1 /*******************************************************************************
2 
3   Intel PRO/1000 Linux driver
4   Copyright(c) 1999 - 2013 Intel Corporation.
5 
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9 
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14 
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18 
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21 
22   Contact Information:
23   Linux NICS <linux.nics@intel.com>
24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26 
27 *******************************************************************************/
28 
29 #include "e1000.h"
30 
31 static s32 e1000_wait_autoneg(struct e1000_hw *hw);
32 static s32 e1000_access_phy_wakeup_reg_bm(struct e1000_hw *hw, u32 offset,
33 					  u16 *data, bool read, bool page_set);
34 static u32 e1000_get_phy_addr_for_hv_page(u32 page);
35 static s32 e1000_access_phy_debug_regs_hv(struct e1000_hw *hw, u32 offset,
36 					  u16 *data, bool read);
37 
38 /* Cable length tables */
39 static const u16 e1000_m88_cable_length_table[] = {
40 	0, 50, 80, 110, 140, 140, E1000_CABLE_LENGTH_UNDEFINED
41 };
42 
43 #define M88E1000_CABLE_LENGTH_TABLE_SIZE \
44 		ARRAY_SIZE(e1000_m88_cable_length_table)
45 
46 static const u16 e1000_igp_2_cable_length_table[] = {
47 	0, 0, 0, 0, 0, 0, 0, 0, 3, 5, 8, 11, 13, 16, 18, 21, 0, 0, 0, 3,
48 	6, 10, 13, 16, 19, 23, 26, 29, 32, 35, 38, 41, 6, 10, 14, 18, 22,
49 	26, 30, 33, 37, 41, 44, 48, 51, 54, 58, 61, 21, 26, 31, 35, 40,
50 	44, 49, 53, 57, 61, 65, 68, 72, 75, 79, 82, 40, 45, 51, 56, 61,
51 	66, 70, 75, 79, 83, 87, 91, 94, 98, 101, 104, 60, 66, 72, 77, 82,
52 	87, 92, 96, 100, 104, 108, 111, 114, 117, 119, 121, 83, 89, 95,
53 	100, 105, 109, 113, 116, 119, 122, 124, 104, 109, 114, 118, 121,
54 	124
55 };
56 
57 #define IGP02E1000_CABLE_LENGTH_TABLE_SIZE \
58 		ARRAY_SIZE(e1000_igp_2_cable_length_table)
59 
60 /**
61  *  e1000e_check_reset_block_generic - Check if PHY reset is blocked
62  *  @hw: pointer to the HW structure
63  *
64  *  Read the PHY management control register and check whether a PHY reset
65  *  is blocked.  If a reset is not blocked return 0, otherwise
66  *  return E1000_BLK_PHY_RESET (12).
67  **/
68 s32 e1000e_check_reset_block_generic(struct e1000_hw *hw)
69 {
70 	u32 manc;
71 
72 	manc = er32(MANC);
73 
74 	return (manc & E1000_MANC_BLK_PHY_RST_ON_IDE) ? E1000_BLK_PHY_RESET : 0;
75 }
76 
77 /**
78  *  e1000e_get_phy_id - Retrieve the PHY ID and revision
79  *  @hw: pointer to the HW structure
80  *
81  *  Reads the PHY registers and stores the PHY ID and possibly the PHY
82  *  revision in the hardware structure.
83  **/
84 s32 e1000e_get_phy_id(struct e1000_hw *hw)
85 {
86 	struct e1000_phy_info *phy = &hw->phy;
87 	s32 ret_val = 0;
88 	u16 phy_id;
89 	u16 retry_count = 0;
90 
91 	if (!phy->ops.read_reg)
92 		return 0;
93 
94 	while (retry_count < 2) {
95 		ret_val = e1e_rphy(hw, MII_PHYSID1, &phy_id);
96 		if (ret_val)
97 			return ret_val;
98 
99 		phy->id = (u32)(phy_id << 16);
100 		usleep_range(20, 40);
101 		ret_val = e1e_rphy(hw, MII_PHYSID2, &phy_id);
102 		if (ret_val)
103 			return ret_val;
104 
105 		phy->id |= (u32)(phy_id & PHY_REVISION_MASK);
106 		phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK);
107 
108 		if (phy->id != 0 && phy->id != PHY_REVISION_MASK)
109 			return 0;
110 
111 		retry_count++;
112 	}
113 
114 	return 0;
115 }
116 
117 /**
118  *  e1000e_phy_reset_dsp - Reset PHY DSP
119  *  @hw: pointer to the HW structure
120  *
121  *  Reset the digital signal processor.
122  **/
123 s32 e1000e_phy_reset_dsp(struct e1000_hw *hw)
124 {
125 	s32 ret_val;
126 
127 	ret_val = e1e_wphy(hw, M88E1000_PHY_GEN_CONTROL, 0xC1);
128 	if (ret_val)
129 		return ret_val;
130 
131 	return e1e_wphy(hw, M88E1000_PHY_GEN_CONTROL, 0);
132 }
133 
134 /**
135  *  e1000e_read_phy_reg_mdic - Read MDI control register
136  *  @hw: pointer to the HW structure
137  *  @offset: register offset to be read
138  *  @data: pointer to the read data
139  *
140  *  Reads the MDI control register in the PHY at offset and stores the
141  *  information read to data.
142  **/
143 s32 e1000e_read_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 *data)
144 {
145 	struct e1000_phy_info *phy = &hw->phy;
146 	u32 i, mdic = 0;
147 
148 	if (offset > MAX_PHY_REG_ADDRESS) {
149 		e_dbg("PHY Address %d is out of range\n", offset);
150 		return -E1000_ERR_PARAM;
151 	}
152 
153 	/* Set up Op-code, Phy Address, and register offset in the MDI
154 	 * Control register.  The MAC will take care of interfacing with the
155 	 * PHY to retrieve the desired data.
156 	 */
157 	mdic = ((offset << E1000_MDIC_REG_SHIFT) |
158 		(phy->addr << E1000_MDIC_PHY_SHIFT) |
159 		(E1000_MDIC_OP_READ));
160 
161 	ew32(MDIC, mdic);
162 
163 	/* Poll the ready bit to see if the MDI read completed
164 	 * Increasing the time out as testing showed failures with
165 	 * the lower time out
166 	 */
167 	for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) {
168 		udelay(50);
169 		mdic = er32(MDIC);
170 		if (mdic & E1000_MDIC_READY)
171 			break;
172 	}
173 	if (!(mdic & E1000_MDIC_READY)) {
174 		e_dbg("MDI Read did not complete\n");
175 		return -E1000_ERR_PHY;
176 	}
177 	if (mdic & E1000_MDIC_ERROR) {
178 		e_dbg("MDI Error\n");
179 		return -E1000_ERR_PHY;
180 	}
181 	if (((mdic & E1000_MDIC_REG_MASK) >> E1000_MDIC_REG_SHIFT) != offset) {
182 		e_dbg("MDI Read offset error - requested %d, returned %d\n",
183 		      offset,
184 		      (mdic & E1000_MDIC_REG_MASK) >> E1000_MDIC_REG_SHIFT);
185 		return -E1000_ERR_PHY;
186 	}
187 	*data = (u16)mdic;
188 
189 	/* Allow some time after each MDIC transaction to avoid
190 	 * reading duplicate data in the next MDIC transaction.
191 	 */
192 	if (hw->mac.type == e1000_pch2lan)
193 		udelay(100);
194 
195 	return 0;
196 }
197 
198 /**
199  *  e1000e_write_phy_reg_mdic - Write MDI control register
200  *  @hw: pointer to the HW structure
201  *  @offset: register offset to write to
202  *  @data: data to write to register at offset
203  *
204  *  Writes data to MDI control register in the PHY at offset.
205  **/
206 s32 e1000e_write_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 data)
207 {
208 	struct e1000_phy_info *phy = &hw->phy;
209 	u32 i, mdic = 0;
210 
211 	if (offset > MAX_PHY_REG_ADDRESS) {
212 		e_dbg("PHY Address %d is out of range\n", offset);
213 		return -E1000_ERR_PARAM;
214 	}
215 
216 	/* Set up Op-code, Phy Address, and register offset in the MDI
217 	 * Control register.  The MAC will take care of interfacing with the
218 	 * PHY to retrieve the desired data.
219 	 */
220 	mdic = (((u32)data) |
221 		(offset << E1000_MDIC_REG_SHIFT) |
222 		(phy->addr << E1000_MDIC_PHY_SHIFT) |
223 		(E1000_MDIC_OP_WRITE));
224 
225 	ew32(MDIC, mdic);
226 
227 	/* Poll the ready bit to see if the MDI read completed
228 	 * Increasing the time out as testing showed failures with
229 	 * the lower time out
230 	 */
231 	for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) {
232 		udelay(50);
233 		mdic = er32(MDIC);
234 		if (mdic & E1000_MDIC_READY)
235 			break;
236 	}
237 	if (!(mdic & E1000_MDIC_READY)) {
238 		e_dbg("MDI Write did not complete\n");
239 		return -E1000_ERR_PHY;
240 	}
241 	if (mdic & E1000_MDIC_ERROR) {
242 		e_dbg("MDI Error\n");
243 		return -E1000_ERR_PHY;
244 	}
245 	if (((mdic & E1000_MDIC_REG_MASK) >> E1000_MDIC_REG_SHIFT) != offset) {
246 		e_dbg("MDI Write offset error - requested %d, returned %d\n",
247 		      offset,
248 		      (mdic & E1000_MDIC_REG_MASK) >> E1000_MDIC_REG_SHIFT);
249 		return -E1000_ERR_PHY;
250 	}
251 
252 	/* Allow some time after each MDIC transaction to avoid
253 	 * reading duplicate data in the next MDIC transaction.
254 	 */
255 	if (hw->mac.type == e1000_pch2lan)
256 		udelay(100);
257 
258 	return 0;
259 }
260 
261 /**
262  *  e1000e_read_phy_reg_m88 - Read m88 PHY register
263  *  @hw: pointer to the HW structure
264  *  @offset: register offset to be read
265  *  @data: pointer to the read data
266  *
267  *  Acquires semaphore, if necessary, then reads the PHY register at offset
268  *  and storing the retrieved information in data.  Release any acquired
269  *  semaphores before exiting.
270  **/
271 s32 e1000e_read_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 *data)
272 {
273 	s32 ret_val;
274 
275 	ret_val = hw->phy.ops.acquire(hw);
276 	if (ret_val)
277 		return ret_val;
278 
279 	ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
280 					   data);
281 
282 	hw->phy.ops.release(hw);
283 
284 	return ret_val;
285 }
286 
287 /**
288  *  e1000e_write_phy_reg_m88 - Write m88 PHY register
289  *  @hw: pointer to the HW structure
290  *  @offset: register offset to write to
291  *  @data: data to write at register offset
292  *
293  *  Acquires semaphore, if necessary, then writes the data to PHY register
294  *  at the offset.  Release any acquired semaphores before exiting.
295  **/
296 s32 e1000e_write_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 data)
297 {
298 	s32 ret_val;
299 
300 	ret_val = hw->phy.ops.acquire(hw);
301 	if (ret_val)
302 		return ret_val;
303 
304 	ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
305 					    data);
306 
307 	hw->phy.ops.release(hw);
308 
309 	return ret_val;
310 }
311 
312 /**
313  *  e1000_set_page_igp - Set page as on IGP-like PHY(s)
314  *  @hw: pointer to the HW structure
315  *  @page: page to set (shifted left when necessary)
316  *
317  *  Sets PHY page required for PHY register access.  Assumes semaphore is
318  *  already acquired.  Note, this function sets phy.addr to 1 so the caller
319  *  must set it appropriately (if necessary) after this function returns.
320  **/
321 s32 e1000_set_page_igp(struct e1000_hw *hw, u16 page)
322 {
323 	e_dbg("Setting page 0x%x\n", page);
324 
325 	hw->phy.addr = 1;
326 
327 	return e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, page);
328 }
329 
330 /**
331  *  __e1000e_read_phy_reg_igp - Read igp PHY register
332  *  @hw: pointer to the HW structure
333  *  @offset: register offset to be read
334  *  @data: pointer to the read data
335  *  @locked: semaphore has already been acquired or not
336  *
337  *  Acquires semaphore, if necessary, then reads the PHY register at offset
338  *  and stores the retrieved information in data.  Release any acquired
339  *  semaphores before exiting.
340  **/
341 static s32 __e1000e_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data,
342 				     bool locked)
343 {
344 	s32 ret_val = 0;
345 
346 	if (!locked) {
347 		if (!hw->phy.ops.acquire)
348 			return 0;
349 
350 		ret_val = hw->phy.ops.acquire(hw);
351 		if (ret_val)
352 			return ret_val;
353 	}
354 
355 	if (offset > MAX_PHY_MULTI_PAGE_REG)
356 		ret_val = e1000e_write_phy_reg_mdic(hw,
357 						    IGP01E1000_PHY_PAGE_SELECT,
358 						    (u16)offset);
359 	if (!ret_val)
360 		ret_val = e1000e_read_phy_reg_mdic(hw,
361 						   MAX_PHY_REG_ADDRESS & offset,
362 						   data);
363 	if (!locked)
364 		hw->phy.ops.release(hw);
365 
366 	return ret_val;
367 }
368 
369 /**
370  *  e1000e_read_phy_reg_igp - Read igp PHY register
371  *  @hw: pointer to the HW structure
372  *  @offset: register offset to be read
373  *  @data: pointer to the read data
374  *
375  *  Acquires semaphore then reads the PHY register at offset and stores the
376  *  retrieved information in data.
377  *  Release the acquired semaphore before exiting.
378  **/
379 s32 e1000e_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data)
380 {
381 	return __e1000e_read_phy_reg_igp(hw, offset, data, false);
382 }
383 
384 /**
385  *  e1000e_read_phy_reg_igp_locked - Read igp PHY register
386  *  @hw: pointer to the HW structure
387  *  @offset: register offset to be read
388  *  @data: pointer to the read data
389  *
390  *  Reads the PHY register at offset and stores the retrieved information
391  *  in data.  Assumes semaphore already acquired.
392  **/
393 s32 e1000e_read_phy_reg_igp_locked(struct e1000_hw *hw, u32 offset, u16 *data)
394 {
395 	return __e1000e_read_phy_reg_igp(hw, offset, data, true);
396 }
397 
398 /**
399  *  e1000e_write_phy_reg_igp - Write igp PHY register
400  *  @hw: pointer to the HW structure
401  *  @offset: register offset to write to
402  *  @data: data to write at register offset
403  *  @locked: semaphore has already been acquired or not
404  *
405  *  Acquires semaphore, if necessary, then writes the data to PHY register
406  *  at the offset.  Release any acquired semaphores before exiting.
407  **/
408 static s32 __e1000e_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data,
409 				      bool locked)
410 {
411 	s32 ret_val = 0;
412 
413 	if (!locked) {
414 		if (!hw->phy.ops.acquire)
415 			return 0;
416 
417 		ret_val = hw->phy.ops.acquire(hw);
418 		if (ret_val)
419 			return ret_val;
420 	}
421 
422 	if (offset > MAX_PHY_MULTI_PAGE_REG)
423 		ret_val = e1000e_write_phy_reg_mdic(hw,
424 						    IGP01E1000_PHY_PAGE_SELECT,
425 						    (u16)offset);
426 	if (!ret_val)
427 		ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS &
428 						    offset, data);
429 	if (!locked)
430 		hw->phy.ops.release(hw);
431 
432 	return ret_val;
433 }
434 
435 /**
436  *  e1000e_write_phy_reg_igp - Write igp PHY register
437  *  @hw: pointer to the HW structure
438  *  @offset: register offset to write to
439  *  @data: data to write at register offset
440  *
441  *  Acquires semaphore then writes the data to PHY register
442  *  at the offset.  Release any acquired semaphores before exiting.
