1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright(c) 2013 - 2018 Intel Corporation. */ 3 4 #include <linux/types.h> 5 #include <linux/module.h> 6 #include <net/ipv6.h> 7 #include <net/ip.h> 8 #include <net/tcp.h> 9 #include <linux/if_macvlan.h> 10 #include <linux/prefetch.h> 11 12 #include "fm10k.h" 13 14 #define DRV_VERSION "0.26.1-k" 15 #define DRV_SUMMARY "Intel(R) Ethernet Switch Host Interface Driver" 16 const char fm10k_driver_version[] = DRV_VERSION; 17 char fm10k_driver_name[] = "fm10k"; 18 static const char fm10k_driver_string[] = DRV_SUMMARY; 19 static const char fm10k_copyright[] = 20 "Copyright(c) 2013 - 2018 Intel Corporation."; 21 22 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>"); 23 MODULE_DESCRIPTION(DRV_SUMMARY); 24 MODULE_LICENSE("GPL v2"); 25 MODULE_VERSION(DRV_VERSION); 26 27 /* single workqueue for entire fm10k driver */ 28 struct workqueue_struct *fm10k_workqueue; 29 30 /** 31 * fm10k_init_module - Driver Registration Routine 32 * 33 * fm10k_init_module is the first routine called when the driver is 34 * loaded. All it does is register with the PCI subsystem. 35 **/ 36 static int __init fm10k_init_module(void) 37 { 38 pr_info("%s - version %s\n", fm10k_driver_string, fm10k_driver_version); 39 pr_info("%s\n", fm10k_copyright); 40 41 /* create driver workqueue */ 42 fm10k_workqueue = alloc_workqueue("%s", WQ_MEM_RECLAIM, 0, 43 fm10k_driver_name); 44 if (!fm10k_workqueue) 45 return -ENOMEM; 46 47 fm10k_dbg_init(); 48 49 return fm10k_register_pci_driver(); 50 } 51 module_init(fm10k_init_module); 52 53 /** 54 * fm10k_exit_module - Driver Exit Cleanup Routine 55 * 56 * fm10k_exit_module is called just before the driver is removed 57 * from memory. 58 **/ 59 static void __exit fm10k_exit_module(void) 60 { 61 fm10k_unregister_pci_driver(); 62 63 fm10k_dbg_exit(); 64 65 /* destroy driver workqueue */ 66 destroy_workqueue(fm10k_workqueue); 67 } 68 module_exit(fm10k_exit_module); 69 70 static bool fm10k_alloc_mapped_page(struct fm10k_ring *rx_ring, 71 struct fm10k_rx_buffer *bi) 72 { 73 struct page *page = bi->page; 74 dma_addr_t dma; 75 76 /* Only page will be NULL if buffer was consumed */ 77 if (likely(page)) 78 return true; 79 80 /* alloc new page for storage */ 81 page = dev_alloc_page(); 82 if (unlikely(!page)) { 83 rx_ring->rx_stats.alloc_failed++; 84 return false; 85 } 86 87 /* map page for use */ 88 dma = dma_map_page(rx_ring->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE); 89 90 /* if mapping failed free memory back to system since 91 * there isn't much point in holding memory we can't use 92 */ 93 if (dma_mapping_error(rx_ring->dev, dma)) { 94 __free_page(page); 95 96 rx_ring->rx_stats.alloc_failed++; 97 return false; 98 } 99 100 bi->dma = dma; 101 bi->page = page; 102 bi->page_offset = 0; 103 104 return true; 105 } 106 107 /** 108 * fm10k_alloc_rx_buffers - Replace used receive buffers 109 * @rx_ring: ring to place buffers on 110 * @cleaned_count: number of buffers to replace 111 **/ 112 void fm10k_alloc_rx_buffers(struct fm10k_ring *rx_ring, u16 cleaned_count) 113 { 114 union fm10k_rx_desc *rx_desc; 115 struct fm10k_rx_buffer *bi; 116 u16 i = rx_ring->next_to_use; 117 118 /* nothing to do */ 119 if (!cleaned_count) 120 return; 121 122 rx_desc = FM10K_RX_DESC(rx_ring, i); 123 bi = &rx_ring->rx_buffer[i]; 124 i -= rx_ring->count; 125 126 do { 127 if (!fm10k_alloc_mapped_page(rx_ring, bi)) 128 break; 129 130 /* Refresh the desc even if buffer_addrs didn't change 131 * because each write-back erases this info. 132 */ 133 rx_desc->q.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset); 134 135 rx_desc++; 136 bi++; 137 i++; 138 if (unlikely(!i)) { 139 rx_desc = FM10K_RX_DESC(rx_ring, 0); 140 bi = rx_ring->rx_buffer; 141 i -= rx_ring->count; 142 } 143 144 /* clear the status bits for the next_to_use descriptor */ 145 rx_desc->d.staterr = 0; 146 147 cleaned_count--; 148 } while (cleaned_count); 149 150 i += rx_ring->count; 151 152 if (rx_ring->next_to_use != i) { 153 /* record the next descriptor to use */ 154 rx_ring->next_to_use = i; 155 156 /* update next to alloc since we have filled the ring */ 157 rx_ring->next_to_alloc = i; 158 159 /* Force memory writes to complete before letting h/w 160 * know there are new descriptors to fetch. (Only 161 * applicable for weak-ordered memory model archs, 162 * such as IA-64). 163 */ 164 wmb(); 165 166 /* notify hardware of new descriptors */ 167 writel(i, rx_ring->tail); 168 } 169 } 170 171 /** 172 * fm10k_reuse_rx_page - page flip buffer and store it back on the ring 173 * @rx_ring: rx descriptor ring to store buffers on 174 * @old_buff: donor buffer to have page reused 175 * 176 * Synchronizes page for reuse by the interface 177 **/ 178 static void fm10k_reuse_rx_page(struct fm10k_ring *rx_ring, 179 struct fm10k_rx_buffer *old_buff) 180 { 181 struct fm10k_rx_buffer *new_buff; 182 u16 nta = rx_ring->next_to_alloc; 183 184 new_buff = &rx_ring->rx_buffer[nta]; 185 186 /* update, and store next to alloc */ 187 nta++; 188 rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0; 189 190 /* transfer page from old buffer to new buffer */ 191 *new_buff = *old_buff; 192 193 /* sync the buffer for use by the device */ 194 dma_sync_single_range_for_device(rx_ring->dev, old_buff->dma, 195 old_buff->page_offset, 196 FM10K_RX_BUFSZ, 197 DMA_FROM_DEVICE); 198 } 199 200 static inline bool fm10k_page_is_reserved(struct page *page) 201 { 202 return (page_to_nid(page) != numa_mem_id()) || page_is_pfmemalloc(page); 203 } 204 205 static bool fm10k_can_reuse_rx_page(struct fm10k_rx_buffer *rx_buffer, 206 struct page *page, 207 unsigned int __maybe_unused truesize) 208 { 209 /* avoid re-using remote pages */ 210 if (unlikely(fm10k_page_is_reserved(page))) 211 return false; 212 213 #if (PAGE_SIZE < 8192) 214 /* if we are only owner of page we can reuse it */ 215 if (unlikely(page_count(page) != 1)) 216 return false; 217 218 /* flip page offset to other buffer */ 219 rx_buffer->page_offset ^= FM10K_RX_BUFSZ; 220 #else 221 /* move offset up to the next cache line */ 222 rx_buffer->page_offset += truesize; 223 224 if (rx_buffer->page_offset > (PAGE_SIZE - FM10K_RX_BUFSZ)) 225 return false; 226 #endif 227 228 /* Even if we own the page, we are not allowed to use atomic_set() 229 * This would break get_page_unless_zero() users. 230 */ 231 page_ref_inc(page); 232 233 return true; 234 } 235 236 /** 237 * fm10k_add_rx_frag - Add contents of Rx buffer to sk_buff 238 * @rx_buffer: buffer containing page to add 239 * @size: packet size from rx_desc 240 * @rx_desc: descriptor containing length of buffer written by hardware 241 * @skb: sk_buff to place the data into 242 * 243 * This function will add the data contained in rx_buffer->page to the skb. 244 * This is done either through a direct copy if the data in the buffer is 245 * less than the skb header size, otherwise it will just attach the page as 246 * a frag to the skb. 247 * 248 * The function will then update the page offset if necessary and return 249 * true if the buffer can be reused by the interface. 