1 /*******************************************************************************
2 
3   Intel PRO/1000 Linux driver
4   Copyright(c) 1999 - 2011 Intel Corporation.
5 
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9 
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14 
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18 
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21 
22   Contact Information:
23   Linux NICS <linux.nics@intel.com>
24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26 
27 *******************************************************************************/
28 
29 #include <linux/delay.h>
30 
31 #include "e1000.h"
32 
33 static s32 e1000_get_phy_cfg_done(struct e1000_hw *hw);
34 static s32 e1000_phy_force_speed_duplex(struct e1000_hw *hw);
35 static s32 e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active);
36 static s32 e1000_wait_autoneg(struct e1000_hw *hw);
37 static u32 e1000_get_phy_addr_for_bm_page(u32 page, u32 reg);
38 static s32 e1000_access_phy_wakeup_reg_bm(struct e1000_hw *hw, u32 offset,
39 					  u16 *data, bool read, bool page_set);
40 static u32 e1000_get_phy_addr_for_hv_page(u32 page);
41 static s32 e1000_access_phy_debug_regs_hv(struct e1000_hw *hw, u32 offset,
42                                           u16 *data, bool read);
43 
44 /* Cable length tables */
45 static const u16 e1000_m88_cable_length_table[] = {
46 	0, 50, 80, 110, 140, 140, E1000_CABLE_LENGTH_UNDEFINED };
47 #define M88E1000_CABLE_LENGTH_TABLE_SIZE \
48 		ARRAY_SIZE(e1000_m88_cable_length_table)
49 
50 static const u16 e1000_igp_2_cable_length_table[] = {
51 	0, 0, 0, 0, 0, 0, 0, 0, 3, 5, 8, 11, 13, 16, 18, 21, 0, 0, 0, 3,
52 	6, 10, 13, 16, 19, 23, 26, 29, 32, 35, 38, 41, 6, 10, 14, 18, 22,
53 	26, 30, 33, 37, 41, 44, 48, 51, 54, 58, 61, 21, 26, 31, 35, 40,
54 	44, 49, 53, 57, 61, 65, 68, 72, 75, 79, 82, 40, 45, 51, 56, 61,
55 	66, 70, 75, 79, 83, 87, 91, 94, 98, 101, 104, 60, 66, 72, 77, 82,
56 	87, 92, 96, 100, 104, 108, 111, 114, 117, 119, 121, 83, 89, 95,
57 	100, 105, 109, 113, 116, 119, 122, 124, 104, 109, 114, 118, 121,
58 	124};
59 #define IGP02E1000_CABLE_LENGTH_TABLE_SIZE \
60 		ARRAY_SIZE(e1000_igp_2_cable_length_table)
61 
62 #define BM_PHY_REG_PAGE(offset) \
63 	((u16)(((offset) >> PHY_PAGE_SHIFT) & 0xFFFF))
64 #define BM_PHY_REG_NUM(offset) \
65 	((u16)(((offset) & MAX_PHY_REG_ADDRESS) |\
66 	 (((offset) >> (PHY_UPPER_SHIFT - PHY_PAGE_SHIFT)) &\
67 		~MAX_PHY_REG_ADDRESS)))
68 
69 #define HV_INTC_FC_PAGE_START             768
70 #define I82578_ADDR_REG                   29
71 #define I82577_ADDR_REG                   16
72 #define I82577_CFG_REG                    22
73 #define I82577_CFG_ASSERT_CRS_ON_TX       (1 << 15)
74 #define I82577_CFG_ENABLE_DOWNSHIFT       (3 << 10) /* auto downshift 100/10 */
75 #define I82577_CTRL_REG                   23
76 
77 /* 82577 specific PHY registers */
78 #define I82577_PHY_CTRL_2            18
79 #define I82577_PHY_STATUS_2          26
80 #define I82577_PHY_DIAG_STATUS       31
81 
82 /* I82577 PHY Status 2 */
83 #define I82577_PHY_STATUS2_REV_POLARITY   0x0400
84 #define I82577_PHY_STATUS2_MDIX           0x0800
85 #define I82577_PHY_STATUS2_SPEED_MASK     0x0300
86 #define I82577_PHY_STATUS2_SPEED_1000MBPS 0x0200
87 
88 /* I82577 PHY Control 2 */
89 #define I82577_PHY_CTRL2_AUTO_MDIX        0x0400
90 #define I82577_PHY_CTRL2_FORCE_MDI_MDIX   0x0200
91 
92 /* I82577 PHY Diagnostics Status */
93 #define I82577_DSTATUS_CABLE_LENGTH       0x03FC
94 #define I82577_DSTATUS_CABLE_LENGTH_SHIFT 2
95 
96 /* BM PHY Copper Specific Control 1 */
97 #define BM_CS_CTRL1                       16
98 
99 #define HV_MUX_DATA_CTRL               PHY_REG(776, 16)
100 #define HV_MUX_DATA_CTRL_GEN_TO_MAC    0x0400
101 #define HV_MUX_DATA_CTRL_FORCE_SPEED   0x0004
102 
103 /**
104  *  e1000e_check_reset_block_generic - Check if PHY reset is blocked
105  *  @hw: pointer to the HW structure
106  *
107  *  Read the PHY management control register and check whether a PHY reset
108  *  is blocked.  If a reset is not blocked return 0, otherwise
109  *  return E1000_BLK_PHY_RESET (12).
110  **/
111 s32 e1000e_check_reset_block_generic(struct e1000_hw *hw)
112 {
113 	u32 manc;
114 
115 	manc = er32(MANC);
116 
117 	return (manc & E1000_MANC_BLK_PHY_RST_ON_IDE) ?
118 	       E1000_BLK_PHY_RESET : 0;
119 }
120 
121 /**
122  *  e1000e_get_phy_id - Retrieve the PHY ID and revision
123  *  @hw: pointer to the HW structure
124  *
125  *  Reads the PHY registers and stores the PHY ID and possibly the PHY
126  *  revision in the hardware structure.
127  **/
128 s32 e1000e_get_phy_id(struct e1000_hw *hw)
129 {
130 	struct e1000_phy_info *phy = &hw->phy;
131 	s32 ret_val = 0;
132 	u16 phy_id;
133 	u16 retry_count = 0;
134 
135 	if (!(phy->ops.read_reg))
136 		goto out;
137 
138 	while (retry_count < 2) {
139 		ret_val = e1e_rphy(hw, PHY_ID1, &phy_id);
140 		if (ret_val)
141 			goto out;
142 
143 		phy->id = (u32)(phy_id << 16);
144 		udelay(20);
145 		ret_val = e1e_rphy(hw, PHY_ID2, &phy_id);
146 		if (ret_val)
147 			goto out;
148 
149 		phy->id |= (u32)(phy_id & PHY_REVISION_MASK);
150 		phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK);
151 
152 		if (phy->id != 0 && phy->id != PHY_REVISION_MASK)
153 			goto out;
154 
155 		retry_count++;
156 	}
157 out:
158 	return ret_val;
159 }
160 
161 /**
162  *  e1000e_phy_reset_dsp - Reset PHY DSP
163  *  @hw: pointer to the HW structure
164  *
165  *  Reset the digital signal processor.
166  **/
167 s32 e1000e_phy_reset_dsp(struct e1000_hw *hw)
168 {
169 	s32 ret_val;
170 
171 	ret_val = e1e_wphy(hw, M88E1000_PHY_GEN_CONTROL, 0xC1);
172 	if (ret_val)
173 		return ret_val;
174 
175 	return e1e_wphy(hw, M88E1000_PHY_GEN_CONTROL, 0);
176 }
177 
178 /**
179  *  e1000e_read_phy_reg_mdic - Read MDI control register
180  *  @hw: pointer to the HW structure
181  *  @offset: register offset to be read
182  *  @data: pointer to the read data
183  *
184  *  Reads the MDI control register in the PHY at offset and stores the
185  *  information read to data.
186  **/
187 s32 e1000e_read_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 *data)
188 {
189 	struct e1000_phy_info *phy = &hw->phy;
190 	u32 i, mdic = 0;
191 
192 	if (offset > MAX_PHY_REG_ADDRESS) {
193 		e_dbg("PHY Address %d is out of range\n", offset);
194 		return -E1000_ERR_PARAM;
195 	}
196 
197 	/*
198 	 * Set up Op-code, Phy Address, and register offset in the MDI
199 	 * Control register.  The MAC will take care of interfacing with the
200 	 * PHY to retrieve the desired data.
201 	 */
202 	mdic = ((offset << E1000_MDIC_REG_SHIFT) |
203 		(phy->addr << E1000_MDIC_PHY_SHIFT) |
204 		(E1000_MDIC_OP_READ));
205 
206 	ew32(MDIC, mdic);
207 
208 	/*
209 	 * Poll the ready bit to see if the MDI read completed
210 	 * Increasing the time out as testing showed failures with
211 	 * the lower time out
212 	 */
213 	for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) {
214 		udelay(50);
215 		mdic = er32(MDIC);
216 		if (mdic & E1000_MDIC_READY)
217 			break;
218 	}
219 	if (!(mdic & E1000_MDIC_READY)) {
220 		e_dbg("MDI Read did not complete\n");
221 		return -E1000_ERR_PHY;
222 	}
223 	if (mdic & E1000_MDIC_ERROR) {
224 		e_dbg("MDI Error\n");
225 		return -E1000_ERR_PHY;
226 	}
227 	*data = (u16) mdic;
228 
229 	/*
230 	 * Allow some time after each MDIC transaction to avoid
231 	 * reading duplicate data in the next MDIC transaction.
232 	 */
233 	if (hw->mac.type == e1000_pch2lan)
234 		udelay(100);
235 
236 	return 0;
237 }
238 
239 /**
240  *  e1000e_write_phy_reg_mdic - Write MDI control register
241  *  @hw: pointer to the HW structure
242  *  @offset: register offset to write to
243  *  @data: data to write to register at offset
244  *
245  *  Writes data to MDI control register in the PHY at offset.
246  **/
247 s32 e1000e_write_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 data)
248 {
249 	struct e1000_phy_info *phy = &hw->phy;
250 	u32 i, mdic = 0;
251 
252 	if (offset > MAX_PHY_REG_ADDRESS) {
253 		e_dbg("PHY Address %d is out of range\n", offset);
254 		return -E1000_ERR_PARAM;
255 	}
256 
257 	/*
258 	 * Set up Op-code, Phy Address, and register offset in the MDI
259 	 * Control register.  The MAC will take care of interfacing with the
260 	 * PHY to retrieve the desired data.
261 	 */
262 	mdic = (((u32)data) |
263 		(offset << E1000_MDIC_REG_SHIFT) |
264 		(phy->addr << E1000_MDIC_PHY_SHIFT) |
265 		(E1000_MDIC_OP_WRITE));
266 
267 	ew32(MDIC, mdic);
268 
269 	/*
270 	 * Poll the ready bit to see if the MDI read completed
271 	 * Increasing the time out as testing showed failures with
272 	 * the lower time out
273 	 */
274 	for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) {
275 		udelay(50);
276 		mdic = er32(MDIC);
277 		if (mdic & E1000_MDIC_READY)
278 			break;
279 	}
280 	if (!(mdic & E1000_MDIC_READY)) {
281 		e_dbg("MDI Write did not complete\n");
282 		return -E1000_ERR_PHY;
283 	}
284 	if (mdic & E1000_MDIC_ERROR) {
285 		e_dbg("MDI Error\n");
286 		return -E1000_ERR_PHY;
287 	}
288 
289 	/*
290 	 * Allow some time after each MDIC transaction to avoid
291 	 * reading duplicate data in the next MDIC transaction.
292 	 */
293 	if (hw->mac.type == e1000_pch2lan)
294 		udelay(100);
295 
296 	return 0;
297 }
298 
299 /**
300  *  e1000e_read_phy_reg_m88 - Read m88 PHY register
301  *  @hw: pointer to the HW structure
302  *  @offset: register offset to be read
303  *  @data: pointer to the read data
304  *
305  *  Acquires semaphore, if necessary, then reads the PHY register at offset
306  *  and storing the retrieved information in data.  Release any acquired
307  *  semaphores before exiting.
308  **/
309 s32 e1000e_read_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 *data)
310 {
311 	s32 ret_val;
312 
313 	ret_val = hw->phy.ops.acquire(hw);
314 	if (ret_val)
315 		return ret_val;
316 
317 	ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
318 					   data);
319 
320 	hw->phy.ops.release(hw);
321 
322 	return ret_val;
323 }
324 
325 /**
326  *  e1000e_write_phy_reg_m88 - Write m88 PHY register
327  *  @hw: pointer to the HW structure
328  *  @offset: register offset to write to
329  *  @data: data to write at register offset
330  *
331  *  Acquires semaphore, if necessary, then writes the data to PHY register
332  *  at the offset.  Release any acquired semaphores before exiting.
333  **/
334 s32 e1000e_write_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 data)
335 {
336 	s32 ret_val;
337 
338 	ret_val = hw->phy.ops.acquire(hw);
339 	if (ret_val)
340 		return ret_val;
341 
342 	ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
343 					    data);
344 
345 	hw->phy.ops.release(hw);
346 
347 	return ret_val;
348 }
349 
350 /**
351  *  e1000_set_page_igp - Set page as on IGP-like PHY(s)
352  *  @hw: pointer to the HW structure
353  *  @page: page to set (shifted left when necessary)
354  *
355  *  Sets PHY page required for PHY register access.  Assumes semaphore is
356  *  already acquired.  Note, this function sets phy.addr to 1 so the caller
357  *  must set it appropriately (if necessary) after this function returns.
358  **/
359 s32 e1000_set_page_igp(struct e1000_hw *hw, u16 page)
360 {
361 	e_dbg("Setting page 0x%x\n", page);
362 
363 	hw->phy.addr = 1;
364 
365 	return e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, page);
366 }
367 
368 /**
369  *  __e1000e_read_phy_reg_igp - Read igp PHY register
370  *  @hw: pointer to the HW structure
371  *  @offset: register offset to be read
372  *  @data: pointer to the read data
373  *  @locked: semaphore has already been acquired or not
374  *
375  *  Acquires semaphore, if necessary, then reads the PHY register at offset
376  *  and stores the retrieved information in data.  Release any acquired
377  *  semaphores before exiting.
378  **/
379 static s32 __e1000e_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data,
380                                     bool locked)
381 {
382 	s32 ret_val = 0;
383 
384 	if (!locked) {
385 		if (!(hw->phy.ops.acquire))
386 			goto out;
387 
388 		ret_val = hw->phy.ops.acquire(hw);
389 		if (ret_val)
390 			goto out;
391 	}
392 
393 	if (offset > MAX_PHY_MULTI_PAGE_REG) {
394 		ret_val = e1000e_write_phy_reg_mdic(hw,
395 						    IGP01E1000_PHY_PAGE_SELECT,
396 						    (u16)offset);
397 		if (ret_val)
398 			goto release;
399 	}
400 
401 	ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
402 	                                  data);
403 
404 release:
405 	if (!locked)
406 		hw->phy.ops.release(hw);
407 out:
408 	return ret_val;
409 }
410 
411 /**
412  *  e1000e_read_phy_reg_igp - Read igp PHY register
413  *  @hw: pointer to the HW structure
414  *  @offset: register offset to be read
415  *  @data: pointer to the read data
416  *
417  *  Acquires semaphore then reads the PHY register at offset and stores the
418  *  retrieved information in data.
419  *  Release the acquired semaphore before exiting.
420  **/
421 s32 e1000e_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data)
422 {
423 	return __e1000e_read_phy_reg_igp(hw, offset, data, false);
424 }
425 
426 /**
427  *  e1000e_read_phy_reg_igp_locked - Read igp PHY register
428  *  @hw: pointer to the HW structure
429  *  @offset: register offset to be read
430  *  @data: pointer to the read data
431  *
432  *  Reads the PHY register at offset and stores the retrieved information
433  *  in data.  Assumes semaphore already acquired.
