1 /* Intel PRO/1000 Linux driver 2 * Copyright(c) 1999 - 2014 Intel Corporation. 3 * 4 * This program is free software; you can redistribute it and/or modify it 5 * under the terms and conditions of the GNU General Public License, 6 * version 2, as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope it will be useful, but WITHOUT 9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 11 * more details. 12 * 13 * The full GNU General Public License is included in this distribution in 14 * the file called "COPYING". 15 * 16 * Contact Information: 17 * Linux NICS <linux.nics@intel.com> 18 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> 19 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 20 */ 21 22 #include "e1000.h" 23 24 static s32 e1000_wait_autoneg(struct e1000_hw *hw); 25 static s32 e1000_access_phy_wakeup_reg_bm(struct e1000_hw *hw, u32 offset, 26 u16 *data, bool read, bool page_set); 27 static u32 e1000_get_phy_addr_for_hv_page(u32 page); 28 static s32 e1000_access_phy_debug_regs_hv(struct e1000_hw *hw, u32 offset, 29 u16 *data, bool read); 30 31 /* Cable length tables */ 32 static const u16 e1000_m88_cable_length_table[] = { 33 0, 50, 80, 110, 140, 140, E1000_CABLE_LENGTH_UNDEFINED 34 }; 35 36 #define M88E1000_CABLE_LENGTH_TABLE_SIZE \ 37 ARRAY_SIZE(e1000_m88_cable_length_table) 38 39 static const u16 e1000_igp_2_cable_length_table[] = { 40 0, 0, 0, 0, 0, 0, 0, 0, 3, 5, 8, 11, 13, 16, 18, 21, 0, 0, 0, 3, 41 6, 10, 13, 16, 19, 23, 26, 29, 32, 35, 38, 41, 6, 10, 14, 18, 22, 42 26, 30, 33, 37, 41, 44, 48, 51, 54, 58, 61, 21, 26, 31, 35, 40, 43 44, 49, 53, 57, 61, 65, 68, 72, 75, 79, 82, 40, 45, 51, 56, 61, 44 66, 70, 75, 79, 83, 87, 91, 94, 98, 101, 104, 60, 66, 72, 77, 82, 45 87, 92, 96, 100, 104, 108, 111, 114, 117, 119, 121, 83, 89, 95, 46 100, 105, 109, 113, 116, 119, 122, 124, 104, 109, 114, 118, 121, 47 124 48 }; 49 50 #define IGP02E1000_CABLE_LENGTH_TABLE_SIZE \ 51 ARRAY_SIZE(e1000_igp_2_cable_length_table) 52 53 /** 54 * e1000e_check_reset_block_generic - Check if PHY reset is blocked 55 * @hw: pointer to the HW structure 56 * 57 * Read the PHY management control register and check whether a PHY reset 58 * is blocked. If a reset is not blocked return 0, otherwise 59 * return E1000_BLK_PHY_RESET (12). 60 **/ 61 s32 e1000e_check_reset_block_generic(struct e1000_hw *hw) 62 { 63 u32 manc; 64 65 manc = er32(MANC); 66 67 return (manc & E1000_MANC_BLK_PHY_RST_ON_IDE) ? E1000_BLK_PHY_RESET : 0; 68 } 69 70 /** 71 * e1000e_get_phy_id - Retrieve the PHY ID and revision 72 * @hw: pointer to the HW structure 73 * 74 * Reads the PHY registers and stores the PHY ID and possibly the PHY 75 * revision in the hardware structure. 76 **/ 77 s32 e1000e_get_phy_id(struct e1000_hw *hw) 78 { 79 struct e1000_phy_info *phy = &hw->phy; 80 s32 ret_val = 0; 81 u16 phy_id; 82 u16 retry_count = 0; 83 84 if (!phy->ops.read_reg) 85 return 0; 86 87 while (retry_count < 2) { 88 ret_val = e1e_rphy(hw, MII_PHYSID1, &phy_id); 89 if (ret_val) 90 return ret_val; 91 92 phy->id = (u32)(phy_id << 16); 93 usleep_range(20, 40); 94 ret_val = e1e_rphy(hw, MII_PHYSID2, &phy_id); 95 if (ret_val) 96 return ret_val; 97 98 phy->id |= (u32)(phy_id & PHY_REVISION_MASK); 99 phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK); 100 101 if (phy->id != 0 && phy->id != PHY_REVISION_MASK) 102 return 0; 103 104 retry_count++; 105 } 106 107 return 0; 108 } 109 110 /** 111 * e1000e_phy_reset_dsp - Reset PHY DSP 112 * @hw: pointer to the HW structure 113 * 114 * Reset the digital signal processor. 115 **/ 116 s32 e1000e_phy_reset_dsp(struct e1000_hw *hw) 117 { 118 s32 ret_val; 119 120 ret_val = e1e_wphy(hw, M88E1000_PHY_GEN_CONTROL, 0xC1); 121 if (ret_val) 122 return ret_val; 123 124 return e1e_wphy(hw, M88E1000_PHY_GEN_CONTROL, 0); 125 } 126 127 /** 128 * e1000e_read_phy_reg_mdic - Read MDI control register 129 * @hw: pointer to the HW structure 130 * @offset: register offset to be read 131 * @data: pointer to the read data 132 * 133 * Reads the MDI control register in the PHY at offset and stores the 134 * information read to data. 135 **/ 136 s32 e1000e_read_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 *data) 137 { 138 struct e1000_phy_info *phy = &hw->phy; 139 u32 i, mdic = 0; 140 141 if (offset > MAX_PHY_REG_ADDRESS) { 142 e_dbg("PHY Address %d is out of range\n", offset); 143 return -E1000_ERR_PARAM; 144 } 145 146 /* Set up Op-code, Phy Address, and register offset in the MDI 147 * Control register. The MAC will take care of interfacing with the 148 * PHY to retrieve the desired data. 149 */ 150 mdic = ((offset << E1000_MDIC_REG_SHIFT) | 151 (phy->addr << E1000_MDIC_PHY_SHIFT) | 152 (E1000_MDIC_OP_READ)); 153 154 ew32(MDIC, mdic); 155 156 /* Poll the ready bit to see if the MDI read completed 157 * Increasing the time out as testing showed failures with 158 * the lower time out 159 */ 160 for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) { 161 udelay(50); 162 mdic = er32(MDIC); 163 if (mdic & E1000_MDIC_READY) 164 break; 165 } 166 if (!(mdic & E1000_MDIC_READY)) { 167 e_dbg("MDI Read did not complete\n"); 168 return -E1000_ERR_PHY; 169 } 170 if (mdic & E1000_MDIC_ERROR) { 171 e_dbg("MDI Error\n"); 172 return -E1000_ERR_PHY; 173 } 174 if (((mdic & E1000_MDIC_REG_MASK) >> E1000_MDIC_REG_SHIFT) != offset) { 175 e_dbg("MDI Read offset error - requested %d, returned %d\n", 176 offset, 177 (mdic & E1000_MDIC_REG_MASK) >> E1000_MDIC_REG_SHIFT); 178 return -E1000_ERR_PHY; 179 } 180 *data = (u16)mdic; 181 182 /* Allow some time after each MDIC transaction to avoid 183 * reading duplicate data in the next MDIC transaction. 184 */ 185 if (hw->mac.type == e1000_pch2lan) 186 udelay(100); 187 188 return 0; 189 } 190 191 /** 192 * e1000e_write_phy_reg_mdic - Write MDI control register 193 * @hw: pointer to the HW structure 194 * @offset: register offset to write to 195 * @data: data to write to register at offset 196 * 197 * Writes data to MDI control register in the PHY at offset. 198 **/ 199 s32 e1000e_write_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 data) 200 { 201 struct e1000_phy_info *phy = &hw->phy; 202 u32 i, mdic = 0; 203 204 if (offset > MAX_PHY_REG_ADDRESS) { 205 e_dbg("PHY Address %d is out of range\n", offset); 206 return -E1000_ERR_PARAM; 207 } 208 209 /* Set up Op-code, Phy Address, and register offset in the MDI 210 * Control register. The MAC will take care of interfacing with the 211 * PHY to retrieve the desired data. 212 */ 213 mdic = (((u32)data) | 214 (offset << E1000_MDIC_REG_SHIFT) | 215 (phy->addr << E1000_MDIC_PHY_SHIFT) | 216 (E1000_MDIC_OP_WRITE)); 217 218 ew32(MDIC, mdic); 219 220 /* Poll the ready bit to see if the MDI read completed 221 * Increasing the time out as testing showed failures with 222 * the lower time out 223 */ 224 for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) { 225 udelay(50); 226 mdic = er32(MDIC); 227 if (mdic & E1000_MDIC_READY) 228 break; 229 } 230 if (!(mdic & E1000_MDIC_READY)) { 231 e_dbg("MDI Write did not complete\n"); 232 return -E1000_ERR_PHY; 233 } 234 if (mdic & E1000_MDIC_ERROR) { 235 e_dbg("MDI Error\n"); 236 return -E1000_ERR_PHY; 237 } 238 if (((mdic & E1000_MDIC_REG_MASK) >> E1000_MDIC_REG_SHIFT) != offset) { 239 e_dbg("MDI Write offset error - requested %d, returned %d\n", 240 offset, 241 (mdic & E1000_MDIC_REG_MASK) >> E1000_MDIC_REG_SHIFT); 242 return -E1000_ERR_PHY; 243 } 244 245 /* Allow some time after each MDIC transaction to avoid 246 * reading duplicate data in the next MDIC transaction. 247 */ 248 if (hw->mac.type == e1000_pch2lan) 249 udelay(100); 250 251 return 0; 252 } 253 254 /** 255 * e1000e_read_phy_reg_m88 - Read m88 PHY register 256 * @hw: pointer to the HW structure 257 * @offset: register offset to be read 258 * @data: pointer to the read data 259 * 260 * Acquires semaphore, if necessary, then reads the PHY register at offset 261 * and storing the retrieved information in data. Release any acquired 262 * semaphores before exiting. 263 **/ 264 s32 e1000e_read_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 *data) 265 { 266 s32 ret_val; 267 268 ret_val = hw->phy.ops.acquire(hw); 269 if (ret_val) 270 return ret_val; 271 272 ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset, 273 data); 274 275 hw->phy.ops.release(hw); 276 277 return ret_val; 278 } 279 280 /** 281 * e1000e_write_phy_reg_m88 - Write m88 PHY register 282 * @hw: pointer to the HW structure 283 * @offset: register offset to write to 284 * @data: data to write at register offset 285 * 286 * Acquires semaphore, if necessary, then writes the data to PHY register 287 * at the offset. Release any acquired semaphores before exiting. 288 **/ 289 s32 e1000e_write_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 data) 290 { 291 s32 ret_val; 292 293 ret_val = hw->phy.ops.acquire(hw); 294 if (ret_val) 295 return ret_val; 296 297 ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset, 298 data); 299 300 hw->phy.ops.release(hw); 301 302 return ret_val; 303 } 304 305 /** 306 * e1000_set_page_igp - Set page as on IGP-like PHY(s) 307 * @hw: pointer to the HW structure 308 * @page: page to set (shifted left when necessary) 309 * 310 * Sets PHY page required for PHY register access. Assumes semaphore is 311 * already acquired. Note, this function sets phy.addr to 1 so the caller 312 * must set it appropriately (if necessary) after this function returns. 313 **/ 314 s32 e1000_set_page_igp(struct e1000_hw *hw, u16 page) 315 { 316 e_dbg("Setting page 0x%x\n", page); 317 318 hw->phy.addr = 1; 319 320 return e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, page); 321 } 322 323 /** 324 * __e1000e_read_phy_reg_igp - Read igp PHY register 325 * @hw: pointer to the HW structure 326 * @offset: register offset to be read 327 * @data: pointer to the read data 328 * @locked: semaphore has already been acquired or not 329 * 330 * Acquires semaphore, if necessary, then reads the PHY register at offset 331 * and stores the retrieved information in data. Release any acquired 332 * semaphores before exiting. 333 **/ 334 static s32 __e1000e_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data, 335 bool locked) 336 { 337 s32 ret_val = 0; 338 339 if (!locked) { 340 if (!hw->phy.ops.acquire) 341 return 0; 342 343 ret_val = hw->phy.ops.acquire(hw); 344 if (ret_val) 345 return ret_val; 346 } 347 348 if (offset > MAX_PHY_MULTI_PAGE_REG) 349 ret_val = e1000e_write_phy_reg_mdic(hw, 350 IGP01E1000_PHY_PAGE_SELECT, 351 (u16)offset); 352 if (!ret_val) 353 ret_val = e1000e_read_phy_reg_mdic(hw, 354 MAX_PHY_REG_ADDRESS & offset, 355 data); 356 if (!locked) 357 hw->phy.ops.release(hw); 358 359 return ret_val; 360 } 361 362 /** 363 * e1000e_read_phy_reg_igp - Read igp PHY register 364 * @hw: pointer to the HW structure 365 * @offset: register offset to be read 366 * @data: pointer to the read data 367 * 368 * Acquires semaphore then reads the PHY register at offset and stores the 369 * retrieved information in data. 370 * Release the acquired semaphore before exiting. 371 **/ 372 s32 e1000e_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data) 373 { 374 return __e1000e_read_phy_reg_igp(hw, offset, data, false); 375 } 376 377 /** 378 * e1000e_read_phy_reg_igp_locked - Read igp PHY register 379 * @hw: pointer to the HW structure 380 * @offset: register offset to be read 381 * @data: pointer to the read data 382 * 383 * Reads the PHY register at offset and stores the retrieved information 384 * in data. Assumes semaphore already acquired. 385 **/ 386 s32 e1000e_read_phy_reg_igp_locked(struct e1000_hw *hw, u32 offset, u16 *data) 387 { 388 return __e1000e_read_phy_reg_igp(hw, offset, data, true); 389 } 390 391 /** 392 * e1000e_write_phy_reg_igp - Write igp PHY register 393 * @hw: pointer to the HW structure 394 * @offset: register offset to write to 395 * @data: data to write at register offset 396 * @locked: semaphore has already been acquired or not 397 * 398 * Acquires semaphore, if necessary, then writes the data to PHY register 399 * at the offset. Release any acquired semaphores before exiting. 