250 **/ 251 static bool fm10k_add_rx_frag(struct fm10k_rx_buffer *rx_buffer, 252 unsigned int size, 253 union fm10k_rx_desc *rx_desc, 254 struct sk_buff *skb) 255 { 256 struct page *page = rx_buffer->page; 257 unsigned char *va = page_address(page) + rx_buffer->page_offset; 258 #if (PAGE_SIZE < 8192) 259 unsigned int truesize = FM10K_RX_BUFSZ; 260 #else 261 unsigned int truesize = ALIGN(size, 512); 262 #endif 263 unsigned int pull_len; 264 265 if (unlikely(skb_is_nonlinear(skb))) 266 goto add_tail_frag; 267 268 if (likely(size <= FM10K_RX_HDR_LEN)) { 269 memcpy(__skb_put(skb, size), va, ALIGN(size, sizeof(long))); 270 271 /* page is not reserved, we can reuse buffer as-is */ 272 if (likely(!fm10k_page_is_reserved(page))) 273 return true; 274 275 /* this page cannot be reused so discard it */ 276 __free_page(page); 277 return false; 278 } 279 280 /* we need the header to contain the greater of either ETH_HLEN or 281 * 60 bytes if the skb->len is less than 60 for skb_pad. 282 */ 283 pull_len = eth_get_headlen(va, FM10K_RX_HDR_LEN); 284 285 /* align pull length to size of long to optimize memcpy performance */ 286 memcpy(__skb_put(skb, pull_len), va, ALIGN(pull_len, sizeof(long))); 287 288 /* update all of the pointers */ 289 va += pull_len; 290 size -= pull_len; 291 292 add_tail_frag: 293 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page, 294 (unsigned long)va & ~PAGE_MASK, size, truesize); 295 296 return fm10k_can_reuse_rx_page(rx_buffer, page, truesize); 297 } 298 299 static struct sk_buff *fm10k_fetch_rx_buffer(struct fm10k_ring *rx_ring, 300 union fm10k_rx_desc *rx_desc, 301 struct sk_buff *skb) 302 { 303 unsigned int size = le16_to_cpu(rx_desc->w.length); 304 struct fm10k_rx_buffer *rx_buffer; 305 struct page *page; 306 307 rx_buffer = &rx_ring->rx_buffer[rx_ring->next_to_clean]; 308 page = rx_buffer->page; 309 prefetchw(page); 310 311 if (likely(!skb)) { 312 void *page_addr = page_address(page) + 313 rx_buffer->page_offset; 314 315 /* prefetch first cache line of first page */ 316 prefetch(page_addr); 317 #if L1_CACHE_BYTES < 128 318 prefetch(page_addr + L1_CACHE_BYTES); 319 #endif 320 321 /* allocate a skb to store the frags */ 322 skb = napi_alloc_skb(&rx_ring->q_vector->napi, 323 FM10K_RX_HDR_LEN); 324 if (unlikely(!skb)) { 325 rx_ring->rx_stats.alloc_failed++; 326 return NULL; 327 } 328 329 /* we will be copying header into skb->data in 330 * pskb_may_pull so it is in our interest to prefetch 331 * it now to avoid a possible cache miss 332 */ 333 prefetchw(skb->data); 334 } 335 336 /* we are reusing so sync this buffer for CPU use */ 337 dma_sync_single_range_for_cpu(rx_ring->dev, 338 rx_buffer->dma, 339 rx_buffer->page_offset, 340 size, 341 DMA_FROM_DEVICE); 342 343 /* pull page into skb */ 344 if (fm10k_add_rx_frag(rx_buffer, size, rx_desc, skb)) { 345 /* hand second half of page back to the ring */ 346 fm10k_reuse_rx_page(rx_ring, rx_buffer); 347 } else { 348 /* we are not reusing the buffer so unmap it */ 349 dma_unmap_page(rx_ring->dev, rx_buffer->dma, 350 PAGE_SIZE, DMA_FROM_DEVICE); 351 } 352 353 /* clear contents of rx_buffer */ 354 rx_buffer->page = NULL; 355 356 return skb; 357 } 358 359 static inline void fm10k_rx_checksum(struct fm10k_ring *ring, 360 union fm10k_rx_desc *rx_desc, 361 struct sk_buff *skb) 362 { 363 skb_checksum_none_assert(skb); 364 365 /* Rx checksum disabled via ethtool */ 366 if (!(ring->netdev->features & NETIF_F_RXCSUM)) 367 return; 368 369 /* TCP/UDP checksum error bit is set */ 370 if (fm10k_test_staterr(rx_desc, 371 FM10K_RXD_STATUS_L4E | 372 FM10K_RXD_STATUS_L4E2 | 373 FM10K_RXD_STATUS_IPE | 374 FM10K_RXD_STATUS_IPE2)) { 375 ring->rx_stats.csum_err++; 376 return; 377 } 378 379 /* It must be a TCP or UDP packet with a valid checksum */ 380 if (fm10k_test_staterr(rx_desc, FM10K_RXD_STATUS_L4CS2)) 381 skb->encapsulation = true; 382 else if (!fm10k_test_staterr(rx_desc, FM10K_RXD_STATUS_L4CS)) 383 return; 384 385 skb->ip_summed = CHECKSUM_UNNECESSARY; 386 387 ring->rx_stats.csum_good++; 388 } 389 390 #define FM10K_RSS_L4_TYPES_MASK \ 391 (BIT(FM10K_RSSTYPE_IPV4_TCP) | \ 392 BIT(FM10K_RSSTYPE_IPV4_UDP) | \ 393 BIT(FM10K_RSSTYPE_IPV6_TCP) | \ 394 BIT(FM10K_RSSTYPE_IPV6_UDP)) 395 396 static inline void fm10k_rx_hash(struct fm10k_ring *ring, 397 union fm10k_rx_desc *rx_desc, 398 struct sk_buff *skb) 399 { 400 u16 rss_type; 401 402 if (!(ring->netdev->features & NETIF_F_RXHASH)) 403 return; 404 405 rss_type = le16_to_cpu(rx_desc->w.pkt_info) & FM10K_RXD_RSSTYPE_MASK; 406 if (!rss_type) 407 return; 408 409 skb_set_hash(skb, le32_to_cpu(rx_desc->d.rss), 410 (BIT(rss_type) & FM10K_RSS_L4_TYPES_MASK) ? 411 PKT_HASH_TYPE_L4 : PKT_HASH_TYPE_L3); 412 } 413 414 static void fm10k_type_trans(struct fm10k_ring *rx_ring, 415 union fm10k_rx_desc __maybe_unused *rx_desc, 416 struct sk_buff *skb) 417 { 418 struct net_device *dev = rx_ring->netdev; 419 struct fm10k_l2_accel *l2_accel = rcu_dereference_bh(rx_ring->l2_accel); 420 421 /* check to see if DGLORT belongs to a MACVLAN */ 422 if (l2_accel) { 423 u16 idx = le16_to_cpu(FM10K_CB(skb)->fi.w.dglort) - 1; 424 425 idx -= l2_accel->dglort; 426 if (idx < l2_accel->size && l2_accel->macvlan[idx]) 427 dev = l2_accel->macvlan[idx]; 428 else 429 l2_accel = NULL; 430 } 431 432 /* Record Rx queue, or update macvlan statistics */ 433 if (!l2_accel) 434 skb_record_rx_queue(skb, rx_ring->queue_index); 435 else 436 macvlan_count_rx(netdev_priv(dev), skb->len + ETH_HLEN, true, 437 false); 438 439 skb->protocol = eth_type_trans(skb, dev); 440 } 441 442 /** 443 * fm10k_process_skb_fields - Populate skb header fields from Rx descriptor 444 * @rx_ring: rx descriptor ring packet is being transacted on 445 * @rx_desc: pointer to the EOP Rx descriptor 446 * @skb: pointer to current skb being populated 447 * 448 * This function checks the ring, descriptor, and packet information in 449 * order to populate the hash, checksum, VLAN, timestamp, protocol, and 450 * other fields within the skb. 451 **/ 452 static unsigned int fm10k_process_skb_fields(struct fm10k_ring *rx_ring, 453 union fm10k_rx_desc *rx_desc, 454 struct sk_buff *skb) 455 { 456 unsigned int len = skb->len; 457 458 fm10k_rx_hash(rx_ring, rx_desc, skb); 459 460 fm10k_rx_checksum(rx_ring, rx_desc, skb); 461 462 FM10K_CB(skb)->tstamp = rx_desc->q.timestamp; 463 464 FM10K_CB(skb)->fi.w.vlan = rx_desc->w.vlan; 465 466 FM10K_CB(skb)->fi.d.glort = rx_desc->d.glort; 467 468 if (rx_desc->w.vlan) { 469 u16 vid = le16_to_cpu(rx_desc->w.vlan); 470 471 if ((vid & VLAN_VID_MASK) != rx_ring->vid) 472 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid); 473 else if (vid & VLAN_PRIO_MASK) 474 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), 475 vid & VLAN_PRIO_MASK); 476 } 477 478 fm10k_type_trans(rx_ring, rx_desc, skb); 479 480 return len; 481 } 482 483 /** 484 * fm10k_is_non_eop - process handling of non-EOP buffers 485 * @rx_ring: Rx ring being processed 486 * @rx_desc: Rx descriptor for current buffer 487 * 488 * This function updates next to clean. If the buffer is an EOP buffer 489 * this function exits returning false, otherwise it will place the 490 * sk_buff in the next buffer to be chained and return true indicating 491 * that this is in fact a non-EOP buffer. 492 **/ 493 static bool fm10k_is_non_eop(struct fm10k_ring *rx_ring, 494 union fm10k_rx_desc *rx_desc) 495 { 496 u32 ntc = rx_ring->next_to_clean + 1; 497 498 /* fetch, update, and store next to clean */ 499 ntc = (ntc < rx_ring->count) ? ntc : 0; 500 rx_ring->next_to_clean = ntc; 501 502 prefetch(FM10K_RX_DESC(rx_ring, ntc)); 503 504 if (likely(fm10k_test_staterr(rx_desc, FM10K_RXD_STATUS_EOP))) 505 return false; 506 507 return true; 508 } 509 510 /** 511 * fm10k_cleanup_headers - Correct corrupted or empty headers 512 * @rx_ring: rx descriptor ring packet is being transacted on 513 * @rx_desc: pointer to the EOP Rx descriptor 514 * @skb: pointer to current skb being fixed 515 * 516 * Address the case where we are pulling data in on pages only 517 * and as such no data is present in the skb header. 518 * 519 * In addition if skb is not at least 60 bytes we need to pad it so that 520 * it is large enough to qualify as a valid Ethernet frame. 