434  **/
435 s32 e1000e_read_phy_reg_igp_locked(struct e1000_hw *hw, u32 offset, u16 *data)
436 {
437 	return __e1000e_read_phy_reg_igp(hw, offset, data, true);
438 }
439 
440 /**
441  *  e1000e_write_phy_reg_igp - Write igp PHY register
442  *  @hw: pointer to the HW structure
443  *  @offset: register offset to write to
444  *  @data: data to write at register offset
445  *  @locked: semaphore has already been acquired or not
446  *
447  *  Acquires semaphore, if necessary, then writes the data to PHY register
448  *  at the offset.  Release any acquired semaphores before exiting.
449  **/
450 static s32 __e1000e_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data,
451                                      bool locked)
452 {
453 	s32 ret_val = 0;
454 
455 	if (!locked) {
456 		if (!(hw->phy.ops.acquire))
457 			goto out;
458 
459 		ret_val = hw->phy.ops.acquire(hw);
460 		if (ret_val)
461 			goto out;
462 	}
463 
464 	if (offset > MAX_PHY_MULTI_PAGE_REG) {
465 		ret_val = e1000e_write_phy_reg_mdic(hw,
466 						    IGP01E1000_PHY_PAGE_SELECT,
467 						    (u16)offset);
468 		if (ret_val)
469 			goto release;
470 	}
471 
472 	ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
473 					    data);
474 
475 release:
476 	if (!locked)
477 		hw->phy.ops.release(hw);
478 
479 out:
480 	return ret_val;
481 }
482 
483 /**
484  *  e1000e_write_phy_reg_igp - Write igp PHY register
485  *  @hw: pointer to the HW structure
486  *  @offset: register offset to write to
487  *  @data: data to write at register offset
488  *
489  *  Acquires semaphore then writes the data to PHY register
490  *  at the offset.  Release any acquired semaphores before exiting.
491  **/
492 s32 e1000e_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data)
493 {
494 	return __e1000e_write_phy_reg_igp(hw, offset, data, false);
495 }
496 
497 /**
498  *  e1000e_write_phy_reg_igp_locked - Write igp PHY register
499  *  @hw: pointer to the HW structure
500  *  @offset: register offset to write to
501  *  @data: data to write at register offset
502  *
503  *  Writes the data to PHY register at the offset.
504  *  Assumes semaphore already acquired.
505  **/
506 s32 e1000e_write_phy_reg_igp_locked(struct e1000_hw *hw, u32 offset, u16 data)
507 {
508 	return __e1000e_write_phy_reg_igp(hw, offset, data, true);
509 }
510 
511 /**
512  *  __e1000_read_kmrn_reg - Read kumeran register
513  *  @hw: pointer to the HW structure
514  *  @offset: register offset to be read
515  *  @data: pointer to the read data
516  *  @locked: semaphore has already been acquired or not
517  *
518  *  Acquires semaphore, if necessary.  Then reads the PHY register at offset
519  *  using the kumeran interface.  The information retrieved is stored in data.
520  *  Release any acquired semaphores before exiting.
521  **/
522 static s32 __e1000_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data,
523                                  bool locked)
524 {
525 	u32 kmrnctrlsta;
526 	s32 ret_val = 0;
527 
528 	if (!locked) {
529 		if (!(hw->phy.ops.acquire))
530 			goto out;
531 
532 		ret_val = hw->phy.ops.acquire(hw);
533 		if (ret_val)
534 			goto out;
535 	}
536 
537 	kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
538 		       E1000_KMRNCTRLSTA_OFFSET) | E1000_KMRNCTRLSTA_REN;
539 	ew32(KMRNCTRLSTA, kmrnctrlsta);
540 	e1e_flush();
541 
542 	udelay(2);
543 
544 	kmrnctrlsta = er32(KMRNCTRLSTA);
545 	*data = (u16)kmrnctrlsta;
546 
547 	if (!locked)
548 		hw->phy.ops.release(hw);
549 
550 out:
551 	return ret_val;
552 }
553 
554 /**
555  *  e1000e_read_kmrn_reg -  Read kumeran register
556  *  @hw: pointer to the HW structure
557  *  @offset: register offset to be read
558  *  @data: pointer to the read data
559  *
560  *  Acquires semaphore then reads the PHY register at offset using the
561  *  kumeran interface.  The information retrieved is stored in data.
562  *  Release the acquired semaphore before exiting.
563  **/
564 s32 e1000e_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data)
565 {
566 	return __e1000_read_kmrn_reg(hw, offset, data, false);
567 }
568 
569 /**
570  *  e1000e_read_kmrn_reg_locked -  Read kumeran register
571  *  @hw: pointer to the HW structure
572  *  @offset: register offset to be read
573  *  @data: pointer to the read data
574  *
575  *  Reads the PHY register at offset using the kumeran interface.  The
576  *  information retrieved is stored in data.
577  *  Assumes semaphore already acquired.
578  **/
579 s32 e1000e_read_kmrn_reg_locked(struct e1000_hw *hw, u32 offset, u16 *data)
580 {
581 	return __e1000_read_kmrn_reg(hw, offset, data, true);
582 }
583 
584 /**
585  *  __e1000_write_kmrn_reg - Write kumeran register
586  *  @hw: pointer to the HW structure
587  *  @offset: register offset to write to
588  *  @data: data to write at register offset
589  *  @locked: semaphore has already been acquired or not
590  *
591  *  Acquires semaphore, if necessary.  Then write the data to PHY register
592  *  at the offset using the kumeran interface.  Release any acquired semaphores
593  *  before exiting.
594  **/
595 static s32 __e1000_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data,
596                                   bool locked)
597 {
598 	u32 kmrnctrlsta;
599 	s32 ret_val = 0;
600 
601 	if (!locked) {
602 		if (!(hw->phy.ops.acquire))
603 			goto out;
604 
605 		ret_val = hw->phy.ops.acquire(hw);
606 		if (ret_val)
607 			goto out;
608 	}
609 
610 	kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
611 		       E1000_KMRNCTRLSTA_OFFSET) | data;
612 	ew32(KMRNCTRLSTA, kmrnctrlsta);
613 	e1e_flush();
614 
615 	udelay(2);
616 
617 	if (!locked)
618 		hw->phy.ops.release(hw);
619 
620 out:
621 	return ret_val;
622 }
623 
624 /**
625  *  e1000e_write_kmrn_reg -  Write kumeran register
626  *  @hw: pointer to the HW structure
627  *  @offset: register offset to write to
628  *  @data: data to write at register offset
629  *
630  *  Acquires semaphore then writes the data to the PHY register at the offset
631  *  using the kumeran interface.  Release the acquired semaphore before exiting.
632  **/
633 s32 e1000e_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data)
634 {
635 	return __e1000_write_kmrn_reg(hw, offset, data, false);
636 }
637 
638 /**
639  *  e1000e_write_kmrn_reg_locked -  Write kumeran register
640  *  @hw: pointer to the HW structure
641  *  @offset: register offset to write to
642  *  @data: data to write at register offset
643  *
644  *  Write the data to PHY register at the offset using the kumeran interface.
645  *  Assumes semaphore already acquired.
646  **/
647 s32 e1000e_write_kmrn_reg_locked(struct e1000_hw *hw, u32 offset, u16 data)
648 {
649 	return __e1000_write_kmrn_reg(hw, offset, data, true);
650 }
651 
652 /**
653  *  e1000_copper_link_setup_82577 - Setup 82577 PHY for copper link
654  *  @hw: pointer to the HW structure
655  *
656  *  Sets up Carrier-sense on Transmit and downshift values.
657  **/
658 s32 e1000_copper_link_setup_82577(struct e1000_hw *hw)
659 {
660 	s32 ret_val;
661 	u16 phy_data;
662 
663 	/* Enable CRS on Tx. This must be set for half-duplex operation. */
664 	ret_val = e1e_rphy(hw, I82577_CFG_REG, &phy_data);
665 	if (ret_val)
666 		goto out;
667 
668 	phy_data |= I82577_CFG_ASSERT_CRS_ON_TX;
669 
670 	/* Enable downshift */
671 	phy_data |= I82577_CFG_ENABLE_DOWNSHIFT;
672 
673 	ret_val = e1e_wphy(hw, I82577_CFG_REG, phy_data);
674 
675 out:
676 	return ret_val;
677 }
678 
679 /**
680  *  e1000e_copper_link_setup_m88 - Setup m88 PHY's for copper link
681  *  @hw: pointer to the HW structure
682  *
683  *  Sets up MDI/MDI-X and polarity for m88 PHY's.  If necessary, transmit clock
684  *  and downshift values are set also.
685  **/
686 s32 e1000e_copper_link_setup_m88(struct e1000_hw *hw)
687 {
688 	struct e1000_phy_info *phy = &hw->phy;
689 	s32 ret_val;
690 	u16 phy_data;
691 
692 	/* Enable CRS on Tx. This must be set for half-duplex operation. */
693 	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
694 	if (ret_val)
695 		return ret_val;
696 
697 	/* For BM PHY this bit is downshift enable */
698 	if (phy->type != e1000_phy_bm)
699 		phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
700 
701 	/*
702 	 * Options:
703 	 *   MDI/MDI-X = 0 (default)
704 	 *   0 - Auto for all speeds
705 	 *   1 - MDI mode
706 	 *   2 - MDI-X mode
707 	 *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
708 	 */
709 	phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
710 
711 	switch (phy->mdix) {
712 	case 1:
713 		phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
714 		break;
715 	case 2:
716 		phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
717 		break;
718 	case 3:
719 		phy_data |= M88E1000_PSCR_AUTO_X_1000T;
720 		break;
721 	case 0:
722 	default:
723 		phy_data |= M88E1000_PSCR_AUTO_X_MODE;
724 		break;
725 	}
726 
727 	/*
728 	 * Options:
729 	 *   disable_polarity_correction = 0 (default)
730 	 *       Automatic Correction for Reversed Cable Polarity
731 	 *   0 - Disabled
732 	 *   1 - Enabled
733 	 */
734 	phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
735 	if (phy->disable_polarity_correction == 1)
736 		phy_data |= M88E1000_PSCR_POLARITY_REVERSAL;
737 
738 	/* Enable downshift on BM (disabled by default) */
739 	if (phy->type == e1000_phy_bm)
740 		phy_data |= BME1000_PSCR_ENABLE_DOWNSHIFT;
741 
742 	ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
743 	if (ret_val)
744 		return ret_val;
745 
746 	if ((phy->type == e1000_phy_m88) &&
747 	    (phy->revision < E1000_REVISION_4) &&
748 	    (phy->id != BME1000_E_PHY_ID_R2)) {
749 		/*
750 		 * Force TX_CLK in the Extended PHY Specific Control Register
751 		 * to 25MHz clock.
752 		 */
753 		ret_val = e1e_rphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
754 		if (ret_val)
755 			return ret_val;
756 
757 		phy_data |= M88E1000_EPSCR_TX_CLK_25;
758 
759 		if ((phy->revision == 2) &&
760 		    (phy->id == M88E1111_I_PHY_ID)) {
761 			/* 82573L PHY - set the downshift counter to 5x. */
762 			phy_data &= ~M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK;
763 			phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X;
764 		} else {
765 			/* Configure Master and Slave downshift values */
766 			phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK |
767 				      M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK);
768 			phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X |
769 				     M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X);
770 		}
771 		ret_val = e1e_wphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
772 		if (ret_val)
773 			return ret_val;
774 	}
775 
776 	if ((phy->type == e1000_phy_bm) && (phy->id == BME1000_E_PHY_ID_R2)) {
777 		/* Set PHY page 0, register 29 to 0x0003 */
778 		ret_val = e1e_wphy(hw, 29, 0x0003);
779 		if (ret_val)
780 			return ret_val;
781 
782 		/* Set PHY page 0, register 30 to 0x0000 */
783 		ret_val = e1e_wphy(hw, 30, 0x0000);
784 		if (ret_val)
785 			return ret_val;
786 	}
787 
788 	/* Commit the changes. */
789 	ret_val = e1000e_commit_phy(hw);
790 	if (ret_val) {
791 		e_dbg("Error committing the PHY changes\n");
792 		return ret_val;
793 	}
794 
795 	if (phy->type == e1000_phy_82578) {
796 		ret_val = e1e_rphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
797 		if (ret_val)
798 			return ret_val;
799 
800 		/* 82578 PHY - set the downshift count to 1x. */
801 		phy_data |= I82578_EPSCR_DOWNSHIFT_ENABLE;
802 		phy_data &= ~I82578_EPSCR_DOWNSHIFT_COUNTER_MASK;
803 		ret_val = e1e_wphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
804 		if (ret_val)
805 			return ret_val;
806 	}
807 
808 	return 0;
809 }
810 
811 /**
812  *  e1000e_copper_link_setup_igp - Setup igp PHY's for copper link
813  *  @hw: pointer to the HW structure
814  *
815  *  Sets up LPLU, MDI/MDI-X, polarity, Smartspeed and Master/Slave config for
816  *  igp PHY's.
817  **/
818 s32 e1000e_copper_link_setup_igp(struct e1000_hw *hw)
819 {
820 	struct e1000_phy_info *phy = &hw->phy;
821 	s32 ret_val;
822 	u16 data;
823 
824 	ret_val = e1000_phy_hw_reset(hw);
825 	if (ret_val) {
826 		e_dbg("Error resetting the PHY.\n");
827 		return ret_val;
828 	}
829 
830 	/*
831 	 * Wait 100ms for MAC to configure PHY from NVM settings, to avoid
832 	 * timeout issues when LFS is enabled.
833 	 */
834 	msleep(100);
835 
836 	/* disable lplu d0 during driver init */
837 	ret_val = e1000_set_d0_lplu_state(hw, false);
838 	if (ret_val) {
839 		e_dbg("Error Disabling LPLU D0\n");
840 		return ret_val;
841 	}
842 	/* Configure mdi-mdix settings */
843 	ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CTRL, &data);
844 	if (ret_val)
845 		return ret_val;
846 
847 	data &= ~IGP01E1000_PSCR_AUTO_MDIX;
848 
849 	switch (phy->mdix) {
850 	case 1:
851 		data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
852 		break;
853 	case 2:
854 		data |= IGP01E1000_PSCR_FORCE_MDI_MDIX;
855 		break;
856 	case 0:
857 	default:
858 		data |= IGP01E1000_PSCR_AUTO_MDIX;
859 		break;
860 	}
861 	ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CTRL, data);
862 	if (ret_val)
863 		return ret_val;
864 
865 	/* set auto-master slave resolution settings */
866 	if (hw->mac.autoneg) {
867 		/*
868 		 * when autonegotiation advertisement is only 1000Mbps then we
869 		 * should disable SmartSpeed and enable Auto MasterSlave
870 		 * resolution as hardware default.
871 		 */
872 		if (phy->autoneg_advertised == ADVERTISE_1000_FULL) {
873 			/* Disable SmartSpeed */
874 			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
875 					   &data);
876 			if (ret_val)
877 				return ret_val;
878 
879 			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
880 			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
881 					   data);
882 			if (ret_val)
883 				return ret_val;
884 
885 			/* Set auto Master/Slave resolution process */
886 			ret_val = e1e_rphy(hw, PHY_1000T_CTRL, &data);
887 			if (ret_val)
888 				return ret_val;
889 
890 			data &= ~CR_1000T_MS_ENABLE;
891 			ret_val = e1e_wphy(hw, PHY_1000T_CTRL, data);
892 			if (ret_val)
893 				return ret_val;
894 		}
895 
896 		ret_val = e1e_rphy(hw, PHY_1000T_CTRL, &data);
897 		if (ret_val)
898 			return ret_val;
899 
900 		/* load defaults for future use */
901 		phy->original_ms_type = (data & CR_1000T_MS_ENABLE) ?
902 			((data & CR_1000T_MS_VALUE) ?