400 **/ 401 static s32 __e1000e_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data, 402 bool locked) 403 { 404 s32 ret_val = 0; 405 406 if (!locked) { 407 if (!hw->phy.ops.acquire) 408 return 0; 409 410 ret_val = hw->phy.ops.acquire(hw); 411 if (ret_val) 412 return ret_val; 413 } 414 415 if (offset > MAX_PHY_MULTI_PAGE_REG) 416 ret_val = e1000e_write_phy_reg_mdic(hw, 417 IGP01E1000_PHY_PAGE_SELECT, 418 (u16)offset); 419 if (!ret_val) 420 ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & 421 offset, data); 422 if (!locked) 423 hw->phy.ops.release(hw); 424 425 return ret_val; 426 } 427 428 /** 429 * e1000e_write_phy_reg_igp - Write igp PHY register 430 * @hw: pointer to the HW structure 431 * @offset: register offset to write to 432 * @data: data to write at register offset 433 * 434 * Acquires semaphore then writes the data to PHY register 435 * at the offset. Release any acquired semaphores before exiting. 436 **/ 437 s32 e1000e_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data) 438 { 439 return __e1000e_write_phy_reg_igp(hw, offset, data, false); 440 } 441 442 /** 443 * e1000e_write_phy_reg_igp_locked - Write igp PHY register 444 * @hw: pointer to the HW structure 445 * @offset: register offset to write to 446 * @data: data to write at register offset 447 * 448 * Writes the data to PHY register at the offset. 449 * Assumes semaphore already acquired. 450 **/ 451 s32 e1000e_write_phy_reg_igp_locked(struct e1000_hw *hw, u32 offset, u16 data) 452 { 453 return __e1000e_write_phy_reg_igp(hw, offset, data, true); 454 } 455 456 /** 457 * __e1000_read_kmrn_reg - Read kumeran register 458 * @hw: pointer to the HW structure 459 * @offset: register offset to be read 460 * @data: pointer to the read data 461 * @locked: semaphore has already been acquired or not 462 * 463 * Acquires semaphore, if necessary. Then reads the PHY register at offset 464 * using the kumeran interface. The information retrieved is stored in data. 465 * Release any acquired semaphores before exiting. 466 **/ 467 static s32 __e1000_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data, 468 bool locked) 469 { 470 u32 kmrnctrlsta; 471 472 if (!locked) { 473 s32 ret_val = 0; 474 475 if (!hw->phy.ops.acquire) 476 return 0; 477 478 ret_val = hw->phy.ops.acquire(hw); 479 if (ret_val) 480 return ret_val; 481 } 482 483 kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) & 484 E1000_KMRNCTRLSTA_OFFSET) | E1000_KMRNCTRLSTA_REN; 485 ew32(KMRNCTRLSTA, kmrnctrlsta); 486 e1e_flush(); 487 488 udelay(2); 489 490 kmrnctrlsta = er32(KMRNCTRLSTA); 491 *data = (u16)kmrnctrlsta; 492 493 if (!locked) 494 hw->phy.ops.release(hw); 495 496 return 0; 497 } 498 499 /** 500 * e1000e_read_kmrn_reg - Read kumeran register 501 * @hw: pointer to the HW structure 502 * @offset: register offset to be read 503 * @data: pointer to the read data 504 * 505 * Acquires semaphore then reads the PHY register at offset using the 506 * kumeran interface. The information retrieved is stored in data. 507 * Release the acquired semaphore before exiting. 508 **/ 509 s32 e1000e_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data) 510 { 511 return __e1000_read_kmrn_reg(hw, offset, data, false); 512 } 513 514 /** 515 * e1000e_read_kmrn_reg_locked - Read kumeran register 516 * @hw: pointer to the HW structure 517 * @offset: register offset to be read 518 * @data: pointer to the read data 519 * 520 * Reads the PHY register at offset using the kumeran interface. The 521 * information retrieved is stored in data. 522 * Assumes semaphore already acquired. 523 **/ 524 s32 e1000e_read_kmrn_reg_locked(struct e1000_hw *hw, u32 offset, u16 *data) 525 { 526 return __e1000_read_kmrn_reg(hw, offset, data, true); 527 } 528 529 /** 530 * __e1000_write_kmrn_reg - Write kumeran register 531 * @hw: pointer to the HW structure 532 * @offset: register offset to write to 533 * @data: data to write at register offset 534 * @locked: semaphore has already been acquired or not 535 * 536 * Acquires semaphore, if necessary. Then write the data to PHY register 537 * at the offset using the kumeran interface. Release any acquired semaphores 538 * before exiting. 539 **/ 540 static s32 __e1000_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data, 541 bool locked) 542 { 543 u32 kmrnctrlsta; 544 545 if (!locked) { 546 s32 ret_val = 0; 547 548 if (!hw->phy.ops.acquire) 549 return 0; 550 551 ret_val = hw->phy.ops.acquire(hw); 552 if (ret_val) 553 return ret_val; 554 } 555 556 kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) & 557 E1000_KMRNCTRLSTA_OFFSET) | data; 558 ew32(KMRNCTRLSTA, kmrnctrlsta); 559 e1e_flush(); 560 561 udelay(2); 562 563 if (!locked) 564 hw->phy.ops.release(hw); 565 566 return 0; 567 } 568 569 /** 570 * e1000e_write_kmrn_reg - Write kumeran register 571 * @hw: pointer to the HW structure 572 * @offset: register offset to write to 573 * @data: data to write at register offset 574 * 575 * Acquires semaphore then writes the data to the PHY register at the offset 576 * using the kumeran interface. Release the acquired semaphore before exiting. 577 **/ 578 s32 e1000e_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data) 579 { 580 return __e1000_write_kmrn_reg(hw, offset, data, false); 581 } 582 583 /** 584 * e1000e_write_kmrn_reg_locked - Write kumeran register 585 * @hw: pointer to the HW structure 586 * @offset: register offset to write to 587 * @data: data to write at register offset 588 * 589 * Write the data to PHY register at the offset using the kumeran interface. 590 * Assumes semaphore already acquired. 591 **/ 592 s32 e1000e_write_kmrn_reg_locked(struct e1000_hw *hw, u32 offset, u16 data) 593 { 594 return __e1000_write_kmrn_reg(hw, offset, data, true); 595 } 596 597 /** 598 * e1000_set_master_slave_mode - Setup PHY for Master/slave mode 599 * @hw: pointer to the HW structure 600 * 601 * Sets up Master/slave mode 602 **/ 603 static s32 e1000_set_master_slave_mode(struct e1000_hw *hw) 604 { 605 s32 ret_val; 606 u16 phy_data; 607 608 /* Resolve Master/Slave mode */ 609 ret_val = e1e_rphy(hw, MII_CTRL1000, &phy_data); 610 if (ret_val) 611 return ret_val; 612 613 /* load defaults for future use */ 614 hw->phy.original_ms_type = (phy_data & CTL1000_ENABLE_MASTER) ? 615 ((phy_data & CTL1000_AS_MASTER) ? 616 e1000_ms_force_master : e1000_ms_force_slave) : e1000_ms_auto; 617 618 switch (hw->phy.ms_type) { 619 case e1000_ms_force_master: 620 phy_data |= (CTL1000_ENABLE_MASTER | CTL1000_AS_MASTER); 621 break; 622 case e1000_ms_force_slave: 623 phy_data |= CTL1000_ENABLE_MASTER; 624 phy_data &= ~(CTL1000_AS_MASTER); 625 break; 626 case e1000_ms_auto: 627 phy_data &= ~CTL1000_ENABLE_MASTER; 628 /* fall-through */ 629 default: 630 break; 631 } 632 633 return e1e_wphy(hw, MII_CTRL1000, phy_data); 634 } 635 636 /** 637 * e1000_copper_link_setup_82577 - Setup 82577 PHY for copper link 638 * @hw: pointer to the HW structure 639 * 640 * Sets up Carrier-sense on Transmit and downshift values. 641 **/ 642 s32 e1000_copper_link_setup_82577(struct e1000_hw *hw) 643 { 644 s32 ret_val; 645 u16 phy_data; 646 647 /* Enable CRS on Tx. This must be set for half-duplex operation. */ 648 ret_val = e1e_rphy(hw, I82577_CFG_REG, &phy_data); 649 if (ret_val) 650 return ret_val; 651 652 phy_data |= I82577_CFG_ASSERT_CRS_ON_TX; 653 654 /* Enable downshift */ 655 phy_data |= I82577_CFG_ENABLE_DOWNSHIFT; 656 657 ret_val = e1e_wphy(hw, I82577_CFG_REG, phy_data); 658 if (ret_val) 659 return ret_val; 660 661 /* Set MDI/MDIX mode */ 662 ret_val = e1e_rphy(hw, I82577_PHY_CTRL_2, &phy_data); 663 if (ret_val) 664 return ret_val; 665 phy_data &= ~I82577_PHY_CTRL2_MDIX_CFG_MASK; 666 /* Options: 667 * 0 - Auto (default) 668 * 1 - MDI mode 669 * 2 - MDI-X mode 670 */ 671 switch (hw->phy.mdix) { 672 case 1: 673 break; 674 case 2: 675 phy_data |= I82577_PHY_CTRL2_MANUAL_MDIX; 676 break; 677 case 0: 678 default: 679 phy_data |= I82577_PHY_CTRL2_AUTO_MDI_MDIX; 680 break; 681 } 682 ret_val = e1e_wphy(hw, I82577_PHY_CTRL_2, phy_data); 683 if (ret_val) 684 return ret_val; 685 686 return e1000_set_master_slave_mode(hw); 687 } 688 689 /** 690 * e1000e_copper_link_setup_m88 - Setup m88 PHY's for copper link 691 * @hw: pointer to the HW structure 692 * 693 * Sets up MDI/MDI-X and polarity for m88 PHY's. If necessary, transmit clock 694 * and downshift values are set also. 695 **/ 696 s32 e1000e_copper_link_setup_m88(struct e1000_hw *hw) 697 { 698 struct e1000_phy_info *phy = &hw->phy; 699 s32 ret_val; 700 u16 phy_data; 701 702 /* Enable CRS on Tx. This must be set for half-duplex operation. */ 703 ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); 704 if (ret_val) 705 return ret_val; 706 707 /* For BM PHY this bit is downshift enable */ 708 if (phy->type != e1000_phy_bm) 709 phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX; 710 711 /* Options: 712 * MDI/MDI-X = 0 (default) 713 * 0 - Auto for all speeds 714 * 1 - MDI mode 715 * 2 - MDI-X mode 716 * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes) 717 */ 718 phy_data &= ~M88E1000_PSCR_AUTO_X_MODE; 719 720 switch (phy->mdix) { 721 case 1: 722 phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE; 723 break; 724 case 2: 725 phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE; 726 break; 727 case 3: 728 phy_data |= M88E1000_PSCR_AUTO_X_1000T; 729 break; 730 case 0: 731 default: 732 phy_data |= M88E1000_PSCR_AUTO_X_MODE; 733 break; 734 } 735 736 /* Options: 737 * disable_polarity_correction = 0 (default) 738 * Automatic Correction for Reversed Cable Polarity 739 * 0 - Disabled 740 * 1 - Enabled 741 */ 742 phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL; 743 if (phy->disable_polarity_correction) 744 phy_data |= M88E1000_PSCR_POLARITY_REVERSAL; 745 746 /* Enable downshift on BM (disabled by default) */ 747 if (phy->type == e1000_phy_bm) { 748 /* For 82574/82583, first disable then enable downshift */ 749 if (phy->id == BME1000_E_PHY_ID_R2) { 750 phy_data &= ~BME1000_PSCR_ENABLE_DOWNSHIFT; 751 ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, 752 phy_data); 753 if (ret_val) 754 return ret_val; 755 /* Commit the changes. */ 756 ret_val = phy->ops.commit(hw); 757 if (ret_val) { 758 e_dbg("Error committing the PHY changes\n"); 759 return ret_val; 760 } 761 } 762 763 phy_data |= BME1000_PSCR_ENABLE_DOWNSHIFT; 764 } 765 766 ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, phy_data); 767 if (ret_val) 768 return ret_val; 769 770 if ((phy->type == e1000_phy_m88) && 771 (phy->revision < E1000_REVISION_4) && 772 (phy->id != BME1000_E_PHY_ID_R2)) { 773 /* Force TX_CLK in the Extended PHY Specific Control Register 774 * to 25MHz clock. 775 */ 776 ret_val = e1e_rphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data); 777 if (ret_val) 778 return ret_val; 779 780 phy_data |= M88E1000_EPSCR_TX_CLK_25; 781 782 if ((phy->revision == 2) && (phy->id == M88E1111_I_PHY_ID)) { 783 /* 82573L PHY - set the downshift counter to 5x. */ 784 phy_data &= ~M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK; 785 phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X; 786 } else { 787 /* Configure Master and Slave downshift values */ 788 phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK | 789 M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK); 790 phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X | 791 M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X); 792 } 793 ret_val = e1e_wphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data); 794 if (ret_val) 795 return ret_val; 796 } 797 798 if ((phy->type == e1000_phy_bm) && (phy->id == BME1000_E_PHY_ID_R2)) { 799 /* Set PHY page 0, register 29 to 0x0003 */ 800 ret_val = e1e_wphy(hw, 29, 0x0003); 801 if (ret_val) 802 return ret_val; 803 804 /* Set PHY page 0, register 30 to 0x0000 */ 805 ret_val = e1e_wphy(hw, 30, 0x0000); 806 if (ret_val) 807 return ret_val; 808 } 809 810 /* Commit the changes. */ 811 if (phy->ops.commit) { 812 ret_val = phy->ops.commit(hw); 813 if (ret_val) { 814 e_dbg("Error committing the PHY changes\n"); 815 return ret_val; 816 } 817 } 818 819 if (phy->type == e1000_phy_82578) { 820 ret_val = e1e_rphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data); 821 if (ret_val) 822 return ret_val; 823 824 /* 82578 PHY - set the downshift count to 1x. */ 825 phy_data |= I82578_EPSCR_DOWNSHIFT_ENABLE; 826 phy_data &= ~I82578_EPSCR_DOWNSHIFT_COUNTER_MASK; 827 ret_val = e1e_wphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data); 828 if (ret_val) 829 return ret_val; 830 } 831 832 return 0; 833 } 834 835 /** 836 * e1000e_copper_link_setup_igp - Setup igp PHY's for copper link 837 * @hw: pointer to the HW structure 838 * 839 * Sets up LPLU, MDI/MDI-X, polarity, Smartspeed and Master/Slave config for 840 * igp PHY's. 841 **/ 842 s32 e1000e_copper_link_setup_igp(struct e1000_hw *hw) 843 { 844 struct e1000_phy_info *phy = &hw->phy; 845 s32 ret_val; 846 u16 data; 847 848 ret_val = e1000_phy_hw_reset(hw); 849 if (ret_val) { 850 e_dbg("Error resetting the PHY.