) 252 { 253 struct page *page = rx_buffer->page; 254 unsigned char *va = page_address(page) + rx_buffer->page_offset; 255 #if (PAGE_SIZE < 8192) 256 unsigned int truesize = FM10K_RX_BUFSZ; 257 #else 258 unsigned int truesize = ALIGN(size, 512); 259 #endif 260 unsigned int pull_len; 261 262 if (unlikely(skb_is_nonlinear(skb))) 263 goto add_tail_frag; 264 265 if (likely(size <= FM10K_RX_HDR_LEN)) { 266 memcpy(__skb_put(skb, size), va, ALIGN(size, sizeof(long))); 267 268 /* page is not reserved, we can reuse buffer as-is */ 269 if (likely(!fm10k_page_is_reserved(page))) 270 return true; 271 272 /* this page cannot be reused so discard it */ 273 __free_page(page); 274 return false; 275 } 276 277 /* we need the header to contain the greater of either ETH_HLEN or 278 * 60 bytes if the skb->len is less than 60 for skb_pad. 279 */ 280 pull_len = eth_get_headlen(skb->dev, va, FM10K_RX_HDR_LEN); 281 282 /* align pull length to size of long to optimize memcpy performance */ 283 memcpy(__skb_put(skb, pull_len), va, ALIGN(pull_len, sizeof(long))); 284 285 /* update all of the pointers */ 286 va += pull_len; 287 size -= pull_len; 288 289 add_tail_frag: 290 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page, 291 (unsigned long)va & ~PAGE_MASK, size, truesize); 292 293 return fm10k_can_reuse_rx_page(rx_buffer, page, truesize); 294 } 295 296 static struct sk_buff *fm10k_fetch_rx_buffer(struct fm10k_ring *rx_ring, 297 union fm10k_rx_desc *rx_desc, 298 struct sk_buff *skb) 299 { 300 unsigned int size = le16_to_cpu(rx_desc->w.length); 301 struct fm10k_rx_buffer *rx_buffer; 302 struct page *page; 303 304 rx_buffer = &rx_ring->rx_buffer[rx_ring->next_to_clean]; 305 page = rx_buffer->page; 306 prefetchw(page); 307 308 if (likely(!skb)) { 309 void *page_addr = page_address(page) + 310 rx_buffer->page_offset; 311 312 /* prefetch first cache line of first page */ 313 net_prefetch(page_addr); 314 315 /* allocate a skb to store the frags */ 316 skb = napi_alloc_skb(&rx_ring->q_vector->napi, 317 FM10K_RX_HDR_LEN); 318 if (unlikely(!skb)) { 319 rx_ring->rx_stats.alloc_failed++; 320 return NULL; 321 } 322 323 /* we will be copying header into skb->data in 324 * pskb_may_pull so it is in our interest to prefetch 325 * it now to avoid a possible cache miss 326 */ 327 prefetchw(skb->data); 328 } 329 330 /* we are reusing so sync this buffer for CPU use */ 331 dma_sync_single_range_for_cpu(rx_ring->dev, 332 rx_buffer->dma, 333 rx_buffer->page_offset, 334 size, 335 DMA_FROM_DEVICE); 336 337 /* pull page into skb */ 338 if (fm10k_add_rx_frag(rx_buffer, size, rx_desc, skb)) { 339 /* hand second half of page back to the ring */ 340 fm10k_reuse_rx_page(rx_ring, rx_buffer); 341 } else { 342 /* we are not reusing the buffer so unmap it */ 343 dma_unmap_page(rx_ring->dev, rx_buffer->dma, 344 PAGE_SIZE, DMA_FROM_DEVICE); 345 } 346 347 /* clear contents of rx_buffer */ 348 rx_buffer->page = NULL; 349 350 return skb; 351 } 352 353 static inline void fm10k_rx_checksum(struct fm10k_ring *ring, 354 union fm10k_rx_desc *rx_desc, 355 struct sk_buff *skb) 356 { 357 skb_checksum_none_assert(skb); 358 359 /* Rx checksum disabled via ethtool */ 360 if (!(ring->netdev->features & NETIF_F_RXCSUM)) 361 return; 362 363 /* TCP/UDP checksum error bit is set */ 364 if (fm10k_test_staterr(rx_desc, 365 FM10K_RXD_STATUS_L4E | 366 FM10K_RXD_STATUS_L4E2 | 367 FM10K_RXD_STATUS_IPE | 368 FM10K_RXD_STATUS_IPE2)) { 369 ring->rx_stats.csum_err++; 370 return; 371 } 372 373 /* It must be a TCP or UDP packet with a valid checksum */ 374 if (fm10k_test_staterr(rx_desc, FM10K_RXD_STATUS_L4CS2)) 375 skb->encapsulation = true; 376 else if (!fm10k_test_staterr(rx_desc, FM10K_RXD_STATUS_L4CS)) 377 return; 378 379 skb->ip_summed = CHECKSUM_UNNECESSARY; 380 381 ring->rx_stats.csum_good++; 382 } 383 384 #define FM10K_RSS_L4_TYPES_MASK \ 385 (BIT(FM10K_RSSTYPE_IPV4_TCP) | \ 386 BIT(FM10K_RSSTYPE_IPV4_UDP) | \ 387 BIT(FM10K_RSSTYPE_IPV6_TCP) | \ 388 BIT(FM10K_RSSTYPE_IPV6_UDP)) 389 390 static inline void fm10k_rx_hash(struct fm10k_ring *ring, 391 union fm10k_rx_desc *rx_desc, 392 struct sk_buff *skb) 393 { 394 u16 rss_type; 395 396 if (!(ring->netdev->features & NETIF_F_RXHASH)) 397 return; 398 399 rss_type = le16_to_cpu(rx_desc->w.pkt_info) & FM10K_RXD_RSSTYPE_MASK; 400 if (!rss_type) 401 return; 402 403 skb_set_hash(skb, le32_to_cpu(rx_desc->d.rss), 404 (BIT(rss_type) & FM10K_RSS_L4_TYPES_MASK) ? 405 PKT_HASH_TYPE_L4 : PKT_HASH_TYPE_L3); 406 } 407 408 static void fm10k_type_trans(struct fm10k_ring *rx_ring, 409 union fm10k_rx_desc __maybe_unused *rx_desc, 410 struct sk_buff *skb) 411 { 412 struct net_device *dev = rx_ring->netdev; 413 struct fm10k_l2_accel *l2_accel = rcu_dereference_bh(rx_ring->l2_accel); 414 415 /* check to see if DGLORT belongs to a MACVLAN */ 416 if (l2_accel) { 417 u16 idx = le16_to_cpu(FM10K_CB(skb)->fi.w.dglort) - 1; 418 419 idx -= l2_accel->dglort; 420 if (idx < l2_accel->size && l2_accel->macvlan[idx]) 421 dev = l2_accel->macvlan[idx]; 422 else 423 l2_accel = NULL; 424 } 425 426 /* Record Rx queue, or update macvlan statistics */ 427 if (!l2_accel) 428 skb_record_rx_queue(skb, rx_ring->queue_index); 429 else 430 macvlan_count_rx(netdev_priv(dev), skb->len + ETH_HLEN, true, 431 false); 432 433 skb->protocol = eth_type_trans(skb, dev); 434 } 435 436 /** 437 * fm10k_process_skb_fields - Populate skb header fields from Rx descriptor 438 * @rx_ring: rx descriptor ring packet is being transacted on 439 * @rx_desc: pointer to the EOP Rx descriptor 440 * @skb: pointer to current skb being populated 441 * 442 * This function checks the ring, descriptor, and packet information in 443 * order to populate the hash, checksum, VLAN, timestamp, protocol, and 444 * other fields within the skb. 445 **/ 446 static unsigned int fm10k_process_skb_fields(struct fm10k_ring *rx_ring, 447 union fm10k_rx_desc *rx_desc, 448 struct sk_buff *skb) 449 { 450 unsigned int len = skb->len; 451 452 fm10k_rx_hash(rx_ring, rx_desc, skb); 453 454 fm10k_rx_checksum(rx_ring, rx_desc, skb); 455 456 FM10K_CB(skb)->tstamp = rx_desc->q.timestamp; 457 458 FM10K_CB(skb)->fi.w.vlan = rx_desc->w.vlan; 459 460 FM10K_CB(skb)->fi.d.glort = rx_desc->d.glort; 461 462 if (rx_desc->w.vlan) { 463 u16 vid = le16_to_cpu(rx_desc->w.vlan); 464 465 if ((vid & VLAN_VID_MASK) != rx_ring->vid) 466 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid); 467 else if (vid & VLAN_PRIO_MASK) 468 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), 469 vid & VLAN_PRIO_MASK); 470 } 471 472 fm10k_type_trans(rx_ring, rx_desc, skb); 473 474 return len; 475 } 476 477 /** 478 * fm10k_is_non_eop - process handling of non-EOP buffers 479 * @rx_ring: Rx ring being processed 480 * @rx_desc: Rx descriptor for current buffer 481 * 482 * This function updates next to clean. If the buffer is an EOP buffer 483 * this function exits returning false, otherwise it will place the 484 * sk_buff in the next buffer to be chained and return true indicating 485 * that this is in fact a non-EOP buffer. 