521 * 522 * Returns true if an error was encountered and skb was freed. 523 **/ 524 static bool fm10k_cleanup_headers(struct fm10k_ring *rx_ring, 525 union fm10k_rx_desc *rx_desc, 526 struct sk_buff *skb) 527 { 528 if (unlikely((fm10k_test_staterr(rx_desc, 529 FM10K_RXD_STATUS_RXE)))) { 530 #define FM10K_TEST_RXD_BIT(rxd, bit) \ 531 ((rxd)->w.csum_err & cpu_to_le16(bit)) 532 if (FM10K_TEST_RXD_BIT(rx_desc, FM10K_RXD_ERR_SWITCH_ERROR)) 533 rx_ring->rx_stats.switch_errors++; 534 if (FM10K_TEST_RXD_BIT(rx_desc, FM10K_RXD_ERR_NO_DESCRIPTOR)) 535 rx_ring->rx_stats.drops++; 536 if (FM10K_TEST_RXD_BIT(rx_desc, FM10K_RXD_ERR_PP_ERROR)) 537 rx_ring->rx_stats.pp_errors++; 538 if (FM10K_TEST_RXD_BIT(rx_desc, FM10K_RXD_ERR_SWITCH_READY)) 539 rx_ring->rx_stats.link_errors++; 540 if (FM10K_TEST_RXD_BIT(rx_desc, FM10K_RXD_ERR_TOO_BIG)) 541 rx_ring->rx_stats.length_errors++; 542 dev_kfree_skb_any(skb); 543 rx_ring->rx_stats.errors++; 544 return true; 545 } 546 547 /* if eth_skb_pad returns an error the skb was freed */ 548 if (eth_skb_pad(skb)) 549 return true; 550 551 return false; 552 } 553 554 /** 555 * fm10k_receive_skb - helper function to handle rx indications 556 * @q_vector: structure containing interrupt and ring information 557 * @skb: packet to send up 558 **/ 559 static void fm10k_receive_skb(struct fm10k_q_vector *q_vector, 560 struct sk_buff *skb) 561 { 562 napi_gro_receive(&q_vector->napi, skb); 563 } 564 565 static int fm10k_clean_rx_irq(struct fm10k_q_vector *q_vector, 566 struct fm10k_ring *rx_ring, 567 int budget) 568 { 569 struct sk_buff *skb = rx_ring->skb; 570 unsigned int total_bytes = 0, total_packets = 0; 571 u16 cleaned_count = fm10k_desc_unused(rx_ring); 572 573 while (likely(total_packets < budget)) { 574 union fm10k_rx_desc *rx_desc; 575 576 /* return some buffers to hardware, one at a time is too slow */ 577 if (cleaned_count >= FM10K_RX_BUFFER_WRITE) { 578 fm10k_alloc_rx_buffers(rx_ring, cleaned_count); 579 cleaned_count = 0; 580 } 581 582 rx_desc = FM10K_RX_DESC(rx_ring, rx_ring->next_to_clean); 583 584 if (!rx_desc->d.staterr) 585 break; 586 587 /* This memory barrier is needed to keep us from reading 588 * any other fields out of the rx_desc until we know the 589 * descriptor has been written back 590 */ 591 dma_rmb(); 592 593 /* retrieve a buffer from the ring */ 594 skb = fm10k_fetch_rx_buffer(rx_ring, rx_desc, skb); 595 596 /* exit if we failed to retrieve a buffer */ 597 if (!skb) 598 break; 599 600 cleaned_count++; 601 602 /* fetch next buffer in frame if non-eop */ 603 if (fm10k_is_non_eop(rx_ring, rx_desc)) 604 continue; 605 606 /* verify the packet layout is correct */ 607 if (fm10k_cleanup_headers(rx_ring, rx_desc, skb)) { 608 skb = NULL; 609 continue; 610 } 611 612 /* populate checksum, timestamp, VLAN, and protocol */ 613 total_bytes += fm10k_process_skb_fields(rx_ring, rx_desc, skb); 614 615 fm10k_receive_skb(q_vector, skb); 616 617 /* reset skb pointer */ 618 skb = NULL; 619 620 /* update budget accounting */ 621 total_packets++; 622 } 623 624 /* place incomplete frames back on ring for completion */ 625 rx_ring->skb = skb; 626 627 u64_stats_update_begin(&rx_ring->syncp); 628 rx_ring->stats.packets += total_packets; 629 rx_ring->stats.bytes += total_bytes; 630 u64_stats_update_end(&rx_ring->syncp); 631 q_vector->rx.total_packets += total_packets; 632 q_vector->rx.total_bytes += total_bytes; 633 634 return total_packets; 635 } 636 637 #define VXLAN_HLEN (sizeof(struct udphdr) + 8) 638 static struct ethhdr *fm10k_port_is_vxlan(struct sk_buff *skb) 639 { 640 struct fm10k_intfc *interface = netdev_priv(skb->dev); 641 struct fm10k_udp_port *vxlan_port; 642 643 /* we can only offload a vxlan if we recognize it as such */ 644 vxlan_port = list_first_entry_or_null(&interface->vxlan_port, 645 struct fm10k_udp_port, list); 646 647 if (!vxlan_port) 648 return NULL; 649 if (vxlan_port->port != udp_hdr(skb)->dest) 650 return NULL; 651 652 /* return offset of udp_hdr plus 8 bytes for VXLAN header */ 653 return (struct ethhdr *)(skb_transport_header(skb) + VXLAN_HLEN); 654 } 655 656 #define FM10K_NVGRE_RESERVED0_FLAGS htons(0x9FFF) 657 #define NVGRE_TNI htons(0x2000) 658 struct fm10k_nvgre_hdr { 659 __be16 flags; 660 __be16 proto; 661 __be32 tni; 662 }; 663 664 static struct ethhdr *fm10k_gre_is_nvgre(struct sk_buff *skb) 665 { 666 struct fm10k_nvgre_hdr *nvgre_hdr; 667 int hlen = ip_hdrlen(skb); 668 669 /* currently only IPv4 is supported due to hlen above */ 670 if (vlan_get_protocol(skb) != htons(ETH_P_IP)) 671 return NULL; 672 673 /* our transport header should be NVGRE */ 674 nvgre_hdr = (struct fm10k_nvgre_hdr *)(skb_network_header(skb) + hlen); 675 676 /* verify all reserved flags are 0 */ 677 if (nvgre_hdr->flags & FM10K_NVGRE_RESERVED0_FLAGS) 678 return NULL; 679 680 /* report start of ethernet header */ 681 if (nvgre_hdr->flags & NVGRE_TNI) 682 return (struct ethhdr *)(nvgre_hdr + 1); 683 684 return (struct ethhdr *)(&nvgre_hdr->tni); 685 } 686 687 __be16 fm10k_tx_encap_offload(struct sk_buff *skb) 688 { 689 u8 l4_hdr = 0, inner_l4_hdr = 0, inner_l4_hlen; 690 struct ethhdr *eth_hdr; 691 692 if (skb->inner_protocol_type != ENCAP_TYPE_ETHER || 693 skb->inner_protocol != htons(ETH_P_TEB)) 694 return 0; 695 696 switch (vlan_get_protocol(skb)) { 697 case htons(ETH_P_IP): 698 l4_hdr = ip_hdr(skb)->protocol; 699 break; 700 case htons(ETH_P_IPV6): 701 l4_hdr = ipv6_hdr(skb)->nexthdr; 702 break; 703 default: 704 return 0; 705 } 706 707 switch (l4_hdr) { 708 case IPPROTO_UDP: 709 eth_hdr = fm10k_port_is_vxlan(skb); 710 break; 711 case IPPROTO_GRE: 712 eth_hdr = fm10k_gre_is_nvgre(skb); 713 break; 714 default: 715 return 0; 716 } 717 718 if (!eth_hdr) 719 return 0; 720 721 switch (eth_hdr->h_proto) { 722 case htons(ETH_P_IP): 723 inner_l4_hdr = inner_ip_hdr(skb)->protocol; 724 break; 725 case htons(ETH_P_IPV6): 726 inner_l4_hdr = inner_ipv6_hdr(skb)->nexthdr; 727 break; 728 default: 729 return 0; 730 } 731 732 switch (inner_l4_hdr) { 733 case IPPROTO_TCP: 734 inner_l4_hlen = inner_tcp_hdrlen(skb); 735 break; 736 case IPPROTO_UDP: 737 inner_l4_hlen = 8; 738 break; 739 default: 740 return 0; 741 } 742 743 /* The hardware allows tunnel offloads only if the combined inner and 744 * outer header is 184 bytes or less 745 */ 746 if (skb_inner_transport_header(skb) + inner_l4_hlen - 747 skb_mac_header(skb) > FM10K_TUNNEL_HEADER_LENGTH) 748 return 0; 749 750 return eth_hdr->h_proto; 751 } 752 753 static int fm10k_tso(struct fm10k_ring *tx_ring, 754 struct fm10k_tx_buffer *first) 755 { 756 struct sk_buff *skb = first->skb; 757 struct fm10k_tx_desc *tx_desc; 758 unsigned char *th; 759 u8 hdrlen; 760 761 if (skb->ip_summed != CHECKSUM_PARTIAL) 762 return 0; 763 764 if (!skb_is_gso(skb)) 765 return 0; 766 767 /* compute header lengths */ 768 if (skb->encapsulation) { 769 if (!fm10k_tx_encap_offload(skb)) 770 goto err_vxlan; 771 th = skb_inner_transport_header(skb); 772 } else { 773 th = skb_transport_header(skb); 774 } 775 776 /* compute offset from SOF to transport header and add header len */ 777 hdrlen = (th - skb->data) + (((struct tcphdr *)th)->doff << 2); 778 779 first->tx_flags |= FM10K_TX_FLAGS_CSUM; 780 781 /* update gso size and bytecount with header size */ 782 first->gso_segs = skb_shinfo(skb)->gso_segs; 783 first->bytecount += (first->gso_segs - 1) * hdrlen; 784 785 /* populate Tx descriptor header size and mss */ 786 tx_desc = FM10K_TX_DESC(tx_ring, tx_ring->next_to_use); 787 tx_desc->hdrlen = hdrlen; 788 tx_desc->mss = cpu_to_le16(skb_shinfo(skb)->gso_size); 789 790 return 1; 791 792 err_vxlan: 793 tx_ring->netdev->features &= ~NETIF_F_GSO_UDP_TUNNEL; 794 if (net_ratelimit()) 795 netdev_err(tx_ring->netdev, 796 "TSO requested for unsupported tunnel, disabling offload\n"); 797 return -1; 798 } 799 800 static void fm10k_tx_csum(struct fm10k_ring *tx_ring, 801 struct fm10k_tx_buffer *first) 802 { 803 struct sk_buff *skb = first->skb; 804 struct fm10k_tx_desc *tx_desc; 805 union { 806 struct iphdr *ipv4; 807 struct ipv6hdr *ipv6; 808 u8 *raw; 809 } network_hdr; 810 u8 *transport_hdr; 811 __be16 frag_off; 812 __be16 protocol; 813 u8 l4_hdr = 0; 814 815 if (skb->ip_summed != CHECKSUM_PARTIAL) 816 goto no_csum; 817 818 if (skb->encapsulation) { 819 protocol = fm10k_tx_encap_offload(skb); 820 if (!protocol) { 821 if (skb_checksum_help(skb)) { 822 dev_warn(tx_ring->dev, 823 "failed to offload encap csum!