\n"); 851 return ret_val; 852 } 853 854 /* Wait 100ms for MAC to configure PHY from NVM settings, to avoid 855 * timeout issues when LFS is enabled. 856 */ 857 msleep(100); 858 859 /* disable lplu d0 during driver init */ 860 if (hw->phy.ops.set_d0_lplu_state) { 861 ret_val = hw->phy.ops.set_d0_lplu_state(hw, false); 862 if (ret_val) { 863 e_dbg("Error Disabling LPLU D0\n"); 864 return ret_val; 865 } 866 } 867 /* Configure mdi-mdix settings */ 868 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CTRL, &data); 869 if (ret_val) 870 return ret_val; 871 872 data &= ~IGP01E1000_PSCR_AUTO_MDIX; 873 874 switch (phy->mdix) { 875 case 1: 876 data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX; 877 break; 878 case 2: 879 data |= IGP01E1000_PSCR_FORCE_MDI_MDIX; 880 break; 881 case 0: 882 default: 883 data |= IGP01E1000_PSCR_AUTO_MDIX; 884 break; 885 } 886 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CTRL, data); 887 if (ret_val) 888 return ret_val; 889 890 /* set auto-master slave resolution settings */ 891 if (hw->mac.autoneg) { 892 /* when autonegotiation advertisement is only 1000Mbps then we 893 * should disable SmartSpeed and enable Auto MasterSlave 894 * resolution as hardware default. 895 */ 896 if (phy->autoneg_advertised == ADVERTISE_1000_FULL) { 897 /* Disable SmartSpeed */ 898 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, 899 &data); 900 if (ret_val) 901 return ret_val; 902 903 data &= ~IGP01E1000_PSCFR_SMART_SPEED; 904 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, 905 data); 906 if (ret_val) 907 return ret_val; 908 909 /* Set auto Master/Slave resolution process */ 910 ret_val = e1e_rphy(hw, MII_CTRL1000, &data); 911 if (ret_val) 912 return ret_val; 913 914 data &= ~CTL1000_ENABLE_MASTER; 915 ret_val = e1e_wphy(hw, MII_CTRL1000, data); 916 if (ret_val) 917 return ret_val; 918 } 919 920 ret_val = e1000_set_master_slave_mode(hw); 921 } 922 923 return ret_val; 924 } 925 926 /** 927 * e1000_phy_setup_autoneg - Configure PHY for auto-negotiation 928 * @hw: pointer to the HW structure 929 * 930 * Reads the MII auto-neg advertisement register and/or the 1000T control 931 * register and if the PHY is already setup for auto-negotiation, then 932 * return successful. Otherwise, setup advertisement and flow control to 933 * the appropriate values for the wanted auto-negotiation. 934 **/ 935 static s32 e1000_phy_setup_autoneg(struct e1000_hw *hw) 936 { 937 struct e1000_phy_info *phy = &hw->phy; 938 s32 ret_val; 939 u16 mii_autoneg_adv_reg; 940 u16 mii_1000t_ctrl_reg = 0; 941 942 phy->autoneg_advertised &= phy->autoneg_mask; 943 944 /* Read the MII Auto-Neg Advertisement Register (Address 4). */ 945 ret_val = e1e_rphy(hw, MII_ADVERTISE, &mii_autoneg_adv_reg); 946 if (ret_val) 947 return ret_val; 948 949 if (phy->autoneg_mask & ADVERTISE_1000_FULL) { 950 /* Read the MII 1000Base-T Control Register (Address 9). */ 951 ret_val = e1e_rphy(hw, MII_CTRL1000, &mii_1000t_ctrl_reg); 952 if (ret_val) 953 return ret_val; 954 } 955 956 /* Need to parse both autoneg_advertised and fc and set up 957 * the appropriate PHY registers. First we will parse for 958 * autoneg_advertised software override. Since we can advertise 959 * a plethora of combinations, we need to check each bit 960 * individually. 961 */ 962 963 /* First we clear all the 10/100 mb speed bits in the Auto-Neg 964 * Advertisement Register (Address 4) and the 1000 mb speed bits in 965 * the 1000Base-T Control Register (Address 9). 966 */ 967 mii_autoneg_adv_reg &= ~(ADVERTISE_100FULL | 968 ADVERTISE_100HALF | 969 ADVERTISE_10FULL | ADVERTISE_10HALF); 970 mii_1000t_ctrl_reg &= ~(ADVERTISE_1000HALF | ADVERTISE_1000FULL); 971 972 e_dbg("autoneg_advertised %x\n", phy->autoneg_advertised); 973 974 /* Do we want to advertise 10 Mb Half Duplex? */ 975 if (phy->autoneg_advertised & ADVERTISE_10_HALF) { 976 e_dbg("Advertise 10mb Half duplex\n"); 977 mii_autoneg_adv_reg |= ADVERTISE_10HALF; 978 } 979 980 /* Do we want to advertise 10 Mb Full Duplex? */ 981 if (phy->autoneg_advertised & ADVERTISE_10_FULL) { 982 e_dbg("Advertise 10mb Full duplex\n"); 983 mii_autoneg_adv_reg |= ADVERTISE_10FULL; 984 } 985 986 /* Do we want to advertise 100 Mb Half Duplex? */ 987 if (phy->autoneg_advertised & ADVERTISE_100_HALF) { 988 e_dbg("Advertise 100mb Half duplex\n"); 989 mii_autoneg_adv_reg |= ADVERTISE_100HALF; 990 } 991 992 /* Do we want to advertise 100 Mb Full Duplex? */ 993 if (phy->autoneg_advertised & ADVERTISE_100_FULL) { 994 e_dbg("Advertise 100mb Full duplex\n"); 995 mii_autoneg_adv_reg |= ADVERTISE_100FULL; 996 } 997 998 /* We do not allow the Phy to advertise 1000 Mb Half Duplex */ 999 if (phy->autoneg_advertised & ADVERTISE_1000_HALF) 1000 e_dbg("Advertise 1000mb Half duplex request denied!\n"); 1001 1002 /* Do we want to advertise 1000 Mb Full Duplex? */ 1003 if (phy->autoneg_advertised & ADVERTISE_1000_FULL) { 1004 e_dbg("Advertise 1000mb Full duplex\n"); 1005 mii_1000t_ctrl_reg |= ADVERTISE_1000FULL; 1006 } 1007 1008 /* Check for a software override of the flow control settings, and 1009 * setup the PHY advertisement registers accordingly. If 1010 * auto-negotiation is enabled, then software will have to set the 1011 * "PAUSE" bits to the correct value in the Auto-Negotiation 1012 * Advertisement Register (MII_ADVERTISE) and re-start auto- 1013 * negotiation. 1014 * 1015 * The possible values of the "fc" parameter are: 1016 * 0: Flow control is completely disabled 1017 * 1: Rx flow control is enabled (we can receive pause frames 1018 * but not send pause frames). 1019 * 2: Tx flow control is enabled (we can send pause frames 1020 * but we do not support receiving pause frames). 1021 * 3: Both Rx and Tx flow control (symmetric) are enabled. 1022 * other: No software override. The flow control configuration 1023 * in the EEPROM is used. 1024 */ 1025 switch (hw->fc.current_mode) { 1026 case e1000_fc_none: 1027 /* Flow control (Rx & Tx) is completely disabled by a 1028 * software over-ride. 1029 */ 1030 mii_autoneg_adv_reg &= 1031 ~(ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP); 1032 break; 1033 case e1000_fc_rx_pause: 1034 /* Rx Flow control is enabled, and Tx Flow control is 1035 * disabled, by a software over-ride. 1036 * 1037 * Since there really isn't a way to advertise that we are 1038 * capable of Rx Pause ONLY, we will advertise that we 1039 * support both symmetric and asymmetric Rx PAUSE. Later 1040 * (in e1000e_config_fc_after_link_up) we will disable the 1041 * hw's ability to send PAUSE frames. 1042 */ 1043 mii_autoneg_adv_reg |= 1044 (ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP); 1045 break; 1046 case e1000_fc_tx_pause: 1047 /* Tx Flow control is enabled, and Rx Flow control is 1048 * disabled, by a software over-ride. 1049 */ 1050 mii_autoneg_adv_reg |= ADVERTISE_PAUSE_ASYM; 1051 mii_autoneg_adv_reg &= ~ADVERTISE_PAUSE_CAP; 1052 break; 1053 case e1000_fc_full: 1054 /* Flow control (both Rx and Tx) is enabled by a software 1055 * over-ride. 1056 */ 1057 mii_autoneg_adv_reg |= 1058 (ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP); 1059 break; 1060 default: 1061 e_dbg("Flow control param set incorrectly\n"); 1062 return -E1000_ERR_CONFIG; 1063 } 1064 1065 ret_val = e1e_wphy(hw, MII_ADVERTISE, mii_autoneg_adv_reg); 1066 if (ret_val) 1067 return ret_val; 1068 1069 e_dbg("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg); 1070 1071 if (phy->autoneg_mask & ADVERTISE_1000_FULL) 1072 ret_val = e1e_wphy(hw, MII_CTRL1000, mii_1000t_ctrl_reg); 1073 1074 return ret_val; 1075 } 1076 1077 /** 1078 * e1000_copper_link_autoneg - Setup/Enable autoneg for copper link 1079 * @hw: pointer to the HW structure 1080 * 1081 * Performs initial bounds checking on autoneg advertisement parameter, then 1082 * configure to advertise the full capability. Setup the PHY to autoneg 1083 * and restart the negotiation process between the link partner. If 1084 * autoneg_wait_to_complete, then wait for autoneg to complete before exiting. 1085 **/ 1086 static s32 e1000_copper_link_autoneg(struct e1000_hw *hw) 1087 { 1088 struct e1000_phy_info *phy = &hw->phy; 1089 s32 ret_val; 1090 u16 phy_ctrl; 1091 1092 /* Perform some bounds checking on the autoneg advertisement 1093 * parameter. 1094 */ 1095 phy->autoneg_advertised &= phy->autoneg_mask; 1096 1097 /* If autoneg_advertised is zero, we assume it was not defaulted 1098 * by the calling code so we set to advertise full capability. 1099 */ 1100 if (!phy->autoneg_advertised) 1101 phy->autoneg_advertised = phy->autoneg_mask; 1102 1103 e_dbg("Reconfiguring auto-neg advertisement params\n"); 1104 ret_val = e1000_phy_setup_autoneg(hw); 1105 if (ret_val) { 1106 e_dbg("Error Setting up Auto-Negotiation\n"); 1107 return ret_val; 1108 } 1109 e_dbg("Restarting Auto-Neg\n"); 1110 1111 /* Restart auto-negotiation by setting the Auto Neg Enable bit and 1112 * the Auto Neg Restart bit in the PHY control register. 1113 */ 1114 ret_val = e1e_rphy(hw, MII_BMCR, &phy_ctrl); 1115 if (ret_val) 1116 return ret_val; 1117 1118 phy_ctrl |= (BMCR_ANENABLE | BMCR_ANRESTART); 1119 ret_val = e1e_wphy(hw, MII_BMCR, phy_ctrl); 1120 if (ret_val) 1121 return ret_val; 1122 1123 /* Does the user want to wait for Auto-Neg to complete here, or 1124 * check at a later time (for example, callback routine). 1125 */ 1126 if (phy->autoneg_wait_to_complete) { 1127 ret_val = e1000_wait_autoneg(hw); 1128 if (ret_val) { 1129 e_dbg("Error while waiting for autoneg to complete\n"); 1130 return ret_val; 1131 } 1132 } 1133 1134 hw->mac.get_link_status = true; 1135 1136 return ret_val; 1137 } 1138 1139 /** 1140 * e1000e_setup_copper_link - Configure copper link settings 1141 * @hw: pointer to the HW structure 1142 * 1143 * Calls the appropriate function to configure the link for auto-neg or forced 1144 * speed and duplex. Then we check for link, once link is established calls 1145 * to configure collision distance and flow control are called. If link is 1146 * not established, we return -E1000_ERR_PHY (-2). 1147 **/ 1148 s32 e1000e_setup_copper_link(struct e1000_hw *hw) 1149 { 1150 s32 ret_val; 1151 bool link; 1152 1153 if (hw->mac.autoneg) { 1154 /* Setup autoneg and flow control advertisement and perform 1155 * autonegotiation. 1156 */ 1157 ret_val = e1000_copper_link_autoneg(hw); 1158 if (ret_val) 1159 return ret_val; 1160 } else { 1161 /* PHY will be set to 10H, 10F, 100H or 100F 1162 * depending on user settings. 1163 */ 1164 e_dbg("Forcing Speed and Duplex\n"); 1165 ret_val = hw->phy.ops.force_speed_duplex(hw); 1166 if (ret_val) { 1167 e_dbg("Error Forcing Speed and Duplex\n"); 1168 return ret_val; 1169 } 1170 } 1171 1172 /* Check link status. Wait up to 100 microseconds for link to become 1173 * valid. 1174 */ 1175 ret_val = e1000e_phy_has_link_generic(hw, COPPER_LINK_UP_LIMIT, 10, 1176 &link); 1177 if (ret_val) 1178 return ret_val; 1179 1180 if (link) { 1181 e_dbg("Valid link established!!!\n"); 1182 hw->mac.ops.config_collision_dist(hw); 1183 ret_val = e1000e_config_fc_after_link_up(hw); 1184 } else { 1185 e_dbg("Unable to establish link!!!\n"); 1186 } 1187 1188 return ret_val; 1189 } 1190 1191 /** 1192 * e1000e_phy_force_speed_duplex_igp - Force speed/duplex for igp PHY 1193 * @hw: pointer to the HW structure 1194 * 1195 * Calls the PHY setup function to force speed and duplex. Clears the 1196 * auto-crossover to force MDI manually. Waits for link and returns 1197 * successful if link up is successful, else -E1000_ERR_PHY (-2). 1198 **/ 1199 s32 e1000e_phy_force_speed_duplex_igp(struct e1000_hw *hw) 1200 { 1201 struct e1000_phy_info *phy = &hw->phy; 1202 s32 ret_val; 1203 u16 phy_data; 1204 bool link; 1205 1206 ret_val = e1e_rphy(hw, MII_BMCR, &phy_data); 1207 if (ret_val) 1208 return ret_val; 1209 1210 e1000e_phy_force_speed_duplex_setup(hw, &phy_data); 1211 1212 ret_val = e1e_wphy(hw, MII_BMCR, phy_data); 1213 if (ret_val) 1214 return ret_val; 1215 1216 /* Clear Auto-Crossover to force MDI manually. IGP requires MDI 1217 * forced whenever speed and duplex are forced. 