486 **/ 487 static bool fm10k_is_non_eop(struct fm10k_ring *rx_ring, 488 union fm10k_rx_desc *rx_desc) 489 { 490 u32 ntc = rx_ring->next_to_clean + 1; 491 492 /* fetch, update, and store next to clean */ 493 ntc = (ntc < rx_ring->count) ? ntc : 0; 494 rx_ring->next_to_clean = ntc; 495 496 prefetch(FM10K_RX_DESC(rx_ring, ntc)); 497 498 if (likely(fm10k_test_staterr(rx_desc, FM10K_RXD_STATUS_EOP))) 499 return false; 500 501 return true; 502 } 503 504 /** 505 * fm10k_cleanup_headers - Correct corrupted or empty headers 506 * @rx_ring: rx descriptor ring packet is being transacted on 507 * @rx_desc: pointer to the EOP Rx descriptor 508 * @skb: pointer to current skb being fixed 509 * 510 * Address the case where we are pulling data in on pages only 511 * and as such no data is present in the skb header. 512 * 513 * In addition if skb is not at least 60 bytes we need to pad it so that 514 * it is large enough to qualify as a valid Ethernet frame. 515 * 516 * Returns true if an error was encountered and skb was freed. 517 **/ 518 static bool fm10k_cleanup_headers(struct fm10k_ring *rx_ring, 519 union fm10k_rx_desc *rx_desc, 520 struct sk_buff *skb) 521 { 522 if (unlikely((fm10k_test_staterr(rx_desc, 523 FM10K_RXD_STATUS_RXE)))) { 524 #define FM10K_TEST_RXD_BIT(rxd, bit) \ 525 ((rxd)->w.csum_err & cpu_to_le16(bit)) 526 if (FM10K_TEST_RXD_BIT(rx_desc, FM10K_RXD_ERR_SWITCH_ERROR)) 527 rx_ring->rx_stats.switch_errors++; 528 if (FM10K_TEST_RXD_BIT(rx_desc, FM10K_RXD_ERR_NO_DESCRIPTOR)) 529 rx_ring->rx_stats.drops++; 530 if (FM10K_TEST_RXD_BIT(rx_desc, FM10K_RXD_ERR_PP_ERROR)) 531 rx_ring->rx_stats.pp_errors++; 532 if (FM10K_TEST_RXD_BIT(rx_desc, FM10K_RXD_ERR_SWITCH_READY)) 533 rx_ring->rx_stats.link_errors++; 534 if (FM10K_TEST_RXD_BIT(rx_desc, FM10K_RXD_ERR_TOO_BIG)) 535 rx_ring->rx_stats.length_errors++; 536 dev_kfree_skb_any(skb); 537 rx_ring->rx_stats.errors++; 538 return true; 539 } 540 541 /* if eth_skb_pad returns an error the skb was freed */ 542 if (eth_skb_pad(skb)) 543 return true; 544 545 return false; 546 } 547 548 /** 549 * fm10k_receive_skb - helper function to handle rx indications 550 * @q_vector: structure containing interrupt and ring information 551 * @skb: packet to send up 552 **/ 553 static void fm10k_receive_skb(struct fm10k_q_vector *q_vector, 554 struct sk_buff *skb) 555 { 556 napi_gro_receive(&q_vector->napi, skb); 557 } 558 559 static int fm10k_clean_rx_irq(struct fm10k_q_vector *q_vector, 560 struct fm10k_ring *rx_ring, 561 int budget) 562 { 563 struct sk_buff *skb = rx_ring->skb; 564 unsigned int total_bytes = 0, total_packets = 0; 565 u16 cleaned_count = fm10k_desc_unused(rx_ring); 566 567 while (likely(total_packets < budget)) { 568 union fm10k_rx_desc *rx_desc; 569 570 /* return some buffers to hardware, one at a time is too slow */ 571 if (cleaned_count >= FM10K_RX_BUFFER_WRITE) { 572 fm10k_alloc_rx_buffers(rx_ring, cleaned_count); 573 cleaned_count = 0; 574 } 575 576 rx_desc = FM10K_RX_DESC(rx_ring, rx_ring->next_to_clean); 577 578 if (!rx_desc->d.staterr) 579 break; 580 581 /* This memory barrier is needed to keep us from reading 582 * any other fields out of the rx_desc until we know the 583 * descriptor has been written back 584 */ 585 dma_rmb(); 586 587 /* retrieve a buffer from the ring */ 588 skb = fm10k_fetch_rx_buffer(rx_ring, rx_desc, skb); 589 590 /* exit if we failed to retrieve a buffer */ 591 if (!skb) 592 break; 593 594 cleaned_count++; 595 596 /* fetch next buffer in frame if non-eop */ 597 if (fm10k_is_non_eop(rx_ring, rx_desc)) 598 continue; 599 600 /* verify the packet layout is correct */ 601 if (fm10k_cleanup_headers(rx_ring, rx_desc, skb)) { 602 skb = NULL; 603 continue; 604 } 605 606 /* populate checksum, timestamp, VLAN, and protocol */ 607 total_bytes += fm10k_process_skb_fields(rx_ring, rx_desc, skb); 608 609 fm10k_receive_skb(q_vector, skb); 610 611 /* reset skb pointer */ 612 skb = NULL; 613 614 /* update budget accounting */ 615 total_packets++; 616 } 617 618 /* place incomplete frames back on ring for completion */ 619 rx_ring->skb = skb; 620 621 u64_stats_update_begin(&rx_ring->syncp); 622 rx_ring->stats.packets += total_packets; 623 rx_ring->stats.bytes += total_bytes; 624 u64_stats_update_end(&rx_ring->syncp); 625 q_vector->rx.total_packets += total_packets; 626 q_vector->rx.total_bytes += total_bytes; 627 628 return total_packets; 629 } 630 631 #define VXLAN_HLEN (sizeof(struct udphdr) + 8) 632 static struct ethhdr *fm10k_port_is_vxlan(struct sk_buff *skb) 633 { 634 struct fm10k_intfc *interface = netdev_priv(skb->dev); 635 636 if (interface->vxlan_port != udp_hdr(skb)->dest) 637 return NULL; 638 639 /* return offset of udp_hdr plus 8 bytes for VXLAN header */ 640 return (struct ethhdr *)(skb_transport_header(skb) + VXLAN_HLEN); 641 } 642 643 #define FM10K_NVGRE_RESERVED0_FLAGS htons(0x9FFF) 644 #define NVGRE_TNI htons(0x2000) 645 struct fm10k_nvgre_hdr { 646 __be16 flags; 647 __be16 proto; 648 __be32 tni; 649 }; 650 651 static struct ethhdr *fm10k_gre_is_nvgre(struct sk_buff *skb) 652 { 653 struct fm10k_nvgre_hdr *nvgre_hdr; 654 int hlen = ip_hdrlen(skb); 655 656 /* currently only IPv4 is supported due to hlen above */ 657 if (vlan_get_protocol(skb) != htons(ETH_P_IP)) 658 return NULL; 659 660 /* our transport header should be NVGRE */ 661 nvgre_hdr = (struct fm10k_nvgre_hdr *)(skb_network_header(skb) + hlen); 662 663 /* verify all reserved flags are 0 */ 664 if (nvgre_hdr->flags & FM10K_NVGRE_RESERVED0_FLAGS) 665 return NULL; 666 667 /* report start of ethernet header */ 668 if (nvgre_hdr->flags & NVGRE_TNI) 669 return (struct ethhdr *)(nvgre_hdr + 1); 670 671 return (struct ethhdr *)(&nvgre_hdr->tni); 672 } 673 674 __be16 fm10k_tx_encap_offload(struct sk_buff *skb) 675 { 676 u8 l4_hdr = 0, inner_l4_hdr = 0, inner_l4_hlen; 677 struct ethhdr *eth_hdr; 678 679 if (skb->inner_protocol_type != ENCAP_TYPE_ETHER || 680 skb->inner_protocol != htons(ETH_P_TEB)) 681 return 0; 682 683 switch (vlan_get_protocol(skb)) { 684 case htons(ETH_P_IP): 685 l4_hdr = ip_hdr(skb)->protocol; 686 break; 687 case htons(ETH_P_IPV6): 688 l4_hdr = ipv6_hdr(skb)->nexthdr; 689 break; 690 default: 691 return 0; 692 } 693 694 switch (l4_hdr) { 695 case IPPROTO_UDP: 696 eth_hdr = fm10k_port_is_vxlan(skb); 697 break; 698 case IPPROTO_GRE: 699 eth_hdr = fm10k_gre_is_nvgre(skb); 700 break; 