1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright(c) 1999 - 2018 Intel Corporation. */ 3 4 #include "e1000.h" 5 6 static s32 e1000_wait_autoneg(struct e1000_hw *hw); 7 static s32 e1000_access_phy_wakeup_reg_bm(struct e1000_hw *hw, u32 offset, 8 u16 *data, bool read, bool page_set); 9 static u32 e1000_get_phy_addr_for_hv_page(u32 page); 10 static s32 e1000_access_phy_debug_regs_hv(struct e1000_hw *hw, u32 offset, 11 u16 *data, bool read); 12 13 /* Cable length tables */ 14 static const u16 e1000_m88_cable_length_table[] = { 15 0, 50, 80, 110, 140, 140, E1000_CABLE_LENGTH_UNDEFINED 16 }; 17 18 #define M88E1000_CABLE_LENGTH_TABLE_SIZE \ 19 ARRAY_SIZE(e1000_m88_cable_length_table) 20 21 static const u16 e1000_igp_2_cable_length_table[] = { 22 0, 0, 0, 0, 0, 0, 0, 0, 3, 5, 8, 11, 13, 16, 18, 21, 0, 0, 0, 3, 23 6, 10, 13, 16, 19, 23, 26, 29, 32, 35, 38, 41, 6, 10, 14, 18, 22, 24 26, 30, 33, 37, 41, 44, 48, 51, 54, 58, 61, 21, 26, 31, 35, 40, 25 44, 49, 53, 57, 61, 65, 68, 72, 75, 79, 82, 40, 45, 51, 56, 61, 26 66, 70, 75, 79, 83, 87, 91, 94, 98, 101, 104, 60, 66, 72, 77, 82, 27 87, 92, 96, 100, 104, 108, 111, 114, 117, 119, 121, 83, 89, 95, 28 100, 105, 109, 113, 116, 119, 122, 124, 104, 109, 114, 118, 121, 29 124 30 }; 31 32 #define IGP02E1000_CABLE_LENGTH_TABLE_SIZE \ 33 ARRAY_SIZE(e1000_igp_2_cable_length_table) 34 35 /** 36 * e1000e_check_reset_block_generic - Check if PHY reset is blocked 37 * @hw: pointer to the HW structure 38 * 39 * Read the PHY management control register and check whether a PHY reset 40 * is blocked. If a reset is not blocked return 0, otherwise 41 * return E1000_BLK_PHY_RESET (12). 42 **/ 43 s32 e1000e_check_reset_block_generic(struct e1000_hw *hw) 44 { 45 u32 manc; 46 47 manc = er32(MANC); 48 49 return (manc & E1000_MANC_BLK_PHY_RST_ON_IDE) ? E1000_BLK_PHY_RESET : 0; 50 } 51 52 /** 53 * e1000e_get_phy_id - Retrieve the PHY ID and revision 54 * @hw: pointer to the HW structure 55 * 56 * Reads the PHY registers and stores the PHY ID and possibly the PHY 57 * revision in the hardware structure. 58 **/ 59 s32 e1000e_get_phy_id(struct e1000_hw *hw) 60 { 61 struct e1000_phy_info *phy = &hw->phy; 62 s32 ret_val = 0; 63 u16 phy_id; 64 u16 retry_count = 0; 65 66 if (!phy->ops.read_reg) 67 return 0; 68 69 while (retry_count < 2) { 70 ret_val = e1e_rphy(hw, MII_PHYSID1, &phy_id); 71 if (ret_val) 72 return ret_val; 73 74 phy->id = (u32)(phy_id << 16); 75 usleep_range(20, 40); 76 ret_val = e1e_rphy(hw, MII_PHYSID2, &phy_id); 77 if (ret_val) 78 return ret_val; 79 80 phy->id |= (u32)(phy_id & PHY_REVISION_MASK); 81 phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK); 82 83 if (phy->id != 0 && phy->id != PHY_REVISION_MASK) 84 return 0; 85 86 retry_count++; 87 } 88 89 return 0; 90 } 91 92 /** 93 * e1000e_phy_reset_dsp - Reset PHY DSP 94 * @hw: pointer to the HW structure 95 * 96 * Reset the digital signal processor. 97 **/ 98 s32 e1000e_phy_reset_dsp(struct e1000_hw *hw) 99 { 100 s32 ret_val; 101 102 ret_val = e1e_wphy(hw, M88E1000_PHY_GEN_CONTROL, 0xC1); 103 if (ret_val) 104 return ret_val; 105 106 return e1e_wphy(hw, M88E1000_PHY_GEN_CONTROL, 0); 107 } 108 109 /** 110 * e1000e_read_phy_reg_mdic - Read MDI control register 111 * @hw: pointer to the HW structure 112 * @offset: register offset to be read 113 * @data: pointer to the read data 114 * 115 * Reads the MDI control register in the PHY at offset and stores the 116 * information read to data. 117 **/ 118 s32 e1000e_read_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 *data) 119 { 120 struct e1000_phy_info *phy = &hw->phy; 121 u32 i, mdic = 0; 122 123 if (offset > MAX_PHY_REG_ADDRESS) { 124 e_dbg("PHY Address %d is out of range\n", offset); 125 return -E1000_ERR_PARAM; 126 } 127 128 /* Set up Op-code, Phy Address, and register offset in the MDI 129 * Control register. The MAC will take care of interfacing with the 130 * PHY to retrieve the desired data. 131 */ 132 mdic = ((offset << E1000_MDIC_REG_SHIFT) | 133 (phy->addr << E1000_MDIC_PHY_SHIFT) | 134 (E1000_MDIC_OP_READ)); 135 136 ew32(MDIC, mdic); 137 138 /* Poll the ready bit to see if the MDI read completed 139 * Increasing the time out as testing showed failures with 140 * the lower time out 141 */ 142 for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) { 143 udelay(50); 144 mdic = er32(MDIC); 145 if (mdic & E1000_MDIC_READY) 146 break; 147 } 148 if (!(mdic & E1000_MDIC_READY)) { 149 e_dbg("MDI Read PHY Reg Address %d did not complete\n", offset); 150 return -E1000_ERR_PHY; 151 } 152 if (mdic & E1000_MDIC_ERROR) { 153 e_dbg("MDI Read PHY Reg Address %d Error\n", offset); 154 return -E1000_ERR_PHY; 155 } 156 if (((mdic & E1000_MDIC_REG_MASK) >> E1000_MDIC_REG_SHIFT) != offset) { 157 e_dbg("MDI Read offset error - requested %d, returned %d\n", 158 offset, 159 (mdic & E1000_MDIC_REG_MASK) >> E1000_MDIC_REG_SHIFT); 160 return -E1000_ERR_PHY; 161 } 162 *data = (u16)mdic; 163 164 /* Allow some time after each MDIC transaction to avoid 165 * reading duplicate data in the next MDIC transaction. 166 */ 167 if (hw->mac.type == e1000_pch2lan) 168 udelay(100); 169 170 return 0; 171 } 172 173 /** 174 * e1000e_write_phy_reg_mdic - Write MDI control register 175 * @hw: pointer to the HW structure 176 * @offset: register offset to write to 177 * @data: data to write to register at offset 178 * 179 * Writes data to MDI control register in the PHY at offset. 180 **/ 181 s32 e1000e_write_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 data) 182 { 183 struct e1000_phy_info *phy = &hw->phy; 184 u32 i, mdic = 0; 185 186 if (offset > MAX_PHY_REG_ADDRESS) { 187 e_dbg("PHY Address %d is out of range\n", offset); 188 return -E1000_ERR_PARAM; 189 } 190 191 /* Set up Op-code, Phy Address, and register offset in the MDI 192 * Control register. The MAC will take care of interfacing with the 193 * PHY to retrieve the desired data. 194 */ 195 mdic = (((u32)data) | 196 (offset << E1000_MDIC_REG_SHIFT) | 197 (phy->addr << E1000_MDIC_PHY_SHIFT) | 198 (E1000_MDIC_OP_WRITE)); 199 200 ew32(MDIC, mdic); 201 202 /* Poll the ready bit to see if the MDI read completed 203 * Increasing the time out as testing showed failures with 204 * the lower time out 205 */ 206 for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) { 207 udelay(50); 208 mdic = er32(MDIC); 209 if (mdic & E1000_MDIC_READY) 210 break; 211 } 212 if (!(mdic & E1000_MDIC_READY)) { 213 e_dbg("MDI Write PHY Reg Address %d did not complete\n", offset); 214 return -E1000_ERR_PHY; 215 } 216 if (mdic & E1000_MDIC_ERROR) { 217 e_dbg("MDI Write PHY Red Address %d Error\n", offset); 218 return -E1000_ERR_PHY; 219 } 220 if (((mdic & E1000_MDIC_REG_MASK) >> E1000_MDIC_REG_SHIFT) != offset) { 221 e_dbg("MDI Write offset error - requested %d, returned %d\n", 222 offset, 223 (mdic & E1000_MDIC_REG_MASK) >> E1000_MDIC_REG_SHIFT); 224 return -E1000_ERR_PHY; 225 } 226 227 /* Allow some time after each MDIC transaction to avoid 228 * reading duplicate data in the next MDIC transaction. 229 */ 230 if (hw->mac.type == e1000_pch2lan) 231 udelay(100); 232 233 return 0; 234 } 235 236 /** 237 * e1000e_read_phy_reg_m88 - Read m88 PHY register 238 * @hw: pointer to the HW structure 239 * @offset: register offset to be read 240 * @data: pointer to the read data 241 * 242 * Acquires semaphore, if necessary, then reads the PHY register at offset 243 * and storing the retrieved information in data. Release any acquired 244 * semaphores before exiting. 245 **/ 246 s32 e1000e_read_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 *data) 247 { 248 s32 ret_val; 249 250 ret_val = hw->phy.ops.acquire(hw); 251 if (ret_val) 252 return ret_val; 253 254 ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset, 255 data); 256 257 hw->phy.ops.release(hw); 258 259 return ret_val; 260 } 261 262 /** 263 * e1000e_write_phy_reg_m88 - Write m88 PHY register 264 * @hw: pointer to the HW structure 265 * @offset: register offset to write to 266 * @data: data to write at register offset 267 * 268 * Acquires semaphore, if necessary, then writes the data to PHY register 269 * at the offset. Release any acquired semaphores before exiting. 270 **/ 271 s32 e1000e_write_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 data) 272 { 273 s32 ret_val; 274 275 ret_val = hw->phy.ops.acquire(hw); 276 if (ret_val) 277 return ret_val; 278 279 ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset, 280 data); 281 282 hw->phy.ops.release(hw); 283 284 return ret_val; 285 } 286 287 /** 288 * e1000_set_page_igp - Set page as on IGP-like PHY(s) 289 * @hw: pointer to the HW structure 290 * @page: page to set (shifted left when necessary) 291 * 292 * Sets PHY page required for PHY register access. Assumes semaphore is 293 * already acquired. Note, this function sets phy.addr to 1 so the caller 294 * must set it appropriately (if necessary) after this function returns. 295 **/ 296 s32 e1000_set_page_igp(struct e1000_hw *hw, u16 page) 297 { 298 e_dbg("Setting page 0x%x\n", page); 299 300 hw->phy.addr = 1; 301 302 return e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, page); 303 } 304 305 /** 306 * __e1000e_read_phy_reg_igp - Read igp PHY register 307 * @hw: pointer to the HW structure 308 * @offset: register offset to be read 309 * @data: pointer to the read data 310 * @locked: semaphore has already been acquired or not 311 * 312 * Acquires semaphore, if necessary, then reads the PHY register at offset 313 * and stores the retrieved information in data. Release any acquired 314 * semaphores before exiting. 315 **/ 316 static s32 __e1000e_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data, 317 bool locked) 318 { 319 s32 ret_val = 0; 320 321 if (!locked) { 322 if (!hw->phy.ops.acquire) 323 return 0; 324 325 ret_val = hw->phy.ops.acquire(hw); 326 if (ret_val) 327 return ret_val; 328 } 329 330 if (offset > MAX_PHY_MULTI_PAGE_REG) 331 ret_val = e1000e_write_phy_reg_mdic(hw, 332 IGP01E1000_PHY_PAGE_SELECT, 333 (u16)offset); 334 if (!ret_val) 335 ret_val = e1000e_read_phy_reg_mdic(hw, 336 MAX_PHY_REG_ADDRESS & offset, 337 data); 338 if (!locked) 339 hw->phy.ops.release(hw); 340 341 return ret_val; 342 } 343 344 /** 345 * e1000e_read_phy_reg_igp - Read igp PHY register 346 * @hw: pointer to the HW structure 347 * @offset: register offset to be read 348 * @data: pointer to the read data 349 * 350 * Acquires semaphore then reads the PHY register at offset and stores the 351 * retrieved information in data. 352 * Release the acquired semaphore before exiting. 353 **/ 354 s32 e1000e_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data) 355 { 356 return __e1000e_read_phy_reg_igp(hw, offset, data, false); 357 } 358 359 /** 360 * e1000e_read_phy_reg_igp_locked - Read igp PHY register 361 * @hw: pointer to the HW structure 362 * @offset: register offset to be read 363 * @data: pointer to the read data 364 * 365 * Reads the PHY register at offset and stores the retrieved information 366 * in data. Assumes semaphore already acquired. 367 **/ 368 s32 e1000e_read_phy_reg_igp_locked(struct e1000_hw *hw, u32 offset, u16 *data) 369 { 370 return __e1000e_read_phy_reg_igp(hw, offset, data, true); 371 } 372 373 /** 374 * __e1000e_write_phy_reg_igp - Write igp PHY register 375 * @hw: pointer to the HW structure 376 * @offset: register offset to write to 377 * @data: data to write at register offset 378 * @locked: semaphore has already been acquired or not 379 * 380 * Acquires semaphore, if necessary, then writes the data to PHY register 381 * at the offset. Release any acquired semaphores before exiting. 382 **/ 383 static s32 __e1000e_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data, 384 bool locked) 385 { 386 s32 ret_val = 0; 387 388 if (!locked) { 389 if (!hw->phy.ops.acquire) 390 return 0; 391 392 ret_val = hw->phy.ops.acquire(hw); 393 if (ret_val) 394 return ret_val; 395 } 396 397 if (offset > MAX_PHY_MULTI_PAGE_REG) 398 ret_val = e1000e_write_phy_reg_mdic(hw, 399 IGP01E1000_PHY_PAGE_SELECT, 400 (u16)offset); 401 if (!ret_val) 402 ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & 403 offset, data); 404 if (!locked) 405 hw->phy.ops.release(hw); 406 407 return ret_val; 408 } 409 410 /** 411 * e1000e_write_phy_reg_igp - Write igp PHY register 412 * @hw: pointer to the HW structure 413 * @offset: register offset to write to 414 * @data: data to write at register offset 415 * 416 * Acquires semaphore then writes the data to PHY register 417 * at the offset. Release any acquired semaphores before exiting. 