1218 */ 1219 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data); 1220 if (ret_val) 1221 return ret_val; 1222 1223 phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX; 1224 phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX; 1225 1226 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CTRL, phy_data); 1227 if (ret_val) 1228 return ret_val; 1229 1230 e_dbg("IGP PSCR: %X\n", phy_data); 1231 1232 udelay(1); 1233 1234 if (phy->autoneg_wait_to_complete) { 1235 e_dbg("Waiting for forced speed/duplex link on IGP phy.\n"); 1236 1237 ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT, 1238 100000, &link); 1239 if (ret_val) 1240 return ret_val; 1241 1242 if (!link) 1243 e_dbg("Link taking longer than expected.\n"); 1244 1245 /* Try once more */ 1246 ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT, 1247 100000, &link); 1248 } 1249 1250 return ret_val; 1251 } 1252 1253 /** 1254 * e1000e_phy_force_speed_duplex_m88 - Force speed/duplex for m88 PHY 1255 * @hw: pointer to the HW structure 1256 * 1257 * Calls the PHY setup function to force speed and duplex. Clears the 1258 * auto-crossover to force MDI manually. Resets the PHY to commit the 1259 * changes. If time expires while waiting for link up, we reset the DSP. 1260 * After reset, TX_CLK and CRS on Tx must be set. Return successful upon 1261 * successful completion, else return corresponding error code. 1262 **/ 1263 s32 e1000e_phy_force_speed_duplex_m88(struct e1000_hw *hw) 1264 { 1265 struct e1000_phy_info *phy = &hw->phy; 1266 s32 ret_val; 1267 u16 phy_data; 1268 bool link; 1269 1270 /* Clear Auto-Crossover to force MDI manually. M88E1000 requires MDI 1271 * forced whenever speed and duplex are forced. 1272 */ 1273 ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); 1274 if (ret_val) 1275 return ret_val; 1276 1277 phy_data &= ~M88E1000_PSCR_AUTO_X_MODE; 1278 ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, phy_data); 1279 if (ret_val) 1280 return ret_val; 1281 1282 e_dbg("M88E1000 PSCR: %X\n", phy_data); 1283 1284 ret_val = e1e_rphy(hw, MII_BMCR, &phy_data); 1285 if (ret_val) 1286 return ret_val; 1287 1288 e1000e_phy_force_speed_duplex_setup(hw, &phy_data); 1289 1290 ret_val = e1e_wphy(hw, MII_BMCR, phy_data); 1291 if (ret_val) 1292 return ret_val; 1293 1294 /* Reset the phy to commit changes. */ 1295 if (hw->phy.ops.commit) { 1296 ret_val = hw->phy.ops.commit(hw); 1297 if (ret_val) 1298 return ret_val; 1299 } 1300 1301 if (phy->autoneg_wait_to_complete) { 1302 e_dbg("Waiting for forced speed/duplex link on M88 phy.\n"); 1303 1304 ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT, 1305 100000, &link); 1306 if (ret_val) 1307 return ret_val; 1308 1309 if (!link) { 1310 if (hw->phy.type != e1000_phy_m88) { 1311 e_dbg("Link taking longer than expected.\n"); 1312 } else { 1313 /* We didn't get link. 1314 * Reset the DSP and cross our fingers. 1315 */ 1316 ret_val = e1e_wphy(hw, M88E1000_PHY_PAGE_SELECT, 1317 0x001d); 1318 if (ret_val) 1319 return ret_val; 1320 ret_val = e1000e_phy_reset_dsp(hw); 1321 if (ret_val) 1322 return ret_val; 1323 } 1324 } 1325 1326 /* Try once more */ 1327 ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT, 1328 100000, &link); 1329 if (ret_val) 1330 return ret_val; 1331 } 1332 1333 if (hw->phy.type != e1000_phy_m88) 1334 return 0; 1335 1336 ret_val = e1e_rphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data); 1337 if (ret_val) 1338 return ret_val; 1339 1340 /* Resetting the phy means we need to re-force TX_CLK in the 1341 * Extended PHY Specific Control Register to 25MHz clock from 1342 * the reset value of 2.5MHz. 1343 */ 1344 phy_data |= M88E1000_EPSCR_TX_CLK_25; 1345 ret_val = e1e_wphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data); 1346 if (ret_val) 1347 return ret_val; 1348 1349 /* In addition, we must re-enable CRS on Tx for both half and full 1350 * duplex. 1351 */ 1352 ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); 1353 if (ret_val) 1354 return ret_val; 1355 1356 phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX; 1357 ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, phy_data); 1358 1359 return ret_val; 1360 } 1361 1362 /** 1363 * e1000_phy_force_speed_duplex_ife - Force PHY speed & duplex 1364 * @hw: pointer to the HW structure 1365 * 1366 * Forces the speed and duplex settings of the PHY. 1367 * This is a function pointer entry point only called by 1368 * PHY setup routines. 1369 **/ 1370 s32 e1000_phy_force_speed_duplex_ife(struct e1000_hw *hw) 1371 { 1372 struct e1000_phy_info *phy = &hw->phy; 1373 s32 ret_val; 1374 u16 data; 1375 bool link; 1376 1377 ret_val = e1e_rphy(hw, MII_BMCR, &data); 1378 if (ret_val) 1379 return ret_val; 1380 1381 e1000e_phy_force_speed_duplex_setup(hw, &data); 1382 1383 ret_val = e1e_wphy(hw, MII_BMCR, data); 1384 if (ret_val) 1385 return ret_val; 1386 1387 /* Disable MDI-X support for 10/100 */ 1388 ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &data); 1389 if (ret_val) 1390 return ret_val; 1391 1392 data &= ~IFE_PMC_AUTO_MDIX; 1393 data &= ~IFE_PMC_FORCE_MDIX; 1394 1395 ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, data); 1396 if (ret_val) 1397 return ret_val; 1398 1399 e_dbg("IFE PMC: %X\n", data); 1400 1401 udelay(1); 1402 1403 if (phy->autoneg_wait_to_complete) { 1404 e_dbg("Waiting for forced speed/duplex link on IFE phy.\n"); 1405 1406 ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT, 1407 100000, &link); 1408 if (ret_val) 1409 return ret_val; 1410 1411 if (!link) 1412 e_dbg("Link taking longer than expected.\n"); 1413 1414 /* Try once more */ 1415 ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT, 1416 100000, &link); 1417 if (ret_val) 1418 return ret_val; 1419 } 1420 1421 return 0; 1422 } 1423 1424 /** 1425 * e1000e_phy_force_speed_duplex_setup - Configure forced PHY speed/duplex 1426 * @hw: pointer to the HW structure 1427 * @phy_ctrl: pointer to current value of MII_BMCR 1428 * 1429 * Forces speed and duplex on the PHY by doing the following: disable flow 1430 * control, force speed/duplex on the MAC, disable auto speed detection, 1431 * disable auto-negotiation, configure duplex, configure speed, configure 1432 * the collision distance, write configuration to CTRL register. The 1433 * caller must write to the MII_BMCR register for these settings to 1434 * take affect. 1435 **/ 1436 void e1000e_phy_force_speed_duplex_setup(struct e1000_hw *hw, u16 *phy_ctrl) 1437 { 1438 struct e1000_mac_info *mac = &hw->mac; 1439 u32 ctrl; 1440 1441 /* Turn off flow control when forcing speed/duplex */ 1442 hw->fc.current_mode = e1000_fc_none; 1443 1444 /* Force speed/duplex on the mac */ 1445 ctrl = er32(CTRL); 1446 ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); 1447 ctrl &= ~E1000_CTRL_SPD_SEL; 1448 1449 /* Disable Auto Speed Detection */ 1450 ctrl &= ~E1000_CTRL_ASDE; 1451 1452 /* Disable autoneg on the phy */ 1453 *phy_ctrl &= ~BMCR_ANENABLE; 1454 1455 /* Forcing Full or Half Duplex? */ 1456 if (mac->forced_speed_duplex & E1000_ALL_HALF_DUPLEX) { 1457 ctrl &= ~E1000_CTRL_FD; 1458 *phy_ctrl &= ~BMCR_FULLDPLX; 1459 e_dbg("Half Duplex\n"); 1460 } else { 1461 ctrl |= E1000_CTRL_FD; 1462 *phy_ctrl |= BMCR_FULLDPLX; 1463 e_dbg("Full Duplex\n"); 1464 } 1465 1466 /* Forcing 10mb or 100mb? */ 1467 if (mac->forced_speed_duplex & E1000_ALL_100_SPEED) { 1468 ctrl |= E1000_CTRL_SPD_100; 1469 *phy_ctrl |= BMCR_SPEED100; 1470 *phy_ctrl &= ~BMCR_SPEED1000; 1471 e_dbg("Forcing 100mb\n"); 1472 } else { 1473 ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100); 1474 *phy_ctrl &= ~(BMCR_SPEED1000 | BMCR_SPEED100); 1475 e_dbg("Forcing 10mb\n"); 1476 } 1477 1478 hw->mac.ops.config_collision_dist(hw); 1479 1480 ew32(CTRL, ctrl); 1481 } 1482 1483 /** 1484 * e1000e_set_d3_lplu_state - Sets low power link up state for D3 1485 * @hw: pointer to the HW structure 1486 * @active: boolean used to enable/disable lplu 1487 * 1488 * Success returns 0, Failure returns 1 1489 * 1490 * The low power link up (lplu) state is set to the power management level D3 1491 * and SmartSpeed is disabled when active is true, else clear lplu for D3 1492 * and enable Smartspeed. LPLU and Smartspeed are mutually exclusive. LPLU 1493 * is used during Dx states where the power conservation is most important. 1494 * During driver activity, SmartSpeed should be enabled so performance is 1495 * maintained. 1496 **/ 1497 s32 e1000e_set_d3_lplu_state(struct e1000_hw *hw, bool active) 1498 { 1499 struct e1000_phy_info *phy = &hw->phy; 1500 s32 ret_val; 1501 u16 data; 1502 1503 ret_val = e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &data); 1504 if (ret_val) 1505 return ret_val; 1506 1507 if (!active) { 1508 data &= ~IGP02E1000_PM_D3_LPLU; 1509 ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data); 1510 if (ret_val) 1511 return ret_val; 1512 /* LPLU and SmartSpeed are mutually exclusive. LPLU is used 1513 * during Dx states where the power conservation is most 1514 * important. During driver activity we should enable 1515 * SmartSpeed, so performance is maintained. 1516 */ 1517 if (phy->smart_speed == e1000_smart_speed_on) { 1518 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, 1519 &data); 1520 if (ret_val) 1521 return ret_val; 1522 1523 data |= IGP01E1000_PSCFR_SMART_SPEED; 1524 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, 1525 data); 1526 if (ret_val) 1527 return ret_val; 1528 } else if (phy->smart_speed == e1000_smart_speed_off) { 1529 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, 1530 &data); 1531 if (ret_val) 1532 return ret_val; 1533 1534 data &= ~IGP01E1000_PSCFR_SMART_SPEED; 1535 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, 1536 data); 1537 if (ret_val) 1538 return ret_val; 1539 } 1540 } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) || 1541 (phy->autoneg_advertised == E1000_ALL_NOT_GIG) || 1542 (phy->autoneg_advertised == E1000_ALL_10_SPEED)) { 1543 data |= IGP02E1000_PM_D3_LPLU; 1544 ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data); 1545 if (ret_val) 1546 return ret_val; 1547 1548 /* When LPLU is enabled, we should disable SmartSpeed */ 1549 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data); 1550 if (ret_val) 1551 return ret_val; 1552 1553 data &= ~IGP01E1000_PSCFR_SMART_SPEED; 1554 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data); 1555 } 1556 1557 return ret_val; 1558 } 1559 1560 /** 1561 * e1000e_check_downshift - Checks whether a downshift in speed occurred 1562 * @hw: pointer to the HW structure 1563 * 1564 * Success returns 0, Failure returns 1 1565 * 1566 * A downshift is detected by querying the PHY link health. 1567 **/ 1568 s32 e1000e_check_downshift(struct e1000_hw *hw) 1569 { 1570 struct e1000_phy_info *phy = &hw->phy; 1571 s32 ret_val; 1572 u16 phy_data, offset, mask; 1573 1574 switch (phy->type) { 1575 case e1000_phy_m88: 1576 case e1000_phy_gg82563: 1577 case e1000_phy_bm: 1578 case e1000_phy_82578: 1579 offset = M88E1000_PHY_SPEC_STATUS; 1580 mask = M88E1000_PSSR_DOWNSHIFT; 1581 break; 1582 case e1000_phy_igp_2: 1583 case e1000_phy_igp_3: 1584 offset = IGP01E1000_PHY_LINK_HEALTH; 1585 mask = IGP01E1000_PLHR_SS_DOWNGRADE; 1586 break; 1587 default: 1588 /* speed downshift not supported */ 1589 phy->speed_downgraded = false; 1590 return 0; 1591 } 1592 1593 ret_val = e1e_rphy(hw, offset, &phy_data); 1594 1595 if (!ret_val) 1596 phy->speed_downgraded = !!(phy_data & mask); 1597 1598 return ret_val; 1599 } 1600 1601 /** 1602 * e1000_check_polarity_m88 - Checks the polarity. 1603 * @hw: pointer to the HW structure 1604 * 1605 * Success returns 0, Failure returns -E1000_ERR_PHY (-2) 1606 * 1607 * Polarity is determined based on the PHY specific status register. 1608 **/ 1609 s32 e1000_check_polarity_m88(struct e1000_hw *hw) 1610 { 1611 struct e1000_phy_info *phy = &hw->phy; 1612 s32 ret_val; 1613 u16 data; 1614 1615 ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &data); 1616 1617 if (!ret_val) 1618 phy->cable_polarity = ((data & M88E1000_PSSR_REV_POLARITY) 1619 ? e1000_rev_polarity_reversed 1620 : e1000_rev_polarity_normal); 1621 1622 return ret_val; 1623 } 1624 1625 /** 1626 * e1000_check_polarity_igp - Checks the polarity. 1627 * @hw: pointer to the HW structure 1628 * 1629 * Success returns 0, Failure returns -E1000_ERR_PHY (-2) 1630 * 1631 * Polarity is determined based on the PHY port status register, and the 1632 * current speed (since there is no polarity at 100Mbps). 