443  **/
444 s32 e1000e_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data)
445 {
446 	return __e1000e_write_phy_reg_igp(hw, offset, data, false);
447 }
448 
449 /**
450  *  e1000e_write_phy_reg_igp_locked - Write igp PHY register
451  *  @hw: pointer to the HW structure
452  *  @offset: register offset to write to
453  *  @data: data to write at register offset
454  *
455  *  Writes the data to PHY register at the offset.
456  *  Assumes semaphore already acquired.
457  **/
458 s32 e1000e_write_phy_reg_igp_locked(struct e1000_hw *hw, u32 offset, u16 data)
459 {
460 	return __e1000e_write_phy_reg_igp(hw, offset, data, true);
461 }
462 
463 /**
464  *  __e1000_read_kmrn_reg - Read kumeran register
465  *  @hw: pointer to the HW structure
466  *  @offset: register offset to be read
467  *  @data: pointer to the read data
468  *  @locked: semaphore has already been acquired or not
469  *
470  *  Acquires semaphore, if necessary.  Then reads the PHY register at offset
471  *  using the kumeran interface.  The information retrieved is stored in data.
472  *  Release any acquired semaphores before exiting.
473  **/
474 static s32 __e1000_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data,
475 				 bool locked)
476 {
477 	u32 kmrnctrlsta;
478 
479 	if (!locked) {
480 		s32 ret_val = 0;
481 
482 		if (!hw->phy.ops.acquire)
483 			return 0;
484 
485 		ret_val = hw->phy.ops.acquire(hw);
486 		if (ret_val)
487 			return ret_val;
488 	}
489 
490 	kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
491 		       E1000_KMRNCTRLSTA_OFFSET) | E1000_KMRNCTRLSTA_REN;
492 	ew32(KMRNCTRLSTA, kmrnctrlsta);
493 	e1e_flush();
494 
495 	udelay(2);
496 
497 	kmrnctrlsta = er32(KMRNCTRLSTA);
498 	*data = (u16)kmrnctrlsta;
499 
500 	if (!locked)
501 		hw->phy.ops.release(hw);
502 
503 	return 0;
504 }
505 
506 /**
507  *  e1000e_read_kmrn_reg -  Read kumeran register
508  *  @hw: pointer to the HW structure
509  *  @offset: register offset to be read
510  *  @data: pointer to the read data
511  *
512  *  Acquires semaphore then reads the PHY register at offset using the
513  *  kumeran interface.  The information retrieved is stored in data.
514  *  Release the acquired semaphore before exiting.
515  **/
516 s32 e1000e_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data)
517 {
518 	return __e1000_read_kmrn_reg(hw, offset, data, false);
519 }
520 
521 /**
522  *  e1000e_read_kmrn_reg_locked -  Read kumeran register
523  *  @hw: pointer to the HW structure
524  *  @offset: register offset to be read
525  *  @data: pointer to the read data
526  *
527  *  Reads the PHY register at offset using the kumeran interface.  The
528  *  information retrieved is stored in data.
529  *  Assumes semaphore already acquired.
530  **/
531 s32 e1000e_read_kmrn_reg_locked(struct e1000_hw *hw, u32 offset, u16 *data)
532 {
533 	return __e1000_read_kmrn_reg(hw, offset, data, true);
534 }
535 
536 /**
537  *  __e1000_write_kmrn_reg - Write kumeran register
538  *  @hw: pointer to the HW structure
539  *  @offset: register offset to write to
540  *  @data: data to write at register offset
541  *  @locked: semaphore has already been acquired or not
542  *
543  *  Acquires semaphore, if necessary.  Then write the data to PHY register
544  *  at the offset using the kumeran interface.  Release any acquired semaphores
545  *  before exiting.
546  **/
547 static s32 __e1000_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data,
548 				  bool locked)
549 {
550 	u32 kmrnctrlsta;
551 
552 	if (!locked) {
553 		s32 ret_val = 0;
554 
555 		if (!hw->phy.ops.acquire)
556 			return 0;
557 
558 		ret_val = hw->phy.ops.acquire(hw);
559 		if (ret_val)
560 			return ret_val;
561 	}
562 
563 	kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
564 		       E1000_KMRNCTRLSTA_OFFSET) | data;
565 	ew32(KMRNCTRLSTA, kmrnctrlsta);
566 	e1e_flush();
567 
568 	udelay(2);
569 
570 	if (!locked)
571 		hw->phy.ops.release(hw);
572 
573 	return 0;
574 }
575 
576 /**
577  *  e1000e_write_kmrn_reg -  Write kumeran register
578  *  @hw: pointer to the HW structure
579  *  @offset: register offset to write to
580  *  @data: data to write at register offset
581  *
582  *  Acquires semaphore then writes the data to the PHY register at the offset
583  *  using the kumeran interface.  Release the acquired semaphore before exiting.
584  **/
585 s32 e1000e_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data)
586 {
587 	return __e1000_write_kmrn_reg(hw, offset, data, false);
588 }
589 
590 /**
591  *  e1000e_write_kmrn_reg_locked -  Write kumeran register
592  *  @hw: pointer to the HW structure
593  *  @offset: register offset to write to
594  *  @data: data to write at register offset
595  *
596  *  Write the data to PHY register at the offset using the kumeran interface.
597  *  Assumes semaphore already acquired.
598  **/
599 s32 e1000e_write_kmrn_reg_locked(struct e1000_hw *hw, u32 offset, u16 data)
600 {
601 	return __e1000_write_kmrn_reg(hw, offset, data, true);
602 }
603 
604 /**
605  *  e1000_set_master_slave_mode - Setup PHY for Master/slave mode
606  *  @hw: pointer to the HW structure
607  *
608  *  Sets up Master/slave mode
609  **/
610 static s32 e1000_set_master_slave_mode(struct e1000_hw *hw)
611 {
612 	s32 ret_val;
613 	u16 phy_data;
614 
615 	/* Resolve Master/Slave mode */
616 	ret_val = e1e_rphy(hw, MII_CTRL1000, &phy_data);
617 	if (ret_val)
618 		return ret_val;
619 
620 	/* load defaults for future use */
621 	hw->phy.original_ms_type = (phy_data & CTL1000_ENABLE_MASTER) ?
622 	    ((phy_data & CTL1000_AS_MASTER) ?
623 	     e1000_ms_force_master : e1000_ms_force_slave) : e1000_ms_auto;
624 
625 	switch (hw->phy.ms_type) {
626 	case e1000_ms_force_master:
627 		phy_data |= (CTL1000_ENABLE_MASTER | CTL1000_AS_MASTER);
628 		break;
629 	case e1000_ms_force_slave:
630 		phy_data |= CTL1000_ENABLE_MASTER;
631 		phy_data &= ~(CTL1000_AS_MASTER);
632 		break;
633 	case e1000_ms_auto:
634 		phy_data &= ~CTL1000_ENABLE_MASTER;
635 		/* fall-through */
636 	default:
637 		break;
638 	}
639 
640 	return e1e_wphy(hw, MII_CTRL1000, phy_data);
641 }
642 
643 /**
644  *  e1000_copper_link_setup_82577 - Setup 82577 PHY for copper link
645  *  @hw: pointer to the HW structure
646  *
647  *  Sets up Carrier-sense on Transmit and downshift values.
648  **/
649 s32 e1000_copper_link_setup_82577(struct e1000_hw *hw)
650 {
651 	s32 ret_val;
652 	u16 phy_data;
653 
654 	/* Enable CRS on Tx. This must be set for half-duplex operation. */
655 	ret_val = e1e_rphy(hw, I82577_CFG_REG, &phy_data);
656 	if (ret_val)
657 		return ret_val;
658 
659 	phy_data |= I82577_CFG_ASSERT_CRS_ON_TX;
660 
661 	/* Enable downshift */
662 	phy_data |= I82577_CFG_ENABLE_DOWNSHIFT;
663 
664 	ret_val = e1e_wphy(hw, I82577_CFG_REG, phy_data);
665 	if (ret_val)
666 		return ret_val;
667 
668 	/* Set MDI/MDIX mode */
669 	ret_val = e1e_rphy(hw, I82577_PHY_CTRL_2, &phy_data);
670 	if (ret_val)
671 		return ret_val;
672 	phy_data &= ~I82577_PHY_CTRL2_MDIX_CFG_MASK;
673 	/* Options:
674 	 *   0 - Auto (default)
675 	 *   1 - MDI mode
676 	 *   2 - MDI-X mode
677 	 */
678 	switch (hw->phy.mdix) {
679 	case 1:
680 		break;
681 	case 2:
682 		phy_data |= I82577_PHY_CTRL2_MANUAL_MDIX;
683 		break;
684 	case 0:
685 	default:
686 		phy_data |= I82577_PHY_CTRL2_AUTO_MDI_MDIX;
687 		break;
688 	}
689 	ret_val = e1e_wphy(hw, I82577_PHY_CTRL_2, phy_data);
690 	if (ret_val)
691 		return ret_val;
692 
693 	return e1000_set_master_slave_mode(hw);
694 }
695 
696 /**
697  *  e1000e_copper_link_setup_m88 - Setup m88 PHY's for copper link
698  *  @hw: pointer to the HW structure
699  *
700  *  Sets up MDI/MDI-X and polarity for m88 PHY's.  If necessary, transmit clock
701  *  and downshift values are set also.
702  **/
703 s32 e1000e_copper_link_setup_m88(struct e1000_hw *hw)
704 {
705 	struct e1000_phy_info *phy = &hw->phy;
706 	s32 ret_val;
707 	u16 phy_data;
708 
709 	/* Enable CRS on Tx. This must be set for half-duplex operation. */
710 	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
711 	if (ret_val)
712 		return ret_val;
713 
714 	/* For BM PHY this bit is downshift enable */
715 	if (phy->type != e1000_phy_bm)
716 		phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
717 
718 	/* Options:
719 	 *   MDI/MDI-X = 0 (default)
720 	 *   0 - Auto for all speeds
721 	 *   1 - MDI mode
722 	 *   2 - MDI-X mode
723 	 *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
724 	 */
725 	phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
726 
727 	switch (phy->mdix) {
728 	case 1:
729 		phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
730 		break;
731 	case 2:
732 		phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
733 		break;
734 	case 3:
735 		phy_data |= M88E1000_PSCR_AUTO_X_1000T;
736 		break;
737 	case 0:
738 	default:
739 		phy_data |= M88E1000_PSCR_AUTO_X_MODE;
740 		break;
741 	}
742 
743 	/* Options:
744 	 *   disable_polarity_correction = 0 (default)
745 	 *       Automatic Correction for Reversed Cable Polarity
746 	 *   0 - Disabled
747 	 *   1 - Enabled
748 	 */
749 	phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
750 	if (phy->disable_polarity_correction)
751 		phy_data |= M88E1000_PSCR_POLARITY_REVERSAL;
752 
753 	/* Enable downshift on BM (disabled by default) */
754 	if (phy->type == e1000_phy_bm) {
755 		/* For 82574/82583, first disable then enable downshift */
756 		if (phy->id == BME1000_E_PHY_ID_R2) {
757 			phy_data &= ~BME1000_PSCR_ENABLE_DOWNSHIFT;
758 			ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL,
759 					   phy_data);
760 			if (ret_val)
761 				return ret_val;
762 			/* Commit the changes. */
763 			ret_val = phy->ops.commit(hw);
764 			if (ret_val) {
765 				e_dbg("Error committing the PHY changes\n");
766 				return ret_val;
767 			}
768 		}
769 
770 		phy_data |= BME1000_PSCR_ENABLE_DOWNSHIFT;
771 	}
772 
773 	ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
774 	if (ret_val)
775 		return ret_val;
776 
777 	if ((phy->type == e1000_phy_m88) &&
778 	    (phy->revision < E1000_REVISION_4) &&
779 	    (phy->id != BME1000_E_PHY_ID_R2)) {
780 		/* Force TX_CLK in the Extended PHY Specific Control Register
781 		 * to 25MHz clock.
782 		 */
783 		ret_val = e1e_rphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
784 		if (ret_val)
785 			return ret_val;
786 
787 		phy_data |= M88E1000_EPSCR_TX_CLK_25;
788 
789 		if ((phy->revision == 2) && (phy->id == M88E1111_I_PHY_ID)) {
790 			/* 82573L PHY - set the downshift counter to 5x. */
791 			phy_data &= ~M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK;
792 			phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X;
793 		} else {
794 			/* Configure Master and Slave downshift values */
795 			phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK |
796 				      M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK);
797 			phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X |
798 				     M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X);
799 		}
800 		ret_val = e1e_wphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
801 		if (ret_val)
802 			return ret_val;
803 	}
804 
805 	if ((phy->type == e1000_phy_bm) && (phy->id == BME1000_E_PHY_ID_R2)) {
806 		/* Set PHY page 0, register 29 to 0x0003 */
807 		ret_val = e1e_wphy(hw, 29, 0x0003);
808 		if (ret_val)
809 			return ret_val;
810 
811 		/* Set PHY page 0, register 30 to 0x0000 */
812 		ret_val = e1e_wphy(hw, 30, 0x0000);
813 		if (ret_val)
814 			return ret_val;
815 	}
816 
817 	/* Commit the changes. */
818 	if (phy->ops.commit) {
819 		ret_val = phy->ops.commit(hw);
820 		if (ret_val) {
821 			e_dbg("Error committing the PHY changes\n");
822 			return ret_val;
823 		}
824 	}
825 
826 	if (phy->type == e1000_phy_82578) {
827 		ret_val = e1e_rphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
828 		if (ret_val)
829 			return ret_val;
830 
831 		/* 82578 PHY - set the downshift count to 1x. */
832 		phy_data |= I82578_EPSCR_DOWNSHIFT_ENABLE;
833 		phy_data &= ~I82578_EPSCR_DOWNSHIFT_COUNTER_MASK;
834 		ret_val = e1e_wphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
835 		if (ret_val)
836 			return ret_val;
837 	}
838 
839 	return 0;
840 }
841 
842 /**
843  *  e1000e_copper_link_setup_igp - Setup igp PHY's for copper link
844  *  @hw: pointer to the HW structure
845  *
846  *  Sets up LPLU, MDI/MDI-X, polarity, Smartspeed and Master/Slave config for
847  *  igp PHY's.
848  **/
849 s32 e1000e_copper_link_setup_igp(struct e1000_hw *hw)
850 {
851 	struct e1000_phy_info *phy = &hw->phy;
852 	s32 ret_val;
853 	u16 data;
854 
855 	ret_val = e1000_phy_hw_reset(hw);
856 	if (ret_val) {
857 		e_dbg("Error resetting the PHY.\n");
858 		return ret_val;
859 	}
860 
861 	/* Wait 100ms for MAC to configure PHY from NVM settings, to avoid
862 	 * timeout issues when LFS is enabled.