\n"); 824 tx_ring->tx_stats.csum_err++; 825 } 826 goto no_csum; 827 } 828 network_hdr.raw = skb_inner_network_header(skb); 829 transport_hdr = skb_inner_transport_header(skb); 830 } else { 831 protocol = vlan_get_protocol(skb); 832 network_hdr.raw = skb_network_header(skb); 833 transport_hdr = skb_transport_header(skb); 834 } 835 836 switch (protocol) { 837 case htons(ETH_P_IP): 838 l4_hdr = network_hdr.ipv4->protocol; 839 break; 840 case htons(ETH_P_IPV6): 841 l4_hdr = network_hdr.ipv6->nexthdr; 842 if (likely((transport_hdr - network_hdr.raw) == 843 sizeof(struct ipv6hdr))) 844 break; 845 ipv6_skip_exthdr(skb, network_hdr.raw - skb->data + 846 sizeof(struct ipv6hdr), 847 &l4_hdr, &frag_off); 848 if (unlikely(frag_off)) 849 l4_hdr = NEXTHDR_FRAGMENT; 850 break; 851 default: 852 break; 853 } 854 855 switch (l4_hdr) { 856 case IPPROTO_TCP: 857 case IPPROTO_UDP: 858 break; 859 case IPPROTO_GRE: 860 if (skb->encapsulation) 861 break; 862 /* fall through */ 863 default: 864 if (unlikely(net_ratelimit())) { 865 dev_warn(tx_ring->dev, 866 "partial checksum, version=%d l4 proto=%x\n", 867 protocol, l4_hdr); 868 } 869 skb_checksum_help(skb); 870 tx_ring->tx_stats.csum_err++; 871 goto no_csum; 872 } 873 874 /* update TX checksum flag */ 875 first->tx_flags |= FM10K_TX_FLAGS_CSUM; 876 tx_ring->tx_stats.csum_good++; 877 878 no_csum: 879 /* populate Tx descriptor header size and mss */ 880 tx_desc = FM10K_TX_DESC(tx_ring, tx_ring->next_to_use); 881 tx_desc->hdrlen = 0; 882 tx_desc->mss = 0; 883 } 884 885 #define FM10K_SET_FLAG(_input, _flag, _result) \ 886 ((_flag <= _result) ? \ 887 ((u32)(_input & _flag) * (_result / _flag)) : \ 888 ((u32)(_input & _flag) / (_flag / _result))) 889 890 static u8 fm10k_tx_desc_flags(struct sk_buff *skb, u32 tx_flags) 891 { 892 /* set type for advanced descriptor with frame checksum insertion */ 893 u32 desc_flags = 0; 894 895 /* set checksum offload bits */ 896 desc_flags |= FM10K_SET_FLAG(tx_flags, FM10K_TX_FLAGS_CSUM, 897 FM10K_TXD_FLAG_CSUM); 898 899 return desc_flags; 900 } 901 902 static bool fm10k_tx_desc_push(struct fm10k_ring *tx_ring, 903 struct fm10k_tx_desc *tx_desc, u16 i, 904 dma_addr_t dma, unsigned int size, u8 desc_flags) 905 { 906 /* set RS and INT for last frame in a cache line */ 907 if ((++i & (FM10K_TXD_WB_FIFO_SIZE - 1)) == 0) 908 desc_flags |= FM10K_TXD_FLAG_RS | FM10K_TXD_FLAG_INT; 909 910 /* record values to descriptor */ 911 tx_desc->buffer_addr = cpu_to_le64(dma); 912 tx_desc->flags = desc_flags; 913 tx_desc->buflen = cpu_to_le16(size); 914 915 /* return true if we just wrapped the ring */ 916 return i == tx_ring->count; 917 } 918 919 static int __fm10k_maybe_stop_tx(struct fm10k_ring *tx_ring, u16 size) 920 { 921 netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index); 922 923 /* Memory barrier before checking head and tail */ 924 smp_mb(); 925 926 /* Check again in a case another CPU has just made room available */ 927 if (likely(fm10k_desc_unused(tx_ring) < size)) 928 return -EBUSY; 929 930 /* A reprieve! - use start_queue because it doesn't call schedule */ 931 netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index); 932 ++tx_ring->tx_stats.restart_queue; 933 return 0; 934 } 935 936 static inline int fm10k_maybe_stop_tx(struct fm10k_ring *tx_ring, u16 size) 937 { 938 if (likely(fm10k_desc_unused(tx_ring) >= size)) 939 return 0; 940 return __fm10k_maybe_stop_tx(tx_ring, size); 941 } 942 943 static void fm10k_tx_map(struct fm10k_ring *tx_ring, 944 struct fm10k_tx_buffer *first) 945 { 946 struct sk_buff *skb = first->skb; 947 struct fm10k_tx_buffer *tx_buffer; 948 struct fm10k_tx_desc *tx_desc; 949 struct skb_frag_struct *frag; 950 unsigned char *data; 951 dma_addr_t dma; 952 unsigned int data_len, size; 953 u32 tx_flags = first->tx_flags; 954 u16 i = tx_ring->next_to_use; 955 u8 flags = fm10k_tx_desc_flags(skb, tx_flags); 956 957 tx_desc = FM10K_TX_DESC(tx_ring, i); 958 959 /* add HW VLAN tag */ 960 if (skb_vlan_tag_present(skb)) 961 tx_desc->vlan = cpu_to_le16(skb_vlan_tag_get(skb)); 962 else 963 tx_desc->vlan = 0; 964 965 size = skb_headlen(skb); 966 data = skb->data; 967 968 dma = dma_map_single(tx_ring->dev, data, size, DMA_TO_DEVICE); 969 970 data_len = skb->data_len; 971 tx_buffer = first; 972 973 for (frag = &skb_shinfo(skb)->frags[0];; frag++) { 974 if (dma_mapping_error(tx_ring->dev, dma)) 975 goto dma_error; 976 977 /* record length, and DMA address */ 978 dma_unmap_len_set(tx_buffer, len, size); 979 dma_unmap_addr_set(tx_buffer, dma, dma); 980 981 while (unlikely(size > FM10K_MAX_DATA_PER_TXD)) { 982 if (fm10k_tx_desc_push(tx_ring, tx_desc++, i++, dma, 983 FM10K_MAX_DATA_PER_TXD, flags)) { 984 tx_desc = FM10K_TX_DESC(tx_ring, 0); 985 i = 0; 986 } 987 988 dma += FM10K_MAX_DATA_PER_TXD; 989 size -= FM10K_MAX_DATA_PER_TXD; 990 } 991 992 if (likely(!data_len)) 993 break; 994 995 if (fm10k_tx_desc_push(tx_ring, tx_desc++, i++, 996 dma, size, flags)) { 997 tx_desc = FM10K_TX_DESC(tx_ring, 0); 998 i = 0; 999 } 1000 1001 size = skb_frag_size(frag); 1002 data_len -= size; 1003 1004 dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size, 1005 DMA_TO_DEVICE); 1006 1007 tx_buffer = &tx_ring->tx_buffer[i]; 1008 } 1009 1010 /* write last descriptor with LAST bit set */ 1011 flags |= FM10K_TXD_FLAG_LAST; 1012 1013 if (fm10k_tx_desc_push(tx_ring, tx_desc, i++, dma, size, flags)) 1014 i = 0; 1015 1016 /* record bytecount for BQL */ 1017 netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount); 1018 1019 /* record SW timestamp if HW timestamp is not available */ 1020 skb_tx_timestamp(first->skb); 1021 1022 /* Force memory writes to complete before letting h/w know there 1023 * are new descriptors to fetch. (Only applicable for weak-ordered 1024 * memory model archs, such as IA-64). 1025 * 1026 * We also need this memory barrier to make certain all of the 1027 * status bits have been updated before next_to_watch is written. 