1633 **/ 1634 s32 e1000_check_polarity_igp(struct e1000_hw *hw) 1635 { 1636 struct e1000_phy_info *phy = &hw->phy; 1637 s32 ret_val; 1638 u16 data, offset, mask; 1639 1640 /* Polarity is determined based on the speed of 1641 * our connection. 1642 */ 1643 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_STATUS, &data); 1644 if (ret_val) 1645 return ret_val; 1646 1647 if ((data & IGP01E1000_PSSR_SPEED_MASK) == 1648 IGP01E1000_PSSR_SPEED_1000MBPS) { 1649 offset = IGP01E1000_PHY_PCS_INIT_REG; 1650 mask = IGP01E1000_PHY_POLARITY_MASK; 1651 } else { 1652 /* This really only applies to 10Mbps since 1653 * there is no polarity for 100Mbps (always 0). 1654 */ 1655 offset = IGP01E1000_PHY_PORT_STATUS; 1656 mask = IGP01E1000_PSSR_POLARITY_REVERSED; 1657 } 1658 1659 ret_val = e1e_rphy(hw, offset, &data); 1660 1661 if (!ret_val) 1662 phy->cable_polarity = ((data & mask) 1663 ? e1000_rev_polarity_reversed 1664 : e1000_rev_polarity_normal); 1665 1666 return ret_val; 1667 } 1668 1669 /** 1670 * e1000_check_polarity_ife - Check cable polarity for IFE PHY 1671 * @hw: pointer to the HW structure 1672 * 1673 * Polarity is determined on the polarity reversal feature being enabled. 1674 **/ 1675 s32 e1000_check_polarity_ife(struct e1000_hw *hw) 1676 { 1677 struct e1000_phy_info *phy = &hw->phy; 1678 s32 ret_val; 1679 u16 phy_data, offset, mask; 1680 1681 /* Polarity is determined based on the reversal feature being enabled. 1682 */ 1683 if (phy->polarity_correction) { 1684 offset = IFE_PHY_EXTENDED_STATUS_CONTROL; 1685 mask = IFE_PESC_POLARITY_REVERSED; 1686 } else { 1687 offset = IFE_PHY_SPECIAL_CONTROL; 1688 mask = IFE_PSC_FORCE_POLARITY; 1689 } 1690 1691 ret_val = e1e_rphy(hw, offset, &phy_data); 1692 1693 if (!ret_val) 1694 phy->cable_polarity = ((phy_data & mask) 1695 ? e1000_rev_polarity_reversed 1696 : e1000_rev_polarity_normal); 1697 1698 return ret_val; 1699 } 1700 1701 /** 1702 * e1000_wait_autoneg - Wait for auto-neg completion 1703 * @hw: pointer to the HW structure 1704 * 1705 * Waits for auto-negotiation to complete or for the auto-negotiation time 1706 * limit to expire, which ever happens first. 1707 **/ 1708 static s32 e1000_wait_autoneg(struct e1000_hw *hw) 1709 { 1710 s32 ret_val = 0; 1711 u16 i, phy_status; 1712 1713 /* Break after autoneg completes or PHY_AUTO_NEG_LIMIT expires. */ 1714 for (i = PHY_AUTO_NEG_LIMIT; i > 0; i--) { 1715 ret_val = e1e_rphy(hw, MII_BMSR, &phy_status); 1716 if (ret_val) 1717 break; 1718 ret_val = e1e_rphy(hw, MII_BMSR, &phy_status); 1719 if (ret_val) 1720 break; 1721 if (phy_status & BMSR_ANEGCOMPLETE) 1722 break; 1723 msleep(100); 1724 } 1725 1726 /* PHY_AUTO_NEG_TIME expiration doesn't guarantee auto-negotiation 1727 * has completed. 1728 */ 1729 return ret_val; 1730 } 1731 1732 /** 1733 * e1000e_phy_has_link_generic - Polls PHY for link 1734 * @hw: pointer to the HW structure 1735 * @iterations: number of times to poll for link 1736 * @usec_interval: delay between polling attempts 1737 * @success: pointer to whether polling was successful or not 1738 * 1739 * Polls the PHY status register for link, 'iterations' number of times. 1740 **/ 1741 s32 e1000e_phy_has_link_generic(struct e1000_hw *hw, u32 iterations, 1742 u32 usec_interval, bool *success) 1743 { 1744 s32 ret_val = 0; 1745 u16 i, phy_status; 1746 1747 for (i = 0; i < iterations; i++) { 1748 /* Some PHYs require the MII_BMSR register to be read 1749 * twice due to the link bit being sticky. No harm doing 1750 * it across the board. 1751 */ 1752 ret_val = e1e_rphy(hw, MII_BMSR, &phy_status); 1753 if (ret_val) { 1754 /* If the first read fails, another entity may have 1755 * ownership of the resources, wait and try again to 1756 * see if they have relinquished the resources yet. 1757 */ 1758 if (usec_interval >= 1000) 1759 msleep(usec_interval / 1000); 1760 else 1761 udelay(usec_interval); 1762 } 1763 ret_val = e1e_rphy(hw, MII_BMSR, &phy_status); 1764 if (ret_val) 1765 break; 1766 if (phy_status & BMSR_LSTATUS) 1767 break; 1768 if (usec_interval >= 1000) 1769 msleep(usec_interval / 1000); 1770 else 1771 udelay(usec_interval); 1772 } 1773 1774 *success = (i < iterations); 1775 1776 return ret_val; 1777 } 1778 1779 /** 1780 * e1000e_get_cable_length_m88 - Determine cable length for m88 PHY 1781 * @hw: pointer to the HW structure 1782 * 1783 * Reads the PHY specific status register to retrieve the cable length 1784 * information. The cable length is determined by averaging the minimum and 1785 * maximum values to get the "average" cable length. The m88 PHY has four 1786 * possible cable length values, which are: 1787 * Register Value Cable Length 1788 * 0 < 50 meters 1789 * 1 50 - 80 meters 1790 * 2 80 - 110 meters 1791 * 3 110 - 140 meters 1792 * 4 > 140 meters 1793 **/ 1794 s32 e1000e_get_cable_length_m88(struct e1000_hw *hw) 1795 { 1796 struct e1000_phy_info *phy = &hw->phy; 1797 s32 ret_val; 1798 u16 phy_data, index; 1799 1800 ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data); 1801 if (ret_val) 1802 return ret_val; 1803 1804 index = ((phy_data & M88E1000_PSSR_CABLE_LENGTH) >> 1805 M88E1000_PSSR_CABLE_LENGTH_SHIFT); 1806 1807 if (index >= M88E1000_CABLE_LENGTH_TABLE_SIZE - 1) 1808 return -E1000_ERR_PHY; 1809 1810 phy->min_cable_length = e1000_m88_cable_length_table[index]; 1811 phy->max_cable_length = e1000_m88_cable_length_table[index + 1]; 1812 1813 phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2; 1814 1815 return 0; 1816 } 1817 1818 /** 1819 * e1000e_get_cable_length_igp_2 - Determine cable length for igp2 PHY 1820 * @hw: pointer to the HW structure 1821 * 1822 * The automatic gain control (agc) normalizes the amplitude of the 1823 * received signal, adjusting for the attenuation produced by the 1824 * cable. By reading the AGC registers, which represent the 1825 * combination of coarse and fine gain value, the value can be put 1826 * into a lookup table to obtain the approximate cable length 1827 * for each channel. 1828 **/ 1829 s32 e1000e_get_cable_length_igp_2(struct e1000_hw *hw) 1830 { 1831 struct e1000_phy_info *phy = &hw->phy; 1832 s32 ret_val; 1833 u16 phy_data, i, agc_value = 0; 1834 u16 cur_agc_index, max_agc_index = 0; 1835 u16 min_agc_index = IGP02E1000_CABLE_LENGTH_TABLE_SIZE - 1; 1836 static const u16 agc_reg_array[IGP02E1000_PHY_CHANNEL_NUM] = { 1837 IGP02E1000_PHY_AGC_A, 1838 IGP02E1000_PHY_AGC_B, 1839 IGP02E1000_PHY_AGC_C, 1840 IGP02E1000_PHY_AGC_D 1841 }; 1842 1843 /* Read the AGC registers for all channels */ 1844 for (i = 0; i < IGP02E1000_PHY_CHANNEL_NUM; i++) { 1845 ret_val = e1e_rphy(hw, agc_reg_array[i], &phy_data); 1846 if (ret_val) 1847 return ret_val; 1848 1849 /* Getting bits 15:9, which represent the combination of 1850 * coarse and fine gain values. The result is a number 1851 * that can be put into the lookup table to obtain the 1852 * approximate cable length. 1853 */ 1854 cur_agc_index = ((phy_data >> IGP02E1000_AGC_LENGTH_SHIFT) & 1855 IGP02E1000_AGC_LENGTH_MASK); 1856 1857 /* Array index bound check. */ 1858 if ((cur_agc_index >= IGP02E1000_CABLE_LENGTH_TABLE_SIZE) || 1859 (cur_agc_index == 0)) 1860 return -E1000_ERR_PHY; 1861 1862 /* Remove min & max AGC values from calculation. */ 1863 if (e1000_igp_2_cable_length_table[min_agc_index] > 1864 e1000_igp_2_cable_length_table[cur_agc_index]) 1865 min_agc_index = cur_agc_index; 1866 if (e1000_igp_2_cable_length_table[max_agc_index] < 1867 e1000_igp_2_cable_length_table[cur_agc_index]) 1868 max_agc_index = cur_agc_index; 1869 1870 agc_value += e1000_igp_2_cable_length_table[cur_agc_index]; 1871 } 1872 1873 agc_value -= (e1000_igp_2_cable_length_table[min_agc_index] + 1874 e1000_igp_2_cable_length_table[max_agc_index]); 1875 agc_value /= (IGP02E1000_PHY_CHANNEL_NUM - 2); 1876 1877 /* Calculate cable length with the error range of +/- 10 meters. */ 1878 phy->min_cable_length = (((agc_value - IGP02E1000_AGC_RANGE) > 0) ? 1879 (agc_value - IGP02E1000_AGC_RANGE) : 0); 1880 phy->max_cable_length = agc_value + IGP02E1000_AGC_RANGE; 1881 1882 phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2; 1883 1884 return 0; 1885 } 1886 1887 /** 1888 * e1000e_get_phy_info_m88 - Retrieve PHY information 1889 * @hw: pointer to the HW structure 1890 * 1891 * Valid for only copper links. Read the PHY status register (sticky read) 1892 * to verify that link is up. Read the PHY special control register to 1893 * determine the polarity and 10base-T extended distance. Read the PHY 1894 * special status register to determine MDI/MDIx and current speed. If 1895 * speed is 1000, then determine cable length, local and remote receiver. 1896 **/ 1897 s32 e1000e_get_phy_info_m88(struct e1000_hw *hw) 1898 { 1899 struct e1000_phy_info *phy = &hw->phy; 1900 s32 ret_val; 1901 u16 phy_data; 1902 bool link; 1903 1904 if (phy->media_type != e1000_media_type_copper) { 1905 e_dbg("Phy info is only valid for copper media\n"); 1906 return -E1000_ERR_CONFIG; 1907 } 1908 1909 ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link); 1910 if (ret_val) 1911 return ret_val; 1912 1913 if (!link) { 1914 e_dbg("Phy info is only valid if link is up\n"); 1915 return -E1000_ERR_CONFIG; 1916 } 1917 1918 ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); 1919 if (ret_val) 1920 return ret_val; 1921 1922 phy->polarity_correction = !!(phy_data & 1923 M88E1000_PSCR_POLARITY_REVERSAL); 1924 1925 ret_val = e1000_check_polarity_m88(hw); 1926 if (ret_val) 1927 return ret_val; 1928 1929 ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data); 1930 if (ret_val) 1931 return ret_val; 1932 1933 phy->is_mdix = !!(phy_data & M88E1000_PSSR_MDIX); 1934 1935 if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) { 1936 ret_val = hw->phy.ops.get_cable_length(hw); 1937 if (ret_val) 1938 return ret_val; 1939 1940 ret_val = e1e_rphy(hw, MII_STAT1000, &phy_data); 1941 if (ret_val) 1942 return ret_val; 1943 1944 phy->local_rx = (phy_data & LPA_1000LOCALRXOK) 1945 ? e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok; 1946 1947 phy->remote_rx = (phy_data & LPA_1000REMRXOK) 1948 ? e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok; 1949 } else { 1950 /* Set values to "undefined" */ 1951 phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED; 1952 phy->local_rx = e1000_1000t_rx_status_undefined; 1953 phy->remote_rx = e1000_1000t_rx_status_undefined; 1954 } 1955 1956 return ret_val; 1957 } 1958 1959 /** 1960 * e1000e_get_phy_info_igp - Retrieve igp PHY information 1961 * @hw: pointer to the HW structure 1962 * 1963 * Read PHY status to determine if link is up. If link is up, then 1964 * set/determine 10base-T extended distance and polarity correction. Read 1965 * PHY port status to determine MDI/MDIx and speed. Based on the speed, 1966 * determine on the cable length, local and remote receiver. 1967 **/ 1968 s32 e1000e_get_phy_info_igp(struct e1000_hw *hw) 1969 { 1970 struct e1000_phy_info *phy = &hw->phy; 1971 s32 ret_val; 1972 u16 data; 1973 bool link; 1974 1975 ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link); 1976 if (ret_val) 1977 return ret_val; 1978 1979 if (!link) { 1980 e_dbg("Phy info is only valid if link is up\n"); 1981 return -E1000_ERR_CONFIG; 1982 } 1983 1984 phy->polarity_correction = true; 1985 1986 ret_val = e1000_check_polarity_igp(hw); 1987 if (ret_val) 1988 return ret_val; 1989 1990 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_STATUS, &data); 1991 if (ret_val) 1992 return ret_val; 1993 1994 phy->is_mdix = !!(data & IGP01E1000_PSSR_MDIX); 1995 1996 if ((data & IGP01E1000_PSSR_SPEED_MASK) == 1997 IGP01E1000_PSSR_SPEED_1000MBPS) { 1998 ret_val = phy->ops.get_cable_length(hw); 1999 if (ret_val) 2000 return ret_val; 2001 2002 ret_val = e1e_rphy(hw, MII_STAT1000, &data); 2003 if (ret_val) 2004 return ret_val; 2005 2006 phy->local_rx = (data & LPA_1000LOCALRXOK) 2007 ? e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok; 2008 2009 phy->remote_rx = (data & LPA_1000REMRXOK) 2010 ? e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok; 2011 } else { 2012 phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED; 2013 phy->local_rx = e1000_1000t_rx_status_undefined; 2014 phy->remote_rx = e1000_1000t_rx_status_undefined; 2015 } 2016 2017 return ret_val; 2018 } 2019 2020 /** 2021 * e1000_get_phy_info_ife - Retrieves various IFE PHY states 2022 * @hw: pointer to the HW structure 2023 * 2024 * Populates "phy" structure with various feature states. 