863 	 */
864 	msleep(100);
865 
866 	/* disable lplu d0 during driver init */
867 	if (hw->phy.ops.set_d0_lplu_state) {
868 		ret_val = hw->phy.ops.set_d0_lplu_state(hw, false);
869 		if (ret_val) {
870 			e_dbg("Error Disabling LPLU D0\n");
871 			return ret_val;
872 		}
873 	}
874 	/* Configure mdi-mdix settings */
875 	ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CTRL, &data);
876 	if (ret_val)
877 		return ret_val;
878 
879 	data &= ~IGP01E1000_PSCR_AUTO_MDIX;
880 
881 	switch (phy->mdix) {
882 	case 1:
883 		data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
884 		break;
885 	case 2:
886 		data |= IGP01E1000_PSCR_FORCE_MDI_MDIX;
887 		break;
888 	case 0:
889 	default:
890 		data |= IGP01E1000_PSCR_AUTO_MDIX;
891 		break;
892 	}
893 	ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CTRL, data);
894 	if (ret_val)
895 		return ret_val;
896 
897 	/* set auto-master slave resolution settings */
898 	if (hw->mac.autoneg) {
899 		/* when autonegotiation advertisement is only 1000Mbps then we
900 		 * should disable SmartSpeed and enable Auto MasterSlave
901 		 * resolution as hardware default.
902 		 */
903 		if (phy->autoneg_advertised == ADVERTISE_1000_FULL) {
904 			/* Disable SmartSpeed */
905 			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
906 					   &data);
907 			if (ret_val)
908 				return ret_val;
909 
910 			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
911 			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
912 					   data);
913 			if (ret_val)
914 				return ret_val;
915 
916 			/* Set auto Master/Slave resolution process */
917 			ret_val = e1e_rphy(hw, MII_CTRL1000, &data);
918 			if (ret_val)
919 				return ret_val;
920 
921 			data &= ~CTL1000_ENABLE_MASTER;
922 			ret_val = e1e_wphy(hw, MII_CTRL1000, data);
923 			if (ret_val)
924 				return ret_val;
925 		}
926 
927 		ret_val = e1000_set_master_slave_mode(hw);
928 	}
929 
930 	return ret_val;
931 }
932 
933 /**
934  *  e1000_phy_setup_autoneg - Configure PHY for auto-negotiation
935  *  @hw: pointer to the HW structure
936  *
937  *  Reads the MII auto-neg advertisement register and/or the 1000T control
938  *  register and if the PHY is already setup for auto-negotiation, then
939  *  return successful.  Otherwise, setup advertisement and flow control to
940  *  the appropriate values for the wanted auto-negotiation.
941  **/
942 static s32 e1000_phy_setup_autoneg(struct e1000_hw *hw)
943 {
944 	struct e1000_phy_info *phy = &hw->phy;
945 	s32 ret_val;
946 	u16 mii_autoneg_adv_reg;
947 	u16 mii_1000t_ctrl_reg = 0;
948 
949 	phy->autoneg_advertised &= phy->autoneg_mask;
950 
951 	/* Read the MII Auto-Neg Advertisement Register (Address 4). */
952 	ret_val = e1e_rphy(hw, MII_ADVERTISE, &mii_autoneg_adv_reg);
953 	if (ret_val)
954 		return ret_val;
955 
956 	if (phy->autoneg_mask & ADVERTISE_1000_FULL) {
957 		/* Read the MII 1000Base-T Control Register (Address 9). */
958 		ret_val = e1e_rphy(hw, MII_CTRL1000, &mii_1000t_ctrl_reg);
959 		if (ret_val)
960 			return ret_val;
961 	}
962 
963 	/* Need to parse both autoneg_advertised and fc and set up
964 	 * the appropriate PHY registers.  First we will parse for
965 	 * autoneg_advertised software override.  Since we can advertise
966 	 * a plethora of combinations, we need to check each bit
967 	 * individually.
968 	 */
969 
970 	/* First we clear all the 10/100 mb speed bits in the Auto-Neg
971 	 * Advertisement Register (Address 4) and the 1000 mb speed bits in
972 	 * the  1000Base-T Control Register (Address 9).
973 	 */
974 	mii_autoneg_adv_reg &= ~(ADVERTISE_100FULL |
975 				 ADVERTISE_100HALF |
976 				 ADVERTISE_10FULL | ADVERTISE_10HALF);
977 	mii_1000t_ctrl_reg &= ~(ADVERTISE_1000HALF | ADVERTISE_1000FULL);
978 
979 	e_dbg("autoneg_advertised %x\n", phy->autoneg_advertised);
980 
981 	/* Do we want to advertise 10 Mb Half Duplex? */
982 	if (phy->autoneg_advertised & ADVERTISE_10_HALF) {
983 		e_dbg("Advertise 10mb Half duplex\n");
984 		mii_autoneg_adv_reg |= ADVERTISE_10HALF;
985 	}
986 
987 	/* Do we want to advertise 10 Mb Full Duplex? */
988 	if (phy->autoneg_advertised & ADVERTISE_10_FULL) {
989 		e_dbg("Advertise 10mb Full duplex\n");
990 		mii_autoneg_adv_reg |= ADVERTISE_10FULL;
991 	}
992 
993 	/* Do we want to advertise 100 Mb Half Duplex? */
994 	if (phy->autoneg_advertised & ADVERTISE_100_HALF) {
995 		e_dbg("Advertise 100mb Half duplex\n");
996 		mii_autoneg_adv_reg |= ADVERTISE_100HALF;
997 	}
998 
999 	/* Do we want to advertise 100 Mb Full Duplex? */
1000 	if (phy->autoneg_advertised & ADVERTISE_100_FULL) {
1001 		e_dbg("Advertise 100mb Full duplex\n");
1002 		mii_autoneg_adv_reg |= ADVERTISE_100FULL;
1003 	}
1004 
1005 	/* We do not allow the Phy to advertise 1000 Mb Half Duplex */
1006 	if (phy->autoneg_advertised & ADVERTISE_1000_HALF)
1007 		e_dbg("Advertise 1000mb Half duplex request denied!\n");
1008 
1009 	/* Do we want to advertise 1000 Mb Full Duplex? */
1010 	if (phy->autoneg_advertised & ADVERTISE_1000_FULL) {
1011 		e_dbg("Advertise 1000mb Full duplex\n");
1012 		mii_1000t_ctrl_reg |= ADVERTISE_1000FULL;
1013 	}
1014 
1015 	/* Check for a software override of the flow control settings, and
1016 	 * setup the PHY advertisement registers accordingly.  If
1017 	 * auto-negotiation is enabled, then software will have to set the
1018 	 * "PAUSE" bits to the correct value in the Auto-Negotiation
1019 	 * Advertisement Register (MII_ADVERTISE) and re-start auto-
1020 	 * negotiation.
1021 	 *
1022 	 * The possible values of the "fc" parameter are:
1023 	 *      0:  Flow control is completely disabled
1024 	 *      1:  Rx flow control is enabled (we can receive pause frames
1025 	 *          but not send pause frames).
1026 	 *      2:  Tx flow control is enabled (we can send pause frames
1027 	 *          but we do not support receiving pause frames).
1028 	 *      3:  Both Rx and Tx flow control (symmetric) are enabled.
1029 	 *  other:  No software override.  The flow control configuration
1030 	 *          in the EEPROM is used.
1031 	 */
1032 	switch (hw->fc.current_mode) {
1033 	case e1000_fc_none:
1034 		/* Flow control (Rx & Tx) is completely disabled by a
1035 		 * software over-ride.
1036 		 */
1037 		mii_autoneg_adv_reg &=
1038 		    ~(ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP);
1039 		break;
1040 	case e1000_fc_rx_pause:
1041 		/* Rx Flow control is enabled, and Tx Flow control is
1042 		 * disabled, by a software over-ride.
1043 		 *
1044 		 * Since there really isn't a way to advertise that we are
1045 		 * capable of Rx Pause ONLY, we will advertise that we
1046 		 * support both symmetric and asymmetric Rx PAUSE.  Later
1047 		 * (in e1000e_config_fc_after_link_up) we will disable the
1048 		 * hw's ability to send PAUSE frames.
1049 		 */
1050 		mii_autoneg_adv_reg |=
1051 		    (ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP);
1052 		break;
1053 	case e1000_fc_tx_pause:
1054 		/* Tx Flow control is enabled, and Rx Flow control is
1055 		 * disabled, by a software over-ride.
1056 		 */
1057 		mii_autoneg_adv_reg |= ADVERTISE_PAUSE_ASYM;
1058 		mii_autoneg_adv_reg &= ~ADVERTISE_PAUSE_CAP;
1059 		break;
1060 	case e1000_fc_full:
1061 		/* Flow control (both Rx and Tx) is enabled by a software
1062 		 * over-ride.
1063 		 */
1064 		mii_autoneg_adv_reg |=
1065 		    (ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP);
1066 		break;
1067 	default:
1068 		e_dbg("Flow control param set incorrectly\n");
1069 		return -E1000_ERR_CONFIG;
1070 	}
1071 
1072 	ret_val = e1e_wphy(hw, MII_ADVERTISE, mii_autoneg_adv_reg);
1073 	if (ret_val)
1074 		return ret_val;
1075 
1076 	e_dbg("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
1077 
1078 	if (phy->autoneg_mask & ADVERTISE_1000_FULL)
1079 		ret_val = e1e_wphy(hw, MII_CTRL1000, mii_1000t_ctrl_reg);
1080 
1081 	return ret_val;
1082 }
1083 
1084 /**
1085  *  e1000_copper_link_autoneg - Setup/Enable autoneg for copper link
1086  *  @hw: pointer to the HW structure
1087  *
1088  *  Performs initial bounds checking on autoneg advertisement parameter, then
1089  *  configure to advertise the full capability.  Setup the PHY to autoneg
1090  *  and restart the negotiation process between the link partner.  If
1091  *  autoneg_wait_to_complete, then wait for autoneg to complete before exiting.
1092  **/
1093 static s32 e1000_copper_link_autoneg(struct e1000_hw *hw)
1094 {
1095 	struct e1000_phy_info *phy = &hw->phy;
1096 	s32 ret_val;
1097 	u16 phy_ctrl;
1098 
1099 	/* Perform some bounds checking on the autoneg advertisement
1100 	 * parameter.
1101 	 */
1102 	phy->autoneg_advertised &= phy->autoneg_mask;
1103 
1104 	/* If autoneg_advertised is zero, we assume it was not defaulted
1105 	 * by the calling code so we set to advertise full capability.
1106 	 */
1107 	if (!phy->autoneg_advertised)
1108 		phy->autoneg_advertised = phy->autoneg_mask;
1109 
1110 	e_dbg("Reconfiguring auto-neg advertisement params\n");
1111 	ret_val = e1000_phy_setup_autoneg(hw);
1112 	if (ret_val) {
1113 		e_dbg("Error Setting up Auto-Negotiation\n");
1114 		return ret_val;
1115 	}
1116 	e_dbg("Restarting Auto-Neg\n");
1117 
1118 	/* Restart auto-negotiation by setting the Auto Neg Enable bit and
1119 	 * the Auto Neg Restart bit in the PHY control register.
1120 	 */
1121 	ret_val = e1e_rphy(hw, MII_BMCR, &phy_ctrl);
1122 	if (ret_val)
1123 		return ret_val;
1124 
1125 	phy_ctrl |= (BMCR_ANENABLE | BMCR_ANRESTART);
1126 	ret_val = e1e_wphy(hw, MII_BMCR, phy_ctrl);
1127 	if (ret_val)
1128 		return ret_val;
1129 
1130 	/* Does the user want to wait for Auto-Neg to complete here, or
1131 	 * check at a later time (for example, callback routine).
1132 	 */
1133 	if (phy->autoneg_wait_to_complete) {
1134 		ret_val = e1000_wait_autoneg(hw);
1135 		if (ret_val) {
1136 			e_dbg("Error while waiting for autoneg to complete\n");
1137 			return ret_val;
1138 		}
1139 	}
1140 
1141 	hw->mac.get_link_status = true;
1142 
1143 	return ret_val;
1144 }
1145 
1146 /**
1147  *  e1000e_setup_copper_link - Configure copper link settings
1148  *  @hw: pointer to the HW structure
1149  *
1150  *  Calls the appropriate function to configure the link for auto-neg or forced
1151  *  speed and duplex.  Then we check for link, once link is established calls
1152  *  to configure collision distance and flow control are called.  If link is
1153  *  not established, we return -E1000_ERR_PHY (-2).
1154  **/
1155 s32 e1000e_setup_copper_link(struct e1000_hw *hw)
1156 {
1157 	s32 ret_val;
1158 	bool link;
1159 
1160 	if (hw->mac.autoneg) {
1161 		/* Setup autoneg and flow control advertisement and perform
1162 		 * autonegotiation.
1163 		 */
1164 		ret_val = e1000_copper_link_autoneg(hw);
1165 		if (ret_val)
1166 			return ret_val;
1167 	} else {
1168 		/* PHY will be set to 10H, 10F, 100H or 100F
1169 		 * depending on user settings.
1170 		 */
1171 		e_dbg("Forcing Speed and Duplex\n");
1172 		ret_val = hw->phy.ops.force_speed_duplex(hw);
1173 		if (ret_val) {
1174 			e_dbg("Error Forcing Speed and Duplex\n");
1175 			return ret_val;
1176 		}
1177 	}
1178 
1179 	/* Check link status. Wait up to 100 microseconds for link to become
1180 	 * valid.
1181 	 */
1182 	ret_val = e1000e_phy_has_link_generic(hw, COPPER_LINK_UP_LIMIT, 10,
1183 					      &link);
1184 	if (ret_val)
1185 		return ret_val;
1186 
1187 	if (link) {
1188 		e_dbg("Valid link established!!!\n");
1189 		hw->mac.ops.config_collision_dist(hw);
1190 		ret_val = e1000e_config_fc_after_link_up(hw);
1191 	} else {
1192 		e_dbg("Unable to establish link!!!\n");
1193 	}
1194 
1195 	return ret_val;
1196 }
1197 
1198 /**
1199  *  e1000e_phy_force_speed_duplex_igp - Force speed/duplex for igp PHY
1200  *  @hw: pointer to the HW structure
1201  *
1202  *  Calls the PHY setup function to force speed and duplex.  Clears the
1203  *  auto-crossover to force MDI manually.  Waits for link and returns
1204  *  successful if link up is successful, else -E1000_ERR_PHY (-2).
1205  **/
1206 s32 e1000e_phy_force_speed_duplex_igp(struct e1000_hw *hw)
1207 {
1208 	struct e1000_phy_info *phy = &hw->phy;
1209 	s32 ret_val;
1210 	u16 phy_data;
1211 	bool link;
1212 
1213 	ret_val = e1e_rphy(hw, MII_BMCR, &phy_data);
1214 	if (ret_val)
1215 		return ret_val;
1216 
1217 	e1000e_phy_force_speed_duplex_setup(hw, &phy_data);
1218 
1219 	ret_val = e1e_wphy(hw, MII_BMCR, phy_data);
1220 	if (ret_val)
1221 		return ret_val;
1222 
1223 	/* Clear Auto-Crossover to force MDI manually.  IGP requires MDI
1224 	 * forced whenever speed and duplex are forced.
1225 	 */
1226 	ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
1227 	if (ret_val)
1228 		return ret_val;
1229 
1230 	phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
1231 	phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
1232 
1233 	ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
1234 	if (ret_val)
1235 		return ret_val;
1236 
1237 	e_dbg("IGP PSCR: %X\n", phy_data);
1238 
1239 	udelay(1);
1240 
1241 	if (phy->autoneg_wait_to_complete) {
1242 		e_dbg("Waiting for forced speed/duplex link on IGP phy.\n");
1243 
1244 		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
1245 						      100000, &link);
1246 		if (ret_val)
1247 			return ret_val;
1248 
1249 		if (!link)
1250 			e_dbg("Link taking longer than expected.\n");
1251 
1252 		/* Try once more */
1253 		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
1254 						      100000, &link);
1255 	}
1256 
1257 	return ret_val;
1258 }
1259 
1260 /**
1261  *  e1000e_phy_force_speed_duplex_m88 - Force speed/duplex for m88 PHY
1262  *  @hw: pointer to the HW structure
1263  *
1264  *  Calls the PHY setup function to force speed and duplex.  Clears the
1265  *  auto-crossover to force MDI manually.  Resets the PHY to commit the
1266  *  changes.  If time expires while waiting for link up, we reset the DSP.