701 default: 702 return 0; 703 } 704 705 if (!eth_hdr) 706 return 0; 707 708 switch (eth_hdr->h_proto) { 709 case htons(ETH_P_IP): 710 inner_l4_hdr = inner_ip_hdr(skb)->protocol; 711 break; 712 case htons(ETH_P_IPV6): 713 inner_l4_hdr = inner_ipv6_hdr(skb)->nexthdr; 714 break; 715 default: 716 return 0; 717 } 718 719 switch (inner_l4_hdr) { 720 case IPPROTO_TCP: 721 inner_l4_hlen = inner_tcp_hdrlen(skb); 722 break; 723 case IPPROTO_UDP: 724 inner_l4_hlen = 8; 725 break; 726 default: 727 return 0; 728 } 729 730 /* The hardware allows tunnel offloads only if the combined inner and 731 * outer header is 184 bytes or less 732 */ 733 if (skb_inner_transport_header(skb) + inner_l4_hlen - 734 skb_mac_header(skb) > FM10K_TUNNEL_HEADER_LENGTH) 735 return 0; 736 737 return eth_hdr->h_proto; 738 } 739 740 static int fm10k_tso(struct fm10k_ring *tx_ring, 741 struct fm10k_tx_buffer *first) 742 { 743 struct sk_buff *skb = first->skb; 744 struct fm10k_tx_desc *tx_desc; 745 unsigned char *th; 746 u8 hdrlen; 747 748 if (skb->ip_summed != CHECKSUM_PARTIAL) 749 return 0; 750 751 if (!skb_is_gso(skb)) 752 return 0; 753 754 /* compute header lengths */ 755 if (skb->encapsulation) { 756 if (!fm10k_tx_encap_offload(skb)) 757 goto err_vxlan; 758 th = skb_inner_transport_header(skb); 759 } else { 760 th = skb_transport_header(skb); 761 } 762 763 /* compute offset from SOF to transport header and add header len */ 764 hdrlen = (th - skb->data) + (((struct tcphdr *)th)->doff << 2); 765 766 first->tx_flags |= FM10K_TX_FLAGS_CSUM; 767 768 /* update gso size and bytecount with header size */ 769 first->gso_segs = skb_shinfo(skb)->gso_segs; 770 first->bytecount += (first->gso_segs - 1) * hdrlen; 771 772 /* populate Tx descriptor header size and mss */ 773 tx_desc = FM10K_TX_DESC(tx_ring, tx_ring->next_to_use); 774 tx_desc->hdrlen = hdrlen; 775 tx_desc->mss = cpu_to_le16(skb_shinfo(skb)->gso_size); 776 777 return 1; 778 779 err_vxlan: 780 tx_ring->netdev->features &= ~NETIF_F_GSO_UDP_TUNNEL; 781 if (net_ratelimit()) 782 netdev_err(tx_ring->netdev, 783 "TSO requested for unsupported tunnel, disabling offload\n"); 784 return -1; 785 } 786 787 static void fm10k_tx_csum(struct fm10k_ring *tx_ring, 788 struct fm10k_tx_buffer *first) 789 { 790 struct sk_buff *skb = first->skb; 791 struct fm10k_tx_desc *tx_desc; 792 union { 793 struct iphdr *ipv4; 794 struct ipv6hdr *ipv6; 795 u8 *raw; 796 } network_hdr; 797 u8 *transport_hdr; 798 __be16 frag_off; 799 __be16 protocol; 800 u8 l4_hdr = 0; 801 802 if (skb->ip_summed != CHECKSUM_PARTIAL) 803 goto no_csum; 804 805 if (skb->encapsulation) { 806 protocol = fm10k_tx_encap_offload(skb); 807 if (!protocol) { 808 if (skb_checksum_help(skb)) { 809 dev_warn(tx_ring->dev, 810 "failed to offload encap csum!\n"); 811 tx_ring->tx_stats.csum_err++; 812 } 813 goto no_csum; 814 } 815 network_hdr.raw = skb_inner_network_header(skb); 816 transport_hdr = skb_inner_transport_header(skb); 817 } else { 818 protocol = vlan_get_protocol(skb); 819 network_hdr.raw = skb_network_header(skb); 820 transport_hdr = skb_transport_header(skb); 821 } 822 823 switch (protocol) { 824 case htons(ETH_P_IP): 825 l4_hdr = network_hdr.ipv4->protocol; 826 break; 827 case htons(ETH_P_IPV6): 828 l4_hdr = network_hdr.ipv6->nexthdr; 829 if (likely((transport_hdr - network_hdr.raw) == 830 sizeof(struct ipv6hdr))) 831 break; 832 ipv6_skip_exthdr(skb, network_hdr.raw - skb->data + 833 sizeof(struct ipv6hdr), 834 &l4_hdr, &frag_off); 835 if (unlikely(frag_off)) 836 l4_hdr = NEXTHDR_FRAGMENT; 837 break; 838 default: 839 break; 840 } 841 842 switch (l4_hdr) { 843 case IPPROTO_TCP: 844 case IPPROTO_UDP: 845 break; 846 case IPPROTO_GRE: 847 if (skb->encapsulation) 848 break; 849 fallthrough; 850 default: 851 if (unlikely(net_ratelimit())) { 852 dev_warn(tx_ring->dev, 853 "partial checksum, version=%d l4 proto=%x\n", 854 protocol, l4_hdr); 855 } 856 skb_checksum_help(skb); 857 tx_ring->tx_stats.csum_err++; 858 goto no_csum; 859 } 860 861 /* update TX checksum flag */ 862 first->tx_flags |= FM10K_TX_FLAGS_CSUM; 863 tx_ring->tx_stats.csum_good++; 864 865 no_csum: 866 /* populate Tx descriptor header size and mss */ 867 tx_desc = FM10K_TX_DESC(tx_ring, tx_ring->next_to_use); 868 tx_desc->hdrlen = 0; 869 tx_desc->mss = 0; 870 } 871 872 #define FM10K_SET_FLAG(_input, _flag, _result) \ 873 ((_flag <= _result) ? \ 874 ((u32)(_input & _flag) * (_result / _flag)) : \ 875 ((u32)(_input & _flag) / (_flag / _result))) 876 877 static u8 fm10k_tx_desc_flags(struct sk_buff *skb, u32 tx_flags) 878 { 879 /* set type for advanced descriptor with frame checksum insertion */ 880 u32 desc_flags = 0; 881 882 /* set checksum offload bits */ 883 desc_flags |= FM10K_SET_FLAG(tx_flags, FM10K_TX_FLAGS_CSUM, 884 FM10K_TXD_FLAG_CSUM); 885 886 return desc_flags; 887 } 888 889 static bool fm10k_tx_desc_push(struct fm10k_ring *tx_ring, 890 struct fm10k_tx_desc *tx_desc, u16 i, 891 dma_addr_t dma, unsigned int size, u8 desc_flags) 892 { 893 /* set RS and INT for last frame in a cache line */ 894 if ((++i & (FM10K_TXD_WB_FIFO_SIZE - 1)) == 0) 895 desc_flags |= FM10K_TXD_FLAG_RS | FM10K_TXD_FLAG_INT; 896 897 /* record values to descriptor */ 898 tx_desc->buffer_addr = cpu_to_le64(dma); 899 tx_desc->flags = desc_flags; 900 tx_desc->buflen = cpu_to_le16(size); 901 902 /* return true if we just wrapped the ring */ 903 return i == tx_ring->count; 904 } 905 906 static int __fm10k_maybe_stop_tx(struct fm10k_ring *tx_ring, u16 size) 907 { 908 netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index); 909 910 /* Memory barrier before checking head and tail */ 911 smp_mb(); 912 913 /* Check again in a case another CPU has just made room available */ 914 if (likely(fm10k_desc_unused(tx_ring) < size)) 915 return -EBUSY; 916 917 /* A reprieve! - use start_queue because it doesn't call schedule */ 918 netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index); 919 ++tx_ring->tx_stats.restart_queue; 920 return 0; 921 } 922 923 static inline int fm10k_maybe_stop_tx(struct fm10k_ring *tx_ring, u16 size) 924 { 925 if (likely(fm10k_desc_unused(tx_ring) >= size)) 926 return 0; 927 return __fm10k_maybe_stop_tx(tx_ring, size); 928 } 929 930 static void fm10k_tx_map(struct fm10k_ring *tx_ring, 931 struct fm10k_tx_buffer *first) 932 { 933 struct sk_buff *skb = first->skb; 934 struct fm10k_tx_buffer *tx_buffer; 935 struct fm10k_tx_desc *tx_desc; 936 skb_frag_t *frag; 937 unsigned char *data; 938 dma_addr_t dma; 939 unsigned int data_len, size; 940 u32 tx_flags = first->tx_flags; 941 u16 i = tx_ring->next_to_use; 942 u8 flags = fm10k_tx_desc_flags(skb, tx_flags); 943 944 tx_desc = FM10K_TX_DESC(tx_ring, i); 945 946 /* add HW VLAN