418 **/ 419 s32 e1000e_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data) 420 { 421 return __e1000e_write_phy_reg_igp(hw, offset, data, false); 422 } 423 424 /** 425 * e1000e_write_phy_reg_igp_locked - Write igp PHY register 426 * @hw: pointer to the HW structure 427 * @offset: register offset to write to 428 * @data: data to write at register offset 429 * 430 * Writes the data to PHY register at the offset. 431 * Assumes semaphore already acquired. 432 **/ 433 s32 e1000e_write_phy_reg_igp_locked(struct e1000_hw *hw, u32 offset, u16 data) 434 { 435 return __e1000e_write_phy_reg_igp(hw, offset, data, true); 436 } 437 438 /** 439 * __e1000_read_kmrn_reg - Read kumeran register 440 * @hw: pointer to the HW structure 441 * @offset: register offset to be read 442 * @data: pointer to the read data 443 * @locked: semaphore has already been acquired or not 444 * 445 * Acquires semaphore, if necessary. Then reads the PHY register at offset 446 * using the kumeran interface. The information retrieved is stored in data. 447 * Release any acquired semaphores before exiting. 448 **/ 449 static s32 __e1000_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data, 450 bool locked) 451 { 452 u32 kmrnctrlsta; 453 454 if (!locked) { 455 s32 ret_val = 0; 456 457 if (!hw->phy.ops.acquire) 458 return 0; 459 460 ret_val = hw->phy.ops.acquire(hw); 461 if (ret_val) 462 return ret_val; 463 } 464 465 kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) & 466 E1000_KMRNCTRLSTA_OFFSET) | E1000_KMRNCTRLSTA_REN; 467 ew32(KMRNCTRLSTA, kmrnctrlsta); 468 e1e_flush(); 469 470 udelay(2); 471 472 kmrnctrlsta = er32(KMRNCTRLSTA); 473 *data = (u16)kmrnctrlsta; 474 475 if (!locked) 476 hw->phy.ops.release(hw); 477 478 return 0; 479 } 480 481 /** 482 * e1000e_read_kmrn_reg - Read kumeran register 483 * @hw: pointer to the HW structure 484 * @offset: register offset to be read 485 * @data: pointer to the read data 486 * 487 * Acquires semaphore then reads the PHY register at offset using the 488 * kumeran interface. The information retrieved is stored in data. 489 * Release the acquired semaphore before exiting. 490 **/ 491 s32 e1000e_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data) 492 { 493 return __e1000_read_kmrn_reg(hw, offset, data, false); 494 } 495 496 /** 497 * e1000e_read_kmrn_reg_locked - Read kumeran register 498 * @hw: pointer to the HW structure 499 * @offset: register offset to be read 500 * @data: pointer to the read data 501 * 502 * Reads the PHY register at offset using the kumeran interface. The 503 * information retrieved is stored in data. 504 * Assumes semaphore already acquired. 505 **/ 506 s32 e1000e_read_kmrn_reg_locked(struct e1000_hw *hw, u32 offset, u16 *data) 507 { 508 return __e1000_read_kmrn_reg(hw, offset, data, true); 509 } 510 511 /** 512 * __e1000_write_kmrn_reg - Write kumeran register 513 * @hw: pointer to the HW structure 514 * @offset: register offset to write to 515 * @data: data to write at register offset 516 * @locked: semaphore has already been acquired or not 517 * 518 * Acquires semaphore, if necessary. Then write the data to PHY register 519 * at the offset using the kumeran interface. Release any acquired semaphores 520 * before exiting. 521 **/ 522 static s32 __e1000_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data, 523 bool locked) 524 { 525 u32 kmrnctrlsta; 526 527 if (!locked) { 528 s32 ret_val = 0; 529 530 if (!hw->phy.ops.acquire) 531 return 0; 532 533 ret_val = hw->phy.ops.acquire(hw); 534 if (ret_val) 535 return ret_val; 536 } 537 538 kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) & 539 E1000_KMRNCTRLSTA_OFFSET) | data; 540 ew32(KMRNCTRLSTA, kmrnctrlsta); 541 e1e_flush(); 542 543 udelay(2); 544 545 if (!locked) 546 hw->phy.ops.release(hw); 547 548 return 0; 549 } 550 551 /** 552 * e1000e_write_kmrn_reg - Write kumeran register 553 * @hw: pointer to the HW structure 554 * @offset: register offset to write to 555 * @data: data to write at register offset 556 * 557 * Acquires semaphore then writes the data to the PHY register at the offset 558 * using the kumeran interface. Release the acquired semaphore before exiting. 559 **/ 560 s32 e1000e_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data) 561 { 562 return __e1000_write_kmrn_reg(hw, offset, data, false); 563 } 564 565 /** 566 * e1000e_write_kmrn_reg_locked - Write kumeran register 567 * @hw: pointer to the HW structure 568 * @offset: register offset to write to 569 * @data: data to write at register offset 570 * 571 * Write the data to PHY register at the offset using the kumeran interface. 572 * Assumes semaphore already acquired. 573 **/ 574 s32 e1000e_write_kmrn_reg_locked(struct e1000_hw *hw, u32 offset, u16 data) 575 { 576 return __e1000_write_kmrn_reg(hw, offset, data, true); 577 } 578 579 /** 580 * e1000_set_master_slave_mode - Setup PHY for Master/slave mode 581 * @hw: pointer to the HW structure 582 * 583 * Sets up Master/slave mode 584 **/ 585 static s32 e1000_set_master_slave_mode(struct e1000_hw *hw) 586 { 587 s32 ret_val; 588 u16 phy_data; 589 590 /* Resolve Master/Slave mode */ 591 ret_val = e1e_rphy(hw, MII_CTRL1000, &phy_data); 592 if (ret_val) 593 return ret_val; 594 595 /* load defaults for future use */ 596 hw->phy.original_ms_type = (phy_data & CTL1000_ENABLE_MASTER) ? 597 ((phy_data & CTL1000_AS_MASTER) ? 598 e1000_ms_force_master : e1000_ms_force_slave) : e1000_ms_auto; 599 600 switch (hw->phy.ms_type) { 601 case e1000_ms_force_master: 602 phy_data |= (CTL1000_ENABLE_MASTER | CTL1000_AS_MASTER); 603 break; 604 case e1000_ms_force_slave: 605 phy_data |= CTL1000_ENABLE_MASTER; 606 phy_data &= ~(CTL1000_AS_MASTER); 607 break; 608 case e1000_ms_auto: 609 phy_data &= ~CTL1000_ENABLE_MASTER; 610 fallthrough; 611 default: 612 break; 613 } 614 615 return e1e_wphy(hw, MII_CTRL1000, phy_data); 616 } 617 618 /** 619 * e1000_copper_link_setup_82577 - Setup 82577 PHY for copper link 620 * @hw: pointer to the HW structure 621 * 622 * Sets up Carrier-sense on Transmit and downshift values. 623 **/ 624 s32 e1000_copper_link_setup_82577(struct e1000_hw *hw) 625 { 626 s32 ret_val; 627 u16 phy_data; 628 629 /* Enable CRS on Tx. This must be set for half-duplex operation. */ 630 ret_val = e1e_rphy(hw, I82577_CFG_REG, &phy_data); 631 if (ret_val) 632 return ret_val; 633 634 phy_data |= I82577_CFG_ASSERT_CRS_ON_TX; 635 636 /* Enable downshift */ 637 phy_data |= I82577_CFG_ENABLE_DOWNSHIFT; 638 639 ret_val = e1e_wphy(hw, I82577_CFG_REG, phy_data); 640 if (ret_val) 641 return ret_val; 642 643 /* Set MDI/MDIX mode */ 644 ret_val = e1e_rphy(hw, I82577_PHY_CTRL_2, &phy_data); 645 if (ret_val) 646 return ret_val; 647 phy_data &= ~I82577_PHY_CTRL2_MDIX_CFG_MASK; 648 /* Options: 649 * 0 - Auto (default) 650 * 1 - MDI mode 651 * 2 - MDI-X mode 652 */ 653 switch (hw->phy.mdix) { 654 case 1: 655 break; 656 case 2: 657 phy_data |= I82577_PHY_CTRL2_MANUAL_MDIX; 658 break; 659 case 0: 660 default: 661 phy_data |= I82577_PHY_CTRL2_AUTO_MDI_MDIX; 662 break; 663 } 664 ret_val = e1e_wphy(hw, I82577_PHY_CTRL_2, phy_data); 665 if (ret_val) 666 return ret_val; 667 668 return e1000_set_master_slave_mode(hw); 669 } 670 671 /** 672 * e1000e_copper_link_setup_m88 - Setup m88 PHY's for copper link 673 * @hw: pointer to the HW structure 674 * 675 * Sets up MDI/MDI-X and polarity for m88 PHY's. If necessary, transmit clock 676 * and downshift values are set also. 677 **/ 678 s32 e1000e_copper_link_setup_m88(struct e1000_hw *hw) 679 { 680 struct e1000_phy_info *phy = &hw->phy; 681 s32 ret_val; 682 u16 phy_data; 683 684 /* Enable CRS on Tx. This must be set for half-duplex operation. */ 685 ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); 686 if (ret_val) 687 return ret_val; 688 689 /* For BM PHY this bit is downshift enable */ 690 if (phy->type != e1000_phy_bm) 691 phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX; 692 693 /* Options: 694 * MDI/MDI-X = 0 (default) 695 * 0 - Auto for all speeds 696 * 1 - MDI mode 697 * 2 - MDI-X mode 698 * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes) 699 */ 700 phy_data &= ~M88E1000_PSCR_AUTO_X_MODE; 701 702 switch (phy->mdix) { 703 case 1: 704 phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE; 705 break; 706 case 2: 707 phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE; 708 break; 709 case 3: 710 phy_data |= M88E1000_PSCR_AUTO_X_1000T; 711 break; 712 case 0: 713 default: 714 phy_data |= M88E1000_PSCR_AUTO_X_MODE; 715 break; 716 } 717 718 /* Options: 719 * disable_polarity_correction = 0 (default) 720 * Automatic Correction for Reversed Cable Polarity 721 * 0 - Disabled 722 * 1 - Enabled 723 */ 724 phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL; 725 if (phy->disable_polarity_correction) 726 phy_data |= M88E1000_PSCR_POLARITY_REVERSAL; 727 728 /* Enable downshift on BM (disabled by default) */ 729 if (phy->type == e1000_phy_bm) { 730 /* For 82574/82583, first disable then enable downshift */ 731 if (phy->id == BME1000_E_PHY_ID_R2) { 732 phy_data &= ~BME1000_PSCR_ENABLE_DOWNSHIFT; 733 ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, 734 phy_data); 735 if (ret_val) 736 return ret_val; 737 /* Commit the changes. */ 738 ret_val = phy->ops.commit(hw); 739 if (ret_val) { 740 e_dbg("Error committing the PHY changes\n"); 741 return ret_val; 742 } 743 } 744 745 phy_data |= BME1000_PSCR_ENABLE_DOWNSHIFT; 746 } 747 748 ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, phy_data); 749 if (ret_val) 750 return ret_val; 751 752 if ((phy->type == e1000_phy_m88) && 753 (phy->revision < E1000_REVISION_4) && 754 (phy->id != BME1000_E_PHY_ID_R2)) { 755 /* Force TX_CLK in the Extended PHY Specific Control Register 756 * to 25MHz clock. 757 */ 758 ret_val = e1e_rphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data); 759 if (ret_val) 760 return ret_val; 761 762 phy_data |= M88E1000_EPSCR_TX_CLK_25; 763 764 if ((phy->revision == 2) && (phy->id == M88E1111_I_PHY_ID)) { 765 /* 82573L PHY - set the downshift counter to 5x. */ 766 phy_data &= ~M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK; 767 phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X; 768 } else { 769 /* Configure Master and Slave downshift values */ 770 phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK | 771 M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK); 772 phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X | 773 M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X); 774 } 775 ret_val = e1e_wphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data); 776 if (ret_val) 777 return ret_val; 778 } 779 780 if ((phy->type == e1000_phy_bm) && (phy->id == BME1000_E_PHY_ID_R2)) { 781 /* Set PHY page 0, register 29 to 0x0003 */ 782 ret_val = e1e_wphy(hw, 29, 0x0003); 783 if (ret_val) 784 return ret_val; 785 786 /* Set PHY page 0, register 30 to 0x0000 */ 787 ret_val = e1e_wphy(hw, 30, 0x0000); 788 if (ret_val) 789 return ret_val; 790 } 791 792 /* Commit the changes. */ 793 if (phy->ops.commit) { 794 ret_val = phy->ops.commit(hw); 795 if (ret_val) { 796 e_dbg("Error committing the PHY changes\n"); 797 return ret_val; 798 } 799 } 800 801 if (phy->type == e1000_phy_82578) { 802 ret_val = e1e_rphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data); 803 if (ret_val) 804 return ret_val; 805 806 /* 82578 PHY - set the downshift count to 1x. */ 807 phy_data |= I82578_EPSCR_DOWNSHIFT_ENABLE; 808 phy_data &= ~I82578_EPSCR_DOWNSHIFT_COUNTER_MASK; 809 ret_val = e1e_wphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data); 810 if (ret_val) 811 return ret_val; 812 } 813 814 return 0; 815 } 816 817 /** 818 * e1000e_copper_link_setup_igp - Setup igp PHY's for copper link 819 * @hw: pointer to the HW structure 820 * 821 * Sets up LPLU, MDI/MDI-X, polarity, Smartspeed and Master/Slave config for 822 * igp PHY's. 823 **/ 824 s32 e1000e_copper_link_setup_igp(struct e1000_hw *hw) 825 { 826 struct e1000_phy_info *phy = &hw->phy; 827 s32 ret_val; 828 u16 data; 829 830 ret_val = e1000_phy_hw_reset(hw); 831 if (ret_val) { 832 e_dbg("Error resetting the PHY.\n"); 833 return ret_val; 834 } 835 836 /* Wait 100ms for MAC to configure PHY from NVM settings, to avoid 837 * timeout issues when LFS is enabled. 