1267  *  After reset, TX_CLK and CRS on Tx must be set.  Return successful upon
1268  *  successful completion, else return corresponding error code.
1269  **/
1270 s32 e1000e_phy_force_speed_duplex_m88(struct e1000_hw *hw)
1271 {
1272 	struct e1000_phy_info *phy = &hw->phy;
1273 	s32 ret_val;
1274 	u16 phy_data;
1275 	bool link;
1276 
1277 	/* Clear Auto-Crossover to force MDI manually.  M88E1000 requires MDI
1278 	 * forced whenever speed and duplex are forced.
1279 	 */
1280 	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1281 	if (ret_val)
1282 		return ret_val;
1283 
1284 	phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
1285 	ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1286 	if (ret_val)
1287 		return ret_val;
1288 
1289 	e_dbg("M88E1000 PSCR: %X\n", phy_data);
1290 
1291 	ret_val = e1e_rphy(hw, MII_BMCR, &phy_data);
1292 	if (ret_val)
1293 		return ret_val;
1294 
1295 	e1000e_phy_force_speed_duplex_setup(hw, &phy_data);
1296 
1297 	ret_val = e1e_wphy(hw, MII_BMCR, phy_data);
1298 	if (ret_val)
1299 		return ret_val;
1300 
1301 	/* Reset the phy to commit changes. */
1302 	if (hw->phy.ops.commit) {
1303 		ret_val = hw->phy.ops.commit(hw);
1304 		if (ret_val)
1305 			return ret_val;
1306 	}
1307 
1308 	if (phy->autoneg_wait_to_complete) {
1309 		e_dbg("Waiting for forced speed/duplex link on M88 phy.\n");
1310 
1311 		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
1312 						      100000, &link);
1313 		if (ret_val)
1314 			return ret_val;
1315 
1316 		if (!link) {
1317 			if (hw->phy.type != e1000_phy_m88) {
1318 				e_dbg("Link taking longer than expected.\n");
1319 			} else {
1320 				/* We didn't get link.
1321 				 * Reset the DSP and cross our fingers.
1322 				 */
1323 				ret_val = e1e_wphy(hw, M88E1000_PHY_PAGE_SELECT,
1324 						   0x001d);
1325 				if (ret_val)
1326 					return ret_val;
1327 				ret_val = e1000e_phy_reset_dsp(hw);
1328 				if (ret_val)
1329 					return ret_val;
1330 			}
1331 		}
1332 
1333 		/* Try once more */
1334 		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
1335 						      100000, &link);
1336 		if (ret_val)
1337 			return ret_val;
1338 	}
1339 
1340 	if (hw->phy.type != e1000_phy_m88)
1341 		return 0;
1342 
1343 	ret_val = e1e_rphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
1344 	if (ret_val)
1345 		return ret_val;
1346 
1347 	/* Resetting the phy means we need to re-force TX_CLK in the
1348 	 * Extended PHY Specific Control Register to 25MHz clock from
1349 	 * the reset value of 2.5MHz.
1350 	 */
1351 	phy_data |= M88E1000_EPSCR_TX_CLK_25;
1352 	ret_val = e1e_wphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
1353 	if (ret_val)
1354 		return ret_val;
1355 
1356 	/* In addition, we must re-enable CRS on Tx for both half and full
1357 	 * duplex.
1358 	 */
1359 	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1360 	if (ret_val)
1361 		return ret_val;
1362 
1363 	phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
1364 	ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1365 
1366 	return ret_val;
1367 }
1368 
1369 /**
1370  *  e1000_phy_force_speed_duplex_ife - Force PHY speed & duplex
1371  *  @hw: pointer to the HW structure
1372  *
1373  *  Forces the speed and duplex settings of the PHY.
1374  *  This is a function pointer entry point only called by
1375  *  PHY setup routines.
1376  **/
1377 s32 e1000_phy_force_speed_duplex_ife(struct e1000_hw *hw)
1378 {
1379 	struct e1000_phy_info *phy = &hw->phy;
1380 	s32 ret_val;
1381 	u16 data;
1382 	bool link;
1383 
1384 	ret_val = e1e_rphy(hw, MII_BMCR, &data);
1385 	if (ret_val)
1386 		return ret_val;
1387 
1388 	e1000e_phy_force_speed_duplex_setup(hw, &data);
1389 
1390 	ret_val = e1e_wphy(hw, MII_BMCR, data);
1391 	if (ret_val)
1392 		return ret_val;
1393 
1394 	/* Disable MDI-X support for 10/100 */
1395 	ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &data);
1396 	if (ret_val)
1397 		return ret_val;
1398 
1399 	data &= ~IFE_PMC_AUTO_MDIX;
1400 	data &= ~IFE_PMC_FORCE_MDIX;
1401 
1402 	ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, data);
1403 	if (ret_val)
1404 		return ret_val;
1405 
1406 	e_dbg("IFE PMC: %X\n", data);
1407 
1408 	udelay(1);
1409 
1410 	if (phy->autoneg_wait_to_complete) {
1411 		e_dbg("Waiting for forced speed/duplex link on IFE phy.\n");
1412 
1413 		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
1414 						      100000, &link);
1415 		if (ret_val)
1416 			return ret_val;
1417 
1418 		if (!link)
1419 			e_dbg("Link taking longer than expected.\n");
1420 
1421 		/* Try once more */
1422 		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
1423 						      100000, &link);
1424 		if (ret_val)
1425 			return ret_val;
1426 	}
1427 
1428 	return 0;
1429 }
1430 
1431 /**
1432  *  e1000e_phy_force_speed_duplex_setup - Configure forced PHY speed/duplex
1433  *  @hw: pointer to the HW structure
1434  *  @phy_ctrl: pointer to current value of MII_BMCR
1435  *
1436  *  Forces speed and duplex on the PHY by doing the following: disable flow
1437  *  control, force speed/duplex on the MAC, disable auto speed detection,
1438  *  disable auto-negotiation, configure duplex, configure speed, configure
1439  *  the collision distance, write configuration to CTRL register.  The
1440  *  caller must write to the MII_BMCR register for these settings to
1441  *  take affect.
1442  **/
1443 void e1000e_phy_force_speed_duplex_setup(struct e1000_hw *hw, u16 *phy_ctrl)
1444 {
1445 	struct e1000_mac_info *mac = &hw->mac;
1446 	u32 ctrl;
1447 
1448 	/* Turn off flow control when forcing speed/duplex */
1449 	hw->fc.current_mode = e1000_fc_none;
1450 
1451 	/* Force speed/duplex on the mac */
1452 	ctrl = er32(CTRL);
1453 	ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1454 	ctrl &= ~E1000_CTRL_SPD_SEL;
1455 
1456 	/* Disable Auto Speed Detection */
1457 	ctrl &= ~E1000_CTRL_ASDE;
1458 
1459 	/* Disable autoneg on the phy */
1460 	*phy_ctrl &= ~BMCR_ANENABLE;
1461 
1462 	/* Forcing Full or Half Duplex? */
1463 	if (mac->forced_speed_duplex & E1000_ALL_HALF_DUPLEX) {
1464 		ctrl &= ~E1000_CTRL_FD;
1465 		*phy_ctrl &= ~BMCR_FULLDPLX;
1466 		e_dbg("Half Duplex\n");
1467 	} else {
1468 		ctrl |= E1000_CTRL_FD;
1469 		*phy_ctrl |= BMCR_FULLDPLX;
1470 		e_dbg("Full Duplex\n");
1471 	}
1472 
1473 	/* Forcing 10mb or 100mb? */
1474 	if (mac->forced_speed_duplex & E1000_ALL_100_SPEED) {
1475 		ctrl |= E1000_CTRL_SPD_100;
1476 		*phy_ctrl |= BMCR_SPEED100;
1477 		*phy_ctrl &= ~BMCR_SPEED1000;
1478 		e_dbg("Forcing 100mb\n");
1479 	} else {
1480 		ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
1481 		*phy_ctrl &= ~(BMCR_SPEED1000 | BMCR_SPEED100);
1482 		e_dbg("Forcing 10mb\n");
1483 	}
1484 
1485 	hw->mac.ops.config_collision_dist(hw);
1486 
1487 	ew32(CTRL, ctrl);
1488 }
1489 
1490 /**
1491  *  e1000e_set_d3_lplu_state - Sets low power link up state for D3
1492  *  @hw: pointer to the HW structure
1493  *  @active: boolean used to enable/disable lplu
1494  *
1495  *  Success returns 0, Failure returns 1
1496  *
1497  *  The low power link up (lplu) state is set to the power management level D3
1498  *  and SmartSpeed is disabled when active is true, else clear lplu for D3
1499  *  and enable Smartspeed.  LPLU and Smartspeed are mutually exclusive.  LPLU
1500  *  is used during Dx states where the power conservation is most important.
1501  *  During driver activity, SmartSpeed should be enabled so performance is
1502  *  maintained.
1503  **/
1504 s32 e1000e_set_d3_lplu_state(struct e1000_hw *hw, bool active)
1505 {
1506 	struct e1000_phy_info *phy = &hw->phy;
1507 	s32 ret_val;
1508 	u16 data;
1509 
1510 	ret_val = e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &data);
1511 	if (ret_val)
1512 		return ret_val;
1513 
1514 	if (!active) {
1515 		data &= ~IGP02E1000_PM_D3_LPLU;
1516 		ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
1517 		if (ret_val)
1518 			return ret_val;
1519 		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
1520 		 * during Dx states where the power conservation is most
1521 		 * important.  During driver activity we should enable
1522 		 * SmartSpeed, so performance is maintained.
1523 		 */
1524 		if (phy->smart_speed == e1000_smart_speed_on) {
1525 			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1526 					   &data);
1527 			if (ret_val)
1528 				return ret_val;
1529 
1530 			data |= IGP01E1000_PSCFR_SMART_SPEED;
1531 			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1532 					   data);
1533 			if (ret_val)
1534 				return ret_val;
1535 		} else if (phy->smart_speed == e1000_smart_speed_off) {
1536 			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1537 					   &data);
1538 			if (ret_val)
1539 				return ret_val;
1540 
1541 			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1542 			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1543 					   data);
1544 			if (ret_val)
1545 				return ret_val;
1546 		}
1547 	} else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
1548 		   (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
1549 		   (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
1550 		data |= IGP02E1000_PM_D3_LPLU;
1551 		ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
1552 		if (ret_val)
1553 			return ret_val;
1554 
1555 		/* When LPLU is enabled, we should disable SmartSpeed */
1556 		ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
1557 		if (ret_val)
1558 			return ret_val;
1559 
1560 		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1561 		ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
1562 	}
1563 
1564 	return ret_val;
1565 }
1566 
1567 /**
1568  *  e1000e_check_downshift - Checks whether a downshift in speed occurred
1569  *  @hw: pointer to the HW structure
1570  *
1571  *  Success returns 0, Failure returns 1
1572  *
1573  *  A downshift is detected by querying the PHY link health.
1574  **/
1575 s32 e1000e_check_downshift(struct e1000_hw *hw)
1576 {
1577 	struct e1000_phy_info *phy = &hw->phy;
1578 	s32 ret_val;
1579 	u16 phy_data, offset, mask;
1580 
1581 	switch (phy->type) {
1582 	case e1000_phy_m88:
1583 	case e1000_phy_gg82563:
1584 	case e1000_phy_bm:
1585 	case e1000_phy_82578:
1586 		offset = M88E1000_PHY_SPEC_STATUS;
1587 		mask = M88E1000_PSSR_DOWNSHIFT;
1588 		break;
1589 	case e1000_phy_igp_2:
1590 	case e1000_phy_igp_3:
1591 		offset = IGP01E1000_PHY_LINK_HEALTH;
1592 		mask = IGP01E1000_PLHR_SS_DOWNGRADE;
1593 		break;
1594 	default:
1595 		/* speed downshift not supported */
1596 		phy->speed_downgraded = false;
1597 		return 0;
1598 	}
1599 
1600 	ret_val = e1e_rphy(hw, offset, &phy_data);
1601 
1602 	if (!ret_val)
1603 		phy->speed_downgraded = !!(phy_data & mask);
1604 
1605 	return ret_val;
1606 }
1607 
1608 /**
1609  *  e1000_check_polarity_m88 - Checks the polarity.
1610  *  @hw: pointer to the HW structure
1611  *
1612  *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
1613  *
1614  *  Polarity is determined based on the PHY specific status register.
1615  **/
1616 s32 e1000_check_polarity_m88(struct e1000_hw *hw)
1617 {
1618 	struct e1000_phy_info *phy = &hw->phy;
1619 	s32 ret_val;
1620 	u16 data;
1621 
1622 	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &data);
1623 
1624 	if (!ret_val)
1625 		phy->cable_polarity = ((data & M88E1000_PSSR_REV_POLARITY)
1626 				       ? e1000_rev_polarity_reversed
1627 				       : e1000_rev_polarity_normal);
1628 
1629 	return ret_val;
1630 }
1631 
1632 /**
1633  *  e1000_check_polarity_igp - Checks the polarity.
1634  *  @hw: pointer to the HW structure
1635  *
1636  *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
1637  *
1638  *  Polarity is determined based on the PHY port status register, and the
1639  *  current speed (since there is no polarity at 100Mbps).
1640  **/
1641 s32 e1000_check_polarity_igp(struct e1000_hw *hw)
1642 {
1643 	struct e1000_phy_info *phy = &hw->phy;
1644 	s32 ret_val;
1645 	u16 data, offset, mask;
1646 
1647 	/* Polarity is determined based on the speed of
1648 	 * our connection.
1649 	 */
1650 	ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_STATUS, &data);
1651 	if (ret_val)
1652 		return ret_val;
1653 
1654 	if ((data & IGP01E1000_PSSR_SPEED_MASK) ==
1655 	    IGP01E1000_PSSR_SPEED_1000MBPS) {
1656 		offset = IGP01E1000_PHY_PCS_INIT_REG;
1657 		mask = IGP01E1000_PHY_POLARITY_MASK;
1658 	} else {
1659 		/* This really only applies to 10Mbps since
1660 		 * there is no polarity for 100Mbps (always 0).
1661 		 */
1662 		offset = IGP01E1000_PHY_PORT_STATUS;
1663 		mask = IGP01E1000_PSSR_POLARITY_REVERSED;
1664 	}
1665 
1666 	ret_val = e1e_rphy(hw, offset, &data);
1667 
1668 	if (!ret_val)
1669 		phy->cable_polarity = ((data & mask)
1670 				       ? e1000_rev_polarity_reversed
1671 				       : e1000_rev_polarity_normal);
1672 
1673 	return ret_val;
1674 }
1675 
1676 /**
1677  *  e1000_check_polarity_ife - Check cable polarity for IFE PHY
1678  *  @hw: pointer to the HW structure
1679  *
1680  *  Polarity is determined on the polarity reversal feature being enabled.
1681  **/
1682 s32 e1000_check_polarity_ife(struct e1000_hw *hw)
1683 {
1684 	struct e1000_phy_info *phy = &hw->phy;
1685 	s32 ret_val;
1686 	u16 phy_data, offset, mask;
1687 
1688 	/* Polarity is determined based on the reversal feature being enabled.