tag */ 947 if (skb_vlan_tag_present(skb)) 948 tx_desc->vlan = cpu_to_le16(skb_vlan_tag_get(skb)); 949 else 950 tx_desc->vlan = 0; 951 952 size = skb_headlen(skb); 953 data = skb->data; 954 955 dma = dma_map_single(tx_ring->dev, data, size, DMA_TO_DEVICE); 956 957 data_len = skb->data_len; 958 tx_buffer = first; 959 960 for (frag = &skb_shinfo(skb)->frags[0];; frag++) { 961 if (dma_mapping_error(tx_ring->dev, dma)) 962 goto dma_error; 963 964 /* record length, and DMA address */ 965 dma_unmap_len_set(tx_buffer, len, size); 966 dma_unmap_addr_set(tx_buffer, dma, dma); 967 968 while (unlikely(size > FM10K_MAX_DATA_PER_TXD)) { 969 if (fm10k_tx_desc_push(tx_ring, tx_desc++, i++, dma, 970 FM10K_MAX_DATA_PER_TXD, flags)) { 971 tx_desc = FM10K_TX_DESC(tx_ring, 0); 972 i = 0; 973 } 974 975 dma += FM10K_MAX_DATA_PER_TXD; 976 size -= FM10K_MAX_DATA_PER_TXD; 977 } 978 979 if (likely(!data_len)) 980 break; 981 982 if (fm10k_tx_desc_push(tx_ring, tx_desc++, i++, 983 dma, size, flags)) { 984 tx_desc = FM10K_TX_DESC(tx_ring, 0); 985 i = 0; 986 } 987 988 size = skb_frag_size(frag); 989 data_len -= size; 990 991 dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size, 992 DMA_TO_DEVICE); 993 994 tx_buffer = &tx_ring->tx_buffer[i]; 995 } 996 997 /* write last descriptor with LAST bit set */ 998 flags |= FM10K_TXD_FLAG_LAST; 999 1000 if (fm10k_tx_desc_push(tx_ring, tx_desc, i++, dma, size, flags)) 1001 i = 0; 1002 1003 /* record bytecount for BQL */ 1004 netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount); 1005 1006 /* record SW timestamp if HW timestamp is not available */ 1007 skb_tx_timestamp(first->skb); 1008 1009 /* Force memory writes to complete before letting h/w know there 1010 * are new descriptors to fetch. (Only applicable for weak-ordered 1011 * memory model archs, such as IA-64). 1012 * 1013 * We also need this memory barrier to make certain all of the 1014 * status bits have been updated before next_to_watch is written. 1015 */ 1016 wmb(); 1017 1018 /* set next_to_watch value indicating a packet is present */ 1019 first->next_to_watch = tx_desc; 1020 1021 tx_ring->next_to_use = i; 1022 1023 /* Make sure there is space in the ring for the next send. */ 1024 fm10k_maybe_stop_tx(tx_ring, DESC_NEEDED); 1025 1026 /* notify HW of packet */ 1027 if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) { 1028 writel(i, tx_ring->tail); 1029 } 1030 1031 return; 1032 dma_error: 1033 dev_err(tx_ring->dev, "TX DMA map failed\n"); 1034 1035 /* clear dma mappings for failed tx_buffer map */ 1036 for (;;) { 1037 tx_buffer = &tx_ring->tx_buffer[i]; 1038 fm10k_unmap_and_free_tx_resource(tx_ring, tx_buffer); 1039 if (tx_buffer == first) 1040 break; 1041 if (i == 0) 1042 i = tx_ring->count; 1043 i--; 1044 } 1045 1046 tx_ring->next_to_use = i; 1047 } 1048 1049 netdev_tx_t fm10k_xmit_frame_ring(struct sk_buff *skb, 1050 struct fm10k_ring *tx_ring) 1051 { 1052 u16 count = TXD_USE_COUNT(skb_headlen(skb)); 1053 struct fm10k_tx_buffer *first; 1054 unsigned short f; 1055 u32 tx_flags = 0; 1056 int tso; 1057 1058 /* need: 1 descriptor per page * PAGE_SIZE/FM10K_MAX_DATA_PER_TXD, 1059 * + 1 desc for skb_headlen/FM10K_MAX_DATA_PER_TXD, 1060 * + 2 desc gap to keep tail from touching head 1061 * otherwise try next time 1062 */ 1063 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) { 1064 skb_frag_t *frag = &skb_shinfo(skb)->frags[f]; 1065 1066 count += TXD_USE_COUNT(skb_frag_size(frag)); 1067 } 1068 1069 if (fm10k_maybe_stop_tx(tx_ring, count + 3)) { 1070 tx_ring->tx_stats.tx_busy++; 1071 return NETDEV_TX_BUSY; 1072 } 1073 1074 /* record the location of the first descriptor for this packet */ 1075 first = &tx_ring->tx_buffer[tx_ring->next_to_use]; 1076 first->skb = skb; 1077 first->bytecount = max_t(unsigned int, skb->len, ETH_ZLEN); 1078 first->gso_segs = 1; 1079 1080 /* record initial flags and protocol */ 1081 first->tx_flags = tx_flags; 1082 1083 tso = fm10k_tso(tx_ring, first); 1084 if (tso < 0) 1085 goto out_drop; 1086 else if (!tso) 1087 fm10k_tx_csum(tx_ring, first); 1088 1089 fm10k_tx_map(tx_ring, first); 1090 1091 return NETDEV_TX_OK; 1092 1093 out_drop: 1094 dev_kfree_skb_any(first->skb); 1095 first->skb = NULL; 1096 1097 return NETDEV_TX_OK; 1098 } 1099 1100 static u64 fm10k_get_tx_completed(struct fm10k_ring *ring) 1101 { 1102 return ring->stats.packets; 1103 } 1104 1105 /** 1106 * fm10k_get_tx_pending - how many Tx descriptors not processed 1107 * @ring: the ring structure 1108 * @in_sw: is tx_pending being checked in SW or in HW? 1109 */ 1110 u64 fm10k_get_tx_pending(struct fm10k_ring *ring, bool in_sw) 1111 { 1112 struct fm10k_intfc *interface = ring->q_vector->interface; 1113 struct fm10k_hw *hw = &interface->hw; 1114 u32 head, tail; 1115 1116 if (likely(in_sw)) { 1117 head = ring->next_to_clean; 1118 tail = ring->next_to_use; 1119 } else { 1120 head = fm10k_read_reg(hw, FM10K_TDH(ring->reg_idx)); 1121 tail = fm10k_read_reg(hw, FM10K_TDT(ring->reg_idx)); 1122 } 1123 1124 return ((head <= tail) ? tail : tail + ring->count) - head; 1125 } 1126 1127 bool fm10k_check_tx_hang(struct fm10k_ring *tx_ring) 1128 { 1129 u32 tx_done = fm10k_get_tx_completed(tx_ring); 1130 u32 tx_done_old = tx_ring->tx_stats.tx_done_old; 1131 u32 tx_pending = fm10k_get_tx_pending(tx_ring, true); 1132 1133 clear_check_for_tx_hang(tx_ring); 1134 1135 /* Check for a hung queue, but be thorough. This verifies 1136 * that a transmit has been completed since the previous 1137 * check AND there is at least one packet pending. By 1138 * requiring this to fail twice we avoid races with 1139 * clearing the ARMED bit and conditions where we 1140 * run the check_tx_hang logic with a transmit completion 1141 * pending but without time to complete it yet. 1142 */ 1143 if (!tx_pending || (tx_done_old != tx_done)) { 1144 /* update completed stats and continue */ 1145 tx_ring->tx_stats.tx_done_old = tx_done; 1146 /* reset the countdown */ 1147 clear_bit(__FM10K_HANG_CHECK_ARMED, tx_ring->state); 1148 1149 return false; 1150 } 1151 1152 /* make sure it is true for two checks in a row */ 1153 return test_and_set_bit(__FM10K_HANG_CHECK_ARMED, tx_ring->state); 1154 } 1155 1156 /** 1157 * fm10k_tx_timeout_reset - initiate reset due to Tx timeout 1158 * @interface: driver private struct 1159 **/ 1160 void fm10k_tx_timeout_reset(struct fm10k_intfc *interface) 1161 { 1162 /* Do the reset outside of interrupt context */ 1163 if (!test_bit(__FM10K_DOWN, interface->state)) { 1164 interface->tx_timeout_count++; 1165 set_bit(FM10K_FLAG_RESET_REQUESTED, interface->flags); 1166 fm10k_service_event_schedule(interface); 1167 } 1168 } 1169 1170 /** 1171 * fm10k_clean_tx_irq - Reclaim resources after