1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright(c) 1999 - 2018 Intel Corporation. */ 3 4 #include "e1000.h" 5 #include <linux/ethtool.h> 6 7 static s32 e1000_wait_autoneg(struct e1000_hw *hw); 8 static s32 e1000_access_phy_wakeup_reg_bm(struct e1000_hw *hw, u32 offset, 9 u16 *data, bool read, bool page_set); 10 static u32 e1000_get_phy_addr_for_hv_page(u32 page); 11 static s32 e1000_access_phy_debug_regs_hv(struct e1000_hw *hw, u32 offset, 12 u16 *data, bool read); 13 14 /* Cable length tables */ 15 static const u16 e1000_m88_cable_length_table[] = { 16 0, 50, 80, 110, 140, 140, E1000_CABLE_LENGTH_UNDEFINED 17 }; 18 19 #define M88E1000_CABLE_LENGTH_TABLE_SIZE \ 20 ARRAY_SIZE(e1000_m88_cable_length_table) 21 22 static const u16 e1000_igp_2_cable_length_table[] = { 23 0, 0, 0, 0, 0, 0, 0, 0, 3, 5, 8, 11, 13, 16, 18, 21, 0, 0, 0, 3, 24 6, 10, 13, 16, 19, 23, 26, 29, 32, 35, 38, 41, 6, 10, 14, 18, 22, 25 26, 30, 33, 37, 41, 44, 48, 51, 54, 58, 61, 21, 26, 31, 35, 40, 26 44, 49, 53, 57, 61, 65, 68, 72, 75, 79, 82, 40, 45, 51, 56, 61, 27 66, 70, 75, 79, 83, 87, 91, 94, 98, 101, 104, 60, 66, 72, 77, 82, 28 87, 92, 96, 100, 104, 108, 111, 114, 117, 119, 121, 83, 89, 95, 29 100, 105, 109, 113, 116, 119, 122, 124, 104, 109, 114, 118, 121, 30 124 31 }; 32 33 #define IGP02E1000_CABLE_LENGTH_TABLE_SIZE \ 34 ARRAY_SIZE(e1000_igp_2_cable_length_table) 35 36 /** 37 * e1000e_check_reset_block_generic - Check if PHY reset is blocked 38 * @hw: pointer to the HW structure 39 * 40 * Read the PHY management control register and check whether a PHY reset 41 * is blocked. If a reset is not blocked return 0, otherwise 42 * return E1000_BLK_PHY_RESET (12). 43 **/ 44 s32 e1000e_check_reset_block_generic(struct e1000_hw *hw) 45 { 46 u32 manc; 47 48 manc = er32(MANC); 49 50 return (manc & E1000_MANC_BLK_PHY_RST_ON_IDE) ? E1000_BLK_PHY_RESET : 0; 51 } 52 53 /** 54 * e1000e_get_phy_id - Retrieve the PHY ID and revision 55 * @hw: pointer to the HW structure 56 * 57 * Reads the PHY registers and stores the PHY ID and possibly the PHY 58 * revision in the hardware structure. 59 **/ 60 s32 e1000e_get_phy_id(struct e1000_hw *hw) 61 { 62 struct e1000_phy_info *phy = &hw->phy; 63 s32 ret_val = 0; 64 u16 phy_id; 65 u16 retry_count = 0; 66 67 if (!phy->ops.read_reg) 68 return 0; 69 70 while (retry_count < 2) { 71 ret_val = e1e_rphy(hw, MII_PHYSID1, &phy_id); 72 if (ret_val) 73 return ret_val; 74 75 phy->id = (u32)(phy_id << 16); 76 usleep_range(20, 40); 77 ret_val = e1e_rphy(hw, MII_PHYSID2, &phy_id); 78 if (ret_val) 79 return ret_val; 80 81 phy->id |= (u32)(phy_id & PHY_REVISION_MASK); 82 phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK); 83 84 if (phy->id != 0 && phy->id != PHY_REVISION_MASK) 85 return 0; 86 87 retry_count++; 88 } 89 90 return 0; 91 } 92 93 /** 94 * e1000e_phy_reset_dsp - Reset PHY DSP 95 * @hw: pointer to the HW structure 96 * 97 * Reset the digital signal processor. 98 **/ 99 s32 e1000e_phy_reset_dsp(struct e1000_hw *hw) 100 { 101 s32 ret_val; 102 103 ret_val = e1e_wphy(hw, M88E1000_PHY_GEN_CONTROL, 0xC1); 104 if (ret_val) 105 return ret_val; 106 107 return e1e_wphy(hw, M88E1000_PHY_GEN_CONTROL, 0); 108 } 109 110 /** 111 * e1000e_read_phy_reg_mdic - Read MDI control register 112 * @hw: pointer to the HW structure 113 * @offset: register offset to be read 114 * @data: pointer to the read data 115 * 116 * Reads the MDI control register in the PHY at offset and stores the 117 * information read to data. 118 **/ 119 s32 e1000e_read_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 *data) 120 { 121 struct e1000_phy_info *phy = &hw->phy; 122 u32 i, mdic = 0; 123 124 if (offset > MAX_PHY_REG_ADDRESS) { 125 e_dbg("PHY Address %d is out of range\n", offset); 126 return -E1000_ERR_PARAM; 127 } 128 129 /* Set up Op-code, Phy Address, and register offset in the MDI 130 * Control register. The MAC will take care of interfacing with the 131 * PHY to retrieve the desired data. 132 */ 133 mdic = ((offset << E1000_MDIC_REG_SHIFT) | 134 (phy->addr << E1000_MDIC_PHY_SHIFT) | 135 (E1000_MDIC_OP_READ)); 136 137 ew32(MDIC, mdic); 138 139 /* Poll the ready bit to see if the MDI read completed 140 * Increasing the time out as testing showed failures with 141 * the lower time out 142 */ 143 for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) { 144 udelay(50); 145 mdic = er32(MDIC); 146 if (mdic & E1000_MDIC_READY) 147 break; 148 } 149 if (!(mdic & E1000_MDIC_READY)) { 150 e_dbg("MDI Read PHY Reg Address %d did not complete\n", offset); 151 return -E1000_ERR_PHY; 152 } 153 if (mdic & E1000_MDIC_ERROR) { 154 e_dbg("MDI Read PHY Reg Address %d Error\n", offset); 155 return -E1000_ERR_PHY; 156 } 157 if (((mdic & E1000_MDIC_REG_MASK) >> E1000_MDIC_REG_SHIFT) != offset) { 158 e_dbg("MDI Read offset error - requested %d, returned %d\n", 159 offset, 160 (mdic & E1000_MDIC_REG_MASK) >> E1000_MDIC_REG_SHIFT); 161 return -E1000_ERR_PHY; 162 } 163 *data = (u16)mdic; 164 165 /* Allow some time after each MDIC transaction to avoid 166 * reading duplicate data in the next MDIC transaction. 167 */ 168 if (hw->mac.type == e1000_pch2lan) 169 udelay(100); 170 171 return 0; 172 } 173 174 /** 175 * e1000e_write_phy_reg_mdic - Write MDI control register 176 * @hw: pointer to the HW structure 177 * @offset: register offset to write to 178 * @data: data to write to register at offset 179 * 180 * Writes data to MDI control register in the PHY at offset. 181 **/ 182 s32 e1000e_write_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 data) 183 { 184 struct e1000_phy_info *phy = &hw->phy; 185 u32 i, mdic = 0; 186 187 if (offset > MAX_PHY_REG_ADDRESS) { 188 e_dbg("PHY Address %d is out of range\n", offset); 189 return -E1000_ERR_PARAM; 190 } 191 192 /* Set up Op-code, Phy Address, and register offset in the MDI 193 * Control register. The MAC will take care of interfacing with the 194 * PHY to retrieve the desired data. 195 */ 196 mdic = (((u32)data) | 197 (offset << E1000_MDIC_REG_SHIFT) | 198 (phy->addr << E1000_MDIC_PHY_SHIFT) | 199 (E1000_MDIC_OP_WRITE)); 200 201 ew32(MDIC, mdic); 202 203 /* Poll the ready bit to see if the MDI read completed 204 * Increasing the time out as testing showed failures with 205 * the lower time out 206 */ 207 for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) { 208 udelay(50); 209 mdic = er32(MDIC); 210 if (mdic & E1000_MDIC_READY) 211 break; 212 } 213 if (!(mdic & E1000_MDIC_READY)) { 214 e_dbg("MDI Write PHY Reg Address %d did not complete\n", offset); 215 return -E1000_ERR_PHY; 216 } 217 if (mdic & E1000_MDIC_ERROR) { 218 e_dbg("MDI Write PHY Red Address %d Error\n", offset); 219 return -E1000_ERR_PHY; 220 } 221 if (((mdic & E1000_MDIC_REG_MASK) >> E1000_MDIC_REG_SHIFT) != offset) { 222 e_dbg("MDI Write offset error - requested %d, returned %d\n", 223 offset, 224 (mdic & E1000_MDIC_REG_MASK) >> E1000_MDIC_REG_SHIFT); 225 return -E1000_ERR_PHY; 226 } 227 228 /* Allow some time after each MDIC transaction to avoid 229 * reading duplicate data in the next MDIC transaction. 230 */ 231 if (hw->mac.type == e1000_pch2lan) 232 udelay(100); 233 234 return 0; 235 } 236 237 /** 238 * e1000e_read_phy_reg_m88 - Read m88 PHY register 239 * @hw: pointer to the HW structure 240 * @offset: register offset to be read 241 * @data: pointer to the read data 242 * 243 * Acquires semaphore, if necessary, then reads the PHY register at offset 244 * and storing the retrieved information in data. Release any acquired 245 * semaphores before exiting. 246 **/ 247 s32 e1000e_read_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 *data) 248 { 249 s32 ret_val; 250 251 ret_val = hw->phy.ops.acquire(hw); 252 if (ret_val) 253 return ret_val; 254 255 ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset, 256 data); 257 258 hw->phy.ops.release(hw); 259 260 return ret_val; 261 } 262 263 /** 264 * e1000e_write_phy_reg_m88 - Write m88 PHY register 265 * @hw: pointer to the HW structure 266 * @offset: register offset to write to 267 * @data: data to write at register offset 268 * 269 * Acquires semaphore, if necessary, then writes the data to PHY register 270 * at the offset. Release any acquired semaphores before exiting. 271 **/ 272 s32 e1000e_write_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 data) 273 { 274 s32 ret_val; 275 276 ret_val = hw->phy.ops.acquire(hw); 277 if (ret_val) 278 return ret_val; 279 280 ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset, 281 data); 282 283 hw->phy.ops.release(hw); 284 285 return ret_val; 286 } 287 288 /** 289 * e1000_set_page_igp - Set page as on IGP-like PHY(s) 290 * @hw: pointer to the HW structure 291 * @page: page to set (shifted left when necessary) 292 * 293 * Sets PHY page required for PHY register access. Assumes semaphore is 294 * already acquired. Note, this function sets phy.addr to 1 so the caller 295 * must set it appropriately (if necessary) after this function returns. 296 **/ 297 s32 e1000_set_page_igp(struct e1000_hw *hw, u16 page) 298 { 299 e_dbg("Setting page 0x%x\n", page); 300 301 hw->phy.addr = 1; 302 303 return e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, page); 304 } 305 306 /** 307 * __e1000e_read_phy_reg_igp - Read igp PHY register 308 * @hw: pointer to the HW structure 309 * @offset: register offset to be read 310 * @data: pointer to the read data 311 * @locked: semaphore has already been acquired or not 312 * 313 * Acquires semaphore, if necessary, then reads the PHY register at offset 314 * and stores the retrieved information in data. Release any acquired 315 * semaphores before exiting. 316 **/ 317 static s32 __e1000e_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data, 318 bool locked) 319 { 320 s32 ret_val = 0; 321 322 if (!locked) { 323 if (!hw->phy.ops.acquire) 324 return 0; 325 326 ret_val = hw->phy.ops.acquire(hw); 327 if (ret_val) 328 return ret_val; 329 } 330 331 if (offset > MAX_PHY_MULTI_PAGE_REG) 332 ret_val = e1000e_write_phy_reg_mdic(hw, 333 IGP01E1000_PHY_PAGE_SELECT, 334 (u16)offset); 335 if (!ret_val) 336 ret_val = e1000e_read_phy_reg_mdic(hw, 337 MAX_PHY_REG_ADDRESS & offset, 338 data); 339 if (!locked) 340 hw->phy.ops.release(hw); 341 342 return ret_val; 343 } 344 345 /** 346 * e1000e_read_phy_reg_igp - Read igp PHY register 347 * @hw: pointer to the HW structure 348 * @offset: register offset to be read 349 * @data: pointer to the read data 350 * 351 * Acquires semaphore then reads the PHY register at offset and stores the 352 * retrieved information in data. 353 * Release the acquired semaphore before exiting. 354 **/ 355 s32 e1000e_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data) 356 { 357 return __e1000e_read_phy_reg_igp(hw, offset, data, false); 358 } 359 360 /** 361 * e1000e_read_phy_reg_igp_locked - Read igp PHY register 362 * @hw: pointer to the HW structure 363 * @offset: register offset to be read 364 * @data: pointer to the read data 365 * 366 * Reads the PHY register at offset and stores the retrieved information 367 * in data. Assumes semaphore already acquired. 368 **/ 369 s32 e1000e_read_phy_reg_igp_locked(struct e1000_hw *hw, u32 offset, u16 *data) 370 { 371 return __e1000e_read_phy_reg_igp(hw, offset, data, true); 372 } 373 374 /** 375 * __e1000e_write_phy_reg_igp - Write igp PHY register 376 * @hw: pointer to the HW structure 377 * @offset: register offset to write to 378 * @data: data to write at register offset 379 * @locked: semaphore has already been acquired or not 380 * 381 * Acquires semaphore, if necessary, then writes the data to PHY register 382 * at the offset. Release any acquired semaphores before exiting. 383 **/ 384 static s32 __e1000e_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data, 385 bool locked) 386 { 387 s32 ret_val = 0; 388 389 if (!locked) { 390 if (!hw->phy.ops.acquire) 391 return 0; 392 393 ret_val = hw->phy.ops.acquire(hw); 394 if (ret_val) 395 return ret_val; 396 } 397 398 if (offset > MAX_PHY_MULTI_PAGE_REG) 399 ret_val = e1000e_write_phy_reg_mdic(hw, 400 IGP01E1000_PHY_PAGE_SELECT, 401 (u16)offset); 402 if (!ret_val) 403 ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & 404 offset, data); 405 if (!locked) 406 hw->phy.ops.release(hw); 407 408 return ret_val; 409 } 410 411 /** 412 * e1000e_write_phy_reg_igp - Write igp PHY register 413 * @hw: pointer to the HW structure 414 * @offset: register offset to write to 415 * @data: data to write at register offset 416 * 417 * Acquires semaphore then writes the data to PHY register 418 * at the offset. Release any acquired semaphores before exiting. 