2025 **/ 2026 s32 e1000_get_phy_info_ife(struct e1000_hw *hw) 2027 { 2028 struct e1000_phy_info *phy = &hw->phy; 2029 s32 ret_val; 2030 u16 data; 2031 bool link; 2032 2033 ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link); 2034 if (ret_val) 2035 return ret_val; 2036 2037 if (!link) { 2038 e_dbg("Phy info is only valid if link is up\n"); 2039 return -E1000_ERR_CONFIG; 2040 } 2041 2042 ret_val = e1e_rphy(hw, IFE_PHY_SPECIAL_CONTROL, &data); 2043 if (ret_val) 2044 return ret_val; 2045 phy->polarity_correction = !(data & IFE_PSC_AUTO_POLARITY_DISABLE); 2046 2047 if (phy->polarity_correction) { 2048 ret_val = e1000_check_polarity_ife(hw); 2049 if (ret_val) 2050 return ret_val; 2051 } else { 2052 /* Polarity is forced */ 2053 phy->cable_polarity = ((data & IFE_PSC_FORCE_POLARITY) 2054 ? e1000_rev_polarity_reversed 2055 : e1000_rev_polarity_normal); 2056 } 2057 2058 ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &data); 2059 if (ret_val) 2060 return ret_val; 2061 2062 phy->is_mdix = !!(data & IFE_PMC_MDIX_STATUS); 2063 2064 /* The following parameters are undefined for 10/100 operation. */ 2065 phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED; 2066 phy->local_rx = e1000_1000t_rx_status_undefined; 2067 phy->remote_rx = e1000_1000t_rx_status_undefined; 2068 2069 return 0; 2070 } 2071 2072 /** 2073 * e1000e_phy_sw_reset - PHY software reset 2074 * @hw: pointer to the HW structure 2075 * 2076 * Does a software reset of the PHY by reading the PHY control register and 2077 * setting/write the control register reset bit to the PHY. 2078 **/ 2079 s32 e1000e_phy_sw_reset(struct e1000_hw *hw) 2080 { 2081 s32 ret_val; 2082 u16 phy_ctrl; 2083 2084 ret_val = e1e_rphy(hw, MII_BMCR, &phy_ctrl); 2085 if (ret_val) 2086 return ret_val; 2087 2088 phy_ctrl |= BMCR_RESET; 2089 ret_val = e1e_wphy(hw, MII_BMCR, phy_ctrl); 2090 if (ret_val) 2091 return ret_val; 2092 2093 udelay(1); 2094 2095 return ret_val; 2096 } 2097 2098 /** 2099 * e1000e_phy_hw_reset_generic - PHY hardware reset 2100 * @hw: pointer to the HW structure 2101 * 2102 * Verify the reset block is not blocking us from resetting. Acquire 2103 * semaphore (if necessary) and read/set/write the device control reset 2104 * bit in the PHY. Wait the appropriate delay time for the device to 2105 * reset and release the semaphore (if necessary). 2106 **/ 2107 s32 e1000e_phy_hw_reset_generic(struct e1000_hw *hw) 2108 { 2109 struct e1000_phy_info *phy = &hw->phy; 2110 s32 ret_val; 2111 u32 ctrl; 2112 2113 if (phy->ops.check_reset_block) { 2114 ret_val = phy->ops.check_reset_block(hw); 2115 if (ret_val) 2116 return 0; 2117 } 2118 2119 ret_val = phy->ops.acquire(hw); 2120 if (ret_val) 2121 return ret_val; 2122 2123 ctrl = er32(CTRL); 2124 ew32(CTRL, ctrl | E1000_CTRL_PHY_RST); 2125 e1e_flush(); 2126 2127 udelay(phy->reset_delay_us); 2128 2129 ew32(CTRL, ctrl); 2130 e1e_flush(); 2131 2132 usleep_range(150, 300); 2133 2134 phy->ops.release(hw); 2135 2136 return phy->ops.get_cfg_done(hw); 2137 } 2138 2139 /** 2140 * e1000e_get_cfg_done_generic - Generic configuration done 2141 * @hw: pointer to the HW structure 2142 * 2143 * Generic function to wait 10 milli-seconds for configuration to complete 2144 * and return success. 2145 **/ 2146 s32 e1000e_get_cfg_done_generic(struct e1000_hw __always_unused *hw) 2147 { 2148 mdelay(10); 2149 2150 return 0; 2151 } 2152 2153 /** 2154 * e1000e_phy_init_script_igp3 - Inits the IGP3 PHY 2155 * @hw: pointer to the HW structure 2156 * 2157 * Initializes a Intel Gigabit PHY3 when an EEPROM is not present. 2158 **/ 2159 s32 e1000e_phy_init_script_igp3(struct e1000_hw *hw) 2160 { 2161 e_dbg("Running IGP 3 PHY init script\n"); 2162 2163 /* PHY init IGP 3 */ 2164 /* Enable rise/fall, 10-mode work in class-A */ 2165 e1e_wphy(hw, 0x2F5B, 0x9018); 2166 /* Remove all caps from Replica path filter */ 2167 e1e_wphy(hw, 0x2F52, 0x0000); 2168 /* Bias trimming for ADC, AFE and Driver (Default) */ 2169 e1e_wphy(hw, 0x2FB1, 0x8B24); 2170 /* Increase Hybrid poly bias */ 2171 e1e_wphy(hw, 0x2FB2, 0xF8F0); 2172 /* Add 4% to Tx amplitude in Gig mode */ 2173 e1e_wphy(hw, 0x2010, 0x10B0); 2174 /* Disable trimming (TTT) */ 2175 e1e_wphy(hw, 0x2011, 0x0000); 2176 /* Poly DC correction to 94.6% + 2% for all channels */ 2177 e1e_wphy(hw, 0x20DD, 0x249A); 2178 /* ABS DC correction to 95.9% */ 2179 e1e_wphy(hw, 0x20DE, 0x00D3); 2180 /* BG temp curve trim */ 2181 e1e_wphy(hw, 0x28B4, 0x04CE); 2182 /* Increasing ADC OPAMP stage 1 currents to max */ 2183 e1e_wphy(hw, 0x2F70, 0x29E4); 2184 /* Force 1000 ( required for enabling PHY regs configuration) */ 2185 e1e_wphy(hw, 0x0000, 0x0140); 2186 /* Set upd_freq to 6 */ 2187 e1e_wphy(hw, 0x1F30, 0x1606); 2188 /* Disable NPDFE */ 2189 e1e_wphy(hw, 0x1F31, 0xB814); 2190 /* Disable adaptive fixed FFE (Default) */ 2191 e1e_wphy(hw, 0x1F35, 0x002A); 2192 /* Enable FFE hysteresis */ 2193 e1e_wphy(hw, 0x1F3E, 0x0067); 2194 /* Fixed FFE for short cable lengths */ 2195 e1e_wphy(hw, 0x1F54, 0x0065); 2196 /* Fixed FFE for medium cable lengths */ 2197 e1e_wphy(hw, 0x1F55, 0x002A); 2198 /* Fixed FFE for long cable lengths */ 2199 e1e_wphy(hw, 0x1F56, 0x002A); 2200 /* Enable Adaptive Clip Threshold */ 2201 e1e_wphy(hw, 0x1F72, 0x3FB0); 2202 /* AHT reset limit to 1 */ 2203 e1e_wphy(hw, 0x1F76, 0xC0FF); 2204 /* Set AHT master delay to 127 msec */ 2205 e1e_wphy(hw, 0x1F77, 0x1DEC); 2206 /* Set scan bits for AHT */ 2207 e1e_wphy(hw, 0x1F78, 0xF9EF); 2208 /* Set AHT Preset bits */ 2209 e1e_wphy(hw, 0x1F79, 0x0210); 2210 /* Change integ_factor of channel A to 3 */ 2211 e1e_wphy(hw, 0x1895, 0x0003); 2212 /* Change prop_factor of channels BCD to 8 */ 2213 e1e_wphy(hw, 0x1796, 0x0008); 2214 /* Change cg_icount + enable integbp for channels BCD */ 2215 e1e_wphy(hw, 0x1798, 0xD008); 2216 /* Change cg_icount + enable integbp + change prop_factor_master 2217 * to 8 for channel A 2218 */ 2219 e1e_wphy(hw, 0x1898, 0xD918); 2220 /* Disable AHT in Slave mode on channel A */ 2221 e1e_wphy(hw, 0x187A, 0x0800); 2222 /* Enable LPLU and disable AN to 1000 in non-D0a states, 2223 * Enable SPD+B2B 2224 */ 2225 e1e_wphy(hw, 0x0019, 0x008D); 2226 /* Enable restart AN on an1000_dis change */ 2227 e1e_wphy(hw, 0x001B, 0x2080); 2228 /* Enable wh_fifo read clock in 10/100 modes */ 2229 e1e_wphy(hw, 0x0014, 0x0045); 2230 /* Restart AN, Speed selection is 1000 */ 2231 e1e_wphy(hw, 0x0000, 0x1340); 2232 2233 return 0; 2234 } 2235 2236 /** 2237 * e1000e_get_phy_type_from_id - Get PHY type from id 2238 * @phy_id: phy_id read from the phy 2239 * 2240 * Returns the phy type from the id. 2241 **/ 2242 enum e1000_phy_type e1000e_get_phy_type_from_id(u32 phy_id) 2243 { 2244 enum e1000_phy_type phy_type = e1000_phy_unknown; 2245 2246 switch (phy_id) { 2247 case M88E1000_I_PHY_ID: 2248 case M88E1000_E_PHY_ID: 2249 case M88E1111_I_PHY_ID: 2250 case M88E1011_I_PHY_ID: 2251 phy_type = e1000_phy_m88; 2252 break; 2253 case IGP01E1000_I_PHY_ID: /* IGP 1 & 2 share this */ 2254 phy_type = e1000_phy_igp_2; 2255 break; 2256 case GG82563_E_PHY_ID: 2257 phy_type = e1000_phy_gg82563; 2258 break; 2259 case IGP03E1000_E_PHY_ID: 2260 phy_type = e1000_phy_igp_3; 2261 break; 2262 case IFE_E_PHY_ID: 2263 case IFE_PLUS_E_PHY_ID: 2264 case IFE_C_E_PHY_ID: 2265 phy_type = e1000_phy_ife; 2266 break; 2267 case BME1000_E_PHY_ID: 2268 case BME1000_E_PHY_ID_R2: 2269 phy_type = e1000_phy_bm; 2270 break; 2271 case I82578_E_PHY_ID: 2272 phy_type = e1000_phy_82578; 2273 break; 2274 case I82577_E_PHY_ID: 2275 phy_type = e1000_phy_82577; 2276 break; 2277 case I82579_E_PHY_ID: 2278 phy_type = e1000_phy_82579; 2279 break; 2280 case I217_E_PHY_ID: 2281 phy_type = e1000_phy_i217; 2282 break; 2283 default: 2284 phy_type = e1000_phy_unknown; 2285 break; 2286 } 2287 return phy_type; 2288 } 2289 2290 /** 2291 * e1000e_determine_phy_address - Determines PHY address. 2292 * @hw: pointer to the HW structure 2293 * 2294 * This uses a trial and error method to loop through possible PHY 2295 * addresses. It tests each by reading the PHY ID registers and 2296 * checking for a match. 2297 **/ 2298 s32 e1000e_determine_phy_address(struct e1000_hw *hw) 2299 { 2300 u32 phy_addr = 0; 2301 u32 i; 2302 enum e1000_phy_type phy_type = e1000_phy_unknown; 2303 2304 hw->phy.id = phy_type; 2305 2306 for (phy_addr = 0; phy_addr < E1000_MAX_PHY_ADDR; phy_addr++) { 2307 hw->phy.addr = phy_addr; 2308 i = 0; 2309 2310 do { 2311 e1000e_get_phy_id(hw); 2312 phy_type = e1000e_get_phy_type_from_id(hw->phy.id); 2313 2314 /* If phy_type is valid, break - we found our 2315 * PHY address 2316 */ 2317 if (phy_type != e1000_phy_unknown) 2318 return 0; 2319 2320 usleep_range(1000, 2000); 2321 i++; 2322 } while (i < 10); 2323 } 2324 2325 return -E1000_ERR_PHY_TYPE; 2326 } 2327 2328 /** 2329 * e1000_get_phy_addr_for_bm_page - Retrieve PHY page address 2330 * @page: page to access 2331 * 2332 * Returns the phy address for the page requested. 2333 **/ 2334 static u32 e1000_get_phy_addr_for_bm_page(u32 page, u32 reg) 2335 { 2336 u32 phy_addr = 2; 2337 2338 if ((page >= 768) || (page == 0 && reg == 25) || (reg == 31)) 2339 phy_addr = 1; 2340 2341 return phy_addr; 2342 } 2343 2344 /** 2345 * e1000e_write_phy_reg_bm - Write BM PHY register 2346 * @hw: pointer to the HW structure 2347 * @offset: register offset to write to 2348 * @data: data to write at register offset 2349 * 2350 * Acquires semaphore, if necessary, then writes the data to PHY register 2351 * at the offset. Release any acquired semaphores before exiting. 2352 **/ 2353 s32 e1000e_write_phy_reg_bm(struct e1000_hw *hw, u32 offset, u16 data) 2354 { 2355 s32 ret_val; 2356 u32 page = offset >> IGP_PAGE_SHIFT; 2357 2358 ret_val = hw->phy.ops.acquire(hw); 2359 if (ret_val) 2360 return ret_val; 2361 2362 /* Page 800 works differently than the rest so it has its own func */ 2363 if (page == BM_WUC_PAGE) { 2364 ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, &data, 2365 false, false); 2366 goto release; 2367 } 2368 2369 hw->phy.addr = e1000_get_phy_addr_for_bm_page(page, offset); 2370 2371 if (offset > MAX_PHY_MULTI_PAGE_REG) { 2372 u32 page_shift, page_select; 2373 2374 /* Page select is register 31 for phy address 1 and 22 for 2375 * phy address 2 and 3. Page select is shifted only for 2376 * phy address 1. 2377 */ 2378 if (hw->phy.addr == 1) { 2379 page_shift = IGP_PAGE_SHIFT; 2380 page_select = IGP01E1000_PHY_PAGE_SELECT; 2381 } else { 2382 page_shift = 0; 2383 page_select = BM_PHY_PAGE_SELECT; 2384 } 2385 2386 /* Page is shifted left, PHY expects (page x 32) */ 2387 ret_val = e1000e_write_phy_reg_mdic(hw, page_select, 2388 (page << page_shift)); 2389 if (ret_val) 2390 goto release; 2391 } 2392 2393 ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset, 2394 data); 2395 2396 release: 2397 hw->phy.ops.release(hw); 2398 return ret_val; 2399 } 2400 2401 /** 2402 * e1000e_read_phy_reg_bm - Read BM PHY register 2403 * @hw: pointer to the HW structure 2404 * @offset: register offset to be read 2405 * @data: pointer to the read data 2406 * 2407 * Acquires semaphore, if necessary, then reads the PHY register at offset 2408 * and storing the retrieved information in data. Release any acquired 2409 * semaphores before exiting. 2410 **/ 2411 s32 e1000e_read_phy_reg_bm(struct e1000_hw *hw, u32 offset, u16 *data) 2412 { 2413 s32 ret_val; 2414 u32 page = offset >> IGP_PAGE_SHIFT; 2415 2416 ret_val = hw->phy.ops.acquire(hw); 2417 if (ret_val) 2418 return ret_val; 2419 2420 /* Page 800 works differently than the rest so it has its own func */ 2421 if (page == BM_WUC_PAGE) { 2422 ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, data, 2423 true, false); 2424 goto release; 2425 } 2426 2427 hw->phy.addr = e1000_get_phy_addr_for_bm_page(page, offset); 2428 2429 if (offset > MAX_PHY_MULTI_PAGE_REG) { 2430 u32 page_shift, page_select; 2431 2432 /* Page select is register 31 for phy address 1 and 22 for 2433 * phy address 2 and 3. Page select is shifted only for 2434 * phy address 1. 2435 */ 2436 if (hw->phy.addr == 1) { 2437 page_shift = IGP_PAGE_SHIFT; 2438 page_select = IGP01E1000_PHY_PAGE_SELECT; 2439 } else { 2440 page_shift = 0; 2441 page_select = BM_PHY_PAGE_SELECT; 2442 } 2443 2444 /* Page is shifted left, PHY expects (page x 32) */ 2445 ret_val = e1000e_write_phy_reg_mdic(hw, page_select, 2446 (page << page_shift)); 2447 if (ret_val) 2448 goto release; 2449 } 2450 2451 ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset, 2452 data); 2453 release: 2454 hw->phy.ops.release(hw); 2455 return ret_val; 2456 } 2457 2458 /** 2459 * e1000e_read_phy_reg_bm2 - Read BM PHY register 2460 * @hw: pointer to the HW structure 2461 * @offset: register offset to be read 2462 * @data: pointer to the read data 2463 * 2464 * Acquires semaphore, if necessary, then reads the PHY register at offset 2465 * and storing the retrieved information in data. Release any acquired 2466 * semaphores before exiting. 