transmit completes 1172 * @q_vector: structure containing interrupt and ring information 1173 * @tx_ring: tx ring to clean 1174 * @napi_budget: Used to determine if we are in netpoll 1175 **/ 1176 static bool fm10k_clean_tx_irq(struct fm10k_q_vector *q_vector, 1177 struct fm10k_ring *tx_ring, int napi_budget) 1178 { 1179 struct fm10k_intfc *interface = q_vector->interface; 1180 struct fm10k_tx_buffer *tx_buffer; 1181 struct fm10k_tx_desc *tx_desc; 1182 unsigned int total_bytes = 0, total_packets = 0; 1183 unsigned int budget = q_vector->tx.work_limit; 1184 unsigned int i = tx_ring->next_to_clean; 1185 1186 if (test_bit(__FM10K_DOWN, interface->state)) 1187 return true; 1188 1189 tx_buffer = &tx_ring->tx_buffer[i]; 1190 tx_desc = FM10K_TX_DESC(tx_ring, i); 1191 i -= tx_ring->count; 1192 1193 do { 1194 struct fm10k_tx_desc *eop_desc = tx_buffer->next_to_watch; 1195 1196 /* if next_to_watch is not set then there is no work pending */ 1197 if (!eop_desc) 1198 break; 1199 1200 /* prevent any other reads prior to eop_desc */ 1201 smp_rmb(); 1202 1203 /* if DD is not set pending work has not been completed */ 1204 if (!(eop_desc->flags & FM10K_TXD_FLAG_DONE)) 1205 break; 1206 1207 /* clear next_to_watch to prevent false hangs */ 1208 tx_buffer->next_to_watch = NULL; 1209 1210 /* update the statistics for this packet */ 1211 total_bytes += tx_buffer->bytecount; 1212 total_packets += tx_buffer->gso_segs; 1213 1214 /* free the skb */ 1215 napi_consume_skb(tx_buffer->skb, napi_budget); 1216 1217 /* unmap skb header data */ 1218 dma_unmap_single(tx_ring->dev, 1219 dma_unmap_addr(tx_buffer, dma), 1220 dma_unmap_len(tx_buffer, len), 1221 DMA_TO_DEVICE); 1222 1223 /* clear tx_buffer data */ 1224 tx_buffer->skb = NULL; 1225 dma_unmap_len_set(tx_buffer, len, 0); 1226 1227 /* unmap remaining buffers */ 1228 while (tx_desc != eop_desc) { 1229 tx_buffer++; 1230 tx_desc++; 1231 i++; 1232 if (unlikely(!i)) { 1233 i -= tx_ring->count; 1234 tx_buffer = tx_ring->tx_buffer; 1235 tx_desc = FM10K_TX_DESC(tx_ring, 0); 1236 } 1237 1238 /* unmap any remaining paged data */ 1239 if (dma_unmap_len(tx_buffer, len)) { 1240 dma_unmap_page(tx_ring->dev, 1241 dma_unmap_addr(tx_buffer, dma), 1242 dma_unmap_len(tx_buffer, len), 1243 DMA_TO_DEVICE); 1244 dma_unmap_len_set(tx_buffer, len, 0); 1245 } 1246 } 1247 1248 /* move us one more past the eop_desc for start of next pkt */ 1249 tx_buffer++; 1250 tx_desc++; 1251 i++; 1252 if (unlikely(!i)) { 1253 i -= tx_ring->count; 1254 tx_buffer = tx_ring->tx_buffer; 1255 tx_desc = FM10K_TX_DESC(tx_ring, 0); 1256 } 1257 1258 /* issue prefetch for next Tx descriptor */ 1259 prefetch(tx_desc); 1260 1261 /* update budget accounting */ 1262 budget--; 1263 } while (likely(budget)); 1264 1265 i += tx_ring->count; 1266 tx_ring->next_to_clean = i; 1267 u64_stats_update_begin(&tx_ring->syncp); 1268 tx_ring->stats.bytes += total_bytes; 1269 tx_ring->stats.packets += total_packets; 1270 u64_stats_update_end(&tx_ring->syncp); 1271 q_vector->tx.total_bytes += total_bytes; 1272 q_vector->tx.total_packets += total_packets; 1273 1274 if (check_for_tx_hang(tx_ring) && fm10k_check_tx_hang(tx_ring)) { 1275 /* schedule immediate reset if we believe we hung */ 1276 struct fm10k_hw *hw = &interface->hw; 1277 1278 netif_err(interface, drv, tx_ring->netdev, 1279 "Detected Tx Unit Hang\n" 1280 " Tx Queue <%d>\n" 1281 " TDH, TDT <%x>, <%x>\n" 1282 " next_to_use <%x>\n" 1283 " next_to_clean <%x>\n", 1284 tx_ring->queue_index, 1285 fm10k_read_reg(hw, FM10K_TDH(tx_ring->reg_idx)), 1286 fm10k_read_reg(hw, FM10K_TDT(tx_ring->reg_idx)), 1287 tx_ring->next_to_use, i); 1288 1289 netif_stop_subqueue(tx_ring->netdev, 1290 tx_ring->queue_index); 1291 1292 netif_info(interface, probe, tx_ring->netdev, 1293 "tx hang %d detected on queue %d, resetting interface\n", 1294 interface->tx_timeout_count + 1, 1295 tx_ring->queue_index); 1296 1297 fm10k_tx_timeout_reset(interface); 1298 1299 /* the netdev is about to reset, no point in enabling stuff */ 1300 return true; 1301 } 1302 1303 /* notify netdev of completed buffers */ 1304 netdev_tx_completed_queue(txring_txq(tx_ring), 1305 total_packets, total_bytes); 1306 1307 #define TX_WAKE_THRESHOLD min_t(u16, FM10K_MIN_TXD - 1, DESC_NEEDED * 2) 1308 if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) && 1309 (fm10k_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD))) { 1310 /* Make sure that anybody stopping the queue after this 1311 * sees the new next_to_clean. 1312 */ 1313 smp_mb(); 1314 if (__netif_subqueue_stopped(tx_ring->netdev, 1315 tx_ring->queue_index) && 1316 !test_bit(__FM10K_DOWN, interface->state)) { 1317 netif_wake_subqueue(tx_ring->netdev, 1318 tx_ring->queue_index); 1319 ++tx_ring->tx_stats.restart_queue; 1320 } 1321 } 1322 1323 return !!budget; 1324 } 1325 1326 /** 1327 * fm10k_update_itr - update the dynamic ITR value based on packet size 1328 * 1329 * Stores a new ITR value based on strictly on packet size. The 1330 * divisors and thresholds used by this function were determined based 1331 * on theoretical maximum wire speed and testing data, in order to 1332 * minimize response time while increasing bulk throughput. 1333 * 1334 * @ring_container: Container for rings to have ITR updated 1335 **/ 1336 static void fm10k_update_itr(struct fm10k_ring_container *ring_container) 1337 { 1338 unsigned int avg_wire_size, packets, itr_round; 1339 1340 /* Only update ITR if we are using adaptive setting */ 1341 if (!ITR_IS_ADAPTIVE(ring_container->itr)) 1342 goto clear_counts; 1343 1344 packets = ring_container->total_packets; 1345 if (!packets) 1346 goto clear_counts; 1347 1348 avg_wire_size = ring_container->total_bytes / packets; 1349 1350 /* The following is a crude approximation of: 1351 * wmem_default / (size + overhead) = desired_pkts_per_int 1352 * rate / bits_per_byte / (size + ethernet overhead) = pkt_rate 1353 * (desired_pkt_rate / pkt_rate) * usecs_per_sec = ITR value 1354 * 1355 * Assuming wmem_default is 212992 and overhead is 640 bytes per 1356 * packet, (256 skb, 64 headroom, 320 shared info), we can reduce the 1357 * formula down to 1358 * 1359 * (34 * (size + 24)) / (size + 640) = ITR 1360 * 1361 * We first do some math on the packet size and then finally bitshift 1362 * by 8 after rounding up. We also have to account for PCIe link speed 1363 * difference as ITR scales based on this. 1364 */ 1365 if (avg_wire_size <= 360) { 1366 /* Start at 250K ints/sec and gradually drop to 77K ints/sec */ 1367 avg_wire_size *= 8; 1368 avg_wire_size += 376; 1369 } else if (avg_wire_size <= 1152) { 1370 /* 77K ints/sec to 45K ints/sec */ 1371 avg_wire_size *= 3; 1372 avg_wire_size += 2176; 1373 } else if (avg_wire_size <= 1920) { 1374 /* 45K ints/sec to 38K ints/sec */ 1375 avg_wire_size += 4480; 1376 } else { 1377 /* plateau at a limit of 38K ints/sec */ 1378 avg_wire_size = 6656; 1379 } 1380 1381 /* Perform final bitshift for division after rounding up to ensure 1382 * that the calculation will never get below a 1. The bit shift 1383 * accounts for changes in the ITR due to PCIe link speed. 