1689 	 */
1690 	if (phy->polarity_correction) {
1691 		offset = IFE_PHY_EXTENDED_STATUS_CONTROL;
1692 		mask = IFE_PESC_POLARITY_REVERSED;
1693 	} else {
1694 		offset = IFE_PHY_SPECIAL_CONTROL;
1695 		mask = IFE_PSC_FORCE_POLARITY;
1696 	}
1697 
1698 	ret_val = e1e_rphy(hw, offset, &phy_data);
1699 
1700 	if (!ret_val)
1701 		phy->cable_polarity = ((phy_data & mask)
1702 				       ? e1000_rev_polarity_reversed
1703 				       : e1000_rev_polarity_normal);
1704 
1705 	return ret_val;
1706 }
1707 
1708 /**
1709  *  e1000_wait_autoneg - Wait for auto-neg completion
1710  *  @hw: pointer to the HW structure
1711  *
1712  *  Waits for auto-negotiation to complete or for the auto-negotiation time
1713  *  limit to expire, which ever happens first.
1714  **/
1715 static s32 e1000_wait_autoneg(struct e1000_hw *hw)
1716 {
1717 	s32 ret_val = 0;
1718 	u16 i, phy_status;
1719 
1720 	/* Break after autoneg completes or PHY_AUTO_NEG_LIMIT expires. */
1721 	for (i = PHY_AUTO_NEG_LIMIT; i > 0; i--) {
1722 		ret_val = e1e_rphy(hw, MII_BMSR, &phy_status);
1723 		if (ret_val)
1724 			break;
1725 		ret_val = e1e_rphy(hw, MII_BMSR, &phy_status);
1726 		if (ret_val)
1727 			break;
1728 		if (phy_status & BMSR_ANEGCOMPLETE)
1729 			break;
1730 		msleep(100);
1731 	}
1732 
1733 	/* PHY_AUTO_NEG_TIME expiration doesn't guarantee auto-negotiation
1734 	 * has completed.
1735 	 */
1736 	return ret_val;
1737 }
1738 
1739 /**
1740  *  e1000e_phy_has_link_generic - Polls PHY for link
1741  *  @hw: pointer to the HW structure
1742  *  @iterations: number of times to poll for link
1743  *  @usec_interval: delay between polling attempts
1744  *  @success: pointer to whether polling was successful or not
1745  *
1746  *  Polls the PHY status register for link, 'iterations' number of times.
1747  **/
1748 s32 e1000e_phy_has_link_generic(struct e1000_hw *hw, u32 iterations,
1749 				u32 usec_interval, bool *success)
1750 {
1751 	s32 ret_val = 0;
1752 	u16 i, phy_status;
1753 
1754 	for (i = 0; i < iterations; i++) {
1755 		/* Some PHYs require the MII_BMSR register to be read
1756 		 * twice due to the link bit being sticky.  No harm doing
1757 		 * it across the board.
1758 		 */
1759 		ret_val = e1e_rphy(hw, MII_BMSR, &phy_status);
1760 		if (ret_val)
1761 			/* If the first read fails, another entity may have
1762 			 * ownership of the resources, wait and try again to
1763 			 * see if they have relinquished the resources yet.
1764 			 */
1765 			udelay(usec_interval);
1766 		ret_val = e1e_rphy(hw, MII_BMSR, &phy_status);
1767 		if (ret_val)
1768 			break;
1769 		if (phy_status & BMSR_LSTATUS)
1770 			break;
1771 		if (usec_interval >= 1000)
1772 			mdelay(usec_interval / 1000);
1773 		else
1774 			udelay(usec_interval);
1775 	}
1776 
1777 	*success = (i < iterations);
1778 
1779 	return ret_val;
1780 }
1781 
1782 /**
1783  *  e1000e_get_cable_length_m88 - Determine cable length for m88 PHY
1784  *  @hw: pointer to the HW structure
1785  *
1786  *  Reads the PHY specific status register to retrieve the cable length
1787  *  information.  The cable length is determined by averaging the minimum and
1788  *  maximum values to get the "average" cable length.  The m88 PHY has four
1789  *  possible cable length values, which are:
1790  *	Register Value		Cable Length
1791  *	0			< 50 meters
1792  *	1			50 - 80 meters
1793  *	2			80 - 110 meters
1794  *	3			110 - 140 meters
1795  *	4			> 140 meters
1796  **/
1797 s32 e1000e_get_cable_length_m88(struct e1000_hw *hw)
1798 {
1799 	struct e1000_phy_info *phy = &hw->phy;
1800 	s32 ret_val;
1801 	u16 phy_data, index;
1802 
1803 	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
1804 	if (ret_val)
1805 		return ret_val;
1806 
1807 	index = ((phy_data & M88E1000_PSSR_CABLE_LENGTH) >>
1808 		 M88E1000_PSSR_CABLE_LENGTH_SHIFT);
1809 
1810 	if (index >= M88E1000_CABLE_LENGTH_TABLE_SIZE - 1)
1811 		return -E1000_ERR_PHY;
1812 
1813 	phy->min_cable_length = e1000_m88_cable_length_table[index];
1814 	phy->max_cable_length = e1000_m88_cable_length_table[index + 1];
1815 
1816 	phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
1817 
1818 	return 0;
1819 }
1820 
1821 /**
1822  *  e1000e_get_cable_length_igp_2 - Determine cable length for igp2 PHY
1823  *  @hw: pointer to the HW structure
1824  *
1825  *  The automatic gain control (agc) normalizes the amplitude of the
1826  *  received signal, adjusting for the attenuation produced by the
1827  *  cable.  By reading the AGC registers, which represent the
1828  *  combination of coarse and fine gain value, the value can be put
1829  *  into a lookup table to obtain the approximate cable length
1830  *  for each channel.
1831  **/
1832 s32 e1000e_get_cable_length_igp_2(struct e1000_hw *hw)
1833 {
1834 	struct e1000_phy_info *phy = &hw->phy;
1835 	s32 ret_val;
1836 	u16 phy_data, i, agc_value = 0;
1837 	u16 cur_agc_index, max_agc_index = 0;
1838 	u16 min_agc_index = IGP02E1000_CABLE_LENGTH_TABLE_SIZE - 1;
1839 	static const u16 agc_reg_array[IGP02E1000_PHY_CHANNEL_NUM] = {
1840 		IGP02E1000_PHY_AGC_A,
1841 		IGP02E1000_PHY_AGC_B,
1842 		IGP02E1000_PHY_AGC_C,
1843 		IGP02E1000_PHY_AGC_D
1844 	};
1845 
1846 	/* Read the AGC registers for all channels */
1847 	for (i = 0; i < IGP02E1000_PHY_CHANNEL_NUM; i++) {
1848 		ret_val = e1e_rphy(hw, agc_reg_array[i], &phy_data);
1849 		if (ret_val)
1850 			return ret_val;
1851 
1852 		/* Getting bits 15:9, which represent the combination of
1853 		 * coarse and fine gain values.  The result is a number
1854 		 * that can be put into the lookup table to obtain the
1855 		 * approximate cable length.
1856 		 */
1857 		cur_agc_index = ((phy_data >> IGP02E1000_AGC_LENGTH_SHIFT) &
1858 				 IGP02E1000_AGC_LENGTH_MASK);
1859 
1860 		/* Array index bound check. */
1861 		if ((cur_agc_index >= IGP02E1000_CABLE_LENGTH_TABLE_SIZE) ||
1862 		    (cur_agc_index == 0))
1863 			return -E1000_ERR_PHY;
1864 
1865 		/* Remove min & max AGC values from calculation. */
1866 		if (e1000_igp_2_cable_length_table[min_agc_index] >
1867 		    e1000_igp_2_cable_length_table[cur_agc_index])
1868 			min_agc_index = cur_agc_index;
1869 		if (e1000_igp_2_cable_length_table[max_agc_index] <
1870 		    e1000_igp_2_cable_length_table[cur_agc_index])
1871 			max_agc_index = cur_agc_index;
1872 
1873 		agc_value += e1000_igp_2_cable_length_table[cur_agc_index];
1874 	}
1875 
1876 	agc_value -= (e1000_igp_2_cable_length_table[min_agc_index] +
1877 		      e1000_igp_2_cable_length_table[max_agc_index]);
1878 	agc_value /= (IGP02E1000_PHY_CHANNEL_NUM - 2);
1879 
1880 	/* Calculate cable length with the error range of +/- 10 meters. */
1881 	phy->min_cable_length = (((agc_value - IGP02E1000_AGC_RANGE) > 0) ?
1882 				 (agc_value - IGP02E1000_AGC_RANGE) : 0);
1883 	phy->max_cable_length = agc_value + IGP02E1000_AGC_RANGE;
1884 
1885 	phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
1886 
1887 	return 0;
1888 }
1889 
1890 /**
1891  *  e1000e_get_phy_info_m88 - Retrieve PHY information
1892  *  @hw: pointer to the HW structure
1893  *
1894  *  Valid for only copper links.  Read the PHY status register (sticky read)
1895  *  to verify that link is up.  Read the PHY special control register to
1896  *  determine the polarity and 10base-T extended distance.  Read the PHY
1897  *  special status register to determine MDI/MDIx and current speed.  If
1898  *  speed is 1000, then determine cable length, local and remote receiver.
1899  **/
1900 s32 e1000e_get_phy_info_m88(struct e1000_hw *hw)
1901 {
1902 	struct e1000_phy_info *phy = &hw->phy;
1903 	s32 ret_val;
1904 	u16 phy_data;
1905 	bool link;
1906 
1907 	if (phy->media_type != e1000_media_type_copper) {
1908 		e_dbg("Phy info is only valid for copper media\n");
1909 		return -E1000_ERR_CONFIG;
1910 	}
1911 
1912 	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
1913 	if (ret_val)
1914 		return ret_val;
1915 
1916 	if (!link) {
1917 		e_dbg("Phy info is only valid if link is up\n");
1918 		return -E1000_ERR_CONFIG;
1919 	}
1920 
1921 	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1922 	if (ret_val)
1923 		return ret_val;
1924 
1925 	phy->polarity_correction = !!(phy_data &
1926 				      M88E1000_PSCR_POLARITY_REVERSAL);
1927 
1928 	ret_val = e1000_check_polarity_m88(hw);
1929 	if (ret_val)
1930 		return ret_val;
1931 
1932 	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
1933 	if (ret_val)
1934 		return ret_val;
1935 
1936 	phy->is_mdix = !!(phy_data & M88E1000_PSSR_MDIX);
1937 
1938 	if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) {
1939 		ret_val = hw->phy.ops.get_cable_length(hw);
1940 		if (ret_val)
1941 			return ret_val;
1942 
1943 		ret_val = e1e_rphy(hw, MII_STAT1000, &phy_data);
1944 		if (ret_val)
1945 			return ret_val;
1946 
1947 		phy->local_rx = (phy_data & LPA_1000LOCALRXOK)
1948 		    ? e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
1949 
1950 		phy->remote_rx = (phy_data & LPA_1000REMRXOK)
1951 		    ? e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
1952 	} else {
1953 		/* Set values to "undefined" */
1954 		phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
1955 		phy->local_rx = e1000_1000t_rx_status_undefined;
1956 		phy->remote_rx = e1000_1000t_rx_status_undefined;
1957 	}
1958 
1959 	return ret_val;
1960 }
1961 
1962 /**
1963  *  e1000e_get_phy_info_igp - Retrieve igp PHY information
1964  *  @hw: pointer to the HW structure
1965  *
1966  *  Read PHY status to determine if link is up.  If link is up, then
1967  *  set/determine 10base-T extended distance and polarity correction.  Read
1968  *  PHY port status to determine MDI/MDIx and speed.  Based on the speed,
1969  *  determine on the cable length, local and remote receiver.
1970  **/
1971 s32 e1000e_get_phy_info_igp(struct e1000_hw *hw)
1972 {
1973 	struct e1000_phy_info *phy = &hw->phy;
1974 	s32 ret_val;
1975 	u16 data;
1976 	bool link;
1977 
1978 	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
1979 	if (ret_val)
1980 		return ret_val;
1981 
1982 	if (!link) {
1983 		e_dbg("Phy info is only valid if link is up\n");
1984 		return -E1000_ERR_CONFIG;
1985 	}
1986 
1987 	phy->polarity_correction = true;
1988 
1989 	ret_val = e1000_check_polarity_igp(hw);
1990 	if (ret_val)
1991 		return ret_val;
1992 
1993 	ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_STATUS, &data);
1994 	if (ret_val)
1995 		return ret_val;
1996 
1997 	phy->is_mdix = !!(data & IGP01E1000_PSSR_MDIX);
1998 
1999 	if ((data & IGP01E1000_PSSR_SPEED_MASK) ==
2000 	    IGP01E1000_PSSR_SPEED_1000MBPS) {
2001 		ret_val = phy->ops.get_cable_length(hw);
2002 		if (ret_val)
2003 			return ret_val;
2004 
2005 		ret_val = e1e_rphy(hw, MII_STAT1000, &data);
2006 		if (ret_val)
2007 			return ret_val;
2008 
2009 		phy->local_rx = (data & LPA_1000LOCALRXOK)
2010 		    ? e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
2011 
2012 		phy->remote_rx = (data & LPA_1000REMRXOK)
2013 		    ? e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
2014 	} else {
2015 		phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
2016 		phy->local_rx = e1000_1000t_rx_status_undefined;
2017 		phy->remote_rx = e1000_1000t_rx_status_undefined;
2018 	}
2019 
2020 	return ret_val;
2021 }
2022 
2023 /**
2024  *  e1000_get_phy_info_ife - Retrieves various IFE PHY states
2025  *  @hw: pointer to the HW structure
2026  *
2027  *  Populates "phy" structure with various feature states.
2028  **/
2029 s32 e1000_get_phy_info_ife(struct e1000_hw *hw)
2030 {
2031 	struct e1000_phy_info *phy = &hw->phy;
2032 	s32 ret_val;
2033 	u16 data;
2034 	bool link;
2035 
2036 	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
2037 	if (ret_val)
2038 		return ret_val;
2039 
2040 	if (!link) {
2041 		e_dbg("Phy info is only valid if link is up\n");
2042 		return -E1000_ERR_CONFIG;
2043 	}
2044 
2045 	ret_val = e1e_rphy(hw, IFE_PHY_SPECIAL_CONTROL, &data);
2046 	if (ret_val)
2047 		return ret_val;
2048 	phy->polarity_correction = !(data & IFE_PSC_AUTO_POLARITY_DISABLE);
2049 
2050 	if (phy->polarity_correction) {
2051 		ret_val = e1000_check_polarity_ife(hw);
2052 		if (ret_val)
2053 			return ret_val;
2054 	} else {
2055 		/* Polarity is forced */
2056 		phy->cable_polarity = ((data & IFE_PSC_FORCE_POLARITY)
2057 				       ? e1000_rev_polarity_reversed
2058 				       : e1000_rev_polarity_normal);
2059 	}
2060 
2061 	ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &data);
2062 	if (ret_val)
2063 		return ret_val;
2064 
2065 	phy->is_mdix = !!(data & IFE_PMC_MDIX_STATUS);
2066 
2067 	/* The following parameters are undefined for 10/100 operation. */
2068 	phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
2069 	phy->local_rx = e1000_1000t_rx_status_undefined;
2070 	phy->remote_rx = e1000_1000t_rx_status_undefined;
2071 
2072 	return 0;
2073 }
2074 
2075 /**
2076  *  e1000e_phy_sw_reset - PHY software reset
2077  *  @hw: pointer to the HW structure
2078  *
2079  *  Does a software reset of the PHY by reading the PHY control register and
2080  *  setting/write the control register reset bit to the PHY.