2467 **/ 2468 s32 e1000e_read_phy_reg_bm2(struct e1000_hw *hw, u32 offset, u16 *data) 2469 { 2470 s32 ret_val; 2471 u16 page = (u16)(offset >> IGP_PAGE_SHIFT); 2472 2473 ret_val = hw->phy.ops.acquire(hw); 2474 if (ret_val) 2475 return ret_val; 2476 2477 /* Page 800 works differently than the rest so it has its own func */ 2478 if (page == BM_WUC_PAGE) { 2479 ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, data, 2480 true, false); 2481 goto release; 2482 } 2483 2484 hw->phy.addr = 1; 2485 2486 if (offset > MAX_PHY_MULTI_PAGE_REG) { 2487 /* Page is shifted left, PHY expects (page x 32) */ 2488 ret_val = e1000e_write_phy_reg_mdic(hw, BM_PHY_PAGE_SELECT, 2489 page); 2490 2491 if (ret_val) 2492 goto release; 2493 } 2494 2495 ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset, 2496 data); 2497 release: 2498 hw->phy.ops.release(hw); 2499 return ret_val; 2500 } 2501 2502 /** 2503 * e1000e_write_phy_reg_bm2 - Write BM PHY register 2504 * @hw: pointer to the HW structure 2505 * @offset: register offset to write to 2506 * @data: data to write at register offset 2507 * 2508 * Acquires semaphore, if necessary, then writes the data to PHY register 2509 * at the offset. Release any acquired semaphores before exiting. 2510 **/ 2511 s32 e1000e_write_phy_reg_bm2(struct e1000_hw *hw, u32 offset, u16 data) 2512 { 2513 s32 ret_val; 2514 u16 page = (u16)(offset >> IGP_PAGE_SHIFT); 2515 2516 ret_val = hw->phy.ops.acquire(hw); 2517 if (ret_val) 2518 return ret_val; 2519 2520 /* Page 800 works differently than the rest so it has its own func */ 2521 if (page == BM_WUC_PAGE) { 2522 ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, &data, 2523 false, false); 2524 goto release; 2525 } 2526 2527 hw->phy.addr = 1; 2528 2529 if (offset > MAX_PHY_MULTI_PAGE_REG) { 2530 /* Page is shifted left, PHY expects (page x 32) */ 2531 ret_val = e1000e_write_phy_reg_mdic(hw, BM_PHY_PAGE_SELECT, 2532 page); 2533 2534 if (ret_val) 2535 goto release; 2536 } 2537 2538 ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset, 2539 data); 2540 2541 release: 2542 hw->phy.ops.release(hw); 2543 return ret_val; 2544 } 2545 2546 /** 2547 * e1000_enable_phy_wakeup_reg_access_bm - enable access to BM wakeup registers 2548 * @hw: pointer to the HW structure 2549 * @phy_reg: pointer to store original contents of BM_WUC_ENABLE_REG 2550 * 2551 * Assumes semaphore already acquired and phy_reg points to a valid memory 2552 * address to store contents of the BM_WUC_ENABLE_REG register. 2553 **/ 2554 s32 e1000_enable_phy_wakeup_reg_access_bm(struct e1000_hw *hw, u16 *phy_reg) 2555 { 2556 s32 ret_val; 2557 u16 temp; 2558 2559 /* All page select, port ctrl and wakeup registers use phy address 1 */ 2560 hw->phy.addr = 1; 2561 2562 /* Select Port Control Registers page */ 2563 ret_val = e1000_set_page_igp(hw, (BM_PORT_CTRL_PAGE << IGP_PAGE_SHIFT)); 2564 if (ret_val) { 2565 e_dbg("Could not set Port Control page\n"); 2566 return ret_val; 2567 } 2568 2569 ret_val = e1000e_read_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, phy_reg); 2570 if (ret_val) { 2571 e_dbg("Could not read PHY register %d.%d\n", 2572 BM_PORT_CTRL_PAGE, BM_WUC_ENABLE_REG); 2573 return ret_val; 2574 } 2575 2576 /* Enable both PHY wakeup mode and Wakeup register page writes. 2577 * Prevent a power state change by disabling ME and Host PHY wakeup. 2578 */ 2579 temp = *phy_reg; 2580 temp |= BM_WUC_ENABLE_BIT; 2581 temp &= ~(BM_WUC_ME_WU_BIT | BM_WUC_HOST_WU_BIT); 2582 2583 ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, temp); 2584 if (ret_val) { 2585 e_dbg("Could not write PHY register %d.%d\n", 2586 BM_PORT_CTRL_PAGE, BM_WUC_ENABLE_REG); 2587 return ret_val; 2588 } 2589 2590 /* Select Host Wakeup Registers page - caller now able to write 2591 * registers on the Wakeup registers page 2592 */ 2593 return e1000_set_page_igp(hw, (BM_WUC_PAGE << IGP_PAGE_SHIFT)); 2594 } 2595 2596 /** 2597 * e1000_disable_phy_wakeup_reg_access_bm - disable access to BM wakeup regs 2598 * @hw: pointer to the HW structure 2599 * @phy_reg: pointer to original contents of BM_WUC_ENABLE_REG 2600 * 2601 * Restore BM_WUC_ENABLE_REG to its original value. 2602 * 2603 * Assumes semaphore already acquired and *phy_reg is the contents of the 2604 * BM_WUC_ENABLE_REG before register(s) on BM_WUC_PAGE were accessed by 2605 * caller. 2606 **/ 2607 s32 e1000_disable_phy_wakeup_reg_access_bm(struct e1000_hw *hw, u16 *phy_reg) 2608 { 2609 s32 ret_val; 2610 2611 /* Select Port Control Registers page */ 2612 ret_val = e1000_set_page_igp(hw, (BM_PORT_CTRL_PAGE << IGP_PAGE_SHIFT)); 2613 if (ret_val) { 2614 e_dbg("Could not set Port Control page\n"); 2615 return ret_val; 2616 } 2617 2618 /* Restore 769.17 to its original value */ 2619 ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, *phy_reg); 2620 if (ret_val) 2621 e_dbg("Could not restore PHY register %d.%d\n", 2622 BM_PORT_CTRL_PAGE, BM_WUC_ENABLE_REG); 2623 2624 return ret_val; 2625 } 2626 2627 /** 2628 * e1000_access_phy_wakeup_reg_bm - Read/write BM PHY wakeup register 2629 * @hw: pointer to the HW structure 2630 * @offset: register offset to be read or written 2631 * @data: pointer to the data to read or write 2632 * @read: determines if operation is read or write 2633 * @page_set: BM_WUC_PAGE already set and access enabled 2634 * 2635 * Read the PHY register at offset and store the retrieved information in 2636 * data, or write data to PHY register at offset. Note the procedure to 2637 * access the PHY wakeup registers is different than reading the other PHY 2638 * registers. It works as such: 2639 * 1) Set 769.17.2 (page 769, register 17, bit 2) = 1 2640 * 2) Set page to 800 for host (801 if we were manageability) 2641 * 3) Write the address using the address opcode (0x11) 2642 * 4) Read or write the data using the data opcode (0x12) 2643 * 5) Restore 769.17.2 to its original value 2644 * 2645 * Steps 1 and 2 are done by e1000_enable_phy_wakeup_reg_access_bm() and 2646 * step 5 is done by e1000_disable_phy_wakeup_reg_access_bm(). 2647 * 2648 * Assumes semaphore is already acquired. When page_set==true, assumes 2649 * the PHY page is set to BM_WUC_PAGE (i.e. a function in the call stack 2650 * is responsible for calls to e1000_[enable|disable]_phy_wakeup_reg_bm()). 2651 **/ 2652 static s32 e1000_access_phy_wakeup_reg_bm(struct e1000_hw *hw, u32 offset, 2653 u16 *data, bool read, bool page_set) 2654 { 2655 s32 ret_val; 2656 u16 reg = BM_PHY_REG_NUM(offset); 2657 u16 page = BM_PHY_REG_PAGE(offset); 2658 u16 phy_reg = 0; 2659 2660 /* Gig must be disabled for MDIO accesses to Host Wakeup reg page */ 2661 if ((hw->mac.type == e1000_pchlan) && 2662 (!(er32(PHY_CTRL) & E1000_PHY_CTRL_GBE_DISABLE))) 2663 e_dbg("Attempting to access page %d while gig enabled.\n", 2664 page); 2665 2666 if (!page_set) { 2667 /* Enable access to PHY wakeup registers */ 2668 ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg); 2669 if (ret_val) { 2670 e_dbg("Could not enable PHY wakeup reg access\n"); 2671 return ret_val; 2672 } 2673 } 2674 2675 e_dbg("Accessing PHY page %d reg 0x%x\n", page, reg); 2676 2677 /* Write the Wakeup register page offset value using opcode 0x11 */ 2678 ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_ADDRESS_OPCODE, reg); 2679 if (ret_val) { 2680 e_dbg("Could not write address opcode to page %d\n", page); 2681 return ret_val; 2682 } 2683 2684 if (read) { 2685 /* Read the Wakeup register page value using opcode 0x12 */ 2686 ret_val = e1000e_read_phy_reg_mdic(hw, BM_WUC_DATA_OPCODE, 2687 data); 2688 } else { 2689 /* Write the Wakeup register page value using opcode 0x12 */ 2690 ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_DATA_OPCODE, 2691 *data); 2692 } 2693 2694 if (ret_val) { 2695 e_dbg("Could not access PHY reg %d.%d\n", page, reg); 2696 return ret_val; 2697 } 2698 2699 if (!page_set) 2700 ret_val = e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg); 2701 2702 return ret_val; 2703 } 2704 2705 /** 2706 * e1000_power_up_phy_copper - Restore copper link in case of PHY power down 2707 * @hw: pointer to the HW structure 2708 * 2709 * In the case of a PHY power down to save power, or to turn off link during a 2710 * driver unload, or wake on lan is not enabled, restore the link to previous 2711 * settings. 2712 **/ 2713 void e1000_power_up_phy_copper(struct e1000_hw *hw) 2714 { 2715 u16 mii_reg = 0; 2716 2717 /* The PHY will retain its settings across a power down/up cycle */ 2718 e1e_rphy(hw, MII_BMCR, &mii_reg); 2719 mii_reg &= ~BMCR_PDOWN; 2720 e1e_wphy(hw, MII_BMCR, mii_reg); 2721 } 2722 2723 /** 2724 * e1000_power_down_phy_copper - Restore copper link in case of PHY power down 2725 * @hw: pointer to the HW structure 2726 * 2727 * In the case of a PHY power down to save power, or to turn off link during a 2728 * driver unload, or wake on lan is not enabled, restore the link to previous 2729 * settings. 2730 **/ 2731 void e1000_power_down_phy_copper(struct e1000_hw *hw) 2732 { 2733 u16 mii_reg = 0; 2734 2735 /* The PHY will retain its settings across a power down/up cycle */ 2736 e1e_rphy(hw, MII_BMCR, &mii_reg); 2737 mii_reg |= BMCR_PDOWN; 2738 e1e_wphy(hw, MII_BMCR, mii_reg); 2739 usleep_range(1000, 2000); 2740 } 2741 2742 /** 2743 * __e1000_read_phy_reg_hv - Read HV PHY register 2744 * @hw: pointer to the HW structure 2745 * @offset: register offset to be read 2746 * @data: pointer to the read data 2747 * @locked: semaphore has already been acquired or not 2748 * 2749 * Acquires semaphore, if necessary, then reads the PHY register at offset 2750 * and stores the retrieved information in data. Release any acquired 2751 * semaphore before exiting. 2752 **/ 2753 static s32 __e1000_read_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 *data, 2754 bool locked, bool page_set) 2755 { 2756 s32 ret_val; 2757 u16 page = BM_PHY_REG_PAGE(offset); 2758 u16 reg = BM_PHY_REG_NUM(offset); 2759 u32 phy_addr = hw->phy.addr = e1000_get_phy_addr_for_hv_page(page); 2760 2761 if (!locked) { 2762 ret_val = hw->phy.ops.acquire(hw); 2763 if (ret_val) 2764 return ret_val; 2765 } 2766 2767 /* Page 800 works differently than the rest so it has its own func */ 2768 if (page == BM_WUC_PAGE) { 2769 ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, data, 2770 true, page_set); 2771 goto out; 2772 } 2773 2774 if (page > 0 && page < HV_INTC_FC_PAGE_START) { 2775 ret_val = e1000_access_phy_debug_regs_hv(hw, offset, 2776 data, true); 2777 goto out; 2778 } 2779 2780 if (!page_set) { 2781 if (page == HV_INTC_FC_PAGE_START) 2782 page = 0; 2783 2784 if (reg > MAX_PHY_MULTI_PAGE_REG) { 2785 /* Page is shifted left, PHY expects (page x 32) */ 2786 ret_val = e1000_set_page_igp(hw, 2787 (page << IGP_PAGE_SHIFT)); 2788 2789 hw->phy.addr = phy_addr; 2790 2791 if (ret_val) 2792 goto out; 2793 } 2794 } 2795 2796 e_dbg("reading PHY page %d (or 0x%x shifted) reg 0x%x\n", page, 2797 page << IGP_PAGE_SHIFT, reg); 2798 2799 ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & reg, data); 2800 out: 2801 if (!locked) 2802 hw->phy.ops.release(hw); 2803 2804 return ret_val; 2805 } 2806 2807 /** 2808 * e1000_read_phy_reg_hv - Read HV PHY register 2809 * @hw: pointer to the HW structure 2810 * @offset: register offset to be read 2811 * @data: pointer to the read data 2812 * 2813 * Acquires semaphore then reads the PHY register at offset and stores 2814 * the retrieved information in data. Release the acquired semaphore 2815 * before exiting. 2816 **/ 2817 s32 e1000_read_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 *data) 2818 { 2819 return __e1000_read_phy_reg_hv(hw, offset, data, false, false); 2820 } 2821 2822 /** 2823 * e1000_read_phy_reg_hv_locked - Read HV PHY register 2824 * @hw: pointer to the HW structure 2825 * @offset: register offset to be read 2826 * @data: pointer to the read data 2827 * 2828 * Reads the PHY register at offset and stores the retrieved information 2829 * in data. Assumes semaphore already acquired. 