1028 */ 1029 wmb(); 1030 1031 /* set next_to_watch value indicating a packet is present */ 1032 first->next_to_watch = tx_desc; 1033 1034 tx_ring->next_to_use = i; 1035 1036 /* Make sure there is space in the ring for the next send. */ 1037 fm10k_maybe_stop_tx(tx_ring, DESC_NEEDED); 1038 1039 /* notify HW of packet */ 1040 if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) { 1041 writel(i, tx_ring->tail); 1042 1043 /* we need this if more than one processor can write to our tail 1044 * at a time, it synchronizes IO on IA64/Altix systems 1045 */ 1046 mmiowb(); 1047 } 1048 1049 return; 1050 dma_error: 1051 dev_err(tx_ring->dev, "TX DMA map failed\n"); 1052 1053 /* clear dma mappings for failed tx_buffer map */ 1054 for (;;) { 1055 tx_buffer = &tx_ring->tx_buffer[i]; 1056 fm10k_unmap_and_free_tx_resource(tx_ring, tx_buffer); 1057 if (tx_buffer == first) 1058 break; 1059 if (i == 0) 1060 i = tx_ring->count; 1061 i--; 1062 } 1063 1064 tx_ring->next_to_use = i; 1065 } 1066 1067 netdev_tx_t fm10k_xmit_frame_ring(struct sk_buff *skb, 1068 struct fm10k_ring *tx_ring) 1069 { 1070 u16 count = TXD_USE_COUNT(skb_headlen(skb)); 1071 struct fm10k_tx_buffer *first; 1072 unsigned short f; 1073 u32 tx_flags = 0; 1074 int tso; 1075 1076 /* need: 1 descriptor per page * PAGE_SIZE/FM10K_MAX_DATA_PER_TXD, 1077 * + 1 desc for skb_headlen/FM10K_MAX_DATA_PER_TXD, 1078 * + 2 desc gap to keep tail from touching head 1079 * otherwise try next time 1080 */ 1081 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) 1082 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size); 1083 1084 if (fm10k_maybe_stop_tx(tx_ring, count + 3)) { 1085 tx_ring->tx_stats.tx_busy++; 1086 return NETDEV_TX_BUSY; 1087 } 1088 1089 /* record the location of the first descriptor for this packet */ 1090 first = &tx_ring->tx_buffer[tx_ring->next_to_use]; 1091 first->skb = skb; 1092 first->bytecount = max_t(unsigned int, skb->len, ETH_ZLEN); 1093 first->gso_segs = 1; 1094 1095 /* record initial flags and protocol */ 1096 first->tx_flags = tx_flags; 1097 1098 tso = fm10k_tso(tx_ring, first); 1099 if (tso < 0) 1100 goto out_drop; 1101 else if (!tso) 1102 fm10k_tx_csum(tx_ring, first); 1103 1104 fm10k_tx_map(tx_ring, first); 1105 1106 return NETDEV_TX_OK; 1107 1108 out_drop: 1109 dev_kfree_skb_any(first->skb); 1110 first->skb = NULL; 1111 1112 return NETDEV_TX_OK; 1113 } 1114 1115 static u64 fm10k_get_tx_completed(struct fm10k_ring *ring) 1116 { 1117 return ring->stats.packets; 1118 } 1119 1120 /** 1121 * fm10k_get_tx_pending - how many Tx descriptors not processed 1122 * @ring: the ring structure 1123 * @in_sw: is tx_pending being checked in SW or in HW? 1124 */ 1125 u64 fm10k_get_tx_pending(struct fm10k_ring *ring, bool in_sw) 1126 { 1127 struct fm10k_intfc *interface = ring->q_vector->interface; 1128 struct fm10k_hw *hw = &interface->hw; 1129 u32 head, tail; 1130 1131 if (likely(in_sw)) { 1132 head = ring->next_to_clean; 1133 tail = ring->next_to_use; 1134 } else { 1135 head = fm10k_read_reg(hw, FM10K_TDH(ring->reg_idx)); 1136 tail = fm10k_read_reg(hw, FM10K_TDT(ring->reg_idx)); 1137 } 1138 1139 return ((head <= tail) ? tail : tail + ring->count) - head; 1140 } 1141 1142 bool fm10k_check_tx_hang(struct fm10k_ring *tx_ring) 1143 { 1144 u32 tx_done = fm10k_get_tx_completed(tx_ring); 1145 u32 tx_done_old = tx_ring->tx_stats.tx_done_old; 1146 u32 tx_pending = fm10k_get_tx_pending(tx_ring, true); 1147 1148 clear_check_for_tx_hang(tx_ring); 1149 1150 /* Check for a hung queue, but be thorough. This verifies 1151 * that a transmit has been completed since the previous 1152 * check AND there is at least one packet pending. By 1153 * requiring this to fail twice we avoid races with 1154 * clearing the ARMED bit and conditions where we 1155 * run the check_tx_hang logic with a transmit completion 1156 * pending but without time to complete it yet. 1157 */ 1158 if (!tx_pending || (tx_done_old != tx_done)) { 1159 /* update completed stats and continue */ 1160 tx_ring->tx_stats.tx_done_old = tx_done; 1161 /* reset the countdown */ 1162 clear_bit(__FM10K_HANG_CHECK_ARMED, tx_ring->state); 1163 1164 return false; 1165 } 1166 1167 /* make sure it is true for two checks in a row */ 1168 return test_and_set_bit(__FM10K_HANG_CHECK_ARMED, tx_ring->state); 1169 } 1170 1171 /** 1172 * fm10k_tx_timeout_reset - initiate reset due to Tx timeout 1173 * @interface: driver private struct 1174 **/ 1175 void fm10k_tx_timeout_reset(struct fm10k_intfc *interface) 1176 { 1177 /* Do the reset outside of interrupt context */ 1178 if (!test_bit(__FM10K_DOWN, interface->state)) { 1179 interface->tx_timeout_count++; 1180 set_bit(FM10K_FLAG_RESET_REQUESTED, interface->flags); 1181 fm10k_service_event_schedule(interface); 1182 } 1183 } 1184 1185 /** 1186 * fm10k_clean_tx_irq - Reclaim resources after transmit completes 1187 * @q_vector: structure containing interrupt and ring information 1188 * @tx_ring: tx ring to clean 1189 * @napi_budget: Used to determine if we are in netpoll 1190 **/ 1191 static bool fm10k_clean_tx_irq(struct fm10k_q_vector *q_vector, 1192 struct fm10k_ring *tx_ring, int napi_budget) 1193 { 1194 struct fm10k_intfc *interface = q_vector->interface; 1195 struct fm10k_tx_buffer *tx_buffer; 1196 struct fm10k_tx_desc *tx_desc; 1197 unsigned int total_bytes = 0, total_packets = 0; 1198 unsigned int budget = q_vector->tx.work_limit; 1199 unsigned int i = tx_ring->next_to_clean; 1200 1201 if (test_bit(__FM10K_DOWN, interface->state)) 1202 return true; 1203 1204 tx_buffer = &tx_ring->tx_buffer[i]; 1205 tx_desc = FM10K_TX_DESC(tx_ring, i); 1206 i -= tx_ring->count; 1207 1208 do { 1209 struct fm10k_tx_desc *eop_desc = tx_buffer->next_to_watch; 1210 1211 /* if next_to_watch is not set then there is no work pending */ 1212 if (!eop_desc) 1213 break; 1214 1215 /* prevent any other reads prior to eop_desc */ 1216 smp_rmb(); 1217 1218 /* if DD is not set pending work has not been completed */ 1219 if (!(eop_desc->flags & FM10K_TXD_FLAG_DONE)) 1220 break; 1221 1222 /* clear next_to_watch to prevent false hangs */ 1223 tx_buffer->next_to_watch = NULL; 1224 1225 /* update the statistics for this packet */ 1226 total_bytes += tx_buffer->bytecount; 1227 total_packets += tx_buffer->gso_segs; 1228 1229 /* free the skb */ 1230 napi_consume_skb(tx_buffer->skb, napi_budget); 1231 1232 /* unmap skb header data */ 1233 dma_unmap_single(tx_ring->dev, 1234 dma_unmap_addr(tx_buffer, dma), 1235 dma_unmap_len(tx_buffer, len), 1236 DMA_TO_DEVICE); 1237 1238 /* clear tx_buffer data */ 1239 tx_buffer->skb = NULL; 1240 dma_unmap_len_set(tx_buffer, len, 0); 1241 1242 /* unmap remaining buffers */ 1243 while (tx_desc != eop_desc) { 1244 tx_buffer++; 1245 tx_desc++; 1246 i++; 1247 if (unlikely(!i)) { 1248 i -= tx_ring->count; 1249 tx_buffer = tx_ring->tx_buffer; 1250 tx_desc = FM10K_TX_DESC(tx_ring, 0); 1251 } 1252 1253 /* unmap any remaining paged data */ 1254 if (dma_unmap_len(tx_buffer, len)) { 1255 dma_unmap_page(tx_ring->dev, 1256 dma_unmap_addr(tx_buffer, dma), 1257 dma_unmap_len(tx_buffer, len), 1258 DMA_TO_DEVICE); 1259 dma_unmap_len_set(tx_buffer, len, 0); 1260 } 1261 } 1262 1263 /* move us one more past the eop_desc for start of next pkt */ 1264 tx_buffer++; 1265 tx_desc++; 1266 i++; 1267 if (unlikely(!i)) { 1268 i -= tx_ring->count; 1269 tx_buffer = tx_ring->tx_buffer; 1270 tx_desc = FM10K_TX_DESC(tx_ring, 0); 1271 } 1272 1273 /* issue prefetch for next Tx descriptor */ 1274 prefetch(tx_desc); 1275 1276 /* update budget accounting */ 1277 budget--; 1278 } while (likely(budget)); 1279 1280 i += tx_ring->count; 1281 tx_ring->next_to_clean = i; 1282 u64_stats_update_begin(&tx_ring->syncp); 1283 tx_ring->stats.bytes += total_bytes; 1284 tx_ring->stats.packets += total_packets; 1285 u64_stats_update_end(&tx_ring->syncp); 1286 q_vector->tx.total_bytes += total_bytes; 1287 q_vector->tx.total_packets += total_packets; 1288 1289 if (check_for_tx_hang(tx_ring) && fm10k_check_tx_hang(tx_ring)) { 1290 /* schedule immediate reset if we believe we hung */ 1291 struct fm10k_hw *hw = &interface->hw; 1292 1293 netif_err(interface, drv, tx_ring->netdev, 1294 "Detected Tx Unit Hang\n" 1295 " Tx Queue <%d>\n" 1296 " TDH, TDT <%x>, <%x>\n" 1297 " next_to_use <%x>\n" 1298 " next_to_clean <%x>\n", 1299 tx_ring->queue_index, 1300 fm10k_read_reg(hw, FM10K_TDH(tx_ring->reg_idx)), 1301 fm10k_read_reg(hw, FM10K_TDT(tx_ring->reg_idx)), 1302 tx_ring->next_to_use, i); 1303 1304 netif_stop_subqueue(tx_ring->netdev, 1305 tx_ring->queue_index); 1306 1307 netif_info(interface, probe, tx_ring->netdev, 1308 "tx hang %d detected on queue %d, resetting interface\n", 1309 interface->tx_timeout_count + 1, 1310 tx_ring->queue_index); 1311 1312 fm10k_tx_timeout_reset(interface); 1313 1314 /* the netdev is about to reset, no point in enabling stuff */ 1315 return true; 1316 } 1317 1318 /* notify netdev of completed buffers */ 1319 netdev_tx_completed_queue(txring_txq(tx_ring), 1320 total_packets, total_bytes); 1321 1322 #define TX_WAKE_THRESHOLD min_t(u16, FM10K_MIN_TXD - 1, DESC_NEEDED * 2) 1323 if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) && 1324 (fm10k_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD))) { 1325 /* Make sure that anybody stopping the queue after this 1326 * sees the new next_to_clean. 