1384 */ 1385 itr_round = READ_ONCE(ring_container->itr_scale) + 8; 1386 avg_wire_size += BIT(itr_round) - 1; 1387 avg_wire_size >>= itr_round; 1388 1389 /* write back value and retain adaptive flag */ 1390 ring_container->itr = avg_wire_size | FM10K_ITR_ADAPTIVE; 1391 1392 clear_counts: 1393 ring_container->total_bytes = 0; 1394 ring_container->total_packets = 0; 1395 } 1396 1397 static void fm10k_qv_enable(struct fm10k_q_vector *q_vector) 1398 { 1399 /* Enable auto-mask and clear the current mask */ 1400 u32 itr = FM10K_ITR_ENABLE; 1401 1402 /* Update Tx ITR */ 1403 fm10k_update_itr(&q_vector->tx); 1404 1405 /* Update Rx ITR */ 1406 fm10k_update_itr(&q_vector->rx); 1407 1408 /* Store Tx itr in timer slot 0 */ 1409 itr |= (q_vector->tx.itr & FM10K_ITR_MAX); 1410 1411 /* Shift Rx itr to timer slot 1 */ 1412 itr |= (q_vector->rx.itr & FM10K_ITR_MAX) << FM10K_ITR_INTERVAL1_SHIFT; 1413 1414 /* Write the final value to the ITR register */ 1415 writel(itr, q_vector->itr); 1416 } 1417 1418 static int fm10k_poll(struct napi_struct *napi, int budget) 1419 { 1420 struct fm10k_q_vector *q_vector = 1421 container_of(napi, struct fm10k_q_vector, napi); 1422 struct fm10k_ring *ring; 1423 int per_ring_budget, work_done = 0; 1424 bool clean_complete = true; 1425 1426 fm10k_for_each_ring(ring, q_vector->tx) { 1427 if (!fm10k_clean_tx_irq(q_vector, ring, budget)) 1428 clean_complete = false; 1429 } 1430 1431 /* Handle case where we are called by netpoll with a budget of 0 */ 1432 if (budget <= 0) 1433 return budget; 1434 1435 /* attempt to distribute budget to each queue fairly, but don't 1436 * allow the budget to go below 1 because we'll exit polling 1437 */ 1438 if (q_vector->rx.count > 1) 1439 per_ring_budget = max(budget / q_vector->rx.count, 1); 1440 else 1441 per_ring_budget = budget; 1442 1443 fm10k_for_each_ring(ring, q_vector->rx) { 1444 int work = fm10k_clean_rx_irq(q_vector, ring, per_ring_budget); 1445 1446 work_done += work; 1447 if (work >= per_ring_budget) 1448 clean_complete = false; 1449 } 1450 1451 /* If all work not completed, return budget and keep polling */ 1452 if (!clean_complete) 1453 return budget; 1454 1455 /* Exit the polling mode, but don't re-enable interrupts if stack might 1456 * poll us due to busy-polling 1457 */ 1458 if (likely(napi_complete_done(napi, work_done))) 1459 fm10k_qv_enable(q_vector); 1460 1461 return min(work_done, budget - 1); 1462 } 1463 1464 /** 1465 * fm10k_set_qos_queues: Allocate queues for a QOS-enabled device 1466 * @interface: board private structure to initialize 1467 * 1468 * When QoS (Quality of Service) is enabled, allocate queues for 1469 * each traffic class. If multiqueue isn't available,then abort QoS 1470 * initialization. 1471 * 1472 * This function handles all combinations of Qos and RSS. 1473 * 1474 **/ 1475 static bool fm10k_set_qos_queues(struct fm10k_intfc *interface) 1476 { 1477 struct net_device *dev = interface->netdev; 1478 struct fm10k_ring_feature *f; 1479 int rss_i, i; 1480 int pcs; 1481 1482 /* Map queue offset and counts onto allocated tx queues */ 1483 pcs = netdev_get_num_tc(dev); 1484 1485 if (pcs <= 1) 1486 return false; 1487 1488 /* set QoS mask and indices */ 1489 f = &interface->ring_feature[RING_F_QOS]; 1490 f->indices = pcs; 1491 f->mask = BIT(fls(pcs - 1)) - 1; 1492 1493 /* determine the upper limit for our current DCB mode */ 1494 rss_i = interface->hw.mac.max_queues / pcs; 1495 rss_i = BIT(fls(rss_i) - 1); 1496 1497 /* set RSS mask and indices */ 1498 f = &interface->ring_feature[RING_F_RSS]; 1499 rss_i = min_t(u16, rss_i, f->limit); 1500 f->indices = rss_i; 1501 f->mask = BIT(fls(rss_i - 1)) - 1; 1502 1503 /* configure pause class to queue mapping */ 1504 for (i = 0; i < pcs; i++) 1505 netdev_set_tc_queue(dev, i, rss_i, rss_i * i); 1506 1507 interface->num_rx_queues = rss_i * pcs; 1508 interface->num_tx_queues = rss_i * pcs; 1509 1510 return true; 1511 } 1512 1513 /** 1514 * fm10k_set_rss_queues: Allocate queues for RSS 1515 * @interface: board private structure to initialize 1516 * 1517 * This is our "base" multiqueue mode. RSS (Receive Side Scaling) will try 1518 * to allocate one Rx queue per CPU, and if available, one Tx queue per CPU. 1519 * 1520 **/ 1521 static bool fm10k_set_rss_queues(struct fm10k_intfc *interface) 1522 { 1523 struct fm10k_ring_feature *f; 1524 u16 rss_i; 1525 1526 f = &interface->ring_feature[RING_F_RSS]; 1527 rss_i = min_t(u16, interface->hw.mac.max_queues, f->limit); 1528 1529 /* record indices and power of 2 mask for RSS */ 1530 f->indices = rss_i; 1531 f->mask = BIT(fls(rss_i - 1)) - 1; 1532 1533 interface->num_rx_queues = rss_i; 1534 interface->num_tx_queues = rss_i; 1535 1536 return true; 1537 } 1538 1539 /** 1540 * fm10k_set_num_queues: Allocate queues for device, feature dependent 1541 * @interface: board private structure to initialize 1542 * 1543 * This is the top level queue allocation routine. The order here is very 1544 * important, starting with the "most" number of features turned on at once, 1545 * and ending with the smallest set of features. This way large combinations 1546 * can be allocated if they're turned on, and smaller combinations are the 1547 * fall through conditions. 1548 * 1549 **/ 1550 static void fm10k_set_num_queues(struct fm10k_intfc *interface) 1551 { 1552 /* Attempt to setup QoS and RSS first */ 1553 if (fm10k_set_qos_queues(interface)) 1554 return; 1555 1556 /* If we don't have QoS, just fallback to only RSS. */ 1557 fm10k_set_rss_queues(interface); 1558 } 1559 1560 /** 1561 * fm10k_reset_num_queues - Reset the number of queues to zero 1562 * @interface: board private structure 1563 * 1564 * This function should be called whenever we need to reset the number of 1565 * queues after an error condition. 1566 */ 1567 static void fm10k_reset_num_queues(struct fm10k_intfc *interface) 1568 { 1569 interface->num_tx_queues = 0; 1570 interface->num_rx_queues = 0; 1571 interface->num_q_vectors = 0; 1572 } 1573 1574 /** 1575 * fm10k_alloc_q_vector - Allocate memory for a single interrupt vector 1576 * @interface: board private structure to initialize 1577 * @v_count: q_vectors allocated on interface, used for ring interleaving 1578 * @v_idx: index of vector in interface struct 1579 * @txr_count: total number of Tx rings to allocate 1580 * @txr_idx: index of first Tx ring to allocate 1581 * @rxr_count: total number of Rx rings to allocate 1582 * @rxr_idx: index of first Rx ring to allocate 1583 * 1584 * We allocate one q_vector. If allocation fails we return -ENOMEM. 