838 */ 839 msleep(100); 840 841 /* disable lplu d0 during driver init */ 842 if (hw->phy.ops.set_d0_lplu_state) { 843 ret_val = hw->phy.ops.set_d0_lplu_state(hw, false); 844 if (ret_val) { 845 e_dbg("Error Disabling LPLU D0\n"); 846 return ret_val; 847 } 848 } 849 /* Configure mdi-mdix settings */ 850 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CTRL, &data); 851 if (ret_val) 852 return ret_val; 853 854 data &= ~IGP01E1000_PSCR_AUTO_MDIX; 855 856 switch (phy->mdix) { 857 case 1: 858 data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX; 859 break; 860 case 2: 861 data |= IGP01E1000_PSCR_FORCE_MDI_MDIX; 862 break; 863 case 0: 864 default: 865 data |= IGP01E1000_PSCR_AUTO_MDIX; 866 break; 867 } 868 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CTRL, data); 869 if (ret_val) 870 return ret_val; 871 872 /* set auto-master slave resolution settings */ 873 if (hw->mac.autoneg) { 874 /* when autonegotiation advertisement is only 1000Mbps then we 875 * should disable SmartSpeed and enable Auto MasterSlave 876 * resolution as hardware default. 877 */ 878 if (phy->autoneg_advertised == ADVERTISE_1000_FULL) { 879 /* Disable SmartSpeed */ 880 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, 881 &data); 882 if (ret_val) 883 return ret_val; 884 885 data &= ~IGP01E1000_PSCFR_SMART_SPEED; 886 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, 887 data); 888 if (ret_val) 889 return ret_val; 890 891 /* Set auto Master/Slave resolution process */ 892 ret_val = e1e_rphy(hw, MII_CTRL1000, &data); 893 if (ret_val) 894 return ret_val; 895 896 data &= ~CTL1000_ENABLE_MASTER; 897 ret_val = e1e_wphy(hw, MII_CTRL1000, data); 898 if (ret_val) 899 return ret_val; 900 } 901 902 ret_val = e1000_set_master_slave_mode(hw); 903 } 904 905 return ret_val; 906 } 907 908 /** 909 * e1000_phy_setup_autoneg - Configure PHY for auto-negotiation 910 * @hw: pointer to the HW structure 911 * 912 * Reads the MII auto-neg advertisement register and/or the 1000T control 913 * register and if the PHY is already setup for auto-negotiation, then 914 * return successful. Otherwise, setup advertisement and flow control to 915 * the appropriate values for the wanted auto-negotiation. 916 **/ 917 static s32 e1000_phy_setup_autoneg(struct e1000_hw *hw) 918 { 919 struct e1000_phy_info *phy = &hw->phy; 920 s32 ret_val; 921 u16 mii_autoneg_adv_reg; 922 u16 mii_1000t_ctrl_reg = 0; 923 924 phy->autoneg_advertised &= phy->autoneg_mask; 925 926 /* Read the MII Auto-Neg Advertisement Register (Address 4). */ 927 ret_val = e1e_rphy(hw, MII_ADVERTISE, &mii_autoneg_adv_reg); 928 if (ret_val) 929 return ret_val; 930 931 if (phy->autoneg_mask & ADVERTISE_1000_FULL) { 932 /* Read the MII 1000Base-T Control Register (Address 9). */ 933 ret_val = e1e_rphy(hw, MII_CTRL1000, &mii_1000t_ctrl_reg); 934 if (ret_val) 935 return ret_val; 936 } 937 938 /* Need to parse both autoneg_advertised and fc and set up 939 * the appropriate PHY registers. First we will parse for 940 * autoneg_advertised software override. Since we can advertise 941 * a plethora of combinations, we need to check each bit 942 * individually. 943 */ 944 945 /* First we clear all the 10/100 mb speed bits in the Auto-Neg 946 * Advertisement Register (Address 4) and the 1000 mb speed bits in 947 * the 1000Base-T Control Register (Address 9). 948 */ 949 mii_autoneg_adv_reg &= ~(ADVERTISE_100FULL | 950 ADVERTISE_100HALF | 951 ADVERTISE_10FULL | ADVERTISE_10HALF); 952 mii_1000t_ctrl_reg &= ~(ADVERTISE_1000HALF | ADVERTISE_1000FULL); 953 954 e_dbg("autoneg_advertised %x\n", phy->autoneg_advertised); 955 956 /* Do we want to advertise 10 Mb Half Duplex? */ 957 if (phy->autoneg_advertised & ADVERTISE_10_HALF) { 958 e_dbg("Advertise 10mb Half duplex\n"); 959 mii_autoneg_adv_reg |= ADVERTISE_10HALF; 960 } 961 962 /* Do we want to advertise 10 Mb Full Duplex? */ 963 if (phy->autoneg_advertised & ADVERTISE_10_FULL) { 964 e_dbg("Advertise 10mb Full duplex\n"); 965 mii_autoneg_adv_reg |= ADVERTISE_10FULL; 966 } 967 968 /* Do we want to advertise 100 Mb Half Duplex? */ 969 if (phy->autoneg_advertised & ADVERTISE_100_HALF) { 970 e_dbg("Advertise 100mb Half duplex\n"); 971 mii_autoneg_adv_reg |= ADVERTISE_100HALF; 972 } 973 974 /* Do we want to advertise 100 Mb Full Duplex? */ 975 if (phy->autoneg_advertised & ADVERTISE_100_FULL) { 976 e_dbg("Advertise 100mb Full duplex\n"); 977 mii_autoneg_adv_reg |= ADVERTISE_100FULL; 978 } 979 980 /* We do not allow the Phy to advertise 1000 Mb Half Duplex */ 981 if (phy->autoneg_advertised & ADVERTISE_1000_HALF) 982 e_dbg("Advertise 1000mb Half duplex request denied!\n"); 983 984 /* Do we want to advertise 1000 Mb Full Duplex? */ 985 if (phy->autoneg_advertised & ADVERTISE_1000_FULL) { 986 e_dbg("Advertise 1000mb Full duplex\n"); 987 mii_1000t_ctrl_reg |= ADVERTISE_1000FULL; 988 } 989 990 /* Check for a software override of the flow control settings, and 991 * setup the PHY advertisement registers accordingly. If 992 * auto-negotiation is enabled, then software will have to set the 993 * "PAUSE" bits to the correct value in the Auto-Negotiation 994 * Advertisement Register (MII_ADVERTISE) and re-start auto- 995 * negotiation. 996 * 997 * The possible values of the "fc" parameter are: 998 * 0: Flow control is completely disabled 999 * 1: Rx flow control is enabled (we can receive pause frames 1000 * but not send pause frames). 1001 * 2: Tx flow control is enabled (we can send pause frames 1002 * but we do not support receiving pause frames). 1003 * 3: Both Rx and Tx flow control (symmetric) are enabled. 1004 * other: No software override. The flow control configuration 1005 * in the EEPROM is used. 1006 */ 1007 switch (hw->fc.current_mode) { 1008 case e1000_fc_none: 1009 /* Flow control (Rx & Tx) is completely disabled by a 1010 * software over-ride. 1011 */ 1012 mii_autoneg_adv_reg &= 1013 ~(ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP); 1014 break; 1015 case e1000_fc_rx_pause: 1016 /* Rx Flow control is enabled, and Tx Flow control is 1017 * disabled, by a software over-ride. 1018 * 1019 * Since there really isn't a way to advertise that we are 1020 * capable of Rx Pause ONLY, we will advertise that we 1021 * support both symmetric and asymmetric Rx PAUSE. Later 1022 * (in e1000e_config_fc_after_link_up) we will disable the 1023 * hw's ability to send PAUSE frames. 1024 */ 1025 mii_autoneg_adv_reg |= 1026 (ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP); 1027 break; 1028 case e1000_fc_tx_pause: 1029 /* Tx Flow control is enabled, and Rx Flow control is 1030 * disabled, by a software over-ride. 1031 */ 1032 mii_autoneg_adv_reg |= ADVERTISE_PAUSE_ASYM; 1033 mii_autoneg_adv_reg &= ~ADVERTISE_PAUSE_CAP; 1034 break; 1035 case e1000_fc_full: 1036 /* Flow control (both Rx and Tx) is enabled by a software 1037 * over-ride. 1038 */ 1039 mii_autoneg_adv_reg |= 1040 (ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP); 1041 break; 1042 default: 1043 e_dbg("Flow control param set incorrectly\n"); 1044 return -E1000_ERR_CONFIG; 1045 } 1046 1047 ret_val = e1e_wphy(hw, MII_ADVERTISE, mii_autoneg_adv_reg); 1048 if (ret_val) 1049 return ret_val; 1050 1051 e_dbg("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg); 1052 1053 if (phy->autoneg_mask & ADVERTISE_1000_FULL) 1054 ret_val = e1e_wphy(hw, MII_CTRL1000, mii_1000t_ctrl_reg); 1055 1056 return ret_val; 1057 } 1058 1059 /** 1060 * e1000_copper_link_autoneg - Setup/Enable autoneg for copper link 1061 * @hw: pointer to the HW structure 1062 * 1063 * Performs initial bounds checking on autoneg advertisement parameter, then 1064 * configure to advertise the full capability. Setup the PHY to autoneg 1065 * and restart the negotiation process between the link partner. If 1066 * autoneg_wait_to_complete, then wait for autoneg to complete before exiting. 1067 **/ 1068 static s32 e1000_copper_link_autoneg(struct e1000_hw *hw) 1069 { 1070 struct e1000_phy_info *phy = &hw->phy; 1071 s32 ret_val; 1072 u16 phy_ctrl; 1073 1074 /* Perform some bounds checking on the autoneg advertisement 1075 * parameter. 1076 */ 1077 phy->autoneg_advertised &= phy->autoneg_mask; 1078 1079 /* If autoneg_advertised is zero, we assume it was not defaulted 1080 * by the calling code so we set to advertise full capability. 1081 */ 1082 if (!phy->autoneg_advertised) 1083 phy->autoneg_advertised = phy->autoneg_mask; 1084 1085 e_dbg("Reconfiguring auto-neg advertisement params\n"); 1086 ret_val = e1000_phy_setup_autoneg(hw); 1087 if (ret_val) { 1088 e_dbg("Error Setting up Auto-Negotiation\n"); 1089 return ret_val; 1090 } 1091 e_dbg("Restarting Auto-Neg\n"); 1092 1093 /* Restart auto-negotiation by setting the Auto Neg Enable bit and 1094 * the Auto Neg Restart bit in the PHY control register. 1095 */ 1096 ret_val = e1e_rphy(hw, MII_BMCR, &phy_ctrl); 1097 if (ret_val) 1098 return ret_val; 1099 1100 phy_ctrl |= (BMCR_ANENABLE | BMCR_ANRESTART); 1101 ret_val = e1e_wphy(hw, MII_BMCR, phy_ctrl); 1102 if (ret_val) 1103 return ret_val; 1104 1105 /* Does the user want to wait for Auto-Neg to complete here, or 1106 * check at a later time (for example, callback routine). 1107 */ 1108 if (phy->autoneg_wait_to_complete) { 1109 ret_val = e1000_wait_autoneg(hw); 1110 if (ret_val) { 1111 e_dbg("Error while waiting for autoneg to complete\n"); 1112 return ret_val; 1113 } 1114 } 1115 1116 hw->mac.get_link_status = true; 1117 1118 return ret_val; 1119 } 1120 1121 /** 1122 * e1000e_setup_copper_link - Configure copper link settings 1123 * @hw: pointer to the HW structure 1124 * 1125 * Calls the appropriate function to configure the link for auto-neg or forced 1126 * speed and duplex. Then we check for link, once link is established calls 1127 * to configure collision distance and flow control are called. If link is 1128 * not established, we return -E1000_ERR_PHY (-2). 1129 **/ 1130 s32 e1000e_setup_copper_link(struct e1000_hw *hw) 1131 { 1132 s32 ret_val; 1133 bool link; 1134 1135 if (hw->mac.autoneg) { 1136 /* Setup autoneg and flow control advertisement and perform 1137 * autonegotiation. 1138 */ 1139 ret_val = e1000_copper_link_autoneg(hw); 1140 if (ret_val) 1141 return ret_val; 1142 } else { 1143 /* PHY will be set to 10H, 10F, 100H or 100F 1144 * depending on user settings. 1145 */ 1146 e_dbg("Forcing Speed and Duplex\n"); 1147 ret_val = hw->phy.ops.force_speed_duplex(hw); 1148 if (ret_val) { 1149 e_dbg("Error Forcing Speed and Duplex\n"); 1150 return ret_val; 1151 } 1152 } 1153 1154 /* Check link status. Wait up to 100 microseconds for link to become 1155 * valid. 1156 */ 1157 ret_val = e1000e_phy_has_link_generic(hw, COPPER_LINK_UP_LIMIT, 10, 1158 &link); 1159 if (ret_val) 1160 return ret_val; 1161 1162 if (link) { 1163 e_dbg("Valid link established!!!\n"); 1164 hw->mac.ops.config_collision_dist(hw); 1165 ret_val = e1000e_config_fc_after_link_up(hw); 1166 } else { 1167 e_dbg("Unable to establish link!!!\n"); 1168 } 1169 1170 return ret_val; 1171 } 1172 1173 /** 1174 * e1000e_phy_force_speed_duplex_igp - Force speed/duplex for igp PHY 1175 * @hw: pointer to the HW structure 1176 * 1177 * Calls the PHY setup function to force speed and duplex. Clears the 1178 * auto-crossover to force MDI manually. Waits for link and returns 1179 * successful if link up is successful, else -E1000_ERR_PHY (-2). 1180 **/ 1181 s32 e1000e_phy_force_speed_duplex_igp(struct e1000_hw *hw) 1182 { 1183 struct e1000_phy_info *phy = &hw->phy; 1184 s32 ret_val; 1185 u16 phy_data; 1186 bool link; 1187 1188 ret_val = e1e_rphy(hw, MII_BMCR, &phy_data); 1189 if (ret_val) 1190 return ret_val; 1191 1192 e1000e_phy_force_speed_duplex_setup(hw, &phy_data); 1193 1194 ret_val = e1e_wphy(hw, MII_BMCR, phy_data); 1195 if (ret_val) 1196 return ret_val; 1197 1198 /* Clear Auto-Crossover to force MDI manually. IGP requires MDI 1199 * forced whenever speed and duplex are forced. 1200 */ 1201 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data); 1202 if (ret_val) 1203 return ret_val; 1204 1205 phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX; 1206 phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX; 1207 1208 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CTRL, phy_data); 1209 if (ret_val) 1210 return ret_val; 1211 1212 e_dbg("IGP PSCR: %X\n", phy_data); 1213 1214 udelay(1); 1215 1216 if (phy->autoneg_wait_to_complete) { 1217 e_dbg("Waiting for forced speed/duplex link on IGP phy.