2081  **/
2082 s32 e1000e_phy_sw_reset(struct e1000_hw *hw)
2083 {
2084 	s32 ret_val;
2085 	u16 phy_ctrl;
2086 
2087 	ret_val = e1e_rphy(hw, MII_BMCR, &phy_ctrl);
2088 	if (ret_val)
2089 		return ret_val;
2090 
2091 	phy_ctrl |= BMCR_RESET;
2092 	ret_val = e1e_wphy(hw, MII_BMCR, phy_ctrl);
2093 	if (ret_val)
2094 		return ret_val;
2095 
2096 	udelay(1);
2097 
2098 	return ret_val;
2099 }
2100 
2101 /**
2102  *  e1000e_phy_hw_reset_generic - PHY hardware reset
2103  *  @hw: pointer to the HW structure
2104  *
2105  *  Verify the reset block is not blocking us from resetting.  Acquire
2106  *  semaphore (if necessary) and read/set/write the device control reset
2107  *  bit in the PHY.  Wait the appropriate delay time for the device to
2108  *  reset and release the semaphore (if necessary).
2109  **/
2110 s32 e1000e_phy_hw_reset_generic(struct e1000_hw *hw)
2111 {
2112 	struct e1000_phy_info *phy = &hw->phy;
2113 	s32 ret_val;
2114 	u32 ctrl;
2115 
2116 	if (phy->ops.check_reset_block) {
2117 		ret_val = phy->ops.check_reset_block(hw);
2118 		if (ret_val)
2119 			return 0;
2120 	}
2121 
2122 	ret_val = phy->ops.acquire(hw);
2123 	if (ret_val)
2124 		return ret_val;
2125 
2126 	ctrl = er32(CTRL);
2127 	ew32(CTRL, ctrl | E1000_CTRL_PHY_RST);
2128 	e1e_flush();
2129 
2130 	udelay(phy->reset_delay_us);
2131 
2132 	ew32(CTRL, ctrl);
2133 	e1e_flush();
2134 
2135 	usleep_range(150, 300);
2136 
2137 	phy->ops.release(hw);
2138 
2139 	return phy->ops.get_cfg_done(hw);
2140 }
2141 
2142 /**
2143  *  e1000e_get_cfg_done_generic - Generic configuration done
2144  *  @hw: pointer to the HW structure
2145  *
2146  *  Generic function to wait 10 milli-seconds for configuration to complete
2147  *  and return success.
2148  **/
2149 s32 e1000e_get_cfg_done_generic(struct e1000_hw __always_unused *hw)
2150 {
2151 	mdelay(10);
2152 
2153 	return 0;
2154 }
2155 
2156 /**
2157  *  e1000e_phy_init_script_igp3 - Inits the IGP3 PHY
2158  *  @hw: pointer to the HW structure
2159  *
2160  *  Initializes a Intel Gigabit PHY3 when an EEPROM is not present.
2161  **/
2162 s32 e1000e_phy_init_script_igp3(struct e1000_hw *hw)
2163 {
2164 	e_dbg("Running IGP 3 PHY init script\n");
2165 
2166 	/* PHY init IGP 3 */
2167 	/* Enable rise/fall, 10-mode work in class-A */
2168 	e1e_wphy(hw, 0x2F5B, 0x9018);
2169 	/* Remove all caps from Replica path filter */
2170 	e1e_wphy(hw, 0x2F52, 0x0000);
2171 	/* Bias trimming for ADC, AFE and Driver (Default) */
2172 	e1e_wphy(hw, 0x2FB1, 0x8B24);
2173 	/* Increase Hybrid poly bias */
2174 	e1e_wphy(hw, 0x2FB2, 0xF8F0);
2175 	/* Add 4% to Tx amplitude in Gig mode */
2176 	e1e_wphy(hw, 0x2010, 0x10B0);
2177 	/* Disable trimming (TTT) */
2178 	e1e_wphy(hw, 0x2011, 0x0000);
2179 	/* Poly DC correction to 94.6% + 2% for all channels */
2180 	e1e_wphy(hw, 0x20DD, 0x249A);
2181 	/* ABS DC correction to 95.9% */
2182 	e1e_wphy(hw, 0x20DE, 0x00D3);
2183 	/* BG temp curve trim */
2184 	e1e_wphy(hw, 0x28B4, 0x04CE);
2185 	/* Increasing ADC OPAMP stage 1 currents to max */
2186 	e1e_wphy(hw, 0x2F70, 0x29E4);
2187 	/* Force 1000 ( required for enabling PHY regs configuration) */
2188 	e1e_wphy(hw, 0x0000, 0x0140);
2189 	/* Set upd_freq to 6 */
2190 	e1e_wphy(hw, 0x1F30, 0x1606);
2191 	/* Disable NPDFE */
2192 	e1e_wphy(hw, 0x1F31, 0xB814);
2193 	/* Disable adaptive fixed FFE (Default) */
2194 	e1e_wphy(hw, 0x1F35, 0x002A);
2195 	/* Enable FFE hysteresis */
2196 	e1e_wphy(hw, 0x1F3E, 0x0067);
2197 	/* Fixed FFE for short cable lengths */
2198 	e1e_wphy(hw, 0x1F54, 0x0065);
2199 	/* Fixed FFE for medium cable lengths */
2200 	e1e_wphy(hw, 0x1F55, 0x002A);
2201 	/* Fixed FFE for long cable lengths */
2202 	e1e_wphy(hw, 0x1F56, 0x002A);
2203 	/* Enable Adaptive Clip Threshold */
2204 	e1e_wphy(hw, 0x1F72, 0x3FB0);
2205 	/* AHT reset limit to 1 */
2206 	e1e_wphy(hw, 0x1F76, 0xC0FF);
2207 	/* Set AHT master delay to 127 msec */
2208 	e1e_wphy(hw, 0x1F77, 0x1DEC);
2209 	/* Set scan bits for AHT */
2210 	e1e_wphy(hw, 0x1F78, 0xF9EF);
2211 	/* Set AHT Preset bits */
2212 	e1e_wphy(hw, 0x1F79, 0x0210);
2213 	/* Change integ_factor of channel A to 3 */
2214 	e1e_wphy(hw, 0x1895, 0x0003);
2215 	/* Change prop_factor of channels BCD to 8 */
2216 	e1e_wphy(hw, 0x1796, 0x0008);
2217 	/* Change cg_icount + enable integbp for channels BCD */
2218 	e1e_wphy(hw, 0x1798, 0xD008);
2219 	/* Change cg_icount + enable integbp + change prop_factor_master
2220 	 * to 8 for channel A
2221 	 */
2222 	e1e_wphy(hw, 0x1898, 0xD918);
2223 	/* Disable AHT in Slave mode on channel A */
2224 	e1e_wphy(hw, 0x187A, 0x0800);
2225 	/* Enable LPLU and disable AN to 1000 in non-D0a states,
2226 	 * Enable SPD+B2B
2227 	 */
2228 	e1e_wphy(hw, 0x0019, 0x008D);
2229 	/* Enable restart AN on an1000_dis change */
2230 	e1e_wphy(hw, 0x001B, 0x2080);
2231 	/* Enable wh_fifo read clock in 10/100 modes */
2232 	e1e_wphy(hw, 0x0014, 0x0045);
2233 	/* Restart AN, Speed selection is 1000 */
2234 	e1e_wphy(hw, 0x0000, 0x1340);
2235 
2236 	return 0;
2237 }
2238 
2239 /**
2240  *  e1000e_get_phy_type_from_id - Get PHY type from id
2241  *  @phy_id: phy_id read from the phy
2242  *
2243  *  Returns the phy type from the id.
2244  **/
2245 enum e1000_phy_type e1000e_get_phy_type_from_id(u32 phy_id)
2246 {
2247 	enum e1000_phy_type phy_type = e1000_phy_unknown;
2248 
2249 	switch (phy_id) {
2250 	case M88E1000_I_PHY_ID:
2251 	case M88E1000_E_PHY_ID:
2252 	case M88E1111_I_PHY_ID:
2253 	case M88E1011_I_PHY_ID:
2254 		phy_type = e1000_phy_m88;
2255 		break;
2256 	case IGP01E1000_I_PHY_ID:	/* IGP 1 & 2 share this */
2257 		phy_type = e1000_phy_igp_2;
2258 		break;
2259 	case GG82563_E_PHY_ID:
2260 		phy_type = e1000_phy_gg82563;
2261 		break;
2262 	case IGP03E1000_E_PHY_ID:
2263 		phy_type = e1000_phy_igp_3;
2264 		break;
2265 	case IFE_E_PHY_ID:
2266 	case IFE_PLUS_E_PHY_ID:
2267 	case IFE_C_E_PHY_ID:
2268 		phy_type = e1000_phy_ife;
2269 		break;
2270 	case BME1000_E_PHY_ID:
2271 	case BME1000_E_PHY_ID_R2:
2272 		phy_type = e1000_phy_bm;
2273 		break;
2274 	case I82578_E_PHY_ID:
2275 		phy_type = e1000_phy_82578;
2276 		break;
2277 	case I82577_E_PHY_ID:
2278 		phy_type = e1000_phy_82577;
2279 		break;
2280 	case I82579_E_PHY_ID:
2281 		phy_type = e1000_phy_82579;
2282 		break;
2283 	case I217_E_PHY_ID:
2284 		phy_type = e1000_phy_i217;
2285 		break;
2286 	default:
2287 		phy_type = e1000_phy_unknown;
2288 		break;
2289 	}
2290 	return phy_type;
2291 }
2292 
2293 /**
2294  *  e1000e_determine_phy_address - Determines PHY address.
2295  *  @hw: pointer to the HW structure
2296  *
2297  *  This uses a trial and error method to loop through possible PHY
2298  *  addresses. It tests each by reading the PHY ID registers and
2299  *  checking for a match.
2300  **/
2301 s32 e1000e_determine_phy_address(struct e1000_hw *hw)
2302 {
2303 	u32 phy_addr = 0;
2304 	u32 i;
2305 	enum e1000_phy_type phy_type = e1000_phy_unknown;
2306 
2307 	hw->phy.id = phy_type;
2308 
2309 	for (phy_addr = 0; phy_addr < E1000_MAX_PHY_ADDR; phy_addr++) {
2310 		hw->phy.addr = phy_addr;
2311 		i = 0;
2312 
2313 		do {
2314 			e1000e_get_phy_id(hw);
2315 			phy_type = e1000e_get_phy_type_from_id(hw->phy.id);
2316 
2317 			/* If phy_type is valid, break - we found our
2318 			 * PHY address
2319 			 */
2320 			if (phy_type != e1000_phy_unknown)
2321 				return 0;
2322 
2323 			usleep_range(1000, 2000);
2324 			i++;
2325 		} while (i < 10);
2326 	}
2327 
2328 	return -E1000_ERR_PHY_TYPE;
2329 }
2330 
2331 /**
2332  *  e1000_get_phy_addr_for_bm_page - Retrieve PHY page address
2333  *  @page: page to access
2334  *
2335  *  Returns the phy address for the page requested.
2336  **/
2337 static u32 e1000_get_phy_addr_for_bm_page(u32 page, u32 reg)
2338 {
2339 	u32 phy_addr = 2;
2340 
2341 	if ((page >= 768) || (page == 0 && reg == 25) || (reg == 31))
2342 		phy_addr = 1;
2343 
2344 	return phy_addr;
2345 }
2346 
2347 /**
2348  *  e1000e_write_phy_reg_bm - Write BM PHY register
2349  *  @hw: pointer to the HW structure
2350  *  @offset: register offset to write to
2351  *  @data: data to write at register offset
2352  *
2353  *  Acquires semaphore, if necessary, then writes the data to PHY register
2354  *  at the offset.  Release any acquired semaphores before exiting.
2355  **/
2356 s32 e1000e_write_phy_reg_bm(struct e1000_hw *hw, u32 offset, u16 data)
2357 {
2358 	s32 ret_val;
2359 	u32 page = offset >> IGP_PAGE_SHIFT;
2360 
2361 	ret_val = hw->phy.ops.acquire(hw);
2362 	if (ret_val)
2363 		return ret_val;
2364 
2365 	/* Page 800 works differently than the rest so it has its own func */
2366 	if (page == BM_WUC_PAGE) {
2367 		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, &data,
2368 							 false, false);
2369 		goto release;
2370 	}
2371 
2372 	hw->phy.addr = e1000_get_phy_addr_for_bm_page(page, offset);
2373 
2374 	if (offset > MAX_PHY_MULTI_PAGE_REG) {
2375 		u32 page_shift, page_select;
2376 
2377 		/* Page select is register 31 for phy address 1 and 22 for
2378 		 * phy address 2 and 3. Page select is shifted only for
2379 		 * phy address 1.
2380 		 */
2381 		if (hw->phy.addr == 1) {
2382 			page_shift = IGP_PAGE_SHIFT;
2383 			page_select = IGP01E1000_PHY_PAGE_SELECT;
2384 		} else {
2385 			page_shift = 0;
2386 			page_select = BM_PHY_PAGE_SELECT;
2387 		}
2388 
2389 		/* Page is shifted left, PHY expects (page x 32) */
2390 		ret_val = e1000e_write_phy_reg_mdic(hw, page_select,
2391 						    (page << page_shift));
2392 		if (ret_val)
2393 			goto release;
2394 	}
2395 
2396 	ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
2397 					    data);
2398 
2399 release:
2400 	hw->phy.ops.release(hw);
2401 	return ret_val;
2402 }
2403 
2404 /**
2405  *  e1000e_read_phy_reg_bm - Read BM PHY register
2406  *  @hw: pointer to the HW structure
2407  *  @offset: register offset to be read
2408  *  @data: pointer to the read data
2409  *
2410  *  Acquires semaphore, if necessary, then reads the PHY register at offset
2411  *  and storing the retrieved information in data.  Release any acquired
2412  *  semaphores before exiting.
2413  **/
2414 s32 e1000e_read_phy_reg_bm(struct e1000_hw *hw, u32 offset, u16 *data)
2415 {
2416 	s32 ret_val;
2417 	u32 page = offset >> IGP_PAGE_SHIFT;
2418 
2419 	ret_val = hw->phy.ops.acquire(hw);
2420 	if (ret_val)
2421 		return ret_val;
2422 
2423 	/* Page 800 works differently than the rest so it has its own func */
2424 	if (page == BM_WUC_PAGE) {
2425 		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, data,
2426 							 true, false);
2427 		goto release;
2428 	}
2429 
2430 	hw->phy.addr = e1000_get_phy_addr_for_bm_page(page, offset);
2431 
2432 	if (offset > MAX_PHY_MULTI_PAGE_REG) {
2433 		u32 page_shift, page_select;
2434 
2435 		/* Page select is register 31 for phy address 1 and 22 for
2436 		 * phy address 2 and 3. Page select is shifted only for
2437 		 * phy address 1.
2438 		 */
2439 		if (hw->phy.addr == 1) {
2440 			page_shift = IGP_PAGE_SHIFT;
2441 			page_select = IGP01E1000_PHY_PAGE_SELECT;
2442 		} else {
2443 			page_shift = 0;
2444 			page_select = BM_PHY_PAGE_SELECT;
2445 		}
2446 
2447 		/* Page is shifted left, PHY expects (page x 32) */
2448 		ret_val = e1000e_write_phy_reg_mdic(hw, page_select,
2449 						    (page << page_shift));
2450 		if (ret_val)
2451 			goto release;
2452 	}
2453 
2454 	ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
2455 					   data);
2456 release:
2457 	hw->phy.ops.release(hw);
2458 	return ret_val;
2459 }
2460 
2461 /**
2462  *  e1000e_read_phy_reg_bm2 - Read BM PHY register
2463  *  @hw: pointer to the HW structure
2464  *  @offset: register offset to be read
2465  *  @data: pointer to the read data
2466  *
2467  *  Acquires semaphore, if necessary, then reads the PHY register at offset
2468  *  and storing the retrieved information in data.  Release any acquired
2469  *  semaphores before exiting.