1327 */ 1328 smp_mb(); 1329 if (__netif_subqueue_stopped(tx_ring->netdev, 1330 tx_ring->queue_index) && 1331 !test_bit(__FM10K_DOWN, interface->state)) { 1332 netif_wake_subqueue(tx_ring->netdev, 1333 tx_ring->queue_index); 1334 ++tx_ring->tx_stats.restart_queue; 1335 } 1336 } 1337 1338 return !!budget; 1339 } 1340 1341 /** 1342 * fm10k_update_itr - update the dynamic ITR value based on packet size 1343 * 1344 * Stores a new ITR value based on strictly on packet size. The 1345 * divisors and thresholds used by this function were determined based 1346 * on theoretical maximum wire speed and testing data, in order to 1347 * minimize response time while increasing bulk throughput. 1348 * 1349 * @ring_container: Container for rings to have ITR updated 1350 **/ 1351 static void fm10k_update_itr(struct fm10k_ring_container *ring_container) 1352 { 1353 unsigned int avg_wire_size, packets, itr_round; 1354 1355 /* Only update ITR if we are using adaptive setting */ 1356 if (!ITR_IS_ADAPTIVE(ring_container->itr)) 1357 goto clear_counts; 1358 1359 packets = ring_container->total_packets; 1360 if (!packets) 1361 goto clear_counts; 1362 1363 avg_wire_size = ring_container->total_bytes / packets; 1364 1365 /* The following is a crude approximation of: 1366 * wmem_default / (size + overhead) = desired_pkts_per_int 1367 * rate / bits_per_byte / (size + ethernet overhead) = pkt_rate 1368 * (desired_pkt_rate / pkt_rate) * usecs_per_sec = ITR value 1369 * 1370 * Assuming wmem_default is 212992 and overhead is 640 bytes per 1371 * packet, (256 skb, 64 headroom, 320 shared info), we can reduce the 1372 * formula down to 1373 * 1374 * (34 * (size + 24)) / (size + 640) = ITR 1375 * 1376 * We first do some math on the packet size and then finally bitshift 1377 * by 8 after rounding up. We also have to account for PCIe link speed 1378 * difference as ITR scales based on this. 1379 */ 1380 if (avg_wire_size <= 360) { 1381 /* Start at 250K ints/sec and gradually drop to 77K ints/sec */ 1382 avg_wire_size *= 8; 1383 avg_wire_size += 376; 1384 } else if (avg_wire_size <= 1152) { 1385 /* 77K ints/sec to 45K ints/sec */ 1386 avg_wire_size *= 3; 1387 avg_wire_size += 2176; 1388 } else if (avg_wire_size <= 1920) { 1389 /* 45K ints/sec to 38K ints/sec */ 1390 avg_wire_size += 4480; 1391 } else { 1392 /* plateau at a limit of 38K ints/sec */ 1393 avg_wire_size = 6656; 1394 } 1395 1396 /* Perform final bitshift for division after rounding up to ensure 1397 * that the calculation will never get below a 1. The bit shift 1398 * accounts for changes in the ITR due to PCIe link speed. 1399 */ 1400 itr_round = READ_ONCE(ring_container->itr_scale) + 8; 1401 avg_wire_size += BIT(itr_round) - 1; 1402 avg_wire_size >>= itr_round; 1403 1404 /* write back value and retain adaptive flag */ 1405 ring_container->itr = avg_wire_size | FM10K_ITR_ADAPTIVE; 1406 1407 clear_counts: 1408 ring_container->total_bytes = 0; 1409 ring_container->total_packets = 0; 1410 } 1411 1412 static void fm10k_qv_enable(struct fm10k_q_vector *q_vector) 1413 { 1414 /* Enable auto-mask and clear the current mask */ 1415 u32 itr = FM10K_ITR_ENABLE; 1416 1417 /* Update Tx ITR */ 1418 fm10k_update_itr(&q_vector->tx); 1419 1420 /* Update Rx ITR */ 1421 fm10k_update_itr(&q_vector->rx); 1422 1423 /* Store Tx itr in timer slot 0 */ 1424 itr |= (q_vector->tx.itr & FM10K_ITR_MAX); 1425 1426 /* Shift Rx itr to timer slot 1 */ 1427 itr |= (q_vector->rx.itr & FM10K_ITR_MAX) << FM10K_ITR_INTERVAL1_SHIFT; 1428 1429 /* Write the final value to the ITR register */ 1430 writel(itr, q_vector->itr); 1431 } 1432 1433 static int fm10k_poll(struct napi_struct *napi, int budget) 1434 { 1435 struct fm10k_q_vector *q_vector = 1436 container_of(napi, struct fm10k_q_vector, napi); 1437 struct fm10k_ring *ring; 1438 int per_ring_budget, work_done = 0; 1439 bool clean_complete = true; 1440 1441 fm10k_for_each_ring(ring, q_vector->tx) { 1442 if (!fm10k_clean_tx_irq(q_vector, ring, budget)) 1443 clean_complete = false; 1444 } 1445 1446 /* Handle case where we are called by netpoll with a budget of 0 */ 1447 if (budget <= 0) 1448 return budget; 1449 1450 /* attempt to distribute budget to each queue fairly, but don't 1451 * allow the budget to go below 1 because we'll exit polling 1452 */ 1453 if (q_vector->rx.count > 1) 1454 per_ring_budget = max(budget / q_vector->rx.count, 1); 1455 else 1456 per_ring_budget = budget; 1457 1458 fm10k_for_each_ring(ring, q_vector->rx) { 1459 int work = fm10k_clean_rx_irq(q_vector, ring, per_ring_budget); 1460 1461 work_done += work; 1462 if (work >= per_ring_budget) 1463 clean_complete = false; 1464 } 1465 1466 /* If all work not completed, return budget and keep polling */ 1467 if (!clean_complete) 1468 return budget; 1469 1470 /* Exit the polling mode, but don't re-enable interrupts if stack might 1471 * poll us due to busy-polling 1472 */ 1473 if (likely(napi_complete_done(napi, work_done))) 1474 fm10k_qv_enable(q_vector); 1475 1476 return min(work_done, budget - 1); 1477 } 1478 1479 /** 1480 * fm10k_set_qos_queues: Allocate queues for a QOS-enabled device 1481 * @interface: board private structure to initialize 1482 * 1483 * When QoS (Quality of Service) is enabled, allocate queues for 1484 * each traffic class. If multiqueue isn't available,then abort QoS 1485 * initialization. 1486 * 1487 * This function handles all combinations of Qos and RSS. 1488 * 1489 **/ 1490 static bool fm10k_set_qos_queues(struct fm10k_intfc *interface) 1491 { 1492 struct net_device *dev = interface->netdev; 1493 struct fm10k_ring_feature *f; 1494 int rss_i, i; 1495 int pcs; 1496 1497 /* Map queue offset and counts onto allocated tx queues */ 1498 pcs = netdev_get_num_tc(dev); 1499 1500 if (pcs <= 1) 1501 return false; 1502 1503 /* set QoS mask and indices */ 1504 f = &interface->ring_feature[RING_F_QOS]; 1505 f->indices = pcs; 1506 f->mask = BIT(fls(pcs - 1)) - 1; 1507 1508 /* determine the upper limit for our current DCB mode */ 1509 rss_i = interface->hw.mac.max_queues / pcs; 1510 rss_i = BIT(fls(rss_i) - 1); 1511 1512 /* set RSS mask and indices */ 1513 f = &interface->ring_feature[RING_F_RSS]; 1514 rss_i = min_t(u16, rss_i, f->limit); 1515 f->indices = rss_i; 1516 f->mask = BIT(fls(rss_i - 1)) - 1; 1517 1518 /* configure pause class to queue mapping */ 1519 for (i = 0; i < pcs; i++) 1520 netdev_set_tc_queue(dev, i, rss_i, rss_i * i); 1521 1522 interface->num_rx_queues = rss_i * pcs; 1523 interface->num_tx_queues = rss_i * pcs; 1524 1525 return true; 1526 } 1527 1528 /** 1529 * fm10k_set_rss_queues: Allocate queues for RSS 1530 * @interface: board private structure to initialize 1531 * 1532 * This is our "base" multiqueue mode. RSS (Receive Side Scaling) will try 1533 * to allocate one Rx queue per CPU, and if available, one Tx queue per CPU. 1534 * 1535 **/ 1536 static bool fm10k_set_rss_queues(struct fm10k_intfc *interface) 1537 { 1538 struct fm10k_ring_feature *f; 1539 u16 rss_i; 1540 1541 f = &interface->ring_feature[RING_F_RSS]; 1542 rss_i = min_t(u16, interface->hw.mac.max_queues, f->limit); 1543 1544 /* record indices and power of 2 mask for RSS */ 1545 f->indices = rss_i; 1546 f->mask = BIT(fls(rss_i - 1)) - 1; 1547 1548 interface->num_rx_queues = rss_i; 1549 interface->num_tx_queues = rss_i; 1550 1551 return true; 1552 } 1553 1554 /** 1555 * fm10k_set_num_queues: Allocate queues for device, feature dependent 1556 * @interface: board private structure to initialize 1557 * 1558 * This is the top level queue allocation routine. The order here is very 1559 * important, starting with the "most" number of features turned on at once, 1560 * and ending with the smallest set of features. This way large combinations 1561 * can be allocated if they're turned on, and smaller combinations are the 1562 * fallthrough conditions. 