\n"); 1218 1219 ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT, 1220 100000, &link); 1221 if (ret_val) 1222 return ret_val; 1223 1224 if (!link) 1225 e_dbg("Link taking longer than expected.\n"); 1226 1227 /* Try once more */ 1228 ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT, 1229 100000, &link); 1230 } 1231 1232 return ret_val; 1233 } 1234 1235 /** 1236 * e1000e_phy_force_speed_duplex_m88 - Force speed/duplex for m88 PHY 1237 * @hw: pointer to the HW structure 1238 * 1239 * Calls the PHY setup function to force speed and duplex. Clears the 1240 * auto-crossover to force MDI manually. Resets the PHY to commit the 1241 * changes. If time expires while waiting for link up, we reset the DSP. 1242 * After reset, TX_CLK and CRS on Tx must be set. Return successful upon 1243 * successful completion, else return corresponding error code. 1244 **/ 1245 s32 e1000e_phy_force_speed_duplex_m88(struct e1000_hw *hw) 1246 { 1247 struct e1000_phy_info *phy = &hw->phy; 1248 s32 ret_val; 1249 u16 phy_data; 1250 bool link; 1251 1252 /* Clear Auto-Crossover to force MDI manually. M88E1000 requires MDI 1253 * forced whenever speed and duplex are forced. 1254 */ 1255 ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); 1256 if (ret_val) 1257 return ret_val; 1258 1259 phy_data &= ~M88E1000_PSCR_AUTO_X_MODE; 1260 ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, phy_data); 1261 if (ret_val) 1262 return ret_val; 1263 1264 e_dbg("M88E1000 PSCR: %X\n", phy_data); 1265 1266 ret_val = e1e_rphy(hw, MII_BMCR, &phy_data); 1267 if (ret_val) 1268 return ret_val; 1269 1270 e1000e_phy_force_speed_duplex_setup(hw, &phy_data); 1271 1272 ret_val = e1e_wphy(hw, MII_BMCR, phy_data); 1273 if (ret_val) 1274 return ret_val; 1275 1276 /* Reset the phy to commit changes. */ 1277 if (hw->phy.ops.commit) { 1278 ret_val = hw->phy.ops.commit(hw); 1279 if (ret_val) 1280 return ret_val; 1281 } 1282 1283 if (phy->autoneg_wait_to_complete) { 1284 e_dbg("Waiting for forced speed/duplex link on M88 phy.\n"); 1285 1286 ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT, 1287 100000, &link); 1288 if (ret_val) 1289 return ret_val; 1290 1291 if (!link) { 1292 if (hw->phy.type != e1000_phy_m88) { 1293 e_dbg("Link taking longer than expected.\n"); 1294 } else { 1295 /* We didn't get link. 1296 * Reset the DSP and cross our fingers. 1297 */ 1298 ret_val = e1e_wphy(hw, M88E1000_PHY_PAGE_SELECT, 1299 0x001d); 1300 if (ret_val) 1301 return ret_val; 1302 ret_val = e1000e_phy_reset_dsp(hw); 1303 if (ret_val) 1304 return ret_val; 1305 } 1306 } 1307 1308 /* Try once more */ 1309 ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT, 1310 100000, &link); 1311 if (ret_val) 1312 return ret_val; 1313 } 1314 1315 if (hw->phy.type != e1000_phy_m88) 1316 return 0; 1317 1318 ret_val = e1e_rphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data); 1319 if (ret_val) 1320 return ret_val; 1321 1322 /* Resetting the phy means we need to re-force TX_CLK in the 1323 * Extended PHY Specific Control Register to 25MHz clock from 1324 * the reset value of 2.5MHz. 1325 */ 1326 phy_data |= M88E1000_EPSCR_TX_CLK_25; 1327 ret_val = e1e_wphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data); 1328 if (ret_val) 1329 return ret_val; 1330 1331 /* In addition, we must re-enable CRS on Tx for both half and full 1332 * duplex. 1333 */ 1334 ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); 1335 if (ret_val) 1336 return ret_val; 1337 1338 phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX; 1339 ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, phy_data); 1340 1341 return ret_val; 1342 } 1343 1344 /** 1345 * e1000_phy_force_speed_duplex_ife - Force PHY speed & duplex 1346 * @hw: pointer to the HW structure 1347 * 1348 * Forces the speed and duplex settings of the PHY. 1349 * This is a function pointer entry point only called by 1350 * PHY setup routines. 1351 **/ 1352 s32 e1000_phy_force_speed_duplex_ife(struct e1000_hw *hw) 1353 { 1354 struct e1000_phy_info *phy = &hw->phy; 1355 s32 ret_val; 1356 u16 data; 1357 bool link; 1358 1359 ret_val = e1e_rphy(hw, MII_BMCR, &data); 1360 if (ret_val) 1361 return ret_val; 1362 1363 e1000e_phy_force_speed_duplex_setup(hw, &data); 1364 1365 ret_val = e1e_wphy(hw, MII_BMCR, data); 1366 if (ret_val) 1367 return ret_val; 1368 1369 /* Disable MDI-X support for 10/100 */ 1370 ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &data); 1371 if (ret_val) 1372 return ret_val; 1373 1374 data &= ~IFE_PMC_AUTO_MDIX; 1375 data &= ~IFE_PMC_FORCE_MDIX; 1376 1377 ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, data); 1378 if (ret_val) 1379 return ret_val; 1380 1381 e_dbg("IFE PMC: %X\n", data); 1382 1383 udelay(1); 1384 1385 if (phy->autoneg_wait_to_complete) { 1386 e_dbg("Waiting for forced speed/duplex link on IFE phy.\n"); 1387 1388 ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT, 1389 100000, &link); 1390 if (ret_val) 1391 return ret_val; 1392 1393 if (!link) 1394 e_dbg("Link taking longer than expected.\n"); 1395 1396 /* Try once more */ 1397 ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT, 1398 100000, &link); 1399 if (ret_val) 1400 return ret_val; 1401 } 1402 1403 return 0; 1404 } 1405 1406 /** 1407 * e1000e_phy_force_speed_duplex_setup - Configure forced PHY speed/duplex 1408 * @hw: pointer to the HW structure 1409 * @phy_ctrl: pointer to current value of MII_BMCR 1410 * 1411 * Forces speed and duplex on the PHY by doing the following: disable flow 1412 * control, force speed/duplex on the MAC, disable auto speed detection, 1413 * disable auto-negotiation, configure duplex, configure speed, configure 1414 * the collision distance, write configuration to CTRL register. The 1415 * caller must write to the MII_BMCR register for these settings to 1416 * take affect. 1417 **/ 1418 void e1000e_phy_force_speed_duplex_setup(struct e1000_hw *hw, u16 *phy_ctrl) 1419 { 1420 struct e1000_mac_info *mac = &hw->mac; 1421 u32 ctrl; 1422 1423 /* Turn off flow control when forcing speed/duplex */ 1424 hw->fc.current_mode = e1000_fc_none; 1425 1426 /* Force speed/duplex on the mac */ 1427 ctrl = er32(CTRL); 1428 ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); 1429 ctrl &= ~E1000_CTRL_SPD_SEL; 1430 1431 /* Disable Auto Speed Detection */ 1432 ctrl &= ~E1000_CTRL_ASDE; 1433 1434 /* Disable autoneg on the phy */ 1435 *phy_ctrl &= ~BMCR_ANENABLE; 1436 1437 /* Forcing Full or Half Duplex? */ 1438 if (mac->forced_speed_duplex & E1000_ALL_HALF_DUPLEX) { 1439 ctrl &= ~E1000_CTRL_FD; 1440 *phy_ctrl &= ~BMCR_FULLDPLX; 1441 e_dbg("Half Duplex\n"); 1442 } else { 1443 ctrl |= E1000_CTRL_FD; 1444 *phy_ctrl |= BMCR_FULLDPLX; 1445 e_dbg("Full Duplex\n"); 1446 } 1447 1448 /* Forcing 10mb or 100mb? */ 1449 if (mac->forced_speed_duplex & E1000_ALL_100_SPEED) { 1450 ctrl |= E1000_CTRL_SPD_100; 1451 *phy_ctrl |= BMCR_SPEED100; 1452 *phy_ctrl &= ~BMCR_SPEED1000; 1453 e_dbg("Forcing 100mb\n"); 1454 } else { 1455 ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100); 1456 *phy_ctrl &= ~(BMCR_SPEED1000 | BMCR_SPEED100); 1457 e_dbg("Forcing 10mb\n"); 1458 } 1459 1460 hw->mac.ops.config_collision_dist(hw); 1461 1462 ew32(CTRL, ctrl); 1463 } 1464 1465 /** 1466 * e1000e_set_d3_lplu_state - Sets low power link up state for D3 1467 * @hw: pointer to the HW structure 1468 * @active: boolean used to enable/disable lplu 1469 * 1470 * Success returns 0, Failure returns 1 1471 * 1472 * The low power link up (lplu) state is set to the power management level D3 1473 * and SmartSpeed is disabled when active is true, else clear lplu for D3 1474 * and enable Smartspeed. LPLU and Smartspeed are mutually exclusive. LPLU 1475 * is used during Dx states where the power conservation is most important. 1476 * During driver activity, SmartSpeed should be enabled so performance is 1477 * maintained. 1478 **/ 1479 s32 e1000e_set_d3_lplu_state(struct e1000_hw *hw, bool active) 1480 { 1481 struct e1000_phy_info *phy = &hw->phy; 1482 s32 ret_val; 1483 u16 data; 1484 1485 ret_val = e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &data); 1486 if (ret_val) 1487 return ret_val; 1488 1489 if (!active) { 1490 data &= ~IGP02E1000_PM_D3_LPLU; 1491 ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data); 1492 if (ret_val) 1493 return ret_val; 1494 /* LPLU and SmartSpeed are mutually exclusive. LPLU is used 1495 * during Dx states where the power conservation is most 1496 * important. During driver activity we should enable 1497 * SmartSpeed, so performance is maintained. 1498 */ 1499 if (phy->smart_speed == e1000_smart_speed_on) { 1500 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, 1501 &data); 1502 if (ret_val) 1503 return ret_val; 1504 1505 data |= IGP01E1000_PSCFR_SMART_SPEED; 1506 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, 1507 data); 1508 if (ret_val) 1509 return ret_val; 1510 } else if (phy->smart_speed == e1000_smart_speed_off) { 1511 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, 1512 &data); 1513 if (ret_val) 1514 return ret_val; 1515 1516 data &= ~IGP01E1000_PSCFR_SMART_SPEED; 1517 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, 1518 data); 1519 if (ret_val) 1520 return ret_val; 1521 } 1522 } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) || 1523 (phy->autoneg_advertised == E1000_ALL_NOT_GIG) || 1524 (phy->autoneg_advertised == E1000_ALL_10_SPEED)) { 1525 data |= IGP02E1000_PM_D3_LPLU; 1526 ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data); 1527 if (ret_val) 1528 return ret_val; 1529 1530 /* When LPLU is enabled, we should disable SmartSpeed */ 1531 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data); 1532 if (ret_val) 1533 return ret_val; 1534 1535 data &= ~IGP01E1000_PSCFR_SMART_SPEED; 1536 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data); 1537 } 1538 1539 return ret_val; 1540 } 1541 1542 /** 1543 * e1000e_check_downshift - Checks whether a downshift in speed occurred 1544 * @hw: pointer to the HW structure 1545 * 1546 * Success returns 0, Failure returns 1 1547 * 1548 * A downshift is detected by querying the PHY link health. 1549 **/ 1550 s32 e1000e_check_downshift(struct e1000_hw *hw) 1551 { 1552 struct e1000_phy_info *phy = &hw->phy; 1553 s32 ret_val; 1554 u16 phy_data, offset, mask; 1555 1556 switch (phy->type) { 1557 case e1000_phy_m88: 1558 case e1000_phy_gg82563: 1559 case e1000_phy_bm: 1560 case e1000_phy_82578: 1561 offset = M88E1000_PHY_SPEC_STATUS; 1562 mask = M88E1000_PSSR_DOWNSHIFT; 1563 break; 1564 case e1000_phy_igp_2: 1565 case e1000_phy_igp_3: 1566 offset = IGP01E1000_PHY_LINK_HEALTH; 1567 mask = IGP01E1000_PLHR_SS_DOWNGRADE; 1568 break; 1569 default: 1570 /* speed downshift not supported */ 1571 phy->speed_downgraded = false; 1572 return 0; 1573 } 1574 1575 ret_val = e1e_rphy(hw, offset, &phy_data); 1576 1577 if (!ret_val) 1578 phy->speed_downgraded = !!(phy_data & mask); 1579 1580 return ret_val; 1581 } 1582 1583 /** 1584 * e1000_check_polarity_m88 - Checks the polarity. 1585 * @hw: pointer to the HW structure 1586 * 1587 * Success returns 0, Failure returns -E1000_ERR_PHY (-2) 1588 * 1589 * Polarity is determined based on the PHY specific status register. 1590 **/ 1591 s32 e1000_check_polarity_m88(struct e1000_hw *hw) 1592 { 1593 struct e1000_phy_info *phy = &hw->phy; 1594 s32 ret_val; 1595 u16 data; 1596 1597 ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &data); 1598 1599 if (!ret_val) 1600 phy->cable_polarity = ((data & M88E1000_PSSR_REV_POLARITY) 1601 ? e1000_rev_polarity_reversed 1602 : e1000_rev_polarity_normal); 1603 1604 return ret_val; 1605 } 1606 1607 /** 1608 * e1000_check_polarity_igp - Checks the polarity. 1609 * @hw: pointer to the HW structure 1610 * 1611 * Success returns 0, Failure returns -E1000_ERR_PHY (-2) 1612 * 1613 * Polarity is determined based on the PHY port status register, and the 1614 * current speed (since there is no polarity at 100Mbps). 1615 **/ 1616 s32 e1000_check_polarity_igp(struct e1000_hw *hw) 1617 { 1618 struct e1000_phy_info *phy = &hw->phy; 1619 s32 ret_val; 1620 u16 data, offset, mask; 1621 1622 /* Polarity is determined based on the speed of 1623 * our connection. 1624 */ 1625 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_STATUS, &data); 1626 if (ret_val) 1627 return ret_val; 1628 1629 if ((data & IGP01E1000_PSSR_SPEED_MASK) == 1630 IGP01E1000_PSSR_SPEED_1000MBPS) { 1631 offset = IGP01E1000_PHY_PCS_INIT_REG; 1632 mask = IGP01E1000_PHY_POLARITY_MASK; 1633 } else { 1634 /* This really only applies to 10Mbps since 1635 * there is no polarity for 100Mbps (always 0). 