419 **/ 420 s32 e1000e_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data) 421 { 422 return __e1000e_write_phy_reg_igp(hw, offset, data, false); 423 } 424 425 /** 426 * e1000e_write_phy_reg_igp_locked - Write igp PHY register 427 * @hw: pointer to the HW structure 428 * @offset: register offset to write to 429 * @data: data to write at register offset 430 * 431 * Writes the data to PHY register at the offset. 432 * Assumes semaphore already acquired. 433 **/ 434 s32 e1000e_write_phy_reg_igp_locked(struct e1000_hw *hw, u32 offset, u16 data) 435 { 436 return __e1000e_write_phy_reg_igp(hw, offset, data, true); 437 } 438 439 /** 440 * __e1000_read_kmrn_reg - Read kumeran register 441 * @hw: pointer to the HW structure 442 * @offset: register offset to be read 443 * @data: pointer to the read data 444 * @locked: semaphore has already been acquired or not 445 * 446 * Acquires semaphore, if necessary. Then reads the PHY register at offset 447 * using the kumeran interface. The information retrieved is stored in data. 448 * Release any acquired semaphores before exiting. 449 **/ 450 static s32 __e1000_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data, 451 bool locked) 452 { 453 u32 kmrnctrlsta; 454 455 if (!locked) { 456 s32 ret_val = 0; 457 458 if (!hw->phy.ops.acquire) 459 return 0; 460 461 ret_val = hw->phy.ops.acquire(hw); 462 if (ret_val) 463 return ret_val; 464 } 465 466 kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) & 467 E1000_KMRNCTRLSTA_OFFSET) | E1000_KMRNCTRLSTA_REN; 468 ew32(KMRNCTRLSTA, kmrnctrlsta); 469 e1e_flush(); 470 471 udelay(2); 472 473 kmrnctrlsta = er32(KMRNCTRLSTA); 474 *data = (u16)kmrnctrlsta; 475 476 if (!locked) 477 hw->phy.ops.release(hw); 478 479 return 0; 480 } 481 482 /** 483 * e1000e_read_kmrn_reg - Read kumeran register 484 * @hw: pointer to the HW structure 485 * @offset: register offset to be read 486 * @data: pointer to the read data 487 * 488 * Acquires semaphore then reads the PHY register at offset using the 489 * kumeran interface. The information retrieved is stored in data. 490 * Release the acquired semaphore before exiting. 491 **/ 492 s32 e1000e_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data) 493 { 494 return __e1000_read_kmrn_reg(hw, offset, data, false); 495 } 496 497 /** 498 * e1000e_read_kmrn_reg_locked - Read kumeran register 499 * @hw: pointer to the HW structure 500 * @offset: register offset to be read 501 * @data: pointer to the read data 502 * 503 * Reads the PHY register at offset using the kumeran interface. The 504 * information retrieved is stored in data. 505 * Assumes semaphore already acquired. 506 **/ 507 s32 e1000e_read_kmrn_reg_locked(struct e1000_hw *hw, u32 offset, u16 *data) 508 { 509 return __e1000_read_kmrn_reg(hw, offset, data, true); 510 } 511 512 /** 513 * __e1000_write_kmrn_reg - Write kumeran register 514 * @hw: pointer to the HW structure 515 * @offset: register offset to write to 516 * @data: data to write at register offset 517 * @locked: semaphore has already been acquired or not 518 * 519 * Acquires semaphore, if necessary. Then write the data to PHY register 520 * at the offset using the kumeran interface. Release any acquired semaphores 521 * before exiting. 522 **/ 523 static s32 __e1000_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data, 524 bool locked) 525 { 526 u32 kmrnctrlsta; 527 528 if (!locked) { 529 s32 ret_val = 0; 530 531 if (!hw->phy.ops.acquire) 532 return 0; 533 534 ret_val = hw->phy.ops.acquire(hw); 535 if (ret_val) 536 return ret_val; 537 } 538 539 kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) & 540 E1000_KMRNCTRLSTA_OFFSET) | data; 541 ew32(KMRNCTRLSTA, kmrnctrlsta); 542 e1e_flush(); 543 544 udelay(2); 545 546 if (!locked) 547 hw->phy.ops.release(hw); 548 549 return 0; 550 } 551 552 /** 553 * e1000e_write_kmrn_reg - Write kumeran register 554 * @hw: pointer to the HW structure 555 * @offset: register offset to write to 556 * @data: data to write at register offset 557 * 558 * Acquires semaphore then writes the data to the PHY register at the offset 559 * using the kumeran interface. Release the acquired semaphore before exiting. 560 **/ 561 s32 e1000e_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data) 562 { 563 return __e1000_write_kmrn_reg(hw, offset, data, false); 564 } 565 566 /** 567 * e1000e_write_kmrn_reg_locked - Write kumeran register 568 * @hw: pointer to the HW structure 569 * @offset: register offset to write to 570 * @data: data to write at register offset 571 * 572 * Write the data to PHY register at the offset using the kumeran interface. 573 * Assumes semaphore already acquired. 574 **/ 575 s32 e1000e_write_kmrn_reg_locked(struct e1000_hw *hw, u32 offset, u16 data) 576 { 577 return __e1000_write_kmrn_reg(hw, offset, data, true); 578 } 579 580 /** 581 * e1000_set_master_slave_mode - Setup PHY for Master/slave mode 582 * @hw: pointer to the HW structure 583 * 584 * Sets up Master/slave mode 585 **/ 586 static s32 e1000_set_master_slave_mode(struct e1000_hw *hw) 587 { 588 s32 ret_val; 589 u16 phy_data; 590 591 /* Resolve Master/Slave mode */ 592 ret_val = e1e_rphy(hw, MII_CTRL1000, &phy_data); 593 if (ret_val) 594 return ret_val; 595 596 /* load defaults for future use */ 597 hw->phy.original_ms_type = (phy_data & CTL1000_ENABLE_MASTER) ? 598 ((phy_data & CTL1000_AS_MASTER) ? 599 e1000_ms_force_master : e1000_ms_force_slave) : e1000_ms_auto; 600 601 switch (hw->phy.ms_type) { 602 case e1000_ms_force_master: 603 phy_data |= (CTL1000_ENABLE_MASTER | CTL1000_AS_MASTER); 604 break; 605 case e1000_ms_force_slave: 606 phy_data |= CTL1000_ENABLE_MASTER; 607 phy_data &= ~(CTL1000_AS_MASTER); 608 break; 609 case e1000_ms_auto: 610 phy_data &= ~CTL1000_ENABLE_MASTER; 611 fallthrough; 612 default: 613 break; 614 } 615 616 return e1e_wphy(hw, MII_CTRL1000, phy_data); 617 } 618 619 /** 620 * e1000_copper_link_setup_82577 - Setup 82577 PHY for copper link 621 * @hw: pointer to the HW structure 622 * 623 * Sets up Carrier-sense on Transmit and downshift values. 624 **/ 625 s32 e1000_copper_link_setup_82577(struct e1000_hw *hw) 626 { 627 s32 ret_val; 628 u16 phy_data; 629 630 /* Enable CRS on Tx. This must be set for half-duplex operation. */ 631 ret_val = e1e_rphy(hw, I82577_CFG_REG, &phy_data); 632 if (ret_val) 633 return ret_val; 634 635 phy_data |= I82577_CFG_ASSERT_CRS_ON_TX; 636 637 /* Enable downshift */ 638 phy_data |= I82577_CFG_ENABLE_DOWNSHIFT; 639 640 ret_val = e1e_wphy(hw, I82577_CFG_REG, phy_data); 641 if (ret_val) 642 return ret_val; 643 644 /* Set MDI/MDIX mode */ 645 ret_val = e1e_rphy(hw, I82577_PHY_CTRL_2, &phy_data); 646 if (ret_val) 647 return ret_val; 648 phy_data &= ~I82577_PHY_CTRL2_MDIX_CFG_MASK; 649 /* Options: 650 * 0 - Auto (default) 651 * 1 - MDI mode 652 * 2 - MDI-X mode 653 */ 654 switch (hw->phy.mdix) { 655 case 1: 656 break; 657 case 2: 658 phy_data |= I82577_PHY_CTRL2_MANUAL_MDIX; 659 break; 660 case 0: 661 default: 662 phy_data |= I82577_PHY_CTRL2_AUTO_MDI_MDIX; 663 break; 664 } 665 ret_val = e1e_wphy(hw, I82577_PHY_CTRL_2, phy_data); 666 if (ret_val) 667 return ret_val; 668 669 return e1000_set_master_slave_mode(hw); 670 } 671 672 /** 673 * e1000e_copper_link_setup_m88 - Setup m88 PHY's for copper link 674 * @hw: pointer to the HW structure 675 * 676 * Sets up MDI/MDI-X and polarity for m88 PHY's. If necessary, transmit clock 677 * and downshift values are set also. 678 **/ 679 s32 e1000e_copper_link_setup_m88(struct e1000_hw *hw) 680 { 681 struct e1000_phy_info *phy = &hw->phy; 682 s32 ret_val; 683 u16 phy_data; 684 685 /* Enable CRS on Tx. This must be set for half-duplex operation. */ 686 ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); 687 if (ret_val) 688 return ret_val; 689 690 /* For BM PHY this bit is downshift enable */ 691 if (phy->type != e1000_phy_bm) 692 phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX; 693 694 /* Options: 695 * MDI/MDI-X = 0 (default) 696 * 0 - Auto for all speeds 697 * 1 - MDI mode 698 * 2 - MDI-X mode 699 * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes) 700 */ 701 phy_data &= ~M88E1000_PSCR_AUTO_X_MODE; 702 703 switch (phy->mdix) { 704 case 1: 705 phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE; 706 break; 707 case 2: 708 phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE; 709 break; 710 case 3: 711 phy_data |= M88E1000_PSCR_AUTO_X_1000T; 712 break; 713 case 0: 714 default: 715 phy_data |= M88E1000_PSCR_AUTO_X_MODE; 716 break; 717 } 718 719 /* Options: 720 * disable_polarity_correction = 0 (default) 721 * Automatic Correction for Reversed Cable Polarity 722 * 0 - Disabled 723 * 1 - Enabled 724 */ 725 phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL; 726 if (phy->disable_polarity_correction) 727 phy_data |= M88E1000_PSCR_POLARITY_REVERSAL; 728 729 /* Enable downshift on BM (disabled by default) */ 730 if (phy->type == e1000_phy_bm) { 731 /* For 82574/82583, first disable then enable downshift */ 732 if (phy->id == BME1000_E_PHY_ID_R2) { 733 phy_data &= ~BME1000_PSCR_ENABLE_DOWNSHIFT; 734 ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, 735 phy_data); 736 if (ret_val) 737 return ret_val; 738 /* Commit the changes. */ 739 ret_val = phy->ops.commit(hw); 740 if (ret_val) { 741 e_dbg("Error committing the PHY changes\n"); 742 return ret_val; 743 } 744 } 745 746 phy_data |= BME1000_PSCR_ENABLE_DOWNSHIFT; 747 } 748 749 ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, phy_data); 750 if (ret_val) 751 return ret_val; 752 753 if ((phy->type == e1000_phy_m88) && 754 (phy->revision < E1000_REVISION_4) && 755 (phy->id != BME1000_E_PHY_ID_R2)) { 756 /* Force TX_CLK in the Extended PHY Specific Control Register 757 * to 25MHz clock. 758 */ 759 ret_val = e1e_rphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data); 760 if (ret_val) 761 return ret_val; 762 763 phy_data |= M88E1000_EPSCR_TX_CLK_25; 764 765 if ((phy->revision == 2) && (phy->id == M88E1111_I_PHY_ID)) { 766 /* 82573L PHY - set the downshift counter to 5x. */ 767 phy_data &= ~M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK; 768 phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X; 769 } else { 770 /* Configure Master and Slave downshift values */ 771 phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK | 772 M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK); 773 phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X | 774 M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X); 775 } 776 ret_val = e1e_wphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data); 777 if (ret_val) 778 return ret_val; 779 } 780 781 if ((phy->type == e1000_phy_bm) && (phy->id == BME1000_E_PHY_ID_R2)) { 782 /* Set PHY page 0, register 29 to 0x0003 */ 783 ret_val = e1e_wphy(hw, 29, 0x0003); 784 if (ret_val) 785 return ret_val; 786 787 /* Set PHY page 0, register 30 to 0x0000 */ 788 ret_val = e1e_wphy(hw, 30, 0x0000); 789 if (ret_val) 790 return ret_val; 791 } 792 793 /* Commit the changes. */ 794 if (phy->ops.commit) { 795 ret_val = phy->ops.commit(hw); 796 if (ret_val) { 797 e_dbg("Error committing the PHY changes\n"); 798 return ret_val; 799 } 800 } 801 802 if (phy->type == e1000_phy_82578) { 803 ret_val = e1e_rphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data); 804 if (ret_val) 805 return ret_val; 806 807 /* 82578 PHY - set the downshift count to 1x. */ 808 phy_data |= I82578_EPSCR_DOWNSHIFT_ENABLE; 809 phy_data &= ~I82578_EPSCR_DOWNSHIFT_COUNTER_MASK; 810 ret_val = e1e_wphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data); 811 if (ret_val) 812 return ret_val; 813 } 814 815 return 0; 816 } 817 818 /** 819 * e1000e_copper_link_setup_igp - Setup igp PHY's for copper link 820 * @hw: pointer to the HW structure 821 * 822 * Sets up LPLU, MDI/MDI-X, polarity, Smartspeed and Master/Slave config for 823 * igp PHY's. 824 **/ 825 s32 e1000e_copper_link_setup_igp(struct e1000_hw *hw) 826 { 827 struct e1000_phy_info *phy = &hw->phy; 828 s32 ret_val; 829 u16 data; 830 831 ret_val = e1000_phy_hw_reset(hw); 832 if (ret_val) { 833 e_dbg("Error resetting the PHY.\n"); 834 return ret_val; 835 } 836 837 /* Wait 100ms for MAC to configure PHY from NVM settings, to avoid 838 * timeout issues when LFS is enabled. 