1563 * 1564 **/ 1565 static void fm10k_set_num_queues(struct fm10k_intfc *interface) 1566 { 1567 /* Attempt to setup QoS and RSS first */ 1568 if (fm10k_set_qos_queues(interface)) 1569 return; 1570 1571 /* If we don't have QoS, just fallback to only RSS. */ 1572 fm10k_set_rss_queues(interface); 1573 } 1574 1575 /** 1576 * fm10k_reset_num_queues - Reset the number of queues to zero 1577 * @interface: board private structure 1578 * 1579 * This function should be called whenever we need to reset the number of 1580 * queues after an error condition. 1581 */ 1582 static void fm10k_reset_num_queues(struct fm10k_intfc *interface) 1583 { 1584 interface->num_tx_queues = 0; 1585 interface->num_rx_queues = 0; 1586 interface->num_q_vectors = 0; 1587 } 1588 1589 /** 1590 * fm10k_alloc_q_vector - Allocate memory for a single interrupt vector 1591 * @interface: board private structure to initialize 1592 * @v_count: q_vectors allocated on interface, used for ring interleaving 1593 * @v_idx: index of vector in interface struct 1594 * @txr_count: total number of Tx rings to allocate 1595 * @txr_idx: index of first Tx ring to allocate 1596 * @rxr_count: total number of Rx rings to allocate 1597 * @rxr_idx: index of first Rx ring to allocate 1598 * 1599 * We allocate one q_vector. If allocation fails we return -ENOMEM. 1600 **/ 1601 static int fm10k_alloc_q_vector(struct fm10k_intfc *interface, 1602 unsigned int v_count, unsigned int v_idx, 1603 unsigned int txr_count, unsigned int txr_idx, 1604 unsigned int rxr_count, unsigned int rxr_idx) 1605 { 1606 struct fm10k_q_vector *q_vector; 1607 struct fm10k_ring *ring; 1608 int ring_count; 1609 1610 ring_count = txr_count + rxr_count; 1611 1612 /* allocate q_vector and rings */ 1613 q_vector = kzalloc(struct_size(q_vector, ring, ring_count), GFP_KERNEL); 1614 if (!q_vector) 1615 return -ENOMEM; 1616 1617 /* initialize NAPI */ 1618 netif_napi_add(interface->netdev, &q_vector->napi, 1619 fm10k_poll, NAPI_POLL_WEIGHT); 1620 1621 /* tie q_vector and interface together */ 1622 interface->q_vector[v_idx] = q_vector; 1623 q_vector->interface = interface; 1624 q_vector->v_idx = v_idx; 1625 1626 /* initialize pointer to rings */ 1627 ring = q_vector->ring; 1628 1629 /* save Tx ring container info */ 1630 q_vector->tx.ring = ring; 1631 q_vector->tx.work_limit = FM10K_DEFAULT_TX_WORK; 1632 q_vector->tx.itr = interface->tx_itr; 1633 q_vector->tx.itr_scale = interface->hw.mac.itr_scale; 1634 q_vector->tx.count = txr_count; 1635 1636 while (txr_count) { 1637 /* assign generic ring traits */ 1638 ring->dev = &interface->pdev->dev; 1639 ring->netdev = interface->netdev; 1640 1641 /* configure backlink on ring */ 1642 ring->q_vector = q_vector; 1643 1644 /* apply Tx specific ring traits */ 1645 ring->count = interface->tx_ring_count; 1646 ring->queue_index = txr_idx; 1647 1648 /* assign ring to interface */ 1649 interface->tx_ring[txr_idx] = ring; 1650 1651 /* update count and index */ 1652 txr_count--; 1653 txr_idx += v_count; 1654 1655 /* push pointer to next ring */ 1656 ring++; 1657 } 1658 1659 /* save Rx ring container info */ 1660 q_vector->rx.ring = ring; 1661 q_vector->rx.itr = interface->rx_itr; 1662 q_vector->rx.itr_scale = interface->hw.mac.itr_scale; 1663 q_vector->rx.count = rxr_count; 1664 1665 while (rxr_count) { 1666 /* assign generic ring traits */ 1667 ring->dev = &interface->pdev->dev; 1668 ring->netdev = interface->netdev; 1669 rcu_assign_pointer(ring->l2_accel, interface->l2_accel); 1670 1671 /* configure backlink on ring */ 1672 ring->q_vector = q_vector; 1673 1674 /* apply Rx specific ring traits */ 1675 ring->count = interface->rx_ring_count; 1676 ring->queue_index = rxr_idx; 1677 1678 /* assign ring to interface */ 1679 interface->rx_ring[rxr_idx] = ring; 1680 1681 /* update count and index */ 1682 rxr_count--; 1683 rxr_idx += v_count; 1684 1685 /* push pointer to next ring */ 1686 ring++; 1687 } 1688 1689 fm10k_dbg_q_vector_init(q_vector); 1690 1691 return 0; 1692 } 1693 1694 /** 1695 * fm10k_free_q_vector - Free memory allocated for specific interrupt vector 1696 * @interface: board private structure to initialize 1697 * @v_idx: Index of vector to be freed 1698 * 1699 * This function frees the memory allocated to the q_vector. In addition if 1700 * NAPI is enabled it will delete any references to the NAPI struct prior 1701 * to freeing the q_vector. 1702 **/ 1703 static void fm10k_free_q_vector(struct fm10k_intfc *interface, int v_idx) 1704 { 1705 struct fm10k_q_vector *q_vector = interface->q_vector[v_idx]; 1706 struct fm10k_ring *ring; 1707 1708 fm10k_dbg_q_vector_exit(q_vector); 1709 1710 fm10k_for_each_ring(ring, q_vector->tx) 1711 interface->tx_ring[ring->queue_index] = NULL; 1712 1713 fm10k_for_each_ring(ring, q_vector->rx) 1714 interface->rx_ring[ring->queue_index] = NULL; 1715 1716 interface->q_vector[v_idx] = NULL; 1717 netif_napi_del(&q_vector->napi); 1718 kfree_rcu(q_vector, rcu); 1719 } 1720 1721 /** 1722 * fm10k_alloc_q_vectors - Allocate memory for interrupt vectors 1723 * @interface: board private structure to initialize 1724 * 1725 * We allocate one q_vector per queue interrupt. If allocation fails we 1726 * return -ENOMEM. 1727 **/ 1728 static int fm10k_alloc_q_vectors(struct fm10k_intfc *interface) 1729 { 1730 unsigned int q_vectors = interface->num_q_vectors; 1731 unsigned int rxr_remaining = interface->num_rx_queues; 1732 unsigned int txr_remaining = interface->num_tx_queues; 1733 unsigned int rxr_idx = 0, txr_idx = 0, v_idx = 0; 1734 int err; 1735 1736 if (q_vectors >= (rxr_remaining + txr_remaining)) { 1737 for (; rxr_remaining; v_idx++) { 1738 err = fm10k_alloc_q_vector(interface, q_vectors, v_idx, 1739 0, 0, 1, rxr_idx); 1740 if (err) 1741 goto err_out; 1742 1743 /* update counts and index */ 1744 rxr_remaining--; 1745 rxr_idx++; 1746 } 1747 } 1748 1749 for (; v_idx < q_vectors; v_idx++) { 1750 int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx); 1751 int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx); 1752 1753 err = fm10k_alloc_q_vector(interface, q_vectors, v_idx, 1754 tqpv, txr_idx, 1755 rqpv, rxr_idx); 1756 1757 if (err) 1758 goto err_out; 1759 1760 /* update counts and index */ 1761 rxr_remaining -= rqpv; 1762 txr_remaining -= tqpv; 1763 rxr_idx++; 1764 txr_idx++; 1765 } 1766 1767 return 0; 1768 1769 err_out: 1770 fm10k_reset_num_queues(interface); 1771 1772 while (v_idx--) 1773 fm10k_free_q_vector(interface, v_idx); 1774 1775 return -ENOMEM; 1776 } 1777 1778 /** 1779 * fm10k_free_q_vectors - Free memory allocated for interrupt vectors 1780 * @interface: board private structure to initialize 1781 * 1782 * This function frees the memory allocated to the q_vectors. In addition if 1783 * NAPI is enabled it will delete any references to the NAPI struct prior 1784 * to freeing the q_vector. 