2470  **/
2471 s32 e1000e_read_phy_reg_bm2(struct e1000_hw *hw, u32 offset, u16 *data)
2472 {
2473 	s32 ret_val;
2474 	u16 page = (u16)(offset >> IGP_PAGE_SHIFT);
2475 
2476 	ret_val = hw->phy.ops.acquire(hw);
2477 	if (ret_val)
2478 		return ret_val;
2479 
2480 	/* Page 800 works differently than the rest so it has its own func */
2481 	if (page == BM_WUC_PAGE) {
2482 		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, data,
2483 							 true, false);
2484 		goto release;
2485 	}
2486 
2487 	hw->phy.addr = 1;
2488 
2489 	if (offset > MAX_PHY_MULTI_PAGE_REG) {
2490 		/* Page is shifted left, PHY expects (page x 32) */
2491 		ret_val = e1000e_write_phy_reg_mdic(hw, BM_PHY_PAGE_SELECT,
2492 						    page);
2493 
2494 		if (ret_val)
2495 			goto release;
2496 	}
2497 
2498 	ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
2499 					   data);
2500 release:
2501 	hw->phy.ops.release(hw);
2502 	return ret_val;
2503 }
2504 
2505 /**
2506  *  e1000e_write_phy_reg_bm2 - Write BM PHY register
2507  *  @hw: pointer to the HW structure
2508  *  @offset: register offset to write to
2509  *  @data: data to write at register offset
2510  *
2511  *  Acquires semaphore, if necessary, then writes the data to PHY register
2512  *  at the offset.  Release any acquired semaphores before exiting.
2513  **/
2514 s32 e1000e_write_phy_reg_bm2(struct e1000_hw *hw, u32 offset, u16 data)
2515 {
2516 	s32 ret_val;
2517 	u16 page = (u16)(offset >> IGP_PAGE_SHIFT);
2518 
2519 	ret_val = hw->phy.ops.acquire(hw);
2520 	if (ret_val)
2521 		return ret_val;
2522 
2523 	/* Page 800 works differently than the rest so it has its own func */
2524 	if (page == BM_WUC_PAGE) {
2525 		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, &data,
2526 							 false, false);
2527 		goto release;
2528 	}
2529 
2530 	hw->phy.addr = 1;
2531 
2532 	if (offset > MAX_PHY_MULTI_PAGE_REG) {
2533 		/* Page is shifted left, PHY expects (page x 32) */
2534 		ret_val = e1000e_write_phy_reg_mdic(hw, BM_PHY_PAGE_SELECT,
2535 						    page);
2536 
2537 		if (ret_val)
2538 			goto release;
2539 	}
2540 
2541 	ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
2542 					    data);
2543 
2544 release:
2545 	hw->phy.ops.release(hw);
2546 	return ret_val;
2547 }
2548 
2549 /**
2550  *  e1000_enable_phy_wakeup_reg_access_bm - enable access to BM wakeup registers
2551  *  @hw: pointer to the HW structure
2552  *  @phy_reg: pointer to store original contents of BM_WUC_ENABLE_REG
2553  *
2554  *  Assumes semaphore already acquired and phy_reg points to a valid memory
2555  *  address to store contents of the BM_WUC_ENABLE_REG register.
2556  **/
2557 s32 e1000_enable_phy_wakeup_reg_access_bm(struct e1000_hw *hw, u16 *phy_reg)
2558 {
2559 	s32 ret_val;
2560 	u16 temp;
2561 
2562 	/* All page select, port ctrl and wakeup registers use phy address 1 */
2563 	hw->phy.addr = 1;
2564 
2565 	/* Select Port Control Registers page */
2566 	ret_val = e1000_set_page_igp(hw, (BM_PORT_CTRL_PAGE << IGP_PAGE_SHIFT));
2567 	if (ret_val) {
2568 		e_dbg("Could not set Port Control page\n");
2569 		return ret_val;
2570 	}
2571 
2572 	ret_val = e1000e_read_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, phy_reg);
2573 	if (ret_val) {
2574 		e_dbg("Could not read PHY register %d.%d\n",
2575 		      BM_PORT_CTRL_PAGE, BM_WUC_ENABLE_REG);
2576 		return ret_val;
2577 	}
2578 
2579 	/* Enable both PHY wakeup mode and Wakeup register page writes.
2580 	 * Prevent a power state change by disabling ME and Host PHY wakeup.
2581 	 */
2582 	temp = *phy_reg;
2583 	temp |= BM_WUC_ENABLE_BIT;
2584 	temp &= ~(BM_WUC_ME_WU_BIT | BM_WUC_HOST_WU_BIT);
2585 
2586 	ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, temp);
2587 	if (ret_val) {
2588 		e_dbg("Could not write PHY register %d.%d\n",
2589 		      BM_PORT_CTRL_PAGE, BM_WUC_ENABLE_REG);
2590 		return ret_val;
2591 	}
2592 
2593 	/* Select Host Wakeup Registers page - caller now able to write
2594 	 * registers on the Wakeup registers page
2595 	 */
2596 	return e1000_set_page_igp(hw, (BM_WUC_PAGE << IGP_PAGE_SHIFT));
2597 }
2598 
2599 /**
2600  *  e1000_disable_phy_wakeup_reg_access_bm - disable access to BM wakeup regs
2601  *  @hw: pointer to the HW structure
2602  *  @phy_reg: pointer to original contents of BM_WUC_ENABLE_REG
2603  *
2604  *  Restore BM_WUC_ENABLE_REG to its original value.
2605  *
2606  *  Assumes semaphore already acquired and *phy_reg is the contents of the
2607  *  BM_WUC_ENABLE_REG before register(s) on BM_WUC_PAGE were accessed by
2608  *  caller.
2609  **/
2610 s32 e1000_disable_phy_wakeup_reg_access_bm(struct e1000_hw *hw, u16 *phy_reg)
2611 {
2612 	s32 ret_val;
2613 
2614 	/* Select Port Control Registers page */
2615 	ret_val = e1000_set_page_igp(hw, (BM_PORT_CTRL_PAGE << IGP_PAGE_SHIFT));
2616 	if (ret_val) {
2617 		e_dbg("Could not set Port Control page\n");
2618 		return ret_val;
2619 	}
2620 
2621 	/* Restore 769.17 to its original value */
2622 	ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, *phy_reg);
2623 	if (ret_val)
2624 		e_dbg("Could not restore PHY register %d.%d\n",
2625 		      BM_PORT_CTRL_PAGE, BM_WUC_ENABLE_REG);
2626 
2627 	return ret_val;
2628 }
2629 
2630 /**
2631  *  e1000_access_phy_wakeup_reg_bm - Read/write BM PHY wakeup register
2632  *  @hw: pointer to the HW structure
2633  *  @offset: register offset to be read or written
2634  *  @data: pointer to the data to read or write
2635  *  @read: determines if operation is read or write
2636  *  @page_set: BM_WUC_PAGE already set and access enabled
2637  *
2638  *  Read the PHY register at offset and store the retrieved information in
2639  *  data, or write data to PHY register at offset.  Note the procedure to
2640  *  access the PHY wakeup registers is different than reading the other PHY
2641  *  registers. It works as such:
2642  *  1) Set 769.17.2 (page 769, register 17, bit 2) = 1
2643  *  2) Set page to 800 for host (801 if we were manageability)
2644  *  3) Write the address using the address opcode (0x11)
2645  *  4) Read or write the data using the data opcode (0x12)
2646  *  5) Restore 769.17.2 to its original value
2647  *
2648  *  Steps 1 and 2 are done by e1000_enable_phy_wakeup_reg_access_bm() and
2649  *  step 5 is done by e1000_disable_phy_wakeup_reg_access_bm().
2650  *
2651  *  Assumes semaphore is already acquired.  When page_set==true, assumes
2652  *  the PHY page is set to BM_WUC_PAGE (i.e. a function in the call stack
2653  *  is responsible for calls to e1000_[enable|disable]_phy_wakeup_reg_bm()).
2654  **/
2655 static s32 e1000_access_phy_wakeup_reg_bm(struct e1000_hw *hw, u32 offset,
2656 					  u16 *data, bool read, bool page_set)
2657 {
2658 	s32 ret_val;
2659 	u16 reg = BM_PHY_REG_NUM(offset);
2660 	u16 page = BM_PHY_REG_PAGE(offset);
2661 	u16 phy_reg = 0;
2662 
2663 	/* Gig must be disabled for MDIO accesses to Host Wakeup reg page */
2664 	if ((hw->mac.type == e1000_pchlan) &&
2665 	    (!(er32(PHY_CTRL) & E1000_PHY_CTRL_GBE_DISABLE)))
2666 		e_dbg("Attempting to access page %d while gig enabled.\n",
2667 		      page);
2668 
2669 	if (!page_set) {
2670 		/* Enable access to PHY wakeup registers */
2671 		ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2672 		if (ret_val) {
2673 			e_dbg("Could not enable PHY wakeup reg access\n");
2674 			return ret_val;
2675 		}
2676 	}
2677 
2678 	e_dbg("Accessing PHY page %d reg 0x%x\n", page, reg);
2679 
2680 	/* Write the Wakeup register page offset value using opcode 0x11 */
2681 	ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_ADDRESS_OPCODE, reg);
2682 	if (ret_val) {
2683 		e_dbg("Could not write address opcode to page %d\n", page);
2684 		return ret_val;
2685 	}
2686 
2687 	if (read) {
2688 		/* Read the Wakeup register page value using opcode 0x12 */
2689 		ret_val = e1000e_read_phy_reg_mdic(hw, BM_WUC_DATA_OPCODE,
2690 						   data);
2691 	} else {
2692 		/* Write the Wakeup register page value using opcode 0x12 */
2693 		ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_DATA_OPCODE,
2694 						    *data);
2695 	}
2696 
2697 	if (ret_val) {
2698 		e_dbg("Could not access PHY reg %d.%d\n", page, reg);
2699 		return ret_val;
2700 	}
2701 
2702 	if (!page_set)
2703 		ret_val = e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2704 
2705 	return ret_val;
2706 }
2707 
2708 /**
2709  * e1000_power_up_phy_copper - Restore copper link in case of PHY power down
2710  * @hw: pointer to the HW structure
2711  *
2712  * In the case of a PHY power down to save power, or to turn off link during a
2713  * driver unload, or wake on lan is not enabled, restore the link to previous
2714  * settings.
2715  **/
2716 void e1000_power_up_phy_copper(struct e1000_hw *hw)
2717 {
2718 	u16 mii_reg = 0;
2719 
2720 	/* The PHY will retain its settings across a power down/up cycle */
2721 	e1e_rphy(hw, MII_BMCR, &mii_reg);
2722 	mii_reg &= ~BMCR_PDOWN;
2723 	e1e_wphy(hw, MII_BMCR, mii_reg);
2724 }
2725 
2726 /**
2727  * e1000_power_down_phy_copper - Restore copper link in case of PHY power down
2728  * @hw: pointer to the HW structure
2729  *
2730  * In the case of a PHY power down to save power, or to turn off link during a
2731  * driver unload, or wake on lan is not enabled, restore the link to previous
2732  * settings.
2733  **/
2734 void e1000_power_down_phy_copper(struct e1000_hw *hw)
2735 {
2736 	u16 mii_reg = 0;
2737 
2738 	/* The PHY will retain its settings across a power down/up cycle */
2739 	e1e_rphy(hw, MII_BMCR, &mii_reg);
2740 	mii_reg |= BMCR_PDOWN;
2741 	e1e_wphy(hw, MII_BMCR, mii_reg);
2742 	usleep_range(1000, 2000);
2743 }
2744 
2745 /**
2746  *  __e1000_read_phy_reg_hv -  Read HV PHY register
2747  *  @hw: pointer to the HW structure
2748  *  @offset: register offset to be read
2749  *  @data: pointer to the read data
2750  *  @locked: semaphore has already been acquired or not
2751  *
2752  *  Acquires semaphore, if necessary, then reads the PHY register at offset
2753  *  and stores the retrieved information in data.  Release any acquired
2754  *  semaphore before exiting.
2755  **/
2756 static s32 __e1000_read_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 *data,
2757 				   bool locked, bool page_set)
2758 {
2759 	s32 ret_val;
2760 	u16 page = BM_PHY_REG_PAGE(offset);
2761 	u16 reg = BM_PHY_REG_NUM(offset);
2762 	u32 phy_addr = hw->phy.addr = e1000_get_phy_addr_for_hv_page(page);
2763 
2764 	if (!locked) {
2765 		ret_val = hw->phy.ops.acquire(hw);
2766 		if (ret_val)
2767 			return ret_val;
2768 	}
2769 
2770 	/* Page 800 works differently than the rest so it has its own func */
2771 	if (page == BM_WUC_PAGE) {
2772 		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, data,
2773 							 true, page_set);
2774 		goto out;
2775 	}
2776 
2777 	if (page > 0 && page < HV_INTC_FC_PAGE_START) {
2778 		ret_val = e1000_access_phy_debug_regs_hv(hw, offset,
2779 							 data, true);
2780 		goto out;
2781 	}
2782 
2783 	if (!page_set) {
2784 		if (page == HV_INTC_FC_PAGE_START)
2785 			page = 0;
2786 
2787 		if (reg > MAX_PHY_MULTI_PAGE_REG) {
2788 			/* Page is shifted left, PHY expects (page x 32) */
2789 			ret_val = e1000_set_page_igp(hw,
2790 						     (page << IGP_PAGE_SHIFT));
2791 
2792 			hw->phy.addr = phy_addr;
2793 
2794 			if (ret_val)
2795 				goto out;
2796 		}
2797 	}
2798 
2799 	e_dbg("reading PHY page %d (or 0x%x shifted) reg 0x%x\n", page,
2800 	      page << IGP_PAGE_SHIFT, reg);
2801 
2802 	ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & reg, data);
2803 out:
2804 	if (!locked)
2805 		hw->phy.ops.release(hw);
2806 
2807 	return ret_val;
2808 }
2809 
2810 /**
2811  *  e1000_read_phy_reg_hv -  Read HV PHY register
2812  *  @hw: pointer to the HW structure
2813  *  @offset: register offset to be read
2814  *  @data: pointer to the read data
2815  *
2816  *  Acquires semaphore then reads the PHY register at offset and stores
2817  *  the retrieved information in data.  Release the acquired semaphore
2818  *  before exiting.
2819  **/
2820 s32 e1000_read_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 *data)
2821 {
2822 	return __e1000_read_phy_reg_hv(hw, offset, data, false, false);
2823 }
2824 
2825 /**
2826  *  e1000_read_phy_reg_hv_locked -  Read HV PHY register
2827  *  @hw: pointer to the HW structure
2828  *  @offset: register offset to be read
2829  *  @data: pointer to the read data
2830  *
2831  *  Reads the PHY register at offset and stores the retrieved information
2832  *  in data.  Assumes semaphore already acquired.
2833  **/
2834 s32 e1000_read_phy_reg_hv_locked(struct e1000_hw *hw, u32 offset, u16 *data)
2835 {
2836 	return __e1000_read_phy_reg_hv(hw, offset, data, true, false);
2837 }
2838 
2839 /**
2840  *  e1000_read_phy_reg_page_hv - Read HV PHY register
2841  *  @hw: pointer to the HW structure
2842  *  @offset: register offset to write to
2843  *  @data: data to write at register offset
2844  *
2845  *  Reads the PHY register at offset and stores the retrieved information
2846  *  in data.  Assumes semaphore already acquired and page already set.