1585 **/ 1586 static int fm10k_alloc_q_vector(struct fm10k_intfc *interface, 1587 unsigned int v_count, unsigned int v_idx, 1588 unsigned int txr_count, unsigned int txr_idx, 1589 unsigned int rxr_count, unsigned int rxr_idx) 1590 { 1591 struct fm10k_q_vector *q_vector; 1592 struct fm10k_ring *ring; 1593 int ring_count; 1594 1595 ring_count = txr_count + rxr_count; 1596 1597 /* allocate q_vector and rings */ 1598 q_vector = kzalloc(struct_size(q_vector, ring, ring_count), GFP_KERNEL); 1599 if (!q_vector) 1600 return -ENOMEM; 1601 1602 /* initialize NAPI */ 1603 netif_napi_add(interface->netdev, &q_vector->napi, 1604 fm10k_poll, NAPI_POLL_WEIGHT); 1605 1606 /* tie q_vector and interface together */ 1607 interface->q_vector[v_idx] = q_vector; 1608 q_vector->interface = interface; 1609 q_vector->v_idx = v_idx; 1610 1611 /* initialize pointer to rings */ 1612 ring = q_vector->ring; 1613 1614 /* save Tx ring container info */ 1615 q_vector->tx.ring = ring; 1616 q_vector->tx.work_limit = FM10K_DEFAULT_TX_WORK; 1617 q_vector->tx.itr = interface->tx_itr; 1618 q_vector->tx.itr_scale = interface->hw.mac.itr_scale; 1619 q_vector->tx.count = txr_count; 1620 1621 while (txr_count) { 1622 /* assign generic ring traits */ 1623 ring->dev = &interface->pdev->dev; 1624 ring->netdev = interface->netdev; 1625 1626 /* configure backlink on ring */ 1627 ring->q_vector = q_vector; 1628 1629 /* apply Tx specific ring traits */ 1630 ring->count = interface->tx_ring_count; 1631 ring->queue_index = txr_idx; 1632 1633 /* assign ring to interface */ 1634 interface->tx_ring[txr_idx] = ring; 1635 1636 /* update count and index */ 1637 txr_count--; 1638 txr_idx += v_count; 1639 1640 /* push pointer to next ring */ 1641 ring++; 1642 } 1643 1644 /* save Rx ring container info */ 1645 q_vector->rx.ring = ring; 1646 q_vector->rx.itr = interface->rx_itr; 1647 q_vector->rx.itr_scale = interface->hw.mac.itr_scale; 1648 q_vector->rx.count = rxr_count; 1649 1650 while (rxr_count) { 1651 /* assign generic ring traits */ 1652 ring->dev = &interface->pdev->dev; 1653 ring->netdev = interface->netdev; 1654 rcu_assign_pointer(ring->l2_accel, interface->l2_accel); 1655 1656 /* configure backlink on ring */ 1657 ring->q_vector = q_vector; 1658 1659 /* apply Rx specific ring traits */ 1660 ring->count = interface->rx_ring_count; 1661 ring->queue_index = rxr_idx; 1662 1663 /* assign ring to interface */ 1664 interface->rx_ring[rxr_idx] = ring; 1665 1666 /* update count and index */ 1667 rxr_count--; 1668 rxr_idx += v_count; 1669 1670 /* push pointer to next ring */ 1671 ring++; 1672 } 1673 1674 fm10k_dbg_q_vector_init(q_vector); 1675 1676 return 0; 1677 } 1678 1679 /** 1680 * fm10k_free_q_vector - Free memory allocated for specific interrupt vector 1681 * @interface: board private structure to initialize 1682 * @v_idx: Index of vector to be freed 1683 * 1684 * This function frees the memory allocated to the q_vector. In addition if 1685 * NAPI is enabled it will delete any references to the NAPI struct prior 1686 * to freeing the q_vector. 1687 **/ 1688 static void fm10k_free_q_vector(struct fm10k_intfc *interface, int v_idx) 1689 { 1690 struct fm10k_q_vector *q_vector = interface->q_vector[v_idx]; 1691 struct fm10k_ring *ring; 1692 1693 fm10k_dbg_q_vector_exit(q_vector); 1694 1695 fm10k_for_each_ring(ring, q_vector->tx) 1696 interface->tx_ring[ring->queue_index] = NULL; 1697 1698 fm10k_for_each_ring(ring, q_vector->rx) 1699 interface->rx_ring[ring->queue_index] = NULL; 1700 1701 interface->q_vector[v_idx] = NULL; 1702 netif_napi_del(&q_vector->napi); 1703 kfree_rcu(q_vector, rcu); 1704 } 1705 1706 /** 1707 * fm10k_alloc_q_vectors - Allocate memory for interrupt vectors 1708 * @interface: board private structure to initialize 1709 * 1710 * We allocate one q_vector per queue interrupt. If allocation fails we 1711 * return -ENOMEM. 1712 **/ 1713 static int fm10k_alloc_q_vectors(struct fm10k_intfc *interface) 1714 { 1715 unsigned int q_vectors = interface->num_q_vectors; 1716 unsigned int rxr_remaining = interface->num_rx_queues; 1717 unsigned int txr_remaining = interface->num_tx_queues; 1718 unsigned int rxr_idx = 0, txr_idx = 0, v_idx = 0; 1719 int err; 1720 1721 if (q_vectors >= (rxr_remaining + txr_remaining)) { 1722 for (; rxr_remaining; v_idx++) { 1723 err = fm10k_alloc_q_vector(interface, q_vectors, v_idx, 1724 0, 0, 1, rxr_idx); 1725 if (err) 1726 goto err_out; 1727 1728 /* update counts and index */ 1729 rxr_remaining--; 1730 rxr_idx++; 1731 } 1732 } 1733 1734 for (; v_idx < q_vectors; v_idx++) { 1735 int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx); 1736 int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx); 1737 1738 err = fm10k_alloc_q_vector(interface, q_vectors, v_idx, 1739 tqpv, txr_idx, 1740 rqpv, rxr_idx); 1741 1742 if (err) 1743 goto err_out; 1744 1745 /* update counts and index */ 1746 rxr_remaining -= rqpv; 1747 txr_remaining -= tqpv; 1748 rxr_idx++; 1749 txr_idx++; 1750 } 1751 1752 return 0; 1753 1754 err_out: 1755 fm10k_reset_num_queues(interface); 1756 1757 while (v_idx--) 1758 fm10k_free_q_vector(interface, v_idx); 1759 1760 return -ENOMEM; 1761 } 1762 1763 /** 1764 * fm10k_free_q_vectors - Free memory allocated for interrupt vectors 1765 * @interface: board private structure to initialize 1766 * 1767 * This function frees the memory allocated to the q_vectors. In addition if 1768 * NAPI is enabled it will delete any references to the NAPI struct prior 1769 * to freeing the q_vector. 1770 **/ 1771 static void fm10k_free_q_vectors(struct fm10k_intfc *interface) 1772 { 1773 int v_idx = interface->num_q_vectors; 1774 1775 fm10k_reset_num_queues(interface); 1776 1777 while (v_idx--) 1778 fm10k_free_q_vector(interface, v_idx); 1779 } 1780 1781 /** 1782 * f10k_reset_msix_capability - reset MSI-X capability 1783 * @interface: board private structure to initialize 1784 * 1785 * Reset the MSI-X capability back to its starting state 1786 **/ 1787 static void fm10k_reset_msix_capability(struct fm10k_intfc *interface) 1788 { 1789 pci_disable_msix(interface->pdev); 1790 kfree(interface->msix_entries); 1791 interface->msix_entries = NULL; 1792 } 1793 1794 /** 1795 * f10k_init_msix_capability - configure MSI-X capability 1796 * @interface: board private structure to initialize 1797 * 1798 * Attempt to configure the interrupts using the best available 1799 * capabilities of the hardware and the kernel. 