1636 */ 1637 offset = IGP01E1000_PHY_PORT_STATUS; 1638 mask = IGP01E1000_PSSR_POLARITY_REVERSED; 1639 } 1640 1641 ret_val = e1e_rphy(hw, offset, &data); 1642 1643 if (!ret_val) 1644 phy->cable_polarity = ((data & mask) 1645 ? e1000_rev_polarity_reversed 1646 : e1000_rev_polarity_normal); 1647 1648 return ret_val; 1649 } 1650 1651 /** 1652 * e1000_check_polarity_ife - Check cable polarity for IFE PHY 1653 * @hw: pointer to the HW structure 1654 * 1655 * Polarity is determined on the polarity reversal feature being enabled. 1656 **/ 1657 s32 e1000_check_polarity_ife(struct e1000_hw *hw) 1658 { 1659 struct e1000_phy_info *phy = &hw->phy; 1660 s32 ret_val; 1661 u16 phy_data, offset, mask; 1662 1663 /* Polarity is determined based on the reversal feature being enabled. 1664 */ 1665 if (phy->polarity_correction) { 1666 offset = IFE_PHY_EXTENDED_STATUS_CONTROL; 1667 mask = IFE_PESC_POLARITY_REVERSED; 1668 } else { 1669 offset = IFE_PHY_SPECIAL_CONTROL; 1670 mask = IFE_PSC_FORCE_POLARITY; 1671 } 1672 1673 ret_val = e1e_rphy(hw, offset, &phy_data); 1674 1675 if (!ret_val) 1676 phy->cable_polarity = ((phy_data & mask) 1677 ? e1000_rev_polarity_reversed 1678 : e1000_rev_polarity_normal); 1679 1680 return ret_val; 1681 } 1682 1683 /** 1684 * e1000_wait_autoneg - Wait for auto-neg completion 1685 * @hw: pointer to the HW structure 1686 * 1687 * Waits for auto-negotiation to complete or for the auto-negotiation time 1688 * limit to expire, which ever happens first. 1689 **/ 1690 static s32 e1000_wait_autoneg(struct e1000_hw *hw) 1691 { 1692 s32 ret_val = 0; 1693 u16 i, phy_status; 1694 1695 /* Break after autoneg completes or PHY_AUTO_NEG_LIMIT expires. */ 1696 for (i = PHY_AUTO_NEG_LIMIT; i > 0; i--) { 1697 ret_val = e1e_rphy(hw, MII_BMSR, &phy_status); 1698 if (ret_val) 1699 break; 1700 ret_val = e1e_rphy(hw, MII_BMSR, &phy_status); 1701 if (ret_val) 1702 break; 1703 if (phy_status & BMSR_ANEGCOMPLETE) 1704 break; 1705 msleep(100); 1706 } 1707 1708 /* PHY_AUTO_NEG_TIME expiration doesn't guarantee auto-negotiation 1709 * has completed. 1710 */ 1711 return ret_val; 1712 } 1713 1714 /** 1715 * e1000e_phy_has_link_generic - Polls PHY for link 1716 * @hw: pointer to the HW structure 1717 * @iterations: number of times to poll for link 1718 * @usec_interval: delay between polling attempts 1719 * @success: pointer to whether polling was successful or not 1720 * 1721 * Polls the PHY status register for link, 'iterations' number of times. 1722 **/ 1723 s32 e1000e_phy_has_link_generic(struct e1000_hw *hw, u32 iterations, 1724 u32 usec_interval, bool *success) 1725 { 1726 s32 ret_val = 0; 1727 u16 i, phy_status; 1728 1729 *success = false; 1730 for (i = 0; i < iterations; i++) { 1731 /* Some PHYs require the MII_BMSR register to be read 1732 * twice due to the link bit being sticky. No harm doing 1733 * it across the board. 1734 */ 1735 ret_val = e1e_rphy(hw, MII_BMSR, &phy_status); 1736 if (ret_val) { 1737 /* If the first read fails, another entity may have 1738 * ownership of the resources, wait and try again to 1739 * see if they have relinquished the resources yet. 1740 */ 1741 if (usec_interval >= 1000) 1742 msleep(usec_interval / 1000); 1743 else 1744 udelay(usec_interval); 1745 } 1746 ret_val = e1e_rphy(hw, MII_BMSR, &phy_status); 1747 if (ret_val) 1748 break; 1749 if (phy_status & BMSR_LSTATUS) { 1750 *success = true; 1751 break; 1752 } 1753 if (usec_interval >= 1000) 1754 msleep(usec_interval / 1000); 1755 else 1756 udelay(usec_interval); 1757 } 1758 1759 return ret_val; 1760 } 1761 1762 /** 1763 * e1000e_get_cable_length_m88 - Determine cable length for m88 PHY 1764 * @hw: pointer to the HW structure 1765 * 1766 * Reads the PHY specific status register to retrieve the cable length 1767 * information. The cable length is determined by averaging the minimum and 1768 * maximum values to get the "average" cable length. The m88 PHY has four 1769 * possible cable length values, which are: 1770 * Register Value Cable Length 1771 * 0 < 50 meters 1772 * 1 50 - 80 meters 1773 * 2 80 - 110 meters 1774 * 3 110 - 140 meters 1775 * 4 > 140 meters 1776 **/ 1777 s32 e1000e_get_cable_length_m88(struct e1000_hw *hw) 1778 { 1779 struct e1000_phy_info *phy = &hw->phy; 1780 s32 ret_val; 1781 u16 phy_data, index; 1782 1783 ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data); 1784 if (ret_val) 1785 return ret_val; 1786 1787 index = ((phy_data & M88E1000_PSSR_CABLE_LENGTH) >> 1788 M88E1000_PSSR_CABLE_LENGTH_SHIFT); 1789 1790 if (index >= M88E1000_CABLE_LENGTH_TABLE_SIZE - 1) 1791 return -E1000_ERR_PHY; 1792 1793 phy->min_cable_length = e1000_m88_cable_length_table[index]; 1794 phy->max_cable_length = e1000_m88_cable_length_table[index + 1]; 1795 1796 phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2; 1797 1798 return 0; 1799 } 1800 1801 /** 1802 * e1000e_get_cable_length_igp_2 - Determine cable length for igp2 PHY 1803 * @hw: pointer to the HW structure 1804 * 1805 * The automatic gain control (agc) normalizes the amplitude of the 1806 * received signal, adjusting for the attenuation produced by the 1807 * cable. By reading the AGC registers, which represent the 1808 * combination of coarse and fine gain value, the value can be put 1809 * into a lookup table to obtain the approximate cable length 1810 * for each channel. 1811 **/ 1812 s32 e1000e_get_cable_length_igp_2(struct e1000_hw *hw) 1813 { 1814 struct e1000_phy_info *phy = &hw->phy; 1815 s32 ret_val; 1816 u16 phy_data, i, agc_value = 0; 1817 u16 cur_agc_index, max_agc_index = 0; 1818 u16 min_agc_index = IGP02E1000_CABLE_LENGTH_TABLE_SIZE - 1; 1819 static const u16 agc_reg_array[IGP02E1000_PHY_CHANNEL_NUM] = { 1820 IGP02E1000_PHY_AGC_A, 1821 IGP02E1000_PHY_AGC_B, 1822 IGP02E1000_PHY_AGC_C, 1823 IGP02E1000_PHY_AGC_D 1824 }; 1825 1826 /* Read the AGC registers for all channels */ 1827 for (i = 0; i < IGP02E1000_PHY_CHANNEL_NUM; i++) { 1828 ret_val = e1e_rphy(hw, agc_reg_array[i], &phy_data); 1829 if (ret_val) 1830 return ret_val; 1831 1832 /* Getting bits 15:9, which represent the combination of 1833 * coarse and fine gain values. The result is a number 1834 * that can be put into the lookup table to obtain the 1835 * approximate cable length. 1836 */ 1837 cur_agc_index = ((phy_data >> IGP02E1000_AGC_LENGTH_SHIFT) & 1838 IGP02E1000_AGC_LENGTH_MASK); 1839 1840 /* Array index bound check. */ 1841 if ((cur_agc_index >= IGP02E1000_CABLE_LENGTH_TABLE_SIZE) || 1842 (cur_agc_index == 0)) 1843 return -E1000_ERR_PHY; 1844 1845 /* Remove min & max AGC values from calculation. */ 1846 if (e1000_igp_2_cable_length_table[min_agc_index] > 1847 e1000_igp_2_cable_length_table[cur_agc_index]) 1848 min_agc_index = cur_agc_index; 1849 if (e1000_igp_2_cable_length_table[max_agc_index] < 1850 e1000_igp_2_cable_length_table[cur_agc_index]) 1851 max_agc_index = cur_agc_index; 1852 1853 agc_value += e1000_igp_2_cable_length_table[cur_agc_index]; 1854 } 1855 1856 agc_value -= (e1000_igp_2_cable_length_table[min_agc_index] + 1857 e1000_igp_2_cable_length_table[max_agc_index]); 1858 agc_value /= (IGP02E1000_PHY_CHANNEL_NUM - 2); 1859 1860 /* Calculate cable length with the error range of +/- 10 meters. */ 1861 phy->min_cable_length = (((agc_value - IGP02E1000_AGC_RANGE) > 0) ? 1862 (agc_value - IGP02E1000_AGC_RANGE) : 0); 1863 phy->max_cable_length = agc_value + IGP02E1000_AGC_RANGE; 1864 1865 phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2; 1866 1867 return 0; 1868 } 1869 1870 /** 1871 * e1000e_get_phy_info_m88 - Retrieve PHY information 1872 * @hw: pointer to the HW structure 1873 * 1874 * Valid for only copper links. Read the PHY status register (sticky read) 1875 * to verify that link is up. Read the PHY special control register to 1876 * determine the polarity and 10base-T extended distance. Read the PHY 1877 * special status register to determine MDI/MDIx and current speed. If 1878 * speed is 1000, then determine cable length, local and remote receiver. 1879 **/ 1880 s32 e1000e_get_phy_info_m88(struct e1000_hw *hw) 1881 { 1882 struct e1000_phy_info *phy = &hw->phy; 1883 s32 ret_val; 1884 u16 phy_data; 1885 bool link; 1886 1887 if (phy->media_type != e1000_media_type_copper) { 1888 e_dbg("Phy info is only valid for copper media\n"); 1889 return -E1000_ERR_CONFIG; 1890 } 1891 1892 ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link); 1893 if (ret_val) 1894 return ret_val; 1895 1896 if (!link) { 1897 e_dbg("Phy info is only valid if link is up\n"); 1898 return -E1000_ERR_CONFIG; 1899 } 1900 1901 ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); 1902 if (ret_val) 1903 return ret_val; 1904 1905 phy->polarity_correction = !!(phy_data & 1906 M88E1000_PSCR_POLARITY_REVERSAL); 1907 1908 ret_val = e1000_check_polarity_m88(hw); 1909 if (ret_val) 1910 return ret_val; 1911 1912 ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data); 1913 if (ret_val) 1914 return ret_val; 1915 1916 phy->is_mdix = !!(phy_data & M88E1000_PSSR_MDIX); 1917 1918 if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) { 1919 ret_val = hw->phy.ops.get_cable_length(hw); 1920 if (ret_val) 1921 return ret_val; 1922 1923 ret_val = e1e_rphy(hw, MII_STAT1000, &phy_data); 1924 if (ret_val) 1925 return ret_val; 1926 1927 phy->local_rx = (phy_data & LPA_1000LOCALRXOK) 1928 ? e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok; 1929 1930 phy->remote_rx = (phy_data & LPA_1000REMRXOK) 1931 ? e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok; 1932 } else { 1933 /* Set values to "undefined" */ 1934 phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED; 1935 phy->local_rx = e1000_1000t_rx_status_undefined; 1936 phy->remote_rx = e1000_1000t_rx_status_undefined; 1937 } 1938 1939 return ret_val; 1940 } 1941 1942 /** 1943 * e1000e_get_phy_info_igp - Retrieve igp PHY information 1944 * @hw: pointer to the HW structure 1945 * 1946 * Read PHY status to determine if link is up. If link is up, then 1947 * set/determine 10base-T extended distance and polarity correction. Read 1948 * PHY port status to determine MDI/MDIx and speed. Based on the speed, 1949 * determine on the cable length, local and remote receiver. 1950 **/ 1951 s32 e1000e_get_phy_info_igp(struct e1000_hw *hw) 1952 { 1953 struct e1000_phy_info *phy = &hw->phy; 1954 s32 ret_val; 1955 u16 data; 1956 bool link; 1957 1958 ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link); 1959 if (ret_val) 1960 return ret_val; 1961 1962 if (!link) { 1963 e_dbg("Phy info is only valid if link is up\n"); 1964 return -E1000_ERR_CONFIG; 1965 } 1966 1967 phy->polarity_correction = true; 1968 1969 ret_val = e1000_check_polarity_igp(hw); 1970 if (ret_val) 1971 return ret_val; 1972 1973 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_STATUS, &data); 1974 if (ret_val) 1975 return ret_val; 1976 1977 phy->is_mdix = !!(data & IGP01E1000_PSSR_MDIX); 1978 1979 if ((data & IGP01E1000_PSSR_SPEED_MASK) == 1980 IGP01E1000_PSSR_SPEED_1000MBPS) { 1981 ret_val = phy->ops.get_cable_length(hw); 1982 if (ret_val) 1983 return ret_val; 1984 1985 ret_val = e1e_rphy(hw, MII_STAT1000, &data); 1986 if (ret_val) 1987 return ret_val; 1988 1989 phy->local_rx = (data & LPA_1000LOCALRXOK) 1990 ? e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok; 1991 1992 phy->remote_rx = (data & LPA_1000REMRXOK) 1993 ? e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok; 1994 } else { 1995 phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED; 1996 phy->local_rx = e1000_1000t_rx_status_undefined; 1997 phy->remote_rx = e1000_1000t_rx_status_undefined; 1998 } 1999 2000 return ret_val; 2001 } 2002 2003 /** 2004 * e1000_get_phy_info_ife - Retrieves various IFE PHY states 2005 * @hw: pointer to the HW structure 2006 * 2007 * Populates "phy" structure with various feature states. 2008 **/ 2009 s32 e1000_get_phy_info_ife(struct e1000_hw *hw) 2010 { 2011 struct e1000_phy_info *phy = &hw->phy; 2012 s32 ret_val; 2013 u16 data; 2014 bool link; 2015 2016 ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link); 2017 if (ret_val) 2018 return ret_val; 2019 2020 if (!link) { 2021 e_dbg("Phy info is only valid if link is up\n"); 2022 return -E1000_ERR_CONFIG; 2023 } 2024 2025 ret_val = e1e_rphy(hw, IFE_PHY_SPECIAL_CONTROL, &data); 2026 if (ret_val) 2027 return ret_val; 2028 phy->polarity_correction = !