839 */ 840 msleep(100); 841 842 /* disable lplu d0 during driver init */ 843 if (hw->phy.ops.set_d0_lplu_state) { 844 ret_val = hw->phy.ops.set_d0_lplu_state(hw, false); 845 if (ret_val) { 846 e_dbg("Error Disabling LPLU D0\n"); 847 return ret_val; 848 } 849 } 850 /* Configure mdi-mdix settings */ 851 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CTRL, &data); 852 if (ret_val) 853 return ret_val; 854 855 data &= ~IGP01E1000_PSCR_AUTO_MDIX; 856 857 switch (phy->mdix) { 858 case 1: 859 data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX; 860 break; 861 case 2: 862 data |= IGP01E1000_PSCR_FORCE_MDI_MDIX; 863 break; 864 case 0: 865 default: 866 data |= IGP01E1000_PSCR_AUTO_MDIX; 867 break; 868 } 869 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CTRL, data); 870 if (ret_val) 871 return ret_val; 872 873 /* set auto-master slave resolution settings */ 874 if (hw->mac.autoneg) { 875 /* when autonegotiation advertisement is only 1000Mbps then we 876 * should disable SmartSpeed and enable Auto MasterSlave 877 * resolution as hardware default. 878 */ 879 if (phy->autoneg_advertised == ADVERTISE_1000_FULL) { 880 /* Disable SmartSpeed */ 881 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, 882 &data); 883 if (ret_val) 884 return ret_val; 885 886 data &= ~IGP01E1000_PSCFR_SMART_SPEED; 887 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, 888 data); 889 if (ret_val) 890 return ret_val; 891 892 /* Set auto Master/Slave resolution process */ 893 ret_val = e1e_rphy(hw, MII_CTRL1000, &data); 894 if (ret_val) 895 return ret_val; 896 897 data &= ~CTL1000_ENABLE_MASTER; 898 ret_val = e1e_wphy(hw, MII_CTRL1000, data); 899 if (ret_val) 900 return ret_val; 901 } 902 903 ret_val = e1000_set_master_slave_mode(hw); 904 } 905 906 return ret_val; 907 } 908 909 /** 910 * e1000_phy_setup_autoneg - Configure PHY for auto-negotiation 911 * @hw: pointer to the HW structure 912 * 913 * Reads the MII auto-neg advertisement register and/or the 1000T control 914 * register and if the PHY is already setup for auto-negotiation, then 915 * return successful. Otherwise, setup advertisement and flow control to 916 * the appropriate values for the wanted auto-negotiation. 917 **/ 918 static s32 e1000_phy_setup_autoneg(struct e1000_hw *hw) 919 { 920 struct e1000_phy_info *phy = &hw->phy; 921 s32 ret_val; 922 u16 mii_autoneg_adv_reg; 923 u16 mii_1000t_ctrl_reg = 0; 924 925 phy->autoneg_advertised &= phy->autoneg_mask; 926 927 /* Read the MII Auto-Neg Advertisement Register (Address 4). */ 928 ret_val = e1e_rphy(hw, MII_ADVERTISE, &mii_autoneg_adv_reg); 929 if (ret_val) 930 return ret_val; 931 932 if (phy->autoneg_mask & ADVERTISE_1000_FULL) { 933 /* Read the MII 1000Base-T Control Register (Address 9). */ 934 ret_val = e1e_rphy(hw, MII_CTRL1000, &mii_1000t_ctrl_reg); 935 if (ret_val) 936 return ret_val; 937 } 938 939 /* Need to parse both autoneg_advertised and fc and set up 940 * the appropriate PHY registers. First we will parse for 941 * autoneg_advertised software override. Since we can advertise 942 * a plethora of combinations, we need to check each bit 943 * individually. 944 */ 945 946 /* First we clear all the 10/100 mb speed bits in the Auto-Neg 947 * Advertisement Register (Address 4) and the 1000 mb speed bits in 948 * the 1000Base-T Control Register (Address 9). 949 */ 950 mii_autoneg_adv_reg &= ~(ADVERTISE_100FULL | 951 ADVERTISE_100HALF | 952 ADVERTISE_10FULL | ADVERTISE_10HALF); 953 mii_1000t_ctrl_reg &= ~(ADVERTISE_1000HALF | ADVERTISE_1000FULL); 954 955 e_dbg("autoneg_advertised %x\n", phy->autoneg_advertised); 956 957 /* Do we want to advertise 10 Mb Half Duplex? */ 958 if (phy->autoneg_advertised & ADVERTISE_10_HALF) { 959 e_dbg("Advertise 10mb Half duplex\n"); 960 mii_autoneg_adv_reg |= ADVERTISE_10HALF; 961 } 962 963 /* Do we want to advertise 10 Mb Full Duplex? */ 964 if (phy->autoneg_advertised & ADVERTISE_10_FULL) { 965 e_dbg("Advertise 10mb Full duplex\n"); 966 mii_autoneg_adv_reg |= ADVERTISE_10FULL; 967 } 968 969 /* Do we want to advertise 100 Mb Half Duplex? */ 970 if (phy->autoneg_advertised & ADVERTISE_100_HALF) { 971 e_dbg("Advertise 100mb Half duplex\n"); 972 mii_autoneg_adv_reg |= ADVERTISE_100HALF; 973 } 974 975 /* Do we want to advertise 100 Mb Full Duplex? */ 976 if (phy->autoneg_advertised & ADVERTISE_100_FULL) { 977 e_dbg("Advertise 100mb Full duplex\n"); 978 mii_autoneg_adv_reg |= ADVERTISE_100FULL; 979 } 980 981 /* We do not allow the Phy to advertise 1000 Mb Half Duplex */ 982 if (phy->autoneg_advertised & ADVERTISE_1000_HALF) 983 e_dbg("Advertise 1000mb Half duplex request denied!\n"); 984 985 /* Do we want to advertise 1000 Mb Full Duplex? */ 986 if (phy->autoneg_advertised & ADVERTISE_1000_FULL) { 987 e_dbg("Advertise 1000mb Full duplex\n"); 988 mii_1000t_ctrl_reg |= ADVERTISE_1000FULL; 989 } 990 991 /* Check for a software override of the flow control settings, and 992 * setup the PHY advertisement registers accordingly. If 993 * auto-negotiation is enabled, then software will have to set the 994 * "PAUSE" bits to the correct value in the Auto-Negotiation 995 * Advertisement Register (MII_ADVERTISE) and re-start auto- 996 * negotiation. 997 * 998 * The possible values of the "fc" parameter are: 999 * 0: Flow control is completely disabled 1000 * 1: Rx flow control is enabled (we can receive pause frames 1001 * but not send pause frames). 1002 * 2: Tx flow control is enabled (we can send pause frames 1003 * but we do not support receiving pause frames). 1004 * 3: Both Rx and Tx flow control (symmetric) are enabled. 1005 * other: No software override. The flow control configuration 1006 * in the EEPROM is used. 1007 */ 1008 switch (hw->fc.current_mode) { 1009 case e1000_fc_none: 1010 /* Flow control (Rx & Tx) is completely disabled by a 1011 * software over-ride. 1012 */ 1013 mii_autoneg_adv_reg &= 1014 ~(ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP); 1015 phy->autoneg_advertised &= 1016 ~(ADVERTISED_Pause | ADVERTISED_Asym_Pause); 1017 break; 1018 case e1000_fc_rx_pause: 1019 /* Rx Flow control is enabled, and Tx Flow control is 1020 * disabled, by a software over-ride. 1021 * 1022 * Since there really isn't a way to advertise that we are 1023 * capable of Rx Pause ONLY, we will advertise that we 1024 * support both symmetric and asymmetric Rx PAUSE. Later 1025 * (in e1000e_config_fc_after_link_up) we will disable the 1026 * hw's ability to send PAUSE frames. 1027 */ 1028 mii_autoneg_adv_reg |= 1029 (ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP); 1030 phy->autoneg_advertised |= 1031 (ADVERTISED_Pause | ADVERTISED_Asym_Pause); 1032 break; 1033 case e1000_fc_tx_pause: 1034 /* Tx Flow control is enabled, and Rx Flow control is 1035 * disabled, by a software over-ride. 1036 */ 1037 mii_autoneg_adv_reg |= ADVERTISE_PAUSE_ASYM; 1038 mii_autoneg_adv_reg &= ~ADVERTISE_PAUSE_CAP; 1039 phy->autoneg_advertised |= ADVERTISED_Asym_Pause; 1040 phy->autoneg_advertised &= ~ADVERTISED_Pause; 1041 break; 1042 case e1000_fc_full: 1043 /* Flow control (both Rx and Tx) is enabled by a software 1044 * over-ride. 1045 */ 1046 mii_autoneg_adv_reg |= 1047 (ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP); 1048 phy->autoneg_advertised |= 1049 (ADVERTISED_Pause | ADVERTISED_Asym_Pause); 1050 break; 1051 default: 1052 e_dbg("Flow control param set incorrectly\n"); 1053 return -E1000_ERR_CONFIG; 1054 } 1055 1056 ret_val = e1e_wphy(hw, MII_ADVERTISE, mii_autoneg_adv_reg); 1057 if (ret_val) 1058 return ret_val; 1059 1060 e_dbg("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg); 1061 1062 if (phy->autoneg_mask & ADVERTISE_1000_FULL) 1063 ret_val = e1e_wphy(hw, MII_CTRL1000, mii_1000t_ctrl_reg); 1064 1065 return ret_val; 1066 } 1067 1068 /** 1069 * e1000_copper_link_autoneg - Setup/Enable autoneg for copper link 1070 * @hw: pointer to the HW structure 1071 * 1072 * Performs initial bounds checking on autoneg advertisement parameter, then 1073 * configure to advertise the full capability. Setup the PHY to autoneg 1074 * and restart the negotiation process between the link partner. If 1075 * autoneg_wait_to_complete, then wait for autoneg to complete before exiting. 1076 **/ 1077 static s32 e1000_copper_link_autoneg(struct e1000_hw *hw) 1078 { 1079 struct e1000_phy_info *phy = &hw->phy; 1080 s32 ret_val; 1081 u16 phy_ctrl; 1082 1083 /* Perform some bounds checking on the autoneg advertisement 1084 * parameter. 1085 */ 1086 phy->autoneg_advertised &= phy->autoneg_mask; 1087 1088 /* If autoneg_advertised is zero, we assume it was not defaulted 1089 * by the calling code so we set to advertise full capability. 1090 */ 1091 if (!phy->autoneg_advertised) 1092 phy->autoneg_advertised = phy->autoneg_mask; 1093 1094 e_dbg("Reconfiguring auto-neg advertisement params\n"); 1095 ret_val = e1000_phy_setup_autoneg(hw); 1096 if (ret_val) { 1097 e_dbg("Error Setting up Auto-Negotiation\n"); 1098 return ret_val; 1099 } 1100 e_dbg("Restarting Auto-Neg\n"); 1101 1102 /* Restart auto-negotiation by setting the Auto Neg Enable bit and 1103 * the Auto Neg Restart bit in the PHY control register. 1104 */ 1105 ret_val = e1e_rphy(hw, MII_BMCR, &phy_ctrl); 1106 if (ret_val) 1107 return ret_val; 1108 1109 phy_ctrl |= (BMCR_ANENABLE | BMCR_ANRESTART); 1110 ret_val = e1e_wphy(hw, MII_BMCR, phy_ctrl); 1111 if (ret_val) 1112 return ret_val; 1113 1114 /* Does the user want to wait for Auto-Neg to complete here, or 1115 * check at a later time (for example, callback routine). 1116 */ 1117 if (phy->autoneg_wait_to_complete) { 1118 ret_val = e1000_wait_autoneg(hw); 1119 if (ret_val) { 1120 e_dbg("Error while waiting for autoneg to complete\n"); 1121 return ret_val; 1122 } 1123 } 1124 1125 hw->mac.get_link_status = true; 1126 1127 return ret_val; 1128 } 1129 1130 /** 1131 * e1000e_setup_copper_link - Configure copper link settings 1132 * @hw: pointer to the HW structure 1133 * 1134 * Calls the appropriate function to configure the link for auto-neg or forced 1135 * speed and duplex. Then we check for link, once link is established calls 1136 * to configure collision distance and flow control are called. If link is 1137 * not established, we return -E1000_ERR_PHY (-2). 1138 **/ 1139 s32 e1000e_setup_copper_link(struct e1000_hw *hw) 1140 { 1141 s32 ret_val; 1142 bool link; 1143 1144 if (hw->mac.autoneg) { 1145 /* Setup autoneg and flow control advertisement and perform 1146 * autonegotiation. 1147 */ 1148 ret_val = e1000_copper_link_autoneg(hw); 1149 if (ret_val) 1150 return ret_val; 1151 } else { 1152 /* PHY will be set to 10H, 10F, 100H or 100F 1153 * depending on user settings. 1154 */ 1155 e_dbg("Forcing Speed and Duplex\n"); 1156 ret_val = hw->phy.ops.force_speed_duplex(hw); 1157 if (ret_val) { 1158 e_dbg("Error Forcing Speed and Duplex\n"); 1159 return ret_val; 1160 } 1161 } 1162 1163 /* Check link status. Wait up to 100 microseconds for link to become 1164 * valid. 1165 */ 1166 ret_val = e1000e_phy_has_link_generic(hw, COPPER_LINK_UP_LIMIT, 10, 1167 &link); 1168 if (ret_val) 1169 return ret_val; 1170 1171 if (link) { 1172 e_dbg("Valid link established!!!\n"); 1173 hw->mac.ops.config_collision_dist(hw); 1174 ret_val = e1000e_config_fc_after_link_up(hw); 1175 } else { 1176 e_dbg("Unable to establish link!!!\n"); 1177 } 1178 1179 return ret_val; 1180 } 1181 1182 /** 1183 * e1000e_phy_force_speed_duplex_igp - Force speed/duplex for igp PHY 1184 * @hw: pointer to the HW structure 1185 * 1186 * Calls the PHY setup function to force speed and duplex. Clears the 1187 * auto-crossover to force MDI manually. Waits for link and returns 1188 * successful if link up is successful, else -E1000_ERR_PHY (-2). 1189 **/ 1190 s32 e1000e_phy_force_speed_duplex_igp(struct e1000_hw *hw) 1191 { 1192 struct e1000_phy_info *phy = &hw->phy; 1193 s32 ret_val; 1194 u16 phy_data; 1195 bool link; 1196 1197 ret_val = e1e_rphy(hw, MII_BMCR, &phy_data); 1198 if (ret_val) 1199 return ret_val; 1200 1201 e1000e_phy_force_speed_duplex_setup(hw, &phy_data); 1202 1203 ret_val = e1e_wphy(hw, MII_BMCR, phy_data); 1204 if (ret_val) 1205 return ret_val; 1206 1207 /* Clear Auto-Crossover to force MDI manually. IGP requires MDI 1208 * forced whenever speed and duplex are forced. 1209 */ 1210 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data); 1211 if (ret_val) 1212 return ret_val; 1213 1214 phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX; 1215 phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX; 1216 1217 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CTRL, phy_data); 1218 if (ret_val) 1219 return ret_val; 1220 1221 e_dbg("IGP PSCR: %X\n", phy_data); 1222 1223 udelay(1); 1224 1225 if (phy->autoneg_wait_to_complete) { 1226 e_dbg("Waiting for forced speed/duplex link on IGP phy.