903 			e1000_ms_force_master :
904 			e1000_ms_force_slave) :
905 			e1000_ms_auto;
906 
907 		switch (phy->ms_type) {
908 		case e1000_ms_force_master:
909 			data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE);
910 			break;
911 		case e1000_ms_force_slave:
912 			data |= CR_1000T_MS_ENABLE;
913 			data &= ~(CR_1000T_MS_VALUE);
914 			break;
915 		case e1000_ms_auto:
916 			data &= ~CR_1000T_MS_ENABLE;
917 		default:
918 			break;
919 		}
920 		ret_val = e1e_wphy(hw, PHY_1000T_CTRL, data);
921 	}
922 
923 	return ret_val;
924 }
925 
926 /**
927  *  e1000_phy_setup_autoneg - Configure PHY for auto-negotiation
928  *  @hw: pointer to the HW structure
929  *
930  *  Reads the MII auto-neg advertisement register and/or the 1000T control
931  *  register and if the PHY is already setup for auto-negotiation, then
932  *  return successful.  Otherwise, setup advertisement and flow control to
933  *  the appropriate values for the wanted auto-negotiation.
934  **/
935 static s32 e1000_phy_setup_autoneg(struct e1000_hw *hw)
936 {
937 	struct e1000_phy_info *phy = &hw->phy;
938 	s32 ret_val;
939 	u16 mii_autoneg_adv_reg;
940 	u16 mii_1000t_ctrl_reg = 0;
941 
942 	phy->autoneg_advertised &= phy->autoneg_mask;
943 
944 	/* Read the MII Auto-Neg Advertisement Register (Address 4). */
945 	ret_val = e1e_rphy(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg);
946 	if (ret_val)
947 		return ret_val;
948 
949 	if (phy->autoneg_mask & ADVERTISE_1000_FULL) {
950 		/* Read the MII 1000Base-T Control Register (Address 9). */
951 		ret_val = e1e_rphy(hw, PHY_1000T_CTRL, &mii_1000t_ctrl_reg);
952 		if (ret_val)
953 			return ret_val;
954 	}
955 
956 	/*
957 	 * Need to parse both autoneg_advertised and fc and set up
958 	 * the appropriate PHY registers.  First we will parse for
959 	 * autoneg_advertised software override.  Since we can advertise
960 	 * a plethora of combinations, we need to check each bit
961 	 * individually.
962 	 */
963 
964 	/*
965 	 * First we clear all the 10/100 mb speed bits in the Auto-Neg
966 	 * Advertisement Register (Address 4) and the 1000 mb speed bits in
967 	 * the  1000Base-T Control Register (Address 9).
968 	 */
969 	mii_autoneg_adv_reg &= ~(NWAY_AR_100TX_FD_CAPS |
970 				 NWAY_AR_100TX_HD_CAPS |
971 				 NWAY_AR_10T_FD_CAPS   |
972 				 NWAY_AR_10T_HD_CAPS);
973 	mii_1000t_ctrl_reg &= ~(CR_1000T_HD_CAPS | CR_1000T_FD_CAPS);
974 
975 	e_dbg("autoneg_advertised %x\n", phy->autoneg_advertised);
976 
977 	/* Do we want to advertise 10 Mb Half Duplex? */
978 	if (phy->autoneg_advertised & ADVERTISE_10_HALF) {
979 		e_dbg("Advertise 10mb Half duplex\n");
980 		mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS;
981 	}
982 
983 	/* Do we want to advertise 10 Mb Full Duplex? */
984 	if (phy->autoneg_advertised & ADVERTISE_10_FULL) {
985 		e_dbg("Advertise 10mb Full duplex\n");
986 		mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS;
987 	}
988 
989 	/* Do we want to advertise 100 Mb Half Duplex? */
990 	if (phy->autoneg_advertised & ADVERTISE_100_HALF) {
991 		e_dbg("Advertise 100mb Half duplex\n");
992 		mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS;
993 	}
994 
995 	/* Do we want to advertise 100 Mb Full Duplex? */
996 	if (phy->autoneg_advertised & ADVERTISE_100_FULL) {
997 		e_dbg("Advertise 100mb Full duplex\n");
998 		mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS;
999 	}
1000 
1001 	/* We do not allow the Phy to advertise 1000 Mb Half Duplex */
1002 	if (phy->autoneg_advertised & ADVERTISE_1000_HALF)
1003 		e_dbg("Advertise 1000mb Half duplex request denied!\n");
1004 
1005 	/* Do we want to advertise 1000 Mb Full Duplex? */
1006 	if (phy->autoneg_advertised & ADVERTISE_1000_FULL) {
1007 		e_dbg("Advertise 1000mb Full duplex\n");
1008 		mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS;
1009 	}
1010 
1011 	/*
1012 	 * Check for a software override of the flow control settings, and
1013 	 * setup the PHY advertisement registers accordingly.  If
1014 	 * auto-negotiation is enabled, then software will have to set the
1015 	 * "PAUSE" bits to the correct value in the Auto-Negotiation
1016 	 * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-
1017 	 * negotiation.
1018 	 *
1019 	 * The possible values of the "fc" parameter are:
1020 	 *      0:  Flow control is completely disabled
1021 	 *      1:  Rx flow control is enabled (we can receive pause frames
1022 	 *	  but not send pause frames).
1023 	 *      2:  Tx flow control is enabled (we can send pause frames
1024 	 *	  but we do not support receiving pause frames).
1025 	 *      3:  Both Rx and Tx flow control (symmetric) are enabled.
1026 	 *  other:  No software override.  The flow control configuration
1027 	 *	  in the EEPROM is used.
1028 	 */
1029 	switch (hw->fc.current_mode) {
1030 	case e1000_fc_none:
1031 		/*
1032 		 * Flow control (Rx & Tx) is completely disabled by a
1033 		 * software over-ride.
1034 		 */
1035 		mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
1036 		break;
1037 	case e1000_fc_rx_pause:
1038 		/*
1039 		 * Rx Flow control is enabled, and Tx Flow control is
1040 		 * disabled, by a software over-ride.
1041 		 *
1042 		 * Since there really isn't a way to advertise that we are
1043 		 * capable of Rx Pause ONLY, we will advertise that we
1044 		 * support both symmetric and asymmetric Rx PAUSE.  Later
1045 		 * (in e1000e_config_fc_after_link_up) we will disable the
1046 		 * hw's ability to send PAUSE frames.
1047 		 */
1048 		mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
1049 		break;
1050 	case e1000_fc_tx_pause:
1051 		/*
1052 		 * Tx Flow control is enabled, and Rx Flow control is
1053 		 * disabled, by a software over-ride.
1054 		 */
1055 		mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR;
1056 		mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE;
1057 		break;
1058 	case e1000_fc_full:
1059 		/*
1060 		 * Flow control (both Rx and Tx) is enabled by a software
1061 		 * over-ride.
1062 		 */
1063 		mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
1064 		break;
1065 	default:
1066 		e_dbg("Flow control param set incorrectly\n");
1067 		ret_val = -E1000_ERR_CONFIG;
1068 		return ret_val;
1069 	}
1070 
1071 	ret_val = e1e_wphy(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg);
1072 	if (ret_val)
1073 		return ret_val;
1074 
1075 	e_dbg("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
1076 
1077 	if (phy->autoneg_mask & ADVERTISE_1000_FULL)
1078 		ret_val = e1e_wphy(hw, PHY_1000T_CTRL, mii_1000t_ctrl_reg);
1079 
1080 	return ret_val;
1081 }
1082 
1083 /**
1084  *  e1000_copper_link_autoneg - Setup/Enable autoneg for copper link
1085  *  @hw: pointer to the HW structure
1086  *
1087  *  Performs initial bounds checking on autoneg advertisement parameter, then
1088  *  configure to advertise the full capability.  Setup the PHY to autoneg
1089  *  and restart the negotiation process between the link partner.  If
1090  *  autoneg_wait_to_complete, then wait for autoneg to complete before exiting.
1091  **/
1092 static s32 e1000_copper_link_autoneg(struct e1000_hw *hw)
1093 {
1094 	struct e1000_phy_info *phy = &hw->phy;
1095 	s32 ret_val;
1096 	u16 phy_ctrl;
1097 
1098 	/*
1099 	 * Perform some bounds checking on the autoneg advertisement
1100 	 * parameter.
1101 	 */
1102 	phy->autoneg_advertised &= phy->autoneg_mask;
1103 
1104 	/*
1105 	 * If autoneg_advertised is zero, we assume it was not defaulted
1106 	 * by the calling code so we set to advertise full capability.
1107 	 */
1108 	if (phy->autoneg_advertised == 0)
1109 		phy->autoneg_advertised = phy->autoneg_mask;
1110 
1111 	e_dbg("Reconfiguring auto-neg advertisement params\n");
1112 	ret_val = e1000_phy_setup_autoneg(hw);
1113 	if (ret_val) {
1114 		e_dbg("Error Setting up Auto-Negotiation\n");
1115 		return ret_val;
1116 	}
1117 	e_dbg("Restarting Auto-Neg\n");
1118 
1119 	/*
1120 	 * Restart auto-negotiation by setting the Auto Neg Enable bit and
1121 	 * the Auto Neg Restart bit in the PHY control register.
1122 	 */
1123 	ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_ctrl);
1124 	if (ret_val)
1125 		return ret_val;
1126 
1127 	phy_ctrl |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
1128 	ret_val = e1e_wphy(hw, PHY_CONTROL, phy_ctrl);
1129 	if (ret_val)
1130 		return ret_val;
1131 
1132 	/*
1133 	 * Does the user want to wait for Auto-Neg to complete here, or
1134 	 * check at a later time (for example, callback routine).
1135 	 */
1136 	if (phy->autoneg_wait_to_complete) {
1137 		ret_val = e1000_wait_autoneg(hw);
1138 		if (ret_val) {
1139 			e_dbg("Error while waiting for "
1140 				 "autoneg to complete\n");
1141 			return ret_val;
1142 		}
1143 	}
1144 
1145 	hw->mac.get_link_status = 1;
1146 
1147 	return ret_val;
1148 }
1149 
1150 /**
1151  *  e1000e_setup_copper_link - Configure copper link settings
1152  *  @hw: pointer to the HW structure
1153  *
1154  *  Calls the appropriate function to configure the link for auto-neg or forced
1155  *  speed and duplex.  Then we check for link, once link is established calls
1156  *  to configure collision distance and flow control are called.  If link is
1157  *  not established, we return -E1000_ERR_PHY (-2).
1158  **/
1159 s32 e1000e_setup_copper_link(struct e1000_hw *hw)
1160 {
1161 	s32 ret_val;
1162 	bool link;
1163 
1164 	if (hw->mac.autoneg) {
1165 		/*
1166 		 * Setup autoneg and flow control advertisement and perform
1167 		 * autonegotiation.
1168 		 */
1169 		ret_val = e1000_copper_link_autoneg(hw);
1170 		if (ret_val)
1171 			return ret_val;
1172 	} else {
1173 		/*
1174 		 * PHY will be set to 10H, 10F, 100H or 100F
1175 		 * depending on user settings.
1176 		 */
1177 		e_dbg("Forcing Speed and Duplex\n");
1178 		ret_val = e1000_phy_force_speed_duplex(hw);
1179 		if (ret_val) {
1180 			e_dbg("Error Forcing Speed and Duplex\n");
1181 			return ret_val;
1182 		}
1183 	}
1184 
1185 	/*
1186 	 * Check link status. Wait up to 100 microseconds for link to become
1187 	 * valid.
1188 	 */
1189 	ret_val = e1000e_phy_has_link_generic(hw,
1190 					     COPPER_LINK_UP_LIMIT,
1191 					     10,
1192 					     &link);
1193 	if (ret_val)
1194 		return ret_val;
1195 
1196 	if (link) {
1197 		e_dbg("Valid link established!!!\n");
1198 		e1000e_config_collision_dist(hw);
1199 		ret_val = e1000e_config_fc_after_link_up(hw);
1200 	} else {
1201 		e_dbg("Unable to establish link!!!\n");
1202 	}
1203 
1204 	return ret_val;
1205 }
1206 
1207 /**
1208  *  e1000e_phy_force_speed_duplex_igp - Force speed/duplex for igp PHY
1209  *  @hw: pointer to the HW structure
1210  *
1211  *  Calls the PHY setup function to force speed and duplex.  Clears the
1212  *  auto-crossover to force MDI manually.  Waits for link and returns
1213  *  successful if link up is successful, else -E1000_ERR_PHY (-2).
1214  **/
1215 s32 e1000e_phy_force_speed_duplex_igp(struct e1000_hw *hw)
1216 {
1217 	struct e1000_phy_info *phy = &hw->phy;
1218 	s32 ret_val;
1219 	u16 phy_data;
1220 	bool link;
1221 
1222 	ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_data);
1223 	if (ret_val)
1224 		return ret_val;
1225 
1226 	e1000e_phy_force_speed_duplex_setup(hw, &phy_data);
1227 
1228 	ret_val = e1e_wphy(hw, PHY_CONTROL, phy_data);
1229 	if (ret_val)
1230 		return ret_val;
1231 
1232 	/*
1233 	 * Clear Auto-Crossover to force MDI manually.  IGP requires MDI
1234 	 * forced whenever speed and duplex are forced.
1235 	 */
1236 	ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
1237 	if (ret_val)
1238 		return ret_val;
1239 
1240 	phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
1241 	phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
1242 
1243 	ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
1244 	if (ret_val)
1245 		return ret_val;
1246 
1247 	e_dbg("IGP PSCR: %X\n", phy_data);
1248 
1249 	udelay(1);
1250 
1251 	if (phy->autoneg_wait_to_complete) {
1252 		e_dbg("Waiting for forced speed/duplex link on IGP phy.\n");
1253 
1254 		ret_val = e1000e_phy_has_link_generic(hw,
1255 						     PHY_FORCE_LIMIT,
1256 						     100000,
1257 						     &link);
1258 		if (ret_val)
1259 			return ret_val;
1260 
1261 		if (!link)
1262 			e_dbg("Link taking longer than expected.\n");
1263 
1264 		/* Try once more */
1265 		ret_val = e1000e_phy_has_link_generic(hw,
1266 						     PHY_FORCE_LIMIT,
1267 						     100000,
1268 						     &link);
1269 		if (ret_val)
1270 			return ret_val;
1271 	}
1272 
1273 	return ret_val;
1274 }
1275 
1276 /**
1277  *  e1000e_phy_force_speed_duplex_m88 - Force speed/duplex for m88 PHY
1278  *  @hw: pointer to the HW structure
1279  *
1280  *  Calls the PHY setup function to force speed and duplex.  Clears the
1281  *  auto-crossover to force MDI manually.  Resets the PHY to commit the
1282  *  changes.  If time expires while waiting for link up, we reset the DSP.
1283  *  After reset, TX_CLK and CRS on Tx must be set.  Return successful upon
1284  *  successful completion, else return corresponding error code.
1285  **/
1286 s32 e1000e_phy_force_speed_duplex_m88(struct e1000_hw *hw)
1287 {
1288 	struct e1000_phy_info *phy = &hw->phy;
1289 	s32 ret_val;
1290 	u16 phy_data;
1291 	bool link;
1292 
1293 	/*
1294 	 * Clear Auto-Crossover to force MDI manually.  M88E1000 requires MDI
1295 	 * forced whenever speed and duplex are forced.
1296 	 */
1297 	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1298 	if (ret_val)
1299 		return ret_val;
1300 
1301 	phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
1302 	ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1303 	if (ret_val)
1304 		return ret_val;
1305 
1306 	e_dbg("M88E1000 PSCR: %X\n", phy_data);
1307 
1308 	ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_data);
1309 	if (ret_val)
1310 		return ret_val;
1311 
1312 	e1000e_phy_force_speed_duplex_setup(hw, &phy_data);
1313 
1314 	ret_val = e1e_wphy(hw, PHY_CONTROL, phy_data);
1315 	if (ret_val)
1316 		return ret_val;
1317 
1318 	/* Reset the phy to commit changes. */
1319 	ret_val = e1000e_commit_phy(hw);
1320 	if (ret_val)
1321 		return ret_val;
1322 
1323 	if (phy->autoneg_wait_to_complete) {
1324 		e_dbg("Waiting for forced speed/duplex link on M88 phy.\n");
1325 
1326 		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
1327 						     100000, &link);
1328 		if (ret_val)
1329 			return ret_val;
1330 
1331 		if (!link) {
1332 			if (hw->phy.type != e1000_phy_m88) {
1333 				e_dbg("Link taking longer than expected.\n");
1334 			} else {
1335 				/*
1336 				 * We didn't get link.