(data & IFE_PSC_AUTO_POLARITY_DISABLE); 2029 2030 if (phy->polarity_correction) { 2031 ret_val = e1000_check_polarity_ife(hw); 2032 if (ret_val) 2033 return ret_val; 2034 } else { 2035 /* Polarity is forced */ 2036 phy->cable_polarity = ((data & IFE_PSC_FORCE_POLARITY) 2037 ? e1000_rev_polarity_reversed 2038 : e1000_rev_polarity_normal); 2039 } 2040 2041 ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &data); 2042 if (ret_val) 2043 return ret_val; 2044 2045 phy->is_mdix = !!(data & IFE_PMC_MDIX_STATUS); 2046 2047 /* The following parameters are undefined for 10/100 operation. */ 2048 phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED; 2049 phy->local_rx = e1000_1000t_rx_status_undefined; 2050 phy->remote_rx = e1000_1000t_rx_status_undefined; 2051 2052 return 0; 2053 } 2054 2055 /** 2056 * e1000e_phy_sw_reset - PHY software reset 2057 * @hw: pointer to the HW structure 2058 * 2059 * Does a software reset of the PHY by reading the PHY control register and 2060 * setting/write the control register reset bit to the PHY. 2061 **/ 2062 s32 e1000e_phy_sw_reset(struct e1000_hw *hw) 2063 { 2064 s32 ret_val; 2065 u16 phy_ctrl; 2066 2067 ret_val = e1e_rphy(hw, MII_BMCR, &phy_ctrl); 2068 if (ret_val) 2069 return ret_val; 2070 2071 phy_ctrl |= BMCR_RESET; 2072 ret_val = e1e_wphy(hw, MII_BMCR, phy_ctrl); 2073 if (ret_val) 2074 return ret_val; 2075 2076 udelay(1); 2077 2078 return ret_val; 2079 } 2080 2081 /** 2082 * e1000e_phy_hw_reset_generic - PHY hardware reset 2083 * @hw: pointer to the HW structure 2084 * 2085 * Verify the reset block is not blocking us from resetting. Acquire 2086 * semaphore (if necessary) and read/set/write the device control reset 2087 * bit in the PHY. Wait the appropriate delay time for the device to 2088 * reset and release the semaphore (if necessary). 2089 **/ 2090 s32 e1000e_phy_hw_reset_generic(struct e1000_hw *hw) 2091 { 2092 struct e1000_phy_info *phy = &hw->phy; 2093 s32 ret_val; 2094 u32 ctrl; 2095 2096 if (phy->ops.check_reset_block) { 2097 ret_val = phy->ops.check_reset_block(hw); 2098 if (ret_val) 2099 return 0; 2100 } 2101 2102 ret_val = phy->ops.acquire(hw); 2103 if (ret_val) 2104 return ret_val; 2105 2106 ctrl = er32(CTRL); 2107 ew32(CTRL, ctrl | E1000_CTRL_PHY_RST); 2108 e1e_flush(); 2109 2110 udelay(phy->reset_delay_us); 2111 2112 ew32(CTRL, ctrl); 2113 e1e_flush(); 2114 2115 usleep_range(150, 300); 2116 2117 phy->ops.release(hw); 2118 2119 return phy->ops.get_cfg_done(hw); 2120 } 2121 2122 /** 2123 * e1000e_get_cfg_done_generic - Generic configuration done 2124 * @hw: pointer to the HW structure 2125 * 2126 * Generic function to wait 10 milli-seconds for configuration to complete 2127 * and return success. 2128 **/ 2129 s32 e1000e_get_cfg_done_generic(struct e1000_hw __always_unused *hw) 2130 { 2131 mdelay(10); 2132 2133 return 0; 2134 } 2135 2136 /** 2137 * e1000e_phy_init_script_igp3 - Inits the IGP3 PHY 2138 * @hw: pointer to the HW structure 2139 * 2140 * Initializes a Intel Gigabit PHY3 when an EEPROM is not present. 2141 **/ 2142 s32 e1000e_phy_init_script_igp3(struct e1000_hw *hw) 2143 { 2144 e_dbg("Running IGP 3 PHY init script\n"); 2145 2146 /* PHY init IGP 3 */ 2147 /* Enable rise/fall, 10-mode work in class-A */ 2148 e1e_wphy(hw, 0x2F5B, 0x9018); 2149 /* Remove all caps from Replica path filter */ 2150 e1e_wphy(hw, 0x2F52, 0x0000); 2151 /* Bias trimming for ADC, AFE and Driver (Default) */ 2152 e1e_wphy(hw, 0x2FB1, 0x8B24); 2153 /* Increase Hybrid poly bias */ 2154 e1e_wphy(hw, 0x2FB2, 0xF8F0); 2155 /* Add 4% to Tx amplitude in Gig mode */ 2156 e1e_wphy(hw, 0x2010, 0x10B0); 2157 /* Disable trimming (TTT) */ 2158 e1e_wphy(hw, 0x2011, 0x0000); 2159 /* Poly DC correction to 94.6% + 2% for all channels */ 2160 e1e_wphy(hw, 0x20DD, 0x249A); 2161 /* ABS DC correction to 95.9% */ 2162 e1e_wphy(hw, 0x20DE, 0x00D3); 2163 /* BG temp curve trim */ 2164 e1e_wphy(hw, 0x28B4, 0x04CE); 2165 /* Increasing ADC OPAMP stage 1 currents to max */ 2166 e1e_wphy(hw, 0x2F70, 0x29E4); 2167 /* Force 1000 ( required for enabling PHY regs configuration) */ 2168 e1e_wphy(hw, 0x0000, 0x0140); 2169 /* Set upd_freq to 6 */ 2170 e1e_wphy(hw, 0x1F30, 0x1606); 2171 /* Disable NPDFE */ 2172 e1e_wphy(hw, 0x1F31, 0xB814); 2173 /* Disable adaptive fixed FFE (Default) */ 2174 e1e_wphy(hw, 0x1F35, 0x002A); 2175 /* Enable FFE hysteresis */ 2176 e1e_wphy(hw, 0x1F3E, 0x0067); 2177 /* Fixed FFE for short cable lengths */ 2178 e1e_wphy(hw, 0x1F54, 0x0065); 2179 /* Fixed FFE for medium cable lengths */ 2180 e1e_wphy(hw, 0x1F55, 0x002A); 2181 /* Fixed FFE for long cable lengths */ 2182 e1e_wphy(hw, 0x1F56, 0x002A); 2183 /* Enable Adaptive Clip Threshold */ 2184 e1e_wphy(hw, 0x1F72, 0x3FB0); 2185 /* AHT reset limit to 1 */ 2186 e1e_wphy(hw, 0x1F76, 0xC0FF); 2187 /* Set AHT master delay to 127 msec */ 2188 e1e_wphy(hw, 0x1F77, 0x1DEC); 2189 /* Set scan bits for AHT */ 2190 e1e_wphy(hw, 0x1F78, 0xF9EF); 2191 /* Set AHT Preset bits */ 2192 e1e_wphy(hw, 0x1F79, 0x0210); 2193 /* Change integ_factor of channel A to 3 */ 2194 e1e_wphy(hw, 0x1895, 0x0003); 2195 /* Change prop_factor of channels BCD to 8 */ 2196 e1e_wphy(hw, 0x1796, 0x0008); 2197 /* Change cg_icount + enable integbp for channels BCD */ 2198 e1e_wphy(hw, 0x1798, 0xD008); 2199 /* Change cg_icount + enable integbp + change prop_factor_master 2200 * to 8 for channel A 2201 */ 2202 e1e_wphy(hw, 0x1898, 0xD918); 2203 /* Disable AHT in Slave mode on channel A */ 2204 e1e_wphy(hw, 0x187A, 0x0800); 2205 /* Enable LPLU and disable AN to 1000 in non-D0a states, 2206 * Enable SPD+B2B 2207 */ 2208 e1e_wphy(hw, 0x0019, 0x008D); 2209 /* Enable restart AN on an1000_dis change */ 2210 e1e_wphy(hw, 0x001B, 0x2080); 2211 /* Enable wh_fifo read clock in 10/100 modes */ 2212 e1e_wphy(hw, 0x0014, 0x0045); 2213 /* Restart AN, Speed selection is 1000 */ 2214 e1e_wphy(hw, 0x0000, 0x1340); 2215 2216 return 0; 2217 } 2218 2219 /** 2220 * e1000e_get_phy_type_from_id - Get PHY type from id 2221 * @phy_id: phy_id read from the phy 2222 * 2223 * Returns the phy type from the id. 2224 **/ 2225 enum e1000_phy_type e1000e_get_phy_type_from_id(u32 phy_id) 2226 { 2227 enum e1000_phy_type phy_type = e1000_phy_unknown; 2228 2229 switch (phy_id) { 2230 case M88E1000_I_PHY_ID: 2231 case M88E1000_E_PHY_ID: 2232 case M88E1111_I_PHY_ID: 2233 case M88E1011_I_PHY_ID: 2234 phy_type = e1000_phy_m88; 2235 break; 2236 case IGP01E1000_I_PHY_ID: /* IGP 1 & 2 share this */ 2237 phy_type = e1000_phy_igp_2; 2238 break; 2239 case GG82563_E_PHY_ID: 2240 phy_type = e1000_phy_gg82563; 2241 break; 2242 case IGP03E1000_E_PHY_ID: 2243 phy_type = e1000_phy_igp_3; 2244 break; 2245 case IFE_E_PHY_ID: 2246 case IFE_PLUS_E_PHY_ID: 2247 case IFE_C_E_PHY_ID: 2248 phy_type = e1000_phy_ife; 2249 break; 2250 case BME1000_E_PHY_ID: 2251 case BME1000_E_PHY_ID_R2: 2252 phy_type = e1000_phy_bm; 2253 break; 2254 case I82578_E_PHY_ID: 2255 phy_type = e1000_phy_82578; 2256 break; 2257 case I82577_E_PHY_ID: 2258 phy_type = e1000_phy_82577; 2259 break; 2260 case I82579_E_PHY_ID: 2261 phy_type = e1000_phy_82579; 2262 break; 2263 case I217_E_PHY_ID: 2264 phy_type = e1000_phy_i217; 2265 break; 2266 default: 2267 phy_type = e1000_phy_unknown; 2268 break; 2269 } 2270 return phy_type; 2271 } 2272 2273 /** 2274 * e1000e_determine_phy_address - Determines PHY address. 2275 * @hw: pointer to the HW structure 2276 * 2277 * This uses a trial and error method to loop through possible PHY 2278 * addresses. It tests each by reading the PHY ID registers and 2279 * checking for a match. 2280 **/ 2281 s32 e1000e_determine_phy_address(struct e1000_hw *hw) 2282 { 2283 u32 phy_addr = 0; 2284 u32 i; 2285 enum e1000_phy_type phy_type = e1000_phy_unknown; 2286 2287 hw->phy.id = phy_type; 2288 2289 for (phy_addr = 0; phy_addr < E1000_MAX_PHY_ADDR; phy_addr++) { 2290 hw->phy.addr = phy_addr; 2291 i = 0; 2292 2293 do { 2294 e1000e_get_phy_id(hw); 2295 phy_type = e1000e_get_phy_type_from_id(hw->phy.id); 2296 2297 /* If phy_type is valid, break - we found our 2298 * PHY address 2299 */ 2300 if (phy_type != e1000_phy_unknown) 2301 return 0; 2302 2303 usleep_range(1000, 2000); 2304 i++; 2305 } while (i < 10); 2306 } 2307 2308 return -E1000_ERR_PHY_TYPE; 2309 } 2310 2311 /** 2312 * e1000_get_phy_addr_for_bm_page - Retrieve PHY page address 2313 * @page: page to access 2314 * @reg: register to check 2315 * 2316 * Returns the phy address for the page requested. 2317 **/ 2318 static u32 e1000_get_phy_addr_for_bm_page(u32 page, u32 reg) 2319 { 2320 u32 phy_addr = 2; 2321 2322 if ((page >= 768) || (page == 0 && reg == 25) || (reg == 31)) 2323 phy_addr = 1; 2324 2325 return phy_addr; 2326 } 2327 2328 /** 2329 * e1000e_write_phy_reg_bm - Write BM PHY register 2330 * @hw: pointer to the HW structure 2331 * @offset: register offset to write to 2332 * @data: data to write at register offset 2333 * 2334 * Acquires semaphore, if necessary, then writes the data to PHY register 2335 * at the offset. Release any acquired semaphores before exiting. 2336 **/ 2337 s32 e1000e_write_phy_reg_bm(struct e1000_hw *hw, u32 offset, u16 data) 2338 { 2339 s32 ret_val; 2340 u32 page = offset >> IGP_PAGE_SHIFT; 2341 2342 ret_val = hw->phy.ops.acquire(hw); 2343 if (ret_val) 2344 return ret_val; 2345 2346 /* Page 800 works differently than the rest so it has its own func */ 2347 if (page == BM_WUC_PAGE) { 2348 ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, &data, 2349 false, false); 2350 goto release; 2351 } 2352 2353 hw->phy.addr = e1000_get_phy_addr_for_bm_page(page, offset); 2354 2355 if (offset > MAX_PHY_MULTI_PAGE_REG) { 2356 u32 page_shift, page_select; 2357 2358 /* Page select is register 31 for phy address 1 and 22 for 2359 * phy address 2 and 3. Page select is shifted only for 2360 * phy address 1. 2361 */ 2362 if (hw->phy.addr == 1) { 2363 page_shift = IGP_PAGE_SHIFT; 2364 page_select = IGP01E1000_PHY_PAGE_SELECT; 2365 } else { 2366 page_shift = 0; 2367 page_select = BM_PHY_PAGE_SELECT; 2368 } 2369 2370 /* Page is shifted left, PHY expects (page x 32) */ 2371 ret_val = e1000e_write_phy_reg_mdic(hw, page_select, 2372 (page << page_shift)); 2373 if (ret_val) 2374 goto release; 2375 } 2376 2377 ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset, 2378 data); 2379 2380 release: 2381 hw->phy.ops.release(hw); 2382 return ret_val; 2383 } 2384 2385 /** 2386 * e1000e_read_phy_reg_bm - Read BM PHY register 2387 * @hw: pointer to the HW structure 2388 * @offset: register offset to be read 2389 * @data: pointer to the read data 2390 * 2391 * Acquires semaphore, if necessary, then reads the PHY register at offset 2392 * and storing the retrieved information in data. Release any acquired 2393 * semaphores before exiting. 2394 **/ 2395 s32 e1000e_read_phy_reg_bm(struct e1000_hw *hw, u32 offset, u16 *data) 2396 { 2397 s32 ret_val; 2398 u32 page = offset >> IGP_PAGE_SHIFT; 2399 2400 ret_val = hw->phy.ops.acquire(hw); 2401 if (ret_val) 2402 return ret_val; 2403 2404 /* Page 800 works differently than the rest so it has its own func */ 2405 if (page == BM_WUC_PAGE) { 2406 ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, data, 2407 true, false); 2408 goto release; 2409 } 2410 2411 hw->phy.addr = e1000_get_phy_addr_for_bm_page(page, offset); 2412 2413 if (offset > MAX_PHY_MULTI_PAGE_REG) { 2414 u32 page_shift, page_select; 2415 2416 /* Page select is register 31 for phy address 1 and 22 for 2417 * phy address 2 and 3. Page select is shifted only for 2418 * phy address 1. 2419 */ 2420 if (hw->phy.addr == 1) { 2421 page_shift = IGP_PAGE_SHIFT; 2422 page_select = IGP01E1000_PHY_PAGE_SELECT; 2423 } else { 2424 page_shift = 0; 2425 page_select = BM_PHY_PAGE_SELECT; 2426 } 2427 2428 /* Page is shifted left, PHY expects (page x 32) */ 2429 ret_val = e1000e_write_phy_reg_mdic(hw, page_select, 2430 (page << page_shift)); 2431 if (ret_val) 2432 goto release; 2433 } 2434 2435 ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset, 2436 data); 2437 release: 2438 hw->phy.ops.release(hw); 2439 return ret_val; 2440 } 2441 2442 /** 2443 * e1000e_read_phy_reg_bm2 - Read BM PHY register 2444 * @hw: pointer to the HW structure 2445 * @offset: register offset to be read 2446 * @data: pointer to the read data 2447 * 2448 * Acquires semaphore, if necessary, then reads the PHY register at offset 2449 * and storing the retrieved information in data. Release any acquired 2450 * semaphores before exiting. 