\n"); 1227 1228 ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT, 1229 100000, &link); 1230 if (ret_val) 1231 return ret_val; 1232 1233 if (!link) 1234 e_dbg("Link taking longer than expected.\n"); 1235 1236 /* Try once more */ 1237 ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT, 1238 100000, &link); 1239 } 1240 1241 return ret_val; 1242 } 1243 1244 /** 1245 * e1000e_phy_force_speed_duplex_m88 - Force speed/duplex for m88 PHY 1246 * @hw: pointer to the HW structure 1247 * 1248 * Calls the PHY setup function to force speed and duplex. Clears the 1249 * auto-crossover to force MDI manually. Resets the PHY to commit the 1250 * changes. If time expires while waiting for link up, we reset the DSP. 1251 * After reset, TX_CLK and CRS on Tx must be set. Return successful upon 1252 * successful completion, else return corresponding error code. 1253 **/ 1254 s32 e1000e_phy_force_speed_duplex_m88(struct e1000_hw *hw) 1255 { 1256 struct e1000_phy_info *phy = &hw->phy; 1257 s32 ret_val; 1258 u16 phy_data; 1259 bool link; 1260 1261 /* Clear Auto-Crossover to force MDI manually. M88E1000 requires MDI 1262 * forced whenever speed and duplex are forced. 1263 */ 1264 ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); 1265 if (ret_val) 1266 return ret_val; 1267 1268 phy_data &= ~M88E1000_PSCR_AUTO_X_MODE; 1269 ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, phy_data); 1270 if (ret_val) 1271 return ret_val; 1272 1273 e_dbg("M88E1000 PSCR: %X\n", phy_data); 1274 1275 ret_val = e1e_rphy(hw, MII_BMCR, &phy_data); 1276 if (ret_val) 1277 return ret_val; 1278 1279 e1000e_phy_force_speed_duplex_setup(hw, &phy_data); 1280 1281 ret_val = e1e_wphy(hw, MII_BMCR, phy_data); 1282 if (ret_val) 1283 return ret_val; 1284 1285 /* Reset the phy to commit changes. */ 1286 if (hw->phy.ops.commit) { 1287 ret_val = hw->phy.ops.commit(hw); 1288 if (ret_val) 1289 return ret_val; 1290 } 1291 1292 if (phy->autoneg_wait_to_complete) { 1293 e_dbg("Waiting for forced speed/duplex link on M88 phy.\n"); 1294 1295 ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT, 1296 100000, &link); 1297 if (ret_val) 1298 return ret_val; 1299 1300 if (!link) { 1301 if (hw->phy.type != e1000_phy_m88) { 1302 e_dbg("Link taking longer than expected.\n"); 1303 } else { 1304 /* We didn't get link. 1305 * Reset the DSP and cross our fingers. 1306 */ 1307 ret_val = e1e_wphy(hw, M88E1000_PHY_PAGE_SELECT, 1308 0x001d); 1309 if (ret_val) 1310 return ret_val; 1311 ret_val = e1000e_phy_reset_dsp(hw); 1312 if (ret_val) 1313 return ret_val; 1314 } 1315 } 1316 1317 /* Try once more */ 1318 ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT, 1319 100000, &link); 1320 if (ret_val) 1321 return ret_val; 1322 } 1323 1324 if (hw->phy.type != e1000_phy_m88) 1325 return 0; 1326 1327 ret_val = e1e_rphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data); 1328 if (ret_val) 1329 return ret_val; 1330 1331 /* Resetting the phy means we need to re-force TX_CLK in the 1332 * Extended PHY Specific Control Register to 25MHz clock from 1333 * the reset value of 2.5MHz. 1334 */ 1335 phy_data |= M88E1000_EPSCR_TX_CLK_25; 1336 ret_val = e1e_wphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data); 1337 if (ret_val) 1338 return ret_val; 1339 1340 /* In addition, we must re-enable CRS on Tx for both half and full 1341 * duplex. 1342 */ 1343 ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); 1344 if (ret_val) 1345 return ret_val; 1346 1347 phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX; 1348 ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, phy_data); 1349 1350 return ret_val; 1351 } 1352 1353 /** 1354 * e1000_phy_force_speed_duplex_ife - Force PHY speed & duplex 1355 * @hw: pointer to the HW structure 1356 * 1357 * Forces the speed and duplex settings of the PHY. 1358 * This is a function pointer entry point only called by 1359 * PHY setup routines. 1360 **/ 1361 s32 e1000_phy_force_speed_duplex_ife(struct e1000_hw *hw) 1362 { 1363 struct e1000_phy_info *phy = &hw->phy; 1364 s32 ret_val; 1365 u16 data; 1366 bool link; 1367 1368 ret_val = e1e_rphy(hw, MII_BMCR, &data); 1369 if (ret_val) 1370 return ret_val; 1371 1372 e1000e_phy_force_speed_duplex_setup(hw, &data); 1373 1374 ret_val = e1e_wphy(hw, MII_BMCR, data); 1375 if (ret_val) 1376 return ret_val; 1377 1378 /* Disable MDI-X support for 10/100 */ 1379 ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &data); 1380 if (ret_val) 1381 return ret_val; 1382 1383 data &= ~IFE_PMC_AUTO_MDIX; 1384 data &= ~IFE_PMC_FORCE_MDIX; 1385 1386 ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, data); 1387 if (ret_val) 1388 return ret_val; 1389 1390 e_dbg("IFE PMC: %X\n", data); 1391 1392 udelay(1); 1393 1394 if (phy->autoneg_wait_to_complete) { 1395 e_dbg("Waiting for forced speed/duplex link on IFE phy.\n"); 1396 1397 ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT, 1398 100000, &link); 1399 if (ret_val) 1400 return ret_val; 1401 1402 if (!link) 1403 e_dbg("Link taking longer than expected.\n"); 1404 1405 /* Try once more */ 1406 ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT, 1407 100000, &link); 1408 if (ret_val) 1409 return ret_val; 1410 } 1411 1412 return 0; 1413 } 1414 1415 /** 1416 * e1000e_phy_force_speed_duplex_setup - Configure forced PHY speed/duplex 1417 * @hw: pointer to the HW structure 1418 * @phy_ctrl: pointer to current value of MII_BMCR 1419 * 1420 * Forces speed and duplex on the PHY by doing the following: disable flow 1421 * control, force speed/duplex on the MAC, disable auto speed detection, 1422 * disable auto-negotiation, configure duplex, configure speed, configure 1423 * the collision distance, write configuration to CTRL register. The 1424 * caller must write to the MII_BMCR register for these settings to 1425 * take affect. 1426 **/ 1427 void e1000e_phy_force_speed_duplex_setup(struct e1000_hw *hw, u16 *phy_ctrl) 1428 { 1429 struct e1000_mac_info *mac = &hw->mac; 1430 u32 ctrl; 1431 1432 /* Turn off flow control when forcing speed/duplex */ 1433 hw->fc.current_mode = e1000_fc_none; 1434 1435 /* Force speed/duplex on the mac */ 1436 ctrl = er32(CTRL); 1437 ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); 1438 ctrl &= ~E1000_CTRL_SPD_SEL; 1439 1440 /* Disable Auto Speed Detection */ 1441 ctrl &= ~E1000_CTRL_ASDE; 1442 1443 /* Disable autoneg on the phy */ 1444 *phy_ctrl &= ~BMCR_ANENABLE; 1445 1446 /* Forcing Full or Half Duplex? */ 1447 if (mac->forced_speed_duplex & E1000_ALL_HALF_DUPLEX) { 1448 ctrl &= ~E1000_CTRL_FD; 1449 *phy_ctrl &= ~BMCR_FULLDPLX; 1450 e_dbg("Half Duplex\n"); 1451 } else { 1452 ctrl |= E1000_CTRL_FD; 1453 *phy_ctrl |= BMCR_FULLDPLX; 1454 e_dbg("Full Duplex\n"); 1455 } 1456 1457 /* Forcing 10mb or 100mb? */ 1458 if (mac->forced_speed_duplex & E1000_ALL_100_SPEED) { 1459 ctrl |= E1000_CTRL_SPD_100; 1460 *phy_ctrl |= BMCR_SPEED100; 1461 *phy_ctrl &= ~BMCR_SPEED1000; 1462 e_dbg("Forcing 100mb\n"); 1463 } else { 1464 ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100); 1465 *phy_ctrl &= ~(BMCR_SPEED1000 | BMCR_SPEED100); 1466 e_dbg("Forcing 10mb\n"); 1467 } 1468 1469 hw->mac.ops.config_collision_dist(hw); 1470 1471 ew32(CTRL, ctrl); 1472 } 1473 1474 /** 1475 * e1000e_set_d3_lplu_state - Sets low power link up state for D3 1476 * @hw: pointer to the HW structure 1477 * @active: boolean used to enable/disable lplu 1478 * 1479 * Success returns 0, Failure returns 1 1480 * 1481 * The low power link up (lplu) state is set to the power management level D3 1482 * and SmartSpeed is disabled when active is true, else clear lplu for D3 1483 * and enable Smartspeed. LPLU and Smartspeed are mutually exclusive. LPLU 1484 * is used during Dx states where the power conservation is most important. 1485 * During driver activity, SmartSpeed should be enabled so performance is 1486 * maintained. 1487 **/ 1488 s32 e1000e_set_d3_lplu_state(struct e1000_hw *hw, bool active) 1489 { 1490 struct e1000_phy_info *phy = &hw->phy; 1491 s32 ret_val; 1492 u16 data; 1493 1494 ret_val = e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &data); 1495 if (ret_val) 1496 return ret_val; 1497 1498 if (!active) { 1499 data &= ~IGP02E1000_PM_D3_LPLU; 1500 ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data); 1501 if (ret_val) 1502 return ret_val; 1503 /* LPLU and SmartSpeed are mutually exclusive. LPLU is used 1504 * during Dx states where the power conservation is most 1505 * important. During driver activity we should enable 1506 * SmartSpeed, so performance is maintained. 1507 */ 1508 if (phy->smart_speed == e1000_smart_speed_on) { 1509 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, 1510 &data); 1511 if (ret_val) 1512 return ret_val; 1513 1514 data |= IGP01E1000_PSCFR_SMART_SPEED; 1515 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, 1516 data); 1517 if (ret_val) 1518 return ret_val; 1519 } else if (phy->smart_speed == e1000_smart_speed_off) { 1520 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, 1521 &data); 1522 if (ret_val) 1523 return ret_val; 1524 1525 data &= ~IGP01E1000_PSCFR_SMART_SPEED; 1526 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, 1527 data); 1528 if (ret_val) 1529 return ret_val; 1530 } 1531 } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) || 1532 (phy->autoneg_advertised == E1000_ALL_NOT_GIG) || 1533 (phy->autoneg_advertised == E1000_ALL_10_SPEED)) { 1534 data |= IGP02E1000_PM_D3_LPLU; 1535 ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data); 1536 if (ret_val) 1537 return ret_val; 1538 1539 /* When LPLU is enabled, we should disable SmartSpeed */ 1540 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data); 1541 if (ret_val) 1542 return ret_val; 1543 1544 data &= ~IGP01E1000_PSCFR_SMART_SPEED; 1545 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data); 1546 } 1547 1548 return ret_val; 1549 } 1550 1551 /** 1552 * e1000e_check_downshift - Checks whether a downshift in speed occurred 1553 * @hw: pointer to the HW structure 1554 * 1555 * Success returns 0, Failure returns 1 1556 * 1557 * A downshift is detected by querying the PHY link health. 1558 **/ 1559 s32 e1000e_check_downshift(struct e1000_hw *hw) 1560 { 1561 struct e1000_phy_info *phy = &hw->phy; 1562 s32 ret_val; 1563 u16 phy_data, offset, mask; 1564 1565 switch (phy->type) { 1566 case e1000_phy_m88: 1567 case e1000_phy_gg82563: 1568 case e1000_phy_bm: 1569 case e1000_phy_82578: 1570 offset = M88E1000_PHY_SPEC_STATUS; 1571 mask = M88E1000_PSSR_DOWNSHIFT; 1572 break; 1573 case e1000_phy_igp_2: 1574 case e1000_phy_igp_3: 1575 offset = IGP01E1000_PHY_LINK_HEALTH; 1576 mask = IGP01E1000_PLHR_SS_DOWNGRADE; 1577 break; 1578 default: 1579 /* speed downshift not supported */ 1580 phy->speed_downgraded = false; 1581 return 0; 1582 } 1583 1584 ret_val = e1e_rphy(hw, offset, &phy_data); 1585 1586 if (!ret_val) 1587 phy->speed_downgraded = !!(phy_data & mask); 1588 1589 return ret_val; 1590 } 1591 1592 /** 1593 * e1000_check_polarity_m88 - Checks the polarity. 1594 * @hw: pointer to the HW structure 1595 * 1596 * Success returns 0, Failure returns -E1000_ERR_PHY (-2) 1597 * 1598 * Polarity is determined based on the PHY specific status register. 1599 **/ 1600 s32 e1000_check_polarity_m88(struct e1000_hw *hw) 1601 { 1602 struct e1000_phy_info *phy = &hw->phy; 1603 s32 ret_val; 1604 u16 data; 1605 1606 ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &data); 1607 1608 if (!ret_val) 1609 phy->cable_polarity = ((data & M88E1000_PSSR_REV_POLARITY) 1610 ? e1000_rev_polarity_reversed 1611 : e1000_rev_polarity_normal); 1612 1613 return ret_val; 1614 } 1615 1616 /** 1617 * e1000_check_polarity_igp - Checks the polarity. 1618 * @hw: pointer to the HW structure 1619 * 1620 * Success returns 0, Failure returns -E1000_ERR_PHY (-2) 1621 * 1622 * Polarity is determined based on the PHY port status register, and the 1623 * current speed (since there is no polarity at 100Mbps). 1624 **/ 1625 s32 e1000_check_polarity_igp(struct e1000_hw *hw) 1626 { 1627 struct e1000_phy_info *phy = &hw->phy; 1628 s32 ret_val; 1629 u16 data, offset, mask; 1630 1631 /* Polarity is determined based on the speed of 1632 * our connection. 