1800 **/ 1801 static int fm10k_init_msix_capability(struct fm10k_intfc *interface) 1802 { 1803 struct fm10k_hw *hw = &interface->hw; 1804 int v_budget, vector; 1805 1806 /* It's easy to be greedy for MSI-X vectors, but it really 1807 * doesn't do us much good if we have a lot more vectors 1808 * than CPU's. So let's be conservative and only ask for 1809 * (roughly) the same number of vectors as there are CPU's. 1810 * the default is to use pairs of vectors 1811 */ 1812 v_budget = max(interface->num_rx_queues, interface->num_tx_queues); 1813 v_budget = min_t(u16, v_budget, num_online_cpus()); 1814 1815 /* account for vectors not related to queues */ 1816 v_budget += NON_Q_VECTORS; 1817 1818 /* At the same time, hardware can only support a maximum of 1819 * hw.mac->max_msix_vectors vectors. With features 1820 * such as RSS and VMDq, we can easily surpass the number of Rx and Tx 1821 * descriptor queues supported by our device. Thus, we cap it off in 1822 * those rare cases where the cpu count also exceeds our vector limit. 1823 */ 1824 v_budget = min_t(int, v_budget, hw->mac.max_msix_vectors); 1825 1826 /* A failure in MSI-X entry allocation is fatal. */ 1827 interface->msix_entries = kcalloc(v_budget, sizeof(struct msix_entry), 1828 GFP_KERNEL); 1829 if (!interface->msix_entries) 1830 return -ENOMEM; 1831 1832 /* populate entry values */ 1833 for (vector = 0; vector < v_budget; vector++) 1834 interface->msix_entries[vector].entry = vector; 1835 1836 /* Attempt to enable MSI-X with requested value */ 1837 v_budget = pci_enable_msix_range(interface->pdev, 1838 interface->msix_entries, 1839 MIN_MSIX_COUNT(hw), 1840 v_budget); 1841 if (v_budget < 0) { 1842 kfree(interface->msix_entries); 1843 interface->msix_entries = NULL; 1844 return v_budget; 1845 } 1846 1847 /* record the number of queues available for q_vectors */ 1848 interface->num_q_vectors = v_budget - NON_Q_VECTORS; 1849 1850 return 0; 1851 } 1852 1853 /** 1854 * fm10k_cache_ring_qos - Descriptor ring to register mapping for QoS 1855 * @interface: Interface structure continaining rings and devices 1856 * 1857 * Cache the descriptor ring offsets for Qos 1858 **/ 1859 static bool fm10k_cache_ring_qos(struct fm10k_intfc *interface) 1860 { 1861 struct net_device *dev = interface->netdev; 1862 int pc, offset, rss_i, i; 1863 u16 pc_stride = interface->ring_feature[RING_F_QOS].mask + 1; 1864 u8 num_pcs = netdev_get_num_tc(dev); 1865 1866 if (num_pcs <= 1) 1867 return false; 1868 1869 rss_i = interface->ring_feature[RING_F_RSS].indices; 1870 1871 for (pc = 0, offset = 0; pc < num_pcs; pc++, offset += rss_i) { 1872 int q_idx = pc; 1873 1874 for (i = 0; i < rss_i; i++) { 1875 interface->tx_ring[offset + i]->reg_idx = q_idx; 1876 interface->tx_ring[offset + i]->qos_pc = pc; 1877 interface->rx_ring[offset + i]->reg_idx = q_idx; 1878 interface->rx_ring[offset + i]->qos_pc = pc; 1879 q_idx += pc_stride; 1880 } 1881 } 1882 1883 return true; 1884 } 1885 1886 /** 1887 * fm10k_cache_ring_rss - Descriptor ring to register mapping for RSS 1888 * @interface: Interface structure continaining rings and devices 1889 * 1890 * Cache the descriptor ring offsets for RSS 1891 **/ 1892 static void fm10k_cache_ring_rss(struct fm10k_intfc *interface) 1893 { 1894 int i; 1895 1896 for (i = 0; i < interface->num_rx_queues; i++) 1897 interface->rx_ring[i]->reg_idx = i; 1898 1899 for (i = 0; i < interface->num_tx_queues; i++) 1900 interface->tx_ring[i]->reg_idx = i; 1901 } 1902 1903 /** 1904 * fm10k_assign_rings - Map rings to network devices 1905 * @interface: Interface structure containing rings and devices 1906 * 1907 * This function is meant to go though and configure both the network 1908 * devices so that they contain rings, and configure the rings so that 1909 * they function with their network devices. 1910 **/ 1911 static void fm10k_assign_rings(struct fm10k_intfc *interface) 1912 { 1913 if (fm10k_cache_ring_qos(interface)) 1914 return; 1915 1916 fm10k_cache_ring_rss(interface); 1917 } 1918 1919 static void fm10k_init_reta(struct fm10k_intfc *interface) 1920 { 1921 u16 i, rss_i = interface->ring_feature[RING_F_RSS].indices; 1922 u32 reta; 1923 1924 /* If the Rx flow indirection table has been configured manually, we 1925 * need to maintain it when possible. 1926 */ 1927 if (netif_is_rxfh_configured(interface->netdev)) { 1928 for (i = FM10K_RETA_SIZE; i--;) { 1929 reta = interface->reta[i]; 1930 if ((((reta << 24) >> 24) < rss_i) && 1931 (((reta << 16) >> 24) < rss_i) && 1932 (((reta << 8) >> 24) < rss_i) && 1933 (((reta) >> 24) < rss_i)) 1934 continue; 1935 1936 /* this should never happen */ 1937 dev_err(&interface->pdev->dev, 1938 "RSS indirection table assigned flows out of queue bounds. Reconfiguring.\n"); 1939 goto repopulate_reta; 1940 } 1941 1942 /* do nothing if all of the elements are in bounds */ 1943 return; 1944 } 1945 1946 repopulate_reta: 1947 fm10k_write_reta(interface, NULL); 1948 } 1949 1950 /** 1951 * fm10k_init_queueing_scheme - Determine proper queueing scheme 1952 * @interface: board private structure to initialize 1953 * 1954 * We determine which queueing scheme to use based on... 1955 * - Hardware queue count (num_*_queues) 1956 * - defined by miscellaneous hardware support/features (RSS, etc.) 1957 **/ 1958 int fm10k_init_queueing_scheme(struct fm10k_intfc *interface) 1959 { 1960 int err; 1961 1962 /* Number of supported queues */ 1963 fm10k_set_num_queues(interface); 1964 1965 /* Configure MSI-X capability */ 1966 err = fm10k_init_msix_capability(interface); 1967 if (err) { 1968 dev_err(&interface->pdev->dev, 1969 "Unable to initialize MSI-X capability\n"); 1970 goto err_init_msix; 1971 } 1972 1973 /* Allocate memory for queues */ 1974 err = fm10k_alloc_q_vectors(interface); 1975 if (err) { 1976 dev_err(&interface->pdev->dev, 1977 "Unable to allocate queue vectors\n"); 1978 goto err_alloc_q_vectors; 1979 } 1980 1981 /* Map rings to devices, and map devices to physical queues */ 1982 fm10k_assign_rings(interface); 1983 1984 /* Initialize RSS redirection table */ 1985 fm10k_init_reta(interface); 1986 1987 return 0; 1988 1989 err_alloc_q_vectors: 1990 fm10k_reset_msix_capability(interface); 1991 err_init_msix: 1992 fm10k_reset_num_queues(interface); 1993 return err; 1994 } 1995 1996 /** 1997 * fm10k_clear_queueing_scheme - Clear the current queueing scheme settings 1998 * @interface: board private structure to clear queueing scheme on 1999 * 2000 * We go through and clear queueing specific resources and reset the structure 2001 * to pre-load conditions 2002 **/ 2003 void fm10k_clear_queueing_scheme(struct fm10k_intfc *interface) 2004 { 2005 fm10k_free_q_vectors(interface); 2006 fm10k_reset_msix_capability(interface); 2007 } 2008