2847  **/
2848 s32 e1000_read_phy_reg_page_hv(struct e1000_hw *hw, u32 offset, u16 *data)
2849 {
2850 	return __e1000_read_phy_reg_hv(hw, offset, data, true, true);
2851 }
2852 
2853 /**
2854  *  __e1000_write_phy_reg_hv - Write HV PHY register
2855  *  @hw: pointer to the HW structure
2856  *  @offset: register offset to write to
2857  *  @data: data to write at register offset
2858  *  @locked: semaphore has already been acquired or not
2859  *
2860  *  Acquires semaphore, if necessary, then writes the data to PHY register
2861  *  at the offset.  Release any acquired semaphores before exiting.
2862  **/
2863 static s32 __e1000_write_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 data,
2864 				    bool locked, bool page_set)
2865 {
2866 	s32 ret_val;
2867 	u16 page = BM_PHY_REG_PAGE(offset);
2868 	u16 reg = BM_PHY_REG_NUM(offset);
2869 	u32 phy_addr = hw->phy.addr = e1000_get_phy_addr_for_hv_page(page);
2870 
2871 	if (!locked) {
2872 		ret_val = hw->phy.ops.acquire(hw);
2873 		if (ret_val)
2874 			return ret_val;
2875 	}
2876 
2877 	/* Page 800 works differently than the rest so it has its own func */
2878 	if (page == BM_WUC_PAGE) {
2879 		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, &data,
2880 							 false, page_set);
2881 		goto out;
2882 	}
2883 
2884 	if (page > 0 && page < HV_INTC_FC_PAGE_START) {
2885 		ret_val = e1000_access_phy_debug_regs_hv(hw, offset,
2886 							 &data, false);
2887 		goto out;
2888 	}
2889 
2890 	if (!page_set) {
2891 		if (page == HV_INTC_FC_PAGE_START)
2892 			page = 0;
2893 
2894 		/* Workaround MDIO accesses being disabled after entering IEEE
2895 		 * Power Down (when bit 11 of the PHY Control register is set)
2896 		 */
2897 		if ((hw->phy.type == e1000_phy_82578) &&
2898 		    (hw->phy.revision >= 1) &&
2899 		    (hw->phy.addr == 2) &&
2900 		    !(MAX_PHY_REG_ADDRESS & reg) && (data & (1 << 11))) {
2901 			u16 data2 = 0x7EFF;
2902 			ret_val = e1000_access_phy_debug_regs_hv(hw,
2903 								 (1 << 6) | 0x3,
2904 								 &data2, false);
2905 			if (ret_val)
2906 				goto out;
2907 		}
2908 
2909 		if (reg > MAX_PHY_MULTI_PAGE_REG) {
2910 			/* Page is shifted left, PHY expects (page x 32) */
2911 			ret_val = e1000_set_page_igp(hw,
2912 						     (page << IGP_PAGE_SHIFT));
2913 
2914 			hw->phy.addr = phy_addr;
2915 
2916 			if (ret_val)
2917 				goto out;
2918 		}
2919 	}
2920 
2921 	e_dbg("writing PHY page %d (or 0x%x shifted) reg 0x%x\n", page,
2922 	      page << IGP_PAGE_SHIFT, reg);
2923 
2924 	ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & reg,
2925 					    data);
2926 
2927 out:
2928 	if (!locked)
2929 		hw->phy.ops.release(hw);
2930 
2931 	return ret_val;
2932 }
2933 
2934 /**
2935  *  e1000_write_phy_reg_hv - Write HV PHY register
2936  *  @hw: pointer to the HW structure
2937  *  @offset: register offset to write to
2938  *  @data: data to write at register offset
2939  *
2940  *  Acquires semaphore then writes the data to PHY register at the offset.
2941  *  Release the acquired semaphores before exiting.
2942  **/
2943 s32 e1000_write_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 data)
2944 {
2945 	return __e1000_write_phy_reg_hv(hw, offset, data, false, false);
2946 }
2947 
2948 /**
2949  *  e1000_write_phy_reg_hv_locked - Write HV PHY register
2950  *  @hw: pointer to the HW structure
2951  *  @offset: register offset to write to
2952  *  @data: data to write at register offset
2953  *
2954  *  Writes the data to PHY register at the offset.  Assumes semaphore
2955  *  already acquired.
2956  **/
2957 s32 e1000_write_phy_reg_hv_locked(struct e1000_hw *hw, u32 offset, u16 data)
2958 {
2959 	return __e1000_write_phy_reg_hv(hw, offset, data, true, false);
2960 }
2961 
2962 /**
2963  *  e1000_write_phy_reg_page_hv - Write HV PHY register
2964  *  @hw: pointer to the HW structure
2965  *  @offset: register offset to write to
2966  *  @data: data to write at register offset
2967  *
2968  *  Writes the data to PHY register at the offset.  Assumes semaphore
2969  *  already acquired and page already set.
2970  **/
2971 s32 e1000_write_phy_reg_page_hv(struct e1000_hw *hw, u32 offset, u16 data)
2972 {
2973 	return __e1000_write_phy_reg_hv(hw, offset, data, true, true);
2974 }
2975 
2976 /**
2977  *  e1000_get_phy_addr_for_hv_page - Get PHY address based on page
2978  *  @page: page to be accessed
2979  **/
2980 static u32 e1000_get_phy_addr_for_hv_page(u32 page)
2981 {
2982 	u32 phy_addr = 2;
2983 
2984 	if (page >= HV_INTC_FC_PAGE_START)
2985 		phy_addr = 1;
2986 
2987 	return phy_addr;
2988 }
2989 
2990 /**
2991  *  e1000_access_phy_debug_regs_hv - Read HV PHY vendor specific high registers
2992  *  @hw: pointer to the HW structure
2993  *  @offset: register offset to be read or written
2994  *  @data: pointer to the data to be read or written
2995  *  @read: determines if operation is read or write
2996  *
2997  *  Reads the PHY register at offset and stores the retreived information
2998  *  in data.  Assumes semaphore already acquired.  Note that the procedure
2999  *  to access these regs uses the address port and data port to read/write.
3000  *  These accesses done with PHY address 2 and without using pages.
3001  **/
3002 static s32 e1000_access_phy_debug_regs_hv(struct e1000_hw *hw, u32 offset,
3003 					  u16 *data, bool read)
3004 {
3005 	s32 ret_val;
3006 	u32 addr_reg;
3007 	u32 data_reg;
3008 
3009 	/* This takes care of the difference with desktop vs mobile phy */
3010 	addr_reg = ((hw->phy.type == e1000_phy_82578) ?
3011 		    I82578_ADDR_REG : I82577_ADDR_REG);
3012 	data_reg = addr_reg + 1;
3013 
3014 	/* All operations in this function are phy address 2 */
3015 	hw->phy.addr = 2;
3016 
3017 	/* masking with 0x3F to remove the page from offset */
3018 	ret_val = e1000e_write_phy_reg_mdic(hw, addr_reg, (u16)offset & 0x3F);
3019 	if (ret_val) {
3020 		e_dbg("Could not write the Address Offset port register\n");
3021 		return ret_val;
3022 	}
3023 
3024 	/* Read or write the data value next */
3025 	if (read)
3026 		ret_val = e1000e_read_phy_reg_mdic(hw, data_reg, data);
3027 	else
3028 		ret_val = e1000e_write_phy_reg_mdic(hw, data_reg, *data);
3029 
3030 	if (ret_val)
3031 		e_dbg("Could not access the Data port register\n");
3032 
3033 	return ret_val;
3034 }
3035 
3036 /**
3037  *  e1000_link_stall_workaround_hv - Si workaround
3038  *  @hw: pointer to the HW structure
3039  *
3040  *  This function works around a Si bug where the link partner can get
3041  *  a link up indication before the PHY does.  If small packets are sent
3042  *  by the link partner they can be placed in the packet buffer without
3043  *  being properly accounted for by the PHY and will stall preventing
3044  *  further packets from being received.  The workaround is to clear the
3045  *  packet buffer after the PHY detects link up.
3046  **/
3047 s32 e1000_link_stall_workaround_hv(struct e1000_hw *hw)
3048 {
3049 	s32 ret_val = 0;
3050 	u16 data;
3051 
3052 	if (hw->phy.type != e1000_phy_82578)
3053 		return 0;
3054 
3055 	/* Do not apply workaround if in PHY loopback bit 14 set */
3056 	e1e_rphy(hw, MII_BMCR, &data);
3057 	if (data & BMCR_LOOPBACK)
3058 		return 0;
3059 
3060 	/* check if link is up and at 1Gbps */
3061 	ret_val = e1e_rphy(hw, BM_CS_STATUS, &data);
3062 	if (ret_val)
3063 		return ret_val;
3064 
3065 	data &= (BM_CS_STATUS_LINK_UP | BM_CS_STATUS_RESOLVED |
3066 		 BM_CS_STATUS_SPEED_MASK);
3067 
3068 	if (data != (BM_CS_STATUS_LINK_UP | BM_CS_STATUS_RESOLVED |
3069 		     BM_CS_STATUS_SPEED_1000))
3070 		return 0;
3071 
3072 	msleep(200);
3073 
3074 	/* flush the packets in the fifo buffer */
3075 	ret_val = e1e_wphy(hw, HV_MUX_DATA_CTRL,
3076 			   (HV_MUX_DATA_CTRL_GEN_TO_MAC |
3077 			    HV_MUX_DATA_CTRL_FORCE_SPEED));
3078 	if (ret_val)
3079 		return ret_val;
3080 
3081 	return e1e_wphy(hw, HV_MUX_DATA_CTRL, HV_MUX_DATA_CTRL_GEN_TO_MAC);
3082 }
3083 
3084 /**
3085  *  e1000_check_polarity_82577 - Checks the polarity.
3086  *  @hw: pointer to the HW structure
3087  *
3088  *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
3089  *
3090  *  Polarity is determined based on the PHY specific status register.
3091  **/
3092 s32 e1000_check_polarity_82577(struct e1000_hw *hw)
3093 {
3094 	struct e1000_phy_info *phy = &hw->phy;
3095 	s32 ret_val;
3096 	u16 data;
3097 
3098 	ret_val = e1e_rphy(hw, I82577_PHY_STATUS_2, &data);
3099 
3100 	if (!ret_val)
3101 		phy->cable_polarity = ((data & I82577_PHY_STATUS2_REV_POLARITY)
3102 				       ? e1000_rev_polarity_reversed
3103 				       : e1000_rev_polarity_normal);
3104 
3105 	return ret_val;
3106 }
3107 
3108 /**
3109  *  e1000_phy_force_speed_duplex_82577 - Force speed/duplex for I82577 PHY
3110  *  @hw: pointer to the HW structure
3111  *
3112  *  Calls the PHY setup function to force speed and duplex.
3113  **/
3114 s32 e1000_phy_force_speed_duplex_82577(struct e1000_hw *hw)
3115 {
3116 	struct e1000_phy_info *phy = &hw->phy;
3117 	s32 ret_val;
3118 	u16 phy_data;
3119 	bool link;
3120 
3121 	ret_val = e1e_rphy(hw, MII_BMCR, &phy_data);
3122 	if (ret_val)
3123 		return ret_val;
3124 
3125 	e1000e_phy_force_speed_duplex_setup(hw, &phy_data);
3126 
3127 	ret_val = e1e_wphy(hw, MII_BMCR, phy_data);
3128 	if (ret_val)
3129 		return ret_val;
3130 
3131 	udelay(1);
3132 
3133 	if (phy->autoneg_wait_to_complete) {
3134 		e_dbg("Waiting for forced speed/duplex link on 82577 phy\n");
3135 
3136 		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
3137 						      100000, &link);
3138 		if (ret_val)
3139 			return ret_val;
3140 
3141 		if (!link)
3142 			e_dbg("Link taking longer than expected.\n");
3143 
3144 		/* Try once more */
3145 		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
3146 						      100000, &link);
3147 	}
3148 
3149 	return ret_val;
3150 }
3151 
3152 /**
3153  *  e1000_get_phy_info_82577 - Retrieve I82577 PHY information
3154  *  @hw: pointer to the HW structure
3155  *
3156  *  Read PHY status to determine if link is up.  If link is up, then
3157  *  set/determine 10base-T extended distance and polarity correction.  Read
3158  *  PHY port status to determine MDI/MDIx and speed.  Based on the speed,
3159  *  determine on the cable length, local and remote receiver.
3160  **/
3161 s32 e1000_get_phy_info_82577(struct e1000_hw *hw)
3162 {
3163 	struct e1000_phy_info *phy = &hw->phy;
3164 	s32 ret_val;
3165 	u16 data;
3166 	bool link;
3167 
3168 	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
3169 	if (ret_val)
3170 		return ret_val;
3171 
3172 	if (!link) {
3173 		e_dbg("Phy info is only valid if link is up\n");
3174 		return -E1000_ERR_CONFIG;
3175 	}
3176 
3177 	phy->polarity_correction = true;
3178 
3179 	ret_val = e1000_check_polarity_82577(hw);
3180 	if (ret_val)
3181 		return ret_val;
3182 
3183 	ret_val = e1e_rphy(hw, I82577_PHY_STATUS_2, &data);
3184 	if (ret_val)
3185 		return ret_val;
3186 
3187 	phy->is_mdix = !!(data & I82577_PHY_STATUS2_MDIX);
3188 
3189 	if ((data & I82577_PHY_STATUS2_SPEED_MASK) ==
3190 	    I82577_PHY_STATUS2_SPEED_1000MBPS) {
3191 		ret_val = hw->phy.ops.get_cable_length(hw);
3192 		if (ret_val)
3193 			return ret_val;
3194 
3195 		ret_val = e1e_rphy(hw, MII_STAT1000, &data);
3196 		if (ret_val)
3197 			return ret_val;
3198 
3199 		phy->local_rx = (data & LPA_1000LOCALRXOK)
3200 		    ? e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
3201 
3202 		phy->remote_rx = (data & LPA_1000REMRXOK)
3203 		    ? e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
3204 	} else {
3205 		phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
3206 		phy->local_rx = e1000_1000t_rx_status_undefined;
3207 		phy->remote_rx = e1000_1000t_rx_status_undefined;
3208 	}
3209 
3210 	return 0;
3211 }
3212 
3213 /**
3214  *  e1000_get_cable_length_82577 - Determine cable length for 82577 PHY
3215  *  @hw: pointer to the HW structure
3216  *
3217  * Reads the diagnostic status register and verifies result is valid before
3218  * placing it in the phy_cable_length field.
3219  **/
3220 s32 e1000_get_cable_length_82577(struct e1000_hw *hw)
3221 {
3222 	struct e1000_phy_info *phy = &hw->phy;
3223 	s32 ret_val;
3224 	u16 phy_data, length;
3225 
3226 	ret_val = e1e_rphy(hw, I82577_PHY_DIAG_STATUS, &phy_data);
3227 	if (ret_val)
3228 		return ret_val;
3229 
3230 	length = ((phy_data & I82577_DSTATUS_CABLE_LENGTH) >>
3231 		  I82577_DSTATUS_CABLE_LENGTH_SHIFT);
3232 
3233 	if (length == E1000_CABLE_LENGTH_UNDEFINED)
3234 		return -E1000_ERR_PHY;
3235 
3236 	phy->cable_length = length;
3237 
3238 	return 0;
3239 }
3240