1633 */ 1634 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_STATUS, &data); 1635 if (ret_val) 1636 return ret_val; 1637 1638 if ((data & IGP01E1000_PSSR_SPEED_MASK) == 1639 IGP01E1000_PSSR_SPEED_1000MBPS) { 1640 offset = IGP01E1000_PHY_PCS_INIT_REG; 1641 mask = IGP01E1000_PHY_POLARITY_MASK; 1642 } else { 1643 /* This really only applies to 10Mbps since 1644 * there is no polarity for 100Mbps (always 0). 1645 */ 1646 offset = IGP01E1000_PHY_PORT_STATUS; 1647 mask = IGP01E1000_PSSR_POLARITY_REVERSED; 1648 } 1649 1650 ret_val = e1e_rphy(hw, offset, &data); 1651 1652 if (!ret_val) 1653 phy->cable_polarity = ((data & mask) 1654 ? e1000_rev_polarity_reversed 1655 : e1000_rev_polarity_normal); 1656 1657 return ret_val; 1658 } 1659 1660 /** 1661 * e1000_check_polarity_ife - Check cable polarity for IFE PHY 1662 * @hw: pointer to the HW structure 1663 * 1664 * Polarity is determined on the polarity reversal feature being enabled. 1665 **/ 1666 s32 e1000_check_polarity_ife(struct e1000_hw *hw) 1667 { 1668 struct e1000_phy_info *phy = &hw->phy; 1669 s32 ret_val; 1670 u16 phy_data, offset, mask; 1671 1672 /* Polarity is determined based on the reversal feature being enabled. 1673 */ 1674 if (phy->polarity_correction) { 1675 offset = IFE_PHY_EXTENDED_STATUS_CONTROL; 1676 mask = IFE_PESC_POLARITY_REVERSED; 1677 } else { 1678 offset = IFE_PHY_SPECIAL_CONTROL; 1679 mask = IFE_PSC_FORCE_POLARITY; 1680 } 1681 1682 ret_val = e1e_rphy(hw, offset, &phy_data); 1683 1684 if (!ret_val) 1685 phy->cable_polarity = ((phy_data & mask) 1686 ? e1000_rev_polarity_reversed 1687 : e1000_rev_polarity_normal); 1688 1689 return ret_val; 1690 } 1691 1692 /** 1693 * e1000_wait_autoneg - Wait for auto-neg completion 1694 * @hw: pointer to the HW structure 1695 * 1696 * Waits for auto-negotiation to complete or for the auto-negotiation time 1697 * limit to expire, which ever happens first. 1698 **/ 1699 static s32 e1000_wait_autoneg(struct e1000_hw *hw) 1700 { 1701 s32 ret_val = 0; 1702 u16 i, phy_status; 1703 1704 /* Break after autoneg completes or PHY_AUTO_NEG_LIMIT expires. */ 1705 for (i = PHY_AUTO_NEG_LIMIT; i > 0; i--) { 1706 ret_val = e1e_rphy(hw, MII_BMSR, &phy_status); 1707 if (ret_val) 1708 break; 1709 ret_val = e1e_rphy(hw, MII_BMSR, &phy_status); 1710 if (ret_val) 1711 break; 1712 if (phy_status & BMSR_ANEGCOMPLETE) 1713 break; 1714 msleep(100); 1715 } 1716 1717 /* PHY_AUTO_NEG_TIME expiration doesn't guarantee auto-negotiation 1718 * has completed. 1719 */ 1720 return ret_val; 1721 } 1722 1723 /** 1724 * e1000e_phy_has_link_generic - Polls PHY for link 1725 * @hw: pointer to the HW structure 1726 * @iterations: number of times to poll for link 1727 * @usec_interval: delay between polling attempts 1728 * @success: pointer to whether polling was successful or not 1729 * 1730 * Polls the PHY status register for link, 'iterations' number of times. 1731 **/ 1732 s32 e1000e_phy_has_link_generic(struct e1000_hw *hw, u32 iterations, 1733 u32 usec_interval, bool *success) 1734 { 1735 s32 ret_val = 0; 1736 u16 i, phy_status; 1737 1738 *success = false; 1739 for (i = 0; i < iterations; i++) { 1740 /* Some PHYs require the MII_BMSR register to be read 1741 * twice due to the link bit being sticky. No harm doing 1742 * it across the board. 1743 */ 1744 ret_val = e1e_rphy(hw, MII_BMSR, &phy_status); 1745 if (ret_val) { 1746 /* If the first read fails, another entity may have 1747 * ownership of the resources, wait and try again to 1748 * see if they have relinquished the resources yet. 1749 */ 1750 if (usec_interval >= 1000) 1751 msleep(usec_interval / 1000); 1752 else 1753 udelay(usec_interval); 1754 } 1755 ret_val = e1e_rphy(hw, MII_BMSR, &phy_status); 1756 if (ret_val) 1757 break; 1758 if (phy_status & BMSR_LSTATUS) { 1759 *success = true; 1760 break; 1761 } 1762 if (usec_interval >= 1000) 1763 msleep(usec_interval / 1000); 1764 else 1765 udelay(usec_interval); 1766 } 1767 1768 return ret_val; 1769 } 1770 1771 /** 1772 * e1000e_get_cable_length_m88 - Determine cable length for m88 PHY 1773 * @hw: pointer to the HW structure 1774 * 1775 * Reads the PHY specific status register to retrieve the cable length 1776 * information. The cable length is determined by averaging the minimum and 1777 * maximum values to get the "average" cable length. The m88 PHY has four 1778 * possible cable length values, which are: 1779 * Register Value Cable Length 1780 * 0 < 50 meters 1781 * 1 50 - 80 meters 1782 * 2 80 - 110 meters 1783 * 3 110 - 140 meters 1784 * 4 > 140 meters 1785 **/ 1786 s32 e1000e_get_cable_length_m88(struct e1000_hw *hw) 1787 { 1788 struct e1000_phy_info *phy = &hw->phy; 1789 s32 ret_val; 1790 u16 phy_data, index; 1791 1792 ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data); 1793 if (ret_val) 1794 return ret_val; 1795 1796 index = ((phy_data & M88E1000_PSSR_CABLE_LENGTH) >> 1797 M88E1000_PSSR_CABLE_LENGTH_SHIFT); 1798 1799 if (index >= M88E1000_CABLE_LENGTH_TABLE_SIZE - 1) 1800 return -E1000_ERR_PHY; 1801 1802 phy->min_cable_length = e1000_m88_cable_length_table[index]; 1803 phy->max_cable_length = e1000_m88_cable_length_table[index + 1]; 1804 1805 phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2; 1806 1807 return 0; 1808 } 1809 1810 /** 1811 * e1000e_get_cable_length_igp_2 - Determine cable length for igp2 PHY 1812 * @hw: pointer to the HW structure 1813 * 1814 * The automatic gain control (agc) normalizes the amplitude of the 1815 * received signal, adjusting for the attenuation produced by the 1816 * cable. By reading the AGC registers, which represent the 1817 * combination of coarse and fine gain value, the value can be put 1818 * into a lookup table to obtain the approximate cable length 1819 * for each channel. 1820 **/ 1821 s32 e1000e_get_cable_length_igp_2(struct e1000_hw *hw) 1822 { 1823 struct e1000_phy_info *phy = &hw->phy; 1824 s32 ret_val; 1825 u16 phy_data, i, agc_value = 0; 1826 u16 cur_agc_index, max_agc_index = 0; 1827 u16 min_agc_index = IGP02E1000_CABLE_LENGTH_TABLE_SIZE - 1; 1828 static const u16 agc_reg_array[IGP02E1000_PHY_CHANNEL_NUM] = { 1829 IGP02E1000_PHY_AGC_A, 1830 IGP02E1000_PHY_AGC_B, 1831 IGP02E1000_PHY_AGC_C, 1832 IGP02E1000_PHY_AGC_D 1833 }; 1834 1835 /* Read the AGC registers for all channels */ 1836 for (i = 0; i < IGP02E1000_PHY_CHANNEL_NUM; i++) { 1837 ret_val = e1e_rphy(hw, agc_reg_array[i], &phy_data); 1838 if (ret_val) 1839 return ret_val; 1840 1841 /* Getting bits 15:9, which represent the combination of 1842 * coarse and fine gain values. The result is a number 1843 * that can be put into the lookup table to obtain the 1844 * approximate cable length. 1845 */ 1846 cur_agc_index = ((phy_data >> IGP02E1000_AGC_LENGTH_SHIFT) & 1847 IGP02E1000_AGC_LENGTH_MASK); 1848 1849 /* Array index bound check. */ 1850 if ((cur_agc_index >= IGP02E1000_CABLE_LENGTH_TABLE_SIZE) || 1851 (cur_agc_index == 0)) 1852 return -E1000_ERR_PHY; 1853 1854 /* Remove min & max AGC values from calculation. */ 1855 if (e1000_igp_2_cable_length_table[min_agc_index] > 1856 e1000_igp_2_cable_length_table[cur_agc_index]) 1857 min_agc_index = cur_agc_index; 1858 if (e1000_igp_2_cable_length_table[max_agc_index] < 1859 e1000_igp_2_cable_length_table[cur_agc_index]) 1860 max_agc_index = cur_agc_index; 1861 1862 agc_value += e1000_igp_2_cable_length_table[cur_agc_index]; 1863 } 1864 1865 agc_value -= (e1000_igp_2_cable_length_table[min_agc_index] + 1866 e1000_igp_2_cable_length_table[max_agc_index]); 1867 agc_value /= (IGP02E1000_PHY_CHANNEL_NUM - 2); 1868 1869 /* Calculate cable length with the error range of +/- 10 meters. */ 1870 phy->min_cable_length = (((agc_value - IGP02E1000_AGC_RANGE) > 0) ? 1871 (agc_value - IGP02E1000_AGC_RANGE) : 0); 1872 phy->max_cable_length = agc_value + IGP02E1000_AGC_RANGE; 1873 1874 phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2; 1875 1876 return 0; 1877 } 1878 1879 /** 1880 * e1000e_get_phy_info_m88 - Retrieve PHY information 1881 * @hw: pointer to the HW structure 1882 * 1883 * Valid for only copper links. Read the PHY status register (sticky read) 1884 * to verify that link is up. Read the PHY special control register to 1885 * determine the polarity and 10base-T extended distance. Read the PHY 1886 * special status register to determine MDI/MDIx and current speed. If 1887 * speed is 1000, then determine cable length, local and remote receiver. 1888 **/ 1889 s32 e1000e_get_phy_info_m88(struct e1000_hw *hw) 1890 { 1891 struct e1000_phy_info *phy = &hw->phy; 1892 s32 ret_val; 1893 u16 phy_data; 1894 bool link; 1895 1896 if (phy->media_type != e1000_media_type_copper) { 1897 e_dbg("Phy info is only valid for copper media\n"); 1898 return -E1000_ERR_CONFIG; 1899 } 1900 1901 ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link); 1902 if (ret_val) 1903 return ret_val; 1904 1905 if (!link) { 1906 e_dbg("Phy info is only valid if link is up\n"); 1907 return -E1000_ERR_CONFIG; 1908 } 1909 1910 ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); 1911 if (ret_val) 1912 return ret_val; 1913 1914 phy->polarity_correction = !!(phy_data & 1915 M88E1000_PSCR_POLARITY_REVERSAL); 1916 1917 ret_val = e1000_check_polarity_m88(hw); 1918 if (ret_val) 1919 return ret_val; 1920 1921 ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data); 1922 if (ret_val) 1923 return ret_val; 1924 1925 phy->is_mdix = !!(phy_data & M88E1000_PSSR_MDIX); 1926 1927 if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) { 1928 ret_val = hw->phy.ops.get_cable_length(hw); 1929 if (ret_val) 1930 return ret_val; 1931 1932 ret_val = e1e_rphy(hw, MII_STAT1000, &phy_data); 1933 if (ret_val) 1934 return ret_val; 1935 1936 phy->local_rx = (phy_data & LPA_1000LOCALRXOK) 1937 ? e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok; 1938 1939 phy->remote_rx = (phy_data & LPA_1000REMRXOK) 1940 ? e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok; 1941 } else { 1942 /* Set values to "undefined" */ 1943 phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED; 1944 phy->local_rx = e1000_1000t_rx_status_undefined; 1945 phy->remote_rx = e1000_1000t_rx_status_undefined; 1946 } 1947 1948 return ret_val; 1949 } 1950 1951 /** 1952 * e1000e_get_phy_info_igp - Retrieve igp PHY information 1953 * @hw: pointer to the HW structure 1954 * 1955 * Read PHY status to determine if link is up. If link is up, then 1956 * set/determine 10base-T extended distance and polarity correction. Read 1957 * PHY port status to determine MDI/MDIx and speed. Based on the speed, 1958 * determine on the cable length, local and remote receiver. 1959 **/ 1960 s32 e1000e_get_phy_info_igp(struct e1000_hw *hw) 1961 { 1962 struct e1000_phy_info *phy = &hw->phy; 1963 s32 ret_val; 1964 u16 data; 1965 bool link; 1966 1967 ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link); 1968 if (ret_val) 1969 return ret_val; 1970 1971 if (!link) { 1972 e_dbg("Phy info is only valid if link is up\n"); 1973 return -E1000_ERR_CONFIG; 1974 } 1975 1976 phy->polarity_correction = true; 1977 1978 ret_val = e1000_check_polarity_igp(hw); 1979 if (ret_val) 1980 return ret_val; 1981 1982 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_STATUS, &data); 1983 if (ret_val) 1984 return ret_val; 1985 1986 phy->is_mdix = !!(data & IGP01E1000_PSSR_MDIX); 1987 1988 if ((data & IGP01E1000_PSSR_SPEED_MASK) == 1989 IGP01E1000_PSSR_SPEED_1000MBPS) { 1990 ret_val = phy->ops.get_cable_length(hw); 1991 if (ret_val) 1992 return ret_val; 1993 1994 ret_val = e1e_rphy(hw, MII_STAT1000, &data); 1995 if (ret_val) 1996 return ret_val; 1997 1998 phy->local_rx = (data & LPA_1000LOCALRXOK) 1999 ? e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok; 2000 2001 phy->remote_rx = (data & LPA_1000REMRXOK) 2002 ? e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok; 2003 } else { 2004 phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED; 2005 phy->local_rx = e1000_1000t_rx_status_undefined; 2006 phy->remote_rx = e1000_1000t_rx_status_undefined; 2007 } 2008 2009 return ret_val; 2010 } 2011 2012 /** 2013 * e1000_get_phy_info_ife - Retrieves various IFE PHY states 2014 * @hw: pointer to the HW structure 2015 * 2016 * Populates "phy" structure with various feature states. 2017 **/ 2018 s32 e1000_get_phy_info_ife(struct e1000_hw *hw) 2019 { 2020 struct e1000_phy_info *phy = &hw->phy; 2021 s32 ret_val; 2022 u16 data; 2023 bool link; 2024 2025 ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link); 2026 if (ret_val) 2027 return ret_val; 2028 2029 if (!link) { 2030 e_dbg("Phy info is only valid if link is up\n"); 2031 return -E1000_ERR_CONFIG; 2032 } 2033 2034 ret_val = e1e_rphy(hw, IFE_PHY_SPECIAL_CONTROL, &data); 2035 if (ret_val) 2036 return ret_val; 2037 phy->polarity_correction = !