1785 **/ 1786 static void fm10k_free_q_vectors(struct fm10k_intfc *interface) 1787 { 1788 int v_idx = interface->num_q_vectors; 1789 1790 fm10k_reset_num_queues(interface); 1791 1792 while (v_idx--) 1793 fm10k_free_q_vector(interface, v_idx); 1794 } 1795 1796 /** 1797 * f10k_reset_msix_capability - reset MSI-X capability 1798 * @interface: board private structure to initialize 1799 * 1800 * Reset the MSI-X capability back to its starting state 1801 **/ 1802 static void fm10k_reset_msix_capability(struct fm10k_intfc *interface) 1803 { 1804 pci_disable_msix(interface->pdev); 1805 kfree(interface->msix_entries); 1806 interface->msix_entries = NULL; 1807 } 1808 1809 /** 1810 * f10k_init_msix_capability - configure MSI-X capability 1811 * @interface: board private structure to initialize 1812 * 1813 * Attempt to configure the interrupts using the best available 1814 * capabilities of the hardware and the kernel. 1815 **/ 1816 static int fm10k_init_msix_capability(struct fm10k_intfc *interface) 1817 { 1818 struct fm10k_hw *hw = &interface->hw; 1819 int v_budget, vector; 1820 1821 /* It's easy to be greedy for MSI-X vectors, but it really 1822 * doesn't do us much good if we have a lot more vectors 1823 * than CPU's. So let's be conservative and only ask for 1824 * (roughly) the same number of vectors as there are CPU's. 1825 * the default is to use pairs of vectors 1826 */ 1827 v_budget = max(interface->num_rx_queues, interface->num_tx_queues); 1828 v_budget = min_t(u16, v_budget, num_online_cpus()); 1829 1830 /* account for vectors not related to queues */ 1831 v_budget += NON_Q_VECTORS(hw); 1832 1833 /* At the same time, hardware can only support a maximum of 1834 * hw.mac->max_msix_vectors vectors. With features 1835 * such as RSS and VMDq, we can easily surpass the number of Rx and Tx 1836 * descriptor queues supported by our device. Thus, we cap it off in 1837 * those rare cases where the cpu count also exceeds our vector limit. 1838 */ 1839 v_budget = min_t(int, v_budget, hw->mac.max_msix_vectors); 1840 1841 /* A failure in MSI-X entry allocation is fatal. */ 1842 interface->msix_entries = kcalloc(v_budget, sizeof(struct msix_entry), 1843 GFP_KERNEL); 1844 if (!interface->msix_entries) 1845 return -ENOMEM; 1846 1847 /* populate entry values */ 1848 for (vector = 0; vector < v_budget; vector++) 1849 interface->msix_entries[vector].entry = vector; 1850 1851 /* Attempt to enable MSI-X with requested value */ 1852 v_budget = pci_enable_msix_range(interface->pdev, 1853 interface->msix_entries, 1854 MIN_MSIX_COUNT(hw), 1855 v_budget); 1856 if (v_budget < 0) { 1857 kfree(interface->msix_entries); 1858 interface->msix_entries = NULL; 1859 return v_budget; 1860 } 1861 1862 /* record the number of queues available for q_vectors */ 1863 interface->num_q_vectors = v_budget - NON_Q_VECTORS(hw); 1864 1865 return 0; 1866 } 1867 1868 /** 1869 * fm10k_cache_ring_qos - Descriptor ring to register mapping for QoS 1870 * @interface: Interface structure continaining rings and devices 1871 * 1872 * Cache the descriptor ring offsets for Qos 1873 **/ 1874 static bool fm10k_cache_ring_qos(struct fm10k_intfc *interface) 1875 { 1876 struct net_device *dev = interface->netdev; 1877 int pc, offset, rss_i, i, q_idx; 1878 u16 pc_stride = interface->ring_feature[RING_F_QOS].mask + 1; 1879 u8 num_pcs = netdev_get_num_tc(dev); 1880 1881 if (num_pcs <= 1) 1882 return false; 1883 1884 rss_i = interface->ring_feature[RING_F_RSS].indices; 1885 1886 for (pc = 0, offset = 0; pc < num_pcs; pc++, offset += rss_i) { 1887 q_idx = pc; 1888 for (i = 0; i < rss_i; i++) { 1889 interface->tx_ring[offset + i]->reg_idx = q_idx; 1890 interface->tx_ring[offset + i]->qos_pc = pc; 1891 interface->rx_ring[offset + i]->reg_idx = q_idx; 1892 interface->rx_ring[offset + i]->qos_pc = pc; 1893 q_idx += pc_stride; 1894 } 1895 } 1896 1897 return true; 1898 } 1899 1900 /** 1901 * fm10k_cache_ring_rss - Descriptor ring to register mapping for RSS 1902 * @interface: Interface structure continaining rings and devices 1903 * 1904 * Cache the descriptor ring offsets for RSS 1905 **/ 1906 static void fm10k_cache_ring_rss(struct fm10k_intfc *interface) 1907 { 1908 int i; 1909 1910 for (i = 0; i < interface->num_rx_queues; i++) 1911 interface->rx_ring[i]->reg_idx = i; 1912 1913 for (i = 0; i < interface->num_tx_queues; i++) 1914 interface->tx_ring[i]->reg_idx = i; 1915 } 1916 1917 /** 1918 * fm10k_assign_rings - Map rings to network devices 1919 * @interface: Interface structure containing rings and devices 1920 * 1921 * This function is meant to go though and configure both the network 1922 * devices so that they contain rings, and configure the rings so that 1923 * they function with their network devices. 1924 **/ 1925 static void fm10k_assign_rings(struct fm10k_intfc *interface) 1926 { 1927 if (fm10k_cache_ring_qos(interface)) 1928 return; 1929 1930 fm10k_cache_ring_rss(interface); 1931 } 1932 1933 static void fm10k_init_reta(struct fm10k_intfc *interface) 1934 { 1935 u16 i, rss_i = interface->ring_feature[RING_F_RSS].indices; 1936 u32 reta; 1937 1938 /* If the Rx flow indirection table has been configured manually, we 1939 * need to maintain it when possible. 1940 */ 1941 if (netif_is_rxfh_configured(interface->netdev)) { 1942 for (i = FM10K_RETA_SIZE; i--;) { 1943 reta = interface->reta[i]; 1944 if ((((reta << 24) >> 24) < rss_i) && 1945 (((reta << 16) >> 24) < rss_i) && 1946 (((reta << 8) >> 24) < rss_i) && 1947 (((reta) >> 24) < rss_i)) 1948 continue; 1949 1950 /* this should never happen */ 1951 dev_err(&interface->pdev->dev, 1952 "RSS indirection table assigned flows out of queue bounds. Reconfiguring.\n"); 1953 goto repopulate_reta; 1954 } 1955 1956 /* do nothing if all of the elements are in bounds */ 1957 return; 1958 } 1959 1960 repopulate_reta: 1961 fm10k_write_reta(interface, NULL); 1962 } 1963 1964 /** 1965 * fm10k_init_queueing_scheme - Determine proper queueing scheme 1966 * @interface: board private structure to initialize 1967 * 1968 * We determine which queueing scheme to use based on... 1969 * - Hardware queue count (num_*_queues) 1970 * - defined by miscellaneous hardware support/features (RSS, etc.) 1971 **/ 1972 int fm10k_init_queueing_scheme(struct fm10k_intfc *interface) 1973 { 1974 int err; 1975 1976 /* Number of supported queues */ 1977 fm10k_set_num_queues(interface); 1978 1979 /* Configure MSI-X capability */ 1980 err = fm10k_init_msix_capability(interface); 1981 if (err) { 1982 dev_err(&interface->pdev->dev, 1983 "Unable to initialize MSI-X capability\n"); 1984 goto err_init_msix; 1985 } 1986 1987 /* Allocate memory for queues */ 1988 err = fm10k_alloc_q_vectors(interface); 1989 if (err) { 1990 dev_err(&interface->pdev->dev, 1991 "Unable to allocate queue vectors\n"); 1992 goto err_alloc_q_vectors; 1993 } 1994 1995 /* Map rings to devices, and map devices to physical queues */ 1996 fm10k_assign_rings(interface); 1997 1998 /* Initialize RSS redirection table */ 1999 fm10k_init_reta(interface); 2000 2001 return 0; 2002 2003 err_alloc_q_vectors: 2004 fm10k_reset_msix_capability(interface); 2005 err_init_msix: 2006 fm10k_reset_num_queues(interface); 2007 return err; 2008 } 2009 2010 /** 2011 * fm10k_clear_queueing_scheme - Clear the current queueing scheme settings 2012 * @interface: board private structure to clear queueing scheme on 2013 * 2014 * We go through and clear queueing specific resources and reset the structure 2015 * to pre-load conditions 2016 **/ 2017 void fm10k_clear_queueing_scheme(struct fm10k_intfc *interface) 2018 { 2019 fm10k_free_q_vectors(interface); 2020 fm10k_reset_msix_capability(interface); 2021 } 2022