1337 				 * Reset the DSP and cross our fingers.
1338 				 */
1339 				ret_val = e1e_wphy(hw, M88E1000_PHY_PAGE_SELECT,
1340 						   0x001d);
1341 				if (ret_val)
1342 					return ret_val;
1343 				ret_val = e1000e_phy_reset_dsp(hw);
1344 				if (ret_val)
1345 					return ret_val;
1346 			}
1347 		}
1348 
1349 		/* Try once more */
1350 		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
1351 						     100000, &link);
1352 		if (ret_val)
1353 			return ret_val;
1354 	}
1355 
1356 	if (hw->phy.type != e1000_phy_m88)
1357 		return 0;
1358 
1359 	ret_val = e1e_rphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
1360 	if (ret_val)
1361 		return ret_val;
1362 
1363 	/*
1364 	 * Resetting the phy means we need to re-force TX_CLK in the
1365 	 * Extended PHY Specific Control Register to 25MHz clock from
1366 	 * the reset value of 2.5MHz.
1367 	 */
1368 	phy_data |= M88E1000_EPSCR_TX_CLK_25;
1369 	ret_val = e1e_wphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
1370 	if (ret_val)
1371 		return ret_val;
1372 
1373 	/*
1374 	 * In addition, we must re-enable CRS on Tx for both half and full
1375 	 * duplex.
1376 	 */
1377 	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1378 	if (ret_val)
1379 		return ret_val;
1380 
1381 	phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
1382 	ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1383 
1384 	return ret_val;
1385 }
1386 
1387 /**
1388  *  e1000_phy_force_speed_duplex_ife - Force PHY speed & duplex
1389  *  @hw: pointer to the HW structure
1390  *
1391  *  Forces the speed and duplex settings of the PHY.
1392  *  This is a function pointer entry point only called by
1393  *  PHY setup routines.
1394  **/
1395 s32 e1000_phy_force_speed_duplex_ife(struct e1000_hw *hw)
1396 {
1397 	struct e1000_phy_info *phy = &hw->phy;
1398 	s32 ret_val;
1399 	u16 data;
1400 	bool link;
1401 
1402 	ret_val = e1e_rphy(hw, PHY_CONTROL, &data);
1403 	if (ret_val)
1404 		goto out;
1405 
1406 	e1000e_phy_force_speed_duplex_setup(hw, &data);
1407 
1408 	ret_val = e1e_wphy(hw, PHY_CONTROL, data);
1409 	if (ret_val)
1410 		goto out;
1411 
1412 	/* Disable MDI-X support for 10/100 */
1413 	ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &data);
1414 	if (ret_val)
1415 		goto out;
1416 
1417 	data &= ~IFE_PMC_AUTO_MDIX;
1418 	data &= ~IFE_PMC_FORCE_MDIX;
1419 
1420 	ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, data);
1421 	if (ret_val)
1422 		goto out;
1423 
1424 	e_dbg("IFE PMC: %X\n", data);
1425 
1426 	udelay(1);
1427 
1428 	if (phy->autoneg_wait_to_complete) {
1429 		e_dbg("Waiting for forced speed/duplex link on IFE phy.\n");
1430 
1431 		ret_val = e1000e_phy_has_link_generic(hw,
1432 		                                     PHY_FORCE_LIMIT,
1433 		                                     100000,
1434 		                                     &link);
1435 		if (ret_val)
1436 			goto out;
1437 
1438 		if (!link)
1439 			e_dbg("Link taking longer than expected.\n");
1440 
1441 		/* Try once more */
1442 		ret_val = e1000e_phy_has_link_generic(hw,
1443 		                                     PHY_FORCE_LIMIT,
1444 		                                     100000,
1445 		                                     &link);
1446 		if (ret_val)
1447 			goto out;
1448 	}
1449 
1450 out:
1451 	return ret_val;
1452 }
1453 
1454 /**
1455  *  e1000e_phy_force_speed_duplex_setup - Configure forced PHY speed/duplex
1456  *  @hw: pointer to the HW structure
1457  *  @phy_ctrl: pointer to current value of PHY_CONTROL
1458  *
1459  *  Forces speed and duplex on the PHY by doing the following: disable flow
1460  *  control, force speed/duplex on the MAC, disable auto speed detection,
1461  *  disable auto-negotiation, configure duplex, configure speed, configure
1462  *  the collision distance, write configuration to CTRL register.  The
1463  *  caller must write to the PHY_CONTROL register for these settings to
1464  *  take affect.
1465  **/
1466 void e1000e_phy_force_speed_duplex_setup(struct e1000_hw *hw, u16 *phy_ctrl)
1467 {
1468 	struct e1000_mac_info *mac = &hw->mac;
1469 	u32 ctrl;
1470 
1471 	/* Turn off flow control when forcing speed/duplex */
1472 	hw->fc.current_mode = e1000_fc_none;
1473 
1474 	/* Force speed/duplex on the mac */
1475 	ctrl = er32(CTRL);
1476 	ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1477 	ctrl &= ~E1000_CTRL_SPD_SEL;
1478 
1479 	/* Disable Auto Speed Detection */
1480 	ctrl &= ~E1000_CTRL_ASDE;
1481 
1482 	/* Disable autoneg on the phy */
1483 	*phy_ctrl &= ~MII_CR_AUTO_NEG_EN;
1484 
1485 	/* Forcing Full or Half Duplex? */
1486 	if (mac->forced_speed_duplex & E1000_ALL_HALF_DUPLEX) {
1487 		ctrl &= ~E1000_CTRL_FD;
1488 		*phy_ctrl &= ~MII_CR_FULL_DUPLEX;
1489 		e_dbg("Half Duplex\n");
1490 	} else {
1491 		ctrl |= E1000_CTRL_FD;
1492 		*phy_ctrl |= MII_CR_FULL_DUPLEX;
1493 		e_dbg("Full Duplex\n");
1494 	}
1495 
1496 	/* Forcing 10mb or 100mb? */
1497 	if (mac->forced_speed_duplex & E1000_ALL_100_SPEED) {
1498 		ctrl |= E1000_CTRL_SPD_100;
1499 		*phy_ctrl |= MII_CR_SPEED_100;
1500 		*phy_ctrl &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_10);
1501 		e_dbg("Forcing 100mb\n");
1502 	} else {
1503 		ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
1504 		*phy_ctrl |= MII_CR_SPEED_10;
1505 		*phy_ctrl &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_100);
1506 		e_dbg("Forcing 10mb\n");
1507 	}
1508 
1509 	e1000e_config_collision_dist(hw);
1510 
1511 	ew32(CTRL, ctrl);
1512 }
1513 
1514 /**
1515  *  e1000e_set_d3_lplu_state - Sets low power link up state for D3
1516  *  @hw: pointer to the HW structure
1517  *  @active: boolean used to enable/disable lplu
1518  *
1519  *  Success returns 0, Failure returns 1
1520  *
1521  *  The low power link up (lplu) state is set to the power management level D3
1522  *  and SmartSpeed is disabled when active is true, else clear lplu for D3
1523  *  and enable Smartspeed.  LPLU and Smartspeed are mutually exclusive.  LPLU
1524  *  is used during Dx states where the power conservation is most important.
1525  *  During driver activity, SmartSpeed should be enabled so performance is
1526  *  maintained.
1527  **/
1528 s32 e1000e_set_d3_lplu_state(struct e1000_hw *hw, bool active)
1529 {
1530 	struct e1000_phy_info *phy = &hw->phy;
1531 	s32 ret_val;
1532 	u16 data;
1533 
1534 	ret_val = e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &data);
1535 	if (ret_val)
1536 		return ret_val;
1537 
1538 	if (!active) {
1539 		data &= ~IGP02E1000_PM_D3_LPLU;
1540 		ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
1541 		if (ret_val)
1542 			return ret_val;
1543 		/*
1544 		 * LPLU and SmartSpeed are mutually exclusive.  LPLU is used
1545 		 * during Dx states where the power conservation is most
1546 		 * important.  During driver activity we should enable
1547 		 * SmartSpeed, so performance is maintained.
1548 		 */
1549 		if (phy->smart_speed == e1000_smart_speed_on) {
1550 			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1551 					   &data);
1552 			if (ret_val)
1553 				return ret_val;
1554 
1555 			data |= IGP01E1000_PSCFR_SMART_SPEED;
1556 			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1557 					   data);
1558 			if (ret_val)
1559 				return ret_val;
1560 		} else if (phy->smart_speed == e1000_smart_speed_off) {
1561 			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1562 					   &data);
1563 			if (ret_val)
1564 				return ret_val;
1565 
1566 			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1567 			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1568 					   data);
1569 			if (ret_val)
1570 				return ret_val;
1571 		}
1572 	} else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
1573 		   (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
1574 		   (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
1575 		data |= IGP02E1000_PM_D3_LPLU;
1576 		ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
1577 		if (ret_val)
1578 			return ret_val;
1579 
1580 		/* When LPLU is enabled, we should disable SmartSpeed */
1581 		ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
1582 		if (ret_val)
1583 			return ret_val;
1584 
1585 		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1586 		ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
1587 	}
1588 
1589 	return ret_val;
1590 }
1591 
1592 /**
1593  *  e1000e_check_downshift - Checks whether a downshift in speed occurred
1594  *  @hw: pointer to the HW structure
1595  *
1596  *  Success returns 0, Failure returns 1
1597  *
1598  *  A downshift is detected by querying the PHY link health.
1599  **/
1600 s32 e1000e_check_downshift(struct e1000_hw *hw)
1601 {
1602 	struct e1000_phy_info *phy = &hw->phy;
1603 	s32 ret_val;
1604 	u16 phy_data, offset, mask;
1605 
1606 	switch (phy->type) {
1607 	case e1000_phy_m88:
1608 	case e1000_phy_gg82563:
1609 	case e1000_phy_bm:
1610 	case e1000_phy_82578:
1611 		offset	= M88E1000_PHY_SPEC_STATUS;
1612 		mask	= M88E1000_PSSR_DOWNSHIFT;
1613 		break;
1614 	case e1000_phy_igp_2:
1615 	case e1000_phy_igp_3:
1616 		offset	= IGP01E1000_PHY_LINK_HEALTH;
1617 		mask	= IGP01E1000_PLHR_SS_DOWNGRADE;
1618 		break;
1619 	default:
1620 		/* speed downshift not supported */
1621 		phy->speed_downgraded = false;
1622 		return 0;
1623 	}
1624 
1625 	ret_val = e1e_rphy(hw, offset, &phy_data);
1626 
1627 	if (!ret_val)
1628 		phy->speed_downgraded = (phy_data & mask);
1629 
1630 	return ret_val;
1631 }
1632 
1633 /**
1634  *  e1000_check_polarity_m88 - Checks the polarity.
1635  *  @hw: pointer to the HW structure
1636  *
1637  *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
1638  *
1639  *  Polarity is determined based on the PHY specific status register.
1640  **/
1641 s32 e1000_check_polarity_m88(struct e1000_hw *hw)
1642 {
1643 	struct e1000_phy_info *phy = &hw->phy;
1644 	s32 ret_val;
1645 	u16 data;
1646 
1647 	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &data);
1648 
1649 	if (!ret_val)
1650 		phy->cable_polarity = (data & M88E1000_PSSR_REV_POLARITY)
1651 				      ? e1000_rev_polarity_reversed
1652 				      : e1000_rev_polarity_normal;
1653 
1654 	return ret_val;
1655 }
1656 
1657 /**
1658  *  e1000_check_polarity_igp - Checks the polarity.
1659  *  @hw: pointer to the HW structure
1660  *
1661  *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
1662  *
1663  *  Polarity is determined based on the PHY port status register, and the
1664  *  current speed (since there is no polarity at 100Mbps).
1665  **/
1666 s32 e1000_check_polarity_igp(struct e1000_hw *hw)
1667 {
1668 	struct e1000_phy_info *phy = &hw->phy;
1669 	s32 ret_val;
1670 	u16 data, offset, mask;
1671 
1672 	/*
1673 	 * Polarity is determined based on the speed of
1674 	 * our connection.
1675 	 */
1676 	ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_STATUS, &data);
1677 	if (ret_val)
1678 		return ret_val;
1679 
1680 	if ((data & IGP01E1000_PSSR_SPEED_MASK) ==
1681 	    IGP01E1000_PSSR_SPEED_1000MBPS) {
1682 		offset	= IGP01E1000_PHY_PCS_INIT_REG;
1683 		mask	= IGP01E1000_PHY_POLARITY_MASK;
1684 	} else {
1685 		/*
1686 		 * This really only applies to 10Mbps since
1687 		 * there is no polarity for 100Mbps (always 0).
1688 		 */
1689 		offset	= IGP01E1000_PHY_PORT_STATUS;
1690 		mask	= IGP01E1000_PSSR_POLARITY_REVERSED;
1691 	}
1692 
1693 	ret_val = e1e_rphy(hw, offset, &data);
1694 
1695 	if (!ret_val)
1696 		phy->cable_polarity = (data & mask)
1697 				      ? e1000_rev_polarity_reversed
1698 				      : e1000_rev_polarity_normal;
1699 
1700 	return ret_val;
1701 }
1702 
1703 /**
1704  *  e1000_check_polarity_ife - Check cable polarity for IFE PHY
1705  *  @hw: pointer to the HW structure
1706  *
1707  *  Polarity is determined on the polarity reversal feature being enabled.
1708  **/
1709 s32 e1000_check_polarity_ife(struct e1000_hw *hw)
1710 {
1711 	struct e1000_phy_info *phy = &hw->phy;
1712 	s32 ret_val;
1713 	u16 phy_data, offset, mask;
1714 
1715 	/*
1716 	 * Polarity is determined based on the reversal feature being enabled.
1717 	 */
1718 	if (phy->polarity_correction) {
1719 		offset = IFE_PHY_EXTENDED_STATUS_CONTROL;
1720 		mask = IFE_PESC_POLARITY_REVERSED;
1721 	} else {
1722 		offset = IFE_PHY_SPECIAL_CONTROL;
1723 		mask = IFE_PSC_FORCE_POLARITY;
1724 	}
1725 
1726 	ret_val = e1e_rphy(hw, offset, &phy_data);
1727 
1728 	if (!ret_val)
1729 		phy->cable_polarity = (phy_data & mask)
1730 		                       ? e1000_rev_polarity_reversed
1731 		                       : e1000_rev_polarity_normal;
1732 
1733 	return ret_val;
1734 }
1735 
1736 /**
1737  *  e1000_wait_autoneg - Wait for auto-neg completion
1738  *  @hw: pointer to the HW structure
1739  *
1740  *  Waits for auto-negotiation to complete or for the auto-negotiation time
1741  *  limit to expire, which ever happens first.
1742  **/
1743 static s32 e1000_wait_autoneg(struct e1000_hw *hw)
1744 {
1745 	s32 ret_val = 0;
1746 	u16 i, phy_status;
1747 
1748 	/* Break after autoneg completes or PHY_AUTO_NEG_LIMIT expires. */
1749 	for (i = PHY_AUTO_NEG_LIMIT; i > 0; i--) {
1750 		ret_val = e1e_rphy(hw, PHY_STATUS, &phy_status);
1751 		if (ret_val)
1752 			break;
1753 		ret_val = e1e_rphy(hw, PHY_STATUS, &phy_status);
1754 		if (ret_val)
1755 			break;
1756 		if (phy_status & MII_SR_AUTONEG_COMPLETE)
1757 			break;
1758 		msleep(100);
1759 	}
1760 
1761 	/*
1762 	 * PHY_AUTO_NEG_TIME expiration doesn't guarantee auto-negotiation
1763 	 * has completed.
1764 	 */
1765 	return ret_val;
1766 }
1767 
1768 /**
1769  *  e1000e_phy_has_link_generic - Polls PHY for link
1770  *  @hw: pointer to the HW structure
1771  *  @iterations: number of times to poll for link
1772  *  @usec_interval: delay between polling attempts
1773  *  @success: pointer to whether polling was successful or not
1774  *
1775  *  Polls the PHY status register for link, 'iterations' number of times.