(data & IFE_PSC_AUTO_POLARITY_DISABLE); 2038 2039 if (phy->polarity_correction) { 2040 ret_val = e1000_check_polarity_ife(hw); 2041 if (ret_val) 2042 return ret_val; 2043 } else { 2044 /* Polarity is forced */ 2045 phy->cable_polarity = ((data & IFE_PSC_FORCE_POLARITY) 2046 ? e1000_rev_polarity_reversed 2047 : e1000_rev_polarity_normal); 2048 } 2049 2050 ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &data); 2051 if (ret_val) 2052 return ret_val; 2053 2054 phy->is_mdix = !!(data & IFE_PMC_MDIX_STATUS); 2055 2056 /* The following parameters are undefined for 10/100 operation. */ 2057 phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED; 2058 phy->local_rx = e1000_1000t_rx_status_undefined; 2059 phy->remote_rx = e1000_1000t_rx_status_undefined; 2060 2061 return 0; 2062 } 2063 2064 /** 2065 * e1000e_phy_sw_reset - PHY software reset 2066 * @hw: pointer to the HW structure 2067 * 2068 * Does a software reset of the PHY by reading the PHY control register and 2069 * setting/write the control register reset bit to the PHY. 2070 **/ 2071 s32 e1000e_phy_sw_reset(struct e1000_hw *hw) 2072 { 2073 s32 ret_val; 2074 u16 phy_ctrl; 2075 2076 ret_val = e1e_rphy(hw, MII_BMCR, &phy_ctrl); 2077 if (ret_val) 2078 return ret_val; 2079 2080 phy_ctrl |= BMCR_RESET; 2081 ret_val = e1e_wphy(hw, MII_BMCR, phy_ctrl); 2082 if (ret_val) 2083 return ret_val; 2084 2085 udelay(1); 2086 2087 return ret_val; 2088 } 2089 2090 /** 2091 * e1000e_phy_hw_reset_generic - PHY hardware reset 2092 * @hw: pointer to the HW structure 2093 * 2094 * Verify the reset block is not blocking us from resetting. Acquire 2095 * semaphore (if necessary) and read/set/write the device control reset 2096 * bit in the PHY. Wait the appropriate delay time for the device to 2097 * reset and release the semaphore (if necessary). 2098 **/ 2099 s32 e1000e_phy_hw_reset_generic(struct e1000_hw *hw) 2100 { 2101 struct e1000_phy_info *phy = &hw->phy; 2102 s32 ret_val; 2103 u32 ctrl; 2104 2105 if (phy->ops.check_reset_block) { 2106 ret_val = phy->ops.check_reset_block(hw); 2107 if (ret_val) 2108 return 0; 2109 } 2110 2111 ret_val = phy->ops.acquire(hw); 2112 if (ret_val) 2113 return ret_val; 2114 2115 ctrl = er32(CTRL); 2116 ew32(CTRL, ctrl | E1000_CTRL_PHY_RST); 2117 e1e_flush(); 2118 2119 udelay(phy->reset_delay_us); 2120 2121 ew32(CTRL, ctrl); 2122 e1e_flush(); 2123 2124 usleep_range(150, 300); 2125 2126 phy->ops.release(hw); 2127 2128 return phy->ops.get_cfg_done(hw); 2129 } 2130 2131 /** 2132 * e1000e_get_cfg_done_generic - Generic configuration done 2133 * @hw: pointer to the HW structure 2134 * 2135 * Generic function to wait 10 milli-seconds for configuration to complete 2136 * and return success. 2137 **/ 2138 s32 e1000e_get_cfg_done_generic(struct e1000_hw __always_unused *hw) 2139 { 2140 mdelay(10); 2141 2142 return 0; 2143 } 2144 2145 /** 2146 * e1000e_phy_init_script_igp3 - Inits the IGP3 PHY 2147 * @hw: pointer to the HW structure 2148 * 2149 * Initializes a Intel Gigabit PHY3 when an EEPROM is not present. 2150 **/ 2151 s32 e1000e_phy_init_script_igp3(struct e1000_hw *hw) 2152 { 2153 e_dbg("Running IGP 3 PHY init script\n"); 2154 2155 /* PHY init IGP 3 */ 2156 /* Enable rise/fall, 10-mode work in class-A */ 2157 e1e_wphy(hw, 0x2F5B, 0x9018); 2158 /* Remove all caps from Replica path filter */ 2159 e1e_wphy(hw, 0x2F52, 0x0000); 2160 /* Bias trimming for ADC, AFE and Driver (Default) */ 2161 e1e_wphy(hw, 0x2FB1, 0x8B24); 2162 /* Increase Hybrid poly bias */ 2163 e1e_wphy(hw, 0x2FB2, 0xF8F0); 2164 /* Add 4% to Tx amplitude in Gig mode */ 2165 e1e_wphy(hw, 0x2010, 0x10B0); 2166 /* Disable trimming (TTT) */ 2167 e1e_wphy(hw, 0x2011, 0x0000); 2168 /* Poly DC correction to 94.6% + 2% for all channels */ 2169 e1e_wphy(hw, 0x20DD, 0x249A); 2170 /* ABS DC correction to 95.9% */ 2171 e1e_wphy(hw, 0x20DE, 0x00D3); 2172 /* BG temp curve trim */ 2173 e1e_wphy(hw, 0x28B4, 0x04CE); 2174 /* Increasing ADC OPAMP stage 1 currents to max */ 2175 e1e_wphy(hw, 0x2F70, 0x29E4); 2176 /* Force 1000 ( required for enabling PHY regs configuration) */ 2177 e1e_wphy(hw, 0x0000, 0x0140); 2178 /* Set upd_freq to 6 */ 2179 e1e_wphy(hw, 0x1F30, 0x1606); 2180 /* Disable NPDFE */ 2181 e1e_wphy(hw, 0x1F31, 0xB814); 2182 /* Disable adaptive fixed FFE (Default) */ 2183 e1e_wphy(hw, 0x1F35, 0x002A); 2184 /* Enable FFE hysteresis */ 2185 e1e_wphy(hw, 0x1F3E, 0x0067); 2186 /* Fixed FFE for short cable lengths */ 2187 e1e_wphy(hw, 0x1F54, 0x0065); 2188 /* Fixed FFE for medium cable lengths */ 2189 e1e_wphy(hw, 0x1F55, 0x002A); 2190 /* Fixed FFE for long cable lengths */ 2191 e1e_wphy(hw, 0x1F56, 0x002A); 2192 /* Enable Adaptive Clip Threshold */ 2193 e1e_wphy(hw, 0x1F72, 0x3FB0); 2194 /* AHT reset limit to 1 */ 2195 e1e_wphy(hw, 0x1F76, 0xC0FF); 2196 /* Set AHT master delay to 127 msec */ 2197 e1e_wphy(hw, 0x1F77, 0x1DEC); 2198 /* Set scan bits for AHT */ 2199 e1e_wphy(hw, 0x1F78, 0xF9EF); 2200 /* Set AHT Preset bits */ 2201 e1e_wphy(hw, 0x1F79, 0x0210); 2202 /* Change integ_factor of channel A to 3 */ 2203 e1e_wphy(hw, 0x1895, 0x0003); 2204 /* Change prop_factor of channels BCD to 8 */ 2205 e1e_wphy(hw, 0x1796, 0x0008); 2206 /* Change cg_icount + enable integbp for channels BCD */ 2207 e1e_wphy(hw, 0x1798, 0xD008); 2208 /* Change cg_icount + enable integbp + change prop_factor_master 2209 * to 8 for channel A 2210 */ 2211 e1e_wphy(hw, 0x1898, 0xD918); 2212 /* Disable AHT in Slave mode on channel A */ 2213 e1e_wphy(hw, 0x187A, 0x0800); 2214 /* Enable LPLU and disable AN to 1000 in non-D0a states, 2215 * Enable SPD+B2B 2216 */ 2217 e1e_wphy(hw, 0x0019, 0x008D); 2218 /* Enable restart AN on an1000_dis change */ 2219 e1e_wphy(hw, 0x001B, 0x2080); 2220 /* Enable wh_fifo read clock in 10/100 modes */ 2221 e1e_wphy(hw, 0x0014, 0x0045); 2222 /* Restart AN, Speed selection is 1000 */ 2223 e1e_wphy(hw, 0x0000, 0x1340); 2224 2225 return 0; 2226 } 2227 2228 /** 2229 * e1000e_get_phy_type_from_id - Get PHY type from id 2230 * @phy_id: phy_id read from the phy 2231 * 2232 * Returns the phy type from the id. 2233 **/ 2234 enum e1000_phy_type e1000e_get_phy_type_from_id(u32 phy_id) 2235 { 2236 enum e1000_phy_type phy_type = e1000_phy_unknown; 2237 2238 switch (phy_id) { 2239 case M88E1000_I_PHY_ID: 2240 case M88E1000_E_PHY_ID: 2241 case M88E1111_I_PHY_ID: 2242 case M88E1011_I_PHY_ID: 2243 phy_type = e1000_phy_m88; 2244 break; 2245 case IGP01E1000_I_PHY_ID: /* IGP 1 & 2 share this */ 2246 phy_type = e1000_phy_igp_2; 2247 break; 2248 case GG82563_E_PHY_ID: 2249 phy_type = e1000_phy_gg82563; 2250 break; 2251 case IGP03E1000_E_PHY_ID: 2252 phy_type = e1000_phy_igp_3; 2253 break; 2254 case IFE_E_PHY_ID: 2255 case IFE_PLUS_E_PHY_ID: 2256 case IFE_C_E_PHY_ID: 2257 phy_type = e1000_phy_ife; 2258 break; 2259 case BME1000_E_PHY_ID: 2260 case BME1000_E_PHY_ID_R2: 2261 phy_type = e1000_phy_bm; 2262 break; 2263 case I82578_E_PHY_ID: 2264 phy_type = e1000_phy_82578; 2265 break; 2266 case I82577_E_PHY_ID: 2267 phy_type = e1000_phy_82577; 2268 break; 2269 case I82579_E_PHY_ID: 2270 phy_type = e1000_phy_82579; 2271 break; 2272 case I217_E_PHY_ID: 2273 phy_type = e1000_phy_i217; 2274 break; 2275 default: 2276 phy_type = e1000_phy_unknown; 2277 break; 2278 } 2279 return phy_type; 2280 } 2281 2282 /** 2283 * e1000e_determine_phy_address - Determines PHY address. 2284 * @hw: pointer to the HW structure 2285 * 2286 * This uses a trial and error method to loop through possible PHY 2287 * addresses. It tests each by reading the PHY ID registers and 2288 * checking for a match. 2289 **/ 2290 s32 e1000e_determine_phy_address(struct e1000_hw *hw) 2291 { 2292 u32 phy_addr = 0; 2293 u32 i; 2294 enum e1000_phy_type phy_type = e1000_phy_unknown; 2295 2296 hw->phy.id = phy_type; 2297 2298 for (phy_addr = 0; phy_addr < E1000_MAX_PHY_ADDR; phy_addr++) { 2299 hw->phy.addr = phy_addr; 2300 i = 0; 2301 2302 do { 2303 e1000e_get_phy_id(hw); 2304 phy_type = e1000e_get_phy_type_from_id(hw->phy.id); 2305 2306 /* If phy_type is valid, break - we found our 2307 * PHY address 2308 */ 2309 if (phy_type != e1000_phy_unknown) 2310 return 0; 2311 2312 usleep_range(1000, 2000); 2313 i++; 2314 } while (i < 10); 2315 } 2316 2317 return -E1000_ERR_PHY_TYPE; 2318 } 2319 2320 /** 2321 * e1000_get_phy_addr_for_bm_page - Retrieve PHY page address 2322 * @page: page to access 2323 * @reg: register to check 2324 * 2325 * Returns the phy address for the page requested. 2326 **/ 2327 static u32 e1000_get_phy_addr_for_bm_page(u32 page, u32 reg) 2328 { 2329 u32 phy_addr = 2; 2330 2331 if ((page >= 768) || (page == 0 && reg == 25) || (reg == 31)) 2332 phy_addr = 1; 2333 2334 return phy_addr; 2335 } 2336 2337 /** 2338 * e1000e_write_phy_reg_bm - Write BM PHY register 2339 * @hw: pointer to the HW structure 2340 * @offset: register offset to write to 2341 * @data: data to write at register offset 2342 * 2343 * Acquires semaphore, if necessary, then writes the data to PHY register 2344 * at the offset. Release any acquired semaphores before exiting. 2345 **/ 2346 s32 e1000e_write_phy_reg_bm(struct e1000_hw *hw, u32 offset, u16 data) 2347 { 2348 s32 ret_val; 2349 u32 page = offset >> IGP_PAGE_SHIFT; 2350 2351 ret_val = hw->phy.ops.acquire(hw); 2352 if (ret_val) 2353 return ret_val; 2354 2355 /* Page 800 works differently than the rest so it has its own func */ 2356 if (page == BM_WUC_PAGE) { 2357 ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, &data, 2358 false, false); 2359 goto release; 2360 } 2361 2362 hw->phy.addr = e1000_get_phy_addr_for_bm_page(page, offset); 2363 2364 if (offset > MAX_PHY_MULTI_PAGE_REG) { 2365 u32 page_shift, page_select; 2366 2367 /* Page select is register 31 for phy address 1 and 22 for 2368 * phy address 2 and 3. Page select is shifted only for 2369 * phy address 1. 2370 */ 2371 if (hw->phy.addr == 1) { 2372 page_shift = IGP_PAGE_SHIFT; 2373 page_select = IGP01E1000_PHY_PAGE_SELECT; 2374 } else { 2375 page_shift = 0; 2376 page_select = BM_PHY_PAGE_SELECT; 2377 } 2378 2379 /* Page is shifted left, PHY expects (page x 32) */ 2380 ret_val = e1000e_write_phy_reg_mdic(hw, page_select, 2381 (page << page_shift)); 2382 if (ret_val) 2383 goto release; 2384 } 2385 2386 ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset, 2387 data); 2388 2389 release: 2390 hw->phy.ops.release(hw); 2391 return ret_val; 2392 } 2393 2394 /** 2395 * e1000e_read_phy_reg_bm - Read BM PHY register 2396 * @hw: pointer to the HW structure 2397 * @offset: register offset to be read 2398 * @data: pointer to the read data 2399 * 2400 * Acquires semaphore, if necessary, then reads the PHY register at offset 2401 * and storing the retrieved information in data. Release any acquired 2402 * semaphores before exiting. 2403 **/ 2404 s32 e1000e_read_phy_reg_bm(struct e1000_hw *hw, u32 offset, u16 *data) 2405 { 2406 s32 ret_val; 2407 u32 page = offset >> IGP_PAGE_SHIFT; 2408 2409 ret_val = hw->phy.ops.acquire(hw); 2410 if (ret_val) 2411 return ret_val; 2412 2413 /* Page 800 works differently than the rest so it has its own func */ 2414 if (page == BM_WUC_PAGE) { 2415 ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, data, 2416 true, false); 2417 goto release; 2418 } 2419 2420 hw->phy.addr = e1000_get_phy_addr_for_bm_page(page, offset); 2421 2422 if (offset > MAX_PHY_MULTI_PAGE_REG) { 2423 u32 page_shift, page_select; 2424 2425 /* Page select is register 31 for phy address 1 and 22 for 2426 * phy address 2 and 3. Page select is shifted only for 2427 * phy address 1. 2428 */ 2429 if (hw->phy.addr == 1) { 2430 page_shift = IGP_PAGE_SHIFT; 2431 page_select = IGP01E1000_PHY_PAGE_SELECT; 2432 } else { 2433 page_shift = 0; 2434 page_select = BM_PHY_PAGE_SELECT; 2435 } 2436 2437 /* Page is shifted left, PHY expects (page x 32) */ 2438 ret_val = e1000e_write_phy_reg_mdic(hw, page_select, 2439 (page << page_shift)); 2440 if (ret_val) 2441 goto release; 2442 } 2443 2444 ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset, 2445 data); 2446 release: 2447 hw->phy.ops.release(hw); 2448 return ret_val; 2449 } 2450 2451 /** 2452 * e1000e_read_phy_reg_bm2 - Read BM PHY register 2453 * @hw: pointer to the HW structure 2454 * @offset: register offset to be read 2455 * @data: pointer to the read data 2456 * 2457 * Acquires semaphore, if necessary, then reads the PHY register at offset 2458 * and storing the retrieved information in data. Release any acquired 2459 * semaphores before exiting. 