2451 **/ 2452 s32 e1000e_read_phy_reg_bm2(struct e1000_hw *hw, u32 offset, u16 *data) 2453 { 2454 s32 ret_val; 2455 u16 page = (u16)(offset >> IGP_PAGE_SHIFT); 2456 2457 ret_val = hw->phy.ops.acquire(hw); 2458 if (ret_val) 2459 return ret_val; 2460 2461 /* Page 800 works differently than the rest so it has its own func */ 2462 if (page == BM_WUC_PAGE) { 2463 ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, data, 2464 true, false); 2465 goto release; 2466 } 2467 2468 hw->phy.addr = 1; 2469 2470 if (offset > MAX_PHY_MULTI_PAGE_REG) { 2471 /* Page is shifted left, PHY expects (page x 32) */ 2472 ret_val = e1000e_write_phy_reg_mdic(hw, BM_PHY_PAGE_SELECT, 2473 page); 2474 2475 if (ret_val) 2476 goto release; 2477 } 2478 2479 ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset, 2480 data); 2481 release: 2482 hw->phy.ops.release(hw); 2483 return ret_val; 2484 } 2485 2486 /** 2487 * e1000e_write_phy_reg_bm2 - Write BM PHY register 2488 * @hw: pointer to the HW structure 2489 * @offset: register offset to write to 2490 * @data: data to write at register offset 2491 * 2492 * Acquires semaphore, if necessary, then writes the data to PHY register 2493 * at the offset. Release any acquired semaphores before exiting. 2494 **/ 2495 s32 e1000e_write_phy_reg_bm2(struct e1000_hw *hw, u32 offset, u16 data) 2496 { 2497 s32 ret_val; 2498 u16 page = (u16)(offset >> IGP_PAGE_SHIFT); 2499 2500 ret_val = hw->phy.ops.acquire(hw); 2501 if (ret_val) 2502 return ret_val; 2503 2504 /* Page 800 works differently than the rest so it has its own func */ 2505 if (page == BM_WUC_PAGE) { 2506 ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, &data, 2507 false, false); 2508 goto release; 2509 } 2510 2511 hw->phy.addr = 1; 2512 2513 if (offset > MAX_PHY_MULTI_PAGE_REG) { 2514 /* Page is shifted left, PHY expects (page x 32) */ 2515 ret_val = e1000e_write_phy_reg_mdic(hw, BM_PHY_PAGE_SELECT, 2516 page); 2517 2518 if (ret_val) 2519 goto release; 2520 } 2521 2522 ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset, 2523 data); 2524 2525 release: 2526 hw->phy.ops.release(hw); 2527 return ret_val; 2528 } 2529 2530 /** 2531 * e1000_enable_phy_wakeup_reg_access_bm - enable access to BM wakeup registers 2532 * @hw: pointer to the HW structure 2533 * @phy_reg: pointer to store original contents of BM_WUC_ENABLE_REG 2534 * 2535 * Assumes semaphore already acquired and phy_reg points to a valid memory 2536 * address to store contents of the BM_WUC_ENABLE_REG register. 2537 **/ 2538 s32 e1000_enable_phy_wakeup_reg_access_bm(struct e1000_hw *hw, u16 *phy_reg) 2539 { 2540 s32 ret_val; 2541 u16 temp; 2542 2543 /* All page select, port ctrl and wakeup registers use phy address 1 */ 2544 hw->phy.addr = 1; 2545 2546 /* Select Port Control Registers page */ 2547 ret_val = e1000_set_page_igp(hw, (BM_PORT_CTRL_PAGE << IGP_PAGE_SHIFT)); 2548 if (ret_val) { 2549 e_dbg("Could not set Port Control page\n"); 2550 return ret_val; 2551 } 2552 2553 ret_val = e1000e_read_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, phy_reg); 2554 if (ret_val) { 2555 e_dbg("Could not read PHY register %d.%d\n", 2556 BM_PORT_CTRL_PAGE, BM_WUC_ENABLE_REG); 2557 return ret_val; 2558 } 2559 2560 /* Enable both PHY wakeup mode and Wakeup register page writes. 2561 * Prevent a power state change by disabling ME and Host PHY wakeup. 2562 */ 2563 temp = *phy_reg; 2564 temp |= BM_WUC_ENABLE_BIT; 2565 temp &= ~(BM_WUC_ME_WU_BIT | BM_WUC_HOST_WU_BIT); 2566 2567 ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, temp); 2568 if (ret_val) { 2569 e_dbg("Could not write PHY register %d.%d\n", 2570 BM_PORT_CTRL_PAGE, BM_WUC_ENABLE_REG); 2571 return ret_val; 2572 } 2573 2574 /* Select Host Wakeup Registers page - caller now able to write 2575 * registers on the Wakeup registers page 2576 */ 2577 return e1000_set_page_igp(hw, (BM_WUC_PAGE << IGP_PAGE_SHIFT)); 2578 } 2579 2580 /** 2581 * e1000_disable_phy_wakeup_reg_access_bm - disable access to BM wakeup regs 2582 * @hw: pointer to the HW structure 2583 * @phy_reg: pointer to original contents of BM_WUC_ENABLE_REG 2584 * 2585 * Restore BM_WUC_ENABLE_REG to its original value. 2586 * 2587 * Assumes semaphore already acquired and *phy_reg is the contents of the 2588 * BM_WUC_ENABLE_REG before register(s) on BM_WUC_PAGE were accessed by 2589 * caller. 2590 **/ 2591 s32 e1000_disable_phy_wakeup_reg_access_bm(struct e1000_hw *hw, u16 *phy_reg) 2592 { 2593 s32 ret_val; 2594 2595 /* Select Port Control Registers page */ 2596 ret_val = e1000_set_page_igp(hw, (BM_PORT_CTRL_PAGE << IGP_PAGE_SHIFT)); 2597 if (ret_val) { 2598 e_dbg("Could not set Port Control page\n"); 2599 return ret_val; 2600 } 2601 2602 /* Restore 769.17 to its original value */ 2603 ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, *phy_reg); 2604 if (ret_val) 2605 e_dbg("Could not restore PHY register %d.%d\n", 2606 BM_PORT_CTRL_PAGE, BM_WUC_ENABLE_REG); 2607 2608 return ret_val; 2609 } 2610 2611 /** 2612 * e1000_access_phy_wakeup_reg_bm - Read/write BM PHY wakeup register 2613 * @hw: pointer to the HW structure 2614 * @offset: register offset to be read or written 2615 * @data: pointer to the data to read or write 2616 * @read: determines if operation is read or write 2617 * @page_set: BM_WUC_PAGE already set and access enabled 2618 * 2619 * Read the PHY register at offset and store the retrieved information in 2620 * data, or write data to PHY register at offset. Note the procedure to 2621 * access the PHY wakeup registers is different than reading the other PHY 2622 * registers. It works as such: 2623 * 1) Set 769.17.2 (page 769, register 17, bit 2) = 1 2624 * 2) Set page to 800 for host (801 if we were manageability) 2625 * 3) Write the address using the address opcode (0x11) 2626 * 4) Read or write the data using the data opcode (0x12) 2627 * 5) Restore 769.17.2 to its original value 2628 * 2629 * Steps 1 and 2 are done by e1000_enable_phy_wakeup_reg_access_bm() and 2630 * step 5 is done by e1000_disable_phy_wakeup_reg_access_bm(). 2631 * 2632 * Assumes semaphore is already acquired. When page_set==true, assumes 2633 * the PHY page is set to BM_WUC_PAGE (i.e. a function in the call stack 2634 * is responsible for calls to e1000_[enable|disable]_phy_wakeup_reg_bm()). 2635 **/ 2636 static s32 e1000_access_phy_wakeup_reg_bm(struct e1000_hw *hw, u32 offset, 2637 u16 *data, bool read, bool page_set) 2638 { 2639 s32 ret_val; 2640 u16 reg = BM_PHY_REG_NUM(offset); 2641 u16 page = BM_PHY_REG_PAGE(offset); 2642 u16 phy_reg = 0; 2643 2644 /* Gig must be disabled for MDIO accesses to Host Wakeup reg page */ 2645 if ((hw->mac.type == e1000_pchlan) && 2646 (!(er32(PHY_CTRL) & E1000_PHY_CTRL_GBE_DISABLE))) 2647 e_dbg("Attempting to access page %d while gig enabled.\n", 2648 page); 2649 2650 if (!page_set) { 2651 /* Enable access to PHY wakeup registers */ 2652 ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg); 2653 if (ret_val) { 2654 e_dbg("Could not enable PHY wakeup reg access\n"); 2655 return ret_val; 2656 } 2657 } 2658 2659 e_dbg("Accessing PHY page %d reg 0x%x\n", page, reg); 2660 2661 /* Write the Wakeup register page offset value using opcode 0x11 */ 2662 ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_ADDRESS_OPCODE, reg); 2663 if (ret_val) { 2664 e_dbg("Could not write address opcode to page %d\n", page); 2665 return ret_val; 2666 } 2667 2668 if (read) { 2669 /* Read the Wakeup register page value using opcode 0x12 */ 2670 ret_val = e1000e_read_phy_reg_mdic(hw, BM_WUC_DATA_OPCODE, 2671 data); 2672 } else { 2673 /* Write the Wakeup register page value using opcode 0x12 */ 2674 ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_DATA_OPCODE, 2675 *data); 2676 } 2677 2678 if (ret_val) { 2679 e_dbg("Could not access PHY reg %d.%d\n", page, reg); 2680 return ret_val; 2681 } 2682 2683 if (!page_set) 2684 ret_val = e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg); 2685 2686 return ret_val; 2687 } 2688 2689 /** 2690 * e1000_power_up_phy_copper - Restore copper link in case of PHY power down 2691 * @hw: pointer to the HW structure 2692 * 2693 * In the case of a PHY power down to save power, or to turn off link during a 2694 * driver unload, or wake on lan is not enabled, restore the link to previous 2695 * settings. 2696 **/ 2697 void e1000_power_up_phy_copper(struct e1000_hw *hw) 2698 { 2699 u16 mii_reg = 0; 2700 int ret; 2701 2702 /* The PHY will retain its settings across a power down/up cycle */ 2703 ret = e1e_rphy(hw, MII_BMCR, &mii_reg); 2704 if (ret) { 2705 e_dbg("Error reading PHY register\n"); 2706 return; 2707 } 2708 mii_reg &= ~BMCR_PDOWN; 2709 e1e_wphy(hw, MII_BMCR, mii_reg); 2710 } 2711 2712 /** 2713 * e1000_power_down_phy_copper - Restore copper link in case of PHY power down 2714 * @hw: pointer to the HW structure 2715 * 2716 * In the case of a PHY power down to save power, or to turn off link during a 2717 * driver unload, or wake on lan is not enabled, restore the link to previous 2718 * settings. 2719 **/ 2720 void e1000_power_down_phy_copper(struct e1000_hw *hw) 2721 { 2722 u16 mii_reg = 0; 2723 int ret; 2724 2725 /* The PHY will retain its settings across a power down/up cycle */ 2726 ret = e1e_rphy(hw, MII_BMCR, &mii_reg); 2727 if (ret) { 2728 e_dbg("Error reading PHY register\n"); 2729 return; 2730 } 2731 mii_reg |= BMCR_PDOWN; 2732 e1e_wphy(hw, MII_BMCR, mii_reg); 2733 usleep_range(1000, 2000); 2734 } 2735 2736 /** 2737 * __e1000_read_phy_reg_hv - Read HV PHY register 2738 * @hw: pointer to the HW structure 2739 * @offset: register offset to be read 2740 * @data: pointer to the read data 2741 * @locked: semaphore has already been acquired or not 2742 * @page_set: BM_WUC_PAGE already set and access enabled 2743 * 2744 * Acquires semaphore, if necessary, then reads the PHY register at offset 2745 * and stores the retrieved information in data. Release any acquired 2746 * semaphore before exiting. 2747 **/ 2748 static s32 __e1000_read_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 *data, 2749 bool locked, bool page_set) 2750 { 2751 s32 ret_val; 2752 u16 page = BM_PHY_REG_PAGE(offset); 2753 u16 reg = BM_PHY_REG_NUM(offset); 2754 u32 phy_addr = hw->phy.addr = e1000_get_phy_addr_for_hv_page(page); 2755 2756 if (!locked) { 2757 ret_val = hw->phy.ops.acquire(hw); 2758 if (ret_val) 2759 return ret_val; 2760 } 2761 2762 /* Page 800 works differently than the rest so it has its own func */ 2763 if (page == BM_WUC_PAGE) { 2764 ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, data, 2765 true, page_set); 2766 goto out; 2767 } 2768 2769 if (page > 0 && page < HV_INTC_FC_PAGE_START) { 2770 ret_val = e1000_access_phy_debug_regs_hv(hw, offset, 2771 data, true); 2772 goto out; 2773 } 2774 2775 if (!page_set) { 2776 if (page == HV_INTC_FC_PAGE_START) 2777 page = 0; 2778 2779 if (reg > MAX_PHY_MULTI_PAGE_REG) { 2780 /* Page is shifted left, PHY expects (page x 32) */ 2781 ret_val = e1000_set_page_igp(hw, 2782 (page << IGP_PAGE_SHIFT)); 2783 2784 hw->phy.addr = phy_addr; 2785 2786 if (ret_val) 2787 goto out; 2788 } 2789 } 2790 2791 e_dbg("reading PHY page %d (or 0x%x shifted) reg 0x%x\n", page, 2792 page << IGP_PAGE_SHIFT, reg); 2793 2794 ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & reg, data); 2795 out: 2796 if (!locked) 2797 hw->phy.ops.release(hw); 2798 2799 return ret_val; 2800 } 2801 2802 /** 2803 * e1000_read_phy_reg_hv - Read HV PHY register 2804 * @hw: pointer to the HW structure 2805 * @offset: register offset to be read 2806 * @data: pointer to the read data 2807 * 2808 * Acquires semaphore then reads the PHY register at offset and stores 2809 * the retrieved information in data. Release the acquired semaphore 2810 * before exiting. 2811 **/ 2812 s32 e1000_read_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 *data) 2813 { 2814 return __e1000_read_phy_reg_hv(hw, offset, data, false, false); 2815 } 2816 2817 /** 2818 * e1000_read_phy_reg_hv_locked - Read HV PHY register 2819 * @hw: pointer to the HW structure 2820 * @offset: register offset to be read 2821 * @data: pointer to the read data 2822 * 2823 * Reads the PHY register at offset and stores the retrieved information 2824 * in data. Assumes semaphore already acquired. 