1776  **/
1777 s32 e1000e_phy_has_link_generic(struct e1000_hw *hw, u32 iterations,
1778 			       u32 usec_interval, bool *success)
1779 {
1780 	s32 ret_val = 0;
1781 	u16 i, phy_status;
1782 
1783 	for (i = 0; i < iterations; i++) {
1784 		/*
1785 		 * Some PHYs require the PHY_STATUS register to be read
1786 		 * twice due to the link bit being sticky.  No harm doing
1787 		 * it across the board.
1788 		 */
1789 		ret_val = e1e_rphy(hw, PHY_STATUS, &phy_status);
1790 		if (ret_val)
1791 			/*
1792 			 * If the first read fails, another entity may have
1793 			 * ownership of the resources, wait and try again to
1794 			 * see if they have relinquished the resources yet.
1795 			 */
1796 			udelay(usec_interval);
1797 		ret_val = e1e_rphy(hw, PHY_STATUS, &phy_status);
1798 		if (ret_val)
1799 			break;
1800 		if (phy_status & MII_SR_LINK_STATUS)
1801 			break;
1802 		if (usec_interval >= 1000)
1803 			mdelay(usec_interval/1000);
1804 		else
1805 			udelay(usec_interval);
1806 	}
1807 
1808 	*success = (i < iterations);
1809 
1810 	return ret_val;
1811 }
1812 
1813 /**
1814  *  e1000e_get_cable_length_m88 - Determine cable length for m88 PHY
1815  *  @hw: pointer to the HW structure
1816  *
1817  *  Reads the PHY specific status register to retrieve the cable length
1818  *  information.  The cable length is determined by averaging the minimum and
1819  *  maximum values to get the "average" cable length.  The m88 PHY has four
1820  *  possible cable length values, which are:
1821  *	Register Value		Cable Length
1822  *	0			< 50 meters
1823  *	1			50 - 80 meters
1824  *	2			80 - 110 meters
1825  *	3			110 - 140 meters
1826  *	4			> 140 meters
1827  **/
1828 s32 e1000e_get_cable_length_m88(struct e1000_hw *hw)
1829 {
1830 	struct e1000_phy_info *phy = &hw->phy;
1831 	s32 ret_val;
1832 	u16 phy_data, index;
1833 
1834 	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
1835 	if (ret_val)
1836 		goto out;
1837 
1838 	index = (phy_data & M88E1000_PSSR_CABLE_LENGTH) >>
1839 	        M88E1000_PSSR_CABLE_LENGTH_SHIFT;
1840 	if (index >= M88E1000_CABLE_LENGTH_TABLE_SIZE - 1) {
1841 		ret_val = -E1000_ERR_PHY;
1842 		goto out;
1843 	}
1844 
1845 	phy->min_cable_length = e1000_m88_cable_length_table[index];
1846 	phy->max_cable_length = e1000_m88_cable_length_table[index + 1];
1847 
1848 	phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
1849 
1850 out:
1851 	return ret_val;
1852 }
1853 
1854 /**
1855  *  e1000e_get_cable_length_igp_2 - Determine cable length for igp2 PHY
1856  *  @hw: pointer to the HW structure
1857  *
1858  *  The automatic gain control (agc) normalizes the amplitude of the
1859  *  received signal, adjusting for the attenuation produced by the
1860  *  cable.  By reading the AGC registers, which represent the
1861  *  combination of coarse and fine gain value, the value can be put
1862  *  into a lookup table to obtain the approximate cable length
1863  *  for each channel.
1864  **/
1865 s32 e1000e_get_cable_length_igp_2(struct e1000_hw *hw)
1866 {
1867 	struct e1000_phy_info *phy = &hw->phy;
1868 	s32 ret_val;
1869 	u16 phy_data, i, agc_value = 0;
1870 	u16 cur_agc_index, max_agc_index = 0;
1871 	u16 min_agc_index = IGP02E1000_CABLE_LENGTH_TABLE_SIZE - 1;
1872 	static const u16 agc_reg_array[IGP02E1000_PHY_CHANNEL_NUM] = {
1873 	       IGP02E1000_PHY_AGC_A,
1874 	       IGP02E1000_PHY_AGC_B,
1875 	       IGP02E1000_PHY_AGC_C,
1876 	       IGP02E1000_PHY_AGC_D
1877 	};
1878 
1879 	/* Read the AGC registers for all channels */
1880 	for (i = 0; i < IGP02E1000_PHY_CHANNEL_NUM; i++) {
1881 		ret_val = e1e_rphy(hw, agc_reg_array[i], &phy_data);
1882 		if (ret_val)
1883 			return ret_val;
1884 
1885 		/*
1886 		 * Getting bits 15:9, which represent the combination of
1887 		 * coarse and fine gain values.  The result is a number
1888 		 * that can be put into the lookup table to obtain the
1889 		 * approximate cable length.
1890 		 */
1891 		cur_agc_index = (phy_data >> IGP02E1000_AGC_LENGTH_SHIFT) &
1892 				IGP02E1000_AGC_LENGTH_MASK;
1893 
1894 		/* Array index bound check. */
1895 		if ((cur_agc_index >= IGP02E1000_CABLE_LENGTH_TABLE_SIZE) ||
1896 		    (cur_agc_index == 0))
1897 			return -E1000_ERR_PHY;
1898 
1899 		/* Remove min & max AGC values from calculation. */
1900 		if (e1000_igp_2_cable_length_table[min_agc_index] >
1901 		    e1000_igp_2_cable_length_table[cur_agc_index])
1902 			min_agc_index = cur_agc_index;
1903 		if (e1000_igp_2_cable_length_table[max_agc_index] <
1904 		    e1000_igp_2_cable_length_table[cur_agc_index])
1905 			max_agc_index = cur_agc_index;
1906 
1907 		agc_value += e1000_igp_2_cable_length_table[cur_agc_index];
1908 	}
1909 
1910 	agc_value -= (e1000_igp_2_cable_length_table[min_agc_index] +
1911 		      e1000_igp_2_cable_length_table[max_agc_index]);
1912 	agc_value /= (IGP02E1000_PHY_CHANNEL_NUM - 2);
1913 
1914 	/* Calculate cable length with the error range of +/- 10 meters. */
1915 	phy->min_cable_length = ((agc_value - IGP02E1000_AGC_RANGE) > 0) ?
1916 				 (agc_value - IGP02E1000_AGC_RANGE) : 0;
1917 	phy->max_cable_length = agc_value + IGP02E1000_AGC_RANGE;
1918 
1919 	phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
1920 
1921 	return ret_val;
1922 }
1923 
1924 /**
1925  *  e1000e_get_phy_info_m88 - Retrieve PHY information
1926  *  @hw: pointer to the HW structure
1927  *
1928  *  Valid for only copper links.  Read the PHY status register (sticky read)
1929  *  to verify that link is up.  Read the PHY special control register to
1930  *  determine the polarity and 10base-T extended distance.  Read the PHY
1931  *  special status register to determine MDI/MDIx and current speed.  If
1932  *  speed is 1000, then determine cable length, local and remote receiver.
1933  **/
1934 s32 e1000e_get_phy_info_m88(struct e1000_hw *hw)
1935 {
1936 	struct e1000_phy_info *phy = &hw->phy;
1937 	s32  ret_val;
1938 	u16 phy_data;
1939 	bool link;
1940 
1941 	if (phy->media_type != e1000_media_type_copper) {
1942 		e_dbg("Phy info is only valid for copper media\n");
1943 		return -E1000_ERR_CONFIG;
1944 	}
1945 
1946 	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
1947 	if (ret_val)
1948 		return ret_val;
1949 
1950 	if (!link) {
1951 		e_dbg("Phy info is only valid if link is up\n");
1952 		return -E1000_ERR_CONFIG;
1953 	}
1954 
1955 	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1956 	if (ret_val)
1957 		return ret_val;
1958 
1959 	phy->polarity_correction = (phy_data &
1960 				    M88E1000_PSCR_POLARITY_REVERSAL);
1961 
1962 	ret_val = e1000_check_polarity_m88(hw);
1963 	if (ret_val)
1964 		return ret_val;
1965 
1966 	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
1967 	if (ret_val)
1968 		return ret_val;
1969 
1970 	phy->is_mdix = (phy_data & M88E1000_PSSR_MDIX);
1971 
1972 	if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) {
1973 		ret_val = e1000_get_cable_length(hw);
1974 		if (ret_val)
1975 			return ret_val;
1976 
1977 		ret_val = e1e_rphy(hw, PHY_1000T_STATUS, &phy_data);
1978 		if (ret_val)
1979 			return ret_val;
1980 
1981 		phy->local_rx = (phy_data & SR_1000T_LOCAL_RX_STATUS)
1982 				? e1000_1000t_rx_status_ok
1983 				: e1000_1000t_rx_status_not_ok;
1984 
1985 		phy->remote_rx = (phy_data & SR_1000T_REMOTE_RX_STATUS)
1986 				 ? e1000_1000t_rx_status_ok
1987 				 : e1000_1000t_rx_status_not_ok;
1988 	} else {
1989 		/* Set values to "undefined" */
1990 		phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
1991 		phy->local_rx = e1000_1000t_rx_status_undefined;
1992 		phy->remote_rx = e1000_1000t_rx_status_undefined;
1993 	}
1994 
1995 	return ret_val;
1996 }
1997 
1998 /**
1999  *  e1000e_get_phy_info_igp - Retrieve igp PHY information
2000  *  @hw: pointer to the HW structure
2001  *
2002  *  Read PHY status to determine if link is up.  If link is up, then
2003  *  set/determine 10base-T extended distance and polarity correction.  Read
2004  *  PHY port status to determine MDI/MDIx and speed.  Based on the speed,
2005  *  determine on the cable length, local and remote receiver.
2006  **/
2007 s32 e1000e_get_phy_info_igp(struct e1000_hw *hw)
2008 {
2009 	struct e1000_phy_info *phy = &hw->phy;
2010 	s32 ret_val;
2011 	u16 data;
2012 	bool link;
2013 
2014 	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
2015 	if (ret_val)
2016 		return ret_val;
2017 
2018 	if (!link) {
2019 		e_dbg("Phy info is only valid if link is up\n");
2020 		return -E1000_ERR_CONFIG;
2021 	}
2022 
2023 	phy->polarity_correction = true;
2024 
2025 	ret_val = e1000_check_polarity_igp(hw);
2026 	if (ret_val)
2027 		return ret_val;
2028 
2029 	ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_STATUS, &data);
2030 	if (ret_val)
2031 		return ret_val;
2032 
2033 	phy->is_mdix = (data & IGP01E1000_PSSR_MDIX);
2034 
2035 	if ((data & IGP01E1000_PSSR_SPEED_MASK) ==
2036 	    IGP01E1000_PSSR_SPEED_1000MBPS) {
2037 		ret_val = e1000_get_cable_length(hw);
2038 		if (ret_val)
2039 			return ret_val;
2040 
2041 		ret_val = e1e_rphy(hw, PHY_1000T_STATUS, &data);
2042 		if (ret_val)
2043 			return ret_val;
2044 
2045 		phy->local_rx = (data & SR_1000T_LOCAL_RX_STATUS)
2046 				? e1000_1000t_rx_status_ok
2047 				: e1000_1000t_rx_status_not_ok;
2048 
2049 		phy->remote_rx = (data & SR_1000T_REMOTE_RX_STATUS)
2050 				 ? e1000_1000t_rx_status_ok
2051 				 : e1000_1000t_rx_status_not_ok;
2052 	} else {
2053 		phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
2054 		phy->local_rx = e1000_1000t_rx_status_undefined;
2055 		phy->remote_rx = e1000_1000t_rx_status_undefined;
2056 	}
2057 
2058 	return ret_val;
2059 }
2060 
2061 /**
2062  *  e1000_get_phy_info_ife - Retrieves various IFE PHY states
2063  *  @hw: pointer to the HW structure
2064  *
2065  *  Populates "phy" structure with various feature states.
2066  **/
2067 s32 e1000_get_phy_info_ife(struct e1000_hw *hw)
2068 {
2069 	struct e1000_phy_info *phy = &hw->phy;
2070 	s32 ret_val;
2071 	u16 data;
2072 	bool link;
2073 
2074 	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
2075 	if (ret_val)
2076 		goto out;
2077 
2078 	if (!link) {
2079 		e_dbg("Phy info is only valid if link is up\n");
2080 		ret_val = -E1000_ERR_CONFIG;
2081 		goto out;
2082 	}
2083 
2084 	ret_val = e1e_rphy(hw, IFE_PHY_SPECIAL_CONTROL, &data);
2085 	if (ret_val)
2086 		goto out;
2087 	phy->polarity_correction = (data & IFE_PSC_AUTO_POLARITY_DISABLE)
2088 	                           ? false : true;
2089 
2090 	if (phy->polarity_correction) {
2091 		ret_val = e1000_check_polarity_ife(hw);
2092 		if (ret_val)
2093 			goto out;
2094 	} else {
2095 		/* Polarity is forced */
2096 		phy->cable_polarity = (data & IFE_PSC_FORCE_POLARITY)
2097 		                      ? e1000_rev_polarity_reversed
2098 		                      : e1000_rev_polarity_normal;
2099 	}
2100 
2101 	ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &data);
2102 	if (ret_val)
2103 		goto out;
2104 
2105 	phy->is_mdix = (data & IFE_PMC_MDIX_STATUS) ? true : false;
2106 
2107 	/* The following parameters are undefined for 10/100 operation. */
2108 	phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
2109 	phy->local_rx = e1000_1000t_rx_status_undefined;
2110 	phy->remote_rx = e1000_1000t_rx_status_undefined;
2111 
2112 out:
2113 	return ret_val;
2114 }
2115 
2116 /**
2117  *  e1000e_phy_sw_reset - PHY software reset
2118  *  @hw: pointer to the HW structure
2119  *
2120  *  Does a software reset of the PHY by reading the PHY control register and
2121  *  setting/write the control register reset bit to the PHY.
2122  **/
2123 s32 e1000e_phy_sw_reset(struct e1000_hw *hw)
2124 {
2125 	s32 ret_val;
2126 	u16 phy_ctrl;
2127 
2128 	ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_ctrl);
2129 	if (ret_val)
2130 		return ret_val;
2131 
2132 	phy_ctrl |= MII_CR_RESET;
2133 	ret_val = e1e_wphy(hw, PHY_CONTROL, phy_ctrl);
2134 	if (ret_val)
2135 		return ret_val;
2136 
2137 	udelay(1);
2138 
2139 	return ret_val;
2140 }
2141 
2142 /**
2143  *  e1000e_phy_hw_reset_generic - PHY hardware reset
2144  *  @hw: pointer to the HW structure
2145  *
2146  *  Verify the reset block is not blocking us from resetting.  Acquire
2147  *  semaphore (if necessary) and read/set/write the device control reset
2148  *  bit in the PHY.  Wait the appropriate delay time for the device to
2149  *  reset and release the semaphore (if necessary).
2150  **/
2151 s32 e1000e_phy_hw_reset_generic(struct e1000_hw *hw)
2152 {
2153 	struct e1000_phy_info *phy = &hw->phy;
2154 	s32 ret_val;
2155 	u32 ctrl;
2156 
2157 	ret_val = e1000_check_reset_block(hw);
2158 	if (ret_val)
2159 		return 0;
2160 
2161 	ret_val = phy->ops.acquire(hw);
2162 	if (ret_val)
2163 		return ret_val;
2164 
2165 	ctrl = er32(CTRL);
2166 	ew32(CTRL, ctrl | E1000_CTRL_PHY_RST);
2167 	e1e_flush();
2168 
2169 	udelay(phy->reset_delay_us);
2170 
2171 	ew32(CTRL, ctrl);
2172 	e1e_flush();
2173 
2174 	udelay(150);
2175 
2176 	phy->ops.release(hw);
2177 
2178 	return e1000_get_phy_cfg_done(hw);
2179 }
2180 
2181 /**
2182  *  e1000e_get_cfg_done - Generic configuration done
2183  *  @hw: pointer to the HW structure
2184  *
2185  *  Generic function to wait 10 milli-seconds for configuration to complete
2186  *  and return success.