2460 **/ 2461 s32 e1000e_read_phy_reg_bm2(struct e1000_hw *hw, u32 offset, u16 *data) 2462 { 2463 s32 ret_val; 2464 u16 page = (u16)(offset >> IGP_PAGE_SHIFT); 2465 2466 ret_val = hw->phy.ops.acquire(hw); 2467 if (ret_val) 2468 return ret_val; 2469 2470 /* Page 800 works differently than the rest so it has its own func */ 2471 if (page == BM_WUC_PAGE) { 2472 ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, data, 2473 true, false); 2474 goto release; 2475 } 2476 2477 hw->phy.addr = 1; 2478 2479 if (offset > MAX_PHY_MULTI_PAGE_REG) { 2480 /* Page is shifted left, PHY expects (page x 32) */ 2481 ret_val = e1000e_write_phy_reg_mdic(hw, BM_PHY_PAGE_SELECT, 2482 page); 2483 2484 if (ret_val) 2485 goto release; 2486 } 2487 2488 ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset, 2489 data); 2490 release: 2491 hw->phy.ops.release(hw); 2492 return ret_val; 2493 } 2494 2495 /** 2496 * e1000e_write_phy_reg_bm2 - Write BM PHY register 2497 * @hw: pointer to the HW structure 2498 * @offset: register offset to write to 2499 * @data: data to write at register offset 2500 * 2501 * Acquires semaphore, if necessary, then writes the data to PHY register 2502 * at the offset. Release any acquired semaphores before exiting. 2503 **/ 2504 s32 e1000e_write_phy_reg_bm2(struct e1000_hw *hw, u32 offset, u16 data) 2505 { 2506 s32 ret_val; 2507 u16 page = (u16)(offset >> IGP_PAGE_SHIFT); 2508 2509 ret_val = hw->phy.ops.acquire(hw); 2510 if (ret_val) 2511 return ret_val; 2512 2513 /* Page 800 works differently than the rest so it has its own func */ 2514 if (page == BM_WUC_PAGE) { 2515 ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, &data, 2516 false, false); 2517 goto release; 2518 } 2519 2520 hw->phy.addr = 1; 2521 2522 if (offset > MAX_PHY_MULTI_PAGE_REG) { 2523 /* Page is shifted left, PHY expects (page x 32) */ 2524 ret_val = e1000e_write_phy_reg_mdic(hw, BM_PHY_PAGE_SELECT, 2525 page); 2526 2527 if (ret_val) 2528 goto release; 2529 } 2530 2531 ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset, 2532 data); 2533 2534 release: 2535 hw->phy.ops.release(hw); 2536 return ret_val; 2537 } 2538 2539 /** 2540 * e1000_enable_phy_wakeup_reg_access_bm - enable access to BM wakeup registers 2541 * @hw: pointer to the HW structure 2542 * @phy_reg: pointer to store original contents of BM_WUC_ENABLE_REG 2543 * 2544 * Assumes semaphore already acquired and phy_reg points to a valid memory 2545 * address to store contents of the BM_WUC_ENABLE_REG register. 2546 **/ 2547 s32 e1000_enable_phy_wakeup_reg_access_bm(struct e1000_hw *hw, u16 *phy_reg) 2548 { 2549 s32 ret_val; 2550 u16 temp; 2551 2552 /* All page select, port ctrl and wakeup registers use phy address 1 */ 2553 hw->phy.addr = 1; 2554 2555 /* Select Port Control Registers page */ 2556 ret_val = e1000_set_page_igp(hw, (BM_PORT_CTRL_PAGE << IGP_PAGE_SHIFT)); 2557 if (ret_val) { 2558 e_dbg("Could not set Port Control page\n"); 2559 return ret_val; 2560 } 2561 2562 ret_val = e1000e_read_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, phy_reg); 2563 if (ret_val) { 2564 e_dbg("Could not read PHY register %d.%d\n", 2565 BM_PORT_CTRL_PAGE, BM_WUC_ENABLE_REG); 2566 return ret_val; 2567 } 2568 2569 /* Enable both PHY wakeup mode and Wakeup register page writes. 2570 * Prevent a power state change by disabling ME and Host PHY wakeup. 2571 */ 2572 temp = *phy_reg; 2573 temp |= BM_WUC_ENABLE_BIT; 2574 temp &= ~(BM_WUC_ME_WU_BIT | BM_WUC_HOST_WU_BIT); 2575 2576 ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, temp); 2577 if (ret_val) { 2578 e_dbg("Could not write PHY register %d.%d\n", 2579 BM_PORT_CTRL_PAGE, BM_WUC_ENABLE_REG); 2580 return ret_val; 2581 } 2582 2583 /* Select Host Wakeup Registers page - caller now able to write 2584 * registers on the Wakeup registers page 2585 */ 2586 return e1000_set_page_igp(hw, (BM_WUC_PAGE << IGP_PAGE_SHIFT)); 2587 } 2588 2589 /** 2590 * e1000_disable_phy_wakeup_reg_access_bm - disable access to BM wakeup regs 2591 * @hw: pointer to the HW structure 2592 * @phy_reg: pointer to original contents of BM_WUC_ENABLE_REG 2593 * 2594 * Restore BM_WUC_ENABLE_REG to its original value. 2595 * 2596 * Assumes semaphore already acquired and *phy_reg is the contents of the 2597 * BM_WUC_ENABLE_REG before register(s) on BM_WUC_PAGE were accessed by 2598 * caller. 2599 **/ 2600 s32 e1000_disable_phy_wakeup_reg_access_bm(struct e1000_hw *hw, u16 *phy_reg) 2601 { 2602 s32 ret_val; 2603 2604 /* Select Port Control Registers page */ 2605 ret_val = e1000_set_page_igp(hw, (BM_PORT_CTRL_PAGE << IGP_PAGE_SHIFT)); 2606 if (ret_val) { 2607 e_dbg("Could not set Port Control page\n"); 2608 return ret_val; 2609 } 2610 2611 /* Restore 769.17 to its original value */ 2612 ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, *phy_reg); 2613 if (ret_val) 2614 e_dbg("Could not restore PHY register %d.%d\n", 2615 BM_PORT_CTRL_PAGE, BM_WUC_ENABLE_REG); 2616 2617 return ret_val; 2618 } 2619 2620 /** 2621 * e1000_access_phy_wakeup_reg_bm - Read/write BM PHY wakeup register 2622 * @hw: pointer to the HW structure 2623 * @offset: register offset to be read or written 2624 * @data: pointer to the data to read or write 2625 * @read: determines if operation is read or write 2626 * @page_set: BM_WUC_PAGE already set and access enabled 2627 * 2628 * Read the PHY register at offset and store the retrieved information in 2629 * data, or write data to PHY register at offset. Note the procedure to 2630 * access the PHY wakeup registers is different than reading the other PHY 2631 * registers. It works as such: 2632 * 1) Set 769.17.2 (page 769, register 17, bit 2) = 1 2633 * 2) Set page to 800 for host (801 if we were manageability) 2634 * 3) Write the address using the address opcode (0x11) 2635 * 4) Read or write the data using the data opcode (0x12) 2636 * 5) Restore 769.17.2 to its original value 2637 * 2638 * Steps 1 and 2 are done by e1000_enable_phy_wakeup_reg_access_bm() and 2639 * step 5 is done by e1000_disable_phy_wakeup_reg_access_bm(). 2640 * 2641 * Assumes semaphore is already acquired. When page_set==true, assumes 2642 * the PHY page is set to BM_WUC_PAGE (i.e. a function in the call stack 2643 * is responsible for calls to e1000_[enable|disable]_phy_wakeup_reg_bm()). 2644 **/ 2645 static s32 e1000_access_phy_wakeup_reg_bm(struct e1000_hw *hw, u32 offset, 2646 u16 *data, bool read, bool page_set) 2647 { 2648 s32 ret_val; 2649 u16 reg = BM_PHY_REG_NUM(offset); 2650 u16 page = BM_PHY_REG_PAGE(offset); 2651 u16 phy_reg = 0; 2652 2653 /* Gig must be disabled for MDIO accesses to Host Wakeup reg page */ 2654 if ((hw->mac.type == e1000_pchlan) && 2655 (!(er32(PHY_CTRL) & E1000_PHY_CTRL_GBE_DISABLE))) 2656 e_dbg("Attempting to access page %d while gig enabled.\n", 2657 page); 2658 2659 if (!page_set) { 2660 /* Enable access to PHY wakeup registers */ 2661 ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg); 2662 if (ret_val) { 2663 e_dbg("Could not enable PHY wakeup reg access\n"); 2664 return ret_val; 2665 } 2666 } 2667 2668 e_dbg("Accessing PHY page %d reg 0x%x\n", page, reg); 2669 2670 /* Write the Wakeup register page offset value using opcode 0x11 */ 2671 ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_ADDRESS_OPCODE, reg); 2672 if (ret_val) { 2673 e_dbg("Could not write address opcode to page %d\n", page); 2674 return ret_val; 2675 } 2676 2677 if (read) { 2678 /* Read the Wakeup register page value using opcode 0x12 */ 2679 ret_val = e1000e_read_phy_reg_mdic(hw, BM_WUC_DATA_OPCODE, 2680 data); 2681 } else { 2682 /* Write the Wakeup register page value using opcode 0x12 */ 2683 ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_DATA_OPCODE, 2684 *data); 2685 } 2686 2687 if (ret_val) { 2688 e_dbg("Could not access PHY reg %d.%d\n", page, reg); 2689 return ret_val; 2690 } 2691 2692 if (!page_set) 2693 ret_val = e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg); 2694 2695 return ret_val; 2696 } 2697 2698 /** 2699 * e1000_power_up_phy_copper - Restore copper link in case of PHY power down 2700 * @hw: pointer to the HW structure 2701 * 2702 * In the case of a PHY power down to save power, or to turn off link during a 2703 * driver unload, or wake on lan is not enabled, restore the link to previous 2704 * settings. 2705 **/ 2706 void e1000_power_up_phy_copper(struct e1000_hw *hw) 2707 { 2708 u16 mii_reg = 0; 2709 int ret; 2710 2711 /* The PHY will retain its settings across a power down/up cycle */ 2712 ret = e1e_rphy(hw, MII_BMCR, &mii_reg); 2713 if (ret) { 2714 e_dbg("Error reading PHY register\n"); 2715 return; 2716 } 2717 mii_reg &= ~BMCR_PDOWN; 2718 e1e_wphy(hw, MII_BMCR, mii_reg); 2719 } 2720 2721 /** 2722 * e1000_power_down_phy_copper - Restore copper link in case of PHY power down 2723 * @hw: pointer to the HW structure 2724 * 2725 * In the case of a PHY power down to save power, or to turn off link during a 2726 * driver unload, or wake on lan is not enabled, restore the link to previous 2727 * settings. 2728 **/ 2729 void e1000_power_down_phy_copper(struct e1000_hw *hw) 2730 { 2731 u16 mii_reg = 0; 2732 int ret; 2733 2734 /* The PHY will retain its settings across a power down/up cycle */ 2735 ret = e1e_rphy(hw, MII_BMCR, &mii_reg); 2736 if (ret) { 2737 e_dbg("Error reading PHY register\n"); 2738 return; 2739 } 2740 mii_reg |= BMCR_PDOWN; 2741 e1e_wphy(hw, MII_BMCR, mii_reg); 2742 usleep_range(1000, 2000); 2743 } 2744 2745 /** 2746 * __e1000_read_phy_reg_hv - Read HV PHY register 2747 * @hw: pointer to the HW structure 2748 * @offset: register offset to be read 2749 * @data: pointer to the read data 2750 * @locked: semaphore has already been acquired or not 2751 * @page_set: BM_WUC_PAGE already set and access enabled 2752 * 2753 * Acquires semaphore, if necessary, then reads the PHY register at offset 2754 * and stores the retrieved information in data. Release any acquired 2755 * semaphore before exiting. 2756 **/ 2757 static s32 __e1000_read_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 *data, 2758 bool locked, bool page_set) 2759 { 2760 s32 ret_val; 2761 u16 page = BM_PHY_REG_PAGE(offset); 2762 u16 reg = BM_PHY_REG_NUM(offset); 2763 u32 phy_addr = hw->phy.addr = e1000_get_phy_addr_for_hv_page(page); 2764 2765 if (!locked) { 2766 ret_val = hw->phy.ops.acquire(hw); 2767 if (ret_val) 2768 return ret_val; 2769 } 2770 2771 /* Page 800 works differently than the rest so it has its own func */ 2772 if (page == BM_WUC_PAGE) { 2773 ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, data, 2774 true, page_set); 2775 goto out; 2776 } 2777 2778 if (page > 0 && page < HV_INTC_FC_PAGE_START) { 2779 ret_val = e1000_access_phy_debug_regs_hv(hw, offset, 2780 data, true); 2781 goto out; 2782 } 2783 2784 if (!page_set) { 2785 if (page == HV_INTC_FC_PAGE_START) 2786 page = 0; 2787 2788 if (reg > MAX_PHY_MULTI_PAGE_REG) { 2789 /* Page is shifted left, PHY expects (page x 32) */ 2790 ret_val = e1000_set_page_igp(hw, 2791 (page << IGP_PAGE_SHIFT)); 2792 2793 hw->phy.addr = phy_addr; 2794 2795 if (ret_val) 2796 goto out; 2797 } 2798 } 2799 2800 e_dbg("reading PHY page %d (or 0x%x shifted) reg 0x%x\n", page, 2801 page << IGP_PAGE_SHIFT, reg); 2802 2803 ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & reg, data); 2804 out: 2805 if (!locked) 2806 hw->phy.ops.release(hw); 2807 2808 return ret_val; 2809 } 2810 2811 /** 2812 * e1000_read_phy_reg_hv - Read HV PHY register 2813 * @hw: pointer to the HW structure 2814 * @offset: register offset to be read 2815 * @data: pointer to the read data 2816 * 2817 * Acquires semaphore then reads the PHY register at offset and stores 2818 * the retrieved information in data. Release the acquired semaphore 2819 * before exiting. 2820 **/ 2821 s32 e1000_read_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 *data) 2822 { 2823 return __e1000_read_phy_reg_hv(hw, offset, data, false, false); 2824 } 2825 2826 /** 2827 * e1000_read_phy_reg_hv_locked - Read HV PHY register 2828 * @hw: pointer to the HW structure 2829 * @offset: register offset to be read 2830 * @data: pointer to the read data 2831 * 2832 * Reads the PHY register at offset and stores the retrieved information 2833 * in data. Assumes semaphore already acquired. 