2830 **/ 2831 s32 e1000_read_phy_reg_hv_locked(struct e1000_hw *hw, u32 offset, u16 *data) 2832 { 2833 return __e1000_read_phy_reg_hv(hw, offset, data, true, false); 2834 } 2835 2836 /** 2837 * e1000_read_phy_reg_page_hv - Read HV PHY register 2838 * @hw: pointer to the HW structure 2839 * @offset: register offset to write to 2840 * @data: data to write at register offset 2841 * 2842 * Reads the PHY register at offset and stores the retrieved information 2843 * in data. Assumes semaphore already acquired and page already set. 2844 **/ 2845 s32 e1000_read_phy_reg_page_hv(struct e1000_hw *hw, u32 offset, u16 *data) 2846 { 2847 return __e1000_read_phy_reg_hv(hw, offset, data, true, true); 2848 } 2849 2850 /** 2851 * __e1000_write_phy_reg_hv - Write HV PHY register 2852 * @hw: pointer to the HW structure 2853 * @offset: register offset to write to 2854 * @data: data to write at register offset 2855 * @locked: semaphore has already been acquired or not 2856 * 2857 * Acquires semaphore, if necessary, then writes the data to PHY register 2858 * at the offset. Release any acquired semaphores before exiting. 2859 **/ 2860 static s32 __e1000_write_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 data, 2861 bool locked, bool page_set) 2862 { 2863 s32 ret_val; 2864 u16 page = BM_PHY_REG_PAGE(offset); 2865 u16 reg = BM_PHY_REG_NUM(offset); 2866 u32 phy_addr = hw->phy.addr = e1000_get_phy_addr_for_hv_page(page); 2867 2868 if (!locked) { 2869 ret_val = hw->phy.ops.acquire(hw); 2870 if (ret_val) 2871 return ret_val; 2872 } 2873 2874 /* Page 800 works differently than the rest so it has its own func */ 2875 if (page == BM_WUC_PAGE) { 2876 ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, &data, 2877 false, page_set); 2878 goto out; 2879 } 2880 2881 if (page > 0 && page < HV_INTC_FC_PAGE_START) { 2882 ret_val = e1000_access_phy_debug_regs_hv(hw, offset, 2883 &data, false); 2884 goto out; 2885 } 2886 2887 if (!page_set) { 2888 if (page == HV_INTC_FC_PAGE_START) 2889 page = 0; 2890 2891 /* Workaround MDIO accesses being disabled after entering IEEE 2892 * Power Down (when bit 11 of the PHY Control register is set) 2893 */ 2894 if ((hw->phy.type == e1000_phy_82578) && 2895 (hw->phy.revision >= 1) && 2896 (hw->phy.addr == 2) && 2897 !(MAX_PHY_REG_ADDRESS & reg) && (data & (1 << 11))) { 2898 u16 data2 = 0x7EFF; 2899 ret_val = e1000_access_phy_debug_regs_hv(hw, 2900 (1 << 6) | 0x3, 2901 &data2, false); 2902 if (ret_val) 2903 goto out; 2904 } 2905 2906 if (reg > MAX_PHY_MULTI_PAGE_REG) { 2907 /* Page is shifted left, PHY expects (page x 32) */ 2908 ret_val = e1000_set_page_igp(hw, 2909 (page << IGP_PAGE_SHIFT)); 2910 2911 hw->phy.addr = phy_addr; 2912 2913 if (ret_val) 2914 goto out; 2915 } 2916 } 2917 2918 e_dbg("writing PHY page %d (or 0x%x shifted) reg 0x%x\n", page, 2919 page << IGP_PAGE_SHIFT, reg); 2920 2921 ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & reg, 2922 data); 2923 2924 out: 2925 if (!locked) 2926 hw->phy.ops.release(hw); 2927 2928 return ret_val; 2929 } 2930 2931 /** 2932 * e1000_write_phy_reg_hv - Write HV PHY register 2933 * @hw: pointer to the HW structure 2934 * @offset: register offset to write to 2935 * @data: data to write at register offset 2936 * 2937 * Acquires semaphore then writes the data to PHY register at the offset. 2938 * Release the acquired semaphores before exiting. 2939 **/ 2940 s32 e1000_write_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 data) 2941 { 2942 return __e1000_write_phy_reg_hv(hw, offset, data, false, false); 2943 } 2944 2945 /** 2946 * e1000_write_phy_reg_hv_locked - Write HV PHY register 2947 * @hw: pointer to the HW structure 2948 * @offset: register offset to write to 2949 * @data: data to write at register offset 2950 * 2951 * Writes the data to PHY register at the offset. Assumes semaphore 2952 * already acquired. 2953 **/ 2954 s32 e1000_write_phy_reg_hv_locked(struct e1000_hw *hw, u32 offset, u16 data) 2955 { 2956 return __e1000_write_phy_reg_hv(hw, offset, data, true, false); 2957 } 2958 2959 /** 2960 * e1000_write_phy_reg_page_hv - Write HV PHY register 2961 * @hw: pointer to the HW structure 2962 * @offset: register offset to write to 2963 * @data: data to write at register offset 2964 * 2965 * Writes the data to PHY register at the offset. Assumes semaphore 2966 * already acquired and page already set. 2967 **/ 2968 s32 e1000_write_phy_reg_page_hv(struct e1000_hw *hw, u32 offset, u16 data) 2969 { 2970 return __e1000_write_phy_reg_hv(hw, offset, data, true, true); 2971 } 2972 2973 /** 2974 * e1000_get_phy_addr_for_hv_page - Get PHY address based on page 2975 * @page: page to be accessed 2976 **/ 2977 static u32 e1000_get_phy_addr_for_hv_page(u32 page) 2978 { 2979 u32 phy_addr = 2; 2980 2981 if (page >= HV_INTC_FC_PAGE_START) 2982 phy_addr = 1; 2983 2984 return phy_addr; 2985 } 2986 2987 /** 2988 * e1000_access_phy_debug_regs_hv - Read HV PHY vendor specific high registers 2989 * @hw: pointer to the HW structure 2990 * @offset: register offset to be read or written 2991 * @data: pointer to the data to be read or written 2992 * @read: determines if operation is read or write 2993 * 2994 * Reads the PHY register at offset and stores the retreived information 2995 * in data. Assumes semaphore already acquired. Note that the procedure 2996 * to access these regs uses the address port and data port to read/write. 2997 * These accesses done with PHY address 2 and without using pages. 2998 **/ 2999 static s32 e1000_access_phy_debug_regs_hv(struct e1000_hw *hw, u32 offset, 3000 u16 *data, bool read) 3001 { 3002 s32 ret_val; 3003 u32 addr_reg; 3004 u32 data_reg; 3005 3006 /* This takes care of the difference with desktop vs mobile phy */ 3007 addr_reg = ((hw->phy.type == e1000_phy_82578) ? 3008 I82578_ADDR_REG : I82577_ADDR_REG); 3009 data_reg = addr_reg + 1; 3010 3011 /* All operations in this function are phy address 2 */ 3012 hw->phy.addr = 2; 3013 3014 /* masking with 0x3F to remove the page from offset */ 3015 ret_val = e1000e_write_phy_reg_mdic(hw, addr_reg, (u16)offset & 0x3F); 3016 if (ret_val) { 3017 e_dbg("Could not write the Address Offset port register\n"); 3018 return ret_val; 3019 } 3020 3021 /* Read or write the data value next */ 3022 if (read) 3023 ret_val = e1000e_read_phy_reg_mdic(hw, data_reg, data); 3024 else 3025 ret_val = e1000e_write_phy_reg_mdic(hw, data_reg, *data); 3026 3027 if (ret_val) 3028 e_dbg("Could not access the Data port register\n"); 3029 3030 return ret_val; 3031 } 3032 3033 /** 3034 * e1000_link_stall_workaround_hv - Si workaround 3035 * @hw: pointer to the HW structure 3036 * 3037 * This function works around a Si bug where the link partner can get 3038 * a link up indication before the PHY does. If small packets are sent 3039 * by the link partner they can be placed in the packet buffer without 3040 * being properly accounted for by the PHY and will stall preventing 3041 * further packets from being received. The workaround is to clear the 3042 * packet buffer after the PHY detects link up. 3043 **/ 3044 s32 e1000_link_stall_workaround_hv(struct e1000_hw *hw) 3045 { 3046 s32 ret_val = 0; 3047 u16 data; 3048 3049 if (hw->phy.type != e1000_phy_82578) 3050 return 0; 3051 3052 /* Do not apply workaround if in PHY loopback bit 14 set */ 3053 e1e_rphy(hw, MII_BMCR, &data); 3054 if (data & BMCR_LOOPBACK) 3055 return 0; 3056 3057 /* check if link is up and at 1Gbps */ 3058 ret_val = e1e_rphy(hw, BM_CS_STATUS, &data); 3059 if (ret_val) 3060 return ret_val; 3061 3062 data &= (BM_CS_STATUS_LINK_UP | BM_CS_STATUS_RESOLVED | 3063 BM_CS_STATUS_SPEED_MASK); 3064 3065 if (data != (BM_CS_STATUS_LINK_UP | BM_CS_STATUS_RESOLVED | 3066 BM_CS_STATUS_SPEED_1000)) 3067 return 0; 3068 3069 msleep(200); 3070 3071 /* flush the packets in the fifo buffer */ 3072 ret_val = e1e_wphy(hw, HV_MUX_DATA_CTRL, 3073 (HV_MUX_DATA_CTRL_GEN_TO_MAC | 3074 HV_MUX_DATA_CTRL_FORCE_SPEED)); 3075 if (ret_val) 3076 return ret_val; 3077 3078 return e1e_wphy(hw, HV_MUX_DATA_CTRL, HV_MUX_DATA_CTRL_GEN_TO_MAC); 3079 } 3080 3081 /** 3082 * e1000_check_polarity_82577 - Checks the polarity. 3083 * @hw: pointer to the HW structure 3084 * 3085 * Success returns 0, Failure returns -E1000_ERR_PHY (-2) 3086 * 3087 * Polarity is determined based on the PHY specific status register. 3088 **/ 3089 s32 e1000_check_polarity_82577(struct e1000_hw *hw) 3090 { 3091 struct e1000_phy_info *phy = &hw->phy; 3092 s32 ret_val; 3093 u16 data; 3094 3095 ret_val = e1e_rphy(hw, I82577_PHY_STATUS_2, &data); 3096 3097 if (!ret_val) 3098 phy->cable_polarity = ((data & I82577_PHY_STATUS2_REV_POLARITY) 3099 ? e1000_rev_polarity_reversed 3100 : e1000_rev_polarity_normal); 3101 3102 return ret_val; 3103 } 3104 3105 /** 3106 * e1000_phy_force_speed_duplex_82577 - Force speed/duplex for I82577 PHY 3107 * @hw: pointer to the HW structure 3108 * 3109 * Calls the PHY setup function to force speed and duplex. 3110 **/ 3111 s32 e1000_phy_force_speed_duplex_82577(struct e1000_hw *hw) 3112 { 3113 struct e1000_phy_info *phy = &hw->phy; 3114 s32 ret_val; 3115 u16 phy_data; 3116 bool link; 3117 3118 ret_val = e1e_rphy(hw, MII_BMCR, &phy_data); 3119 if (ret_val) 3120 return ret_val; 3121 3122 e1000e_phy_force_speed_duplex_setup(hw, &phy_data); 3123 3124 ret_val = e1e_wphy(hw, MII_BMCR, phy_data); 3125 if (ret_val) 3126 return ret_val; 3127 3128 udelay(1); 3129 3130 if (phy->autoneg_wait_to_complete) { 3131 e_dbg("Waiting for forced speed/duplex link on 82577 phy\n"); 3132 3133 ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT, 3134 100000, &link); 3135 if (ret_val) 3136 return ret_val; 3137 3138 if (!link) 3139 e_dbg("Link taking longer than expected.\n"); 3140 3141 /* Try once more */ 3142 ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT, 3143 100000, &link); 3144 } 3145 3146 return ret_val; 3147 } 3148 3149 /** 3150 * e1000_get_phy_info_82577 - Retrieve I82577 PHY information 3151 * @hw: pointer to the HW structure 3152 * 3153 * Read PHY status to determine if link is up. If link is up, then 3154 * set/determine 10base-T extended distance and polarity correction. Read 3155 * PHY port status to determine MDI/MDIx and speed. Based on the speed, 3156 * determine on the cable length, local and remote receiver. 3157 **/ 3158 s32 e1000_get_phy_info_82577(struct e1000_hw *hw) 3159 { 3160 struct e1000_phy_info *phy = &hw->phy; 3161 s32 ret_val; 3162 u16 data; 3163 bool link; 3164 3165 ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link); 3166 if (ret_val) 3167 return ret_val; 3168 3169 if (!link) { 3170 e_dbg("Phy info is only valid if link is up\n"); 3171 return -E1000_ERR_CONFIG; 3172 } 3173 3174 phy->polarity_correction = true; 3175 3176 ret_val = e1000_check_polarity_82577(hw); 3177 if (ret_val) 3178 return ret_val; 3179 3180 ret_val = e1e_rphy(hw, I82577_PHY_STATUS_2, &data); 3181 if (ret_val) 3182 return ret_val; 3183 3184 phy->is_mdix = !!(data & I82577_PHY_STATUS2_MDIX); 3185 3186 if ((data & I82577_PHY_STATUS2_SPEED_MASK) == 3187 I82577_PHY_STATUS2_SPEED_1000MBPS) { 3188 ret_val = hw->phy.ops.get_cable_length(hw); 3189 if (ret_val) 3190 return ret_val; 3191 3192 ret_val = e1e_rphy(hw, MII_STAT1000, &data); 3193 if (ret_val) 3194 return ret_val; 3195 3196 phy->local_rx = (data & LPA_1000LOCALRXOK) 3197 ? e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok; 3198 3199 phy->remote_rx = (data & LPA_1000REMRXOK) 3200 ? e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok; 3201 } else { 3202 phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED; 3203 phy->local_rx = e1000_1000t_rx_status_undefined; 3204 phy->remote_rx = e1000_1000t_rx_status_undefined; 3205 } 3206 3207 return 0; 3208 } 3209 3210 /** 3211 * e1000_get_cable_length_82577 - Determine cable length for 82577 PHY 3212 * @hw: pointer to the HW structure 3213 * 3214 * Reads the diagnostic status register and verifies result is valid before 3215 * placing it in the phy_cable_length field. 3216 **/ 3217 s32 e1000_get_cable_length_82577(struct e1000_hw *hw) 3218 { 3219 struct e1000_phy_info *phy = &hw->phy; 3220 s32 ret_val; 3221 u16 phy_data, length; 3222 3223 ret_val = e1e_rphy(hw, I82577_PHY_DIAG_STATUS, &phy_data); 3224 if (ret_val) 3225 return ret_val; 3226 3227 length = ((phy_data & I82577_DSTATUS_CABLE_LENGTH) >> 3228 I82577_DSTATUS_CABLE_LENGTH_SHIFT); 3229 3230 if (length == E1000_CABLE_LENGTH_UNDEFINED) 3231 return -E1000_ERR_PHY; 3232 3233 phy->cable_length = length; 3234 3235 return 0; 3236 } 3237