2187  **/
2188 s32 e1000e_get_cfg_done(struct e1000_hw *hw)
2189 {
2190 	mdelay(10);
2191 	return 0;
2192 }
2193 
2194 /**
2195  *  e1000e_phy_init_script_igp3 - Inits the IGP3 PHY
2196  *  @hw: pointer to the HW structure
2197  *
2198  *  Initializes a Intel Gigabit PHY3 when an EEPROM is not present.
2199  **/
2200 s32 e1000e_phy_init_script_igp3(struct e1000_hw *hw)
2201 {
2202 	e_dbg("Running IGP 3 PHY init script\n");
2203 
2204 	/* PHY init IGP 3 */
2205 	/* Enable rise/fall, 10-mode work in class-A */
2206 	e1e_wphy(hw, 0x2F5B, 0x9018);
2207 	/* Remove all caps from Replica path filter */
2208 	e1e_wphy(hw, 0x2F52, 0x0000);
2209 	/* Bias trimming for ADC, AFE and Driver (Default) */
2210 	e1e_wphy(hw, 0x2FB1, 0x8B24);
2211 	/* Increase Hybrid poly bias */
2212 	e1e_wphy(hw, 0x2FB2, 0xF8F0);
2213 	/* Add 4% to Tx amplitude in Gig mode */
2214 	e1e_wphy(hw, 0x2010, 0x10B0);
2215 	/* Disable trimming (TTT) */
2216 	e1e_wphy(hw, 0x2011, 0x0000);
2217 	/* Poly DC correction to 94.6% + 2% for all channels */
2218 	e1e_wphy(hw, 0x20DD, 0x249A);
2219 	/* ABS DC correction to 95.9% */
2220 	e1e_wphy(hw, 0x20DE, 0x00D3);
2221 	/* BG temp curve trim */
2222 	e1e_wphy(hw, 0x28B4, 0x04CE);
2223 	/* Increasing ADC OPAMP stage 1 currents to max */
2224 	e1e_wphy(hw, 0x2F70, 0x29E4);
2225 	/* Force 1000 ( required for enabling PHY regs configuration) */
2226 	e1e_wphy(hw, 0x0000, 0x0140);
2227 	/* Set upd_freq to 6 */
2228 	e1e_wphy(hw, 0x1F30, 0x1606);
2229 	/* Disable NPDFE */
2230 	e1e_wphy(hw, 0x1F31, 0xB814);
2231 	/* Disable adaptive fixed FFE (Default) */
2232 	e1e_wphy(hw, 0x1F35, 0x002A);
2233 	/* Enable FFE hysteresis */
2234 	e1e_wphy(hw, 0x1F3E, 0x0067);
2235 	/* Fixed FFE for short cable lengths */
2236 	e1e_wphy(hw, 0x1F54, 0x0065);
2237 	/* Fixed FFE for medium cable lengths */
2238 	e1e_wphy(hw, 0x1F55, 0x002A);
2239 	/* Fixed FFE for long cable lengths */
2240 	e1e_wphy(hw, 0x1F56, 0x002A);
2241 	/* Enable Adaptive Clip Threshold */
2242 	e1e_wphy(hw, 0x1F72, 0x3FB0);
2243 	/* AHT reset limit to 1 */
2244 	e1e_wphy(hw, 0x1F76, 0xC0FF);
2245 	/* Set AHT master delay to 127 msec */
2246 	e1e_wphy(hw, 0x1F77, 0x1DEC);
2247 	/* Set scan bits for AHT */
2248 	e1e_wphy(hw, 0x1F78, 0xF9EF);
2249 	/* Set AHT Preset bits */
2250 	e1e_wphy(hw, 0x1F79, 0x0210);
2251 	/* Change integ_factor of channel A to 3 */
2252 	e1e_wphy(hw, 0x1895, 0x0003);
2253 	/* Change prop_factor of channels BCD to 8 */
2254 	e1e_wphy(hw, 0x1796, 0x0008);
2255 	/* Change cg_icount + enable integbp for channels BCD */
2256 	e1e_wphy(hw, 0x1798, 0xD008);
2257 	/*
2258 	 * Change cg_icount + enable integbp + change prop_factor_master
2259 	 * to 8 for channel A
2260 	 */
2261 	e1e_wphy(hw, 0x1898, 0xD918);
2262 	/* Disable AHT in Slave mode on channel A */
2263 	e1e_wphy(hw, 0x187A, 0x0800);
2264 	/*
2265 	 * Enable LPLU and disable AN to 1000 in non-D0a states,
2266 	 * Enable SPD+B2B
2267 	 */
2268 	e1e_wphy(hw, 0x0019, 0x008D);
2269 	/* Enable restart AN on an1000_dis change */
2270 	e1e_wphy(hw, 0x001B, 0x2080);
2271 	/* Enable wh_fifo read clock in 10/100 modes */
2272 	e1e_wphy(hw, 0x0014, 0x0045);
2273 	/* Restart AN, Speed selection is 1000 */
2274 	e1e_wphy(hw, 0x0000, 0x1340);
2275 
2276 	return 0;
2277 }
2278 
2279 /* Internal function pointers */
2280 
2281 /**
2282  *  e1000_get_phy_cfg_done - Generic PHY configuration done
2283  *  @hw: pointer to the HW structure
2284  *
2285  *  Return success if silicon family did not implement a family specific
2286  *  get_cfg_done function.
2287  **/
2288 static s32 e1000_get_phy_cfg_done(struct e1000_hw *hw)
2289 {
2290 	if (hw->phy.ops.get_cfg_done)
2291 		return hw->phy.ops.get_cfg_done(hw);
2292 
2293 	return 0;
2294 }
2295 
2296 /**
2297  *  e1000_phy_force_speed_duplex - Generic force PHY speed/duplex
2298  *  @hw: pointer to the HW structure
2299  *
2300  *  When the silicon family has not implemented a forced speed/duplex
2301  *  function for the PHY, simply return 0.
2302  **/
2303 static s32 e1000_phy_force_speed_duplex(struct e1000_hw *hw)
2304 {
2305 	if (hw->phy.ops.force_speed_duplex)
2306 		return hw->phy.ops.force_speed_duplex(hw);
2307 
2308 	return 0;
2309 }
2310 
2311 /**
2312  *  e1000e_get_phy_type_from_id - Get PHY type from id
2313  *  @phy_id: phy_id read from the phy
2314  *
2315  *  Returns the phy type from the id.
2316  **/
2317 enum e1000_phy_type e1000e_get_phy_type_from_id(u32 phy_id)
2318 {
2319 	enum e1000_phy_type phy_type = e1000_phy_unknown;
2320 
2321 	switch (phy_id) {
2322 	case M88E1000_I_PHY_ID:
2323 	case M88E1000_E_PHY_ID:
2324 	case M88E1111_I_PHY_ID:
2325 	case M88E1011_I_PHY_ID:
2326 		phy_type = e1000_phy_m88;
2327 		break;
2328 	case IGP01E1000_I_PHY_ID: /* IGP 1 & 2 share this */
2329 		phy_type = e1000_phy_igp_2;
2330 		break;
2331 	case GG82563_E_PHY_ID:
2332 		phy_type = e1000_phy_gg82563;
2333 		break;
2334 	case IGP03E1000_E_PHY_ID:
2335 		phy_type = e1000_phy_igp_3;
2336 		break;
2337 	case IFE_E_PHY_ID:
2338 	case IFE_PLUS_E_PHY_ID:
2339 	case IFE_C_E_PHY_ID:
2340 		phy_type = e1000_phy_ife;
2341 		break;
2342 	case BME1000_E_PHY_ID:
2343 	case BME1000_E_PHY_ID_R2:
2344 		phy_type = e1000_phy_bm;
2345 		break;
2346 	case I82578_E_PHY_ID:
2347 		phy_type = e1000_phy_82578;
2348 		break;
2349 	case I82577_E_PHY_ID:
2350 		phy_type = e1000_phy_82577;
2351 		break;
2352 	case I82579_E_PHY_ID:
2353 		phy_type = e1000_phy_82579;
2354 		break;
2355 	default:
2356 		phy_type = e1000_phy_unknown;
2357 		break;
2358 	}
2359 	return phy_type;
2360 }
2361 
2362 /**
2363  *  e1000e_determine_phy_address - Determines PHY address.
2364  *  @hw: pointer to the HW structure
2365  *
2366  *  This uses a trial and error method to loop through possible PHY
2367  *  addresses. It tests each by reading the PHY ID registers and
2368  *  checking for a match.
2369  **/
2370 s32 e1000e_determine_phy_address(struct e1000_hw *hw)
2371 {
2372 	s32 ret_val = -E1000_ERR_PHY_TYPE;
2373 	u32 phy_addr = 0;
2374 	u32 i;
2375 	enum e1000_phy_type phy_type = e1000_phy_unknown;
2376 
2377 	hw->phy.id = phy_type;
2378 
2379 	for (phy_addr = 0; phy_addr < E1000_MAX_PHY_ADDR; phy_addr++) {
2380 		hw->phy.addr = phy_addr;
2381 		i = 0;
2382 
2383 		do {
2384 			e1000e_get_phy_id(hw);
2385 			phy_type = e1000e_get_phy_type_from_id(hw->phy.id);
2386 
2387 			/*
2388 			 * If phy_type is valid, break - we found our
2389 			 * PHY address
2390 			 */
2391 			if (phy_type  != e1000_phy_unknown) {
2392 				ret_val = 0;
2393 				goto out;
2394 			}
2395 			usleep_range(1000, 2000);
2396 			i++;
2397 		} while (i < 10);
2398 	}
2399 
2400 out:
2401 	return ret_val;
2402 }
2403 
2404 /**
2405  *  e1000_get_phy_addr_for_bm_page - Retrieve PHY page address
2406  *  @page: page to access
2407  *
2408  *  Returns the phy address for the page requested.
2409  **/
2410 static u32 e1000_get_phy_addr_for_bm_page(u32 page, u32 reg)
2411 {
2412 	u32 phy_addr = 2;
2413 
2414 	if ((page >= 768) || (page == 0 && reg == 25) || (reg == 31))
2415 		phy_addr = 1;
2416 
2417 	return phy_addr;
2418 }
2419 
2420 /**
2421  *  e1000e_write_phy_reg_bm - Write BM PHY register
2422  *  @hw: pointer to the HW structure
2423  *  @offset: register offset to write to
2424  *  @data: data to write at register offset
2425  *
2426  *  Acquires semaphore, if necessary, then writes the data to PHY register
2427  *  at the offset.  Release any acquired semaphores before exiting.
2428  **/
2429 s32 e1000e_write_phy_reg_bm(struct e1000_hw *hw, u32 offset, u16 data)
2430 {
2431 	s32 ret_val;
2432 	u32 page = offset >> IGP_PAGE_SHIFT;
2433 
2434 	ret_val = hw->phy.ops.acquire(hw);
2435 	if (ret_val)
2436 		return ret_val;
2437 
2438 	/* Page 800 works differently than the rest so it has its own func */
2439 	if (page == BM_WUC_PAGE) {
2440 		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, &data,
2441 							 false, false);
2442 		goto out;
2443 	}
2444 
2445 	hw->phy.addr = e1000_get_phy_addr_for_bm_page(page, offset);
2446 
2447 	if (offset > MAX_PHY_MULTI_PAGE_REG) {
2448 		u32 page_shift, page_select;
2449 
2450 		/*
2451 		 * Page select is register 31 for phy address 1 and 22 for
2452 		 * phy address 2 and 3. Page select is shifted only for
2453 		 * phy address 1.
2454 		 */
2455 		if (hw->phy.addr == 1) {
2456 			page_shift = IGP_PAGE_SHIFT;
2457 			page_select = IGP01E1000_PHY_PAGE_SELECT;
2458 		} else {
2459 			page_shift = 0;
2460 			page_select = BM_PHY_PAGE_SELECT;
2461 		}
2462 
2463 		/* Page is shifted left, PHY expects (page x 32) */
2464 		ret_val = e1000e_write_phy_reg_mdic(hw, page_select,
2465 		                                    (page << page_shift));
2466 		if (ret_val)
2467 			goto out;
2468 	}
2469 
2470 	ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
2471 	                                    data);
2472 
2473 out:
2474 	hw->phy.ops.release(hw);
2475 	return ret_val;
2476 }
2477 
2478 /**
2479  *  e1000e_read_phy_reg_bm - Read BM PHY register
2480  *  @hw: pointer to the HW structure
2481  *  @offset: register offset to be read
2482  *  @data: pointer to the read data
2483  *
2484  *  Acquires semaphore, if necessary, then reads the PHY register at offset
2485  *  and storing the retrieved information in data.  Release any acquired
2486  *  semaphores before exiting.
2487  **/
2488 s32 e1000e_read_phy_reg_bm(struct e1000_hw *hw, u32 offset, u16 *data)
2489 {
2490 	s32 ret_val;
2491 	u32 page = offset >> IGP_PAGE_SHIFT;
2492 
2493 	ret_val = hw->phy.ops.acquire(hw);
2494 	if (ret_val)
2495 		return ret_val;
2496 
2497 	/* Page 800 works differently than the rest so it has its own func */
2498 	if (page == BM_WUC_PAGE) {
2499 		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, data,
2500 							 true, false);
2501 		goto out;
2502 	}
2503 
2504 	hw->phy.addr = e1000_get_phy_addr_for_bm_page(page, offset);
2505 
2506 	if (offset > MAX_PHY_MULTI_PAGE_REG) {
2507 		u32 page_shift, page_select;
2508 
2509 		/*
2510 		 * Page select is register 31 for phy address 1 and 22 for
2511 		 * phy address 2 and 3. Page select is shifted only for
2512 		 * phy address 1.
2513 		 */
2514 		if (hw->phy.addr == 1) {
2515 			page_shift = IGP_PAGE_SHIFT;
2516 			page_select = IGP01E1000_PHY_PAGE_SELECT;
2517 		} else {
2518 			page_shift = 0;
2519 			page_select = BM_PHY_PAGE_SELECT;
2520 		}
2521 
2522 		/* Page is shifted left, PHY expects (page x 32) */
2523 		ret_val = e1000e_write_phy_reg_mdic(hw, page_select,
2524 		                                    (page << page_shift));
2525 		if (ret_val)
2526 			goto out;
2527 	}
2528 
2529 	ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
2530 	                                   data);
2531 out:
2532 	hw->phy.ops.release(hw);
2533 	return ret_val;
2534 }
2535 
2536 /**
2537  *  e1000e_read_phy_reg_bm2 - Read BM PHY register
2538  *  @hw: pointer to the HW structure
2539  *  @offset: register offset to be read
2540  *  @data: pointer to the read data
2541  *
2542  *  Acquires semaphore, if necessary, then reads the PHY register at offset
2543  *  and storing the retrieved information in data.  Release any acquired
2544  *  semaphores before exiting.
2545  **/
2546 s32 e1000e_read_phy_reg_bm2(struct e1000_hw *hw, u32 offset, u16 *data)
2547 {
2548 	s32 ret_val;
2549 	u16 page = (u16)(offset >> IGP_PAGE_SHIFT);
2550 
2551 	ret_val = hw->phy.ops.acquire(hw);
2552 	if (ret_val)
2553 		return ret_val;
2554 
2555 	/* Page 800 works differently than the rest so it has its own func */
2556 	if (page == BM_WUC_PAGE) {
2557 		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, data,
2558 							 true, false);
2559 		goto out;
2560 	}
2561 
2562 	hw->phy.addr = 1;
2563 
2564 	if (offset > MAX_PHY_MULTI_PAGE_REG) {
2565 
2566 		/* Page is shifted left, PHY expects (page x 32) */
2567 		ret_val = e1000e_write_phy_reg_mdic(hw, BM_PHY_PAGE_SELECT,
2568 						    page);
2569 
2570 		if (ret_val)
2571 			goto out;
2572 	}
2573 
2574 	ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
2575 					   data);
2576 out:
2577 	hw->phy.ops.release(hw);
2578 	return ret_val;
2579 }
2580 
2581 /**
2582  *  e1000e_write_phy_reg_bm2 - Write BM PHY register
2583  *  @hw: pointer to the HW structure
2584  *  @offset: register offset to write to
2585  *  @data: data to write at register offset
2586  *
2587  *  Acquires semaphore, if necessary, then writes the data to PHY register
2588  *  at the offset.  Release any acquired semaphores before exiting.