2825 **/ 2826 s32 e1000_read_phy_reg_hv_locked(struct e1000_hw *hw, u32 offset, u16 *data) 2827 { 2828 return __e1000_read_phy_reg_hv(hw, offset, data, true, false); 2829 } 2830 2831 /** 2832 * e1000_read_phy_reg_page_hv - Read HV PHY register 2833 * @hw: pointer to the HW structure 2834 * @offset: register offset to write to 2835 * @data: data to write at register offset 2836 * 2837 * Reads the PHY register at offset and stores the retrieved information 2838 * in data. Assumes semaphore already acquired and page already set. 2839 **/ 2840 s32 e1000_read_phy_reg_page_hv(struct e1000_hw *hw, u32 offset, u16 *data) 2841 { 2842 return __e1000_read_phy_reg_hv(hw, offset, data, true, true); 2843 } 2844 2845 /** 2846 * __e1000_write_phy_reg_hv - Write HV PHY register 2847 * @hw: pointer to the HW structure 2848 * @offset: register offset to write to 2849 * @data: data to write at register offset 2850 * @locked: semaphore has already been acquired or not 2851 * @page_set: BM_WUC_PAGE already set and access enabled 2852 * 2853 * Acquires semaphore, if necessary, then writes the data to PHY register 2854 * at the offset. Release any acquired semaphores before exiting. 2855 **/ 2856 static s32 __e1000_write_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 data, 2857 bool locked, bool page_set) 2858 { 2859 s32 ret_val; 2860 u16 page = BM_PHY_REG_PAGE(offset); 2861 u16 reg = BM_PHY_REG_NUM(offset); 2862 u32 phy_addr = hw->phy.addr = e1000_get_phy_addr_for_hv_page(page); 2863 2864 if (!locked) { 2865 ret_val = hw->phy.ops.acquire(hw); 2866 if (ret_val) 2867 return ret_val; 2868 } 2869 2870 /* Page 800 works differently than the rest so it has its own func */ 2871 if (page == BM_WUC_PAGE) { 2872 ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, &data, 2873 false, page_set); 2874 goto out; 2875 } 2876 2877 if (page > 0 && page < HV_INTC_FC_PAGE_START) { 2878 ret_val = e1000_access_phy_debug_regs_hv(hw, offset, 2879 &data, false); 2880 goto out; 2881 } 2882 2883 if (!page_set) { 2884 if (page == HV_INTC_FC_PAGE_START) 2885 page = 0; 2886 2887 /* Workaround MDIO accesses being disabled after entering IEEE 2888 * Power Down (when bit 11 of the PHY Control register is set) 2889 */ 2890 if ((hw->phy.type == e1000_phy_82578) && 2891 (hw->phy.revision >= 1) && 2892 (hw->phy.addr == 2) && 2893 !(MAX_PHY_REG_ADDRESS & reg) && (data & BIT(11))) { 2894 u16 data2 = 0x7EFF; 2895 2896 ret_val = e1000_access_phy_debug_regs_hv(hw, 2897 BIT(6) | 0x3, 2898 &data2, false); 2899 if (ret_val) 2900 goto out; 2901 } 2902 2903 if (reg > MAX_PHY_MULTI_PAGE_REG) { 2904 /* Page is shifted left, PHY expects (page x 32) */ 2905 ret_val = e1000_set_page_igp(hw, 2906 (page << IGP_PAGE_SHIFT)); 2907 2908 hw->phy.addr = phy_addr; 2909 2910 if (ret_val) 2911 goto out; 2912 } 2913 } 2914 2915 e_dbg("writing PHY page %d (or 0x%x shifted) reg 0x%x\n", page, 2916 page << IGP_PAGE_SHIFT, reg); 2917 2918 ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & reg, 2919 data); 2920 2921 out: 2922 if (!locked) 2923 hw->phy.ops.release(hw); 2924 2925 return ret_val; 2926 } 2927 2928 /** 2929 * e1000_write_phy_reg_hv - Write HV PHY register 2930 * @hw: pointer to the HW structure 2931 * @offset: register offset to write to 2932 * @data: data to write at register offset 2933 * 2934 * Acquires semaphore then writes the data to PHY register at the offset. 2935 * Release the acquired semaphores before exiting. 2936 **/ 2937 s32 e1000_write_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 data) 2938 { 2939 return __e1000_write_phy_reg_hv(hw, offset, data, false, false); 2940 } 2941 2942 /** 2943 * e1000_write_phy_reg_hv_locked - Write HV PHY register 2944 * @hw: pointer to the HW structure 2945 * @offset: register offset to write to 2946 * @data: data to write at register offset 2947 * 2948 * Writes the data to PHY register at the offset. Assumes semaphore 2949 * already acquired. 2950 **/ 2951 s32 e1000_write_phy_reg_hv_locked(struct e1000_hw *hw, u32 offset, u16 data) 2952 { 2953 return __e1000_write_phy_reg_hv(hw, offset, data, true, false); 2954 } 2955 2956 /** 2957 * e1000_write_phy_reg_page_hv - Write HV PHY register 2958 * @hw: pointer to the HW structure 2959 * @offset: register offset to write to 2960 * @data: data to write at register offset 2961 * 2962 * Writes the data to PHY register at the offset. Assumes semaphore 2963 * already acquired and page already set. 2964 **/ 2965 s32 e1000_write_phy_reg_page_hv(struct e1000_hw *hw, u32 offset, u16 data) 2966 { 2967 return __e1000_write_phy_reg_hv(hw, offset, data, true, true); 2968 } 2969 2970 /** 2971 * e1000_get_phy_addr_for_hv_page - Get PHY address based on page 2972 * @page: page to be accessed 2973 **/ 2974 static u32 e1000_get_phy_addr_for_hv_page(u32 page) 2975 { 2976 u32 phy_addr = 2; 2977 2978 if (page >= HV_INTC_FC_PAGE_START) 2979 phy_addr = 1; 2980 2981 return phy_addr; 2982 } 2983 2984 /** 2985 * e1000_access_phy_debug_regs_hv - Read HV PHY vendor specific high registers 2986 * @hw: pointer to the HW structure 2987 * @offset: register offset to be read or written 2988 * @data: pointer to the data to be read or written 2989 * @read: determines if operation is read or write 2990 * 2991 * Reads the PHY register at offset and stores the retrieved information 2992 * in data. Assumes semaphore already acquired. Note that the procedure 2993 * to access these regs uses the address port and data port to read/write. 2994 * These accesses done with PHY address 2 and without using pages. 2995 **/ 2996 static s32 e1000_access_phy_debug_regs_hv(struct e1000_hw *hw, u32 offset, 2997 u16 *data, bool read) 2998 { 2999 s32 ret_val; 3000 u32 addr_reg; 3001 u32 data_reg; 3002 3003 /* This takes care of the difference with desktop vs mobile phy */ 3004 addr_reg = ((hw->phy.type == e1000_phy_82578) ? 3005 I82578_ADDR_REG : I82577_ADDR_REG); 3006 data_reg = addr_reg + 1; 3007 3008 /* All operations in this function are phy address 2 */ 3009 hw->phy.addr = 2; 3010 3011 /* masking with 0x3F to remove the page from offset */ 3012 ret_val = e1000e_write_phy_reg_mdic(hw, addr_reg, (u16)offset & 0x3F); 3013 if (ret_val) { 3014 e_dbg("Could not write the Address Offset port register\n"); 3015 return ret_val; 3016 } 3017 3018 /* Read or write the data value next */ 3019 if (read) 3020 ret_val = e1000e_read_phy_reg_mdic(hw, data_reg, data); 3021 else 3022 ret_val = e1000e_write_phy_reg_mdic(hw, data_reg, *data); 3023 3024 if (ret_val) 3025 e_dbg("Could not access the Data port register\n"); 3026 3027 return ret_val; 3028 } 3029 3030 /** 3031 * e1000_link_stall_workaround_hv - Si workaround 3032 * @hw: pointer to the HW structure 3033 * 3034 * This function works around a Si bug where the link partner can get 3035 * a link up indication before the PHY does. If small packets are sent 3036 * by the link partner they can be placed in the packet buffer without 3037 * being properly accounted for by the PHY and will stall preventing 3038 * further packets from being received. The workaround is to clear the 3039 * packet buffer after the PHY detects link up. 3040 **/ 3041 s32 e1000_link_stall_workaround_hv(struct e1000_hw *hw) 3042 { 3043 s32 ret_val = 0; 3044 u16 data; 3045 3046 if (hw->phy.type != e1000_phy_82578) 3047 return 0; 3048 3049 /* Do not apply workaround if in PHY loopback bit 14 set */ 3050 ret_val = e1e_rphy(hw, MII_BMCR, &data); 3051 if (ret_val) { 3052 e_dbg("Error reading PHY register\n"); 3053 return ret_val; 3054 } 3055 if (data & BMCR_LOOPBACK) 3056 return 0; 3057 3058 /* check if link is up and at 1Gbps */ 3059 ret_val = e1e_rphy(hw, BM_CS_STATUS, &data); 3060 if (ret_val) 3061 return ret_val; 3062 3063 data &= (BM_CS_STATUS_LINK_UP | BM_CS_STATUS_RESOLVED | 3064 BM_CS_STATUS_SPEED_MASK); 3065 3066 if (data != (BM_CS_STATUS_LINK_UP | BM_CS_STATUS_RESOLVED | 3067 BM_CS_STATUS_SPEED_1000)) 3068 return 0; 3069 3070 msleep(200); 3071 3072 /* flush the packets in the fifo buffer */ 3073 ret_val = e1e_wphy(hw, HV_MUX_DATA_CTRL, 3074 (HV_MUX_DATA_CTRL_GEN_TO_MAC | 3075 HV_MUX_DATA_CTRL_FORCE_SPEED)); 3076 if (ret_val) 3077 return ret_val; 3078 3079 return e1e_wphy(hw, HV_MUX_DATA_CTRL, HV_MUX_DATA_CTRL_GEN_TO_MAC); 3080 } 3081 3082 /** 3083 * e1000_check_polarity_82577 - Checks the polarity. 3084 * @hw: pointer to the HW structure 3085 * 3086 * Success returns 0, Failure returns -E1000_ERR_PHY (-2) 3087 * 3088 * Polarity is determined based on the PHY specific status register. 3089 **/ 3090 s32 e1000_check_polarity_82577(struct e1000_hw *hw) 3091 { 3092 struct e1000_phy_info *phy = &hw->phy; 3093 s32 ret_val; 3094 u16 data; 3095 3096 ret_val = e1e_rphy(hw, I82577_PHY_STATUS_2, &data); 3097 3098 if (!ret_val) 3099 phy->cable_polarity = ((data & I82577_PHY_STATUS2_REV_POLARITY) 3100 ? e1000_rev_polarity_reversed 3101 : e1000_rev_polarity_normal); 3102 3103 return ret_val; 3104 } 3105 3106 /** 3107 * e1000_phy_force_speed_duplex_82577 - Force speed/duplex for I82577 PHY 3108 * @hw: pointer to the HW structure 3109 * 3110 * Calls the PHY setup function to force speed and duplex. 3111 **/ 3112 s32 e1000_phy_force_speed_duplex_82577(struct e1000_hw *hw) 3113 { 3114 struct e1000_phy_info *phy = &hw->phy; 3115 s32 ret_val; 3116 u16 phy_data; 3117 bool link; 3118 3119 ret_val = e1e_rphy(hw, MII_BMCR, &phy_data); 3120 if (ret_val) 3121 return ret_val; 3122 3123 e1000e_phy_force_speed_duplex_setup(hw, &phy_data); 3124 3125 ret_val = e1e_wphy(hw, MII_BMCR, phy_data); 3126 if (ret_val) 3127 return ret_val; 3128 3129 udelay(1); 3130 3131 if (phy->autoneg_wait_to_complete) { 3132 e_dbg("Waiting for forced speed/duplex link on 82577 phy\n"); 3133 3134 ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT, 3135 100000, &link); 3136 if (ret_val) 3137 return ret_val; 3138 3139 if (!link) 3140 e_dbg("Link taking longer than expected.\n"); 3141 3142 /* Try once more */ 3143 ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT, 3144 100000, &link); 3145 } 3146 3147 return ret_val; 3148 } 3149 3150 /** 3151 * e1000_get_phy_info_82577 - Retrieve I82577 PHY information 3152 * @hw: pointer to the HW structure 3153 * 3154 * Read PHY status to determine if link is up. If link is up, then 3155 * set/determine 10base-T extended distance and polarity correction. Read 3156 * PHY port status to determine MDI/MDIx and speed. Based on the speed, 3157 * determine on the cable length, local and remote receiver. 3158 **/ 3159 s32 e1000_get_phy_info_82577(struct e1000_hw *hw) 3160 { 3161 struct e1000_phy_info *phy = &hw->phy; 3162 s32 ret_val; 3163 u16 data; 3164 bool link; 3165 3166 ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link); 3167 if (ret_val) 3168 return ret_val; 3169 3170 if (!link) { 3171 e_dbg("Phy info is only valid if link is up\n"); 3172 return -E1000_ERR_CONFIG; 3173 } 3174 3175 phy->polarity_correction = true; 3176 3177 ret_val = e1000_check_polarity_82577(hw); 3178 if (ret_val) 3179 return ret_val; 3180 3181 ret_val = e1e_rphy(hw, I82577_PHY_STATUS_2, &data); 3182 if (ret_val) 3183 return ret_val; 3184 3185 phy->is_mdix = !!(data & I82577_PHY_STATUS2_MDIX); 3186 3187 if ((data & I82577_PHY_STATUS2_SPEED_MASK) == 3188 I82577_PHY_STATUS2_SPEED_1000MBPS) { 3189 ret_val = hw->phy.ops.get_cable_length(hw); 3190 if (ret_val) 3191 return ret_val; 3192 3193 ret_val = e1e_rphy(hw, MII_STAT1000, &data); 3194 if (ret_val) 3195 return ret_val; 3196 3197 phy->local_rx = (data & LPA_1000LOCALRXOK) 3198 ? e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok; 3199 3200 phy->remote_rx = (data & LPA_1000REMRXOK) 3201 ? e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok; 3202 } else { 3203 phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED; 3204 phy->local_rx = e1000_1000t_rx_status_undefined; 3205 phy->remote_rx = e1000_1000t_rx_status_undefined; 3206 } 3207 3208 return 0; 3209 } 3210 3211 /** 3212 * e1000_get_cable_length_82577 - Determine cable length for 82577 PHY 3213 * @hw: pointer to the HW structure 3214 * 3215 * Reads the diagnostic status register and verifies result is valid before 3216 * placing it in the phy_cable_length field. 3217 **/ 3218 s32 e1000_get_cable_length_82577(struct e1000_hw *hw) 3219 { 3220 struct e1000_phy_info *phy = &hw->phy; 3221 s32 ret_val; 3222 u16 phy_data, length; 3223 3224 ret_val = e1e_rphy(hw, I82577_PHY_DIAG_STATUS, &phy_data); 3225 if (ret_val) 3226 return ret_val; 3227 3228 length = ((phy_data & I82577_DSTATUS_CABLE_LENGTH) >> 3229 I82577_DSTATUS_CABLE_LENGTH_SHIFT); 3230 3231 if (length == E1000_CABLE_LENGTH_UNDEFINED) 3232 return -E1000_ERR_PHY; 3233 3234 phy->cable_length = length; 3235 3236 return 0; 3237 } 3238