2834 **/ 2835 s32 e1000_read_phy_reg_hv_locked(struct e1000_hw *hw, u32 offset, u16 *data) 2836 { 2837 return __e1000_read_phy_reg_hv(hw, offset, data, true, false); 2838 } 2839 2840 /** 2841 * e1000_read_phy_reg_page_hv - Read HV PHY register 2842 * @hw: pointer to the HW structure 2843 * @offset: register offset to write to 2844 * @data: data to write at register offset 2845 * 2846 * Reads the PHY register at offset and stores the retrieved information 2847 * in data. Assumes semaphore already acquired and page already set. 2848 **/ 2849 s32 e1000_read_phy_reg_page_hv(struct e1000_hw *hw, u32 offset, u16 *data) 2850 { 2851 return __e1000_read_phy_reg_hv(hw, offset, data, true, true); 2852 } 2853 2854 /** 2855 * __e1000_write_phy_reg_hv - Write HV PHY register 2856 * @hw: pointer to the HW structure 2857 * @offset: register offset to write to 2858 * @data: data to write at register offset 2859 * @locked: semaphore has already been acquired or not 2860 * @page_set: BM_WUC_PAGE already set and access enabled 2861 * 2862 * Acquires semaphore, if necessary, then writes the data to PHY register 2863 * at the offset. Release any acquired semaphores before exiting. 2864 **/ 2865 static s32 __e1000_write_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 data, 2866 bool locked, bool page_set) 2867 { 2868 s32 ret_val; 2869 u16 page = BM_PHY_REG_PAGE(offset); 2870 u16 reg = BM_PHY_REG_NUM(offset); 2871 u32 phy_addr = hw->phy.addr = e1000_get_phy_addr_for_hv_page(page); 2872 2873 if (!locked) { 2874 ret_val = hw->phy.ops.acquire(hw); 2875 if (ret_val) 2876 return ret_val; 2877 } 2878 2879 /* Page 800 works differently than the rest so it has its own func */ 2880 if (page == BM_WUC_PAGE) { 2881 ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, &data, 2882 false, page_set); 2883 goto out; 2884 } 2885 2886 if (page > 0 && page < HV_INTC_FC_PAGE_START) { 2887 ret_val = e1000_access_phy_debug_regs_hv(hw, offset, 2888 &data, false); 2889 goto out; 2890 } 2891 2892 if (!page_set) { 2893 if (page == HV_INTC_FC_PAGE_START) 2894 page = 0; 2895 2896 /* Workaround MDIO accesses being disabled after entering IEEE 2897 * Power Down (when bit 11 of the PHY Control register is set) 2898 */ 2899 if ((hw->phy.type == e1000_phy_82578) && 2900 (hw->phy.revision >= 1) && 2901 (hw->phy.addr == 2) && 2902 !(MAX_PHY_REG_ADDRESS & reg) && (data & BIT(11))) { 2903 u16 data2 = 0x7EFF; 2904 2905 ret_val = e1000_access_phy_debug_regs_hv(hw, 2906 BIT(6) | 0x3, 2907 &data2, false); 2908 if (ret_val) 2909 goto out; 2910 } 2911 2912 if (reg > MAX_PHY_MULTI_PAGE_REG) { 2913 /* Page is shifted left, PHY expects (page x 32) */ 2914 ret_val = e1000_set_page_igp(hw, 2915 (page << IGP_PAGE_SHIFT)); 2916 2917 hw->phy.addr = phy_addr; 2918 2919 if (ret_val) 2920 goto out; 2921 } 2922 } 2923 2924 e_dbg("writing PHY page %d (or 0x%x shifted) reg 0x%x\n", page, 2925 page << IGP_PAGE_SHIFT, reg); 2926 2927 ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & reg, 2928 data); 2929 2930 out: 2931 if (!locked) 2932 hw->phy.ops.release(hw); 2933 2934 return ret_val; 2935 } 2936 2937 /** 2938 * e1000_write_phy_reg_hv - Write HV PHY register 2939 * @hw: pointer to the HW structure 2940 * @offset: register offset to write to 2941 * @data: data to write at register offset 2942 * 2943 * Acquires semaphore then writes the data to PHY register at the offset. 2944 * Release the acquired semaphores before exiting. 2945 **/ 2946 s32 e1000_write_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 data) 2947 { 2948 return __e1000_write_phy_reg_hv(hw, offset, data, false, false); 2949 } 2950 2951 /** 2952 * e1000_write_phy_reg_hv_locked - Write HV PHY register 2953 * @hw: pointer to the HW structure 2954 * @offset: register offset to write to 2955 * @data: data to write at register offset 2956 * 2957 * Writes the data to PHY register at the offset. Assumes semaphore 2958 * already acquired. 2959 **/ 2960 s32 e1000_write_phy_reg_hv_locked(struct e1000_hw *hw, u32 offset, u16 data) 2961 { 2962 return __e1000_write_phy_reg_hv(hw, offset, data, true, false); 2963 } 2964 2965 /** 2966 * e1000_write_phy_reg_page_hv - Write HV PHY register 2967 * @hw: pointer to the HW structure 2968 * @offset: register offset to write to 2969 * @data: data to write at register offset 2970 * 2971 * Writes the data to PHY register at the offset. Assumes semaphore 2972 * already acquired and page already set. 2973 **/ 2974 s32 e1000_write_phy_reg_page_hv(struct e1000_hw *hw, u32 offset, u16 data) 2975 { 2976 return __e1000_write_phy_reg_hv(hw, offset, data, true, true); 2977 } 2978 2979 /** 2980 * e1000_get_phy_addr_for_hv_page - Get PHY address based on page 2981 * @page: page to be accessed 2982 **/ 2983 static u32 e1000_get_phy_addr_for_hv_page(u32 page) 2984 { 2985 u32 phy_addr = 2; 2986 2987 if (page >= HV_INTC_FC_PAGE_START) 2988 phy_addr = 1; 2989 2990 return phy_addr; 2991 } 2992 2993 /** 2994 * e1000_access_phy_debug_regs_hv - Read HV PHY vendor specific high registers 2995 * @hw: pointer to the HW structure 2996 * @offset: register offset to be read or written 2997 * @data: pointer to the data to be read or written 2998 * @read: determines if operation is read or write 2999 * 3000 * Reads the PHY register at offset and stores the retrieved information 3001 * in data. Assumes semaphore already acquired. Note that the procedure 3002 * to access these regs uses the address port and data port to read/write. 3003 * These accesses done with PHY address 2 and without using pages. 3004 **/ 3005 static s32 e1000_access_phy_debug_regs_hv(struct e1000_hw *hw, u32 offset, 3006 u16 *data, bool read) 3007 { 3008 s32 ret_val; 3009 u32 addr_reg; 3010 u32 data_reg; 3011 3012 /* This takes care of the difference with desktop vs mobile phy */ 3013 addr_reg = ((hw->phy.type == e1000_phy_82578) ? 3014 I82578_ADDR_REG : I82577_ADDR_REG); 3015 data_reg = addr_reg + 1; 3016 3017 /* All operations in this function are phy address 2 */ 3018 hw->phy.addr = 2; 3019 3020 /* masking with 0x3F to remove the page from offset */ 3021 ret_val = e1000e_write_phy_reg_mdic(hw, addr_reg, (u16)offset & 0x3F); 3022 if (ret_val) { 3023 e_dbg("Could not write the Address Offset port register\n"); 3024 return ret_val; 3025 } 3026 3027 /* Read or write the data value next */ 3028 if (read) 3029 ret_val = e1000e_read_phy_reg_mdic(hw, data_reg, data); 3030 else 3031 ret_val = e1000e_write_phy_reg_mdic(hw, data_reg, *data); 3032 3033 if (ret_val) 3034 e_dbg("Could not access the Data port register\n"); 3035 3036 return ret_val; 3037 } 3038 3039 /** 3040 * e1000_link_stall_workaround_hv - Si workaround 3041 * @hw: pointer to the HW structure 3042 * 3043 * This function works around a Si bug where the link partner can get 3044 * a link up indication before the PHY does. If small packets are sent 3045 * by the link partner they can be placed in the packet buffer without 3046 * being properly accounted for by the PHY and will stall preventing 3047 * further packets from being received. The workaround is to clear the 3048 * packet buffer after the PHY detects link up. 3049 **/ 3050 s32 e1000_link_stall_workaround_hv(struct e1000_hw *hw) 3051 { 3052 s32 ret_val = 0; 3053 u16 data; 3054 3055 if (hw->phy.type != e1000_phy_82578) 3056 return 0; 3057 3058 /* Do not apply workaround if in PHY loopback bit 14 set */ 3059 ret_val = e1e_rphy(hw, MII_BMCR, &data); 3060 if (ret_val) { 3061 e_dbg("Error reading PHY register\n"); 3062 return ret_val; 3063 } 3064 if (data & BMCR_LOOPBACK) 3065 return 0; 3066 3067 /* check if link is up and at 1Gbps */ 3068 ret_val = e1e_rphy(hw, BM_CS_STATUS, &data); 3069 if (ret_val) 3070 return ret_val; 3071 3072 data &= (BM_CS_STATUS_LINK_UP | BM_CS_STATUS_RESOLVED | 3073 BM_CS_STATUS_SPEED_MASK); 3074 3075 if (data != (BM_CS_STATUS_LINK_UP | BM_CS_STATUS_RESOLVED | 3076 BM_CS_STATUS_SPEED_1000)) 3077 return 0; 3078 3079 msleep(200); 3080 3081 /* flush the packets in the fifo buffer */ 3082 ret_val = e1e_wphy(hw, HV_MUX_DATA_CTRL, 3083 (HV_MUX_DATA_CTRL_GEN_TO_MAC | 3084 HV_MUX_DATA_CTRL_FORCE_SPEED)); 3085 if (ret_val) 3086 return ret_val; 3087 3088 return e1e_wphy(hw, HV_MUX_DATA_CTRL, HV_MUX_DATA_CTRL_GEN_TO_MAC); 3089 } 3090 3091 /** 3092 * e1000_check_polarity_82577 - Checks the polarity. 3093 * @hw: pointer to the HW structure 3094 * 3095 * Success returns 0, Failure returns -E1000_ERR_PHY (-2) 3096 * 3097 * Polarity is determined based on the PHY specific status register. 3098 **/ 3099 s32 e1000_check_polarity_82577(struct e1000_hw *hw) 3100 { 3101 struct e1000_phy_info *phy = &hw->phy; 3102 s32 ret_val; 3103 u16 data; 3104 3105 ret_val = e1e_rphy(hw, I82577_PHY_STATUS_2, &data); 3106 3107 if (!ret_val) 3108 phy->cable_polarity = ((data & I82577_PHY_STATUS2_REV_POLARITY) 3109 ? e1000_rev_polarity_reversed 3110 : e1000_rev_polarity_normal); 3111 3112 return ret_val; 3113 } 3114 3115 /** 3116 * e1000_phy_force_speed_duplex_82577 - Force speed/duplex for I82577 PHY 3117 * @hw: pointer to the HW structure 3118 * 3119 * Calls the PHY setup function to force speed and duplex. 3120 **/ 3121 s32 e1000_phy_force_speed_duplex_82577(struct e1000_hw *hw) 3122 { 3123 struct e1000_phy_info *phy = &hw->phy; 3124 s32 ret_val; 3125 u16 phy_data; 3126 bool link; 3127 3128 ret_val = e1e_rphy(hw, MII_BMCR, &phy_data); 3129 if (ret_val) 3130 return ret_val; 3131 3132 e1000e_phy_force_speed_duplex_setup(hw, &phy_data); 3133 3134 ret_val = e1e_wphy(hw, MII_BMCR, phy_data); 3135 if (ret_val) 3136 return ret_val; 3137 3138 udelay(1); 3139 3140 if (phy->autoneg_wait_to_complete) { 3141 e_dbg("Waiting for forced speed/duplex link on 82577 phy\n"); 3142 3143 ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT, 3144 100000, &link); 3145 if (ret_val) 3146 return ret_val; 3147 3148 if (!link) 3149 e_dbg("Link taking longer than expected.\n"); 3150 3151 /* Try once more */ 3152 ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT, 3153 100000, &link); 3154 } 3155 3156 return ret_val; 3157 } 3158 3159 /** 3160 * e1000_get_phy_info_82577 - Retrieve I82577 PHY information 3161 * @hw: pointer to the HW structure 3162 * 3163 * Read PHY status to determine if link is up. If link is up, then 3164 * set/determine 10base-T extended distance and polarity correction. Read 3165 * PHY port status to determine MDI/MDIx and speed. Based on the speed, 3166 * determine on the cable length, local and remote receiver. 3167 **/ 3168 s32 e1000_get_phy_info_82577(struct e1000_hw *hw) 3169 { 3170 struct e1000_phy_info *phy = &hw->phy; 3171 s32 ret_val; 3172 u16 data; 3173 bool link; 3174 3175 ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link); 3176 if (ret_val) 3177 return ret_val; 3178 3179 if (!link) { 3180 e_dbg("Phy info is only valid if link is up\n"); 3181 return -E1000_ERR_CONFIG; 3182 } 3183 3184 phy->polarity_correction = true; 3185 3186 ret_val = e1000_check_polarity_82577(hw); 3187 if (ret_val) 3188 return ret_val; 3189 3190 ret_val = e1e_rphy(hw, I82577_PHY_STATUS_2, &data); 3191 if (ret_val) 3192 return ret_val; 3193 3194 phy->is_mdix = !!(data & I82577_PHY_STATUS2_MDIX); 3195 3196 if ((data & I82577_PHY_STATUS2_SPEED_MASK) == 3197 I82577_PHY_STATUS2_SPEED_1000MBPS) { 3198 ret_val = hw->phy.ops.get_cable_length(hw); 3199 if (ret_val) 3200 return ret_val; 3201 3202 ret_val = e1e_rphy(hw, MII_STAT1000, &data); 3203 if (ret_val) 3204 return ret_val; 3205 3206 phy->local_rx = (data & LPA_1000LOCALRXOK) 3207 ? e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok; 3208 3209 phy->remote_rx = (data & LPA_1000REMRXOK) 3210 ? e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok; 3211 } else { 3212 phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED; 3213 phy->local_rx = e1000_1000t_rx_status_undefined; 3214 phy->remote_rx = e1000_1000t_rx_status_undefined; 3215 } 3216 3217 return 0; 3218 } 3219 3220 /** 3221 * e1000_get_cable_length_82577 - Determine cable length for 82577 PHY 3222 * @hw: pointer to the HW structure 3223 * 3224 * Reads the diagnostic status register and verifies result is valid before 3225 * placing it in the phy_cable_length field. 3226 **/ 3227 s32 e1000_get_cable_length_82577(struct e1000_hw *hw) 3228 { 3229 struct e1000_phy_info *phy = &hw->phy; 3230 s32 ret_val; 3231 u16 phy_data, length; 3232 3233 ret_val = e1e_rphy(hw, I82577_PHY_DIAG_STATUS, &phy_data); 3234 if (ret_val) 3235 return ret_val; 3236 3237 length = ((phy_data & I82577_DSTATUS_CABLE_LENGTH) >> 3238 I82577_DSTATUS_CABLE_LENGTH_SHIFT); 3239 3240 if (length == E1000_CABLE_LENGTH_UNDEFINED) 3241 return -E1000_ERR_PHY; 3242 3243 phy->cable_length = length; 3244 3245 return 0; 3246 } 3247