2589  **/
2590 s32 e1000e_write_phy_reg_bm2(struct e1000_hw *hw, u32 offset, u16 data)
2591 {
2592 	s32 ret_val;
2593 	u16 page = (u16)(offset >> IGP_PAGE_SHIFT);
2594 
2595 	ret_val = hw->phy.ops.acquire(hw);
2596 	if (ret_val)
2597 		return ret_val;
2598 
2599 	/* Page 800 works differently than the rest so it has its own func */
2600 	if (page == BM_WUC_PAGE) {
2601 		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, &data,
2602 							 false, false);
2603 		goto out;
2604 	}
2605 
2606 	hw->phy.addr = 1;
2607 
2608 	if (offset > MAX_PHY_MULTI_PAGE_REG) {
2609 		/* Page is shifted left, PHY expects (page x 32) */
2610 		ret_val = e1000e_write_phy_reg_mdic(hw, BM_PHY_PAGE_SELECT,
2611 						    page);
2612 
2613 		if (ret_val)
2614 			goto out;
2615 	}
2616 
2617 	ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
2618 					    data);
2619 
2620 out:
2621 	hw->phy.ops.release(hw);
2622 	return ret_val;
2623 }
2624 
2625 /**
2626  *  e1000_enable_phy_wakeup_reg_access_bm - enable access to BM wakeup registers
2627  *  @hw: pointer to the HW structure
2628  *  @phy_reg: pointer to store original contents of BM_WUC_ENABLE_REG
2629  *
2630  *  Assumes semaphore already acquired and phy_reg points to a valid memory
2631  *  address to store contents of the BM_WUC_ENABLE_REG register.
2632  **/
2633 s32 e1000_enable_phy_wakeup_reg_access_bm(struct e1000_hw *hw, u16 *phy_reg)
2634 {
2635 	s32 ret_val;
2636 	u16 temp;
2637 
2638 	/* All page select, port ctrl and wakeup registers use phy address 1 */
2639 	hw->phy.addr = 1;
2640 
2641 	/* Select Port Control Registers page */
2642 	ret_val = e1000_set_page_igp(hw, (BM_PORT_CTRL_PAGE << IGP_PAGE_SHIFT));
2643 	if (ret_val) {
2644 		e_dbg("Could not set Port Control page\n");
2645 		goto out;
2646 	}
2647 
2648 	ret_val = e1000e_read_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, phy_reg);
2649 	if (ret_val) {
2650 		e_dbg("Could not read PHY register %d.%d\n",
2651 		      BM_PORT_CTRL_PAGE, BM_WUC_ENABLE_REG);
2652 		goto out;
2653 	}
2654 
2655 	/*
2656 	 * Enable both PHY wakeup mode and Wakeup register page writes.
2657 	 * Prevent a power state change by disabling ME and Host PHY wakeup.
2658 	 */
2659 	temp = *phy_reg;
2660 	temp |= BM_WUC_ENABLE_BIT;
2661 	temp &= ~(BM_WUC_ME_WU_BIT | BM_WUC_HOST_WU_BIT);
2662 
2663 	ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, temp);
2664 	if (ret_val) {
2665 		e_dbg("Could not write PHY register %d.%d\n",
2666 		      BM_PORT_CTRL_PAGE, BM_WUC_ENABLE_REG);
2667 		goto out;
2668 	}
2669 
2670 	/* Select Host Wakeup Registers page */
2671 	ret_val = e1000_set_page_igp(hw, (BM_WUC_PAGE << IGP_PAGE_SHIFT));
2672 
2673 	/* caller now able to write registers on the Wakeup registers page */
2674 out:
2675 	return ret_val;
2676 }
2677 
2678 /**
2679  *  e1000_disable_phy_wakeup_reg_access_bm - disable access to BM wakeup regs
2680  *  @hw: pointer to the HW structure
2681  *  @phy_reg: pointer to original contents of BM_WUC_ENABLE_REG
2682  *
2683  *  Restore BM_WUC_ENABLE_REG to its original value.
2684  *
2685  *  Assumes semaphore already acquired and *phy_reg is the contents of the
2686  *  BM_WUC_ENABLE_REG before register(s) on BM_WUC_PAGE were accessed by
2687  *  caller.
2688  **/
2689 s32 e1000_disable_phy_wakeup_reg_access_bm(struct e1000_hw *hw, u16 *phy_reg)
2690 {
2691 	s32 ret_val = 0;
2692 
2693 	/* Select Port Control Registers page */
2694 	ret_val = e1000_set_page_igp(hw, (BM_PORT_CTRL_PAGE << IGP_PAGE_SHIFT));
2695 	if (ret_val) {
2696 		e_dbg("Could not set Port Control page\n");
2697 		goto out;
2698 	}
2699 
2700 	/* Restore 769.17 to its original value */
2701 	ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, *phy_reg);
2702 	if (ret_val)
2703 		e_dbg("Could not restore PHY register %d.%d\n",
2704 		      BM_PORT_CTRL_PAGE, BM_WUC_ENABLE_REG);
2705 out:
2706 	return ret_val;
2707 }
2708 
2709 /**
2710  *  e1000_access_phy_wakeup_reg_bm - Read/write BM PHY wakeup register
2711  *  @hw: pointer to the HW structure
2712  *  @offset: register offset to be read or written
2713  *  @data: pointer to the data to read or write
2714  *  @read: determines if operation is read or write
2715  *  @page_set: BM_WUC_PAGE already set and access enabled
2716  *
2717  *  Read the PHY register at offset and store the retrieved information in
2718  *  data, or write data to PHY register at offset.  Note the procedure to
2719  *  access the PHY wakeup registers is different than reading the other PHY
2720  *  registers. It works as such:
2721  *  1) Set 769.17.2 (page 769, register 17, bit 2) = 1
2722  *  2) Set page to 800 for host (801 if we were manageability)
2723  *  3) Write the address using the address opcode (0x11)
2724  *  4) Read or write the data using the data opcode (0x12)
2725  *  5) Restore 769.17.2 to its original value
2726  *
2727  *  Steps 1 and 2 are done by e1000_enable_phy_wakeup_reg_access_bm() and
2728  *  step 5 is done by e1000_disable_phy_wakeup_reg_access_bm().
2729  *
2730  *  Assumes semaphore is already acquired.  When page_set==true, assumes
2731  *  the PHY page is set to BM_WUC_PAGE (i.e. a function in the call stack
2732  *  is responsible for calls to e1000_[enable|disable]_phy_wakeup_reg_bm()).
2733  **/
2734 static s32 e1000_access_phy_wakeup_reg_bm(struct e1000_hw *hw, u32 offset,
2735 					  u16 *data, bool read, bool page_set)
2736 {
2737 	s32 ret_val;
2738 	u16 reg = BM_PHY_REG_NUM(offset);
2739 	u16 page = BM_PHY_REG_PAGE(offset);
2740 	u16 phy_reg = 0;
2741 
2742 	/* Gig must be disabled for MDIO accesses to Host Wakeup reg page */
2743 	if ((hw->mac.type == e1000_pchlan) &&
2744 	    (!(er32(PHY_CTRL) & E1000_PHY_CTRL_GBE_DISABLE)))
2745 		e_dbg("Attempting to access page %d while gig enabled.\n",
2746 		      page);
2747 
2748 	if (!page_set) {
2749 		/* Enable access to PHY wakeup registers */
2750 		ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2751 		if (ret_val) {
2752 			e_dbg("Could not enable PHY wakeup reg access\n");
2753 			goto out;
2754 		}
2755 	}
2756 
2757 	e_dbg("Accessing PHY page %d reg 0x%x\n", page, reg);
2758 
2759 	/* Write the Wakeup register page offset value using opcode 0x11 */
2760 	ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_ADDRESS_OPCODE, reg);
2761 	if (ret_val) {
2762 		e_dbg("Could not write address opcode to page %d\n", page);
2763 		goto out;
2764 	}
2765 
2766 	if (read) {
2767 		/* Read the Wakeup register page value using opcode 0x12 */
2768 		ret_val = e1000e_read_phy_reg_mdic(hw, BM_WUC_DATA_OPCODE,
2769 		                                   data);
2770 	} else {
2771 		/* Write the Wakeup register page value using opcode 0x12 */
2772 		ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_DATA_OPCODE,
2773 						    *data);
2774 	}
2775 
2776 	if (ret_val) {
2777 		e_dbg("Could not access PHY reg %d.%d\n", page, reg);
2778 		goto out;
2779 	}
2780 
2781 	if (!page_set)
2782 		ret_val = e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2783 
2784 out:
2785 	return ret_val;
2786 }
2787 
2788 /**
2789  * e1000_power_up_phy_copper - Restore copper link in case of PHY power down
2790  * @hw: pointer to the HW structure
2791  *
2792  * In the case of a PHY power down to save power, or to turn off link during a
2793  * driver unload, or wake on lan is not enabled, restore the link to previous
2794  * settings.
2795  **/
2796 void e1000_power_up_phy_copper(struct e1000_hw *hw)
2797 {
2798 	u16 mii_reg = 0;
2799 
2800 	/* The PHY will retain its settings across a power down/up cycle */
2801 	e1e_rphy(hw, PHY_CONTROL, &mii_reg);
2802 	mii_reg &= ~MII_CR_POWER_DOWN;
2803 	e1e_wphy(hw, PHY_CONTROL, mii_reg);
2804 }
2805 
2806 /**
2807  * e1000_power_down_phy_copper - Restore copper link in case of PHY power down
2808  * @hw: pointer to the HW structure
2809  *
2810  * In the case of a PHY power down to save power, or to turn off link during a
2811  * driver unload, or wake on lan is not enabled, restore the link to previous
2812  * settings.
2813  **/
2814 void e1000_power_down_phy_copper(struct e1000_hw *hw)
2815 {
2816 	u16 mii_reg = 0;
2817 
2818 	/* The PHY will retain its settings across a power down/up cycle */
2819 	e1e_rphy(hw, PHY_CONTROL, &mii_reg);
2820 	mii_reg |= MII_CR_POWER_DOWN;
2821 	e1e_wphy(hw, PHY_CONTROL, mii_reg);
2822 	usleep_range(1000, 2000);
2823 }
2824 
2825 /**
2826  *  e1000e_commit_phy - Soft PHY reset
2827  *  @hw: pointer to the HW structure
2828  *
2829  *  Performs a soft PHY reset on those that apply. This is a function pointer
2830  *  entry point called by drivers.
2831  **/
2832 s32 e1000e_commit_phy(struct e1000_hw *hw)
2833 {
2834 	if (hw->phy.ops.commit)
2835 		return hw->phy.ops.commit(hw);
2836 
2837 	return 0;
2838 }
2839 
2840 /**
2841  *  e1000_set_d0_lplu_state - Sets low power link up state for D0
2842  *  @hw: pointer to the HW structure
2843  *  @active: boolean used to enable/disable lplu
2844  *
2845  *  Success returns 0, Failure returns 1
2846  *
2847  *  The low power link up (lplu) state is set to the power management level D0
2848  *  and SmartSpeed is disabled when active is true, else clear lplu for D0
2849  *  and enable Smartspeed.  LPLU and Smartspeed are mutually exclusive.  LPLU
2850  *  is used during Dx states where the power conservation is most important.
2851  *  During driver activity, SmartSpeed should be enabled so performance is
2852  *  maintained.  This is a function pointer entry point called by drivers.
2853  **/
2854 static s32 e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active)
2855 {
2856 	if (hw->phy.ops.set_d0_lplu_state)
2857 		return hw->phy.ops.set_d0_lplu_state(hw, active);
2858 
2859 	return 0;
2860 }
2861 
2862 /**
2863  *  __e1000_read_phy_reg_hv -  Read HV PHY register
2864  *  @hw: pointer to the HW structure
2865  *  @offset: register offset to be read
2866  *  @data: pointer to the read data
2867  *  @locked: semaphore has already been acquired or not
2868  *
2869  *  Acquires semaphore, if necessary, then reads the PHY register at offset
2870  *  and stores the retrieved information in data.  Release any acquired
2871  *  semaphore before exiting.
2872  **/
2873 static s32 __e1000_read_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 *data,
2874 				   bool locked, bool page_set)
2875 {
2876 	s32 ret_val;
2877 	u16 page = BM_PHY_REG_PAGE(offset);
2878 	u16 reg = BM_PHY_REG_NUM(offset);
2879 	u32 phy_addr = hw->phy.addr = e1000_get_phy_addr_for_hv_page(page);
2880 
2881 	if (!locked) {
2882 		ret_val = hw->phy.ops.acquire(hw);
2883 		if (ret_val)
2884 			return ret_val;
2885 	}
2886 
2887 	/* Page 800 works differently than the rest so it has its own func */
2888 	if (page == BM_WUC_PAGE) {
2889 		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, data,
2890 							 true, page_set);
2891 		goto out;
2892 	}
2893 
2894 	if (page > 0 && page < HV_INTC_FC_PAGE_START) {
2895 		ret_val = e1000_access_phy_debug_regs_hv(hw, offset,
2896 		                                         data, true);
2897 		goto out;
2898 	}
2899 
2900 	if (!page_set) {
2901 		if (page == HV_INTC_FC_PAGE_START)
2902 			page = 0;
2903 
2904 		if (reg > MAX_PHY_MULTI_PAGE_REG) {
2905 			/* Page is shifted left, PHY expects (page x 32) */
2906 			ret_val = e1000_set_page_igp(hw,
2907 						     (page << IGP_PAGE_SHIFT));
2908 
2909 			hw->phy.addr = phy_addr;
2910 
2911 			if (ret_val)
2912 				goto out;
2913 		}
2914 	}
2915 
2916 	e_dbg("reading PHY page %d (or 0x%x shifted) reg 0x%x\n", page,
2917 	      page << IGP_PAGE_SHIFT, reg);
2918 
2919 	ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & reg,
2920 	                                  data);
2921 out:
2922 	if (!locked)
2923 		hw->phy.ops.release(hw);
2924 
2925 	return ret_val;
2926 }
2927 
2928 /**
2929  *  e1000_read_phy_reg_hv -  Read HV PHY register
2930  *  @hw: pointer to the HW structure
2931  *  @offset: register offset to be read
2932  *  @data: pointer to the read data
2933  *
2934  *  Acquires semaphore then reads the PHY register at offset and stores
2935  *  the retrieved information in data.  Release the acquired semaphore
2936  *  before exiting.
2937  **/
2938 s32 e1000_read_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 *data)
2939 {
2940 	return __e1000_read_phy_reg_hv(hw, offset, data, false, false);
2941 }
2942 
2943 /**
2944  *  e1000_read_phy_reg_hv_locked -  Read HV PHY register
2945  *  @hw: pointer to the HW structure
2946  *  @offset: register offset to be read
2947  *  @data: pointer to the read data
2948  *
2949  *  Reads the PHY register at offset and stores the retrieved information
2950  *  in data.  Assumes semaphore already acquired.
2951  **/
2952 s32 e1000_read_phy_reg_hv_locked(struct e1000_hw *hw, u32 offset, u16 *data)
2953 {
2954 	return __e1000_read_phy_reg_hv(hw, offset, data, true, false);
2955 }
2956 
2957 /**
2958  *  e1000_read_phy_reg_page_hv - Read HV PHY register
2959  *  @hw: pointer to the HW structure
2960  *  @offset: register offset to write to
2961  *  @data: data to write at register offset
2962  *
2963  *  Reads the PHY register at offset and stores the retrieved information
2964  *  in data.  Assumes semaphore already acquired and page already set.
2965  **/
2966 s32 e1000_read_phy_reg_page_hv(struct e1000_hw *hw, u32 offset, u16 *data)
2967 {
2968 	return __e1000_read_phy_reg_hv(hw, offset, data, true, true);
2969 }
2970 
2971 /**
2972  *  __e1000_write_phy_reg_hv - Write HV PHY register
2973  *  @hw: pointer to the HW structure
2974  *  @offset: register offset to write to
2975  *  @data: data to write at register offset
2976  *  @locked: semaphore has already been acquired or not
2977  *
2978  *  Acquires semaphore, if necessary, then writes the data to PHY register
2979  *  at the offset.  Release any acquired semaphores before exiting.
2980  **/
2981 static s32 __e1000_write_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 data,
2982 				    bool locked, bool page_set)
2983 {
2984 	s32 ret_val;
2985 	u16 page = BM_PHY_REG_PAGE(offset);
2986 	u16 reg = BM_PHY_REG_NUM(offset);
2987 	u32 phy_addr = hw->phy.addr = e1000_get_phy_addr_for_hv_page(page);
2988 
2989 	if (!locked) {
2990 		ret_val = hw->phy.ops.acquire(hw);
2991 		if (ret_val)
2992 			return ret_val;
2993 	}
2994 
2995 	/* Page 800 works differently than the rest so it has its own func */
2996 	if (page == BM_WUC_PAGE) {
2997 		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, &data,
2998 							 false, page_set);
2999 		goto out;
3000 	}
3001 
3002 	if (page > 0 && page < HV_INTC_FC_PAGE_START) {
3003 		ret_val = e1000_access_phy_debug_regs_hv(hw, offset,
3004 		                                         &data, false);
3005 		goto out;
3006 	}
3007 
3008 	if (!page_set) {
3009 		if (page == HV_INTC_FC_PAGE_START)
3010 			page = 0;
3011 
3012 		/*
3013 		 * Workaround MDIO accesses being disabled after entering IEEE
3014 		 * Power Down (when bit 11 of the PHY Control register is set)
3015 		 */
3016 		if ((hw->phy.type == e1000_phy_82578) &&
3017 		    (hw->phy.revision >= 1) &&
3018 		    (hw->phy.addr == 2) &&
3019 		    ((MAX_PHY_REG_ADDRESS & reg) == 0) && (data & (1 << 11))) {
3020 			u16 data2 = 0x7EFF;
3021 			ret_val = e1000_access_phy_debug_regs_hv(hw,
3022 								 (1 << 6) | 0x3,
3023 								 &data2, false);
3024 			if (ret_val)
3025 				goto out;
3026 		}
3027 
3028 		if (reg > MAX_PHY_MULTI_PAGE_REG) {
3029 			/* Page is shifted left, PHY expects (page x 32) */
3030 			ret_val = e1000_set_page_igp(hw,
3031 						     (page << IGP_PAGE_SHIFT));
3032 
3033 			hw->phy.addr = phy_addr;
3034 
3035 			if (ret_val)
3036 				goto out;
3037 		}
3038 	}
3039 
3040 	e_dbg("writing PHY page %d (or 0x%x shifted) reg 0x%x\n", page,
3041 	      page << IGP_PAGE_SHIFT, reg);
3042 
3043 	ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & reg,
3044 	                                  data);
3045 
3046 out:
3047 	if (!locked)
3048 		hw->phy.ops.release(hw);
3049 
3050 	return ret_val;
3051 }
3052 
3053 /**
3054  *  e1000_write_phy_reg_hv - Write HV PHY register
3055  *  @hw: pointer to the HW structure
3056  *  @offset: register offset to write to
3057  *  @data: data to write at register offset
3058  *
3059  *  Acquires semaphore then writes the data to PHY register at the offset.
3060  *  Release the acquired semaphores before exiting.
3061  **/
3062 s32 e1000_write_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 data)
3063 {
3064 	return __e1000_write_phy_reg_hv(hw, offset, data, false, false);
3065 }
3066 
3067 /**
3068  *  e1000_write_phy_reg_hv_locked - Write HV PHY register
3069  *  @hw: pointer to the HW structure
3070  *  @offset: register offset to write to
3071  *  @data: data to write at register offset
3072  *
3073  *  Writes the data to PHY register at the offset.  Assumes semaphore
3074  *  already acquired.
3075  **/
3076 s32 e1000_write_phy_reg_hv_locked(struct e1000_hw *hw, u32 offset, u16 data)
3077 {
3078 	return __e1000_write_phy_reg_hv(hw, offset, data, true, false);
3079 }
3080 
3081 /**
3082  *  e1000_write_phy_reg_page_hv - Write HV PHY register
3083  *  @hw: pointer to the HW structure
3084  *  @offset: register offset to write to
3085  *  @data: data to write at register offset
3086  *
3087  *  Writes the data to PHY register at the offset.  Assumes semaphore
3088  *  already acquired and page already set.
3089  **/
3090 s32 e1000_write_phy_reg_page_hv(struct e1000_hw *hw, u32 offset, u16 data)
3091 {
3092 	return __e1000_write_phy_reg_hv(hw, offset, data, true, true);
3093 }
3094 
3095 /**
3096  *  e1000_get_phy_addr_for_hv_page - Get PHY address based on page
3097  *  @page: page to be accessed
3098  **/
3099 static u32 e1000_get_phy_addr_for_hv_page(u32 page)
3100 {
3101 	u32 phy_addr = 2;
3102 
3103 	if (page >= HV_INTC_FC_PAGE_START)
3104 		phy_addr = 1;
3105 
3106 	return phy_addr;
3107 }
3108 
3109 /**
3110  *  e1000_access_phy_debug_regs_hv - Read HV PHY vendor specific high registers
3111  *  @hw: pointer to the HW structure
3112  *  @offset: register offset to be read or written
3113  *  @data: pointer to the data to be read or written
3114  *  @read: determines if operation is read or write
3115  *
3116  *  Reads the PHY register at offset and stores the retreived information
3117  *  in data.  Assumes semaphore already acquired.  Note that the procedure
3118  *  to access these regs uses the address port and data port to read/write.
3119  *  These accesses done with PHY address 2 and without using pages.
3120  **/
3121 static s32 e1000_access_phy_debug_regs_hv(struct e1000_hw *hw, u32 offset,
3122                                           u16 *data, bool read)
3123 {
3124 	s32 ret_val;
3125 	u32 addr_reg = 0;
3126 	u32 data_reg = 0;
3127 
3128 	/* This takes care of the difference with desktop vs mobile phy */
3129 	addr_reg = (hw->phy.type == e1000_phy_82578) ?
3130 	           I82578_ADDR_REG : I82577_ADDR_REG;
3131 	data_reg = addr_reg + 1;
3132 
3133 	/* All operations in this function are phy address 2 */
3134 	hw->phy.addr = 2;
3135 
3136 	/* masking with 0x3F to remove the page from offset */
3137 	ret_val = e1000e_write_phy_reg_mdic(hw, addr_reg, (u16)offset & 0x3F);
3138 	if (ret_val) {
3139 		e_dbg("Could not write the Address Offset port register\n");
3140 		goto out;
3141 	}
3142 
3143 	/* Read or write the data value next */
3144 	if (read)
3145 		ret_val = e1000e_read_phy_reg_mdic(hw, data_reg, data);
3146 	else
3147 		ret_val = e1000e_write_phy_reg_mdic(hw, data_reg, *data);
3148 
3149 	if (ret_val) {
3150 		e_dbg("Could not access the Data port register\n");
3151 		goto out;
3152 	}
3153 
3154 out:
3155 	return ret_val;
3156 }
3157 
3158 /**
3159  *  e1000_link_stall_workaround_hv - Si workaround
3160  *  @hw: pointer to the HW structure
3161  *
3162  *  This function works around a Si bug where the link partner can get
3163  *  a link up indication before the PHY does.  If small packets are sent
3164  *  by the link partner they can be placed in the packet buffer without
3165  *  being properly accounted for by the PHY and will stall preventing
3166  *  further packets from being received.  The workaround is to clear the
3167  *  packet buffer after the PHY detects link up.
3168  **/
3169 s32 e1000_link_stall_workaround_hv(struct e1000_hw *hw)
3170 {
3171 	s32 ret_val = 0;
3172 	u16 data;
3173 
3174 	if (hw->phy.type != e1000_phy_82578)
3175 		goto out;
3176 
3177 	/* Do not apply workaround if in PHY loopback bit 14 set */
3178 	e1e_rphy(hw, PHY_CONTROL, &data);
3179 	if (data & PHY_CONTROL_LB)
3180 		goto out;
3181 
3182 	/* check if link is up and at 1Gbps */
3183 	ret_val = e1e_rphy(hw, BM_CS_STATUS, &data);
3184 	if (ret_val)
3185 		goto out;
3186 
3187 	data &= BM_CS_STATUS_LINK_UP |
3188 	        BM_CS_STATUS_RESOLVED |
3189 	        BM_CS_STATUS_SPEED_MASK;
3190 
3191 	if (data != (BM_CS_STATUS_LINK_UP |
3192 	             BM_CS_STATUS_RESOLVED |
3193 	             BM_CS_STATUS_SPEED_1000))
3194 		goto out;
3195 
3196 	mdelay(200);
3197 
3198 	/* flush the packets in the fifo buffer */
3199 	ret_val = e1e_wphy(hw, HV_MUX_DATA_CTRL, HV_MUX_DATA_CTRL_GEN_TO_MAC |
3200 			   HV_MUX_DATA_CTRL_FORCE_SPEED);
3201 	if (ret_val)
3202 		goto out;
3203 
3204 	ret_val = e1e_wphy(hw, HV_MUX_DATA_CTRL, HV_MUX_DATA_CTRL_GEN_TO_MAC);
3205 
3206 out:
3207 	return ret_val;
3208 }
3209 
3210 /**
3211  *  e1000_check_polarity_82577 - Checks the polarity.
3212  *  @hw: pointer to the HW structure
3213  *
3214  *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
3215  *
3216  *  Polarity is determined based on the PHY specific status register.
3217  **/
3218 s32 e1000_check_polarity_82577(struct e1000_hw *hw)
3219 {
3220 	struct e1000_phy_info *phy = &hw->phy;
3221 	s32 ret_val;
3222 	u16 data;
3223 
3224 	ret_val = e1e_rphy(hw, I82577_PHY_STATUS_2, &data);
3225 
3226 	if (!ret_val)
3227 		phy->cable_polarity = (data & I82577_PHY_STATUS2_REV_POLARITY)
3228 		                      ? e1000_rev_polarity_reversed
3229 		                      : e1000_rev_polarity_normal;
3230 
3231 	return ret_val;
3232 }
3233 
3234 /**
3235  *  e1000_phy_force_speed_duplex_82577 - Force speed/duplex for I82577 PHY
3236  *  @hw: pointer to the HW structure
3237  *
3238  *  Calls the PHY setup function to force speed and duplex.
3239  **/
3240 s32 e1000_phy_force_speed_duplex_82577(struct e1000_hw *hw)
3241 {
3242 	struct e1000_phy_info *phy = &hw->phy;
3243 	s32 ret_val;
3244 	u16 phy_data;
3245 	bool link;
3246 
3247 	ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_data);
3248 	if (ret_val)
3249 		goto out;
3250 
3251 	e1000e_phy_force_speed_duplex_setup(hw, &phy_data);
3252 
3253 	ret_val = e1e_wphy(hw, PHY_CONTROL, phy_data);
3254 	if (ret_val)
3255 		goto out;
3256 
3257 	udelay(1);
3258 
3259 	if (phy->autoneg_wait_to_complete) {
3260 		e_dbg("Waiting for forced speed/duplex link on 82577 phy\n");
3261 
3262 		ret_val = e1000e_phy_has_link_generic(hw,
3263 		                                     PHY_FORCE_LIMIT,
3264 		                                     100000,
3265 		                                     &link);
3266 		if (ret_val)
3267 			goto out;
3268 
3269 		if (!link)
3270 			e_dbg("Link taking longer than expected.\n");
3271 
3272 		/* Try once more */
3273 		ret_val = e1000e_phy_has_link_generic(hw,
3274 		                                     PHY_FORCE_LIMIT,
3275 		                                     100000,
3276 		                                     &link);
3277 		if (ret_val)
3278 			goto out;
3279 	}
3280 
3281 out:
3282 	return ret_val;
3283 }
3284 
3285 /**
3286  *  e1000_get_phy_info_82577 - Retrieve I82577 PHY information
3287  *  @hw: pointer to the HW structure
3288  *
3289  *  Read PHY status to determine if link is up.  If link is up, then
3290  *  set/determine 10base-T extended distance and polarity correction.  Read
3291  *  PHY port status to determine MDI/MDIx and speed.  Based on the speed,
3292  *  determine on the cable length, local and remote receiver.
3293  **/
3294 s32 e1000_get_phy_info_82577(struct e1000_hw *hw)
3295 {
3296 	struct e1000_phy_info *phy = &hw->phy;
3297 	s32 ret_val;
3298 	u16 data;
3299 	bool link;
3300 
3301 	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
3302 	if (ret_val)
3303 		goto out;
3304 
3305 	if (!link) {
3306 		e_dbg("Phy info is only valid if link is up\n");
3307 		ret_val = -E1000_ERR_CONFIG;
3308 		goto out;
3309 	}
3310 
3311 	phy->polarity_correction = true;
3312 
3313 	ret_val = e1000_check_polarity_82577(hw);
3314 	if (ret_val)
3315 		goto out;
3316 
3317 	ret_val = e1e_rphy(hw, I82577_PHY_STATUS_2, &data);
3318 	if (ret_val)
3319 		goto out;
3320 
3321 	phy->is_mdix = (data & I82577_PHY_STATUS2_MDIX) ? true : false;
3322 
3323 	if ((data & I82577_PHY_STATUS2_SPEED_MASK) ==
3324 	    I82577_PHY_STATUS2_SPEED_1000MBPS) {
3325 		ret_val = hw->phy.ops.get_cable_length(hw);
3326 		if (ret_val)
3327 			goto out;
3328 
3329 		ret_val = e1e_rphy(hw, PHY_1000T_STATUS, &data);
3330 		if (ret_val)
3331 			goto out;
3332 
3333 		phy->local_rx = (data & SR_1000T_LOCAL_RX_STATUS)
3334 		                ? e1000_1000t_rx_status_ok
3335 		                : e1000_1000t_rx_status_not_ok;
3336 
3337 		phy->remote_rx = (data & SR_1000T_REMOTE_RX_STATUS)
3338 		                 ? e1000_1000t_rx_status_ok
3339 		                 : e1000_1000t_rx_status_not_ok;
3340 	} else {
3341 		phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
3342 		phy->local_rx = e1000_1000t_rx_status_undefined;
3343 		phy->remote_rx = e1000_1000t_rx_status_undefined;
3344 	}
3345 
3346 out:
3347 	return ret_val;
3348 }
3349 
3350 /**
3351  *  e1000_get_cable_length_82577 - Determine cable length for 82577 PHY
3352  *  @hw: pointer to the HW structure
3353  *
3354  * Reads the diagnostic status register and verifies result is valid before
3355  * placing it in the phy_cable_length field.
3356  **/
3357 s32 e1000_get_cable_length_82577(struct e1000_hw *hw)
3358 {
3359 	struct e1000_phy_info *phy = &hw->phy;
3360 	s32 ret_val;
3361 	u16 phy_data, length;
3362 
3363 	ret_val = e1e_rphy(hw, I82577_PHY_DIAG_STATUS, &phy_data);
3364 	if (ret_val)
3365 		goto out;
3366 
3367 	length = (phy_data & I82577_DSTATUS_CABLE_LENGTH) >>
3368 	         I82577_DSTATUS_CABLE_LENGTH_SHIFT;
3369 
3370 	if (length == E1000_CABLE_LENGTH_UNDEFINED)
3371 		ret_val = -E1000_ERR_PHY;
3372 
3373 	phy->cable_length = length;
3374 
3375 out:
3376 	return ret_val;
3377 }
3378